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Preface

Symmetry pervades many forms of art and science, and group theory provides a systematic
way of thinking about symmetry. The mathematical concept of a group was invented in
1823 by Evariste Galois. Its applications in physical science developed rapidly during the
twentieth century, and today it is considered as an indispensable aid in many branches of
physics and chemistry. This book provides a thorough introduction to the subject and could
form the basis of two successive one-semester courses at the advanced undergraduate and
graduate levels. Some features not usually found in an introductory text are detailed
discussions of induced representations, the Dirac characters, the rotation group, projective
representations, space groups, magnetic crystals, and spinor bases. New concepts or
applications are illustrated by worked examples and there are a number of exercises.
Answers to exercises are given at the end of each section. Problems appear at the end of
each chapter, but solutions to problems are not included, as that would preclude their use as
problem assignments. No previous knowledge of group theory is necessary, but it is
assumed that readers will have an elementary knowledge of calculus and linear algebra
and will have had a first course in quantum mechanics. An advanced knowledge of
chemistry is not assumed; diagrams are given of all molecules that might be unfamiliar
to a physicist.

The book falls naturally into two parts. Chapters 1—-10 (with the exception of a few
marked sections) are elementary and could form the basis of a one-semester advanced
undergraduate course. This material has been used as the basis of such a course at the
University of Western Ontario for many years and, though offered as a chemistry course, it
was taken also by some physicists and applied mathematicians. Chapters 11-18 are at a
necessarily higher level; this material is suited to a one-semester graduate course.

Throughout, explanations of new concepts and developments are detailed and, for the
most part, complete. In a few instances complete proofs have been omitted and detailed
references to other sources substituted. It has not been my intention to give a complete
bibliography, but essential references to core work in group theory have been given. Other
references supply the sources of experimental data and references where further develop-
ment of a particular topic may be followed up.

I am considerably indebted to Professor Boris Zapol who not only drew all the diagrams
but also read the entire manuscript and made many useful comments. I thank him also for
his translation of the line from Alexander Pushkin quoted below. I am also indebted to my
colleague Professor Alan Allnatt for his comments on Chapters 15 and 16 and for several
fruitful discussions. I am indebted to Dr. Peter Neumann and Dr. Gabrielle Stoy of Oxford

Xi



Xii

Preface

University for their comments on the proof (in Chapter 12) that multiplication of quater-
nions is associative. I also thank Richard Jacobs and Professor Amy Mullin for advice on
computing.

Grateful acknowledgement is made to the following for permission to make use of
previously published material:

The Chemical Society of Japan, for Figure 10.3;

Taylor and Francis Ltd (http://www.tandf.co.uk/journals) for Table 10.2;
Cambridge University Press for Figure 12.5;

The American Physical Society and Dr. C.J. Bradley for Table 14.6.

ER]

A.C. Ilymkun
“19 okTAOpA”

“CmysKeHbe My3 He TEPINAT CYETDI . ..

which might be translated as:
“Who serves the muses should keep away from fuss,” or, more prosaically,
“Life interferes with Art.”

I am greatly indebted to my wife Mary Mullin for shielding me effectively from
the daily intrusions of “Life” and thus enabling me to concentrate on this particular
work of “Art.”



Notation and conventions

General mathematical notation

Shws << Ml

C}’l

c, s
C2, 82

cXx
m

q1 92 93
§Rn
§R3

SX
T(n)

identically equal to

leads logically to; thus p = ¢ means if p is true, then ¢ follows

sum of (no special notation is used when Y _ is applied to sets, since it will
always be clear from the context when »  means a sum of sets)

all

if and only if

there exists

the negative of a (but note 1) = ©1) in Chapter 13 and R = ER, an operator in the
double group G, in Chapter 8)

n-dimensional space in which the components of vectors are complex
numbers

cos ¢, sin ¢

cos2¢, sin2¢

XCoS @

cos(mm/n)

imaginary unit, defined by i = v/—1

quaternion units

n-dimensional space, in which the components of vectors are real numbers
configuration space, that is the three-dimensional space of real vectors in which
symmetry operations are represented

xsin ¢

tensor of rank # in Section 15.1

Sets and groups

1gi}
€

¢
A— B

a—b

the set of objects g;,i =1, ... , g, which are generally referred to as ‘elements’
belongs to, as in g; € G

does not belong to

map of set A onto set B

map of element a (the pre-image of b) onto element b (the image of a)

Xiii
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Notation and conventions

ANB

AUB

E,org

H A, B
HcG

k
Cij

g%
G

[¢]

for

3

ZZ2ZZ2zZ~~ R

N(H|G)

Z(hjG)
Z;
Q. UE)

A®B
AKB

AAB
ATB
A®B

intersection of A and B, that is the set of all the elements that belong to both A
and B

the union of A and B, that is the set of all the elements that belong to A, or to B,
or to both A and B

a group G = {g;}, the elements g; of which have specific properties

(Section 1.1)

the identity element in G

the order of G, that is the number of elements in G

groups of order 4, a, and b, respectively, often subgroups of G

H is a subset of G; if {4,} have the group properties, H is a subgroup of G
of order &

the groups A and B are isomorphous

a cyclic group of order ¢

the class of g; in G (Section 1.2) of order ¢,

Ne
class constants in the expansion €,€; = Y Cj (Section A2.2)
k=1

ith element of the kth class

a group consisting of a unitary subgroup H and the coset AH, where 4 is an
antiunitary operator (Section 13.2), such that G={H} & A{H}
the kernel of G, of order k& (Section 1.6)

dimension of ith irreducible representation

dimension of an irreducible spinor representation

dimension of an irreducible vector representation

number of classes in G

number of regular classes

number of irreducible representations

number of irreducible spinor representations

number of irreducible vector representations

the normalizer of H in G, of order n (Sectiontl 7

index of a coset expansion of G on H, G = > g,H, with g, ¢ H except for
g1=_F; {g,} is the set of coset representativers:i}l the coset expansion of G, and
{g,} 1s not used for G itself.
the centralizer of /; in G, of order z (Section 1.7)
an abbreviation for Z(g;|G)
Dirac character of %, equal to EA: 2i(%61)

=1

1

(outer) direct product of A and B, often abbreviated to DP
inner direct product of A and B

semidirect product of A and B

symmetric direct product of A and B (Section 5.3)
antisymmetric direct product of A and B (Section 5.3)



Notation and conventions XV

Vectors and matrices

xXyz

Xyz
€ € €3

{e;}
i}

AVS) ars

E,

det A or |a,.|
A®B

Brackets

<|">

a polar vector (often just a vector) which changes sign under inversion; r
may be represented by the directed line segment OP, where O is the origin
of the coordinate system

coordinates of the point P and therefore the components of a vector r = OP;
independent variables in the function f(x, y, z).

space-fixed right-handed orthonormal axes, collinear with OX, OY, OZ
unit vectors, initially coincident with x y z, but firmly embedded in
configuration space (see R(¢ n) below). Note that {e; e, e5} behave like
polar vectors under rotation but are invariant under inversion and
therefore they are pseudovectors. Since, in configuration space the vector
r=e;x+ e,y + e3z changes sign on inversion, the components of r, {x y z},
must change sign on inversion and are therefore pseudoscalars

unit vectors in a space of n dimensions, i=1, ... ,n

components of the vector v =>"¢; v;
i

the matrix A = [a,,], with m rows and n columns so that r=1, ..., m
ands=1, ..., n. See Table Al.1 for definitions of some special matrices
element of matrix A common to the rth row and sth column

unit matrix of dimensions n x n, in which all the elements are zero except
those on the principal diagonal, which are all unity; often abbreviated to E
when the dimensions of E may be understood from the context
determinant of the square matrix A

direct product of the matrices A and B

element a,,b,, in C = A®B

ijth element (which is itself a matrix) of the supermatrix A

a matrix of one row containing the set of elements {a;}

an abbreviation for (a; a5 . ..a,|. The set of elements {a;} may be basis
vectors, for example (e, e, es|, or basis functions (¢; ¢5 ... ¢,

a matrix of one column containing the set of elements {b;}, often
abbreviated to |b); (b| is the transpose of |b)

the transform of (a| under some stated operation

an abbreviation for the matrix representative of a vector r; often given fully
as (e ey e3|xyz)

Dirac bra and ket, respectively; no special notation is used to distinguish the

bra and ket from row and column matrices, since which objects are intended
will always be clear from the context
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Notation and conventions

[4, B]
la, 4]
[a ; A]
lgi; gl

[1n1 12 3]

commutator of 4 and B equal to AB — BA

complex number a + i4

quaternion (Chapter 11)

projective factor, or multiplier (Chapter 12); often abbreviated to

[i; /]

components of the unit vector n, usually given without the normalization
factor; for example, [1 1 1] are the components of the unit vector that makes
equal angles with OX, OY, OZ, the normalization factor 3" being
understood. Normalization factors will, however, be given explicitly when
they enter into a calculation, as, for example, in calculations using
quaternions

Angular momenta

orbital, spin, and total angular momenta
quantum mechanical operators corresponding to L, S, and J

quantum numbers that quantize L%, 8%, and J?

operator that obeys the angular momentum commutation relations

total (j) and individual (jy, jo, . . . ) angular momenta, when angular momenta
are coupled

Symmetry operators and their matrix representatives

A

E
E

LLIL

Lihk

antiunitary operator (Section 13.1); A, B may also denote linear,
Hermitian operators according to context

identity operator

operator R(2n n) introduced in the formation of the double group

G = {R R} from G = {R}, where R =ER (Section 8.1)

inversion operator

operators that generate infinitesimal rotations about x y z, respectively
(Chapter 11)

function operators that correspond to I; I, L5

matrix representative of /3, and similarly (note that the usual symbol
I'(R) for the matrix representative of symmetry operator R is not used in
this context, for brevity)

generator of infinitesimal rotations about n, with components /7, I, I3
matrix representative of 7, =n- I

matrix representatives of the angular momentum operators JAx, jy, J;
for the basis (m| = (/,, -V,|. Without the numerical factors of Y5, these
are the Pauli matrices 0 05, 03



Notation and conventions

R(¢ m)

RS, T

I'o>Ty
Li=>c; Ly
j
IVEDICARY:
k

On
010303
(S}

XVii

rotation through an angle ¢ about an axis which is the unit vector n;
here ¢ n is not a product but a single symbol ¢n that fixes the three
independent parameters necessary to describe a rotation (the three
components of n, [n; n, n3], being connected by the normalization
condition); however, a space is inserted between ¢ and n in rotation
operators for greater clarity, as in R(27/3 n). The range of ¢

is —m < ¢ < 7. R acts on configuration space and on all vectors therein
(including {e, e, e3}) (but not on {x y z}, which define the space-fixed
axes in the active representation)

function operator that corresponds to the symmetry operator R(¢ n),
defined so that Rf (r) = f(R™'r) (Section 3.5)

general symbols for point symmetry operators (point symmetry
operators leave at least one point invariant)

spin operators whose matrix representatives are the Pauli matrices
and therefore equal to Je, jy, J. without the common factor

of 1/2

translation operator (the distinction between 7 a translation operator
and 7 when used as a point symmetry operator will always be clear from
the context)

a unitary operator

time-evolution operator (Section 13.1)

matrix representative of the symmetry operator R; sometimes just R,
for brevity

pqth element of the matrix representative of the symmetry operator R
matrix representation

the matrix representations I'; and I'; are equivalent, that is related by a
similarity transformation (Section 4.2)

the representation I' is a direct sum of irreducible representations I';,
and each I'; occurs ¢ times in the direct sum I'; when specific
representations (for example T}, are involved, this would be written
e(T1w)

the reducible representation I includes I';

the representation I'; is a direct sum of irreducible representations

I'; and each I'; occurs c; ; times in the direct sum I';

Clebsch—Gordan decomposition of the direct product

I'; = I';XIY; ¢y, x are the Clebsch-Gordan coefficients

reflection in the plane normal to n

the Pauli matrices (Section 11.6)

time-reversal operator
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Notation and conventions

Bases

<91 e e

basis consisting of the three unit vectors {e; e, e3} initially coincident with
{x y z} but embedded in a unit sphere in configuration space so that
R<e1 [ E3| = <61/ e) e3’| = <e1 e e3| F(R) The 3 x 3 matrix I'(R) is the
matrix representative of the symmetry operator R. Note that (e; e, €| is
often abbreviated to (e|. If r € R°, R r = R(e|r) = (¢/|r) = (e|['(R)|r) =
(e|r’), which shows that (e| and |r) are dual bases, that is they are
transformed by the same matrix I'(R)

basis comprising the three infinitesimal rotations Ry, R, R, about OX, OY,
OZ respectively (Section 4.6)

basis consisting of the 2j + 1 functions, u/, — < m < j, which are
eigenfunctions of the z component of the angular momentum operator ..,
and of J2, with the Condon and Shortley choice of phase. The angular
momentum quantum numbers j and m may be either an integer or a half-
integer. For integral j the u/, are the spherical harmonics

Y0 ); ¥'(6 ) are the spherical harmonics written without
normalization factors, for brevity

an abbreviation for (uj,j e uj|, also abbreviated to (m|

spinor basis, an abbreviation for (| = (|2 %) |2 —%)|, or (4 —%|in
the (m| notation

transform of (u v/| in C%, equal to (u v|A

dual of (u v|, such that [/ /) =A| u v)

matrix representation of the spherical vector U € C* which is the dual of
the basis (y7! 19 1|

normalization factor

lattice translation vector; a, = (a; a, as| n; ny n3) (Section 16.1) (n is often
used as an abbreviation for the a,,)

reciprocal lattice vector; b,, = (b; b, bs| m; my m3) = (e, e, es| m, m,, m.)
(Section 16.3); m is often used as an abbreviation for the components of b,,

Abbreviations

1-D one-dimensional (etc.)
AO atomic orbital

BB bilateral binary

bce body-centered cubic
CcC complex conjugate

CF crystal field



Notation and conventions

CG
CR
CS
CT
DP

FE
FT
hep
HSP
IR
ITC
L,R
LA
LCAO
LI
LO
LS
LVS
MO
MR

ORR
oT
PBC
PF
PR
RS
RS
sc
SP
TA
TO
ZOA

Clebsch—Gordan

commutation relation

Condon and Shortley

charge transfer

direct product

face-centered cubic

free electron

fundamental theorem

hexagonal close-packed

Hermitian scalar product

irreducible representation
International Tables for Crystallography (Hahn (1983))
left and right, respectively, as in L and R cosets
longitudinal acoustic

linear combination of atomic orbitals
linearly independent

longitudinal optic

left- side (of an equation)

linear vector space

molecular orbital

matrix representative

north, as in N pole

Onsager reciprocal relation
orthogonality theorem

periodic boundary conditions
projective factor

projective representation

right side (of an equation)
Russell-Saunders, as in RS coupling or RS states
simple cubic

scalar product

transverse acoustic

transverse optic

zero overlap approximation

Cross-references

XiX

The author (date) system is used to identify a book or article in the list of references, which
precedes the index.

Equations in a different section to that in which they appear are referred to by
eq. (ny-ny-n3), where n; is the chapter number, n, is the section number, and n3 is the
equation number within that section. Equations occurring within the same section are referred
to simply by (n3). Equations are numbered on the right, as usual, and, when appropriate,



XX

Notation and conventions

anumber (or numbers) on the left, in parentheses, indicates that these equations are used in the
derivation of that equation so numbered. This convention means that such phrases as “it
follows from” or “substituting eq. (n4) in eq. (n5)” can largely be dispensed with.

Examples and Exercises are referenced, for example, as Exercise n; - ny-n3, even within
the same section. Figures and Tables are numbered 7 - n3 throughout each chapter. When a
Table or Figure is referenced on the left side of an equation, their titles are abbreviated to T
or F respectively, as in F16.1, for example.

Problems appear at the end of each chapter, and a particular problem may be referred to
as Problem n, - n3, where n, is the number of the chapter in which Problem 75 is to be found.



1.1

The elementary properties
of groups

Definitions

All crystals and most molecules possess symmetry, which can be exploited to simplify the
discussion of their physical properties. Changes from one configuration to an indistinguish-
able configuration are brought about by sets of symmetry operators, which form particular
mathematical structures called groups. We thus commence our study of group theory with
some definitions and properties of groups of abstract elements. All such definitions and
properties then automatically apply to all sets that possess the properties of a group,
including symmetry groups.

Binary composition in a set of abstract elements {g;}, whatever its nature, is always
written as a multiplication and is usually referred to as “multiplication” whatever it
actually may be. For example, if g; and g; are operators then the product g; g; means
“carry out the operation implied by g; and then that implied by g;.” If g; and g; are both
n-dimensional square matrices then g; g;is the matrix product of the two matrices g; and g;
evaluated using the usual row x column law of matrix multiplication. (The properties of
matrices that are made use of in this book are reviewed in Appendix Al.) Binary
composition is unique but is not necessarily commutative: g; g; may or may not be equal
tog; g;. Inorder for a set of abstract elements {g;} to be a G, the law of binary composition
must be defined and the set must possess the following four properties.

(i) Closure. For all g;, with g; € {g;},

g & =g €1{g:}, g aunique element of {g;}. (1)

Because g; is a unique element of {g;}, if each element of {g;} is multiplied from the left,
or from the right, by a particular element g; of {g,} then the set {g;} is regenerated with the
elements (in general) re-ordered. This result is called the rearrangement theorem

8j {g:} ={a} ={g} 8- (2)

Note that {g;} means a set of elements of which g; is a typical member, but in no
particular order. The easiest way of keeping a record of the binary products of the
elements of a group is to set up a multiplication table in which the entry at the
intersection of the g;th row and gith column is the binary product g; g, =g, as in
Table 1.1. It follows from the rearrangement theorem that each row and each column of
the multiplication table contains each element of G once and once only.



The elementary properties of groups

Table 1.1. Multiplication table for the group G = {g;} in which the product
gi g happens to be gj.

G &i g 8k

2
8i 8i 8k 8i 8k
8 g & g g 8

8k 8k 8i 8k & 8

(ii) Multiplication is associative. For all g;, g;, g € {gi},
(g &) = (& g)gx- ©)
(iii) The set {g;} contains the identity element E, with the property
E g=g E=g, Vg €{g} “4)

(iv) Each element g, of {g;} has an inverse g; ! € {g}, such that

&' g=g g =E g' €{g} Ve ela}) (%)
The number of elements g in G is called the order of the group. Thus

G:{gt}n 121,2,,g (6)

When this is necessary, the order of G will be displayed in parentheses G(g), as in G(4) to
indicate a group of order 4.

Exercise 1.1-1 With binary composition defined to be addition: (a) Does the set of
positive integers {p} form a group? (b) Do the positive integers p, including zero (0)
form a group? (c) Do the positive (p) and negative (—p) integers, including zero, form a
group? [Hint: Consider the properties (i)—(iv) above that must be satisfied for {g;} to form
a group.]

The multiplication of group elements is not necessarily commutative, but if

8 8 =8 8 V&8 &€G (7

then the group G is said to be Abelian. Two groups that have the same multiplication table
are said to be isomorphous. As we shall see, a number of other important properties of a
group follow from its multiplication table. Consequently these properties are the same for
isomorphous groups; generally it will be necessary to identify corresponding elements in
the two groups that are isomorphous, in order to make use of the isomorphous property. A
group G is finite if the number g of its elements is a finite number. Otherwise the group G is
infinite, if the number of elements is denumerable, or it is continuous. The group of
Exercise 1.1-1(c) is infinite. For finite groups, property (iv) is automatically fulfilled as
a consequence of the other three.
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If the sequence g;, g2, g3, ... starts to repeat itself at g¢*!

¢ = g;, because gf = E, then
theset {g; g% g’ ... g = E}, which s the period of g;, is a group called a cyclic group,

C. The order of the cyclic group C is c.

Exercise 1.1-2 (a) Show that cyclic groups are Abelian. (b) Show that for a finite
cyclic group the existence of the inverse of each element is guaranteed. (c) Show that
w=exp(—2ni/n) generates a cyclic group of order n, when binary composition is
defined to be the multiplication of complex numbers.

If every element of G can be expressed as a finite product of powers of the elements in a
particular subset of G, then the elements of this subset are called the group generators. The
choice of generators is not unique: generally, a minimal set is employed and the defining
relations like g;=(g;)” (gx)?, etc., where {g; g} are group generators, are stated. For
example, cyclic groups are generated from just one element g;.

Example 1.1-1 A permutation group is a group in which the elements are permutation
operators. A permutation operator P rearranges a set of indistinguishable objects. For example, if

Plabe ..} ={bac ..} 8)

then P is a particular permutation operator which interchanges the objects a and b. Since
{a b ...} is a set of indistinguishable objects (for example, electrons), the final configura-
tion {b a c ...} is indistinguishable from the initial configuration {a bc ...} and Pis a
particular kind of symmetry operator. The best way to evaluate products of permutation
operators is to write down the original configuration, thinking of the » indistinguishable
objects as allocated to n boxes, each of which contains a single object only. Then write
down in successive rows the results of the successive permutations, bearing in mind that a
permutation other than the identity involves the replacement of the contents of two or more
boxes. Thus, if P applied to the initial configuration means “interchange the contents of
boxes i and j” (which initially contain the objects i and j, respectively) then P applied to
some subsequent configuration means “interchange the contents of boxes i and j, whatever
they currently happen to be.” A number of examples are given in Table 1.2, and these
should suffice to show how the multiplication table in Table 1.3 is derived. The reader
should check some of the entries in the multiplication table (see Exercise 1.1-3).

The elements of the set {Py Py ...Ps} are the permutation operators, and binary
composition of two members of the set, say P; Ps, means “carry out the permutation
specified by Ps and then that specified by P;.” For example, P, states “replace the contents
of box 1 by that of box 3, the contents of box 2 by that of box 1, and the contents of box 3 by
that of box 2.” So when applying P, to the configuration {3 1 2}, which resulted from P, (in
order to find the result of applying P} = P; P; to the initial configuration) the contents of
box 1 (currently 3) are replaced by those of box 3 (which happens currently to be 2 — see the
line labeled P,); the contents of box 2 are replaced by those of box 1 (that is, 3); and finally
the contents of box 3 (currently 2) are replaced by those of box 2 (that is, 1). The resulting
configuration {2 3 1} is the same as that derived from the original configuration {1 2 3} by
P, and so
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Table 1.2. Definition of the six permutation operators of the permutation group S(3) and
some examples of the evaluation of products of permutation operators.

In each example, the initial configuration appears on the first line and the permutation
operator and the result of the operation are on successive lines. In the last example, the
equivalent single operator is given on the right.

The identity Po=FE

1 2 3 original configuration (which therefore labels the “boxes™)
Py 1 2 3 final configuration (in this case identical with the initial configuration)
The two cyclic permutations
1 2 3 1 2
P, 3 12 P, 3 1
The three binary interchanges
1 2 3 1 2 1 3
p; 1 3 2 Py, 3 2 1 Ps 1 3
Binary products with P,
1 2 3
P, 3 1 2 P,
P, Py 2 3 1 P,
P, P, 1 2 3 Py
P5 P, 3 2 1 Py
Py P 2 1 3 Ps
Ps Py 1 3 2 P;

Table 1.3. Multiplication table for the permutation group S(3).
The box indicates the subgroup C(3).

S(3) Py P, P, P P, Ps
PO P() P] P2 P3 P4 P5
P, P, P, Py Ps P Py
P, P, Py P, P, Ps P
Ps P3 Py Ps Py Py Py
Py Py Ps P3 P Py Py
Ps Ps P Py P, P, Py
PLP{123)={23 1} =P,{123) )

so that P; P;=P,. Similarly, P, P;=P,, P3; Py =P,, and so on. The equivalent single
operators (products) are shown in the right-hand column in the example in the last part of
Table 1.2. In this way, we build up the multiplication table of the group S(3), which is
shown in Table 1.3. Notice that the rearrangement theorem (closure) is satisfied and that
each element has an inverse. The set contains the identity P, and examples to demonstrate
associativity are readily constructed (e.g. Exercise 1.1-4). Therefore this set of permu-
tations is a group. The group of all permutations of N objects is called the symmetric group
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S(N). Since the number of permutations of N objects is V!, the order of the symmetric group
is V!, and so that of S(3) is 3! = 6.

Exercise 1.1-3 Evaluate the products in the column headed P in Table 1.3.

Exercise 1.1-4 (a) Using the multiplication table for S(3) in Table 1.3 show that
(P3 Py)P,=P5(P; P,). This is an example of the group property of associativity.
(b) Find the inverse of P, and also the inverse of Ps.

Answers to Exercises 1.1

Exercise 1.1-1 (a) The set {p} does not form a group because it does not contain the
identity £. (b) The set {p 0} contains the identity 0, p + 0 = p, but the inverses {—p} of
the elements {p}, p + (—p) =0, are not members of the set {p 0}. (c) The set of positive
and negative integers, including zero, {p p 0}, does form a group since it has the four
group properties: it satisfies closure, and associativity, it contains the identity (0), and each
element p has an inverse p or —p.

Exercise 1.1-2 (a) g/ g/ =g/ " =g?""=glg" (b) Ifp<c, gl gl " =g¢=E. Therefore,

the inverse of g” is g 7. (c) w"=exp(—27i) =1 =E; therefore {w w’... W"=E} is a
cyclic group of order n.

Exercise 1.1-3

P, 1 23
Py 1 3 2 P
PPy 2 1 3 Ps
PPy 32 1 Py
PsP; 1 2 3 P
PiP; 2 3 1 P,
PsP; 3 1 2 P

Exercise 1.1-4 (a) From the multiplication table, (P; P,) P,=P4; P,=P; and
P; (P, P;)=P; Py=P;. (b) Again from the multiplication table, P, Py =Py=E and
501‘7271 = Py; Ps Ps = Py, P;l = Ps.

Conjugate elements and classes

If g, gj, g € G and
g 88 =g (1)

then gy is the transform of g;, and g; and g are conjugate elements. A complete set of the
elements conjugate to g; form a class, ;. The number of elements in a class is called the
order of the class; the order of ; will be denoted by c;.
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Exercise 1.2-1 Show that £ is always in a class by itself.

Example 1.2-1 Determine the classes of S(3). Note that Py = E is in a class by itself; the
class of E is always named %). Using the multiplication table for S(3), we find

PyPyPy' =P Py =P,
PP\ P/ =P,P, =P,
PP\ P! =PyP =Py,
P3Py Py = PyPs = P,
PyP P! =PsPy =Py,
Ps P Py' = P3Ps = P;.

Hence {P; P,} form a class %,. The determination of %3 is left as an exercise.

Exercise 1.2-2 Show that there is a third class of S(3), ¥3={P3 P4 Ps}.

Answers to Exercises 1.2
Exercise 1.2-1 For any group G with g; € G,
g Eg'=gg =E

Since E is transformed into itself by every element of G, £ is in a class by itself.

Exercise 1.2-2 The transforms of P; are

PyP3P,' = P3Py = Ps,
P\PsP;' = PsP) = Py,
PyP3P;' = P4Py = Ps,
P3PsPy! = PyP3 = P3,
P4P3P,' = PPy = Ps,
PsP3P;' = P\Ps = Py.

Therefore {P3 P, Ps} form a class, 3, of S(3).

Subgroups and cosets

A subset H of G, H C G, that is itself a group with the same law of binary composition, is a
subgroup of G. Any subset of G that satisfies closure will be a subgroup of G, since the other
group properties are then automatically fulfilled. The region of the multiplication table of
S(3) in Table 1.3 in a box shows that the subset {P, P P,} is closed, so that this set is a
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subgroup of S(3). Moreover, since P2 = P, P} = P; P, = Py = E, it is a cyclic subgroup
of order 3, C(3).

Given a group G with subgroup H C G, then g, H, where g, € G but g, ¢ H unless g,
is gy =E, is called a left coset of H. Similarly, H g, is a right coset of H. The {g,}, g, € G
but g. ¢ H, except for gy =E, are called coset representatives. It follows from the
uniqueness of the product of two group elements (eq. (1.1.2)) that the elements of
g H are distinct from those of g; H when s#r, and therefore that

t
G=>g H g €G, g ¢H (except forg, =E), t =g/h, (1)
r=1
where ¢ is the index of H in G. Similarly, G may be written as the sum of # distinct right cosets,
13
G=YHg,. g €G, g &H (except for g, = E), 1 =g/h. @)
r=1
IfH g,=g, H, so that right and left cosets are equal for all , then
g Hg '=Hg g'=H 3)
and H is transformed into itself by any element g, € G that is not in H. But for any ;€ H
hiHh'=h H=H  (closure). 4)
Therefore, H is transformed into itself by all the elements of G; H is then said to be an
invariant (or normal) subgroup of G.

Exercise 1.3-1 Prove that any subgroup of index 2 is an invariant subgroup.

Example 1.3-1 Find all the subgroups of S(3); what are their indices? Show explicitly
which, if any, of the subgroups of S(3) are invariant.
The subgroups of S(3) are

{Po Py Pr} =C(3), {Py P3} =Hy, {Py P4} =Hy, {Py Ps} =Hs.

Inspection of the multiplication table (Table 1.3) shows that all these subsets of S(3) are
closed. Since g = 6, their indices ¢ are 2, 3, 3, and 3, respectively. C(3) is a subgroup of S(3)
of index 2, and so we know it to be invariant. Explicitly, a right coset expansion for S(3) is

{Po P1 P2} + {Py Py P2}Ps = {Py P\ P, Py P4 Ps} = S(3). (%)
The corresponding left coset expansion with the same coset representative is
{Py Py Py} + P4{Py Py P,} ={Py P, P, P4 Ps P3} = S(3). (6)

Note that the elements of G do not have to appear in exactly the same order in the left and
right coset expansions. This will only be so if the coset representatives commute with every
element of H. All that is necessary is that the two lists of elements evaluated from the coset
expansions both contain each element of G once only. It should be clear from egs. (5) and
(6) that H g.=g, H, where H= {P, P, P,} and g, is P,. An alternative way of testing
for invariance is to evaluate the transforms of H. For example,
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Pi{C(3)}P; " = P4{Py Py P,}P;' = {P4 Ps P3}Py={Py P, P\} =C(3). (7)
Similarly for P5 and Ps, showing therefore that C(3) is an invariant subgroup of S(3).
Exercise 1.3-2 Show that C(3) is transformed into itself by P; and by Ps.

H; = {Py P5} is not an invariant subgroup of S(3). Although
{Po P3} +{Po P3} Py +{Po P3}Py = {Py P3 P P4 Py Ps} = S(3), (®)
showing that H; is a subgroup of S(3) of index 3,
{Py P3}Py = {P; P4}, but Pi{Py P53} = {P; Ps}, 9
so that right and left cosets of the representative P are not equal. Similarly,
{Py P3}P, = {P; Ps}, but P,{Py P3} = {P; Ps}. (10)

Consequently, H; is not an invariant subgroup. For H to be an invariant subgroup of G,
right and left cosets must be equal for each coset representative in the expansion of G.

Exercise 1.3-3 Show that H, is not an invariant subgroup of S(3).

Answers to Exercises 1.3

Exercise 1.3-1 Ifr=2,G=H+ g, H=H + H g,. Therefore, H g, = g, H and the right and
left cosets are equal. Consequently, H is an invariant subgroup.

Exercise 1.3-2 P3{P()P1 PQ}P_;I = {P3 P4P5}P3 = {P()Pz Pl} and P5{P()P1 Pz}P;l =
{Ps P3 P4} Ps = {Py P, P1}, confirming that C(3) is an invariant subgroup of S(3).

Exercise 1.3-3 A coset expansion for H, is
{Po P4} + {Po Ps}P1 + {Py P4}P> = {Py P4 P; Ps P, P3} = S(3).
The right coset for Py is {Py P4}P) = {P, Ps}, while the left coset for P is Py {Py P4} =

{Py P53}, which is not equal to the right coset for the same coset representative, P,. So H, is
not an invariant subgroup of S(3).

The factor group

Suppose that H is an invariant subgroup of G of index ¢. Then the ¢ cosets g, H of H
(including g; H=H) each considered as one element, form a group of order ¢ called the
factor group,
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t
F=G/H=> (g H), g €G, g ¢H (except for gy = E), t = g/h. (1)
r=1

Each term in parentheses, g, H, is one element of F. Because each element of F is a set of
elements of G, binary composition of these sets needs to be defined. Binary composition of
the elements of F is defined by

(g, H)(g, H) = (g, g,) H. g,.8, €{g} ()

where the complete set {g,} contains g; = E as well as the  —1 coset representatives that
¢ H. It follows from closure in G that g, g, € G. Because H is an invariant subgroup

g H=Hg,. (3)
(2),(3) g,Hg,H=g,¢g,HH=g, g, H. 4)
This means that in F
“) HH=H, %)

which is the necessary and sufficient condition for H to be the identity in F.

Exercise 1.4-1 Show that g; g; = g; is both a necessary and sufficient condition for g; to
be E, the identity element in G. [Hint: Recall that the identity element £ is defined by

Egi=g E=g, Vg €G] (1.1.5)

Thus, F contains the identity: that {F} is indeed a group requires the demon-stration of
the validity of the other group properties. These follow from the definition of binary
composition in F, eq. (2), and the invariance of H in G.

Closure: To demonstrate closure we need to show that g, g, H € F for g, g,, g, € {g,}.
Now g, g, € G and so

@) g, 8 €{g HY, r=12,....1, (6)

(6) gp gq =g hl, hl S H, (7)

(2)7(7) ngqu:gpqu:grth:ngEF (8)
Associativity:

2),3),® (g, Hg,Hg, H=g,¢,Hg, H=g,¢g,2 H, )

(2),(3),(4) g, H(g,Hg, H) =g, Hg, g, H=¢g,g,8 H, (10)

9), (10) (g, Hg, H)g, H=g, H(g, Hg, H), (an

and so multiplication of the elements of {F} is associative.
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Table 1.4. Multiplication table of the factor group

F={F P}
E P
E E P
P P E
Inverse:
®) (g 'H)(g, H) =g ' g H=H, (12)

so that the inverse of g, Hin Fis g~ ! H.

Example 1.4-1 The permutation group S(3) has the invariant subgroup H= {P, P, P,}.
Here g=6,h=3,¢t=2,and

G=H+P;H, F={HP;H} ={E P}, (13)
where the elements of F have primes to distinguish E'=H € F from E € G.
(13),(2) PP =(P;H)(P3H)=P; PsH=PyH=H. (14)

E' is the identity element in F, and so the multiplication table for the factor group of S(3),
F={E P}, is as given in Table 1.4.

Exercise 1.4-2 Using the definitions of E' and P’ in eq. (13), verify explicitly that
E' P'=P,P E =P [Hint: Use eq. (2).]

Exercise 1.4-3 Show that, with binary composition as multiplication, the set {1 —1 i —i},
where i* = —1, form a group G. Find the factor group F = G/H and write down its multi-
plication table. Is F isomorphous with a permutation group?

Answers to Exercises 1.4

Exercise 1.4-1
(1.1.5) EEg =Eg E=Eg;, Vg eq, (15)

(15) EE=E, (16)

and so E E = E is a necessary consequence of the definition of E ineq. (1.1.5). If g; g1 = g1,
then multiplying each side from the left or from the right by gi! gives g, =E,
which demonstrates that g, g, =g is a sufficient condition for g, to be E, the identity
element in G.
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Table 1.5. Multiplication table of the group G of Exercise 1.4-3.

Exercise 1.4-2
(13),(2) E'P'=(H)(P; H) = (E H)(Ps H)=P; H="P/,
(13),(2) PE =(PsH)(H)= (P H)(EH)=P; H="P.

Exercise 1.4-3 With binary composition as multiplication the set {1 —1 i —i} isa group
G because of the following.

(a) It contains the identity E=1; 1 g;=g,1=g,V g, € G.

(b) The set is closed (see Table 1.5).

(c) Since each row and each column of the multiplication table contains E once only, each
g: € G has an inverse.

(d) Associativity holds; for example,

From the multiplication table, the set H={1 —1} is closed and therefore it is a
subgroup of G. The transforms of H for g; ¢ H are

i{1 —1}i'={i —i}(-i)={1 -1} =H;
(—){1 —1}(=i)' ={-ii}i={1 -1} =H.
Therefore H is an invariant subgroup of G. A coset expansion of G on His G=H + iH, and
so F={H iH}. From binary composition in F (eq. (2)) (H) (iH)=1iH, (iH) (H)=iH,
(iH) ((H)=i i H=(—-1) (H)={—1 1}=H. (Recall that H is the set of elements
{1 —1}, in no particular order.) The multiplication table of F is
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The permutation group S(2) has just two elements {£ P}

1 2
E 1 2

1 2
P 2 1
PP 1 2 E

The multiplication table of S(2)
S(2) E P
E E P
P P E
is the same as that of F, since both are of the form

G E fe)
E E &2
&2 & E

F is therefore isomorphous with the permutation group S(2).

Remark Sections 1.6—1.8 are necessarily at a slightly higher level than that of the first five
sections. They could be omitted at a first reading.

Minimal content of Sections 1.6, 1.7, and 1.8

The direct product

Suppose that A = {a,}, B= {b;} are two groups of order a and b, respectively, with the
same law of binary composition. fANB = {E£} and a; b; = b; a;,V a; € A,V b; € B, then the
outer direct product of A and B is a group G of order g=a b, written

G=A®B, (1
with elements a;b;=ba;,, i=1, ..., a,j=1, ..., b. A and B are subgroups of G, and
therefore
b b
(13.1) G=>{A}b; =Y b {A}, b =E. )
j=1 j=1
Because a;, b; commute for all i=1, ..., a, j=1, ..., b, the right and left cosets are

equal, and therefore A is an invariant subgroup of G. Similarly, B is an invariant subgroup
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A ‘a1a2a3 |b1b2 ‘CICZ"' |

A a v d
Figure 1.1. Diagrammatic representation of the mapping f: A= A’. Vertical bars have no
significance other than to mark the fibers of &', &', ¢/, ... , in A.

of G. It is still possible to form a direct product of A, B even when A and B are not both
invariant subgroups of G.

(1) If A is an invariant subgroup of G but B is not an invariant subgroup of G, then the
direct product of A and B is called the semidirect product, written

G=AAB. 3)

Note that in semidirect products the invariant subgroup is always the first group in the
product. For example,

S(3) =C(3) AH; = {Py Py P,}{Py P3} = {Py Py P, P; P4 Ps}. @)

(i1) If neither A nor B are invariant subgroups of G, then the direct product of A with B is
called the weak direct product. However, the weak direct product is not used in this
book, and the term “direct product” without further qualification is taken to mean the
outer direct product. (The inner direct product is explained in Section 1.6.)

Mappings and homomorphisms
A mapping f of the set A to the set A’, that is
fiA—A (5)

involves the statement of a rule by which a; € a = {a; ay as ...} in Abecomes a’ in A’; d’ is
the image of each a; € a= {a;} for the mapping f, and this is denoted by a’ =f(a,). An
example of the mapping f: A — A’ is shown in Figure 1.1. In a mapping f, every element
a; € A must have a unique image f(a;)=a € A’. The images of several different ¢; may
coincide (Figure 1.1). However, not every element in A’ is necessarily an image of some set of
elements in A, and in such cases A is said to be mapped into A’. The set of all the elements in
A’ that actually are images of some sets of elements in A is called the range of the mapping.
The set of elements {a'} = {f(a;)}, ¥ a; € A, is the image of the set A, and this is denoted by

f(A)CA,VaeA. (6)

Iff(A)= A, the set A is said to be mapped on to A’. The set a = {a;} may consist of a single
element, a one-to-one mapping, or {a;} may contain several elements, in which case the
relationship of A to A’ is many-to-one. The set of elements in A that are mapped to d’ is called
the fiber of a’, and the number of elements in a fiber is termed the order of the fiber. Thus in
the example of Figure 1.1 the order of the fiber {a; a; a3} of d’is 3, while that of the fiber of
b'={b; by} is2.If A, A’ are groups G, G, and if a mapping fpreserves multiplication so that

flai bj) =d b =fla) f(by), ¥ flai) =d, ¥ f(b)) =, ™)



14

1.5.3

The elementary properties of groups

then G, G’ are homomorphous. For example, a group G and its factor group F are
homomorphous. In particular, if the fibers of @, &', ... each contain only one element,
then G, G’ are isomorphous. In this case G and G’ are two different realizations of the same
abstract group in which {g;} represents different objects, such as two different sets of
symmetry operators, for example

Corollary

If multiplication is preserved in the mapping of G on to G’, eq. (7), then any properties of
G, G that depend only on the multiplication of group elements will be the same in G, G'.
Thus isomorphous groups have the same multiplication table and class structure.

Exercise 1.5-1 Show that in a group homomorphism the image of gj_l is the inverse of the
image of g;..

More about subgroups and classes

The centralizer Z(gj|G) of an element g; € G is the subset {z;} of all the elements of G
that commute with a particular element g; of G, so that z; g;=g; z;, g; € G, V z; € Z(gj|G).
Now Z = Z(gj|G) is a subgroup of G (of order z), and so we may write a coset expansion of
GonZas

(1.4.1) G= Zt:gr Z, t=g/z, gt =E. (8)

r=1

It is proved in Section 1.8 that the sum of the elements g; (%) that form the class €; in G is
given by

Q) = e () = Xer & g ©)
where (2(%;) is called the Dirac character of the class %,. The distinct advantage of
determining the members of %, from eq. (9) instead of from the more usual procedure

€ =1{g g gp_l} (p=1, 2,..., g, repetitions deleted), (10)

is that the former method requires the evaluation of only ¢ instead of g transforms. An
example of the procedure is provided in Exercise 1.8-3.

Exercise 1.5-2 Prove that Z =Z(gjG) is a subgroup of G.

Answers to Exercises 1.5

Exercise 1.5-1 Since E g;/=g;, f(E)f(g)) =/(g)), and therefore f(E) = E' is the identity in G'.
Also, g;'g; = E, the identity in G. Therefore, f(g,'g;) = f(g;~") f(g) =f(E) = E',and
so the inverse of f(g;), the image of g;, is f (g; ), the image of g/~
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Exercise 1.5-2 Since Z is the subset of the elements of G that commute with g;, Z contains
the identity E. if z;, z; € Z, then (z; zi)g; = g(z; zi), and so {z;} is closed. Closure, together
with the inclusion of the identity, guarantee that each element of Z has an inverse which is
€ Z. Note that {z;} C G, and so the set of elements {z;} satisfy the associative property.
Therefore, Z is a subgroup of G.

Product groups

If A= {a;}, B={b;} are two groups of order a and b, respectively, then the outer direct
product of A and B, written A ® B, is a group G = {g;}, with elements

g = (a;, by). (1)
The product of two such elements of the new group is to be interpreted as
(ai, bj)(ai, bw) = (a; a1, b; by) = (ap, by) (closure in A and B). )

The set {(a;, b;)} therefore closes. The other necessary group properties are readily proved
and so G is a group. “Direct product” (DP) without further qualification implies the outer
direct product. Notice that binary composition is defined for each group (e.g. A and B)
individually, but that, in general, a multiplication rule between elements of different groups
does not necessarily exist unless it is specifically stated to do so. However, if the elements
of A and B obey the same multiplication rule (as would be true, for example, if they were
both groups of symmetry operators) then the product a; b; is defined. Suppose we try to
take (a;, b;) as a; b;. This imposes some additional restrictions on the DP, namely that

arbj="bja, YIj 3)

and
ANB=E. 4)

For if

(@i, bj) = ai, b, Q)

then
(ar, b;) (ai, bw) = (ai ai, bj bw) = (ap, by) )

and
gk & =a;bjaby,=a;a by b, =a, b, =g, (6)

which shows that a; and b; commute. The second equality in eq. (6) follows from applying
eq. (5) to both sides of the first equality in eq. (2). Equation (6) demonstrates the closure of
{G}, provided the result a, b, is unique, which it must be because A and B are groups and
the products a; a; and b; b,, are therefore unique. But, suppose the intersection of A and B
contains a; (# E) which is therefore also € B. Then a; b; b,, € B, b,, say, and the product
a, b, would also be a; b,, which is impossible because for eq. (6) to be a valid multiplication
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rule, the result must be unique. Therefore ¢; ¢ B, V /=1, ..., a, except when a;=E.
Similarly, b; € A,V j=1,2, ..., b, except when b;=E. The intersection of A and B
therefore contains the identity £ only, which establishes eq. (4). So the multiplication rule
(a;, bj) = a; b; is only valid if the conditions in egs. (3) and (4) also hold.

A and B are subgroups of G, and from egs. (5) and (3) the right and left coset expansions
of G are

(1.3.1) (3:foﬂ%b1:E, (N
Jj=1
b
G= ij{A}, by =E. (®)
=

When eq. (5) holds, a; bj="b; a;,Vi=1,2, ... ,a,j=1,2, ..., b, theright and left cosets
are equal

{A} by =b; {A}, V b; €B, )

and therefore A is an invariant subgroup of G.

Exercise 1.6-1 Why may we not find the outer DP of the subgroups C(3) and H; of S(3)
using the interpretation (a;, b)) = a; b;?

Exercise 1.6-2 If A ® B =G and all binary products a; b, with a; € A, b; € B commute,
show that B is an invariant subgroup of G.

Exercise 1.6-3 Show that if the products (a;, a;) in the DP set A ® A are interpreted as
(a;, aj), asineq. (5), then A ® A=a{A}.

To avoid redundancies introduced by the outer DP A ® A of a group with itself
(Exercise 1.6-3), the inner direct product A X A is defined by

AXRA={(a, a)}, i=1,2,...,a (10)

The semidirect product and the weak direct product have been defined in Section 1.5.

Exercise 1.6-4 (a) Show that if we attempt to use the multiplication rule (a;, @;) = a; a;
then the inner DP set does not close. (b) Show that if the inner DP is defined under the
multiplication rule, eq. (2), then the inner DP set, eq. (10), is closed, and that the group
AXA C A ® A is isomorphous with A.

Answers to Exercises 1.6

Exercise 1.6-1 In the outer DP A ® B, the product (a;, b;) of elements a; and b; may be
equated to a; b; only if A N B is £ and the elements a;, b; commute. In C(3) ® H; = {Py P, P}
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{Py Ps}, Py P3=P,,but P; P, = Ps; therefore not all pairs of elements a;, b; commute, and so

we may not form the outer DP of C(3) and H, using the interpretation in eq. (5).

Exercise 1.6-2 In G = A ® B, ifall binary products a; b; commute then left and right cosets
a;{B} and {B} q; are equal, for Vi=1,2, ..., a, and so B is an invariant subgroup of G.

Exercise 1.6-3 A ® A= {(a;, a;)};if {(a;, a;)} is equated to {(a;, a;)}, then since a; a; € A,
and i=1,2,...,a,j=1,2,...,a, A={a;} occurs a times in the outer DP, and so
A®A=a{A}.

Exercise 1.6-4 (a) The product of the ith and jth elements in the inner product A X A =
{(aa)},i=1,2,...,a,is (a;, a;)a;, a)) = (a; a;, a; a;) = (ay, ax), and so the inner DP set
{(a;, a;)} 1is closed. But if we attempt to interpret (a;, a;) as a;a; then
(a;, a;)(aj, a)) = a; a; a; a;, which is not equal to (a; a;, a; a;) = a; a; a; a;, unless A is Abelian.
(b) The inner DP A X A = {(a;, a;)} is closed and is C A ® A, for it is a subset of
{(a;, a;)}, which arises when i=. Since the product of the ith and jth elements of A is
a; a;= ay, while that of A X A is (a;, a;)(a;, a;) = (az, ar), A X A is isomorphous with A.

Mappings, homomorphisms, and extensions

Remark If you have not yet done so, read the first part of Section 1.5.2, including eqs.
(1.5.5)—(1.5.7), as this constitutes the first part of this section.

A subset K C G that is the fiber of E' in G’ is called the kernel of the homomorphism. If
there is a homomorphism of G on to G'( f(G) = G) of which K is the kernel, with g =k g/,
so that all fibers of the elements of G (images in the homomorphism) have the same
order, then G is called an extension of G’ by K. An example of an extension is illustrated in
Table 1.6 for the particular case of k= 3.

Exercise 1.7-1 (a) Show that K is an invariant subgroup of G. (b) What is the kernel of
the homomorphism £(S(3))=F =S(3)/C(3). (c) If G — G’ is a homomorphism, prove
thatg=rkg'

Table 1.6. Example of a homomorphism f(G) =G’

G is an extension of G" by K, the kernel of the homomorphism (so that £ in G’ is the image
of each element in K). Similarly, g5 is the image of each one of g1, €2, g23, and so on. In
this example k= 3.

K={gi1 212813}
G,: {glll glzg,w; $21 g/22 823; e &n1 &n2 &n3}
G :{gl :E7 g27 g37 "'7gn}
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Answer to Exercise 1.7-1

(a) Because K is the kernel of the homomorphism G — G, f((k; k) = f(k;)
f(k)=E'E'=E'. Therefore, k; k; € K. The set K is therefore closed and so K is a subgroup
of G. Consider the mapping of g; &; gj’l, k€K, g egG,

flghig")=r(g) (k) f(g ") =1(@)ES(g") =E, (1)
where we have used eq. (1.5.7) and Exercise 1.5-1. Therefore,
(1) g kg €K, @)

which shows K = {£;} to be an invariant subgroup of G.

(b) The subgroup C(3) is the kernel of S(3) for the homomorphism of S(3) on to its
factor group F because f(C(3)) =F.

(c) No two fibers in G can have a common element; otherwise this common element
would have two distinct images in G’, which is contrary to the requirements for a mapping.
Therefore, there are as many disjoint fibers in G as there are elements in G, namely g’. It
remains to be shown that all fibers in G have the same order, which is equal to the order & of
the kernel K. Firstly, the necessary and sufficient condition for two elements g,, g5 that are
€ G to belong to the same fiber of G is that they be related by

& = &3 kl', kl' S K. (3)
Sufficiency:
f(g2) =f(gs ki) =1(g3) f(ki) = f(:)E" =1 (g3)- 4)

Necessity: Suppose that g, = g3 g;; then f(g2) =f(g3), f(g)). But if g5, g5 belong to the
same fiber then f{g;) must be E' and so g;j can only be € K. Secondly, if g, is a particular
element of a fiber F,, then the other elements of F), can all be written in the form g, &;,
where k; € K,

Fn = {gn k,‘}, ki € K. (5)

All the distinct elements of F,, are enumerated by eq. (5) asi=1, 2, ..., k, the order of K.
Therefore, the number of elements in each one of the g’ fibers in G is k, whence the order of G is
g=kg, (6)

which establishes the required result.

More about subgroups and classes

If G and H are two groups for which a multiplication rule exists, that is to say the result g; 4,
is defined, then the conjugate of H by an element g; € G is

gHg ' =Yahg (D
J
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When the result is H itself, H is invariant under the element g;,

g Hg'=H 2)

2) g H=Hg, 3

which is an equivalent condition for the invariance of H under g;. The set of elements {g;} € G
that leave H invariant form a subgroup of G called the normalizer of H in G, written
N(H|G). That N(H|G) does indeed form a subgroup of G follows from the fact that if
gi» & € N(H|G)

g Hg ' =H, (4)
2),(4) ggH(gg) '=gHg'=H (5)
(5) gi g € {gng, ---} = N(H|G), (6)

implying closure of {g;, g, . .. }, a sufficient condition for {g;, g, ... } to be a subgroup of
G. If the normalizer N(H|G) is G itself, so that H is invariant under all g; € G, H is said to be
normal or invariant under G. If H is a subgroup of G (not so far assumed) then H is an
invariant subgroup of G if egs. (2) and (3) hold.

If G, H are two groups for which a multiplication rule exists then the set of all the
elements of G that commute with a particular element /; of H form a subgroup of G called
the centralizer of h; in G, denoted by

Z(hj|G) C G. 7)

H may be the same group as G, in which case 4; will be one element of G, say g; € G.
Similarly, the centralizer of H in G,

Z(H|G) C G, )

is the set of all the elements of G that each commute with each element of H; H in eq. (8)
may be a subgroup of G. If H is G itself then

Z(G|G) = Z(G) )

is the center of G, namely the set of all the elements of G that commute with every
element of G. In general, this set is a subgroup of G, but if Z(G)=G, then G is an
Abelian group.

Exercise 1.8-1 Prove that the centralizer Z(%;G) is a subgroup of G.

Exercise 1.8-2 (a) Find the center Z(C(3)) of C(3). (b) What is the centralizer
Z(C(3)|S(3)) of C(3) in S(3)? (c) What is the centralizer Z(P;|S(3)) of P, in S(3)?

A class was defined in Section 1.2 as a complete set of conjugate elements. The
sum of the members g(%;),j=1,2, ..., c; of the class ¥, that contains the group element

&i iS
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Q%) = X gi(%0), (10)
J

% ={ggig '} Ve €G, (11)

with repetitions deleted. The sum of all the elements in a class, (%)), is the Dirac
character of the class ;, and

(10), (11) Q€)= Zk:gkgigk_l, 12)
with repetitions deleted. 1t is rather a waste of effort to evaluate the transforms on the
right side (RS) of eq. (12) for all g; € G, since many redundancies will be found that will
have to be eliminated under the “no repetitions” rule. For instance, see Example 1.2-1,
where six transforms of P; yield a class that contains just two members, P and P, each of
which occurred three times. However, it is possible to generate the class %; that contains
g; without redundancies, from the coset expansion of G that uses the centralizer of g;
as the subgroup in the expansion. Abbreviating Z(g;|G) to Z;, the coset expansion of G
onZ;is

!
G=>g2Z,g =E t=g/z (13)
where z is the order of Z,. From the definition of the coset expansion in eq. (13), the
elements of {g,} withr=2, ... , ¢, and Z are disjoint. (£ is of course € Z;.) We shall now
prove that

%) =>g &g, (14)
where {g,} is the set defined by eq. (13), namely the 7 coset representatives.

Proof The coset expansion eq. (13) shows that G = {g;} is the DP set of {z,} and {g,},
which means that G may be generated by multiplying each of the z members of {z,} in turn
by each of the  members of {g,}. Therefore, g, in eq. (12) may be written as

8k :Zpgra 8k S G) Zp S Zia (15)

with {g,} defined by eq. (13). In eq. (15), p, which enumerates the z elements of Z;, runs
from 1 to z; r, which enumerates the coset representatives (including g, = £), runs from 1 to z;
and k enumerates all the g elements of the group G as k runs from 1 to g.

(12,15 Y ez lez) =Y gz58z 8 =Y ggs =25g88g ' (16)
r,p r,p r,p r

The second equality in eq. (16) follows because z, € Z;=Z(g;|G), which, from the

definition of the centralizer, all commute with g;. The third equality follows because the

double sum consists of the same ¢ terms repeated z times as p runs from 1 to z. It follows
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from the uniqueness of the binary composition of group elements that the sum over r in
eq. (16) contains no repetitions. Therefore the sum over 7 on the RS of (16) is {2(%;), which
establishes eq. (14). Since eq. (14) gives the elements of &; without repetitions, the order c;
of this class is

¢ =t=g/z. 17

Equation (17) shows that the order of a class %; is a divisor of the order of the group
(Lagrange’s theorem). It also yields the value of ¢; once we determine z from Z; = Z(g;|G).
The ¢ elements g, needed to find the Dirac character €)(%;) of the class %;, and thus the
members of €, are the coset representatives of the centralizer Z; = Z(g/|G).

Exercise 1.8-3 Find the class of P, in S(3) by using the coset expansion for the centralizer
Z(P1|S(3)) and eq. (14).

Answers to Exercises 1.8

Exercise 1.8-1 The centralizer Z(/,|G) is the set {g;} of all the elements of G that commute
with h;. Let gx € {g;}; then g;, g, each commute with /; and

(gige)hj = gihjgr = hi(gigr) (18)

so that if g;, g, € {g;} that commutes with %,, then so also is g; g;. Equation (18)
demonstrates that {g;} =Z(h,|G) is closed, and that therefore it is a subgroup of G. The
above argument holds for any /; € H, so that Z(H|G) is a subgroup of G. It also holds if 4; is
g; € G, and for any {g;} which is a subgroup of G, and for {g;} = G itself. Therefore Z(g;|G),
Z(H|G), where H C G, and Z(G|G) are all subgroups of G, g; being but a particular case of ;.

Exercise 1.8-2 (a) Z(C(3)) is the set of elements of C(3) that commute with every element
of C(3). From Table 1.3 we see that each element of C(3) commutes with every other
element (the mutiplication table of C(3) is symmetrical about its principal diagonal from
upper left to lower right) so that Z(C(3)) = C(3), and consequently C(3) is an Abelian
group.

(b) The centralizer of C(3) in S(3) is the set of elements of S(3) that commute with each
element of C(3). From Table 1.3 we see that none of P;, P4, Ps commute with all of P, Py,
P»; therefore Z(C(3)|S(3)) = C(3). Notice that here H happens to be a subgroup of G, but
this is not a necessary feature of the definition of the centralizer. H needs to be a group for
which binary composition with the elements of G is defined. In S(3), and therefore C(3), the
product P; P; means carrying out successively the permutations described by P; first, and
then P;. Thus, Z(C(3)|S(3)) is necessarily a subgroup of S(3), in this case C(3) again (see
Example 1.3-1).

(c) Again from Table 1.3, we see that only Py, P;, P, commute with P; so that
Z(P1IS(3)) = C(3).
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Exercise 1.8-3 Z(P4|S(3)) is the set of elements of S(3) which commute with P;. From
Table 1.3 or Exercise 1.8-2(c), Z(P1|S(3)) = C(3). The coset expansion of S(3) on C(3) is

S(3) = PyC(3) + PsC(3) = {Py Py P,} + {Ps Ps P4}

soz=2 and {g,} = {Py, P3}. The Dirac character of the class of P; is therefore

(14)

QE(P1)) =X_g P1g, ' =Py P P;' +P; P P!

=P, + P3; Py =P + P,.

Therefore, €(P,) = {P; P,}, and eq. (14) yields the class of P; without repetitions.

Problems

1.1
1.2

1.3
1.4
1.5
1.6

1.7
1.8

1.9
1.10
1.11
1.12
1.13

1.14

Show that the inverse of g; g is g; ' g

Prove that if each element of a group G commutes with every other element of G (so
that G is an Abelian group) then each element of G is in a class by itself.

Find a generator for the group of Exercise 1.4-3.

Show that {P, P} is a generator for S(3).

Show that conjugation is transitive, that is if g; is the transform of g; and g; is the
transform of g;, then gy is the transform of g;.

Show that conjugation is reciprocal, that is if g is the transform of g; then g; is the
transform of gj.

Prove that binary composition is conserved by conjugation.

There are only two groups of order 4 that are not isomorphous and so have different
multiplication tables. Derive the multiplication tables of these two groups, G}‘ and Gﬁ.
[Hints: First derive the multiplication table of the cyclic group of order 4. Call this
group Gi. How many elements of G}‘ are equal to their inverse? Now try to construct
further groups in which a different number of elements are equal to their own inverse.
Observe the rearrangement theorem. ]

Arrange the elements of the two groups of order 4 into classes.

Identify the subgroups of the two groups of order 4.

Write down a coset expansion of S(3) on its subgroup Hz = { Py P5}. Show that Hj is
not an invariant subgroup of S(3).

The inverse class of a class 4; = {g;} is 6; = {g; ' }. Find the inverse class of the class
{Py P,} in S(3).

The classes of S(3) are €, ={Py}, €»=1{P; P>}, €35=1{P3 P4 Ps}. Prove that
Q3 Q,=2Q5.

Prove that for S(3), c3g™! Y giP3g ! = Qs.
g!ES<3>
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Symmetry operators and point
groups

Definitions

Symmetry operations leave a set of objects in indistinguishable configurations which are
said to be equivalent. A set of symmetry operators always contains at least one element,
the identity operator E. When operating with £ the final configuration is not only indis-
tinguishable from the initial one, it is identical to it. A proper rotation, or simply rotation,
is effected by the operator R(¢ n), which means “carry out a rotation of configuration
space with respect to fixed axes through an angle ¢ about an axis along some unit vector
n.” The range of ¢ is —n < ¢ < n. Configuration space is the three-dimensional (3-D)
space #° of real vectors in which physical objects such as atoms, molecules, and crystals
may be represented. Points in configuration space are described with respect to a system of
three space-fixed right-handed orthonormal axes X, y, z, which are collinear with OX, OY,
OZ (Figure 2.1(a)). (A right-handed system of axes means that a right-handed screw
advancing from the origin along OX would rotate OY into OZ, or advancing along OY
would rotate OZ into OX, or along OZ would rotate OX into OY.) The convention in which
the axes x, y, z remain fixed, while the whole of configuration space is rotated with respect
to fixed axes, is called the active representation. Thus, the rotation of configuration space
effected by R(¢ n) carries with it all vectors in configuration space, including a set of unit
vectors {e; e, e3} initially coincident with {xy z}. Figures 2.1(b) and (c) show the effect on
{e; e; e3} of R(7/3 Xx), expressed by

R(m/3 x){e; e; e3} = {e) & &'} (1)

In the passive representation, symmetry operators act on the axes, and so on {xy z}, but
leave configuration space fixed. Clearly, one should work entirely in one representation or
the other: here we shall work solely in the active representation, and we shall not use the
passive representation.

An alternative notation is to use the symbol Cnik for a rotation operator. Here n does not
mean |n|, which is 1, but is an integer that denotes the order of the axis, so that C:*¥ means
“carry out a rotation through an angle ¢ ==+2nk/n.” Here n is an integer > 1, and
k=1,2,..., (n—1)/2 if n is an odd integer and, if n is even, k=1, 2, ..., n/2, with
C, /2 excluded by the range of ¢; k=1 is implicit. In this notation the axis of rotation
has not been specified explicitly so that it must either be considered to be self-evident
(for example, to be understood from what has gone before) or to be stated separately, as in
“a C, rotation about the z axis,” or included as a second subscript, as in Cy,. (The

23
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Figure 2.1. (a) Right-handed coordinate axes X, y, z in configuration space. A right-handed screw
advancing along OX from O would rotate OY into OZ, and similarly (preserving cyclic order).
(b) Initial configuration with {e; e, e;} coincident with {x y z}. (c) The result of a rotation of
configuration space by R(n/3 x), expressed by eq. (1).

superscript + is often also implicit.) Thus R(n/2 z) and C,, are equivalent notations, and
we shall use either one as convenient. When the axis of rotation is not along x or y or z, it
will be described by a unit vector a, b, ... , where a, for example, is defined as a unit vector
parallel to the vector with components [n; n, n3] along x, y, and z, or by a verbal
description, or by means of a diagram. Thus R(n a) or C,, may be used as alternative
notations for the operator which specifies a rotation about a two-fold axis along the unit
vector a which bisects the angle between x and y, or which is along the vector with
components [1 1 0] (Figure 2.2(a)). A rotation is said to be positive (0 < ¢ <m) if, on
looking down the axis of rotation towards the origin, the rotation appears to be anti-
clockwise (Figure 2.2(b)). Equivalently, a positive rotation is the direction of rotation of
a right-handed screw as it advances along the axis of rotation away from the origin.
Similarly, a rotation that appears to be in a clockwise direction, on looking down the
axis of rotation towards O, is a negative rotation with —n < ¢ <0.

Exercise 2.1-1 (a) Check the sign of the rotation shown in Figure 2.2(c) using both of the
criteria given above. (b) Show the effect of R(—n/2 z) on {e, e, e3}.
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Figure 2.2. (a) The unit vector a bisects the angle between x and y and thus has components 2~ [1 1 0].
(b) The curved arrow shows the direction of a positive rotation about x. (¢) The curved arrow shows
the direction of a negative rotation about OZ (Exercise 2.1-1(a)). (d) The product of two symmetry
operators R, R; is equivalent to a single operator Rj3; e, rj, and r, are three indistinguishable
configurations of the system.

Products of symmetry operators mean “carry out the operations specified successively,
beginning with the one on the right.” Thus, R,R; means “apply the operator R, first, and
then R,.” Since the product of two symmetry operators applied to some initial configura-
tion e results in an indistinguishable configuration (r, in Figure 2.2(d)), it is equivalent to a
single symmetry operator R3 =R, R;. For example,

C4 C4 C = C2 ( n); (2)

(C)* =CH* =R(4 n),

¢==E2nkin (n>1L,k=1,2, ... <1, —n < $<m). @

A negative sign on £ in eq. (3) corresponds to a negative rotation with —n < ¢ < 0. Note
that k=1 is implicit, as in C5, = R(—2n/3 z), for example. A rotation C, or R(n n) is
called a binary rotation. Symmetry operators do not necessarily commute. Thus, R, R;
may, or may not, be equal to R R;.
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Figure 2.3. Effect of the inversion operator / on the polar vector r. The points Q, Q' lie in the XY
plane.

Exercise 2.1-2 (a) Do successive rotations about the same axis commute? (b) Show that
R(—¢ n) is the inverse of R(¢ n).

A polar vector r is the sum of its projections,
r=ex+e)y+ e;z. 4)

Each projection on the RS of eq. (4) is the product of one of the set of basis vectors
{e; e, e3} and the corresponding component of r along that vector. The inversion operator
I changes the vector r into —r,

4 Ir=-r=—-ex—ey—esz 5)

(see Figure 2.3). The basis vectors {e; e, e3} are pseudovectors, that is they behave like
ordinary polar vectors under rotation but are invariant under inversion. The components of
r, {x y z}, do change sign under inversion and are therefore pseudoscalars (invariant under
rotation but change sign on inversion). This is made plain in Figure 2.3, which shows that
under inversion x' = —x, )Y = —y, z/ = —z. A proper rotation R(¢ n) followed by inversion
is called an improper rotation, IR(¢ m). Although R and IR are the only necessary
symmetry operators that leave at least one point invariant, it is often convenient to use
the reflection operator oy, as well, where o, means “carry out the operation of reflection in
aplane normal to m.” For example, the effect on r of reflection in the plane normal to x is to
change x into —x,

ox{ex + ey + e3z} = {ex + ey + e3z}. (6)

Sometimes, the plane itself rather than its normal m is specified. Thus oy, is equivalent to
ox and means “reflect in the plane containing y and z” (called the yz plane) which is normal
to the unit vector x. However, the notation o, will be seen to introduce simplifications in
later work involving the inversion operator and is to be preferred.
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) X

Figure 2.4. Example of a translation t in the active representation.

Another symmetry operator in common use is the rotoreflection operator

St =owR(p n),¢p = £2nkin (n> 1, k=12, ..., <np, —n<p <m), (7)

where oy, “means reflection in a plane normal to the axis of rotation.” All the symmetry
operators, E, R(¢ m)=C,, IR(¢ n), o, and S,,, leave at least one point invariant, and so
they are called point symmetry operators. Contrast this with translations, an example of
which is shown in Figure 2.4. Any point P in configuration space can be connected to the
origin O by a vector r. In Figure 2.4, P happens to lie in the xy plane. Then under t, any point
P is transformed into the point P/, which is connected to the origin by the vector r/, such that

r=r+t (8)

In Figure 2.4, t happens to be parallel to x. Translations are not point symmetry operations
because every point in configuration space is translated with respect to the fixed axes OX,
oYy, OZ.

A symmetry element (which is not to be confused with a group element) is a point, line,
or plane with respect to which a point symmetry operation is carried out. The symmetry
elements, the notation used for them, the corresponding operation, and the notation used for
the symmetry operators are summarized in Table 2.1. It is not necessary to use both 7i and 7
since all configurations generated by 7 can be produced by 7'.

Symmetry operations are conveniently represented by means of projection diagrams. A
projection diagram is a circle which is the projection of a unit sphere in configuration
space, usually on the xy plane, which we shall take to be the case unless otherwise
stipulated. The x, y coordinates of a point on the sphere remain unchanged during the
projection. A point on the hemisphere above the plane of the paper (and therefore with a
positive z coordinate) will be represented in the projection by a small filled circle, and a
point on the hemisphere below the plane of the paper will be represented by a larger open
circle. A general point that will be transformed by point symmetry operators is marked by
E. This point thus represents the initial configuration. Other points are then marked by the
same symbol as the symmetry operator that produced that point from the initial one marked
E. Commonly z is taken as normal to the plane of the paper, with x parallel to the top of
the page, and when this is so it will not always be necessary to label the coordinate
axes explicitly. An n-fold proper axis is commonly shown by an n-sided filled polygon
(Figure 2.5). Improper axes are labeled by open polygons. A digon (n =2) appears as
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Table 2.1. Symmetry elements and point symmetry operations.

¢=2mn/n, n>1; nis a unit vector along the axis of rotation.

Notation for symmetry

element

Symmetry
element Schonflies  International Symmetry operation Symmetry operator
None - - identity E=R(0)"
Center I 1 inversion 1
Proper axis C, n proper rotation R(¢p m)=C,or Cpp,
Improper axis IC, n rotation, then inversion IR(¢ n)=1C,,
Plane Om m reflection in a plane normal Om

to m
Rotoreflection S, i rotation through ¢ =27 /n, S(¢p m)=3S, or S;n

axis followed by reflection in
a plane normal to the axis
of rotation

“For the identity, the rotation parameter (¢ n) is zero, signifying no rotation.

n= 2 3 4 5 6 etc.
digon triangle square  pentagon hexagon
operator G, Cy C, Cs Ce
o=2nIn ™ 2n/3 /2 2n/5 /3

Figure 2.5. Symbols used to show an n-fold proper axis. For improper axes the same geometrical
symbols are used but they are not filled in. Also shown are the corresponding rotation operator and the
angle of rotation ¢.

though formed by two intersecting arcs. The point symmetry operations listed in Table 2.1
are illustrated in Figure 2.6.

Exercise 2.1-3 Using projection diagrams (a) prove that /C,,= o, and that /C,, = oy,;
(b) show that / commutes with an arbitrary rotation R(¢ n).

Example 2.1-1 Prove that a rotoreflection axis is an improper axis, though not necessarily
of the same order.

In Figure 2.7, n is normal to the plane of the paper and ¢ > 0. The open circle so marked
is generated from E by S(¢ n) = o,R(¢ n), while the second filled circle (again so marked)
is generated from E by R(¢—n m). The diagram thus illustrates the identity

S(£l¢l n) = IR((£]¢| F7) n),  0<|¢| <. (€

When ¢ > 0, R(¢p—n n) means a negative (clockwise) rotation about n through an angle of
magnitude 7—¢. When ¢ < 0, R(¢-+7 n) means a positive rotation through an angle 7w + ¢.
Usually 7 is used in crystallography and S,, is used in molecular symmetry.



2.1 Definitions 29

™~
o
LY Y

-

y
© (d)

Y E

m

a

S& |O <‘>

-

(e)

Figure 2.6. Projection diagrams showing examples of the point symmetry operators listed in
Table 2.1. (a) I; (b) Cay; (¢) IC;,; (d) ay; (€) Si,.

It follows from Exercise 2.1-3(a) and Example 2.1-1 that the only necessary point
symmetry operations are proper and improper rotations. Nevertheless, it is usually con-
venient to make use of reflections as well. However, if one can prove some result for R and
IR, it will hold for all point symmetry operators.

As shown by Figure 2.8, S7 = C,. Consequently, the set of symmetry elements asso-
ciated with an S, axis is {S4 C,}, and the corresponding set of symmetry operators is
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S(¢ m)

[ ]
R(¢—m m)

Figure 2.7. Demonstration of the equivalence of S(¢ n) and /R(¢—n n) when ¢ > 0 (see Example 2.1-1).

® [ m

Stz
4z [ O <‘\ 5 .

4z

[
C2z

Figure 2.8. Projection diagram showing the operations connected with an S, axis.

{S§ C, S; E}. The identity operator E is always present (whether there is an axis of
symmetry or not) and it must always be included once in any list of symmetry operators.
The following convention is used in drawing up a list of symmetry operators: where the
same configuration may be generated by equivalent symmetry operators we list only the
“simplest form,” that is the one of lowest n, with —n < ¢ < r, avoiding redundancies. Thus
C, and not S7, S; and not S3, E and not Sj. The first part of this convention implies that
whenever n/k in the operator C* (or SZ*) is an integer p, then there is a C, (or S,), axis
coincident with C, (or S,,), and this should be included in the list of symmetry elements.
Thus, for example, a C¢ axis implies coincident C; and C, axes, and the list of operators
associated with Cg is therefore {C} C; Cf Cy C, E}.

The complete set of point symmetry operators that is generated from the operators
{Ry R,...} that are associated with the symmetry elements (as shown, for example, in
Table 2.2) by forming all possible products like R, R;, and including E, satisfies the
necessary group properties: the set is complete (satisfies closure), it contains E, associa-
tivity is satisfied, and each element (symmetry operator) has an inverse. That this is so may
be verified in any particular case: we shall see an example presently. Such groups of point
symmetry operators are called point groups. For example, if a system has an S, axis and no
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Table 2.2. The multiplication
table for the point group S,.

S4 E S G S
E E sk Gy
S5 Sy &) Sy E

C, G S E s
Sy S, E S G

other symmetry elements (except the coincident C, axis that is necessarily associated with
S4) then the set of symmetry operators {E S C, S; } satisfies all the necessary group
properties and is the cyclic point group Sy.

Exercise 2.1-4 Construct the multiplication table for the set {E S, C, S, }. Demonstrate
by a sufficient number of examples that this set is a group. [Hint: Generally the use of
projection diagrams is an excellent method of generating products of operators and of
demonstrating closure.] In this instance, the projection diagram for S; has already been
developed (see Figure 2.8).

Answers to Exercises 2.1

Exercise 2.1-1 (a) Figure 2.2(c) shows that the arrow has the opposite direction to the
rotation of a right-handed screw as it moves along OZ from O. Also, on looking down the
OZ axis towards O, the rotation appears to be in a clockwise direction. It is therefore a
negative rotation with —n < ¢ <0.

(b) From Figure 2.9(a), R(—7/2 z){e; e, e3} = {e] €, e}} = {€, | e3}.

Exercise 2.1-2 Both (a) and (b) are true from geometrical considerations. Formally, for
(@) R (¢ m)R(¢p m)=R(¢'+¢ n)=R(¢p+¢' n)=R(¢ n)R (¢ n),and therefore rotations
about the same axis commute.

(b) Following R(¢ m) by R(—¢ n) returns the representative point to its original position, a
result which holds whether ¢ is positive or negative (see Figure 2.9(b)). Consequently,
R(—¢ n) R(¢ m)=E, so that R(—¢ m)=[R(¢ n)]"".

Exercise 2.1-3 (a) Figure 2.9(c) shows that /C,, is equivalent to ¢,. Since the location of
the axes is arbitrary, we may choose n (instead of z) normal to the plane of the paper in
Figure 2.9(c). The small filled circle would then be labeled by C,, and the larger open
circle by 1C,, =0,=0y, (since o}, means reflection in a plane normal to the axis of
rotation). (b) Locate axes so that n is normal to the plane of the paper. Figure 2.9(d) then
shows that /R(¢ m) =R(¢ m)l, so that / commutes with an arbitrary rotation R(¢ n).

Exercise 2.1-4 The set contains the identity £. Each column and each row of the multi-
plication table in Table 2.2 contains each member of the set once and once only
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© E
[ J
R(pm)/ o
Py e =e
)

7
e =—e,

(a

]
N

(c) (@

(b)

1C,,

IR(¢m)=R(¢n) 1

Figure 2.9. (a) The effect of R(—n/2 z) on {e, e; e3}. (b) When ¢ > 0 the rotation R(—¢ n) means a
clockwise rotation through an angle of magnitude ¢ about n, as illustrated. If ¢ <0, then R(—¢ n) is
an anticlockwise rotation about n, and in either case the second rotation cancels the first. (c) This
figure shows that /C,, = o,. (d) The location of the coordinate axes is arbitrary; here the plane of the
projection diagram is normal to n.

(rearrangement theorem) so that the set is closed. Since £ appears in each row or column,
each element has an inverse. As a test of associativity, consider the following:

SHC S) =8 Sf=Cy; (8§ C)S, =8, Sy =0,

which demonstrates that associativity is satisfied for this random choice of three elements
from the set. Any other three elements chosen at random would also be found to demon-
strate that binary combination is associative. Therefore, the group properties are satisfied.
This is the cyclic group S,.

The multiplication table — an example
Consider the set of point symmetry operators associated with a pyramid based on an

equilateral triangle. Choose z along the C; axis. The set of distinct (non-equivalent)
symmetry operators is G = {E C; Cj oq 0. of} (Figure 2.10). Symmetry elements
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04

(@)

EY =1, Cyhy =1, Gy = oqth1 =1y o= o)1 =g

S

(®)

Figure 2.10. Effect of the set of symmetry operators G = {E C; Cj 04 0 ot} on the triangular-
based pyramid shown in (a). The Cs principal axis is along z. The symmetry planes og, 0., and oy
contain z and make angles of zero, —7/3, and +7/3, respectively, with the zx plane. The apices of
the triangle are marked a, b, and ¢ for identification purposes only. Curved arrows in (b) show the
direction of rotation under Ci and C; . Dashed lines show the reflecting planes.

(which here are {C; o4 0. oy} ) are defined with respect to the Cartesian axes OX, OY, OZ,
and remain fixed, while symmetry operators rotate or reflect the whole of configuration
space including any material system — the pyramid — that exists in this space. The apices of
the equilateral triangle are marked a, b, and ¢ merely for identification purposes to enable
us to keep track of the rotation or reflection of the pyramid in (otherwise) indistinguishable
configurations. The three symmetry planes are vertical planes (o,) because they each
contain the principal axis which is along z. The reflecting plane in the operation with oq
contains the OX axis, while the reflecting planes in operations with o, and oy make angles
of —7n/3 and + n/3, respectively, with the zx plane. To help follow the configurations
produced by these symmetry operators, we label the initial one ¢/, and the other unique,
indistinguishable configurations by 1, ..., 1. Thus, ¥ represents the state in which the
apex marked a is adjacent to point A on the OX axis, and so on. The effect on v, of the
symmetry operators that are € G is also shown in Figure 2.10, using small labeled triangles
to show the configuration produced. Binary products are readily evaluated. For example,

C{ Cy 1y = C P = 3 = C 4fy; therefore C5 CY = Cy; (1)
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Table 2.3. Multiplication table for the set
G={E Cf Cj 04 0c 0ot}

G E C;r C; 04 Oe Of

E E C_«:r C; [oF] Oe ot

C; C; C_; E Of 0q Oe

Cy C; E o oy oq

o] o] Oe of E cF Gy

Oe Oe ¢ oq Cy E C;“

o o Oq Oe ¢ Gy E
C;C;’(ﬂl = C;L’l/)j, = i = Evy; therefore C;C; =FE; 2)
C3+crd1/11 = C;r’(zu = 1;[}6 = O’fw]; therefore C;rO'd = Ot; (3)
0aCy b1 = oaipr = hs = geidy; therefore 0qCy = 0. (4a)

Thus C5 and o4 do not commute. These operator equalities in egs. (1)—(4a) are true for any
initial configuration. For example,

UdC;_’lb4 = gq¥¢ = V3 = TeW4; therefore O'dC;— = Oe. (4b)

Exercise 2.2-1 Verify egs. (1)—(4), using labeled triangles as in Figure 2.10.

Exercise 2.2-2 Find the products C; o, and o.C5 . The multiplication table for this set of
operators G = {E Cy C5 04 0¢ o1} is shown in Table 2.3. The complete multiplication
table has the following properties.

(a) Each column and each row contains each element of the set once and once only. This is
an example of the rearrangement theorem, itself a consequence of closure and the fact
that all products g; g; are unique.

(b) The set contains the identity £, which occurs once in each row or column.

(c) Each element g; € G has an inverse g; ' such that g; ' g;=E.

(d) Associativity holds: g(g; gx)=(g: &)gw V &> &» & € G.

Exercise 2.2-3 Use the multiplication Table 2.3 to verify that o4(Cy of) = (04 C3)oy.

Any set with the four properties (a)—(d) forms a group: therefore the set G is a group for
which the group elements are point symmetry operators. This point group is called Cs, or
3m, because the pyramid has these symmetry elements: a three-fold principal axis and a
vertical mirror plane. (If there is one vertical plane then there must be three, because of the
three-fold symmetry axis.)

Exercise 2.2-4 Are the groups Cs;, and S(3) isomorphous? [Hint: Compare Table 2.3 with
Table 1.3.]
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Answers to Exercises 2.2

Exercise 2.2-1 The orientation of the triangular base of the pyramid is shown for each of
the indistinguishable configurations.

GG W = G 4 = = G W
b a C b
a c b a (1)
c b a c
CyCy 1 = Cf 3 = = E
b c b b
a b a a 2)
c a c C
Cioa 1 = C 4 = 1 = or
b c a b
a a b a (39
C b c c
0aCy 1 = o4 2 = s = 0e Y
b a b b ,
a C c a (4a)
c b a c
04aC3 Y4 = 0a Ys = Y3 = 0O Y4
c a c c ,
a b b a (4b)
b C a b
Exercise 2.2-2
Cioepr =  Cyys = = o
b b a b
a C b a
c a c c

Exercise 2.2-3 04(Cy of) = 040 = C and (04 Cf)ot = oeop = C5.

Exercise 2.2-4 A comparison of the group multiplication tables in Table 2.3 and Table 1.3
shows that the point group Cs, (or 3m ) is isomorphous with the permutation group S(3).
Corresponding elements in the two groups are

S3) P, P, P, Py Py Ps
Cay E Cf Ci o4 o0e oy
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The symmetry point groups

We

first describe the proper point groups, P, that is the point groups that contain the

identity and proper rotations only.

(@)

(i)

In the cyclic groups, denoted by n or C,, with n > 1, there is only one axis of rotation
and the group elements (symmetry operators) are E and C:¥, or R(¢ m) with ¢ = +21k/n,

nz >

—n < ¢ <. Note that C,fzk, becomes Cpiz, when 7/, is an integer p; k=1, 2, ...,
(n—1)/2, if n is an odd integer, and if n is even k=1, 2, ... , 7/, with C,;n/z, excluded
by the range of ¢. For example, if n=4, k=1, 2, and ¢ = +7n/2, n. The symmetry
elements are the C4 axis, and a coincident C, axis, and the group elements (symmetry
operators) are {E C; C; Cp}; k=11isimplicitin Cnik . The projection diagram for C4
is shown in Figure 2.11(a). C, is also a cyclic group (though not an axial group) with
period {g; =FE} and order ¢ =1. There are no symmetry elements and the group
consists solely of the identity E. The International notation used to describe the point
groups is given in Table 2.4. Some International symbols are unnecessarily cumber-
some, and these are abbreviated in Table 2.5.

The dihedral groups consist of the proper rotations that transform a regular n-sided
prism into itself. The symmetry elements are C, and n C5, where C), denotes a binary
axis normal to the n-fold principal axis. (The prime is not essential but is often used to

Table 2.4. International notation used to name the point groups comprises a

min

imal set of symmetry elements.

n

n
nm
n/m

n2

n-fold proper axis (n = 1 means there is no axis of symmetry)
n-fold improper axis (7 = 1 means an inversion center)

n-fold proper axis with a vertical plane of symmetry that contains n
n-fold proper axis with a horizontal plane of symmetry normal to n
n-fold proper axis with # binary axes normal to »

Ci, o ‘
[ ] _

[ ]
C2z

(a) (b)

Figure 2.11. Projection diagrams (a) for the proper point group 4, or Cy4, and (b) for the dihedral group

422,

or D,. The components of the unit vector a are 27" [1 1 0] and those of b are 27%[110].
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Table 2.5. Abbreviated International symbols and Schénflies notation.

Schonflies symbol Full International symbol Abbreviated symbol

D,y 222 mmm
mmm

Dy 422 4/mmm
mmm

Dg¢n 622 6/mmm
mmm

D3d £y % §m

m

Ty 2 3 m3
m

Oy, 4 52 m3m
m-m

stress that a binary axis is normal to the principal axis and hence lies in the xy plane.
In projective diagrams and descriptive text one refers to specific axes such as Cpy
when greater precision is required.) The symmetry operators are C* or R(¢ z), with
¢ and k as in (i), and R(7 n;), with n; normaltozand i =1, ... , n. In general, we shall
use particular symbols for the n;, such as x,y,a, b, ... ,witha, b, ... appropriately
defined (see, for example, Figure 2.11(b)). The group symbol is D, in Schonflies
notation and in International notation it is n2 if n is odd and »22 if » is even, because
there are then two sets of C), axes which are geometrically distinct. The projection
diagram for 422 or D, is shown in Figure 2.11(b). The four binary axes normal to z lie
along x, y, a, b, where a bisects the angle between x and y and b bisects that between X
and y. These axes can be readily identified in Figure 2.11(b) because each transformed
point is labeled by the same symbol as that used for the operator that effected that
particular transformation from the representative point E.

(iii) The tetrahedral point group, called 23 or T, consists of the proper rotations that
transform a tetrahedron into itself. The symmetry elements are 3C, and 4C5, and the
easiest way of visualizing these is to draw a cube (Figure 2.12) in which alternate
(second neighbor) points are the apices of the tetrahedron. These are marked 1, 2, 3,
and 4 in Figure 2.12. The symmetry operators are

T = {E R(n p) R(x21/3 j)}, (1)

with p=Xx, y, z, and j a unit vector along O1, 02, O3, O4.

(iv) The octahedral or cubic group, named 432 or O, consists of the proper rotations that
transform a cube or an octahedron into itself. The proper axes of the cube or
octahedron are {3C4 4C5 9C,} and the symmetry operators are

O ={T} +{R(%/2 p) R(m m)}, )

where n is a unit vector along Oa, Ob, Oc, Od, Oe, Of in Figure 2.12 .
(v) The icosahedral group, named 532 or Y, consists of the proper rotations that transform
an icosahedron or pentagonal dodecahedron into itself (Figure 2.13). The pentagonal
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o
~

S A N
N
X

Figure 2.12. Alternate vertices of the cube (marked 1, 2, 3, and 4) are the apices of a regular
tetrahedron. O1, 02, O3, and O4 are three-fold axes of symmetry. Small crosses show where the
C,4 axes, OX, OY, and OZ, intersect the cube faces. Oa, Ob, Oc, Od, Oe, and Of are six binary axes.

B3

(@ (b)

Figure 2.13. The dodecahedron and the icosahedron are two of the five Platonic solids (regular
polyhedra), the others being the tetrahedron, the cube, and the octahedron. (a) The dodecahedron has
twelve regular pentagonal faces with three pentagonal faces meeting at a point. (b) The icosahedron
has twenty equilateral triangular faces, with five of these meeting at a point.

dodecahedron has six Cs axes through opposite pairs of pentagonal faces, ten C; axes
through opposite pairs of vertices, and fifteen C, axes that bisect opposite edges.
The icosahedron has six Cs axes through opposite vertices, ten C; axes through
opposite pairs of faces, and fifteen C, axes that bisect opposite edges. For both these
polyhedra, the symmetry elements that are proper axes are {6Cs 10C; 15C,} and the
point group of symmetry operators is therefore

Y = {E 6CF 6C3* 10CF 15G,} 3)

for a total g(Y) of 60. It is isomorphous to the group of even permutations on five
objects, which number 5!/2.
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This completes the list of proper point groups, P. A summary is given in the first column
of Table 2.6. All the remaining axial point groups may be generated from the proper point
groups P by one or other of two methods.

First method

This consists of taking the direct product (DP) of P with 1 or C;={E I}.
(i) From C,, if n is odd,

C,®Ci=8S,, n®1=n 4)

But if n is even,
C,®Ci=Cp, n®1=n/m, (5
where h, or /m, denotes a mirror plane normal to the principal axis, which arises because

[CQZO'},.

Example 2.3-1 (a) C;@C,={E Co,} ©{E I} ={E Cs, I 0,}=Cop. (b) C3®C, =
{ECY, CL,} @ {EI} ={E Ci, C5, 1 S, S¢,} = Se. Projection diagrams are illustrated
in Figure 2.14.

(i) From D,,, if n is odd,
D, ®C; =Dy, n2® 1 = nm. (6)

The subscript d denotes the presence of dihedral planes which bisect the angles between
C}, axes that are normal to the principal axis. If # is even,

D, ® C; = Dyp; n22 ® 1 = n/mmm. 7

If n is 2, the International symbol is abbreviated to mmm (Table 2.4).
Example 2.3-2

D; ®C; ={E C3, C;, Coa Cop Coe} @ {E I}

~ ®)
= {Ds} +{I S, Sz a 0b 0} = Dsg;

o, for example, denotes reflection in a dihedral plane zf that bisects the angle between a
and b, which are the binary axes normal to the C; axis (Figure 2.10). The notation in eq. (8)
is intentionally detailed, but may be compressed, as in

D; ®C; = {E 2C3 3C,} ® {E I} = {E 2C5 3C}, I 2S5 304} = Dsa. 9)

Exercise 2.3-1 Confirm the DP D3 ® C; in eq. (9) by constructing the (labeled) projection
diagram for Dsq4. Identify the dihedral planes.

(iif) TRC =Ty 2301 =m3. (10)



Table 2.6. Derivation of commonly used finite point groups from proper point groups.

If P has an invariant subgroup Q of index 2 so that P={Q} + R{Q}, R€P, RZ Q, then P’ = {Q} 4+ IR{Q} is a group isomorphous with P.

In each column, the symbol for the point group is given in International notation on the left and in Schonflies notation on the right. When n =2,
the International symbol for Doy, is mmm. When n is odd, the International symbol for C,,, is nm, and when n is even it is nmm. Note that '’ = n/2.

In addition to these groups, which are either a proper point group P, or formed from P, there are the three cyclic groups: 1 or C; = {E}, 1 or

C,={EI},and m or Cy={E o}.

P P®C; P=Q+IR{Q} Q
n (n=2,3,...,8) C, n (n=3,5) Son n (n=3,95) Cun n C,
nm (n=2,4,6) Cun n (n=2,4) Sop

n2 (n=3,5) D, nm (n=3,5) D,.q nm, nmm (n=2,3,...,6) Cuv n C,

n22 (n=2,4,6) D, n/mmm (n=2,4,6,8) D,n n2m " =3,5) D,n n'?2 D,/
n'=2,4,6) Dyvq n'22 D,

23 T m3 T,

432 0 m3m Oy 43m Tq 23 T

532 Y 53m Y,
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I CZz I

(@ (b)
Figure 2.14. Projection diagrams for the point groups (a) C,;, and (b) Se.

In abbreviated notation,

T®C; ={E 4C{ 4C; 3G} @ {E I}

= {T} + {I 4S; 4S} 304} = T (h

As shown in Figure 2.15(a), /C,y (for example) is oy. The plane normal to y, the zx plane,
contains Cy, and Csy, and so this is a horizontal plane (normal to C,y) and not a dihedral plane,
because it contains the other C, axes (C,, and C,) and does not bisect the angle between them.
Note that T = C, A Cjs is 23 in International notation but that D; = C; A C, is 32.

(iv) ORC =0, 432®1=m3m. (12)
In abbreviated notation,

0®C; = {E 6C4 3C, 6C,' 8C3} ® {E I}

= {0} + {I 654 301, 604 8Ss}. (13)

The three S, axes are coincident with the three C, (and coincident C,) axes along X, y, z.
The three horizontal planes oy, oy, and o, and two of the six dihedral planes o,, o}, are
shown in Figures 2.15(b) and (c).

V) Y®RCi=Yn 532®1=>53m; (14)

Y®C = {E 24Cs5 2005 15C2} ® {E [}

15
= {Y} + {[ 24S10 2056 150h}. ( )

The six S;( axes are coincident with the six Cs axes of Y, and the ten S¢ axes are coincident
with the ten C; axes of Y. The fifteen mirror planes each contain two C, axes and two Cs

axes. All these DPs are given in the second column of Table 2.6.

Exercise 2.3-2 Draw a projection diagram showing that Cs ® C; = Sy,
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C E Z
Ox z ICZz
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Figure 2.15. (a) In T ® C;, IC,y = 0y, and oy, contains the other two C, axes, C,, and C,. Since oy is
normal to the axis of rotation y, it is a horizontal plane, not a dihedral plane. (b) In O ® C;, IC; = oy,
as, for example, /C, = oy, which contains y and z. In (c), a is the unit vector along Oa in Figure 2.12,
and /C,, = 0,. This dihedral plane is also shown in (b).

2.3.2 Second method

The second method is applicable to proper point groups P that have an invariant subgroup
Q of index 2, so that

P={Q} +R{Q}, REP, RZQ. (16)

Then {Q} + IR{Q} is a point group P’ which is isomorphous with P and therefore has
the same class structure as P. The isomorphism follows from the fact that / commutes
with any proper or improper rotation and therefore with any other symmetry operator.
Multiplication tables for P and P’ are shown in Table 2.7; we note that these have
the same structure and that the two groups have corresponding classes, the only differ-
ence being that some products X are replaced by X in P’. Examples are given below.
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Table 2.7. Multiplication tables for P and P', where P = {Q} + R{Q} and P’ = Q + IR{Q}.

A,BeQand C,De R Q. Use has been made of the commutation property of / with any
other symmetry operator.

P Q) RIQ P’ Q) IR{Q}
(Q} (4B}  {AD} (Q} {(AB}  I{AD}
R{Q} {(CB}y  {CD} IR(Q} I{CB} {CD}

Exercise 2.3-3 If X € R{Q} and X, Y are conjugate elements in P, show that /X and /Y are
conjugate elements in P’.

(1) C,,, has the invariant subgroup C,, of index 2, because

C2n = {Cn} + CZn{Cn}~ (17)

Note that C, means the point group C,,, but {C,} means the set of operators forming the
point group C,,. Then

{Cu} + 1C2,{C,} = Sz, (n even), or = Cyy (n odd). (18)

In Table 2.6, n’ is defined as n/2 to avoid any possible confusion when using International
notation; S,/ is, of course, S,,.

Example 2.3-3
Cy =E+ C{E} ={E (3}, (19)

E+IC{E} = {E 01} = C,. (20)

The multiplication tables are

C, (@) s Oh
E E (& 2 E Oh
G G E Oh o E

This is a rather trivial example: the classes of C, are E, C, and those of Cg are E, oy,.
Elements X € P and IX € P’ are called corresponding elements, so here C, and IC, = oy,
are corresponding elements.

Exercise 2.3-4 Use the second method to derive the point group P’ corresponding to the proper
point group C,4. Show that C4 and P’ are isomorphous and find the classes of both groups.
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Czy E IC,y, E
Ol|e |0

O
N

O
CZz CZx sz

(a) (b)

A
N

(©)

X

Figure 2.16. Projection diagrams (a) for D,; (b) showing that /C,, = oy; and (¢) for Cy,,.

(ii) D,, has the invariant subgroup C,. The coset expansion of D,, on C,, is

D, = {C,} + C/{C,}. @1)
21 {C.} +1G{C,} = {C,} + 64{C,} = Cpy. (22)
For example, for n =2,
D; = {E Co} + Co{E Cp} = {E Cyy Cox Coy}, (23)
(23) {E sz} +IC2X{E sz} = {E sz} + O'X{E sz}
== {E sz Ox O'y} == sz. (24)

The projection diagrams illustrating D, and C,, are in Figure 2.16.
D,,, has the invariant subgroup D,, of index 2, with the coset expansion

D2n = {Dn} + CZn{Dn}; (25)
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Table 2.8. The relation of the point groups O and T4 to their invariant subgroup T.

C3, means a positive rotation through 27 /3 about the axis O1 and similarly (see Figure
2.12). C,, means a rotation through © about the unit vector a along [1 1 0], and o, means a
reflection in the mirror plane normal to a.

{T} ={E Co Cox Coy G5 G5y G5, G5y G55 G35 G5 Gy}
CL{T} = {CL C4_z Cra Cop Coe C4_y Cor Czrv CZ; Coq C4_x CZe}

IC;{T} = {84, S4, 0a 0b 0c Siy 01 Siy Siy 0a Sk 0}

(25) {D,} + IC3,{D,} = D,y (n even), or D,y (n odd). (26)
For example, if n =2,
Dy = {Dz} + CL{DQ} = {E Cy, Cox Czy Czrz C;z Cha CZb}, (27)

where a is the unit vector bisecting the angle between x and y, and b is that bisecting the
angle between X and y. The projection diagram for D, is shown in Figure 2.11(b). Applying
the second method,

{Dz} —|—[CZLZ{D2} = {E Cy, Co Czy} +S4;{E Cy, Cox Czy}

_ (28)
= {E CZZ sz Czy S4z SZ—Z Oa O’b} = D2d.
(iv) O has the invariant subgroup T of index 2:
O ={T}+ C;{T} ={E 3G, 8C; 6C4 6C,'} 29)
{T} +1C4:;{T} = {E 3C2 8C3 6S4 60’d} = Td. (30)

The detailed verification of egs. (29) and (30) is quite lengthy, but is summarized in Table 2.8.

(iii), (v) The point groups T, Y have no invariant subgroups of index 2.

This completes the derivation of the point groups that are important in molecular
symmetry, with the exception of the two continuous rotation groups C.,, and D,
which apply to linear molecules.

The rotation of a heteronuclear diatomic molecule like HCI through any angle ¢ about z
(which is always chosen to lie along the molecular axis) leaves the molecule in an
indistinguishable configuration. The point group therefore contains an infinite number of
rotation operators R(¢ z). Similarly, there are an infinite number of vertical planes of
symmetry in the set of symmetry elements and the point group contains cooy. The point
group is therefore called C.,. For homonuclear diatomic molecules like O,, or polyatomic
linear molecules with a horizontal plane of symmetry, the point group also contains oy, and
an infinite number of C, axes normal to the principal axis (which is along the molecular
axis). Such molecules belong to the point group D,.

For crystals, the point group must be compatible with translational symmetry, and this
requirement limits z to 2, 3, 4, or 6. (This restriction applies to both proper and improper axes.)
Thus the crystallographic point groups are restricted to ten proper point groups and a total of
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Table 2.9. The thirty-two crystallographic point groups in both International and Schonflies
notation.

In addition to the proper point groups P and the improper point groups that are either
isomorpous with P or equal to P ® C,, there is the non-axial group 1 or C; = {E}.

Improper group P’/ Proper group isomorphous

Proper point group P isomorphous to P P®C; toP® C;
2 c, { mo G } 2/m Cy D,

1 C;
3 C; 3 Se Co
4 C4 Z S4 4/m C4h
6 C(, 6 C3h 6/m C6h
222 D, 2mm Cyy mmm Dy
32 D; 3m Csy 3m D;qs  Ds
422 D, { Amm - Cay } 4/mmm  Dan

42m D2d
622 Ds { bmm  Co } 6/mmm  Den

6m2 D3h
23 T m3 Th
432 (0] 43m T4 m3m Oy

thirty-two point groups, thirteen of which are isomorphous with at least one other crystal-
lographic point group. The thirty-two crystallographic point groups are listed in Table 2.9.

Answers to Exercises 2.3

Exercise 2.3-1 The projection diagram is given in Figure 2.17. The dihedral planes are oy,
oy, and o, where oy bisects the angle between —b and ¢, oy, bisects the angle between x and
¢, and o, bisects the angle between x and b.

Exercise 2.3-2 See Figure 2.18.

Exercise 2.3-3 If X, Y€ P are conjugate, then for some p,€P, p; X pj’1 = Y. But if
XeR{Q} in P, then IX€R{Q} in P’ and p; IX p/?l = IY, so that IX and IY are
conjugate in P’.

Exercise 2.3-4 C,={C,} +C§ {Co} ={E G} +C} {E C,}={E C, C} C;}. But
{CY+ICH {Cy={E C)}+S; {E C,)={E C, S; S4}=S, Use projection
diagrams, if necessary, to verify the multiplication tables given in Tables 2.10 and 2.11.
Clearly, the two multiplication tables are the same, corresponding elements being C; and
IC] =S, ; C; and IC; = S . Both groups are Abelian.
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Figure 2.17. Projection diagram for the point group D33 =D; ® C; (see eq. (2.3.9)). For example,
ICop, = oy, and this mirror plane normal to b bisects the angle between the C} axes Cay and Cy, so that
it is a dihedral plane. Similarly, o and o, are dihedral planes.

N
Sio

E

Cs
cs
3+
SIO
.
SIO
CS
I
Figure 2.18. Projection diagram for the point group Sio.
Table 2.10. Multiplication table for C,.
Cy E ch G, lon
E E ct Gy lon
cf Cr C, o E
Cz Cz CZ E CI
Cy Cy E Cf C,
Table 2.11. Multiplication table for S,.
S4 E Sy C, Sf
Sy Sy G S5 E
C, C, S E Sy
Sf S E Sy C,
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Identification of molecular point groups

A systematic method for identifying the point group of any molecule is given in
Figure 2.19. Some practice in the recognition of symmetry elements and in the assignment
of point groups may be obtained through working through the following exercises and
problems.

Exercise 2.4-1 Identify the symmetry point groups to which the following molecules
belong. [Hint: For the two staggered configurations, imagine the view presented on looking
down the C—C molecular axis.]

(a) nitrosyl chloride NOCI (non-linear), (g) staggered H;C—CCls,

(b) carbon dioxide O=C=O0 (linear), (h) [PtCl,]~2 (planar),

(c) methane CH, (Figure 2.20), (1) staggered ethane H;C—CHj,
(d) formaldehyde H,C=O0, (j) B(OH); (planar, Figure 2.20),
(e) carbonate ion CO3” (planar), (k) IF; (pentagonal bipyramid),
(f) BrFs (pyramidal), (1) S4 (non-planar).

no horizontal plane of symmetry = Cey
Linear molecules 4‘7_ .
horizontal plane oy, D..,

Non-linear molecules

o C,
no proper axis of 1 C;
symmetry
neither o nor I C,
(%% Dnh
nC;L1lC,—| nog—— D,y
no o D,
—<1C; . C,,
n UV CnV
no C; L C,—
Sou Sy,
C,.,n>1 —
" L _noo,noS,,— C,
I Yy,
10C5, 6Cs5 —i
no I Y
—>1C; 38, Ty

I— O,
e, —se,—
nol— O
I— T,
e
nol— T

Figure 2.19. Identification of molecular point groups.
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H Cl

g
E i U E i OH
E E || E i ® C
N
EQ--__CI),; (g) allene
Qa e
(i) Pd,Clg
o
(o
@ Fe '

(k) ferrocene

Figure 2.20. Structure of several molecules referred to in Exercise 2.4-1 and in the problems to this
chapter. Lower case letters (c) and (g)—(k) refer to Problem 2.3.
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Answer to Exercise 2.4-1

Cs; Dochs Ta; Covs Dan; Cays Csy; Daps D3g; Cans Dsps Ty

Problems

2.1

(@)
(b)

Prove the following results by using projection diagrams.
Show that R(r m) and R(n m) commute when m is normal to n.
Show that oyoy = Cs,.

(c) Two planes oy, o, intersect along n and make an angle ¢/2 with one another. Show that

(d)
22

23

(a)
(b)
()
(d)
(e
®

(8
(h)
2.4

2.5

()
(b)
(©)
(d)
(e)
(®
(2

0,01 =R(¢ m). Do oy and o, commute?

Show that R(n x) R(8 z)=R(—0( z) R(n X).

Identify the set of symmetry operators associated with the molecule trans-
dichloroethylene (Figure 2.20). Set up the multiplication table for these operators and
hence show that they form a group. Name this symmetry group. [Hint: Set up a right-
handed system of axes with y along the C=C bond and z normal to the plane of the
molecule.]

Determine the symmetry elements of the following molecules and hence identify the
point group to which each one belongs. [Hints: Adhere to the convention stated in
Section 2.1. Many of these structures are illustrated in Figure 2.20. Sketching the view
presented on looking down the molecular axis will be found helpful for (k) and (1).]

NH; (non-planar), (i) Pd,Clg,

H3;C—CCl; (partly rotated), () hydrogen peroxide,

CHFCIBr, (k) bis(cyclopentadienyl)iron or ferrocene
CsHs (planar), (staggered configuration),

Cg¢Hg (planar), (1) dibenzenechromium (like ferrocene, a
[TiFs] * (octahedral), “sandwich compound,” but the two
allene, benzene rings are in the eclipsed con-
[NbE,] 2, figuration in the crystal).

List a sufficient number of symmetry elements in the molecules sketched in

Figure 2.21 to enable you to identify the point group to which each belongs. Give
the point group symbol in both Schoénflies and International notation.

Show that each of the following sets of symmetry operators is a generator for a point
group. State the point group symbol in both Schonflies and International notation.
[Hints: The use of projection diagrams is generally an excellent method for calcul-
ating products of symmetry operators. See Figure 2.10(a) for the location of the
C,, axis.]

{Coy Coyfs

{Car I},

{84z o},

{C3z CZa ]}9

{_C4z ox},

{6},

{S3z CZa}-
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L L
L L L L
RV avavi
L L L L
L L
(a) ()
L’ L’
L L L L’
/oS LS
L L L L
L’ L
(©) (d)
L
L L
[/
L’ L’
L

Figure 2.21. Configurations of an ML4 complex ion and of some ML,L{_, complexes.

2.6

(a)
(b)
(©)
(d)
(e)
2.7

(a)
(b)
(©)
(d)
(e)

List a sufficient number of symmetry elements (and also significant absences) in the
following closo B, H ,?ions that will enable you to determine the point group to which
each belongs. The shapes of these molecules are shown in Figure 2.22.

BsH; 2,

BeHs 2,

BoH, 2,

BioHig,

B,H;,

Evaluate the following DPs showing the symmetry operators in each group. [Hint: For
(a)—(e), evaluate products using projection diagrams. This technique is not useful for
products that involve operators associated with the C; axes of a cube or tetrahedron, so
in these cases study the transformations induced in a cube.] Explain why the DPs in
(d)—(f) are semidirect products.

D, ®C,,

D; ®C,,

D; ® C,,

Sa NGy (Co = {E Cx)),

Do NG (Co = {E Caa}),

() D ANC3(Cs={E C§t1})~
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1
1
4‘\ § 72 4@2
5 6

& P
© BgH: / 1 ;d) B oH 5
KK
P

Figure 2.22. Some closo B, H;; 2 anions. The numbering scheme shown is conventional and will be an
aid in identifying and describing the symmetry elements.
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Linear vector spaces

In three-dimensional (3-D) configuration space (Figure 3.1) a position vector r is the sum
of its projections,

r=ex+e)y+ e;z. (1)

The set of three orthonormal basis vectors {e; e, €5} in eq. (1) is the basis of a linear vector
space (LVS), and the coordinates of the point P(x y z) are the components of the vector r.
The matrix representation of r is

r= (e e eslxyz). ()

(e; e, e3|is a matrix of one row that contains the elements of the basis set, and | x y z) is a
matrix of a single column containing the components of r. The row x column law of matrix
multiplication applied to the RS of eq. (2) yields eq. (1). The choice of basis vectors is
arbitrary: they do not have to be mutually orthogonal but they must be linearly independent
(LI) and three in number in 3-D space. Thus, {e; e, e;} form a basis in 3-D space if it is
impossible to find a set of numbers {v; v, v3} such that e;v; + e,v, +e3v3; =0, except
v;=0,j=1, 2, 3. But any set of four or more vectors is linearly dependent in 3-D space.
That is, the dimensionality of a vector space is the maximum number of LI vectors in that
space. This is illustrated in Figure 3.2 for the example of two-dimensional (2-D) space,
which is a subspace of 3-D space.
For a vector v in an LVS of n dimensions, eq. (1) is generalized to

V=) €Vvi=e€vit+ev+ - +ew,
i=1
#0, unless v; =0,Vi=1,...,n 3)
In eq. (3), the vector v is the sum of its projections. The matrix representation of eq. (3) is

V= (el € ... en|v1v2 Vn> (4)

= (e[v), )

where, in eq. (5), the row matrix (e| implies the whole basis set, as given explicitly in
eq. (4), and similarly v in the column matrix |v) implies the whole set of n components

53
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Figure 3.1. Projection of a vector OP along three orthogonal axes OX, OY, OZ.

(a) (b) ©

Figure 3.2. Examples, in 2-D space, of (a) an LI set of orthogonal basis vectors {e; e,}, (b) an LI non-
orthogonal basis, and (c) a set of three basis vectors in 2-D space that are not LI because
e +e+e= 0.

{viva ... v,}. If the basis {e;} and/or the components {v;} are complex, the definition of
the scalar product has to be generalized. The Hermitian scalar product of two vectors u and
v is defined by

u'v = (efu)’ - (elv), (6)

the superscript | denoting the adjoint or transposed complex conjugate:

(5),(6) w'v = (u'le’) - (ely) (7a)
= (" |M|v) (7b)
ij

The square matrix

M= le”) - (e ®)
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is called the metric of the LVS:

M=le;"e" ... e )(eje ... e,
e*-e ef-e
— |e"e e*e ©)
Note that (i)
Mj=¢"¢ =e-€e =(e"¢e) =M" (10)
so that M is a Hermitian matrix (M = M"). (ii) If the basis is orthonormal (or unitary)
M;=e"¢ =0 (11)
and M is just the unit matrix with n rows and columns,
M=E,. (12)
In this case,
utv= W) = uv (13)
i

In egs. (7a) and (7b) |v) is a matrix of one column containing the components of v, and (u*\
is a matrix of one row, which is the transpose of [u"), the matrix of one column containing
the components of u, complex conjugated. In eq. (6), transposition is necessary to conform
with the matrix representation of the scalar product so that the row x column law of matrix
multiplication may be applied. Complex conjugation is necessary to ensure that the length
of a vector v

v=1|v| = (v-v)'/? (14)

isreal. A vector of unit length is said to be normalized, and any vector v can be normalized
by dividing v by its length v.

Matrix representatives of operators

Suppose a basis (e| is transformed into a new basis (¢’| under the proper rotation R, so that
Rle| = €|, (1)

or, in more detail,
R(el € 63‘ = (el’ ezl e3'|. (2)

Then the new basis vectors {e; } can be expressed in terms of the old set by writing e/ as the
sum of its projections (cf. eq. (3.1.3)):
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3
ej, - X%ei ri/': ] = 1a273’ (3)

r; is the component of e/ along e;. In matrix form,
(3) <e1/ ezl e3'| = <e1 € C3|F(R), (4)
where the square matrix

rin riz ri3
PR)=T[ryl=|ra rn 13 (5)
r31 r3 133

and the r;; in eq. (3) are seen to be the elements of the jth column of I'(R). In shorter
notation,

“4) (' = (e|C(R). (6)

Equation (6), or eq. (4), is the matrix representation of the operation of deriving the new basis
{e/} from the original basis {e;}, and when we carry out the matrix multiplication on the RS
of eq. (6) or eq. (4) we are using eq. (3) successively for each e/ inturnasj=1, 2, 3.

(1), (6) R{e| = (¢'| = (e [T(R), (7
which shows that I'(R) is the matrix representative (MR) of the operator R.

Example 3.2-1 When R is the identity E, (€| is just (e| and so T'(E) is the 3 x 3 unit matrix, E 5.
Example 3.2-2 Consider a basis of three orthogonal unit vectors with e; (along OZ)
normal to the plane of the paper, and consider the proper rotation of this basis about OZ

through an angle ¢ by the operator R (¢ z) (see Figure 3.3). Any vector v may be expressed
as the sum of its projections along the basis vectors:

<

(0] e
Figure 3.3. Rotation of configuration space, and therefore of all vectors in configuration space
including {e; e, e3}, through an angle ¢ about OZ (active representation).
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V= Z € V. (313)

To find the ith component v;, take the scalar product of e; with v. Here the basis is real and
orthonormal, so

(313) € -v=¢g;- Ze, Vj = 26,_-/ Vj =V;. (8)
J J

We now represent the transformed basis vectors {e/} in terms of the original set {e;} by
expressing each as the sum of its projections, according to eq. (3). Writing each
e/ (j=1, 2, 3) as the sum of their projections along {e;} yields

e/’ = ey (cos @) + e(sin @) + e3(0)
&' = ey(—sing) + ex(c0s ) + €3(0) ©)
63/ = 61(0) + 62(0) + 63(1)

where we have used the fact that the scalar product of two unit vectors at an angle 6 is cos 6,
and that cos(37 — ¢) = sin ¢, cos(3m + ¢) = — sin{¢}, and cos 0 = 1. Because of the row x
column law of matrix multiplication, egs. (9) may be written as

cos¢p —sing 0
(e)" &) e3' | = (e] e, e3]| sing cosgp 0. (10)

0 0 1

On using eq. (7), the MR of R(¢ z) is seen to be

cos¢p —sing 0 c —=s 0
(10) I'(R(pz))=|sing cosp O0|=1|s ¢ Of, (11)
0 0 1 0o 0 1

where ¢ =cos ¢, s =sin ¢. The proper rotation R(¢ z) rotates a vector r in configuration
space into the vector r’ given by

1) Y= Rr = Rlelr) = (¢r) = (DR)|F) = (elr"). (12)

For R =R (¢ z), the components of r’ (which are the coordinates of the transformed point
P’) are in

(12) ) = T(R)r), (13)

which provides a means of calculating the components of |r’) from

X —s 0] [x
(13),(11) V]=1|s ¢ 0 y . (14)
z 0 0 1 z
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Example 3.2-3 Find the t ransformed components of a vector r when acted on by the
operator C;. = R(n/2 z).

x' c —s 0] [x 01 x v
(14) V| = c Oyl =110 y|l=1lx (15)
4 0 z 0 0 z z

The set of components of the vector r’ in eq. (13) is the Jones symbol or Jones faithful
representation of the symmetry operator R, and is usually written as (x" )’ /) or x’ )/ Z'. For
example, from eq. (15) the Jones symbol of the operator R (n/2 z) is (¥xz) or yxz. In
order to save space, particularly in tables, we will usually present Jones symbols without
parentheses. A “faithful representation” is one which obeys the same multiplication table
as the group elements (symmetry operators).

The inversion operator / leaves (e| invariant but changes the sign of the components of r
(see eq. (2.1.5) and Figure 2.3):

I(e|r) = (e|I|r) = (e[l'(1)[r); (16)
(16) Iyz) = DDk yz) = |—x -y —2). (17)
Therefore the MR of / is
100
(17) =101 0 (18)
001

It follows that if R is a proper rotation and R|x y z) =[x’ y/ /), then
17) IRlxyz) =IX y 2y = | =X =) -7Z). (19)

The improper rotation S(¢n) = IR(¢ F © n), for $>0 or <0 (see eq. (2.1.9)), so that it is
sometimes convenient to have the MR of S(¢ n) as well. In the improper rotation
S(pz)=0,R(p2),0,)xyz)=|xyZ), and so the MR of S(¢ z) is

c —s 0
(11) L(S(pz)=1s ¢ 0 (20)
0 0 1

Exercise 3.2-1 Write down the Jones symbol for the improper rotation S,.

Exercise 3.2-2 Show that Snik :ICF("/ 2>. Find operators of the form IC,’j that are
equivalent to Si, and Sg.

It is demonstrated in Problem 3.1 that I'(R) and I'(S) are real orthogonal matrices. An
orthogonal matrix A has the property ATA=E, where E is the unit matrix, so that
A~'=A" which makes the calculation of T'(R)™' and I'(S)"' very straightforward or
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simple (to use space). Equations (13), (17), and (19) are of considerable importance since every
point symmetry operation, apart from £ and /, is equivalent to a proper or improper rotation.

Example 3.2-4 Nevertheless it is convenient to have the MR of (6 y), the operator that
produces reflection in a plane whose normal m makes an angle 0 with y (Figure 3.4) so that
the reflecting plane makes an angle 0 with the zx plane.

From Figure 3.4,

X =cosq, y =sinaq, (21)

X = cos(20 — «) = x cos(20) + y sin(26), (22)

Y = sin(20 — ) = xsin(26) — y cos(26). (23)
x cos26  sin20 O] [x

21)—(23) v | = |sin20 —cos20 0|y (24)
4 0 0 1 z

so that the MR of o(fy) is

cos20  sin20 0
(24) I(o(fy))=|sin20 —cos26 O0]. (25)
0 0 1

Example 3.2-5 The MR of o(7/3 y) is

(22) Por/3 y)=|4 1 of (26)
0o 0 1
Y
m Pr
.o
0 P

Figure 3.4. Reflection of a point P(x y) in a mirror plane o whose normal m makes an angle § with y,
so that the angle between o and the zx plane is 6. OP makes an angle « with x. P'(x’ )/) is the
reflection of P in o, and OP’ makes an angle 26 — « with x.
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Answers to Exercises 3.2

Exercise 3.2-1 From eqs. (15) and (19), the Jones symbol for Sy, isy X Z.

Exercise 3.2-2 Let S(¢ n) =IC (¢' n). Then ¢ =2nk/n and ¢' = 2n[k = (n/2)]/n so that
Sk = 1" Therefore, SE = IC], and St = IC},

Mappings

When the symmetry operator R € G acts on configuration space, a vector r is transformed
into r' = R r; r’ is the image of r, and the process whereby R{r}— {r'} is called a mapping.
The components of ¥’ are given by

(3.2.13),(3.2.19) 'y ) =TR)xy z), (1)

where I'(R) is the MR of the operator R. Equation (1) will be found to be extremely useful,
for it enables us to find the effect of a symmetry operator R on the coordinates of P(x y z).
(Ineq. (1) R may be the identity, the inversion operator, or a proper or improper rotation.)
The lengths of all vectors and the angles between them are invariant under symmetry
operations and so, therefore, are scalar products. Consider the transformation of two
vectors u, v into ', v/ under the symmetry operator R:

(3.2.12) w =R u=R{elu) = (e|T(R)|u), 2)

(3.2.12) vV =R v=R(elv) = (e|]['(R)|v). 3)
The Hermitian scalar product of u and v is

(3.1.6) utv = (elu)’ - (e|v)

(3.1.7a) = (u"|Mv). 4
Similarly, that of w’ and v’ is

2).3) wv = (e|C(R)w)’ - (e[D(R)]Y). )
The adjoint of a product of matrices is the product of the adjoints in reverse order, so

Q) uv = (W T(R)']e") - (eIT(R)|v)

(3.1.8) = (u[T(R)'MT(R)|v). (6)
Because the scalar product is invariant under R, - v =u"- v, and
(6).(4) T(R)'MI'(R) = M. (7)

In group theory the most important cases are those of an orthogonal or unitary basis when
M is the 3 x 3 unit matrix, and consequently
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(7) T'(R)'T(R) =E. ®)
Equation (8) shows that I'(R) is a unitary matrix and that

R =T® = [T®)]", ©)
where the superscript T denotes the transposed matrix. When the MR T'(R) is real,
©) LR =@ (10)

This is a most useful result since we often need to calculate the inverse of a 3x3 MR of a
symmetry operator R. Equation (10) shows that when I'(R) is real, I'(R) "' is just the
transpose of I'(R). A matrix with this property is an orthogonal matrix. In configuration
space the basis and the components of vectors are real, so that proper and improper
rotations which leave all lengths and angles invariant are therefore represented by 3 x3
real orthogonal matrices. Proper and improper rotations in configuration space may be
distinguished by det I'(R),

(10) P(RIC(R)" =T'(R)'T(R) =E. (11)
Since

detAB = det Adet B,
(11) det I'(R)'T(R) = det T(R)" det T'(R) = [det D(R))* =1, (12)

(12) det I'(R) = £1 (I'(R) real). (13)

Real 3x3 orthogonal matrices with determinant +1 are called special orthogonal (SO)
matrices and they represent proper rotations, while those with determinant —1 represent
improper rotations. The set of all 3x3 real orthogonal matrices form a group called the
orthogonal group O(3); the set of all SO matrices form a subgroup of O(3) called the
special orthogonal group SO(3).

Exercise 3.3-1 Evaluate the matrix representative of R(n/2 z) by considering the
rotation of the basis vectors {e; e, e;} into {e,’ e;’ e;'}.

Exercise 3.3-2 The set of real 3x3 orthogonal matrices with determinant —1 does not
form a group. Why?

Answers to Exercises 3.3

Exercise 3.3-1 As shown in Figure 3.5,

R(n/2 z){e; e; e5| = (e; —e; e3] = (e; e; €3] | 1

S O =i
(=]
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eé A e

,
€

€

€
X

Figure 3.5. Effect of R(n/2 z) on {e; e, e3}.

Exercise 3.3-2 The identity in O(3) is ['(F) = E;, the 3 X3 unit matrix with determinant
+1. The set of all 33 real orthogonal matrices with determinant —1 does not contain the
identity and therefore cannot form a group.

Group representations

If{R,S, T, ...} form a group G, then the set of MRs {I'(R), I'(S), I'(7), ...} forms a group
that is isomorphous with G called a group representation. Suppose that RS = T; then

(3.2.12) Tv = (e[T(T)|v), (1)
Tv = RSv = RV (given), @)
v = Sv (definition of v'). 3)
(3),(3.2.13) V) = L(S)[v). “)
4),(3.2.12) RY = (e[L(R)V') = (e[[(R) T(S)]), (5)
(1),(2),(5) L(R) I'(S) =TI(T). (6)

Equation (6) shows that the MRs obey the same multiplication table as the operators, and so
{T'(R), I'(S), I'(T), ...} forms a group that is isomorphous with G={R, S, 7, ... }. Such a
matrix group is an example of a group representation.

Transformation of functions

We have studied the transformation of vectors induced by symmetry operators, and this led
us to the concept of the MR of a symmetry operator. In order to understand how atomic
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orbitals transform in symmetry operations, we must now study the transformation of
functions. To say that f(x, y, z) is a function of the set of variables {x} = {x y z} means
that f({x}) has a definite value at each point P(x, y, z) with coordinates {x, y, z}. Note that
we will be using {x} as an abbreviation for {x y z} and similarly {x'} for {x' )’ Z/}. Now
suppose that a symmetry operator R transforms P(x y z) into P'(x’ ) Z/}so that

R{x} = {x'}; ¢y
(3.3.3) ) = D(R)|x). 2)

|x) is a matrix of one column containing the coordinates {x' )/ Z'} of the transformed
point P’. (Recall the correspondence between the coordinates of the point P and the
components of the vector r that joins P to the origin O of the coordinate system, Figure
3.1.) But since a symmetry operator leaves a system in an indistinguishable configuration
(for example, interchanges indistinguishable particles), the properties of the system are
unaffected by R. Therefore R must also transform f'into some new function Iéf in such a
way that

RF({x'}) =f({x}). 3)

R, which transforms finto a new function f'= Iéf , is called a function operator. Equation
(3) states that “the value of the new function Rf, evaluated at the transformed point {x'}, is
the same as the value of the original function f evaluated at the original point {x}.”
Equation (3) is of great importance in applications of group theory. It is based (i) on
what we understand by a function and (ii) on the invariance of physical properties under
symmetry operations. The consequence of (i) and (ii) is that when a symmetry operator acts
on configuration space, any function fis simultaneously transformed into a new function
Rf. We now require a prescription for calculating Rf. Under the symmetry operator R, each
point P is transformed into P’:

RP(xyz) =P ) 7). 4)
@) RiIP'(x' VZ)=Pkxyz); (5)
(3).(5) RF({X}) =f({x}) =f(RH{X}). (6)

The primes in eq. (6) can be dispensed with since it is applicable at any point P’ (x' y/ Z/):
(6) RF({x}) = f(R"'{x}). (7)
Example 3.5-1 Consider the effect of R(n/2 z) on the d orbital d,,, =x y g(r), where g(r) is

a function of » only and the angular dependence is contained in the factor x y, which is
therefore used as an identifying subscript on d.
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010
(3.2.15) F'R)y=|1 0 0}; (®)
0 0 1
_9 1 0
(3.3.10) TR '=CR]"={1T 0 0]; )
10 0 1
01 0 (x [y
Q) 1 0 0f|y|=|x|; (10)
0 0 1|z |z
(10) R Yxyz}={yxz} (11)
In other words, the Jones symbol for the operator R is y X z. Therefore Rf ({x}) is
R dyy = dyy(R™{x})
= dy ({3 ) -
=yx g(r), or —xy g(r),
= —dy .

The second equality states that f({x y z}) is to become ' ({y X z}) so that x is to be replaced
by y, and y by —x (and z by z ); this is done on the third line, which shows that the function d,,,
is transformed into the function —d,,, under the symmetry operator R(n/2 z). Figure 3.6
shows that the value of Rd,, = d,, = —dy, evaluated at the transformed point P’ has the
same numerical value as d,, evaluated at P. Figure 3.6 demonstrates an important result: the
effect of the function operator R on dy, is just as if the contours of the function had been
rotated by R(n/2 z). However, eq. (7) will always supply the correct result for the
transformed function, and is especially useful when it is difficult to visualize the rotation
of the contours of the function.

Figure 3.6. This figure shows that the effect on d,, of the function operator R, which corresponds to
the symmetry operator R=R(n/2 z), is just as if the contours of the function had been rotated by R.
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Exercise 3.5-1 Using R(e|= (¢/| = (e|['(R), determine the MR T'(R) of the symmetry
operator R(/2 x). Hence find R™'{x y z} and then find how the three p orbitals transform
under the symmetry operator R(n/2 x).

The complete set of function operators {Ié ST.. .} forms a group isomorphous with the
group of symmetry operators {R S T ...} which transforms configuration space (and all
points and vectors therein). The proof of this statement requires the inverse of the product
RS. By definition, (RS) " is the operator which, on multiplying RS, gives the identity E:

(RS)'RS = E; (13)
ST'RT'IRS=E (R'R=E,VR,S...); (14)
(13), (14) (RS)™' =S8R, (15)

This is the anticipated result since the MRs of symmetry operators obey the same multi-
plication table as the operators themselves, and it is known from the properties of matrices
that

[CRT(S)]™ =T(S)"'TR) ™. (16)
Suppose that RS = T. Then,

SFx}) =S H{x}) =/ ({x}), 17
where /7 denotes the transformed function Sf.
(17),(7) RSf({x}) = Rf'({x}) = /' (R '{x}). (18)
(17),(18) RSf({x}) =f(S™'R"{x})
(15) = /((RS)™'{x})
(17) =/(T"{x})
(7 = T ({x}); (19)
(18),(19) RS =T. (20)

Equation (20) verifies that the set of function operators {R S 7'...} obeys the same
multiplication table as the set of symmetry operators G={R S T ...} and therefore
forms a group isomorphous with G.

Answer to Exercise 3.5-1

From Figure 3.7(a),
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Z
14 €3
€ v
€
€
X

(a)

Z Z
P/
+ Pl v L %

(b)

Figure 3.7. (a) Transformation of the basis set {e; e, e;} under R(n/2 x). (b) Illustration of
Rp, = p; = p.. The value of the original function p, at P(0 a 0) is the same as that of the
transformed function p. at P’(0 0 a).

Rlejeye3] = (e ey 3’| = (e e3e]
1 0
= (e e, e3]['(R) = (e; e, e3] | 0 1(;
0 0
x 1 0 0] |x X
Rxyz}=TR ) |y| =0 0 1||y| =]z 1)
z 01 0]z y
R{p. pyp:} = R{x g(r) y g(r) z g(r)}
= {p(R"'{x}) py(R7'{x}) po(R™'{x})}
1) ={pp: -1} (22)

on replacing {x y z} by {xyZ} in {p, p, p-}. Equation (22) states that p. is the function
which, when evaluated at the transformed point {x y z}, has the same value as the
original function p, evaluated at the original point R~'{xyz} = {xzy}. For example,
p-({0 0 a}) =p,({0 a 0}). Note from Figure 3.7(b) that the effect of R on p, is simply to
rotate the contour of the function p), into that of p..
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Some quantum mechanical considerations

For a quantum mechanical state function ¢({x}), the RS of eq. (3.5.7) requires multi-
plication by w, a phase factor or complex number of modulus unity. Since the choice of
phase is arbitrary and has no effect on physical properties, we generally make the most
convenient choice of phase, which here is w = 1. So, for the matrix representations used in
Chapters 1-11, we may use eq. (3.5.7) without modification for function operators R
operating on quantum mechanical state functions, as indeed we have already done in
Example 3.5-1. However, there are certain kinds of representations called projective or
multiplier representations for which the conventions used result in phase factors that are not
always +1. These representations are discussed in Chapter 12.

We already know from the invariance of the scalar product under symmetry operations
that spatial symmetry operators are unitary operators, that is they obey the relation
R'R=R R'=E, where E is the identity operator. It follows from eq. (3.5.7) that the set
of function operators {R} are also unitary operators.

Exercise 3.6-1 Prove that the function operators {R} are unitary.

In quantum mechanics the stationary states of a system are described by the state function
(or wave function) 1({x}), which satisfies the time-independent Schrédinger equation

Hy({x}) = Ey({x}). ()

Here {x} stands for the positional coordinates of all the particles in the system, E is the
energy of the system, and A is the Hamiltonian operator. Since a symmetry operator merely
rearranges indistinguishable particles so as to leave the system in an indistinguishable
configuration, the Hamiltonian is invariant under any spatial symmetry operator R. Let
{1);} denote a set of eigenfunctions of H so that

Hi; = Ey. 2

Suppose that a symmetry operator R acts on the physical system (atom, molecule, crystal,
etc.). Then ¢; is transformed into the function Iéwi, where R is a function operator
corresponding to the symmetry operator R. Physical properties, and specifically here the
energy eigenvalues {E;}, are invariant under symmetry operators that leave the system in
indistinguishable configurations. Consequently, Ri) is also an eigenfunction of A with the
same eigenvalue E;, which therefore is degenerate:

2 H Ry; = E; RYy; = REnh; = R H;. 3)

Because the eigenfunctions of any linear Hermitian operator form a complete set, in the
sense that any arbitrary function that satisfies appropriate boundary conditions can be
expressed as a linear superposition of this set, eq. (3) holds also for such arbitrary functions.
Therefore,

3) (R, H] =0, “4)
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and any function operator R that corresponds to a symmetry operator R therefore com-
mutes with the Hamiltonian. The set of all function operators {R} which commute with
the Hamiltonian, and which form a group isomorphous with the set of symmetry
operators {R}, is known as the group of the Hamiltonian or the group of the
Schrodinger equation.

Answer to Exercise 3.6-1

R 9 ({x}) = /(R {x}) = RT(R™{x})
Y((R)T'R™H{x}) = $((RR)) " {x})
Y(E{x}) = Ev({x}),

R Ry({x}) =

where E is the identity operator, whence it follows that the function operators {R} also are
unitary.

Problems

3.1 Show by evaluating [['(R)]" I'(R), where R is the proper rotation R(¢ z), that T'(R) is an
orthogonal matrix, and hence write down [['(R)]'. Also write down T'(R(—¢ z)).
Is this the same matrix as T(R(¢ z)) "' and, if so, is this the result you would expect?
Evaluate det I'(R(¢ z)) and det I'(S(¢ z)).

3.2 Find the MR I'(R) for R=R(2%/3 n) with n a unit vector from O along an axis
that makes equal angles with OX, OY, and OZ. What is the trace of I'(R)? Find
|x' v/ Z) =T(R)|x y z) and write down the Jones symbol for this operation. [Hints:
Consider the effect of R(27/3 n) by noting the action of R on (e, e; e;| as you imagine
yourself looking down n towards the origin. The trace of a matrix is the sum of its
diagonal elements.]

3.3 (a) Find the MR T'(R) of R for R(—n/2 z) and hence find the matrix I'(7) ['(R).

(b) Using projection diagrams, find the single operator Q that is equivalent to /R; show
also that 7 and R commute. Give the Schonflies symbol for Q.

(c) Find the MR T'(Q) from Q(e; e; e3| = (e’ &' e5'| = (e; e; e3|T'(Q).

(d) What can you deduce from comparing I'(Q) from part (c) with I'(/)I'(R) from
part (a)?

3.4 Find the MRs of the operators o, o}, for the basis (e; e, es], where
a=2""[110],b=27"[T10]. Evaluate I'(c,)['(c,). Using a projection diagram
find Q = o, oy, Find the MR of Q and compare this with I'(c,) I'(oy,). What can you
conclude from this comparison?

3.5 Find the MRs of the operators E, C4., C., oy, oy for the basis (e, e; e;].

3.6 Write down the Jones symbols for R € Cy, and then the Jones symbols for {R ~'}.
[Hints: You have enough information from Problems 3.4 and 3.5 to do this very easily.
Remember that the MRs of {R} are orthogonal matrices.] Write down the angular factor
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in the transforms of the five d orbitals under the operations of the point group Cy,. [Hint:
This may be done immediately by using the substitutions provided by the Jones symbols
for R7']

3.7 Find the MR of R(—2n/3 [1 1 1]) for the basis (e, e, es|. Hence write down the Jones

representations of R and of R'. Find the transformed d orbitals Rd, when d is dyy, d,.., or
d,.. [Hint: Remember that the unit vectors {e; e, e;} are oriented initially along OX,
0Y, OZ, but are transformed under symmetry operations. Observe the comparative
simplicity with which the transformed functions are obtained from the Jones symbol
for R~ instead of trying to visualize the transformation of the contours of these
functions under the configuration space operator R.]

3.8 (a) List the symmetry operators of the point group D,. Show in a projection diagram
their action on a representative point E. Complete the multiplication table of D,
and find the classes of D,. [Hint: This can be done without evaluating transforms
ORO™, 0 €Dy ]

(b) Evaluate the direct product D, ® C; = G and name the point group G. Study the
transformation of the basis (e; e, e;| under the symmetry operators R € G = {R}.
Use the MRs of R! to find the Jones symbols for {R '}, and hence write down the
transformed d orbitals when the symmetry operators of G act on configuration
space.

3.9 Find the MRs of R(« x) and R(3 y).
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Matrix representations

If {4 B C ...} form a group G then any set of square matrices that obey the same
multiplication table as that of the group elements is a matrix representation I of G. For
example, we have already seen that the matrix representatives (MRs) I'(R) defined by

Rie| = (¢'| = (e['(R), R€G, (D

form a representation of the group of symmetry operators. The dimension I of a representa-
tion is the number of rows and columns in the square matrices making up the matrix
representation. In general, a matrix representation I" is homomorphous with G, with matrix
multiplication as the law of binary composition. For example, every group has a one-
dimensional (1-D) representation called the identity representation or the totally symmetric
representation I'; for which

T'\(4) =1, VA €G. @)

If all the matrices I'(4) are different, however, then I is isomorphous with G and it is called
a true or faithful representation.

Exercise 4.1-1 Show that the MR of the inverse of 4, T'(4™"), is [T'(4)] .

Example 4.1-1 Find a matrix representation of the symmetry group Cs, which consists of the
symmetry operators associated with a regular triangular-based pyramid (see Section 2.2).

Csy = {E C{ C; 04 0. o1}. The MR for the two rotations, evaluated from eq. (1), is

c —s O
I'(R(pz) =|s ¢ 0], (3.2.11)
0 0 1

where ¢ = cos ¢, s =sin ¢. For the three reflections,

(&) S2 0
L(o(@y) = |52 —c2 O], (3.2.15)
0 0 1

with ¢, = cos 20, s, =sin 26. From Figure 2.10, the values of ¢ and 6 are
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Ccy Cy od Oe ot
¢o=2n/3 ¢=-2n/3 =0 6=-n/3 6=n/3
Since cos(2m/3) = —cos(n/3) = V5, sin(2n/3) = sin(n/3) = V/3/2, cos(—2n/3) =
cos(2n/3) = —V,, andsin(—2n/3) = —sin(2n/3) = —/3/2, the MRs of the elements
of the symmetry group Cs, are as follows:

E Ccy Cy
10 07 Yy =3/, 0 [ = V3,0
010 V3/, —V1/, 0 —V3/, =1/, 0
L0 0 1] 0 0 1 i 0 0 1
gqd Oe of
(10 07 Yy =3/, 0 [~y 3/, 0
010 V3, Vi, 0 Vi, Vi, 0. 3)
LO 0 1] 0 0 1 i 0 0 1

Example 4.1-2 Evaluate I'(c.)['(0f) and show that the result agrees with that expected
from the multiplication table for the operators, Table 2.3.

I'(oe) I'(or) rcy)
Y =3/, 0 —Yy V3/, 0 Yy =3/, 0
—V3/, Y, 0 V3, Yy 0= [ V3, =Yy 0
0 0 1 0 0 1 0 0 1

From Table 2.3, we see that oeor = C;’ , so that multiplication of the matrix representations
does indeed give the same result as binary combination of the group elements (symmetry
operators) in this example.

Exercise 4.1-2 Evaluate I'(C; )I'(o.) and show that your result agrees with that expected
from the multiplication table.

Answers to Exercises 4.1

Exercise 4.1-1 Since 4 'A=E, and since the matrix representations obey the same
multiplication table as the group elements, I'(4~")['(4) =I'(E)=E, the unit matrix.
Therefore, from the definition of the inverse matrix, [['(4)]” ' =T(4~"). For example,
C; Cf = E, and from eq. 3) T'(C5) = [0(CH]" = [0(CH] "

Exercise 4.1-2  From eq. (3),

[ =y, V3, 0 Yy =3/, 0
D(C)(oe) = | =3/, =V, 0] |—=V3/, V2 0
Lo 0 1]| o 0 1
(=1, V3/, 0
= |3/, Y, 0|=T(ox)
.| 0 0 1
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From Table 2.3, C5 0e = oy, so for this random test the multiplication of two matrix
representations again gives the same result as the group multiplication table.

Irreducible representations

Suppose that {I'(4) I'(B) ...} forms an /-dimensional matrix representation of G and define
I'(4) by the similarity transformation

I'(4) =S T(4) S, (1)

where S is any non-singular / x / matrix. Then the set {I‘/(A) F/(B) ...} also forms an
I-dimensional representation of G. (Note that notation varies here, S™' often being
substituted for S in eq. (1).)

Proof Let AB denote the product of 4 and B; then

I'(A)T'(B) = ST(4)S™'SI'(B)S™! = ST (4)I'(B)S™! ,
= ST(4B)S™' =T"(4B), @

so that {I‘/(A) F/(B) ... } is also a representation of G. Two representations that are related
by a similarity transformation are said to be equivalent. We have seen that for an
orthonormal or unitary basis, the matrix representations of point symmetry operators are
unitary matrices. In fact, any representation of a finite group is equivalent to a unitary
representation (Appendix A1.5). Hence we may consider only unitary representations.
Suppose that T'', ' are matrix representations of G of dimensions /; and /, and that for
every A € G an (/] + l,)-dimensional matrix is defined by

e = "5 @)
Then
T'(4) 0 1[r'B) 0
T'(4) T(B) = ] ]

Lo 2wyl oo )
"7 AT (B) 0

1o F2(A)F2(B)]
[T!(4B) 0

_ — T(4B). @)
L 0 I'?(4B)

Therefore, {I'(4) ['(B) ...} also forms a representation of G. This matrix representation I"
of G is called the direct sum of T'!, T and is written as
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Table 4.1.
E cy Cy
[1 0 0] Y, =3/, 0 =l V3, 0
0 10 By =1 0 -3/, =, 0
L0 0 1] 0 0 1 0 0 1
Od Oe of
[1 0 0] ~y =3/, 0 Yy V3, 0
0 10 V3, %0 3y Va0
0 0 1) 0 0 1 0 0 1

r=T'er. (5)

Alternatively, we can regard I as reduced into I'' and T'?. A representation of G is reducible
if it can be transformed by a similarity transformation into an equivalent representation,
each matrix of which has the same block-diagonal form. Then, each of the smaller
representations I'', I'? is also a representation of G. A representation that cannot be reduced
any further is called an irreducible representation (IR).

Example 4.2-1 Show that the matrix representation found for Cs, consists of the totally
symmetric representation and a 2-D representation (I'3).

Table 4.1 shows that the MRs I'(T) of the symmetry operators T € C;, for the basis
(e e, es] all have the same block-diagonal structure so that I'=T"; & I';. We shall soon
deduce a simple rule for deciding whether or not a given representation is reducible, and we
shall see then that I'; is in fact irreducible.

The orthogonality theorem

Many of the properties of IRs that are used in applications of group theory in chemistry and
physics follow from one fundamental theorem called the orthogonality theorem (OT). If
I, TV are two irreducible unitary representations of G which are inequivalent if i #;
and identical if i =/, then

2\/ D7) /178 DUT) s = 65 bpr 8ys. (1)

Note that T(T );q means the element common to the pth row and gth column of the
MR for the group element 7 in the ith IR, complex conjugated. The sum is over all
the elements of the group. If the matrix elements I'(T )pa> I(T),, are corresponding
elements, that is from the same row p=r and the same column ¢ =s, and from the
same IR, i =j, then the sum is unity, but otherwise it is zero. The proof of the OT is
quite lengthy, and it is therefore given in Appendix A1.5. Here we verify eq. (1) for some
particular cases.
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4.4.1

Group representations

Example 4.3-1 (a) Evaluate the LS of eq. (1) for the 2-D IR I'; of Cs, (i =j=3) with
p=r=1,qg=s=1.(b) Repeat the procedure fori =1, j=3.

For (a), the LS = (2/6) x [1 + Ya+ Ya+ 1+ Ya+ Y4] = 1; for (b),the LS = /1/4\/2/6 ¥
[l =% — Y%+ 1 — Y% — %] = 0. Notice that we are multiplying together pairs of numbers as
in the evaluation of the scalar product of two vectors. The Hermitian scalar product of two
normalized vectors u and v in an n-dimensional linear vector space (LVS) with unitary
(orthonormal) basis is

u-v=">uv;=1 (u, v parallel),
i=1

=0 (u, v orthogonal). 2)

So we may interpret eq. (1) as a statement about the orthogonality of vectors in a
g-dimensional vector space, where the components of the vectors are chosen from the
elements of the /;, [-dimensional matrix representations I'(T), TV(T), i.e. from the pth row
and gth column of the ith IR, and from the 7th row and sth column of the jth IR. If these are
corresponding elements (p=r, g=s) from the same representation (i =j), then the
theorem states that a vector whose components are I'(T),,, T € G, is of length \/g/I;.
But if the components are not corresponding elements of matrices from the same represen-
tation, then these vectors are orthogonal. The maximum number of mutually orthogonal

vectors in a g-dimensional space is g. Now p may be chosen in /; ways (p=1, ..., /) and
similarly ¢ may be chosen in /; ways (=1, ..., ;) so that I'(T )pg may be chosen in I
from the ith IR and in 3" /? from all IRs. Therefore,

I <g A3)

In fact, we show later that the equality holds in eq. (3) so that

Yii=g 4)

The characters of a representation

The character ' of the MR I"(4) is the trace of the matrix I'(4), i.e. the sum of its diagonal
elements I'(4),,,,

X'(4) =3 T'(A),, = Tr T'(4). (D

The set of characters {x'(4) x'(B) ...} is called the character system of the ith representa-
tion T,

Properties of the characters

(1) The character system is the same for all equivalent representations. To prove this, we
need to show that TrM'=Tr S M S~' = Tr M, and to prove this result we need to show first
that Tr AB =Tr BA:
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Tr AB =) apg byp = > byp apy = Tr BA; 2)
Py q p

2) TTM=Tr(SMS'=TrS'SM=TrM. 3)

Equation (3) shows that the character system is invariant under a similarity transformation and
therefore is the same for all equivalent representations. If for some S € G, SR st=r it
then R and T are in the same class in G. And since the MRs obey the same multiplication
table as the group elements, it follows that all members of the same class have the same
character. This holds too for a direct sum of IRs.

Example 4.4-1 From Table 4.1 the characters of two representations of Cs, are
Cyy E Cf C; o4 0e oy
1 1 1 1 1 1
s 2 -1 -1 0 0 O

(i) The sum of the squares of the characters is equal to the order of the group. In eq.
(4.3.1), set g =p, s=r, and sum over p, r, to yield

(43.1) Z¢__x )" \/I/g x/(T)

= i Z/: -1 = Oijli;
220 =02 1
XT:Xi(T)*Xj(T) =g\/li/l; 65 = g by. 4)
(4) SN =g (=) (5)
) SX(T)X(T) =0 (i #)). (6)

T
Equation (5) provides a simple test as to whether or not a representation is reducible.
Example 4.4-2 Is the 2-D representation I'; of Cs, reducible?

X(T3)={2 —1 ~1 000},

Sha(T))P=4+1414+0+0+0=6=g,
T

so it is irreducible. The 3 x 3 representation in Table 4.1 is clearly reducible because of its
block-diagonal structure, and, as expected,
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Table 4.2. General form of the character table for a group G.

g, 1s a symbol for the type of element in the class 4, (e.g. Cs,
0y); ¢ 1s the number of elements in the kth class; g, is E, c;is 1,
and T'! is the totally symmetric representation.

G c1 81 2 & . Ci8k

! K@y @) N
r @) %) %)
I @) Y@ X%
I @) Y% NG

SITP =3 +200 +3(17 =12 £,

Generally, we would take advantage of the fact that all members of the same class have the
same character and so perform the sums in eqgs. (4), (5), and (6) over classes rather than over
group elements.

(iii) First orthogonality theorem for the characters. Performing the sum over classes

Ne . .
@) X Vals X6 Verlz X' (60 = 7)

where N, is the number of classes and ¢, is the number of elements in the kth class, €
Equation (7) states that the vectors with components \/ci/g X' (6x), /cx/g X (6)) are
orthonormal. If we set up a table of characters in which the columns are labeled by the
elements in that class and the rows by the representations — the so-called character table of
the group (see Table 4.2) — then we see that eq. (7) states that the rows of the character table
are orthonormal. The normalization factors \/c;/g are omitted from the character table
(see Table 4.2) so that when checking for orthogonality or normalization we use eq. (7) in
the form

Ne . T

g Y X(B) X (%) = 6y (®)
k=1

It is customary to include ¢ in the column headings along with the symbol for the elements

in 6 (e.g. 30, in Table 4.3). Since E is always in a class by itself, £ =% is placed first in

the list of classes and ¢; =1 is omitted. The first representation is always the totally

symmetric representation I';.

Example 4.4-3 Using the partial character table for C3, in Table 4.3, show that the
character systems {y} and {x3} satisfy the orthonormality condition for the rows.

g Zk:cvc (@l = (1/6)[1(1)* +2(1)° +3(1)"] = 1;
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Table 4.3. Partial character table for Cs, obtained
from the matrices of the IRs Iy and 15 in Table 4.1.

€ = {E},(gz = {C; C;}, and €5 = {O’d Oe O’f},
and soin Cs,, c1 =1, c, =2, and ¢35 =3.

E 2C3 3O'V
T, 1 1 1
I 2 -1

g’IXkZCk PG (@0l = (1/6)[12)* +2(=1)* +3(0)°] = 1

g”XkICk X1(€x)" x3(€x) = (1/6)[1(1)(2) +2(1)(=1) + 3(1)(0)] = 0.

In how many ways can these vectors be chosen? We may choose the character x'(%) from
any of the N, IRs. Therefore the number of mutually orthogonal vectors is the number of
IRs, N, and this must be < N, the dimension of the space. In fact, we shall see shortly that
the number of IRs is equal to the number of classes.

(iv) Second orthogonality theorem for the characters. Set up a matrix Q) and its adjoint
Q' in which the elements of Q are the characters as in Table 4.2 but now including
normalization factors, so that typical elements are

Qu = Ver/g X' (61), (Q)y = Qi = Ver/g X (%) )

© QoY= %:Qik(QT)kj = Zkf cr/g X' (€x) Ver/g X' (€)= 8. (10)

1

(10) Q QT =E (Q a unitary matrix); (11
(11) Q'Q=E; (12)
12) (Q'Q)y = 2(QNWQu = 29 Qu

N, _ _ (13)
= ; cr/g X' (€r)"Ve/g X (1) = bu.

Equation (13) describes the orthogonality of the columns of the character table. It states
that vectors with components \/c;/g x'(%}) in an N;-dimensional space are orthonormal.
Since these vectors may be chosen in N, ways (one from each of the N, classes),

(13) Ne < N, (14)
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But in eq. (7) the vectors with components \/c; /g X' (%) may be chosen in N, ways (one
from each of N, representations), and so

(7) N; < Ne. (15)

(14),(15) N; = N.. (16)

The number of representations /V; is equal to N, the number of classes. In a more practical
form for testing orthogonality

N .
(13) ;X’(‘w’k)*X'(%) = (g/cx)u- (17)

These orthogonality relations in eqgs.(8) and (17), and also eq.(16), are very useful in setting
up character tables.

Example 4.4-4 In Cs, there are three classes and therefore three IRs. We have established
thatI'; and I's are both IRs, and, using > /# = g, we find | + /5 + 4 = 6, so that/, = 1. The

character table for Cs, is therefore as given in Table 4.4(a).
From the orthogonality of the rows,

1(1)(1) +2(1)x2(C3) +3(1)xa(0) =
1(2)(1) +2(=1)x2(C3) +3(0)x2(0)

0,
0,
so that x»(C5) =1, x2(c) = —1. We check for normalization of the character system of I',:
Sarlx (@) = 1(1)° +2(1)° +3(-1)’ = 6 = g.
k

Exercise 4.4-1 Check the orthogonality of the columns in the character table for Cs, which
was completed in Example 4.4-4.

(v) Reduction of a representation. For I" to be a reducible representation, it must be
equivalent to a representation in which each matrix I'(7") of T has the same block-diagonal
structure. Suppose that the jth IR occurs ¢’ times in I'; then

X(T) = 3 ,e/x(T). (18)

Multiplying by x(7)" and summing over 7 yields

(18),(4) 2T X(T) = Zc’ZTin(T)*xj(T) =Yl gb=gc); (19)
J J
. Ne
(19) ¢ = g’lZT)xi(T)*x(T) =2 Xi(G) X (%) (20)
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Table 4.4(a) Character table for Cs,.

Csy E 2C; 30
T, 1 1 1

I 1 X2(C3) X2(0)
I 2 -1 0
Table 4.4(b).

C3 E C;r C;
E E cf c;
Y cy Cy E
Cy Cy E cy
Table 4.4(c).

C3 E C;r C;
E E Cy (o
Cy cy E cy
Cy Cy s E

Normally we would choose to do the sum over classes rather than over group elements.
Equation (20) is an extremely useful relation, and is used frequently in many practical
applications of group theory.

(vi) The celebrated theorem. The number of times the ith IR occurs in a certain reducible
representation called the regular representation T is equal to the dimension of the
representation, /;. To set up the matrices of I'" arrange the columns of the multiplication
table so that only E appears on the diagonal. Then I'"(T') is obtained by replacing 7 by 1 and
every other element by zero (Jansen and Boon (1967)).

Example 4.4-5 Find the regular representation for the group C;. C; = {E C; C5}.
Interchanging the second and third columns of Table 4.4(b) gives Table 4.4(c).
Therefore, the matrices of the regular representation are

The group Cs is Abelian and has three classes; there are therefore three IRs and each IR
occurs once in I'". (But note that the matrices of I'" are not block-diagonal.)
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Proof of the celebrated theorem

(20) = g’IXTIXi(T)* xe(T)
= g '\(E) x:(E), (x:(T) = 0,V T # E)
=g ' lig=1. Q1)
The dimension of I'" is g; it is also Z I2. Therefore
| YE =g 22)

as promised earlier.

Answer to Exercise 4.4-1

Normalization of the class 2C;: 12+1°4(—1)>=3=6/2, and of the class
30: 12+ (=1)*+(0)> =2 =6/3. Orthogonality of E and 2Cs: 1(1)+ 1(1)+2(—1)=0;
orthogonality of E and 3o: 1(1)41(—1)+42(0)=0; orthogonality of 2C; and
30: 1(1)+ 1(=1)+ 1(—1)(0)=0.

Character tables

Character tables are tabulations by classes of the characters of the IRs of the point groups.
They are used constantly in practical applications of group theory. As an example, the
character table for the point group Cs,, (or 3m) is given in Table 4.5. The name of the point
group in either Schonflies or International notation (or both) is in the top left-hand corner.
The headings to the columns are the number of elements ¢, in each class % and a symbol
describing the type of elements in that class. For example, the heading for the column of
characters for the class {Cy C; } in Cs, is 2C;. Usually Schonflies symbols are used, but
some authors use other notation. Each row is labeled by the symbol for an IR; usually either
Bethe or Mulliken notation is used, but sometimes one encounters other notations and
examples of these will be introduced later. In Bethe’s notation, the IRs are labeled

Table 4.5. Character table for the point group Cs,.

The IRs are labeled using both Bethe and Mulliken notation.

C3V E 2C3 3UV

—_

'y, Ay 1 1 z x2+y2, 2
Iy, A, 1 -1 R,
IyE 2 -1 0 (x»),(RR), &= x), (2 zx)

—_
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Table 4.6. Mulliken notation for the IRs of the point groups.

The entry + or — signifies a positive or negative integer, respectively.

i Notation used for IR X(C)" x(Cy') or x(y)” x(ow) x{)

1 A +1
B -1
subscript 1 +1
subscript 2 -1
2 E¢
3 T
1,2,0r3 superscript ’ +
superscript "/ -
subscript g +
subscript u —

“Or x(S,) if the principal axis is an S,, axis. In D, the four 1-D IRs are usually designated A, By, B,,
B3, because there are three equivalent C, axes.

®If no C,’ is present then subscripts 1 or 2 are used according to whether x(c) is +1 or —1.

“The symbol E for a 2-D IR is not to be confused with that used for the identity operator, E.

'y, T, T, . .. successively; I'; is always the totally symmetric representation. The remain-
ing representations are listed in order of increasing /. Mulliken notation, which is generally
used in molecular symmetry, is explained in Table 4.6. Thus, the totally symmetric
representation is A; in Cs,. The second IR is labeled A, since x(o,) = —1, there being
no C, axes in this group. The third IR is labeled E because /= 2. The dimension of any
representation is given by x(E ) since the identity operator E is always represented by the
unit matrix. In addition to the characters, the table includes information about how the
components of a vector r = ex + e,) + e5z transform (or how linear functions of x, y, or z,
transform) and how quadratic functions of x, y, and z transform. This information tells us to
which representations p and d orbitals belong. For example, the three p orbitals and the five
d orbitals are both degenerate in spherical symmetry (atoms), but in C;, symmetry the
maximum degeneracy is two and

FPZPI@P3 =A DE,
I'y=T1¢2I5=A,92E.

We say that “z forms a basis for A;,” or that “z belongs to A;,” or that “z transforms
according to the totally symmetric representation A;.” The s orbitals have spherical
symmetry and so always belong to I'|. This is taken to be understood and is not stated
explicitly in character tables. R,, R, R. tell us how rotations about x, y, and z transform
(see Section 4.6). Table 4.5 is in fact only a partial character table, which includes only the
vector representations. When we allow for the existence of electron spin, the state function
P(x y z) is replaced by ¥(x y z)x(ms), where x(ms) describes the electron spin. There are
two ways of dealing with this complication. In the first one, the introduction of a new
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operator E = R(2n n) # E results in additional classes and representations, and the point
groups are then called double groups. The symbols for these new representations include
information about the total angular momentum quantum number J. Double groups will be
introduced in Chapter 8, and until then we shall use simplified point group character tables,
like that for C;, in Table 4.5, which are appropriate for discussions of the symmetry of
functions of position, f(x y z). The second way of arriving at the additional representations,
which are called spinor representations (because their bases correspond to half-integral J),
will be introduced in Chapter 12. This method has the advantages that the size of G is
unchanged and no new classes are introduced.

Special notation is required for the complex representations of cyclic groups, and this
will be explained in Section 4.7. The notation used for the IRs of the axial groups C,., and
Do is different and requires some comment. The states of diatomic molecules are
classified according to the magnitude of the z component of angular momentum, L.,
using the symbols

> 1T A @
according to
A=]L|=0 1 2 3

All representations except ¥ are two-dimensional. Subscripts g and u have the usual
meaning, but a superscript + or — is used on X representations according to whether
x(oy)==+1. For L, > 0, x(C,), and x(o,) are zero. In double groups the spinor rep-
resentations depend on the total angular momentum quantum number and are labeled
accordingly.

Axial vectors

Polar vectors such as r =e;x + e,y + e3z change sign on inversion and on reflection in a
plane normal to the vector, but do not change sign on reflection in a plane that contains the
vector. Axial vectors or pseudovectors do not change sign under inversion. They occur as
vector products, and in symmetry operations they transform like rotations (hence the name
axial vectors). The vector product of two polar vectors

l'1><l'2:R (1)

is a pseudovector, or axial vector, of magnitude 7 r, sin 6, where 6 is the included angle,
0 <6 <7 (see Figure 4.1(a)). The orientation of the axis of rotation is that it coincides with
that of a unit vector n in a direction such that ry, r,, and n form a right-handed system.
However, R is not a polar vector because its transformation properties under inversion and
reflection are quite different to those of the polar vector r. In Figure 4.1 the directed line
segment symbols used for ry, r, are the conventional ones for polar vectors, but the curved
arrow symbol used for R indicates a rotation about the axis n. The direction of rotation is
that of the first-named vector r; into r», and the sign of R is positive because the direction
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n n
-R
R r,
r
4 0
r
r -R !
(a) n’ (b)
o
R
r
0
r
R 1

(© (@

Figure 4.1. (a) The axial vector, or pseudovector, r; X r, = R. The curved arrow symbol used for R
expresses the idea that the sense of rotation (which is that of a right-handed screw advancing along n,
where n, r;, and r, form a right-handed system) is from rjinto r;, i.e. from the first vector into the
second one. (b) Reversing the order of the vectors in a vector product reverses the direction of rotation
and so reverses its sign. (¢) Invariance of the pseudovector r; x r, = R under reflection in a plane
normal to the axis of rotation. This figure shows why R must not be represented by a directed line
segment normal to the plane of r;, r, because such an object would change sign on reflection in the
plane of ry,r;, whereas the sense of rotation of r; into r, as expressed by the curved arrow, is
unchanged under this symmetry operation. (d) Reversal of the direction of rotation occurs on
reflection in a plane that contains the axis of rotation.

of rotation appears anticlockwise on looking down the axis towards the origin. Reversing
the order of the vectors in a vector product reverses its sign:

r) Xry = —(I‘l X l’z) (2)

(Figure 4.1(b)). One can see in Figure 4.1(c) that reflection in a plane normal to the axis of
rotation does not change the direction of rotation, but that it is reversed (Figure 4.1(d)) on
reflection in a plane that contains the axis of rotation. Specification of a rotation requires a
statement about both the axis of rotation and the amount of rotation. We define infini-
tesimal rotations about the axes OX, OY, and OZ by (note the cyclic order)

R, = p(ex x e3), 3)
R, = p(e; x ey), “4)
R. = p(er x e). %)

Under a symmetry operator 7, R, transforms into R/ = ¢(e, x e;) and similarly, so that
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Table 4.7. Transformation of the basis {R. R, R.} under the operators in the first column.

T ell e2/ e3/ Rx/ Ry/ Rz’
E €] € €3 R, R, R.
R(n/2 z) e, —e e R, —R, R,
R(m z) —e —e) e; —R, -R, R,
R(TE X) € — €7 — €3 Rx — Ry — Rz
Rx 110) —e —e —e;  —R, ~R, ~R.
1 € € €3 RX Ry Rz
R(¢p z) ce+se, —se tce; e cR.+sR, —sR.+cR, R,
T(R. R, R.|= (R/R/R| = (R, R, R, | T®(T), (6)

where
R/ =¢d(e)' x e3), R/ = ¢(es' xe)), R = p(e) x &). (7

T ®(T) is not usually the same as the MR T'™)(T) for the basis ( e, e, es| (previously called just
I'(7), since there was no need then to specify the basis). With this refinement in the notation,

Te, e; e5] = (e & es'| = (e; ey e3 (7). (8)

The transformation properties of {R, R, R.} are then readily worked out from eq. (6) using
the primed equations (7) with {e,’ e;’ e;'} obtained from eq. (8) with the use, when
necessary, of eq. (2), which simply states that reversing the order of the terms in a vector
product reverses its sign.

Example 4.6-1 Find how the rotations {R, R, R.} transform under the symmetry operators:

E,R(n/2 z), R(n z), R(n x), R(n [110]), I, R(¢ z). The solution is summarized in
Table 4.7. Figure 4.2 will be found helpful in arriving at the entries in columns 2, 3, and 4.

Exercise 4.6-1 Verify in detail (from eq. (7)) the entries in columns 5, 6, and 7 of Table 4.7
for R(¢ z).

The MRs of the operators in the rows 2 to 6 for the basis (R, R, R.| are

E R(n/2 z) R(n z R(m x) R(z [110])
1 00 01 0 100 1 00 010
010 1 00 010 0 1 0 100
0 0 1 0 0 1 0 0 1 0 01 0 0 1

This is a matrix representation of the group Dy = {E 2Cy C; 2Cy’ 2C,"} and it is clearly
reducible. The character systems of the two representations in the direct sum
I'® =1, &5 are
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C4z °
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O 1
CZh
e O
CZZ C2x

Figure 4.2. Projection in the xy plane of the unit sphere in configuration space, showing the initial
orientation of the unit vectors e, e, before applying the symmetry operator 7. Note that e; is normal
to the plane of the paper and points upwards towards the reader. Also shown are the positions of the
representative point E after applying to configuration space the symmetry operators in rows 2 to 6 of

Table 4.6. The unit vector b lies along the direction [1 1 0].

E 2C, G 2C' 26
r, = {1 1 1 -1 -1}
r's = {2 0 -2 0 0}

Exercise 4.6-2 Show that I'5 is an IR of D4. How many IRs are there in the character table
of D4? Give the names of I', and I'5 in Mulliken notation.

Answers to Exercises 4.6
Exercise 4.6-1 From eq. (7) and columns 2—4 of Table 4.7,
e xey =(—se +ce) xe3=—s(e] xe3)+ce; xe3)
=s(e; x e;) + c(e; X e3).

Therefore, R, = ¢ Ry + s R,.

e;' xe' =e3x (ce +se)=cle; xe)+s(es xe)

=c(e; x e1) —s(ez x e3).
Therefore, R, = —s R, + ¢ R,.
e’ xe) =(ce +sey)x(—se xcey)=c(e] xe)+ (—s°)(ex x e)

= (e; x €2).
Therefore R, = R..
Exercise 4.6-2 If I'is an IR, the sum of the squares of the characters is equal to the order of

the group. For I's, 1(2)* 4+ 1(—2)* + 2(0)> = 8 = g, so I's is an IR. There are five classes and
therefore five IRs. From Y /2 = 8 four are 1-D and one is 2-D. Since I's is the only IR with
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[=2, it is named E; I', is a 1-D IR, and in Mulliken notation it is called A, because
Xx(Cq) = +1 and x(C)) = —1.

Cyclic groups

If A" = E, then the sequence {Ak}, withk=1,2,...,n,
{4443 ... 4" =E}, (1)

is a cyclic group of order n. All pairs of elements A”, A* commute and so {4*} is an Abelian
group with n classes and therefore n 1-D IRs. If 4 is a symmetry operator then, in order to
satisfy A" = E, A must be either E (n = 1), I (n = 2), or a proper or an improper rotation, and
if it is an improper rotation then » must be even. Writing the » classes in their proper order
with E = A" first, a representation of

{A"=E 4 4* ... 4"} 1"
is given by
{e"=1 ¢ & ...}, )
where the MRs
e = exp(—2mik/n), k=1, ...,n 3)

are the n complex roots of unity. Note that
" F = exp(—2mi(n — k)/n) = exp(2nik/n) = (*)*. 4)

A second representation is

{€)=1 & (&) ... ()"}, (5)
so that the IRs occur in complex conjugate pairs generated from
x(4) = exp(—2mip/n), p = £1, £2, ... (6)

p =0 gives the totally symmetric representation

ThorA={111...1}. (7
Ifnisodd,p=0,+1,+£2, ..., 4 (n— 1)/2 generates all the representations which consist
of I'y and (n — 1)/2 conjugate pairs. If n is even, p=0, +1, 2, ..., +(n—2)/2, n/2.

When p =n/2, x(4%) = (") = [exp(—im)]F = (—1)*, which is a representation
horB={l -1 1 -1 ... -1} 8)

fromk=n123 ... n— 1. The character table of C; is given in Table 4.8.
To study the transformation of functions of {x y z} under R (¢ z) we make use of

Rf({xyz}) =f(R {xyz}):
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Table 4.8. Character table for Cs.

The form of this table with real basis functions (E = 'E @ ?E) given below the dashed line is
seen in many compilations of character tables, but in practical applications the form with
1-D representations and complex basis functions should be used. If making comparisons
with other compilations, note that we use the Condon and Shortley (1967) phase conven-
tions, whereas Lax (1974) uses the Fano and Racah (1959) choice of phase (which forj =1
would introduce an additional factor of i in the complex bases).

C, E cy Cy e =exp(—i2n/3)

A 1 1 1 2R, () — i), 2

'E 1 € € —(x+1iy), R +iR,, z (x +1iy), (x —iy)°

’E 1 e € X —1iy, Ry — iR, z (x — iy), (x +iy)

A 1 1 1 R, X —l—y2, 2

E 2 —1 -1 *), R R,), (47 2x), (xy x* = )7)
x c s O0f(«x cx+sy

TRY=|y|l=]-s ¢ O||y|=|-sx+cy]. 9)

z 0 0 1 z z

Thus a proper (or improper) general rotation about z mixes the functions x and y. This is
why (x y) forms a basis for the 2-D representation E in Cj, while z, which transforms by
itself under both 2C5 and 30, forms a basis for the 1-D representation A;. In C; there are, in
addition to A, two more 1-D IRs. Since

R'(x+iy) = (cx+sy)£i(—sx+cy) = (cFis)(x i), (10)

— (x+1iy) and (x —iy) form 1-D bases, that is transform into themselves under R(¢ z)
rather than into a linear combination of functions. (The negative sign in —(x + iy) comes
from the Condon and Shortley phase conventions (see Chapter 11).) From eq. (10), the
character for —(x +1iy) is e =exp (—i¢) for a general rotation through an angle ¢, which
becomes exp(—27i/3) for a C7 rotation, in agreement with eq. (6) for p = 1. For the basis
(x — iy) the character is exp(i¢) = ¢, or exp(27i/3) when n =3, corresponding to p = —1 in
eq. (6). In character tables of cyclic groups the complex conjugate (CC) representations are
paired and each member of the pair is labeled by 'E, %E (with the addition of primes or
subscripts g or u when appropriate). Because the states p and —p are degenerate under time-
reversal symmetry (Chapter 13), the pairs lE,, and 2Ep are often bracketed together, each
pair being labeled by the Mulliken symbol E, with superscripts and subscripts added when
necessary. The character table for C; is given in Table 4.8 in both forms with complex and
real representations. Complex characters should be used when reducing representations or
when using projection operators (Chapter 5). However, in character tables real bases are
usually given, and this practice is followed in Appendix A3.
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Induced representations

Remark The material in this section is not made use of in this book until Section 16.5, in
the chapter on space groups. Consequently, readers may choose to postpone their study of
Section 4.8 until they reach Section 16.5.

Let G= {g;} be a group of order g with a subgroup H= {/;} of order 4. The left coset
expansion of G on H is

t
G=> g H t=g/h g =E, (1)
r=1

where the coset representatives g, for r=2, ..., ¢, are € G but ¢ H. By closure in G,
g7 85 (gs € {g/}) 1s € G (g, say) and thus a member of one of the cosets, say g, H. Therefore,
for some h; € H,

g & =8 =g . 2
() ggH=g hH=g H; 3)
3) g (gs H| = (g- H| = (g H| I'*(g;). “4)

In eq. (4) the cosets themselves are used as a basis for G, and from eq. (3) g H is
transformed into g, H by g;. Since the operator g; simply re-orders the basis, each matrix
representation in the ground representation T'® is a permutation matrix (Appendix A1.2).
Thus the sth column of T'® has only one non-zero element,

“, ) [C(gi)lys = 1, whenu =r, g g =g I
=0, when u #r. (5)

Because binary composition is unique (rearrangement theorem) the same restriction of
only one non-zero element applies to the rows of "%,

Exercise 4.8-1 What is the dimension of the ground representation?

Example 4.8-1 The multiplication table of the permutation group S(3), which has the
cyclic subgroup H = C(3), is given in Table 1.3. Using the coset representatives
{g,} = {Po P53}, write the left coset expansion of S(3) on C(3). Using eq. (2) find g, #; for
V g; € G. [Hint: g, € {g,} and h; are determined uniquely by g;, g;.] Hence write down the
matrices of the ground representation.

The left coset expansion of S(3) on C(3) is

t
G:ngH:PQH@Pg,H:{P()P] Pz}@{P3P4P5}, (6)
s=1

with g, and 4, determined from g; g, =g =g, /;, given in Table 4.9. With the cosets as a
basis,

gj<P0 H,P3 H| = <P0/ H,P3/ H| = <P() H,P3 H‘ Fg(gj) (7)
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Table 4.9. The values of g, and h; determined from
eq. (4.8.2) for G=S(3) and H=C(3).

gS:PO gs:PS
g/ 8s 8k 8r hl g/ &s 8k 8r hl
Py Py Py Py Po Py Py P3 Pz Py
Py Py P Py Py Py Py Ps P3; P
P, Py P, Py P P, Py P, Py P
Py Py P3; P3Py Py Py Py Py Py
P, Py P, P3 P P, P3s P, Py P,
Ps Py Ps Py P Ps Py P Py P

Table 4.10. The ground representation I'® determined from
the cosets PyH, P3 H by using the cosets as a basis,
eq. (4.8.4).

& Py Py P, Py Py Ps
Py Py’ Po,Ps  Py,Ps Py, Py P3Py P3Py P3P

S [ [ [

The matrices of the ground representation are in Table 4.10. Each choice of g; and g, in
eq. (2) leads to a particular 4, so that eq. (2) describes a mapping of G on to its subgroup H
in which #; is the image of g;.

Example 4.8-2 Write a left coset expansion of S(3) on H = {P, P5}. Show that for g, = P,
g- € {g,} and h; € H are determined uniquely for each choice of g; € G.
Using Table 1.3,

S(3) = Po{Po P3} ® P1{Py P3} ® P2{Py P3}. (8)

The g, and /4, that satisfy eq. (2) are given in Table 4.11, where {g,} = {Py P; P>} and
h; € {Po P3}. Table 4.11 verifies the homomorphous mapping of G — H by {P, P P,} —
Py and {P5; P4 Ps} — P;. When necessary for greater clarity, the subelement h; can be
denoted by 4, or by A,(g)), as in

g & = & ha(g))- ©)
9).(5) ha(g) =g, 'g g =>.8,'g & T4(g)]us- (10)

The purpose of this section is to show how the representations of G may be constructed
from those of its subgroup H. Let {e,},g=1, ..., [, beasubsetof {e,},g=1, ..., A, that
is an irreducible basis for H. Then
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Table 4.11. This table confirms that for g;= P, g, and h;
are determined by the choice of g, where g; g,= gr= g, h;.

g &s 8k & hy
Py P, P P Py
Py Py Py P Py
P2 Pl P() P() PO
P, P, Ps Py Py
Ps P P Py P
I -
hieg =3 ¢ Li(hi),,, (11)
p=1

where T; is the ith IR of the subgroup H. Define the set of vectors {e,,} by
ey=g €, r=1,...,tq9g=1,...1. (12)
Then (e,,| is a basis for a representation of G:

2).(5) g ey =8 & e =& hieg =23 g [T%(g)]s 1 &g (13)

In eq. (13) g, has been replaced by

since the sth column of I'® consists of zeros except u =r.

(13),(11) g ey =2 & T8(g)]us2ep Lilha),, (15)
u P

= ZZ euP (F(g])[u s])pq' (16)
u p

In the supermatrix I' in eq. (16) each element [u s] is itself a matrix, in this case f,«(hsl)
multiplied by T'%(g),s.

(16),(15) T(g)up. sg = TE(&)us Lilhat) 0 (17)

in which u, p label the rows and s, ¢ label the columns; I'(g;) is the matrix representation of
g in the induced representation I' = T'; 7 G. Because I'® is a permutation matrix, with
I'*(gj)us = 0 unless u = r, an alternative way of describing the structure of I is as follows:

(15),(16),(5), (10) L)y, 50 = Lil80'8) &) pg Our (18)

Ti(g;'g g) is the matrix that lies at the junction of the uth row and the sth column of T, g,
and the Kronecker 6 in eq. (18) ensures that I'; is replaced by the null matrix except for I}, 4.
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Table 4.12. Character table of the cyclic group C(3) and of the
permutation group S(3).

€ =exp(—2in/3).

C(3) Py Py P, S(3) Py Py, P, P3, Py, Ps
LA 1L TLA, 1 1 1
I, 'E 1 ¢ ¢ Iy, Ay 1 1 -1
B 1 ¢ ¢ s, E 2 0

Table 4.13. Subelements hy(g;) and MRs 1'(g;) of two representations of S(3), I'1G,
obtained by the method of induced representations.

The third and fourth rows contain the subelements £,(g;) as determined by the values of g,
(in row 2), g;, and g, (in the first column). The I'*(g;) matrices were taken from Table 4.9.
€ =exp(—i2n/3). Using Table 4.11, we see that the two representations of S(3) are
[1G=A @Ayand,1G =E.

gj PO Pl P2 P3 P4 P5
& 8s Py, P3 Py, P3 Py, P3 Py, P3 Py, P3 Py, P3
P, P, P, P, Py P, P,
Ps P P, P, Py P, P,
I'1G 1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0
171G 10 e 0 et 0 0 1 0 & 0 ¢
0 1 0 ¢&* 0 ¢ 1 0 e 0 e 0
xTi1G6) 2 2 2 0 0 0
x(T2 1 G) 2 -1 -1 0 0 0

Example 4.8-3 Construct the induced representations of S(3) from those of its subgroup C(3).

The cyclic subgroup C(3) has three 1-D IRs so that fi(hsl) has just one element (p =1,
q = 1). The character table of C(3) is given in Table 4.13, along with that of S(3), which will
be needed to check our results. The subelements 4, and coset representatives g, depend on
gjand g, and our first task is to extract them from Table 4.8. They are listed in Table 4.13.
Multiplying the [f‘,»(hsl)]” = Xi(hg) by the elements of I'*(g;) in Table 4.12 gives the
representations of S(3). An example should help clarify the procedure. In Table 4.13, when
gi= P4, g,= P3,and g, = P, the subelement A,(g;) = P>. (Inrows 3 and 4 of Table 4.13 the
subelements are located in positions that correspond to the non-zero elements of I'%(g;).)
From Table 4.10, [T (P4)];2 =1, and in Table 4.12 x,(P,) = €%, so that [f‘z 1Gly, = €%,
as entered in the sixth row of Table 4.13.

From the character systems in Table 4.13 we see that for the IRs of S(3),
[f‘1 1G] =A; ®A; and [fz 1 G] = E. We could continue the table by finding I's 1 G, but
since we already have all the representations of S(3), this could only yield an equivalent
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representation. Note that while this procedure I' T G does not necessarily yield IRs, it does give
all the IRs of G, after reduction. A proof of this statement may be found in Altmann (1977).

Character system of an induced representation
We begin with
g =g hg . (19)
When s = r,
(19) g=ghg " (20)
Define
{grhg '} =W,V heH, @1

where H” is the subgroup conjugate to H by g,.
Exercise 4.8-2 Verify closure in H'". Is this sufficient reason to say that H" is a group?

The character of the matrix representation of g; in the representation I" induced from I is

(20) x(g) = 2-x-(g)), (22)
where the trace of the rth diagonal block (s =7r) of I is
(5),7) x-(g) = Xxi (hi), g € H
0, g ¢ H. (23)
A representation I' of G = {g;} is irreducible if
(4.4.5) >x(g)'x(g) =g (24)
j

(24),(22) szgW+zgzmgﬁm®ﬁx. (25)

roj S r#s Jj
The first term in eq. (25) is

t

(25),(23) CX P )l = h=th=g, (26)

and so the second term in eq. (25) must be zero if I" is irreducible. The irreducibility
criterion eq. (25) thus becomes

(25),(23) {Z} xr(ge)" xs(gr) =0, Vr#s, {g} =H NH. (27)
8k

Equation (27) is known as Johnston'’s irreducibility criterion (Johnston (1960)).
The number of times ¢’ that the IR T; occurs in the reducible representation I' = > ¢’ T;
of a group G = {g;}, or frequency of T';in T, is g
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(4.4.20) ¢ =g™"> xilen)" x(gw, (28)
k

where x(gy) is the character of the matrix representation of g, in the reducible represen-

tation I'. If I'; is a reducible representation, we may still calculate the RS of eq. (28), in

which case it is called the intertwining number 1 of T'; and T,

I(T;,T) =g "> xi(ge)” x(gk), T T not IRs. (29)
k
Since I (T';, ') is real, eq. (29) is often used in the equivalent form
I(T;,T) =g "> xi(ge) x(gx)*, T, T not IRs. (30)
k

IfI';, T have no IRs in common, it follows from the OT for the characters that I (I';, T") = 0.

Frobenius reciprocity theorem

The frequency ¢” of an IR T',, of G in the induced representation I'; T G with characters
Xm(g) is equal to the frequency & of I; in the subduced T',, | H. The tilde is used to
emphasize that the T; are representations of H. It will not generally be necessary in
practical applications when the Mulliken symbols are usually sufficient identification.
For example the IRs of S(3) are A, A,, and E, but those of its subgroup C(3) are A, 'E, and
%E. Subduction means the restriction of the elements of G to those of H (as occurs, for
example, in a lowering of symmetry). Normally this will mean that an IR I, of G becomes
a direct sum of IRs in H,

L, =3¢"Th Xm=30 Xy, 31
4 P

although if this sum contains a single term, only re-labeling to the IR of the subgroup
is necessary. For example, in the subduction of the IRs of the point group T to D,, the
IR T becomes the direct sum of three 1-D IRs B; & B, @ B; in D,, while A; is re-labeled
as A.

Proof
"= g“Eki Xm(g) x (&) (28")
(22) =g 'YX xmlg)" x(g)
rJ

(20),23) =g '3 Xl b g;) ulh) (32)
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(31 = h*lgzapxp(m)* Xi(hu) (33)
P

=c. (34)
The tildes are not standard notation and are not generally needed in applications, but are
used in this proof to identify IRs of the subgroup. In writing eq. (32), the sum over j is
restricted to a sum over / (subduction) because the elements g, 4; g,~' belong to the class of
h;. In substituting eq. (31) in eq. (32) we use the fact that {c”} is a set of real numbers.
Equation (34) follows from eq. (33) because of the OT for the characters. When H is an
invariant subgroup of G, H'=H*=H, V r, s. Then

(27),(22) Sxe()" xs(h) =0, Y r, 5,7 #s, (35)
]
where I', T are representations of H but are not necessarily IRs.

(29) 2[: Xr(hl)* Xs(hl) =h I(FV’FS)' (36)

Therefore, when H is an invariant subgroup of G,
(35),(36) (L, Ty) = 0 (37

that is, the representations I',, I'; of H have, when reduced, no IRs in common.

Exercise 4.8-3 Test eq. (27) using the representations I'; 1 G and T, T G of S(3), induced
from C(3).

Answers to Exercises 4.8

Exercise 4.8-1 The dimension of the ground representation is equal to the number of
cosets, t =g/h.

Exercise 4.8-2 Since {/,} =H is closed, #; h,, € H, say &,. Then

shgleghg'=ghh.g'=gh g'el,

verifying that H" is closed; Ay, &, h, are € G, and therefore {g, h; g '} satisfies the group
properties of associativity and each element having an inverse. Moreover, g, E g, ! = E,
so that H" does have all the necessary group properties.

Exercise 4.8-3 H =g, Hg ' = Po{Py P) P,}P;' ={Py P\ P,} = H.

H' = Py{Py P, P,}P;"' = {Py P, P} = H. Therefore H is invariant and {g;} =H" N
H'= H={P, P, P,}. Remember that r, s refer to different diagonal blocks. For
I 1G, S xr(gk)" xs(gx) =1+14+1=3+#0, and therefore it is reducible. For

- {ex}

T 7G> xr (&) xslge) =1+ (5*)2 + €% = 0, and therefore it is irreducible. This con-
{ev}

firms the character test made in Table 4.12.
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Problems

4.1

(a)

(b)

(©)

(d)

4.2

43
4.4

4.5

4.6

The point group of allene is Dyg = {E 284 C, 2C,’ 204} (see Problem 2.3). Choose a
right-handed system of axes so that the vertical OZ axis points along the principal axis
of symmetry.

With the basis (e, e, e3 |, determine MRs of all eight symmetry operators of this group.
Write down the character system of this matrix representation. This representation is
reducible and is the direct sum of two IRs. Write down the character systems of these
two IRs and check for normalization of the characters. Name these IRs using Mulliken
notation.

Determine how R, transforms under the group operations. You now have sufficient
information to arrange the elements of D, into classes.

How many IRs are there? What are the dimensions of the IRs not yet found? From
orthogonality relations find the character systems of these IRs and name them accord-
ing to the Mulliken conventions. Summarize your results in a character table for Dyq.
Find the character system of the DP representation I's ® I's, where I's is the 2-D
representation found in (a). Decompose this DP representation into a direct sum of
IRs. [Hint: The characters of the DP representation are the products of the characters of
the representations in the DP. Here, then, the character system for the DP representa-
tion is {xs(T) xs(T)}.]

Show that (a) (x — iy)?, (b) R+ iR,, and (c) R, — iR, form bases for the IRs of C;, as
stated in Table 4.7.

Find the character table of the improper cyclic group S.

Explain why the point group D, = {£ C,, C5x Cyy} is an Abelian group. How many IRs
are there in D,? Find the matrix representation based on (e, e, e; | for each of the four
symmetry operators R € D». The Jones symbols for R~ were determined in Problem 3.8.
Use this information to write down the characters of the IRs and their bases from the set of
functions {z x y}. Because there are three equivalent C, axes, the IRs are designated A, By,
B,, Bs. Assign the bases Ry, R, R. to these IRs. Using the result given in Problem 4.1 for
the characters of a DP representation, find the IRs based on the quadratic functions x2, yz,
zz, Xy, ¥z, ZX.

Show that

Soer xi =g o, (1
r

where j labels the IRs of G. (Since eq. (1) is based on the orthogonality of the rows, it is
not an independent relation.) Verify eq. (1) for the group Cs,. (b) Use eq. (1) to deduce
the character table of C,,. [Hint: Is C,, an Abelian group?]

(a) Show that the induction of I'; G, where H is C(3) and G is S(3), yields a
representation equivalent to I'; 1 G in Table 4.12. (b) Show that the reducible repre-
sentation ['; 1 G in Table 4.12 can be reduced into a direct sum I'; & I'; by a similarity
transformation using the matrix

_ |l
el ]
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Basis functions

The group of the Hamiltonian, or the group of the Schrédinger equation, is the set of
function operators {4 B ... T ...} isomorphous with the symmetry group
(4 B ... T ...} (Section 3.5). The function operators commute with the Hamiltonian
operator H (Section 3.6). We will now show that the eigenfunctions of A form a basis for
the group of the Hamiltonian. We make use of the fact that if {¢,} is a set of degenerate
eigenfunctions then a linear combination of these eigenfunctions is also an eigenfunction
with the same eigenvalue. (A familiar example is the construction of the real eigenfunc-
tions of A for the one-electron atom with /= 1, p,, and Dy, from the complex eigenfunctions
P 1, P —1; Po, Which corresponds to m =0, is the real eigenfunction p..) The property of a
basis that we wish to exploit is this. If we have a set of operators that form a group, then a
basis is a set of objects, each one of which, when operated on by one of the operators, is
converted into a linear combination of the same set of objects. In our work, these objects are
usually a set of vectors, or a set of functions, or a set of quantum mechanical operators. For
example, for the basis vectors of an n-dimensional linear vector space (LVS)

T{e| = (€| = (e[T'(T), (1
or, in greater detail,
Tler...ei...|=(€y...e...[=(er...e...[[(T), 2)
where
!
¢:§:gru%, j=1,..., 1 3)
i=1

The I'(7);; in eq. (3) are the elements of the jth column of the matrix representative I'(T) of
the symmetry operator 7. A realization of eq. (3) in 3-D space was achieved when the
matrix representative (MR) of R(¢ z) was calculated in Section 3.2. The MRs form a group
representation, which is either an irreducible representation (IR) or a direct sum of IRs. Let
{¢5) be a set of degenerate eigenfunctions of H that corresponds to a particular eigenvalue
E, so that

Hé,=E¢, s=1,..., 1 @)
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Because H and its eigenvalues are invariant when a symmetry operator T acts on the
physical system, 7 ¢, is also an eigenfunction of H with the same eigenvalue E, and
therefore it is a linear combination of the {¢;},

T¢, = lel@l"(T)m, s=1,...,1L (5)
In matrix form,
T{py...pg...|={d ... | =(p)...0... |T(T). (6)
Equation (6) can be written more compactly as
(g = (¢'| = (9|T(T), (7)

where (¢| implies the whole set (¢; ... ¢ ... |. Equations (7) and (1) show that the {¢,}
are a set of basis functions in an /-dimensional LVS, called a function space, which justifies
the use of the alternative, equivalent, terms “eigenfunction” and “eigenvector.” Because
of egs. (5)—(7), every set of eigenfunctions {¢,} that corresponds to the eigenvalue E forms
a basis for one of the IRs of the symmetry group G = {T’}. Consequently, every energy level
and its associated eigenfunctions may be labeled according to one of the IRs of {T7}. The
notation {¢¥}, EX means that the eigenfunctions {¢*} that correspond to the eigenvalue E*
form a basis for the kth IR. Although the converse is not true — a set of basis functions is not
necessarily a set of energy eigenfunctions — there are still advantages in working with sets
of basis functions. Therefore we shall now learn how to construct sets of basis functions
which form bases for particular IRs.

Construction of basis functions

Just as any arbitrary vector is the sum of its projections,

v=>_¢V, (D
where e; v; is the projection of v along e;, so any arbitrary function
LN
¢ = Z Z ¢s bs’ (2)
k s=1

I
where ) is over the IRs, and ) is a sum of projections within the subspace of the kth IR.

k s=1 .
The problem is this: how can we generate {d);}, p=1, ..., I, the set of /; orthonormal
functions which form a basis for the jth IR of the group of the Schrédinger equation? We
start with any arbitrary function ¢ defined in the space in which the set of function

operators {7} operate. Then

I
) ¢:ZZ¢¥=§&, 3)

k s=1
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where gbf bf is the projection of ¢ along gb’s‘ . Because gbf is a basis function,

3) Tot = Z¢k (T),,. @)

(3), @) (4/g) S T(T), T(6)
= (4/8) ST, X S ok THT),, b

= (/e X% ;F"(T),’Zp 4T, | ¢ b (5)

By the orthogonality theorem, the sum in brackets in eq. (5) is (g//,)0;46,/6,s and conse-
quently the triple sum yields unity if k=, r =p, and s = p; otherwise it is zero. Therefore,

4 (l/g)ZF’( )y T(0) =), b (6)

and so we have qb;{ apart from a constant which can always be fixed by normalization. The
operator

(4i/g) ; o(r),, T =PI, (7)

is a projection operator because it projects out of ¢ that part which transforms as the pth
column of the jth IR,

(7). (6) Pl ¢=¢] bl (8)

By using all the 131,’1,, p=1,...,1;,inturn, that is all the diagonal elements of I/(T), we can

find all the /; functions {¢1{ } that form a basis for I

(8).(2) P g= ZP ¢ = Z¢’ bi, = ¢/. )

The RS side of eq. (9) is a linear combination of the /; functions that forms a basis for I
The operator in eq. (9) is

9),(7) Pl =3 (l/g) by o(r),, T =(l/g) b X/ (T)" T. (10)

It projects out from ¢ in one operation the sum of all the parts of ¢ that transform according
to I'/. Being a linear combination of the [; linearly independent (LI) basis functions {gb/ }s

¢ is itself a basis function for IV. Equation (9) is preferable to eq. (8), that is P/ is preferred
to P/ because it requires only the characters of I”(7) and not all its diagonal elements

Z FJ( )pp- I I is 1-D, then ¢’ is the basis function for I. But if IV is not 1-D (i.e. /; is not

equal to unity) the procedure is repeated with a new ¢ to obtain a second ¢, and so on, until
I; LI functions have been obtained.
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Direct product representations

The direct product (DP) of two matrices A ® B is defined in Section A1.7. If " is the DP of
two representations I", I, then

O(T)=T(T)®@I/(T), VTeG. (1)
But is I'(7) also a representation?

(T(Ty) @ (1)) (T (T2) @ T(T2))

(I'(1) T'(T2)) @ (F(Th) T(T»))
') @ V(N T)

=T(T\Ty), or T(T\T>), 2)

(1), (A1.7.7) (1) I(T») =

which shows that the DP of the two representations I'" and I” is also a representation. The
second notation in eq. (2) stresses that the representation I'? is derived from the DP of T’
and TV. So we conclude that the direct product of two representations is itself a
representation.

If{(bf]}, g =1, ..., m,isasetof functions that form a basis for I, and {¢/},s=1, ...,n,
is a set of functions that form a basis for I, then the dirgct product set {¢,, ¢}, which contains
mn functions, forms a basis for the DP representation I'?.

T ¢ ¢ = ¢l (T {x})$/ (T~ {x})

= (T ¢.)(T ¢))
- m r"(T)pé o) TI(T),,
=32 ¢, ¢/ T(T),, T/(T),,

=229, ¢/ TUT),, 4 3)

P r
since the product of the pgth element from the MR I'’(7), and the sth element of the MR
IV(T), is the pr,gsth element of the DP matrix I'/(T). Therefore, the direct product set

{qbfl gbsj } is a basis for the direct product representation T @ I”. The characters of the MRs
in the DP representation

XII(T) = Z Z:Fij(T)pr,pr
= %: Zr:ri(T)pp r(T),,
= xi(T) x;(T). 4)

Therefore, the character of an MR in the DP representation is the product of the characters
of the MRs that make up the DP. Direct product representations may be reducible or
irreducible.
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Table 5.1. Some direct product representations
in the point group Cs,.

C3V E 2Cs 30,
A 1 1 1
A, 1 1 —1
E 2 -1 0
E®A; 2 -1 0
E® A, 2 -1 0
E®E 4 1 0

Example 5.3-1 Find the DPs of E with all three IRs of the point group Cs,. The characters
of the IRs of Cs, and their DPs with E are given in Table 5.1.
By inspection, or by using

/=g > xi(T)" x(T),

wefind EQA,=E,EQA,=E,andEQE=A, A, BE.

Symmetric and antisymmetric direct products

With j = i, we introduce the symbols ¢, wi, (g,s =1, ..., m)to designate basis functions
from two bases ~, v’ of the ith IR. (The possibility that v and 7' might be the same basis is
not excluded.) Since there is only one representation under consideration, the superscript
may be suppressed. The DP of the two bases is

(Dg] ® (U] = (Dgtsl = Val@gths + 510y | & Va(dyths — D5ty |- ©)

The first term on the RS of eq. (5) is symmetric and the second term is anti-symmetric, with
respect to the exchange of subscripts ¢ and s. These two terms are called the symmetrical
(®) and antisymmetrical (®) DP, respectively, and eq. (5) shows that the DP of the two
bases is the direct sum of the symmetrical and antisymmetrical DPs,

(4] @ (4] = ({&4|®(h5]) @ ((Dg|©(Ws])- (6)

If the two bases are identical, then the antisymmetrical DP vanishes and the only DP is the
symmetrical one.

~»

(€) by s =222 ¥ T(T),, T(T), ()
V4 r

~»

(€) b Yy =222 Uy T(T), T(T),y; ®)
P r
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()N, ©8) T, =1h> 3¢, (T, [(T),, +T(T), I(T),]
p r

FR|S 6, UINT),, T, =T, IO, )

Restoring the index i on I' for greater clarity,

©9) T ¢, by=36¢, L[0T, , + (D), (10)
p r

(9),(10) (T, = A0, T/(T),, £TN(T),, T(T),], (11)

pr,qs

where i®i means either the symmetrical or antisymmetrical DP according to whether the
positive sign or the negative sign is taken on the RS of eq. (11). To find the characters, set
q=p,s =r, and sum over p and :

) XE(T) = 1 [zzr%m,,p r'(7),, £ T(T),, r"(r»l,]

=15 [%Z;Fi(T)pp (T, + ZF"(TZ)[,,,]

= 1A[0¢(T))? £ X (T7)]. (12)

Example 5.3-2 Show that for the point group Cs,, ERE = A; @ E and EQE = A,.
Using the character table for C;, in Example 5.3-1, eq. (12) yields

Csy E 2C; 30
E

X (7 2 -1 0

XE(T) 2 -1 2

EEE(T) 3 0 1

YECE(T) 1 1 -1

Therefore, EQE = A; @ E, EQE = A, . The sum of the symmetrical and antisymmetrical
DPs is E®E, as expected from eq. (11). (See Example 5.3-1.)

Matrix elements

Dirac notation

In quantum mechanics, an integral of the form

/@Q%wzﬂﬁmf%m (1)
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is called a matrix element. QAJ{ is the adjoint of the operator Q, and the definition of QAT is
that it is the operator which satisfies eq. (1). In Dirac notation this matrix element is
written as

W |0,) = (¥,|0%,) = (OT,[¢,)- )

In matrix notation (u'|v) describes the matrix representation of the Hermitian scalar
product of the two vectors u, v, in an LVS with unitary basis (M = |e") (e| = E). The second
and third expressions in eq. (2) are scalar products in an LVS in which the basis vectors are
the functions {1),} and the scalar product is defined to be an integral over the full range of
the variables. Thus, the second equality in eq. (2) conveys precisely the same information
as eq. (1). The first part of the complete bracket in eq. (2), (1., is the bra-vector or bra, and
the last part, |¢),), is the ket-vector or ket, and the complete matrix element is a bra(c)ket
expression. Notice that in Dirac notation, complex conjugation of the function within the
bra is part of the definition of the scalar product. The ket [+,) represents the function 1), in
the matrix element integral. When Q operates on the function 1y, it produces the new
function Ql/Jq so that when Q operates to the right in eq. (2) it gives the new ket | qu>. But
because eqs. (2) and (1) state the same thing in different notation, when Q operates to the
left it becomes the adjoint operator, (1|0 = (O',| . Some operators are self-adjoint,
notably the Hamiltonian A = A

Transformation of operators
Suppose that Q f=g and that when a symmetry operator 7 acts on the physical system
Tf=/.T g=¢ Now,

g§=Tg=TQf=TQT'Tf=TQT"f" (3)

Comparing this with g = O, we see that the effect of 7'has been to transform the operator
from Q into a new operator Q’, where

3) 0'=T7T0T". (4)

Operators may also form bases for the IRs of the group of the Hamiltonian, for if O is one of
the set of operators {Q/}, and if

T T1T'=Y
g

~ .

0(T),, (5)

then the {Q/} form a basis for the jth IR.

Invariance of matrix elements under symmetry operations

In quantum mechanics, matrix elements (or scalar products) represent physical quantities
and they are therefore invariant when a symmetry operator acts on the physical system. For
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example, the expectation value of the dynamical variable Q when the system is in the state
described by the state function f'is

(0) = (F1Olf) = (flg)- (6)

It follows that the function operators 7T are unitary operators. For

(6) (flg) = (T fIT g) = (T T flg) (7)
(7) "7 =E, (8)
(8) r(1)' I(T) =E, )

so that the MRs of the function operators are unitary matrices. An important question which
can be answered using group theory is: “Under what conditions is a matrix element zero?”’
Provided we neglect spin—orbit coupling, a quantum, mechanical state function (spin
orbital) can be written as a product of a spatial part, called an orbital, and a spinor,
W(r, my) = (r)x(ms). Since Q acts on space and not spin variables, the matrix element
(W5|0|W!) factorizes as

(ALY = (W1 OLIvE) Ol xg)- (10)

It follows from the orthogonality of the spin functions that (x,|x,) = 0 unless x,, x, have
the same spin quantum number. Hence the matrix element in eq. (10) is zero unless
AS=0. When the matrix element describes a transition probability, this gives the spin
selection rule. Spin—orbit coupling, although often weak, is not zero, and so the spin
selection rule is not absolutely rigid. Nevertheless it is a good guide since transitions
between states with AS## 0 will be weaker than those for which the spin selection rule
is obeyed. Now consider what happens to a matrix element under symmetry operator 7.
Its value is unchanged, so

(WROIW) = (T YA|T 0L TV T o). (11)

The LS of eq. (11) is invariant under {7} and so it belongs to the totally symmetric
represgntation I'y. The function Q % transforms according to the DP representation
I" ®IV. To see this, consider what happens when a symmetry operator T acts on config-
uration space: Q]S|’(/J;> becomes

7O, T W) = XS T(T),, T(T),, Oll)
T | o (12)
= L XD © PTG}

Therefore under 7, Q/S|1/J;> transforms according to the DP representation I (7) @ IV(T).
The integrand in eq. (11) is the product of two functions, (1/*)" and Q§|¢;>, and it therefore
transforms as the DP I'™ @I"®IV or I'™ @I What is the condition that
I'* @ I'” 5 T''? This DP contains I'" if
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= ZT: xi(T) x “*b(T)Zg”ET:X“(T)* X"(T) #0, (13)
which will be so if and only if a=5b (from the orthogonality theorem for the characters).
Therefore the matrix element (y5|Q][1)}) is zero unless the DP I @ IV 5 I'*. But
I'* @ T* 5T, and so the matrix element is zero unless I'' @ IV @ T* > T'L. Therefore,
the matrix element is zero unless the DP of any two of the representations contains the
third one.

Transition probabilities

The probability of a transition being induced by interaction with electromagnetic radiation
is proportional to the square of the modulus of a matrix element of the form (¢*|Q/|¢)"),
where the state function that describes the initial state transforms as I”, that describing the
final state transforms as I'¥, and the operator (which depends on the type of transition being
considered) transforms as I”. The strongest transitions are the E1 transitions, which occur
when Q is the electric dipole moment operator, — er. These transitions are therefore often
called “electric dipole transitions.” The components of the electric dipole operator trans-
form like x, y, and z. Next in importance are the M1 transitions, for which Q is the magnetic
dipole operator, which transforms like R, R,, R.. The weakest transitions are the E2
transitions, which occur when Q is the electric quadrupole operator which, transforms
like binary products of x, y, and z.

Example 5.4-1 The absorption spectrum of benzene shows a strong band at 1800 A, two
weaker bands at 2000 A and 2600 A, and a very weak band at 3500 A. As we shall see in
Chapter 6, the ground state of benzene is lAlg, and there are singlet and triplet excited
states of By,, By,, and E, symmetry. Given that in Dgy,, (x, ) form a basis for E;, and z
transforms as A,,,, find which transitions are allowed.

To find which transitions are allowed, form the DPs between the ground state and the
three excited states and check whether these contain the representations for which the
dipole moment operator forms a basis:

Alg ® Biy = Biu,
A]g ® By, = Bay,
Alg ® E1y = Equ.

Only one of these (E;,) contains a representation to which the electric dipole moment
operator belongs. Therefore only one of the three possible transitions is symmetry allowed,
and for this one the radiation must be polarized in the (x, y) plane (see Table 5.2).

The strong band at 1800 A is due to the lAlg — 1E,, transition. The two weaker bands
at 2000 A and 2600 A are due to the lAlg — 1By, and lAlg IB,,, transitions becoming
allowed through vibronic couplmg (We shall analyze vibronic coupling later.) The
very weak transition at 3500 