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Preface 

In 1998 we wrote the second edition of the research-level text Molecular 
Symmetry and Spectroscopy. The present book is on the broader subject of 
molecular symmetry and it is at the student level. It is designed to explain the 
basis for what is called ‘symmetry’ in chemistry and to show how symmetry helps 

in the solution of problems in spectroscopy and in molecular orbital theory. A 

crucial part of the book is concerned with explaining the relationship between 

the geometrical symmetry of a molecule, as expressed using the point group 

symmetry of its equilibrium structure, and the true symmetry of a molecule, as 

expressed using the molecular symmetry group. The elements of the molecular 

symmetry group involve nuclear permutations and the space-fixed inversion 

operation called E*. We aim at giving a balanced account of molecular symmetry 

using both point groups and molecular symmetry groups. 

The book is organized into four parts. Part 2 introduces geometrical (point 

group) Symmetry and true symmetry, and discusses how point group symmetry 

derives by approximation from true symmetry. Part 3 shows how these two 

symmetries are used in solving problems. These two parts could be a book 

in themselves but we felt it appropriate to add the introductory part | in order 

to provide the reader with a brief account of spectroscopy, quantum mechanics 

and the derivation of molecular wavefunctions. In the final part 4, we develop 

more advanced ideas and discuss current research on symmetry; the latter focuses 

on the attempts that are being made, using atomic and molecular spectroscopy 

experiments, to determine the extent of the breakdown of each of the symmetries 

that are invoked in describing matter. 

Throughout the text, we introduce ‘shadow boxes’ such as this to focus 

attention on a particularly significant statement. 

At the end of each chapter in parts 1, 2 and 3, we have included problems 

involving the application of the ideas developed in the chapter. The answers to 

selected problems are given in appendix A at the end of the book; the problems 

Xi 
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that have answers are marked with an asterisk. In appendix B, we give character 

tables and, in appendix C, we give a short list of books for further reading. 

We are grateful to those at the IOP who suggested that we write this student 

text and we appreciate their encouragement in the completion of the project. PRB 

thanks the Alexander von Humboldt Foundation whose award allowed him to 

spend time at the University of Wuppertal during which part of the book was 

written. 

Many colleagues and friends have given us advice and help for which we 

are very grateful, and we list their names here: O Baum, S Brunken, G W Fuchs, 

T F Giesen, S G Kukolich, F Lewen, M Litz, P Neubauer-Guenther, S Patchkov- 

skii, R D Poshusta, A Ruoff, A Stolow, J Tennyson, J K G Watson, G Winnewisser 

and S N Yurchenko. 

Line drawings were produced with xfig, figures involving numerical data 

were produced with idl, and figures showing 3D objects were drawn with 

MAPLE. Published spectra were initially digitized to a set of numerical (x, y) 

points which were used as input for idl. The complete text was produced using 

LTEX 2¢, and the figures were inlined as eps files; our text was then copy-edited 

by the IOP. 

Figure acknowledgments 

We have included adapted versions of the following published figures, and we 

thank the authors and publishers for their permission to do this. 

Figure 1.1. From figure | of Maillard J-P et al 1990 Astrophys. J. 363 L37. 

Published by the American Astronomical Society. 

Figure 1.3. From figure 2 of Owyoung A et al 1978 Chem. Phys. Lett. 59 156. 
Published by Elsevier. 

Figure 1.4. From figure 1 of McKellar A R W and Watson J K G 1998 J. Mol. 
Spectrosc. 191 215. Published by Academic Press. 

Figure 13.7. From figure 2 of Fellers R S et al 1999 J. Chem. Phys. 110 6306. 
Published by the American Institute of Physics. 

Figure 13.8. From figure 3 of Fellers R S et al 1999 J. Chem. Phys. 110 6306. 
Published by the American Institute of Physics. 

Figure 13.10. From figure 2b of Liu K et al 1994 J. Am. Chem. Soc. 116 3507. 
Published by the American Chemical Society. 

Figure 15.2. From figure 2 of Arnold R et al 1999 Eur. Phys. J. A 6 361. Published 
by Springer. 



Preface Xili 

Table acknowledgment 

The character tables in appendix B are largely from appendix A of P R Bunker 

and Per Jensen, Molecular Symmetry and Spectroscopy, 2nd edn, NRC Research 

Press. Published by the National Research Council of Canada. 

Philip R Bunker 

Per Jensen 

22 July 2004 



ae 
Ite! Octane mma aad 
tities @ oi. ct mae va 

a tee ee a ea ; 
bas ened es? ak Pond, ty ale 

nap — wan) 

' San 1 8 ea aon 
sal ~eeen <i: yeahs tare ged @ Shes atl Sey Oe 

um. Gael ps FP) ong ee + racing, W \ 

tO Sam se 1 rat Jeon. 3 4, ep tau Canine, Nate 

om. b)i hate e tad, Wee. i ene 16 © Case!) Dees 
nape © § an=twita j : 

ee 2 ome een) (aw) Cy Ee ae | 

oun mitest, ae Gh, ab e7ue® Goes Bi ate) @&@ aes wae 

NLA ff Tenia - cea ios) Spe ped i > Al camaes aR UD ap 

memes We) LA em Gs ew bs © 4 pies OS we, prin 4 ite 

ihe ~ rT . “hws a) Gey = te i (a9 ==aa@ 

A Oe 6 

y eur ah izeapvagirsi 

es) & 

- w ) Al jade @ ms 157 

“st . a4 ne . : , wise 

7" i 4 1y% i cm. (Wh jth ie 

_ - puii n° fA i i = ioe 

i ee er a ‘- Cae. avid Wn); 
and mg t a ; 

Lio 4rrcus hoe of VE Ae A 48, 

' 

/ a i 

: 
1” 



PART 1 

SPECTROSCOPY AND THE QUANTUM 

STATES OF MOLECULES 
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Chapter 1 

Molecular spectroscopy 

The study of the extent of the absorption, emission and scattering of 

electromagnetic radiation by matter, as a function of the wavelength of the 

radiation and of the nature of the matter, is the subject of spectroscopy. We 

concentrate on situations involving weak electromagnetic radiation! and gas 

phase molecular samples. In these circumstances, classical theory is used to 

describe the radiation and quantum mechanics to describe the molecules and their 

interaction with the radiation. 

The classical theory of electromagnetic radiation is based on Maxwell’s 

1860 theory of the electromagnetic field. Electromagnetic radiation consists of 

oscillating electric and magnetic fields by virtue of which it carries electric and 

magnetic energy from a source to a detector. The electric and magnetic fields that 

constitute the radiation oscillate at the same frequency v [in units of cycles s~! or 

hertz (Hz)]; these fields oscillate perpendicular to each other and to the direction 

of propagation of the radiation. In a vacuum, radiation propagates at the speed of 

light c (= 299 792 458 ms~!) and the distance between adjacent field oscillation 

crests is the wavelength A, where 

= C/V Ged) 

1.1. Molecular spectra 

Electromagnetic radiation emitted from a region of auroral activity in the upper 

atmosphere of Jupiter can be dispersed to yield an emission spectrum such as 

shown in figure 1.1. An emission spectrum is a plot of the intensity of the 

radiation emitted from a source as a function of its wavelength, frequency or 

wavenumber ) (v) = 1/A; invariably quoted in cm! units). Figure 1.2 is 

part of the absorption spectrum of carbon monoxide (CO) at 300 K plotted as 

transmittance (see below) versus wavenumber. Figure 1.3 is part of the Raman 

spectrum of methane CHy. A Raman spectrum is obtained by illuminating a 

! ‘Weak’ is defined at the end of section 1.5, where we discuss power broadening. 
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Figure 1.1. Part of the emission spectrum from a region of auroral activity in the upper 

atmosphere of Jupiter. Adapted from Maillard J-P er al 1990 Astrophys. J. 363 L37. 
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Figure 1.2. Part of the absorption spectrum of carbon monoxide at 300 K. 

sample with monochromatic radiation (the exciting radiation) and measuring the 

intensity of the dispersed scattered radiation as a function of its difference (or 

shift) in frequency or wavenumber from that of the exciting radiation. These are 

the three most common types of molecular spectra and they consist of spectral 

lines each having a position, intensity and shape. 

Absorption spectra involve a measurement of transmittance as a function 
of frequency, wavelength or wavenumber; an example is given in figure 1.2. 

Transmittance is defined with the help of the Lambert—Beer law, which states: If 

a monochromatic and parallel beam of electromagnetic radiation at wavenumber 

v with intensity /9(v) passes through a length / of gas at a concentration c, the 

transmitted radiation has intensity /i;(”) given by 

Ip(Y) = Io() exp[—Ice(v)] 2) 
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Figure 1.3. Part of the Raman spectrum of methane. Adapted from Owyoung A et al 1978 

Chem. Phys. Lett. 59 156. 
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Figure 1.4. A laboratory absorption spectrum of H,. in an electrical discharge through 

H>. Taken from McKellar A R W and Watson J K G 1998 J. Mol. Spectrosc. 191 215. 

The emission feature at 2469 cm! is caused by H atoms, and the other weaker emission 

features are caused by Hp. 

where the function €(¥) is the absorption coefficient. The transmittance Tt is 

defined as the ratio 

T = —— = exp[—lce(v)]. (1.3) 

Figure 1.4 is a laboratory absorption spectrum of Hy in an electrical 
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discharge through hydrogen gas. Comparing the Jupiter emission spectrum, in 

figure 1.1 with this laboratory spectrum it is clear that He ions are present in the 

atmosphere of Jupiter during an aurora’. 

The analytical use of spectroscopy is easy to understand and is based 

on the fact that each molecule has a unique spectrum that characterizes 

it. Molecular spectra also tell us the temperature of the sample and its 

concentration. Using quantum mechanics, the spectrum of a molecule can 

be interpreted to give the structure, bond strengths and other properties of 

the molecule involved. 

1.2 The energies of molecules in the gas phase 

We think of a molecule in a gas sample at a particular instant in time as moving 

with a certain speed and as having a certain amount of internal energy. The 

internal energy can be approximately separated as the sum of the rotational 

energy, the vibrational energy and the electronic energy. The rotational energy is 

the kinetic energy of the overall rotational motion of the molecule, the vibrational 

energy results from the relative motions of the nuclei and the electronic energy 

is the energy of the electrons as they orbit the nuclear framework. The internal 

energy 1s called the rotation—vibration—electronic energy or the rovibronic energy 

for short. 

A molecule with mass M and speed v moving in an unconstrained way in 

free space has translational energy Mv~/2; this energy can assume any value 

between zero and infinity. In contrast, the internal energy is quantized, i.e. only 

certain values of the internal energy occur, characteristic of finite motions. The 

pattern of the discrete internal energies is a unique characteristic of a molecule, 

and each molecule has a ‘fingerprint’ of internal energy levels. In figure 1.5, the 

lowest rotational energy levels for the CO, Hx0, CH3D and CHy4 molecules are 

shown. In order to be able to relate molecular energy level separations directly to 

the wavenumber positions of the related spectral lines [see equation (1.7) and 

the discussion after it], the energies in figure 1.5 are divided by hc, where h 

(= 6.626 0693 x 10°*4 J s) is Planck’s constant, and they are quoted in cm! 

units. 

For small strongly bound molecules like those in figure 1.5, the rotational 

energy level spacings divided by he are about 1 to 50 cm! and the vibrational 

2 The rotational temperature of the Hy that emits the spectrum shown in figure 1.1 is determined 

from the spectrum to be about 1000 K, whereas that of the laboratory spectrum is 287 K. Because of 

this the line intensities below 2600 cm~! in figure 1.1 are very different from what they are in the 
laboratory spectrum. 
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Figure 1.5. The possible rotational energy levels below 300 cm~! for several simple 

molecules. 

energy level spacings divided by he are about 1000 to 4000 cm~!. For closed- 

shell molecules, the electronic energy level spacings divided by hc are about 

20000 to 100000 cm~!. For larger, heavier, weakly bound or open-shell 

molecules, smaller energy level spacings occur. 

As an aside here, the division of the electromagnetic spectrum into three 

main regions roughly reflects the division of molecular energies into rotational, 

vibrational and electronic energies. These three regions are the microwave region 

(wavenumbers from 0.1 to 1 cm7!), the infrared region (wavenumbers from 

10? to 10* cm!) and the visible/ultraviolet region (wavenumbers from 10* to 

10° cm~!). Other regions are the radiofrequency region (below 0.1 cm~!), the 

millimetrewave region (from | to 10? cm7~!), and the x-ray and y-ray regions 

(above 10° cm~!). 

In a gas sample, the speed and, hence, translational energy of each individual 

molecule is continually changing as a result of collisions with other molecules and 

with the walls of the containing vessel. However, because of the large number of 

molecules in a gas sample, the distribution of speeds remains constant for an 

isolated sample at thermal equilibrium. For example, in an isolated sample of 

carbon monoxide gas at thermal equilibrium at 300 K, at any instant in time, 
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Figure 1.6. The distribution of translational speeds for the CO molecule at temperatures 

of 10 (——.), 300 (- - - -) and 1000 K(------ ). 

19.3% of the molecules will have speeds between 400 and 500 m s~!, whereas 

1.0% of the molecules will have speeds between 0 and 100 m s~!, and 1.8% of 

the molecules will have speeds between 900 and 1000 ms~!. 

The expression for the distribution of speeds in an isolated ideal gas 

sample at thermal equilibrium can be calculated using the methods of statistical 

mechanics and it is called the Maxwell distribution of speeds. This distribution 

is such that the probability of a molecule having speed between v and v + du is 

given by P(v) dv, where 

P(v) = 4 (M/20kT)3/2y29- MKT (1.4) 
In this equation, k (= 1.3806505 x 10-23 J K~!) is the Boltzmann constant, M 

is the mass of the molecule and 7 is the absolute temperature. Equation (1.4) 

was used to calculate the percentages given in the preceding paragraph for the 

distribution of speeds of CO molecules at 300 K. 

In figure 1.6, the distribution of translational speeds at temperatures of 10, 

300 and 1000 K for the CO molecule is plotted. Because of the v* factor in 

equation (1.4) no molecule has zero speed, and because of the exponential factor 
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no molecule has infinite speed. In between, there is a maximum at the most 

probable speed given by (2k7/M)!/*. For higher temperatures, or lower mass, 

the most probable speed increases and the whole distribution spreads out and 

moves to higher speeds. 

When a molecule suffers an inelastic collision, it changes its internal 

(rovibronic) energy as well as its speed. For a large number of molecules at 

thermal equilibrium, the collisions between the molecules distribute the molecules 

among their internal energy states in a way that reflects the temperature and the 

Maxwell distribution of speeds so that, at any instant, the fraction F(£;) of the 

molecules in the internal energy level Fj is given by the Maxwell—Boltzmann 

distribution law: 
ge Ei/ kT 

where the sum in the denominator (the denominator is called the partition 

function) runs over all the discrete possible energies E;; each Ej is only counted 

once in the sum. The value of g; is the number of states having energy Ej; 

this is called the degeneracy of the energy level E; [see equation (2.72), and 

the discussion after it, for an example of a state that has g;>1]. Figure 1.7 

shows the fraction F(E;) of CO molecules, at thermal equilibrium, in each of 

its rotational states (see figure 1.5), for temperatures of 10, 300 and 1000 K. At 

low temperatures, very few rotational energy states are populated. 

FE) = (1.5) 

1.3 The positions of spectral lines 

An isolated molecule in an initial internal energy state E; can absorb energy from 

a weak electromagnetic radiation field and change its internal energy state to a 

final one with energy E ¢; from the conservation of energy, the radiation absorbed 

has frequency v;f satisfying the Bohr frequency condition 

hvif = Ef Se AEif (1.6) 

where / is Planck’s constant. Put another way, a photon can be absorbed if 

the energy of the photon hv is in resonance with the molecular internal energy 

difference AE concerned. Such resonant absorption causes the molecule to make 

a transition from one energy /evel to another. Dividing both sides of equation (1.6) 

by hc gives the wavenumber version as 

DPS Viy/C= Hf ho h,/ he — LE a) ne (hea) 

where vj is the wavenumber of the radiation. 
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Figure 1.7. The fraction F(E£;) of CO molecules in each of its rotational states for 

temperatures of 10 (A), 300 (G) and 1000 K (<>), at thermal equilibrium; see equation (1.5). 

Thus, in an absorption spectrum, the wavenumber of every spectral line 

gives the difference between two internal molecular energies divided by 

hc. Internal energies divided by hc, and quoted in cm~! units, are called 

term values; their separations can be directly related to the wavenumber 

positions of spectral lines in cm~!. For this reason, spectroscopists 

generally quote the term values rather than the energies of molecular states. 

The assignment of the upper and lower energy levels of each transition to 

their position in the ladder of energy levels of the molecule under investigation 

is one of the tasks of experimental molecular spectroscopy. The ultimate goal 

here is the determination of the term values of all internal energy levels for the 

molecule. The separations of the energy levels in a molecule can be analysed to 

yield molecular properties such as structure and bond strengths. The discrete 

line structure of a spectrum shows directly that the internal energy states are 

quantized. If there were no restrictions on the values of the internal energy, then 
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the ‘spectrum’ would exhibit continuous absorption at all wavenumbers with no 
lines. 

1.4 The intensities of spectral lines 

The intensity of a spectral line in absorption is proportional to the fraction of the 
molecules F(£;) in the initial energy state E; of the transition and, at thermal 
equilibrium, this fraction can be varied, according to equation (1.5), by changing 
the temperature. A low-temperature sample has just a few of the lowest levels 
populated and many molecules are in these levels, so the spectrum will consist 
of fewer stronger lines than that obtained for a high-temperature sample. The 
variation of a spectrum with temperature will clearly help in its assignment since 
transitions originating in highly excited levels (so-called hot transitions) will be 
stronger at higher temperatures in a predictable way. 

In addition to absorbing resonant radiation, molecules also undergo resonant 
stimulated emission. In stimulated emission, radiation of frequency v; stimulates 
a molecule in an excited energy level Ef to emit radiation of the same frequency 

vig and to drop into a lower energy level E;. For this to occur, the energy 

hvif must be in resonance with the energy difference (E¢—Ej;). This process 

competes with the absorption process and reduces the amount of absorption by 
the multiplicative factor 

Rsim(f > 1) = 1 — exp(—hvjp /kT). (1.8) 

At low frequencies in the GHz region, this is an important cause of reduced 

absorption intensity. 

In a process that is the complete opposite of resonant absorption, the 

stimulated emission process can cause the intensity of radiation at frequency v;f to 

be amplified, and this process is used in a laser (Light Amplification by Stimulated 

Emission of Radiation). The successful operation of a laser requires that the 

excited level at Ey be continually repopulated using energy from an electrical 

discharge or other means and that the nature of the molecule, and its energy level 

ladder, be such that the lower level at E; be rapidly depopulated so that it does 

not absorb the lasing radiation. 

Apart from the dependence on initial state population and extent of 

stimulated emission, the intensity of a line has an intrinsic value called the 

line strength S(f < i), see equation (2.87), and this depends on the specific 

properties of the two energy states involved. In fact, some transitions have zero 

line strength. The absorption spectrum of CO shown in figure 1.2 only involves 

transitions between adjacent rotational energy levels in figure 1.5; transitions 

between non-adjacent rotational energy levels here have zero line strength and 

are said to be forbidden. Of all possible transitions, only a selection are allowed 

and symmetry is used to determine the selection rules that govern this behaviour. 

The Ha spectra shown in figures 1.1 and 1.4 involve transitions between different 
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vibrational states; transitions between its rotational energy levels are forbidden 

by the simplest selection rules. However, by studying the symmetry properties of 

the levels the possibility emerges that very weak transitions can occur between 

some of the rotational levels of H... Some transitions are less forbidden than 

others and symmetry can help us understand whether small effects that are 

normally neglected can come into play to make a forbidden transition observable. 

Symmetry selection rules, and the spectra of CO and Le illustrated here, are 

discussed further in chapter 12. 

We also show in chapter 12, how the quantitative value of the line strength 

depends on molecular properties. For example, the line strength of a transition 

between different rotational energy levels depends on the value of the molecular 

electric dipole moment [see equation (2.88)] and the line strength of a transition 

between different vibrational energy levels depends on how the value of the dipole 

moment changes with molecular deformation. All this information is important 

in building a complete understanding of the properties of a molecule. 

By integrating the absorption coefficient over the line one obtains the 

expression 

8723Nq4 Vif @ Bis kT 

(47 €9)3hc2 Dig Seem a) FE 
TG 7) [1 — exp(—hvjz/kT)IS(f <i) 

(1.9) 
for the intensity of the absorption line for the transition from the state 7 with 

energy &;, in thermal equilibrium at the temperature 7, to the state f with 

energy Ey, where hyip = Er — Ei, Na (= 6.022 1415 x 1073 mol7!) is 
the Avogadro constant, and eg [= 10’/(4c”) F m~!, where c is in m s7!] 
is the permittivity of free space (also called the electric constant). 

1.5 The shapes of spectral lines 

Spectral lines have a finite width and a characteristic shape. Important causes 
of line broadening are the Doppler effect, the finite lifetime of molecular energy 
states and the power of the radiation. 

The molecules in a gas sample are not at rest but have a distribution of 
speeds, given by equation (1.4), and the frequency that a molecule ‘feels’ as it 
moves with speed v relative to the direction of propagation of radiation having 
frequency vo is shifted by vo(v/c) because of the Doppler effect. Molecules 
moving towards the radiation source will absorb on the low-frequency side of 
the line centre and molecules moving away will absorb on the high-frequency 
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side. Making use of equation (1.4), one can determine that the lineshape function 

arising from the Doppler shifts of all the molecules in a gas sample is 

Mc (v—wY\ 
SiC) = 0(09) EXD - ae (=) (1.10) 

0 

for a line centred at vp. The function in equation (1.10) is a Gaussian function. It 

has a full width at half height FWHH (the frequency width of the line at half the 

maximum intensity) given by 

Ae Ne 
Pwo (AF ina) 

C M 

rp \i2 

RI Sed Ome (aia 
(<7) “ Ge 

where u is the unified atomic mass unit?. 

Around equation (1.8), the process of resonant stimulated emission was 

introduced. Molecules also spontaneously emit resonant radiation and drop into 

a lower energy level; any transitions down that are allowed by the selection rules 

can occur. As a result, molecular energy levels have a finite natural radiative 

lifetime. This has the effect of broadening the energy levels and spectral lines; the 

FWHH is related to the lifetime t in ps by the relation 

herent 0 318 
BW ee or FW GHz a. (1.12) 

t/ps t/ps 

Spontaneous emission from an upper level having energy Ey to a lower level 

having energy £; occurs with the emission of radiation having frequency vif that 

satisfies equation (1.6). The rate of spontaneous emission is proportional to Vir 

and so this lifetime is shorter for highly excited levels. The lifetime of a state can 

also be reduced by predissociation, which is a process whereby a molecule falls 

apart after a certain time. This process can occur only if the state has an energy 

greater than the dissociation energy of the molecule. Predissociation leads to the 

appearance of very broad diffuse lines in a spectrum. 

Collisions that change the internal energy reduce the lifetime of a state. 

The collisional lifetime (the mean time between collisions) is reduced, and the 

linewidth increased, by raising the gas pressure, this cause of broadening is, thus, 

referred to as pressure broadening. At low pressures (less than about 10 Torr*) 

pressure broadening (or natural radiative lifetime broadening) gives rise to a 

Lorentzian lineshape function 

S a aL | (1.13) 
CU MON ig ye (Av Sip 

3 1 u = 1.660538 86 x 10727 kg; also called the dalton or the atomic mass constant. 

4 | Torr © 133.322 Pa. 

3 



14 Molecular spectroscopy 

(a) (b) (c) 

Figure 1.8. Energy-level diagrams of (a) Rayleigh scattering, (b) Stokes Raman scattering, 

and (c) anti-Stokes Raman scattering. 

where Av = 1/(2mT), T is the lifetime, and vo is the central frequency. The 

FWHH 2Ay is 1/(sT) which is given by the second of equations (1.12). 

The simultaneous occurrence of Doppler and lifetime broadening leads to a 

lineshape that is a convolution of the two lineshape functions called a Voigt 

function. A detailed treatment of pressure broadening for higher pressures 

leads to a more complicated unsymmetrical lineshape function and a small 

shift in the centre frequency, that can both be related to the nature of the 

intermolecular forces. 

This discussion of lineshapes, and the development of equation (1.9) for the 

intensity of an absorption line, assume that the radiation is weak. By definition, 

the intensity of the radiation is weak if the absorption is a linear function of that 

intensity, i.e. if the transmittance is independent of the intensity of the radiation. 

As the power of the radiation is increased, the molecules absorbing in the centre 

of the absorption line (where the absorption is the greatest) will start to absorb 

radiation at a greater rate than that at which they can return to the lower level 

of the transition to achieve thermal equilibrium. As a result, the centre of the 

absorption line will start to saturate and the line will broaden; this is called power 

broadening. 

1.6 Raman spectra 

In figure 1.3, we show part of a Raman spectrum obtained by illuminating CH4 

with monochromatic radiation. In Raman spectroscopy, the exciting radiation, 
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whose wavenumber we denote Vin, is normally visible laser light and the sample 
absorbs and scatters photons from this light beam. As indicated in figure 1.8, we 
can think of the absorption as transferring molecules from an initial state with 
energy £;, to a highly excited, so-called virtual state, with energy Eyir. In the 
vast majority of cases, the molecules return from the virtual state to the initial state 
as shown in figure 1.8(a) and photons with wavenumber joy; = Din are emitted 

(or scattered). This process is known as Rayleigh scattering. However, a tiny 

fraction of the molecules (about 1 in 107) transfer from the virtual state to a final 

state different from the initial state. When this happens, there is a Raman shift 

and the scattered radiation has wavenumber Vout # Vin. The energy of the final 

state is E ¢ A E;. We can have Ey > Ej; (Stokes Raman scattering, figure 1.8(b)] 

so that Vout < Vin, or Ef < Ej [anti-Stokes Raman scattering, figure 1.8(c)] with 

Vout > Vin. Figure 1.8 shows that the Raman shift 

V = Vin — Vout = (Eg — Ej)/(he) (1.14) 

corresponds to the energy difference between the final and initial states; such 

energy differences can be obtained from Raman experiments. 

The intensity of Raman-scattered light is proportional to the Raman line 

strength Spaman(f <1), which is analogous to the line strength of an absorption 

or emission transition. The calculation of Spaman(f <— 7) is discussed in 

section 12.5. The Raman intensity is also proportional to the intensity of the 

exciting light, to the concentration of molecules in the initial state, to D+,,, and to 
the solid angle of observation. In addition, the intensities observed in a Raman 

experiment depend on the angle between the electric field vector of the exciting 

light and that of the scattered light; this angle is determined by the experimental 

set-up. 

1.7. Problems 

ed What are the wavenumber, frequency, and energy per photon of (a) visible 

radiation having a wavelength of 500 nm, (b) infrared radiation having a 

wavelength of 5 zm, and (c) microwave radiation having a wavelength of 

5 cm? Quote the frequency in appropriate units such as THz or GHz, and 

the wavenumber in cm~!. 

12 The successive rotational energy levels of the '*C!°O molecule depicted 

in figure 1.5 are labelled J = 0, 1, 2,... and, to three significant figures, 

their energy divided by hc is E; = 1.92J/(J + 1) cm~!; the degeneracy” 

of each level is g; = (2J + 1). Calculate the numerator in the Maxwell— 

Boltzmann distribution function equation (1.5) for a range of values of J 

for temperatures T of 10, 30 and 1000 K to confirm the J-value at which 

the population is a maximum according to figure 1.7; in the appropriate 

5 This is the m-degeneracy that will be introduced in section 2.7. 
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units k © 0.695 cm~! K~!. By setting equal to zero the differential of the 

numerator with respect to J, determine an expression as a function of T 

for the value of J at which the population is a maximum. Check that this 

leads to the correct result for 7 = 10, 300 and 1000 K (J has to be an 

integer). 

Te Use equation (1.11) to calculate the Doppler widths (FWHH) of infrared 

absorption lines of the He molecule (M/u ~ 3) and CH4 molecule 

(M/u ~ 16) at around 3000 cm7! at 1000 K and at 10 K. What would 

the Doppler widths be for lines of these molecules at these temperatures 

at wavelengths around | cm (in the microwave region) or 100 nm (in the 

ultraviolet region)? The appropriate units for linewidth are cm~! in the 

infrared and ultraviolet and kHz in the microwave. 

1.4 In a recent experiment®, NH molecules in the excited (A) electronic state 

were generated by first forming ground (X) electronic state molecules 

using an ArF laser to photolyse NH3, and then using a tunable dye laser to 

pump NH from the X-state up to the A-state. NH molecules in the A-state 

then emit fluorescent radiation as they drop back down to the X-state, and 

the intensity of this radiation at thermal equilibrium at room temperature 

was found to decay according to 

Ip(t) «n(t) =n(O)e—*/teft (1.15) 

where f is time. By making measurements at five different NH3 pressures 
between 2—10 Pa, the decay rate was found to fit the expression 

1/Tepp = 1/t + knnw, (1.16) 

where T is the radiative lifetime, k is a constant and NNH; is the number 

density of NH3 molecules. It was found, for a particular rotation—vibration 

level of the A-state, that r = 438 ns and k = 6.7 x 107!° cm? s~!. Plot 

this lifetime and the linewidth of the emission line, as a function of NH3 

pressure. At room temperature, nny, © 2.4 x 10'> cm~? for a pressure of 
10 Pa. 

© Hake A and Stuhl F 2002 J. Chem. Phys. 117 2513. 



Chapter 2 

Quantum mechanics 

2.1 The Schrodinger equation 

The equation 

AnX 
—O de o. (2:1) 
dx 

is an example of an eigenvalue equation, in which the operator d/dx acting on the 

function e“"* gives, as result, a constant ‘a,’ times the function. In general, an 

eigenvalue equation has the form 

OWn = OnYn @2) 

where O is a differential operator, yy, is a function, and O, is a constant. A 

function y;, that satisfies this equation is an eigenfunction of the operator O, and 

the constant numerical factor O, is the eigenvalue of the operator O appropriate 

for the eigenfunction y,; the subscript n (= 1,2,3, etc) labels the different 

solutions. Restricting the eigenfunctions of an eigenvalue equation so that they 

have certain properties can lead to the eigenvalues having discrete values like 

molecular energies. 

Schrodinger postulated the way of setting up an eigenvalue equation for a 

molecule and the way of interpreting and restricting the eigenfunctions, so 

that the eigenvalues are the molecular energies. 

This special eigenvalue equation has come to be called the Schrodinger equation. 

ty 
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2.2 The postulates of quantum mechanics 

Quantum mechanics is used to describe nature at the atomic and molecular 

level, in which there is quantization of the values of observables O such as 

energy and angular momentum. The theory of quantum mechanics leads to 

quantization by introducing rules or postulates concerning the way operators are 

set up to represent observables and the way the eigenfunctions are restricted and 

interpreted. 
Using classical mechanics for an atom or molecule that consists of / particles 

(electrons and nuclei), labelled r = 1,2,...,/ with mass m,, most observables 

can be written as a function of Cartesian coordinates X,, Y,;, and Z, and momenta 

Paqa(= m,X; = M, dX,./dt, where ft is time), Py,, and Pz,. The first postulate of 

quantum mechanics states that if one replaces the momenta Px,, Py, and Pz, in 

the classical expression for an observable O, by the partial differential operators 

Px,, Py, and Poy according to the rules 

Py, = —ihd/aX, (2.3) 

Py, = —ihd/dY, (2.4) 

and i 

Pz, = —ihd/dZ, (2.5) 

where i = /—1 and h = h/2z, then the resultant differential operator O 

represents the observable O from which it was derived. If the observable depends 

only on coordinates, and not on momenta, then the expression for the quantum 

mechanical operator is identical to the classical expression for the observable. 

The operator that represents the energy is called the Hamiltonian operator or, 

simply, the Hamiltonian. 

The second postulate of quantum mechanics states that the only possible 

values for an observable are the eigenvalues of the operator that represents it 

when the eigenfunctions yy, are restricted to be single valued and when they are 

interpreted to be such that 

Py dt = W* Wn dt = |Wnl* dt (2.6) 

is the probability that yy, has its coordinates in the volume element dt. The 

volume element for integration, dt, is a short hand notation in which, for example, 

if the functions wy, were expressed in an /-particle Cartesian coordinate space 

(OGiy giles oc 6a Mle ela 

dred rd dA adi YindZie @.7) 

By appropriate transformations, dt can be expressed in any coordinate system. 

It is often asserted that a postulate of quantum mechanics is that the 

eigenfunctions be square integrable, i.e. that 

[voor < 0O (2.8) 
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but this is only true for bound (and quantized) states; see, for example, 
the eigenfunctions given in equation (2.68) for a case in which there is no 
quantization. When there is quantization, we normalize the eigenfunctions so 
that 

ic dr =f vitn dr = i \Wn|? dt = 1 (2.9) 

in order that the total probability over all space be unity. When the eigenfunctions 

are not square integrable, the ratio of ||? at two different points is the ratio of 

their probabilities. 

With this restriction and interpretation of the eigenfunctions, the possible 

values of the energy are the eigenvalues E,, of the Hamiltonian operator H: 

AW = EnWn- (2.10) 

This equation is the (time independent) Schrodinger equation or wave equation, 

and the eigenfunctions yy, are the wavefunctions that represent (or simply are) 

the state of the system. The E,, are the possible stationary state energies of the 

system. The state having the lowest energy is called the ground state and all other 

states are called excited states. 

The second postulate still allows us to multiply a wavefunction by exp(i@), 

where @ is any real constant, without changing P,, = |W|*, since | exp(id) |? == il, 

The factor exp(i@) is called a phase factor and a wavefunction multiplied by a 

phase factor is the same state. However, it is necessary to define the phase factor 

used and to be consistent, because relative phase factors of wavefunctions can be 

significant. 

A state ¢, might not be an eigenfunction of a particular operator O. The 

third postulate of quantum mechanics concerns such a situation and it states that 

the expected (or most probable) value of an observable O for a system in a state 

gn is the integral of the product b* Odn, where O is the operator that represents 

O; such an integral is called an expectation value and we write it as 

Onn = (n|O|n) = / $7 Obn at. (2.11) 

The fourth postulate, concerning the time dependence of wavefunctions, is 

given in section 14.1 and the fifth, concerning the symmetry of wavefunctions 

under the effect of the permutation of identical particles, is given in section 9.1. 

2.2.1 Operators and eigenfunctions 
A 

We summarize here some important facts and definitions. An operator O is 

Hermitian if 

[vow drt = [Om dr = [of Our ar. (212) 
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The eigenvalues of a Hermitian operator are real and operators corresponding 

to real physical observables must be Hermitian. It can be proved that the 

eigenfunctions of a Hermitian operator that have different eigenvalues are 

orthogonal, i.e. they are such that 

| vate dr= 0 (2.13) 

unless m = n. Equations (2.9) and (2.13) are summarized by saying that for a set 

of orthonormal functions W1, 2, W3, etc. 

/ Winn dt = dmn (2.14) 

where 4,), is the Kronecker delta. 

Acting on a function of X, ¢(X) say, with the operator difference (XPy _ 

Px X) gives 

(X Py — Py X)6(X) = [X (iho /aXx) — RE ORIG 
dp(X) 

= ih XO(X ihX x + <I o(X)] 

Ip(X dp(X) 
= x nx a stn: [ox + aX 

= ihd(X). (Q'S) 

We can write - ‘ 

(X Px — Px X)b(X) = iho(X) (2.16) 

and formally ‘cancel’ out the ¢(X) from each side of the equation to obtain the 

operator equation: 2 ; 

X Py — PxX = ih. CAL 

An operator equation means that each side of the equation produces the same 

result when it acts on a function. Two operators O; and O2 commute if the 

following operator equation is true: 

(O01 07 — 020;) = 0. (2.18) 

We introduce the notation 

[O1, Or] = (01 02 — 0204) (2:19) 

where (O1, O>| is called the commutator of O; and Op. Thus, the commutator of 

X and Py is not zero and these two operators do not commute. 

Observables are represented by Hermitian operators and special care must 

sometimes be exercised when using the first postulate to set up an operator. For 

example, an expression such as X Py is not Hermitian because X and Py do not 
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commute. In such a case, it is necessary to properly symmetrize the classical 
expression before converting it to quantum mechanical form. For example, 
instead of X Py, one must write (X Py + Py X)/2. 

If a stationary state energy level E,, is k-fold degenerate, then there are k 

linearly independent! and orthogonal eigenfunctions Wn1, Wn2,-.., Wak having 

the same energy eigenvalue E, of the Hamiltonian operator H. Any other 

eigenfunction yy, having eigenvalue E,, can only be a linear combination of this 

complete set of k functions, i.e. 

k 

a (2.20) 
j=l 

where the cp; are constants. For the level E,, we would have gj = k in 

equation (1.5). Stationary states can be non-degenerate or they can be degenerate. 

If the level E,, is non-degenerate and yf, is an eigenfunction with eigenvalue Ey, 

then the only other functions that can be eigenfunctions having eigenvalue E,, 

are of the form cw, where c is a constant. If yw, W2,... are eigenfunctions of 

H, then linear combinations of them can be chosen that are also simultaneously 

the eigenfunctions of any operator that commutes with H. Conversely if two 

operators (such as X and Py) do not commute then there are no non-trivial 

functions that are simultaneously the eigenfunctions of both. 

2.3. Diagonalizing the Hamiltonian matrix 

It frequently happens that we know a set of functions y? say, that are 

approximately the eigenfunctions of a Hamiltonian H, ice. Hy? = E°y° oe 

where X < E°y®. Such a set of known functions are called basis functions and 
one can use them to determine the true eigenfunctions and eigenvalues by setting 

up and diagonalizing the Hamiltonian matrix; we now explain this procedure 

using some definitions and results from matrix algebra that are collected together 

in section 2.9. 
Consider a Hamiltonian H and a set of orthonormal basis functions py? 

(where n = 1, 2,3,...). We introduce the integrals 

= Ty 0\* r741,0 5 
Amn ae (m|H|n) ma" (W,,,) Ay, dt Zt) 

which can be arranged in a matrix where m and n are the row and column indices, 

respectively; we call such integrals matrix elements of the Hamiltonian, and the 

entire matrix is called the Hamiltonian matrix. The diagonal matrix elements are 

the expectation values of the energy for the basis functions and we write 

Hee eee (2.22) 
! These k functions are linearly independent if there is no relation of the type cj W_1 +¢2Wn2+--° + 

CnWnk = 0 (apart from the trivial one with all cy, = 0) connecting them. 
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For convenience, we organize the matrix so that B? = B a Boas 

The values of the matrix elements would canes if we esa aittevent basis 

functions. For example, if we set up the Hamiltonian matrix using the normalized 

eigenfunctions y, of H, the diagonal matrix elements would be the eigenvalues 

and the off-diagonal matrix elements would vanish. The Hamiltonian matrix 

would then be said to be diagonal. 

It is the presence of non-vanishing off-diagonal matrix elements that 

spoils the functions yy? as eigenfunctions. However, the degree to which 

the functions are spoiled does not only depend on the magnitudes of the off- 

diagonal matrix elements between them but it also depends on the differences 

between their diagonal matrix elements. To explain this, we will first show how 

the eigenfunctions and eigenvalues can be determined from the values of the 

Hamiltonian matrix elements and then focus on a simple 2 x 2 example. The 

2 x 2 example is extremely important since it is used to analyse interactions or 

perturbations between energy levels caused by a previously neglected part of the 

Hamiltonian which gives rise to a non-vanishing off-diagonal matrix element. In 

such circumstances, the states ye? would be called zero-order states. 

We wish to determine the eigenfunctions and eigenvalues, y; and E; (j = 

1,2,3,...), of the Hamiltonian H, using the complete set of basis functions 

we. Since the basis set is complete, by definition we can write the unknown 

eigenfunctions yy; in terms of them as: 

es Cand (2.23) 

where the Cj, are the eigenfunction coefficients that remain to be determined. 

Since Ay; = Ej Wj, 

Al cin = E)| Do cinv8 (2.24) 

To determine the yw; and Ej, we proceed as follows: Multiply each side of 

equation (2.24) on the left by (W?)*, make use of the fact that H and the Cin 

commute with each other, and finally integrate each side over all space. Using 
equations (2.21) and (2.14), this gives 

yy Cin Amn = Ej SE Cjndmn (Q'S) 

n n 

which can be rewritten as the matrix product 

aa — bmn Es)Gy =0 (2.26) 

n 

where C is the tr anspose of C, see section 2.9. Apart from the useless solution that 
all elements of Cy; = 0, the solution obtained is the following secular equation 
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for the eigenvalues E ;: 

|Hinn — bmn E| =) ier ae Ej. (2.27) 

This states that the determinant? of the matrix (Himn — SmnF) vanishes if E is 

an eigenvalue. This enables us to determine the eigenvalues of H and an I- 

dimensional Hamiltonian matrix leads to a secular equation with / eigenvalues. 

The FE; are the eigenvalues both of the operator H and of the matrix H that 
represents it using a basis set. 

By substituting the eigenvalues E; one at a time into equation (2.26), we 

obtain / simultaneous equations (as m = 1 to /) for the Ci and we obtain the 

elements in the jth column of the matrix C. Since Ce = Cjn these coefficients 

form the jth row of the matrix C; these are the coefficients of the basis functions 

py? in the eigenfunction yw; and we can appreciate how well (or badly) we 

represents y; from their values. The orthonormality of the functions demands 

that the elements of C satisfy 

DEC Cin ok (2.28) 
n 

which means that the matrix C is unitary, see section 2.9. 

Using matrix notation, it can be shown that the elements of the matrix C are 

such that 

CH GA (2.29) 

where H is the Hamiltonian matrix and A is a matrix having non-vanishing 

diagonal elements A;; = Ej; (the eigenvalues) and Ajj = Oifi # j. We 

say that the similarity transformation of the Hamiltonian matrix H by the matrix 

of eigenfunction coefficients C in equation (2.29) diagonalizes H to produce the 

diagonal matrix A of eigenvalues. The process of diagonalizing a Hamiltonian 

matrix in a basis set is a routine procedure, once we have determined the elements 

of the Hamiltonian matrix, and standard computer routines are available. 

As a simple example, we consider a two-dimensional (Hermitian) 

Hamiltonian matrix for the zero-order states ve and wy: 

0 

elias (2.30) 
Ay) Es 

Assuming, for simplicity, that H12 is real, equation (2.27) reduces to 

Cape Pap =0 (2.31) 

and solving for E,, one obtains the two roots: 

E,=E)-S (2.32) 

2 See equation (2.95) for the definition of a determinant. 
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and 
E,=ES+S (223) 

where EB = ES. the energy shift 

S=4 (Jani + A? — a) (2.34) 

and A = Ey = E° is the difference between the diagonal matrix elements. Using 

equations (2.26) and (2.28) to obtain the eigenfunction coefficients, one gets 

wWactyi cw (2.35) 

and 

wectwWt+ow (2.36) 

where 
1/2 

1 A 
Coe = th (2.37) 

V2) fan? + a2 

The expressions for S and ct depend on both the off-diagonal matrix element Hj2 

and the diagonal matrix element difference A. 

For situations when | Hj2| < A, the leading terms in the binomial expansion 

of 4H +A2 = A(QL+ AH) Sy can be used to give the approximate 

solution 
H2 

Se a (2.38) 

with : 

eles 
ce’ #1 — =e (2.39) 

and 
> 

Cle mee (2.40) 

Equations (2.38)—(2.40) are also obtained using second-order perturbation theory 

(see below) for the 2 x 2 case. 

We can now quantitatively represent the very commonly occurring 

phenomenon of a 2 x 2 energy level interaction or perturbation. The functions 

yr and ws would be eigenfunctions of the Hamiltonian if the off-diagonal matrix 

element H)2 were zero; as Hj2 grows, the two states perturb, repel, or interact 

with, each other. The lower level E; moves down, the higher level E> moves 

up, and the wavefunctions of the two states w? and wy gradually become more 

and more mixed in the eigenfunctions yy and w2. The extent to which the zero- 

order functions are mixed, and the amount by which the levels repel each other 

depend on the size of the off-diagonal matrix element Hj2 and on the zero-order 
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energy separation A. The above equations allow us to calculate these effects for 
any values of Hj2 and A. For A = 0, we obtain ct = c> = 1/2; we have 
a 50:50 mixing of the two zero-order states and a maximal energy shift of Hj. 
However, as Hjz — 0, c* approaches | while c~ approaches 0; now yj > w? 

and yr > w , with energy shifts that go to zero. 

Perturbations can involve more than two levels interacting simultaneously 

and a matrix larger than 2 x 2 will then have to be diagonalized. It often happens 

that we have to consider the complete basis set consisting of an infinite number 

of functions. Obviously, we can only set up and diagonalize the Hamiltonian 

matrix in a finite number of basis functions, so we have to truncate the matrix. 

If the size of the truncated matrix is n'™"° x n'™"°, then its diagonalization will 

yield n""° approximate eigenvalues and eigenfunctions. If we are only interested 
in the lowest p states, say, then we must choose n'™" to be much larger than 

p in order that this approximate approach leads to satisfactory results for the p 

states of interest. This approximate approach is called the variational approach. 

In practice, the size of n'"* is increased until a further increase has negligible 

effect on the p eigenvalues of interest; the calculation is then said to have 

converged. The lowest eigenvalue of the truncated Hamiltonian matrix EU" 
lowest 

will not be precisely equal to the lowest eigenvalue EV*°"'. of the Hamiltonian. 
west 

trunc exact The variational theorem states that Eee is always Moe i ele 

trunc eXACt mae Ei ee ee (2.41) 

In a well-behaved problem, increasing the number of basis functions reduces A E 

and E; nc converges to Ey**<" | as the number of basis functions is increased. The 
existence of very efficient numerical computer routines for diagonalizing large 

matrices make the variational procedure of practical and general use. 

In situations where the off-diagonal matrix elements are small compared 

to the differences in diagonal matrix elements, an alternative procedure for 

determining eigenfunctions and eigenvalues called perturbation theory can be 

used. In this procedure, we write the Hamiltonian operator as 

H = H°+)8' (2.42) 

where the eigenfunctions of H°® are the known basis functions ye and where 

H’ (called the perturbation) has non-vanishing off-diagonal matrix elements. By 

changing the expansion constant A from zero to one, the perturbation is switched 

on. In this approach, analytical expressions for the eigenfunctions and eigenvalues 

of H are obtained as power series in A involving the matrix elements of H’ in the 

basis functions w? and differences between diagonal matrix elements. Truncating 
these expressions at the terms quadratic in A produces the results of second-order 

perturbation theory and this is normally where the procedure is terminated. The 

results obtained using perturbation theory are useful if H’ has a small effect and 

one can gain an understanding of the effects of H’ from the analytical expressions 

obtained. Perturbation theory is used in the development of the effective rotational 
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Hamiltonian (see section 11.5). This Hamiltonian is crucially important in the 

practical analysis of spectra. 

2.4 The molecular Schrédinger equation 

The classical expression for the total energy of a molecule consisting of / particles, 

N nuclei and / — N electrons, is 

Etotal =i Ve (2.43) 

The kinetic energy 1s given by 

1 

a iyX Nie EZ) (2.44) 
r=! 

— 
1) 

where particle r has mass m, (the mass of an electron being me) and xs ve and 7 

are the components of its velocity in a space-fixed XYZ axis system. In SI units, 

the electrostatic potential energy that results from the repulsions and attractions 

between the particles is 
I 

GiGee 
Bee anew (2.45) 

ss 4re0Rrs 

where C,e is the charge? of particle r (the charge on an electron is —e), R;-s is the 

interparticle distance given by 

RO ey vee ee (2.46) 

and € is the permittivity of free space (introduced on page 12). 

The energy expression 7 + V can be separated into two parts: The 

translational energy and the internal (rovibronic) energy. In chapters 3, 4 and 

5, we discuss the separation of the rovibronic energy into electronic, vibrational 

and rotational parts. Such separations of variables are of central importance in 

making the equations that occur easier to handle and to understand; they always 

involves making coordinate changes. 

2.5 The separation of translational energy 

Whenever we make a change of coordinates, there are two ways of proceeding: 

(1) First to set up the quantum mechanical molecular Hamiltonian in the initial 

coordinates and then to change to the new coordinates in the resultant 

differential equation that is the Schrodinger equation using the chain rule, 

3 The elementary charge e = 1.602 17653 x 10~!9 C; this is the charge on a proton. 
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(II) First to change coordinates in the classical expression to obtain the classical 

energy expression in the new coordinates and then to set up the quantum 

mechanical Hamiltonian, and Schrodinger equation, in the new coordinates. 

We use method (II) here. 

We know that the translational energy is the kinetic energy Mv7/2, where 

M= Sie is the molecular mass and v is the speed of the molecular centre of 

mass through space. To change coordinates so that the molecular kinetic energy T 

involves this, we must explicitly introduce the coordinates of the centre of mass, 

which we call (Xo, Yo, Zo). Thus, the XYZ coordinates of the particles are written 

as 

X; — XG + Xo (2.47) 

Y= Vere Xo (2.48) 

and 

Ti — ipa ley (2.49) 

where (X,, Y;, Z,;) are the coordinates of particle r in an XY Z axis system that is 

parallel to the space-fixed XYZ axis system* but which has origin at the molecular 

centre of mass (Xo, Yo, Xo). We must write the kinetic energy T in terms of the 

new set of 3/ coordinates 

XO OZ On Oe eee eZ] (2.50) 

and their velocities Xo, nee a Zn where we have eliminated X;, Y; and Z; using 

! 
1 

X; =-— )>m,X, (2.51) 
ue —) 

with similar equations for Y, and Z}. The (3/ — 3) coordinates 

XO Yo Lowen X1, Y;, Z; are the internal coordinates; they specify the positions 

of the particles relative to the centre of mass of the molecule. 

Using equations (2.47)—-(2.49) for r = 2 through / gives 

l l 

LS PE ¥r FL, =o miei Ze) 
r=2 T=), 

l 

= Yom, (X,Xo te Y,Yo 412,20) 

r=2 

i) Nl) 

l 

(x mr ) Oo? + Yor + Zine (2.52) 

K=2 

Nl 

+ 

4 Be careful to notice the font distinction here. We use upright font for the XYZ axes; they have 

space-fixed origin and space-fixed orientation. We use italic font for the XY Z axes that are parallel to 

them and which, therefore, have space-fixed orientation, but which have their origin at the molecular 

centre of mass. 
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Using equation (2.51), and the similar equations for Y; and Z}, in 

equations (2.47)-(2.49), we obtain 

| | see Ma: ae 
—m,(X1° eae Y;2 + Ta )= — mrpMs(XpXs5 + V¥7Vs + Z-Zs) 
2 2m 

rs=2 

1 

= Ym,(X,Xo = Y,Yo => Z,Z0) 

r=2 

+ 5m| OG" _ Vor _ Try: (253) 

Adding equations (2.45), (2.52) and (2.53) gives 

Etotal = Ttrans + Trve + V (2.54) 

where V is expressed in terms of the coordinates X2,..., Z,. In equation (2.54), 

the translational kinetic energy is 

Ttrans = 5M (Xo- =i Yor ole Zo”) (2795) 

and the internal (rovibronic) kinetic energy that results from the motion of the 

particles in the molecule relative to the molecular centre of mass is 

l 

ncn + ¥,° + Z,*) 
r=2 

DESO 
oe ) 

T-ve and V do not involve the coordinates or velocities of the centre of mass, 

and Ttrans does not involve the internal coordinates or velocities. 

There is a complete separation of the internal and translational degrees of 

freedom in the energy expression. 

We can write the total energy as 

Etotal = Etrans a Ewe (2.57) 

where the translational energy Frans iS the pure kinetic energy term Ttrans given 

in equation (2.55); there is no potential energy contribution to the translational 

energy for a molecule moving in an unconstrained way in field free space. The 

rovibronic energy 1s 

Erve = Trve + V. (2.58) 
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2.5.1 The translational Schrédinger equation 

To follow the procedure outlined above [see equations (2.3)—(2.10)] for obtaining 
the translational Schrodinger equation, we begin by expressing the classical 
energy, given in equation (2.55), in terms of momenta P, rather than velocities in 
order to obtain it in Hamiltonian form: 

1 
Huang = Tk + Pyo? + Pz9”) (2.59) 

where Pxg = MXo etc. To obtain the Schrodinger equation, we replace 
the momenta _ Pxo, Pyo and Pzo by the partial differential operators Pxo = 

—1hd/0X0, Pyo = —ihd/dYo, Pzo = —ihd/dZo, in Hirans to yield the 

Hamiltonian operator for the translational motion: 

Atrans = ee + Pyo” + Pz07) 
2M 

fc a oh a = is (2.60) 
~ 9M \ AXo2 —BYo2 — AZ2 

and we set up the eigenvalue equation 

Him Ons (Xo, Xo; Zo) = Beep trans trans (Xo, Yo, Zo). (2.61) 

Equation (2.61) gives the translational Schrodinger equation for a molecule 

moving in an unconstrained way in free space. From the second quantum 

mechanical postulate, the eigenfunctions have to be single valued and the 

relative probabilities must be given by |) (Xo, Yo, Zo)|?; they are then the 
translational wavefunctions of the molecule and the eigenvalue Bee is the 

translational energy of the molecule when it is in the state ®(”) (Xo, Yo, Zo). 
Since er is the sum of three independent terms in Xo, Yo and Zo, we can 

separate the translational Schrodinger equation into three by writing 

te ee eae (2.62) 

and pat 

Perans(X0, YO, ZO) = Viranex (XO) Veransy (0) Wiranez (Zo): (2.63) 
We substitute these two equations into equation (2.61). Making use of the fact 

that 

a2 : a a2 ees 

Pac aaa Ose Weraney (Y0) Vnansz (Zo) dXo2 Weransx(X0) 
(2.64) 

with similar equations for the effects of 07/0 Yo~ and 07/0Z 97, we can divide the 
resultant equation through by ®trans(Xo0, Yo, Zo) to obtain the three independent 
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equations 

he ( n n fn 

77 aM d i ei = is (he Wessex (Xo) (2.65) 

h? (ny) (ny ) (ny ) Y (2 66) 

2M dYo- 2 Y transY (Yo) = Pansy’ waney 0) : 

and 

h (nz) (nz) (nz) 

2M dZo A y2) 2) = E ransZ¥ transz. (20) - (2.67) 

The translational energy Be es has to be positive and real and the most general 

solution we can write for the eigenfunction of equation (2.65) is 

Wl) (Xo) = Acos(kxXo) + B sin(kxXo) (2.68) 

or, equivalently, 

wi") (Xo) = C exp(ikxXo) + D exp(—ikxXo) (2.69) 

where kx = (Q2ME"* )'/2 7h, A and B are arbitrary constants, C = (A —iB)/2 transX 
and D = (A + iB)/2. Similar equations can be written for the eigenfunctions of 

equations (2.66) and (2.67) so that we have 

he : 
Etrans = sag x =i ke + kz). (2.70) 

There is no quantization of the translational states of an unconfined 

molecule moving in free space. The translational wavefunctions are plane 

waves and the eigenvalues (energies) can be any positive real number. 

This provides a very simple example of what happens when we separate the 

coordinates in a Hamiltonian. Here, since the Hamiltonian can be written as the 

sum of three independent parts, we have reduced a three-dimensional Schrodinger 

equation (2.61) to three separate one-dimensional Schrodinger equations (2.65)— 

(2.67). The eigenvalues are obtained as the sum of the eigenvalues of the one- 

dimensional Schrodinger equations in equation (2.62) and the eigenfunctions are 

obtained as the product of the one-dimensional eigenfunctions in equation (2.63). 

For a molecule confined to remain within a sample cell (which has finite 

dimensions), there is quantization of the translational states. To show how this 

comes about, we consider the situation in which the molecule is confined within 

a cube-shaped box with side L that has one corner at the point (Xo, Yo, Zo) = 
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(0, 0, 0) and which lies in the positive octant of the (Xo, Yo, Zo) axis system. In 
this circumstance, the eigenfunctions satisfy equations (2.63)—(2.69) within the 
box (i.e. when the Xo, Yo and Zo coordinates are between 0 and L). However, 
with the probability interpretation of the eigenfunctions they must be zero outside 
the box and must go smoothly to zero at the walls of the box. From equation (2.68) 

for eH) we see that functions that go smoothly to zero at Xo = 0 must have 
A = 0 and for them also to go smoothly to zero at Xo = L, they must also have 
kxL =n xz where nx is a positive integer. Thus, for a molecule confined within 

this box, the translational wavefunctions [from equations (2.63) and (2.68)] within 

the box are given by 

aes ix . (nyn Aza 
PUXY-"Z) (X09 Yo, Zo) = N sin (==Xo) sin (——Yo) sin (2) 

if ie Ls 
71) 

where nx, ny and nz must be positive integers and N is a constant. Outside 

the box the translational wavefunctions vanish. The normalizing constant N is 

determined to be (8/L+)!/? by setting the the integral of |®jrans|? dt within the 
box to be unity since that is the probability of finding the molecule within the box 

[see equation (2.9)]. Since kx L = nxz etc, we have the result that 

the translational energies of a molecule of mass M constrained to move 

within a cube of side L are quantized. They are given by 

] 2 
DO E74) cm 1 

trans 8M L2 Genes 1) (2.72) 

where the quantum numbers nx, ny and nz are positive integers. 

The lowest state has nx = ny = nz = | with energy 3h7/(8ML7) and the 

first excited translational state has energy 6h7/(8ML7). The energy separation 

is 3h7/(8ML7). This lowest excited state is actually three states with quantum 

numbers (ix, ny.nz) = @,1, 1), Gd, 2, 1) of (1, 1, 2) which all have the same 

energy; such a state is said to be three-fold degenerate or to have a degeneracy of 

three. The separation in energy [3h7/(8M L7)] between the two lowest states fora 

12C160 molecule (mass M ~ 4.65 x 10~7° kg) constrained to move in a cubic box 

with side L = 1072 mis 3.5 x 10~°8 J. Dividing by he, and quoting in cm~!, the 

wavenumber separation is obtained as 1.8 x 10-!° cm7!. This incredibly small 

energy separation shows how the quantization that results from using the rules 

of quantum mechanics disappears for all practical purposes for systems having 

macroscopic dimensions when the rules of classical mechanics are satisfactory. 

We can use this analysis of the energy levels of a particle in a box to 

get an approximate estimate of the energy separations involved when electrons 



82 Quantum mechanics 

move about within the limits of molecular dimensions or when nuclei vibrate 

in bonds. For an electron (mass M ~ 9.11 x 1077! kg) constrained to move 

within a cubic box of side L = 0.3 nm (which gives a box that has roughly the 

volume over which an outer electron moves in a small molecule), the particle in a 

box analysis leads to a wavenumber separation between the two lowest states of 

1.01 x 10° cm7!. For a particle constrained to move in one dimension within a 

length L, the energy is given by h?n*/(8ML7) where n = 1, 2,3,... (obtained 

by just considering the Xo motion, for example, in the three-dimensional analysis) 

and the energy separation between the two lowest states is given by 3h? /(8M L7) 

just as for motion within a three-dimensional box. For a proton (mass M ~ 

1.67 x 10~*’ kg) constrained to move in one dimension within a length of 0.03 nm 

(which roughly equals the stretching vibrational amplitude in a molecule), the 

wavenumber separation between the lowest two energy levels is 5500 ci +, a 

factor of about 1/20th of the electronic wavenumber (or energy) separation. 

The first excited electronic state has an energy much larger than that of the 

first excited vibrational state because the electron mass is so much less than 

any nuclear mass; this more than compensates for the fact that electronic 

motions are less constrained than nuclear vibrational motions in molecules. 

2.6 The rovibronic Schrodinger equation 

After separating out the translation, the classical expression for the rovibronic 

(internal) energy of a molecule that consists of / particles (nuclei and electrons) is 

obtained from equations (2.45), (2.56) and (2.58) as 

1 

Ewe = 5 aan ie <r Ve Fin Tipey 

==) a 

l 
l avi an aes 

+ -—. mrms(X;-Xs5 + ¥-Vs + Z,Zs) 
2m fart 

CEG. e? 
a 9 

> Ameo Rrs | ae 

Starting with this classical rovibronic energy expression and using the first 
postulate, we obtain the rovibronic Schrédinger equation. 

In the rovibronic energy expression Eyye, the motion of the particles is 
constrained so that the centre of mass remains fixed at the origin of the X Y Z axes. 
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The general definition, allowing for constraints, of the momentum P; conjugate 
to the coordinate Q, is 

Pai Vy dOs (2.74) 
Since the pont energy is Beste of the velocities, we obtain Py, = 
WEN ey Sa a Ve ans ez evan where Tre is given in 
equation (2.56); we do not obtain simple relations such as Py, = M,X;,. Inverting 
the equations obtained for the generalized momenta as functions of the velocities, 
one obtains the velocities as functions of the momenta. Substituting for the 
velocities in equation (2.73) leads to the classical Hamiltonian Aye as a function 
of the coordinates and momenta. Replacing Px, by Pe lly OX ern Dy 
Py, = —ihd/dY, and Pz, by Pz, = —Wio/oZ-. 

the quantum mechanical rovibronic Hamiltonian for an /-particle molecule 
is obtained as 

l 

Hive = — (7/2) )-(07/aX,? + 8°/AY,? + 87/8Z,2)/m, 
r=2 

l 

+ (RW /2M) ~ (9°/AX,aX, + 07/dY,dYs + 0°/8Z,9Zs) 
r,S=2 

l 
C,C,e* 

a Ait e9 Rrs 

where M = )°m, is the mass of the molecule. 

The rovibronic Schrodinger equation is given by 

HaeP eX, Yo, Z2,..+, Zi) = Eve Prye(X2, Y2, Z2,..., Zi). (2.76) 

In section 3.2, we introduce spin and it is explained there that because of 

the presence of spin, electrons and many nuclei have a magnetic dipole moment 

and that some nuclei have an electric quadrupole moment as well. The internal 

energy of a molecule is affected by the presence of these moments. The term in 

the Hamiltonian that arises from the fact that each electron has a spin magnetic 

dipole moment is called Hes and the term arising from the presence of the nuclear 

spin moments is called Ants. The principal terms in Hes arise from the interaction 

of the electron spin magnetic moments with each other (the electron spin—spin 

interaction) and from their interaction with the magnetic moments generated by 

the orbital motion of the electrons (the electron spin—orbit interaction). Hints 
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contains similar magnetic terms involving the nuclear spin-spin and nuclear spin— 

orbit interactions, as well as terms for nuclear spin—electron orbit and nuclear 

spin-electron spin interactions. For nuclei that have an electric quadrupole 

moment there is an additional term involving its interaction with the electronic 

charge gradient at the nucleus. Hes and Ags can give rise to splittings of the 

energy levels called electronic fine structure splittings and nuclear hyperfine 

structure splittings, respectively. 

Adding the sum of Hes and Ants to the electrostatic potential energy gives 

the complete electromagnetic interaction energy between the particles, so that 

the complete quantum mechanical Hamiltonian for the internal dynamics of a 

molecule (that is, everything except translation) is 

Hin = Hee ie ae ar Ats- (2.77) 

2.7 The angular momentum operator 

The classical observable of orbital angular momentum J for a system of / 

particles, in the centre-of-mass axis system, has an X component given by 

l 

Jn) VP Zr hye) (2.78) 
r=1 

and so the operator for it is given by 

l 
0 0 

Jy = —-ih Y,— — Z,—— }. 2. 
5 nyo ( azs a eae 

r=! 

The operators representing Jy and Jz are obtained from equation (2.79) by cyclic 

permutation of X, Y and Z. The square of the orbital angular momentum operator 

is given by 

I Je Je ade (2.80) 

The commutators [X,, Px,], [Y,, Py,] and [Z,, Pzr] are each ih, from 

equation (2.17) but all other ‘cross commutators’ [X;,, Py;-], [Pxr, Pyr J. 

[Xen (etc are Zero. Using these results, it can be shown that the operator J? 

commutes with Jy, Jy or Jz, and that these four operators each commute with the 

rovibronic Hamiltonian Arve given in equation (2.75). However, the three angular 

momentum component operators do not commute with each other and we have 

the commutation relation 

Wie = Ths (2.81) 

with two others obtained by cyclically permuting X, Y and Z. Referring J to 

molecule-fixed axes x, y and z, as we will do when we derive the rotational 

Hamiltonian (see section 5.5), we obtain the commutation relation 

(tila =ihv, (2.82) 
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with two others being obtained by cyclic permutation of x, y and z. Note the 

opposite signs in these two equations. 

A 

The simultaneous eigenfunctions of Aya and i are such that 

A 

J One =J(J+ Lyi Ore (2.83) 

and 

Ue = MAD we (2.84) 

where the total orbital angular momentum quantum number J = 0, 1, 2,... 

and the projection quantum number m has one of the 2J + 1 values 

0,+1,+2,...,+J. Stationary state eigenfunctions of Has can be labelled 

using J and m and, for a given value of J, the state has a 2J + 1 fold 

m-degeneracy. 

If it is necessary to consider the magnetic interactions of the electron spin, we 

must use Tie ar Hes, which commutes with the square of the sum of the total 

orbital angular momentum (now called N) and the total electron- spin angular 

momentum §; this sum is called J, ice. 

TaN 2S): (2.85) 

and the good quantum numbers J and m now refer to the sum of the orbital and 

electron spin angular momenta. To include the effect of the nuclear hyperfine 

Hamiltonian, we use Hint; see equation (2.77). This Hamiltonian commutes with 
a2 mr 

the square of the total angular momentum F' , which is the square of the sum of 

N, S and J, where the latter is the total nuclear spin angular momentum. Thus, 

ae) A B rn A a 

hay aN S41. (2.86) 

The eigenstates of Him can be labelled using the total angular momentum quan- 

tum number F and the projection quantum number mp = 0,+1,42,...,4F. 

Angular momentum is discussed further in sections 5.5.2 and 14.5, and in prob- 

lems 5.7—5.11. 

2.8 The dipole moment operator and line strengths 

To calculate the intensities of the lines in an absorption spectrum, we need the 

line strengths. Having accurate line strengths is important if one wants to use a 

measured spectrum to determine the concentration of the species being observed 
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or if one wants to know the predicted intensities in a theoretically simulated 

spectrum. To calculate line strengths, we use the rovibronic wavefunctions in 

integrals that are called transition moments. 

For a gas phase sample illuminated by a weak electromagnetic radiation 

field the line strength of an electric dipole transition between all possible 

states &” , having energy E/,,., and all possible states ®/,, having energy 

Eyes 1S 

2 

SGi Va a | Picts Pieds (2.87) 
@!., 0”, A=X,Y,Z 

where dt = dX2dY2dZ2...dX,d¥Y;dZ,; is the volume element for 

integration over the internal coordinate space of the / particles. 

In equation (2.87), jz4 is the component of the molecular electric dipole moment 

along the A axis and it is given by 

A= Se Cea (2.88) 

where C;e and A, are the charge and A coordinate of the rth particle (nuclei or 

electron) in the molecule, with A = X, Y or Z. 

The integral that is squared and summed over in equation (2.87) is a 

component of the electric dipole transition moment; its square is a component 

of the electric dipole transition probability. In the case of degeneracies, that 

is if there is more than one eigenfunction ®/,, (or ®/,.) corresponding to the 
eigenvalue E/,.(or E/.), we obtain the line strength by adding the individual 
transition probabilities for all transitions between the degenerate states; this 

is why there is the sum over ®/. and ®),. in equation (2.87). Notice that 
translation is completely removed here. That is because the translational energy 

of a molecule is unaffected by a weak radiation field; a weak radiation field can 

only change the internal state of a molecule. 

Electromagnetic radiation consists of oscillating electric and magnetic fields, 

both of which contribute to its energy. Above we have discussed the intensity 

of resonantly absorbed electric field energy, and we have expressed this in 

terms of the electric dipole transition moment integral in equation (2.87). A 

molecule can also resonantly absorb magnetic field energy and this can be 

expressed in terms of a magnetic dipole transition moment integral. However, 

the line strength of a typical magnetic dipole transition is about 10~° of a typical 

electric dipole transition and so we usually ignore it, just as we usually ignore 
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the extremely weak contribution to the electric field absorption line strength 

from electric quadrupole absorption but if the electric dipole intensity is low 

for some reason these weak contributions to the line strength may have to 

be considered. In electron spin resonance spectroscopy and nuclear magnetic 

resonance spectroscopy, the absorption process involves changing electron or 

nuclear spin states for which the electric dipole transition moment is zero; they 

are magnetic dipole transitions. Similarly, the electric field energy absorbed in 

the infrared region of the spectrum by low density molecular hydrogen gas results 

from electric quadrupole absorption since there is no electric dipole absorption. 

2.9 Matrices and matrix algebra 

In this section we give a brief review of the most important definitions required 

when using matrices. It can be looked over cursorily on a first reading. A matrix is 

an array of numbers (called elements) arranged in rows and columns; for example 

aa Ae a (2.89) 

is a matrix. The matrix in equation (2.89) has two rows and two columns; it is 

a square matrix but matrices are not necessarily square. Ann x n square matrix 

(having n rows and n columns) is said to be n-dimensional. In a general matrix, 

A say, the element occurring at the intersection of the ith row and jth column is 

called A;;. Thus, from equation (2.89), we have Gj; = 2, Gi2 = 4, G2, = 3 and 

Gy =. 

The transpose of a matrix A, say, is obtained by interchanging each element 

Aj; with the element A ;; and the matrix is written A. Thus, from equation (2.89), 

~ he 2 ral 5 | (2,90) 

If a matrix is equal to its transpose, then the matrix is said to be symmetric. 

The Hermitian conjugate (or conjugate transpose) A' of a matrix A is 

obtained by taking the complex conjugate of the transpose of the matrix. Thus, 

Al =(A)* (2.91) 

and 

Al p= tA, (2.92) 

A matrix that is equal to its Hermitian conjugate is Hermitian. 

The sum of the diagonal elements of a square matrix is the trace of the 

matrix; the Greek letter chi (x) is used for it. From equations (2.89) and (2.90), 

we have 

x(G) = x(G) =7. (2193) 
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The determinant of ann x n square matrix A is written as 

AWMAm aA dave 2Acn 

Ais vAjg~ Ara -pen Aan 
detA: = A= |: Aste: AsainAgds sce vAsna le (2.94) 

Ant An2 An3 er oh Ann 

The value of the determinant is given by the sum 

|A| = Yo(1)" Air, Ary A3rs .: -Anr, (2.95) 

where the summation is over all n! possible permutations of the order of the r;. 

The (n!)/2 terms in the sum involving an even permutation of the order of the 

column labels 7; from the standard numerical order 123...n have h even [and 

are, hence, multiplied by (—1)” = +1 in the sum] and the (n!) /2 terms involving 

an odd permutation have h odd [and are hence multiplied by (—1)” = —1 in the 

sum]. An even (odd) permutation involves the product of an even (odd) number 

of pair interchanges. We give two examples to show how one uses this equation. 

For the matrix G in equation (2.89), the determinant involves n! = 2! = 2 

terms: G1,;G22 having no permutation of the order of the 7; so that h = 0, i.e. h 

even, and Gj2G2; having a single permutation of | with 2 so thath = 1, i.e.h 

odd. Thus, in the determinant sum G1;G22 = 2 x 5 is preceded by +1 (since h is 

even) and Gj2G2; = 4 x 3 is preceded by —1 (since h is odd). We can thus write 

Liles 
WN 
% |= 2x5)- x9 =-2 (2.96) 

As a further example, the determinant of the three-dimensional matrix 

3 ene 

ree) Bas i (2297) 

Tees \o 

involves n! = 3! = 6 terms: 

D 1 D22 D33 having h = 0 (the r; are in the standard order), 

D1 D23.D32 having h = 1 (2 and 3 are exchanged), 

Dj\2D 2; D33 having h = 1 (1 and 2 are exchanged), 

D\3D22D3; having h = 1 (1 and 3 are exchanged), 

D}2D 23D3) having h = 2 (1 and 2 are exchanged, and then 1 and 3), and 
D3 D2; D32 having h = 2 (1 and 3 are exchanged, and then 1 and 2). 

Three have h even (and their product is preceded by +1 in the determinant sum), 
and three have /h odd (and their product is preceded by —1 in the determinant 
sum). Using this result, but writing out the sum in a way that shows how the 
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determinant can be written by building it up from the determinants of 2 x 2 sub- 

matrices within the 3 x 3 matrix, we have 

(LD) =169— 6 x.8)— 249 —6.x7)+ 348 —5x 7) =0: .2.98) 

We set up electronic wavefunctions as Slater determinants in equation (3.28) 

and, in this application, the most significant property that follows from the 

definition of a determinant, given in equation (2.95), is that the determinant of 

a matrix will change sign if two rows are interchanged, or if two columns are 

interchanged. From this, it follows that the determinant of a matrix will vanish if 

two rows are identical or if two columns are identical. 

The product of ann x m matrix A (having n rows and m columns) and an 

m xX gq matrix B in the order AB is ann x g matrix C where the ijth element of 

C is given by 
m 

CA oe (2.99) 
Kl 

For example, if the matrices A and B are 

Siw WB 
A= MB 7 and B= 

ie eee 

then equation (2.99) gives the (1, 1) element of the product matrix C as 

Hl 

wo 

2 
| (2.100) 

fond! Wire 

Nl 

Cy =A, Bin + Age x BH 

(1/2) x Gly 2/372) x G/ 3/2) 

=i ly (2.101) 

The (1, 2) element of the product matrix C is given by 

Cix=Air Biz Ai X Bx 

(12) 3/2) G/ 3/2) « (1/2) 

set) (2.102) 

We can use equation (2.99) to similarly determine that C2; = O and that Coo = 1. 

Thus, we can write out the product matrix C in full as 

ieee ||| ee Pe 3 1 0 
Gal || eee =|; alk (2.103) 

From equation (2.99), we see that for the multiplication between A and B to 

be possible the matrices A and B must be conformable, i.e. the number of columns 

in A must be equal to the number of rows in B. This means that, for example, A 

and B can both be m-dimensional square matrices and their product C will be an 

| 

=n 
wl {Sp 

es) 
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m-dimensional square matrix. A can be a square matrix with dimension m, B can 

be a single column matrix with length m and their product will be a column matrix 

with length m. A can be a single row matrix of length m, B can be a square matrix 

of dimension m and their product will be a single row matrix of length m. A can be 

a single row matrix of length m, B can be a be a single column matrix with length 

m and their product will be a single number. Other possibilities are obtained by 

choosing particular values for n and q in equation (2.99). Matrix multiplication, 

like quantum mechanical operator multiplication, is not necessarily commutative. 

An n-dimensional square matrix E that has unity in all diagonal positions 

and zero in all off-diagonal positions is called an n-dimensional unit matrix. The 

matrix C in equation (2.103) is a two-dimensional unit matrix. It is customary 

to use the letter E for a unit matrix. If we multiply an n-dimensional square 

matrix A by the n-dimensional unit matrix FE, the result is A. That is the matrix 

E plays the role in matrix multiplication that unity plays in the ordinary algebraic 

multiplication of numbers. Square matrices having all off-diagonal elements 

equal to zero are said to be diagonal, and the unit matrix is a special case of a 

diagonal matrix in which all diagonal elements are unity. 

If the product of two n-dimensional square matrices A and B is the n- 

dimensional unit matrix £, i.e. if 

AB=E (2.104) 

then we say that one matrix is the inverse (or reciprocal) of the other, and we write 

A= = Be * Or * ps >See. (2.105) 

The matrices A and B in equation (2.100) are the inverse of each other; their 

product is the two-dimensional unit matrix from equation (2.103). Only square 

matrices can have a unique inverse and efficient computer routines exist for 

finding matrix inverses. However, the inverse of a matrix will not exist if the 

determinant of the matrix is zero; a matrix having a determinant that is zero is said 
to be singular. The matrix D in equation (2.97) is singular from equation (2.98). 
If the inverse of a matrix is equal to the transpose of the matrix, then the matrix 
is orthogonal; the matrices A and B in equation (2.100) are orthogonal. If the 
inverse of a matrix is equal to the Hermitian conjugate of the matrix, then the 
matrix is unitary. 

2.10 Problems 

wal Using equation (2.1), together with the fact that exp(2in7) = 1 only 
if n is a positive or negative integer, determine the eigenvalues E,, and 
eigenfunctions W,(a@) of the operator d/da for the situation where a is 
an angle, which means that the eigenfunctions are restricted to satisfy 
Wn(a@ +27) = Wn(a). Determine also the eigenfunctions and eigenvalues 
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2.4 

aS 

2.6 

21 

2.8 

Problems 4] 

of the operator —id/da. Which of the operators d/da and —id/da is 
Hermitian? 

Are the eigenfunctions in problem 2.1 also eigenfunctions of the operator 
d? /da?? 

A particle of mass M moving on a circular path of radius R has angular 

coordinate «. The energy of the particle is P*/2M and its angular 

momentum is J = PR. By expressing the energy in terms of the angular 

momentum and then substituting the quantum mechanical operator j= 

—ihd/da, determine the Hamiltonian, the Schrodinger equation and the 

quantized energies. The product M R? that scales the energy level spacings 

is called the moment of inertia of an orbiting particle. Determine the 

energy level spacings for orbiting atoms having various values of M and 

ie 

Show how equations (2.38)—(2.40) are obtained from equations (2.34) 

and (2.37). 

Use equations (2.34)-(2.37) for the 2 x 2 perturbation problem to 

determine S, ct and c~ for the situation with a constant off-diagonal 

matrix element H12 of 10 cm~! but with the zero-order level separation A 

being 0, 1, 10, 100 and 1000 cm™!, respectively. Compare the results with 

the approximate values obtained using equations (2.38)—(2.40). 

Prove that the 77 element of the n-dimensional square matrix D that is the 

product of three n-dimensional square matrices A, B and C in the order 

ABC is given by 
nA n 

DT ape Bar, (2.106) 
k=] l=1 

Prove that if any n-dimensional square matrix R say, is premultiplied 

by the non-singular n-dimensional square matrix Q, and postmultiplied 

by the inverse matrix Q~!, then the character of the resultant matrix 

S = ORQ | is the same as that of the matrix R, i.e. prove 

iS) ORO. = X(R) =) Ris. (2.107) 
i=l 

Evaluate the determinants of the matrices A and B given in 

equation (2.100). 



Chapter 3 

Electronic states 

From equation (2.75) for Tne we see that the rovibronic Schrodinger 

equation (2.76) does not involve molecular parameters, such as bond lengths and 

angles, and that the only quantities occurring are the masses and charges of the / 

particles (nuclei and electrons) that make up the molecule. Thus, we can easily 

set up the Schrodinger equation for any molecule. One might think that we could 

then simply use numerical methods to solve it. However, even using the most 

efficient numerical methods, current computers do not have enough power for 

this to be possible with the required precision except for three- and four-particle 

systems such as H" and H2. This will change as computer power increases. 

For most molecules, to solve the rovibronic Schrodinger equation 

accurately, we are forced to make approximations and then to correct for 

them as best we can. The approximations introduce concepts that allow us 

to understand molecules. 

Such concepts as electronic state, molecular orbital, electronic configuration, 

potential energy surface, equilibrium structure, force constant, electronic and 

vibrational angular momentum and Coriolis coupling constant come about 

because of approximations that are introduced. However, these concepts are only 

satisfactory and useful if the approximations that lead to their introduction are 

reasonably valid. 

3.1 The Born—Oppenheimer approximation 

To solve the rovibronic Schrodinger equation, we change coordinates so that it 

separates into simpler Schrodinger equations. Approximations have to be made 

but by choosing appropriate coordinates the approximations are minimized. The 

42 
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first separation we make is that of the electronic motion from the nuclear motion. 
To do this we change coordinates in Hae as given in equation (2.75), from 
(X93) Yo 7294.15, Z1) to: (G05 no) Coeney G), where the En axis system is parallel 
to the XY Z axis system but has origin at the nuclear centre of mass rather than the 
molecular centre of mass. This choice of origin allows us to refer the motion of 
the electrons to the positions of the nuclei and it gives a kinetic energy expression 
that is completely separable into an electronic kinetic energy Tz. and a nuclear 
kinetic energy IN. In these new coordinates, the rovibronic Hamiltonian can be 
written as 

Hie = ie ai TN a Vee qr VNN ir VNe (3.1) 

and the rovibronic Schrodinger equation is 

le a Ty + Vee + Vnn + Vne] Prive = EvvePrve (3.2) 

where the electrostatic potential energy given in equation (2.75) has been written 
as (Vee + Vnn + Vne). Vee is the sum of all the electron—electron electrostatic 

repulsions and it only involves the coordinates of the electrons. Vxn is the sum of 

all the nuclear—nuclear electrostatic repulsions and it only involves the coordinates 

of the nuclei. Vye is the sum of all the electron—nuclear electrostatic attractions 

and it involves the coordinates of the nuclei and electrons. 

Although the kinetic energy is completely separable into electronic and 

nuclear parts in these coordinates, the potential energy is not because of the 

presence of the electron—nuclear attraction term VNe. This part of V is the 

glue that holds the molecule together and we cannot just neglect it. We cannot 

chose coordinates in such a way that the potential function separates into two 

non-interacting parts where one part just involves the nuclear coordinates and 

the other the electron coordinates and we cannot follow the simple separation of 

variables procedure that we used to separate translational and the internal degrees 

of freedom in section 2.5. 

All is not lost, however. We saw at the end of section 2.5.1 that 

because electrons are so much lighter than nuclei, the first excited electronic 

state is at a much higher energy than the first excited vibrational state. 

Knowledge of this leads us to treat the rovibronic Schrodinger equation in 

a special way, by using the Born—Oppenheimer approximation, to separate 

it into nuclear and electronic parts. 

To understand this approximation, it is helpful to view a molecule as having a 

nuclear framework that rotates and vibrates, while at the same time the electron 

cloud is continually modifying its shape so as to conform to the instantaneous 

nuclear geometry. It would be more appropriate to think of the electronic 
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wavefunction as varying with the nuclear coordinates and, from it, one can 

calculate the electronic probability distribution. Using this idea, the electronic 

wavefunction is obtained in the Born—Oppenheimer approximation by solving 

the rovibronic Schrodinger equation with the nuclei fixed at an appropriate 

geometry and with only the electronic coordinates as variables. This means that 

in equation (3.2), we put Tx = O (the nuclear kinetic energy is zero because the 

nuclei are held fixed), and neglect Vn (since we are only concerned with the 

electron dynamics) to give 

(le = Vee at Vne]Pelec,n — Jae Dalen = elec,n Pelec,n (3.3) 

where a particular nuclear geometry is chosen in Vye, and n labels the 

successive electronic states (n = 1,2,...). This equation is the electronic 

Schrodinger equation, and it is solved at many different nuclear geometries to 

yield the electronic wavefunctions ®ejec,, (which are functions of the electronic 

coordinates) and energies Velec.n; Pelecn and Velecn are each a parametric 

function of nuclear geometry. 

The calculation of the electronic wavefunction as described above has been 

achieved by holding the nuclei fixed. To calculate the energies for the nuclear 

motion, we must allow them to move under the constraint of the electrostatic 

nuclear—nuclear repulsion potential energy term Vyn in equation (3.1) but we 

must also include the constraint imposed by the fact that the electronic energy 

Velec depends on the nuclear geometry. The need to include this extra constraint 

is easy to appreciate. Suppose the nuclei move from one geometry to another 

in which Vyn is higher and that simultaneously Vejec 1s also higher; in this case, 

the nuclei have to work against the combined energy of (VNN + Velec) and this 

function (which depends on the nuclear geometry) provides the potential energy 

surface for the nuclear motion. For each electronic state n, there will be a different 

potential energy surface (VNN + Velec.n) and a different nuclear motion (rotation— 

vibration) Schrodinger equation given by 

[Tx + VNN + Vetec.n | Pry nj = are Dw nj (3.4) 

where j(= 1, 2,...) labels the rotation—vibration states in the same way that n 

labels the electronic states from equation (3.3). 

In equation (3.4) Es es is the rovibronic energy for the jth rotation— 

vibration level in the nth electronic state, within the Born—Oppenheimer 
approximation. We rewrite the equation so that the zero of energy in each 
electronic state is the minimum value of (VjN + Velec.n). Which we call the 
electronic energy Eetec.n of the electronic state n! and we obtain the rotation— 

vibration Schrodinger equation as 

[Tn ae Vn nr) Pry,nj == He as = Evy.nj Diy nj (370) 

| The electronic term value in cm~! is called Te(n). 
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where 

VN in = VNN =F Velec,n ey Eelec,n (3.6) 

and 

Ewnj = ae nj — Eetec,n- (3.7) 

To solve the electronic and rotation—vibration Schrodinger equations, we refer 
the electrons and nuclei to molecule-fixed xyz axes in order to separate rotation. 
These axes have origin at the nuclear centre of mass, like the n¢ axes, but they 
are attached to the molecule so that they rotate with it (see section 4.1). 

In making a summary of this, it is helpful to represent the nuclear coordinates 
as Ryn and the electronic coordinates as relec. In the Born—Oppenheimer 

approximation, the rovibronic eigenfunctions are the products 

ee Fetec) = Pelecn (RN, F elec) Pry.nj (RN) (3.8) 

and the rovibronic eigenvalues are the sum 

EY ry a Eelecn + Evy,nj- (3.9) 

We have reduced the problem of solving the (3/ — 3)-dimensional rovibronic 

Schrodinger equation (3.2), to one of solving two differential equations: 

Equation (3.3), which is the 3(/— N)-dimensional electronic Schrodinger equation 

for Delecn RN, Felec) and Velec.n( RN) (and Eelec.n), and equation (3.5), which is 

the (3 N —3)-dimensional rotation—vibration Schrodinger equation for ®ry nj (RN) 

and FEyynj. Fortunately, it is usually the case that only the very lowest 

eigenstates of equation (3.3) are of interest and efficient variational methods have 

been developed to obtain them even for molecules having many electrons (see 

section 3.3). 

The Born—Oppenheimer approximation introduces the concepts of electronic 

state and electronic potential energy surface Vy _,( RN). Potential energy surfaces 

are independent of isotopic substitution because the nuclear masses do not enter? 

equation (3.3). The nuclear geometry at the minimum of the potential energy 

surface of an electronic state is the equilibrium geometry of that state; it 1s 

the geometry at which the nuclei would naturally come to rest if they moved 

classically on the surface and it is the geometry at which Vy. ,( Rn) = 0. The 

structure of a molecule is its structure at the equilibrium configuration of its 

ground electronic state within the Born—Oppenheimer approximation. 

The exact rovibronic wavefunctions Prvye are (by definition) eer 

of the rovibronic Hamiltonian Hide given in equation (3.2) but the functions o? 

are not since it can be shown that 

HeOe ane, (Do eee HT (3.10) 
rve, nj rve,n Tve, nj 

2 Within the Born—Oppenheimer approximation, a small nuclear-mass dependent electron kinetic 

energy term ie is neglected. 
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where H’ = 0 only if 

Ty Petecn (RN; relec) Pry,nj (RN) = PDelec.n (RN, relec) IN ®ry.nj (RN) (3.14) 

that is only if Ty and ®elec.n commute. Put another way, H’ = 0 only if the effect 

of Ty acting on all the ®ejec,n is neglected. However, this is not the whole story 

and the energy separation between electronic states also enters. 

The separation in energy between the zero-order Born—Oppenheimer states 

Delecn Pry,nj and ®ejec,mPry,mk iS 

A(nj; mk) = (Eelec,m + Ery,mk) — (Eelec,n + Evy.nj)- (3.12) 

The off-diagonal matrix element of the rovibronic Hamiltonian between these 

states is 

elec,n *rv,nj Hinjimk = | ee OD ates mi Drynk de (3.13) 

since the electronic off-diagonal matrix elements of (72 + Vee + VNe) and of 

Vnn vanish at all nuclear geometries. From equations (2.31)-(2.40), we see 

that the extent to which these two levels perturb each other depends on the ratio 

H (nj; mk)/A(nj; mk). If this ratio is small, there will be little mixing of the 

states, i.e. little breakdown of the Born—Oppenheimer approximation. 

For almost all molecules, the excited electronic states are at energies 

well above the ground electronic state. Thus, the Born—Oppenheimer 

approximation is almost invariably a good approximation for the levels 

of the ground electronic state. A significant breakdown of the Born— 

Oppenheimer approximation often occurs in excited electronic states if 

there are other excited electronic states nearby in energy. 

3.2 Spin and the Pauli exclusion principle 

Electrons and most nuclei have an intrinsic angular momentum called spin 

angular momentum. The electron spin angular momentum operator for one 

electron is written s and the nuclear spin angular momentum operator for one 

nucleus is written 7; these operators have space-fixed components Sz and iz. 

Expressions for these operators are not obtained from any classical angular 

momentum expressions and, in non-relativistic quantum theory, the existence 

of spin would be another postulate. The theory of relativity is essential for 

understanding the origin of spin and we will not go into that. Suffice it to say 
that an electron has a spin angular momentum and that the eigenvalue of its 
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square $° is s(s + 1)h?, where the spin angular momentum quantum number 
(or spin, for short) s = ee For a nucleus, the eigenvalue of the square of the 
spin angular momentum i? is Et 1)h where / is the spin of the nucleus. The 
eigenvalue of $7 is szh, where sz = +1/2, and the eigenvalue of iz i is I7h, where 
Iz = —I,—I +1,...,J. For the elements from H through Ne in the periodic 
table, their nuclei have spin J as follows: 

I = 0 for +He, !2C, !°0, !80, 2°Ne and 22Ne nuclei 

Je 1 2.105 'H, 3He, !3C, '5N and !9F nuclei 

I = 1 for *H (=D), ®Li and !4N nuclei 
I = 3/2 for /Li, °Be, !'B and 2!Ne nuclei 

I = 5/2 for '’O nuclei and 
T = 3 for !°B nuclei. 

There are no stable nuclei having a spin J of 2. 

Electrons and nuclei with non-zero spin have an associated magnetic dipole 

moment; each nucleus having spin J > 1/2 also has an associated electric 

quadrupole moment. These moments have effects on atomic and molecular 

energies and it was the observation of these effects that first lead to the 

experimental inference of the presence of ‘spin’ by Goudsmit and Uhlenbeck 

1925°. The interactions that arise from these moments contribute with the 

electrostatic interaction V of equation (2.45) to give the full electromagnetic 

interaction energy between the particles in a molecule. We have written these spin 

terms as Hes + Hints in equation (2.77). The expressions for these two spin terms 

in the Hamiltonian involve the values of the spin magnetic dipole moments of 

the particles and the values of any nuclear electric quadrupole moments, together 

with the spin angular momentum operators. 

The fundamental fact is that the spin of an electron or nucleus is not 

something that can be understood classically and there is no spin coordinate in 

the classical sense. One must not be mislead by the name ‘spin’ in thinking of an 

electron or nucleus as spinning to generate a magnetic dipole moment. 

Spin labels are introduced by writing the complete internal wavefunction 

(i.e. for everything except translation) as Pint RN, Felec, O1,.--, 01), Where each 

o; can take one of the 2s + 1, or 2/ + 1, discrete values of the projection of 

the spin of the particle onto the Z direction. Electrons have a spin s of 1/2, and 

protons have a spin J = 1/2. Thus, for electrons or protons, the projection o can 

be +1/2 (called the a spin state) or —1/2 (called the f spin state). In general, 

for a nucleus with spin J the value of o can be any one of the 2/ + 1 values —/, 

—I[ +1,...,+/. What we actually have here is a set of functions corresponding 

to all possible values of oj, ..., 07; this constitutes a set of spin components of 

the wavefunction. For example, for a one-electron system [where r gives the xyz 

coordinates of the electron] the spin component electronic wavefunctions would 

be ®(r,a) and ®(r, B) as o is @ or f, respectively; the complete electronic 

wavefunction would be written ®(r, oc). 

3 Goudsmit G and Uhlenbeck S 1925 Naturwissenschaften 13 953. 
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The fifth postulate of quantum mechanics (stated fully in section 9.1) 

requires the introduction of spin; when applied to electrons, it gives rise to the 

Pauli exclusion principle. 

The Pauli exclusion principle states that the complete wavefunction ® for 

a molecule (including spin) is changed in sign if the space coordinates and 

spin of any two electrons in it are interchanged. 

So if we only exchange the pair of electrons labelled i and j in a molecule we 

must have 

De Mis Vis Sis Oi ae oh fa Nos 24 Oj amie) 

=O (4, BON ois OC eres oki) a Sal Ov inet) (3514) 

The electronic wavefunction (with the inclusion of spin) is antisymmetric (i.e. 

multiplied by —1) with respect to the exchange of a pair of electrons. 

3.3. Electronic wavefunctions and energies 

From equation (3.3), after changing to molecule-fixed xyz coordinates, the 

electronic Schrodinger equation is 

HejecPetec — Velec Pelec (3.15) 

where ‘ 
n h > Po Gee" 
Hic Ve + ——_ — ——— 3.16 

fos 2me dX : 2 Art €0 Rij d. 4m €0 Rig 

and J 

TIM aan Capes 

Oxy + dy Wy ez5 

In equation (3.16), i and j run over the n = (J — N) electrons and q@ runs over the 
N nuclei. We initially make the drastic approximation of neglecting the term that 
describes the electrostatic repulsions between the electrons: 

> 

e 
Voce = —__.. 3.18) 
F De Ar €9 Rij ‘ 

Lia} : 

This reduces Hejec to the very approximate (va) electronic Hamiltonian: 

A we h 9 

shes Ne / 
ae ie | DNs 2 oe —|- DI ¢h eae) 

i 
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With this approximation, oe is separable into the sum of n_ identical 

Hamiltonians, each of which is the Hamiltonian for one electron (having 

coordinates r = xyz) moving in the field of the N nuclei, with the nuclei held 

fixed at a particular molecular geometry. The one-electron Schrodinger equation 

is 

Ape(r) = e2p?(r) (3.20) 

where, for notational convenience, we omit the dependence on nuclear 

coordinates in the expressions for or(r) and a The eigenfunctions and 

: ava eigenvalues of Hj)... are 

va = b2 (ri) (12)... 0) (rn) (3.21) 

and 
Va eS ee pe, ee ey (3.22) 

From each of the normalized spatial orbitals oy (r), we can form two normalized 

spin-orbitals 

XRT, 7) = P(r) |.) (3.23) 
where |s, 0) is an electrons spin function, s = 1/2 ando =a or B. 

3.3.1 The Slater determinant 

For a two-electron molecule, such as H2, HeH™ or H+, we could write an 

electronic wavefunction as the Hartree product 

oF o1) xy (2, 02). (3.24) 

But, ooe is not an acceptable wavefunction since if we exchange the electron 

coordinates in it we do not obtain — HP as we should if it satisfied the Pauli 

exclusion principle and were antisymmetric; instead we get 

or = x2, 02)Xx5 (11, 1). (3-25) 

However, from oe and Da we can construct a properly antisymmetric two- 

electron function as (where the 2—!/2 assures normalization): 

0? = 2-0 ry, 1) xP(r2,.02) — XP (r2, 2) XFL, OVI. (3.26) 

We can use determinant notation [see equation (2.95)] to rewrite it as 

Dt et! xP (r1, 01) xP(r1, 01) 
) = — 3.27 

J2| x?(r2, 92) yg leer) Ssaaad 

The ground electronic state of the Hz molecule is described by such a determinant 

as this where the two spin-orbitals have the same spatial orbitals and one has an 
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a spin component while the other has a 6 spin component, to give a closed-shell 

state with paired electron spins. Both electrons could not have the same spin in 

such a situation since then the wavefunction would be symmetric with respect to 

their exchange and this is not allowed by the Pauli exclusion principle. Such a 

state is ‘excluded’ from existence and another way of stating the Pauli exclusion 

principle for electrons is to say that no two can be in the same state. 

Equation (3.27) can be generalized to produce an n-electron wavefunction 

as the following Slater determinant sum of n! terms: 

xP (ri, 01) xP (1, 01) meen ranay 
1 x2 (r2, 02) x7 (72, 02) vee Xp(r2, 02) 

eco 7 (3.28) 
vn! : : : ; 

XE (as On) x} (ns On) vee Xp Cason) 

The interchange of two rows of the determinant in equation (3.28) is equivalent 

to the exchange of the spatial coordinates and spin of two of the electrons. From 

the properties of determinants [see equation (2.95)], this will cause the function 

to change its sign. Also, if two electrons occupied the same spin-orbital, it would 

mean that two columns of the determinant would be equal and the determinant 

would vanish. 

The Slater determinant expression for an n-electron wavefunction treats 

all the electrons equivalently and it guarantees that the Pauli exclusion 

principle is satisfied. It is the sum of n! terms. 

Equation (3.28) is a Slater determinant wavefunction for n electrons 

occupying the n spin-orbitals Oe hoe Eases Yo: In a shorthand notation, we write 

it as 
ORO 0 De Be (3.29) 

3.3.2 The Hartree-Fock approximation and molecular orbitals 

In the previous section, the electron—electron repulsion term Vee in Hac iS 

completely neglected. This term causes electron correlation since it prevents the 

electrons from moving independently of each other; as a result, the motion of each 

electron depends on (or 1s correlated with) the motions of all the other electrons 
in the molecule. There is a way of partly including Vee while still maintaining an 
orbital-product description of the wavefunction. To explain how this is achieved, 
we focus on the determination of the electronic ground state wavefunction 
and energy. In this approach, we partly include Vee by making the Hartree— 
Fock approximation. The ground-state wavefunction is expanded as a Slater 
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determinant in Hartree-Fock spin-orbitals x, where these are eigenfunctions of 
the effective one-electron Hamiltonian (called the Fock operator): 

A h 9 C e” 
= ve e Ve eo 

: yy Att €9 Rie op Y ( 1h 

The function ve is the average potential experienced by electron i in the field of 

the other (n — 1) electrons and this potential depends on the spin-orbitals of the 

other electrons, i.e. on the eigenfunctions of he 

Thus, the Hartree-Fock equation 

A ya (r,0) = e.xa(r,0) Goa 

must be solved iteratively. This procedure is called the self-consistent field 

approximation (SCF) method. The x, (7, 0) are molecular orbitals (MOs). 

The SCF procedure involves making an initial guess for K orthogonal spin- 

orbitals (where K > n) and calculating ye for each electron. The Hartree—Fock 

equation is then solved to obtain new spin-orbitals. The new spin-orbitals are 

used to calculate new vie and the Hartree-Fock equation is solved again. This 

procedure is repeated until the van do not change significantly; this indicates that 

self-consistency has been achieved. 

The n spin-orbitals with the lowest energies obtained in this procedure are 

called occupied spin-orbitals and the Slater eee formed from them is the 

Hartree-Fock ground-state wavefunction Wi The ground-state electronic 
ae gs° 

energy is obtained as the expectation value 

Veins, gs a aie eee Ua a) (3.32) 

and it is not given as the sum of the orbital energies ¢, from the Hartree-Fock 

equation(3.31). The Hartree-Fock procedure gives K spin-orbitals, where the 

upper (K — n) orbitals are called unoccupied, or virtual, orbitals. The larger K 

is the more complete is the set of basis functions and the lower and better will be 

the expectation value Va, a8 by the variational theorem. Thus, calculations are 

made with the largest practicable value for K. 

Most electronic ground states are closed-shell with no unpaired spin and a 

restricted Hartree-Fock calculation is made in which the aw and f spin states are 

constrained to have the same spatial orbitals. In this very common situation, the 

Slater determinant (in the shorthand notation) can be written as 

Da. gs Sy Noone > Xn/25 Xn/2) (3333) 

where x; has w spin and x; has f spin. 
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3.3.3. MOsas linear combinations of atomic orbitals 

In a Hartree-Fock calculation, the usual MO trial functions are linear 

combinations of atomic orbitals (LCAO), where the atomic orbitals are centred 

on the nuclei in the molecule. At each nucleus the AOs could be taken as the 

wavefunctions of the one-electron atom, i.e. the eigenfunctions of the Hamiltonian 

2 2 2 2 2 
Cae ELA | Se atin ene |, el ey ate Sala HE (3.34) 

Dns Ox- 1 Ov mn Oe: Amey. x2 + y2 + 22 

which describes an electron at the position r = xyz interacting with s ae of 

charge Ze at the origin of the xyz axis system. The eigenvalues of h) are 

Z*mee* 
E, = -—>—————— 7 — ae eee (335) 

‘ 2n2 (4m €0)7h2 

Each eigenfunction of h®) is specified by the value of three quantum 

numbers n (which determines the energy E,,), / and m, where / takes the n values 

0,1,...(n — 1), and m takes the 2/ + 1 values/,/ —1,...,—/. As a result, the 

level E, has a degeneracy given by es DI + 1) =n’. States with / = 0, 1,2 

and 3 are called s, p, d and f states, respectively. The single state with energy FE 

is called the Is state and the four states with energy E> are called the 2s, 2px, 2py 

and 2p, states. 

The eigenfunctions of hn), called Slater type orbitals (STOs), are normally 

not used as the AOs. Instead, for reasons of computational convenience, it is 

customary to use Gaussian type orbitals (GTOs) which have the same angular 

dependence and the same rotational symmetry properties. For example, the form 

of a Gaussian Is orbital is 

o(r) = (2¢/m)3/4e-F” (3.36) 

where ¢ is adjustable. The exponent in a GTO involves r? whereas the exponent 

in each eigenfunction of h‘2) involves r. Using the GTOs ¢,,(r), we write trial 

spatial MO functions as the linear combinations 

K 

Wi = Ss CriPu(r) (3337) 

=) 

and the trial spin-orbitals would be y1, Wi, w2, Wr ener WK, Wk. The C,,; are 

adjusted in the SCF procedure to minimize (and improve) ae e and this gives 
the optimum MOs. 

3.3.4 Configuration interaction 

Electron correlation, i.e. the effect of the electron—electron repulsion term Vee, 
can be more completely allowed for than it is in a Hartree—Fock calculation. The 
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Hartree-Fock ground-state single-determinant wavefunction is written in its most 
general form in terms of the n occupied spin-orbitals as 

One gs SAME one aX bak an (3.38) 

In the calculation, 2K spin-orbitals are used and we form a singly excited 

determinant by promoting an electron from the occupied orbital x, to the 

unoccupied orbital x;-: 

= IX K20-2 +. Xrs Xb» +> Xni- (3.39) 

A doubly excited determinant would be 

XD es eae (3.40) 

and we can define triply, quadruply, etc excited determinants. Each of these 

determinants W is defined by specifying the n orbitals from which it is formed 

and such a set of MOs is called an electron configuration. A better approximation 

to the ground-state energy than VHF is obtained by diagonalizing Helec in the elec, gs 

functions Dae * /,, &77,, which we truncate at some systematically chosen 
point, such as after all singly and doubly excited determinants. It is the electron 

correlation term Vee that gives rise to the non-vanishing off-diagonal matrix 

elements of Hstec in this calculation, which is called a configuration interaction 

(CI) calculation. It leads to a ground-state wavefunction oe Bs that is a linear 

combination of ont ae and the excited functions ®7, ae etc used in the 

calculation. The ground- state potential energy surface, from equation (3.6), is 

given by 

Vwi Sa = VNNG: Vics gs ane gs (3.41) 

where Vans ee is the CI electronic energy and Hee a is the minimum value of 

Vien e Ve In giving the result of such a so-called ab initio calculation of 
elec, gs* 

a potential energy surface, it is necessary to quote the nature and number of the 

AO basis set functions used and to describe the configurations included in the CI 

calculation. 

3.4 Molecular orbital theory 

We can get a qualitative understanding of the electronic structure of a molecule 

by considering the trial LCAO-MOs in equation (3.37). The AOs are shown 

in figure 3.1. The 2s orbital has spherical symmetry and the 2p, orbital has 

cylindrical symmetry with a node at its centre; at a node, an orbital has the value 

zero and it changes sign. The sign of the 2p, orbital is chosen so that it has 

positive values for x > 0 and negative values for x < 0; the zy plane is a nodal 

plane. The 2py and 2p, orbitals are rotated versions of the 2p, orbital. 
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Figure 3.1. The n = 2 atomic orbitals: (a) the 2s orbital, (b) the 2p, orbital, (c) the 2p, 

orbital and (d) the 2p, orbital. 

3.4.1 Bonding and antibonding orbitals 

To introduce the central concept of bonding and antibonding MOs, we consider 

the hydrogen molecule and, in the basis of the AOs 1s(H;) and Is(H2), we 

diagonalize the one-electron Hamiltonian [see equation (3.19)] 

5 

‘ h2 [ a2 @? a2 e- e- = - eae tite 
dy2 Az? AregRet 47€0Re2 

(3.42) ‘ 2; 
DiNeaN OX 

where xyz are the coordinates of the electron and Re; and Re are the distances 

of the electron from the protons | and 2, respectively. In figure 3.2, we show two 

hydrogen atoms, at a separation of Ryy, with their 1s AOs. The coordinates of 

an electron in an axis system with axes parallel to the xyz axis but with origin at 

proton | are given by 

/ / if R 
(Cra a i (: = —, y, :) ‘ (3.43) 

a 
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Figure 3.2. Two hydrogen atoms, H; and Ho, separated by Ryy and located symmetrically 

about the origin on the x axis; each has a Is orbital centred on it. 

The chain rule gives 
0 OX n0 0 
— = = — (3.44) 

sO we can write 

‘ fen) ede ae a? e g 
es ( a S (3.45) = : = = 

2me \ A(x')* = A(y’)*_— (2)? AtegRey 4 €0Re2 

The first two terms here are the Hamiltonian of a hydrogen atom consisting of 

proton | and an electron and, since 1s(H;) is a hydrogen atom eigenfunction with 

energy 

eee OEE ND (3.46) = <= : "2 (4re9)2h2 
from equation (3.35), we have 

A e~ 

Ais He) |= 27s) |__| |s( Ey). (3.47) 
Att eg Re2 

Consequently, the off-diagonal matrix element 

(1s(Hp)[A| 1s(H)) = £1 f 1s(H)"19(H) dx’ dy" de 
f 
4 1 

OnE J sscny 1s(H,) dx’ dy’dz’. (3.48) 
Air eq mee Re 

Since the AOs 1s(H;) and 1s(Hz2) are real and positive, the off-diagonal matrix 

element is real and negative and we write 

QO = —(1s(H>)|h|1s(H;)) > 0. (3.49) 
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(a) 
Figure 3.3. (a) The energies of the bonding orbital y and the antibonding orbital w* 

relative to the energy of the two AOs 1s(H,) and 1s(H2) and (b) the formation of a bonding 

and an antibonding orbital by interaction of two non-equivalent AOs $a and ¢g. 

The two functions 1s(H;) and 1s(H2) are equivalent, and we define 

W = (1s(H,)|Al1s(H,)) = (1s(H>)|A|1s(H)). (3.50) 

Thus, the Hermitian matrix of h in the chosen basis is 

WaiaG) | a W F Gad 

Using equations (2.30)—(2.37) the MOs are 

1 
= ——[1s(H,) + 1s(H>)] and w* = —~[1s(H,) — 1s(H>)] (3.52) v es l @ Ba 1 

with energies 

and E*=W+@Q (3:53) E=W-Q 

respectively, where E < E* since Q > 0. 

With both electrons in the orbital y (one with a spin and the other with 6 

spin), the energy is 2(W — Q) which is lower than the electronic energy 2W of 

two non-interacting hydrogen atoms. In the orbital y, the two Is orbitals add 

together in the region of space between the two nuclei and form a bond. The MO 

w is a bonding orbital. In contrast, the MO w* has energy 2(W + Q) and it has 

a node midway between the nuclei. Electrons occupying this orbital have a lower 

probability of being found in the region of space between the two nuclei and there 

is no bonding. The MO y* 1s an antibonding orbital. 
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In figure 3.3(a), we represent the energetics of the isolated AOs, the bonding 
MO and the antibonding MO. Bonding and antibonding orbitals can also form by 
interaction of AOs that are not equivalent. Two such orbitals ga and dp give rise 
to a matrix 

Was —O 
mo “We (3.54) 

analogous to that in equation (3.51) but now Wa 4 Wg. The two AOs ga and p 

give rise to a bonding and an antibonding orbital; the energies of these orbitals are 

E = 5(Wa + Wp) — 440? + (Wa — Wp)? (3.55) 

and 

E* = 3(Wa + Wp) + 3V40? + (Wa — We)? (3.56) 
from equations (2.31)—(2.34). As shown in figure 3.3(b), E < Wa(< Wg in our 

example), so also in the case of non-equivalent AOs interacting, the formation of 

the bonding orbital leads to an energy lowering. 

3.4.2 Hybridization 

Rather than using simple AOs, a better understanding of the electronic structure 

of a molecule is often obtained if we use hybrid orbitals and we illustrate this 

using hybrid orbitals for the carbon atom. Carbon 2s, 2p,, 2py and 2p, AOs are 

degenerate, from equation (3.35), and any linear combination has the same energy. 

Using matrix multiplication notation, we form four orthonormal symmetrical 

linear combinations 

(sp?) 

1 en ee) aan 2s 
sp") i deh ye tl eee ol D 3 ae Re Px 
Spee eon Tl 1 -1 -1 2D Gl) : 

sor) (oe lee ted 2a. 

which are known as sp* hybrid orbitals; all four are represented in figure 3.4(a). 

Each has a large lobe with a positive value and a much smaller lobe with a negative 

value; these smaller lobes are just visible for gor) and gs” in figure 3.4(a). 

Each hybrid orbital has cylindrical symmetry, and the entire structure of orbitals 

shown in figure 3.4(a) has tetrahedral symmetry; the ‘outward tips’ of the four 

positive lobes are at the vertices of a tetrahedron (see figure 6.7). 

The sp° hybrid orbitals form bonding and antibonding orbitals with AOs 

centred on other atoms. For example, a bond can be formed by interaction with 

the Is orbital of a hydrogen atom as indicated in figure 3.4(b). Thus, the electronic 

structure of the CH4 molecule is described as having two electrons in the C(Is) 

AO and two electrons in each of the four bonding orbitals formed from a carbon 

atom sp* hybrid orbital and a hydrogen 1s AO. 
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Figure 3.4. (a) sp? hybrid orbitals gor? (j = 1, 2.3, 4) from equation (3.57) centred on a 

carbon nucleus. (b) The sp> hybrid orbital oy? interacting with the 1s AO on a hydrogen 

atom. 
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Figure 3.5. (a) The 2p- AO and the three sp- hybrid orbitals centred on a carbon nucleus. 

(b) The 2py and 2p; AOs and the two spy hybrid orbitals centred on a carbon nucleus. 

The water molecule can also be described using the concept of sp> hybrid 

orbitals. The H2O molecule has 10 electrons and a bond angle of about 105°. This 

is close to the tetrahedral angle of 109.5°. The electronic structure is described 

by saying that there are two electrons in the O(1s) AO and two in each of two 

bonding orbitals formed from an oxygen atom sp* hybrid orbital and a hydrogen 

1s AO. The other two oxygen atom sp orbitals are each then said to contain lone 

pairs of electrons that do not participate in the bonding. 

Other useful basis sets for carbon atoms are sp? and sp hybrid orbitals. sp- 
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Figure 3.6. The electronic orbital structure of the two carbon nuclei in an ethylene 

molecule CyHy4. The signs of the p- AOs are indicated. 

hybrids are formed as linear combinations of 2s, 2p, and 2p, AOs using 

(sp?) alg as 
oy v3 v6 ie 2s 
ce ) = a saa we 2D; : (3.58) 

(sp?) a 2py 3” ue tian? 

The sp basis functions are pictured in figure 3.5(a), where the unhybridized 2D. 

AO is as given in figure 3.1(d). Two sp hybrid orbitals are formed as the linear 

combinations 
(sp) o; | | aa 2s 

j a : (3.59) 

The sp basis functions are pictured in figure 3.5(b), where the unhybridized 2p, 

and 2p, AOs are as given in figure 3.1(c)—(d). 

To understand the electronic structure of the ethylene molecule, we visualize 

two sp?-hybridized carbon atoms as shown in figure 3.6. The sp?-hybrid orbitals 

with lobes along the x axis interact to form bonding and antibonding orbitals; 

two electrons occupy the bonding orbital to form a ‘o’ bond. The situation in 

figure 3.6, where the two p- orbitals are parallel to each other allows the p, orbitals 

to form a bonding ‘z’ orbital and an antibonding z™* orbital: 

| 
2pz(1) + 2p-(2)] and Bh tiny bedddiry 2Pe(2) (3.60) i. 

l 
Va! 
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Figure 3.7. The electronic orbital structure of the two carbon nuclei in an acetylene 

molecule C2H9. The signs of the py and pz AOs are indicated. 

In the ground electronic state, two electrons occupy the bonding z orbital and 

there is ao and 2 double bond. The sp* hybrid orbitals all lie in the xy plane 

and each of them form bonding and antibonding orbitals with the Is orbital on a 

hydrogen atom. This rationalizes why ethylene is planar in its electronic ground 

state. In the planar geometry, the z bond can form and so this geometry is 

energetically favourable. 

For an acetylene molecule, two sp-hybridized carbon atoms form ao bond as 

shown in figure 3.7. Lining up the AOs as shown in the figure, the two py orbitals 

form a bonding MO zy and an antibonding MO zr¥ and the two p- orbitals form 

analogous MOs zr, and 7. With two electrons in each of the two bonding orbitals 

my and z-,, two z bonds are formed and since the o bond is also present, there 

is a triple bond. The carbon atoms each have two ‘unused’ hybrid orbitals, one 

directed in the positive x direction and one directed in the negative x direction, and 

by letting each of these orbitals bond with the 1s orbital on a hydrogen atom, we 

obtain the acetylene molecule HCCH. This rationalizes why acetylene 1s linear. 

As discussed in section 3.4.1, bond formation lowers the energy. The energy 

lowering from the formation of a o bond is larger than that from the formation 

of a z bond because the AOs that give rise to ao bond interact more than those 

that give rise to a z bond. The x MOs are the highest occupied MOs (HOMOs) 

and the electrons in these orbitals are the ones that predominantly determine the 

properties of the molecule. These are the ‘outer’ electrons by means of which 

the molecule interacts with the external world. More scientifically speaking, 

the lowest excited electronic states of the molecule are obtained by promoting > 
electrons in the HOMOs to the lowest unoccupied MOs (LUMOs), and the 
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energetically most favourable reactions involving the molecule (i.e. the reactions 
with the lowest activation energies) are those brought about by a rearrangement 
of the z orbitals. 

3.4.3. The Hiickel approximation and benzene 

So far, we have considered the situation in which two AOs, centred on two 

neighbouring nuclei in a molecule, interact to form bonding and antibonding 

MOs. Sometimes it is necessary to consider the simultaneous interaction between 

more than two AOs centred on more than two nuclei; in this case, we speak about 

the delocalization of the electrons. An approximate method used in this situation 

is the Huckel approximation which we describe for the benzene and buta-1,3- 

diene molecules. 

If we take six sp?-hybridized carbon atoms as shown in figure 3.5(a) and 

arrange them in a regular hexagon so that, for each carbon atom, the xy plane in 

figure 3.5(a) lies in the plane of the hexagon, then for each carbon atom, two of the 

sp~ hybrid orbitals interact with the analogous hybrid orbitals on the neighbouring 

carbon atoms to form o bonds. Each carbon atom has an ‘unused’ hybrid orbital 

with the positive lobe pointing away from the centre of the hexagon and this 

orbital can form ao bond with the Is orbital of a hydrogen atom. As a result, we 

obtain the o-bond skeleton of benzene CeHe as shown in figure 3.8. Figure 3.8 

also shows the molecule-fixed axis system x yz employed for benzene. 

In addition to the sp* hybrid orbitals in the xy plane, each carbon atom in the 

benzene molecule also has centred on it the 2p, orbital shown in figure 3.5(a). We 

denote the 2p, orbital centred on carbon atom pu(= 1, 2,..., 6) as d, and these 

AOs are shown in figure 3.9. Each of the ¢,, orbitals in the hexagon must interact 
to the same extent with each of its two neighbours and we have to consider all six 

g, simultaneously when we construct MOs. 

In the Hiickel approximation for benzene, we construct the 6 x 6 matrix of 

the Hamiltonian h, just like the 2 x 2 matrix in equation (3.51), in the basis of the 

AOs ¢,,, where 4 = 1, 2,..., 6. The following approximations are made: 

e We consider only diagonal matrix elements (bulh|oy,) and _nearest- 

neighbour off-diagonal matrix elements (bulh|ov). where ¢, and ¢, are 

centred on neighbouring nuclei. 

e = The overlap integrals between the AOs are neglected and we set 

(Puldv) = Ou (3.61) 

where 5, is a Kronecker delta. 

In the case of benzene, all carbon atoms are equivalent and all interactions 

between neighbouring carbon atoms are equivalent, so with the customary 

definitions 

a= (pilhlo1) and fp = (di|hld2) (3.62) 
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Figure 3.8. The o-bond skeleton of the benzene molecule CgH¢ and the molecule-fixed 

xyz axis system. 

we obtain for the matrix of h, the Huckel matrix 

Ceti aleOres OraiOue 
Ba B00 0 

ies ia eh dace iy Oia) See eC aiG hater (3.63) 

esi at Ne lerom at 
Bie Oras O nea 4 

It can be shown that when we choose the ¢,, orbitals such that they are all positive 

above the plane of the benzene molecule and all negative below this plane, then we 

have B < 0, in the same way that —Q < 0 in equation (3.51). The diagonalization 

of the Huckel matrix is greatly facilitated 1f we use symmetry and this is done in 

section 10.2. 

3.4.4 Polyene chain molecules 

For the polyene chain molecule H2C(CH),—2CH2, there is also electron 

delocalization and we can use the Huckel approximation to obtain general 

expressions for the x MOs and the associated orbital energies. An example of 

such a molecule is the buta-1,3-diene molecule CH2(CH)2CH2 in its cis-planar 
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Figure 3.9. The six m orbitals ¢, (u = 1,2,...,6) centred on the carbon nuclei in 

benzene CgHg; each is a carbon atom 2p, AO. All ¢,, have positive values above the 

molecular plane and negative values below this plane. 

Figure 3.10. The buta-1,3-diene molecule CH2(CH) CH)? in its cis-planar configuration. 

Thin cylinders represent single bonds and double cylinders represent localized double 

bonds. 

configuration, which we show with localized double bonds in figure 3.10. As 

in the case of benzene, to allow for z electron delocalization, we use as basis 

functions for the 2 MOs of a general n-carbon-atom polyene chain molecule one 

p AO @u(u = 1,2,3,4,...,) centred on each carbon atom. We see from 

figure 3.10 that the four carbon atoms in buta-1,3-diene are not all equivalent. 

If, in H2C(CH),—2CH>2, we label the carbon atom at one end as 1, the next one 

as 2 and so on until we label the last one as n, then carbon atoms | and 7 are 
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equivalent, 2 and n — | are equivalent, 3 and n — 2 are equivalent and so on. 

Even though the carbon atoms are not all equivalent, we make approximations 

analogous to those made for benzene: All diagonal matrix elements (Py, lh\ou) 

are given a common value «@ and all off-diagonal matrix elements (fj, |h|bu+t) 

or (Pu +1 Alon) connecting z orbitals centred on neighbouring nuclei are given a 

common value £. Thus, the n x n Hiickel matrix for H2C(CH),—2CH)2 is 

oO ween OS 0 ieee Om 0) 
paar ORE. s0en.0 

Oper 6) Oe OO (3.64) 

a ee Fe 

OmnOe 0 OS Oo crane 

The 6 x 6 version of this matrix differs from that in equation (3.63). The 

eigenvalues of this n x n matrix can be determined analytically* as 

E +2¢0s (2 B (3.65) =a S d 
z n+ 1 

where j = 1, 2,3,4,...,n. The MO eigenfunction associated with E; is 

3 n jr 

— : 3.66 Wij Vawter) (3.66) 

The four p AOs $, (u = 1, 2, 3, 4) considered for buta-1,3-diene are shown 

in figure 3.11. For n = 4, we obtain from equation (3.65) the energies 

(E, Eo, £3, E4) = (a + 1.6188, a+ 0.6186, a — 0.6188, a — 1.6188) (3.67) 

where, since B < 0, FE, < Ex < E3 < £4, with the associated orbitals from 

equation (3.66) 

w 1 = 0.379 + 0.6062 + 0.6043 + 0.3764 (3.68) 

wo = 0.60¢; + 0.3762 — 0.3763 — 0.6064 (3.69) 

W3 = 0.60¢) — 0.3762 — 0.3763 + 0.6064 (3.70) 

and 

wa = 0.37¢1 — 0.60¢2 + 0.6063 — 0.3764. (3.71) 

We will discuss these orbitals further in section 10.3, where we analyse their 

symmetry properties and, in section 10.4, where we employ them for determining 

the path of the butadiene-cyclobutene conversion reaction. 

4 Coulson C A and Longuet-Higgins H C 1947 Proc. R. Soc. A 192 16. 
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Figure 3.11. The four p AOs $y centred on the carbon nuclei C,, (4 = 1, 2, 3, 4) in the 
buta-1,3-diene molecule in its cis-planar configuration. For clarity only, the protons 5, 6, 

9, and 10 are labelled; the other labels can be inferred from figure 3.10. 
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Figure 3.12. The molecule /-carotene C4gH56. 

3.5 Problems 

dul In ab initio calculations, atomic units are used. The atomic unit of length 

is the Bohr radius ay = (4 €h*)/(mee*) and the atomic unit of energy 

is the Hartree energy Ey, = e*/(4m €gag). Calculate ag in units of m, 

Ey in units of J, Ey/(hc) in units of cm! and Ey/h in units of Hz; 

me = 9.109 3826 x 1077! kg. 

Dun Express the energies of the one-electron atom [equation (3.35)] in units of 

Eh. 

a Transform the electronic Hamiltonian in equation (3.16) to a form where 

the energy is expressed in units of Ey and all lengths in units of ag. Show 

that this form of the Hamiltonian does not formally depend on the values 

of the fundamental constants é, me, h, etc. 
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3.4 

3:5 

3.6 

S| 

Electronic states 

Verify that the four Htckel orbitals 1, y2, w3 and w4 given for the 

buta-1,3-diene molecule in equations (3.68)—(3.71) are normalized and 

orthogonal. Show that these functions are MO eigenfunctions in the 

Htickel approximation by deriving the matrix elements (yj |h|We) (j,k = 

1,2,3,4), in terms of the Huckel matrix elements (bulhldv)(u, _— 

1, 2,3, 4) in the 4 x 4 version of equation (3.64). 

Calculate the Htickel energies and orbitals for prop-2-eny] (allyl), i.e. the 

polyene chain molecule HxC(CH)CH2. How many nodes does each of 

the orbitals have? Indicate the positions of the nodes. Which orbital is 

bonding and which is antibonding? 

In a crude model for the zr-electron system of 6-carotene (figure 3.12), 

we assume that the 22 z electrons can move freely along the molecular 

chain, taken to have length L. In this model the orbital energies 

are those of a particle in a one-dimensional box [the corresponding 

expression for a three-dimensional box is given in equation (2.72)] E, = 

h?n?/(8meL7),n = 1,2,3,.... The 22 x electrons are distributed in the 

lowest 11 energy levels according to the Pauli exclusion principle. The 

electronic transition from the 11th to the 12th level is observed to occur at 

the wavelength 451 nm. Calculate the value of L. 

The eigenfunction wWio0(r,@,@) for the one-electron atom [i.e. the 

wavefunction corresponding to the energy E; given in equation (3.35) for 

n = 1] with nuclear charge number Z is given by 

toes (2) ct 10017, &, @ K Airaliae exp aa 

The polar coordinates r,@ and g define the position of the electron 

in an xyz axis system with the nucleus at the origin: (x,y,z) = 

(rsin@ cos¢,rsin@sing,rcos@) and the volume element dt = 

dx dydz =r? dr sind dé dg. 

(a) Show that Wyio0(7, 9, @) is normalized, i.e. that 

co , 20 A 

/ Pdr f dw [ sin @ dO|Wo0(r, 8, y)|> = 1. 
0 0 0 

(b) Calculate the average value of r, 

co 20 It 

ir)= [ r° ar | av [ sin 6 dé |Wio0(r, A, gv) 
0 0 0 

for the hydrogen atom and for He*. 

(c) Calculate the most probable value of r, i.e. the position of the 
maximum of the radial probability density function 

20 A 

aah aw [ sin d|vroo(r. 8, 9)? 
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for the hydrogen atom and for He*. 
(d) Calculate the probability of finding the electron at a distance from the 

nucleus larger than the Bohr radius ao. 

(e) Sketch P(r) as a function of r and interpret the previous results in 

terms of the sketch. 

Use the following expressions: 

2 du bu e 2e 
[em du = s =a (Ow =) 

b b 
CO { a n! 
ca dP 

0 ctl 



Chapter 4 

Vibrational states 

4.1 Space-fixed and molecule-fixed axes 

In section 2.4, the classical expression for the energy of a molecule consisting of / 

particles, nuclei and electrons, was written down using XYZ axes. The XYZ axes 

have both origin and orientation fixed in space. In section 2.5, the translational 

energy was separated by introducing X Y Z axes parallel to the XYZ axes but with 

their origin at the molecular centre of mass. The XYZ axes thus have space- 

fixed orientation but a molecule-fixed origin. After separating out the translation, 

the internal (rovibronic) energy is expressed using the (X,, Y;, Z;) coordinates 

of the particles but now there are three constraints on these coordinates [see 

equation (2.51)]: 

l l l 

Sm,-X; = iene = Dare, == \()) (4.1) 

r=! r=1 r=) 

These constraints arise because the molecular centre of mass is fixed within the 
XYZ axis system to be at its origin. 

To separate the electronic energy within the Born—Oppenheimer approxima- 

tion, we introduced new axes, the nf axes, before equation (3.1). The &7¢ axes 

have the same space-fixed orientation as the XYZ and XY Z axes, but their origin 

is at the centre of mass of the N nuclei in the molecule. From equation (3.5), the 

classical expression for the rotation—vibration energy in the €7¢ axis system is 

N 

Ew = 4 mj (EP + 4? + 6) + VnnlGi mi, &) (4.2) 
i=1 

where the potential energy Vx,» is defined in equation (3.6)'. Since the En¢ 

axes have their origin at the nuclear centre of mass, the nuclear coordinates in 

' From here on in this chapter, we drop the extra subscript n on Vyx_,, that specifies the electronic 
state. 
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equation (4.2) are subject to the three translational constraints 

N N N 

So miéi = So mini = Da = 0. (4.3) 
i=] t—Il i=] 

It is possible to separate the translational energy completely and exactly by 
referring the nuclei and electrons to the translating X Y Z axes. 

It is not possible to separate completely the electronic energy by 

introducing the 7¢ axes and we cannot separate completely the rotational 

energy either. We do the best we can by referring the nuclei (and electrons) 

to rotating molecule-fixed xyz axes, with their origin at the nuclear centre 

of mass like the €7¢ axes but that are fixed to the molecule and rotate with 

it. 

When the molecule is in its equilibrium configuration, the coordinates of nucleus 

i in the xyz axis system are written (x*, y", z;) and, at a displaced configuration, 

the Cartesian vibrational displacement coordinates Aa; are given by 

Ax; = (xj — x°) Ay: = (i — y9) and Nap (ZZ) (AA) 

As a result of the fact that the €n¢ axes translate with the molecule, there 

are three translational constraint equations for the 3N coordinates &;, n; and ¢; 

and these are given in equation (4.3). Within the xyz axis system, there are three 

similar translational constraint equations that tie the origin to the nuclear centre 

of mass. However, there are now also three rotational constraint equations that tie 

the xyz axes so that they rotate with the molecule. The translational and rotational 

constraint equations are formulated in terms of the 3N vibrational displacement 

coordinates Aq; by requiring that the translational normal coordinates Ty, given 

in equation (4.11), and rotational normal coordinates, where Ry, is given in 

equation (4.12), vanish. It can be shown that the explicit form of the rotational 

constraint equations obtained by setting Ry = Ry = R, = 0, where the Ry are as 

defined here, minimize the terms in the rotation—vibration Hamiltonian that spoil 

the separation of rotation. 

From here on we will use atomic masses rather than nuclear masses in the 

equations used to set up the rotation—vibration Hamiltonian in order to allow for 

the fact that the electrons move with the nuclei. This is an effect of the breakdown 

of the Born—Oppenheimer approximation. 
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4.2. The vibrational Hamiltonian 

The classical expression for the vibrational energy, using molecule-fixed xyz 

coordinates, 1s 
3N 

Evib = 5S mitt? + Vn (Ui; ) (4.5) 

i=! 

where the 3N u; are defined as (uj,...,u3n) = (Axy,..., Azy) and the six 

constraints Ty = Ra = O apply with a = x, y or z [see equations (4.11) 

and (4.12)]. Since Vy, and its first derivative with respect to any u;, are zero 

at equilibrium, the Taylor’s series expansion about equilibrium is 

1 3N | 3N 1 3N 

VN = 5 NS Kjjujuj + 6. sy KijKuju jug + A ps KijRiuiujuguy +--- 

Bf=u ijk ijeksi—l 

(4.6) 

where the kij,kjjx and kjjx; are constants (the force constants). The lowest 

order terms in the expansion are quadratic and, for small displacements, it is 

a satisfactory approximation to express the potential by the quadratic terms 

alone, vo. this is the harmonic-oscillator approximation. The higher-order 

terms are cubic, quartic, etc anharmonicity terms. In the harmonic-oscillator 

approximation, the vibrational energy is 

3N 3N 

> mu? + 5 » kijuju; (4.7) 

i=l i,j=l 

OVS 
Ev = Nl 

where the kj; are the harmonic (quadratic) force constants. 

A standard result from classical mechanics is that the vibrational energy of a 

nonlinear N-body harmonic oscillator can be written in terms of (3N — 6) mass- 

weighted linear combinations of the u;, called vibrational normal coordinates Q,., 

in such a way that the vibrational energy becomes 

3N—-6 

E90, re Oe | (4.8) 
r=1 

with no cross terms in the kinetic or potential energy expressions”. The constants 

A, depend on the masses and the harmonic force constants. In writing this 

equation, we have removed the six linear combinations of the u; that correspond 

to the three translational and the three rotational normal coordinate Ty, and Ry 

that are constrained to be zero in the molecule-fixed xyz axis system. Each of the 

(3N — 6) vibrational normal coordinates Q,. describes a collective normal mode 

2) . . . . : 

“ Linear molecules, treated in section 5.3.2, have (3N — 5) normal coordinates since they have only 

two rotational degrees of freedom. 
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of vibration. Because there are no cross terms between the normal modes for a 

harmonic oscillator, there is no coupling between them and, if displaced according 

to a normal mode coordinate, an N-body harmonic oscillator would then vibrate 

in that mode with all the nuclei moving with the same frequency according to 

simple harmonic motion. The normal modes of the water molecule are shown in 

figure 11.6. 

The Q, are a linear function of the u; and, in terms of the 3N Aq;, we have 

3N 

m!” Kai = Deon (4.9) 

r= 

The / matrix is orthogonal, that is 

N 

> ey loi,rlai,s = brs (4.10) 

a i=l 

and the elements involving r = | to (3N — 6) relate the mass-weighted Cartesian 

displacement coordinates to the (3N — 6) vibrational normal coordinates. These 

elements of the / matrix determine the form of the vibrational normal coordinates 

and they depend on the atomic masses and on the harmonic force constants k;;: 

they are determined in a so-called FG calculation®, as are the A,. Different 

electronic states will have different harmonic force constants k;; and, hence, the 

elements of the / matrix, the A,, and the form of the normal coordinates, will 

differ. 

The elements of the / matrix involving r = (3N — 5) to 3N relate the mass- 

weighted Cartesian displacement coordinates to the three translational normal 

coordinates Q3y-s, Q3n—4 and Q3y-3(= T,,T7) and T;), and to the three 

rotational normal coordinates Q3y—2, Q3n—-1 and Q3n(= Ry, Ry and R;), that 

are constrained to be zero by the choice of the x yz axes. The translational normal 

coordinate T, (a = x, y, z) 1s given by 

N 

Ley = MV? * mi? on;!" day) (4.11) 

i=l 

where m; is the mass of atom and M is the total mass of all the atoms in the 

molecule. The rotational normal coordinate R, is given by 

N 

Ry = (12)? Ym)? Lyin; Az) — 2° (mj Ay) (4.12) 
| 

where /°, is defined in equation (5.4). The coordinates Ry and R; are obtained 

by cyclically permuting xyz in equation (4.12). The expressions for /;,, and 

3 See Bunker P R and Jensen P 1998 Molecular Symmetry and Spectroscopy 2nd edn (Ottawa: NRC 

Research Press) 
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iz are given in equations (5.5) and (5.6), respectively. The factors M~?/2 in 

equation (4.11) and (Ieyehe in (4.12) are required in order to make the / matrix 

[equation (4.9)] orthogonal so that equation (4.10) is satisfied. 

To obtain the quantum mechanical vibrational Hamiltonian from the 

classical expression for the vibrational energy given in equation (4.8), we first 

express it in terms of the Q, and conjugate momenta P, and then replace the P, 

by P. = —ihd/dQ,. From equation (2.74), we have (since the potential energy 

does not depend on the velocities): 

P, = dTyin/IO;, = Or. (4.13) 

The quantum mechanical harmonic-oscillator Hamiltonian is thus obtained from 

equation (4.8) as 
3N— 

Hoes y p? + 1707): (4.14) 

Substituting equation (4.9) for the u; in terms of the Q, into equation (4.6) for 

Vn, we obtain the anharmonic correction in terms of the normal coordinates as 

vanh = SSN O1HO: Os 0+; a — DrstuOrOsOrOut-:: (4.15) 

Ory aha, 

and the complete vibrational Hamiltonian is 

4.3 Vibrational wavefunctions and energies 

The zero-order (harmonic-oscillator) vibrational Schrodinger equation is obtained 

from equation (4.14) as 

3N-6 

3 yal (P2e- 02 ‘Je vib = Evib®vin (4.17) 
r=] 

which separates into 3N — 6 normal mode wave equations. We can, therefore, 
write the eigenfunctions and eigenvalues as 

Dvib = = :(Q1) Py, (Q2 ) Dy y_ 5 (Q3Nn— 6) (4.18) 

and 

Evi = Ey, =e Ey, =a oe ae — ae (4.19) 

where ®,,(Q,) and Ey, are from the one-dimensional harmonic-oscillator 
equation: 

x(P? + 4,.07)®,, (Or) = Ev, ®v, (Or). (4.20) 
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Equation (4.20) is a standard differential equation for which the 
eigenfunctions are known analytical functions of y, (= oh) and Q;: 

We D 
De Ve ee, OF EXD( = 20 72) (4.21) 

where the normalizing constant is 

Ny, = ve / e222" v1) 1/2 (4.22) 

1/2 : ‘ 3 : 
and Ay, (y; / Q,) 1s a Hermite polynomial for which the first four values are 

Ho(y;!7O,) = 1 (4.23) 
2) 2 

Hy (yr! O,) = 27/7 Q, (4.24) 
Ho(y;'!O,) = 4y,Q? —2 (4.25) 

and 

H3(y;/" O,) = 8y,/7Q3 — 12y,/7Q,. (4.26) 

In general Hy, (ve? Q,-) contains Gn” OF) to the powers v,, v; —2, v, —4,..., 1 

or O, i.e. either all even powers or all odd powers up to v; as vu, is even or odd, 

respectively. This means that the eigenfunction ®,, (Q,-) is an even(odd) function 

of Q, as uy is even(odd), i.e. 

®,,(Q,) = (1) 4O7.(=-O;): (4.27) 

From the form of the wavefunctions, it can be seen that the number of nodes in 

®,, (i.e. the number of places where ®,, changes sign) equals v, and that the 

more nodes there are, the greater the value of the related eigenvalue will be. The 

eigenvalues of the harmonic-oscillator wave equation (4.20) are given by 

Ey, = (vy + 4)’ y,. (4.28) 

. : . 9) : 

The harmonic vibrational energy quantum /-y is usually expressed as a frequency 

v in Hz (cycles s—!) or as a wavenumber we in cm~!, where 

hy =hal? = hv = lca. (4.29) 

In figures 4.1 and 4.2, we show the wavefunctions and term values for 

two different harmonic-oscillator potentials: In one, the force constant 4 is 

3.19 x 1079 s~2 (we = 3000 cm!) and, in the other, it is 3.19 x 1077 s~? 
(We = 300 cm~'). These figures show that the vibrational term values are further 

apart and the vibrational displacements smaller, if the force constant is larger. 
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Figure 4.1. Harmonic-oscillator wavefunctions ®,,. [equation (4.21)] for 

We = 3000 cm~! (full curves) and 300 cm! (dotted curves). 

The measurement of the vibrational term value separations leads to a 

determination of the force constants and, hence, to a determination of the 

rigidity (or strength) of the bonds and bond angles. 

For the '?C!O molecule, the single stretching normal vibration has a 
harmonic wavenumber of 2169.8 cm~! and, thus, the vibrational term values in 
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Figure 4.2. The term values for two different harmonic-oscillator potentials: In (a) the 

force constant A is 3.19 x 102? s~2 (We = 3000 cm7!), and in (b) A = 3.19 x 1027 s~2 

(@e = 300 cm~!). 

the harmonic-oscillator approximation are given by 

Gyib = @e(v + 1/2) = 2169.8(v + 1/2) (4.30) 

where Gyjip = (Evin/ he) cm! and v = 0,1,.... These energies are plotted 

in figure 4.3. The zero-point energy is the energy of the v = 0 level; from 

equation (4.30) the zero-point term value for !*C!°O is 1084.9 cm7!, 
For a diatomic molecule, if the bond length r is stretched from its equilibrium 

value by an amount Ar, then, in the harmonic-oscillator approximation, the 

restoring force F trying to re-establish the equilibrium value for r is a linear 

function of the displacement and has the magnitude 

F = kyr Ar (4.31) 
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Figure 4.3. The lowest vibrational energies for several simple molecules. 

where k,,. is the force constant for the bond. It can be shown that 

ep = (27 cWe)* |k (4.32) 

where 4 = mamp/(ma + mp) is the reduced mass of the diatomic molecule 

AB. From these equations, we calculate, using @ = 2169.8 cm~!, that for the 

!2C!6Q molecule k,, = 1902 kg s~!, so that if the CO bond is stretched* 0.1 A, 
the restoring force will be 1.902 x 10-8 N. For the Na molecule, w. = 159 cm! 

which gives k,, = 17.1 kgs! anda restoring force of only 1.71 x 107!° N when 

the Na—Na bond is stretched by 0.1 A. The Naz bond is thus considerably weaker 

(in that it resists being stretched much less) than the CO bond. 

For the water molecule, there are three normal modes of vibration: Q, 

with harmonic vibrational wavenumber w; = 3832.0 cm~!, Q> with harmonic 

vibrational wavenumber w2 = 1648.9 cm~! and Q3 with harmonic vibrational 

wavenumber w3 = 3942.5 cm~!. Thus, the vibrational term values for H20 in 

the harmonic-oscillator approximation are given by 

Gyib = 3832.0(v1 + 1/2) + 1648.9(v2 + 1/2) + 3942.5(v3+1/2) (4.33) 

41 A =1 Angstrém = 107! m. 
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where v,; = 0, 1,.... We use this expression to plot the vibrational energies of 
the water molecule in figure 4.3. The vj = v2 = v3 = 0 zero-point term value for 
the H2O molecule is 4711.7 cm! from equation (4.33). 

, If two normal vibrations OQ, and Qp, say, with conjugate momenta P, and 
Pp», have identically the same values of Ag = Ap(= A), then we treat the two 
modes together as a two-dimensional harmonic oscillator (tdho): 

Hianais Lea by  On 102), (4.34) 

The energy is given by 

E(va, vp) = [(va + 1/2) + (vp +:1/2) Fy (4.35) 

where y = 2!/2/h. The energy depends only on the sum (vg + vp) so that, 

for example, the four levels with (vg, vp) = (3,0), (2, 1), (1, 2) and (0,3) are 

degenerate. Each level has a degeneracy of (vg + up + 1). It is useful to introduce 

the coordinates Q and a according to 

O7= Ocosa and Oy = Osina. (4.36) 

This leads to the introduction of the vibrational angular momentum operator M: 

‘ A ‘ ora 
M = (Qa Pp — QpPa) = Whee (4.37) 

which commutes with Htaho- The eigenfunctions of Hao could be written as 

the product of one-dimensional harmonic oscillator functions in Qg and Q» but 

instead we use the (Q, ~) coordinates and introduce the quantum numbers v and 

/, to give eigenfunctions that are written as 

Wy 1 = Fy(Q)e" (4.38) 

where 

MY, =1hV, 1 (4.39) 

and v = (vg + up). The energy is given by 

Ey =(v+ Diy (4.40) 

which is (v + 1)-fold degenerate as the vibrational angular momentum quantum 

number / assumes one of the (v + 1) values —v, —v + 2,..., +v. Fyi(Q) isa 

function of Q that involves even, or odd, powers of (y '/2Q), as v is even, or odd, 

respectively. 

The CH3D molecule has nine normal modes: Three (Q; withr = 1, 2 and 3) 

are one-dimensional modes, and six (Q;, and Q,» withr = 4, 5 and 6) form three 
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two-dimensional modes. The vibrational term values for CH3D, in the harmonic- 

oscillator approximation, are given by 

Gio 106409 ok ly Del 2 82 al ceae tly 2) 
+ 1362.0(v3 + 1/2) + 3156.5(v4 + 1) 
+ 1521.7(v5 + 1) + 1206.2(v6 + 1) (4.41) 

Where 0, = Oul aace We use this expression to plot the vibrational energies of the 

CH3D molecule in figure 4.3. The zero-point term value for the CH3D molecule 

is 9238.5 cm7!. 
Some molecules have three-dimensional harmonic oscillator modes, for 

which the energy is given by 

Ey = (v+3/2)h*y (4.42) 

wherevy =O) 1 2: The harmonic-oscillator eigenfunctions for this case are 

written Vy, 7,(Q,a, 8), where a and £ are vibrational angular coordinates, and 

1 and n are vibrational angular momentum quantum numbers restricted to the 

values] = v,v —2,v—4,..., 1 o0r0,andn = —/,-—l+1,..., 1—1,1. 

The methane molecule CH, has nine normal modes of vibration: One (Q}1) 1s 

a one-dimensional mode, two (Q2, and Q2;) form a two-dimensional mode, and 

six (O;a, Or» and O;-, with r = 3 and 4) form two three-dimensional modes. 

The vibrational term values for CH4, in the harmonic-oscillator approximation, 

are given by 

Gyip = 3025.5(v1 + 1/2) + 1582.7(v2 + 1) 

+ 3156.8(v3 + 3/2) + 1367.4(v4 + 3/2) (4.43) 

where:v, == 0; I... We use this expression to plot the vibrational energies of 

the CHy4 molecule in figure 4.3. The zero-point term value for the CH4 molecule 

is 9881.75 cm~!. As we show in section 11.3, symmetry can be used to determine 

the dimensionality of the normal modes. 

To calculate the effects of anharmonicity and rotation—vibration coupling 

(see sections 4.4 and 11.5) and vibrational selection rules (see section 12.3.1), one 

needs the matrix elements of the normal coordinates Q and conjugate momenta 

P in the harmonic-oscillator basis functions. These matrix elements are given in 

table 4.1. 

4.4 Anharmonicity 

If a diatomic molecule existed with a purely harmonic potential function, it would 

be a very strange molecule indeed. It would mean that as one stretched it more and 

more the restoring force, from equation (4.31), would continue to increase linearly 

with stretching, even if the nuclei were kilometres apart. For real molecules, the 
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Table 4.1. Non-vanishing matrix elements of normal coordinate Q and momentum P for 

the one-dimensional harmonic-oscillator*. 

(v + 1|Q|lv) = /@ + D/@y) (v + 1|Plv) =ih/@ + Dy/2 

(v — 1|Q|v) = /v/Qy) (v —1|P|v) = -ih vy /2 

ap = —thd/dQ and the one-dimensional harmonic-oscillator 

functions ®, = |v). We use y = 1/2 1h, = An*cwe/h, where the one- 

dimensional harmonic-oscillator Hamiltonian is Hyg = 5(P? + 107). 

restoring force eventually goes to zero as the molecule is stretched to dissociation. 

The potential function, of necessity, must have some anharmonicity, although it 

may be slight in the region around equilibrium. 

For a diatomic molecule, the lowest-order anharmonic correction is the cubic 

term 

Vo = $41110° a) 

and we determine its effect on the vibrational energy levels by setting up 

the matrix of ae + ee in the harmonic-oscillator basis functions |v) of 

equation (4.21). The diagonal matrix elements of Hoe are the term values as 

given for CO, for example, in equation (4.30); Ho: has no off-diagonal matrix 

elements. 

The matrix elements of the cubic term are determined by making the 

expansion 

(vi? |v") = Y> (vllv")(v"|Olv"”)(v’”|Olv’). (4.45) 
v “ vill 

This equations is an implementation of the rule for multiplying matrices given 

in equation (2.99); perhaps this can be better appreciated if (v|Q|v”) is written 
as Q, »” etc. This is a very commonly used method for evaluating the matrix 

elements of a product; one can think of it as the insertion of }° |v”)(v"| = 1 and 

|v”) (v"”| = 1, between members of the product. From table 4.1, the non- 

vanishing terms in this sum are those for which v” = v + 1, uv!” = v" + 1, and 

v’ = v’” +1. Thus, the only non-vanishing matrix elements overall are those for 

which v’ = v + 1 or v + 3. These can be written out in full as 

(v]Q? |v + 3) = (v[O|v + 1)(v + 1]/Q|v + 2)(v + 2/Q|v + 3) (4.46) 

(v|Q?|v + 1) = (v|Olu + 1)(v + 1 lv + 2)(v + 2/Qlv + 1) 

+ (v|Q|v + 1)(v + 1] Q]v)(v|Qlv + 1) 

+ (v|Q|v — 1){v — 1]Qlv)(v]Qlv + 1) aT) 

(v|Q? |v — 1) = (vf Qlv + 1)(v + 1 Alv)(v] Qu — 1) 
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+ (v|Q|v — 1)(v — 1]Qlv){v|Qlv — 1) 

+ (v|Q|v — 1)(v — 1]Q|v — 2)(v — 2|Q|v—1) (4.48) 

(v|Q? |v — 3) = (v] |v — 1)(v — 1|Q|v — 2)(v — 2|Q|v — 3). (4.49) 

Inserting the values from table 4.1 of the individual matrix elements of Q, one 

obtains 

(v]Q?|v + 3) = (uv 87°) OF DODO (4.50) 

(v|O7|v + 1) = @ 73) (w+ Worl (4.51) 

(v]Q? |v — 1) = (3/ 87°) vv (4.52) 

(v]Q°|v — 3) = (1 sy) Jv = Dv = 2)(v = 3). (4.53) 

Multiplying by ®1;;/6 gives the matrix elements of the cubic anharmonicity term. 

This is much smaller than the difference in the diagonal matrix elements (which 

iS We OF 3@e) and we can use the approximate expression given in equation (2.38) 

to evaluate the vibrational energy shift. In this way, we determine that the v = 0 

level is pushed down by the v = | level by an amount 

S) = 07,,/32y7 ee (4.54) 

and, by the v = 3 level, an amount 

S3 = O4,,/144y7% we (4.55) 

so that the total shift down of the v = 0 level by the cubic anharmonicity term 

is 1107, ,/(288y%we). The v = | level is shifted up by cubic anharmonicity 

interaction with v = O and down by interactions with the v = 2 and 4 levels; 

it suffers a total shift down of 7104, ,/(288y3@e). Thus, cubic anharmonicity 

reduces the separation between the v = | and 0 levels by 57, 1/(24y7?@e). 

Anharmonicity reduces the vibrational energy level separations in such a way 

that the levels become closer and closer together the higher up in energy they are, 

eventually converging to a continuum above dissociation. As a result, vibrational 

energy levels do not have the even spacing that is characteristic of the harmonic 

potential. 

For a polyatomic molecule, anharmonicity terms in the potential function 

can couple vibrational states that are close in energy and for which it is necessary 

to diagonalize the Hamiltonian matrix since the approximation of equation (2.38) 

is unsatisfactory. An important example is the effect, for the water molecule, of 

the cubic anharmonicity term 

V' = $010, 03. (4.56) 
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V’ connects the states (vj, v2,v3) = (1,0,0) and (0, 2,0) with term values, 

calculated using equation (4.33), that differ by 534.2 cm!. For the water 

molecule, vibrational states having a common value of 2v; + v2, and the same 

value of v3, are relatively close in energy and are connected by V’. This is a 

Fermi resonance and the harmonic-oscillator energies and wavefunctions are a 

poor approximation for such levels. 

Many such vibrational resonances occur involving other cubic or quartic 

anharmonicity terms. A resonance caused by the term (1/4) ®1133 O70 such as 

that between the states (2, 0,0) and (0, 0, 2) in the water molecule, is named a 

Darling—Dennison resonance. As we show in section 11.5, symmetry can be used 

to show that some of the normal coordinate force constants ®,5, and ®,»5-,, must 

vanish. For example, for the water molecule, ®223 vanishes and there is no Fermi 

resonance between the states (0, 0, 1) and (0, 2, 0). 

4.5 Tunnelling 

The quantum mechanical phenomenon of tunnelling is explained here and we 

base this explanation on the one-dimensional harmonic-oscillator wave equation 

incm7! units: 
pre 
Fgh +42°)%(O) = Grs(Q) (4.57) 

which describes motion within a harmonic potential energy curve given by 

Vieqnicm = (A/2hce) Q?. We rewrite this equation in terms of the dimensionless 

normal coordinate 

da OC: (4.58) 

Using equation (4.29), the potential energy expressed in terms of q is 

eee ge ea es 
= —O* = —-g = eo Gg 4.59) 

Visor) 2 = eels av mimur2ne vs anasDiee 

From the chain rule, F 

= = cee = /¥— (4.60) 
do dQ dq dq 

and the kinetic energy operator 1s 

, 2 2 h2 d2 1 d2 

ES AIR enn GE yee 1 ROESy (4.61) 
2he Zhe dO 2hc dq- Die dg 

From equations (4.59) and (4.61), the harmonic-oscillator equation (4.57), in 

terms of q, is 

bem do 1 

(-ieap " so) ®,(q) 
= Gy %,(q). (4.62) 
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The potential weq*/2 in equation (4.62) has a single harmonically shaped 

minimum centred at the g = O configuration. To introduce the concept of 

tunnelling, we use instead the potential energy function 

272 4 2 

Viqem = 7 [ - (+) ery (+) —2H (+) (4.63) 
de de de 

where ‘t’ is for ‘tunnelling’. V,(q) has the value zero at its minima, when 

q = +4e, and the value H when g = 0; it is a symmetrical double minimum 

potential with a barrier of H (expressed in cm~! units) between the minima. In 

figure 4.4, Vi(q) is drawn for H = 10000 cm! and ge = 5. The Schrodinger 

equation is 

By ioe 
(-donst oF Ka) Dt (Gd) = Gr, jf Pr j(Q) (4.64) 

where the index 7 = 0,1, 2,3,... labels the solutions in order of ascending 

energy. 
For any set of values of w@ > 0,H > O and ge > 0, equation (4.64) can 

be solved numerically using the method of matrix diagonalization described in 

section 2.3. The complete set of orthonormal functions used as the basis function 

is taken to be harmonic-oscillator eigenfunctions ®,(g) from equation (4.62). 

The unknown functions ®;,;(q) in equation (4.64) are expanded in terms of the 

functions ®,(q) as described by equation (2.23): 

200 

Bi (Qi— eG, (4). (4.65) 
v=0 

Satisfactory accuracy for the states of interest here is achieved if the expansion is 

truncated at v = 200. 

The matrix elements of the tunnelling Hamiltonian 

é | d2 q 4 q 2, 

A, = —--®—> + H+H| —) —2A (| — (4.66) 
2 dq- de de 

are given by 

- | d? 
(Dy | A] Oy) = mee Dy |— 9 Oy A (®,|®,7) 

be dq- 

| = + (Dy |q7|®y). (4.67) 

+ 

H 
{Dyg-|Sy) —2— 

de S Op 

The overlap integral (®,”|®,) = dy, (where 5,” is the Kronecker delta) 
because the ®,(qg) functions form an orthonormal basis. The other matrix 
elements can be evaluated using expansions like those in equations (4.45)-(4.49). 
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Figure 4.4. The result of calculation (a). The solution of equation (4.64) with 

H = 10000 cm™!, ge = 5 and we = 5000 cm~!, All wavefunctions ®,, ;(q) are drawn 

at the position of their energies with the same arbitrary ordinate scale. Wavefunctions with 

even (odd) j are drawn as full (dotted) curves. 

The matrix elements (®,”| — id/dq|®,) and (®,”|q|®,), which are required to 

start the process of forming the matrix elements in equation (4.67), are obtained 

by setting y = 1 and h = 1 in the expressions of table 4.1. Diagonalizing the 

Hamiltonian matrix gives the term values G;,; and the eigenfunctions ®,, ;(q). 

Taking ge = 5 and we = 5000 cm |, the eigenfunctions and eigenvalues of 

equation (4.64) are calculated for three different cases: 

(a) H = 10000cm7!. The eigenvalues are given in table 4.2 under the heading 
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(b) 

(c) 

Vibrational states 

Table 4.2. Term values G,, ; (in cm!) for equation (4.64). 

J (a)* (b)* (c)? 

0 1946.7 113.8 1946.8 
I 1946.8 2718 5598.4 
2 5591.8 578.2 8 842.9 
3 5598.4 933.3 11.949.3 
4 8 631.0 1338.5 15 487.5 
5 8 842.9 1783.5 
6 10 765.6 2263.0 
7 11.949.3 2773.0 
8 13 666.3 3310.4 
9 15 487.5 3873.0 

10 (74734 

@ See the text for the explanation of the calculations 

(a), (b) and (c). 

‘(a)’ and figure 4.4 shows the potential energy function and the associated 

eigenfunctions. 

H = 100cm7!. The eigenvalues are given in table 4.2 under the heading 

‘(b)’ and figure 4.5 shows the potential energy function and the associated 

eigenfunctions. 

Here, the same Hamiltonian as in calculation (a) is used but the wavefunction 

is constrained to be zero forg < gmin = —10andq > gmax = 0 by doing the 

matrix diagonalization in a basis of normalized eigenfunctions for a square 

potential well [see equation (2.71) and the discussion of it]. That is, we 

express each wavefunction as 

200 
Dag. a ni (q — min) f 

®: j(q) = jay 1 > Oop OF min < Y < Ymax 

n=l 

otherwise 
(4.68) 

where L = dmax — min = 10. The eigenvalues and eigenfunctions 

are obtained by matrix diagonalization analogous to that carried out in 

calculations (a) and (b). The kinetic energy operator —(1/2)@.d* dg? 

is diagonal in the chosen basis and its matrix elements can be derived 

analytically; the matrix elements of the potential energy operator can be 

calculated by numerical integration. The eigenvalues obtained are given in 

table 4.2 under the heading ‘(c)’ and figure 4.6 shows the potential energy 

function and the associated eigenfunctions. 

Calculation (a) illustrates tunnelling. The states 7 = 0-5, with energy below 

the barrier, form three pairs of states and the two components of each pair are 
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Figure 4.5. The result of calculation (b). The solution of equation (4.64) with 

H = 100 cm™!, ge = 5 and we = 5000 cm™!. All wavefunctions , ;(q) are drawn 

at the position of their energies with the same arbitrary ordinate scale. Wavefunctions with 

j even (odd) are drawn as full (dotted) curves. 

close in energy. These wavefunctions have amplitude in both wells and these 

states are said to ‘tunnel through the barrier’ since although they have energies 

that are too low to allow them to pass over the barrier in the classical sense each 

of them has a non-zero probability of being in either well. The two states with 

j = 0 and | are near-degenerate and the energy splitting between the pairs of 

components increases as the energy increases. 

For a one-dimensional problem of this type, where the potential energy 
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Figure 4.6. The result of calculation (c). The solution of equation (4.64) with 

H = 10000 cm7!, ge = 5 and we = 5000 cm7! as in calculation (a) but with all 

wavefunctions constrained to be zero outside the shaded area for which —10 < g < 0. 

The potential energy function in figure 4.4 is drawn outside the shaded region as a dotted 

curve. All wavefunctions ®;, ;(q) are drawn at the position of their energies with the same 

arbitrary ordinate scale. 

function is an even function of g, i.e. Vi(q) = Vi(—q), it can be shown rigorously 

that the wavefunctions with j even will be even functions of g and that the 

wavefunctions with j odd will be odd functions of q, i.e. for 7 odd ®,j(q) = 

—®,, ;(—q). Thus, the three state pairs below the barrier each comprise an even 

wavefunction ®;, ;(q) and an odd wavefunction ;, ;41(¢), where j = 0, 2, or 
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4. We see in figure 4.4 that these two wavefunctions bear some relation to each 
other in that we can choose the signs of the wavefunctions so that, for q < 0 (and 

7 = Oncor): 

Di (9) © Pt, j41(9) (4.69) 

whereas, for g > 0, 

Di (gq) © —Pt, 5419). (4.70) 

These relations hold best for the lowest state pair with j = 0 and deteriorate to an 

increasing extent for 7 = 2 and 4. Above the barrier, there are no similar effects; 

the states do not form pairs. The calculated pattern of energies is a typical result 

of tunnelling motion. If the energy level is far below the barrier, the energies form 

a pair of almost degenerate states, exemplified by the 7 = 0 and 1 states here, 

with wavefunctions related to each other. As the energy increases towards the top 

of the barrier, the degeneracy is removed more and more since tunnelling through 

the barrier can take place to an increasing extent. This effect is seen in the pairs 

with 7 = 2-3 and 4-S. 

Calculation (b) shows the low-barrier case. The lowest allowed state is above 

the barrier and there are no approximate degeneracies. 

In calculation (c), we modify the potential relative to calculation (a) by 

making it infinite for g < gmin = —10 and for g > qmax = 0. Now no tunnelling 

is possible. Both the wavefunctions and energies for the three lowest states are 

similar to those obtained for the three state pairs in calculation (a). However, 

by removing access to the potential minimum at gq = 5.0, we have removed 

the double degeneracy. Notice that the (non-tunnelling) energies obtained in 

calculation (c) are the same as the odd-j tunnelling energies from calculation 

(a). This is because for all states in calculation (c) and for the odd-j states in 

calculation (a), the wavefunctions are zero at g = 0, 1.e. for the odd-j states in 

calculation (a) the wavefunctions have a node at gq = 0. Thus, tunnelling does not 

symmetrically split each energy level into two; for each pair of tunnelling states, 

the component whose wavefunction has a node at g = 0 is unaffected whereas the 

component whose wavefunction does not have a node at g = 0 is pushed down. 

4.6 Problems 

4.1 What are the appropriate SI units for the the normal coordinate Q, and the 

parameter A, in equation (4.14)? What are the appropriate SI units for the 

quantities ®,s, and ®,5;, in equation (4.15)? 

4.2 We take the vibrational energies of the HI molecule to be given by 

equation (4.30). The force constant k,, = 313.8 N m7!. Calculate the 

energy difference between two neighbouring energy levels. Calculate the 

wavelength of the electromagnetic radiation that would be in resonance 

with this energy difference. 
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4.3 

4.4 

4.5 

Vibrational states 

In the harmonic approximation, the vibrational energy of a diatomic 

molecule is proportional to (v + 1/2) as given in equation (4.30) 

but, because of anharmonicity, a more accurate expression involves a 

correction term proportional to the parameter xe: 

| iy? 
c= o| (4 $) <x (045) | A) elie ens eee 

For '4N!°O the following term value differences are derived from 
experimental datas G; — Go = 1876.06 cm! and G2 — Go = 

3724.20 cm—!. Calculate we, xe and the force constant k;-,. 

Derive the matrix elements of the kinetic energy operator —(1/2)we x 

d*/dg? in a basis of normalized eigenfunctions for a square potential well 

[see equations (2.71) and (4.68)]; these matrix elements are required to 

compute the wavefunctions shown in figure 4.6. 

The eigenfunctions for the one-dimensional harmonic-oscillator are 

given in equation (4.21). Verify by actual calculation that the three 

eigenfunctions of lowest energy ®o, ®; and ®2 are orthogonal. Hint: 

Transform the necessary integrals to depend on the dimensionless quantity 

y, Q, and use the expressions (a > 0) 

exp(—ax-)dx = | / — 
Bs a 

ee, 1S38 "52. Qn S174 
/ ae exp(—ax’) dx pe Oke Net re = 
ae QNaqn a 



Chapter 5 

Rotational states 

The zero-order rotational Hamiltonian of a molecule is the rigid-rotor 

Hamiltonian and it describes the molecule as rotating in space with its geometry 

fixed at equilibrium. Nonlinear molecules are categorized as being either 

symmetric tops, spherical tops or asymmetric tops and, in section 5.3, we discuss 

the rigid-rotor Schrodinger equation for each of these types of molecule. The 

derivation of the rigid-rotor Hamiltonian and an account of the detailed form 

of the wavefunctions are given at the end of the chapter in section 5.5. In 

section 11.5, the effects of rotation—vibration coupling, which produce centrifugal 

distortion and Coriolis coupling corrections to the rigid-rotor Hamiltonian, will be 

discussed. The rigid-rotor Hamiltonian involves the principal moments of inertia 

of the molecule and its eigenfunctions are functions of the Euler angle; so we 

begin by defining the Euler angles and by explaining what the principal moments 

of inertia are. 

5.1 The Euler angles 

The rotational coordinates are the Euler angles (6, ¢, x) and these three angles 

specify the orientation of the molecule-fixed x yz axes, introduced in section 4.1, 

relative to the €7¢ axes. The angles 6 and ¢ are the polar coordinates that specify 

the orientation of the z axis within the €7¢ axis system as shown in figure 5.1. 

We only need define @ to have the range 0 < 6 < m in order to cover all possible 

orientations of the z axis; ¢ has the range O < @ < 27. In figure 5.1, we also 

show the ‘node line’ ON which is needed for the definition of the third Euler 

angle x. ON is perpendicular to both the z and ¢ axes and directed so that a 

right-handed screw is driven along ON in its positive direction by twisting it from 

¢ to z through 6 (where 0 < 6 < z). The definition of x is shown in figure 5.2; it 

is the angle by which the y axis is twisted away from the ON node line measured 

in a right-handed sense about the z axis. A three-dimensional figure showing how 

the Euler angles depict the rotation of the xyz axes relative to the €n¢ axes is 

89 



90 Rotational states 

Figure 5.1. The definition of the Euler angles (6, ); these are the polar coordinates that 

specify the orientation of the molecule-fixed z axis in the €7¢ axis system. In this figure, 

we also show the ‘node line’ ON (see text). 

shown in figure 5.3 in section 5.5.2. From this figure, one can appreciate that the 

node line is the line of intersection of the €7 and xy planes. 

5.2 The principal moments of inertia 

Using molecule-fixed xyz axes, the moments of inertia of a molecule are the 

diagonal elements of the inertia matrix IT given by 

loos= S > mi(B; + y;) (5.1) 

i 

where wBy is a permutation of xyz. The off-diagonal elements of J are 

lop =— S > mio Bi (22) 

i 

(the 5°, mj;a;B; are called products of inertia), where « 4 B. However, it is 

always possible to orient the xyz axes in the molecule so that the off-diagonal 

elements / yg vanish and, in this circumstance, the xyz axes are said to be the 

principal axes of inertia. In developing the rotational Hamiltonian of a molecule, 
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N 

- 

Figure 5.2. The definition of the Euler angle x. The molecule-fixed axis system xyz is 

drawn with the xy plane in the plane of the page and with the z axis pointing up out of the 

page. The y axis forms the angle x with the node line ON measured in a right-handed 

sense about the z axis. 

we attach x yz molecule-fixed axes to the molecule in its equilibrium configuration 

so that they align with the principal axes, 1.e. the x yz axes are located so that 

) Nike v= ) (a — ) Wiz x; = 0 (S523)) 

i i i 

where the m; are the atomic masses. Using xyz principal axes, the equilibrium 

principal moments of inertia are given by 

Ie, = do [miQf)? + mi@i)’] (5.4) 

12, = Si (8)? + mi fy] (5.5) 

ee > [mip + mj (ye)? ]. (5.6) 

l 

The J‘, can be calculated if we know the equilibrium bond lengths and angles 

and the atomic masses. The principal axes of the equilibrium configuration are 

labelled a, b, and c in order of increasing value of the principal moments of inertia, 

ies SO that isp sale 
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5.3 The rigid-rotor Hamiltonian 

The rigid-rotor Hamiltonian in cm! units, written in terms of the molecule-fixed 

abc components of the angular momentum operator J, is 

Ho = hh CA. oe Bele Cas) (5.7) 
rot 

where the rotational constants (in cm!) are given by 

i h? i 
moner CS Te ale ee ecreyS Znel. 2hcl,, ohelr 

aa 

(5.8) 
e 

From the definition of the a,b, and c axes, ie. with If, < Ip, < I¢., the 

rotational constants must be in the order Ag > Be > Ce. For any molecule, the 

eigenvalues of the rotational Hamiltonian depend on the values of the rotational 

constants and the values of the rotational constants depend on the values of the 

principal moments of inertia, which, in turn, depend on the bond lengths and 

bond angles in the molecule and on the atomic masses. For simple symmetric 

molecules, knowledge of the rotational constants leads to a determination of 

the structure, particularly if data for several isotopomers are available. If the 

rotational constants are in cm7! and the moments of inertia are in u A’, they are 

related using , 

= ~ 16.858u A> cm. (5.9) 
1C 

We categorize molecules as being of four different types: 

(i) Symmetric top molecules, for which two of the /°,, are equal 

(ii) Linear molecules 

(iii) Spherical top molecules, for which all three 7°, are equal, and 
(iv) Asymmetric top molecules, for which all three /¢,, are different. 

5.3.1 Symmetric top molecules 

Symmetric top molecules have one unique moment of inertia (about the unique 

principal axis) and two others that are equal to each other. The CH3D and Hy 
molecules are examples. For such a molecule, any axis perpendicular to the 

unique axis will also be a principal axis and we choose two such directions at 

90° to each other; they have the same moments of inertia about them. The unique 

moment of inertia can be larger or smaller than the other two identical moments 

of inertia. If the unique moment is smaller than the other two, the molecule is 

said to be a prolate symmetric top molecule and the unique axis is the a axis; for 

a prolate symmetric top, Ae > Be = Ce. Alternatively, if the unique moment is 

larger, the molecule is said to be an oblate symmetric top and the unique axis is 

the c axis; for an oblate symmetric top Ae = Be > Ce. The CH3D molecule is a 

prolate symmetric top and He is an oblate symmetric top. 
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The rigid-rotor Schrodinger equation for a prolate top is 

h~*[AeJa® + Be(Sb” + Jer, $, X) = Frot Pro. . x) (5.10) 
where the rotational term value Fyor = (Erot/he) cm—!. Fora prolate top the 
au and c axes are chosen as oe x and y axes, respectively, and replacing 
(i ale a = (J + a ) by (Ff? ~ 2 [from equation (5.49)], we obtain 

h*[BeJ? + (Ae — Be) Je71Prot(8,b, X) = Frot Prot. 6, x). (5.11) 

Using the known eigenvalues of J? and dbs see section 5.5.3, we obtain 

Frot = BeJ(J +1) + (Ae — Be) K?* (5.12) 

where a= 0; 12 7 ee Ke =k candi" OL ell 1-2; ) eee Js the energies!of 

a rigid prolate symmetric top depend on the values of the rotational constants 

Ae and Be, and on the quantum numbers J and K. Equation (5.12) was used 

to calculate the rotational energies of the CH3D molecule in figure 1.5 with the 

values of Ag = 5.35 cm—! and Be = 3.95 cm—!. The wavefunctions of a 
symmetric top molecule are the functions 

Prot(9, &, X) = [1/27]? Sum (0, oye. (5.13) 

These functions, and the quantum number m, are discussed in section 5.5.3. 

The rotational constants depend on the molecular structure. For CH3D, we 

know the tetrahedral bond angle is 109.5° and that all bond lengths are equal 

at equilibrium. Trigonometry gives /°,, the moment of inertia about the CD 

bond (the a axis), as 3my[re cos (109.5° — 90°)]?. Using this equation with 

Ae = 5.35 cm ~!, one determines that the CH bond length is re = 1.08 iN 

For an oblate rotor, the rotational Schrodinger equation is 

Pie ile a3 de ar Cede 21 ® rot = Frot Prot- (5.14) 

Choosing the c, a and b axes as the z, x and y axes, respectively, we obtain exactly 

the same wave equation as for the prolate rotor except that Ae is replaced by Ce. 

Thus, for an oblate rotor (in cm7!), 

FREI eI sep = (Bo — ChyK- (5.15) 

and ®,ot is as given in equation (5.13). For an oblate symmetric top, the rotational 

energies decrease with increasing K for a given value of J, whereas for a prolate 

rotor the rotational energies increase with increasing K fora given value of J. 

The Ha molecular ion is an oblate symmetric top with an equilibrium bond 

length re of 0.877 A. The c axis is perpendicular to the molecular plane so 

that Ce © 16.858/[3 x 1.0078(0.5re/ cos 30°)*] = 21.8 cm~!. The b axis is 

chosen to pass through one of the protons in the plane of the molecule, so that 

Be © 16.858/[2 x 1.0078(0.5re)7] = 43.5 cm7! 
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5.3.2 Linear molecules 

Linear molecules (i.e. molecules having a linear equilibrium structure) have only 

two rotational degrees of freedom and, as a consequence, an N-atomic linear 

molecule has (3N — 5) vibrational degrees of freedom. There are (N — 1) 

one-dimensional stretching normal modes and (N — 2) two-dimensional bending 

normal modes. Each pair of two-dimensional normal modes (Q;a, Q,p) is 

described by the pair of coordinates (Q,, @,) given in equation (4.36) appropriate 

for a two-dimensional harmonic-oscillator and each such pair of modes has 

a vibrational angular momentum /,/ about the linear (z) axis according to 

equation (4.39). The total vibrational angular momentum is given by 

N—2 

jee Da (5.16) 
r=) 

At linear nuclear configurations, Helec commutes with the electronic angular 

momentum operator L-; the electronic angular momentum about the z axis is 

given by Ah, where, at linearity, 

Li@ae — AN®elec. O17} 

The rigid-rotor rotational Hamiltonian! of a linear molecule (with z as the 

axis Of linearity) is, in em 

Hit ale Ca hice) (5.18) 

with eigenvalues 

Frot = BelJ(J + 1) — K*] (5.19) 
and eigenfunctions 

Prot = [1/(27)]'/*Ssem(O, pee (5.20) 

where k is restricted by 

=I+A (5.21) 

because there can be no nuclear rotational (orbital) contribution to the angular 
momentum about the z axis. 

For a diatomic molecule, there is no vibrational angular momentum, and / = 
Q. For CO in its ground electronic state, A = 0 and so k = 0. The energy levels 
of !?C!°O plotted in figure 1.5 were calculated using equation (5.19) with K = 0 
and the experimentally determined value of Be = 1.931 cm~!. The moment of 
inertia of aCO molecule is 

ip ire (6:22) 

! To be technically correct, this should be called the isomorphic Hamiltonian. This way of treating a 
linear molecule leads to the introduction of x as an extra rotational variable and this allows the use of 
the symmetric top wavefunctions as long as k is restricted to be the sum in equation (5.21). 
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where the reduced mass 

= mcmo/(mc + mo). @23) 

For '?C!60, using (Be/em—!) © 16.858/(I£,/u A’), with Be = 1.931 cm~!, one 
obtains re = 1.128 A. 

5.3.3 Spherical top molecules 

Spherical top molecules are such that the moment of inertia about any axis passing 
through the centre of mass is the same and the products of inertia vanish regardless 
of how the x yz axes are oriented in the molecule. The methane molecule CH4 is 
an example of such a molecule and, for methane, we chose the xyz axes to be 

oriented so that the z axis is along one CH bond and the y axis in an HCH plane. 

For a spherical top molecule, Ae = Be = Ce and the rigid-rotor Schrédinger 
equation 1s 

h-*BeJ* Prot = Frot Prot (5.24) 
so that 

Frot = BeJ (J + 1) (5.25) 

and the wavefunctions are as for a symmetric top molecule given in 

equation (5.13). For the methane molecule, equation (5.25) was used to calculate 

its rotational energies in figure 1.5 with Be = 5.35 cm7! (i.e. re = 1.08 A). 
The rigid-rotor rotational eigenfunctions of all symmetric top, linear and 

spherical top molecules are the same function [given in detail in equation (5.56)] 

of the Euler angles 6, @ and x and we see that the function does not involve the 

rotational constants of the molecule; we call the wavefunction the symmetric top 

wavefunction and write it |J,k,m). For a linear molecule, k =/+ A. 

5.3.4 Asymmetric top molecules 

For an asymmetric top molecule, the three equilibrium principal moments of 

inertia are different from each other. Using the convention (called the I” 

convention; see section 5.3.4) of identifying the a, b and c axes with the z, x 

and y axes, respectively, in equation (5.7), we obtain the rigid-rotor rotational 

Hamiltonian for an asymmetric top molecule as 

Hos har Aedes Bede at Gel,) (5.26) 

and, as for all molecules, it commutes with J and le However, the asymmetric 

top rotational Hamiltonian does not commute with J, and the symmetric 

top wavefunctions are, in general, not eigenfunctions of the asymmetric top 

Hamiltonian. In this case, the rotational eigenfunctions and eigenvalues are 

determined by diagonalizing the matrix of HY. in the symmetric top basis 

functions |J,k,m). As a result, the asymmetric top rotational eigenfunctions are 
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linear combinations of the |/, k, m) functions having the same value of J and m, 

with coefficients that depend on the rotational constants. 

The detailed derivation of the asymmetric top wavefunctions and energies 

is given in section 5.5.4, where it is explained how each asymmetric top energy 

level correlates with one prolate symmetric top energy level and with one oblate 

symmetric top level. Because of this, the 2 + 1 rotational levels of an asymmetric 

top molecule that have the same value of J are labelled Jx,«,, where the labels 

K, and K, indicate the K values (which are less than or equal to J) of the prolate 

and oblate levels to which the level correlates. In the K, K; subscript, for a given 

value of J, the label K, has the (2J + 1) values 0, 1, 1,2,2,..., J, J going from 

the bottom level to the top, whereas the K, label has these values going from the 

top of the (2J + 1) levels to the bottom. For example, the seven J = 3 levels 

are labelled 303, 313, 312, 322, 321, 331 and 330, in order of increasing energy. 

Asymmetric rotor levels are said to be ee, eo, oe, or 00 depending on whether 

K, and K, are even (e) or odd (0), respectively; e.g. the level 3; is an eo level. 

In figure 1.5, the asymmetric top energy values for the water molecule are given 

using the values 27.2, 14.6 and 9.5 cm, for Ae, Be and Ce. 

5.4 Rovibronic wavefunctions 

In this chapter and in the two preceding ones, we have discussed the separation 

of the rovibronic Schrodinger equation into electronic, vibrational and rotational 

equations. Zeroth-order approximate rovibronic wavefunctions are obtained as 

the product of electronic, vibrational and rotational wavefunctions: 

Ou eer Aa Dinu Pelec; GC) Dw Oo Oy 20, Q, x) (9.27) 

where we indicate the electronic (), vibrational (v) and rotational (7) quantum 

number labels and show that the normal coordinates Q“") change with electronic 

state. In the harmonic-oscillator approximation, the vibrational wavefunction is 

the product of separate harmonic-oscillator wavefunctions in each of the normal 

coordinates. 

An appropriate selection of the infinite set of product wavefunctions given 

in equation (5.27) can be used as a basis set in forming a truncated matrix of 

the complete rovibronic Hamiltonian and many different types of off-diagonal 

matrix element can be non-vanishing. Off-diagonal matrix elements that cause 

the breakdown of the Born—Oppenheimer separation of the electronic and 

rovibrational wavefunctions come from the nuclear kinetic energy operator TN 

[see equation (3.13)]. Off-diagonal matrix elements that spoil the separation 

of rotation and vibration come from the rotational Hamiltonian terms given in 

equations (5.36) and (5.37). Off-diagonal matrix elements spoiling the normal 

mode separation come from the anharmonic potential energy term yon [see 

equation (4.15)]. 
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5.5 The Hamiltonian and wavefunctions in detail 

This is the final section of the chapter. In it we give many of the background 

details for what has been discussed earlier. It can be looked over cursorily on a 

first reading. 

5.5.1 The derivation of the rigid-rotor Hamiltonian 

The complete rotational Hamiltonian is obtained by first subtracting Eyjp in 

equation (4.5) from E;y in equation (4.2) to obtain Eyor, where this is expressed in 

terms of the coordinates (0, ¢, x, Q,-), and their velocities, by using the inverse 

of equation (5.40), and by using equation (4.9). Secondly, it is necessary to 

convert the velocities to momenta to obtain the classical expression Hyot, which 1s 

then converted to the quantum mechanical rotational Hamiltonian operator. In 

the same way that normal coordinates are introduced in order to simplify the 

solution of the vibrational Schrodinger equation, so it is useful to introduce the 

xyz components of the angular momentum operator, in place of the momenta 

that are conjugate to the Euler angles, in the rotational Hamiltonian. The lengthy 

derivation of He from E;ot is associated with the names of Podolsky, Darling and 

Dennison, Wilson and Howard, and Watson. The rotational Hamiltonian operator 

Arot (in cm~!) that is finally obtained is 

Arot = he ira bap (Ja — pa La)(Sg = PB = Lp) +U (5.28) 

where a and 6 = x, y or z; it is necessary to define Leg, an Darke andale 

The elements of the matrix jf, when expanded about equilibrium as a 

Taylor’s series in the normal coordinates, are given by 

Kap = ae ng = » Lena r oP ioe OQ, ars >> Le ae Ne aah ce Q, Om 

Fay, 

(5.29) 

where Lop = To ee is an element of the inverse of the moment of inertia 

matrix for the molecule in its equilibrium configuration (only diagonal elements 

i; are non-vanishing) and the coefficients avP depend on the equilibrium 

nuclear geometry, on the atomic masses and on the elements of the / matrix, see 

equation (4.9), according to 

ae — Sarid (Sup os Velyin — ofl pir): (5.30) 
i=l 

Symmetry can be used to determine that some of the coefficients a, “P vanish; see 

equation (11.44). The Jy and Jp are xyz components of the angular momentum 
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operator [see section 2.7 and equations (5.46)-(5.47)]. The Pa and pg are xyz 

components of the vibrational angular momentum operator, they are given by 

pas DR ROFR: (5.31) 
TiS: 

where the ¢*, (Coriolis coupling constants) depend on the / matrix according to 

N 

ons = Cs = SU Gis — zi rlyi.s) (5:32) 

and cyclically for the y and z coefficients. Symmetry can be used to determine 

that some of the coefficients ¢°, vanish; see equation (11.45). The L, are the xyz 

components of the electronic angular momentum. The term U is given by 

which can be considered as a mass-dependent addition to the potential energy 

function. 

We write Ayot as 

Hose — H°. aad He (5.34) 

where 
aes eT Re: 

Hr = he sig Mid «= Che ae fae Cee 

and 

= sig Diet - Hi aide Jp (5.36) 

je De deta (5.37) 

: - > Hap Jacl p (5.38) 
a,p 

I eae Soft BY 
Tyg 2 Hap (Pa + La) (Pp + bp) + U. (5.39) 
2he “— 

The eigenvalues of Ho. give the energy of the molecule as it rotates with its 

geometry rigidly held at the equilibrium geometry; hence, it is called the rigid- 

rotor Hamiltonian. It does not involve the vibrational degrees of freedom and 

it has been obtained from Hyot by neglecting Hes that is by neglecting all but 

the leading term in equation (5.29), by neglecting the vibrational and electronic 
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xX 

Figure 5.3. The definition of the Euler angles (6, ¢, x) that relate the orientation of the 

molecule-fixed xyz axes to the €7¢ axes. The origin of both axis systems is at the nuclear 

centre of mass O and the node line ON is directed so that a right-handed screw is driven 

along ON in its positive direction by twisting it from ¢ to z through 6 where 0 < 6 < z. 

@ and x have the ranges O to 27r. x is measured from the node line. 

angular momenta, py and La and by neglecting U. Because of the presence of 

Hie we cannot separate rotation completely from the vibrational and electronic 
motion. The terms in equations (5.36) and (5.37) cause centrifugal distortion and 

vibrational Coriolis coupling, and the effects of these rotation—vibration coupling 

terms are discussed in section 11.5. 

5.5.2 The Euler angles and angular momentum 

The definition of the Euler angles (6, @, x) that specify the orientation of the x yz 

axes within the €7¢ axes is given in the three-dimensional figure 5.3. We “pulled 

this apart’ in figures 5.1 and 5.2 to clarify the separate definitions of (6, ¢) and x, 

respectively. 

The coordinates (x;, y;,Z-) of particle r (a nucleus or an electron) in a 

molecule are related to its (&,, 7;, ¢-) coordinates, using the notation of matrix 
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multiplication, by: 

Xr Axé Ax 7 Axe E, 

ye || poem oe nr (5.40) 
fr ze hen hz Cr 

where * 

ye COS(X Oe) etc (5.41) 

and these are elements of the direction cosine matrix. The direction cosines are 

functions of the Euler angles: 

Axe = CoS@ cos cos x — sing sin x 

Axn = Cos@ sing cos x + cos P sin x 

Axe = — sim cos x 

Aye = — cos@ cos¢ sin x — sing cos x 

hyn = —cos@ sing sin x + cos g cos x 

Aye = sin é sin x 

Aze = sin6 cos ¢ 

Acn = Sin@ sing 

Aze = cosé. (5.42) 

Using equation (5.40) and the elements of the direction cosine matrix, we 

can refer the angular momentum to molecule-fixed axes: 

Sic at aa dae Je (5.43) 

where a = x, y or z. From section 2.7, we have 

dj a 
Je = ily (n= é i) (5.44) 
: du oe Onr 

with the expressions for ie and a. being obtained by cyclic permutation of &, 7 

and ¢. From these equations, we can derive 

J, = sin x Po — csc @ cos xPs + cote cos x Py (5.45) 

iB = FCOS x Pp + csc é sin xPs —coté sin xP, (5.46) 

and 

dpm Py (5.47) 

In these equations, 
~ 0 
P, = —ih— 5.48 é OA pana! 

where A = 6, ¢ or x. Summing the squares, we obtain 

Ped cal L . (5.49) 
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5.5.3. The symmetric top wavefunctions 

The angular momentum operators ue va and Ze commute with each other and 
their (simultaneous) eigenfunctions are well known from angular momentum 

theory to be the so-called rotation matrices Dey (@, 6, x). The eigenvalues of 

i ie and J, are J(J + 1)h*, kh and mh, respectively, where the three quantum 
numbers J, k, and m can have the values 

Je OR tee eke Oeil est 2 es Si) Oy AUC gph) ) oe pe ery ale 2 

(5.50) 
The symmetric top Hamiltonian [see, for example, equation (5.11)] commutes 

with J*, Je and J-, and so its eigenfunctions are these same D functions, 
appropriately normalized. 

Normalized symmetric top eigenfunctions are 

Prot, %, X) = (2I + 1)/(827)]' [DY 4, 6, ~O* (5.51) 
= [1/(27)]/*Ssem(6, bel (5.52) 
=a ear (5.53) 

where 

S7om(9, @) = Yim(O, o) (5.54) 

= [1/@n)|"7O;7@)e"%: (5:55) 

Yym(@,@) is a spherical harmonic function and © 7,,(@) is a normalized 

associated Legendre polynomial. The explicit form of the wavefunction | J, k, m) 

is 

1 g\2J+k—m—2oe / -. 1g\ym—k+2 % or 2 (COs Oe Se (sin) fe 

: ol(J —m—o)\(m—k+o)\(J +k —o)! 
elmPalkx) (5.56) 

where 

N= (ean =m oie = PiOe i Gn 1. 

The index o in the sum runs from 0 or (k — m), whichever is the larger, up to 

(J —m) or (J +k), whichever is the smaller. 

5.5.4 The asymmetric top wavefunctions and energies 

The three principal axes of an asymmetric top molecule are by convention labelled 

a, b and c, so that a is the axis about which the moment of inertia is the least, and 

c is the axis about which it is the greatest, i.e. so that Igq < Ipp < I¢c. Depending 

on whether the z axis is identified with the a, b or c axis, we name the convention 

adopted as type I, II or III. We add a superscript r or / depending on whether 
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Figure 5.4. A water molecule in its equilibrium configuration, for the ground electronic 

state, with molecule-fixed (x, y, z) axes attached using a I’ convention. 

Table 5.1. Angular momentum® matrix elements. 

(J,k, m|F?|J, k, m) = FS the 

(J, k, m|Jz|J, k, m) = kh 

(J,k —1, m|Fgt |J, k, m) - IIe) 1 Dy 

(J,k +1,m|Sq|J, k, m) - AIG+ D—kEL DIY 

4 Tn a basis of symmetric top wavefunctions, where Jm = Jy + iJy. 

a right- or left-handed xyz axis system is used. As an example, for the water 

molecule, we adopt a I’ convention (see figure 5.4) in which the z axis is located 

so that H2 has a positive z coordinate, the x axis is located so that the oxygen 

nucleus has a positive x coordinate, and the y axis is located so that the axis 

system is right-handed. 

If we use the I” convention for an asymmetric top molecule, the rigid-rotor 

rotational Hamiltonian, from equation (5.7), is 

nO a9 

He fi Ac de aabed oe Ged) (5.57) 

and, as we stated after equation (5.26), it commutes with J? and Ty but not 

with We This means that the asymmetric top eigenfunctions will be linear 

combinations of |/J, k, m) functions that have the same values of J, m but different 

values of k. 

The rotational eigenfunctions and eigenvalues for an asymmetric top 

molecule are determined by diagonalizing the matrix of the rigid-rotor 
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Hamiltonian using the symmetric top functions |J,k,m) as basis functions. To 
do this, we rewrite the Hamiltonian as 

Hee hee el Aer (hee Cy. 
+ 4(Be — Ce)i(St)? + (5)? 1} (5.58) 

and we use the results in table 5.1 to determine that the matrix elements of the 

operators occurring in this expression are: 

(J,k, m|F?|J, k, m) = JJ + 1)R2 (5.59) 

(J,k, m|J,7|J, k,m) = eR (5.60) 

(J,k —2,m|St)?|J,k,m) = {LI +1) -(-D&-2)] 
<2 1) =k Dea 5.61) 

and 

(+2, mi(s, lJ, km) 

={(JU 41)— G4 DESI +1 —ke + 1)}A*. 6.62) 

Using a type I’ convention, the k quantum number refers to angular momentum 

around the a axis. It is called k, if one needs to distinguish it from the situation 

that would obtain if we used a III’ convention since then the k quantum number 

would refer to angular momentum about the c axis and be called k,. Using a I” 

convention, we call it k. 

Because there are no off-diagonal matrix elements between |J,k,m) basis 

functions having different J or m values, the Hamiltonian matrix can be organized 

into blocks so that each block is characterized by particular values of J and m; 

there are no off-diagonal matrix elements between the blocks. This is depicted in 

fegute):5. 

The Hamiltonian matrix is block diagonal and we can diagonalize each block 

separately. Each block is a (2J + 1) x (2J + 1) square matrix with rows 

and colmmns labelled by the. (27) sl) values.of ke = —=Jo—J Sloe ey. 

For a given value of J, there are (2J + 1) identical blocks like this as m = 

—J,—-—J + 1,...,+J and this gives a (2J + 1)-fold m-degeneracy to every 

rotational level. To calculate the energies, we set up and diagonalize only the 

m = 0 blocks. The (J,m = 0) blocks can be further block diagonalized, as we 

show later, but first we look at the J = 0 and | situations. 

For J =m = 0, we have a single basis function |0, 0, 0) = (877)~“/”) and 
the diagonal matrix element is zero. Thus, for the asymmetric top, ®yor(J = 0) = 

(82) and Fo — 0. 
For J = 1 and m = 0, there are three basis functions |1, —1, 0), |1, 0, 0) and 

\1, +1, 0), and the (J = 1, m = 0) block is a3 x 3 matrix. If we use the plus and 

minus combinations of the K = | functions: 

eis O5-2 = (ieee BOWE =P O)//2 (5.63) 
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eae 

Figure 5.5. The block diagonal Hamiltonian matrix. 

together with the |1, 0,0) function, as the three basis functions, then the (J = 

1,m = O) matrix block is diagonal; all off-diagonal matrix elements are zero. 

That is, 

(1,1, 0; +/4°,|1, 1,0; —) = (1, 1,0; +|79,|1, 0, 0) = 0. (5.64) 
rot 

Since the matrix block is diagonal the basis functions are the eigenfunctions and 

the eigenvalues are the diagonal elements, which are: 

Frot( Jo 1, K 1,4) = (1) 1, 054)? 1, 15,034) = Ae + Be 16.65) 
C 

Fg (PS 1K 1, =) =11, 1,0] AO, 07) See CY 5 66) rot 

and 

Frot(J = 1, K = 0) = (1,0, 0/11, 0,0) = Be + Ce. (5.67) 
rot 
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The matrix elements in equations (5.64)-(5.66) are evaluated by expanding 

them as sums (and differences) of matrix elements involving the primitive basis 

functions |1,k, 0). The primitive matrix elements [a primitive matrix element is 

in equation (5.67)] are evaluated using the results in equations (5.59)—(5.62) with 

H®., expressed as in equation (5.58). 

For the water molecule, Ae, Be and Ce. have the values 27.2, 14.6 and 

9.5 cm~!. Thus the three J = 1 term values are 41.8, 36.7 and 24.1 cm7! 
and the Kg = 1 splitting (Be — C,) is 5.1 cm7! 

For J greater than 1, each (J, m) block of the Hamiltonian matrix factorizes 

into four blocks if we use sum and difference basis functions for each K value 

and if we separate the odd K and even K functions. The off-diagonal matrix 

elements between + and — functions, and between odd K and even K functions, 

vanish. The four blocks obtained are the Et, E~, O* and O~ blocks as the basis 

functions are + or — combinations of the even(£) and odd(Q) K primitive basis 

functions |J,k, 0). This block diagonalization of the (J, m) blocks follows from 

the results in equations (5.59)—-(5.62). For even J, the E* block has dimension 

(J +2)/2 and the other three blocks have dimension J/2; for odd J, the E~ block 

has dimension (J — 1)/2 and the other three blocks have dimension (J + 1)/2. 

For J = 2, using A* to represent E* or O*, the appropriate basis functions 

\J, K,m; A*) are: 

2 

2, 2,0; E+) = [|2, +2, 0) + |2, —2, 0)]V2 (5.68) 
2,2, 02 Ba y= (12, 42.0) 12, —2) 0)1/2 (5.69) 

(29430507 = [|2y4-1, 0) [2,02 (5.70) 
24, 0/07 = 12, 4190) =12) 24 oyVv2 (5.71) 

and 

|2, 0,0; E+) = |2, 0, 0). (5.72) 

The only non-vanishing off-diagonal matrix element of HS, between the five 

functions is that between the two E* functions. From the three | x | blocks, 

we obtain energies Frot(J, A*) given by 

Frot (2, E)= 4Ae == Be == Ga (@s7/3)) 

Frot(2, OT) = Ae + 4Be + Ce (5.74) 

and 

Fiot (2,00) =Aet Betace: (5:75) 

The 2 x 2 block of H°, for the J = 2 E+ functions is 
rot 

20.058 an 12.02.07 B 

0,0; E*| ae A/3(Be'Ce) 
2.0 

9 

(2,2,0;E+| V3(Be—Ce) 4Ac+Be+Ce 
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From the analysis of a 2 x 2 matrix given in equations (2.31)—(2.40), we determine 

that the lower eigenvalue of the matrix is 

Fro(2, E*) = 3(Be + Ce) — S (5.76) 

and the upper eigenvalue of the matrix is 

FiO B= (4 Ace Be Cees (5.77) 

where the energy level shift is 

$= y3(Bee Oy ae BYE BAae BS (5.78) 

and Be = (Be + Ce)/2. The eigenfunctions Ds Ws E*) are 

De (2) be ven ie 00. ba Cold, 2, Osk (5.79) 

and 

@ (20k) = cr [2.2.06 re (2, 0,072") (5.80) 

where 

+ an 1/2 

eee lie bowers (5.81) 
2): 9 1/2 

aD [Se —=1C. ar (CAs = Ber Ca) f= 

For the water molecule, § = 1.3 cm~!, ct = 0.99 and c~ = 0.14. The two 

E* functions are a mixture of K = 0 and K = 2 functions with coefficients 

that depend on the rotational constants. As a result, the functions are not 

eigenfunctions of De and we say that K (1.e. Kg = |kq|) is not a good quantum 

number for them. However, K, can be used as a label on the energy levels, to 

specify to which prolate rotor K -state the level would correlate as (Bz = Ce). 

One could repeat this using a III” convention. Equation (5.57) would become 

He Agen Body Gos) (5.82) 

and equation (5.58) would become 

Boi ty Agt Bes (Gye (Ae Bode 

+ 4 (Ae — Be)(J? + J?)}. (5.83) 

We would set up the Hamiltonian matrix using sums and differences of the 

symmetric top functions |J, ke, m) as basis functions. We would get the same 

energies (these are just functions of Ae, Be and C,) but now the eigenfunctions 

would be linear combinations of the functions |J,k-,m) and we could label the 

levels using the K,(= |k;|) label of the limiting oblate rotor as (Be > Ae). 

The degree of asymmetry in an asymmetric top is given by the value of 

K = 2B. — Ac — Ce)/(Ac — Ce). (5.84) 
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Figure 5.6. The correlation of the / = 0,1 and 2 energy levels of the water molecule 

(xk = —0.42) with the e = +1 symmetric top limits .The value of Be (= 14.6 cm7!) iS 

changed from being equal to Ce (= 9.5 cm!) on the left (at the prolate top limit), to being 

equal to Ae (= 27.2 cm7!) on the right (at the oblate top limit). 

For a prolate top, Be = Ce and k = —1; for an oblate top, Be = Ae and k = 

+1; and for an asymmetric top, —1 < « < +1, with « = 0 being the ‘most’ 

asymmetric when Bg is halfway between Ae and Ce. 

In figure 5.6, we show the correlation of the J = 0, 1 and 2 energy levels 

of the water molecule (ck = —0.42) with the k = +1 symmetric top limits by 

changing the value of Be from being equal to C on the left at the prolate top limit 

to being equal to Ae on the right at the oblate top limit. 

5.6 Problems 

5.1 The molecule Br!°F has Be = 0.35717 cm™!. Calculate re. If the 
79Br!9F molecule were rotating classically at the constant energy given by 
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5.4 

SD 

Rotational states 

Table 5.2. Rotational transition wavenumbers of CH3F (in em—!), 

J! RK’ J" KY" af J!’ K’ J" KY" D 

ae) eee) 3.40475 AO SW 6.80912 

Oe oe | 3.40470 get sk ll 6.80900 

ay @) 2 5.10701 A) ee 6.80865 

Sy ae pe al 5.10692 Aaa Se 6.80806 

See 5.10665 

J’ and K’ are upper state quantum numbers, J” and K” 
are lower state quantum numbers. 

equation (5.19) with K = 0, how many revolutions per minute would it 

be doing at J = 0, J = 1 and J = 10? Hint: Use the classical relation 

a [pa /2; where o is the angular velocity in radians per second. 

For H*°Cl, Be = 10.5909 cm—!. Determine B, for H?’Cl and D*°Cl. 

Determine the equilibrium bond length and bond angle in H20O from 

the values of the equilibrium rotational constants: Ag = 27.2 cm™!, 

Be = 14.6cm7! and C. = 9.5 cm7!. 

In a planar molecule, the equilibrium coordinates of nucleus 7 in the 

molecule-fixed axis system x yz can be written as (x;°, y;°, 0). Show that, 

for a planar molecule, 

L, at I 1 oe 

In its equilibrium configuration CH3F is a prolate symmetric top and 

the rotational term values in the rigid-rotor approximation are given 

by equation (5.12). In a better approximation, where we take into 

account rotation—vibration interaction [see section 11.5 and, in particular, 

equation (11.53)], the rotational term values are given by 

Frot = BeJ (J + 1) + (Ae — Be) K? 

— OPI 1) ee IA eR ak 

where D7, D;x and Dx are centrifugal distortion constants. In the 

rotational spectrum of CH3F, the allowed transitions obey the selection 

rules (J - 17K) <— (7,4) (see chapter 12). “lable 52° lists the 

observed wavenumbers of some CH3F rotational transitions. Which of 
the five parameters Be, Ae, Dy, Dy x and Dx influence the measured 
wavenumbers? Use the wavenumbers of the two transitions (J, K) = 
(2,0) — (1,0) and (J, K) = (3,0) <— (2,0) to determine the values 
of B. and Dy. Calculate the wavenumber of the transition (J, K) = 
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(4,0) < (3, 0) and compare with the measured value. Use the difference 

between the wavenumbers of the two transitions (J, K) = (4,2) <— 

(3,2) and (J, K) = (4,3) < (3,3) to determine D;x. Calculate the 

wavenumbers of the transitions with K’ = K” > O and compare the 
results with the measured values. 

From equation (2.19), the commutator of the operators A and B is 

[A, B] = AB — BA. 

Show that, for four arbitrary operators A, B, C and D, 

(a) [A+ B,C + D] =[4, C)+1A, D] +18, C1 + [B, D) 
(b) [A, = BIA, C] of [A, BIC and 

(c) [AB, C] = A[B, C] + [A, C1B 

The angular momentum operator component Js is defined in equa- 

tion (5.44). By making cyclic permutations of €, 1 and ¢ determine the 

expressions for the components J; and J;. Use the answers to problem 5.6 

to derive the commutators [Je, et [Je Je] and oe Je). Compare these 

commutation relations with those given in equation (2.81) for the compo- 

nents of J about the XYZ directions that also have space-fixed orienta- 

tion. 

Determine [J2, de), (J, Jy] and J, Je), where 

PDP Goa Zee ye Jo= Je +S, + Se. 

We define the two operators 

Joe Jee, candy io Joi, (5.85) 
S 

Use the answers to problems 5.6 and 5.7 to derive the commutators 

[Jeno land [Js J. 1. 

Assume that yy, is an eigenfunction of Je, i.e. 

Jew, = hm. (5.86) 

Consider the function jt yy. Use the answers to problems 5.6, 5.7 and 5.9 

to show that either this function vanishes or that it is an eigenfunction of 

Te Determine the corresponding eigenvalue. Repeat this determination 

for the function Jo Wy. 

Repeat problems 5.7—5.10 with angular momentum components ee ie 

and Ji about the molecule-fixed directions x yz, instead of the components 

Jes J, and Je about the space-fixed directions €7¢; the expressions for the 

operators are given in equations (5.46)-(5.47). Confirm equations (5.61) 
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and (5.62). In solving this problem, it will be necessary to introduce Je 

(see table 5.1) instead of J= and to replace equation (5.86) by 

Jed, = hk. (5.87) 
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Chapter 6 

Geometrical symmetry 

Some objects look exactly like their mirror image and we say that they are 

symmetrical or, more precisely, that they have reflection symmetry. Objects can 

also have rotational symmetry; for example, the letter “T’ is such that if we turn 

it over by rotating it through 180° about the upright axis it will look the same. 

Rotation and reflection symmetries are based on geometrical shape, and they 

are described in a precise way by introducing rotation and reflection symmetry 

operations. Complete sets of such symmetry operations form point groups, and 

the symmetry of a geometrical figure can be classified according to which point 

group it belongs. If we think of a molecule as being a rigid object of fixed 

structure, then its symmetry can be described in terms of a point group and this 

is useful for molecules having small amplitude vibrations in isolated electronic 

states. 

6.1 Geometrical symmetry operations 

To be precise about the geometrical symmetry of an object, it is necessary to 

determine the number and type of symmetry elements that it possesses and the 

symmetry operations that the symmetry elements give rise to. One type of 

symmetry element is a rotational symmetry axis. The corresponding rotational 

symmetry operations are rotations of the object about this axis which leave the 

object looking the same. Another type of symmetry element is a reflection 

symmetry plane. The corresponding reflection symmetry operation is a reflection 

in this plane and it leaves the object looking the same. 

For the equilateral-triangle-based pyramid shown in figures 6.1, the 

symmetry elements are the three-fold rotational symmetry axis C3 and the three 

reflection symmetry planes o;, 02 and 03, shown in figure 6.2. The C3 axis 

generates two rotational symmetry operations, C3 and C o They are right-handed 

rotations of 120° and 240°, respectively, about the axis. It is customary to use the 

same notation, C;, for the rotational symmetry axis and the associated rotational 

symmetry operation. The positive direction of the C; and c rotations is such 

Lis 
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Figure 6.1. An equilateral-triangle-based pyramid. The base of the pyramid is an 

equilateral triangle and the pyramid height is such that the three triangular faces that form 

the sides are not equilateral (but isosceles). 

that an observer sitting on the tip of the C, axis in figure 6.2 will see them as 

being anti-clockwise. In general, we use the notation C,, for an n-fold rotational 

symmetry axis. Such an axis generates n — | rotational symmetry operations 

Cn, C2C3,...,C"~!, where C* is a right-handed rotation of k x 360°/n about 
the axis (and C, = C}). 

Each of the three reflection symmetry planes o;(i = 1, 2,3) in figure 6.2 

generates one reflection symmetry operation called oj. The C3 axis is at the 

intersection of the three o; planes and so each of the planes contains the axis. 

For a geometrical object with one C,, axis such as the pyramid in figure 6.2, a 

reflection symmetry plane containing the C,, axis is called a vertical reflection 

symmetry plane; oy (or og, see below) is used as a ‘generic’ name for such planes. 

The symmetry elements of the pyramid generate the symmetry operations 

{C3, CZ, 01, 02, 03}. (6.1) 

As seen in figure 6.3, the symmetry elements of an equilateral triangular 

prism include those of the equilateral-triangle-based pyramid. The prism, 

however, has the additional symmetry elements shown in figure 6.4: A horizontal 

reflection symmetry plane op, three rotational symmetry axes C me G , Go and 

a so-called rotation—reflection axis (or improper axis) S3. The S3 axis coincides 

with the C3 axis. 
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Figure 6.2. The symmetry elements of an equilateral-triangle-based pyramid. 

The C3 axis generates the two symmetry operations C, and CF The ay 

planes generate the three reflection operations o;,02 and o3. The op plane 

generates a reflection symmetry operation called oy, and each of the Ge ws 

1, 2,3) axes generates a rotation ee of 180° about the axis in question. The 

rotation—reflection axis 53 generates two rotation—reflection operations, S3 and 

$2, which we can write as 

Sat — 07, Cs — Gaon, (6.2) 

and 

S3(=0,C? = Coop) = onCe = Clon. (6.3) 

The $3 operation in equation (6.2) is the product of op and C3. When we multiply 

together two symmetry operations RK and S say, to obtain the product RS, we 

mean that we first carry out the operation S and then the operation R. In general, 

the product RS is different from the product SR but for op and C3 or en the 

order does not matter as shown by equations (6.2) and (6.3). A rotation—reflection 
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Figure 6.3. An equilateral triangular prism with the C3 rotational symmetry axis and the 

three vertical reflection symmetry planes 01, 02, 03 shown. The prism has the additional 

symmetry elements shown in figure 6.4. 

symmetry operation S, is a rotation C, about a C, axis combined with a reflection 

in areflection symmetry plane op perpendicular to the C, axis. The order in which 

the two operations are carried out does not matter. The symmetry elements of the 

equilateral triangular prism generate the symmetry operations 

2 5 1) 2 3}) {Ca idl Ora eet ye Oa (6.4) 

The rotation—reflection operation $2 inverts every point through the 

intersection point of the C2 axis and the op plane. This operation is the point 

group inversion L: 

1 = Soo, Co Goon. (6.5) 

For the equilateral triangular pyramid, the existence of the symmetry element 

S3 is a trivial consequence of the existence of the symmetry elements C3 and 

on. However, for n even a rotation—reflection axis $, can exist without the C, 

axis and the horizontal reflection symmetry plane oy, being symmetry elements 

in their own right. We shall see an example in section 6.3 when we discuss the 

allene molecule. 
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Figure 6.4. An equilateral triangular prism with the horizontal reflection symmetry plane 

Op, the three rotational symmetry axes C M he Gye G: &) and the rotation—reflection axis $3 

shown. The prism has these symmetry elements in addition to those shown in figure 6.3. 

Note that the S3 and C3 axes coincide. 

6.2 Geometrical symmetry groups: Point groups 

In figure 6.5, we illustrate the fact that Ce has the same effect as the product 0201; 

i.e. we can write 

Ce =O Oil: (6.6) 

Similarly, 

C3 = 0301. (6.7) 

It is necessary to introduce the operation of ‘doing nothing’ for which we use the 

symbol E; this is called the identity operation. It allows us to express the effects 

of the following products: 

E = 0101 = 0202 = 030; = CxCi = C5C. (6.8) 

When we add the operation F to the list of operations in equation (6.1), we obtain 

the set 
9) 

Cp C3. 3 1012 02..04). (6.9) 

We explain the C3, notation later. The set of operations C3y is such that the 

successive application of any two operations in it has the same effect as another 
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Figure 6.5. Illustrating equation (6.6) for an equilateral-triangle-based pyramid by 

marking four distinct points. The view is down from the tip of the C3 axis. 

operation in the set. The multiplication table given in table 6.1 demonstrates this. 

By adding the operation E to the list of symmetry operations for the equilateral 

triangular prism in equation (6.4), we obtain the set 

Daj (ECC) .on co 0, SS Ce eC (6.10) 

The two sets of operations C3, and D3, in equations (6.9) and (6.10), 

respectively, are examples of a group. Each set is such that for any two operations 

in the set, R and S say, the operation T, given by T = RS, is present in the 

set. We can say that a group is ‘closed’ with respect to multiplication, since the 

product of any two of its members is present in the group. This is not the whole 

story and a complete definition of a group is given in section 7.4. 

We can determine the symmetry elements of any geometrical object. A 

symmetry element can be a rotational symmetry axis, a reflection symmetry plane, 

a rotation—reflection symmetry axis or the inversion centre of a centrosymmetric 

object associated with the inversion symmetry operation i = S>2 in equation (6.5). 
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Table 6.1. The multiplication table of C3. Each entry is the product of first applying the 

operation at the top of the column and then applying the operation at the left-hand end of 

the row. 
9 

E Ce GC, oi en «03 

Bee Cy, 8 C> oy) “aay J 

C3: Cy Ce Bs 03. ~«OOF| 02 

CoC, BC, an 13 pn 

Gis @i Cp © JI8 C, Cr 

COD. C3 maT Cz &£E 

OotaOa| | 107 o2 Cy CG 

Each of the symmetry elements generates symmetry operations as described 

above, and the complete set of generated symmetry operations (including E) form 

the point group of the geometrical object. Thus, C3, is the point group of an 

equilateral-triangle-based pyramid and D3 is the point group of an equilateral 

triangular prism. The symmetry elements of a given geometrical object will all, 

by necessity, intersect at one point, the centre of mass of the object, and this has 

given rise to the term ‘point’ group. 

The labels customarily used for point groups (such as C3y and D3n) are 

named Schénflies symbols. We define some of the most important point groups 

here: 

There are geometrical objects with no symmetry elements at all. Such an 

object formally has the point group 

C; = {£}. (6.11) 

A geometrical object with one reflection symmetry plane and no other symmetry 

elements has the point group 
Ca={EXe} (6.12) 

where o is the reflection symmetry operation generated by the reflection 

symmetry plane. The group 
Cr ey (6.13) 

describes the symmetry of a geometrical object with an inversion centre as the 

only symmetry element. 

A cone and a cylinder, as shown in figure 6.6, are objects of very high 

symmetry; each has a Coo axis. Any rotation (i.e. a rotation of arbitrary 

rotation angle) about a Coo axis is a symmetry operation and there are infinitely 

many such rotations. In addition to the Coo axis, a cone has infinitely many 

reflection symmetry planes containing the Co axis. The point group of a cone, 
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Figure 6.6. A cone and a cylinder with their Coo axes indicated. 

Figure 6.7. A solid tetrahedron (left) and a transparent stick model of the same tetrahedron 

(right). 

which contains the infinitely many rotations about the Cy axis together with 

the infinitely many reflection symmetry operations generated by the reflection 

symmetry planes, is called Coy. In addition to the symmetry elements of a cone, 

a cylinder has a horizontal reflection symmetry plane oj (analogous to the op 

plane of the equilateral triangular prism in figure 6.4), infinitely many C2 axes 

lying in the oy plane and intersecting the Coo axis and a rotation—reflection axis 

Soo that coincides with the Coo axis. The point group of a cylinder is called Don. 

Another high-symmetry object is a tetrahedron shown in figure 6.7. A 

tetrahedron has four equivalent faces, each one being an equilateral triangle. Its 

symmetry elements are: 

e Four C3 axes (each one passing through a vertex and the centre of the 

opposite face) 
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Figure 6.8. A solid octahedron. 

Figure 6.9. A solid icosahedron. 

Three C2 axes, each one passing through the mid points of opposite edges 

Three $4 axes coinciding with the C2 axes and 

Six reflection symmetry planes, each one containing an edge and passing 

through the mid point of the opposite edge. 

The resulting point group, with 24 elements, is called Tq. 

An octahedron, shown in figure 6.8, has eight equivalent equilateral triangles 

as faces; its 48-member point group is called Oy. An icosahedron, shown in 

figure 6.9 (with 20 equivalent equilateral triangles as faces), has a 120-member 

point group called Jp. 

Further important point groups (defined by their symmetry elements) are: 
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H 

Figure 6.10. The PH3 molecule in its equilibrium configuration. 

C,,, one n-fold rotation axis; 

Cy, one n-fold rotation axis and n reflection planes containing this axis; 

Cnn, one n-fold rotation axis and one reflection plane perpendicular to this 

axis; 

D,,, one n-fold rotation axis and n C2 axes perpendicular to it; 

Dna, those of D, plus n reflection planes containing the n-fold rotation axis 

and bisecting the angles between the n twofold rotation axes (these vertical 

reflection symmetry planes are called og planes); 

Dy, those of D, plus a reflection plane perpendicular to the n-fold rotation 

axis; and 

S,, one S, axis with n even. 

6.3 The point group symmetry of molecules 

The structure of a molecule is taken as its equilibrium structure in its ground 

electronic state and the symmetry of a molecule is customarily discussed using 

the rotation and reflection symmetry operations for this structure. In this way we 

determine the point group symmetry of the molecule. As examples, the ammonia 

NH and phosphine PH3 molecules both have the shape of an equilateral-triangle- 

based pyramid at equilibrium (figure 6.10) and so they both have point group 

symmetry C3,. The three protons in the ion Ha form an equilateral triangle at 

equilibrium (figure 6.11), and this static nuclear arrangement has D3, symmetry. 

The molecules HCN and CO) are linear at equilibrium and have the point 

group symmetries Cooy and Doon, respectively. 

In its equilibrium geometry, methane CHy has the point group symmetry of 
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Figure 6.11. The He ion in its equilibrium configuration. 

Figure 6.12. The molecule C¢g at equilibrium. Nuclei represented as black dots are in or 

above the plane of the page whereas nuclei represented as grey dots are below the plane of 

the page. 

the tetrahedron shown in figure 6.7. The four protons each occupy a vertex of 

the tetrahedron and the C atom is at the centre of mass. At equilibrium, sulphur 

hexafluoride SF¢ has octahedral symmetry. The six F nuclei form the vertices 

of the octahedron in figure 6.8 and the S nucleus is at the centre of mass. Less 

obviously, a C6g molecule in its equilibrium configuration (figure 6.12) has the 

same point group symmetry as the icosahedron in figure 6.9. The easiest way to 

recognize this is to notice in figure 6.12 that the 60 carbon atoms in C¢o can be 

viewed as belonging to 12 disjunct five-member rings. The icosahedron must be 

lined up with the Ceo molecule in such a way that each of its 12 vertices points 

towards the centre of one of the five-member rings. Thus, Cgo at equilibrium has 
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Figure 6.13. The allene molecule at equilibrium with the rotation—reflection axis (or 

improper axis) S4 indicated. The two planes defined by the two CH groups are 

perpendicular to each other. 

point group symmetry Jp. 

An allene molecule HyCCCH)p in its equilibrium configuration is shown in 

figure 6.13. This static nuclear arrangement is such that the two planes defined 

by the two CH>2 groups are perpendicular to each other. The molecule will be 

unchanged by a rotation of 90° about the CCC axis combined with a reflection in 

a plane perpendicular to this axis and containing the ‘middle’ C nucleus. Thus, 

allene has the rotation—reflection axis S4 and the point group of allene, Dog, 

contains the corresponding rotation—reflection operation S4. 

From the point group symmetry of a molecule’s equilibrium structure, we 

can deduce if the molecule is a symmetric top, a linear rotor, a spherical top or 

an asymmetric top (section 5.3). Linear molecules are easily recognizable and 

have, in their equilibrium configurations, Cooy or Dooh symmetry. However, the 

following also hold: 
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e If the equilibrium structure of the molecule has one (and only one) 

C, rotational symmetry axis or S, rotation—reflection axis with a finite 

n = 3, then the molecule is a symmetric top. 

e If the equilibrium structure has more than one C, rotational 

symmetry axis with a finite n > 3, then the molecule is a spherical 

top. 

e If the equilibrium structure has no rotational symmetry axes or C2 

axes only, then the molecule is an asymmetric top. 

6.4 

6.1 

6.2 

6.3 

6.4 

6.5 

Problems 

In section 6.1, we imply that an object having a rotation—reflection axis S;, 

with n odd must necessarily also have a C, axis coinciding with the S, 

axis and a symmetry plane op perpendicular to the S, axis. Explain this 

result. 

Work out the multiplication table (i.e. a table analogous to table 6.1) for 

the set of operations D3 in equation (6.10). It can be shown that each 

row and each column of the multiplication table contains each symmetry 

operation in D3, once and only once. 

Determine the symmetry elements for the rigid allene molecule in 

figure 6.13, and the symmetry operations in its point group Dag. 

Determine the point group symmetry of each of the letters in the phrase 

‘THE POINT GROUPS’. 

Determine the point group symmetry of the following molecules in their 

electronic ground states: water H2O, acetylene C2H2, ethylene C2H4, 

ethane C2H6, hydrogen peroxide H2O2, cis and trans difluoroethylene 

CHFCHF, boron trifluoride BF3, methylfluoride CH3F, and benzene 

CoH. Determine for each molecule whether it is a symmetric top, a linear 

rotor, a spherical top or an asymmetric top. 



Chapter 7 

The symmetry of the Hamiltonian 

7.1 Hamiltonian symmetry operations 

We want to use the symmetry of a molecule as an aid in calculating and 

understanding the dynamical behaviour of the molecule. We wish to be able 

to do this for a molecule when it is in isolation and when it is in interaction 

with radiation or under the effect of an applied external static field. Point group 

symmetry does not allow us to do this in all circumstances. We can appreciate that 

this must be so because molecules are dynamical quantum mechanical objects that 

are not fixed at their equilibrium structure. In particular, 

(i) There are molecules that can tunnel between different minima on the 

potential energy surface 

(ii) Different electronic states of a single molecule often have different 

equilibrium structures; transitions or interactions between such electronic 

states can occur. 
(iii) Atoms, nuclei and sub-nuclear particles have behaviour that can be 

understood using ‘symmetry’, yet it is clear that they cannot have the rotation 

and reflection symmetry of the point group. Our concept of symmetry should 

be general enough to include the symmetry used for such ‘sub-molecular’ 

species. 

To overcome the shortcomings of geometrical symmetry operations, we 

define a general symmetry operation as being a transformation, such as a change 

in the coordinates, momenta, spin or charge of the particles in a system (the nuclei 

and electrons in a molecule, for example), that is such as to leave the energy of 

the system of particles unchanged. 

In quantum mechanics, we define a symmetry operation as a transformation 

that leaves the Hamiltonian for the system invariant or, equivalently, as a 

transformation that commutes with the Hamiltonian. 
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Figure 7.1. The effect of the symmetry operation (12) on a water molecule. The molecular 

centre of mass is indicated by a x. 

In our case the ‘system’ is an isolated molecule in field-free space but the 

definition is also applicable to atoms, nuclei and sub-nuclear particles. 

This new definition of symmetry, which depends on the form of the 

Hamiltonian, appears to have no connection with the structure of the molecule. 

However, from this definition, we can recover the point group description of 

symmetry for the electronic and vibrational states of molecules that vibrate with 

small amplitude motions in isolated electronic states. By recovering point group 

symmetry from the more general definition, we gain a deeper understanding of 

what we really do to a molecule when we apply the ‘rotation’ and ‘reflection’ 

symmetry operations present in the molecular point group. However, with the 

more general definition of symmetry, we can also address problems that cannot 

be dealt with using point group symmetry such as conformational change, extreme 

non-rigidity, electronic state mixing and the effect of molecular rotation. 

The more general definition of symmetry introduces symmetry operations 

such as the permutation of identical nuclei and the inversion of a molecule in its 

centre of mass (whether the molecule is centrosymmetric or not), both of which 

we discuss in this chapter using the H2O and HL molecules as examples. A 

further symmetry operation that commutes with the molecular Hamiltonian is the 

overall rotation of the molecule about any axis that passes through its centre of 

mass; this is discussed briefly in section 7.7 but more fully in section 14.5. 

7.2 Nuclear permutations and the inversion E* 

A ‘snapshot’ of a vibrating water molecule is shown schematically on the left- 

hand side of figure 7.1; it consists of two protons (labelled 1 and 2), one oxygen 

nucleus (labelled 3) and 10 electrons. One of the 10 electrons is shown without 

a label; this generic electron is indicated by e and the + sign next to it signifies 

that it is above the plane of the page. The spins of the protons and the electron are 

indicated using small arrows. The 160 nucleus has zero spin. 

On the right-hand side of figure 7.1, is shown the effect on the water molecule 

of the nuclear permutation operation (12). This is an operation in which two 

identical nuclei (in this case protons) are interchanged (or transposed), i.e. their 

positions in space and their spins are interchanged. This operation of permuting 

identical nuclei is to be understood just like the interchange of electrons i and j 
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in equation (3.14). The effect of (12) can be thought of as the literal interchange 

of the particles 1 and 2 or, alternatively and equivalently, as the interchange of 

the labels | and 2. The nuclear permutation operation (12) does not affect the 

electrons in the molecule. 

In the XY Z coordinate system defined in section 2.5, the particle coordinates 

(labelling the ten electrons 4, 5,6,..., 13) are written as 

(Ri, 01, Ro, 02, R3, 03, R4, 04,..., R13, 013) (7.1) 

where the spatial coordinates of the particle r are 

Ry (Xr eZ) (7.2) 

and the spin label is o,. As discussed on page 47, the spin label is not 

a spin ‘coordinate’; however, in studying the transformation properties of 

wavefunctions under the effect of permutations we will for conciseness talk about 

‘the coordinates’ of a particle when we really mean ‘the space coordinates and 

spin labels’ of the particle. 

The effect of (12) on the coordinates in equation (7.1) is 

(12) (Ri,.01, Re, 02, K3, 03, R4,64...:.} 

@ oO Ge) 
== (N10 ID 02 Na, Can MA Mees) (3) 
—e er Oe ri” 

= (Ro, 02, Ri, 01, R3, 03, R4, 04, ...) (7.4) 
————— SS — —— 

where the circled numbers represent the particles and the braces indicate their 

coordinates. The exchange of particles 1 and 2 is shown in equation (7.3) and 

equation (7.4) is a reordering so that the coordinates of particle | are given first. 

Omitting the circled numbers but always giving the coordinates of particle 1 first, 

those of 2 second, etc, gives 

(12) Ri Cio Nt 304m An Gd. ek: R43, 013) 
ea if fe i / / / / / / / 

= (Rj, 0), Ry, 05, R3,03, Rg, 04,-.., R43. 3) 

= (Ro, 02, Rj, 01, R3, 03, R4,04,..., R43, 043). (7.5) 

In equation (7.5) R;, 9; are the initial coordinates of particle i, and R, o/ are the 

coordinates of nucleus 7 after the permutation (12) has been performed. 

In addition to (12), we consider also for H2O the inversion operation E* 

which has the effect of inverting the spatial coordinates of all the nuclei and 

electrons in the molecule through the molecular centre of mass as shown in 
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Figure 7.2. The effect of the symmetry operation E* on a water molecule. The molecular 

centre of mass is indicated by a x. 

figure 7.2. Thus, the effect of E* on the H2O coordinates is 

E*(Rj, 01, Ro, 02, R3, 03, R4, 04, ..., R13, 013) 

=. Ri Gi Ra, Gy Rag. Kano) eas, Ris, 3) 

= (Ripe, —K2)02,—Ks703.1— Ka, Cannas, —K 13.013) & (7.6) 

where now R’,, a; are the coordinates of particle i after the inversion E* has been 

performed. Since the spatial coordinates of the electrons are inverted by E*, the 

electron e on the left-hand side of figure 7.2 is moved by E* to be below the plane 

of the page and this is indicated by the — sign next to it on the right-hand side of 

figure 7.2. The E* operation changes the signs of all space coordinates but leaves 

the spin labels unchanged. 

In order to study the transformations of molecular wavefunctions, we must 

define the effect of the operations on a function of the coordinates. The definition 

for the effect of a nuclear permutation operation or the inversion operation E* on 

a wavefunction is that 

Rw(Ri, 01, R2, 02, R3, 03, R4, 04, R5,05,..., R13, 013) 

= W* (Ri, 01, Ro, 02, R3, 03, R4, 04, Rs, 05,..., R13, 013) 

Windy a dty, Gop R 3). 04 Ryn Gy Rs, O55.0..5K13013)0 7-1) 

where w* is a new function generated from w by applying the operation R. wk 

is such that its value at the point (Rj, 01, R2, 02,..., R13, 013) is the same as the 

value of the function y at the point (R), 0;, R4, 05,..., R43, ]3) where Rieu 

etc are the coordinates of particle 1, etc after the operation R has been applied. 

Thus, the effect of E* on the function y is to convert it to the function ye 

where the value of the function y”" at a point is given by 

Ww (R1, 01, R2, 02, R3, 03, Ra, 04,..., R13, 013) 

= w(—R}1, 01, —R2, 02, —R3, 03, —R4, 04,..., —R13,.013). (7.8) 

If f = X; + 3X2 + 5X3, then f2 = —X, — 3X2 — 5X3, and fl) 
X> + 3X; + 5X3; each of these is a new function of the coordinates that is 

generated by applying the operations E* and (12) to f. 
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As introduced in section 7.1, a symmetry operation is a transformation 

that leaves the Hamiltonian invariant. To show how this works in ane for 

the operations (12) and E*, we use the elementary Hamiltonian H®, expressed 

in terms of (X;, Y,, Z,) coordinates, that we derive from the classical energy 

expression without separating translation and with the neglect of spin. For the 

H20 molecule 
13 13 A 2 

n | P,* C;Cse 
H® poate pa ae = (7.9) 

2 De Mr D2 Ameo Rrs 
ZI r<s=l 

where the sums run over all particles (nuclei and electrons) in the molecule, m, is 

the mass and C;e is the charge of particle r (an electron has the mass me and the 

charge —e), R,s is the interparticle distance and the quantum mechanical operator 

P,? is given by 

. 0? a? a2 
PA (ee See 7.10 

: & ss aY,2 = | Ce) 

In the H2O molecule, the two protons, labelled as | and 2, are identical and 

we rewrite equation (7.9) to emphasize this: 

in 1 x a 
H® = ——(P," + Pp”) (7.11) 

2my 

1 ‘po 
+ —— Px Pe ne 

2mo in 2Me oe i ( ) 

pies Leh ba (acl 2 7.13 
AmeoRi2 4me9 \ R13 R23 ae 

9 13 
en ] ] 

_ — 7.14 
ao Gee ae 

Ber A = e? 
a =e ——— =, G15 

4m €0 = Rey Sy AmegRrs ( ) 
r=4 r<s=4 

where. we have put m= m2 = my, m3 — mo, m4 — m5 —-->- — m3, — Me, 

Gi Co = la G3 "8 andi Cae C 5p ets — ae — a 

The effect of applying (12) to the Hamiltonian H° is 

to interchange P,? and Py m/l): 

to leave (7.12) unchanged, 

to leave Rj2 unchanged and to interchange R13 and Ro3, in (7.13), 

to interchange Rj, and Ro, in (7.14) and 

to leave (7.15) unchanged. 

The sum P 2 4 Pp” is unchanged, or invariant, under the operation (12) and so are 

all the other contributions to H°. The total Hamiltonian is invariant under (12). 
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In this discussion we have used a simple Hamiltonian in which we neglect 
the effects of the spins of the particles. However, it is clear from the definition 
of the word ‘identical’ that any permutation (i.e. relabelling) of identical nuclei 
in a molecule must leave the molecular Hamiltonian invariant, since identical 
particles have identical properties such as mass, charge and spin, that occur in the 
Hamiltonian. 

From equation (7.6), the inversion operation E* changes the sign of all 

spatial coordinates. For example, E*X; = X) = —X, and using the chain 
rule, we have 

can Oxnee eg rae 
gx, 100k, 0X1) OXi ae 

and, therefore, 
g2 a2 

—s = = Fala 
O(Xy)> * 0X1? Geld) 

An equation like equation (7.17) can be derived for any spatial coordinate X,, Y,, 

or Z, forr = 1,2,3,..., 13, and these equations show that the operation E* 

leaves the operators P,? [see equation (7.10)] unchanged. Therefore, the kinetic 

energy part of H° is invariant under E*. It can be seen from equation (2.46) 

that all inter-particle distances R,; are unchanged by E* and so the electrostatic 

potential energy part of H° is invariant under this operator. Thus, the simple 

Hamiltonian A is invariant under E*. 

Unlike for a permutation of identical nuclei, it is not obvious that the 

complete exact Hamiltonian is invariant under the inversion operation E*. In 

fact, it is not. But the term in the Hamiltonian that is not invariant to E* is 

unbelievably small and its effect has been observed only in atoms but not so 

far in any molecule. This term arises from the so-called ‘weak neutral current 

interaction’ between nuclei and electrons and it causes ‘parity violation’ which we 

discuss in section 15.2. For all normal spectroscopic studies of molecules, we can 

ignore this interaction and only consider the electromagnetic interaction between 

the particles. When we talk about the Hamiltonian below, we will mean the 

electromagnetic Hamiltonian (i.e. neglecting the weak neutral current interaction) 

and this is invariant to E*. 

To express this using an operator equation, we consider the combined effect 

of R[=.(12).or E*] and H°® on a wavefunction w for the water molecule. We 

have shown earlier that 
RA °w = HRW (7.18) 

from which is follows that! 

(RH? — A R)W =[R, |v =0 (7.19) 

that is 

[R, H°] =0 (7.20) 

! Where we use the commutator notation [R, H°) as defined in equation (2.18). 
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and we have the definition of a symmetry operation as being a transformation 

operation that commutes with the Hamiltonian. Permutations of identical nuclei 

and the inversion E* are symmetry operations for an isolated molecule in free 

space. 

7.3 Symmetry labels 

For the rest of the chapter, we will ignore nuclear spin because of the constraint 

imposed by the fifth postulate (explained in chapter 9). The rovibronic 

Schrodinger equation for the water molecule can be written as 

HveWn = EnWn (7 2A) 

where yp, is an eigenfunction of the rovibronic Hamiltonian operator Hoe having 

eigenvalue E,,. Applying the symmetry operation R [which, for H20, is for the 

moment either (12) or E*] to the left- and right-hand sides of equation (7.21): 

RApyeWn RB, Wn- G22 

Since R commutes with Hua (it is a Symmetry operation of Heve) and since R 

commutes with E, (E, is a just a constant), we can rewrite equation (7.22) as 

HweRVn — EaRWn. @223)) 

But we know, from equation (7.7), that Rw = Wk which is a new function of 

the coordinates. So we can write 

Haw = Dane (7.24) n 

Because a symmetry operation commutes with the Hamiltonian, it 

generates from an eigenfunction w, a ‘new’ eigenfunction wk having the 

same eigenvalue E,. This makes it possible to symmetry label energy 

levels. 

To explain how energy levels are symmetry labelled, we initially focus on the 

labelling of non-degenerate levels. All rovibronic states of the water molecule are 

non-degenerate*. From equation (2.20), we see that, for a non-degenerate state, 

the ‘new’ eigenfunction wk in equation (7.21) can only be a constant times the 

5 . . . . . 

~ In applying permutation and inversion symmetry operations, the m-degeneracy (see section 2.7) is 

inconsequential in field-free space and we focus only on the m = 0 states here. 
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‘original’ eigenfunction y, in equation (7.24), i.e. for a symmetry operation R 
acting on a non-degenerate wavefunction 

eee (7.25) 

where c® is a constant. 
Setting R = (12) in equation (7.25) and applying the (12) Operation on the 

left- and right-hand sides of the resulting equation yields 

(12)(12) Yn = (12)c0? Wy = c9 (12) hp = (€8) 2 (7.26) 

where we have used equation (7.25) and the fact that (12) commutes with the 

constant c\!?), However, by applying (12) twice, we return to the original situation 
and so, by necessity, 

Consequently, from equation (7.26), we must have (c'”))” = 1 and, therefore, 

cl) — +1, (7.28) 

As in the case of (12), applying E* twice takes us back to the original situation 

and so by setting R = E* in equation (7.25) and applying arguments analogous 

to those leading to equation (7.28), we find that 

Co eT (7.29) 

The sign of c (+ or —) for a molecular state is called the parity of that state. 

Thus, the water molecule has four kinds of state with 

(oy he eel (1d) pore (141) 30) 

Symmetry labels or symmetry species are introduced for the H2O molecule by 

saying that wavefunctions with (c"?),c’") = (+1,+1) have A, symmetry, 

(+1, —1) have A2 symmetry, (—1, —1) have By symmetry and (—1, +1) have Bo 

symmetry. For the water molecule, each of its rovibronic states can be labelled as 

transforming in one of these four ways and this ‘labelling’ of the states plays an 

important role in helping us to understand the water molecule and its spectra. 

7.4 Symmetry groups 

Using the identity operation E introduced in equation (6.8), we can write 

C2) C2) eos (7.31) 

and 

a eee (732) 
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Table 7.1. The multiplication table for HO. Each entry is the product of first applying the 

operation at the top of the column and then applying the operation at the left end of the 

row. 

E (12) Be C2 

E: E (12) Eo 2a 

(12) ene G12) E (12) a 

Et) EP ee) E (12) 

Gays aly Be (12) E 

The operation (12)* is defined as the successive application of E* and (12): 

CUD a i VE OA ae (7:33) 

The operations E* and (12) commute with each other. It can be seen that 

(2) 2) ae (7.34) 

The product of two symmetry operations is itself a symmetry operation, and we 

now have four symmetry operations for the H2O molecule: E, (12), E* and (12). 

Any pair of symmetry operations can be multiplied together and, for water, 

the results are given in the multiplication table 7.1. An example is the result of 

doing first (12)* and then E*: 

EB U2) = Ee (12)(= 2 EB 1d?) =](12). (7.35) 

If the product of the operations R; and Ro gives E (the identity), then R; and R2 

are the reciprocals of each other. The four symmetry operations for H20 are all 

self-reciprocal from equations (7.31), (7.32) and (7.34). 

The set of operations {E, (12), E*, (12)*} forms a symmetry group. 

A symmetry group is a set of symmetry operations that satisfy the following 

group axioms: 

e The operations can be multiplied together in pairs (i.e. successively 

applied) and the result is a member of the group. 

e One of the operations in the group is the identity operation EF. 

e The reciprocal of each operation is a member of the group. 

e Multiplication of the operations is associative; i.e. in a multiple 

product the answer is independent of how the operations are associated 

in pairs [see the intermediate results in equation (7.35)]. 
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Table 7.2. The symmetry species (or character table) for C2y(M). The protons are labelled 

1 and 2. Each row of the table gives a possible combination of the constants c® in 

equation (7.25). 

ee UE IBD) a” alae 

ee | | | 
Ape al [| #1 =] 
Bie Lees | 
Bees bee =] 

The symmetry group introduced here is the complete nuclear permutation 

inversion (CNPI) group for the water molecule. 

A CNPI group for a molecule consists of all permutations of identical 

nuclei, the inversion E* and the product of E* with all the permutations 

of identical nuclei; it is a symmetry group of the molecule. 

The CNPI group of the water molecule is called C2,(M). 

At the end of the previous section, the symmetry species A;, A2, By and 

B> were introduced for the water molecule based on how the eigenfunctions 

transform under the operations (12) and E*, i.e. by using the values of the 

transformation constants c‘!?) and c£ from equation (7.25). The transformation 

constants c” and c\!2)” can also be determined. Since E leaves a wavefunction 

unchanged we must have 
Ces (7.36) 

(ia) ee 2S (es?) 

The tabulation of all four c® for each symmetry species produces the symmetry 

species table in table 7.2. In section 7.10, we use the CNPI group of the Ha 

molecule to show how the presence of degenerate states affects the way the 

symmetry species table is set up and this will explain why such a table is called 

a character table. In any character table, there is always one symmetry species 

that has all c® = +1 and it is called the totally symmetric symmetry species. 

In different groups, the totally symmetric symmetry species can have different 

names and we give it the general name I“). For the water molecule, 1) = Aj. 

Figure 7.3 shows the lowest rotational energy levels for water with their 

symmetry labels. The symmetry labels are obtained by determining how the 
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Figure 7.3. The lower rotational energies for H2O arranged according to the symmetry 

labels in table 7.2. The energies are also labelled by Jx, x, as explained in section 5.3.4 

and the ortho/para designations are explained in section 9.2. 

analytical expressions for the asymmetric top wavefunctions (see section 5.3.4) 

transform under the effect of (12) and E*. The experimentally derived term values 

are shown and, because they include the small effect of Be [see equations (5.36)— 

(5.38)], they are not quite equal to the rigid-rotor term values given in figure 1.5. 

States of Aj or Az symmetry belong to para-H2O, whereas states of symmetry B; 

or Bz belong to ortho-H20O; the meaning of the ortho/para labels will be discussed 

in chapter 9. 

7.5 The vanishing integral rule 

It is often necessary to calculate integrals of the general form 

i = [ wry" ar (7.38) 



The vanishing integral rule 137 

where w’ and w” are wavefunctions and O is an operator. Without doing any 
numerical calculations, the symmetry labels for the states w’ and w” can be used 
in a simple way, in conjunction with the symmetry of O, to determine if such an 
integral has to vanish. As a result, we can use symmetry to simplify the calculation 
of molecular energies and to determine selection rules for molecular transitions. 

The integrand of the integral / in equation (7.38) for the water molecule can 
be written as 

OW eR, Ree R\3) = f(S) G39) 

where S is a general point with coordinates (R,, Ro,..., R43). The symmetry 

species of f(S) can be determined from the immer? species of w”, O and 

w”’. For the water molecule, where we do not have to consider Geeenclacy, the 

symmetry species of f(S) is given by the values of the constants cf determined 

from 

Rf(S) =F f(S) (7.40) 
for R = E, (12), E* and (12)*. If we know the symmetries of w’*, O and w”, 
then it is easy to determine the ck since 

ieee Cincy (cnn. (7.41) 

where (c*)’*, cf and (c*)” are the constants obtained by applying the symmetry 

operation R to py, O and w”, respectively. Knowing the symmetry of 
w’*,O and w”, the symmetry of the product f(S) can be determined using 
equation (7.41). 

A simple example for the water molecule is obtained by introducing the three 

real expressions* 

wae axe eX OSKi4+X%. and y= Xi-—X2. (7.42) 

By determining the effect of the symmetry operations R for the water molecule on 

these functions, we see that they have the symmetries A;, Az and B, respectively. 

In table 7.2, the values of c® for each of these symmetry species are given and, 

using these results in equation (7.41) for each R, we find that the symmetry of 

their product f(S) is Bz. A function of symmetry A; multiplied by a function 

of symmetry A2 multiplied by a function of symmetry B; gives a product of 

symmetry Bz and we write 

Aj ® A2 ® Bi = Bo. (7.43) 

The vanishing integral rule states that, for the water molecule, the integral 

I =f wrow'ar =| 1) dt (7.44) 

3 The expressions introduced here are just simple functions of X; and X designed to illustrate how 

the symmetry of a product is determined. They are not actual wavefunctions or operators. 
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will vanish if f(.S) does not have the symmetry of the totally symmetric symmetry 

species Aj. A general statement of the vanishing integral rule, applicable 

to all molecules and including the possibility of degeneracies, is given in 

equation (7.82). 

If we use the notation that [(A) is the symmetry of A, then the vanishing 

integral rule for the integral / in equation (7.44) can be stated by saying that / 

will vanish for the water molecule if 

rf (S)) = Tar) @ F(O) @ Ph”) # At. (7.45) 

If ro) = Aj, as is the case if O is the field-free molecular Hamiltonian H, then 

the integral will vanish if 

Pare Gr \ AAs (7.46) 

which is the same as saying that the integral will vanish if 

re) 4V ae (7.47) 

If f(S) is of Ay symmetry, the integral J in equation (7.44) could still vanish, 

since the rule only states that 7 vanishes if f(.S) is not of Ay symmetry. If f(S) is 

of A; symmetry and if J is found by experiment to vanish, then it might indicate 

that there is more symmetry in the problem than one had considered; we will point 

out an important general example of this in section 7.7. 

7.5.1 Proof of the vanishing integral rule for the water molecule 

Consider the integral 

P= f £0Ry, Ra, Ra, Ra... Riad (7.48) 

from equation (7.44), where the volume element is 

dt = dX; dY; dZ; dX2 dY2 dZ2 dX3 dY3 dZ3...dX13 dY13 dZ]3. (7.49) 

From equation (7.5), 

FOO (R1, Ro, R3, R4,....Ri3) = f (R2, Ri, R3, Ray... R13) (7.50) 

and, therefore, 

[rer Ro, R3, R4,...R13) dt 

= f £0R, Ri, Rs, Ry Ris) de CRS} 
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We can obtain the integral on the right-hand side of equation (7.51) from that in 
equation (7.48) by the variable substitution R;, Ro > Ro, Ri. Consequently, 
these two integrals must be equal, i.e. 

I =f for ie (7.52) 

where we have omitted the coordinates for brevity. Thus, if f"'?) # f, ice. 
cl) % +1, from the transformation properties of f, then equation (7.52) can 
only be satisfied if 7 = 0. 

For the function f£" given by 

fP'(R1, Ro, R3, Ra,..., Ri) 

= f(—R1, —R2, —R3, —Ra,..., —R13) (7.53) 

we have 

[FP Ry, Re, Rs, Ra Reade 

= f FOR, Re, Rs, Ray... = Riad (7.54) 

Realizing that the limits of integration stretch symmetrically from —oo to +00 

for all the spatial coordinates, it is easy to show that the integral on the right-hand 

side of equation (7.54), in which all coordinates are changed in sign, is equal to 

that in equation (7.48) and we have 

I = | for ae dr. (7.55) 

Thus, just as for the operation (12), if f& 4 f, ie. c& 4 +1, from the 

transformation properties of f, then equation (7.55) can only be satisfied if J = 0. 

In summary, J = Oif c'” and/or c® 4 +1, for f, and the vanishing integral rule 
for the water molecule given in equation (7.45) is proved using its CNPI group. 

The general statement of the vanishing integral rule, given in equation (7.82), 

can be proved for any symmetry group consisting of permutations of identical 

nuclei and the inversion by using arguments just like those given earlier for the 

operations (12) and E*. 

7.6 Selection rules 

The rovibronic transition moment integral 

I™ = f Oca Ped (7.56) 



140 The symmetry of the Hamiltonian 

enters into the expression for the line strength of a rovibronic electric dipole 

transition given in equation (2.87). We continue to use the water molecule 

as an example. The wavefunctions ®/,, and ®/,, describe rovibronic states 

and, according to the discussion in section 7.3, each of them belongs to one of 

the symmetries in table 7.2. From the vanishing integral rule, as expressed in 

equation (7.45), /7m will vanish if 

PO!) Orta ene.) Ar (7.57) 
rve 

and the rovibronic transition? is forbidden if the symmetry species of the two 

rovibronic states satisfies equation (7.57); to make use of this result we have to 

determine the symmetry of “4, T (4). 

The dipole moment component wa (A = X, Y, or Z) is given by 

equation (2.88). For a water molecule, the expression for 1x is 

13 

px = e(X) + X2) + 8eX3-e) X; (7.58) 

j=4 

and the operation (12) leaves jzx (and jy and juz) unchanged, i.e. (12)4 = /a. 

From equation (2.88), we see that E*u4 = —a Since E*A; = —Aj for 

all Aj. Thus, each y44 component has symmetry A2 in table 7.2 and, from 

equation (7.57), a transition between a pair of levels whose symmetry product 

times A> is not A, will have zero transition moment and be forbidden. 

Inspection of table 7.2 shows that transitions in emission or absorption that 

are forbidden by this symmetry rule are: 

A\ < B,, Ay < Bo, Ar — B,, Ar — Bo. (7.59) 

Thus, ortho<para transitions are forbidden by this symmetry rule. 

7.7 The rovibronic symmetry label J 

There are very many transitions between the levels in figure 7.3 that are not 

forbidden according to equation (7.59), such as 9}9(A2) <> Oo0(A1), but which 

do have zero intensity; these are examples for which the comments in the 

paragraph after equation (7.47) are relevant. The water molecule has more 

symmetry than that given in table 7.2, because, in common with all molecules, 

its Hamiltonian commutes with the operation of overall rotation by any amount 

about any axis that passes through the centre of mass of the molecule. We 

discuss this more fully in section 14.5 but a very brief account is appropriate 

here. The symmetry group consisting of E and of all overall rotations (by any 

amount about any axis that passes through the centre of mass of the molecule) is 

4 The term ‘forbidden transition’ can be defined in a more general way than indicated here and this is 

explained at the beginning of chapter 12. 
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called K (spatial) and it has an infinite number of elements, like the point groups 

Cooy or Doon. Using this group to symmetry label rovibronic states is equivalent 

to labelling the states using the rovibronic angular momentum quantum number 

J introduced in equation (2.83). A rovibronic wavefunction having rovibronic 

angular momentum quantum number J has symmetry species called D‘/? in the 

group K (spatial). The dipole moment operator jz4 transforms as the symmetry 

species D") in the group K (spatial). Using the vanishing integral rule for the 

integral Jy in equation (7.56) with this symmetry group and these symmetry 

labels leads to the rotational symmetry selection rule: 

Transitions between rovibronic states for which the angular momentum 

quantum number J changes by more than one unit or for which J = 0 

in both states are forbidden. 

Hence, the transition 919 <> Ooo for the water molecule is forbidden. 

Rather than formulating the selection rule on J for forbidden transitions, it 

is more normal to state the selection rule that applies for allowed transitions, i.e. 

for transitions that are not forbidden. 

Allowed rovibronic transitions ®/,.(J’) <— ®1,.(J”) satisfy the selection 
rule: 

Nias) eat but J =0<0 is forbidden (7.60) 

where AJ = J’ — J” is the change in J for the transition. 

7.8 Diagonalizing the Hamiltonian matrix using symmetry 

The vanishing integral rule can also be applied to the integrals given in 

equation (2.21) 

Amn = [omr Aw dt. (7.61) 

These integrals enter into the calculation of the molecular energies and 

wavefunctions described in section 2.2. The basic idea is to represent the 

wavefunction y; of the molecule as a linear combination of basis functions Ww? as 

given in equation (2.23) and we choose these basis functions so that each has 

one of the symmetries in table 7.2. The Hamiltonian is totally symmetric in 

the symmetry group by definition of the symmetry operations (the Hamiltonian 
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A, 

Figure 7.4. The block diagonal structure of the Hamiltonian matrix for H2O, for a 

given value of J and with m = O, constructed in terms of basis functions vo that have 

the symmetries in table 7.2. The elements of the matrix in the shaded areas can be 

non-vanishing, whereas the elements between the shaded area must vanish. 

is invariant to a symmetry operation) and so, using the water molecule as an 

example, from equation (7.47), off-diagonal matrix elements must vanish between 

states of different symmetry. Consequently, the Hamiltonian matrix made up of 

the matrix elements in equation (7.61) becomes block diagonal. As illustrated in 

figure 7.4, the Hamiltonian matrix for the water molecule factorizes into four 

blocks, each of which corresponds to one of the four symmetries A), A2, By 

and B> in table 7.2. The matrix elements between basis functions of different 

symmetry are all zero. Because of rotational symmetry (see section 7.7), off- 

diagonal matrix elements also vanish if the basis functions have different values 

of the total angular momentum quantum number J. So each block for the 

water molecule, for a given value of J and with m = QO, factorizes into four 

blocks according to the symmetries in table 7.2. The block diagonalization of the 

Hamiltonian matrix is a general result of symmetry and it leads to great savings 

in computer time in actual calculations of molecular energies and wavefunctions. 

7.9 The Stark effect 

As long as we consider an isolated molecule in field-free space, the Hamiltonian 

is totally symmetric and the non-vanishing matrix elements of it can only be 

between basis functions of the same symmetry. However, if we subject the 

molecule to a constant electric field E (a Stark field), the Hamiltonian is modified 

so that it is no longer totally symmetric. As a result, the application of the 

vanishing integral rule leads to selection rules on the matrix elements that are less 
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restrictive. Let us assume that the electric field E is directed along the space-fixed 
Z axis. In this case, the total molecular Hamiltonian of a molecule is 

Astark = H — Ez (7.62) 

where H is the Hamiltonian of the isolated molecule and jz is the Z-component 

of the electric dipole moment of the molecule [equation (2.88)]. To obtain the 

molecular energies, we now need the matrix elements 

Hass fos Astark we dt (7.63) 

- fomrave dr — Ef oiay*ucw, dr. (7.64) 

As we have seen, the first integral in equation (7.64) can be non-vanishing 

for the water molecule when yo and yy? have the same symmetry. The second 

integral is analogous to that in equation (7.56) and we have seen in section 7.6 

that it can be non-vanishing for the water molecule when y° and w° belong to 
the symmetry combinations A;/A2 or B;/B2. Consequently, when yy? and yy? 

have the same symmetry, Het can have non-vanishing matrix elements from 

the first term in equation (7.64) but when y? and vo belong to the symmetry 

combinations A;/A2 or B,/Bo, Htark can have non-vanishing matrix elements 

from the second term of this equation. In the case of a Stark field, the Hamiltonian 

matrix factorizes into two blocks, an A;/A2 block and a B,/B2 block. We can 

understand this result by noting that (12) is a symmetry operation for Astark Since 

it commutes with A and with [iz (we have seen in section 7.6 that (12)47 = uz). 

However, E* is not a symmetry operation for Hstark since E*uz = —pz 

(section 7.6) so that E* does not commute with juz. Therefore, matrix elements 

of Astark vanish between basis functions with the different ue of c“2) [see 

equation (7.25)] whereas there is no similar selection rule for cE’. Thus, Astark 

can mix states of opposite parity. It can also mix states foie total angular 

momentum quantum number differing by one. 

7.10 The symmetry of Hj 

The water molecule is a simple example for introducing symmetry operations, 

symmetry labels and a symmetry group, as well as for showing applications 

of the vanishing integral rule. It is simple for two reasons: (a) The symmetry 

operations (12), E* and (12)* are each self-reciprocal, and (b) The states are non- 

degenerate, so that the effect of a symmetry operation is given by equation (7.25). 

To show what happens when these simplifying features are not present, we use 

the equilateral triangular two-electron molecule Lay as an example. 

The Hamiltonian of Hy that has three identical nuclei, which we label 1, 2 
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Figure 7.5. The effect of the symmetry operation (123) on an Hy molecule. The molecular 

centre of mass is indicated by a x. 

and 3, will be invariant to the three transpositions? (12), (23) and (31) as well as 

to the cyclic permutations (123) and (132), where (123) means ‘1 is replaced by 

2, 2 is replaced by 3, and 3 is replaced by 1’. The effect of (123) is depicted in 

figure 7.5. 

Using the format of equations (7.3)-(7.5), we can write 

(123)[R1, 01, Ro, 02, R3, 03, R4, 04, R5, 05] 
———— ee 

0®80 66 
= [R 1, 01, Ro, 02, R3, 03, Ra, 04, Rs, 05] (7.65) 
Ne ee es eS 

= [R3, 03, Ri, 01, Ro, 02, Ra, o4, R5, 05] (7.66) 
Ss_[ enn ee” —S—S —S—’ 

MSS IAS PAC MO) 
or, omitting the circled numbers, 

(123)(R1, 01, R2, 02, R3, 03, Ra, 04, Rs, 05) 

= (Ri,01, Ry, 04, Rhy 04, Rj, of, Rs, 08) 
= (R3, 03, Ri, 01, Ro, 02, R4, 04, Rs, 05) (7.67) 

where here R’,o/ are the coordinates of particle i after having made the 

permutation (123). 

The CNPI group of the H molecule is: 

(EOI2), 3G 1)y 28) HIS 2). Bene yes) 1) e238) 82a 

(7.68) 
There are some obvious identities such as (12) = (21) and (123) = (231), and 

we must avoid including any such duplicates in the list of group operations. This 

CNPI group is called the D3,(M) group. The effect of the operation E* is shown 

> By transposition we mean an interchange, such as (12), of two identical particles. A cycle or cyclic 

permutation is an operation such as (123) that involves more than two particles. 
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Figure 7.6. The effect of the symmetry operation E* on an He molecule. The molecular 

centre of mass is indicated by a x. 

oO 7 
e+ 

ZA 

Figure 7.7. The effect of the symmetry operation (23)* on an He molecule. The molecular 

centre of mass is indicated by a x. 

in figure 7.6 and that of (23)* is shown in figure 7.7. The multiplication table of 

the operations of this CNPI group contains results such as 

(123) (123) = (132) (7.69) 

23) C32) == 5 (7.70) 

(E2) 123) =3(23) ill) 

and 

G23) (Pye): (@e72) 

Equation (7.70) shows that (123) and (132) are the reciprocals of each other, 

and equations (7.71) and (7.72) show that permutation multiplication is not 

necessarily commutative. 

The effect of each of the operations of D3,(M) on a function is given by 

equation (7.7) so that, for example, if f = X; + 3X2 + 5X3, we have 

(123) fF CX Xo) 43) (123) ESA oS Xs) 

==0(X3 sh XY FX) 

= f9)(X1, Xo, X3) (7.73) 

so that f 23) = X3 + 3X, + 5X2; the value of f!*) at the point {X1, X2, X3} 
is the same as the value of f at the point {X,, X5, X5} = {X3, X1, X2}. 
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All the operations in equation (7.68) commute with the rovibronic 

Hamiltonian and, hence, convert any eigenfunction into another having the same 

eigenvalue according to equation (7.24) but now we must include the possibility 

of degeneracy. Suppose we have 

AyveWni <= En Wni (7.74) 

where the level E,, is k-fold degenerate with an orthonormal set of eigenfunctions 

Wnt, Wn2,---,Wnk. The effect of a symmetry operation R on the eigenfunction 

Wni 18 to generate the function ve which also has eigenvalue E,. From 

equation (2.20), wk can only be a linear combination of the k functions y,; and 

we can write 
k 

ie (75) 
f= 

Instead of the constant c® in equation (7.25), generated by a non-degenerate 

eigenfunction, the matrix c*, with elements cf, is generated for each symmetry 

operation R by a set of k-fold degenerate wavefunctions. These matrices multiply 

together [see equation (2.99)] in the same way as do the operations R and they 

form a matrix representation of the symmetry group of operations R. Such a set of 

k-fold degenerate matrices provides a symmetry label for k-fold degenerate states, 

in the same way as do the four (non-degenerate) symmetry labels in table 7.2 for 

the (non-degenerate) states of the water molecule. In applications, we rarely need 

the complete matrices and their characters x*®{= >; of. the trace of the matrix; 

see equation (2.93)] are usually all we need. 

Tabulating the one-dimensional symmetry species together with the 

characters for the degenerate symmetry species produces the character table for 

the group. The character table for the D3,(M) group is given in table 7.3; there 

are six different symmetry species, or irreducible representations, in this group. 

We now show how to multiply the degenerate symmetry species of the 

D3,(M) group together and this helps in understanding what a reducible 

representation is and in understanding why symmetry species are called 
irreducible representations. 

The notation x! [R] is used for the character under the symmetry operation 

R in the representation I’; for example, in the irreducible representations E’ and 
EY 

x" [BE] =x" [BE] =2 (7.76) 
but 7 

tax? B= 2. (7.77) 
The representation E’ ® E” is the four-dimensional matrix representation for 
which the character of the matrix representing the operation R is the product of 

numbers x= TR] and yee [Aysire: 

" 

xe TR] = xP LR] x x” ERI. (7.78) 
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Table 7.3. The character table of D3,(M) for He The protons are labelled 1, 2 and 3. For 

the non-degenerate symmetry species, each row of the table gives a possible combination 

of the constants c® in equation (7.25), whereas for the degenerate ones the characters  * 

of the matrices in equation (7.75) are given. The last line gives the characters of the E’@ E” 

product representation. 

ae eee 2S) eee (102)) ae oes (1102/3) tae (012) 

(132) (23) (132)* — (23)* 
(31) (31)* 

Aye 1 1 iw oi 1 1 
eS il 1 eel =t = 

An's oI Ligtasty ep fi ie Peat 
Any Le w=) | = 1 
Bees i 0 2 = 0 
ESO) | Ce? 1 0 

E'@E"”: 4 1 Qi 24 Si 0 

Using this equation, the characters for the representation E’ ® E” are given at 

the bottom of table 7.3. This is a reducible representation of the group. It can be 

reduced to the sum of the irreducible representations A;”, Ao” and E”, which we 

write as 

E’@E” =A," @ Ao” GE". (7.79) 

The characters satisfy 

ee Re kl (7.80) 

as can be verified from table 7.3. Because of equation (7.79), it is said that 

the reducible representation E’ @ E” ‘contains’ the irreducible representations 
A,", A2” and E”. In section 7.11, reducible and irreducible representations are 

discussed further. 

To determine the result of multiplying representations and to reduce them to 

their irreducible components, we only need the characters of the representations 

involved. The product of two irreducible representations can give another 

irreducible representation. For example, in D3n(M), we have 

ols Ty & (7.81) 

The generalization of the vanishing integral rule (introduced in section 7.5 

for the water molecule) which is applicable to all molecules and which includes 

the possibility of degenerate states is as follows. 
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The integral 

I = f wrow'ar (7.82) 

will vanish if the product of the symmetry species of y’*, O and w” does 

not contain the totally symmetric symmetry species [. 

The vanishing integral rule can be written as 

l= / v*Ow'dte=0 if P*)@T(O)@rW") Zr — (7.83) 

or, equivalently, 

j= / w*Ow'dtr=0 if POW) @T(W’) ZT(O). (7.84) 

If P(O) is totally symmetric (of species T)), as is the case if O is the field-free 

molecular Hamiltonian H, then equation (7.84) reduces to the condition that / 

will vanish if 

re) 4rw) (7.85) 

which is the same as equation (7.47) and this is true regardless of whether the 

state is degenerate, the wavefunctions complex or whether the symmetry species 

concerned involve complex numbers. 

Off-diagonal matrix elements of the Hamiltonian of a molecule in field-free 

space must vanish between states of different symmetry. 

Thus, the Hamiltonian matrix in a basis set will block diagonalize into blocks for 

each symmetry species of the CNPI group of the molecule. 

Using the vanishing integral rule, an electric dipole transition between the 

rovibronic states ®).,. and ®. of a molecule is forbidden if 

ros.) @ Maa) @T(PY,,.) DT (7.86) 

where 44 (A = X,Y or Z) is a component of the electric dipole moment of the 

molecule. As stated at the end of section 7.6, we know how jx, transforms in the 

CNPI group and, for any molecule: 
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Rovibronic transitions are forbidden if their symmetry species satisfy 
equation (7.86), where [(jc4) is that one-dimensional irreducible 
representation of the CNPI group having character +1 for each permutation 
operation and character —1 for each permutation—inversion operation. 

For Hes (tay = Aj? andr? = A}, so rovibronic transitions are forbidden 
between states having symmetries that satisfy 

P(Py.) @ Ar” @T (Pf) D Ar’. (7.87) 

We can rewrite this condition as 

TQ Or.) DA (7.88) 

E’ @ E” does contain A;” and, hence, transitions between rovibronic states of 

symmetry E’ and E” are not forbidden by this symmetry rule. The transitions 
Ai’ @ A”, Aj” © Ad’ and E’ ~ E’ are examples of forbidden rovibronic 

transitions for Hy. 

7.11 Group theory 

As stated by Fermi, group theory is basically a list of definitions. We use 

them when applying symmetry to understand molecules and we have introduced 

many of them above in applications involving the H2O and H; molecules. The 

following is a list of definitions that we use and those that we have not yet defined 

in full are the subject of this section: 

Symmetry groups and subgroups. 

Irreducible and reducible representations. 

Character tables. 

Homomorphism and isomorphism. 

The reduction and generation of a representation. 

The symmetry of a product. 

Projection operators. 

The symmetrization of coordinates and wavefunctions. 

The correlation of the irreducible representations between a group and a 

subgroup. 

e Even and odd permutations. 

A subset of the operations of a group can be chosen in such a way that they 

satisfy the group axioms given on page 134; such a subset is a group and it is 

called a subgroup. The group 

C3y(M) = {£, (123), (132), (12)*, (23)*;.31)"} (7.89) 
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Table 7.4. The multiplication table for C3,(M). Each entry is the product of first applying 

the operation at the top of the column and then applying the operation at the left end of the 

row. 

BE OKsy (gy (ie 23) ty 

E ESOT ie) ea a Ly 
(123) (123) ers?) Een i) 2) oS) 

32) 32) Ean (123) ae 2S) ae (Sete) 
(C12) ae 2 (3) ae) Ee L232) 

Cay sy ile Gilsje .GIBy)) Ee (123) 

Gy Gir Gaye -<Csy— abe «ds E 

is a subgroup of D3y(M). The multiplication table of the operations of C3,(M) 

are given in table 7.4 and the character table is given in table 7.5. A character 

table gives the characters of all the irreducible representations of the group; all 

representations can be expressed in terms of the irreducible ones. The irreducible 

representation E, whose characters x "[R] are given in table 7.5, consists of the 

six 2 x 2 matrices: 

{ME , M“23) M(32) M2)". M2)". MCD") (7.90) 

where 

1 0 a Mee 
M23) — —4 ae M23)" —5 h 

me ar eave A oe v3 1 

arp 3 | =— a3 a . . 

Replacing each operation R in table 7.4 by the matrix M¥, it is seen that the 
multiplication table of the matrices represents that of the symmetry operations. 
This set of matrices is a group since it satisfies the group axioms with the 
definition of ‘multiplication’ being matrix multiplication [see equation (2.99)]. 
This is a faithful representation since each matrix represents only one symmetry 
operation; because of the 1:1 relation, it is said that the matrix group E and 
the group C3,(M) are isomorphic. If two groups, such as C3y and C3,(M), are 
isomorphic, their irreducible representations are identical. In contrast to the E 
irreducible representation, the A; and A? irreducible representations of C3,(M) 
are unfaithful representations, and the groups {1} and {1, —1} are each said to be 
homomorphic to C3y(M). 

IS 
— (2 lho 

wl 
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Table 7.5. The character table for C3,(M). 

R, Aceh 123) m9 NLD) 
(U32)9 ne2ahe 

(31)" 

> 

tao Oe | So 

The operations of a group form classes and the operations in a class all have 

the same character for a given representation; for example, the operations (123) 

and (132) are in the same class in C3y(M). The operations R and S in a group are 

in the same class if there exists a group operation Q such that 

S=OQORQ". (7.92) 

The number of irreducible representations in a group is equal to the number of 

classes. Usually in the presentation of a character table only one operation from 

each class is given. In any CNPI group, E and E* are in classes by themselves, 

permutations having the same structure (i.e. consisting of the same number of 

transpositions, cycles of three, cycles of four, etc) are in the same class and 

permutation inversions having the same structure are in the same class. However, 

in a subgroup of a CNPI group, the class structure does not necessarily follow 

from the permutation structure of the operations. If all the operations in a group 

commute with each other, the group is said to be Abelian and each operation is ina 

class by itself [RQ = QR and equation (7.92) leads to S = R]; the C2y(M) group 

is Abelian. The number of operations in a group is called the order of the group 

and the sum of the squares of the dimensions of the irreducible representations is 

equal to the order of the group. 

The reducible representation A; © E of C3,(M) is obtained by constructing 

the set of six 3 x 3 matrices N*, using the matrices M* in equation (7.91) 

according to 

ala) nad N Se meal (7.93) 

These six matrices multiply like the operations of the group and, therefore, forma 

matrix representation of the group. If we subject each matrix N¥ to the similarity 

transformation 

ANRA-! = OR (7.94) 

where A is a 2 x 2 matrix and A~! is its inverse, the matrices O* will not be 

block-diagonal like the matrices NF and their ‘origin’ as Ay @ E is only apparent 
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from their characters (the character of a matrix is unchanged by a similarity 

transformation; see problem 2.7 on page 41). The matrix representation O* is 

said to be equivalent to the matrix representation N¥. 

Any reducible representation of C3y(M) can be written as 

=n, Ai OA, Ar Ong (7.95) 

where, for any operation R in the group, the characters satisfy 

x TR] = na, x“ ER] +14, x“?2(R] + nex TRI. (7.96) 

The reduction of the reducible representation I to its irreducible components Ij 

is achieved by determining the coefficients np,; the np, are given by 

l I 1 * 
ny; = pk WET yet Lee | (7.97) 

where / is the order of the group. 

Suppose that we have a set of n linearly independent functions 

P1, 2, --+5Pn (7.98) 

that are transformed among each other by elements of the C3,(M) group, i.e. the 

effect of each C3y(M) symmetry operation R on each of the n functions @; 1s to 

produce a linear combination according to 

Ro; = DD" [Rliyo; (7.99) 
i 

as in equation (7.75). In matrix notation, we can write this as 

R®=D' [Ro (7.100) 

where ® is a column vector of the n functions ¢;, and the matrix D![R] is an 

n X n matrix of the DE [Rliz. In this circumstance, the n-dimensional matrices 

D' [R] obtained for each operation R form an n-dimensional representation of 

the group C3,(M); it is said that the n functions ¢; generate the representation 

[. If the character of the representation matrix D'[R] for each operation R 

satisfies equation (7.96), we say that the n functions ¢; generate the reducible 

representation [ in equation (7.95). It can be proved (see problem 7.7) that 

a set of n linearly independent functions yx, related to the n functions ¢; in 

equation (7.98) by an orthogonal transformation 

ven Ao, (7.101) 
i=l 
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where A is an orthogonal n x n matrix, will generate the same representation as 

that generated by the n functions ¢;. We obtain a combination of the functions 

gi that transform irreducibly, according to the mth row of the irreducible 

representation [;, by applying the projection operator pe to a particular one 

of the functions, @g say. A projection operator is a linear combination of the 

operations R defined by 

mm 

EE 
Bea oD Ll (7.102) 

R 

where /; is the dimension of [; and D!‘[R] is the representation matrix in [; 

for R. Replacing D!'[R)]*,,,, by x!'[R]* in equation (7.102) gives a projection 
operator that will generate a combination of the functions that transforms as I; but 

its transformation properties under R will be unknown. However, we only need 

the characters, not the matrices, of the irreducible representations to construct the 

latter projection operator. An example, using a projection operator of this latter 

type for the purpose of constructing benzene molecular orbitals that transform 

irreducibly, is given in equations (10.19)—(10.32). 

For the two pairs of degenerate functions (®,, ®,) and (Wz, Wp), each 

of E symmetry in C3,(M), the product of them (®gVa, Pap, Pp Va, Pp Vp) 

transforms as E @ E = A; © Ar @ E. By use of projection operators, we find 

that the combinations that transform irreducibly are 

Ay 2 (BgVa + Ppp) (5.03) 

Az: (BgWVp — Ppa) (7.104) 

and 

Ee: (Daa = PpW,), (DgVp ae DpW,)]. (7.105) 

The three symmetric product functions ®gVq, pW, and (BgWp + Ppa) 

generate A; ® E and the antisymmetric product function (®gVp — PpWVa) 

generates A2. 

The product of (®,, ©») with itself generates three independent functions 

transforming as the symmetric product A; ® E; the antisymmetric product 

combination vanishes since ®, ®, = Op. A; @ E is the symmetric product 

representation, or symmetric square, of E with itself and we write 

[EP =[E@E]J=A1 OE. (7.106) 

Az is the antisymmetric product representation, or antisymmetric square, of E 

with itself, and we write 

{E}? = {E @ E} = Ap. (7.107) 

The product E x E of any doubly degenerate representation E with itself is 

reducible to the sum of the symmetric product representation [E @ E] and 
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Table 7.6. The correlation table for D3,(M) to C3,(M). 

D3y(M) — C3y(M) 

Ay’ A\ 
Ay” A2 

Ay’ A? 
Ao” A 

E’ E 

E" E 

the antisymmetric product representation {E @ E} where the characters in the 

symmetric product are given by 

yZO@ZlR] = (GF iRY + x7 IRD (7.108) 

and the characters in the antisymmetric product are given by 

x F@FIR] = L(y F ER)? — x7 ER*)). (7.109) 

The characters in the symmetric nth power of E (i.e. the symmetry of the set 

of n + 1 independent functions obtained by taking the nth power of a pair of E 

functions) can be obtained from the characters in the symmetric (n — 1)th power 

of E (where E is doubly degenerate) by using 

x ENR) = 2G FRx (RI + xF IRD. (7.110) NI 

In equations (7.108)—(7.110), x ’[R"] is the number obtained by determining the 

character in E under the operation P = R". The symmetric v2th power of the 

E' irreducible representation of D3,(M) is used in equation (11.38) to obtain the 

symmetry of the vibrational wavefunctions of the Hy molecule. 

Any function that transforms as A,’ or A2” in D3_(M) generates characters 

c(23) — e(l2)" — +1 and, hence, will transform as A, in C3,(M); we say that 
A,’ and A2” in D3,(M) each correlate with A; in C3,(M). As a result, we can 

set up the correlation table 7.6 of the irreducible representations of D3,(M) with 

those of its subgroup C3,(M). The correlation table 7.6 enables us to determine 

the symmetry of a function in C3y(M) if we know its symmetry in D3,(M). This 

is a rather simple example but to give a general discussion, we suppose we have 

a group C [in our example D3,(M)] with operations {C,, C2,..., C.} of order 

c and a subgroup P [in our example C3,(M)] with operations {P}, P2,..., Pp} 

of order p = c,where: P= Cy Po =) Cyn, Py = Cp. Any irreducible 

matrix representation Py, say, of C will provide a matrix representation of P by 

considering only the matrices corresponding to the operations C;, Co,..., Cp of 
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Table 7.7. The reverse correlation table for C3,(M) to D3,(M). 

C3y(M) —_D3n(M) 
A Ay’ @® Aa” 

A? Ay’ @ A,” 

E Bae 

C. This will, in general, be a reducible representation of P which we can write as 

Da =a Tn Tl @---= d nT; (7.111) 
i 

where the I’; are the irreducible representations of P. This gives the correlation 

of Ty to the [’;. From equation (7.97), the ne are given by 

fee 
(a) Tw Tj oe =>) x “LPrlx LPI. (7.112) 

f=) 

We can also correlate the representations from the subgroup P to the larger 

group C. This will be useful later when we consider the effect of tunnelling 

on symmetry labels. The irreducible representation IT’; of P correlates with the 

representation that we call I'(I;) of the group C; the representation (1; ) of C is 

said to be induced by the representation I’; of the subgroup P. The representation 

['(1;) is given by 

i=) n ale (7.113) 
i 

in terms of the irreducible representations I’, of C, where the ne are as given in 

equation (7.112). Thus, given the irreducible representations of the subgroup P 

and the correlation table relating the irreducible representations of C to P, we can 

use that correlation table backwards to determine the symmetries of the levels in 

the larger group C. The reverse correlation table for C3y(M) to D3y(M) is given 

in table 7.7. 

When we come to consider the determination of nuclear spin statistical 

weights in chapter 9, it will be necessary to understand the distinction between 

an even and an odd permutation. An odd(even) permutation can be written as 

the product of an odd(even) number of pair transpositions. A pair transposition 

such as (12) is an odd permutation. A cycle of three such as (123) is an even 

permutation, because no matter how we write it as the product of transpositions 

there will be an even number of them, e.g. 

(ioe (eo ot) a2 (2a) ==) (50) CE) — (31) 012) (23)(23). (7.114) 

In general, a cycle of length n will be even(odd) as n is odd(even). 
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7.12 Problems 

Tel 

en 

73 

7.4 

Td 

TESS 

Write down the CNPI groups of the molecules formaldehyde (CH20), 

ketene (CH2CO), acetylene (C2H2), hydrogen peroxide (H2Oz), 

difluoromethane (CH2F2), the vinylidene radical (CH2C), cis and trans 

difluoroethylene (CHFCHF) and ethylene (C2H4). Why would you not 

like to write down all the elements of the CNPI group of the benzene 

molecule (C6 H6)? 

The CNPI group for methylfluoride is given in equation (7.68) and it is 

the group D3,(M) as for He The elements of D3,(M) can be divided 

into two sets: The set of elements given in equation (7.89) which form 

the subgroup C3,(M), and the remaining elements, which do not form a 

group: [(12),(23),(31),E*,(123)*,(132)*]. We call this latter set O(rest). 

The protons in the methylfluoride molecule are numbered 1, 2 and 3. One 

sees that there are two forms: One with a clockwise numbering (looking 

from the F nucleus) and one with an anticlockwise numbering. How do 

the elements of O(rest) differ from the elements of C3,(M) in relation to 

their effect on the clockwise and anticlockwise numbered forms? 

Show that the groups C3, and C3,(M) are isomorphic [see equations (6.9) 

and (7.89)]. 

Here we give the characters of several reducible representations of 

D3y(M). Reduce them to their irreducible components: 

E (123) (12) E* (123)* (12) 
4 Tiga iehi@ 0 0 
4 i Orda i 0 
8 7) 0 0 0 
Bln A eas 4 0 SS 
12 0 aad: Caen) 0 0 
[Cee ale are 4 0 
Ze PEGE Oey STII? HT 

For the group D3,(M), form the product of each irreducible representation 

with each of the rest and express each product in terms of the irreducible 

representations. List all symmetry pairs that represent forbidden electric 
dipole transitions for the Hy molecule. 

The three protons in the PH3 molecule [figure 6.10] are labelled by 
i = 1, 2, 3. The bond length between the P nucleus and proton i is denoted 
rj. Determine the representation of C3y(M) [table 7.5] generated by 
r1, 12,13. Use projection operators in the form given in equation (7.102) to 
determine the linear combinations of 7}, r2, 73 that transform irreducibly. 
In forming the projection operators for the irreducible representation 
FE, use the elements of the matrices in equation (7.91). Verify that 
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the transformation properties of the coordinates with E symmetry are 

described by the matrices in equation (7.91). 

Prove that the set of n functions yy, related to the n functions ¢; by 

an orthogonal transformation, generates the same representation as that 

generated by the ¢;. Begin by applying the symmetry operation RF to both 

sides of equation (7.101), use equation (7.99) for Rq@; on the right-hand 

side, and then use the inverse of equation (7.101) to express @; in terms of 

the w,. Inserting the result of equation (2.107) will complete the proof. 



Chapter 8 

The symmetry groups of rigid molecules 

In this chapter, we concentrate exclusively on rigid molecules in isolated 

electronic states. For this important, but limited, class of molecules the vibronic 

states can be symmetry classified using the appropriate point group. We show 

here how the point group can be derived from the complete nuclear permutation 

inversion (CNPI) group by introducing the molecular symmetry (MS) group. 

A rigid molecule is one for which there are no observable tunnelling 

splittings caused by wavefunction penetration between minima on the 

potential surface. 

This is not to be confused with a rigid rotor. Tunnelling and tunnelling splittings 

are discussed in section 4.5. A rigid molecule has small amplitude vibrational 

displacements and it can suffer from the effects of anharmonicity, centrifugal 

distortion and Coriolis coupling. For an isolated electronic state, we do not 

have to consider the possibility of the breakdown of the Born—Oppenheimer 

approximation. 

8.1 The CNPI group 

The definition of the complete nuclear permutation inversion (CNPI) group is 

given on page 135 and the CNPI groups for the H2O and He molecules have 

already been discussed. The number of operations in a CNPI group is given by 

hcenpl = 2 X ny! X no! x n3!--- x n,;! (8.1) 

where there are r different types of nucleus in the molecule, and n; nuclei of type 
1. There are nj! ways of permuting n; nuclei, and the factor 2 in equation (8.1) 
allows for the presence of the E* operation and all the permutation—inversion 
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operations. The acetic acid molecule CH3COOH has three different types of 

nucleus, with nc = 2,nq = 4 and no = 2, so that hcnpy = 2x2! x 4! x2! = 192. 

Alternatively, for ethylene C2H4, we have hcnp; = 2 x 2! x 4! = 96. 

We can set up the CNPI group for any molecule once we know its chemical 

formula. The structure of the molecule does not enter and the operations in the 

group do not reflect the structural symmetry of the molecule. For example, the 

order of the CNPI group of C2H4, which has a lot of structural symmetry at its 

equilibrium configuration in the ground electronic state, is less than the order of 

the CNPI group for CH3COOH which has little such structural symmetry. 

The CNPI group does not presuppose the Born—Oppenheimer approximation 

or the existence of an equilibrium structure. It is entirely appropriate as the 

group to use in the numerical approach (neglecting spin) that is mentioned in the 

first paragraph of chapter 3; we call this the ‘big-computer little-understanding’ 

approach. The CNPI group, just like the elementary rovibronic Hamiltonian in 

equation (2.75), can be set up immediately once we know the chemical formula 

of a molecule. In this approach, the CNPI group could, in principle, be used to 

block diagonalize the Hamiltonian matrix and to determine forbidden transitions. 

In the alternative approach adopted here, we usually find that we should use a 

subgroup of the CNPI group, and for a rigid molecule the choice of this subgroup 

depends on the equilibrium structure of the molecule. In the next section we state 

the criteria used for setting up this subgroup, but first we point out an interesting 

feature of the symmetry labelling that results from using the CNPI group. 

The CNPI group for the CH3F molecule is the D3,(M) group introduced 

in chapter 7 for the Ha molecule; the character table is given in table 7.3 on 

page 147. Suppose we could use the direct numerical approach for solving the 

rovibronic Schrodinger equation with block diagonalization of the Hamiltonian 

matrix using the six irreducible representations of the CNPI group. For reasons 

that you will come to appreciate, all the energy levels up to energies of at least 

20000 cm~! would come (apparently ‘magically’) in pairs. The eigenvalues of 

the A} and AJ blocks would be equal to each other, similarly the eigenvalues 
of tie Aj and. A’, blocks would be equal to each other, and the eigenvalues of 
the Ey acd E" blocks would be equal to each other. Such degeneracies that are 

not forced by symmetry are called ‘accidental’ but clearly these degeneracies are 

systematic. The observed levels of CH3F would be labelled using the CNPI group 

as being of one of the three symmetries A} ® AS, Aj ® Aj or E’ © E”. These 
degeneracies, which are called structural degeneracies, are caused by the fact that 

there is more than one version of the equilibrium structure of the CH3F molecule. 

We first define the term ‘version’ and then show how their multiple occurrence 

causes structural degeneracy. 

For the CH3F molecule in its ground electronic state, there is only one 

conformer but there are two symmetrically equivalent potential energy minima, 

one for each of the two versions shown in figure 8.1, where we have labelled 

the protons 1, 2 and 3. Different versions of a molecule have the same structure 

and can only be distinguished by labelling identical nuclei. By deforming the 
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Figure 8.1. The two versions of a CH3F molecule in its ground electronic state. 

CH3F molecule through the planar configuration we can interconvert the versions. 

Looking at the proton numbering from the F nucleus, we say that the version 

in figure 8.1(a) is the anticlockwise labelled version and that in figure 8.1(b) is 

the clockwise version. There are no other versions. By ab initio calculation, 

it is found that the barrier at the planar configuration is nearly the same as the 

dissociation energy of the C—F bond at around 35000 cm7!. Thus, the two 

versions of CH3F, on the ground state potential energy surface, are separated by a 

very high barrier. 

A complicated molecular system having a potential energy surface with 

many minima can have different conformers and each conformer can have several 

versions. 

Different conformers have different structures. 

Different versions of a particular conformer have the same structure and they 

can only be distinguished by labelling identical nuclei. 

Versions are distinguished by labelling the identical nuclei. To determine all 

the versions for a molecule in its equilibrium configuration, one needs to label the 

nuclei and to determine how many distinct forms can be obtained by permuting 

the labels on identical nuclei with and without inverting the molecule; distinct 

forms cannot be interconverted by a mere rotation of the molecule in space. 

The number of versions of the equilibrium structure of a rigid molecule is 

given by dividing the order of the CNPI group by the order of the point 

group of the equilibrium configuration. 
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| 

3 

Figure 8.2. The CHE molecule at its calculated equilibrium geometry. The nuclei C, Hy, 

Hp and H3 are coplanar, and this plane bisects the HyCHs angle. 

Thus, a molecule will have many versions if it has many identical nuclei (to make 

the order of the CNPI group large) and if it has a very unsymmetrical equilibrium 

configuration (to make the order of its point group small). The GHA molecule is 

shown at its calculated equilibrium geometry in figure 8.2; its CNPI group has an 

order of 2 x 5! = 240. The point group symmetry of its equilibrium configuration 

is C, with an order of 2; the only point group symmetry element is the reflection 

plane which passes through the nuclei C, Hj, H2 and H3. Thus, there are 120 

versions of its equilibrium structure. Very large unsymmetrical molecules can 

have an astronomical number of versions. Small symmetrical molecules, such as 

H20 and ne in their ground electronic states, have only one version. 

For a rigid molecule that has n versions, there will be n identically shaped 

potential energy minima on the potential energy surface and each supports 

the same energy level pattern! and each observed level will have a structural 

degeneracy equal to the number of versions. In the ground electronic state of 

CH3F the energy levels have a structural degeneracy of two, and every energy 

level is doubly degenerate (if both are allowed by the nuclear spin statistical 

formulae; see chapter 9). 

In summary, although the CNPI group is a symmetry group and gives 

symmetry labels on energy levels, it is often a very large group and it often 

produces a labelling with systematic accidental degeneracies that we do not 

need to know about. It is possible to define a subgroup of the CNPI group 

! There being no observable tunnelling splittings by definition for a rigid molecule. 
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Figure 8.3. A schematic cut through the potential surface of the CH3F molecule 

connecting the minima (a) and (b) shown in figure 8.1. 

that provides all the useful symmetry labelling information that the CNPI group 

provides. Such symmetry information is used, for example, when we implement 

the vanishing integral rule for the purpose of determining selection rules and for 

block diagonalizing the Hamiltonian matrix. The subgroup can also be used for 

determining the nuclear spin statistical weights as discussed in chapter 9. We call 

this CNPI subgroup the molecular symmetry (MS) group. 

8.2 The molecular symmetry (MS) group 

In figure 8.3, we show a schematic cut through the potential energy surface V 

for the CH3F molecule in its ground electronic state along the coordinate that 

connects the two minima (a) and (b) shown in figure 8.1. The barrier between 

the minima is insuperable (i.e. so high that there is no observed tunnelling) 

and so to calculate the lower vibrational energy levels, we only need focus on 

that part of V around one minimum; we have indicated such a region around 

the left-hand minimum with shading. The ab initio calculation of V would 

be made for nuclear geometries around this single minimum and the Taylor’s 

series expansion around this minimum would lead to the determination of the 
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harmonic force constants, normal coordinates and anharmonic force constants. 

The calculation of the rotation—vibrational energies and wavefunctions would be 

made using a region of nuclear coordinate space around a single minimum. The 

correctness of this procedure depends on the fact that we only consider energy 

levels sufficiently below the barrier maximum that tunnelling splittings can be 

neglected (see section 4.5). Thus, we neglect the structural degeneracy since it is 

of no consequence when there are no observable tunnelling splittings. 

For a rigid molecule the calculation of energies is done in the coordinate 

space of one minimum of V, and to symmetry label the energy levels we fashion 

the symmetry group so that it only operates within that coordinate space. To 

accomplish this, we use a subgroup of the CNPI group obtained by deleting 

symmetry operations that cause a coordinate change which moves the molecule 

from one version to another. These deleted operations are called “unfeasible” 

operations of the CNPI group. They are useless in the same way that an ab initio 

calculation done to determine the energy at a geometry point on V around another 

version’s minimum is useless. 

By deleting unfeasible operations from the CNPI group of a rigid molecule, 

we obtain a subgroup that acts within one minimum of V and does not 

interconvert versions; this is called the molecular symmetry (MS) group. 

For a rigid nonlinear molecule the MS group is isomorphic to the point 

group and we name it G(M), where G is the name of the point group. 

The CNPI group for CH3F is given in equation (7.68). The unfeasible 

symmetry operations in the group are those that interconvert the clockwise and 

anticlockwise forms (see problem 7.2) and they are 

(2 eo lee (123) 132). |. (8.2) 

If we remove these operations from the CNPI group, we obtain the subgroup 

C3y(M) given in equation (7.89). This is the MS group for CH3F. The symmetry 

operations in this group are feasible symmetry operations for CH3F in its ground 

electronic state. 

The ethylene molecule with its 12 versions provides a more complicated 

example which we work through in section 8.3.5. The H2O and Hs molecules 

are simpler since they each have only one version and, therefore, a not have 

structural degeneracy. This means that there are no unfeasible operations in their 

CNPI groups. For each of these molecules, the CNPI group and the MS group are 

the same group. 
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8.3 The MS group and the point group 

As already stated, for a rigid nonlinear molecule the MS group is isomorphic to its 

point group. In this section, we explain the relationship between the two types of 

group. We will start by explaining things in a simple way using the water molecule 

as an example and we will neglect spin. We will then show the relationship of the 

MS group to the point group for the Hat molecule in order to amplify and justify 

some of the statements we make when discussing the water molecule. For ue we 

include nuclear and electron spin in the discussion. After having treated the water 

and He molecules, we make some important general statements about the effects 

of point group operations, and about the relationship between MS and point group 

operations for rigid molecules. 

8.3.1 The H2O molecule 

Above we have presented the MS group as being deduced from the CNPI 

group after identifying and eliminating unfeasible operations; the operations of 

permuting identical nuclei and the inversion E* being considered as fundamental 

symmetry operations that commute with the molecular Hamiltonian. This 

follows the work of Longuet-Higgins” who brought the permutation and inversion 

operations to the fore, who thought up the concept of feasibility, and who thereby 

showed how to define the MS group of any molecule, rigid or non-rigid. However, 

the first detailed description of the correct symmetry group to use for classifying 

the molecular states of rigid molecules was made by Hougen? who started from 

the point group. We will follow Hougen’s procedure for the water molecule since 

it is an instructive way to understand the relationship between point group and 

MS group symmetry operations. 

Labelling the protons | and 2, and the oxygen nucleus 3, the vibrational 

displacement coordinates of a water molecule are the nine coordinates Aa, where 

a@ = x, y or z, andr = 1,2 or 3. The three rotational coordinates 6, @ and x 

are the Euler angles that define the orientation of the molecule-fixed xyz axes 

in space, where the xyz axes are attached to a water molecule in its equilibrium 

configuration as shown in figure 5.4 on page 102. Labelling the ten electrons 4 
through 13, there are 30 electronic coordinates (x;, y;, z;), where i = 4 to 13. We 
neglect spin in this example. The C2, point group operations, which we define 
below, are FE, C2,, 0,; and Oxy. 

Point group operations do not transform the Euler angles; they only 
transform the vibronic coordinates (i.e. the vibrational displacement coordinates 
and electronic coordinates). We first look at the point group operation C2, which 

> Longuet-Higgins H C 1963 Mol. Phys. 6 445. 
3 Hougen J T 1962 J. Chem. Phys. 37 1433; 1963 J. Chem. Phys. 39 358. 
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rotates the vibronic coordinates about the x axis through z radians: 

CoA Tiny Aue xi) = (Axq, Aber Axe, x1) 

= (AW, AVE, Ave, 267) (8.3) 

Cox(Ay1, Ay2, Ay3, yi) = (Ayi’, Aya’, Ays’, y)) 
= (—Ay2, —Ay, —Ay3, —y;) (8.4) 

and 

Co, (Az, Aza, Aza, 27) = (Azi 4 Az’, Aze’,z,) 
= (—Az2, —Az1, —Az3, —Z;) (8.5) 

where i = 4 through 13 labels the electrons. Similar equations can be written for 

the point group operation o,-, which reflects the vibronic variables through the 

xz plane. The Ax,, x;, Az, and z; are unaffected by oy, but 

Oxz(Ayi, Ay2, Ay3, yi) = (Ayi’, Aya’, Ay3’, y;) 

= (Aye eAy), yee yn: (8.6) 

For the point group operation oxy, which reflects the vibronic variables through 

the xy plane, we have 

Gy NMA Ky A034) = (Ax gad Axe oo) 

=a None NG NSE) (8.7) 

Oxy(Ayi, Ay2, Ay3, yi) = (Ay1’, Aya’, Ay’, ¥;) 
= (AVF AVin Ns, Vi) (8.8) 

and 

Oxy (Sze Azo ze2;) (AZ Az gtAze ¢Z,) 

In figure 8.4, we show the effect of the three point group operations on the 

vibrational displacement coordinates of a water molecule that we depict in an 

arbitrarily displaced configuration, and on the coordinates of an arbitrary electron 

e;. The display labelled *E’ represents the initial configuration. We also show 

the equilibrium configuration and the xyz axes. The equilibrium structure and 

the xyz axes are not transformed by the point group operations. In actuality, the 

molecule-fixed xyz axes for a vibrationally displaced water molecule are always 

positioned so that the three nuclei are in the xz plane and this means that the three 

Ay; would always be zero. However, to show more clearly the effect of the point 

group operations on the coordinates, we have positioned the x yz axes in figure 8.4 

so that the Ay; are non-zero. 

Following Hougen, we now apply a specially chosen bodily rotation 

operation about a molecule-fixed axis to the molecule after having applied each 
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Oxz Oxy 

Figure 8.4. The effect of the operations of the point group Coy on the vibrational 

displacements of the nuclei and on the coordinates (x;, yj, z;) of electron e; in the H2O 

molecule. In all four displays, the electron is above the yz plane and the x axis points up 

out of the plane of the page. The display labelled *E’ shows the initial configuration and 

the equilibrium structure of H2O is drawn as a grey-shaded structure. 

of these point group operations. A bodily rotation operation does not affect the 

vibrational displacement coordinates Aa, or electron coordinates @; in the xyz 

axis system since the axes are rotated with the molecule, but it does affect the 

Euler angles 6, @ and x that specify the orientation of the molecule-fixed axes in 

space. 

After having applied the point group operation C2, we apply the bodily 

rotation R,.”, which is a bodily rotation about the x axis through z radians; 

the result of this combined operation is shown in the top right-hand display of 

figure 8.5. This display is obtained from the display labelled C2, in figure 8.4 by 

rotating it bodily about the x axis through w radians. Comparing the top right- 

hand display in figure 8.5 with the display labelled E, we see that the combined 

operation KR,” C,, simply permutes the protons numbered | and 2, and this is a 
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VY, 

Ry"0,, = E* Rome (12) 

Figure 8.5. The effect of the product operations Ry" C,,, Ry” o,, and R-7o,,, on the 

vibrational displacements of the nuclei and the spatial coordinates of electron e; in the 

H20 molecule. As indicated, the three operations Ry" C,,., Ry” o,, and Rz o,,, have the 

same effect as the operations (12), E*, and (12)*, respectively, of the molecular symmetry 

group C>,(M). The display labelled ‘E’ shows the initial configuration and the equilibrium 

structure of H2O is drawn as a grey-shaded structure. In the two top displays, the electron 

is above the yz plane and the x axis points out of the plane of the page, whereas in the two 

bottom displays, the electron is below the yz plane and the x axis points into the plane of 

the page. 

symmetry operation of the Hamiltonian. The top right-hand display in figure 8.5 

is thus labelled Ry” Co, = (12)’. Figure 8.5 also shows the effects of the 

products Ry*o,, and R,“o,,, which are identical to the effects of E* and (12)*, 
respectively. 

For the water molecule, we have obtained a symmetry group consisting of 

the operations {E, Ry*C,,, Ry" 0,,, Rz™0,,}. When this group was initially 
obtained, it was called the fu// point group of the water molecule (to distinguish it 

from the point group which only acts on vibronic variables). After the invention of 

the MS group, it is now called the MS group C2,(M) and, with permutations and 
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ya 

po 

Figure 8.6. The effect of the successive application of the operations @, Re and 

P(23) On a distorted Ha ion and the equivalence of this to the permutation (123); 

(123) = p(i23)Rz77/7 C3. 

the inversion brought to the fore, its operations are written {E, (12), E*, (12)*}. 

In presenting the character table of the MS group of a rigid molecule, it is useful 

to identify under each MS group operation the point group operation and overall 

bodily rotation operation (called the ‘equivalent rotation’) whose product gives 

the effect of the MS group operation. This makes it easier to appreciate the effects 

of the operations on the molecular coordinates. 

8.3.2. The Hj molecule 

In figures 8.6—8.8, we show the effects of the MS group operations (123), E* 

and (23)* on the coordinates of a vibrationally distorted ne molecule; the MS 

group operations take the molecule from part (a) to part (b) in each figure. The 

figures also show the transformations caused by the related point group operation, 

the related bodily rotation operation, and (where it is not the identity) the related 
nuclear spin permutation. In this way, we show how each operation of the MS 
group for the Hy molecule is broken down into the product of a point group 
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Figure 8.7. The effect of the successive application of the operations o,, and R-” ona 

distorted Hi ion and the equivalence of this to the inversion operation EY E* = Rz”o,. 

The molecule-fixed axis system xyz is right-handed in all figures. 

operation that only transforms the vibronic coordinates, a bodily rotation that only 

transforms the rotational coordinates, and a nuclear spin permutation operation. 

In part (a) of each figure, the instantaneous ‘starting’ distorted nuclear 

configuration is shown using filled circles for the positions of the nuclei. The 

electrons have instantaneous coordinates (x;, yj, zi), where 1 = 4 or 5, and they 

are indicated using an ‘e+’ and an ‘e—’ to denote an electron above and below 

the page respectively. The small arrows on each particle indicate its spin. We can 

view these instantaneous particle positions as a snap-shot view of the molecule 

as the nuclear framework rotates and vibrates and as the electrons orbit. We 

show with open circles an appropriately oriented He molecule at equilibrium with 

attached xyz axes. The (xyz) axes (with origin at the nuclear centre of mass) are 

located in the equilibrium configuration with the x and y axes in the molecular 

plane so that the y axis passes though proton number 1, the x axis passes through 

the bond connecting protons | and 2 and the z axis so that (xyz) is right-handed. 

The orientation of the (xyz) axes within the space-fixed axis system defines the 

Euler angles (6, ¢, x). The xyz axes are located so that for all three nuclei z; = 0 

and Az; = 0; this means that the three nuclei are in the plane of the page. 



170 The symmetry groups of rigid molecules 

In part (b) of each figure, we show the result of the MS group operation 

on the spatial coordinates and spins of the particles. It is vitally important to 

appreciate that the xyz axes, and the equilibrium Hy structure, are positioned 

in each of these (b) figures after the symmetry operation has been performed on 

the instantaneous coordinates of the electrons and nuclei. In figure 8.6(b) the 

electron coordinates in space are unaffected by the nuclear permutation (123) but 

the molecule-fixed xyz axes, being tied to the nuclei, are rotated and, as a result, 

the electron coordinates (x;, y;, z;) are transformed. In figure 8.7(b), the spatial 

coordinates of all particles are inverted through the molecular centre of mass from 

their locations in the starting distorted configuration. The spins are not affected 

by E*. In figure 8.8(b), the effect of doing (23)* is depicted. Note that E* and 

(23)* do not cause the xyz axes to become left-handed (i.e. inverted); an MS 

group operation cannot invert the molecule-fixed axes. 

In each of these figures the coordinate changes caused by the MS group 

operation, and depicted in part (a)—(b), is broken down into successive 

coordinate changes:* (a)—(c), (c)—>(d) and (d)—(b). Each of these parts 

involves only changing some of the coordinates: 

e (a)—(c): The change in the vibronic coordinates, i.e. the change in the 

vibrational displacement coordinates (Ax;, Ay;, Az;) of the nuclei, where 

1 = 1, 2 and 3, and the change in the electronic coordinates (x;, y;, zi), 

where i = 4 and S. 

e  (c)—(d): The change in the rotational coordinates 6, @ and x. This is a 

bodily rotation of the whole molecule about a molecule-fixed direction. 
e (d)—(b): The permutation of the nuclear spins o;, fori = 1, 2 and 3. 

The part (a)—(c) in each figure is a rotation of the vibronic variables about 
an axis, or a reflection of the vibronic coordinates through a plane. Each is a point 
group operation and it does not transform the molecule-fixed axes or the nuclear 
spins. The part (c)—>(d) is a bodily rotation of the molecule about a molecule- 
fixed axis; the vibronic coordinates and nuclear spins are not transformed. Finally, 
the operation (d)— (b) is a permutation of the nuclear spins (but for £* the nuclear 
spins are not permuted). 

For the operations depicted in figures 8.6-8.8, we can write 

C23; Spa eG (8.10) 
Ea Rr Cn (8.11) 

9 . . where C3, o, and oy, are point group operations and they only transform the 
vibronic variables. The operation Gs rotates the vibronic variables about the z 
axis through 47r/3 radians in a right-handed sense: the Xyz axes are not rotated 
4 ; : 5 A ; . For the operation E*, there is no nuclear spin permutation and we, therefore, omit part (d) in 
figure 8.7 since it would be identical to part (c). 
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Figure 8.8. The effect of the successive application of the operations yz, R¢ and p23) 

on a distorted Hy ion and the equivalence of this to the permutation—inversion operation 

(23)*; (23)* = p23)Rx™o,,. The molecule-fixed axis system xyz is right-handed in all 

figures. 

by a point group operation such as e. The operations R-77/> and R-” are bodily 

rotations of the whole molecule about the z axis in a right-handed sense through 

27/3 and z radians, respectively. The operation R,” is a bodily rotation of the 

whole molecule through z radians about the x axis. These rotation operations 

only affect the Euler angles. p,j23) is the cyclic permutation of the nuclear spins 

and p23) is the interchange of the spins of nuclei 2 and 3; po is the identity. Note 

that after the operation p,,53), nucleus 2 has the spin that | had, 3 has the spin that 

2 had, and | has the spin that 3 had. 

One can break down each of the 12 operations of the MS group D3,(M) as 

the product of such vibronic, rotational and nuclear-spin operations. In this way, 

one finds out that the set of 12 vibronic operations of the type (a)—(c) for D3n(M) 

form the point group D3p. 

8.3.3. General rules for rigid molecule symmetry groups 

We can now state some general rules for rigid nonlinear molecules: 
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e The MS group and the point group are isomorphic and we use the same 

irreducible representation labels for each. 

e ach operation R of the MS group can be written as the product: 

ao Ras Rrot Rve (8.13) 

where Rye transforms the vibronic coordinates in the same way as R but it 

does not transform rotational coordinates or nuclear spins, Ryot transforms 

the rotational coordinates in the same way as R but it does not transform 

vibronic coordinates or nuclear spins, and Ry, transforms the nuclear spins 

in the same way as R but it does not transform vibronic or rotational 

coordinates. The three operations commute with each other and any could 

be the identity operation. 

e The set of operations Rye is the molecular point group of the molecule and 

this actually defines the operations of the molecular point group. 
e The operations of a molecular point group Rye only transform the vibronic 

variables (i.e. vibrational displacements and electronic coordinates). 

e The molecular point group is not a symmetry group of the complete 

Hamiltonian but it is a symmetry group of the vibronic Hamiltonian. As 

a result, the molecular point group of a nonlinear rigid molecule can be used 

to classify the vibronic states but not the rovibronic or nuclear spin states. 

e The MS group can be used to classify rovibronic, vibronic and nuclear spin 

States since it is the symmetry group of the complete Hamiltonian. The 

symmetry classification of the vibronic states of a rigid nonlinear molecule 

in the MS group duplicates that obtained using the molecular point group. 

8.3.4 Linear rigid molecules 

Rigid molecules that have a linear equilibrium configuration are special. The 

point group of a linear molecule is Doon if the molecule is centrosymmetric, 

like H2 or HCCH, and it is Coy if it is not, like HF or HCN. These groups 

have an infinite number of operations in them and, like any point group, they 
only transform the vibronic variables. The MS group for a Coy linear molecule 
is Cooy(M) = {E, E*} and that for a Doon linear molecule is Dx,(M) = 
{E, p, E*, p*} where p is the permutation operation that interchanges all pairs 
of identical nuclei symmetrically located about the molecular midpoint. The 
vibrational and electronic states of a linear molecule can be classified in the point 
group but the rovibronic states (often called the rotational levels) are classified 
in the MS group. As a result, the rotational levels of a Css) linear molecule are 
labelled + (or ©*) and — (or =~) using Cooy(M), and the rotational levels of a 
Don linear molecule are labelled +s (or a); +a (or LY), —s (or Ly) and —a 
(or 9) using Doon(M); see tables B.14 and B.15 in Appendix B. 

Using the isomorphic Hamiltonian of a linear molecule (see the footnote on 
page 94) the Euler angle x is introduced as a variable and we can develop extended 
molecular symmetry groups C5,y(EM) and D.on(EM) that are isomorphic with 
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Figure 8.9. The 12 versions of the ethylene molecule C)Hg. 

the point groups but which transform the three Euler angles (and the nuclear 

spins); see tables B.16 and B.17 in Appendix B. These groups can be used to 

classify rovibronic, vibronic and nuclear spin states of a linear rigid molecule just 

like the MS groups are used for nonlinear rigid molecules. 

8.3.5 The ethylene molecule C,H, 

Here we determine the MS group Do,(M) of the ethylene molecule as an example. 

We draw out its versions and discuss its structural degeneracy. We then consider 

which operations of the CNPI group are feasible in order to obtain the operations 

of the MS group. 

As previously mentioned the order of the CNPI group for the ethylene 

molecule C2H4 is 2 x 2! x 4! = 96. The order of its point group Do is 8 and 

so there are 96/8 = 12 versions of its equilibrium structure. Numbering the four 

protons | through 4, and the carbon nuclei 5 and 6, we draw one version in part 

(a) of figure 8.9. Starting from the version drawn in figure 8.9(a) one determines 

the other versions by permuting the numerical labels of identical nuclei and then 

checking that the numbered configuration obtained cannot be rotated in space to 

coincide with version (a). The 12 versions so obtained are shown in figure 8.9. 



174 The symmetry groups of rigid molecules 

Figure 8.10. Four views of version (a) of the ethylene molecule shown in figure 8.9(a) that 

can be interconverted by an overall rotation in space. 

In figure 8.10(a), we draw version (a) again but, by way of contrast, in 

figures 8.10(b)-(d), we draw three other numbered configurations, obtained by 

permuting the numerical labels of identical nuclei on (a), that can be made 

to coincide with version (a) by rotating it in space. In this way, we see that 

figure 8.10 merely shows four ‘views’ of version (a). As well as helping us to 

understand what a version is, figure 8.10 will help us determine the MS group of 

version (a) of the ethylene molecule. 

Since there are 12 versions, there are 12 identically shaped minima in the 

potential energy surface of the ethylene molecule in its ground electronic state. 

The barriers between all the versions are high; the lowest barrier [the barrier to 

internal rotation between (a) and (e), (b) and (d), (c) and (f), (g) and (k), (h) and 

(j), or (i) and (1)] is about 25 000 cm~!. Thus, for the lower rotation—vibration 

energy levels, tunnelling splittings will not be resolved and every level will have 

a structural degeneracy of 12. 

To calculate the rotation—vibration energies, we would focus on one version 

and use the potential energy surface around that version. Let us choose version 

(a) in figure 8.9. To symmetry label the rotation—vibration levels of this version, 

we must determine its MS group; i.e. we must determine the feasible operations 

for version (a) from among the 96 operations in the CNPI group of ethylene. 

For a nonlinear rigid molecule, there must be the same number of operations 

in the MS group as in the point group and so we know that there are only eight 

operations (including the identity £) in the MS group of ethylene. We can now use 

the numbered configurations in figure 8.10, which show the four possible rotated 

arrangements of version (a), to help in determining the feasible operations. The 

nuclear permutations that connect these arrangements are feasible (since they do 

not correspond to passage over an insuperable potential energy barrier) and they 

are 

E, (12)(34), (13)(24) (56) and (14)(23)(56). (8.14) 

We also have to determine the feasible permutation—inversion operations and 
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Table 8.1. The character table for D2,(M): The MS group for the version of ethylene given 

in figure 8.9(a). 
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again we look at figure 8.10 and see which permutation—inversion operations 

interconnect these arrangements of version (a). We see that E* interconverts 

arrangements (a) and (d) [and also (b) and (c)] in figure 8.10, so E* is a feasible 

operation; in this way we determine that the feasible permutation—inversion 

operations of the MS group of version (a) in figure 8.9 for ethylene are 

BE I2)G4)" a(13) C466)" and (14)(23)(56)*. (8.15) 

The MS group for version (a) in figure 8.9 of the ethylene molecule consists of the 

eight operations listed in equations (8.14) and (8.15); this group is called Do,(M) 

and its character table is given in table 8.1. 

For a planar rigid molecule E* is always feasible and E* has the same 

effect on the vibronic variables as the point group operation of reflection in the 

molecular plane. 

8.4 Problems 

8.1 Determine the MS group of the acetylene molecule HCCH. 

8.2 Determine the MS group of 1,2 difluoroethylene CF2CH)2. 

8.3 Determine the MS group of formaldehyde CH20. 

8.4 Determine the MS group of ketene CH2CO. 

8.5 Determine the MS group of cis-difluoroethylene CHFCHF. 

8.6 Determine the MS group of trans-difluoroethylene CHFCFH. 
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8.7 

8.8 

8.9 

8.10 

8.1] 

The symmetry groups of rigid molecules 

Map the elements of the MS groups of cis and trans difluoroethylene onto 

the appropriate elements of their point groups. 

The allene molecule is shown in its equilibrium configuration in 

figure 6.13. Determine its MS group and map each element onto the 

appropriate element of its point group Doq; see problem 6.3. 

Determine the MS groups of ortho and para difluorobenzene. In each case 

map the elements onto the appropriate elements of the point group. 

Determine the MS group of the methane molecule CH. 

Assuming the molecule to be a rigid molecule with no observable 

tunnelling, determine the MS group of the numbered form of the Cua 

molecule shown in figure 8.2. 
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Chapter 9 

Nuclear spin, statistical weights and 

hyperfine structure 

9.1 The fifth postulate of quantum mechanics 

In section 3.2, we stated the Pauli exclusion principle and it is part of the 

more general fifth postulate of quantum mechanics. To state this postulate, it is 

necessary to differentiate between two classes of particles: fermions and bosons. 

A fermion is a particle for which the spin angular momentum quantum number 

(called s for an electron and / for a nucleus in section 3.2) has a half-integer value, 

and a boson is a particle for which the spin angular momentum quantum number 

has an integer value. Electrons have s = 1/2 and are fermions. The nuclei !H, 

3He, 13C, 5N and !9F with J = 1/2, the nuclei Li, ?Be, !'B and 2!Ne with 

{*="3/2,-and the 179 nucleus with J = 5/2, are all fermions. In contrast, the 

nuclei *He, 7C, 1°0, '80, 7°Ne and ??Ne with I = 0, 7H (= D), °Li and 44N 
with J = 1, and !°B with J = 3, are all bosons. 

It is an empirical fact that the complete internal wavefunction ® (including 

spin) of a system of particles is changed in sign by an interchange of two 

identical fermions in the system but is unchanged by the interchange of 

two identical bosons. The statistical-mechanics treatment of many-body 

systems is affected by this (particularly the calculation of entropy) and it 

is said that fermions obey Fermi—Dirac statistics, whereas bosons obey 

Bose-Einstein statistics. This is the full statement of the fifth postulate 

of quantum mechanics. 

No completely acceptable proof of the connection between particle spin and its 

statistics exists and we discuss experimental tests of it in section 15.6. 

17? 
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9.2 Statistical weights 

A complete internal wavefunction @y,9 for a water molecule depends on 

the coordinates (Rj, 01, R2, 02, R3, 03, Ra, 04, R5,05,...R13,013) given in 

equation (7.1)!, where the two protons are labelled 1 and 2, particle 3 is the 

oxygen nucleus and the electrons are labelled 4-13. ®y,o is an eigenfunction of 

the complete Hamiltonian Hint for the internal dynamics of H2O and the general 

expression for Hint is given in equation (2.77). Protons are fermions and, from the 

fifth postulate, any complete internal wavefunction for the H2O molecule changes 

sign when the coordinates of the two protons are interchanged, i.e. 

(12) ®1,0 = —Py,0. (9.1) 

Inspection of table 7.2 on page 135 shows that equation (9.1) restricts the 

symmetry of the complete internal wavefunctions for H2O to be By or Bo in 

C2y(M); we use the symbol tot for the allowed symmetries of the complete 

internal wavefunction of a molecule. For D2O the behaviour of a complete 

internal wavefunction ®p,o under the interchange of the two deuterons is 

governed by Bose-Einstein statistics so that 

(12)®p,o = +®p,0 (9.2) 

and, for D2O, Pot can be only A, or Az in Coy(M). 

In the Born—Oppenheimer approximation, and including electron spin, the 
rovibronic eigenfunctions for an H2O or D2O molecule can be written as 

Drye.nj (Ri, Ro, R3, Ra, 04, Rs,05,..., R13, 013) 

= PDelecn( Ri, Ro, R3, R4, 04, R5, 05 eres R43, 043) 

X Dry nj (Ri, Ro, R3). (9.3) 

from equation (3.8). ®elec.n iS antisymmetric with respect to exchange of a 
pair of electrons. An approximation for the complete internal wavefunction of 
H20 or D20 is constructed by multiplying Drve.nj by a nuclear spin function 
Pps 1(01, 02, 03), where ¢ numbers the different spin functions. The ®,.; are 
products of the spin functions of the individual nuclei. For a single nucleus 
labelled 7, the spin wavefunctions satisfy 

ih, oi) = kU + DRL, 03) (9.4) 

and 

izZ|Lj, 03) = oj h\]j, o;) (9.5) 

where, for a single nucleus, i* is the operator for the square of the nuclear spin 
angular momentum and (7 that for its space-fixed Z component. As explained in 
| are therspatial coord: 3 The R; are the spatial coordinates and the o; are the spin labels; see remark after equation (7.2). 
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section 3.2, the quantum number J; is a constant for a given nucleus and the spin 
projection o; has one of the 2/; + 1 values —1;, —1; + 1, ae aie Gs 

In the H2O molecule, 4) = Ip = 1/2, and (for 160) Iz = 0. A proton has 
two possible spin functions |1/2,0;) with o; = —1/2 or +1/2; we write these 
two functions as 

N22 and | 6 = \/2. 2172), (9.6) 

A '°O nucleus has one possible spin function with J; = 03 = 0; we write this 
function 

or (0500 (O.7) 

Four different products of the one-particle spin functions exist: wad, BBS, wBd 
and Bad, where the first of the three factors is the spin function of proton 1, 
the second factor is the spin function of proton 2 and the third factor is the spin 
function of the oxygen nucleus. If we form the following linear combinations of 
these products 

Dns,1 = aad (9.8) 

Pns,2 = BBS (2) 
1 

Pys,3 = wae + Ba] (9.10) 

and 

Pns.4 = wma = Ba|é (Onl 1) 

then the functions ®yps 1, Pns,2 and Pys 3 each belong to the symmetry species A | 

of C2y(M) (table 7.2), whereas ®ys 4 belongs to the symmetry species Bz. Taken 

together, the four nuclear spin functions ®ns. 1, Pns.2, Pns,3 and Pys.4 generate 

the representation 

Vhs = 3A1 ® Bo. (9.12) 

The three functions Pps}, Pns.2 and Pps 3 of Ay symmetry are components of 

an J = | total nuclear spin state, with Jz = +1, —1 and 0, respectively; the B 

function is an J = 0 total nuclear spin state. 

The product functions 

Oy,0(R1, 01, Ro, 02, R3, 03, R4, 04, R5,05,...R13, 013) 

= Drive.nj (R1, Ro, R3, R4, 04, Rs, OSes R43, 013) Pys,t (9°13) 

are complete internal wavefunctions for H2O; they include nuclear and electron 

spin. These functions automatically change sign when we interchange any 

two electrons in the molecule because Pyye,,; changes sign and ®p;, remains 

unchanged (it does not depend on the electronic coordinates). The Fermi—Dirac 

statistical formulas, however, further require that ®y,9 change sign when we 
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Table 9.1. Spin statistical weights for HyO and D20. 

H> 10 Dz !°O 

Vrve Unser Utot ns Vrve Uns tot ns 

A 6A] Aj 

A2 6A A2 

By 3B> A2 

Bo 3B> Ay 

Aq By Bo 

A? By By 

By 3A] By 

Bo 3A] Bo wo WS = WOES) Oy FON 

interchange the two protons in H2O [equation (9.1)] and this puts restrictions on 

the combinations of ®yye,,; and Pps; that we can use in equation (9.13). 

If Pyye.nj has the symmetry Tye and Pps; has the symmetry Mns,r, then the 

function ®y,09 in equation (9.13) has the symmetry 

Prot = Twe ® Dns, (9.14) 

and, for a given Ive, we must choose Ins, such that [to = By, or Bo for 

H20, in order to satisfy equation (9.1). On the left-hand side of table 9.1, we 

give the possible combinations of Tyye, Ms. and Ptot. The table also introduces 

the spin statistical weight gns, which is simply the number of complete internal 

wavefunctions of the allowed I’to¢ symmetry that we can construct for a given rye. 

For Vns,¢ = Ai, 8ns = 3 and for [ys,¢ = Bo, 2ns = 1 from equation (9.12). For 

a molecule such as H2O with two spin modifications (i.e. two different values of 

8ns), the states having the higher gps are called ortho states and the states having 

the lower gns are called para states. For H2O, rovibronic states of symmetry B, or 

By have gps = 3 and are ortho states; states of symmetry A; or Az have gps = 1 

and are para States (see figure 7.3 on page 136). 

For a deuteron D, there are three possible spin functions |1,o0) witho = 

—1,0 and +1, respectively: 

= Ws Ll Ole ands ev tld (9.15) 

By analogy with equations (9.9)-(9.11), we form nine symmetrized nuclear spin 
functions for D20: 

Pns,1 = AAS Pps,.2 = "pd Pys,3 = vv (9.16) 

| ] 
Ons.4 = ane + pA]6 Pns.5 = al + vA} (9.17) 

1 
Pns6 = —[uv + vu]6 (9.18) 

mo) 
| ] 

Pns,7 = eet — wr]6 Pys.3 = Woe — vA]6 (9.19) 
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7 [iow s B, D3 Dis.4 [se = A> 

I Bean = B, WN - A, 
D5. D> D,;3 D,5.4 

Figure 9.1. The effect of spin statistical weights on the intensities of HO absorption 

transitions. 

and 

nso = Tae — vjt}6. (9.20) 

The functions Pys1, Pps2,--., Pns,6 each have A; symmetry in C,(M), 

whereas Pys.7, Pns.g, and Pps 9 each have B2 symmetry; the nine spin functions 

for D2O generate the representation 

of C2,(M). The allowed complete internal wavefunctions for D2O can only have 

Itot = Ay or A2 [from equation (9.2)], so that the spin statistical weights for D2O 

are as given on the right-hand side of table 9.1. For D2O, rovibronic states of 

symmetry B, or B2 are para states and states of symmetry Aj or A2 are ortho 

states. This is the opposite of the situation for H20. 

Spin statistical weights manifest themselves in a spectrum by giving rise 

to intensity alternations and we now explain what this means using the H2O 

molecule as an example. Consider a transition from a lower rovibronic state 

Divenj” With Frye = By to an upper rovibronic state Pyye.nj’ with Dye = Bo. Each 

rovibronic state in this transition can be combined with the three spin functions 
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Pns.1, Pns.2 and Pys.3 in equations (9.9)—-(9.10) to produce three different states 

allowed by FermiDirac statistics. An absorption transition induced by the 

electric dipole operator (which does not involve nuclear spin) will conserve the 

nuclear spin state. Thus, using simple rovibronic—nuclear spin product basis 

functions, as indicated in figure 9.1, with the neglect of the hyperfine Hamiltonian 

Ants [see equation (2.77)], the transition from ®yye nj” tO Prye,nj’ Will consist of 

three overlapping transitions and the intensities will add up as indicated in the 

figure. For a transition from a lower rovibronic state ®rye nj” with Tre = Aj 

to an upper rovibronic state ®rye,nj/ with Tye = Az, only one nuclear spin 

function is available for each state. If the two transitions in figure 9.1 have the 

same absolute value of the transition moment integral [ O14 /,,. dt entering 
into equation (2.87) for the line strength, then [neglecting the Boltzmann and 

frequency factors in equation (1.9)] the transition involving the B, and Bo 

rovibronic states will have an intensity three times larger than the transition 

involving the A; and A? rovibronic states because of the spin statistical weights. 

Such intensity alternations are often clearly visible in experimental spectra and 

examples are given in figures 13.4 and 13.10. The hyperfine Hamiltonian will 

cause a By — B, spectral line for the water molecule to split into hyperfine 

components, but to see them requires very high spectral resolution. The effect 

of the hyperfine Hamiltonian is discussed in section 9.5. 

9.3. Missing levels 

9.3.1 CO 

For !7C!6Q5, we label the two oxygen nuclei | and 2 and the carbon nucleus 3; 
the MS group is the Dooh(M) group given in table B.15* in appendix B. !°O and 
'C nuclei have J; = 0; = 0. We denote the one Bessole spin function for '°O 
as 6(9) = |0, 0)(o) and the one possible spin function for '*C as 5c) = |0, 0) (c). 
The !*C!®Q) molecule has the one possible spin function 

Pns.1 = 6(0)5(C)4(0) (9°22) 

which has +s (Xg‘) symmetry. The two !©O nuclei are bosons and the 
complete internal wavefunction of OL), mustihave Tig: Es (Si, or 5, wp! 
Rovibronic states Dryenj With Prye = +s (Lg * or Sy) can be combined with the 
one allowed spin function ®ys 1 in equation. ? .22) to produce allowed complete 
internal wavefunctions with Top = +s oe or Xy +), respectively, with spin 
Statistical weight gn; = 1 (see bs left-hand side of table 9.2). For rovibronic 
states with Dye = ta Oe or Hy), we cannot satisfy the requirements imposed 
by Bose-Einstein statistics. This is because in order to generate allowed complete 
internal wavefunctions for such states, we would have to combine them with a 

® There are two possible notations for the irreducible representations: Either +s, —s, +a and =a; OF 
yes Pe pe and Ue , respectively. 
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Table 9.2. Spin statistical weights for !*C !©O and !2C !70p. 

12¢ 160, 12¢ 70, 

Vive Vns,t Ttot &ns Dive Phs,t tot &ns 

Se) oh vl tee el aS 
ae le ly By eflotn § Be 115 
XY — — 0 Teele pe 21 
Yuh — — 0 Si eee ea el 

spin function of +a (X_~ or Uy*) symmetry and no such spin functions are 

available. Consequently, for levels with Tye = a (Xg or Si), eas 0, 

These levels do not occur in the molecule and are said to be missing. If we solve 

the rovibronic Schrédinger equation for '*C!°Q> (neglecting nuclear spin), we 

obtain solutions with +s and +a(Z_*, Dy, Zg~ and X,*) symmetry but only 

the levels with ye = +s (Xgt or Dy) exist. 
Isotopomers of CO? involving oxygen isotopes with non-zero spin have no 

missing levels. For example, the isotope '’O has J = 5/2 and we give the spin 
statistical weights of !7C!70> on the right-hand side of table 9.2. 

+ ce 

The Hy molecule also has missing levels but they are imposed by Fermi—Dirac 

statistics rather than by Bose-Einstein statistics. The MS group of Ha is D3,(M) 

whose character table is given in table 7.3 on page 147. The protons in Hy are 

fermions with J = 1/2 so the complete wavefunction must change sign under 

the odd permutations (12), (23) and (31) and it must be invariant to the even 

permutations (123) and (132). Thus, the complete wavefunction of H, can only 

have the symmetries A4 and A5. 

The nuclear spin functions of Ha involve the proton spin functions a and B 

from equation (9.6) and we can organize them as follows 

(ny = 3/2) : aaa = pl) 

(my =1/2): aap=02 afa=o2 paa= 0 

(ip 2172) app = OO pap Son pba =o, 

(m; = -3/2): BBB = Oy (9.23) 

where the nuclei are in the order 1, 2 and 3 in these functions, and m; = 01 +02 ao 

is the total projection quantum number for the proton spins. oi.) and oe 

each have symmetry A;’. The three mj; = i spin functions are transformed 

among themselves by the elements of the group and they generate the reducible 
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Table 9.3. Spin statistical weights for HS 

Vive Vhs Ttot ns 

A, — — 0 
// Ay — — 0 

/ As 4A‘ A, 4 

As 4A‘ As 4 

EE A 
SUL NAS 

representation 
Ai @E’. (9.24) 

The three m7" = — spin functions generate the same representation of the MS 

group. Thus, the representation generated by the eight nuclear spin functions in 

equation (9.23) is 

The spin statistical weights for He are given in table 9.3. Levels with 

ve = A‘ or Aj are missing as there are no spin functions available to satisfy the 
requirements of Fermi—Dirac statistics. For levels with Pyye = A, or As; we can 

combine ®;ye,,j; with one of the four nuclear spin functions of A, symmetry and, 

for levels with Pyye = E’ or E”, we can use the two nuclear spin function pairs of 

E' symmetry since 

E'Q@E'=A,@A,OE and E” @E'=A\GASGE”. (9.26) 

A level with Tye = E’ has associated with it two wavefunctions Pive.nj,a 

and ®rye.nj,b, Say, that transform according to the E’ irreducible representation. 

Equation (9.26) shows, however, that when we combine these two wavefunctions 

with two nuclear spin functions transforming according to E’, then we obtain 

only one allowed complete wavefunction of A, symmetry. According to 

equation (9.25), we have two E’ nuclear spin function pairs available and the 
spin degeneracy (i.e. the value of gns) for a level with Tye = E’ is, therefore, 2. 

Similar arguments apply to levels with Dye = E”. 

9.4 Statistical weights for CH3F 

Methyl fluoride '*CH3!°F is a molecule for which the MS group is a subgroup of 
the CNPI group (see section 8.2) and it provides an example of such a case for 
determining nuclear spin statistical weights. In CH3F, we label the three protons 
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Table 9.4. Spin statistical weights for CH3F. 

Dive Phs tot &ns 

A 8A] Aj 8 

A2 8A, Ad 8 

E 4E Aone 

1, 2 and 3, the '*C nucleus 4 and the !F nucleus 5. The character table of C3)(M) 
is given in table 7.5 on page 151. Having three protons, it has the same eight 
proton spin states as Hy given in equation (9.23). These functions transform as 

4A, @2E. (On) 

Multiplying by the one !?C nuclear spin state 6(c) of A; symmetry and the two 

possible '°F nuclear spin states with o5 = —1/2 or +1/2 that each have A, 

symmetry, the 16 possible nuclear spin functions transform according to 

[ns = 8A1 @4E. (9.28) 

The complete internal wavefunction is invariant to the even permutation (123) of 

the protons and so it can have symmetry A, and Ap. 

We can combine a rovibronic wavefunction of symmetry A; or Az with 

each of the eight A; spin functions to get eight allowed complete internal 

wavefunctions of symmetry A, or A2, respectively. A level with Tye = E 

has associated with it two wavefunctions ®rye,nj,q and Prye,nj,p that transform 

according to the F irreducible representation. In C3,(M), 

E@®E=A,;@A2@0E (9.29) 

and so, when we combine the two wavefunctions ®rye nj,q and Pryenj,p with the 

two nuclear spin functions transforming according to E, we obtain two allowed 

complete internal wavefunctions, one of Aj symmetry and one of Az symmetry 

(and two, of E symmetry, that are not allowed). There are four E-pairs of spin 

functions available and we can use these spin functions to form a total of eight 

allowed complete internal wavefunctions. Therefore, each rovibronic level with 

Tye = E has a spin statistical weight of eight as given in table 9.4. 

9.5 Nuclear spin hyperfine structure 

The effects of nuclear spin are often visible in a spectrum as _ intensity 

alternations (or missing levels) due to the requirements imposed by Fermi-— 

Dirac and Bose-Einstein statistics. Here we briefly discuss how nuclear spin 
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manifests itself through the effect of the nuclear hyperfine Hamiltonian Mpgs [see 

equations (2.75)-(@.77)}- 

Hyfs causes the molecular rovibronic energy levels that have a nuclear spin 

statistical weight greater than unity to split into closely spaced sub-levels called 

hyperfine structure and, as a result, transitions between such rovibronic levels 

are split into hyperfine components. In figure 9.1, the rovibronic Bz < By, 

transition can split into hyperfine components but the Az <— A, transition 

cannot. In a singlet electronic state, the hyperfine structure on a particular 

rovibronic state can be calculated by diagonalizing the Hamiltonian Arye + Ants 

(see section 2.3). In setting up the Hamiltonian matrix, we do not use the 

‘uncoupled’ basis set functions ®yye,nj ys. indicated above, where the Prye,nj are 

eigenfunctions of Hones and the ®,; are simple nuclear spin functions. Instead 

we use special ‘coupled’ linear combinations of such functions that are chosen to 

be eigenfunctions of the total angular momentum operator F? and its space-fixed 

Z component Fz (see sections 2.7 and 14.5). 

Concentrating on the angular momentum properties of the basis functions, 

we can write an uncoupled basis function product as |J, my)|I,my), where 

(J,m,) and (J,m,) are the rovibronic and spin angular momentum quantum 

numbers, respectively. The linear combinations of such functions that are 

eigenfunctions of F? and Fz are given by 

amin a= ys C(JIF;mymympf)|J,my)|I, m7) 

my my 

= pe (aya 
YO FCAT 

my ,my 

ef . F 

ss ( my my —mF Jus my)\1, mr) (9.30) 

where C(J IF; mym;mf) and 

J I F 

my my, —mMp 

are each an analytic function of the six quantum numbers occurring in them; 

they are called a Clebsch—Gordan coefficient and a 3j-symbol, respectively. 

As stated in connection with equation (14.38), the possible values of F are 

J+1,J/ 4+ 1-—-1,...,|J —J|. The matrix of the Hamiltonian Hive + Futs 

in such a basis will diagonalize into blocks for each F value (and MS group 

symmetry species) and electric dipole transitions between the eigenfunctions will 

satisfy the selection rule AF = O or +1 (but F = 0 < O is forbidden); 

see section 14.5. Hyperfine structure components with AF = AJ are the 

most intense but transitions with AF #~ AJ are allowed. As an example 

of a Bz — B, transition in the water molecule, the hyperfine structure on the 

JK Ke = 616 <— 523 transition has been measured? and it is shown in figure 9.2. 

3 Kukolich § G 1968 J. Chem. Phys. 50 3751. 
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Figure 9.2. The hyperfine structure of the Jz, x. = 616 < 523 transition for the water 

molecule, with each transition labelled by the F’ <— F” assignment. The line positions are 

from Kukolich S G [1968 J. Chem. Phys. 50 3751] and the relative intensities have been 

calculated for us by Kukolich from his data. The only other allowed hyperfine component 

(F = 5 < 6) is too weak to show. 

Hats can cause an interaction between an ortho state and a para state. 

Consider as an example a para state of H2O with a rovibronic wavefunction 

Drye,p of symmetry A, in C2y(M) and an ortho state with rovibronic wavefunction 

Diveo Of Symmetry By. We assume that these two states are accidentally close 

in energy, Eryep ~ Etye,o, and that their J values do not differ by more than 

1 so that rovibronic-spin states having the same value of F occur. We combine 

®rvye,p, having angular momentum quantum number Jp say, with an J = 0 nuclear 

spin function psp of Bz symmetry [i.€. Pns,p = Pns,4 given in equation (9.11)] 

so that the product ®p = rye pPns,p has the total symmetry Aj ® Bz = Bz 

and F = J». Similarly, we combine Pyye,o, having J = Jo, with each of 

the three J = 1 nuclear spin functions ®ys5.5 of A; symmetry [i.e. the three 

functions Pps 1, Pns.2 and Pys.3 in equations (9.9)—-(9.10)] so that the products 

each have total symmetry B2@ A, = Bo. Forming three coupled functions having 

F=J+1,J and J —1, one, ®p say, has an F value equal to Jp. Since the two 

functions ®, and ®, have the same total symmetry B2 in C2,(M) and the same 

F value, then Ants can have a non-vanishing matrix element between them. We 
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write the 2 x 2 matrix of the Hamiltonian Hrye + Ants as 

Hoo Ho (9.31) 
Apo App 

with ‘ 

Haq = Exve.q si (®g|Ants|®q) (9732) 

with g = 0 or p and (assuming, for simplicity, that the matrix elements are real) 

Hpo = Hop = (®p| Anis! Po): (9.33) 

The matrix in equation (9.31) describes ortho—para interaction since the off- 

diagonal matrix elements connect ortho and para states. From equations (2.35)— 

(2.40), the eigenfunctions are 

OW), Sct O, =e > (9.34) 

and 

09 = ctd, tc Oo. (9.35) 

We expect |Hpp — Hool >> |Hpol so that ict |? ~ 1 and |c~|* < 1 [from 

equations (2.39) and (2.40)]. Thus, oe is essentially an ortho state with a small 

admixture of para character, and De is essentially a para state with a small 

admixture of ortho character. 

The creation of the two ortho—para-mixed states ou, and a. by 

interaction between ©, and ®, is shown in figure 9.3. Suppose ®,.... is a pure 

ortho state of symmetry By and that the transition from 1, , to Prye,o is allowed. 

Thus, the absolute value of the integral 

[| Phe ota neo dr) #0; (9.36) 

this integral enters into equation (2.87) and determines the intensity of the 

transition between oe. and ®rye,o. However, the transition from ®/\,, , to Prve.p 

is forbidden and 

=() (9:31) [fetta nen dt 

because the transition from ®/, , to ®rye,p does not satisfy equation (7.59). 

However, we see that the two transitions from ©! , to De and eer 
respectively, both have non-vanishing line strengths since 

5 
ry 

(a) IN 1 i 

lem = | / Ae ce £0 (9.38) Ses IN 
7 | | | f Peta neo dt 
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Figure 9.3. The principle of ortho—para interaction and intensity stealing. On the left-hand 
side, we show how ne basis functions ®p and ®, mix to form the two ortho-para mixed 

1 
states ol” p and oe”) —p: The transitions to these states from a pure ortho level Brive o 

indicated, at the right-hand side is a schematic representation of the resulting transitions 

are 

in the absorption spectrum. 

and 

2 
p* a es 

i = =| fe rve,o LA® —p dt} = 

The quantities Ln and Te determine the intensities of the transitions marked (a) 
(b) L 

2 

P| f fe uaPne ott #0. (9.39) 

and (b), respectively, in figure 9.3. As indicated in the figure, we have ey > 

because let |? > lea. We see that, for both transitions (a) and (b), the intensity 

originates in the integral given in equation (9.36). If there were no mixing of 

the two states DryyepPnsp and PryeoPns,o, then transition (b) oe have zero 

intensity. However, because of the ortho—para interaction, the state oe” at contains 

a small amount of the state ®ve. according to equation (9.35) and tian aitiod (b) 

has some intensity. We say that transition (b) steals intensity from transition (a) 

between ©” | and ®yye.o. Transition (b) ae place between the pure ortho state 
Tve,o 

oD” ea itis an ortho—para transition. and the predominantly para state oY a 

9.6 Problems 

on Confirm that the nuclear spin statistical weights of '*C!7O2 are as given 

in table 9.2. 

92 Determine the nuclear spin statistical weights of '*C)H4. The character 

table for the appropriate MS group, D2p(M), is given in table 8.1. 



192 

os 

9.4 

o5 

Nuclear spin, statistical weights and hyperfine structure 

Determine the nuclear spin statistical weights of all three possible 

conformers of the ethylene isotopomer !*C)H2Do. 

For the eight He proton spin functions in equation (9.23), determine the 

transformation matrices D[R] for all operations R in D3,(M). Confirm 

that the characters satisfy equation (9.25). 

Pretend that the ozone molecule has a D3, equilibrium structure like Hy. 

In this circumstance, what would be the nuclear spin statistical weights 

of the rotational levels for the isotopomers 160, , 1695180, !70,!6O and 
169179 !8G2 



Chapter 10 

The symmetry of electronic wavefunctions 

Molecular orbitals play a central role in the understanding of electronic structure 

and, in the present chapter, we discuss their symmetries, and the symmetries of 

the Slater determinants and electronic state wavefunctions that are constructed 

from them. We make use of the theory and equations developed in section 3.3. 

As shown in section 8.3, for each of the (rigid) molecules discussed in this 

chapter, the molecular point group and the MS group are isomorphic and the 

operations of the point group have the same effect on the electronic coordinates 

as the corresponding MS group operations. Thus, either group could be used for 

classifying the electronic states and the same results would be obtained. However, 

it is simpler to use the point group since the orientation of the molecule-fixed axes 

is not affected by point group operations. 

10.1 The water molecule 

The water molecule is used here as a simple example having only non-degenerate 

symmetry species to show how the operations in the molecular point group affect 

the atomic orbitals and, through equation (3.37), the molecular orbitals. The 

molecular symmetry group for the water molecule is the group C2y(M) and the 

molecular point group is the group Coy; see section 8.3.1. The character table 

for C2, and the correspondence between the operations in C2y(M) and Cy, are 

shown in table 10.1. 

Molecular orbitals for H2O can be formed from the atomic orbitals 1s(O), 

2s(O), 2px(O), 2p,(O) and 2p-(O) centred on the oxygen nucleus, together with 

the atomic orbitals 1s(H,) and 1s(H2) centred on the protons. From figure 10.1, 

we see that 

C2,2py(O) = —2py(O). (O21) 

Also the C2, operation exchanges the atomic orbitals 1s(H1) and 1s(H2) centred 

on the protons. The following combinations of atomic orbitals transform 

Ie 
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Table 10.1. The character table for C2,(M) and Coy. The operations Ryg constitute 

the molecular symmetry group C2y(M) of the water molecule and the operations Rpg 

constitute the corresponding molecular point group Czy. The xyz axes are defined in 

figure 10.1. 

Rus: E (2) Be CiD)\= 

Rega f= Coe On Oxy 

Ak | 1 1 
Ad ol = 
Bice ole ee eed 1 
Boom ia eel i =i 

irreducibly: 

] 
Ave eals(O).25(0),.2p,(O), | Is(ho) 4, Is(H1) Late BS 
Bi: 2py(O) 

1 
By: 2p-,(O), —=[1s(H2) — 1s(H))]. (10.2) 

/2 

These symmetry adapted combinations of atomic orbitals are called symmetry 

orbitals (SOs). 

In a Hartree—Fock calculation, SOs are used as basis functions ¢,, in setting 
up the trial MO functions y; in equation (3.37) and these MOs have the symmetry 

of the SOs from which they are constructed. Orbitals of Ay symmetry are labelled 

Gane Canim Gaines. in order of ascending energy and, similarly, for other 

symmetries. The lowest lying trial MO is the Is orbital on the oxygen nucleus 

and so (1la;) = 1s(Q). The two SOs of B2 symmetry form a bonding and an 

antibonding pair of MOs given by 

l 1 
Lo) = (2 Z(O) = Isa) Is(y) ) 10.3) Fa p Fa 1)] ( 

and 
| l 

dey} = (2 z(O) — —~[1s(H2) — 1s(H i 10.4 a Pz Fa 2 (H})] (10.4) 

The 2s(O) and 2p,(O) orbitals each similarly form bonding and anti-bonding MOs 

with the [1s(H2) + 1s(H)] SO; the bonding MOs are given by 

| 1 
%« — " 7 5 f (2a}) = a (20) st a + IscH)1) (10.5) 

and 

l | 
3aj) == 4 2s ee A ‘ (3a)) =I Px (O) + lis) + IscHi)]). (10.6) 
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Figure 10.1. A water molecule in the equilibrium configuration of the ground electronic 

state with a 2py atomic orbital centred at the oxygen nucleus. 

Finally, the 2p,(O) orbital is an MO of symmetry By: 

(1b) = 2py(O). (10.7) 

The MO (1b) is centred entirely on the oxygen atom so it is neither bonding 

nor antibonding; it is a non-bonding orbital. There are ten electrons in a water 

molecule and so, filling the bonding and non-bonding MOs in energy order, we 

obtain the electronic configuration of the ground X state as 

(1a,)?(2a1)?(1b2)?(3a1)?(1b})” (10.8) 

where the orbitals are written in order of increasing energy. 

The symmetry of the MO product 

Pia, (11) Pia, (12) P2a, (13) b2a, (14) Pb, (15) 

xX bib; (16) G3a; (17) 3a, (r8)h1b, (79) 1b, (110) (10.9) 

[where r; denotes the coordinates of electron 7] is given by 

(A1)? ® (A1)? @ (Bz)? @ (A1)* @ (Bi)? = At. (10.10) 
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Orbital energy 

180° 90° 
Bond angle 

Figure 10.2. A Walsh diagram for an XH2 molecule. It shows qualitatively how the orbital 

energies change as the molecule is bent. 

The symmetry of a product of molecular orbitals is built up from the MO 

symmetries and the occupation numbers (0, | or 2). The electronic configuration 

for the first excited electronic state of a molecule is obtained by promoting an 

electron from the highest occupied molecular orbital (HOMO) of the electronic 

ground state to the lowest unoccupied molecular orbital (LUMO). For water, the 

LUMO is essentially an atomic 3s(O) orbital, (4a). Thus, the MO product for 

the first excited (A) state of water is obtained by promoting an electron out of the 

(1b;) non-bonding orbital and into the (4a; ) orbital to give the configuration 

(1a,)*(2a,)?(1b2)? (3ay)7 (1b)! (4a)! (10.11) 

which has symmetry By. 

An electronic wavefunction cee (ON) elec, 0), aS given in equa- 

tion (5.27), is normally obtained in an HF-SCF calculation followed by a CI 

calculation. It has the symmetry of the Slater determinants out of which it is 

constructed; these determinants all have the same symmetry. Each Slater deter- 

minant has the symmetry of the product of MOs entering into each of its n! terms; 

these terms each have the same symmetry. An MO has the symmetry of the SOs 

out of which it is constructed. So, following the chain from AOs to SOs to MOs to 

Slater determinants and finally to CI wavefunctions, we can determine the sym- 

metries of the CI wavefunctions. Thus, the electronic wavefunctions for the X 

ground state and A excited state of the water molecule have symmetries A; and 

Bj, respectively. 

In figure 10.2, we show the Walsh diagram for the energies of the MOs of 

an XH» molecule as a function of the bond angle. This qualitative orbital energy 
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Table 10.2. The character table for the point group Dep. 
—_er"_e—ooe ee ee 

Dien ine A264 2 Can Go 30) 3G rn Soe SRO Mee COMEE OO. 

Ajga ol 1 ] | I 1 1 1 1 I ] | 
PAU cae 1 1 1 1 1 1 -1 1 | 1 | 
Aggie il 1 1 1 -1 —] it 1 1 == 1 
Voyage | Il 1 ] ]-=1 1 1 -1 1 1 1 

Bia a= t 1 —] 1 =] 1 -1 1 =a al 
By: 1 -!1 ] —] 1 =] | ill 1 -1] ] 
2-2 Ek 1 —1 -1 1 1 -] = 

By: 1 =1 1 =jl = 1 =e I = 

Eig: 2 1 —] —2 0 0 al =| —2 0 0 

Tice 1 —] —2 0 0 ell 1 2 0 0 

Lona 2 =i I p 0 0 2=1 =! Z, 0 0 

Boy: 2 =1 —1 2 0 0 =e 1 =2 0 0 

diagram is based on simple ideas as to how the bonding energy of the MOs will 

vary with bond angle and can be used to predict the approximate geometry, linear 

or bent, of a given XH2 molecule having a particular electron configuration. For 

example, the BeH2 molecule has six electrons and the ground electronic state 

configuration is (1ay)*(2a1)?(1b2)?. From figure 10.2, we see that both the (2a;) 

and (1b2) orbitals have their strongest bonding (lowest energy) at linearity and 

so we would predict that BeH2 would be linear in its ground electronic state. 

Very recently, this has been found to be the case!. In the ground X state of the 

water molecule (with ten electrons), all the orbitals shown in figure 10.2 are full; 

the competition between the (3a) orbital, which wants the molecule to be very 

strongly bent, and the (1b2) and (2a;) orbitals, which want the molecule to be 

linear, leads to a compromise bond angle of 105°. For larger molecules, orbital 

energy diagrams like figure 10.2 are also very useful in allowing one to understand 

how the electronic structure and electronic energy vary with molecular structure. 

10.2. The benzene molecule 

In section 3.4.3 on page 61, we introduced the Huckel approximation for 

describing the z electron system of benzene. We got as far as setting up the 

Hiickel matrix in equation (3.63) and we will now use the vanishing integral rule 

to simplify its diagonalization. Figures 3.8 and 3.9 will be used here. 

The molecular point group for the benzene molecule is De, whose character 

table is given in table 10.2. The symmetry elements are as follows. 

! Bernath P F et al 2002 Science 297 1323. 
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e One C6 axis perpendicular to the molecular plane and passing through the 

common centre of the carbon nucleus and proton hexagons. 

e Three C2 axes, denoted C;, which pass through opposite carbon atoms in the 

carbon-atom hexagon. 

e Three C2 axes, denoted CY, which bisect opposite edges of the carbon-atom 
hexagon. 

e An inversion centre at the intersection of the Ce axis with the molecular 

plane. 

A rotation—-reflection axis $3 coinciding with the C6 axis. 

A rotation-reflection axis Sg coinciding with the C6 axis. 

A horizontal symmetry plane oy coinciding with the molecular plane. 

Three reflection symmetry planes denoted og. Each of these planes contain 

the Ce axis and one of the CY axes. That is, the oq planes bisect opposite 

edges of the carbon-atom hexagon. 

e Three reflection symmetry planes denoted o,. Each of these planes contain 

the Cg axis and one of the C, axes. That is, the oy planes pass through 

opposite carbon atoms in the carbon-atom hexagon. 

We want to determine symmetrized linear combinations of the ¢, (u = 

1,2,...,6) C(2p,) atomic orbitals (pictured in figure 3.9) that transform 

irreducibly in Dep and, to do this, we first determine the representation generated 

by the ¢,, orbitals using equations (7.99) and (7.100). As we show later, the 

characters of the reducible representation of Den that is generated by the six $, 
orbitals are 

ee Cour, Gomme > 2 3G), Uae 53 ae GeO SOOd RESO 

Cm 0 ea OF ei) een Cran) 2 a 

which reduces to 

Px = Azu ® Bog © Ejg © Eru. (10.13) 

To show how the characters in equation (10.12) are obtained, we consider, 
as an example of a C} operation, the operation C} ;_4, which is the 180° rotation 
about the C’, axis that passes through the carbon nuclei 1 and 4 which coincides 
with the x axis. Figure 10.3 shows the effect of the C} | _4 Operation on the atomic 
orbitals ¢; and $3; we see that OEE = —gy, and that C) 1493 = —5. 

Further, C) ;_462 = —6, Cy 1_44 = —$4, Ch |_4os = —3 and C) ,_4 $6 = 
—2. Thus, we can write 

oi —$| =e BE OI ON Pet) te x0 $1 
p2 — 6 0 0 0 0 0 -1 2 

Co icat |g Ae ene OF | ier ONIN ra Ugey Oahe al 0 $3 
cacemal aoe —$4 Dir any wii) iors Haier Cul 4 

os —$3 eee uit ee Ola uke os 
6 —$2 Che eMC ale 6 
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No 

Figure 10.3. The effect of the Co 4 4 Operation on the atomic orbitals ¢) and 3; 

C5 4491 = —¢ and Co 1493 = —95: 

and the character of the representation matrix is —2 for C5. In section 10.6, the 

effect of the Ce and of a 0, symmetry operation are considered in detail. 

It is rather easy to determine the characters by just picturing each rotation and 

reflection symmetry operation; only the ¢, that are not sent to another position 

on the ring by the operation can contribute to the character (i.e. to the diagonal 

elements of the transformation matrix generated by the symmetry operation) and 

the sign of the contribution depends on whether the orbital is turned upside-down 

or not by the operation. 

Each symmetry orbital for benzene can be written as 

6 

Wj eo. (10.15) 

p=) 

where the c;,, are expansion coefficients. To normalize the function w;, we must 

consider the integral 

n n 

lta) = i wie; dydydz— we Yiehucin f ob, dxdydz = ye leful? 

p=l v=! p=1 

(10.16) 

where we have used equation (3.61). Thus, the condition for y; to be normalized 

1S x 

NS Gl Sok (10.17) 
p= 

Similarly, the overlap integral between two Hickel molecular orbitals yj and yj’ 
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(hilt) = [vp araya: 
n n 

yao Lf 9% , dx dy dz = Yi cae Cj. (10.18) 
p=) v=1 

When this is not zero, it is necessary to orthogonalize the MOs. 

To form the SOs, we use the projection operators 

l; ards = 5 Dx IR] R (10.19) 
R 

where the sum runs over all operations R in D6n, xTiER] is a character of the 

irreducible representation T;, /; is the dimension of this representation and h is 

the order of the group (= 24 for D6); see the discussion after equation (7.102). 

We derive 

PArd, = £(b1 + b2 + $3 + b4 + b5 + 6) (10.20) 
and normalization of this function, using equations (10.16) and (10.17), yields the 

A2y function, 

] 
wim = ($1 + b2 + $3 + 4 + os + $6). (10.21) 

/6 

Similarly, 

P26, = 2($1 — $2 + b3 — b4 + 5 — $6). (10.22) 
Upon normalization, we obtain the Bog function 

(orn el hag At hae ota (10.23) Je D 73 5 ' i) 

The irreducible representation E\¢ of Den is doubly degenerate and, to derive 
two linear combinations of the ,, orbitals that transform according to it, we apply 
the projection operator P”!z to ¢; and 2, respectively: 

E\g 
PYled) = (261 + 2 — $3 — 264 — 5 + Go) (10.24) 

and 

P* 8h) = £(b1 + 262 + 63 — b4 — 265 — be) (10.25) 
Normalization of these functions yields 

Fie = 21 + $2 ~ bs ~ 204 — 45 + 0) (10.26) 
a 
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and 
; ] 

ye aA + 262 + $3 — 4 — 265 — G6) (10.27) 

and the overlap integral of the two normalized wavefunctions is obtained from 
equation (10.18) as 

miei eee <P Tk 2 onpale © Dea (—1) 

= 1 Se CSD x (-1)) = 5. (10.28) 

The two functions are not orthogonal but the function 

a) hes a cme 4 Wa i ikem est a O22) 
is orthogonal to y“'!s*. Upon normalization, 

wis? = 5(h2 + $3 — bs — $6). (10.30) 

The two functions y/'2? and y's” given in equations (10.26) and (10.30) are a 

pair of orthonormal functions of Ej, symmetry. 

By applying the projection operator P# to ¢; and @2, respectively, and by 

normalizing and orthogonalizing the results, we obtain the pair of orthonormal 

Er, functions 

yy P20 — Retr $2 — $3 +2 4 — bs — $6) (10.31) 

and 

ye Pu? = 3 (by — 63 + b5 — $6). (10.32) 
The six SOs are pictured in figure 10.4, and they constitute an orthonormal 

basis of symmetrized trial MO functions in which to set up the matrix of the one- 

electron Hamiltonian h. Each of them is a linear combination of the AOs yu» and 

we obtain the matrix of the Hamiltonian in the symmetrized basis as 

(ilAly;”) Sas ry (Pulhlbv) (10.33) 
p= v=1 

where the (o,, lh|py) are the elements of the matrix H, in equation (3.63). From 

equation (10.33), the symmetrized Hamiltonian matrix is 

a+2B 0 0 0 0 0 
Die =k aLO 0 en Lee 

Ate 0 0 Cae 0 0 0 

Dae ee 0 0 atp 0 0 et 
0 0 0 ewe 
0 0 0 0 oe 
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Figure 10.4. Pictorial representations of the six 7 MOs obtained in the Huckel 

approximation for the benzene molecule [see equations (10.21)~( 10.32)]. For clarity, only 

the protons 8 and 11 are labelled since the other labels can be inferred from figure 3.8. 

Also, we only indicate the sign of the AO lobes either above or below the molecular plane, 

since all orbitals change sign when reflected in this plane. 
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where the basis functions are in the order w4, ye, yFle4, yhle?, yu and 
2. the matrix is diagonal. There are four different eigenvalues 

ag: a +26 oa — 2|p| 
Erte a + B a — |p| 

E52 a — 2p a + 2\6| 

where, in the last equality, we have emphasized that fact that 8 < O so that 

BAm < Efe < E¥u < E28. The states with energy E¥'e and E are each 

doubly degenerate. 

All of these orbitals have a nodal plane in the plane of the molecule and the 

orbital at lowest energy, 4 has no nodal planes perpendicular to this plane. 

The two orbitals y/'2% and wz? each have one nodal plane perpendicular to 

the plane of the molecule. For y"!z*“, the nodal plane separates the carbon nuclei 

2 and 3 and the carbon nuclei 5 and 6; for y"!z°”, the nodal plane passes through 

the opposite carbon nuclei 1 and 4. The next two orbitals, ~£2? and yf? , 

each have two nodal planes perpendicular to the plane of the molecule and the 

orbital at highest energy, y2z, has three such nodal planes. In y 2, each carbon 

nucleus is separated from each of its neighbouring nuclei by a nodal plane and 

this orbital is completely antibonding. 

Each carbon atom in the benzene molecule contributes one z electron and, 
in the electronic ground state, these six electrons occupy the orbitals of lowest 

energy to give the electronic configuration 

(doubly occupied a orbitals) (y42" \2 (yp ie2)2 (yp Fie? )? (10.36) 

To determine the symmetry in D6 of the electronic ground-state wavefunction 

of benzene corresponding to the electronic configuration in equation (10.36) is 

slightly tricky because the highest occupied molecular orbitals are components 

of the degenerate E}, irreducible representation of Den. To do this, we first 

have to determine the transformation properties of the E;zg MOs. The effect 

of the operation Ce on the atomic orbitals @, (u = 1,2,..., 6) is given in 

equation (10.60), so 

Oe eee 
vee +(63 + ¢4 — 66 — $1) 

wes Dalyell oan 
= sill (3) cos ( 5 

where cos(7/3) = 1/2 and sin(z/3) = J3/2. From equations (10.14) 

and (10.62), respectively, we determine in a similar manner that 

' yp Pig, Sy ee 

Chr yp Ele? = pele? and 
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E\g,a yp Pied 

| Veit = —yFis.? | (10.38) 

The benzene molecule has 42 electrons and so the Slater determinant 

approximating the ground-state electronic wavefunction has 42! terms. Each of 

these terms can be written as 

(spin orbital product for inner electrons) 

x |1/2, o)|1/2, Bj)|1/2, ox) |1/2, Br) 

x [Fie (ry Pet(r phe? (r ye? (rp]. (10.39) 

The 38 inner electrons comprise the 36 electrons in 18 doubly occupied o 

orbitals and the two electrons in the y42" MO; thus the ‘(spin-orbital product 

for inner electrons)’ in equation (10.39) has Ajg symmetry. The product 

|1/2, aj)|1/2, Bj)|1/2, wx)|1/2, By) contains the spin part of the spin-orbitals 

from equation (3.23); electrons i and k both have @ spin and j and / both have B 

spin. To determine the symmetry of the corresponding orbital product involving 

wis? and wis” in equation (10.39), we must take into account the fact that 
there are three other related terms in the Slater determinant that are obtained by 

(a) interchanging the coordinates of electrons i and k (which both have a@ spin), 

(b) interchanging the coordinates of electrons 7 and / (which both have f spin) or 

(c) making these two interchanges simultaneously. This gives four terms which 

we can write as 

(spin orbital product for inner electrons) 

x 1/2, aj)|1/2, Bj)|1/2, a) |1/2, Br) 

x [+P etry Petr pee’ (ry Ee? (rp) 
+ yp Met (rg ye (ry? (r;)y Me? rj) 
= pet (rg) yp Ele4 (ry Pe? ry Es (r)) 
— Were rip Pie? (rp E ler jy Fie? (rg)]; (10.40) 

these terms all have the same spin part. The terms resulting from the interchanges 
(ik) or (jl) have signs opposite to that of the term in equation (10.39) because of 
the properties of a Slater determinant (i.e. the Pauli exclusion principle), whereas 
the term resulting from the simultaneous interchanges (ik)(j/) has the same sign 
as the original term. 

To determine the effect of the operation Cs on the Slater determinant 
approximating the ground-state electronic wavefunction of benzene, it is 
necessary to consider the effect on sets of four terms in the determinant such 
as that given in equation (10.40) since Cg mixes the four terms in the square 
brackets. The terms in equation (10.40) and, therefore, the complete Slater 
teen are unchanged by the operation Cg and, therefore, also by the 

> The ‘spin-orbital product for inner electrons’ has Aj, symmetry. 
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operations ee = Cre = Ce = e and o in Den. In fact, the 
Slater determinant is unchanged by all operations in De, and so the electronic 
wavefunction for the electronic ground state of benzene has A ig Symmetry. 

In benzene, the HOMO is w*'s-@ or ylz-, since these two orbitals are 
degenerate, and the LUMO is w4-@ or y"2u-, since these two orbitals are 
also degenerate. Thus, in benzene, there are four different ways of promoting 
an electron from the HOMO to the LUMO, leading to the four electronic 
configurations: 

ae (WF 1e-4)! (yp Eig.0)2 (yp H2u.4)1 

ee (wFie-2)! (yp Plg-?)2 (yy E2u.b)1 

oe (WF 12-4)? (Fig?) 1 (yy E2u.a) 1 

ee (yr Fle-2)2 (yy Fig.) 1 (y,E2u.b)! ; 

In the Huckel approximation, these four configurations are all energetically 
degenerate. Their symmetries are given by 

Eig ®@ E2y = Biy © Boy @ Enu. (10.41) 

However, an HF—SCF-CI calculation, which is more accurate than a Hiickel 

calculation, shows that the Bo, electronic state is of lowest energy and so the 

first excited electronic state of benzene has Bo, symmetry. In the Hiickel 

approximation, the electronic wavefunction for this state is 

elec, Bry —— 5(| sirens yp Pi
e 4 yy Eig,O yy Fig) yp Emu.)

 

+ | aeeke Piet yy Eie-4 yy Eig, yp Fau.2) 

+ | Oo pe ay Hg? yp Fi
g»? yp aud) 

+]. pF tet yp Fiera yy Ete? y, Fuay) (10.42) 

where we have used the notation from equation (3.33) to indicate which orbitals 

are associated with a and # spin, respectively. 

10.3 The butadiene molecule 

In section 3.4.4, we determined the Huckel orbitals yj, Ww2, w3 and Yq which 

describe the z electron system of the buta-1,3-diene molecule in its cis- 

planar equilibrium configuration (figure 10.6). The orbitals are given in 

equations (3.68)—(3.71); in figure 10.5 we picture them. In the present section, 

we determine the symmetry properties of the butadiene orbitals in preparation for 

analysing the butadiene-cyclobutene conversion reaction in section 10.4. 

The buta-1,3-diene molecule in its cis-planar equilibrium configuration has 

the point group C2, whose character table is given in table 10.3. The operation 

ao is the reflection in the plane of the molecule, o’ is the reflection in the plane 

that is perpendicular to the plane of the molecule and which bisects the C2—C3 
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Figure 10.5. Pictorial representations of the four 7 orbitals ¥1, W2. W3 and w4, obtained 

in the Hiickel approximation for the buta-1,3-diene molecule in its cis-planar equilibrium 

configuration [equations (3.68)—(3.71)]. For clarity only the protons 5, 6, 9 and 10 are 

labelled; the other labels can be inferred from figure 10.6. 

Table 10.3. The character table for Coy. 

Cre Ee Co ma wot 

oe lanier Pan 
Ags Melee tel eel 
Be ie el. i al 
Bee ae el 

bond and the line connecting C; and C4 (see figure 10.6 for the labelling of the 

nuclei). The C2 axis lies at the intersection of the two reflection symmetry planes. 

With these definitions, w; and y3 have By symmetry, whereas 2 and w4 have 

A2 symmetry. Each carbon atom in buta-1,3-diene contributes one z electron so 

that the electronic ground state has the configuration 

(doubly occupied o orbitals) (W1)7(W2)?. (10.43) 

The zr-electron part of the electronic wavefunction has symmetry 

(Bi)? ® (Ar)? = Ay (10.44) 
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and the product of doubly occupied o orbitals also has A; symmetry. In the 
electronic ground state of buta-1,3-diene, 2 is the HOMO and y3 the LUMO, so 
that the first excited electronic state has the configuration 

(doubly occupied o orbitals) (yy (Wr)! (3)! (10.45) 

with symmetry 

(B1)? ® (Az)! @ (By)! = Bo. (10.46) 

As the orbital energy increases, the bonding character of the orbitals 

Wi, W2, W3 and wq (figure 10.5) changes from bonding to antibonding in a manner 

analogous to that described for benzene. The orbital yw has a nodal plane 

separating the carbon nuclei 2 and 3 and it gives rise to 7 bonds between nuclei | 

and 2 and between nuclei 3 and 4. Since w2 is the HOMO, we draw the molecule 

with appropriate double bonds in figure 10.6. The LUMO wz describes a 2 bond 

between the carbon nuclei 2 and 3 but it has nodal planes separating nucleus 1 

from nucleus 2 and nucleus 3 from nucleus 4. 

10.4 Conservation of orbital symmetry 

Point group symmetry can be used to predict the relative activation energies of 

competing chemical reactions by using the concept of the conservation of orbital 

symmetry. Woodward and Hoffmann? predicted that reactions in which orbital 

symmetry is conserved have activation energies much lower than reactions in 

which orbital symmetry is broken. To use this idea, it is necessary that the 

reactant(s) and the product(s), and all intermediate molecules, have at least one 

common symmetry element, such as a rotation symmetry axis or a reflection 

symmetry plane, that is conserved along the entire reaction path. The conserved 

symmetry elements define a point group and this point group is used to symmetry 

classify those orbitals of the reactant(s) and the product(s) that are involved in the 

reaction (the other orbitals being ignored). By symmetry analysis, correlations 

between the orbitals of the reactant(s) and the product(s) are established. From 

these correlations, it is possible to predict what happens to the bonding electrons 

of the reactant(s) in the course of the reaction and this, in turn, makes it 

possible to estimate qualitatively the part of the activation energy that results from 

conservation of orbital symmetry. 

To illustrate the principles of the conservation of orbital symmetry, we 

use a simple electrocyclic reaction: The conversion of cis-planar buta-1,3-diene 

to cyclobutene. An electrocyclic reaction involves the formation of a o-bond 

between the ends of a linear 2-bonded molecule. Cyclo-addition reactions 

involve the formation of o-bonds between the ends of two (or more) mz-bonded 

molecule and they are another type of reaction to which the conservation of 

3 See Woodward R B and Hoffmann R 1970 The Conservation of Orbital Symmetry (Weinheim: 

Verlag Chemie GmbH). 
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Figure 10.6. The buta-1,3-diene molecule CH>(CH)2CH)3 in its cis-planar configuration. 

Thin cylinders represent single bonds and double cylinders represent localized double 

bonds. 

Figure 10.7. The cyclobutene molecule C4H¢. Thin cylinders represent single bonds and 

double cylinders represent double bonds. 

orbital symmetry applies; the Diels-Alder reaction is cyclo-addition reaction. 

In the example that we use here, the two competing reaction paths both lead 

to the same product (cyclobutene) and so the stereochemical predictions are 

hard to distinguish. However, the principles involved also apply to mildly 

substituted systems for which the competing reaction paths lead to different 

chemical products and for which the symmetry analysis leads to important and 

testable stereochemical predictions. 

In the reaction of the cis-planar buta-1,3-diene molecule, shown in 

figure 10.6, to the cyclobutene molecule shown in figure 10.7, the two terminal 

CH) groups, along with the 2p orbitals on the sp* hybridized carbon atoms 1 and 
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Figure 10.8. A conrotatory rotation about the Cy—-Cy and C3-Cy4 bonds of the 
buta-1,3-diene molecule in figure 10.6 with a pictorial representation of the HOMO wo 
in the electronic ground state. For clarity, only the protons 5, 6, 9 and 10 are labelled. 
During the conrotatory rotation converting buta-1,3-diene to cyclobutene, the molecule 
has Cy symmetry throughout. 

4, rotate by 90° about the adjacent C—C bonds, the x bonds connecting C; to C2 
and C4 to C3 are broken, the z bond connecting C» to C3 is built and the o bond 

between C, and C4 is built from the 2:—p orbitals on C; and C4 that are rotated to 

interact end-on. There is no change in the CH o-bonds nor in the CC o-bonds 1— 

2, 2-3 and 3-4. The orbitals involved in the reaction are the z orbitals 1, W2, W3 

and y4 given in equations (3.68)—(3.71) and depicted in figure 10.5. 

The conversion of buta-1,3-diene to cyclobutene involves the 90° rotation of 

the two ‘end’ CH) groups and reaction paths where these rotations happen in a 

concerted ‘together’ manner are the most important. There are two such paths: 

Either the two CHp rotate in the same direction (a conrotatory reaction path), 

as illustrated in figure 10.8, or they rotate in opposite directions (a disrotatory 

reaction path), as illustrated in figure 10.9. In the figures, the HOMO wp in 

the electronic ground state of buta-1,3-diene is depicted. If the reaction path is 

conrotatory, the two protons Hs and Hjo in buta-1,3-diene (figure 10.6) end up on 

opposite sides of the carbon-nucleus plane in cyclobutene, whereas a disrotatory 

reaction path puts these two protons on the same side of the carbon-nucleus 

planet. If the direction of rotation for both CH2 groups in figure 10.8 is reversed 

(so that the protons 6 and 10 move downwards while 5 and 9 move upwards), an 

alternative conrotatory reaction path is obtained that is equivalent to that shown in 

the figure. The alternative path leads to the same results as obtained using the path 

shown in figure 10.8. An alternative, and equivalent, disrotatory reaction path is 

obtained by reversing the direction of rotation for both CH2 groups in figure 10.9. 

During the conrotatory rotation of the two CH2 groups (figure 10.8), the 

nuclear arrangement has, as its only symmetry element, a C2 axis passing through 

4 The labelling of the nuclei in figure 10.7 is chosen arbitrarily. Nothing can be inferred from this 

figure about the conrotatory or disrotatory nature of the reaction path. 
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Figure 10.9. A disrotatory rotation about the Cj—C) and C3-C4 bonds of the 

buta-1,3-diene molecule in figure 10.6 with a pictorial representation of the HOMO w2 

in the electronic ground state. For clarity, only the protons 5, 6, 9 and 10 are labelled. 

During the disrotatory rotation converting buta-1,3-diene to cyclobutene, the molecule has 

Cs, symmetry throughout. 

the mid point of the C2—C3 bond and through the mid point of the line connecting 

C, and Cy. Thus, the appropriate point group for investigating the conservation 

of orbital symmetry by a conrotatory reaction path is 

C2 =F. Coy. (10.47) 

During the disrotatory rotation (figure 10.9), the only symmetry element of the 

nuclear arrangement is a reflection symmetry plane perpendicular to the plane 

defined by the four carbon nuclei and passing through the mid point of the C2— 

C3 bond and through the mid point of the line connecting C; and C4. Thus, the 

appropriate point group for investigating the conservation of orbital symmetry by 

a disrotatory reaction path is 

CoainG.. (10.48) 

The reflection operation is denoted o’ for consistency with the point group Coy of 

cis-planar buta-1,3-diene (see section 3.4.4 and table 10.3). The character tables 

of the two groups C2 and Cy are given in table 10.4. 

The o orbitals in buta-1,3-diene are unchanged in cyclobutene but the z 

orbital system is changed. The two z orbitals ¢; and ¢4 in figure 3.11 are 

rotated by 90° about the C;—C2 and C3—C4 bonds, respectively. They now lie 

in the carbon-nucleus plane and have turned into o orbitals. The rotated orbitals 

interact to form a bonding orbital o,) and an antibonding orbital Ou; we show 

Op in figure 10.10(a). The orbital o3, has a nodal plane coinciding with the 

reflection symmetry plane o’ of cyclobutene. From table 10.3, the bonding orbital 

Ocb has Aj symmetry in Coy whereas ooh has B2 symmetry. The two z atomic 

orbitals #2 and #3 centred on the carbon atoms 2 and 3 in cis-planar buta-1,3- 

diene (figure 3.11) are the only z basis functions available in cyclobutene. They 
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Table 10.4. The character tables of the groups C> and Cy. 

C2 Cs 

i, (C5) Eo 

A ] 1 A’ 1 1 

B 1 -l A” 1 =] 

LF PTT £4 3 

Praass Atte 

Figure 10.10. (a) The bonding orbital o,, for cyclobutene and (b) the two z orbitals ¢2 

and $3 centred on the carbon atoms 2 and 3, respectively, in cyclobutene. 

are shown in figure 10.10(b). They interact as given in equation (3.60) to produce 

bonding and antibonding z molecular orbitals 

sal Osea eat anny =a | (10.49) 

The orbital z7-) has B, symmetry in Coy while 73, has Az symmetry. 

Of the four z molecular orbitals of cis-planar buta-1,3-diene considered 

here, yw has the lowest energy and wW2, 3 and w4 have increasingly higher 

energies [see equation (3.67)]. In order to determine the correlations between 

these orbitals and the four orbitals o¢p, oe Teh and Ss of cyclobutene, it is 

necessary to estimate the relative energies of the cyclobutene orbitals. 

The two z orbitals mh and Tet are obtained by interaction of the two 

atomic p, orbitals @2 and $3 and in the Huckel approximation, the energies of 

the molecular orbitals are the eigenvalues of the matrix 

amid. is 4]; A050 

eb = 

these eigenvalues are 

FE? Sc |p mando tE* S104) 6 (10.51) 
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where the lower energy E” corresponds to the bonding orbital zrcp and the higher 

energy E™ corresponds to the antibonding orbital 73,. In the approximate theory 

developed here for obtaining £” and E™ , the same values of a and f are used as 

for cis-planar buta-1,3-diene in equation (3.67). 

The two orbitals och and oe are obtained by interaction of 90°-rotated 

versions of the the two atomic p; orbitals ¢; and 4 in figure 3.11 and the energies 

of och and ox are obtained as the eigenvalues of a matrix 

Wo Oe 0, W, GOS2) 

by analogy with equation (3.51). Since the atomic orbitals used as basis functions 

in obtaining this matrix are rotated versions of the orbitals ¢; and ¢4, that give 

rise to the diagonal matrix elements of a in the Huckel theory for cis-planar buta- 

1,3-diene, we approximate W, = a. With this approximation, the eigenvalues of 

equation (10.52) are obtained as 

Ev =a—|Qy| and Ev =a+lQuqy| (10.53) 

where the lower energy E° corresponds to the bonding orbital o,p and the higher 

energy E - corresponds to the antibonding orbital o3.. 

When one electron occupies the the rotated ¢; orbital and the other electron 

occupies the rotated ¢4 orbital, the energy is 2a in this approximation. When 

both electrons occupy the bonding orbital o¢p, the energy is 2a — 2|Q,|, and the 

energy lowering by forming the o bond is 2|Q,|. Similarly, the energy lowering 

by forming the z bond is 2|6|. The energy lowering obtained by formation of 

a bonding o orbital is, in general, larger than the energy lowering obtained by 

formation of a bonding z orbital (see section 3.4.2), so |Q,| > |6|. This relation, 

in conjunction with equations (10.51) and (10.53), yields the energy ordering 

E° < E™ < E™ < E®’ for the cyclobutene orbitals. 

In the electronic ground state of cyclobutene, the four available electrons 

occupy the orbitals of lowest energy to give the electronic configuration 

(doubly occupied o orbitals) (agp)? (teh). (10.54) 

The bonding orbital 2.) describes a a bond between the carbon nuclei 2 and 

3 so we have indicated a double bond between these two nuclei in figures 10.7 

and 10.10. The ground-state electronic wavefunction of cyclobutene has the 

symmetry 

(A1)* @ (Bi)? = Ay (10.55) 

since the product of doubly occupied o orbitals has A; symmetry. The 

electronic configuration for the first excited electronic state of cyclobutene has 
the configuration 

(doubly occupied o orbitals) (och)? (teh) : (Ge)! (10.56) 
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Table 10.5. Symmetries of molecular orbitals for buta-1,3-diene and cyclobutene in the 
point groups C,, C>, and Cs. 

Ssh 
Buta-1,3-diene Cyclobutene 

Can Co C3 Cy, Cy Cs 
ne] B A’ Och «AY A A’ 
Wy Ag A — A” Tp. Bl) | Bee. 
oy By B Al Te uAg eA 7A” 
Wao Aa A AY Co Bye Bye A 

with the symmetry 

(A1)* @ (Bi)! ® (Az)! = Bo. (10.57) 
Correlations between the molecular orbitals of cis-planar buta-1,3-diene and 

those of cyclobutene can now be established. In the approximation employed 
here, the molecular orbitals involved in the interconversion between cis-planar 
buta-1,3-diene and cyclobutene are (in order of increasing energy for each 
molecule) ¥, W2, 3 and a4 for cis-planar buta-1,3-diene and och, Zeb, 7, and 
a. for cyclobutene. Table 10.5 summarizes the symmetries of these molecular 
orbitals in Czy and gives also their symmetries in the point groups C2 and and C,. 
These latter groups are subgroups of C2, and the symmetries of the molecular 

orbitals in them can be sraightforwardly obtained from the symmetry in C2y by 

correlation as discussed in connection with table 7.6. 

In figure 10.11(a), the orbital correlation diagram for the conrotatory 

interconversion of buta-1,3-diene and cyclobutene is shown. On the left-hand 

side of the diagram, the energies of the four buta-1,3-diene orbitals Wj, Wo, W3 

and wa4 are schematically indicated with their symmetry labels (table 10.5) in the 

point group C2 [equation (10.47)] which is appropriate for the symmetry analysis 

of the conrotatory reaction path. On the right-hand side of figure 10.11(a), the 

energies and Cz symmetry labels of the cyclobutene orbitals och, eb, 7G, and 3, 

are shown. Broken lines (correlations) are drawn connecting orbitals of the same 

symmetry. Lines connecting two pairs of orbitals of the same symmetry can never 

cross because of the non-crossing rule (see section 10.5) and this rule uniquely 

defines the correlation diagram. The correlation lines depict the variation of the 

orbital energies along the reaction path. The orbital energies are the eigenvalues 

of matrices such as the Hiickel matrix for buta-1,3-diene in equation (3.64) or, 

more generally, the more accurate matrices diagonalized in HF-SCF calculations. 

Figure 10.11(b) is the analogous correlation diagram for the disrotatory 

interconversion of buta-1,3-diene and cyclobutene. The orbitals and their energies 

are the same as for the conrotatory interconversion but the orbitals are now 

symmetry classified in the point group C’; [equation (10.48)] which is appropriate 
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Figure 10.11. Orbital correlation diagrams for the (a) conrotatory and (b) disrotatory 

interconversion of buta-1,3-diene and cyclobutene. For the conrotatory reaction path, the 

molecular orbitals are symmetry classified in the point group C2 and for the disrotatory 

reaction path, they are classified in Cs. 

Table 10.6. Correlation of electronic states for the interconversion of buta-1,3-diene and 

cyclobutene. 

Conrotatory Disrotatory 

Buta-1,3-diene | Cyclobutene Buta-1,3-diene | Cyclobutene 

Dips Died, Dap) Det 
wy Fob™ cb wy Fob cb 

Dalal eee cL Denier 2 
ios Feb™ cb% cb wy V3 Feb eb cb 
ee il eel DA pe? De 22, 

wy v4 Fob™ cb cb W143 Fcb™ cb 

for the symmetry analysis of the disrotatory reaction path; as a result, the 

correlations are different from those in figure 10.1 1(a). 

According to figure 10.11(a), a conrotatory reaction path takes the HOMO 

w2 of buta-1,3-diene into the bonding orbital o.) of cyclobutene so that the 

two bonding electrons of buta-1,3-diene, that occupy yw, are transformed into 

two bonding electrons of cyclobutene. However, a disrotatory reaction path 

[figure 10.11(b)] places the same two electrons in the orbital 73, at much higher 

energy. Thus, if the interconversion reaction takes place with the molecules 

at thermal equilibrium at a moderate temperature (a thermal reaction) so that 



Conservation of orbital symmetry 215 

Conrotatory Disrotatory 
1 2 1 

ForTMerFev(B) TevTe oi4(A vVWA(B) | | vive) oe 
4 

NZ 
wn 

\ 
Ss / 
ee 2y1y)(B) Bae anes Ke © Viveva( Bes Vivev3(A"’) \ é 
ie TaTMevMer(B) rere TeoMenTen(A ") 

yield) at vivelA) 
pits ces ForMen(A) TepMev(A’) 

Buta—1,3—diene Cyclobutene Buta—1,3—diene Cyclobutene 

(ayn (b) 
Figure 10.12. State correlation diagrams for the (a) conrotatory and (b) disrotatory 
interconversion of buta-1,3-diene and cyclobutene. For the conrotatory reaction path, the 
electronic states are symmetry classified in the point group C> and for the disrotatory 
reaction path, they are classified in Cs. The full curves result from application of the 
non-crossing rule (see section 10.5). 

reactants and products are predominantly in their respective electronic ground 

states, then the conrotatory reaction path is favoured. If we excite the molecules 

to their first excited electronic states by irradiation with light (a photochemical 

reaction), the HOMO of buta-1,3-diene becomes 3. A conrotatory reaction 

path places the electron occupying w3 of buta-1,3-diene in the highly excited 

antibonding orbital a3, of cyclobutene, whereas a disrotatory reaction path 

places this electron in the bonding cyclobutene orbital z <p) at much lower 

energy. Therefore, for the photochemical reaction, the disrotatory reaction path is 

preferred. 

A more complete understanding of the reaction mechanism is obtained 

by using the orbital correlation diagrams in figure 10.11 to determine the 

correlation diagram for the low-energy electronic state configurations of buta- 

1,3-diene and cyclobutene. These are called state correlation diagrams.° For 

example, the electronic ground state of buta-1,3-diene has the configuration® 

(W1)? (wo)? [equation (10.43)]. From figure 10.11(a), a conrotatory reaction 

5 State correlation diagrams (and orbital correlation diagrams) for analysing the conservation of 

orbital symmetry were first introduced by Longuet-Higgins H C and Abrahamson E W 1965 J. Am. 

Chem. Soc. 87 2045. 

© For brevity, we omit in the configurations the doubly occupied o orbitals which are assumed to be 

identical for buta-1,3-diene and cyclobutene. 
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path correlates this configuration with the ground-state configuration (ocb)” (eb)? 

[equation (10.54)] of cyclobutene. Figure 10.11(b) shows that a disrotatory 

reaction path correlates the electronic ground-state configuration of buta-1,3- 

diene with a highly excited electronic state, Gay Guy. of cyclobutene. 

Correlations of this type involving the electronic ground states [equations (10.43) 

and (10.54)] and the first excited electronic states [equations (10.45) and (10.56)] 

of buta-1,3-diene and cyclobutene are summarized in table 10.6. The correlations 

in the table are presented graphically in the state correlation diagrams of 

figure 10.12. These diagrams indicate the symmetry labels of the electronic 

states in C> for the conrotatory reaction path and, in C,, for the disrotatory 

reaction path; these symmetries are determined as discussed in section 10.1; see 

equation (10.10). 

The state correlations shown for the conrotatory reaction path as dotted lines 

in figure 10.12(a) are obtained from the orbital correlation diagram. Application 

of the non-crossing rule (see section 10.5) produces the actual state correlations, 

and these are given as full curves. These curves give an approximate indication 

of the change in energy along the reaction path between buta-1,3-diene and 

cyclobutene and it is seen that a buta-1,3-diene molecule in the first excited 

electronic state must overcome an energy barrier to convert to cyclobutene in 

the first excited electronic state. However, the state correlation shows that a buta- 

1,3-diene molecule in the electronic ground state can convert to cyclobutene in its 

electronic ground state without having to overcome an energy barrier. 

In figure 10.11(b), the state correlation diagram for the disrotatory reaction 

path is shown. For this reaction, a buta-1,3-diene molecule in the electronic 

ground state must overcome an energy barrier, whereas a molecule in the first 

excited electronic state need not. Comparison of figures 10.11(a) and 10.11(b) 

demonstrates that for the thermal reaction, where the molecules start out in their 

respective electronic ground states, the conrotatory reaction path is preferred since 

the molecules can convert without having to overcome an energy barrier. For 

the photochemical reaction, where the molecules start out in their first excited 

electronic states, the disrotatory reaction path is favoured. This result is in 

agreement with the conclusions we drew before using the orbital correlation 

diagrams. 

Woodward and Hoffmann have used these ideas for a systematic study of 

many reactions. For example, the results obtained for the butadiene-cyclobutene 

interconversion can be extended to the reaction of a general chain polyene 

H2C(CH),CH2 with (k + 2)z electrons to a cyclic molecule with kz electrons. It 

is found that fork = 4n+2(n = 0, 1,2, ...), the reaction is thermally conrotatory 

and photochemically disrotatory. Fork = 4n (n = 1,2,3,...) the reaction is 

thermally disrotatory and photochemically conrotatory. This is an example of a 

Woodward—Hoffmann rule. 

Conservation of orbital symmetry only applies to concerted reaction paths, 

i.e. to paths that involve two or more parts of a molecule moving together in 

concert. Molecular reactions need not follow such paths. For example, steric 
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constraints in the reactant and/or product molecules may make the concerted 
pathway unfavourable. 

10.5 The non-crossing rule 

In the development of the orbital and state correlation diagrams, mention was 

made of the non-crossing rule for orbital and state electronic energies. For orbital 

energies this rule states that if we vary the nuclear coordinates along the reaction 

path and diagonalize the appropriate sequence of matrices to obtain the orbital 

energies as functions of these nuclear coordinates, two eigenvalues corresponding 

to orbitals of the same symmetry cannot cross. The diagonal matrix elements 

corresponding to these two orbitals can cross but, when the diagonal elements are 

close, the corresponding eigenvalues are approximately given by equations (2.32) 

and (2.33); these two eigenvalues cannot become equal for a non-zero value of 

the off-diagonal matrix element Hj2 in equation (2.30). This matrix element 1s 

allowed by the vanishing integral rule to be non-zero and this rule presupposes 

that it will never be exactly zero since it 1s not forced by symmetry to vanish. As 

a result, the eigenvalues associated with two orbitals of the same symmetry suffer 

an avoided crossing when the corresponding diagonal elements cross as functions 

of the nuclear coordinates (it so happens, however, that this does not occur in the 

orbital correlation diagrams of figure 10.11). 

Because of the non-crossing rule for orbital energies, the lowest buta-1,3- 

diene orbital of a given symmetry must correlate with the lowest cyclobutene 

orbital of the same symmetry. The next (in order of ascending energy) buta- 

1,3-diene orbital of the given symmetry must correlate with the next cyclobutene 

orbital of the same symmetry, and so on. 

In the state correlation diagrams of figure 10.12, there are avoided crossings. 

For the conrotatory reaction path in figure 10.12(a), the orbital correlation 

diagram in figure 10.11(a) suggests the correlation indicated by broken lines in 

figure 10.12(a): Each of the first excited states correlates with a highly excited 

state of the other molecule. Indeed, if we were to carry out a series of Hartree— 

Fock calculations at nuclear geometries along the conrotatory reaction path, 

the computed electronic energies would vary approximately as indicated by the 

broken lines in figure 10.12(a). However, if we were to improve the accuracy of 

the calculated electronic energies by carrying out configuration-interaction (CTI) 

calculations based on the Hartree-Fock calculations just described, there would 

be a drastic change. In the CI calculations, the Hartree-Fock energies indicated 

by the broken lines in figure 10.12(a) are diagonal elements of the CI matrix. 

Since the two electronic configurations corresponding to these diagonal elements 

have the same symmetry (B) in C2, they are coupled by a non-vanishing off- 

diagonal matrix element. Therefore, the eigenvalues of the CI matrix will not 

cross along the reaction path as the diagonal elements do; the eigenvalues will 

suffer an avoided crossing analogous to that discussed for the orbital correlation 
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diagrams. The avoided crossing is indicated by the full curves connecting the 

excited electronic states in figure 10.12(a). 

Because of the avoided crossings caused by configuration interaction, 

potential energy curves connecting two pairs of electronic states of the same 

symmetry can never cross. Therefore, the first excited electronic state of buta- 

1,3-diene, which is the lowest buta-1,3-diene state of B symmetry in C2, must 

correlate with the first excited electronic state of cyclobutene, which is the lowest 

cyclobutene state of B symmetry in C»’. This leads to the correlations indicated 

by the full curves in figure 10.12(a). In figure 10.12(b), the state correlation 

diagram for the disrotatory path also has an avoided crossing. 

10.6 The C¢ and o, operations for benzene 

The operation Cg is a rotation of 60°(= z/3 radians) about the C6 axis (the z 

axis in figure 3.8 on page 62) and so it rotates xyz electron coordinates about 

the z axis by 60°, measured in a right-handed sense. If an electron initially 

has coordinates (x;, yi,zi), then after the operation Cs has been applied, its © 

coordinates are transformed to (x/, y;, z;) given by 

x, cos (¥) —sin(¥) 0 Xj 

y |=] sin(Z) cos (#) 0 | | 
Zs 0 0 1 es 

= 3 0 Yi (10.58) 
0 0 1 Zi 

The effect of a point group symmetry operation on a function is defined by 

equation (7.7); using this definition we obtain 

C601 Cia Vis 21) = G1 Os Vent) = 204 Min Zi) (10.59) 

where some thought is required to understand the second equality. If, for instance, 

the initial point (x;, yj, z;) lies near carbon nucleus 2, where 2 has a significant 

amplitude, the transformed point ee y;,z,) lies near carbon atom 1, where $1 

has the same amplitude (see figures 3.8 and 3.9). Thus, as shown in figure 10.13, 

Cod. = 2. It follows analogously that Cod2 = $3,...,Cods5 = do and 

7 We do not know with certainty if, for the highest energy curve drawn in figure 10.12(a), the config- 

uration (yy 2)? (3)! of buta-1,3-diene correlates with the configuration (aep)! (eb)? (o3,)! of 

cyclobutene. There may be other configurations of B symmetry in C> that have lower energies than 

one or both of these high-lying configurations so that they change this particular correlation. However, 

the correlation of this pair of highly excited electronic states is of no interest to us. 
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Figure 10.13. The effect of the Cg operation on the atomic orbital ¢1: Coo, = 2. See 
figures 3.8 and 3.9 for the labelling of the nuclei and the definition of the atomic orbitals 
Oh = he. or, 6). 
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The operation oy j—4, the reflection in the o, plane containing the carbon 

nuclei | and 4, is a reflection in the xz plane (figure 3.8) and the electronic 

coordinates transform as 

Xj x; ] 0 O Xj 

é S100 = yar eo OFS 0 vee eee 0:61) 

i 0 OGM Zi Zz. Li 

sf 

Ovi-4} yi |=] Y; 
Zi 

We obtain oy,1-4¢1(%i, vi, 21) = $104}, Y;,2;) = b1@i, yi, Zi) together with 
Oy,1-492 = 6, Fv,1-463 = $5, v,1-494 = G4, Ov,1-4b5 = $3 and oy,1-466 = 
$2 (see figure 10.14 for the effect of oy,;~-4 on ¢; and $3). Consequently, 
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Ov,1-4 

Figure 10.14. The effect of the oy.j~4 operation on the atomic orbitals gj and $3; 

oy, 1-401 = $1 and oy 1-43 = $5. See figures 3.8 and 3.9 for the labelling of the 

nuclei and the definition of the atomic orbitals @, (u@ = 1, 2,..., 6). 

10.7. Problems 

10.1 

10.2 

10.3 

10.4 

10.5 

In the Walsh diagram for an XH2 molecule, figure 10.2, the (1b) and 

(3a,) orbitals are shown as having the same energy at linearity, whereas, 

on bending, the energy of the (3a;) strongly decreases. Explain why this 

iS SO. 

Using the concept of sp hybrid orbitals [see equation (3.59)] explain why 

the (1b2) and (2a;) orbitals in figure 10.2 are most strongly bonding at 

linearity. 

Extensive ab initio calculations® lead to the prediction that, in its ground 

electronic state, the CH} ion is bent at equilibrium but with only a small 

barrier in the potential energy function at the linear configuration and that 

in its first excited electronic state the equilibrium structure is linear but 

that at this linear structure the energy of this excited state is equal to that 

of the ground electronic state. Use figure 10.2 to explain these numerical 

results. 

An ab initio calculation” for the CH molecule predicts that in an excited 

electronic state of Az symmetry the equilibrium bond angle is less than 

50°. Explain this result. 

The planar D3, molecule borazine B3N3H¢ is sometimes called inorganic 

8 See, for example, figure 1 of Jensen P et al 2002 Spectrochim. Acta A 58 763. 

° Yamaguchi Y and Schaefer H F III 1997 J. Chem. Phys. 106 1819. 
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Problems DOK 

benzene. What is its equilibrium structure? Use Huckel MO theory to 

explain why it is given this alternative name. 

Is the photochemical cyclization of 1,3,5 hexatriene CH2(CH)4CH)2 to 1,3 

cyclohexadiene a conrotatory or disrotatory process? Explain your answer 

using orbital and state correlation diagrams. 



Chapter 11 

The symmetry of rotation—vibration 

wavefunctions 

11.1 The transformation properties of the Euler angles 

The coordinates used to describe molecular rotation are the Euler angles (6, ¢, x ) 

defined in figures 5.1-5.3. The three angles determine the orientation of the 

molecule-fixed xyz axes relative to the &7¢ axes. The present section discusses 

the effect of MS group operations on Euler angles. To obtain the transformation 

properties of the Euler angles for a particular molecule, it is sufficient to consider 

the molecule at equilibrium but we must choose a convention for attaching the 

xyz axes. The origin of the xyz axes is always the nuclear centre of mass and the 

xyz axes are always right-handed. 

Initially, with the xyz axes attached to the molecule according to the chosen 

convention, the Euler angles are (6, ¢, x). After applying an MS group operation 

R, we again use the chosen convention to attach the molecule-fixed axes. The 

newly oriented molecule-fixed axes x’y’z’ have orientation in space given by the 
new Euler angle values (0’, @’, x’). We write 

R(O, ¢, x) = (6, ¢’, x’). (11.1) 

The rotation that takes the xyz axes into the x’y’z’ axes is called the equivalent 

rotation of the MS group operation R. For the He molecule, we see from 

figure 8.6 on page 168 that the effect of the permutation (123) on the XyzZ axes 
is to rotate them by 120° (or 27/3 radians) in a right-handed sense about the z 
axis. Consequently, the equivalent rotation of (123) is the rotation R-*7/? whose 
effect is detailed in the (c)—>(d) part of figure 8.6. Similarly, figure 8.7 shows 
that the equivalent rotation of E* is R-”, a rotation of 180° about the z axis and 
figure 8.8 shows that the equivalent rotation of (23)* is Ry, a rotation of 180° 
about the x axis. 

For symmetric and asymmetric top molecules, the MS operations give rise 
to equivalent rotations of two types: R-*, a rotation about the z axis through the 

Lad 
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(a) (b) 

Figure 11.1. (a) The definition of the Euler angles 6 and ¢ and (b) the effect on 6 and @ of 

the equivalent rotation Ry” which reverses the direction of the z axis. 

angle 6 (in radians), where # is measured in a right-handed sense about the z axis, 

and Ry”, a rotation of z radians about an axis in the xy plane that forms the angle 

a (in radians) with the x axis, where a is measured in a right-handed sense about 

the z axis. Spherical top molecules have equivalent rotations other than R-’ and 

Ry” but we do not consider these more complicated rotations here. Notice that 

Ro” = Rx” and Ryzj2” = Ry”. 

The Euler angles @ and ¢ are the polar coordinates that define the orientation 

of the z axis in the €n¢ axis system [see figure 11.1(a)]. Since R-? is a rotation 

about the z axis, it leaves the orientation of this axis and, therefore, the angles 

6 and ¢, unchanged. It is seen from figure 11.2 that a rotation about the z axis 

through the angle B causes the change x > x’ = x + f and so 

R26, 6, x) = (6',¢.x.) = (0.0,x +8). (iso) 

The equivalent rotation Ry” reverses the direction of the z axis and, from 

figure 11.1(b), we see that 

Ry. 0) = (0 0 =r — 05 19): (11.3) 

Figure 11.3 illustrates the effect of Ra” on x. Figure 11.3(a) shows the initial 

situation in which the y axis forms the angle x with the node line ON and the 

rotation axis pg forms the angle w with the x axis. Rotating the xyz axes by 180° 

about the axis pg gives the orientation of the axes as depicted in figure 11.3(b). 
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N 

Figure 11.2. The molecule-fixed axes xyz drawn so that the xy plane coincides with the 

plane of the page. (a) An initial situation where the y axis forms the angle x with the node 

line ON. (b) The situation resulting from applying the equivalent rotation RP. In (a) and 

(b), the z axis points up (out of the page). 

Since the z axis is reversed, the direction of the node line ON and the positive 

sense for measuring the angle x are reversed (see figure 11.1). In figure 11.3(b), 

x’ = Z(NOq) + Z(qOp) + Z(pOy). (11.4) 

Elementary trigonometry! gives 

igs (chins: 5 goles \ biriesy nee ore x= (5 a x)+a+(F a) =2n 2a — x (41) 

and, hence, 

Ry” (0,6, x) = (a — 0,647, 2m — 2a — x). (11.6) 

The Euler angle transformations are summarized in table 11.1, where we 
also give the transformation properties of the angular momentum components 
Jq which we have obtained by using the Euler angle transformations and 
equations (5.46)—(5.47) for the Jy. 

11.2 The symmetry of rotational wavefunctions 

To determine the effect of the equivalent rotation R-? on the symmetric top 
rotational wavefunctions 

(Fike m= Oe CO, Osx) (11.7) 

' The angle <(NQq) in figure 11.3(b) equals the angle Z(NOp) in figure 11.3(a), which is 
(1/2 — a — x), and the angle Z(pOy) in figure 11.3(b) equals the angle Z(pOy) in figure 11.3(a), 
which is (77/2 — @). 
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Figure 11.3. The molecule-fixed axes xyz drawn so that the xy plane coincides with the 

plane of the page. (a) An initial situation where the y axis forms the angle x with the node 

line OW and the rotation axis (shown as a broken line pq) forms the angle @ with the x 

axis. (b) The situation after applying the equivalent rotation Ry”. In (a), the z axis points 

up (out of the page) and, in (b), it points down. 

Table 11.1. Transformation properties under* R- and Ry”. 

RP Ree 

0 6 xr—O 

p p o+n 

x Ket 2n — 2a — x 

Ie iif cos B + if sin B ye cos 2a + uy sin 2@ 

i, ye sin B + 1 cos B Te sin 2a — I cos 2a@ 

Ji J —Jz 

|J, k,m) elKB | 7, k, m) (1) Fk mm) 

a Ree is a rotation of the molecule-fixed xyz axes through f radians 

about the z axis (£ is measured in a right-handed sense about the z axis) 

and Ry” is arotation of the molecule-fixed xyz axes through z radians 

about an axis in the xy plane making an angle a with the x axis (q@ is 

measured in a right-handed sense about the z axis). 

given by equations (5.51)—(5.56), we insert the transformed coordinates from 

table 11.1 into equation (5.52) and this gives 

R-P\J, k, m) = el J, k, m). (11.8) 
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For Ry™|J,k,m), it can be shown (see problem 11.1) that the effect of inserting 

the transformed coordinates from table 11.1 is 

Ry Wake) =) Oy, Sm (11.9) 

To determine the MS group symmetries of the zero-order rotational wavefunctions 

for a given molecule, we first determine the equivalent rotations for the operations 

in the MS group and we then employ equations (11.8) and (11.9) to determine the 

effect of the equivalent rotations on the wavefunctions. We work through this 

procedure for Hj . 

12 dae 

The MS group of Hy is D3,(M) whose character table is given in table 7.3 on 

page 147. The convention for the way the x yz axes are attached in the equilibrium 

configuration is that the x and y axes are in the molecular plane with the y axis 

passing though proton number |, the x axis passing through the bond connecting 

protons | and 2, and the z axis directed so that x yz is right-handed. To determine 

the representations spanned by the rotational functions of He it is sufficient to 

determine their transformation properties under one selected operation from each 

of the classes in D3,(M) (see table 7.3). We select the operations 

Daa(M) ae (123) 3) .5, G4 123)" (23)* 

EquivrotuR’ = Ry)? Rap Re R82 Ro® aieg 

where we have also given the equivalent rotations. The equivalent rotations of 

(123), E* and (23)* are from figures 8.6—8.8, and those for (23) and (123)* can 

be inferred from figure 11.4, where we show the effect on the orientation of the 

xyz axes of each of the operations in equation (11.10). 

We use equations (11.8) and (11.9) to determine the effect of the equivalent 

rotations on the rotational functions |/J,k, m) for H}. We distinguish two cases: 
K = |k| = Oand K = |k| > 0. For K = O, the wavefunction |J,0,m) spans 

a one-dimensional irreducible representation of D3,(M) whereas, for K > 0, the 
wavefunctions |/, K,m) and |/J, —K,m) span a two-dimensional representation 
which may be reducible or irreducible. For K > 0, we write 

as |J, K,m) 
ox =| ee lf Cit ty 

The effect of the operation (123) is 

|J, —K,m) 
(123) Ox = R27 Ox = a | |J, K,m) 

e2ikn/3 0 peop 
— O e 2iK1/3 lI |J, —K, m) CUZ) 
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d23). (3)° 

Figure 11.4. The effect of each of the D3,(M) operations in equation (11.10) on the 

orientation of the molecule-fixed xyz axes for the EL, molecule. 

where in the last equality we have used equation (11.8). The character of this 

representation matrix 1s 

| , 2K 
2 sie eee Ices (=) ' (11.13) 
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Table 11.2. The symmetry species of the rotational wavefunctions of He in the D3,(M) 

group, and of CH3F in the C3y(M) group. The (2/ + 1) m-degeneracy is ignored, n is 

integral, and K = |k|. 

K Hy K CH3F 

Jeven Aj’ Jeven Ay 

J odd Ad’ J odd A2 
On =e I Be 3n =e I E 

6n 222 E’ 3n A; ®A2 

6n + 3 A,” ® Ag” 
6n +6 Ai’ ® A)’ 

The effect of the operation (23) is 

ze | Jeeloe 78) 
(23)®x = Rx." OK = Rx/2 ey —K,m) 

Mt 0 (-1)/t4 (JrK ert) 

| (a iyer® 0 |J, —K,m) ie 

where in the last equality we have used equation (11.9); this representation 

matrix has character zero. By deriving the representation matrix for each of the 

operations in equation (11.10), we obtain the characters listed as ‘K > 0’ in 
equation (11.15). For K = 0, we obtain the characters of the representation 

spanned by the single function |J,0,m) by using equations (11.8) and (11.9); 
these are listed as ‘K = 0’ in equation (11.15). 

D3,(M): E (123) (23) E* (123)* (23)* 

Ke Oa 2 cos(3K 7) 0 a2)" 2cos(?Kz) 0 

K=0: 1 1 ep 1 1 (ale, 
(11.15) 

Using equation (7.97), in conjunction with the characters of the irreducible 
representations (in table 7.3) and the identity 

Reap 2K 2K 2e0s (25) = 200s eet Kr)=20-08 cos (5) (11.16) 

the representations in equation (11.15) are reduced to the rotational symmetries 
given in table 11.2. This table also gives the rotational symmetries for CH3F in 
the C3y(M) group. 
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11.2.2 H,O 

H20 is an asymmetric top with the MS group C2,(M), whose irreducible 
representations are given in table 7.2. Using molecule-fixed axes abc (as 
described in section 5.3.4), we first determine the equivalent rotations of the 
operations of the MS group. 

We label the two protons in the H2O molecule as 1 and 2, and the oxygen 
nucleus as 3. In the equilibrium configuration, the b principal axis coincides with 
the C2 axis, the a axis is in the molecular plane and the c axis is perpendicular to 
the molecular plane. The convention we use for attaching the abc axes is such that 
the b coordinate of the oxygen nucleus is positive, the a coordinate of proton 2 
is positive, and the c axis is perpendicular to the molecular plane with orientation 
such that abc is right-handed. The effect of the operations (12), E* and (12)* on 
the orientation of the abc axes is shown in figure 11.5. From these results, the 
equivalent rotations are: 

Co Ne aL 2) (1D) 
Ce) 

Equiv. rot. : R® R,* REM A 

where Rg”, g = a,b orc, is a rotation of 180° about the g axis. 

The zero-order rotational wavefunctions |Jx,x,.) of any asymmetric top 

molecule are linear combinations of the |/,k,m) functions as described in 

section 5.3.4, and the states are labelled ee, eo, oe or 00 depending on the evenness 

or oddness of K, and K-, respectively. The equivalent rotations of the elements of 

the MS group of any asymmetric top molecule can only be one of E, Rag™, Rp™ 

or R.”. Water is an example of a molecule for which all four of these types 

of equivalent rotation occur but, in the general case, they need not all occur. 

Detailed analysis (see problem 11.2) leads to the determination of the asymmetric 

top symmetry rule which states that: 

The ee functions transform as the totally symmetric representation, the eo 

functions as the representation having +1 for Ra” (and —1 for Rp” and 

R,.*), the oe functions as the representation having +1 for R.” (and —1 

for Ra” and R,” ) and the oo functions as the representation having +1 for 

Rp” (and —1 for Ra” and R,” ). 

Using this rule, the symmetries of the rotational states of the water molecule are 

determined from the equivalent rotations given in equation (11.17) to be as in 

tablesL1:3: 
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E (12) 

(12)" 

Figure 11.5. The effect of the operations of C2,(M) on the orientation of the abc axes for 

the HO molecule. 

Table 11.3. The symmetry of the rotational states of H2O: e(0) indicates even(odd) Ka or 

Ke value. 

KaKe Prot KaKe Trot 

ee A 1 oe Bo 

eo By 00 A? 

11.3. The symmetry of normal coordinates 

To determine the symmetries of the zero-order vibrational wavefunctions given in 

equation (4.18): 

Dyib = P,, (Q\ )D,,(Q2) oa Py) ¢(O3n-6) @ 1.18) 

where the functions ®,,(Q;) are the harmonic-oscillator eigenfunctions 

discussed in section 4.3 and N is the number of nuclei in the molecule, it is 

necessary to determine the symmetries of the vibrational normal coordinates Q 
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to Q3n—6 upon which the ®,;, depend?. To do this, we include the translational 
normal coordinates Ty(T, = O3n-_s, Ty = Q3n—4 and 7, = QO3n 3) and the 
rotational normal coordinates Ra(Ry = Q3y—2, Ry = QO3y_1 and R= O3an) 
given in equations (4.11) and (4.12). Since the 3N normal coordinates Q, to 
O3Nn are related to the 3N mass-weighted Cartesian displacement coordinates 
m,!* hai, where a = x, y or z andi = | to N, by an orthogonal transformation 
[see equation (4.9)], the symmetry of the 3NQ, is the same as the symmetry of 

the 3N m,!” Ac [see equation (7.101)]. The symmetry of the 3N m,!” Kai is the 
same as the symmetry of the 3N Cartesian displacement coordinates Aa;. Thus, 

To determine the symmetry Io of the (3N — 6) vibrational normal 

coordinates, we determine the symmetry Ica, of the 3N Cartesian 

displacement coordinates and subtract the symmetry Irr of the 

translational and rotational normal coordinates. 

We write 

Vor = Co @ lier. (11.19) 

The analytic expression for the translational and rotational normal coordinates 

T, and Ry in terms of the Cartesian displacement coordinates Aq; are given 

in equations (4.11) and (4.12). Thus, once the symmetry transformation 

properties of the Aa; have been determined, these equations can be used to 

determine the transformation properties of the coordinates Ty, and Ry. These 

coordinates transform as irreducible representations of the symmetry group and 

their symmetry species are usually listed in any set of character tables so they can 

be simply looked up there. The symmetry of the rotational normal coordinate 

Ry is the same as that of the rotational angular momentum component pe 

Having obtained Ig as the sum of its irreducible components, we then have 

the symmetries of the vibrational normal coordinates, since the following can 

be proved. 

Each normal coordinate Q,; of a molecule transforms according to an 

irreducible representation of the point group or, equivalently, of the 

isomorphic MS group. 

We treat the water and benzene molecules as examples below. 

2 Linear molecules are discussed in section 5.3.2; they have (3N — 5) vibrational normal coordinates 

and two rotational normal coordinates. 
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In section 8.3, we showed that for nonlinear rigid molecules the molecular 

point group is isomorphic to the MS group, and that the operations in it have 

the same effect on the vibrational and electronic coordinates as the corresponding 

MS group operations. Thus, for nonlinear rigid molecules, we can use either the 

molecular point group or the MS group for the vibrational symmetry analysis. 

For the symmetry analysis of electronic wavefunctions described in chapter 10, 

we had the same choice and there we chose the molecular point group since it 

gave rise to a simpler theoretical description. In the investigation of vibrational 

symmetry, the situation is less clear-cut. For small molecules, it is straightforward 

to use the MS group, in particular if the symmetry properties or the rotational 

wavefunctions are also being investigated, whereas, for large molecules in 

situations where the rotational symmetry is not needed, the molecular point group 

is preferable. We consider here two examples: The water molecule, for which 

we use the MS group but show the connection to the results obtained using the 

molecular point group; and benzene, for which we use the molecular point group 

only. 

11.3.1 H,O 

Equations (8.3)—(8.9) give the transformation properties of the Aa; (where we 

use aI’ convention so that xyz = bca) under the effect of the operations C2,, o,- 

and o,y in the molecular point group C2y and, in figure 8.5, we demonstrate the 

equivalence of these transformations to those resulting from the operations (12), 
E* and (12)* in the MS group C2,(M). These results are summarized on the left- 
hand side of table 11.4, where we have also indicated the isomorphism between 
C2\(M) and C2,. 

To determine the representation of C2,(M) generated by the nine coordinates 
Aa;, we write them as a column vector and determine, for each operation 
RiGee (l2yeb* ornl2)") in Co. Miosither ic O representation matrix that 
describes the effect of R on the Aq; in an equation like equation (7.100). The 
characters of the representation generated are given in the line labelled ‘yca,’ in 
table 11.4, and this reduces to 

Tear = 3A1 ® Az © 2B, @ 3Bo. Gle2.0) 

From the right-hand side of table 11.4 (see also table B.4), 

[tr = Ai ® A2 © 2B, @2Bo. (P1221) 

Using equation (11.19), we obtain Ig, the symmetry of the vibrational normal 
coordinates for the water molecule, as 

Pog =2A1 @ Bp. (11.22) 

Thus, two normal coordinates, Q; and Qo, are each of A, symmetry and the third, 
Q3, 1s of Bo symmetry. 
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Table 11.4. Transformation properties for water molecule coordinates in the C 2y(M) and 
Coy groups. The operations Ryyg constitute the MS group C,(M) of the water molecule 
and the operations Rpg constitute the molecular point group Cy. 
cr ae a 

Rus: £E (12) Be Gaye E (12) Es a2)" 

Rpg: E C2x Oxz Oxy E C2x Oxz Oxy 

Ax} Ax Ax] Ax2 Tx T Ty Tx TAS 

Ax? Ax] Ax2 Ax] Dee ly ely Ty Bi 

Ax3 Ax3 Ax3 Ax3 T, = Tz — Il 3 Bo 

Ay Aves — Ay Ay2 Rx Ry Shy —Ryz TAD 

Ay2 —Ay, —Ay2 Ay| Ry — Ky Ry —Ry S Bo 

Ay3” —Ay3 —Ay3 Ay3 Re ky The Rz : By 

Az —=Azo SZ ie AZO 

Az —=Az4 Aza —Azy 

[Ney SIN Aza AZ 

KC a 3 1 

Figure 11.6 shows the motion of the H2O molecule as the three normal 

coordinates Q;, Q2 and Q3 are varied. We show the displacements when each 

of the three normal coordinates is given a value of 1 u!/*A, while the other 
two are set equal to zero. The displacement coordinates are calculated using 

equation (4.9)?. Q, describes the symmetric stretch, Q2 describes the bending 

motion and Q3 describes the antisymmetric stretch. 

An alternative way of determining the representation I’g for a molecule 

involves internal coordinates. Internal coordinates are typically defined as bond 

lengths and bond angles whose values unambiguously define the instantaneous 

nuclear geometry. For the water molecule, these are the two internuclear distances 

rj and r2 together with the bond angle y = Z(HOH). For a nonlinear rigid 

molecule with N nuclei, 3N — 6 independent internal coordinates are required to 

specify the nuclear geometry and these coordinates span the representation Ig. 

For the H2O molecule, the three coordinates (7;, 2, y) transform according to 

the representation [9g = 2A; © Bz of C2,(M) or Coy. For small molecules, it is 

often easier to obtain I'g directly using internal coordinates instead of generating 

Icar and subtracting "rr. 

11.3.2 Benzene 

The benzene molecule C6H6 has 30 vibrational normal coordinates and we 

determine their symmetry in the molecular point group Den whose irreducible 

3 The J matrix elements are from table 2 of Hoy A R et al 1972 Mol. Phys. 24 1265S. 
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(91,92,93) = (1,0,0) ul/A 

3x BN 

EOViaxe 

i. a 
A NN 

7 

ee 
eo 

Figure 11.6. The motion of the H2O molecule as the three normal coordinates Q;, Q2 and 

Q3 are varied. The bonds at equilibrium are represented by broken lines and the nuclear 

displacements by full arrows. The displacement vector for the oxygen nucleus is enlarged 

3x to be visible on the scale of the figure. 

representations are given in table 10.2. The MS group Den(M) is given in 

table B.9 and we see there that the six coordinates Ty, Ty, Tz, Ry, Ry and R, 

generate the representation 

rR = Azg © Azu ® Eig © Eu. (1123) 

The numbering of the nuclei in CeHo and the molecule-fixed xyz axes are 

defined in figure 3.8. To determine the Dén symmetry Mcar of the 36 displacement 

coordinates Ax ;, Ay;, Azi, Ax2, Ay2, Az2,..., Ax12, Ay12, Azi2 for CeHe, 

we must, at least in principle, construct the representation matrices D!"[R] 

|see equation (7.100)] generated by the displacement coordinates. In practice, 
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it suffices to consider the diagonal elements of the D'[R] matrices since they 

determine the characters. For most operations R in D6h, all diagonal elements 

of the matrices D'“"[R] vanish to produce zero characters. There are only four 
exceptions: 

e = The identity operation E. For this operation, all 36 diagonal elements have 

the value | and so the corresponding character is 36. 

e The 180° rotations C4 about axes that contain two carbon nuclei and two 

protons. For example, the operation C) ,_, (see figure 10.3) changes 

the displacement coordinates of the nuclei i = 1,4,7 and 10 as 

(Ax;, Ayi,; AZ) — (Ax;, —Ayj;,—Az;).. Hence, Dic#(C) 14] has 12 non- 

vanishing diagonal elements with a sum of —4. 

e The reflection op in the molecular plane. It changes the displacement 

coordinates of all nuclei as (Ax;, Ayj, Azi) — (Ax;, Ay;, —Azj) and 

generates a character of 12. 

e The reflections o, in planes that contain two carbon nuclei and two 

protons. The operation oy ;—4 (see figure 10.14) changes the displacement 

coordinates of the nuclei i = 1,4,7 and 10 as (Ax;, Ay;, Azj) > 
(Ax;, —Ay;, Azj) and so the matrix D'car[oy ;~4] has 12 non-vanishing 

diagonal elements with a sum of 4. 

Thus, [car has the following characters 

EM Cow 23) 3c, JOM A OMA PMNs loi (Stony sier, d 
Beak Ga Mais I Gia ge eH eg) wp aiantg: eres NLAY) 

This representation reduces to 

PCar = 2Aig ® 2A2¢9 @ 2A2u ® 2Biy ® 2B2. @ 2Bou 

@ 2E ig B4E iu @ 4E2g © 2E ru. Gla S) 

Subtracting the representation rr, given in equation (11.23), the representation 

generated by the 30 vibrational normal coordinates of benzene is 

To = 2Aig ® A2g ® A2u @2 Bi ® 2B. ® 2Bou 

® Ejg © 3E iy B 4 Erg G 2E 2. (11.26) 

For large molecules like benzene, it can be difficult to determine the 

representation 9 using internal coordinates. Although it is simple to choose 

and symmetry classify internuclear distances, such as the six C-C distances and 

the six C-H distances for benzene, it is often difficult to choose a non-redundant 

set of independent angular internal coordinates that, in combination with the 

internuclear distances, unambiguously define the molecular geometry. 
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11.4 The symmetry of vibrational wavefunctions 

11.4.1 H,O 

For the H2O molecule, equation (4.18) reduces to 

Dyib = Py, (Q1) Py, (Q2) Py; (Q3). (1127) 

From equation (11.22), the normal coordinates Q; and Q2 have A; symmetry 

and, thus, the wavefunctions ®,,(Q1) and ®,,(Q2) each have A, symmetry 

independently of the values of vj and v3. The normal coordinate Q3 has B2 

symmetry. ®,, is an even(odd) function of Q3 for v3 even(odd) (see section 4.3) 

so ®,,(Q3) generates a representation of Coy with the characters 

E Cox Oxy Oxz 5 
1 (-)” 1 (CD (11.28) 

which means that ®,,(Q3) has Aj symmetry for v3 even and Bz symmetry for v3 

odd. Thus, we can write the symmetry of the zero-order vibrational wavefunction 

®,;, for the water molecule [equation (11.27)] as 

Lv = (Ar) ) @ (A) @ hay (11.29) 

11.4.2 Hy 

The reader can determine that the vibrational normal coordinates of He have 

symmetry 

T9=A1 OE (11.30) 

in the MS group D3,(M) (see table 7.3 for the irreducible representations) or, 

equivalently, in the molecular point group D3p. 

The normal coordinate of A,’ symmetry is denoted Q; and the two normal 

coordinates of E’ symmetry are denoted (Q2a, O24). Since (Q2g, Q2p) span a 

doubly degenerate irreducible representation their A; values [see equation (4.8)] 

must be equal (i.e. A2q = A2p) and (Q2a, Q2») describe a two-dimensional 

harmonic-oscillator [see equations (4.34)-(4.40)]. For Hee the zero-order 

vibrational wavefunctions are written as 

Dyib = Dy, (Q1) 05,5 (Q2, a2) (1133) 

where (Q2q, Q2») = (Q2 cos a2, Q2 sina) and the function W,, ;, is defined in 
equation (4.38). 

The normal coordinate Q; and, hence, the function ®,,(Q;), for any 

value of v;, are of Aj’ symmetry. For a given value of v2, the (v2 + 1) 

functions Vy, 7, with lz = —v2, —v2 + 2,—-v2 +4,..., +v2 generate the same 

(v2 + 1)-dimensional representation I", of D3n(M) as the (v2 + 1) products Ons 
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2-1 2-2 19-3 — : Dr. Dry, 74 “O54, O97 Oy, ---s Org O33 |, O33. For vz = 0, there is 
only one product, OW OM = |, which is totally symmetric, so 

Louse is (hss 2) 

For v2 = 1, there are two products (Q}, Ove, OF Q),) = (Q2q, Ory), and so 

ep = ee (i333) 

For v2 = 2, there are three products Oe Q,,Q>), and OF. It follows from the 
discussion of equation (7.106) that the symmetry of these three products is the 
symmetric square of E’: 

Dar lees (11.34) 

For an arbitrary value of v2, 

Ge Lele CLs) 

the symmetric v2’th power of E’; the characters of this representation can be 
obtained from equation (7.110). For example, we have 

P3 = [EP = Ay’ @ Ar OE’. (11.36) 

In conclusion, the zero-order vibrational wavefunction ®,j, for the Hy ion 
[equation (11.31)] has the symmetry 

Ay’ for v2 = 0 
Ee for v2 = | 

Le AO Le | SLE | eA OE 1022) wa '(113 7) 
Ai’ @® A?’ @E’ forvw.=3 

We can rewrite equation (11.37) as 

ap (At OLE |. (11.38) 

Equations (11.29) and (11.38) are particular examples of the following 

general rule: 

For a molecule with vibrational normal coordinates of symmetries 

r) p@...,7% in a vibrational state with quantum numbers 
Uj, U2,..., vf the symmetry of the vibrational wavefunction is 

Foy oye vp) = (FP @ (POP? @---@(PMP PF (11.39) 

where [ ]” is the symmetric vth product for a degenerate species and the 

ordinary vth power for a non-degenerate species. 
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It follows from equation (11.39) that in the vibrational ground state of a molecule, 

i.e. the state with vj = v2 = --- = vf = 0, the vibrational wavefunction is totally 

symmetric, and that in a fundamental level of a molecule, i.e. where one vj = 1 

and v; = 0 fori # /, the symmetry of the vibrational wavefunction is TY), the 

symmetry of Q;. 

11.5 Rotation—vibration coupling 

Neglecting nuclear spin and nuclear spin hyperfine structure [discussed in 

section 9.5], the zero-order molecular wavefunctions are products of LCAO- 

SCF-CI electronic spin-orbital wavefunctions harmonic-oscillator vibrational 

wavefunctions, and rigid-rotor rotational wavefunctions [see equation (5.27)]. 

These states can be coupled by non-vanishing off-diagonal matrix elements of 

the electronic fine structure Hamiltonian Hes [see equation (2.77)], the nuclear 

kinetic energy operator TN [see equation (3.13)], the anharmonicity potential 

energy term V,{"" [see equation (4.15)] and the rotational coupling term Hl! [see 
equations (5. 36) (5.39)]. Symmetry is used, as already described in chapter 10 

and in this chapter, to label the zero-order states. We can also use symmetry 

to determine which coupling terms in V,{"" and H/, must vanish and to make 
a general determination of which zero-order states cannot be coupled by any of 

these terms in the full Hamiltonian. 

Anharmonicity was discussed in section 4.4 and it involves the effect of the 

cubic terms ®,;;Q;QsQ; and quartic terms ®;5;,Q,QsQ;Q,. Like all terms 

in the Hamiltonian, ee must be totally symmetric and generate the totally 

symmetric irreducible representation ) of the MS group of the molecule. 

Because of this, only cubic terms for which Q, Qs Q; are of symmetry IS) can 

occur. Similarly only quartic terms for which Q; Q; Q; Q,, are of symmetry °) 

can occur. This leads to the following result: 

®,5; will vanish if 

PO yelt0,) 21) or (11.40) 

and ®,..,,, will vanish if 

R(O,) @F (Os) @ PO; T(Opm re (11.41) 

In section 4.4, we stated that for the water molecule, the cubic anharmonicity term 
® 23 vanishes. Using equation (11.40), we now see why this must be so. 

The terms in equations (5.36) and (5.37) are part of the rotational 
Hamiltonian Arot and they involve both rotational and vibrational degrees of 
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freedom; they also give rise to rotation—vibration interaction. This interaction 

occurs because molecular rotation introduces two forces: The centrifugal force 

and the Coriolis force. The centrifugal force causes centrifugal distortion and 

this stretches bonds and opens out bond angles to increase the instantaneous 

moments of inertia as a molecule rotates. As a result, the rotational term values 

do not follow an expression quadratic in the angular momenta, as they do in the 

rigid-rotor approximation, and terms of higher power in angular momenta are 

introduced. The term in equation (5.36) gives rise to the centrifugal distortion 

correction and it involves the parameters ath introduced in the expansion of the 

/Lap elements given in equation (5.29). A Coriolis force is experienced within the 

xyz rotating reference frame by an nucleus when it moves within that frame. The 

term in equation (5.37) expresses the Coriolis force correction and it involves the 

Coriolis coupling constant ¢“, introduced in equation (5.31) for the vibrational 

angular momentum operator Pw. 

Symmetry can be used to determine which coupling parameters arb in 

equation (5.30), and which Coriolis coupling constants ¢*, in equation (5.32), 

must vanish. By substituting equations (5.29) and (5.31) into equation (5.28), one 

determines that the ae and o occur in the terms 

Al) 7 mye ts Pe eae P ue Or Je
 Jp (11.42) 

a, Bar 

and 

! 5g ds Hawkins Or Ps Ja (11.43) 
a,r,s 

respectively. The terms H and A> must be totally symmetric in the MS group of 

the molecule since they are part of the molecular Hamiltonian. Thus, a; oe cae 

vanish if the product of the symmetries of Q,, Ja and Jp does not contain P“ 

Similarly, i. must vanish if the product of the symmetries of Q,, P, and Je does 

not contain P'S). The normal coordinate momentum P, has the same symmetry 

as the conjugate normal coordinate Q,, and we obtain the symmetry conditions: 

ae will vanish if 

r(O,) @T Uy) @ Pg) ZT (11.44) 

and ¢., will vanish if 

HOpe hiOoel Va Av. (11.45) 
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For a symmetric top or linear molecule, the zero-order vibrational 

wavefunctions are 

LV ele) = Oy, (1) Org (02) aa, oes hel Crtastirst) 

x Vie, SEtOMA 2 Ofe): Woe, lf (O 7; af) (11.46) 

where there are tf non-degenerate normal coordinates Q; of symmetry Ee, 

(f — t) doubly degenerate pairs (Qja, Qj») of symmetry 2 aVini= 

Oy Svar Vial on oy Up and Ly ae Une tile vay ear lf). The zero-order 

rotation—vibration wavefunctions are 

LV LVS odcg wre) (11.47) 

where, for a PEN top molecule, K = |k| < J and, for a linear molecule, 

Keen |e ae jae lj | < J; the zero-order rotational wavefunctions 

|J,k,m) are denned 1 in equation (5.53). The functions in equation (11.47) are 

ie So of the zero order harmonic-oscillator rigid-rotor Hamiltonian 

H? “oor Ho. from equations (4.14) and (5.35). 
In the variational approach for calculating rotation—vibration energies, 

we diagonalize a matrix representation of the complete rotation—vibration 

Hamiltonian, including Vou and the terms in equations (5.36) and (5.37), in 

a basis set of functions |V, L)|J, k, m). Proceeding as outlined in section 2.3, the 

rotation—vibration wavefunctions are obtained as 

J 

Dye nye See ey, Lilt (11.48) 
V,Lk=-J 

where the A is ie ) are expansion coefficients. Because of the vanishing integral 

rule, only products |V, L)|J,k,m) of the same symmetry, I} say, in the MS 

group can be connected by the non-vanishing matrix elements of the rotation— 

vibration Hamiltonian. Therefore, as discussed in chapter 7, the wavefunction 

pln) has the useful symmetry label Ty. Off-diagonal matrix elements 

are zero between basis set functions having different values of the rotational 

quantum number J as a result of rotational symmetry (see section 14.5), so J 

is also a useful label. We introduce the running number j to distinguish between 

eigenstates having the same values of Ty and J. If |V, L) has the symmetry yin 

and |J,k,m) has the symmetry Tyo, the product |V, L)|J,k,m) occurs in the 

summation of equation (11.48) if and only if 

Pry = Pvib ® Trot. (11.49) 

There will, however, be different combinations of Tyip and Tyo that all satisfy 

equation (11.49). 

For Hs the vibrational wavefunctions can have the symmetries yj, = 

Aj’, A2’ or E’ in the MS group D3,(M). In table (11.5), we list the Ty 
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Table 11.5. The possible combinations of D3,(M) symmetries T;y, Lyin and Vyot 
[equation (11.49)] for Hy. 

Pry Dvib Trot Pry V vib rot 

Ay’ Ay’ Ag Ay’! Ay! Ap! 

Ad! Ad’ Ay’ Ay” 
E’ E’ E’ BY 

Ay” Ay’ Ay” E’ Av E’ 

Ay! A," Ay’ E’ 

E’ E! E’ E! 

Ay! Ay! Ay! E"” AG E’ 

Ay! Aq’ A! E"’ 

E’ E! E’ E” 

symmetries resulting from all possible combinations of these Tyj, values with 

the possible [ot symmetries. We see, for example, that a rotation—vibration 

wavefunction pias) of A,’ symmetry in D3,(M) can be a superposition of 

products |V, L)|J,k,m) with (yin, Prot) = (A1’, Ar’), (A2’, Ao’) and (E’, FE’), 

respectively. 

Asymmetric top molecules like H2O have no / quantum numbers since all 

normal coordinates span non-degenerate irreducible representations and so we 

write the zero-order vibrational wavefunction as |V). The zero-order rotation— 

vibration wavefunctions are 

IV) IJK Ke) (11.50) 

where |/Jx,,x,.) iS an asymmetric top rotational wavefunction. To be coupled by the 

rotation—vibration Hamiltonian, the products |V)|Jx,x,) must all have the same 

symmetry I’,, in the MS group. We use the H2O molecule as an example. From 

equation (11.29), the possible values for yj) are A; and Bp and, in table 11.6, 

we show the possible combinations of yjh and Pyotr symmetries that produce all 

possible [,, for H2O in C2,(M). A rotation—vibration wavefunction pars) 

of A; symmetry in C2,(M), for example, can be a superposition of products 

\V)|Jx,K-) with (vib, Trot) = (A1, A1) and (Bz, Bz), respectively. 

For isolated vibrational states, i.e. vibrational states that are well separated 

from other vibrational states, it is possible to use perturbation theory to account 

for the effect of all of the off-diagonal matrix elements of the rotation—vibration 

Hamiltonian and, in this way, an analytical expression can be derived for the 

effective rotational Hamiltonian for that vibrational state. Symmetry can be used 

to determine which terms can be present in such an expansion. For vibrational 

states that are close in energy, such an approach is not appropriate and direct 

diagonalization of the Hamiltonian matrix, suitably truncated to cover close-lying 
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Table 11.6. The possible combinations of C2y(M) symmetries Ty, Tyjp and Prot 

[equation (11.49)] for H20. 

Vyy V vib Prot Pry P vib Trot 

A, Aj Ay Ar Ay A2 
Bo Bo By By 

By AY By By Aj By 
Bo A2 Bo Aj 

vibrational states, is necessary. 
The systematic development of the effective rotational Hamiltonian involves 

the perturbation treatment of all the terms in Aj, and vanh using zero- 
order harmonic-oscillator rigid-rotor products. The development involves a 

consideration of both the order of magnitude of each term in H/,, + Vee together 
with a consideration of the order of the perturbation theory used. The effective 

rotational Hamiltonian is developed as a power series in the Ja, with ‘effective’ 

constants as coefficients. By adjusting the values of the effective constants 

so that the calculated term values are in optimal agreement with experiment, 

one can determine their values. Knowing the analytic expressions for them, as 

obtained from perturbation theory, one can, in principle, determine from them the 

values of the equilibrium rotational constants (Ae, Be, Ce) and the force constants 

(kij, Kijk, kijkt) given in equation (4.6). 
For a diatomic molecule in an isolated singlet state, the effective rotational 

Hamiltonian terminated at terms quartic in J has the eigenvalues 

Het = Bry J (J +1) — DpyyJ?(J +1)? (11.51) 

and the effective rotational Hamiltonian for an asymmetric top molecule 

terminated at quartic terms can be written as 

ne = AtvJ2 + Biv\Jp =r Civ J2 a 5 Dh tepeede Ig Jy Te G@liES2) 

aBysd 

Symmetry can be used to determine which TaBys Must vanish. In these 
expressions, the effective rotational constants Ajy}, Bry, and Cry] differ for each 
vibrational state as do the effective centrifugal distortion constants Diy, and 
Twpys- For a symmetric top molecule, the quartic centrifugal distortion correction 
in the effective Hamiltonian contributes 

=DPIAP AY SD eT AD Rap eRe (11.53) 

to the rotational eigenvalues. Higher-order perturbation theory and appropriate 
A 

consideration of all the terms in H/,, and V"", leads to centrifugal distortion 
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Table 11.7. The C3, symmetry species of the rotation—vibration wavefunctions for CH3F 
in the v4 fundamental state; n is a non-negative integer. 

K P(Pry) 

0 E 

(+1) (—1) 

3n+1 A, @Ao2 E 

3n +2 tah A, ®A2 

3n+3 E E 

terms with higher even powers (sextic, octic, etc.) of the components of the 

angular momentum operator and such terms are often required to reproduce very 
precise data. 

There is one circumstance in which there is a significant first-order diagonal 

correction to the energies from He and this involves the effect of the term H, 

equation (11.43), for a degenerate vibrational state. This is called first-order 

Coriolis coupling. We use the degenerate E species v4 fundamental of CH3F 

as an example. For the v4 state of CH3F, a rotation—vibration wavefunction in the 

harmonic-oscillator rigid-rotor approximation is |v4, /4)|J,k,m), where vg = 1 

and /4 = +1. Each such zero-order rotation—vibration state having non-zero K 

is four-fold degenerate as (k, /4) = (+K, 1), (-K, 1), (4K, —1) or (-K, —1). 

For CHGF, the product Ho pay = (O4,P4, — Qyy Pyq)J, is of species Ay in C3y 
and 80 64, 4, = —ip 4q(= 64, Say) is non-vanishing. To evaluate the diagonal 

matrix element of the H> term —[u,/(he) lez Ho pas, we use equations (4.37) 

and (4.39); including the effects of vibrational averaging on Ae = hope) he), 

the diagonal matrix element of H in the v4 state is 

A 

(H>) = —2A pa Sg lgk- (1154) 

Thus, each initially four-fold degenerate level is split into two; these two 

components are labelled as the (+/) and (—/) levels, respectively, and each is 

doubly degenerate. The (+/) level is that having k and /4 with the same sign, and 

the (—/) level is that having & and /4 with opposite sign. Since ¢; is positive, 

the (+/) level is below the (—/) level for each state having K > 0 in the v4 

fundamental state of CH3F. The rotation—vibration symmetry Species are given in 

table 11.7. Vibrationally off-diagonal matrix elements of H2 split the degeneracy 

of the A; @ A? rotation—vibration levels within the v4 state, i.e. of the (+/) levels 

having K = 3n + 1 and the (—/) levels having K = 3n + 2. This is called /-type 

doubling. 
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11.6 Problems 

Vets 

Lie 

L1e3 

11.4 

De 

9 

Prove the result quoted in equation (11.9). 

Prove the asymmetric top symmetry rule that is quoted on page 229. 

The formaldehyde molecule CH20 has C2, point group symmetry. The a 

axis is the C2 axis and the c axis is out of the plane. Write down the MS 

group of the molecule and determine the equivalent rotations of each of its 

elements. Determine the symmetry of the asymmetric top energy levels 

as a function of the evenness and oddness of K, and K, and contrast the 

results with those given for the water molecule in table 11.3. 

Determine the equivalent rotations of one element from each class of 

C3,(M) for the CH3F molecule. Confirm the symmetries of the rotational 

wavefunctions of CH3F as given in table 11.2. 

Use equations (4.11) and (4.12) for the translational and rotational 

normal coordinates to determine their symmetries for CH3F. Determine 

the symmetries of the vibrational normal coordinates for CH3F. 

Determine the symmetries of the vibrational normal coordinates for the 

formaldehyde molecule. 

Determine the non-vanishing coefficients ®,5;, Prsty, at? and ¢*, for the 

molecules H2O, CH2O and CH3F. 

Which rotational levels of the fundamental vibrational states of the CH3F 

molecule can perturb each other and what are the selection rules on K for 

the perturbations? In each case, determine which terms in the Hamiltonian 
cause the perturbations. 

Determine the AK, and AK, selection rules for perturbations to be 
possible between rotation—vibration levels in the first excited states of 
the v; and v3 fundamentals of the water molecule. Compare with the 
results obtained for the perturbations between the overtone 2v2 and each 
of the fundamentals vj and v3. Which terms in the rotation—vibration 

Hamiltonian can cause each of these perturbations. 
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Symmetry selection rules for optical 

transitions 

12.1 Forbidden and allowed transitions 

By applying the vanishing integral rule to the rovibronic transition moment 
integral 

It = f OfcsaPhede (12.4) 

we determine in equation (7.86) that an electric dipole transition between the two 

rovibronic states ®/,, and ®/,. is rovibronically forbidden if 

(Opa) OL iia) Oe) (22) 

or, equivalently, if 

P(e.) @ P(N.) BP (ua) (12.3) 
/* // but now in implementing this equation, [(®%.), [(®,,.) and [(jz4) are MS 

group symmetries, rather than CNPI group symmetries, of W/%., Wi. and wa, 
TS) is the totally symmetric irreducible representation of the MS group and ju, 

is the component of the molecular electric dipole moment along the space-fixed 

A axis [see equation (2.88)] where, in the notation of chapter 5, we now have 

A = &,n or ¢. T(z) 18 the one-dimensional irreducible representation of the 

MS group that has character +1 for all nuclear permutations and character —1 for 

all permutation—inversions. 

Rovibronically forbidden transitions can gain intensity as a result of the 

ortho—para mixing effect of the nuclear hyperfine Hamiltonian. An example of 

such a transition is transition (b) in figure 9.3 on page 191, which is a rovibronic 

A, < B, transition in the water molecule. For the water molecule, [(u4) = A2 

and, since Aj @A2®B, Z Aj, this transition satisfies equation (12.2). Transitions 

that satisfy equation (12.2) are normally said to be nuclear spin forbidden, rather 

than rovibronically forbidden, and they are usually extremely weak. 

245 
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If we set up the transition moment integral using the complete (exact) 

internal wavefunctions ®jpt [the eigenfunctions of Hint in equation (2.77)], then 

we deduce that the transition between the states ®/,, and ®(', is strictly forbidden 

as an electric dipole transition if 

M(H) @ Pind) DB PWHa)- (12.4) 

The symmetry (Pint) is called tot in chapter 9, and transition (b) in figure 9.3 

is between ®jnt states having symmetries B, and B2 so that it is not forbidden by 

equation (12.4). A transition satisfying equation (12.4) can only gain intensity as 

a magnetic dipole transition or as a result of the parity violating effect discussed 

in section 15.2 and such strictly forbidden transitions are the weakest of all 

transitions. 

The concept of a forbidden transition is very important. Using 

equation (12.2) to determine which transitions are forbidden, rather than 

equation (12.4), leads to more transitions being called forbidden. For example, 

the ortho-para transition (b) in figure 9.3 is forbidden by equation (12.2) but 

not by equation (12.4). In general, the more approximate the formulation is, the 

larger are the number of forbidden transitions. Thus, if we introduce further 

approximations (such as the Born—Oppenheimer, rigid-rotor and harmonic- 

oscillator approximations) more transitions become forbidden. The important 

point is that, if the approximations are appropriate, then the forbidden transitions 

will be weak and we can understand the main features of a spectrum without 

considering them. 

As stated in section 7.7, and discussed in more detail in section 14.5, the 

classification of rovibronic states in the rotational symmetry group K (spatial) 

gives them the rovibronic angular momentum quantum number label J. Using the 

vanishing integral theorem with the group K (spatial) leads to the conclusion that 

transitions are nuclear spin forbidden if they are between states whose J values 

are both 0, or for which the change in J is larger than 1. Using K (spatial) for the 

complete internal wavefunctions gives them the total angular momentum quantum 

number label F and strictly forbidden transitions are between states whose F 

values are both 0, or for which the change in F is larger than 1. 

Thus, at a given level of approximation, transitions of a certain type are 

forbidden; forbidden transitions are specified by quoting selection rules. In this 
chapter, we will determine selection rules and show how they change with the 
level of approximation. However, it is more appropriate to quote the selection 
rules in a way that specifies the transitions that are not forbidden; these selection 
rules will then be the rules that tell us which transitions are allowed, i.e. which 
are the strongest transitions in the spectrum. In equation (7.60), we have already 
specified the selection rules on the rovibronic angular momentum quantum 
number J in this way for allowed rovibronic transitions as 

Sha etal but J =0<60 is forbidden. (125) 
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Allowed transitions between internal states ®jn; satisfy 

Me == ash) but F =0<0 is forbidden. C1256) 

From equation (12.3), the transition between the rovibronic states ®/, and 
P/. is allowed if 

Li( Oe er (O-) slay): (127) 

For MS groups having only real characters (all the character tables in Appendix B 

have only real characters), the symmetry condition for an allowed rovibronic 

transition is 

P(1y.) @P(O".) D Pa) (12.8) 
and a rovibronic transition is allowed if the product of the symmetry species of 

the two rovibronic states involved contains the symmetry species of jv. 

12.2 Zero-order transition moment integrals 

In the Born—Oppenheimer approximation, see equation (3.8), a rovibronic 

eigenfunction is the product of an electronic wavefunction ®ejec,, and a 

nuclear wavefunction ®,,,;. Making the harmonic-oscillator and rigid-rotor 

approximations in the rotation—vibration Hamiltonian leads to the zero-order 

product wavefunction given in equation (5.27); simplifying the notation, the zero- 

order W/,,, and yj. are 

/ 
Wrve = Petec,n” Pvib,n'v! Prot.n'r” d29) 

and 
/ 
ee = Delec,n’ Dyib,n/v! Prot,n'r! . (2310) 

The electronic state label n’ or n” on the vibrational wavefunctions occurs 

because the harmonic force constants and, hence, the normal coordinates, change 

with electronic state. The electronic state label on the rotational wavefunctions 

occurs because the definition of the Euler angles depends in a subtle way on 

the geometry of the equilibrium structure and this is electronic state dependent. 

However, this latter dependence only has the effect of making so-called axis- 

switching transitions weakly allowed! and we will neglect them as part of our 

1! Hougen J T and Watson J K G 1965 Can. J. Phys. 43 298. 



248 Symmetry selection rules for optical transitions 

zero-order approximation; thus, we omit the electronic state label on the rotational 

wavefunctions in the following. 

In terms of molecule-fixed components in the xyz axis system, a &n¢ 

component of the dipole moment operator can be written as 

[EAN Need Ue AGA ype AA) he gee =) eee) 
=, yez 

where the direction cosine matrix elements Ag, are given in equation (5.42) and 

they depend only on the Euler angles. The molecule-fixed components ji depend 

only on the vibronic coordinates, i.e. on the x yz electronic coordinates and on the 

vibrational displacement coordinates. We will focus on the component A = ¢ 

in determining selection rules. In field-free space, the same results are obtained 

regardless of which space-fixed direction is chosen here. 

Substituting equations (12.9)-(12.11) into equation (12.1) gives the 

following expression for the ¢ component of the transition moment integral 

in the zero-order Born—Oppenheimer, harmonic-oscillator and _ rigid-rotor 

approximation: 

0 
I = Ss (Drot,r’ | (Pvib,n'v/|(Petec,n’| 

a=x,y,Z 

x hat Ma | Detec,n’) | Dyib.n/v” )| Drot,r” he (12.12) 

Making use of the fact that only the rotational wavefunctions and the Ay, depend 

on the Euler angles and that they do not depend on the vibronic variables, we can 

write each of the x, y and z terms in the sum as the product of a vibronic matrix 

element integral of jz that involves integrating over vibronic variables only and 

a rotational matrix element integral of Ag¢ that involves integrating over Euler 
angles only: 

0 Frm = >, (Pvid,n’v'l(Petec.n/ Ia Petecn”)|Pvib,n’'v") 
A=X,V,z 

x (Drot,r/ Awe |Prot,r)- (AQT) 

The vibronic matrix element of jvg is evaluated in a two-step procedure in which 
first we integrate over the electronic coordinates to obtain 

— (n'n" 
Le Mes jie - Oe Q5, Q5, +) = (Belec n’ | Mal Pelec,n” del (12.14) 

/ M 

where @ = x,y or z and ~\'’”) depends on the vibrational displacement 
coordinates; we take these to be the normal coordinates of the electronic state 
n” here. We thus obtain the zero-order transition moment integral as 

0 ee 

Ir = Del (Dyin nw law si | Daie wrt) (Dros mlAwe ll Dror Pe (12.13) 

=X, yee 

Each of the w = x, y or z terms in the sum is the product of a vibrational matrix 
nn") element of j2’" ) and a rotational matrix element of hac. We use this zero order 

expression for /;y as the basis for determining selection rules. 
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12.3. Transitions within an electronic state 

From equation (12.7), the transition between the rovibrational states Dry, j/ 

and ®,,y, ;” within an electronic state is allowed if 

oe ) ® (yy, 5”) Dal oay (12.16) rv, ] 

WihetepAu— tai OliGs 

This rovibrational symmetry rule applies within the Born—Oppenheimer 

approximation. In the harmonic-oscillator and rigid-rotor approximations, 

the selection rules for allowed transitions are more restricted, and these 

approximations introduce vibrational transition moments and Honl—London 

factors. 

12.3.1. Vibrational transition moments and Honl—London factors 

For transitions within one electronic state, the labels (n’) and (n”) on the 

vibrational wavefunctions are omitted since all are now associated with the one 

electronic state, n say, that is considered. From equation (12.15), 

Hu = > (Pviv,v' Hel ®vib,v”)(Prot,r’ ag |Prot,r”) (12.17) 
GG ne 

where the expectation value of the dipole moment within the electronic state n as 

a function of the normal coordinates is given by 

La = ee Oy , O2, Q3,..-) = (Pelec,n|Ha|Pelec,n)el; A=X,Y,z. 

(12.18) 

Expressing the ji, in terms of the vibrational displacement coordinates and 

comparing with equation (4.11) for the translational coordinate 7, we find that 

the molecule-fixed component /ig(@ = x, y, z) has the same symmetry in the MS 

group (or, equivalently, for a rigid nonlinear molecule, in the molecular point 

group) as the translational coordinate 7. We can use the vanishing integral 

theorem for the vibrational transition moment integral 

King) = (Pvib,v'lHalP vib.) ee vib,a 

to deduce the following. 
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The vibrational transition moment between the vibrational states Pyip wy 

and ®,j,, ,” within an electronic state can be non-zero only if 

DOS ee Ver Aw yD Te) (12.20) 
vib, v 

where T'(Ty) is the species of the a(= x,y or z) component of the 

translational normal coordinate. 

As with the potential energy function Vx, ja is expanded as a power series 

in the normal coordinates: 

fla = WE +> ter Or + Y | Mars Or Os +*-- (12721) 
r TAS 

which introduces the parameters [16,, [4a,r, etc. Truncating this at the linear term 

(this is called the electrical harmonicity approximation) gives 

fly = Mea + Mar Or. (12.22) 
bs 

The js, are the values of {4g when the molecule is at equilibrium in the electronic 
state n; these are the values of the components of the equilibrium dipole moment 

for that electronic state. The jf, are constants and must transform as the totally 

symmetric representation of the MS group or point group. Thus, the equilibrium 

dipole moment component jzf, can be non-vanishing only if 

R= Ts (12.23) 

For example, for the water molecule, we see from table B.4 that only 7) is of 

symmetry Aj and so, for the water molecule, only jz; can be non-vanishing. The 

second term in equation (12.22), j4a,,Q;, must also be of the same symmetry as 

Tx for it to be non-vanishing, from which we deduce that the constant jug; can be 

non-vanishing only if 

P(Q,) = Tq). (12.24) 

The constant 1, is the value of the a component of the dipole moment gradient 

for the normal coordinate Q;; thus, it is large if /(q varies strongly with Q,. 

Substituting equation (12.22) into equation (12.19) gives the zero-order 
expression for the vibrational transition moment as 

(v/,v”) e 
Lhe = (Dyin wile a De La,r Or|Pyiv, v”) 

r 

= WE Sv" + > par (Pvid,v’|Or|®viv,v) (12.25) ~ 
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where the Kronecker delta 5,,,,” arises because ju., is a constant and the vibrational 
wavefunctions are orthonormal. 

The first term in equation (12.25) gives the transition moment for a purely 
rotational transition within one vibrational state; with the approximations made 
here, this is the equilibrium dipole moment component y&. Allowing for both 
electrical anharmonicity [i.e. the higher-order terms in equation (12.21)] and 
mechanical anharmonicity (i.e. cubic and quartic anharmonicity terms in the 

potential), this rotational transition moment becomes the vibrational expectation 
value 

(v = 

1) | = (®viv.v| fel Pvib,v) (12.26) 

from equation (12.19). This is the dipole moment for a given vibrational state; 

it depends on the vibrational state and varies with isotopic substitution. From 
equation (12.23): 

The dipole moment component (®yjip,»|a|Pvib.v) can be non-vanishing 

and a pure rotation spectrum allowed, if the translational coordinate Ty is 

totally symmetric. 

The intensity of a pure rotation transition depends on the value of the dipole 

moment, and it can be used to determine this value. 

The second term in equation (12.25) gives the transition moment for a 

vibrational transition and, thus, (within the electrical harmonicity approximation) 

only vibrational transitions, for which the matrix element of a normal coordinate 

Q; is non-vanishing, are allowed. The expressions for the non-vanishing 

matrix elements of Q,; are given in table 4.1, from which we see that in the 

harmonic-oscillator approximation (and electrical harmonicity approximation) 

allowed vibrational transitions have the selection rule Av, = +1, where 

the normal coordinate Q, must have the symmetry of a translation 7, [from 

equation (12.24)]. Thus, fundamental transitions are allowed for vibrational 

normal coordinates that have the symmetry of a translation; such a normal 

coordinate is said to be infrared active since fundamental bands” occur in the 

infrared region. 

A normal mode of a molecule is infrared active if its symmetry is equal to 

that of one or more of the translational coordinates Ty, where ~@ = x, y or 

Kee 

2A band consists of all the spectral lines in a single vibrational (or vibronic) transition. 
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The intensity of a fundamental band depends on the value of the dipole moment 

gradient (4, and can be used to determine it. 

In this approximation, overtone transitions (i.e. transitions from the 

vibrational ground state to vibrational states with one v, > 2 and all other v,/ = 0) 

are forbidden, as are combination tones (i.e. transitions from the vibrational 

ground state to vibrational states having more than one v; # 0). These forbidden 

transitions can gain intensity from both electrical anharmonicity and mechanical 

anharmonicity. However, they will still have to satisfy the vibrational symmetry 

selection rule of equation (12.20). 

For the water molecule, the normal modes have symmetry 2A; @ Bz, 

T, has symmetry A; and 7, has symmetry Bo (see table B.4). Thus, all three 

normal modes are infrared active. Similarly all six normal modes of CH3F, having 

symmetry 3A; @ 3E, are infrared active (see table B.5). For the benzene molecule 

(see table B.9), the translations span A2y ® Ejy. Consequently, among the 20 

normal vibrational modes of benzene [see equation (11.26)], only the one normal 

mode of A2y symmetry and the three modes of E1, symmetry are infrared active. 

To obtain the expression for the line strength, and the rotational selection 

rules on K, of a rovibrational transition for a symmetric top or linear molecule, 

we rewrite the sum in equation (12.11) for A = ¢ as 

(4am or miasale) Dip (2) Tesh (12.27) 
p=-—1,0,+1 

where, in terms of the Cartesian components, 

mie GURL mattis 
Te Wat at” (12.28) 

Abst wht Aaetior Ky 
T* (4) = —(+/x — ify) (12.29) 

/2 

and 
1 = = 

T(t) = fhe (12.30) 
with similar expressions for the components is (Ac) in terms of Aye, Aye and 
Azc¢. These three components of a vector generate the transformation matrices 
of the irreducible representation D“) of the group K (spatial) under the effect of 
overall rotation operations and they are called the irreducible spherical tensor 
CODES. }Combining this with the fact that the wavefunctions in the integral 
FTG rel: (Az) )|J", km") are expressed as the irreducible representation 

matrices D' v ) and D‘!” of the group K (spatial) leads to its evaluation as an 
analytic expression in the angular momentum quantum numbers. The square of 
this expression is called a Hénl-London factor A(J",k”, J’, k’). Tn this way, 
the expression for the line strength S(E;, <— E,) [see equation (2.87)] for a 
symmetric top or linear molecule is obtained as 

S( Be ep) Sed se LOT) | Oe AC eela Iini ance ai) 
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with 

ES AS (12.32) 
and 

— | 28s for (K”, K’) = (0, 1) or (1, 0) 
ac | 8ns otherwise 

(12333) 

where gps is the spin statistical weight factor for the transition (chapter 9), K = 
|k|, and the Honl—London factor A(J”, k”, J’, k’) = ACJ", k", JU + AJ, kK! + 
Ak) whoereAJ = J>— Js given intable 12:1: ACI’ sks J” +ATS, RY + Ak) 
vanishes for |AJ| > 1 and for |Ak| > 1. The selection rules on k are 

Ni) (12.34) 

if the vibrational transition moment (Oe ly (1)|O%,) = (), 1/421 Py.) is non- 
vanishing, and 

Aker 235) 

if the vibrational transition moment (DEAS (4)|®{..) is non-vanishing (so that 

(DP) p(x l OY) and/or (®/,, |y|®",) are non-vanishing). Equation (12.31) gives 
the line strength for the transition from the energy level E¥, to the level E/,,. The 

expression accounts for the m-degeneracy (see section 2.7) and for the nuclear 

spin degeneracy (chapter 9). 

There is no agreement as to whether one should label energy levels, and 

express selection rules, using signed or unsigned angular momentum quantum 

numbers. That is, should one use the signed quantum number k and the signed 

quantum numbers /, in the list L = (l;41,/:42,...,/f), as we do here, or 

should one use the unsigned quantum numbers K and | }_,/,|? Theoreticians, 

like us, are more likely to use signed angular momentum quantum numbers, 

whereas experimentalists (see, for example, the books by Herzberg) are more 

likely to use unsigned angular momentum quantum numbers. The theoretical 

development of the selection rules in terms of signed angular momentum quantum 

numbers is straightforward. However, it means that we label a zero-order 

energy level using the quantum numbers (J, k, L) [see equation (11.46)], so that 

Chr and (ie hae) [Where — 1) (1764, Ip, 3-5 1 7) describe the 

same energy level. This comes about because of time reversal symmetry (see 

section 14.8); the molecular energy is invariant to the reversal of all momenta 

(linear and angular). Thus, in the harmonic-oscillator rigid-rotor approximation, a 

transition (J, k, L) = (J’, K’, L') < (J", K”, L”) can alternatively be assigned 

as (J,k,L) = (J',—K’,-L’) <— (J",—K"”,—L"). In what follows, we 

first derive the selection rules using rotation—vibration wavefunctions and signed 

angular momentum quantum numbers and then also express the results in terms 

of unsigned quantum numbers. 

The rotational selection rules of equations (12.34) and (12.35) give rise to 

parallel and perpendicular bands, respectively, as we will see in section 12.3.3. 

Mechanical and electrical anharmonicity do not change these rotational selection 
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Table 12.1. Hénl—London factors A(J,k, J + AJ, k + Ak). 

Nie= 0 Ak = +13 

J2=K Gale hig=s) 
AJ=—-1l  JaFeH my Cues 

ke (J+1+k)(J—hb) 
AJ=0 J(J+D) QI(I+N) 

- (J+1)?—k? (J+2+k)(J+1+k) 
AJ=+1 Har 2(J+1)(2I+1) 

4 Honl-London factors with Ak = —l are 

obtained using the relation A(J,k, J +AJ,k — 

1) = ACG, —k, J + AS, =k + 1), 

rules, so that equation (12.31) is valid for symmetric tops and linear molecules 

in the approximation of neglecting both rotation—vibration interaction and the 

breakdown of the Born—Oppenheimer approximation. 

To obtain selection rules on K, and K, for an asymmetric top molecule, we 

write equation (12.17) as 

ft 1") 

Fy = Do Kiva’ (Prot.r/Aae|®rot,r”) (12.36) 
a=a,b,c 

where eee is given in equation (12.25), and apply the vanishing integral 

rule to the integral involving Age that occurs here. We know that ihe [see 

equation (12.22)] in the integral 7“**” ) transforms as Ty in the MS group and vib,@ 

it can be shown that Age transforms as Je (or Ra). We can use the asymmetric top 

symmetry rule on page 229 to determine the MS group symmetry of the ®,o¢.,. 

Using the MS group symmetries of the ®,o¢,- and Age, the application of the 

vanishing integral rule to (®yo¢,- |Awe |Prot,-”) leads to the selection rules 

AK = even INK = odd Lice = 

NIG odd INKG= 0d og" GL2Sm)) 

NK 00d Nee even iN! C= 6. 

These three different rotational selection rules give rise to a-type, b-type and c- 

type bands, respectively, each of which has a characteristic appearance. For the 

water molecule, the pure rotation spectrum will be a b-type band since only Jj, is 

of symmetry A}. If the molecule is a near prolate rotor, then AKg = even(odd) 

can be replaced by AK, = 0(+1) for the strong transitions; if the molecule is a 
near oblate rotor, then AK, = even(odd) can be replaced by AK, = 0(+£1) for 
the strong transitions. 
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12.3.2 The rotational spectrum of the CO molecule 

A simple application of the above is to the rotational absorption spectrum of 

the CO molecule, for which a part is shown in figure 1.2 on page 4. From 

equation (11.51), with neglect of centrifugal distortion, the rotational term values 

for CO in its v = O vibrational ground state are 

Frot = Bio J (J + 1). (12.38) 

In an absorption transition, the energy of the final state is necessarily higher than 

that of the initial state, and so, of the three possibilities for AJ, only AJ = 1 is 

possible. Thus, rotational transitions take place at the wavenumbers 

Dy Bis ts) 2B oC Ly 2 Bind 1): (12.39) 

From equation (12.31), with k’ = k” = 0, the line strength is 

SUS Or tL CAC O17 a1, 0) (12.40) 
rot,z 

where gps = 1 for *C!%O, ie is the dipole moment of CO in the vibrational 

ground state [see equation (12.26)] and A(J, 0, J + 1,0) is given in table 12.1. 

This gives 

Sirsa enh Cr ee: (12.41) 
rot, 

With Bp) = 1.92253 cm~! and? || = 0.122 D, we substitute 
equations (12.38), (12.39) and (12.41) into equation (1.9) in order to compute 

the intensity of individual lines in the rotational spectrum of CO. Figure 12.1 

shows the result as a stick diagram for the region of the CO rotational spectrum 

plotted in figure 1.2. To calculate the transmittance t [see equation (1.3)], in 

order to compare quantitatively with figure 1.2, we would need the path length 

/, concentration c and the instrument lineshape function [in order to generate the 

function €(v)]. 

12.3.3. Parallel and perpendicular bands of CH3F 

The normal coordinates of the CH3F molecule span the representation 

Po =3Ape3k (12.42) 

of C3,(M), the translational coordinate T, is of species A and the pair of 

translational coordinates 7, and 7) are of species E (see table B.5). We simulate 

the the v,[[(Q1) = Ai] and va[T'(Q4a, Q4y) = F] fundamental absorption 

bands to show how the different rotational selection rules in equations (12.34) 

and (12.35), Ak = 0 for the vj band and Ak = +1 for the v4 band, affect the 

appearance of the bands. 

3 1D =1 debye © 3.335 64 x 10-79 Cm. 
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Figure 12.1. Part of the absorption spectrum of carbon monoxide simulated at 300 K. This 

simulation should be compared to the experimental spectrum in figure 1.2. 

Neglecting centrifugal distortion the term values in the ground state (V = 0) 

and in the v; state (V = 1) are given by 

F = Gy) + BrvyyJ (J +1) + (Ap — Biv) K? (12.43) 

where Gry is the vibrational term value, and Arty] and Bryy are the vibrationally 
averaged rotational constants. For the v4 state, we must take into account the 

first-order Coriolis coupling correction given in equation (11.54); the term values, 

neglecting centrifugal distortion, are 

F = Gia, + Bid (J +1) + (Apa — Bra) K? - 2A ray Sqlak 

= Gia + Buy J (J + 1) + (Aq — Bay) K? 4 2A oi K. (12.44) 

For each value of K > O the term value splits into two and the components are 

labelled the (+/) and (—/) states as explained after equation (11.54). In table 12.2, 

we give the experimentally determined values of the parameters, where, in the 

notation v4*!, the superscript is the vibrational angular momentum quantum 

number /4. 

All vibrational transitions have the same selection rules on J and spectral 

lines satisfying AJ = —1,0 and +1 are called P, Q and R lines, respectively. 

For the v; band, it is straightforward to use equation (12.43) for the ground state 

and vj state, with the parameters from table 12.2, to determine the positions of the 

lines using the selection rules AK = O and AJ = 0, +1. In figure 12.2, we show a 

simulation of the v; absorption band of CH3F. This is called a parallel band since 

its intensity is determined by the vibrational matrix element of j-, the dipole 

moment component parallel to the C3 symmetry axis of the molecule. We draw 

stick spectra where the height of the stick is the relative intensity determined using 
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Table 12.2. Molecular parameters (in cm!) for CH3F. Parameter values from 

Champion J P et al 1982 J. Mol. Spectrosc. 96 422. 

|0) \v1) |v4*!) 

Gry] 0.0 2916.643 2998 .438 

Alv] 5.182 009 Sala 5.146 15 

Biv 0.851 794 25 0.851 804 0.852 428 

Araloa 0.243 16 

equation (1.9). We cannot calculate absolute intensities since we do not know the 

value of the factor | (v1 a (4) |0) vay, where Q is the partition function, but this 

factor is the same for all transitions in the band and so relative intensities can be 

computed. In the figure, we draw separately the sub-bands for K = 0,1, 2,3 

and 4; in the bottom display, we combine these, together with sub-bands for 

K = 5,6,...,50, to get the complete parallel band. Within each sub-band, 

the P-lines form a series (the P-branch) on the low-frequency side of the sub- 

band centre and the R-branch series is on the high-frequency side of the sub- 

band centre. In the region of the sub-band centre, the compact Q-branch occurs. 

In a parallel band, the sub-band Q-branches all fall in the same region at the 

centre of the band. In calculating the intensities, we use the spin statistical weight 

factors of CH3F given in table 9.4 and we further use the fact that, for states with 

K =3,6,9,12,...1in the vibrational ground state, the rovibronic symmetry I;ve 

is Aj ® A? (this follows from the results in table 11.2 in conjunction with the 

fact that the electronic and vibrational wavefunctions have A, symmetry). In our 

approximation, the A; and A2 energies are coincident and the intensities for the 

transitions involving them add together. 

For the v4 band, equation (12.35) applies since (Q4qa, Q4y) have the same 

symmetry as (7,, 7)). This is called a perpendicular band since its intensity 

is determined by the vibrational matrix elements of TD) or, equivalently, 

(ix, fly) which are components perpendicular to the C3 symmetry axis of the 

molecule. Detailed symmetry analysis (see problem 12.5) shows that for the 

vibrational transition moments to be non-vanishing, the more restrictive selection 

rule 
NCS ivy) (12.45) 

must be satisfied. In the present case, this condition can be rewritten as 

Sig= 1, = al) (12.46) 

This equation implies that among the four vibrational transition moments 

Gas i |0) (where the signs are uncorrelated), only (vat! |TJ 10) and 

(va—!| 71, |0) are non-vanishing. We can use symmetry to derive a relation 
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Figure 12.2. A simulation of the vj absorption band of CH3F at the absolute temperature 

T = 300 K. We draw separately the sub-bands for K = 0, 1, 2,3 and 4; in the bottom 

display, we combine these and sub-bands with K = 5,6,...,50, to get the complete 

parallel band. 

between these two matrix elements. With an appropriate choice of phase factors 

for the two vibrational functions |v!) and Iv4!y, it can be shown that (see 

problem 12.3) 

(23)*|vq?*) = |vg4) (12.47) 

where (23)* is an element of the MS group and the ground-state vibrational 

wavefunction |Q) is totally symmetric so that (23)*|0) = |0). The operation (23)* 
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Figure 12.3. The molecule-fixed xyz axes for the CH3F molecule and the effect of the 

MS group operation (23)* on these axes. In the initial situation, the z axis points out of the 

plane of the page but it is reversed by (23)*. 

reverses the direction of the molecular dipole moment vector in space but it also 

changes the xyz axes as shown in figure 12.3. Thus’, 

(23), Ge. [Ly, Lz) = (Lx, = hy, Lz) (12.48) 

which, in conjunction with equations (12.28) and (12.29), gives 

3) lee (12.49) 

In section 7.5.1, we proved the vanishing integral rule for H2O and, as part of 

the proof, we showed that the value of an integral of a function depending on the 

coordinates chosen for H2O is unchanged when a symmetry operation is applied 

to the integrand. This is true for all molecules and all symmetry operations. We 

make use of this result by applying the symmetry operation (23)* to the integrand 

of aT |O). The fact that the value of the integral is unchanged by the 

application of the symmetry operation leads to the relation 

(aD 0S (van | TA /0) (12.50) 

so that the line strengths in the perpendicular band in equation (12.31) are 

determined by a single parameter, |(v4*"|7} ,|0)|? = |(v4a—!|T! ,|0)|?. 
Equation (12.46) implies that AK = +1 transitions are to (+/) levels and 

AK = —l1 transitions are to (—/) levels in the v4 band. These selection rules 

satisfy equation (12.16) that the rovibrational symmetries of allowed transitions 

be connected by the symmetry of j14 (= Az for CH3F) as one can see from the 

symmetries as given in tables 11.2 and 11.7. In figure 12.4, we show a simulation 

of the v4 band drawn in a manner analogous to figure 12.2. We label the sub- 

bands K’(+/) <— K”. In figure 12.4, we draw five sub-bands separately and, in 

4 This is just as for the point group operation 0, onto which (23)* maps; see figure 8.8, but note the 

different convention used for locating the xyz axes in an He molecule. 
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Figure 12.4. A simulation of the v4 absorption band of CH3F at the absolute temperature 

T = 300 K. We draw the five sub-bands separately, and, in the bottom display, we 

combine these sub-bands, and all other sub-bands with K”” < 50, to produce the complete 

perpendicular band. 

the bottom display, we combine these sub-bands, and all other sub-bands with 

K" < 50, to produce the complete perpendicular band. 

In a perpendicular band, the sub-band Q-branches do not all fall in the same 

region at the centre of the band but instead they have an approximately equidistant 

spacing of 2/A(1 — ¢*) — B]. The spectra of He shown in figures 1.1 and 1.4 

are parts of the v2 fundamental band of this molecule. The v2 normal mode 

has E’ symmetry in D3,(M) (see table B.8) and the v2 band is a perpendicular 
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Table 12.3. Observed transition wavenumbers’ in the v7 band of Hy : 
tee 

Chet)” Ck ae 

(OL0n== 1) (1,41) 2457.277 
(3, +1, +1) (3,0) — 2509.063 

[25 42) 21) — (20,1) «2, £1) 2518. 198 
(1, +1, +1) CIl0) e253 29.7 11 
(E041) (1,41) 2545.412 

(2, +1, $1) (2,42)  2554.655 
(3, +2, #1) (3,43)  2561.486 

[Q)22,F1)=(2,0,2Din "yD. 2691.430 
(2, +1, £1) (CF Oya 2725-885 

(2, £21) 32,0! 41) @ 1, e1992726.208 
(3, +3,41)-G,41,4D}y (2,42)  2762.057 
(3, +3,41)-(@G, 41,4}, (2,42)  2823.125 
(G42, 21) = Gs0.421) Ie . n2c1). -2826.022 

(4, +4, +41) -— (4,42,4D]p 6,43) 2829.911 
((4, +4, +1) — (4, 42,41), (G,+3) 2918.013 

“From Oka T 1980 Phys. Rev. Lett. 45 531. 

States mixed by J/-resonance are labelled as 

(kK) bY) — (Ik, ym (see the 
text). 

band with, in principle, the same structure as the v4 fundamental band of CH3F. 

However, the simple model for the molecular energies that we can use to make 

a realistic simulation of the bands for CH3F, is not satisfactory for He and its v2 

band does not have the relatively simple appearance of figure 12.4. In table 12.3, 

we list the assignments of the strongest transitions in figures 1.1 and 1.4. For 

the upper states of some of these lines, the quantum numbers (J’, k’, /5) cannot 
be unambiguously assigned since there is a so-called (2,2) /-resonance; this is an 

interaction [caused by the Hamiltonian term H> in equation (11.43), which has 

off-diagonal matrix elements between the rovibrational levels of the v2 state and 

the rovibrational levels of non-degenerate vibrational states, including the ground 

state, having /7 = 0] that mixes the zero-order states (J’, k’,1,) = (J’,k™, bY) 

and (J’, k®, Io), where kK) — k® = bh) — 1, = +2. The corresponding 
upper states in table 12.3 are labelled [(J’, kK, b™) — J’, kK, lb) lim where 
the indices I and II distinguish the two mixed states. 

12.3.4 Rotation—vibration interaction 

Rotation—vibration interaction relaxes the selection rules given in equa- 

tions (12.34), (12.35), (12.37) and (12.46) but the rovibration symmetry rule 
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of equation (12.16) still applies if ortho—para mixing and the breakdown of the 

Born—Oppenheimer approximation are not included. Thus, for CH3F (see ta- 

ble B.5), when rotation—vibration interaction is included, all rovibrational transi- 

tions satisfying 

Ai < A2 or EsE de2s1) 

become possible. The symmetries given in table 11.2 apply to the rovibrational 

levels of CH3F in its ground state and in its vj state; the symmetries given in 

table 11.7 apply in the v4 state. Using the details of the symmetry analyses that 

lead to the results in these tables, particularly the effect of the MS group operation 

(123) and the rovibrational symmetry selection rules of equation (12.51), one can 

derive the general selection rule 

ieee Rye OES eG IE (12.52) 
j 

where ¢t = 0, +1, 42,..., and Al; = l' = i. For the v; band, this reduces to 

Nig St (12558) 

since all /; = O in the vj state, whereas, for the v4 band, we obtain (see 

problem 12.5) 
Ak = 14+ 3t. (12.54) 

For the vj band of CH3F, the allowed transitions have Ak = 0 and, for the 

v4 band, they have Ak = J4. For the v; band, the forbidden transitions have 

DS hte Ose a so: that transitions, such’as Ke—3.<— 0,K = 2 <— | 

or K = 4 < 2 can occur. For the v4 band, the forbidden transitions satisfy 

Ak = 1443, 14+6,14+9, ..., so that transitions such as K = 2(—l) —0, K = 

3(-1) — 1 or K = 2(4/) < 2-can occur. These forbidden transitions are, 

generally, very much weaker than the transitions allowed by equations (12.34) 

and (12.46). 

Rotation—vibration interaction makes rotational transitions in the Be and 

CH, molecules allowed. For both of these molecules, one might think that their 

point group symmetry rigorously precludes the possibility of them having a pure 

rotational spectrum; neither has a dipole moment. For the H} molecule, the Ty 
have symmetry AJ @ E’ (see table B.8) and so none is totally symmetric; in 

the ground vibrational state, the dipole moment components (®yip.o|Ma|Pvib,o) 

vanish and pure rotation transitions are forbidden according to equation (12.20). 

However, they are not forbidden according to the rovibrational symmetry 

selection rule of equation (12.16) and transitions having Ak = +3, +6,... 

are possible as a result of rotation—vibration interaction. In classical terms, the 

centrifugal distortion caused by rotation of the He molecule about a C2 axis 

(passing through one H atom and through the molecular centre of mass) gives 

the molecule Coy symmetry and, in such a geometry, it has a dipole moment 

along that Cz axis. Quantum mechanically, the rotation—vibration interaction 
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mixes the rovibrational wavefunctions of the ground vibrational state with the 
rovibrational wavefunctions of the v2 excited state and the pure rotation spectrum 
steals intensity from the allowed v2 fundamental of E’ symmetry. 

For centrosymmetric rigid molecules such as the hydrogen molecule or the 

benzene molecule, the point group contains the vibronic inversion operation i. 

This is not the same as the CNPI group operation E* and its effect does not 

define the parity (+) of the state. Its effect defines the ‘g’ or ‘u’ symmetry of 

the vibronic state. For such a molecule, the translational coordinates can only 

be of u symmetry and vibrational transitions between two u vibrational states or 

two g vibrational states are forbidden. For example, in benzene, the translational 

coordinates have symmetry A2y @ E1y in Den(M), see table B.9. The MS group” 

symmetry operation onto which the point group operation 7 is mapped is called 

O; [for benzene using the labelling of table B.9, O; = (14)(25)(36)(ad)(be)(cf)*] 

and it is always an operation having R° as its equivalent rotation. This means 

that the effect of the point group operation i on the rovibronic variables (i.e. 

all variables except nuclear spin) is the same as the effect of the MS group 

operation 0; eaOsisea symmetry operation for the rovibronic Hamiltonian® 

and so i is also a Symmetry operation for the rovibronic Hamiltonian; it is not 

just a symmetry operation of the vibronic Hamiltonian like most point group 

operations. This means that the labels g and u are good symmetry labels for 

the rovibronic states of a centrosymmetric rigid molecule. All the rovibronic 

states formed from a vibronic state of g(u) symmetry have g(u) symmetry, as 

a result of the fact that all rotational wavefunctions must be g since R® is the 

equivalent rotation of O;. There can be no rotation—vibration interaction between 

the levels of u and g vibrational states and, hence, rovibrational transitions 

between two u vibrational states or two g vibrational states are forbidden even 

with inclusion of rotation—vibration interaction. This means that pure rotation 

transitions cannot steal intensity from allowed rovibrational transitions and that 

pure rotation transitions in a centrosymmetric rigid molecule cannot be induced 

by rotation—vibration interaction. They cannot be induced by a breakdown of the 

Born—Oppenheimer approximation either (since 7 is a symmetry operation for the 

rovibronic Hamiltonian) but they can be induced by the nuclear spin hyperfine 

Hamiltonian (even in H2) or by a non-rigidity that produces a new MS group as 

we discuss in chapter 13. Such transitions must satisfy the strict selection rules 

given in equations (12.4) and (12.6). 

5 For a linear centrosymmetric rigid molecule, this would be the EMS group Doon(EM) given in 

table B.17. 

6 O;. like all operations of the MS group, is also a symmetry operation for the full Hamiltonian 

including Apps but the point group operation i is not a symmetry operation of the full Hamiltonian. 
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12.4 Transitions between electronic states 

Within the Born—Oppenheimer, harmonic-oscillator and rigid-rotor approxima- 

tions, the transition moment Eon, is given by equation (12.13) for transitions be- 

tween electronic states n’ and n”. To develop symmetry selection rules for allowed 

transitions, we need an MS group that accommodates all accessible versions of 

the molecule in both electronic states. If the two electronic states have the same 

MS group, then this one MS group can be used for expressing the symmetry 

selection rules for transitions between the states. If the electronic states have dif- 

ferent MS groups, then the MS group required will be more complicated to set 

up. Such a situation for the N and V electronic states of ethylene is discussed 

in section 13.6, where it is explained that for the N (electronic ground) state, the 

MS group is D2,(M), for the excited V state the MS group is Dzaq(M) but if both 

electronic states are to be considered together, the appropriate MS group is Gio. 

Let us say that the electronic wavefunctions ®*,,._, and ®ejecn” have the symme- elec,n ey : aie : =f — 
tries 7, and P’.),, and the vibrational wavefunctions ®),, |, and ®yjip n”y” have 

2 I // s : Z the symmetries \*,, and I’, in the appropriate MS group. The dipole moment 

component jg in equation (12.13) has the symmetry (jz). With this notation, 

i is non-zero and the transition is allowed if the symmetries satisfy 

Bi ® vip ® ee ® vib = P(pw)- (12.55) 

If we define Tye = Tvib ® Telec, we can reformulate equation (12.55) as an 

equation involving vibronic symmetries. 

We say that the transition is vibronically allowed, if the vibronic 

symmetries satisfy 

Ul el had: (12.56) 

The rotational selection rules depend on @ and are given as in equa- 

tions (12.34), (12.35) and (12.37). The vibronic symmetry selection rule will 

not be changed by anharmonicity or by vibronic mixing caused by the breakdown 

of the Born—Oppenheimer approximation since these effects do not change the 

vibronic symmetry. 

More restrictive selection rules can be obtained. We begin with 

equation (12.15) for the zero-order transition moment integral nee In 

equation (12.14), 

fee Vel OTe Om Oa (Oana Danes ep Miele T) 
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where a = x, y or z. As in equation (12.21), we make the normal coordinate 
expansion 

—(n'.n’ yee oe nl’ jig TWEE On + Yass OO ts (12.58) 

which introduces the parameters es my 2 ee ’ etc. In this expansion, the 

normal coordinates are those of one of the electronic states n’ or n” involved 

in the transition. 

If the symmetries are such that 

eee @ Pee > P(e) (12.59) 

we say that the transition is electronically allowed. 

The transition must simultaneously satisfy equation (12.55) in order to be 

vibronically allowed and so, in an electronically allowed transition, 

Uf / 

In this case, the constant term ee in equation (12.58) can be non-vanishing 

and, since this term normally contributes much more to the vibronic transition 

moments (®yip,y’; mig oe yj”) than the subsequent higher-order terms in 
the normal cponimae electronically allowed transitions are generally strong. 

In estimating the intensities of electronically allowed transitions, we truncate 

the expansion in equation (12.58) after the constant term ju oa > Tn this 
approximation, the square of the vibronic transition moment is given by 

=i( t " 2 (n’,n") 2 2 

[Dyan aly ee: i | @yin.wj”)| = IMeo | |(Dyib,v/j/|Pvib,w”j”)| (12.61) 

which involves the Franck-Condon factor |(®yiv,v/j'|®vib,v’j”)|7; this is 

the square of the overlap integral between the atl and final vibrational 

wavefunctions. In this approximation the Franck—Condon factors give the relative 

intensities of the vibronic bands within an electronic band system and this is 

referred to as the Franck—Condon principle. 

If the equilibrium geometries of the two electronic states involved in the 

transition are very different, then the Franck—Condon principle results in the 

occurrence of long progressions of vibrational bands with significant intensity. 

Such a long progression in a typical diatomic molecule is shown in figure 12.5. 
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In this figure, we have drawn two model potential energy curves for the CH 

molecule; each of the potential energy curves is given as a Morse potential 

Vr\/Aj=h tdi He! (12.62) 

where r is the internuclear distance, re is its equilibrium value, 7. is the value of 

the potential energy at r = re, De is the dissociation energy and a is a parameter 

that determines the curvature of the potential energy at r = re. For the lower 

electronic state in figure 12.5, we set T/’ = 0,r/ = 1 A, DY = 30000 cm! 
and a” = 1.5 A7!, whereas for the upper electronic state, we have chosen 
Ti = D, = 20000 cm™!, ri = 1.35 A anda’ = 1.5 A7!. We calculate the 
v’ = 0 vibrational wavefunction for the lower electronic state and the vibrational 

wavefunctions with v’ < 12 for the upper state; these wavefunctions are plotted 

in figure 12.5 at their respective energy values. The Franck—Condon factors for 

the v = v’ < O transitions are plotted as a histogram to the right of the upper 

potential energy curve. The largest Franck—Condon factor of 0.11 is obtained for 

the transition v = 3 < O but the Franck—Condon factors vary slowly with v’. 

This is because the steep inner wall of the upper-state potential energy, where the 

upper-state wavefunctions have their inner classical turning points, is situated near 

r = 1A, the equilibrium r-value for the lower-state potential. At equilibrium, the 

v’ = 0 lower-state vibrational wavefunction has its maximum amplitude and 
the excited upper-state wavefunctions have significant amplitude at their inner 

classical turning points. 

An electronically forbidden transition is a transition that does not satisfy 

equation (12.59). Vibronically allowed transitions satisfy equation (12.56) 

and such transitions could be electronically forbidden. Such an electronically 

forbidden but vibronically allowed transition can have appreciable intensity if 

the electronic transition moment ji{”’"”? depends strongly on the vibrational 
coordinates, in which case the terms of first and higher order in the normal 

coordinates in equation (12.58) have significant magnitude. This situation is 

referred to as the Herzberg—Teller effect. 

12.5 Raman transitions 

In section 1.6, we introduced the Raman effect and we now discuss the selection 

rules for Raman transitions. We consider rovibrational Raman transitions within 

the electronic ground state (which is assumed to be non-degenerate) of a molecule. 
Thus, the levels with energies E; and Fy in figure 1.8 are different rotation— 
vibration levels in the electronic ground state. In the polarizability approximation, 
the Raman line strength SRaman(E;y < Ef.) (see section 1.6) is expressed in 
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Figure 12.5. The Franck—Condon factors for v = v’ <— 0 transitions in absorption for 

a typical diatomic molecule. The vibrational wavefunction with v’ = 0 for the lower 

electronic state and those with v’ < 12 for the upper electronic state are drawn at the 

respective energies. A vertical dotted line indicates r = r{/ = 1 A and the Franck—Condon 

factors for the v = v’ < O transitions are plotted as a histogram. The maximum 

Franck—Condon factor for the v = 3 < 0 transition has the value 0.11. 

terms of matrix elements of the static electric polarizability tensor with elements 

—(0,n’) - (n’,0) —(0,n’) -(n',0) 
E Ma Ma Hp | 

yi) = yO yi) = yO 
elec elec elec elec 

(12.63) 

AaB), od, X> O1, Op. OB) = Da 

n' #0 
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where A, B = &,n, or € label the space-fixed axes. In equation (12.63), the 

electronic integrals 

po” 6, bX, 1, Or, 03...) =(Petecn'lMAalPetegnta  A=E,n,&, 
(12.64) 

are defined by analogy with equation (12.57) and Vee (which depends on the 

normal coordinates Q,) is the value of the Born—Oppenheimer potential energy 

function for the electronic state n’. The electronic ground state has the electronic 
- : : : 0 

wavefunction ®ejec,g and the Born—Oppenheimer potential energy function VE sa 

The electronic integral i oe depends not only on the normal coordinates Q, 

but also on the Euler angles 6,6, x because 44 depends on these angles [see 

equation (12.11)]. The sum in equation (12.63) extends over all electronic states 

other than the ground state. 

The Raman line strength Spaman(E,, < £,,) is given by an expression 

analogous to equation (2.87): 

SRumen( Ls — Ee) = Si Ds [(D! |&ap|O”)|? (12.65) 

DE OY ALB =e nie 

where ®{', and ®/, are the rovibrational wavefunctions of the initial and final 
states, respectively, in the Raman transition. Thus, for Raman transitions, we 

derive, by analogy with equation (12.3), that the Raman transition is forbidden in 

the polarizability approximation when 

T(O) @ TO) D P(a@ag) (12.66) 

where ['(@,4g) is the MS group symmetry of @4g. For a non-degenerate 

electronic ground state, we always have [(@4g) = T'S), the totally symmetric 

species of the MS group in question and so the Raman transition is allowed if 
(Oy = (Os 

In the Born—Oppenheimer, harmonic-oscillator and rigid-rotor approxima- 
tion for a symmetric top or linear molecule, SRaman(E,, <- E/,) is given by an 
expression similar to equation (12.31): 

SRaman(Epy im Evy) = g2c a5 Dep lTRe BO Yin)? 
x Aon hee Ie Oy (12.67) 

Here, the quantum numbers are defined as in equation (12.31) whereas 

Dens tor CK” K’) = (0) 1),(12.0); (0, 2) or @e0) 
g = 

2ns Otherwise 
(12.68) 

where gns is the spin statistical weight factor. There are two types of Raman 
scattering: Isotropic Raman scattering with © = 0 in equation (12.67) and 
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anisotropic Raman scattering with w = 2. The irreducible tensor components 
TX, (a) are given by 

a Lee S _ 
Ty’ (a) Fhe a qe = yy Sti a-- | (12.69) 

z ee = = 
Ts (@) = 7g eee — Axx — Ayy] (12.70) 

fs (@) = Fay; — 1dy (STA) 

Tin(@) = 5l@xx — dy] + idry (12.72) 
where all signs are correlated and Tx, (~) = O for |Ak| > ow. In 

equations (12.69)—(12.72), the agy(B,y = x, y,z) are the components along 

the molecule-fixed xyz axes of the polarizability tensor elements. Expressions 

for these components are obtained by replacing 7¢ in equation (12.63) by xyz; 

they depend solely on the normal coordinates Q;. The polarizability tensor is 

symmetric and there are six distinct molecule-fixed elements a,x, Ayy, Azz, Axy = 

Qyx, Qxz = Gz, and Ayz = zy. . 

The six polarizability tensor elements @y x, @yy,@zz,@xy,Qxz and yz 

generate the same representation of the MS group as the six products 

Te, Loe Le T, Ty, TT, and TT; of translational coordinates. 

The symmetries of the ag, components are normally indicated in group character 

tables (where they are called ag, ). 
For isotropic Raman scattering (o = 0), the rotational factor in 

equation (12.67) is given by 

TONE ES Rl ae k’) = SO qe (12.73) 

where d,/4” are 57/7” are Kronecker deltas. Isotropic Raman scattering takes place 

between states with J’ = J” and k’ = k” so it gives rise to Q-branches only. 
The rotational factors for anisotropic Raman scattering are given in table 12.4; 

these are non-vanishing’ for |AJ| = |J’ — J”| < 2, J” + J’ > 2 and 
|Ak| = |k’ —k”| < 2. Thus, in addition to the P, Q and R branches found 

in electric dipole spectra, anisotropic Raman spectra also have O-branches with 

AJ = —2 and S-branches with AJ = 2. 

We derive further selection rules by applying the vanishing integral rule to 

the matrix element (DIT 2, (@)| Oi) in equation (12.67). For CH3F, Ty (a) 

7 The selection rules |AJ| < 2 and J” + J’ > 2 for anisotropic Raman scattering and AJ = 0 for 

isotropic scattering result from rotational symmetry described by K (spatial), and they are completely 

general in the absence of ortho—para mixing. 
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Table 12.4. Rotational factors A) (J, k, J + AJ, k + Ak) in the intensities of anisotropic 

Raman scattering transitions. Rotational factors with Ak < 0 are obtained using the 

relation A@(J,k, J + AJ, k — Ak) = AM (J, —k, J + AJ, —k + Ak). 
ee EEEEEEEEEEEEEEE EE 

AJ Ak AQ (I,k, J+ AJ,k + Ak) 

3(J —k) (J ~k—1)(J +k) (J +k—-1) 

=2. 2(J—]l2J—1)J2J+1) 

1 (J —k)(J —k=1)(J —k—2) (J +k) 
(J-DQJ-)J2J+1) 

(J =k—3)(J —k—2)(J —k—1) (J =k) 
2 AG =) C7 =nuiCuseD 

4 a2 

a 0 3k (J-l)J (J+) 2/41) 

ah Wk) 
| (J + 2k + Dagan Ganesey 
2 (J+k+1)(J—k—2)(J—k—1)(J—k) 

2(J-)DJ(J+ND2S4+1) 

0 0 (3k2—J (J+)? 
(2J-1)J(J+1)2J+3) 

: 2 3(J—k)(J+k+1) 1 tM Torr eNO e3) 
2 3(J +k+1) (J +k+2) (J —k—1)(J—k) 

2(2F—1) J (J+1)(2J+3) 

1 Oe J (J+1)(J+2)(2/+1) 

«OEE ELD 
Lo Qk IN a7 HGFDOTAD 
2 (J4+k+1)(J+k+2)(J+k+3)(J—k) 

THIF) I+) 2T +1) 

49 0 3(J —k+2) (J —k+1) (J +k+2)(J+k+)) 
2(J +1) (2I+3)(J+2)2I+1) 

1 (J —k+1)(J+k+3) (J +k+2)(J+k+1) 
(2J+1)(J+1)(2J+3)(J42) 

a) (J+k+1) (J +k+2) (J +k+3) (J +k+4) 
4(J-+1)(2J+3)(J+2)(2J+1) 

and T5 (a) each have A; symmetry, whereas the pairs [Te (ay, T?,(@)] and 

[nes (a), ie (@)] each have E symmetry. Transitions from the vibrational ground 

state to the A; fundamental levels v;, v2 and v3 each have an isotropic component 

and an anisotropic component. Both components contain transitions with Ak = 0 

but the isotropic component consists of Q-branches only, whereas the anisotropic 

component consists of O, P, Q, R and S branches. The fundamental Raman 

transitions to the E fundamental levels vaaue vec and veu are due entirely to 
anisotropic Raman scattering. They contain O, P, Q, R and S branches with 

Nhe tel a2 

For vibrational Raman bands with isotropic and anisotropic components, the 

fraction of isotropically-scattered intensity to anisotropically-scattered intensity 
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detected in a given experiment depends on the angle between the electric field 

vector of the exciting light and that of the scattered light. This angle is determined 

by the direction of observation relative to the direction of the exciting light. 

In the Born—Oppenheimer approximation and neglecting rotation—vibration 

interaction, Raman transitions of CH3F are subject to the selection rule 

a(k- Du) = 0, +3 (12.74) 
j 

which is analogous to, but less restrictive than, equation (12.45). Consequently, 

rovibrational Raman transitions to fundamental-level states with /; = +1 have 

Ak = +1 or —2, whereas, for states with /; = —1, the transitions have Ak = —1 

or +2. 

For all of the fundamental levels of CH3F, Raman transitions from the 

vibrational ground state are allowed. We say that all the fundamental levels of 

CH3F are Raman active. 

In general, a normal mode is Raman active if its symmetry is equal to 

the symmetry as one or more of the translational coordinate products 

Tee ally ty Lad dy l 

For benzene (table B.9), TQ (@) and Tg (@) both have Ajg symmetry in 

Den(M), [T?;(@), T?, (@)] have Eyg symmetry and [T?,(a), T?,(a)] have Eg 
symmetry. Of the 20 fundamental normal modes of benzene [equation (11.26)], 

the two of Ajg symmetry are Raman active and the fundamental Raman bands 

have isotropic and anisotropic components with Ak = 0. The one normal mode 

of Ej, symmetry gives rise to an anisotropic-scattering fundamental Raman band 

with Ak = +1 and each of the four £2, normal modes gives rise to an anisotropic- 

scattering fundamental Raman band with Ak = +2. 

In CH3F, all the normal modes are infrared active and Raman active and so 

obviously a normal mode can be both infrared active and Raman active. However, 

in a centrosymmetric molecule like benzene, the dipole moment components 

lx, fly and jz; have u symmetry, whereas the polarizability tensor components 

Oxx, yy, Q--, yy, @xz and ay, have g symmetry. Allowed vibrational transitions 

are uog in an infrared spectrum but are g<>g or u<+u in a Raman spectrum. 

Consequently, 

in a centrosymmetric molecule there is an exclusion rule: No normal mode 

can be both infrared and Raman active. 



22 Symmetry selection rules for optical transitions 

As explained at the end of section 12.3.4, the point group inversion operation i 

is spoilt as a symmetry operation by ortho—para mixing and such mixing would, 

therefore, spoil the exclusion rule. This rule can also be spoilt by non-rigidity 

effects as observed for ethylene; see section 13.6. 

12.6 Problems 

Pel 

122 

123% 

ee 

12.6 

{2.7 

Use the results given in section 12.3.2 to assign the lines (i.e. label them 

using upper and lower state J values) in the experimental CO spectrum 

given in figure 1.2. 

Use equations (12.43) and (12.44), together with the zero-order- 

approximation selection rules discussed in section 12.3.3, to derive 

expressions for the wavenumbers of P, Q and R branch transitions in the 

v; and v4 fundamental absorption bands of CH3F. Sketch the qualitative 

appearance of the sub-bands. 

The va fundamental level of CH3F is described by two vibrational 

wavefunctions |vy') = |Wo) 11-1) and jut?) =" lo) \1+!), where |Wo) 

is totally symmetric in the molecular symmetry group C3,(M) and given 

by 

Iwo} = [v1 = 0)|v2 = 0)|u3 = O)lve = O|ug = 0°). (12.75) 

The functions |v!) = |1~!) and |1*!) are given by equation (4.38) and 

depend on the coordinates Q4 and a4. It can be shown that 

(123) Ov==(23)5 Oa=104 (12.76) 

(123)a4 = a4 — 2707/3 G24) 

(23)*a4 = — a. (12.78) 

Use these relations to determine the transformation properties of the 

functions |1~!) and |1*!) under (123) and (23)*. 

Use table 7.4 to show that all operations in C3,(M) can be written as 

products involving (123) and (23)* so that the transformation properties 

under all operations in the group can be derived from those under (123) 

and (23)*. Verify that |yo)|1~!) and |wWo)|1*!) (problem 12.3) have E 
symmetry in C3,(M). 

Use the answers to problems 12.3 and 12.4, together with equations (11.8) 

and (12.1), to prove equation (12.54). 

What would the rotational Raman spectrum of CO look like? 

Use equations (12.43) and (12.44), together with the zero-order- 

approximation selection rules discussed in section 12.5, to derive 

expressions for the wavenumbers of O, P, Q, R and S branch transitions in 
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Problems Dae 

the vj and v4 fundamental Raman bands of CH3F. Sketch the qualitative 

appearance of the sub-bands. 

The molecule F2O has C2, symmetry at equilibrium, where the OF 

distance is 1.405 A and Z(FOF) = 103.0°. Calculate the rotational 

constants Ae, Be, Ce for F2O. Which types of transition (i.e. a-type, b- 

type or c-type) occur in the rotational spectrum of F20? Determine, in the 

rigid-rotor approximation, the frequency of the J = 1 < 0 transition in 

the rotational spectrum. 



Chapter 13 

The symmetry groups of non-rigid 

molecules 

13.1 The MS group of a non-rigid molecule 

A rigid molecule is defined as being such that the barriers between its versions 

are insuperable and, as a result, there are no observable tunnelling splittings. In 

section 8.2, the MS group of a rigid molecule was defined as the subgroup of 

the complete nuclear permutation inversion (CNPI) group obtained by deleting 

unfeasible operations. For a rigid molecule an unfeasible operation is one 

that causes a coordinate change that moves the molecule from one version to 

another. To generalize the definition of the MS group to non-rigid molecules, we 

generalize the definition of an unfeasible operation: 

The MS group of a molecule is the subgroup of the CNPI group obtained 

by removing unfeasible operations, where an unfeasible operation causes 

a coordinate change that moves the molecule from one version to another 

across an insuperable energy barrier. 

With this generalized definition, feasible operations either do not change the 

numbered version or they change it to another version into which there is 

observable tunnelling. 

For a non-rigid molecule, there are one or more contortional! large 

amplitude vibrations that give rise to tunnelling splittings. In developing the 

zero-order harmonic-oscillator rigid-rotor Hamiltonian for a rigid molecule, in 

chapters 4 and 5, the Taylor’s series expansions of the potential function and mu 

| We use the general word contortion for any large amplitude tunnelling motion such as inversion or 
internal rotation. 

274 
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tensor elements were truncated at their leading terms; see equations (4.6) and 
(5.29). For a non-rigid molecule, these Taylor’s series expansions are made in the 

small-amplitude vibrational coordinates only, with coefficients that are analytical 

functions of the (large amplitude) contortional coordinate (or coordinates). 

Using the leading terms in these Taylor’s series expansions gives the zero-order 

rotation—contortion—vibration Hamiltonian and this can usually be separated into 

rotational, contortional and (small-amplitude) vibrational parts. The MS group 

of the non-rigid molecule can be used to classify the roconvibrational states of 

the molecule, to determine selection rules for transitions and to determine which 

states can perturb each other. 

13.2 The ammonia molecule 

The point group symmetry of the ground electronic state equilibrium structure of 

the NH3 molecule is C3, and, just as for CH3F (see figure 8.1), there are two 

versions of this structure as shown in figure 13.1. However, unlike the situation 

for CH3F, for NH3 in its vibrational ground state, there is an observable tunnelling 

splitting of about 0.8 cm~!. Thus, the MS group of ammonia is not the same as 

that for CH3F since operations such as (12) and E* that interconvert the versions 

are now feasible using the extended definition. All operations of the CNPI group 

are feasible for NH3 and the MS group is the group D3y(M) as for He. 

A very important use of the MS group for a non-rigid molecule can be 

illustrated using the NH3 molecule and this concerns the determination of the 

relative intensities of spectral lines that are split as a result of tunnelling. If one 

used a very low resolution spectrometer that did not reveal the inversion splitting 

of the lines in ammonia, one could understand the relative intensities of the lines 

using the statistical weights determined using the C3,(M) group. As for CH3F, 

see equation (9.27), the proton spin species is 4A;@2E in the C3,(M) group. The 

'4N nucleus has a spin J = | so its spin functions span 3A, and the total nuclear 

spin species for '*NHz is 

Pw 2AL Ook. (23:1) 

As for CH3F, the overall species Tot is restricted by the Pauli exclusion principle 

to be either A, or Az in C3,(M) and, as a result, from equation (13.1) we 

can determine that each level has a nuclear spin statistical weight of 12 using 

the C3,(M) group. With inversion tunnelling splittings resolved, the MS group 

becomes D3,(M), which has six different symmetry species rather than the three 

in C3,(M). The statistical weights of tunnelling l4NH3 can be determined as for 

13 By in section 9.3.2 using the D3,(M) group but we must multiply the gns given 

in table 9.3 for H? by 3 to allow for the I4N nuclear spin degeneracy. 

Using the reverse correlation table for C3y(M)—> D3,(M) as given in 

table 7.7 we can see what happens when the levels of '4NH3_ as classified in 

C3,(M) are split by inversion tunnelling. With the nuclear spin statistical weights 

added, the result is given in table 13.1. From this table, we see that levels 
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Figure 13.1. The two versions of the NH3 molecule. 

Table 13.1. The reverse correlation table for C3,(M) to D3,(M) for the l4NH3 ammonia 
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molecule with nuclear spin statistical weights added. 

C3y(M) D3n(M) 

A,(12) 

Agi 2) 
E(12) 

A,’ (0) ® Aq""(12) 
Ay’ (12) @ Ay"(0) 
E'(6) @ E” (6) 



The ammonia molecule TE 

a 

3 Ee” Vinv 

Al 3 ‘ : 

E’ J Ade( A; ) “inv 
3 Prise 

A3e( A’) 

2) E” 

2 0 
E’ 

: 

K=1 Keane Rees 

Figure 13.2. Rotation-inversion energy levels and allowed rotation-inversion transitions of 

NH3, with J < 3 and viny = O or 1. Missing levels (i.e. levels with zero spin statistical 

weight) are indicated by broken lines and their symmetry species are bracketed; allowed 

electric dipole transitions are indicated by arrows. 

of species A; or Az in C3y(M) will not be split into two observable levels by 

inversion tunnelling since one component will have zero statistical weight and be 

missing. The EF levels will split into two observable levels and each of the levels 

will have a statistical weight of 6. 

The derivation of symmetry selection rules for electric dipole transitions for 

NHs3 is identical to the derivation for Hs since these two molecules have the 

same MS group. Consequently, it follows from the discussion of equations (7.87) 

and (7.88) in conjunction with table 13.1 that the nuclear spin allowed transitions 

for NH3 satisfy the conditions A’ < A2” or E’ = E”. In figure 13.2, we show 
the rotation-inversion transitions of NH3 involving levels with J < 3 that are 

allowed in the Born—Oppenheimer approximation if there is no rotation—vibration 

coupling. The quantum number vjny labels the inversion-split levels. In principle, 

as a result of inversion tunnelling, each rotational level should give rise to a pair 

of levels having viny = 0 or 1. In practice, one of the components of such a pair 

can sometimes be missing as discussed earlier; the missing levels are indicated by 

broken lines in the figure. 
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13.3 Torsionally tunnelling ethylene 

As discussed in section 8.3.5, the ethylene molecule is a rigid molecule in its 

ground electronic state and there are 12 versions of its equilibrium structure. 

These versions are shown in figure 8.9. The MS group of the version shown 

in figure 8.9(a) is the group of eight operations 

{E, (12)(34), (13)(24) (56), (14) (23) (56), 
E*, (12)(34)*, (13)(24)(56)*, (14)(23)(56)*}. (13.2) 

The group is D2,(M) and its character table is given in table B.7. 

The barrier between the forms (a) and (e) in figure 8.9 is the lowest of the 

barriers separating (a) from the other versions. If there was observed torsional 

tunnelling in the spectrum and one wished to symmetry label torsionally split 

levels, it would be necessary to apply the generalized definition of feasibility given 

earlier in order to obtain the MS group. With this definition, the permutations 

(12) or (34) become feasible, since the barrier separating versions (a) and (e) is 

now considered not to be insuperable. Also all products of these operations with 

the operations of D2,(M) given in equation (13.2) would also become feasible. 

However, operations such as (243) which interconverts versions (a) and (b), (23) 

which interconverts versions (a) and (c), (24) which interconverts versions (a) and 

(d), (56) which interconverts versions (a) and (g) and (234) which interconverts 

versions (a) and (f), all interconvert versions that are separated by an insuperable 

energy barrier and they remain unfeasible. 

There are six equivalent sets of versions: [(a),(e)], [(b),(d)], [(c),]. 

[(g),(k)], [Ch),G)] and [(i),(1)] that are separated from each other by insuperable 

energy barriers. We can take any one of the six sets for the purpose of 

understanding the MS group and symmetry labelling the energy levels. Each 

would give the same energy level pattern and symmetry labels so that, in the 

event that torsional tunnelling was observed, there would be a six-fold structural 

degeneracy on each energy level. 

For the set [(a),(e)], the operations in the MS group of torsionally tunnelling 

ethylene are obtained by adding (12) and (34) to the operations of the MS group 

of the rigid version, given in equation (13.2), and by including all the distinct 

products of the operations. They are: 

{E, (12)(34), (13)(24) (56), (14) (23) (56) 

E*, (12)(34)*, (13)(24)(56)*, (14)(23)(56)* 

(12), (34), (1324) (56), (1423) (56) 

(12)*, (34)*, (1324) (56)*, (1423)(56)*}. (1823) 

This is a group of 16 nuclear permutation and permutation-inversion operations 

that is called Gjg. The character table of this group is given in table B.21. 

Regrettably there are two different conventions in the literature for labelling 
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Table 13.2. The correlation table for G16 to D2,(M). 

Gig — Da(M) Gig Do»(M) 

Ai AS Ain Aa 

Ag” Been ADS Sis 
Baa Ag Bim Teay 

Bo” “Big By Bie 
Be B35 ® Bru Ee Brg ® Bay 

Table 13.3. The reverse correlation table for D2,(M) to G16 with statistical weights added 

for !2C5H4. 

D>,(M) Gi6 Do4(M) G16 

Ag(7) Ay (1) @B, t (6) By,(3) EG) 
Au(7) A, (6) ®B, (1) Bu) Sea) 
Big(3) Az (0) BB 3) Ba(3) ee ee (3) 
Biy(3) At (3) BB (0) B33) ~ E7G) 

the irreducible representations. In the remainder of this section, in order to be 

consistent with the use in the ethylene literature, we use the MW convention for 

labelling the irreducible representations. 

In the paragraph containing equations (7.111) and (7.112), it is shown how 

to use character tables to determine the correlation of the symmetry species of a 

group to those of one of its subgroups. We can use this theory to determine the 

correlation of the species of G16 to those of its subgroup Doy(M) and these results 

are given in table 13.2. 

Making use of equation (7.113), it is possible to determine the reverse 

correlation table Do, (M) — Gyo which gives the species in Gj6 induced by each 

symmetry species of D2_(M); these results are given in table 13.3. The numbers 

in brackets for each symmetry species are the nuclear spin statistical weights for 

'2C)Hg4, determined for the groups Gj¢ and D2,(M) using the methods discussed 

in chapter 9. 

The results in table 13.3 show the effect of torsional tunnelling on each of 

the eight symmetry types of rovibrational energy level of '2C)Hy in the group 

Do,(M). That is, once we have symmetry classified each level of the rigid 

molecule using D2,(M), we can simply look in table 13.3 to see what the effect 

of torsional tunnelling will be. Rovibrational levels of species Ag and Ay in 

D>oy(M) have a statistical weight of seven; torsional tunnelling splits each into 

two, one with a statistical weight of six and one with a statistical weight of one, 

so that transitions originating in this pair of levels will have an intensity ratio 6:1. 
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Figure 13.3. The two conformers of an HSSH molecule in the electronic ground state. 

Levels of species Bj, and Bjy each have a statistical weight of three in Do,(M); 

torsional tunnelling produces one level with statistical weight of three and one 

with a statistical weight of zero so it is missing, and there is no splitting of such 

lines regardless of the torsional barrier height. Levels of species Bz, B2y, B3o 

and B3, each correlate with an E species of Gio and are not split by torsional 

tunnelling. This example shows that a group theory analysis is of great help in 

predicting how levels will split and in determining the intensity ratios of the split 

levels, without doing any numerical calculation of the tunnelling splittings. 

For torsional tunnelling C2H4, the group Gie can be used to classify 

rotational, torsional and vibrational wavefunctions, to determine selection rules 

and to determine which levels can perturb each other. We will not go into these 

applications here but the use of G16 for understanding the Raman spectrum is 

discussed in section 13.6. 

13.4 Intensity alternations for HSSH and DSSD 

The spin statistical weights for H2O and D20O (table 9.1) give rise to intensity 

alternations of 1:3 and 6:3 (= 2:1), respectively, in their spectra. However, H2O 

is a strongly asymmetric top with a x value [see equation (5.84) and figure 5.6] 

of —0.42. As a result, the rotational energy level pattern and, hence, the line 

structure of its spectra are irregular and it is difficult to recognize the intensity 

alternation. The disulphane molecule H*?S**SH has the same 1:3 alternation but 

with k = —0.99996, it is an almost perfect prolate symmetric top with regular 

line patterns in its spectra and an easily recognized intensity alternation. 

Figure 13.3 shows the two conformers of an HSSH molecule in the electronic 

ground state; the two protons are labelled 1 and 2 and the two *S nuclei 3 and 

4. The two conformers have dihedral angles (the angles between the H;S3S4 
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and H2S4S3 planes) close to 90°. In high-resolution spectroscopic experiments, 
splittings due to tunnelling between the conformers are observed and so the 
appropriate MS group for disulfane is 

te (12)(34), 8, G2)G4ayra (13.4) 

This group is called G4, see table B.18, and it is isomorphic to the MS group for 
the water molecule, with the obvious mapping: 

H.O: E (12) be (12)* 
| (13.5) 

HSSH: 12 (12)G4) E* "d2)G4)* 

We label the rovibronic states of HSSH by the irreducible representations 
Aj, A2, By, and Bo, using the 3 notation of table B.18. The CNPI group of HSSH 
contains, in addition to the feasible elements in equation (13.4), the unfeasible 
elements (12), (34), (12)* and (34)*. If torsional tunnelling were not observed in 
HSSH, then its MS group would simply be the group {£,(12)} and, since this MS 
group contains neither E* nor any permutation—inversion element, HSSH would 
be chiral (see section 14.7). 

A *S nucleus has spin J = O and so the possible spin functions for the nuclei 
3 and 4 in H**S*?SH are 

oa = |; 63) = |0,.0) and og = |Tawage= 1010), (13.6) 

By analogy with equations (9.9)-(9.11), we form the following four possible spin 

functions for H*?S3?SH: 

I 
Pys1 = 0015354 Pns,2 = BBS364 Pns,3 = —=loeB + Bald354 (13.7) 

/2 

and ; 

Dred = as — Pad354. (13.8) 

The functions ps1, Pps.2 and Pps 3 each have symmetry A;, whereas Py; 4 has 

symmetry Bo. 

The operation (12)(34) in equation (13.4) simultaneously interchanges the 

two protons, which are fermions, and the two 32§ nuclei, which are bosons. The 

complete internal wavefunction for HSSH is required by Bose—Einstein statistics 

to remain unchanged under the interchange (34) of the two **S nuclei whereas, 

because of Fermi—Dirac statistics, it must change sign under the interchange (12) 

of the two protons. Thus, it must change sign under the combined interchange 

operation (12)(34), which means that, exactly as for H2O, the complete internal 

wavefunctions for HSSH have [tor = By; or Bo. 

The determination of the spin statistical weights for HSSH proceeds in a 

manner completely analogous to that for H2O. The four nuclear spin functions 
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Table 13.4. Spin statistical weights for HSSH and DSSD. 

H22532SsH D22532sp 

Ive ns, t tot 8ns Irve Pns,t tot 8ns 

A Bo Bo ] Ay 6A] Aj 6 

As’ Vp Nees me A OG Ane AG 2G 
Br oA eB py esp, Mia pins 
By 3Aq Bo 3 Bo 3B> A| 3 

for HSSH in equations (13.7) and (13.8) transform according to the reducible 

representation 3A; ® Bz and, with I'tot = By or Bo, the spin statistical weights 

for HSSH are identical to those of H2O given in table 9.1. Similarly, the spin 

statistical weights for DSSD are identical to those of D2O. We give, in table 13.4, 

the spin statistical weights for HSSH and DSSD—this table is essentially a copy 

of table 9.1. 

The symmetry selection rules for allowed electric dipole transitions in HSSH 

are identical to those of H2O given in equation (7.59). The series of rotational 

transitions 

IK Ke= Jin — Jor (13.9) 

in the ground vibronic state, for J = 1,2,3,... have been obtained 

experimentally and they are shown in figure 13.4. The experimental technique 

used to obtain the spectrum does not yield the transmittance tT (see section 1.1) 

directly, instead a signal proportional to the second derivative d7t/dv? is obtained 

as a function of the frequency. An absorption line, which corresponds to a dip in 

the transmittance, produces a lineshape function with one central positive lobe 

flanked by two smaller negative lobes. In figure 13.4, we label the transitions in 

equation (13.9) by J and the 1:3 intensity alternation for J even:odd is clearly 

visible. 

13.5 The water dimer and the water trimer 

13.5.1 Water dimer 

The equilibrium structure of the water dimer, as obtained from both ab initio 

calculation and experimental spectroscopic study, is shown in figure 13.5 and one 

wants to understand the nature and quantitative strength of the interaction between 

the monomer units as a function of their separation and relative orientation. The 

thin bond between an H atom on one monomer (the donor monomer) and the 

O atom of the other (the acceptor monomer) is called a hydrogen bond and it is 

understood as an intermonomer electrostatic interaction between an incompletely 
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Figure 13.4. The sequence of H??S32SH transitions defined in equation (13.9), recorded 

at the University of Cologne by G Winnewisser and F Lewen using the Cologne Terahertz 

Spectrometer. The transitions are labelled by J and the 1:3 intensity alternation for J 

even:odd is clearly visible. The weak unlabelled transitions are ‘hot transitions’ (see 

section 1.4) or transitions in HSSH isotopomers containing aS 

H 

Figure 13.5. The equilibrium structure of the water dimer. The hydrogen bond between 

the water monomers is drawn as a thin line from the H atom of the donor monomer at the 

right to the O atom of the acceptor monomer at the left. 

screened positively charged H nucleus on the donor monomer and the pair of 

electrons in one of the ‘lone-pair’ sp* orbitals on the O atom of the acceptor 

monomer. This weak bond holds the monomer units together. The study of 

the spectrum of this molecule, with the aim of characterizing the intermonomer 

notential, is of great importance for unraveling the hydrogen bond interactions in 

liquid water, which are continually forming and breaking as the monomer units 

move about. 

The CNPI group has order h = 4! x 2! x 2 = 96 and the point group of the 
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Figure 13.6. Eight versions of the water dimer. The four protons are labelled 14 and 
the two oxygen nuclei are labelled 5 and 6, respectively (see also figure 13.5). Tunnelling 
pathways (see the text) are indicated by double-headed arrows: Single arrows (<>) indicate 
acceptor tunnelling, broken arrows (~<- >) indicate donor—acceptor interchange tunnelling 
and double arrows (<>) indicate donor tunnelling. 
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equilibrium structure” is Cs of order two. So there are 96/2 = 48 versions of the 

equilibrium structure. Eight versions of the water dimer are shown in figure 13.6 

and these versions do not have very high potential energy barriers separating 

them. There are five sets of eight equivalent versions obtained from these by 

breaking the OH bonds, such as would involve dimers like H, O¢H4—H205Hs3 but 

we ignore them since they are behind insuperable energy barriers and only cause 

an unresolved six-fold structural degeneracy. The intermonomer potential energy 

surface for the water dimer has three distinct barriers between the eight versions in 

figure 13.6 and they are indicated by the differently drawn double-headed arrows. 

We will consider the MS groups appropriate for the water dimer depending on 

the various tunnelling possibilities among these versions and deduce the relative 

intensities of the lines that are split by these tunnelling motions. 

If the water dimer were rigid with C, point group symmetry then the MS 

group of version (1) would be 

GM) = 1; G4)". (13.10) 

In this circumstance, each energy level would have a hidden eight-fold degeneracy 

from these versions. This degeneracy becomes revealed as the various tunnelling 

splittings resulting from the tunnellings indicated in figure 13.6 are resolved. 

The lowest of the three barriers between the versions in figure 13.6 is that 

between versions (1) and (4), for example. This is called acceptor tunnelling 

or acceptor switching and, by ab initio calculation, it has a barrier of about 

200 cm~!. This is essentially an internal rotation of the acceptor monomer about 

its C> axis. If splittings in the spectrum from acceptor tunnelling are observed 

then, for versions (1) and (4), the permutation (34) becomes feasible and the MS 

group becomes 

Ga = {E, (34), E*, (34)*}. (A311) 

Each level would now have a hidden four-fold degeneracy from the other versions 

depicted in figure 13.6. 

The next higher barrier is that between versions (1) and (5), for example, and 

in this tunnelling motion the donor and acceptor monomers change roles; thus, 

this is called donor-acceptor interchange tunnelling. In this motion, the O¢H3 

bond of the acceptor monomer in version (1) rotates in to form the H-bond, while 

at the same time in a concerted manner the Os5H, bond of the donor monomer 

rotates out of the H-bond’. By ab initio calculation, this has a barrier of about 

300 cm~!. If donor-acceptor tunnelling and acceptor tunnelling both occur, then 

all eight of the versions in figure 13.6 become accessible to each other and the 

MS group becomes the group Gio given in equation (13.3). The same MS group 

as for torsionally tunnelling ethylene is obtained. We see that the MS groups of 

2 The nuclei of the donor monomer and the oxygen nucleus of the acceptor monomer define the plane 

of reflection symmetry. 

3 Making this tunnelling motion from version (1), it would then be necessary to rotate the molecule 

in space in order to obtain version (5) aligned as it is in figure 13.6. 
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Figure 13.7. The splitting pattern of the J = K = 0 level of (H2O) 2. From Fellers R S 

et al 1999 J. Chem. Phys. 110 6306. The level of Ba symmetry has zero nuclear spin 

statistical weight and is missing. 

non-rigid molecules having different equilibrium structures can be the same. For 

historical reasons, the symmetry species for the water dimer are named using the 

LH convention. 

The highest of the three tunnelling barriers between the version in figure 13.6 

is the donor tunnelling or bifurcation path that, for example, connects versions 

(1) and (2). This has an ab initio barrier of about 650 cm~!. However, the 

molecule can tunnel from (1) to (2) by moving through version (5) using two 

donor—acceptor interchanges and this means than no new splittings are introduced 

by including the donor-tunnelling. However, the barrier to donor-tunnelling will 

quantitatively affect the energy level splittings. 

To recognize the fingerprint of these splittings in the spectrum, it is necessary 
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to determine the nuclear spin statistical weights for (H2!°O)» in the groups 

C,(M), G4 and Gyo and to determine the reverse correlation of the species 

C.(M) > G4 — Gyo. The result is [where we use the (LH) notation for 

the irreducible representations of the Gio group in table B.21 and the P'3 notation 

for the G4 group in table B.18] 

By(12) > A2~@3) © B26) ® EG) 
A’ (16 =| AGW A) 6 2140) 0) 27) 
ioe Bo(12) => A2t(3) @ Bot) @ EG) 

A) > At Oomes Oe £- Ch 
(iSz2) 

The splitting pattern of the J = K = 0 level is shown in figure 13.7, and the 

experimentally derived term values of the J = O and 1, K = 0, levels are shown 

in figure 13.8; we have indicated the allowed transitions in the latter figure. From 

this experimental determination, we see that tunnelling between all eight versions 

is observed. 

13.5.2 Water trimer 

The equilibrium structure of the water trimer, again as obtained from both ab 

initio calculation and experimental spectroscopic study, is shown in figure 13.9. 

This molecule is important because its energy levels will reveal the effect on the 

intermonomer potential of the approach of a third water molecule. This is crucial 

to developing an accurate model of the potential for liquid water. The equilibrium 

structure has no symmetry (point group C; containing only the identity E). The 

CNPI group has order h = 6! x 3! x 2 = 8640. Thus, there are 8640 versions 

of this structure. Including all possible tunnellings except those that involve 

the breaking of OH bonds (as done previously for the water dimer) leads to 96 

versions of such a numbered equilibrium structure. There are 90 equivalent sets 

of these 96 versions. Experimental studies have been made of the tunnelling 

splittings and their relative intensities, in order to determine the appropriate MS 

group and hence the feasible tunnelling routes. For the fully protonated species, 

the spectral splittings are too large to allow reliable relative intensities to be 

obtained and the fully deuterated molecule (which has much smaller splittings 

due to the heavier mass of the deuteron) is used. The quartet tunnelling splittings 

observed on two rotational transitions of (D20)3 are shown in figure (al Oeethe 

quartet structure and the 76:108:54:11 statistical weight pattern agrees with the 

predictions* obtained using an MS group of 48 elements. This means that there 

are two subsets of 48 versions within which tunnelling is observed to occur. 

4 wales DJ 1993 J. Am. Chem. Soc. 115 11 180. 
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Figure 13.8. Experimentally derived term values for (H2O)2. Adapted from Fellers R S et 

al 1999 J. Chem. Phys. 110 6306. We have added, using arrows, the allowed electric dipole 

transitions between the levels. The levels of Ea and B; symmetry have zero nuclear spin 

statistical weight and are missing. 

13.6 Ethylene and its Raman spectrum 

In section 13.3, we discussed the MS group of ethylene in the event that torsional 

tunnelling splittings were resolved. In its ground electronic state, the torsional 

barrier is about 25000 cm7! and the reader may have wondered why we chose 

such an unrealistic example. The reason concerns the interpretation of the 

resonance Raman scattering spectrum of ethylene. If this spectrum is excited 

by illuminating a gas phase sample with radiation that is resonant with the V-N 

electronic transition®, it is necessary to use the group G16 in order to interpret the 

results. The N state of ethylene is the electronic ground state and the V state is 

an excited electronic state. 

The wavenumber values of the lines in the Raman scattering spectrum are 

> Hence, the designation resonance Raman scattering. 
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Figure 13.9. The equilibrium structure of the water trimer. 
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Figure 13.10. An experimental spectrum of the fully deuterated water trimer (D2O)3. 

Adapted from Liu K et al 1994 J. Am. Chem. Soc. 116 3507. 

shifted from the wavenumber of the exciting line by an amount that corresponds 

to the rotation—vibration term values; see figure 1.8. The selection rules in the 

resonance Raman effect can be obtained by applying those of the electric dipole 

transitions twice: Once for the transition induced by the exciting radiation up 

from the ground electronic state rotation—vibration level to the excited electronic 

state level: and, second for the transition back down from the excited electronic 

state level to the final ground electronic state rotation—vibration level that is 

characterized by the scattered radiation. For ethylene in its V excited electronic 

state, the equilibrium structure 1s twisted away from the D2, symmetry of 
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the ground electronic state to have a torsional angle of 90° so that the point 

group symmetry is Doq like ground-state allene. As a result, internal rotation 

deformation becomes possible in this Raman process. 

We, thus, have to broaden the definition of feasibility to include tunnelling 

made possible by electronic transition when we wish to set up the MS group 

for situations in which a change in electronic state occurs. 

With this generalization of the definition of feasibility, the MS group that one uses 

to interpret the Raman spectrum of ethylene is the group Gj6. 

A selection rule for the Raman spectrum of centro-symmetric molecules like 

ethylene is that g<>u transitions are forbidden (see section 12.5). Yet, in the 

resonance Raman spectrum of ethylene odd overtones v = 0 > 1,0 — 3,0 — 

5, etc. of the torsional vibration, of u symmetry, weakly occur. This is explained 

because such transitions are no longer forbidden in the Gj6 group appropriate 

when torsion is feasible. These vibrational transitions are accompanied by 

rotational transitions® involving AK, = +1. 

Thus, electronic transition increases the number of feasible operations and 

gives rise to an enlarged MS group if the transition makes deformations possible 

that carry the molecule over insuperable potential energy barriers. In the same 

way, the breakdown of the Born—Oppenheimer approximation can also lead to an 

enlarged MS group. 

It can be laborious to determine the character table of a ‘new’ MS group, 

and to use it to obtain nuclear spin statistical weights. However, a free software 

package called GAP’ is available for these tasks. 

13.7 Problems 

13.1 Determine the MS groups for hydrogen peroxide H2O>, ethane C>H¢ and 
methanol CH3QOH, in the event (as is the case) that torsional tunnelling 

splittings are observed. 

13.2 Construct the reverse correlation table like table 13.1 with statistical 

weights added that are appropriate for '*ND3. 

13.3. Construct the reverse correlation table like table 13.3 with statistical 
weights added that are appropriate for '7C>Dg. 

© See Watson J K G et al 1996 J. Chem. Phys. 105 1348. 
7 Schmied R and Lehmann K K 2004 J. Mol. Spectrosc. 26 201. 
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Chapter 14 

Other symmetries 

14.1 The fourth postulate of quantum mechanics 

So far in this book, apart from a brief discussion in section 1.5 on lineshapes, we 

have ignored the possibility of time dependence. 

To allow for time dependence, it is postulated that state functions depending 

on coordinates gq and time ¢ satisfy the time-dependent Schrodinger 

equation 
OWVn(q, t) a. = HW,(q,t) (14.1) 

where H is the Hamiltonian set up according to the first postulate. 

This is the fourth postulate of quantum mechanics and it is valid whether or not 

the Hamiltonian contains f. 

For a Hamiltonian that does not depend on time (such as that for an isolated 

molecule in free space), we substitute 

Wn(g,t) = Pn(q) fn(t) (14.2) 

into equation (14.1) to give 

iNOn(q) f(t) = fnOLH On(Q)] (14.3) 

where f/(t) = 0f,(t)/dt. Dividing both sides by ®n(q) fn(t), we obtain 

pea H®,(q) 
ih = ——.. (14.4) 

fnlt) Pn (q) 

N \O WW 
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The two sides of this equation can only be equal if both of them are equal to 

the same constant and, from the form of the right-hand side, the constant is 

a stationary state eigenvalue E, of H with O(q) = ®,(q) being the related 

eigenfunction. Putting the left-hand side of equation (14.4) equal to E, gives 

AO = =i" fy(0) (14.5) 

which [see equation (2.1)] we can solve to obtain 

| fat) = eAen/t (14.6) 

so that, for stationary states, we have 

Wn (q,t) = On(qyeien/™ (14.7) 

where 

H®,(q) — En®n(q). (14.8) 

In situations where the time dependence of the Hamiltonian can be separated 

as a small perturbation, V’ say, one can use the stationary-state eigenfunctions 

of the time-independent part of the Hamiltonian given in equation (14.7) as a 

basis set for treating the effect of V’. This is done in treating the effect of weak 

electromagnetic radiation on an isolated gas phase molecule and it leads to the 

expression for the absorption line strength in terms of matrix elements of the 

dipole moment operator between time-independent eigenfunctions ®,,(q) of the 

molecular Hamiltonian [see equation (2.87)]. 

14.2 Conservation laws 

The time-dependent Schrodinger equation can be used to show how symmetry 

operations lead to conservation laws. Let O be a symmetry operation of a 

molecular Hamiltonian H; in the general case, H can depend on time. Since 

O isa symmetry operation, 

[H, O]=0. (14.9) 

To determine how the expectation value of O fora time-dependent state function 

Wn(q, t) say, changes with time, we evaluate 

: 
5 (Wald. O1Oln(q.1)) 

OWn 
= (AE in (q, ) + (vnta.0] 2 Di (OWn(q, »») 

Wn (q, t) 

at 

OWn 
ent (14.10) \O|Wn(q. verte sige 
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where, in the last equality, we have used the fact that O does not depend explicitly 
on t. We obtain 0Wn(q,t)/dt from equation (14.1) and insert the resulting 
expression in equation (14.10); this gives 

0 ne 
9, YG OlOlWn(G, 0) 

(Hn (q.t)|OlWn(q. t)) — (Wn(q. D|O|H tn (4,0) 

|= oth (Wn(q. OILH, Ollwn(q. 0) =0 (14.11) 
ot Ly 

where we have used equation (14.9) in conjunction with the fact that H is 
Hermitian [see the first equality in equation (2.12)]. Equation (14.11) shows that 
the expectation value of an operation that commutes with the Hamiltonian (i.e. a 
symmetry operation) does not change with the passage of time; it is said that the 
symmetry is conserved. 

One interesting conservation law is the conservation of fermion and boson 
permutation symmetry; this is an aspect of the fifth postulate of quantum 
mechanics that is stated on page 179. Any permutation of identical particles is 
a symmetry operation since it commutes with the Hamiltonian of the Universe. 

Hence, once created, a particle that obeys Fermi—Dirac statistics or Bose—Einstein 

statistics (see section 9.1) will always continue to obey such statistics. 

14.3. Electron permutation symmetry 

Any permutation of the positions and spins of the electrons in a molecule is a 

symmetry operation. The use of this symmetry is implied when we use Slater 

determinant basis functions. In this way, all electrons are treated equivalently 

and the complete (orbital and spin) electronic wavefunctions are anti-symmetric 

with respect to any odd permutation of the electrons (obeying the Pauli exclusion 

principle). 

For an n-electron molecule, the complete electron permutation group (called 

the symmetric group Sy, with order n!) finds specialized use in the symmetric 

group approach to performing CI electronic wavefunction calculations. In this 

approach, one does not use Slater determinants. Instead one formally sets up 

orbital and spin functions that transform irreducibly in S$, and then one combines 

them in such a way that the product spin-orbital functions transform as the one- 

dimensional irreducible representation [©)(A) having character +1 under all even 

electron permutations and character —1 under all odd electron permutations. Such 

symmetry behaviour is required to assure compliance with the Pauli exclusion 

principle. Two representations of S$, whose product contains TA) are said to 

be dual or associate and they must be of the same dimension. In actual practice, 

the spin functions are never actually constructed but rather the orbital functions 
are constructed in what is called a spin-adapted way. Using this technique in a 
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many-electron problem can simplify what would otherwise be a rather laborious 

procedure. 

The restriction that the symmetry of the electronic spin-orbital functions has 

to be P(A), ie. the Pauli exclusion principle, leads to the periodic system of the 

elements. It was pointed out in section 3.3.3 that for a one-electron atom the AO 

energies depend only on the quantum number n. However, in a many-electron 

atom, the AO energies depend also on the quantum number / because an outer 

electron moves in the effective field of the inner electrons. The nuclear charge 

is ‘screened’ by the inner electrons to an extent that depends both on the / and n 

quantum numbers for the outer electron. With some simplifying approximations, 

we can say that, for a many-electron atom, the orbitals lie in the order 1s, 2s, 2p, 

3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, .... As we add electrons one at a time under the 

restriction of the Pauli exclusion principle, which means we can only place two 

electrons (having opposite spins) in an orbital, there will be periodically recurring 

outer orbital structures. As an example, for the rare earth elements, we have: 

Be (1s)*(2s)? 

Mg (1s)*(2s)(2p)°(3s) 

Ca (1s)°(2s)*(2p)°(3s)?(3p)(48) 

Sr (1s)°(2s)(2p)°(3s)?(3p)9(4s)?(3d)!°(4p)°(5s)? 

Ba (1s)°(2s)*(2p)°(3s)?(3p)®(4s)?(3d)!°(4p)°(5s)? (4d)!9(5p)®(6s)?. 

Without the Pauli exclusion principle, there would be no such periodically 
recurring outermost electronic orbital structure. The chemical properties of 
an atom, like those of a molecule, are very largely determined by the orbital 
configuration of the outermost (highest-energy) electrons. This means that there 
are periodically recurring chemical properties and, hence, the periodic table. 
This is a consequence of electron permutation symmetry and the Pauli exclusion 
principle. 

14.4 Translational symmetry 

In section 2.5, we discussed space-fixed XYZ axes and the separation of the 
translation and internal (rovibronic) energies. This separation was achieved by 
referring the coordinates of the / particles in the molecule (N nuclei and / — N 
electrons) to XY Z axes that are parallel to the XYZ axes but with origin at the 
molecular centre of mass (X9,Y0,Zo). In this way, the molecule is described by 
the 3/ coordinates 

XO} 1G) Z0, Xoy YouZowNX ey VarZauiey | XGA eae 
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The coordinates (X1, Y;, Z;) are redundant since they can be determined from 
the condition that the X Y Z axes have their origin at the molecular centre of mass 
[see equation (2.51)]. 

In describing translational operations, we use the so-called active picture 
in which the XYZ axes remain fixed in space and the molecule is moved. The 
alternative and equivalent passive picture involves keeping the molecule fixed and 
moving the XYZ axes in the opposite direction. A translational operation changes 
the XYZ coordinates of all nuclei and electrons in the molecule by constant 
amounts, (AX, AY, AZ) say, so that 

(Xj, Yi, 23) => ; 4 AX,.Y; + AY, Z; + AZ). (14.12) 

Such an operation has the effect of changing the centre-of-mass coordinates 

(Xo, Yo, Zo) > (Xo + AX, Yo + AY, Zo + AZ) (14.13) 

whereas the coordinates X2, Yo, Z2, X3, Y3, Z3,..., X1, Y1, Z) are unchanged. 

The spins of the / particles are unaffected by such a translational operation 

and, in this section, we ignore spin. This translational operation is denoted 

Roe and it is a symmetry operation for the molecular Hamiltonian of 

a single isolated molecule in uniform field-free space; the classical expression 

for the spin-free molecular energy E, see equation (2.54), is unaffected by 

Repeal Equivalently, all Rome commute with the total molecular 

Hamiltonian! H, A 

[Ree ee TO! (14.14) 

The infinite set of all translational symmetry operations Ren constitute a 

symmetry group that is called the translational symmetry group Gr. 

It is necessary to define the effect of a translational symmetry operation on a 

function. Figure 14.1 shows how an NH3 molecule, for example, is displaced 

a distance AX along the X axis by the translational symmetry operation that 

changes Xo to Xo = Xo + AX. Together with the molecule, we have drawn a 

sine wave symbolizing the molecular wavefunction, ®; say. We have marked 

one wavecrest to keep track of the way the function is displaced by the symmetry 

operation. For the physical situation to be unchanged by the symmetry operation, 

the marked wavecrest and, thus, the entire wavefunction, is displaced by AX 

along the X axis as shown in figure 14.1. We define the effect of Ree 
on a wavefunction in the usual way [see the first equality in equation (7.7)] by 

writing 

Rigi aa aa Doi Nous 0, 2omX on YowZande, VatZa. sean kt, Yigeza) 
(AX, AY, AZ) 

= oe XG AY LOREX DO Lt Ae Le. el, ZL) 

(14.15) 

| The total molecular Hamiltonian H is the sum of the translational Hamiltonian trans from 

equation (2.60) and the complete internal Hamiltonian Hj,; from equation (2.77). 
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Figure 14.1. An NH3 molecule and its wavefunction, symbolized by a sine wave, before 

(top) and after (bottom) a translational symmetry operation Ry. The wavefunction in the 

upper figure is ®; and that in the lower is oer 

where oir is a new function of the coordinates. As we can appreciate from 

figure 14.1, in the active picture, the translated wavefunction is such that 

vAYGAZ, pi ) 

®. j (Xp + AX, Yo+ AY, Zo + AZ, 

Kl FAL Dred Bred On AB ssits Ge (PAS) 

=D '(CXoy Nor ZGecae) Zones Se a Zane XG ay fea) om Cle) 

To follow the notation used in equation (7.7), we would write this equation as 

DEG LV iy Lane ne a log ee 
= (XG, Vor 207 Xo) YorZoX 3, VarZae 4 XnYn Zo C4 

This definition, which is the ‘opposite’ of that which has to be used for 

permutations as we define them [see the second equality in equation (7.7)], causes 

the wavefunction to ‘move with the molecule’ as shown for the X direction in 

figure 14.1. We can rewrite these equations as 

Ripe o FOL) DECKS VONZO} XO Lo L0G tel M7 see XT) Lae) 
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Res 

Seur (XGg\ On 207 529, Loy Xan len Zannes, Ae lt, 27) 

= 0;(Xo — AX, Yo — AY, Zo — AZ, 

Ae LON Gas, Lok TTL (14.18) 

We are now in a position to relate translational symmetry and the 

conservation of linear momentum. The quantum mechanical operators 

representing the translational linear momentum of a molecule are 

ee: 0 0 0 
(CPx ya 2) (in. —ih—., —ih—— 14.19 eis axG Me gYoree aZo Laon 

and, in order to determine the relationship between Reece and the 

(Px, Py, Pz) Operators, we consider a_ translation Reg where dX is 

infinitesimally small. In this case, we can approximate the right-hand side of 

the second equality in equation (14.18) by a first-order Taylor’s series expansion: 

Re ONO ok) 2 ee 7 
50 (NX =O ey 0), Zn 0s Ld, ey Al 1 2p) 

ad; 
= 0; (Xo, Yo, ZopX2, Yo, 22,2. Mil Zy) = nae dX. (14.20) 

0 

From the definition of the translational linear momentum operator Px [in 

equation (14.19)], we see that 

dd; i 

0X0 h 

and, by introducing this identity in equation (14.20), we obtain 

Px; (14.21) 

(8X,0,0) le a REX | = 0; — FdXPxo; (14.22) 

where we have omitted the coordinate arguments for brevity. Since the function 

j; in equation (14.22) is arbitrary, it follows that we can write the symmetry 

operation as 
(5X,0,0) Li A Rr ie ee (14.23) 

The operation Roe for which AX is an arbitrary finite length, obviously 

has the same effect on a wavefunction as the operation RoR applied to 

the wavefunction AX/5X times. We simply divide the translation by AX into 

AX/65X steps, each step of length 5X. This remains true in the limit of 6X — 0. 

Thus, 
~ Ad 

i a OX RE%00) im (Re Oe = lim (: — —65X Ax) 
5X0 5X0 h 

== CX) (-; AX #x (14.24) 
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where we have used the general identity 

lim (1 + ax)?/* = exp(ay). (14.25) 
x0 

; ; ; (0, AY,0) 
We can derive expressions analogous to equation (14.24) for Ry and 

Rea ee and we can resolve a general translation Re as 

[ae eee ie ES RD Re eee eee (14.26) 

Consequently, 

i n a , 
Reg ee hea EXD l-; (AxPx AY Pye azhy)| (14.27) 

In equation (14.27), the argument of the exponential involves operators and 

we deal with such an exponential by using the Taylor’s series expansion 

es ee ] AD 
exp(iO) = Breas 1) are ae (14.28) 

where O is a Hermitian operator. Ree ee is a Symmetry operation, 1.e. it 

commutes with the total Hamiltonian for arbitrary (AX, AY, AZ). The equations 

A A A A 

(H, Px] =(A, Py] =[H, Pz] =0 (14.29) 

imply 

[HOP He Pol, Pe =. (14.30) 

Substituting equation (14.28) into equation (14.27), we see that R 

a symmetry operation if and only if the P, commute with H. As a result, using 

equation (14.11), we see that the expectation value of each linear momentum 

operator is conserved in time. The conservation of linear momentum and the 

translational invariance of the molecular Hamiltonian [equation (14.14)] follow 

from each other. 

(AX, AY,AZ) : 
T 1S 

The translational wavefunctions [see equation (2.69)] are eigenfunctions of 

the linear momentum operators P, or linear combinations of such eigenfunctions 

and from the relation between the translational symmetry operations and the linear 

momentum operators, equation (14.27), we see that the effect of a translational 

symmetry operation is determined solely by the k vector, with components 

(kx, ky, kz), which defines the linear momentum. In practice, translational 

states are discussed by using the k vector and the law of conservation of 

linear momentum and, although this implies translational symmetry and its 

conservation, the translational symmetry group is rarely invoked explicitly. 
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14.5 Rotational symmetry 

Using the active picture, a rotational operation is an overall rotation of a molecule 

in space about an axis that passes through the centre of mass of the molecule. We 

have already introduced the XY Z axes that are parallel to the space-fixed XYZ 

axes but which have their origin at the molecular centre of mass (X9,Y0,Zo0). We 

now introduce the X’Y’Z’ axes which are initially coincident with the X Y Z axes 

but which are attached to the molecule. If we rotate the molecule in space about 

an axis passing though its centre of mass, the X’Y’Z’ axes are rotated and the 
Euler angles specifying its orientation with respect to the X Y Z axes will describe 

the rotation that the molecule has undergone. We call these Euler angles 6, a 

and y; these are defined in figure 14.2 and, using them, the components of the 

molecular orbital angular momentum J (see section 2.7) are given by 

Jy = —ih t sina + ese eos — cot pcos) (14.31) 

Jy = —ih (cosa ee ee — cot B sina) (14.32) 
op Oy 0a 

and 

(a (14.33) 
Oa 

We define the rotational symmetry operation Re as being that 

rotation of the molecule in space that is described by the Euler angle changes 

(Breny ) (Ba AB ras holy Ay): (14.34) 

A rotational operation such as this is a symmetry operation for a molecule in free 

space since space is isotropic; translational invariance follows from the fact that 

space is uniform. 

Just as with the above treatment of translational symmetry, we want to derive 

an expression for Rp (AP.A0.AY) 56 that, when applied to a wavefunction, it causes 

the change in the Biles angles given in equation (14.34). Because of the analogy 

between equation (14.33) and the definition of Px in equation (14.19), we can 

repeat the arguments expressed in equations (14.20)—(14.24) with X replaced by 

a to show that 
ROAa0) = exp (-;aedr) . (14.35) 

A more complicated derivation leads to the following expression for a general 

rotation operation: 

A 1 - 1 » 
RO es = exp (- air) exp (-;0i) exp (-;aJz) (14.36) 

where, because Ty and Iz do not commute (see section 2.7), the exponential 

factors must be applied in the correct order. The infinite set of all rotation 
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Figure 14.2. The definition of the Euler angles 6,a and y that relate the rotated axes 

X'Y’Z’ to the space-fixed axes XY Z. The origin of both axis systems is at the molecular 

centre of mass O and the node line ON is directed so that a right-handed screw is driven 

along ON inits positive direction by twisting it from Z to Z’ through 6 where 0 < f < z. 

a and y have the ranges 0 to 277. y is measured from the node line. 

operations ROE O02 eformea group which we call the rotational group 

K (spatial); it is a symmetry group of the molecular rovibronic Hamiltonian Hcg. 

because the operations in it commute with Hye: 

[ROP AD AY), Baia (14.37) 

This follows since Herve commutes with dy and Jz (see section 2.7). Frees also 

commutes with J x and we can write an equation like equation (14.11) in which 

we replace the operator O by the angular momentum J4. Thus, in the same way 

that translational symmetry is related to the conservation of linear momentum, so 

rotational symmetry is related to the conservation of angular momentum. These 

are two examples of the more general Noether’s theorem first proved by Emmy 

Noether?; which relates conservation laws to symmetry. 

? Noether E 1918 Nachr. d. Konig. Gesellsch. d. Wiss. zu Gottingen, Math. Phys. Klasse 235; scan 
translation, Travel M A 1971 Transport Theory and Statistical Physics 1 183. 
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As discussed in section 2.7, eigenfunctions of Hyye can be set up that 

are simultaneously eigenfunctions of 7 [with eigenvalues J(J + 1l)h?,J = 

0,1,2...] and Jz [with eigenvalues mh,m = —J,—J +1,..., J] and they 

simplify the diagonalization of the matrix representation of Hes Such a function 

will transform according to the mth row of the irreducible representation D'’) of 

K (spatial). With these basis functions, the matrix representation of HAS will be 

block diagonal in J and m. The matrices in the irreducible representations D\? of 

K (spatial) are the so-called D-matrices given in equation (5.52). Labelling states 

using the group K (spatial) is equivalent to labelling them using the rotational 

angular momentum quantum numbers J and m. 

In using the group K (spatial), one needs to know that the product of two 

irreducible representations can be reduced as follows: 

DY) @ DY = DUIt) @ DUMIt2-D @...@ Dir2), (14.38) 

This is a statement of the rule of vector addition. The totally symmetric 

irreducible representation of K(spatial) is the representation DO a Thus, 

from equation (7.83), the vanishing integral rule, matrix elements between 

rovibronic states having J values of J’ and J” (transforming as DY and 
pY, respectively) of the field-free molecular rovibronic Hamiltonian (which 

transforms as D) will vanish if 

pv”) @ DY Zh Dp (14.39) 

ie. if J’ # J”. The dipole moment operator [see equation (2.88)] transforms 

as D“). which means that electric dipole rovibronic transitions are forbidden 

between rovibronic states states having J values of J’ and J” if 

Do) @ DY @ Dp” Zp D®, (14.40) 

Thus, electric dipole transitions are forbidden between states whose angular 

momentum quantum numbers differ by more than one unit or if they are 

both zero. This has already been mentioned on page 141 in connection with 

determining forbidden electric dipole transitions for the water molecule, and in 

equation (12.5). 

In this discussion of rotational symmetry, we have neglected electron 

and nuclear spin angular momentum and have only been concerned with the 

rovibronic orbital angular momentum of the molecule. For a singlet electronic 

state, this angular momentum is denoted J. For a non-singlet electronic state, 

we use the symbol J for the sum of the rovibronic orbital angular momentum 

(now called N ) and the electron spin angular momentum S. If nuclear spin 

hyperfine structure is resolved, we add the total nuclear spin angular momentum 

I to ii to form F [see equations ( (2.85) and (2.86)], and we classify the states 

of the internal Hamiltonian Han in K (spatial). This introduces the total angular 

momentum quantum numbers F and mr instead of J and m. If we allow for 
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all possible interactions in the molecule, including those involving the nuclear 

spins, then it is only the total angular momentum F that is conserved, and we 

classify the internal states Pint in the symmetry group K (spatial). The internal 

Hamiltonian Hint rigorously commutes with the operations of K (spatial). The 

total angular momentum quantum number F is the vector sum of the rovibronic 

and total nuclear spin angular momentum quantum numbers J and /, so that 

F=J+I1,J+1-—-1,...,|J —1| [see equation (14.38)]. Thus, in the event 

that nuclear hyperfine interactions are resolved, equations (14.39) and (14.40) 

are replaced by equations involving F’ and F” rather than J’ and J”; see 

equation (12.6). 

The symmetry of the rovibronic and internal states in K (spatial) gives new 

symmetry information over and above that obtained by using the molecular 

symmetry group Gms for any molecule. Thus, to label by symmetry the states 

of a molecule, we use both of these groups. The symmetry labelling obtained 

consists of the angular momentum quantum numbers J and m (or F and m f if 

there is resolved nuclear hyperfine structure) from K (spatial), together with an 

irreducible representation label from Gms. 

14.6 Charge conjugation 

The electrostatic potential energy of a molecule, given in equation (2.45), is 

unchanged if we change the sign of the charge of each particle. Thus, the complete 

internal electromagnetic Hamiltonian given in equation (2.77) is invariant to the 

operation of ‘changing the sign of the charge of every particle’. However, in 

a complete theoretical treatment allowing for relativistic effects, it is necessary 

to generalize this symmetry operation to that of changing every particle into its 

antiparticle. This symmetry operation is called charge conjugation C. When C is 

applied to a charged particle, the resultant antiparticle has the opposite charge but 

the operation C also applies to a neutral particle such as a neutron (changing it to 

an antineutron). 

The symmetry operation C by itself is of some use in elementary particle 

physics and it is involved by implication when the symmetry of a molecule such 

as dipositronium Ps» is considered; the dipositronium molecule consists of two 

positrons (antielectrons that have the mass of an electron and charge +e) and two 

electrons (each with charge —e). Because of positron—electron annihilation, this 

short-lived species has not yet been directly observed. For Ps2, which is rather 

like the hydrogen molecule, the positron ‘nuclei’ each have the same mass as the 

electron and, as a result, the Born—Oppenheimer approximation is not appropriate. 

If we number the electrons | and 2 and the positrons 3 and 4, the following group 

of permutations is the complete permutation symmetry group for the molecule: 

{E, (12), (34), 12)(34), [13][24], [14][23], [1423], [1324]}. 

3 Kinghorn D B and Poshusta R D 1993 Phys. Rev. A 47 3671. 
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Table 14.1. The character table for the complete permutation symmetry group of 
dipositronium Ps7. The electrons are numbered 1 and 2 and the positrons are numbered 
3 and 4. Permutations in parentheses are of identical particles. Permutations in square 
brackets involve the exchange of both electrons with both positrons and they are symmetry 

operations because of charge conjugation symmetry. 

E423 |e C2) 64) ae S24 eae) 

[1324] (14][23] (34) 

Aq? 1 | 1 | 1 
Ae 1 1 agp) Fs] 
Bye =~ 1 runey 
Boel a 1 a4 1 
Ewa 0 mp) 0 0 

The permutations in parentheses are of identical particles (electrons and/or 

positrons). The permutations in square brackets involve exchange of the pair of 

electrons with the pair of positrons and these are symmetry operations because of 

charge conjugation symmetry; the simultaneous exchange of both electrons with 

both positrons leaves the Hamiltonian invariant. The group is isomorphic to the 

D2 point group and its character table is given in table 14.1. Applying the Pauli 

exclusion principle for Ps2, we find that the overall states (i.e. with the inclusion 

of spin) can only have symmetries A2 or By. Parity and angular momentum can 

also be used as symmetry labels on the states. 

14.7 Parity 

The complete internal electromagnetic Hamiltonian Hint for any molecule 

commutes with the parity operation E* and E* is a symmetry operation. 

Using the MS group, there are three situations that have to be distinguished in 

considering the parity label of the Pin states: 

Molecules for which E* is in the MS group. 
Chiral molecules for which neither E* nor any permutation inversion 

operation are in the MS group. 
e Molecules for which £%* is not in the MS group but for which there is at least 

one permutation—inversion operation in the MS group. 

For molecules like ethylene, in which the MS group contains the operation 

E*, there are two allowed MS group symmetry species for ®jn, and it is easy 

to determine the parity from the character under E* (+1 or —1) of these two 

allowed species. For such a molecule, the Pin are eigenfunctions of E* with 

eigenvalue +1 or —1 as the state has parity + or —. The internal states ®int are 
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non-degenerate, so that equation (7.25) applies (with R = E* and wm = Pint) 

and equation (7.29) is true. The transformation properties of ®jn¢ under the 

effect of any permutation of identical nuclei is fixed by the statistics and the 

only symmetry distinction that the MS group can make is that of parity. Thus, 

for molecules having an MS group that contains E*, we could as well label 

the symmetries of the complete internal states by parity as by the irreducible 

representations of the MS group. Only internal states of the same parity can 

perturb each other and electric dipole transitions between internal states of the 

same parity are forbidden by the vanishing integral rule since the electric dipole 

moment operator [see equation (2.88)] has negative parity. However, in building 

up ®in from its component parts, we use the MS group symmetry labels and 

we do not lose anything (from the point of view of determining which states can 

perturb each other or which transitions are forbidden) by labelling the internal 

states in the same way. For all planar molecules, E* is in the MS group and so 

the ®;, states are non-degenerate and have definite parity. 

If the MS group of a molecule contains neither E* nor any permutation— 

inversion operation, then it will have two forms of its equilibrium structure that 

are the mirror images of each other and there will be an insuperable energy barrier 

between these forms on the potential energy surface. Such a molecule is called 

chiral or optically active and the two forms, called enantiomers, are physically 

distinguishable. The CHFCIBr molecule is an example of such a molecule and 

its two enantiomers are drawn in figure 14.3. For a chiral molecule, each of its 

enantiomers rotate the plane of polarization of linearly polarized light in opposite 

directions. For each enantiomer, its wavefunctions do not observably tunnel into 

the potential minimum that supports the other enantiomer. The internal energies 

of one enantiomer are degenerate with those of the other enantiomer so that each 

internal energy level is doubly degenerate (one state being for one enantiomer 

and the other being for the other enantiomer); each has the same non-degenerate 

symmetry species in the MS group determined by the nuclear spin statistics. The 

E* operation interconverts enantiomers and, hence, the ®jy; of either enantiomer 

is not an eigenfunction of E*. These functions cannot be assigned a definite 

parity. 

Molecules for which the MS group does not contain E* but for which 

it does contain permutation—inversion symmetry operations are not chiral even 

though the £* inversion operation interconverts versions of the molecule that are 

separated by an insuperable energy barrier. Versions differ only in the sense of the 

numbering of identical particles and they cannot be physically distinguished. The 

CH3F molecule is an example of such a molecule and its two versions are drawn 

in figure 8.1. For molecules of this type, there are always two allowed MS group 

symmetry labels for the ®j,. These labels can be used to determine which states 

perturb each other and which transitions are symmetry forbidden. In this picture, 
Just as for an optically active molecule, the ®jy; are not eigenfunctions of E* and 

they do not have a definite parity. However, if one allows for inversion tunnelling 
and/or for nuclear hyperfine interactions, non-degenerate states of definite parity 
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Figure 14.3. The two enantiomers of the molecule CHFCIBr. 

result. The two possible MS group symmetry species obtained for Pint can be 

viewed as the incipient parity labels for the, in principle, resolvable states. 

We use the CH3F molecule as an example of this type of molecule and we 

have already discussed some aspects of its symmetry using its MS group C3y(M) 

in chapter 9. The rules of statistics (see section 9.4) dictate that the complete 

internal states of CH3F can be of symmetry Ttot = A; or A2 (they cannot be of 

symmetry E) in C3,(M). The proton nuclear spin states are of symmetry +A; and 

*E. Rovibronic states of Aj or A2 symmetry can only be in the +A; proton spin 

state, to give Pi, states of symmetry A; or A2, respectively. Rovibronic states 

of E symmetry can only be in the *E proton spin state to give Pint states of both 

A; and A2 symmetry. This pair of internal states arising from an EF rovibronic 

state are ‘accidentally’ degenerate* in the absence of nuclear hyperfine splitting 

effects and in the absence of inversion tunnelling. 

What happens to the symmetries of the Pint states of CH3F if there is 

observable inversion tunnelling so that the MS group becomes the CNPI group 

D3,(M)? From the discussion in chapter 8 and the reverse correlation table 7.7 

for C3y(M) — D31(M), one might initially think that internal states of symmetry 

A split into states of symmetry A ® A4 and that internal states of symmetry 

A2 split into states of symmetry A, © Aj. But internal states of symmetry A‘, or 
A‘ in D3n(M) are forbidden by the rules of Fermi—Dirac statistics (as is the case 

for iin discussed in chapter 9). Thus, internal states of symmetry A; in C3,(M) 

become internal states of symmetry Ay in D3,(M) if there is inversion tunnelling. 

Similarly, internal states of symmetry Az in C3,(M) become internal states of 

symmetry A‘ in D3,(M) if there is inversion tunnelling. These C3, states are not 

. Being of symmetry A, and Ag, they are not forced to be degenerate by symmetry. 
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subject to any further splitting from the tunnelling. The group D3n(M) contains 

Se and the eigenstates of the tunnelling CH3F molecule have a definite parity: 

” states have — parity and A‘, states have + parity. Thus, we could say that 

- states of non-tunnelling CHE of A; symmetry in C3y(M) have incipient — 

parity, since this is the unique parity of the state that arises if there is tunnelling 

and when D3y(M), and a tunnelling wavefunction, is used. Similarly, tiemDire 

states of non-tunnelling CH3F of Az symmetry in C3,(M) have incipient + parity 

since this is the unique parity of the ®jn state that arises if there is tunnelling. 

For ®,ve states of non-tunnelling CH3F of E symmetry, this approach tells us that 

these states are of incipient double parity (i.e. + and —); these initially degenerate 

states will be split by inversion tunnelling and also by nuclear hyperfine effects. 

For molecules of this type, E* is not feasible since there is an insuperable 

barrier to inversion. However, it is possible to label the ®,,ye states using incipient 

parity. Some rovibronic states, such as those of A; and Az symmetry for CH3F, 

will have a unique parity and some, such as those of E symmetry for CH3F, will 

have double parity. If nuclear hyperfine splittings are important, then the parity 

label would be the appropriate symmetry label to use, in conjunction with the 

angular momentum label F from K (spatial). One way to approach such a problem 

when there is significant hyperfine splitting is to convert from MS symmetry to 

the parity label at the end of the symmetry labelling procedure, when one finally 

needs the symmetry labels on the complete internal states. 

14.8 Time reversal 

The complete internal electrodynamic Hamiltonian is invariant to the operation of 

reversing all linear and angular momenta, including spin angular momenta. We 

could call it the ‘motion reversal’ symmetry operation but it is called, somewhat 

enigmatically, the ‘time reversal’ symmetry operation (T). It has an enigmatic 

name and it is rather special since it is anti-unitary which, as far as it is necessary 

to understand here, means that we cannot combine it with the operations of the 

groups K (spatial) and Gms and add a symmetry label under time-reversal to the 

angular momentum labels and MS group irreducible representation label. As 

a result, the time-reversal symmetry operation is not used to provide another 

symmetry label on the energy levels. However, it does have some applications 

in the study of molecular symmetry. 

There are some molecular symmetry groups for which there are one or 

more pairs of irreducible representations, and I’* say, that are the complex 

conjugates of each other. Time-reversal symmetry means that, for every level of 

symmetry I’, there will be a level of symmetry I* that is degenerate with it. As 

an example, we give in table 14.2 the character table of the MS group C3(M), and 

the irreducible representations E, and E_— form such a pair. Because of time- 

reversal symmetry, every energy level of E, symmetry in C3(M) will coincide 

with a level of E_ symmetry. Such a pair of levels are said to be separably 
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Table 14.2. The character table of the C3(M) group. w = exp(277i/3). 

Ca(M) ae, 123)" (132) 

ANG 1 1 ] 

Eee: ] oO o 

Bae I w w 

Table 14.3. The condensed character table of the C3(M) group. 

CBN) ae Dan 123) C182) 

A: 1 1 

Ee 2 -1 sep 

degenerate and, because of this, the character table is usually condensed by adding 

the characters of the separably degenerate representations. Such a condensed 

character table for C3(M) is given in table 14.3, where the fact that E is the sum 

of separably degenerate irreducible representations is indicated by writing ‘sep’ 

for it as shown. 

Time-reversal symmetry is of use in providing extra information as to 

whether matrix elements of operators between the components of a degenerate 

state vanish>. Also, T can be used to help us appreciate which terms can 

and cannot be present when setting up a Hamiltonian for a special case. In 

particular, in the development of the (Hermitian) effective rotational Hamiltonian 

(see page 241), the time-reversal symmetry requirement that the Hamiltonian be 

invariant to the reversal of all momenta means that such a Hamiltonian can only 

involve even powers of the angular momentum operators. 

5 See section 4 of Watson J K G 1974 J. Mol. Spectrosc. 50 281. 



Chapter 15 

Symmetry violation 

15.1 The electroweak Hamiltonian 

In the theory of the symmetry of fundamental particles, the inversion symmetry 

operation, or parity operation, is called P. However, in the MS group it is called 

E* and that is the notation we have used up to now. In this chapter, we use the 

P notation for the parity operation since we wish to make contact with results 

obtained in studies of fundamental particles. 

We consider here the possible violation of four types of symmetry operation: 

The parity operation P, the charge-conjugation operation C, the time-reversal 

operation T and the ‘identical’ particle permutation operation. We also consider 

the violation, or possible violation, of the product symmetry operations CP and 

CPT. Such symmetry violations are normally thought of as being studied in 

fundamental particle physics but they can lead to spectroscopically measurable 

consequences for atoms and molecules. 

In the standard model of fundamental particle physics, matter is built up 

using 12 fundamental particles (six quarks and six leptons — the electron is a 

lepton) which interact via three types of force (the strong, the electromagnetic and 

the weak). The standard model does not account for gravity and it does not explain 

or predict the masses of the 12 fundamental particles. Thus, it cannot be the whole 

story and there are several alternate theories that go beyond the standard model. 

Experimental tests of the predictions of such theories are important and particle 

physics experiments can provide such tests. However, it is also the case that by 

making atomic and molecular spectroscopy measurements at high precision and 

sensitivity, one will also obtain results that provide useful tests. 

So far in our discussion of the atomic and molecular Hamiltonian, the only 

interaction force that we have considered to act between nuclei and electrons 

is the electromagnetic force. The gravitational force between an electron and a 

proton is about 10~*? of the electrostatic force between them, and it can be safely 

neglected. The strong force is responsible for the binding that holds the quarks 

within protons and neutrons together, and the residual strong force binds protons 

310 
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and neutrons together to form atomic nuclei. Electrons are not susceptible to the 
strong force and so an atomic or molecular Hamiltonian does not involve it. The 
weak force has a very short range and it is indeed ‘weak’; however, it assumes an 
importance that is belied by its weakness and short-range nature since it allows 
processes to occur that would otherwise be forbidden. This is the case when we 
include the effect of the weak force in an atomic or molecular Hamiltonian. 

The theory of electromagnetic interactions came about as a result of 
Maxwell’s unification of the theories of electric and magnetic interactions. In 
a similar way, the standard model unifies the weak force with the electromagnetic 
force and this means that we should consider both forces on the same footing. 
A consequence of electroweak unification is the prediction of the weak neutral 
current interaction; this short-range force acts between nuclei and electrons in an 
atom or molecule. Including it gives the electroweak Hamiltonian rather than the 
electromagnetic Hamiltonian that we have used so far. 

15.2 Parity (P) violation 

The strong and electromagnetic interactions conserve parity but the weak 

interaction does not. As a result, the commutator of P with the atomic or 

molecular electroweak Hamiltonian is not zero and states of opposite parity are 

very slightly mixed. Thus, within the standard model, parity violation in an atom 

or molecule occurs because of the weak neutral current interaction, and the extent 

of this parity violation can be calculated. 

An example of parity violation for an atom is the parity-forbidden electric 

dipole transition between the (nominally parity +) 6S ground state and the (also 

nominally parity +) 7S excited state of caesium at 540 nm!. The standard 

model predicts that these S states are, in fact, slightly contaminated (by about 

10—!!) with (parity —) P state character. As a result, the parity-forbidden 7S —6S 

transition has a non-vanishing electric dipole transition amplitude of about 107!° 

D. Experiment and theory are compared by determining the value of the weak 

charge Qw, that characterizes the strength of the weak neutral current interaction; 

currently, there is no statistically meaningful difference between the experimental 

and theoretical values of Ow for the caesium nucleus2. This is good evidence 

for the correctness of standard model of electroweak theory and its computational 

implementation; the latter demands, among other things, a very high precision ab 

initio calculation of the electronic wavefunction including relativistic effects. The 

effects of parity violation have also been observed in atoms other than caesium. 

The interest in parity violation in molecules does not stem from the fact that 

certain (electromagnetically strictly forbidden) electric dipole transitions become 

extremely weakly allowed but from an interesting effect that the parity-violating 

weak neutral current interaction has on the electronic and rovibronic energies 

! For details, see Wood C S et al 1999 Can. J. Phys. 77 7. 

2 Koslov M G et al 2001 Phys. Rev. Lett. 86 3260. 
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Figure 15.1. The two enantiomers of alanine. 

of chiral (or optically active) molecules. The symmetry properties of chiral 

molecules are briefly discussed on page 306. Using the electroweak Hamiltonian 

for a chiral molecule leads to the result that the two enantiomers do not have 

exactly the same electronic energies at their respective equilibrium geometries. 

Also the shapes of the potential energy surfaces around these two minima are 

slightly different. As a result, the separations of the rovibronic energies of 

the two enantiomers of a chiral molecule are not identical to each other. No 

experiment has yet been able to measure such differences*. For electroweak 

interactions involving atoms having nuclear charge number Z ~ 10, the parity- 

violating energy difference AEpy is calculated to be of the order 10~*° J, 

which corresponds to a frequency difference of order 10~* Hz or a wavenumber 

difference of order 10~!3 cm—!. However, A Epy depends strongly on the charges 

of the nuclei involved’. 

The more precise measurement and calculation of parity-violating transitions 

in atoms is an active area of research because it is a comparatively inexpensive 

method for testing one aspect of the standard model of theoretical physics. 

Theoretical and experimental studies of parity violation for chiral molecules is 

also an active area of spectroscopic research because of its possible involvement 

in the evolution of living organisms. How this involvement might have come 

about we now explain. 

In figure 15.1, we show the D and L enantiomers of the chiral amino acid 

alanine HyN(H)C(CH3)COOH. Replacing the CH3 group in the alanine molecule 

by other side chain groups produces other amino acids, the enantiomers of which 

> Daussy Ch et al 1999 Phys. Rev, Lett. 83 1554 find transition frequencies of the two enantiomers of 
CHFCIBr at around 9.3 j2m to be equal to within 13 Hz. 

4 See, for example, Laerdahl J K and Schwerdtfeger P 1999 Phys. Rev. A 60 4439. 
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can also be labelled D and L in the same way>. Two alanine molecules can form 

the dimer Hy N(H)C(CH3 )-CO-NH-(H)C(CH3)COOH by elimination of H2O and 

the formation of the -CO-NH- amide (or peptide) link. Protein molecules are 

polymers (polypeptides) of amino acids connected by amide links. In living 

organisms on earth, protein molecules only involve the L enantiomers of the chiral 

amino acids, except in very rare cases. In a similar way, the nucleic acid polymer 

molecules RNA and DNA in earthly living organisms only involve D-sugars. A 

crucial result of this homochirality of bio-organic molecules is that these two 

types of polymer are able to form helices, and this helical structure is a basic 

requirement for the replication processes of life as we know it. The origin of 

homochirality is unknown even though it seems to be a prerequisite for the origin 

of life. 

There have been many suggestions for how the homochirality of the bio- 

organic molecules of life has come about®. One suggestion is that the parity 

violating electroweak interaction is responsible for giving L-amino acids, and 

D-sugars, slightly lower energies than their enantiomeric counterparts, and that 

this energy advantage over the aeons of evolutionary time is responsible for the 

observed homochirality. There are many unanswered questions. How were such 

complex bio-molecules formed? How did they polymerize? How were they 

protected from degradation? Were key reactions in the gas phase, in solution or 

on surfaces? Was the infall of extraterrestrial prebiotic material significant? In the 

absence of answers to these questions, the role of the parity-violating electroweak 

interaction, which slightly lifts the degeneracy of the rovibronic energies of the 

enantiomers of chiral molecules, is unclear. Nonetheless, the measurement and 

calculation of the parity-violating energy differences between enantiomers are 

very interesting problems in the fields of high-precision molecular spectroscopy 

and ab initio quantum chemistry. 

15.3. CP violation 

The operation of charge conjugation C was introduced in section 14.6 and it is the 

operation of changing every particle in the system under study to its antiparticle. 

The weak interaction and the electroweak Hamiltonian are not invariant to C. 

As with parity, the extent of C violation can be calculated using the standard 

model. The direct application of C symmetry is rather limited but CP symmetry, 

the combined operation of C with P, is important to consider. 

The observation of P violation in weak interactions’ made many theoretical 

physicists despondent. But they could cheer themselves up by thinking that if 

only they had defined parity as being what we now call the combined operation 

> The glycine molecule is obtained by replacing the CH3 group by H and this is the only amino acid 

that is not chiral. 

© See, for example, Bailey J et al 1988 Science 281 672 and references therein. 

7 Lee T D and Yang C N 1956 Phys. Rev. 104 254, and Wu CS et al 1957 Phys. Rev. 105 1413. 
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CP, everything would be alright, CP would then be a symmetry operation of all 

interactions including the weak interaction. This view resulted from a deeply held 

conviction that somehow the Universe had to have such symmetry to be beautiful. 

That hope proved unfounded. In 1964, CP violation was discovered to occur in 

the decay of K mesons® and, since then, CP violation has also been found to 

occur in the decay of B mesons. Some CP violation can be accommodated in the 

standard model but extensions to the standard model generally imply stronger CP 

violation and, consequently, it is necessary to measure the extent of CP violation 

in as many situations as possible. 

CP violation is important because its operation in the early Universe can 

be invoked to solve the matter—antimatter puzzle. The puzzle is that matter and 

antimatter would have been produced in equal quantities by pair production as the 

early Universe cooled and matter—antimatter annihilation would then produce a 

Universe eventually consisting only of photons; exact matter/antimatter symmetry 

in the Universe is clearly not the case. By observations of the cosmic radiation 

background, it is found the the Universe today consists of matter and photons in 

a ratio of about 10? photons for every particle of matter. From this, we infer that, 

as the Universe cooled, there were (10° + 1) particles of matter for every 10° 

particles of antimatter (a very small asymmetry) so that their mutual annihilation 

removed antimatter and produced one particle of matter for every 10° photons. It 

is observed that CP violation allows nuclear decays very slightly unsymmetrical 

in the production of particles and antiparticles; such nuclear decays could have 

competed with matter—antimatter annihilation as the Universe cooled to produce 

the required very small asymmetry. Thus, in the same way as P violation can 

be invoked as being vital to explain the formation of life (because it could be 

the cause of homochirality in key bio-organic molecules), so CP violation can 

be invoked to explain the existence of matter in preponderance to antimatter in 

the Universe. The lack of P and CP symmetry produces a far more interesting 

Universe than one which is completely symmetric under these operations, even if 

it is not so ‘beautiful’ from a symmetry point of view. 

The measurement of the precise extent of CP violation in atomic and 

molecular spectroscopy experiments actually involves the assumption of CPT 

invariance, where CPT invariance is invariance under the triple product of charge 

conjugation, parity and time reversal. Presuming CPT invariance (which we 

discuss in section 15.5), a measurement of the extent of T violation will also give 

the extent of CP violation, since the CP violation has to cancel out exactly the 

effect of the T violation. Current neutron, atomic and molecular measurements 

seek to determine the extent of T violation as a way of determining the extent of 
CP violation. 

8 Christenson J H et al 1964 Phys. Rey. Lett. 13 138. 
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15.4 T violation 

The time-reversal symmetry operation was introduced in section 14.8. T 

symmetry applies to strong and electromagnetic interactions but not to weak 

interactions. The measurement of T violation involves determining a non-zero 

value for a quantity that would be precisely zero under T symmetry. The classic 

example is dy, the electric dipole moment (EDM) of the neutron?. The EDM of 

the electron de is another example. A non-vanishing particle EDM d can only 

be parallel or antiparallel to the direction of the spin s, since spin is the only 

defined alignment direction in a particle. The dipole moment is invariant to T 

but T reverses s, which means that d must vanish under T symmetry since that 

is the only way it can equal its negative. Thus, a non-zero d implies T violation; 

it also implies P violation (P reverses d but not s) but that is not so interesting 

since P violation is understood (or so we think). The measurement of d, has been 

a longstanding goal and, nowadays, attempts to measure de are also ongoing. 

In the standard model, the EDM of the neutron 

d,(standard model) ~ 107*4e cm (15.1) 

which is far too small ever to be measured! but in extensions to the standard 

model values are obtained that could be detected in practical experiments. In a 

recent sensitive neutron experiment!!, an upper limit of 

|d,(experiment)| < (6+ 1) x 10~*%e cm (15.2) 

could be set, which is close to the predicted order of magnitude for dy obtained in 

some theories. 

Atomic or molecular eigenstates can be labelled |/',m) using the total 

(orbital plus spin) angular momentum quantum number F and the projection 

quantum number mp. T reverses angular momenta converting the state | F’, mr) 

to the state |F, —m -). In an electric field, the two states | F', mr) and |F, —m rf) 

remain degenerate if there is T symmetry but, with T violation, a non-vanishing 

de will cause a splitting between them. In an experiment!” on atomic thallium, the 

lack of observation of such a splitting between the |F = 1, mr = +1) hyperfine 

sublevels of the ground state leads to an upper limit for the EDM of the electron 

of 

de(experiment) < (7+ 8) x 10°e cm. (15.3) 

An experiment!? on !’+YbF involves an attempt to measure the splitting in an 

electric field between the mr = +1 sublevels of the F = 1, N = 0 level in the 

9 Purcell E M and Ramsey N F 1950 Phys. Rev. 78 807. 

101 ¢cem* 1.602 18 x 107-7! Cm. 
\ Harris P G et al 1999 Phys. Rev. Lett. 82 904. 

12 Regan B C et al 2002 Phys. Rev. Lett. 88 071805. 

'3 Hudson J J et al 2002 Phys. Rev. Lett. 89 023003. 
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X?x+ ground vibronic state. The null result of this experiment leads to an upper 

limit of d. < (—0.2+3.2) x 10-26 ecm but improved precision would be achieved 

by doing the experiment on trapped YbF molecules; progress in trapping were 

molecules has recently been made using an Alternating Gradient Decelerator!* 

The standard model predicts the EDM of the electron as 

d.(standard model) < 10-*8e cm (15.4) 

but several theories going beyond the standard model have predictions in the range 

close to the experimental upper limit!>, 

15.5 Testing for CPT violation 

The standard model has the symmetry of the combined operation CPT, and CPT 

violation has so far defied experimental observation. However, string theory 

(which is one extension of the standard model) could break CPT symmetry!® and 

there have been many suggestions for possible ways of experimentally testing for 

CPT violation. Two involve atoms. 

The positronium atom Ps is a bound state of an electron and the positively 

charged antielectron (the positron). The self-annihilating decay of ortho-Ps 

to three gamma particles has been studied!’ to look for asymmetry indicating 

CPT violation. The amplitude of the CPT-violating asymmetry is found to be 

0.0026 + 0.0031. Of interest to spectroscopists is the possibility of studying the 

spectrum of antihydrogen. An antihydrogen atom consists of a negatively charged 

antiproton and a positron. To test for CPT violation, one would measure the 1S- 

2S ‘positronic’ transition frequency of antihydrogen and compare it with that of 

the 1S-2S electronic transition in normal hydrogen. A difference would indicate 

CPT violation. Two recent experiments, the so-called ATHENA!® and ATRAP!® 

collaborations, both using the antiproton factory at CERN, have managed to make 

cold antihydrogen atoms. The next step is to trap and cool the antihydrogen 

atoms into the 1S ground state for long enough to make the required precision 

measurement of the 1S—2S transition frequency. 

15.6 Testing for permutation symmetry violation 

The fifth postulate of quantum mechanics is introduced in section 9.1, it states that 

the complete wavefunction (including spin) of a system of particles is changed in 

sign by an interchange of two identical fermions in the system, but is unchanged 

'4-Tarbut M R et al 2004 Phys. Rev. Lett. 92 173002. 

!5 Commins E D 1999 Ady. At. Mol. Opt. Phys. 40 1. 
16 See, for example, Kostelecky V A and Potting R 1995 Phys. Rev. D 51 3923. 

!7 Vetter P A and Freedman § J 2003 Phys. Rey. Lett. 91 263401. 

'8 Amoretti M et al 2002 Nature 419 456. 
!9 Gabrielse G et al 2002 Phys. Rev. Lett. 89 213401. 
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by the interchange of two identical bosons. Electron permutation symmetry and 
the Pauli exclusion principle are introduced in section 3.2, and the way that the 
Pauli exclusion principle leads to a periodic structure in the chemical properties of 

the elements is discussed in section 14.3. The application of the fifth postulate to 

nuclear permutation symmetry in order to obtain nuclear spin statistical weights 

is discussed in chapter 9. Because of the overwhelming experimental evidence in 

favour of the fifth postulate, most people consider it to be a fact and consider it 

a kind of bureaucratic oversight that there is no proof written down in a way that 

is simple and acceptable to all. There have been complicated ‘proofs’ advanced, 

but it is fair to say that none of these has been found completely acceptable; why 

should such a simple postulate require anything complicated in its proof? Maybe 

because it is not true. 

The theoretical possibility of its violation can be sought in several ways. 

One would be the possibility that for electrons, say, there is a property (as yet 

unidentified) for which the vast majority of electrons share the same value but 

for which a tiny number have a different value; in this way, not all permutations 

of electrons would lead to an indistinguishable situation. It is said that Fermi 

considered this possibility but predicted that it would have had drastic effects on 

the properties of the elements over the billions of years of their existence. Another 

possibility is that particles are not pure bosons or pure fermions. An algebra with 

such ‘intermediate’ statistics can be constructed”? and such studies may lead to 

a greater understanding of how, why and in what circumstances, the violation of 

the fifth postulate might occur. Finally, string theory does not have particles as its 

fundamental entities and so must require something more general than the fifth 

postulate. In this situation, the fifth postulate would have to be considered as 

being incomplete and the effect of its completion might lead to greater insights 

as to whether it can be violated by particles. Perhaps this is all grasping at straws 

in the hope that something as sensational as its violation might occur. However, 

in the light of the discovery of P violation and of CP violation, it would seem 

prudent, just as in the case of CPT symmetry, to subject the fifth postulate to 

experimental test. At least one should experimentally determine a quantitative 

upper limit for its possible violation. 

Upper time limits for Pauli exclusion principle (PEP) violating decays of 

'2C nuclei to nuclei having three nucleons (protons or neutrons, each of which 

are fermions) in a Is shell have been obtained using the NEMO-2 detector. The 

signature of such decays would be emitted y, B™ or B* rays at the appropriate 

energies. Three such decays have been looked for with a null result and they are 

shown in figure 15.2. This leads to a lower limit of more than 10°+ years for 

these PEP violating processes to occur. A very similar type of experiment for the 

electron?! involves the search for X-rays emitted from a current-carrying copper 

strip that signify the cascade of a third electron into the Is level. The null result of 

20 Greenberg O W and Delgado J D 2001 Phys. Lett. A 288 139. 

21 Ramberg E and Snow G A 1960 Phys. Lett. B 238 438. 
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Figure 15.2. Three possible nuclear decays that lead to states with three fermions in a Is 

shell; these are forbidden by the Pauli exclusion principle. From Arnold R et al 1999 Eur. 

Phys. J. A 6 361. 

this experiment is interpreted to mean that any PEP violation is at the level of less 

than 1.7 x 107°. An experiment that has a more straightforward interpretation 

involves looking for a transition between paronic states of helium?*. Paronic 

states of helium are states that are symmetric with respect to electron exchange 

and that are, therefore, forbidden by PEP. Accurate calculations of the energies 

of paronic states of helium have been made?*. The non-observation of such a 

transition in helium leads to an upper limit of 5 x 10~° on the PEP violation. A 

further study involving electrons is concerned with the contribution of the PEP 

to the excess noise in a conductor**. All these experiments are concerned with 

fermions. An experiment on photons’, which are bosons, leads to an upper limit 

for finding photons in exchange-antisymmetric states of 1.2 x 10~/. 

The use of a highly sensitive molecular spectroscopy experiment to look for 

a violation of the fifth postulate involves trying to observe a transition between 

22 Deilamian K et al 1995 Phys. Rev. Lett. 74 4787. 
23 Drake G W F 1989 Phys. Rev. A 39 897. 
*4 Kurdak C et al 1996 Surf, Sci. 361/362 705. 
25 DeMille D et al 1999 Phys, Rev, Lett. 83 3978. 
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levels that would be missing as a result of applying the rules of spin statistics (see 
section 9.3). This test could be made for bosons or for fermions. The C!®O> 

molecule contains two !©O boson nuclei and, as a result, the rotation—vibration 

transition (v1 045,03, J) = (00°1, 26) — (00°0, 25) is between missing levels; the 

observation of this ‘missing’ transition in the absorption spectrum would imply a 

violation of spin statistics. The constants in the effective rotational Hamiltonians 

of the (00°0) and (00°1) states are known very precisely so the frequency of 

the transition can be very accurately predicted. The failed attempt to see the 

transition”© leads to an upper limit of 1.7 x 107!! for the probability of finding 

the exchange-antisymmetric state (00°0, 25). It would be desirable to increase the 

sensitivity of such a direct spectroscopic measurement. The highest sensitivity 

possible would be that obtained by attempting to count the ion(s) produced when 

radiation is applied at sufficient hv energy to ionize the upper ‘missing’ level, 

of a ‘missing’ absorption transition while tuning another radiation through the 

predicted frequency of the ‘missing’ absorption transition. 

26 Mazzotti D et al 2001 Phys. Rev. Lett. 86 1919. 
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Answers to selected problems 

Problem 2.7 

By definition, 

x(S) = Yi = = eee \ki (A.1) 

Lj k= 

where (Q~!),; is the kith element of the matrix Oe Consequently, 

=D y ka Dor 1 Os (A.2) 
j=l k=l 

where, relative to equation (A.1), we have changed the order of the factors and 

the order in which we do the summations. The term in square brackets in 

equation (A.2) is the kjth element of the matrix (Q~! Q). Since Q~! is the inverse 

of 0, (0 Q)xj = 5xj, where 5; is a Kronecker delta. Thus, 

n n n 

LS ie eR une eo (A.3) 
jatk=1 j=l 

Problem 5.7 

By cyclically permuting €, 7 and ¢ in equation (5.44), we obtain 

s 0 (0g eee oe 
l : a 

Jp = -ihy> (ts Tr - nize) ; (A.5) 
t= 
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For A = &,7 and ¢, 

I 
Daa SA VELA (A.6) 

i=l 

where 

(i) ; 0 0 oan (eee Ce AT 
é Ge oe Set 

with similar expressions for J, and Je; J42-) = Y1_, Sa. 
From problem 5.6a, 

[Je, ve — [ie = deo), (Fo? ar Toca) 
pe ye, ol A [ie, ee) ai en Jy Py] oe [vee a, cee 

(A.8) 

Here, [Je), ey = [fe¢2—, J,] = 0 because, in each of these 

commutators, the operator J4‘') depends only on the coordinates of nucleus 1, 

whereas Jz‘*~”) depends on the coordinates of all other nuclei. Thus, 

We =e dn Fee een (A.9) 

Obviously J42@—) = J4@ + J4S—, where J4S—) = eae Ja, and we can 
repeat the arguments just given to show that 

ef De ieee iL (A.10) 

By repeated use of this procedure, we derive 

l 

ides J] 5 Ll el: (A.11) 

Applying problem 5.6a again: 

Le a F d 3 
(7) ips |) s Spee peters nore = Sent Soy eae ee he, F [in (nse bis ~ (63g sa) 

— (| nae an pe ag; Woe Si ac, 

a 
oe, eee (A.12) 

alae i ale + [ss Oni 5 al 

It is obvious that [7;(0/0¢;), €&(0/96;)] = [¢:(0/0ni), 6:(0/0&i)] = 0. The 

remaining two commutators are rewritten by means of the expression from 

| 



ao Answers to selected problems 

problem 5.6c, 

. 0 
FAC e ue eee ie , es es AO 1= — (nie ] + [notice | ge 

a rofrec|+[aeg|o) ar 
where the commutators [7;, ¢;(0/0&;)] = [(0/0n;), &(0/0¢;)] = 0. By applying 

the expression from problem 5.6b to the remaining commutators (and removing 

commutators that obviously vanish), we obtain 

eee 0 0 Oe le 4s 
Oe One ae ee 7 A.14 Poe eel | h (x laa tl ae an + &; fens 8; =| ~). ( ) 

It follows from equations (2.15)-(2.17) that [(0/0¢;), ¢;] = 1 and, therefore, 

[G;, (0/0G;)| = 1s Thus; 

9 jy One = ihJ,© A.15 [Je n ] noe — fie de ( ) 

where we have introduced Ie from equation (A.5). Equation (A.11) yields 

l l 

feet al = 2st Jee Jat] BD = ihJe. (A.16) 

Thus, (Je, Tal = ihJe and, by analogous arguments, we can show that [Je, Je] = 

ihJ, and [Jy, Jc] = ihJe. These commutators have a ‘+’ sign as do those for the 
XY Z components in equation (2.81). 

Problem 5.8 

Using problem 5.6a, 

[J?, Jel = (JP + JP + J?, Jel = (32, Je t+ (2, Je) + 002, Je] (A.17) 

Le Je] = f.3 = Je? = 0 but from the expression in problem 5.6c, 

ee Je] = es Je] ts Le Je] 

= In Ins Jel + (Sn ely + JelSe, Jel + We, JelSe.  (A-18) 

We have just derived expressions for the commutators (Ja, Ja] with A,B = 

&,, ¢ and, when we insert the expressions, we obtain 

[J?, Je] = Jn(—ifie) + (ite) Jn + Se GS) + GIy) Se 

= Idee Ipc ide eds) 0, (A.19) 

Similarly, [J?, J] = [J?, Jc] = 0. 
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Problem 5.9 

Using the expression from problem 5.6a, we derive that 

(Fe; FV Wy, Je Fit ie, Fel + iL, Syl. (A.20) 
The commutators on the right-hand side are known from the answer to 
problem 5.7 and we have 

[Je, Jt] = iNJy +i(-ihJe) = We +id,) = SD. (A.21) 

We show analogously that 
A A 

Wig glee iln i —ihJe) — file — isn) = fig. (A.22) 

Problem 5.10 

To investigate whether Jay, is an eigenfunction for i we deduce that 

Ie(itt) = Sew = Site +i, ED 
= (Ste + hit) = It (im + hwy 

= hs (m+ Wy, = hm + DI) (A.23) 

by using equation (5.86) and the expression for [Je, IF] from the answer to 

problem 5.9. In summary, 

2 (Soo Wy) = h(m+ LJ) (A.24) 

and, from this equation, either It, vanishes (giving 0 = OQ) or it is an 

eigenfunction of Je with eigenvalue h(m + 1). 

Similarly, we can show that 

Je (Fo Wy) = hm — (Sow) (A.25) 

so either is yw) vanishes or it is an eigenfunction of J¢ with eigenvalue h(m — 1). 

Problem 7.6 

The operation (123) in C3,(M) transforms (r}, 12,73) to (r},75,74). After the 

(123) operation, proton 1 occupies the position in space initially occupied by 

proton 3. Thus, r; = r3. Similarly, r5 =r) andr; = r. The effects of all other 
operations in C3y(M) on (1, 72, 73) are determined by analogous considerations. 

Writing the effect of the operation R in C3,(M) on (71, r2, 73) in the form of 

equation (7.100): 

RA: =e) FES ep (A.26) 
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Table A.1. The quantities Rr}, Mk and M&, for the elements R of C3,(M). 

R: B32) 32)) 0) 13a 

Rr\: Cie ts r2 i) ry r3 

Mi 1, 8/25, 172) a1 =i Javan? 

ME dpe alia! 1) Zan 

where D,[R] is the 3 x 3 representation matrix associated with k. We have 

One G OF One! 

DPE = |e Use 0 DAd23)\ =") 1 0. 0 

OO Oe latct) 

Oo OT 0 

D, (G32) 0810-71 D1 @2)5] = 7/0 a OPO 
fi 0 =O Ou Oat 

ee Out) Geary 

D (23) "| 060 st DAG =| COS Oe eae 

Coy 1 0 LP 70"e0 

The characters of the generated representation are determined as the traces 

of the matrices in equation (A.27): 

ReuivEy C23 uie(132)G2)be (23)ngee Le 
(A.28) 

p=1 (Dr [RD pp : 3 0 0 1 1 1 

and we use equation (7.97), together with the characters of the irreducible 

representations in table B.5, to reduce it to 

Pe aA ee (A.29) 

To determine the linear combinations of 1, 72,73 that transform irreducibly, 

we use the projection operators given in equation (7.102). For the irreducible 

representation A;, we have DA iit x4) [R] = 1. For the E representation, 

we take D¥[R] pp = Mie p = 1 or 2, where the 2 x 2 matrices MP are given in 
equation (7.91); we have shown in chapter 7 that this group of matrices form the 

E irreducible representation of C3,(M). Table A.1 summarizes the quantities that 

we require to apply the two projection operators a and Ee 5 [equation (7.102)] 

LOE. 

We derive 

Lae ae 1 = § 2 ea [RJ Rr = 5(r] at ht 3) (A.30) 

R 
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hE Pir 7 2) (ME) Rr = zr + rz — 2r3) (A.31) 
R 

and 
(7 == een = >) (M)* Rr = 5(r1 = 179). (A.32) 

R 

Upon normalization, we get 

TA (ry +12 +73)/V3 

re, |= | (itr —2r3)/V6 |. (A.33) 
TE, ie r2)//S2 

All operations in C3y(M) permute (71,7r2,73) and it is obvious that ra, in 
equation (A.30) has Ay symmetry. 

We investigate the effect of (123) on Vee Be). 

TE (r3 +11 — 2r2)/V6 
(123) ( 7 ea A.34 

'Ep (r3 — r1)/V2 ene 

where we have simply inserted the (123) r; = le from equations (A.26) 
and (A.27). 

We can easily verify that 

1 1 nS (123) (123) 
nee +74 —2r2)= 7 9! Ba Tepe =M,, YE, +M,, YE, (A.35) 

and 

1 /3 | 

Wane oe my) tt ones iS 77 Eb = Ms, re, te My) re, (A.36) 

where the elements mMi)??) of the matrix M“'?°) are given in equation (7.91). 

Equations (A.35) and (A.36) can be written as 

n( "Ea ) = MF ( Oe ) (A.37) 
YE, YE, 

for R = (123) and we can show that this equation is satisfied for all other R 

in C3,(M) by obtaining the left-hand side from equations (A.26) and (A.27) and 

checking that it is equal to the right-hand side. 

Problem 11.1 

From table 11.1, the equivalent rotation Ry” transforms the Euler angles (6, ¢, x) 

to (6',¢',x') = (x —0,¢+ 7,2 — 2a — x). We obtain an expression 
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for Ry™|J,k,m) by substituting (0,¢, x) — (@',¢', x’) in equation (5.56). 

Inserting the expressions for (6’, ¢’, x’) and using 

cos /2) \ — f cost /2 072) \ ( sin(@/2) (A.38) 

sin(6’/2) } \ sin@/2—0/2) }  \ cos(@/2) 

we obtain 

Rea: k, m) _ NG Myien oe en 

(sin Lg) e) pe ete cos soya ae 

is | )) ao\(J —-m—oa)\(m—k+o)'(J +k—o)! 

(A.39) 

By substituting 0 = J — m — oj everywhere in equation (A.39), we rewrite the 

expression as 

Rod, kom) = N(-2) ert eve 
f I> = (©98 1 gy2J—k—-m—2o1 (_ sin 1 gym+k+201 : 

a “ o1'(J —m—o1)'(m +k +01)" J —k — 04)! 

(A.40) 

The summation index oj = J — m —o has its minimum value when o has its 

maximum value. The maximum value of o is (J — m) or (J +k), whichever 

is the smaller. Thus, the minimum value of oj; is [J — m — (J —m)] = 0, 

or [J — m — (J + k)] = (—k — m), whichever is the larger. oj has its 

maximum value when o has its minimum value. The minimum value of o is 

0 or (k — m), whichever is the larger. Hence, the maximum value of oj is 

(J —m) or [J =m — (k —m)]) = (J —k), whichever is the smaller. By 

comparing equation (A.40) with equation (5.56), we see that we have now proved 

equation (11.9). 

Problem 11.2 

To prove the asymmetric top symmetry rule, we introduce the set of equivalent 

rotations 

V ={E, Ra”, Rp", Re}. (A.41) 

Since, for the H2O molecule, the elements in V are the equivalent rotations of 

the elements in C2,(M), the MS group for H20, V is isomorphic to C2,(M); it is 

called the Vierergruppe. Thus, the irreducible representations of V are identical 

to those of C2,(M) but we repeat them in table A.2. We use here a labelling where 

A is the totally symmetric representation and B,, y = a, b, orc, is the irreducible 

representation that has a character of +1 under R,,” (and character —1 under the 

two other equivalent rotations). 
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Table A.2. The character table for V. 

V 1 ARG PE Phe e ee 

A: 

Bae 

Bp: 

Bee a 

| 4 = | — 

We determine the symmetries of the asymmetric top rotational wavefunc- 

tions by correlation between the prolate top and oblate top limits, i.e. by follow- 

ing the ideas discussed for the water molecule in connection with figure 5.6. We 

reach the prolate limit by changing the value of the rotational constant Be to be 

equal to C. and the oblate limit by changing the value of Be to be equal to Ae. 

In the prolate limit, we use an xyz axis system defined according to 

the type I” convention, i.e. with xyz = bca, and we consider symmetric 

top rotational functions |J,kg,m) where kq defines the projection of the total 

angular momentum on the a = z axis. Since now Rg” = R,”, we can use 

equations (11.8) and (11.9) to symmetry classify the |/,ka,m) functions in V. 

We distinguish two cases: For Kg = |ka| > 0, the two functions |J, Kq,m) and 

|J, —Kq,m) span a two-dimensional reducible representation; and, for K, = 0, 

the single function |/, 0, m) spans an irreducible representation. The characters 

are 

Vie Ree Ree Rew 

Kee 0-2 221) 0 0 (A.42) 

Ke Ucaet (-1)7 (-1)’ 

In the oblate limit, the xyz axes are defined according to the type III’ 

convention, i.e. with xyz = abc, and we consider symmetric top rotational 

functions |J,ke,m) where k. defines the projection of the total angular 

momentum on the c = z axis. For K, = |k-| > 0, we determine the characters 

associated with the two functions |J, K-,m) and |J, —K-,m), and, for K, = 0, 

we determine those generated by the function |J, 0,m). The characters obtained 

in the oblate limit are as follows: 

Ve ee Ra Rew Re 

Ke a? 0 O e214 (A.43) 

j= 0a0( Gleb il 

The representations defined in equations (A.42) and (A.43) are reduced in 

terms of the irreducible representations of V (table A.2) as given in table A.3. 

To determine the symmetries of the asymmetric top rotational wavefunc- 

tions, we now use the basic result that, as we make the correlation between the 
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Table A.3. Representations I’yot of the group V generated by the basis functions | J, ka, m) 

and |J, ke, m)*. 

Prolate limit Oblate limit 

Ka Prot K c Vrot 

Jeven. A 0 Jeven A 

J odd Ba J odd Be 

odd Bp ® Be odd Ba ® Bh 

even A® Bg even A® Be 

2 Ka — lkal, Ke = lKe|. 

prolate and oblate limits (see figure 5.6), such a wavefunction keeps the same 

symmetry all the way from the prolate to the oblate limit, subject to the non- 

crossing rule (see section 10.5). For example, we determine the symmetry of an 

asymmetric top wavefunction for which K, and K; are both odd. We see from ta- 

ble A.3 that, in the prolate limit, this symmetry is contained in Bp, ® B,, whereas, 

in the oblate limit, it is contained in Bg @ By. Thus, the symmetry we seek is By 

since only this irreducible representation is common for the two limits. If Kg and 

K, are both even, the only possible symmetry is A; when (Ka, K-) is (even, odd), 

we get Ba, and for (odd, even) we get B,. These results are also true if one or both 

of K, and K, are zero (zero being even). We have now proved the asymmetric 

top symmetry rule. 

Problem 12.3 

The operation (123) transforms (Q4, a4) to (Q4,a@,) = (Q4,a4 — 27/3). By 

inserting the expressions for (Q/,, a/,) in equation (4.38), we obtain 

123) [t= i (Oo eke ay (A.44) 

where the signs are correlated. 

The operation (23)* transforms (Q4, a4) to (Q',, w/,) = (Q4, —a4) and so 

(23)*|1*1) = Fy ai (Oi elED" = 14) (A.45) 

where the signs are correlated. 
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Problem 12.4 

We determine from table 7.4 that 

@32) 023023) 

(12) 123)" 23) i23) 

G1) ="23)"(123) (A.46) 

so all operations in C3y(M) can be written as products involving (123) and (23)*. 

From equations (A.44), (A.45) and (A.46) we determine that 

(132)|1#!) = et 14!) 

(12)*|1#1) = eFF [1 #1) 
(31)*)1#!) = eH 1 Fy (A.47) 

where, in each equation, the signs are correlated. With these equations, we can 

construct the representation matrices generated by |1+!) and |1~!) and verify that 

the traces of these matrices are the characters of the E irreducible representation 

of C3y(M). Since |Wo) is totally symmetric in C3,(M), then |W%o)|1~!) and 

lWo)|1+!) have E symmetry. 

Problem 12.5 

In zero order, the intensity of a transition in the v4 band of CH3F is determined 

by the integral [see equations (12.11) and (12.12)] 

Fy = (Protr’| (Pvib,ov' | (Petec,0 lA |Petec,0)|Pvib,ov")|Prot,r”).  (A-48) 

where the ground-state electronic wavefunction ®elec,9, the vibrational 

wavefunction for the vibrational ground state 

|®yib.ov") = |W) lui = 0°) (A.49) 

(see problems 12.3 and 12.4) and the dipole moment component j14 along the 

space-fixed A axis are all unchanged by the MS group operation (123). The effect 

of (123) on the upper-state vibrational wavefunction 

|®yi,ou') = lho) |1"*) (A.50) 

where /4 = +1, is given by equation (A.44) and the effect on the rotational 

functions 

Prot) = kam) and |Prot,r”) a ge Aa) (ASSL) 

is obtained from equation (11.8) and the fact that R; 2n/3 is the equivalent rotation 

of (123). 
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As discussed in section 12.3.3, the value of an integral of a function 

depending on the molecular coordinates is unchanged when a symmetry or eeg 

is applied to the integrand. We apply (123) to the integrand of re in 

equation (A.48): 

20 “cp _ pl 20 
Loe —ik’ = y Ea tils etik Pole =! ellk k’ +14) 3 ee (52) 

Thus, Is can only be non-vanishing if 

eilk—K +14) 7% =2ti (A.53) 

which requires 
Ke ke = 0, 23, E629, (A.54) 

and this is equivalent to equation (12.54). In zero order when |Ak| < 1, it reduces 

to equation (12.45). 
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Character tables 

This appendix gives the character tables of some common molecular symmetry 

(MS) groups and it gives the character tables of the extended molecular symmetry 

(EMS) groups of linear molecules. The MS group is defined for rigid molecules 

in section 8.2 and the definition is generalized to include non-rigid molecules in 

section 13.1. The EMS group of a linear molecule is introduced in section 8.3.4. 

For a nonlinear rigid molecule, the MS group is isomorphic to the molecular 

point group and, in such a case, the name of the MS group is taken to be that of the 

point group followed by (M), e.g. the MS group of CH3F is called C3y(M). For a 

linear rigid molecule, the EMS group is isomorphic to the molecular point group 

and it is called Co.y(EM) or Doon(EM) as appropriate; the MS group of a linear 

rigid molecule is called Cyoy(M) or Doon(M) but these are not isomorphic to the 

C xy or Doh point groups. For a non-rigid molecule, the MS group is called Gy, 

where nv is the order of the group. 

For rigid molecules, the irreducible representations are named in the same 

way as for the (isomorphic) point group. The irreducible representations 

are ordered in each symmetry group according to established convention; 

this convention is necessary to ensure a consistent numbering system for the 

normal vibrations. The normal vibrations are numbered according to their 

symmetry species and then within each symmetry species from highest to lowest 

wavenumber. 

In each character table, one element from each class is given and the number 

of elements in the class is indicated underneath the element. For rigid molecules, 

the appropriate element of the molecular point group for each class is given; this 

shows the effect of the MS or EMS group element on the vibronic variables. The 

equivalent rotation (Equiv. rot.) of the MS or EMS group element is also given. 

The equivalent rotations of an asymmetric top molecule are called Ry”, Rp” or 

R,* to indicate rotations through z radians about the a, b or c axis, respectively. 

For a symmetric top molecule, the equivalent rotations are called Re or Ras 

as defined in table 11.1. Knowing the equivalent rotations, one can classify 

the symmetric top wavefunctions and the xyz molecule-fixed components of the 

a3) 
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rovibronic angular momentum operator Jy (see table 11.1). 

The species obtained for the Jy are indicated by placing the J to the 

right of the appropriate irreducible representation. The rotational coordinate Ry 

[see equation (4.12)] transforms in the same way as ae under permutations and 

permutation—inversions. The translational coordinate 7, [see equation (4.11)] 

transforms in the same way as Ja under a nuclear permutation but with opposite 

sign under a permutation—inversion and the molecule-fixed dipole moment 

components jlq transform in the same way as the Jy [see the discussion after 

equation (12.18)]. The species of the 7, and of the components @,5 of the 

electronic polarizability, given by the species of 7,75 (see section 12.5), are also 

indicated by placing them the right of the appropriate irreducible representation. 

Finally, "(jz4), the species of the dipole moment operator along a space-fixed 

A = X, Y or Z direction (or, equivalently, along a €, n or ¢ direction), 

is indicated; it has character +1 for the nuclear permutations and —1 for the 

permutation—inversions. Allowed rovibronic transitions are connected by this 

symmetry species (see section 12.1). 

Table B.1 

The group Cs(M) 

Example: HN3 
b 

elites a 
Va (+c) 

H 

Cs(M): 

Cs: E Oab 

Equiv. rot: R° R,7 

hte F 7 
nae I I > Ta, Tp, Je, Caa, Abb, cc, Mah 

Ve oe A”: 1 —| Bee Wicd I Chey Od ten INGUIN) 

-_—--eaeaeeeee Ss” _— eae — 
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Table B.2 

The Group C;(M) 

Example: Trans C(HIF)CHIF (without torsional tunnelling) 

I, 
iFe 
/ 
/ 

bo e/a 
f 

C ¢ 
if ? (+c) © 

/ 

H3 a \ 

Fe i 

E  (12)(4)(56)(78)* 
C;(M): 1 \ 

Ce ok i 

Equiv. rot.: R° Re 

ar Ja, Ip. Je, a 
ai saul rely seme lial (LEAS) Au: if 
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Table B.3 

The group C2(M) 
Example: Hydrogen persulphide (without torsional tunnelling) 

Hy Hy 

b ' 
ee ; 

| 

S Sz;—a S, (+a) 3 4 4 
SH, nc / 

iS 

E (12)(4) 
C>(M): 2(M) 1 1 

(Go: 9 de, Cop 

Equiv. rot. R® Ree 

A: l | celine in Maa» &bb» ec, Lacs (wa) 

B: 1 —1 2 la; lena, Sek QabsObe 
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Table B.4 

The group C>,(M) 

Example: Water 

M): 
CEO 1 1 1 

Cr, Con Fab. Eohe 

Equiv. rot: R° R,= R= Rg™ 

A: ] ] 1 1 : Th, @aa, &bb, &cc 

Ao: 1 iee=1 =| pagel (ia) 
Bel et I 1 2 TAs one 
Bo ol 1 at eT ny, 
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Table B.5 

The group C3,(M) 

Example: Methyl fluoride 

C3y(M): 

C3y: E 263 30y 

Equiv. rot: R2 R,2%/3 Rx 2” 

A 1: 1 1 1 5 Tz, Azz, Axx + ayy 

A2: 1 1 —] y Jz, Pia) 

Be 2 Sj OQ 25, Li Vawly); 
(Axx — Ayy, Ary) 
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Table B.6 

The group Co,(M) 
Example: Trans-difluoroethylene (without torsional tunnelling) 

Oe) 

{ 
C 

(<C)jabe\e 

Ho 

x ts 
© © 
a) ® 
+ + 
2 <a 
a i) 

E = Be Ss 

CoM ya yrs 

Con: E C2 Sab l 

Eaui : 0 Bra u 0 quiv.rot.: R Re Re R 

Ag: ] ] l 1 : Je, aa, Ohh, ees Sah 

Au: I 1 —1 —| eel cae lk (LEAD) 

Bg: l —] —| ] : Toad One Ope 

Bu: 1 —] l —] ee aneus 



338 Character tables 

Table B.7 

The group D2,(M) 

Example: Ethylene (without torsional tunnelling) 

‘ b Hi 

Soe 
Sen(sciuey° 

H4 2 

pee 
a eS, 

ae aera a ee 
YS & a ey id 
aS eS 

Eee ae ee ee ay 

Do,(M): 
bal — —_ _ —_ —_ — 

Dy: E Coq Cop Cre Fab Sac Sc 1 

Equiv. rol: R° Ra™ Rp® Re@ Re oR, Re OR? 

Ag: 1 1 ] l ] 1 1] 1 : Qaa, bp, Occ 

Anaaal 1 1 1 SS Ie) 
A 

Ba ieee) 1h 1) el A Ti aeose 
Bae f Weel 1 fp Saree re 
Bip tints Ln eet lesen ae 
Bee isa Al Si et ai, 
By: 1 -1 -1 1 1 -1 -1 1: Seay 
Bae tal at PSI @ fiat ee 
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Table B.8 

The group D3,(M) 

Example: Ei 

y 

Eee (123) ee (23) eee Eee 2S) aS) 

D3,(M): 

Deyis We PC XE ep, NA Slory 

Equiv. rot.: R? R,27/3 Raya” RZ RO*/3 Ro™ 

Aveo 1 1 1 1 OL, Onn Ay, 

Ayes lee et eet Site et l(a) 
Ao’: 1 1 = | i _-=4 ye 
Zo eee 1, tet 1 ie 

BO 4 (., 2s 1 0 (aT, 
: (Axx — Ayy, Ary) 

Ele Omi Cm? | 0 Gee). 
(yz, Ayz) 



Character tables 340 

<
<
 

e
e
e
 

o
e
 

\ / 
Ho 

rc 

ane © 
a 

\
 

4(2)GQN(SE)92) 
= 

3 
a 

pee 
Re 

e(JO)(OG)PR)OSMETM 
PL) 

ra 
. 

Oo
 

6 _
 

e(
JO
PO
GR
 

(O
SP
ET
I)
 

= 
4(
JP
Q)
(9
98
 

(O
PT
) 

SE
T)
 

Table B.9 

4(
J2
)(
2G
)(
PR
MO
EM
 

S
T
F
)
 

(J
2)
(9
q)
(p
e)
(9
S 

E
T
F
)
 

(99)(FG)(SEN9T) 

= © 

2 
5 

(g9)(9q)(pe(9E 

STZ) 

PT) 

ee 

= 
a 

(Jpq)(29e)(9FZ)(SET) 

bb 

(gapoqe)(9SPEZ1) 

a be 

WwW 

ky 

NA oy 

256 On 304 30y 253 l 
"7 
2; D6n: E 2C6 2C3 C2 3C), 3G 

IT 

ww /2 

52/3 4n/3 RE RTR 
‘ 

I pr 0 
(0) RoR URE R a/3 

Eq. rot.: R? 

=i ll (ua) =k 

le el 

(Qxz, Qyz) 

(Ts 7) 0 

0 

0) 

N
 

(xx — Qyy, 

Qxy) 
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Table B.10 

The group D2q(M) 

Example: Allene (without torsional tunnelling) 

H3 . 
. f 

Co 6 Ce 2 

y oe SH, 

Ha 

a i) 
‘© wey 
WY — = 
= + + 
Se we Sy 
N — —~ 
+ a a 

EB cS TC CS (34)* 

Poa): 2 2 2 

Dia 254 Co 2C2’ 204 

Equiv. rot: R° Re Re Ron /4 Ro 

A 1 rs 1 ] ] ] 1 5 xx + ayy, Azz 

A2: 1 1 | = = : Jz 

Bie ] —] 1 1 —1 > Oxy — yy, (wa) 

Bo: 1 —| 1 —1 1 . Tz, Axy D i 

Es 2, 0 —2 0 0 eld naa y) 

(xz, Hyz) 
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Table B.11 

The group D3q(M) 

Example: Ethane (without torsional tunnelling in the staggered conformation) 

Hs 
xX / 

ae 

3 as 
/ 

| 

Emaar e : 

He 

7 3 Hy 

% 

eo ) 
Sa 
“~~ — co 

Gr Goer eS ty 
~_ (aN, WY aan 

S §a.bal ms = 
roa) =~ =~ oa] —~< 
N \O + \o CN 

Tey Se eee 
D3q(M 
ae oy Ee Sime We 

Dag Bae 2G. 8Cy i WSs Bog 

Equiv. rot.: R° Ree Ro 6 Be Roe Ro 16 

Ajg: | ] ] 1 1 Lo: @zz, Axx + Qyy 

eet 1 te tin Sesh ee tas 
Age: | os ei Be oa bn By 
Ady: | | -1 -1 -l Lia Mel 

Bee tei) 2 Poth) alee Kat ian soy, 
: (Axx — Ayy, Axy) 

Bed Sl “0-=2) 1 “20 Uae 
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Table B.12 

The group T qg(M) 

Example: Methane 

Ha 

C-.. 
4a ee 

H, H, 

EB (123) ((14)(@3) (1423)8 123) 
T 4(M): 1 g 3 6 6 

Li Ee SCs 3C2 6S4 604 

Ay: 1 I | 1 | 2 Axx + Qyy + azz 

Ag: 1 1 1 —1 = ea) 

| p 0 O : (Qxx + Qyy — 2azz, 

: Axx — Ayy) 

Fi: 3 0 -1 eee) 
ligne 3) =| —1 LS Gael, fz), 

(Axy, Ayz, yz) 
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Table B.13 

The group O}(M) 

Example: Sulphur hexafluoride 

1 
_ Fe 

s — FA 

x(9G) wOSMTEPL) 

x(9P)(ST) 

om 

x(9PESTI) 
=
 

LL 

«9S P
T
E
)
 

wy 
Le 

i
 

(reed) 

(r
ET
L)
 

(S
r(
9T
ME
T)
 (C
97
 

Sr
I)
 

(ag) 

856 604 654 3p On: E 8C3 6C> 6C1 3C> i 

xx + ayy Azz +a 

St frie —l ll 

ale al 

— Axx — Ayy, rae (Qa 0 Beal 
Axx — Ayy) 

AN 

Ci pede) 
A A 

T-) 

=I 

l 

] 

il 

0 —1 

0 

3 
3 

1 

Il (Ty aly. 
(yz ’ Ayz ; Axy ) 

Or il = 23 
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Table B.14 

The group Cooy(M) 

Example: Hydrogen cyanide 
H c N 

Coov(M): E E* 

Gas 0) a 
Go) el 2 IPE) 

Table B.15 

The group Doon(M) 

Example: Carbon dioxide 

O C 

Dini? £2) “E*  (12)* 

(+s), wes 

(+a),Zut: 
(=d),2g5: 

Gis). ye: Se ea 

| — = | — 

1 =] 5 LEED) 
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Table B.16 

The group Cooy(EM) 

Example: Hydrogen cyanide 

H C ee 2 
(+y) 

Eo Es ooE,* 

Cooy(EM) 
1 2 oO 

Cone HE 2c ee co (@/?) 

: : 0 =€ It Equiv. rot.: R R- Ror +e)/2 

(5) a! 1 l Tz, xx + Qyy, Azz 

(usc on | aT wea) 
Tl: 2 2cose 0 (Tx, Ty), (x, Jy), (@xz, @yz) 
NILE SDCOSZes ore 0 (Axx — yy, Axy) 
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(
4
%
 

K
a
j
 

— 
X
7
9
)
 

Cle 1) 
(
n
p
)
 
(
C
e
)
 

(
V
1
)
 

J
 

So Ooo SS 

37 $09 T— 

37 $097 

3809 
7— 

3 8097 I- 
I 

I- 

I 

ic!) 

ANNAN 

3 

aS Re OOo 

ee 

Eecie< ST] 

5
 
N
e
(
=
)
 

:_ 38y“(p—) 

Og (D+4) 
=
 °K (Sr) 

3— 

COnm 

aarS 

© 
c 

EAA) 

“yor 
‘
a
m
b
 

HOG 

(NDING 

P
a
)
 

x 

aplxoIp 

uogieD 

:o[duexy 

(Na) 

| 

dnoss 

oy 

L
V
 
P
9
8
 L
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Table B.18 

The group G4 

Example: Hydrogen peroxide 

(with torsional tunnelling) 

Hy 

0; 0, 

x 
He 

G4: E (12)@G4) E* (12)@G4)* 

[cul el cael | 1 | 

AC hv a 1 1 1 
Am ee Ane aos vl I =| —| melas) 

Roa Pee hicel ees oI 1 
Room Ba Re, @ ith 1 == 

*T’; notation based on effects of (12)(34) and E*. 

b I> notation based on C > notation. 

© T3 notation based on Cy, notation. 
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Table B.19 

The group G¢ 
Example: Methanol (with torsional tunnelling) 

Hy 

¢ 

b 

c O 

oy a 

Ve H 
He 

H3 

He 23\e(23)e 
G6: oi eee 3 

Equiv.rot.. R°  R°  R.* 

Ay I 1 Eales Jes Ona. Obh, Cans Cah 

Tenedag Jp, ac, “be; P(wa) > 2 

oa 

= | — 
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Table B.20 

The group G12 

Example: Nitromethane (with torsional tunnelling ) 

Hy 

Os 

BE W(123)5(23)* 45)) (23)(45y) C2)45)* 
G\2: 
one 3 | 2 3 

Equiy.rotR° Ro R,") Ra") R,® Re 

Aiea 1 1 1 1 1 PL WP aoere 

: Abb: Acc 

Aye eel ae =| = cy Jeep 
A kcal eee lee | 1 ail Led phelps Tibia) 
Ag heat ate ly el =| 1 Dp Jasons 
EO ea On m2 =i 0 
ER = O> £9 | 0 
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Table B.21 

The group Gj6 

Example: Ethylene (with torsional tunnelling) 

vs C5 

= * 

a ‘o oS 
S ie Oo 2 2 
Css Sse 
eee no 
Qa = oe 
+ N nm st N a 

Bee ee C4) eS 4) 
Gi6 lage? Salat oe Ae loan 2 

MW? LHP 

Mea I Cote) el 
Ap® Aot: 1 1 11 -1 1 1 1-1 -1 
B\t Bo fl ttt =I ee ee eee 
Bor Bir? 1=1 “1-1 "1 1-1 1-1 1 
Ete 2 0-2 02) 0 20 2s 0 20 

Age (Bo 2 lal eh 1 ee deal4 hel =! 
Ave abit Al wilted Slo Gl, lal ad 
Boo Aq Pt Ff Hl Shela lan al l(a) 
Bp~ Ag: 1-1 1-1 te ad ls Sl, galt 
B= Boe 2 0 =) OueeG 225g MDA Dy, 20 

4 Notation from Merer A J and Watson J K G 1973 J. Mol. Spectrosc. 47 499. 

This correlates appropriately to D2q(M) (see table B.7). 

> Notation from Longuet-Higgins H C 1963 Mol. Phys. 6 445. 
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Appendix C 

Books for further reading 

Spectroscopy 

Banwell C N and McCash E M 1995 Fundamentals of Molecular Spectroscopy 4th edn 

(New York: McGraw-Hill) 

Bernath P F 1995 Spectra of Atoms and Molecules (Oxford: Oxford University Press) 

Brown J M 1998 Molecular Spectroscopy (Oxford: Oxford University Press) 

Brown J M and Carrington A 2003 Rotational Spectroscopy of Diatomic Molecules 

(Cambridge: Cambridge University Press) 

Demtroder W 2002 Laser Spectroscopy 3rd edn (Berlin: Springer) 

Duxbury G 2001 Infrared Vibration—Rotation Spectroscopy: From Free Radicals to the 

Infrared Sky (New York: Wiley) 

Harris D C and Bertolucci M D 1990 Symmetry and Spectroscopy: An Introduction to 

Vibrational and Electronic Spectroscopy (New York: Dover) 

Herzberg G 1989 Molecular Spectra and Molecular Structure, I. Spectra of Diatomic 

Molecules (Melbourne, FL: Krieger) 

—1991 Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of 

Polyatomic Molecules (Melbourne, FL: Krieger) 

—1991 Molecular Spectra and Molecular Structure, III. Electronic Spectra and 

Electronic Structure of Polyatomic Molecules (Melbourne, FL: Krieger) 

Hollas J M 2002 Basic Atomic and Molecular Spectroscopy (New York: Wiley) 

—12004 Modern Spectroscopy 4th edn (New York: Wiley) 

Jensen P and Bunker P R (ed) 2000 Computational Molecular Spectroscopy (New York: 

Wiley) 

Kroto H W 2003 Molecular Rotation Spectra (New York: Dover) 

Lefebvre-Brion H and Field R W 2004 The Spectra and Dynamics of Diatomic Molecules: 

Revised and Enlarged Edition (New York: Academic) 

Wilson E B Jr, Decius J C and Cross P C 1980 Molecular Vibrations (New York: Dover) 

Quantum mechanics 

Atkins P W and Friedman R S 1999 Molecular Quantum Mechanics 3rd edn Ca 

Oxford University Press) 

Oo Nn i) 
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Cohen-Tannoudji C, Diu B and Laloé F 1996 Quantum Mechanics (2 vol set) (New York: 

Wiley) 

Levine I N 1999 Quantum Chemistry 5th edn (Englewood Cliffs, NJ: Prentice-Hall) 

Pauling L and Wilson E B Jr 1985 Introduction to Quantum Mechanics with Applications 

to Chemistry (New York: Dover) 

Pilar F L 2001 Elementary Quantum Chemistry 2nd edn (New York: Dover) 

Schatz G C and Ratner M A 2002 Quantum Mechanics in Chemistry (New York: Dover) 

Szabo A and Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced 

Electronic Structure Theory (New York: Dover) 

Zare R N 1988 Angular Momentum (New York: Wiley) 

Symmetry and group theory 

Bishop D M 1993 Group Theory and Chemistry (New York: Dover) 

Bunker P R and Jensen P 1998 Molecular Symmetry and Spectroscopy 2nd edn (Ottawa: 

NRC Research Press) 

Cotton F A 1990 Chemical Applications of Group Theory 3nd edn (New York: Wiley) 

Hamermesh M 1989 Group Theory and its Application to Physical Problems (New York: 

Dover) 

Tinkham M 2003 Group Theory and Quantum Mechanics (New York: Dover) 



Index 

(a, b,c) principal axes, 91, 101 

a-type band, 254 

Abelian group, 151 

Accidental degeneracy, 159, 307 

Allowed transition, 11, 141, 245 

Angstrom A, 76 

Angular momentum, 34, 101, 140, 

188, 302 

commutation relations, 35, 109, 

320 

Anharmonicity, 70, 72, 78, 238, 252 

Anti-Stokes Raman scattering, 15 

Asymmetric top, 95, 229, 241 

Atomic orbital AO, 52 

Atomic units, 65 

Avogadro constant N4, 12 

Avoided crossing, 217 

b-type band, 254 

Band, 251 

Bohr frequency condition, 9 

Bohr radius ao, 65 

Boltzmann constant k, 8, 16 

Bose-Einstein statistics, 179 

Boson, 179 

c-type band, 254 

Character, 146 

Character table, 135 

Charge conjugation, 304 

Chirality, 281, 305, 312 

Class, 151 

Clebsch—Gordan coefficient, 188 

CNPI group, 135, 158 

class structure, 151 

354 

Collisional lifetime, 13 

Commutator, 20 

Computers, 42, 159 

Configuration interaction CI, 52, 

21295 

Conformer, 160 

Conjugate momentum, 33 

Conservation law, 294 

Contortion, 274 

Coriolis coupling, 98, 243 

CP symmetry, 313 

CPT symmetry, 316 

6;; the Kronecker delta, 20 

debye D, 255 

Degeneracy, 9, 21, 31 

accidental, 159, 307 

structural, 159 

Determinant, 23, 38 

Dipole moment, electric, 36 

Dipole moment, magnetic, 36 

Direction cosine matrix, 100 

Doppler effect, 12 

E the identity operation, 117, 133 

E* the inversion operation, 128, 
305 

Eigenfunction, 17 

Eigenvalue, 17 

Electric quadrupole absorption, 37 

Electric quadrupole moment, 47 

Electrical harmonicity 

approximation, 250 

Electromagnetic force, 310 

Electromagnetic radiation, 3 



Electron correlation, 50 

Electron permutation symmetry, 

295 

Electronic states, 44 

Electrostatic potential energy, 26 

Electroweak unification, 31 1 

Enantiomer, 306, 312 

Equivalent representation, 152 

Equivalent rotation, 222 

Euler angles, 89, 99 

Even permutation, 155 

Excited state, 19 

Expectation value, 19 

F angular momentum quantum 

number, 35, 188, 304 

Feasible, 163, 274, 290 

Fermi—Dirac statistics, 179 

Fermion, 179 

Fock operator, 51 

Forbidden transition, 11, 141, 245 

Force constant, 70 

Franck—Condon factor, 265 

y-ray region, 7 

y harmonic-oscillator parameter, 79 

Gaussian lineshape, 13 

Gaussian orbital, 52 

Geometrical symmetry, 113 

Ground state, 19 

Group, 118 

axioms, 134 

order, 151 

Hamiltonian operator, 18 

Harmonic force constant, 70 

Harmonic oscillator 

one-dimensional, 73 

two-dimensional, 77 

three-dimensional, 78 

Harmonic-oscillator approximation, 

70 

Hartree energy Ep, 65 

Hartree-Fock approximation, 50 

Index B55) 

Hermite polynomial, 73 

Hermitian operator, 19 

Herzberg—Teller effect, 266 

Highest occupied molecular orbital 

HOMO, 60, 196, 207 

Homochirality, 313 

Homomorphism, 150 

Honl—London factor, 252, 253 

Hot transitions, | 1 

Huckel approximation, 61, 197, 205 

Hybrid orbital, 57 

Hyperfine structure, 187 

i inversion operation, 116, 263, 272 

Va’, mi”, 1, H, 1! conventions, 
101 

J angular momentum quantum 

number, 188 

Icosahedron, 121 

Identity operation E, 117, 133 

Improper axis, 114 

Inertia matrix, 90 

Infrared active, 251 

Infrared region, 7 

Intensity stealing, 191 

Internal coordinates, 233 

Inversion centre, 118 

Inversion operation E*, 128, 305 
Inversion operation 7, 116, 263, 272 

Irreducible representation, 146 

Irreducible spherical tensor 

components, 252 

Isomorphic Hamiltonian, 94, 172 

Isomorphism, 150 

Isotropic space, 301 

3 j-symbol, 188 

J angular momentum quantum 

number, 34, 101, 140, 188, 

303 

|J,k,m) symmetric top 

wavefunction, 95 

k angular momentum quantum 

number, 93, 94, 101 



356 Index 

Kronecker delta 4;;, 20 

K (spatial), 141, 302 

irreducible representation, 303 

/ matrix, 71 

/-resonance, 261 

(+7) levels, 243, 259 

A harmonic-oscillator force 

constant, 79 

Lambert—Beer law, 4 

Laser, 11 

Lepton, 310 

Lifetime broadening, 13 

Line positions, 9 

Line strength, 11, 35, 36 

Linear combination of atomic 

orbitals LCAO, 52 

Linear molecules, 94 

Lineshape, 12 

Lowest unoccupied molecular 

orbital LUMO, 60, 196, 207 

m angular momentum quantum 

number, 35, 101 

my, nuclear spin quantum number, 

185 

{La dipole moment operator 

symmetry in CNPI group, 149 

Magnetic dipole moment, 47 

Matrix element, 21 

Maxwell distribution of speeds, 8 

Maxwell—Boltzmann distribution 

law, 9 

Microwave region, 7 

Missing levels, 185 

Molecular orbital, 51 

antibonding, 54, 194 

bonding, 54, 194 

non-bonding, 195 

spin-adapted, 295 

Molecular structure, 45, 122 

Morse potential, 266 

MS group 

extended (EMS), 172 

non-rigid molecule, 274 

rigid molecule, 163 

Multiplication table, 118 

Natural radiative lifetime, 13 

Node, 53 

Noether’s theorem, 302 

Non-crossing rule, 217 

Non-rigid molecule, 274 

Normal coordinate, 70 

dimensionless, 8 1 

Normal mode of vibration, 71 

Nuclear permutation operation, 127 

Nuclear spin function, 180 

Oblate rotor, 92 

Observables, 18 

Octahedron, 121 

Odd permutation, 155 

Operator, 17 

Operator equation, 20 

Optical activity, 306, 312 

Orbital correlation diagram, 213 

Ortho, 136, 182, 189 

Ortho-para interaction, 190 

Ortho—para transition, 190 

Orthogonality, 20 

Para, 136, 182, 189 

Parallel band, 255, 258 

Parity 31) 133. 300so18 

Paronic state, 318 

Partition function, 9 

Pauli exclusion principle, 48, 295 

P branch, 257 

Permittivity €9, 12, 26 

Permutation 

cyclic, 144 

even, 155 

odd, 155 

of identical nuclei, 127 

Perpendicular band, 255, 260 
Perturbation, 22, 24 

Perturbation theory, 25 



Phase factor, 19 

Photochemical reaction, 215 

Planck constant h, 6 

Point group, 117, 122 

Polarizability approximation, 266 

Postulates of quantum mechanics 

the first, 18 

the second, 18 

the third, 19 

the fourth, 19, 293 

the fifth, 19, 48, 179 

Potential energy surface, 44 

Power broadening, 12 

Pressure broadening, 13 

Principal axes of inertia, 91 

Projection operator, 153 

Prolate rotor, 92 

Q branch, 257 

Quantization, 10 

Quark, 310 

(Rx, Ry, Rz), rotational 

coordinates, 71 

Raman active, 271 

Raman spectrum, 3, 14, 266, 288 

Rayleigh scattering, 15 

R branch, 257 

Reflection symmetry, 113 

Reflection symmetry plane, 113 

Representation, 146 

antisymmetric product, 153 

antisymmetric square, 153 

associate, 295 

correlation, 154 

dual, 295 

equivalent, 152 

faithful, 150 

generation, 152 

induced, 155 

irreducible, 146 

product, 146 

reducible, 147 

reduction, 152 

Index 85H, 

reverse correlation, 155 

separably degenerate, 309 

symmetric nth power, 154 

symmetric product, 153 

symmetric square, 153 

unfaithful, 150 

Rigid molecule, 158, 274 

Roconvibrational state, 275 

Rotation-reflection axis, 114 

Rotational coordinates, 71 

Rotational energy, 92 

Rotational Hamiltonian, 97 

Rotational symmetry, 113 

Rotational symmetry axis, 113 

Rotational wavefunctions, 92 

Rovibronic energy, 6, 26, 32 

Schonflies symbols, 119 

Schrodinger equation, 17 

molecular, 26 

rovibronic, 32 

time-dependent, 293 

translational, 29 

Secular equation, 23 

Selection rule, 11, 139, 149, 246 

Self-consistent field SCF, 51 

Similarity transformation, 23 

Slater determinant, 49, 50 

Speed of light c, 3 

Spherical top, 95 

Spin, 46, 128 

Spin angular momentum, 46 

Standard model, 310 

Stark effect, 142 

State correlation diagram, 215 

Static electric polarizability tensor, 

267 

Stimulated emission, | 1 

Stokes Raman scattering, 15 

Strong force, 310 

Structural degeneracy, 159 

Sub-band, 257 

Subgroup, 149 

Symmetric group approach, 295 



358 Index 

Symmetric top, 92 

oblate, 92 

prolate, 92 

Symmetry 

element, 113 

geometrical, 113 

group, 133 

operation, 113, 126, 132 

reflection, 113 

rotational, 113, 140, 301 

translational, 296 

(T,, Ty, Tz), translational 

coordinates, 71 

Term values, 10 

Tetrahedron, 120 

Thermal reaction, 214 

Time reversal, 308, 315 

Tore 

Transition 

allowed, 11, 141, 245 

axis-switching, 247 

combination tone, 252 

electronically allowed, 265 

forbidden, 11, 141, 245 

magnetic dipole, 36 

moment, 36, 139 

nuclear spin forbidden, 245 

ortho-para, 190 

overtone, 252 

strictly forbidden, 246 

Translational coordinates, 71 

Translational energy, 6, 26 

Translational quantization, 30 

Translational wavefunction, 31 

Transmittance, 5 

Transpose of a matrix, 37 

Tunnelling splitting, 81, 158, 274 

Ultraviolet region, 7 

Unfaithful representation, 150 

Unfeasible, 163, 274, 290 
Unified atomic mass unit u, 13 

Uniform space, 301 

Vanishing integral rule, 137, 147 

proof, 138 

Variational theorem, 25 

Version, 159 

Vibrational angular momentum, 98 

Vierergruppe, 326 

Visible region, 7 

Voigt function, 14 

Volume element, 18 

Walsh diagram, 196 

Wavelength i, 3 

Wavenumber 1, 3 

Weak charge, 311 

Weak force, 310 

Weak neutral current interaction, 

131 

Woodward—Hoffmann rule, 216 

Ent axis system, 43 

xyz axis system, 69 

XYZ axis system, 26 

XYZ axis system, 27 

X-ray region, 7 
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