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Preface

Symmetry pervades many forms of art and science, and group theory provides a systematic

way of thinking about symmetry. The mathematical concept of a group was invented in

1823 by Évariste Galois. Its applications in physical science developed rapidly during the

twentieth century, and today it is considered as an indispensable aid in many branches of

physics and chemistry. This book provides a thorough introduction to the subject and could

form the basis of two successive one-semester courses at the advanced undergraduate and

graduate levels. Some features not usually found in an introductory text are detailed

discussions of induced representations, the Dirac characters, the rotation group, projective

representations, space groups, magnetic crystals, and spinor bases. New concepts or

applications are illustrated by worked examples and there are a number of exercises.

Answers to exercises are given at the end of each section. Problems appear at the end of

each chapter, but solutions to problems are not included, as that would preclude their use as

problem assignments. No previous knowledge of group theory is necessary, but it is

assumed that readers will have an elementary knowledge of calculus and linear algebra

and will have had a first course in quantum mechanics. An advanced knowledge of

chemistry is not assumed; diagrams are given of all molecules that might be unfamiliar

to a physicist.

The book falls naturally into two parts. Chapters 1–10 (with the exception of a few

marked sections) are elementary and could form the basis of a one-semester advanced

undergraduate course. This material has been used as the basis of such a course at the

University of Western Ontario for many years and, though offered as a chemistry course, it

was taken also by some physicists and applied mathematicians. Chapters 11–18 are at a

necessarily higher level; this material is suited to a one-semester graduate course.

Throughout, explanations of new concepts and developments are detailed and, for the

most part, complete. In a few instances complete proofs have been omitted and detailed

references to other sources substituted. It has not been my intention to give a complete

bibliography, but essential references to core work in group theory have been given. Other

references supply the sources of experimental data and references where further develop-

ment of a particular topic may be followed up.

I am considerably indebted to Professor Boris Zapol who not only drew all the diagrams

but also read the entire manuscript and made many useful comments. I thank him also for

his translation of the line from Alexander Pushkin quoted below. I am also indebted to my

colleague Professor Alan Allnatt for his comments on Chapters 15 and 16 and for several

fruitful discussions. I am indebted to Dr. Peter Neumann and Dr. Gabrielle Stoy of Oxford

xi



University for their comments on the proof (in Chapter 12) that multiplication of quater-

nions is associative. I also thank Richard Jacobs and Professor Amy Mullin for advice on

computing.

Grateful acknowledgement is made to the following for permission to make use of

previously published material:

The Chemical Society of Japan, for Figure 10.3;

Taylor and Francis Ltd (http://www.tandf.co.uk/journals) for Table 10.2;

Cambridge University Press for Figure 12.5;

The American Physical Society and Dr. C. J. Bradley for Table 14.6.

‘‘Qprfelye krg le qeonhq preqy� . . . ’’ A. Q. Orwihl

‘‘19 miq~ap~’’

which might be translated as:

‘‘Who serves the muses should keep away from fuss,’’ or, more prosaically,

‘‘Life interferes with Art.’’

I am greatly indebted to my wife Mary Mullin for shielding me effectively from

the daily intrusions of ‘‘Life’’ and thus enabling me to concentrate on this particular

work of ‘‘Art.’’
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Notation and conventions

General mathematical notation

� identically equal to

) leads logically to; thus p) q means if p is true, then q follows
P

sum of (no special notation is used when
P

is applied to sets, since it will

always be clear from the context when
P

means a sum of sets)

8 all

iff if and only if

9 there exists

a the negative of a (but note ¼ � in Chapter 13 and R ¼ ER, an operator in the

double group G, in Chapter 8)

Cn n-dimensional space in which the components of vectors are complex

numbers

c, s cos�, sin�

c2, s2 cos 2�, sin 2�

c x x cos�

cmn cosðmp=nÞ
i imaginary unit, defined by i2 ¼

ffiffiffiffiffiffiffi
�1

p

q1 q2 q3 quaternion units

<n n-dimensional space, in which the components of vectors are real numbers

<3 configuration space, that is the three-dimensional space of real vectors in which

symmetry operations are represented

s x x sin�

T( n) tensor of rank n in Section 15.1

Sets and groups

{gi} the set of objects gi, i¼ 1, . . . , g, which are generally referred to as ‘elements’

2 belongs to, as in gi2G

62 does not belong to

A ! B map of set A onto set B

a ! b map of element a (the pre-image of b) onto element b (the image of a)
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A \ B intersection of A and B, that is the set of all the elements that belong to both A

and B

A [ B the union of A and B, that is the set of all the elements that belong to A, or to B,

or to both A and B

G a group G¼ {gi}, the elements gi of which have specific properties

(Secti on 1. 1)

E, or g1 the identity element in G

g the order of G, that is the number of elements in G

H, A, B groups of order h, a, and b, respectively, often subgroups of G

H � G H is a subset of G; if {hi} have the group properties, H is a subgroup of G

of order h

A � B the groups A and B are isomorphous

C a cyclic group of order c

ck the class of gk in G (Sect ion 1.2) of order c k

Ck
ij class constants in the expansion �i�j ¼

PNc

k¼1

Ck
ij�k 

(Secti on A2.2 )

gi(ck) ith element of the kth class

G a group consi sting of a unitary subgr oup H and the coset A H, whe re A is an

antiunita ry opera tor (Secti on 13.2), such that G¼ {H} � A{H}

K the kerne l of G, of order k (Section 1.6)

li dimension of ith irreducible representation

ls dimension of an irreducible spinor representation

lv dimension of an irreducible vector representation

Nc number of classes in G

Nrc number of regular classes

Nr number of irreducible representations

Ns number of irreducible spinor representations

Nv number of irreducible vector representations

N(H|G) the normal izer of H in G, o f order n (Secti on 1.7)

t index of a coset expansion of G on H, G ¼
Pt

r¼1

grH, with gr 62 H except for

g1¼E; {gr} is the set of coset representatives in the coset expansion of G, and

{gr} is not used for G itself.

Z(hj|G) the centrali zer of hj in G, of order z (Secti on 1.7)

Zi an abbreviation for Z(gi|G)

�k, �(ck) Dirac character of ck, equal to
Pck

i¼1

gi(ck)

A� B (outer) direct product of A and B, often abbreviated to DP

A £ B inner direct product of A and B

A ^ B semidire ct produc t of A and B

A � B symme tric direct product of A and B (Section 5.3)

A � B antisymm etric direct p roduct of A and B (Section 5.3)
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Vectors and matrices

r a polar vector (often just a vector) which changes sign under inversion; r

may be represented by the directed line segment OP, where O is the origin

of the coordinate system

x y z coordinates of the point P and therefore the components of a vector r¼OP;

independent variables in the function f (x, y, z).

x y z space-fixed right-handed orthonormal axes, collinear with OX, OY, OZ

e1 e2 e3 unit vectors, initially coincident with x y z, but firmly embedded in

configuration space (see R(� n) below). Note that {e1 e2 e3} behave like

polar vectors under rotation but are invariant under inversion and

therefore they are pseudovectors. Since, in configuration space the vector

r¼ e1xþ e2yþ e3z changes sign on inversion, the components of r, {x y z},

must change sign on inversion and are therefore pseudoscalars

{ei} unit vectors in a space of n dimensions, i¼ 1, . . . , n

{vi} components of the vector v ¼
P

i

ei vi

A the matrix A¼ [ars], with m rows and n columns so that r¼ 1, . . . , m

and s¼ 1, . . . , n. See Table A1.1 for definitions of some special matrices

Ars, ars element of matrix A common to the rth row and sth column

En unit matrix of dimensions n � n, in which all the elements are zero except

those on the principal diagonal, which are all unity; often abbreviated toE
when the dimensions of E may be understood from the context

det A or |ars| determinant of the square matrix A
A�B direct product of the matrices A and B
Cpr,qs element apqbrs in C¼A�B
A[ij] ijth element (which is itself a matrix) of the supermatrix A
ha1 a2 . . . an| a matrix of one row containing the set of elements {ai}

ha| an abbreviation for ha1 a2 . . . an|. The set of elements {ai} may be basis

vectors, for example he1 e2 e3|, or basis functions h�1 �2 . . .�n|.
|b1 b2 . . . bni a matrix of one column containing the set of elements {bi}, often

abbreviated to |bi; hb| is the transpose of |bi
ha0| the transform of ha| under some stated operation

he|ri an abbreviation for the matrix representative of a vector r; often given fully

as he1 e2 e3 | x y zi

Brackets

h | , | i Dirac bra and ket, respectively; no special notation is used to distinguish the

bra and ket from row and column matrices, since which objects are intended

will always be clear from the context
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[A, B] commutator of A and B equal to AB�BA

[a, A] complex number aþ iA

[a ; A] quaternion (Chapter 11)

[gi ; gj] projective factor, or multiplier (Chapter 12); often abbreviated to

[i ; j]

[n1 n2 n3] components of the unit vector n, usually given without the normalization

factor; for example, [1 1 1] are the components of the unit vector that makes

equal angles with OX, OY, OZ, the normalization factor 3�½ being

understood. Normalization factors will, however, be given explicitly when

they enter into a calculation, as, for example, in calculations using

quaternions

Angular momenta

L, S, J orbital, spin, and total angular momenta

L̂, Ŝ, Ĵ quantum mechanical operators corresponding to L, S, and J

L, S, J quantum numbers that quantize L2, S2, and J2

ĵ operator that obeys the angular momentum commutation relations

j¼ j1þ j2 total (j) and individual (j1, j2, . . . ) angular momenta, when angular momenta

are coupled

Symmetry operators and their matrix representatives

A antiuni tary operator (Secti on 13.1); A, B may als o denote linear,

Hermitian operators according to context

E identity operator

E operator R(2p n) introduced in the formation of the double group

G ¼ fR Rg from G¼ {R}, where R¼ER (Secti on 8.1)

I inversion operator

I1 I2 I3 operators that generate infinitesimal rotations about x y z, respectively

(Chapter 11)

Î1 Î2 Î3 function operators that correspond to I1 I2 I3

I3 matrix representative of I3, and similarly (note that the usual symbol

�(R) for the matrix representative of symmetry operator R is not used in

this context, for brevity)

I generator of infinitesimal rotations about n, with components I1, I2, I3
In matrix representative of In¼n � I
Jx Jy Jz matrix representatives of the angular momentum operators Ĵx, Ĵy, Ĵz

for the basis hm|¼h1=2 , �1=2|. Without the numerical factors of ½, these

are the Pauli matrices s1 s2 s3

xvi Notation and conventions



R(� n) rotation through an angle � about an axis which is the unit vector n;

here � n is not a product but a single symbol �n that fixes the three

independent parameters necessary to describe a rotation (the three

components of n, [n1 n2 n3], being connected by the normalization

condition); however, a space is inserted between � and n in rotation

operators for greater clarity, as in R(2p=3 n). The range of �

is�p< �	 p. R acts on configuration space and on all vectors therein

(including {e1 e2 e3}) (but not on {x y z}, which define the space-fixed

axes in the active representation)

R̂ð� nÞ functi on operator that correspo nds to the symmetr y operator R(� n),

defined so that R̂f ð r Þ ¼  f ð R� 1 r Þ (Secti on 3.5)
R, S, T general symbols for point symmetry operators (point symmetry

operators leave at least one point invariant)

ŝx ŝ y ŝ z spin opera tors whose matrix represe ntatives are the Pauli matrices

and therefore equal to Ĵx, Ĵy, Ĵz without the common factor

of 1=2

T translation operator (the distinction between T a translation operator

and Twhen used as a point symmetry operator will always be clear from

the context)

U a unitary operator

u time-evo lution operator (Secti on 13.1)

�(R) matrix representative of the symmetry operator R; sometimes just R,

for brevity

�(R)pq pqth element of the matrix representative of the symmetry operator R

� matrix representation

�1 
 �2 the matrix represe ntations �1 and �2 are equival ent, that is related by a

similar ity transformat ion (Secti on 4.2)

� ¼
P

i

ci�i the representation � is a direct sum of irreducible representations �i,

and each �i occurs c
i times in the direct sum �; when specific

representations (for example T1u) are involved, this would be written

c(T1u)

� � �i the reducible representation � includes �i

�i ¼
P

j

ci, j �j the representation �i is a direct sum of irreducible representations

�j and each �j occurs ci,j times in the direct sum �i

�ij ¼
P

k

cij, k �k Clebsch–Gordan decomposition of the direct product

�ij ¼ �i £ �j; cij, k are the Clebsch–Gordan coefficients

�n reflection in the plane normal to n

�1 �  2 �  3 the Pauli matrice s (Secti on 11.6)

� time-reversal operator

Notation and conventions xvii



Bases

he1 e2 e3| basis consisting of the three unit vectors {e1 e2 e3} initially coincident with

{x y z} but embedded in a unit sphere in configuration space so that

Rhe1 e2 e3j ¼ he10 e20 e30j ¼ he1 e2 e3j �ðRÞ. The 3� 3 matrix �(R) is the

matrix representative of the symmetry operator R. Note that he1 e2 e3| is
often abbreviated to he|. If r 2 <3,R r ¼ Rhejri ¼ he0jri ¼ hej�ðRÞjri ¼
hejr0i, which shows that he| and |ri are dual bases, that is they are

transformed by the same matrix �(R)

hRx Ry Rz| basis comprising the three infinitesimal rotations Rx, Ry, Rz about OX, OY,

OZ respect ively (Sect ion 4.6)

hu j
�j . . . u

j
jj basis consisting of the 2jþ 1 functions, u j

m, �j 	 m 	 j, which are

eigenfunctions of the z component of the angular momentum operator Ĵz,

and of Ĵ2, with the Condon and Shortley choice of phase. The angular

momentum quantum numbers j and m may be either an integer or a half-

integer. For integral j the u j
m are the spherical harmonics

Ym
l ð� ’Þ; yml ð� ’Þ are the spherical harmonics written without

normalization factors, for brevity

hu j
mj an abbreviation for hu j

�j . . . u
j
jj, also abbreviated to hm|

hu �| spinor basis, an abbreviation for hu½½j ¼ hj½ ½i j½ �½ij, or h½ �½j in
the hm| notation

hu0 �0| transform of hu �| in C2, equal to hu �|A
| u �i dual of hu �|, such that |u0 �0i ¼A| u �i
| U�1 U0 U1i matrix representation of the spherical vector U 2 C3 which is the dual of

the basis hy�1
1 y01 y11j

N normalization factor

Crystals

an ¼ha| ni latt ice tra nslation vect or; an ¼ha1 a2 a3| n1 n2 n3i (Section 16.1) ( n is often
used as an abbreviation for the an)

bm¼hb| mi reciprocal lattice vector; bm¼ hb1 b2 b3| m1 m2 m3i¼ he1 e2 e3| mx my mzi
(Sect ion 16.3); m is oft en used as an abbrevia tion for the com ponents of bm

Abbreviations

1-D one-dimensional (etc.)

AO atomic orbital

BB bilateral binary

bcc body-centered cubic

CC complex conjugate

CF crystal field
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CG Clebsch–Gordan

CR commutation relation

CS Condon and Shortley

CT charge transfer

DP direct product

fcc face-centered cubic

FE free electron

FT fundamental theorem

hcp hexagonal close-packed

HSP Hermitian scalar product

IR irreducible representation

ITC International Tables for Crystallography (Hahn (1983))

L, R left and right, respectively, as in L and R cosets

LA longitudinal acoustic

LCAO linear combination of atomic orbitals

LI linearly independent

LO longitudinal optic

LS left- side (of an equation)

LVS linear vector space

MO molecular orbital

MR matrix representative

N north, as in N pole

ORR Onsager reciprocal relation

OT orthogonality theorem

PBC periodic boundary conditions

PF projective factor

PR projective representation

RS right side (of an equation)

RS Russell–Saunders, as in RS coupling or RS states

sc simple cubic

SP scalar product

TA transverse acoustic

TO transverse optic

ZOA zero overlap approximation

Cross-references

The author (date) system is used to identify a book or article in the list of references, which

precedes the index.

Equations in a different section to that in which they appear are referred to by

eq. (n1� n2� n3), where n1 is the chapter number, n2 is the section number, and n3 is the

equation number within that section. Equations occurring within the same section are referred

to simply by (n3). Equations are numbered on the right, as usual, and, when appropriate,

Notation and conventions xix



a number (or numbers) on the left, in parentheses, indicates that these equations are used in the

derivation of that equation so numbered. This convention means that such phrases as ‘‘it

follows from’’ or ‘‘substituting eq. (n4) in eq. (n5)’’ can largely be dispensed with.

Examples and Exercises are referenced, for example, as Exercise n1 � n2-n3, even within
the same section. Figures and Tables are numbered n1 � n3 throughout each chapter. When a

Table or Figure is referenced on the left side of an equation, their titles are abbreviated to T

or F respectively, as in F16.1, for example.

Problems appear at the end of each chapter, and a particular problem may be referred to

as Problem n1 � n3, where n1 is the number of the chapter in which Problem n3 is to be found.
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1 The elementary properties
of groups

1.1 Definitions

All crystals and most molecules possess symmetry, which can be exploited to simplify the

discussion of their physical properties. Changes from one configuration to an indistinguish-

able configuration are brought about by sets of symmetry operators, which form particular

mathematical structures called groups. We thus commence our study of group theory with

some definitions and properties of groups of abstract elements. All such definitions and

properties then automatically apply to all sets that possess the properties of a group,

including symmetry groups.

Binary composition in a set of abstract elements {gi}, whatever its nature, is always

written as a multiplication and is usually referred to as ‘‘multiplication’’ whatever it

actually may be. For example, if gi and gj are operators then the product gi gj means

‘‘carry out the operation implied by gj and then that implied by gi.’’ If gi and gj are both

n-dimensional square matrices then gi gj is the matrix product of the two matrices gi and gj
evaluated using the usual row � column law of matrix multiplication. (The properties of

matrices that are made use of in this book are reviewed in Appendix A1.) Binary

composition is unique but is not necessarily commutative: gi gj may or may not be equal

to gj gi. In order for a set of abstract elements {gi} to be a G, the law of binary composition

must be defined and the set must possess the following four properties.

(i) Closure. For all gi, with gj 2 {gj},

gi gj ¼ gk 2 fgig, gk a unique element of fgig: (1)

Because gk is a unique element of {gi}, if each element of {gi} is multiplied from the left,

or from the right, by a particular element gj of {gi} then the set {gi} is regenerated with the

elements (in general) re-ordered. This result is called the rearrangement theorem

gj fgig ¼ fgig ¼ fgig gj: (2)

Note that {gi} means a set of elements of which gi is a typical member, but in no

particular order. The easiest way of keeping a record of the binary products of the

elements of a group is to set up a multiplication table in which the entry at the

intersection of the gith row and gjth column is the binary product gi gi¼ gk, as in

Table 1.1. It follows from the rearrangement theorem that each row and each column of

the multiplication table contains each element of G once and once only.

1



(ii) Multiplication is associative. For all gi, gj, gk 2 {gi},

giðgj gkÞ ¼ ðgi gjÞgk : (3)

(iii) The set {gi} contains the identity element E, with the property

E gj ¼ gj E ¼ gj, 8 gj 2 fgig: (4)

(iv) Each element gi of {gi} has an inverse g�1
i 2 fggi such that

g�1
i gi ¼ gi g�1

i ¼ E, g�1
i 2 fgig, 8 gi 2 fgig: (5)

The number of elements g in G is called the order of the group. Thus

G ¼ fgig, i ¼ 1, 2, . . . , g: (6)

When this is necessary, the order of G will be displayed in parentheses G(g), as in G(4) to

indicate a group of order 4.

Exercise 1.1-1 With binary composition defined to be addition: (a) Does the set of

positive integers {p} form a group? (b) Do the positive integers p, including zero (0)

form a group? (c) Do the positive (p) and negative (�p) integers, including zero, form a

group? [Hint: Consider the properties (i)–(iv) above that must be satisfied for {gi} to form

a group.]

The multiplication of group elements is not necessarily commutative, but if

gi gj ¼ gj gi, 8 gi, gj 2 G (7)

then the group G is said to be Abelian. Two groups that have the same multiplication table

are said to be isomorphous. As we shall see, a number of other important properties of a

group follow from its multiplication table. Consequently these properties are the same for

isomorphous groups; generally it will be necessary to identify corresponding elements in

the two groups that are isomorphous, in order to make use of the isomorphous property. A

group G is finite if the number g of its elements is a finite number. Otherwise the group G is

infinite, if the number of elements is denumerable, or it is continuous. The group of

Exercise 1.1-1(c) is infinite. For finite groups, property (iv) is automatically fulfilled as

a consequence of the other three.

Table 1.1. Multiplication table for the group G¼ {gi} in which the product

gi gj happens to be gk.

G gi gj gk . . .

gi gi
2 gk gi gk

gj gj gi gj
2 gj gk

gk gk gi gk gj gk
2

..

.
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If the sequence gi, g2i , g3i , . . . starts to repeat itself at g
cþ1
i ¼ gi, because g

c
i ¼ E, then

the set fgi g2i g3i . . . gci ¼ Eg, which is the period of gi, is a group called a cyclic group,
C. The order of the cyclic group C is c.

Exercise 1.1-2 (a) Show that cyclic groups are Abelian. (b) Show that for a finite

cyclic group the existence of the inverse of each element is guaranteed. (c) Show that

!¼ exp(�2pi=n) generates a cyclic group of order n, when binary composition is

defined to be the multiplication of complex numbers.

If every element of G can be expressed as a finite product of powers of the elements in a

particular subset of G, then the elements of this subset are called the group generators. The

choice of generators is not unique: generally, a minimal set is employed and the defining

relations like gi¼ (gj)
p (gk)

q, etc., where {gj gk} are group generators, are stated. For

example, cyclic groups are generated from just one element gi.

Example 1.1-1 A permutation group is a group in which the elements are permutation

operators. A permutation operatorP rearranges a set of indistinguishable objects. For example, if

Pfa b c . . .g ¼ fb a c . . .g (8)

then P is a particular permutation operator which interchanges the objects a and b. Since

{a b . . .} is a set of indistinguishable objects (for example, electrons), the final configura-

tion {b a c . . . } is indistinguishable from the initial configuration {a b c . . . } and P is a

particular kind of symmetry operator. The best way to evaluate products of permutation

operators is to write down the original configuration, thinking of the n indistinguishable

objects as allocated to n boxes, each of which contains a single object only. Then write

down in successive rows the results of the successive permutations, bearing in mind that a

permutation other than the identity involves the replacement of the contents of two or more

boxes. Thus, if P applied to the initial configuration means ‘‘interchange the contents of

boxes i and j’’ (which initially contain the objects i and j, respectively) then P applied to

some subsequent configuration means ‘‘interchange the contents of boxes i and j, whatever

they currently happen to be.’’ A numb er of examp les are given in Table 1.2, and these

should suffice to show how the multiplication table in Table 1.3 is derived. The reader

should check some of the entries in the multiplication table (see Exercise 1.1-3).

The elements of the set {P0 P1 . . .P5} are the permutation operators, and binary

composition of two members of the set, say P3 P5, means ‘‘carry out the permutation

specified by P5 and then that specified by P3.’’ For example, P1 states ‘‘replace the contents

of box 1 by that of box 3, the contents of box 2 by that of box 1, and the contents of box 3 by

that of box 2.’’ So when applyingP1 to the configuration {3 1 2}, which resulted from P1 (in

order to find the result of applying P2
1 ¼ P1 P1 to the initial configuration) the contents of

box 1 (currently 3) are replaced by those of box 3 (which happens currently to be 2 – see the

line labeled P1); the contents of box 2 are replaced by those of box 1 (that is, 3); and finally

the contents of box 3 (currently 2) are replaced by those of box 2 (that is, 1). The resulting

configuration {2 3 1} is the same as that derived from the original configuration {1 2 3} by

P2, and so
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P1 P1f1 2 3g ¼ f2 3 1g ¼ P2f1 2 3g (9)

so that P1 P1¼P2. Similarly, P2 P1¼P0, P3 P1¼P4, and so on. The equivalent single

operators (products) are shown in the right-hand column in the example in the last part of

Table 1.2. In this way, we build up the multiplication table of the group S(3), which is

shown in Table 1.3. Notice that the rearrangement theorem (closure) is satisfied and that

each element has an inverse. The set contains the identity P0, and examples to demonstrate

associativity are readily constructed (e.g. Exercise 1.1-4). Therefore this set of permu-

tations is a group. The group of all permutations of N objects is called the symmetric group

Table 1.2. Definition of the six permutation operators of the permutation group S(3) and

some examples of the evaluation of products of permutation operators.

In each example, the initial configuration appears on the first line and the permutation

operator and the result of the operation are on successive lines. In the last example, the

equivalent single operator is given on the right.

The identity P0¼E
1 2 3 original configuration (which therefore labels the ‘‘boxes’’)

P0 1 2 3 final configuration (in this case identical with the initial configuration)

The two cyclic permutations
1 2 3 1 2 3

P1 3 1 2 P2 2 3 1

The three binary interchanges
1 2 3 1 2 3 1 2 3

P3 1 3 2 P4 3 2 1 P5 2 1 3

Binary products with P1

1 2 3
P1 3 1 2 P1

P1 P1 2 3 1 P2

P2 P1 1 2 3 P0

P3 P1 3 2 1 P4

P4 P1 2 1 3 P5

P5 P1 1 3 2 P3

Table 1.3. Multiplication table for the permutation group S(3).

The box indicates the subgroup C(3).

S(3) P0 P1 P2 P3 P4 P5

P0 P0 P1 P2 P3 P4 P5

P1 P1 P2 P0 P5 P3 P4

P2 P2 P0 P1 P4 P5 P3

P3 P3 P4 P5 P0 P1 P2

P4 P4 P5 P3 P2 P0 P1

P5 P5 P3 P4 P1 P2 P0
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S(N). Since the number of permutations ofN objects isN!, the order of the symmetric group

is N!, and so that of S(3) is 3! = 6.

Exercise 1.1-3 Evaluate the products in the column headed P3 in Table 1.3.

Exercise 1.1-4 (a) Using the multiplication table for S(3) in Table 1.3 show that

(P3 P1)P2¼P3(P1 P2). This is an example of the group property of associativity.

(b) Find the inverse of P2 and also the inverse of P5.

Answers to Exercises 1.1

Exercise 1.1-1 (a) The set {p} does not form a group because it does not contain the

identity E. (b) The set {p 0} contains the identity 0, pþ 0¼ p, but the inverses {�p} of

the elements {p}, pþ (�p)¼ 0, are not members of the set {p 0}. (c) The set of positive

and negative integers, including zero, f p p 0g, does form a group since it has the four

group properties: it satisfies closure, and associativity, it contains the identity (0), and each

element p has an inverse p or�p.

Exercise 1.1-2 (a) g
p
i g

q
i ¼g

pþq
i ¼g

qþp
i ¼g

q
i g

p
i . (b) If p< c, g

p
i g

c�p
i ¼gci ¼E. Therefore,

the inverse of g
p
i is g

c�p
i . (c) !n¼ exp(�2pi)¼ 1¼E; therefore {! !2 . . . !n¼E} is a

cyclic group of order n.

Exercise 1.1-3

P0 1 2 3

P3 1 3 2 P3

P1 P3 2 1 3 P5

P2 P3 3 2 1 P4

P3 P3 1 2 3 P0

P4 P3 2 3 1 P2

P5 P3 3 1 2 P1

Exercise 1.1-4 (a) From the multiplication table, (P3 P1) P2¼P4 P2¼P3 and

P3 (P1 P2)¼P3 P0¼P3. (b) Again from the multiplication table, P2 P1¼P0¼E and

so P�1
2 ¼ P1; P5 P5 ¼ P0, P�1

5 ¼ P5.

1.2 Conjugate elements and classes

If gi, gj, gk 2 G and

gi gj g
�1
i ¼ gk (1)

then gk is the transform of gj, and gj and gk are conjugate elements. A complete set of the

elements conjugate to gi form a class, ci. The number of elements in a class is called the

order of the class; the order of ci will be denoted by ci.
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Exercise 1.2-1 Show that E is always in a class by itself.

Example 1.2-1 Determine the classes of S(3). Note that P0¼E is in a class by itself; the

class of E is always named c1. Using the multiplication table for S(3), we find

P0 P1 P
�1
0 ¼ P1 P0 ¼ P1,

P1 P1 P
�1
1 ¼ P2 P2 ¼ P1,

P2 P1 P
�1
2 ¼ P0 P1 ¼ P1,

P3 P1 P
�1
3 ¼ P4 P3 ¼ P2,

P4 P1 P
�1
4 ¼ P5 P4 ¼ P2,

P5 P1 P
�1
5 ¼ P3 P5 ¼ P2:

Hence {P1 P2} form a class c2. The determination of c3 is left as an exercise.

Exercise 1.2-2 Show that there is a third class of S(3), c3¼{P3 P4 P5}.

Answers to Exercises 1.2

Exercise 1.2-1 For any group G with gi 2 G,

gi E g�1
i ¼ gi g

�1
i ¼ E:

Since E is transformed into itself by every element of G, E is in a class by itself.

Exercise 1.2-2 The transforms of P3 are

P0P3P
�1
0 ¼ P3P0 ¼ P3,

P1P3P
�1
1 ¼ P5P2 ¼ P4,

P2P3P
�1
2 ¼ P4P1 ¼ P5,

P3P3P
�1
3 ¼ P0P3 ¼ P3,

P4P3P
�1
4 ¼ P2P4 ¼ P5,

P5P3P
�1
5 ¼ P1P5 ¼ P4:

Therefore {P3 P4 P5} form a class, c3, of S(3).

1.3 Subgroups and cosets

A subset H of G, H � G, that is itself a group with the same law of binary composition, is a

subgroup of G. Any subset of G that satisfies closure will be a subgroup of G, since the other

group properties are then automatically fulfilled. The region of the multiplication table of

S(3) in Table 1.3 in a box shows that the subset {P0 P1 P2} is closed, so that this set is a
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subgroup of S(3). Moreover, since P2
1 ¼ P2, P

3
1 ¼ P1 P2 ¼ P0 ¼ E, it is a cyclic subgroup

of order 3, C(3).

Given a group G with subgroup H � G, then gr H, where gr 2 G but gr 62 H unless gr
is g1¼E, is called a left coset of H. Similarly, H gr is a right coset of H. The {gr}, gr 2 G

but gr 62 H, except for g1¼E, are called coset representatives. It follows from the

uniqueness of the product of two group elements (eq. (1.1.2)) that the elements of

gr H are distinct from those of gs H when s6¼r, and therefore that

G ¼
Pt

r¼1

gr H, gr 2 G, gr 62 H ðexcept for g1 ¼ EÞ, t ¼ g=h, (1)

where t is the index of H inG. Similarly, Gmay bewritten as the sum of t distinct right cosets,

G ¼
Pt

r¼1

H gr, gr 2 G, gr 62 H ðexcept for g1 ¼ EÞ, t ¼ g=h: (2)

If H gr¼ gr H, so that right and left cosets are equal for all r, then

gr H g�1
r ¼ H gr g

�1
r ¼ H (3)

and H is transformed into itself by any element gr 2 G that is not in H. But for any hj2H

hj H h�1
j ¼ hj H ¼ H ðclosureÞ: (4)

Therefore, H is transformed into itself by all the elements of G; H is then said to be an

invariant (or normal) subgroup of G.

Exercise 1.3-1 Prove that any subgroup of index 2 is an invariant subgroup.

Example 1.3-1 Find all the subgroups of S(3); what are their indices? Show explicitly

which, if any, of the subgroups of S(3) are invariant.

The subgroups of S(3) are

{P0 P1 P2}¼C(3), {P0 P3}¼H1, {P0 P4}¼H2, {P0 P5}¼H3.

Inspection of the multiplication table (Table 1.3) shows that all these subsets of S(3) are

closed. Since g¼ 6, their indices t are 2, 3, 3, and 3, respectively. C(3) is a subgroup of S(3)

of index 2, and so we know it to be invariant. Explicitly, a right coset expansion for S(3) is

fP0 P1 P2g þ fP0 P1 P2gP4 ¼ fP0 P1 P2 P3 P4 P5g ¼ Sð3Þ: (5)

The corresponding left coset expansion with the same coset representative is

fP0 P1 P2g þ P4fP0 P1 P2g ¼ fP0 P1 P2 P4 P5 P3g ¼ Sð3Þ: (6)

Note that the elements of G do not have to appear in exactly the same order in the left and

right coset expansions. This will only be so if the coset representatives commute with every

element of H. All that is necessary is that the two lists of elements evaluated from the coset

expansions both contain each element of G once only. It should be clear from eqs. (5) and

(6) that H gr¼ gr H, where H¼ {P0 P1 P2} and gr is P4. An alternative way of testing

for invariance is to evaluate the transforms of H. For example,
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P4fCð3ÞgP�1
4 ¼ P4fP0 P1 P2gP�1

4 ¼ fP4 P5 P3gP4 ¼ fP0 P2 P1g ¼ Cð3Þ: (7)

Similarly for P3 and P5, showing therefore that C(3) is an invariant subgroup of S(3).

Exercise 1.3-2 Show that C(3) is transformed into itself by P3 and by P5.

H1¼ {P0 P3} is not an invariant subgroup of S(3). Although

fP0 P3g þ fP0 P3gP1 þ fP0 P3gP2 ¼ fP0 P3 P1 P4 P2 P5g ¼ Sð3Þ, (8)

showing that H1 is a subgroup of S(3) of index 3,

fP0 P3gP1 ¼ fP1 P4g, but P1fP0 P3g ¼ fP1 P5g, (9)

so that right and left cosets of the representative P1 are not equal. Similarly,

fP0 P3gP2 ¼ fP2 P5g, but P2fP0 P3g ¼ fP2 P4g: (10)

Consequently, H1 is not an invariant subgroup. For H to be an invariant subgroup of G,

right and left cosets must be equal for each coset representative in the expansion of G.

Exercise 1.3-3 Show that H2 is not an invariant subgroup of S(3).

Answers to Exercises 1.3

Exercise 1.3-1 If t¼ 2, G¼Hþ g2 H¼HþH g2. Therefore, H g2¼ g2 H and the right and

left cosets are equal. Consequently, H is an invariant subgroup.

Exercise 1.3-2 P3fP0 P1 P2gP�1
3 ¼fP3 P4 P5gP3 ¼fP0 P2 P1g and P5fP0 P1 P2gP�1

5 ¼
fP5 P3 P4gP5 ¼fP0 P2 P1g, confirming that C(3) is an invariant subgroup of S(3).

Exercise 1.3-3 A coset expansion for H2 is

fP0 P4g þ fP0 P4gP1 þ fP0 P4gP2 ¼ fP0 P4 P1 P5 P2 P3g ¼ Sð3Þ:

The right coset for P1 is {P0 P4}P1¼ {P1 P5}, while the left coset for P1 is P1 {P0 P4}¼
{P1 P3}, which is not equal to the right coset for the same coset representative, P1. So H2 is

not an invariant subgroup of S(3).

1.4 The factor group

Suppose that H is an invariant subgroup of G of index t. Then the t cosets gr H of H

(including g1 H¼H) each considered as one element, form a group of order t called the

factor group,
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F ¼ G=H ¼
Pt

r¼1

ðgr HÞ, gr 2 G, gr 62 H (except for g1 ¼ EÞ, t ¼ g=h: (1)

Each term in parentheses, gr H, is one element of F. Because each element of F is a set of

elements of G, binary composition of these sets needs to be defined. Binary composition of

the elements of F is defined by

ðgp HÞðgq HÞ ¼ ðgp gqÞ H, gp, gq 2 fgrg, (2)

where the complete set {gr} contains g1¼ E as well as the t�1 coset representatives that

62 H. It follows from closure in G that gp gq 2 G. Because H is an invariant subgroup

gr H ¼ H gr: (3)

(2), (3) gp H gq H ¼ gp gp H H ¼ gp gq H: (4)

This means that in F

(4) H H ¼ H, (5)

which is the necessary and sufficient condition for H to be the identity in F.

Exercise 1.4-1 Show that g1 g1¼ g1 is both a necessary and sufficient condition for g1 to

be E, the identity element in G. [Hint: Recall that the identity element E is defined by

E gi ¼ gi E ¼ gi, 8 gi 2 G:� (1:1:5)

Thus, F contains the identity: that {F} is indeed a group requires the demon-stration of

the validity of the other group properties. These follow from the definition of binary

composition in F, eq. (2), and the invariance of H in G.

Closure: To demonstrate closure we need to show that gp gq H 2 F for gp, gq, gr 2 {gr}.

Now gp gq 2 G and so

(1) gp gq 2 fgr Hg, r ¼ 1, 2, . . . , t, (6)

(6) gp gq ¼ gr hl, hl 2 H, (7)

(2), (7) gp H gq H ¼ gp gq H ¼ gr hl H ¼ gr H 2 F: (8)

Associativity:

(2), (3), (4) ðgp H gq HÞgr H ¼ gp gq H gr H ¼ gp gq gr H, (9)

(2), (3), (4) gp Hðgq H gr HÞ ¼ gp H gq gr H ¼ gp gq gr H, (10)

(9), (10) ðgp H gq HÞgr H ¼ gp Hðgq H gr HÞ, (11)

and so multiplication of the elements of {F} is associative.
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Inverse:

(2) ðg�1
r HÞðgr HÞ ¼ g�1

r gr H ¼ H, (12)

so that the inverse of gr H in F is g�1
r H.

Example 1.4-1 The permutation group S(3) has the invariant subgroup H¼ {P0 P1 P2}.

Here g¼ 6, h¼ 3, t¼ 2, and

G ¼ Hþ P3 H, F ¼ fH P3 Hg ¼ fE0 P0g, (13)

where the elements of F have primes to distinguish E0 ¼H 2 F from E 2 G.

(13), (2) P0P0 ¼ ðP3 HÞðP3 HÞ ¼ P3 P3 H ¼ P0 H ¼ H: (14)

E0 is the identity element in F, and so the multiplication table for the factor group of S(3),

F¼ {E0 P0}, is as given in Table 1.4.

Exercise 1.4-2 Using the definitions of E0 and P0 in eq. (13), verify explicitly that

E0 P0 ¼P0, P0 E0 ¼P0. [Hint: Use eq. (2).]

Exercise 1.4-3 Show that, with binary composition as multiplication, the set {1 �1 i �i},

where i2¼�1, form a group G. Find the factor group F¼G=H and write down its multi-

plication table. Is F isomorphous with a permutation group?

Answers to Exercises 1.4

Exercise 1.4-1

(1.1.5) E E gi ¼ E gi E ¼ E gi, 8 gi 2 G, (15)

(15) E E ¼ E, (16)

and so E E¼E is a necessary consequence of the definition of E in eq. (1.1.5). If g1 g1¼ g1,

then multiplying each side from the left or from the right by g1
�1 gives g1¼E,

which demonstrates that g1 g1¼ g1 is a sufficient condition for g1 to be E, the identity

element in G.

Table 1.4. Multiplication table of the factor group

F¼ {E0 P0}.

F E0 P0

E0 E0 P0

P0 P0 E0
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Exercise 1.4-2

(13), (2) E0P0 ¼ ðHÞðP3 HÞ ¼ ðE HÞðP3 HÞ ¼ P3 H ¼ P0,

(13), (2) P0E0 ¼ ðP3 HÞðHÞ ¼ ðP3 HÞðE HÞ ¼ P3 H ¼ P0:

Exercise 1.4-3 With binary composition as multiplication the set {1 �1 i �i} is a group

G because of the following.

(a) It contains the identity E¼ 1; 1 gi¼ gi 1¼ gi, 8 gi 2 G.

(b) The set is closed (see Table 1.5).

(c) Since each row and each column of the multiplication table contains E once only, each

gi 2 G has an inverse.

(d) Associativity holds; for example,

ð�1Þ½ðiÞð�iÞ� ¼ ð�1Þ½1� ¼ �1, ½ð�1ÞðiÞ�ð�iÞ ¼ ½ð�iÞ�ð�iÞ ¼ �1:

From the multiplication table, the set H¼ {1 �1} is closed and therefore it is a

subgroup of G. The transforms of H for gi 62 H are

if1 �1gi�1 ¼ fi �igð�iÞ ¼ f1 �1g ¼ H;

ð�iÞf1 �1gð�iÞ�1 ¼ f�i igi ¼ f1 �1g ¼ H:

Therefore H is an invariant subgroup of G. A coset expansion of G on H is G¼Hþ iH, and

so F¼ {H iH}. From binary composition in F (eq. (2)) (H) (iH)¼ iH, (iH) (H)¼ iH,

(iH) (iH)¼ i i H¼ (�1) (H)¼ {�1 1}¼H. (Recall that H is the set of elements

{1 �1}, in no particular order.) The multiplication table of F is

F H iH

H H iH
iH iH H

Table 1.5. Multiplication table of the group G of Exercise 1.4-3.

G 1 �1 i �i

1 1 �i i �i

�1 �1 1 �i i

i i �i �1 1

�i �i i 1 �1
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The permutation group S(2) has just two elements {E P}

The multiplication table of S(2)

is the same as that of F, since both are of the form

F is therefore isomorphous with the permutation group S(2).

Remark Sections 1.6–1.8 are necessarily at a slightly higher level than that of the first five

sections. They could be omitted at a first reading.

1.5 Minimal content of Sections 1.6, 1.7, and 1.8

1.5.1 The direct product

Suppose that A¼ {ai}, B¼ {bj} are two groups of order a and b, respectively, with the

same law of binary composition. If A\B¼ {E} and ai bj¼ bj ai, 8 ai2A, 8 bj2B, then the

outer direct product of A and B is a group G of order g¼ a b, written

G ¼ A� B, (1)

with elements aibj¼ bjai, i¼ 1, . . . , a, j¼ 1, . . . , b. A and B are subgroups of G, and

therefore

(1.3.1) G ¼
Pb

j¼1

fAg bj ¼
Pb

j¼1

bj fAg, b1 ¼ E: (2)

Because ai, bj commute for all i¼ 1, . . . , a, j¼ 1, . . . , b, the right and left cosets are

equal, and therefore A is an invariant subgroup of G. Similarly, B is an invariant subgroup

1 2
E 1 2

1 2
P 2 1
PP 1 2 E

S(2) E P

E E P
P P E

G E g2

E E g2
g2 g2 E
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of G. It is still possible to form a direct product of A, B even when A and B are not both

invariant subgroups of G.

(i) If A is an invariant subgroup of G but B is not an invariant subgroup of G, then the

direct product of A and B is called the semidirect product, written

G ¼ A ^ B: (3)

Note that in semidirect products the invariant subgroup is always the first group in the

product. For example,

Sð3Þ ¼ Cð3Þ ^ H1 ¼ fP0 P1 P2gfP0 P3g ¼ fP0 P1 P2 P3 P4 P5g: (4)

(ii) If neither A nor B are invariant subgroups of G, then the direct product of A with B is

called the weak direct product. However, the weak direct product is not used in this

book, and the term ‘‘direct product’’ without further qualification is taken to mean the

outer direct product. (The inner direct product is explained in Section 1.6.)

1.5.2 Mappings and homomorphisms

A mapping f of the set A to the set A0, that is

f : A ! A0 (5)

involves the statement of a rule by which ai 2 a¼ {a1 a2 a3 . . . } in A becomes a0 in A0; a0 is

the image of each ai 2 a¼ {ai} for the mapping f, and this is denoted by a0 ¼ f(ai). An

example of the mapping f : A ! A0 is shown in Figure 1.1. In a mapping f, every element

ai 2 A must have a unique image f(ai)¼ a0 2 A0. The images of several different ai may

coincide (Figure 1.1). However, not every element in A0 is necessarily an image of some set of

elements in A, and in such cases A is said to be mapped intoA0. The set of all the elements in

A0 that actually are images of some sets of elements in A is called the range of the mapping.

The set of elements {a0}¼ { f(ai)}, 8 ai 2 A, is the image of the set A, and this is denoted by

f ðAÞ � A0, 8 a 2 A: (6)

If f(A)¼A0, the set A is said to be mapped on toA0. The set a¼ {ai} may consist of a single

element, a one-to-one mapping, or {ai} may contain several elements, in which case the

relationship of A toA0 is many-to-one. The set of elements in A that are mapped to a0 is called

the fiber of a0, and the number of elements in a fiber is termed the order of the fiber. Thus in

the example of Figure 1.1 the order of the fiber {a1 a2 a3} of a
0 is 3, while that of the fiber of

b0 ¼ {b1 b2} is 2. If A, A
0 are groups G, G0, and if a mapping f preserves multiplication so that

f ðai bjÞ ¼ a0 b0 ¼ f ðaiÞ f ðbjÞ, 8 f ðaiÞ ¼ a0, 8 f ðbjÞ ¼ b0, (7)

A j a1 a2 a3 j b1 b2 j c1 c2 � � � j � � �
A0 a0 b0 c0 � � �

Figure 1.1. Diagrammatic representation of the mapping f : A¼A0. Vertical bars have no

significance other than to mark the fibers of a0, b0, c0, . . . , in A.
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then G, G0 are homomorphous. For example, a group G and its factor group F are

homomorphous. In particular, if the fibers of a0, b0, . . . each contain only one element,

then G, G0 are isomorphous. In this case G and G0 are two different realizations of the same

abstract group in which {gi} represents different objects, such as two different sets of

symmetry operators, for example

Corollary

If multiplication is preserved in the mapping of G on to G0, eq. (7), then any properties of

G, G0 that depend only on the multiplication of group elements will be the same in G, G0.

Thus isomorphous groups have the same multiplication table and class structure.

Exercise 1.5-1 Show that in a group homomorphism the image of gj
�1 is the inverse of the

image of gj..

1.5.3 More about subgroups and classes

The centralizer Z(gj|G) of an element gj 2 G is the subset {zi} of all the elements of G

that commute with a particular element gi of G, so that zi gj¼ gj zi, gj 2 G, 8 zi 2 Z(gj|G).

Now Z¼Z(gj|G) is a subgroup of G (of order z), and so we may write a coset expansion of

G on Z as

(1.4.1) G ¼
Pt

r¼1

gr Z, t ¼ g=z, g1 ¼ E: (8)

It is proved in Section 1.8 that the sum of the elements gk (ci) that form the class ci in G is

given by

�ðciÞ ¼
P

k

gk ðciÞ ¼
P

r

gr gi g
�1
r (9)

where �(ci) is called the Dirac character of the class ci. The distinct advantage of

determining the members of ci from eq. (9) instead of from the more usual procedure

ci ¼ fgp gi g
�1
p g ðp ¼ 1, 2, . . . , g, repetitions deletedÞ, (10)

is that the former method requires the evaluation of only t instead of g transforms. An

example of the procedure is provided in Exercise 1.8-3.

Exercise 1.5-2 Prove that Z¼Z(gj|G) is a subgroup of G.

Answers to Exercises 1.5

Exercise 1.5-1 SinceE gj¼ gj, f(E) f(gj)¼ f(gj), and therefore f(E)¼E0 is the identity inG0.

Also, gj
�1gj ¼ E, the identity in G. Therefore, f ðgj�1gjÞ ¼ f ðgj�1Þ f ðgjÞ ¼ f ðEÞ ¼ E0, and

so the inverse of f(gj), the image of gj, is f ðgj�1Þ, the image of gj
�1.
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Exercise 1.5-2 Since Z is the subset of the elements of G that commute with gj, Z contains

the identity E. if zi, zk 2 Z, then (zi zk)gj¼ gj(zi zk), and so {zi} is closed. Closure, together

with the inclusion of the identity, guarantee that each element of Z has an inverse which is

2 Z. Note that {zi} � G, and so the set of elements {zi} satisfy the associative property.

Therefore, Z is a subgroup of G.

1.6 Product groups

If A¼ {ai}, B¼ {bj} are two groups of order a and b, respectively, then the outer direct

product of A and B, written A � B, is a group G¼ {gk}, with elements

gk ¼ ðai, bjÞ: (1)

The product of two such elements of the new group is to be interpreted as

ðai, bjÞðal, bmÞ ¼ ðai al, bj bmÞ ¼ ðap, bqÞ (closure in A and B): (2)

The set {(ai, bj)} therefore closes. The other necessary group properties are readily proved

and so G is a group. ‘‘Direct product’’ (DP) without further qualification implies the outer

direct product. Notice that binary composition is defined for each group (e.g. A and B)

individually, but that, in general, a multiplication rule between elements of different groups

does not necessarily exist unless it is specifically stated to do so. However, if the elements

of A and B obey the same multiplication rule (as would be true, for example, if they were

both groups of symmetry operators) then the product ai bj is defined. Suppose we try to

take (ai, bj) as ai bj. This imposes some additional restrictions on the DP, namely that

al bj ¼ bj al, 8 l, j (3)

and

A \ B ¼ E: (4)

For if

ðai, bjÞ ¼ ai, bj (5)

then

ðai, bjÞ ðal, bmÞ ¼ ðai al, bj bmÞ ¼ ðap, bqÞ (2)

and

gk gn ¼ ai bj al bm ¼ ai al bj bm ¼ ap bq ¼ gs (6)

which shows that al and bj commute. The second equality in eq. (6) follows from applying

eq. (5) to both sides of the first equality in eq. (2). Equation (6) demonstrates the closure of

{G}, provided the result ap bq is unique, which it must be because A and B are groups and

the products ai al and bj bm are therefore unique. But, suppose the intersection of A and B

contains al (6¼ E) which is therefore also 2 B. Then al bj bm 2 B, br, say, and the product

ap bqwould also be ai br, which is impossible because for eq. (6) to be a valid multiplication
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rule, the result must be unique. Therefore al 62 B, 8 l¼ 1, . . . , a, except when al¼E.

Similarly, bj 62 A, 8 j¼ 1, 2, . . . , b, except when bj¼E. The intersection of A and B

therefore contains the identity E only, which establishes eq. (4). So the multiplication rule

(ai, bj)¼ ai bj is only valid if the conditions in eqs. (3) and (4) also hold.

A and B are subgroups of G, and from eqs. (5) and (3) the right and left coset expansions

of G are

(1.3.1) G ¼
Pb

j¼1

fAgbj, b1 ¼ E, (7)

G ¼
Pb

j¼1

bjfAg, b1 ¼ E: (8)

When eq. (5) holds, ai bj¼ bj ai, 8 i¼ 1, 2, . . . , a, j¼ 1, 2, . . . , b, the right and left cosets

are equal

fAg bj ¼ bj fAg, 8 bj 2 B, (9)

and therefore A is an invariant subgroup of G.

Exercise 1.6-1 Why may we not find the outer DP of the subgroups C(3) and H1 of S(3)

using the interpretation (ai, bj)¼ ai bj?

Exercise 1.6-2 If A � B¼G and all binary products ai bj with ai 2 A, bj 2 B commute,

show that B is an invariant subgroup of G.

Exercise 1.6-3 Show that if the products (ai, aj) in the DP set A � A are interpreted as

(ai, aj), as in eq. (5), then A � A¼ a{A}.

To avoid redundancies introduced by the outer DP A � A of a group with itself

(Exercise 1.6-3), the inner direct product A £ A is defined by

A £ A ¼ fðai, aiÞg, i ¼ 1, 2, . . . , a: (10)

The semidirect product and the weak direct product have been defined in Section 1.5.

Exercise 1.6-4 (a) Show that if we attempt to use the multiplication rule (ai, ai)¼ ai ai

then the inner DP set does not close. (b) Show that if the inner DP is defined under the

multiplication rule, eq. (2), then the inner DP set, eq. (10), is closed, and that the group

A £ A � A � A is isomorphous with A.

Answers to Exercises 1.6

Exercise 1.6-1 In the outer DP A � B, the product (ai, bj) of elements ai and bj may be

equated to ai bj only if A\B isE and the elements ai, bj commute. In C(3)�H1¼ {P0P1P2}
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{P0P3}, P1 P3¼P4, butP3 P1¼P5; therefore not all pairs of elements ai, bj commute, and so

we may not form the outer DP of C(3) and H1 using the interpretation in eq. (5).

Exercise 1.6-2 In G¼A�B, if all binary products ai bj commute then left and right cosets

ai{B} and {B} ai are equal, for 8 i¼ 1, 2, . . . , a, and so B is an invariant subgroup of G.

Exercise 1.6-3 A�A¼ {(ai, aj)}; if {(ai, aj)} is equated to {(ai, aj)}, then since ai aj 2A,

and i¼ 1, 2, . . . , a, j¼ 1, 2, . . . , a, A¼ {ai} occurs a times in the outer DP, and so

A � A¼ a{A}.

Exercise 1.6-4 (a) The product of the ith and jth elements in the inner product A £ A =

{(ai, ai)}, i = 1, 2, . . . , a, is (ai, ai)(aj, aj)¼ (ai aj, ai aj)¼ (ak, ak), and so the inner DP set

{(ai, ai)} is closed. But if we attempt to interpret (ai, ai) as ai ai, then

(ai, ai)(aj, aj)¼ ai ai aj aj, which is not equal to (ai aj, ai aj)¼ ai aj ai aj, unless A is Abelian.

(b) The inner DP A £ A = {(ai, ai)} is closed and is � A � A, for it is a subset of

{(ai, aj)}, which arises when i¼ j. Since the product of the ith and jth elements of A is

ai aj¼ ak, while that of A £ A is (ai, ai)(aj, aj)¼ (ak, ak), A £ A is isomorphous with A.

1.7 Mappings, homomorphisms, and extensions

Remark If you have not yet done so, read the first part of Section 1.5.2, including eqs.

(1.5.5)–(1.5.7), as this constitutes the first part of this section.

A subset K� G that is the fiber of E0 in G0 is called the kernel of the homomorphism. If

there is a homomorphism of G on to G0( f (G)¼G0) of which K is the kernel, with g¼ k g0,

so that all fibers of the elements of G (images in the homomorphism) have the same

order, then G is called an extension of G0 by K. An example of an extension is illustrated in

Table 1.6 for the particular case of k¼ 3.

Exercise 1.7-1 (a) Show that K is an invariant subgroup of G. (b) What is the kernel of

the homomorphism f (S(3))¼ F¼ S(3)=C(3). (c) If G ! G0 is a homomorphism, prove

that g¼ k g0.

Table 1.6. Example of a homomorphism f(G)¼G0.

G is an extension of G0 by K, the kernel of the homomorphism (so that E0 inG0 is the image

of each element in K). Similarly, g02 is the image of each one of g21, g22, g23, and so on. In

this example k¼ 3.

K¼ {g11 g12 g13}
G¼ {g11 g12 g13; g21 g22 g23; . . . gn1 gn2 gn3}
G0 ¼ fg01 ¼ E0; g02; g03; . . . ; g0ng
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Answer to Exercise 1.7-1

(a) Because K is the kernel of the homomorphism G ! G0, f ((ki kj))¼ f(ki)

f (kj)¼E0 E0 ¼E0. Therefore, ki kj 2 K. The set K is therefore closed and so K is a subgroup

of G. Consider the mapping of gj ki gj
�1, ki 2 K, gj 2 G,

f ðgj ki g�1
j Þ ¼ f ðgjÞ f ðkiÞ f ðg�1

j Þ ¼ f ðgiÞE0f ðg�1
j Þ ¼ E0, (1)

where we have used eq. (1.5.7) and Exercise 1.5-1. Therefore,

(1) gj ki g
�1
j 2 K, (2)

which shows K¼ {ki} to be an invariant subgroup of G.

(b) The subgroup C(3) is the kernel of S(3) for the homomorphism of S(3) on to its

factor group F because f (C(3))¼E0.

(c) No two fibers in G can have a common element; otherwise this common element

would have two distinct images in G0, which is contrary to the requirements for a mapping.

Therefore, there are as many disjoint fibers in G as there are elements in G0, namely g0. It

remains to be shown that all fibers in G have the same order, which is equal to the order k of

the kernel K. Firstly, the necessary and sufficient condition for two elements g2, g3 that are

2 G to belong to the same fiber of G is that they be related by

g2 ¼ g3 ki, ki 2 K: (3)

Sufficiency:

f ðg2Þ ¼ f ðg3 kiÞ ¼ f ðg3Þ f ðkiÞ ¼ f ðg3ÞE0 ¼ f ðg3Þ: (4)

Necessity: Suppose that g2¼ g3 gj; then f (g2)¼ f (g3), f (gj). But if g2, g3 belong to the

same fiber then f(gj) must be E0 and so gj can only be 2 K. Secondly, if gn is a particular

element of a fiber Fn, then the other elements of Fn can all be written in the form gn ki,

where ki 2 K,

Fn ¼ fgn kig, ki 2 K: (5)

All the distinct elements of Fn are enumerated by eq. (5) as i¼ 1, 2, . . . , k, the order of K.

Therefore, the number of elements in each one of the g0 fibers inG is k, whence the order ofG is

g ¼ k g0, (6)

which establishes the required result.

1.8 More about subgroups and classes

If G and H are two groups for which a multiplication rule exists, that is to say the result gi hj
is defined, then the conjugate of H by an element gi 2 G is

gi H g�1
i ¼

P

j

gi hj g
�1
i : (1)
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When the result is H itself, H is invariant under the element gi,

gi H g�1
i ¼ H: (2)

(2) gi H ¼ H gi, (3)

which is an equivalent condition for the invariance ofH under gi. The set of elements {gi}2G

that leave H invariant form a subgroup of G called the normalizer of H in G, written

N(H|G). That N(H|G) does indeed form a subgroup of G follows from the fact that if

gi, gj 2 N(H|G)

gj H g�1
j ¼ H, (4)

(2), (4) gi gj H ðgi gjÞ�1 ¼ gi H g�1
i ¼ H, (5)

(5) gi gj 2 fgi, gj, . . .g ¼ NðHjGÞ, (6)

implying closure of {gi, gj, . . . }, a sufficient condition for {gi, gj, . . . } to be a subgroup of

G. If the normalizer N(H|G) is G itself, so that H is invariant under all gi2G, H is said to be

normal or invariant under G. If H is a subgroup of G (not so far assumed) then H is an

invariant subgroup of G if eqs. (2) and (3) hold.

If G, H are two groups for which a multiplication rule exists then the set of all the

elements of G that commute with a particular element hj of H form a subgroup of G called

the centralizer of hj in G, denoted by

ZðhjjGÞ � G: (7)

H may be the same group as G, in which case hj will be one element of G, say gj 2 G.

Similarly, the centralizer of H in G,

ZðHjGÞ � G, (8)

is the set of all the elements of G that each commute with each element of H; H in eq. (8)

may be a subgroup of G. If H is G itself then

ZðGjGÞ � ZðGÞ (9)

is the center of G, namely the set of all the elements of G that commute with every

element of G. In general, this set is a subgroup of G, but if Z(G)¼G, then G is an

Abelian group.

Exercise 1.8-1 Prove that the centralizer Z(hj|G) is a subgroup of G.

Exercise 1.8-2 (a) Find the center Z(C(3)) of C(3). (b) What is the centralizer

Z(C(3)|S(3)) of C(3) in S(3)? (c) What is the centralizer Z(P1|S(3)) of P1 in S(3)?

A class was defined in Section 1.2 as a complete set of conjugate elements. The

sum of the members gj(ci), j¼ 1, 2, . . . , ci of the class ci that contains the group element

gi is
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�ðciÞ ¼
P

j

gjðciÞ, (10)

ci ¼ fgk gi g�1
k g, 8 gk 2 G, (11)

with repetitions deleted. The sum of all the elements in a class, �(ci), is the Dirac

character of the class ci, and

(10), (11) �ðciÞ ¼
P

k

gk gi g
�1
k , (12)

with repetitions deleted. It is rather a waste of effort to evaluate the transforms on the

right side (RS) of eq. (12) for all gk 2 G, since many redundancies will be found that will

have to be eliminated under the ‘‘no repetitions’’ rule. For instance, see Example 1.2-1,

where six transforms of P1 yield a class that contains just two members, P1 and P2, each of

which occurred three times. However, it is possible to generate the class ci that contains

gi without redundancies, from the coset expansion of G that uses the centralizer of gi
as the subgroup in the expansion. Abbreviating Z(gi|G) to Zi, the coset expansion of G

on Zi is

G ¼
Pt

r¼1

gr Zi, g1 ¼ E, t ¼ g=z, (13)

where z is the order of Zi. From the definition of the coset expansion in eq. (13), the

elements of {gr} with r¼ 2, . . . , t, and Z are disjoint. (E is of course 2 Zi.) We shall now

prove that

�ðciÞ ¼
P

r

gr gi g
�1
r , (14)

where {gr} is the set defined by eq. (13), namely the t coset representatives.

Proof The coset expansion eq. (13) shows that G¼ {gk} is the DP set of {zp} and {gr},

which means that G may be generated by multiplying each of the zmembers of {zp} in turn

by each of the t members of {gr}. Therefore, gk in eq. (12) may be written as

gk ¼ zp gr, gk 2 G, zp 2 Zi, (15)

with {gr} defined by eq. (13). In eq. (15), p, which enumerates the z elements of Zi, runs

from1 to z; r, which enumerates the coset representatives (including g1¼E), runs from1 to t;

and k enumerates all the g elements of the group G as k runs from 1 to g.

(12), (15)
P

r, p

gr zp gi ðgr zpÞ�1 ¼
P

r, p

gr zp gi z
�1
p g�1

r ¼
P

r, p

gr gi g
�1
r ¼ z

P

r

gr gi g
�1
r : (16)

The second equality in eq. (16) follows because zp 2 Zi¼Z(gi|G), which, from the

definition of the centralizer, all commute with gi. The third equality follows because the

double sum consists of the same t terms repeated z times as p runs from 1 to z. It follows
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from the uniqueness of the binary composition of group elements that the sum over r in

eq. (16) contains no repetitions. Therefore the sum over r on the RS of (16) is�(ci), which

establishes eq. (14). Since eq. (14) gives the elements ofciwithout repetitions, the order ci
of this class is

ci � t ¼ g=z: (17)

Equation (17) shows that the order of a class ci is a divisor of the order of the group

(Lagrange’s theorem). It also yields the value of ci once we determine z from Zi�Z(gi|G).

The t elements gr needed to find the Dirac character �(ci) of the class ci, and thus the

members of ci, are the coset representatives of the centralizer Zi�Z(gi|G).

Exercise 1.8-3 Find the class of P1 in S(3) by using the coset expansion for the centralizer

Z(P1|S(3)) and eq. (14).

Answers to Exercises 1.8

Exercise 1.8-1 The centralizer Z(hj|G) is the set {gi} of all the elements of G that commute

with hj. Let gk 2 {gi}; then gi, gk each commute with hj and

ðgi gkÞhj ¼ gi hj gk ¼ hjðgi gkÞ (18)

so that if gi, gk 2 {gi} that commutes with hj, then so also is gi gk. Equation (18)

demonstrates that {gi}¼Z(hj|G) is closed, and that therefore it is a subgroup of G. The

above argument holds for any hj 2 H, so that Z(H|G) is a subgroup of G. It also holds if hj is

gj 2 G, and for any {gj} which is a subgroup of G, and for {gj}¼G itself. Therefore Z(gj|G),

Z(H|G), where H�G, and Z(G|G) are all subgroups of G, gj being but a particular case of hj.

Exercise 1.8-2 (a) Z(C(3)) is the set of elements of C(3) that commute with every element

of C(3). From Table 1.3 we see that each element of C(3) commutes with every other

element (the mutiplication table of C(3) is symmetrical about its principal diagonal from

upper left to lower right) so that Z(C(3))¼C(3), and consequently C(3) is an Abelian

group.

(b) The centralizer of C(3) in S(3) is the set of elements of S(3) that commute with each

element of C(3). From Table 1.3 we see that none of P3, P4, P5 commute with all of P0, P1,

P2; therefore Z(C(3)|S(3))¼C(3). Notice that here H happens to be a subgroup of G, but

this is not a necessary feature of the definition of the centralizer. H needs to be a group for

which binary composition with the elements of G is defined. In S(3), and therefore C(3), the

product Pi Pj means carrying out successively the permutations described by Pj first, and

then Pi. Thus, Z(C(3)|S(3)) is necessarily a subgroup of S(3), in this case C(3) again (see

Example 1.3-1).

(c) Again from Table 1.3, we see that only P0, P1, P2 commute with P1 so that

Z(P1|S(3))¼C(3).
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Exercise 1.8-3 Z(P1|S(3)) is the set of elements of S(3) which commute with P1. From

Table 1.3 or Exercise 1.8-2(c), Z(P1|S(3))¼C(3). The coset expansion of S(3) on C(3) is

Sð3Þ ¼ P0Cð3Þ þ P3Cð3Þ ¼ fP0 P1 P2g þ fP3 P5 P4g

so z¼ 2 and {gr}¼ {P0, P3}. The Dirac character of the class of P1 is therefore

(14) �ðcðP1ÞÞ ¼
P

r

gr P1 g
�1
r ¼ P0 P1 P

�1
0 þ P3 P1 P

�1
3

¼P1 þ P3 P4 ¼ P1 þ P2:

Therefore, c(P1)¼ {P1 P2}, and eq. (14) yields the class of P1 without repetitions.

Problems

1.1 Show that the inverse of gi gj is g
�1
j g�1

i .

1.2 Prove that if each element of a group G commutes with every other element of G (so

that G is an Abelian group) then each element of G is in a class by itself.

1.3 Find a generator for the group of Exercise 1.4-3.

1.4 Show that {P1 P3} is a generator for S(3).

1.5 Show that conjugation is transitive, that is if gk is the transform of gj and gj is the

transform of gi, then gk is the transform of gi.

1.6 Show that conjugation is reciprocal, that is if gk is the transform of gj then gj is the

transform of gk.

1.7 Prove that binary composition is conserved by conjugation.

1.8 There are only two groups of order 4 that are not isomorphous and so have different

multiplication tables. Derive the multiplication tables of these two groups, G1
4 and G

2
4.

[Hints: First derive the multiplication table of the cyclic group of order 4. Call this

group G1
4. How many elements of G1

4 are equal to their inverse? Now try to construct

further groups in which a different number of elements are equal to their own inverse.

Observe the rearrangement theorem.]

1.9 Arrange the elements of the two groups of order 4 into classes.

1.10 Identify the subgroups of the two groups of order 4.

1.11 Write down a coset expansion of S(3) on its subgroup H3¼ {P0 P5}. Show that H3 is

not an invariant subgroup of S(3).

1.12 The inverse class of a classcj¼ {gj} iscj ¼ fg�1
j g. Find the inverse class of the class

{P1 P2} in S(3).

1.13 The classes of S(3) are c1¼ {P0}, c2¼ {P1 P2}, c3¼ {P3 P4 P5}. Prove that

�3 �2¼ 2�3.

1.14 Prove that for S(3), c3g
�1

P

gi2Sð3Þ
gi P3 g

�1
i ¼ �3:
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2 Symmetry operators and point
groups

2.1 Definitions

Symmetry operations leave a set of objects in indistinguishable configurations which are

said to be equivalent. A set of symmetry operators always contains at least one element,

the identity operator E. When operating with E the final configuration is not only indis-

tinguishable from the initial one, it is identical to it. A proper rotation, or simply rotation,

is effected by the operator R(� n), which means ‘‘carry out a rotation of configuration

space with respect to fixed axes through an angle � about an axis along some unit vector

n.’’ The range of � is�p<�� p. Configuration space is the three-dimensional (3-D)

space r3 of real vectors in which physical objects such as atoms, molecules, and crystals

may be represented. Points in configuration space are described with respect to a system of

three space-fixed right-handed orthonormal axes x, y, z, which are collinear with OX, OY,

OZ (Figure 2.1(a)). (A right-handed system of axes means that a right-handed screw

advancing from the origin along OX would rotate OY into OZ, or advancing along OY

would rotate OZ into OX, or along OZ would rotate OX into OY.) The convention in which

the axes x, y, z remain fixed, while the whole of configuration space is rotated with respect

to fixed axes, is called the active representation. Thus, the rotation of configuration space

effected by R(� n) carries with it all vectors in configuration space, including a set of unit

vectors {e1 e2 e3} initially coincident with {x y z}. Figures 2.1(b) and (c) show the effect on

{e1 e2 e3} of R(p/3 x), expressed by

Rðp=3 xÞfe1 e2 e3g ¼ fe10 e20 e30g (1)

In the passive representation, symmetry operators act on the axes, and so on {x y z}, but

leave configuration space fixed. Clearly, one should work entirely in one representation or

the other: here we shall work solely in the active representation, and we shall not use the

passive representation.

An alternative notation is to use the symbol C�k
n for a rotation operator. Here n does not

mean |n|, which is 1, but is an integer that denotes the order of the axis, so that C�k
n means

‘‘carry out a rotation through an angle �¼�2pk=n.’’ Here n is an integer > 1, and

k¼ 1, 2, . . . , (n�1)/2 if n is an odd integer and, if n is even, k¼ 1, 2, . . . , n=2, with

C�n=2
n excluded by the range of �; k¼ 1 is implicit. In this notation the axis of rotation

has not been specified explicitly so that it must either be considered to be self-evident

(for example, to be understood from what has gone before) or to be stated separately, as in

‘‘a C4 rotation about the z axis,’’ or included as a second subscript, as in C4z. (The
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superscript + is often also implicit.) Thus R(p=2 z) and C4z are equivalent notations, and

we shall use either one as convenient. When the axis of rotation is not along x or y or z, it

will be described by a unit vector a, b, . . . , where a, for example, is defined as a unit vector

parallel to the vector with components [n1 n2 n3] along x, y, and z, or by a verbal

description, or by means of a diagram. Thus R(p a) or C2a may be used as alternative

notations for the operator which specifies a rotation about a two-fold axis along the unit

vector a which bisects the angle between x and y, or which is along the vector with

components [1 1 0] (Figure 2.2(a)). A rotation is said to be positive (0<�� p) if, on
looking down the axis of rotation towards the origin, the rotation appears to be anti-

clockwise (Figure 2.2(b)). Equivalently, a positive rotation is the direction of rotation of

a right-handed screw as it advances along the axis of rotation away from the origin.

Similarly, a rotation that appears to be in a clockwise direction, on looking down the

axis of rotation towards O, is a negative rotation with �p<�< 0.

Exercise 2.1-1 (a) Check the sign of the rotation shown in Figure 2.2(c) using both of the

criteria given above. (b) Show the effect of R(�p/2 z) on {e1 e2 e3}.

(a)

O

X

Y

Z

x

y

z

(b)

O

X

Y

x

y

Z

z

e1

e2

e3

(c)

O

X

Y

x
y

Z

z

e3

e1

e2

φφ

′
′

′

Figure 2.1. (a) Right-handed coordinate axes x, y, z in configuration space. A right-handed screw

advancing along OX from O would rotate OY into OZ, and similarly (preserving cyclic order).

(b) Initial configuration with {e1 e2 e3} coincident with {x y z}. (c) The result of a rotation of

configuration space by R(p=3 x), expressed by eq. (1).
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Products of symmetry operators mean ‘‘carry out the operations specified successively,

beginning with the one on the right.’’ Thus, R2R1 means ‘‘apply the operator R1 first, and

then R2.’’ Since the product of two symmetry operators applied to some initial configura-

tion e results in an indistinguishable configuration (r2 in Figure 2.2(d)), it is equivalent to a

single symmetry operator R3¼R2 R1. For example,

C4 C4 ¼ C2
4 ¼ C2 ¼ Rðp nÞ; (2)

ðCnÞ�k ¼ C�k
n ¼ Rð� nÞ,

� ¼ �2pk=n ðn > 1, k ¼ 1, 2, . . . � n=2, �p < � � pÞ:
(3)

A negative sign on k in eq. (3) corresponds to a negative rotation with �p<�< 0. Note

that k¼ 1 is implicit, as in C�
3z ¼ Rð�2p=3 zÞ, for example. A rotation C2 or R(p n) is

called a binary rotation. Symmetry operators do not necessarily commute. Thus, R2 R1

may, or may not, be equal to R1 R2.

y

a

x

(a) (b)

O

X

Y

Z

x

(c)

O

X

Y

Z

R3 R1

r2 r1

e

R2

(d)

Figure 2.2. (a) The unit vector a bisects the angle between x and y and thus has components 2�½ [1 1 0].

(b) The curved arrow shows the direction of a positive rotation about x. (c) The curved arrow shows

the direction of a negative rotation about OZ (Exercise 2.1-1(a)). (d) The product of two symmetry

operators R2 R1 is equivalent to a single operator R3; e, r1, and r2 are three indistinguishable

configurations of the system.
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Exercise 2.1-2 (a) Do successive rotations about the same axis commute? (b) Show that

R(�� n) is the inverse of R(� n).

A polar vector r is the sum of its projections,

r ¼ e1xþ e2yþ e3z: (4)

Each projection on the RS of eq. (4) is the product of one of the set of basis vectors

{e1 e2 e3} and the corresponding component of r along that vector. The inversion operator

I changes the vector r into �r,

(4) I r ¼ �r ¼ �e1x� e2y� e3z (5)

(see Figure 2.3). The basis vectors {e1 e2 e3} are pseudovectors, that is they behave like

ordinary polar vectors under rotation but are invariant under inversion. The components of

r, {x y z}, do change sign under inversion and are therefore pseudoscalars (invariant under

rotation but change sign on inversion). This is made plain in Figure 2.3, which shows that

under inversion x0 ¼�x, y0 ¼�y, z0 ¼�z. A proper rotation R(� n) followed by inversion

is called an improper rotation, IR(� n). Although R and IR are the only necessary

symmetry operators that leave at least one point invariant, it is often convenient to use

the reflection operator �m as well, where �mmeans ‘‘carry out the operation of reflection in

a plane normal tom.’’ For example, the effect on r of reflection in the plane normal to x is to

change x into �x,

�xfe1xþ e2yþ e3zg ¼ fe1xþ e2yþ e3zg: (6)

Sometimes, the plane itself rather than its normal m is specified. Thus �yz is equivalent to

�x andmeans ‘‘reflect in the plane containing y and z’’ (called the yz plane) which is normal

to the unit vector x. However, the notation �m will be seen to introduce simplifications in

later work involving the inversion operator and is to be preferred.

Z

X

P′

P

Q

Q′ 

r

r′

x
x′

y′
y

z′ 

z

Y

Figure 2.3. Effect of the inversion operator I on the polar vector r. The points Q, Q0 lie in the XY

plane.
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Another symmetry operator in common use is the rotoreflection operator

S�k
n ¼ �hRð� nÞ,� ¼ �2pk=n ðn > 1, k ¼ 1, 2, . . . , � n=2, �p5� � pÞ, (7)

where �h ‘‘means reflection in a plane normal to the axis of rotation.’’ All the symmetry

operators, E, R(� n)¼Cn, IR(� n), �m, and Sn, leave at least one point invariant, and so

they are called point symmetry operators. Contrast this with translations, an example of

which is shown in Figure 2.4. Any point P in configuration space can be connected to the

origin O by a vector r. In Figure 2.4, P happens to lie in the xy plane. Then under t, any point

P is transformed into the point P0, which is connected to the origin by the vector r0, such that

r0 ¼ rþ t: (8)

In Figure 2.4, t happens to be parallel to x. Translations are not point symmetry operations

because every point in configuration space is translated with respect to the fixed axes OX,

OY, OZ.

A symmetry element (which is not to be confused with a group element) is a point, line,

or plane with respect to which a point symmetry operation is carried out. The symmetry

elements, the notation used for them, the corresponding operation, and the notation used for

the symmetry operators are summarized in Table 2.1. It is not necessary to use both ñ and n

since all configurations generated by ñ can be produced by n0.

Symmetry operations are conveniently represented by means of projection diagrams. A

projection diagram is a circle which is the projection of a unit sphere in configuration

space, usually on the xy plane, which we shall take to be the case unless otherwise

stipulated. The x, y coordinates of a point on the sphere remain unchanged during the

projection. A point on the hemisphere above the plane of the paper (and therefore with a

positive z coordinate) will be represented in the projection by a small filled circle, and a

point on the hemisphere below the plane of the paper will be represented by a larger open

circle. A general point that will be transformed by point symmetry operators is marked by

E. This point thus represents the initial configuration. Other points are then marked by the

same symbol as the symmetry operator that produced that point from the initial one marked

E. Commonly z is taken as normal to the plane of the paper, with x parallel to the top of

the page, and when this is so it will not always be necessary to label the coordinate

axes explicitly. An n-fold proper axis is commonly shown by an n-sided filled polygon

(Figure 2.5). Improper axes are labeled by open polygons. A digon (n¼ 2) appears as

r′
r

t

X
O

Y

P P′

Figure 2.4. Example of a translation t in the active representation.
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though formed by two intersecting arcs. The point symmetry operations listed in Table 2.1

are illustrated in Figure 2.6.

Exercise 2.1-3 Using projection diagrams (a) prove that IC2z¼ �z and that IC2n¼ �h;

(b) show that I commutes with an arbitrary rotation R(� n).

Example 2.1-1 Prove that a rotoreflection axis is an improper axis, though not necessarily

of the same order.

In Figure 2.7, n is normal to the plane of the paper and �> 0. The open circle so marked

is generated from E by S(� n)¼ �hR(� n), while the second filled circle (again somarked)

is generated from E by R(��p n). The diagram thus illustrates the identity

Sð�j�j nÞ ¼ IRðð�j�j � pÞ nÞ, 0 � j�j � p: (9)

When �> 0, R(��p n) means a negative (clockwise) rotation about n through an angle of

magnitude p��. When �< 0, R(�þp n) means a positive rotation through an angle pþ�.

Usually n is used in crystallography and Sn is used in molecular symmetry.

 2 3 4 5 6 etc.n =

digon triangle square pentagon hexagon …
operator C2 C3 C4 C5 C6 …
φ = 2π/n 2π/3  π/2 2π/5  π/3 …π

Figure 2.5. Symbols used to show an n-fold proper axis. For improper axes the same geometrical

symbols are used but they are not filled in. Also shown are the corresponding rotation operator and the

angle of rotation �.

Table 2.1. Symmetry elements and point symmetry operations.

�¼ 2p=n, n> 1; n is a unit vector along the axis of rotation.

Symmetry
element

Notation for symmetry
element

Symmetry operation Symmetry operatorSchönflies International

None – – identity E ¼ R( 0) a

Center I 1 inversion I

Proper axis Cn n proper rotation R(� n)¼Cn or Cnn

Improper axis ICn n rotation, then inversion IR(� n)¼ ICnn

Plane �m m reflection in a plane normal
to m

�m

Rotoreflection
axis

Sn ñ rotation through �¼ 2p=n,
followed by reflection in
a plane normal to the axis
of rotation

S(� n)¼ Sn or Snn

a For the identity, the rotation parameter (� n) is zero, signifying no rotation.
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It follows from Exercise 2.1-3(a) and Example 2.1-1 that the only necessary point

symmetry operations are proper and improper rotations. Nevertheless, it is usually con-

venient to make use of reflections as well. However, if one can prove some result for R and

IR, it will hold for all point symmetry operators.

As shown by Figure 2.8, S24 ¼ C2. Consequently, the set of symmetry elements asso-

ciated with an S4 axis is {S4 C2}, and the corresponding set of symmetry operators is

(a)

E

I C2z

(b)

E

I C4z

C4z

(c)

E

+

+

(d)

(e)

S4z

E

+

σy

E

x

y

Figure 2.6. Projection diagrams showing examples of the point symmetry operators listed in

Table 2.1. (a) I; (b) C2z; (c) IC
þ
4z; (d) �y; (e) S

þ
4z.
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Sþ4 C2 S�4 E
� �

. The identity operator E is always present (whether there is an axis of

symmetry or not) and it must always be included once in any list of symmetry operators.

The following convention is used in drawing up a list of symmetry operators: where the

same configuration may be generated by equivalent symmetry operators we list only the

‘‘simplest form,’’ that is the one of lowest n, with�p<�� p, avoiding redundancies. Thus
C2 and not S24 , S�4 and not S34 , E and not S44 . The first part of this convention implies that

whenever n=k in the operator C�k
n (or S�k

n ) is an integer p, then there is a Cp (or Sp), axis

coincident with Cn (or Sn), and this should be included in the list of symmetry elements.

Thus, for example, a C6 axis implies coincident C3 and C2 axes, and the list of operators

associated with C6 is therefore fCþ
6 C�

6 Cþ
3 C�

3 C2 Eg.
The complete set of point symmetry operators that is generated from the operators

{R1 R2 . . . } that are associated with the symmetry elements (as shown, for example, in

Table 2.2) by forming all possible products like R2 R1, and including E, satisfies the

necessary group properties: the set is complete (satisfies closure), it contains E, associa-

tivity is satisfied, and each element (symmetry operator) has an inverse. That this is so may

be verified in any particular case: we shall see an example presently. Such groups of point

symmetry operators are called point groups. For example, if a system has an S4 axis and no

R(φ –π–n)

S(φ –n)
E

φ

Figure 2.7. Demonstration of the equivalence of S(� n) and IR(��p n) when�> 0 (see Example 2.1-1).

C2z

S4z

E

S4z
–

+

Figure 2.8. Projection diagram showing the operations connected with an S4 axis.
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other symmetry elements (except the coincident C2 axis that is necessarily associated with

S4) then the set of symmetry operators fE Sþ4 C2 S�4 g satisfies all the necessary group

properties and is the cyclic point group S4.

Exercise 2.1-4 Construct the multiplication table for the set fE Sþ4 C2 S�4 g. Demonstrate

by a sufficient number of examples that this set is a group. [Hint: Generally the use of

projection diagrams is an excellent method of generating products of operators and of

demonstrating closure.] In this instance, the projection diagram for S4 has already been

developed (see Figure 2.8).

Answers to Exercises 2.1

Exercise 2.1-1 (a) Figure 2.2(c) shows that the arrow has the opposite direction to the

rotation of a right-handed screw as it moves along OZ from O. Also, on looking down the

OZ axis towards O, the rotation appears to be in a clockwise direction. It is therefore a

negative rotation with �p<�< 0.

(b) From Figure 2.9(a), R �p=2 zð Þfe1 e2 e3g ¼ fe01 e02 e03g ¼ fe2 e1 e3g.

Exercise 2.1-2 Both (a) and (b) are true from geometrical considerations. Formally, for

(a) R (�0 n) R(� n)¼R(�0þ� n)¼R(�þ�0 n)¼R(� n)R (�0 n), and therefore rotations

about the same axis commute.

(b) Following R(� n) by R(�� n) returns the representative point to its original position, a

result which holds whether � is positive or negative (see Figure 2.9(b)). Consequently,

R(�� n) R(� n)¼E, so that R(�� n)¼ [R(� n)]�1.

Exercise 2.1-3 (a) Figure 2.9(c) shows that IC2z is equivalent to �z. Since the location of

the axes is arbitrary, we may choose n (instead of z) normal to the plane of the paper in

Figure 2.9(c). The small filled circle would then be labeled by C2n and the larger open

circle by I C2n¼ �n¼ �h (since �h means reflection in a plane normal to the axis of

rotation). (b) Locate axes so that n is normal to the plane of the paper. Figure 2.9(d) then

shows that IR(� n)¼R(� n)I, so that I commutes with an arbitrary rotation R(� n).

Exercise 2.1-4 The set contains the identity E. Each column and each row of the multi-

plication table in Table 2.2 contains each member of the set once and once only

Table 2.2. The multiplication

table for the point group S4.

S4 E Sþ4 C2 S�4

E E Sþ4 C2 S�4
Sþ4 Sþ4 C2 S�4 E

C2 C2 S�4 E Sþ4
S�4 S�4 E Sþ4 C2
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(rearrangement theorem) so that the set is closed. Since E appears in each row or column,

each element has an inverse. As a test of associativity, consider the following:

Sþ4 ðC2 S�4 Þ ¼ Sþ4 Sþ4 ¼ C2; ðSþ4 C2ÞS�4 ¼ S�4 S�4 ¼ C2,

which demonstrates that associativity is satisfied for this random choice of three elements

from the set. Any other three elements chosen at random would also be found to demon-

strate that binary combination is associative. Therefore, the group properties are satisfied.

This is the cyclic group S4.

2.2 The multiplication table – an example

Consider the set of point symmetry operators associated with a pyramid based on an

equilateral triangle. Choose z along the C3 axis. The set of distinct (non-equivalent)

symmetry operators is G ¼ fE Cþ
3 C�

3 �d �e �fg (Figure 2.10). Symmetry elements

(a)

Ee2

e1 = e2′

e1 = –e2′

R(φ n) R(– φ n)

E

(b)

φ – φ

C2z

E IC2z

(c)

IR(φ n) = R(φ n) I

R(φ n)

E

φ

φ

I

(d)

Figure 2.9. (a) The effect of R(�p=2 z) on {e1 e2 e3}. (b) When �> 0 the rotation R(�� n) means a

clockwise rotation through an angle of magnitude � about n, as illustrated. If �< 0, then R(�� n) is

an anticlockwise rotation about n, and in either case the second rotation cancels the first. (c) This

figure shows that IC2z¼�z. (d) The location of the coordinate axes is arbitrary; here the plane of the
projection diagram is normal to n.
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(which here are {C3 �d �e �f} ) are defined with respect to the Cartesian axes OX, OY, OZ,

and remain fixed, while symmetry operators rotate or reflect the whole of configuration

space including any material system – the pyramid – that exists in this space. The apices of

the equilateral triangle are marked a, b, and c merely for identification purposes to enable

us to keep track of the rotation or reflection of the pyramid in (otherwise) indistinguishable

configurations. The three symmetry planes are vertical planes (�v) because they each

contain the principal axis which is along z. The reflecting plane in the operation with �d
contains the OX axis, while the reflecting planes in operations with �e and �f make angles

of �p=3 and þ p=3, respectively, with the zx plane. To help follow the configurations

produced by these symmetry operators, we label the initial one  1 and the other unique,

indistinguishable configurations by  2, . . . ,  6. Thus,  1 represents the state in which the

apex marked a is adjacent to point A on the OX axis, and so on. The effect on  1 of the

symmetry operators that are 2G is also shown in Figure 2.10, using small labeled triangles

to show the configuration produced. Binary products are readily evaluated. For example,

Cþ
3 C

þ
3  1 ¼ Cþ

3  2 ¼  3 ¼ C�
3  1; therefore Cþ

3 C
þ
3 ¼ C�

3 ; (1)

d

x

f e

C

A
a

c

b

B

σd

σf

σe

(a)

a

a

a a

ab

b

b

b

b

c

c

c c

ca

b

c

(b)

Eψ1 = ψ1 C3ψ1 = ψ2 C3ψ1 = ψ3 σdψ1 = ψ4 σeψ1 = ψ5 σfψ1 = ψ6
+ –

Figure 2.10. Effect of the set of symmetry operators G ¼ fE Cþ
3 C�

3 �d �e �fg on the triangular-

based pyramid shown in (a). The C3 principal axis is along z. The symmetry planes �d, �e, and �f
contain z and make angles of zero, �p=3, and þp=3, respectively, with the zx plane. The apices of

the triangle are marked a, b, and c for identification purposes only. Curved arrows in (b) show the

direction of rotation under Cþ
3 and C�

3 . Dashed lines show the reflecting planes.
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Cþ
3 C

�
3  1 ¼ Cþ

3  3 ¼  1 ¼ E 1; therefore Cþ
3 C

�
3 ¼ E; (2)

Cþ
3 �d 1 ¼ Cþ

3  4 ¼  6 ¼ �f 1; therefore Cþ
3 �d ¼ �f ; (3)

�dC
þ
3  1 ¼ �d 2 ¼  5 ¼ �e 1; therefore �dC

þ
3 ¼ �e: (4a)

Thus Cþ
3 and �d do not commute. These operator equalities in eqs. (1)–(4a) are true for any

initial configuration. For example,

�dC
þ
3  4 ¼ �d 6 ¼  3 ¼ �e 4; therefore �dC

þ
3 ¼ �e: (4b)

Exercise 2.2-1 Verify eqs. (1)–(4), using labeled triangles as in Figure 2.10.

Exercise 2.2-2 Find the products C�
3 �e and �eC

�
3 . The multiplication table for this set of

operators G ¼ fE Cþ
3 C�

3 �d �e �fg is shown in Table 2.3. The complete multiplication

table has the following properties.

(a) Each column and each row contains each element of the set once and once only. This is

an example of the rearrangement theorem, itself a consequence of closure and the fact

that all products gi gj are unique.

(b) The set contains the identity E, which occurs once in each row or column.

(c) Each element gi 2 G has an inverse gi
�1 such that gi

�1 gi¼E.

(d) Associativity holds: gi(gj gk)¼ (gi gj)gk, 8 gi, gj, gk 2 G.

Exercise 2.2-3 Use the multiplication Table 2.3 to verify that �dðCþ
3 �fÞ ¼ ð�d Cþ

3 Þ�f .

Any set with the four properties (a)–(d) forms a group: therefore the set G is a group for

which the group elements are point symmetry operators. This point group is called C3v or

3m, because the pyramid has these symmetry elements: a three-fold principal axis and a

vertical mirror plane. (If there is one vertical plane then there must be three, because of the

three-fold symmetry axis.)

Exercise 2.2-4 Are the groups C3v and S(3) isomorphous? [Hint: Compare Table 2.3 with

Table 1.3.]

Table 2.3. Multiplication table for the set

G ¼ fE Cþ
3 C�

3 �d �e �fg.

G E Cþ
3 C�

3 �d �e �f

E E Cþ
3

C�
3 �d �e �f

Cþ
3 Cþ

3
C�
3 E �f �d �e

C�
3 C�

3 E Cþ
3

�e �f �d
�d �d �e �f E Cþ

3
C�
3

�e �e �f �d C�
3 E Cþ

3

�f �f �d �e Cþ
3

C�
3 E
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Answers to Exercises 2.2

Exercise 2.2-1 The orientation of the triangular base of the pyramid is shown for each of

the indistinguishable configurations.

Cþ
3 C

þ
3  1 ¼ Cþ

3  2 ¼  3 ¼ C�
3  1

b a c b

a c b a

c b a c

(10)

Cþ
3 C

�
3  1 ¼ Cþ

3  3 ¼  1 ¼ E  1

b c b b

a b a a

c a c c

(20)

Cþ
3 �d  1 ¼ Cþ

3  4 ¼  6 ¼ �f  1

b c a b

a a b a

c b c c

(30)

�dC
þ
3  1 ¼ �d  2 ¼  5 ¼ �e  1

b a b b

a c c a

c b a c

(4a0)

�dC
þ
3  4 ¼ �d  6 ¼  3 ¼ �e  4

c a c c

a b b a

b c a b

(4b0)

Exercise 2.2-2

C�
3 �e 1 ¼ C�

3  5 ¼  6 ¼ �f 1

b b a b

a c b a

c a c c

Exercise 2.2-3 �dðCþ
3 �fÞ ¼ �d�e ¼ Cþ

3 and ð�d Cþ
3 Þ�f ¼ �e�f ¼ Cþ

3 .

Exercise 2.2-4 A comparison of the group multiplication tables in Table 2.3 and Table 1.3

shows that the point group C3v (or 3m ) is isomorphous with the permutation group S(3).

Corresponding elements in the two groups are

Sð3Þ P0 P1 P2 P3 P4 P5

C3v E Cþ
3 C�

3 �d �e �f
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2.3 The symmetry point groups

We first describe the proper point groups, P, that is the point groups that contain the

identity and proper rotations only.

(i) In the cyclic groups, denoted by n or Cn, with n> 1, there is only one axis of rotation

and the group elements (symmetry operators) areE andC�k
nz , orR(� n) with�¼�2pk=n,

�p<�� p. Note that C�k
nz , becomes C�

pz, when n=k is an integer p; k¼ 1, 2, . . . ,

(n�1)=2, if n is an odd integer, and if n is even k¼ 1, 2, . . . , n=2, with C
�n=2
nz , excluded

by the range of �. For example, if n¼ 4, k¼ 1, 2, and �¼�p=2, p. The symmetry

elements are the C4 axis, and a coincident C2 axis, and the group elements (symmetry

operators) are fE Cþ
4 C�

4 C2g; k¼ 1 is implicit inC�k
n . The projection diagram for C4

is shown in Figure 2.11(a). C1 is also a cyclic group (though not an axial group) with

period {g1¼E} and order c¼ 1. There are no symmetry elements and the group

consists solely of the identity E. The International notation used to describe the point

groups is given in Table 2.4. Some International symbols are unnecessarily cumber-

some, and these are abbreviated in Table 2.5.

(ii) The dihedral groups consist of the proper rotations that transform a regular n-sided

prism into itself. The symmetry elements are Cn and nC0
2, where C

0
2 denotes a binary

axis normal to the n-fold principal axis. (The prime is not essential but is often used to

Table 2.4. International notation used to name the point groups comprises a

minimal set of symmetry elements.

n n-fold proper axis (n¼ 1 means there is no axis of symmetry)
n n-fold improper axis (n¼ 1 means an inversion center)
nm n-fold proper axis with a vertical plane of symmetry that contains n
n=m n-fold proper axis with a horizontal plane of symmetry normal to n
n2 n-fold proper axis with n binary axes normal to n

C4z

C4z

C2z

(a)

E

–

+

C2y

 
C2b

C2a

C2x

C4z

 
C4z

C2z

(b)

E

–

+

Figure 2.11. Projection diagrams (a) for the proper point group 4, or C4, and (b) for the dihedral group

422, or D4. The components of the unit vector a are 2�½ [1 1 0] and those of b are 2�½ [1 1 0].
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stress that a binary axis is normal to the principal axis and hence lies in the xy plane.

In projective diagrams and descriptive text one refers to specific axes such as C2x

when greater precision is required.) The symmetry operators are C�k
nz or R(� z), with

� and k as in (i), and R(p ni), with ni normal to z and i¼ 1, . . . , n. In general, we shall

use particular symbols for the ni, such as x, y, a, b, . . . , with a, b, . . . appropriately

defined (see, for example, Figure 2.11(b)). The group symbol is Dn in Schönflies

notation and in International notation it is n2 if n is odd and n22 if n is even, because

there are then two sets of C0
2 axes which are geometrically distinct. The projection

diagram for 422 or D4 is shown in Figure 2.11(b). The four binary axes normal to z lie

along x, y, a, b, where a bisects the angle between x and y and b bisects that between x

and y. These axes can be readily identified in Figure 2.11(b) because each transformed

point is labeled by the same symbol as that used for the operator that effected that

particular transformation from the representative point E.

(iii) The tetrahedral point group, called 23 or T, consists of the proper rotations that

transform a tetrahedron into itself. The symmetry elements are 3C2 and 4C3, and the

easiest way of visualizing these is to draw a cube (Figure 2.12) in which alternate

(second neighbor) points are the apices of the tetrahedron. These are marked 1, 2, 3,

and 4 in Figure 2.12. The symmetry operators are

T ¼ fE Rðp pÞ Rð�2p=3 jÞg, (1)

with p¼ x, y, z, and j a unit vector along O1, O2, O3, O4.

(iv) The octahedral or cubic group, named 432 or O, consists of the proper rotations that

transform a cube or an octahedron into itself. The proper axes of the cube or

octahedron are {3C4 4C3 9C2} and the symmetry operators are

O ¼ fTg þ fRðp=2 pÞ Rðp nÞg, (2)

where n is a unit vector along Oa, Ob, Oc, Od, Oe, Of in Figure 2.12 .

(v) The icosahedral group, named 532 or Y, consists of the proper rotations that transform

an icosahedron or pentagonal dodecahedron into itself (Figure 2.13). The pentagonal

Table 2.5. Abbreviated International symbols and Schönflies notation.

Schönflies symbol Full International symbol Abbreviated symbol

D2h 2

m

2

m

2

m

mmm

D4h 4

m

2

m

2

m

4/mmm

D6h 6

m

2

m

2

m

6/mmm

D3d 3
2

m

3m

Th 2

m
3

m3

Oh 4

m
3
2

m

m3m
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dodecahedron has six C5 axes through opposite pairs of pentagonal faces, ten C3 axes

through opposite pairs of vertices, and fifteen C2 axes that bisect opposite edges.

The icosahedron has six C5 axes through opposite vertices, ten C3 axes through

opposite pairs of faces, and fifteen C2 axes that bisect opposite edges. For both these

polyhedra, the symmetry elements that are proper axes are {6C5 10C3 15C2} and the

point group of symmetry operators is therefore

Y ¼ fE 6C�
5 6C2�

5 10C�
3 15C2g (3)

for a total g(Y) of 60. It is isomorphous to the group of even permutations on five

objects, which number 5!=2.

Z  

2  

d  
e  

1  

b

Y  

4  

3  f  

a  

X  

O  

c  

Figure 2.12. Alternate vertices of the cube (marked 1, 2, 3, and 4) are the apices of a regular

tetrahedron. O1, O2, O3, and O4 are three-fold axes of symmetry. Small crosses show where the

C4 axes, OX, OY, and OZ, intersect the cube faces. Oa, Ob, Oc, Od, Oe, and Of are six binary axes.

(a) (b)

Figure 2.13. The dodecahedron and the icosahedron are two of the five Platonic solids (regular

polyhedra), the others being the tetrahedron, the cube, and the octahedron. (a) The dodecahedron has

twelve regular pentagonal faces with three pentagonal faces meeting at a point. (b) The icosahedron

has twenty equilateral triangular faces, with five of these meeting at a point.
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This completes the list of proper point groups, P. A summary is given in the first column

of Table 2.6. All the remaining axial point groups may be generated from the proper point

groups P by one or other of two methods.

2.3.1 First method

This consists of taking the direct product (DP) of P with 1 or Ci¼ {E I}.

(i) From Cn, if n is odd,

Cn � Ci ¼ S2n, n� 1 ¼ n: (4)

But if n is even,

Cn � Ci ¼ Cnh, n� 1 ¼ n=m, (5)

where h, or =m, denotes a mirror plane normal to the principal axis, which arises because

IC2¼ �h.

Example 2.3-1 (a) C2�Ci¼ {E C2z}� {E I}¼ {E C2z I �z}¼C2h. ðbÞ C3 � Ci ¼
fE Cþ

3z C
�
3zg � fE Ig ¼ fE Cþ

3z C
�
3z I S�6z S

þ
6zg ¼ S6. Projection diagrams are illustrated

in Figure 2.14.

(ii) From Dn , if n is odd,

Dn � Ci ¼ Dnd, n2� 1 ¼ nm: (6)

The subscript d denotes the presence of dihedral planes which bisect the angles between

C0
2 axes that are normal to the principal axis. If n is even,

Dn � Ci ¼ Dnh; n22� 1 ¼ n=mmm: (7)

If n is 2, the International symbol is abbreviated to mmm (Table 2.4).

Example 2.3-2

D3 � Ci ¼ fE Cþ
3z C

�
3z C2a C2b C2cg � fE Ig

¼ fD3g þ fI S�6z S
þ
6z �a �b �cg ¼ D3d;

(8)

�c, for example, denotes reflection in a dihedral plane zf that bisects the angle between a

and b, which are the binary axes normal to the C3 axis (Figure 2.10). The notation in eq. (8)

is intentionally detailed, but may be compressed, as in

D3 � Ci ¼ fE 2C3 3C0
2g � fE Ig ¼ fE 2C3 3C0

2 I 2S6 3�dg ¼ D3d: (9)

Exercise 2.3-1 Confirm the DP D3 � Ci in eq. (9) by constructing the (labeled) projection

diagram for D3d. Identify the dihedral planes.

(iii) T� Ci ¼ Th; 23� 1 ¼ m3: (10)
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Table 2.6. Derivation of commonly used finite point groups from proper point groups.

If P has an invariant subgroup Q of index 2 so that P¼ {Q}þR{Q}, R2 P, R 62Q, then P0 ¼ {Q}þ IR{Q} is a group isomorphous with P.

In each column, the symbol for the point group is given in International notation on the left and in Schönflies notation on the right. When n¼ 2,

the International symbol for D2h ismmm. When n is odd, the International symbol for Cnv is nm, and when n is even it is nmm. Note that n
0 ¼ n/2.

In addition to these groups, which are either a proper point group P, or formed from P, there are the three cyclic groups: 1 or C1¼ {E}, 1 or

Ci¼ {E I}, and m or Cs¼ {E �}.

P P � Ci P¼Qþ IR{Q} Q

n (n¼ 2, 3, . . . , 8) Cn n (n¼ 3, 5) S2n n (n0 ¼ 3, 5) Cn0h n0 Cn0

n/m (n¼ 2, 4, 6) Cnh n (n0 ¼ 2, 4) S2n0

n2 (n¼ 3, 5) Dn nm (n¼ 3, 5) Dnd nm, nmm (n¼ 2, 3, . . . , 6) Cnv n Cn

n22 (n¼ 2, 4, 6) Dn n/mmm (n¼ 2, 4, 6, 8) Dnh n2m (n0 ¼ 3, 5) Dn0h n02 Dn0

(n0 ¼ 2, 4, 6) Dn0d n022 Dn0

23 T m3 Th

432 O m3m Oh 43m Td 23 T

532 Y 53m Yh



In abbreviated notation,

T� Ci ¼ fE 4Cþ
3 4C�

3 3C2g � fE Ig
¼ fTg þ fI 4S�6 4Sþ6 3�hg ¼ Th:

(11)

As shown in Figure 2.15(a), IC2y (for example) is �y. The plane normal to y, the zx plane,

containsC2z andC2x, and so this is a horizontal plane (normal to C2y) and not a dihedral plane,

because it contains the otherC2 axes (C2z andC2x) and does not bisect the angle between them.

Note that T¼C2 ^ C3 is 23 in International notation but that D3¼C3 ^ C2 is 32.

(iv) O� Ci ¼ Oh, 432� 1 ¼ m3m: (12)

In abbreviated notation,

O� Ci ¼ fE 6C4 3C2 6C2
0 8C3g � fE Ig

¼ fOg þ fI 6S4 3�h 6�d 8S6g:
(13)

The three S4 axes are coincident with the three C4 (and coincident C2) axes along x, y, z.

The three horizontal planes �x, �y, and �z and two of the six dihedral planes �a, �b are

shown in Figures 2.15(b) and (c).

(v) Y� Ci ¼ Yh, 532� 1 ¼ 53m; (14)

Y� Ci ¼ fE 24C5 20C3 15C2g � fE Ig
¼ fYg þ fI 24S10 20S6 15�hg:

(15)

The six S10 axes are coincident with the six C5 axes of Y, and the ten S6 axes are coincident

with the ten C3 axes of Y. The fifteen mirror planes each contain two C2 axes and two C5

axes. All these DPs are given in the second column of Table 2.6.

Exercise 2.3-2 Draw a projection diagram showing that C5�Ci¼ S10.

C2z

E

I

(a)

σz

C3z
C3z

S6z

S6z
 

E

I

(b)

+

+

–

–

Figure 2.14. Projection diagrams for the point groups (a) C2h and (b) S6.
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2.3.2 Second method

The second method is applicable to proper point groups P that have an invariant subgroup

Q of index 2, so that

P ¼ fQg þ RfQg, R 2 P, R 62 Q: (16)

Then {Q}þ IR{Q} is a point group P0 which is isomorphous with P and therefore has

the same class structure as P. The isomorphism follows from the fact that I commutes

with any proper or improper rotation and therefore with any other symmetry operator.

Multiplication tables for P and P0 are shown in Table 2.7; we note that these have

the same structure and that the two groups have corresponding classes, the only differ-

ence being that some products X are replaced by IX in P0. Examples are given below.

E

(c)

C2a

IC2a

x

ab

C2z

E

I  

(a)

σx

σy

C2y

C2x

IC2z

x

Z

(b)

X

Y

σbσa

σz

σx

σy

Figure 2.15. (a) In T � Ci, IC2y¼�y, and �y contains the other two C2 axes, C2z and C2x. Since �y is
normal to the axis of rotation y, it is a horizontal plane, not a dihedral plane. (b) In O�Ci, IC2¼�h,
as, for example, IC2x¼�x, which contains y and z. In (c), a is the unit vector along Oa in Figure 2.12,
and IC2a¼ �a. This dihedral plane is also shown in (b).
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Exercise 2.3-3 If X 2 R{Q} and X, Y are conjugate elements in P, show that IX and IY are

conjugate elements in P0.

(i) C2n has the invariant subgroup Cn of index 2, because

C2n ¼ fCng þ C2nfCng: (17)

Note that Cn means the point group Cn, but {Cn} means the set of operators forming the

point group Cn. Then

fCng þ IC2nfCng ¼ S2n ðn evenÞ, or ¼ Cnh ðn oddÞ: (18)

In Table 2.6, n0 is defined as n=2 to avoid any possible confusion when using International

notation; S2n0 is, of course, Sn.

Example 2.3-3

C2 ¼ E þ C2fEg ¼ fE C2g, (19)

E þ IC2fEg ¼ fE �hg ¼ Cs: (20)

The multiplication tables are

This is a rather trivial example: the classes of C2 are E, C2 and those of Cs are E, �h.

Elements X 2 P and IX 2 P 0 are called corresponding elements, so here C2 and IC2¼ �h
are corresponding elements.

Exercise 2.3-4 Use the secondmethod to derive the point group P0corresponding to the proper

point group C4. Show that C4 and P
0 are isomorphous and find the classes of both groups.

Table 2.7. Multiplication tables for P and P0, where P¼ {Q}þR{Q} and P0 ¼Qþ IR{Q}.

A, B2Q and C, D2 R Q. Use has been made of the commutation property of I with any

other symmetry operator.

P {Q} R{Q}

{Q} {AB} {AD}
R{Q} {CB} {CD}

P0 {Q} IR{Q}

{Q} {AB} I{AD}
IR{Q} I{CB} {CD}

C2 E C2

E E C2

C2 C2 E

Cs E �h

E E �h
�h �h E
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(ii) Dn has the invariant subgroup Cn. The coset expansion of Dn on Cn is

Dn ¼ fCng þ C2
0fCng: (21)

(21) fCng þ IC2
0fCng ¼ fCng þ svfCng ¼ Cnv: (22)

For example, for n¼ 2,

D2 ¼ fE C2zg þ C2xfE C2zg ¼ fE C2z C2x C2yg, (23)

(23) fE C2zg þ IC2xfE C2zg ¼ fE C2zg þ �xfE C2zg
¼ fE C2z �x �yg ¼ C2v: ð24Þ

The projection diagrams illustrating D2 and C2v are in Figure 2.16.

D2n has the invariant subgroup Dn of index 2, with the coset expansion

D2n ¼ fDng þ C2nfDng; (25)

EC2y

C2z C2x

(a)

x

EIC2x

C2x

(b)

x

Eσx

σyC2z

(c)

x

Figure 2.16. Projection diagrams (a) for D2; (b) showing that IC2x¼ �x; and (c) for C2v.
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(25) fDng þ IC2nfDng ¼ Dnd ðn evenÞ, or Dnh ðn oddÞ: (26)

For example, if n¼ 2,

D4 ¼ fD2g þ Cþ
4zfD2g ¼ fE C2z C2x C2y Cþ

4z C
�
4z C2a C2bg, (27)

where a is the unit vector bisecting the angle between x and y, and b is that bisecting the

angle between x and y. The projection diagram for D4 is shown in Figure 2.11(b). Applying

the second method,

fD2g þ ICþ
4zfD2g ¼ fE C2z C2x C2yg þ S�4zfE C2z C2x C2yg

¼ fE C2z C2x C2y S�4z S
þ
4z �a �bg ¼ D2d:

(28)

(iv) O has the invariant subgroup T of index 2:

O ¼ fTg þ Cþ
4 fTg ¼ fE 3C2 8C3 6C4 6C2

0g (29)

fTg þ ICþ
4zfTg ¼ fE 3C2 8C3 6S4 6�dg ¼ Td: (30)

The detailed verification of eqs. (29) and (30) is quite lengthy, but is summarized in Table 2.8.

(iii), (v) The point groups T, Y have no invariant subgroups of index 2.

This completes the derivation of the point groups that are important in molecular

symmetry, with the exception of the two continuous rotation groups C1v and D1h,

which apply to linear molecules.

The rotation of a heteronuclear diatomic molecule like HCl through any angle � about z

(which is always chosen to lie along the molecular axis) leaves the molecule in an

indistinguishable configuration. The point group therefore contains an infinite number of

rotation operators R(� z). Similarly, there are an infinite number of vertical planes of

symmetry in the set of symmetry elements and the point group contains 1�v. The point

group is therefore called C1v. For homonuclear diatomic molecules like O2, or polyatomic

linear molecules with a horizontal plane of symmetry, the point group also contains �h and

an infinite number of C0
2 axes normal to the principal axis (which is along the molecular

axis). Such molecules belong to the point group D1h.

For crystals, the point group must be compatible with translational symmetry, and this

requirement limits n to 2, 3, 4, or 6. (This restriction applies to both proper and improper axes.)

Thus the crystallographic point groups are restricted to ten proper point groups and a total of

Table 2.8. The relation of the point groups O and Td to their invariant subgroup T.

Cþ
31 means a positive rotation through 2p / 3 about the axis O1 and similarly (see Figure

2.12). C2a means a rotation through p about the unit vector a along [1 1 0], and �a means a

reflection in the mirror plane normal to a.

fTg ¼ fE C2z C2x C2y Cþ
31 C�

31 Cþ
32 C�

32 Cþ
33 C�

33 Cþ
34 C�

34g
Cþ
4zfTg ¼ fCþ

4z C
�
4z C2a C2b C2c C

�
4y C2f C

þ
4y Cþ

4x C2d C�
4x C2eg

ICþ
4zfTg ¼ fS�4z Sþ4z �a �b �c Sþ4y �f S�4y S�4x �d Sþ4x �eg
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thirty-two point groups, thirteen of which are isomorphous with at least one other crystal-

lographic point group. The thirty-two crystallographic point groups are listed in Table 2.9.

Answers to Exercises 2.3

Exercise 2.3-1 The projection diagram is given in Figure 2.17. The dihedral planes are �x,

�b, and �c, where �x bisects the angle between�b and c, �b bisects the angle between x and

c, and �c bisects the angle between x and b.

Exercise 2.3-2 See Figure 2.18.

Exercise 2.3-3 If X, Y2 P are conjugate, then for some pj2 P, pj X p�1
j ¼ Y . But if

X2R{Q} in P, then IX2 IR{Q} in P0 and pj IX p�1
j ¼ IY , so that IX and IY are

conjugate in P0.

Exercise 2.3-4 C4¼ {C2}þCþ
4 {C2} ¼ {E C2}þCþ

4 {E C2 }¼ {E C2 Cþ
4 C�

4 }. But

{C2}þ ICþ
4 {C2}¼ {E C2}þ S�4 {E C2}¼ {E C2 S4

� Sþ
4 }¼ S4. Use projection

diagrams, if necessary, to verify the multiplication tables given in Tables 2.10 and 2.11.

Clearly, the two multiplication tables are the same, corresponding elements being Cþ
4 and

ICþ
4 ¼ S�4 ; C�

4 and IC�
4 ¼ Sþ4 . Both groups are Abelian.

Table 2.9. The thirty-two crystallographic point groups in both International and Schönflies

notation.

In addition to the proper point groups P and the improper point groups that are either

isomorpous with P or equal to P � Ci, there is the non-axial group 1 or C1¼ {E}.

Proper point group P
Improper group P0

isomorphous to P P � Ci

Proper group isomorphous
to P � Ci

2 C
2 m Cs

1 Ci

( )
2/m C

2h
D
2

3 C3 3 S6 C6

4 C4 4 S4 4/m C4h

6 C6 6 C3h 6/m C6h

222 D2 2mm C2v mmm D2h

32 D3 3m C3v 3m D3d D6

422 D
4 4mm C4v

42m D2d

( )
4/mmm D

4h

622 D
6 6mm C6v

6m2 D3h

( )
6/mmm D

6h

23 T m3 Th

432 O 43m Td m3m Oh

2 2h 2

6 6h

4 4h
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E

I

x

c

b

σx

σb

σc

C2x

C3z

C2b

S6z C2c

S6z

C3z
–

–

+

+

Figure 2.17. Projection diagram for the point group D3d¼D3�Ci (see eq. (2.3.9)). For example,

IC2b¼ �b, and this mirror plane normal to b bisects the angle between the C0
2 axes C2x and C2c so that

it is a dihedral plane. Similarly, �x and �c are dihedral planes.

+
C5

2–
C5

–
C5

2+
C5

+
S10

– S10

3+
S10

3–
S10

E

I

Figure 2.18. Projection diagram for the point group S10.

Table 2.10. Multiplication table for C4.

C4 E Cþ
4 C2 C�

4

E E Cþ
4

C2 C�
4

Cþ
4 Cþ

4
C2 C�

4 E

C2 C2 C�
4 E Cþ

4

C�
4 C�

4 E Cþ
4

C2

Table 2.11. Multiplication table for S4.

S4 E S�4 C2 Sþ4

E E S�4 C2 Sþ4
S�4 S�4 C2 Sþ4 E

C2 C2 Sþ4 E S�4
Sþ4 Sþ4 E S�4 C2
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2.4 Identification of molecular point groups

A systematic method for identifying the point group of any molecule is given in

Figure 2.19. Some practice in the recognition of symmetry elements and in the assignment

of point groups may be obtained through working through the following exercises and

problems.

Exercise 2.4-1 Identify the symmetry point groups to which the following molecules

belong. [Hint: For the two staggered configurations, imagine the view presented on looking

down the C�C molecular axis.]

(a) nitrosyl chloride NOCl (non-linear),

(b) carbon dioxide O¼C¼O (linear),

(c) methane CH4 (Figure 2.20),

(d) formaldehyde H2C¼O,

(e) carbonate ion CO3
�2 (planar),

(f) BrF5 (pyramidal),

(g) staggered H3C�CCl3,

(h) [PtCl4]
�2 (planar),

(i) staggered ethane H3C�CH3,

(j) B(OH)3 (planar, Figure 2.20),

(k) IF7 (pentagonal bipyramid),

(l) S4 (non-planar).

Linear molecules

Non-linear molecules 
Cs

Ci

C1

D∞h

C∞v

Dnh

Dnd

Dn

Cnh

Cnv

S2n

Cn

Oh

O

Th

T

Td

Yh

Y

Cn, n >1 

no proper axis of
symmetry

 

I

no horizontal plane of symmetry

horizontal plane σh

σ

I

neither σ nor I

n C2 ⊥ Cn ′

no C2 ⊥ Cn′ 

10C3, 6C5

4C3

> 1C3

≤ 1 C3

σh

n σd

3C2
no I

no σ

n σv

S2n

no σ, no S2n

no I

3C4

3S4

no I

I

I

σh

I

Figure 2.19. Identification of molecular point groups.

48 Symmetry operators and point groups



C  

H

H

H  

H  

B  

O

O O

H

H

H

CC

H

H

Cl  

Cl

C  

Cl
H 

Br

F 

methane B(OH)3

trans -dichloroethylene
(c)  CHFClBr

(h)  NbF7
–2

Nb

F

H

C

(g)  allene

Pd O H

(i) Pd2Cl6
(j) hydrogen peroxide

(k) ferrocene
Fe

Cl

60°

60°

Figure 2.20. Structure of several molecules referred to in Exercise 2.4-1 and in the problems to this

chapter. Lower case letters (c) and (g)–(k) refer to Problem 2.3.
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Answer to Exercise 2.4-1

Cs; D1h; Td; C2v; D3h; C4v; C3v; D4h; D3d; C3h; D5h; Td.

Problems

2.1 Prove the following results by using projection diagrams.

(a) Show that R(p m) and R(p n) commute when m is normal to n.

(b) Show that �y�x¼C2z.

(c) Two planes �1, �2 intersect along n andmake an angle �=2 with one another. Show that

�2�1¼R(� n). Do �1 and �2 commute?

(d) Show that R(p x) R(� z)¼R(�� z) R(p x).

2.2 Identify the set of symmetry operators associated with the molecule trans-

dichloroethylene (Figure 2.20). Set up the multiplication table for these operators and

hence show that they form a group. Name this symmetry group. [Hint: Set up a right-

handed system of axes with y along the C¼C bond and z normal to the plane of the

molecule.]

2.3 Determine the symmetry elements of the following molecules and hence identify the

point group to which each one belongs. [Hints: Adhere to the convention stated in

Section 2.1. Many of these structures are illustrated in Figure 2.20. Sketching the view

presented on looking down the molecular axis will be found helpful for (k) and (l).]

(a) NH3 (non-planar),

(b) H3C�CCl3 (partly rotated),

(c) CHFClBr,

(d) C5H5
� (planar),

(e) C6H6 (planar),

(f) [TiF6]
�3 (octahedral),

(g) allene,

(h) [NbF7]
�2,

(i) Pd2Cl6,

(j) hydrogen peroxide,

(k) bis(cyclopentadienyl)iron or ferrocene

(staggered configuration),

(l) dibenzenechromium (like ferrocene, a

‘‘sandwich compound,’’ but the two

benzene rings are in the eclipsed con-

figuration in the crystal).

2.4 List a sufficient number of symmetry elements in the molecules sketched in

Figure 2.21 to enable you to identify the point group to which each belongs. Give

the point group symbol in both Schönflies and International notation.

2.5 Show that each of the following sets of symmetry operators is a generator for a point

group. State the point group symbol in both Schönflies and International notation.

[Hints: The use of projection diagrams is generally an excellent method for calcul-

ating products of symmetry operators. See Figure 2.10(a) for the location of the

C2a axis.]

(a) {C2y C2z},

(b) {C4z I},

(c) {S4z C2x},

(d) {C3z C2a I},

(e) {C4z �x},

(f) {6},

(g) {S3z C2a}.
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2.6 List a sufficient number of symmetry elements (and also significant absences) in the

following closo BnH
�2
n ions that will enable you to determine the point group to which

each belongs. The shapes of these molecules are shown in Figure 2.22.

(a) B5H5
�2,

(b) B6H6
�2,

(c) B9H9
�2,

(d) B10H10
�2,

(e) B12H12
�2.

2.7 Evaluate the following DPs showing the symmetry operators in each group. [Hint: For

(a)–(e), evaluate products using projection diagrams. This technique is not useful for

products that involve operators associated with the C3 axes of a cube or tetrahedron, so

in these cases study the transformations induced in a cube.] Explain why the DPs in

(d)–(f) are semidirect products.

(a) D2 � Ci,

(b) D3 � Ci,

(c) D3 � Cs,

(d) S4 ^ C2 (C2 ¼ {E C2x}),

(e) D2 ^ C2 (C2 ¼ {E C2a}),

(f) D2 ^ C3 (C3 ¼ {E C�
31}).
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Figure 2.21. Configurations of an ML6 complex ion and of some MLnL
0
6�n complexes.
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Figure 2.22. Some closo BnH
�2
n anions. The numbering scheme shown is conventional and will be an

aid in identifying and describing the symmetry elements.
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3 Matrix representatives

3.1 Linear vector spaces

In three-dimensional (3-D) configuration space (Figure 3.1) a position vector r is the sum

of its projections,

r ¼ e1xþ e2yþ e3z: (1)

The set of three orthonormal basis vectors {e1 e2 e3} in eq. (1) is the basis of a linear vector

space (LVS), and the coordinates of the point P(x y z) are the components of the vector r.

The matrix representation of r is

r ¼ he1 e2 e3jx y zi: (2)

he1 e2 e3| is a matrix of one row that contains the elements of the basis set, and | x y zi is a

matrix of a single column containing the components of r. The row � column law of matrix

multiplication applied to the RS of eq. (2) yields eq. (1). The choice of basis vectors is

arbitrary: they do not have to be mutually orthogonal but they must be linearly independent

(LI) and three in number in 3-D space. Thus, {e1 e2 e3} form a basis in 3-D space if it is

impossible to find a set of numbers {v1 v2 v3} such that e1v1þ e2v2þ e3v3¼ 0, except

vj¼ 0, j¼ 1, 2, 3. But any set of four or more vectors is linearly dependent in 3-D space.

That is, the dimensionality of a vector space is the maximum number of LI vectors in that

space. This is illustrated in Figure 3.2 for the example of two-dimensional (2-D) space,

which is a subspace of 3-D space.

For a vector v in an LVS of n dimensions, eq. (1) is generalized to

v ¼
Pn
i¼1

ei vi ¼ e1v1 þ e2v2 þ � � � þ envn

6¼ 0, unless vi ¼ 0, 8 i ¼ 1, . . . , n: (3)

In eq. (3), the vector v is the sum of its projections. The matrix representation of eq. (3) is

v ¼ he1 e2 . . . enjv1v2 . . . vni (4)

¼ hejvi, (5)

where, in eq. (5), the row matrix he| implies the whole basis set, as given explicitly in

eq. (4), and similarly v in the column matrix |vi implies the whole set of n components
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{v1 v2 . . . vn}. If the basis {ei} and/or the components {vj} are complex, the definition of

the scalar product has to be generalized. The Hermitian scalar product of two vectors u and

v is defined by

u�� v ¼ hejuiy � hejvi, (6)

the superscript y denoting the adjoint or transposed complex conjugate:

(5), (6) u�� v ¼ hu�je�i � hejvi (7a)

¼ hu�jMjvi (7b)

¼
P
i, j

ui
�Mijvj: (7c)

The square matrix

M ¼ je�i � hej (8)

Z

P

X

Y

r

e3z

e1x

e2y
O

Figure 3.1. Projection of a vector OP along three orthogonal axes OX, OY, OZ.

e2

e1

e2

e1

(a)

e3

e2

e1 e1 + e2

(b) (c)

Figure 3.2. Examples, in 2-D space, of (a) an LI set of orthogonal basis vectors {e1 e2}, (b) an LI non-

orthogonal basis, and (c) a set of three basis vectors in 2-D space that are not LI because

e1þ e2þ e3¼ 0.
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is called the metric of the LVS:

M ¼ je1
� e2

� . . . en
�i� he1 e2 . . . enj

¼
e1

�� e1 e1
� � e2 . . .

e2
�� e1 e2

�� e2 . . .

..

. ..
. ..

.

2
664

3
775:

(9)

Note that (i)

Mij ¼ ei
�� ej ¼ ej � ei� ¼ ðej�� eiÞ� ¼ Mji

� (10)

so that M is a Hermitian matrix (M¼My). (ii) If the basis is orthonormal (or unitary)

Mij ¼ ei
�� ej ¼ �ij (11)

and M is just the unit matrix with n rows and columns,

M ¼ En: (12)

In this case,

u�� v ¼ hu�jvi ¼
P
i

ui
�vi: (13)

In eqs. (7a) and (7b) |vi is a matrix of one column containing the components of v, and hu*|

is a matrix of one row, which is the transpose of |u*i, the matrix of one column containing

the components of u, complex conjugated. In eq. (6), transposition is necessary to conform

with the matrix representation of the scalar product so that the row � column law of matrix

multiplication may be applied. Complex conjugation is necessary to ensure that the length

of a vector v

v ¼ jvj ¼ ðv�� vÞ1=2
(14)

is real. A vector of unit length is said to be normalized, and any vector v can be normalized

by dividing v by its length v.

3.2 Matrix representatives of operators

Suppose a basis he| is transformed into a new basis he0| under the proper rotation R, so that

Rhej ¼ e0j, (1)

or, in more detail,

Rhe1 e2 e3j ¼ he1
0 e2

0 e3
0j: (2)

Then the new basis vectors {ej
0} can be expressed in terms of the old set by writing ej

0 as the

sum of its projections (cf. eq. (3.1.3)):
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ej
0 ¼

P3

i¼1

ei rij, j ¼ 1, 2, 3; (3)

rij is the component of ej
0 along ei. In matrix form,

(3) he1
0 e2

0 e3
0j ¼ he1 e2 e3j�ðRÞ, (4)

where the square matrix

�ðRÞ ¼ ½rij� ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
4

3
5 (5)

and the rij in eq. (3) are seen to be the elements of the jth column of �(R). In shorter

notation,

(4) he0j ¼ hej�ðRÞ: (6)

Equation (6), or eq. (4), is the matrix representation of the operation of deriving the new basis

{ej
0} from the original basis {ei}, and when we carry out the matrix multiplication on the RS

of eq. (6) or eq. (4) we are using eq. (3) successively for each ej
0 in turn as j¼ 1, 2, 3.

(1), (6) Rhej ¼ he0j ¼ he j�ðRÞ, (7)

which shows that �(R) is the matrix representative (MR) of the operator R.

Example 3.2-1 WhenR is the identityE, he0| is just he| and so�(E) is the 3�3 unit matrix,E3.

Example 3.2-2 Consider a basis of three orthogonal unit vectors with e3 (along OZ)

normal to the plane of the paper, and consider the proper rotation of this basis about OZ

through an angle � by the operator R (� z) (see Figure 3.3). Any vector v may be expressed

as the sum of its projections along the basis vectors:

e2

e2

e1

e1

X

Y

φ

φ

′

′

O

Figure 3.3. Rotation of configuration space, and therefore of all vectors in configuration space

including {e1 e2 e3}, through an angle � about OZ (active representation).
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v ¼
P
i

ei vi: (3:1:3)

To find the ith component vi, take the scalar product of ei with v. Here the basis is real and

orthonormal, so

(3.1.3) ei � v ¼ ei �
P
j

ej vj ¼
P
j

�ij vj ¼ vi: (8)

We now represent the transformed basis vectors {ej
0} in terms of the original set {ei} by

expressing each as the sum of its projections, according to eq. (3). Writing each

ej
0 (j¼ 1, 2, 3) as the sum of their projections along {ei} yields

e1
0 ¼ e1ðcos�Þ þ e2ðsin�Þ þ e3ð0Þ

e2
0 ¼ e1ð� sin�Þ þ e2ðcos�Þ þ e3ð0Þ

e3
0 ¼ e1ð0Þ þ e2ð0Þ þ e3ð1Þ

(9)

where we have used the fact that the scalar product of two unit vectors at an angle � is cos �,

and that cos(1
2
p��)¼ sin �, cos(1

2
pþ�)¼� sin{�}, and cos 0¼ 1. Because of the row �

column law of matrix multiplication, eqs. (9) may be written as

he1
0 e2

0 e3
0 j ¼ he1 e2 e3j

cos� �sin� 0

sin� cos� 0

0 0 1

2
4

3
5: (10)

On using eq. (7), the MR of R(� z) is seen to be

(10) �ðRð� zÞÞ ¼
cos� �sin� 0

sin� cos� 0

0 0 1

2
4

3
5 ¼

c �s 0

s c 0

0 0 1

2
4

3
5, (11)

where c¼ cos �, s¼ sin �. The proper rotation R(� z) rotates a vector r in configuration

space into the vector r0 given by

(7) r0 ¼ R r ¼ Rhejri ¼ he0jri ¼ hej�ðRÞjri ¼ hejr0i: (12)

For R¼R (� z), the components of r0 (which are the coordinates of the transformed point

P0) are in

(12) jr0i ¼ �ðRÞjri, (13)

which provides a means of calculating the components of |r 0i from

(13), (11)

x0

y0

z0

2
4

3
5 ¼

c �s 0

s c 0

0 0 1

2
4

3
5

x

y

z

2
4

3
5: (14)
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Example 3.2-3 Find the t ransformed components of a vector r when acted on by the

operator Cþ
4z ¼ Rðp=2 zÞ.

(14)

x0

y0

z0

2
64

3
75 ¼

c �s 0

s c 0

0 0 1

2
64

3
75

x

y

z

2
64

3
75 ¼

0 1 0

1 0 0

0 0 1

2
64

3
75

x

y

z

2
64

3
75 ¼

y

x

z

2
64

3
75: (15)

The set of components of the vector r0 in eq. (13) is the Jones symbol or Jones faithful

representation of the symmetry operator R, and is usually written as (x0 y0 z0) or x0 y0 z0. For

example, from eq. (15) the Jones symbol of the operator R (p/2 z) is (y x z) or y x z. In

order to save space, particularly in tables, we will usually present Jones symbols without

parentheses. A ‘‘faithful representation’’ is one which obeys the same multiplication table

as the group elements (symmetry operators).

The inversion operator I leaves he| invariant but changes the sign of the components of r

(see eq. (2.1.5) and Figure 2.3):

Ihejri ¼ hejI jri ¼ hej�ðIÞjri; (16)

(16) I jx y zi ¼ �ðIÞjx y zi ¼ j�x �y �zi: (17)

Therefore the MR of I is

(17) �ðIÞ ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: (18)

It follows that if R is a proper rotation and R|x y zi¼ |x0 y0 z0i, then

(17) IRjx y zi ¼ I jx0 y0 z0i ¼ j �x0 �y0 �z0i: (19)

The improper rotation Sð� nÞ ¼ IRð�� p nÞ, for �>0 or �<0 (see eq. (2.1.9)), so that it is

sometimes convenient to have the MR of S(� n) as well. In the improper rotation

S(� z)¼ �zR(� z), �z|x y z i¼ jx y zi, and so the MR of S(� z) is

(11) �ðSð� zÞÞ ¼
c �s 0

s c 0

0 0 1

2
4

3
5: (20)

Exercise 3.2-1 Write down the Jones symbol for the improper rotation S�4z.

Exercise 3.2-2 Show that S�k
n ¼ IC

k�ðn=2Þ
n . Find operators of the form ICk

n that are

equivalent to S�4z and S�6z.

It is demonstrated in Problem 3.1 that �( R) and �( S) are real orthogonal matrices. An

orthogonal matrix A has the property ATA¼E, where E is the unit matrix, so that

A�1¼AT, which makes the calculation of �(R)�1 and �(S)�1 very straightforward or
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simple (to use space). Equations (13), (17), and (19) are of considerable importance since every

point symmetry operation, apart from E and I, is equivalent to a proper or improper rotation.

Example 3.2-4 Nevertheless it is convenient to have the MR of �(� y), the operator that

produces reflection in a plane whose normal m makes an angle y with y (Figure 3.4) so that

the reflecting plane makes an angle y with the zx plane.

From Figure 3.4,

x ¼ cos�, y ¼ sin�, (21)

x0 ¼ cosð2�� �Þ ¼ x cosð2�Þ þ y sinð2�Þ, (22)

y0 ¼ sinð2�� �Þ ¼ x sinð2�Þ � y cosð2�Þ: (23)

(21)�ð23Þ
x0

y0

z0

2
4

3
5 ¼

cos 2� sin 2� 0

sin 2� �cos 2� 0

0 0 1

2
4

3
5

x

y

z

2
4

3
5 (24)

so that the MR of �(� y) is

(24) �ð�ð� yÞÞ ¼
cos 2� sin 2� 0

sin 2� �cos 2� 0

0 0 1

2
4

3
5: (25)

Example 3.2-5 The MR of �(p/3 y) is

(22) �ð�ðp=3 yÞÞ ¼
� 1

2

ffiffi
3

p

2
0ffiffi

3
p

2
1
2

0

0 0 1

2
64

3
75: (26)

X

Y

O

P

P′m

σ

θ
α

Figure 3.4. Reflection of a point P(x y) in a mirror plane � whose normal m makes an angle �with y,

so that the angle between � and the zx plane is �. OP makes an angle � with x. P0(x0 y0 ) is the

reflection of P in �, and OP0 makes an angle 2��� with x.
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Answers to Exercises 3.2

Exercise 3.2-1 From eqs. (15) and (19), the Jones symbol for S�4z is y x z.

Exercise 3.2-2 Let S(� n)¼ IC (�0 n). Then �¼ 2pk/n and �0 ¼ 2p½k � ðn=2Þ�=n so that

Skn ¼ IC
k�ðn=2Þ
n . Therefore, S�4z ¼ IC

�
4z and S�6z ¼ IC

�
3z:

3.3 Mappings

When the symmetry operator R 2 G acts on configuration space, a vector r is transformed

into r0 ¼R r; r0 is the image of r, and the process whereby R{r}!{r0} is called a mapping.

The components of r0 are given by

(3.2.13), (3.2.19) jx0 y0 z0i ¼ �ðRÞjx y zi, (1)

where �(R) is the MR of the operator R. Equation (1) will be found to be extremely useful,

for it enables us to find the effect of a symmetry operator R on the coordinates of P(x y z).

(In eq. (1) R may be the identity, the inversion operator, or a proper or improper rotation.)

The lengths of all vectors and the angles between them are invariant under symmetry

operations and so, therefore, are scalar products. Consider the transformation of two

vectors u, v into u0, v0 under the symmetry operator R:

(3.2.12) u0 ¼ R u ¼ Rhejui ¼ hej�ðRÞjui, (2)

(3.2.12) v0 ¼ R v ¼ Rhejvi ¼ hej�ðRÞjvi: (3)

The Hermitian scalar product of u and v is

(3.1.6) u�� v ¼ hejuiy � hejvi

(3.1.7a) ¼ hu�jMjvi: (4)

Similarly, that of u0 and v0 is

(2), (3) u0�� v0 ¼ hej�ðRÞjuiy � hej�ðRÞjvi: (5)

The adjoint of a product of matrices is the product of the adjoints in reverse order, so

(5) u0�� v0 ¼ hu�j�ðRÞyje�i � hej�ðRÞjvi

(3.1.8) ¼ hu�j�ðRÞyM�ðRÞjvi: (6)

Because the scalar product is invariant under R, u0*� v0 ¼ u*� v, and

(6), (4) �ðRÞyM�ðRÞ ¼ M: (7)

In group theory the most important cases are those of an orthogonal or unitary basis when

M is the 3� 3 unit matrix, and consequently
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(7) �ðRÞy�ðRÞ ¼ E: (8)

Equation (8) shows that �(R) is a unitary matrix and that

½�ðRÞ��1 ¼ �ðRÞy ¼ ½�ðRÞ��T
, (9)

where the superscript T denotes the transposed matrix. When the MR �(R) is real,

(9) ½�ðRÞ��1 ¼ ½�ðRÞ�T: (10)

This is a most useful result since we often need to calculate the inverse of a 3�3 MR of a

symmetry operator R. Equation (10) shows that when �(R) is real, �(R)�1 is just the

transpose of �(R). A matrix with this property is an orthogonal matrix. In configuration

space the basis and the components of vectors are real, so that proper and improper

rotations which leave all lengths and angles invariant are therefore represented by 3�3

real orthogonal matrices. Proper and improper rotations in configuration space may be

distinguished by det �(R),

(10) �ðRÞ�ðRÞT ¼ �ðRÞT�ðRÞ ¼ E: (11)

Since

detAB ¼ detA detB,

(11) det �ðRÞT�ðRÞ ¼ det �ðRÞT
det �ðRÞ ¼ ½det �ðRÞ�2 ¼ 1, (12)

(12) det �ðRÞ ¼ �1 ð�ðRÞ realÞ: (13)

Real 3�3 orthogonal matrices with determinant þ1 are called special orthogonal (SO)

matrices and they represent proper rotations, while those with determinant �1 represent

improper rotations. The set of all 3�3 real orthogonal matrices form a group called the

orthogonal group O(3); the set of all SO matrices form a subgroup of O(3) called the

special orthogonal group SO(3).

Exercise 3.3-1 Evaluate the matrix representative of R(p/2 z) by considering the

rotation of the basis vectors {e1 e2 e3} into {e1
0 e2

0 e3
0}.

Exercise 3.3-2 The set of real 3�3 orthogonal matrices with determinant �1 does not

form a group. Why?

Answers to Exercises 3.3

Exercise 3.3-1 As shown in Figure 3.5,

Rðp=2 zÞhe1 e2 e3j ¼ he2 �e1 e3j ¼ he1 e2 e3j
0 1 0

1 0 0

0 0 1

2
4

3
5:
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Exercise 3.3-2 The identity in O(3) is �(E)¼E3, the 3�3 unit matrix with determinant

þ1. The set of all 3�3 real orthogonal matrices with determinant �1 does not contain the

identity and therefore cannot form a group.

3.4 Group representations

If {R, S, T, . . .} form a group G, then the set of MRs {�(R), �(S), �(T), . . .} forms a group

that is isomorphous with G called a group representation. Suppose that RS¼ T; then

(3.2.12) Tv ¼ hej�ðTÞjvi, (1)

Tv ¼ RSv ¼ Rv0 ðgivenÞ, (2)

v0 ¼ Sv ðdefinition of v0Þ: (3)

(3), (3.2.13) jv0i ¼ �ðSÞjvi, (4)

(4), (3.2.12) Rv0 ¼ hej�ðRÞjv0i ¼ hej�ðRÞ �ðSÞjvi, (5)

(1), (2), (5) �ðRÞ �ðSÞ ¼ �ðTÞ: (6)

Equation (6) shows that the MRs obey the same multiplication table as the operators, and so

{�(R), �(S), �(T), . . . } forms a group that is isomorphous with G¼ {R, S, T, . . . }. Such a

matrix group is an example of a group representation.

3.5 Transformation of functions

We have studied the transformation of vectors induced by symmetry operators, and this led

us to the concept of the MR of a symmetry operator. In order to understand how atomic

 

Z

Y

X

e1

e3

e2

e3

e2

e1

 ′

′

′

Figure 3.5. Effect of R(p/2 z) on {e1 e2 e3}.
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orbitals transform in symmetry operations, we must now study the transformation of

functions. To say that f(x, y, z) is a function of the set of variables {x} � {x y z} means

that f({x}) has a definite value at each point P(x, y, z) with coordinates {x, y, z}. Note that

we will be using {x} as an abbreviation for {x y z} and similarly {x0} for {x0 y0 z0}. Now

suppose that a symmetry operator R transforms P(x y z) into P0(x0 y0 z0}so that

Rfxg ¼ fx0g; (1)

(3.3.3) jx0i ¼ �ðRÞjxi: (2)

| x0i is a matrix of one column containing the coordinates {x0 y0 z0} of the transformed

point P0. (Recall the correspondence between the coordinates of the point P and the

components of the vector r that joins P to the origin O of the coordinate system, Figure

3.1.) But since a symmetry operator leaves a system in an indistinguishable configuration

(for example, interchanges indistinguishable particles), the properties of the system are

unaffected by R. Therefore R must also transform f into some new function R̂f in such a

way that

R̂f ðfx0gÞ ¼ f ðfxgÞ: (3)

R̂, which transforms f into a new function f 0 ¼ R̂f , is called a function operator. Equation

(3) states that ‘‘the value of the new function R̂f , evaluated at the transformed point {x0}, is

the same as the value of the original function f evaluated at the original point {x}.’’

Equation (3) is of great importance in applications of group theory. It is based (i) on

what we understand by a function and (ii) on the invariance of physical properties under

symmetry operations. The consequence of (i) and (ii) is that when a symmetry operator acts

on configuration space, any function f is simultaneously transformed into a new function

R̂f . We now require a prescription for calculating R̂f . Under the symmetry operator R, each

point P is transformed into P0:

R Pðx y zÞ ¼ P0ðx0 y0 z0Þ: (4)

(4) R�1P0ðx0 y0 z0Þ ¼ Pðx y zÞ; (5)

(3), (5) R̂f ðfx0gÞ ¼ f ðfxgÞ ¼ f ðR�1fx0gÞ: (6)

The primes in eq. (6) can be dispensed with since it is applicable at any point P0 (x0 y0 z0):

(6) R̂f ðfxgÞ ¼ f ðR�1fxgÞ: (7)

Example 3.5-1 Consider the effect of R(p/2 z) on the d orbital dxy = x y g(r), where g(r) is

a function of r only and the angular dependence is contained in the factor x y, which is

therefore used as an identifying subscript on d.
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(3.2.15) �ðRÞ ¼
0 1 0

1 0 0

0 0 1

2
4

3
5; (8)

(3.3.10) ½�ðRÞ��1 ¼ ½�ðRÞ�T ¼
0 1 0

1 0 0

0 0 1

2
4

3
5; (9)

(9)

0 1 0

1 0 0

0 0 1

2
4

3
5

x

y

z

2
4

3
5 ¼

y

x

z

2
4

3
5; (10)

(10) R�1fx y zg ¼ fy x zg: (11)

In other words, the Jones symbol for the operator R�1 is y x z. Therefore R̂f ðfxgÞ is

R̂ dxy ¼ dxyðR�1fxgÞ
¼ dxyðfy x zgÞ
¼ y x gðrÞ, or �xy gðrÞ;
¼ �dxy :

(12)

The second equality states that f({x y z}) is to become f ðfy x zgÞ so that x is to be replaced

by y, and y by�x (and z by z ); this is done on the third line, which shows that the function dxy

is transformed into the function �dxy under the symmetry operator R(p/2 z). Figure 3.6

shows that the value of R̂dxy ¼ d0xy ¼ �dxy evaluated at the transformed point P0 has the

same numerical value as dxy evaluated at P. Figure 3.6 demonstrates an important result: the

effect of the function operator R̂ on dxy is just as if the contours of the function had been

rotated by R(p/2 z). However, eq. (7) will always supply the correct result for the

transformed function, and is especially useful when it is difficult to visualize the rotation

of the contours of the function.

X X

YY

+

+

+

+

– –

– –

Figure 3.6. This figure shows that the effect on dxy of the function operator R̂, which corresponds to

the symmetry operator R=R(p/2 z), is just as if the contours of the function had been rotated by R.
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Exercise 3.5-1 Using Rhe|¼he0|¼he|�(R), determine the MR �(R) of the symmetry

operator R(p/2 x). Hence find R�1{x y z} and then find how the three p orbitals transform

under the symmetry operator R(p/2 x).

The complete set of function operators fR̂ Ŝ T̂ . . .g forms a group isomorphous with the

group of symmetry operators {R S T . . .} which transforms configuration space (and all

points and vectors therein). The proof of this statement requires the inverse of the product

RS. By definition, (RS)�1 is the operator which, on multiplying RS, gives the identity E:

ðRSÞ�1
RS ¼ E; (13)

S�1R�1R S ¼ E ðR�1R ¼ E,8 R, S . . .Þ; (14)

(13), (14) ðRSÞ�1 ¼ S�1R�1: (15)

This is the anticipated result since the MRs of symmetry operators obey the same multi-

plication table as the operators themselves, and it is known from the properties of matrices

that

½�ðRÞ�ðSÞ��1 ¼ �ðSÞ�1�ðRÞ�1: (16)

Suppose that RS¼ T. Then,

Ŝf ðfxgÞ ¼ f ðS�1fxgÞ ¼ f 0ðfxgÞ, (17)

where f 0 denotes the transformed function Ŝf .

(17), (7) R̂Ŝf ðfxgÞ ¼ R̂f 0ðfxgÞ ¼ f 0ðR�1fxgÞ: (18)

(17), (18) R̂Ŝf ðfxgÞ ¼ f ðS�1R�1fxgÞ
(15) ¼ f ððRSÞ�1fxgÞ
(17) ¼ f ðT�1fxgÞ
(7) ¼ T̂ f ðfxgÞ; (19)

(18), (19) R̂Ŝ ¼ T̂ : (20)

Equation (20) verifies that the set of function operators fR̂ Ŝ T̂ . . . g obeys the same

multiplication table as the set of symmetry operators G¼ {R S T . . . } and therefore

forms a group isomorphous with G.

Answer to Exercise 3.5-1

From Figure 3.7(a),
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Rhe1 e2 e3j ¼ he1
0 e2

0 e3
0 j ¼ he1 e3 e2j

¼ he1 e2 e3j�ðRÞ ¼ he1 e2 e3j
1 0 0

0 0 1

0 1 0

2
64

3
75;

R�1fx y zg ¼ �ðR�1Þ
x

y

z

2
4

3
5 ¼

1 0 0

0 0 1

0 1 0

2
4

3
5

x

y

z

2
4

3
5 ¼

x

z

y

2
4

3
5: (21)

R̂f px py pzg ¼ R̂fx gðrÞ y gðrÞ z gðrÞg
¼ fpxðR�1fxgÞ pyðR�1fxgÞ pzðR�1fxgÞg

(21) ¼ f px pz �pyg, (22)

on replacing {x y z} by {x y z} in {px py pz}. Equation (22) states that pz is the function

which, when evaluated at the transformed point {x y z}, has the same value as the

original function py evaluated at the original point R�1fx y zg ¼ fx z yg. For example,

pz({0 0 a})¼ py({0 a 0}). Note from Figure 3.7(b) that the effect of R on py is simply to

rotate the contour of the function py into that of pz.

Y

Z

+

P′

Z

P  + Y

(b)

e3

e2 e3

e1

e2

X

Y

Z

′

′

(a)

Figure 3.7. (a) Transformation of the basis set {e1 e2 e3} under R(p/2 x). (b) Illustration of

R̂py ¼ p0y ¼ pz. The value of the original function py at P(0 a 0) is the same as that of the

transformed function pz at P0(0 0 a).
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3.6 Some quantum mechanical considerations

For a quantum mechanical state function  ({x}), the RS of eq. (3.5.7) requires multi-

plication by !, a phase factor or complex number of modulus unity. Since the choice of

phase is arbitrary and has no effect on physical properties, we generally make the most

convenient choice of phase, which here is !¼ 1. So, for the matrix representations used in

Chapters 1–11, we may use eq. (3.5.7) without modification for function operators R̂

operating on quantum mechanical state functions, as indeed we have already done in

Example 3.5-1. However, there are certain kinds of representations called projective or

multiplier representations for which the conventions used result in phase factors that are not

always þ1. These representations are discussed in Chapter 12.

We already know from the invariance of the scalar product under symmetry operations

that spatial symmetry operators are unitary operators, that is they obey the relation

RyR¼R Ry ¼E, where E is the identity operator. It follows from eq. (3.5.7) that the set

of function operators fR̂g are also unitary operators.

Exercise 3.6-1 Prove that the function operators fR̂g are unitary.

In quantum mechanics the stationary states of a system are described by the state function

(or wave function)  ({x}), which satisfies the time-independent Schrödinger equation

Ĥ ðfxgÞ ¼ E ðfxgÞ: (1)

Here {x} stands for the positional coordinates of all the particles in the system, E is the

energy of the system, and Ĥ is the Hamiltonian operator. Since a symmetry operator merely

rearranges indistinguishable particles so as to leave the system in an indistinguishable

configuration, the Hamiltonian is invariant under any spatial symmetry operator R. Let

{ i} denote a set of eigenfunctions of Ĥ so that

Ĥ i ¼ Ei i: (2)

Suppose that a symmetry operator R acts on the physical system (atom, molecule, crystal,

etc.). Then  i is transformed into the function R̂ i, where R̂ is a function operator

corresponding to the symmetry operator R. Physical properties, and specifically here the

energy eigenvalues {Ei}, are invariant under symmetry operators that leave the system in

indistinguishable configurations. Consequently, R̂ i is also an eigenfunction of Ĥ with the

same eigenvalue Ei, which therefore is degenerate:

(2) Ĥ R̂ i ¼ Ei R̂ i ¼ R̂ Ei i ¼ R̂ Ĥ i: (3)

Because the eigenfunctions of any linear Hermitian operator form a complete set, in the

sense that any arbitrary function that satisfies appropriate boundary conditions can be

expressed as a linear superposition of this set, eq. (3) holds also for such arbitrary functions.

Therefore,

(3) ½R̂, Ĥ � ¼ 0, (4)
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and any function operator R̂ that corresponds to a symmetry operator R therefore com-

mutes with the Hamiltonian. The set of all function operators {R̂} which commute with

the Hamiltonian, and which form a group isomorphous with the set of symmetry

operators {R}, is known as the group of the Hamiltonian or the group of the

Schrödinger equation.

Answer to Exercise 3.6-1

R̂ R̂y ðfxgÞ ¼ R̂  0ðfxgÞ ¼  0ðR�1fxgÞ ¼ R̂y ðR�1fxgÞ
¼  ððRyÞ�1

R�1fxgÞ ¼  ððRRyÞ�1fxgÞ
¼  ðE�1fxgÞ ¼ Ê ðfxgÞ,

where E is the identity operator, whence it follows that the function operators {R̂} also are

unitary.

Problems

3.1 Show by evaluating [�(R)]T �(R), where R is the proper rotation R(� z), that �(R) is an

orthogonal matrix, and hence write down [�(R)]�1. Also write down �(R(�� z)).

Is this the same matrix as �(R(� z))�1 and, if so, is this the result you would expect?

Evaluate det �(R(� z)) and det �(S(� z)).

3.2 Find the MR �(R) for R¼R(2p/3 n) with n a unit vector from O along an axis

that makes equal angles with OX, OY, and OZ. What is the trace of �(R)? Find

jx0 y0 z0 i ¼ �ðRÞjx y z i and write down the Jones symbol for this operation. [Hints:

Consider the effect of R(2p/3 n) by noting the action of R on he1 e2 e3| as you imagine

yourself looking down n towards the origin. The trace of a matrix is the sum of its

diagonal elements.]

3.3 (a) Find the MR �(R) of R for R(�p/2 z) and hence find the matrix �(I) �(R).

(b) Using projection diagrams, find the single operator Q that is equivalent to IR; show

also that I and R commute. Give the Schönflies symbol for Q.

(c) Find the MR �(Q) from Qhe1 e2 e3j ¼ he1
0 e2

0 e3
0j ¼ he1 e2 e3j�ðQÞ.

(d) What can you deduce from comparing �(Q) from part (c) with �(I)�(R) from

part (a)?

3.4 Find the MRs of the operators �a, �b for the basis he1 e2 e3|, where

a ¼ 2�½½1 1 0�, b ¼ 2�½½1 1 0�. Evaluate �(�a)�(�b). Using a projection diagram

find Q¼ �a �b. Find the MR of Q and compare this with �(�a) �(�b). What can you

conclude from this comparison?

3.5 Find the MRs of the operators E, Cþ
4z, C 

�
4z, � x, � y for the basis he1 e2 e3|.

3.6 Write down the Jones symbols for R 2 C4v and then the Jones symbols for {R �1}.

[Hints: You have enough information from Problems 3.4 and 3.5 to do this very easily.

Remember that the MRs of {R} are orthogonal matrices.] Write down the angular factor
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in the transforms of the five d orbitals under the operations of the point group C4v. [Hint:

This may be done immediately by using the substitutions provided by the Jones symbols

for R�1.]

3.7 Find the MR of R(�2p/3 [1 1 1]) for the basis he1 e2 e3|. Hence write down the Jones

representations of R and of R-1. Find the transformed d orbitals R̂d, when d is dxy, dyz, or

dzx. [Hint: Remember that the unit vectors {e1 e2 e3} are oriented initially along OX,

OY, OZ, but are transformed under symmetry operations. Observe the comparative

simplicity with which the transformed functions are obtained from the Jones symbol

for R�1 instead of trying to visualize the transformation of the contours of these

functions under the configuration space operator R.]

3.8 (a) List the symmetry operators of the point group D2. Show in a projection diagram

their action on a representative point E. Complete the multiplication table of D2

and find the classes of D2. [Hint: This can be done without evaluating transforms

QRQ�1, Q 2 D2.]

(b) Evaluate the direct product D2 	 Ci ¼ G and name the point group G. Study the

transformation of the basis he1 e2 e3| under the symmetry operators R 2 G ¼ fRg.

Use the MRs of R�1 to find the Jones symbols for {R�1}, and hence write down the

transformed d orbitals when the symmetry operators of G act on configuration

space.

3.9 Find the MRs of R(� x) and R(� y).
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4 Group representations

4.1 Matrix representations

If {A B C . . . } form a group G then any set of square matrices that obey the same

multiplication table as that of the group elements is a matrix representation � of G. For

example, we have already seen that the matrix representatives (MRs) �(R) defined by

Rhej ¼ he0j ¼ hej�ðRÞ, R 2 G, (1)

form a representation of the group of symmetry operators. The dimension l of a representa-

tion is the number of rows and columns in the square matrices making up the matrix

representation. In general, a matrix representation � is homomorphous with G, with matrix

multiplication as the law of binary composition. For example, every group has a one-

dimensional (1-D) representation called the identity representation or the totally symmetric

representation �1 for which

�1ðAÞ ¼ 1, 8A 2 G: (2)

If all the matrices �(A) are different, however, then � is isomorphous with G and it is called

a true or faithful representation.

Exercise 4.1-1 Show that the MR of the inverse of A, �(A�1), is [�(A)]�1.

Example 4.1-1 Find amatrix representation of the symmetry groupC3vwhich consists of the

symmetry operators associated with a regular triangular-based pyramid (see Section 2.2).

C3v ¼ fE Cþ
3 C�

3 �d �e �fg. The MR for the two rotations, evaluated from eq. (1), is

�ðRð� zÞÞ ¼
c �s 0

s c 0

0 0 1

2
4

3
5, (3:2:11)

where c¼ cos �, s¼ sin �. For the three reflections,

�ð�ð� yÞÞ ¼
c2 s2 0

s2 �c2 0

0 0 1

2
4

3
5, (3:2:15)

with c2¼ cos 2�, s2¼ sin 2�. From Figure 2.10, the values of � and � are
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Cþ
3 C�

3 �d �e �f
� ¼ 2p=3 � ¼ �2p=3 � ¼ 0 � ¼ �p=3 � ¼ p=3

Since cosð2p=3Þ ¼ � cosðp=3Þ ¼ 1=2, sinð2p=3Þ ¼ sinðp=3Þ ¼
ffiffiffi
3

p
=2, cosð�2p=3Þ ¼

cosð2p=3Þ ¼ �1=2, and sinð�2p=3Þ ¼ �sinð2p=3Þ ¼ �
ffiffiffi
3

p
=2, the MRs of the elements

of the symmetry group C3v are as follows:

E Cþ
3 C�

3

1 0 0

0 1 0

0 0 1

2
4

3
5 �1=2 �

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 �

ffiffiffi
1

p
=2 0

0 0 1

2
64

3
75 �1=2

ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 �

ffiffiffi
1

p
=2 0

0 0 1

2
64

3
75

�d �e �f
1 0 0

0 1 0

0 0 1

2
4

3
5 �1=2 �

ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2

ffiffiffi
1

p
=2 0

0 0 1

2
64

3
75 �1=2

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2

ffiffiffi
1

p
=2 0

0 0 1

2
64

3
75: ð3Þ

Example 4.1-2 Evaluate �(�e)�(�f) and show that the result agrees with that expected

from the multiplication table for the operators, Table 2.3.

�ð�eÞ �ð�fÞ �ðCþ
3 Þ

�1=2 �
ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 1=2 0

0 0 1

2
4

3
5 �1=2

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 1=2 0

0 0 1

2
4

3
5 ¼

�1=2 �
ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 �1=2 0

0 0 1

2
4

3
5:

From Table 2.3, we see that �e�f ¼ Cþ
3 , so that multiplication of the matrix representations

does indeed give the same result as binary combination of the group elements (symmetry

operators) in this example.

Exercise 4.1-2 Evaluate �ðC�
3 Þ�ð�eÞ and show that your result agrees with that expected

from the multiplication table.

Answers to Exercises 4.1

Exercise 4.1-1 Since A�1A¼E, and since the matrix representations obey the same

multiplication table as the group elements, �(A�1)�(A)¼�(E)¼E, the unit matrix.

Therefore, from the definition of the inverse matrix, [�(A)]� 1¼�(A�1). For example,

C�
3 C

þ
3 ¼ E, and from eq. (3) �ðC�

3 Þ ¼ ½�ðCþ
3 Þ�

T ¼ ½�ðCþ
3 Þ�

�1
.

Exercise 4.1-2 From eq. (3),

�ðC�
3 Þ�ð�eÞ ¼

�1=2

ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 �1=2 0

0 0 1

2
64

3
75

�1=2 �
ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 1=2 0

0 0 1

2
64

3
75

¼
�1=2

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 1=2 0

0 0 1

2
64

3
75¼ �ð�fÞ
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From Table 2.3, C�
3 �e ¼ �f , so for this random test the multiplication of two matrix

representations again gives the same result as the group multiplication table.

4.2 Irreducible representations

Suppose that {�(A)�(B) . . .} forms an l-dimensional matrix representation of G and define

�
0
(A) by the similarity transformation

�0ðAÞ ¼ S �ðAÞ S�1, (1)

where S is any non-singular l� l matrix. Then the set {�
0
(A) �

0
(B) . . .} also forms an

l-dimensional representation of G. (Note that notation varies here, S�1 often being

substituted for S in eq. (1).)

Proof Let AB denote the product of A and B; then

�0ðAÞ�0ðBÞ ¼ S�ðAÞS�1S�ðBÞS�1 ¼ S�ðAÞ�ðBÞS�1

¼ S�ðABÞS�1 ¼ �0ðABÞ,
(2)

so that {�
0
(A) �

0
(B) . . . } is also a representation of G. Two representations that are related

by a similarity transformation are said to be equivalent. We have seen that for an

orthonormal or unitary basis, the matrix representations of point symmetry operators are

unitary matrices. In fact, any representation of a finite group is equivalent to a unitary

representation (Appendix A1.5). Hence we may consider only unitary representations.

Suppose that �1, �2 are matrix representations of G of dimensions l1 and l2 and that for

every A2G an (l1þ l2)-dimensional matrix is defined by

�ðAÞ ¼ �1ðAÞ 0

0 �2ðAÞ

� �
: (3)

Then

�ðAÞ �ðBÞ ¼
�1ðAÞ 0

0 �2ðAÞ

" #
�1ðBÞ 0

0 �2ðBÞ

" #

¼
�1ðAÞ�1ðBÞ 0

0 �2ðAÞ�2ðBÞ

" #

¼
�1ðABÞ 0

0 �2ðABÞ

" #
¼ �ðABÞ: ð4Þ

Therefore, {�(A) �(B) . . .} also forms a representation of G. This matrix representation �

of G is called the direct sum of �1, �2 and is written as
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� ¼ �1 � �2: (5)

Alternatively, we can regard � as reduced into�1 and �2. A representation of G is reducible

if it can be transformed by a similarity transformation into an equivalent representation,

each matrix of which has the same block-diagonal form. Then, each of the smaller

representations �1, �2 is also a representation of G. A representation that cannot be reduced

any further is called an irreducible representation (IR).

Example 4.2-1 Show that the matrix representation found for C3v consists of the totally

symmetric representation and a 2-D representation (�3).

Table 4.1 shows that the MRs �(T) of the symmetry operators T2C3v for the basis

he1 e2 e3| all have the same block-diagonal structure so that �¼�1��3. We shall soon

deduce a simple rule for deciding whether or not a given representation is reducible, and we

shall see then that �3 is in fact irreducible.

4.3 The orthogonality theorem

Many of the properties of IRs that are used in applications of group theory in chemistry and

physics follow from one fundamental theorem called the orthogonality theorem (OT). If

�i, �j are two irreducible unitary representations of G which are inequivalent if i 6¼ j

and identical if i¼ j, thenP
T

ffiffiffiffiffiffiffiffi
li=g

p
�iðTÞ�pq

ffiffiffiffiffiffiffiffi
lj=g

p
�jðTÞrs ¼ �ij �pr �qs: (1)

Note that �iðTÞ�pq means the element common to the pth row and qth column of the

MR for the group element T in the ith IR, complex conjugated. The sum is over all

the elements of the group. If the matrix elements �i(T )pq, �
j(T )rs are corresponding

elements, that is from the same row p¼ r and the same column q¼ s, and from the

same IR, i¼ j, then the sum is unity, but otherwise it is zero. The proof of the OT is

quite lengthy, and it is therefore given in Appendix A1.5. Here we verify eq. (1) for some

particular cases.

Table 4.1.

E Cþ
3

C�
3

1 0 0

0 1 0

0 0 1

2
4

3
5 �1=2 �

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 �1=2 0

0 0 1

2
4

3
5 �1=2

ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 �1=2 0

0 0 1

2
4

3
5

�d �e �f
1 0 0

0 1 0

0 0 1

2
4

3
5 �1=2 �

ffiffiffi
3

p
=2 0

�
ffiffiffi
3

p
=2 ½ 0

0 0 1

2
4

3
5 �1=2

ffiffiffi
3

p
=2 0ffiffiffi

3
p
=2 1=2 0

0 0 1

2
4

3
5
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Example 4.3-1 (a) Evaluate the LS of eq. (1) for the 2-D IR �3 of C3v (i¼ j¼ 3) with

p¼ r¼ 1, q¼ s¼ 1. (b) Repeat the procedure for i¼ 1, j¼ 3.

For (a), the LS¼ (2/6)� [1þ¼þ¼þ 1þ¼þ¼]¼ 1; for (b), the LS ¼
ffiffiffiffiffiffi
1=6

p ffiffiffiffiffiffi
2=6

p
�

½1�½�½þ 1� ½� ½� ¼ 0. Notice that we are multiplying together pairs of numbers as

in the evaluation of the scalar product of two vectors. The Hermitian scalar product of two

normalized vectors u and v in an n-dimensional linear vector space (LVS) with unitary

(orthonormal) basis is

u�� v ¼
Pn
i¼1

u �
i vi ¼ 1 ðu, v parallelÞ,

¼ 0 ðu, v orthogonalÞ: (2)

So we may interpret eq. (1) as a statement about the orthogonality of vectors in a

g-dimensional vector space, where the components of the vectors are chosen from the

elements of the li, lj-dimensional matrix representations �i(T ), �j(T ), i.e. from the pth row

and qth column of the ith IR, and from the rth row and sth column of the jth IR. If these are

corresponding elements ( p¼ r, q¼ s) from the same representation (i¼ j), then the

theorem states that a vector whose components are �i(T )pq, T 2 G, is of length
ffiffiffiffiffiffiffiffi
g=li

p
.

But if the components are not corresponding elements of matrices from the same represen-

tation, then these vectors are orthogonal. The maximum number of mutually orthogonal

vectors in a g-dimensional space is g. Now p may be chosen in li ways ( p¼ 1, . . . , li) and

similarly q may be chosen in li ways (q¼ 1, . . . , li) so that �i(T )pq may be chosen in l2i
from the ith IR and in

P
i

l2i from all IRs. Therefore,P
i

l2i � g: (3)

In fact, we show later that the equality holds in eq. (3) so thatP
i

l2i ¼ g: (4)

4.4 The characters of a representation

The character �i of the MR �i(A) is the trace of the matrix �i(A), i.e. the sum of its diagonal

elements �i(A)pp,

�iðAÞ ¼
P
p

�iðAÞpp ¼ Tr �iðAÞ: (1)

The set of characters {�i(A) �i(B) . . .} is called the character system of the ith representa-

tion �i.

4.4.1 Properties of the characters

(i) The character system is the same for all equivalent representations. To prove this, we

need to show that TrM0 ¼TrSMS�1¼TrM, and to prove this result we need to show first

that Tr AB¼Tr BA:
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Tr AB ¼
P
p

P
q

apq bqp ¼
P
q

P
p

bqp apq ¼ Tr BA; (2)

(2) Tr M0 ¼ Tr ðS MÞS�1 ¼ Tr S�1S M ¼ Tr M: (3)

Equation (3) shows that the character system is invariant under a similarity transformation and

therefore is the same for all equivalent representations. If for some S 2 G, S R S�1¼ T,

then R and T are in the same class in G. And since the MRs obey the same multiplication

table as the group elements, it follows that all members of the same class have the same

character. This holds too for a direct sum of IRs.

Example 4.4-1 From Table 4.1 the characters of two representations of C3v are

C3v E Cþ
3 C�

3 �d �e �f
�1 1 1 1 1 1 1

�3 2 �1 �1 0 0 0

(ii) The sum of the squares of the characters is equal to the order of the group. In eq.

(4.3.1), set q¼ p, s¼ r, and sum over p, r, to yield

(4.3.1)
P
T

ffiffiffiffiffiffiffiffi
li=g

p
�iðTÞ�

ffiffiffiffiffiffiffiffi
lj=g

p
� jðTÞ

¼ �ij
Pli
p¼1

Plj
r¼1

�pr ¼ �ij
Pli
p¼1

1 ¼ �ijli;

P
T

�iðTÞ�� jðTÞ ¼ g

ffiffiffiffiffiffiffiffi
li=lj

q
�ij ¼ g �ij: (4)

(4)
P
T

j�iðTÞj2 ¼ g ði ¼ jÞ; (5)

(4)
P
T

�iðTÞ�� jðTÞ ¼ 0 ði 66¼ jÞ: (6)

Equation (5) provides a simple test as to whether or not a representation is reducible.

Example 4.4-2 Is the 2-D representation �3 of C3v reducible?

�ð�3Þ ¼ f2 �1 �1 0 0 0g,

P
T

j�3ðTÞj2 ¼ 4þ 1þ 1þ 0þ 0þ 0 ¼ 6 ¼ g,

so it is irreducible. The 3� 3 representation in Table 4.1 is clearly reducible because of its

block-diagonal structure, and, as expected,
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P
T

j�ðTÞj2 ¼ 32 þ 2ð0Þ2 þ 3ð1Þ2 ¼ 12 66¼ g:

Generally, we would take advantage of the fact that all members of the same class have the

same character and so perform the sums in eqs. (4), (5), and (6) over classes rather than over

group elements.

(iii) First orthogonality theorem for the characters. Performing the sum over classes

(4)
PNc

k¼1

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ�

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
� jðckÞ ¼ �ij, (7)

where Nc is the number of classes and ck is the number of elements in the kth class, ck

Equation (7) states that the vectors with components
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ,

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�jðckÞ are

orthonormal. If we set up a table of characters in which the columns are labeled by the

elements in that class and the rows by the representations – the so-called character table of

the group (see Table 4.2) – then we see that eq. (7) states that the rows of the character table

are orthonormal. The normalization factors
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
are omitted from the character table

(see Table 4.2) so that when checking for orthogonality or normalization we use eq. (7) in

the form

g�1
PNc

k¼1

ck �
iðckÞ�� jðckÞ ¼ �ij: (8)

It is customary to include ck in the column headings along with the symbol for the elements

in ck (e.g. 3�v in Table 4.3). Since E is always in a class by itself, E¼c1 is placed first in

the list of classes and c1¼ 1 is omitted. The first representation is always the totally

symmetric representation �1.

Example 4.4-3 Using the partial character table for C3v in Table 4.3, show that the

character systems {�1} and {�3} satisfy the orthonormality condition for the rows.

g�1
P
k

ck j�1ðckÞj2 ¼ ð1=6Þ½1ð1Þ2 þ 2ð1Þ2 þ 3ð1Þ2� ¼ 1;

Table 4.2. General form of the character table for a group G.

gk is a symbol for the type of element in the class ck ( e.g. C2,

�v); ck is the number of elements in the kth class; g1 is E, c1 is 1,

and �1 is the totally symmetric representation.

G c1 g1 c2 g2 . . . ckgk . . .

�1 �1(c1) �1(c2) �1(ck)
�2 �2(c1) �2(c2) �2(ck)

..

.

�i �i(c1) �i(c2) �i(ck)
�j �j(c1) �j(c2) �j(ck)
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g�1
P
k

ck j�3ðckÞj2 ¼ ð1=6Þ½1ð2Þ2 þ 2ð�1Þ2 þ 3ð0Þ2� ¼ 1;

g�1
P
k

ck �1ðckÞ� �3ðckÞ ¼ ð1=6Þ½1ð1Þð2Þ þ 2ð1Þð�1Þ þ 3ð1Þð0Þ� ¼ 0:

In how many ways can these vectors be chosen? We may choose the character �i(ck) from

any of the Nr IRs. Therefore the number of mutually orthogonal vectors is the number of

IRs, Nr and this must be�Nc the dimension of the space. In fact, we shall see shortly that

the number of IRs is equal to the number of classes.

(iv) Second orthogonality theorem for the characters. Set up a matrix Q and its adjoint

Qy in which the elements of Q are the characters as in Table 4.2 but now including

normalization factors, so that typical elements are

Qik ¼
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ, ðQyÞkj ¼ Q �

jk ¼
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
� jðckÞ�: (9)

(9) ðQ QyÞij ¼
P
k

QikðQ
yÞkj ¼

P
k

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ� ¼ �ji: (10)

(10) Q Qy ¼ E (Q a unitary matrix); (11)

(11) Qy Q ¼ E; (12)

(12) ðQyQÞkl ¼
P
i

ðQyÞkiQil ¼
P
i

Q�
ikQil

¼
PNr

i¼1

ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ�

ffiffiffiffiffiffiffiffiffi
cl=g

p
�iðclÞ ¼ �kl:

(13)

Equation (13) describes the orthogonality of the columns of the character table. It states

that vectors with components
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðck) in an Nr-dimensional space are orthonormal.

Since these vectors may be chosen in Nc ways (one from each of the Nc classes),

(13) Nc � Nr: (14)

Table 4.3. Partial character table for C3v obtained

from the matrices of the IRs �1 and �3 in Table 4.1.

c1 ¼ fEg;c2 ¼ fCþ
3 C�

3 g, and c3 ¼ f�d �e �fg,
and so in C3v, c1¼ 1, c2¼ 2, and c3¼ 3.

E 2C3 3�v

�1 1 1 1
�3 2 �1 0
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But in eq. (7) the vectors with components
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�iðckÞ may be chosen in Nr ways (one

from each of Nr representations), and so

(7) Nr � Nc: (15)

(14), (15) Nr ¼ Nc: (16)

The number of representations Nr is equal to Nc, the number of classes. In a more practical

form for testing orthogonality

(13)
PNr

i¼1

�iðckÞ��iðclÞ ¼ ðg=ckÞ�kl: (17)

These orthogonality relations in eqs.(8) and (17), and also eq.(16), are very useful in setting

up character tables.

Example 4.4-4 In C3v there are three classes and therefore three IRs. We have established

that �1 and�3 are both IRs, and, using
P
i

l2i ¼ g, we find 1þ l22 þ 4 ¼ 6, so that l2¼ 1. The

character table for C3v is therefore as given in Table 4.4(a).

From the orthogonality of the rows,

1ð1Þð1Þ þ 2ð1Þ�2ðC3Þ þ 3ð1Þ�2ð�Þ ¼ 0,

1ð2Þð1Þ þ 2ð�1Þ�2ðC3Þ þ 3ð0Þ�2ð�Þ ¼ 0,

so that �2(C3)¼ 1, �2(�)¼�1. We check for normalization of the character system of �2:

P
k

ck j�ðckÞj2 ¼ 1ð1Þ2 þ 2ð1Þ2 þ 3ð�1Þ2 ¼ 6 ¼ g:

.Exercise 4.4-1 Check the orthogonality of the columns in the character table for C3v which

was completed in Example 4.4-4.

(v) Reduction of a representation. For � to be a reducible representation, it must be

equivalent to a representation in which each matrix �(T ) of T has the same block-diagonal

structure. Suppose that the jth IR occurs c j times in �; then

�ðTÞ ¼
P

jc
j�jðTÞ: (18)

Multiplying by �i(T)
* and summing over T yields

(18), (4)
P
T

�iðTÞ��ðTÞ ¼
P
j

c j
P
T

�iðTÞ��jðTÞ ¼
P
j

c j g �ij ¼ g c j; (19)

(19) ci ¼ g�1
P
T

�iðTÞ��ðTÞ ¼
PNc

k¼1

ck �iðckÞ��ðckÞ: (20)

78 Group representations



Normally we would choose to do the sum over classes rather than over group elements.

Equation (20) is an extremely useful relation, and is used frequently in many practical

applications of group theory.

(vi) The celebrated theorem. The number of times the ith IR occurs in a certain reducible

representation called the regular representation �r is equal to the dimension of the

representation, li. To set up the matrices of �r arrange the columns of the multiplication

table so that only E appears on the diagonal. Then �r(T ) is obtained by replacing T by 1 and

every other element by zero (Jansen and Boon (1967)).

Example 4.4-5 Find the regular representation for the group C3. C3 ¼ fE Cþ
3 C�

3 g.
Interchanging the second and third columns of Table 4.4(b) gives Table 4.4(c).

Therefore, the matrices of the regular representation are

�rðEÞ �rðCþ
3 Þ �rðC�

3 Þ
1 0 0

0 1 0

0 0 1

2
4

3
5 0 0 1

1 0 0

0 1 0

2
4

3
5 0 1 0

0 0 1

1 0 0

2
4

3
5

The group C3 is Abelian and has three classes; there are therefore three IRs and each IR

occurs once in �r. (But note that the matrices of �r are not block-diagonal.)

Table 4.4(a) Character table for C3v.

C3v E 2C3 3�

�1 1 1 1
�2 1 �2(C3) �2(�)
�3 2 �1 0

Table 4.4(b).

C3 E Cþ
3 C�

3

E E Cþ
3

C�
3

Cþ
3 Cþ

3
C�
3 E

C�
3 C�

3 E Cþ
3

Table 4.4(c).

C3 E Cþ
3 C�

3

E E C�
3 Cþ

3

Cþ
3 Cþ

3
E C�

3

C�
3 C�

3 Cþ
3

E
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Proof of the celebrated theorem

(20) ci ¼ g�1
P
T

�iðTÞ� �rðTÞ

¼ g�1�iðEÞ �rðEÞ, ð�rðTÞ ¼ 0, 8 T 66¼ EÞ
¼ g�1 li g ¼ li: (21)

The dimension of �r is g; it is also
P
i

l2i . ThereforeP
i

l2i ¼ g, (22)

as promised earlier.

Answer to Exercise 4.4-1

Normalization of the class 2C3: 12þ 12þ (�1)2¼ 3¼ 6/2, and of the class

3�: 12þ (�1)2þ (0)2¼ 2¼ 6/3. Orthogonality of E and 2C3: 1(1)þ 1(1)þ 2(�1)¼ 0;

orthogonality of E and 3�: 1(1)þ 1(� 1)þ 2(0)¼ 0; orthogonality of 2C3 and

3�: 1(1)þ 1(�1)þ 1(�1)(0)¼ 0.

4.5 Character tables

Character tables are tabulations by classes of the characters of the IRs of the point groups.

They are used constantly in practical applications of group theory. As an example, the

character table for the point group C3v (or 3m) is given in Table 4.5. The name of the point

group in either Schönflies or International notation (or both) is in the top left-hand corner.

The headings to the columns are the number of elements ck in each class ck and a symbol

describing the type of elements in that class. For example, the heading for the column of

characters for the class fCþ
3 C

�
3 g in C3v is 2C3. Usually Schönflies symbols are used, but

some authors use other notation. Each row is labeled by the symbol for an IR; usually either

Bethe or Mulliken notation is used, but sometimes one encounters other notations and

examples of these will be introduced later. In Bethe’s notation, the IRs are labeled

Table 4.5. Character table for the point group C3v.

The IRs are labeled using both Bethe and Mulliken notation.

C3v
E 2C3 3�v

�1, A1 1 1 1 z, x2þ y2, z2

�2, A2 1 1 � 1 Rz

�3, E 2 � 1 0 (x y), (Rx Ry), (x
2� y2 xy), (yz zx)
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�1,�2,�3, . . . successively; �1 is always the totally symmetric representation. The remain-

ing representations are listed in order of increasing l. Mulliken notation, which is generally

used in molecular symmetry, is explained in Table 4.6. Thus, the totally symmetric

representation is A1 in C3v. The second IR is labeled A2 since �(�v)¼�1, there being

no C 0
2 axes in this group. The third IR is labeled E because l¼ 2. The dimension of any

representation is given by �(E ) since the identity operator E is always represented by the

unit matrix. In addition to the characters, the table includes information about how the

components of a vector r¼ e1xþ e2yþ e3z transform (or how linear functions of x, y, or z,

transform) and how quadratic functions of x, y, and z transform. This information tells us to

which representations p and d orbitals belong. For example, the three p orbitals and the five

d orbitals are both degenerate in spherical symmetry (atoms), but in C3v symmetry the

maximum degeneracy is two and

�p ¼ �1 � �3 ¼ A1 � E,

�d ¼ �1 � 2 �3 ¼ A1 � 2 E:

We say that ‘‘z forms a basis for A1,’’ or that ‘‘z belongs to A1,’’ or that ‘‘z transforms

according to the totally symmetric representation A1.’’ The s orbitals have spherical

symmetry and so always belong to �1. This is taken to be understood and is not stated

explicitly in character tables. Rx, Ry, Rz tell us how rotations about x, y, and z transform

(see Section 4.6). Table 4.5 is in fact only a partial character table, which includes only the

vector representations. When we allow for the existence of electron spin, the state function

 (x y z) is replaced by  (x y z)�(ms), where �(ms) describes the electron spin. There are

two ways of dealing with this complication. In the first one, the introduction of a new

Table 4.6. Mulliken notation for the IRs of the point groups.

The entry þ or � signifies a positive or negative integer, respectively.

l Notation used for IR �(Cn) 
a �ðC2 

0Þ or �(�v) b �(�h ) �(I )

1 A þ1
B �1
subscript 1 þ1
subscript 2 � 1

2 Ec

3 T
1, 2, or 3 superscript 0 þ

superscript 0 0 �
subscript g þ
subscript u �

aOr �(Sn) if the principal axis is an Sn axis. In D2 the four 1-D IRs are usually designated A, B1, B2,
B3, because there are three equivalent C2 axes.
b If no C2

0 is present then subscripts 1 or 2 are used according to whether �(�v) is þ1 or �1.
cThe symbol E for a 2-D IR is not to be confused with that used for the identity operator, E.
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operator E ¼ Rð2p nÞ 66¼ E results in additional classes and representations, and the point

groups are then called double groups. The symbols for these new representations include

information about the total angular momentum quantum number J. Double groups will be

introduced in Chapter 8, and until then we shall use simplified point group character tables,

like that for C3v in Table 4.5, which are appropriate for discussions of the symmetry of

functions of position, f (x y z). The second way of arriving at the additional representations,

which are called spinor representations (because their bases correspond to half-integral J ),

will be introduced in Chapter 12. This method has the advantages that the size of G is

unchanged and no new classes are introduced.

Special notation is required for the complex representations of cyclic groups, and this

will be explained in Section 4.7. The notation used for the IRs of the axial groups C1v and

D1h is different and requires some comment. The states of diatomic molecules are

classified according to the magnitude of the z component of angular momentum, Lz,

using the symbols

according to

� ¼ jLzj ¼

� � � �

0 1 2 3

All representations except � are two-dimensional. Subscripts g and u have the usual

meaning, but a superscript þ or � is used on � representations according to whether

�(�v)¼�1. For Lz > 0, �ðC 0
2 Þ, and �(�v) are zero. In double groups the spinor rep-

resentations depend on the total angular momentum quantum number and are labeled

accordingly.

4.6 Axial vectors

Polar vectors such as r¼ e1xþ e2yþ e3z change sign on inversion and on reflection in a

plane normal to the vector, but do not change sign on reflection in a plane that contains the

vector. Axial vectors or pseudovectors do not change sign under inversion. They occur as

vector products, and in symmetry operations they transform like rotations (hence the name

axial vectors). The vector product of two polar vectors

r1 � r2 ¼ R (1)

is a pseudovector, or axial vector, of magnitude r1 r2 sin �, where � is the included angle,

0� �� p (see Figure 4.1(a)). The orientation of the axis of rotation is that it coincides with

that of a unit vector n in a direction such that r1, r2, and n form a right-handed system.

However, R is not a polar vector because its transformation properties under inversion and

reflection are quite different to those of the polar vector r. In Figure 4.1 the directed line

segment symbols used for r1, r2 are the conventional ones for polar vectors, but the curved

arrow symbol used for R indicates a rotation about the axis n. The direction of rotation is

that of the first-named vector r1 into r2, and the sign of R is positive because the direction
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of rotation appears anticlockwise on looking down the axis towards the origin. Reversing

the order of the vectors in a vector product reverses its sign:

r2 � r1 ¼ �ðr1 � r2Þ (2)

(Figure 4.1(b)). One can see in Figure 4.1(c) that reflection in a plane normal to the axis of

rotation does not change the direction of rotation, but that it is reversed (Figure 4.1(d)) on

reflection in a plane that contains the axis of rotation. Specification of a rotation requires a

statement about both the axis of rotation and the amount of rotation. We define infini-

tesimal rotations about the axes OX, OY, and OZ by (note the cyclic order)

Rx ¼ �ðe2 � e3Þ, (3)

Ry ¼ �ðe3 � e1Þ, (4)

Rz ¼ �ðe1 � e2Þ: (5)

Under a symmetry operator T, Rx transforms into R 0
x ¼ �ðe 0

2 � e 0
3 Þ and similarly, so that

n′

–R

–R

r2 r2

r1
–R

R

r1

(d)

r2

r1

(b)

n

R

R
r2

r1

(c)

 

n′

r2

r1

(a)

n

R

θ
θ

θθθ

′

′

Figure 4.1. (a) The axial vector, or pseudovector, r1 � r2 ¼ R. The curved arrow symbol used for R

expresses the idea that the sense of rotation (which is that of a right-handed screw advancing along n,

where n, r1, and r2 form a right-handed system) is from r1into r2, i.e. from the first vector into the

second one. (b) Reversing the order of the vectors in a vector product reverses the direction of rotation

and so reverses its sign. (c) Invariance of the pseudovector r1 � r2 ¼ R under reflection in a plane

normal to the axis of rotation. This figure shows why R must not be represented by a directed line

segment normal to the plane of r1, r2 because such an object would change sign on reflection in the

plane of r1, r2, whereas the sense of rotation of r1 into r2, as expressed by the curved arrow, is

unchanged under this symmetry operation. (d) Reversal of the direction of rotation occurs on

reflection in a plane that contains the axis of rotation.
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ThRx Ry Rzj ¼ hRx
0 Ry

0 Rz
0j ¼ hRx Ry Rz j �ðRÞðTÞ, (6)

where

Rx
0 ¼ �ðe20 � e3

0Þ, Ry
0 ¼ �ðe30 � e1

0Þ, Rz
0 ¼ �ðe10 � e2

0Þ: (7)

�(R)(T) is not usually the same as theMR �(r)(T) for the basis h e1 e2 e3j (previously called just
�(T), since there was no need then to specify the basis). With this refinement in the notation,

The1 e2 e3j ¼ he10 e20 e30j ¼ he1 e2 e3j�ðrÞðTÞ: (8)

The transformation properties of {Rx Ry Rz} are then readily worked out from eq. (6) using

the primed equations (7) with fe10 e20 e30g obtained from eq. (8) with the use, when

necessary, of eq. (2), which simply states that reversing the order of the terms in a vector

product reverses its sign.

Example 4.6-1 Find how the rotations {Rx Ry Rz} transform under the symmetry operators:

E,Rðp=2 zÞ, Rðp zÞ, Rðp xÞ, Rðp ½1 1 0�Þ, I , Rð� zÞ. The solution is summarized in

Table 4.7. Figure 4.2 will be found helpful in arriving at the entries in columns 2, 3, and 4.

Exercise 4.6-1 Verify in detail (from eq. (7)) the entries in columns 5, 6, and 7 of Table 4.7

for R(� z).

The MRs of the operators in the rows 2 to 6 for the basis hRx Ry Rz| are

E Rðp=2 zÞ Rðp zÞ Rðp xÞ Rðp ½1 1 0�Þ
1 0 0

0 1 0

0 0 1

2
4

3
5 0 1 0

1 0 0

0 0 1

2
4

3
5 1 0 0

0 1 0

0 0 1

2
4

3
5 1 0 0

0 1 0

0 0 1

2
4

3
5 0 1 0

1 0 0

0 0 1

2
4

3
5 :

This is a matrix representation of the group D4 ¼ fE 2C4 C2 2C2
0 2C2

00g and it is clearly

reducible. The character systems of the two representations in the direct sum

�(R)¼�2��5 are

Table 4.7. Transformation of the basis {Rx Ry Rz} under the operators in the first column.

T e1
0 e2

0 e3
0 Rx

0 Ry
0 Rz

0

E e1 e2 e3 Rx Ry Rz

R(p / 2 z) e2 � e1 e3 Ry �Rx Rz

R(p z) � e1 � e2 e3 �Rx �Ry Rz

R(p x) e1 � e2 � e3 Rx �Ry �Rz

Rðp ½1 1 0�Þ � e2 � e1 � e3 �Ry �Rx �Rz

I e1 e2 e3 Rx Ry Rz

R(� z) c e1þ s e2 �s e1þ c e2 e3 c Rxþ s Ry �s Rxþ c Ry Rz
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E 2C4 C2 2C2
0 2C2

00

�2 ¼ f1 1 1 �1 �1g
�5 ¼ f2 0 �2 0 0g:

Exercise 4.6-2 Show that �5 is an IR of D4. How many IRs are there in the character table

of D4? Give the names of �2 and �5 in Mulliken notation.

Answers to Exercises 4.6

Exercise 4.6-1 From eq. (7) and columns 2–4 of Table 4.7,

e2
0 � e3

0 ¼ ð�s e1 þ c e2Þ � e3 ¼ �sðe1 � e3Þ þ cðe2 � e3Þ
¼ sðe3 � e1Þ þ cðe2 � e3Þ:

Therefore, Rx
0 ¼ c Rx þ s Ry.

e3
0 � e1

0 ¼ e3 � ðc e1 þ s e2Þ ¼ cðe3 � e1Þ þ sðe3 � e2Þ
¼ cðe3 � e1Þ � sðe2 � e3Þ:

Therefore, Ry
0 ¼ �s Rx þ c Ry:

e1
0 � e2

0 ¼ ðc e1 þ s e2Þ � ð�s e1 � c e2Þ ¼ c2ðe1 � e2Þ þ ð�s2Þðe2 � e1Þ
¼ ðe1 � e2Þ:

Therefore Rz
0 ¼ Rz:

Exercise 4.6-2 If � is an IR, the sum of the squares of the characters is equal to the order of

the group. For �5, 1(2)
2þ 1(�2)2þ 2(0)2¼ 8¼ g, so �5 is an IR. There are five classes and

therefore five IRs. From
P
i

l2i ¼ 8 four are 1-D and one is 2-D. Since �5 is the only IR with

e2

e1

b

C4z

E

C2b

C2xC2z

Figure 4.2. Projection in the xy plane of the unit sphere in configuration space, showing the initial

orientation of the unit vectors e1, e2 before applying the symmetry operator T. Note that e3 is normal

to the plane of the paper and points upwards towards the reader. Also shown are the positions of the

representative point E after applying to configuration space the symmetry operators in rows 2 to 6 of

Table 4.6. The unit vector b lies along the direction ½1 1 0�.
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l¼ 2, it is named E; �2 is a 1-D IR, and in Mulliken notation it is called A2 because

�ðC4Þ ¼ þ1 and �ðC2
0Þ ¼ �1:

4.7 Cyclic groups

If An¼E, then the sequence {Ak}, with k¼ 1, 2, . . . , n,

fA A2 A3 . . . An ¼ Eg, (1)

is a cyclic group of order n. All pairs of elements Ak, Ak0 commute and so {Ak} is an Abelian

group with n classes and therefore n 1-D IRs. If A is a symmetry operator then, in order to

satisfy An¼E, Amust be either E (n¼ 1), I (n¼ 2), or a proper or an improper rotation, and

if it is an improper rotation then nmust be even. Writing the n classes in their proper order

with E¼An first, a representation of

fAn ¼ E A A2 . . . An�1g (10)

is given by

f"n ¼ 1 " "2 . . . "n�1g, (2)

where the MRs

"k ¼ expð�2pik=nÞ, k ¼ 1, . . . , n (3)

are the n complex roots of unity. Note that

"n�k ¼ expð�2piðn� kÞ=nÞ ¼ expð2pik=nÞ ¼ ð"�Þk : (4)

A second representation is

fð"�Þn ¼ 1 "� ð"�Þ2 . . . ð"�Þn�1g, (5)

so that the IRs occur in complex conjugate pairs generated from

�ðAÞ ¼ expð�2pip=nÞ, p ¼ �1, �2, . . . (6)

p= 0 gives the totally symmetric representation

�1 or A ¼ f1 1 1 . . . 1g: (7)

If n is odd, p¼ 0,�1,�2, . . . ,� (n� 1) / 2 generates all the representations which consist

of �1 and (n� 1) / 2 conjugate pairs. If n is even, p¼ 0, �1, �2, . . . , � (n� 2) / 2, n / 2.

When p¼ n / 2, �(Ak)¼ ("
n=2)k¼ [exp(�ip)]k¼ (�1)k, which is a representation

�2 or B ¼ f1 �1 1 �1 . . . �1g (8)

from k¼ n 1 2 3 . . . n� 1. The character table of C3 is given in Table 4.8.

To study the transformation of functions of {x y z} under R (� z) we make use of

R̂ f ðfx y zgÞ ¼ f ðR�1fx y zgÞ:
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�ðR�1Þ ¼
x

y

z

2
4

3
5 ¼

c s 0

�s c 0

0 0 1

2
4

3
5 x

y

z

2
4

3
5 ¼

c xþ s y

�s xþ c y

z

2
4

3
5: (9)

Thus a proper (or improper) general rotation about z mixes the functions x and y. This is

why (x y) forms a basis for the 2-D representation E in C3v while z, which transforms by

itself under both 2C3 and 3�v, forms a basis for the 1-D representation A1. In C3 there are, in

addition to A, two more 1-D IRs. Since

R�1ðx� iyÞ ¼ ðc xþ s yÞ � ið�s xþ c yÞ ¼ ðc� isÞðx� iyÞ, (10)

� (xþ iy) and (x� iy) form 1-D bases, that is transform into themselves under R(� z)

rather than into a linear combination of functions. (The negative sign in �(xþ iy) comes

from the Condon and Shortley phase conventions (see Chapter 11).) From eq. (10), the

character for �(xþ iy) is e¼ exp (�i�) for a general rotation through an angle �, which

becomes exp(�2pi/3) for a Cþ
3 rotation, in agreement with eq. (6) for p¼ 1. For the basis

(x� iy) the character is exp(i�)¼ e*, or exp(2pi/3) when n¼ 3, corresponding to p¼�1 in

eq. (6). In character tables of cyclic groups the complex conjugate (CC) representations are

paired and each member of the pair is labeled by 1E, 2E (with the addition of primes or

subscripts g or uwhen appropriate). Because the states p and�p are degenerate under time-

reversal symmetry (Chapter 13), the pairs 1Ep and
2Ep are often bracketed together, each

pair being labeled by the Mulliken symbol E, with superscripts and subscripts added when

necessary. The character table for C3 is given in Table 4.8 in both forms with complex and

real representations. Complex characters should be used when reducing representations or

when using projection operators (Chapter 5). However, in character tables real bases are

usually given, and this practice is followed in Appendix A3.

Table 4.8. Character table for C3.

The form of this table with real basis functions (E¼ 1E� 2E) given below the dashed line is

seen in many compilations of character tables, but in practical applications the form with

1-D representations and complex basis functions should be used. If making comparisons

with othe r com pilations , note that we use the Condon and Short ley (1967) phase conven -

tions, whereas Lax (1974) uses the Fano and Racah (1959) choice of phase (which for j¼ 1

would introduce an additional factor of i in the complex bases).

C3
E Cþ

3
C�
3 "¼ exp(� i2p / 3)

A1 1 1 1 z, Rz, (xþ iy)(x� iy), z2
1E 1 " "* � (xþ iy), Rxþ iRy, z (xþ iy), (x� iy)2
2E 1 "* " x� iy, Rx� iRy, z (x� iy), (xþ iy)2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A1 1 1 1 z, Rz, x

2þ y2, z2

E 2 � 1 � 1 (x y), (Rx Ry), (yz zx), (xy x
2� y2)

4.7 Cyclic groups 87



4.8 Induced representations

Remark The material in this section is not made use of in this book until Section 16.5, in

the chapter on space groups. Consequently, readers may choose to postpone their study of

Section 4.8 until they reach Section 16.5.

Let G¼ {gj} be a group of order g with a subgroup H¼ {hl} of order h. The left coset

expansion of G on H is

G ¼
Pt
r¼1

gr H, t ¼ g=h, g1 ¼ E, (1)

where the coset representatives gr for r¼ 2, . . . , t, are 2 G but 62 H. By closure in G,

gj gs (gs 2 {gr}) is 2G (gk say) and thus a member of one of the cosets, say grH. Therefore,

for some hl 2 H,

gj gs ¼ gk ¼ gr hl: (2)

(2) gj gs H ¼ gr hl H ¼ gr H; (3)

(3) gj hgs Hj ¼ hgr Hj ¼ hgs Hj �gðgjÞ: (4)

In eq. (4) the cosets themselves are used as a basis for G, and from eq. (3) gs H is

transformed into gr H by gj. Since the operator gj simply re-orders the basis, each matrix

representation in the ground representation �g is a permutation matrix (Appendix A1.2).

Thus the sth column of �g has only one non-zero element,

(4), (2) ½�gðgjÞ�us ¼ 1, when u ¼ r, gj gs ¼ gr hl

¼ 0, when u 6¼ r: (5)

Because binary composition is unique (rearrangement theorem) the same restriction of

only one non-zero element applies to the rows of �g.

Exercise 4.8-1 What is the dimension of the ground representation?

Example 4.8-1 The multiplication table of the permutation group S(3), which has the

cyclic subgroup H ¼ Cð3Þ, is given in Table 1.3. Using the coset representatives

{gs}¼ {P0 P3}, write the left coset expansion of S(3) on C(3). Using eq. (2) find gr hl for

8 gj 2 G. [Hint: gr 2 {gs} and hl are determined uniquely by gi, gs.] Hence write down the

matrices of the ground representation.

The left coset expansion of S(3) on C(3) is

G ¼
Pt
s¼1

gs H ¼ P0 H� P3 H ¼ fP0 P1 P2g � fP3 P4 P5g, (6)

with gr and hl, determined from gj gs¼ gk¼ gr hl, given in Table 4.9. With the cosets as a

basis,

gjhP0 H,P3 Hj ¼ hP0
0 H,P3

0 Hj ¼ hP0 H,P3 Hj �gðgjÞ: (7)
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The matrices of the ground representation are in Table 4.10. Each choice of gj and gs in

eq. (2) leads to a particular hl so that eq. (2) describes a mapping of G on to its subgroup H

in which hl is the image of gj.

Example 4.8-2 Write a left coset expansion of S(3) on H¼ {P0 P3}. Show that for gs¼P1,

gr 2 {gs} and hl 2 H are determined uniquely for each choice of gj 2 G.

Using Table 1.3,

Sð3Þ ¼ P0fP0 P3g � P1fP0 P3g � P2fP0 P3g: (8)

The gr and hl that satisfy eq. (2) are given in Table 4.11, where {gr}¼ {P0 P1 P2} and

hl 2 {P0 P3}. Table 4.11 verifies the homomorphous mapping of G!H by {P0 P1 P2}!
P0 and {P3 P4 P5} ! P3. When necessary for greater clarity, the subelement hl can be

denoted by hsl or by hsl (gj), as in

gj gs ¼ gr hslðgjÞ: (9)

(9), (5) hslðgjÞ ¼ g�1
r gj gs ¼

P
u

g�1
u gj gs ½�gðgjÞ�us: (10)

The purpose of this section is to show how the representations of G may be constructed

from those of its subgroup H. Let {eq}, q¼ 1, . . . , li, be a subset of {eq}, q¼ 1, . . . , h, that

is an irreducible basis for H. Then

Table 4.9. The values of gk and hl determined from

eq. (4.8.2) for G¼ S(3) and H¼C(3).

gs¼P0
gs¼P3

gj gs gk gr hl gj gs gk gr hl

P0 P0 P0 P0 P0 P0 P3 P3 P3 P0

P1 P0 P1 P0 P1 P1 P3 P5 P3 P2

P2 P0 P2 P0 P2 P2 P3 P4 P3 P1

P3 P0 P3 P3 P0 P3 P3 P0 P0 P0

P4 P0 P4 P3 P1 P4 P3 P2 P0 P2

P5 P0 P5 P3 P2 P5 P3 P1 P0 P1

Table 4.10. The ground representation Gg determined from

the cosets P0H, P3 H by using the cosets as a basis,

eq. (4.8.4).

gj P0 P1 P2 P3 P4 P5

P0
0;P3

0 P0, P3 P0, P3 P0, P3 P3, P0 P3, P0 P3, P0

�g(gj) 1 0

0 1

� �
1 0

0 1

� �
1 0

0 1

� �
0 1

1 0

� �
0 1

1 0

� �
0 1

1 0

� �
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hl eq ¼
Pli
p¼1

ep ~�iðhlÞpq, (11)

where ~�i is the ith IR of the subgroup H. Define the set of vectors {erq} by

erq ¼ gr eq, r ¼ 1, . . . , t; q ¼ 1, . . . , li: (12)

Then herq| is a basis for a representation of G:

(2), (5) gj esq ¼ gj gs eq ¼ gr hl eq ¼
P
u

gu ½�gðgjÞ�us hl eq: (13)

In eq. (13) gr has been replaced byP
u

gu ½�gðgjÞ�us ¼ gr (14)

since the sth column of �g consists of zeros except u¼ r.

(13), (11) gj esq ¼
P
u

gu ½�gðgjÞ�us
P
p

ep ~�iðhslÞpq (15)

¼
P
u

P
p

eup ð�ðgjÞ½u s�Þpq: (16)

In the supermatrix � in eq. (16) each element [u s] is itself a matrix, in this case ~�iðhslÞ
multiplied by �g(gj)us.

(16), (15) �ðgjÞup, sq ¼ �gðgjÞus ~�iðhslÞpq, (17)

in which u, p label the rows and s, q label the columns; �(gj) is the matrix representation of

gj in the induced representation � ¼ ~�i "G. Because �g is a permutation matrix, with

�g(gj)us¼ 0 unless u¼ r, an alternative way of describing the structure of � is as follows:

(15), (16), (5), (10) �ðgjÞup, sq ¼ ~�iðg�1
u gj gsÞpq �ur: (18)

~�iðg�1
u gj gsÞ is the matrix that lies at the junction of the uth row and the sth column of �[u s],

and the Kronecker � in eq. (18) ensures that ~�i is replaced by the null matrix except for �[r s].

Table 4.11. This table confirms that for gs¼P1, gr and hl

are determined by the choice of gj, where gj gs¼ gk¼ gr hl.

g
j

gs gk gr hl

P0 P1 P1 P1 P0

P1 P1 P2 P2 P0

P2 P1 P0 P0 P0

P3 P1 P4 P2 P3

P4 P1 P5 P1 P3

P5 P1 P3 P0 P3
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Example 4.8-3 Construct the induced representations of S(3) from those of its subgroupC(3).

The cyclic subgroup C(3) has three 1-D IRs so that ~�iðhslÞ has just one element (p¼ 1,

q¼ 1). The character table of C(3) is given in Table 4.13, alongwith that of S(3), which will

be needed to check our results. The subelements hsl and coset representatives gr depend on

gj and gs, and our first task is to extract them from Table 4.8. They are listed in Table 4.13.

Multiplying the ½~�iðhslÞ�11 ¼ ~�iðhslÞ by the elements of �g(gj) in Table 4.12 gives the

representations of S(3). An example should help clarify the procedure. In Table 4.13, when

gj¼P4, gs¼P3, and gr¼P0, the subelement hsl(gj)¼P2. (In rows 3 and 4 of Table 4.13 the

subelements are located in positions that correspond to the non-zero elements of �g(gj).)

From Table 4.10, [�g (P4)]12¼ 1, and in Table 4.12 ~�2ðP2Þ ¼ "�, so that ½~�2 "G�12 ¼ "�,

as entered in the sixth row of Table 4.13.

From the character systems in Table 4.13 we see that for the IRs of S(3),

½~�1 " G� ¼ A1 � A2 and ½~�2 " G� ¼ E. We could continue the table by finding ~�3 " G, but

since we already have all the representations of S(3), this could only yield an equivalent

Table 4.13. Subelements hsl(gj) and MRs �(gj) of two representations of S(3), ~�"G,
obtained by the method of induced representations.

The third and fourth rows contain the subelements hsl(gj) as determined by the values of gs
(in row 2), gj, and gr (in the first column). The �g(gj) matrices were taken from Table 4.9.

"¼ exp (�i2p / 3). Using Table 4.11, we see that the two representations of S(3) are

~�1 "G ¼ A1 � A2 and ~�2 "G ¼ E.

gj P0 P1 P2 P3 P4 P5

gr, gs P0, P3 P0, P3 P0, P3 P0, P3 P0, P3 P0, P3

P0 P0 P1 P2 P0 P2 P1

P3 P0 P2 P1 P0 P1 P2

~�1 " G 1 0

0 1

� �
1 0

0 1

� �
1 0

0 1

� �
0 1

1 0

� �
0 1

1 0

� �
0 1

1 0

� �
~�2 " G 1 0

0 1

� �
" 0

0 "�

� �
"� 0

0 "

� �
0 1

1 0

� �
0 "�

" 0

� �
0 "
"� 0

� �
�ð~�1 " GÞ 2 2 2 0 0 0

�ð~�2 " GÞ 2 �1 �1 0 0 0

Table 4.12. Character table of the cyclic group C(3) and of the

permutation group S(3).

"¼ exp(�2ip / 3).

C(3) P0 P1 P2 S(3) P0 P1, P2 P3, P4, P5

�1, A 1 1 1 �1, A1 1 1 1
�2,

1E 1 " "* �2, A2 1 1 � 1
�3,

2E 1 "* " �3, E 2 � 1 0
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representation. Note that while this procedure ~� " G does not necessarily yield IRs, it does give

all the IRs of G, after reduction. A proof of this statement may be found in Altmann (1977).

4.8.1 Character system of an induced representation

We begin with

gj ¼ gr hl g
�1
s : (19)

When s ¼ r,

(19) gj ¼ gr hl g
�1
r : (20)

Define

fgr hl g �1
r g ¼ Hr, 8 hl 2 H, (21)

where Hr is the subgroup conjugate to H by gr.

Exercise 4.8-2 Verify closure in Hr. Is this sufficient reason to say that Hr is a group?

The character of the matrix representation of gj in the representation � induced from ~�i is

(20) �ðgjÞ ¼
P
r

�rðgjÞ, (22)

where the trace of the rth diagonal block (s¼ r) of � is

(5), (17) �rðgjÞ ¼ ~�i ðhlÞ, gj 2 Hr

¼ 0, gj 62 Hr: (23)

A representation � of G¼ {gj} is irreducible if

(4.4.5)
P
j

�ðgjÞ��ðgjÞ ¼ g: (24)

(24), (22)
P
r

P
j

j�rðgjÞj2 þ
P
s

P
r 6¼s

P
j

�rðgjÞ� �sðgjÞ ¼ g: (25)

The first term in eq. (25) is

(25), (23)
P
r

P
l

j~�rðhlÞj2 ¼
Pt
r¼1

h ¼ t h ¼ g, (26)

and so the second term in eq. (25) must be zero if � is irreducible. The irreducibility

criterion eq. (25) thus becomes

(25), (23)
P
fgkg

�rðgkÞ� �sðgkÞ ¼ 0, 8 r 6¼ s, fgkg ¼ Hr \ Hs: (27)

Equation (27) is known as Johnston’s irreducibility criterion (Johnston (1960)).

The number of times ci that the IR �i occurs in the reducible representation � ¼
P
i

ci �i

of a group G¼ {gk}, or frequency of �i in �, is
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(4.4.20) ci ¼ g�1
P
k

�iðgkÞ� �ðgkÞ, (28)

where �(gk) is the character of the matrix representation of gk in the reducible represen-

tation �. If �i is a reducible representation, we may still calculate the RS of eq. (28), in

which case it is called the intertwining number I of �i and �,

Ið�i ,�Þ ¼ g�1
P
k

�iðgkÞ� �ðgkÞ, �i,� not IRs: (29)

Since I (�i, �) is real, eq. (29) is often used in the equivalent form

Ið�i ,�Þ ¼ g�1
P
k

�iðgkÞ �ðgkÞ�, �i,� not IRs: (30)

If �i, � have no IRs in common, it follows from the OT for the characters that I (�i, �)¼ 0.

4.8.2 Frobenius reciprocity theorem

The frequency cm of an IR �m of G in the induced representation ~�i " G with characters

�m(gj) is equal to the frequency ~ci of ~�i in the subduced �m # H. The tilde is used to

emphasize that the ~�i are representations of H. It will not generally be necessary in

practical applications when the Mulliken symbols are usually sufficient identification.

For example the IRs of S(3) are A1, A2, and E, but those of its subgroup C(3) are A,
1E, and

2E. Subduction means the restriction of the elements of G to those of H (as occurs, for

example, in a lowering of symmetry). Normally this will mean that an IR �m of G becomes

a direct sum of IRs in H,

�m ¼
P
p

~c p ~�p, �m ¼
P
p

~cp ~�p , (31)

although if this sum contains a single term, only re-labeling to the IR of the subgroup

is necessary. For example, in the subduction of the IRs of the point group T to D2, the

IR T becomes the direct sum of three 1-D IRs B1 � B2 � B3 in D2, while A1 is re-labeled

as A.

Proof

cm ¼ g�1
P
k

�mðgjÞ��ðgjÞ (280)

(22) ¼ g�1
P
r

P
j

�mðgjÞ� �rðgjÞ

(20), (23) ¼ g�1
P
r

P
l

�mðgr hl g�1
r Þ� ~�iðhlÞ (32)
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(31) ¼ h�1
P
l

P
p

~c p ~�pðhlÞ� ~�iðhlÞ (33)

¼ ~ci: (34)

The tildes are not standard notation and are not generally needed in applications, but are

used in this proof to identify IRs of the subgroup. In writing eq. (32), the sum over j is

restricted to a sum over l (subduction) because the elements gr hl g
�1
r belong to the class of

hl. In substituting eq. (31) in eq. (32) we use the fact that {cp} is a set of real numbers.

Equation (34) follows from eq. (33) because of the OT for the characters. When H is an

invariant subgroup of G, Hr¼Hs¼H, 8 r, s. Then

(27), (22)
P
l

�rðhlÞ� �sðhlÞ ¼ 0, 8 r, s, r 6¼ s , (35)

where �r, �s are representations of H but are not necessarily IRs.

(29)
P
l

�rðhlÞ� �sðhlÞ ¼ h Ið�r ,�sÞ: (36)

Therefore, when H is an invariant subgroup of G,

(35), (36) Ið�r,�sÞ ¼ 0; (37)

that is, the representations �r, �s of H have, when reduced, no IRs in common.

Exercise 4.8-3 Test eq. (27) using the representations ~�1 " G and ~�2 " G of S(3), induced

from C(3).

Answers to Exercises 4.8

Exercise 4.8-1 The dimension of the ground representation is equal to the number of

cosets, t¼ g/h.

Exercise 4.8-2 Since {hl}¼H is closed, hl hm 2 H, say hn. Then

gr hl g
�1
r gr hm g�1

r ¼ gr hl hm g�1
r ¼ gr hn g�1

r 2 Hr;

verifying that Hr is closed; hl, hm, hn are 2 G, and therefore fgr hl g�1
r g satisfies the group

properties of associativity and each element having an inverse. Moreover, gr E g �1
r ¼ E,

so that Hr does have all the necessary group properties.

Exercise 4.8-3 Hr ¼ gr H g �1
r ¼ P0fP0 P1 P2gP �1

0 ¼ fP0 P1 P2g ¼ H.

Hs ¼ P3fP0 P1 P2gP �1
3 ¼ fP0 P2 P1g ¼ H. Therefore H is invariant and {gk}¼Hr \

Hs¼ H¼ {P0 P1 P2}. Remember that r, s refer to different diagonal blocks. For
~�1 " G,

P
fgkg

�rðgkÞ� �sðgkÞ ¼ 1þ 1þ 1 ¼ 3 6¼ 0, and therefore it is reducible. For

~�2 " G,
P
fgkg

�rðgkÞ� �sðgkÞ ¼ 1þ ð"�Þ2 þ "2 ¼ 0, and therefore it is irreducible. This con-

firms the character test made in Table 4.12.
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Problems

4.1 The point group of allene is D2d ¼ fE 2S4 C2 2C2
0 2�dg (see Problem 2.3). Choose a

right-handed system of axes so that the vertical OZ axis points along the principal axis

of symmetry.

(a) With the basis he1 e2 e3 |, determine MRs of all eight symmetry operators of this group.

Write down the character system of this matrix representation. This representation is

reducible and is the direct sum of two IRs. Write down the character systems of these

two IRs and check for normalization of the characters. Name these IRs using Mulliken

notation.

(b) Determine how Rz transforms under the group operations. You now have sufficient

information to arrange the elements of D2d into classes.

(c) How many IRs are there? What are the dimensions of the IRs not yet found? From

orthogonality relations find the character systems of these IRs and name them accord-

ing to the Mulliken conventions. Summarize your results in a character table for D2d.

(d) Find the character system of the DP representation �5 	 �5, where �5 is the 2-D

representation found in (a). Decompose this DP representation into a direct sum of

IRs. [Hint: The characters of the DP representation are the products of the characters of

the representations in the DP. Here, then, the character system for the DP representa-

tion is {�5(T ) �5(T )}.]

4.2 Show that (a) (x� iy)2, (b) Rxþ iRy, and (c) Rx� iRy form bases for the IRs of C3, as

stated in Table 4.7.

4.3 Find the character table of the improper cyclic group S4.

4.4 Explain why the point group D2¼ {E C2z C2x C2y} is an Abelian group. How many IRs

are there in D2? Find the matrix representation based on he1 e2 e3 | for each of the four

symmetry operators R 2 D2. The Jones symbols for R�1 were determined in Problem 3.8.

Use this information to write down the characters of the IRs and their bases from the set of

functions {z x y}. Because there are three equivalent C2 axes, the IRs are designated A, B1,

B2, B3. Assign the bases Rx, Ry, Rz to t hese I Rs. U sing the r esult g iven i n Probl em 4 .1 for

the characters of a DP representation, find the IRs based on the quadratic functions x2, y2,

z2, xy, yz, zx.

4.5 Show that P
k

ck �k
j ¼ g �j1, (1)

where j labels the IRs of G. (Since eq. (1) is based on the orthogonality of the rows, it is

not an inde penden t relation. ) Verify eq. (1) for the group C3v. (b) Use eq. (1) to deduce

the character table of C2v. [Hint: Is C2v an Abelian group?]

4.6 (a) Show that the induction of ~�3 "G, where H is C(3) and G is S(3), yields a

representation equivalent to ~�1 "G in Table 4.12. (b) Show that the reducible repre-

sentation ~�1 "G in Table 4.12 can be reduced into a direct sum �1 � �2 by a similarity

transformation using the matrix

S ¼ 2�½ 1 1

1 �1

� �
:
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5 Bases of representations

5.1 Basis functions

The group of the Hamiltonian, or the group of the Schrödinger equation, is the set of

function operators {Â B̂ . . . T̂ . . . } isomorphous with the symmetry group

(A B . . . T . . . } (Section 3.5). The function operators commute with the Hamiltonian

operator Ĥ (Section 3.6). We will now show that the eigenfunctions of Ĥ form a basis for

the group of the Hamiltonian. We make use of the fact that if {�s} is a set of degenerate

eigenfunctions then a linear combination of these eigenfunctions is also an eigenfunction

with the same eigenvalue. (A familiar example is the construction of the real eigenfunc-

tions of Ĥ for the one-electron atom with l¼ 1, px, and py, from the complex eigenfunctions

pþ1, p�1; p0, which corresponds to m¼ 0, is the real eigenfunction pz.) The property of a

basis that we wish to exploit is this. If we have a set of operators that form a group, then a

basis is a set of objects, each one of which, when operated on by one of the operators, is

converted into a linear combination of the same set of objects. In our work, these objects are

usually a set of vectors, or a set of functions, or a set of quantum mechanical operators. For

example, for the basis vectors of an n-dimensional linear vector space (LVS)

Thej ¼ he0j ¼ hejGðTÞ, (1)

or, in greater detail,

The1 . . . ei . . . j ¼ he01 . . . e0j . . . j ¼ he1 . . . ei . . . jGðTÞ, (2)

where

e0j ¼
Xl

i¼1

ei GðTÞij, j ¼ 1, . . . , l: (3)

The G(T)ij in eq. (3) are the elements of the jth column of the matrix representative G(T) of

the symmetry operator T. A realization of eq. (3) in 3-D space was achieved when the

matrix representative (MR) of R(� z) was calculated in Section 3.2. The MRs form a group

representation, which is either an irreducible representation (IR) or a direct sum of IRs. Let

{�s} be a set of degenerate eigenfunctions of Ĥ that corresponds to a particular eigenvalue

E, so that

Ĥ �s ¼ E �s, s ¼ 1, . . . , l: (4)

96



Because Ĥ and its eigenvalues are invariant when a symmetry operator T acts on the

physical system, T̂ �s is also an eigenfunction of Ĥ with the same eigenvalue E, and

therefore it is a linear combination of the {�s},

T̂�s ¼
Pl
r¼1

�r GðTÞrs, s ¼ 1, . . . , l: (5)

In matrix form,

T̂h�1 . . .�s . . . j ¼ h�01 . . . �0s . . . j ¼ h�1 . . .�r . . . jGðTÞ: (6)

Equation (6) can be written more compactly as

T̂h�j ¼ h�0j ¼ h�jGðTÞ, (7)

where h�| implies the whole set h�1 . . . �s . . . |. Equations (7) and (1) show that the {�s}

are a set of basis functions in an l-dimensional LVS, called a function space, which justifies

the use of the alternative, equivalent, terms ‘‘eigenfunction’’ and ‘‘eigenvector.’’ Because

of eqs. (5)–(7), every set of eigenfunctions {�s} that corresponds to the eigenvalue E forms

a basis for one of the IRs of the symmetry group G¼ {T}. Consequently, every energy level

and its associated eigenfunctions may be labeled according to one of the IRs of {T}. The

notation f�ksg, Ek means that the eigenfunctions f�ksg that correspond to the eigenvalue Ek

form a basis for the kth IR. Although the converse is not true – a set of basis functions is not

necessarily a set of energy eigenfunctions – there are still advantages in working with sets

of basis functions. Therefore we shall now learn how to construct sets of basis functions

which form bases for particular IRs.

5.2 Construction of basis functions

Just as any arbitrary vector is the sum of its projections,

v ¼
P
i

ei vi, (1)

where ei vi is the projection of v along ei, so any arbitrary function

� ¼
P
k

Plk
s¼1

�ks b
k
s , (2)

where
P
k

is over the IRs, and
Plk
s¼1

is a sum of projections within the subspace of the kth IR.

The problem is this: how can we generate f� j
pg, p¼ 1, . . . , lj, the set of lj orthonormal

functions which form a basis for the jth IR of the group of the Schrödinger equation? We

start with any arbitrary function � defined in the space in which the set of function

operators {T̂} operate. Then

(2) � ¼
P
k

Plk
s¼1

�ks b
k
s ¼

P
k

�k , (3)
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where �ks b
k
s is the projection of � along �ks . Because �ks is a basis function,

(3) T̂�ks ¼
Plk
r¼1

�kr GkðTÞrs: (4)

(3), (4) ðlj=gÞ
P
T

GjðTÞ�pp T̂ð�Þ

¼ ðlj=gÞ
P
T

GjðTÞ�pp
P
k

P
s

P
r

�kr GkðTÞrs bks

¼ ðlj=gÞ
P
k

P
s

P
r

P
T

GjðTÞ�pp GkðTÞrs
� �

�kr bks : (5)

By the orthogonality theorem, the sum in brackets in eq. (5) is (g/lj)�jk�pr�ps, and conse-

quently the triple sum yields unity if k¼ j, r¼ p, and s¼ p; otherwise it is zero. Therefore,

(5) ðlj=gÞ
P
T

GjðTÞ�pp T̂ð�Þ ¼ � j
p b j

p, (6)

and so we have � j
p apart from a constant which can always be fixed by normalization. The

operator

ðlj=gÞ
P
T

GjðTÞ�pp T̂ ¼ P̂ j
pp (7)

is a projection operator because it projects out of � that part which transforms as the pth

column of the jth IR,

(7), (6) P̂ j
pp � ¼ � j

p b j
p: (8)

By using all the P̂ j
pp, p¼ 1, . . . , lj, in turn, that is all the diagonal elements of G j(T), we can

find all the lj functions {� j
p} that form a basis for G j.

(8), (2) P̂ j � ¼
P
p

P̂ j
pp � ¼

Plj
p¼1

� j
p b j

p ¼ � j: (9)

The RS side of eq. (9) is a linear combination of the lj functions that forms a basis for Gj.

The operator in eq. (9) is

(9), (7) P̂ j ¼
P
p

ðlj=gÞ
P
T

GjðTÞ�pp T̂ ¼ ðlj=gÞ
P
T

� jðTÞ� T̂ : (10)

It projects out from � in one operation the sum of all the parts of � that transform according

to G j. Being a linear combination of the lj linearly independent (LI) basis functions {� j
p},

� j is itself a basis function for Gj. Equation (9) is preferable to eq. (8), that is P̂ j is preferred

to P̂j
pp because it requires only the characters of Gj(T) and not all its diagonal elementsP

T

GjðTÞpp. If Gj is 1-D, then � j is the basis function for Gj. But if Gj is not 1-D (i.e. lj is not

equal to unity) the procedure is repeated with a new � to obtain a second � j, and so on, until

lj LI functions have been obtained.
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5.3 Direct product representations

The direct product (DP) of two matrices A�B is defined in Section A1.7. If G is the DP of

two representations Gi, Gj, then

GðTÞ ¼ GiðTÞ � GjðTÞ, 8 T 2 G: (1)

But is G(T) also a representation?

(1), (A1.7.7) GðT1Þ GðT2Þ ¼ ðGiðT1Þ � GjðT1ÞÞðGiðT2Þ � GjðT2ÞÞ
¼ ðGiðT1Þ GiðT2ÞÞ � ðGjðT1Þ GjðT2ÞÞ
¼ GiðT1T2Þ � GjðT1T2Þ
¼ GðT1T2Þ, or GijðT1T2Þ, (2)

which shows that the DP of the two representations Gi and Gj is also a representation. The

second notation in eq. (2) stresses that the representation Gij is derived from the DP of Gi

and Gj. So we conclude that the direct product of two representations is itself a

representation.

If f�iqg, q ¼ 1, . . . , m , is a set of functions that form a basis for Gi, and {� j
s }, s¼ 1, . . . , n,

is a set of functions that form a basis for Gj, then the direct product set {�iq �
j
s }, which contains

mn functions, forms a basis for the DP representation Gij.

T̂ �iq �
j
s ¼ �iqðT�1fxgÞ� j

s ðT�1fxgÞ
¼ ðT̂ �iqÞðT̂ � j

s Þ

¼
Pm
p¼1

�ip G
iðTÞpq

Pn
r¼1

� j
r GjðTÞrs

¼
P
p

P
r

�ip �
j
r GiðTÞpq GjðTÞrs

¼
P
p

P
r

�ip �
j
r GijðTÞpr, qs, (3)

since the product of the pqth element from the MR Gi(T), and the rsth element of the MR

Gj(T), is the pr,qsth element of the DP matrix Gij(T). Therefore, the direct product set

{�iq �
j
s } is a basis for the direct product representation Gi�Gj. The characters of the MRs

in the DP representation

�ijðTÞ ¼
P
p

P
r

GijðTÞpr, pr

¼
P
p

P
r

GiðTÞpp GjðTÞrr

¼ �iðTÞ �jðTÞ: (4)

Therefore, the character of an MR in the DP representation is the product of the characters

of the MRs that make up the DP. Direct product representations may be reducible or

irreducible.
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Example 5.3-1 Find the DPs of E with all three IRs of the point group C3v. The characters

of the IRs of C3v and their DPs with E are given in Table 5.1.

By inspection, or by using

c j ¼ g�1
P
T

�jðTÞ� �ðTÞ,

we find E�A1¼E, E�A2¼E, and E�E¼A1�A2�E.

5.3.1 Symmetric and antisymmetric direct products

With j¼ i, we introduce the symbols �iq, 
i
s ðq, s ¼ 1, . . . , mÞ to designate basis functions

from two bases �, � 0 of the ith IR. (The possibility that � and � 0 might be the same basis is

not excluded.) Since there is only one representation under consideration, the superscript i

may be suppressed. The DP of the two bases is

h�qj � h sj ¼ h�q sj ¼ ½h�q s þ �s qj � ½h�q s � �s qj: (5)

The first term on the RS of eq. (5) is symmetric and the second term is anti-symmetric, with

respect to the exchange of subscripts q and s. These two terms are called the symmetrical

�ð Þ and antisymmetrical �ð Þ DP, respectively, and eq. (5) shows that the DP of the two

bases is the direct sum of the symmetrical and antisymmetrical DPs,

h�qj � h sj ¼ ðh�qj�h sjÞ � ðh�qj�h sjÞ: (6)

If the two bases are identical, then the antisymmetrical DP vanishes and the only DP is the

symmetrical one.

(3) T̂ �q  s ¼
P
p

P
r

�p  r GðTÞpq GðTÞrs; (7)

(3) T̂ �s  q ¼
P
p

P
r

�p  r GðTÞps GðTÞrq; (8)

Table 5.1. Some direct product representations

in the point group C3v.

C3v E 2C3 3�v

A1 1 1 1
A2 1 1 �1
E 2 �1 0
E � A1 2 �1 0
E � A2 2 �1 0
E � E 4 1 0
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(5), (7), (8) T̂ �q  s ¼ 1=2
P
p

P
r

�p  r½GðTÞpq GðTÞrs þ GðTÞps GðTÞrq�

þ 1=2
P
p

P
r

�p  r½GðTÞpq GðTÞrs � GðTÞps GðTÞrq�
" #

: (9)

Restoring the index i on G for greater clarity,

(9) T̂ �q  s ¼
P
p

P
r

�p  r½Gi�iðTÞpr, qs þ Gi�iðTÞpr, sq�: (10)

(9), (10) Gi�iðTÞpr, qs ¼ 1=2½GiðTÞpq GiðTÞrs � GiðTÞps GiðTÞrq�, (11)

where i�i means either the symmetrical or antisymmetrical DP according to whether the

positive sign or the negative sign is taken on the RS of eq. (11). To find the characters, set

q¼ p, s ¼ r, and sum over p and r:

(11) �i�iðTÞ ¼ 1=2
P
p

P
r

GiðTÞpp GiðTÞrr � GiðTÞpr GiðTÞrp

" #

¼ 1=2
P
p

P
r

GiðTÞpp GiðTÞrr �
P
p

GiðT 2Þpp

" #

¼ 1=2½ð�iðTÞÞ2 � �iðT2Þ�: (12)

Example 5.3-2 Show that for the point group C3v, E�E ¼ A1 � E and E�E ¼ A2:

Using the character table for C3v in Example 5.3-1, eq. (12) yields

Therefore, E�E ¼ A1 � E, E�E ¼ A2 . The sum of the symmetrical and antisymmetrical

DPs is E�E, as expected from eq. (11). (See Example 5.3-1.)

5.4 Matrix elements

5.4.1 Dirac notation

In quantum mechanics, an integral of the formZ
 �
u Q̂  q d� ¼

Z
ðQ̂y  uÞ�  q d� (1)

C3v E 2C3 3�

�E(T) 2 �1 0
�E(T2) 2 �1 2

�E�EðTÞ 3 0 1

�E�EðTÞ 1 1 �1
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is called a matrix element. Q̂y is the adjoint of the operator Q̂, and the definition of Q̂y is

that it is the operator which satisfies eq. (1). In Dirac notation this matrix element is

written as

h ujQ̂j qi ¼ h ujQ̂ qi ¼ hQ̂y  uj qi: (2)

In matrix notation hu*|vi describes the matrix representation of the Hermitian scalar

product of the two vectors u, v, in an LVS with unitary basis (M¼ |e*ihe|¼E). The second

and third expressions in eq. (2) are scalar products in an LVS in which the basis vectors are

the functions { q} and the scalar product is defined to be an integral over the full range of

the variables. Thus, the second equality in eq. (2) conveys precisely the same information

as eq. (1). The first part of the complete bracket in eq. (2), h u|, is the bra-vector or bra, and

the last part, | qi, is the ket-vector or ket, and the complete matrix element is a bra(c)ket

expression. Notice that in Dirac notation, complex conjugation of the function within the

bra is part of the definition of the scalar product. The ket | qi represents the function  q, in

the matrix element integral. When Q̂ operates on the function  q, it produces the new

function Q̂ q so that when Q̂ operates to the right in eq. (2) it gives the new ket |Q̂ qi. But

because eqs. (2) and (1) state the same thing in different notation, when Q̂ operates to the

left it becomes the adjoint operator, h ujQ̂ ¼ hQ̂y uj . Some operators are self-adjoint,

notably the Hamiltonian Ĥ ¼ Ĥy.

5.4.2 Transformation of operators

Suppose that Q̂ f¼ g and that when a symmetry operator T acts on the physical system

T̂ f¼ f 0, T̂ g¼ g0. Now,

g0 ¼ T̂ g ¼ T̂ Q̂ f ¼ T̂ Q̂ T�1 T f ¼ T̂ Q̂ T�1 f 0: (3)

Comparing this with g¼ Q̂ f, we see that the effect of T has been to transform the operator

from Q̂ into a new operator Q̂ 0, where

(3) Q̂ 0 ¼ T̂ Q̂ T̂�1: (4)

Operators may also form bases for the IRs of the group of the Hamiltonian, for if Q̂ is one of

the set of operators fQ̂ j
sg, and if

T̂ Q̂ j
s T

�1 ¼
P
r

Q̂ j
r Ĝ

jðTÞrs (5)

then the fQ̂ j
sg form a basis for the jth IR.

5.4.3 Invariance of matrix elements under symmetry operations

In quantum mechanics, matrix elements (or scalar products) represent physical quantities

and they are therefore invariant when a symmetry operator acts on the physical system. For
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example, the expectation value of the dynamical variable Q when the system is in the state

described by the state function f is

hQi ¼ hf jQ̂jf i ¼ hf jgi: (6)

It follows that the function operators T̂ are unitary operators. For

(6) hf jgi ¼ hT̂ f jT̂ gi ¼ hT̂ y T̂ f jgi (7)

(7) T̂ y T̂ ¼ Ê, (8)

(8) GðTÞy GðTÞ ¼ E, (9)

so that the MRs of the function operators are unitary matrices. An important question which

can be answered using group theory is: ‘‘Under what conditions is a matrix element zero?’’

Provided we neglect spin–orbit coupling, a quantum, mechanical state function (spin

orbital) can be written as a product of a spatial part, called an orbital, and a spinor,

C(r, ms)¼ (r)�(ms). Since Q̂j
s acts on space and not spin variables, the matrix element

hCk
ujQ̂j

sjCi
qi factorizes as

hCk
ujQ̂j

sjCi
qi ¼ h k

ujQ̂j
sj i

qih�uj�qi: (10)

It follows from the orthogonality of the spin functions that h�u|�qi¼ 0 unless �u, �q have

the same spin quantum number. Hence the matrix element in eq. (10) is zero unless

�S¼ 0. When the matrix element describes a transition probability, this gives the spin

selection rule. Spin–orbit coupling, although often weak, is not zero, and so the spin

selection rule is not absolutely rigid. Nevertheless it is a good guide since transitions

between states with �S 6¼ 0 will be weaker than those for which the spin selection rule

is obeyed. Now consider what happens to a matrix element under symmetry operator T.

Its value is unchanged, so

h k
ujQ̂j

sj i
qi ¼ hT̂  k

ujT̂ Q̂j
s T̂

�1jT̂  i
qi: (11)

The LS of eq. (11) is invariant under {T} and so it belongs to the totally symmetric

representation G1. The function Q̂j
s  

i
q transforms according to the DP representation

Gi�Gj. To see this, consider what happens when a symmetry operator T acts on config-

uration space: Q̂j
sj i

qi becomes

T̂ Q̂j
s T̂

�1jT̂  i
qi ¼

P
p

P
r

GiðTÞpq GjðTÞrs Q̂j
rj i

pi

¼
P
p

P
r

½GiðTÞ � GjðTÞ�pr, qs Q̂j
rj i

pi:
(12)

Therefore under T , Q̂j
sj i

qi transforms according to the DP representation GiðTÞ � GjðTÞ.
The integrand in eq. (11) is the product of two functions, ð k

uÞ
�

and Q̂j
sj i

qi, and it therefore

transforms as the DP Gk� � Gi � Gj or Gk� � Gij. What is the condition that

Ga� � Gb � G1? This DP contains G1 if
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c1 ¼ g�1
P
T

�1ðTÞ �a�bðTÞ ¼ g�1
P
T

�aðTÞ� �bðTÞ 6¼ 0, (13)

which will be so if and only if a¼ b (from the orthogonality theorem for the characters).

Therefore the matrix element h k
ujQ̂j

sj i
qi is zero unless the DP Gi � Gj � Gk . But

Gk � Gk � G1, and so the matrix element is zero unless Gi � Gj � Gk � G1. Therefore,

the matrix element is zero unless the DP of any two of the representations contains the

third one.

5.4.4 Transition probabilities

The probability of a transition being induced by interaction with electromagnetic radiation

is proportional to the square of the modulus of a matrix element of the form h k|Q̂j| ii,
where the state function that describes the initial state transforms as Gi, that describing the

final state transforms as Gk, and the operator (which depends on the type of transition being

considered) transforms as Gj. The strongest transitions are the E1 transitions, which occur

when Q̂ is the electric dipole moment operator, � er. These transitions are therefore often

called ‘‘electric dipole transitions.’’ The components of the electric dipole operator trans-

form like x, y, and z. Next in importance are the M1 transitions, for which Q̂ is the magnetic

dipole operator, which transforms like Rx, Ry, Rz. The weakest transitions are the E2

transitions, which occur when Q̂ is the electric quadrupole operator which, transforms

like binary products of x, y, and z.

Example 5.4-1 The absorption spectrum of benzene shows a strong band at 1800 Å, two

weaker bands at 2000 Å and 2600 Å, and a very weak band at 3500 Å. As we shall see in

Chapter 6, the ground state of benzene is 1A1g, and there are singlet and triplet excited

states of B1u, B2u, and E1u symmetry. Given that in D6h, (x, y) form a basis for E1u and z

transforms as A2u, find which transitions are allowed.

To find which transitions are allowed, form the DPs between the ground state and the

three excited states and check whether these contain the representations for which the

dipole moment operator forms a basis:

A1g � B1u ¼ B1u,

A1g � B2u ¼ B2u,

A1g � E1u ¼ E1u:

Only one of these (E1u) contains a representation to which the electric dipole moment

operator belongs. Therefore only one of the three possible transitions is symmetry allowed,

and for this one the radiation must be polarized in the (x, y) plane (see Table 5.2).

The strong band at 1800 Å is due to the 1A1g ! 1E1u transition. The two weaker bands

at 2000 Å and 2600 Å are due to the 1A1g ! 1B1u and 1A1g ! 1B2u transitions becoming

allowed through vibronic coupling. (We shall analyze vibronic coupling later.) The

very weak transition at 3500 Å is due to 1A1g ! 3E1u becoming partly allowed through

spin–orbit coupling.
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Problems

5.1 Find Jones symbols for {R�1}, R 2 D4. Project the function

� ¼ x2 þ y2 þ z2 þ xyþ yzþ zx

into the G1, G2, and G5 subspaces and hence find bases for these IRs. [Hints: Do not

refer to published character tables. You will need character sets for the IRs G2 and G5

of D4, which were found in Exercise 4.6-1.]

5.2 Find the IRs of the point group D4h for which the following Cartesian tensors form

bases:

1, xyz, zðx2 � y2Þ, xyðx2 � y2Þ, xyzðx2 � y2Þ:

[Hint: Use the character table for D4h in Appendix A3, in which the principal axis has

been chosen to lie along z.]

5.3 Determine correlation relations between the IRs of (a) Td and C3v, and (b) Oh and D3d.

[Hints: Use character tables from Appendix A3. For (a), choose the C3 axis along [1 1 1]

and select the three dihedral planes in Td that are vertical planes in C3v. For (b), choose

one of the C3 axes (for example, that along [1 1 1]) and identify the three C0
2 axes normal

to the C3 axis.]

5.4 In the groups C4v, D3h, and D3d which E1, M1, and E2 transitions are allowed from aG1

ground state? In each of the three groups, identify the ground state in Mulliken

notation. For the E1 transitions, state any polarization restrictions on the radiation.

5.5 Evaluate for the representations i¼E, T1, and T2 of the group O, the DP Gi�i, the

symmetric DP Gi�i, and the antisymmetric DP Gi�i. Show that your results satisfy the

relation Gi�i ¼ Gi�i � Gi�i.

Table 5.2. Possible transitions from 1A1g electronic

ground state in benzene.

Symmetry-allowed Symmetry-forbidden

Spin-allowed 1E1u
1B1u,

1B2u

Spin-forbidden 3E1u
3B1u,

3B2u
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6 Molecular orbitals

6.1 Hybridization

In descriptions of chemical bonding, one distinguishes between bonds which do not have a

nodal plane in the charge density along the bond and those which do have such a nodal

plane. The former are called � bonds and they are formed from the overlap of s atomic

orbitals on each of the two atoms involved in the bond (ss � bonds) or they are sp or pp �

bonds, where here p implies a pz atomic orbital with its lobes directed along the axis of the

bond, which is conventionally chosen to be the z axis. The overlap of px or py atomic

orbitals on the two atoms gives rise to a p bond with zero charge density in a nodal plane

which contains the bond axis. Since it is accumulation of charge density between two atoms

that gives rise to the formation of a chemical bond, � or pmolecular orbitals are referred to

as bonding orbitals if there is no nodal plane normal to the bond axis, but if there is such a

nodal plane they are antibonding orbitals. Carbon has the electron configuration 1s2 2s2 2p2,

and yet in methane the four CH bonds are equivalent. This tells us that the carbon 2s and 2p

orbitals are combined in a linear combination that yields four equivalent bonds. The physical

process involved in this ‘‘mixing’’ of s and p orbitals, which we represent as a linear combina-

tion, is described as hybridization. A useful application of group theory is that it enables us

to determine very easily which atomic orbitals are involved in hybridization. Sometimes

there is more than one possibility, but even a rough knowledge of the atomic energy levels

is usually all that is required to resolve the issue.

Example 6.1-1 This example describes � bonding in tetrahedral AB4 molecules. The

numb ering of the B atoms is shown in Figur e 6.1 . Den ote by �r a unit vector oriented from

A along the bond between A and Br. With h�1 �2 �3 �4j as a basis, determine the characters

of the representation ��. It is not necessary to determine the matrix representatives (MRs)

�(T ) from T h�j ¼ h�j�(T ) since we only need the character system �� of the representa-

tion ��. Every �r that transforms into itself under a symmetry operator T contributesþ1 to

the character of that MR �(T ), while every �r that transforms into �s, with s 6¼ r, makes no

contribution to ��(T ). Of course, we only need to determine ��(T ) for one member of each

class in the point group. The values of ��(T ) for the point group Td are given in Table 6.1.

This is a reducible representation, and to reduce it we use the prescription

cj ¼ g�1
P
T

�jðTÞ� ��ðTÞ ¼ g�1
P
k

ck �jðckÞ� ��ðckÞ: (1)
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Using the character table of Td in Appendix A3 we find for A1 that

cðA1Þ ¼ g�1½1ð1Þð4Þ þ 8ð1Þð1Þ þ 6ð1Þð2Þ� ¼ 1:

We could proceed in a similar fashion for the remaining IRs, A2, E, T1, and T2, but instead

we attempt a short-cut by subtracting the character system for A1 from that of ��:

�� � �A1 ¼ f3 �1 0 �1 1g ¼ T2: (2)

Note that in a character system it is implied that the characters of the classes are given in the

same order as in the character table. Also, when a character system is equated to the symbol

for a representation, as in eq. (2), it means that it is the character system of that representa-

tion. Here then

�� ¼ A1 � T2: (3)

We know that s forms a basis for A1, and from the character table we see that (x, y, z) and

also (xy, yz, zx) form bases for T2. Therefore, � bonds in tetrahedral AB4 molecules are

formed by sp3 and/or sd 3 hybridization.

In general, an expression for a molecular orbital (MO) would involve linear combinations

of s, and px, py, pz and dxy, dyz, dzx atomic orbitals (AOs), but some coefficientsmight be small

or even negligibly small. There are two principles that control the formation of a chemical

bond between two atoms: (i) the contributing AOsmust be of comparable energy; and (ii) for

a bonding MO, the bond should provide maximum overlap of charge density in the region

between the atoms. In carbon the 3d orbitals lie about 10 eV above 2p and therefore

X

Y

Z

B3

B1

B4

B2

Figure 6.1. Numbering of the B atoms in a tetrahedral AB4 molecule; �r is a unit vector pointing from
A to atom Br.

Table 6.1. The character system �� for the representation

�� in the point group Td.

Td E 3C2 8C3 6S4 6�d

�� 4 0 1 0 2
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sp3 hybridization predominates. But in manganese and chromium the 3d are much closer to

the 4s than are the 4p orbitals, and it is likely that sd3 hybridization predominates.

Example 6.1-2 This example describes � bonding in the AB5 trigonal bipyramid (e.g. PF5).

As is evident from Figure 6.2, the point group is D3h. The character system for �� is given in

Table 6.2. From eq. (1), with the help of the character table for D3h in Appendix A3,

�� ¼ 2A1
0 � A2

00 � E0: (4)

Exercise 6.1-1 Verify the reduction of �� into the direct sum given in eq. (4).

From the character table for D3h we find that z forms a basis for A2
00 while (x, y) form a

basis for E0. Similarly, 3z2� r2, as well as s, form bases for A1
0 and (xy, x2� y2) form a basis

for E0. The large difference in energy between (nþ 1)s and ns, or between (nþ 1)d3z2�r2

and nd3z2�r2 , atomic energy levels makes the contribution of two orbitals with different

principal quantum numbers to hybrid MOs in AB5 very unlikely. We conclude that one s

and one d3z2�r2 are involved, together with pz, and (px py), and/or (dxy dx2�y2 ). In PF5, it is

likely that (px py) predominate, giving dsp3 hybridization, while in molecules in which the

central atom has a high atomic number Z, the p and d orbitals will both contribute, giving a

mixture of dsp3 and d3sp hybridization. For example, in the MoCl5 molecule, the molyb-

denum 4d AOs are of comparable energy to the 5p orbitals, so that a hybrid scheme

dsp3þ d3sp can be expected. It should be remarked that in the abbreviations used for

hybridization schemes, specific d orbitals are implied; these may be found very easily by

determining the character system for �� and using the character table to determine the

IRs and their basis functions. The same method may be used to determine the AOs used in

1

2

4

3

5

Figure 6.2. Numbering of the B atoms in the AB5 trigonal bipyramid.

Table 6.2. The character system �� for the AB5 molecule

shown in Figure 6.2.

D3h E 2C3 3C2
0 �h 2S3 3�v

�� 5 2 1 3 0 3
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p bonding, but we shall not give an example here since p bonding in the ML6 octahedral

complex will be analyzed later (in Section 6.4).

Answer to Exercise 6.1-1

For the AB5 trigonal bipyramid, ��¼ {5 2 1 3 0 3}. Using the character table for D3h,

cðA1
0Þ ¼

�
1=12

�
½1ð1Þð5Þ þ 2ð1Þð2Þ þ 3ð1Þð1Þ þ 1ð1Þð3Þ þ 2ð1Þð0Þ þ 3ð1Þð3Þ�

¼
�
1=12

�
½5þ 4þ 3þ 3þ 0þ 9� ¼ 2,

cðA2
0Þ ¼

�
1=12

�
½1ð1Þð5Þ þ 2ð1Þð2Þ þ 3ð�1Þð1Þ þ 1ð1Þð3Þ þ 2ð1Þð0Þ þ 3ð�1Þð3Þ�

¼
�
1=12

�
½5þ 4� 3þ 3þ 0� 9� ¼ 0,

cðE0Þ ¼
�
1=12

�
½1ð2Þð5Þ þ 2ð�1Þð2Þ þ 3ð0Þð1Þ þ 1ð2Þð3Þ þ 2ð�1Þð0Þ þ 3ð0Þð3Þ�

¼
�
1=12

�
½10� 4þ 0þ 6þ 0þ 0� ¼ 1,

2A1
0 þ E0 ¼ f4 1 2 4 1 2g

�� � ð2A1
0 þ E0Þ ¼ f1 1 �1 �1 �1 1g ¼ A2

00:

Therefore

�� ¼ 2A1
0 � A2

00 � E0:

6.2 p Electron systems

The electronic charge density in an MO extends over the whole molecule, or at least over a

volume containing two or more atoms, and therefore the MOs must form bases for the

symmetry point group of the molecule. Useful deductions about bonding can often be made

without doing any quantum chemical calculations at all by finding these symmetry-adapted

MOs expressed as linear combinations of AOs (the LCAO approximation). So we seek the

LCAO MOs

 j ¼
P
r

�r crj, or j ji ¼
P
r

j�ricrj (1)

where the AOs {�r} form an orthonormal basis set. It is common practice in Dirac notation

to omit the symbol for the basis (e.g. �) when this is not in doubt. For example, normal-

ization of the � basis may be expressed by

Z
d� ��r �r or h�rj�ri or hrjri ¼ 1: (2)

Example 6.2-1 This example discusses the molecular orbitals of benzene.The numbering

system used for the atoms is shown in Figure 6.3. The point group of benzene is
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D6h ¼ D6 � Ci ¼ fD6g � IfD6g, (3)

where

D6 ¼ fE 2C6 2C3 C2 3C2
0 3C2

00g: (4)

Refer to Appendix A3 for the character table of D6h. Some conventions used for benzene

are illustrated in Figure 6.3. The C2 axes normal to the principal axis fall into two

geometrically distinct sets. Those passing through pairs of opposite atoms are given

precedence and are called C2
0, and those that bisect pairs of opposite bonds are named

C2
00. Consequently, the set of three vertical planes that bisect pairs of opposite bonds are

designated 3�d (because they bisect the angles between the C2
0 axes), while those that

contain the C2
00 axes are called 3�v. Note the sequence of classes in the character table: the

classes in the second half of the table are derived from I(ck), whereck is the corresponding

class in the first half. Thus 2S3 precedes 2S6 because ICþ
6 ¼ S�3 , and 3�d precedes 3�v

because IC2
0 ¼ �d but IC2

00 ¼ �v. Notice that the characters of the u representations in the

first set of classes (those of D6) repeat those of the g representations in the top left corner of

the table, but those of the u representations in the bottom right quarter have the same

magnitude as those for the corresponding g representations in the top right quarter, but have

the opposite sign. Some authors only give the character table for D6, which is all that is

strictly necessary, since the characters for D6h can be deduced from those for D6 using the

properties explained above. The systematic presentation of character tables of direct

product groups in this way can often be exploited to reduce the amount of arithmetic

involved, particularly in the reduction of representations.

To find the MOs for benzene, we choose a basis comprising a 2pz AO on each carbon

atom and determine the characters of ��, the reducible representation generated by

6

1

3

2

4

5

(a)

σv

σd

σv

C″
2

C′2

C′2

(b)

σv

σd

C″
2

C′2

E

Figure 6.3. (a) Numbering scheme used for the six C atoms in the carbon skeleton of benzene. Also

shown are examples of the locations of the C2
0 and C2

0 0 axes, and of the �d and �v planes of symmetry.

The C2
0 axes are given precedence in naming the planes. (b) Partial projection diagram for D6h

showing that IC2
0 ¼ �d and IC2

0 0 ¼�v.
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T̂h�j ¼ h�0j ¼ h�j��, (5)

where T 2D6h and h�j stands for the basis set h�1 �2 �3 �4 �5 �6j; �r is a 2pzAO on the

r th carbon atom. Although we could determine h�0j from the effect of the function operator

T̂ on each �r in turn, it is not necessary to do this. A much quicker method is to use the

rotation of the contour of the function �r¼ 2pz on atom r under the symmetry operator T to

determine �0r, and then recognize that �
0
r only contributes to the character of ��(T ) when it

transforms into ��r. A positive sign contributes þ1 to the character of ��(T ); a negative

sign contributes �1; the contribution is zero if �r
0 ¼�s, s 6¼ r. The character system of ��

may thus be written down by inspection, without doing any calculations at all. In this way

we find that

�ð��Þ ¼ f6 0 0 0 �2 0 0 0 0 �6 0 2g: (6)

In benzene, T 2 {C6 C3 C2 I S3 S6 C2
00 �d} sends each �r into �s 6¼r so that there are no non-

zero diagonal entries in �� for these operators and consequently �(T )¼ 0. For the C2
0

operators, the 2pz orbitals on one pair of carbon atoms transform into their negatives, so that

�(C2
0 )¼�2. For �h, each of the six atomic orbitals �r transforms into ��r, so that

�(�h)¼�6. For the �v operators, the pair of 2pz orbitals in the symmetry plane are

unaffected, while the other four become 2pz orbitals on different atoms, so �(�v)¼þ2.

Finally, for the identity operator each �r remains unaffected, so ��(E) is the 6� 6 unit

matrix and �(E)¼ 6. Note that �� is a reducible representation,

�� ¼
P
j

cj �j, � � �ð��Þ ¼
P
j

c j �j, (7)

where

cj ¼ g�1
P
k

ck �jðckÞ� �ðckÞ, (8)

and �(ck) is the character for the kth class in the reducible representation.

(6), (8) �� ¼ A2u � B2g � E1g � E2u: (9)

For example,

cðA2uÞ ¼ ð1=24Þ½1ð1Þð6Þ þ 3ð�1Þð�2Þ þ 1ð�1Þð�6Þ þ 3ð1Þð2Þ� ¼ 1:

In �(��), the characters in the second half of the character system do not reproduce those in

the first half (or reproduce their magnitudes with a change in sign). If this had been so, ��
would have been a direct sum of g IRs (or u IRs). Here we expect the direct sum to contain

both g and u representations, which turns out to be the case. The basis functions for these

IRs may now be obtained by using the projection operator P̂j (eq. (5.2.10)),

 j ¼ Nj

P
T

�jðTÞ� T̂�; (10)
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� can be any arbitrary function defined in the appropriate subspace, which here is a

subspace of functions for which the six AOs {�r} form a basis. Chemical intuition tells

us that a sensible choice would be �¼�1.

(10)  ðA2uÞ ¼ NðA2uÞ½�1 þ ð�2 þ �6Þ þ ð�3 þ �5Þ
þ ð�4Þ � 1ð��1 � �3 � �5Þ � 1ð��2 � �4 � �6Þ
� 1ð��4Þ � 1ð��3 � �5Þ � 1ð��2 � �6Þ � 1ð��1Þ
þ ð�2 þ �4 þ �6Þ þ ð�1 þ �3 þ �5Þ�

¼ NðA2uÞ½�1 þ �2 þ �3 þ �4 þ �5 þ �6�: (11)

Normalization

In general, for  j ¼ Nj

P
r

�r crj,

h jj ji ¼ jNjj2h
P
r

�r crj j
P
s

�s csji

¼ jNjj2
hP

rjcrjj
2 þ

PP
s6¼r

c�rj csj Srs

i
:

(12)

Srs is called the overlap integral because the integrand is only significant in regions of

space where the charge distributions described by the AOs �r and �s overlap. When either

�r or �s is very small, the contribution to the integral from that volume element is small and

so there are only substantial contributions from those regions of space where �r and �s
overlap. A useful and speedy approximation is to invoke the zero overlap approximation

(ZOA) which sets

Srs ¼ 0, r 6¼ s: (13)

The ZOA is based more on expediency than on it being a good approximation; in fact, the

value of Srs is about 0.2�0.3 (rather than zero) for carbon 2pz orbitals on adjacent atoms.

When s is not joined to r, it is much more reasonable. Nevertheless, it is customary to use

the ZOA at this level of approximation since it yields normalization constants without

performing any calculations. One should remark that it affects only the N j, the ratio of the

coefficients being given by the group theoretical analysis. Using the ZOA,

a2u ¼ 1= ffiffi
6

p ½�1 þ �2 þ �3 þ �4 þ �5 þ �6�: (14)

In eq. (14) we have followed the usual practice of labeling the MO by the IR (here A2u) for

which it forms a basis, but using the corresponding lower-case letter instead of the capital

letter used for the IR in Mulliken notation. It is left as a problem to find the MOs that form

bases for the other IRs in the direct sum, eq. (9). In the event of lj-fold degeneracy, there are

lj linearly independent (LI) basis functions, which we choose to make mutually orthogonal.

So for lj¼ 2, we use the projection operator P̂ j again, but with a different function �¼�2.

For E1g, for example, �1 and �2 give  1(E1g) and  2(E1g), which are LI but are not

orthogonal. Therefore we combine them in a linear combination to ensure orthogonality

while preserving normalization. Usually this can be done by inspection, although the

systematic method of Schmidt orthogonalization (see, for example, Margenau and Murphy
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(1943)) is available, if required. Remember that  can always be multiplied by an arbitrary

phase factor without changing the charge density, or any other physical property, so that it is

common practice to multiply  by �1 when this is necessary to ensure that the linear

combination of atomic orbitals (LCAO) does not start with a negative sign.

6.2.1 Energy of the MOs

Ej ¼ h jjĤj ji ¼ jNjj2h
P
r

�r crj jĤj
P
s

�s csji

¼ jNjj2
hP

r

jcrjj2 Hrr þ
PP
s6¼r

crj
� csj Hrs

i
,

(15)

where

Hrs ¼ h�rjĤj�si ¼ Hsr
�, (16)

the second equality following from the fact that Ĥ is an Hermitian operator. For p electron

systems there are useful approximations due to Hückel. If

s ¼ r, Hrr ¼ �,

s $ r, Hrs ¼ � ða negative quantityÞ,
s 6$ r, Hrs ¼ 0

9>=
>; (17)

(s$ r means ‘‘s joined to r’’). The effective energy of a bound electron in a carbon 2pz
atomic orbital is given by �; the delocalization energy comes from �.

(17), (15) E j ¼ jNjj2
h P

r

jcrjj2 �þ
PP
s 6¼r

crj
� csj �

i
: (18)

Substituting for the coefficients (see eq. (14) and Problem 6.2) and evaluating E j from

eq. (18) gives the energy-level diagram shown in Figure 6.4. Only the energies depend on

b2g

e2u

a2u

e1g

antibonding

bonding

non-bonding

α  +  2β

α  +  β

α  –  β

α  –  2β

Figure 6.4. Energy-level diagram for the molecular orbitals of benzene evaluated in the Hückel

approximation.
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the Hückel approximations. The orbitals are correctly given within the ZOA, which only

affects Nj, the ratios of the coefficients being completely determined by the symmetry of

the molecule.

6.3 Equivalent bond orbitals

Example 6.3-1 In this example, we find the MOs for the nitrate ion. The numbering

system employed to label the oxygen atoms is shown in Figure 6.5. Let {�1, �2, �3} denote

a set of oxygen 2p atomic orbitals each pointing towards the central nitrogen atom. The

point group of NO�
3 is D3h and the character system of the representation �� is given in

Table 6.3. This is obtained in the now familiar way by studying the transformation of

the basis h �1 �2 �3 j under the symmetry operators T̂ , where T 2 D3h, and determining

the characters from those orbitals �r which transform into � �r. The reduction of �� in the

usual way (eq. (6.1.1)) gives

�� ¼ A1
0 � E0: (1)

The character table for D3h tells us that the nitrogen atom orbitals involved in bonding are s,

px, py. We now use the projection operator technique to find the linear combinations of

oxygen ligand orbitals  j that combine with s, px, py,

3

2

1
X

Y

Figure 6.5. Numbering system used for the three oxygen atoms in the NO�
3 ion.

Table 6.3. Character system for �� for the NO�
3 ion.

D3h E 2C3 3C2
0 �h 2S3 3�v

�� 3 0 1 3 0 1
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(5.2.10)  j ¼ Nj

P
T

�jðTÞ� T̂�1, (2)

(2)  ðA1
0Þ ¼NðA1

0Þ½ð�1Þ þ ð�2 þ �3Þ þ ð�1 þ �3 þ �2Þ

þ ð�1Þ þ ð�2 þ �3Þ þ ð�1 þ �3 þ �2Þ�, (3)

(3) a1
0 ¼ 1= ffiffi

3
p ½�1 þ �2 þ �3�, (4)

on normalizing in the ZOA. An MO  1 for NO3
� is obtained by forming a linear combina-

tion of a1
0 with a central-atom AO of the same symmetry, namely s:

 1 ¼ sþ b1 a1
0; (5)

 1 forms a basis for A1
0. Group theory tells us which central-atom orbital (s) and which

linear combination of ligand orbitals (a1
0) are involved, but to determine the mixing

coefficient b1 would require a quantum chemical calculation. Molecular orbitals like  1

occur in pairs, one of which is bonding and the other antibonding, according to the sign of

b1: positive for a bonding orbital and negative for an antibonding orbital.

(2)  1ðE0Þ ¼ N1ðE0Þ½2ð�1Þ � 1ð�2 þ �3Þ þ 2ð�1Þ � 1ð�2 þ �3Þ�

¼ 1= ffiffi
6

p ½2�1 � ð�2 þ �3Þ�
(6)

on normalizing using the ZOA. Similarly, from eq. (2), but using �2 and �3 in place of �1,

 2ðE0Þ ¼ 1= ffiffi
6

p ½2�2 � ð�3 þ �1Þ�, (7)

 3ðE0Þ ¼ 1= ffiffi
6

p ½2�3 � ð�1 þ �2Þ�: (8)

But how can we have generated three basis functions for a doubly degenerate representa-

tion? The answer is that eqs. (6), (7), and (8) are not LI. So we look for two linear

combinations that are LI and will overlap with the nitrogen atom orbitals px and py.

e1
0 ¼ 1= ffiffi

6
p ½2�1 � ð�2 þ �3Þ� (9)

has a concentration of charge along the OX axis and overlaps satisfactorily with px, so

 2 ¼ px þ b2 e1
0: (10)

Eliminating �1 from eqs. (7) and (8) gives

e2
0 ¼ 1= ffiffi

2
p ½ð�2 � �3Þ�, (11)

 3 ¼ py þ b3 e2
0: (12)

Subscripts 1 and 2 in e1
0, e2

0 denote the two partners that form a basis for the 2-D IR

E0. Also,  1,  2, and  3 are properly symmetrized MOs, but  3, in particular, does not

look much like a classical chemical bond (see Figure 6.6(a)). In order to achieve

maximum overlap with the three ligand p orbitals (and hence the most stable
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molecule), the central-atom orbitals undergo hybridization. To find the three equivalent

MOs – which we call bond orbitals – we express the set of MOs given by eqs. (9),

(10), and (12) in matrix form:

h 1  2  3j ¼ hs px pyj þ ha10 e10 e20jB, (13)

where B is the diagonal matrix

B ¼
b1 0 0

0 b2 0

0 0 b3

2
64

3
75: (14)

The ligand LCAOs are

ha10 e10 e20j ¼ h�1 �2 �3jM; (15)

(4), (9), (11) M ¼

1= ffiffi
3

p 2= ffiffi
6

p
0

1= ffiffi
3

p �1= ffiffi
6

p 1= ffiffi
2

p

1= ffiffi
3

p �1= ffiffi
6

p �1= ffiffi
2

p

2
664

3
775: (16)

(13), (15) h 1  2  3j ¼ hs px pyj þ h�1 �2 �3jB M, (17)

where we take advantage of the fact that the diagonal matrix B commutes with M.

ð17Þ h 1
0  2

0  3
0j ¼ h 1  2  3jM�1 ¼ hs px pyjM�1 þ h�1 �2 �3jB

¼ hh1 h2 h3j þ h�1 �2 �3jB: (18)

X

Y

(a)

X

Y

(b)

Figure 6.6. (a) Molecular orbitals for the nitrate ion that form bases for the representation E0 of the D3h

point group (see eqs. (6.3.9) and (6.3.11)). (b) The sp2 hybrid orbitals in NO�
3 .
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The sp2 hybrid nitrogen AOs are

(18) hh1 h2 h3j ¼ hs px pyjMT ¼ hs px pyj
1= ffiffi

3
p 1= ffiffi

3
p 1= ffiffi

3
p

2= ffiffi
6

p �1= ffiffi
6

p �1= ffiffi
6

p

0 1= ffiffi
3

p �1= ffiffi
2

p

2
4

3
5: (19)

Exercise 6.3-1 Write down, from eqs. (18) and (19), three separate expressions for the

bond orbitals  1
0,  2

0, and  3
0.

The equivalent molecular ‘‘bond orbitals’’ are shown diagrammatically in Figure 6.6(b).

This method of finding the central-atom hybrid AOs that overlap with ligand AOs is quite

general and may be applied to other situations (for example, tetrahedral AB4) where the

ligand geometry does not correspond to that of the p and d orbitals on the central atom. For

square planar AB4 and octahedral AB6, the linear transformation to equivalent orbitals is

not necessary since the disposition of the ligands corresponds to the orientation of the p and

d orbitals on the central atom.

Answer to Exercise 6.3-1

 1
0 ¼ h1 þ b1 �1 ¼ ð1= ffiffi

3
p Þsþ ð2= ffiffi

6
p Þpx þ b1 �1;

 2
0 ¼ h2 þ b2 �2 ¼ ð1= ffiffi

3
p Þs� ð1= ffiffi

6
p Þpx þ ð1= ffiffi

2
p Þpy þ b2 �2;

 3
0 ¼ h3 þ b3 �3 ¼ ð1= ffiffi

3
p Þs� ð1= ffiffi

6
p Þpx � ð1= ffiffi

2
p Þpy þ b3 �3:

6.4 Transition metal complexes

Example 6.4-1 In this example we consider the ML6 octahedral complex. Atomic orbitals

that could contribute to the MOs are the nine nd, (nþ 1)s, and (nþ 1)p on M, and the

eighteen p orbitals on the six ligands. The latter may be classified into six that point towards

the central atom M, which we call �, and twelve that are oriented at right angles to the �

p orbitals, which we call p and p0. We set these up so that unit vectors along �, p, and p0

(also called �, p, and p0) form a right-handed system. Figure 6.7 shows the numbering

system for the ligands and the orientation of the �, p, and p0 vectors. Now M orbitals can

only transform into M orbitals and similarly, so that the (27� 27)-dimensional AO

representation is reduced to a direct sum of representations of one, three, five, six, and

twelve dimensions. The character table of Oh¼O� Ci is given in Appendix A3. The first

five classes are those of O; the second set of five classes are those of I{O}. The characters

of the u representations are the same as those of the g representations for the classes of O,

and the same in magnitude but of opposite sign, for the classes of I{O}. Table 6.4 shows the

characters of the representations based on p and d orbitals on M.We know that an s orbital,
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being spherically symmetrical, forms a basis for the totally symmetric representation A1g.

The systematic way to find the characters for �p and �d is as follows.

(i) First study the transformation of the basis h e1 e2 e3j under one symmetry operator from

each of the five classes of O. (The one actually used in this step is shown in the first

row of Table 6.4.)

(ii) Write down the MRs of �(T ) for these symmetry operators. This is easily done by

inspection.

(iii) Write down the matrices �(T )�1, taking advantage of the fact that the MRs are

orthogonal matrices so that �(T )�1 is just the transpose of �(T ).

(iv) Write down the Jones symbols for the operators T�1, which again can be done by

inspection by just multiplying �(T )�1 into the column matrix jx y z i. So far, we have
neglected the other five classes of Oh because the variables x, y, and z all change sign

under inversion so that the Jones symbols for the operators I(T ) may be obtained from

those of T simply by changing the sign of x, y, and z, as is done in Table 6.4.

(v) Since the three p functions are just x, or y, or z, multiplied by f(r), the characters of �p

can be written down from the Jones symbols for T�1.

(vi) The angle-dependent factors in the d orbitals can now be written down using the Jones

symbols for T�1, which tell us how the variables x, y, and z transform and thus how

6

σ6

σ3

σd

σ4

σ1

σ5

σ2

6π ′

4π ′

3π ′

5π ′

1π ′

2π ′

π6

π4

π3

π5

π1 π2

2 C2

Y

y
x

z

C′2

1
X

4

3

5

Z

Figure 6.7. The ML6 octahedral complex. Unit vectors �, p, p 0 are oriented parallel to the orthonormal

axes x, y, z, which have their origin atM and lie along OX, OY, OZ. The three C2 axes that are collinear

with the C4 axes are along x, y, z, and the second set of six C2 axes that bisect the angles between x and

y, y and z, and z and x are designated C2
0. The symmetry planes that contain these C2

0 axes are �d planes
because they bisect the angles between C2 axes that are normal to one of the three C4 principal axes.
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functions of x, y and z transform under the symmetry operators of Oh. Since the largest

degeneracy in Oh is three, we expect the five-fold degeneracy of the d orbitals in

spherical symmetry to be split in a cubic field, but we have no knowledge a priori

whether the 5� 5 MRs based on the five d functions will be block-diagonal. (All we

know in advance is that they will form a representation equivalent to a block-diagonal

representation.) In fact, as soon as we have written down the functions into which xy,

yz, and zx transform, we notice that these three d orbitals only transform between

themselves and never into the two remaining d orbitals. This means that the d orbital

MRs are block-diagonal and the five-fold degeneracy of the d orbitals is split into at

least three-fold and doubly degenerate subsets. Calling the first set d", we now write

down the characters of the MRs based on xy, yz, and zx. It should be emphasized that

the d orbitals transform in this way because of the cubic (¼ octahedral) symmetry, and

that they will behave differently in different symmetries. In D4h symmetry, for

example, the maximum degeneracy is two, so the five d orbitals will transform in a

different fashion. In general, one simply studies the transformation of the five d

orbitals, and, if subsets emerge, then one can take advantage of this to reduce the

arithmetic involved.

(vii) The effect of the function operators on the remaining two d orbitals is given in the

next two lines of Table 6.4. When a function is a member of a basis set, in general it

will transform into a linear combination of the set. In practice, this linear combination

often consists of only one term (and then the entries in the corresponding column of

theMR are all zero, with the exception of one that is unity). Under some operators, the

basis functions transform into linear combinations, and an example of this is the class

of 8C3, where, under the chosen operator R(2p / 3 [111]), x2� y2 transforms into

y2� z2 and 3z2� r2 transforms into 3x2� r2. These are not d orbitals but they are

linear combinations of d orbitals, for

y2 � z2 ¼ �1=2ðx2 � y2Þ � 1=2ð3z2 � r2Þ, (1)

3x2 � r2 ¼ 3=2ðx2 � y2Þ � 1=2ð3z2 � r2Þ: (2)

When the function operator R̂(2p / 3 [111]) acts on the basis hx2�y2 3z2�r2j,

(1), (2) R̂ð2p=3 ½111�Þhx2 � y2 3z2 � r2j

¼ hx2 � y2 3z2 � r2j
�1=2 3=2

�1=2 �1=2

� �
:

(3)

The characters of the MRs for the basis d� can now be written down using the

transformation of the second subset of d orbitals given in Table 6.4 and eq. (3).

Note that the characters for �p simply change sign in the second half of the table (for

the classes I{T}); this tells us that it is either a u IR, or a direct sum of u IRs. The

characters for both de and d� simply repeat in the second half of the table, so they are

either g IRs, or direct sums of g IRs. This is because the p functions have odd parity

and the d functions have even parity.
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(viii) The last step in the construction of Table 6.4 is to write down the characters of the

representations based on the ligand p orbitals labeled �, which point towards M, and

the ligand p orbitals labeled p or p0, which are normal to unit vectors along the lines

joining the ligands to M (Figure 6.7). This can be done by the ‘‘quick’’ method of

noting how the contours of the basis functions transform under the symmetry

operators: those which are invariant, or simply change sign, contribute �1, respect-

ively, to the character, and the others contribute zero.

Reduction of the representations

From the characters in Table 6.4 we observe that

�s ¼A1g; (4)

�p ¼T1u; (5)

�d ¼�d" � �d� ¼T2g � Eg: (6)

The classes for the non-zero characters of ��, its character system, and reduction, are

E 3C2 C4 3�h 6�d
�� ¼ f6 2 2 4 2g;

cðA1gÞ ¼ 1=48½1ð1Þð6Þ þ 3ð1Þð2Þ þ 6ð1Þð2Þ þ 3ð1Þð4Þ þ 6ð1Þð2Þ� ¼ 1,

cðA2gÞ ¼ 1=48½1ð1Þð6Þ þ 3ð1Þð2Þ þ 6ð�1Þð2Þ þ 3ð1Þð4Þ þ 6ð�1Þð2Þ� ¼ 0,

cðEgÞ ¼ 1=48½1ð2Þð6Þ þ 3ð2Þð2Þ þ 6ð0Þð2Þ þ 3ð2Þð4Þ þ 6ð0Þð2Þ� ¼ 1:

Now

�� ¼ 6 2 0 2 0 0 4 0 0 2f g

and

A1g � Eg ¼ 3 3 0 1 1 3 3 0 1 1f g;

�� � ðA1g � EgÞ ¼ 3 �1 0 1 � 1 � 3 1 0 �1 1f g ¼ T1u:

Therefore

�� ¼ A1g � Eg � T1u: (7)

The non-zero characters for �p are

E 3C2

�p ¼ f12 �4g: (8)
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The characters for E and 3C2 have opposite signs, and so to reach a sum of 48 in the

reduction test will be unlikely except for IRs with a negative character for the class of 3C2.

Therefore we try first those IRs for which �(3C2) is negative. T1g, T2g, T1u, and T2u all have

�(3C2)¼�1, and

cðT1gÞ¼ 1=48½1ð3Þð12Þ þ 3ð�1Þð�4Þ� ¼ 1:

Since T2g, T1u, and T2u have the same characters as T1g for these classes, they must also

occur once in the direct sum, which therefore is

�p ¼ Tg � T2g � T1u � T2u: (9)

s bonding

We need to find the linear combinations of ligand � orbitals of symmetry A1g, Eg, and T1u.

Omitting normalization factors, these are

 ðA1gÞ¼ 1ð�1Þ þ 1ð�4 þ �4 þ �1Þ
þ 1ð�2 þ �3 þ �5 þ �6 þ �3 þ �5 þ �2 þ �6Þ
þ 1ð�2 þ �5 þ �6 þ �3 þ �1 þ �1Þ
þ 1ð�2 þ �5 þ �4 þ �4 þ �3 þ �6Þ
þ 1ð�4Þ þ 1ð�1 þ �1 þ �4Þ
þ 1ð�5 þ �6 þ �2 þ �3 þ �6 þ �2 þ �3 þ �5Þ
þ 1ð�2 þ �5 þ �6 þ �3 þ �4 þ �4Þ
þ 1ð�5 þ �2 þ �1 þ �1 þ �6 þ �3Þ,

 ðA1gÞ ¼ �1 þ �2 þ �3 þ �4 þ �5 þ �6; (10)

 1ðEgÞ¼ 2�1 þ 2ð�1 þ 2�4Þ � 2ð�2 þ �3 þ �5 þ �6Þ þ 2�4

þ 2ð2�1 þ �4Þ
� 2ð�2 þ �3 þ �5 þ �6Þ,

 1ðEgÞ ¼ 2�1 � �2 � �3 þ 2�4 � �5 � �6: (11)

Starting with �2, and then �3, as our arbitrary functions in the subspace with basis vectors

(functions) {�1 �2 �3 �4 �5 �6} and projecting as before will simply give the cyclic

permutations

 2ðEgÞ¼ 2�2 � �3 � �4 þ 2�5 � �6 � �1 (12)

and

 3ðEgÞ¼ 2�3 � �4 � �5 þ 2�6 � �1 � �2 : (13)
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There cannot be three LI basis functions of Eg symmetry, so we must choose, from

eqs. (11), (12), and (13), two LI combinations that are orthogonal in the ZOA and which

will overlap satisfactorily with the M atom orbitals of Eg symmetry. A suitable choice that

meets these three requirements is

 1ðEgÞ �  2ðEgÞ ¼ �1 � �2 þ �4 � �5, (14)

 3ðEgÞ ¼ 2�3 � �4 � �5 þ 2�6 � �1 � �2: (15)

Exercise 6.4-1 Verify that eqs. (11), (12), and (13) are linearly dependent and that

eqs. (14) and (15) are orthogonal in the ZOA.

Continuing with the T1u representation,

 1ðT1uÞ¼ 3�1 � 1ð2�4 þ �1Þ þ 1ð�2 þ �5 þ �6 þ �3 þ 2�1Þ

� 1ð�2 þ �5 þ �3 þ �6 þ 2�4Þ

� 3�4 þ 1ð2�1 þ �4Þ � 1ð�2 þ �5 þ �6 þ �3 þ 2�4Þ

þ 1ð�5 þ �2 þ 2�1 þ �6 þ �3Þ,

 1ðT1uÞ ¼ �1 � �4: (16)

Since P̂(T1u)�1¼ �1� �4, the other two LI linear combinations of ligand orbitals that form

bases for T1u are, by cyclic permutation,

 2ðT1uÞ ¼ �2 � �5 (17)

and

 3ðT1uÞ ¼ �3 � �6: (18)

We now have the � bonded MOs

(10) a1g ¼ a1½ðnþ 1Þs� þ b1½�1 þ �2 þ �3 þ �4 þ �5 þ �6�, (19)

(14) eg ¼ a2½ndx2�y2 � þ b2½�1 � �2 þ �4 � �5�, (20)

(15) eg
0 ¼ a3½nd3z2�r2 � þ b3½2�3 þ 2�6 � �1 � �2 � �4 � �5�, (21)

(16) t1u ¼ a4½ðnþ 1Þpx� þ b4½�1 � �4�, (22)

(17) t1u
0 ¼ a5½ðnþ 1Þpy� þ b5½�2 � �5�, (23)
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(18) t1u
00 ¼ a6½ðnþ 1Þpz� þ b6½�3 � �6�: (24)

The orbitals occur in bonding and antibonding pairs, according to whether ai, bi have the

same sign or opposite sign. Rough sketches of contours of j j2 in the bonding AOs are

shown in Figure 6.8.

t1u, x

Z

X

+

Y

+

–
–

e

Z

X

+

+

+

Y

+

–

––

–

g′

eg

Z

X

+

+
+

Y

+
–

–

–
–

(a) (b)

(c)

Figure 6.8. Approximate charge density prior to bonding in overlapping atomic orbitals that form

�-type molecular orbitals in ML6: (a) t1u,x; (b) eg; (c) e
0
g. The actual charge density in the molecule

would require a quantum-chemical calculation. Only the relevant halves of the ligand p orbitals are

shown in some figures. Atom centers may be marked by small filled circles for greater clarity. As

usual, positive or negative signs show the sign of  , like signs leading to an accumulation of charge

density and therefore chemical bonding. The ring depicting the region in which the d3z2�r2 orbital has

a negative sign has been shaded for greater clarity, but this has no other chemical significance apart

from the sign.
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p bonding

We now seek linear combinations of ligand orbitals p and p0 that form bases for the IRs T1u,

T2g, T2u, and T1g (eq. (9)). The characters for T1u in O are {3 �1 0 1 �1}, so with p1 as
our arbitrary function in the p, p0 subspace,

 1ðT1uÞ ¼ 3ðp1Þ � 1ðp4 � p1 � p4Þ þ 1ðp2 þ p5 þ p10 � p10 þ p6 � p3Þ
� 1ð�p2 � p5 þ p40 � p40 þ p3 � p6Þ � 3ð�p4Þ þ 1ð�p1 þ p4 þ p1Þ
� 1ð�p5 � p2 � p40 þ p40 � p3 þ p6Þ
þ 1ðp5 þ p2 � p10 þ p10 � p6 þ p3Þ,

giving

 1ðT1uÞ ¼ p1 þ p2 þ p4 þ p5 ¼ pz: (25)

These ligand p orbitals are symmetrically disposed to point along the OZ axis. Since the

OX and OY axes are equivalent to OZ in Oh symmetry, we may write down by inspection

 2ðT1uÞ ¼ �p20 þ p3 þ p50 þ p6 ¼ px (26)

and

 3ðT1uÞ ¼ p10 þ p60 � p40 � p30 ¼ py: (27)

The MOs that form bases for T1u are therefore

t1u, x ¼ a7½ðnþ 1Þpx� þ b7 px, (28)

t1u, y ¼ a8½ðnþ 1Þpy� þ b8 py , (29)

t1u, z ¼ a9½ðnþ 1Þpz� þ b9 pz: (30)

As an example, the MO t1u,z is shown in Figure 6.9(a). The character system for �(T2g) is

{3 �1 0 �1 1}, and so

t1u,z

++

+

+

+

–

–

–

–

–

(a)

t2g,z x

+

++

+

+

+

–

–

–

–

––
Z

X (b)

Figure 6.9. Atomic orbitals that form the p molecular orbitals: (a) t1u,z; (b) t2g,zx.
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 1ðT2gÞ¼ 3ðp1Þ � 1ð�p1Þ � 1ðp2 þ p5 þ p6 � p3Þ þ 1ð�p2 � p5 þ p3 � p6Þ
þ 3ð�p4Þ � 1ðp4Þ � 1ð�p5 � p2 � p3 þ p6Þ þ 1ðp5 þ p2 � p6 þ p3Þ,

giving

 1ðT2gÞ ¼ p1 � p4 þ p3 � p6 ¼ pzx: (31)

By inspection, the linear combinations of ligand AOs in the yz and xy planes are

 2ðT2gÞ ¼ p2 � p30 � p5 � p60 ¼ pyz (32)

and

 3ðT2gÞ ¼ p10 � p20 þ p40 � p50 ¼ pxy: (33)

The MOs of T2g symmetry are therefore

t2g, xy ¼ a10½ndxy� þ b10 pxy , (34)

t2g, yz ¼ a11½ndyz� þ b11 pyz , (35)

t2g, zx ¼ a12½ndzx� þ b12 pzx : (36)

As an example, t2g,zx is shown in Figure 6.9(b). The character system �(T1g) is

{ 3 �1 0 1 �1} and so

 1ðT1gÞ¼ 3ðp1Þ � 1ð�p1Þ þ 1ðp2 þ p5 þ p6 � p3Þ � 1ð�p2 � p5 þ p3 � p6Þ
þ 3ð�p4Þ � 1ðp4Þ þ 1ð�p5 � p2 � p3 þ p6Þ � 1ðp5 þ p2 � p6 þ p3Þ,

giving

 1ðT1gÞ ¼ p1 � p3 � p4 þ p6: (37)

There is no metal orbital of T1g symmetry, so eq. (37) represents a non-bonding MO, t1g,y.

The three degenerate MOs of T1g symmetry are therefore

t1g, x ¼ b13½p2 þ p30 � p5 þ p60�, (38)

t1g, y ¼ b14½p1 � p3 � p4 þ p6� , (39)

t1g, z ¼ b15½p10 þ p20 þ p40 þ p50�: (40)

Finally, the character system �(T2u) is {3 �1 0 �1 1} so that

 1ðT2uÞ¼ 3ðp1Þ � 1ð�p1Þ � 1ðp2 þ p5 þ p6 � p3Þ þ 1ð�p2 � p5 þ p3 � p6Þ

� 3ð�p4Þ þ 1ðp4Þ þ 1ð�p5 � p2 � p3 þ p6Þ � 1ðp5 þ p2 � p6 þ p3Þ,
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giving

 1ðT2uÞ ¼ p1 � p2 þ p4 � p5: (41)

There is no metal orbital of T2u symmetry, so eq. (41) represents a non-bonding MO, t2u,z.

By inspection, the three degenerate MOs of T2u symmetry are

t2u, x ¼ b16½p20 þ p3 � p50 þ p6�, (42)

t2u, y ¼ b17½p10 � p60 � p40 � p3 0�, (43)

t2u, z ¼ b18½p1 � p2 þ p4 � p5�: (44)

A schematic energy-level diagram is shown in Figure 6.10. To draw an accurate energy-

level diagram for any specific molecule would require an actual quantum chemical

calculation. The energy levels are labeled by the appropriate group theoretical symbols

for the corresponding IRs.When the same IR occurs more than once, the convention is used

that energy levels belonging to the same IR are labeled 1, 2, 3, beginning at the lowest level.

In summary, in ascending order, there are

(i) the � orbitals: 1a1g, 1t1u, 1eg, fully occupied by twelve electrons;

(ii) the mainly ligand p orbitals: 1t2g, 2t1u, t2u, t1g, which hold twenty-four electrons;

(iii) the metal d orbitals 2t2g (or d") (with a small mixture of mainly non-bonding ligand p)
and 2eg (or d�) plus ligand �;

(iv) the anti-bonding 2a1g, 3t1u, �* orbitals.

pσ (A1g,Eg,T1u) 

(n+1)p

(n+1)s

nd T2g ,Eg

1a1g

1t1u

1eg

1t2g

2t2 g

T1u

A1g

2t1u

2eg

2a1g

3t1u

t2u

t1g

pπ(T1g,T1u,T2g,T2u)

MOM L

π ∗

σ ∗
σ ∗

σ ∗

∆

Figure 6.10. Schematic energy-level diagram for ML6 complexes.
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For example, [MoCl6]
3� has a total of thirty-nine valence electrons from the molyb-

denum 4d5 5s and six chlorine 3p5 configurations, and the �3 charge on the ion.

Its electron configuration is therefore �12 p24 (2t2g)
3. Thus the MO theory of these

ML6 complex ions confirms that the electrons of prime importance are those occupying

the t2g and eg levels on the metal, as predicted by crystal-field theory. However, the MO

theory points the way to the more accurate calculation of electronic structure and

properties.

Answer to Exercise 6.4-1

The three MOs for the Eg representation in eqs. (11), (12), and (13) are not LI since

 1(Eg)þ 2(Eg)þ 3(Eg)¼ 0. In the ZOA,

(14), (15) h�1 � �2 þ �4 � �5j2�3 � �4 � �5 þ 2�6 � �1 � �2i

¼ �1þ 1� 1þ 1 ¼ 0,

so these two basis functions are indeed orthogonal.

Problems

6.1 The point group of dodecahedral Mo(CN)8
4� is D2d. List the symmetry operators of this

point group and determine which atomic orbitals of Mo4þ form hybrid � bonds in

Mo(CN)8
4�.

6.2 Show that the LCAO MOs which form bases for the MOs of benzene (in addition

to a2u) are

 ðB2gÞ¼ 1= ffiffiffi
6

p ½�1 � �2 þ �3 � �4 þ �5 � �6�,

 1ðE1gÞ¼ 1= ffiffiffiffiffi
12

p ½2�1 þ �2 � �3 � 2�4 � �5 þ �6�,

 2ðE1gÞ¼ 1= ffiffiffiffiffi
12

p ½�1 þ 2�2 þ �3 � �4 � 2�5 � �6�,

 1ðE2uÞ¼ 1= ffiffiffiffiffi
12

p ½2�1 � �2 � �3 þ 2�4 � �5 � �6�,

 2ðE2uÞ¼ 1= ffiffiffiffiffi
12

p ½�1 � 2�2 þ �3 þ �4 � 2�5 þ �6�:

Show also that the MOs

e1g ¼ 1= ffiffiffi
3

p ½ 1ðE1gÞ þ  2ðE1gÞ�,

e1g
0 ¼ ½ 1ðE1gÞ �  2ðE1gÞ�
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are normalized and orthogonal. Find similarly the pair of orthonormal MOs for the

representation E2u. Indicate in sketches how the signs of the MOs vary around the

benzene ring and mark the nodal planes. Which orbitals would you expect to be

bonding and which antibonding? Confirm your conclusions by working out the

energies of these MOs using the Hückel approximations. [Hint: Use the ZOA when

determining normalization factors and when checking for orthogonality.]

6.3 Determine the MOs for the square planar molecule ML4 of D4h symmetry. [Hint: Set

up right-handed axes �, p?, p00 on each ligand.]

6.4 Determine the symmetry of the � bondedMOs in square-pyramidalML5. Use projection

operators to find the LCAO Molecular Orbitals for ML5, assuming d2sp2 hybridization

to predominate.

6.5 sd 3 hybridization predominates in the tetrahedral MnO�
4 permanganate ion. Find

orthonormal linear combinations t2, t2
0, t2

00 of oxygen p orbitals that are involved in

� bonding. [Hint: The symmetry of the molecule requires that �1, �2, �3, �4 all occur

with equal weighting in the triply degenerate t2 orbitals. This suggests that we try �1þ
�2, �1 þ �3, �1 þ �4, where �i is the linear combination projected from �i.] Write

down the bonding � orbitals in matrix form,

½a t2, t2
0, t2

00� ¼ ½�1 �2 �3 �4�M,

and hence determine the sd3 hybrid orbitals. Finally, write down equations for the

linear combination of �1, �2, �3, �4 with these hybrids and make sketches of the bond

orbitals. [Hint: This requires that you decide (by inspection) which of the hybrids

overlaps with which �r.]

6.6 (a) Assuming cyclobutadiene (C4H4) to be square planar, determine the symmetry of

the MOs formed from a linear combination of carbon 2pzAOs, one for each of the four

carbon atoms. Use projection operators to determine these MOs and normalize in the

ZOA. Show in sketches how the sign of each MO varies around the square and mark in

the nodal planes. Hence determine the order of the stability of the MOs and show this

in an energy-level diagram which shows which orbitals are occupied in the ground

state. Calculate the energies of the MOs using the Hückel approximations and add

these energies to your energy-level diagram, marking bonding, non-bonding and

antibonding orbitals.

(b) In fact, cyclobutadiene undergoes a Jahn–Teller distortion so that its shape is

rectangular rather than square. Show the energy-level splittings and re-labeling of

MOs in the reduced symmetry.

(c) Removing two electrons from the highest occupied level in cyclobutadiene gives

the dication [C4H4]
2þ, which has a non-planar configuration of D2d symmetry. Show

the re-labeling of energy levels that occurs in the dication. Find the symmetries and

spin degeneracies of the ground and first excited electronic states of [C4H4]
2þ.

Determine if an E1 transition is allowed between these two states, and, if it is, state

the polarization of the allowed transition. [Hint: Assume that the energy gain from

unpairing spins in the dication is < 2�.]
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7 Crystal-field theory

7.1 Electron spin

In the early years of quantum mechanics, certain experiments, notably the anomalous

Zeeman effect and the Stern–Gerlach experiment, made necessary the introduction of the

idea that an electron possessed an intrinsic angular momentum in addition to the ordinary

angular momentum L. The additional degrees of freedom were accounted for by postulat-

ing that an electron was spinning about an axis in space. According to the spin postulate of

quantummechanics, an electron possesses an intrinsic angular momentum described by the

spin vector S and a magnetic moment

m ¼ �geSðmB=�hÞ ¼ �geSðe=2meÞ, (1)

where me is the mass of the electron and mB is the Bohr magneton, the atomic unit of

magnetic moment, with the numerical value

mB ¼ e�h=2me ¼ 0:9274� 10�23 J T�1: (2)

The only allowed value of the spin quantum number, which quantizes the square of the spin

angular momentum, is s¼ 1=2. For free electrons ge is 2.00232. It follows from the com-

mutation relations (CRs) obeyed by the angular momentum operators that the angular

momentum quantum numbers may have integer or half-integer values (Chapter 11). The

Stern–Gerlach experiment had shown that s¼ 1=2. That ge is equal to 2 rather than 1 comes

from Dirac’s theory of the electron (the precise value of ge comes from quantum electro-

dynamics). The components of S are Sx, Sy, Sz, and the associated self-adjoint spin

operators Ŝx, Ŝy, Ŝz, Ŝ2 obey similar CRs to the angular momentum operators

L̂x, L̂y, L̂z, L̂
2. Since Ŝx, Ŝy, Ŝz all commute with Ŝ2, but not with one another, only one

component of Ŝ, taken to be Ŝz, can have a common set of eigenvectors with Ŝ2. The linear

vector space in which the spin vectors operate (spin space) is separate from configuration

space. Consequently, the spin operators do not act on space variables x, y, z, and therefore

they commute with L̂2 and with the components of L̂. Because of the existence of S,

electrons have a total angular momentum

J ¼ Lþ S: (3)

Ĵ2 and the components of Ĵ obey similar CRs to those of L̂2 and the components of L̂, so

that results which follow from the CRs for L̂ therefore also hold for Ŝ and for Ĵ. In

particular, for any operator ĵ that obeys these CRs,
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ĵþj j mi ¼ cþj j mþ 1i, (4)

ĵ�j j mi ¼ c�j j m� 1i, (5)

where ĵþ, ĵ� are the raising and lowering operators

ĵþ ¼ ĵx þ i ĵy, ĵ� ¼ ĵx � i ĵy, (6)

and j j mi are the common set of eigenvectors of ĵ 2 and ĵz, with j and m the corresponding

quantum numbers.

c� ¼ ½ jðjþ 1Þ � mðm� 1Þ�1=2: (7)

The quantum number j is an integer or half-integer. The eigenvalues of j2 are j(jþ 1) and

the eigenvalues of jz are m¼� j, � jþ 1, . . . , j (in atomic units). These results, which are

proved in Chapter 11 and in most books on quantum mechanics (for example, Atkins

(1983)), follow from the CRs and therefore hold for L, S, and J. For L, l is an integer, but

for S the only value of s is 1=2, so that the eigenvalues of Sz are ms¼�1=2, þ1=2 and the

eigenvalue of S2 is s(sþ 1)¼ 3=4. Since there are only two allowed values for the eigen-

values of Sz, there are only two spin eigenvectors |s msi, namely |1=2 1=2i and |1=2 �1=2i. In
function notation, the first of these is called � and the second one is called �. The

eigenvectors |s msi have two components which describe their projections along the two

basis vectors. Since one-particle spin space contains only the two vectors |1=2 1=2i and
1=2

1=2ij , their matrix representatives (MRs) are |1 0i and |0 1i, respectively, which satisfy
the orthonormal conditions for the spin eigenvectors. For example, the matrix representa-

tion of the orthogonality relation

1

2

1

2

����� 12 1

2

* +
¼ 0 (8)

is

h1 0j0 1i ¼ 0: (9)

Warning: Dirac notation is used in eq. (8); matrix notation is used in eq. (9).

The MRs of the spin operators are readily obtained using their known properties (as

given above) and the MRs of the spin eigenvectors.

7.2 Spherical symmetry

Let j1, j2 denote any two angular momenta (S orL or J) that obey the CRs and let j¼ j1þ j2.

Then (in atomic units)

jj2j ¼ jð jþ 1Þ, jz ¼ m, (1)
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where

j ¼ j1 þ j2, j1 þ j2 � 1, . . . , j j1 � j2j, (2)

m ¼ j, j� 1, . . . , � j: (3)

The quantum number j must be an integer or half-integer. These results, which are proved

in Chapter 11, hold for j¼L or S or J.

In a many-electron atom or ion, the Hamiltonian

Ĥ ¼ Ĥ0 þ Ĥee þ ĤS:L (4)

consists of three principal terms. Ĥ0 comprises the kinetic energy of the electrons and the

electron–nucleus interactions.Approximating Ĥ by Ĥ0 alone leads to the orbital approximation

Cð1, 2, . . . , NÞ ¼ C1ð1ÞC2ð2Þ . . . jCN ðNÞ, (5)

with one-electron states characterized by the four quantum numbers n, l, ml, and ms. The

argument (1) in eq. (5) stands for the position variables and spin of electron 1, and similarly.

Ĥee is the electron–electron interaction, and ĤS.L is the spin–orbit interaction; it is propor-

tional to �2 Z2, where � is the fine structure constant 7.29735� 10�3 (’1/137), so that in

atoms of low Z, Ĥee � ĤS.L. The interaction Ĥee introduces a coupling of the angular

momenta of the individual electrons such that
P
i

Li ¼ L, the total orbital angular momen-

tum, and
P
i

Si ¼ S, the total spin angular momentum. This is called Russell–Saunders (RS)

coupling. The quantum numbers L and S are given by the rules in eqs. (2) and (3). These rules,

together with the Pauli exclusion principle, that the state functionC must be antisymmetric

with respect to the interchange of any two electrons, allow the determination of the quantum

numbers L, S for any electron configuration. To fulfil the antisymmetry requirement, the

product state function in eq. (5) must be antisymmetrized, giving

Cð1, 2, . . . , NÞ ¼ 1ffiffiffiffiffi
N !

p

C1ð1Þ C2ð1Þ � � � CN ð1Þ
C1ð2Þ C2ð2Þ CN ð2Þ

..

.

C1ðNÞ C2ðNÞ CN ðNÞ

���������

���������
: (6)

The coupled energy states in RS coupling are called multiplets and are described by

spectral terms of the form 2Sþ 1X, where 2Sþ 1 is the spin multiplicity and S is the total

spin quantum number.

X ¼ S, P, D, F, G, . . . (7a)

when the total orbital angular momentum quantum number

L ¼ 0, 1, 2, 3, 4, . . . : (7b)

The spin–orbit interaction, which couples L and S to give a total angular momentum J,

splits the multiplets into their components labeled 2Sþ 1XJ, where J is the total angular

momentum quantum number. The spin–orbit splitting is given by (Bethe (1964))
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�ES:L ¼ 1=2�½JðJ þ 1Þ � LðLþ 1Þ � SðS þ 1Þ�, (8)

where �(L, S), the spin–orbit coupling constant, is a constant for a given multiplet.

For shells that are less than half filled, � > 0, and so the state of smallest J lies lowest,

but if a shell is more than half filled then � < 0 and the state of largest J lies lowest. This is

called Hund’s third rule. While this rule is a good guide, there are some exceptions;

for example, � < 0 for d3 : 2F. For a half-filled shell of maximum multiplicity, �¼ 0 in

first order. For regular multiplets (those that are less than half filled) the lowest energy

state is that of highest S. For states of equal S, that with the largest L lies lowest, and in

this multiplet that with the smallest J lies lowest. Straightforward procedures exist for

finding all the multiplets for a particular electron configuration. For example, for d2 the

terms are 3F, 1D, 1G, 3P, and 1S. This ordering illustrates that the 3F ground state is given

correctly by the above rules and that they do not apply to excited states since 1D lies

below 1G.

7.3 Intermediate crystal field

For atoms of ‘‘low’’ Z the Hamiltonian Ĥ, with terms in increasing order of smallness, is

Ĥ ¼ Ĥ0 þ Ĥee þ ĤS:L ð1Þ

ĤCF is the term to be added to the Hamiltonian which describes the electrostatic interac-

tions of the central ion with the surrounding ions or ligands. If this term is larger than the

electron–electron interactions, the electric field due to the surroundings is termed a strong

crystal field; if it is smaller than Ĥee but larger than the spin–orbit coupling it is called an

intermediate crystal field; and if it is smaller than ĤS.L it is called aweak field. We consider

first the case of an intermediate crystal field, which can be regarded as a perturbation on the

Russell–Saunders multiplets defined by the values of L, S. Consider a one-electron atomic

term with angular momentum l. A representation �l for any group of proper rotations may

be found by using the angular momentum eigenfunctions, i.e. the spherical harmonics

fYm
l g, as a (2lþ1)-fold degenerate basis set.

R̂ð� zÞYm
l ð�,’Þ ¼ Ym

l ðR�1f�,’gÞ ¼ Ym
l ð�,’� �Þ

¼ expð�im�ÞYm
l ð�,’Þ (2)

(see Figure 7.1) so that each member of the set is transformed into itself multiplied by the

numerical coefficient exp(�im�). Therefore

R̂ð� zÞhfYm
l ð�,’Þgj ¼ hfYm

l ð�,’Þgj�lð�Þ (3)

with �l(�) a diagonal matrix with entries exp(�im�), where m¼ l, l�1, . . . , �l:
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(2), (3) �lð�Þ ¼

e�il�

e�iðl�1Þ�

. .
.

eil�

2
664

3
775, (4)

(4) �ð�lð�ÞÞ ¼ e�il� P2l
p¼0

ei�p: (5)

The sum in eq. (5) is a geometric progression, that is a series in which the ratio of any term

to the preceding one has a constant value, the common ratio r. The sum to n terms is

Sn ¼ aðrn � 1Þ=ðr � 1Þ, (6)

where the first term a¼ 1, the common ratio r¼ ei�, and the number of terms n¼ 2lþ 1.

(5), (6) �ð�lð�ÞÞ ¼ e�il�½eið2lþ1Þ� � 1�=½ei� � 1�: (7)

On multiplying the numerator and the denominator of the RS of eq. (7) by expð�i�=2Þ, it is
seen to be

�ð�lð�ÞÞ � �lð�Þ ¼ sin½ð2l þ 1Þ�=2�= sinð�=2Þ: (8)

It is shown in Chapter 11 that eq. (8) holds (with l replaced by j) for any operator Ĵ with

components Ĵx, Ĵy, Ĵz that obey the angular momentum CRs. (The quantum number j

determines the eigenvalues of J2, from eq. (11.4.40).) Consequently, eq. (8) applies also to

the many-electron case with l replaced by L,

�ð�Lð�ÞÞ ¼ sin ½ð2Lþ 1Þ�=2�= sinð�=2Þ: (9)

The location of the axes is arbitrary so that this result holds for any proper rotation R(� n).

(A formal proof that the MRs of all rotations through the same angle have the same

X  

Y

Z

r

r′

φ

φ

θ
θ

ϕ

Figure 7.1. The operator [R(� z)]� 1 transforms the vector r into r0 and therefore the azimuthal angle

’ into ’ – � (see eq. ( 7.2)).
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character will be given in Chapter 12.) From eq. (9) we may calculate the character system

for any group of proper rotations for any L and, if this is not already irreducible, reduce this

in the usual way into a direct sum of IRs.

Exercise 7.3-1 Show that for a state in which the orbital angular momentum is L,

�ðEÞ ¼ 2Lþ 1: (10)

The characters �[�L(�)] for �¼ p/2, 2p/3, and p are given in Table 7.1, which also shows

the splitting of free-ion states in a cubic field when L � 2. The splitting of states in lower

symmetries is given in correlation tables (seeAppendixA4). Should a correlation table not be

available, one can always find the direct sums using the common classes (or corresponding

classes) of the two groups. An example of this procedure will be given later.

7.3.1 Improper rotations

The improper rotations S, I, and � can all be expressed in the form IR, where R is a proper

rotation. Let l be the eigenvalue of the inversion operator,

Î ¼ l : (11)

A symmetry operator leaves the physical properties of a system unchanged, and therefore

|Î |2¼ |l |2¼ | |2, so that l¼ exp(i�). Operating on each side of eq. (11) with I gives

l2¼ exp(2i�)¼ 1, so l¼�1. The eigenvalue of an operator (such as I ), the square of

which is the unit operator, is called the parity. The parity of a basis function is said to be

‘even’ if l¼þ1 and ‘odd’ if l¼�1. In molecular symmetry a subscript g or u is used to

Table 7.1. Splitting of the states of angular momentum L in an

intermediate crystal field.

See eq. (9) and Exercise 7.3-1.

�ðEÞ ¼ 2Lþ 1

�ðC2Þ ¼ sin½ð2Lþ 1Þp=2�= sinðp=2Þ ¼ ð�1ÞL

�ðC3Þ ¼ sin½ð2Lþ 1Þp=3�= sinðp=3Þ ¼
1 for L ¼ 0, 3, . . .
0 for L ¼ 1, 4, . . .

�1 for L ¼ 2, 5, . . .

(

�ðC4Þ ¼ sin½ð2Lþ 1Þp=4�= sinðp=4Þ ¼ 1 for L ¼ 0, 1, 4, 5, . . .
�1 for L ¼ 2, 3, 6, 7, . . .

�

State �L Direct sum in cubic field

S �0 A1

P �1 T1

D �2 E	T2

F �3 A2	T1	T2

G �4 A1	E	T1	T2
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denote even or odd parity, but for atomic states a superscript þ or � is commonly used

instead. Thus, if l¼þ1, I þ¼ þ, but if l¼�1, I �¼� �. The parity of the spherical

harmonics is (�1)l, and since Îr¼ r, the parity of the one-electon states is given by

s p d f

l ¼ 0 1 2 3

l¼ 1 �1 1 �1:
The antisymmetrized state function for N electrons is the sum of products such as

 1(1) 2(2) . . .  N(N) and similar terms with the variables permuted between the same

set of one-electron eigenfunctions { 1  2 . . .  N}. Thus each term contains the same

product of spherical harmonics and the state therefore has parity

l ¼
Y
i
ð�1Þli ¼ ð�1Þ

P
i

li
: (12)

Notice that the parity of an atomic state is determined by its electron configuration, not by

its total orbital angular momentum.

Exercise 7.3-2 Determine the parity of the atomic states derived from the electron con-

figurations: nsnp, nd3, npn0p.

If I 2 G, and the parity is even,

�½�þ
L ðIRÞ� ¼ �½�þ

L ðRÞ�, (13)

but if the parity is odd

�½��
L ðIRÞ� ¼ ��½��

L ðRÞ�: (14)

We can now formulate two rules for the characters of improper groups.

(1) If I2G, then G¼H
Ci¼ {H}þ I{H} and the character table for Gmay be constructed

from that ofH. (See, for example, the character tables of D6h andOh.) Oh¼O
Ci and the

character table for Oh is given in Table 7.2, where g and u signify g and u IRs and �{O}

means the characters for the group O. (See the character table of Oh in Appendix A3.)

(2) If I =2 G but G contains improper rotations then

G ¼ fQg þ IRfQg, (15)

where Q is a subgroup of proper rotations (sometimes called a halving subgroup), and

G is isomorphous with the proper point group

P ¼ fQg þ RfQg (16)

Table 7.2.

Oh {O} I{O}

g �{O} �{O}
u �{O} ��{O}
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(see Table 2.6). G has the same classes and representations as P, though we need to

identify corresponding classes. If G is C2v, and therefore P is D2, the class of C2v that

corresponds to the class C2y in D2 is IC2y¼ �y. Similarly,C2x and �x are corresponding

classes. Note however, that some basis functions may belong to different representa-

tions in G and in P (see Table 7.3). These rules hold also for ‘‘double groups.’’

Example 7.3-1 (a) Into which states does the Russell–Saunders term d2 : 3F split in an

intermediate field of Oh symmetry? (b) Small departures from cubic symmetry often occur

as a result of crystal defects, substituent ligands, and various other static and dynamic

perturbations. If some of the IRs of O do not occur in the group of lower symmetry, then

additional splittings of degenerate levels belonging to such IRs must occur. Consider the

effect of a trigonal distortion of D3 symmetry on the states derived in (a) above.

(a) For 3F, L¼ 3, S¼ 1. The spin quantum number is not affected by an electrostatic

field, and so all the states are still triplets in a crystal field. From eq. (12), the parity

l¼ (�1)2þ2¼ 1. From Table 7.1, the states are 3A2g,
3T1g,

3T2g. (b) Select the common

(or corresponding) classes for the two groups and reduce the representations, where

necessary, in the group of lower symmetry. The relevant characters of O and D3, which

are isomorphous with C3v, are shown in Table 7.4. The representations T1 and T2 of O are

reducible in D3 into the direct sums shown in Table 7.5, a process called subduction. This is

Table 7.3. Character tables for the point groups D2 and C2v.

Because there is no unique principal axis in D2, the Mulliken conventions

are not used in naming the representations of D2. These two groups are

isomorphous and the character systems of the four IRs are identical, but

corresponding representations are labeled differently, which tends to

obscure rather than emphasize the isomorphism. Note that C2x and �x are

corresponding elements, and so are C2y and �y. Note that bases for the

corresponding IRs are not necessarily identical (for example, z does not

form a basis for the totally symmetric representation in D2). In C2v, the

Mulliken designations B1 and B2 are arbitrary because there are two

equivalent improper binary axes normal to z.

D2 E C2z C2x C2y

A 1 1 1 1 x2, y2, z2

B1 1 1 �1 �1 z, Rz, xy
B2 1 �1 �1 1 y, Ry, zx
B3 1 �1 1 �1 x, Rx, yz

C2v E C2z �x �y

A1 1 1 1 1 z, x2, y2, z2

A2 1 1 �1 �1 Rz, xy
B1 1 �1 �1 1 x, Ry, zx
B2 1 �1 1 �1 y, Rx, yz
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the way in which correlation tables are derived, and it is the method that should used in

investigating the possible splitting of degeneracies when the necessary correlation table is

not available.

Answers to Exercises 7.3

Exercise 7.3-1 The character of E in any representation is the degeneracy of that repres-

entation. The degeneracy of a state with orbital angular momentum L is 2Lþ 1 because

there are 2Lþ 1 allowed values of the quantum number M¼ L, L� 1, . . . ,�L.

Exercise 7.3-2 For nsnp, l¼ (�1)0þ1¼�1; for nd3, l¼ (�1)2þ2þ2¼þ1; for npn0p,

l¼ (�1)1þ1¼þ1.

7.4 Strong crystal fields

A strong crystal field is one in which the electrostatic interactions due to the surroundings

of an ion provide a stronger perturbation than the electron–electron interactions within the

ion. One must therefore consider the effect of the field on the free-ion electron configura-

tion and deduce which states are allowed and their degeneracies. We will then be in a

position to draw a correlation diagram showing qualitatively the shift in the energy levels

as the field strength varies from ‘‘intermediate’’ to ‘‘strong.’’ We have seen that in Oh

symmetry the five-fold degeneracy of the d levels in a free ion is reduced to a t2g orbital

Table 7.4. Characters for the classes common to O and D3.

D3 E 2C3 3C0
2

A1 1 1 1
A2 1 1 �1
E 2 �1 0

O E 8C3 6C0
2

A2 1 1 � 1
T1 3 0 � 1
T2 3 0 1

Table 7.5. Correlation of the

representations A2, T1, and T2 of O

with those of D3.

O D3

A2 A2

T1 A2	E
T2 A1	E
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triplet and an eg doublet (Table 6.4). The three-fold degenerate t2g levels lie below the two-

fold degenerate eg levels because of the greater Coulomb repulsion between the ligands and

electrons in dx2�y2 and d3z2�r2 orbitals (Figure 7.2) compared with electrons in dxy, dyz, or dzx
orbitals, where the charge density lies mainly between the ligands in octahedral symmetry.

This situation is in direct contrast to Td symmetry in which the two e orbitals point between

the ligands and there is greater electrostatic repulsion between electrons in t2 orbitals and

the surrounding ligands. Consequently, the e levels lie below the t2 levels in a Td complex

(Figure 7.2).

Exercise 7.4-1 Predict qualitatively the splitting of the five-fold degenerate free-ion d

states when a positive ion M is surrounded by eight negative ions which are located at the

corners of a cube.

To determine the states in a strong field we shall make use of Bethe’s method of

descending symmetry. This is based on: (i) the fact that an electrostatic field does not

affect the spin; and (ii) that if  (1, 2)¼ i (1)  j (2), where  i (1) forms a basis for �i and

 j(2) forms a basis for �j, then the product  i (1)  j (2) forms a basis for the DP

representation �i
�j. To implement Bethe’s method we need to use two rules:

(1) two electrons in the same orbital give rise to a singlet state only; but

(2) two electrons in different orbitals give rise to a singlet and a triplet state.

To understand the reason for this requires a small digression on permutation symmetry. It is

a fundamental law of nature, known as the Pauli exclusion principle, that the total state

function for a system of N indistinguishable particles which are fermions, that is have

spin 1=2, 3=2, . . ., must be antisymmetricwith respect to the interchange of any two particles.

Let Pij denote the operator that interchanges the positions and spins of indistinguish-

able particles i and j. Then |P12 (1, 2)|
2¼ | (1, 2)|2, so that P12 (1, 2)¼ exp(i�) (1, 2).

On repeating the interchange, P12P12 (1, 2)¼ exp(2i�) (1, 2)¼ (1, 2). Therefore,

exp (2i�)¼ 1, P12 (1, 2)¼� (1, 2). This means that  could be either symmetric or

antisymmetric with respect to the interchange of indistinguishable particles, but, in fact, for

fermions  is antisymmetric, P12 ¼� , so that the state function  is an eigenfunction of

P12 with eigenvalue�1. For a two-particle system, the state function (spin orbital)

 � (1, 2) can be written as a product  ¼�� of an orbital �(1, 2) and a spinor �(1, 2).

For two electrons in the same orbital � is symmetric, and so �must be antisymmetric. There

t2

e

eg

t2g

Td Oh

Figure 7.2. Energy-level diagram of the splitting of the five d orbitals in crystal fields of Td and

octahedral Oh symmetry.
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are two possibilities as shown in Table 7.6. Neither �1 nor �2 are eigenfunctions of P12 so

they must be antisymmetrized by the antisymmetrizing operator

A ¼ 2�½½1� P12�: (1)

A�ð1Þ�ð2Þ ¼ 2�½½�ð1Þ�ð2Þ � �ð2Þ�ð1Þ� � �ð1, 2Þ, (2)

which is normalized and antisymmetric. Similarly, S ¼ 2�
1=2 [1þP12] is a symmetrizing

operator. Note that A (�2) gives��(1, 2), which differs from �(1, 2) only by a phase

factor, so there is only one independent antisymmetric spin function �(1, 2), which

describes a singlet state. It is an eigenfunction of Ŝz with MS¼ 0 and of Ŝ2 with S¼ 0.

For two electrons in two different orbitals, � may be symmetric or antisymmetric.

Consequently, � may be antisymmetric or symmetric. There is only one antisymmetric

possibility, as seen above, but there are three independent spin functions that are symmetric

(see Table 7.7). The first three spin functions �s are symmetric and the three functions  (1,

2)¼�as�s describe the triplet state, while the state function  (1, 2)¼�s�as corresponds to

the singlet state. This establishes the two rules (1) and (2) listed above.

(Comment: It is the action of the antisymmetrizing operator on the product state function

in eq. (7.2.5) that produces the Slater determinant in eq. (7.2.6). However, the factorization

into an orbital function of r and a spinor, that simplifies our work when N¼ 2, does not

occur for N> 2.)

Example 7.4-1 Find all the states that arise from the configuration d2 in a strong field of Oh

symmetry. Correlate these states with those of the free ion, and of the ion in an intermediate

field.

The solution using Bethe’s method of descending symmetry is summarized in Table 7.8.

In the strong-field limit the possible electron configurations derived from d2 in the free ion

Table 7.6.

ms1
ms2

MS (¼ms1
þms2

) S (¼ largest value of MS)

�1¼�(1)�(2) 1=2 �1=2 0 0

�2¼�(2)�(1) �1=2
1=2 0 0

Table 7.7. Symmetric and antisymmetric spin functions for two electrons in two

different orbitals.

�(1, 2) MS S

�(1)�(2) 1

� 1

0

9=
;�(1)�(2) 1

S �(1)�(2)¼ 2�
1=2[�(1)�(2)þ�(2)�(1)]

A�(1)�(2)¼ 2�
1=2[�(1)�(2)��(2)�(1)] 0 0
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Table 7.8. Application of the method of descending symmetry to the configuration d2 in Oh symmetry.

Point group Configuration
Direct product
representation

Irreducible
representations Allowed states Degeneracy

Oh e2g Eg
Eg A1g	A2g	Eg 6

D4h A1g B1g A1g	B1g

a21g A1g
A1g A1g
1A1g

a1g b1g A1g
B1g B1g
1B1g

3B1g

b21g B1g
B1g A1g
1A1g

Oh
1A1g

3A2g
1Eg 6

Oh t22g T2g
T2g A1g	Eg	T1g	T2g 15

C2h Ag Ag	Bg Ag	Bg	Bg Ag	Ag	Bg

a2g Ag
Ag Ag
1Ag

ag ag
0 Ag
Ag Ag

1Ag
3Ag

(ag
0)2 Ag
Ag Ag

1Ag

ag bg Ag
Bg Bg
1Bg

3Bg

ag
0 bg Ag
Bg Bg

1Bg
3Bg

b2g Bg
Bg Ag
1Ag

Oh
1A1g

1Eg
3T1g

1T2g 15

Oh t2g eg T2g
Eg T1g	T2g
1T1g

3T1g
1T2g

3T2g 24



are: t 22g, t
1
2ge

1
g, and e2g. Since all the states derived from the configuration d2 are of even

parity, we may use the character table for O in reducing DPs. The result (ii) above is used

continually. The configuration e2g gives rise to six states in all, two singlets when the two

electrons are both in the same eg orbital (with opposed spins) and a singlet and a triplet

when they are in different eg orbitals. Since both electrons are in orbitals of eg symmetry,

these six state functions form bases for the IRs that are contained in the DP representation

Eg
Eg. From the character table for O, E
E¼ {4 4 1 0 0}¼A1	A2	E. At this stage

we do not know which of these states are singlets and which are triplets. A reduction in

symmetry has no effect on the spin, and the essence of Bethe’s method is to lower the

symmetry until all representations in the DP are 1-D. From a correlation table (Appendix

A4) we see that if the symmetry is reduced to D4h, the Eg representation becomes the direct

sum A1g	B1g. This means that the two-fold degeneracy of the eg levels is lifted by the

reduction in symmetry to D4h and they become a1g, b1g (Figure 7.3). The possible config-

urations are a21g, a1g b1g, and b
2
1g. The states derived from these configurations are shown in

the block of Table 7.8 labeled by the D4h point group. Only the a1gb1g configuration can

yield both singlet and triplet states. Therefore the B1g state derived from A2g in Oh is the

only triplet state. The states that arise from the electron configuration e2g are, therefore,
1A1g,

3A2g and
1Eg, with a total degeneracy of 6. We may make use of the degeneracy to

perform a final check on our deductions. Call the two eg orbitals eg and eg
0. There are,

therefore, four one-electron spin orbitals eg�, eg�, eg
0�, and eg

0�, and the two electrons

may be allotted to these four spin orbitals in a total of 4C2¼ 6 ways. The procedure for the

t22g configuration is analogous and is summarized in Table 7.8. The DP representation

T2
T2¼A1	E	T1	T2. In C2h symmetry the T2g representation becomes the direct

sum Ag	Ag	Bg. Call the two orbitals of Ag symmetry ag and ag
0. From the six possible

two-electron configurations, only three can yield triplet states, and the direct sum

Ag	Bg	Bg in C2h identifies the triplet state in Oh as T1g. Here there are six possible

one-electron spin orbitals obtained by combining each of the three orbital functions t2g, t2g
0,

t2g
00 with either � or � for a total degeneracy of 6C2¼ 15. Finally, for the configuration t2geg

there is no need to use descending symmetry. Because the two electrons are in different

orbitals, one in t2g and one in eg, both singlets and triplets occur. The configuration t2geg

requires that the twenty-four spin orbitals obtained by combining any of the six functions

t2g�, t2g� with any of the four functions eg�, eg� (and antisymmetrizing where necessary)

form bases for the representations T2g
Eg¼T1g	T2g. Therefore the states from config-

uration t2geg are
1T1g,

3T1g,
1T2g,

3T2g, with a total degeneracy of 24. Descending symmetry

gives the same result. The whole procedure is summarized in Table 7.8. The correlation

diagram is given in Figure 7.4. This shows qualitatively the dependence of the energy

levels on the strength of the crystal field. The strong-field limit is on the right and the states

eg

b1g

Oh

a1g

D4h

Figure 7.3. Splitting of the eg levels when the symmetry is lowered from Oh to D4h.

7.4 Strong crystal fields 143



found Table 7.8 must correlate with those of the same symmetry in the intermediate- (or

medium-) field case. In drawing such diagrams we make use of some additional rules. The

non-crossing rule is a strict one: this says that states of the same symmetry and spin

multiplicity may not cross. When the order is not known (from either experiment or

calculation), the ground state may be identified by using two rules from atomic spec-

troscopy (Hund’s first and second rules). These are (i) that states of the highest spin

degeneracy lie lowest, and (ii) that for terms with the same S, the one with the higher orbital

degeneracy lies lower. Therefore in d2 the ground state is 3F, which lies lower than 3P.

We now consider the configuration nd8 in Oh. Two new principles must be observed.

Firstly, we may ignore doubly occupied orbitals since they contribute A1g to the DP and

zero to Ms and to S. To understand this, consider a lowering of symmetry until all

degeneracies have been lifted so that the electrons in doubly occupied orbitals are now

paired in orbitals that form bases for 1-D representations. This is illustrated for the

configuration t22g in Figure 7.5. Whatever the name of the representation in Mulliken

1S

1G

3P  

1D

3F

1A1

1E
1T1

1T2

 1A1

3T1

1E
1T2

3

3T2

3T1

1A1

1E

1T1
1T2

1A1

3T1

1E
1T2
3T1

e2

t2e

2
t2

3
 

3T2

Hee
ˆH0

ˆ HCF
ˆ++ HCF

ˆHee
ˆ H0

ˆ++

free ion intermediate 
field

strong 
field

A2

A2

Figure 7.4. Correlation diagram for d2(Oh). All states shown have even parity.

144 Crystal-field theory



notation (it is A1 or B1 or B2 in the example shown) the DP of a non-degenerate

representation with itself always yields the totally symmetric representation so that the

state shown is 1A1 in C2v, which correlates with
1A1g in Oh. This argument is quite general

and applies to any configuration containing only doubly occupied orbitals. The second

thing we must do is to take account of spin-pairing energy. Electrons in degenerate levels

tend to have unpaired spins whenever possible. This is because of Pauli repulsion, which is

a consequence of the antisymmetry requirement for a many-electron state function for

fermions. If two electrons have a symmetric spin function they will tend to remain apart in

space. Otherwise, sinceP12� (1, 2)¼�� (2, 1), the charge density would vanish in the limit

r2! r1. Since two electrons with a symmetric spin function tend to remain further apart

than two electrons with an antisymmetric spin function, they shield each other from the

nucleus to a smaller extent and so their Coulomb interaction with the nucleus is greater than

for two electrons with antisymmetric spin functions. This is the reason why triplets lie

below singlets and why it requires energy to pair up spins. But if electrons have to be

promoted to higher states in order to become unpaired, then this promotion energy must be

offset against the gain in energy from unpairing the spins. So the ground-state configura-

tion will depend on the crystal-field splitting. It is an empirical fact that spin pairing

requiresmore energy in eg orbitals than in t2g orbitals. Consequently, the ordering of the d
8

configurations is t62ge
2
g< t52ge

3
g< t42ge

4
g, because the number of eg pairs in the three config-

urations is 0< 1< 2. On the left of Figure 7.6 is shown the actual configurations in a d8

complex. Now use the first principle and re-write the configurations ignoring doubly

occupied orbitals. They are, in order of increasing energy, e2g< egt2g< t 22g. Therefore, d
8

behaves as if the ordering of the t2g, eg levels had been inverted (Figure 7.6). Consequently,

the correlation diagram for d8 is like that for d2 but with the ordering of the high-field states

inverted. Now in Td symmetry, the ordering of the levels is e2< et2< t2
2. Therefore, the

energy-level diagrams for states from d10�n (Oh) are like those for d
n (Td), and these are the

inverses of dn(O)h which are like those for d
10�n(Td). Energy-level diagrams for the d2 to d8

configurations in octahedral symmetry have been calculated by Tanabe and Sugano (1954)

(cf. Purcell and Kotz (1980), pp. 344–5).

Answer to Exercise 7.4-1

The position of the ligands is the same as that in Td symmetry but every corner of the cube

is occupied by a negative ion. Consequently, the energy-level diagram is like that for Td

symmetry (see Figure 7.2) but one should expect relatively larger crystal-field splittings for

the same ligands.

b2

t2g b1

a1

Oh C2v

Figure 7.5. Splitting of t2g levels when the symmetry is lowered to C2v.
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Problems

7.1 Describe the effect of an intermediate crystal field of Td symmetry on the states of an

ion with the configuration d2. Assume RS coupling to hold in the free ion so that the

free-ion states, in order of decreasing stability, are 3F, 1D, 3P, 1G, 1S. (a) First work out

the states, and their spin multiplicities, that arise in the strong-field limit (configur-

ations e2, et2, t
2
2) using Bethe’s method of descending symmetry, but employing

different point groups to those used in Example 7.4-1. (b) Next work out the splittings

of the Russell–Saunders states in an intermediate field. (c) Finally, draw a correlation

diagram showing qualitatively the splitting of the free-ion states as a function of field

strength. (Hints: For (a) use a correlation table (Appendix A4). For (b) use eqs.

(7.3.12)–(7.3.16). As their character tables show, Td is isomorphous with O. You

will need to identify corresponding classes in these two groups in order to make use of

eqs. (7.3.13) or (7.3.14).)

7.2 A Ce3þ ion has the configuration 4f 1 so that its ground state is the Russell–Saunders

multiplet 4F. In a crystal of CaF2 containing dissolved CeF3, the Ce
3þ ions substitute

for Ca2þ ions at lattice sites so that each Ce3þ ion is at the center of a cube of F� ions

(see Exercise 7.4-1). This cubic field is of a strength intermediate between the

2eg 

eg t2g

2
t2g

35t2g eg

26t2g eg

44t2g eg

0

1

2

number of
eg pairs

Figure 7.6. Ordering of the high-field energy levels in the d8 configuration.
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electron–electron interactions and the spin–orbit coupling. (a) Determine the character

system of the representation �L and reduce this representation into a direct sum of IRs.

(Hint: The parity of a state is determined by its electron configuration and not by its

spectral term. It is sufficient, therefore, to determine the parity for 4f 1 and then use the

character table of O.) (b) Charge compensation for the extra positive charge on Ce3þ is

provided by O2� impurity ions substituting for F�. For electrostatic reasons O2� ions

prefer to occupy nearest-neighbor sites to Ce3þ ions. What is the symmetry at these

Ce3þ sites which have an O2� ion as a nearest neighbor to the Ce3þ and what further

splitting and re-labeling of the 4f 1 states occur when the Ce3þ site symmetry is

lowered by the presence of an O2� in a nearest-neighbor position? (Do not use a

correlation table but perform the subduction explicitly.)

7.3 (a) Use Bethe’s method of descending symmetry to determine the states that arise from

a d8 configuration in a strong crystal field of Oh symmetry. (Hint: Correlation tables

are in Appendix A4, but use different point groups to those used in Example 7.4-1.)

Construct a correlation diagram showing qualitatively the shift of the free-ion energy

levels with increasing field strength.
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8 Double groups

8.1 Spin–orbit coupling and double groups

The spin–orbit coupling term in the Hamiltonian induces the coupling of the orbital and

spin angular momenta to give a total angular momentum J¼Lþ S. This results in a

splitting of the Russell–Saunders multiplets into their components, each of which is

labeled by the appropriate value of the total angular momentum quantum number J. The

character of the matrix representative (MR) of the operator R(� n) in the coupled

representation is

(7.3.9) �ð�Lð�ÞÞ ¼ sin½ð2Lþ 1Þ�=2�= sinð�=2Þ: (1)

A detailed analysis (Chapter 11) shows that this result depends upon the commutation

relations for the L operators, and, since the spin and the total angular momentum

operators obey the same commutation relations (CRs), this formula holds also for S

and for J:

(1) �ð�J ð�ÞÞ ¼ sin½ð2 J þ 1Þ�=2�= sinð�=2Þ: (2)

Now, L is an integer and S is an integer or half-integer; therefore the total angular

momentum quantum number J is an integer or half-integer. Consider a proper rotation

through an angle �þ 2p. Then

(2) �ð�J ð�þ 2pÞÞ ¼ sin½ðð2 J þ 1Þ�=2þ ð2 J þ 1ÞpÞ�
sin½ð�þ 2pÞ=2�

¼ sin½ð2 J þ 1Þ�=2� cos½ð2 J þ 1Þp�
�sinð�=2Þ (3)

¼ ð�1Þ2 J�ð�J ð�ÞÞ:

If J is an integer,

(3) �ð�J ð�þ 2pÞÞ ¼ �ð�J ð�ÞÞ, (4)

but if J is a half-integer, as will be the case for an atom with an odd number of electrons,

(3) �ð�J ð�þ 2pÞÞ ¼ ��ð�J ð�ÞÞ: (5)

In configuration space we would expect a rotation through �þ 2p to be equivalent to a

rotation through �. The curious behavior implied by eq. (5) arises because our state
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functions are spin orbitals and not functions in configuration space. Equation (5) suggests

the introduction of a new operator E, with the property ER¼R¼R(�þ 2p n). Adding

E to the group G¼ {R} gives the double group G¼ {R}þE{R}. Note that G contains

twice as many elements as G, but does not necessarily have twice the number of classes.

The number of new classes in G is given by Opechowski’s rules. (A proof of these rules is

given by Altmann (1986).)

(1) C2n¼EC2n and C2n are in the same class iff (meaning if, and only if) there is a (proper

or improper) rotation about another C2 axis normal to n.

(2) Cn¼ECn and Cn are always in different classes when n 6¼ 2.

(3) For n> 2, Cn
k and Cn

�k are in the same class, as are Cn
k and Cn

�k.

Exercise 8.1-1 Name the classes in the double point groups C4 and C2v.

Rewriting eqs. (2) and (3) in a slightly more convenient notation, we have

(2) �½Rð� nÞ� � �J ð�Þ ¼ sin½ð2 J þ 1Þ�=2�= sinð�=2Þ, (6)

(3) �½Rð� nÞ� ¼ �J ð�Þ ¼ �J ð�þ 2pÞ ¼ ð�1Þ2 J�J ð�Þ: (7)

Table 8.1 shows the characters �J(�) for R(� z), calculated from eq. (6) for half-

integral J, for the rotations of the proper point group O which occur also in O. For

R(� z), use eq. (7). For other values of � use eqs. (6) and (7). For improper rotations,

see Box 8.1. Equations (6) and (7) work equally well for integral J. For the classes of G (in

the current example G is O), integral values of J give the same results as L (in Table 7.1) so

that J¼ 0, 1, 2, 3 would generate all the standard representations of O. The characters for

the new classes ckCn of G are the same as those of the classes Ck of G, for integral J. For

half-integral J they have the same magnitude but opposite sign, in accordance with eq. (7).

The new representations of G that do not occur in G, and which are generated by half-

integral values of the total angular momentum quantum number J, are called the spinor

representations.

Box 8.1. Improper rotations.

If I 2 G, I J ¼ � J , G ¼ fHg þ IfHg and �½��
J ðIRÞ� ¼ ��½��

J ðRÞ�:
If I 62 G, then G¼ {H}þ IR{H} is isomorphous with P¼ {H}þR{H}, where R is a

proper rotation and {H} is a subgroup of proper rotations.

Then

�½�J ðIR0Þ� ¼ �½�J ðR0Þ�,

where R0 2 RfHg and IR0 2 G.

These rules hold for J integral or half-integral and so for L and S.
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Example 8.1-1 Derive the character table for the double group O.

This is given in Table 8.2. From Opechowski’s rules there are three new classes and

therefore three new representations. Since O contains twice as many elements as O, the

dimensions of the new representations are given by l6
2þ l7

2þ l8
2¼ 24, so that l6¼ 2, l7¼ 2,

and l8¼ 4. The characters for J¼ 1=2, 3=2, 5=2 may be written down from Table 8.1. Again,

two types of notation are mainly used to label the irreducible representations (IRs).

In Bethe’s notation the new representations of G are simply labeled by �i, where i takes

on as many integer values as are necessary to label all the spinor representations.

Mulliken notation was extended by Herzberg to include double groups. The IRs are

labeled E, F, G, H, . . . according to their dimensionality 2, 4, 6, 8, . . . , with a subscript

that is the value of J which corresponds to the representation �J in which that IR

first occurs. First write down �½ and test for irreducibility. For half-integral

J , �ðRÞ ¼ ��ðRÞ (see Table 8.2) so that for spinor representations we may work with

the classes of O only,

Table 8.1. Characters of the matrix representatives �J for half-integral J.

For improper rotations see Table 8.2.

For Rð� zÞ, �J ð�Þ ¼ sin½ð2 J þ 1Þ�=2�= sinð�=2Þ:
For Rð� zÞ ¼ ERð� zÞ, �J ð�þ 2pÞ ¼ ð�1Þ2J�J ð�Þ:

E C2 C3 C4

� 0 p 2p/3 p/2
1 (J ¼ 1=2 , 7=2 , . . . )
�1 (J ¼ 3=2 , 9=2 , . . . )
0 (J ¼ 5=2 , 11=2 , . . . )

8<
:

2½ (J ¼ 1=2 , 9=2 , . . . )
� (�J) 2Jþ 1 0 0 (J ¼ 3=2 , 7=2 , . . . )

�2½ (J ¼ 5=2 , 13=2 , . . . )

J ¼ 1=2 2 0 1 2½

J ¼ 3=2 4 0 � 1 0
J ¼ 5=2 6 0 0 � 2½

Table 8.2. O¼ {O}þE{O}.

3C2 6C2
0 E 8C3 6C4

O E 3C2 8C3 6C4 6C2
0

�1 A1 1 1 1 1 1 1 1 1 x2þ y2þ z2

�2 A2 1 1 1 �1 �1 1 1 �1
�3 E 2 2 �1 0 0 2 �1 0 (x2� y2 3z2� r2)
�4 T1 3 �1 0 1 �1 3 0 1 (x y z)(Rx Ry Rz)
�5 T2 3 �1 0 �1 1 3 0 �1 (xy yz zx)
�6 E½ 2 0 1 2½ 0 �2 �1 � 2½

�7 E 5=2
2 0 1 � 2½ 0 �2 �1 2½

�8 F 3=2
4 0 �1 0 0 �4 1 0

� 5=2
6 0 0 � 2½ 0 �6 0 2½

150 Double groups



�½ :
P
T

j�½ðTÞj2 ¼ 1ð4Þ þ 8ð1Þ þ 6ð2Þ ¼ 24 ¼ g=2:

(Including all the classes of G in the sum would simply repeat these three terms for a

total of 48 = g.) Therefore, �½ is an IR, named �6 or E½. Next write down �3=2
and test for

irreducibility:

�3=2
:
P
T

j�3=2
ðTÞj2 ¼ 1ð16Þ þ 8ð1Þ ¼ 24 ¼ g=2:

Therefore �3=2
is an IR, named �8 or F3=2. Similarly,

�5=2
:
P
T

j�5=2
ðTÞj2 ¼ 1ð36Þ þ 6ð2Þ þ 6ð2Þ ¼ 48 > g=2,

so that �5=2
is reducible. Performing the reduction in the usual way, but again just using the

classes of G,

cð�6Þ ¼ ð1=24Þ½1ð2Þð6Þ þ 6ð21=2Þð�2
1=2Þ� ¼ 0,

cð�8Þ ¼ ð1=24Þ½1ð4Þð6Þ� ¼ 1:

Now�5=2
��8¼ {2 1 0 �2½ 0 �2 �1 2½}¼�7¼E5=2

, so the second E representation

does not occur until the reduction of �5=2
¼�7þ�8. �7 is therefore E5=2

in Mulliken–Herzberg

notation. Note that all the new representations necessitated by half-integral values of J are at

least doubly degenerate. This means that all energy levels corresponding to half-integral J, that

is arising from a configuration with an odd number of electrons, are at least two-fold

degenerate in any electrostatic field. This result is known as Kramers’ theorem (Kramers

(1930)). Further splittings may, however, be possible in magnetic fields.

Exercise 8.1-2 Write down the characters of �7=2
and �9=2

and reduce both these represen-

tations into a direct sum of IRs.

Other groups may be handled in a similar manner to O in Example 8.1-1. For improper

rotations, the two rules formulated previously hold also for double groups (Box 8.1).

If the group contains the inversion operator, even or odd parity is indicated by a super-

script ofþ or� in Bethe’s notation and by a subscript g or u in Mulliken–Herzberg

notation.

Answers to Exercises 8.1

Exercise 8.1-1 C4 ¼ fE Cþ
4 C2 C�

4 E C
þ
4 C2 C

�
4 g; C2v ¼ fE, C2z þ C2z, �y þ �y,

�x þ �x, Eg:

Exercise 8.1-2 �7=2
¼ f8 0 1 0 0 �8 �1 0g, cð�6Þ ¼ ð1=24Þ½1ð2Þð8Þ þ 8ð1Þð1Þ� ¼ 1,

cð�7Þ ¼ ð1=24Þ½1ð2Þð8Þ þ 8ð1Þð1Þ� ¼ 1,
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�7=2
� ð�6 þ �7Þ ¼ f4 0 �1 0 0 �4 1 0g ¼ �8,

�9=2 ¼ f10 0 �1 2
1=2 0 �10 1�21=2g,

cð�6Þ ¼ ð1=24Þ½1ð2Þð10Þ þ 8ð1Þð�1Þ þ 6ð21=2Þð21=2Þ� ¼ 1,

cð�7Þ ¼ ð1=24Þ½1ð2Þð10Þ þ 8ð1Þð�1Þ þ 6ð21=2Þð�2
1=2Þ� ¼ 0,

cð�8Þ ¼ ð1=24Þ½1ð4Þð10Þ þ 8ð�1Þð�1Þ� ¼ 2:

8.2 Weak crystal fields

Since a ‘‘weak’’ field means one that is smaller than the spin–orbit coupling term ĤS.L,

a weak crystal field acts on the components of the Russell–Saunders multiplets.

Depending on their degeneracy, these components may undergo further splittings in

the weak crystal field. In the symmetry group O, Table 8.2 and Exercise 8.1-1 tell us

thatthe following splittings occur for half-integral values of the total angular momentum

quantum number J:

�3=2
¼ �8,

�5=2
¼ �7 � �8,

�7=2
¼ �6 � �7 � �8,

�9=2
¼ �6 � 2�8:

Example 8.2-1 Examine the effect of spin–orbit coupling on the states that result from an

intermediate field of O symmetry on the Russell–Saunders term 4F. Correlate these states

with those produced by the effect of a weak crystal field of the same symmetry on the

components produced by spin–orbit coupling on the 4F multiplet.

The solution is summarized in Figure 8.1. The 4F state has L¼ 3, and so (from Table 7.1)

it is split by an intermediate field into three states which belong to the IRs

A2 � T1 � T2 ¼ �2 � �4 � �5. To examine the effect of spin–orbit coupling on these

intermediate-field states, we use the fact that if  ¼�i�j, where �i forms a basis for �i

and �j forms a basis for �j, then  ¼�i�j forms a basis for the direct product (DP)

representation �i � �j. Here S¼ 3=2, and the representation �3=2
is �8 (Table 8.2). Take

the DPs of �8 with �2, �4, and �5 to obtain

�8 � �2 ¼ �8,

�8 � �4 ¼ �6 � �7 � 2�8,

�8 � �5 ¼ �6 � �7 � 2�8:

Exercise 8.2-1 Verify the DPs necessary to determine the spin–orbit splitting of the

intermediate-field states derived from the Russell–Saunders term 4F.

152 Double groups



The correlation diagram that correlates the intermediate- (or medium-) field states with

the weak-field states is shown in Figure 8.1. The same states must arise independently of

the order in which the crystal-field and spin–orbit coupling perturbations are applied. The

numbers in parentheses are the degeneracies of the states; they provide a useful check on

the accuracy of numerical calculations.

The character tables in Appendix A3 include the spinor representations of the common

point groups. Double group characters are not given explicitly but, if required, these may be

derived very easily. The extra classes in the double group are given by Opechowski’s rules.

The character of R in these new classes in vector representations is the same as that of R but

in spinor representations �(R)¼��(R). The bases of spinor representations will be

described in Section 12.8.

Answer to Exercise 8.2-1

E 8C3

�8 � �2 ¼ 4 �1 ¼ �8,

�8 � �4 ¼ 12 0 ¼ �6 � �7 � 2�8,

�8 � �5 ¼ 12 0 ¼ �6 � �7 � 2�8:

cð�6Þ ¼ 1=24½1ð12Þð2Þ� ¼ 1,

cð�7Þ ¼ 1=24½1ð12Þð2Þ� ¼ 1,

4F 4F

4F

4F

2
5

4F

4F

Γ8 (4)

Γ6 (2)

Γ8  (4)

Γ8 (4)

Γ8 (4)

Γ8 (4)
Γ8 (4)

Γ8 (4)
Γ8 (4)

Γ8 (4) Γ8 (4)

Γ6 (2)

Γ6 (2)
Γ6 (2)

Γ7 (2)
Γ7 (2)

Γ7 (2)
Γ7 (2)

4Γ4 (12)

4Γ5 (12)

4Γ2 (4)
(4)

(6)

(8)

(10)

ˆH0  +  Hee   +ˆ HS.L
ˆ

intermediate
cubic field

HCF
ˆ

weak
cubic field

+ ˆHS.L  +  HCF   +ˆ Hee
ˆ H0

ˆ+

2
7

2
9

2
3

Figure 8.1. Splitting of the 4F state in weak and intermediate fields of cubic symmetry.
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cð�8Þ ¼ 1=24½1ð12Þð4Þ� ¼ 2:

It is easily verified that using the classes of O gives the same results.

Problems

8.1. Construct the character table of the double group D2.

8.2. (a) A partial character table of the double group D4 is given in Table 8.3. Complete

this character table by finding the missing classes and IRs. Label the IRs using

both Bethe and Mulliken–Herzberg notation.

(b) An ion with an odd number of electrons has a �6 ground state and a �7 excited

state. Are E1 (electric dipole) transitions between these two states symmetry

allowed in a weak field of D4 symmetry? State the polarization of the electro-

magnetic radiation involved in any allowed transitions.

8.3. A partial character table of the point group D3h is given in Table 8.4. Find the missing

characters of the vector and spinor representations of the double group D3h. Determine

whether E1 transitions E½!E3=2
and E½!E5=2

are allowed in a weak crystal field of

D3h symmetry. State the polarization of allowed transitions.

8.4. The electron configuration d3 produces a number of states, one of which has the

spectral term 2G. Describe the splitting and/or re-labeling of this 2G state under the

following perturbations and summarize your discussion in the form of a correlation

Table 8.3. Partial character table of the double group D4.

D4 E 2C4 C2 2C2
0 2C2

0 0

A1 1 1 1 1 1 x2þ y2, z2

A2 1 1 1 � 1 � 1 z, Rz

B1 1 � 1 1 1 � 1 x2� y2

B2 1 � 1 1 � 1 1 xy
E 2 0 � 2 0 0 (x y)(Rx Ry)(yz zx)

Table 8.4. Partial character table of the point group D3h.

D3h E 2C3 3C2
0 �h 2S3 3�v

A1
0 1 1 1 1 1 1

A2
0 1 1 � 1 1 1 � 1

E
0

2 � 1 0 2 � 1 0 (x y)
A1

0 0 1 1 1 � 1 � 1 � 1

A2
0 0 1 1 � 1 � 1 � 1 1 z

E
0 0

2 � 1 0 � 2 1 0
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diagram which shows the degeneracy of each level and the perturbation giving rise to

each set of levels:

(i) the spin–orbit coupling perturbation ĤS.L;

(ii) a crystal field of Td symmetry that is a weaker perturbation than ĤS.L;

(iii) a crystal field of Td symmetry that is stronger than ĤS.L;

(iv) the effect of spin–orbit coupling on the states derived from (iii).

Could further splittings of these states be induced by an electrostatic field of D2

symmetry?

8.5. Describe the splitting of the multiplet 4D under the conditions specified in (i)–(iv)

of Problem 8.3, except that the crystal field is of Oh symmetry. [Hint: Since a

crystal field does not affect the parity of a state, it is sufficient to work with the

double group O.]

8.6. Investigate the effect of spin–orbit coupling on the crystal-field levels of a Ce3
þ
ion

substituting for Ca2
þ
in CaF2 with a nearest-neighbor O2� ion (see Problem 7.2). Is

any further splitting of these levels to be expected if the site symmetry at Ce3
þ
is

lowered to Cs by a further crystal-field perturbation that is weaker than ĤS.L?

Problems 155



9 Molecular vibrations

9.1 Classification of normal modes

The internal vibrational motion of a molecule containing N atoms may be approximated by

the superposition of 3N� n simple harmonic vibrations called normal modes. Here n¼ 5

or 6 and the ambiguity arises because, although each molecule has three degrees of

translational freedom, linear molecules have only two degrees of rotational freedom, whilst

non-linear molecules have three degrees of rotational freedom, each corresponding to a

rotational motion about one of the three Cartesian axes. The normal coordinates Qk, which

are linear combinations of the atomic displacements xi, yi, zi from the equilibrium positions of

the atoms, are properties of the molecule and are determined by the symmetry of themolecule,

so that each transforms according to one of the IRs of the point group of the molecule.

Example 9.1-1 Classify the normal modes of vibration of the carbonate ion CO2�
3 according

to the IRs for which the normal coordinates form bases.

To find the symmetry of the normal modes we study the transformation of the atomic

displacements {xi yi zi}, i¼ 0, 1, 2, 3, by setting up a local basis set {ei1 ei2 ei3} on each of

the four atoms. A sufficient number of these basis vectors are shown in Figure 9.1. The

point group of this molecule is D3h and the character table for D3h is in Appendix A3. In

Table 9.1 we give the classes of D3h; a particular member R of each class; the number of

atoms NR that are invariant under any symmetry operator in that class; the 3� 3 sub-matrix

�i (R) for the basis h ei1 ei2 ei3| (which is a 3� 3 block of the complete matrix representative

for the basis h e01 . . . e33|); the characters �i for the representation �i; and the characters for

the whole representation, which are �¼�iNR. We can proceed in this way, working

effectively with a basis h ei1 ei2 ei3|, because when an atom is transformed into a different

atom of the same species, then the 3� 3 matrix �i occupies an off-diagonal block and

therefore does not contribute to the character of the 12� 12 matrix representative (MR).

The reducible representation � may be reduced in the usual way to yield the direct sum

� ¼ A1
0 � A2

0 � 3E0 � 2A2
00 � E00: (1)

This sum contains the representations for translational motion and rotational motion as

well as for the vibrational motion. From the character table we see that these are

�t ¼ A2
00 � E0, (2)
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�r ¼ A2
0 � E00, (3)

(1), (2), (3) �v ¼ A1
0 � 2E0 � A2

00: (4)

As a check, we calculate the total vibrational degeneracy from eq. (4) as 6, which is equal,

as it should be, to 3N� 6. The arithmetic involved in the reduction of the direct sum for the

total motion of the atoms can be reduced by subtracting the representations for translational

and rotational motion from � before reduction into a direct sum of IRs, but the method used

above is to be preferred because it provides a useful arithmetical check on the accuracy of �

and its reduction.

9.2 Allowed transitions

In the theory of small vibrations it is shown that, by a linear transformation of the

displacements {xj yj zj} to a set of normal coordinates {Qk}, the kinetic energy and the

potential energy may be transformed simultaneously into diagonal form so that

2T ¼
P
k

_Q2
k and 2� ¼

P
k

!2
kQ

2
k . The Hamiltonian is therefore separable into a sum of

terms, each of which is the Hamiltonian for a 1-D harmonic oscillator. Consequently, the

Schrödinger equation is separable and the total state function is a product of 1-D harmonic

oscillator state functions

Cnk ðQkÞ � jnki ¼ NkHkð�kQkÞ exp �½�k
2Qk

2½ �, (1)

where

�2k ¼ !k=�h, (2)

e01 e11

e21

e31

e32

e22

e12

X

Y

0 1

2

3

e02

Figure 9.1. Numbering of atoms and location of basis vectors used to describe the atomic

displacements in the CO2�
3 ion. The ei3 unit vectors are all normal to the plane of the paper,

pointing towards the reader, and the displacement of the ith atom is ri¼ ei1xiþ ei2yiþ ei3zi.
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nk is the vibrational quantum number in the kth mode, and Hk is a Hermite polynomial of

order nk. Therefore

Cn1n2 . . . ðQ1, Q2, . . .Þ ¼
Y3N�n

k

Cnk ðQkÞ, (3)

or (in the occupation number representation)

jn1 n2 . . . nk . . .i ¼ jn1ijn2i . . . jnki . . . ¼
Y3N�n

k¼1

jnki: (4)

Generally, most molecules can be assumed to be in their ground vibrational state at room

temperature, in which case nk¼ 0 for k¼ 1, 2, . . . , 3N� n. Since H0 is a constant, the

ground state wave function is a product of exponential terms and so it is proportional to

exp½�½
P
k

�k
2Qk

2�, (5)

which is invariant under any point symmetry operation.

Exercise 9.2-1 Justify the above statement about the invariance of eq. (5) under point

symmetry operations.

The symmetry properties of eq. (3) in an excited state are determined by a product of

Hermite polynomials. The most common vibrational transition, called a fundamental

transition, is one in which only a single vibrational mode is excited, so that

�nj ¼ 0, 8j 6¼ k, �nk ¼ 1, (6)

j0 0 . . . 0 . . . 0i ! j0 0 . . . 1 . . . 0i: (7)

The Hermite polynomial H1(�kQk)¼ 2�kQk, so that for a fundamental transition the ground

state forms a basis for �1 and the first excited state transforms like Qk. The spacing of the

vibrational energy levels is such that transitions between vibrational states are induced

by electromagnetic radiation in the infra-red region of the electromagnetic spectrum.

The operator responsible is the dipole moment operator D, and so a fundamental transition

�nk ¼ 1 is allowed only if the matrix element

h0 0 . . . 1 . . . 0jDj0 0 . . . 0 . . . 0i 6¼ 0: (8)

nk
0 nk

Consequently, fundamental vibrational transitions are allowed only if the normal coordi-

nate Qk for that mode forms a basis for the same IR as x, y, or z.

Example 9.2-1 Find the number and degeneracy of the allowed infra-red transitions in a

planar ML3 molecule. (‘‘Infra-red’’ transitions without further qualification implies a

fundamental transition.)
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From the character table for D3h we observe that z forms a basis for A00
2 and x, y form a

basis for E0. Since there are normal modes of symmetry A00
2 � 2E0 we expect to see three

bands in the infra-red absorption spectrum, two of which are doubly degenerate and

therefore might be split in a lower symmetry. The normal mode of A0
1 symmetry is inactive

in the infra-red absorption spectrum.

9.2.1 Anharmonicity

The vibrational energy in a single mode in the harmonic approximation is

Ek ¼ �h!kðnk þ½Þ: (9)

Thus this model predicts an infinite sequence of evenly spaced levels with no allowance for

dissociation. An approximation to the effective potential for a diatomic molecule �(R)

proposed by Morse has proved to be extremely useful. The Morse potential

�ðRÞ ¼ Def1� exp½�aðR� R0Þ�g2 � Deð1� xÞ2 (10)

has a minimum value of zero at the equilibrium separation R0, and �(R)! De (the

dissociation energy) as R ! 1. The Schrödinger equation with a Morse potential is

soluble, and yields energy eigenvalues

E ¼ �h!ðnþ ½Þ � x�h!ðnþ½Þ2, (11)

where the anharmonicity constant

x ¼ �h!=4De: (12)

Equation (11) fits experimental data quite accurately.

9.2.2 Overtones and combination bands

Most infra-red spectra will show more bands than those predicted from an analysis of the

fundamental transitions, although the intensity of these extra bands is usually less than that

of the fundamental bands. Combination bands are due to the simultaneous excitation of

more than one vibration. Suppose that ni
0, nj

0 ¼ 1, nk
0 ¼ 0, 8 k 6¼ i, j, then the symmetry of

the excited state is given by

� ¼ �ðQiÞ � �ðQjÞ, (13)

which may be reduced in the usual way if �(Qi), �(Qj) are degenerate. Degenerate levels

may be split by anharmonic coupling.

Example 9.2-2 Acetylene HC�CH is a linear molecule with point group D1h and has

3N� 5 ¼ 7 normal modes, which an analysis like that in Example 9.1-1 shows to be of

symmetry

�v ¼ 2�þ
g � �þ

u � �g � �u: (14)
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Suppose that a combination tone involves a single excitation of modes of �g and �u

symmetry. Then, since

�g ��u ¼ �þ
u � ��

u � �u, (15)

this excited state consists of one doubly degenerate and two non-degenerate levels, only the

�þ
u mode being infra-red active.

Overtones occur when�nk> 1,�nk¼ 2 being called the first overtone and so on. If only

modes of one frequency are excited, and if this frequency is non-degenerate, then the excited-

state wave function forms a basis for a non-degenerate representation, the characters of which

are all � 1. Therefore R�1Qk¼�Qk and all state functions containing only even powers of

Qk (those for nk even) belong to the totally symmetric representation, while those containing

only odd powers ofQk (those for nk odd) belong to the same IR asQk. For double excitation of

a degenerate mode, the characters of the symmetric direct product (DP) are given by

(5.3.22) �ð�k � �kÞ ¼ ½½ð�kðRÞÞ2 þ �kðR2Þ�: (16)

In general for n quanta in the mode (that is, the (n� 1)th overtone), eq. (16) generalizes to

�nð�k
n�1 � �kÞ ¼ ½½�k

n�1ðRÞ�kðRÞ þ �kðRnÞ�: (17)

Example 9.2-3 If the �g mode of acetylene is doubly excited

(16) �g � �g ¼ �þ
g � �g (18)

and the overtone state is split into a non-degenerate�þ
g level and a doubly degenerate�g level.

Answer to Exercise 9.2-1

Consider a reduction in symmetry until all representations are reduced to 1-D IRs. Then the

character in any class can only be�1. Consequently,Qk
2 is invariant under all the operators

of the point group and so belongs to �1, which correlates with the totally symmetric

representation of the point symmetry group of the molecule. Therefore
P
k

�k
2 Qk

2 is

invariant under any of the operators of the point group of the molecule.

9.3 Inelastic Raman scattering

In inelastic Raman scattering a photon loses (or gains) one quantum of rotational or vibra-

tional energy to (or from) the molecule. The process involves the electric field of the

radiation inducing an electric dipole in the molecule and so depends on the polarizability

tensor of the molecule. (A (second-order) tensor is a physical quantity with nine com-

ponents.) The induced electric dipole D is proportional to the electric field E:
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D ¼ �E, (1)

the coefficient of proportionality being the polarizability�. Since bothD andE are vectors,

the polarizability has nine components,

Dx

Dy

Dz

2
64

3
75 ¼

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

2
64

3
75

Ex

Ey

Ez

2
64

3
75, (2)

but only six are independent because the polarizability tensor is symmetric. The compo-

nents of the polarizability transform like binary products of coordinates x2, y2, z2, xy, yz, zx.

Hence a fundamental transition is Raman active if the normal mode forms a basis for one or

more components of the polarizability.

Example 9.3-1 Determine the number of bands to be expected in the Raman spectrum of a

planar ML3 molecule.

From the character table for D3h, components of the polarizability form bases for the IRs

A1
0, E0, and E00 . From eq. (9.1.4) the normal coordinates form bases for the representations

A1
0, 2E0, and A2

00. Therefore the Raman active modes are A1
0 and 2E0, and there are three

Raman bands, with two coincidences. (A ‘‘coincidence’’ means that a Raman band and an

infra-red band have the same frequency.)

9.3.1 General features of Raman and infra-red spectra

(1) If the symmetry of a molecule is lowered by a perturbation (for example by the

substitution of a foreign ion in a crystal lattice) this may remove degeneracies and/or

permit transitions that were forbidden in the more symmetric molecule.

(2) The number of Raman and infra-red bands can sometimes be used to distinguish

between various possible structures.

(3) Stretching modes (for example, that of the C¼O bond) can often be analyzed sep-

arately because they occur in a characteristic region of the infra-red spectrum. In such

cases a full vibrational analysis is not necessary and one can simply study the

transformation of unit vectors directed along the bonds in question. For example, in

the molecule ML3(CO)3 shown in Figure 9.2 it is only necessary to study the transfor-

mation of the three unit vectors directed along the C¼O bonds in order to determine

the number of stretching modes. A stretching-mode analysis is often sufficient to

distingui sh b etween possibl e structure s (see Problem 9.3).

9.4 Determination of the normal modes

Normal mode coordinates are linear combinations of the atomic displacements {xi yi zi},

which are the components of a set of vectors {Q} in a 3N-dimensional vector space called
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displacement vector space, with basis vectors {e01 e02 . . . eN�1, 3}¼ {eij}, where i¼ 0,

1, . . . , N� 1 labels the atoms and j¼ 1, 2, 3 is the orientation of each one of the subset of

three orthogonal unit vectors parallel to OX, OY, OZ and centered at the equilibrium

positions of the atoms (see, for example, Figure 9.1). A symmetry operation induced by

the symmetry operator R2G, which interchanges like particles, transforms the basis

heijj to heij0j,

Rheijj ¼ heij0j ¼ heijj�dispðRÞ (1)

The MR of R, �disp(R), is a 3N�3N matrix which consists of N 3�3 blocks labeled �lm

which are non-zero only when R transforms atom l into atom m, and then they are identical

with the MR for an orthonormal basis {e1 e2 e3} in 3-D space. Since a 3�3 matrix �lm

occurs on the diagonal of �disp(R) only when l¼m, it is a straightforward matter to

determine the character system for �disp and hence the direct sum of IRs making up �disp

and which give the symmetry of the atomic displacements in displacement vector space, in

which we are describing themotion of the atomic nuclei. This basis {eij} is not a convenient

one to use when solving the equations of motion since both the potential energy � and the

kinetic energy T contain terms that involve binary products of different coordinates

{xi yi zi} or their time derivatives. However, an orthogonal transformation

heð��Þj ¼ heijjðA��Þ�1
(2)

to a new basis set {e(��)} can always be found in which both T and � are brought to

diagonal form so that

2T ¼
P
k

_Q2
k , 2� ¼

P
k

!2
kQ

2
k : (3)

The {Qk}, k¼ 1, 2 . . . , 3N, are a set of normal coordinates, which are the components of

Q(��) referred to the new basis {e(��)} in which � denotes one of the IRs and � denotes

the component of the IR � when it has a dimension greater than unity. The particle masses

do not appear in T and � because they have been absorbed into the Qk by the definition of

the normal coordinates. A displacement vector Q is therefore

C C

CL

L

L

O

O

O

mer

L C

CL

C

L

O

O

O

fac

Figure 9.2. mer and fac isomers of ML3(CO)3.
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Q ¼ heijjqiji ¼ heijjðA��Þ�1A�� jqiji ¼ heð��ÞjQki, (4)

where {qij}implies the whole set of mass-weighted displacements. Similarly {eij} in eq. (4)

implies the set of Cartesian unit vectors on each of the i¼ 0, 1, . . . , N� 1 atoms. Note that

A�� is the orthogonal matrix which transforms the coordinates qij into the normal coordi-

nates {Qk}. The normal coordinates {Qk} form bases for the IRs, and therefore they will

now be called {Q(��)}. We do not need to evaluate A�� explicitly since the {Q(��)} may

be found by projecting an arbitrary one of the {qij} into the appropriate � subspace,

Qð��Þ ¼ Nð��Þ
P
R

��ðRÞ�R̂qij: (5)

Here qij ¼ M½
i xij,Mi is the mass of atom i, and xij is the jth component of the displacement

of atom i. The procedure must be repeated for each of the IRs (labeled here by �); N(��) is

a normalization factor. The projection needs to be carried out for a maximum of three times

for each IR, but in practice this is often performed only once, if we are able to write down

by inspection the other components Q(��) of degenerate representations. It is, in fact,

common practice, instead of using eq. (5), to find the transformed basis

(4) jeð��Þi ¼ A�� jeiji (6)

by projecting instead one of the {ei} and then using the fact thatQ(��) is given by the same

linear combination of the {qij} as e(��) is of the {eij} (cf. eqs. (6) and (4)). The absolute

values of the displacements are arbitrary (though they are assumed to be small in com-

parison with the internuclear separations) but their relative values are determined by

symmetry.

There is a complication if the direct sum of IRs contains a particular representation �

more than once, for then we must take linear combinations of the e(��) for this IR by

making a second orthogonal transformation. This second transformation is not fully

determined by symmetry, even after invoking orthogonality conditions. This is a common

situation when bases for different representations of the same symmetry are combined: the

linear combinations are given by symmetry, but not the numerical coefficients, the deter-

mination of which requires a separate quantum or classical mechanical calculation. (We met

a similar situation when combining linear combinations of ligand orbitals with central-atom

atomic orbitals (AOs) that formed bases for the same IRs in the molecular orbital (MO)

theory described in Chapter 6.) Because of the assumed quadratic form for the potential

energy � (by cutting off a Taylor expansion for � at the second term, valid for small-

amplitude oscillations) the time dependence of the normal coordinates is simple harmonic.

Example 9.4-1 Determine the normal coordinates for the even parity modes of the ML6

molecule or complex ion with Oh symmetry.

A diagram of the molecule showing the numbering system used for the atoms is given in

Figure 9.3. Set up basis vectors {ei1 ei2 ei3}, i¼ 0, 1, . . . , 6, on each of the seven atoms as

shown in the figure. Table 9.2 shows the classes cp of the point group of the molecule,

the number of atoms NR that are invariant under the symmetry operator R2cp, the
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submatrices �r, the character set {�r}, the characters for the 18� 18 reducible matrix

representation for L6, and finally the characters for the 21� 21 reducible matrix representa-

tion �. This representation may be reduced in the usual way to yield the direct sum

� ¼ A1g � Eg � T1g � T2g � 3T1u � T2u, (7)

with a total degeneracy of 21. The character table for Oh shows that the three rotations form

a basis for T1g and subtracting off T1g from the direct sum in eq. (7) leaves

�v � �t ¼ A1g � Eg � T2g � 3T1u � T2u (8)

as the representations to which the 3N� 6¼ 15 normal modes and the three translations

belong. We may not separate off �t since there are in all three degenerate modes of T1u

symmetry, two vibrational modes and one translational mode.We now apply the projection

operator in eq. (5) for the three even-parity representations A1g�Eg�T2g to obtain

A1g ¼ 1= ffiffi
6

p ½x1 � x4 þ y2 � y5 þ z3 � z6�, (9)

EgðuÞ ¼ 1= ffiffi
1

p
2½2z3 � 2z6 � x1 þ x4 � y2 þ y5�, (10)

EgðvÞ ¼ ½½x1 � x4 � y2 þ y5�, (11)

T2gð�Þ ¼ ½½z2 � z5 þ y3 � y6�, (12)

T2gð�Þ ¼ ½½z1 � z4 þ x3 � x6�, (13)

T2gð�Þ ¼ ½½y1 � y4 þ x2 � x5�: (14)

e01 e21

e31

e32

e22
0

1

2

3

4

5

6

e02

e03

e11

e12

e13

e23

e33

Figure 9.3. Basis vectors used to describe the atomic displacements in theML6molecule, showing the

numbering system used for the seven atoms. (Labeling of the unit vectors at atoms 4, 5, and 6 is not

shown explicitly to avoid overcrowding the figure.)
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The normal mode displacements are sketched in Figure 9.4. The notation u, v for the

degenerate pair of Eg symmetry and �, �, � for the T2g triplet is standard. Actually, these

projections had already been done in Section 6.4, but this example has been worked in full

here to illustrate the projection operator method of finding normal modes.

Similarly, for the odd-parity T2u modes,

(6) or (6.4.42) T2uð�Þ ¼ ½½x3 þ x6 � x2 � x5� , (15)

(6) or (6.4.43) T2uð�Þ ¼ ½½y1 þ y4 � y3 � y6�, (16)

(6) or (6.4.44) T2uð�Þ ¼ ½½z1 þ z4 � z2 � z5�: (17)

Equation (7) tells us that there are, in all, three independent motions of T1u symmetry,

the three independent components of each set being designated T1u(x), T1u(y), and T1u(z).

Omitting normalization factors, the ligand contributions to the z components of the normal

coordinates of two of these modes are

(5) QðT1u, z, 1Þ ¼ q13 þ q23 þ q43 þ q53, (18)

(5) QðT1u, z, 2Þ ¼ q33 þ q63: (19)

The third one is just the z component for the central atom

QðT1u, z, 3Þ ¼ q03: (20)

X 1

6

2 Y

4

3

Z

5

A1g Eg(v) Eg(u)

T2g(η)T2g(ζ) T2g(ξ)

Figure 9.4. Normal modes of vibration of the even-parity modes of ML6 in Oh symmetry. Arrows

show the phases and relative magnitudes of the displacements, but the actual displacements have

been enlarged for the sake of clarity.
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Superimposing the normal coordinates in eqs. (18), (19), and (20) with equal weight and

phase gives

QðT1u, z, IIIÞ ¼ ½q03 þ q13 þ q23 þ q33 þ q43 þ q53 þ q63�: (21)

Two more linear combinations of eqs. (18), (19), and (20) give the coordinates

QðT1u, z, IÞ ¼ ½�q03 þ aðq13 þ q23 þ q43 þ q53Þ � bðq33 þ q63Þ�, (22)

QðT1u, z, IIÞ ¼ ½þq03 þ a0ðq13 þ q23 þ q43 þ q53Þ � b0ðq33 þ q63Þ�: (23)

There are three orthogonality conditions between the Q(T1u, z) normal coordinates but

four unknown constants in eqs. (22) and (23), so this is as far as one can go without a model

for the adiabatic potential.

Problems

9.1 The observed infra-red spectrum of ozone contains three fundamental bands at fre-

quencies 705 cm�1, 1043 cm�1, and 1110 cm�1. Use this information to decide which

of I, II, and III in Figure 9.5 are possible structures for ozone. Predict what you would

expect to find in the Raman spectrum of ozone.

9.2 The chromate ion CrO2�
4 has the shape of a tetrahedron. Deduce the symmetries of the

normal modes and explain which of these are infra-red active and which are Raman

active.

9.3 The following bands were found in the region of the spectrum of OsO4N (N denotes

pyridine) associated with the stretching of Os––O bonds:

infra-red n=cm�1 ¼ 926, 915, 908, 885,

Raman n=cm�1 ¼ 928ðpÞ, 916ðpÞ, 907ðpÞ, 886ðdpÞ,

where p indicates that the scattered Raman radiation is polarized and therefore can

only be due to a totally symmetric vibration, and similarly dp indicates that the Raman

band at 886 cm�1 is depolarized and therefore not associated with a totally symmetric

vibration. Four possible structures of OsO4N are shown in Figure 9.5, in each of which

the four arrows indicate unit vectors along the direction of the Os––O stretching mode.

State the point group symmetry of each of the four structures and determine the number

of allowed infra-red and Raman bands associated with Os––O stretching in each

structure, the number of coincidences, and whether the Raman bands are polarized.

Hence decide on the structure of OsO4N. [Hint: It is not necessary to determine the

symmetries of all the normal modes.]

9.4 When XeF4 was first prepared it was thought to be highly symmetrical, but it was not

known whether it was a tetrahedral or a square-planar molecule. The infra-red absorp-

tion spectrum of XeF4 consists of three fundamental bands and the vibrational Raman

spectrum also has three bands. Determine the symmetry of the normal modes of a
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square planar AB4 molecule, and hence show that the above evidence is consistent

with a square-planar configuration for XeF4.

9.5 The infra-red spectrum of Mo(CO)3[P(OCH3)3]3 (VIII) shows three absorption bands

at 1993, 1919, and 1890 cm�1 in the region in which CO stretching frequencies usually

appear. But Cr(CO)3(CNCH)3 (IX) has two absorption bands in the C––O stretch

region at 1942 and 1860 cm�1. Octahedral ML3(CO)3 complexes can exist in either the

mer or fac isomeric forms (Figure 9.2). Assign the structures of the above two

molecules. Howmany bands would you expect to see in the vibrational Raman spectra

of these two molecules, and for which of these bands would the scattered Raman

radiation be polarized?

9.6 Two important geometries for seven-coordinate complex ions are the mono-capped

trigonal prism (X) and the pentagonal bipyramid (XI) (Figure 9.5). Infra-red spectra

have been measured for the seven-coordinate complex ion MoðCNÞ4�7 as solid

K4Mo(CN)7.2H2O and in aqueous solution. In the C––N stretching region the infra-

red spectrum shows six bands at 2119, 2115, 2090, 2080, 2074, and 2059 cm�1 for the

solid, and two bands at 2080 and 2040 cm�1 for solutions. How many Raman and

infra-red bands would you expect for (X) and (XI)? What conclusions can be drawn

from the experimental data given? How many Raman bands are to be expected for the

solid and the solution?

9.7 The NO�
3 ion is planar (like CO2�

3 ), but when NO�
3 is dissolved in certain crystals

(called type 1 and type 2) it is observed that all four modes become both Raman active

N

O

I II III

N

O

O
O

IV

O

V

O

N

O

O

VI VII

O

OO

O

N

OO

O

O

XIX

Figure 9.5. Three possible structures of ozone, I, II, and III. Four possible structures of OsO4N

(N= pyridine), IV, V, VI, and VII. Two possible structures for Mo(CN)7
4�, X and XI.
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and infra-red active. In crystals of type 1 there is no splitting of degenerate modes, but

in type 2 crystals the degenerate modes of NO�
3 are split. Suggest an explanation for

these observations. [Hint: Character tables are given in Appendix A3. Table 9.3 is an

extract from a correlation table for D3h.]

9.8 Two likely structures for Fe(CO)5 are the square pyramid and the trigonal bipyramid.

Determine for both these structures the number of infra-red-active and Raman-active

C––O stretching vibrations and then make use of the data given in Table 9.4 to decide

on the structure of Fe(CO)5.

Table 9.4.

CO stretching frequencies/cm�1

Infra-red absorption 2028, 1994
Vibrational Raman scattering 2114, 2031, 1984

Table 9.3.

D3h C3v Cs

A1
0 A1 A0

A2
0 0 A1 A0 0

E0 E 2A0
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10 Transitions between electronic
states

10.1 Selection rules

As noted in Section 5.4, the transition probability between two electronic states is propor-

tional to the square of the modulus of the matrix element

(5.4.10) hCk
ujQ̂ j

s jCi
qi ¼ h k

ujQ̂ j
s j i

qih�uj�qi, (1)

where Ck
u is the uth spin orbital  k

uðfrpgÞ�uðfmspgÞ belonging to the kth (possibly

degenerate) (IR) of the symmetry point group (or double group) and Q̂ j
s is an operator

that belongs to the jth IR; {rp} denotes a set of position vectors for the electrons, {msp}

denotes the arguments of the spinor �u, and u is a (total) spin quantum number. In the

approximation that neglects spin–orbit coupling ĤS.L, because of the orthogonality of the

spin functions the only allowed transitions are those for which �S¼ 0. Generally, ĤS.L is

not negligible and transitions in which the spin quantum number S is not conserved may

occur, but with weaker intensity than those in which the spin selection rule �S¼ 0 is

obeyed. When the interaction of the electronic system with the radiation field is analyzed

using time-dependent perturbation theory (see, for example, Flygare (1978) or Griffith

(1964)) it is found that the strongest transitions are the E1 transitions for which Q is the

dipole moment operator, with components x, y, z; the next strongest transitions are the M1

transitions in which Q is the magnetic dipole operator, with components Rx, Ry, Rz; while

the weakest transitions are the electric quadrupole or E2 transitions in which the E2

operator transforms like binary products of the coordinates x2, y2, z2, xy, yz, zx. In systems

with a center of symmetry, the components of the dipole moment operator belong to

ungerade representations. Therefore the only allowed E1 transitions are those which are

accompanied by a change in parity, g$ u. This parity selection rule is known as the

Laporte rule. As we shall see, it may be broken by vibronic interactions.

Example 10.1-1 Discuss the transitions which give rise to the absorption spectrum of

benzene.

A preliminary analysis of the absorption spectrum was given in Example 5.4-1 as

an illustration of the application of the direct product (DP) rule for evaluating matrix

elements, but the analysis was incomplete because at that stage we were not in a position to

deduce the symmetry of the electronic states from electron configurations, so these were

merely stated. A more complete analysis may now be given. The molecular orbitals (MOs)
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of benzene were deduced in Example 6.2-1 and Problem 6.2, and an energy-level diagram

is given in Figure 6.4. This figure shows that the ground-state electron configuration of

benzene is (a2u)
2(e1g)

4. Consider a lowering in symmetry to D2h. As shown in Figure 10.1,

this results in a splitting of the degenerate e1g level into b2g and b3g. In D2h symmetry the

electron configuration would be (b1u)
2(b2g)

2(b3g)
2. Since the product of two functions, each

of which is the basis for a particular IR, forms a basis for the DP representation of these two

IRs, and the DP of any 1-D representations with itself is the totally symmetric representa-

tion, it follows that the ground-state wave function for benzene forms a basis for �1, which

in D2h is Ag. Since each level contains two electrons with paired spins, the ground state is
1Ag in D2h, which correlates with 1A1g in D6h. This argument is quite general and holds for

any closed shell molecule, atom, or ion. After a lowering in symmetry until all the orbital

functions form bases for 1-D representations, the only state for any closed shell config-

uration that satisfies the Pauli exclusion principle is 1�1, which correlates with 1�1 of the

original group. The first excited state of benzene is (a2u)
2(e1g)

3(e2u)
1. The doubly occupied

levels contribute 1A1g so only the singly occupied levels need be included in the DP. From

Box 10.1, Elg�E2u¼B1u�B2u�E1u. In D6h (x y) belong to E1u and z belongs to A2u, so
lA1g ! lElu is the only symmetry- and spin-allowed E1 transition, and this will be excited

e1g

a2u

b3g

b2g

b1u

D6h D2h

Figure 10.1. Effect of a lowering in symmetry on the occupied energy levels of benzene.

Box 10.1. Reduction of the direct product representation E1g�E2u.

E1g � E2u ¼ f4 �1 1 �4 0 0 �4 1 �1 4 0 0g :

This DP representation must be a sum of u representations:

cðA1uÞ ¼ ð1=24Þ½4 � 2 þ 2 � 4 þ 4 � 2 þ 2 � 4� ¼ 0,

cðA2uÞ ¼ ð1=24Þ½4 � 2 þ 2 � 4 þ 4 � 2 þ 2 � 4� ¼ 0,

cðB1uÞ ¼ ð1=24Þ½4 þ 2 þ 2 þ 4 þ 4 þ 2 þ 2 þ 4� ¼ 1,

cðB2uÞ ¼ ð1=24Þ½4 þ 2 þ 2 þ 4 þ 4 þ 2 þ 2 þ 4� ¼ 1,

cðE1uÞ ¼ ð1=24Þ½8 � 2 � 2 þ 8 þ 8 � 2 � 2 þ 8� ¼ 1:

Therefore, E1g�E2u¼B1u�B2u�E1u.
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by radiation polarized in the xy plane. This transition is responsible for the strongest

absorption band in the absorption spectrum of benzene at 1800 Å. The very weak band

at 3500 Å is due to 1A1g ! 3E1u, allowed (though with low intensity) through spin–orbit

coupling. The spin–orbit coupling constant is proportional to �2Z2, where � is the fine-

structure constant equal to 1/137.036, and so transitions allowed through spin–orbit

coupling will be very weak in molecules comprising atoms of low atomic number Z. The

transitions 1A1g ! 1B1u and 1A1g ! 1B2u are symmetry forbidden in a rigid molecule, but

may become allowed through vibronic coupling.

10.2 Vibronic coupling

The electronic state function Ya(r, R) depends not only on electron coordinates {r} but

also on the nuclear coordinates {R}. The subscript a denotes a set of electronic quantum

numbers. Because the mass of the electrons is much smaller than the mass of the nuclei, the

electron motion follows the motion of the nuclei adiabatically, so it is customary to adopt

the Born–Oppenheimer approximation, as a result of which the state function may be

written as a product of electronic and nuclear state functions:

Caðr, RÞ ¼  a,RðrÞ �a,�ðRÞ, (1)

where � denotes a set of vibrational quantum numbers. The electronic state function depends

parametrically on the positions of the nuclei, and this is indicated by the subscript R.

The electronic energy Ea(R), calculated at a series of values of the nuclear displacements

{R}, is the potential energy Ua(R) for the vibrational motion. Ua(R), which depends on the

electronic state a, is called the adiabatic potential. Being a property of the molecule, it is

invariant under any symmetry operator of the molecular point group. With �S¼ 0, and

making use of the orthonormal property of the spin functions, the matrix element (10.1.1) for

a vibrating molecule becomes

ð1Þ hCa0 jDjCai ¼ h l�k jDj j�ii (2)

which equals zero, unless the DP

�l � �k � �j � �i � �ðx, y, zÞ � �1: (3)

For a fundamental vibrational transition �i¼�1, and �k is one of the representations �(Qk)

to which the normal modes belong, so that the vibronic problem reduces to answering the

question, does

ð1Þ �l � �j � �ðx, y, zÞ � �ðQkÞ, (4)

where �(Qk) is one or more of the IRs for which the normal modes form a basis? The

vibronic interaction is a perturbation term Ĥen in the Hamiltonian, and so transitions that

are symmetry forbidden but vibronically allowed can be expected to be weaker than the

symmetry-allowed transitions. Consequently, consideration of vibronic transitions is

usually limited to E1 transitions. If a transition is symmetry allowed then the vibronic
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interaction Ĥen broadens the corresponding spectral line into a broad band, and this is the

reason why absorption and emission spectra consist of broad bands in liquids and solids.

Example 10.2-1 Find if any of the symmetry-forbidden transitions in benzene can become

vibronically allowed, given that in the benzene molecule there are normal modes of B2g and

E2g symmetry.

In D6h symmetry the dipole moment operator forms a basis for the representations

A2u�E1u. The ground-state electronic state function belongs to A1g and

B1u � ðA2u � E1uÞ ¼ B2g � E2g, (5)

B2u � ðA2u � E1uÞ ¼ B1g � E2g: (6)

Since there are normal modes of B2g and E2g symmetry, both the transitions 1A1g ! 1B1u

and 1A1g ! 1B2u (which are forbidden by symmetry in a rigid molecule) become allowed

through vibronic coupling. These transitions account for the two weaker bands in the

benzene spectrum at 2000 and 2600 Å.

Example 10.2–2 The ground-state configuration of an nd1 octahedral complex is t2g
1, and

the first excited configuration is eg
1 so that optical transitions between these two config-

urations are symmetry-forbidden by the parity selection rule. Nevertheless, TiðH2OÞþ3
6

shows an absorption band in solution with a maximum at about 20 000 cm�1 and a marked

‘‘shoulder’’ on the low-energy side of the maximum at about 17 000 cm�1. Explain the

source and the structure of this absorption band.

From the character Table for Oh in Appendix A3, we find that the DP

T2g�Eg¼T1g�T2g does not contain �(x, y, z)¼T1u, so that the transition t2g
1 ! e1

g is

symmetry-forbidden (parity selection rule). Again using the character table for Oh,

ð4Þ T2g � Eg � T1u ¼ A1u � A2u � 2Eu � 2T1u � 2T2u: (7)

The normal modes of ML6 form bases for A1g�Eg�T2g� 2T1u�T2u. Since the DP of

two g representations can give only g IRs, we may work temporarily with the group O:

T2g � Eg ¼ 6 �2 0 0 0f g ¼ T1g � T2g:

The DP does not contain �(r)¼T1u, so the transition t2g! eg is symmetry-forbidden. This

is an example of a parity-forbidden transition. We now form the DP

T2g � Eg � T1u ¼ 18 2 0 0 0f g: The direct sum must consist of u representations.

Still working with O,

cðT2uÞ ¼ ð1=24Þ½54 � 6� ¼ 2,

cðT1uÞ ¼ ð1=24Þ½54 � 6� ¼ 2,

cðEuÞ ¼ ð1=24Þ½36 þ 12� ¼ 2,

cðA2uÞ ¼ ð1=24Þ½18 þ 6� ¼ 1,

cðA1uÞ ¼ ð1=24Þ½18 þ 6� ¼ 1,
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and so the parity-forbidden transition becomes vibronically allowed through coupling

to the odd-parity vibrational modes of T1u and T2u symmetry. The vibronic transition
2T2g ! 2Eg accounts for the observed absorption band, but why does it show some

structure? This indicates additional splitting of energy levels associated with a lowering

of symmetry (the Jahn–Teller effect). The Jahn–Teller theorem (see, for example, Sugano,

Tanabe, and Kamimura (1970)) states that any non-linear molecule in an orbitally degener-

ate state will undergo a distortion which lowers the energy of the molecule and removes the

degeneracy. Consider here a lowering in symmetry from Oh to D4h. The effect on the

energy levels is shown in Figure 10.2. The single d electron is now in a b2g orbital. The

Jahn–Teller splitting between b2g and eg is too small for a transition between these states to

appear in the visible spectrum. The relatively small splitting of the main absorption band

tells us that we are looking for a relatively small perturbation of the t2g ! eg transition,

which is forbidden in Oh symmetry. So the observed structure of the absorption band is due

to the 2T2g ! 2Eg transition in Oh symmetry being accompanied by 2B2g ! 2Blg and
2B2g ! 2Alg in D4h symmetry due to the dynamical Jahn–Teller effect.

Example 10.2-3 Since it is the nearest-neighbor atoms in a complex that determine the

local symmetry and the vibronic interactions, trans-dichlorobis(ethylenediamine)cobalt(III)

(Figure 10.3(a)) may be regarded as having D4h symmetry for the purpose of an analysis of

its absorption spectrum in the visible/near-ultra-violet region (Ballhausen and Moffitt

(1956)). The fundamental vibrational transitions therefore involve the 21� 6¼ 15 normal

modes of symmetry: 2Alg, Blg, B2g, Eg, 2A2u, Blu, 3Eu.

(1) In Oh symmetry the ground-state configuration of this low-spin complex would be t62g.

Determine the ground-state and excited-state spectral terms in Oh symmetry.

(2) Now consider a lowering of symmetry from Oh to D4h. Draw an energy-level diagram

in Oh symmetry showing the degeneracy and symmetry of the orbitals. Then, using a

correlation table, show the splitting of these levels when the symmetry is lowered to

D4h. Determine the ground-state and excited-state terms, and show how these terms

a1g
eg

b1g

b2g

eg

t2g

Oh D4h

Figure 10.2. Splitting of the t2g and eg energy levels due to the Jahn–Teller effect in an octahedral d1

complex. The short arrow indicates that in the ground state the b2g level is occupied by one electron.
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correlate with the corresponding terms in Oh symmetry. Determine the symmetry-

allowed vibronic transitions in D4h symmetry between the ground state and the four

excited states, noting the corresponding polarizations.

(3) Figure 10.3(b) shows the absorption spectrum: the continuous line shows the optical

absorption for light polarized (nearly) parallel to OZ (the Cl–Co–Cl axis) and the

dashed line indicates the absorption for light polarized perpendicular to this axis,

namely in the xy plane. Assign transitions for the observed bands. [Hints: (i) The

highest-energy band in the spectrum is a composite of two unresolved bands. (ii) The

oscillator strengths for parallel and perpendicular transitions are not necessarily

equal. (iii) The additional D4h crystal-field splitting is less than the Oh splitting,

named � or 10Dq.]

(1) Co (atomic number 27) has the electron configuration 3d84s1 and Co3þ has the

configuration d6. In Oh symmetry, the configuration is t2g
6 when the crystal-field

splitting is greater than the energy gain that would result from unpairing spins, as in

the present case. The ground-state term is therefore 1Alg. The first excited state has the

configuration t2g
5 e1

g. Since all states for d6 are symmetric under inversion, we may use

the character table for O. As already shown in Example 10.2-2, T2g�Eg¼T1g þ T2g

so the excited state terms are 1T1g,
3T1g,

1T2g,
3T2g. Though parity-forbidden, the

1A1g ! 1T1g,
1T2g are vibronically allowed in Oh symmetry, it being known from

calculation that the T1g level lies below T2g.

(2) Figure 10.4 shows the splitting of the one-electron orbital energies and states as the

symmetry is lowered from Oh to D4h. The ground state is eg
4b2g

2 : 1A1g. Since all states

for d6 have even parity under inversion, we may use the character table for D4 in

Appendix A3. The four excited states and their symmetries are

12 000 20 000 30 000 40 000
0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

frequency (cm–1)

lo
g 

ε

(b)(a)

Cl
Y

X

Z

Cl

Co

N 

NN

N

Figure 10.3. (a) The trans-dichlorobis(ethylenediamine)cobalt(III) ion, showing only the nearest-

neighbor atoms in the ligands. (b) Absorption spectra of the trans-[Co(en)2Cl2]+ ion showing the

dichroism observed with light polarized nearly parallel to the Cl–Co–Cl axis OZ (——), and with

light polarized in the xy plane perpendicular to that axis (- - - - ). After Yamada and Tsuchida (1952)

and Yamada et al. (1955).
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b2g a1g B2g � A1g ¼ B2g,

b2g b1g B2g � B1g ¼ A2g,

eg b1g Eg � B1g ¼ Eg,

eg a1g Eg � A1g ¼ Eg:

There are therefore excited singlet and triplet states Xg of A2g, B2g, and Eg symmetry. In

D4h the dipole moment operator �er forms a basis for �(r)¼A2u¼Eu. Since all states in

the DP Xg� (A2uþEu� 1A1g) are odd under inversion, we may continue to work with the

D4 character table in evaluating DPs. The symmetries of the dipole moment matrix

elements for the possible transitions are shown in Table 10.1. All the transitions in Table

10.1 are forbidden without vibronic coupling. Inspection of the given list of the symmetries

of the normal modes shows that there are odd-parity normal modes of A2u, B1u, and Eu

symmetry, and consequently four allowed transitions for (x, y) polarization, namely
1A1g!1A2g,

1B2g and 1Eg(2), there being two excited states of Eg symmetry, one correlat-

ing with T1g in Oh and the other with T2g. These transitions become allowed when there is

eg

a1g

b1g

T2g
B2g

Eg

T1g

Eg

A2g

D4hOh

1A1g

t2g

eg

b2g

D4hOh

(b)(a)

Figure 10.4. Splitting of (a) the one-electron orbital energy levels and (b) the electronic states, as the

symmetry is lowered from Oh to D4h.

Table 10.1. Symmetry of the dipole moment matrix elements in

trans-dichlorobis(ethylenediamine)cobalt(III) in D4h symmetry.

Polarization Symmetry of operator Final state

A2g B2g Eg

Z A2u A1u B1u Eu

x, y Eu Eu Eu A1u�A2u�B1u�B2u
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simultaneous excitation of a normal mode of symmetry Eu, Eu and A2u, or B1u, respectively.

Only three bands are actually observed because the two highest energy bands overlap.

(3) In z polarization (the continuous line in the spectrum) there should be three bands due to
1A1g! 1B2g,

1Eg, and 1Eg transitions, but only two bands are resolved. Disappearance of

band 2 with z polarization identifies this with the 1A1g! 1A2g transition. Given that T1g

lies below T2g in Oh symmetry, and since the D4h splitting is less than �, we deduce that

band 1 is due to 1A1g ! 1Eg (T1g), which is allowed in both polarizations, but with

somewhat different oscillator strengths. The highest-energy absorption consists of the

unresolved bands 3 and 4 due to 1A1g ! 1Eg (T2g) and 1A1g ! 1B2g, which are both

allowed in both polarizations. These assignments lead to the approximate energy-level

diagram shown in Figure 10.5, which also shows the observed transitions. In interpreting

this diagram one must bear in mind that the energy differences given are optical energies,

which are greater than the corresponding thermal energies because the minima in the

adiabatic potential energy curves for ground and excited states do not coincide.

10.3 Charge transfer

Example 10.3-1 Table 10.2 contains a summary of observations on the optical absorption

spectra of the ions MoðCNÞ3�
8 and MoðCNÞ4�

8 , both of which have D2d symmetry. Deduce

which transitions are responsible for these absorption bands. The following additional

1A1g
1A2g

b2g

b1g

a1g

t2g

eg

eg

1A1g
1B2g

1A1g  Eg

1A1g  Eg

1

2

3

4

16 000 cm–1

14 000 cm–1

8000 cm–1

Figure 10.5. Approximate energy-level diagram showing the allowed transitions which are

responsible for the observed absorption spectrum of the trans-[Co(en)2Cl2]+ ion in Figure 10.4.

The energies shown are optical energies, which are greater than the corresponding thermal energies

because the minima in the adiabatic potential energy curves for the ground and excited states occur at

different values of {R}.
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information is available. (a) The energies of the metal d orbitals in a D2d environment are as

in Table 10.3. (b) Mo ðCN Þ4�
8 is diamagnetic. (c) Both complexes have an occupied non-

bonding ligand orbital of a2 symmetry. (d) Charge transfer bands, which arise from the

excitation of an electron in a ligand orbital into a vacant metal orbital (or from an occupied

metal orbital into a vacant ligand orbital) are rather intense bands and are usually located at

the short-wavelength end of the spectrum.

The atomic number of Mo is 42: MoðCNÞ3�
8 contains Mo5þ and has the configuration

d1; MoðCNÞ4�
8 contains Mo4þ and has the configuration d2. Inspection of the D2d character

table shows that the d orbitals transform according to the representations given in Table

10.4. Therefore the ground state of MoðCNÞ3�
8 is b1 : 2B1, while that of MoðCNÞ4�

8 is

b1
2: 1A1. Possible symmetry-allowed transitions are identified in Table 10.4. In the event

that the transition is allowed, the necessary polarization of the radiation is given in

parentheses. The column headed ‘‘Direct product’’ gives the DP of the ground- and

excited-state representations which must contain one of the representations of the dipole

moment operator for the transition to be allowed. In D2d, these are B2(z) and E(x, y). The

DPs leading to the excited-state terms are not shown explicitly but may readily be verified

with the help of the D2d character table. As shown in Table 10.4 there is only one

symmetry-allowed, spin-allowed, d! d transition in MoðCNÞ3�
8 , from 2B ! 2E, which

is excited by radiation polarized in the (x, y) plane. For MoðCNÞ4�
8 there is also only one

symmetry-allowed, spin-allowed d! d transition, that from 1A1 ! 1E, which again is (x, y)

Table 10.2. Absorption data for optical spectra of MoðCNÞ3�
8 and

MoðCNÞ4�
8 .

The bracket } indicates the presence of two unresolved bands.

Ion �max/cm�1 Oscillator strength

MoðCNÞ3�
8 39 370

37 310

)
3.0� 10

�2

25 770 7.2� 10�3

Mo(CN)8
4� 41 850 3.2� 10�1

27 320 2.95� 10�3

23 810 10� 5

After Golding and Carrington (1962).

Table 10.3. Relative energies of metal d orbitals in D2d symmetry.

Orbital Representation Energy

dxy B2 0.2771�
dyz, dzx E 0.1871�
d3z2�r2 A1 �0.0287�
dx2�y2 B1 �0.6225�
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polarized. These two transitions would be expected to have roughly similar intensities. The

weaker band at long wavelengths in the MoðCNÞ4�
8 spectrum can be identified with the

1A1 ! 3E transition, partially allowed through spin–orbit coupling. There are still three

more intense bands, and these are due to charge transfer (CT) from the non-bonding orbital

of a2 symmetry. The analysis is given in Table 10.4. Three electrons in three different

orbitals give rise to doublet and quartet states, but only the former are recorded in the table

because of the spin selection rule, �S = 0. Similarly, the CT excited states for MoðCNÞ4�
8

are singlets and triplets but only the spin-allowed transitions are observed. As Table 10.4

shows, we should expect two symmetry-allowed, spin-allowed CT bands for MoðCNÞ3�
8 ,

one z-polarized and the other with (x, y) polarization, but only one CT band for MoðCNÞ4�
8 .

The above analysis thus establishes the complete assignment of the observed bands in the

optical absorption spectra of these two complex ions, as summarized in Table 10.5.

Table 10.4. Determination of symmetry-allowed transitions in MoðCNÞ3�
8 and

MoðCNÞ4�
8 .

Ground state Excited state Direct product Symmetry-allowed?

d ! d transitions

MoðCNÞ3�
8

b1 : 2B1 a1 : 2A1 B1 � A1 = B1 no

e : 2E B1 � E = E yes (x, y)
b2 : 2B2 B1 � B2 = A2 no

MoðCNÞ4�
8

b1
2 : 1A1 b1a1 : 1B1, 3B1 A1 � B1 = B1 no

b1e : 1E, 3E A1 � E = E yes (x, y)
b1b2 : 1A2, 3A2 A1 � A2 = A2 no

Charge-transfer transitions

MoðCNÞ3�
8

a2
2 b1 : 2B1 a2b1

2 : 2A2 B1 � A2 = B2 yes (z)

a2b1a1 : 2B2 B1 � B2 = A2 no
a2b1e : 2E B1 � E = E yes (x, y)
a2b1b2 : 2A1 B1 � A1 = B1 no

MoðCNÞ4�
8

a2
2 b1

2: 1A1 a2b1
2a1 : 1A2 A1 � A2 = A2 no

a2b1
2e : 1E A1 � E = E yes (x, y)

a2b1
2b2 : 1B1 A1 � B1 = B1 no

Table 10.5. Assignment of the observed bands in the absorption spectra of MoðCNÞ3�
8 and

MoðCNÞ4�
8 .

�max/cm�1 Transition Polarization

MoðCNÞ3�
8

39 370 CT a2
2 b1 : 2B1 ! a2 b1

2 : 2A2 z

37 310 CT a2
2b1 : 2B1 ! a2 b1e : 2E x, y

25 770 d ! d b1 : 2B1 ! e : 2E x, y

MoðCNÞ4�
8

41 850 CT a2
2 b1

2 : 1A1 ! a2 b1
2 e : 1E x, y

27 320 d ! d b1
2 : 1A1 ! b1 e : 1E x, y

23 810 d ! d b1
2 : 1A1 ! b1e : 3E x, y
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Problems

10.1 Determine the ground-state electron configuration and spectral term of the following

octahedral complexes: low-spin Fe ðCN Þ3 �
6 ; low-spin Cr(CO)6; high-spin Cr ðH2O Þ3þ

6 .

10.2 A d2 complex ion has D4 symmetry. It has the electronic configuration (b2)2 in the

ground-state and excited-state configurations b2e, b2a1, b2b1. Determine the electro-

nic states that arise from these configurations. Hence decide which of the possible E1

transitions from the ground state to excited states are spin- and symmetry-allowed. If

any of the possible spin-allowed E1 transitions are symmetry-forbidden, are they

allowed M1 transitions?

10.3 The absorption spectrum of low-spin NiF3�
6 shows four absorption bands in the region

below 25 000 cm �1. Find the symmetry- and spin-allowed transtions in octahedral

geometry and suggest a reason for any discrepancies with experiment.

10.4 The ground state of octahedral of CoðCNÞ3 �
6 is t2 g

6 : 1A1g and the first excited-state

configuration is t2 g
5 e g, which gives rise to four excited states. (a) Are transitions from

the ground state to any of these excited states (i) symmetry-allowed? (ii) spin allowed?

(b) Are transitions to any of these states allowed through vibronic coupling? (c) The

absorption spectrum of K3Co(CN)6 in aqueous solution shows two bands at

32 050 cm �1 and 38 760 cm�1 with oscillator strengths of 5.4 � 10�3 and 3.5 � 10�3,

respectively, and a further very intense absorption band in the region of 50 000 cm�1.

Give an interpretation of this spectrum. [Hint: The energy-level diagram of this com-

plex ion shows a vacant ligand p* antibonding orbital of t1u symmetry.] (d) CoðCN Þ3�
6

ions may be dissolved in KCl crystals. The Co3þ ion occupies a K þ site and the six CN �

ions occupy nearest-neighbor anion sites, thus preserving octahedral coordination. But

charge compensation requires two vacant cation sites. The location of these sites is such

as to lower the site symmetry at Co3þ sites from Oh to Cs. Explain the fact that the

absorption spectrum of this crystal contains six bands in the near-ultra-violet visible

spectral region (in addition to the intense band near 50 000 cm�1).

10.5 (a) The tetrahedral permanganate ion MnO �4 ion has the ground-state configuration

(1 e)4 (1 t2)6 (2 t2)6 (t1)6 and the next lowest MO is an antibonding 3t2 orbital.

Determine the symmetries of the states that correspond to the excited-state config-

urations . . .  (2 t2)6 ( t1)5 (3 t2)1 and . . .  (2 t2)5 ( t1)6 (3 t2)1. Find which E1 and M1

transitions from the ground state to these two excited states are symmetry- and

spin-allowed. State the polarization of allowed E1 transitions. (b) In a crystal of

KClO4 containing some MnO �4 substituting for ClO �4 , the symmetry at an impurity

anion site is reduced to Cs. Describe what splittings and relabeling of states occur in

the ground state of MnO �4 and the excited states to which E1 transitions were allowed

in the free ion, when the symmetry is lowered from Td to Cs, and state which E1

transitions are allowed now and what their polarizations are.

10.6 The absorption spectra of pink octahedral CoðH2OÞ2þ
6 and of deep blue tetrahedral

CoðClÞ2�
4 show bands in the visible region at 18 500 cm�1 ("¼ 10) and 15 000 cm�1

("¼ 600), respectively. Both these compounds also show infra-red absorption bands

at 8350 cm�1 and 6300 cm�1. Suggest an explanation for these observations. [Hint:

See Griffith (1964) and Harris and Bertolucci (1978).]
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11 Continuous groups

11.1 Rotations in <2

The special orthogonal group SO(2) is the group of proper rotations in the 2-D space of real

vectors, <2, about an axis z normal to the plane containing x and y. Since there is only one

rotation axis z, the notation R(� z) for the rotation of the unit circle in<2 will be contracted

to R(�). Then, for the orthonormal basis he1 e2|,

Rð�Þhe1 e2j ¼ he10 e20j ¼ he1 e2j�ð�Þ, (1)

�ð�Þ ¼ cos� �sin�
sin� cos�

� �
: (2)

Since det �(�)¼ 1 and �(�)T �(�)¼E2, �(�) is an orthogonal matrix with

determinant þ1, and so the group of proper rotations in <2 is isomorphous with the

group of 2� 2 orthogonal matrices with determinant þ1, which thus forms a faithful

representation of the rotation group. Any function f (x, y) is transformed under R(�) into

the new function

R̂ð�Þ f ðx, yÞ ¼ f ðRð�Þ�1fx, ygÞ ¼ f ðc xþ s y, �s xþ c yÞ, (3)

and so R̂(�) f (x, y) is f (x 0, y 0) with the substitutions x 0 ¼ c xþ s y, y 0 ¼�s xþ c y.

In particular, the functions {x, y} form a basis for a 2-D representation of SO(2):

R̂ð�Þhx yj ¼ hx0 y0j ¼ hc xþ s y �s xþ c yj

¼ hx yj
c �s

s c

� �
¼ hx yj�ð�Þ: (4)

But successive rotations about the same axis commute so that the group SO(2) is Abelian

with 1-D representations with bases (xþ iy)m, m¼ 0,�1,�2, . . . ,

R̂ð�Þhxþ iyj ¼ hc xþ s yþ ið�s xþ c yÞj ¼ hðc� isÞðxþ iyÞj
¼ expð�i�Þhxþ iyj:

(5)

The 1-D matrix representatives (MRs) of R(�) for the bases (xþ iy)m are therefore

�mð�Þ ¼ expð�im�Þ, m ¼ 0, �1, �2, . . . (6)

Restricting m to integer values ensures that the set of functions

182



fð2pÞ�1=2ðxþ iyÞmg ¼ fð2pÞ�1=2
expðim’Þg ¼ umðr ¼ 1,’Þ,m ¼ 0, �1, �2, . . . (7)

form an orthonormal basis with

hm0jmi ¼ �mm0 (8)

and satisfy the condition

(6) �mð�þ 2pÞ ¼ �mð�Þ: (9)

11.2 The infinitesimal generator for SO(2)

In <2 there is only one rotation axis, namely z. Rotations about this axis commute:

Rð�Þ Rð�0Þ ¼ Rð�þ �0Þ ¼ Rð�0Þ Rð�Þ, (1)

a condition on R(�) that is satisfied by

Rð�Þ ¼ expð�i�I3Þ: (2)

On expanding the exponential in eq. (2), we see that

�i I3 ¼ lim
�!0

dRð�Þ
d�

: (3)

I3 is therefore called the infinitesimal generator of rotations about z that comprise SO(2).

With r¼ 1,

(2) R̂ð�Þumðr,’Þ ¼ expð�i�Î3Þumðr,’Þ
¼ umðR�1fr,’gÞ ¼ umðr,’� �Þ,

(4)

where, as usual, the carat symbol over R (or I3) indicates the function operator that

corresponds to the symmetry operator R (or I3, as the case may be). For infinitesimally

small rotation angles �,

ð1� i�Î3Þ umðr,’Þ ¼ 1� � d

d’

� �
umðr,’Þ (5)

on expanding the second and fourth members of eq. (4) to first order in �.

(5) I3 ¼ � i d

d’
, (6)

which shows that the infinitesimal generator of rotations about z is just the angular

momentum about z. (Atomic units, in which �h¼ 1, are used throughout.) The MR �(�)

of the symmetry operator R(�) is

(2) �ð�Þ ¼ expð�i�I3Þ: (7)
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The exponential notation in eqs. (2) and (7) means a series expansion in terms of powers of

the operator I3, or its MR I3, respectively,

(2) Rð�Þ ¼ expð�i�I3Þ ¼
P1
n¼0

ð�i�ÞnðI3Þn=n!, (8)

(7) �ð�Þ ¼ expð�i�I3Þ ¼
P1
n¼0

ð�i�ÞnðI3Þn=n! (9)

For infinitesimally small rotation angles �,

(9) �iI3 ¼ lim
�!0

d�ð�Þ
d�

: (10)

I3 is the MR of the infinitesimal generator I3 of SO(2), the group of proper rotations in <2.

In the defining 2-D representation with basis he1 e2|

(10), (11.1.2) �iI3 ¼
0 1

1 0

� �
: (11)

Finite rotations are generated by R(�)¼ exp(�i�I3). The effect of a rotation of 2-D

configuration space by R(�) on any function f ðr; ’Þ is given by

(4) R̂ð�Þf ðr,’Þ ¼ expð�i�Î3Þf ðr,’Þ (12)

¼ f ðexpði�I3Þfr,’gÞ: (13)

In eq. (12), R̂(�) is the function operator that corresponds to the (2-D) configuration-space

symmetry operator R̂(�). In eq. (13), I3 is the infinitesimal generator of rotations about z

(eq. (8)); exp(i�I3) is the operator [R(�)]�1, in accordance with the general prescription

eq. (3.5.7). Notice that a positive sign inside the exponential in eq. (2) would also satisfy the

commutation relations (CRs), but the sign was chosen to be negative in order that I3 could

be identified with the angular momentum about z, eq. (6).

11.3 Rotations in <3

The group of proper rotations in configuration space is called the special orthogonal

group SO(3). There are two main complications about extending <2 to <3.

Firstly, the group elements are the rotations R(� n), where n is any unit vector in <3,

and, secondly, finite rotations about different axes do not commute. In Chapter 4

we derived the MR of R(� z) and showed this to be an orthogonal matrix of

determinant þ1:

�ð� zÞ ¼
cos� �sin� 0

sin� cos� 0

0 0 1

2
4

3
5, �p < � � p: (1)
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The {�(� z)} form a group isomorphous with SO(3) and so may be regarded as merely a

different realization of the same group. Since successive finite rotations about the same

axis commute, the infinitesimal generator I3 of rotations about z is given by

(11.2.3) �i I3 ¼ lim
�!0

dRð� zÞ
d�

, (2)

and its MR is given by

(1), (11.2.10) �iI3 ¼ lim
�!0

d�ð� zÞ
d�

¼
0 1 0

1 0 0

0 0 0

2
4

3
5: (3)

The matrix elements of I3 are thus

(3) ðI3Þij ¼ �i "ijk , i, j ¼ 1, 2, 3; k ¼ 3, (4)

where "ijk is the Levi–Civita antisymmetric three-index symbol: "ijk is antisymmetric

under the exchange of any two indices, and "123 is defined to be þ1. Here in eq. (4), k¼ 3,

so all diagonal elements are zero, as are the elements of the third row and the third column.

Exercise 11.3-1 Confirm from eq. (4) the entries (I3)12 and (I3)21, thus completing the

verification that eq. (4) does indeed give eq. (3).

In like manner, for rotations R(� x) about x

�ð� xÞ ¼
1 0 0

0 cos� �sin�
0 sin� cos�

2
4

3
5: (5)

(11.2.10) �i I1 ¼
0 0 0

0 0 1

0 1 0

2
4

3
5, ðI1Þij ¼ �i "ijk , i, j ¼ 1, 2, 3; k ¼ 1, (6)

and for R(� y)

�ð� yÞ ¼
cos� 0 sin�
0 1 0

�sin� 0 cos�

2
4

3
5, (7)

�iI2 ¼
0 0 1

0 0 0

1 0 0

2
4

3
5, ðI2Þij ¼ �i "ijk , i, j ¼ 1, 2, 3; k ¼ 2: (8)

(4), (6), (8) ðIkÞij ¼ �i "ijk , i, j, k ¼ 1, 2, 3: (9)

A general rotation R(� n) through a small angle � (Figure 11.1) changes a vector r,

which makes an angle � with n, into r 0 ¼ rþ �r, where the displacement �r of R is normal

to the plane of n and r. Consequently,
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Rð� nÞr ¼ r0 ¼ rþ ðn� rÞ�: (10)

On evaluating the vector product, the components of r0 are seen to be

ri
0 ¼ ð�ij � � "ijk nkÞrj, i ¼ 1, 2, 3: (11)

For notational convenience, the components of r are here {r1, r2, r3} rather than {x y z}.

The Einstein summation convention, an implied summation over repeated indices, is used

in eq. (11).

(11) �ð� nÞ ¼
1 ��n3 �n2
�n3 1 ��n1

��n2 �n1 1

2
4

3
5: (12)

The MR In of the generator of infinitesimal rotations about n is

(12) �iIn ¼
0 �n3 n2
n3 0 �n1
�n2 n1 0

2
4

3
5 (13)

with elements

ðInÞij ¼ �i "ijk nk ¼ nkðIkÞij, k ¼ 1, 2, 3

¼ hn1 n2 n3 j I1 I2 I3iij,
(14)

which is the ijth element of the MR of the scalar product

In ¼ n � I: (15)

I, a vector with components I1, I2, I3, is the infinitesimal generator of rotations about an

arbitrary axis n. Successive rotations in <3 about the same axis n do commute,

Rð� nÞRð�0 nÞ ¼ Rð�0 nÞRð� nÞ, (16)

n

O

R′

Q

R

θ

Figure 11.1. Rotation of a vector r, whichmakes an angle �with the axis of rotation n, through a small

angle �. From the figure, Rð� nÞr ¼ r0 ¼ rþ �r, and j�rj ¼ ðr sin �Þ�: Note that �r is perpendicular
to the plane of n and r; it is of magnitude (r sin �)�; and it is of orientation such that �r¼ (n� r)�.
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a condition satisfied by

(15) Rð� nÞ ¼ expð�i�InÞ ¼ expð�i�n � IÞ: (17)

The MR of the symmetry operator R(� n) is

(17) �ð� nÞ ¼ expð�i�InÞ, (18)

with the matrix In given by eq. (13). For a small angle �

(17) Rð� nÞ ¼ E � i�n � I; (19)

(18), (19) �ð� nÞ ¼ E�i� hn1 n2 n3jI1 I2 I3i: (20)

When the symmetry operator R(� n) acts on configuration space, a function f (r, �, ’) is

transformed by the function operator R̂(� n) into the new function f 0(r, �, ’), where

(17) f 0ðr, �,’Þ ¼ f ðRð� nÞ�1fr, �,’gÞ ¼ f ðexpði�n � IÞfr, �,’gÞ: (21)

For an infinitesimal angle �

(21) f 0ðr, �,’Þ ¼ f ðð1þ i�n � IÞfr, �,’gÞ, (22)

(22) R̂ð� nÞ ¼ Ê �i�n � Î: (23)

The differences in sign in the operators in eqs. (17) and (21) and between eqs. (19) and (22)

have arisen from our rules for manipulating function operators.

Answer to Exercise 11.3-1

(4) ðI3Þ12 ¼ �i "123 ¼ �i, ðI3Þ21 ¼ �i "213 ¼ i:

Therefore, for k¼ 3,

�iI3 ¼
0 1 0

1 0 0

0 0 0

2
4

3
5:

11.4 The commutation relations

As a prelude to finding the irreducible representations (IRs) for SO(3)we now need to establish

the CRs between the components I1, I2, I3 of I and I2. To do this we need, as well as

eq. (11.3.9),

ðIkÞij ¼ �i "ijk , i, j, k ¼ 1, 2, 3, (1)

the identity
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"ilk "jmk ¼ �ij �lm � �im �lj, (2)

½Ii,Ij�lm ¼ ðIi,Ij � Ij,IiÞlm ¼ �"lpi "pmj þ "lqj "qmi

¼ �li �jm � �lm �ji � �lj �im þ �lm �ij

¼ �il �jm � �im �jl

¼ "ijk "lmk

¼ i "ijkðIkÞlm:

(3)

Equation (3) is derived using the MRs of the infinitesimal generators (symmetry operators)

and therefore holds for the operators, so that

(3) ½Ii, Ij� ¼ i "ijk Ik , (4)

(4) ½I2, Ik � ¼ 0: (5)

Exercise 11.4-1 Prove eq. (2). [Hint: Consider m = l and then m 6¼ l.]

Exercise 11.4-2 Prove eq. (5).

Exercise 11.4-3 Verify that [I1, I2]¼ iI3 by matrix multiplication of the MRs of the

infinitesimal rotation operators I1, I2, I3 which are given in eqs. (11.3.3), (11.3.6), and

(11.3.8).

The commutators, eqs. (4) and (5), are derived in three different ways, firstly from

eq. (11.3.9) and then in Exercises (11.4-1) and (11.4-2) and Problem 11.1. Note that I1, I2,

and I3 are components of the symmetry operator (infinitesimal generator) I which acts on

vectors in configuration space. Concurrently with the application of a symmetry operator to

configuration space, all functions f(r, �, ’) are transformed by the corresponding function

operator. Therefore, the corresponding commutators for the function operators are

(4), (5) ½Îi, Îj� ¼ i "ijk Îk ; ½Î 2, Îk � ¼ 0, k ¼ 1, 2, 3, (6)

where, as usual, the carat sign (̂ ) indicates a function operator. We define the shift (or

ladder) operators

Iþ ¼ I1 þ i I2, I� ¼ I1 � i I2: (7)

R(� n) is a unitary operator. Using eq. (11.3.19), which holds for small angles �, and

retaining only terms of first order in �,

(11.3.19) RyR ¼ ðE þ i�n � IyÞðE � i�n � IÞ

¼ E � i�n � ðI� IyÞ ¼ E:
(8)

(8) I ¼ Iy, (9)
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which shows that the infinitesimal generator I of rotations about n is a self-adjoint operator.

Therefore I2 and the components of I, I1, I2, I3 are also self-adjoint. Consequently,

(7) I�
y ¼ I�, (10)

(7), (4) IþI� ¼ I2 � I3
2 þ I3, (11)

(7), (4) I�Iþ ¼ I2 � I3
2 � I3, (12)

(11), (12) ½Iþ, I�� ¼ 2 I3, (13)

(5), (7) ½I2, I�� ¼ 0, (14)

(4), (7) ½I3, I�� ¼ � I�: (15)

Exercise 11.4-4 Prove eqs. (11), (12), and (15).

All the above relations, eqs. (7)–(15), hold for the corresponding function operators, the

presence (or absence) of the carat sign serving to indicate that the operator operates on

functions (or on configuration space).

The effect on a vector r of a rotation through a small angle � about n is

Rð� nÞr ¼ r0 ¼ rþ ðn� rÞ�: (16)

(11.3.10) R̂ð� nÞ f ðrÞ ¼ f ðR�1rÞ ¼ f ðr� ðn� rÞ�Þ (17)

¼ f ðrÞ � �ðn� rÞ � rf ðrÞ
¼ f ðrÞ � � n � r�rf ðrÞ,

(18)

where eq. (17) has been expanded to first order because the displacement �r¼ r0 � r is

small. Since

r�r ¼ iðr� p̂Þ ¼ i Ĵ, (19)

where J is the angular momentum r� p, the function operator corresponding to the small

rotation R(� n) is

(18), (19) R̂ð� nÞ ¼ Ê �i� n � Ĵ: (20)

Equations (11.3.23) and (20) show that the infinitesimal generator I of rotations in<3 about

any axis n is the angular momentum about n. The separate symbol Î has now served its

purpose and will henceforth be replaced by the usual symbol for the angular momentum

operator, Ĵ, and similarly Î1, Î2, Î3 will be replaced by Ĵx, Ĵy, Ĵz.

Since Ĵx, Ĵy, Ĵz all commute with Ĵ 2, but not with each other, only one of the

components (taken to be Ĵz) has a common set of eigenfunctions with Ĵ 2. These eigenfunc-

tions are called u j
m or, in Dirac notation, | j mi:
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Ĵzj j mi ¼ mj j mi, (21)

Ĵ2j j mi ¼ j 0 2j j mi: (22)

At this stage, j 0 is just a number that determines the value of j2 and the precise relation

between j and j 0 is yet to be discovered.

(15), (21) ĴzðĴ�j j miÞ ¼ ð�Ĵ� þ Ĵ� ĴzÞj j mi
¼ ð�Ĵ� þ Ĵ�mÞj j mi
¼ ðm� 1ÞĴ�j j mi:

(23)

Equation (23) demonstrates the reason for the name shift operators: if | j mi is an eigen-

vector of Ĵz with eigenvalue m, then Ĵ�| j mi is also an eigenvector of Ĵz but with

eigenvalue m� 1. However, Ĵ� | j mi is no longer normalized: let cþ or c� be the

numerical factor that restores normalization after the application of Ĵþ or Ĵ�, so that

(23) Ĵ�j j mi ¼ c�j j m� 1i: (24)

Then

(11), (22), (21) hj m jĴþĴ�j j mi ¼ h j mjĴ2 � Ĵ2z þ Jzj j mi
¼ j 0 2 � m2 þ m,

(25)

(10), (25) h j mj ĴþĴ�j j mi ¼ jc�j2, (26)

(25), (26) c� ¼ ½ j 0 2 � mðm� 1Þ�1=2 expði�Þ: (27)

It is customary to follow the Condon and Shortley (1967) (CS) choice of phase for the

eigenfunctions | j mi by setting �¼ 0, thus taking the phase factor exp(i�) as unity for all

values of the quantum numbers j and m. The derivation of the corresponding relation

cþ ¼ ½ j 0 2 � mðmþ 1Þ�1=2 expði�Þ (28)

is Problem 11.2. With the CS choice of phase,

(27), (28) c� ¼ ½ j 0 2 � mðm� 1Þ�1=2, (29)

(21), (22) ðĴ2 � Ĵ2z Þj j mi ¼ ð j 0 2 � m2Þj j mi: (30)

But the eigenvalues of Ĵ2 � Ĵ2z ¼ Ĵ2x þ Ĵ2y are positive; therefore

j 0 2 � m2 � 0, jmj < j 0: (31)

Thus for any particular j 0 (defined by eq. (22)) the values of m are bounded both above and

below. Define j (not so far defined) as the maximum value ofm for any particular j 0 and let

the minimum value of m (for the same j 0) be j 00. Then the allowed values of m (for a

particular j 0) form a ladder extending from a minimum value j00 to a maximum value j.

Because the values of m are bounded,
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(24) Ĵþj j ji ¼ 0, Ĵ�j j j 00i ¼ 0, (32)

(32), (12), (22), (21) Ĵ�ðĴþj j jiÞ ¼ ð j 0 2 � j2 � jÞj j ji ¼ 0, (33)

(33) j 0 2 ¼ jð jþ 1Þ, (34)

(32), (11), (22), (21) ĴþðĴ�j j j 00iÞ ¼ ð j 0 2 � j 00 2 þ j 00Þj j j 00i ¼ 0, (35)

(35) j 0 2 ¼ j 00 2 � j 00, (36)

(34), (36) j 00 2 � j 00 � jð jþ 1Þ ¼ 0, (37)

(37) j 00 ¼ 1þ j, or � j: (38)

Because j is the maximum value of m, the minimum value j 00 of m is � j. And since Ĵ�
converts h| j ji into h| j � ji in 2j integer steps, j is an integer or a half-integer. Therefore, for
any allowed value of j (integer or half-integer) the common eigenfunctions of Ĵ 2 and Ĵz are

fj j mig ¼ fj j ji, j j j� 1i, . . . , j j � jig,
or fu j

mg ¼ fu j
j , u

j
j�1, . . . , u

j
�jg:

(39)

The eigenvalue equation for Ĵ 2 is

(22), (34) Ĵ2j j mi ¼ jð jþ 1Þj j mi, (40)

(24), (29), (34) Ĵ�j j mi ¼ ½ jð jþ 1Þ � mðm� 1Þ�1=2j j m� 1i (41)

¼ ½ð j� mÞð j� mþ 1Þ�1=2j j m� 1i: (42)

Exercise 11.4-5 Prove the equivalence of the two forms for c� in eqs. (41) and (42).

Answers to Exercises 11.4

Exercise 11.4-1 Ifm¼ l, then j¼ i, and "ilk "jmk¼��ij �lm. Ifm 6¼ l, then l¼ j,m¼ i and "ilk
"jmk¼��im �lj. Therefore "ilk "jmk¼ �ij �lm� �im �lj.

Exercise 11.4-2 ½I2, I1� ¼ ½I12 þ I2
2 þ I3

2, I1� ¼ ½I22 þ I3
2, I1� ,

½I22, I1� ¼ I2 ½I2, I1� þ ½I2, I1� I2 ¼ �i I2 I3 � i I3 I2 ,

½I32, I1� ¼ I3½I3, I1� þ ½I3, I1�I3 ¼ þi I2 I3 þ i I3 I2 ,

whence [I2, I1]¼ 0; k¼ 2, 3 follow by cyclic permutation.
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Exercise 11.4-3 From eqs. (11.3.6), (11.3.8), and (11.3.3),

I1 I2 � I2 I1 ¼ �
0 0 0

0 0 1

0 1 0

2
64

3
75

0 0 1

0 0 0

1 0 0

2
64

3
75þ

0 0 1

0 0 0

1 0 0

2
64

3
75

0 0 0

0 0 1

0 1 0

2
64

3
75

¼ �
0 0 0

1 0 0

0 0 0

2
64

3
75þ

0 1 0

0 0 0

0 0 0

2
64

3
75 ¼ �

0 1 0

1 0 0

0 0 0

2
64

3
75 ¼ iI3:

Exercise 11.4-4

IþI� ¼ ðI1 þ iI2ÞðI1 � iI2Þ ¼ I1
2 þ I2

2 þ iðI2I1 � I1I2Þ
¼ I2 � I3

2 þ I3;

I�Iþ ¼ ðI1 � iI2ÞðI1 þ iI2Þ ¼ I1
2 þ I2

2 þ iðI1I2 � I2I1Þ
¼ I2 � I3

2 � I3,

and so

½Iþ, I�� ¼ 2I3: (13)

½I2, I�� ¼ ½I2, I1 � iI2� ¼ I2ðI1 � iI2Þ � ðI1 � iI2ÞI2 ¼ ½I2, I1� � i½I2, I2� ¼ 0: (14)

Exercise 11.4-5

ð j� mÞð j� mþ 1Þ ¼ j2 � jmþ j� jm� m2 � m

¼ j2 þ j� m2 � m ¼ jð jþ 1Þ � mðm� 1Þ:

11.5 The irreducible representations of SO(3)

From eqs. (11.3.17) and the remark following (11.4.20), any rotation R(� n) can be

expressed in terms of the angular momentum operators Jx, Jy, Jz, and therefore in terms

of J�, Jz. Since Ĵzj j mi ¼ m j j mi and Ĵ�j j mi ¼ c�j j m� 1i, the set (11.4.39) is

transformed by R(� n) into a linear combination of the same set. Moreover, no smaller

subset will suffice because J� always raise or lower m, while leaving j unaltered, until the

ends of the ladder at m¼�j are reached. Consequently,

hu j
mj ¼ hu j

j, u
j
j�1, . . . , u

j
�jj (1)

is an irreducible basis for representations of SO(3). For a given j, the notation for the basis

hu j
mj in eq. (1) is conveniently shortened to hmj ¼ h j j� 1 . . . � jj.
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(11.4.19) i Ĵ ¼ r�r ¼
x y z

x y z

@=@x @=@y @=@z

2
4

3
5; (2)

(2)

Ĵx ¼ �i ½y @=@z� z @=@y�,
Ĵy ¼ �i ½z @=@x� x @=@z�,
Ĵz ¼ �i ½x @=@y� y @=@x�:

(3)

Transformation from Cartesian coordinates {x y z} to spherical polar coordinates {r � ’} is

a standard exercise, which yields

(3) Ĵx ¼ i sin’
@

@�
þ cot � cos’

@

@’

� �
, (4)

Ĵy ¼ �i cos’
@

@�
� cot � sin’

@

@’

� �
, (5)

Ĵz ¼ �i ½@=@’�: (6)

(4), (5), (11.4.7) Ĵ� ¼ Ĵx � i Ĵy ¼ � expð�i’Þ @

@�
� i cot �

@

@’

� �
: (7)

Integer values of jwill now be distinguished by replacing j by l (¼ 0, 1, 2, . . . ) and u j
m by

Ym
l . When m¼ l,

(7) ĴþY
l
l ð�,’Þ ¼ expði’Þ @

@�
þ i cot �

@

@’

� �
Y l
l ð�,’Þ ¼ 0: (8)

This first-order differential equation may be solved by separation of variables

Ym
l ð�,’Þ ¼ �lmð�Þ�mð’Þ, (9)

(8), (9), (6), (11.4.21) Y l
l ð�,’Þ ¼ Nl sin

l � expðil’Þ: (10)

Exercise 11.5-1 Fill in the steps leading from eq. (9) to eq. (10).

The remaining 2l eigenfunctions with m¼ l� 1, l� 2, . . . , �l follow from eq. (10) by

successive use of the lowering operator Ĵ�, eq. (11.4.41). The normalization factor is

Nl ¼ ð�1Þl½ð2l þ 1Þ!=4p�1=2=2ll!, (11)

where the phase factor (�1)l is included to satisfy the CS phase convention. As anticipated

by the introduction of the symbol Ym
l for ujm when j is an integer, the functions Ym

l ð�,’Þ are
the spherical harmonics
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Ym
l ð�,’Þ ¼ imþjmj Pl

jmjðcos �Þ expðim’Þ, (12)

where the associated Legendre functions

Pl
jmjðcos �Þ ¼ ð2l þ 1Þðl � mj jÞ!

4pðl þ mj jÞ!

� �1=2 1

2ll!
sinjmj �

dlþjmjðcos2 �� 1Þl

dðcos �Þlþjmj : (13)

These are the eigenfunctions of the Laplacian operatorr2 over the unit sphere.With the phase

factor included in eq. (12), they satisfy the CS convention, a consequence of which is that

Ym 	
l ¼ ð�1ÞmYl�m: (14)

Exercise 11.5-2 Show that eq. (14) is consistent with eqs. (12) and (13).

Exercise 11.5-3

(a) Show from eqs. (12) and (13) that the three spherical harmonics for l¼ 1 are

Ym
1 ¼ ð3=4pÞ1=2ym, with y1¼�2�½(xþ iy), y0¼ z, y�1¼ 2�½(x� iy).

(b) Find the MR of R(� z) for the basis h y1 y0 y�1j.
(c) Find the matrix U defined by j U1 U0 U�1 i ¼Ujx y z i, where

U1 ¼ 2�½ðx� iyÞ, U0 ¼ �z, U�1 ¼ �2�½ðxþ iyÞ: (15)

Show explicitly that the transformation matrix U is a unitary matrix and evaluate det U.

(d) Show that the MR �(U)(R) defined by

Rð� zÞjU1 U0 U�1i ¼ �ðUÞðRÞjU1 U0 U�1i

is the same matrix as the MR of R(� z) for the basis h y1 y0 y�1j.
Although this is shown in (d) only for R(� z), jU1 U0 U�1 i and h y1 y0 y�1j are in fact

transformed by the same matrix �(R) under any proper or improper rotation and are thus

dual bases. jU1 U0 U�1 i is called a spherical vector and the superscript (U) in (d) serves as
a reminder of the basis.

For integer or half-integer j, the CS phase convention requires that

ðu j
mÞ

	 ¼ ð�1Þm u j
�m: (16)

Fano and Racah (1959) employ a different convention, which results in

ðu j
mÞ

	 ¼ ð�1Þ j�m
u j
�m: (16

0
)

(11.3.17) R̂ð� zÞu j
m ¼ expð�i� ĴzÞujm ¼

P1
n¼ 0

ðn!Þ�1ð�i� ĴzÞn u j
m

¼
P1
n¼0

ðn!Þ�1ð�i�mÞnu j
m ¼ expð�i�mÞu j

m; (17)
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(17) R̂ð� zÞh j j� 1 . . . �jj ¼ h j j� 1 . . . � jj

¼

e�i�j

e�i�ðj�1Þ

� � �
ei�j

2
6664

3
7775 : (18)

The sum of the diagonal elements of the MR �(�) of the symmetry operator R(� z) forms a

geometric series which we have summed before in Section 7.2 with j replaced by l, an

integer. As before,

� jð�Þ ¼ sin½ð2jþ 1Þ�=2�= sinð�=2Þ: (19)

Although eq. (19) has been derived for R(� z), all rotations R(� n) through the same angle

� are in the same class (and therefore have the same character) irrespective of the

orientation of the unit vector n. Therefore, eq. (19) holds for a rotation through � about

any rotation axis. A formal proof that

Rð� mÞRð� nÞRð� mÞ�1 ¼ Rð� n0Þ, (20)

where R(� m) 2 {R(� n)} and

n0 ¼ Rð� mÞn, (21)

will be provided in Chapter 12 using the quaternion representation. Equation (21) is a

particular case of the effect of a general rotation on a vector: this is called the conical

transformation because under this transformation the vector traces out the surface of a

cone. The proof of the conical transformation, namely that if r 0 ¼R(� n)r, then

r0 ¼ cos� rþ sin�ðn� rÞ þ ð1� cos�Þðn � rÞn, (22)

is set in Problem 11.4. Notice that in eq. (11.4.16) the rotation is through a small angle �

and that eq. (11.4.16) agrees with eq. (22) to first order in �.

(19) � jð�þ 2pÞ ¼ ð�1Þ2j� jð�Þ; (23)

(23) � jð�þ 2pÞ ¼ � jð�Þ, when j is an integer; (24)

(23) � jð�þ 2pÞ ¼ �� jð�Þ when j is a half-integer. (25)

The matrices �(�) do not, therefore, form a representation of R(� n) for half-integer j .

There are two ways out of this dilemma. In one, due to Bethe (1929) and described in

Chapter 8, a new operator E¼R(2p n) is introduced, thus doubling the size of the group G

by replacing it by the double group G¼ {G}þE{G}. The other approach (Altmann

(1986)) introduces no new operators but employs instead a different type of representation

called a multiplier, or projective, or ray representation. This approach will be described in

Chapter 12.

The usefulness of the characters {� j (R)} of a representation j stems largely from the

orthogona lity theorem of Section 4.4, which for a fin ite group of order g, is that
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g�1
P
R

� jðRÞ	� j 0 ðRÞ ¼ �jj 0 : (26)

In SO(3) the characters for the different classes depend only on � which varies continu-

ously in the range �p<�� p. The orthogonality condition eq. (26) is therefore to be

replaced by the integral

Zp

�p

� jðRÞ	� j 0 ðRÞ d�ð�Þ ¼ �jj 0 , (27)

where d�(�) (called the measure) must satisfy the condition

Zp

�p

d�ð�Þ ¼ 1 (28)

in order that the property under the integral sign (which here is � j(R)	 � j 0(R)) will form

a normalized distribution. The measure d�(�) must also ensure that the group rearrange-

ment theorem is satisfied, which means that the integral must be invariant when each

R(� n) 2 G is multiplied by one particular element so that R(� n) becomes R(�0 n0)2 G.

This property of integral invariance together with eq. (28) is sufficient to determine d�(�).

(Mathematical details are given by Wigner (1959) on p. 152, by Jones (1990) in his

Appendi x C, and by Kim ( 1999 ) o n p. 211.) Integra l invari ance, eq. ( 28 ), and eq. (27 ),

are satisfied by

d�ð�Þ ¼ d� ð1� cos�Þ=2p: (29)

Exercise 11.5-4 Prove that d�(�) given by eq. (29) satisfies eq. (28) and ensures that the

integral, eq. (27), is equal to �jj 0.

(11.4.41), (11.4.24) Ĵ�j j mi ¼ ½ jð jþ 1Þ � mðm� 1Þ�1=2j j m� 1i
¼ c�j j m� 1i,

(30)

(11.4.7) Ĵ� ¼ Ĵx � i Ĵy, (31)

(11.4.21) Ĵzj j mi ¼ mj j mi, (32)

(30), (31) Ĵxj j mi ¼ 1

2
½cþj j mþ 1i þ c�jj m�1i�, (33)

(30), (31) Ĵyj j mi ¼ �i

2
½cþj j mþ 1i � c�j j m�1i�: (34)
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For j¼ 1,

(33) Ĵxj1 1i ¼ 2�1=2j1 0i
Ĵxj1 0i ¼ 2�1=2ðj1 1 i þ j1 1 iÞ
Ĵxj1 1i ¼ 2�1=2j1 0i:

(35)

Since j¼ 1, the basis functions may be abbreviated to m,

(35) Ĵxh1 0 1j ¼ h1 0 1j2�1=2

0 1 0

1 0 1

0 1 0

2
4

3
5 ¼ h1 0 1jJðyÞ

x : (36)

The MRs of Jy, Jz for the spherical harmonics basis hmj derived in a similar manner are

(34), (32) JðyÞ
y ¼ 2�

1=2

0 �i 0

i 0 �i

0 i 0

2
4

3
5; JðyÞ

z ¼
1 0 0

0 0 0

0 0 1

2
4

3
5: (37)

The superscript (y) in eqs. (36) and (37) serves to remind us of the basis, namely the

h ymj, which are the spherical harmonics without the normalizing factor (3/4p)1/2. From
Exercise 11.5-3,

jU1 U0 U�1i ¼ Ujx y zi,

where

U ¼ 2�
1=2

1 �i 0

0 0 �2
1=2

�1 �i 0

2
4

3
5:

Therefore, with k¼ x, y, z,

Ĵk jU1 U0 U�1i ¼ JðUÞ
k jU1 U0 U�1i ¼ JðUÞ

k Ujx y zi,

Ĵk Ujx y zi ¼ U Ĵ k jx y zi ¼ UJk jx y zi

Jk ¼ U�1 JðUÞ
k U ¼ Uy JðUÞ

k U, (38)

(38) Jx ¼
0 0 0

0 0 �i

0 i 0

2
4

3
5, Jy ¼

0 0 i

0 0 0

�i 0 0

2
4

3
5, Jz ¼

0 �i 0

i 0 0

0 0 0

2
4

3
5, (39)

11.5 The irreducible representations of SO(3) 197



in agreement with eqs. (11.3.6), (11.3.8) and (11.3.3). The lack of superscripts in eqs. (39)

indicates that the basis is h x y z j (¼h r1 r2 r3j); however, the basis is shown by a

superscript when there may be grounds for confusion.

Exercise 11.5-5 Derive the MRs in eqs. (39) from the corresponding ones for the

basis h u1mj (that is, hmj) in eqs. (36) and (37).

The operators and bases introduced above are not the only possible choices for SO(3).

Consider the functions

j j mi ¼ ½ð jþ mÞ!ð j� mÞ!��1=2
x jþm y j�m: (40)

Then

(40) xð@=@yÞj j mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j� mÞð jþ mþ 1Þ

ð jþ mþ 1Þ!ð j� m� 1Þ!

s
x jþmþ1 y j�m�1

¼ cþj j mþ 1i:
(41)

Therefore, for this basis,

Ĵþ ¼ x
@

@y
: (42)

(40)
1

2
x
@

@x
� y

@

@y

� �
j j mi ¼ 1

2

ð jþ mÞ � ð j� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð jþ mÞ!ð j� mÞ!

p x jþm y j�m, (43)

so that

Ĵzj j mi ¼ 1

2
x
@

@x
� y

@

@y

� �
j j mi ¼ mj j mi: (44)

(See Problem 11.5 for eqs. (45), (46), and (47).)

Answers to Exercises 11.5

Exercise 11.5-1

(9), (8)
1

i cot � �llð�Þ
@�llð�Þ
@�

þ 1

�lð’Þ
@�lð’Þ
@’

¼ 0:

Consequently, the first term is �c and the second one is þc, where c is a constant to be

determined. Equation (11.4.21) gives c¼ il, whence �l(’)¼Nl exp(il’) (unnormalized)

and Y l
l (�,’)¼Nl (sin �)

l exp (il’). Normalization involves a standard integral and gives

eq. (11) after including the CS phase factor.
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Exercise 11.5-2

(12) ð�1Þm Y�m
l ¼ ð�1Þmi�mþjmj P

jmj
l ðcos �Þ exp ð�im’Þ

¼ ð�iÞmþjmj
P
jmj
l ðcos �Þ expð�im’Þ ¼ Ym	

l :

Exercise 11.5-3

(a) (13) Y 1
1 ¼ i1þ1P1

1ðcos �Þ expði’Þ ¼ �ð3=8pÞ1=2 sin � expði’Þ
¼ ð3=4pÞ1=2½�2�

1=2ðxþ iyÞ�,
Y 0
1 ¼ ð3=4pÞ1=2ð1=2Þðsin �Þ0 ð2 cos �Þ ¼ ð3=4pÞ1=2z,

Y�1
1 ¼ ð3=4pÞ1=2 2�1=2 sin � expð�i’Þ ¼ ð3=4pÞ1=2½2�1=2ðx� iyÞ�,
Ym
1 ¼ ð3=4pÞ1=2 ym,

with

y1 ¼ �2�
1=2ðxþ iyÞ, y0 ¼ z, y�1 ¼ 2�

1=2ðx� iyÞ:

(b) Rð� zÞh y1 y0 y�1j ¼ h y1 y0 y�1j
e�i�

1

ei�

2
4

3
5 ¼ h y1 y0 y�1j�ðRÞðyÞ:

(c) The adjoint of h y1 y0 y�1j is

j �2�
1=2ðx� iyÞ, z, 2�

1=2ðxþ iyÞi ¼ �2�
1=2

1 �i 0

0 0 �2�
1=2

�1 �i 0

2
64

3
75

x

y

z

2
64

3
75

¼ �jU1 U0 U�1i,

where U1¼ 2½(x� iy), U0¼�z, U�1¼�2�½(xþ iy).

jU1 U0 U�1i ¼ Ujx y zi, U ¼ 2�
1=2

1 �i 0

0 0 �2
1=2

�1 �i 0

2
4

3
5:

U y U¼E3; therefore U is a unitary matrix. jUj ¼ 1[�i �i]¼�2i.

(d) Rð� zÞjU1 U0 U�1i ¼ Rð� zÞUjx y zi ¼ URð� zÞjx y zi

¼ 2�
1=2

1 �i 0

0 0 �2
1=2

�1 �i 0

2
4

3
5 c x� s y

s xþ c y

z

2
4

3
5 ¼

e�i�

1

ei�

2
4

3
5 U1

U0

U�1

2
4

3
5:

Since � (R)(U)¼�(R)(y), the bases jU1 U0 U�1 i and h y1 y0 y� 1j are transformed by the

same matrix under R(� z).
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Exercise 11.5-4

Zp
�p

ðd�=2pÞð1� cos�Þ sin½ð2jþ 1Þð�=2Þ� sin½ð2j 0 þ 1Þð�=2Þ�
sinð�=2Þ sinð�=2Þ

¼
Zp
�p

ðd�=2pÞ2sin½ð2jþ 1Þð�=2Þ� sin½ð2j 0 þ 1Þð�=2Þ�

¼
Zp
�p

ðd�=2pÞ½cosð j� j 0Þ�� cosðjþ j 0 þ 1Þ��

¼ 0, if j 6¼ j 0, or ¼ 1, if j ¼ j 0:

Exercise 11.5-5 This exercise simply requires filling in the steps leading from eq. (38) to

eqs. (39). For example, for k¼ x,

Jx ¼ UyJðUÞ
x U ¼ 2�

3=2

1 0 �1

i 0 i

0 �2
1=2 0

2
64

3
75

0 1 0

1 0 1

0 1 0

2
64

3
75

1 �i 0

0 0 �2
1=2

�1 �i 0

2
64

3
75

¼ 2�
3=2

1 0 �1

i 0 i

0 �2
1=2 0

2
64

3
75 0 0 �2

1=2

0 �2i 0

0 0 �2
1=2

2
64

3
75 ¼

0 0 0

0 0 �i

0 i 0

2
64

3
75:

Similarly, for k¼ y and k¼ z.

11.6 The special unitary group SU(2)

In the same manner as in Section 11.5 (eqs. (11.5.35)–(11.5.37)), application of eqs.

(11.5.32)–(11.5.34) to the basis hmj ¼ h½ �½j gives the MRs

Jx ¼ 1
2

0 1

1 0

� �
, Jy ¼ 1

2

0 �i

i 0

� �
, Jz ¼ 1

2

1 0

0 1

� �
, (1)

(1) Jþ ¼ 0 1

0 0

� �
, J� ¼ 0 0

1 0

� �
: (2)

With the factor ½ removed, these three matrices in eqs. (1) are the Pauli matrices �1, �2, �3
(in the CS convention):

�1 ¼
0 1

1 0

� �
, �2 ¼

0 �i

i 0

� �
, �3 ¼

1 0

0 1

� �
: (3)

The MR of the rotation operator for the 2-D basis h½ �½j is

(11.3.18), (11.3.15) �
1=2ð� nÞ ¼ exp �1

2
i�n �s

� 	
, (4)
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where

n � s ¼ n1�1 þ n2�2 þ n3�3 ¼
n3 n1 � in2

n1 þ in2 �n3

� �
, (5)

which is a 2� 2 traceless Hermitian matrix, as are the MRs of the three angular momentum

operators (infinitesimal generators) in eq. (1).

Exercise 11.6-1 Prove that

ðn � sÞ2 ¼ �1
2 ¼ �2

2 ¼ �3
2 ¼ E2, (6)

whereE2 denotes the 2� 2 unit matrix. Hence show that the CR [�1, �2]¼ 2i�3 reduces to

�1�2 ¼ i�3 ¼ ��2�1: (7)

Exercise 11.6-2 Show that the 2� 2 matrix n .s is unitary.

Exercise 11.6-3 Show that

�
1=2ð� nÞ ¼ cosð1

2
�ÞE2 � i sinð1

2
�Þn � s : (8)

Exercise 11.6-4 Show that

(a) �
1=2ð� nÞ ¼

cosð1
2
�Þ � in3 sinð12�Þ �ðn2 þ in1Þ sinð12�Þ

ðn2 � in1Þ sinð12�Þ cosð1
2
�Þ þ in3 sinð12�Þ

2
4

3
5; (9)

(b) �
1=2ð� zÞ ¼

expð� 1
2
�Þ 0

0 expð1
2
i�Þ

2
4

3
5; (10)

(c) �
1=2ð� yÞ ¼

cosð1
2
�Þ � sinð1

2
�Þ

sinð1
2
�Þ cosð1

2
�Þ

2
4

3
5: (11)

Exercise 11.6-5 Show that det n .s¼�1.

Matrices which represent proper rotations are unimodular, that is they have

determinantþ1 and are unitary (orthogonal, if the space is real, as is <3). Consider the

set of all 2� 2 unitary matrices with determinantþ1. With binary composition chosen to
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bematrix multiplication, the set is associative and closed. It also contains the identityE and

each element has an inverse. This set therefore forms a group, the special unitary group of

order 2, or SU(2). The most general form for a matrix of SU(2) is

A ¼ a b

�b	 a	

� �
, (12)

with

det A ¼ aa	 þ bb	 ¼ jaj2 þ jbj2 ¼ 1, (13)

where a and b (which are the Cayley–Klein parameters) are complex, so that there are three

independent parameters which describe the rotation.

Exercise 11.6-6 Themost general 2� 2matrix is
a b

c d

� �
; show that imposing the unitary

and unimodular conditions results in eqs. (12) and (13).

The scalar product H¼ r . s¼ j r j n .s, where r is a position vector in 3-D space with

(real) components {x y z}, is

(3) H ¼ ðx�1 þ y�2 þ z�3Þ ¼
z x� iy

xþ iy �z

� �
¼ h11 h12

h21 h22

� �
: (14)

H is also a traceless Hermitian matrix, with det H¼� (x2þ y2þ z2).

(14) x ¼ ðh21 þ h12Þ=2; y ¼ ðh21 � h12Þ=2i; z ¼ h11 ¼ �h22: (15)

Under the transformation represented by the matrix A,

(14) H ! H0 ¼ A H A�1 ¼ r0 � s ¼ z0 x0 � iy0

x0 þ iy0 �z0

� �
¼ h011 h012

h021 h022

� �
, (16)

so that r is transformed into the new vector r0 with components {x0 y0 z0}.

16 det H0 ¼ �ðx02 þ y02 þ z02Þ ¼ det H ¼ �ðx2 þ y2 þ z2Þ: (17)

Therefore, associated with each 2� 2 matrix A there is a 3� 3 matrix �(A) which

transforms r into r0. That this transformation preserves the length of r follows from

eq. (17). But if the lengths of all vectors are conserved, the transformation is a rigid

rotation. Therefore, each matrix A of SU(2) is associated with a proper rotation in <3.

The transformation properties of A or the unimodular condition (13) are unaffected if A is

replaced by �A. The matrices of SU(2) therefore have an inherent double-valued nature:

the replacement of A by �A does not affect the values of {x0 y0 z0} in eq. (16). Therefore

A and �A correspond to the same rotation in <3. A unitary transformation (16) in SU(2)

induces an orthogonal transformation in <3 but because of the sign ambiguity in A the

relationship of SU(2) matrices to SO(3) matrices is a 2 : 1 relationship. This relationship

is in fact a homomorphous mapping, although the final proof of this must wait until

Section 11.8.

(16), (12) jx0 y0 z0i ¼ �ðAÞjx y zi, (18)
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�ðAÞ ¼
1
2
ða2 � b2 þ a	

2 � b	
2Þ � i

2
ða2 þ b2 � a	

2 � b	
2Þ �ðabþ a	b	Þ

i
2
ða2 � b2 � a	

2 þ b	
2Þ 1

2
ða2 þ b2 þ a	

2 þ b	
2Þ �iðab� a	b	Þ

ab	 þ a	b �iðab	 � a	bÞ aa	 � bb	

2
4

3
5: (19)

The matrix in eq. (19) represents a general rotation R(� n) so that �(A) 2 SO(3). It is

moreover clear from eq. (16) that A and �A induce the same orthogonal transformation,

since H0 is unaffected by the sign change. For example, when

a ¼ expð� 1
2
i�Þ , b ¼ 0, (20)

(19) �ð� zÞ ¼
cos� �sin� 0

sin� cos� 0

0 0 1

2
4

3
5, (21)

which is the MR of R(� z). Again, if we choose

a ¼ cosð�=2Þ b ¼ �sinð�=2Þ, (22)

(19) �ð� yÞ ¼
cos � 0 sin�
0 1 0

�sin� 0 cos �

2
4

3
5, (23)

which represents a proper rotation through an angle � about y. Any proper rotation in <3

can be expressed as a product of three rotations: about z, about y, and again about z.

Therefore, the matrices in eqs. (21) and (23) assume special importance.

O(3) is the group of 3� 3 orthogonal matrices, with determinant�1, which represent

the proper and improper rotations R(� n), IR(� n). Removal of the inversion, and there-

fore all the matrices with determinant�1, gives the subgroup of proper rotations repre-

sented by 3� 3 orthogonal matrices with determinantþ1, which is called the special

orthogonal group SO(3). To preserve the same kind of notation, adding the inversion

to the special unitary group SU(2) of 2� 2 unitary unimodular matrices would give

the unitary group U(2). But the symbol U(2) is used for the group of all 2� 2 unitary

matrices, so Altmann and Herzig (1982) introduced the name SU0(2) for the group of all

2� 2 unitary matrices with determinant�1. If det A0 ¼�1, instead of det A¼�1 (as in

Exercise (11.6-6) then

A0 ¼ a b

b	 �a	

� �
with aa	 þ bb	 ¼ 1; (24)

A0 is a 2� 2 unitary matrix with det A0 ¼�1, and therefore A0 2 SU0(2). The fact that the

transformation {x y z}! {x0 y0 z0} effected by eq. (16) is a rotation depends only on the

unitarity of A (see eq. (17)), and, since A0 is also unitary, eq. (16) also describes a rotation

when A is replaced by A0. The difference is that A 2 SU(2) describes a proper rotation

whereas A0 2 SU0(2) corresponds to an improper rotation.

�ðA0Þ ¼
1
2
ða2 � b2 þ a	

2 � b	
2Þ � i

2
ða2 þ b2 � a	

2 � b	
2Þ �ðabþ a	b	Þ

i
2
ða2 � b2 � a	

2 þ b	
2Þ ða2 þ b2 þ a	

2 þ b	
2Þ �iðab� a	b	Þ

�ðab	 þ a	bÞ iðab	 � a	bÞ �ðaa	 � bb	Þ

2
4

3
5, (25)
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which represents the improper rotation IR(� n). For �(A0) to represent the inversion

operator, the conditions x0 ¼�x, y0 ¼�y, z0 ¼�z are met by

b ¼ 0, aa	 ¼ 1: (26)

Either

a ¼ �i, a	 ¼ þi or a ¼ þi, a	 ¼ �i, (27)

(26), (27), (24) A0 ¼ �i 0

0 �i

� �
or A0 ¼ i 0

0 i

� �
: (28)

The first choice is called the Cartan gauge; the second one is the Pauli gauge (Altmann

(1986), p. 108; see also Section 11.8).

Exercise 11.6-7 Find the matrices of SU0(2) that correspond to the MRs in O(3) of the

symmetry operators �x, �y, and �z.

A general rotation R(� n) in <3 requires the specification of three independent para-

meters which can be chosen in various ways. The natural and familiar way is to specify the

angle of rotation � and the direction of the unit vector n. (The normalization condition on n

means that there are only three independent parameters.) A second parameterization R(a b)

introduced above involves the Cayley–Klein parameters a, b. A third common parameter-

ization is in terms of the three Euler angles 	, �, and � (see Section 11.7). Yet another

parameterization using the quaternion or Euler–Rodrigues parameters will be introduced in

Chapter 12.

Answers to Exercises 11.6

Exercise 11.6-1

(5) ðn �sÞ2 ¼
n3 n1 � in2

n1 þ in2 �n3

� �
n3 n1 � in2

n1 þ in2 �n3

� �
¼

1 0

0 1

� �
;

�21 ¼
0 1

1 0

� �
0 1

1 0

� �
¼

1 0

0 1

� �
;

�22 ¼
0 �i

i 0

� �
0 �i

i 0

� �
¼

1 0

0 1

� �
;

�23 ¼
1 0

0 �1

� �
1 0

0 �1

� �
¼

1 0

0 1

� �
;

½�22 �3� ¼ ½E2 �3� ¼ 0 ¼ �2 ½�2 �3� þ ½�2 �3� �2 ¼ 2ið�2�1 þ �1�2Þ:

But �1 �2¼ �2 �1þ 2i�3; therefore �1 �2¼ i�3¼� �2 �1.
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Exercise 11.6-2

(5) ðn �sÞyðn �sÞ ¼ ðn �sÞðn �sÞ ¼ E2:

Exercise 11.6-3 From eq. (4), �½(� n)¼ exp (�½ i� n .s); expand the exponential and

collect terms of even and odd powers of n .s. The even terms give cos(½�)E2, while the

odd powers give�i sin(½�) n .s.

Exercise 11.6-4 Substituting from eq. (5) into eq. (8) gives eq. (9). Setting n3¼ 1 in eq. (9)

gives eq. (10); setting n2¼ 1 in eq. (9) gives eq. (11).

Exercise 11.6-5 From eq. (5), det n � s ¼ �n23 � n21 � n22 ¼ �1.

Exercise 11.6-6 The unitary condition gives aa	þ cc	¼ 1, ab	þ cd	¼ 0, a	bþ c	d¼ 0,

bb	þ dd	¼ 1, and the unimodular condition is ad� bc¼ 1. These five condititions are

satisfied by d¼ a	, c¼� b	, which gives eq. (12).

Exercise 11.6-7 The result of �x is x
0 ¼� x, y0 ¼ y, z0 ¼ z. Impose the first two conditions

on the transformation matrix �(A) in eq. (25); this gives a2¼ a	2 and b2 ¼ b	
2

. The

condition z
0 ¼ z gives� aa	þ bb	¼ 1, which together with det A0 ¼�1 (see eq. (24))

gives a¼ 0, and therefore (using y0 ¼ y again) b2 þ b	
2 ¼ 2. But b2 ¼ b	

2

, so b2¼ 1,

b¼�1. In like manner, for �y, x
0 ¼ x, y0 ¼� y, and z0 ¼ z, so that from eq. (24) a¼ 0 and

b¼� i. Finally for �z, x
0 ¼ x, y0 ¼ y, z0 ¼� z, so that eq. (25) yields b¼ 0, a¼�1. The three

A0 matrices are therefore

A0ð�xÞ ¼ � 0 1

1 0

� �
, A0ð�yÞ ¼ � 0 i

�i 0

� �
, A0ð�zÞ ¼ � 1 0

0 �1

� �
:

Note the inherent sign ambiguity in the matrices of SU0(2); the positive and negative signs in

the A0 matrices correspond to the same improper rotation in <3. The choice of signs þ, �,

and þ for the three A0 matrices gives the Pauli matrices in the CS sign convention.

11.7 Euler parameterization of a rotation

A general rotation R about any axis n may be achieved by three successive rotations:

ðiÞ Rð� zÞ, � p5� � p;

ðiiÞ Rð� yÞ, 0 � � � p;

ðiiiÞ Rð	 zÞ, � p5	 � p,

(1)

where 	, �, and � are the three Euler angles. The total rotation, written R(	 � �), is

therefore

Rð	 � �Þ ¼ Rð	 zÞ Rð� yÞ Rð� zÞ: (2)

The Euler angles have been defined in the literature in several different ways.We are (as

is always the case in this book) using the active representation in which the whole of
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configuration space, including the three mutually perpendicular unit vectors {e1 e2 e3}

firmly embedded in this space, is rotated with respect to fixed orthonormal axes {x y z},

collinear with OX, OY, OZ. Here, the order of the rotations and the choice of axes in eq. (2)

follow Altmann (1986) and therefore agree, inter alia, with the definitions of Biedenharn

and Louck ( 1981 ), Fano and Ra cah ( 1959 ), 	 and Rose ( 1957 ). There are two ambiguit ies

about the above definition of the Euler angles. Firstly, if �¼ 0, only	þ � is significant; the

second one arises when �¼ p.

Exercise 11.7-1 Using projection diagrams, show that for an arbitrary angle !

Rð	 p �Þ ¼ R ð	þ !, p, � þ !Þ: (3)

Exercise 11.7-2 Show that

Rð�� yÞRðp zÞ ¼ Rðp zÞ Rð� yÞ: (4)

This relation provides a mechanism for dealing with a negative angle �. The inverse of

R(	 � �) results from carrying out the three inverse rotations in reverse order:

(4) ½Rð	 � �Þ��1 ¼ Rð�� zÞ Rð�� yÞ Rð�	 zÞ
¼ Rð�� zÞ Rð�� yÞ Rðp zÞ Rðp zÞ Rð�	 zÞ
¼ Rð�� zÞ Rðp zÞ Rð� yÞ Rðp zÞ Rð�	 zÞ
¼ Rð�� � p zÞ Rð� yÞ Rð�	� p zÞ, (5)

since R(�p z) would produce the same result as R(p z). The sign alternatives in eq. (5)

ensure that the rotations about z can always be kept in the stipulated range�p<	, � � p.
The MR �[R(	 � �)] of R(	 � �) is

ð2Þ, ð11:3:1Þ, ð11:3:7Þ
�½Rð	 � �Þ� ¼ � ½Rð	 zÞ� �½Rð� yÞ� �½Rð� zÞ�

�
cos	 � sin	 0

sin	 cos	 0

0 0 1

2
64

3
75

cos � 0 sin �

0 1 0

� sin� 0 cos �

2
64

3
75

cos � � sin � 0

sin � cos � 0

0 0 1

2
64

3
75

¼
cos	 cos � cos � � sin	 sin � � cos	 cos � sin � � sin	 cos � cos	 sin �

sin	 cos � cos � þ cos	 sin � � sin	 cos � sin � þ cos	 cos � sin	 sin �

� sin� cos � sin � sin � cos �

2
64

3
75:
(6)

It is perhaps opportune to remind the reader that, as is always the case in this book,

Rð	 � �Þhe1 e2 e3j ¼ he10 e2
0 e3

0j ¼ he1 e2 e3j�½Rð	 � �Þ�; (7)

Rð	 � �Þ r ¼ r0 ¼ �½Rð	 � �Þ�jx y zi ¼ ½x0 y0 z0i; (8)

Rð	 � �Þhx y zj ¼ hx y zj�½Rð	 � �Þ�: (9)

	 Fano and Racah use  , �, � for 	, �, �.
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Equation (7) describes the transformation of the set of basis vectors {e1 e2 e3} that are

firmly embedded in configuration space and were originally coincident with fixed ortho-

normal axes {x y z} prior to the application of the symmetry operatorR(	 � �). In eq. (8)

the columnmatrix jx y z i contains the variables {x y z}, which are the components of the

vector r¼OP and the coordinates of the point P. In eq. (9) the row matrix h x y zj contains
the functions {x y z} (for example, the angle-dependent factors in the three atomic p

functions px, py, pz).

Exercise 11.7-3

(a) Write down the transformation matrix �[R(� n)] for the rotation �¼� 2p/3,
n¼ 3�½ [1 1 1].

(b) Find the Euler angles and the rotation matrix �[R(	 � �)] for the rotation described in

(a) and compare your result for �(R) with that found in (a).

Answers to Exercises 11.7

Exercise 11.7-1 In Figure 11.2, the points marked (1–6) show the result of acting on the

representative point E with the following operators: (1) R(� z); (2) R(p y) R(� z);

(3) R(	 z) R(p y) R(� z); (4) R(�þ! z); (5) R(p y) R(�þ! z); and finally

(6) R(	þ! z) R(p y) R(�þ! z)¼ 3.

Exercise 11.7-2 In Figure 11.3 (in which the plane of the paper is the plane normal to y),

the points marked (1), (2), and (3) show the effect of acting on the representative point E

with the following operators: (1) R(� y); (2) R(p z); (3) R(p z) R(� y) or

R(�� y) R(p z).

Exercise 11.7-3

(a) Rð�2p=3 nÞhe1 e2 e3j ¼ he3 e1 e2j ¼ he1 e2 e3j
0 1 0

0 0 1

1 0 0

2
4

3
5.

2

3,6

5

1

4

y E

x

α

ω ω
γ

Fig 11.2. The points marked 1 through 6 show the result of acting on the representative point E with

the following operators (1) R (� z); (2) R (p y) R (� z); (3) R (	 z) R (p y) R (� z); (4) R (� + ! z);

(5) R (p y) R (� + ! z); (6) R (	 + ! z ) R (p y) R (� + ! z) = 3.
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(b) Figure 11.4 shows the effect on the basis vectors {e1 e2 e3} of the successive opera-

tors: (1) R(p z); (2) R(p/2 y); (3) R(p/2 z). The net result is equivalent to that of

the single operator R(�2p/3 n), so that for this operation the three Euler angles are

	¼ p/2, �¼ p/2, �¼ p.

(6) �½Rð	 � �Þ� ¼ �½Rðp=2 p=2 pÞ� ¼
0 1 0

0 0 1

1 0 0

2
4

3
5,

in agre ement with the transf ormation matrix obtaine d in part ( a ).

11.8 The homomorphism of SU(2) and SO(3)

Any basis hu jj which transforms under the operations of O(3)¼ SO(3)
Ci, where

Ci¼ {E I}, according to

Rð� nÞhujj ¼ hujj�jð� nÞ, (1)

Ihujj ¼ ð�1ÞjhujjE2jþ1, (2)

2

E

β

1

3

–β
z

x

Figure 11.3. The points marked 1 through 3 show the result of acting on the representative point E

with the following operators: ð1Þ Rð� yÞ; ð2Þ Rðp zÞ; ð3Þ Rðp zÞRð� yÞ ¼ Rð�� yÞRðp zÞ:

R(–2π/3 n)

e1

e2

e3

e2

e3

e1

e2

e3

e1

e1
e2

e3 e1

e2

e3

1

2 3

Figure 11.4. Effect on the basis vectors {e1 e2 e3} of the successive operators (1) R(p z); (2) R(p/2 y);
(3) R(p/2 z). The net result is equivalent to that of the single operator R(�2p/3 n).
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is a tensor of rank 1 and dimension 2jþ 1. Note that �j(� n) is the MR of the rotation

operator R(� n); it is an orthogonal matrix with determinant �1 and of dimensions

(2jþ 1)� (2jþ 1), since there are 2jþ 1 functions in the basis h ujj. Also, E2 jþ1 is the

(2jþ 1)� (2jþ 1) unit matrix; l ¼ (� 1)j is the parity of the basis h ujj and describes its

response to the inversion operator I. When l¼þ1 (or�1) the basis is gerade (even) (or

ungerade (odd)). The important feature of eqs. (1) and (2) is the two MRs and not the fact

that the basis is a row. For example, the spherical vector jU1 U0 U� 1i transforms under

the samematrices �1 and (�1)E3 and so it is a tensor of rank 1 and dimension 3. A tensor of

rank 2 is an array that transforms under the operators of O(3) according to the DP

representation �j1
�j2, (�1) j1þ j2 E(2j1þ 1)(2j2þ 1). Such representations are generally

reducible. Within SO(3),

hu j1 j 
 hu j2 j ¼ hu j1þj2 j � hu j1þj2�1j � . . .� huj j1�j2jj, (3)

which is the Clebsch–Gordan series. Taking j1� j2,

ð 11: 5:19 Þ , ð11:5: 18 Þ
� j1ð�Þ � j2ð�Þ ¼ 2i sinð1

2
�Þ


 ��1

�
n
exp i j1 þ 1

2

� 	
�


 �
� exp �i j1 þ 1

2

� 	
�


 �o Pj2
m¼�j2

exp ðim�Þ

¼ 2i sin 1
2
�

� 	
 ��1 Pj2
m¼�j2

exp i j1 þ mþ 1
2

� 	
�


� �
� exp �i j1 � mþ 1

2

� 	
�


 �

: (4)

But since m runs in integer steps from� j2 toþ j2 over the same range of negative and

positive values, m may be replaced by�m in the second sum, giving

� j1ð�Þ �j2ð�Þ ¼
Pj1þj2

j¼j1�j2

sin jþ 1
2

� 	
�


 �
sin 1

2
�

� 	�
¼

Pj1þj2

j¼j1�j2

�jð�Þ, (5)

which confirms eq. (3). This is an important relation since it tells us how a whole hierarchy

of tensors can be constructed. When j ¼ 0, u00 is the spherical harmonic of degree zero and

the transformation matrices in eqs. (1) and (2) are both just the number 1. Such a tensor that

is invariant under rotation and even under inversion is a scalar. For j¼½ the basis

functions {ujm} (which are called spinors) are u½½ , u½�½; or j½ ½ i , j½ �½ i; or

(avoiding the awkward halves) the ordered pair 
, � (Lax (1974)), 
1, 
2 (Tinkham

(1964)); u, v (Hammermesh (1962)); or �1, �2 (Altmann (1986)). To avoid further

proliferation of notation, u, v will be used here.

ð11:6:10Þ Rð� zÞhu vj ¼ hu vj
expð� 1

2
i�Þ

expð1
2
i�Þ

" #

¼ hu vj�1=2ð� zÞ, (6)
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where �½(� z) " SU(2). The MR of the rotation of a basis which is the DP of two such

spinor bases,

hu1 v1j 
 hu2 v2j ¼ hu1u2 u1v2 v1u2 v1v2j, (7)

is

expð� 1
2
i�Þ

expð1
2
i�Þ

� �

 expð� 1

2
i�Þ

expð1
2
i�Þ

� �

¼

expð�i�Þ
1

1

expði�Þ

2
664

3
775:

(8)

The matrix on the RS of eq. (8) is reducible. The RS of eq. (7) is the uncoupled

representation for the two spinors. Using a table of Clebsch–Gordan coefficients, the

coupled representation is found to be

hu1 v1j 
 hu2 v2j ¼ hu1u2 2�½ðu1v2 þ v1u2Þ v1v2j � h2�½ðu1v2 � v1u2Þj, (9)

which has been written as a direct sum of symmetric and antisymmetric components

because they cannot be converted into one another by any of the operations of O(3).

Exercise 11.8-1 The DP of the two sets {u1 v1}, {u2 v2} is {u1 v1}
 {u2 v2}¼
{u1u2 u1v2 v1u2 v1v2}. The first and fourth components are symmetric with respect to

the transposition operator P12, but the second and third components are not eigenfunctions

of P12. Use the symmetrizing (s) and antisymmetrizing (a) operators to generate the

symmetric and antisymmetric components in eq. (9) from u1v2. [Hint: For two objects

s¼ 2�½[1þP12], a¼ 2�½[1�P12], where P12 means transpose the labels on the two

spinors identified by the subscripts 1 and 2.]

The MR of R (� n) for the coupled basis, eq. (9), is the direct sum

expð�i�Þ
1

expði�Þ

2
4

3
5� E1: (10)

The Clebsch–Gordan decomposition

ð3Þ, ð9Þ hu1=2j 
 hu1=2j ¼ hu1j � hu0j (11)

of the DP of two spinors therefore yields an object hu1j, which transforms under rotations

like a vector, and hu�0j, which is invariant under rotation. Under inversion, the spinor

basis h u½j � h j½ ½ i j½ �½ i j � h u vj transforms as

(2) Îhu vj ¼ ð�1Þ1=2hu v j E2 ¼ �i hu v j E2: (12)

Clearly, eq. (2) can be satisfied by either choice of sign in eq. (12). In the Cartan gauge the

MR of the inversion operator in eq. (12) is taken to be
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�ðIÞ ¼ �i 0

0 �i

� �
, (13)

while in the Pauli gauge

�ðIÞ ¼ i 0

0 i

� �
, (14)

which correspond to the choices�i orþi in eq. (12). While neither choice is any more

correct than the other, conventional usage favors the Pauli gauge (Altmann and Herzig

(1994)). An argument sometimes used is that, since angular momentum is a pseudovector,

its eigenfunctions, which include the spinors with half-integral j, must be even under

inversion so that the positive sign should be taken in eq. (12). However, electron spin is

not a classical object and there is a phase factor to be chosen on the RS of eq. (12), so one is

free to work either in the Cartan gauge (choice of�1) or in the Pauli gauge (choice ofþ1).

We shall return to this question of the choice of gauge in Section 12.7. With either choice,

(12) Î 2�
1=2 hu1v2�v1u2j ¼ ð�1Þ 2�1=2hu1v2�v1u2j E1, (15)

ð9Þ, ð12Þ Î ðhu1 v1j 
 hu2 v2jÞ ¼ ðhu1 v1j 
 hu2 v2jÞ ½ð�1ÞðE3 � E1Þ�: (16)

Therefore h u1j is indeed a vector but h u0j also changes sign under inversion, and so it is
a pseudoscalar.

In order to establish the homomorphism between SU(2) and SO(3), we will consider

first the dual ju v i of the spinor basis ju v i. Note that no special notation, apart from the

bra and ket, is used in C2 to distingui sh the spinor basis h u vj from its dual j u v i . A gener al
rotation of the colu mn spinor basis in C2 is effected by (see Altmann ( 1986 ), Section 6. 7)

ju0 v0i ¼ A j u vi: (17)

Because the column matrix ju v i is the dual of h u vj, they are transformed by the same

unitary matrix A 2 SU(2), where

(11.6.12) A ¼ a b

�b	 a	

� �
, det A ¼ aa	 þ bb	 ¼ 1: (18)

The complex conjugate (CC) spinor basis ju	 v	 i , however, transforms not underA but

under A	, as may be seen by taking the CC of eq. (17).

(17), (18) ju0	 v0	i ¼ A	ju	 v	i ¼ a	 b	

�b a

� �
u	

v	

� �
¼ a	u	 þ b	v	

�bu	 þ av	

� �
: (170)

However, the choice (Altmann and Herzig (1994))

u2 ¼ v	1, v2 ¼ �u	1 (19)

does transform correctly under A:
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(17), (18), (1) ju02 v02i ¼ A ju2 v2i ¼
a b

�b	 a	

� �
v	1

�u1
	

� �
¼

av1
	 �bu1

	

�b	v1
	 �a	u1

	

� �
¼ jv10	 � u1

0	i: ð20Þ

Now form the DP basis

ju vi 
 jv	 �u	i ¼ ju v	 �u u	 v v	 �v u	i: (21)

The transformation matrix for the DP basis, eq. (21), is (cf. eq. (8))

B ¼ A
 A ¼
aa ab ba b2

�ab	 aa	 �bb	 ba	

�ab	 �bb	 aa	 a	b
b	b	 �a	b	 �a	b	 ða	Þ2

2
664

3
775: (22)

This matrix may be reduced by the same prescription as was used earlier in eq. (11),

namely by forming the coupled representation

C 2
1=2juv	 �uu	 vv	 �u	vi ¼ 2

1=2

1

2�
1=2 2�

1=2

2�
1=2 �2�

1=2

1

2
6664

3
7775� 2

1=2juv	 �uu	 vv	 �u	vi

¼ 2
1=2juv	 2�

1=2ð�uu	 þ vv	Þ �2�
1=2ðuu	 þ vv	Þ �u	vi: (23)

Equation (23) defines the transformation matrix C, the extra factor 2½ having been

introduced to ensure later normalization.

(23), (22) CBC�1 ¼
a2 2

1=2ab 0 b2

�2
1=2ab	 aa	 � bb	 0 2

1=2a	b
0 0 1 0

ðb	Þ2 �2
1=2a	b	 0 ða	Þ2

2
664

3
775: (24)

Equation (24) confirms that the tensor basis in eq. (23) has been reduced by the

transformation C into the direct sum of its antisymmetric and symmetric parts,

2
1=2 juv	 2�

1=2ð�uu	 þ vv	Þ �u	vi � j�ðuu	 þ vv	Þi: (25)

As eq. (24) shows, the 4� 4 matrixB has been reduced by this basis transformation into

the direct sum

a2 2½ab b2

�2½ab	 aa	 � bb	 2½a	b

ðb	Þ2 �2½a	b	 ða	Þ2

2
64

3
75� E1 ¼ �1ðAÞ �E1, (26)

where the superscript 1 denotes the value of j . The matrix A represents a general rotation

in C2, and its symmetrized DP A
A in eq. (26) represents a general rotation in <3.
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This matrix �1(A) differs from that in eq. (11.6.19) which describes the transformation of

the basis jx y z i . The first term in the symmetrized basis in eq. (25) is the spherical vector

jU1 U0 U�1i ¼ j2�1=2ðx� iyÞ �z �2�
1=2ðxþ iyÞi: (27)

To see this, set

2�
1=2ðx� iyÞ ¼ 2

1=2uv	, (28)

(28) �2�
1=2ðxþ iyÞ ¼ �2

1=2u	v; (29)

{x y z} are the coordinates of a point P on the surface of a sphere of unit radius, the

projection of which on to the xy plane gives a stereographic projection of the unit sphere

(Figure 11.5). Since P is a point on the surface of the unit sphere, x2þ y2þ z2¼ 1, and so

(28), (29) z2 ¼ 1� ðx2 þ y2Þ ¼ 1� ðxþ iyÞðx� iyÞ
¼ 1� ð2 u	vÞð2 u v	Þ:

(30)

But the spinors u, v are orthonormal so that their HSP is unity,

u u	 þ v v	 ¼ 1, (31)

(30), (31) z2 ¼ ðu u	 þ v v	Þ2 � 4u u	v v	

¼ ðu u	 � v v	Þ2,
(32)

Q

z

O

P

P′

x

y

Figure 11.5. A rotation of the unit sphere describes a rotation of configuration space with respect to

fixed axes {x y z}. For example, a rotation through 2p about P0 P traces a circle on the unit sphere

which projects on to a circle about Q in the xy plane. The figure thus shows in geometrical terms the

mapping of a rotation in <3, represented by �1(A), on to a rotation in 2-D, represented by A.
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(32) z ¼ u u	 � v v	, (33)

on choosing the phase factor asþ1. Equation (33) identifies the second term in the

symmetrized basis, eq. (25), as� z¼U0. Therefore eq. (28), (29), and (33) identify the

first ket in eq. (25) – that is, the symmetrized basis – with the spherical vector

jU1 U0 U�1 i ,

j2½uv	 vv	�uu	 �2½u	vi ¼ jU1 U0 U�1i: (34)

Consequently, the MR of the rotation operator �1 (A) in eq. (26) will now be identified

as �1 (A)(U ).

Exercise 11.8-2 Prove that det �1 (A)(U )¼ 1.

Exercise 11.8-3

(a) The spherical vector jU1 U0 U� 1 i is related to the variables jx y z i by

jU1 U0 U� 1 i¼U jx y z i . Show that the MR �1 (A) of the rotation operator in the r

basis jx y z i is related to that in the U basis jU1 U0 U� 1 i , namely �1 (A)(U), by

�1ðAÞ ¼ Uy �1ðAÞðUÞU: (35)

(b) Using �1(A)(U) from eq. (26) andU from Exercise 11.5.3, find �1(A) from eq. (35) and

show that the result agrees with that found previously in eq. (11.6.19).

At last we may prove the homomorphism of SU(2) and SO(3). That the mapping of

SU(2) on to SO(3) involves a 2 : 1 correspondence has been shown in Section 11.6, but the

fact that this relationship is a homomorphism could not be proved until now.

(35) �1ðAÞ ¼ U�1�1ðAÞðUÞU ¼ U�1A 
 AU, A 2 SUð2Þ, �1ðAÞ 2 SOð3Þ; (36)

(36) �1ð�AÞ ¼ U�1A 
 AU ¼ �1ðAÞ, (37)

so that A and�A correspond to the same �1(A), and are the only matrices of SU(2) that

map on to �1(A). Since the theorem that a product of DPs is the DP of the products holds

also for symmetrized DPs,

(36) �1ðA1Þ �1ðA2Þ ¼ U�1A1 
 A1U U�1A2 
 A2U

¼ U�1ðA1 
 A1ÞðA2 
 A2ÞU

¼ U�1ðA1A2Þ 
 ðA1A2ÞU

¼ �1ðA1A2Þ: (38)

Equation (38) verifies that the mutiplication rules in SU(2) are preserved in SO(3) and

therefore that the mapping described by eqs. (36) and (37) is a homomorphism. This

mapping is a homomorphism rather than an isomorphism because the two matrices A
and�A of SU(2) both map on to the same matrix �1(A) of SO(3).
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Because of the homomorphism between the groups SU(2) and SO(3), we may take

eq. (11.5.40) as a basis for SU(2),

(11.5.40) hjj mij ¼ h½ð jþmÞ!ðj�mÞ!��½
u jþm v j�mj: (39)

A rotation in configuration space is effected in SU(2) by

(11.6.12) Rða bÞhu vj ¼ hu v jA ¼ hu vj
a b

�b	 a	

� �
¼ hau� b	v buþ a	vj: (40)

The transformed basis R(a b)jj m i is, from eqs. (40) and (39),

½ðjþ mÞ!ðj� mÞ!��1=2ðu0Þjþmðv0Þj�m ¼ ½ðjþ mÞ!ðj� mÞ!��1=2ðau� b	vÞjþmðbuþ a	vÞj�m

¼ ½ðjþ mÞ!ðj� mÞ!��1=2
Pjþm

k¼0

ðjþ mÞ!ðauÞjþm�kð�b	vÞk

k!ðjþ m� kÞ!
Pj�m

k 0¼0

ðj� mÞ!ðbuÞj�m�k 0 ða	vÞk
0

k0!ðj� m� k0Þ!

¼
Pjþm

k¼0

Pj�m

k0¼0

½ðjþ mÞ!ðj� mÞ!�1=2ðaÞjþm�kða	Þk
0
ðbÞjþm�k0 ð�b	Þku2j�k�k0vkþk 0

k!k0!ðjþ m� kÞ!ðj� m� k0Þ!

¼
Pj

m0¼�j

Pjþm

k¼0

½ðjþ m0Þ!ðj� m0Þ!ðjþ mÞ!ðj� mÞ!�1=2ðaÞjþm�kða	Þj�m0�kðbÞm
0�mþkð�b	Þku jþm0

v j�m0

k!ðjþ m� kÞ!ðj� m0 � kÞ!ðm0 � mþ kÞ! ð41Þ

¼
Pj

m0¼�j

½ðjþ m0Þ!ðj� m0Þ!��1=2 ujþm0
vj�m0

�j
m0m, (42)

where m0 ¼ j� k� k0,� j�m0 � j, and

�j
m0m ¼

Pjþm

k¼0

½ðjþ mÞ!ðj� mÞ!ðjþ m0Þ!ðj� m0Þ!�1=2ðaÞjþm�kða	Þj�m0�kðbÞm
0�mþkð�b	Þk

k!ðjþ m� kÞ!ðj� m0 � kÞ!ðm0 � mþ kÞ! :

(43)

The sum in eq. (43) runs over all values of 0� k� jþm, using (�n)!¼ 1 when n¼ 0 and

(�n)!¼1 when n> 0. The formula (43) for matrix elements can be expressed in an

alternative form that involves binomial coefficients instead of factorials (Altmann and

Herzig (1994)) and this may be rather more useful for computational purposes.

Exercise 11.8-4 Evaluate from eq. (43) the term �1
00 of the matrix �1 and show that this

agrees with the corresponding term in �1 in eq. (28).
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Problems

11.1 Prove that the commutator [R(	 1), R(� 2)]¼R(	� 3)�E, where 1, 2, and 3 are

unit vectors along OX, OY, and OZ, respectively. [Hint: Use eq. (11.3.10)]. Then use

eq. (11.3.19) to show that [I1, I2]¼ i I3.

11.2 Prove eq. (11.4.28), cþ ¼ [j0 2�m(mþ 1)]½ exp (i�).

11.3 Prove that eq. (11.5.16), (ujm)
	¼ (� 1)muj�m, is true for m¼ 1 and m¼ 2. [Hints:

Drop the j superscript since none of the equations involved depend on the value of j.

Use Ĵ� u0 to generate u1, u�1; substitute for Ĵþ from eq. (11.5.7), when u	1¼� u�1

follows. To prove u	2¼ u�2, proceed similarly, starting from Ĵþu1 and then Ĵ�u�1.

You will also need Ĵ	� ¼ �Ĵþ, which follows from eq. (11.5.7).]

11.4 Prove the conical transformation, eq. (11.5.22). [Hints: The proof of the conical

transformation is not trivial. Your starting point is a figure similar to Figure 11.1,

except that the angle of rotation � is now not an infinitesimal angle; n is the unit

vector along OQ; OR¼ r; and OR0 ¼ r0. In Figure 11.6(a), define vectors�r and s by

Answers to Exercises 11.8

Exercise 11.8-1

su1v2 ¼ 2�1=2½1þ P12� u1v2 ¼ 2�1=2½u1v2 þ v1u2�;
au1v2 ¼ 2�1=2½1� P12�u1v2 ¼ 2�1=2½u1v2 � v1u2�:

Exercise 11.8-2

j�1ðAÞðUÞj ¼ a2a	
2 ½ðaa	 � bb	Þ þ 2bb	� þ 2aba	b	½aa	 þ bb	� þ b2b	

2 ½aa	 þ bb	�
¼ a2a	

2 þ 2ðaa	 þ bb	Þ þ b2b	
2 ¼ 1:

Exercise 11.8-3 (a)

Rð� nÞ jU1 U0 U�1i ¼ Rð� nÞ U jx y zi ¼ URð� nÞjx y zi ¼ U�1ðAÞjx y zi:

But

LS ¼ �1ðAÞðUÞjU1 U0 U�1i ¼ �1ðAÞðUÞUjx y zi:

Therefore �1ðAÞðUÞU ¼ U�1ðAÞ, and so �1ðAÞ ¼ U�1�1ðAÞðUÞU ¼ Uy�1ðAÞðUÞU.

(b) Take U from Exercise 11.5-3 and �1(A)(U) from eq. (26), multiply the three

matrices in Uy�1 (A)(U)U, and check your result with �1(A) in eq. (11.6.19).

Exercise 11.8-4 For j¼ 1, if m¼ 0, then k¼ 0 or 1, and with m0 ¼ 0, eq. (43) gives

�1
00 ¼

ð1!1!1!1!Þ1=2

0!1!1!0!
� a1ða	Þ1b0ð�b	Þ0 þ ð1!1!1!1!Þ1=2

1!0!0!1!
� a0ða	Þ0b1ð�b	Þ1

¼ aa	 � bb	:
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r0 ¼ rþ�r¼ rþ 2s. Write down expressions for p and q, which are defined in

Figure 11.6(b), and hence evaluate s and �r.]

11.5 (a) Show that for the basis, eq. (11.5.40),

Ĵ� ¼ y
@

@x
,

Ĵx ¼
1

2
x
@

@y
þ y

@

@x

� �
,

Ĵy ¼
�i

2
x
@

@y
� y

@

@x

� �
;

(11:5:45)

Ĵ2 ¼ 1

4
x2
@2

@x2
� y2

@2

@y2

� �
þ 1

2
xy

@2

@x@y

� �
þ 3

4
x
@

@x
þ y

@

@y

� �
: (11:5:46)

(b) Prove that

Ĵ2jj mi ¼ jðjþ 1Þjj mi: (11:5:47)

11.6 (a) Make the assignment of a and b given in eq. (11.6.20) in the matrix A of eq.

(11.6.12). Evaluate H0 ¼A H A�1 explicitly and show (using eq. (11.6.14) for

{x0 y0 z0} and {x y z}) that �(A) becomes the matrix in eq. (11.6.21).

(b) Proceed similarly, starting from the assignment of a and b in eq. (11.6.22), and

show that in this case the matrix A corresponds to eq. (11.6.23).

(c) Make the same two substitutions directly in eq. (11.6.19) and confirm that this

yields eqs. (11.6.21) and (11.6.22).

11.7 Evaluate the complete matrix �1 from eq. (11.8.43) and show that this agrees with the

result for �1 in eqs. (11.8.26).

Q

u

v

R

S
R′

u

v

p

q s

R

(a) (b)

Figure 11.6. (a) Compare with Figure 11.1, in which � is a small angle. RS ¼ s; angle RQR0 ¼� ;
r0 ¼ rþ�r¼ rþ 2s; u¼ n� r; RQ¼ v¼ n�u, so jvj ¼ juj. From (b), s¼ p (u/juj)þ q (v/jvj), where
p and q are the components of s along u and v, respectively.
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12 Projective representations

12.1 Complex numbers

Complex numbers are numbers of the form aþ iA, where a and A are real numbers and i is

the unit imaginary number with the property i2¼�1. The ordinary operations of the

algebra of real numbers can be performed in exactly the same way with complex numbers

by using the multiplication table for the complex number units {1, i} shown in Table 12.1.

Thus, the multiplication of two complex numbers yields

ðaþ iAÞðbþ iBÞ ¼ ab� ABþ iðaBþ bAÞ: (1)

Complex numbers may be represented by ordered number pairs [a, A] by defining

[a, 0]¼ a[1, 0] to be the real number a and [0, 1] to be the pure imaginary i. Then

aþ iA ¼ a½1, 0� þ A½0, 1� ¼ ½a, 0� þ ½0,A� ¼ ½a,A�; (2)

(2), (1) ½a, A�½b, B� ¼ ½ab� AB, aBþ bA�: (3)

The complex conjugate (CC) of aþ iA is defined to be a� iA. The product of the complex

number [a, A] and its CC [a, �A] is

(3) ½a, A�½a, �A� ¼ ½a2 þ A2, 0� ¼ a2 þ A2, (4)

which is non-zero except when [a, A] is [0, 0]. Division by a complex number [a, A] is

defined as multiplication by its inverse

(4) ½a, A��1 ¼ ða2 þ A2Þ�1½a, �A�, (5)

whence it follows that division of a complex number by another complex number yields a

complex number.

Exercise 12.1-1 Prove the associative property of the multiplication of complex numbers.

A complex number [a, A] may be represented by a point P, whose Cartesian coordinates

are a, A in a plane called the complex plane C (Figure 12.1). There is then a 1:1

correspondence between the complex numbers and points in this plane. Let r, � be the

polar coordinates of the point P in Figure 12.1. Then

(2) ½a, A� ¼ ½r cos �, r sin �� ¼ r½cos �, sin �� ¼ rðcos �þ i sin �Þ: (6)

218



The distance from the origin O to the point P is r¼ (a2 þA2)½, which is called the norm or

modulus of the complex number [a, A]. The product of two complex numbers is as

follows:

(6) ½a1, A1�½a2, A2� ¼ r1r2½cosð�1 þ �2Þ þ i sinð�1 þ �2Þ�: (7)

Since the exponential function may be defined everywhere in the complex plane, we may

expand exp(i�) and, using the series expansions for the trigonometric functions, obtain

Euler’s formula

expði�Þ ¼ cos �þ i sin �; (8)

(6), (8) ½a, A� ¼ aþ iA ¼ r expði�Þ: (9)

Answer to Exercise 12.1-1

½a, A�ð½b, B�½c,C�Þ ¼ ½a, A�½bc� BC, bC þ cB�
¼ ½abc� aBC � bCA� cAB, abC þ caBþ bcA� ABC�;

ð½a, A�½b, B�Þ½c,C� ¼ ½ab� AB, aBþ bA�½c,C�
¼ ½abc� cAB � aBC � bCA, abC � ABC þ caBþ bcA�:

Table 12.1. Multiplication table

for the complex number units 1, i.

1 i

1 1 i
i i �1

 

P

O

iA

a1

i
r

θ

Figure 12.1. Argand diagram for the representation of complex numbers in the complex plane C.
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12.2 Quaternions

A quaternion q is a hypercomplex number

q ¼ aþ q1A1 þ q2A2 þ q3A3 (1)

in which a, A1, A2, and A3 are scalars and q1, q2, and q3 are three imaginary quaternion units

with the properties

q1
2 ¼ q2

2 ¼ q3
2 ¼ �1;

q1 q2 ¼ q3 ¼ �q2 q1; q2 q3 ¼ q1 ¼ �q3 q2; q3 q1 ¼ q2 ¼ �q1 q3:

)
(2)

Thus the multiplication of quaternion units is non-commutative. In eq. (1) q is to be

interpreted as a compound symbol that stands for two different objects: the real quaternion,

identified with the real number a, and the pure quaternion
P3
i¼1

qi Ai. This is analogous to the

compound symbol aþ iA that denotes the complex number [a, A] (Whittaker and Watson

(1927)).

Exercise 12.2-1 Show that multiplication of quaternion units is associative. [Hint: The

multiplication rules in eq. (2) may be summarized by ql qm¼�1 if l¼m and

ql qm¼ "lmn qn if l 6¼m 6¼ n, where l, m, and n ¼ 1, 2, or 3 and "lmn¼þ1 (�1) according

to whether lmn is an even (odd) permutation of 123.]

Quaternions are thus seen to form a 4-D real linear space <�<3, comprising the real

linear space < (basis 1) and a 3-D real linear space <3 with basis {q1, q2, q3}. An ordered

pair representation can be established for q by defining

a ¼ a½1 ; 0� ¼ ½a ; 0�, qi ¼ ½0 ; ei�, i ¼ 1, 2, 3; (3)

(1), (3) q ¼ aþ
P3
i¼1

qiAi ¼ ½a ; 0� þ
P3
i¼1

½0 ; ei�Ai

¼ ½a ; 0� þ 0 ;
P3
i¼1

eiAi

� �

¼ ½a ; 0� þ ½0 ; A� ¼ ½a ; A�, (4)

in which the vector

A ¼
P3
i¼1

eiAi (5)

is a pseudovector. (Recall that the basis vectors {e1 e2 e3} are pseudovectors while

{A1 A2 A3} is a set of scalars.) The pure quaternion is

½0 ; A� ¼ ½0 ; An� ¼ A½0 ; n� ¼ qA, (6)
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in which the unit pure quaternion q is related to the unit vector n by

(6) q ¼ ½0 ; n�: (7)

(4), (3), (6), (7) ½a ; A� ¼ ½a ; 0� þ ½0 ; A� ¼ a½1 ; 0� þ A½0 ; n� ¼ aþ qA, (8)

which expresses a quaternion q¼ [a ; A] as the sum of a real number a and the product of

another real number A with the unit pure quaternion q, in close analogy with the complex

number [a, A]¼ aþ iA.

The product of two quaternions

(1), (2), (5), (3), (4) ½a ; A�½b ; B� ¼
 
aþ

P3
i¼1

qiAi

!
bþ

P3
j¼1

qjBj

 !

¼ abþ a
P3
j¼1

qjBj þ b
P3
i¼1

qiAi �
P3
i¼1

AiBi þ
P
i 6¼j

qiqjAiBj

¼ ½ab� A �B ; 0� þ ½0 ; aBþ bAþ A� B�
¼ ½ab� A �B ; aBþ bAþ A� B�: (9)

Exercise 12.2-2 Show that q2¼�1.

The quaternion conjugate of the quaternion q¼ ½a ; A� is

q� ¼ ½a ; �A�: (10)

(4), (10), (9) q q� ¼ ½a ; A�½a ; �A� ¼ a2 þ A2, (11)

which is a real positive number or zero, but is zero only if q¼ 0.

(11) ðq q�Þ½ ¼ ða2 þ A2Þ½
(12)

is called the norm of q and a quaternion of unit norm is said to be normalized. The inverse of

q is given by

(11) q�1 ¼ q�=ða2 þ A2Þ ¼ ½a ; �A�=ða2 þ A2Þ: (13)

If q is normalized, q� 1¼ q�. Division by q is effected by multiplying by q�1 so that the

division of one quaternion by another results in a third quaternion,

(4), (13), (9) q1=q2 ¼ ½a1 ; A1�½a2 ; �A2�=ða2
2 þ A2

2Þ
¼ ½a1a2 þ A1:A2 ; �a1A2 þ a2A1 � A1 � A2�=ða2

2 þ A2
2Þ

¼ ½a3 ; A3� ¼ q3: ð14Þ

Equation (9) shows that q1/q2 always exists except when q2¼ 0, which would require

a2¼ 0 and A2¼ 0. The quaternion algebra is therefore an associative, division algebra.

There are in fact only three associative division algebras: the algebra of real numbers, the

algebra of complex numbers, and the algebra of quaternions. (A proof of this statement

may be found in Littlewood (1958), p. 251.)
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Answers to Exercises 12.2

Exercise 12.2-1 There are five possibilities for the product ql qm qn.

(i) If l¼m¼ n, (qn qn)qn¼�qn¼ qn(qn qn).

(ii) If l 6¼m 6¼ n, (ql qm)qn¼ "lmn qn qn¼�"lmn; ql(qm qn)¼ ql "mnl ql¼�"mnl¼�"lmn.

(iii) If l¼m 6¼ n, (qm qm)qn¼�qn, qm(qm qn)¼ qm"mnlql¼ "mnl"mlnqn¼�qn.

(iv) If l 6¼m, n¼m, (ql qm)qm¼ "lmnqnqm¼ "lmn "nml ql¼�ql¼ ql(qm qm).

(v) If l 6¼m, n¼ l, (ql qm)ql¼ "lmnqnql¼ "lmn"nlmqm¼ qm; ql(qmql)¼ ql "mln qn
¼ "mln"nlmqm¼ qm.

The inclusion of one, two or three negative signs in ql qm qn does not change the proof of

associativity so that the associative property of multiplication for the set {1 �1 qi �qi},

where i¼ 1, 2, 3, is established.

Exercise 12.2-2 q2¼ qq¼ [0 ; n][0 ; n]¼ [0� n . n ; n� n]¼�1.

12.3 Geometry of rotations

Rotations may be studied geometrically with the aid of the unit sphere shown in Figure 12.2.

The unit vector OP¼ n is the axis of the rotation R(� n); P is called the pole of the rotation,

and is defined as the point on the sphere which is invariant under R(� n) such that the rotation

appears anticlockwise when viewed from outside the sphere. It follows from this definition that

Rð�� nÞ ¼ Rð� nÞ; that is, a negative (clockwise) rotation about n is the same operation as a

positive (anticlockwise) rotation through the same angle � about �n, the pole of this rotation

being P0 in Figure 12.2. As a consequence, we may concern ourselves only with positive

rotations in the range 0 � �� p. For a positive rotation, P belongs to the positive hemisphere

h, whereas for negative rotations about n the pole is P0, which is the intersection of �n with

O

P

P′

h

–h – n

n

Figure 12.2. The curved arrow shows the direction of a positive rotation R(� n) about n. P is the pole

of this rotation since it is invariant under the rotation and is the point from which the rotation appears

anticlockwise when viewed from outside the sphere. From P0, which is the antipole of P, the same

rotation appears to be clockwise.
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the negative hemisphere �h. P0 is referred to as the antipole of P. Equivalently (Altmann and

Herzig (1994)), the unit vector n rather than its point of intersection with the sphere could be

taken as the pole of the rotation. The disjoint hemispheres h and �h shown in Figure 12.2

are appropriate for O(3), but for the point groups, which are subgroups of O(3), h and �h

may have to be discontinuous. An example will occur later in this chapter. Since a rotation

through �p is equivalent to a rotation through p about the same axis, the antipole of the pole

of a binary rotation is not required. The poles of binary rotations must therefore all be

chosen within h, even if this means that h has to be discontinuous. No pole is assigned to the

identity operation since for E, n¼ 0 and �¼ 0. The rotation parameter �n for E is therefore

zero and so the identity is R(0) rather than R(0 n), for the latter would imply an infinite

choice for (0 n) from the set {(0 n)}. The pseudovector�n is a single rotation parameter, the

specification of which requires a statement of the rotation angle � and the components of n,

n1, n2, n3, only two of which are independent. The choice of a set of poles obeys some

conventions, which ensure that the character � is a class property. The following two rules

have been adopted in the extensive tables compiled by Altmann and Herzig (1994).

(I) Under the operations of G = {gi}, the pole of gi must either be invariant or transformed

into the pole (not the antipole) of an operation in the class of gi.

(II) If G contains a subgroup H then the choice of the set of poles made for G should be

such that rule I is still valid for H, otherwise the representations of G will not subduce

properly to those of H. ‘Subduction’ means the omission of those elements of G that

are not members of H and ‘properly’ means that the matrix representatives (MRs) of

the operators in a particular class have the same characters in H as they do in G.

The product of two rotations R(� a) R(� b), that is, the effect of a second rotation

R(� a) on the rotation R(� b), may be studied by observing how the pole of a rotation is

transformed by another rotation about a different axis, using a construction due to Euler.

The Euler construction is shown in Figure 12.3: a and b intersect the unit sphere at A and B,

respectively, which are the poles of R(� a) and R(� b). (To aid visualization, A happens to

be at the N pole of the unit sphere, but this is not essential.) Rotate the great circle through A

and B about A to the left (that is, in the direction of an anticlockwise rotation) by �/2, and

again to the right about B (a clockwise rotation) through �/2. Let the two arcs thus

generated intersect at C. Similarly, rotate this great circle to the right about A through

�/2 and to the left about B through �/2 so that the two arcs intersect at C0. Then C is the pole

of the rotation R(� a) R(� b) because it is left invariant by this pair of successive rotations.

(The first rotation R(� b) transforms C into C0 and the second rotation R(� a) transforms

C0 back into C.) Let the supplementary angle at C be �/2 (see Figure 12.3). Consider now

Figure 12.4 in which two planes OW and OV with the dihedral angle �/2 intersect along n.

The reflection �1 in OW sends X into Y and a second reflection �2 in OV sends Y into Z.

Then the symmetry operator that sends X into Z is the rotation about n through

�1þ�1þ�2þ�2¼ 2(�1þ�2)¼ 2(�/2)¼�. Thus the product of the two reflections,

�2�1, is equivalent to the rotation R(� n). In the Euler construction (Figure 12.3) planes

OCB and OAB intersect along OB = b. A reflection �1 in OCB followed by a reflection

�2 in OAB is equivalent to the rotation R(� b). The planes OAB and OAC intersect along

OA = a. A reflection �3 in OAB followed by a reflection �4 in OAC is equivalent to the
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rotation R(� a). Therefore, R(� a) R(� b)¼ �4 �3 �2 �1¼ �4 �1¼ �(OAC)�(OCB), since

the successive reflections �3 �2 in the plane OAB cancel one another. The planes OAC and

OCB intersect along OC¼ c with dihedral angle �/2. Hence the product �(OAC)�(OCB)is

R(� c). Therefore, the product of the two rotations is

Rð� aÞRð� bÞ ¼ Rð� cÞ: (1)

With the aid of the Euler construction, we have proved that the product of two rotations

R(� a)R(� b) is a third rotation R(� c), but we do not yet have explicit formulae for the

D

O
B B′

A

β
2 β

2

α
2 α

2

2
γ

2
γ

C′ C

Figure 12.3. Euler construction which shows that R(� a) R(� b)¼R(� c). A, B, and C are the

respective poles of the rotations R(� a), R(� b), and R(� c); R(� b) leaves B invariant and R(� a)

rotates B into B
0
. The angle of rotation about C that sends B into B

0
is �. Angle BAC¼�/2 = angle

BAC
0
; angle ABC¼�/2¼ABC

0
; angle BCD¼ �/2 = angle DCB

0
; OA¼ a; OB¼ b; OC¼ c.

Z

V

Y

W

XO

Figure 12.4. Angle XOW¼ angle WOY¼�1. Angle YOV¼ angle VOZ¼�2. Angle WOY þ angle

YOV¼�1þ�2¼�/2. Angles �1 and �2 are arbitrary as long as their sum equals �/2 , which is the

dihedral angle VOW.
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rotation angle � and the axis of rotation c. These were first derived by Rodrigues (Altmann

(1986)) though we shall obtain them by a different method in Section 12.5.

12.4 The theory of turns

The essence of this theory (Biedenharn and Louck (1981)) will be described here because

of the connection it provides between rotations and the algebra of quaternions. The rotation

of a unit vector OP in configuration space can be followed by the path traced out by P on the

surface of the unit sphere centered on O (Figure 12.5(a)). A turn is defined as half the

directed arc traced out on the unit sphere by the rotation, and it is parameterized by the

ordered pair of points (P1, P2) on the surface of the unit sphere. One of these points is

designated the tail and the other the head. A rotation is generated by a reflection first in the

plane normal to the arc at the tail P1 and then by reflection in the plane normal to the arc at

the head P2. If the angle between these planes is �/2, then these two reflections generate a

rotation through � (which is twice the arc length of the turn) about an axis n, which is the

intersection of the two planes (Figure 12.5(b)). Two turns are equi valent if they can be

superimposed by displacing either one along the great circle through P1P2. (This is

analogous to the superposition of two equal vectors by displacing one of the vectors

parallel to itself.) We now consider the properties of turns.

(a) Binary composition in the set of turns {T} is taken to be addition, with the sum T1þT2

being defined to mean ‘‘carry out T2 first and then T1.’’ Choose either of the points Q

where the great circles through T1 and T2 intersect (Figure 12.6). Place the head of T2

and the tail of T1 at Q. Then the turn from the tail of T2 to the head of T1 is defined to be

O O

n

P1 P2
X

Y
Z

(a)

n

P1

P2

X

Y

Z

(b)

Figure 12.5. Turns P1P2 which are part of (a) an equatorial great circle and (b) a general great circle.

Angle XOP1¼ angle P1OY¼�1; angle YOP2¼ angle P2OZ¼�2; and �1þ�2¼�/2. Successive

reflections in planes normal to the arc P1P2 of the great circle through P1P2 (and containing OP1 or

OP2, respectively) generate the rotation R(� n), which traces out the arc XZ equal to twice the length

of the turn P1P2¼�/2. The location of X is arbitrary, but the length of XZ is always equal to �. After

Biedenharn and Louck (1981).
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T1þT2. Figure 12.6 also shows that the addition of turns is non-commutative:

T2þT1 6¼T1þT2.

(b) The set of turns {T} is closed since the addition of two turns always produces another turn.

(c) The addition of turns is associative. This may be verified by a geometrical construction

in the manner of Figure 12.6.

(d) The set of turns {T} contains the identity T0, which is a turn of zero length.

(e) The inverse �T of a turn T is a turn of the same length as T on the same great circle

but of opposite sense.

Properties (a)–(e) are just those necessary to ensure that {T} is a group, called by

Biedenharn and Louck (1981) ‘‘Hamilton’’s group of turns.’’

Let QP be a diameter of the unit sphere; then, since great circles defined by Q and P are

not unique, all turns Tp defined by pairs of opposite points are equivalent. Since Tp can be

chosen on any great circle, it commutes with any turn T. The operation of adding Tp to a

turn T is described as conjugation,

Tc ¼ Tp þ T ¼ Tþ Tp: (1)

Turns of length p/2 have some unique properties and are denoted by the special symbol E.

Exercise 12.4-1 (a) Show that Tc
0 ¼ Tp. (b) Show that Ec ¼ �E. (c) Prove that any turn T

may be written as the sum E0 þE, where E and E0 are each turns of length p/2. [Hint: For

ease of visualization take Q, the point of intersection of E and E0, to be at the N pole and T

(therefore) along the equator. (The only necessity is that Q be the intersection of the normal

to the great circle of T with the unit sphere.) Take E from the tail of T to Q.]

Figure 12.7 shows three turns E1, E2 and E3 which sum to T0. The set of turns

fT0 Tp E1 Ec
1 E2 Ec

2 E3 Ec
3g form a group of order eight which is isomorphous with

the quaternion group Q¼ {1 �1 q1 � q1 q2 � q2 q3 � q3} with the mapping given by

the ordering of the terms in each set. Therefore

T2 + T1

T1 

T1 

T2T2

Q

T1 + T2

Figure 12.6. Illustration of the procedure for carrying out the addition of turns T1þT2, defined to be

the turn from the tail of T2 to the head of T1. The notation T2þT1 means the turn from the tail of T1

to the head of T2; this result is not equal to T1þT2.
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1, � 1 ! T0, Tc
0 ¼ Tp; (2)

qi
2 ¼ �1 ! Ei þ Ei ¼ Tp ði ¼ 1, 2, 3Þ; (3)

� qi ¼ q�
i ! �Ei ¼ Ec

i ði ¼ 1, 2, 3Þ; (4)

ql qm ¼ "lmn qn ! El þ Em ¼ "lmn En ðl 6¼ m 6¼ n; l,m, n ¼ 1, 2, 3Þ: (5)

Note that "lmn¼þ1 if l m n is an even permutation of 1 2 3, but "lmn is the conjugation

operator if l m n is an odd permutation of 1 2 3. This is not inconsistent with the earlier

statement that "lmn ¼�1 if l m n is an odd permutation of 1 2 3 (because by eq. (12.2.4)

qc
i is q�

i ¼ �qi). Remember that ElþEm means perform Em first, then El (Figure 12.6). For

example (Figure 12.7),

q3 q2 q1 ¼ �q1 q1 ¼ 1 ! E3 þ E2 þ E1 ¼ T0: (6)

Exercise 12.4-2 (a) From eq. (5) q1 q2¼ q3, q1 q3¼� q2. Prove that E1þE2¼E3;

E1 þ E3 ¼ Ec
2. (b) Write down the mapping that corresponds to (q1 q2)2 and show that

this equals Tp.

The above analysis shows that the set of turns fT0 Tp Ei Ec
i g, i ¼ 1, 2, 3, provides a

geometric realization of the quaternion group and thus establishes the connection between

the quaternion units and turns through p/2, and hence rotations through p (binary rotations).

This suggests that the whole set of turns might provide a geometric realization of the set of

unit quaternions. Section 12.5 will not only prove this to be the case, but will also provide

us with the correct parameterization of a rotation.

E1

E2E3

π /2

Figure 12.7. E1, E2, and E3 mark out a spherical triangle which is the surface of one octant of the unit

sphere. This figure shows that E3þE2þE1¼T0.
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Answers to Exercises 12.4

Exercise 12.4-1 (a) From the definition of conjugation Tc ¼ T þ Tp; therefore

Tc
0 ¼ T0 þ Tp ¼ T p. (b) Ec ¼ E þ T p ¼�E. (c) See Figure 12.8(a).

Exercise 12.4-2 See Figure 12.8(b). (a)  E1 þ E3 ¼ �E2 ¼ Ec
2. (b) ðq1 q2Þ

2 ¼ q2
3 ¼ �1 !

E1 þ E2 þ E1 þ E2 ¼ E3 þ E3 ¼ Tp.

12.5 The algebra of turns

Let m, p be the unit vectors from O to the points M, P that define, respectively, the tail and

head of the turn T1 of length |T1|¼ 1=2�1, and let n1 be the unit vector along the axis of

rotation (Figure 12.9). Then T1¼T(a1, A1) is described by the two parameters

a1 ¼ m �p ¼ cos 1
2
�1

� �
(1)

and

A1 ¼ m� p ¼ sin 1
2
�1

� �
n1; (2)

(1), (2) a1
2 þ A1 �A1 ¼ 1: (3)

Exercise 12.5-1 Write down T¼T(a, A) for (a) |T|¼ 0 and (b) |T|¼ p. If T¼T(a, A),

find (c) �T and (d) �Tc.

Figure 12.9(a) shows the addition of two turns T2þT1, where T1 is characterized by the

unit vectors m and p from O to the tail of T1 and the head of T1, respectively, and T2

T

E′E

O

Q

(a)

E1
E1E3

E2

–E2

E3

π /2

Q

(b)

P

Figure 12.8. (a) Solution to Exercise 12.4-1(c). (b) Solutions to Exercise 12.4-2(a) and (b):

E1 þ E2 ¼ E3 ; E1 þ E3 ¼ �E2 ¼ Ec
2 ; ðq1 q2 Þ2 ! E3 þ E3 ¼ T p.
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similarly by p and r. Figure 12.9(b) shows part of the plane of the great circle that contains

T1 so that n1 is normal to the plane of m and p, which we signify by n1 ? (m, p). Note that

A1¼m� p is a pseudovector of magnitude sinð1
2 
�1 Þ along n1; then from Figure 12.9(b)

A1 �m ¼ sinð1
2
�1Þq, q ? ðn1, mÞ, (4)

p ¼ a1mþ A1 �m, (5)

(5), (1), (2) p ¼ ðm �pÞmþ ðm� pÞ �m: (6)

Similarly, for T2¼T(a2, A2),

a2 ¼ p � r ¼ cosð1
2
�2Þ, A2 ¼ p� r ¼ sinð1

2
�2Þn2, (7)

n1

n2

R

PM

(a)

O

1
2

Q

U

M

(b)

T

P

O
φ1

1
2

S

WR

(c)

V
P O

φ2

Figure 12.9. (a) Addition of two turns T2þT1; OM¼m, OP¼ p, OR¼ r, MP¼T1, PR¼T2,

MR¼T2þT1. (b) Part of the plane of the great circle that contains T1 so that n1 is normal to the

plane of m and p; OQ¼ q, where q is normal to the plane containing n1 and m, which we write as

q? (n1,m). Note that OT ¼ a1m ¼ cosð1
2
�1Þm; OU ¼ A1 �m ¼ sinð1

2
�1Þq. (c) Part of the plane

of the great circle that contains T2 so that n2 is normal to the plane of p and r;

OS ¼ s ? ðn2, pÞ; OV ¼ a2p ¼ cosð1
2 
�2 Þp; OW ¼ A2 � p ¼ sinð1

2
�2Þs. These diagrams are for

angles �1 and �2 both positive.
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and by the construction shown in Figure 12.9(c)

A2 � p ¼ sin ð1
2 
�2 Þ s, s ? ðn2, pÞ, (8)

r ¼ a2 p þ A2 � p, (9)

(9), (5) r ¼ a2 ð a1 m þ A1 � m Þ þ A2 � ða1 m þ A1 � m Þ: (10)

Now the triple vector product

A � ðB � CÞ ¼ B ð A � CÞ �  C ðA � BÞ ¼ ðC � B Þ � A : (11)

Remembering that A1 ? m so that m.A1 ¼ 0,

(11) ð A2 � A1 Þ �m � ðA1 � A2 Þ m ¼ A1 ð m � A2 Þ �  A2 ð m � A1 Þ � ðA1 � A2 Þ m
¼ A1 ð m � A2 Þ � ðA1 � A2 Þ m ¼ A2 � ðA1 � mÞ: ð12 Þ

(12), (10) r ¼ a2 ð a1 m þ A1 � mÞ þ  a1 ðA2 � m Þ þ ðA2 � A1 Þ �  m � ðA1 �A2 Þ m
¼ mð a1 a2 � A1 � A2 Þ þ ða1 A2 þ a2 A1 þ A2 � A1 Þ �  m (13)

¼ a3 m þ A3 � m,

where

a3 ¼ a1 a2 � A1 � A2, A3 ¼ a1 A2 þ a2 A1 þ A2 � A1 : (14)

Equations (13) and (14) show that the addition of turns

T2 þ T1 ¼ T ð a2, A2 Þ þ  Tð a1, A1 Þ ¼ T ða3, A3 Þ (15)

corresponds to the multiplication of normalized quaternions

½ a2 ; A2 �½ a1 ; A1 � ¼ ½a3 ; A3 �: (16)

It follows that a turn is the geometric realization of a normalized quaternion, that the addition

of turns is the geometric realization of the multiplication of quaternions of unit norm, and that

the group of turns is isomorphous with the group of normalized quaternions. Furthermore,

eqs. (1) and (2) provide the correct parameterization of a normalized quaternion as

(1), (2) q ¼ ½cosð1
2 
�Þ ; sin ð1

2 
�Þ n�, (17)

which corresponds to a rotation R( � n) through an angle �, since a turn T was defined as

half the directed arc traced out by the rotation R( � n) on the surface of the unit sphere. To

make contact with the work of Rodrigues a rotation R( � n) will now be re-written in terms

of new parameters [l ; L], called the quaternion or Euler–Rodrigues parameters, as

Rð� nÞ ! ½l ; L�, l ¼ cosð1
2
�Þ, L ¼ sinð1

2
�Þn, (18)

where l is a scalar and L is a pseudovector. The multiplication rule for two rotations

[l2 ; L2], [ l1 ; L1] is then the quaternion multiplication rule eq. (12.2.9) or, equivalently,

eq. (14) above,
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½l2 ; L2�½l1 ; L1� ¼ ½l3 ; L3�, (19)

with

l3 ¼ l1 l2 � L1 � L2 , L3 ¼ l1 L2 þ l2 L1 þ L2 � L1: (20)

We have now introduced four parameterizations for SO(3): R(� n) (Section 2.1);

R(�, �, �), where �, �, � are the three Euler angles (Section 11.7); R(a, b), where a, b

are the complex Cayley–Klein parameters (Section 11.6); and the Euler–Rodrigues para-

meterization [l ; L].

Exercise 12.5-2 Deduce the relations

a ¼ l� iLz , b ¼ �Ly � iLx: (21)

[Hint: Recall the homomorphism of SU(2) and SO(3).]

Exercise 12.5-3 Show that as � ! 0, [l ; L] tends continuously to the identity [1 ; 0].

Exercise 12.5-4 Show that two rotations through infinitesimally small angles commute.

Exercise 12.5-5 Prove that the product of two bilateral binary (BB) rotations (�1¼�2¼ p,

n1 ? n2) is a binary rotation about n3 ? (n1, n2).

One immediate application of the quaternion formulae (19) and (20) for the multi-

plication of rotations is the proof that all rotations through the same angle are in the

same class. To find the rotations in the same class as R(� n) we need to evaluate

Rð� mÞRð� nÞRð� mÞ�1
, (22)

where � m 2 {� n}. In the quaternion representation,

(22) cos 1
2
�

� �
; sin 1

2
�

� �
m

� �
cos 1

2
�

� �
; sin 1

2
�

� �
n

� �
cos �1

2
�

� �
; sin �1

2
�

� �
m

� �
¼ cos 1

2
�

� �
; sin 1

2
�

� �
m

� �
cos 1

2
�

� �
cos 1

2
�

� �
þ sin 1

2
�

� �
sin 1

2
�

� �
n �m

�
;

� cos 1
2
�

� �
sin 1

2
�

� �
mþ sin 1

2
�

� �
cos 1

2
�

� �
n� sin 1

2
�

� �
sin 1

2
�

� �
n�m

�
¼ cos 1

2
�

� �
; sin 1

2
�

� �
ðcos �Þnþ ðsin �Þm�nþ ð1 � cos �Þðm �nÞmf g

� �
; ð23Þ

¼ cos 1
2
�

� �
; sin 1

2
�

� �
n0

� �
, n0 ¼ Rð� mÞn, (24)

which is the quaternion representation of R(� n0). The expression in { } in eq. (23) will be

recognized from the formula for the conical transformation (eq. (11.5.22)) as the effect of

the rotation R(� m) on the vector n. Equation (24) shows that in SO(3) all rotations

through the same angle � are in the same class. In other words, we have proved that

conjugation leaves the rotation angle invariant but transforms the rotation axis n into the

new axis n0 (and therefore the pole of the rotation P into P0).
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Answers to Exercises 12.5

Exercise 12.5-1 (a) If |T|¼ 0, a¼ 1, A¼ 0 and T¼T(1, 0)¼T0. (b) If |T|¼ p, a¼�1,

A¼ 0 and T¼T(�1, 0)¼Tp. (c) �T(a, A)¼T(a, �A). (d) �Tc(a, A)¼�T(�a, �A)

¼T(�a, A).

Exercise 12.5-2

(11.6.9), (11.6.12), (18) a ¼ cosð1
2
�Þ � inz sinð1

2
�Þ ¼ l� i�z,

b ¼ �ðny þ inxÞ sinð1
2
�Þ ¼ ��y � i�x:

Exercise 12.5-3 ½l ; L� ¼ ½cos ð1
2
�Þ ; sinð1

2
�Þn�: As � ! 0,

cosð1
2
�Þ ¼ 1 � ð1

2
�Þ2

=2! . . . ! 1, sinð1
2
�Þ ¼ 1

2
�� ð1

2
�Þ3

=3! . . . ! 0,

so that [l ; L] ! [1 ; 0]¼E.

Exercise 12.5-4 In the product [l1 ; L1][l2 ; L2]¼ [l3 ; L3], to first order in �, l1¼ 1,

L1¼ 1
2
�1n1; l2¼ 1, L2¼ 1

2
�2n2; l3¼ 1, L3¼ 1

2
�1n1þ 1

2
�2n2, whence it follows that

the two rotations R(�1 n1), R(�2 n2) commute when �1, �2 are infinitesimally small

angles.

Exercise 12.5-5 For BB rotations �1¼�2¼ p, l1¼ l2¼ 0, L1 �L2¼ n1 � n2¼ 0, and the

product of two BB rotations is [0 ; n1� n2]¼ [0 ; n3], n3? (n1, n2).

12.6 Projective representations

The double group G was introduced in Chapter 8 in order to deal with irreducible

representations (IRs) that correspond to half-integral values of j. Because

�jðRð�þ 2p nÞÞ ¼ ð�1Þ2j�jRð� nÞ, (1)

R(2p z) 6¼E for j equal to a half-integer. Bethe (1929) therefore introduced the new

operatorE¼R(2p z) 6¼E, thus doubling the size of G¼ {gi} by forming the double group

G ¼ fgi, gig ¼ fgig � fgig, gi ¼ Egi: (2)

The IRs of G comprise the vector representations, which are the IRs of G, and new

representations called the spinor or double group representations, which correspond to

half-integral j. The double group G contains twice as many elements as G but not twice as

many classes: gi and gi are in different classes in G except when gi is a proper or improper

BB rotation (that is, a rotation about a binary axis that is normal to another binary axis), in

which case gi and gi are in the same class and �(gi), (�gi) are necessarily zero in spinor
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representations. Operations which satisfy this condition are called irregular operations, all

other operations being termed regular (Altmann and Herzig (1994)). The distinction is

important, since the number of spinor (or double group) representations is equal to the

number of regular classes in G.

Example 12.6-1 The point group C2v ¼ {E C2z �x �y}, where �x¼ IC2x and �y¼ IC2y.

Because x, y, z are mutually perpendicular axes, all operations except E are irregular and

there is consequently only one doubly degenerate spinor representation, E1=2
. Contrast

C2h ¼ {E C2z I �h} in which �h is �z¼ IC2z and thus an improper binary rotation about

z. There are therefore no irregular operations, and consequently there are four spinor

representations which occur in two doubly degenerate pairs E1=2 , g and E1=2,u because of

time-reversal symmetry (Chapter 13). In C3v there are three improper binary axes but they

are not mutually perpendicular.

Example 12.6-2 The classes of Td are {E 4C3 3C2 6S4 6�d}. The three binary rotations

are BB rotations. The six dihedral planes occur in three pairs of perpendicular improper BB

rotations so both 3C2 and 6�d are irregular classes. There are therefore Nv¼ 5 vector

representations and Ns¼ 3 spinor representations.

Exercise 12.6-1 Determine the number of spinor representations in the point group D3h.

In an alternative approach, no new elements are introduced; so G is not altered, but instead

there is a new kind of representation called a projective representation. In a projective

representation (PR) the set of MRs only closes if a numerical factor called a projective

factor (PF) and written [gi ; gj] is introduced so that �(gi)�(gj)¼ [gi ; gj] �(gigj). The

advantages of this approach are that the group, its multiplication rules, and class structure

remain unchanged. Of course, we need a method of finding the PFs for any given group.

Once these are determined, the spinor representations may be used in the same way as vector

representations, except that when two MRs are multiplied together, the resulting matrix has

to be multiplied by the appropriate PF. One potential difficulty is that the character of an MR

in a PR is not necessarily a property of its class. But with the conventions applied in choosing

the poles of rotations, the character is a class property for all point groups (Altmann (1979)).

With the conventions to be applied in the calculation of PFs (which will be given shortly) and

the pole conventions used in Section 12.3, the orthogonality relations, and their conse-

quences, are also valid for unitary PRs except for one, and that is that the number of IRsNr is

not equal to the number of classes. However, the relation that the sum of the squares of the

dimensions of the representations is equal to the order of the group (which followed from the

orthogonality theorem) holds for spinor representations as well as for vector representations.

Consequently,

X
s

l2s ¼ g, (3)

where s¼ 1, . . . , Ns enumerates the spinor representations (Altmann (1977)).
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We begin by reiterating the definition of a PR and listing some conventions regarding

PFs. A projective unitary representation of a group G¼ {gi} of dimension g is a set of

matrices that satisfy the relations

�ðgiÞy�ðgiÞ ¼ �ðgiÞ�ðgiÞy ¼ E, (4)

�ðgiÞ�ðgjÞ ¼ ½gi ; gj��ðgi gjÞ 8gi, gj 2 G: (5)

The PFs [gi ; gj] are a set of g2 complex numbers, which by convention are all chosen to be

square roots of unity. (For vector representations the PFs are all unity.) PFs have the

following properties (Altmann (1977)):

(a) associativity

½gi ; gj�½gi gj ; gk � ¼ ½gi ; gj gk �½gj ; gk �, (6)

(b) standardization

½E ; E� ¼ ½E ; gi� ¼ ½gi ; E� ¼ 1 8gi 2 G, (7)

(c) normalization

½gi ; gj��½gi ; gj� ¼ 1 8gi, gj 2 G, (8)

(d) symmetry

½gi ; g�1
i � ¼ ½g�1

i ; gi� 8gi 2 G: (9)

The set of PFs {[gi ; gj]} is called the factor system. Associativity (a) and the symmetry of

[gi ; gi
�1] (d) are true for all factor systems. The standardization (b) and normalization (c)

properties are conventions chosen by Altmann and Herzig (1994) in their standard work

Point Group Theory Tables. Associativity (a) follows from the associativity property of the

multiplication of group elements. For a spinor representation � of G, on introducing [i ; j]

as an abbreviation for [gi ; gj],

(4) �ðgiÞf�ðgjÞ�ðgkÞg ¼ �ðgiÞ½ j ; k��ðgj gkÞ
¼ ½i ; jk�½ j ; k��ðgi gj gkÞ, (10)

(4) f�ðgiÞ�ðgjÞg�ðgkÞ ¼ ½i ; j��ðgi gjÞ�ðgkÞ
¼ ½i ; j�½i j ; k��ðgi gj gkÞ, (11)

whence eq. (6) follows.

From the pole conventions in Section 11.3 it follows that Rð�� nÞ ¼ Rð�� nÞ, and

this restricts the rotation angle � to the range 0 � � � p, which, in turn, restricts the range

of the quaternion or Euler–Rodrigues parameters to

l ¼ cosð1
2
�Þ � 0, jLj ¼ sinð1

2
�Þ � 0: (12)
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Parameters that satisfy eq. (12) are referred to as standard quaternion (or Euler–Rodrigues)

parameters. Note that L ¼ sinð1
2
�Þn belongs to the positive hemisphere h for positive

rotations and to �h for negative rotations. For binary rotations, �¼ p, and so l¼ 0, L¼ 1,

and L belongs to h because there is no rotation R(�p n). Therefore for any point group,

h must be defined so as to contain the poles of all positive rotations, including binary

rotations. Due to the range of �, standard quaternion parameters must satisfy either

l > 0 ð0 � � < pÞ or l ¼ 0, L 2 h ð� ¼ pÞ: (13)

The PF for the product of any two rotations may now be determined using the quaternion

representation.

Example 12.6-3 Determine the PF for the multiplication of a binary rotation with itself.

For R(p n), cosð1
2
pÞ ¼ 0, sinð1

2
pÞ ¼ 1 and the product C2nC2n in the quaternion repre-

sentation is

½0 ; n�½0 ; n� ¼ ½0 � n � n ; 0þ 0þ n� n� ¼ ½�1 ; 0� ¼ �1½1 ; 0�; (14)

(4), (14) �ðC2nÞ�ðC2nÞ ¼ ½C2n ; C2n��ðEÞ ¼ ��ðEÞ; ½C2n ; C2n� ¼ �1: (15)

Example 12.6-4 Determine the PF for Cþ
3z C

þ
3z.

For Cþ
3z, � ¼ 2p=3 and

1=2� ¼ p=3, l1 ¼ 1=2, L1 ¼
ffiffiffi
3

p
=2 z ¼

ffiffiffi
3

p
=2½0 0 1�: (16)

For C�
3z, � ¼ 2p=3 and

1=2� ¼ p=3, l2 ¼ 1=2 , L2 ¼
ffiffiffi
3

p
=2 z ¼

ffiffiffi
3

p
=2½0 0 1�, (17)

(16) ½l1 ; L1�½l1 ; L1� ¼ 1=2 ;
ffiffiffi
3

p
=2½0 0 1�

� �
1=2 ;

ffiffiffi
3

p
=2½0 0 1�

� �
¼ 1

4
� 3=4 ;

ffiffiffi
3

p
=4½0 0 1�

� �
þ

ffiffiffi
3

p
=2½0 0 1� ¼ �1=2 ;

ffiffiffi
3

p
=2½0 0 1�

� �
¼ � 1=2 ;

ffiffiffi
3

p
=2½0 0 1�

� �
¼ � 1=2 ;

ffiffiffi
3

p
=2 z

� �
¼ �½l2 ; L2�,

(18)

(18), (17) �ðCþ
3zÞ�ðCþ

3zÞ ¼ ��ððC�
3zÞÞ, ½Cþ

3z ;C
þ
3z� ¼ �1: (19)

Example 12.6-5 Determine the PFs for [C2z ; C2x] and [C2x ; C2z].

For R(p z)

l1 ¼ 0, L1 ¼ z ¼ ½0 0 1�, (20)

and for R(p x)

l2 ¼ 0, L2 ¼ x ¼ ½1 0 0�: (21)
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(20), (21) ½0 ; ½0 0 1��½0 ; ½1 0 0�� ¼ ½0 ; ½0 1 0�� ¼ ½0 ; y�; (22)

(22) �ðC2zÞ�ðC2xÞ ¼ �ðC2yÞ, ½C2z ; C2x� ¼ 1; (23)

(21), (20) ½0 ; ½1 0 0��½0 ; ½0 0 1�� ¼ ½0 ; ½0 1 0�� ¼ �½0 ; y�; (24)

ð24Þ �ðC2xÞ�ðC2zÞ ¼ ��ðC2yÞ, ½C2x ; C2z� ¼ �1: (25)

Equation (15) applies to PRs, and the multiplication rule it obeys is not one of G¼ {E C2}

in which C2C2¼E. The only way to maintain a 1:1 correspondence between R and �(R)

without introducing PFs is to enlarge the size of G¼ {gi} to G¼ {gi}� {gi}; G is the

double group of G, but G is not a subgroup of G since the multiplication rules of G are

different from those of G; G is a covering group of G because the vector representations of

G subduce to the PRs of G by omitting the MRs of {gi}. The quaternion representation

ofE is [�1 ; 0] and so if R has the parameters [l ; L] then the parameters of R¼ER are

[�1 ; 0][l ; L]¼ [� l ; �L]. Thus the sign of the quaternion parameters shows

whether the product of two operators is R or R. This rule is exemplified in Table 12.2,

which gives the multiplication table for C2. However, it is not necessary to use the covering

group to find spinor representations since they may be found directly using the quaternion

representation.

12.6.1 Inverse and conjugate in the quaternion parameterization

The inverse of gi gi
�1 is defined by

gi
�1 gi ¼ gi gi

�1 ¼ E: (26)

In the quaternion representation, using the abbreviated notation lðgiÞ ! li, lðgi�1Þ ! li�1 ,

and similarly for L,

Table 12.2. Multiplication table for C2.

The multiplication table for the subset {E C2} is not

closed, showing that C2 is not a subgroup of C2.

C2 E C2 E C2

E E C2 E C2

C2 C2 E C2 E

E E C2 E C2

C2 C2 E C2 E
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(26)
½li ; Li�½li�1 ; Li�1 � ¼ ½1 ; 0�
¼ ½lili�1 � Li :Li�1 ; liLi�1 þ li�1Li þ Li � Li�1 �; (27)

(27) lðgi�1Þ ¼ lðgiÞ, Lðgi�1Þ ¼ �LðgiÞ: (28)

If � 6¼ p so that gi is not a binary rotation and l( gi) > 0, then, from eq. (28), l( gi
�1)> 0 and

its parameters are standardized (see eqs. (12) and (13)). For �¼ p, l(gi)¼ 0, and L(gi)2 h.

But for �¼ p, gi
�1¼R(�p n), and �p is out of range. However, gi

�1 is then equivalent to

gi, which has been chosen to have standard parameters by ensuring that L(gi)2 h for all

binary rotations.

From the quaternion representation of gk gi gk
�1, when gk¼R(� m) and gi¼R(� n),

(12.5.23) ½lðgk gi gk
�1Þ ; Lðgk gi gk

�1Þ� 	 ½lk i k�1 ; Lk i k�1 � (29)

¼ ½li ; ð1 � 2L2
kÞLi þ 2lkLk � Li þ 2ðLk :LiÞLk �: (30)

The scalar parts of eqs. (29) and (30) coincide because conjugation leaves the rotation

angle invariant. We now consider three cases:

(1) If gi is not binary, the range of �� is 0���< p/2 , and therefore

ð13Þ lk i k�1 ¼ li > 0 is standard. (31)

(2) If gi is binary (�¼ p) but gi gk are not BB, lk i k�1 ¼ li ¼ 0, and standardization can be

ensured by choosing h such that

Lk i k�1 2 h ðli ¼ 0Þ: (32)

(3) If gi gk are BB, li¼ lk¼ 0, Li
2¼Lk

2¼ 1, Li, Lk2 h, Li.Lk¼ 0,

(30) Lk i k�1 ¼ ð1 � 2L2
kÞLi ¼ �Li, Lk i k�1 2 �h: (33)

Equation (33) shows that the conjugate pole of gi is the antipole of gi, a situation that arises

only when gi, gk are BB rotations.

12.6.2 The characters

From the definition of a class c(gi)¼ {gk gi gk
�1}, 8 gk 2 G (with repetitions deleted) it

follows that for vector representations

�ðgk gi gk
�1Þ ¼ Tr�ðgk gi gk

�1Þ ¼ Tr�ðgk�1 gk giÞ ¼ �ðgiÞ: (34)

For spinor representations (in abbreviated notation, where k�1 means gk
�1)
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�ðgk gi gk
�1Þ ¼ Tr�ðgk gi g

�1
k Þ ¼ ½k ; i k�1��1

Tr�ðgkÞ�ðgi g�1
k Þ

¼ ½k ; i k�1��1½i ; k�1��1
Tr�ðgkÞ�ðgiÞ�ðgk�1Þ

¼ ½k ; i k�1��1½i ; k�1��1
Tr�ðg�1

k Þ�ðgkÞ�ðgiÞ
¼ ½k ; i k�1��1½i ; k�1��1½k�1 ; k� Tr�ðEÞ�ðgiÞ
¼ ½k ; ik�1��1½i ; k�1��1½k�1 ; k�½E ; gi�Tr�ðgiÞ
¼ ½k ; i k�1��1½i ; k�1��1½k�1 ; k�Tr�ðgiÞ (35)

¼ ½k i k�1 ; k�½k ; i��1 �ðgiÞ (36)

on using associativity twice. Reverting to full notation,

(36) �ðgk gi gk
�1Þ ¼ ½gk gi gk

�1 ; gk �½gk ; gi��1 �ðgiÞ: (37)

Exercise 12.6-2 Complete the derivation of eq. (36) by filling in the steps between

eqs. (35) and (36). [Hint: You will need to use associativity twice.]

In evaluating the PF in eq. (37) note that the conjugation operation gk gi gk
�1, or k i k�1,

is to be regarded as a single operation. The quaternion parameters l, L for the product of

gk gi gk
�1 with gk are

lk i k�1 k ¼ 
ðlilk � Li :Lk � 2L2
k Li :Lk þ 2Lk �LiL2

kÞ
¼ 
ðlilk � Li :LkÞ; (38)

Lk i k�1 k ¼ 
½liLk þ lkfLi � 2L2
kLi þ 2lkLk � Li þ 2ðLk :LiÞLkg þ Li � Lk

� 2L2
kLi � Lk þ 2lkLk � Li � Lk �

¼ 
½liLk þ lkLi þ Lk � Li�:
(39)

For the product gk gi,

lki ¼ lkli � Lk :Li, (40)

Lki ¼ lkLi þ liLk þ Lk � Li, (41)

(37) � (41) �ðgk gi gk
�1Þ ¼ 
�ðgiÞ: (42)

Provided h has been properly chosen to contain all conjugate binary poles, the negative sign

will arise only when gk and gi are BB, in which case gk gi gk
�1¼ gi, and eq. (42) shows that

� vanishes.

12.6.3 Direct product representations

Given M¼G�H so that M¼ {mk}, where mk¼ gi hj¼ hj gi, and PRs �1 of G and �2 of H ,

so that
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�1ðgiÞ�1ðgpÞ ¼ ½gi ; gp��1ðgi gpÞ, �2ðhjÞ�2ðhrÞ ¼ ½hj ; hr��2ðhjhrÞ, (43)

it may be shown that

�3ðgihjÞ ¼ ½gi ; hj��1�1ðgiÞ � �2ðhjÞ (44)

are PRs of M with PFs

½gihj ; gphr� ¼ ½gi ; gp�½hj ; hr�½gi gp ; hjhr�½gi ; hj��1½gp ; hr��1: (45)

Proof In the abbreviated notation for PFs

(44)

�3ðgihjÞ�3ðgphrÞ ¼ ½i ; j��1½p ; r��1f�1ðgiÞ � �2ðhjÞgf�1ðgpÞ � �2ðhrÞg
¼ ½i ; j��1½p ; r��1f�1ðgiÞ�1ðgpÞg � f�2ðhjÞ�2ðhrÞg
¼ ½i ; j��1½p ; r��1½i ; p�½j ; r�f�1ðgi gpÞg � f�2ðhj hrÞg
¼ ½i ; j��1½p ; r��1½i ; p�½j ; r�½ip ; jr��3ðgigphjhrÞ: (46)

But

�3ðgihjÞ�3ðgphrÞ ¼ ½ij ; pr��3ðgigp hjhrÞ; (47)

(46), (47) ½ij ; pr� ¼ ½i ; p�½j ; r�½i ; j��1½p ; r��1½ip ; jr�,

which is eq. (45) in the abbreviated notation. In the event that �1, �2 are two different PRs

of the same group G with different factor systems a and b so that

�1
aðgiÞ�2

aðgpÞ ¼ ½i ; p�a�3
aðgigpÞ, �1

bðgiÞ�2
bðgpÞ ¼ ½i ; p�b�3

bðgigpÞ (48)

then the direct product (DP)

�3 ¼ �1
a � �2

b (49)

is a PR with factor system

½i ; p� ¼ ½i ; p�a½i ; p�b: (50)

The proof of eq. (50) is similar to that of eq. (45) and is assigned as Problem 12.9.

Answers to Exercises 12.6

Exercise 12.6-1 D3h¼ {E 2C3 3C2
0 �h 2S3 3�v}, where �h¼ IC2, �v¼ IC2

00, C2? (C2
0,

C2
00). Thus the improper binary axis C2 is normal to the 3C2

0 proper binary axes and the

three improper C2
00 binary axes. There are, therefore, three irregular classes �h, 3C2

0, and

3�v. There are six classes in all and therefore six vector representations (Nv¼ 6). There are

three regular classes and therefore three spinor representations, each of which is doubly

degenerate since
P3

s¼1 l
2
s ¼ 22 þ 22 þ 22 ¼ 12 ¼ g:
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Exercise 12.6-2

(35) ½k ; ik�1��1½i ; k�1��1½k�1 ; k� ¼ ½k ; ik�1��1½i ; k�1��1½i ; k�1�½ik�1 ; k�½i ; k�1k�
¼ ½k ; ik�1��1½k ; ik�1�½kik�1 ; k�½k ; ik�1k��1

¼ ½kik�1 ; k�½k ; i��1
,

which proves eq. (36).

12.7 Improper groups

The group O(3) comprises all proper and improper rotations in configuration space R3. It is

obtained from the DP

Oð3Þ ¼ SOð3Þ � Ci , Ci ¼ fE, Ig: (1)

Since I I¼E, for PRs

�ðIÞ�ðIÞ ¼ ½I ; I ��ðEÞ: (2)

With the spinor basis h u v|

(11.8.13) ½I ; I � ¼ �1 (Cartan gauge), (3)

(11.8.14) ½ I ; I � ¼ þ1 (Pauli gauge). (4)

The PFs for the other three products EE, EI, IE are all unity because of standardization,

eq. (12.6.6). Irreducible PRs that are related by a gauge transformation may be converted

one into the other by multiplying the characters for each class by a specific phase factor.

Such a gauge transformation does not alter the energy eigenvalues, so, for that purpose,

gauge equivalence may be ignored. However, a choice of phase factors may have other

implications. Character tables for the PRs of the point groups are generally given in the

Pa ul i g au ge (see Altmann and Herzig (1994), equations (13.13) and (13.17)). Table 12.3

shows the multiplication table for Ci as well as the factor tables (that is, the set of PFs

{[gi ; gj]} for each PR) and the character tables in both the Cartan gauge and the Pauli gauge.

The matrices �(I) in eq. (11.8.13) provide us with two inequivalent reducible PRs of Ci:

�3 ¼
E I

1

1

� �
�i

�i

� �
; �4 ¼

E I
1

1

� �
i

i

� �
, (5)

where �3¼A1/2,g�A1/2,g, �4¼A1/2,u�A1/2,u (Table 12.3). If these two IRs are each

multiplied by the phase factors 1 (for E ) and i (for I) (a gauge transformation from the

Cartan gauge �(I)¼� iE2, to the Pauli gauge �(I)¼E2) then they are transformed into the

IRs Ag, Au as shown in Table 12.3. The apparent simplification that results from the use of

the Pauli gauge has disadvantages. The fact that in PRs the inversion operator I behaves just

like the identity E (see eq. (11.8.16)) is in sharp contrast with our treatment of vector

representations in which I means I, a distinction in O(3) that applies to all the improper

point groups that are subgroups of O(3). The choice of gauge is important when forming
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tensor products, as the reduction of the DP basis in eq. (11.8.15) into a vector and a

pseudoscalar depends on the two spinors being in the Cartan gauge (see eq. (11.8.14)).

12.7.1 Factor system for O(3)

The elements of O(3)¼ SO(3)�Ci are mk¼ gi hj , where gi2 SO(3) and hj2Ci¼ {E I}.

The MR of mk is

Table 12.3. Multiplication table, factor tables, and character tables for the point group Ci.

u0 is the spherical harmonic for j ¼ 0 (a scalar); u0 is the pseudoscalar 2�½(u1v2� v1u2)

(see eqs. (11.8.11) and (11.8.15)); u ¼ j1=2
1=2i, v ¼ j1=2 �1=2i.

Multiplication table

Ci E I

E E I
I I E

Cartan gauge

Factor table

{[gi ; gj]} E I

E 1 1
I 1 �1

Character table

Ci E I basis

Ag 1 1 u0

Au 1 �1 u0

A1/2,g 1 �i u
A1/2,u 1 i u�

Pauli gauge

Factor table

{[gi ; gj]} E I

E 1 1
I 1 1

Character table

Ci E I j¼ 0 j ¼ 1=2

Ag 1 1 u0 u
Au 1 �1 u0 u�
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�ðmkÞ ¼ ½gi ; hj��1�ðgiÞ � �ðhjÞ, (6)

and the factor system for this representation is

(12.6.45) ½mk ; ms� ¼ ½gihj ; gphr�
¼ ½gi ; gp�½hj ; hr�½gigp ; hjhr�½gi ; hj��1½gp ; hr��1

,
(7)

where hj and hr2 {E I}. Because of standardization,

½gi ; E� ¼ ½E ; gi� ¼ ½E ; I � ¼ ½I ; E� ¼ 1, gi 2 SOð3Þ: (8)

In the Cartan gauge [I ; I]¼�1 and in the Pauli gauge [I ; I]¼ 1. Consequently, the only

remaining PFs to evaluate are those involving I, namely [gi ; I] and [I ; gi] , assuming the

factor system for SO(3) to be known. Because the pole of a rotation is invariant under the

inversion operation,

½gi ; I � ¼ ½I ; gi� ¼ 1 8 gi 2 SOð3Þ: (9)

This is because inversion transforms the point P, which is the pole of gi, into its antipole P0,

but at the same time the sense of the rotation is reversed so that P0 is in fact the antipole of

I gi and P remains the pole of the improper rotation I gi.

(8), (9) ½gi ; hj� ¼ 1 8 gi 2 SOð3Þ, hj 2 Ci, (10)

(10), (7), (8) ½gihj ; gphr� ¼ ½gi ; gp�½hj ; hr� (Cartan gauge), (11)

where [hj ; hr]¼
1, the minus sign applying only when hj, hr are both I. In the Pauli

gauge, [I ; I ]¼ 1 and eq. (11) becomes

½gihj ; gphr� ¼ ½gi ; gp� (Pauli gauge). (12)

We may now consider the character theorem for the PRs of improper point groups, which

are all subgroups of O(3), with factor systems defined by eqs. (11) and (12) above. Using

abbreviated notation for PFs,

(12.6.36) �ðms mk ms
�1Þ ¼ ½s k s�1 ; s�½s ; k��1�ðgkÞ, (13)

mk ¼ gi hj, ms ¼ gp hr ¼ hr gp ðhj, hr ¼ E or IÞ, (14)

(14) ms mk m
�1
s ¼ gp hr mk hr

�1 gp
�1 ¼ gp mk gp

�1

¼ gp gi hj gp
�1 ¼ gp gi gp

�1 hj, (15)

(15), (13) �ðms mk ms
�1Þ ¼ ½p i p�1j ; p r�½p r ; i j��1�ðmkÞ, (16)

(11) or (12), (16) �ðms mk m�1
s Þ ¼ ½p i p�1 ; p�½p ; i��1�ðmkÞ, (17)

which holds in either the Cartan gauge or the Pauli gauge. For the point groups in eqs.

(12.6.37) and (12.6.42)
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½p i p�1 ; p�½p ; i��1 ¼ 
1, (18)

the negative sign applying only when gi, gp are proper or improper rotations about BB axes

and therefore when mk , ms are both proper or improper BB rotations. Except for these

irregular cases

(17), (18) �ðms mk m�1
s Þ ¼ �ðmkÞ (19)

and c(mk), called a regular class, is given by the conjugates ofmk (with repetitions deleted)

as for proper point groups. When gi, gp are rotations about proper or improper BB axes and

therefore commute,

(15) ms mk ms
�1 ¼ gp gi gp

�1 hj ¼ gi hj ¼ mk : (20)

In these irregular cases the negative sign applies in eq. (18) and

(17), (18), (20) �ðms mk m�1
s Þ ¼ ��ðmkÞ ¼ 0 (irregular classes). (21)

Thus for improper point groups that are formed by the DP of a proper point group with Ci,

the character is a class property which is zero for all irregular classes, namely those formed

from rotations about proper or improper BB axes. All other improper point groups are

isomorphous (�) with a proper point group and have the same characters and representa-

tions as that proper point group. For example: C2v �D2; D2d�C4v�D4.

12.8 The irreducible representations

We now have all the necessary machinery for working out the matrix elements �j
m0m in

the MRs of the proper rotations R in any point group for any required value of j. The �j
m0m

are given in terms of the Cayley–Klein parameters a, b and their CCs by eq. (11.8.43). The

parameters a, b may be evaluated from the quaternion parameters l, L for R, using

(12.5.21) a¼ l� i �z, b ¼ ��y � i�x,

a�¼ lþ i �z, ð�b�Þ ¼ �y � i�x:
(1)

Improper rotations are expressed as IR and for j an odd integer the basis is ungerade so that

the matrix �j(a b) must be multiplied by( �1) j. For half-integral j in the Pa uli gauge the

matrix for IR is the same as that for R. The sum over k in eq. (11.8.43) runs over all values of

0� k� jþm for which n in (� n!) is < 1 (0!¼ 1). Certain simplifications occur. When

j¼ 0, m¼m0 ¼ 0, so k¼ 0, the basis is u0
0¼ |0 i and

(11.8.43) �0ða bÞ00 ¼ 1 8 R 2 G, (2)

that is, the totally symmetric representation. Cyclic point groups involve rotations about z

only, so that Lx, Ly are zero. Therefore b¼ 0, the matrix is diagonal, and all bases are 1-D.
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Because b¼ 0, the only non-vanishing matrix elements �j
m0m are those for which k¼ 0 and

m0 ¼m, giving

(11.8.43) �j
m0m ¼ a jþmða�Þj�m �m0m ðCnzÞ: (3)

Dihedral groups Dn consist of the operators Cnz and nC2m
0, where m is perpendicular to z.

For these C2
0 rotations l¼ cos(p / 2)¼ 0 and Lz¼ 0, so that a¼ 0, a�¼ 0, and the expo-

nents of a, a� must vanish,

(11.8.43) jþ m� k ¼ 0 , j� m0 � k ¼ 0 ) m0 ¼ �m, (4)

(4), (11.8.43) �j
m0m ¼ bj�mð�b�Þjþm �m0 ,�m ðC2m, m?nÞ: (5)

Exercise 12.8-1 Justify the remark above eq. (4) that, in order for the matrix element to

remain finite, the exponent of a must vanish when a is zero.

Only the cubic or icosahedral groups contain operations for which neither a nor b is

zero. When a 6¼ 0 and b 6¼ 0, then when m0 ¼
 j and m¼
 j, to ensure non-vanishing

factorials in the denominator, k� 0 and

(11.8.43) if m0 ¼ j, j� m0 � k ¼ �k ) k ¼ 0; (6)

(11.8.43) if m0 ¼ �j, jþ m� k � 0 and � j� mþ k � 0; (7)

(7) k ¼ jþ m ðm0 ¼ �jÞ: (8)

(6), (8), (11.8.43) m0,m ¼ 
j, �j ¼ a2j b2j

ð�b�Þ2j ða�Þ2j

� �
m0 ¼ j

m0 ¼ �j

m ¼ j m ¼ �j

: (9)

The matrix �j in eq. (9) is not necessarily irreducible so this must be checked. It follows

from eqs. (3) and (5) that, for dihedral groups, when m¼ j, the basis h | j ji | can transform

only into itself or into h | j � ji |. For these groups therefore, the matrix in eq. (9) assumes a

particular importance. The general case includes j¼ 1/2, in which case

(9) � ½ ¼ a b

�b� a�

� �
: (10)

An alternative to determining a and b is to use the complex quaternion parameters 	, 


defined by

	 ¼ lþ i �z, 
 ¼ �x þ i �y, (11)

(1), (11), (10) � ½ ¼ a b

�b� a�

� �
¼ 	� �i
�

�i
 	

� �
: (12)
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Example 12.8-1 Determine the IRs and the character table for the point group D3. Hence

find the IRs of C3v.

D3¼ {E 2C3 3C2}. There are no BB rotations so that the groups both consist of three

regular classes. There are therefore three vector representations (Nv¼Nc) and three spinor

representations (Ns¼Nrc¼Nc). The dimensions of the Nv vector representations are

{lv}¼ {1 1 2} (because
P

v

l2v ¼ g ¼ 6 ) and of the Ns spinor representations also {ls}¼ {1

1 2} (because
P

s

l2s ¼ g ¼ 6). Figure 12.10 shows the xy plane (�¼ p/2) in the unit sphere

and the location of the three binary axes a, b, c. The positive half-sphere h is defined by

either

0 � � < p=2 (13a)

or

� ¼ p=2 (13b)

and

� p=6 � ’ < p=6 or p=2 � ’ < 5p=6 or 7p=6 � ’ < 3p=2, (13c)

a choice that ensures that the pole conventions are observed not only for D3 but also for D6 and

for C3v¼ {E 2C3 3�v}, 3�v¼ {�d �e �f}. (The pole of IC2m is the same as the pole of C2m.)

Furthermore, it is a choice that ensures that during a reduction of symmetry from D6 to D3 the

character theorem is preserved in D3, something that is not necessarily true for other choices of

h (Altmann (1986)). The quaternion parameters for the operators of D3 are given in Table 12.4

along with the rotation parameter � n. Remember that 0 ��� p so that the sign of � n

depends on whether n lies in h or � h as defined by eqs. (13). The parameters for �d, �e, �f,

where �m means reflection in the plane normal to m, are also given in the table to enable

later discussion of C3v. Unit vectors d, e, f are defined in Figure 12.10. Multiplication tables

for D3 and C3v are given in a compact form in Table 12.5. As we have often stressed, a

diagram showing the transformation of the projection on the xy plane of a representative

point on the surface of the unit sphere is an invaluable aid in determining the group

a, z

f

c

e

b

y
d

Figure 12.10. The xy plane (�¼ p/2) of the unit sphere. The section of the positive half-sphere defined

by eq. (12.8.13) is shown by the shaded regions (which include the tails of the curved arrows but not

their heads). Poles of the proper rotationsC2a,C2b, andC2c are shown by filled digons and the poles of

the improper rotations IC2m, m¼ d, e, f, are indicated by unfilled digons.
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multiplication table. We then multiply the quaternions for gr, gs2G (from Table 12.4); the

result is equal to the quaternion for the product gr gs (from Tables 12.5 and Table 12.4)

multiplied by a numerical factor which is [gr ; gs]. In this way we build up Table 12.6.

Exercise 12.8-2 Determine the PFs [C3z
þ ; C2b] and [�e ; �f].

When j¼ 0 , the basis u0
0¼ |0 i generates the totally symmetric representation �1 in the

first row of the tables for D3 and C3v in Table 12.7. Next, the matrices of the standard

representation �½(	 
) for D3 and C3v (see eq. (12)) are written down using the complex

quaternion parameters from Table 12.4.

Exercise 12.8-3 Write down the matrices of the standard representation for �d, �e, �f.

[Hint: Use the Pauli gauge.] Show, when (a) gr¼C3z
þ, gs¼C2b, and (b) gr¼ �e, gs¼ �f,

that the product �(gr)�(gr)¼ [gr ; gs]�(gr gs), with gr gs and the PF [gr ; gs] as given in

Tables 12.5 and 12.6.

Because D3 is a dihedral group, all its representations may be generated from eqs. (9)

and (10) using the standard representation in Table 12.7. These representations generated

in this way are also shown in Table 12.7. For the reflections (which are also in Table 12.7),

one uses �m¼ IC2m and evaluates first the matrices for C2m, where m¼ d, e, or f. For the

vector representations, a matrix �(C 2m) has to be multiplied by (�1) j to give that for �m
but for the PRs no change is required in the Pauli gauge. For both vector and PRs the

representation is irreducible if
P
r

j�rj2 ¼ g, the order of the group. This test shows that all

the representations in Table 12.7 are irreducible with the exception of �3=2
. The matrices of

Table 12.4. Rotation parameters � n or � m, real ( l, L), and complex (	, 
) quaternion

parameters, and the Cayley–Klein parameters a, b for the operators R 2 D3.

Also given, for future reference, are the parameters for {�d �e �f}, where �m¼ IC2m, m

normal to n. Since the pole of a rotation is invariant under inversion, the parameters for

IC2m are those for C2m. The unit vectors d, e, f are defined in Figure 12.10.

D3 � n or m l L r 
 a b

E 0 [0 0 0] 1 0 1 0 1 0

C3z
þ 2p/3 [0 0 1] 1=2 ½0 0

ffiffiffi
3

p
=2� e 0 e� 0

C3z
� 2p/3 [0 0 1] 1=2 ½0 0 �

ffiffiffi
3

p
=2� e� 0 e 0

C2a p [1 0 0] 0 [1 0 0] 0 1 0 �i

C2b p ½�1=2

ffiffiffi
3

p
=2 0� 0 ½�1=2

ffiffiffi
3

p
=2 0� 0 �e� 0 ie

C2c p ½�1=2 �
ffiffiffi
3

p
=2 0� 0 ½�1=2 �

ffiffiffi
3

p
=2 0� 0 �e 0 ie�

�d p [0 1 0] 0 [0 1 0] 0 i 0 �1

�e p ½�
ffiffiffi
3

p
=2 �1=2 0� 0 ½�

ffiffiffi
3

p
=2 �1=2 0� 0 �ie� 0 e

�f p ½
ffiffiffi
3

p
=2 �1=2 0� 0 ½

ffiffiffi
3

p
=2 �1=2 0� 0 �ie 0 e�

l ¼ cosð1
2
�Þ,L ¼ sinð1

2
�Þn, 	¼ lþi Lz, 
 ¼Lxþi Ly, a¼ l�i Lz¼r�, b¼�Ly�iLx¼�i
�,

e¼ exp(i p/3).
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this representation may be reduced by constructing the symmetric and antisymmetric linear

combinations ffiffiffi
3

p

2

 ¼ 1ffiffiffi

2
p

ffiffiffi
3

p

2

ffiffiffi
3

p

2
> 


����
����
ffiffiffi
3

p

2
�

ffiffiffi
3

p

2

� 	
 �����
����,



(14)

and the resulting 1-D matrix representations are shown in rows 6 and 7 of Table 12.7. In

dihedral groups the spherical harmonics basis for j¼ 1 always reduces to h1 �1|�h0|, the

representation based on h1�1| being easily obtained from eq. (9). For h0| we use

Table 12.5. Multiplication tables for the point groups D3 and C3v.

Read sections I and II for D3, sections I and III for C3v.

I II III

D3, C3v E C3z
þ C3z

� C2a C2b C2c �d �e �f

E E C3z
þ C3z

� C2a C2b C2c �d �e �f
I C3z

þ C3z
þ C3z

� E C2c C2a C2b �f �d �e
C3z

� C3z
� E C3z

þ C2b C2c C2a �e �f �d

C2a C2a C2b C2c E C3z
þ C3z

�

II C2b C2b C2c C2a C3z
� E C3z

þ

C2c C2c C2a C2b C3z
þ C3z

� E

�d �d �e �f E C3z
þ C3z

�

III �e �e �f �d C3z
� E C3z

þ

�f �f �d �e C3z
þ C3z

� E

Table 12.6. Factor systems for the point groups D3 and C3v.

The projective factor [gr ; gs] appears at the intersection of the row gr with the column gs.

As in Table 12.5, read sections I and II for D3, sections I and III for C3v.

I II III

D3, C3v E C3z
þ C3z

� C2a C2b C2c �d �e �f

E 1 1 1 1 1 1 1 1 1
I C3z

þ 1 �1 1 � �1 �1 �1 �1 �1
C3z

� 1 1 �1 �1 �1 �1 �1 �1 �1

C2a 1 �1 �1 �1 1 1
II C2b 1 �1 �1 1 �1 1

C2c 1 �1 �1 1 1 �1

�d 1 �1 �1 �1 1 1
III �e 1 �1 �1 1 �1 1

�f 1 �1 �1 1 1 �1
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(11.8.43) �j
00 ¼ aa� � bb� ) �1

00 ¼ aa�ðCnzÞ or � bb�ðC2m,m?zÞ: (15)

The 1-D representation for h0| in the second row of the Table 12.7 for D3 may therefore be

written down at once using a, a� and b, b� from Table 12.4. For C3v ,h j m|¼h1 0| is also a

basis for �1 and the basis h3|þ must be used to generate �2. We now have all the IRs for D3

and for C3v. Their characters are given in Table 12.8. Note that, although these two groups

are isomorphous, the basis functions for the representations are not necessarily the same

(see �2, �5, and �6). This completes the work for Example 12.8-1. It would be straightfor-

ward to construct the characters for the double groups D3 and C3v by a continuation of the

same method. The quaternion parameters for gr are the negatives of the parameters for gr.

Products involving gr, gs are obtained from the products of the corresponding quaternions,

Table 12.7. The representations �j(ab) for the point groups D3 and C3v.

The basis for each representation is a row containing the ket(s) m shown. Thus, for

example, h1 �1| means h|1 1i |1 �1i|. In the last two rows h3=2j
 are abbreviations for

the linear combinations h2�½ 3=2
3=2i
j j3=2 �3=2i½ j which diagonalize the MRs for the

basis h3=2 �3=2j, or hj3=2
3=2ij3=2 �3=2ij in the | jm inotation. e¼ exp(ip/3).

Point group D3

j basis E C3z
þ C3z

� C2a C2b C2c

0 h0| 1 1 1 1 1 1
1 h0| 1 1 1 �1 �1 �1
1 h1 �1j 1

1

� �
�"

�"�

� �
�"�

�"

� �
�1

�1

� �
"�

"

� �
"

"�

� �
1=2 h1=2 �1=2j 1

1

� �
"�

"

� �
"

"�

� �
�i

�i

� �
i"

i"�

� �
i"�

i"

� �
3=2 h3=2 �3=2j 1

1

� �
�1

�1

� �
�1

�1

� �
i

i

� �
i

i

� �
i

i

� �
3=2 h3=2jþ 1 �1 �1 i i i

3=2 h3=2j� 1 �1 �1 �i �i �i

Point group C3v

j basis E C3z
þ C3z

� �d �e �f
0 h0| 1 1 1 1 1 1
3 h3 |þ 1 1 1 �1 �1 �1
1 h1 �1 | 1

1

� �
�"

�"�

� �
�"�

�"

� �
�1

�1

� �
"�

"

� �
"

"�

� �
1=2 h1=2 �1=2j 1

1

� �
"�

"

� �
"

"�

� �
�1

1

� �
"

�"�

� �
"�

�"

� �
3=2 h3=2 �3=2j 1

1

� �
�1

�1

� �
�1

�1

� �
�1

1

� �
�1

1

� �
�1

1

� �
3=2 h3=2j� 1 �1 �1 i i i
3=2 h3=2jþ 1 �1 �1 �i �i �i
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and in this way the whole double group multiplication table could be derived by multi-

plication of quaternions. Matrix representatives of gr are the negatives of those for gr.

Because D3 and C3v each contain three regular classes, their double groups will contain six

classes, the characters for c for spinor representations being the negatives of the characters

for c. Irregular classes contain both gr and gr , and consequently the characters for these

classes in spinor representations are necessarily zero. The use of different notation for the

bases in Tables 12.7 and 12.8 is deliberate since both are in common use. The basis hujm| in

function notation becomes, in Dirac notation, h|j mi|, which we often abbreviate to hm|. For

degenerate states, in the text m implies a list of the degenerate values of m and therefore a

row of kets. In Table 12.7, the values ofm are stated explicitly, as in h3=2 �3=2j for example,

which in an abbrevation for hj3=2
3=2i j3=2 � 3=2ij. (See also the caption to Table 12.7.)

Exercise 12.8-4 In D3 reduce the following DPs into a direct sum of IRs: (i) �4��4;

(ii) �4��3.

Answers to Exercises 12.8

Exercise 12.8-1 Consider lim
a!0

an. If n is finite, the limit is zero. But if n is zero, a0¼ 1 and

the limit is 1.

Exercise 12.8-2 From Table 12.5, C3z
þ C2b¼C2a and �e �f¼C3z

þ. FromTable 12.4,

1=2 ; 0 0
ffiffiffi
3

p
=2

� �� �
0 ; �1=2

ffiffiffi
3

p
=2 0

� �� �
¼ 0 ; �1=4

ffiffiffi
3

p
=4 0

� �
þ �3=4 �

ffiffiffi
3

p
=4 0

� �� �
¼ ½0 ; ½�1 0 0�� ¼ �1½0 ; ½1 0 0��:

Table 12.8. Character tables for the isomorphous point groups D3¼ {E 2C3 3C2
0} and

C3v ¼ {E 2C3 3�v }.

The dashed line separates the vector representations, for which j is an integer, from the

spinor representations, which correspond to half-integer values of j.

D3, C3v E 2C3 3C2
0
,3�v j D3 C3v

A1 �1 1 1 1 0 hu0
0j

A2 �2 1 1 �1 1 hu1
0j hu3jþ

E �3 2 �1 0 1 hu1
1 u1

�1j
------------------------------------------------------------------------------------------------------------------------

E1=2
�4 2 1 0 1=2 hu

1=2
1=2

u
1=2

�1=2
j

E3=2

1E3=2
�5 1 �1 i 3=2, �3=2 hu

3=2
3=2
jþ hu

3=2
3=2
j�

2E3=2
�6 1 �1 �i 3=2, �3=2 hu

3=2
3=2
j� hu

3=2
3=2
jþ
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Therefore [C3z
þ ; C2b]¼�1. Using Table 12.4 once again,

0 ; �
ffiffiffi
3

p
=2 �1=2 0

� �� �
0 ;

ffiffiffi
3

p
=2 �1=2 0

� �� �
¼ � �3=4 þ 1=4ð Þ ; 0 0

ffiffiffi
3

p
=4 þ

ffiffiffi
3

p
=4

� �� �� �
¼ 1=2 ; 0 0

ffiffiffi
3

p
=2

� �� �
:

Therefore [�e ; �f]¼ 1.

Exercise 12.8-3 Using Table 12.4,

�½ð�dÞ ¼
�1

1

� �
, �½ð�eÞ ¼

"
�"�

� �
, �½ð�fÞ ¼

"�

�"

� �
:

From Table 12.7,

�½ðC3z
þÞ �½ðC2bÞ ¼

"�

"

� �
i"

i"�

� �
¼ i

i

� �
¼ ��½ðC2aÞ,

in agreement with Tables 12.5 and 12.6. Similarly,

�½ð�eÞ½ð�fÞ ¼
"

�"�

� �
"�

�"

� �
¼ ½ðCþ

3zÞ,

as expected from Tables 12.5 and 12.6.

Exercise 12.8-4 In D3, �4��4¼ {4 1 0}¼�1��2��3; �4��3¼ {4 �1 0}¼
�4��5��6.

Problems

12.1 Express the rotation matrix �1
r ( ab) in eq. (11.6.19) in terms of the quaternion

parameters l, L.

12.2 This chapter has provided three ways of investigating the conjugation of gi by gk: (i)

the direct calculation of gk gi gk
�1; (ii) using eq. (12.6.30); and (iii) using eq. (12.5.24).

Using the quaternion representation of a rotation, find the result of the conjugation of

gi by gk by using all three of the above methods for gi¼C2a and (a) gk¼C2b and (b)

gk¼C3z
þ. (Note that the choice of h in Figure 12.10 satisfies the pole convention

eq. (12.6.13), and the standardization condition, eq. (12.6.32), for the poles of binary

rotations.)

12.3 Evaluate C2z C2x C2z
�1 by method (iii) of Problem 12.2. Is this the expected result for

BB rotations?

12.4 Show that the choice 0��<p, � p/2�’<p/2, is not a suitable one for h for D3.
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12.5 Prove that the quaternion parameters for Sm ¼ sn R(2 p/ m n) are those for

R( p�(2p/m), � n). Find the parameters for S6z and S3z.

12.6 Prove the symmetry relation eq. (12.6.9). [ Hint: Use the associativity relation

(12.6.6) and the standardization condition (12.6.7).]

12.7 For the group D3, with gi ¼ C3z
þ, gj ¼ C2a, gk ¼ C3z

� verify (i) the associativity of

group elements gi( gj gk) ¼ ( gi gj) gk and (ii) the associativity relation for PFs, eq.

(12.6.6). [ Hint: Use Tables 12.5 and 12.6.]

12.8 For the representation 1E3=2
of D3, verify eq. (12.6.37) with gi ¼ C2a, gk ¼ C3z

þ.

12.9 Prove eq. (12.6.50).

12.10 The following operators were used in Chapter 7 as representative operators of the

five classes of the cubic point group O: E, R(2p/3 [1 1 1]), R(p/2 z), R(p z),

R(p [1 1 0]). Derive the standard representation for these operators and show that

this representation is irreducible. [Hint: You may check your results by referring to

the tables given by Altmann and Herzig (1994) or Onadera and Okasaki (1966).]

12.11 (a) Examine the splitting of the j¼ 5/2 atomic state in a crystal field of cubic

symmetry O using both projective representations and the double group method.

[Hint: Character tables need not be derived since they are known from Chapter 8.]

What further splittings occur when the symmetry is lowered from O to C3v? (b)

Using only PRs verify that the transition F5=2
!E3=2

is allowed for E1 radiation in O

symmetry. Find the allowed transitions and polarizations that originate from

F5=2
!E3=2

when the symmetry is lowered from O to C3v.
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13 Time-reversal symmetry

Warning In the classification of IRs listed after eq. (13.4.12) and again after eq. (13.4.31)

I have followed Altmann and Herzig (1994). In many other books and papers, the labels

(b) and (c) are interchanged.

13.1 Time evolution

The invariance of transition probabilities under the action of a symmetry operator T̂,

jhT̂’jT̂ ij2 ¼ jh’j ij2, (1)

requires that either

hT̂’jT̂ i ¼ h’j i (2)

or

hT̂’jT̂ i ¼ h’j i�: (3)

Operators that induce transformations in space satisfy eq. (2) and are therefore unitary

operators with the property T̂ yT̂ ¼ 1. An operator that satisfies eq. (3) is said to be

antiunitary. In contrast to spatial symmetry operators, the time-reversal operator is anti-

unitary. Let Û denote a unitary operator and let T̂ denote an antiunitary operator.

(2) hÛ’jÛc i ¼ h’jc i ¼ ch’j i ¼ chÛ’jÛ i; (4)

(3) hT̂’jT̂c i ¼ h’jc i� ¼ c�h’j i� ¼ c�hT̂’jT̂ i: (5)

Hence, unitary operators are linear operators, but an antiunitary operator is antilinear.

Time evolution in quantum mechanics is described, in the Schrödinger representation,

by the Schrödinger time-dependent equation

@  =@t ¼ �iĤ : (6)

For an infinitesimal increase �t in t from an initial time t0 to t1¼ t0þ �t,

(6)  ðt1Þ ¼  ðt0 þ �tÞ ¼ ½1� iĤ�t� ðt0Þ ¼ ûðt1 � t0Þ ðt0Þ: (7)
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The operator in square brackets, which is designated by ûðt1 � t0Þ, tells us how to calculate

 (t0þ �t) from  (t0) and is therefore called the (infinitesimal) time-evolution operator.

Since û does not depend on t0,

 ðt2Þ ¼ ûðt2 � t1Þ ðt1Þ ¼ ûðt2 � t1Þûðt1 � t0Þ ðt0Þ ¼ ûðt2 � t0Þ ðt0Þ: (8)

Equation (8) expresses the composition property of the time-evolution operator,

ûðt2 � t0Þ ¼ ûðt2 � t1Þûðt1 � t0Þ: (9)

When Ĥ is independent of t, ûðt � t0Þ, for a finite time interval, can be obtained by

applying the composition property repeatedly to n successive time intervals each of length

�t¼ (t� t0)/n. Then

(9), (7) ûðt � t0Þ ¼ lim
�t!0

½1� iĤ�t�n ¼ lim
n!1

½1� iĤðt � t0Þ=n�n

¼ exp½�iĤðt � t0Þ�: (10)

13.2 Time reversal with neglect of electron spin

Provided Ĥ is real, which will be true at a level of approximation that neglects electron

spin,

(13.1.10) ûð�ðt � t0ÞÞ ¼ expðþiĤðt � t0ÞÞ ¼ ûðt � t0Þ�: (1)

Therefore, at this level (with spin suppressed) the time-reversal operator is just the complex

conjugation operator k̂ which replaces i by �i.

Example 13.2-1 The motion of a free particle (to the right, in the positive x direction) is

described by the plane wave  (x, t)¼ exp[i(kx�!t)]. Then

k̂ ðx, tÞ ¼  ðx, tÞ� ¼ exp½�iðkx� !tÞ� ¼ exp½iðkð�xÞ � !ð�tÞÞ�, (2)

which represents a plane wave moving backward in time to the left, in the negative x

direction. Note that the motion has been reversed by the operator k̂:

Let M̂ denote a Hermitian operator; then the expectation value of the dynamical variable

M in the time-reversed state k̂ ¼  � is

hk̂ jM̂ jk̂ i ¼ h �jM̂ j �i ¼ hM̂ �j �i ¼ h �jM̂ �i�

¼ h jM̂�j i ¼ hM�i: (3)

Thus, real operators are unaffected by time reversal but linear and angular momenta, which

have factors of i, change sign under time reversal. Therefore,

k̂rk̂ �1 ¼ r, k̂p̂k̂ �1 ¼ �p, k̂Ĵk̂�1 ¼ �Ĵ: (4)

13.2 Time reversal with neglect of electron spin 253



k̂ is antilinear because

k̂ðc Þ ¼ c� � ¼ c�k̂ð Þ, (5)

whereas a linear operator M̂ has the property M̂c ¼ cM̂ . Note that k̂ is also antiunitary

because

hk̂’jk̂ i ¼ h’j i�: (6)

13.3 Time reversal with spin–orbit coupling

We now remove the restriction that Ĥ is real, introduce the symbol �̂ for the time-reversal

symmetry operator, and choose t0¼ 0. Now �̂ is the transformed function which has the

same value at �t as the original function  at time t,

(13.1.10) �̂ ð�tÞ ¼  ðtÞ ¼ exp½�iĤt� ð0Þ: (1)

For the infinitesimal time interval �t,

(1) �̂ ð��tÞ ¼  ð�tÞ ¼ ½1� iĤ�t� ð0Þ ¼ ½1� iĤ�t��̂ ð0Þ: (2)

The state described by  (0) evolving backwards in time for the same time interval becomes

one described by

(13.1.7)  ð��tÞ ¼ ½1� iĤð��tÞ� ð0Þ: (3)

Operate on eq. (3) with � to obtain

(3) �̂ ð��tÞ ¼ �̂½1þ iĤ�t� ð0Þ; (4)

(2), (4) �̂iĤ ¼ �iĤ�̂: (5)

If �̂ were a unitary operator,

(5) �̂Ĥ ¼ �Ĥ�̂, (6)

with the consequence that every stationary state  of the system with energy E would be

accompanied by one �̂ with energy �E . But time reversal reverses velocities, leaving E

invariant, so �̂ cannot be a unitary operator but is antiunitary. Therefore

(13.1.5), (5) �̂Ĥ ¼ Ĥ�̂, (7)

which tells us that time reversal commutes with the Hamiltonian. Consequently, if  is an

eigenstate of Ĥ then so is �̂ , with the same energy. This means that either  and �̂ 

represent the same state, and so can differ only by a phase factor, or that they correspond to

distinct (and therefore degenerate) states. Since two successive reversals of time leave all

physical systems invariant,

�̂2 ¼ c , (8)
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where c is the same phase factor for all systems. Because �̂ is antiunitary

(13.1.5), (8) h�̂’j i ¼ h�̂ j�̂2’i ¼ ch�̂ j’i ¼ ch�̂’j�̂2 i ¼ c2h�̂’j i, (9)

so that c¼�1. When �¼ and c¼�1

(9) h�̂ j i ¼ �h�̂ j i ¼ 0: (10)

In this case (c¼�1) �̂ and are orthogonal and so correspond to different degenerate states.

13.3.1 Determination of the time-reversal operator

The product of two antiunitary operators is a unitary operator. Consequently,

�̂k̂ ¼ Û , (11)

where Û is unitary.

(11) �̂ ¼ Ûk̂: (12)

The linear Hermitian operators of quantum mechanics can be divided into two categories

with respect to time reversal. In the first category are those operators Âwhich correspond to

dynamical variables that are either independent of t or depend on an even power of t. Let  k

be an eigenfunction of Â with (real) eigenvalue ak. Then �̂ k is also an eigenfunction of Â

with the same eigenvalue,

Â�̂ k ¼ ak�̂ k : (13)

Any state ’ is a linear superposition of the { k}, and since �̂ is antilinear

�̂Â’ ¼ �̂Â
P
k

ck  k ¼ �
P
k

ck ak  k ¼
P
k

c�k ak �̂ k ; (14)

(13) Â�̂’ ¼ Â�̂
P
k

ck  k ¼ Â
P
k

c�k �̂ k ¼
P
k

c�k ak �̂ k ; (15)

(14), (15) Â�̂ ¼ �̂Â: (16)

For operators B̂ in the second class, which correspond to dynamical variables that depend

on an odd power of t and for which

B̂ k ¼ bk k , B̂�̂ k ¼ �bk�̂ k , (17)

the same argument yields

B̂�̂ ¼ ��̂B̂: (18)

(16), (18) �̂ r �̂�1 ¼ r, �̂ p̂ �̂�1 ¼ �p, �̂ Ĵ �̂�1 ¼ �Ĵ, (19)
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as already seen for systems in which elect ron spin is n eglected and �̂ becomes k̂.

There fore the spin operators ŝx, ŝ y, ŝ z which are represente d by the Pauli spin matri ces

�1, �  2, �  3, anticommu te with �̂ . Becaus e � 1 and �  3 are real (see eq. ( 11.6.3 ))

(12), (19) �̂ŝ x ¼ Û k̂ ŝ x ¼ Û ŝ xk̂ ¼ �ŝxÛ k̂, (20)

so that ŝx anticom mutes with Û . Similarly, ŝ z anticom mutes with Û . But �  2, which

represe nts ŝy, is purely imagi nary. There fore,

(12), (19) �̂ŝ y ¼ Û k̂ ŝ y ¼ �Û ŝ yk̂ ¼ �ŝyÛ k̂, (21)

so that ŝy com mutes with Û .

(20), (21) Û ŝ x ¼ �ŝ x Û ; Û ŝ y ¼ ŝ y Û ; Û ŝ z ¼ �ŝ z Û : (22)

Using the commutat ion prope rties of the Pauli spin matrice s, eqs. ( 22 ), determin e Û as ŝy,

apart from a phase factor exp(i� ) which has no eff ect on eq. (22 ).

Exercise 13.3-1 Verify expl icitly, by using the spin matrice s from eq. ( 11.6.8 ), that the

matrix representative (MR) of Û¼ ŝy satisfies the matrix representation of eq. (22).

For an N-electron system, Û is a product of the individual imaginary spin operators

�̂ ¼ expði�Þ
YN
k¼1

ŝykk̂: (23)

Let ’ denote any spinor function; then

(23) �̂2’ ¼ expði�Þ
YN
k¼1

ŝykk̂

 !
expði�Þ

YN
l¼1

ŝylk̂

 !
’ ¼ ð�1ÞN’ ¼ c’, (24)

where we have used

k̂ expði�Þ ¼ expð�i�Þk̂;

k̂

YN
l¼1

ŝyl ¼ ð�1ÞN
YN
l¼1

ŝylk̂;

k̂
2
’ ¼ ’; ŝ2y ¼ Ê:

(25)

For an even number of electronsN, (�1)N¼ 1, c¼þ1, and there are no extra degeneracies.

But for an odd number of electrons (�1)N¼�1, c¼�1, and �̂ and  correspond to

different degenerate states (see eq. (10)). This conclusion assumes the absence of an

external magnetic field. In the presence of a magnetic field, Ĥ contains terms linear in L̂

and Ŝ and therefore no longer commutes with �̂ (eq. (19)). This means that �̂ is not a

symmetry operator in the presence of an external magnetic field. However, the commuta-

tion of �̂with Ĥ can be restored if the direction of the magnetic field is reversed along with

the reversal of t. These results from eqs. (24) and (10) are embodied in Kramers’ theorem

(Kramers (1930)), which states that the energy levels of a system containing an odd number
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of electrons must be at least doubly degenerate provided there is no external magnetic field

present to remove time-reversal symmetry.

Exercise 13.3-2 Sh ow that the choice of phase factor exp(i� ) ¼�i makes �̂ ¼ R̂ð pyÞk̂,

where R( p y) d enotes a bina ry rot ation about y in SU( 2). [ Hint : See eq. ( 11.6.11 ).]

Answers to Exercises 13.3

Exercise 13.3-1 With Û ¼ ŝy the matrix representation of eq. (22) is

�1�2 ¼
1

1

" #
�i

i

" #
¼

i

�i

" #
,

�2�1 ¼
�i

i

" #
1

1

" #
¼

�i

i

" #
¼ ��1�2,

thus verifying ŝyŝx¼�ŝxŝy. Similarly,

�3�2 ¼
1

�1

� � �i

i

� �
¼

�i

�i

� �
,

�2�3 ¼
�i

i

� �
1

�1

� �
¼

i

i

� �
¼ ��3�2,

verifying ŝyŝz¼�ŝzŝy.

Exercise 13.3-2 If expð�i�Þ ¼ �i,

(11.6.3), (11.6.11) �i�2 ¼
�1

1

� �
¼ �½ðRðp yÞÞ, �i ŝyk̂ ¼ Rðp yÞk̂:

13.4 Co-representations

Consider the set of operators {R}� {�R}, where H¼ {R} is a group of unitary symmetry

operators and {�R} is therefore a set of antiunitary operators. Since rotations and time

reversal commute, the multiplication rules within this set are

RS ¼ T , R, S,T 2 fRg,
�RS ¼ �T ,

S�R ¼ �SR ¼ �T 0, T 0 2 fRg,
(13.3.24) �R�S ¼ cRS, c ¼ �1,

(1)

where c¼þ1 for N even and c¼�1 for N odd. These multiplication rules show that

G¼ {R}þ {�R} is a group, that the unitary operators {R} form a normal (invariant)

subgroup H of G, and that the antiunitary operators {�R} form a coset of H,

G ¼ fHg ��fHg: (2)
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This conclusion is not unique to G¼ {R, �R} but is true for any group G¼ {H, AH} that

contains unitary {H} and antiunitary {AH} operators. Let { s} be an orthonormal set of

eigenfunctions which form a basis for H. Then f�̂R̂ sg is also a set of eigenfunctions so that

(5.1.6) �̂R̂ s ¼
P
p

 p �ð�RÞps: (3)

Since �̂ is antiunitary and R̂ is unitary,

h�̂R̂ pj�̂R̂ si ¼ hR̂ sjR̂ pi ¼ h sj pi ¼ �ps; (4)

(3), (4) �ps ¼ h�̂R̂ pj�̂R̂ si ¼ h
P
q

 q �ð�RÞqpj
P
r

 r �ð�RÞrsi

¼
P
q, r

�ð�RÞ�qp �ð�RÞrsh qj ri

¼
P
q

�ð�RÞ�qp�ð�RÞqs

¼ ½�ð�RÞy�ð�RÞ�ps: (5)

(5) �ð�RÞy�ð�RÞ ¼ E, (6)

which shows that � (�R) is a unitary matrix. However, because �̂ is antilinear,

(3) �̂Ŝ�̂R̂ p ¼
P
q

�̂Ŝ q �ð�RÞqp

¼
P
q

�ð�RÞ�qp �̂Ŝ q

¼
P
q

�ð�RÞ�qp
P
r

 r �ð�SÞrq: (7)

But the LS of eq. (7) is �̂Ŝ�̂R̂ p ¼
P
r

 r �ð�S �RÞrp. Therefore

(7), (1) �ð�SÞ�ð�RÞ� ¼ �ð�S�RÞ ¼ �ðcSRÞ ¼ �ðcT 0Þ, c ¼ �1: (8)

Similarly,

�ð�SÞ�ðRÞ� ¼ �ð�SRÞ ¼ �ð�T 0Þ (9)

so that the MRs {�(R), �(�R)} do not form a representation of G¼ {R, �R}. Such sets of

matrices where the complex conjugate (CC) of the second factor appears (as in eqs. (8) and

(9)) when the first operator is antiunitary are called co-representations (Wigner (1959)).

Suppose that the set of eigenfunctions { p} form a basis for one of the IRs of G¼ {R}

and define �̂ p ¼  p. The inclusion of time reversal, which enlarges H to G, introduces

new degeneracies if the f pg are linearly independent (LI) of the { p}. Under the

transformation induced by the symmetry operator R,

R p ¼ R� p ¼ �R p ¼ �̂
P
q

 q�ðRÞqp

¼
P
q

 q�ðRÞ�qp, (10)
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which shows that if { p} forms a basis for the representation �, then f pg forms a basis for

��. If � is an IR, then the orthogonality theorem (OT) for the characters gives

g�1
P
R

j�ðRÞj2 ¼ h�j�i ¼ 1, (11)

where we have introduced the notation j�i to denote the character vector whose components

are the normalized characters
ffiffiffiffiffiffiffiffiffiffi
ck=g

p
�k of the classes {ck} and hji is the Hermitian scalar

product (HSP).

(11) h�j�i ¼ 1 ¼ g�1
P
R

�ðRÞ��ðRÞ ¼ g�1
P
R

�ðRÞ�ðRÞ� ¼ h��j��i, (12)

so that if � is an IR then so is ��. There are three possibilities:

(a) � is equivalent to �� (����), and they are equivalent to a real representation �0;

(b) �, �� are inequivalent (� is not ���);

(c) ���� but they are not equivalent to a real representation.

If � is not��� then the character system {�} of �must be complex (that is, contain at least

one complex character) since if {�} is complex, � and �� have different characters and so

they cannot be equivalent.

Exercise 13.4-1 Prove the converse statement to that in the preceding sentence, namely

that if {�} is real, ����.

If ���� (cases (a) and (c)) then there exits a non-singular matrix Z such that

�ðRÞ� ¼ Z�ðRÞZ�1 8R 2 G: (13)

(13) �ðRÞ ¼ Z��ðRÞ�ðZ�Þ�1; (14)

(14), (13) �ðRÞZ�Z ¼ Z�Z�ðRÞ: (15)

Since Z�Z commutes with �(R); 8R 2 G, by Schur’s lemma (Appendix A1.5) it is a

multiple of the unit matrix,

Z�Z ¼ cðZÞE, (16)

where c(Z) is real and non-zero. Consequently,

(16) ZZ� ¼ cðZÞE: (17)

Exercise 13.4-2 Verify the above statements about c(Z), namely that it is real and non-zero.

Furthermore, any other matrix Z0 that transforms � into �� is a non-zero multiple of Z,

Z0 ¼ aZ a 6¼ 0, (18)

(17), (18) Z0Z0� ¼ cðZ0ÞE ¼ jaj2cðZÞE: (19)

13.4 Co-representations 259



Consequently, if c(Z)> 0, all possible c(Z0)> 0. Similarly, if c(Z)< 0, all the c(Z0)< 0.

We shall see that these two kinds of transformation (c(Z)> 0 or c(Z)< 0) will enable us to

distinguish between cases (a) and (c) above. Suppose first that c(Z)> 0. Then since eq. (13)

is satisfied for any non-zero choice of a in eq. (18), it is in particular satisfied for

a¼ c(Z)�½, which makes

(19) Z0Z0� ¼ E: (20)

Construct a real representation �0 equivalent to � with matrices

�0ðRÞ ¼ ðZ0 þ ei�EÞ�1�ðRÞðZ0 þ ei�EÞ 8R 2 G, (21)

where the phase factor ei� is chosen so that Z0 þ ei�E is non-singular.

Exercise 13.4-3 What condition must ei� satisfy in order that Z0 þ ei�E shall be non-

singular?

(21) �0ðRÞ� ¼ðZ0� þ e�i�EÞ�1�ðRÞ�ðZ0� þ e�i�EÞ
(20), (13) ¼½ðZ0Þ�1 þ e�i�E��1ðZ0Þ�1�ðRÞZ0½ðZ0Þ�1 þ e�i�E�

¼ei�ðei�Eþ Z0Þ�1�ðRÞðei�Eþ Z0Þe�i�

¼�0ðRÞ, (22)

which verifies that �0 ¼ {�0(R)} is a real representation. If c(Z)> 0 then � (and therefore

�� which is ��) is equivalent to a real representation �0. Conversely, if �, �� are

equivalent to a real representation �0, then there exists a transformation

Q�ðRÞQ�1 ¼ �0ðRÞ ¼ �0ðRÞ� ¼ Q��ðRÞ�ðQ�Þ�1 8 R 2 G: (23)

(23), (13) �ðRÞ� ¼ Q��1Q�ðRÞQ�1Q� ¼ Z�ðRÞZ�1; (24)

(24), (17) ZZ? ¼ ðQ?�1QÞðQ�1Q�Þ ¼ E ¼ cðZÞE cðZÞ ¼ 1 > 0: (25)

We have thus established the theorem that if c(Z)> 0, then � and �� are equivalent to a real

representation (case (a)) and also its converse, that if �, �� ��0 ¼�0�, then c(Z)> 0.

Consequently, if ���� but they are not equivalent to a real representation (case(c)) then

c(Z) must be <0. (Note that c(Z) is non-zero.) We now have a criterion for deciding

between the two cases (a) and (c), but it will be more useful in the form of a character test.

For unitary, equivalent (IRs) �, �� of dimension l, the OT takes the form

(A1.6.11) ðl=gÞ
P
R

�ðRÞpq �ðRÞrs ¼ ZrpðZ�1Þqs: (26)

Since Z in eq. (26) may be unitary (Section A1.6), and here is unitary,

(17) cðZÞ ¼ �1: (27)
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Exercise 13.4-4 Show that if Z is unitary, then c(Z)¼�1.

When Z is unitary

(26) ðl=gÞ
P
R

�ðRÞpq �ðRÞrs ¼ ZrpZ�
sq: (28)

Set p¼ s, q¼ r, and sum over r and s:

(28), (27) g�1
P
R

�ðR2Þ ¼ l�1TrðZ Z�Þ ¼ cðZÞ ¼ �1; (29)

c(Z)¼þ1 corresponds to case (a) and c(Z)¼�1 corresponds to case (c). When �, �� are

inequivalent, case (b),

(A1.5.32), (26) ðl=gÞ
P
R

�ðRÞpq �ðRÞrs ¼ 0; (30)

(30) g�1
P
R

�ðR2Þ ¼ 0: (31)

We have therefore established a diagnostic test (called the Frobenius–Schur test) which

classifies the IRs � of a point group according to the three cases listed after eq. (12). (Note:

See the warning at the beginning of this chapter.)

(a) If � and �� are equivalent and they are equivalent to the same real representation, then

g�1
P
R

�ðR2Þ ¼ þ1.

(b) If � is not ���, g�1
P
R

�ðR2Þ ¼ 0.

(c) If ����, but they are not equivalent to the same real representation, then

g�1
P
R

�ðR2Þ ¼ �1.

Exercise 13.4-5 Show that the dimension l of representations of the third kind (c) is an

even number.

Recall that if { r} forms a basis for �, then f rg ¼ f� rg forms a basis for ��, and

consider first the case when the number of electrons N is an even number. If � is not ���,

case (b), { r} and f rg are linearly independent (LI) and so time reversal causes a doubling

of degeneracy. If ����, cases (a) and (c), then there exists a non-singular matrixZwhich

transforms � into ��,

�� ¼ Z�ðRÞZ�1 8R 2 G, (32)

where, from the remarks following eq. (25),

Z Z? ¼ cðZÞE, ðaÞ cðZÞ ¼ þ1, ðcÞ cðZÞ ¼ �1: (33)

Let { r} denote an LI basis set of dimension l. Then if � does not introduce any new

degeneracies,

� r ¼  r ¼
Pl
s¼1

 sZsr; (34)
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ð34Þ �2 r ¼
P
s

� sZsr ¼
P
s, q

 qZqsZsr
� ¼

P
q

 qðZ Z�Þqr: (35)

But since the  r are LI,

ðZ Z�Þqr ¼ �qr,Z Z� ¼ E, (36)

and � belongs to case (a). It follows also that if Z Z� is of type (b),  r ¼ � r cannot be a

linear combination of { r}, so f r,  rg is of dimension 2l and � causes a doubling of

degeneracy.

When N is an odd integer, for f rg to be linearly dependent on { r},

� r ¼  r ¼
Pl
s¼1

 sZsr (34)

for some non-singular matrix Z.

(13.3.24), (34) �2 r ¼ � r ¼
P
s

� sZsr ¼
P
s, q

 qZqsZsr
� ¼

P
q

 qðZZ�Þqr: (37)

Since the  r are LI,

(37) ðZZ�Þqr ¼ ��qr, ZZ� ¼ �E ðcase ðcÞÞ: (38)

Therefore linear dependence leads only to case (c). But if the sets f rg, f rg are LI, this

can arise only for cases (a) or (b). Thus, for N equal to an odd integer, time reversal leads to

a doubling of degeneracy in cases (a) and (b). The consequences of time-reversal symmetry

are summarized in Table 13.1.

Exercise 13.4-6 It might appear that the last line of Table 13.1 contravenes Kramers’

theorem. Explain why this is not so.

When evaluating the character of the MR of the product gigj of two symmetry

operators gigj 2 G for PRs, remember that �(gi) �(gj)¼ [gi ; gj] �(gk), where gk¼ gigj

and [gi ; gj] is the appropriate projective factor (PF). For vector representations PF¼ 1

always.

Table 13.1. The effect of time-reversal symmetry on the degeneracy of quantum states.

When the number of electrons N is even, the spin quantum number S is an integer, and,

when N is odd, S is a half-integer. �0 denotes a real representation.

Case g�1
P
R

�ðR2Þ Equivalence of �, �� N even N odd

(a) þ1 ���� ��0 no change doubled
(b) 0 � not��� doubled doubled
(c) �1 ���� not ��0 doubled no change

262 Time-reversal symmetry



Exercise 13.4-7 Determine if time-reversal symmetry introduces any additional degener-

acies in systems with symmetry (1) C3 and (2) C4 , for (i) N even and (ii) N odd. [Hints: Do

not make use of tabulated PFs but calculate any PFs not already given in the examples in

Section 12.4. Characters may be found in the character tables in Appendix A3.]

Answers to Exercises 13.4

Exercise 13.4-1 If {�} is real, � and �� have the same characters and they are therefore

equivalent.

Exercise 13.4-2 Take the CC of eq. (16) and pre-multiply it by Z�1 and post-multiply by

Z, givingZ�1ZZ�Z¼Z�1, c(Z)�EZ, orZ�Z¼ c(Z)�E. Comparison with eq. (16) shows

that c(Z)� ¼ c(Z) so that c(Z) is real.

(17) detZZ? ¼ j detZj2 ¼ cðZÞl 6¼ 0

because Z is non-singular. Therefore c(Z) 6¼ 0.

Exercise 13.4-3 If B¼Z0 þ ei�E is a singular matrix, det B¼ 0 and ei� is then the

negative of one of the eigenvalues of Z0. Therefore, a non-singular B can be ensured by

having �ei� not equal to any of the eigenvalues of Z0.

Exercise 13.4-4 Since Z is unitary, so are Z� and ZZ�. Equation (27) then gives

jcðZÞj2 ¼ 1, and since, by Exercise 13.4-2, c(Z) is real, c(Z) can only be �1.

Exercise 13.4-5 From Exercise 13.4-2 and the remark after eq. (29), |det Z|2¼
c(Z)l¼ (�1)l. But |det Z|2> 0, so l can only be an even number.

Exercise 13.4-6 It was shown in Exercise 13.4-5 that the dimension l of representations of

type (c) is an even integer. Therefore, even though time reversal introduces no new

degeneracies, l is always at least 2 and Kramers’ theorem is satisfied.

Exercise 13.4-7 (1) In C3 the PF ½Cþ
3 ; Cþ

3 � ¼ �1, as show n in Exam ple 12.6-2 . For C �3 ,

from Table 12.4, ½l, �� ¼ ½1=2 ,
ffiffiffi
3

p
=2½0 0 1��. So, ½l, ��½l, �� ¼ ½1=2,

ffiffiffi
3

p
=2½0 0 1��

½1=2,
ffiffiffi
3

p
=2½0 0 1�� ¼ �½1=2,

ffiffiffi
3

p
=2½0 0 1�� and for PRs ½C�

3 ; C�
3 � ¼ �1, �ðC�

3 Þ�ðC�
3 Þ ¼

��ðCþ
3 Þ. For A1, g

�1
P
R

�ðR2Þ ¼ ð1=3Þ½1þ 1þ 1� ¼ 1, so A1 is of type (a). For

1E, g�1
P
R

�ðR2Þ ¼ ð1=3Þ½1þ "þ "�� ¼ 1þ 2 cosð2p=3Þ ¼ 0, and similarly for 2E.

Therefore these representations are of type (b). For 1E½, g
�1
P
R

�ðR2Þ ¼

ð1=3Þ½1þ "þ "�� ¼ 0, and similarly for 2E½ so they are also of type (b). Note that

although ðCþ
3 Þ

2 ¼ C�
3 , for spinor representations �ððCþ

3 Þ
2Þ ¼ ½Cþ

3 ; Cþ
3 ��ðC�

3 Þ ¼
�1ð�"�Þ ¼ "� for the class of Cþ

3 in 1E½, and similarly. For B3=2
, g�1

P
R

�ðR2Þ ¼
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ð1=3Þ½1þ 1þ 1� ¼ 1, since �ððCþ
3 Þ

2Þ ¼ ð�1Þ�ðC�
3 Þ ¼ ð�1Þð�1Þ ¼ 1, and similarly for

C�
3 . Therefore B3=2

is of type (a).

(2) In C4, {R2}¼ {E C2 E C2}. The PF [E ; E]¼ 1, because of

standardization. For C2, ½l ; �� ¼ ½0 ; ½0 0 1�� and ½l ; ��½l ; �� ¼ �1½1 ; ½0 0 0��
so that ½C2 ; C2� ¼ �1. For Cþ

4 ½l ; �� ¼ ½1= ffiffiffi
2

p ; 1= ffiffiffi
2

p ½0 0 1�� and

½l ; ��½l ; ��¼½0 ; ½0 0 1��, so that for spinor as well as vector representations

�ðCþ
4 Þ�ðCþ

4 Þ ¼ �ðC2Þ. For C�
4 , ½l ; �� ¼ ½1= ffiffi2p

; 1=
ffiffi
2

p ½0 0 1�� so that

½l ; ��½l ; �� ¼ �½0 ; ½0 0 1�� and �ðC�
4 Þ �ðC�

4 Þ ¼ ��ðC2Þ for the spinor representa-
tions. Thus, for spinor IRs, �ðE2Þ ¼ �ðEÞ, �ððCþ

4 Þ
2Þ ¼ �ðC2Þ, �ððC�

4 Þ
2Þ ¼ ��ðC2Þ and

�ððC2Þ2Þ ¼ ��ðEÞ. For the vector representations, all the PFs are þ 1. Therefore for

A, B, g�1
P
R

�ðRÞ2 ¼ ð1=4Þ½1þ 1þ 1þ 1� ¼ 1, type (a). For 1E, 2E, g�1
P
R

�ðRÞ2 ¼

ð1=4Þ½1� 1þ 1� 1� ¼ 0, type (b). For 1E1=2
, 2E1=2

, g�1
P
R

�ðRÞ2 ¼ ð1=4Þ½1� i�

1þ i� ¼ 0, type (b). The change in degeneracy in states of C3 and C4 symmetry, that are

induced by time-reversal symmetry are, therefore, as shown in Table 13.2.

Problems

13.1 Determine if time reversal introduces any further degeneracy into the quantum states

of systems with N even and N odd and with point group symmetry D2, D3, and D4.

13.2 Repeat Probl em 13.1 usin g the dou ble group G in place of G. [Hint: Remember that

the multiplication rules in G are different from those of G.]

13.3 Prove that the number of inequivalent, real vector IRs of a symmetry group G is equal

to the number of ambivalent classes of G. Test this theorem by referring to character

tables for the point groups D2, D3, and Th. [Hints: The inverse class ck
of the class

ck ¼ fRg is the class {R� 1}. An ambivalent class is one for which c
k
¼ ck . You

will need to use the orthogonality of the rows and of the columns of the character

table.]

13.4 Consider the splitting of a state with j¼ 3=2 in an electrostatic field of C3v symmetry.

[Hint: Assume that there is no external magnetic field.]

Table 13.2.

Type N even N odd

(a) none doubled
(b) doubled none
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14 Magnetic point groups

14.1 Crystallographic magnetic point groups

Because the neutron has a magnetic moment, neutron diffraction can reveal not only the

spatial distribution of the atoms in a crystal but also the orientation of the spin magnetic

moments. Three main kinds of magnetic order can be distinguished. In ferromagnetic

crystals (e.g. Fe, Ni, Co) the spin magnetic moments are aligned parallel to a particular

direction. In antiferromagnetically ordered crystals, such asMnO, the spins on adjacentMn

atoms are antiparallel, so there is no net magnetic moment. In ferrimagnetic crystals

(ferrites, garnets) the antiparallel spins on two sublattices are of unequal magnitude so

that there is a net magnetic moment. In classical electromagnetism a magnetic moment is

associated with a current, and consequently time reversal results in a reversal of magnetic

moments. Therefore the point groups G of magnetic crystals include complementary

operators �R, where � is the time-reversal operator introduced in Chapter 13. The

thirty-two crystallographic point groups, which were derived in Chapter 2, do not involve

any complementary operators. In such crystals (designated as type I) the orientation of all

spins is invariant under all R2G. In Shubnikov’s (1964) description of the point groups, in

which a positive spin is referred to as ‘‘black’’ and a negative spin as ‘‘white,’’ so that the

time-reversal operator � induces a ‘‘color change,’’ these groups would be singly colored,

either black or white. Diamagnetic or paramagnetic crystals, in which there is no net

magnetic moment in the absence of an applied magnetic field, belong to one of the thirty-

two type II ‘‘gray’’ groups which contain � explicitly, so that

G ¼ fRg ��fRg: (1)

Magnetic crystals with a net magnetic moment belong to one of the point groups G which

contain complementary operators, but for which � 62G. If G¼HþQH, where H is a

halving subgroup (invariant subgroup of index 2) of G, and Q2G but Q 62H, then

G ¼ Hþ�QH ¼ Hþ�ðG� HÞ: (2)

The distinguishing characteristic of the Shubnikov point groups are summarized in

Table 14.1. A systematic determination of the fifty-eight type III magnetic point groups

is summarized in Table 14.2, which shows G, G, H, Q, and the classes of G�H. The

elements of G are {H} and �{G�H}. The elements of H can be identified from

the character tables of the crystallographic point groups in Appendix A3, except that in

the subgroupm or C1h ofmm2 the elements are {E �y} instead of {E �z} used for the point
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Table 14.1. The Shubnikov (or colored) point groups.

Mi is the magnetic moment of the ith atom.

Type Number Color Point group Magnetic moment

I 32 singly colored G¼ {R) Mi invariant under R
II 32 gray G¼ {R}� {E �} M ¼

P
i

Mi ¼ 0

III 58 black and white G¼ {H}��{G�H} �Mi¼�Mi

Table 14.2. The fifty-eight type III magnetic point groups.

Underlines in the International notation for G show which operators are complementary

ones. Alternatively, these may be identified from the classes of G�H by multiplying each

operator by �; G is the ordinary crystallographic point group from which G was con-

structed by eq. ( 14.1.2 ); H is given first in Interna tional notation and then in Sc hö nflies

notation, in square brackets. Subscript a denotes the unit vector along [1 1 0].

No. G G H G�H Q

1 1 Ci 1[C1] I I

2 2 C2 1[C1] C2z C2z

3 m Cs 1[C1] �z �z
4 2/m C2h 2[C2] I, �z I
5 2/m C2h m[C1h] I, C2z I
6 2/m C2h 1[Ci] C2z, �z C2z

7 222 D2 2[C2] C2x, C2y C2x

8 mm2 C2v 2[C2] �x, �y �x
9 mm2 C2v m[C1h] C2z, �x �y
10 mmm D2h 222[D2] I, �x, �y, �z C2z

11 mmm D2h mm2[C2v] C2x, C2y, I, �z I
12 mmm D2h 2/m[C2h] C2x, C2y, �x, �y C2x

13 4 C4 2[C2] Cþ
4z,C

�
4z Cþ

4z

14 4 S4 2[C2] S�4z, S
þ
4z

S�4z
15 422 D4 4[C4] 2C2

0, 2C2
00 C2x

16 422 D4 222[D2] 2C4, 2C2
00 C2a

17 4/m C4h 4[C4] I , S�4z,�z, S
þ
4z

I

18 4/m C4h 4[S4] I ,Cþ
4z,�z,C

�
4z

I

19 4/m C4h 2/m[C2h] Cþ
4z,C

�
4z, S

�
4z, S

þ
4z Cþ

4z

20 4mm C4v 4[C4] 2�v, 2�v
0 �x

21 4mm C4v mm2[C2v] 2C4, 2�v
0 �a

22 42m D2d 4[S4] 2C2
0, 2�d C2x

23 42m D2d 222[D2] 2S4z, 2�d �a
24 4m2 D2d mm2[C2v] 2S4z, 2C2

0 C2a

25 4/mmm D4h 422[D4] I, �z, 2S4z, 2�v, 2�d I
26 4/mmm D4h 4mm[C4v] I ,�z, 2S4z, 2C2

0, 2C2
00 I

27 4/mmm D4h mmm [D2h] 2C4z, 2C2
00, 2S4z, 2�d C2a

28 4/mmm D4h 42m[D2d] I ,�z, 2C4z, 2�v, 2C2
00 I

29 4/mmm D4h 4/m[C4h] 2C2
0, 2C2

00, 2�v, 2�d C2x

30 32 D3 3[C3] 3C2
0 C2x

31 3m C3v 3[C3] 3�v �y
32 6 C3h 3[C3] �h, S

�
3 , S

þ
3

�h
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group m. In interpreting the International symbols for G, it is necessary to identify the

appropriate symmetry elements from the positions of the symbols as given in the

International Tables for Crystallography (Hahn (1983), (1992)). The total number of

Shubnikov point groups, summarized in Table 14.1 is therefore 32þ 32þ 58¼ 122.

International notation is used for G (because it is more economical and more common)

and Schönflies notation is used for G. Underlined elements in G show which operators

are complementary ones; removing the underlines would give G, which is why G is given

separately only in Schönflies notation. The subgroup H is identified in both International

and Schönflies notation. (Schönflies notation for G(H) is often used to identify both G

and its subgroup H.)

14.2 Co-representations of magnetic point groups

Consider the group G¼ {H, AH} that contains unitary {H} and antiunitary {AH} operators.

H is necessarily an invariant subgroup of G of index 2 and AH is a coset of H with coset

representative A (which may be any one of the antiunitary operators of G) so that

Table 14.2. (cont.)

No. G G H G�H Q

33 6m2 D3h 6[C3h] 3C2
0, 3�v C2x

34 6m2 D3h 3m[C3v] �h, 2S3, 3C2
0 �h

35 6m2 D3h 32[D3] �h, 2S3, 3�v �h
36 6 C6 3[C3] Cþ

6 ,C
�
6 ,C2 C2z

37 3 S6 3[C3] I , S�6 , S
þ
6

I

38 3m D3d 3[S6] 3C2
0, 3�d C2x

39 3m D3d 3m[C3v] I , 2S6, 3C2
0 I

40 3m D3d 32[D3] I, 2S6, 3�d I

41 622 D6 6[C6] 3C2
0, 3C2

00 C2x

42 622 D6 32[D3] C2, 2C6, 3C2
00 C2z

43 6/m C6h 6[C6] I , S�3 , S
þ
3 , S

�
6 , S

þ
6 ,�h I

44 6/m C6h 3[S6] Cþ
6 ,C

�
6 , C2, S

�
3 , S

þ
3 ,�h C2z

45 6/m C6h 6[C3h] I , S�6 , S
þ
6 ,C2,C

þ
6 ,C

�
6

I

46 6mm C6v 6[C6] 3�d, 3�v �x
47 6mm C6v 3m[C3v] C2, 2C6, 3�v C2z

48 6/mmm D6h 62m[D3h] I ,C2, 2S6, 2C6, 3C2
00, 3�d I

49 6/mmm D6h 3m[D3d] C2,�h, 2C6, 2S3, 3C2
00, 3�v C2z

50 6/mmm D6h 622[D6] I ,�h, 2S3, 2S6, 3�d, 3�v I
51 6/mmm D6h 6mm[C6v] I ,�h, 2S3, 2S6, 3C2

0, 3C2
00 I

52 6/mmm D6h 6/m[C6h] 3C2
0, 3C2

00, 3�d, 3�v C2x

53 m3 Th 23[T] I , 4S�6 , 4S
þ
6 , 3�h I

54 43m Td 23[T] 6S4, 6�d �a
55 432 O 23[T] 6C4, 6C2

0 C2a

56 m3m Oh 432[O] I, 8S6, 3�h, 6S4, 6�d I
57 m3m Oh 43m[Td] I , 8S6, 3�h, 6C2

0, 6C4 I

58 m3m Oh m3[Th] 6C4, 6C2
0, 6S4, 6�d C2a
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G ¼ fHg � AfHg: (1)

For example, A might be the time-reversal operator � (Section 13.4)

G ¼ fHg ��fHg: (2)

Another realization of eq. (1) is

G ¼ fHg � �QfHg, (3)

with A¼�Q, and the unitary operator Q2G�H. The corresponding unitary group is

G¼ {H}�Q{H}. Equations (2) and (3) provided the basis for the derivation of types II

and III magnetic point groups in Section 14.1. Let R2H and suppose that

h j ¼ h pj, p ¼ 1, 2, . . . , l forms a basis for the unitary IR � of H, so that

R̂h j ¼ h j�ðRÞ: (4)

Define Â p as � p; then

R̂h j ¼ R̂Âh j¼ ÂðÂ�1R̂ÂÞh j
¼ Âh j �ðA�1RAÞ A�1RA 2 H

¼ h j �ðA�1RAÞ� ¼ h j �ðRÞ
(5)

(Â is anti-linear), where

��ðRÞ ¼ �ðA�1RAÞ�: (6)

(4), (5) R̂h  j ¼ h  j �ðRÞ 0

0 �ðRÞ

� �
¼ h  j �ðRÞ: (7)

Let B¼AR; then

(4) B̂h j ¼ ÂR̂h j ¼ Âh j �ðRÞ
¼ h j �ðRÞ� ¼ h j �ðA�1BÞ�;

(8)

B̂h j ¼ B̂Â h j ¼ h j �ðBAÞ; (9)

(8), (9) B̂h  j ¼ h  j 0 �ðBAÞ
�ðA�1BÞ� 0

� �
¼ h  j �ðBÞ: (10)

Equations (7) and (10) confirm that h  j forms a 2l-dimensional basis for G. The

representation � based on h  j has matrix representatives (MRs)

(7), (10) �ðRÞ ¼ �ðRÞ 0

0 ��ðRÞ

� �
, �ðBÞ ¼ 0 �ðBAÞ

�ðA�1BÞ� 0

� �
: (11)
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However, the set of MRs f�ðRÞ �ðBÞg do not form an ordinary representation of G. As

confirmed in Problem 14.1, the matrices in eq. (11) obey the multiplication rules

�ðRÞ �ðSÞ ¼ �ðRSÞ,
�ðRÞ �ðBÞ ¼ �ðRBÞ,
�ðBÞ �ðRÞ� ¼ �ðBRÞ,
�ðBÞ �ðCÞ� ¼ �ðBCÞ, (12)

which hold for 8R, S2H, 8B, C2AH. These equations demonstrate that when two of the

� matrices are multiplied together, the second factor must be replaced by its complex

conjugate (CC) when the first factor is theMR of an antiunitary operator. Such a set ofMRs

is called a co-representation (Wigner (1959)). Co-representations and their multiplication

rules (eqs. (12)) have already been encountered in Section 13.4 for the particular case of

A¼�. However, the derivation of the MRs is easier in that case because� commutes with

R so that � for the basis h � j is just �*. Equations (11) show that the matrices of the

co-representation � can be expressed in terms of the MRs � of the unitary subgroup H.

Now consider the unitary transformation

h 0  
0j ¼ h  jU: (13)

(13) R̂h 0  
0j ¼ h 0  

0j �0ðRÞ ¼ h  j U �0ðRÞ
¼ R̂h  j U ¼ h  j �ðRÞ U;

(14)

(14) �0ðRÞ ¼ U�1 �ðRÞU; (15)

(13) B̂h 0  
0j ¼ h 0  

0j �0ðBÞ ¼ h  j U �0ðBÞ
¼ B̂h  j U ¼ h  j �ðBÞ U� (16)

(B is antilinear),

(16) �0ðBÞ ¼ U�1 �ðBÞ U�: (17)

Therefore � is equivalent to �0 ð� � �0Þ if there is a unitary matrix U such that

�0ðRÞ ¼ U�1 �ðRÞ U, �0ðBÞ ¼ U�1 �ðBÞU�, 8 R2H, 8 B2AH: (18)

One might be concerned as to whether the equivalence of �0 and � depends on the choice of

A. But in fact, two co-representations �, �0 of G being equivalent depends only on the

equivalence of the subduced representations �, �0 of H and not on the choice of A in

G¼HþAH (Jansen and Boon (1967)). Note that �ðRÞ ¼ �ðA�1RAÞ� may or may not

be � �. Suppose first that � is not equivalent to � ð� not � �Þ and attempt the reduction

of �. Since �ðRÞ ¼ �ðRÞ � �ðRÞ (eq. (11)), any equivalent form must also be a direct sum,

which means thatUmust be the direct sumU1 �U2. But no such block-diagonal matrix can

reduce�(B) in eq. (11), and so we conclude that if� is not� � the co-representation �, which

consists of matrices of the form �(R), �(B) in eq. (11), must be irreducible.
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Suppose next that � � �; then there exists a unitary matrix Z such that

�ðRÞ ¼ Z �ðRÞZ�1: (19)

But A22 {R}, so

(19), (6) �ðA2Þ ¼ Z �ðA2Þ Z�1 ¼ Z �ðA2Þ� Z�1; (20)

(19), (6) �ðRÞ� ¼ Z� �ðA�1RAÞðZ�1Þ�; (21)

(6), (19), (21) �ðRÞ ¼ �ðA�1RAÞ� ¼ Z� �ðA�2RA2ÞðZ�1Þ�

¼ Z� ��1ðA2Þ�ðRÞ �ðA2ÞðZ�1Þ�;
(22)

(19), (22) �ðRÞ ¼ ZZ� ��1ðA2Þ �ðRÞ �ðA2ÞðZ�1Þ�Z�1, 8R 2 H: (23)

But � is an irreducible representation (IR) of H and so by Schur’s lemma (Appendix A1.5)

ZZ� ��1ðA2Þ is a multiple of the unit matrix, or

cðZÞ �ðA2Þ ¼ ZZ�; (24)

(24) �ðA2Þ� ¼ ðcðZÞ�Þ�1 Z�Z: (25)

Equations (20), (24), and (25) show that c(Z) is real. Moreover, since �(A2) and Z are

unitary, c(Z)¼�1, and

ZZ� ¼ ��ðA2Þ: (26)

Whether the co-representation � of G (which is related to the IR � of H by eqs. (11) and

(6)) is reducible or not, depends on which sign applies in eq. (26). We first of all generate

the equivalent representation �0 from � by

(11), (18), (19) �0ðRÞ ¼ E 0

0 Z

� �
�ðRÞ 0

0 �ðRÞ

� �
E 0

0 Z�1

� �
¼ �ðRÞ 0

0 �ðRÞ

� �
, (27)

(11), (18), (20) �0ðAÞ ¼ E 0

0 Z

� �
0 �ðA2Þ
E 0

� �
E 0

0 ðZ�Þ�1

� �
¼ 0 �ðA2ÞðZ�Þ�1

Z 0

� �
:

(28)

(Since eq. (18) holds 8B2AH, it holds in particular when B¼A.) Choosing the positive

sign in eq. (26),

(28), (26) �0ðAÞ ¼ 0 Z
Z 0

� �
, (29)

which can be converted to diagonal form by the unitary transformation

�00ðAÞ ¼ W�1�0ðAÞW, (30)

270 Magnetic point groups



with

W ¼ 2
1=2

1 �1

1 1

� �
: (31)

(29), (30), (31) �00ðAÞ ¼ Z 0

0 �Z

� �
, (32)

(27), (31) �00ðRÞ ¼ W�1 �0ðRÞ W ¼ �0ðRÞ: (33)

Equations (32) and (33) show that �0 has been reduced by the unitary transformation in

eqs. (30) and (33). But if the negative sign is taken in eq. (26)

(28), (26) �0ðAÞ ¼ 0 �Z
Z 0

� �
, (34)

which cannot be diagonalized by a unitary transformation, eq. (30), that preserves the

diagonal form of �0(R) in eq. (27). B is any one of the antiunitary operators in G,

i.e. B2G�H¼A{H}¼ {H}A. Therefore the above equations for B hold for B¼RA.

The co-representation �(B) of B¼RA is

(12) �ðBÞ ¼ �ðRAÞ ¼ �ðRÞ �ðAÞ ¼ �ðBA�1Þ �ðAÞ: (35)

Since the transformation from the unprimed � matrices to the �00 set involves two

successive unitary transformations,

(35) �0ðBÞ ¼ �0ðRAÞ ¼ �0ðRÞ �0ðAÞ ¼ �0ðBA�1Þ �0ðAÞ, (36)

(35) �00ðBÞ ¼ �00ðRAÞ ¼ �00ðRÞ �00ðAÞ ¼ �00ðBA�1Þ �00ðAÞ, (37)

(37), (33), (27), (35), (32) �00ðBÞ ¼ �ðBA�1Þ 0

0 �ðBA�1Þ

� �
Z 0

0 �Z

� �

¼ �ðBA�1ÞZ 0

0 ��ðBA�1ÞZ

" #
,

(38)

(36), (27), (34) �0ðBÞ ¼ �ðBA�1Þ 0

0 �ðBA�1Þ

� �
0 �Z
Z 0

� �

¼ 0 ��ðBA�1ÞZ
�ðBA�1ÞZ 0

" #
:

(39)

This completes the derivation of the irreducible co-representations � of G¼HþAH from

the IRs � of H. The results may be summarized as follows. Z is the unitary matrix that

transforms �(R) into �ðRÞ ¼ �ðA�1RAÞ� when � � �, by

Z�1�ðRÞ Z ¼ �ðRÞ: (19)
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Case ðaÞ: �ðRÞ � �ðRÞ, cðZÞ ¼ þ1, ZZ� ¼ �ðA2Þ,

�00ðRÞ ¼ �ðRÞ, (40)

�00ðBÞ ¼ ��ðBA�1Þ Z:

Case ðbÞ: �ðRÞ not � �ðRÞ ¼ �ðA�1RAÞ�,

�ðRÞ ¼ �ðRÞ � �ðRÞ, (41)

�ðBÞ ¼ 0 �ðBAÞ
�ðA�1BÞ� 0

� �
:

Case ðcÞ: �ðRÞ � �ðRÞ, cðZÞ ¼ �1, ZZ� ¼ ��ðA2Þ,

�0ðRÞ ¼ �ðRÞ � �ðRÞ, �ðRÞ ¼ Z �ðA�1RAÞ�Z�1, (42)

�0ðBÞ ¼ 0 ��ðBA�1ÞZ
�ðBA�1ÞZ 0

� �
:

(See the warning at the beginning of Chapter 13 regarding the nomenclature used for (a),

(b), and (c).)

Given the IRs � of H, all the irreducible co-representations � of G can be determined

from eqs. (40)–(42). Although the equivalence of �, � and the sign of c(Z) provide a

criterion for the classification of the co-representations of point groups with antiunitary

operators, this will be more useful in the form of a character test.

P
B2AH

�ðB2Þ ¼
P

B2AH

P
p

�ðB2Þpp ¼
P
R2H

P
p

�ðARARÞpp

¼
P
R2H

P
p, q, r

�ðA2Þpq �ðA�1RAÞqr �ðRÞrp

¼
P
p, q, r

�ðA2Þpq
P
R2H

�ðRÞqr� �ðRÞrp: (43)

If � is not � �, then from the orthogonality theorem (OT)

(43), (A1.5.27)
P

B2AH
�ðB2Þ ¼ 0: (44)

If � � �, then, since Z is unitary,

(A1.6.11)
P
r

ðl=hÞ
P
R

�ðRÞ�qr �ðRÞrp ¼
P
r

Zrq Z�1
rp

¼
P
r

ðZ�Þ�1
qr Z�1

rp

¼ ððZ�Þ�1 Z�1Þqp ¼ ðZZ�Þ�1
qp , (45)
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where h is the order of the unitary halving subgroup H. (Note that the definition of Z is the

same in eqs. ( 19 ) and ( A1.6.1 ), where here �i is � and �j is �.)

(45), (43), (26)
P

B2AH
�ðB2Þ ¼ ðh=lÞ

P
p, q

�ðA2Þpq ðZZ�Þ�1
qp

¼ ðh=lÞ
Pl
p¼1

�Epp ¼ �h,

(46)

where the positive sign corresponds to case (a) and the negative sign corresponds to case (c).

In summary, a diagnostic test (the Frobenius–Schur test) has been established which

classifies the co-representations � of G¼HþAH according to the three cases listed in

eqs. (40)–(42):

(44)�ð46Þ h�1
P

B2AH
�ðB2Þ ¼

þ1 case (a)

0 case (b)

�1 case (c).

8<
: (47)

Equations (40)–(42) require Z: if Z cannot be determined by inspection, then

ðA1.5.30) Z ¼
P
R2H

�ðRÞ X �ðR�1Þ, (48)

where X is an arbitrary matrix, the purpose of which is to ensure that Z is unitary.

For type II magnetic point groups A¼�, so B¼AR becomes B¼�R andP
B

�ðB2Þ ¼ �2
P
R

�ðR2Þ, with �2¼ c¼þ1 when N is even and �1 when N is odd. Thus

eq. (47) in this case gives results identical with those in Table 13.1.

Example 14.2-1 Determine the type ((a), (b), or (c)) for the co-representations of the

magnetic point group G¼m3 (which is #53 in Table 14.2).

For G¼m3, H¼ 23 or T and G¼m3 or Th. This is the same example as that considered

by Bradley and Cracknell (1972), although the method of solution used here is different.

The character table of H¼ 23 is reproduced in Table 14.3, which also shows the determi-

nation of the type of representation for �1, . . . , �7. Note that A¼�I commutes with all

R2H; therefore, for real vector representations, �ðRÞ ¼ �ðRÞ� ¼ �ðRÞ, Z¼E. For

the complex representations 1, 2E, ��ðRÞ ¼ �ðRÞ�, which is not � �(R). The case (b)

co-representations may be written down from eq. (41). The same statement applies to the

spinor representations 1,2F3=2
which are also case (b) (see Table 14.3). For 1,2E,

Z ¼ 0 1
�1 0

� �
¼ �

(Bradley and Cracknell (1972)). In fact, Z¼ � also for the doubly degenerate case (a)

spinor representations of type II magnetic point groups G¼Hþ�H when H¼mm2(C2v),

222(D2), 32(D3), 3m(C3v), 422(D4), 4mm(C4v), 42m(D2d), 622(D6), 6mm(C6v), �62m(D3h),

432(O), and 43m(Td), while for the 432(O) and 43m(Td) type (a) spinor F representations

Z¼���. Other examples of Z may be found in Bradley and Cracknell (1972). For the

solution of Example 14.2-1 by the double-group method, see Bradley and Cracknell

(1972), pp. 626–9.
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Exercise 14.2-1 Confirm thatZ�1�(R)Z¼�(R)* for H¼ 23 (or T) for the MRs �(R) with

R¼C2x, R¼C2z and R ¼ Cþ
31. [Hint: Use Z¼ � (see above).]

These MRs are (see, for example, Altmann and Herzig (1994)):

�ðC2xÞ ¼
0 �i

�i 0

� �
, �ðC2zÞ ¼

�i 0

0 i

� �
, �ðCþ

31Þ ¼
"� �"
"� "

� �
:

Example 14.2-2 Find the co-representations of the magnetic point group 4mm or C4v(C2v).

Take Q¼ �a, with a the unit vector along [110].

The character table of 2mm (C2v) is given in Table 14.4, together with the determination

of the type of co-representation of 4mm from h�1
P
B

�ðB2Þ and the projective factors

(PFs) needed in the solution of this example. Since B¼AR¼�QR, for projective

representations (PRs)

�ðB2Þ ¼ �2 ½QR ; QR��1 ½Q ; R��2 �ðQRQRÞ: (49)

The PFs are all �1 so that [Q ; R]�2¼þ1. For PRs, �2¼�1 (N odd) and so

(49) �ðB2Þ ¼ ð�1Þ ½QR ; QR��1�ðQRQRÞ, (50)

which enables us to write down
P
B

�ðB2Þ in Table 14.4. The vector co-representations

are �1 from �1 (or A1), �2 from �2 (or A2), which both belong to case (a), and �3

from �3, �4 (B1, B2), which is case (b). For the case (a) representations, from

Table 14.3. Character table of the invariant subgroup H¼ 23 (or T) of G¼m3 (Th ).

"¼ exp(�2pi/3); G¼ {R}��I{R}¼ {E 3C2 4C
þ
3 4C�

3 }� � {I 3�h 4S
�
6 4Sþ6 }; A¼� I commutes

with 8R2H.

23, T E 3C2 4Cþ
3 4C�

3

h�1
P
B

�ðB2Þ
(case) a

�1 A 1 1 1 1 ð1=12Þ[1þ 3þ 4þ 4]¼ 1 (a)

�2
1E 1 1 "* " ð1=12Þ[1þ 3þ 4"þ 4"*]¼ 0 (b)

�3
2E 1 1 " "* ð1=12Þ[1þ 3þ 4"*þ 4"]¼ 0 (b)

�4 T 3 �1 0 0 ð1=12Þ[3þ 9þ 0þ 0]¼ 1 (a)

�5 E1=2 
2 0  1  1  ð�1=12 Þ[2 � 6 � 4 � 4] ¼ 1 (a) b, c

�6
1F3=2 

2 0  "* " ð�1=12 Þ[2 � 6 � 4"� 4"*] ¼ 0 (b) b , c

�7
2F3=2

2 0 " "* ð�1=12 Þ[2 � 6 � 4"* � 4" ] ¼ 0 (b) b , c

a For the (a) representations the Z matrices are: �1, E1 ; �4, E3 ; �5, � (see text). The (a) and (b)
representations may be found from eqs. (14.2.40 ) and ( 14.2.41).
bThe minus sign outside the [ ] comes from �2¼�1 for spinor representations (with N an odd
number).
cThe minus signs within [ ] come from the Projective factors [C2 ; C2]¼�1, ½Cþ

3 ; Cþ
3 � ¼ �1,

½C�
3 ; C�

3 � ¼ �1, which may be verified by the methods of Chapter 12 or found in tables given by
Altmann and Herzig (1994), p. 602. Recall that [I ; I]¼ 1 in the Pauli guage.
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eq. (40), �00(R) ¼ �ðRÞ, �00(B) ¼ ��(BA�1)Z. Since Z¼E1, on taking the positive

sign (the negative sign merely gives an equivalent representation)

�00(B) ¼ �(BA�1) ¼ �(ARA�1) ¼ �(QRQ�1) ¼ �(R), for �1, �2 (since �(�y)¼�(�x) for

these 1-D IRs – see Table 14.4). Thus we obtain the �1, �2 in Table 14.4. For

�3 (or B1) �3(R) ¼ �3(A
�1RA)� ¼ �3(Q

�1RQ)� ¼ �4(R). Therefore, from eq. (41),

�3(R)¼�3(R)��4(R). Similarly, �4(R) is �3(R), and so, had we started from �4(R), this

would have given for the case (b) vector co-representation, �4(R)��3(R), which is an

equivalent representation to �3(R). The significance of this remark is that the labels B1 and

B2 are assigned arbitrarily (Mulliken notation giving no guide as to the assigning of

priorities to equivalent vertical planes) and interchanging the labels B1, B2 results in

apparent ly differ ent but equi valent co-represen tati ons (see Br adley and Dav ies ( 1968) ).

�3ðBÞ ¼
0 �3ðBAÞ

�3ðA�1BÞ� 0

� �
, (11)

where �(BA)¼�(ARA)¼�(QRQ) for vector representations. Therefore �3(BA)¼�4(R)

(Table 14.4). Further, �(A�1 B)*¼�(A�1 AR)*¼�(R), since �3(R), �4 (R) are real. So, �3

may now be written down, and is given in Table 14.4. For the projective (spinor) representa-

tion, which also belongs to case (a), �5(R)¼�5(R) and �5(B) is �5
00(B)¼��(BA�1)Z with

Z ¼ �2�
1=2

1� i 0

0 1þ i

� �
(51)

(see Bradley and Cracknell (1972), p. 631). The derivation of the �5(R) matrices is

summa rized in Table 14. 5. Fo r spin or repr esentatio ns � (IR ) ¼�( R) (Pauli g auge), so

�½ ( a, b ) may be writte n down usin g eqs. ( 12.8.3 ) and ( 12.8.5 ). For exampl e, for R ¼ �x

Table 14.5. Rotation parameters � n, quaternion parameters [l ; �] and Cayley–Klein

parameters a, b for the point group 2mm (or C2v).

a¼ l� i�z, b¼��y� i �x. Also included are the values of [l ; �] for �a, �b since this

information is needed in the evaluation of PFs in Example 14.2-2. In spinor representa-

tions, for improper rotations IR, the quaternion parameters [l ; �] for IR are the same as

[l ; �] for R.

2mm, C2v � n or m l L a b

E 0 [0 0 0] 1 0 1 0
C2z p [0 0 1] 0 [0 0 1] �i 0
C2x p [1 0 0] 0 [1 0 0] 0 �i
C2y p [0 1 0] 0 [0 1 0] 0 �1
�x p [1 0 0] 0 [1 0 0] 0 �i
�y p [0 1 0] 0 [0 1 0] 0 �1
�a 0 2�½[1 1 0]
�b 0 2�½[1 �1 0]
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�5ð�xÞ ¼
0 �i

�i 0

� �
m0 ¼ 1=2

m0 ¼ �1=2:
(52)

m ¼ 1=2 �1=2

For the co-representations �(B) (see eq. (40))

�ðBA�1Þ ¼ �ðARA�1Þ ¼ �ðQRQ�1Þ
¼ �ðQÞ�ðRÞ�ðQ�1Þ½Q ; R��1½QR ; Q�1��1

,
(53)

�ðQ�1Þ �ðQÞ ¼ ½Q�1 ; Q� �ðEÞ; (54)

(53), (54) �ðQRQ�1Þ ¼ �ðQÞ�ðRÞ�ðQÞ�1½Q ; R��1 ½QR ; Q�1��1 ½Q�1 ; Q�: (55)

In this group,Q¼C2a, soQ
�1 within the PFs is C2a and [Q

�1 ; Q]¼�1. The �(B) matrices

may now be obtained from eqs. (40), (51), (53) and (55), and are given in Table 14.2.

Answer to Exercise 14.2-1

This is straightforward matrix multiplication but a useful exercise nevertheless to confirm

that the matrix Z is correctly given by �.

14.3 Clebsch–Gordan coefficients

The inner direct product (DP) (or inner Kronecker product)

�ijðHÞ ¼ �iðHÞ&��jðHÞ (1)

may be reducible,

�ijðHÞ ¼
P
k

cij, k �kðHÞ, (2)

where

cij, k ¼ h�1
P
R

�iðRÞ �jðRÞ �kðRÞ�, R 2 H: (3)

The cij,k are called Clebsch–Gordan (CG) coefficients. They have the property

(3) cij, k ¼ cji, k : (4)

Example 14.3-1 From the character table of 3m (C3v) in Appendix A3, c11,1¼ 1, c12,2¼ 1,

c13,3¼ 1, c22,1¼ 1, c23,3¼ 1, and �3 &� �3¼�1��2��3, c33,1¼ 1, c33,2¼ 1, c33,3¼ 1 .

All the other CG coefficients not given by eq. (4) are zero.

14.3 Clebsch–Gordan coefficients 277



For magnetic point groups, the inner DP �ij of the co-representations �i, �j is

�ij ¼ �i &��j ¼
P

kdij, k �k : (5)

The generalization of eq. (3) to magnetic groups (Bradley and Davis (1968); Karavaev

(1965)) is

dij,k ¼
h�1

P
R2H

�iðRÞ�jðRÞ�kðRÞ�

h�1
P
R2H

�kðRÞ�kðRÞ� , (6)

where the dij,k can be expressed in terms of the CG coefficients of the subgroup H. The

normalization factor in the denominator of eq. (6) is only unity for case (a), since

(14.2.40) – (14.2.42) �kðRÞ ¼
�kðRÞ, case (a)

�kðRÞ þ �kðRÞ, case (b)

2�kðRÞ, case (c),

8<
: (7)

where �kðRÞ denotes the character of �kðRÞ. Consequently, in eq. (6)

(7) h�1
P
R2H

�kðRÞ�kðRÞ� ¼
1 in case (a)

2 in case (b)

4 in case (c):

8<
: (8)

Again using eqs. ( 14.2.40 )–(14.2.42 ) for the numerator in eq. ( 6), the dij,k can be expressed

in terms of the cij,k. Because of the relation

(6) dij, k ¼ dji, k , (9)

there are 3(3!)¼ 18 possible different combinations of�i,�j,�k. The results of using eqs. (7),

(8) and (3) in eq. (6) are given in Table 14.6. For example, for the case aab in Table 14.6, if

the representation �ij contains �k cij,k times, it also contains �k cij,k times, and since the

denominator is two for case (b), dij,k¼ 2cij,k/2. For the case aac, eqs. (7) and (8) require that

dij,k¼ 2cij,k /4¼½cij,k. The rest of Table 14.6 can be completed in similar fashion.

Exercise 14.3-1 Write down the non-zero CG coefficients for the inner DPs of the point

group mm2 (C2v). [Hints: See Table 14.4. Recall that �3ðRÞ means �ð�3Þ and that for this

group �3 ¼ �4.] Using Table 14.6 derive expressions for the non-zero CG d coefficients of

the magnetic point group 4mm in terms of the cij,k and evaluate these. Hence write down the

CG decomposition for the Kronecker products of the IRs � of 4mm.

Answer to Exercise 14.3-1

c11,1 ¼ c12,3 ¼ c13,3 ¼ c14,4 ¼ c22,1 ¼ c23,4 ¼ c24,3 ¼ c33,1

¼ c34,2 ¼ c44,1 ¼ ci5,5 ¼ c55,i ¼ 1, i ¼ 1, 2, 3, 4:
(10)

All other CG coefficients except those derived from eq. (10) using eq. (4) are zero. For

the vector representations, from Tables 14.5 and 14.6 and eq. (10) we write down
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d11, 1 ¼ c11, 1 ¼ 1, d12, 2 ¼ c12, 2 ¼ 1, d13, 3 ¼ c13, 3 þ c14, 3 ¼ 1þ 0 ¼ 1,

d22, 1 ¼ c22, 1 ¼ 1, d23, 3 ¼ c23, 3 þ c24, 3 ¼ 0þ 1 ¼ 1,

d33, 1 ¼ c33, 1 þ c34, 1 þ c43, 1 þ c44, 1 ¼ 1þ 0þ 0þ 1 ¼ 2,

d33, 2 ¼ c33, 2 þ c34, 2 þ c43, 2 þ c44, 2 ¼ 0þ 1þ 1þ 0 ¼ 2,

(11)

(Note the use of eq. (4) in the last expression above.)

(10) �1
&��1 ¼ �1, �1

&��2 ¼ �2, �1
&��3 ¼ �3,

�2
&��2 ¼ �1, �2

&��3 ¼ �3, �3
&��3 ¼ 2�1 þ 2�2:

(12)

For Kronecker products involving the spinor representation �5,

d15, 5 ¼ c15, 5 ¼ 1, d25, 5 ¼ c25, 5 ¼ 1, d35, 5 ¼ c35, 5 þ c45, 5 ¼ 1þ 1 ¼ 2,

d55, k ¼ c55, k ¼ 1, k ¼ 1, 2, 3:
(13)

All other dij,k not derived from eqs. (11) and (13) by using eq. (9) are zero.

(12) �1
&��5 ¼ �5, �2

&��5 ¼ �5, �3
&��5 ¼ 2�5,

�5
&��5 ¼ �1

&��2
&��3: (14)

Table 14.6. Clebsch–Gordan coefficients for the inner direct products of

irreducible co-representations.

A barred suffix (e.g. k) indicates a � representation, in this instance of k, �
k

with �
kðRÞ¼�k(A�1RA*).

�i �j �k dij,k

a a a cij,k
a a b cij,k
a a c ð½Þcij, k
a b a cij, k þ ci�j, k
a b b cij, k þ ci�j, k
a b c ð½Þðcij, k þ ci�j, kÞ
a c a 2cij,k
a c b 2cij,k
a c c cij,k
b b a cij, k þ ci�j, k þ c�ij, k þ cij, k
b b b cij, k þ ci�j, k þ c�ij, k þ cij, k
b b c ð½Þðcij, k þ ci�j, k þ c�ij, k þ cij, kÞ
b c a 2ðcij, k þ ci�j, kÞ
b c b 2ðcij, k þ ci�j, kÞ
b c c cij, k þ c�ij, k
c c a 4cij,k
c c b 4cij,k
c c c 2cij,k

After Bradley and Davies (1968), but recall the warning at the beginning of Chapter 13.
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14.4 Crystal-field theory for magnetic crystals

The splitting of atomic energy levels in a crystal field (CF) with the symmetry of one of the

magnetic point groups has been considered in detail by Cracknell (1968). Consider an

atomic 2P level (L¼ 1) in an intermediate field of 2mm or C2v symmetry and assume that

HS . L<HCF. The degenerate
2P level is split into three components, �1��3��4. But in a

field of 4mm symmetry the two levels �3 and �4 ‘‘stick together,’’ that is, are degenerate,

since �3¼�3��4 (case (b)), while �1 is re-labeled as �1 (case (a)). (See Table 14.4 and

the accompanying text.) Therefore,

�L ¼ �1 � �3 ð4mm symmetryÞ: (1)

The possible splitting of the �1, �3 levels due to HS.L is determined by

� i &�� j ¼ �
k
dij, k �

k , (2)

where i¼ 1 or 3 and �j is �
S, which is E½ or �5 in Table 14.4. The cij,k must be determined

first, remembering that �3¼�3��4. Using Table 14.3,

�1 &��5 ¼ �5, �3 &��5 ¼ �5, �4 &��5 ¼ �5: (3)

(3) c15, 5 ¼ c35, 5 ¼ c45, 5 ¼ 1, (4)

with cij,k zero otherwise. FromTable 14.6 (in the general case) or eq. (13) (for this example)

d15, 5 ¼ c15, 5 ¼ 1, d35, 5 ¼ c35, 5 þ c45, 5 ¼ 2; (5)

(4), (5) �1
&��5 ¼ �5, �3

&��5 ¼ �5 � �5: (6)

The splitting of the 2P level in G¼ 4mm due to the CF and weak spin–orbit coupling is

shown on the LS of Figure 14.1. When HCF < HS.L (the weak-field case) the crystal field

acts on the components of the 2P multiplet split by spin–orbit coupling. This is shown on

the RS of Figure 14.1. In evaluating �L � �S, make use of the fact that �L, �S, and �J all

2P(6) 2P(6)
2P½(2)

5(2)

5(2)

5(2)

intermediate field weak field

H0 + Hee+ HCF
ˆ ˆ ˆ H CF + HS

 · L+ Hee + H0+ HS · L
ˆ ˆ ˆ ˆˆ

Γ

Γ
Γ

Γ Γ

3(4)

1(2)
2P   (4)

Figure 14.1. The splitting and re-labeling of a P1: 2P term in a crystal field of 4mm symmetry. On the

LS, HS . L<HCF (see eqs. ( 14.3.15) and (14.3.20 ). The RS shows the weak-field case when

HCF <HS . L. The degeneracy of each state is shown in parentheses.
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belong to case (a), so that dij,k¼ cij,k. The maximum degeneracy of a spinor representation

in 4mm symmetry is 2 (Table 14.4) so, in a field of this symmetry, the F3=2
state, with

character vector |4 0 0 0 0i splits into E½�E½ or �5��5.

For a slightlymore complicated example, consider a d1 : 2D term in a field ofm3 symmetry

(see Table 14.3). The co-representations ofm3 are �1 (from �1 of the subgroup 23), �2 (from

�2, �3), �4 (from �4), �5 (from �5), and �6 (from �6, �7). The twenty-three subgroup levels

�2, �3 ‘‘stick together’’ in the magnetic group m3 to form the doubly degenerate �2 with

�2(R)¼�2(R)��3(R) with character vector |�2 i ¼ |2 2 �1 �1i. Similarly, �6, �7 ‘‘stick

together’’ to produce �6 with �6(R)¼�6(R)��7(R) and |�6 i¼ |4 0 �1 �1i. In an inter-

mediate field of m3 symmetry, the 2D(10) term splits into 2�2(4) and
2�4(6). In m3 the �½

spinor forms a basis for �5 so that spin–orbit coupling is described by

�2 � �5 ¼ �6ð4Þ, �4 � �5 ¼ �5ð2Þ � �6ð4Þ: (7)

In a weakm3 field the 2Dmultiplet is split by spin–orbit coupling into its 2D3=2
(4) and 2D5=2

(6)

components. The 2D3=2
state is �6(4) while the 2D5=2

state splits into �5(2) and �6(4)

components, which correlate with the intermediate field case in eq. (21).

Problems

14.1 Show that the matrices �(R), �( B) of eq. (1 4.2.11 ) obey the multipl ication rules, eq.

( 14.2.12 ), for co-repr esentatio ns.

14.2 Find the type ((a) or (b), or (c)) of the co-representations of the magnetic point group

3m (no. 31 in Table 14.2), which has the unitary subgroup 3. [Hint: A¼�Q¼��d.

See Figure 12.10 for the definition of �d.]

14.3 Find the type ((a) or (b), or (c)) of the co-representations of themagnetic point group 4/m

(no. 19 in Table 14.2) which has the unitary subgroup 2/m. [Hint: A¼�Q ¼�Cþ
4z.]

14.4 Deriv e the PFs given in Table 14.4.

14.5 Verify that the �5 matrices in Table 14.4 satisfy the multiplication rules for

co-representations. It is not necessary to examine all possible products. Select, as a

typical example, R¼ �x and B ¼�� a in eq. ( 14.2.12 ). [ Hint : Re call �
2 ¼�1 for

spinor representations.]

14.6 Write down the eight 2� 2 matrices of the co-representation of m3 that are derived

from the 1 � 1 �( R) matrices of the 1E or �2 representation of m3. [Hint: Use the

inform ation in Table 14.3 and eqs. (14.2.4 0 ) or  (14.2 .41 ).]

14.7 Give a complete analysis of a 2D term in anm3 field, justifying the various statements

made in the solution sketched in the text. Include a correlation diagram (like Figure

14.1) that shows the splitting of the 2D level and indicate how the intermediate- and

weak-field states shift with increasing strength of the crystal field. Perform a similar

analysis for a 3D term in an m3 field.
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15 Physical properties of crystals

15.1 Tensors

I shall hardly do justice in this chapter to the tensor properties of crystals, a subject which

has been discussed in several excellent treatises. Those I am familiar with include

Bhagavantam (1966), Cracknell (1975), Nowick (1995), Nye (1957), and Wooster (1973).

In addition, some books on group theory (for example, Lax (1974) and Lyubarskii (1960))

devote some attention to this topic. That group theory can be useful in this context is shown

by Neumann’s principle that the symmetry of every physical property of a crystal must

include at least that of the point group of the crystal. The physical properties of crystals that

are amenable to group-theoretical treatment are represented by tensors. I shall therefore

begin with a brief introduction to tensors, sufficient for the main purpose of this chapter,

which is the application of group theory to simplify the tensor description of the physical

properties of crystals.

It will be more economical in the first two sections to label the coordinates of a point P by

{x1 x2 x3}. Symmetry operations transform points in space so that under a proper or improper

rotation A, P(x1 x2 x3) is transformed into P0ðx10 x20 x30Þ. The matrix representation of this

transformation is

jx10 x20 x30i ¼ Ajx1 x2 x3i: (1)

A more concise representation is

xi
0 ¼ aijxj, (2)

in which the Einstein summation convention implies a sum over repeated indices. Since the

aij are real, eq. (2) is an orthogonal transformation with

AAT ¼ E, det A ¼ �1, (3)

whereþ1 applies to proper rotations and�1 applies to improper rotations (Appendix

A1.3). If two symmetry operators B, A are applied successively, then P! P0 ! P00 and

(2) xi
00 ¼ aijxj

0 ¼ aijbjkxk ¼ cikxk : (4)

The symmetry operator C¼AB is represented by C¼ [cik]¼AB.

A quantity T that is invariant under all proper and improper rotations (that is, under all

orthogonal transformations) so that T 0 ¼ T, is a scalar, or tensor of rank 0, written T(0). If T

is invariant under proper rotations but changes sign on inversion, then it is a pseudoscalar.
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Pseudoscalars with the property T 0 ¼� T (where the positive sign applies to proper

rotations and the negative sign applies to improper rotations) are also called axial tensors

of rank 0, T(0)ax. A quantity T with three components {T1 T2 T3} that transform like the

coordinates {x1 x2 x3} of a point P, that is like the components of the position vector r, so

that

Ti
0 ¼ aij Tj, i, j ¼ 1, 2, 3 (5)

is a polar vector or tensor of rank 1, T(1). If

Ti
0 ¼ � aij Tj, i, j ¼ 1, 2, 3, (6)

where the positive sign applies to proper rotations {R} and the negative sign applies to

improper rotations {IR}, then T is a pseudovector or axial vector, or axial (or pseudo-)

tensor of rank 1, T(1)ax. Given two vectors u and v, the products of their coordinates ui vj
transform as

ui
0 vj

0 ¼ aik ajl uk vl: (7)

Any set of nine quantities {Tij} that transform like the products of the components of two

vectors in eq. (7), that is so that

Tij
0 ¼ aik ajl Tkl, (8)

is the set of components of a tensor of rank 2, T(2). This definition is readily extended so

that a tensor of rank n, T(n), is a quantity with 3n components that transform like

T 0
ijk . . . ¼ aip ajq akr . . . Tpqr . . . , (9)

where i, j, k, . . . , p, q, r, . . . ¼ 1, 2 or 3 and there are n subscripted indices on T and T 0. If

T 0
ijk . . . ¼ � aip ajq akr . . . Tpqr . . . , (10)

where the negative sign applies to improper rotations only, then T is an axial tensor or

pseudotensor of rank n, T(n)ax. If a T(2) has

Tij ¼ Tji, 8 i, j, (11)

then it is symmetric and consequently has only six independent components. But if

Tij ¼ �Tji, 8 i, j ðwhich entails Tii ¼ 0, 8 iÞ, (12)

then it is antisymmetric with consequently only three independent components. By

extension, any T(n) that is invariant (changes sign) under the interchange i$ j is

symmetric (antisymmetric) with respect to these two indices i and j. For example, if

dijk¼ dikj, 8 i, then the T(3) d is symmetric with respect to the interchange of j and k.

Symmetric and antisymmetric T(2)s will be indicated by T(2)s and T(2)as, respectively.

The symmetry of a tensor is an intrinsic feature of the physical property represented by

the tensor, which is unaffected by any proper or improper rotation. Depending on the

crystal class such symmetry operations may impose additional relations between the

tensor components.
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Symmetric tensors of rank 2 occur commonly in crystal physics. Consider the quadratic

form

Tij xi xj ¼ 1 (13)

of such a tensor, T. Then it is always possible to find a principal axis transformation

xi
0 ¼ aij xj, Tij

0 ¼ aij ajl Tkl (14)

which results in T 0 being in diagonal form, with matrix representative (MR)

T0 ¼
T1

0 0 0

0 T2
0 0

0 0 T3
0

2
4

3
5: (15)

The quadric eq. (13) referred to principal axes (on dropping primes in eq. (15)) is

hx1 x2 x3jTjx1 x2 x3i ¼ T1 x1
2 þ T2 x2

2 þ T3 x3
2 ¼ 1: (16)

If all three principal values are positive, the quadric surface is an ellipsoid with semiaxes

ai¼ Ti
�½, but if one or two of the principal values are negative the quadric surface is a

hyperboloid. For example, the (relative) impermeability tensor � is defined by �0/�, where

� is the permittivity and �0 is the permittivity of free space. As for any symmetric T(2) the

components of � define the representation quadric �ijxixj¼ 1, which here is called the

indicatrix or optical index ellipsoid. Referred to principal axes the indicatrix is

�1 x1
2 þ �2 x2

2 þ �3 x3
2 ¼ 1, (17)

where �i¼ �0/�i¼ 1/ni
2> 0 and the ni are the principal refractive indices.

A single-index notation for symmetric T(2)s introduced by Voigt is often very con-

venient. The pair of indices ij is contracted to the single index p according to the following

scheme:

ij ðor klÞ 11 22 33 23 or 32 31 or 13 12 or 21

p ðor qÞ 1 2 3 4 5 6

The Voigt notation may be extended to a symmetric T(4) tensor when Tijkl becomes Tpq.

Warnings (i) The {Tpq} do not form a second-rank tensor and so unitary transformations

must be carried out using the four-index notation Tijkl. (ii) The contraction of Tijkl may be

accompanied by the introduction of numerical factors, for example when T(4) is the elastic

stiffness (Nye (1957)).

In order to apply group theory to the physical properties of crystals, we need to study the

transformation of tensor components under the symmetry operations of the crystal point

group. These tensor components form bases for the irreducible repsensentations (IRs) of

the point group, for example {x1 x2 x3} for T(1) and the set of infinitesimal rotations

{Rx Ry Rz} for T(1)ax. (It should be remarked that although there is no unique way of

decomposing a finite rotation R(� n) into the product of three rotations about the coordi-

nate axes, infinitesimal rotations do commute and the vector � n can be resolved uniquely
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into its three projections �n1, �n2, �n3 when � is an infinitesimal angle.) The components

of the basis vectors are functions of x1 x2 x3, which transform in configuration space

according to

Rhe1 e2 e3j x1 x2 x3i ¼ he1 e2 e3 j�ðRÞj x1 x2 x3i

¼ he1 e2 e3 jx10 x20 x30i:
(18)

For tensors of higher rank we must ensure that the bases are properly normalized and

remain so under the unitary transformations that correspond to proper or improper rotations.

For a symmetric T(2) the six independent components transform like binary products.

There is only one way of writing x1 x1, but since x1 x2¼ x2 x1 the factors x1 and x2 may be

combined in two equivalent ways. For the bases to remain normalized under unitary

transformations the square of the normalization factor N for each tensor component is

the number of combinations of the suffices in that particular product. For binary products of

two unlike factors this number is two (namely ij and ji) and so N2¼ 2 and xi xj appears asffiffiffi
2

p
xi xj. The properly normalized orthogonal basis transforming like

hx12 x2
2 x3

2
ffiffiffi
2

p
x2x3

ffiffiffi
2

p
x3x1

ffiffiffi
2

p
x1x2 j (19)

is therefore

h�11 �22 �33

ffiffiffi
2

p
�23

ffiffiffi
2

p
�31

ffiffiffi
2

p
�12j (20)

or, in single suffix notation,

h�1 �2 �3 �4 �5 �6j: (21)

Equivalently, in a general T(2) xi xj is neither symmetric nor antisymmetric but may be

symmetrized by s xi xj¼ 2�½(xi xjþ xj xi). But if the T(2) is intrinsically symmetric

(because of the property it represents) then Tij¼ Tji and 2�½(xi xjþ xj xi) becomes 2½xi xj,

as in eq. (19). In general, for a symmetric T(n), the number of times the component Tijk . . .
occurs is the number of combinations of ijk . . . , that is

Pn=Pr1Pr2 . . . ¼ n!=r1! r2! . . . , (22)

where Pn¼ n! is the number of permutations of n objects and there are n subscripts in all, r1
alike of one kind, r2 alike of another kind, and so on. For example, for a symmetric T(3), Tiii
occurs once (N¼ 1), Tiij occurs 3!/2!¼ 3 times ðN ¼

ffiffiffi
3

p
Þ, and Tijk occurs 3!¼ 6 times

ðN ¼
ffiffiffi
6

p
Þ. Therefore, the orthonormal symmetric T(3) is

h�1 �2 �3 �4 �5 �6 �7 �8 �9 �10j, (23)

which transforms like

hx13 x2
3 x3

3
ffiffiffi
3

p
x1

2x2
ffiffiffi
3

p
x1

2x3
ffiffiffi
3

p
x2

2x3
ffiffiffi
3

p
x2

2x1
ffiffiffi
3

p
x3

2x1
ffiffiffi
3

p
x3

2x2
ffiffiffi
6

p
x1x2x3j:

(24)
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15.2 Crystal symmetry: the direct method

If a tensor T repr esents a ph ysical prope rty of a crystal, it mus t be invari ant under the

operations of the p oint group of the crystal. But if T is invariant under the generat ors of the

point group, it is certainl y invariant und er any of the point group opera tors and so it wi ll be

suffic ient to examin e the effect of the group generators on T.

Exampl e 15.2-1 Con sider a crystal propert y that is describ ed by a symmetric T (2) for

crystals of (a) D2h and (b) C2 sym metry. The transf ormation of { x 1 x 2 x 3} and of {� 1 �  2 �2

� 4 � 5 a6} under the group generat ors of D2h is give n in Table 15.1 (a). Onl y ( �1 � 2 � 3) are

invariant under {R} and so they are the only non-zero elements of T(2). The MR T of a

symmetric T(2) in (i) thus has the structure (ii) in D2h symmetry:

ðiÞ ðii Þ ðiiiÞ

� 1 � 6 �  5

�  6 � 2 �  4

�  5 � 4 �3

2
4

3
5 �1 0 0

0 �  2 0

0 0 �3

2
4

3
5 � 1 �  6 0

� 6 �2 0

0 0 �  3

2
4

3
5

tricli nic crystal D2h sym metry C 2 sym metry 

: (1)

The group C2 ¼ { E C2} has the gener ator C2. Table 15.1 (b) shows that (� 1 � 2 �3 �  6) are

invari ant under { R} and the structure of T is therefore as shown in (iii).

Example 15.2-2 Determine the non-zero elements of the elasticity tensor cijkl for a crystal

of D4 symmetry. The generalized form of Hooke’s law is

�ij ¼ cijkl "kl, i, j, k, l ¼ 1, 2, 3, (2)

where both the stress � and strain " are symmetric T(2)s. They are field tensors that

describe the applied forces and the resulting strains. The eighty-one elastic stiffness

constants cijkl form a T(4) which is symmetric with respect to the interchanges

i $ j, k $ l, ij $ kl: (3)

These symmetries in eq. (3) reduce the number of independent tensor components for a

triclinic crystal from eighty-one to twenty-one, which in Voigt notation form a symmetric

Table 15.1. Transf ormation of the tensor com ponents {x 1 x 2 x 3} and {� 1 � 2 � 3 � 4 � 5 �  6 }

under (a) the gener ators of D 2h and (b) the gener ator of C2.

The defini tion of the com ponents of � is given in eqs. ( 15.1.21 ) and ( 15.1.19 ).

R x1 x 2 x 3 �1 �2 �3 �4 � 5 � 6

(a) C 2z � x1 � x2 x 3 �1 �2 �3 ��4 �� 5 � 6

C 2y �x1 x2 �x3 �1 �2 �3 ��4 �5 ��6

I �x1 �x2 �x3 �1 �2 �3 �4 �5 �6

(b) C2 �x1 �x2 x3 �1 �2 �3 ��4 ��5 �6
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6� 6 matrix [cpq]. The symmetry of [cpq] follows from thermodynamic arguments (see, for

example, Nye (1957), pp. 136–7). The generators of D4 areC4z,C2x, and the transformation

of ½cpq � in suff ix nota tion is give n in Table s 15.2 (b), (c). Since [ cpq ] is inva riant u nder
the point group generators, if cpq transforms into�cpq, it must be zero, whereas if

cpq transf orms into c rs, then c rs ¼ cpq . For examp le, Table s 15.2 (b) and (c) show that

15 ¼�15¼ 0¼ 24, that 14¼�25¼�14¼ 0, and so on. The resulting matrix of second-

order elastic stiffness constants (in Voigt notation) is in Table 15.2 (d).

A similar procedure may be followed for other point groups and for tensors representing

other physical properties of crystals.

Table 15.2. Table (a) shows the transforms {x1
0 x2

0 x3
0} of {x1 x2 x3} under the group

generators of D4. Tables (b) and (c) give, in suffix notation, the transforms c
0
pq of cpq under

C2x and C4z. Table (d) gives the upper half of the symmetric matrix [cpq] for crystals of D4

symmetry. The tables on the right of (b) and (c) explain how the entries in the tables on the

left are arrived at, using Table (a) to derive i0j 0 (or k0l0).

(a) D4 x1
0 x2

0 x3
0

C2x x1 �x2 �x3
C4z �x2 x1 x3

(d)
[cpq] 11 12 13 0 0 0

11 13 0 0 0
33 0 0 0

44 0 0
44 0

66

(c) p ij i0j0 p0

C4z 22 12 23 25 �24 �26 1 11 22 2
11 13 15 �14 �16 2 22 11 1

33 35 �34 �36 3 33 33 3
55 �45 �56 4 23 13 5

44 46 5 13 �23 �4
66 6 12 �12 �6

q kl k0l0 q0

(b) p ij i 0j 0 p 0

C2x 11 12 13 14 �15 �16 1 11 11 1
22 23 24 �25 �26 2 22 22 2

33 34 �35 �36 3 33 33 3
44 �45 �46 4 23 23 4

55 56 5 13 �13 �5
66 6 12 �12 �6

q kl k0l0 q0
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15.3 Group theory and physical properties of crystals

A new approach to the application of group theory in the study of the physical properties of

crystals, which is more powerful than the direct method described in Section 15.2, has been

developed by Nowick and is described fully in his book Crystal Properties via Group

Theory (Nowick (1995)). A brief outline of Nowick’s method will be given here. The

equilibrium physical properties of crystals are described by constitutive relations which are

Taylor expansions of some thermodynamic quantity Yi in terms of a set of thermodynamic

variables Xj. Usually, only the first term is retained giving the linear relations

Yi ¼ Kij Xj: (1)

Additional symmetries arise when the tensors Xj and/or Yi are symmetric, and from

crystal symmetry in accordance with Neumann’s principle, as seen in Section 15.2. These

symmetries are properties of the tensor and the crystal point group, and, if different

physical properties may be represented by the same kind of tensor, it will exhibit the

same structure, irrespective of the actual physical property under consideration.

In the linear-response region the fluxes Ji of matter and heat are related to the

thermodynamic forces Fk by linear phenomenological relations

Ji ¼ Lik Fk : (2)

The forces Fk involve gradients of intensive properties (temperature, electrochemical

potential). The Lik are called phenomenological coefficients and the fundamental theorem

of the thermodynamics of irreversible processes, due originally to Onsager (1931a, b), is

that when the fluxes and forces are chosen to satisfy the equation

T dS=dt ¼ JkFk , (3)

where dS/dt is the rate of entropy production, then the matrix of phenomenological

coefficients is symmetric,

LikðBÞ ¼ Lkið�BÞ, (4)

where B is magnetic induction. Onsager’s theorem is based on the time-reversal symmetry

of the equations of classical and quantum mechanics, and therefore if a magnetic field is

present the sign of B must be reversed when applying the symmetry relation, eq. (4).

Onsager’s original demonstration of his reciprocity theorem, eq. (4), was based on the

assumption that the regression of fluctuations in the thermodynamic parameters is gov-

erned by the same linear laws as are macroscopic processes (Callen (1960)). But there are

difficulties in applying this hypothesis to continuous systems (Casimir (1945)), and the

modern proof (De Groot and Mazur (1962)) employs time-correlation functions and the

fluctuation–dissipation theorem. For the purpose of applying group theory to the physical

properties of crystals, we may confidently assume the validity of the Onsager reciprocal

relations (ORRs) for the linear-response coefficients (eq. (4)), which have also been

verified in particular cases experimentally and by statistical-mechanical calculation of

the Lik (Allnatt and Lidiard (1993), chap. 6).
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The tensor components that form bases for the IRs of the point groups are given in

character tables, usually for T(1), T(1)ax, and T(2) only. In all other cases, one may use the

projection operator P� in

P� Xi ¼
P
R

��ðRÞ�R̂Xi, (5)

where Xi is a component of the tensor X and � labels the IRs. For degenerate representations

the projection must be continued with a second and, if necessary, third component until all

the degenerate bases have been obtained. Many examples of finding these symmetry

coordinates (or symmetry-adapted linear combinations, as they are often called) have

been given in Chapters 6 and 9. An easier method of finding the IRs for bases that consist

of products of components of tensors of lower rank is to form direct product (DP)

representations. When more than one set of symmetry coordinates form bases for degen-

erate representations, it is advantageous to ensure that these sets are similarly oriented, that

is that they transform in a corresponding fashion under the point group generators (which

ensures that they will do so under all the operators of the point group). For example, the

generators of C4v are C4z and �x. (Since the components of a polar vector are always

labeled by x y z rather than by x1 x2 x3 in character tables, we revert now to this notation.)

The Jones symbols for the bases {x y z} and {Rx Ry Rz} are given in Table 15.3 for the

generators of C4v. This table shows that the pairs (x y) and (Ry �Rx) transform in a

corresponding manner. To see this, we note that under C4z, Ry transforms into its partner

namely�Rx (just as x! y) while�Rx transforms into the negative of its partner,

namely�Ry (just as y!�x). Again, under �x, Ry transforms into�Ry (like x into�x)

while�Rx is invariant (and so is y). It is not usual in character tables to order the degenerate

pairs (and triples) so as to preserve similarity of orientation, since this is not a consideration

in other applications of group theory. Nevertheless, it may always be worked out in the

above manner using the group generators. Alternatively, one may find tables which give

similarly ori ented bases in append ix E of Nowick (1995 ). In the groups Cnv, Dn, Dnh, and

also D2d and D3d, it is advisable to determine similarity of orientation in E representations

using �4 �5, rather than by x y (as in the C4v example above) as this simplifies the analysis

of stress and strain (Nowick and Heller (1965)). Henceforth in this chapter ‘‘symmetry

coordinates’’ will imply similarly oriented bases. If it happens that X1, X2 form bases for

Table 15.3. Transformation of the bases {x y z} and {Rx Ry Rz} under the generators C4z

and sx of the point group C4v.

See the text for an explanation of the determination of the orientation of the polar and axial

vectors in the doubly degenerate E representation.

Basis C4z sx IRs Orientation (for E basis)

xyz yxz xyz A1�E x, y
RxRyRz RyRxRz RxRyRz A2�E Ry, �Rx
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two 1-D repr esentatio ns, then it is necessar y to check the tra nsformation of X1 � X2 to see

which linear com bination forms a basi s for each of the two IRs.

The first step in the group theo retical determ ination of the MR K of the physi cal

prope rty k defined by eq. ( 1), o r its MR,

(1) jY i ¼ K j X i, (6)

is to write down the unitar y matrix S that transf orms the tens or com ponents { Xk} and { Yk}

into (orient ed) sym metry coordina tes. Not e that {Xk } and { Yk} denote one of the tensor

bases {x y z}, {Rx Ry Rz }, {�  k} (eq. ( 15.1.21 )), or {� k} (eq. ( 15.1.23 )). This can be done

from the informat ion available in charact er tables, though a little extra work may be n eeded

to determin e the IRs spanne d by {�k}. Similar ity of ori entation mus t also be d etermined at

this stage. Alternati vely, the sym metry coord inate tables given by Nowi ck (1995 ) may be

consult ed. This transf ormation is for { Xk} (in tens or nota tion)

X 
�
dr ¼ S 

�
dr , k Xk , (7)

where � denotes one of the IR s spanne d by { Xk}, d is the degene racy inde x, and r is the

repeat index: r ¼ 1, 2, . . .  iden tifies the basis whe n the sam e IR occur s more than once, and

d ¼ 1, 2, . . .  enum erates the component s of { Xk} that form a basis for a degene rate

represe ntation. Since S is unitary, each row of S must be normal ized and orthogona l to

every other row. As an exampl e, the matri x S for the group C4v and basis { �k} is given in

Table 15.4 .

The usefulne ss of group theory in establ ishing the non-z ero eleme nts of K is a

conse quence of the funda mental theo rem (FT; Nowick ( 1995 )), whi ch may be stated as

follows.

Provided the different sets of symmetry coordinates that form bases for a particular IR are

similarly oriented, only symmetry coordinates in {Yk} and {Xk} that belong to the same IR

Table 15.4. Mat rix elements of S (see eq. ( 15.3.7 )) for the group C4v and a basis

comprising the symmetrical T(2) tensor components {�k } defined in eq. (15.1.1 9 ).

S transforms |�1 �2 �3 �4 �5 �6i into the symmetry coordinate basis |X �
dri. Normalization

factors are included in S but omitted from X �
dri, as is usually the case in character tables.

For the reason given in the text, in this group �4 �5 are used to define similarity of

orientation in the doubly degenerate E representation.

� r d X�
dr S �k

A1 1 1 �1þ�2 2�½ 2�½ 0 0 0 0 �1

A1 2 1 �3 0 0 1 0 0 0 �2

B1 1 1 �1��2 2�½ 2�½ 0 0 0 0 �3

B2 1 1 �6 0 0 0 0 0 1 �4

E 1
1 �4 0 0 0 1 0 0 �5

2 �5 0 0 0 0 1 0 �6

�
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and have the same degeneracy index d are coupled (that is, connected by a non-zero

coefficient inK). For degenerate representations the different sets of symmetry coordinates

are coupled by the same coefficient.

Suppose that the tensor bases in the relation

jY i ¼ KjX i, (6)

have already been expressed in (similarly oriented) symmetry coordinates. Then, under a

symmetry operation R,

jX 0i ¼ �ðX ÞðRÞ jX i, jY 0i ¼ �ðY ÞðRÞ jY i, (8)

where the superscripts in parentheses distinguish the bases.

(6), (8) jY 0i ¼ �ðY ÞðRÞ jY i ¼ �ðY ÞðRÞK jX i
¼ K0 jX 0i ¼ K0�ðX ÞðRÞ jX i; (9)

(9) K0 ¼ �ðY ÞðRÞ K �ðX ÞðRÞy: (10)

But since K represents a physical property, K is invariant under R and

(10) �ðY ÞðRÞ K ¼ K �ðX ÞðRÞ, (11)

in which �(Y)(R) and �(X)(R) are each a direct sum of MRs for particular IRs. By Schur’s

lemma (see Section A1.5) all the blocks (submatrices of K) that connect the same IRs

in�(Y)(R) and�(X)(R) are multiples of the unit matrix, while those that connect different IRs

are zero. The importance of similarity of orientation lies in the fact that it guarantees that

the blocks of �(Y)(R), �(X)(R) have the same form rather than just equivalent forms.

It follows as a corollary to the FT that if {X} and {Y} have no IRs in common, then K is

identically zero. For a triclinic crystal, all symmetry coordinates belong to the A repre-

sentation and therefore are coupled, with consequently no zero entries in K. In general, it

follows from the FT that

(6) Y
�
dr ¼ K�

rs X
�
ds, (12)

where the FT requires the same � and d onX and Y. Note thatK is invariant under R2G and

that the superscript � on Krs serves as a reminder that it couples a Y and an X which form

bases for the IR�. If � is 1-D, d is redundant, and if the repeat indices r, s¼ 1 they may also

be dropped, giving

(12) Y � ¼ K� X � , (13)

but if X1, X2 both form bases for the same 1-D representation (s¼ 1, 2) then

(12) Y � ¼ K
�
1X

�
1 þ K

�
2X

�
2 : (14)
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If � is also repeated in Y, so that r, s¼ 1, 2,

(12) Y
�
1 ¼K

�
11 X

�
1 þ K

�
12 X

�
2 ,

Y
�
2 ¼K

�
21X

�
1 þ K

�
22X

�
2 :

(15)

If there are no other IRs common to Y and X, then eqs. (15) show that there are only four

non-zeroKrs coefficients inK. Depending on the nature of the property it represents,Kmay

be a symmetric matrix, and if this is true here K12¼K21, leaving three independent

coefficients. Equations (13)–(15) hold also for E or T representations since according to

the FT the K coefficients that belong to different degeneracy indices are zero, while the

coefficients for the same d are independent of d.

Exercise 15.3-1 Determine the number of independent K coefficients when Y is a vector

and X is a symmetric tensor of rank 2, for crystals that belong to the point groups (a) C3v,

and (b) D2d.

When � is not ��* (case (b) in Section 13.4), �, �* form a degenerate pair which are

generally labeled by 1E, 2E (sometimes with subscripts). Applying the projection operatorP
R

�ðRÞ�R̂ to a tensor component will therefore yield symmetry coordinates from 1E, 2E

that are complex conjugates (CCs) of one another. Suppose that X(1E)¼X1� iX2,

X(2E)¼X1 þ iX2, and similarly for the tensor Y. Then from the FT

Y1 � iY2 ¼KEðX1 � iX2Þ, Y1 þ iY2 ¼KE�ðX1 þ iX2Þ, (16)

where

KE ¼KE
Re þ iKE

Im: (17)

(16), (17) Y1 ¼KE
Re X1 þ KE

Im X2, Y2 ¼�KE
Im X1 þ KE

Re X2, (18)

(18)
Y1

Y2

" #
¼

KE
Re KE

Im

�KE
Im KE

Re

" #
X1

X2

" #
, (19)

so that there are two real independent coefficients KE
Re and KE

Im, unless K happens to be

symmetric, in which case KE
Im is zero. But if the conjugate bases for 1E and 2E are X1� iX2,

Y1� iY2 then a similar analysis yields

KE ¼
KE
Re KE

Im

KE
Im �KE

Re

" #
(20)

with two independent coefficients.

The method described above is more powerful than earlier methods, especially for

tensors of higher rank and for groups that have three-fold or six-fold principal axes.
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Answer to Exercise 15.3-1

(a) From the character table for C3v the IR for which both {x y z} and {�k} form bases are

given in Table 15.5. For both representations r¼ 1, s¼ 1, 2. Therefore eq. (14) holds for

both IRs and there are four independent components. (Since �4¼ 2½yz, �5¼ 2½zx, and z is

invariant under the generators of C3v, similarity of orientation requires (y x) as the E-basis

in column 2 of Table 15.5).

(b) For D2d the IRs B2 and E each have one basis function from {x y z} and {�k}, namely

z and �6 for B2, and (x y) and (�4 �5) for E. That (x y) is similarly oriented to

(�4 �5) is readily confirmed. The transformation of bases under the generators of D2d

are in Table 15.6. Equation (13) holds for �¼B2, E, and there are therefore two indepen-

dent coefficients.

15.4 Applications

The fundamental equation for the internal energy U of a thermodynamic system is

dU ¼ Xi dYi, (1)

where the gradient of Xi is a generalized force, and the consequent change in Yi is its

conjugate response. For example,Ximight be the temperature T and Yimight be the entropy

S of the system. Experiment shows that, in general, a given response depends on all the

forces and that when the forces are sufficiently small this dependence is linear, so

dYi ¼Kij dXj: (2)

For systems in equilibrium, eq. (2) yields

�Yi ¼Kij �Xj, (3)

where�Yi¼ Yi� Yi0,�Xj¼Xj�Xj0, and the subscripts zero on Y and X indicate the initial

state of the system. The integration that yields eq. (3) assumes that the Kij are independent

Table 15.5.

� Basis {x y z} {�k}

A1 z �1þ�2, �3

E (y x) (�1��2, �6), (�4 �5)

Table 15.6.

E S4 C2x

xyz yxz xyz
�4�5 �5�4 �4�5
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of the forces {Xj} (the linear approximation). In the majority of cases it is convenient to take

the reference values Yi0, Xj0 as zero, which amounts to saying, for example, that the crystal is

not strained ("ij¼ 0) when there is no applied stress (�ij¼ 0). In such cases eq. (3) becomes

Yi ¼Kij Xj: (4)

This is the form we have already used to describe the linear responses which define the

properties of materials, but in some cases, notably for the temperature T, it is inconvenient

to set the initial value T0 to zero (this would require redefining the thermodynamic

temperature scale), and so eq. (3) is used instead (see Table 15.7). In the particular example

of a change in temperature, the conjugate response is

�S¼ðC=TÞ �T , (5)

where C is the heat capacity of the system. Table 15.7 summarizes the names and symbols

used for the equilibrium properties which determine the linear response �Yi to the forces

�Xj, or Yi to Xj when their values in their initial states are set to zero. The symmetry of

the matrices K in any point group may be determined by the methods that were covered in

Section 15.3.

Example 15.4-1 Obtain the K matrix for a T(2) for a crystal that belongs to one of the

uniaxial groups. [Hint: Take Y and X both as T(1)s.]

The uniaxial groups are of two kinds, those that contain case (b) 1E, 2E representations

which are CCs of one another (called ‘‘lower symmetry’’ groups), and those with no case

(b) representations (termed ‘‘upper symmetry groups’’). For the latter, (x y) span an E

irreducible representation while z is the basis of non-degenerate A or B representation.

Consequently,

Y1 ¼KE X1, Y2 ¼KE X2, Y3 ¼ KA,B X3, (6)

and the dielectric permittivity matrix �, for example, is

� ¼
�11 0 0

0 �11 0

0 0 �33

2
4

3
5: (7)

For the lower uniaxial groups,

(15.3.19) K ¼
KE
Re KE

Im 0

�KE
Im KE

Re 0

0 0 KA,B

2
64

3
75 (8)

But for the dielectric permittivity, and any symmetric T(2), K is symmetric ðKE
Im ¼ 0Þ and

� has the same form (eq. (7)) for all uniaxial groups.

Example 15.4-2 For a crystal to exhibit optical activity the gyration tensor [gij] with

i, j¼ 1, 2, 3, which is a symmetric axial second-rank tensor, must have at least one non-zero

element. Determine the form of the gyration tensor for C4v and D2d symmetry.
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For a symmetricT(2)ax wemaywork out the structure ofK by takingY as a T(1)ax (basis {Rx

Ry Rz}) and X as a T(1) (basis {x y z}) and then makingK symmetric. From the character table

for D2d (on determining the similarity of orientation) we find that (x y) and (Rx �Ry) both

form a basis for E while z and Rz belong to different IRs. Therefore, from the FT, K33¼ 0 and

Y1 ¼K11 X1 þ K12 X2,

Y2 ¼�K21 X1 � K22 X2:
(9)

Since K is symmetric, the off-diagonal elements are zero and

½gij� ¼
g11 0

0 �g11

� �
: (10)

For C4v, (x y) and (Ry �Rx) are bases for the E representation. Therefore,

Y1 ¼�K X2, Y2 ¼ K X1: (11)

But since K is symmetric, [gij] vanishes in this point group (and, in fact, in all the uniaxial

Cnv point groups). (Note the importance of similarity of orientation in reaching the correct

conclusions in this example.)

Generally the linear approximation suffices, but, because the refractive index can be

measured with considerable precision, the change in the impermeability tensor due to stress

and electric field should be written as

��ij ¼ rijkEk þ pijklEkEl þ qijkl�kl: (12)

The T(3) rijk gives the linear electro-optic (Pockels) effect, while the T(4) pijkl is respon-

sible for the quadratic electro-optic (Kerr) effect; qijkl is the photoelastic tensor.

To describe large deformations, the Lagrangian strains 	ij are defined by

	ij ¼
1

2

@ui
@xj

þ @uj
@xi

þ @uk
@xi

@uk
@xj

� �
, (13)

where ui is the displacement in the ith direction in the deformed state. A Taylor expansion

of the elastic strain energy in terms of the strains 	ij about a state of zero strain gives

U � U0 ¼ 1

2
cijkl 	ij 	kl þ 1

6
Cijklmn 	ij 	kl 	mn þ 	 	 	 (14)

The thermodynamic tensions tij are defined by (@U/@	ij) so that

(14) tij ¼ð@U=@ 	ijÞ¼ cijkl 	kl þ 1

2
Cijklmn 	kl 	mn þ 	 	 	 (15)

In Voigt notation,

(15) tp ¼ð@U=@ 	pÞ¼ cpq 	q þ 1

2
Cpqr 	q 	r þ 	 	 	 (16)

The fifty-six components Cpqr (which do not constitute a tensor) are the third-order elastic

constants: they are symmetric with respect to all interchanges of p, q, and r. The expansion
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of U � U0 in eq. ( 14 ) can be carr ied to higher orders, but fourth- (and higher) order elastic

constant s are of limit ed application.

Exampl e 15.4 -3 Both the piezoel ectric effect and the Pockels effect involve coupl ing

betwee n a vector and a sym metric T(2). The structure of K is theref ore simi lar in the two

cases, the only differ ence bein g that the 6 � 3 matrix [ rqi] is the transpos e of the 3 � 6

matrix [ diq] where i ¼ 1, 2, 3 denot e the vecto r com ponents and q ¼ 1, . . . , 6 denot e the

component s o f the sym metric T (2) in the usual (Voigt ) notation . Deter mine the structure o f

the piezo electric tensor for a crystal of C3v symme try.

The allocation of vector and tensor component s to IRs and simi larity of orient ation have

already been dete rmined for the point group C3v in Exerc ise 15.3-1 . Th erefore the linear

equatio ns relating the vector {x y z} and the symmetr ic T(2) { �k} are

z ¼ 2�½ K A1

1 ð�1 þ � 2 Þ þ  K A1

2 �3

y ¼ 2�½ K E1 ð� 1 � �  2 Þ þ K E2 � 4 ,

x ¼ K E1 �  6 þ K E2 � 5 :

(17)

The factor s 2� ½ ensur e normal ization o f the row s of the S matrix, and the subscri pts

1, 2 on K are the values of the repeat index. Therefore, on writing K15 ¼ K E2 , K22 ¼ 2�½ K E1 ,

K31 ¼ 2�½ K A1

1 , K33 ¼ K A 12 ,

(17) K ¼
0 0 0 0 K15

ffiffiffi
2

p
K22

K22 � K22 0 K 15 0 0

K31 K 31 K 33 0 0  0

2
4

3
5: (18)

Group theo ry can tell us which eleme nts of K are non-z ero and about equaliti es betwee n
non-z ero eleme nts, but numeri cal factor s (like

ffiffiffi
2

p
in the first row of K ) are simply a matt er

of how the Kiq are defined in terms of the constant s K A 11 , K A1

2 , K E1 , and K 
E
2 , thi s bein g usual ly

done in a way that reduc es the n umber of numeri cal factors. In LiN bO3 the electro-optic

coefficient r33 is more than three times r13, which gives rise to a relatively large difference

in refractive index in directions along and normal to the optic (z) axis, thus making this

material particularly useful in device applications.

15.4.1 Thermoelectric effects

In a crystal in which the only mobile species are electrons and there is no magnetic field

present , the flux equatio ns (15.3 .2 ) for the transport of ele ctrons and heat are

Je ¼ �� r�� ð�=TÞ rT , (19)

Jq ¼ ��y r�� ð�=TÞ rT , (20)

where � is the electrochemical potential. To simplify the notation, �, �, and �, which are

T(2)s, have been used for the phenomenological coefficients Lee, Leq, and Lqq. (In this

section the superscript y is used to denote the transpose even when the matrix is real,
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because in thermodynamics a superscript T is often used to denote constant temperature.)

That the thermodynamic forces arer� and r T = T follows from eq. (1 5.3.3 ) (for exam ple

Callen ( 1960 ), De Groot and Mazur ( 1962 )). From the ORRs (eq. (15.3 .4 )), � and � are

symmetric T(2)s; � is real, but not symmetric, the ORRs being met by its transpose �y

appearing in eq. (20). Setting

�� 1 �=T ¼ S, (21)

�ð�y��1� � �Þ=T ¼ k, (22)

(19)�(22) r� ¼ ���1Je � SrT , (23)

Jq ¼ TSyJe � krT : (24)

S is the thermoelectric power tensor. In a homogeneous isothermal system, rT ¼ 0,

r� ¼ r�þ er� ¼ 0 (� is the chemical potential), and the electrical current density j is

given by

(23) j ¼ �eJe ¼ ��e2r� ¼ �e2E ¼ �E, (25)

where E¼�r� is the electric field, s¼�e2 is the electrical conductivity, and s�1¼ 
,

the resistivity. Since � is a symmetric T(2), so are s and 
. When there is no electric

current, Je¼ 0 and
Jq ¼ �krT , (26)

which shows that k is the thermal conductivity. The potential gradient produced by a

temperature gradient under open circuit conditions is

(23) r� ¼ ð1=eÞðSrT þr�Þ: (27)

If eq. (27) is integrated around a circuit from I in a metal b through metal a (with the b/a

junction at T ) to II also in metal b (at the same temperature as I) but with the a/b junction at

Tþ�T, then the potential difference ��¼�II��I (which is called the Seebeck effect) is

(27) ��þ ð1=eÞðSb � SaÞ�T : (28)

Such an electrical circuit is a thermocouple, and��� /�T¼ � is the thermoelectric power

of the thermocouple,

(28) � ¼ ð�1=eÞðSb � SaÞ: (29)

The sign convention adopted for metals (but not for ionic conductors) is that � is positive if

the hot electrode is negative, so that positive current flows from a to b at the hot junction.

Exercise 15.4-1 Why does the term r� vanish in going from eq. (27) to eq. (28)?

The thermoelectric power tensorS is not symmetric becauseS¼��1�, and although the

ORRs require � to be symmetric, this is not true of the off-diagonal T(2) �. Equation (24)

shows that when there is no temperature gradient, a flow of electric current produces heat

(the Peltier effect), the magnitude of which is determined by Sy.
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15.4.2 Galvanomagnetic and thermomagnetic effects

Names and symbols used for galvanomagnetic and thermomagnetic effects in crystals are

summarized in Table 15.8. In the presence of a magnetic field, crystal properties become

functions of the magnetic induction B, and the ORRs, hitherto applied in the zero-field

form Lik¼ Lki are

LikðBÞ ¼ Lkið�BÞ: (15:3:4)

This means that the resistivity and thermal conductivity tensors are no longer symmetric.

For example,


ikðBÞ ¼ 
kið�BÞ: (30)

However, any second-rank tensor can be written as the sum of symmetric and anti-

symmetric parts, so


ikðBÞ ¼ 
sikðBÞ þ 
asik ðBÞ, (31)

where


sikðBÞ ¼ 
skiðBÞ, 
asik ðBÞ ¼ �
aski ðBÞ, (32)

(30)�(32) 
sikðBÞ þ 
asik ðBÞ ¼ 
skið�BÞ þ 
aski ð�BÞ ¼ 
sikð�BÞ � 
asik ð�BÞ: (33)

Table 15.8. Symbols and names used for transport phenomena in crystals.

The tensor components shown in columns 2–5 are obtained by expanding the tensor component in

column 1 in powe rs of B, as in eqs. (15.4.3 4 ) and ( 15.4.35 ). Th e Hall tensor 
ikl is also commonly

denoted by Rikl. A dash means that there is no common name for that property.

Coefficient of

Tensor component Bl Bl Bm Bl Bm Bn

Galvanomagnetic effects

ik (B) 
ik, electrical

resistivity

ikl, Hall effect 
iklm, magnetoresistance 
iklmn, second-order

Hall effect

Sy
ikðBÞ Sy

ik , – Sy
ikl, Ettinghausen

effect

Sy
iklm, – Sy

iklmn, second-order

Ettinghausen
effect?

Thermomagnetic effects
kik (B) kik, thermal

conductivity
kikl, Leduc–Righi
effect

kiklm, magnetothermal
conductivity

kiklmn, second-order
Leduc–Righi
effect

Sik (B) Sik, thermoelectric
power

Sikl, Nernst effect Siklm, magneto-
thermoelectric
power

Siklmn, second-order
Nernst effect
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Equating symmetric and antisymmetric parts of the LS and RS of eq. (33) gives

(33) 
sikðBÞ ¼ 
sikð�BÞ, 
asik ðBÞ ¼ �
asik ð�BÞ, (34)

which shows that 
 s
ik , 


as
ik are, respectively, even and odd functions of B. We now expand


 s
ik in powers of B. Terms with even powers give the symmetric component, and those with

odd powers of B provide the antisymmetric component, so that


sikðBÞ ¼ 
ik þ 
iklmBlBm þ 	 	 	 (35)


asik ðBÞ ¼ 
iklBl þ 
iklmBlBmBn þ 	 	 	 (36)

The thermal conductivity tensor kmay likewise be split into symmetric and antisymmetric

parts, with expansions in powers of B as in eqs. (35) and (36). But S is not necessarily a

symmetric tensor at B¼ 0, and so the expansion of the antisymmetric part of S in an

equation like eq. (36) is not applicable. Instead,

SikðBÞ ¼ Sik þSikl Bl þ Siklm BlBm þ 	 	 	 (37)

Example 15.4-4 Determine the structure of the Nernst tensor for cubic crystals.

Sik is a measure of the ith component of the electric field produced by the kth component

of the temperature gradient (eq. (27)) andSikl is a measure of the effect of the lth component

of the magnetic induction Bl on Sik. Therefore, �ikl describes the coupling between a T(2),

Sik, and an axial vector B, the components of which transform like {Rx Ry Rz}. The

components {Yk} of a T(2) transform like binary products of coordinates, that is like the

nine quantities

(15.1.19) fx1 x2 x3g 
 fx1 x2 x3g

¼ fx12 x2
2 x3

2 2�½x2x3 2�½x3x1 2�½x1x2 2�½x3x2 2�½x1x3 2�½x2x1g (38)

¼ fxixjg¼fYijg¼fYkg, i, j¼1, 2, 3, k¼1, . . . , 9, (39)

where Yij transforms like xixj and the factors of 2�½ ensure normalization. The set of nine

components in eq. (39) may be separated into two subsets which are symmetric and

antisymmetric with respect to i$ j.

(39) fYkg ¼fY11 Y22 Y33 2�½ðY23 þ Y32Þ 2�½ðY31 þ Y13Þ 2�½ðY12 þ Y21Þg
� f2�½ðY23 � Y32Þ 2�½ðY31 � Y13Þ 2�½ðY12 � Y21Þg

¼fY1 Y2 Y3 Y4 Y5 Y6g � fY7 Y8 Y9g ¼ fY sg � fY asg; (40)

{Y s} is just the symmetric T(2) with basis {�k}, but the components of {Yas} transform like

the axial vector {Rx Ry Rz} (see eq. (40)). Therefore one needs to determine from

character tables the IRs with bases that are components of the T(1)ax {Rx Ry Rz} and the

symmetric T(2) {�k}. The first-order correction to Sik in a magnetic field is

Sð1Þ
ik ¼ Sikl Bl, (41)
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or, in matrix notation, the supermatrix

�
ð1Þ ¼ �½ik, l� Bl (42)

where �[ik,l] denotes a 3� 9 matrix consisting of three 3� 3 blocks, each of the blocks

describing the coupling to B1, B2, and B3, respectively. The subscript l of the matrix

element in eq. (42) tells us which component of B it will multiply. In the lower cubic

groups T (23), Th (m3), (Rx Ry Rz) and (�4 �5 �6) both form bases for a triply degenerate

representation, T or Tg, respectively. Therefore, the T(1)ax (X1 X2 X3) – which here are

(B1 B2 B3) – are coupled with both the symmetric components (Y4 Y5 Y6) and the antisym-

metric components (Y7 Y8 Y9) of the T(2) (which here is Sik). Therefore, for l¼ 1,

Y4 ¼ 2�½ðY23 þ Y32Þ ¼ KT
1 B1, (43)

Y7 ¼ 2�½ðY23 � Y32Þ ¼ KT
2 B1, (44)

and similarly for Y5, Y8, which couple with B2, and Y6, Y9, which couple with B3; (Y1 Y2 Y3)

do not occur in this IR and so Y1¼ Y2¼ Y3¼ 0.

(43), (44) Y23 ¼ 2�½ðKT
1 þ KT

2 ÞB1, Y32 ¼ 2�½ðKT
1 � KT

2 Þ B1: (45)

Re-writing eqs. (45) in notation appropriate to the current problem,

(45) Sð1Þ
23 ¼ S231 B1, Sð1Þ

32 ¼ S321 B1: (46)

Proceeding similarly for l¼ 2 and l¼ 3, and recalling that KT
1 ,K

T
2 are independent of the

degene racy index so that the constant s in eqs. (43 )–(4 6) are independe nt of l, the �[ik,l ]

matrix is

0 0 0 0 0 321 0 231 0

0 0 231 0 0 0 321 0 0

0 321 0 231 0 0 0 0 0

2
4

3
5

l ¼ 1 l ¼ 2 l ¼ 3

,
(47)

in which S is omitted, so that only the subscripts ikl are given; l¼ 1, 2, and 3 mark the three

3� 3 blocks. In the upper cubic groups Td, O, Oh (43m, 432,m3m), no components of {Ys}

share a representation with T(1)ax which forms a basis for T1 or T1g. Therefore {Y1 . . . Y6}

are zero and T(1)ax couples only with {Yas},

Y4 ¼ 2�½ðY23 þ Y32Þ ¼ 0, (48)

Y7 ¼ 2�½ðY23 � Y32Þ ¼ KTB1, (49)

(48), (49) Y23 ¼ 2�½KTB1, Y32 ¼ �Y23, (50)

with similar results for l¼ 2, 3. In notation appropriate to the Nernst tensor,

(50) S1
23 ¼ S231 B1, Sð1Þ

32 ¼ �S231 B1, (51)
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and similarly, so that �[ik,l] takes the form

0 0 0 0 0 �231 0 231 0

0 0 231 0 0 0 �231 0 0

0 �231 0 231 0 0 0 0 0

2
4

3
5

l ¼ 1 l ¼ 2 l ¼ 3

: (52)

For other point groups this analysis of the symmetry properties of a T(3)ax can be repeated,

or alternatively tables given by Bhagavantam (1966) or Nowick (1995) may be consulted.

The Hall tensor 
ikl (and likewise the Leduc–Righi tensor kikl) is also a T(3)ax tensor but

differs from the Nernst tensor in that 
ik is symmetric and 
ikl Bl¼ 
kil(�Bl) so that the

blocks 
[ik,l] are antisymmetric with respect to i$ k. This follows from the ORRs and is

true in all point group symmetries. For cubic crystals and l¼ 1,

Y7 ¼ 2�½ðY23 � Y32Þ ¼ KTB1: (53)

But here Y23¼�Y32 and so

Y23 ¼ 2�½KTB1 or 
ð1Þ
23 ¼ 
231B1, (54)

with 2½KTB1¼ 
231. Similarly, for l¼ 2,

Y8 ¼ 2�½ðY31 � Y13Þ ¼ KTB2: (55)

On setting Y31¼�Y13, because of the antisymmetry of 
ð1Þ
ik

(55), (54) �Y13 ¼ 2½KTB2 or 
ð1Þ
13 ¼ �
132B2 ¼ �2½KTB2 ¼ �
231B2, (56)

and similarly for Y9¼KTB3. Therefore the T(3)
ax Hall tensor is

0 0 0 0 0 �231 0 231 0

0 0 231 0 0 0 �231 0 0

0 �231 0 231 0 0 0 0 0

2
4

3
5

B1 B2 B3

(57)

The subscripts and signs of 
[ik,l] may vary in some published tables, but such variations are

purely conventional. Group theory gives us the structure of the MR of the tensor, that is it

tells us which coefficients are zero and gives equalities between and relative signs of non-

zero coefficients. In the lower cubic groups T and Th, T(1)
ax is not prevented by point group

symmetry from coupling with {Y4 Y5 Y6}, but the coupling coefficients have to be zero in

order to satisfy the ORRs.

Answer to Exercise 15.4-1

I and II are points in two phases of identical composition at the same temperature.

Therefore �a(I)¼�a(II).
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15.5 Properties of crystals with magnetic point groups

Two kinds of crystal properties have been considered in this chapter, namely properties of

crystals in equilibrium and transport properties. The latter are associated with thermo-

dynamically irreversible processes and are accompanied by an increase in entropy,�S > 0.

Such processes occur naturally, or spontaneously. Time reversal is not a permitted sym-

metry operation in systems undergoing irreversible processes because the operation t!�t

would require the spontaneous process to be reversed and so contravene the second law of

thermodynamics. Consequently, time reversal is limited to crystals in equilibrium. Most

physical properties are unaffected by time reversal but because B(�t)¼�B(t) numerical

values of some properties may be reversed in sign. Consequently Neumann’s principle

must be extended to include time-reversal symmetry as well as spatial symmetry. Tensors

which change sign under � are called c-tensors and those which are invariant under � are

called i-tensors. For crystals which belong to the type II ‘‘gray’’ groups defined by

G¼Hþ�H, if both Y and X are either both symmetric or both antisymmetric under �,

K is an i-tensor and its structure is the same as that obtained from the subgroup H¼ {R}.

But if only one of Y and X is an i-tensor then K is a c-tensor and

(15.3.11)
K ¼ �ðY ÞðRÞ K �ðX ÞðRÞy, R 2 H;

K ¼ ��ðY ÞðBÞ K �ðX ÞðBÞy, B ¼ �R,
(1)

which means that when K is a c-tensor, it must be identically zero.

For magnetic crystals belonging to the type III (black and white) point groups

G ¼ Hþ�ðG� HÞ ¼ fRg þ AfRg, A ¼ �Q, Q 2 G� H: (2)

We may assume that the IRs of

G ¼ fRg þ QfRg (3)

are known (Appendix A3). Let � be one of these IRs and define the complementary IR by

�cðRÞ ¼ �ðRÞ, �cðQRÞ ¼ ��ðQRÞ, 8R 2 H, 8QR 2 G� H: (4)

Then the complementary matrices obey eq. (1) for the group G and so can be used to

determine the structure of K. The structure of K for magnetic crystals can thus be found

from the representations of G by substituting the complementary representation �j
c for �

j

for c-tensors, and thus avoiding the necessity of actually determining the IRs of G. Most

commonly, the c-tensor will be the magnetic induction B or the magnetic field H, both of

which are axial vectors transforming like {Rx Ry R z}. Of course, proper orientation has to

be determined, as explained in Section 15.3, or reference must be made to the tables given

by Nowick (1995) for the thirty-two type I and fifty-eight type III magnetic point groups.

15.5.1 Ferromagnetism

A ferromagnetic material is one that possesses a magnetic moment M in the absence of a

magnetic field. The magnetic induction is given by
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B ¼ �0Hþ I, (5)

where the magnetic intensity I is the magnetic moment per unit volume. Since B andH are

axial vectors, so is I. Therefore the magnetic point groups in which ferromagnetism is

possible are those in which at least one of the components {Rx Ry R z} belongs to the

totally symmetric representation. A systematic examination of the thirty-two type I and

fifty-eight type III magnetic point groups reveals that this is so only for the thirty-one

magnetic point groups listed in Table 15.9. Since �T and P are invariant under � for

crystals in thermodynamic equilibrium, these magnetic point groups are also those which

exhibit the magnetocaloric effect and the pyromagnetic effect and a particular case of the

piezomagnetic effect in which the applied stress is a uniform pressure.

15.5.2 Magnetoelectric polarizability

The magnetoelectric polarizability [lij] of a crystalline material gives rise to a magnetic

moment I (Y an axial vector, or T(1)ax) when the crystal is placed in an electric field E (X a

polar vector, or T(1)). Its transpose [lji] describes the converse magnetoelectric effect in

which the roles of Y and X are interchanged. To find the structure of K¼ [lij], we look for
IRs which have components of both {x y z} and {Rx Ry Rz} as bases.

Example 15.5-1 Determine the structure of the matrix [lij] for the type I magnetic point

group 4mm (C4v) and the type III group 4mm with G¼C4v and H¼C2v.

From the character table of 4mm (C4v),�
(r)¼A1�E, �(R)¼ A2�E. Orientation for the

E basis, already determined in Section 15.3, is (x y) and (Ry�Rx). Therefore

l ¼
0 l12 0

�l12 0 0

0 0 0

2
4

3
5: (6)

For 4mm, H¼ {E C2z sx sy} and G� H ¼ fCþ
4z C

�
4z sa sbg, where sa, sb bisect the

angles between x and y. In G¼ {H}þ� {G�H} the complementary representations are

obtained by replacing � by �� in the classes fCþ
4z C

�
4zg and {sa sb}, which gives

�(R)¼B2 � E (�(r) is unaffected by �). Orientation must be re-determined. In 4mm,

under C4z, Rx!Ry, Ry!�Rx (Table 15.3); therefore in 4mm under �Cþ
4z, Rx!�Ry, and

Ry!Rx. Consequently, in 4mm, the oriented E-bases are (x y) and (Ry Rx),

Table 15.9. The thirty-one magnetic point groups in which ferromagnetism is possible.

Type I Type III

1 1
2 m 2/m 2 m 2/m 222 mm2 mm2 mmm
3 3 32 3m 3m
4 4 4/m 422 4mm 42m 4/mmm

6 6 6/m 622 6mm 6m2 6/mmm
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l ¼
0 l12 0

l12 0 0

0 0 0

2
4

3
5: (7)

The structure of l (and therefore of any property represented by a T(2)ax tensor) for the

fifty-eight magnetic groups in which l is not identically zero, is given by Nowick (1995),

p. 138.

15.5.3 Piezomagnetic effect

The coupling of the magnetic induction B (Y, a T(1)ax) with an applied stress (X, a T(2)s)

gives rise to the piezomagnetic effectQijk, which is a T(3)
ax tensor, symmetric with respect

to j$ k. Its converseQkij describes the coupling of the elastic strain with the magnetic field

(Table 15.7). Using the single index notation for elastic stress or strain,Q is a 3� 6 matrix,

like that for the piezoelectric effect. The structure of Q is determined by finding repre-

sentations common to �
ðRÞ
c and �(�).

Example 15.5-2 Determine the structure of Q for the magnetic point groups 4mm and

4mm.

In 4mm (or C4v) �
ðRÞ
c ¼ A2 � E and �(�)¼A1�B1�B2�E, the orientation of com-

ponents being such that Rx is coupled with �4 and�Ry with �5. Therefore

Q ¼
0 0 0 Q14 0 0

0 0 0 0 �Q14 0

0 0 0 0 0 0

2
4

3
5: (8)

In 4mm, G�H¼ 2C4� 2sd, so that �
ðRÞ
c ¼ B2 � E. In �

ðRÞ
c , Rz is a basis for B2 and is

therefore coupled with�6. In the degenerate representation, (Ry Rx) couples with (�5�4).

Consequently,

Q ¼
0 0 0 Q14 0 0

0 0 0 0 Q14 0

0 0 0 0 0 Q36

2
4

3
5: (9)

The piezomagnetic tensorQ for all magnetic point groups is given by Bhagavantam (1966),

p. 173, and Nowick (1995) in his Table 8–3.

Problems

15.1 Determine the form of the matrixc of second-order elastic constants for crystals with

the point group O.

15.2 Find the similarly oriented bases (symmetry coordinates) for the components of a

T(1), a T(1)ax, and a symmetric T(2), and a symmetric T(3) for the point group D2d.
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15.3 In a piezoelectric crystal an applied stress sjk produces an electric polarization P so

that Pi¼ dijksjk. Prove that a crystal with a center of symmetry cannot exhibit the

phenomenon of piezoelectricity.

15.4 Determine the point groups in which ferroelectricity is possible. [Hint: Check point-

group character tables to see in which point groups at least one of x, y, or z form a

basis for �1.]

15.5 Find the structure ofKwhen there is one complex Y coordinate Y1� iY2 for
1E, 2E but

two X coordinates X1 � iX2, X3 � iX4. What changes arise when there are two Y

coordinates but only one X coordinate for a degenerate pair of CC representations?

15.6 Obtain the permittivity matrix � for orthorhombic and monoclinic crystals. What

differences arise in the monoclinic case for a T(2) that is not symmetric?

15.7 Obtain the MRs of the elastic constant tensor for an upper hexagonal crystal and a

lower tetragonal crystal.

15.8 Find the 9� 6 MR of the magnetothermoelectric power Sijkl for a crystal of orthor-

hombic symmetry. Express your results in four-index notation, giving indices only.
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16 Space groups

Crystals . . . their essential virtues are but two; – the first is to be pure and the
second is to be well shaped.

John Ruskin The Ethics of the Dust (1865)

16.1 Translational symmetry

A crystal structure is the spatial arrangement of all the atoms (ions, molecules) of which

the crystal is composed. It is represented by the crystal pattern, which is a minimal set of

points having the same symmetry as the crystal structure. These points are commonly

shown in diagrams by small circles, although more elaborate figures (ornaments) may be

used to emphasize particular symmetry elements. The essential characteristic of a crystal

structure (and therefore of the crystal pattern) is its translational symmetry, which is

described in terms of a space lattice (Figure 16.1). A space lattice (or lattice) is an array

of points in space which, for clarity of representation, are joined by straight lines (Figure

16.1(a)). ‘‘Translational symmetry’’ means that the environment of a particular lattice

point O is indistinguishable from that of any other lattice point reached from O by the

lattice translation vector

an ¼ n1a1 þ n2a2 þ n3a3 ¼ ha1 a2 a3jn1 n2 n3i ¼ ha j ni: (1)

The integers n1, n2, and n3 are the components of an, and a1, a2, and a3 are the

fundamental lattice translation vectors, which we shall often abbreviate to fundamental

translation vectors or fundamental translations (see Bradley and Cracknell (1972)). There

seems to be no generally agreed name for the {ai} which have also been called, for

example, the ‘‘primitive translation vectors of the lattice’’ (McWeeny (1963)), ‘‘primitive

vectors’’ (Altmann 1977), ‘‘unit vectors’’ (Altmann (1991)), ‘‘basis translation vectors’’

(Evarestov and Smirnov (1997)) and ‘‘basis vectors’’ (Kim (1999)). In a particular lattice

the location of a lattice point P is specified uniquely by the components of the position

vector OP which are the coordinates of P(n1 n2 n3) referred to the fundamental lattice

translation vectors h a1 a2 a3 |. The parallelepiped defined by {a1 a2 a3} is the unit cell of the

lattice and it follows from eq. (1) that it is a space-filling polyhedron. Each fundamental

translation vector may be resolved into its components along the Cartesian coordinate axes

OX, OY, and OZ,
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ai ¼ he1 e2 e3 j aix aiy aizi, i ¼ 1, 2, 3; (2)

(1), (2)
an ¼ he1 e2 e3j

a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

264
375 n1

n2

n3

264
375

¼ he1 e2 e3jAjn1 n2 n3i: (3)

If every pattern point can be reached from O by a translation an, the lattice is said to be

primitive, in which case the unit cell contains just one pattern point and is also described as

‘‘primitive’’ (Figure 16.1). The location of a pattern point in a unit cell is specified by the vector

a� ¼ �1a1 þ �2a2 þ �3a3 ¼ ha1 a2 a3 j�1 �2 �3i ¼ ha j�i, (4)

with �1, �2, �3< 1. Every pattern point in a non-primitive cell is connected to O by the

vector

an� ¼ an þ a�: (5)

The pattern points associated with a particular lattice are referred to as the basis so that the

description of a crystal pattern requires the specification of the space lattice by {a1 a2 a3}

and the specification of the basis by giving the location of the pattern points in one unit cell

by �i, i ¼ 1, 2, . . . , s (Figure 16.1(b), (c)). The choice of the fundamental translations is a

matter of convenience. For example, in a face-centred cubic (fcc) lattice we could choose

orthogonal fundamental translation vectors along OX, OY, OZ, in which case the unit cell

contains ð1=8Þ8 þ (1=2)6 ¼ 4 lattice points (Figure 16.2(a)). Alternatively, we might choose a

primitive unit cell with the fundamental translations

(a)

a1

a2

O

(c)

a1

a2

(b)

(d)

Figure 16.1. (a) Portion of a 2-D (space) lattice. (b) Lattice with a basis, primitive unit cell, �¼ [00].

(c) Non-primitive unit cell, �1¼ [0 0], �2¼ [½ ½]. All lattice points are translationally equivalent,

as shown by the alternative choice of fundamental translations a1, a2 which give a primitive unit cell.

(d) Non-primitive unit cell: no possible choice of fundamental translations exists which would make

all pattern points translationally equivalent. Two possible unit cells are shown, which differ only in

the choice of origin. Each unit cell of this lattice contains two pattern points, s¼ 2.
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a1 ¼ ða=2Þhe1 e2 e3 j 0 1 1i,
a2 ¼ ða=2Þhe1 e2 e3 j 1 0 1i,
a3 ¼ ða=2Þhe1 e2 e3 j 1 1 0i;

(6)

(3), (6) A ¼ ða=2Þ
0 1 1

1 0 1

1 1 0

24 35: (7)

Similarly, for the body-centered cubic (bcc) lattice one might choose an orthogonal set for

the fundamental translations giving a non-primitive unit cell with two lattice points per cell

(Figure 16.2(b)) or one could choose a primitive unit cell with the fundamental translations

a1 ¼ ða=2Þhe1 e2 e3 j 1 1 1i,
a2 ¼ ða=2Þhe1 e2 e3 j 1 1 1i,
a3 ¼ ða=2Þhe1 e2 e3 j 1 1 1i;

(8)

(3), (8) A ¼ ða=2Þ
1 1 1

1 1 1

1 1 1

24 35: (9)

A primitive centered unit cell, called the Wigner–Seitz cell, is particularly useful. To

construct the Wigner–Seitz cell, draw straight lines from a chosen lattice point to all its near

neighbors and bisect these lines perpendicularly by planes: then the smallest polyhedron

enclosed by these planes is the Wigner–Seitz cell (Figure 16.3). A lattice direction is

specified by its indices [w1 w2 w3], that is, the smallest set of integers in the same ratio as the

components of a vector in that direction; [[w1 w2 w3]] denotes a set of equivalent directions.

The orientation of a lattice plane is specified by its Miller indices (h1 h2 h3), which are the

smallest set of integers in the same ratio as the reciprocals of the intercepts made by the plane

on the vectors a1, a2, a3, in units of a1, a2, a3; ((h1 h2 h3)) denotes a set of equivalent planes.

(b)

a2

a1

a3

(a)

a2
a1

a3

Figure 16.2. Conventional (non-primitive) unit cells of (a) the face-centered cubic and (b) the body-

centered cubic lattices, showing the fundamental vectors a1, a2, and a3 of the primitive unit cells.

(A conventional unit cell is one that displays the macroscopic symmetry of the crystal.)
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A crystal pattern may possess rotational symmetry as well as translational symmetry,

although the existence of translational symmetry imposes restrictions on the order of the

axes. The fundamental translations ha | in eq. (1) are the basis vectors of a linear vector

space (LVS). Suppose that they are transformed into a new set ha0| by a unitary

transformation

ha0j ¼ ha jT; (10)

(10) Rha0 j ¼ ha0 jR0 ¼ Rha jT ¼ haj RT ¼ ha0 jT�1RT: (11)

R is a unitary matrix, and any unitary matrix can be diagonalized by a unitary

transformation,

(10), (11) R0 ¼ T�1RT ¼ TyRT ðT unitaryÞ: (12)

But the trace of R is invariant under a similarity transformation and therefore

Tr R ¼ �1 þ 2 cos� (13)

whatever the choice of ha|. A symmetry operator R transforms an into the lattice translation

vector an
0, where both | ni and | n0i contain integers only.

(1) Rhajni ¼ ha0jni ¼ hajRjni ¼ hajn0i: (14)

Since | ni and | n0i consist of integers only, the diagonal form of R can consist only of

integers and so

(13) Tr R ¼ �1 þ2 cos� ¼ p, (15)

where p is an integer.

(15) 2 cos� ¼ p� 1 ¼ 0, �1, �2: (16)

The values of 2p /�¼n (where n is the order of the axis of rotation) that satisfy eq. (16) and

therefore are compatible with translational symmetry, are shown in Table 16.1. It follows

that the point groups compatible with translational symmetry are limited to the twenty-

seven axial groups with n¼ 1, 2, 3, 4, or 6 and the five cubic groups, giving thirty-two

crystallographic point groups (Table 2.9).

(a)

(b)
a1

a2

Figure 16.3. (a) Construction of the Wigner–Seitz cell in a 2-D hexagonal close-packed (hcp) lattice.

(b) Primitive unit cell of the hcp lattice.
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It is not always possible to choose a unit cell which makes every pattern point

translationally equivalent, that is, accessible from O by a translation an. The maximum

set of translationally equivalent points constitutes the Bravais lattice of the crystal. For

example, the cubic unit cells shown in Figure 16.2 are the repeat units of Bravais lattices.

Because n1, n2, and n3 are integers, the inversion operator simply exchanges lattice points,

and the Bravais lattice appears the same after inversion as it did before. Hence every

Bravais lattice has inversion symmetry. The metric M¼ [ai � aj] is invariant under the

congruent transformation

M ¼ RyMR, (17)

where R is the matrix representative (MR) of the symmetry operator R. The invariance

condition in eq. (17) for the metric imposes restrictions on both M and R, which determine

the Bravais lattice (from M) and the crystallographic point groups (‘‘crystal classes’’) from

the group generators {R}. The results of a systematic enumeration of the Bravais lattices

and the assignment of the crystal classes to the crystal systems (see, for example, Burns and

Glazer (1963) and McWeeny (1978)) are summarized in Table 16.2. Unit cells are shown

in Figure 16.4. Their derivation from eq. (17) is straightforward and so only one example

will be provided here.

Example 16.1-1 Find the Bravais lattices, crystal systems, and crystallographic point

groups that are consistent with a C3z axis normal to a planar hexagonal net.

As Figure 16.5 shows, z is also a C6 axis. From Figure 16.5, the hexagonal crystal

system is defined by

a1 ¼ a2 6¼ a3, �12 ¼ 2p=3, �23 ¼ �31 ¼ p=2, (18)

where �ij is the angle between ai and aj. Consequently,

M ¼ ½ai � aj� ¼ a2
1 �1=2 0

�1=2 1 0

0 0 c2

24 35, (19)

where c¼ a3 / a. From Figure 16.5,

R
2p
3

½0 0 1�
� �

ha1 a2 a3j ¼ ha2 a4 a3j ¼ ha1 a2 a3j
0 �1 0

1 �1 0

0 0 1

24 35; (20)

Table 16.1. The orders of the axes of rotation, from eq.

(16.1.16), that are compatible with translational symmetry.

cos� 0 þ1=2 �1=2 þ1 �1

� p / 2 p / 3 2p / 3 2p p
n¼ 2p /� 4 6 3 1 2
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tetragonal

4P 4I

hexagonal

3P 3R

isometric
(cubic)

23P 23I 23F

triclinic monoclinic

orthorhombic

1P

222P

2I

222I 222C 222F

2P

Figure 16.4. Unit cells of the fourteen space lattices classified into six crystal systems.

O

a4

a1

a2

P3

P1

P2

ae1

P1′

Figure 16.5. A hexagonal planar net is generated by the fundamental translations a1, a2 (each of

length a) and �12 ¼ 2p/3. To generate a space lattice with three-fold rotational symmetry, the second

and third layers must be translated so that P1 lies over the points marked P2 and P3, respectively, that is

at (1/3 2/3 1/3) and (2/3 1/3 2/3) . If using hexagonal coordinates a3 is normal to the plane of a1, a2 and

lies along e3, so that this unit cell (3R) contains three lattice points (Figure 16.4).
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(20) Ry MR ¼ a2
0 1 0

�1 �1 0

0 0 1

24 35 1 �1=2 0

�1=2 1 0

0 0 c2

24 35 0 �1 0

1 �1 0

0 0 1

24 35 ¼ M: (21)

Here both M and R were deduced from the initial information that there is a C3z axis, but

eq. (21) is a useful consistency check. The next step is to check for possible C2 axes normal

to C3z,

Rðp ½1 0 0�Þha1 a2 a3j ¼ ha4 a2 �a3j ¼ ha1 a2 a3j
�1 0 0

�1 1 0

0 0 �1

24 35, (22)

(22) Ry MR ¼ a2
�1 �1 0

0 1 0

0 0 �1

24 35 1 �1=2 0

�1=2 1 0

0 0 c2

24 35 �1 0 0

�1 1 0

0 0 �1

24 35 ¼ M: (23)

Equations (21) and (23) show thatM is invariant under C3z and C2x. Therefore the compatible

point groups are those that contain a proper or improper three-fold axis, with or without

proper or improper two-fold axes normal to the principal axis. These point groups are 3, 3, 32,

3m, 3m (or C3, S6, D3, C3v, D3d). To generate a 3-D lattice with three-fold rotational

symmetry, the second and third layers of the hexagonal planar net in Figure 16.5 must

be translated so that P1 lies over P2 and P3, respectively, i.e. at (1=3 2=3 1=3Þ and ð2=3 1=3 2=3).

Table 16.2. Crystal systems, space lattices, and crystallographic point groups.

Unit cells are shown in Figure 16.4.

Crystal system Unit cell Lattice Fundamental translations Point groups

Triclinic 1P 1P a1 6¼ a2 6¼ a3 1, 1
�12 6¼�23 6¼�31

Monoclinic 2P 2P, 2I a1 6¼ a2 6¼ a3 2, m, 2/m
�31 6¼�12 ¼�23 ¼ p / 2a

�23 6¼�12 ¼�31 ¼ p / 2b

Orthorhombic 222P 222P, 222I a1 6¼ a2 6¼ a3 222, 2mm
222C, 222F �12 ¼�23 ¼�31¼p / 2 mmm

Tetragonal 4P 4P, 4I a1¼ a2 6¼ a3 4, 4, 4/m, 422
�12 ¼�23 ¼�31¼p / 2 4mm, 4 2m,

4/mmm
Hexagonal 3P 3P, 3R a1¼ a2 6¼ a3 3, 3, 32

�12 ¼ 2p / 3, 3m, 3m
�23 ¼�31 ¼ p / 2

3P 3P a1¼ a2 6¼ a3 6, 6, 6/m,
�12 ¼ 2p / 3, 622, 6mm, 6m2,
�23 ¼�31 ¼ p / 2 6/mmm

Cubic 23P 23P, 23I a1¼ a2¼a3 23, m3, 432,
23F �12 ¼�23 ¼�31¼ p / 2 43m, m3m

a First setting; b second setting.
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With a3 normal to the plane of a1, a2 at O, these fundamental translations generate a

unit cell (named 3R) with two internal points (Figure 16.4). Figure 16.6 shows the primitive

rhombohedral cell of this lattice. There is a third way of adding a second layer to the

hexagonal net of Figure 16.5 which preserves the hexagonal symmetry of the initial net,

and that is by the displacement [0 0 a3]. Compatible symmetry operators that satisfy the

invariance condition in eq. (17) are those associated with an inversion center, a horizontal or

vertical mirror plane, or a two-fold axis giving the following seven point groups: 6, 6, 6/m,

622, 6mm, 6m2, and 6/mmm (C6, C3h, C6h, D6, C6v, D3h, and D6h).

Exercise 16.1-1 Could a different lattice be generated by placing P1
0 over P3 and P2,

respectively, in the second and third layers of a hexagonal net?

Answer to Exercise 16.1-1

No. This lattice is equivalent to the first one because one may be converted into the other by

a rotation through p about the normal to the plane containing a1 and a2 through the center of

the rhombus with sides a1, a2.

16.2 The space group of a crystal

The space group G of a crystal is the set of all symmetry operators that leave the appearance of

the crystal pattern unchanged from what it was before the operation. The most general kind of

space-group operator (called a Seitz operator) consists of a point operator R (that is, a proper

or improper rotation that leaves at least one point invariant) followed by a translation v.

For historical reasons the Seitz operator is usually written {R j v}. However, we shall write it

as (Rjv) to simplify the notation for sets of space-group operators. When a space-group

operator acts on a position vector r, the vector is transformed into

e3

a1

Figure 16.6. Primitive unit cell of the rhombohedral lattice 3R. The three fundamental translations a1,

a2, a3 are of equal length and make equal angles with e3. Hexagonal nets in four successive layers

show how the rhombohedral cell may be constructed.
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r0 ¼ ðRjvÞr ¼ Rrþ v (1)

(Figure 16.7). Note that v is not necessarily a lattice translation t 2 {an}, though it must be

if R is the identity E. Special cases of eq. (1) are as follows:

ðEjtÞ, a lattice translation; (2)

ðEj0Þ, the identity; (3)

ðRj0Þ, a point operator: (4)

In each of the equations (1)–(4) the crystal pattern appears the same after carrying out the

operation signified. It follows from eq. (2) that the pattern, and therefore the subset of

lattice translations

T ¼ fðEjtÞg, (5)

is infinite. This inconvenience may, however, be removed by a suitable choice of boundary

conditions (see eq. (18) later).

The product of two Seitz operators is given by

(1) ðR2jv2ÞðR1jv1Þ r ¼ ðR2jv2ÞðR1rþ v1Þ ¼ R2R1rþ R2v1 þ v2

¼ ðR2R1jR2v1 þ v2Þ r; (6)

(6) ðR2jv2ÞðR1jv1Þ ¼ ðR2R1jR2v1 þ v2Þ: (7)

The inverse of a Seitz operator is given by

(7) ðRjvÞðR�1j �R�1vÞ ¼ ðEj �vþ vÞ ¼ ðEj0Þ; (8)

(8) ðRjvÞ�1 ¼ ðR�1j �R�1vÞ: (9)

y

v

r ′

r

x a1O

Rr

Figure 16.7. Action of the Seitz operator (R|v) on the vector r. In this example, R is R(p/2 [0 0 1]) and

v¼ a1/2. The dashed line shows r 0 ¼Rrþv.
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When a Seitz operator acts on configuration space all functions defined in that space are

transformed, and the rule for carrying out this transformation is the same as that for rotation

without translation. However, no special symbol is generally used in the case of the Seitz

operator since it is clear when the corresponding function operator is intended. Thus

(R|v)f(r) implies

ðRjvÞf ðrÞ ¼ f ðR�1r� R�1vÞ: (10)

The lattice translations form the translation subgroup of G.

(5), (7) ðEjt0ÞðEjtÞ ¼ ðEjtþ t0Þ ¼ ðEjt0 þ tÞ ¼ ðEjtÞðEjt0Þ: (11)

Equation (11) shows that the set of lattice translations T form an Abelian subgroup of G.

Moreover, T is an invariant subgroup of G, since

(7), (9) ðRjvÞðEjtÞðRjvÞ�1 ¼ ðRjR tþ vÞðR�1j �R�1vÞ
¼ ðEj �vþ R tþ vÞ ¼ ðEjR tÞ 2 T: (12)

A lattice translation t is the sum of its projections along a1, a2, a3,

t ¼ t1 þ t2 þ t3 ¼ n1a1 þ n2a2 þ n3a3 ðn1, n2, n3 integersÞ: (13)

(13), (11) ðEjtÞ ¼ ðEjt1ÞðEjt2ÞðEjt3Þ, (14)

where (E |t1) form a subgroup T1 of T and similarly for T2, T3.

(14) T1 \ T2 ¼ ðEj0Þ; (15)

(11) ðEjt1ÞðEjt2Þ ¼ ðEjt2ÞðEjt1Þ, 8 t1, t2; (16)

and similarly for T2, T3, and T3, T1.

(15), (16) T ¼ T1 � T2 � T3: (17)

We now remove the inconvenience of the translation subgroup, and consequently the

Bravais lattice, being infinite by supposing that the crystal is a parallelepiped of sides Njaj
where aj, j¼ 1, 2, 3, are the fundamental translations. The number of lattice points,

N1N2N3, is equal to the number of unit cells in the crystal, N. To eliminate surface effects

we imagine the crystal to be one of an infinite number of replicas, which together constitute

an infinite system. Then

ðE jNjajÞ ¼ ðE j ajÞNj ¼ ðEj0Þ, j ¼ 1, 2, 3: (18)

Equation (18) is a statement of the Born and von Kármán periodic boundary conditions.

T is the direct product (DP) of three Abelian subgroups and so has N1N2N3 1-D

representations. The MRs of T1, �(T1), obey the same multiplication table as the corres-

ponding operators, namely

(11) ðE j n1 a1ÞðE j n1
0 a1Þ ¼ ðE j ðn1 þ n1

0Þa1Þ; (19)

(19) �ðE j n1 a1Þ�ðE j n1
0a1Þ ¼ �ðE j ðn1 þ n1

0Þa1Þ: (20)
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Equation (20) is satisfied by

�ðE j n1 a1Þ ¼ expð�ik1 n1 a1Þ: (21)

Because of the DP in eq. (17), the representations of T obey the relation

(20) �ðE j n1 a1 þ n2 a2 þ n3 a3Þ �ðE j n1
0 a1 þ n2

0 a2 þ n3
0 a3Þ

¼ �ðE j ðn1 þ n1
0Þa1 þ ðn2 þ n2

0Þa2 þ ðn3 þ n3
0Þa3Þ; (22)

(22), (13) �ðEjtÞ�ðEjt0Þ ¼ �ðEjtþ t0Þ; (23)

(23), (21), (13) �ðEjtÞ ¼ expð�i k � tÞ, t 2 fang, (24)

which are the IRs of the translation group T. The MRs �(E|t) of the translation operators

(E|t) are defined by

ðEjtÞ kðrÞ ¼  kðrÞ�ðEjtÞ; (25)

(25), (24)  k ðrÞ ¼ expði k � rÞ ukðrÞ: (26)

The functions in eq. (26) are called Bloch functions and are plane waves modulated by the

function uk(r), which has the periodicity of the lattice,

ukðrÞ ¼ ukðrþ tÞ, 8 t 2 fang: (27)

We now confirm that eqs. (27) and (26) satisfy eq. (24):

ðEjtÞ kðrÞ ¼  kððEjtÞ�1
rÞ: (28)

The configuration space operator on the RS of eq. (28) replaces r by r� t:

(26), (27), (28) ðEjtÞ kðrÞ ¼ exp½i k�ðr�tÞ� ukðr�tÞ
¼ expð�i k � tÞ kðrÞ, (29)

in agreement with eq. (24).

Consider {(R|0)} � G; then

ðRj0ÞðR0j0Þ ¼ ðRR0j0Þ 2 G, (30)

and so {(R|0)} � G also form a subgroup of G, called the point subgroup P(G). A general

space-group operator is represented in (modified) Seitz notation by (R|v), where R is a point

operator and v is a translation, though not necessarily a lattice translation (E|t). If

(R|v)¼ (S|w) 2 G, where w 62 ftg, then neither (S|0) nor (E|w) are 2 G. Here S is being

used to indicate a special point operator that is associated with a particular, unique (non-

lattice) translation w 62 ftg.

Exercise 16.2-1 Why are (R|w) and (S|t), S 62 PðGÞ, not 2 G?
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(7) ðRj0ÞðR0j0Þ ¼ ðRR0j0Þ 2 G, 8R, (31)

which demonstrates closure in the set {(R|0)}. Therefore, the set {(R|0)}, which is obtained

from G by setting 8 v¼ 0, and which may therefore contain some rotations which were

associated in G with special, non-lattice translations w, is a group P called the point group

or sometimes the isogonal point group, which avoids any possible confusion with the point

subgroup P(G). The distinction between eq. (30) and eq. (31) is important: in the former

equation all members of the set {(R|0)} 2 G, but in eq. (31) some of the set {(R|0)} may not

be 2 G. In general, the point group P is not a subgroup of G, unless G contains no operators

of the form (S|w) with w 62 ftg, in which case it will be the same as the point subgroup.

Although ðSj0Þ 62 G, it is a symmetry operator for the pattern that remains after removing

all the pattern points that lie within the unit cell, but leaving all those which are the lattice

points of the Bravais lattice. In other words, the Bravais lattice is invariant under the

operations of the point group P, and P is therefore either the point group PBL of the Bravais

lattice or it is a subgroup of PBL. For example, the point subgroup of the hcp lattice is D3h,

whereas the point group is D6h (Figure 16.5).

There are two kinds of operators (S|w).

(1) A screw rotation is one in which S is a rotation about a specified axis n and w is a

translation along that axis. Screw rotations are described by the symbol np, in which n

signifies a rotation through 2p/n about the screw axis n, followed by a translation pt/n,

where t is the translation between nearest-neighbor lattice points along n (Figure 16.8).

(2) A glide reflection is one in which S is a reflection in the glide plane followed by a

translation w, not necessarily parallel to the reflection plane. The three possible types

of translation w are described in Table 16.3.

It follows from the existence of operators (S|w) that space groups G may be classified as

either symmorphic or non-symmorphic. Symmorphic space groups consist only of oper-

ators of the type (R|t), where (R|0) and (E|t) are members of the set of G. Non-symmorphic

space groups contain besides operators of the type (R|t) at least one operator(S|w) in which

neither (S|0) nor (E|w) 2 G, so that the list of symmetry elements contains one or more

screw axes or glide planes.

The coset expansion of G on its invariant subgroup T is

G ¼
P
fRg

ðRjwÞT, 8R 2 P, (32)

where w is either the null vector 0 or the unique special vector associated with some screw

axis or glide plane. (No coset representatives (R|v) are necessary in eq. (32) because

(R|v)T¼ (R|w) (E|t)T¼ (R|w)T.) If there are no screw axes or glide planes, then there are

no operators with w 6¼ 0 in G and

(32) G ¼
P
fRg

ðRj0ÞT: (33)

In this case the point subgroup {(R|0)} of G is identical with the point group P, and G may

be written as the semidirect product

G ¼ T ^ P ðG symmorphicÞ: (34)
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In non-symmorphic space groups the point group P is not a subgroup of G and it is not

possible to express G as a semidirect product.

Since T in eq. (32) is an invariant subgroup of G, the cosets (R|w)T form the factor group

(Section 1.4)

F ¼ G=T ¼
P
fRg

½ðRjwÞT� � P: (35)

Each term in square brackets in eq. (35) is itself a set of elements, being T multiplied by the

coset representative (R|w). Therefore F is isomorphous with the point group P. The kernel

1
4
− +

1
2
− +

3
4
− +

+

41

42 43

Figure 16.8. Equivalent positions (shown by open circles) generated by screw rotations about a 41

screw axis along z. The location of a screw axis np is specified by an n-sided filled polygon with

extensions (‘‘hooks’’) on q sides where qp / n is the smallest possible integer. The height of the point

above the xy plane is shown by the symbol p=nþ which means ðp=n þ zÞt. The curved ‘‘hooks’’ indicate

the sign of the rotation through an angle less than p: anticlockwise, or positive, for p< n/2, but

clockwise (negative) for p> n/2. For a 42 axis, q¼ 2, because 2(2/4)¼ 1, but for both 41 and 43, q¼ 4

because 4(1⁄4)¼ 1 and 4(3⁄4)¼ 3.

Table 16.3.1 Definition of glide planes.

Notation: The fundamental translations are denoted in this book by

a1, a2, a3. Superscript tc denotes tetragonal and cubic systems only.

Type Symbol Translation w

Axial a, b, c 1
2
a1, 1

2
a2, 1

2
a3

Diagonal n 1
2
ða1 þ a2Þ, 1

2
ða2 þ a3Þ, 1

2
ða3 þ a1Þ

1
2
ða1 þ a2 þ a3Þtc

Diamond d 1
4
ða1 � a2Þ, 1

4
ða2 � a3Þ, 1

4
ða3 � a1Þ

1
4
ða1 � a2 � a3Þtc
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K of a homomorphism G ! G0 is the subset K�G that is the fiber of E0 in G0 (Section 1.7).

If the fibers of G0 all have the same order, then G is an extension of G0 by K with

(1.7.6) g ¼ k g0, (36)

where g is the order of G and similarly. It follows from eq. (32) that G is the extension of the

point group P by T. Firstly, the condition (36) is satisfied since

(31) g ¼ N gðPÞ, (37)

with N and g(P) the orders of T and P, respectively. Secondly, G is homomorphous to P,

with T the kernel of the homomorphism. The mapping (R|w) ! R maintains the multi-

plication rules, since

ðR0jw0ÞðRjwÞ ¼ ðR0RjR0wþ w0Þ (38)

maps on to (R0)(R)¼R0R, thus establishing the homomorphism (Section 1.7). Each one of

the subgroup of translations T¼ {(E|t)} maps on to the identity so that T is indeed the

kernel of the homomorphism.

The matrix representation of the space-group operation

r0 ¼ ðRjvÞr ¼ R r þ v (39)

is

v1

�ðRÞ v2

v3

0 0 0 1

2664
3775

x

y

z

1

2664
3775 ¼

x0

y0

z0

1

2664
3775, (40)

where the 3	 3 submatrix �(R), or R, is the MR of the point symmetry operator R. The

positions x, y, z and x0, y0, z0 are called equivalent positions. They are given in the

International Tables of Crystallography (Hahn (1983), and subsequently refered to as

the ITC) for every space group, and from these coordinates the space-group operators can

be determined. For example, for the space group 59, Pmmn or D13
2h, we find in the ITC the

coordinates of the eight equivalent positions in Table 16.4. Given below each set of

coordinates is the space-group operator (R|v) that transforms the general point x, y, z into

x0, y0, z0. In the second row of the table the space-group operators are of the form (R|v), but in

Table 16.4. Coordinates of equivalent positions x 0 y 0 z 0 and the space-group

operators (R|v) that transform x y z into x 0 y 0 z 0, for the Wyckoff position 8g

of the space group 59 ( Pmmn or D13
2h ).

x y z x y z x y z x y z

(E| 000) (C2z | 000) (�x | 000) (�y | 000)

1
2
� x, 1

2
� y, z 1

2
� x, 1

2
þ y , z 1

2
þ x , 1

2
þ y, z 1

2
þ x, 1

2
� y, z

ðI j1=2 1=2 0Þ ðC2yj1=2 1=2 0Þ ð�zj1=2 1=2 0Þ ðC2xj1=2 1=2 0Þ
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the fourth row each point operator is associated with the non-lattice translation w¼ [½ ½ 0].

This group is therefore a non-symmorphic space group. The corresponding symmetry

elements are shown in the figures for space group 59 in the ITC. In addition to the equivalent

positions of the general point x y z, the ITC also give equivalent positions for points in special

positions on symmetry elements. The generating elements for the 230 space groups are listed

by Bradley and Cracknell (1972) in their Table 3.7.

A set of points equivalent by symmetry form a crystallographic orbit. All the points in

an orbit may be obtained from one, the generating point q, by (R|v)q, where, in general,

v¼wþ t. The site symmetry group Gq, which is isomorphous to one of the crystallographic

point groups, comprises the set of symmetry operators (R|v) that leave q invariant. The

site symmetry groups Gj of different points q j of the same orbit are conjugate; that is,

Gj¼ gj Gq gj
�1. For a point q in a general position, Gq¼C1, but for special points Gq has

higher symmetry. All the symmetry points that have the same site symmetry group belong

to a subset of the crystallographic orbits called a Wyckoff position. A particular Wyckoff

position consists of only one orbit unless this contains one or more variable parameters.

Wyckoff positions are labeled successively by lower case letters. For example, the

Wyckoff position in Table 16.4 is called 8g: 8 because there are eight equivalent

positions that would be obtained from the general point x y z by the symmetry operators

(R|v) listed in this table, and g because there are six Wyckoff positions labeled a–f which

have lower site symmetry. The number of orbit points in the primitive unit cell is g(P) /

g(q), where g(P) is the order of the point group P and g(q) is the order of the site

symmetry group Gq. In this example, g(q)¼ 1 (for C1) and g(P)¼ 8 (for D2h) so there

are eight equivalent positions for the Wyckoff position 8g of D2h. But for a point 0 y z in

the mirror plane x¼ 0, the site symmetry group is m or Cs¼ {E�x} with g(q)¼ 2,

and so there are 8/2¼ 4 equivalent positions in the unit cell. The ITC table for

space group 59 confirms that there are four equivalent positions and gives their coordi-

nates as

0 y z; 0 y z; 1=2, 1=2� y, z; 1=2, 1=2þy, z:

Exercise 16.2-2 List the space-group operators (R|v) which generate the above four

positions from the point 0 y z.

In a space group the choice of origin is refered to as the setting. Suppose the coordinate

axes O1 X Y Z are shifted to O2 X Y Z by a vector t0. Then any vector r1 referred to O1 X Y Z

becomes, in the new coordinate system,

r2 ¼ r1 � t0: (41)

The space-group operation

ðR1jv1Þ r1 ¼ R1 r1 þ v1 ¼ r1
0 (42)

becomes

ðR2jv2Þ r2 ¼ R2 r2 þ v2 ¼ r2
0; (43)
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(41), (42), (43) ðR2jv2Þ ¼ ðR1jv1 þ R1 t0 � t0Þ: (44)

For example, two different settings are used for space group 59 (Pmmn or D13
2h). The first

setting was used in Table 16.4; the second setting is related to the first by t0¼ (a1/4)� (a2/4).

Therefore, in this second setting, the space group operator which replaces (C2z|000) of the

first setting is

(44) ðC2z j � 1=2
1=2 0Þ, or ðC2z j1=2 1=2 0Þ, (45)

on adding the fundamental translation a1 to simplify (R2|v2). From eq. (45), (C2z|½ ½ 0)

[x y z]¼ [½�x ½�y z], which is one of the equivalent positions in Table 16.4. The other

Seitz operators in the second setting may be written in a similar manner. The choice of a

particular setting is arbitrary, and the settings chosen by various authors do not always

agree with those in the ITC.

Example 16.2-1 List the symmetry operators of the space group 33, Pna21. What is the

point group of this space group? Find the equivalent positions [x 0 y 0 z 0] that result from

applying these operators to the general point [x y z].

The position of a symmetry element in the space-group symbol gives the unique

direction associated with that element, namely the axis of a rotation or the normal to

a reflection plane (see Table 16.5). Therefore, in Pna21 the symmetry elements are:

a diagonal glide plane normal to [100]; an axial glide plane normal to [010] with

glide direction [100]; and a 21 screw axis parallel to [001]. The symmetry operators of

Pna21 are therefore (E|000), (�x|0 ½ ½), (�y|½ 0 0), and (C2z|0 0 ½). The point group

P¼ {E �x �y C2z}¼C2v. Since there are two improper C2 axes normal to one another and

to the proper C2 axis, this space group belongs to the orthorhombic system. The space-

group symbol tells us the symmetry elements but not their location in the unit cell. For

this we must consult the ITC, which gives, for each space group, diagrams showing the

location of equivalent points and space-group symmetry elements. Part of this informa-

tion about space group 33 is in Figure 16.9; (E| 0 0 0) leaves the point x y z at its

original position. The MR of the Seitz operator (�x| 0 ½ ½) operating on x y z, with the

glide plane at x¼¼, is

Table 16.5. Conventions used to specify, in a space-group symbol, the unique

direction associated with a space-group operator.

Crystal system

Unique direction for

First position Second position Third position

Monoclinic and orthorhombic [100] [010] [001]
Tetragonal and hexagonal [001] [100] [110]
Isometric (cubic) [001] [111] [110]
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1 0 0 1=2
0 1 0 1=2
0 0 1 1=2
0 0 0 1

2664
3775

x

y

z

1

2664
3775 ¼

1=2 � x
1=2 þ y
1=2 þ z

1

2664
3775: (46)

The displacement by ½ in the first row and fourth column comes from the mirror reflection

in the plane at x¼ 1/4. The ½ in the second and third rows of the fourth column are the

components of the diagonal glide. The location of the transformed point is that marked

by a comma (,) and ½þ. The MR of the operation (�y|½ 0 0)[xyz], when the axial glide plane

lies at y¼¼, is

1 0 0 1=2
0 1 0 1=2
0 0 1 0

0 0 0 1

2664
3775

x

y

z

1

2664
3775 ¼

1=2 þ x
1=2 � y

z

1

2664
3775: (47)

The ½ in the second row and fourth column is the displacement in y due to reflection in

the axial a-glide plane at y¼¼. The location of the equivalent point resulting from

this operation is that marked by a ‘‘,’’ and ½þ in Figure 16.9. The MR of the operation

of the 21 screw axis at the origin on the general point xyz, that is (C2z| 0 0 ½)(xyz), is

1 0 0 0

0 1 0 0

0 0 1 1=2
0 0 0 1

2664
3775

x

y

z

1

2664
3775 ¼

�x

�y
1=2 þ z

1

2664
3775, (48)

and the resulting equivalent point is that marked by an open circle and ½þ.

2,

− +

a1

a2

+

−+1

+

1
2

,

Figure 16.9. Location of some of the equivalent points and symmetry elements in the unit cell of

space group Pna21. An open circle marked þ denotes the position of a general point xyz, the þ sign

meaning that the point lies at a height z above the xy plane. Circles containing a comma denote

equivalent points that result from mirror reflections. The origin is in the top left corner, and the filled

digon with ‘‘tails’’ denotes the presence of a two-fold screw axis at the origin. Small arrows in this

figure show the directions of a1, a2, which in an orthorhombic cell coincide with x, y. The dashed line

shows the location of an axial glide plane at y¼¼ and the – � – � line shows the location of the diagonal

glide plane at x¼¼.
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Answers to Exercises 16.2

Exercise 16.2-1 If (R|0) 2 G, then R leaves the appearance of the crystal pattern indis-

tinguishable from what it was before this operation. Therefore to maintain the crystal

pattern any subsequent translation must be 2 {t}. Similarly, since S 62 P(G) it does not leave

the pattern self-coincident and a subsequent translation w must therefore 62{t}, in order to

restore self-coincidence.

Exercise 16.2-2 (E| 0 0 0), (C2z| 0 0 0), (C2x| ½ ½ 0), (C2y| ½ ½ 0).

16.3 Reciprocal lattice and Brillouin zones

The reciprocal lattice is generated from the fundamental translations {b1 b2 b3} defined by

bi � aj ¼ 2 p�ij, i, j ¼ 1, 2, 3, (1)

where the fundamental translations {aj} define a primitive unit cell of the Bravais lattice.

The solutions to eq. (1) are given by

b1 ¼ ð2p=vaÞða2 	 a3Þ, b2 ¼ ð2p=vaÞða3 	 a1Þ, b3 ¼ ð2p=vaÞða1 	 a2Þ: (2)

va ¼ a1 � a2 	 a3 (3)

is the volume of the unit cell in the direct lattice. (In crystallography the reciprocal lattice is

usually defined without the factor 2p in eq. (1), which, however, is invariably introduced in

solid state physics.) Since the space lattice is primitive, then so is the reciprocal lattice, and

each lattice point can be reached from O by a translation

bm ¼ m1 b1 þ m2 b2 þ m3 b3 ¼ hb1 b2 b3 jm1 m2 m3i ¼ hb jmi, (4)

where m1, m2, and m3 are integers.

(4), (16.1.3) bm ¼ he1 e2 e3 jBjm1 m2 m3i; (5)

B ¼
b1x b2x b3x

b1y b2y b3y

b1z b2z b3z

24 35: (6)

The MR of the scalar product (SP) bm � an (which conforms with the laws of matrix

multiplication) is

hbjmiT � ha j ni ¼ hm1 m2 m3j b1b2b3i�ha1 a2 a3 j n1 n2 n3i

¼ hm1 m2 m3 jBTA j n1 n2 n3i (7)

(1) ¼ hm1 m2 m3j2pE3jn1 n2 n3i; (8)
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(8) bm � an ¼ 2pp, p ¼ m1 n1 þ m2 n2 þ m3 n3 ¼ an integer: (9)

(7), (8) B ¼ 2pðA�1ÞT ¼ ð2p=jA jÞð�1Þrþs ½�rs�, (10)

where �rs is the complementary minor of ars in |A|¼ |ars|.

Exampl e 16.3-1 Find the reciprocal lattice of the fcc direct lattice. From Figure 16.2(a),

A ¼ ða=2Þ
0 1 1

1 0 1

1 1 0

24 35; (11)

B ¼ 2pðA�1ÞT ¼ ð2p=aÞ
�1 1 1

1 �1 1

1 1 �1

24 35, (12)

so that the reciprocal lattice of the fcc lattice is bcc with cube edge b¼ 4p /a (Figure

16.2(b)).

Example 16.3-2 Find the reciprocal lattice of the planar hexagonal net which has the

primitive unit cell shown in Figure 16.10.

In the hexagonal net a lattice vector an¼ n1a1þ n2a2, where |a1|¼ |a2|¼ a, and

�12 ¼ 2p / 3. From Figure 16.10,

a1 ¼ e1 a1x þ e2 a1y ¼ e1 ða
ffiffiffi
3

p
=2Þ � e2 ða=2Þ, (13)

a2 ¼ e1 a2x þ e2 a2y ¼ e1 ð0Þ þ e2 ðaÞ: (14)

(13), (14) ½a1 a2� ¼ a ½e1 e2�
ffiffi
3

p
=2 0

�1=2 1

� �
: (15)

(15) A ¼ a

ffiffi
3

p
=2 0

�1=2 1

� �
; (16)

(16), (10) B ¼ ð4p=a
ffiffiffi
3

p
Þ 1 1=2

0
ffiffi
3

p
=2

� �
: (17)

(17), (6) b1 ¼ ð4p=a
ffiffiffi
3

p
Þe1; b2 ¼ ð2p=a

ffiffiffi
3

p
Þðe1 þ

ffiffiffi
3

p
e2Þ, (18)

so that the reciprocal lattice is also a planar hexagonal net.

Exercise 16.3-1 Confirm that BTA¼ 2pE2.

The direct lattice and reciprocal lattice unit cells are marked on the crystal pattern of a

planar hexagonal net in Figure 16.10, using eqs. (13), (14), and (18). The scales chosen for
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the two lattices in Figure 16.10 are a ¼ b ¼
ffiffiffiffiffiffi
2p

p
. From eq. (17) the angle between b1 and

b2 is p / 3, but the two nets may be brought into coincidence by a rotation through an angle

of p / 6, as emphasized by the rotated unit cell defined b1
0, b2

0. For any crystal pattern there

may be alternative choices of fundamental translations, for example fa1
0, a2

0g and {a1, a2}

in Figure 16.10. The fact that the original net and the reciprocal lattice net coincide, rather

than scale, is a consequence of our deliberate choice of scales making b ¼ a ¼
ffiffiffiffiffiffi
2p

p
. Any

other choice of a would have resulted in a reciprocal net that (after rotation) scaled, rather

than coincided, with the original net.

The crystal lattice and the reciprocal lattice representations have different purposes. The

crystal lattice describes, and enables us to visualize, the crystal structure. The reciprocal

lattice will provide a means of describing electron states and phonon states in crystals.

Applying periodic boundary conditions, eq. (16.2.18), to the Bloch functions of

eq. (16.2.26) yields

expði k � rÞ ukðrÞ ¼ exp i k � rþ
P3
j¼1

Njaj

 !" #
ukðrÞ: (19)

(19), (1) k ¼
P3
j¼1

ðmj=NjÞ bj ¼
P3
j¼1

kjbj, mj ¼ 0, � 1, � 2 . . . , (20)

showing that k is a vector in the reciprocal lattice with components kj¼mj /Nj.

(19), (20) k �
P3
j¼1

Njaj

 !
¼ 2p

P3
j¼1

mj ¼ 2pp, p an integer, (21)

which confirms that eq. (19) is satisfied by eq. (20). Equation (20) tells us that the number

of k vectors allowed by the periodic boundary conditions (PBC) isN1N2N3¼N, the number

a1

e2 a2

ae1

a 2

b1

b1

b2

a1

b2

′

′

′

′

Figure 16.10. Hexagonal net with primitive lattice vectors a1, a2. The reciprocal lattice vectors b1, b2

also generate a hexagonal net which, at first sight, does not appear to be the same as the original net.

However, the two nets may be brought into coincidence by using the alternative choice of

fundamental lattice translation vectors a01, a02 (shown by the unit cell marked by dashed lines) and

rotating b1, b2 through an angle of p / 6. The two nets would then be proportional but have been made

to coincide through the choice of the scales used in the drawing of the two nets.
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of unit cells in the crystal lattice, and that these k vectors just fill a volume of the reciprocal

lattice equal to vb, the volume of the primitive unit cell of the reciprocal lattice. This

volume is the first Brillouin zone (BZ). It could be chosen in various ways, but it is usual to

take the Wigner–Seitz cell of the reciprocal lattice as the first BZ, except for monoclinic

and triclinic space groups where the primitive unit cell is used instead. The number of k

vectors per unit volume of the reciprocal lattice is

NðkÞ ¼ N=vb ¼ V=8p3, (22)

where V¼Nva is the volume of the crystal.

The MR �(E| t) of the translation operator (E| t) is given by eq. (16.2.24) as exp (�i k � t),
where t is a translation an. As k runs over its N allowed values in eq. (20) it generates the

N irreducible representations (IRs) of the translation group T, which we therefore label by

k, as in �k (E|t).

(16.2.24), (7)�(9) �kþbmðEjanÞ ¼ exp½�iðk þ bmÞ � anÞ� ¼ �kðEjanÞ: (23)

Therefore, kþbm and k label the same representation and are said to be equivalent (ffi). By

definition, no two interior points can be equivalent but every point on the surface of the BZ

has at least one equivalent point. The k¼ 0 point at the center of the zone is denoted by �.

All other internal high-symmetry points are denoted by capital Greek letters. Surface

symmetry points are denoted by capital Roman letters. The elements of the point group

which transform a particular k point into itself or into an equivalent point constitute the

point group of the wave vector (or little co-group of k) PðkÞ � P, for that k point.

We now describe a general method for the construction of the BZ. It is a consequence of

the SP relation eqs. (7)–(9) that every reciprocal lattice vector bm is normal to a set of

planes in the direct lattice. In Figure 16.11(a), bm is a reciprocal lattice vector that connects

lattice point O to some other lattice point P1. Let 1 be the plane through P1 that is normal to

bm and let 0 be the plane parallel to 1 through O. Let an be the lattice vector from O to some

(a)

0

1
θ

D

O

P1 P2

bm an

(b)

an

a1

a2a3

Figure 16.11. (a) bm is a vector from the origin O to a lattice point P1 in the reciprocal lattice

representation, and plane 1 is normal to bm. The lattice translation an is a vector from O to another lattice

point P2 on plane 1. Plane 0 is parallel to plane 1 through O. (b) an intersects plane 1 at one of the other

lattice points in plane 1. If an lies along a1, n2 and n3 are zero and an¼ n1a1. Similarly for a2, a3.
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other lattice point P2 on plane 1; an makes an angle �with plane 1. The distance D between

these planes is given by

(9) D ¼ janj cos
p
2
� �

� �
¼ hbmjani=jbmj ¼ 2pp=jbmj, (24)

where p¼m1n1þm2n2þm3n3 is an integer. The intercept made by this plane 1 on a1 is

n1a1. When an lies along a1, n2 and n3 are zero and n1¼ p /m1. Similarly the intercepts n2a2,

n3a3 along a2, a3 are given by n2¼ p /m2, n3¼ p /m3 respectively. Therefore the Miller

indices of this plane, and so of a whole stack of parallel planes, are proportional to ((m1 m2

m3)). Removal of any common factor gives the Miller indices ((h1 h2 h3)). The spacing

between each pair of adjacent planes is given by

(24) D=p ¼ dm ¼ 2p=jbmj: (25)

The plane normal to bm with the same Miller indices, but located at a distance |bm| /2 from

O, is one of the faces of the BZ. The equation k (x y z) to this face is

k �um ¼ jbmj=2, (26)

where k is a vector in the reciprocal lattice from O to this face, um is a unit vector normal to

the face and |bm| /2 is the length of the normal from O to this face. A similar analysis for

another vector |bm| from O to a nearby lattice point yields another face of the BZ, and so on,

until the equations to all the faces not connected by symmetry have been obtained and the

whole BZ has thus been determined. Equation (23) emphasizes the primary importance of

the first BZ. Consequently, BZ, or Brillouin zone, when unqualified, means the first BZ.

The use of successively larger reciprocal lattice vectors bm in eq. (25) gives the second,

third, . . . BZs (see, for example, Landsberg (1969)). For example, the smallest volume

(lying outside the first zone), and enclosed by the next set of planes that satisfy eq. (25),

forms the second BZ, and so on.

Exercise 16.3-2 Show that if k is the wave vector of incident radiation (X-ray or neutron)

or the wave vector of a particle or quasiparticle, then eq. (25) leads to the Bragg diffraction

condition.

Example 16.3-3 Construct the BZs of the primitive cubic and fcc lattices.

For the primitive cubic lattice A¼ aE3, so that the reciprocal lattice is also primitive

cubic with cube edge b¼ 2p / a. The shortest vectors from O to its near neighbors are

� ð2p=aÞ ½1 0 0�, � ð2p=aÞ ½0 1 0�, � ð2p=aÞ ½0 0 1�, or

� ð2p=aÞ ½½1 0 0��
(27)

where the double brackets signify the set of vectors equivalent by symmetry. The planes

which bisect these vectors perpendicularly at �(p/a) [[1 0 0]] determine the zone boundaries

so that the BZ is a cube with cube edge 2p/a. Symmetry points are marked in Figure 16.12(a),

and their coordinates and point groups are given in Table 16.6.
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The reciprocal lattice of the fcc lattice (see eq. (12)) is bcc, and the fourteen planes which

bisect the shortest vectors to near-neighbor reciprocal lattice points have Miller indices

�ðð111ÞÞ, �ðð200ÞÞ, (28)

which are, respectively, the eight hexagonal faces and the six square faces shown in

Figure 16.12(b), which also shows the principal symmetry points. In these straightforward

examples it was hardly necessary to find the equations for the faces of the BZ by the general

method outlined earlier (see eq. (25)). The BZ for each of the fourteen Bravais lattices is shown

in Bradley and Cracknell (1972), who also list the symmetry points and their point groups P(k).

In their Table 3.7 they give the generating elements for all the 230 space groups. The principal

kz

ky

Λ

∆ S

(b)

U

L2
– b2
1

 
2
– b1
1

Q

kx

Z X
WΣ

K

2
– b3
1

Γ

kz

X

kx

ky 
ZM

(a)

S
T

Λ

∆

ΣΓ

– b3
1
2

– b2
1
2

– b1
1
2

R

Figure 16.12. Brillouin zones, with symmetry points marked, of (a) the primitive cubic Bravais lattice

and (b) the cubic close-packed or fcc Bravais lattice.
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symmetry points in the BZs shown in Figure 16.12 are listed in Table 16.6, together with their

coordinates and point groups P(k). The notation �(�X), for example, means any point on the

axis of symmetry �X (excluding the end points when they have different symmetry).

Answers to Exercises 16.3

Exercise 16.3-1 From eqs. (17) and (16),

BT A ¼ ð2b=
ffiffiffi
3

p
Þa 1 0

1=2
ffiffi
3

p
=2

� � ffiffi
3

p
=2 0

�1=2 1

� �
¼ ðbaÞð2=

ffiffiffi
3

p
Þ

ffiffi
3

p
=2 0

0
ffiffi
3

p
=2

� �
¼ 2pE2: (16)

Table 16.6. Symmetry points in the Brillouin zones (see Figure 16.12) of the reciprocal

lattices of (a) the primitive cubic space lattice (simple cubic, sc), for which the reciprocal

lattice is also sc, and (b) the fcc space lattice, which has a bcc reciprocal lattice.

k¼�b1þ �b2þ �b3¼ xe1þ 	e2þ 
e3. In column 2, the coordinates of the point k are the

components of the vector k with respect to the basis hb1 b2 b3|, in units of 2p/a for both (a)

and (b). For the sc lattice, B¼E3 and [x 	 
] =[� � �]. In (b), [x 	 
] are the Cartesian

coordinates of the point k in units of 2p/a, so to obtain [x 	 
] for k in units of the cube edge

4p/a, divide the values in column 5 by two.

(a) Point Coordinates P(k)

� [0 0 0] m3m Oh

X [0 ½ 0] 4/mmm D4h

M [½ ½ 0] 4/mmm D4h

R [½ ½ ½] m3m Oh

�(�X) [0 � 0] 4mm C4v

�(�M) [� � 0] mm2 C2v

�(�R) [� � �] 3m C3v

S(XR) [� ½ �] mm2 C2v

Z(XM) [� ½ 0] mm2 C2v

T(MR) [½ ½ �] 4mm C4v

(b) Point Coordinates P(k) [x 	 
]

� [0 0 0] m3m Oh [0 0 0]
X [½ 0 ½] 4/mmm D4h [0 1 0]
L [½ ½ ½] 3m D3d [½ ½ ½]

W [½ ¼ 3⁄4] 42m D2d [½ 1 0]

K [3⁄8
3⁄8

3⁄4] mm2 C2v [3⁄4
3⁄4 0]

�(�X) [� 0 �] 4mm C4v [0 	 0]
�(�K) [� � 2�] mm2 C2v [x x 0]
�(�L) [� � �] 3m C3v [x x x]
S(XU) [½þ�, 2�, ½þ�] mm2 C2v [x 1 x]
Z(XW) [½, �, ½þ�] mm2 C2v [x 1 0]
Q(LW) [½, ½��, ½þ�] 2 C2 [½, ½þ 	,

½� 	]
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Exercise 16.3-2 From eqs. (25) and (26),

k �um ¼ ð2p=lÞ sin � ¼ p=dm, l ¼ 2 dm sin �: (29)

16.4 Space-group representations

The action of the space-group operator (R|v) 2 G (with R 2 P), the point group of the

space group G on the Bloch function  kðrÞ gives the transformed function  0
kðrÞ. To find

the transformed wave vector k 0 we need the eigenvalue exp (�ik0� t) of the translation

operator (E|t).

ðEjtÞ½ðRjvÞ kðrÞ� ¼ ðRjvÞ ðEjR�1tÞ kðrÞ (1)

¼ ðRjvÞ expð�i k � R�1tÞ kðrÞ (2)

¼ expð�iRk � tÞðRjvÞ kðrÞ: (3)

The space-group operator (R| v) acts on functions of r, and therefore the exponential factor

in eq. (2), which is not a function of r, is unaffected by (R| v).

Exercise 16.4-1 (a) Verify the equality of the operator products on each side of eq. (1).

[Hint: Use the multiplication rule for Seitz operators.] (b) Verify the equality of the RS of

eqs. (2) and (3). (c) Find the transformed Bloch function  0
kðrÞ when (R | v) is (I | 0).

Equation (3) shows that the space-group operator (R | v) transforms a Bloch function

with wave vector k 2 BZ into one with wave vector R k, which either also lies in the BZ or

is equivalent to (ffi) a wave vector k0 in the first BZ. (The case k0 ¼ k is not excluded.)

Therefore, as R runs over the whole {R}¼ P, the isogonal point group of G, it generates a

basis h k| for a representation of the space group G,

(3) ðRjvÞ k ¼  R k, 8 k 2 BZ,8R 2 P,Rk 2 BZ or ffi k0 2 BZ: (4)

On introducing the notation hk|, meaning the whole set of Bloch functions that form a

basis for a representation of G,

(4) ðRjvÞhkj ¼ hR kj: (5)

Because R k ffi k0 2 hkj, ðRjvÞhkj simply reorders the basis as eq. (5) implies.

Exercise 16.4-2 Prove that two bases hk|, hk0| either have no k vector in common or they

are identical.

The point group P � PBL and when P¼ PBL (which is so for a holosymmetric space group)

the points and lines of symmetry mark out the basic domain � of the Brillouin zone. When
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P � PBL the points and lines of symmetry define the representation domain � � �, such

that �R�,8R 2 P, is equal to the whole BZ. If Rk1¼ k1þ bm, where the reciprocal lattice

vector bm may be the null vector 0, so that Rk1 ¼ k0
1 is either identical (
) or ffi k1, then

R 2 P(k1), the point group of the wave vector k1. But if Rk1¼ k2, where k2 is not 
 or ffi k1,

then k1, k2, . . . 2 �k1, called the star of k1. That is, the star of k1 is the set of distinct

(inequivalent) k vectors 2 {Rk1}. The {R} for which Rk1 is not 
 or ffi k1 are called the

generators of �k1.

The little group (or group of the wave vector) G(k) is the space group

GðkÞ ¼
P

ðRjjwjÞT, 8Rj 2 PðkÞ, (6)

where wj is either the null vector 0 or the special non-lattice vector associated with some

screw axis or glide plane. The product of two coset representatives in eq. (6)

(6) ðRijwiÞðRjjwjÞ ¼ ðRi RjjRi wj þ wiÞ ¼ ðE jtijÞðRk jwkÞ (7)

¼ ðRk jwkÞ ðEjR�1
k tijÞ, (8)

where

tij ¼ wi þ Ri wj � wk 2 T: (9)

Equations (8) and (9) show that {(Rj|wj)} is not, in general, closed since only for

symmorphic groups is tij¼ 0, 8 i, j. They also establish the multiplication rule for the

cosets as

½ðRi jwiÞT� ½Rj jwjÞT� ¼ ½ðRk jwkÞT�, (10)

and that {(Rj|wj)T} is closed, thus confirming that G(k) is a group. T is an invariant

subgroup of G(k), and so the little factor group

(6) FðkÞ ¼ GðkÞ=T ¼ fðRj jwjÞTg,8Rj 2 PðkÞ: (11)

Equation (10) confirms that F(k) is a group and that F(k)� P(k). In view of the

mappings of the factor group

F ¼ G=T ¼ fðRj jwjÞTg, 8 Rj 2 P, (12)

on to P, F$ P, and of the little factor group F(k)$ P(k),

(12), (11) F ¼ G=T ¼
P
j

ðRj jwjÞ FðkÞ, Rjk 2 �k: (13)

(13) P �
P
j

RjPðkÞ, j ¼ 1, . . . , sðkÞ; (14)

(14) sðkÞ ¼ gðPÞ=pðkÞ, (15)

where g(P) is the order of P and s(k), p(k) are the orders of �k and of P(k).

Equation (11) represents a major simplification in the problem of determining the IRs

of GðkÞ � G. Because it contains the translation subgroup T¼ {(E | t)}, t 2 {ak}, G(k) is a

very large group. F(k) is a much smaller group than G(k), but the elements of F(k) are the
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cosets {(Rj|wj)T} and it is easier to work with its isomorph, the point group P(k), which is

therefore also known as the little co-group. For symmorphic space groups, or for internal

points of non-symmorphic space groups, P(k) (or F(k), see, for example, Cornwell (1984))

will provide a satisfactory route to the space-group representations. The disadvantage is

that not only the translations for which exp(� ik � t)¼ 1, but the whole set {(E|t)} is

mapped on to the identity. For points that lie on surface lines of symmetry, or for surface

symmetry points, this results in a loss of information which can, however, be restored by

finding projective representations (PRs) of P(k), although for symmetry points that lie on

the surface of the BZ an alternative method proposed by Herring (1942) is generally

somewhat easier to apply (Section 16.7).

The star of k was defined as the set of distinct (inequivalent) k vectors that are � fRj kg,

the Rj k that are 
 or ffi k being 2 P(k). Equation (14) establishes the equivalent definition

�k ¼ fRj kg,8 Rj in P � �Rj PðkÞ, j ¼ 1, . . . , sðkÞ: (16)

The isomorphism in eq. (14) is a sufficient requirement, but in fact the equality often holds,

as it does in Example 16.4-2 below. An example of the isomorphism is provided by

Altmann (1977), p. 208.

Example 16.4-1 Construct the star of k1 in the BZ of the reciprocal lattice of the strictly

2-D square lattice shown in Figure 16.13.

The point group P is C4v¼ {E C2 2C4 2�v 2�d}, of order g(P)¼ 8. Shown in

Figure 16.13 are the vectors of �k1, comprising the inequivalent vectors k1, k2, k3, k4

generated by R k1 with R 2 fE C2z C
þ
4z C

�
4zg ¼ C4.

Exercise 16.4-3 Show graphically that the vectors produced by the remaining operators of

C4v are equivalent to a member of �k1¼ {k1 k2 k3 k4}.

Example 16.4-2 Write a coset expansion of the point group P, for the strictly 2-D square

lattice, on P(k), where k is the vector from the origin to point Z in Figure 16.14.

Here P is C4v and P(k) at Z is Cs¼ {E �x} because Z 0 ffiZ, but no other R 2 P give

R k
Z or ffi Z. Therefore, p(k)¼ 2, and from eq. (15) the number of elements in �Z is

x

y

k2

k3

k1

k4

Figure 16.13. Brillouin zone of the reciprocal lattice of the strictly 2-D square lattice, demonstrating

the construction of �k1 : Ek1 ¼ k1, C2zk1 ¼ k2, Cþ
4zk1 ¼ k3,C�

4zk1 ¼ k4.
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s(Z)¼ 8/2¼ 4. From Example 16.4-1, �Z is R k1 with fRg ¼ fE C2z C
þ
4z C

�
4zg, and there-

fore the coset expansion on P(k) is

(14) EfE �xg � C2z fE �xg � Cþ
4z fE �xg � C�

4z fE �xg

¼ fE �x C2z �y Cþ
4z �a C�

4z �bg ¼ C4v ¼ P,

where a¼ 2�½[1 1 0], b¼ 2�½[1 1 0].

16.4.1 Representations of the little group

Let fe�kðR jwÞg be the set of MRs of the coset representatives in eq. (6).

(7), (9) e�kðRi jwiÞ e�kðRj jwjÞ ¼ expð�i k � tijÞ e�k ðRk jwkÞ: (17)

Define

�kðRÞ ¼ expðik � wÞ e�k ðR jwÞ: (18)

ð17Þ, ð18Þ e�k ðRiÞ e�kðRjÞ ¼ exp½�ik � ðtij � wi � wj þ wkÞ� e�k ðRkÞ

ð9Þ ¼ exp½�ik � ðRiwj � wjÞ�e�k ðRkÞ

¼ expði k � wjÞ expð�iR�1
i k � wjÞ�kðRkÞ: ð19Þ

R�1
i k ffi k and so can differ from k only by a reciprocal lattice vector,

R�1
i k ¼ k þ bi: (20)

In eq. (20) bi is different from 0 only if k lies on the surface of the BZ.

(19), (20) �kðRiÞ�kðRjÞ ¼ expð�ibi � wjÞ�kðRkÞ: (21)

In eq. (21) wj is either 0 or the non-lattice translation associated with Rj. Equations (18) and

(21) show that the MRs �k(R|w) of the coset representatives (R |w) in the little group of the

k vector G(k) can be written as the product of an exponential factor exp(� i k �w) and the

X

M

ZZ′
Σ

Γ ∆

Figure 16.14. Brillouin zone of the reciprocal lattice of the strictly 2-D square lattice. The symmetry

points mark out the basic domain; Z 0 and Z are equivalent points.
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MR �k(R), where the set of matrices {�k(R)} form a PR of the point-group operators R that

form the point group P(k) of the little group G(k).

Exercise 16.4-4 Explain why the {�k(R)} are just vector representations for symmorphic

space groups.

An alternative method due to Herring (1942) (see also Altmann (1977) and Bradley and

Cracknell (1972)) avoids the use of PRs and instead involves finding the ordinary vector

representations of a point group of order greater than that of P(k). Herring’s method will be

illustrated in Section 16.7.

Answers to Exercises 16.4

Exercise 16.4-1 (a) (R | v)(E |R� 1t)¼ (R | tþ v)¼ (R | vþ t)¼ (E | t)(R | v). (b) k, t are

vectors in the same space, the space of the crystal pattern and the Bravais lattice. The

scalar product of two vectors is invariant under a rigid rotation of the LVS, and so

k � R�1t ¼ R k � RR�1t ¼ R k � t:

(c) ( I |0) k(r)¼ I k(r)¼ � k(r)

Exercise 16.4-2 Rk 2 hk|, R k 0 2 hk 0 |, 8 R, R 0 2 P. Suppose that Rk¼R 0k 0; then k 0 ¼R 0�1

Rk¼R 00k (closure in P). Therefore k 0 2 hk|, and consequently Rk 0 2 hk|, 8 R 0 2 P, so that

hk 0|
hk|. Therefore two bases either have no k vector in common, or they are identical.

Exercise 16.4-3 Figure 16.13 showed the result Rk1 when R2C4. The remaining elements

of C4v (namely, �x, �y, �a, �b) yield vectors (shown by dashed lines in Figure 16.15) which

are ffi to members of the �k1.

Exercise 16.4-4 For symmorphic space groups wj¼ 0, 8 (Rj |wj) and the projective factors

(PFs) exp(� bi �wj) are all unity.

x

y

a
b

k2

k1

k4

k3

σxk1

σbk1

σak1

σy 
k1

Figure 16.15. This figure, in conjunction with Figure 16.13, proves that {R}, Rk1¼ �k1, is C4, since

�yk1ffi k2, �xk1ffi k1, �ak1ffi k3, �bk1ffi k4.
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16.5 The covering group

The problem of finding space-group representations of the little group G(k) has been

reduced in Section 16.4 to that of finding PRs of the point group P(k), as defined by

eq. (16.4.18). The way that we shall do this (Altmann (1977); but cf. Hurley (1966) and

Kim (1999)) is by finding the vector representations of the covering group P(k) 0.

The construction of P(k) 0 involves finding the central extension of P(k) by a cyclic

Abelian subgroup Zn. Since we always use a factor system that is normalized and

standardized, the PFs (which are known from eqs. (16.4.21) and (16.4.20)) are all nth

roots ofunity,

½i ; j� ¼ expð2p i n�1zijÞ, (1)

where n and zij are integers. The cyclic group Zn, of order z(n), is defined by

Zn ¼ fzg, z ¼ 1, 2, . . . , n ¼ 0, (2)

with binary composition defined as addition modulo n. The covering group P(k) 0, of order

z(n)p(k), is then

PðkÞ0 ¼ fðRi, zlÞg, 8 Ri 2 PðkÞ, 8 zl 2 Zn, (3)

with binary composition defined by

fðRi, zlÞgfðRj, zmÞg ¼ fðRiRj, zl þ zm þ zijÞg, addition modulo n: (4)

The set {(Ri, zl)} has the following properties:

(i) it is closed, which follows from eq. (4);

(ii) it contains the identity (E, 0);

(iii) each element (Ri, zl) has an inverse

ðRi, zlÞ�1 ¼ ðR�1
i , � zl � ziiÞ; (5)

(iv) it exhibits associativity,

½ðRi, zlÞðRi, zmÞ�ðRk , znÞ ¼ ðRi, zlÞ½ðRi, zmÞðRk , znÞ�: (6)

Exercise 16.5-1 Verify the above assertions concerning the inverse of (Ri, zl) and the

associative property of {(Ri, zl)}.

Exercise 16.5-2 Prove that zEE ¼ zERi
¼ zRiE ¼ n, mod n: Hence verify that (E, zm)

commutes with (Ri, zl).

That P(k) 0 defined by eq. (3) is a central extension of P(k) by Zn is readily established.

Firstly, (Ri, zl)!Ri, 8 zl 2 Zn, so that (Ri, zl) is the pre-image of Ri, while eq. (4) shows that

binary composition is preserved. Secondly, (Ri, zl)!Ri is a homomorphous mapping, and

since (E, zl)!E, 8 zl 2 Zn, is the kernel of the homomorphism. Lastly (E, zl) commutes
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with 8 (Ri, zl) 2 P(k) 0 so that (E, zl) is the center of P(k) 0. Therefore, P(k) 0 is a group which

is the central extension of P(k) by Zn, and the further condition

ðRi, 0Þ ! Ri (7)

ensures that P(k) 0 is a covering group of P(k). This is so because of a general theorem

that, given a group G and its central extension G 0 by H0 � ZðG0Þ, G0 is a covering group of

G, with the property that the irreducible vector representations of G 0 are irreducible

projective representations of G, provided that there exists a rule (such as eq. (7)) that

establishes the pre-image of gi, 8 gi 2 G. Moreover this procedure gives all the IRs of G for

a given factor system. I shall not reproduce the rather lengthy proof of this theorem here: it

is given, for example, in Altmann (1977), pp. 86–8, 95–6, and Bradley and Cracknell

(1972), pp. 181–3.

Answers to Exercises 16.5

Exercise 16.5-1

ðRi, zlÞðR�1
i , � zl � ziiÞ ¼ ðE, � zl � zii þ zl þ ziiÞ ¼ ðE, 0Þ:

On substituting eq. (1) in eq. (12.6.6), zijþ zij,k¼ zi,jkþ zj,k and eq. (6) follows.

Exercise 16.5-2 [E, E]¼ 1¼ exp(2pin�1 zEE); therefore zEE¼ n and similarly for

the other two relations. ðE, zmÞðRi, zlÞ ¼ ðERi, zm þ zl þ zERi
Þ ¼ ðRi, zm þ zl þ nÞ,

ðRi, zlÞðE, zmÞ ¼ ðRiE, zl þ zm þ zRiEÞ ¼ ðRi, zm þ zl þ nÞ:

16.6 The irreducible representations of G

Now that we have the PRs of P(k), the small IRs e�k ðR jwÞ of the little group G(k) follow

from

(16.4.18) e�k ðRjwÞ ¼ expð�i k � wÞ�kðRÞ: (1)

The final step going from the small IRs of the little group G(k) to the IRs of G requires the

theory of induced representations (Section 4.8). At a particular k in the representation

domain, the left coset expansion of G on the little group G(k) is

G ¼ �ðRjwÞ GðkÞ, 8R 2 �k: (2)

ð2Þ, (4.8.18) �kðRjvÞ½r s� ¼ ~�k½ðRrjwrÞ�1ðRjvÞðRsjwsÞ�

¼ ~�kðRujvqÞ, ðRujvqÞ 2 GðkÞ (3)

¼ 0, ðRujvqÞ 62 GðkÞ, (4)
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(3) Ru ¼ R�1
r R Rs, (5)

(3) vq ¼ R�1
r ðRws þ v� wrÞ: (6)

Exercise 16.6-1 Verify eqs. (5) and (6) by evaluating the product of space-group operators

in eq. (3).

Let wu be the non-lattice translation vector that belongs to Ru in the coset expansion,

eq. (2). Then

ðRujvqÞ ¼ ðRujwuÞðEj � R�1
u wu þ R�1

u vqÞ (7)

¼ ðRujwuÞðEj � R�1
u wuÞðEjR�1

u vqÞ: (8)

But the only coset representative in {(Rjw)} with R¼E is (Ej0); therefore, the second

and third space-group operators on the RS of eq. (8) must be 2 G(k). Define {R} 0 as {R} in

eq. (2) with the exception of E. Then from eqs. (3) and (8), (Rujvq) 2 G(k) implies that

(Rujwu) 2 G(k) and therefore that Ru 62 {R} 0. Conversely, (Rujvq) 62 G(k) implies that Ru 2
{R} 0. Therefore, this criterion Ru 2 or 62 {R} 0 enables us to decide whether the [r s] element

of the supermatrix �k(Rjv) in the induced representation �kðRjwÞ ¼ ~�k " G is to be

replaced by the null matrix or by ~�kðRujvqÞ with Ru, vq given by eqs. (5) and (6). Therefore,

ð3Þ �kðRjv½r s�Þ ¼ ~�kðRujvqÞ, Ru 62 fRg0 (9)

(4) ¼ 0, Ru 2 fRg0: (10)

This method of finding all the IRs of the space group G at any particular value of k in the

representation domain of the BZ will now be summarized.

(i) Form the little co-group

PðkÞ ¼ fRg, Rk ¼ k þ bm, R 2 P: (11)

(ii) Find the �k, that is the set of distinct, inequivalent k vectors 2 {Rk}, R 2 P.

(iii) Write down the coset expansionP
R PðkÞ, Rk 2 �k: (12)

The set {(Rjw)}, with R from eq. (12), label the rows and columns of the supermatrix

�k(Rjw).

(iv) Find the factor system for the little co-group P(k),

½ðRijwiÞ ; ðRjjwjÞ� ¼ expð�ibi � wjÞ, bi ¼ R�1
i k � k, 8 R 2 PðkÞ: (13)

(v) Find all the �(R) matrices of the projective IRs of P(k) with the factor system, eq. (13);

hence write down the small representations, that is, the IRs of the group of the k vector
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~�kðRjwÞ ¼ �kðRÞ expð�i k � wÞ: (14)

When w¼ 0 the small representations are vector representations, �(Rj0)¼�(R).

(vi) Use the ~�kðRjwÞ (including those with w¼ 0) to determine the induced representa-

tions �k(Rjw) from eqs. (9) and (10). These matrices, when multiplied by �k(Ej t),
give the space-group representations.

Repeat steps (i)–(vi) for each k vector for which the space-group representations

�k(Rjw) �k(Ejt) are required.

Special cases

The above procedure is simplified in either of two special cases. For symmorphic groups

wj¼ 0, 8 gj2G; hence the PFs are all unity and the representations of the little co-group are

all vector representations. For internal points k there are no other points equivalent to k,

and so from eq. (16.4.20) bi¼ 0 and, again, there are no PRs, so that all one needs to do is to

find the IRs of the little co-group.

Example 16.6-1 The pattern of a strictly 2-D space group is shown in Figure 16.16.

There is a C2z axis normal to the plane at the intersection of a1 and a2. The vector

w¼ a1/2¼ a1[½ 0]. Find the IRs of G at X[½ 0].

G ¼ fðEj0ÞT ðC2zj0ÞT ð�yjwÞT ð�xjwÞTg, (15)

y

x

w
a1

a2

(a)

(b)

b1

b2

XΓ

Figure 16.16. (a) Crystal pattern of a 2-D non-symmorphic space group.(b) Brillouin zone of the

reciprocal lattice; �¼ [0 0], X¼ [½ 0].
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P ¼ fE C2z �y �xg: (16)

Exercise 16.6-2 Does the set of coset representatives in (15) form a group?

(i) At X, k¼ b1/2 (Figure 16.16(b)) and

PðkÞ ¼ fE C2z �y �xg ¼ C2v: (17)

(ii) At X,

Ek ¼ k,C2zk ¼ �k ¼ k � a1 ffi k, �y k ¼ k, �x k ¼ �k ffi k; (18)

(17) �k ¼ fkg, sðkÞ ¼ 1, pðkÞ ¼ gðPÞ=sðkÞ ¼ 4 : (19)

(iii)
EPðkÞ ¼ P: (20)

(iv) The factor table follows from eq. (13) and is given in Table 16.7, which also shows the

multiplication table of C2v.

(v) From Table 16.7(a), the PFs are all roots of unity of order 2 so that n ¼ 2 in

eq. (16.5.1), and

Table 16.7. (a) Projective factors [(Rijwi ) ; (Rjj wj )] calculated from eq.(16.6.13).

(b) Multiplication table Ri Rj. (c) Table of values of zij.

In (a) and (b) Ri labels the rows and Rj labels the columns. In (c), i and j label rows and

columns, respectively.

(a) Ri\Rj E C2z �y �x

E 1 1 1 1
C2z 1 1 � 1 � 1
�y 1 1 1 1
�x 1 1 �1 �1

(b) Ri\Rj E C2z �y �x

E E C2z �y �x
C2z C2z E �x �y
�y �y �x E C2z

�x �x �y C2z E

(c) i \j E C2z �y �x

E 0 0 0 0
C2z 0 0 1 1
�y 0 0 0 0
�x 0 0 1 1
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½i ; j� ¼ expð2pi n�1zijÞ, (21)

from which we calculate the values of zij shown in Table 16.7(c). C2v is Abelian and

therefore has four 1-D vector IRs. Since n¼ 2, the order of G0 ¼ C0
2v is 8¼ 4(1)2þ 22,

showing that there is one 2-D PR, �5. When n¼ 2, Z2¼ {1, 0}, and the elements of G 0

are {(gj, 0) (gj, 1)} with gj 2 C2v. The multiplication table of G 0 in Table 16.8 is now

readily calculated from eq. (16.5.4) using the values of zij in Table 16.8.

Exercise 16.6-3 Evaluate the products (C2z, 1)(�y, 0) and (�x, 1) (�y, 1).

The multiplication table for G0 ¼ C0
2v shows that it is isomorphous with the abstract

group G4
8 defined by the generating relations P4¼E, Q2¼E, QP¼P3Q. From Table 16.8,

(�x, 0)4¼ (E, 1)2¼ (E, 0) ! E and (C2z, 0)2¼ (E, 0)!E, which show that (�x, 0)!P and

(C2z, 0)!Q. As a check:QP¼ (C2z, 0)(�x, 0)¼ (�y, 1), andP3Q¼ (�x, 0)3 (C2z, 0)¼ (�x, 1)

(C2 z, 0)¼ (�y, 1). The point group D4 is also isomorphous with G4
8 with Cþ

4z ! P and

Table 16.8. Multiplication table for the covering group G 0 of G¼C2v showing the

isomorphism of G 0 with D4.

D4
G 0 E C2x Cþ

4z C�
4z C2x C2y C2a C2b

E, 0 E, 1 �x, 0 �x, 1 C2z, 0 C2z, 1 �y, 0 �y, 1

E E, 0 E, 0 E, 1 �x, 0 �x, 1 C2z, 0 C2z, 1 �y, 0 �y, 1
C2z E, 1 E, 1 E, 0 �x, 1 �x, 0 C2z, 1 C2z, 0 �y, 1 �y, 0

Cþ
4z

�x, 0 �x, 0 �x, 1 E, 1 E, 0 �y, 0 �y, 1 C2z, 1 C2z, 0

C�
4z �x, 1 �x,1 �x, 0 E, 0 E, 1 �y, 1 �y, 0 C2z, 0 C2z, 1

C2x C2z, 0 C2z, 0 C2z, 1 �y, 1 �y, 0 E, 0 E, 1 �x, 1 �x, 0
C2y C2z, 1 C2z, 1 C2z, 0 �y, 0 �y, 1 E, 1 E, 0 �x, 0 �x, 1
C2a �y, 0 �y, 0 �y, 1 C2z, 0 C2z, 1 �x, 0 �x, 1 E, 0 E, 1
C2b �y, 1 �y, 1 �y, 0 C2z, 1 C2z, 0 �x, 1 �x, 0 E, 1 E, 0

Table 16.9. Character table of the abstract group G4
8, showing the corresponding classes

of the covering group C0
2v and its isomorph D4.

G8
4

E P2 P, P3 Q, P2Q PQ, P3Q

C2v
0 (E, 0) (E, 1) (�x, 0) (C2z, 0) (�y, 0)

(�x, 1) (C2z, 1) (�y, 1)

D4 E C2z C�
4z C2x, C2y C2a, C2b

�1 1 1 1 1 1
�2 1 1 1 � 1 � 1
�3 1 1 � 1 1 � 1
�4 1 1 � 1 � 1 1
�5 2 � 2 0 0 0
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C2x!Q. Therefore, C0
2v is isomorphous with D4, with the mappings (C2z, 0)!C2x,

(�x, 0)!Cþ
4z. Corresponding elements of G 0 and D4 are shown in Table 16.8. For G4

8, g

= 8, nc = 5, nv = 5. The character table of G4
8 is shown in Table 16.9, in which column

headings include the corresponding classes of G0 ¼ C0
2v and D4. Note that C 0

2v has five

vector representations: �1 to �4 are identical with those of C2v. Since it is the operators (gj,

0) of G
0
which map on to the operators gj of G¼C2v, the column headed (E, 1) is omitted,

because it is in C0
2v but not in C2v. Therefore, �5 is the PR of C2v. (Check:P

j�jj2 ¼ 4 ¼ g.) Since (gj, 0)! gj, we choose a suitable basis for �5 in C 0
2v and calculate

the MRs of (gj, 0). The simplest basis to use is he1 e2j. For example, using the correspon-

dence of (�y, 0) with C2a,

C2ahe1 e2 j ¼ he2 e1 j ¼ he1 e2 j
0 1

1 0

� �
: (22)

The MRs of the (gj, 0) operators calculated in this way are given in Table 16.10(b). There is

only one coset representative (Rrjwr)¼ (Rsjws)¼ (Ej0) and so

(5) Ru ¼ R, (23)

(6) vq ¼ R�1
r ðR ws þ w� wrÞ ¼ E�1ðR 0þ w� 0Þ ¼ w: (24)

Table 16.10. (a) Matrices �(R) of the PR of C2v, which is the vector representation �5

of D4 � C0
2v. (b) Matrices �k(Rjw) of the 2-D space-group representation at k¼ [1/2 0].

(c) Values of Ru and vq for Ru 2 {R}0 and the PF exp(� i k �w) used in calculating the

matrices in (b).

The column headings in (a) identify the operators ðgj, 0Þ 2 C0
2v, which map on to gj 2 C2v,

and also the corresponding operators of D4 used in the calculation of these matrices. As

the supermatrix, (b), has only one row and column, it follows from eqs. (3), (23), and (24)

that the space-group representation �kðRjwÞ is identical with the small representation

~�kðRjwÞ of the little group given by eq. (16.6.14).

C0
2v (E, 0) (C2z, 0) (�y, 0) (�x, 0)

D4 E C2x C2a Cþ
4z

(a) �(R) 1 0

0 1

� �
1 0

0 �1

� �
0 1

1 0

� �
0 �1

1 0

� �
G (Ej0) (C2zj0) (�yjw) (�xjw)

(b) �k(Rjw) 1 0

0 1

� �
1 0

0 �1

� �
0 �i

�i 0

� �
0 i

�i 0

� �
(c) Ru C2z �y �x

vq 0 w w
exp(�i k �w) 1 � i � i
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In this way we derive the values of vq shown in Table 16.10(c). Since k ¼ b1/2 ¼ p/a1 and

w¼ a1/2 (Figure 16.16), k � w ¼ ( p/2) and exp (�i k � w) ¼�i, as entered in Table 16.10(c).

In this example the supermatrix has only one row and column, so that

�kðRjwÞ ¼ ~�kðRÞ expð�i k �wÞ:

Exercise 16.6-4 Using the MRs �k(Rjw) in Table 16.10 evaluate the product �(C2zj0)

� (�yjw). Evaluate also the corresponding operator products in C2v, in C0
2v, and in D4.

Finally, the matrices �k(Rjw) in Table 16.10 have to be multiplied by the appropriate

representation �k(Ejt) of the translation subgroup to give the space-group representations

�k(Rjv). At X,

k � t ¼ ½b1:ðn1a1 þ n2a2Þ ¼ p n1, (25)

(25) �kðEjtÞ ¼ expð�i k � tÞE2

¼ �E2 ðn1 oddÞ

¼ E2 ðn1 evenÞ

(
(26)

and similarly at any other k point.

Answers to Exercises 16.6

Exercise 16:6-1 ðRrjwrÞ�1ðRjvÞðRsjwsÞ ¼ ðR�1
r j �R�1

r wrÞðRRsjRws þ vÞ

¼ ðR�1
r R RsjR�1

r ðRws þ vÞ �R�1
r wrÞ

¼ ðR�1
r R RsjR�1

r ðRws þ v� wrÞÞ

¼ ðRujvqÞ:

Exercise 16.6-2 No, because it is not closed. For example, (�yjw) (�yjw¼ (�y
2jwþw)¼

(Ej2w)¼ (Eja1).

Exercise 16:6-3 ðC2z, 1Þð�y, 0Þ ¼ ð�x, 1 þ 0 þ 1Þ ¼ ð�x, 0Þ
ð�x, 1Þð�y, 1Þ ¼ ðC2z, 1 þ 1 þ 1Þ ¼ ðC2z, 1Þ:

Exercise 16.6-4 (C2zj0)(�yjw)¼ (�xj �wþ 0)¼ (Ej � a1)(�xjw);

�ðC2zj0Þ�ð�yjwÞ ¼ �i

1 0

0 �1

24 35 0 1

1 0

24 35 ¼ �i

0 1

�1 0

24 35 ¼ �1

0 i

�i 0

24 35
¼ ��ð�xj wÞ,
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and so does �(Ej �a1)�(�xjw)¼��(�xjw). In C2v, C2z �y¼ �x; in C0
2v, ðC2z, 0Þ

ð�y, 0Þ ¼ ð�x, 1Þ ! C�
4z in D4. In D4, C2x C2a ¼ C�

4z.

16.7 Herring method for non-symmorphic space groups

In Sections 16.4–16.6 the problem of finding the representations of a space group G at any

particular k point was solved by reducing the size of the group of the wave vector

GðkÞ ¼
P

ðRjwÞT, 8 R 2 PðkÞ, (1)

by forming its factor group with respect to T,

FðkÞ ¼ GðkÞ=T ¼ fðRjwÞTg, 8 R 2 PðkÞ, (2)

which is isomorphous with the point group of the wave vector P(k). The whole of T is

thereby mapped on to the identity in F(k), so that all the translations are represented by the

unit matrix E. This device results in a loss of information, which may be restored by

finding PRs of P(k) as vector representations of its central extension P(k)0. In Herring’s

method one uses instead an isomorph of the factor group of G(k) with respect to a subgroup

of T, T(k), defined by

TðkÞ ¼ fðEjtÞg, expð�i k � tÞ ¼ 1, (3)

so that the elements of T(k) are represented by the unit matrix. This avoids the loss of

information referred to above, and consequently the representations of G(k) may be found

via vector representations of a group of order larger than that of P(k), called the Herring

group h(k). For points of high symmetry the use of Herring’s method may involve

isomorphisms with abstract groups of rather large order, but character tables for all the

abstract groups required in deriving the representations of the 230 space groups have been

given by Bradley and Cracknell (1972).

(1), (3) GðkÞ ¼
P
ðRjwÞ

P
ðEjtÞ

ðRjwÞ ðEjtÞ TðkÞ, (4)

where

fðEjtÞg ¼ ðEj0Þ � 8 ðEjtÞ 62 TðkÞ

¼ ðEj0Þ � 8 ðEjtÞ for which expð�i k � tÞ 6¼ 1 (5)

¼ tðkÞ: (6)

The Herring factor group is

ð4Þ�ð6Þ GðkÞ=TðkÞ ¼ fðRjwÞ tðkÞ TðkÞg, (7)

which is isomorphous with the Herring group

ð4Þ�ð6Þ hðkÞ ¼ fðRjwÞg fðEjtÞg, 8 R 2 PðkÞ, 8ðEjtÞ 2 tðkÞ: (8)
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The law of binary composition in h(k) is the Herring multiplication rule, which is the

Seitz rule for the multiplication of space-group elements supplemented by the additional

condition that (Ejt) is to be replaced by (Ej0) whenever exp(�i k � t)¼þ 1.

The steps involved in Herring’s method for a non-symmorphic space group will now be

summarized as was done for the PR method in Section 16.6.

(i) Form the little co-group for any k in the representation domain of the BZ,

PðkÞ ¼ fRg, Rk ¼ k þ bm: (9)

(ii) Find �k.

(iii) Write down the coset expansionP
R PðkÞ , Rk 2 �k: (10)

The coset representatives {R} are the star generators found in (ii).

(iv) Write down the set (which is not necessarily a group)

fðRjwÞg, 8 R 2 PðkÞ: (11)

(v) Construct the translation group T(k) (eq. (3)).

(vi) Construct the group t(k) (eq. (5)).

(vii) Write down the Herring grouph(k) (eq. (8)).

(viii) The IRs of h(k) give the small representations, but many of the representations of

h(k) will duplicate information in the vector representations of the little co-group,

so the only ones required are those for which

�kðEjtÞ ¼ expð�i k � tÞ ElðkÞ, lðkÞ ¼ dimension of �k: (12)

On using eqs. (16.6.9) and (16.6.10) the matrices of the required representations found in

(viii) give the elements �k of the supermatrix as in step (vi) of Section 16.6, and these

matrices, when multiplied by �k(Ejt), are the space-group representations.

Comment The ‘‘required representations’’ are also referred to in the literature as ‘‘per-

mitted’’ or ‘‘allowed’’ representations.

Example 16.7-1 Herring’s method will be illustrated by re-working Example 16.6-1 on a

2-D non-symmorphic space group. As before,

P ¼ fE C2z �y �xg ¼ C2v: (13)

(i) At X, k¼ [½ 0], and the little co-group

PðkÞ ¼ fE C2z �y �xg ¼ C2v: (14)

(ii) Therefore, the only star generator is E and �k is Ek.
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(iii) The coset expansion on P(k) is

E C2v ¼ P: (15)

The supermatrix therefore consists of just one submatrix �½ðEj0ÞðEj0Þ�.

(iv) The set

fðRjwÞg ¼ fðEj0ÞðC2zj0Þð�yjwÞð�xjwÞg: (16)

(v) TðkÞ ¼ fðEj n1a1 þ n2 a2Þ, n1 even, 8n2: (17)

(n1 must be an even integer in order to satisfy eq. (3).)

(vi) (Eja1) is excluded from T(k) because exp(� i k � a1)¼ exp(� ip)¼�1. Therefore

tðkÞ ¼ fðEj0ÞðEja1Þg: (18)

(vii)

hðkÞ ¼ fðEj0ÞðC2j0Þð�yjwÞð�xjwÞgfðEj0ÞðEja1Þg
¼ fðEj0ÞðC2zj0Þð�yjwÞð�xjwÞg � fðEja1ÞðC2zja1Þð�yjwþ a1Þð�xjwþ a1Þg:

(19)

The direct sum in eq. (19) would not close without the Herring multiplication rule.

For example, (�xjw)(Eja1)¼ (�xjwþ �xa1)¼ (�xjw� a1)¼ (�xjwþ a1), because

exp(� i k � 2a1)¼þ 1.

(viii) h(k) is isomorphous with G4
8, which has the generating relations P4¼E¼Q2,

QP¼P3Q. In hðkÞ, ðC2zj0Þ2 ¼ ðEj0Þ ! E, so that (C2zj0)!Q; ð�yjwÞ2 ¼
ðEj2wÞ ¼ ðEja1Þ ! ðE, 1Þ of C0

2v and (Eja1)2¼ (Ej2a1)¼ (Ej0)!E, so that

(�yjw)!P. (Note the difference between C0
2v and h(k): in the former it is (�x, 0)

that maps on to P.) Therefore, the character table of h(k) is the same as that of D4. It

is the required representations of h(k) that are small representations of G(k). These

required representations are those which satisfy eq. (12) with k ¼ ½b1. Only the 2-D

representation �5 of D4 does this for the class (Eja1).

Exercise 16.7-1 Confirm that QP¼P3 Q in the isomorphism hðkÞ � G4
8:

Table 16.11. Corresponding classes in the isomorphisms of h(k) for the 2-D

non-symmorphic space group of Figure 16.7(a).

c1 c2 c3 c4 c5

G4
8

E P2 P, P3 Q, P2Q PQ, P3Q

h(k) (Ej0) (Eja1) (�yjw) (C2zj0) (�xjw)
(�yjwþ a1) (C2zja1) (�xjwþ a1)

D4 E C2z C�
4z

C2x, C2y C2a, C2b

C0
2v (E, 0) (E, 1) (�x, 0) (C2z, 0) (�y, 0)

(�x, 1) (C2z, 1) (�y, 1)
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(ix) The four 2 	 2 matrices for {( Rj w)} ¼ {( Ej 0)(C2zj0) (�yjw)(�xjw)} in eq. (19) have

already been given in Table 16.10(a) (with the difference noted above). The remaining

four matrices for {(Rjw)(Eja1)} are obtained by multiplying those for {(Rjw)} by that

for (Eja1) ¼ exp( �i k � a1) E2 ¼�E2. Table 16.11 clarifies the isomorphisms of h(k)

with G4
8, D4, and C0

2v.

Example 16.7-2 A more substantial example is provided by the problem of finding the

representations of the space group 227 (Fd3m or O7
h), which is the space group of the

diamond structure. As specific examples, the space-group representations will be constructed

at the surface points W and X (Figure 16.12(b), Table 16.6(b)). For Fd3m the little group

GðkÞ ¼
P
fAg

ðAj0ÞT þ
P
fBg

ðBjwÞT, w ¼ ½1=4 1=4 1=4�, (20)

where A 2 P(k) \ Td, B 2 {P(k)} that are not in Td. For example, at W, for which

k ¼ 1=2b1 þ 1=4 b2 þ 3=4b3 ¼ 1=2e1 þ e2 þ 0e3, PðkÞ ¼ D2d and

fAg ¼ fE C2x Sþ4x S�4xg, fBg ¼ fC2c C2d �y �zg: (21)

(21), (20) fðRjwÞg ¼ fðEj0ÞðC2xj0ÞðSþ4xj0ÞðS�4xj0ÞðC2cjwÞðC2djwÞð�yjwÞð�zjwÞg; (22)

(5), (6) tðkÞ ¼ fðEj0ÞðEja3ÞðEja1ÞðEja2Þg (23)

with exp(�i k � t)¼ 1, i, �1, �i, respectively. (The translations in eq. (23) are the funda-

mental translations for the fcc lattice.)

Table 16.12. Character table for the required representations of the Herring group at the

symmetry point W in the BZ (Figure 16.6(b)) for space group 227 (Fd3m or O7
h).

W1¼R11 and W2¼R12, where R11, R12 are representations of the abstract group G4
32

which is isomorphous with h(k). Column headings for the classes are the coset

representatives fðRjwÞg: Time-reversal symmetry is of type a for both representations.

c1 c2 c3 c4 c5 c6 c7

W (Ej0) (Eja3) (Eja1) (Eja2) (C2xj0) (C2xja1) ðSþ4xj0Þ
(C2xja3) (C2xja2) ðS�4xja2Þ

W1 2 2i � 2 � 2i 0 0 1� i
W2 2 2i � 2 � 2i 0 0 �1þ i

c8 c9 c10 c11 c12 c13 c14

W ðSþ4xja3Þ ðSþ4xja1Þ ðSþ4xja2Þ (�yjwþ a3) (�yjw) (C2djwþ a3) (C2djw)

ðS�4xj0Þ ðS�4xja3Þ ðS�4xja1Þ (�yjwþ a2) (�yjwþ a1) (C2djwþ a2) (C2djwþ a1)
(�zjw) (�zjwþ a3) (C2cjw) (C2cjwþ a3)
(�zjwþ a1) (�zjwþ a2) (C2cjwþ a1) (C2cjwþ a2)

W1 1þ i �1þ i �1� i 0 0 0 0
W2 �1� i 1� i 1þ i 0 0 0 0
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Exercise 16.7-2 Verify the values of exp(�i k � t) at k¼ [½ ¼ 3⁄4](2p/a).

The Herring group h(k)¼ {(Rjw)} {t(k)} at W is the set product of eqs. (22) and (23)

and is isomorphous with the abstract group G4
32, with generators

P ¼ ðSþ4xj0Þ, Q ¼ ðEja3Þ, R ¼ ðC2djwÞ: (24)

Table 16.13. Classes of the abstract group G4
32.

The classes of h(k) in Table 16.12 may be checked from

these classes of G4
32 and the generators in eq. (24).

G4
32 G4

32

c1 E

c2 Q

c3 Q2

c4 Q3

c5 P2, P2Q2

c6 P2Q, P2Q3

c7 P, P3 Q3

c8 PQ, P3

c9 PQ2, P3Q

c10 PQ3, P3Q2

c11 PQR, P3R, PQ3R, P3Q2R

c12 PR, PQ2R, P3QR, P3Q3R

c13 QR, Q3R, P2R, P2Q2R

c14 R, Q2R, P2QR, P2Q3R

Table 16.14. Matrix representatives of the Herring

translations t(k).

El is the l	 l unit matrix.

(Ej0) (Eja3) (Eja1) (Eja2)

E2 iE2 �E2 � iE2

Table 16.15. Generating matrices for the required

representations of h(k)� G4
32 at W.

P Q R

R11 p� iq r
R12 ip iq r

p ¼ 1 0

0 1

� �
;q ¼ 1 0

0 1

� �
;r ¼ 0 1

1 0

� �
:
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The character table of G4
32 is given by Bradley and Cracknell 1972, p. 241. The required

representations in which (Eja3) is represented by iEl are R11 and R12, with l¼ 2. The

character table of the Herring group h(k) at W is given in Table 16.12. It is customary

to label the IRs �1, �2, . . . by substituting the label for the symmetry point for �, so

here W1, W2, . . . The classes of G4
32 are given in Table 16.13 and the MRs of T(k) are

given in Table 16.14. The generating matrices for the required representations of

hðkÞ � G4
32 at W are given in Table 16.15, and the generators P, Q, R are defined in

eq. (24).

At X, k¼ 1=2b1þ½b3 and k � a1¼ (2p/a)[1=2 0 1=2] . a[1 0 0]¼ p, so that

exp(�i k � a1)¼ exp(�ip)¼�1. Therefore t(k) ={(Ej0)(Eja1)}. The Herring group

h(k) is the set product of {(Rjw)} and t(k). At X, P(k)¼D4h¼D4�Ci, and therefore

hðkÞ ¼ f
P
fAg

ðAj0Þ þ
P
fAg

ðIAjwÞ þ
P
fBg

ðBjwÞ þ
P
fBg

ðIBj0ÞgfðEj0ÞðEja1Þg, (25)

where A 2 D4 \ Td, B 2 D4 but 62 Td.

(25) hðkÞ ¼ fðEj0ÞðC2yj0ÞðC�
4yjwÞðC2zj0ÞðC2xj0ÞðC2ejwÞðC2f jwÞðI jwÞ

ð�yjwÞðS�4yj0Þð�zjwÞð�xjwÞð�ej0Þð�f j0ÞgfðEj0ÞðEja1Þg: (26)

h(k) is isomorphous with the abstract group G2
32 with generators

P ¼ ð�xjwÞ, Q ¼ ðSþ4yj0Þ, R ¼ ðC2xj0Þ: (27)

Table 16.16. Character table for the required IRs of the Herring group for the space group

227 (Fd3m or O7
h ) at the symmetry point X in the BZ (see Figure 16.12 and Table 16.6).

R10, R11, R13, R14 are representations of the abstract group G2
32 � hðkÞ.

X1(R10) X2(R11) X3(R13) X4(R14)

c1(Ej0) 2 2 2 2
c2(C2yj0) 2 � 2 2 � 2
c3(Eja1) � 2 � 2 � 2 � 2
c4(C2yja1) � 2 2 � 2 2
c5(Ijw), (Ijwþ a1) 0 0 0 0
c6(�yjw), (�yjwþ a1) 0 0 0 0
c7(�ej0), (�fj0) 2 0 � 2 0
c8(�eja1), (�f j a1) � 2 0 2 0
c9(C2ejwþ a1), (C2fjw) 0 2 0 � 2
c10(C2ejw), (C2fjwþ a1) 0 � 2 0 2
c11(C2zj0), (C2xj0) (C2zja1), (C2xja1) 0 0 0 0
c12(�zjw), (�zjwþ a1), (�xjw), (�xjwþ a1) 0 0 0 0

c13ðS�4yj0Þ, ðS
�
4yja1Þ 0 0 0 0

c14ðC�
4yjwÞ, ðC�

4yjwþ a1Þ 0 0 0 0

� a a a a
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The classes of this realization of G2
32 are given in Table 16.16. The extra translation apart

from (Ej0) in t(k) is (Eja1), which forms the class c3. The required representations of

h(k) are those with character exp(�i k . a1)l¼�l, for �(c3). (l is the dimension of the

representation.) These are the representations R10, R11, R13, R14 (with l¼ 2) in the

character table of G2
32 (Bradley and Cracknell (1972), p. 240; see also Jones (1975),

Table 44, in which (Eja1) is c14). Table 16.16 is a partial character table of h(k), giving

only the four required representations. Matrix representatives can be obtained from those

of the generators in Table 16.17, using eq. (27) and the classes of G2
32 which are given in

Problem 16.8.

Tables of space-group representations are given by Bradley and Cracknell

(1972), Kovalev (1993), Miller and Love (1967), Zak (1969). Stokes and Hatch (1988)

describe various errors in these compilations and discuss the different settings and labels

used.

Answers to Exercises 16.7

Exercise 16.7-1

P3Q ¼ ðEja1Þð�yjwÞðC2j0Þ ¼ ðEja1Þð�xjwÞ;

QP ¼ ðC2j0Þð�yjwÞ ¼ ð�x j � wÞ ¼ ðEja1Þð�xjwÞ ¼ P3Q:

Exercise 16.7-2

expð�ik � tÞ ¼ expð�ið2p=aÞ½1=2 1=4 3=4�:a½0 0 0� ¼ 1;

expð�ið2p=aÞ½1=2 1=4 3=4�:a½0 0 1�Þ ¼ expð�ið3p=2Þ ¼ i,

expð�ið2p=aÞ½1=2 1=4 3=4�:a½1 0 0�Þ ¼ expð�ipÞ ¼ �1;

expð�ið2p=aÞ½1=2 1=4 3=4�:a½0 1 0�Þ ¼ expð�ip=2Þ ¼ �i:

Alternatively, the same results could be obtained using Cartesian axes.

Table 16.17. Generating matrices for the

representations X1 to X4.

P Q R

X1 p r r
X2 p �p r
X3 p �r r
X4 p p r

p ¼ 0 �1

1 0

� �
; r ¼ 0 1

1 0

� �
:

350 Space groups



16.8 Spinor representations of space groups

We have seen that the determination of space-group representations involves the study of

point-group representations, albeit sometimes of rather large order, either by finding PRs or

by the Herring method. The results for ordinary Bloch functions  (r), which may be used

when electron spin is neglected, must be generalized when the basis functions are two-

component spinors. This may be done either by replacing the groups G, P and P(k) by the

corresponding double groups G, P, and P(k) (Chapter 8) or by using PRs (Chapter 12).

Double space groups corresponding to O1
h, O5

h, O7
h and O9

h were first studied by Elliott

(1954) and an account of double space-group representations has been given by Bradley

and Cracknell (1972). Here, I shall show, by means of a few examples, how to derive the

projective spinor representations of a space group at particular symmetry points. I shall use

as an example the space group 219 ðF43c or T5
dÞ because its double group representations

have been discussed by Bradley and Cracknell (1972), thus affording the reader an

opportunity of comparing the two methods. The method of deriving spinor representations

has been described in Chapter 12, for the point groups D3 and C3v, and in Chapter 14 for

C2v. It involves the following steps.

(i) For any required point symmetry operator R write down the rotation parameters � n.

(ii) Write down the quaternion parameters [l, �] for R.

(iii) Calculate the Cayley–Klein parameters a, b.

(iv) Write down the MRs �j(R) using eqs. (12.8.3) and (12.8.5). For improper rotations use

the Pauli gauge, �(IR)¼�(R).

(v) Sum the diagonal elements to obtain the characters of {�(R)}.

If only characters but not MRs are required, steps (i)–(iv) need only be carried out for one

member of each class. In this case the usual checks for normalization and orthogonality of the

character systems for each spinor representation should be applied. For point groups of large

order the tables of Altmann and Herzig (1994) may be consulted. Otherwise, one may use the

representations of double groups given in Chapter 6 of Bradley and Cracknell (1972),

omitting the information that relates to double group operators (Rjw). However, multiplica-

tion rules (from PFs) will be required if products of group elements are to be evaluated.

Example 16.8-1 Determine the spinor representations for space group 219 (F43c or T5
d) at

the symmetry points X and W.

The lattice is again fcc with the BZ shown in Figure 16.12. At X,

k ¼ ½1=2 0 1=2�, PðkÞ ¼ D2d, tðkÞ ¼ fðEj0Þ, ðEja1Þg: (1)

Exercise 16.8-1 Explain why (Eja1) could be replaced by (Eja3) in eq. (1).

The set {(Rjw)} is a subgroup of h(k) and is � G4
8 � D2d with generators

P ¼ ðSþ4yjwÞ, Q ¼ ðC2xj0Þ, (2)
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where w¼½a1þ½a2þ½a3 and {a1 a2 a3} are the fundamental vectors of the fcc lattice.

The group elements of fðRjwÞg � G4
8 are

E ¼ ðEj0Þ, P ¼ ðSþ4yjwÞ, P2 ¼ ðC2yj0Þ, P3 ¼ ðS�4yjwÞ,

Q ¼ ðC2xj0Þ, PQ ¼ ð�ejwÞ, P2Q ¼ ðC2zj0Þ, P3Q ¼ ð�f jwÞ: (3)

The character table of D2d shows the five vector representations A1, A2, B1, B2, E which we

re-label as X1, X2, X3, X4, X5. Matrix representatives of P, Q for X5 in G4
8 are

P ¼ 0 1

�1 0

� �
, Q ¼ 1 0

0 �1

� �
: (4)

Table 16.18. Rotation parameters � n (or � m), quaternion parameters [l, �], and

Cayley–Klein parameters a, b for the elements of subgroup G4
8 of h(X).

a¼ l� i�z, b¼��y� i�x. Parameters for IR are the same as for R (Pauli gauge).

� n or m l � a b

E 0 [0 0 0] 1 [0 0 0] 1 0
S�4y p / 2 [0 1 0] 1= ffiffiffi2p 1= ffiffiffi2p ½0 1 0� 1= ffiffiffi2p �1= ffiffiffi2p

Sþ4y p / 2 ½0 1 0� 1= ffiffiffi2p 1= ffiffiffi2p ½0 1 0� 1= ffiffiffi2p 1= ffiffiffi2p

C2y p [0 1 0] 0 [0 1 0] 0 � 1
C2x p [1 0 0] 0 [1 0 0] 0 � i
C2z p [0 0 1] 0 [0 0 1] � i 0
�e p 1= ffiffiffi2p ½1 0 1� 0 1= ffiffiffi

2
p ½1 0 1� �i= ffiffiffi2p �i= ffiffiffi2p

�f p 1= ffiffiffi2p ½1 0 1� 0 1= ffiffiffi
2

p ½1 0 1� i= ffiffiffi2p �i= ffiffiffi2p

Table 16.19. Matrix representatives for elements of the subgroup G4
8 of h(X) calculated

from eqs. (12.8.3) and (12.8.5) using the Cayley–Klein parameters in Table 16.18 for the

symmetrized bases.

h u vj ¼ hj1=2 1=2i j1=2 � 1=2ij, hv� � u�j ¼ hj1=2 � 1=2i� � j1=2 1=2i�j.

hv� �u�j is the ungerade spinor from Chapter 12.

E S�4y Sþ4y C2y

E1/2
1 0

0 1

� �
1= ffiffiffi2p 1 �1

1 1

� �
1= ffiffiffi2p 1 1

�1 1

� �
0 �1

1 0

� �
E3/2

1 0

0 1

� �
1= ffiffiffi2p �1 1

�1 �1

� �
1= ffiffiffi2p �1 �1

1 �1

� �
0 �1

1 0

� �
C2x C2z �e �f

E1/2
0 �i

�i 0

� �
�i 0

0 i

� �
1= ffiffiffi2p �i �i

�i i

� �
1= ffiffiffi2p i �i

�i �i

� �
E3/2

0 �i

�i 0

� �
�i 0

0 i

� �
1= ffiffiffi2p i i

i �i

� �
1= ffiffiffi2p �i i

i i

� �
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Exercise 16.8-2 The generating relations for G4
8 are P4¼E¼Q2, QP¼P3Q. Verify these

relations using (a) P, Q defined in eq. (2), and (b) the MRs, P,Q defined in eqs. (4).

Rotation parameters, quaternion parameters, and Cayley–Klein parameters for the point

operators R in {(Rjw)}�D2d are given in Table 16.18. Table 16.19 shows the MRs for the

PRs of G4
8. Since G4

8 � D2d, this information could have been obtained from the tables of

Altmann and Herzig (1994) but MRs have been worked out here to illustrate the method

used in deriving PRs. The number of PRs (namely two) is equal to the number of regular

classes (that is, those with no bilateral binary (BB) rotations), which is two in this group.

Remember that the MR of the ungerade spinor changes sign on inversion so that for

improper rotations only, the MR in E3/2 is the negative of that in E1/2. Summing the

diagonal elements gives the characters in Table 16.20.

At the symmetry point W, k¼ [½ ¼ 3/4], P(k)¼ S4, and h(k) is the DP G1
4 � tðkÞ,

where

tðkÞ ¼ fðEj0Þ ðEja2Þ ðEj2a2Þ ðEj3a2Þg: (5)

The generator of G1
4 is P¼ (S4xjw) with w¼ [½ ½ ½]; G1

4 is isomorphous with the point

group S4 and therefore has four 1-D representations W1¼A, W2¼ 2E, W3¼B, and

W4¼ 1E. These IRs are of type b, and the pairs W1, W3 and W2, W4 become degenerate

under time-reversal symmetry. Matrix representatives for the spinor bases hu vj, hv� �u�j
are in Table 16.21. The character systems for these representations are {2 �2 0 �2} so

that for both representations, g�1
P

j�j2 ¼ 3 6¼ 1. These MRs may be reduced by the

transformation S� 1MS¼M0, where

S ¼ 2�1=2 1 1

1 1

� �
¼ S�1: (6)

The IRs and their characters are given in Table 16.21. The space-group representations are

obtained by multiplying these 1-D IRs in Table 16.21 by the MRs of t(k).

Exercise 16.8-3 Write down the quaternion parameters for R 2 S4 and hence verify the

matrices in Table 16.21.

Table 16.20. Character table for the spinor representations of the Herring subgroup of the

space group 219 (F43c or T5
d) at the symmetry point X.

These characters are real and therefore no additional degeneracies are to be expected in

crystals exhibiting time-reversal symmetry.

(S�4yjw) (C2xj0) (�ejw)

E (C2yj0) (Sþ4yjw) (C2zj0) (�fjw) �

E1/2 2 0
ffiffiffi
2

p
0 0 a

E3/2 2 0 �
ffiffiffi
2

p
0 0 a
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Answers to Exercises 16.8

Exercise 16.8-1 exp(�ik � 0)¼ 1; k � a1¼ (2p/a)[½ 0 ½] . a[1 0 0]¼ p, exp(�ip)¼�1;

k � a3¼ (2p/a)[½ 0 ½] . a[0 0 1]¼ p, as for a1. The MRs are exp(�i k � t) (here 1 or �1)

multiplied by the unit matrix El.

Exercise 16.8-2 P¼ (Sþ4yjw) with

w ¼ 1
2
a1 þ 1

2
a2 þ 1

2
a3 ¼ 1

2
½e1 þ e2 þ e3�:

P2 ¼ ðSþ4yjwÞðSþ4yjwÞ ¼ ðC2yje3Þ ¼ ðC2yj0Þ,

P3 ¼ ðSþ4yjwÞðC2yj0Þ ¼ ðS�4yjwÞ,

P4 ¼ P2P2 ¼ ðC2yj0Þ2 ¼ ðEj0Þ;

Q2 ¼ ðC2xj0Þ2 ¼ ðEj0Þ;

QP ¼ ðC2xj0ÞðSþ4yjwÞ ¼ ð�f j1=2e1 � 1=2e2 � 1=2e3Þ ¼ ð�f jw� e2 � e3Þ ¼ ð�f jwÞ,

P3Q ¼ ðS�4yjwÞðC2xj0Þ ¼ ð�f jwÞ;

P2 ¼
0 1

1 0

" #
0 1

1 0

" #
¼

1 0

0 1

" #
,

P3 ¼
0 1

1 0

" #
1 0

0 1

" #
¼

0 1

1 0

" #
:

Table 16.21. Spinor representations and irreducible spinor representations for the

Herring subgroup of the space group 219 F43c or T5
d

� 	
at the symmetry point W.

"¼ exp(�ip/4). To obtain the space-group representations, multiply the 1-D

irreducible representations by the matrix representatives of t(k). The spinor basis

hu vj ¼ 1=2j 1=2i 1=2j 1=2
E


D

.

E (S�4xjw) (C2xj0) (Sþ4xjw) Basis �

E1/2 1 0

0 1

� �
1= ffiffiffi2p 1 �i

�i 1

� �
0 �i

�i 0

� �
1= ffiffiffi2p 1 i

i 1

� �
h u vj

E3/2 1 0

0 1

� �
1= ffiffiffi2p �1 i

i �1

� �
0 �i

�i 0

� �
1= ffiffiffi2p �1 �i

�i �1

� �
h v�� u�j

1E1/2 1 " � i "� u b
2E1/2 1 "� i " v b
1E3/2 1 � " � i � "� � u� b
2E3/2 1 � "� i � " v� b
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P3Q ¼
0 1

1 0

" #
1 0

0 1

" #
¼

0 1

1 0

" #
,

QP ¼
1 0

0 1

" #
0 1

1 0

" #
¼

0 1

1 0

" #
¼ �ð�fÞ:

Exercise 16.8-3 Quaternion and Cayley–Klein parameters are given in Table 16.22. Using

eq. (12.8.3), �ðRÞ ¼ a b

�b� a�

� �
, and the MRs in Table 16.21 follow.

Problems

16.1 Find the Bravais lattice and crystallographic point groups that are compatible with a

C2 axis. [Hint: Use eq. (16.1.17).]

16.2 Demonstrate, by drawing unit cells, that a 4F space lattice is equivalent to type 4I.

16.3 Write down the matrix representation of eq. (16.2.1). Hence find the coordinates

(x0 y0 z0) of a general point (x y z) after the following symmetry operations:

(a) a screw rotation 42 about the [001] axis;

(b) a diagonal glide operation (�zj½a1þ½a2) in a cubic lattice.

16.4 Find the space-group operators for space group 59 in the second setting, in which the

origin is displayed by �[1⁄4
1⁄4 0]. Find, for Wyckoff position 8g, the points equivalent

to (x y z) in the second setting. Check your working by referring to the International

Table s for Crystallogr aphy (Hahn (1983), (1992)).

16.5 (i) For space group 33 draw separate diagrams showing the location of (a) symmetry

elements and (b) equivalent points. [Hint: Do not forget translational symmetry!]

(ii) For space group 33 prove that the product of the two glide reflections gives the

screw rotation, using (a) Seitz operators, and (b) MRs.

16.6 Prove that the reciprocal lattice of the bcc lattice is a fcc lattice. Find the equations to

the faces of the BZ and sketch the BZ.

16.7 The primitive rhombohedral cell in Figure 16.6 can be specified by giving the length

a¼ ja1j and the angle � between any pair of the fundamental translation vectors a1, a2,

a3. Choose e1 along the projection of a1 in the xy plane; � is the angle made by a1 with e3.

Table 16.22. Quaternion and Cayley–Klein parameters for

the symmetry operators of the point group S4.

R l � a b

E 1 [0 0 0] 1 0

S�4x 2�½ 2�½[1 0 0] 2�½ � 2�½ i

C2x 0 [1 0 0] 0 � i

Sþ4x 2�½
2�½½1 0 0� 2�½ 2�½ i
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Find the matrix A in terms of a and �, and hence find an expression for � in terms of�.

Prove that the reciprocal lattice of a rhombohedral lattice is also rhombohedral. Take

jb1j ¼ b, the angle between any pair of b1, b2, b3 as �, and the angle between b1 and e3

as �, and find expressions for b and � in terms of a and �. Find also the equations that

determine the faces of the BZ.

16.8 To determine the classes of a point group not given in the usual compilations of

point-group character tables (such as Appendix A.3) one would calculate its multi-

plication table from the group generators (or group elements) and then find the

classes by the methods in Chapter 1. However, character tables of all the abstract

groups required in the calculation of space-group representations have been given in

the book by Bradley and Cracknell (1972). To find the classes of any particular

realization of an abstract group one needs only to evaluate their expressions for the

classes using the law of binary composition for that group. Verify the classes of

space group 227 at X, which have been given in Table 16.16.

The group generators for this realization of G2
32 are P¼ (�xjw), Q¼ (Sþ4yj0),

R¼ (C2xj0).

The classes of G2
32 are

c1 ¼ P4 ¼ Q4 ¼ R2; c2 ¼ Q2; c3 ¼ P2; c4 ¼ P2Q2; c5 ¼ P3R,PR;

c6 ¼ P3Q2R,PQ2R; c7 ¼ QR,Q3R; c8 ¼ P2Q3R,P2QR; c9 ¼ PQ,P3Q3;

c10 ¼ PQ3,P3Q; c11 ¼ R,P2R,Q2R,P2Q2R; c12 ¼ P,P3,PQ2,P3Q2;

c13 ¼ Q,P2Q,Q3,P2Q3; c14 ¼ PQR,P3QR,PQ3R,P3Q3R:

16.9 For the space group 225 (Fm3m or O5
h) write down the coset expansion of the little

group G(k) on T. Hence write down an expression for the small representations.

State the point group of the k vector P(k) at the symmetry points L(½ ½ ½) and

�ð� � 2�Þ. Work out also the Cartesian coordinates of L and �. Finally, list the

space-group representations at L and �.

16.10 Find the representations of the space group 227 (Fd3m or O7
h) at the surface point

B(½þ �, �þ �, ½þ�), point group Cs¼ {E �y}. [Hints: Use the method of

induced representations. Look for an isomorphism of Cs
0 with a cyclic point group

of low order. The multiplication table of Cs
0 will be helpful.]

16.11 Determine the space-group representations of 227 (Fd3m or O7
h) at L using the

Herring method. The Herring group contains twenty-four elements and is the DP

C3v � {(Ej0) (Ijw)}�T1, where T1 consists of two translations. [Comment: Even

though this is a surface point of the BZ and a non-symmorphic space group, its

representations turn out to have the same characters as those of a symmorphic space

group (Fm3m), as may sometimes happen at particular symmetry points.]

16.12 Find the spinor representations of the space group 219 ðF43c or T5
dÞ at � and at �.

Comment on whether time-reversal symmetry introduces any extra degeneracy.
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17 Electronic energy states
in crystals

17.1 Translational symmetry

Within the adiabatic and one-electron approximations, when electron spin is neglected,

electron states in crystals are described by the eigenfunctions and their corresponding

eigenvalues, which are the solutions of the Schrödinger equation,

Ĥ ¼ �ð�h2=2meÞr2 þ V ¼ �i �h q =qt, (1)

in which the potential energy V has the periodicity of the crystal lattice. Surface effects

may be eliminated by the choice of periodic boundary conditions (PBCs). If we make the

simplest possible assumption that the potential energy may be approximated by a

constant value V0 inside the crystal and set V0 ¼ 0 by our choice of the arbitrary energy

zero, then

(1) �ð�h2=2meÞr2 ¼ �i �h q =qt, (2)

which has plane-wave solutions

 kðr, tÞ ¼  kðrÞ�ðtÞ ¼ V�½exp½iðk � r� !tÞ�, (3)

Ek ¼ �h2k2=2me, (4)

where V is the volume of the crystal. The assumption that V may be replaced by V0

is called the free-electron approximation. In reality, V 6¼V0 but has the periodicity

of the crystal lattice described by its translational symmetry. The translational

symmetry operators T̂ commute with the Hamiltonian and, after separating out the

time-dependence of  (r, t), the common eigenfunctions of T̂ and Ĥ are the Bloch func-

tions { k(r)}, where

(16.2.26)  kðrÞ ¼ expði k � rÞ ukðrÞ, (5)

in which uk(r) has the periodicity of the lattice. The eigenfunctions  k(r) and eigenvalues

Ek depend on the wave vector k and are therefore labeled by the subscript k. The effect

of a periodic potential is to introduce discontinuities in E at zone boundaries so that

the continuous series of states implied by eq. (4) is broken up into bands separated by

energy gaps.
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17.2 Time-reversal symmetry

So far, electron spin has been neglected. Up to Chapter 11, electron spin was accounted for at

an elementary level by recognizing that the existence of spin angular momentum resulted in a

doubling of single-electron states and the presence of an extra term ĤS .L in the Hamiltonian

to account for spin–orbit coupling. In Section 11.8 the two-component spinor ju vi was

introduced to describe the j¼�½ states. In the non-relativistic limit (v/c ! 0) of the Dirac

equation (where v is the electron velocity and c is the speed of light) and removing the self-

energymec
2 of the electron by our choice of energy zero, the Hamiltonian is just T̂+ V̂+ ĤS .L,

which operates on a two-component eigenvector  ðrÞju vi, where, in a crystal, the  (r) are

the Bloch functions  k(r). Applying the time-reversal operator (Chapter 13)

�̂ kðrÞju vi ¼ �̂2 k̂ kðrÞju vi ¼  �kðrÞj�iv� iu�i: (1)

Apart from the phase factor � i, the transformed spinor will be recognized as the ungerade

spinor of Chapter 11. The original and time-reversed states are orthogonal and therefore

degenerate, and consequently

Ek ¼ E�k: (2)

Equation (2) is clearly true for the free-electron model and is true in general if G(k)

contains the inversion operator (I |0) (Exercise 16.4-1), but eq. (2) shows that the energy

curves Ek are always symmetrical about k¼ 0 and so need only be displayed for k> 0.

17.3 Translational symmetry in the reciprocal lattice representation

Because of the translational symmetry of the reciprocal lattice (Section 16.3) and the

definition of the Brillouin zone (BZ), the BZ faces occur in pairs separated by a reciprocal

lattice vector. For example, the cubic faces of the first BZ of the simple cubic (sc) lattice

occur in pairs separated by the reciprocal lattice vectors b¼ (2p=a)[[1 0 0]] (see

eq. (16.3.27)). In general, for every k vector that terminates on a BZ face there exists an

equivalent vector k0 (Figure 17.1) such that

k0 ¼ k � bm, jk0j ¼ jkj: (1)

Equations (1) are the von Laue conditions, which apply to the reflection of a plane wave in

a crystal. Because of eqs. (1), the momentum normal to the surface changes abruptly from

�hk? to the negative of this value when k terminates on a face of the BZ (Bragg reflection).

At a general point in the BZ the wave vector kþ bm cannot be distinguished from the

equivalent wave vector k, and consequently

Eðk þ bmÞ ¼ EðkÞ: (2)

Imagine k increasing along a line from the zone center � to the face center at ½bm. When

k ¼ ½bmþ d, where d is a small increment in k normal to the face,

(17.2.2), (2) Eð½bm þ dÞ ¼ Eð�½bm � dÞ ¼ Eð½bm � dÞ: (3)
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It follows from eq. (3) that the gradient of E(k) normal to the zone boundary vanishes at a

face center,

rk?EðkÞ ¼ 0, k ¼ 1=2bm ðface centerÞ: (4)

Equation (4) holds generally at the face center but is valid over the whole face if

the crystal point group contains a reflection plane through the zone center that is

parallel to the face. It also holds for all k vectors that terminate on a line in the BZ face

that is parallel to a binary axis. The E(k) may be described either by a single-

valued function of k (with k� 0), which is called the extended zone scheme, or by

a multivalued function of k within the first BZ, the reduced zone scheme (see

Figure 17.2).

Exercise 17.3-1 Show that the gradient of E(k) normal to a BZ face vanishes over a face

when there is a symmetry plane through the origin that is parallel to this face.

Answer to Exercise 17.3-1

Let k2BZ and let d be a small increment in k normal to the face which is parallel to

the symmetry plane through �. The perpendicular distance from � to the center of the face

is ½bm. Then

Eðk � dÞ ¼ Eð�ðk � dÞÞ ¼ Eð�ðk � dÞ þ bmÞ ¼ Eðk þ dÞ,

rk?EðkÞ ¼ lim
d!0

f½Eðk þ dÞ � Eðk � dÞ�=2dg ¼ 0:

17.4 Point group symmetry

At any symmetry point in the BZ,

(16.4.3) ðR jvÞ kðrÞ ¼ ðE j tÞðR jwÞ kðrÞ ¼ expð�iRk � tÞ RkðrÞ, 8R2 PðkÞ: (1)

k' k

bmΓ 1
2−

Figure 17.1. Illustration of the relation k0 ¼ k� bm.
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Since the physical system (crystal) is indistinguishable from what it was before the

application of a space-group operator, and a translational symmetry operator only changes

the phase of the Bloch function without affecting the corresponding energy E(k),

EðR kÞ ¼ EðkÞ, 8 R 2 PðkÞ: (2)

Equation (2) shows that the band energy has the symmetry of the point group of the wave

vector. As R runs over the whole {R}¼ P(k), it generates a set of degenerate eigenfunctions

{ RkðrÞ} which belong to the eigenvalue E(k) and which form a basis for a representation of

G(k). The point group of the wave vector P(k) may be determined by inspection of the

representation domain of the first BZ, but most of the P(k) likely to be encountered have

already been given in the literature (see, for example, Table 3.5 in Bradley and Cracknell

(1972)). The BZ of the sc lattice is in Figure 16.12(a) with symmetry points marked using the

notation of Bouckaert et al. (1936), henceforth abbreviated to BSW. The point group

symmetry at X and at M is D4h¼D4�Ci. At X the four-fold axis is along ky and at M it is

parallel to kz. Table 17.1 lists the symmetry of the states at X and the corresponding bases for

each irreducible representation (IR). At M replace X by M and perform the cyclic permuta-

tion y!z, z!x, and x!y on the bases. The IRs are labeled by three sets of commonly used

notation due to Mulliken (M), Bethe (B), and Bouckaert et al. (BSW). The basis functions of

the primed representations are antisymmetric with respect to I, which transforms k into �k,

as does the time-reversal operator�, and this is denoted by a prime in BSW notation. Besides

the familiar s- , p- , and d- like functions, the bases include higher-order Cartesian tensors

which may be verified either by forming direct product (DP) representations (Chapter 5) or

by projecting a suitable function into the appropriate subspace (Chapters 6 and 9).

Exercise 17.4-1 Confirm the bases given in Table 17.1 for X4, X 0
2 , X 0

3 , and X 0
1 . [Hint: Use

the character table of D4h and form the necessary DP representations.]

At the point � along �X, P(k) is C4v which is isomorphous with D4. The character table

(Appendix A3) is therefore the same as the upper left quadrant of D4h but the basis

E(k)

k
–1.5 –1.0 –0.5 0 1.5b1.00.5

(b)
(a)

Figure 17.2. E(k) for the 1-D free electron model in (a) the extended zone scheme and (b) the reduced

zone scheme.
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functions are different (Table 17.2) and depend on the choice of principal axis. (Jones

(1962) takes � on kz and BSW have � on k x.) In Figure 16.12(a) � is on k y because it is

easier to visualize the symmetry points in the representation domain while maintaining the

usual directions for the (right-handed) x, y, and z axes.

Exercise 17.4-2 Derive the basis function for �0
1 in Table 17.2 by expressing �0

1 as a DP

representation.

When a lowering in symmetry occurs, an IR of the higher symmetry group is generally

either re-labeled or, if it is not irreducible in the subgroup of lower symmetry, it forms a

direct sum of the IRs of the subgroup,

�i ¼
P

j ci, j �j, (3)

Table 17.1. Irreducible representations and basis functions for the symmetry point X in

the BZ of the sc Bravais lattice.

IRs are labeled by three sets of commonly used notation due to Mulliken (M), Bethe (B),

and Bouckaert et al. (1936) (BSW). The character table for D4h is in Appendix A3.

State State

M B BSW Basis M B BSW Basis

A1g �1
þ X1 1 A1u �1

� X1
0 xyz(x2� z2)

A2g �2
þ X4 zx(z2� x2) A2u �2

� X4
0 y

B1g �3
þ X2 (z2� x2) B1u �3

� X2
0 xyz

B2g �4
þ X3 zx B2u �4

� X3
0 y(z2� x2)

Eg �5
þ X5 (xy, yz) Eu �5

� X5
0 (z, x)

Table 17.2. The common classes of C4v and D4h.

These basis functions are the appropriate ones when the principal axis is along ky as it is

for � in Figure 16.12(a). Binary axes e and f are defined in Figure 2.12. For T the principal

axis is parallel to kz and the bases would therefore be as given in Appendix A3. The

representations at X that are compatible with (have the same characters as) those at � show

how the BSW notation for the representations at � is derived.

D4h (X) C4v (�, T)

BSW M B BSW E C�
4y C2

4y
�z, �x �e, �f Basis

X1 A1 �1 �1 1 1 1 1 1 1, y

X1
0 A2 �2 �0

1 1 1 1 �1 �1 zx(z2� x2)

X2 B1 �3 �2 1 �1 1 1 �1 z2� x2

X2
0 B2 �4 �0

2 1 �1 1 �1 1 zx

X5 E �5 �5 2 0 �2 0 0 (z, x)
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(3) f�ig ¼
P

j ci, j f�jg, (4)

where {�i} denotes the character set of the ith IR of P(k) at some symmetry point (say, K)

and the {�j} are the character sets of the IRs in the point group (which is a subgroup of P(k)

at K) at a point on a line of symmetry terminating at K. Representations that either change

their labels or split into two or more IRs are said to be compatible. Only classes that are

common to the subgroup and its parent group occur in the character sets in eq. (4). For

example, if K is X, with P(k)¼D4h, then its subgroup at � on �X is C4v. The characters of

the classes common to C4v and D4h are given in Table 17.2. As these character sets show,

the compatibility relations for D4h and C4v are

X1 ¼ �1, X0
1 ¼ �0

1, X2 ¼ �2, X0
2 ¼ �0

2, X5 ¼ �5, (5)

which explain the reason for the BSW notation for the IRs of C4v. Equals signs in eq. (5)

and other compatibility relations means equality of the character sets for these IRs. The

point group symmetery at � and at R is Oh. Table 17.3 lists the IRs of Oh in the three sets of

principal notation used, together with the Cartesian tensors that form bases for these IRs.

Since we wish to examine the lowering in symmetry that occurs along the line ��X, the

principal axis has been chosen along ky instead of the more usual kz.

Exercise 17.4-3 Find a basis for the IR �0
12 of Oh by forming the DP of two other

representations in Table 17.3.

Exercise 17.4-4 Verify the basis given for �0
15 in Table 17.4 by projecting a fourth-order

polynomial into the �0
15 subspace. [Hint: Use the substitutions provided in Table17.4.]

Table 17.3. Irreducible representations of the point group Oh¼O�Ci and their

Cartesian tensor bases (for principal axis along ky).

The character table of Oh is in Appendix A3. The BSW notation for the IRs depends on

compatibility relations which are derived in Table 17.5.

IR

M B BSW Basis

A1g �1
þ �1 1, x2þ y2þ z2

A2g �2
þ �2 z4 (x2� y2)þ x4 (y2� z2)þ y4 (z2� x2)

Eg �3
þ �12 {z2� x2, 2y2� (z2þ x2)}

T1g �4
þ �0

15 {zx (z2� x2), xy (x2� y2), yz (y2� z2)}

T2g �5
þ �0

25 {zx, xy, yz}

A1u �1
� �1

0 xyz [z4 (x2� y2)þ x4 (y2� z2)þ y4 (z2� x2)]

A2u �2
� �2

0 xyz

Eu �3
� �0

12 {xyz (z2� x2), xyz [2y2� (z2þ x2)]}

T1u �4
� �15 {z, x, y}

T2u �5
� �25 {y (z2� x2), z (x2� y2), x(y2� z2)}
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Compatibility relations for C4v and Oh are derived in Table 17.5. This table shows again,

as does eq. (5), that the primes and subscripts in BSW notation come from compatibility

relations. Here:

�1 ��2 ¼ �12; �0
1 ��5 ¼ �0

15; �0
2 ��5 ¼ �0

25: (6)

Tables of compatibility relations for the simple cubic structure have been given by Jones

(1962, 1975), and similar tables can be compiled for other structures, as shown by the

examples in Tables 17.2 and 17.5. Compatibility relations are extremely useful in assigning

the symmetry of electronic states in band structures. Their use in correlation diagrams in

crystal-field theory was emphasized in Chapters 7 and 8, although there it is not so common

to use BSW notation, which was invented to help describe the symmetry of electronic states

in energy bands in crystals (Bouckaert et al. (1936)).

Compatibility relations between states at points on symmetry axes and states at end

points of these axes are independent of the particular choice made from a set of equivalent

axes. For example, it would make no difference to the compatibility relations in eqs. (5) and

(6) if X were to be chosen on kz or k x instead of on k y as in Figure 16.12(b). But there is

another kind of compatibility relation which governs states on symmetry axes that lie in a

plane and which can only be described in relation to a particular choice of coordinate axes.

Table 17.4. Jones symbols for the transformation of functions

(that is, R�1 {x y z}) for the twenty-four operations R2O.

E xyz

3C2
4

xyz, xyz, xyz

4C�
3

zxy, yzx, zxy, yzx, zxy, yzx, zxy, yzx

3C�
4

yxz, yxz, xzy, xzy, zyx, zyx

6C2 yxz, zyx, xzy, yxz, zyx, xzy

Table 17.5. Characters of the IRs �12,�0
15, and �0

25 of Oh for classes common to Oh and C4v.

In the left-hand column are the direct sums of representations of C4v which yield the same

character sets as the IR of Oh in column 7. The �z, �x are vertical planes in C4v because they

contain the four-fold axis but are horizontal planes in Oh because they are normal to the C4

axes along z and x, respectively. The planes �e and �f in C4v are two of the six dihedral

planes in Oh (Figure 2.12).

C4v E C2
4y C�

4y
�z, �x �e, �f

Oh E 3C2
4 3C�

4
3�h 6�d

IRs of C4v IRs of Oh

�1 � �2 2 2 0 2 0 �12

�0
1 ��5 3 �1 1 �1 �1 �0

15

�0
2 ��5 3 �1 1 �1 1 �0

25
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For example, the symmetry points �, �, and T all lie in the kx¼ ky plane. Therefore,

basis functions for � states that are antisymmetric with respect to reflection in this plane

are only compatible (because of continuity within the BZ) with basis functions for � and

T states that are also antisymmetric with respect to reflection in this plane. Similarly,

Z, T, and S all lie in the kz¼ b=2¼ p=a plane. Compatibility relations for the plane

kz¼ 0 in the simple cubic structure are in Table 17.6. For example, for �0
1 and �2

(see Table 17.2),

�z zxðz2 � x2Þ ¼ �zxðz2 � x2Þ, �z ðz2 � x2Þ ¼ z2 � x2 (7)

so that these bases are, respectively, antisymmetric and symmetric with respect to reflec-

tion in the plane z¼ 0. To resolve questions of compatibility due to symmetry planes one

needs to know the necessary basis functions expressed as Cartesian tensors (Altmann and

Herzig (1994); Jones (1962, 1975)).

Exercise 17.4-5 The � point lies on [1 1 0] between � and M in the kz¼ 0 plane (Figure

16.12(b)). What is P( k) at  �? List the basis functions for the IRs, naming them in both

Mulliken and BSW notation. Note that �, �, and T all lie in the (1 1 0) plane through �

defined by x� y¼ 0. Can the states �2, T0
1, and T2 exist in the same energy band as a �2

state? What other � state is compatible with these � and T states? [Hint: These basis

functions will differ from those usually seen in character tables with vertical planes x¼ 0,

y¼ 0; here the vertical planes are z¼ 0, x� y¼ 0.]

Answers to Exercises 17.4

Exercise 17.4-1 The basis of a DP representation A�B is the DP of the bases of A and B.

Therefore, in D4h (Table 17.1),

DP basis

X2�X3¼X4, zx(z2 � x2),

X3 � X4
0 ¼ X2

0, xyz,

X2 � X4
0 ¼ X3

0, y(z2 � x2),

X2 � X2
0 ¼ X1

0, xyz(z2 � x2).

Exercise 17.4-2 �ð�0
2 ��2Þ ¼ f1 1 1 �1 �1g ¼ �ð�0

1Þ. Therefore, the basis of �0
1 is

zx(z2� x2).

Table 17.6. Compatibility relations for the symmetry

plane kz¼ 0 in the simple cubic structure.

Symmetric Antisymmetric

�1,�4 �2,�3

�1, �2, �5 �0
1,�0

2,�5

Z1, Z3 Z2, Z4
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Exercise 17.4-3 From the character table for Oh, �12 � �0
2 ¼ �0

12. Therefore, a Cartesian

tensor basis for �0
12 is

fxyzg � fz2�x2, 2y2�ðz2þx2Þg ¼ fxyzðz2�x2Þ, xyz½2y2�ðz2þx2Þ�g:

The principal axis has been taken along ky because of our interest in the line ��X.

Exercise 17.4-4 x4 does not provide a basis for �0
15 but (after removing any unnecessary

common factor c )

c�1
P
R

�ð�15
0Þ�R̂ðx3yÞ ¼ c�1fx3y½3 �1ð1 �1 �1g�

þ xy3 ½1ð�1 �1Þ �1ð1 þ 1Þ�g ¼ xyðx2 � y2Þ:

The other two independent functions yz(y2� z2) and zx(z2� x2) follow by cyclic permuta-

tion of this result.

Exercise 17.4-5 At �, P(k) is C2v the character table for which is shown in Table 17.7. The

basis functions shown are those for the IRs of C2v when the principal axis is along a. Table

17.8 contains the character table for C3v with basis functions for a choice of principal axis

along [1 1 1]. The easiest way to transform functions is to perform the substitutions shown

by the Jones symbols in these two tables. The states �2 and �4 are antisymmetric with

respect to �b, which interchanges x and y (see the Jones symbol for �b in Table 17.7). Note

that �b is also one of the three vertical planes at � and, as Table 17.8 shows, �2 is

antisymmetric with respect to �b. The plane x¼ y is one of the dihedral planes in C4v

and from Table 17.2 we see that the bases for T0
1 and T2 are antisymmetric with respect to

�b. (The four-fold axis at T is parallel to kz, and carrying out the permutation y! z, z! x,

x! y on the bases for �0
1 and �2 gives xy(x2� y2) and x2� y2 for the bases of T0

1 and T2,

which are antisymmetric with respect to �b.)

17.5 Energy bands in the free-electron approximation: symmorphic space
groups

Substituting eq. (17.1.5)

 kðrÞ ¼ expði k � rÞ ukðrÞ (1)

Table 17.7. Character table for C2v with principal axis along a.

C2v (�) E C2a �z �b

Jones symbols xyz yxz xyz yxz

A1�1 1 1 1 1
A2�2 1 1 �1 �1 z(x� y)
B1�3 1 � 1 �1 1 z
B2�4 1 � 1 1 �1 x� y
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(which satisfies the PBCs) into the Schrödinger one-electron time-independent equation

�ð�h2=2meÞr2 ðrÞ ¼ ½E � VðrÞ� ðrÞ (2)

gives

r2ukðrÞ þ 2ik � rukðrÞ þ ð2me=�h
2Þ½EðkÞ � ð�h2k2=2meÞ � VðrÞ� ukðrÞ ¼ 0, (3)

which must be solved self-consistently because of the difficulty involved in finding a

satisfactory approximation to V(r). However, useful insight into the form of the energy

bands in a crystal may be gained by setting V(r)¼ 0, which is called the free-electron (FE)

approximation. With V(r)¼ 0,

(3) ukðrÞ ¼ expð�i bm � rÞ, (4)

EmðkÞ ¼ ð�h2=2meÞjk � bmj2, (5)

(1), (4)  mkðrÞ ¼ exp½iðk � bmÞ � r�: (6)

In eqs. (5) and (6) the energy Em(k) and eigenfunctions  mk(r) carry the subscript m

because, in general, at any particular symmetry point, there may be several different

values of [m1 m2 m3] which give the same energy. When degeneracy due to symmetry

occurs, the appropriate eigenfunctions at that point are linear combinations of the

 mk(r). Such linear combinations of the correct symmetry may be determined by the use

of projection operators (Chapter 5). Although historical usage dictates the continued use of

the ‘‘free-electron’’ approximation, this is not perhaps the best description since the

electron eigenfunctions are still required to obey the PBCs due to the translational

symmetry of the lattice. Shockley (1937) used the phrase ‘‘empty lattice’’ in order to

describe the test made by setting V = 0, which was used in connection with

the Wigner–Seitz cellular method for calculating wave functions in crystals. While

‘‘empty lattice approximation’’ would be a more accurate description in the present

context, in view of historical precedence and familiarity I have continued to use ‘‘free

electron’’ to describe the approximation of setting V = 0. Accidental degeneracies not due

to symmetry can occur in the FE approximation, but these are often removed when a more

realistic potential is imposed.

Table 17.8. Character table for C3v with principal axis along [1 1 1].

C3v (�) E 2C3 3�v

Jones symbols xyz zxy, yzx yxz, zyx, xzy

A1�1 1 1 1
A2�2 1 1 �1 xy(x� y)þ yz(y� z)þ zx(z� x)
E�3 2 �1 0 (x� z, y� z)
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When calculating FE energy states along particular directions in the BZ it is often

convenient to work in Cartesian coordinates, that is to use the he| basis rather than the hb|

basis. The matrix representation of a reciprocal lattice vector bm is

hbjmi ¼ hejBjmi ¼ he1 e2 e3jmx my mzi: (7)

For the simple cubic lattice B is E3 and so |mx my mz i is identical to |m1 m2 m3 i for this

lattice only. But, in general, we must use eq. (7) to find |mx my mz i at a point whose

coordinates |m1 m2 m3 i in the reciprocal lattice are given in the hb| basis.

(7), (16.3.6) Bjmi ¼
b1x b2x b3x

b1y b2y b3y

b1z b2z b3z

2
4

3
5

m1

m2

m3

2
4

3
5 ¼

mx

my

mz

2
4

3
5; (8)

(8) mx ¼ b1xm1 þ b2xm2 þ b3xm3,

my ¼ b1ym1 þ b2ym2 þ b3ym3,

mz ¼ b1zm1 þ b2zm2 þ b3zm3:

(9)

The symmetrized eigenfunctions at k form bases for the group of the wave vector (the

‘‘little group’’) GðkÞ 	 G. These IRs may be constructed in a number of ways, two of

which were described in Chapter 16, namely via the central extension P(k)0 of the point

group of the wave vector, P(k), or by constructing the Herring group h(k). For sym-

morphic space groups, or for non-symmorphic space groups at internal points of sym-

metry (including points on lines of symmetry), there are no projective representations

(PRs), and the IRs of G(k) are just vector representations of P(k) multiplied by the

representations �k(E|t) of the translation subgroup. To find the IRs of G(k) for non-

symmorphic space groups at points that are on surface lines of symmetry, we use instead

of P(k) its central extension P(k)0. For surface points of symmetry we use either P(k)0 or

its isomorph the Herring group h(k), constructed from P(k). In these cases P(k)0 and

h(k) are isomorphous with an abstract group Gn
g, or with Gn

g � Tp, or with Gn
g � Tp � Tr.

Here Tp and Tr are low-order Abelian subgroups which consist of translations (E|t) and

which may therefore be ignored because they affect only the phase of the Bloch functions

 mk. The abstract group Gn
g may be, but is not necessarily, isomorphous with a crystal-

lographic point group. The superscript denotes the ordinal number n in the list of abstract

groups of order g. For example, for the 2-D space group of Sections 16.6 and 16.7, at the

surface symmetry point X, P(k) is C2v and P(k)0 and h(k) are isomorphous with the

abstract group G4
8 
 D4.

In applying the projection operator method for the calculation of symmetrized linear

combinations of eigenfunctions, we shall need the effect of a space-group function operator

(R|v) on the FE eigenfunction  mk(r), which is

ðRjvÞ mkðrÞ¼ mkððRjvÞ�1
rÞ ¼  mkðR�1r� R�1vÞ

¼ exp½iðk � bmÞ � ðR�1r� R�1vÞ�
¼ expði bm � R�1vÞ expð�i k �R�1vÞ exp½iðk � bmÞ �R�1r�: ð10Þ
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In eq. (10), v ¼ 0, 8R, for symmorphic space groups; r and v are vectors in the space

of the crystal lattice and are measured in units of a lattice constant a of that lattice,

so that r/a¼ xe1 þ ye2 þ ze3 ¼ [x y z], where [x y z] means a vector whose

Cartesian components x, y, and z are dimensionless numbers. Similarly, when

v ¼ w 6¼ 0, [w1 w2 w3] ¼ w1e1 þ w2e2 þ w3e3 means the vector whose Cartesian com-

ponents are w1, w2, and w3, in units of a.

Example 17.5-1 A crystal belonging to the symmorphic space group 221 (O1
h or Pm3m)

has the simple cubic lattice. The unit cell is a cube with cube edge of length a. The

reciprocal lattice defined by B¼ bE3 is also simple cubic with cube edge of the

unit cell b¼ 2p=a. Expressing k in units of b gives k=b¼ [� � �], where the components

of k=b, [� � �], are the coordinates of symmetry point K, k being the vector from the

origin to K.

(5) ðh2=2mea
2Þ�1

EmðKÞ ¼ "mðKÞ ¼ ð� � mxÞ2 þ ð� � myÞ2 þ ð� � mzÞ2; (11)

(6)  mðKÞ ¼ expf2pi½ð� � mxÞxþ ð� � myÞyþ ð� � mzÞz�g: (12)

 m is a function of r, as eq. (6) shows, but the notation  m(K) is used to convey that it is

 (r) at the symmetry point K[� � �], for this bm, the components of which enter paramet-

rically into eq. (12). Likewise, "m(K) is the dimensionless energy at K.

At �[0 0 0], P(k)¼Oh and

(11) "mð�Þ ¼ mx
2 þ my

2 þ mz
2, (13)

(12)  mð�Þ ¼ exp½�2piðmxxþ myyþ mzzÞ�: (14)

The lowest energy at � occurs for bm¼ 0 and is "0(�)¼ 0. The corresponding (unnorma-

lized) eigenfunction is  0 (�)¼ 1, and the symmetry of this state is therefore �1 (or A1g).

Note that � is a point on �X, which is along ky, so that �[0 � 0]. At �, P(k) is C4v. In the

lowest band (mx¼my¼mz¼ 0),

(11), (12) "0ð�Þ ¼ �2,  0ð�Þ ¼ exp½2pi�y�, 05�51=2, (15)

which is of symmetry �1 in C4v (Table 17.2). This first band (my¼ 0) ends at the zone

boundary (�¼ 1=2) where the second band (my¼ 1) starts. Therefore, at X,

"0ðXÞ ¼ 1=4,  0ðXÞ ¼ expðipyÞ, my ¼ 0; (16)

"½0 1 0�ðXÞ ¼ 1=4,  ½010�ðXÞ ¼ expð�ipyÞ, my ¼ 1: (17)

We now use the projection operator method for finding the linear combinations of the

degenerate eigenfunctions  0(X),  [0 1 0](X) that form bases for the IRs of P(k)¼D4h. For

j¼X1 (or A1g), which is compatible with �1,
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(5.2.10) Pj 0ðXÞ ¼ c�1
P
R

�jðRÞ�R̂ 0ðXÞ, R 2 D4h

¼ 1=2½expðipyÞ þ expð�ipyÞ�
¼ cosðp yÞ, (18)

where c is simply a common factor that is cancelled in order to achieve a result without

unnecessary numerical factors. Similarly for j ¼ X4
0 ðor A2uÞ

Pj ½010�ðXÞ ¼ sinðpyÞ: (19)

Along �X, the second band (my¼ 1) is given by

(11) "½010�ð�Þ ¼ ð1 � �Þ2
,  ½010�ð�Þ ¼ exp½2pið� � 1Þy�, (20)

which forms a basis for �1. The second band ends at �, where my¼ 1 gives

(13) "½010�ð�Þ ¼ 1: (21)

This energy is six-fold degenerate since the states with [[� 1 0 0]] all have the same energy

"m(�)¼ 1. The eigenfunctions are linear combinations of the  m(�) in eq. (14) which are of

the correct symmetry. To find these IRs we need to know the subspaces spanned by the m

basis, which consists of the six permutations of m¼ [1 0 0], and then use projection

operators. But actually we have already solved this problem in Section 6.4 in finding the

molecular orbitals of an ML6 complex ion. There we found the IRs of {�1, . . . , �6}, which

map on to the six permutations of [1 0 0], to be A1g, Eg and T1u (or�1,�12, and�15) and also

the symmetrized bases listed in eqs. (6.4.19)–(6.4.25).

(14), (5.2.10) Pj ½010�ð�Þ ¼ c�1
P
R

�jðRÞ�expð�2piR�1yÞ, j ¼ �1; (22)

(6.4.19)  ð�1Þ ¼ cosð2pxÞ þ cosð2pyÞ þ cosð2pzÞ: (23)

Proceeding similarly for �12 and �15 yields

(6.4.20)  I ð�12Þ ¼ cosð2pzÞ � cosð2pxÞ, (24)

(6.4.21)  IIð�12Þ ¼ 2cosð2pyÞ � ½cosð2pzÞ þ cosð2pxÞ�, (25)

(6.4.22)  Ið�15Þ ¼ sinð2pxÞ,  IIð�15Þ ¼ sinð2pyÞ,  IIIð�15Þ ¼ sinð2pzÞ: (26)

At �, P(k) is C4v, with the principal four-fold axis along ky. The coordinates at � are

[0 � 0], 0<�<½. The possible values of m are the six permutations of [1 0 0]. The energies

in this band are

"½0 1 0� ¼ ð1 � �Þ2
, "½0 1 0� ¼ ð1 þ �Þ2

,

"½1 0 0� ¼ "½1 0 0� ¼ "½0 0 1� ¼ "½0 0 1� ¼ 1 þ �2:
(27)

One of these, namely "[0 1 0]¼ (1� �)2, is the band described by eq. (20). The band
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(11) "½0 1 0�ð�Þ ¼ ð1 þ �Þ2
,  ½0 1 0�ð�Þ ¼ exp½2pið1 þ �Þy�, (28)

is also of symmetry �1 since ½0 1 0� is invariant under the operations of C4v. The four bands

that correspond to the remaining four permutations [�1 0 0], [0 0 �1] are degenerate with

"m ¼ 1 þ �2. For these bands, the character set �(�m) of the permutation representation is

C4v ¼ fE 2C�
4y C2y �z,�x �e,�fg

�ð�mÞ ¼ f4 0 0 2 0g, (29)

the classes of C4v being shown on the previous line. Therefore

�m ¼ �1 þ�2 þ�5 ¼ A1 þ B1 þ E; (30)

(12)  ½0 0 1�ð�Þ ¼ exp½2pið� y� zÞ�,  ½1 0 0�ð�Þ ¼ exp½2pið� y� xÞ�: (31)

Projecting the first of these into the �1, �2, and �5 subspaces, and projecting the second

one into the �5 subspace, yields

 ð�1Þ ¼ expð2pi�yÞ ½cos 2pzþ cos 2px�, (32)

 ð�2Þ ¼ expð2pi�yÞ ½cos 2pz� cos 2px�, (33)

 Ið�5Þ ¼ expð2pi�yÞ sin 2pz,  II ð�5Þ ¼ expð2pi�yÞsin 2px: (34)

At X, �¼ 1/2, and the energy of the four degenerate bands �1, �2, �5 (eqs. (32)–(34)) is

"m(X)¼ 5/4. Since � and � are zero,

"mðXÞ ¼ mx
2 þ ðmy � 1=2Þ2 þ mz

2 ¼ 5=4, (35)

which is satisfied by

½mx my mz� ¼ ½�1 0 0�, ½0 0 �1�, ½�1 1 0�, ½0 1 �1�: (36)

P(k) at X is D4h, and the character set of the permutation in eq. (36) is therefore given by

D4h ¼ fE C�
4y C2

4y C2z,C2x C2e,C2f I �y S
�
4y �z,�x �e,�fg

�ð�mÞ ¼ f8 0 0 0 0 0 0 0 4 0g,

whence

�m ¼ A1g � B1g � A2u � B2u � Eg � Eu

¼ X1 � X2 � X4
0 � X3

0 � X5 � X5
0:

(37)

Classes of D4h for X on ky are specified above the character set for �m. The translation into

BSW notation in eq. (37) may be checked from Table 17.1.

Exercise 17.5-1 Verify the direct sum in eq. (37).

The symmetrized linear combinations that form bases for these IRs are now determined

using the projection operator
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(12)  j ¼ P j ½100�ðXÞ ¼ c�1
P
R

�jðRÞ�exp½�2piR�1ðxþ½yÞ�, (38)

where j denotes one of the IRs in eq. (37). The simplest way to effect the substitutions

R�1(xþ½y) is to first make a list of the Jones symbols. For degenerate states, project a

different function in eq. (38). The symmetrized linear combinations obtained from eq. (38)

using Table 17.9 are as follows:

 ðX1Þ ¼ cos py ½cos 2pzþ cos 2px�, (39)

 ðX2Þ ¼ cos py ½cos 2pz� cos 2px�, (40)

 ðX3
0Þ ¼ sin py ½cos 2pz� cos 2px�, (41)

 ðX4
0Þ ¼ sin py ½cos 2pzþ cos 2px�, (42)

 ðX5Þ ¼ fsin py sin 2pz, sin py sin 2pxg, (43)

 ðX5
0Þ ¼ fcos py sin 2pz, cos py sin 2pxg: (44)

Figure 17.3 shows the energy bands along ��X in the BZ of the sc lattice. Degeneracy and

compatibility are satisfied at � and at the zone boundary. Since from eq. (11), "(�) in the

next band is 2, "(�)¼ 2� �2 and m is one of the four permutations of [1 1 0] which have

my¼ 1. From eq. (30) the IRs in this band are �1, �2, and �5, as shown in Figure 17.3.

Example 17.5-2 Free-electron energy bands for the face-centered cubic (fcc) lattice. For

the fcc lattice,

(9) mx ¼ ½b ð�m1 þ m2 þ m3Þ,
my ¼ ½b ðm1 � m2 þ m3Þ,
mz ¼ ½b ðm1 þ m2 � m3Þ,

(45)

where b¼ 4p=a and a is the cube edge of the unit cell in the fcc lattice. The dimensionless

energy at K [� � �] (2p=a) is

Table 17.9. Jones symbols R�1{x y z} for the set {R} of the point group D4h¼ {R} � {IR}.

Jones symbols for the set {IR} are obtained by changing the sign of the symbols for {R}.

The principal axis has been chosen along y; for the choices z or x, use cyclic permutations of

{x y z}, or derive afresh, using the appropriate projection diagram.

E C�
4y C2

4y
C2z, C2x C2e, C2f

Jones symbol xyz zyx xyz xyz zyx
zyx xyz zyx

17.5 Symmorphic space groups 371



"mðKÞ ¼ ð� � mxÞ2 þ ð� � myÞ2 þ ð� � mzÞ2
, (46)

and the corresponding FE eigenfunction is given by

 mðKÞ ¼ expf2pi½ð� � mxÞxþ ð� � myÞyþ ð� � mzÞz�g: (47)

At �,

(46) "mð�Þ ¼ mx
2 þ my

2 þ mz
2; (48)

(47)  mð�Þ ¼ exp½�2piðmxxþ myyþ mzzÞ�: (49)

The lowest energy state, "0(�)¼ 0, has  m(�)¼ 1 and is of symmetry �1 or A1g. The next

highest level is

"f111gð�Þ ¼ 3,  f111gð�Þ ¼ exp½�2pið� x� y� zÞ�, (50)

where the subscript {111} indicates that m is one of the eight permutations of [1 1 1]. These

points lie at the corners of a cube. The permutation representation is

�f111g ¼ A1g � A2u � T2g � T1u ¼ �1 � �2
0 � �25

0 � �15; (51)

�m may also be derived by reducing the representation spanned by the ligand orbitals in a

cubic ML8 molecule or configuration, as occurs, for example, when an ion such as In+ is a

substitutional impurity in CsCl.

0.1 0.2 0.3 0.4 0.50
X

X1, X2, X5

X3, X4, X5

X1, X4

1.0

2.0

Γ1, Γ12, Γ15

Γ

 

 ∆1, ∆2, ∆5

∆1

∆1

∆1

∆1, ∆2, ∆5

 

 
′

′ ′ ′

Figure 17.3. Energy bands for the simple cubic Bravais lattice in the free-electron approximation at �
on �X. The symmetry of the eigenfunctions at � and at X given in the diagram satisfy compatibility

requirements (Koster et al. (1963)). Degeneracies are not marked, but may be easily calculated from

the dimensions of the representations.
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Exercise 17.5-2 Verify the permutation representation �m in eq. (51).

(50)  ½111�ð�Þ ¼ exp½�2piðxþ yþ zÞ� ¼ �1: (52)

The sets of variables (coordinates) for the complete list of � functions are in Table 17.10.

Basis functions of the correct symmetry may be found by using projection operators. For

the jth IR in eq. (51),

 j ¼ c�1
P
R

�jðRÞ�R̂  ½111�ð�Þ: (53)

To reduce writing we give only the transformed coordinates (Jones symbols) which are to

be substituted for {x y z} in eq. (52), rather than the actual functions, using parentheses to

separate the classes of Oh. For j¼�1,

(53)  ð�1Þ ¼ c�1½ðxyzÞ þ ðxyzþ xyzþ xyzÞ
þ ðzxyþ yzxþ zxyþ yzxþ yzxþ zxyþ yzxþ zxyÞ
þ ðyxzþ yxzþ xzyþ xzyþ zyxþ zyxÞ
þ ðyxzþ yxzþ zyxþ zy xþ xzyþ xyzÞ
þ IR�1ðxyzÞ�, R 2 O; ð54Þ

(54)  ð�1Þ ¼ xyzþ xyzþ xyzþ xyzþ xyzþ xyzþ xyzþ xyz: (55)

Recall that the notation in eqs. (54) and (55) is evocative rather than literal, so that ‘‘þxyz’’,

for example, means ‘‘þ exp½�2pið�xþ yþ zÞ�’’. Alternatively, from eq. (55) and

Table 17.10,

 ðA1gÞ ¼ �1 þ �2 þ �3 þ �4 þ �5 þ �6 þ �7 þ �8: (56)

The � notation for the basis functions is often convenient since it offers considerable

economy in writing down the bases for each IR.

(55), or (56)  ð�1Þ ¼ cosð2pxÞ cosð2pyÞ cosð2pzÞ: (57)

Table 17.10. Basis functions �1 . . . �8, and their variables,

for the IRs of the permutation representation of [1 1 1].

These same Jones symbols are used in the derivation of the

ligand orbitals of an ML8 molecule.

�1 xyz �5 xyz
�2 xyz �6 xyz
�3 xyz �7 xyz
�4 xyz �8 xyz
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Exercise 17.5-3 Derive eq. (56) directly from  j ¼ c�1
P
R

�jðRÞ�R̂�1, where {�i} labels

the points i¼ 1, 2, . . . , 8 in Figure 17.4.

In the same way, for j ¼ �2
0 (or A2u), for which {�j(ck)}¼ {1 1 1 �1 �1} for the

five classes of O (in the same order as in the Oh table in Appendix A3)

(53)  ð�0
2Þ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ: (58)

For j ¼ �0
25, with {�j(ck)}¼ {3 �1 0 �1 1},

 ð�0
25Þ ¼ 3�1 � ð�2 þ �3 þ �4Þ � ð�8 þ �7 þ �6Þ þ 3�5 �  1: (59)

Projecting, in turn, �2,�3,�4 gives

 2 ¼ 3�2 � ð�3 þ �4 þ �5Þ � ð�1 þ �8 þ �7Þ þ 3�6, (60)

 3 ¼ 3�3 � ð�4 þ �5 þ �6Þ � ð�2 þ �1 þ �8Þ þ 3�7, (61)

 4 ¼ 3�4 � ð�5 þ �6 þ �7Þ � ð�3 þ �2 þ �1Þ þ 3�8: (62)

Of course, it is not necessary to carry out the actual projections because  2,  3, and  4 are

simply written down as cyclic permutations of  1. There are only three linearly indepen-

dent bases for a T2g representation and we choose these to be  I¼½[ 1þ 3],

 II¼ ½[ 1þ 4],  III¼½[ 1þ 2]. On using Table 17.10 and eq. (52),

(59), (61)  Ið�0
25Þ ¼ cosð2pxÞ sinð2pyÞ sinð2pzÞ, (63)

(59), (62)  IIð�0
25Þ ¼ sinð2pxÞ cosð2pyÞ sinð2pzÞ, (64)

(59), (60)  IIIð�0
25Þ ¼ sinð2pxÞ sinð2pyÞ cosð2pzÞ: (65)

1
8

3
6

f

a

c

5 4

b

72

d

e

Figure 17.4. Labeling of the symmetry elements of a cube as used in the derivation of �m and of the

symmetrized bases. The points 1, 2, 3, and 4 label the three-fold axes. The poles of the two-fold axes

are marked a, b, c, d, e, and f . The points 1, 2 , 3, 4, 5, 6, 7, and 8 provide a graphical representation of

the permutations of [1 1 1] (cf. Table 17.10).
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Alternatively, ½[ 1þ 2]¼ III¼ sin(2px) sin(2py) cos(2pz), and cyclic permutation of

xyz gives  I and  II. The three symmetrized bases for � 0
25 are symmetric under inversion,

as they should be. In a similar way, the bases for �15(T1u) are obtained by projecting �1, �2,

�3, �4 into the �15 subspace, with the following result:

(54)  Ið�15Þ ¼ sinð2pxÞ cosð2pyÞ cosð2pzÞ: (66)

Cyclic permutation of {xyz} in eq. (66) gives

(66)  IIð�15Þ ¼ cosð2pxÞ sinð2pyÞ cosð2pzÞ, (67)

(66)  IIIð�15Þ ¼ cosð2pxÞ cosð2pyÞ sinð2pzÞ: (68)

At symmetry point L, with coordinates [½ ½ ½](2p=a),

(46) "mðLÞ ¼ ð½� mxÞ2 þ ð½� myÞ2 þ ð½� mzÞ2
, (69)

(47)  mðLÞ ¼ expf2pi½ð½� mxÞxþ ð½� myÞyþ ð½� mzÞz�g: (70)

The lowest energy, which occurs for m¼ 0 and m¼ [1 1 1], is

"0ðLÞ ¼ 3=4: (71)

This "(L)¼ 3⁄4 state is degenerate, with

(70)  0ðLÞ ¼ exp½ipðxþ yþ zÞ�, (72)

(70)  ½1 1 1�ðLÞ ¼ exp½�ipðxþ yþ zÞ�: (73)

P(k) at L is D3d¼ {R} � {IR}, where {R}¼ {E R(�(2p=3)[1 1 1]) C2b C2d C2f}

(Figure 17.4). The Jones symbols describing the effect of these operators on a function

f(x, y, z) are in Table 17.11.

Exercise 17.5-4 Derive the permutation representation �m(L). [Hint: See Figure 17.5.]

Projecting  0(L) into the L1, L0
2(A1g, A2u) subspaces yields

(72)  ðL1Þ ¼ cos½pðxþ yþ zÞ�, (74)

 ðL0
2Þ ¼ sin½pðxþ yþ zÞ�: (75)

At "(L)¼ 23=4

(47)  ½1 1 1�ðLÞ ¼ exp½�ipðxþ y� 3zÞ�: (76)

Projecting into the L1, L0
2, L3, L0

3 subspaces gives

 ½1 1 1�ðL1Þ ¼ cos½pðxþ y� 3zÞ� þ cos½pðyþ z� 3xÞ� þ cos½pðzþ x� 3yÞ�; (77)

 ½1 1 1�ðL
0
2Þ ¼ sin½pðxþ y� 3zÞ� þ sin½pðyþ z� 3xÞ� þ sin½pðzþ x� 3yÞ�; (78)

 ½1 1 1�ðL3Þ ¼ cos½pðxþ y� 3zÞ� � cos½pðyþ z� 3xÞ�; (79)
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 ½1 1 1�ðL3Þ0 ¼ cos½pðzþ x� 3yÞ� � cos½pðyþ z� 3xÞ�; (80)

 ½1 1 1�ðL
0
3Þ ¼ sin½pðxþ y� 3zÞ� � sin½pðyþ z� 3xÞ�; (81)

 ½1 1 1�ðL
0
3Þ

0 ¼ sin½pðzþ x� 3yÞ� � sin½pðyþ z� 3xÞ�: (82)

These results can all be derived very easily with the aid of Table 17.11.

Exercise 17.5-5 Confirm the above results for the L3 representation. For a point � on �L,

ð47Þ "mð�Þ ¼ ð� � mxÞ2 þ ð� � myÞ2 þ ð� � mzÞ2
, 0 < � <1=2, (83)

whence the free-electron energy bands along � are readily calculated, the representations

being determined from compatibility requirements.

Table 17.11. Jones symbols R�1(xyz) for R 2 D3d and character table for D3d.

Each of the three C2 operators transforms �1 into �5 (see Figure 17.4).

E C�
31

C2b, C2d, C2f I S�61
�b, �d, �f

xyz zxy xyz xyz zxy xyz
yzx xyz yzx xyz

xyz xyz

L1 A1g 1 1 1 1 1 1

L1
0 A1u 1 1 1 �1 �1 �1

L2 A2g 1 1 �1 1 1 �1

L2
0 A2u 1 1 �1 �1 �1 1

L3 Eg 2 �1 0 2 �1 0

L3
0 Eu 2 �1 0 �2 1 0

2
d

b

8 7

4

6

f

3

Figure 17.5. View looking down the [111] axis in Figure 17.4. The triangle containing 6, 7, 8 lies

above the plane of the triangle containing the binary axes labeled b, d, and f, while that containing 2,

3, and 4 lies below this plane. Points marked 1 and 5 in Figure 17.4 lie on the axis through the center of

this figure.
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Answers to Exercises 17.5

Exercise 17.5-1 Use the character table for D4h and eq. (4.4.20).

Exercise 17.5-2 Using Figure 17.4, the character set �m is given by

E 3C2
4 4C�

3 3C�
4 6C2 I 3�h 4S�6 3S�4 6�d

�ð�mÞ ¼ f8 0 2 0 0 0 0 0 0 4g:

�m then follows from the character table for Oh and eq. (4.4.20). (The easiest way of

determining �(�m) is to look at the figure representing the set of points to be permuted (in

this case, a cube) and determine the number of points that are unshifted under one operation

from each class. This number is the character for that class in the permutation representa-

tion �m. For example, each of the dihedral planes contains four points which are invariant

under reflections in that plane.)

Exercise 17.5-3

c�1
P
R2O

��1ðRÞ�R̂�1 ¼ c�1½ð�1Þ þ ð�2 þ �3 þ �4Þ
þ ð�1 þ �1 þ �3 þ �4 þ �4 þ �2 þ �2 þ �3Þ
þ ð�8 þ �7 þ �6 þ �8 þ �7 þ �6Þ
þ ð�6 þ �5 þ �8 þ �5 þ �7 þ �5Þ�:

The order of the operators here is the same as that used in the derivation of eq. (54). Each �

function occurs three times in this list, and consequently occurs another three times in the

sum from IR,R 2 O. Therefore, with c¼ 6, (�1)¼�1þ�2þ�3þ�4þ�5þ�6þ�7þ�8.

Exercise 17.5-4 From Figure 17.5,

E C�
31 3C2 I S�61 3�d

�ð�mÞ ¼ f6 0 0 0 0 2g;

�m ¼ A1g � A2u � Eg þ Eu ¼ L1 � L0
2 � L3 � L0

3

then follows from the character table for D3d, either by inspection or by use of eq. (4.4.20).

Exercise 17.5-5 Projecting eq. (76) into the L3 subspace yields

 1ðL3Þ ¼ c�1
P

R2D3d

�L3ðRÞ�R̂ exp½�ipðxþ y� 3zÞ�

¼ 2 cos ½pðxþ y� 3zÞ� � cos ½pðzþ x� 3yÞ� � cos ½pðyþ z� 3xÞ�,

 2ðL3Þ ¼ 2 cos ½pðyþ z� 3xÞ� � cos ½pðxþ y� 3zÞ� � cos ½pðzþ x� 3yÞ�,

 3ðL3Þ ¼ 2 cos ½pðzþ x� 3yÞ� � cos ½pðyþ z� 3xÞ� � cos ½pðxþ y� 3zÞ�:
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These three functions are not linearly independent, but on choosing linear combinations to

give the simplest form,

 IðL3Þ ¼ ½ IðL3Þ �  3ðL3Þ�
�

3 ¼ cos ½pðxþ y� 3zÞ� � cos ½pðyþ z� 3xÞ�,

 IIðL3Þ ¼ ½ 3ðL3Þ �  2ðL3Þ�
�

3 ¼ cos ½pðzþ x� 3yÞ� � cos ½pðyþ z� 3xÞ�:

17.6 Free-electron states for crystals with non-symmorphic space groups

For internal points of the BZ there are no PRs and the procedure for constructing space-

group representations from P(k) is the same as that for symmorphic space groups. But for

points on surface lines of symmetry we must use instead of P(k) its central extension P(k)0.

For surface symmetry points it is generally easier to construct the Herring group and to use

h(k) instead of P(k)0. Note that h(k) or P(k)0 is isomorphous either with an abstract group

Gn
g or with the DP of an abstract group with one or more low-order translation groups;

Gn
g may or may not be isomorphous with a crystallographic point group (Table 17.12).

The space group of diamond, and also silicon and germanium, is 227 (Fd3m or Oh
7).

The point group of Fd3m is Td, and the little group

(16.7.20) GðkÞ ¼
P
A

ðAj0ÞT þ
P
B

ðBjwÞT , (1)

in which w¼ [¼ ¼ ¼] in units of the cube edge a, fAg ¼ PðkÞ \ Td, and B 2 PðkÞ but

62 Td. In the III/V semiconductor InSb, the Ge atom at [000] is replaced by an In atom and

that at w by an Sb atom. The point group P is again Td but P(k) at � is Td instead of Oh. The

point group of the wave vector P(k) and the Herring group h(k) for the InSb and Si

structures at the symmetry points K¼�, �, and X are given in Table 17.12. The derivation

of the Herring groups from their corresponding point groups has been described in Section

16.7, where it was illustrated by the derivation of h(k) 
 G2
32 for space group 227 at X.

The other h(k) in Table 17.12 may be obtained similarly, using eq. (1). For space group

216 at X, P(k) is D2d and the Herring translation group t(k) is T2¼ {(E|0) (E|a1 or a3)},

where {a1, a2, a3} are the fundamental translations of the fcc lattice. In this case, h(k) is

isomorphous with the DP D2d �T2. The advantage of identifying h(k) or P(k0) with an

abstract group Gn
g (which, if inspection fails, requires a determination of the symmetry

elements and of the group generators of h(k) or P(k0), and a comparison of generating

relations with those of the abstract groups Gg to find n) is that when Gn
g is not isomorphous

with a crystallographic point group, its classes and character table are then available from

the literature (e.g. Bradley and Cracknell (1972)) and need not be worked out each time

(cf. Jones (1962), (1975), Morgan (1969)).

Example 17.6-1 Free-electron energy bands along ��X for space groups 216 and 227.

For InSb (or some other AB compound with the same structure) the point group at � is

Td and

(17.5.45), (17.5.46) "mð�Þ ¼ m2
x þ m2

y þ m2
z ¼ 0, 3, 4, . . . (2)
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for m¼ [0 0 0], [�1 �1 �1], [�2 0 0], . . . , with degeneracies of 1, 8, 6, . . . The eight

permutations of [1 1 1] can be represented by the points lying at the corners of a cube. At

�, Td ¼ fE 3C2 4C�
3 3S�4 6�dg and �(�m)¼ {8 0 2 0 4}, whence �m ¼ 2A1 � 2T2 ¼

2�1 � 2�5. The six permutations of [2 0 0] can be represented by the six points lying at

the vertices of an octahedron; �(�m)¼ {6 2 0 0 2} and �m ¼ A1 � E � T2 ¼ �1 � �3 � �5.

Band energies calculated from eq. (17.5.46) are in Table 17.13. The symmetrized

eigenfunctions are obtained by using projection operators. For example, for

"m(�)¼ (�� 1)2þ 2,

 j
mð�Þ ¼ c�1

P
R

�jðRÞ�R̂ ½1 1 1�ð�Þ, m ¼ ½�1 1 �1�, R 2 C2v (3)

since, as Table 17.14 shows, there are no non-lattice translations. Projecting  [1 1 1] into the

�1 subspace gives, with the aid of Table 17.14,

(17.5.47)  ½1 1 1�ð�Þ ¼ exp½2pið�xþ ð� � 1Þy� zÞ�; (4)

Table 17.13. Free-electron band energies "m for InSb (space group 216) at �, �, and X,

the BZ of the fcc Bravai s lat tice ( Figur e 16.12( b)) .

The BSW symbol for K is followed by its Cartesian coordinates [� � �] in units of 2p
�
a,

so that the zone boundary at X lies at �¼ 1 (see Table 16.6). K is either a symmetry point

(�, X) or a point on a line of symmetry (�); [mxmymz] are the Cartesian components of

bm in eqs. (17.5.11) and (17.5.12); l is the dimension of the permutation representation �m ;

{mxmymz} means all possible permutations of [mxmymz], but components of m in bold-face

type are not permuted. For example, {1 1 1} means the l¼ 4 permutations [�1 1 �1]. The

IRs that comprise the direct sum �m are given in the notation of Mulliken and Koster et al.

(1963). Character tables may be found in Table 17.14, Appendix A3, Bouckaert et al. (1936),

Altmann and Herzig (1994), or Koster et al. (1963).

m "m l Mulliken Koster et al. (1963)

�[0 0 0], P(k)¼Td¼fE 3C2 4C3
� 3S4

� 6�dg
 G7
24

[0 0 0] 0 1 A1 �1

{1 1 1} 3 8 2A1 � 2T2 2�1 � 2�5

{0 2 0} 4 6 A1 � E � T2 �1 � �3 � �5

�[0 � 0], P(k)¼C2v¼ {E C2y �e �f}
 G2
4

[0 0 0] �2 1 A1 �1

{1 1 1} (�� 1)2 + 2 4 2A1 � B1 � B2 2�1 � �2 � �4

f1 1 1g (� + 1)2 + 2 4 2A1 � B1 � B2 2�1 � �2 � �4

[0 2 0] (�� 2)2 1 A1 �1

½0 2 0� (� + 2)2 1 A1 �1

{2 0 0} �2 + 4 4 A1 � A2 � B1 � B2 �1 � �2 � �3 � �4

X[0 1 0], h(k)¼D2d�T2, D2d ¼fE S�4y C2y C2z C2x �e �fg 
 G4
8

[0 0 0], [0 2 0] 1 2 A1 � B2 �1 � �4

{1 1 1} 2 4 A1 � B1 � E �1 � �3 � �5

{2 0 0}, {2 2 0} 5 8 A1 � A2 � B1 � B2 � 2E �1 � �2 � �3 � �4 � 2�5
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(3), (4)  Ið�1Þ ¼ exp½2pið�xþ ð� � 1Þy� zÞ� þ exp½2piðxþ ð� � 1Þyþ zÞ�
¼ exp½2pið� � 1Þy� cos½2pðxþ zÞ�: (5)

A second function of �1 symmetry may be obtained by projecting  ½1 1 1�ð�Þ ¼
exp½2pið�xþ ð� � 1Þyþ zÞ� (Table 17.14), which gives

 IIð�1Þ ¼ exp½2pið� � 1Þy� cos½2pðx� zÞ�: (6)

On projecting  [1 1 1](�) with j¼�3 and �ð�3Þ ¼ f1 �1 1 �1g,

 ð�3Þ ¼ exp½2pið� � 1Þy� sin½2pðxþ zÞ�: (7)

Since �ð�4Þ ¼ f1 �1 �1 1g, it can be seen from Table 17.14 that the projection of

 [1 1 1] into the �4 subspace will be zero. The results in eqs. (5)–(7) already obtained at �

suggest that we should project  ½1 1 1�ð�Þ, and this yields

 ð�4Þ ¼ exp½2pið� � 1Þy� sin½2pðx� zÞ�: (8)

Table 17.14. Jones symbols and character tables for InSb (space group 216) at � and X.

Symmetry transformations may be deduced from the transformation of the points 1, 6, 4,

and 7 in Figure 17.4. The reflecting plane of �e contains the points 6 and 7, and that of �f
contains the points 1 and 4. In C2v, the Mulliken designations B1 and B2 are arbitrary since

they depend on which plane is chosen to determine the subscript. Only B1 � B2 appears in

the direct sums in Table 17.13. BSW(M) signifies the designations of IRs given by Morgan

(1969).

�[0 � 0], P(k)
C2v

G2
4 
 C2v ðEj0Þ ðC2yj0Þ ð�f j0Þ ð�ej0Þ

xyz xyz zyx zyx
M BSW(M) K xyz xyz zyx zyx

A1 �1 �1 1 1 1 1
A2 �2 �3 1 1 �1 �1
B1 �3 �2 1 �1 1 1
B2 �4 �4 1 �1 �1 1

X[0 1 0], h(k)¼D2d�T2

G4
8 
 D2d ðEj0Þ ðS�4yj0Þ ðC2yj0Þ ðC2zj0Þ, ðC2xj0Þ ð�ej0Þ, ð�f j0Þ

M BSW(M) K xyz zyx,zyx xyz xyz,xyz zyx,zyx

A1 X1 �2 1 1 1 1 1
A2 X4 �2 1 1 1 �1 �1
B1 X2 �3 1 �1 1 1 �1
B2 X3 �4 1 �1 1 �1 1
E X5 �5 2 0 �2 0 0
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Exercise 17.6-1 Confirm the derivation of eqs. (6), (7), and (8).

The additional symmetry elements in the silicon structure are given in Table 17.12.

At �, P(k) 
 C4v, which is isomorphous with G4
8. Jones symbols and the character table

are in Table 17.15.

Exercise 17.6-2 The group generators in this realization of the abstract group G4
8 are

P ¼ ( C þ4y|w), Q ¼ (� e| 0). Confirm the generating relations P4 ¼ Q2 ¼ E, QP ¼ P3Q.

The permutation representation at � is

�ð�m Þ ¼ f4 0 0 0 2g, � m ¼ �1 ��0
2 ��5: (9)

On projecting  [1 1 1] ( �), symmetrized eigenfunctions of �1, �0
2, and �5 symmetry are

given by

 ð�1 Þ ¼  c �1 P
R

��1 ð Rj vÞ�exp ½2pi ð� � 1Þ y � exp ½�2pi fR�1 ð z þ x Þ � ðR�1 vÞ y g�,

ð Rj vÞ 2 G4
8, v ¼ 0 or w

¼ exp ½2pið� � 1Þ y� cos2 p½ð z þ xÞ þ i cos ð z � x Þ�; (10)

 ð�0
2 Þ ¼ exp ½2pið� � 1Þ y � ½cos f2pð z þ x Þg � i cos f2pð z � x Þg�; (11)

 I ð�5 Þ ¼ exp ½2pið� � 1Þ y� ½sinf2 pð z þ x Þg þ i sinf2pð z � x Þg�: (12)

The second eigenfunction for �5,

 II ð�5 Þ ¼ exp ½2pið� � 1Þ y� ½sin f2pð z þ x Þg � i sinf2 pð z � x Þg�, (13)

Table 17.15. Cha racter table and Jones symbol s for the rota tional part R of

the space group operator (R jv) 2 Fd3m (227 or O7
h ) at �.

Because (Rjv)r ¼ Rrþ v, the non-lattice translation w ¼ ½1=4 1=4
1=4�a is to be

added to the rotated vector r 0 when v 6¼ 0. Characters for ( Rj w) are obtained by

multiplying �( R) by exp (�i k � v), when v ¼ w 6¼ 0 (see eq. (16.6.14)).

C4v h(k) (E|0) (C�
4yjw) (C2y|0) (�z|w), (�x|w) (�e|0), (�f |0)

xyz zyx,zyx xyz xyz,xyz, zyx,zyx

A1 �1 1 1 1 1 1
A2 �1

0 1 1 1 �1 �1

B1 �2 1 �1 1 1 �1
B2 �2

0 1 �1 1 �1 1

E �5 2 0 �2 0 0
exp(�ik . v) 1 exp(�ik � w) 1 exp(�ik � w) 1
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is obtained by projecting  [l 1 1] (�). Equations (12) and (13) are sometimes replaced by

their linear combinations. All these symmetrized eigenfunctions for Si at � are complex,

and so their degeneracy is doubled under time reversal.

Answers to Exercises 17.6

Exercise 17.6-1 For the �3 basis, in the short-hand notation introduced earlier in this

chapter, projecting  [1 1 1] gives (with the aid of the second and sixth lines of Table 17.14)

ðxyzÞ � ðxyzÞ þ ðzyxÞ � ðzyxÞ,

 ð�3Þ ¼ exp½2pið� � 1Þy� sin½2pðxþ zÞ�: (7)

The Jones symbols which provide the substitutions for  [1 1 1](�) are in the third line of

Table 17.14. On making use of these substitutions, a second basis for the �1 representation

is provided by

ðxyzÞ þ ðxyzÞ þ ðzyxÞ þ ðzyxÞ,

 IIð�1Þ ¼ exp½2pið� � 1Þy� cos½2pðx� zÞ�: (6)

Similarly, for the �4 representation,

ðxyzÞ � ðxyzÞ � ðzyxÞ þ ðzyxÞ,

 ð�4Þ ¼ exp½2pið� � 1Þy� sin½2pðx� zÞ�: (8)

Exercise 17.6-2 P2 ¼ ½ðCþ
4yjwÞ�

2 ¼ ðC2yj½1=4 1=4 � 1=4� þ ½1=4 1=4
1=4�Þ

¼ ðC2yj½1=2 1=2 0�Þ ¼ ðC2yja3Þ;

P4 ¼ ½ðC2yja3Þ�2 ¼ ðEj½�1=2
1=2 0� þ ½1=2 1=2 0�Þ ¼ ðEj½0 1 0�Þ ¼ ðEj0Þ;

Q2 ¼ ½ð�ej0Þ�2 ¼ ðEj0Þ, P4 ¼ Q2 ¼ E;

P3 ¼ ðCþ
4yjwÞðC2yj½1=2 1=2 0�Þ ¼ ðC�

4yj½0 1=2 � 1=2� þ wÞ ¼ ðC�
4yjwÞ;

P3Q ¼ ðC�
4yjwÞð�ej0Þ ¼ ð�zjwÞ;

QP ¼ ð�ej0ÞðCþ
4yjwÞ ¼ ð�zj �1=4

1=4 �1=4Þ ¼ ð�zjw� a2Þ ¼ ð�zjwÞ:

17.7 Spinor representations

We have seen that the calculation of FE energy bands at a point k in the BZ depends on the

determination of the symmetrized eigenfunctions that form bases for the representations of
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P(k), P(k)0, or the Herring group h(k), using plane-wave solutions (17.5.6) of the

Schrödinger wave equation. This procedure is applicable only when electron spin is

neglected. When spin is allowed for, the group representations include the j = half-integer

spinor representations. These may be calculated using Bethe’s double groups G(k) and

Opechewski’s rules. However, this procedure would leave us without a group multiplica-

tion table. The alternative is to find the spinor representations as PRs of P(k), P(k)0, or

h(k) by calculating projective factors (PFs) using the quaternion representation.

Examples of the calculation of spinor representations for space groups were given in

Section 16.8. Here we shall consider again the line ��X in the BZs of crystals with the

silicon and indium antimonide structures, which belong to space groups 227 (Fd3m or O7
h)

and 216 (F43m or T2
d), respectively. These are non-symmorphic space groups and so, for

surface points, the Herring group should be used in place of P(k). Table 17.12 shows that

for space groups 216 and 227, P(k) at � and � is isomorphous with a point group so that its

projective spinor representations can be obtained from compilations of character tables of

point groups, as in Appendix A3. At X for InSb,h(k)
G4
8 �T2, where G4

8 
C4v, so again

tables of spinor representations can be used. But for Si at X, h(k)
G2
32, which is not

isomorphous with a crystallographic point group. The characters of the four required vector

representations were given in Table 16.16. In such cases, the character systems of spinor

representations can be determined either by the methods given in Chapter 12 or by

extracting the characters for R from the spinor representations of the double group

{R�R}. At X the double group is isomorphous with the abstract group G2
64. The character

table of G2
64 is given by Bradley and Cracknell (1972, p. 262), and this includes the spinor

representations of G2
32. There are five regular classes in G2

32 (c1, c3, c5, c13, c14 in

Table 17.16) and therefore five spinor representations of dimensions 2, 2, 2, 2, and 4.

(Check:
P
s

l2s ¼ 4ð22Þ þ 1ð42Þ ¼ 32 ¼ g.) Their characters are included in the

representations R15 to R19 in the character table of G2
64. Only the spinor representation

with l¼ 4 satisfies the Herring requirement that �(c3)¼ exp(� ik . a1)l¼�l. When

�(c1)¼�(E)¼�4 and �(c3)¼�4, normalization of the character system of this row

requires that the characters for all the other classes of G2
64 be zero. Orthogonality of the

rows requires that �(c3)¼þ2 for the four 2-D IRs, which shows that the four 2-D

representations are not required representations. Therefore, at the point X in the first BZ

of Si, all the states are four-fold degenerate.

17.8 Transitions between electronic states

Electron states in a crystal with space group G are described by state functions that belong

to one of the IRs of G

�p
i � �p½GðkiÞ� " G, (1)

where �p[G(ki)] is the pth small representation of the little group G(ki) and eq. (1) defines

the abbreviated notation that will be used in this discussion of transitions between electro-

nic states in crystals. In Section 5.4 it was shown that the matrix element h q|Q̂s| pi,
which governs the transition probability from an initial state p to the final state q induced
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by the operator Q̂s, is zero unless the DP �p��q��s contains the totally symmetric

representation �1. An equivalent statement (see section 5.4) is that this matrix element is

zero unless the DP of any two of the representations �p, �q, �s, contains the third one. In a

crystal, the transition from a state  p
i (which forms a basis for �p

i) to a state  q
j under the

operator Qs
l is forbidden unless the Clebsch–Gordan (CG) coefficient c

pq, s
ij, l in the DP

�p
i � �q

j ¼
P
l, s

c
pq, s
ij, l �s

l (2)

is non-zero. The coefficient c
pq, s
ij, l , which is the number of times the representation �l

s

appears in the direct sum on the RS of eq. (2), is called the frequency of �s
l in �p

i��q
j. It is

vital to appreciate that  q
j is not determined by just the single wave vector kj, for  j

q is a

linear combination of the Bloch functions of the whole star of kj (and similarly, of course,

for  j
p). Thus the situation is a great deal more complicated than for molecules. One

possible approach would be to use the little groups G(ki) and G(kj) but with the possibility

that transitions between other members (‘‘prongs’’) of the stars of ki and kj could be missed

unless eq. (2) was evaluated for all possible initial and final states. Fortunately this turns out

not to be necessary, since Bradley (1966) has shown how the problem of determining the

c
pg, s
ij, l frequency coefficients may be solved by using the induction of the little groups G(ki),

G(kj), G(kl) and on to the space group G. This requires the use of double cosets.

17.8.1 Double cosets

If H1 and H2 are subgroups of a group G and da 2 G then

G ¼
P
a

H1daH2 (with repetitions ignored) (3)

Table 17.16. Classes of h(k)
G2
32 at X for the space group of Si (227, O7

h, or Fd3m).

The group generators for this realization of G2
32 are P ¼ ð�xjwÞ,Q ¼ ðSþ4yj0Þ,R ¼ ðC2xj0Þ:

c1 ¼ P4 ¼ Q4 ¼ R2 ¼ ðEj0Þ
c2 ¼ Q2 ¼ ðC2yj0Þ
c3 ¼ P2 ¼ ðEja1Þ
c4 ¼ P2Q2 ¼ ðC2yja1Þ
c5 ¼ fP3R PRg ¼ fðI jwþ a1Þ ðI jwÞg
c6 ¼ fP3Q2R PQ2Rg ¼ fð�yjwþ a1Þ ð�yjwÞg
c7 ¼ fQR Q3Rg ¼ fð�f j0Þ ð�ej0Þg
c8 ¼ fP2Q3R P2QRg ¼ fð�eja1Þ ð�f ja1Þg
c9 ¼ fPQ P3Q3g ¼ fðC2f jwÞ ðC2ejwþ a1Þg
c10 ¼ fPQ3 P3Qg ¼ fðC2ejwÞ ðC2f jwþ a1Þg
c11 ¼ fR P2R Q2R P2Q2Rg ¼ fðC2xj0Þ ðC2xja1Þ ðC2zj0Þ ðC2zja1Þg
c12 ¼ fP P3 PQ P3Q2g ¼ fð�xjwÞ ð�xjwþ a1Þ ð�zjwÞ ð�zjwþ a1Þg
c13 ¼ fQ P2Q Q3 P3Q3g ¼ fðSþ4yj0Þ ðSþ4yja1Þ ðS�4yj0Þ ðS�4yja1Þg
c14 ¼ fPQR P3QR PQ3R P3Q3Rg ¼ fðCþ

4yjwÞ ðCþ
4yjwþ a1Þ ðC�

4yjwÞ ðC�
4yjwþ a1Þg
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is the double coset expansion of G on H1, H2. In eq. (3) each term H1daH2 is counted once

only. The {da} are the double coset representatives of G with respect to its subgroups H1, H2.

The da are not unique, but the expansion is unique since the double cosets are all distinct.

Example 17.8-1 Write a double coset expansion of S(3) on H1 ¼ {P0 P3}, H2 ¼ {P0 P4}.

H1P0H2 ¼ fP0P3gfP0P4g ¼ fP0 P4 P3 P1g;

H1P5H2 ¼ fP0P3gfP5P2g ¼ fP5 P2 P2 P5g
¼ fP2P5g ðrepetitions ignoredÞ:

H1P0H2 � H1P5H2 ¼ G and the double coset representatives are {P0 P5}.

Bradley (1966) has shown that

c
pq, s
ij, l ¼

P
a

P
b

g�1
ab

P
ðRcjvcÞ2Gab

� p
i ððRbjvbÞ�1ðRcjvcÞðRbjvbÞÞ


 �q
j ððRajvaÞ�1ðRcjvcÞðRajvaÞÞ�s

l ðRcjvcÞ�, (4)

where gab is the order of

Gab ¼ GðkbiÞ \ GðkajÞ; (5)

�p
i , �

q
j , and �s

l are IRs of the little groups G(ki), G(kj), and G(kl), and�p
i " G , �q

j " G , �s
l " G

are representations of G induced by these small representations; G(kbi) is the little group of

Rbki and �bi
p is a small representation of G(kbi); (Rc|vc) 2 G(kbi) so that

� p
biððRcjvcÞÞ ¼ � p

i ððRbjvbÞ�1ðRcjvcÞðRbjvbÞÞ (6)

because representations at different prongs of a star are conjugate. (Ra|va) and (Rb|vb) are

double coset representatives in

G ¼
P
a

GðklÞðRajvaÞGðkjÞ, (7)

G ¼
P
b

½GðkajÞ \ GðklÞ�ðRbjvbÞGðkjÞ: (8)

Not all such pairs Ra, Rb will do but only those pairs for which

Rbki þ Rakj ¼ kl: (9)

On summing over translations, it follows from the orthogonolity theorem for the characters

of the IRs of the translation group that

c
pq, s
ij, l ¼

P
a

P
b

gab
�1

P
ðRcjvcÞ2Gab=T

�p
i ½ðRbjvbÞ�1ðRcjvcÞðRbjvbÞ�


 � q
j ððRajvaÞ�1ðRcjvcÞðRajvaÞÞ�l

sðRcjvcÞ�, (10)

where the two sums over a and b are restricted to those terms for which eq. (9) is satisfied.

We may expect that relatively few terms in the triple sum in eq. (10) will survive this

restriction, which emphasizes the considerable simplification introduced. These results
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were first given by Bradley (1966) and are quoted here without proof, which may be found

in his 1966 paper and also in books by Altmann (1977) and Bradley and Cracknell (1972).

To summarize, the procedure for evaluating the c
pq, s
ij, l CG coefficients is as follows.

(i) Determine the star of kj, that is the vectors Ra kj with Ra 2 P(kj).

(ii) Determine the star of ki, that is the vectors Rb ki with Rb 2 G(ki) \ G(kj).

(iii) With the required Ra , Rb established from eq. (9), evaluate from eq. (10) the c
pq, s
ij, l

frequency coefficients.

Example 17.8-2 Find the allowed transitions from a B1 M-state to a B2 M-state in a crystal

with space group 195. This is an example used by Bradley (1966) of a case in which more

than one term survives the sums over a and b in eq. (10). The Bravais lattice of the

symmorphic space group 195 (P23 or T1) is simple cubic and the point group P of G =

T1 is T ¼ {E 3C2m 4C3j}, m ¼ x, y, z; j ¼ 1, 2, 3, 4 (Figure 2.12). The BZ is in Figure

16.12(a), from which we see that the stars of �, M are

� ¼ ½0 0 0�, (11)

M ¼ ½1=2 1=2 0�, M2 ¼ C31
þM ¼ ½0 1=2

1=2�, M3 ¼ C31
�M ¼ ½1=2 0 1=2�: (12)

Here both ki and kj refer to the symmetry point M. We thus need to see which possible

prongs of the star of M in eqs. (12) will satisfy eq. (9). This is summarized in Table 17.17.

The column headed ffi k shows that the only possible k vectors kl are � and M. (A star is

fully determined by any one of its members, say M, so that the pairs Ra, Rb that give M2, M3

Table 17.17 Determination of the pairs of wave vectors Rbki and

Rakj that satisfy eq. (17.8.9) when ki¼ kj¼ [½ ½ 0].

The column headed ffi k lists all possible wave vectors that could

result from summing a member of the star of ki with one from the

star of kj. Not all of these yield kl because of the restriction

imposed by eq. (17.8.9), that is by translational symmetry.

Prong of star of

ki kj Rb Ra RbkiþRakj ffi k kl

M M E E [1 1 0] � �
M2 E Cþ

31
[½ 1 ½] M3 –

M3 E C�
31 [1 ½ ½] M2 –

M2 M C31
þ E [½ 1 ½ M3 –

M2 C31
þ Cþ

31
[0 1 1] � –

M3 C31
þ C�

31 [½ ½ 1] M M

M3 M C�
31 E [1 ½ ½] M2 –

M2 C�
31 Cþ

31
[½ ½ 1] M M

M3 C�
31 C�

31 [1 0 1] � –
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need not be considered.) The little groups G(M2), G(M3) are 
 G(M) and the representa-

tions�M2 , �M3 are conjugate representations of �M. For kl¼ �, the double coset expansion

of G on its subgroups G(kl) � G(�) and G(kj) � G(M) is

(7) G ¼
P
a

Gð�ÞðRajwaÞGðMÞ, ðRajwaÞ ¼ ðEj0Þ: (13)

Only a single term survives in the sum over a because of the ‘‘no repetitions’’ rule and the

fact that G(M) is a subgroup of G(�).

(8) G ¼
P
b

½GðMÞ \ Gð�Þ�ðRbjwbÞGðMÞ

¼
P
b

GðMÞðRbjwbÞGðMÞ, ðRbjwbÞ ¼ ðEj0Þ, ðCþ
31j0Þ, ðC�

31j0Þ:

(14)

Of these possibilities (as Table 17.17 shows) only the pair da ¼ E, db ¼ E are double coset

representatives that satisfy (eq. 9),

(9), (13), (14) Rbki þ Rakj ¼ EM þ EM ¼ �, E 2 fRag,E 2 fRbg: (15)

Although Cþ
31MþCþ

31M ¼ M2þM2 ¼ �, Cþ
31 62 {Ra}. For kl ¼ M,

(7) G ¼
P
a

GðMÞðRajwaÞGðMÞ, ðRajwaÞ ¼ ðEj0Þ, ðCþ
31j0Þ, ðC�

31j0Þ, (16)

(8) G ¼
P
b

½GðMÞ \ GðMÞ�ðRbjwbÞGðMÞ, ðRbjwbÞ ¼ ðEj0Þ, ðCþ
31j0Þ, ðC�

31j0Þ: (17)

Table 17.17 shows that only the pairs Ra, Rb¼Cþ
31; C�

31 or C�
31, Cþ

31 yield M.

17.8.2 Transition probabilities

(2) �B1

M � �B2

M ¼
P
s

c
B1B2, s
MM, � �s

� �
P
u

c
B1B2, u
MM, M �u

M: (18)

Since kl is � or M, the transition probability M(B1) ! M(B2) is allowed if cB1B2, s
MM, � and/or

cB1B2, u
MM, M are non-zero, that is if the perturbation (electromagnetic radiation, for example)

contains a term that transforms according to the sth IR at � and/or the uth IR at M. We have

established in Table 17.17 that at �, Ra ¼ E, Rb ¼ E. Therefore,

GðRbkiÞ \ GðRakjÞ \ GðklÞ ¼ GðMÞ \ GðMÞ \ Gð�Þ ¼ GðMÞ, (19)

which is of order 4.

(18), (13), (19) c
B1B2, s
MM, � ¼ 1

4

P
Rc

�B1ðRcÞ�B2ðRcÞ�s
�ðRcÞ� ¼ ds, T; (20)

GðkbiÞ ¼ GðM2Þ 
 GðMÞ, GðkajÞ ¼ GðM3Þ 
 GðMÞ, (21)

(21) GðkbiÞ \ GðkajÞ \ GðklÞ ¼ GðMÞ, (22)

which is of order 4.
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(18), (22)

c
B1B2, u
MM, M ¼1

4

hP
Rc

�B1

M2
ðRcÞ�B2

M3
ðRcÞ�u

MðRcÞ�

þ
P
Rc

�B1

M3
ðRcÞ�B2

M2
ðRcÞ�u

MðRcÞ�
i
: (23)

Representations at different prongs of the same star are conjugate; therefore since

M2 ¼ RbM ¼ C31
þM,

�B1

M2
ðRcÞ ¼ �B1

M ðR�1
b RcRbÞ ¼ �B1

M ðC31
�RcC31

þÞ ¼ �B3

M ðRcÞ: (24)

Likewise,

�B2

M2
¼ �B1

M , �B1

M3
¼ �B2

M , and �B2

M3
¼ �B3

M : (25)

Exercise 17.8-1 Verify the conjugate representations given in eq. (25). [Hint: M3 ¼ C�
31M.]

(24) c
B1B2, s
MM, M ¼ 1

4

P
Rc

�B3

M ðRcÞ�B3

M ðRcÞ�u
MðRcÞ� ¼ ds, A; (26)

(25) cB1B2, u
MM, M ¼ 1

4

P
Rc

�B2

M ðRcÞ�B1

M ðRcÞ�u
MðRcÞ� ¼ du, B3

: (27)

Therefore a transition between an electronic state described by the state function B1

M to one

described by  B2

M is symmetry-forbidden unless the perturbing operator belongs to the IR T

at � or to A or B3 at M (see eqs. (20), (26), and (27)).

Bradley’s (1966) work has removed the uncertainties about the subgroup method. The

only comprehensive alternative seems to be a method described by Birman (1962, 1963)

that uses the full group G. The effect of time-reversal symmetry on selection rules in

crystals has been described by Lax (1962, 1965).

Answer to Exercise 17.8-1

C�
31C2xC

þ
31he1 e2 e3j ¼ C�

31C2xhe2 e3 e1j ¼ C�
31he2 e3 e1j ¼ he1 e2 e3j

¼ C2zhe1 e2 e3j;

C�
31C2yC

þ
31he1 e2 e3j ¼ C�

31C2yhe2 e3 e1j ¼ C�
31he2 e3 e1j ¼ he1 e2 e3j

¼ C2xhe1 e2 e3j;

C�
31C2zC

þ
31he1 e2 e3j ¼ C�

31C2zhe2 e3 e1j ¼ C�
31he2 e3 e1j ¼ he1 e2 e3j

¼ C2yhe1 e2 e3j:

Deduction of the conjugate representations is summarized in Table 17.18.
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Problems

17.1 Prove that rk?E(k) ¼ 0 for all k vectors which end on a line in a BZ face which is

parallel to a binary axis. [ Hint: See Exercise 17.3-1.]

17.2 Prove that rkE(k) vanishes at the center of the BZ. [Hint: A cusp is impossible.

Why?]

17.3 For the BZ of the sc lattice, find compatibility relations between IRs at Z (which lies

on the line XM) and at the end-points X and M.

17.4 Verify the eigenfunctions at X that are given in eqs. (17.5.39)–(17.5.44).

17.5 Give a detailed derivation of the FE eigenfunctions which form bases for the �15

representation at � in the BZ of the sc lattice. Check your results against eqs.

(17.5.66)–(17.5.68).

17.6 Confirm the generating relations for the abstract groups G2
4, G7

24, and G7
48 (which are

isomorphous with Herring groups for InSb and Si at � and�) using the realizations of

these groups that are given in Table 17.12.

17.7 Write down the Jones symbols and character table for the Herring group at the point�

in the BZ of the Si structure. Calculate the FE energy at � for the first three bands and

find the symmetrized FE eigenfunctions in these bands. Plot the FE energy as a

function of k, marking in your figure the IRs of these symmetrized bases.

17.8 Find expressions for, and sketch in the reduced zone scheme, FE energy bands along

�H in the reciprocal lattice of the bcc lattice.

17.9 Find expressions for, and sketch in the reduced zone scheme, FE energy bands along

�M in the reciprocal lattice of the hcp lattice.

Table 17.18. Character table for the small representations of M

and for the required conjugate representations.

M E C2x C2y C2z

A 1 1 1 1
B1 1 �1 �1 1
B2 1 �1 1 �1
B3 1 1 � 1 �1

M2 E C2z C2x C2y

B1(M2) 1 1 �1 �1 B3(M)
B2(M2) 1 �1 �1 1 B1(M)

M3 E C2y C2z C2x

B1(M3) 1 �1 1 �1 B2(M)
B2(M3) 1 1 � 1 �1 B3(M)
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18 Vibration of atoms in crystals

18.1 Equations of motion

In the harmonic approximation the potential energy � of a crystal in which the atoms are

vibrating about their equilibrium positions differs from �0, the potential energy with each

atom on its equilibrium site, by

�� �0 ¼ 1
2

P
n��

P
n0�0�

���ðn�, n0�0Þ u�ðn�Þu�ðn0�0Þ, (1)

where u�(n�) is the �th Cartesian component of the displacement u(n�) of the �th atom

(�¼ 1, 2, . . . , s) in the nth unit cell from its equilibrium position, an�¼ anþ a� (Section

16.1). The

���ðn�, n0�0Þ ¼
@2�

@u�ðn�Þ@u�ðn0�0Þ

� �
0

(2)

are atomic force constants, and the zero subscript means that the second derivatives are to

be evaluated with the atoms at their equilibrium sites. Equation (1) is the result of a Taylor

expansion of � about �0. There is no term linear in the displacements because there is no

net force on each atom at equilibrium. Truncation of the Taylor expansion at terms

quadratic in the displacements constitutes the harmonic approximation, the usefulness of

which is due to the fact that the displacements are generally small in comparison with the

interatomic distances. Since � is a continuous function of the atom displacements, with

continuous partial derivatives, the first-order partial derivatives on the RS of eq. (2)

commute, with the result that the force constants are symmetric with respect to the

interchange of the indices (n��) with (n0�0�),

���ðn�, n0�0Þ ¼ ���ðn0�0, n�Þ: (3)

Because the potential energy is invariant under an arbitrary displacement of the whole

crystal, the force constants obey the sum ruleP
n0�0

���ðn�, n0�0Þ ¼ 0: (4)

From translational symmetry, with l 2 {n},

���ðn�, n0�0Þ ¼ ���ðnþl,� ; n0þl,�0Þ: (5)
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In particular, if l¼�n0, or l¼�n,

(5) ���ðn�, n0�0Þ ¼ ���ðn�n0,� ; 0, �0Þ, (6)

(5) ���ðn�, n0�0Þ ¼ ���ð0,� ; n0�n,�0Þ: (7)

Summing each side of eq. (7) over n0 yields

(7)
P
n0
���ðn�, n0�0Þ ¼

P
n0
���ð0,� ; n0�n,�0Þ: (8)

Replacing the summation index n0 on the RS of eq. (8) by 2n�n0 yields

(8)
P
n0
���ðn�, n0�0Þ ¼

P
n0
���ð0,�; n�n0,�0Þ; (9)

(9), (7)
P
n0
���ðn�, n0�0Þ ¼

P
n0
���ðn0�, n�0Þ: (10)

The equations of motion are

(1) M�€u�ðn�Þ ¼ � @�

@u�ðn�Þ
¼ �

P
n0�0�

���ðn�, n0�0Þ u�ðn0�0Þ: (11)

Equation (11) describes the time dependence of the displacements. In the harmonic

approximation the displacements are plane waves

(11) u�ðn�Þ ¼ M�½
� u�ð�Þ exp½iðq � an � !tÞ�, (12)

where q is the wave vector; u�(�) is the amplitude of the vibration of the �th atom, and it is

independent of both n and the time t.

(12), (11) !2u�ð�Þ ¼
P
�0�

u�ð�0ÞðM�M�0 Þ�½P
n0
���ðn�, n0�0Þ exp½�iq � ðan � an0 Þ�, (13)

(13) !2u�ð�Þ ¼
P
�0�

D��ð��0jqÞ u�ð�0Þ: (14)

The D��(��
0|q), which are defined by eqs. (13) and (14) as

(13), (14) D��ð��0jqÞ ¼ ðM�M�0 Þ�½P
n0
���ðn�, n0�0Þ exp½�iq � ðan � an0 Þ� (15)

are the elements of the Fourier-transformed dynamical matrixD(q) and they are independ-

ent of n because of translational symmetry.

Exercise 18.1-1 Show that D(q) is a Hermitian matrix.

The 3s linear homogeneous equations (14) have non-trivial solutions if

jD��ð��0jqÞ � !2������0 j ¼ 0: (16)
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Equation (16) is an algebraic equation of degree 3s in !2, and the solutions f!2
j (q)g,

j¼ 1, 2, . . . , 3s, are the eigenvalues of D(q). Since D(q) is a Hermitian matrix, its

eigenvalues are real. But the frequencies f!j(q)gmust also be real if eq. (12) is to describe

a vibrational motion, so the eigenvalues f!2
j (q)g are positive as well as real. At each q the

3s values of !j(q) form the branches of the multivalued function

!ðqÞ ¼ !jðqÞ, j ¼ 1, 2, . . . , 3s, (17)

which is the dispersion relation. Three of the 3s branches (the acousticmodes) tend to zero

as q! 0. The other 3s� 3 modes are opticmodes. Substituting the !2
j (q), one at a time, in

eq. (14) gives the eigenvector components u�(�), which will now be written as e�(�|q j) to

emphasize their correspondence with the 3s eigenvalues !2
j (q) at each wave vector q. With

this notational change,

(14) !jðqÞ2e�ð�jq jÞ ¼
P
�0�

D��ð��0jqÞe�ð�0jq jÞ: (18)

Because these equations are homogeneous, the eigenvector components e�(�|q j) are

determined only to within a constant factor, which may be chosen to satisfy the

orthonormal P
��
e�ð�jq jÞ�e�ð�jq j0Þ ¼ �jj0 (19)

and closure P
j

e�ð�0jq jÞ�e�ð�jq jÞ ¼ ������0 (20)

conditions. (Closure follows from the completeness property of the eigenvectors of a

Hermitian matrix.) In eq. (18), we replace q by �q and take the complex conjugate:

(18), (15) !2
j ð�qÞe�ð�j�q jÞ� ¼

P
�0�

D��ð��0jqÞe�ð�0j�q jÞ�: (21)

Therefore, !2
j (q) and !

2
j (�q) are eigenvalues of the same matrix D(q),

(18), (21) !2
j ðqÞ ¼ !2

j ð�qÞ: (22)

Thus the dispersion relation is symmetric about q¼ 0. It follows from eqs. (18) and (21)

that the components of e�(�q j) satisfy the same set of 3s linear homogeneous equations

as the components of the eigenvector e(q j). Therefore, if degeneracy is absent, e(q j)

and e�(�q j) can only differ by a phase factor (which preserves normalization). The

physical properties of the system are independent of the choice of this phase factor, which

we take to be

expði�Þ ¼ þ1 (23)

(Born and Huang (1954), but see also Liebfried (1955)). With this convention,

e�ð�j�q jÞ� ¼ e�ð�jq jÞ, (24)

which can always be ensured, even when there is degeneracy.
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Since

an �bm ¼ 2pp, (25)

where bm is a reciprocal lattice vector and p is an integer,

(15), (25) D��ð��0jqþ bmÞ ¼ D��ð��0jqÞ, (26)

and D��(��
0|q) has the periodicity of the reciprocal lattice. Therefore the vibrational

frequencies and the eigenvectors also have the periodicity of the reciprocal lattice:

!jðqþ bmÞ ¼ !jðqÞ, (27)

e�ð�jqþ bm, jÞ ¼ e�ð�jq jÞ: (28)

Consequently, the dispersion relation is usually displayed by plotting !j(q) along high-

symmetry directions in the Brilliouin zone. If !j(q) is degenerate, then the RS of eq. (27)

should read !j 0(q), where j
0 labels one of the modes degenerate with !j(q). However, the

choice j0 ¼ j is a convenient one that ensures that points of degeneracy can be treated in the

same way as points where degeneracy is absent. However, eq. (28) would then be true only

to within a phase factor, so that in this form eq. (28) implies that this phase factor has been

chosen to be unity (Maradudin et al. (1971)).

Answer to Exercise 18.1-1

(15) D��ð�0�jqÞ� ¼ ðM�0M�Þ�½P
n0
���ðn�0, n0�Þ exp½�iq � ðan0 � anÞ�

(3) ¼ ðM�M�0 Þ�½P
n0
���ðn0�, n�0Þ exp½�iq � ðan0 � anÞ�: (29)

On replacing the summation variable n0 by 2n�n0,

(29), (10) D��ð�0�jqÞ� ¼ ðM�M�0 Þ�½P
n0
���ðn�, n0�0Þ exp½�iq � ðan � an0 Þ�

¼ D��ð��0jqÞ: (30)

Therefore D(q) is a Hermitian matrix.

18.2 Space-group symmetry

The symmetry operators of the space-group G of a crystal are of the form

ðRjvÞ ¼ ðRjwþ tÞ, t 2 fang: (1)

In eq. (1), v is not necessarily a lattice translation t, since wmay be either the null vector 0

or the particular non-lattice translation associated with some screw axis or glide plane.

If v 2 {an} 8 R, then there are no screw axes or glide planes among the symmetry elements

394 Vibration of atoms in crystals



of the crystal and G is a symmorphic space-group (Section 16.2). When (R|v) acts on the

position vector an� of the �th atom in the nth cell,

ðRjwþ tÞan� ¼ Ran� þ wþ t ¼ aNK , (2)

in which (following Maradudin and Vosko (1968)) the capital letters (NK) are used to label

the transformed vector (or site). Since (R|v) is a symmetry operator the site (NK) is one

occupied by an atom of the same chemical species as that at the site (n�). When (R|v) acts

on the crystal pattern, in the active representation as in eq. (2), any function f(an�) that

depends on the atom positions is transformed into the function

ðRjwþ tÞf ðan�Þ ¼ f 0ðan�Þ ¼ f ðR�1an� � R�1w� R�1tÞ: (3)

Note that in eq. (3), as in Chapter 16, no special symbol is used to signify when (R|wþ t) is

a space-group function operator since this will always be clear from the context. It will

often be convenient (following Venkataraman et al. (1975)) to shorten the notation for a

space-group operator to

Rl � ðRjwþ alÞ: (4)

For example,

(4), (2) Rlan� ¼ Ran� þ wþ al ¼ aNK : (5)

In addition, to minimize the need for multiple subscripts, an� will now be denoted by the

alternative (and completely equivalent) notation a(n�) and similarly rn�will be denoted by

r(n�).

(4), (5) Rlrðn�Þ ¼ Rl½aðn�Þ þ uðn�Þ� ¼ Raðn�Þ þ Ruðn�Þ þ wþ al

¼ Rlaðn�Þ þ Ruðn�Þ ¼ aðNKÞ þ uðNKÞ ¼ rðNKÞ; (6)

(6) uðNKÞ ¼ Ruðn�Þ: (7)

Thus, because of the space-group symmetry, the displacement at (NK) is equal to Ru(n�),

the rotated displacement from the equivalent site (nk).

(7) uAðNKÞ ¼
P
�
RA� u�ðn�Þ, (8)

where R is the 3� 3 matrix representative (MR) of the point symmetry operator R. The

potential energy � is invariant during any space-group operation Rl,

(6) �ðrðn�ÞÞ ¼ �ðRl rðn�ÞÞ ¼ �ðrðNKÞÞ; (9)

(9), (6), (7) �ðrðn�ÞÞ ¼ �ðaðn�Þ þ uðn�ÞÞ ¼ �ðaðNKÞ þ Ruðn�ÞÞ: (10)

Expanding the LS of eq. (10) in powers of u(n�) and the RS in powers of u(NK)¼Ru(n�)

gives (to terms of second order in the displacements)
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(8)
P

n�, n0�0

P
�,�

u�ðn�Þ ���ðn�, n0�0Þ u�ðn0�0Þ

¼
P

n�, n0�0

P
A,B

uAðNKÞ �ABðNK ,N 0K 0Þ uBðN 0K 0Þ

¼
P

n�, n0�0

P
A,B

P
�,�

RA�u�ðn�Þ �ABðNK,N 0K 0Þ RB�u�ðn0�0Þ

¼
P

n�, n0�0

P
�,�

u�ðn�Þ
�P
A,B

RT
�A �ABðNK,N 0K 0ÞRB�

�
u�ðn0�0Þ

¼
P

n�, n0�0

P
��

u�ðn�Þ½RT�ðNK,N 0K 0ÞR��� u�ðn0�0Þ: (11)

On equating coefficients of the arbitrary displacements u�(n�) u�(n
0�0),

(11) ���ðn�, n0�0Þ ¼ ½RT�ðNK,N 0K 0ÞR���, 8 �,�, (12)

(12) �ðn�, n0�0Þ ¼ RT�ðNK ,N 0K 0ÞR, (13)

where �(n�, n0�0) is the 3� 3matrix with elements ���(n�, n
0�0). Since theMR of the point

symmetry operator R is a 3� 3 orthogonal matrix,

(13) �ðNK,N 0K 0Þ ¼ R�ðn�, n0�0ÞRT: (14)

The result in eq. (14) is not limited to the harmonic approximation because coefficients of

like powers of the displacements on each side of eq. (10) are equal, irrespective of the order

to which the Taylor expansions are made.

If Rl is a point group operator (w¼ 0, al¼ 0) then (NK)¼ (n�) and

(14) �ðn�, n0�0Þ ¼ R�ðn�, n0�0ÞRT: (15)

Equation (15), together with the permutation symmetry condition

(18.1.3) ���ðn�, n0�0Þ ¼ ���ðn0�0, n�Þ (16)

determine the non-zero elements of the force constant matrix �(n�, n0�0) (Chapter 15).

Similarly, if Rl is a space-group operator that interchanges the sites (n�) and (n0�0)

(14) �ðn0�0, n�Þ ¼ R�ðn�, n0�0ÞRT, (17)

and eq. (17) with eq. (16) determine the non-zero elements of �(n�, n0�0).

18.2.1 Periodic boundary conditions

Suppose the crystal is a parallelepiped of sides Njaj, where aj, j¼ 1, 2, 3, are the funda-

mental lattice translations (Section 16.1). To eliminate surface effects, we imagine the

crystal to be one of an infinite number of replicas, so that

(16.2.18) ðEjNjajÞ ¼ ðEjajÞNj ¼ ðEj0Þ, j ¼ 1, 2, 3: (18)
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Equation (18) is a statement of the Born–von Kármán periodic boundary conditions;

N¼N1N2N3 is the number of unit cells in the crystal lattice.

(18) uðnþN ,�Þ ¼ uðn,�Þ, (19)

where the LS of eq. (19) is the displacement of the �th atom in the (nþN)th unit cell which

is connected to the origin by the vector

aðnþNÞ ¼ ha1 a2 a3jn1þN1 n2þN2 n3þN3i; (20)

(19), (18.1.12) exp iq �
P3
j¼1

Njaj

" #
¼ 1: (21)

Equation (21) shows that q is a vector in the reciprocal lattice,

q ¼
P3
j¼1

ðmj=NjÞbj, mj ¼ 0, �1, �2, . . . , �ðNj � 1Þ=2, if Nj is odd,

mj ¼ 0, �1, �2, . . . , �ðNj � 2Þ=2, Nj=2, if Nj is even:

(22)

Exercise 18.2-1 Show that eq. (21) is satisfied by eq. (22).

The N q vectors allowed by the boundary conditions just fill the first Brillouin zone

(BZ) of volume equal to vb, the volume of the primitive unit cell of the reciprocal lattice.

Because of this dense, uniform distribution of q vectors it is possible to treat q as a

continuous variable and thus replace

P
q

f ðqÞ by
V

8p3

Z
vb

f ðqÞ dq, (23)

where V¼Nva is the volume of the crystal and the integration is over the volume of the first

BZ. But the BZ is invariant under the g(P) operations of the point group P so that an

irreducible volume of the first BZ of volume vb/g(P) can be defined, such that the g(P)

operators of P will generate from this irreducible volume the whole BZ. Thus the range of

integration can be limited to this irreducible volume.

Answer to Exercise 18.2-1

exp iq �
P3
j¼1

Njaj

" #
¼ exp i

P3
j¼1

mj bj � aj

" #
¼ expð2p i pÞ ¼ 1,

since p is an integer or zero.
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18.3 Symmetry of the dynamical matrix

The �th component of the displacement u(n�) of the �th atom in the nth unit cell due to the

normal mode of vibration (q j) is a function of an and time t,

(18.1.12), (18.1.14), (18.1.17) et seq: u�ðn�Þ ¼ e�ð�jq jÞM�½
� exp½iðq � an � !jðqÞtÞ�:

(1)

Under the pure translation Rl¼ (E|al),

(1) ðEjalÞ u�ðn�Þ ¼ u�½ðEjalÞ�1
an, t� ¼ expð�iq � alÞ u�ðn�Þ: (2)

The wave vector q in the transformed displacement (E|al)u�(n�) appears in the scalar

product with al in the eigenvalue of the function operator (E|al), and is unaffected by a pure

translation, as we should expect. Under the pure rotation (R|0), the rotated displacement

Ru�ðn�Þ ¼ u�ðR�1an, tÞ

¼ e�ð�jq jÞM�½
� exp½iðq �R�1an � !jðqÞtÞ� (3)

¼ e�ð�jq jÞM�½
� exp½iðRq � an � !jðqÞtÞ�: (4)

Equation (4) follows from eq. (3) because the scalar product (SP) in eq. (3) is invariant

under the rigid rotation R.

(2), (4) ðEjalÞRu�ðn�Þ ¼ ðEjalÞ ðRj0Þ u�ðn�Þ ¼ Rlu�ðn�Þ (5)

(5), (4), (2) ¼ expð�iRq � alÞRu�ðn�Þ: (6)

Equation (6) verifies that under the rotation (R|0) the wave vector q is rotated into Rq, just

as we might have anticipated in the active representation. The transformed function

(1), (5), (6) u�ðNKÞ ¼ Rlu�ðn�Þ ¼ u�ðR�1
l aðn�Þ, tÞ

¼ expð�iRq � alÞRu�ðn�Þ: (7)

Since Rl is a symmetry operator, (n�) and (NK) are equivalent sites occupied by the

same kind of atom, so that MK¼M�. It follows from eq. (7) that the Fourier-transformed

dynamical matrix D(q) is transformed byRl into D(Rq). The AK, BK0 element of D(Rq) is

(18.1.7) DABðKK 0jRqÞ

¼ ðMKMK 0 Þ�½P
N 0
�ABðNK ,N 0K 0Þ exp½�iRq � ðaN � aN 0 Þ� (8)

¼ ðMKMK 0 Þ�½P
N 0
�ABðNK,N 0K 0Þ exp½�iq �R�1ðaN � aN 0 Þ�, (9)
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where eq. (9) follows from eq. (8) because of the invariance of the SP under rotations.

Rlaðn�Þ ¼ ðRjwþ alÞðan þ a�Þ ¼ Ran þ Ra� þ wþ al ¼ aðNKÞ ¼ aN þ aK ; (10)

(10) R�1aN ¼ an þ a� �R
�1
l aK : (11)

(9), (11), (18.2.14) DABðKK 0jRqÞ ¼ ðMKMK 0 Þ�½ P
��n0

RA� exp½iq � ðR�1
l aK � a�Þ�

� ���ðn�, n0�0Þ exp½�iq �ðan � an0 Þ�RT
�B exp½�iq � ðR�1

l aK 0 � a�0 Þ�
(12)

¼
P
��

~�A�ðK�jq ,R lÞD��ð��0jqÞ~��Bð�0K 0jq ,RlÞy, (13)

where

~�A�ðK�jq ,RlÞ ¼ RA� exp½iq �ðR�1
l aK � a�Þ��ðK, ðRjwÞ�Þ, (14)

(13) DðRqÞ ¼ ~�ðq ,R lÞDðqÞ~�ðq ,R lÞy: (15)

In eq. (13), the first factor in the sum is the (AK, ��) element of ~�(q,Rl) and the last factor

is the (��0, BK0) element of ~�(q,Rl)
y, that is the (BK

0
, ��0) element of ~�(q,Rl)

�. (Note that

A,B,�, and � label the Cartesian components x, y, or z, and that �, K, �0, and K0 label the

atoms in the unit cell.) The factor �(K, (R|w)�) ensures that it is an atom on the sublattice

occupied by atom K that results from applying the symmetry operatorRl to the atom at a�.

(The sublattice labeling by �, K, . . . is invariant under lattice translations.) R is the 3� 3

orthogonal MR of R, and ~� is the 3s� 3s unitary matrix that transformsD(q) intoD(Rq) by

the unitary transformation, eq. (15).

Exercise 18.3-1 Prove that the matrix ~� defined by eq. (14) is unitary.

Exercise 18.3-2 Show that !j(Rq)
2¼!j(q)

2.

Suppose that Rl¼Ri Rj, where Rl, Ri, Rj 2 the space group G and

aK ¼ R la� ¼ R iR ja� ¼ R ia�1 : (16)

(14) ~�A�ðK�jq,RlÞ ¼ RA� exp½iq:ðR�1
j R

�1
i aK � a�Þ� �ðK, ðRjwÞ�Þ, (17)

where

�ðK, ðRjwÞ�Þ ¼
P
�1

�ðK, ðRijwiÞ�1Þ �ð�1, ðRjjwjÞ�Þ: (18)

The choice ofRi Rj, and therefore of �1, is immaterial as long as eq. (16) is satisfied. The

exponent in eq. (17) is

iq:ðR�1
j R

�1
i aK � a�Þ ¼ iRjq � ðR�1

i a� � a�1Þ þ iq � ðR�1
j a�1 � a�Þ, (19)
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in which R
�1
j a�1 has been subtracted and added to the RS of eq. (19).

(17), (18), (19) ~�A�ðK�jq,RlÞ ¼
P
��1

RA� exp½iRjq � ðR�1
i ak � a�1Þ

� �ðK, ðRijwiÞ�1ÞR�� exp½iq � ðR�1
j a�1� a�Þ��ð�1, ðRjjwjÞ�Þ; (20)

(20) ~�ðq,RlÞ ¼ ~�ðRjq,RiÞ ~�ðq,RjÞ: (21)

Because q is replaced by Rjq in the first factor on the RS of eq. (21), f~�ðq,R jÞg does not
form an MR of the space group G. But ifRl,Ri,Rj 2G(q) (the little group, or group of the

wave vector q) then

Rq ¼ q� b, (22)

where b is a reciprocal lattice vector that is non-zero only if q terminates on the surface of

the first BZ. On using eq. (22) the first exponential in eq. (20) may be written as

RA� exp½iq �R�1
i ðaK � a�1Þ� exp½ibj � ðR�1

i aK � a�1Þ�, (23)

where (as described by the Kronecker � in eq. (20))R�1
j aK� a�1 is a lattice translation (see

eq. (14) et seq.). Consequently, the second factor in eq. (23) is unity and

(21), (23) ~�ðq,Ri RjÞ ¼ ~�ðq,RiÞ ~�ðq,RjÞ, Ri,Rj 2 GðqÞ: (24)

Thus f~�ðq,R lÞg do form a unitary MR of dimension 3s of the little space group G(q). Define

�ðq,RÞ ¼ exp½iq � ðwþ a lÞ� ~�ðq,RlÞ; (25)

(25) �ðq,RiÞ�ðq,RjÞ ¼ exp½iq � ðwi þ aiÞ� exp½iq � ðwj þ ajÞ�~�ðq,RiÞ~�ðq,RjÞ
(24) ¼ exp½iq � ðwi þ aiÞ� exp½iq � ðwj þ ajÞ� exp½�iq �Riðwj þ ajÞ þ wi þ ai��ðq,RiRjÞ

¼ exp½iðq� R�1
i qÞ � ðwj þ ajÞ��ðq,RiRjÞ

(22) ¼ exp½ibi �wj��ðq,RiRjÞ: (26)

Equation (26) shows that {�(q,R)} forms a unitary projective (or multiplier) representation

of {R}¼ P(q). Only for non-symmorphic groups with b different from zero (that is, when q

lies on the surface of the BZ) are the projective factors exp [ibi.wj] in eq. (26) different from

unity.

(18.1.26) Dðq� bÞ ¼ DðqÞ, b 2 fbmg; (27)

(15), (22), (27) DðqÞ ¼ ~�ðq,RlÞDðqÞ~�ðq,RlÞy: (28)

Equation (28) shows that the unitary matrices ~�ðq,RlÞ commute with the dynamical

matrix,

(28) DðqÞ~�ðq,RlÞ ¼ ~�ðq,RlÞDðqÞ, (29)

400 Vibration of atoms in crystals



(29), (25) DðqÞ�ðq,RÞ ¼ �ðq,RÞDðqÞ, (30)

so that the �(q, R) matrices also commute with D(q).

Answers to Exercises 18.3

Exercise 18.3-1 From eqs. (12), (13), and (14),

½~�ðK�jq,R lÞ~�ðK 0�jq,R lÞy�AB ¼
P
�
RA� exp½iq:ðR�1

l aK � a�Þ�

� �ðK, ðRjwÞ�ÞRT
�B exp½�iq � ðR�1

l aK 0 � a�Þ��ðK 0, ðRjwÞ�Þ: (31)

The second delta function on the RS of eq. (31) is zero unless K0 ¼K, when the exponential

factors cancel and

(31Þ
P
�
RA�RT

�B ¼ ðRRTÞAB ¼ �AB (32)

since R is an orthogonal matrix. Therefore, RRT¼E and ~�(q, Rl) is a unitary matrix.

Exercise 18.3-2 D(Rq) andD(q) are related by the unitary transformation, eq. (15), and since

the eigenvalues of a matrix are invariant under a unitary transformation, !j(Rq)
2¼!j(q)

2.

18.4 Symmetry coordinates

The determination of the eigenvalues !j(q)
2 may be simplified by an orthogonal transfor-

mation to ‘‘symmetry coordinates,’’ which are linear combinations of the Cartesian dis-

placements of the atoms which represent the actual displacements of the atoms in the unit

cell. Simultaneously, the eigenvectors undergo the same orthogonal transformation (see

Section 9.4, especially eqs. (9.4.4) and (9.4.6)). In matrix notation,

(18.1.18) DðqÞjeðq jÞi ¼ !jðqÞ2jeðq jÞi: (1)

Multiplying each side of eq. (1) by �(q, R), R 2 P(q), and using the commutation of D(q)

with �(q, R),

(1), (18.3.30) DðqÞ�ðq,RÞjeðq jÞi ¼ !jðqÞ2�ðq,RÞjeðq jÞi: (2)

The eigenvalues !j(q)
2 in eq. (2) are not necessarily all distinct, so the index j will now

be replaced by the double index �l where � labels the distinct eigenvalues of D(q) and

l¼ 1, 2, . . . , l(�) labels the linearly independent (LI) eigenvectors associated with the

degenerate eigenvalue �. In this notation,

(1) DðqÞjeðq�lÞi ¼ !�ðqÞ2jeðq�lÞi: (3)

Equation (2) shows that �(q, R)|e(q�l)imust be a linear combination of the LI eigenvectors

of D(q) with eigenvalue !�(q)
2,
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(2), (3) �ðq,RÞjeðq�lÞi ¼
Plð�Þ
l0¼1

�
�

ll0 ðq,RÞjeðq�l
0Þi, 8R 2 PðqÞ, (4)

where the coefficients �
�

ll0 ðq,RÞ are the elements of the lth row of the MR �
�ðq,RÞ of R in

the irreducible representation �
�
. Multiply both sides of eq. (4) by �(q, R0), R0 2 P (q),

(4) �ðq,R0Þ�ðq,RÞjeðq�lÞi ¼
Plð�Þ
l0¼1

Plð�Þ
l00¼1

�
�

ll0 ðq,RÞ�
�

l0l00 ðq,R0Þjeðq�l00Þi: (5)

Since {�(q, R)}, with R, R0, R0R 2 P(q), forms a projective representation (PR) of P(q), the

LS of eq. (5) is given by

(5) ½R0;R��ðq,R0RÞjeðq�lÞi ¼ ½R0;R�
Plð�Þ
l00¼1

�
�

ll00 ðq,R0RÞjeðq�l00Þi: (6)

It follows from eqs. (5) and (6) that f��ðq,RÞg forms a PR of P(q) with the same PFs as the

PR {�(q, R)}. The {�(q, R)} form a unitary PR of P(q), therefore,

��ðq,RÞy��0 ðq,RÞ ¼ E �ð��0Þ: (7)

Multiply this l(�)� l(�) square matrix from the left by he(q�l)| and from the right

by |e(q�0l0)i, where he(q�l)| is the row matrix containing the l(�) eigenvectors e(q�l),
l¼ 1, 2 . . . , l(�). Then

(7), (18.1.18) heðq�lÞj��ðq,RÞy��0 ðq,RÞjeðq�0l0Þi
¼ heðq�lÞjeðq�0l0Þi ¼ �ð�, �0Þ�ðl, l0Þ: (8)

Multiply each side of eq. (8) by l(�)/p(q), where p(q) is the order of P(q), and
P

R2P(q)
. The LS

of eq. (8) then becomes

(8), (4) heðq�lÞj
Plð�Þ
l0¼1

Plð�Þ
l00¼1

P
R2PðqÞ

½lð�Þ=pðqÞ���l0lðq,RÞ�
�0

ll00 ððq,RÞÞjeðq�0l
0Þi

¼
Plð�Þ
l0¼1

Plð�Þ
l00¼1

heðq�lÞj�ð�,�0Þ�ðl0,lÞ�ðl,l00Þjeðq�0l0Þi

¼ heðq�lÞj�ð�, �0Þ�ðl, l0Þjeðq�0l0Þi ¼ �ð�, �0Þ�ðl, l0Þ ¼ RS of eq: (8) (9)

iff the f��(q,R)g forms an irreducible unitary PR of P(q). Consequently, the eigenvalues

and eigenvectors ofD(q) may be classified (and labeled) by the irreducible PRs f��(q,R)g
of P(q). Reduction of the reducible representation �(q, R) is effected in the usual way from

c� ¼ ½pðqÞ��1 P
R

�ðq,RÞ��ðq,RÞ�, (10)

where c� is the number of times that the IR�
�ðq,RÞ occurs in the reduction of�(q,R);�(q,R)

is the character of �(q, R); ��ðq,RÞ is the character of ��ðq,RÞ; and p(q) is the order of P(q).
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Since there may be more than one IR �
�
(q,R) of the same symmetry, an additional index

	¼ 1, 2, . . . , c� may be needed to label the different eigenvalues of the same symmetry �:

(1) DðqÞjeðq�	lÞi ¼ !�	ðqÞ2jeðq�	lÞi: (11)

Equation (4) holds for each value of 	 so that

(4) �ðq,RÞjeðq�	lÞi ¼
Plð�Þ
l0¼1

�
�

ll0 ðq,RÞjeðq�	l0Þi: (12)

Symmetry coordinates are linear combinations of the eigenvectors e(q�	l) that

describe the displacement patterns of the atoms in the unit cell (see Section 9.4). These

patterns observe the symmetry of the IRs f��(q,R)g and they may be calculated by

applying the projection operator

P�ll0 ðqÞ ¼ ½lð�Þ=pðqÞ�
P
R

�
�

ll0 ðq, RÞ
��ðq, RÞ (13)

to an arbitrary vector | i with 3s rows to give

j ðq�lÞi ¼ P�ll0 ðqÞj i, (14)

which transforms according to the lth row of the MR of R in the �th representation

�
�
(q,R),

�ðq,RÞj ðq�lÞi ¼
Plð�Þ
l0¼1

�
�

ll0 ðq, RÞj ðq�	l
0Þi, (15)

as do the |e(q�	l)i. Therefore

(9), (7) j ðq�lÞi ¼
Pc�
	¼1

c	jeðq�	lÞi: (16)

The coefficients c	 are not determined by symmetry but depend on the particular form of

D(q) (see the molecular case in Section 9.4). To find the c� LI vectors | (q�	l)i in the �l
subspace, set l0 ¼ l and obtain the 3s vectors:

(13) j ðq�alÞi ¼ ½lð�Þ=pðqÞ�
P
R

�
�

llðq,RÞ
��aðq,RÞ, a ¼ 1, 2, . . . , 3s, (17)

where �a(q, R) is the ath column of �(q, R) (Worlton and Warren (1972)). From these 3s

vectors c� LI orthonormal vectors {| (q�	l)i}, which are the symmetry coordinates, can be

obtained by the Schmidt procedure (see, for example, Margenau and Murphy (1943), Section

10 .8). These vectors |  (q�	 l)i trans form acco rdin g to eq . (15 ) f or ea ch va lue of 	 so th at

�ðq,RÞj ðq�	lÞi ¼
Plð�Þ
l0¼1

�
�

ll0 ðq,RÞj ðq�	l
0Þi: (18)

The matrix elements of DðqÞ,DðqÞ ¼ hð��Þ�1jDðqÞj��i (where h|i denotes the Hermitian

SP) are
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Dðqj�	l,�0	0l0Þ ¼ h ðq�	lÞj��yDðqÞ��j ðq�0	0l0Þi

¼
D Plð�Þ
l01¼1

�
�

ll01
ðq, RÞ ðq�	l01ÞjDðqÞj

Plð�0Þ
l02¼1

�
�0

l0l02
ðq, RÞ ðq�0	0l02Þ

E
: (19)

Divide each side of eq. (19) by p(q) and sum over R; then from the orthogonality theorem

for the MRs �
�

Dðqj	,	0Þ ¼ ½lð�Þ��1h ðq�	lÞjDðqÞj ðq�	0lÞi: (20)

Thus the matrix D has been transformed into one with a block-diagonal structure.The

diagonal blocks labeled D
�ðqÞ are matrices of dimensions c��c�, with elements

D
�ðqj	,	0Þ ¼ h ðq�	lÞjDj ðq�	0lÞi

¼
P
��

P
�0�0

h �ð�jq�	lÞjD��0 ð��0jqÞj �0 ð�0jq�	0lÞi: (21)

Each D
�
(q) block appears c� times along the diagonal. The eigenvalues of D

�
(q) are !2

�	

and their degeneracy is l(�), the dimension of the IR �. This completes the solution to the

problem of finding the frequencies and the eigenvectors of the dynamical matrix D(q),

except for a consideration of extra degeneracies that may arise from time-reversal

symmetry.

18.5 Time-reversal symmetry

It was shown in Secion 13.2 that for motion in which spin is neglected, the time-reversal

operator � is just the complex conjugation operator k. Therefore

(18.1.12) ku�ðn�Þ ¼ M�½
� u�ð�Þ exp½ið�q � an þ !tÞ� (1)

so that t is replaced by�t and q by�q. The equations of motion in the time-reversed state

are therefore

(18.4.1) Dð�qÞjeð�q jÞi ¼ !jð�qÞ2jeð�q jÞi, (2)

(18.1.15) Dð�qÞ ¼ DðqÞ�, (3)

(18.4.1) DðqÞ�eðq jÞ� ¼ !jðqÞ2eðq jÞ�, (4)

(2), (3) DðqÞ�eð�q jÞ ¼ !jð�qÞ2eð�q jÞ, (5)

(4), (5) !jð�qÞ2 ¼ !jðqÞ2, (6)

(4), (5) eð�q jÞ ¼ eðq jÞ�, (7)
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with the appropriate choice of phase in eq. (7). Thus the symmetry of the normal mode

frequencies in the BZ about q¼ 0 is a consequence of time-reversal symmetry. (A similar

situation was encountered with the symmetry of E(k) about k¼ 0 (see Section 17.2).) If  

is an arbitrary vector that is a linear combination of the e(q), then

k ¼  �: (8)

Exercise 18.5-1 (a) Find the operator k0
�1. (b) Prove that k0 is an antiunitary operator.

(c) Show that

k0Dk
�1
0 ¼ D�: (9)

Time-reversal symmetry may be responsible for additional degeneracies beyond that

stated in eq. (6). These arise when P(q) contains an operator Q such that

Qq ¼ �q 2 �q , Q 2 PðqÞ: (10)

In this case P(q) is an invariant subgroup of index 2 of

(10) Pðq, �qÞ ¼ PðqÞ þkQPðqÞ ¼ PðqÞ þ A PðqÞ, (11)

where A is antiunitary. The MRs of P(q) are �(q, R), and those of A P(q) are

���ð��0jq,ARÞ ¼ exp½iq � ðwðQRÞ þ alÞ�k���ð��0jq, ðq<ÞlÞ, (12)

where

ðqRÞl ¼ ðQRjwðQRÞ þ alÞ: (13)

We note the following (Maradudin and Vosko (1968)).

(i) �(q, AR) is antiunitary,

(13.1.3) h�ðq,ARÞ’j�ðq,ARÞ i ¼ h j’i: (14)

(ii) Since �(q, R) and k both commute with D(q), the {�(q, AR)} commute with D(q).

This is referred to as the time-reversal invariance of the dynamical matrix.

(iii) Multiplying each side of eq. (18.4.11) by �(q, AR) and using (ii) gives

(18.4.11) DðqÞj�ðq,ARÞjeðq�	lÞi ¼ !�	ðqÞ2j�ðq,ARÞjeðq�	lÞi: (15)

Equations (15) and (18.4.11) state that |e(q�	l)i and |�(q, AR) |e(q�	l)i are eigenvectors
of D(q) with the same eigenvalue !�	(q)

2. Whether or not this involves any extra

degeneracy depends on whether or not these eigenvectors are LI. This question can be

answered by applying the Frobenius–Schur test described in Section 13.4 (see also the

warning given at the beginning of Chapter 13). This test depends on the value of

WðqÞ ¼ pðqÞ�1 P
R2PðqÞ

½A ; A���ðq,A2Þ, (16)

(16), (18.3.26) ½A ; A� ¼ exp½�iðqþ A�1qÞ �wðAÞ� (17)
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(a) If W(q)¼þ1, |e(q�	l)i and �(q, AR)|e(q�	l)i are not LI and there is no extra

degeneracy.

(b) If W(q)¼ 0, then two frequencies !�	 and !�0	0 (�
0 6¼ �), which correspond to two

different irreducible PRs, ��(q) and ��
0
(q), are degenerate through time-reversal

symmetry. ��(q) and ��
0
(q) occur in pairs.

(c) W(q)¼�1, then !2
�	ðqÞ ¼ !2

�	0 ðqÞ ð	0 6¼ 	Þ; that is, two frequencies corresponding to
two different occurrences of the same irreducible PR ��(q) are degenerate. In this case

��(q) will occur an even number of times.

There are two instances in which the antiunitary operator is just k rather than kQ,

namely at q¼ 0 and q¼½bm.

D ½bmð Þ ¼ D ½bm � bmð Þ ¼ D �½bmð Þ ¼ D* ½bmð Þ; (18)

(9), (18) D* ½bmð Þ ¼ kD ½bmð Þk ¼ Dð½bmÞ; (19)

(16), (17) W ½bmð Þ ¼
P

R2PfqÞ
exp �½iðbm þ R�1bmÞ �wðRÞ

� �
�� ½bm, R

2
� �

: (20)

Similarly, at q¼ 0,

Wð0Þ ¼
P

R2PðqÞ
��ð0, R2Þ: (21)

This rather brief sketch of the consequences of time reversal in lattice dynamics may be

amplified by fuller accounts to be found in an article by Maradudin and Vosko (1968) and

the books by Lax (1974), Maradudin et al. (1971), and Venkataraman et al. (1975).

Answer to Exercise 18.5-1

(a) k
2 ¼kk ¼E , k�1¼k.

(b) hk 1|k 2i¼ h 1| 2i� (see eq. (13.1.3)).
(c) Using (a), kDk

�1 ¼kD � ¼D� , therefore kDk
�1¼D�.

18.6 An example: silicon

Silicon, and also germanium, have the diamond structure, which is face-centered cubic.

With cube edge a, the fundamental translations are (a/2)[0 1 1], (a/2)[1 0 1], (a/2)[1 1 0].

There are two atoms per unit cell with �1¼ [0 0 0], �2¼ (a/4)[1 1 1]. The space group

of diamond (and of silicon and germanium) is 227 (Fd3m or O7
h), which is non-

symmorphic. The reciprocal lattice is body-centered cubic with cube edge b¼ 4p/a
and reciprocal lattice vectors (b/2)[1 1 1], (b/2)[1 1 1], and (b/2)[1 1 1]. The free-electron

band structure along [0 1 0] was described in Section 17.6. The nearest neighbors are the

pair of atoms �1 and �2 separated by a distance of a/4 along [1 1 1]. (Sometimes an origin
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displaced to the midpoint between �1 and �2 may be convenient.) The symmetry group

of the nearest-neighbor pair interaction (also called the ‘‘group of the bond’’ (Lax

(1974)) is C3v ¼ fE C�
3 �b �dg. Note that �b interchanges x and y, so that (in tensor

notation) xy¼ yx. The two nearest-neighbors are invariant under the C3 rotations

R(�2p/3 [1 1 1]) which produce the transformations (xyz)! (yzx), (zxy). Therefore

the three diagonal terms in the matrix representation of the nearest-neighbor force-

constant tensor are equal. Again, because of the C3 axis xy¼ yz¼ zx and yx¼ zx.

Therefore, the nearest-neighbor force constant matrix is

� � �
� � �
� � �

2
4

3
5:

For brevity, the eigenvectors e(�1) and e(�2) will now be denoted by e1 and e2. The point

group of Fd3m is Td and the little group

GðqÞ ¼
P
A

ðAj0ÞT þ
P
B

ðBjwÞT , (1)

in which {A}¼ P(q)\Td and B 2 P(q) but 62 Td. The non-lattice translationw interchanges

�1 and �2. Therefore the characters of the 6� 6 MRs of (R|v) are

�ðAj0Þ ¼ 2�ðeÞðAÞ, �ðBjwÞ ¼ 0, (2)

where �(e)(A) is the character of the MR of A for the polar vector basis |e i¼ |ex ey ez i.
(Compare with Section 9.1; here NR¼ 2. Because of using a column vector basis |e i to
symmetrizeD, this MR �(e) is the transpose of our usual MR for a polar vector basis �(r) or

R. However, �(e)(A)¼�(r)(A).) Note that e1 and e2 each have three Cartesian components

ex, ey, ez so that |e1 e2 i is a 6� 1 column matrix.

The point group of the wave vector P(q) at � is Oh. The classes of the factor group

{(R|v)} at � are given in Table 18.1. The characters are not reprinted here since at �[0 0 0]

they are the characters of the point group Oh. When (R|v) is (A|0), the characters for the

basis |e1 e2 i are those for A with the polar basis |e i, multiplied by two because NR¼ 2 in

the notation of Chapter 9. When (R|v) is (B|w), the characters are zero since NR¼ 0 and the

submatrices �(e)(B) occupy off-diagonal positions because the translation w exchanges

the two atoms in the unit cell at �1 and �2 . Hence the characters �[(R|v)] at � are either

2�(R, T1u) or zero and so can be obtained from the character table for the point group Oh.

This representation is reducible and, as shown in Table 18.1,

�½ðRjvÞ� ¼ T1u � T2g ¼ �15 � �0
25: (3)

The displacements at � are linear combinations of e1 and e2 obtained by projecting an

arbitrary, but suitably chosen, vector e(q) into the T1u and T2g subspaces using

eðq, �Þ ¼
P
R

��ðq,RÞðRjqÞ eðqÞ, (4)

��ðq,RÞ ¼ �ðRÞ expð�iq � wÞ ¼ �ðRÞ, R 2 Oh, (5)
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since q¼ 0 at �. Choosing e(q)¼ je1 i¼ je1x e1y e1z i, where e1x is the component of e1
along x, and making use of the character set for T1u from the character table for Oh,

jeð�, T1uÞi ¼ ½je1 þ e2; e1 þ e2i: (6)

Similarly, we find

jeð�, T2gÞi ¼ ½je1 � e2; e2 � e1i: (7)

Note that the factor l(�)p(q) is omitted from the projection operator in eq. (4) and that

common factors may also be omitted in the penultimate step of the derivations of eqs. (7)

and (8) because the final eigenvector is always renormalized.

In eq. (6) the two atoms in the unit cell vibrate in phase as in an acousticmode, while in

eq. (7) the two atoms in the unit cell vibrate in antiphase so that it is called an optic mode.

18.6.1 Vibrational modes at � [0 Z 0]

At�, the point group of the wave vector P(q) is C4v. The character table of the factor group

G(q)/T¼ {(R|v)}, R2C4v, is shown in Table 18.2.

Exercise 18.6-1 Verify the following compatibility relations at � [0 0 0].

Acoustic modes: �15 ¼ �1 ��5; (8)

optic modes: �0
25 ¼ �0

2 ��5: (9)

Re-write the relations (8) and (9) in Mulliken notation.

Projecting the general vector

je1 e2i ¼ je1x e1y e1z; e2x e2y e2zi (10)

Table 18.1. Classes, and a typical element of each class, for the factor group F(q)¼G(q)/T

at � [0 0 0].

Since "¼ exp(�iq �w)¼ 1, the characters of (A | 0) for the basis |e1 e2i are just those of A in

P(q)¼Ohmultiplied by two (see the Oh character table in Appendix A3). The characters of

(B|w) are zero. Axes are defined in Figure 2.12.

Class (E|0) 3(C2
4j0) 4(C�

3 j0) 3(C�
4 jw) 6(C2|w)

Element (E|0) (C2
4yj0) (Cþ

31j0) (Cþ
4yjw) (C2d|w)

� [(R| v), | e1 e2i] 6 � 2 0 0 0

Class (I| w) 3(�h|w) 4(S	6 jw) 3(S	4 j0) 6(�d|0)

Element (I| w) (�y|w) (S�61jw) (S�4yj0) (�d|0)

� [(R| v), | e1 e2i] 0 0 0 �2 2
�½ðRjvÞ, je1e2i ¼ �ðT1uÞ ¼ �ðT2gÞ ¼ �ð�15Þ þ �ð�0

25Þ

408 Vibration of atoms in crystals



into the �1¼A1 subspace and utilizing the Jones symbols in Table 18.2 yields

j0, e1y þ e2y, 0; 0, e1y þ e2y, 0i: (11)

But e1y, e2y are both unit vectors along y, and so the normalized eigenvector e(q,�) (in the

usual notation for an eigenvector when the crystal has two atoms per unit cell (see, for

example, Lax (1974)) is

(11) LA: eð�, A1Þ ¼ j0 1 0; 0 1 0i: (12)

(It is customary not to give the normalization factor explicitly in such expressions.) Equation

(12) describes a longitudinal acoustic (LA) mode; it is an acoustic mode because the two

atoms in the unit cell vibrate in phase, and it is a longitudinal mode because the direction of the

displacements is along thewave vector, that is along y. Similarly, the characters for�2
0 (or B2)

in C4v require that the displacements of the two atoms in the unit cell be out of phase by p, so
that on projecting eq. (10) into the B2 subspace, we find the longitudinal optic (LO) mode

LO: eð�, B2Þ ¼ j0 1 0; 0 1 0i: (13)

Projecting the vector, eq. (10), into the �5 (or E) subspace gives for e(q � 	 l)

TA½1 0 1�: eð�, E, 1, 1Þ ¼ j1 0 1; 1 0 1i: (14)

where TA [1 0 1] signifies a transverse acoustic mode polarized along the [1 0 1] direction.

The degenerate �5 mode with the same frequency is an optic mode, since eqs. (8) and (9)

tell us that there is one acoustic and one optic mode of �5 symmetry. The eigenvector

of this transverse optic (TO) mode is orthogonal to eq. (14) and therefore polarized along

[1 0 1], so that it is

TO½1 0 1�: eð�, E, 2, 1Þ ¼ j1 0 1; 1 0 1i: (15)

Table 18.2. Character table of the factor group G(q)/T at � [0 Z 0], together with the

corresponding classes of G(q)/T at � and the Jones symbols R(xyz), where (xyz) is an

abbreviation for (ex ey ez).

The phase factor "¼ exp[�iq �w]¼ exp[�ip
]. Without this phase factor, the characters

would be those of the point group C4v.

G(�) / T (E|0) 3(C2
4 j0) 3(C�

4 jw) 3(�h|w) 6(�d|0)

G(�) / T (E|0) (C2y|0) (C�
4yjw) (�z|w), (�x|w) (�e|0), (�f|0)

R(xyz) xyz xyz zyx, zyx xyz, xyz zyx, zyx

A1 �1 1 1 " " 1
A2 �

0
1 1 1 " � " � 1

B1 �2 1 1 � " " � 1
B2 �

0
2 1 1 � " � " 1

E �5 2 � 2 0 0 0
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The IR �¼E is two-fold degenerate, and since the l¼ 1, l¼ 2 eigenvectors are mutually

orthogonal, the remaining two eigenvectors at � are

TA½1 0 1�: eð�, E, 1, 2Þ ¼ j1 0 1; 1 0 1i, (16)

TO½1 0 1�: eð�, E, 2, 2Þ ¼ j1 0 1; 1 0 1i: (17)

18.6.2 Vibrational modes at X [0 ½ 0]

The point group P(q) at X is D4h¼D4
Ci; D4 is isomorphous with C4v, so the compat-

ibility relations at X (at which !¼ exp(�ip/2)¼�i) are, in both Mulliken and BSW

notation,

�1 ¼ X1 ðor A1Þ, �0
2 ¼ X1 ðor A1Þ, (18)

�5 ¼ X5 ðor EgÞ, �5 ¼ X0
5 ðor EuÞ: (19)

Therefore the �1 (LA) and �0
2 (LO) modes become degenerate at X where they are both

labeled by X1 (Weber (1977)). There is no group-theoretical reason for the TA and TO�5

modes to become degenerate at the BZ surface, and in the older literature (for example,

Bilz and Kress (1979)) these modes are often referred to as X3 and X4. The space-group of

silicon is non-symmorphic and the non-lattice translation w in the space-group operators

(B|w has two effects: (i) it interchanges the atoms at the sites �1 and �2; and (ii) it introduces

a phase factor exp(�iq.w) into the characters of {(B|w)}. At X, this factor is�i. The results

of projecting the vector |1 1 1; 0 0 0 i into the Eg and Eu subspaces are given in Table 18.3.

Multiplying each of these projections (for the four classes with non-zero characters) by the

charact er for (R |v) given in Table 18.3 and addi ng the resu lts give s the e ( q� l) in eqs. (21 )
and (22). These show that the mode of symmetry Eg(X5) is the acoustic mode and that

EuðX0
5Þ is the optic mode,

TA eðX, Eg, 1Þ ¼ j1 0 1; i 0 ii , (20)

Table 18.3 Projection of the vector | 1 1 1; 0 0 0 i into the Eg (X5) and Eu (X
0
5) subspaces.

The projected eigenvectors e(q�l) in eqs. (21) and (22) are obtained by addition of these

transformed vectors, multiplied by the character for (R|v) (which is the character for R in

D4h, multiplied by exp(�iq � v)). All the classes with non-zero characters have only one

member.

Class Character of (R|v) in Eg Transformed vector Character of (R|v) in Eu

(E|0) 2 | 1 1 1 ; 0 0 0 i 2
(C2y|0) �2 | 1 1 1 ; 0 0 0 i �2

(I|w) �2i | 0 0 0 ; 1 1 1 i 2i

(�y|w) 2i | 0 0 0 ; 1 1 1 i �2i
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TO eðX, Eu, 1Þ ¼ j1 0 1; i 0 ii: (21)

(Each of these representations Eg, Eu occurs once only so that the index 	 is redun-

dant here.) The degenerate l¼ 2 eigenvectors are orthogonal to these, and therefore are

given by

(20) TA eðX, Eg, 2Þ ¼ j1 0 1; i 0 ii, (22)

(21) TO eðX, Eu, 2Þ ¼ j1 0 1; i 0 ii: (23)

Note that phase factors are included in the four eigenvectors in eqs. (20)–(23) so that the

relative magnitudes of the displacements in e(X, Eg, 2), for example, are given by

(23) TA ½1 0 1� j1 0 1; 1 0 1i: (24)

However, eq. (24) does not convey the information that the displacement of atom 2 in the

unit cell is p/2 out of phase with that of atom 1.

I have not described the calculation of the eigenvalues, which requires the solution of

the equations of motion and therefore a knowledge of the force constants. The shell model

for ionic crystals, introduced by Dick and Overhauser (1958), has proved to be extremely

useful in the development of empirical crystal potentials for the calculation of phonon

dispersion and other physical properties of perfect and imperfect ionic crystals. There is

now a considerable literature in this field, and the following references will provide an

introduction: Catlow et al. (1977), Gale (1997), Grimes et al. (1996), Jackson et al. (1995),

Sangster and Attwood (1978). The shell model can also be used for polar and covalent

crystals and has been applied to silicon and germanium (Cochran (1965)).

Answer to Exercise 18.6-1

At �, the phase factors ! in � are unity, so the characters of the relevant direct sums for the

classes of the factor group at � that occur also at�, are as given in Table 18.4. (See the C4v

and Oh character tables in Appendix A3.) Therefore�1þ�5¼�15 (or A1þE¼T1u) and

�0
2 þ�5¼�0

25 (or B2þE¼T2g).

Table 18.4. Corresponding classes of the factor group G/T at � and� in the BZ of silicon

and characters for the direct sums at � that are compatible with IRs at �.

G(�)/T (E|0) 3(C2
4 j0) 3(C�

4 jw) 3(�h|w) 6(�d|0)

G(�)/T (E|0) (C2y|0) (C�
4yjw) (�z|w), (�x|w) (�e|0), (�f|0)

�1þ�5 3 �1 1 1 1
�2

0 þ�5 3 �1 �1 �1 1
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Problems

18.1 In some crystals (NaCl is an example) every atom is at a center of symmetry. Show

that when this is true

�ð0, �; n0 � n,�0Þ ¼ �ð0,�; N � N 0,�0Þ:

18.2 In the diamond and fluorite structures, for example, the inversion operator inter-

changes like atoms on different sublattices, so that K¼�0, K0 ¼�, where �, �0 signify

atoms on different sublattices.

(a) Show that for such crystals, �(n�, n0 �0) is a symmetric matrix.

(b) Show, when Rl is the space-group operator that exchanges the pair of atoms on the

same sublattice at (n�), (n0�) for the pair at (N�), (N
0
�), respectively, where

( n0 � n)¼ �(N
0 �N)¼�, that

�ð0, �; �,�Þ ¼ �ð�,�; 0, �Þ:

18.3 Show that in silicon at �, the acoustic modes are of �1��3��4 symmetry and the

optic modes are of �1��3��4 symmetry. Write down the character table for the

factor group (including phase factors) and deduce the eigenvectors of the modes at�.

Make a rough sketch of the !(q) dispersion curves along ��X. Discuss the classifi-

cation into acoustic and optic modes along �. [Hint: The group-theoretical classifi-

cation of the modes according to their IRs is a fundamental property imposed by the

symmetry of the system, but a classification into LA, TA, LO, and TO modes is not

always possible at points other than �.]

412 Vibration of atoms in crystals



1 Appendices

A1 Determinants and matrices

A1.1 Determinants

A determinant det A or |A| is an n� n array of elements

jAj ¼ jarsj ¼

a11 a12 � � � � � � a1n
a21 a22 � � � � � � a2n
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
an1 an2 � � � � � � ann

����������

����������
, (1)

where ars is the element common to the rth row and sth column. The complementary minor

of ars, M
rs(A), is the (n� 1)� (n� 1) determinant obtained by deleting the rth row and sth

column of |A|. The co-factor of ars, A
rs, is obtained from Mrs(A) by attaching the sign

(�1)rþ s, so that

Ars ¼ ð�1Þrþs
MrsðAÞ: (2)

The determinant of A is evaluated by the following rules:

(i) expansion down a column (s constant)

jAj ¼
Pn
r¼1

arsA
rs ¼

Pn
r¼1

ð�1Þrþs
arsM

rsðAÞ; (3)

(ii) expansion across a row (r constant)

jAj ¼
Pn
s¼1

arsA
rs ¼

Pn
s¼1

ð�1Þrþs
arsM

rsðAÞ, (4)

ð3Þ or ð4Þ @jAj=@ars ¼ ð�1Þrþs
MrsðAÞ: (5)

A1.1.1 Product of determinants

If |C|¼ |A||B|,

cik ¼
Pn
j¼1

aij bjk : (6)

This is the same rule as the ‘‘row by column’’ rule for the multiplication of two matrices.
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A1.1.2 Properties of determinants

(a) The value of |A| is unchanged if rows and columns are transposed.

This fol lows from points ( i) and (ii ) above.

(b) If two rows or columns of |A| are interchanged, the sign of |A| is reversed. This also

follows from the expansion rules for evaluating |A|.

Exercise A1.1-1 Given

jAj ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

������
������,

express |A| as the sum of three 2� 2 determinants by expanding across the first row.

Form |A|0 by interchanging the first and second rows of |A| and prove that |A|0 ¼� |A|.

[Hint: Expand across the second row of |A|0.]

(c) If two rows or columns of |A| are identical, then |A|¼ 0.

(d) If each element of any row (or column) is the sum of two (or more) elements, the

determinant may be written as the sum of two (or more) determinants of the same order.

This follows from the rules for evaluating |A|.

(e) If a linear combination of any number of rows or (columns) is added to a particular row

(or column), that is if aij is replaced by

a0ij ¼ aij þ
Pn
k¼1

Pn
j¼1

ck akj, j ¼ 1, 2, . . . , n, (7)

then the value of |A| is unchanged.

(7) jA0j ¼
Pn
k¼1

Pn
j¼1

ðaij þ ckakjÞAij

¼
Pn
j¼1

aijA
ij þ

Pn
k¼1

ck
Pk
j¼1

akjA
ij ¼ jAj: (8)

The second sum in the second term in eq. (8) is zero because Aij includes the kth row,

and so this term is the expansion of a determinant in which two rows, are identical.

Answer to Exercise A1.1-1

jAj ¼
a1 b1 c1

a2 b2 c2

a3 b3 c3

�������

�������
¼ a1

b2 c2

b3 c3

����
����� b1

a2 c2

a3 c3

����
����þ c1

a2 b2

a3 b3

����
����;
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jAj0 ¼
a2 b2 c2
a1 b1 c1
a3 b3 c3

������
������ ¼ �a1

b2 c2
b3 c3

����
����þ b1

a2 c2
a3 c3

����
����� c1

a2 b2
a3 b3

����
���� ¼ �jAj:

A1.2 Definitions and properties of matrices

A matrix A is a rectangular array of elements

A ¼ ½ars� ¼

a11 a12 � � � � � � a1n
a21 a22 � � � � � � a2n
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
am1 am2 � � � � � � amn

2
66664

3
77775: (1)

(A)rs, usually written ars orArs, is a typical element ofA, and the subscripts indicate that it

is the element common to the rth row and sth column. In this matrix there arem rows (r¼ 1,

2, . . . , m) and n columns (s¼ 1, 2, . . . , n). If m¼ n, A is a square matrix. The set of

elements with r¼ s in a square matrix are the diagonal elements. A square matrix

with ars¼ �rs is a unit matrix, E. The dimensions of E may usually be understood from

the context, but when necessary the unit matrix of dimensions n� nwill be denoted byEn.

If m¼ 1, A is a row matrix

haj ¼ ha1, a2, . . . , anj: (2)

If n¼ 1, A is the column matrix

jai ¼ ja1, a2, . . . , ami: (3)

For example, the components of a vector r in configuration space may be represented by

the column matrix |x y z i.

A1.2.1 Rules of matrix algebra

(1) A¼B if ars¼ brs, 8r, s.
(2) If C¼AþB, then crs¼ arsþ brs, 8 r, s. It follows that k A¼ [k ars]. Clearly, in rules

(1) and (2) the matricesA andBmust contain the same numbers of rows and columns.

(3) A andB are conformable for the productAB if the number of columns inA is equal to

the number of rows in B. This product is then C¼ [cik], where

cik ¼
P
j

aijbjk : (4)

This is the ‘‘row� column’’ law of matrix multiplication.

Example A1.2-1 If the row matrix h e| contains the 3-D configuration space basis vectors

{e1 e2 e3} and the column matrix |r i contains the components |x y z i of a vector r, then the
matrix representative (MR) of the vector r is
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hejri ¼ he1 e2 e3jx y zi
(4) ¼ e1xþ e2yþ e3z:

(5)

(4) Matrix multiplication is associative,

AðBCÞ ¼ ðABÞC: (6)

(5) Matrix multiplication is not necessarily commutative, but if AB¼BA the matrices A
and B are said to commute.

(6) Division by a matrix A is defined as multiplication by the inverse of A, written A�1,

and defined by the relation

A�1A ¼ AA�1 ¼ E: (7)

Because the multiplication of determinants and of matrices obey the same ‘‘row� column’’

rule

jABj ¼ jAjjBj, (8)

where |A| signifies the determinant of the matrix A,

(8), (7) jA�1Aj ¼ jA�1jjAj ¼ jEj ¼ 1: (9)

It follows from eq. (9) that A has an inverse only if

jAj ¼ jarsj 6¼ 0: (10)

If a matrix A has a determinant |A|¼ 0, it is said to be singular. Consequently, A has an

inverseA�1 only if eq. (10) is satisfied andA is non-singular. The trace of a square matrix

A is the sum of the diagonal elements of A,

Tr A ¼
P
j

ajj, (11)

(11), (4) Tr AB ¼
P
i

P
j

aijbji ¼
P
j

P
i

bjiaij ¼ Tr BA: (12)

IfQ is a non-singular matrix andB¼QAQ�1,B andA are said to be related by a similarity

transformation. The trace of a matrix is invariant under a similarity transformation, for

(12) Tr QAQ�1 ¼ Tr QðAQ�1Þ ¼ Tr ðAQ�1ÞQ ¼ Tr A: (13)

The determinant of A is also invariant under a similarity transformation, for

(8), (9) jQAQ�1j ¼ jQjjAjjQ�1j ¼ jQjjAjjQj�1 ¼ jAj: (14)

The transposeAT of a matrixA¼ [aij] is obtained by interchanging rows and columns ofA,

so that

AT ¼ ½aji�: (15)
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If AT¼A, the matrix A is symmetric; if AT¼�A, A is skew-symmetric.

ðABÞTik ¼ ðABÞki ¼
P
j

akjbji ¼
P
j

bTija
T
jk ¼ ðBTATÞik , 8i, k,

so that

ðABÞT ¼ BTAT: (16)

The complex conjugate (CC) matrix of A¼ [aij] is A*¼ [aij
*]. The adjoint matrix of A is

Ay ¼ (AT)*. If Ay ¼A, A is Hermitian, but if Ay ¼�A, then A is skew-Hermitian.

Exercise A1.2-1 Show that (AB)y ¼By Ay.

Define the matrix �A as the transpose of the matrix of co-factors of |A| so that
�Aij¼ (Aij)T, where Aij is the co-factor of aij in |A|. From the expansion property of |A|,

ðA1:1:4Þ
Pn
s¼1

aisA
js ¼ jAj�ij, (17)

(4), (17) AA ¼ B ¼ ½bij�, bij ¼
P
s

aisðAsjÞT ¼
P
s

aisA
js ¼ jAj�ij, (18)

(18) AA ¼ B ¼ jAjE, (19)

(19) A�1 ¼ A=jAj: (20)

Clearly, the inverse A�1 of A may only be evaluated if A is non-singular.

Exercise A1.2–2 Show that (AB)�1¼B�1A�1. [Hint: Use the definition of the inverse of

AB, namely that (AB)�1 is the matrix which on multiplying AB gives the unit matrix.]

If A�1¼AT, A is an orthogonal matrix.

Exercise A1.2–3 Show that the product of two orthogonal matrices A and B is an

orthogonal matrix.

Exercise A1.2–4 Show that if A is an orthogonal matrix, then

P
k

aij ajk ¼ �ij, (21)

P
k

aki akj ¼ �ij: (22)

[Hint: Make use of the definition of the inverse matrix, eq. (7), and the property of the

transposed matrix.]

Equations (21) and (22) state that the rows or columns of an orthogonal matrix are

orthonormal. A is a unitary matrix if
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A�1 ¼ Ay ¼ ðATÞ�: (23)

If A is unitary,

(23) jAyAj ¼ jATj�jAj ¼ jAj�jAj ¼ 1, (24)

so that the determinant of a unitary matrix is a complex number of modulus unity.

Exercise A1.2–5 Prove that, if A is a unitary matrix,

P
k

aik a�jk ¼ �ij; (25)

P
k

a�ki akj ¼ �ij: (26)

Equations ( 25 ) and (26) show that the rows or the colu mns of a un itary matrix are

orthonormal when the scalar product is defined to be the Hermitian scalar product.

A permutation ( pseudo-permutation) matrix is one in which every element in each row

and column is equal to zero, except for one element which is þ1 (�1 or þ1). For

convenience of reference the defining relations for special matrices are summarized in

Table A1.1.

Exercise A1.2–6 Show that

0 0 1

1 0 0

0 1 0

2
4

3
5 x1

x2
x3

2
4

3
5

Table A1.1. Names, symbols, and defining relations for various special

matrices.

E is the n� n unit matrix and aij is the ijth element of A.

Name of matrix Notation used Definition

Diagonal D aij¼ ai �ij
Inverse A�1 A�1 A¼E
Transpose AT (AT)ij¼ aji
Symmetric AT¼A
Skew-symmetric AT¼�A
Complex conjugate A* (A*)ij¼ a*ij

Adjoint Ay Ay ¼ (AT)*

Orthogonal ATA¼E
Unitary AyA¼E
Hermitian Ay ¼A
Skew-Hermitian Ay ¼�A
Normal AAy ¼AyA
Permutation, Pseudo-permutation see text
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produces a cyclic permutation of the elements of the column matrix |x1 x2 x3 i. Construct
the permutation matrix that on multiplying |x1 x2 x3 i produces the permutation |x2 x 3 x1 i.

A normal matrix is one that commutes with its adjoint, AAy ¼AyA. Normal matrices

include diagonal, real symmetric, orthogonal, unitary, Hermitian (self-adjoint), permuta-

tion, and pseudo-permutation matrices.

Answers to Exercises A1.2

Exercise A1.2-1 (AB)y ¼ ((AB)T)*¼ (BTAT)*¼ByAy.

Exercise A1.2-2 B� 1A� 1 AB¼E; therefore (AB)�1¼B�1A�1.

Exercise A1.2-3 Since A, B are orthogonal, (AB)�1¼B�1A�1¼BTAT¼ (AB)T.

Exercise A1.2-4 If A is an orthogonal matrix, AA�1¼AAT¼E. ThereforeP
k

aik aTkj ¼
P
k

aik ajk ¼ �ij, which proves that the rows of an orthogonal matrix A are

orthonormal. Again, ATA ¼E, and
P
k

aTik akj ¼
P
k

aki akj ¼ �ij, showing that the col-

umns of an orthogonal matrix are orthonormal.

Exercise A1.2-5 If A is unitary, AAy ¼ AðATÞ� ¼ E,
P
k

aik a�jk ¼ �ij, and the two

vectors (in a unitary linear vector space) whose components are the elements in two rows

of a unitary matrix, are orthonormal. Similarly, AyA ¼ ðATÞ�A ¼ E,
P
k

a�ki akj ¼ �ij, and

vectors whose components are the elements in two columns of a unitary matrix are ortho-

normal. These results are important in applications of group theory where symmetry

operators are represented by unitary matrices. The reader has no doubt noted that a real

unitary matrix is an orthogonal matrix.

Exercise A1.2-6

0 0 1

1 0 0

0 1 0

2
4

3
5 x1

x2
x3

2
4

3
5 ¼

x3
x1
x2

2
4

3
5;

|x3 x1 x2 i is a cyclic permutation of |x1 x2 x3 i. Similarly,

0 1 0

0 0 1

1 0 0

2
4

3
5 x1

x2
x3

2
4

3
5 ¼

x2
x3
x1

2
4

3
5:

A1.3 Eigenvalues and eigenvectors; diagonalization

Generally, when a square matrix Amultiplies a column matrix |x i from the left, it changes

|x i into a new column matrix |x0i. In the particular case that |x0 i is just |x imultiplied by a

constant a,

Ajxi ¼ ajxi, (1)
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|x i is an eigenvector of A and a is the corresponding eigenvalue. The set of homogeneous

linear equations (1) has non-trivial solutions only if

jA� aEj ¼ 0: (2)

Equation (2) is called the characteristic (or secular) equation of A, and its roots are the

eigenvalues of A, {ak}. The problem of finding the eigenvalues of a matrix is intimately

connected with its conversion to diagonal form. For if A were a diagonal matrix, then its

characteristic equation would be

(2)
Qn
i¼1

ðaij � ajÞ�ij ¼ 0, (3)

and its eigenvalues ai would be given by the diagonal elements, aii, i¼ 1, . . . , n. Two

matricesA1 andA2 of the same dimensions are equivalent,A1�A2, if they are related by a

similarity transformation, that is there exists a non-singular matrix S such that

A2 ¼ S A1 S�1: (4)

A matrix is diagonalizable if it is equivalent to a diagonal matrix D. The characteristic

equation of A is invariant under a similarity transformation, for

jS A S�1 � aEj ¼ jSðA� aEÞS�1j ¼ jSj jðA� aEÞj jS�1j ¼ jðA� aEÞj, (5)

and this means that the eigenvalues of a matrix are invariant under a similarity transforma-

tion. A matrix A can be diagonalized by the unitary matrix S,

S A S�1 ¼ D, (6)

iff (meaning if and only if) A is a normal matrix.

Proof

(6) A S�1 ¼ S�1D; (7)

(7) ðS�1ÞyAy ¼ D�ðS�1Þy; (8)

(8) S Ay ¼ D�S ðS unitaryÞ; (9)

(9), (7) S Ay A S�1 ¼ D�S S�1D ¼ D�D; (10)

(9), (7) A S�1S Ay ¼ S�1D D�S ¼ AAy; (11)

(11) S A Ay S�1 ¼ D D� ¼ D� D; (12)

(12), (10) A Ay ¼ Ay A , (13)
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which proves that A can be diagonalized by a similarity transformation with a unitary

matrix S, iff A is a normal matrix.

In quantum mechanics special importance attaches to Hermitian matrices, which

have real eigenvalues.Multiply each side of eq. (1) from the left by the adjoint of |x i , h x*|

hx�jAjxi ¼ ahx�jxi: (14)

Take the adjoint of each side of eq. (3), using the result in Exercise A1.2-1 that the adjoint

of a product is the product of the adjoints, in reverse order.

(14) hx�jAyjxi ¼ a�hx�jxi, (15)

since the adjoint of the complex number a is a*. But if A is Hermitian or skew-Hermitian,

Ay ¼�A, and so

(14), (15) a ¼ �a�: (16)

Therefore, the eigenvalues of a Hermitian matrix are real, and the eigenvalues of a skew-

Hermitian matrix are pure imaginary. Now consider the eigenvectors |x i and |x0 i belonging
to two different eigenvalues a, a0 of a self-adjoint matrix A.

Ajxi ¼ ajxi, Ajx0i ¼ a0jx0i; (17)

(17) hx0�jAjxi ¼ ahx0�jxi ; (18)

(17) hx�jAjx0i ¼ a0hx�jx0i ; (19)

(10) hx�jAyjx0i ¼ a�hx�jx0i ; (20)

(12), (8) hx�jAjx0i ¼ ahx�jx0i ðA HermitianÞ; (21)

(19), (21) ða� a0Þhx�jx0i ¼ 0: (22)

Thus, if a and a0 are distinct eigenvalues, their eigenvectors |x i, |x0 i are orthogonal, and

since they may always be normalized

hx�jx0i ¼ �x, x0 or
P
j

x�j x
0
j ¼ �x, x0 : (23)

If the eigenvalues are degenerate, a¼ a0, then the eigenvectors |x i , |x0 i are not necessarily
orthogonal, but a mutually orthogonal set may always be found (Schmidt orthogonaliza-

tion). Consequently, a Hermitian matrix of order n has n mutually orthogonal and normal-

izable eigenvectors |x i. The same result holds for skew-Hermitian matrices.

For orthogonal matrices,

Ajxi ¼ ajxi; (24)

(24) hxjAT ¼ ahxj; (25)
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(24), (25) hxjATAjxi ¼ a2hxjxi ¼ hxjxi ðA orthogonalÞ: (26)

Equation (26) implies that the real eigenvectors of an orthogonal matrix must correspond

to eigenvalues with a2¼ 1. For real orthogonal matrices, A¼A*,

(24) A�jx�i ¼ a�jx�i, Ajx�i ¼ a�jx�i: (27)

Equations (24) and (27) show that the eigenvalues and eigenvectors of real orthogonal

matrices occur in CC pairs. Furthermore, if |x i is real, eqs. (24) and (27) imply that a¼ a*,

that is that the eigenvalues that correspond to real eigenvectors of real, orthogonal matrices

are also real. In fact, because a2¼ 1,

a ¼ �1 ðfor real eigenvectors of real orthogonal matricesÞ: (28)

The MRs of proper and improper rotations in 3-D configuration space <3 are 3� 3 real

orthogonal matrices (see eqs. (3.2.11) and (3.2.12)). There are, therefore, three eigenvalues

and therefore only two possibilities: either there is one real eigenvector and one CC pair, or

there are three real eigenvectors. If there is one real eigenvector then the eigenvalues

are� 1, !, and !*.

(3.2.11), (3.2.12) jAj ¼ �1, (29)

where |A|¼þ1 corresponds to a proper rotation R(� n) and |A|¼�1 corresponds to an

improper rotation S(� n). Binary rotations �¼ p are excluded since, in this case, the

eigenvalues of A are all real. The four possible cases that can arise when a 3� 3 real

orthogonal matrix has three real eigenvalues are summarized in Table A1.2.

For a unitary matrix A,

Ajxi ¼ ajxi; (30)

(30) hx�jAy ¼ a�hx�j; (31)

(31), (30) hx�jAyAjxi ¼ aa�hx�jxi ¼ aa�
P
k

jxk j2; (32)

(32) aa� ¼ 1, jaj ¼ 1 ðA unitaryÞ, (33)

Table A1.2. Real eigenvalues of a real 3� 3 orthogonal matrix A with real eigenvectors.

Symmetry operation
Eigenvalues

Reference to MR |A|
a1 a2 a3

Identity 1 1 1 Example 3.2–1 þ 1
Inversion �1 �1 �1 Equation (2.1.4) � 1
Binary rotation 1 �1 �1 Equation (3.2.11) þ 1
Reflection 1 1 �1 Equation (3.2.15) � 1
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since eq. (32) reminds us that h x*|x i is positive definite. The eigenvalues of a unitary

matrix are therefore complex numbers of modulus unity. If A is real, a real unitary matrix

becomes a real orthogonal matrix, and ATA¼E (see eq. (3.2.14) et seq.).

In the general case, ifA is not a normal matrix, then it is not necessarily diagonalizable.

However, it is diagonalizable if the characteristic equation has n distinct roots.

(2) jA� aEj ¼
Pn
�¼0

ð�1Þ���a
� ¼ 0, (34)

where �� is the sum of all the (n� �)-rowed principal minors of A. In particular,

�0 ¼ jAj, �n�1 ¼ Tr A, �n ¼ 1: (35)

(A (n� �)-rowed principal minor of a matrix A of order n is the determinant of the matrix

formed by removing from A any � rows and the corresponding � columns with the same

indices.) Since |A� aE| and the eigenvalues of A are invariant under a similarity transfor-

mation, the �� are similarly invariant, as we already know for Tr A and |A|, eqs. (A1.2.13)

and (A1.2.14). The n roots of eq. (34) are the n eigenvalues of A. Substituting one of these

eigenvalues (say ak) in the homogeneous linear equations (1) gives the eigenvector |xk i.
This contains an arbitrary constant which can be removed by normalization. Repeat for all

the other eigenvalues in turn, and then construct the square matrix X, the columns of which

are the eigenvectors |xk i:

X ¼ hjx1i jx2i . . . jxki . . . jxnij: (36)

(36), (1) A X ¼ ha1jx1i a2jx2i . . . ak jxki . . . anjxnij ¼ X½ai�ik �; (37)

(37) X�1 A X ¼ ½ai�ik �: (38)

This reduction ofA to diagonal form is unique, except for the order in which the eigenvalues

occur on the diagonal. When the roots are not all distinct, it may not be possible to convert

A to diagonal form. However,Amay then be reduced to Jordan canonical form in which the

eigenvalues occur on the diagonal, with the position immediately above each eigenvalue

occupied by unity or zero and with a zero everywhere else.

If a number of normal matrices A1,A2, . . . commute with one another then they can all

be diagonalized by a similarity transformation with the same unitarymatrixS. IfA1,A2 are

both diagonalized by S, then

S A1 S�1 ¼ D1, S A2S�1 ¼ D2; (39)

(39) S A1 A2 S�1 ¼ S A1 S�1 S A2 S�1 ¼ D1 D2; (40)

(39) S A2 A1 S�1 ¼ D2 D1 ¼ D1 D2; (41)

(40), (41) A1 A2 ¼ A2 A1, (42)
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showing that the condition that A1, A2 commute is necessary. It is also sufficient, for if A1

is diagonalized by S and A1, A2 commute,

S A1 A2 S�1 ¼ D1 S A2 S�1 ¼ D1 B, say,

S A2 A1 S�1 ¼ S A2 S�1 D1 ¼ B D1: (43)

S A2 S� 1¼B is a matrix that commutes with a diagonal matrix D2 and is therefore also

diagonal. For if BD¼DB, with D diagonal,

ðDBÞik ¼
P
j

dj �ij bjk ¼ di bik ¼ ðBDÞik ¼
P
j

bij dj �jk ¼ bik dk : (44)

So BD¼DB requires that bik be zero unless i¼ k and therefore B¼S A2 S� 1 is a

diagonal matrix, say D2.

A1.4 Matrix representations

The direct sum of two matrices A1, A2 is the block-diagonal matrix

A ¼ A1 �A2 ¼
A1

A2

� �
: (1)

A matrixA is reducible if it is equivalent to a direct sum of two or more matrices. A matrix

system of order g is a set of g matrices

fAg ¼ fA1 A2 . . . Agg: (2)

Two matrix systems of the same order g are equivalent if there exists a non-singular matrix

S such that

A0
i ¼ SAiS�1, i ¼ 1, 2 . . . , g: (3)

The matrix system {A}¼ {A1 A2 . . . Ag} is reducible if it is equivalent to a direct sum of

matrix systems,

fAg ¼ fA1g � fA2g � . . . (4)

If each of the blocks in the matrices comprising the matrix system {A} cannot be reduced

further, the matrix system has been reduced completely and each of the matrix systems

{A1}, {A2}, . . . in the direct sum is said to be irreducible. Matrix systems that are

isomorphous to a group G are called matrix representations (Chapter 4). Irreducible

representations (IRs) are of great importance in applications of group theory in physics

and chemistry. A matrix representation in which the matrices are unitary matrices is called

a unitary representation. Matrix representations are not necessarily unitary, but any

representation of a finite group that consists of non-singular matrices is equivalent to a

unitary representation, as will be demonstrated in Section A1.5.
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A1.5 Schur’s lemma and the orthogonality theorem

This section contains the proofs of the orthogonality theorem (OT) and three other results

that are required in the proof of the OT (Wigner (1959)). They need not be studied in detail

by readers willing to accept the orthogonality relations embodied in the OT, eq. (29). The

implications and applications of these orthogonality relations are discussed in the text,

beginning at Section 4.3. The proofs are for the most part standard ones and follow

arguments presented in the classic book on group theory by Wigner (1959).

Lemma 1 Any matrix representation consisting of non-singular matrices is equivalent to a

unitary representation.

Proof

Denote by �(R), �(S), . . . the matrices representing the group elements R, S, . . . in the

group G, and construct a Hermitian matrix H by

H ¼
P
R

�ðRÞ�ðRÞy ¼ Hy: (1)

A Hermitian matrix H is an example of a normal matrix and can therefore be

diagonalized by the similarity transformation U H U� 1 with U a unitary matrix (see eq.

(A1.3.6)).

(1) D ¼ U H U�1 ¼
P
R

U �ðRÞ �ðRÞy U�1

¼
P
R

U �ðRÞ U�1 U �ðRÞy U�1 ¼
P
R

�0ðRÞ �0ðRÞy,
(2)

where the primed matrices are members of a representation {�0(R)}� {�(R)}. The unitary

property of U, namely that U�1¼Uy, has been used in writing the last equality in eq. (2).

The diagonal elements of D¼ [di �ij] are the (real) eigenvalues of H, and the definition H
ensures that these di are positive real numbers. Wemay therefore construct the real positive

diagonal matrices

D
1=2 ¼ ½d

1=2
i �ij�, D�1=2 ¼ ½d�

1=2
i �ij�, (3)

where d
1=2
i is the positive square root of di. Since diagonal matrices commute,

(2) D�1=2
P
R

�0ðRÞ �0ðRÞy
� �

D�1=2 ¼ E: (4)

Now define the set of matrices {�00(R)} by

�00ðRÞ ¼ D�1=2 �0ðRÞ D
1=2: (5)

It will be shown that the set {�00(R)} is a unitary representation.
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(5) �00ðRÞ �00ðRÞy ¼ D�1=2 �0ðRÞ D
1=2 D

1=2 �0ðRÞy D�1=2

(4) ¼ D�1=2 �0ðRÞ D
1=2 D�1=2

hP
S

�0ðSÞ �0ðSÞy
i
D�1=2 D

1=2 �0ðRÞy D�1=2

¼ D�1=2
P
S

�0ðRÞ �0ðSÞ �0ðSÞy �0ðRÞy
� �

D�1=2

(4), ðRS ¼ TÞ ¼ D�1=2
P
T

�0ðTÞ �0ðTÞy
� �

D�1=2 ¼ E: ð6Þ

Therefore, given a representation {�(R)}, an equivalent unitary representation {�00(R)} can

always be constructed by forming

�00ðRÞ ¼ D�1=2 U �ðRÞ U�1 D
1=2, (7)

where U and D are defined in eq. (2).

Lemma 2 (Schur’s lemma) Amatrix which commutes with every matrix of an IRmust be

a multiple of the unit matrix. Schur’s lemma provides a criterion for the reducibility of a

matrix representation. For if a matrix can be found which commutes with �(R), 8R 2 G,

and which is not a multiple of E, then �¼ {�(R)} is a reducible representation. Because of

Lemma 1, we may restrict our considerations to unitary representations. Let M be a matrix

that commutes with �(R), 8R 2 G. Then

M �ðRÞ ¼ �ðRÞ M: (8)

(8) �ðRÞy My ¼ My �ðRÞy; (9)

(9), ð�ðRÞ unitaryÞ My �ðRÞ ¼ �ðRÞ My: (10)

Equation (10) shows thatMy also commutes with the unitary matrices of �, and so therefore

do the two Hermitian matrices

H1 ¼ ðMþ MyÞ (11)

and

H2 ¼ iðM� MyÞ: (12)

But a Hermitian matrixH (which could be eitherH1 orH2) can always be diagonalized by a

unitary transformation

U H U�1 ¼ D: (13)

Define �0(R) by

�0ðRÞ ¼ U �ðRÞ U�1: (14)
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(14), (13) �0ðRÞ D ¼ U �ðRÞ U�1 U H U�1

¼ U H �ðRÞ U�1 ð�ðRÞ commutes with HÞ
¼ U H U�1 U �ðRÞ U�1

¼ D �0ðRÞ; (15)

(15) �0ðRÞij dj �jk ¼ di �ij �0ðRÞjk : (16)

Summing each side of eq. (16) over j gives

(16) �0ðRÞikðdk � diÞ ¼ 0: (17)

The subscripts i, k¼ 1, 2, . . . , l fall into two sets (one of which may be empty): (i) dk¼ di,

8 k 2 {a}; (ii) dj 6¼ di, 8 j 2 {b}, 8 i 2 {a}. When dj 6¼ di (so that D is not a multiple of the

unit matrix), eq. (17) requires that

�0ðRÞij ¼ �0ðRÞji ¼ 0, 8 i 2 fag, 8 j 2 fbg, 8 R 2 G: (18)

In this case, the transformation of � to �0 has brought {�0(R)} into block-diagonal form and

the matrix representation�was therefore reducible. But if � is irreducible, then dk¼ di, 8 k,
and D is a constant matrix, that is the constant di times the unit matrix. But if UHU� 1 is a

multiple of the unit matrix, then so is H. And if H1 and H2 are multiples of the unit matrix,

then so also is M¼½(H1� iH2), which proves Schur’s lemma.

Lemma 3 If �i, �j are two IRs of the same group G of dimensions li, lj, respectively, and if

there exists a rectangular matrix M such that

M �iðRÞ ¼ �jðRÞ M, 8 R 2 G, (19)

then there are two possibilities: (i) if li 6¼ lj, thenM¼ 0; (ii) if li¼ lj, either M¼ 0 or |M| 6¼ 0.

In this latter case, M has an inverse and

(19) �jðRÞ ¼ M �iðRÞ M�1, 8 R 2 G, (20)

so that � 
j ��i. Matri x M is called the int ertwining matrix, and Lemma 3 asserts that two

IRs �i and �j can be intertwined only trivially, that is either M¼ 0 or �j��i.

Proof

From Lemma 1, we may take the representa tions � 
i, �j as unitar y. Ass ume, wi thout loss in

generality, that li	 lj.

(19) �i ð RÞy My ¼ My �j ð RÞy ; (21)

(21) �i ð R� 1 Þ My ¼ My �j ð R� 1 Þ; (22)

(22) M �iðR�1Þ My ¼ M My �jðR�1Þ; (23)
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(23), (19) �jðR�1Þ M My ¼ M My �jðR�1Þ, 8R 2 G: (24)

ThereforeM My commutes with all the matrices of �j, and so by Schur’s lemma it must be a

multiple of the unit matrix,

M My ¼ cE: (25)

If li¼ lj¼ l, M is a square matrix and

jM Myj ¼ jMjjMyj ¼ jdet Mj2 ¼ cl: (26)

If c 6¼ 0, |M| 6¼ 0 andM has an inverse, so that �i��j. If c¼ 0,MMy ¼ 0 and the prth element

of M My

Pl
q¼1

Mpq M�
rq ¼ 0, 8 p, r: (27)

For the diagonal elements r¼ p

Pl

q¼1

jMpqj2 ¼ 0, 8 p ¼ 1, 2; . . . , l, (28)

which necessitates thatMpq¼ 0, 8 q¼ 1, 2, . . . , l, that is thatM¼ 0. The other possibility is

that li< lj so thatM has li columns and lj rows. A square matrixM
0
of dimensions lj� lj can be

constructed from M by adding lj� li columns of zeros. Since |M
0
|¼ 0 and M

0
M

0y ¼M My,

|M My| ¼ 0. Therefore eq. (25) requires that c ¼ 0 and consequently that M¼ 0 (from the

above argument that includes eqs. (27) and  (28)). This completes the proof of Lemma 3.

The orthogonality theorem The inequivalent irreducible unitary matrix repre-

sentations of a group G satisfy the orthogonality relations

P
R

ffiffiffiffiffiffiffiffi
li=g

p
�iðRÞ�pq

ffiffiffiffiffiffiffiffi
lj=g

p
�jðRÞrs ¼ �ij �pr �qs, (29)

where li is the dimension of �i and g is the order of the group.

Proof: Define

M ¼
P
R

�jðRÞ X �iðR�1Þ, (30)

where X is an arbitrary matrix with lj rows and li columns. Then

�jðSÞ M ¼
P
R

�jðSÞ �jðRÞ X �iðR�1Þ

¼
P
R

�jðSÞ �jðRÞ X �iðR�1Þ �iðS�1Þ �iðSÞ

¼
hP

R

�jðSRÞ X �iððSRÞ�1Þ
i
�iðSÞ

¼
hP

R

�jðRÞ X �iðR�1Þ
i
�iðSÞ

(31)
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since the sum is over all group elements. Therefore

(31), (30) �jðSÞ M ¼ M �iðSÞ, 8 S 2 G: (32)

Since �i, �j are inequivalent representations (�i not��j), Lemma 3 requires that M is the

null matrix. Therefore,

(30) Mrp ¼
P
R

P
s

P
q

�jðRÞrs Xsq �iðR�1Þqp ¼ 0, (33)

the second equality holding when �i is not��j. But X is an arbitrary matrix, and we may

choose the elements ofX in whatever way we please. If we chooseXsq¼ 1 and all the other

elements of X to be zero, then

(33)
P
R

�jðRÞrs �iðR�1Þqp ¼ 0: (34)

But since �i is a unitary representation,

P
R

�iðRÞ�pq �jðRÞrs ¼ 0 ð�i � �jÞ: (35)

Now suppose that i¼ j, then

M ¼
P
R

�iðRÞ X �iðR�1Þ (36)

commutes with all the other �i(S), S2G, because none of the steps from eq. (30) to eq. (32)

preclude j¼ i. By Schur’s lemma, M¼ cE and so

(36) Mrp ¼
P
t, u

P
R

�iðRÞrt Xtu �iðR�1Þup ¼ c �pr, r, p ¼ 1, 2, . . . , li: (37)

Choosing all the Xtu¼ 0 except for Xsq¼ 1 reduces eq. (37) to

P
R

�iðRÞrs �iðR�1Þqp ¼ c �pr: (38)

Set r¼ p and sum over p,

P
R

P
p

�iðR�1Þqp �iðRÞps ¼ c
P
p

�pr; (39)

(39)
P
R

�iðR�1RÞqs ¼ c li, (40)

(40)
P
R

�iðEÞqs ¼ g �qs ¼ c li, (41)

(41) c ¼ g �qs=li, (42)

(38), (42)
P
R

�iðRÞrs �iðR�1Þqp ¼ ðg=liÞ�pr �qs , (43)
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(43)
P
R

�iðRÞ�pq �iðRÞrs ¼ ðg=liÞ�pr �qs: (44)

Combining eqs. (35) and (44) yields the general form, eq. (29), of the OT for unitary IRs

that are inequivalent when i 6¼ j and identical when i¼ j. This is the situation met in most

practical applications of group theory using character tables that contain the characters of

the inequivalent IRs of a group of spatial symmetry operators. Moreover, eqs. (38) and (42)

provide the generalization for non-unitary representations. However, in developing a test to

determine whether extra degeneracies are introduced by time-reversal symmetry, we need

an orthogonality theorem for equivalent IRs. This is derived in section A1.6.

A1.6 Orthogonality theorem for equivalent irreducible representations

When �i is not��j we have shown in Section A1.5 that

�jðRÞ M ¼ M �iðRÞ, 8 R 2 G, (A1:5:32)

leads to P
R

�jðRÞrs �iðR�1Þqp ¼ 0, (A1:5:34)

which, for unitary representations, becomes

P
R

�iðRÞ�pq �jðRÞrs ¼ 0: (A1:5:35)

Now suppose that �i��j and let Z be the non-singular matrix that transforms �j into �i,

�iðRÞ ¼ Z �jðRÞ Z�1, 8 R 2 G, (1)

(A1.5.32), (1) �jðRÞ M ¼ M Z �jðRÞ Z�1, (2)

(2) �jðRÞ M Z ¼ M Z �jðRÞ: (3)

From Schur’ s lemm a (Lemm a 2 of Section A1.5)

M Z ¼ c E: (4)

Since M depends linearly on X, eq. (A1.5.30), c must also depend linearly on X, its most

general form being

c ¼
P
s¼1

P
q¼1

Csq Xsq, (5)

where the coefficients Csq are independent of X.

(A1.5.34), (4), (5)

Mrp ¼ cðZ�1Þrp ¼
P
s, q

Csq Xsq ðZ�1Þrp

¼
P
R

P
s0

P
q0
�jðRÞrs0 Xs0q0 �iðR�1Þq0p:

(6)
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But X is an arbitrary matrix, so on equating coefficients of Xsq,

Csq ðZ�1Þrp ¼
P
R

�jðRÞrs �iðR�1Þqp: (7)

Multiply each side of eq. (7) from the right by Zpr and sum over p:

(7), (1) Csq Err ¼
P
R

�jðRÞrs ½�iðR�1Þ Z�qr: (8)

On summing over r,

(8) Csq lj ¼ g Zqs, (9)

(9), (7) Zqs ðZ�1Þrp ¼ ðlj=gÞ
P
R

�jðRÞrs �iðR�1Þqp: (10)

For unitary representations �(R� 1)¼�(R)y, and

(10) ðli=gÞ
P
R

�iðRÞ�pq �jðRÞrs ¼ Zqs ðZ�1Þrp: (11)

Equations (10) and (11) hold when �i��j; if i¼ j, then eq. (1) shows that Z is a multiple

of the unit matrix and

(11)
P
R

ffiffiffiffiffiffiffiffi
lj=g

q
�jðRÞ�pq

ffiffiffiffiffiffiffiffi
lj=g

q
�jðRÞrs ¼ �pr �qs ði ¼ jÞ, (12)

in agreement with (A1.5.29) when i¼ j.

We shall also need the following corollary to Schur’s lemma: the complete set of

matrices {Z} that transforms �j into �i is cZ, where Z is one such matrix and c 6¼ 0; if

�i and �j are unitary then {Z} contains unitary matrices and the complete set of unitary

matrices that transform �j into �i is {ei�Z}.

Proof

If Z0 2 {Z}, then

(1) �iðRÞ ¼ Z0 �jðRÞ Z0�1 ¼ Z �jðRÞ Z�1, 8 R 2 G (13)

(13) �jðRÞ ¼ Z0�1 Z�jðRÞ Z�1 Z0 ¼ Z0�1 Z �jðRÞðZ0�1ZÞ�1
(14)

so thatZ0� 1 Z commutes with �j(R), 8 R 2G. By Schur’s lemma (Section A1.5)Z0� 1 Z
is a multiple (say, c� 1) of the unit matrix and so Z0 ¼ c Z and {c Z} is the complete set

that transforms �j into �i. Now suppose �i and �j to be unitary.

(1) �iðRÞy ¼ ðZ�1Þy �jðRÞy Zy, (15)

(15) �iðR�1Þ ¼ ðZ�1Þy �jðR�1Þ Zy, (16)
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(16); ðR�12GÞ �iðRÞ ¼ ðZ�1Þy �jðRÞ Zy: (17)

Equations (1) and (17) show that Z is unitary and therefore that {ei�Z} is the complete set

of unitary matrices that transform �j into �i.

A1.7 Direct product matrices

If A, B are two square matrices of dimensions m�m and n� n, respectively, then the

direct product (DP) of A and B is

A
B ¼

a11B a12B . . . . . . a1mB
a21B a22B . . . . . . a2mB
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

am1B am2B . . . . . . ammB

2
66664

3
77775: (1)

A
B is of dimensions mn�mn. The general term is denoted by

½A
 B�pr, qs ¼ apq brs: (2)

Note that in eq. (2) the first two subscripts denote the two row indices, p and r, while the

second pair of indices denote the two column indices q and s.

Example A1.7–1 Find A
B when A and B are both 2� 2 matrices:

A ¼ a11 a12
a21 a22

� �
; B ¼ b11 b12

b21 b22

� �
: (3)

A
 B ¼

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

2
664

3
775 (4)

column indices (q s) 11 12 21 22

For example, the element [A
B]21,21 of the DP matrix is a22b11. An alternative notation,

based on the definition of the DP matrix in eq. (1), is to represent one block of the

supermatrix A
B by

½A
 B�½pq� ¼ apqB: (5)

A supermatrix is a matrix, each element of which is itself a matrix. The subscripts [pq] on

the LS of eq. (5) denote that the general term [pq] of the supermatrixA
B is the pqth term

of the first matrix apq mutiplying the second matrix B. For example, the upper right-hand

block of A
B in eq. (4) is
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½A
 B�½12� ¼ a12B: (6)

The product of two DPs is the direct product DP of the product of the first members of each

DP, and the product of the second members of each DP,

ðA
 BÞðC
 DÞ ¼ AC
BD: (7)

The proof of this formula is an application of the second notation for a DP, introduced in

eq. (5):

½ðA
 BÞðC
 DÞ�½rs� ¼
X
t

art B cts D

¼ ðA CÞrs B D
¼ ½A C
 B D�½rs�:

(8)
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A2 Class algebra

A2.1 The Dirac character

The jth class cj of a group G is the set of all the elements of G that are conjugate to gj, so

that

cj ¼ fgk gj g
�1
k g, k ¼ 1, 2, . . . , g, with repetitions deleted: (1)

Because binary composition is unique, the classes of G are all disjoint, with no elements in

common. For example, the classes of the permutation group S3 are c1¼ {P0}, c2¼
{P1 P2}, c3¼ {P3 P4 P5} (see Section 1.2). The Dirac character � of a class (sometimes

called the ‘‘class sum’’) is the sum of the elements in a class

�j ¼
Pcj
j¼1

gj (2)

(1.8.14), (1.8.15) ¼
Pcj
r¼1

gr gj g�1
r , (3)

where gr , r¼ 1, 2 . . . , cj (with g1¼E) are the cj coset representatives of the centralizer of

gj , Zj¼Z (gj|G), which is the set (of order z) of all the elements of G which commute with

gj. The {gr} are found from the coset expansion of G on Zj,

(1.8.13), (1.8.15) G ¼
Pcj
r¼1

gr Zj, g1 ¼ E: (4)

Equation (3) determines cj¼ {gj}, j¼ 1, 2, . . . , cj, without repetitions.

The inverse class ofcj, writtencj, is the set of elements of G that are the inverses of the

elements of the class cj, so that

cj ¼ fg�1
j g, j ¼ 1, 2, . . . , cj, gj 2 cj: (5)

It follows from the definition of the inverse class that the mappingcj!cj is isomorphous,

so that cj ¼ cj.

Exercise A2.1-1 Show that if gj 2 cj, then fg�1
j g form a class with cj ¼ cj.

From the multiplication table for S(3), Table 1.3,
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c1 ¼fP0g ¼ c1, c2 ¼fP2 P1g ¼ c2, c3 ¼fP3 P4 P5g ¼ c3: (6)

c
1
¼ E ¼ c1, always. It often happens, as in S(3), that a class cj is the same as its inverse

cj, in which case the class cj ¼ cj is said to be ambivalent. Any group G contains at least

one ambivalent class, namely c1¼E. Equation (6) shows that all three classes of S(3) are

ambivalent. A class cj may be ambivalent because each element is equal to its inverse,

g�1
j ¼ gj, 8 j ¼ 1, 2, . . . , cj as is true for c3 in S3. Or a class might be ambivalent with

g�1
j 6¼ gj, 8 gj 2 cj, as is true for c2 in S3, in which P

�1
1 ¼ P2. The Dirac character of the

inverse class cj is

�j ¼
Pcj
j¼1

g�1
j : (7)

Answer to Exercise A2.1-1

Suppose that gl 2 cj¼ {gj gl . . . }. Then for some gk 2 G, gl ¼ gk gj g�1
k and

g�1
l ¼ ðgk gj g�1

k Þ�1¼ gk g
�1
j g�1

k , so that g�1
j , g�1

l are in the same class

cj ¼fg�1
j g�1

l . . .g. From the definition of the inverse class, cj contains only those

elements fg�1
j g that are the inverses of the elements gj 2 cj. Since each of the cj

elements gj 2 cj has a unique inverse g�1
j , and these are all in the same class cj, the

order c j of cj is the same as the order cj of cj.

A2.2 Properties of the Dirac characters (class sums)

(a) The Dirac characters commute with every element gk of G. Suppose that the transform

of gj by gk is gl,

gk gj g
�1
k ¼ gl, gj, gl 2 cj; gk 2 G: (1)

Since binary composition is unique, as j¼ 1, 2, . . . , cjwith the same gk, a different element

gl is generated for each gj 2 cj, and so there are cj different elements in all. Each of these

cj elements gl 2 cj and so applying the procedure, eq. (1), to 8 gj 2 cj in turn simply

regenerates the elements of cj, albeit usually in a different order. Therefore,

gk �j g
�1
k ¼

Pcj
j¼1

gk gj g
�1
k ¼

Pcj
l¼1

gl ¼ �j, (2)

(2) �j gk ¼ gk �j: (3)

(b) The Dirac characters commute with each other. The elements ofcj each commute with

�i and so

�i �j¼
Pcj
j¼1

�i gj¼
Pcj
j¼1

gj �i ¼ �j �i: (4)

In the last equality we have made use of the fact that classes are disjoint.
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(c) The product of two Dirac characters is a linear combination of Dirac characters.

Suppose that ci, cj are two of the Nc classes of G. Then,

�i �j ¼
Pci
i¼1

Pcj
j¼1

gi gj: (5)

By closure, a particular one gi gj of the ci cj terms on the RS of eq. (5) is an element of G

which must be the inverse of some element of G, g�1
k ,

gi gj ¼ g�1
k 2c�k : (6)

Every element of c�k occurs equally often on the RS of eq. (5). Let g�1
l 2c

k
; then g�1

l is

related to g�1
k by a similarity transformation and consequently, for some gp2G,

g�1
l ¼ gp g�1

k g�1
p ¼ gp gi gj g

�1
p ¼ gp gi g

�1
p gp gj g

�1
p ¼ gq g s, (7)

where gq2ci, gs2cj. Thus for every product gi gj ¼ g�1
k on the RS of eq. (5), there

occur also the products gq gs ¼ g�1
l ¼ gp g

�1
k g�1

p , which are in the same class as g�1
k .

Therefore, if g�1
k 2c�k occurs C

k
ij times in the sum

Pci
i¼1

Pcj
j¼1

gi gj, every element of c�k must

appear the same number of times, and

�i �j ¼
PNc

k¼1

Ck
ij ��k : (8)

The Ck
ij are integers, or zero, called class constants.

Remark The reader will no doubt have noticed that the above argument could be carried

out equally well for the classes cm instead of for the inverse classes c�k . Why then have we

used the seemingly more complicated route of expressing the RS of eq. (8) as a linear

combination of inverse classes rather than as a linear combination of classes, as is done, for

example, in the books by Hall (1959) and Jansen and Boon (1967)? It is because the

symmetry properties of the class constants defined by eq. (8) are more extensive than they

would have been had the product �i �j been expressed as a linear combination of classes.

Of course, each class has an inverse class and so the same terms will occur on the RS of

eq. (8), but their ordering by the index k will differ unless all classes of G are ambivalent.

(d) The product gi gj on the RS of eq. (5) can equal g1¼E only if cj ¼ ci, and then E

occurs ci times so that with k¼ 1

(8) C1
ij ¼ ci � ij: (9)

Exercise A2.2-1 Show that

C1
ij
¼ ci �ij: (90)

[Hint: Consider the product �i �j.]
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Example A2.2-1 Develop the multiplication table for the Dirac characters of S(3).

Using the multiplication table for S(3) in Table 1.3, we find the multiplication table for

the Dirac characters in Table A2.1. The entries in this table illustrate eq. (8). The class

constants Ck
ij form a 3-D cubical array. For fixed k the Ck

ij, i ¼ 1, 2, . . . ,Nc,

j ¼ 1, 2, . . . ,Nc may be arranged in an Nc�Nc square matrix, these square matrices

being successive ‘‘slices’’ of the 3-D array for k¼ 1, 2, . . . , Nc.

Remark If we were to take in eq. (8) a linear combination of classes, instead of inverse

classes, the slices of the 3-D array might, in general, occur in a different order and this

would result in some loss of symmetry in the class constants for groups with non-

ambivalent classes.

For S(3),

k ¼ 1 k ¼ 2 k ¼ 3

C1
ij ¼

1 0 0

0 2 0

0 0 3

2
4

3
5 C2

ij ¼
0 1 0

1 1 0

0 0 3

2
4

3
5 C3

ij ¼
0 0 1

0 0 2

1 2 0

2
4

3
5: (10)

Exercise A2.2-2 Evaluate the class constants Ck
ij for k¼ 1 for the group S(3) from eq. (9)

and check your results against the matrix C1
ij in eq. (10).

Exercise A2.2-3 Show that ci cj ¼
PNc

k¼1

ck Ck
ij. [Hint: Consider the number of terms on each

side of eq. (8).] Demonstrate the validity of this result for (i) i¼ 2, j¼ 3, and (ii) i¼ 3, j¼ 3

for the group S(3).

(e) The symmetry properties of the class constants Ck
ij may be summarized by the statement

that ck Ck
ij is invariant under (i) a permutation of indices and (ii) when all the classes are

inverted.

Table A2.1. Multiplication table for the Dirac characters (class

sums) of S(3).

Since

�1 ¼ P�1
0 ¼ P0 ¼ E ¼ �1, �2 ¼ P�1

1 þ P�1
2 ¼ P2 þ P1 ¼ �2,

�3 ¼ P�1
3 þ P�1

4 þ P�1
5 ¼ P3 þ P4 þ P5 ¼ �3, all three classes

of S(3) are ambivalent.

�1 �2 �3

�1 �1 �2 �3

�2 �2 2�1 þ �2 2�3

�3 �3 2�3 3�1 þ 3�2
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Proof (i) The triple product

(8), (9) �i �j �k ¼
P
l

Cl
ij �

l

� �
�k ¼ ck Ck

ij �1 þ � � � : (11)

The second equality in eq. (11) follows because �1¼E and the identity, which can only

arise when l¼ k, is repeated ck times. Because the Dirac characters commute (eq. (4)), the

triple product in eq. (11) is invariant under any permutation of i, j, k, so that

ck Ck
ij ¼ ci C

i
jk ¼ cj C

j
ki ¼ cj C

j
ik ¼ ci C

i
kj ¼ ck Ck

ji: (12)

The numerical factor ck multiplying Ck
ij in eq. (12) may be inconvenient in some applica-

tions. It can be avoided by defining the average class sums by

�i ¼ �i=ci, i ¼ 1, 2, . . . ,Nc, (13)

and a new set of class constants ckij by

ckij ¼ Ck
ij=cicj, i, j, k ¼ 1, 2, . . . ,Nc: (14)

(ii) �i �j ¼
Pci
i¼1

Pcj
j¼1

gi gj: (5)

Each term g�1
k of the double sum is a member of some class (the k th) of G. From eq. (8) the

number of terms �k that are in the k th class is ck Ck
ij. But if gi gj ¼ g�1

k , then g�1
j g�1

i ¼ gk

and so �k is also the number of terms that are in the kth class in the product �j �i ¼�i �j,

namely ck Ck

ij
. Therefore,

Ck
ij ¼ Ck

ij
: (15)

Exercise A2.2-4 Show that
P
l

Cl
ijC

m

lk
¼

P
n

Cn
jkC

m
i n. [Hint: Evaluate the triple product in

eq. (10) in two different ways, making use of the fact that the multiplication of group

elements, and therefore of the Dirac characters, is associative.]

Answers to Exercises A2.2

Exercise A2.2-1

(8) �i �j ¼ C1
ij
�1 þ � � � :

The terms on the RS can be �1 ¼ E only when j¼ i, and then �i �i ¼ ci E, so that

C1
ij
¼ ci �ij: (90)
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Exercise A2.2-2 From eq. (9) , C1
ij ¼ ci �ij ¼ ci �ij for S(3), since all classes are ambiva-

lent. Therefore, all non-diagonal elements ofC1
ij are zero, so thatC

1
ij ¼ 0, if j 6¼ i: If i ¼ 1,

C1
11 ¼ c1 ¼ 1; for i ¼ 2, C1

22 ¼ c2 ¼ 2; and with i¼ 3, C1
33 ¼ 3, in agreement with

eq. (10).

Exercise A2.2-3 The number of terms gi gj ¼ g�1
k on the LS of eq. (3) is ci cj. Each of

these belongs to some class k of G, and the number of terms in the kth class is the number of

times the kth class occurs, Ck
ij, multiplied by the order of the kth class ck. Summing over all

classes ofG gives the total number of terms. For the group S(3), for which all three classes are

ambivalent, the number of terms in�2 �3 is, from the LS of eq. (8), c2 c3¼ (2)(3)¼ 6. From

the RS it is
P3
k¼1

ck Ck
23 ¼ 1ðC1

23Þ þ 2ðC2
23Þ þ 3ðC3

23Þ ¼ 6. Similarly, for i ¼ 3, j ¼ 3,

LS ¼ ð3Þð3Þ ¼ 9, RS ¼ 1C1
33 þ 2C2

33 þ 3C3
33 ¼ 1ð3Þ þ 2ð3Þ þ 3ð0Þ ¼ 9.

Exercise A2.2-4

ð�i �jÞ�k ¼
P
l

Cl
ij �

l
�k ¼

P
l,m

Cl
ij Cm

lk
�m,

�ið�j �kÞ ¼
P
n

Cn
jk �i �n ¼

P
n,m

Cn
jk Cm

i n �m:

Equating coefficients of �m, P
l

Cl
ij C

m

lk
¼

P
n

Cn
jk C

m
i n:

A2.3 The class algebra as a vector space

Multiplication of the Dirac characters produces a linear combination of Dirac characters

(see eq. ( 4.2.8 )), as do the operations of addi tion and scalar mul tiplication. The Dirac

characters therefore satisfy the requirements of a linear associative algebra in which the

elements are linear combinations of Dirac characters. Since the classes are disjoint sets, the

Nc Dirac characters in a group G are linearly independent, but any set of Ncþ 1 vectors

made up of sums of group elements is necessarily linearly dependent. We need, therefore,

only a satisfactory definition of the inner product for the class algebra to form a vector

space. The inner product of two Dirac characters �i, �j is defined as the coefficient of the

identity C1
ij in the expansion of the product �i �j in eq. (A2.2.8),

(2.2.90) h�ij�ji ¼ C1
ij

¼ ci �ij: (1)

This definition satisfies all the requirements of an inner product (see, for example,

Cornwell (1984), p. 274). Therefore, the Dirac characters form a set of orthogonal but

not normalized vectors. An orthonormal basis can be defined by {(ci)
�½ �i}, for then

hðciÞ�½ �ijðcjÞ�½ �ji ¼ ðci cjÞ�½
C1

i j
¼ �ij: (2)
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A general vector in this space is

X¼
P
i

ðciÞ�½ �i xi, (3)

where xi is the ith component of X. The inner product of two vectors X and Y is then

hXjYi¼
P
i, j

x�i yj �ij ¼
P
j

x�j xj: (4)

Equation (A2.2.8),

�j �k¼
PNc

l¼1

Cl
jk �

l
, (5)

may now be re-interpreted in terms of a vector space in which the basis vectors are the

normalized Dirac characters {(ci)
�½ �i}. If �k in eq. (5) is a basis vector, then �j is an

operator that acts on �k (the operation being that of multiplication of Dirac characters) to

produce a linear combination of basis vectors ��l. In vector notation,

�jj�ki¼
PNc

l¼1

Cl
jk j�l

i, (6)

(6), (2), (A2.2.11) h�ij�jj�ki¼
PNc

l¼1

Cl
jkh�ij�l

i ¼
PNc

l¼1

Cl
jk�il

¼ ciC
i
jk ¼ cjC

j
ki ¼ ckC

k
ij: (7)

This is the matrix element of �j, and according to eq. (A2.2.11) it is invariant under any

permutation of the indices i, j, k.

A2.4 Diagonalization of the Dirac characters

In Section A1.4 we proved that each one of a set of normal matrices can be diagonalized by

a similarity transformation with the same unitary matrixS provided that they commute. In

Chapter 4 a matrix representation of a group G was defined as a set of matrices that form a

group isomorphous with G. Such a matrix system is reducible when it is equivalent

(Section A1.4) to a direct sum of matrix systems of smaller dimensions and irreducible

when it cannot be reduced any further into a direct sum of matrix systems of smaller

dimensions. Each of the matrix systems in this direct sum forms an irreducible representa-

tion (IR). The character system of an IR �m is the set ofNc numbers f�m
j g, j ¼ 1, 2, . . . ,Nc,

called the characters, where �m
j is the sum of the diagonal elements (the trace) of the matrix

representative (MR) of any member of the jth class in the mth IR. The character �m
j is the

same for all members of the same class, and is therefore a class property. For symmetry

groups the MRs are unitary. In general, matrix representations are not necessarily unitary,

but any representation of a finite group consisting of non-singular matrices is equivalent to

a unitary representation (Section A1.5). Consequently we may confine our attention to

unitary representations. Since the Dirac character of the ith class is the sum of the group
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elements in that class, the MR of the Dirac character of any class is the sum of the MRs of

the elements comprising that class,

�i ¼
Pci
i¼1

gi, �ð�iÞ ¼
Pci
i¼1

�ðgiÞ: (1)

Whereas the MRs of group elements do not necessarily commute, the MRs of the Dirac

characters do commute with one another and therefore also with their adjoints. They

therefore form a set of normal matrices which can all be diagonalized by similarity

transformations with the same unitary matrix S. The Dirac character matrices therefore

have Nc (not necessarily distinct) eigenvalues and Nc corresponding eigenvectors.

In general, when a Dirac character multiplies a Dirac character, as in eq. (A2.2.8), it

produces a linear combination of Dirac characters (vectors). But for a particular linear

combination of Dirac characters

� ¼
P
j

yj �j, (2)

that is an eigenvector of �i,

�i � ¼ li �: (3)

In this case, when �i operates on � the result is just � multiplied by a constant li, the
eigenvalue of �i.

(2), (3) �i

P
j

yj �j ¼ li
P
j

yj �j; (4)

(4), (A2.2.8)
P
j, k

yj Ck

i j
�

k
¼ li

P
j, k

yj �jk �
k
; (5)

(5)
P
j

ðCk

i j
� li�jkÞyj ¼ 0, k ¼ 1, 2, . . . ,Nc: (6)

The set of equations (6) is a set of linear homogeneous equations for the yj (which are the

components of �i in the {�i} basis). The Nr¼Nc eigenvalues for the ith class,

flpi g, p ¼ 1, 2, . . . ,Nc, are the roots of the characteristic equation

jCk

i j
� li�jk j ¼ 0, j, k ¼ 1, 2, . . .Nc, i ¼ 1, 2, . . .Nc: (7)

Remark One would normally expect to complete the solution of an eigenvalue problem

by substituting the eigenvalues lpi one at a time into eq. (6) and solving for the ratios of the

coefficients of �j and �1, y
p
j =y

p
1 . This would give the components of the pth eigenvector

�p, apart from an arbitrary constant which could be fixed by normalization. We shall not

need to do this here, however, since our aim of determining the characters of all the IRs is

satisfied by finding the eigenvalues.

Since the MRs of the pth IR of G form a group isomorphous with G, it follows from the

definition of a class that

(A2.2.2) �pðgkÞ �pð�iÞ �pðg�1
k Þ ¼ �pð�iÞ, (8)
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where �p (�i) is the sum of the MRs of the members of the ith class of G in the pth

representation.

(8) �pðgkÞ �pð�iÞ ¼ �pð�iÞ �pðgkÞ , 8 gk 2 G: (9)

By Schur’s lemma (see Section A1.5)

(9) �pð�iÞ ¼ lpi �ðEÞ, (10)

where �(E) is the unit matrix of dimension lp and lpi is a scalar. If the MR �p �i of an

operator �i is a scalar times the unit matrix, then that scalar is one of the eigenvalues of �i,

and that is why the scalar in eq. (10) is written as lpi .

(10) Tr �pð�iÞ ¼
P
gj2Ci

�pðgjÞ ¼ ci �p
i ¼ lpi lp; (11)

(10), (11) �pð�iÞ ¼ ðci �
p
i =lpÞE; (12)

(12) �p
i ¼ ðci �

p
i =lpÞ ¼ lpi : (13)

Therefore the characters �p
i in the pth representation are just the eigenvalues of �p

i multi-

plied by lp /ci. Thus the calculation of the characters involves two steps: (i) the calculation

of the eigenvalues lpi by finding the roots of the characteristic equation, eq. (7), and (ii) the
calculation of the characters �p

i from eq. (13). If the dimensions lp of the IRs are not known,

as for example when there is not a unique solution to

PNr

p¼1

l2p ¼ g, (14)

then the {lp} must be determined first. This may be done from the normalization condition

g�1
PNc

i¼1

cij�p
i j
2 ¼ 1, (15)

(15), (13) l2p ¼ g
PNc

i¼1

c�1
i jlpi j

2

� ��1
: (16)

Since lp� 1, only the positive square root of the RS of eq. (16) is physically significant.

This method yields the eigenvalues flpi g, p ¼ 1, 2, . . . ,Nc, of the ith class in an arbitrary

order. Since the characters are given by

(13) �p
i ¼ ðlp=ciÞlpi , (17)

we need to determine this order, that is to settle on the values for p¼ 1, 2 . . . ,Nc in any one

of the Nc sets flpi g. This can usually be decided by satisfying normalization and orthogon-

ality requirements.

Example A2.4-1 Determine the character table for the permutation group S(3).

From the multiplication table for S(3) (Table 1.3) we have, as already determined in

eq. (A2.1.6), g¼ 6,Nc¼ 3,c1¼ {P0},c2¼ {P1P2},c3¼ {P3P4P5}, so that {ci}¼ {1 2 3}.
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All three classes are ambivalent cj¼cj, j¼ 1, 2, 3. The multiplication table for the Dirac

characters is in Table A2.1. The entries in this table are
PNc

k¼1 C
k

i j
��k so that the character-

istic polynomials jCk

i j
� li�jkj for i¼ 1, 2, 3 are:

i ¼ 1 i ¼ 2 i ¼ 3

k ¼ 1 2 3 1 2 3 1 2 3

1�l1 0 0

0 1�l1 0

0 0 1�l1

������
������

�l2 1 0

2 1�l2 0

0 0 2�l2

������
������

�l3 0 1

0 �l3 2

3 3 �l3

������
������: (18)

i¼ 1, 2, 3 labels the classes, k¼ 1, 2, 3 labels the columns of the determinants, and the rows

are labeled by j¼ 1, 2, 3. Equating the three determinants to zero and solving for the roots

yields the eigenvalues for the ith class in the pth representation

pni 1 2 3 lp

1 1 2 3 1

2 1 2 �3 1

3 1 �1 0 2

(19)

lp is the dimension of the pth representation. Here we know the values of lp since

PNc

p¼1

l2p ¼ g ¼ 6 has only one solution l1¼ 1, l2¼ 1, l3¼ 2. Nevertheless, we will illustrate

the procedure to be used when {lp} is not known. From eq. (16), l 21 ¼ 6½12þ
ð½Þ22 þ ð1=3Þ32��1

, l1 ¼ 1; similarly, l2¼ 1, and l23 ¼ 6½12 þ ð½Þð�1Þ2��1 ¼ 4, l3 ¼ 2.

Finally, using eq. (17), we deduce from the eigenvalue table (19), the character table

shown in Table A2.2, which is in complete agreement with that of its isomorph C3v.

Example A2.4-2 Deduce the character table for the quaternion group Q defined in

Chapter 12.

For Q, g¼ 8, Nc¼ 5, then, c1¼ 1, c2¼�1, c3¼ {q1 �q1}, c4¼ {q2 �q2}, c5¼
{q3 �q3}. Again, each of these classes is ambivalent. From the multiplication table for Q,

we deduce the multiplication table for the Dirac characters (Table A2.3). All the entries in

Table A2.2. Character table of S(3)

deduced from the diagonalization

of the MRs of the Dirac characters.

S(3) c1 c2 c3

�1 1 1 1
�2 1 1 � 1
�3 2 � 1 0
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this table are
PNc

k¼1

Ck

i j
��k but they are entered as sums of �k because all classes of Q are

ambivalent.

From the entries in Table A2.3 we find the characteristic determinants jCk

i j
�li�jk j given in

Table A2.4. The roots of the characteristic equations yield the eigenvalues lpi in Table A2.5.

Table A2.3. Multiplication table for the Dirac characters of the quaternion group Q.

All five classes of Q are ambivalent.

Q �1 �2 �3 �4 �5

�1 �1 �2 �3 �4 �5

�2 �2 �1 �3 �4 �5

�3 �3 �3 2�1þ 2�2 2�5 2�4

�4 �4 �4 2�5 2�1þ 2�2 2�3

�5 �5 �5 2�4 2�3 2�1þ 2�2

Table A2.4 Characteristic determinants obtained in the diagonalization of the Dirac

characters for the quaternion group Q.

The rows of these determinants are labeled by j¼ 1, . . . , 5. Null entries are all zero.

i¼ 1 i¼ 2

k¼ 1 2 3 4 5 1 2 3 4 5

1� l1 � l2 1
1� l1 1 � l2

1� l1 1� l2
1� l1 1� l2

1� l1 1� l2

i¼ 3 i¼ 4

k¼ 1 2 3 4 5 1 2 3 4 5

� l3 1 � l4 1
� l3 1 � l4 1

2 2 � l3 � l4 2
� l3 2 2 2 � l4
2 � l3 2 � l4

i¼ 5

k¼ 1 2 3 4 5

� l5 1
� l5 1

� l5 2
2 � l5

2 2 � l5
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The degeneracies lp in Table A2.5 were calculated from eq. (16). Thus

(16) l21 ¼ 8½1þ 1þ 2þ 2þ 2��1
, (20)

so that l1¼ 1. Similarly, l2¼ l3¼ l4¼ 1, but l25 ¼ 8½1þ 1��1
, l5¼ 2. Finally, the character

table for Q calculated from eq. (17) is given in Table A2.6. The order of the eigenvalues lpi
is not determined by solving the characteristic equations. But considerations of normal-

ization and orthogonality require the character table for Q to be as shown in Table A2.6

apart from the labels �2, �3, �4, the order of which is arbitrary, but conventional.

There is available a variant of this method of determining character tables by diagona-

lization of the Dirac characters which is completely unambiguous (apart from the ordering

of the rows of the character table, which is arbitrary) but which involves rather more work.

(6) jL� lEj ¼ 0; (21)

(6), (21) Ljk ¼
XNc

i¼1

yj C
k

ij
: (22)

Here the determination of |lii, the column of eigenvalues for the ith class, from eqs. (21)

and (22) provides a consistent ordering of the rows without the need to appeal to normal-

ization and orthogonality conditions.

Table A2.5. Eigenvalues lpi for the ith class in the pth IR of Q calculated

from the diagonalization of the MRs of the Dirac characters.

The degeneracy lp of the pth representation is given in the right-hand

column. The order ci of the ith class is given in the bottom row.

p\i 1 2 3 4 5 lp

1 1 1 2 2 2 1
2 1 1 2 � 2 � 2 1
3 1 1 � 2 2 � 2 1
4 1 1 � 2 � 2 2 1
5 1 � 1 0 0 0 2

ci 1 1 2 2 2

Table A2.6. Character table for the quaternion group Q found

by the diagonalization of the MRs of the Dirac characters.

Q c1 c2 c3 c4 c5

�1 1 1 1 1 1
�2 1 1 1 � 1 � 1
�3 1 1 � 1 1 � 1
�4 1 1 � 1 � 1 1
�5 2 � 2 0 0 0
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Example A2.4-3 Determine the character table for the quaternion group Q from eqs. (21)

and (22).

Using Table A2.3 to determine the Ck

ij
(see eq. (A2.3.5))

(22) L ¼

y1 y2 y3 y4 y5
y2 y1 y3 y4 y5
2y3 2y3 y1 þ y2 2y5 2y4
2y4 2y4 2y5 y1 þ y2 2y3
2y5 2y5 2y4 2y3 y1 þ y2

2
66664

3
77775: (23)

Multiplying out the determinant |L| and solving the fifth-order characteristic equation

|L|¼ 0 may be accomplished using one of the mathematical packages available. Using

Mathematica, I obtained

jlpi ¼

1 1 2 2 2

1 1 2 2 2

1 1 2 2 2

1 1 2 2 2

1 1 0 0 0

2
6666664

3
7777775

y1

y2

y3

y4

y5

2
6666664

3
7777775
: (24)

The square matrix in eq. (24) is ½lpi �, where p labels the representations (rows) and i labels
the classes (columns). For Q,

hcij ¼ h1 1 2 2 2j, (25)

jlpi ¼ j1 1 1 1 2i, (26)

(25), (26) jlpihðciÞ�1j ¼

1 1 ½ ½ ½

1 1 ½ ½ ½

1 1 ½ ½ ½

1 1 ½ ½ ½

2 2 1 1 1

2
6666664

3
7777775
: (27)

Multiplying each element in the square matrix ½lpi � in eq. (24) by the corresponding element

in eq. (27) (see eq. (17)) yields Table A2.6 without the need to use normalization and

orthogonality conditions.
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A3 Character tables for point groups

This appendix contains tables of characters for vector and spinor representations of the

point groups G that are encountered most commonly in practical applications of group

theory in chemical physics. Correlation tables are given separately in Appendix A4.

The character tables are grouped together in the following sections. page

A3.1 The proper cyclic groups Cn (n ¼ 1, 2, 3, 4, 5, 6); 450

A3.2 The improper cyclic groups Ci, Cs , Sn ( n ¼ 4, 6, 8); 452

A3.3 The dihedral groups Dn ( n ¼ 2, 3, 4, 5, 6); 453

A3.4 The Cnh groups ( n ¼ 2, 3, 4, 5, 6); 455

A3.5 The Cnv groups ( n ¼ 2, 3, 4, 5, 6, 1 ); 457

A3.6 The Dnh groups ( n ¼ 2, 3, 4, 5, 6, 1 ); 459

A3.7 The Dnd groups ( n ¼ 2, 3, 4, 5, 6); 461

A3.8 The cubic groups T, Th, Td, O, Oh; 463

A3.9 The icosahedral groups Y, Yh. 465

There are no tables for double groupsG since these are made unnecessary by the inclusion

of spinor representations. However, there is enough information in Chapters 8 and 11, and in

these character tables, for readers who insist on using double groups to construct their own

tables for the characters of double group representations very easily. The construction of the

additional classes in G¼ {R, R} is explained in Chapter 8. For vector representations, which

are the irreducible representations of symmetry groups for systemswith integral values of the

total angular momentum quantum number j, the characters of classes containing only {Ri}

are the same as the characters of the corresponding classes that contain {Ri}. For spinor

representations (systems with half-integral total angular momentum quantum number j)

the characters of classes that contain only {Ri} are the negatives of the characters of the

corresponding classes that contain {Ri}. As an example, the classes and characters of the

double group C3v are given in Table A3.1. To derive multiplication rules inG, or to multiply

two matrix representatives Ri, Rj, requires projective factors [Ri ; Rj]. Projective factors are

not given explicitly because they may be calculated from the quaternion parameters [l �]

(Chapter 12), which are obtained from the rotation parameter (� n). (See the definition of a

rotation R(� n) in the ‘‘Notation and conventions’’ section, pp. xiii–xx).

Except for doubly degenerate complex conjugate representations, vector representations

are named according to the Mulliken rules, which are explained in Section 4.5. For spinor

representations, and the complex conjugate pairs of vector representations (which are

degenerate through time-reversal symmetry), the notation follows that of Altmann and

Herzig (1994), except that a non-degenerate representation with j¼ 3/2 and a character
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Table A3.1. Characters of the classes of the double group C3v.

C3v E 2C3 3�v E 2C3 3�v

A1 1 1 1 1 1 1
A2 1 1 �1 1 1 �1
E 2 �1 0 2 �1 0
E1=2

2 1 0 �2 �1 0
1E3=2

1 �1 i �1 1 �i
2E3=2

1 �1 �i �1 1 i

Table A3.2. Time-reversal classification of representations �, as listed in the column

headed TR in the character tables.

Vector representations correspond to integral values of the angular momentum quantum

number j and therefore to systems with an even number of electrons. Spinor representations

correspond to systems with half-integral j and therefore to systems with an odd number of

electrons. Note that �*is the complex conjugate of �.

Extra degeneracy for

If �and �* are vector IRs spinor IRs

a real and equal none doubled
b complex and inequivalent doubled doubled
c complex and equivalent doubled none

of� 1 for the rotationCþ
n about the principal axis is called B3=2

. In addition to the characters of

vector and spinor representations, the tables include (in the column headed ‘‘TR’’) the time-

reversal classification of the representations (a, b, or c) using the Altmann and Herzig (1994)

criteria. Since the symbols b and c are interchanged in many other books and publications,

this classification is repeated here in Table A3.2. The character tables include the bases of the

vector representations, namely the infinitesimal rotations Rx, Ry, Rz, the p and d functions,

and Cartesian tensors of rank 2. (The atomic s function is invariant under any proper or

improper rotation and so always forms a basis for the totally symmetric representation.)

Complete tables of spinor bases are given by Altmann and Herzig (1994), and it is recom-

mended that the reader refers to these tables if spinor bases are required. Vector representa-

tions may include complex conjugate pairs named 1E, 2E. These pairs are bracketed together

and the real bases given are those of 1E� 2E. It may be dangerous to use more than one set of

tables at a time. Though internally consistent, different sets of tablesmay differ in the naming

of IRs. These tables have been checked against those in Altmann and Herzig (1994) and agree

with them except in the definition of " and the naming of B3/2. The derivation and naming of

IRs for cyclic groups do not necessarily conform with eq. (4.7.7), but results are equivalent.

My aim has been to give in these tables only the most commonly required information.

For character tables for n > 6, Cartesian tensor bases of rank 3, spinor bases, rotation

parameters, tables of projective factors, Clebsch–Gordan coefficients, direct product
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Table A3.3. Rotation parameter (� n), quaternion parameters [l �], and Cayley–Klein

parameters a, b for the point group C3 (b¼ 0).

C3 R(� n) l �z a

E R(0 [0 0 0]) 1 0 1
C3z
+ R(2p/3 [0 0 1]) cos(p/3) sin(p/3) exp(� ip/3)

C3z
� R(�2p/3 [0 0 1]) cos(p/3) � sin(p/3) exp(i p/3)

representations, multiplication tables, and matrix representatives one should refer to the

extensive compilation by Altmann and Herzig (1994). Although correlation tables (com-

patibility relations) are easily calculated from character tables, it is nevertheless useful in

some applications (such as descent of symmetry) to have correlation tables available, and

so correlation tables are included in Appendix A4. Character tables for groups of larger

order (up to n¼ 10), direct product representations, and Cartesian bases of rank 3 are also

given by Harris and Bertolucci (1978). However, those tables contain only vector repre-

sentations. Other useful sources are: Atkins et al. (1970), Flurry (1980), Kim (1999),

Koster et al. (1963) and Lax (1974).

The character �j (R) is the sum of the diagonal elements of the matrix representative

�j(R) of the rotation R(� n),

�jðRÞ ¼
P
m

�j
mmðRÞ, (1)

where

(11.8.43) �j
mmða, bÞ ¼

Xjþm

k¼0

ðjþ mÞ!ðj� mÞ! ajþm�kða�Þj�m�k
bkð�b�Þk

ðjþ m� kÞ!ðj� m� kÞ!ðk!Þ2
, (2)

in which

ð�nÞ! ¼ 1, if n > 0; ð�nÞ! ¼ 1, if n ¼ 0: (3)

(12.5.21) a ¼ l� i�z, b ¼ ��y � i�x, (4)

(12.5.18) l ¼ cos
1

2
�, L ¼

�
sin

1

2
�

�
n: (5)

If j is an integer, for improper rotations IR, multiply �j (a, b) by (�1)j. If j is a half-integer,

�(IR)¼�(R) (Pauli gauge). For cyclic groups,

(12.8.3) �j
mmða, 0Þ ¼ ajþm ða�Þj�m: (6)

Example A3.1 Find the character table for the cyclic group C3.

The calculation of a is in Table A3.3. The irreducible representations are 1-D,

and �(R) follows from eq. (6). From (6), �(R)¼ ajþm (a*) j�m. For j¼ 0, m¼ 0, �(R)¼ 1,
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8R, so that the basis |0 0i gives the totally symmetric representation A. For the basis |1 1i,
�j
mmðaÞ ¼ a2, therefore �ðCþ

3 Þ ¼ ", �ðC�
3 Þ ¼ "�, where "¼ exp(� i 2p/3). Similarly, for a

basis j1 1i, �j
mmðaÞ ¼ ða�Þ2, �ðCþ

3 Þ ¼ "�, �ðC�
3 Þ ¼ ". For the spinor basis j1=2 1=2i,

�j
mmðaÞ ¼ a�, �ðCþ

3 Þ ¼ expði p=3Þ ¼ �", �ðC�
3 Þ ¼ �"�; for j1=2 1=2i, �j

mmðaÞ ¼ a,

�ðCþ
3 Þ ¼ expð�i p=3Þ ¼ �"�, �ðC�

3 Þ ¼ �". For j3=2 3=2i, �j
mmðaÞ ¼ a3, �ðCþ

3 Þ ¼
expð�3i p=3Þ ¼ �1, and �ðC�

3 Þ ¼ expði pÞ ¼ �1.

A3.1 The proper cyclic groups Cn

2 C2

C2 E C2 TR Bases

A 1 1 a z, Rz, x
2, y2, z2, xy

B 1 �1 a x, y, Rx, Ry, yz, zx
1E1=2

1 i b
2E1=2

1 �i b

3 C3

C3 E Cþ
3 C�

3 TR Bases

A 1 1 1 a z, Rz, x
2þ y2, z2

1E 1 " "* b
(x, y), (Rx, Ry), (yz, zx), (xy, x2�y2)2E 1 "* " b

1E1=2
1 �" �"* b

2E1=2
1 �"* �" b

B3=2
1 �1 �1 a

"¼ exp(�i2p/3).

}

4 C4

C4 E Cþ
4 C2 C�

4 TR Bases

A 1 1 1 1 a z, Rz, x
2þ y2, z 2

B 1 �1 1 �1 a xy, x 2� y 2

1E 1 �i �1 i b
(x, y), (Rx, Ry), (yz, zx)2E 1 i �1 �i b

}

1 C1

C1 E TR Bases

A 1 a any f(x, y, z)

A1=2
1 a
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5 C5

C5 E Cþ
5 C2þ

5 C2�
5 C�

5 TR Bases

A 1 1 1 1 1 a z, Rz, x
2þ y2, z2

1E1 1 � " "* �* b
(x, y), (Rx, Ry), (yz, zx)

2E1 1 �* "* " � b
1E2 1 " �* � "* b

(xy, x2� y2)
2E2 1 "* � �* " b
1E1=2

1 �" �* � �"* b
2E1=2

1 �"* � �* �" b
1E3=2

1 ��* "* " �� b
2E3=2

1 �� " "* ��* b

B5=2
1 �1 1 1 �1 a

�¼ exp(�i2p/5); "¼ exp(�i4p/5).

}
}

6 C6

C6 E Cþ
6 Cþ

3 C2 C�
3 C�

6 TR Bases

A 1 1 1 1 1 1 a z, Rz, x
2þ y2, z2

B 1 �1 1 �1 1 �1 a
1E1 1 �"* " �1 "* �" b (x, y), (Rx, Ry), (yz, zx)
2E1 1 �" "* �1 " �"* b
1E2 1 "* " 1 "* " b (xy, x2� y2)
2E2 1 " "* 1 " "* b
1E1=2

1 �i"* �" i �"* i" b
2E1=2

1 i" �"* �i �" �i"* b
1E3=2

1 �i �1 i �1 i b
2E3=2

1 i �1 �i �1 �i b
1E5=2

1 �i" �"* i �" i"* b
2E5=2

1 i"* �" �i �"* �i" b

"¼ exp(�i2p/3).

}

}

Table 4 (cont.)

C4 E Cþ
4

C2 C�
4 TR Bases

1E1=2
1 " �i "* b

2E1=2
1 "* i " b

1E3=2
1 �" �i �"* b

2E3=2
1 �"* i �" b

"¼ exp(�i2p/4).
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A3.2 The improper cyclic groups Ci, Cs, Sn

1 Ci

Ci E I TR Bases

Ag 1 1 a Rx, Ry, Rz, x
2, y2, z2, xy, yz, zx

Au 1 �1 a x, y, z
A½, g 1 1 a
A½, u 1 �1 a

m Cs

Cs E �h TR Bases

A0 1 1 a x, y, Rz, x
2, y2, z2, xy

A0 0 1 �1 a z, Rx, Ry, yz, zx
1E½ 1 i b
2E½ 1 �i b

4 S4

S4 E S�4 C2 Sþ4 TR Bases

A 1 1 1 1 a Rz, x
2þ y2, z2

B 1 �1 1 �1 a z, xy, x2�y2
1E 1 �i �1 i b (x, y), (Rx, Ry), (yz, zx)
2E 1 i �1 �i b
1E1=2

1 " �i "* b
2E1=2

1 "* i " b
1E3=2

1 �" �i �"* b
2E3=2

1 �"* i �" b

"¼ exp(� ip / 4).

6 S6

S6 E Cþ
3 C�

3 I S�6 Sþ6 TR Bases

Ag 1 1 1 1 1 1 a Rz, x
2þy2, z2

1Eg 1 " "* 1 " "* b ðRx,RyÞ, ðyz, zxÞ, (xy, x2 � y2Þ
2Eg 1 "* " 1 "* " b

Au 1 1 1 �1 �1 �1 a z
1Eu 1 " "* �1 �" �"* b (x, y)
2Eu 1 "* " �1 �"* �" b
1E½, g 1 �" �"* 1 �" �"* b

}

}
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A3.3 The dihedral groups Dn

8 S8

S8 E S3�8 Cþ
4 S�8 C2 Sþ8 C�

4 S3þ8 TR Bases

A 1 1 1 1 1 1 1 1 a Rz, x
2þ y2, z2

B 1 �1 1 �1 1 �1 1 �1 a z
1E1 1 �" �i "* �1 " i �"* b (x, y), (Rx, Ry)
2E1 1 �"* i " �1 "* �i �" b
1E2 1 �i �1 i 1 �i �1 i b (xy, x2�y2)
2E2 1 i �1 �i 1 i �1 �i b
1E3 1 " �i �"* �1 �" i "* b (yz, zx)
2E3 1 "* i �" �1 �"* �i " b
1E1=2

1 �* "* i� i �i�* " � b
2E1=2

1 � " �i�* �i i� "* �* b
1E3=2

1 �i�* �"* �� i ��* �" i� b
2E3=2

1 i� �" ��* �i �� �"* �i�* b
1E5=2

1 i�* �"* � i �* �" �i� b
2E5=2

1 �i� �" �* �i � �"* i�* b
1E7=2

1 ��* "* �i� i i�* " �� b
2E7=2

1 �� " i�* �i �i� "* ��* b

�¼ exp(�ip / 8); "¼ exp(�ip / 4).

}

}
}

Table 6 (cont.)

S6 E Cþ
3

C�
3 I S�6 Sþ6 TR Bases

2E1=2, g 1 �"* �" 1 �"* �" b

B3=2, g
1 �1 �1 1 �1 �1 a

1E1=2, u
1 �" �"* �1 " �"* b

2E1=2, u 1 �"* �" �1 �"* " b

B3=2, u 1 �1 �1 �1 1 1 a

"¼ exp(�i2p / 3).

222 D2

D2 E C2z C2x C2y TR Bases

A 1 1 1 1 a x2, y2, z2

B1 1 1 �1 �1 a z, Rz, xy

B2 1 �1 �1 1 a y, Ry, zx

B3 1 �1 1 �1 a x, Rx, yz

E1=2
2 0 0 0 c
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32 D3

D3 E 2C3 3C2
0 TR Bases

A1 1 1 1 a x2þy2, z2

A2 1 1 �1 a z, Rz

E 2 �1 0 a (x, y), (Rx, Ry), (xy, x
2�y2), (yz, zx)

E1=2
2 1 0 c

1E3=2
1 �1 i b

2E3=2
1 �1 �i b

422 D4

D4 E 2C4 C2 2C2
0 2C2

0 0 TR Bases

A1 1 1 1 1 1 a x2þ y2, z2

A2 1 1 1 �1 �1 a z, Rz

B1 1 �1 1 1 �1 a x� y2

B2 1 �1 1 �1 1 a xy

E 2 0 �2 0 0 a (x, y), (Rx, Ry), (yz, zx)

E1=2
2

ffiffiffi
2

p
0 0 0 c

E3=2
2 �

ffiffiffi
2

p
0 0 0 c

52 D5

D5 E 2C5 2C2
5 5C2

0 TR Bases

A1 1 1 1 1 a x2þy2, z2

A2 1 1 1 �1 a z, Rz

E1 2 2c25 2c45 0 a (x,y), (Rx, Ry), (yz, zx)

E2 2 2c45 2c25 0 a (xy, x2�y2)

E1=2
2 �2c45 2c25 0 c

E3=2
2 �2c25 2c45 0 c

1E5=2
1 �1 1 i b

2E5=2
1 �1 1 �i b

cmn¼ cos (mp/n). This economical notation was used by Altmann and Herzig (1994) and

I have adopted it in order to reduce column within the tables.

622 D6

D6 E 2C6 2C3 C2 3C2
0 3C2

0 0 TR Bases

A1 1 1 1 1 1 1 a x2þy2, z2

A2 1 1 1 1 �1 �1 a z, Rz

B1 1 �1 1 �1 1 �1 a
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A3.4 The Cnh groups

2/m C2h

C2h E C2 I �h TR Bases

Ag 1 1 1 1 a x2, y2, z2, xy, Rz

Bg 1 �1 1 �1 a Rx, Ry, yz, zx

Au 1 1 �1 �1 a z

Bu 1 �1 �1 1 a x, y
1E1=2 , g

1 i 1 i b
2E1=2 , g

1 �i 1 �i b
1E1=2 , u

1 i �1 �i b
2E1=2 , u

1 �i �1 i b

Table 622 (cont.)

D6 E 2C6 2C3 C2 3C2
0 3C2

00 TR Bases

B2 1 �1 1 �1 �1 1 a

E1 2 1 �1 �2 0 0 a (x, y), (Rx, Ry), (yz, zx)

E2 2 �1 �1 2 0 0 a (xy, x2�y2)

E1=2
2

ffiffiffi
3

p
1 0 0 0 c

E3=2
2 0 �2 0 0 0 c

E5=2
2 �

ffiffiffi
3

p
1 0 0 0 c

3/m C3h

C3h E Cþ
3 C�

3 �h Sþ3 S�3 TR Bases

A0 1 1 1 1 1 1 a Rz, x
2þy2, z2

1E0 1 " "* 1 " "* b
(x, y), (xy, x2�y2)2E0 1 "* " 1 "* " b

A00 1 1 1 �1 �1 �1 a z
1E0 0 1 " "* �1 �" �"* b

(Rx, Ry), (yz, zx)2E0 0 1 "* " �1 �"* �" b
1E1=2

1 �" �"* i i" �i"* b
2E1=2

1 �"* �" �i �i"* i" b
1E3=2

1 �1 �1 i 1 �i b
2E3=2

1 �1 �1 �i �1 i b
1E5=2

1 �"* �" i i"* �i" b
2E5=2

1 �" �"* �i �i" i"* b

e¼ exp(�i2p/3).

}

}
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4m C4h

C4h E Cþ
4 C2 C�

4 I S�4 �h Sþ4 TR Bases

Ag 1 1 1 1 1 1 1 1 a Rz, x
2þy2, z2

Bg 1 �1 1 �1 1 �1 1 �1 a xy, x2� y2

1Eg 1 �i �1 i 1 �i �1 i b
(Rx, Ry), (yz, zx)

2Eg 1 i �1 �i 1 i �1 �i b

Au 1 1 1 1 �1 �1 �1 �1 a z
Bu 1 �1 1 �1 �1 1 �1 1 a
1Eu 1 �i �1 i �1 i 1 �i b (x, y)
2Eu 1 i �1 �i �1 �i 1 i b
1E1=2 , g

1 " �i "* 1 " �i "* b
2E1=2 , g

1 "* i " 1 "* i " b
1E3=2 , g

1 �" �i "* 1 �" �i "* b
2E3=2 , g

1 �"* i " 1 �"* i " b
1E1=2 , u

1 " �i "* �1 �" i �"* b
2E1=2 , u

1 "* i " �1 �"* �i �" b
1E3=2 , u

1 �" �i �"* �1 " i "* b
2E3=2 , u

1 �"* i �" �1 "* �i " b

"¼ exp(� ip/4).

}

}

5/m C5h

C5h E Cþ
5 C2þ

5 C2�
5 C�

5 �h Sþ5 S2þ5 S2�5 S�5 TR Bases

A0 1 1 1 1 1 1 1 1 1 1 a Rz, x
2þy2, z2

1E0
1

1 d " "* d* 1 d " "* d* b
(x, y)

2E0
1

1 d* "* " d 1 d* "* " d b
1E0

2
1 " d* d "* 1 " d* d "* b (xy, x2�y2)

2E0
2

1 "* d d* " 1 "* d d* " b

A
0 0

1 1 1 1 1 �1 �1 �1 �1 �1 a z
1E00

1
1 d " "* d* �1 �d �" �"* �d* b

(Rx, Ry), (yz, zx)2E00
1

1 d* "* " d �1 �d* �"* �" �d b
1E00

2
1 " d* d "* �1 �" �d* �d �"* b

2E00
2

1 "* d d* " �1 �"* �d �d* �" b
1E1=2

1 �" d* d �"* i i" �id* id �i"* b
2E1=2

1 �"* d d* �" �i �i"* id �id* i" b
1E3=2

1 �d* "* " �d i id* �i"* i" �id b
2E3=2

1 �d " "* �d* �i �id i" �i"* id* b
1E5=2

1 �1 1 1 �1 i i �i i �i b
2E5=2

1 �1 1 1 �1 �i �i i �i i b
1E7=2

1 �d " "* �d* i id �i" i"* �id* b
2E7=2

1 �d* "* " �d �i �id* i"* �i" id b
1E9=2

1 �"* d d* �" i i"* �id id* �i" b
2E9=2

1 �" d* d �"* �i �i" id* �id i"* b

� ¼ expð�i2p=5Þ; " ¼ expð�i4p=5Þ:

}
}

}
}
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A3.5 The Cnv groups
2mm C2v

C2v E C2z �x �y TR Bases

A1 1 1 1 1 a z, x2, y2, z2

A2 1 1 �1 �1 a Rz, xy
B1 1 �1 �1 1 a x, Ry, zx
B2 1 �1 1 �1 a y, Rx, yz
E½ 2 0 0 0 c

3m C3v

C3v E 2C3 3�v TR Bases

A1 1 1 1 a z, x2þy2, z2

A2 1 1 �1 a Rz

E 2 �1 0 a (x, y), (Rx, Ry), (xy, x
2�y2), (yz, zx)

6/m C6h

C6h E Cþ
6 Cþ

3 C2 C�
3 C�

6 I S�3 S�6 �h Sþ6 Sþ3 TR Bases

Ag 1 1 1 1 1 1 1 1 1 1 1 1 a Rz, x
2þy2, z2

Bg 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 a
1E1g 1 "* �" �1 �"* " 1 "* �" �1 �"* " a

(Rx, Ry), (yz, zx)
2E1g 1 " �"* �1 �" "* 1 " �"* �1 �" "* a
1E2g 1 �" �"* 1 �" �"* 1 �" �"* 1 �" �"* a

(xy, x2�y2)
2E2g 1 �"* �" 1 �"* �" 1 �"* �" 1 �"* �" a

Au 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 a z

Bu 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 a
1E1u 1 "* �" �1 �"* " �1 �"* " 1 "* �" a

(x,y)
2E1u 1 " �"* �1 �" "* �1 �" "* 1 " �"* a
1E2u 1 �" �"* 1 �" �"* �1 " "* �1 " "* a
2E2u 1 �"* �" 1 �"* �" �1 "* " �1 "* " a
1E1=2 , g

1 �i"* �" i �"* i" 1 �i"* �" i �"* i" b

2E1=2 , g
1 i" �"* �i �" �i"* 1 i" �"* �i �" �i"* b

1E3=2 , g
1 �i �1 i �1 i 1 �i �1 �i �1 i b

2E3=2 , g
1 i �1 �i �1 �i 1 i �1 i �1 �i b

1E5=2,g
1 �i"* �"* i �" i"* 1 �i" �"* i �" i"* b

2E5=2 , g
1 i"* �" �i �"* �i" 1 i"* �" �i �"* �i" b

1E1=2 , u
1 �i"* �" i �"* i" �1 i"* " �i "* �i" b

2E1=2 , u
1 i" �"* �i �" �i"* �1 �i" "* i " i"* b

1E3=2 , u
1 �i �1 i �1 i �1 i 1 �i 1 �i b

2E3=2 , u
1 i �1 �i �1 �i �1 �i 1 i 1 i b

1E5=2 , u
1 �i" �"* i �" i"* �1 i" "* �i " �i"* b

2E5=2 , u
1 i"* �" �i �"* �i" �1 �i"* " i "* i" b

"¼ exp(�ip/ 3).

}

}

}

}
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5m C5v

C5v E 2C5 2C2
5 5�v TR Bases

A1 1 1 1 1 a z, x2þy2, z2

A2 1 1 1 �1 a Rz

E1 2 2c25 2c45 0 a (x, y), (Rx, Ry), (yz, zx)

E2 2 2c45 2c25 0 a xy, x2�y2

E½ 2 �2c45 2c25 0 c

E3=2
2 �2c25 2c45 0 c

1E5=2
1 �1 1 i b

2E5=2
1 �1 1 �i b

cmn ¼ cosðmp=nÞ.

6mm C6v

C6v E 2C6 2C3 C2 3�d 3�v TR Bases

A1 1 1 1 1 1 1 a z, x2þy2, z2

A2 1 1 1 1 �1 �1 a Rz

B1 1 �1 1 �1 �1 1 a
B2 1 �1 1 �1 1 �1 a
E1 2 1 �1 �2 0 0 a (x, y), (Rx, Ry), (yz, zx)
E2 2 �1 �1 2 0 0 a (xy, x2�y2)
E½ 2

ffiffiffi
3

p
1 0 0 0 c

E3=2
2 0 �2 0 0 0 c

E5=2
2 �

ffiffiffi
3

p
1 0 0 0 c

Table 3m (cont.)

C3v
E 2C3 3�v TR Bases

E½ 2 1 0 c
1E3=2

1 �1 i b
2E3=2

1 �1 �i b

For n¼ z, 3�v are �d, �e, �f in Figure 12.10.

4mm C4v

C4v E 2C4 C2 2�v 2�d TR Bases

A1 1 1 1 1 1 a z, x2þy2, z2

A2 1 1 1 �1 �1 a Rz

B1 1 �1 1 1 �1 a x2� y2

B2 1 �1 1 �1 1 a xy
E 2 0 �2 0 0 a (x, y), (Rx, Ry), (yz, zx)
E½ 2

ffiffiffi
2

p
0 0 0 c

E3=2
2 �

ffiffiffi
2

p
0 0 0 c
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1m C1v

C1v E 2C1(�) C2 1�v TR Bases

A1(�
þ) 1 1 1 1 a z, x2þy2, z2

A2(�
�) 1 1 1 �1 a Rz

E1(�) 2 2cos� �2 0 a (x, y), (Rx, Ry), (yz, zx)

E2(�) 2 2cos 2� 2 0 a (xy, x2�y2)

E3(�) 2 2cos 3� �2 0 a

En 2 2cos n� 2(� 1)n 0 a

E½ 2 2cos ½� 0 0 c

Eð2nþ1Þ=2 2 2cos ð2nþ1
2
Þ� 0 0 c

n¼ 1, 2, 3, . . .

A3.6 The Dnh groups
mmm D2h

D2h E C2z C2x C2y I �z �x �y TR Bases

Ag 1 1 1 1 1 1 1 1 a x2, y2, z2

B1g 1 1 �1 �1 1 1 �1 �1 a Rz, xy

B2g 1 �1 �1 1 1 �1 �1 1 a Ry, zx

B3g 1 �1 1 �1 1 �1 1 �1 a Rx, yz

Au 1 1 1 1 �1 �1 �1 �1 a

B1u 1 1 �1 �1 �1 �1 1 1 a z

B2u 1 �1 �1 1 �1 1 1 �1 a y

B3u 1 �1 1 �1 �1 1 �1 1 a x

E½ , g 2 0 0 0 2 0 0 0 c

E½ , u 2 0 0 0 �2 0 0 0 c

6m2 D3h

D3h E 2C3 3C0
2 �h 2S3 3�v TR Bases

A0
1 1 1 1 1 1 1 a x2þy2, z2

A0
2 1 1 �1 1 1 �1 a Rz

E0 2 �1 0 2 �1 0 a (x, y), (xy, x2�y2)

A00
1 1 1 1 �1 �1 �1 a

A00
2 1 1 �1 �1 �1 1 a z

E00 2 �1 0 �2 1 0 a (Rx, Ry), (yz, zx)

E1=2
2 1 0 0

ffiffiffi
3

p
0 c

E3=2
2 �2 0 0 0 0 c

E5=2
2 1 0 0 �

ffiffiffi
3

p
0 c
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4/mmm D4h

D4h E 2C4 C2 2C0
2 2C00

2 I 2S4 �h 2�v 2�d TR Bases

A1g 1 1 1 1 1 1 1 1 1 1 a x2þ y2, z2

A2g 1 1 1 � 1 � 1 1 1 1 � 1 � 1 a Rz

B1g 1 � 1 1 1 � 1 1 � 1 1 1 � 1 a x2� y2

B2g 1 � 1 1 � 1 1 1 � 1 1 � 1 1 a xy
Eg 2 0 �2 0 0 2 0 �2 0 0 a (Rx, Ry), (yz, zx)
A1u 1 1 1 1 1 � 1 � 1 � 1 � 1 � 1 a
A2u 1 1 1 � 1 � 1 � 1 � 1 � 1 1 1 a z
B1u 1 � 1 1 1 � 1 � 1 1 � 1 � 1 1 a
B2u 1 � 1 1 � 1 1 � 1 1 � 1 1 � 1 a
Eu 2 0 �2 0 0 �2 0 2 0 0 a (x, y)
E1=2 , g

2
ffiffiffi
2

p
0 0 0 2

ffiffiffi
2

p
0 0 0 c

E3=2 , g 2 �
ffiffiffi
2

p
0 0 0 2 �

ffiffiffi
2

p
0 0 0 c

E1=2 , u
2

ffiffiffi
2

p
0 0 0 �2 �

ffiffiffi
2

p
0 0 0 c

E3=2 , u 2 �
ffiffiffi
2

p
0 0 0 �2

ffiffiffi
2

p
0 0 0 c

10m2 D5h

D5h E 2C5 2C5
2 5C

0

2 �h 2S5 2S5
2 5�v TR Bases

A
0

1 1 1 1 1 1 1 1 1 a x2þ y2, z2

A
0

2 1 1 1 �1 1 1 1 �1 a Rz

E
0

1 2 2c25 2c45 0 2 2c25 2c45 0 a (x, y)

E
0

2 2 2c45 2c25 0 2 2c45 2c25 0 a (xy, x2�y2)

A
0 0

1 1 1 1 1 �1 �1 �1 �1 a

A
0 0

2 1 1 1 �1 �1 �1 �1 1 a z

E
0 0

1 2 2c25 2c45 0 �2 �2c25 �2c45 0 a (Rx, Ry), (yz, zx)

E
0 0

2 2 2c45 2c25 0 �2 �2c45 �2c25 0 a

E1=2
2 �2c45 2c25 0 0 2c110 2c310 0 c

E3=2
2 �2c25 2c45 0 0 �2c310 2c110 0 c

E5=2
2 �2 2 0 0 0 0 0 c

E7=2
2 �2c25 2c45 0 0 2c310 �2c110 0 c

E9=2
2 �2c45 2c25 0 0 �2c110 �2c310 0 c

cmn ¼ cos ðmp=nÞ:

6/mmm D6h

D6h E 2C6 2C3 C2 3C0
2 3C00

2 I 2S3 2S6 �h 3�d 3�v TR Bases

A1g 1 1 1 1 1 1 1 1 1 1 1 1 a x2þ y2, z2

A2g 1 1 1 1 �1 �1 1 1 1 1 �1 �1 a Rz

B1g 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 a

B2g 1 �1 1 �1 �1 1 1 �1 1 �1 �1 1 a

E1g 2 1 �1 �2 0 0 2 1 �1 �2 0 0 a (Rx, Ry), (yz, zx)

E2g 2 �1 �1 2 0 0 2 �1 �1 2 0 0 a (xy, x2� y2)

A1u 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 a

A2u 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 a z
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1=mm D1h

D1h
E 2C1(�) C2 1�v �h 2S1(�) I 1C2

0 TR Bases

A1gð�þ
g Þ 1 1 1 1 1 1 1 1 a x2þ y2, z2

A2gð��
g Þ 1 1 1 �1 1 1 1 �1 a Rz

E1g(�g) 2 2cos� �2 0 �2 �2cos� 2 0 a (Rx, Ry),

(yz, zx)

E2g(�g) 2 2cos 2� 2 0 2 2cos 2� 2 0 a (xy, x2� y2)

E3g(�g) 2 2cos 3� �2 0 �2 �2cos 3� 2 0 a

En, g 2 2cos n� 2(�1)n 0 2(�1)n 2(�1)ncos n� 2 0 a

A1uð�þ
u Þ 1 1 1 1 �1 �1 �1 �1 a z

A2uð��
u Þ 1 1 1 �1 �1 �1 �1 1 a

E1u(�u) 2 2cos� �2 0 2 2cos� �2 0 a (x, y)

E2u(�u) 2 2cos 2� 2 0 �2 �2cos 2� �2 0 a

E3u(�u) 2 2cos 3� �2 0 2 2cos 3� �2 0 a

En, u 2 2cos n� 2(�1)n 0 �2(�1)n �2(�1)ncos n� �2 0 a

E1=2 , g
2 2cos 1

2
� 0 0 0 2sin 1

2
� 2 0 c

E(2n+1)/ 2, g 2 2cos ð2nþ1
2
Þ� 0 0 0 2sinð2nþ1

2
Þ� 2 0 c

E1=2 , u 2 2cos 1
2
� 0 0 0 �2sin 1

2
� �2 0 c

E(2n+1)/ 2, u 2 2cos ð2nþ1
2
Þ� 0 0 0 �2sinð2nþ1

2
Þ� �2 0 c

n¼ 1, 2, 3, . . .

Table 6/mmm (cont.)

D6h
E 2C6 2C3 C2 3C0

2 3C00
2 I 2S3 2S6 �h 3�d 3�v TR Bases

B1u 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 a

B2u 1 �1 1 �1 �1 1 �1 1 �1 1 1 �1 a

E1u 2 1 �1 �2 0 0 �2 �1 1 2 0 0 a (x, y)

E2u 2 �1 �1 2 0 0 �2 1 1 �2 0 0 a

E1=2 ,g 2
ffiffiffi
3

p
1 0 0 0 2

ffiffiffi
3

p
1 0 0 0 c

E3=2 ,g 2 0 �2 0 0 0 2 0 �2 0 0 0 c

E5=2 ,g 2 �
ffiffiffi
3

p
1 0 0 0 2 �

ffiffiffi
3

p
1 0 0 0 c

E1=2 ,u 2
ffiffiffi
3

p
1 0 0 0 �2 �

ffiffiffi
3

p �1 0 0 0 c

E3=2 ,u 2 0 �2 0 0 0 �2 0 2 0 0 0 c

E5=2 ,u 2 �
ffiffiffi
3

p
1 0 0 0 �2

ffiffiffi
3

p �1 0 0 0 c

A3.7 The Dnd groups

42m D2d

D2d E 2S4 C2 2C0
2 2�d TR Bases

A1 1 1 1 1 1 a x2þ y2, z2

A2 1 1 1 �1 �1 a Rz

B1 1 �1 1 1 �1 a x2�y2

B2 1 �1 1 �1 1 a z, xy

E 2 0 �2 0 0 a (x, y), (Rx, Ry), (yz, zx)

E½ 2
ffiffiffi
2

p
0 0 0 c

E3=2
2 �

ffiffiffi
2

p
0 0 0 c
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3m D3d

D3d E 2C3 3C0
2 I 2S6 3�d TR Bases

A1g 1 1 1 1 1 1 a x2þ y2, z2

A2g 1 1 �1 1 1 �1 a Rz

Eg 2 �1 0 2 �1 0 a (Rx, Ry), (xy, x
2� y2), (yz, zx)

A1u 1 1 1 �1 �1 �1 a

A2u 1 1 �1 �1 �1 1 a z

Eu 2 �1 0 �2 1 0 a (x, y)

E1=2 , g
2 1 0 2 1 0 c

1E3=2 , g
1 �1 i 1 �1 i b

2E3=2 , g 1 �1 �i 1 �1 �i b

E1=2 , u
2 1 0 �2 �1 0 c

1E3=2, u
1 �1 i �1 1 �i b

2E3=2, u 1 �1 �i �1 1 i b

82m D4d

D4d E 2C4 C2 4C2
0 2S38 2S8 4�d TR Bases

A1 1 1 1 1 1 1 1 a x2þ y2, z2

A2 1 1 1 �1 1 1 �1 a Rz

B1 1 1 1 1 �1 �1 �1 a

B2 1 1 1 �1 �1 �1 1 a z

E1 2 0 �2 0 �
ffiffiffi
2

p ffiffiffi
2

p
0 a (x, y)

E2 2 �2 2 0 0 0 0 a (xy, x2� y2)

E3 2 0 �2 0
ffiffiffi
2

p
�

ffiffiffi
2

p
0 a (Rx, Ry), (yz, zx)

E1=2
2

ffiffiffi
2

p
0 0 2c18 2c38 0 c

E3=2
2 �

ffiffiffi
2

p
0 0 2c38 �2c18 0 c

E5=2
2 �

ffiffiffi
2

p
0 0 �2c38 2c18 0 c

E7=2
2

ffiffiffi
2

p
0 0 �2c18 �2c38 0 c

cmn ¼ cosðmp=nÞ:

5m D5d

D5d E 2C5 2C2
5 5C2

0 I 2S310 2S10 5�d TR Bases

A1g 1 1 1 1 1 1 1 1 a x2þ y2, z2

A2g 1 1 1 �1 1 1 1 �1 a Rz

E1g 2 2c25 2c45 0 2 2c25 2c45 0 a Rx, Ry, (yz, zx)

E2g 2 2c45 2c25 0 2 2c45 2c25 0 a xy, x2� y2

A1u 1 1 1 1 �1 �1 �1 �1 a

A2u 1 1 1 �1 �1 �1 �1 1 a z

E1u 2 2c25 2c45 0 �2 �2c25 �2c45 0 a (x, y)

E2u 2 2c45 2c25 0 �2 �2c45 �2c25 0 a

E1=2,g 2 �2c45 2c25 0 2 �2c45 2c25 0 c

E3=2,g
2 �2c25 2c45 0 2 �2c25 2c45 0 c
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122m D6d

D6d E 2C6 2C3 C2 6C2
0 2S512 2S4 2S12 6�d TR Bases

A1 1 1 1 1 1 1 1 1 1 a x2þ y2, z2

A2 1 1 1 1 �1 1 1 1 �1 a Rz

B1 1 1 1 1 1 �1 �1 �1 �1 a

B2 1 1 1 1 �1 �1 �1 �1 1 a z

E1 2 1 �1 �2 0 �
ffiffiffi
3

p
0

ffiffiffi
3

p
0 a (x, y)

E2 2 �1 �1 2 0 1 �2 1 0 a (xy, x2� y2)

E3 2 �2 2 �2 0 0 0 0 0 a

E4 2 �1 �1 2 0 �1 2 �1 0 a

E5 2 1 �1 �2 0
ffiffiffi
3

p
0 �

ffiffiffi
3

p
0 a (Rx , Ry), (yz, zx)

E1=2
2

ffiffiffi
3

p
1 0 0 2c112

ffiffiffi
2

p
2c512 0 c

E3=2
2 0 �2 0 0

ffiffiffi
2

p
�

ffiffiffi
2

p
�

ffiffiffi
2

p
0 c

E5=2
2 �

ffiffiffi
3

p
1 0 0 2c512 �

ffiffiffi
2

p
2c112 0 c

E7=2
2

ffiffiffi
3

p
1 0 0 �2c512

ffiffiffi
2

p
�2c112 0 c

E9=2
2 0 �2 0 0 �

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
0 c

E11=2
2

ffiffiffi
3

p
1 0 0 �2c112 �

ffiffiffi
2

p
�2c512 0 c

cmn ¼ cosðmp=nÞ:

Table 5m (cont.)

D5d E 2C5 2C2
5

5C2
0 I 2S310 2S10 5�d TR Bases

1E5=2,g
1 �1 1 i 1 �1 1 i b

2E5=2,g
1 �1 1 �i 1 �1 1 �i b

E1=2,u 2 �2c45 2c25 0 �2 2c45 �2c25 0 c

E3=2,u
2 �2c25 2c45 0 �2 2c25 �2c45 0 c

1E5=2,u 1 �1 1 i �1 1 �1 �i b
2E5=2,u 1 �1 1 �i �1 1 �1 i b

cmn ¼ cos ðmp=nÞ:

A3.8 The cubic groups T, Th, Td, O, Oh

23 T

T E 3C2 4Cþ
3 4C�

3 TR Bases

A 1 1 1 1 a x2þ y2þ z2

1E 1 1 "* " b
(x2� y2, 3z2� r2)2E 1 1 " "* b

T 3 �1 0 0 a (x, y, z), (Rx, Ry, Rz), (xy, yz, zx)

E½ 2 0 1 1 c
1F3=2

2 0 "* " b
2F3=2

2 0 " "* b

"¼ exp (�i2p/3).

}
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m3 Th

Th E 3C2 4Cþ
3 4C�

3 I 3� 4S�6 4Sþ6 TR Bases

Ag 1 1 1 1 1 1 1 1 a x2þ y2þ z2

1Eg 1 1 "* " 1 1 "* " b (x2� y2, 3z2� r2)
2Eg 1 1 " "* 1 1 " "* b

Tg 3 �1 0 0 3 �1 0 0 a (Rx, Ry, Rz), (xy, yz, zx)

Au 1 1 1 1 �1 �1 �1 �1 a xyz
1Eu 1 1 "* " �1 �1 �"* �" b
2Eu 1 1 " "* �1 �1 �" �"* b

Tu 3 �1 0 0 �3 1 0 0 a (x, y, z)

E½, g 2 0 1 1 2 0 1 1 c
1F3=2, g 2 0 "* " 2 0 "* " b
2F3=2, g

2 0 " "* 2 0 " "* b

E½, u 2 0 1 1 �2 0 �1 �1 c
1F3=2, u 2 0 "* " �2 0 �"* �" b
2F3=2, u 2 0 " "* �2 0 �" �"* b

"¼ exp(�i2p/3).

}

43m Td

Td E 3C2 8C3 6S4 6�d TR Bases

A1 1 1 1 1 1 a x2þ y2þ z2

A2 1 1 1 �1 �1 a

E 2 2 �1 0 0 a (x2� y2, 3z2� r2)

T1 3 �1 0 1 �1 a (Rx, Ry, Rz)

T2 3 �1 0 �1 1 a (x, y, z), (xy, yz, zx)

E½ 2 0 1
ffiffiffi
2

p
0 c

E5=2
2 0 1 �

ffiffiffi
2

p
0 c

F3=2
4 0 �1 0 0 c

432 O

O E 3C2 8C3 6C4 6C2
0 TR Bases

A1 1 1 1 1 1 a x2þ y2þ y2

A2 1 1 1 �1 �1 a

E 2 2 �1 0 0 a (x2� y2, 3z2� r2)

T1 3 �1 0 1 �1 a (x, y, z), (Rx, Ry, Rz)

T2 3 �1 0 �1 1 a (xy, yz, zx)

E½ 2 0 1
ffiffiffi
2

p
0 c

E5=2
2 0 1 �

ffiffiffi
2

p
0 c

F3=2
4 0 �1 0 0 c
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A3.9 The icosahedral groups Y, Yh

53 Y

Y E 12C5 12C2
5 20C3 15C2 TR Bases

A 1 1 1 1 1 a x2þ y2þ z2

T1 3 2c15 2c35 0 �1 a (x, y, z), (Rx, Ry, Rz)

T2 3 2c35 2c15 0 �1 a

F 4 �1 �1 1 0 a

H 5 0 0 �1 1 a (x2� y2, 3z2� r2, xy, yz, zx)

E½ 2 2c15 2c25 1 0 c

E7=2
2 2c35 2c45 1 0 c

F3=2
4 1 �1 �1 0 c

I5=2 6 �1 1 0 0 c

cmn ¼ cosðmp=nÞ:

432 Oh

Oh E 3C2 8C3 6C4 6C2
0 I 3�h 8S6 6S4 6�d TR Bases

A1g 1 1 1 1 1 1 1 1 1 1 a x2þ y2þ z2

A2g 1 1 1 � 1 � 1 1 1 1 � 1 � 1 a

Eg 2 2 � 1 0 0 2 2 � 1 0 0 a (x2� y2, 3z2� r2)

T1g 3 � 1 0 1 � 1 3 � 1 0 1 � 1 a (Rx, Ry, Rz)

T2g 3 � 1 0 � 1 1 3 � 1 0 � 1 1 a (xy, yz, zx)

A1u 1 1 1 1 1 � 1 � 1 � 1 � 1 � 1 a

A2u 1 1 1 � 1 � 1 � 1 � 1 � 1 1 1 a

Eu 2 2 � 1 0 0 � 2 � 2 1 0 0 a

T1u 3 � 1 0 1 � 1 � 3 1 0 � 1 1 a (x, y, z)

T2u 3 � 1 0 � 1 1 � 3 1 0 1 � 1 a

E½, g 2 0 1
ffiffiffi
2

p
0 2 0 1

ffiffiffi
2

p
0 c

E5=2, g 2 0 1 �
ffiffiffi
2

p
0 2 0 1 �

ffiffiffi
2

p
0 c

F3=2, g
4 0 � 1 0 0 4 0 � 1 0 0 c

E½, u 2 0 1
p
2 0 � 2 0 � 1 �

ffiffiffi
2

p
0 c

E5=2, u
2 0 1 �p

2 0 � 2 0 � 1
ffiffiffi
2

p
0 c

F3=2, u 4 0 � 1 0 0 � 4 0 1 0 0 c

53m Yh

Yh E 12C5 12C2
5 20C3 15C2 I 12S310 12S10 20S6 15� TR Bases

Ag 1 1 1 1 1 1 1 1 1 1 a x2þ y2þ z2

T1g 3 2c15 2c35 0 �1 3 2c15 2c35 0 �1 a (Rx, Ry, Rz)

T2g 3 2c35 2c15 0 �1 3 2c35 2c15 0 �1 a

Fg 4 �1 �1 1 0 4 �1 �1 1 0 a

Hg 5 0  0  � 1 1 5 0  0 � 1 1 a five d orbitals a

Au 1 1 1 1 1 �1 �1 �1 �1 �1 a

T1u 3 2c15 2c35 0 � 1 � 3 �2c15 �2c35 0 1 a (x, y, z)
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Table 53m (cont.)

Yh E 12C5 12C2
5

20C3 15C2 I 12S310 12S10 20S6 15� TR Bases

T2u 3 2c35 2c15 0 �1 �3 �2c35 �2c15 0 1 a

Fu 4 �1 �1 1 0 �4 1 1 �1 0 a

Hu 5 0 0 �1 1 �5 0 0 1 �1 a

E½, g 2 2c15 2c25 1 0 2 2c15 2c25 1 0 c

E7=2, g
2 2c35 2c45 1 0 2 2c35 2c45 1 0 c

F3=2, g
4 1 �1 �1 0 4 1 �1 �1 0 c

I5=2, g 6 �1 1 0 0 6 �1 1 0 0 c

E½, u 2 2c15 2c25 1 0 �2 �2c15 �2c25 �1 0 c

E7=2, u
2 2c35 2c45 1 0 �2 �2c35 �2c45 �1 0 c

F3=2, u 4 1 �1 �1 0 �4 �1 1 1 0 c

I3=2, u 6 �1 1 0 0 �6 1 �1 0 0 c

a Five d orbitals ¼ (x2� y2, 3z2� r2, xy, yz, zx). cmn ¼ cosðmp=nÞ:
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A4 Correlation tables

The following tables show how irreducible vector representations of point groups are

re-labeled or reduced when the symmetry of the point group is lowered. The tables are in

the reverse order to that given at the beginning of Appendix A3. For groups with pairs of

complex conjugate representations, E means the direct sum 1E � 2E, and similarly for

Eg and Eu.

467



Oh O Td Th D4h D3d

A1g A1 A1 Ag A1g A1g

A2g A2 A2 Ag B1g A2g

Eg E E Eg A1g�B1g Eg

T1g T1 T1 Tg A2g�Eg A2g�Eg

T2g T2 T2 Tg B2g�Eg A1g�Eg

A1u A1 A2 Au A1u A1u

A2u A2 A1 Au B1u A2u

Eu E E Eu A1u�B1u Eu

T1u T1 T2 Tu A2u�Eu A2u�Eu

T2u T2 T1 Tu B2u�Eu A1u�Eu

O T D4 D3

A1 A A1 A1

A2 A B1 A2

E E A1�B1 E
T1 T A2�E A2�E
T2 T B2�E A1�E

Td T D2d C3v S4

A1 A A1 A1 A
A2 A B1 A2 B
E E A1�B1 E A�B
T1 T A2�E A2�E A�E
T2 T B2�E A1�E B�E

Th T D2h S6

Ag A Ag Ag

Eg E 2Ag Eg

Tg T B1g�B2g�B3g Ag�Eg

Au A Au Au

Eu E 2Au Eu

Tu T B1u�B2u�B3u Au�Eu

T D2 C3

A A A
E 2A E
T B1�B2�B3 A�E

468 Correlation tables



D6d D6 C6v D2d

A1 A1 A1 A1

A2 A2 A2 A2

B1 A1 A2 B1

B2 A2 A1 B2

E1 E1 E1 E
E2 E2 E2 B1�B2

E3 B1�B2 B1�B2 E
E4 E2 E2 A1�A2

E5 E1 E1 E

D5d D5 C5v

A1g A1 A1

A2g A2 A2

E1g E1 E1

E2g E2 E2

A1u A1 A2

A2u A2 A1

E1u E1 E1

E2u E2 E2

D4d D4 C4v S8

A1 A1 A1 A
A2 A2 A2 A
B1 A1 A2 B
B2 A2 A1 B
E1 E E E1

E2 B1�B2 B1�B2 E2

E3 E E E3

D3d D3 C3v S6 C3 C2h

A1g A1 A1 Ag A Ag

A2g A2 A2 Ag A Bg

Eg E E Eg E Ag�Bg

A1u A1 A2 Au A Au

A2u A2 A1 Au A Bu

Eu E E Eu E Au�Bu
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D2d S4 D2 C2v

A1 A A A1

A2 A B1 A2

B1 B A A2

B2 B B1 A1

E E B2�B3 B1�B2

D6h D6 D3h
a D3h

b C6h C6v D3d
b D3d

a D2h C2v
c

A1g A1 A0
1 A0

1 Ag A1 A1g A1g Ag A1

A2g A2 A0
2 A0

2 Ag A2 A2g A2g B1g A2

B1g B1 A00
1 A00

2 Bg B2 A2g A1g B3g B1

B2g B2 A00
2 A00

1 Bg B1 A1g A2g B2g B2

E1g E1 E0 0 E00 E1g E1 Eg Eg B2g�B3g B1�B2

E2g E2 E0 E0 E2g E2 Eg Eg Ag�B1g A1�A2

A1u A1 A00
1 A00

1 Au A2 A1u A1u Au A2

A2u A2 A00
2 A00

2 Au A1 A2u A2u B1u A1

B1u B1 A0
1 A0

2 Bu B1 A2u A1u B3u B2

B2u B2 A0
2 A0

1 Bu B2 A1u A2u B2u B1

E1u E1 E0 E0 E1u E1 Eu Eu B2u�B3u B1�B2

E2u E2 E0 0 E00 E2u E2 Eu Eu Au�B1u A1�A2

a C0
2;

b C00
2 ;

c�v ! �x.

D5h D5 C5v C5h C5 C2v
a

A0
1 A1 A1 A0 A A1

A0
2 A2 A2 A0 A B1

E0
1 E1 E1 E0

1 E1 A1�B1

E0
2 E2 E2 E0

2 E2 A1�B1

A00
1 A1 A2 A0 0 A A2

A00
2 A2 A1 A0 0 A B2

E00
1 E1 E1 E00

1 E1 A2�B2

E00
2 E2 E2 E00

2 E2 A2�B2

a �h! �y.
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D4h C4h D2h
b D2h

c D2d
b D2d

c C2h
a C2h

b C2h
c C4v

A1g Ag Ag Ag A1 A1 Ag Ag Ag A1

A2g Ag B1g B1g A2 A2 Ag Bg Bg A2

B1g Bg Ag B1g B1 B2 Ag Ag Bg B1

B2g Bg Ag B1g B2 B1 Ag Bg Ag B2

Eg
1Eg� 2Eg B2g�B3g B2g�B3g E E 2Bg Ag�Bg Ag�Bg E

A1u Au Au Au B1 B1 Au Au Au A2

A2u Au B1u B1u B2 B2 Au Bu Bu A1

B1u Bu Au B1u A1 A2 Au Au Bu B2

B2u Bu B1u A1u A1 A2 Au Bu Au B1

Eu
1Eu� 2Eu B2u�B3u B2u�B3u E E 2Bu Au�Bu Au�Bu E

a C2;
b C0

2;
c C00

2 .

D3h D3 C3h C3v C2v Cs
a Cs

b C3

A0
1 A1 A0 A1 A1 A0 A0 A

A0
2 A2 A0 A2 B1 A0 A0 0 A

E0 E 1E0 � 2E0 E A1�B1 2A0 A0 �A0 0 1E� 2E
A00

1 A1 A0 0 A2 A2 A00 A0 0 A

A00
2 A2 A0 0 A1 B2 A00 A0 A

E0 0 E 1E0 0 � 2E0 0 E A2�B2 2A00 A0 �A0 0 1E� 2E

a �h;
b �v.

D2h D2 C2h
a C2h

b C2h
c C2v

a C2v
b C2v

c

Ag A Ag Ag Ag A1 A1 A1

B1g B1 Ag Bg Bg A2 B1 B2

B2g B2 Bg Bg Ag B1 B2 A2

B3g B3 Bg Ag Bg B2 A2 B1

Au A Au Au Au A2 A2 A2

B1u B1 Au Bu Bu A1 B2 B1

B2u B2 Bu Bu Au B2 B1 A1

B3u B3 Bu Au Bu B1 A1 B2

a C2z;
b C2x;

c C2y.

C6v C6 C3v
a C3v

b C2v
c

A1 A A1 A1 A1

A2 A A2 A2 A2

B1 B A1 A2 B1

B2 B A2 A1 B2

E1 E1 E E B1�B2

E2 E2 E E A1�A2

a �v;
b �d;

c�v!�y.
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C5v C5 Cs

A1 A A0

A2 A A0 0

E1 E1 A0 �A0 0

E2 E2 A0 �A0 0

C4v C4 C2v
a C2v

b

A1 A A1 A1

A2 A A2 A2

B1 B A1 A2

B2 B A2 A1

E E B1�B2 B1�B2

a �v;
b �d.

C3v C3 Cs

A1 A A0

A2 A A0 0

E E A0 �A00

C2v C2 Cs
a Cs

b

A1 A A0 A0

A2 A A00 A0 0

B1 B A0 A0 0

B2 B A00 A0

a �y;
b �x.

C6h C6 C3h S6 C2h

Ag A A0 Ag Ag

Bg B A0 0 Ag Bg

E1g E1 E0 0 Eg 2Bg

E2g E2 E0 Eg 2Ag

Au A A0 0 Au Au

Bu B A0 Au Bu

E1u E1 E0 Eu 2Bu

E2u E2 E0 0 Eu 2Au
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C5h C5 Cs

A0 A A0

E0
1 E1 2A0

E0
2 E2 2A0

A00 A A0 0

E00
1 E1 2A00

E00
2 E2 2A00

C4h C4 S4 C2h

Ag A A Ag

Bg B B Ag

Eg E E 2Bg

Au A B Au

Bu B A Au

Eu E E 2Bu

C3h C3 Cs

A0 A A0

E0 E 2A0

A00 A A0 0

E0 0 E 2A00

C2h C2 Cs Ci

Ag A A0 Ag

Bg B A0 0 Ag

Au A A0 0 Au

Bu B A0 Au

D6 D3
a D3

b D2

A1 A1 A1 A
A2 A2 A2 B1

B1 A1 A2 B3

B2 A2 A1 B2

E1 E E B2�B3

E2 E E A�B1

a C0
2;

b C00
2.
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D4 C4 D2
a D2

b C2
c C2

d C2
e

A1 A A A A A A
A2 A B1 B1 A B B
B1 B A B1 A A B
B2 B B1 A A B A
E 1E� 2E B2�B3 B2�B3 2B A�B A�B

a C0
2;

b C00
2;

c C2;
d C0

2;
e C00

2.

D3 C3 C2

A1 A A
A2 A B
E E A�B

D2 C2
a C2

b C2
c

A A A A
B1 A B B
B2 B B A
B3 B A B

a C2z;
b C2x;

c C2y.

S8 C4

A A
B A
E1 E
E2 2B
E3 E

S6 C3 Ci

Ag A Ag

Eg E 2Ag

Au A Au

Eu E 2Au
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S4 C2

A A
B A
E 2B

C6 C3 C2

A A A
B A B
E1 E 2B
E2 E 2A

C4 C2

A A
B A
E 2B
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Abelian group 2
acoustic mode 393
active representation 23
adiabatic potential 173
adjoint 54
of an operator 102

adjoint matrix 418
algebra of turns 228
ambivalent class 435
angular momentum 184, 189
anharmonicity 160
constant of 160

antibonding orbitals 106, 125
antiferromagnetic crystal 265
antilinear operator 252
antipole 223
antisymmetrical direct product 100
antisymmetrizing operator 141
antiunitary operator 252, 267, 405
associated Legendre functions 194
associative 2, 220
axial groups 82
axial tensor 283
axial vector 82

basic domain 331
basis 53, 96
of a lattice 308

basis functions, construction of 97
bcc see body-centred cubic
benzene 104, 109, 174
Bethe 80, 150, 151
bilateral binary (BB) 232
binary composition 1, 15, 70
binary rotation 25
Bloch functions 317, 357
block-diagonal structure 404
body-centred cubic (bcc) 309
bonding orbitals 106, 125
Born and von Kármán boundary conditions 316
Born–Oppenheimer approximation 173
bra 102
Bragg reflection 358
Bravais lattice 311, 318
Brillouin zone 327, 329, 358, 397
BSW notation 361, 362, 370

c-tensors 303
Cartan gauge 204, 210, 240, 241, 242
Cartesian tensors 360
Cayley–Klein parameters 202, 243, 351
celebrated theorem 79

central extension 336, 337, 367
centralizer 14, 19, 434
centre 19
character 74, 99
character system 74
character tables 76–78, 80, 447
character vector 259
characteristic equation 420, 441
charge overlap 107
charge transfer 178
chemical bond 106
class 5, 19
class algebra 439
class constants 436
class property 440
Clebsch–Gordan series 209, 277, 385
closed shell 172
closo Bn Hn

�2 51
closure 1, 393
co-factor 413
coincidence 162
column matrix 415
combination bands 160
commutation relations (CRs) 131, 187
compatibility relations 362
complementary IR 303
complementary minor 413
complementary operators 265
complex conjugate 218
complex conjugation operator 253
complex number 218
complex plane 219
complex quaternion parameters 244
component (of a vector) 57
Condon and Shortley (CS) choice of phase 190
conical transformation 195
conjugate 18
conjugate bases 292
conjugate elements 5
continuous groups 182
conventional unit cells 309
co-representation 257, 267, 269–273
correlation tables 467
corresponding elements 43
coset 7

expansion 318
representatives 7

coupled representation 210
covering group 336, 337
crystal classes 311
crystal field

intermediate 134

481



crystal field (cont.)
strong 139
weak 152

crystal pattern 307
crystallographic orbit 321
crystallographic point groups 45, 46, 310
crystals (physical properties of) 282
cubic groups 244
cyclic group 3, 36 , 86 , 243
cyclobutadiene 130

degeneracy index 290
degenerate mode 161
delocalization energy 113
descending symmetry 140
determinants 413
diagonal matrix 420
diagonalization of the Dirac characters 440
diamond 378
dibenzene chromium 50
dihedral groups 36
dihedral planes 39, 41
dimension (of a representation) 70 , 74
dimensionality (of a vector space) 53
dipole moment operator 159
Dirac character 14, 20, 434
Dirac notation 101, 102, 132
direct product
of groups 8, 12, 39
of matrices 99, 432
of representations 99
of sets 99

direct sum 72, 424
dispersion relation 393, 394
displacement vector 163
displacement vector space 162
double cosets 385
double group 82, 148, 149, 195, 248
dynamical matrix 392, 398

E1 (electric dipole) transition 104, 171
E2 (electric quadrupole) transition 104, 171
eigenvalues 393, 420
eigenvector 97, 99, 420
Einstein summation convention 186, 282
elastic constants (third order) 296
elastic stiffness 286
electrical conductivity 298
electrochemical potential 297
electron spin 131
empty lattice approximation 366
energy bands 357, 360, 371
entropy production 288
equivalent matrices 420
equivalent points 327
equivalent positions 320
equivalent representations 72, 259
equivalent wave vector 331
Euler angles 205
Euler construction 223
Euler–Rodrigues parameters 230
Euler’s formula 219
extended zone 359

extension 320

face-centred cubic (fcc) 308
factor group 8, 12, 319, 407
factor system 234
faithful representation 58
ferrimagnetic crystal 265
ferrocene 50
ferromagnetic crystal 265
ferromagnetism 304
fcc see face-centred cubic
fibre 13
fine structure constant 133, 173
flux 288
force constants 391
free-electron approximation 357, 366
frequency 92, 385
Frobenius reciprocity theorem 93
Frobenius–Schur test 261, 273, 405
function operator 63, 183, 316
function space 97, 104
fundamental theorem (Nowick) 290
fundamental theorem (Onsager) 288
fundamental transition 159
fundamental translations 307

galvanomagnetic effects 299
geometry of rotations 222
germanium 378, 406
glide plane 318
ground representation 88
group 1

of the Hamiltonian 68, 96
of the Schrödinger equation 68
of the wave vector 367

group generators 3
group representation 62
gyration tensor 294

Hall tensor 302
halving subgroup 265
Hamiltonian 133

invariant under R 67
harmonic approximation 160, 391
Hermitian matrix 421
Hermitian scalar product 54
Herring factor group 344
Herring group 344, 367
Herring multiplication rule 345
Herring’s method 335, 344
holosymmetric space group 331
homomorphism 208
homomorphous group 14
Hückel 113
Hund’s rules 134, 144
hybridization 106, 116

i-tensors 303
icosahedral point group 37, 244
identity 2, 28, 223
identity representation 70
image 13, 60
indicatrix 284
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induced representation 90
improper axis 28
improper rotation 26, 282
indices 7, 309
indistinguishability 3
indium antimonide 384
induced representation 88, 93
infinitesimal generator 183, 189
infinitesimal rotation 83, 284
inner direct product 16
integral invariance 196
International notation 28, 36 , 267
intertwining matrix 427
intertwining number 93
invariant subgroup 7 , 8
inverse 2
inverse class 22, 434
inversion operator 58
irreducibility criterion 92
irreducible representation (IR) 73, 243
irreducible volume 397
irregular operations 233, 243
irreversible processes 288
isomorphous group 2, 42

Jahn–Teller effect 175
Jones symbol 58

kernel 17 , 336
Kerr effect 296
ket 102
Kramers’ theorem 151, 256

LA mode 409
LO mode 410
Lagrange’s theorem 21
Lagrangian strain 296
Laporte rule 171
LCAO approximation 109
left coset 88
length (of a vector) 55
Levi–Civita three-index symbol 185
linear operator 252
linear response 288
linear vector space 53
little co-group 327, 333
little factor group 332
little group 332, 367
lowering operator 132

M1 (magnetic dipole) transition 104, 171
magnetic point groups 265, 303
crystal-field theory for 280

magnetoelectric polarizability 304
many-electron atom 133
mapping 13, 60
matrices 415
special 418, 420

matrix element 102, 103
matrix multiplication 415
matrix representation 53, 70 , 424
matrix representative 56, 57, 415
metric 55, 311

Miller indices 309, 328
mixing coefficient 115
modulus 219
molecular orbital 107, 115
molecular point groups 48
Morse potential 160
Mulliken 81
Mulliken–Herzberg notation 151
multiplet 133
multiplication table 1, 34
multiplier representation 400

negative hemisphere 223
negative rotation 24
Nernst tensor 301
Neumann’s principle 282, 288
non-symmorphic space group 318, 344, 367, 378
norm 221
normal matrix 420
normal mode coordinates 156, 162, 163, 164
normal modes 156

symmetry of 156
normalization 112
normalized basis 285
normalized vector 55
normalizer 19

O(3) 203, 208, 240
occupation number representation 159
octahedral complex 117, 174
octahedral point group 37
Onsager 288
Onsager reciprocal relations (ORR) 288, 298
Opechowski’s rules 149
optic mode 393
optical activity 294
optical energies 178
orbital approximation 133
order

of a class 5, 21
of a group 2
of an axis 23

orthogonal group O(3) see O(3)
orthogonal matrix 61, 421
orthogonality theorem 73, 425, 428, 430

for the characters 76, 77, 195
orthonormal basis 55
orthonormal eigenvectors 393
outer direct product 15
overlap integral 112
overtone 161

p bond 106, 126
p electron systems 109, 113
parity 136, 164, 167, 209
parity selection rule 171, 174
passive representation 23
Pauli exclusion principle 133, 140
Pauli gauge 204, 211, 240, 242, 243
Pauli matrices 200
Pauli repulsion 145
Peltier effect 298
pentagonal dodecahedron 37
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periodic boundary conditions (PBCs) 316, 326, 357,
366, 397

periodicity (of the reciprocal lattice) 394
permutation 3
permutation matrix 88, 419
permutation representation 372, 375
phase factor 67
phenomenological coefficients 288
relations 288

piezomagnetic effect 305
plane waves 392
Pockels effect 296
point group 30 , 48
of a space group 318
of the wave vector 327, 332, 360, 407

point group generators 286
point subgroup 317
point symmetry operations 28
polar vector 26
polarizability 161
pole (of a rotation) 222
pole conventions 245
poles (choice of) 223
positive hemisphere 222
positive rotation 24
primitive lattice 308
principal axis transformation 284
principal minor 423
projection (of a vector) 56
projection diagram 27
projection operator 98, 366, 368, 403, 408
projective factor 233, 274
projective representation 67, 195, 218, 233, 234, 333,

335, 400
prongs (of a star) 385, 386
proper point group 36
proper rotations 282
properties of the characters 74
pseudoscalar 26, 211, 282
pseudovector 26, 82, 220

quaternion 220
quaternion conjugate 221
quaternion group 226, 443
quaternion parameters 230, 351
quaternion units 220

raising operator 132
Raman scattering 161
range (of �) 23
rearrangement theorem 1
reciprocal lattice 324
reduced zone 359
reduction (of a representation) 78
reflection 59
regular classes 233, 384
regular operation 233
regular representation 79
repeat index 290
representation domain 332
required representations 345, 346
right-handed axes 23
Rodrigues 225

rotation 23
rotation operator 23
rotation parameter 223
rotational motion 156
rotational symmetry 310
rotations

in <2 182
in <3 184

rotoreflection axis 28
rotoreflection operator 27
row matrix 415
Russell–Saunders coupling 132, 133
Russell–Saunders multiplets 148, 152

� bond 106
sc see simple cubic lattice
scalar 209, 282
scalar product 101, 102
Schmidt orthogonalization 112
Schönflies notation 28, 80, 267
Schur’s lemma 259, 270, 291, 425, 426
screw rotation 318
Seebeck effect 298
Seitz operator 314
semidirect product 13
setting 322
shell model 411
shift operators 188
Shubnikov 265
silicon 378, 384, 406
similarity of orientation 289
similarity transformation 72, 416, 420
simple cubic (sc) lattice 368
singlet state 141
singular matrix 416
site symmetry 321
space group 314
space group representations 331, 336, 339
space group symmetry 394
space lattice 307
special orthogonal groups

SO(2) 182, 184
SO(3) 61, 182, 184, 192, 203, 208, 231

special orthogonal (SO) matrices 61
special unitary groups

SU(2) 200, 202, 208
SU0(2) 203

spectral term 133
spherical harmonics 193
spherical vector 194
spin eigenvector 132, 133
spin–orbit coupling 104, 133, 148, 173, 281
spin orbital 103
spin pairing 145
spin postulate 131
spin quantum number 131
spin selection rule 103, 171
spinor 209
spinor representation 82, 149, 232, 236, 237
standard parameters 235
standard representation 246
standardization 240
star 332, 333
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stereographic projection 213
Stern–Gerlach experiment 131
subduced representation 93
subduction 93, 138, 223
subgroup 6
sum rule 391
symmetric group 4, 5
symmetric tensor 284
symmetrical direct product 100
symmetrizing operator 141
symmetry coordinates 289, 401, 403
symmetry element 27, 28
symmetry groups
lower 294
upper 294

symmetry operations 23, 26
symmorphic space group 318, 333, 367

TA mode 411
TO mode 411
tensor 209, 282
of rank 2 209
of rank n 283

tensor properties of crystals 282
tetrahedral point group 37
thermal conductivity 298
thermodynamic force 288
thermoelectric effects 297
thermoelectric power 298
thermomagnetic effects 299
time-evolution operator 253
time reversal 252, 255, 358, 404
time-reversal symmetry 262
total angular momentum 131, 148
totally symmetric representation 70
trace of a matrix 416
trans-dichloroethylene 50

transform 5, 21
transformation

of functions 63, 64
of operators 102

transition metal complexes 117
transition probability 104, 171, 388
translation subgroup 316
translational motion 156
translational symmetry 307, 357, 391
translations 27
transposed matrix 61
triplet state 141
turn 225

uniaxial groups 294
unimodular 201
unit cell 307–310, 325, 327
unitary basis 55
unitary matrix 61, 422
unitary operator 252
unitary representation 424
upper cubic groups 301

vector representations 81
vibrational motion 156

degeneracy of 158
vibrational quantum number 159
vibronic coupling 104, 173
vibronic interaction 173, 175
Voigt notation 284, 286
von Laue conditions 358

wave vector 392
Wigner–Seitz cell 309, 327
Wyckoff position 321

zero overlap appproximation (ZOA) 112
zone boundary 368
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