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/ have seen the task which God has given 

men to occupy themselves. 

He has made everything beautiful in its time. 

He has also set eternity in their hearts; 

yet they cannot understand what God 

has done from beginning to end. 

I know there nothing better for them than 

to rejoice and do good while they live. 

I know that everything God does will remain forever; 

there is nothing to add to it 

and there is nothing to take from it. 

God does it so men will revere Him. 

Ecclesiastes 3 
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PREFACE 

Chemistry is a subject which manages to be, at the same time, both 
fascinating and frustrating. There appears to be a very elegant structure 
underlying the diverse range of chemical phenomena that is found, yet this 
structure seems to be well and truly hidden by the sheer complexity of the 
behaviour observed: why do molecules react one way under some conditions, but 
give completely different products under other conditions? why do some atoms 
adopt a range of different oxidation states and geometries, while others always 
behave in the same way? To the uninitiated, more experienced chemists can 
sometimes just add to the frustration. Their "chemical intuition" - a convenient 
euphemism for years of experience - often enables them to deduce the correct 
geometry for a molecule, or product for a reaction, or result from an experiment, 
with no apparent basis for the conclusion. We have tried to capture some of the 
rationale that guides chemists in reaching their conclusions, and put onto paper 
some of that subconscious filing system that is necessarily developed over years 
of acquiring data about chemistry. 

Such an aim is clearly ambitious; perhaps even overly ambitious. Never-the- 
less, it is our hope that we have been able to present some guidelines that will 
help the reader in perceiving the underlying structure of chemistry. We have tried 
to show that molecular geometry can be understood in terms of a few underlying 
principles that are always operative, but whose relative importance varies. As a 
result, the different theories of molecular geometry can be seen not to be in 
opposition to each other; rather, they concentrate on systems and conditions under 
which different subsets of these governing principles dominate. 

The main focus of this book is on the arrangement of atoms about a single 
atom, though the final part of Chapter 3 and almost the whole of Chapter 6 are 
devoted to molecules in which the central atom is replaced by a cluster of atoms. 
Also, in Chapter 7 some of the consequences of small, local variations in 
geometry are pursued for the macromolecules DNA and proteins. The language 
used throughout the book is established in Chapters 1 and 2. Some readers may 
find Chapter 2 to be too formalistic. It is devoted to the symmetry arguments that 
underpin a great deal of "chemical intuition", and we feel it is important to show 
that such arguments are rigorous, and to give examples of how they can be 
quantified. Many readers may prefer to use this chapter on a "need-to-know" 
basis, skimming through at first and referring back to it only when and if they 
need the detail for later chapters. In this way we hope the book will be useful to 
chemists at different stages of development by being able to be read at different 

IX 



X Preface 

levels. We have assumed an understanding of the concepts covered in first year 
chemistry courses. The emphasis has been biased in favour of parts of chemistry 
that we ourselves found (and find) most difficult to understand. 

Finally, "Molecular Geometry" owes its existence to our parents who set us 
on the path of learning; to those who taught us most patiently, especially Eddie 
Schipper and Bob Gilbert; to Brian Johnson who believed we could do it; to the 
Chemistry Department at Stanford University who saw the beginning and the end 
of the project; and to John Freeman who turned some preliminary diagrams into 
illustrations. Our thanks go to them. 

August, 1994 
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CHAPTER 1 

Definition and Determination 
of Molecular Geometry 

Contents 

Introduction 1 
1.1 What is molecular geometry? 2 

1.1.1 Isomerism 6 
1.2 Factors determining molecular geometry 8 
1.3 Theoretical models 14 

1.3.1 Molecular orbital and valence bond theories 14 
Molecular orbital theory for H2 15 
Valence bond theory for H2 17 
Simple molecular orbital theory for second row 
homonuclear diatomics 17 
Simple molecular orbital theory for second row 
heteronuclear diatomics 21 
Concluding comments 21 

1.3.2 Steric-plus-electronic methods 22 
Determining coordination number 23 
Arrangement of ligands about the central atom 25 
Molecular mechanics 30 

Introduction 

The shape of a molecule may seem like one of its simplest properties, yet it 
can convey a wealth of information to any chemist who knows how to interpret it. 
This book is motivated by the belief that the first step towards understanding the 
chemistry of a molecule is to know its geometry and to begin to understand why it 
adopts that shape. Molecular shape arises as a balance between various steric and 
electronic-structural effects; both of these types of effect also constrain the 
possibilities for intermolecular interactions, reactivity and spectroscopy. We shall 
seek to examine the underlying principles that govern the shape or shapes adopted 
by any given molecule, and in so doing will assess the advantages and limitations 
of different approaches to molecular geometry. 

Once we understand the principles that determine molecular geometry, we 
may begin to interpret the clues that molecular geometry provides and make 
predictions about new systems. It is not intended that this book should be a 

1 



2 Molecular Geometry 

comprehensive case-by-case study. There are a number of excellent general texts 
that perform that role^'^ and give a balanced view of the relative importance of 
any given geometry. By concentrating on principles rather than examples, we 
hope to provide a unified framework in which the extensive chemical literature 
can be read with understanding. As with arrow-pushing rationalisations of 
organic reaction pathways, we shall never be able to be conect every time, but a 
few exceptions are easier to remember than a book full of apparently unrelated 
facts, and the facts that do not fit into a neatly constructed framework tend to be 
the goad that leads to the next step in understanding. In this way we hope to 
address the complaints most frequently voiced by students studying inorganic 
chemistry, namely that there is so much to learn and apparently no logical reason 
why the relevant molecules behave as they do. 

In the rest of this chapter we shall give an overview of molecular geometry, 
and we begin by considering exactly what we mean by "molecular shape"; 
although the term is intuitively obvious, a precise definition can be surprisingly 
elusive. This will be followed by a discussion of the factors that determine 
molecular geometry and a brief resume of some existing approaches to 
understanding molecular geometry. Existing approaches tend to be disparate and 
to apply only in certain circumstances - we shall endeavour to unify the ideas they 
contain in the rest of the book. 

1.1 What is Molecular Geometry? 

Upon being confronted by the question "what is molecular geometry?" most 
chemists would start to describe simple geometrical shapes that they associate 
with various molecules or parts of molecules. At the beginning of a book on 
molecular geometry we must consider just what we mean by a statement such as 
"methane is tetrahedral and looks like Fig. 1.1, having four C-H bonds pointing to 
the vertices of an imaginary tetrahedron". 

Fig. 1.1 Methane. 

At best, such a picture is either the lowest energy airangement of methane's 
atoms, or an average of the geometries methane really adopts. In reality methane 
is not so rigid, but has atoms that are constantly vibrating even in the solid state. 
In some instances, the average geometry is not an energy minimum. For example, 
the most stable geometry of "octahedral" metal complexes, e.g. [Cu(H20)6]^‘^ 
(Fig. 1.2), is tetragonal due to the Jahn-Teller effect (see §5.1.5). In other cases, a 
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molecule may adopt different geometries depending upon its environment. For 
example, the drug Hoechst 33258 (Fig. 1.2) adopts a more planar structure when 
bound to DNA than when it is free. Furthermore, there are even situations in 
which what we refer to as the geometry of a molecule may depend on the 
experimental technique used to determine it. Many transition metal cluster 
compounds (see Chapter 6) have two or more geometries of very similar energy, 
and the dominant one may depend on whether we are investigating it in the solid 
or in solution, and what the temperature is. Further, the geometry of a particular 
molecule in a sample may change during the time scale of a measurement, so that 
what we observe is some average of the possibilities.^ * There are various ways to 
describe the geometry and symmetry of such non-rigid systems.^ ’® In this book, 
we shall pretend that molecules are more-or-less rigid with clearly identifiable 
geometries unless we explicitly confess to the contrary. 

Fig. 1.2 Tetragonal [Cu(OH2)6p'*' and Hoechst 33258. 

Thus, we return to the question of what we mean by the geometry of a 
molecule. Are we identifying geometry with local minimum energies on the 
complicated potential energy surface that describes the energy of a collection of 
atoms as a function of atomic positions, or are we talking about some average 
geometry? And if it is the latter, then how are we performing the averaging 
(arithmetically, geometrically, root mean square ...)? We should also stop to ask 
what role the electrons play in all of this. So far we have described molecular 
geometry in terms of the location of the atomic nuclei, but it is the electrons that 
occupy the major part of a molecule's volume. Although some of these 
distinctions may seem to be insignificant, some important developments in our 
ability to predict chemical behaviour during the last decade have actually 
depended upon recognising the difference between these different descriptions of 
molecular shape or geometry. 

Now, having acknowledged that we are asking a very complicated question, 
it is better to begin by ignoring most of these problems and consider idealised 
geometiies that correspond to our unthinking answers to the question "What is the 
geometry of Instead of being apologetic about this simplification, let us 
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extend the idea of idealised geometries; for example, utilising the similarities 

between highly symmetric molecules such as CH4 and less symmetric ones such 

as chloroform, CHCI3, and the amino acid glycine NH2CH2COOH (Fig. 1.3). 

Fig. 1.3 Chloroform, CFICI3, and the amino acid glycine NH2CH2COOH. C is black, H is 

white and other atoms are shaded. 

In many situations it is convenient to describe the shape of a molecule by 
focusing on a subset of the atoms and associating an idealised high symmetry 
shape or template with these atoms; the selected atoms lie at or near to the 
vertices of this shape. The appropriate template for methane, chloroform and 
glycine would then be tetrahedral about the first C. Similarly, we might describe 
the sugar glucose in terms of a cyclohexane template (Fig 1.4); and trans- 
[Co(NH3)4Cl2]‘^ (Fig. 1.5) as octahedral. The usefulness of associating a molecule 
and a template will depend on the extent of distortion from the template and the 
property being discussed, but it enables us to begin to systematise the vast array 
of molecular shapies that arise in nature. We then add to the template picture the 
details of which atoms are bonded together, the length of the bonds, and the 
various bond and torsion angles. 

Fig. 1.4 Cyclohexane and glucose. Atom key as for Fig. 1.3. 
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Fig. 1.5 rra/i5-[Co(NH3)4Cl2r. 

One further generalisation is possible when talking in terms of templates. If 
we take the template as a shape on which we build the molecule, then we can also 
construct a molecule by locating atoms on some, but not necessarily all of the 
vertices, with "holes" occupying the remaining vertices. In this sense a square 
planar complex may be associated with an octahedral template as well as a 
square. Such flexibility is valuable when we consider metal complexes such as 
nickel (II) cyanide that may be either square planar or square pyramidal (Fig. 1.6), 
both of which may be associated with an octahedral template; it also forms the 
basis of Chapter 2 where the relationships between different templates is 
explored, and is used in Chapter 6 when we discuss the geometry of transition 
metal cluster compounds. 

In the following discussions it will be useful, if somewhat arbitrary, to draw 
a distinction between the terms structure and geometry. Molecular structure will 
be taken to refer to the precise arrangement of atoms (i.e. the location of the 
atomic nuclei) within the molecule; molecular geometry will be used rather more 
loosely. 

Fig. 1.6 Nickel (II) cyanide. 



6 Molecular Geometry 

1.1.1 Isomerism 

For small molecules, the molecular formula and a table of standard bond 
lengths and angles" may be all that is required to enable a fairly accurate estimate 
of the geometry. However, most molecular formulae have a number of possible 
different isomers that are consistent with the same bond lengths and angles. It is 
always possible (though not necessarily easy) to convert a molecule from one 
isomer or geometry to another, it simply requires energy. The types of isomerism 
possible are given below in order of increasing energy difference between 
isomers. 

Optical Isomerism: Some molecules are not superposable^ on their mirror 
images. This is the most subtle form of isomerism, and requires that the molecule 
has no centre of inversion, reflection plane or improper rotation axis (see §2.1). 
Such molecules aie known as chiral (from the Greek word xe\.p meaning hand). 
Two optical isomers (also called enantiomers) can only be distinguished from one 
another in the presence of a chiral influence: another chiral molecule or a chiral 
environment such as that provided by circularly polarised light. The simplest 
chiral molecule is hydrogen peroxide (Fig. 1.7), though the energy barrier 
between the two enantiomers is so small that all experiments detect both isomers 
equally, and no net chirality. The concept of chirality is crucial for biological 
systems. For example, the teratogenic properties of thalidomide (Fig. 1.7) are 
associated with only one of the enantiomers. Sugars (e.g. glucose. Fig. 1.4) and 
amino acids (Fig. 1.7), but excluding glycine (Fig. 1.3), are among the simplest 
common chiral molecules, and are component parts of some of the most 
complicated chiral molecules, including DNA and proteins (Chapter 7). 

Fig. 1.7 H2O2, thalidomide (the S enantiomer, which is not illustrated, is the teratogen), and an 
amino acid. The amino acid side chain is depicted by the large black sphere. 

Conformational Isomerism: Ethane, C2H6, requires about 4kJmol" of energy for 
one CH3 group to rotate with respect to the other about the C-C bond. The lowest 
energy conformer is the staggered one where the H's make the vertices of a 

t Superposable is the correct term. Superimposable, which is more widely used, is misleading 
since non-identical items may be superimposed to facilitate comparison. 
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hexagon if the molecule is viewed along the C-C axis and squashed flat (more 
precisely we talk about projecting onto a plane perpendicular to the C-C bond) 
(Fig. 1.8). The other special conformation is the eclipsed form, in which the H's 
at the front obscure those at the back so that it projects onto a triangular shape; 
this is the highest energy possibility. If one continued twisting around the central 
C-C bond one would find three separate staggered conformations. In ethane these 
are all equivalent, but in a molecule such as 1,2-dichloroethane, with a chlorine 
attached to each C, they give rise to two chemically different staggered forms. 
We identify the two distinct forms as separate isomers - gauche (with chlorines 
at, e.g., positions 1 and either 4 or 5 in the staggered ethane of Fig. 1.7^) and trans 
(with chlorines at, e.g., positions 1 and 6). For 1,2-dichlorethane the torsional 
barrier is similar to that for ethane, ~ 4kJmor*; the proportion of molecules 
having sufficient energy to surmount this barrier will be approximately 
which amounts to about 50% at room temperature. In other words, roughly one 
out of every two torsional vibrations will result in a successful baiTier crossing, 
and conformational interconversion will take place on a sub-nanosecond 
timescale. 

Clearly, it is not possible to treat the conformers of 1,2-dichloroethane as 
separate chemical species under normal conditions, and so we may really only 
speak of stable conformers in this case, not of conformational isomers. It must be 
remembered, however, that this distinction is temperature dependent, and that if 
we were to work at liquid helium tempefatures, then the stable conformers of 
1,2-dichloroethane could be separated as conformational isomers. For 

t The two gauche forms are, in fact, optical isomers of each another. 
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1,2-dichlorethene, chemically important conformational isomers, cis and trans 
(Fig. 1.9), may be identified since the energy barrier that prevents interconversion 
of the two forms is much higher than the typical energy associated with 
vibrational and torsional motions (~2.5kJmor* at room temperature). Thus 
interconversion of the two forms is slow and we can isolate them as distinct 
chemical species. 

Fig. 1.9 cis- and fronf-dichloroethene. 

Structural Isomerism: The above types of isomerism all involve the same bond 
connections between atoms. However, C3H6 could exist as either cyclopropane or 
propene. Thus, C3H6 exhibits what is known as structural isomerism. 

1.2 Factors Determining Molecular Geometry 

Energy: Which molecular geometries are observed is determined solely by 
energetic considerations. One of the basic beliefs instilled into chemists is that 
the world around us is driven by two opposing trends: a tendency to minimise 
energy (enthalpy, H) and a tendency to maximise entropy (5). These two factors 
are combined into the concept of free energy, so that the driving force behind 
chemical and physical changes is then a "desire" to minimise the free energy; in 
most circumstances this is the Gibbs’ free energy, G, defined as G = H-TS where 
T is temperature. From a theoretical point of view it would be preferable to work 
with the internal energy ({/) since this is the one thermodynamic energy that is a 
molecular property rather than a collective property and so in principle can be 
calculated directly. U is related to G via the definition G = U-TS+PV, where P is 
the pressure, and V is the volume of the system. It turns out that for a discussion 
of molecular geometry, the differences between U and G are not great, and one 
can get a long way by considering just the internal energy. This situation occurs 
primarily because molecular geometry is a property of an isolated molecule and 
the volume actually filled by the molecule is only a small part of the total volume 
available to it, so that changes in the space it fills due to conformational changes 
will cause very little difference to V. Again, for an isolated molecule the main 
contribution to the entropy associated with a given geometry arises from its 
vibrational motion; since we are neglecting vibrations in our discussion of 
geometry, it is also reasonable to neglect the TS term. Thus to a good 
approximation, stable molecular geometries may be associated with arrangements 
of atoms that will minimise the molecule’s internal energy. 
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If we imagine all the possible isomers a molecule can adopt as being 
expressed in terms of a set of 3N-6 (or 3N-5 for linear molecules) Cartesian 
coordinates, then U may be expressed as a function of all those coordinates and 
pictured as a multidimensional potential energy (PE) surface. For diatomics this 
is the familiar plot illustrated in Fig. 1.10; for larger molecules it becomes 
impossible to visualise, but we can still calculate it and use it. Stable geometries 
are wells on the PE surface with walls substantially higher than RT, the energy 
readily available from thermal motion; transition states are saddle points; 
reactions or rearrangements occur when enough energy is provided for the 
molecule to climb out of the well and over a saddle point. 

a(R-Re) 

Rg. 1.10 Morse PE surface for a diatomic molecule. Dg = dissociation energy, 
a = (o(^l/(2Z)g))^^^, (0 = vibrational frequency, p = reduced mass. 

The question that now arises is how do we obtain this PE surface. Indeed, is 
it even a well-defined function? The discussion above has drawn heavily on 
classical thermodynamics for its justification, and so we must pause to ponder 
whether the considerations of quantum mechanics that govern vibrations and 
reactions in molecules might modify this picture. It turns out that we are justified 
in using the idea of a potential energy surface to identify stable conformers and 
their structure, and the reason we can do this is the Born-Oppenheimer 
Approximation (BOA). While this is not the place to treat the BOA rigorously, 
we should be aware of its existence and its significance for molecular geometry. 
The BOA follows from noting that electrons are so much lighter than nuclei that 
they will be able to respond essentially instantaneously to changes in the positions 
of the nuclei. This in turn means that it is possible to contemplate solving 
Schrodinger's equation (and hence finding out everything we need to know about 
the molecule) at each possible arrangement of the nuclei. We would then come 
up with an energy that characterises each configuration of the nuclei. The PE 
surface is just the collection of these energies. 

The importance of the preceding discussion is that it provides us with a 
means of asking why a molecule adopts a particular geometry, and a criterion for 
determining what the possible geometries are. If a particular conformation is 
stable, then any distortion of the molecule away from that conformation must lead 
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to an increase in energy. Equivalently, we may seek to ask what it is that makes 
the observed geometry favourable, i.e. what are the interactions that will lead to a 
lower energy. Of course, while the principle is easy to state, the practice is 
usually more complex, and so many different models have been suggested to 
explain why a molecule adopts one geometry and not another. These range from 
being extremely simple (yet based on hand waving arguments and often 
theoretically unjustified) to extremely complex (theoretically rigorous, but often 
too incomprehensible to give much insight). The important thing to determine in 
a given application is how near to the truth the answer needs to be, and how 
comprehensible it needs to be. Unfortunately, these two criteria are usually in 

opposition. 
Two simple ideas can often help us circumvent many of the complexities in 

these energetic arguments. One is symmetry (see below and Chapter 2). The 
other relates to bond energies: are the bonds associated with a given geometry 
strong enough to withstand bond vibrations? The latter question may often be 
answered from simple orbital-overlap arguments (see §1.3). 

Symmetry: Experience often leads a chemist to be able to guess what the most 
stable arrangement of a given set of atoms is. We need to ask what underlies that 
experience. One of the key features is that molecules usually adopt symmetric 
geometries if possible, and one can often guess whether retaining a paiticular 
symmetry element is energetically unfeasible. A symmetry element of a molecule 
is a geometric transformation (rotation or reflection or a combination of them) 
that leaves all measurable properties of that molecule unchanged. So, for 
example, if [MnCle]'^' has high symmetry, it is unlikely to be planar with 
hexagonal symmetry because either the Cl's will be crowded or the Mn-Cl bonds 
too long, but an octahedral geometry seems to be a "sensible" option. In fact it 
can be proved rigorously'^ that high symmetry geometries are either stable (at an 
energy minimum), or a transition state (an energy maximum) between symmetric 
conformations. Thus for example, planar BF3 is stable, but planar NH3 is the 
transition state for the inversion of ammonia. 

We shall discuss symmetry much more fully in Chapter 2, but the key idea is 
that molecules are likely to adopt symmetrical shapes unless there is a good 
reason for them to distort away from their high symmetry template. Furthermore, 
when applying crystal structure data to isolated or solution phase molecules, it is 
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justifiable to assume that the crystallographic environment may cause small 
distortions that would not persist in the isotropic environment provided by the 
solvent. For example, the crystal coordinates of [Co(ethylenediamine)3]^‘^ 
(Fig. 1.11)^^ indicate the molecule has no symmetry operations, but is very close 
to one having a three-fold rotation axis and three two-fold rotation axes 
perpendicular to it; one would expect these symmetry elements to reassert 
themselves in solution. 

Group 
1-2 3 

■ ■ 

1 ■ ■ 1 
» : 1 lanthanides & actinides 1 

4-12 13-16 17-18 

!■; transition metals 

s-block p-block S d-block EH f-block 

Fig. 1.12 Schematic periodic table indicating partially filled valence orbitals 

and the position of the lanthanides and actinides. 

Orbital considerations and the periodic table: The other important key to our 
intuitive grasp of molecular geometry is the periodic table, which systematises a 
great deal of chemical data. The periodic table is arranged so that atoms with 
related chemical properties are lined up with one another either horizontally or 
vertically. The elements are numbered according to atomic number (number of 
protons and hence electrons in the neutral element). The columns, or groups, of 
the periodic table are then those atoms with the same type of electrons in the outer 
or valence shell (see below for definition). The columns are numbered 1 to 18, so 
the "cf-block" is included in the numbering, but the "/-block" is excluded. If the 
lanthanides and actinides were as important to our lives as, e.g., Fe, then the 
periodic table would we drawn as in Fig. 1.12 rather than the standard version 
shown inside the front cover. 

Carbon 

a Fnan ^ ^ 5 
2j 2p 

□ am I 11 111 
is 3p 3d 

□ iim I I I I I I n ri 1111 
4s 4p 4d 4f 

□ um I I I I I 11 I M I I I I 
5i 5p 5d 5f 

Potassium 

S hinn7ui .4 5 
2s 2p 
a aaa 1 1 11 1 1 
3s 3p 3d 

a □□□ I I I I I I.. 
4s 4p 4d 4f 

□ □□□ 
5s 5p Sd 5f 

Fig. 1.13 Electron configurations for C and K. Arrows indicate order of orital occupancy. 

Thankfully for the sanity of chemists, the distribution of the electrons of He, 
Li, ... can, to a reasonable approximation, be described in terms of orbitals 
(functions describing the behaviour of a single electron) that look similar to the 
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ones that can be determined exactly for hydrogen. So we may describe the 
electron configurations of e.g. carbon and potassium as in Fig. 1.13. The radial 
and angular behaviours of the orbitals of hydrogen are shown in Figs. 1.14 and 
1.15 respectively. For H, the energy of an orital is dependent only on the 
principal quantum number n which correlates with the average distance from the 

nucleus of the electron. 
The orbitals of other elements differ from those of hydrogen because 

electron-electron interactions must be included for all other elements. The most 
important difference between H orbitals and those of many-electron atoms, as far 
as the periodic table is concerned, is that the shape of an 5 orbital is such that an 
electron occupying it is, on average, closer to (penetrates further towards) the 
nucleus than a p electron of the same principal quantum number, so an 5 electron 
is more attracted to the nucleus and less protected (shielded) from it by other 
electrons than a p electron of the same principal quantum number. This means 
that for many-electron atoms the orbital energy depends not only on the principal 
quantum number, n, but also on the azimuthal quantum number, 1. p orbitals are 
therefore of slightly higher energy than the s orbitals of the same n, so the s 
orbitals are occupied first leading to the structure of the periodic table. 

Fig. 1.14 Radial distribution R{r)^‘* of H orbitals, r is the distance from the nucleus, Og is the 

Bohr radius (5.292xl0‘^'m). Different scales are used for different principle quantum numbers, 

n. f, the azimuthal quantum number, equals 0 for s orbitals, 1 for p orbitals, and 2 for d 

orbitals. 
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The term "outer" or "valence" shell used above is in fact a loose label 
referring to all orbitals close in energy to the highest occupied and lowest 
unoccupied orbitals. For the second row of the periodic table this means the 2s 
and 2p orbitals. Further down the table it involves a mixture of principal quantum 
numbers. For example, the fourth row of the periodic table involves filling 4s 
orbitals, then 3d, then 4p. The 4s and 3d orbitals are very close in energy as is 
shown by the fact that it is usually the s rather than d electrons that are lost when 
e.g. Fe is ionised to Fe^"^. 

z z z 

z y 

Fig. 1.15 "Shape" of Is, 2s, 2p, 3s, 3p, and 3d hydrogenic atomic orbitals. The shapes plotted 

are derived as follows. The distance from the nucleus, rgQ, within which 90% of the electron 

density of the occupied orbital is contained was determined. For each direction out from the 

nucleus, a vector whose length was proportional to the magnitude of the angular part of the 

orbital wavefunctions in the plane shown was drawn. The longest vector has length rgo. The 

heads of the vectors outline the shapes illustrated. rgQ = 2Jag for Is, 9.2ag for 2s, 9.1ag for 2p, 

\9.5ag for 3s, \2>Aag for 3p, and IS.Sa^ fox 3d, where a^ = 5.292xl0‘*^m. The angular 

functions are for np^. cos0; for 3d2z2-x2-y2 (3cos^0-l)/2; for 3d^{. sin20; for 3dx2-yr. co2(t), 

where 0 is the angle from the vector to the z axis and ({) is the angle to the x axis in the x-y plane. 

The diagrams for other ao's, e.g. 2py and 3d^ are most simply determined by changing the 

axis labels on those illustrated. The shaded lobes have opposite sign functions from the 

unshaded ones. Contour plots have slightly different shapes. 

The similaiity of chemical behaviour down a group results from the fact that 
most chemistry is determined by the valence electrons and atoms in the same 
group have the same type of valence electrons, albeit at greater distances from the 
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nucleus as the principle quantum number increases. The differences down a 
group can often be related simply to this increase in size of the atom and 
consequent effects on electrons that are less tightly held (i.e. more polarisable). 
Another factor is the greater number of valence orbitals available. 

1.3 Theoretical Models 

Any discussion aimed at rationalising or predicting molecular geometries 
must begin with some degree of approximation or assumption. One approach that 
is conceptually helpful is to identify different "types" of energy, and to focus on 
their behaviour. For example, several models proceed by distinguishing between 
electronic and steric effects. The electronic effects relate to the sharing or 
donating of electrons and are normally associated with bonding, whereas the 
steric energy incorporates physical interactions normally associated with 
intermolecular interactions: the exclusion of other atoms from the volume 
occupied by a given functional group, the electrostatic interaction between polar 
functional groups etc. Many ways have been proposed for dividing the molecular 
energy into different categories, but we shall refer to all these models collectively 
as steric-plus-electronic models. 

Although helpful, this division into "types" of interaction can be somewhat 
arbitrary, and so it is useful to consider such models in conjunction with 
molecular orbital (MO) and valence bond (VB) theories. These two theories give 
(in principle) rigorous quantum mechanical treatments of the system as a whole, 
and so avoid the problems introduced by arbitrary divisions. Unfortunately, by 
introducing such a level of rigour, one also tends to obscure physical insight, so 
that accurate MO and VB calculations are very difficult to interpret in simple 
geometric terms for polyatomic molecules. None-the-less, simple interpretations 
do arise for diatomic systems, and concepts that emerge from MO and VB 
treatments of diatomics prove to be very useful in developing, understanding, and 
justifying the various steric-plus-electronic models for more complicated 
polyatomic systems. MO and VB theories will therefore be considered in §1.3.1. 

The purpose of the final part of this section is to present an overview of the 
more important non-quantum models of molecular geometry, and to indicate how 
they fit together in terms of the "types" of energy they consider or ignore. These 
models include valence shell electron pair repulsion theory, non-bonded radii, 
atom-atom repulsion, atom-atom interaction and molecular modelling approaches. 
The rest of this book will then illustrate how the paiticular application determines 
which energetic partition is appropriate, and hence which of the models would 
then be used. 

1.3.1 Molecular Orbital and Valence Bond Theories 

Although their own geometries appear trivial, diatomic molecules are 
invaluable for studying molecular geometry, since most of the basic bonding 
principles that hold more complicated molecules together can be deduced from 
them. This is a common trick in developing the theory of chemistry: simple 
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systems that theoreticians can treat "properly" are used to develop the language 
with which we describe and understand much more complicated systems. Thus, 
the only atom for which we can solve the Schrodinger equation is the hydrogen 
atom, and, as mentioned above, we consistently use the hydrogen ao's as the basis 
for understanding the electronic structure of all atoms. In the same way, diatomic 
molecules are simple enough that we can hope to give a reasonably rigorous 
treatment of the molecular structure (albeit in terms of the ao's that came in turn 
from the H atom), and it is this treatment of the diatomic molecules that will 
provide us with the concepts and the language to describe much more 
complicated molecular systems. 

The following rule of thumb is helpful in using the results from simpler 
systems for more complicated systems when quantum mechanics cannot be 
ignored (as is the case for electrons): where possibilities are alternatives, (is an 
electron in this or that state?) we add the respective wave functions, but when 
possibilities can happen at the same time (one electron is in this state while 
another is in that state) we multiply the states. These ideas are fundamental to the 
process of constructing the wavefunctions that describe the electrons in 
molecules. 

What follows is a simplistic view of both MO and VB theory. In particular, 
we shall overlook many of the subtleties of electron spin except in so far as the 
Pauli principle allows only for double occupancy of each (spatial) orbital. 
Although spin-effects are important in quantitative calculations and in 
spectroscopic applications, they usually do not affect our qualitative 
understanding of molecular geometry. For a more complete treatment, see e.g 

references 

Molecular Orbital Theory for H2 

Simple MO theory describes the behaviour of each electron separately 
within its molecular environment by a function called a molecular orbital, or mo. 

(Note the use of lower case mo to refer to the orbital, but the upper case MO to 
refer to the theory as a whole.) The molecular environment of one electron 
includes the nuclei and an average of the field provided by the other electrons. 
Refinements of simple MO theory allow for correlated electron-electron 
interactions. We shall consider only simple MO theory. In general one expresses 
the mo for an electron in terms of the atomic orbitals {ao's) of the atoms and 
allows the electron to occupy any of the available ao's, though not necessarily 
with equal probability. The valence ao's are the ones most involved in any 
electron redistribution following molecule-formation, so we shall consider only 
these orbitals. The radial extent of the valence orbitals used for different atoms 
throughout this book were illustrated in Fig. 1.14.^ 

It is also necessary to consider the orientation in space of the orbital if we are 
to determine the overlap between orbitals. The magnitude of an s orbital is 
independent of direction. For p, d, etc., however, we must consider the orbital 
shape. As chemists we are familiar with drawing e.g. dumbells for p orbitals. 
The precise meaning of these shapes is given in Fig. 1.15, but in general terms 

t The electron density in an orbital is the square of the function illustrated, and the radial 

distribution function is the electron density in a spherical shell of radius r and thickness dr. 
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they depict the electron densities in different directions. The length of a line 
drawn from the origin to the curve is a measure of the electron density one would 
see looking out from the nucleus along that line. So, e.g, has no electron 
density along the x axis and maximum density along z. 

For the symmetric diatomic molecule H2 each electron is equally likely to be 
either in the Is orbital of H atom a or in the Is orbital of H atom b. Thus, since 
these ao's are alternatives (as discussed above) the mo's in this basis set will be 

(t), = [ or = [ X|/(H;/) - (1.1) 

has more election density between the H's and (J)^* has less. Thus, an electron 
in 0^ acts as negatively charged glue to hold the two positive protons together. 
Conversely, an electron in 4)^* increases the proton-proton repulsion relative to 
two non-bonded H atoms, thus its occupancy is a driving force away from 
molecule formation. So is a bonding orbital and is lower in energy than 4)^* 
which is antibonding. Thus we may draw a qualitative MO energy level diagram 
for H2 as in Fig. 1.16. Once the mo's have been determined, the electrons are then 
assigned to orbitals, with up to two (of opposite spin) in each. Now, there are two 
electrons in H2 and we need to describe their simultaneous behaviour, so the 
lowest energy MO wavefunction for H2 is given by the product of the electronic 
mo's: 

V|r(H2) = 4).(1)W2) (1.2) 

The notation '(1)' in this equation means we are talking about the first electron 
being associated with this particular orbital. The second lowest energy function 
has one electron in 4)/ =[vt/(H;/) - \|/(H;^‘’)]. The lowest energy arrangement of 
electrons is illustrated in Fig. 1.16. 

Energy 

f —G 0 

H H 

Fig. 1.16 H2 valence MO energy level diagram illustrating, schematically, the electron density 

in each orbital (were it to be occupied); shaded parts have negative phase, unshaded parts have 

positive phase. Electron occupancy of ground state is indicated by arrows whose direction 

indicate spin. 

As drawn Fig. 1.16 suggests that if both orbitals were filled, as would be the 
case for He2, then the molecule would have the same energy as two separated 
atoms. In fact, the situation is slightly worse than that, as anti-bonding orbitals 
are always slightly more antibonding than bonding orbitals are bonding, so He2 is 
actually less stable than 2He. 

The above discussion of H2 has used only the Is orbitals on the H's. In fact, 
the presence of a second H atom distorts the ao's. This distortion could be 
described in terms of the electron being excited to spend part of its time in one of 
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the higher energy ao's, so in a more accurate description we would include 
contributions from 2s, 2p ... ao's. Of course, the higher in energy such orbitals 
are, the less likely such an excitation is to take place, and so the less significant 
will be the contribution to the ground state wavefunction. In general, the amount 
of interaction between orbitals on different atoms depends not only upon their 
spatial overlap, but also on the energy difference between them. Orbitals that are 
closest in energy interact most. Since the energy gap between Is and 2s is large 
(see Fig. 1.19), the 2s would have only a small effect on the lowest orbitals of H2 

and the relatively simple mo's given above provide a fairly accurate description. 
The situation is not so simple for the second row systems Li2 and Be2 as discussed 
below. 

It should be noted that the energy of the molecule is not simply the sum of 
the orbital energies times their occupancy, since this ignores the interactions 
between electrons. The two energy terms that account for electron-electron 
interaction are the Coulomb energy (a positive destabilising energy resulting from 
the electrostatic repulsion of two negatively charged particles) and the exchange 
energy (a negative term resulting from the fact that electrons are indistinguishable 
from each other; it may be thought of as the quantum mechanical analogue of 
entropy, since it comes from recognising that rearranging the system by 
interchanging electrons leads to arrangements that are identical). These terms 
become important for transition metal systems (Chapter 5), where the energy gap 
between different d levels is small and the balance between coulomb and 
exchange energies may lead to the electrons singly occupying higher levels rather 
than doubly occupying the lowest energy levels in accord with the aufbau 

principle. 

Valence Bond Theory for H2 

Whereas MO theory starts by describing single electrons, VB theory begins 
with pairs of electrons. It is motivated, at least in part, by the idea that a bond 
results from sharing a pair of electrons. The simple VB wavefunction for H2 is, 
therefore, just the average of the two alternatives with one electron on each atom 

at any one time: 

[X1/(H,/)(1) V|/(H;.‘’)(2) + V(H;/)(2) xi/(H7.‘’)(1)] (1-3) 

The advantage of this function over the MO one of Eq. 1.2 is that its dissociation 
limit is two H atoms. Its disadvantage is that it allows for no ionic electron 
distribution with more electrons on, say, H“. An ionic term is therefore often 
added. In recent years VB theory has been developed to the point where accurate 
calculations can be performed.*^ For some systems, VB is much more successful 
than MO theory; however, in general VB theory is not as simple to implement 
computationally as MO theory, and also suffers the handicap of being less readily 

available in standard computer packages. 

Simple Molecular Orbital Theory for Second Row Homonuclear Diatomics 

The valence ao's of elements Li to Ne may be taken as 2s, 2p^, 2py and 2p^, 

though any independent linear combination of the 2p orbitals will suffice 
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(Fig. 1.15). Let us begin by considering only these orbitals. As noted above, there 
are two rules for the degree of mixing of ao’s to make mo's\ 

(i) it is inversely related to the energy separation between the orbitals, and 
(ii) it is proportional to the net overlap of the orbitals. 

When we later come to mix approximate mo's to form better ones, then it is also 
helpful to know that two mo's will have no net overlap if the orbitals being mixed 
have different symmetries. 

In order to determine the diatomic MO energy level diagram, let us firstly 
assume there is no mixing of 5 with p orbitals (i.e. ignore the 25/2/7^ overlap). 
Then for the homonuclear diatomic M2, the MO energy level diagram of Fig. 1.17 
results. The sketches indicate where the electron density would be if the orbitals 
were occupied. 2s orbitals mix as did the Is orbitals for H2. 2p^ only overlaps 
with the 2px orbital on the other atom making a bonding and antibonding orbital. 
Similarly, for the 2py's and 2p^s, although the nature of the overlap differs for 2p^. 

The labels given to the orbitals are symmetry labels for the D„t, point group, (see 
§2.1.2) with the orbitals of the same symmetry numbered consecutively beginning 
with the Is core orbitals (omitted from this diagram), o means that if the orbital 
is viewed down the z (bond) axis, then it looks like an s orbital, similarly K 

orbitals look like p orbitals when viewed down that axis. 
Eneigy 

t 
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✓ \ 
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Fig. 1.17 Second row diatomic MO energy level diagram in the absence of s/p mixing. 

One of the fundamental theorems in quantum mechanics (called the virial 
theorem '5) states that any approximate wavefunction will be of higher energy 
than the true wavefunction. So, we may improve (i.e. take it closer to an accurate 
description of the behaviour of the electrons) the mo's by mixing together more 
ao's; at worst the new mo's will be the same as the old. The simplest additional 
mixing is to acknowledge that a 2s ao on one M will overlap with the 2p^ ao the 
other M. Rather than redoing the analysis from the beginning, we may take a 
shortcut and combine the no s/p mixing mo's of Fig. 1.17 to make new mo's. As 
noted above, only mixing orbitals of the same symmetry will have any net effect. 
Thus the two Og orbitals mix to give a bonding and an antibonding combination. 
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similarly the two Oy orbitals mix resulting in the diagrams of Fig. 1.18. The 
differences between Fig. 1.18 a and b result from different degrees of mixing. 
20g may now be described as bonding/bonding, but 3CTg is antibonding/bonding 
etc. 

2s -C ^ ^ 

\ / 

M M 

Energy ,GhG, 
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2p: 

/ 
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\ / 

'(■ ^ / 
ijt., 

2a 

2s 

M=0,F,Ne M=Li,Be,B,C,N 

Fig. 1.18 MO diagram for M2 including s/p mixing. The changes in the orbital shape are 

exaggerated. 

There remains the question of which diagram is appropriate for a given 
molecule? The usual answer follows from the observation that the mixing of 
orbitals to make mo's is approximately inversely proportional to their energy 
difference. Atoms on the right hand side of the periodic table, i.e. O, F and Ne, 
have greater nuclear chtirge than those of the left hand side and so have their 
electrons attracted more strongly to the nucleus. This exaggerates the energetic 
difference caused by the fact that on average 2s electrons are closer to the nucleus 
than 2p electrons. Thus, although both s and p electrons are lower in energy on 
the right, the sip gap is actually bigger (Fig. 1.19) and so less mixing occurs. 
Thus Fig. 1.18a relates to the left hand side and 1.18b to the right hand side of the 
periodic table. 

The MO diagrams for the second row homonuclear diatomics are given in 
Fig. 1.19; these have been obtained from calculations that are accurate within the 
assumption that a single orbital may be used to describe the behaviour of each 
electron. The occupied valence mo's up to C2 conform with Fig. 1.18a. SOg and 
iTty of N2 are known to be inverted in such calculations with respect to the order 
observed in photoelectron spectroscopy. In any case they are exceedingly close. 
The calculations for O2 and F2 do not follow Fig. 1.18b, though that for Ne2 does. 
At least part of the reason for this lies is the fact that the 7Cy and Kg orbitals are not 
simply a combination of 2p orbitals as is shown by their asymmetric distribution 
about the ao energies; higher energy orbitals of the appropriate synuuetry were 
included in the calculations. 
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Fig. 1.19 Energies of occupied mo's for first and second row homonuclear diatomics from 

Hartree-Fock calculations using a 6-31G* basis set. Atomic energy levels are also included for 

comparison. The dotted line is zero. The levels below the zig-zag have an energy scale 1/4 that 

above, except for Be2 where the factor is 1/2. 
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Simple Molecular Orbital Theory for Second Row Heteronuclear Diatomics 

The step from homonuclear to heteronuclear diatomics is made by 
remembering the rules governing the degree of mixing. The difference in 
electronegativities between atoms determines the energy separation of orbitals, 
thus ultimately determining the direction of electron flow. The labelling of the 
orbitals also changes due to the reduction in symmetry from to (see 
Appendix 2). Some representative diagrams are given in Fig. 1.20. 
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Fig. 1.20 Energies of occupied mo's for some first and second row heteronuclear diatomics 

determined as for Fig. 1.19. The dotted line is zero. The levels below the zig-zag have an 

energy scale 1/4 that above. 

Concluding Comments 
MO theory has been used widely in the study of bonded main group systems. 

However, for non-bonded interactions, such as in van der Waals complexes, and 
for many electron nuclei, such as transition metals, it has been more 
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problematical. This has not prevented accurate MO calculations being performed 
but the computer time required is at the forefront of technology.^® A wide variety 
of other semi-empirical MO approaches have been developed to endeavour to 
treat systems with minimum effort for maximum accuracy. A good starting point 
for exploring these is reference 

In this book we are not concerned with performing accurate calculations, but 
with understanding principles that determine molecular geometry. Simple MO 
ideas are ideal for understanding what holds a diatomic molecule together. 
However, this clear picture is lost when we try to make a rigorous extension to 
polyatomic molecules; this is largely because MO theory allows each electron to 
delocalise over the whole molecule in a manner not in accord with chemical 
intuition. For example, the MO picture of NH3 involves mo's that combine all 
three H atoms together. On the other hand we are taught as chemists to speak of 
hybridising the 2s and 2p nitrogen ao's to form four orthogonal (/.^. non¬ 
overlapping) orbitals, three of which will interact separately with an H to form 
distinct bonds. This raises the important question of whether we really can apply 
MO theory to selected bits of a molecule in order to understand individual bonds 
within molecules, or must MO theory only be used for the molecule in its 
entirety? 

Many workers have invested considerable effort in resolving this dilemma 
by developing methods of localising mo's. One of the most successful for this is 
that of Hansen and Bouman.^^ These processes make it possible (but not easy) to 
use MO theory in the bond oriented manner demanded by chemical intuition. 
Recently, Schipper has taken another route and shown how MO theory and the 
chemist's ideas of distinct chemical bonds can be melded together. The basis of 
this justification is beyond the scope of this book and the interested reader is 
referred to for full details. A similar justification has been developed by 
Burdett in his "fragment formalism".2“* The important point for our puposes is 
that we are justified in taking both the simplicity of MO theory and the conviction 
that bonds are real and useful concepts, and then apply MO theory to bits of 
molecules, such as the various M-L bonds in a metal complex, without having to 
treat the full complexities of the molecular environment. 

1.3.2 Steric-Plus-Electronic Methods 

The focus of both MO and VB theory is on what the electrons are doing 
under the influence of the nuclei. Geometry determination using them proceeds 
by performing a calculation at a given geometry and then identifying geometry 
changes that lower the energy. Many other approaches to molecular geometry 
have a similar approach, but without asking what is making the bond between 
atoms: the quantum mechanical nature of the electrons is ignored and the 
molecular formula is taken as given. An approach that completely ignores the 
electrons except in so far as they contribute to the size of the atoms may be 
loosely referred to as a steric model for molecular geometry. Often, electronic 
considerations will be tacked on to the end of such theories in an attempt to make 
the model semi-quantitative. A number of steric or steric-plus-electronic models 
for molecular geometry will be considered in the remainder of this chapter. 
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Let us begin by considering a hypothetical stepwise formation of the 
molecule ML„ from its component parts. Our notation here is inspired by the 
notation of metal complex chemistry but is not limited to that field; M denotes the 
central atom that is usually more electropositive than L but need not be a metal, 
and L denotes the ligand atom (or group of atoms) that is bonded to M though not 
necessarily using d orbtials to do so. The electron density of an isolated M atom 
is spherical. When a ligand L approaches closely enough to M to interact, M's 
electron density is distorted so as to ensure that there is enough electron density in 
the M-L bond region to form a bond (usually some of that electron density will be 
provided by M and some by L), and the remaining electron density relaxes to its 
most stable arrangement. This distortion and relaxation of the electrons around M 
will then be repeated with each successive addition of an L. 

The energy of the final system can be approximated by the sum of three 
contributions; M-L interactions; L-L interactions; and the distortion of M's 
electron density. We shall call these interactions electronic, steric, and 
stereoelectronic - using this label is the most general sense of geometry 
dependent electronic effects (see §3.2.2) - respectively. The final geometry will 
result from an interplay between these three interactions, but one can normally 
discern a hierarchy of importance such that the M-L interactions are usually the 
strongest, and the stereoelectronic ones the weakest (though they may still be 
geometry determining as we shall see). The various (semi-) empirical approaches 
to molecular geometry differ in the way they treat one or more of these three 
interactions. Generally, they focus on the first two interactions; in some 
instances, however, the strength of the electronic interactions is very geometry 
dependent and stereoelectronic effects cannot be neglected. A good example is 
the anomeric effect in sugars (see §3.2.2). To a first approximation we shall 
ignore all stereoelectronic effects. The two questions that need to be answered in 
order to determine the geometry of ML„ are then: how is the number of L about 
M determined (this is called the coordination number, Cn), and (ii) how are the L 
are arranged about M? 

Determining Coordination Number 

The most stable ML„ system will have as many ligands as there are electrons 
to make stable bonds, subject to the constraint that the L must fit around M with 
appropriate bond lengths to ensure good M-L bonds. (In practice second row M 
have a maximum of four L, third and fourth row M a maximum of six, and larger 
M seldom have more than eight or nine.) For most molecules, the M-L 
interactions dominate and the molecule may be viewed as optimising this 
interaction first, and treating the L-L and stereoelectronic effects as a minor 
perturbation to the M-L interaction. Bond lengths are very well defined in such 
systems, and the value of the bond length shows no significant variation if its 
molecular environment is changed (e.g. by changing the other substituents bonded 
to M).25-27 

Sometimes the number of ligands is fewer than the sizes of M and L suggest. 
There are a number of reasons for this: (i) too few valence electrons; (ii) too many 
valence electrons; (iii) an inability to use valence electrons for bonding; or (iv) 
unusually strongly repulsive L-L interactions. 
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(i) There just may not be enough valence electrons to act as glue between M 
and the maximum number of L. The norm is two-centre two-electron bonds 
between M and each L (though the whole of borane chemistry is an exception to 
this rule, §3.3). This deficiency is particularly common where M comes from the 
left hand side of the periodic table. In some instances L provides the electrons 
necessary to make a bond so that the maximum number of L may be 
accommodated; however this is only common with transition metals. 

(ii) The mo's of a molecule may be classified as bonding (electrons in these 
orbitals hold atoms together and stabilise the system), non-bonding (electrons in 
these orbitals have more-or-less the same energy as their constituent atomic 
orbitals), or anti-bonding (electrons in these orbitals favour the atoms moving 
apart and make a destabilising contribution to the energy of the molecule). If 
possible, the system will avoid occupying anti-bonding orbitals. Although core 
orbitals may be described as bonding and antibonding, they are effectively non¬ 
bonding (c/ Fig. 1.19-20), so we are most interested in the valence orbitals, i.e. 

those made largely of the valence ao's. As a general rule, second row atoms have 
four valence orbitals, one 2s and three 2p, that make at most four bonding 
orbitals, and so there is a maximum electron count of eight about a second row 
atom in a stable molecule. This is known as the eight electron rule and is part of 
the reason for the Cn of second row elements being four or less. The argument is 
less specific for third row atoms as the 3d orbitals are valence orbitals but of 
higher energy than the s and p orbitals so may or may not be used. Hence a 
maximum of somewhere between eight and eighteen electrons might be expected 
for third row atoms, (cf. Figs. 1.14-15 for pictures of orbitals.) If the sterically 
allowed number of ligands means there will be more than eight or eighteen 
electrons present then the. molecule is unlikely to form (though see §5.1.4 for 
exceptions where non-bonding electrons increase the count to twenty-two). 

(iii) In order to use its electrons in a bond an atom must make them 
available in the bonding region of space. We may describe how the atom does 
this by using the concept of a hybrid ao, or ho, which is typically a mixture of s 

and p character, but may have d character if there are available d valence ao's. 

Consider carbon: its valence orbitals are 2s and 2p. The latter are oriented to 
make three bonds at 90° to one another and the 2s orbital is not ideally suited for 
any bonding as it is doubly occupied (so not available to share any of the ligand 
electrons) and spherically distributed around the carbon (so not localised in space 
for a bond). For the price of exciting one of the 2s electrons into the unoccupied 
2p orbital, the atom's total electron distribution can be subdivided into four 
orbitals that have 3/4 p character and 1/4 j character and are oriented tetrahedrally 
with respect to one another. The radial functions for the s/p ho's, are illustrated in 
Fig. 1.21. Note that an ho does not have just one lobe and nor does it have a node 
precisely at the atom. Carbon is now ready to make its four bonds, and the energy 
price for the hybridisation is compensated by the four stronger bonds it can now 
make. Further down Group 14, however, the bond energy is not sufficient to pay 
the hybridisation price and molecules such as SnCl2 are found. Such pairs of 
electrons are referred to as "stereochemically inactive" (see Chapter 4). 

(iv) In some situations the repulsion between adjacent L atoms can be much 
stronger than one would expect from the size of L. This is particularly relevant 
where the M-L bond is polar, since this will lead to an excess of charge on each 
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L, and hence to an electrostatic repulsion between the L. This is well known in 
intermolecular interactions and is, for example, one of the main causes of the 
expansion of water at low temperatures; although less common, it does also occur 
in intramolecular systems. 

Fig. 1.21 Radial distribution, R(r), of hybrid ao's: 2sp^, 2si^, and 2sp compared with that of 2s 

and 2p (cf. Fig. 1.14 and §1.2 for definition of R). 

Arrangement of Ligands about the Central Atom 
Once the number of L about M, n, has been established, the remaining 

question is what positions do the L adopt. All the purely steric approaches to 
molecular geometry are based on the premise that electronic factors determine n 

and may then be ignored, while steric factors determine the orientation of the L 
about M. This is by no means always the case, especially for transition metal 
systems, but it is still helpful to proceed with this division and bring in 
"stereoelectronic" factors as a perturbation. The main types of steric geometry 
models are epitomised by the non-bonded radii approach, the valence shell 
electron pair repulsion approach, and the atom-atom interaction model. These are 
outlined below and referred to throughout the remainder of the book. A 
description of molecular mechanics, which is probably best described as the 
computational implementation of any non-quantum mechanical geometry 
determining method, concludes the chapter. 

Non-Bonded Radii Approach: The simplest steric approach to molecular 
geometry was developed by Bartell and extended by Glidewell.^*’^^ Bartell noted 
that for a wide range of main group atoms on the right hand side of the periodic 
table {i.e. non-ionic compounds) the distance between non-bonded atoms showed 
less variation than that between bonded atoms. He therefore postulated that 
packing atoms at their non-bonded diameter (approximately the sum of their van 
der Waals radii. Table 1.1) determined the geometry of molecules. Neither 
Bartell nor Glidewell explained why their approach worked, but it is remarkably 
successful. The approach requires ^at the M-L bond strength be independent of 
the relative orientations of the L, and that the L are attracted to one another until 
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they come into contact. All details of electronic interactions are hidden in the 
values of the bond lengths, and these are usually obtained experimentally. 

Table 1.1. The non-bonded radii of Bartell^® and Glidewell^ (in pm) determined assuming that 

covalently bound geometries are determined by close packing. 

H = 108 

Be = 139 B = 133 C = 125 N= 114 0 = 113 F= 108 

A1 = 185 Si = 155 P= 146 S = 145 Cl = 144 

Ge = 158 Se = 158 

Sn = 188 Sb= 188 Te= 187 

Valence Shell Electron Pair Repulsion Theory. Valence Shell Electron Pair 
Repulsion Theory (VSEPR)^® takes as different a view from that of the non- 
bonded radii approach for the adoption of a given geometry as is possible within a 
non-quantum framework. Gillespie and Nyholm developed the theory soon after 
Lewis published his concept of the arrangement of electrons in pairs in a 
molecule. VSEPR begins with the assumption that once the bonds have been 
formed, the next largest energetic contribution to molecular stability is to place 
non-bonding electrons in lone electron pairs localised in space. Thus it is 
stereoelectronic factors that are seen to dominate molecular geometry 
determination in this model. 

octahedron pentagonal bipyramid dodecahedron 
tricapped 

trigonal prism 

Fig. 1.22 The polyhedra adopted by electron pairs in VSEPR theory. Vertices are represented 

by shapes indicating the number of edges meeting there. 

The geometry is then determined by minimising the steric repulsion between 
the pairs of electrons, both lone and bonding. The result is that ligands and lone 
pairs adopt positions that keep them as far from each other as possible; this puts 
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them at the vertices of special geometric shapes (Fig. 1.22). If there is more than 
one kind of electron pair the hierarchy of repulsion is: 

lone pairs > triple bonds > double bonds > single bonds. 

Lone pairs are most repulsive as they are contracted towards the nucleus and so 
occupy a greater solid angle than bonding pairs. Furthermore, electronegative 
ligands require less space as they draw the electron density away from the nucleus 
so a smaller solid angle is required to acconunodate them. In an odd electron 
system, a lone electron occupies less room than some pairs. 

Many of the molecular examples given in the succeeding chapters illustrate 
the success of the theory in accounting for observed molecular geometries, though 
its failures suggest that it is in some way deficient. Perhaps its greatest strengths 
are that it is easy to apply and its failures are easy to remember, so at the very 
least it is a valuable mnemonic for remembering molecular geometries. Some 
examples are illustrated in Fig. 1.23. 

4e 6e 8e 8e 8e We 

We We 12e 12e Me 

Fig. 1.23 Applications of VSEPR theory. Note e.g. equatorial positions of a trigonal bipyramid 

have more room than the axial ones. 

VSEPR fails for very ionic systems such as Li20, which is probably more 
correctly thought of as Li'^20^ >with repulsion of the positively charged lithium 
atoms rather than of bonding electron pairs dominating. In addition, VSEPR in 
the form stated above has difficulty with many third and fourth row elements {cf. 

Chapter 4). For example, it cannot account for the square pyramidal geometry of 
SbPhs, or the bent geometry of SrF2, and significant problems arise with 
transition metals. In an excellent book on the VSEPR modeP' Gillespie and 
Hargittai considered the effects on geometry of the polarisability of the valence 
cloud of electrons to account for these problems. They thus allow relaxation of 
the dominating influence of localised lone pair formation on molecular geometry 
by allowing the lone pair to spread out around the core and so push the bonding 
pairs together. The intriguing thing about this is that in so doing the difference 
between the VSEPR approach based on electron pair repulsion and those based on 
L-L interactions is almost removed. The atom-atom interaction model (AAIM, 
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see below) would consider the driving force for this lone pair spreading as the 
attraction of the L atoms. 

The Atom-Atom Interaction Model (AAIM): The A AIM is based on the 
assumption that, once the M-L bonds have formed, the L-L interactions 
determine the orientation of the L’s around M in ML„. Underlying this statement 
is the assumption, also used in VSEPR theory, that M-L bond strength is 
independent of orientation. This is not entirely valid; the strength of an M-L bond 
will change with geometry if there are associated variations in the bonding 
electron density. This problem is particularly pertinent in "electron deficient" 
systems such as boron. BH3 is calculated to be planar,^** yet the L-L interaction 
(see below) would favour a pyramidal geometry such as is observed in NH3. In 
BH3 a pyramidal geometry with two-electron bonds would require all the valence 
shell electron density to be concentrated on one side of the B, whereas in the 
planar arrangement a high electron density in the bonding region is more 
compatible with an even distribution around the B atom. This is an example 
where stereoelectronic considerations would outweigh the steric factors. It is 
interesting to note that there is no experimental evidence for the existence of BH3 

as a stable species - it always dimerises to form B2H6, thus enabling both atom- 
atom attraction and reasonable distribution of the electrons. Despite such 
exceptions, it is still useful to begin by assuming the M-L bond strength is 
independent of orientation and to consider orientational effects as an additional 
stereoelectronic perturbation where necessary. 

In general, the L-L interactions will consist of both repulsive and attractive 
contributions. The repulsive term is mainly a very strong but short ranged 
interaction that arises when two atoms or molecules try to occupy the same space; 
they correlate with our ideas of atomic size and steric hindrance. These 
interactions are often referred to as excluded volume effects, hard-core repulsion, 
or overlap forces, although the last should not be confused with the concept of 
"overlap" as used above in discussing bonding. The attractive term is a softer 
effect and is active over longer distances than are the overlap forces. The most 
important contribution is the so-called van der Waals attraction, which is a 
universal force of attraction between all molecules or atoms and arises from 
subtle correlations between the motion of the electrons on each atom. In addition 
there can be electrostatic interactions between the L, and these can be either 
attractive or repulsive depending on the nature of the L. 

A number of attempts to rationalise molecular geometry have been 
developed by concentrating entirely on the overlap repulsion, the work of Kepert 
being a notable example (see §5.1.5). These are often quite successful as so many 
systems have the L closely-packed, and so the excluded volume of each L will be 
important in determining just how they can fit together. However, in molecules 
where the bonding is less crowded, the intermediate and long-range L-L 
interactions come into play. The molecular extreme of this is provided by the van 
der Waals complexes formed when two or more molecular species associate. 
Geometries of such species can be modelled very well simply on the basis of the 
size (i.e. the excluded volume) of all the atoms involved, and a good model of the 
electrostatic interactions between the molecular components.^^’^^ 
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In order to become more quantitative it is necessary to find functions that 
will describe the strength of the different interactions, and in paiticular, how this 
varies with the distance between the atoms. Traditionally this is done as a series 
of r " terms, with the range of the interaction determining the value of n; as n 

increases the range over which the interaction is significant becomes smaller. For 
two of the types of interaction cited above there are rigorous theoretical grounds 
for choosing this r-dependence; electrostatic interactions can be associated with 
the usual Coulombic charge-charge interaction and so will vary as van der 
Waals forces, also called dispersion forces, vary as r^. The hard-core repulsion is 
usually described with an dependence, although this is chosen for pragmatic 
reasons and other functions are possible; the main requirement is that this term 
should dominate the interaction energy at small atom-atom distances so as to 
ensure that the model cannot give rise to cold fusion! The total L-L energy 
comes from adding these three types of interaction for each distinct atom pair ij at 
distance from one another 

£:(L-L) = ILij Cj2rif^^ - + CiGj^ (1.4) 

If the L are charged, either intrinsically or due to an ionic or polar bond to M 
inducing a partial charge, then the charge interaction may become a significant 
factor in determining the geometry of a system. Usually it is repulsive and tends 
to push the L apait, thus opposing the effect of the dispersion interaction and 
taking the atoms towards the same polyhedra as those that minimise electron pair 
repulsion for VSEPR theory; however, it can be attractive for mixed ligand 
systems. 

Fig. 1.24 Some dispersion favoured geometries, for non-close packed systems. 

The AAIM has been applied successfully to a wide range of molecules, and 
has been particularly useful in the study of transition metal complexes, as 
discussed in §5.1.5. An advantage of the model that is not immediately obvious 
is that it may be applied to the geometries of transition states as profitably as to 
ground state systems. However, one feature it cannot in anyway account for is 
the fact that bond angles of significantly less than 90° are observed only rarely 
(examples include cyclopropane). 

If L is uncharged, then the dispersion energy is the dominant L-L attraction. 
The dispersion energy due to the interaction of two (hard sphere) ligands is 
approximately 

^rfiip(Li"L2) = E]2 a'ja'2 rj2'^ (1.5) 
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where a\ is the polarisability of L,, and Ej2 = EjE2/{Ej+E2) where E^ is an 
average excitation energy of Lj (the ionisation energy of Lj is usually a 
sufficiently good value for £,). Thus for the total L-L interaction to be maximally 
stabilising, all L's are brought as close together as possible - which is precisely 
the non-bonded radii approach. The dispersion interaction for small ligands 
favours the close packed shapes illustrated in Fig. 1.24. The observed geometry 
is then a balance between the dispersion (i.e. L-L attraction) favoured geometry 
and the charge (i.e. L-L repulsion) favoured geometry. The dipoles and 
polarisabilities of Table 1.2 enable an estimate of their relative importance to be 
made. 

Table 1.2: Some volume polarisabilities, a' and dipoles, q is the partial charge on 

the atoms, q is determined from the dipole by dividing it by the bond length;* note that ID 

= 480.298epm. 

compound fi/D q / e fragment a' /A^ 
HF 1.91 0.43 F‘ 0.96 

HCl 1.08 0.18 cr 3.60 

HBr 0.79 0.12 Br' 5.0 

HI 0.38 0.049 I7I 7.6/4.96 

LiH 5.828 0.76 U*/Li 0.03/22 

LiF 6.38 0.84 H' 10.18 

LiCl 7.08 0.729 He 0.20 

NaCl 8.97 0.79 Na+ZNa 0.19/21.5 

CIF 0.85 0.108 Ne 0.40 

BH 1.27 0.22 Cs^/Cs 2.6/42.0 

BF 0.5 0.079 CH2 2.099 

AIF 1.53 0.195 O^' 2.74 

CO 0.112 0.021 8.94 

cs 1.97 0.27 CO 1.95 

SiO 3.09 0.56 CN' 3.47 

SIS 1.74 0.17 OH- 1.95 

Molecular Mechanics 

Underlying all of the methods mentioned so far has been the idea that 
geometry results from the molecule adopting the lowest energy structure 
available. When you follow this idea through it leads to the concept of finding 
minima on a complicated PE surface that describes how the energy of the 
molecule changes as its constituent atoms move. Methods such as the non- 
bonded radii approach, VSEPR and AAIM have then proceeded by ignoring 
certain contributions to the energy and seeking to understand the trends implied 
by what is left. In the case of AAIM, we then began to see how the model could 
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be made quantitative so that it should be possible to predict precise structmes; this 
involved finding a functional form that would give an adequate description of 
each (relevant) contribution to the total energy. 

In fact, there is no reason why we should not extend this approach and seek a 
method that will describe the intramolecular potential energy in its entirety. The 
rigorous way to achieve such a task would be via accurate ab initio quantum 
mechanical calculations, but as we have already mentioned, our ability to do such 
calculations is limited to relatively small molecules. An alternative process, 
which forms the basis of the Molecular Mechanics (MM) method, is to find an 
empirical description of the potential energy surface.^^ In order to provide 
flexibility to the model and to be able to use MM predictively, it is important that 
the empirical potential be based on identifiable properties that can be transferred 
between different system - often referred to as "transferable parameters". The 
MM potential is also often referred to as a force field. 

The MM approach may also be described in terms of electronic, steric, and 
stereoelectronic factors. The method again begins with the electronic effects 
since these are usually the strongest interaction, but unlike the earlier approaches 
MM seeks to quantify the energetics of bonding. Traditionally, these are 
modelled by identifying ideal bond lengths, bond angles and torsion angles (i.e. 

bond twists), since these show little variation over a wide range of different 
molecules, and then determining the energetic penalty involved in distorting away 
from these ideal values. Thus the model consists of a set of ideal geometric 
properties, and the force constants that quantify the restoring force that arises 
when the atoms move. Steric forces are then included in the same way as for the 
AAIM,^ so that a typical MM potential energy function would take the form 

E = ^(bond length) + ^(bond angle) + £(torsion) + £(hard-core repulsion) 

+ ^(van der W aals) + ^(electrostatic) (1.6) 

It is also worth mentioning that the MM method is not synonymous with the 
form of the potential energy given in Eq. 1.6. In fact the method is far more 
general, and should be associated with any attempt to minimise energy using a 
potential energy function that describes both electronic and steric interactions and 
is based transferable parameters; the actual description chosen for the potential 
will obviously affect the accuracy of the method, but is not intiinsic to the method 
itself. 

The one thing that has been missing from this discussion of MM is 
stereoelectronic effects, and it is not easy to identify these within MM. In a crude 
sense they will be hidden in the choice of parameters, particularly for the bond 
angle terms. Thus in choosing ideal bond angles of 90° or 109° about a central 
metal atom in a metal complex, one is making a statement about the way the 
bonding has distorted the electron distribution about the metal. Further, since the 
potential parameters in MM tend to be chosen empirically (i.e. to agree with 
experiment) and stereoelectronic effects will be present in the experimental data, 
the MM potential will incorporate such effects in some average sense. However, 

+ Note that in the MM literature, non-bonding effects (excluding electrostatic terms) are often 

known collectively as van der Waals energies. This is not strictly correct, since this term 

should really apply only to the attractive dispersion interaction. 
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the intrinsic nature of stereoelectronic effects is that they are environment- 
dependent, and so any accurate description must run counter to the idea of 
transferable parameters that underlies the success of MM. 

MM is a very general method, and has the power to give accurate predictions 
of molecular geometry even in quite complicated systems. Typical MM force 
fields have been designed to reproduce a range of experimental properties for 
small and moderate sized molecules, including detailed structures, energy 
differences between different isomers, vibrational frequencies and torsional 
energy barriers.'*® The method has had considerable success with organic 
compounds,'** '*^ and is now developing into a reliable method for inorganic and 
organometallic systems as well.'*'* '*® Unfortunately, the generality of the method is 
also its main drawback, and one cannot hope to implement MM for anything but 
moderately simple molecules without access to reasonably powerful computer 
facilities. Further, the increased complexity of the potential energy function 
means that one has to work a lot harder to extract the physical principles behind 
the molecular geometry. For these reasons, it is unlikely that MM will ever 
remove the need for the simpler models such as non-bonded radii, VSEPR and 
AAIM. 
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Introduction 

It is the variety of structures observed in chemical systems that leads to the 
greatest confusion when one studies molecular geometry. One solution (which 
the organic chemist is likely to adopt) is to limit consideration essentially to the 
first and second rows of the periodic table where the geometries are fairly well 
predicted by a molecular model kit and a little knowledge. However, if that is not 
the option you wish to take, then some unified view of at least most of the 
geometries one might encounter is desirable. In §1.1 we saw how the concept of 

35 
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high symmetry templates could be used for studying and systematising molecular 
geometry. The focus of this chapter is moleculeu" symmetry and we shall develop 
the template idea further to see how different templates are related to one another 
and how these relationships can also help us to understand reactions. 

Discussions of symmetry are usually quite formalistic. We have limited the 
need for formalism by making some sweeping statements and putting some of the 
justifications into Appendices 1 and 2. The interested reader is referred to these at 
the appropriate place in this chapter. A more detailed discussion may be found in 
standard textbooks such as references The biggest problem most people have 
in understanding symmetry is visualising the shapes. For this chapter, a set of 
cocktail sticks and small pieces of plastic or rubber tubing with holes cut in them 
or pieces of plasticine is probably the best molecular model kit, as more 
expensive kits restrict the shapes you may build to what the designer felt was 
likely to be useful. 

The chapter divides into three parts. In the first (§2.1) the symmetry 
operations of molecules are identified and collected together in point symmetry 
groups. The second part (§2.2) illustrates the use of projection operators to 
determine mo's (molecular orbitals), vibrations and wavefunctions. The final part 
(§2.3) examines the relationships between different molecular geometries, both 
statically and kinetically, concluding with an outline of the "Classical Symmetry 
Selection Rule Procedure" for determining symmetry allowed reaction pathways. 
The contents of this chapter are all included because later chapters rely on the 
concepts, results, and notation. The level of understanding needed of this material 
depends upon what the reader requires from the later chapters. Some readers may 
therefore prefer to read this chapter on a "need-to-know" basis in the context of 
the material of later chapters. 

2.1 Point symmetry 

2.1.1 Point Symmetry Operations 

A symmetry operation may be defined to be some action that when 
performed on the molecule makes no observable (or measurable) difference. In 
other words, unless you can label identical atoms, you cannot tell that the 
operation has happened. The symmetry operations relevant to our study of 
molecular geometry are the point symmetry operations which leave at least one 
point of the system unmoved; these operations are defined in Table 2.1. The 
importance of symmetry operations follows from their definition. If a symmetry 
operation leaves all observables unchanged, then, if we know the symmetry of a 
molecule, we know something about its observable properties. In particular we 
know something about its geometry, energy, and electron density. 

By convention, chemists define the direction of rotation to be anticlockwise 
when the observer is looking down the rotation axis from the positive direction 
(Fig. 2.1). We use the notation C^'' to denote Cj, repeated k times. So, if €„ is a 
symmetry operation of a molecule, then Cn*^, must also be one of its symmetry 
operations. In most molecules there is no more than one C[, operation with n > 3. 



A Unified View of Stereochemistry and Stereochemical Changes 37 

The axis about which this rotation operates is referred to as the major rotation 
axis, and is denoted z. 

Table 2.1 Point symmetry operations. 

Name Description 

E 

Cn 

a 

Sn 

i ^ ^2 

identity 

n-fold proper rotation 

reflection 

improper rotation 

inversion 

molecule is unchanged 

rotation through an angle lidn about an axis 

reflection in a plane 

Cp followed by a in plane perpendicular to rotation axis 

takes a point at (x,>',z) in Cartesian space to (-x,-_v,-z) 

Reflection planes are labelled with subscripts that describe their position 

with respect to rotation axes. We refer to reflections in a plane perpendicular to 

the main rotation axis as horizontal reflections, a,,; reflections in planes 

containing the major rotation axis as vertical reflections, Cy-, and vertical 

reflection planes that also bisect two Cj axes as dihedral reflections, Alternate 

reflection planes are also referred to as when there are an even number of Oy 
planes in a group. 

Fig. 2.1 Schematic illustration of the effect of a point symmetry operation. The {x,y,z} 

axes of the molecule (solid lines) are rotated and the external axis system (dotted lines) remains 

stationary. 

2.7.2 Point Symmetry Groups - Formalism 

If we start off with a molecule M® and operate on it with a symmetry 

operation Rj then we produce a molecule = Ri{M®}that cannot be 

distinguished experimentally from M®. So any symmetry operation, R2, of M® is 

also a symmetry operation of M* and we may write 

= R2{Ri{M®} } = (R2Ri){M®} = R2Ri{M®} 

where sequential performance of symmetry operations is referred to as 

multiplication and, by convention, we choose to write the multiplication as 
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proceeding from right to left {i.e. perform the right-hand operation first). With 
this definition of multiplication and the types of operations in Table 2.1, the 
symmetry operations of a molecule form a mathematical group, as defined below, 
and are referred to as a point group. 

A set of operations {Ri, Rj, Rj^, ...}form a group if and only if: 

(i) There is an operation, denoted E and called the identity, that is a member of 
{Rj,...} and satisfies: RjE = ERj = Rj for all Rj. 

(ii) The product of any two operations, RjRk. is also a member of {Ri,...}. 
(iii) For any R, there is another operation Rj that satisfies: RjRj = RjRi = E 

{i.e. there is an inverse of every operation diat undoes the original action). 
(iv) Multiplication is associative, i.e. Ri(RjRk) = (RiRj)R}c. 

CHIRAL 

ACHIRAL 

Oh Ih ^h 

Fig. 2.2 Point group generating tree. Some augmenting operations are indicated beside the 
arrows. Superscripts indicate rotation axes and normals to reflection planes in Cartesian 

coordinates. 

The reason we bother to note that the point symmetry operations of a 
molecule form a group is that the mathematical formalism of group theory may 
then be used to help us apply symmetry systematically to physical problems. If 
we know all the possible point groups to which molecules may belong, then we 
have some information about the shapes molecules may adopt. We shall use 
Schoenflies notation for point groups throughout this book as this is most widely 
used by chemists. It is discussed in some detail in e.g. references We shall 
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denote the point groups with bold faced type, e.g. and the operations with 
Roman script, e.g. C„ is an infinitesimal rotation, i.e. what a rotation of Intn 

becomes as « ^ Where necessary a superscript is used to indicate the axis 
about which a rotation operates. The direction perpendicular to a reflection plane 
is also indicated by a superscript if the subscripts h, v, and d are not sufficient to 
identify it. 

One consequence of the second property of groups is that one may generate 
all the operations of a group from a small subset of operations, usually called a 
generating set. No point group has a unique generating set. The labels used to 
identify most point groups summarise the contents of one of its generating sets. 
Thus, e.g. Cn is generated by Cn; Cnh is generated by Cn and ai,; Dnj is generated 
by Cn, C2 perpendicular to and that bisects two of the C2 axes but does not 
contain any of them. 

Using generating sets we can develop a hierarchy of the different point 
groups, as shown in Fig. 2.2, in which new operations are added to the generating 
set of one group to go to the next higher symmetry group. Such an operation is 
referred to an an augmenting operation. The effect of multiplying different 
operations together may be summarised by the eight simple rules given in 
Appendix 1. The least obvious one. Rule 8, enables us to limit our search for 
finite point groups with more than one major rotation axis to shapes of the 
symmetry of the five platonic solids.^ Appendix 2 describes how to generate all 
of the point groups. 

Fig. 2.3 Water and methane. 

2.1.3 Chiral and Achiral Point Groups 

Point symmetry operations separate into two classes: proper operations or 
rotations and improper operations or rotations. 

A proper operation may be performed without destroying the integrity of the 
molecule - it simply turns the molecule around. E and C„ are the proper 

t The icosahedron and dodecahedron have the same symmetry as do the cube and the 
octahedron. 
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operations. The product of any two proper operations must be another proper 
op)eration. 

Table 2.2 Minimum set of points required to produce a collection of points (atoms) having a 

given point symmetry. A set of equivalent points lying on no rotation axis or reflection plane is 

denoted {a}; a set of points lying on one symmetry element is denoted {b}, where b labels the 

rotation axis or reflection plane containing the points. 2{a} means two complete sets of type 

{a} are required to produce the necessary symmetry. A set of points of type {a} is determined 

by selecting a point in Cartesian space (x, y, z) that does not lie on any symmetry elements 

(axes or planes) of the group. One then performs the symmetry operations on that point 

drawing a new point at any place to which a symmetry operation takes the original one. 

Point Group Number of sets of equivalent operations required to generate the 

point symmetry group 

Cn 2{a} 

Dn {a} 

T, 0,1 {a} 

Cnh 2{a},2{Oh},or{a}-r{ah} 

f-nv 2{a},2{a}, {o}+{o’}, or {a}-r{a} ^ 

^nh {a}, {Ohl, {a}, or {0h,C2,a)'^ 

®nd {a}, or (Od) 

Sin 2{a} 

Th {a}, or {Oh} 

Td {a}, {Od},or{C3,3ofOy} 

Oh {a}, {Oh}, {Od}, {C2', Oh), {C3, 3 of Od} or {C4, 2 of Od, 2 of Oh} 

Ih {a}, {C2}, {a}, {C3, 3 ofo}, {C5, 5 of 0} 

^ By convention with the C2nv D2nh point groups, alternate C2' axes and vertical planes are 

denoted C2' and C2", and Oy and respectively. We take C2' and Oy to contain an atom if 

possible. Thus for a read either Oy or Oj and for C2 read C2' or C2". 

The reflection planes of T), are often denoted however, we use o^, as they are the 

horizontal reflection planes perpendicular to the x, y, z C2 axes. (N.B. For T point groups, z is a 

two-fold rotation axis, not three-fold.) 

The reflection planes of are also often denoted Oj; however, we use Oy as they contain 

the C2 axes. 

An improper operation, i, a or Sn, may not be physically performed on a 
molecule. Its effect is to invert the handedness of the system. This is readily 
seen for the inversion, i, which takes x-^-x, y—>-y, and z—>-z. Analogously to 
negative and positive numbers, the product of two improper (negative) operations 
must be proper, since two inversions of the handedness of a system have no net 
effect. Conversely, the product of an improper and a proper operation is always 
improper. The division of symmetry operations into proper and improper 
operations underlies the definition of a chiral molecule {i.e. one that cannot be 
superposed on its mirror image, §1.1.1) as a molecule having only proper 
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symmetry operations. The chiral point groups include (a chiral "cylinder") 
together with all its subgroups: C„, D^, and C„, and I, O, and T. Achiral point 
groups are most simply generated by augmenting a chiral group with an improper 
operation a, i, or Sj, that generates no new proper operations (Appendix 2). 

2.1.4 Examples of Point Symmetries 

It is often easier to think in terms of molecules that belong to specific point 
groups, such as C^v (water, Fig. 2.3) and Tj (methane. Fig. 2.3). Molecules of 
many different symmetries are illustrated in the subsequent sections of this book. 
Some point symmetries, such as T, are very unusual in molecules, for reasons that 
become apparent when the arrangement of points {i.e. atoms) that would be 
required for a molecule to have that symmetry is deduced. Jahn and Teller^ 
determined the minimum sets of points required to produce a particular 
symmetry. Table 2.2 gives their results in terms of sets of equivalent points of 
different types. Some D2d examples are illustrated in Fig. 2.4. Others can be 
constructed with a little patience. 

Fig. 2.4 Two sets of points, {a} and {aj} that generate D2d- Crosses denote points below the 

plane of the paper and solid shapes points above. 

2.2 Determination of Symmetry Adapted Functions 

2.2.1 Molecular orbitals and molecular orbital energy level 

diagrams from symmetry 

In §1.3.1 we used symmetry more-or-less explicitly to help us derive the 
mo's for first and second row diatomics from the valence ao's (atomic orbitals) of 
the constituent atoms. When molecular symmetry is high it is often possible to 
determine the mo's on the basis of symmetry alone. In other cases, the mo's must 
still reflect the molecular symmetry and so it is helpful to form the ao's into 
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symmetry adapted orbitals {scio's) and then combine the sao's to give mo's. In 
either case, we can determine a qualitative MO energy level diagram. The 
following discussion provides a brief rationale for the use of projection operators 
to determine sao's. The examples that follow illustrate the details of their 
application. Throughout this discussion we shall use q to represent ao's, and (j) for 
the sao's. 

By definition, symmetry operations must leave observables, such as electron 
density and energy, unchanged, i.e. they must be totally symmetric to the 
operations of the point group. Thus wavefunctions, \[r, and mo's, (]), which by the 
Bom interpretation are squared to give the observable electron density, are square 
roots of a totally symmetric quantity.^ Character tables summarise the ways such 
square roots can occur, and therefore tell us how to form sao's. We do not need to 
understand how to determine character tables in order to use them, just as one 
may use a building without having personally inspected the foundations. 

We can see how to use character tables by considering how to produce a 
totally symmetric sao from one of the ao's, q. If we operate on q with a sum of 
all the symmetry operations of the point group of the molecule, the result will be a 
totally symmetric sao, since all the non symmetric parts of the wavefunction will 
have been cancelled out. This sum of symmetry operations is referred to as the 
totally symmetric projection operator, P°. 

P° =-{E + R.+R2+...} = -!; R; 

where the R, are the point symmetry operations and h is the order of the group 
(i.e. the number of distinct operations in the group). So P°(j\) is an sao that is 
totally symmetric to all operations of the group. 

Now, P° may be written as a scalar product of the vectors (1,1,1,...) and (E, 
Ri, R2, ...)/h so 

P° =f{E + Ri+R2+...} = |(l,l,...)(E,Ri,R2,...) 
h h 

The totally symmetric sao is not the only sao that is consistent with a given 
point symmetry group. Other symmetries are possible, corresponding to different 
"square roots" of totally symmetric functions. The different ways this can be 
done are summarised as the rows of the char acter table for the point group. In the 
simplest case this just amounts to replacing half of the +rs in the totally 
symmetric row by -I's in such a way that the product of two operations that have 
assigned -1 is an operation that has been assigned +1 (c/ §2.1.3). These rows of 
the character table result from the fact that both (+1)^ = 1 and (-1)^ = 1. In more 
abstract forms of mathematics other square roots of unity can be found, and these 
also have their counterparts in the character tables. In general, each row of the 
character table is referred to as a representation, and the individual numbers 
within each row are called characters. We are now in a position to define 
projections operators, P^, that are analogous to P°, but are not totally symmetric: 

f Snictly, vi/*\|/ is the observable, so if is a complex function we have to work a little harder; 

this will only happen if two or more \|/ have the same energy (i.e. are degenerate). 
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-^{XeE + Xi^I +X2E2+---} 

where Xi is the character for operation R; in the Tth row of the character table (see 
e.g.. Table 2.3). P^may also be written in vector notation: 

The character corresponding to the identity, Xe< is particularly useful as it 
specifies the number of different ways this symmetry can be achieved. It is called 
the degeneracy and ultimately specifies the number of sao's or mo's with the same 
energy that we need to find. The vectors {Xe>Xi.X2<-"} orthogonal to 
(1,1,1,...) and to each other. 

If the point group has an operation n > 3, but is not Cnh or then some 
symmetry operations have the same character in all representations. In 
tabulations, therefore, such operations are grouped together into classes and listed 
in a single column of the character table. A corresponding number of rows of the 
character tables describe the transformation properties of degenerate functions. In 
forming the projection operator, however, it is important that the classes be 
expanded and each operation treated individually. 

Table 2.3 The rows of the C2v character table and the effect of C2v symmetry operations on 

the carbon orbitals of CH2CHCH2. 

E C2 ^xz ^vz 

-^1 1 1 1 1 

^2 1 1 -1 -1 

1 -1 1 -1 

B2 1 -1 -1 1 

PJ Px -Px Px ~Px' 

Px^ Px^ -Px^ Px -Px 

Px Px^ -pj Px' -Px 

Now, to generate sao's corresponding to non-totally symmetric 
representations we need to operate with the relevant projection operator on an 
ao, r|; this will give the sao P^(r\) that has the symmetry properties described by 
the Fth row of the character table. 

E^=^(Xe.Xi.X2.-)(E,Ri,R2....)ti 

= ^(XE’Xi.X2.--)-(E(ri),Ri(ri),R2(Ti),...) 
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If there are two or more non-degenerate sao's of the same symmetry produced 
from the same set of ao's we wish to use, then the mo's will be some combination 
of these sao's and will have the same symmetry. 

The above discussion will become clearer in the context of specific examples 
and so is illustrated below for C2V, D31J, T^, and Oh systems. 

Sao's of the n-system of CH2CHCH2 (C2v) 
We wish to determine the K mo's for CH2CHCH2 using a basis set of the 

orbitals on the carbons. This system, which has C2V symmetry, is illustrated in 
Fig. 2.5. The effect of the symmetry operations of C2V on and p/ is listed 
in Table 2.3, together with the rows of the C2V character table. The first four rows 
of this table are the (Xe-Xi-Xi*- ) vectors, while the last four correspond to 
possible vectors (E,Ri,R2,...)ri. Any aj synunetry sao's are found from the 
scalar products of each orbital with the Aj row of Table 2.3.^ Similarly for a2, 
bi, and b2. For example, 

(pj) = (Px^- Px^- Px^+ Px^)f^ 

After all combinations of F and r| have been tested, three distinct sao's result: 

<t>(a2) = {pJ-Px')!^'^ 
t|)(bi) = W+p/ )/V2 

<l>(b2)=p/ 

The factors of I/V2 have been included instead of the 1/2 that comes from the 
projection operator as then (j)^ has volume equal to 1 (if the 2p orbitals do also). 
Such wavefunctions are referred to as being normalised. The sao's for 
CH2CHCH2 are illustrated in Fig. 2.6. In this case all three functions are both 
sao's and mo's, since there is only one sao of each symmetry kind (remembering 
that we are using only the 2p^ orbitals to generate sao's). It should be noted that 
the simple rule: n functions in, n out always works, hence three ao's gave three 
sao's. If a larger set of ao's were used in the calculation more sao's would result. 
The choice of functions to include in a calculation is referred to as the basis set. 

How Many Orbitals of Each Symmetry Type: Reducible Representations 

If the molecule has many more symmetry operations than C2V then it will 
also have more rows in the character table. The sao's from a chosen basis set 
normally only come from a few rows of the character table and so it usually saves 
time if we know which rows are relevant for a given problem. We proceed by 
determining a vector which describes how many of the basis functions we have 
chosen are unchanged (giving a count of +1) or inverted (giving a count of -1) by 
each operation; where the functions have been interchanged, e.g. pj and pj cU'e 
exchanged under in the previous example, then we count zero for both 
functions. This vector is obtained by tabulating the vectors (E,Rj,R2,...)'n for 
each r| in the basis set, as per Table 2.3, and then summing each column; this 

t By convention we use small letters for symmetry labels of orbitals and capitals for the 

complete wavellmction. 
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procedure results in a vector known as a reducible representation. In the above 
example the vector is (3,-l,l,“3). We then take the scalar product of this vector 
with each row of the character table in turn, and divide by the order of the group. 
The resulting number tells us how many functions of that symmetry we will find. 
For example, there are (3,-1,1,-3).(1,1,1,l)/4 = 0 ai functions in the present 
example, but (3,-1,1,-3).(l,l,-l,-l)/4 = 1 sao of a2 symmetry. In general, if the 
answer is zero then there is no point in trying to determine a function of that 
symmetry from the chosen basis set, while if the answer is 1 then the sao is also 
an mo. Under C2v symmetry the vector (3,-l,l,-3) reduces to (a2-t-bi-i-b2), which 
are the symmetries of the orbitals determined above. 

X 

Fig. 2.5 CH2CHCH2 illustrating valence JC-orbital basis set and coordinate system. 

MO Energy Level Diagrams from Symmetry 

If two or more sao's of the same symmetry are found, then they must be 
mixed together to produce the mo's. The precise degree of mixing is seldom easy 
to determine without a computer, but it can be estimated qualitatively as we did in 
Chapter 1 when we admitted the existence of s/p mixing; thus it is possible to 
draw qualitative MO energy level diagrams. If there are two non-degenerate 
orbitals of the same symmetry, then the net result will be a "bonding" orbital (or 
in-phase combination) which is more stable than either of the two starting ones, 
and an "antibonding" orbital (or out-of-phase combination) which is less stable.^ 
Three orbitals of the same symmetry usually give a bonding, an anti-bonding and 
an approximately "non-bonding" orbital. 

Determining qualitative mo diagrams is often straightforward given the 
guiding principles that (i) overlap of orbitals is stabilising and (ii) nodes (i.e. 

points at which there is no electron density) between atoms are destabilising. 
Thus the bi orbital of the valence k system basis set of CH2CHCH2 illustrated in 
Fig. 2.6 has the lowest energy, followed by the b2 orbital. In this example, the 
ground (lowest) state arrangement of the k electrons has two electrons in the bj 
orbital and one in the b2 orbital. 

^ The one exception is if the two sao's also happen to be the mo's, in which case there will be no 
change in their energies. 



46 
Molecular Geometry 

bonding, most stable 

Fig. 2.6 CH2CHCH2 valence n mo's 

Mo's for H3 (D^h) 
Groups with n-fold rotations, n > 3, are referred to as degenerate point 

groups. They have at least one degenerate representation with Xe ^ 2. If the 
above projection procedure indicates that a function belonging to a degenerate 
representation is present, then there will be precisely Xe different functions with 
the same energy that need to be found. The easiest way to do this is usually to 
repeat the projection on Xe different but degenerate basis functions. The simplest 
example of a "molecule" with degenerate mo's is the equilateral triangle H3. In 
this case the valence orbitals we shall use as basis functions are the 7 j orbitals on 
each H, which we denote s^ = 1, 5^ = 2, and = 3 respectively. The 
transformation vectors for these three orbitals are summarised in Table 2.4 
together with the D3 character table. The two-fold axes and Oy planes are as 

indicated in Fig. 2.7. q ^ 

I 

2’ O (2) 
C2, 0,0) 

Fig. 2.7 H3 Showing symmetry operations and valence basis functions. 

In order to determine which sao's we expect to find, we first determine the 
reducible representation as described above. For the three Is ao's of this system, 
the reducible representation is (3,0,0,1,1,1,3,0,0,1,1,1) which reduces to (aj' + e'); 
this process is often referred to as the vector "projecting onto" (ai' + e'). e' is a 
doubly degenerate representation so we expect to find one sao of aj' symmetry 
and two of e' symmetry. We may now use any or all of the ao's to generate these 
sao's. In this case we find that each ao produces the same ai' orbital, i.e. 
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P ‘ {s^) = P > {s^) = P'^' (5^). However, different e' orbitals are produced, from 
which we may choose any two, or even any two different combinations. One 
possible choice of sao's is: 

(|)(ai') = (s^+s^+s^)N3 

(t)(e') = (2s^-s^-s^)N6 

(l)(e') = (2s^-s^-s^)N3 

These orbitals and the qualitative energy level diagram (determined from overlap 
and number of nodes as discussed above) are illustrated in Fig. 2.8. 

Although H3 is not a very stable molecule, we can also use Fig. 2.8 to 
determine MO diagrams for molecules such as BH3 and NH3 by combining the B 
(or N) orbitals with those of Fig. 2.8. Thus, the energy level diagram for 
planar BH3 may be determined by mixing the B valence orbitals^ of af {2s) and 
e' (2/7^, 2py) symmetries with those H3 sao's of the same symmetry to give 
bonding and anti-bonding combinations. 

Table 2.4 The rows of D3 character table and the transformation of Is orbitals (denoted 1, 2, 

and 3 rather than s^, s^, and s^) of the H's of H3 under symmetry operations of D3. 

E C3 C3^ C2' 
C' ^ C2^ S3 S3^ CTv‘ Ov^ 

Ai’ 1 1 1 1 1 1 1 1 1 1 1 1 

A2' 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 

E' 2 -1 -1 0 0 0 2 -1 -1 0 0 0 

Ai 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

A2" 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 

E’ 2 -1 -1 0 0 0 -2 1 1 0 0 0 

1 1 2 3 1 3 2 1 2 3 1 3 2 

2 2 3 1 3 2 1 2 3 1 3 2 1 

3 3 1 2 2 1 3 3 1 2 2 1 3 

mos 

Fig. 2.8 Mo's and qualitative MO energy level diagram for H3. 

^ Standard sets of character tables usually tabulate the symmetries of the orbitals of central 

atoms in an additional column. 
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Octahedral and Tetrahedral Point Groups 
The final two examples we shall consider are SiF4 and [MnCls]'* . The 

transformation tables for these molecules are large and we could have chosen 

much simpler examples to illustrate the transformation properties of p and d 

orbitals. However, these are important geometries in inorganic chemistry and we 

shall use these results in Chapter 5. The transformation properties of p and d 

orbitals on non-central atoms are most readily identified through a two-step 

process: (i) the new position of the orbital is just the new position of its atom after 

the relevant symmetry operation has been performed; (ii) the new orientation of 

the orbital is the same as the new orientation of the equivalent orbital on the 

central atom. The transformation matrix for, say, a flourine p^ orbital on fluorine 

number 1 in SiF4 is therefore obtained as a character by character product of the x 

row in Table 2.5 with thel row. The same principle works for determining the net 

character {i.e. the character in the reducible representation). For example, with 

the p orbitals on the F's of SiF4, if j F atoms are unmoved, and k Si p orbitals 

remain the same but / are inverted, then the net character for the twelve F p 

orbitals is j(k-l). We note in passing that the plethora of orbitals, symmetry 

operations and characters that arise for Tj and Oh symmetiies necessitates rather 

complex notation. (C3‘'')^ used to denote two successive C3 rotations (240 in 

total) about the three-fold axis that passes through atom number 4. 

Fig. 2.9 SiF4 inscribed into a cube to aid visualisation of the effect of symmetry operations on 

the component parts. 

SiF4 (Tj): Table 2.5 shows the transformation vectors of the Si p orbitals, 

labelled p^ = x, etc. and the F 2s orbitals, labelled s^ = 1, etc. (Fig. 2.9). The fate 
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of, say, a orbital on F number 1, denoted = x\ under any symmetry 

operation is for it to go to the position which has adopted, and with the 

orientation of the orbital on Si. Thus, e.g., (C3‘'')^ takes p^ on F7 to position 3 

and makes it point in the -y direction: (C3"0^[p;t^] = -p/. 

Table 2.5 Tj character table and transformation table for Si p orbitals (denoted= x, etc.) 

and F s orbitals (denoted s^ = 1, etc.) of SiF4. €3' is a three-fold rotation about the axis 

containing atom F7; €3^ is two operations of the C3 directly preceding it in the table; €2’^ 

is a two-fold rotation about the x-axis; 84’^ is a four-fold improper rotation about x; 84^ 

is three operations of the 84 directly preceding it; o‘’" is a reflection plane containing 

atoms F7 and F2. 

E C3‘ C3^ €3“ C3' C3“‘ C3^ C3’'' C3^ C2* C2y C2^ 

Ai 1 1 1 1 1 1 1 1 1 1 1 1 

A2 1 1 1 1 1 1 1 1 1 1 1 1 

E 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 

Ti 3 0 0 0 0 0 0 0 0 -1 -1 -1 

T2 3 0 0 0 0 0 0 0 0 -1 -1 -1 

X X -Z y Z y Z -y -Z -y X -X -X 

y y -X -Z X Z -X -Z -X Z -y y -y 

Z Z -y -X y X -y X y -X -Z -Z Z 

1 1 1 1 3 4 4 2 2 3 3 4 2 

2 2 4 3 2 2 1 4 3 1 4 3 1 

3 3 2 4 4 1 3 3 1 2 1 2 4 

4 4 3 2 1 3 2 1 4 4 2 1 3 

84=^ 84^ 84^' 84^ s/ 84^ oi.ii (ji.iii oi.iv 
a“’*" 

At 1 1 1 1 1 1 1 1 1 1 1 1 

A2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

E 0 0 0 0 0 0 0 0 0 0 0 0 

Ti 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

T2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 

X -X -X Z -z -y y y X -Z Z X -y 

y -z z -y -y X -X X -Z y y Z -X 

Z y -y -X X -z -z Z -y -X X y z 

1 4 2 2 3 4 3 1 1 1 4 3 2 

2 1 3 4 1 3 4 2 4 3 2 2 1 

3 2 4 1 4 1 2 4 3 2 3 1 3 

4 3 1 3 2 2 1 3 2 4 1 4 4 
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Following the projection procedures of the preceding two sections, we find 

that the s orbitals on the F atoms give the Reducible representation (4, 8*1, 9*0, 

6*2)^, which projects out to give F = ai+t2, and so we need to determine one sao 

of aj symmetry and one set of three degerate orbitals of t2 symmetry; these may 

be described as 

<j)(ai) = 

4>b(l2) = (-s^+3s^-s^-s'*)/{2^3), 

4>c(t2) = (.-s^-s^+3s^-s'*)/{2^3) 

(t)(ai) has no nodes and therefore is lower in energy than the three degenerate (t)(t2) 

orbitals. Any three combinations of the t2 orbitals given above are equally 

acceptable, as was the case for the two e' orbitals of H3. The mo's may now be 

generated by considering overlap between these sao's and the Si ao's of the same 

symmetry. 

Energy 
/ ^2 

-af- 

4--1-tpP)- 

-^ai(j5) ■ 

—af 

-1* 

- 

.-^Irar-' 

^^}2s 

Si ao's SiF, mo's SiF. mo's 4 4 
(without F p's) 

F, sao's 
4 F ao's 

Fig. 2.10 SiF4 qualitative MO energy level diagram. Symmeay labels of orbitals are shown. 

Dotted lines connect orbitals to their major component parts. * indicates antibonding. 

There are also twelve F p orbitals, which will provide additional sao's that 

must be included if we wish to have a good description of the bonding in SLF4. In 

this case it is certainly helpful to know where we are aiming. So, we begin by 

determining the vector of the number of p orbitals that remain unchanged under 

t The notation n*m is an abbreviation for n repetitions of the character m, thus 6*2 = 2,2,2,2,2,2. 
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each symmetry operation. That vector is F = (12, 8*0, 3*0, 6*0, 6*2) giving 

twenty-four components. The scalar product of this vector with the rows of the 

character table given in Table 2.5, leads to F = ai+e+ti-H2t2. The symmetry 

adapted orbitals are given below. Only one of any degenerate pair or triplet is 

given. The others may be obtained from cyclic permutation of the atom labels 

1,2,3,4 in the sao's, as was done above for the F4 sao's from 2s orbitals. The first 
t2 set result from projecting from and the second from py. 

<t>(e) = (2p;t^-p/+p/-2p/4-p/+p/+2/7/+p/-/;/-2p/-p/-p/)/(2V6) 

4>(tl) = (2pJ-Py+Pz+Py^+Pz^-2pJ+p/-p^^-p/-p/)/4 

<t>'(t2) = (4px^+p/-Pz^+W-p/-Pz^-p/+p/+2pAp/+Pz‘^)/(4V2) 

‘l>"(t2) = (pJ+%^-Pz-Px^+2p/-p^^+pJ+2p/+p^^-p/+p^^)/(4-^2) 

The two t2 sets of orbitals thus produced are in fact degenerate as the basis 

functions are all related by symmetry. It is not obvious whether these t2 orbitals 

are bonding, non-bonding or antibonding, but the actual mo's would be 

combinations of all the t2 sao's. An energy level diagram for these ligand orbitals 

is illustrated in Fig. 2.10. The ordering of the levels might change depending on 

the degree of overlap. It should be noted that determining nodes for orbitals 

containing p orbitals must not be done simply by counting the number of minus 

signs in the expression for the sao as p orbitals each have both positive and 
negative lobes. 

Z 
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Table 2.6. Oh character table and transformation table for Mn p orbitals (denoted - x, etc.) 

and Cl a orbitals (denoted = 1, etc.) of [MnCl^]'* is a four-fold rotation about the z- 

axis; €4^ = C2 is two operations of the C4 directly preceding it in the table; C3 is a three-fold 

rotation about the axis that rotates 1 to 2, 2 to 3, 3 to 1; etc. C2*’** is a two-fold rotation about 

the axis through C17 and C12. 

E C3^ C3l'^ C3I'" C32 €31^5 C3^ c/ C4^ C43 

At 1 1 1 1 1 1 1 1 1 1 1 1 

A? 1 1 1 1 1 1 1 1 1 -1 1 -1 

E 2 -1 -1 -1 -1 -1 -1 -1 -1 0 2 0 

Ti 3 0 0 0 0 0 0 0 0 1 -1 1 

Tz 3 0 0 0 0 0 0 0 0 -1 -1 -1 

X X y Z Z -y -z -y y -Z X X X 

y y Z X -X -z -X z -z X Z _ -z 

Z Z X y -y X y -X -X -y -y -Z 1 

1 1 2 3 5 2 3 4 4 5 5 6 3 

2 2 3 1 1 5 6 5 3 6 2 2 2 

3 3 1 2 4 6 4 1 6 2 1 5 6 

4 4 5 6 6 3 1 3 5 1 4 4 4 

5 5 6 4 2 1 2 6 1 4 6 3 1 

6 6 4 5 3 4 5 2 2 3 3 1 5 

C42 C43 C4" C42 ^2 ^2 
n 
^2 

C^iMn 
^2 

At 1 1 1 1 1 1 1 1 1 1 1 1 

Az -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 

E 0 2 0 0 2 0 0 0 0 0 0 0 

T, 1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 

Tz -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 

X -Z -X Z y -X -y Z -X -Z -X y -y 

y y y y -X -y X -y z ■j. -z X -X 

Z X -Z -X X Z Z X y -X JL -z -Z 

1 2 6 4 1 1 1 2 3 4 5 6 6 

2 6 4 1 3 4 5 1 4 6 4 3 5 

3 3 3 3 4 5 2 5 1 5 6 2 4 

4 1 2 6 5 2 3 6 2 1 2 5 3 

5 5 5 5 2 3 4 3 6 3 1 4 2 

6 4 1 2 6 6 6 4 5 2 3 1 1 
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[MnClJ"^' (Oh): We may describe [MnCy"*'as follows (Fig. 2.11). The Cl's are 
positioned at ±x, ±y, and ±z, each with one orbital (presumably a p orbital or sp 

hybrid) predisposed for a bonding and two orbitals predisposed for 7t bonding 
with the Mn. While these are not actually o and 7i orbitals in the Cl atom, they 
will contribute to o and k mo's on bonding and we shall call them a and k 

accordingly; this has the added advantage of stressing that their orientations are 
not the same as the p^, Py, and p^ orbitals on the central Mn and avoids the need to 
specify a hybridisation scheme. We denote the Cl a bonding orbitals as: = 1, 
<3^ = 2, = 3, = 4, = 5, and = 6. For C17, located at +z, we take its two 
K bonding orbitals to be parallel to +x and +y; similarly for C\4 located at -x, we 
take the two 7t bonding orbitals to be parallel to -y and -z. The Mn is located at 
the origin and has p orbitals denoted p^ = \,py = y, and p^ = z. As with F in SiF4, 
the transformation properties of say a Tt;^ orbital on Cl number 1, 7t^^ under any 
symmetry operation are identified from combining the position to which is 
taken with the new orientation adopted by PxOn Mn. The symmetry properties of 
the Mn orbitals are summarised in standard character tables since Mn lies at the 
origin (see above). 

As we did with SiF4, we begin by finding the sao's for the ligands, except 
that this time we must use Oj, symmetry. In fact, because Oh = {E,i} x O, the 
transformation table (Table 2.6) is for O. To complete the determination of Oh 
sao's we then operate on the O sao's with the projection operator (E+^i)/2, where 
^ = ±1. Functions that are symmetric to inversion project out under (E+i)/2, but 
vanish under (E-i)/2, and are labelled with the subscript "g" (standing for gerade 

meaning even); species that are anti-symmetric are obtained from (E - i)/2, and 
labelled with the subscript "u" (standing for ungerade meaning odd). To perform 
this projection note that x, y, and z go to -x, -y, -z respectively under i, and the 
pairs (l<->6), (24->4), and (3<->5) exchange. 

Now, the number of basis functions of the o-bonding set {a^, a^, a^, a"^, 
o^] that are preserved under the symmetry operations of O is summarised by the 
reducible representation F = (6, 8*0, 6*2, 3*2, 6*0)t . Upon projecting this 
vector with the rows of the character table we find the ligand a orbitals have the 
symmetries: F = aig-feg+tju. The sao's (again listing only one from each 
degenerate set) are as follows: 

W^ig) = (o^4-a^4<T^+o^-Kr^-Ky^)/(V6) [strongly bonding] 

(t)o(eg) = (2a^-a^-o^-cr^-a^+2o^)/(2V3) [bonding] 

(t)o(tiu) = (a^-a^)/V2 [antibonding] 

We now turn to the twelve Cl 7t ao's. The number of basis functions that are 
preserved under the symmetry operations of O is summarised by the vector 
(12, 8*0, 6*0, 3*-4, 6*0) using the above notation. Thus, we should find twelve 
ligand k mo's and they will have symmetries tig+t2g-t-tiu+t2u. The member of each 
set resulting from the projection of is: 

[antibonding] 

t The C4 and €4^ operations have identical characters, and those of €4^ are different. The 6*2 
entry therefore corresponds to C4 together with €4^ and 3*2 corresponds to C^. 
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<l>7u(tlu) = illJ+K/+K/+K/)/2 

<t)7t(t2g) = (.kJ+k^^-k/-k/)/2 

<l>7c(t2u) = (7t:.^-7l/-7t/+7r/)/2 

[bonding] 

[bonding] 

[antibonding] 

Having determined the Clg sao's we are now ready to allow the ligands to interact 

with Mn to make [MnClg]'*'. Isolated Mn has spherical symmetry, but in the 

presence of the ligands it has Oh symmetry. The symmetries of its ao's are, in 

increasing order of energy : t2g (from 3d ao's)', eg (from 3d ao's)', ajg (from 4s 

ao's); and tiu (from 4p ao's). The MO energy level diagram for [MnCls]'*" results 

from taking bonding and anti-bonding combinations of these orbitals and the Cl^ 

sao's with the same symmetry. So (t)a(aig) and ^^(aig) mix; <t)a(eg) and 3d(e^) mix; 

<l>a(tiu). <l>7t(tiu) and ‘^p(tiu) mix (though ^o(tiu) and ^tiu) are orthogonal to each 

other); and (t)rt(t2g) rnixes with 5^/(t2g). The strength of the Mn/Cl interactions is 

much greater than that of the Cl/Cl interactions as the overlap of orbitals is much 

greater. The various diagrams of Fig. 2.12 summarise the energy level diagrams 

that might be expected if different interactions are neglected. The order of the 

orbitals may vary with the strengths of the interactions. 

Final Comment 

The entries in the transformation tables above have been simple exchanges 
or inversions. However, n ^ 3, 4, ... rotations often transform degenerate 
orbtials into linear combinations of one another. Thus, for example, when a B is 
placed in the centre of H3 to make BH3, its orbital is transformed by C3 into 

Similar operations performed on p orbitals of the H's would rotate them into the 
same mixtures of p^ and Py, but on the atom to which the same rotation took the 
corresponding Is orbital. Thus the transformation properties of p and d orbitals 
on non-central atoms may be found in a manner analogous to the way we treated 
F and Cl p and k orbitals above: determine (i) the position to which a rotation 
takes the atom, and (ii) ascribe to it the combination of orbitals to which the same 
orbital on the central atom would be transformed. Reducible representations may 
be found by adding the fractions of each orbital that remains after the operation 
has been performed. 

2.2.2 Vibrations 

All geometry changes require atoms to move and hence require vibrations of 
the molecule. One very useful description of these vibrations is in terms of the 
normal modes, since they uncouple both potential and kinetic energy to a good 
approximation; in other words, any vibrational energy in one normal mode does 
not does not affect the other vibrational modes, so that they act independently of 
one another. Since potential energy is ll2kq^, where q represents the extension 
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along the noimal mode, the squaie of each normal mode is an observable and so 
must be totally symmetric. Thus, just like the wavefunctions and mo's discussed 
above, normal modes must transform according to rows of the character table. So 
if we determine symmetry adapted vibrations we are well on the way to 
determining normal modes. As with mo's we must have a basis set for 
determining symmetry adapted vibrations. This requires three coordinates per 
atom (c/ §1.2). Usually, the easiest set for ML„ systems is the set of {x, y, z} 
displacements of M, and for each L, the displacement along the M-L bond, and 
two displacements perpendicular to the bond. 

lu 

lu 

- 

-H4s) 

■-1 {3d) 
-— 

2g 

2g 

[2u 

^Ig 

lu 

-t 

Mu 

2g 

bu 

Mg Mg 

Mn ao's 
O symmetry 

MnCl 6 mo'5 

(no Cl TC's) 
MnCl, mo's 

D 

Energy 

n 

Clg mo's Cl ao's 

Fig. 2.12 [MnClg]'*' qualitative MO energy level diagram from Mn valence orbitals and Cl 
bond-oriented valence orbitals. Symmetry labels of orbitals are shown. 

Before launching on the task of determining a symmetry transformation table 
for these coordinates, we should check whether we might already have done the 
hard work. The answer is that we have for [MnCl^]'^' since the basis sets of 
orbitals we used for determining sao's for [MnClg]"*' included Px,Py, andp^ on Mn 
and one Cl a bond orbital along, and two TC orbitals perpendicular to, each Mn-Cl 
bond. These transform in the same way as the coordinates for the atom 
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displacements, so symmetry adapted vibrations may be read directly from the 
corresponding sao's determined above. ■ 

2.2.3 Symmetries of Wavefunctions 

So far we have focused on the symmetries of individual mo’s or vibrations. 
Usually, more than one mo or vibration is occupied and so the symmetry of the 
whole electronic and vibrational wavefunction is the product of these occupied 
mo's and vibrations. Since it is the square of the total wavefunction that is the 
actual observable we are usually interested in the symmetry of the wavefunction 

as a whole. 
With mo's, if all the orbitals of a given energy are fully occupied, then the 

electron distribution from those orbitals is totally symmetric. The symmetry of 
the wavefunction is then totally symmetric unless there are partially occupied sets 
of orbitals. The partially occupied orbitals typically have electron configurations 
such as (e')‘ for H3 or (tig)^(t2u)^ for an Ot system. (The same products occur if 
the system is in the first excited state of an e' vibration or has both a tjg and t2u 
vibration singly excited.) The former situation is simple: the symmetry of the 
wavefunction is E' (where we use capital letters to denote symmetries of 
wavefunctions). The Oh example is more complicated. The answer is outlined 
here because we shall use the language in Chapter 5. If a more detailed 
discussion is required, references should help. 

If we simply wish to determine all the states that can arise from the electron 
configuration (tig)^(t2u)\ we determine Rtjg) x r(t2u). This may be done by 
taking the tjg and t2u rows of the character table and multiplying the numbers 
for each operation and using the answer to create a new row or vector: 
(9,8*0, 6*-l, 3*1, 6*-l, -9, 8*0, 3*-l, 6*1, 6*-l) with the order of operations (E, 
8*C3, 6*C4, 3*C4^ 6*C2, i, 8*86, 3*ah, 6*84, 6*ad). This is called the direct 

product. The dot product of this vector with the rows of the character table 
divided by h (48 in this case) will yield the symmetries that can arise. 
Alternatively, the direct product tables that are often associated with character 
tables* give the answer directly. The result in this case is a reducible 
representation with nine spatial components that reduces to: A2U + Ey + Tiu + T2U. 
The states may be either singlets (net electron spin of zero) or triplets (net 
electron spin of one) since we did not specify electron spin. 

For two electrons in, say, the three t2g orbitals, d^y, d^^, and the situation 
is more restricted since the Pauli exclusion principle precludes double occupancy 
of any one orbital by two electrons of the same spin. The result of this is that 
instead of each spatial state being able to be both a singlet and a triplet, it is now 
either a singlet or a triplet. As previously we begin by determining r(t2g) x r(t2g) 
= Aig + Eg + Tig + T2g. We then need to determine a spin multiplicity (indicated 
as left hand side superscripts) for each state. There are fifteen ways of assigning 
two electrons to the three t2g orbitals that are consistent with the Pauli exclusion 
principle. Three arrangements have spin-paired electrons in the same orbital (so 
^ = 0 and spin multiplicity, 2s-\-\ = 1). The functional forms of these 
arrangements are etc. and they do not belong to any one row of the Oh 
character table. However, their ‘Ajg and ^Eg projections resemble the sao's of H3 
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(see above). The remaining twelve arrangements must be a singlet T and a triplet 
T state with respectively three-fold and nine-fold total degeneracy. Direct 
product tables* always give the anti symmetrised product of a degenerate 
representation with itself. In this case it is Tjg, so the required antisymmetry of 
the Tjg state is accounted for by the spatial part of the function and it is 
coupled with a symmetric (triplet) spin function. We therefore conclude that 
r(t2g) X r(t2g) = ‘Aig + 'Eg + ^Tig + iT2g. By Hund's rules the ground state has 
maxunum spin multiplicity and so is ^Tjg, the others correspond to excited states. 

Much the same discussion holds for vibrations except that, unlike the 
situation for electrons in orbitals, the number of quanta of any vibration is not 
restricted to two. It is interesting to note that the v = 2, 4, 6,... states of any non¬ 
degenerate vibration are totally symmetric since they transform as squares, or 
squares of squares etc. of a row of the character table whose entries are all ±1. 

2.3 ML„ Geometries and their Interconversion 

So far in this chapter we have examined the possible molecular symmetries a 
molecule may adopt, and also seen how much we can determine about mo's, 

vibrations, and wavefunctions using just symmetry. In this section we shall see 
how the different molecular symmetries and geometries for a given ML„ are 
related. In §2.3.1 we shall develop a notation for describing geometry and the 
relative stabilities of different geometries; and in §2.3.2 we shall look briefly at 
how rearrangements between different geometries of ML„ may occur. 

2.3.1 ML„ Symmetry, Geometry, and Stability 

The idea of molecules being described in terms of a template with holes or 
vacancies (§1.1) leads to a useful terminology that emphasises the relationships 
between different structures. The set of basic templates we adopt are polyhedra 
with triangulated (or deltahedral) faces. We use {n,0} to refer to the close-packed 
(or closo) polyhedron with n vertices and no holes. So a tetrahedral molecule is 
{4,0}, while pentagonal bipyramidal molecule is {7,0}. Molecules that may be 
described in terms of an n-vertex polyhedron with one hole {nido or nest) are 
denoted {«,-!}, and those with two holes {arachno or spider) as {n,-2}, etc. It is 
also sometimes convenient to indicate explicitly the relative positions of two 
holes, for example trans-{6,-2} describes an octahedral template with two holes 
located trans to one another, i.e. a square planar molecule. Sometimes the label is 
not unique, e.g. trans-{5,-2} is also {3,0}. Unless there is a reason for doing 
otherwise, we always choose the smallest numbers for the label. 

This notation is pai ticularly appropriate for steric-plus-electronic geometry 
models for ML„ including the AAIM (§1.3.2), whose starting assumption is that 
M-L bond strengths are independent of the orientation of the L about M. It 
follows from this assumption that the geometry adopted by ML„ is governed 
primarily by the need to achieve the optimum M-L bond distance, and then by the 
need to maximise the L-L attractive interactions subject to a short range repulsion 
(due to overlapping electron clouds). If the repulsion dominates, {n,0} structures 
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are observed. If the attraction comes into play, {«,-/} polyhedra are observed, 
since the second factor implies a tendency to maximise the L-L "contacts". 

Fig. 2.13 ML„, n = 4 - 12 geometries, which maximise L-L contact with little variation in M-L 
distance. Arrows indicate the edge which will allow most relaxation when broken. The open 

circles indicate the inserted vertices or interstitial holes (see text). The diamond-square- 
diamond relaxation mechanism is also shown. The standard representation of the capped 

octahedron may be obtained from the ML, structure shown by drawing a line between two five¬ 
fold vertices across the empty vertex. 

We now turn to a thought experiment that will prove useful in understanding 
geometry trends in a homologous series of compounds (such as when M or L 
change down the periodic table), and in thinking about mechanisms for 
rearrangement reactions. Imagine what would happen if we steadily increased the 
size of M relative to L. For small M (or, equivalently, large L), the ligands will 
pack around M in a closo geometry. These polyhedra are illustrated in Fig. 2.13. 
Now consider successively larger M, with L. remaining the same. If the molecule 
is forced to retain its original shape, then each L-L distance, dL-L. increases, with 
a resultant loss of all L-L contacts. If the ligand polyhedron is then allowed to 
relax, it will adopt the geometry which maximises the number of L-L contacts. 
This means that the deltahedral polyhedron relaxes by breaking the L-L edge that 
allows the greatest gain in L-L interactions upon relaxation. One square face is 
created in the process. The arrows on the polyhedra in Fig. 2.13 indicate the 
edges allowing most relaxation. The relaxation process can readily be visualised 
when one realises that the same relaxation is required for the insertion of a new 
vertex (of connectivity four) along an edge of the ligand polyhedron to form a 
larger polyhedron. If the new L is then removed an interstitial hole is created that 
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sits above precisely the square face that was generated in the relaxation proces 
described above. 

3 

{n} 
trigonal planar 

I 
M 

{n + 1,-1} 
pyramidal 

2 

I 
1 •-M 

1^ 
3 

{n+2,-2} 

T-shaped 

4 

I 

{n+1,-1} 
{n + 2,-2} 
planar 

I ■ r /I 
1 m-M —^ ^ M 1^3 ^3 i 

5 
< 3*1 

{n} {n + 1,-1} 
trigonal bipyramid square based pyramid 

Fig. 2.14 ML„ geometries, n = 3-5, showing expansion / relaxation sequence. Solid circles 
indicate atoms and open circles vacant sites. 

For polyhedral whose interned angles are less than 180°, the edge that allows 
most relaxation is one which is "opposite" the one, or preferably two, vertices of 
lowest connectivity. By connectivity we mean the number of other L it 
"contacts". Opposite is used in the sense that a vertex is opposite an edge in a 
triangular face; since each edge is part of two deltahedral faces, it will have two 
vertices "opposite" it, and breaking this edge will define a square face, as shown 
in Fig. 2.13. The resulting ligand polyhedron for ML„Q (where O denotes hole) 
defines a new closo polyhedron, but now with n+\ vertices. Noting that the L of 

t MLji is an exception to this description since it is only slightly distorted from the regular 
icosahedron. 
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lowest connectivity are always the furthest from M, we see that this relaxation 
process enables a shortening of the longest M-L bond distances. 

For even larger M, the geometry determination process may be viewed as 
the sequential cleavage of polyhedral edges following the sequence shown in 
Fig. 2.13. The choice of second, third etc. cleavage points relative to those 
already present must be the one that allows greatest geometry relaxation and so a 
maximum gain in the number of L-L contacts. A similar sequence is appropriate 
if for some reason (such as a reaction occurring) the M-L bond lengths are 
increased. 

The expansion / relaxation sequence for ML4 may be described as follows: 
one edge of the c/o50-tetrahedron, {4,0}, is broken to form the butterfly nido- 

trigonal bipyramid, (5,-1}, and a second edge broken to form the square planar 
arac/ino-octahedron, tr«nj-{6,-2}, (Fig. 2.14c). Further relaxation may be 
viewed as via {7,-3} resulting in a pyramidal shape that would be further 
stabilised by relaxation to a square pyramid with equal d^-L- Analogous 
relaxation processes are also illustrated in Fig. 2.14 for {3,0} and {5,0}. It should 
be noted that when the number of holes is large relative to n, the uniqueness and 
accuracy of the polyhedron plus hole description is lost and ceases to be helpful. 

The octahedron {6,0} and the trigonal prism {9,-3} are both common 
six-coordinate geometries. The "expansion" sequence for ML^ is illustrated in 
Fig. 2.15. For seven coordination, the closo polyhedron {7,0} is the pentagonal 
bipyramid, {8,-1} corresponds to the capped octahedron, and {9,-2} the 
monocapped trigonal prism. Similarly, for eight coordination we would expect 
the first three members of the series for MLg to correspond to the dodecahedron 
{8,0}, the bicapped trigonal prism {9,-1}, and the square antiprism {10,-2}. The 
cube, which is {14,-6}, may be appropriate for MLg with very small ligands but 
has not yet been observed. 

2.3.2 Stereochemical Changes 

The subject of this book is molecular geometry rather than chemical 
reactions; however, one of the factors controlling reactivity is the geometry of 
reactant, product, and potential transition states or intermediates. In fact, for 
unimolecular isomerization reactions geometry is usually an over-riding factor. It 
is therefore appropriate that we consider, at least briefly, stereochemical changes 
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between different isomers. Isomerisations of inorganic coordination and cluster 
compounds have become one of the most widely studied phenomena in inorganic 
chemistry and although the mechanisms of some are well understood, e.g. 
rearrangement processes in five- or six-coordination complexes, no simple 
coherent approach to all coordination numbers appears to have evolved (see 
references in When the rearrangements are viewed in terms of changes 
between polyhedra, a unified view does result. This chapter concludes with the 
outline of a formalism that lets us determine a great deal about a reaction 
mechanism just by knowing the symmetry of the reactant and product. 

Reactant, {5,0} Transition state, (6,-1) Product, (5,0) 

D, c D„, 3h 4v 3h 

1 

1 1 2 
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1 1 
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4 3 
4 ’3 

Reactant, (4,0) Transition state, |6,-2) Product, {4,0} 

Td 4h Td 

T 
0-M 

1 

/ 
—(T)-M — CD—M-@ 
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{3,0} ^ {5,-2} © 

C2V ^3h '^3h 

Fig. 2.16 Berry pseudo rotation; rearrangement of a tetrahedral system via a square planar 

geometry; and rearrangement of {5,-2} via (3,0}. 

A closo ligand polyhedron {n,0} has the ligands in contact with one another, 
so it cannot rearrange without stretching some or all M-L distances (bond 
breaking is the extreme of this). So imagine the reaction of a closo polyhedron 
proceeding by first stretching the M-L bonds, followed by a relaxation of {n,0} to 
{n+1,-1} as discussed above. If {/i+l,-l} can relax to a "new" {n,0} polyhedron - 
new in the sense that if the atoms could be labelled it would be apparent that 
different atoms are in different positions - then ML„ can rearrange by a 
mechanism of bond stretching and ligand relaxation via a transition state (or 
intermediate) {n-t-1,-1}. The Berry pseudo rotation^ of trigonal bipyramidal ML5 
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molecules illustrated in Fig. 2.16 is an example of such a process and we shall 
discuss this example further in §2.3.2. Frequently, however, {n+1,-1} cannot 
relax to a new {n,0}. In such a case, further M-L bond stretching and ligand 
rearrangement via {n+2,-2) may be sufficient. Rearrangement of a tetrahedral 
{4,0} complex via a square planar trans-{6,-2] transitions state (Fig. 2.16) is an 
example of this. The rearrangement of octahedral {6,0} and tr/j-chelate 
complexes via a trigonal prismatic {9,-3} transition state (see below) is an 
example of a reaction going via an {n+3,-3} transition state. 

Non-c/ojo polyhedra may rearrange via the same mechanisms as their closo 
analogues. However, such polyhedra are intrinsically more spacious and so one 
should also consider mechanisms that proceed via less open ligand geometries. A 
simple example is provided by a {5,-2} T-shaped ML3 molecule, which can 
rearrange via {3,0} without any stretching of M-L bond lengths (Fig. 2.16). This 
example is discussed further in §2.3.2. Another example is provided by the 
square planar ML4 trans-{6,-2} system which may change to a butterfly-}5,-1} 
ligand polyhedron without lengthening the M-L bonds. This is generally less 
expensive energetically than the bond stretching required to go to a larger ligand 
polyhedron, so if trans-{6,-2} can rearrange via {5,-1} or {4,0} rather than via, 
say, {7,-3} then it will. In this case, however, none of these options lead to a new 
square planar structure,*^ so the square planar compound must follow the 
mechanisms of its octahedral template (see below). 

The utility of this approach for studying geometry and isomerization of ML„ 
molecules increases with the number of ligands since it enables apparently 
complex geometries to be systematised. For seven-coordination, there is no 
single-stage rearrangement mechanism available: single edge cleavage leads to 
{8,-1} which cannot relax to a new {7,0}. A further edge cleavage to {9,-2} (an 
arachno-tiicapped trigonal prism or equivalently a monocapped trigonal prism) is 
required to isomerise the reactant. Hence the ligand rearrangement for a 
pentagonal bipyramid can be viewed as taking place by a five-stage process: 

{7,0} {8,-1} -4 {9,-2} ^ {8,-1}' ^ {7,0}' 

{9,-2} probably forms the transition state in a concentred reaction, rather than 
being an intermdiate in a two step process via {8,-1} transition states.^ 

For eight coordination we have a situation similar to that found for five- 
coordination. The parent polyhedron is a dodecahedron {8,0}; single edge 
cleavage takes it to {9,-1} (a bicapped trigonal prism) and further extension along 
the same vector leads to a new dodecahedron {8,0}'. Thus its isomerization is a 
two stage process where the middle species is a transition state: 

{8,0} {9,-1} {8,0}' 

It is interesting to note that, {6,0}, {7,0} and {8,0} all proceed via the same 
polyhedral intermediate, {9,-/}, just as {3,0}, {4,0} and {5,0} all proceed via the 
octahedron, {6,-i}. 

+ Note the endpoint of a stage of a reaction may be a transition state or not even an explicit 

point on the reaction pathway, whereas the end of a step of a reaction must be (meta) stable. 
Thus reactant -> transition state product is one step, but two stages. 
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Table 2.7 M-L bond lengths required for close-packed hard sphere ligands. Bond lengths are 
given as d = d^f./r where d^f.^ is the M-L bond length and r the radius of the ligand. 

Subscripts indicate the connectivity of each ligand (i.e. number of ligands in contact with it). 

ML3 d2 = 0.577 

ML4 ^3 = 0.612 

ML5 i/3 = 0.816 ^4 = 0.577 

ML6 d4 = 0.707 

ML7 = 0.851 <^5 = 0.526 

MLg d4 = 0.930 ds = 0.677 

ML9 d4 = 0.995 ds = 0.764 

MLio d4 = 0.995 ds = 0.164 

ML12 ds = 0.951 

The M-L bond stretch required for each stage'^ in a reaction scheme is a 
major indication of the energy required for a proposed mechanism. The stretches 
can be deduced from Table 2.7, where the M-L bond lengths for ML„ are 
determined assuming close-packed hard sphere ligands. If too much bond 
stretching is required in a proposed mechanism then a bond breaking mechanism 
will take over, as is sometimes the case for tr/j-chelate metal complexes (see 
below). However, in those instances where the bond stretching may be 
accommodated, an estimate of activation volume should be possible from the 
AAIM. For example, MLg rearranging via a trigonal prism {9,-3} requires the 
M-L bonds to stretch by The corresponding volume change, or activation 
volume, assuming the ligands are close packed in both reactant and transition 
state is where is the reactant M-L distance. We can 
compare this result with experiment for [Cr(l,10-phenanthroline)3]^ and 
[Cr(2,2'-bipyridyl)3]^'^ which are known to react via a twist mechanism with a 
trigonal prismatic transition state. Since r = 207pm*^ for these molecules the 
molar activation volume is predicted by the AAIM to be 3.0cm^; the experimental 
value is 3.3±0.3cm^.*^ 

2.3.3 The Classical Symmetry Selection Rule Procedure 

We have indicated that symmetry alone can provide a great deal of 
information about possible reaction mechanisms. This information may be 
obtained by applying the Classical Symmetry Selection Rule Procedure 
(CSSRP),^*'^® which makes use of symmetry changes along normal modes of 
vibration (§2.2.2). A strict definition of a normal mode^ is a vibration that, when 
expressed in mass-weighted coordinates, is uncoupled to second order from all 
other vibrations.^^ Two key results of the procedure are that for a "well-behaved" 

t The defintion of normal coordinate is not restricted to either stable or transition state species. 
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reaction path:"^^ (i) the reacting motion is described by a normal mode of the 
system at each point; and (ii) symmetry changes occur only at the reactant, 
transition state, and product and these must represent high symmetry points along 
the reaction pathway. The CSSRP can be viewed as a procedure to determine 
whether there is a normal coordinate of a reactant which can take the system 
along a symmeti^ allowed reaction pathway to the product. If there is no such 
normal coordinate, then there can be no concerted mechanism {i.e. one that 
proceeds from reactant to transition state to product passing through no stable or 
meta-stable intermediates) between that reactant and product. If there is such a 
normal mode it describes at least the beginning of the rearrangement pathway. 
After an outline of the CSSRP itself, we shall give some examples of its use. 

Formcilism 

The CSSRP is implemented by following the symmetry of a system along its 
reaction path. One draws the reactant (R of point symmetry Gr), and all products 
of interest (Pj of symmetry Gpj), labelling their atoms. Let us once again consider 
the Beny pseudo-rotation illustrated in Fig. 2.16. We may write the symmetry 
operations of R and P using the labelling of Fig. 2.16 and the notation where 
C3'‘(1,5,4) is a three-fold rotation the tip of whose axis goes through atom 2 
(denoted ii) which takes atom 1 to the position formerly occupied by 5, 5 to that 
formerly occupied by 4, and 4 to that formerly occupied by 1 (remember rotations 
are anti-clockwise by convention) - all other atoms remain unchanged. The 
symmetry operations of R are then as follows: C3‘'(l,5,4), C2‘(2,3)(4,5), 
C2‘''(2,3)(1,5), C2''(2,3)(1,4), a(2,3), a(4,5), 0(1,5), 0(1,4). Those of P are 
C3‘''(1,2,3), C2‘(2,3)(4,5), C2“‘(L2)(4,5), C2“(1 ,3)(4,5), 0(2,3), 0(4,5), 0(1,2), 
0(1,3). One then determines the symmetry operations, in a labelled atom sense, 
that are common to each {R, P} pair. These of)erations form the group Grr. So 
for our example Gr|. = {C2^2,3)(4,5), 0(2,3), 0(4,5)} = C2v These and only 
these symmetry operations are retained along the whole reaction path. The 
reacting system has synuiietry GRpat all points except perhaps at R, P, and T (the 
transition state, or energy maximum of the reaction pathway) where it may be 
higher. If no normal mode of R (or P) can reduce the system symmetry to Grp, 
then R cannot convert to P via a concerted mechanism; if such a mode does exist 
then it provides a concerted reaction pathway. Tables of symmetry reductions 
possible via normal modes of every point group are to be found in reference 

There are also restrictions placed on the reaction path by the symmetry at the 
transition state. If reactant and product aie chemically different species, the point 
group of the transition state, Gx, equals Gpp. For R and P with skeletons that are 
identical to or minor images of one another, the transition state is of higher 
symmetry than the rest of the reaction pathway. The additional symmetry 
operations arc determined by considering the details of how the atoms in the 
reactant are repositioned to make the product. The easiest way to do this is to 
sufHirimpose P on R so that the symmetry elements of Grp are in the same 
place for both, but no other symmetry elements coincide. Again for the Berry 

tt A wcll-bchavccl path is one that is a harmonic valley with respect to all motions other than 

the reaction coordinate, has no crossing of electronic potential energy surfaces, and has no 
points of intlexion along it. 
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pseudo-rotation, both R and P cire {5,0} so if there is a concerted mechanism 
between them then at T the reacting system has higher symmetry than elsewhere 
along its path. To determine the symmetry of T, rotate P from its orientation in 
Fig. 2.16 so that atom 5 comes out of the page and atoms 2 and 3 lie in the plane 
of the page. All common symmetry elements of R and P now coincide but no 
others do. We now determine what combination of a point operation (rotation, 
reflection or inversion) followed by permutation of some atoms is required to take 
P back to R. If we denote the permutation as /7and the point operation as R, then 
the combination may be written L = Rfl, and both L (R) = P and L (P) = R. For 
our example, R = €4' superposes P's skeleton upon that of R, but with the atoms 
permuted. Follow this by the permutation 77= p(3,4,2,5) meaning atom 3 goes to 
where atom 4 was etc., and P has been transformed to R. Now, if we apply L to T 
it must leave every atom of T unchanged (so it is more than a symmetry operation 
- it is like the identity), Le. L(T) s T, or 77(T) = /?'HT). This usually determines 
the geometry of T. In our example, it means that C4' followed by p(3,4,2,5) has 
no net effect and T must be as illustrated in Fig. 2.16. It should be noted that L is 
not necessarily unique, but T always is. 

The {5,-2} {3,0} —> {5,-2} rearrangement also illustrated in Fig. 2.16 
provides quite a different example from that of the Berry pseudo-rotation. In this 
case Grp = C^. If we superimpose R and P with and angle of, say, 0 between 
their two-fold axes, then a rotation of 0 will take the skeleton of P to that of R and 
77 could then be determined. However, no T could be constructed for arbitrary 0. 
This suggests that the {3,0} geometry is in fact not a transition state but an 
intermediate. 

The CSSRP is particularly useful for high symmetry systems, such as 
transition metal complexes. The assumptions underlying the CSSRP are unlikely 
to break down for such molecules. However, if they do, the path determined 
using the CSSRP will be an average of the paths that actually occur. For low 
symmetry systems that can be described in terms of a higher symmetry template, 
the mechanisms for the high symmetry template have low symmetry analogues.*^ 
The difference between mechanisms for a high symmetry molecule and those for 
a low symmetry one built on the same template is that some mechanisms that are 
totally impossible for high symmetry systems because they require the 
coalescence of atoms, may be viable in the tower symmetry case. This happens 
most often if the lowering of symmetry is due to atoms being removed, as is the 
case when we talk of square planar systems being trans-{6,-2}. 

Applications 

The Rearrangement of Polyhedra: We talked above about rearrangements of 
{n,0} systems being described in terms of expansion towards {n+1,-1}, {n+2,-2] 

etc. polyhedra. The CSSRP requires that if these are viable mechanisms then the 
beginning of the distortion from {n,0} to {n+1,-1} must be along one of the lower 
energy normal modes of the reactant {n,0}. Although the relative orderings of the 
normal modes varies as a function of the M-L bond strength, for each n the mode 
which resembles the {n,0} to {/j+1,-1} motion most closely is in fact one of the 
three lowest energy vibrational normal modes. 
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Octahedral Complexes: Fig. 2.17 illustrates the results of the CSSRP for all 
distinct products (in a labelled atom sense) from the symmetry allowed concerted 
rearrangement mechanisms of an octahedral metal complex.The number in 
square brackets after each mechanism is the number of equivalent reactions for 
the octahedral molecule. It should be noted that two mechanisms that are 
equivalent (except for atom labels) for the octahedral molecule will often become 
different when the symmetry of the system is reduced. It is therefore important to 
keep track of all mechanisms of the high symmetry templates, so we can use them 
later. 

Fig. 2.17 Concerted rearrangement mechanisms for octahedral complexes. Numbers in square 

brackets are the number of mechanisms equivalent to the one illustrated. 

Mechanisms l.a, l.p, and 1.5 are not viable for an octahedral complex as 
respectively, three, one, or three, pairs of atoms are coincident in T. (L is a pure 
permutation operation, and as L(T) s T, this means atoms must be occupying 
exactly the same position.) However, these mechanisms may become operative 
for lower symmetry complexes and so have been included. Mechanisms l.y 
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involve motion in opposite directions along the same T2U normal coordinate of R; 
they are symmetry allowed rearrangement mechanisms which proceed via 

trigonal prismatic transition states. 

Tris-Chelate Complexes: The MLg part of a rm-chelate complex M(LL)3 is a 
good example of weak symmetry lowering from an octahedral complex. Some 
mechanisms which follow from relaxing the symmetry constraints on the 
octahedral mechanisms are illustrated in Fig. 2.18. The Greek letter label for each 
mechanism corresponds to the same letter of Fig. 2.17. 

Products that involve trans ligating atoms being connected by the same 
chelate have been omitted, as have all products of the same handedness as R, 
since we are usually concerned about how a solution of these molecules changes 
from containing only one enantiomer to being a racemic mixture (equal amounts 
of both enantiomers, see §1.1.1). No mechanisms derived from 1.5 are illustrated 
as L is still a pure permutation for a concerted reaction. 

Fig. 2.18; Concerted rearrangement mechanisms for tm-chelate complexes. Numbers in 

square brackets are the number of mechanisms equivalent to the one illustrated. The labels of 

the mechanisms correspond to those for the analogous octahedral mechanisms. 
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The mechanisms of Fig. 2.18 are identical with those that result from a direct 
application of the CSSRP or from an exhaustive study of all possible 
rearrangements that one could conceive for a m'j-chelate complex.^* 2.a and 2.y 

are both synunetry allowed concerted mechanisms. However, their transition 
states are very high energy structures reflecting their origin in mechanisms which 
were forbidden in the octahedral complexes. The common high symmetry 
parentage of both the Bailar and Ray Dutt twists (2.7) is the most interesting result 
to come from the template approach to these reactions: the Bailar twist is a twist 
about the three-fold axis which is retained upon symmetry reduction from Oh to 
D3, and the Ray-Dutt twist is a twist about a three-fold axis which is lost. This 
results from the fate of the t2u normal coordinate of an octahedral R upon 
reduction of molecular symmetry to D3: it splits into a non-degenerate a2 

component and a degenerate e component. The a2 component gives the Bailar 
twist which retains D3 symmetry along the reaction path, and the e component 
gives the Ray-Dutt twist. (The other direction of the t2u twist falls into the group 
of mechanisms not illustrated as it involves a chelate becoming trans rather than 
cis.) The similarity of the Bailar and Ray-Dutt twists when viewed in this manner 
has been useful in specifying the conditions under which one would expect each 
to be favoured (see §5.1.3).^^ 

Fig. 2.19 Rearrangement mechanisms for square planar complexes. The labels of the 
mechanisms correspond to those for the analogous octahedral mechanisms. Ligating atom 

positions indicated by dotted circles are those not present. 

Square Planar Complexes: The final rearrangement reaction of an octahedral 
parentage system that we shall examine is the cis-trans isomerization of square 
planar complexes. This is an example of what we may call strong symmetry 
lowering. There is only one distinct product of this reaction, and, since R and P 
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have only one reflection plane in common, we require a normal mode that takes 
D4h to Cs. No such vibration exists. The CSSRP therefore tells us that there is no 
concerted symmetry allowed mechanism. It is now that the template symmetry 
concept becomes so useful, l.a-type and l.p-type mechanisms are still not 
concertedly possible, though l.p suggests a possible non-concerted mechanism to 
Ii (which is probably distorted from the geometry illustrated in Fig. 2.19). 
However, repetition of a l.p-type mechanism does not lead to P, so we also 
dismiss it. As in the previous examples l.y leads to a viable mechanism via I2 

(Fig. 2.18). The biggest change due to the reduction of symmetry is that 1.5 
becomes an allowed mechanism (an atom and a missing atom can coalesce). 
However, the effect of the mechanism is the same as 3.y, so no new mechanism 
emerges in this example. 
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Introduction 

No book on molecular geometry would be complete without the molecules 
made by bonding second row atoms to one another and to hydrogen. However, 
the converse of this is that the subject matter has been well traversed. In this 
chapter we are primarily concerned with situations in which the central atom is a 
second row element; however, our emphasis will be on the concepts underlying 
geometry determination, especially those that will recur in later chapters. 

As noted in §1.2 the second row atoms have four valence orbitals: 2s, 2p^ , 
2py, and 2p^ containing up to eight valence electrons. In order to make bonds 
between atoms, some redistribution of the atomic electron density is required. At 
its extremes we can identify two different types of bonding: covalent and ionic. A 
pure covalent bond involves equal sharing of the valence electrons, as is the case 
for homonuclear diatomics such as F2(see Fig. 1.18-19 for MO energy level 
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diagrams). An ionic bond is exemplified by the diatomic CsF,^ where the Cs 
(almost completely) donates its outer 6s electron to F and the molecule is then 
held together by the electrostatic attraction of a positive and a negative ion.^^ In 
general, however, different atoms in a molecule will have different abilities to 
attract and hold onto electrons, and so most bonds will have some ionic and some 
covalent character; even CsF has a small degree of covalent character. 

The concept of electronegativity is a useful label to use in this context. It 
describes the ability of an atom to attract electrons to itself and the difficulty 
with which electrons are removed from it. Various quantitative measures, 
including the Pauling scale, can be found tabulated in chemical data books.The 
Mulliken scale, whereby it is defined to be the average of the ionisation energy 
(E,) and the electron affinity the energy involved in adding an additional 

electron to the atom), is one of the more helpful and simple definitions: 

Electronegativity = (£,■ + E^^ )/2 

A number of anomolies, such as helium having a high electronegativity due to its 
large E,-, arise, however, these do not really affect its conceptual use in our study 

of molecular geometry. 

Fig. 3.1 First ionisation energies and electron affinities for first and second row atoms. 

t LiF would be a more appropriate choice for this chapter, but CsF is much more ionic than LiF. 
tt Note that the chemist's language can be rather sloppy in this context. We often talk about the 
Cs as being stabilised by losing its electron. Taken at face value, this statement is patently 
untrue since it implies that an isolated Cs atom would expel an electron spontaneously. In fact, 
the statement is meant in the context of bonding, and is really saying that the energetic penalties 
that result from removing an electron from the Cs, are more than made up by the energy 
released when F gains an additional electron coupled with the electrostatic attraction between 
the oppositely charged ions. 
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As a general rule electronegativity decreases from right to left across the 
periodic table and from the top of a group to the bottom. The latter trend is 
simply because valence electrons that might be removed or added are further from 
the nucleus as one goes down the group and, although the nuclear charge has 
increased, the combined effect of (i) weaker attraction at larger distance and 
(ii) greater shielding of the nucleus by the core electrons, which reduces the 
effective nuclear charge to little more than the number of valence electrons in the 
neutral atom, causes electronegativity to reduce down a group. The increase from 
left to right is due to almost exactly opposite factors. As one proceeds across the 
periodic table the nuclear charge increases, yet a valence electron only partially 
shields electrons with the same quantum number from the nucleus, so the 
effective nuclear charge increases across a period; this, in turn, leads the atoms to 
decrease in size across a period, thus bringing the electrons closer to the nucleus 
and so enhancing the interaction even further. The hiccups in both £■, and at B 
(see Fig. 3.1) reflect the fact that s electrons on average penetrate closer to the 
nucleus and so shield other valence electrons from the nucleus slightly more 
effectively than dop electrons (§1.2 and Fig. 1.14); the one at N correlates with 
N having one electron in each p orbital, adding another requires spin pairing 
(which costs energy) and taking one away loses significant exchange energy (see 

One of the most useful guides to determining the bonding of second row 
atoms is the "eight-electron" rule (or more accurately the "no more than eight- 
electron rule) discussed in §1.3.2. This empirical rule can be rationalised in 
terms of the bonds being determined mainly by the four valence orbitals {cf. MO 
ideas discussed in §1.3). So at most eight electrons are favourably accommodated 
about a second row atom. Since bonding interactions result in lower energy 
orbitals, second row atoms on the right hand side of the periodic table are 
described somewhat anthropomorphically as "wishing" to obtain the maximum of 
eight electrons in their outer shell by sharing the valence electrons of other atoms, 
and thus making a maximum number of bonds in the process. Atoms on the left 
of the periodic table, however, do not obey the octet rule for to do so would 
involve an excessive build up of negative charge on atoms; for molecules such as 
LiF7 it would also be sterically unfavourable.^ 

The range of coordination numbers (C^, §1.3.2) for ML„ with second row M 
is limited to n = 1,2,3,4. In contrast to many books dealing with these elements, 
we shall structure our discussion in §3.1 by Cn rather than by element as this 
relates more naturally to our concern for the geometry adopted by the molecule. 
Carbon based chemistry forms the subject of §3.2, with the emphasis being on 
geometric irregularities rather than on the norm, but with some consideration 
given to stereoelectronic effects. The chapter concludes with a discussion of 
borane geometries in §3.3. The space devoted to these last is out of proportion to 
the number of compounds, but is in keeping with our aim of laying a foundation 
for later chapters since the geometries of the cluster compounds of Chapter 6 are 
determined by many of the same principles. 

t If we consider ionic crystals the situation is different with the coordination number about 
any one ion being typically six, but the ratio of anions and cations is such as to ensure 
electro-neutrality. 
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case results from a different ordering of the B2 mo’s (Fig. 1.19) and from fewer 
valence electrons in the whole system; in this case the perpendicular approach 
gives bonding interactions with all three occupied orbitals, whereas a collinear 
approach has most interaction with the orbitals that remain unoccupied. 

It should be noted that qualitative arguments such as those given above will 
only be definitive when the interactions and energy changes involved are large. 
When the interactions are weak then the balance between the favourable and 
unfavourable interactions can be tricky to determine, and any firm statements 
should be backed up by actual calculations. 

The question of the relative stabilities of linear and non-linear triatomics is 
more commonly addressed within MO theory by considering the orbital energy 
level diagram of, say, the linear molecule and deducing the changes that take 
place as the molecule is bent. The combined before-and-after diagram is usually 
referred to as a Walsh Diagram. Burdett ^ explored the applications of the Walsh 
Diagram approach to molecular geometry determination in some detail so we 
shall not pursue it here. 

Table 3.1: Geometries of ML2 compared with VSEPR, L-L attraction and L-L repulsion 
predictions. Angles are given in degrees. The attraction values are determined assuming hard 

.sphere atoms of the size given in Table 1.1 (though the effect of a very electronegative atom on 
atomic size is noted by the inequality sign.s). Sources of experimental data are given in 

reference 

Molecule Experiment VSEPR L-Lattraction L-L repulsion 

H-Be-H 180 180 >90 180 
F-Be-F 180 180 bent 180 
H-B-H 131 120 102 180 
F-B-F 118 120 >111 180 
H-C-H 102.4 120 <112 180 
H-C-H, "’b. 136 120 >117 180 
H-C-N 180 180 142 180 
O-C-0 180 180 >136 180 
0-C-F 126 120 116 180 
H-N-H 103.4 109 <129 180 
H-N-C 180 120 180 180 
H-N-0 108.6 120 <129 180 
O-N-0 134 >120 136 180 
O-N-O"^ 180 180 165 180 
O-N-0' -11.5.4 120 134 180 
H-O-H 105.2 109 «146 180 
H-O-F 96 109 <111 180 

0-0-0 116.8 109 <124 180 
F-O-F 103.1 109 <99 180 



76 Molecular Geometry 

In the VSEPR approach (§1.3.2) the number of bonds and lone-pairs of 
electrons associated with the central atom i^ used to establish a template on which 
the molecule is based. The relevant templates for second row molecules are the 
line, triangle or tetrahedron with idealised LML angles of 180°, 120 or 109.5 
respectively (Fig. 1.22). VSEPR then recognises some distortion away from these 
angles due to repulsion between lone pairs and 7i-bonds (i.e. bonds made from 
occupancy of a 7i orbital) The estimates are generally quite close to experimental 
geometries, but there are inaccuracies; for example, F is more electronegative than 
H, but the FBF bond angle is greater than the HBH one. By way of contract, the 
AAIM optimises L-L interactions first, and although it is also generally fairly 
close to experiment it underrates the significance of linear geometries for ML2 as 
discussed in §1.3.2. The data in Table 3.1 compare the predictions of these 
approaches and the L-L repulsion estimates of geometry with experiment. 

MLj 
An ML3 system can adopt two types of geometries; pyramidal or planar. 

Both of these may be distorted away from the most symmetric structure, although 
extreme distortions, such as toward T-shaped planar geometries, are rare with 
second row elements. VSEPR geometries are based on three templates (Figs. 
I. 22). In terms of the notation developed in §2.3 they are: {3,0} (trigonal planar) 
if there are no lone-pairs of electrons; (4,-1) (pyramidal) for one lone-pair; and 
{5,-2} (T-shaped) for two lone-pairs (though {5,-2} can not happen with second 
row elements since it requires two lone pairs and three bonds so would need 
valence J-orbitals). L-L attractions favour trigonal pyramidal geometries, 
whereas repulsion between the L favours {3,0}; the repulsion can arise either 
from electrostatic interactions or with large L. Both VSEPR and AAIM give 
fairly reliable predictions for the second row ML3 molecules (see Table 3.2). For 
further illustrations of VSEPR see reference The preference of bulky non- 
charged ligands for a trigonal planar geometry has been illustrated clearly by 
Glidewell in a number of NL3 molecules with large L.^ 

Table 3.2; Geometries of ML3 compared with VSEPR, L-L attraction and L-L repulsion 
predictions determined as for Table 3.1. LML angles are given in degrees. 

120° corresponds to (3,0). 

Molecule Experiment VSEPR L-L Attraction L-L repulsion 

NF3 102.2 109 <104 120 

NH3 106.5 109 <130 - 

BH3 120 120 >101 - 

BF3 120 120 >111 120 

CH3, 2A2" 120 ?<120 117 - 

C03^' 120 120 122 120 

ML4 

The valence electrons required for a Cn of four means second row ML4 are 
found for M on the right hand side of the periodic table. For these elements the 
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contraction of the nucleus across the row from left to right ensures that ML4 must 
be close packed {4,0} with L-L distances determined by packing and bond-length 
considerations. There is little scope for gross variations in shape about a "centred" 
atom and interest in this area is restricted to the stereoelectronic subtleties of 
heteroatomic organic compounds (§3.2.2). Boranes (§3.3) provide an interesting 
exception to this since they adopt a range of ML4 geometries that enable them to 
obey the eight-electron rule even though B itself only has three valence electrons. 

3.2 Carbon Based Chemistry 

3.2.1 Geometry About a C 

From a molecular geometry point of view organic chemists have an easy life 
as there is little variation in the geometries about any one atom in the molecules 
that they study. However, the converse of this is that, synthetically, life is often 
more difficult as fewer options are available. The chemistry of carbon is 
dominated by the eight-electron rule and the formation of four bonds per carbon. 
Although carbenes (carbon with two bonds and one lone pair of electrons) have a 
wide chemistry, they are not very stable and readily react to form molecules with 
four bonds about the carbon. 

Molecules containing carbon have identifiable two-centre single, double and 
triple bonds (i.e. approximately two, four or six electrons concentrated between a 
pair of nuclei). It is common to describe the bonding in terms of hybrid orbitals 
(ho's), which were described in §1.3.2 and whose radial distribution was given in 
Fig. 1.21, so each two-centre bond results from occupation by two electrons of a 
bonding combination of one ho on each atom of the bond. The most stable bond 
is always a a bond made between two sff ho's , n = 1,2 or 3, pointing towards 
each other along the bond axis (and hence giving good overlap). The second and 
third bonds (if they are present) are n bonds (§1.3.1) between p orbitals that were 
not involved in the hybridisation. The possible combinations for o bonds are: 
(i) sp^-sp^: a single bond, as in H3C-CH3 

(ii) sp^-sp^: a single bond adjacent to a double bond, as in the H3C-CH bond of 
H3C-CH=CH2 

(iii) sp^-sp: a single bond adjacent to a triple bond, as in the H3C-C bond of 
H3C-C=CH 

(iv) s]?-sp^: a double bond, as in H2C=CH2 

(v) sp^-sp: a double bond adjacent to a double bond, as in H2C=C=CH2 (note: 
the planes of the CH2 groups are perpendicular) 

(vi) sp-sp: a triple bond as in HC^CH, or a double bond adjacent to two double 
bonds, as in the central bond of H2C=C=C=CH2 

The templates for the carbon geometries are either tetrahedral, trigonal planar 
or linear (Fig. 1.22), depending on the combination of ho's involved, and can be 
worked out from the number of single, double, or triple bonds associated with 
each C. It should be noted that the C-C 'single' bonds in cases (i-iii) are all 
different, and one might reasonably expect a difference in both C-C bond energy 
and bond distance. In fact there is remarkably little variation (~5%), which allows 
C-C distances and bond energies to be considered as transferable properties for a 
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whole variety of different organic molecules and, as a consequence, firm 
predictions of stability and reaction mechanisms are possible. A difference does 
come with molecules such a benzene (Fig. 3.3) where it is not possible to identify 
any one C-C bond as single or double. In that case the C-C bond length is a 
compromise between a single and double bond. This consistent behaviour of 
carbon in many different situations means that molecular modelling theories can 
be made successful with carbon based systems. The successes of molecular 
mechanics (§1.3.2) in studies of macromolecules such as DNA and proteins (see 

Chapter 7) illustrate this. 

Fig. 3.3 Benzene. 

•=o=« 
180° 

Fig. 3.4 Trans and gauche conformations of butane. 

Carbon also bonds to other main group atoms, and does so with the same 
types of bonding. The shapes of the molecules are entirely consistent both with 
the VSEPR model and with the packing expectations of atoms of different sizes 
and electronegativity that underlies the AAIM method (§1.3.2). Thus, the nature 
of carbon is to have entirely predictable geometries about any one atom. The 
difficult geometry questions for carbon systems arise from the fact that carbon 
readily forms catenated systems whose long chains and branches have a wide 
variety of geometries and isomers available to them. When chains of carbons are 
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considered there are far more possibilities. Even in the simplest case of ethane, 
rotation about the C-C bond leads to different geometries as discussed in §1.1.1 
and illustrated in Fig. 1.8. More complicated examples occur as the chains gets 
longer, and in these cases interest tends to centre on the extent to which the 
backbone bonds are "twisted". We define the torsion angle by looking at the two 
atoms that form the bond, and two more atoms that are attached to the bonded 
atoms. The simplest example for which such conformational changes are 
chemically important is butane, for which the rotation about the central bond leads 
to distinct gauche and trans conformers (Fig. 3.4). The gauche and trans 
conformations have different shapes and therefore different physical properties. 
In particular, the trans conformation is flat molecule (the arrangement of C's is 
planar) whereas the gauche conformation is more compact. Consequently, 
adsorption onto a surface at low coverages leads to a high percentage of trans 
molecules (so that more of the molecule can lie flat on the surface), whereas in 
liquids, where there is very little free space, one finds an increased percentage of 
gauche conformations. 

An important application where long alkane chains is essential is in 
Langmuir-Blodgett films - dense and highly ordered layered structures of precise 
molecular thickness that can be formed on many surfaces; in these systems the 
presence of gauche bonds will give a significant disruption of the desired 
structure. For even larger molecules the question of conformational shape 
becomes even more complicated, but even more important. Perhaps the supreme 
example is protein folding (§7.2); much of the time enzymes will adopt a 
"dormant" structure in which the active site is well protected, but this means that, 
the molecule must undergo substantial conformational changes {i.e. many of the 
bonds must undergo large twists) in order to make the active site available. 

A particularly interesting type of conformational behaviour arises when a 
chain of carbons is joined up to form a ring. In this case the constraint of forming 
a ring will place some strain on the molecule, and the ring will pucker in order to 
alleviate this strain. Any twisting about bonds in the ring must happen in a 
concerted manner, and involve more than one bond in substantially greater energy 
penalties than is involved in twisting a single bond. The classic example of this 
type of behaviour is the chair and boat conformations of cyclohexane (Fig. 3.5). 
In fact the boat conformation has not yet been observed, but is postulated as an 
intermediate or transition state in many reaction pathways. The situation becomes 
more complex if one of the C's is replaced by a heteroatom such as N or O. In 
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this case, two different chair forms of may be identified, differing in the location 
of the heteroatom within the chair. Probably the most important occurrence of 
this is in sugars and is discussed further in §3.2.2. 

Five-membered rings may be drawn to be planar with average bond angles of 
108°, rather than the tetrahedral angle of 109.5°, but in practice they also pucker 
and become non-planar. Which atom in a hereto-atomic ring puckers has 
important consequences for the geometry of DNA, as discussed in §7.1. In 
general, the distortion will tend to bring groups attached to the ring closer 
together, particularly if they point out from the local plane of the ring (equatorial). 
Indeed, the L-L repulsion can become so important in such systems that it can 
dominate even over bonding interactions.^ However, two-centre bonds and L-L 
interactions do not always tell the whole story, as the next section illustrates. 

3.2.2 Stereoelectronic Effects 

In recent years it has become apparent that organic molecular geometry is 
not completely specified by the sum of electronic and steric effects (§1.3.2).^® 
The extra factors have been loosely described as stereoelectronic effects. In some 
contexts the label stereoelectionic has been used to mean something very specific, 
this has generated a great debate as to whether stereoelectronic effects exist and if 
so what their origin is. A more general definition of these stereoelectronic factors 
is that bond strengths are dependent upon the geometry a molecule adopts, so that 
there is significant coupling between steric and electronic factors. In many 
systems the stereoelectronic effects are so small that it is safe to ignore them 
completely; however, there are systems in which stereoelectronic factors will 
dominate over steric interactions and it is important to understand when and why 
this happens. A particularly simple example is 3-acetoxy-tetrahydropyran where 
steric effects favour the equatorial conformation, illustrated on the left of Fig. 3.6, 
but axial is more often observed.*® 

Fig. 3.6 Kquatorial and axial 3-acetoxy-tetrahydropyran. O is denoted by the medium size 
shaded sphere, and the acetoxy group (-OCOCH3) by the large shaded sphere. 

Sugars 
The molecules for which stereoelectronic effects have been most contentious 

are sugars.**’*^ Sugars are always in an equilibrium between their ring form and 
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the open chain aldehyde (or keto in, e.g., fructose). This continual opening and 
closing of the ring means that in addition to the two different chair conformations 
possible, any sugar also has two possible stereochemistries at C\ denoted a and P 
and usually referred to as different anomers (Fig. 3.7). Thus the combination of 
two chair forms with two anomers gives a total of four different ring isomers, and 
the relative population of each geometry reflects their relative stabilities. On 
purely steric grounds, a maximum number of equatorial substituents is optimal. 
In glucose (Fig. 3.7) this has the consequence that 64% of the glucose molecules 
take the P form since this has all substituents in the equatorial positions. Mannose 
differs from glucose only in that the stereochemistry at has been inverted. 
However, at equilibrium the a-mannopyranose form is more stable than the 
P-mannopyranose (69% a versus 31% P), so for some reason the OH on C* 
adopts the sterically less favoured axial position. This behaviour, known as the 
anomeric effect, was first noted by Lemieux.^^ 

Fig. 3.7 a and P anomers of D-glucose, showing the aldehyde intermediate. 

It is now accepted that there are two major contributory factors to the 
anomeric effect. The first is the destabilising effect due to repulsion by lone pairs 
on 1,3 atoms, in this case O's (Fig. 3.8). In saying this we have adopted the 
language of the VSEPR model, but this explanation does have its analogue in the 
other models as well: in MO terms it is ascribed to the bonding and anti-bonding 
interaction of two occupied orbitals, which results in two occupied orbitals that 
are net destabilised compared with the initial ones (§1.3.1). The second factor is 
generally agreed to be more important (but see ^'‘), and turns out to be a 
breakdown in the fragment MO arguments in which we considered all bonds to be 
made from overlap of localised orbitals on neighbouring atoms (or functional 
groups) and sharing of electrons between those groups. In fact, the nature of one 
bond made by an atom affects all its other bonds and the result can be a net 
delocalisation of the electrons even in the a bond framework. We shall continue 
to discuss the anomeric effect in MO terms, but note that various polar and simple 
electron migration descriptions have also been given for the same phenomenon.^® 

We first consider the simpler case of 0-C-X, where X is an electronegative 
atom and all the orbitals have been allowed to hybridise (c/ §1.3.2) ready for 
bonding. If the O is oriented so that one of its lone pairs is anti-parallel to the 
C-X bond (this is called "antiperiplanar"), then a 7t-type overlap can occur 
between the back lobe of the lone pair and the a (valence c bonding) and o* 
(valence a antibonding) orbitals of the C-X bond; this overlap is ignored if we 
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consider the molecule as a collection of localised bonds. The interaction between 
the lone pair and the C-X a* orbital is the more significant (Fig. 3.8), since, in 
this case, the additional interaction is bonding in character and can result in a net 
transfer of electron density into other parts of the molecule. The C-0 bond is 
strengthened and the C-X bond weakened as a* becomes part of an occupied 
orbital. The C character of the a* orbital, and hence the interaction, increases 
with the electronegativity of X since greater overlap with the lone pair occurs. 

Fig. 3.8 1,3 lone pair - lone pair repulsion, and antiperiplanar orientation of O lone pair with 
respect to the C-X a bond. 

Fig. 3.9 a and P anomers of mannose and glucose indicating the favourable stereoelectronic 
interactions with the direction of electron transfer indicated by arrows. 

In the case of sugars the 0-C-X system is formed by the ether O, C* and the 
OH group; as both O's may fill either role, the O-C-0 grouping has a double 
strength stereoelectronic effect. Furthermore, for mannose both and may be 
considered as electronegative atoms (as they are bonded to O), so we get two 
smaller contributions as illustrated in Fig. 3.9. (One must check whether it is 
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possible to orient the orbitals so that all four effects occur simultaneously - in this 
case it is.) However, this does not explain why the P-anomer is more stable for 
mannose but not for glucose, since the same number of stereoelectronic 
interactions may be envisaged for glucose. 

We must now ask how having an axial OH on in mannose enhances these 
stereoelectronic effects, or conversely, why it is reduced for glucose. As usual 
there is more than one factor contributing to the observed effect. Significant 
factors include: (i) will draw electron density away from C^, thus increasing 
the interaction between O* and the C*-C^ a* orbital; and (ii) in order for a- 
glucose to have its stereoelectronic interactions, either the H* and O^, or the non- 
anti-periplanar lone pair on O^, will clash with the O* antiperiplanar lone pair. A 
staggered arrangement losing all stereoelectronic effects is therefore preferred. 
These effects are small, but for mannose only 2kJ/mol energy difference is needed 
to ensure the experimental population difference. In fact, glucose does show 
some stereoelectronic stabilising of the a-anomer as steric factors alone would 
suggest 82% preference for p.‘° 

0 

Fig. 3.10 P-equatorial adamantanones. Zl, Z2, Z3, and C=0 form a planar W zig-zag. 

Planar Zig-Xags or W-Effects 
Molecules with a planar zig-zag (Fig. 3.10) of bonds have been noted as 

having particularly strong 1-4 interactions^ in both and circular 
dichroism (CD) spectroscopy.The same type of geometry dependent 
electronic interactions as noted for sugars operate here. Consider the carbonyl 
chromophore of P-equatorial adamantanones, for which CD is a convenient probe 
of excitations from the n n* orbitals of the CO group (see Fig. 3.11). The 
bonds labelled Zl, Z2 and Z3 in Fig. 3.10 form a coplanar zig-zag with the C=0 
of the carbonyl. Overlap of occupied and unoccupied orbitals along the zig-zag 
chain is illustrated in Fig. 3.12 for both the n and 7t* orbitals, along with the 

t An interaction between an atom and one three bonds away. 
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resulting distortion of orbital energy level diagrams. The net effect is a red-shift 
of the transition (since n increases in energy and k* is lowered), with the 
magnitudes being determined by the identity of the atoms along the chain. If the 
conformation is changed, then the degree of overlap is decreased and the effect is 

reduced significantly. 

Stereoelectronics and Reactivity 
Stereoelectronic effects are also observed in the reactions of systems with 

electronegative elements that have non-bonding electrons available for 
stereospecific electronic interactions. Fluorine's size (C-F bonds are 1.38A, C-H 
bonds are l.OSA) enables it to be substituted for H atoms in organic molecules 
without any substantial steric problems. It is often assumed that the fluorine atom 
does nothing except prevent H abstraction reactions, but this assumption is not 
always appropriate. An extreme example of the influence of F on reactivity is 
provided by a-trifluoromethyl ketones. 

tj*1 n n' 

Fig. 3.11 Schematic illustration of the carbonyl valence orbitals. and n_ are the in-phase and 
out-of-phase couplings of the sp^ lone pairs in accord with the C2v symmetry of the carbonyl 

(see §2.2.1). Shading indicates relative phase. 

F3C*-C^0-R is much more prone to attack by a water molecule to form 
F3-C(0H)2-R than is H3C‘-C^O-R. This reactivity is not expected on the basis of 
traditional electronegativity or electrostatic arguments, but can be accounted for in 
terms of the relative stabilising effects of the interactions of the lone pairs of one 
(in the carbonyl) versus two (in the hydrate) oxygen atoms with the C*-C^ o* 
orbital. Due to the combined electron withdrawing power of the three F atoms 
attached to C^ the o* orbital has more character than is usual in carbonyl 
compounds, so the stabilising interaction of a lone pair which is "anti peri planar" 
to the C*-C^ bond is larger than in the unsubstituted case. In addition, the C'-C^ 
a orbital has less destabilising interaction with the O lone pair(s) than in the 
unsubstituted molecule because the bonding orbital has less character and 
hence less overlap with the lone pairs. In the hydrated molecule one lone pair on 
each O has this stabilising interaction. 
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{n-,Zl}interQction 

b) 

7^— 

\ 
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01—( )—03 

'—'01+03 
{n_, Z1, Z3}interQction 

{/7.,Ol}Qntibondrg {01.03} anti bonding 
interaction interaction 

Fig. 3.12 (a) Interaction of the sigma bonding (ol) and sigma anti-bonding (a*l) orbitals of 
Z1 with (b) the effect of a3 on n. via its coupling with al. 

3.3 Boranes 

The difference between boron and carbon is small - one proton, one electron, 
and one or more neutrons - and in fact they have many similar features. B3N3H6 

forms an aromatic compound resembling benzene and carboranes differ from 
boranes by the substitution of C-H for BH2. In general, however, their 
chemistries and molecular shapes are very different. The means adopted by B to 
achieve an octet of electrons involves the formation of cage-like structures with 
three-centre two-electron bonds, whereas for C, three-centre bonds would force 
too many electrons into the valence shell. 

Bonding in molecules composed of B and H atoms, the boranes, is often seen 
as rather unusual. For example the regularity of carbon chemistry (see above) and 
of much main group chemistry - with clearly defined bond types of very nearly 
constant length and with predictable geometries - is not evident in boranes. Some 
of the simpler boranes are illustrated in Fig. 3.13 wi(h some B-B and B-H bond 
lengths indicated. Boranes are highly reactive and difficult to prepare, initially 
there was hope that they might prove to be effective rocket fuels as they have 
positive enthalpies of formation relative to B2 and H2. For our purposes they are 
most valuable as simple templates for the molecular geometries of transition metal 
clusters to which we shall come in Chapter 6. 

Before looking at why boranes adopt such different molecular geometries 
from carbon based molecules it is helpful to catalogue the shapes they do adopt. 
If we ignore the H's (i.e. just assume they are there to complete the electron and 
orbital overlap count) and connect each B to its nearest neighbours with a line 



86 Molecular Geometry 

then the molecules are all three dimensional deltahedral polyhedra; the B atoms 
form the vertices of the polyhedron, and the "lines" (they are not necessarily 
conventional bonds as we shall see below) form the edges. We shall use the 
notation developed in §2.3.1 for such polyhedra. 

Fig. 3.13 Some boranes. 

It was Wade^® who first noted that if there were twelve or fewer boron atoms 
in the polyhedron then the structure could be described either as a closo regular 
polyhedron, or as a fragment of one with missing vertices. The fragments were 
labelled nido, arachno, hypo having respectively one, two or three vertices 
missing. In the notation developed in the previous chapter these are: {n,0}, 
{n,-l}, {n,-2}, and {«,-3}. forms a structure similar to the icosahedron 
but with one extra vertex inserted. Still larger boranes are composed of smaller 
ones fixed together either at a vertex or along edges. Fig. 3.14 illustrates the 
parent B„ polyhedra. The H's are then stuck onto the vertices of the polyhedron. 
They may be either terminal, so attached to only one boron and directed out from 
the polyhedral surface, or bridged between two (or perhaps three) B’s. All B's 
have at least one terminal H unless they are the connecting link between two 
polyhedra. 

3.3.1 Bonding Schemes for Boranes 

A number of schemes have been developed to account for the structure and 
bonding in boranes. These are reviewed in reference Broadly speaking, these 
may be divided into those based on topological (connectivity) arguments and 
those based on MO theory (usually qualitatively or semi-quantitatively). 
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Philosophically the difference between these two types of approach lies in the fact 
that mo's are delocalised over the whole molecule, whereas topological 
approaches use localised bonds between nearest neighbour atoms. In the 
following we give a brief outline of the general ideas behind these two approaches 
and describe three schemes derived from them: the topological approach (TA), the 
extended topological approach (ETA), and Wade's rules. 

trigonal 
bipyramid 

tricapped 
trigonal 
prism 

octahedron pentagonal 
bipyramid 

bicapped 
square 

antiprism 

dodecahedron 

iocosaliedron 

Fig. 3.14 Borane polyhedra. The number of nearest neighbours to each vertex is indicated by 

the polygon at the vertex. 

Topological Borane Bonding Descriptions 

The idea of boranes being held together by a mixture of localised two- and 
three-centre two-electron bonds {i.e. two or three atoms held together by the 
electron density of two electrons) was first developed by Longuet-Higgins 
and has since been exploited extensively. On the assumption that a borane is most 
stable if each B has a nominal count of eight valence electrons and each H has 
two electrons, then each B is best represented by four 2sp^ ho's and each H by a 
Is orbital. Then, a two-centre two-electron bond is the bonding interaction either 
of two 2sp^ ho's or one 2sp^ ho and one Is orbital (Fig. 3.15). A three-centre two- 
electron bond is either bent or triangular as illustrated in Fig. 3.15, however, no 
description of BBB bonds are entirely satisfactory. Calculations on various 
boranes and carboranes (boranes with one or more B atoms replaced by C) have 
electron density maps which show concentrations of electron density between 
neighbouring atoms in a way that supports the concept of two- and three-centre 
bonds. 

The TA of Lipscomb et al. follows from these ideas and is based on the 
following assumptions. 
(i) Two electrons are required to make any of: a BH bond to a terminal H; a 

three-centre BHB bond; a three-centre BBB bond; or a two-centre BB bond. 
(ii) Each B has at least one terminal H. 
(iii) All B's separated by a distance that indicates a bond are connected by one 

two-centre bond, or one or two three-centre bonds (BBB or BHB). 
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(iv) All B valence orbitals are involved in bonding. 
Point (ii) implicitly limits consideration to convex fragments; however, 

modification to include linked polyhedra is straightforward if we write the borane 
as where r is the number of B's without a terminal the arithmetic 
balance of valence electrons (three per B and one per H) and valence orbitals 
(four per B and one per H) gives constraints on the number of two- and three- 

centre bonds: 

where npHs is the number of BHB three-centre bonds etc. and 

Fig. 3.15 Possible representations of two-centre two-electron bonds and three-centre two- 

electron bonds in boranes. 

The TA can be extended (leading to the extended TA or ETA) if three 
extra parameters are included: n^, the number of edges in the boron polyhedron; 
rij, the number of edges shared by two three-centre bonds; and n2, the number of 
B's with two terminal H's. We can then write: 

= 'ip-ngug-'ic/2-q/2 + lr/l-rig >0 

n2=q- 

Note that ng = 'ip-6 for {p,0}. Examples to illustrate the use of these equations are 
given below. 

Wade's Rules 

The MO theory used for studying boranes has usuedly been of the simplest 
kind, though some very sophisticated calculations have been performed. In 
general terms it has been most successful when used semi-quantitatively. The 
success of comparatively simple calculations is in large part due to the constraints 
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imposed by the high symmetry of the molecules. Wade's rules for closo boranes 
are the most widely used set of results from MO studies.^® 

From considering the results of MO calculations on closo boranes of 
molecular formula Wade deduced that a p-vertex polyhedron made up of 
B's with three orbitals available for framework bonding (since the other one is 
used for its bond to a terminal H) has (p+1) bonding orbitals, and so ideally 
2(p+l) electrons go into framework bonding orbitals and 2(p) into B-H bonding 
orbitals. It is the 2(p+l) framework bonding orbitals that result in B^Hp^' being 
observed, not BpHp. 

Wade's observation that neutral boranes were simply fragments of closo 

polyhedra enabled him to extend these rules. The argument goes as follows. The 
removal of one vertex from {p,0} does not alter the synunetry characteristics of 
the mo's, therefore {p,-\} would also have (p+1) bonding mo's. So, nido-'Qp.^Ylm 

would require (p+1) pairs of skeletal bonding electrons for maximum stability. 
And so on. In this context, the bridging H's are counted as contributing their 
electron to skeletal bonding. The rules break down as soon as any ambiguity in 
the fragment description of a particular borane occurs; however they are 
remarkably successful and have been extended to transition metal clusters. 

The Link Between Topological and MO Descriptions of Boranes 

Molecular orbitals are usually delocalised over the whole molecule; 
however, as discussed in §1.3.1, much of chemistry may be described in terms of 
properties of relatively small fragments of molecules. Organic chemists refer to 
functional groups, and spectroscopists to chromophores. Similarly, we can 
"build" boranes by joining together molecular fragments. In the process, orbitals 
from the molecular fragments (mfo's) will interact and may overlap to give 
bonding and antibonding interactions. 

E/au ^ 
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Fig. 3.16 Geometries and valence mfo energy levels for some boron hydride fragments. 

Dotted lines indicate energies of unoccupied orbitals. 



90 Molecular Geometry 

Although individual mfo's have no reality in themselves, the changes in the 
orbitals of two molecular fragments A and' B indicate how the wavefunction - and 
hence the electron density and bonding - changes upon molecule formation. The 
most important A and B mfo's will be those of comparable energy that have 
significant overlap. The main changes upon molecule formation are therefore due 
to mo's of AB that are occupied, but have a large component from mfo's that are 
un- or partially occupied in a constituent fragment, i.e. those resulting from the 
interaction of higher occupied mfo's with lower unoccupied mfo's (so called 
frontier orbitals). The various fragment energy level diagrams in Fig. 3.16 were 
calculated on a PC using the program MICROMOL.^^ Although these 
calculations are too simple to give quantitative accuracy, the relative energetics 
and trends are well reproduced and the results are not obscured by too much 
detail. Fig. 3.17 shows analogous calculations for hydrocarbon fragments, and 
Fig. 3.18 calculations for ethane and diborane. It is interesting to note that there is 
so little difference between them, but that difference is sufficient to cause the 
divergence of boron and carbon chemistries. 

Building Boranes 

Using (i) the constraints of the ETA, (ii) the fact that the order of energetic 
stability of bonds is BBB > BHB > BB ^ BH, and (iii) the fact that for steric 
reasons only one terminal H may be accommodated if a B has more than two 
nearest neighbour B's, it is possible to deduce stable borane geometries, or 
conversely the number of electrons required for stability. Pentaboranes are 
discussed below. Additional examples may be found in reference 

Fig. 3.17 Geometries and valence mfo energy levels for some hydrocarbon fragments. 

Dotted lines indicate energies of unoccupied orbitals. 
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Pentaboranes: The possible triangulated topologies for B5 are {5,0}, (6,-1}, and 
cis-{l,-2} (Fig. 3.19). 

Consider {5,0} with molecular formula The number of skeletal 
bonds may be deduced from the ETA equations given above. «£= 3x5-6 = 9; 
Hbhb = 0 (for steric reasons); and n2 = ^ = r = 0 as all B have three or four nearest 
neighbour B's. So, there are three possible {5,0} molecules with different values 
of c; (i) c = 0, tiBBB = 5,nj= 6, hbb = 0 with a total of ten skeletal bonds; (ii) c = 2, 

= «(/ = 3 with eleven skeletal bonds; (iii) c = 4, nggs = 1, = 0, Hbb = 6 

with twelve skeletal bonds. The more bonds the molecule has the more bonding 
energy it has (with the order of bond stability as noted above), but the greater its 
charge the higher its energy. In this instance the optimum balance is given by (ii) 
and we observe BsHs^' (as predicted by Wade's rules). 

Fig. 3.18 Valence MO energy levels for possible geometries of diborane and ethane. Dotted 
lines indicate energies of unoccupied orbitals. (To make semi-quantitative deductions from 
orbital energy level diagrams it is best to compare different geometries with the same bond 

lengths so that the nuclear repulsion is the same.) 

{6,-1} and {7,-2} are more open structures than {5,0}, which means that 
bridging Ifs, rather than electrons, may be used to complete the required electron 
count. Thus we can assume that the most stable species are neutral. {6,-1} has 
n-e = 8, n2 ^ 0, and Hbub ^ 4. If the number of bridging H's is in fact four (the 
maximum that can be sterically accommodated, thus ensuring the maximum 
number of three-centre bonds), then n2 = 0 (for steric reasons), nBBB - 1> ”bs = 2, 
and Ai^= 1 (by the ETA equations), so the molecular formula is B5H9. The bonds 
may then be assigned as in Fig. 3.19. 

{7,-2} has Hg = 7, ^2 > 2, and Hbhb ^ 4 (for steric reasons only one of the 
"front" B-B edges may acconunodate a bridging H). The maximum number of 
bonds has Hbhb = ^ and steric considerations then imply that n2 = 2, so Hbbb = 
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n^B = 1. and 1, and the molecular formula is B5H11 (Fig. 3.19). A 
"resonance" between this geometry and its mirror image would have additional 
stability since little or no geometry distortion is required. This "resonance" 
bridging H is often described as a terminal H. 

Fig. 3.19 B5 topologies and the assignment of bonds. Small circles on edges or faces of the 
polyhedra indicate respectively two-centre and three-centre bonds. Terminal H's not shown; 
each three- or four- connected vertex has one terminal H, and each two-connected vertex has 

two terminal H's. 
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Main Group Elements Beyond 
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Introduction 

In the previous chapter the focus was on the geometries associated with 
second row atoms. When consideration is extended to the rest of the main group 
elements it seems that in some cases nothing has changed, while in others almost 
nothing is the same - it all depends on which molecule one examines. In general 
terms, s (coordination numbers) greater than four are now possible and many 
of the elements readily form extended arrays. As with the previous chapters, our 
focus will be on the local molecular geometry rather than on the extended 
geometries and we shall see that, for main group elements, the local geometry can 
usually be explained with any of the common models. 

At the simplest level, we must recognise that beyond the second row of the 
periodic table the elements become bigger and have more valence orbitals 
available; in particular, the existence of unoccupied valence d orbitals that are 
energetically accessible and able to take part in bonding provides substantial 
flexibility to the hybridisation scheme, and hence to bond angles. As a result, the 
balance between electronic and steric factors shifts in favour of the steric factors 
as one moves beyond the second row. The consequence for predicting and 

95 
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systematising geometries is that both the VSEPR and the A AIM methodologies 
(§ 1.3.2) work well in most instances. 

Electronic factors are still important, however. In particulcir, it is still 
electronic factors that determine the number of ligands about the central atom (up 
to a maximum determined by the closo (§2.3.1) arrangement for the given M-L 
bond length, usually six). If the hybridisation scheme is apparent, then a Cm 
follows immediately. Under such circumstances, the consequences of greater 
repulsion between lone pairs (VSEPR) and of L-L attraction (AAIM) are 
synonomous and the two methods give equivalent predictions. In general, 
however, predicting Cn is more complicated than for seond row atoms. There are 
two particular sources of difficulty. 

(i) Although the s/p energy gap decreases down the periodic table and this 
suggests that hybridisation of i and p orbitals should get easier, the orbitals 
themselves get more diffuse emd so give rise to weaker bonds. In extreme cases, 
the formation of new bonds may no longer be sufficient to pay for the 
involvement of s electrons in the bonding. The s electrons are then said to form 
stereochemically inactive lonepairs, which behave as core electrons even though 
they are in the valence shell. It is for this reason that Sn is more often found to be 
two-coordinate, rather than four-coordinate as tends to happen with smaller 
members of Group 14. 

(ii) The extent to which d orbitals take part in bonding varies. This is 
especially true for Groups 13-18 and third row Groups 1 -2, where the unoccupied 
d orbitals have the same principle quantum number as the occupied s and p 

orbitals and so their use in bonding may require too much energy. 

Fig. 4.1 MF3, M=C1, Br. Bond lengths shown in pm. 

Electronic factors may also lead to orientationally-dependent bond 
strengths. In such cases, VSEPR is typically closer to the truth than the AAIM. 
An example relevant to this chapter is provided by MF3, M = Cl, Br, which form 
T-shaped molecules with different axial (ax) and equatorial (eq) bond lengths 
(Fig. 4.1). The electronic aspects of the bonding in such molecules is considered 
in Chapter 5. Consideration only of the F-F interactions (AAIM) would lead to 
the prediction of a pyramidal {6,-3} structure. However, the hybridisation 
scheme required for such angles (sp^d^) is energetically unfavourable. In 
contrast, VSEPR correctly predicts the {5,-2} shape for these molecules (given 
that the repulsion of two tone pairs is minimised when they are equatorial rather 
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than axial) by assuming all ten valence electrons are involved in bonding. An 
sp^d hybridisation scheme provides just the requisite number of orbitals. It is 
interesting to note that both models contain an aspect of the truth as F-F distances 
are essentially close-packed ^ in accord with the AAIM (228pm for CIF3, 241pm 
for BrF3, compared with 225pm for CF4 *). 

The AAIM is to be preferred over VSEPR where is known but the 
hybridisation scheme is not, or where large or small ligands (relative to bond 
lengths) are involved. In the rest of this chapter we will be able to proceed by 
ignoring electronic effects and using a balance of VSEPR and AAIM. Our aim is 
to give a brief overview of what geometries one might find, and to enable the 
observed geometries to be rationalized coherently enough so that the results can 
be remembered. No attempt is made to be comprehensive as the most casual 
glance at e.g. reference ^ will show. We shall use the terminology for molecular 
geometries developed in §2.3.1. §4.1 focuses on halogen compounds, the middle 
of the p block forms the subject matter of §4.2, and the chapter concludes with the 
left-hand side of the periodic table. 

4.1 Halogen Compounds 

With the exception of He, Ne and, for practical purposes, Ar, all elements 
form molecules with the halogens and these serve to illustrate the range of 
molecular geometries a chemist might expect to encounter. The following halides 
form the subject matter of this section: covalent inter-halide compounds, ionic 
interhalogen compounds, halogen oxides, and noble gas compounds. To clarify 
the parallels with the rest of this book we shall continue to use the MLn notation, 
instead of the more normal practice of denoting halides by X and Y. 

Interhalogen Compounds 

The naturally occuring molecular forms of the halogens are F2, CI2, Br2, 
and I2. The heavier elements bond in much the same manner as fluorine 
(Figs. 1.18-19), though the F-F bond is disproportionately weak and long. This is 
usually attributed to repulsion between the non-bonding electrons on the two F 
atoms resulting from the large electronegativity of F holding the electrons close to 
the nucleus and hence close to the other F atom, though it might equally be 
thought of as being due to the electronegative elements withdrawing electron 
density towards the nuclei and away from the centre of the bonds. 

Differences between F and the other halogens become more apparent when 
the range of inter-halogen compounds is considered, since compounds of 
stoichiometry ML3, ML5 and even ML7 exist for M = Cl, Br and I, whereas F 
always has a Cn = 1. The number of electrons in the valence shells of Cl, Br, and 
I limit the maximum number of covalent bonds to seven but, as it is seldom 
possible to fit seven atoms about a given halogen and still maintain viable bond 
lengths, IF7 is the only such compound currently known. The relative stabilities 
of different C^'s result from a balance between stronger individual M-L bonds in 

t Unconstrained bond angles significantly less than 90° are never found (§1.3.2, Table 1.1), so 

actual cose-packing of the F's becomes impossible with large M-L distances. 
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compounds with smaller Cn's, and more bonding contributions to the total with 
large Cn's. CIF3 and CIF5 are of comparable stability,^ the decrease in bond 
strength being compensated by the increase in number of bonds when Cn is 
increased from three to five. For the less electronegative Br and I the decrease in 
bond strength with increasing Cn is less noticable, and so the balance shifts in 
favour of having as many bonds as space allows. These factors result in the 
following order of stability:^ 

CIF3 > CIF5 > BrFg > IF7 > CIF > BrF3 > IF3 > BrF > IF3 > IF 

The {5,-2} geometries of MF3, M = Cl, Br, (Fig. 4.1) were discussed 
above. The geometries of MF5 are square pyramidal {6,-1} (Fig. 4.2) with the 
Fax"M-Feq bond angle decreasing from 90° to 85° to 82° along the series M = Cl, 
Br, I; this distortion retains fluorine - fluorine close contact as the M-F bond 
lengths also increase: M-F^^ = 162pm, 169pm, 184pm and M-Feq = 172pm, 
177pm, 187pm (gas phase data ^). IF7 is probably close packed {7,0} geometry, 
though some degree of distortion may exist.^ 

Fig. 4.2 MF5, M = Cl, Br, I, and BrF4'''. Bond lengths in pm, assigned as in text.^ 

It is interesting to note that HM, M = F, Cl, Br, I is the only type of halogen 
hydtide: there are no hydrogenated mixed-halides. This is because the H-M bond 
is weaker than the F-M bond, and is not sufficiently strong to compensate for the 
energy required to hybridise the orbitals of the central halogen (§1.3.2). 

Ionic Interhalides 

The covalent interhalides all have odd coordination numbers and hence an 
even number of electrons. Attempts to create even coordination number 
interhalides leads to molecular ions. The geometries of ionic interhalides aie only 
known from crystal structures and, especially for the cationic ones, they are 
dependent on the counterions. ML2', with M = Cl, Br and L = F, Cl, or M = I and 
L = Cl, favour linear structures; the remaining anionic trihalides are slightly 
distorted from linear. In contrast, the structures of crystals containing cationic 
ML2‘ have two short bonds - with bond angles between 90° and 100° depending 
upon the counter ion - but also have two longer bonds, which makes it difficult to 
identify a molecular or ionic species unambiguously. 

ML4 species all adopt a fairly close packed trans-{6,-2} geometry as 
expected from the AAIM (Fig. 1.24), or VSEPR (Fig. 1.22), whereas XY4+ adopts 
the "saw-horse" geometry illustrated in Fig. 4.2; the latter arise from electronic 
factors analogous to those that give rise to the T-shaped structure of BrF3 (see 
above and Chapter 5) and are in accord with VSEPR. 
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MF6'*', M = Cl, Br, and I are all {6,0} with twelve bonding valence 
electrons. BrFg', however, has {9,-3} D3d symmetry, which has better fluorine - 
fluorine interactions than the VSEPR prediction of {7,-1}. These structures were 
depicted in Fig. 2.15. 

0 0 

M=C1, Br, I 

o-y/\ 
0 ^ 

M=C1, Br 

(4,0) 
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M=CI, Br 
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F-CU I " O 
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(5,0) (6,-1) 
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Fig. 4.3 Some oxyhalides. Data from reference 

Interhalogen Oxides 

When an oxygen is substituted for a halogen the resulting bonds are still 
strong, but more of the electron density resides in the bonds than was the case 
with the interhalogens. This tends to minimise any electronic influences on 
structure and results in geometries that can be described equally well with 
electron repulsion (VSEPR) or L-L interactions (AAIM). M03', M=C1, Br and I, 
adopt trigonal pyramidal geometries; M04', M=C1, Br and I, are tetrahedral; and 

is octahedral. 
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Fig. 4.4 Some noble gas, halides, oxides and oxyhalides. Data from references 

Bond lengths in pm. 

A variety of geometries exist for ML„0„ and [ML„0„]', M and L halogens. 
Some of them are illustrated in Fig. 4.3. Whenever all the ligating atom positions 
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are not identical, the oxygens adopt the ones that maximise its K-bonding (see 
Chapter 5). ' 

Group 18 (Noble Gas) Fluorides and Oxides 

From the third row down, Group 18 elements have empty valence d orbitals 
and so have the potential to form chemical bonds. Only the chemistry of Xe is 
extensive and a wide range of its oxyhalides have been made; this chemistry is, 
however, not trivial to perform. A number of the molecules and ions that have 
been studied are depicted in Fig. 4.4. Once again, these geometries can be 
explained well in terms of both electronic repulsion (VSEPR) and L-L 
interactions (AAIM). 

4.2 The Middle of the p Block 

Group 16: S, Se, Te 

The behaviour of sulfur, selenium and tellurium has some features in 
common with that of oxygen and some striking differences. In organic chemistry 
S forms a range of functional groups analogous to those of O, but S also shows 
the widest range of allotropes of all the elements in the periodic table and the 
characteristics of S-S bonds are extremely variable: S-S bond lengths ranging 
from 180pm to 260pm have been observed, and S-S-S bond angles vary from 90° 
to 180° depending on the local environment. A wide range of ML2 (M = O, S, Se 
and Te) are known. Data for some of these is given in Table 4.1. The decrease in 
bond angles as the group is descended reflects the fact that increasing bond 
lengths require smaller angles for close packing of the ligands. Concommitantly 
there is less involvement of the valence j orbitals in bonding. 

Table 4.1 Bond lengths and angles for some ML2. 

M 0 S Se Te 

MH2 96pm 105° 133pm 92° 146pm 91° 90° 

MF2 141pm 104° 159pm 98° 

MCI2 170pm 111° 200pm 103° 

MBr2 iir 251pm 98° 

M(CH3)2 142pm 112° 180pm 99° 198pm 98° 

A major contrast with the behaviour of O is seen in the fluorides these 
elements form: S, Se and Te all form MFg molecules with octahedral geometries. 
MF4, M = S, and Se are also known and probably adopt a {5,-1} geometry, but 
the experimental data is unclear; MF5', M = S, Te, and SOF4 are all {6,-1}; and 
SF3‘^ is pyramidal (Fig. 4.5).^ Sulfur makes molecules with most elements of the 
periodic table. Se and Te bond to a wide range of elements, but these tend to 
form covalent solids and so it is difficult to identify molecular units. One of the 
more unusual molecular geometries of these compounds is the square ring such as 
in SNSN, Se4^‘^ and Te4^''' (Fig. 4.5). 



Main Group Elements Beyond tlie Second Row 101 

Group 15: P, As, Sb, Bi 

Nitrogen and phosphorous are ideally suited to the traditional examination 
question: "Compare and contrast the chemistries of In addition to the 
increased orbital availability from the third row down, differences between P and 
N occur because of differences in the various bond strengths. For example, the 
nitrogen single bond is weaker than the P-P single bond^ (163kJmoF* vs. 172 
kJ moF^); however, the N=N triple bond is approximately six times stronger than 
the N-N single bond, while P=P, were it to exist, would be little more stable than 
the P-P single bond. Thus N favours multiple bonds and P favours single bonds.^ 
This trend is not confined to Group 15, as second row atoms in general tend to 
participate in effective ^-bonding whereas for larger atoms, which have more 
diffuse orbitals and longer bond lengths, this is seldom attractive energetically. 
These electronic factors are important in determining Cn; however once that has 
been determined, the geometry of Group 15 molecules can be described quite 
adequately in terms of their non-bonded radii or VSEPR. 

F'/O 
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F 

{5,-1} 

n 2-1- 

Fig. 4.5 Some Group 16 molecules. Data from references Bond lengths in pm. 

As with Group 16 elements, various C^'s are possible for Group 15 from P 
down. MF5 exists for M = P to Bi. PCI5 and PBrj are {5,0} in the gas phase, 
though the former disproportionates into PC^"^ and PC^" in the solid. The mixed 
fluorochlorides, PCI4F and PCI3F2 are also trigonal bipyramidal with the smaller 
F in the axial positions. All the pyramidal Group 15 trihalides and trihydrides 
have also been observed (Table 4.2), although BiH3 is not stable above -45°C, 
and Bil3 might be better described as having Cn = 6 when in crystalline form. In 
general, as with Group 16, isolated molecular structures become increasingly rare 
down the group. Even phosphorous forms many extended structures and with a 
wide range of bond angles (see, e.g., reference ^). 

Group 14: Si, Ge, Sn, Pb 

Silicon is the transition point between carbon, with its very well-defined 
covalent chemistry, and the metals below it. Its own chemistry resembles that of 
B (§3.3) perhaps more than that of C (§3.2), since the availability of d valence 
orbitals to take part in bonding render it comparatively electron deficient. Much 
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of its chemistry is that of extended arrays and therefore outside the scope of this 
book. Si bonds with C to form molecules,'e.g. benzene-like CsSiH^, but not with 
Ge, Sn or Pb. Si usually has Cn's ranging from two (where the 3s electrons are 
largely uninvolved in bonding, and bond angles are between tetrahedral and 
linear) to four (tetrahedral), but octahedral six coordination is also known, e.g. 
[Si(acac)3]'^. 

Table 4.2 Bond lengths and angles for some Group 14 ML3. 

M N P As Sb Bi 

MH3 102pm 107° 142pm 94° 152pm 92° 171pm 91° 

MF3 137pm 102° 154pm 100° 171pm 102° 203pm - 

MCI3 176pm 107° 204pm 100° 216pm 98° 233pm 100° 248pm 100° 

MBr3 218pm 102° 233pm 101° 251pm 97° 251pm 98° 

MI3 243pm 102° 255pm 102° 267pm 99 

M(CH3)3 147pm 108° 184pm 99° 198pm 96° 

Little is known about the chemistry of germanium, but a range of halides 
and hydrides does exist including GenH2n+2, n= 1-5, GeL2 and GeL4, L = F, Cl, 
Br. Further down the group there is a stronger tendency towards non-bonding 
valence electrons, which leads to two-coordinate systems. As a result, Sn^^ and 
Pb^ are more common than Sn*'^ and Pb^'^. The range of monomeric systems is 
not wide though there are increasing numbers of organo tin and lead compounds 
being synthesised.’ It is for the lower members of this group that the 
disadvantages of including s orbitals in bonding and the advantages of forming 
more bonds are most finely balanced, with the result that environmental factors 
determine which influence dominates. Accordingly, the j electrons in these two 
elements may be either stereochemically active, as occurs in Sn(r| ^-€5115)2 (bond 
angle 125°), or steriochemically inactive as in SnCl2 (bond angle 95°). In these 
examples, a satisfactory prediction of the geometry can be obtained from 
considering L-L interactions (i.e. using AAIM methods) without recourse to the 
detailed behaviour of the s valence electrons. 

4.3 The Left Hand Side 

Group 13: Al, Ga, In, Tl 

Aluminium has some similarities to boron in its chemistry. For example 
trigonal planar AICI3 forms a bridged AI2CI6 molecule with the B2H6 geometry ^ 
(Fig. 3.13), however, it should be noted that neither B2CI6 nor AI2H6 are found. 
On the other hand, Al shows metallic behaviour and has a well defined hydrated 
form in water solution; [A1(H20)6]^^. Various reactive Al-based molecules exist, 
and have found extensive synthetic use in organic chemistry. Examples include 
LiAlH4 and NaAlEt2H2, where the Al anion is tetrahedral, and Bu 2AIH which, 
due to the large ligands (150-butyl groups), adopts a trigonal planar geometry. 
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Throughout the group = 1 is common, with the valence s electrons 
playing little part in the bonding. Gaseous diatomic halides exist for Group 13 
elements below (but not including) B. In such cases, stability increases with the 
size of both the cation and the anion, so that AIL (where L is a halide), GaF, and 
InF have been observed in the gas phase, but are unstable. Apart from these, little 
molecular data is available.^ 

Group 2: Mg, Ca, Sr, Ba 

Isolating molecular geometries for Group 2 elements is not easy since they 
generally form ionic bonds which are stable either in lattices, or in solution as 
dissociated ions. However, in solution they do form definite complexes with 
water, and calcium and magnesium are widespread in biological systems, usually 
complexed to other molecular or ionic units®, see e.g. Fig. 7.11.' 

As far as molecular geometry discussions go, the alkali earth halides 
provide a series of compounds which illustrate clearly the failure of VSEPR 
theory for "electron deficient" systems. BeF2 and MgF2 are linear but CaF2 , SrF2 

and BaF2 are bent, illustrating the effects of L-L attraction (AAIM). The full 
table of Group 2 halide bond angles is given in Table 4.3. 

Table 4.3 Bond angles for Group 2 halides, ML2. Data from reference 

M |l F Cl Br I 

Be 180° 180° 180° 180° 

Mg 155°-180° 180° 180° 180° 

Ca 133°-155° 180° 173°-180° 180° 

Sr 108°-135° 120°-143° 133°-180° 16r-180° 

Ba 100°-115° 100°-127° 95°-135° 102°-185° 

Under some circumstances Group 2 elements can also achieve an octet of 
valence electrons and a tetrahedral geometry. Examples include: Be(OEt2)2Cl2, 
[NEt4]2[MgCl4], and Mg(OEt2)BrEt, where Et is an ethyl group. BeCl2 also 
manages to increase the valence electrons about the beryllium, in this case by 
dimerising to a planar structure with two Cl's bridging between the Be’s. 
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Introduction 
t 

The subject matter of this chapter is the geometries adopted by metal 
complexes. A metal complex may be defined as a molecule with n ligands, L, 
bonded directly to a metal atom or ion, M, via the donation of two electrons into a 
M-L a bond. The ligands may be atoms, molecules, or ions and usually donate 
two electrons to the M-L bond, so that the metal therefore nominally has its own 
plus 2/1 electrons in its valence shell. There may additionally be 7C or even 8^ 
bonding interactions. Ligands commonly bond to M through an N, O, S or a 
halogen atom, but other possibilities do exist. 

Simple approaches to molecular geometry, such as VSEPR theory (§1.3.2), 
founder when they encounter transition metals. Most text books therefore study 
transition metal complexes using ligand field theory (LET). LET results from 
incorporating covalency into the electrostatic crystal field theory (GET) using 
molecular orbital (MO) (§1.3.1) theory (or to be more precise, MO ideas). The 
slide from GET to LET is usually blurred and this can leave one with a confused 
view of transition metal geometry determination, being unsure of what 
assumptions belong where. 

As with main group systems, the geometry arises as a compromise between 
electronic and steric factors, although the position of balance shows a much richer 
variety than tends to be the case for the main group elements. The focus of this 
chapter will be on the additional geometric considerations raised by the 
availability for bonding of d (transition metal) and / (lanthanide and actinide) 
valence orbitals and electrons. Our approach will be consistent with that used for 
main group systems. The subject matter is vast and we shall make no attempt to 
be comprehensive. Our aim, as in previous chapters, is to provide a framework 
that will allow the reader to understand and utilise other books and articles in 
chemical journals. 

Most space in this chapter is given to transition metal complexes because 
they form so many more compounds than do the / block elements; also, 
rationalising their geometry provides much more of a challenge for the chemist. 
Before discussing the particular electronic and steric features of transition metal 
complexes, a brief survey of the range of G^'s (coordination numbers), and 
geometries found for transition metal complexes (in the sense of molecular units, 
rather than parts of extended lattices) is given. Although six-coordination with an 
octahedral geometry is by far the most common geometry, there is more variety 
than a casual glance at an inorganic chemistry textbook might indicate. This 
chapter runs the risk of shifting the emphasis too far in the direction of the more 
unusual cases, so should be read in parallel with a standard text book.*'^ GET 
(§5.1.3) and LET (§5.1.4) are used to describe the electronic features of transition 
metal complexes in as simple a way as possible without being completely 
misleading. A discussion of steric and electronic factors follows in §5.1.5 
concluding with some stereoelectronic effects of square planar complexes and the 
Jahn-Teller effect. The final section of the chapter contains a brief discussion of 
molecules of the/-block elements (§5.2). 

^ A 5 bond is formed e.g. when two d orbitals overlap face to face making a bond with two 
nodal planes along the bond axis. 
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We shall again make use of the structural notation developed in §2.3.1. 
Thus, e.g, an octahedral six coordinate system is do so and denoted {6,0}, 
whereas a square planar geometry is based on that octahedral template but has two 
vacancies and so is denoted trans-{6,-2], or simply {6,-2}. It is not always clear 
how to label a structure. For example, the saw-horse geometry adopted by 
CIF2O2 (Fig. 4.3), might be either distorted {5,-1} or distorted cis-[6,-2], 

depending on the O-Cl-0 bond angle. However, in mosts cases the notation is 
unambiguous and simple. 

Fig. 5.1 Common ligand-polyhedron geometric templates used to describe ML„ geometries, 

n = 1-6. Metal atoms are placed equidistant from all ligands if possible. Some common 

derivative arachno, and nido geometries are also illustrated. Vertices denote ligands and are 

labelled with shapes indicating the number of nearest neighbour ligands. 

5.1 Transition Metal Complexes 

5.1.1 A Survey of Transition Metal Complexes by Coordination Number 

Transition metal complexes adopt Cn's ranging from two to nine. Examples 
of each type are given below, and are discussed in somewhat more detail in 
standard inorganic textbooks, e.g. references The geometric templates used to 
describe metal complex geometry are illustrated in Figs. 5.1-3 and were discussed 
in some detail in §2.3. This section is intended as a survey of the types of 
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geometries that can arise. More detailed discussion of why a given geometry is 
observed follows later in the chapter. ’ 

Cn = 2 

Most such complexes involve metals such as Cu(I), Ag(I) and Au(I). All 
known complexes are linear with D„i, symmetry. Examples include [CuCl2]'; 
[Ag(NH3)2]'^; [Ag(CN)2]' and [Au(CN)2]‘. Two coordination is also possible for 
M = Mn, Co, Ni, Zn, Cd, Hg, e.g. Ni(Si(CH3)3)2, and presumably other two- 
coordinate species are possible if the ligand is sufficiently bulky. 

Cf^ = 3 
This coordination is rare. Systems such as [Hgl3]‘ and [HgBr3]' exist, 

(though Hg-"^ is not strictly a transition metal); the latter is an example of a non- 
planar three coordinate complex, having the Hg 32pm above the plane of the Br 
atoms. More generally, three-coordination arises as a result of specific steric 
restrictions. For example, bulky ligands give rise to the trigonal planar {3,0} 
complexes Fe{N(Si(CH3)3)2}3, Cu{SC(NH2)2}3, and [Cu(SPPh3)3]C104, where 
Ph denotes phenyl. Steric restrictions may also arise from bonding considerations 
in multidentate ligands, so that AgCH(CN)3 forms a trigonal pyramidal (4,-1} 
rather than {3,0} due to coordination being through the three N atoms in 
CH(CN)3. Finally, three-coordination may also occur when there is a deficiency 
in the number of ligands available for complexation, and it is this that leads to the 
formation of FeCl3 as a planar complex in the gas phase. 

Cn = 4 

Molecules with the T^ {4,0} or 04^ trans-[6,-2} geometries are common in 
metal complexes. The full range of geometries intermediate between these two 
are also observed. {4,0} is particularly common with and d^^ systems such as 
[Mn04]', Ni(CO)4 and [Cu(pyridine)4]^, since the bonding can be accomplished 
using just s and p orbitals and so leaves a spherical d shell. Cu(II) molecules also 
form T(j complexes, though a Jahn-Teller distortion (§5.1.5) usually results in 
some distortion towards a square planar geometry. For electronic reasons (§5.1.5) 

complexes favour square planar geometries. {6,-2} Pd(Il) and Pt(II) systems 
are often found, d^ Ni(ll) complexes adopt both four coordinate geometries and 
intermediate ones between them (§5.1.5). Metals with seven or fewer d electrons 
have smaller crystal field stabilisation energies (§5.1.3) and tend to favour higher 
Cn's, especially six. However, low positive charges on the metal coupled with 
anionic ligands that are low in the spectrochemical series (§5.1.3) may lead to 
tetrahedral or distorted tetrahedral geometries; thus [CoC^]^', [FeC^j^’and 
[Mnl4]^ are found. As with three- and two-coordination, bulky ligands may force 
a {4,0} geometry on a metal that would normally adopt higher Cn's, e.g. 

[Fe(OPPh3)4]2^ and Cr(OBu‘)4 both have Tj symmetry.^ Tetradentate analogues 
of the tridentate CH(CN)3 example for three-coordination are far harder to 
engineer, as they now require the ligand to encapsulate the metal; usually this 
level of sophistication in transition metal complexes is only found in biological 
enzymes. 

t Ph = phenyl, and Bu^ = tertiary butyl. 
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CN=5 
Five was originally (nineteenth and early twentieth centuries) thought to be a 

very unusual C^, but has since been shown to be quite common, especially for d^, 

(fi, and metals. Bulky rigid ligands may preclude the approach of a sixth ligand 
resulting in Cn= 5; however there are more "natural" examples such as [CuCls]^'; 
[M(CN)5]^’, M=Co, Ni; [MnFs]'’; and CoCl3(PEt3)2. Geometries for these 
complexes derive from the trigonal bipyramidal {5,0} and square-based 
pyramidal {6,-1} templates, though usually the observed geometries fall 
somewhere between these two extremes. Even so, it is more common for 
geometries to be close to {5,0}, since the vacancy in {6,-1} forms a ready site for 
the addition of another ligand unless the metal already has eighteen electrons 
(§5.1.4). Mixed ligand systems such as VO(acetylacetone)2 form {6,-1} 
geometries, in this case, with the O at the apex. 

Five-coordinate complexes provide some good examples of fluxional 
behaviour. A fluxional system is one where rearrangements {cf. §2.3) occur on a 
timescale that is fast compared with the timescale of the experiment. Both {5,0} 
and {6,-1} have two different ligand environments and this should be shown by 
experimental probes such as NMR. However, in many cases the system is very 
labile, and ligands rapidly exchange between the different types of sites. A good 
example is Fe(CO)5, which is trigonal bipyramidal but shows five equivalent 
ligands on the NMR timescale (lO-lOOms). 

Capped triangular 
prism 

Fig. 5.2 Common ligand-polyhedron geometric templates used to describe ML7 geometries 

oriented to show the interconversion between them. Notation as for Fig. 5.1. 

Cn= 6 
The discussions of electronic structure and steric factors given below are 

biased towards six-coordinate systems and this reflects the dominance of this 
geometry in transition metal complexes for both electronic and steric reasons. By 
far the most common six-coordinate geometry is octahedral, and we have made 
some attempt to convey this by choosing a wide range of octahedral complexes to 
illustrate various points in the following sections. Other six coordination 
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geometries do occur, the most common being {9,-3}, the trigonal prism, which is 
found in tr/j-chelate complexes (see §2.3.3 and §5.1.5). 

Cn=7 
Seven coordination is rare as it tends to be an inefficient way of packing 

ligands around the metal: either there is not enough room to accommodate the 
seventh ligand, or a small rearrangement of the ligands would readily provide the 
room to accommodate still more ligands. Such examples as do exist tend to 
involve small ligands, and those second and third row transition metals that have 
the larger valence-orbital radii but few d electrons. Examples include [MFy]^', 
M = Zr, Hf; and [MF7]^ , M = Nb, Ta. The three possible high-symmetry 
templates associated with this - the pentagonal bipyramid, {7,0}, the capped 
octahedron, {8,-1}, and the capped trigonal prism, {9,-2} - require only small 
distortions to change from one to the other (Fig. 5.2). This is especially true for 
the latter two. [MF7]3- are usually {7,0}, whereas [MF7]2- are usually {8,-1}, 
presumably reflecting the lower L-L repulsion in the latter case where the charges 
on the ligands will be lower. 

Ci^= 8 

Eight coordination is even rarer than seven in isolated molecular or ionic 
units; it is more common in ionic crystals such as CaF2 where the electrostatic 
rather than bonding considerations determine the geometry. Square antiprismatic 
{10,-2}, examples are [TaFg]^', [W(CN)8]‘*-, and Zn(acetylacetone)4. The 
geometry adopted by [ZnFg]^', [Mo(CN)8]'’-, and [Co(N03)4]2- is the triangulated 
dodecahedron, {8,0}. The cube has yet to be observed as it leaves too much free 
space around the transition metal for the geometry to be particularly stable. 

Fig. 5.3 Common ligand-polyhedron geometric templates used to describe ML„ geomeuies, 
ri = 8,9. Notation as for Fig. 5.1. 

Cff- 9 
{ReH9]^' adopts a {9,0} geometry. 
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5.1.2 Determining Transition Metal Complex Geometries: An Overview 

We have just seen that metal complexes exist with Cn's ranging from two to 
nine. So the first question is; for a given metal and ligand what coordination 
might be expected? Then we must ask how the ligands are arranged about the 
metal. We have already mentioned that transition metal geometries result from a 
balance between electronic and steric influences. So if we are to understand their 
geometries, we need to understand the underlying electronic and steric influences 
first. A great deal of theory and chemical intuition has been developed in this 
field, and it is important to understand the concepts involved if the literature on 
transition metal chemistry is not to be simply a magical black box. We shall 
begin by considering the electronic structure of an isolated transition metal, and 
then examine the way this can be modified by its environment. 

Before proceeding with this outline, it is worth noting two experimental 
observations about the electronic structure in transition metal complexes. The 
first is that although in an isolated atom the valence s orbitals lie below the 
valence d orbitals (hence the periodic table, §1.2) this order is reversed in the 
presence of any ligands. Thus the s orbitals will be unoccupied for oxidation 
states greater than +2 in transition metal complexes, and may even be unoccupied 
for oxidation states of +1: Cu"^ shows a spectroscopy that is consistent with 
rather than s^tf. The second is that the spectroscopy of the d energy levels shows 
only small perturbations away from what would be expected for the isolated 
transition metal ion. The transition energies and intensities, and the selection 
rules are all compatible with orbitals that are predominantly transition metal d 
character. This is not to say that there is no interaction with the ligands, but that it 
is small compared with the bonding interactions involving s and p orbitals. A 
consequence of this is that any transfer of electron density between the metal d 
orbitals and the ligands is also relatively small. 

In isolation, a transition metal atom, M, has five energetically degenerate d 
orbitals. The individual orbitals are distributed in space, but the net d electron 
density distribution is spherical since the electrons on average occupy the five 
degenerate orbitals equally. As soon as M is placed in the non-spherical 
environment provided by ligands, the d orbitals become non-degenerate^ and 
differently shaped, and oriented d orbitals are differentially occupied. For 
example, consider the effect on the M d orbitals of the approach of an L with two 
electrons directed towards the metal (we assume the ligand electronic structure 
has been organised so that it is pre-aligned to make a a bond with the metal). 
Using the fragment mo approach (§1.3.1) we can see how the valence orbitals of 
metal and ligand are changed to form those of the new ML system. Any d orbital 
along the line of approach will make a bonding and an antibonding interaction 
with the occupied ligand orbital from which the electrons or the M-L bond will 
come. If the d orbital is already occupied, then a net destabilisation will occur. 
Thus the orientation of the ligands about the metal in a transition metal complex is 
such as to reduce repulsion between the incoming ligand electrons and existing d 

t Transition metals are too small and do not have enough valence orbitals to have twelve 
icosahedrally coordinated ligands so cannot have I or Ij, symmetry so the rf-orbitals cannot be 

degenerate. 
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electrons (though it should be noted that most of the bond strength actually comes 
from interaction with metal valence s and p orbitals). The "shapes" of the five d 

orbitals were illustrated in Fig. 1.15. 
How many such ligands may be accommodated about M? The simplest 

prediction of Cn comes from the eighteen-electron rule, which states that stable 
transition metal complexes will have eighteen valence electrons. Its justification 
lies in the fact that first and second row transition metals have nine valence 
orbitals. Hence, by analogy with the main group eight-electron rule (Chapter 3), 
eighteen valence electrons should be optimal to ensure nine occupied bonding 
orbitals and no occupied anti-bonding orbitals. Examples in support of this rule 
are easy to find, e.g. [ZnCl4]^', Fe(CO)5, and [Co(NH3)6]^'^. However, it does 
seem to be one of those rules that is more honoured in the breach than in the 
observance, and complexes with metal electron counts ranging from twelve to 
twenty-two are common (§5.1.4). 

The first reason for the eighteen-electron rule being broken is steric: there 
may not be sufficient room to accommodate enough ligands to provide the 
electrons. Thus, Fe{N[(CH3)3]2} has a fourteen-electron count and metals on the 
left hand side of the periodic table (i.e. those that need more electrons from the 
ligands) often have a low count. Electronic factors can also be important and may 
override the eighteen-electron rule. If by adding another ligand the M-L bond 
energy so gained is greater that the destabilising interaction of accommodating 
more than eighteen electrons about the metal, then higher electron counts will be 
found. We shall return to this below in the context of LFT, since the theory can 
be used to understand when the eighteen-electron rule may be expected to hold. 

5.1.3 Crystal Field Theory (CFT) 

CFT was the first successful method for treating environmental effects of 
ligands on the J-electrons of a transition metal. It originated in the context of 
ionic crystals, and the ligands were treated as point negative charges that repel d 

electrons and destabilise d orbitals. LFT (see below) follows from CFT when it is 
acknowledged that the bonding in metal complexes has a significant degree of 
covalent character. CFT does not consider the details of bonding interactions - all 
that matters is the change in the energy of the d electrons due to interacting with 
the anionic ligands. 

A number of conventions are adopted in deriving d orbital energy level 
diagrams from CFT. All ligands are taken to be equivalent and to cause one unit 
of destabilisation (the magnitude of this unit depends on the identity of the M and 
L, see below). The CFT "zero" energy for ML„ is taken to be the d orbital energy 
that would arise if the electric field due to the ligands were spherical, i.e. n/5 units 
above the isolated ao "zero" since the total destabilisation would be shared by five 
d orbitals. Thus, in the CFT energy level diagrams (Fig. 5.4), it appears that some 
orbitals are stabilised and some destabilised; however, this is only with respect to 
the CFT zero , not with respect to the isolated atoms. The lowest orbitals are 
those that are assumed to be unaffected by the presence of the negative charges, 
i.e. the ones that do not point towards the anions. The crystal field stabilisation 
energy (CFSE) A = lOD^ is defined to be the maximum energy gap between d 
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orbitals in the CFT energy level diagram. Thus, the well-known A^gt = 9/4Atet 
relationship is due to the facts that six ligands cause more destabilisation than 
four, and in {4,0} three d orbital share the destabilisation in contrast to the 
situation for {6,0} for which only two orbitals share the destabilisation. 

In order to quantify these effects, as done for Fig. 5.4, we need to know how 
the one unit of destabilisation caused by each ligand is spread amongst the d 

orbitals with which it interacts. CFT assumes this partition is proportional to the 
density each orbital has in the region of the ligand (assuming fully occupied d 

orbitals). Thus a ligand situated on the z axis destabilises d^2 by one unit. 
However, one situated on the x axis affects both dj^2-y2 and d^2- The relative 
destabilisation by such an x-directed ligand comes from the ratio of the square of 
the coefficient in the angular distributions of the orbitals; thus using 
coefficients given in Fig. 5.4, [destabilisation of J^2-y2]/[destabilisation of d^2] = 

(1/V2)V(1/V6)^ = 3. As the total destabilisation from one such ligand is one, it 
destabilises dx2.y2 by 3/4 and d^2 by 1/4. The answer is less obvious when the 
approach is not aligned with an orbital . For {3,0} (and also {7,0}, axial-{7,-l} 
and axial-{7,-2}) we use symmetry and note that djc2.y2 and d^y are degenerate by 
symmetry (so equivalently distorted by the ligands in the x-y plane) and when 
combined their electron density would form a toroid about the x-y plane 
(analogous to the middle of the d^2 orbital). Thus the three ligands which are in 
the x-y plane destabilise dx2-y2 and d^ equally, and the ratio of their combined 

destabilisation to that of d^2 is the ratio of the sizes of their toroids, namely 
(1/V2)2/(1/V6)2 = 3, again using the coefficients in Fig. 5.4; so three ligands 
destabilise d^2by 3/4 and each of d^2-y2ie^d d^y by 9/8. The ligands for {9,-3} are 
placed about 45° from the z axis so they interact only with d^^ and dy^. ( If all M-L 
bond lengths and L-L distances are the same the z-axis to M-L angle would be 
cos'VV(3/7)) = 49°.) 

Assignment of the Electrons 

Once an orbital energy level diagram has been determined, the next stage is 
to assign electrons to orbitals to determine the ground electronic configuration and 
state. This is not as straight-forward as with main group systems since the energy 
splitting between the d orbitals. A, is quite small, and can sometimes be less than 
the energy, P, of pairing the spins of two electrons in the same orbital. Electrons 
are assigned in accord with the aufbau principle and Hund's rules as with main 
group systems until the first d electron that would be spin paired is being 
considered. If A is large the next electron follows main group behaviour and 
occupies one of the half-filled orbitals with spin opposite to the electron already 
there; however, if A is smaller than P then the next electron will go into a higher 
energy unoccupied d orbital with spin parallel to the existing electrons. Thus, for 
example, for square planar D41, with four d electrons, the electrons may adopt 
either a low spin or a high spin configuration as illustrated below. 

or 
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Fig, 5,4 CFT energy level diagrams for d orbitals in a number of common ML„ geometries 
using the isolated ao's as the energy "zero". The CFT "zero" of n/5 is shown, z is taken to be 

the unique bond axis if one exists. The five d orbitals are labelled in the figure by their 
cartesian labels, with ^ standing for d2z2^x2-y2> All ligands are taken to be equivalent. The 

normalised cartesian forms of the angular distributions of the d orbitals are Nxy, 
Nxz, Nyz, and N(2z^-y^-/)N6 where Af=V(15/16jc). 



Complexes of Transition Metals and f-Block Elements 115 

Some geometries, such as {4,0} have small values of A for all ligands and so 
always adopt high spin configurations for the ground electronic state. On the 
other hand, octahedral complexes adopt both high and low spin configurations 
depending on the metal, and on the strength of the crystal field (or more 
accurately, depending on the net value of A as determined by all interactions 
between the metal and the ligands, as discussed below). P ranges from 
19,000cm'^ for Fe^"^ to 30,000cm"* for A has a greater range of values, 
depending upon both M and L. Water give rise to an intermediate-strength crystal 
field, and for hexaquo complexes of the first row transition metals A ranges from 
5,500cm'* for Mn^"*^ to 21,000cm‘* for The ability of various common 
ligands to split the d orbitals has been determined and their ranking in terms of 
increasing A values is called the spectrochemical series for the ligands: 

r < Br" < Cr < SCN" < F" < OH" < acetate < oxalate < H2O < 
NCS' < glycine < pyridine, NH3 < ethylenediamine < 803^' < 
bipyridine, phenanthroline < CN" 

An approximate metal ion spectrochemical series is: 

(Mn2+ < Ni2+ < Co--" < Fe^-" < < (Fe^^ < Cr^^ < V^-" < Co^"") < 
Mn^-" < (Mo^"- < Rh^-" < Ru^-") < Pd^-" < Ir^"- < Re^-" < Pt^+ 

where the parentheses group elements that are close together in the series. 
As a general rule, second and third row transition elements are low spin. 

This is because the d orbitals are more diffuse for these elements than for the first 
row (higher principle quantum number) so that electrons in these orbitals will be 
further from the metal nucleus. As a result they will spend more time closer to the 
ligands and so interact more strongly with them. Hence A values will be larger. 
Octahedral Co^"" complexes are also almost always low spin, whereas most other 
first row transition metals 3+ ions are high spin. Octahedral first row transition 
metal 2+ ions are generally high spin unless coupled with ligands very high in the 
spectrochemical series. 

It should be noted that the whole high spin / low spin argument runs the 
danger of being a little circular. High spin systems tend to have longer (and hence 
weaker) M-L bonds compared with similar low spin systems, since the ligands are 
repelled by the electrons in the destabilised d orbitals (eg*: d^i and d^i.yi for Oh 
systems). This, in turn, causes A to be smaller as the ligands do not destabilise the 
eg* electrons as much as if the bond lengths were the same as for low spins 
systems and so makes high spin configurations more likely. 

There is an interesting consequence of this bond-lengthening process when 
switching from low- to high-spin states. From the preceding discussion, one can 
expect that electron transfer reactions between -h3 and -t-2 oxidation states for first 
row d'^ - d^ transition elements will often involve a change of spin state and so 
will be accompanied by a significant change of bond length. Whereas the transfer 
of a single electron could be a very rapid process, a change that also involves 

t Because most data for P and A come from spectroscopy, values tends to be given as a 
wavenumber rather than as an energy, but the two are equivalent with 1cm'*(molecule)'* = 
11.97Jmor*. 
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movement of the much heavier nuclei will be a much slower process. Thus 
electron transfer rates can be used to deduce geometric information. 

Inadequacies of Crystal Field Theory 

We have managed to derive a fair semblance of an orbital energy level 
diagram for the d orbitals (Fig. 5.4) of a transition metal complex by representing 
the ligands as point negative charges. This is a simplification, however, as there 
will always be some degree of mixing between the d orbitals of the metal and the 
a and k mo's of the ligand. Although such interactions are not likely to be large - 
the d orbitals tend to be close to the nucleus and so do not give appreciable 
overlap with orbitals from the ligands - they do lead to quantitative changes from 
the CFT predictions of the orbital energies. The differences can be very important 
for determining the geometry, as well as the spectroscopy, reactivity, and 
magnetism, of transition metal complexes. 

5.1.4 Ligand Field Theory (LFT) 

LFT is an extension of CFT designed to accommodate the M-L orbital 
overlap effects that are explicitly ignored in CFT. It is based on the MO and 
fragment-MO ideas of bonding that were developed in §1.3.1. The ligands are 
represented, not by negative point charges as in CFT, but by occupied and 
unoccupied orbitals available for bonding to M. We have already begun to 
develop LFT when, in Chapter 2, we used symmetry to derive approximate sao's 

(symmetry adapted orbitals) for [MnClg]'*' (§2.2.1). Each CF was first 
represented by a p or sp hybrid orbital oriented along the M-L bond ready to 
interact with the Mn valence orbitals to make a a bond (Fig. 2.11). We then 
added CT orbitals perpendicular to the Mn-Cl bonds that were oriented to overlap 
with the d^y, d^^, dy^ orbitals to make in k bonds. The qualitative MO energy level 
diagram that resulted was shown in Fig. 2.12. 

Ligands may be classified according to the types of bonds they make with M. 
All ligands are a-donors. Each NH3 in [Co(NH3)6]^'^, for example, has an 
occupied lone pair orbital that is oriented along the M-L bond and takes part in a 
interactions. The result is Co-N bonds that are composed mainly of N orbitals but 
have some metal 4s, 4p, 3d^2-y2, and 3d^2 character, with each bonding orbital 
occupied by two electrons. NH3 has no other available valence electrons or 
orbitals. Other ligands, such as Cl and CO have aditional orbitals available that 
are suitably oriented to make 7t bonds with (in octahedral {6,0}-ML6 molecules) 
metal d^ , d^^, and dy^ orbitals. In the case of Cl, the only available orbitals are 
occupied and interaction with M orbitals does lead to some transfer of electron 
density to M. Such ligands are referred to as 7t-donors. CO, however, has both 
occupied and unoccupied 7i orbitals. The unoccupied ones lie slightly above the 
M d orbitals, and extend more towards M than do the occupied ones (see shapes 
of diatomic orbitals in Fig. 1.18). The d orbitals with which they interact are 
occupied and therefore some transfer of electron density occurs from M to L into 
CO 7C* orbitals. (A side effect of this interaction is that the CO bonds are 
weakened.) Such ligands are referred to as 7t-acceptor ligands. 
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Our focus in the following discussion will be to see how the <i-orbital part of 
the diagram changes according to the ligand and geometry involved. It is rather 
ironic that most of the bond strength in transition metal complexes arises from 
interactions with M orbitals other than the d orbitals, yet the d orbitals seem to 
have most effect on the geometry observed. This is largely due to the fact that the 
lowest occupied and highest unoccupied mo's of transition metal complexes are 
(more-or-less by definition) orbitals with mainly d character. 

Transition Metal Complexes with no M-L n Interactions 
In any transition metal complex the L c orbitals lie below the M"'*’ valence 

levels. Thus the M-L bonding orbitals will have more L than M character, and 
conversely for the antibonding orbitals. This has a number of consequences. 
Firstly, the M J orbitals will be destabilised by the a interaction with the L's and 
give rise to a splitting. A, of the d orbitals that is qualitatively similar to the CFT 
diagrams (Fig. 5.4). Secondly, although the bonding orbitals are predominantly L 
in character, they do contain some contribution from M, and so there will be a 
(small) net transfer of electron density from ligands to the metal; this is called a 
metal to ligand "dative" bond. 

Transition Metal Complexes with a and nM-L Interactions 

The main difference from the previous case is that some combination of the 
available k L orbitals has the correct symmetry to interact with the d orbitals that 
are not involved with a M-L bonds. For Oh {6,0} systems this means the three t2g 
orbitals: d^^y, dy^ and d^^; This interaction can either raise or lower the energy of 
the d orbitals, depending on whether they have higher or lower energy than the 7i 
L orbitals, which in turn depends on whether or not the n L orbitals are occupied 
as discussed above. 

n-donor ligands: 7t-donor ligands have occupied k L orbitals lower in energy 
than the d orbitals as discussed above. Interaction with M orbitals results in 
bonding orbitals that are lower in energy than the original 7t orbitals and have a 
small amount of M character, and antibonding orbitals (of t2g symmetry for {6,0}) 
with mainly d character that are higher in energy than in the absence of K bonding. 
These antibonding orbitals may or may not be occupied, depending upon the 
number of d electrons. The d orbital energy changes are illustrated in Fig. 5.5. 
The energy scale on this figure is much smaller than for the corresponding a 
diagram. Fig. 5.4. The two diagrams should be combined to deduce the net value 
of A. This is illustrated for {6,0} in Fig. 5.6. 

n-acceptor ligands: Ji-acceptor ligands have unoccupied K* L orbitals higher in 
energy than the (partially) occupied d M orbitals. Interaction with M orbitals 
results in bonding orbitals (t2g for {6,0}) that are lower in energy than the original 
d orbitals that have mainly d character, and antibonding L orbitals with a small 
amount of M if character that are higher in energy than the original K* L orbitals. 
The effect of a 7i-acceptor ligand on the d orbitals in a number of different 
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geometries may be found by turning Fig'. 5.5 upside-down. Fig. 5.6 shows the 
effect of a 7t-acceptor under octahedral symmetry. 

Fig. 5.5 Extra destabilisation of d orbitals in a number of common ML„ geometries with Jt- 
donor L. "Zero" is defined by the energy of the isolated ao's. Labelling is as for Fig. 5.4 but 

only destabilised orbitals are indicated explicitly. The net destabilisation of a d orbital is 
determined by noting that the ligand 7C orbitals are perpendicular to the M-L bond. We assume 

each ligand has two n orbitals each giving one unit of destabilisation to the d orbitals with 
which they overlap. But note that the 7C* orbitals have two lobes of opposite sign so that no net 
overlap between d^2 and n ligands in the x-y plane occurs. The diagram for {4,0} follows from 
noting that dj^2.y2 and d^2 are degenerate by symmetry, as are d^^y, d^^ and dy^, and that four d^ 

lobes overlap with tc orbitals, whereas d^2 has the equivalent of twelve since its xy electron 
density covers the x-y plane uniformly; those for {9,-3} and {10,-2} are only approximate. 

More accurate diagrams may be determined using the angular overlap model.^”’“ The diagram 
for 7c-acceptor ligands follows by reflecting othe energy scale about "zero", so that E increases 

from top to bottom. 

The Magnitude of A and the Eighteen-Electron Rule for {6,0} ML^ 
We are now in a position to understand when the eighteen-electron rule 

might be expected to hold. For Of, {6,0} complexes there are eleven orbitals that, 
if occupied, provide electrons for the M valence shell: the six a-bonding orbitals, 
which are mainly ligand in character, and the five d orbitals. In the absence of 
any M-L n bonding the eg d orbitals (djc2.y2 and d^2) are antibonding and the tjgtf 
orbitals (dj^y, dy^, and d^^,) are non-bonding (Fig. 5.4). If L is a strong a-donor, 
then A is large, the eg orbitals will not be occupied, and the ^2g orbitals may or 
may not be. The valence electron count is then somewhere between twelve and 
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eighteen. Some examples of such complexes include: [Ti(en)3]^'^ which has 
thirteen valence electrons; [Re(NCS)6]’ which has fourteen valence electrons; 
and (f* [0s(S03)6]^’ which has sixteen valence electrons. If, however, A is small it 
will not be too energetically expensive to occupy the eg orbitals and so they will 
be occupied if it means that another bond can be formed. In such cases the 
valence electron count could be as high as twenty-two, for example d^ 
[Cu(H20)6]^'^ has twenty-one valence electrons. 

(i) a-donor (ii) a-donor 

7t-donor 

(iii) a-donor 

7i-acceptor 

3 
{z^,x^-y^} 

3 
{z2,x2-y2} 

3 - 

6/5 6/5 6/5 ■ 

0 
[xy,xz,yz) 

0 . [xy.xz.yz] 0 - 

{xy.xz.yz} 

Fig. 5.6 Schematic illustration of d orbital energy level diagrams in an octahedral field due to 
(i) six a-only ligands, (ii) six a-donor and Jt-donor ligands, and (iii) six a-donor and 7C-acceptor 

ligands. 

7i-donor ligands cause the t2g d orbitals (which are non-bonding with a-only 
L) to become anti-bonding. This makes less than eighteen-electrons an 
attractive option. On the other hand, 7t-acceptor ligands stabilise these same 
orbitals so favour their full occupation. If the L are both strong a-donors, so 
making eg unfavourable, and strong jr-acceptors, making t2g favourable, 
then precisely eighteen-electrons will be favoured. Some examples include: (f* 
Ti(cyclopentadienyl)2(C02)4; d!^ [Co(NH3)6]^‘^; and d^ MnH(CO)5. 

The Eighteen-Electron Rule and Non-Octahedral Systems 
For geometries other than {6,0} the eighteen-electron rule may also be 

observed, but not necessarily for the same reasons as in the octahedral case. For 
example, tetrahedral complexes with strong 7i-acceptor ligands will have eighteen- 
electrons, since the ligand 7t system has orbitals of both e and t2 symmetry (as we 
saw for SiF4 in §2.2.1), so eight electrons will be in a bonds and ten in d orbitals. 
Trigonal bipyramidal ML5 complexes probably also favour eighteen-electrons 
about the metal under these circumstances as dji2-y2 and d^, which are destabilised 
by a interactions, are stabilised by 7t-acceptors. In general, the result will depend 
on the relative strengths of a and n interactions. 

By way of contrast, square planar trans-{6,-2} complexes with strong a- 
donor ligands are almost always sixteen-electron species even when the ligands 
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are also strong 7C-acceptors. This is because d;t2-y2 will be strongly destabilised 
and hence will remain unoccupied (cf. Fig. 5.4). 

5.1.5 Steric Versus Electronic Effects on Transition Metal Complex Geometry 

Although we shall not be able to resolve the steric versus electronic debate 
for transition metal complexes, we are now in a position at least to understand it. 
In general, the shape of a transition metal complex arises as a balance between 
steric and bonding interactions. Determining the geometry of transition metal 
complexes may generally be reduced to the need to consider three factors: (i) the 
short range L-L repulsions (which may, for conceptual simplicity, be viewed in 
terms of a hard sphere repulsion), (ii) the M-L bond lengths, and (iii) the longer 
range L-L attraction due to dispersive or electrostatic interactions. Each of these 
influences has an optimal shape and Cm, but they are seldom the same. After 
considering Cn and shape in general, the remainder of this section is devoted to 
case studies of tr/^-chelate systems, the tran^-effect and tra/ij'-influence, and 
Jahn-Teller active systems. These last topics are cases where the interplay of 
electronic and steric factors is very strong. 

Which Coordination Number? 
The dominant steric factor is the repulsive interaction between the ligands 

when they are squashed too closely together; thus the size of L limits the 
maximum number of ligands that can fit around a metal ion. Generally, < 6, 
though we have already seen some examples of transition metal complexes with 
Cn = 7, 8, and 9 (§5.1.1). On the other hand, bonding interactions are favourable, 
and so the valence electrons are used in a way that optimises the number of 
bonding interactions without generating significant antibonding character. The 
general conclusion to be drawn is that Groups 3 - 9 are dominated by Cn of six, 
but Groups 10 and 11 can show more variation in both Cn and geometry. 

If A is small then, as discussed above, the d orbitals are largely non-bonding 
in character. This means the metal valence electron count is not crucial and 
values in the range 12-22 can be supported. Thus, it is probably most favourable 
to maximise the number of M-L bonds. In such a case it is then the L-L 
interactions that determine Cn and a value of six is most likely, that being the 
close-packed arrangement consistent with the size of most transition metals and 
ligands. However, size is not the only factor in L-L interactions. For example, 
halogens are electronegative elements and so tend to be negatively charged within 
a complex. When this happens, the L-L repulsion is greatly enhanced, and more 
spacious geometries than octahedral may result; thus tetrahedral [ML4]^’ 
geometries are common when L is a for halogen. 

If A is large, then for metals with electronic configurations up to d^ an 
electron count of less than or equal to eighteen and a Cn of six are expected. For 
d^, d^, and d^ systems, however. Oh complexes have the antibonding eg d orbitals 
occupied. Such systems often adopt {5,0} or (6,-1} ML5 geometries to avoid this, 
though ML6 is still more common; d^ and d^ may also adopt ML4 geometries. If 
electron count and steric factors complement one another the ideal scenario is 
(6,0), {5,0} or {4,0} eighteen-electron systems. However, strong o bonding can 
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result in a particularly large destabilisation of the {5,0} Jj2-y2 orbital, and so if the 
{6,0} structure is not viable, systems will adopt a trans-{6,-2} with sixteen 
electrons instead, as discussed above. 

Oh systems represent a situation in which the L-L interactions and the 
electronic effects coincide: for most ligands, the {6,0} template is a close-packed 
arrangement that will maximise any L-L attraction, while the Oh eighteen- 
electron structure allows full occupancy of bonding mo's yet leaves all the 
antibonding mo's unoccupied. In this way it is possible to understand the great 
stability observed for d!^ ML6 complexes in comparison with many other transition 
metal complexes. A good example of this stability is provided by the low spin 
{Co(l,10-phenanthroline)3]^'^ which can be resolved into its chiral enantiomers 
and left in solution for months. The corresponding Co” complex is d^ and 
racemizes readily. As electron transfer between [Co(l,10-phenanthroline)3]^‘^ and 
[Co(l,10-phenanthroline)3}^'^ is rapid, even a very small amount of [Co(l,10- 
phenanthroline)3]^'^ in a solution of [Co(l,10-phenanthroline)3]^'^ will catalyse 
racemization of the latter complex. 

Which Template? 
Determining Cn often specifies the template for the molecular geometry as 

well. This is particularly true of the MLg complexes, which are almost always 
octahedral, though perhaps with some degree of distortion as for trw-chelate 
complexes M(LL)3 (see below). Cn's of five or four, however, both give rise to 
two common distinct templates: {5,0} or {6,-1}, and {4,0} or {6,-2} respectively. 
Which of these is observed is usually determined by a complicated interplay of 
steric and electronic factors as illustrated by the Cn’s, electron counts and 
geometries of the ^ Ni(II)-Pd(II)-Pt(II) and tf Cu(II)-Ag(II)-Au(ll) triads, which 
are perhaps the most varied of the transition metal series. 

Table 5.1 Some Group 10 and 11 geometries. 

Complex Geometry Complex Geometry 

NiCL^' {4,0} Pd/Pt(CN)42- {6.-2} 

NiBr42' {4,0} Pd/PtenCl2 {6,-2} 

NiL^- (4,0) Cu(CN)4^- {4,0} 

Ni(CN)42' {6.-2} Cu[SC(NH2)(CH3)]''+ {4,0} 

NiCl2(PMe3)2 {6,-2} Ag[SC(NH2)(CH3)]^+ {4,0} 

NiCl2(PPh3)2 {4,0} Au[SC(NH2)(CH3)]'*+ perhaps {6,-2} 

NiCl2(PHPh2)3 {5,0} (NH4)2CuCl4 {6,-2} 

NiBr2(PEtPh2)2 {4.0}, {6,-2} Cs2CuBr4 distorted {4,0} 

NiBr2(PPh3)2 {4,0} [Ag(py)4l-^ {6,-2} 

Nil2(PMePh2)2 {4,0} [Ag(bipy)4l“'^ {6,-2} 

Pd/Pt(NH3)42+ {6,-2} [AUCI4]' {6.-2} 

Pd/PtCl4^' {6.-2} 
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Ni is often in equilibrium betwedn {4,0}, {5,-1}, trans-{6,-'2.) and {6,0}. 
The first three of these are sixteen-electron geoemtries, though the {6,-2} 
geometry is usually regarded as having coordinating solvent molecules as well, 
while the last is a twenty-electron system. Ligand size also has a strong influence 
on the geometry. Increasing ligand size favours {4,0} in Ni(II) complexes, e.g. 
alkyl phosphines favour square planar geometries but the bulkier aryl phosphines 
result in tetrahedral geometries, the change-over point being Ni(PRPh2)2^‘^ 
(Table 5.1). NiX2(PR3)2, X = Cl, Br, I, show analogous behaviour, the Cl 
compounds being planar, the I compounds being tetrahedral and the Br 
compounds being both or either geometry. Similarly, NiX2(LL) and Ni(LL)2, 
where LL is a bidentate ligand and X = Cl, Br, I, NCS or NCO, also often adopt 
both planar and tetrahedral geometries. The length of the bite of the bidentate 
ligand can be a determining factor here. The effects of increasing M-L bond 
length in ML4 down a triad is seen if L and Cn are held constant: Ag, Au, Pd and 
Pt complexes are invariably planar, whereas both square planar and tetrahedral Ni 
complexes are found, and Cu complexes are usually tetrahedral. In summary, 
Ni favours a square planar geometry if there is no steric crowding, but may also 
adopt an octahedral geometry to maximise the bond energy, whereas ,due to the 
decrease in bond strengths down the periodic table, Pd and Pt are never {6,0}. In 
the context of M-L bond strain it should also be noted that the bonds in square 
planar Ni(II) are shorter than in tetrahedral Ni(II) by about 5% due to the 
difference between high spin and low spin electron configurations (see §5.1.3). 

Steric Interactions in Tris-Chelate Complexes 
There are a number of approaches to transition metal complex geometry that 

work entirely with steric factors and ignore the details of electronic structure 
almost completely. These models were no doubt motivated by the difficulty in 
carrying out quantitative calculations: even with modern computer power there 
are still too many electrons in such systems to allow MO calculations on transition 
metal complexes to be routine. Such approaches have been surprisingly 
successful, which in itself is proof that electronic effects are not always the most 
important factor in determining metal complex geometry, especially once Cn has 
been established. The non-bonded radii approach and the AAIM, which were 
discussed in §1.3.2, fall under the general heading of steric theories. Molecular 
mechanics includes some electronic aspects since it parametrises bond strengths 
and angles, however, it also ignores many of the subtelties of bonding and yet is 
proving very successful for many transition metal systems, as noted in §1.3.2. 

Perhaps the simplest successful example of a steric theory is the ligand- 
ligand repulsion model of Kepert in which the geometry of a transition metal 
complex, and in particular of rWj-chelate complexes, is considered to result solely 
from the repulsion between ligating atoms. Kepert quantified this by adopting a 
functional form to describe how these repulsions varied with the distance between 
the ligands. As we pointed out in §1.3.2 in the context of the AAIM, it is usual to 
identify two sources of repulsion: orbital overlap and electrostatic interactions 
between species with the same charge. These may each be quantified through an 
r'" function where r is the distance between the two species and n takes the values 
of ~12 and 1, respectively. In order to simplify its implementation, Kepert 
combined these into an "average" value of n = 6 (although it should be noted that 
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the justification for this is purely convenience and not theoretical; since n = 6 is 
actually appropriate for the attractive dispersion interaction). 

Fig. 5.7 Geometry of A-tm-chelate complexes. 

Tm-chelate complexes, M(LL)3, make an ideal case study because their 
distortion from octahedral geometry can be quantified in terms of just two 
parameters: the twist about the three-fold axis, 0, and the distance between the 
two ligating atoms of a single chelate (i.e. the "chelate bite"), b (Fig. 5.7). There 
are other characteristic L-L distances for these complexes, but they can all be 
expressed in terms of b, 6 and the M-L bond length. We follow Kepert and take 
ft to be constant for a given ligand and adopt units such that the M-L bond length 
is one. 

Fig. 5.8 (0, b) values for /m-chelate metal complexes. Experimental data is summarised in 
reference The solid line is the twist angle, 6, which minimises an repulsive L-L 

interaction. 

If there were no L-L attractive interactions, or if the L were close enough 
that the repulsive interactions dominated, then the geometry of M(LL)3 would be 
that which minimises the repulsion; this is precisely the situation exploited by 
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Kepert. Now since we assume b is determined by the bidentate ligand, the only 
variable is 0 and so the molecule will adopt the twist angle G which minimises the 
non-bonded L-L repulsion. The solid line in Fig. 5.8 indicates the twist angle that 
minimises the repulsive L-L interaction for different b. Those with b<'^2 have a 
geometry twisted from a regular octahedron towards a trigonal prism, while those 
with b > ^2 twist further from the trigonal prismatic geometry. The diamonds 
correspond to experimental geometries. There is good qualitative agreement 
between the experimental points and the solid line. However, a purely repulsive 
interaction is not sufficient to account for the exact geometry for most complexes 
and for some, notably the D31, {9,-3} systems, it seems to bear no relationship to 
what is found experimentally. The agreement is best for complexes with large 
ligands as might be expected for a purely repulsive potential. 

For smaller ligands, b < V2, any L-L attractive interactions (cf. AAIM, 
§1.3.2) will mitigate the repulsive forces, and so lead to deviations from the 
geometries determined on the basis of repulsion alone. Indeed, the repulsion- 
determined angle, now becomes a transition state and a twist in either 
direction will stabilise the complex. The direction and amount of twist depends 
on the values of both b and the size of L, but can be quantified by adding an r'^ 
attractive term to the L-L interaction energy. Now, since the ratio of the attractive 
and repulsive coefficients, 0^/012 (see Eq. 1.4), is a measure of the size of the 
ligand, it is convenient to compare different minimum-energy geometries for a 
given C(s/ c 12 and b. Some sample calculation results are given in Table 5.2 for 
b = l.\, 1.2, and 1.3. 

Table 5.2 Some examples of geometry and energy parameters and the resulting AAIM 
L-L interaction energies for different tnr-chelate geometries. 

b ^ren C6/C12 e E(b,e) 

1.1 16.5 0.32 0 -0.063 

22 -0.067 

0.34 9.5 -0.068 

22.5 -0.071 

1.2 21.3 0.36 0 -0.079 

14 -0.079 

24.5 -0.080 

0.40 17.5 -0.090 

25.2 -0.092 

1.3 24.5 0.44 0 -0.117 

23 -0.112 

28.5 -0.115 

0.40 13.5 -0.101 

21.5 -0.101 

21.5 -0.102 
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For very small b values, e.g. b = 1.1, L must also be small and hence gives 
larger c^/C]2 ratios. The energy difference for this case between the stable more- 
and less-twisted relative to the Orep geometry is 4-6%, with 0+ (more twisted) 
being more stable. 

For intermediate b values, e.g. b = 1.3, the difference in energy between the 
0+ and 6. geometries is only 1-2%. If L is small, 6. is 2% more stable than 9+, 

whereas for larger L, 0+ is the more stable, albeit only slightly. Thus, 
intermediate size b with small L (large C6/C72) favour a geometry less-twisted 
from the repulsion-determined geometry. Intermediate b with intermediate L 
adopt geometiies close to the repulsion-determined one. Intermediate b with large 
L result in some that are less-twisted and some that are more twisted than the 
repulsion-determined geometry. These conclusions are consistent with the data in 
Fig. 5.8. 

Perhaps the most surprising feature of the geometries adopted by 
intermediate size ligands is that when L-L attractions lead to untwisting, the 
resulting geometry is often a long way from the repulsion-determined geometry; 
in some cases this can go to extremes and a geometry very close to a trigonal 
prism is adopted. As Table 5.2 shows there is in fact very little energy difference 
between twisted and untwisted forms, so factors other than L-L interactions could 
cause G. to be observed rather than 0+ (or conversely). In particular, interactions 
involving the non-chelating atoms / groups in the ligands may have an effect, 
since they will be brought closer together in the trigonal prismatic form. 
Environmental factors such as crystal packing forces may also become significant 
when the L-L interactions give rise to only a weak 6 dependence of the energy. 
Thus, e.g. [Co(ethylenediamine)3]^'^ adopts 6 values ranging about G^ep depending 
on the counterion in the crystal. 

Some detailed applications of the A AIM to these systems are given in 
reference 

Racemization Reactions ofTris-Chelate Complexes 

One of the advantages of developing a simple but quantitative model for 
energetics along the lines of the last subsection is that it can also be applied to 
rearrangement reactions. T’rw-chelate complexes are chiral and many of them can 
be resolved into their two mirror image enantiomers (usually denoted A and A - A 
was shown in Fig. 5.7) and isolated. Some will racemize subsequently if left 
standing in solution, leaving a mixture with no net chirality even though each 
individual molecule is either A or A. [Fe(l,10-phenanthroline)3]^‘*^ is an example 
of this, having a half life (i.e. time for half the molecules to racemize) of about 
twenty minutes at room temperature in aqueous solutions. 

In §2.3.3 we examined the symmetry allowed non-dissociative (i.e. non-bond 
breaking) enantiomerization reactions of rr/5-chelate complexes. The "push 
through" mechanism (Fig. 2.18a) has a planar hexagonal transition state that 
requires an M-L bond length stretch of about 40% if the bite angle can be 
squashed, otherwise it is even larger. The "cross over" mechanism (Fig 2.18b) 
requires an increase in M-L bond length of about 30% (again assuming the bite 
angle can be squashed). Even though M-L bonds are weak in chemical terms, 
these are still large extensions. Consequently, both mechanisms will involve high 
activation energies, and so will not be observed in practice. 
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Fig. 5.9 Bailar and Ray-Dutt isomerization mechanisms for rrw-chelate complexes. 

The other two mechanisms, known respectively as the Bailar and Ray-Dutt 
twists (Fig. 5.9), have been drawn so that the underlying similarity of the 
mechanisms is apparent. The Ray-Dutt twist is usually illustrated in a completely 
different manner, but when viewed in this way it becomes clear that these two 
mechanisms involve similar twists about different axes (cf. §2.3.3).*^ The more 
favourable of the Bailar and Ray-Dutt twists will be that with the more stable 
transition state. Electronic factors are almost identical for the two, so let us 
examine the steric differences. It is desirable for there to be as little bond stretch 
as possible, so the Bailar and Ray-Dutt transition state geometries, Tg and Trq 
respectively, will have M-L bond lengths as short as the L-L packing allows. For 
Tb the position of M relative to the L is defined by the 031, symmetry of the 
structure so that the M-L bond length becomes 

+ /2 

where h is the non-bonded radius of L (so 2h is the distance between 
neighbouring L that do not belong to the same chelate, and is usually comparable 
in magnitude to b). In contrast, symmetry does not define the position of M along 
the two-fold rotation axis of Tr^; it has two M-L bond lengths of 

and four of 

(h^ + x^ + a^-2 xia^ - b^/4f^ 

where x is the perpendicular distance between M and the line connecting ligands 2 
and 5 in Fig. 5.9 and 

=4h^-{h-b/2f 
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For any b/h ratio the relative stabilities of Tg and Trd may be compared by 
plotting M-L bond lengths as a function of x (the Tr bond length is, of course, 
independent of x) as in Fig. 5.10. Note that the activation energy is a combination 
of the strain energy for all six M-L bonds, but this will be dominated by the strain 
associated with the longest bond lengths. Inspection of Fig. 5.10 indicates that 
complexes with a small b value are more likely to proceed via the Bailar twist as 
the Tfl M-L bond length is smaller than the average Trd bond length for all x. For 
large b the Ray-Dutt twist becomes preferable, since values of x exist for which 
all the Trd M-L bond lengths are smaller than those for Tg. At intermediate 
values of b both transition states will be of similar energy. 

Fig. 5.10 Plots of M-L bond lengths at the transition state for /rw-chelate isomerisations: 
b/li = V2, (—); b/h = 2, (-); b/h = 2\2, (—) . Units are defined so that the L hard sphere radius, 

h=\ (instead of the M-L bond length, as used above) = 1. Straight thick lines are the Bailar 
twist transition state bond lengths; curved lines are the two Ray-Dutt twist transition state bond 

lengths, b/h = 2 is for chelate bite equalling the other L-L distances. 

The Trans-Effect and the Trans-Influence 

The interactions between ligands that are trans to each other in square 
planar Pt and Pd complexes can modify both kinetic and thermodynamic 
properties of the complex, and are usually referred to as the trans-ciftci and the 
rra/15-influence, respectively. The former describes the effect of a coordinated 
ligand upon the rate of substitution of ligands trans to it.^^ The trans influence, 
on the other hand, refers to the influence of a ligand upon structural properties 
such as M-L bond length, M-L vibrational frequency, and NMR coupling 
constants of a ligand trans to it.'^ Both features result from an interplay of steric 
and electronic factors and serve to illustrate some of the points discussed above. 

We may understand the tran^-influence by noting that bonds in complexes 
based on an octahedral template ({6,0}, {6,-1}, {6,-2} etc.) arise from overlap 
with metal orbitals that are either symmetric or antisymmetric to inversion; this 
means that the symmetry of the system (§2.2) ensures that the metal orbitals 
combine trans pairs of ligand orbitals into a single mo. Thus in a trans-{(),-2} D4(i 
complex, if a ligand along the +x axis makes a particularly strong a bonding 
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interaction with the metal p^, d^2, or d^i-yi orbitals, then it weakens the ability of 
the metal to use the same orbital in bonding with the ligand trans to it. Similarly, 
a good 71 acceptor ligand located at +jc bonds to M via the occupied (in d^) d^z or 
dxy orbitals and weakens the bond of the ligand trans to it. Hence good a donor 
and 7C acceptor ligands have strong tra/ii-influences cuid the influence series 
bears a strong resemblance to the spectrochemical series. 

2- 

' Cl Noj 

\/ NH, 
Cl 

\/ 
Pt 

Cl'^ ^C1 

Pi 

NH,'^ ^C1 

' C! NH3 

\/ 
2- 

NOj' 

Cl NH3 

\/ 
Pt 

Cl"^ ^C1 

Pt 

Cl^^ ^^NOj 

Fig. 5.11 Example of the trans-effect. 

Being kinetic in nature, the tran^-effect is more an issue of transition states 
than of stable molecular geometries. It describes the ability of ligands to labilize 
the substitution of the ligand opposite them. Despite this difference from the 
tra/ij-influence, the trans effect also seems to be favoured by good a donor and 7t 
acceptor ligands. It is illustrated by the two substitution reactions of Pt complexes 
shown in Fig. 5.11. The ligand trans to a CT is always replaced. 

There has been extensive discussion** about the rationale for the effect. 
Substitution reactions of square planar complexes almost certainly proceed via a 
five-coordinate square based pyramid {6,-1} that rearranges to a {5,0} transition 
state via a mechanism like mechanism p of Fig. 2.17, with atom 4 being the hole. 
The particular case for square planar complexes is illustrated in Fig. 5.12 with T 
(the trans ligand), D (the departing ligand) and A (the airiving ligand). The 
orientation of Fig. 5.12 obscures the equivalence of (D, T) and (L, L). 

L L L 

Fig. 5.12 Probable mechanism for substitution reaction reactions of {6,-2} complexes. 
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For the departure of D rather than an L to be favoured, we need to know: (i) 
why in {5,0} both T and D rather than an L are in the equatorial plane, and (ii) 
what feature of T stabilises {5,0} relative to the reactant thus making it a good 
trans effect ligand. In answering the first question we note that T or D are paired 
together by symmetry in the same mo's as discussed above, and so the symmetry 
of the reaction vibration will ensure that either both, or neither, are in the 
equatorial plane. Now, consider the approach of A to the square planar complex: 
it is a nucleophile, and so during approach to the complex it will avoid regions 
where there is significant Tt-donation of electron density from the metal to a 
ligand. Thus, if T is a strong 7C-acceptor ligand, A will approach on the other side 
of the complex, i.e. on the same side as D. Hence the A-M-T bond angle is bent 
towards the 120° angle characteristic of the equatorial plane. The reaction 
vibration is encouraged to continue in this direction because the equatorial 
position for T has good 7i-overlap opportunities with the metal (Fig. 5.5) relative 
to an axial position, and T is a good 7t-acceptor; this will also remove electron 
density from the x-y plane and so reduces the unfavourable a antibonding 
interactions of the other equatorial ligands (Fig. 5.4). A further factor that 
encourages T to be equatorial is that D is almost certainly a weaker a-donor (else 
it would not leave) than the cis ligands which will adopt the axial positions that 
favour stronger a donors (Fig. 5.4). 

-- 
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( Ai) d . Ajg 
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'A.g 
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^- ^4- 

7 4 4 
d . T,g( A,) 
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g 

low spin 
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Fig. 5.13 Electronic ground states for Oj, d" systems, n = 1-9. Tj ground states follow from 
inverting the ordering of the orbitals; the ground state symmetry label for is shown in 

parentheses, though it should be noted that Tj systems will always be high spin (c/ §5.1.3). 
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The answer to question (ii) requires consideration of the relative properties of 
the {4,0} reactant and (5,0) transition state. As discussed above, the properties of 
{4,0} will be modified by the trans influence, and so a good o-donor and n- 

acceptor T will strengthen the M-T bond in the reactant at the expense of M-D. 
(The precise balance between M-D and M-T bond energies will depend on the a 
and n character of D relative to T. For example, if D has no K character, then the 
7U stabilisation of T will not affect the M-D bond.) However, in {5,0} these two 
ligands are no longer trans to one another, and so their bond energies are less 
interdependent. Thus, if T has good a-donor character it makes a comparatively 
more stable bond in {5,0} than in {4,0}. This relative stabilisation of {5,0} will 
be strengthened further if T has any 7i-acceptor character. Good 7t-acceptor 
quality is more important for the trans effect than for the trans influence. 

The Jahn-Teller Effect 

The Jahn-Teller effect is the physical manifestation of the Jahn-Teller 
theorem which states that: stability and electronic degeneracy are mutually 

exclusive in non-linear molecules (note that the electronic degeneracy refers to 
orbital degeneracy and not to spin degeneracy). The theorem thus applies to non¬ 
linear molecules whose wavefunctions would be doubly degenerate, E, or triply 
degenerate, T, if they adopted the high symmetry geometry.^ Instead, the 
molecule distorts to take the wavefunctions to the A or B symmetry rows of the 
character table of a lower synunetry system. In this chapter we have so far 
considered only the symmetry of individual mo's (which describe the behaviour of 
single electrons); however in order to understand the Jahn-Teller effect we need to 
examine the symmetry of the wavefunction for the molecule as a whole. As 
discussed in §2.2.3, for transition metals this means we usually need consider only 
the metal d orbitals. Thus, determining the spatial degeneracy becomes a question 
of deciding how many ways there are to arrange the d electrons in the available d 

orbitals. The ground states for and Tjj are shown in Fig. 5.13. For 0(, systems 
d\ d^, d^, low spin d^, high spin d^, d^ and cf are all electronically degenerate and 
therefore subject to the Jahn-Teller Theorem. 

Although a proof of the Jahn-Teller theorem is not essential reading if one 
only wishes to use it, a knowledge of the proof is very helpful in understanding 
why the Jahn-Teller theorem works and what its consequences are and so a proof 
is given in Appendix 3. In the remainder of this section we will confine our 
attention to its use and consequences. 

The main consequence of the Jahn-Teller theorem is that a non-linear 
molecule with a (spatially) degenerate ground state will distort away from the 
high symmetry geometry in order to break the degeneracy, and the type of 
distortions that can accomplish this can be determined by comparing the 
symmetry of the vibrations in the high symmetry geometry with the symmetry of 
the distorted form. Thus Cu^* d^ complexes are often observed to be tetragonally 
distorted (Fig. 1.2), while the existence of square planar d^ complexes can be 
thought of as an extreme version of this distortion. Note that a tetragonal 
distortion does not always lift the degeneracy. If the degeneracy lies in the t2g 

t The theorem also applies to five-fold degeneracy which is possible under icosahedral 
symmetry, but this symmetry is very rare in molecules. 
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orbitals rather than the eg orbitals, the nature of the ligand determines whether a 
further distortion is still required. This is illustrated in Fig. 5.14 for d^. 

4-^ 

Ixz, yz) 

2 2 
-^x -y 

-f- 

-1-1— {xz, yz) 

xy 

7C-donor Ti-acceptor 

Fig. 5.14 Energy ordering of d orbitals of tetragonally distorted systems with 7C-donor and 
7c-acceptor ligands, determined from Figs. 5.4 and 5.5. 

It is also worth emphasising that, as with all symmetry results, no indication 
of magnitude is given by the Jahn-Teller Theorem. Indeed, often the distortion 
does occur but is undetectable, either due to the size of the distortion being too 
small or because the molecule alternates between different forms of the same 
fundamental distortion on a timescale that is too fast to be observed; an example 
of the latter arises in Oi, complexes where the degeneracy can be removed by 
lengthening a trans pair of M-L bonds to form a tetragonal bipyramid, but this 
distortion could be achieved with any one of the three different trans pairs of 
ligands. Sometimes a much more subtle distortion is evident as in the case of the 

[V(H20)6]^'^ systems discussed below. 

The Geometry of Metal Hexaquo Systems 

A number of crystal structures of these molecules are available from neutron 
scattering experiments. The alums CsFe(S04)2.12H20 and CsFe(Se04)2.12H20 

show approximate T(, symmetry for the hydrogens (though a twist towards the 03^ 
structure occurs for the former and non-coplanarity of FeOH2 occurs for the 
latter).^® Best and Forsyth ascribed at least part of this to intermolecular 
hydrogen-bonding. In contrast, the d? [V^^'(H20)6][H502](CF3S03)4 adopts the 
all-horizontal 03^ structure of the [M(H20)6]^'*' unit.^* Cotton et al. attributed this 
geometry to the reduction of the Oj, V(06)^‘^ symmetry required by the Jahn- 
Teller effect for a d^ ion. Distortion of the Oi, V(06)^'^ to 03^ symmetry splits the 
triply degenerate t2g orbitals into aig+Og; for the all-vertical 03^ geometry the ajg 
level is the more stable, whereas for the all-horizontal variant of this geometry ajg 
is the less stable. Since the splitting is small, a high spin configuration is adopted, 
and so for d^ the vertical 03^ geometry has a spatially degenerate ^Eg 
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configuration, whereas the horizontal one has a ^A2g ground state which shows no 
spatial degeneracy (see Fig. 5.16). Cotton et al. predicted a vertical D31J geometry 
for systems, while there should be no electronic driving force for systems 
and so we would expect the Ti, geometry in this case. 

Fig. 5.15 Possible high symmetry orientations for hydrogens in M(H20)6. A has D2h 
symmetry, B has T|, symmetry and C and D have 03^ symmetry with the hydrogens all-vertical 

and all-horizontal, respectively. The dotted arrows indicate a two-fold axis in A and B. 

5.2 Lanthanides and Actinides 

Somewhat surprisingly, despite their valence orbitals including/in addition 
to s, p, and d, the geometries of lanthanide and actinide compounds are no more 
complicated to understand than those of the transition metals. In fact, the 
lanthanide and later actinide molecular geometries are perhaps the easiest in the 
periodic table to rationalise. The reason for this lies in the relative energies of 
their valence orbitals in the +2, +3, and -1-4 ions. Fig. 1.13 showed the periodic 
table drawn in an unconventional manner designed to emphasise where the 
lanthanides and actinides fit in. 

Let us consider first the lanthanide row of the periodic table. The order of 
orbital occupancy in the neutral atoms is first 6s (Cs and Ba), then one 5d 

electron (La), then 4f(Cc to Lu). (The 5d and 5/orbitals are very close together 
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in energy for the neutral atom so this assignment is a little arbitrary, but it makes 
for a clean story). However, this order is changed in the ions so that ionisation 
involves loss firstly of the 5d then the 6s electrons and then the "//electrons. 
Thus, although the "//orbitals have the highest energy in the neutral atoms, they 
become the lowest energy valence orbitals in the ions. In order to understand this 
inversion we note that the 6s and 5d electrons are very effective in shielding the 4f 

electrons from the nucleus (Fig. 1.14). Thus the removal of a 6s or 5d electron 
will considerably stabilise the occupied "//orbitals in the ion. The net result is that 
the "//electrons of lanthanide ions are buried within the core and play little part in 
the chemistry, in stark contrast to the d electrons and orbitals in transition metals. 
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Fig. 5.16 Splitting of t2g d orbitals of M(H20)6 if M06 symmetry is reduced from 
Oh to D3d. 

One important consequence of these energetic factors is that the +3 ion (i.e. 

the ion formed after the loss of the 5d and 6s electrons) dominates the chemistry 
of lanthanide complexes. For the +3 ion, all valence electrons are 4/electrons 
and, since these are buried in the atomic core, electronic factors play only a minor 
role in determining the molecular geometry; steric-based models such as the 
AAIM should therefore work very well with lanthanide geometries. It should be 
noted, however, that this dominance of the +3 ion is not complete, and other 
oxidation states can be found. In particular, electron exchange interactions favour 
the formation of a high-spin/^state, resulting in quite extensive chemistry for 
Eu^"^ (with promotion of a 6s or 5d electron to the seventh "//orbital) and for Tb'^. 

In the case of the actinides, the shielding of the 5/ electrons by the 7s and 
6d is not as large as the corresponding shielding in the lanthanides. The Ac^'^ ions 
of the early actinides (Th - Pu) have 5/electrons incompletely buried in the core. 
On the other hand, from about Cf onwards the poor shielding of one 5/electron by 
another coupled with the increased nuclear charge, are sufficient to cause the 5f 

electrons to be contracted into the core and lanthanide-like behaviour to re- 
emerge.^ Even early in the actinide series, electronic effects are quite minor and 
they play only a small role in determining molecular geometry compared with the 
situation for transition metals. Thus, molecular shape arises largely from steric 

t The contraction of electron density towards the core, and hence decrease in atomic size, in the 
actinides, lanthanides and also transition metals is often referred to as the "lanthanide 
contraction". 
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interactions. This is a good example of greater complexity actually leading to 
simpler behaviour in chemistry. The larger number of / orbitals and their more 
complex spatial distribution^ compared with the d orbitals will admit many more 
electronically acceptable geometric arrangements of the complex, and the 
differences between the various "acceptable" geometries is likely to become less 
significant. 

Table 5.3 Lanthanide molecules and ions indicating the range of Cn's and geometries adopted. 

Formula CN Geometry Reference 

Nd[N(Si(CH3)3)2]3 3 distorted {3,0} 26 

Ln07, Ln=Pr-Gd 7 {9,-2} and {8,-1} 22 

Ln=La-Sm 7 {8,-1} 22 

TbF73-, 7 perhaps {7,0} 22 

Yb(CH3COCH=COCH3)3H20 7 {9,-2} 22 

NH4Pr(1TA)4.H20 8 {8,0} 25 

Ce(I03)4 8 {10,-2} 22 

[Ln(H20)6Cl2]'", Ln = Nd, Sm, Eu, Gd 8 {10,-2} 22 

L11F4 Ln=Ce,Tb 8 {10,-2} 22 

LnX3, Ln=Y, Sm-Lu & X=F, TbCl3, SmBr3, Lal3 8 {9,-1} 22 

[Ln(H20)9]3+, Ln = La, Pr, Nd, Sm, Gd, Dy 9 {9,0} 22 

La(bipy)2(N03)3 10 {12,-2} 22 

Th(N03)4.5H20 11 23 

La2(S04)3.9H20 12 approx. {12,0} 22 

Mg3Ce2(N03)i2.24H20 12 approx. {12,0} 21 

(NH4)2Ce(N03)6 12 approx. {4,0} 21 

CSU6F2S 9 {10,-1} 27 

(NH4)4ThFR 9 {10,-1} 28 

tt {12,-2} s D2 bicapped dodecahedron; {10,-1} = monocapped square antiprism; 

{10,-2} s square antiprism; {9,-2} = monocapped trigonal prism; (9,-1} s bicapped trigonal 

prism; {9,0} = tricapped trigonal prism; {8,-1} = monocapped octahedron; {7,0} = pentagonal 

bipyramid; {3,0} = trigonal pyramid, in this case distorted to have bond angles of 118°. 

Having established that we can ignore the / electrons in determining 
molecular shape, what factors are left? For lanthanides and actinides the 
geometry is determined in part by the number of valence orbitals available for 
bonding (usually s+p+d = 9, and/= l-n/2, where n is the number of/electrons) 
and in part by steric factors. As both the size of Ln^"^ ions (La radius = l.ObA, Lu 
radius = 0.84A) and also the number of unoccupied available valence orbitals 
decreases across the series, the dominant factor is steric. In fact a reasonable 

t A typical /orbital has eight lobes. 
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approximation to the Cn and geometry is achieved simply by considering the 
ionic model usually applied to Group 1/17 ionic solids, where the Cn of a metal is 
determined by close-packing the anion around the metal ion; this also determines 
the geometry. Thus, depending on M and L, C^’s in the range 3 - 12 are observed 
for lanthanides and actinides. Some deviations will occur where the size of L and 
the M-L bond length are incompatible with a close-packed geometry. In these 
cases the distortions can be understood in terms of L-L attraction (using the 
AAIM methodology of §1.3.2),. and the geometry described by an n-vertex 
polyhedral template with h holes, {n,-h} (§2.3.1). The direction of distortion will 
always be towards the next larger size polyhedral shape. The different templates 
are illutrated in Figs. 5.1-3 and 2.13-16. 

Ligand geometries about lanthanide and actinide ions are available for a 
wide range systems. A small selection of these is given in Tables 5.3-4. In 
choosing these examples we have focused on systems in which the ligands are all 
similar chemical species. The available experimental data comes from both 
isolated molecules and ions, and crystal structures. While reiterating the warnings 
given in Chapter 1 about how the crystalline environment may perturb molecular 
geometry we note that, at least in the case of lanthanide or actinide halide ions, it 
is very likely that an isolated ion would remain associated with its counterion and, 
given the large number of ligands involved, the presence of the counterion is 
likely to cause a much bigger perturbation than does the crystal environment. 

Table 5.4 Geometries of lanthanide and actinide halides in crystals. The labelling used refers 

to "standard" structures of the same form. L = LaF3; Y = YF3; P = PuBr3; U = UCI3; A = 

AICI3; and B = Bil3. For a description of these structures see the text. Data from references 
24,29 

The labelling of lanthanide and actinide halide geometries in Table 5.4 is 
in terms of the following "standard" geometries seen in the crytsal structures. 
F = LaF3 has a nine coordinate molecular unit and is usually describes as a 
tricapped trigonal prism {9,0} with seven short and two longer M-L bonds. F 
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may also be describes as an arachno-{ll,-2} structure (c/ Fig. 2.13) with the two 
of the four coordinate vertices being replaced by holes, the six-coordinate vertex 
being set at an optimal bond length, and the bottom left and right vertices being 
the long bonds. Y s YF3 is also a nine coordinate molecular unit usually 
described as a distorted trigonal prism with eight short and one long M-L bond. 
This is {10,-1}, with the hole being one of the apices. P s PuBr3 is an eight 
coordinate geometry with one much longer bond; however, in every other way it 
resembles U s UCI3 which is a regular tricapped trigonal prism so it has been 
suggested that it is only crystal packing constraints that distort P. Thus, P = U 
= {9,0}. Finally, A = AICI3 and B = Bil3 are {6,0}. Seven and eight 
coordination geometries are noticable by their absence, presumably because nine 
bonds using all s, p and d orbitals is energetically favourable and the M-L bond 
length increases required to add two L to {7,0} or 1 L to {8,0} for a given L-L 
distance is not significant (see Table 2.7). 
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Introduction 

Organometallic chemistry is a rather loose label covering both the chemistry 
done by organic chemists where a metal is present in some apparently incidental 
role, such as being the template for the organic reaction, and the chemistry done 
by inorganic chemists usually working with transition metals and carbon based 
ligands. It should be noted, however, that the actual chemistry performed in both 
extremes is often the same, it is the aims, emphases and interpretations that differ. 
In general, the metal-ligand bonding of organometallic compounds involves the 
net sharing of electrons rather than the donation that was usually the case for the 
systems considered in the previous chapter, and carbon is most commonly the 
ligating atom; one main consequence of this sharing is that the metals are almost 
always in the zero oxidation state in organometallic compounds. However, no 
clear dividing line can be drawn; for example, halogens feature in both 
organometallic and non-organometallic systems, and ligands with phosphorous as 
the ligating atom are also considered the province of the organometallic chemist. 

139 
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The emphasis in organometallic chemistry, at least from the inorganic side, is 
on transition metal cluster compounds which, by definition, have three or more 
metals bonded directly to one another. These also form the focus of this chapter 
though we shall begin with simple M(CO)„ systems to establish many of the 
bonding principles appropriate for the larger systems. We shall also include 
molecules with only two metal atoms bonded directly to one another since, at least 
from a geometric point of view, they fit naturally with the larger molecules. Our 
aim is not to cover the breadth of organometallic chemistry, nor even to mention 
all the geometries that are possible since this area of chemistry has the most 
diverse range of molecular site geometries, as recourse to any general reference 
will show. We shall try to establish some principles that determine the geometry 
adopted and, perhaps more importantly, present a framework for viewing cluster 
geometries that will be of assistance in visualising and remembering the structure 
determined for any specific compound that might be considered. A fairly 
complete, but not too complicated, view of the field of cluster chemistry is 
provided by the recent book of Mingos and Wales.^ 

6.1 Metal Carbonyls 

Probably the most important ligand in organometallic chemistry is CO. It 
forms a bridge between the transition metal complexes of the previous chapter and 
the transition metal clusters that form most of the content of this chapter, and so it 
is useful to consider the transition metal complexes of CO. CO is also typical of 
many of the other ligands that play significant roles in organometallic chemistry. 
The MO energy level diagram of CO was shown in Fig. 1.20. In addition to the 
occupied orbitals shown in that figure it has low lying empty 7t* orbitals (cf. Fig. 
1.18) that are ideal as 7i-acceptor orbitals as well as having occupied orbitals 
oriented in such a way as to be good a donors. As discussed in §5.1.4, such 
ligands favour eighteen electrons about the metal to which they are bonded. 

Thus CO requires empty metal orbitals for a-donor bonding: usually 3d^2, 

3dy2.i2, 4s, and 4p for the first row transition metals and the corresponding orbitals 
for second and third row transition metals. For optimal bonding it also requires 
filled d orbitals - usually 3dj^, 3d^^, 3dy^ - to provide electrons for "tt back- 
bonding" contributions to the bonds. The metals are usually in low oxidation 
states so that the M electrons are not held too tightly and are available for 7C 
donation from M to L. The bonding of CO to transition metals is therefore 
optimised in the middle of the periodic table and with little net electron transfer so 
the M-C interaction is nearly an ideal covalent bond. The formal eight electron 
count for the C and the O is satisfied by a double bond between them; however, as 
a result of the n donation from the metal it has more bonding character than a 
normal double bond. The charge on the C is approximately (0.09+0.05)^ and on 
the O (-0.12 ± 0.05)^, where e is the elementary unit of charge.^ 

The covalent nature of the M-C bonds also means that it has been possible to 
isolate low Cn (coordination number) uncrowded metal carbonyl complexes in 
matrices^’* as well as the more common and more stable higher Cm systems. Fig. 
6.1 gives some examples. The low Cn complexes provide a frustratingly good 
illustration of the interplay of steric and electronic factors in determining stable 
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molecular geometries. For example, the three coordinate M(CO)3, M = Cr, Fe, Ni 
and Cu {d!^, d^, d^°, and d^s^,^ respectively) seem to behave according to steric 
arguments. They take progressively more close-packed geometries as the metal 
gets smaller across the period: pyramidal-{6,-3} for Cr, pyramidal-{4,-l} for Fe, 
and planar-{3,0} for Ni and Cu geometries. Similarly, M(CO)3 is pyramidal for 
M = Mo, whereas when M = Rh, Pd, Ag, Ta, and Pt the geometry is planar. 

The situation for four-coordinate systems is not so clear-cut, and often it is 
electronic factors that seem to determine geometry. Thus for the geometries of 
Cr(CO)4 (fourteen electrons, distorted {6,-2} or {5,-1}), Fe(CO)4 (sixteen 
electrons, distorted {5,-1} or {4,0}), and Co(CO)4 (seventeen electrons, distorted 
{4,0}), distortions seem to enhance the bonding interactions: an occupied orbital 
becomes lower in energy while an unoccupied one is raised. Ni(CO)4, however, 
has eighteen electrons and is {4,0}. 

M(C0)5 geometries seem to correlate with electronic factors (c/ Fig. 5.4) 
with the d^ metals (Mn", Fe, Ru and Os) and d^ V being trigonal bipyramidal, 
whereas d^ and d^ metals are square pyramidal with the angle between the axial 
and equatorial ligands as follows: 94° for W, 95° for Cr', 90° for Mn, 91° for Mo, 
95° for Mo', and 90° for Re. For Fe(CO)5 the axial bond lengths are 2pm shorter 
than the equatorial ones due to electronic effects: the d^2 orbital is unoccupied. If 
steric factors were dominant the axial bond would be longer. 

M=V, Mn'.Fe.Ru, Os M = Cr,Mo',W M = Mn, Mo, Re 

Fig. 6.1 Examples of metal carbonyl complexes. 

The main lesson to learn is that when the system does not formally have 
eighteen valence electrons about the metal, beware of electronic factors causing 
sterically unexpected distortions. We shall see examples of this throughout the 
chapter. However, since the ligands of organometallic chemistry are typically a- 
donor and 7i-acceptor ligands, they are likely to favour eighteen valence electrons 
about the metal. One corollary of the strong influence of the eighteen-electron 
rule is that if there is room, the system will take the number of ligands required to 
satisfy the electron count. Exceptions to the rule, such as V(CO)6, occur when 

t The energy orderings of the s and d orbitals is reversed in the presence of ligands from what it 

is in an isolated atom. 
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there is not enough room to accommodate another ligand. Thus no Cn is 
particularly favoured, in contrast to the predominance of octahedral geometries 
noted for transition metal complexes in the previous chapter. Furthermore, steric 
arguments of one kind or another have been applied quite successfully to the 
analysis of the geometries of clusters, as discussed below. 

6.2 Transition Metal Clusters 

Transition metal clusters, M„L„, have two (more strictly three) or more metal 
atoms which are directly bonded to one another, so not all metal electron density is 
available for M-L bonding. In addition, the L may attach terminally to one M or 
may be bridged between two or more M. The main differences between transition 
metal clusters and boranes (§3.3) are the involvement of d electrons in the bonding 
between cluster atoms, and hence a greater variety of orbitals available for 
bonding. As with main group clusters, the standard idea of a two-electron bond is 
not always applicable. In this chapter tlie difference between molecular structure 
and geometry becomes important for the way we shall approach the subject. 
Much of cluster chemistry revolves round X-ray crystallographic determination of 
newly synthesised compounds. Thus a great deal is known about bond lengths, 
bond angles and small variations in these. We shall ignore that body of data and 
look at clusters much more superficially, trying to get principles for determining 
and ways of describing the geometries that are observed. 

The use of the different energy partitionings discussed below leads to 
different theoretical approaches to cluster bonding and has implications for the 
way cluster structures are represented. For smaller clusters this is only a trivial 
distinction, but for the larger ones it can make a big difference to how geometric 
information is portrayed. The traditional option, and the one generally adopted by 
the crystallographers, is to draw the metal polyhedron with edges linking nearest 
neighbour atoms, and then to draw bonds between each ligand and its nearest 
neighbour metal atom(s). In contrast to boranes, the M-M link that is bridged by a 
ligand is always illustrated. The alternative is to draw the metal polyhedron 
encapsulated in a polyhedron defined by the ligands. There are reasons for 
adopting either or both of these options. The former approach emphasises that the 
M-L bonds are the most important contributors to the bond energy, and the latter 
suggests that L-L interactions may be more significant in determining of geometry 
(see below). The former is more convenient for discussing substitution reactions 
and the latter for isomerization reactions. We shall use both representations in this 
chapter. Some of the possible bonding modes and cluster geometries are 
illustrated in Fig. 6.2 for molecules with two metal atoms. Other examples are 
given later in the chapter. 

The basic problem with transition metal clusters from a theoretical standpoint 
is that they have too many electrons and atoms for any fundamental and rigorous 
theory. Thus it is necessary to make some reasonably drastic assumptions, 
although this does not mean that the resulting theories should be necessarily be 
discredited. The aim should be to view just enough of the complexity to be able to 
claim to understand transition metal cluster geometries. Predictions are made with 
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the greatest of circumspection and even rationalising known results can be a 
dangerous past-time. 

Having begun with such pessimistic words of caution we can now point out 
that some of the transition metal bonding theories have been very useful. Much of 
their success seems to be due to the fact that a lot of information is implied by the 
high symmetry of the systems being considered, and so a small amount of accurate 
energetic input data gives a lot of qualitative energetic output. The above warning, 
however, serves to remind us not to be surprised when nature, helped along by an 
inventive synthetic chemist, confounds any conclusions or generalisations we have 
made. Most approaches to transition metal cluster geometry focus first on the 
geometry of the M„, polyhedron and consider the ligands later (although 
sometimes this is done implicitly rather than explicitly). We shall also follow this 
route, though of course the bonding in the metal polyhedron cannot be completely 
separated from the requirements of the ligands. 

{2,0)/{9,-l} (2,0)/{ 14,-61 

Fig. 6.2 (i) Co2(CO)8; (ii) [Fe2(CO)8]2-; (iii) Fe2(CO)9; (iv) Mn2(CO)io. Metal atoms are 

represented by large black circles, and CO by smaller open circles. Each M-C-0 bond angle is 

close to 180° for terminal CO ligands. The left-hand side picture of each pair emphasise the 

M-L bonds, while pictures on the right show the metal polyhedron and the ligand polyhedron. 

The labels given are according to §2.3.1 with the metal polyhedron given first and the ligand 

polyhedron second. 

6.2.1 The Metal Polyhedron 

It is tempting to say that each edge or nearest neighbour M-M link in the 
metal polyhedron corresponds to a chemical bond, but this is not necessaiily the 
case for a cluster system. Although polyhedral edges are frequently considered to 
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correspond to a directional bond, the bonding in clusters is such that 
parameterising the overall binding energy within this cluster system in terms of 
either edges or faces is usually unsatisfactory. Under certain circumstances it may 
be convenient to do so, but in reality bonds (considered as regions of high electron 
density) can not be localised on either edges or faces of the metal polyhedron. If 
one were to separate the components of the overall chemical glue holding the M„ 
unit together into edge bonds, then these bonds would nomally have bond orders 
of less than one. Take, for example, [Co6(CO)i4]^'(Fig. 6.3). According to 
simple electron-counting theory (see below) this has fourteen electrons available 
for M-M bonding yet has an octahedral metal polyhedron; this means each of the 
twelve edges would have a bond order of 7/12 on average. We must therefore 
look at the metal polyhedron stability less simplistically. A number of approaches 
have been taken; the more successful and common ones are discussed below. 

Fig. 6.3 [Co6(CO)i4]'*", depicted as per Fig. 6.2. 

Electron Counting Schemes 

Despite the many deficiencies of the various electron counting schemes they 
do form a helpful starting point for considering of transition metal cluster bonding 
and hence geometry - particularly that of the M,„ central polyhedron. The 
different schemes are based on similar principles and the most widely used are 
Wade's electron counting rules, which are an extension of his rules for boranes 
(§3.3.1) to transition metals. For transition metals Wade assumed that three of the 
nine valence orbitals would be used for M-L bonding and three would be of 
sufficiently low energy to be consiered non-bonding. This leaves three orbitals per 
M for M-M bonding. The total M,„ election count is n^ = l.v+'Lx-12m-c, where v 
is the number of valence electrons on an isolated metal atom, x is the number of 
electrons contributed by each ligand, 12m electrons occupy ligand bonding or non- 
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bonding orbitals, and c is the net charge on the cluster;^ the E denotes a summation 
over all relevant orbitals / electrons. The electrons of any encapsulated ligand (i.e. 

within the metal polyhedron) are assumed to contribute directly to M-M bonding. 
The shape of the M„ polyhedron is then taken to be an (n^-l)/! vertex 

(triangulated) deltahedron. If m = (n^ — 2)12 then the cluster adopts a closo metal 
polyhedron; if m = - 4) / 2 it is arachno', etc. For example, [Co6(CO)i4]'*' (Fig. 
6.3) has Hg = 6x9 + 14x2-6x12 + 4 = 14. Thus M„ is predicted to be closo- 

{6,0}, as is in fact the case. The electron counting, at least in this simplest form, 
makes no suggestion about where the ligands are to be found. Similarly 
Rh6(CO)i6 is predicted to have an octahedral metal polyhedron (Fig. 6.4). 
Problems arise for Os6(CO)ig, however, which is predicted to be octahedral but is 
in fact a bicapped tetrahedron,^ and for [Os6(CO)i8]^‘ which is octahedral.*® More 
discussion and examples of electron counting schemes can be found in 
reference **. 

Fig. 6.4 Metal and ligand polyhedra for Rh6(CO)i6. 

In applying a simple electron counting scheme it should be noted that (i) not 
all ligands contribute two electrons; (ii) not all ligands are as consistent as CO in 
providing the same number of electrons in all possible ligating geometries (see e.g. 

reference*^ for electron donating properties of the more common organometallic 
ligands); (iii) metals on the right handside of the periodic table may be stable with 
an electron count of less than eighteen;*^ and (iv) as with boranes, the more holes 
the polyhedron is predicted to have the less likely the electron counting answer 
is to agree with experiment, in part because more than three metal orbitals will be 
used in M-L bonding. For example, the dihydrido cluster H20s3(CO)io has 

t Note: c in this chapter is net charge on the cluster, whereas in Chapter 3 it was the net 

negative charge on the borane. 
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=3x8 + 10x2 + 2x1-3x12 = 10 so by Wade's rules as formulated above 
would require an octahedron with three vacant vertices and the twelve ligands held 
on by bonding through only nine metal orbitals. In such a case a simpler scheme 
involving twelve two-electron bonds to ligands and therefore four M-M bonds to 
satisfy the electron count on each metal seems more reasonable. 

Free Electrons on a Sphere 
Given the increasingly spherical appearance of the metal polyhedron as m 

increases it is not surprising that attempts were made to describe the M,„ bonding 
in terms of free electrons on a sphere; however, there was only mixed success until 
Stone applied tensor surface harmonic (TSH) theory.*"* In his treatment he 
described a, it and 5 orbitals via spherical, vector, and tensor surface harmonics, 
respectively, thus including the differences between nodes due to the ao basis set, 
and nodes between atoms which related to anti-bonding character. Stone also 
ignored the structure of the cluster and assumed that, as far as the valence 
electrons are concerned, it can be treated as a perturbed spherical shell. The 
solutions to the angular part of the Schrodinger equation were then used to 
determine the mo's as linear combinations of the ao's with the coefficients 
determined by the magnitude of the spherical harmonic functions at the atomic 
sites. By assuming that the cluster orbitals retain the symmetry of the spherical 
system, that orbitals of different azimuthal (/) and magnetic (m;) quantum numbers 
do not mix, and that obitals with the same value of I are degenerate, it is possible 
to derive an approximate MO diagram for any cluster. Two of the results from 
this approach are that: (i) m atoms require m+l electron pairs for stable bonding as 
assumed by Wade's rules (except for m = 4), and (ii) triangular faces are the most 
stable. Stone and Wales later extended TSH to take the positions of atoms into 
account more explicitly.*^ 

Ceulemans and Fowler*^ applied TSH to bonding patterns and electron 
counts of high symmetry transition metal clusters and compared the results with 
those of other models. They concluded that it was very simplistic but led to 
simple and transparent pictures of bonding; however, it neither predicts not 
rationalises the geometry adopted. 

Polyhedral Skeletal Electron Pair Theory 

Polyhedral Skeletal Electron Pair Theory was developed mainly by Wade and 
Mingos,*^'*^ and may be viewed as an integration of all the electron-counting, 
electron-on-a-sphere, and empirical-MO theories. A detailed review of its 
development may be found in reference *^. As recently summarised by Mingos 
and May,^® the parts relevant for single transition metal clusters (rather than 
condensed or mixed transition metal - main group clusters) are as follows. 
(i) Clusters with M's in a two-dimensional ring have 16m valence electrons. 

This is because each M requires an average total count of eighteen electrons 
and each one gains two electrons, one from each bond with its two 
neighbours. 

(ii) Metal polyhedra with only three-connected M vertices have 15m valence 
electrons, as such systems have two-centre two-electron bonds. 

(iii) Four-connected M,„ polyhedra have 14m+2 valence electrons as long as the 
M's lie approximately on a single spherical surface. This follows from TSH 
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theory and the fact that M(CO)* fragments generally use three M orbitals for 
skeletal bonding (so the M-M links are not two electron bonds). 

(iv) Capped clusters require skeletal bonding mo's in addition to those of the 
parent. 
Any electron counting scheme, such as the one given above, that is based on 

an eighteen valence electron count for a metal may have to be modified on the 
right hand side of the transition metal series. Further, clusters containing M(CO)4 

units often have unusual geometries as one valence orbital is significantly lower in 
energy than the others, so it is not always three orbitals that contribute to cluster 
bonding.^^ 

Cohesive Energy 

A completely different approach to the energy of the metal polyhedron was 
developed by beginning with the premise that was a fragment of bulk metal.^^ 
Transition metals have s,p and d electrons available for bonding; some of these 
will be involved with bonding to ligands and some to other metal atoms. If we 
remove the electrons (more strictly the electron density) required for M-L bonding 
from our initial consideration, the remaining s, p and d electrons bind the metal 
atoms together. Not all of the d electrons are involved in M-L bonding, so the 
M-M bonding might be expected to reflect the bonding characteristics of a small 
fragment of bulk transition metal. Woolley developed this line in argument and 
wrote the energy of M^ as 

Em-m = E,,p{s.p) + E^,Xd) (6.1) 

Erep{s,p) is positive and due to the repulsion of valence s and p electrons by cores 
of adjacent transition metal atoms, it is short ranged. E^,r(d) is negative and arises 
from the attraction of the metallic-type bonding of the d electrons. The form for 
the cohesive energy of bulk metal where each atom has less than ten d electrons 
has been shown by Woolley to be an adequate description of E^itrid) when account 
is taken of the reduced d electron density in a cluster caused by M-L bonding. 
Thus we can write the cohesive energy of the metal polyhedron of a cluster as:^"*’^^ 

Em-m = (6.2) 

where Rm-m is the nearest neighbour distance between metal atoms, is the 
number of nearest neighbours for M, i.e. the connectivity, A is a constant 
determined by the number of d electrons and the details of the atomic potential at 
each site, and the sum is performed over all nearest neighbours metal atoms. 
Broadly speaking, is a function of the polyhedral structure adopted by M;„; 
Rm-m reflects the size of the system; and A varies both as a function of the metal 
involved and of the ligand system, to the extent that the ligand system determines 
the number of electrons available for M-M bonding. The Justification of this 
equation lies in the methods of solid state physics, such as chemical pseudo- 

potential and Xa methods.^^ The success of Kepert's empirical parametrization of 
the atom-atom interactions in the core of a cluster in terms of an attractive and a 
repulsive inverse distance dependence (see below) supports this type of approach, 
showing that the interactions are comparatively short ranged. 
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For a given system, A is expected to be approximately constant for the 
different possible structures,.and so consideration of only the cohesive energy 
would suggest that will adopt the geometries with maximum cohesive energy, 
i.e. maximum numbers of necU'est neighbours. This leads to polyhedra with the 
maximum number of triangular faces and maximum number of nearest 
neighbours, viz. tetrahedron for m =4, trigonal bipyramid for m = 5, bicapped 
tetrahedron or octahedron for m = 6, tricapped tetrahedron or pentagonal 
bipyramidal for m = 7 etc.^^ For the larger systems, m > 1, perhaps one might 
expect to see variations in structure since cohesive energies vary so little (0.2% 
difference in cohesive energy between the pentagonal bipyramid and the capped 
octahedron). Johnson and Woolley concluded that clusters favour more compact 
close packed bonding arrangements than boranes due to the bonding effects of the 
d electrons contributing to the M-M cohesive energy.^^ As always there are 
exceptions, such as the Group 10 butterfly clusters.^® In practice, a variety of M;„ 
structures are observed for all m. This reflects the large (possibly dominant) 
contribution to the total energy made by the M-L interactions. A metal 
polyhedron which does not maximise the cohesive energy may be observed if this 

structure gives rise to more favourable M-L interactions than does the most 
stable metal polyhedron. 

O o o N 
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I’ /■ j‘ 
Cl Cl Cl |i 

5 (also 1 & 3) 

6 (also 2,4) 

t' 
Me 

Me 

Fig. 6.5 Some common organometallic ligands. The arrows indicate the number and direction 

of bonds a ligand forms with M,„; one bond means a terminal ligand, two an edge bridged ligand 

(between two M's), and three a face capping ligand. The numbers indicate the number of 

electrons donated to M;„ bonding. 
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6.2.2 Metal Polyhedron Plus Ligand Polyhedron 

In main group systems the ligands are largely ignored, as they are usually 
hydrogens. By way of contrast, when discussing the geometry of transition metal 
clusters attention usually focuses on the ligands since M„ usually adopts {m,0} 
and it is the arrangement of ligands that provides the variety, as shown by the 
figures in this chapter. The identity of the ligands affects M„, only in so far as 
different sized ligands distort the polyhedron to different extents, and different 
ligands donate different numbers of electrons to the cluster bonding. Fig. 6.5 
illustrates some common organometallic ligands indicating how they bond and the 
number of electrons they donate to the cluster {i.e. to M„,) bonding. 

Two types of approach to the ligand polyhedron follow from the different 
schematic ways the energy of the cluster may be divided up as discussed above. 
The cluster is seen either as a collection of MLy fragments, or as a metal 
polyhedron enclosed in a ligand polyhedron and the energy may then be written 
symbolically as done below. Fig. 6.6 illustrates the difference schematically. 

Clusters as a Collection of(MLj) Fragments 

When cluster compounds are studied after transition metal complexes, they 
seem to be collections of transition metal complexes with some ligands removed 
to enable M-M bonding. In order to make calculations feasible in the early 1970's, 
it was assumed that one could treat e.g. M(CO)„, n = 2,3,4, MCCeHg) and M(C5H5) 
as independent fragments using MO methods,^^’^*^ and then join the fragments 
together. This approach is still the basis of accurate MO calculations. Thus, the 
most common approach to cluster geometries has been to consider building a 
cluster from MLy fragments with the energy expressed as a sum of interaction 
energies between adjacent fragments j and k'. 

^tolal ~ Z£[(ML,)-(M4)] (6.3) 

The M-L bonds are assumed to be already in place and the only question that 
needs to be addressed is whether the MLy and ML;t interact so as to produce a 
more stable product. The most successful qualitative way of answering this 
question has been the isolobal analogy whereby simpler molecular fragment 
systems whose "relevant" electronic structures are the same as those of the ML^ 
fragments of interest are found. The assumption is then made that the interactions 
between the ML^t fragments of interest are the same as those between the simpler 
fragments. In practice, an isolobal analogy has required that the frontier mo's (i.e. 

highest occupied and lowest unoccupied orbitals) of the fragments be similar in 
symmetry, extent in space, and energetics. The most common isolobal analogies 
are between ML^^ fragments and boron hydride or organic subunits such as methyl 
or methylene groups; e.g. M(CO)3 is isolobal with The isolobal analogy 
has been used with success in a number of instances. For example, Shaik et al. 

were able to explain the bonding of bridging carbonyls by taking it to be isolobal 
with methylene,^^ and Hoffmann found that the bonding in clusters containing 
only terminal carbonyl ligands could be analysed using an isolobal analogy 
between CH„^' and M(CO)„ fragments.^' Early MO calculations on [Co6(CO)i4]'*' 
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supported both the isolobal approach and also electron-counting for the metal 

polyhedron.^^ 

Etotai=2:(MLj)-(MLk) E,otai=2:M-M + ZM-L + ZL-L 

Fig. 6.6 Schematic representation of ways of dividing a cluster into sub-units. 

It is interesting to note that, although based in an MO formalism, the isolobal 
analogy deals with localised orbitals rather than the completely delocalized 
orbitals of MO theory. The approach seems limited only by the accuracy of the 
analogy and so provides further support to the use of localised bonding approaches 
to understand molecular geometry. 

At the present stage of application one might expect an isolobal analogy to 
give any symmetry determined features of the fragment interactions, and to 
reproduce other features to the extent which the interacting orbitals are in fact 
isolobal. Problems are therefore most likely to arise when the specific nature of d 

orbitals comes in to play in the transition metal clusters, or the greater variety of 
possible bonding orbitals becomes relevant (i.e. when non-frontier orbitals take 
part in the bonding). Woolley^”* has warned of the problems that may be 
encountered when the M-M bonding is investigated using isolobal analogies with 
main group units, due to the importance of d electrons in the M-M bonding and 
the fact that the main group fragments only involve s and p orbitals and so cannot 
reflect the behaviour of d orbitals exactly. A good illustration of this is provided 
by the work of Evans and Mingos^^ on Os(CO)4 as a vertex fragment: CH2 is 
often considered to be isolobal to Os(CO)4; however, Os(CO)4 has additional 
orbitals which may become involved in the bonding and enable it to bond to three 
osmiums, whereas CH2 has no such flexibility.^^ In this instance it proved 
necessary to consider the available orbitals on the Os(CO)4 fragment and 
determine its interaction with the rest of the cluster properly, not via the shortcut 
of an isolobal analogy with a more familiar system. Further, Au and to a lesser 
extent Pt clusters cannot be treated this way due to contributions to bonding from 

6s orbitals. 

Clusters as a Metal Polyhedron Encapsulated by a Ligand Polyhedron 

The alternative energy partitioning is into M-M, M-L, and L-L contributions, 

E,otai= 'LE[M-M] + I£[M-L] -h I£[L-L] (6.4) 

and follows naturally from a combination of the cohesive energy descriptions of 
the metal polyhedron (§6.2.1) and the AAIM view of a transition metal complex 
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(§5.1.5). Instead of viewing the cluster as a "cluster" of transition metal 
complexes with a few ligands omitted, this partitioning is equivalent to viewing 
the cluster as a transition metal complex with the metal replaced by a "cluster" of 
metals and the ligands arranged about the enlarged (non-spherical) metal centre. 
Implicit in this description is the idea that the ligands provide electrons to the 
cluster bonding, usually so that each metal achieves an eighteen-electron count; 
yet the details of the M-L bonding are not important so long as reasonable M-L 
bonds are formed. This idea is not as heretical as it may sound and we have 
already given a number of examples of metal carbonyl systems in which the 
eighteen-electron count favours a variety of non-octahedral geometries. One 
consequence is that theories, such as Stone's, which treat the metal polyhedron as a 
sphere and ignore the details of the M-L bonding, are often very successful. The 
other difference between a simple transition metal complex and the enlarged 
cluster analogue is that, in addition to a range of LML bond angles, the ligands of 
a cluster may also be close enough to two or more metals to be considered as 
bonded to them all. The notation used to indicate this is |i-2 etc. The distribution 
of ligands about M„ is always fairly uniform to ensure an even electron 
distribution. 

Thus, in the context of dividing cluster energies according to Eq. (6.4), we 
conclude that once the metal electrons involved in M-M and M-L bonding have 
been ascertained, the details of the ligand orientation about the metal polyhedron 
are largely determined by the smallest magnitude contribution to the energy: 
ZE[L-L]. In other words, the versatility of the M-L bonding means that although 
the M-L bond energy is significant, it is seldom structure determining; and this is 
despite the fact that M-M bonds with bridging carbonyls have most of the electron 
density in the M-L links.We note, however, that cluster chemistry is always 
rich in counter examples, and this is amply illustrated by the geometry of 
[Rh6C(CO)i3]^" which is contrary to many of the general conclusions drawn in this 
chapter.^^ Its geometry is shown in Fig. 6.7 and will be considered in more detail 
below. Questions remain as to how the L-L interactions are optimised, and then 
how the metal polyhedron is oriented within the ligand polyhedron. 

Fig. 6.7 [Rh6C(CO)i3]^' 
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Some work has been focused explicitly on the geometry of the ligand 
polyhedron. Following earlier studies on other systems, Benfield and Johnson^^’^* 
took the only effect of the M-L bonding interactions to be to define a spherical 
shell for the ligands, and then determined the ligand polyhedron by minimising 
ligand-ligand repulsion. They arbitrarily chose a repulsion exponent of -6 (as with 
the transition metal studies performed by Kepert (§5.1.3), this is inappropriate; 
however the results were not be greatly affected by the exponent since only 
repulsion forces were considered). They focused on systems with larger ligand 
polyhedra (eight or more ligands) and determined the ligand polyhedra that 
minimised repulsion. They developed a notation for describing ligand polyhedral 
geometries which relates to the way the polyhedron is drawn. We shall use a 
modified form of it here since it enables geometries different from those based on 
closo templates to be described. For this notation the polyhedron is divided into a 
series of parallel layers, and a number used to denote how many vertices are in 
each layer; parentheses are used to indicate if a set of vertices is aligned with 
respect to the first plane containing more than one vertex, square brackets to 
indicate if it is staggered, while no brackets are used for any other orientation. In 
this notation a bicapped square antiprism (Fig. 6.8) would be written: 
{(1):(4);[4]:(1)}. The numbering does depends on the orientation chosen for 
viewing the polyhedron, but is none-the-less a helpful guide. It is convenient to 
extend their notation to account for polyhedra with holes. A bicapped trigonal 
prism (Fig. 6.8) viewed down the three-fold axis of the rectangular prism is 
{(3):[3,-l]:(3)}. In this way Benfield and Johnson determined an ordering of 
favourability for ligand polyhedra of any specified size. It is as follows: 
Lg: square antiprism {(4):[4]}; dodecahedron {(1):(4):(3)}; {(1):(5):(2)}; cube 

{(4):(4)}; and bicapped trigonal prism {(3):[3,-l]:(3)}. 
Lg: tricapped trigonal prism {(3):[3]:(3)}; monocapped square antiprism 

{(1):(4):[4]}; {(1):(5):(3)}; and monocapped cube {(1):(4):(4)}. 
Lio: bicapped square antiprism {(1):(4):[4]:(1)}; {(1):(3):[3]:(3)}; {(2):(4):(2): 

[2]}; {(2):(4):[4]}; {(1):(6):(3)}. 
L12: icosahedron {(1):(5):[5]:(1)}; cuboctahedron {(3):6:[3]} = {(4):[4]:(4)}; 

anticuboctahedron {(2):(6):(2): [2]}. 
L13: edge-bridged icosahedron {(1):(2):[2]:(2):[2]:(2):[2]}; face-capped 

icosahedron {(1):(3):[3]:(3):[3]}; {(1):(5):(6):(1)}; {(3):[3]:(3):(4)}; {(1):(4): 
[4]:(4)}. 

The more common ones are illustrated in Fig. 6.8. 
As might be expected, the lowest energy geometries obtained by Benfield and 

Johnson were generally fully triangulated polyhedra since it is here that ligand- 
ligand repulsive forces are minimised. They then derived the structure of a cluster 
by simply placing one polyhedron (the metal) inside the other (the ligand). Often 
the proposed ligand envelope does not actually correspond to the observed ligand 
polyhedral form. The failures usually occur for systems in which the symmetry of 
the idealised metal polyhedron and that of the idealised ligand polyhedron are 
not immediately compatible. In such cases each polyhedron usually adjusts until 
a common symmetry is found. For example, the C06 unit in [Co6(CO)i4]'‘' (Fig. 
6.3) has Oh symmetry and the ligand polyhedron is an omnicapped cube, also of 
Oh symmetry, hence an Oh cluster is formed. In contrast, [Co6(CO)i5]^' (Fig. 6.9) 
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adopts the lower symmetry C3V geometry where both the metal and ligand 
polyhedra are distorted from octahedral and triangulated respectively. 

I 

square antiprism 
110,-2) 

((4):(4]) {{1):(4):(3)) 

cube 
114.-6) 

((4);(4)) 1(3):{3.-1):(3)) 
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Fig. 6.8 Ligand polyhedra which minimise L-L repulsion, labelled using the notation of 
Benfield and Johnson (see text). The arrow indicates the "top" of the polyhedron. 

Comparison with experiment showed that Benfield and Johnson's approach 
was a helpful way of proceeding, but not completely accurate. At about the same 
time Kepert and Williams developed the electron pair repulsion theory for 
determining ligand geometry.This model is analogous to VSEPR and works 
well for close-packed ligand polyhedra, however, it has problems accounting for 
variations in geometry along series such as: M4(CO)i2, M = Ir, Rh, Co. The Ir 
cluster has an anticuboctahedral ligand polyhedron (Fig. 6.8) whereas the other 
two are icosahedral with three bridging CO’s. Kepert and Williams postulated 
either an increase in M-M bonding or different M-CO bonding to account for the 
Ir geometry. Johnson and Benfield had previously noted that Ir4 causes an 
expansion of the ligand polyhedron and concluded that the polyhedron rearranges 
to retain L-L contact - thus introducing an element of ligand-ligand attraction. 
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Fig. 6.9 [Co6(CO)i5]2-. 

More recently Braga et al. have considered both repulsive and attractive 
interactions within ligand polyhedra. Using a model along the lines of the AAIM, 
they treated a series of carbonyls: Mn2(CO)io, Fe2(CO)9, Co2(CO)8 (Fig. 6.2), 
Fe3(CO)i2, Ru3(CO)i2, and two isomers of Ir^CCOi^ (Fig. 6.10). In general it was 
found that the C atoms in a given molecule are close packed and their interaction 
energy is repulsive, whereas the non-bonded 0-C interactions are nearly always 
attractive and make a significant contribution to the stability of the molecules. A 
further conclusion was that the attractive component of the L-L interactions was 
an important contributor to the geometry adopted by the cluster, and also that 
crystal packing forces can have an important effect on the geometry observed in 
the crystal. 

In conclusion, with this view of cluster bonding, we can say that the bonding 
in metal clusters can be understood as an interplay between trends towards 
(i) maximising the magnitude of the cohesive energy of the metal polyhedron, (ii) 
maximising M-L bonding energy, and (iii) avoiding steric crowding of the ligands. 
Any one of these factors can have a significant effect on the others, so that 
changing one can result in an entirely different cluster structure. For example, 
adding a ligand to form adds stability to the system due to the extra M-L 
bond (or bonds if the new ligand is a bridging one), destabilises the system by 
removal of ^-electron density from M-M bonding in order to make the M-L 
bond(s), and alters the L-L interactions. Whether M^L„+i is more stable than 
M„L„, is determined by the net effect of these energy changes. If it is less stable, 
then M^L„+i may decompose. Alternatively there may be a completely different 
geometry for which the total energy is lower. In this case, if there exists an 
allowed reaction pathway between the two structures whose activation energy is 
not excessive, then the system will spontaneously rearrange rather than 
decompose. If the activation energy is large compared with kT, then the 
rearrangement will not occur readily, but other methods of preparing M,„L„+i may 
result in a more stable structure rather than the one which results from the addition 
of a ligand to M,„L„. There are numerous examples of this typ)e of behaviour to be 
found in the literature. One example is provided by the metal polyhedra of 
Os6(CO)i8^ , which is octahedral; if, however, [HOs5(CO)i8]‘ is made, the metal 
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polyhedron is a distorted octahedron, and H20s6(C0)i8 has either a square based 
pyramidal or a distorted octahedral metal polyhedron. 

Fig. 6.10 (a) Fe3(CO)i2, (b) M3(CO)i2, M=Ru. Os, (c) black VCOlie, and (d) red Ir6(CO)i6. 

6.3 Some Examples 

M2(C0)„ 

M2 geometries, such as Co2(CO)8 and [Fe2(CO)8]^' illustrated in Fig. 6.2, are 
"precluster" structures, having only two metal atoms; however even such simple 
"clusters" serve to illustrate the virtue of maintaining both the ML, fragment and 
M^ plus L„ polyhedral representations. Neither one is better, as both represent an 
aspect of the three dimensional reality. The cube of [Fe2(CO)8]^' is, according to 
Benfield and Johnson, more close packed than the bicapped trigonal prism, which 
reflects the smaller M-L bond lengths of this cluster relative to Co2(CO)8. We also 
see that packing effects over-ride the charge delocalization that bridging ligands 
normally provide. 

Fe2(CO)9 (Fig. 6.2) has the same electron count as [Fe2(CO)8]^', but, it is 
neutral and the ligand polyhedron may be described as the closo-{9,0} structure. 
{9,0} is not completely defined by symmetry - it may be elongated or shortened 
along the three-fold axis unless an additional constraint such as uniform L-L 
distance is included. This molecule is elongated along the three-fold axis and the 
ligand connectivity in the polyhedron is more accurately described by linking the 
capping ligands rather than the ends of the prism, so becoming like two stacked 
octahedra sharing three vertices. Mn2(CO)io adopts the c/o^o-j 10,0} geometry. 

MCO)n and fluxionality 

The concept of a unique well-defined molecular geometry is appropriate for 
some clusters in all environments. However, some clusters are found to be 
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constantiy changing between different geometries (at least in a labelled-atom 
sense). We usually identify two extremes of this: (i) when the changes are too 
rapid for our experimental probes to identify distinct structures we call the 
behaviour fluxional, and (ii) when the different structures are long-lived we talk 
about isomerism. The demarcation between fluxionality and isomerism depends 
on the experimental technique being used. It is usually defined by NMR, though 
even here the line is not clear, and a useful rule of thumb is that rearrangements 
with an activation energy of 20 - 80 kJmol ’ are fluxional at room temperature. In 
still other clusters we find that the geometry depends on environment, with quite 
different geometries being found in different phases or solvents. For more detailed 
discussions of fluxional behaviour of clusters see e.g. references 

Os3(CO)i2 is an example of the rapidly interchanging behaviour. In solution 
below 60°C it has two peaks of equal intensity in the NMR spectrum as 
expected for the D3h geometry illustrated in Fig. b.lOb.'**’"'^ However, above 60°C 
the NMR spectrum shows only one peak, though the geometry is still 03^. 
Os3(CO)i2 is thus fluxional (i.e. rearranges on the NMR timescale) at higher 
temperatures with all the ligands on average being found in the same environment. 
On the basis of Os-CO coupling, the probable explanation of this observation is 
that the equatorial and axial CO ligands on each Os undergo exchange, i.e. there is 
site exchange about the same Os at temperatures above 60°C, with the fluxionality 
being between two energetically degenerate geometries. In the solid a total of 
twelve independent chemical shift values are observed in accord with the lower 
symmetry imposed by the crystallographic lattice, but the structure still 
approximates to the same form independent of phase. 

A good example of where the geometry depends on environment is 
Fe3(CO)i2. In the solid state Fe3(CO)i2 (Fig. 6.10a) has an icosahedral ligand 
polyhedron, but has been shown to exhibit two-fold disorder {i.e. the ligand and 
metal polyhedra randomly adopt either of two crystallographically equivalent 
relative orientations). This occurs because each molecule has carbonyl groups in 
asymmetric bridging positions along the shortest Fe-Fe edge (2.56 A versus 2.68A 
and 2.65A); there are two posible (enantiomeric) arangements of these bridges and 
both exist in the unit cell.'*^’'*^ Each molecule possesses approximate C2 symmetry 
with the pseudo two-fold axis passing through the middle of the doubly bridged 
Fe-Fe bond and the opposite Fe atom. The disorder was initially explained in 
terms of a simple static model where some clusters had one geometry and others 
had the opposite handedness. However, in solution the structure appears to be 
solvent dependent. In non-polar solvents the infra red spectmm is consistent with 
nearly C2V symmetry, so an average of the enantiomeric forms of the solid is 
found.'*^ In more polar solvents there is a dramatic change. Bands associated with 
the CO-bridges decrease significantly in intensity and a different set of terminal 
bonds are apparent. This change is thought to be brought about by the conversion 
of the C2V form into the D3 form. This idea is appealing because the homologous 
Ru3(CO)i2 and Os3(CO)i2 have the related 031, stiucture in the solid (Fig. 6.10b). 
Thus, it appears that Fe3(CO)i2 exists in two structurally isomeric forms in 
solution, with the activation energy for the C2V / D3 rearrangement being less than 
20kJmor* since '^C NMR for enriched samples shows that all carbonyls are 
equivalent at -150°C. A possible mechanism for this was proposed to be via the 
libration of one polyhedron with respect to the other."^^ Hence, in this instance, it 
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appears that the identity of the M-L bonds is not crucial, and a smooth very low 
energy transition from one type to another is possible. Since such a low energy 
transition is possible, it now appears that a dynamic explanation for the statistical 
disorder in the solid may be appropriate. 

The rearrangement of cluster geometries is often described in terms of rapid 
ligand migration'*^ or "scrambling". Although descriptive, such labels give an 
inaccurate impression since one gets a picture of randomly wandering ligands. 
The rearrangement processes always follow a well-defined vibration as discussed 
in §2.3.3. Often for clusters, what appears as a distinct breaking and forming of a 
large number of M-L bonds is in fact a simple relative rotation of the metal and 
ligand polyhedra with the gradual stretching of some and shortening of other M-L 
distances resulting in different M and L being described as bonded at the end of 
the process. 

Td 
icosahedron 

C3V 
icosahedron 

Td 
cuboctahedron 

Fig. 6.11 Geometries of M4(CO) 12- 

M^CO)i2.nL'n 
An example of the role of steric factors in determining molecular geometry 

comes from some Group 9 M4(CO)/2-„L„ clusters. These systems show isomerism 
of the ligand polyhedron in addition to isomers resulting from different relative 
orientations of the metal and ligand polyhedra. Co4(CO)i2has the smallest metal 
polyhedron and the ligands adopt the geometry expected if they are close-packed, 
namely {12,0}. The C04 tetrahedron has a number of possible orientations within 
the {12,0} ligand polyhedron, two of which are illustrated in Fig. 6.11. In the 
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form (Fig. 6.11a) all the caibonyls are terminal. Rotation of the tetrahedron by 15° 
about any one of the four equivalent C3 axes then generates the observed C3V form 
(Fig. 6.11b). A libration between these two forms accounts for the fluxional 
behaviour observed in the solid state (see below). However, unlike the Fe3(CO)i2 

discussed above, there is no evidence for the Tj isomer (or any other) being a 
stable species, although low temperature infra red studies for crystalline samples 
indicate that some structural changes do occur. 

Rh4(CO)i2 also adopts the icosahedral ligand polyhedron with C3V geometry 
for the whole cluster, as illustrated in Fig. 6.11b. However, when the Rh4is 
replaced by Ir4, the ligand polyhedron is forced to expand and the cuboctahedron 
becomes a better arrangement for optimising L-L interactions (Fig. 6.11c). The 
metal tetrahedron is oriented so that the vertices of the tetrahedron coincide with 
alternate triangular faces of the cuboctahedron and all ligands are terminal. When 
one of the carbonyls of Ir4(CO)i2 is replaced by CN(t-Bu), little change in 
geometry is observed.^® However, when four P(CH3)3 are substituted for 
carbonyls, the ligand polyhedron rearranges to form the C 3v edge-bridging 
icosahedral ligand polyhedron in order to accommodate the larger ligands.^^ The 
interchange between the cuboctahedron and icosahedron is shown in Fig. 6.12. 

(Q) 

Fig. 6.12 Interchange between icosahedral and cuboctahedral ligand polyhedra. 

Another driving force for structural change is the ligand geometry itself. If 
diars (Fig. 6.5) is substituted for two CO’s, the requirements of the As-As bite size 
force the ligands to be chelated at a smaller angle than is consistent with the all 
terminal cuboctahedron. Thus in this case also the ligand polyhedron is 
icosahedral.^^ If Me2PCH2CH2PMe2 is substituted as the "chelating" ligand it 
bridges between two different Ir atoms,^^ but still forces an icosahedral ligand 
polyhedron because of its bulk. 
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[Co6(CO)i4]‘* and RhgCCO)!^ are, as noted above, isoelectronic and have the 
same metal polyhedron geometry; but clearly they must have different ligand 
polyhedra {cf. Figs. 6.3 and 6.4). The former has six terminal and eight face¬ 
bridging carbonyls making a highly symmetric omnicapped cube ligand 
polyhedron {14,0}. The latter has twelve terminal and four face-bridging ligands 
in a {(1):(6):(3);[3];(3)} polyhedron. However, there is more similarity between 
the geometry of these two different molecules than there appears to be at first 
sight. As noted by Benfield and Johnson, [Fe6C(CO)i6]^' actually has the same 
metal polyhedron and same ligand polyhedron (the carbon is in the centre of the 
cluster) as Rh6(CO)i6 (Fig. 6.4), however, their relative orientations make the 
molecule appear to be very different with the iron cluster having thirteen terminal 
and three asymmetric edge-bridged carbonyls. Presumably this allows the M-L 
bonds to be the correct length while maintaining L-L interactions, since edge- 
bridged ligands will be further from the metal core than face bridged-ones and so 
the former are more appropriate for the smaller iron metal polyhedron. 

Finally, we consider two examples that are closely related, but for one of 
which no simplifying description of the geometry seems possible or even helpful. 
[Co6C(CO)i3]^' (Fig. 6.13) ^ has thirteen ligands and unless thirteen ligands adopt 
the closo dodecahedron then usually no simple description is possible. However, 
if we take the liberty of coalescing the two shaded carbonyls in Fig. 6.13 into one 
bridging carbonyl, then the ligand polyhedron becomes cuboctahedron as is the 
case for Os3(CO)i2 (though in that case there are six bridging ligands due to a 
different metal polyhedron). Encouraged by such a success one might expect to 
perform the same exercise on [Rh6C(CO)i3]^' (Fig. 6.4).^^ However, due in large 
part to the steric requirements of the interstitial C and consequent distortions of the 
metal polyhedron (which is larger than for Cog) and the need to distribute the 
ligand electrons over the cluster leads to a very irregular ligand polyhedron. Any 
description of the ligand polyhedron ends up being more complicated than the 
picture of the whole molecule, so in this instance it is pointless to pursue such a 
description of cluster geometry. 

Fig. 6.13 [Co6C(CO)i3] . If the two shaded carbonyls are merged into one bridging ligand, 
then the ligand polyhedron may be desaibed as a cuboctahedron. 
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Introduction 

The focus of the preceding chapters has been on the arrangement of two or 
more atoms about another atom (or, in the case of clusters, a polyhedron of other 
atoms) to which they are bonded. We have specifically avoided examining 
accurate molecular structures and have concentrated on the somewhat less precise 
phrase "molecular geometry", being concerned with the overall shape the 
molecules adopt. In this chapter we shall conclude our study of molecular 
geometry by looking briefly at two types of polymers - DNA's and proteins - 
where each subunit may be examined according to the previous chapters, but 
where small variations in subunit geometry lead to large changes in the overall 
molecular geometry and hence biological activity. 

Many large books have been written about the geometry and structure of 
DNA's and proteins. Our aim here is to give merely a glimpse of the subject; the 
references at the end of the chapter will start a trail to a more detailed 
understanding. The structure of both types of molecule are usually discussed in 
terms of their primary, secondary and tertiary structures. Primary structure 
details which atoms are bonded to which atoms and is usually expressed as a list 
of connected nucleotides (DNA) or amino acids (protein); note that both types of 
molecule are made up of linear chains of a limited number of distinct subunits. 
Entropy, if nothing else, would ensure that proteins and nucleic acids did not 
remain as linear molecules in their natural aqueous environment. In fact energetic 
factors are also at work with the result that the molecules usually exist as well- 
defined structures. Secondary structure describes well-defined geometrical units 
of connected nucleotides or amino acids; this is akin to defining local structure in 
regions of the molecule, and its precise meaning will become clearer as we 
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discuss examples in the following sections. Tertiary structure deals with the 
geometry of the molecule as a whole. Thus for DNA the primary structure is 
concerned with what phosphates, sugars, and bases are present; the formation of 
bases into base-pairs, and the angles between the bases is the province of 
secondary structure, while the tertiary structure relates to how the DNA helices 
are packed together. Our concern in previous chapters has been somewhere 
between primary and secondary structure. It should be stressed that the divisions 
between the different levels of structure is not clear and some blurring is 
inevitable when one tries to define them to precisely. 

7.1 DNA 

When asked the question "what is the geometry of DNA?", most people 
would either claim ignorance or talk about the double helical structure first 
proposed by James Watson and Francis Crick in 1953. The main features of the 
Watson-Crick double helical model of DNA are schematically illustrated in 
Figs. 7.1-3 and are as follows. 

(i) DNA is composed of nitrogenous bases, deoxyribose sugar units, and 
phosphate groups. Each group of one base, one sugar and one phosphate is 
called a nucleotide. The base, either a purine (adenine and guanine) or 
pyrimidine (thymine and cytosine) derivative, is linked to the sugar via a 
glycosidic bond, and the phosphate to the sugar by a phosphoester bond 
(Fig. 7.1). There are four bases and hence four nucleotides in DNA. 
Nucleotides are then linked together by phosphoester bonds. 
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Fig. 7.1 Primary structure and common base-pairing for duplex DNA. The standard labels for 
the backbone torsion angles are indicated by Greek letters a - ^ along the bond about which the 

torsion occurs. 
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Fig. 7.2 Standard B-DNA from three perspectives, (a) looking down the helix axis and 
showing the width of the helix (this is twice the scale of the other perspectives), (b) 

perpendicular to the helix and showing the the right hand twist of the helix and base orientation 
relative to the helix axis, and (c) tilted to show the depths and widths of the major and minor 

grooves. Most of the hydrogens have been omitted for clarity. 
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(ii) The nucleotides are linked together to form polynucleotide chains. Two 
chains are held together by hydrogen bonds between two bases and are 
coiled round a common axis. Each base-pair of the nucleotide chains then 
forms a step in a ladder with each step linked by a sugar and a phosphate. 
Successive nucleotides have the 5'-hydroxyl of one sugar linked via the 
phosphate and a phosphodiester bond to the 3'-hydroxyl of the next sugar. 
Thus each strand of the DNA has two distinct ends, one having a 5'-hydroxy 
group not linked to a nucleotide and the other an unlinked 3'-hydroxy group. 
By convention the base sequence is read from 5'- to 3'-, although this 
convention is not always heeded. 

(iii) The chains of the double helix run in opposite directions and form a right- 
handed helix. The bases are located on the inside of a chain of the phosphate 
and deoxyribose units that form the backbone (see large black circles in 
Figs. 7.2). The planes of the bases are peipendicular to the helical axis and 
may be identified in Fig. 7.2 from the position of the nitrogens. 

(iv) Adenine (A) is always paired with thymine (T), and cytosine (C) with 
guanine (G). The AT base-pairs are stabilised by two hydrogen bonds, and 
GC pairs by three hydrogen-bonds (Fig. 7.1). The K-n interactions between 
stacked bases on the same strand also stabilises the double helix. 

(v) The helix is 2.0nm in diameter. Adjacent bases are separated by 0.34nm 
along the axis and related by a rotation of 36°. The helical repeat is therefore 
10 residues or 3.4 nm. 

(vi) Because the glycosidic bonds of a base pair (i.e. the one that joins it to the 
sugars) are not symmetric about the helical axis, two kinds of groove are 
present - the major groove (width 1.17nm and depth 0.85 nm) and the minor 
groove (width 0.57nm and depth 0.75 nm). 

duplex DNA 

Fig. 7.3 A piece of rope as a model for the secondary structure of DNA. 

The Watson-Crick description of the geometry of DNA contains both the 
primary structure and the secondary structure. It is most easily visualised by 
taking a piece of rope, which is typically composed of three strands twisted into a 
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right-handed helix, and removing one of the strands. The resulting right-handed 
double helix has a major groove (where the strand of rope has been removed) and 
a minor groove (Fig. 7.3). The Watson-Crick model had such a revolutionary 
effect on biology because it is such a simple model that is very close to being 
correct. DNA is generally found in the double helical, or duplex, form. Further, 
the most common duplex DNA structure is B-DNA (Fig. 7.2) which has bases 
more-or-less perpendicular to the helical axis and the backbone following a 
right-handed twist. 

Table 7.1 Typical geometric parameters for standard A-, B-, and Z-forms of DNA.^'^ The 

repeat unit of Z-DNA is a dinucleotide, necessitating two values of each angular parameter. ^ 

adopts a range of values in Z-DNA. 

A-DNA B-DNA Z-DNA 

a -85“ -47“ 60“/ 160“ 

P -152“ -146“ -175“/-135“ 

y 46“ 36“ 178“ / 57“ 

5 83“ 156” 140“ / 95° 

e 178“ 155“ -95“/-110“ 

c -46“ -95“ -35“ - 85“ 

sugar conformation C3-endo C2'-endo C3-endo / C2-endo 

glycosidic bond anti anti anti (C), syn (G) 

base roll 12“ 0“ 1“ 

base tilt 20“ 5“ 9“ 

base twist 32“ 36“ 11“/50“ 

base slide 0.15nm Onm 0.2nm 

helix diameter 2.55nm 2.37nm 1.84nm 

bases / turn of helix 11 10 12 

base rise/base pair 0.23nm 0.33nm 0.38nm 

major groove narrow, deep wide, deep flat 

minor groove broad, shallow narrow, deep narrow, deep 

Although essentially correct, this model has proved to be rather too 
simplistic. Crystal structures of dodecanucleotides have shown significant local 
deviations from the Watson-Crick model with rotation angles varying from 28° to 
42° and groove widths being slighty dependent on the base sequence. In addition, 
DNA is a polymorphic molecule and several classes of right-handed (A, B, C and 
D) and left-handed (Z) double helices have been identified. Which one (or ones, 
as there is growing evidence that in solution an equilibrium exists between a 
number of polymorphs of DNA) is adopted depends on the conditions and, to a 
lesser extent, on the sequence of the DNA. The B-form (Fig. 7.2) is the most 
common in solution form. It is a right-handed helix with base-pairs stacked 
approximately perpendicular to the long helical axis of the DNA. However, it 
should be noted that recent linear dichroism experiments by Johnson and 
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coworkers' have shown B-form DNA to have bases tilted about 20° from being 
perpendicular to the helix axis. Further, successive bases can also slide sideways 
with respect to one another or roll or twist as illustrated in Fig. 7.4. Under high 
salt or low water (in solution usually this means high ethanol) conditions, B-DNA 
changes into the A-form (Fig. 7.5) which is a right-handed helix with the bases 
approximately parallel to each other but tilted at an angle of 70° to the helix axis. 
A-DNA has 11 base-pairs per turn of the helix and is wider than B-DNA, which 
has 10 - 10.5 base-pairs. These features are shown in Figs. 7.2 and 7.5. Further, 
the minor groove is essentially absent from A-DNA as shown in Fig. 7.5. Some 
helix parameters for different DNA polymorphs are collected in Table 7.1. 

Fig. 7.4 (a) Twist, (b) roll, and (c) slide of DNA base-pairs with respect to one another. 

It had initially been thought that DNA was intrinsically right-handed due to 
the local geometry of the sugars (the only chiral subunit of DNA). So it was with 
some surprise in 1979 that a crystal structure of Z-DNA was solved (Fig. 1.6)} 

This structure has DNA as a left-handed helix with the bases approximately 
perpendicular to the helix axis, but unlike B-DNA it does not have the same 
regular twist between consecutive base-pairs. Instead two base-pairs are stacked 
almost vertically, and then the next two are noticably zig (or zag) to the first pair. 
Twelve residues are found per turn of the helix. Z-DNA has the base-pairs shifted 
into the major groove, so that it is really no longer a groove.^ Z-DNA is more 
likely to occur with G-C base-pairs, though it is not sequence specific as was 
intially thought. For example, poly[d(A-T)]2, which is a double helical DNA with 
alternating A and T along each strand, adopts a left-handed form in the presence 
ofNi2+. 

The intriguing thing about the variations in Table 7.1 between A- and 
B-DNA are that they can be seen to arise from the small difference in sugar 
puckers. Four vertices of the pyranose ring are planar and the fifth is only about 
0.05 nm from the plane. Which C is out-of-plane differs between the two 
polymorphs, with Z-DNA resulting from the syn orientation of half of its 
glycosidic bonds (Fig. 7.7). Since biological function requires the interaction of 
DNA with other molecules, in particular with proteins which have their own 
particular shapes as discussed below, both the large and small variations that 
occur in the molecular geometry of DNA may be crucial for its biological 
activity. The larger differences are from torsion angles adopting, say, gauche 

instead of trans forms. As discussed in §3.2.1 the energy difference between two 
conformers is small unless there is a steric clash. So despite the above discussion 
of the definitions of DNA geometry, its most important features probably relate to 
its flexibility and non-rigidity. Even the hydrogen-bonding between the bases 
that stabilises the duplex structure show many small but significant variations 
beyond the standard adenine-thymine and guanine-cytosine links. 
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Fig. 7.5 Standard A-DNA from three perspectives, (a) looking down the helix axis and 

showing the width of the helix (this is twice the scale of the other perspectives), (b) 

perpendicular to the helix and showing the right hand twist of the helix and base orientation 

relative to the helix axis, and (c) tilted to show the depths and widths of the major and minor 

grooves. Most of the hydrogens have been omitted for clarity. 
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Fig. 7.6 Standard Z-DNA from three perspectives, (a) looking down the helix axis and showing 
the width of the helix (this is twice the scale of the other perspectives), (b) perpendicular to the 
helix and showing the left hand twist of the helix (the P's and C's of one backbone have hollow 

atoms) and base orientation relative to the helix axis, and (c) tilted to show the depths and 
widths of the major and minor grooves. Geometries were kindly supplied by Dr. I.S. Haworth. 

Most of the hydrogens have been omitted for clarity. 
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C2-endo P-D-deoxyribose 

form of deoxyguanylaie 

with anti glycosidic bond 

C3-endo P-D-deoxyribose 

form of deoxyguanylaie 

with syn glycosidic bond 

Fig. 7.7 C3'-endo and C2'-endo 2-deoxyribose, with anti and syn glycosidic bonds. Anti refers 

to the fact that the sugar and the base are on opposite sides of the bond. 

Within a typical human cell, which is only lO'^m in diameter, there can be 
as much as 2m in length of DNA. Obviously, the DNA must be packed very 
tightly, and this is achieved in several stages. First, the DNA is wrapped around 
proteins called histones; to continue the rope analogy raised earlier (cf. Fig. 7.3), 
this is like the way rope is wrapped around the capstan in a ship. These "capstan" 
units are then linked together by linear strands of DNA to resemble a beaded 
necklace, and finally the "necklace" itself is wrapped up even further. After so 
much compacting of the DNA it is amazing to realise that it still manages to 
unfold and then re-fold whenever it is required for cell processes. A feature of 
DNA that facilitates these processes is its ability to supercoil. Supercoiling can 
best be explained by a simple experiment. Take a 10cm piece of knitting wool 
(which is usually a left handed triplex) and untwist it. Then join the ends together 
and let it retwist itself; the wool will end up recoiling to less than its original 
length. The original helical twist is reinstated together with negative supercoiling. 
Positive supercoiling may be achieved by twisting the original pieces of wool 
further in the direction of its natural twist before joining the ends together. 

7.2 PROTEINS 

Although the functions and geometries of proteins and nucleic acids (both 
DNA and RNA) are very different, these molecules are built on the same 
principles. Both are large and complex yet are composed of a linear chain of 
smaller repeating units. In both cases, one of the main driving forces towards 
secondary structure formation is hydrogen-bonding. 
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The repeat unit of a protein is an amino acid, whose general formula is as 
shown in Fig. 7.8. There are twenty different amino acids to be found in proteins, 
they differ only in the identity of their R group (see Fig. 7.8). Naturally occurring 
amino acids all have the same handedness, as illustrated, and are referred to as 
L-amino acids. They are joined together by "peptide bonds" formed between the 
acid functional group of one amino acid and the amine group of another (Fig. 7.8) 
with the elimination of a water molecule. One end of the protein molecule is thus 
the amino end (by convention this is the beginning) and the other end is the 
carboxylate end; these are usually referred to as the N and C termini respectively. 
The molecular identity of the protein is given by listing the sequence of amino 
acids. 

Fig. 7.8 Amino acids and the peptide bond. 

Proteins form regular secondary structural units essentially because the 
peptide unit 0=C-N- is planar and rigid, but there is a large degree of rotational 
freedom about its links to the rest of the protein chain. Consequently, the 
polypeptide chain can arrange itself so that the C-0 of one peptide unit hydrogen- 
bonds with an N-H of another unit in a number of different ways. The common 
secondary structure features are the right-handed a-helix (Fig. 7.9) and the 
P-sheet (both parallel and anti-parallel versions. Fig. 7.10). Many other structural 
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units may also be identified, depending upon the detail with which crystal 
structures are examined. The a-helix is a rod-like structure where the nth peptide 
hydrogen-bonds its C-0 to the N-H of the (n-t4)th peptide and its N-H to the 
(n-4)th CO (Fig. 7.9). It thus forms a right-handed helix with 1.5A translation 
and 100° turn between two consecutive peptides, giving 3.6 amino acid residues 
per turn. The alternative efficient formation of hydrogen bonds occurs between a 
sheet of parallel or antiparallel runs of amino acids; this is known as a P-sheet 
(Fig. 7.10). Typically the strands of an anti-parallel P-sheet are linked by P-tums 
where the nth peptide hydrogen-bonds with the (n-H3)rd peptide. If a P-sheet 
extends over more than two strands, then the relative arrangements of the strands 
in space must be considered. They are often twisted with respect to one another. 

Fig. 7.9 a-helix structure. Dotted lines indicate hydrogen bonds. 

In biological systems the a-helices, P-sheets, P-tums and other structural 
forms are packed together in very stable conformation. The way this is achieved 
generates two types of protein: globular and membrane. In the former, one of the 
driving forces for adopting the tertiary structure is to ensure hydrophobic side 
chains are wrapped up by the protein while hydrophilic side chains interact with 
water.^ In membrane proteins, the converse is usually true as the protein is 
"solvated" not by water but by the hydrophobic membrane. Other factors that 
determine tertiary stmcture include the stabilising effect of hydrogen bonds and 
disulfide S-S bridges between amino acids that are remote from one another, 
usually in different secondary structural units. 

One of the difficulties in comprehending the geometry of a protein is that 
they are so large that the overall geometry can be lost in the details. So, even 
more than in the case of clusters, we need a means of representing proteins that 
conveys the maximum amount of geometric information with minimal confusion. 
Protein chemists have adopted various illustration conventions, the most common 
of which is the ribbon diagram in which a-helices are represented by helical 
twirls of ribbon, P-sheets by wider flat pieces of ribbon with arrows on the C 
terminus, and often disulfide bridges are indicated by a zig-zag (Fig. 7.11). 
Although a lot of detail is lost, especially in the P-sheets since which residues are 
connected by hydrogen bonds is not indicated, such a diagram does still carry a 

t Proteins are usually found in an aqueous environment. 
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great deal of information in a form that' is possible to digest visually. More 
detailed pictures may then be tackled if required. 

A protein’s secondary and tertiary structure is crucial to its biological 
activity. In nature proteins appear to adopt unique folded conformations that 
optimise this activity. However, the probability of a typical 100-200 amino acid 
protein folding spontaneously to the correct structure by chance is essentially 
zero, and so an active area of research is to discover and be able to control how 
proteins fold. Only when the process of protein-folding is understood will we be 
able to contemplate designing proteins for specific biological applications. 

parallel (j-sheet 

anti-parallel p-sheet 

Fig. 7.10 Parallel and anti-parallel p-sheets. Hydrogen bonds between peptide chains are 
indicated by the thick lines. Atom / group labelling as for Fig. 7.9. 

7.3 The Final Word 

One of the themes running through the previous chapters has been the 
interplay of steric and electronic factors and how we might discern when one or 
the other is dominant. In determining the secondary and tertiary structure of 
macromolecules, it seems that electronic factors may be almost completely 
ignored. Significant success has been had with modelling the geometry of DNA 
and protein molecules using molecular mechanics (§1.3.2) which includes 
electronic factors only in a local sense: they determine preferred bond lengths, 
bond angles, and torsion angles, and specify how easily these can be deformed. 
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Hydrogen-bonding is modelled as a simple electrostatic effect. It currently seems 
that the limitations and failures of this approach are due to inadequacies of the 
parcuneters chosen rather than the fundamentals of the molecular mechanics 
method itself. Interactions of macromolecules with other molecules also seem to 
be amenable to molecular mechanics and related techniques. The word "seems" 
in both preceeding sentences should be noted, especially given the discussion of 
stereoelectronic effects on sugars in Chapter 3. It is, however, fortunate that 
steric effects account for so much of the macromolecular secondary and tertiary 
stucture as it encourages us to continue pursuing molecular modelling techniques 
to aid in our understanding of the structures of biological molecules, the design of 
DNA and protein binding drugs, and in the development of enzyme based 
chemistry. 

Fig. 7.11 Ribbon drawing of baboon a-lactalbumin with bound Ca showing the four ligating 
aspartates explicitly. Adapted from a diagram kindly provided by S. E. Radford. 
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APPENDIX 1 

Rules for Multiplication of Point Symmetry 
Operations 

Introduction 

The product of two symmetry operations, (Rj x R2) = (R1R2), is defined to 

be the operation of R2 on the molecule or other object, followed by operation of 

Rj. Note that we define multiplication to proceed from right to left. The results 

of multiplying two symmetry operations together may be summarised by the 

following eight rules given below. The rules form the basis for the generating of 

point groups as outlined in §2.1.2 and discussed further in Appendix 2. The first 

five rules are apparent upon inspection. Rule 8 may be determined from 

reference^ and Rules 6 and 7 may be proved by expressing the rotations as 

matrices operating on Cartesian vectors, and evaluating the products explicitly. 

We use the notation lcm[m,n] to denote lowest common multiple of m and n (so 

for example lcm[3,4] = 12, but lcm[3,6]=6) and superscripts to denote the axis 

about which a rotation operates, or which is the normal (perpendicular vector) to 

a reflection plane. If the axis is unspecified then the default is the z axis, which is 

usually the major rotation axis. The notation for the symmetry operations is 

defined in §2.1.1. 

Rule 1: A group with elements Cm” and must also contain 0^“, r = lcm[m,n]. 

For example, if C3^ and €4^ are elements of a group then Ci2^ is also a symmetry 

element as (€4)' = Ci2^ In general, this follows is because if Qn“ is in a 

group, then so is (Cn,“) \ and (Cn,“)'kCn“) = Q“ 

Rule 2: A group with elements Cn,“ and Sn“ must also contain 8^“, r = lcm[m,n] 

Rule 3: A group with elements C2^ and C2*, where p and y are separated by an 

angle 0 and are both perpendicular to an axis cc, must also contain r = 7t^/0, 

where q is the smallest integer such that 7t^/0 is an integer. 
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A corollary of this is that a group with elements C2^ and Q“ must also 

contain r lots of C2 axes' all perpendicular to a , at angles nir from their nearest 
C2 axis. 

Rule 4: A group with elements and <37 must also contain Q", r = Tig/B; P, y, 

and q as in Rule 3. Conversely, a group with elements and Q.“ must also 

contain r reflection planes with axes perpendicular to a (so the plane contains a) 

and at angles 7i/r from their nearest plane. 

Rule 5: A group with elements C2^ and must also contain r = 7U^/(7i/2-0), 

where all labels are as in Rules 3 and 4. The converse of this depends upon 

whether r is an even or an odd number, and is discussed below. 

Rule 6: R^“ and Rt^P commute, i.e. R^“ x Rt^P = R^P x R^®, if and only if one of 

the following conditions hold: 

(i) a and P are either parallel or antiparallel, 

(ii) a and P are perpendicular; and (R^®)^ = (Rr|^)^. 

Rule 7: R^® and R^^P, where the angle between a and P is 0, satisfy 

(R^® X = E, if and only if one of the following conditions hold 

(i) (R^®)^ = (Rti^)^ = E and 0 = 0,7c/2, or jr {i.e. a and P are parallel, antiparallel, 
or perpendicular), 

(ii) Either (R^®)^ = E or (R^^^)^ = E, 0 = 71, and = 7t(mod In), where ^ is the 

angle through which Rt“ rotates the system about the axis a and similarly 
R P 

(iii) (R^®)^ ^ E, (Rt|P)^ ^ E, for R^® and R^P both proper operations, and 
COS0 = cot(^2)cot(ri/2), 

(iv) (R^®)^ 4^ E, (Rt|P)^ 4^ E, for R^® and R^P both improper operations, and 
COS0 = tan(^2)tan(ri/2), 

(v) (R^®)^ E, (Rt|P)^ ^ E, for R^® a proper operations, R^jP an improper 
operation, and cos0 = -cot(^2)tan(ri/2). 

Rule 8: The group generated by R^® and R^jP with its multiplication table 
constrained by 

(R4® X R/)'' = (R^®)"- = (R^Py’ = E 

is finite if and only if 

l/A:+l/m+l/n>l. 

Reference 

(1) Coxeter, H. S. M.; Moser, W. O. J. Generators and Relations for Discrete Groups', 
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Generating Point Groups 

Introduction 

There are many ways we could generate the point groups using an 

augmentation procedure and starting from the groups that can be generated by one 

operation. The one we shall follow is designed to show the relationships between 

different point symmetry groups and hence should indicate how results for one 

point group need to be modified for other related groups. We begin with the 

groups generated by one proper operation, then augment these by the addition of 

another proper operation to generate all the chiral {i.e. asymmetric, §2.2) point 

groups. The achiral point groups then follow by addition of an improper 

operation. The multiplications rules of Appendix 1 are referred to by number. 

A2.1 Chiral Point Groups 

The set of all multiples of Cp {i.e. carried out iteratively) is the cyclic 

group of order n, denoted The operation (Cn)*^ where n and k are coprime also 

generates the same group. By Rule 1, any combination of proper rotations about 

the z or -z axes generates one of these groups. 

Dn: is augmented by C2^, where x is an axis perpendicular to z, then the 

Dn groups are generated. contains an n-fold rotation about z, and n €2^ 

rotations about axes perpendicular to z with P = [cos(2jt/://i)]x + [sin(27t/:/n)]y, 

k = 0,..., (n-l) by Rule 3. 

If z is an infinitesimal rotation axis, then and D„, are generated. We now have 

all the groups that satisfy Rules 6, or 7(i), or 7(ii) with respect to all other 

operations in the group. 
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The pairs of operations that satisfy Rule 7 (iii) and Rule 8 generate the remaining 

finite chiral groups. There are only three different ones of these. 

T: If m = n = 3 in Rule 8 with the angle between the two C3 axes being cos'* (1/3), 

then the product of the two operations is a two-fold rotation axis and the 

tetrahedral group T is generated. The best way to visualise the tetrahedral group 

is to inscribe four points into alternate comers of a cube and to ignore the 

improper rotations. Alternatively, to generate T itself, replace each point by a 

tripod with bent feet. The three-fold axes are then along the vectors (±1, ±1, ±1), 

and the two-fold axes are jc, y and z. 

O: If m = 3 and n = 4 in Rule 8 with the angle between the C3 and C4 axes being 

cos'^(l/V3), then the octahedral group O is generated. The basic symmetry of this 

shape is best visualised by putting vertices in the middle of the faces of a cube an 

ignoring the improper rotations. Alternatively, replace the points by bent crosses 
to generate O itself. 

I: If m = 3 and n = 5 in rule 8 with the angle between the C3 and C4 axes being 

cos'*[l/V3cot(7r/5)], then the chiral icosahedral group, I, is generated. This group 

actually contains T as a subgroup, as Ccm be seen by drawing a tetrahedron inside 
an icosahedron (c/. M4(CO)i2 in Fig. 6.11). 

Z: Any pair of operations that satisfies only Rule 7(iii) generates the inifinite 
chiral spherical group, Z. 

A2.2 Achiral Point Groups 

Achiral point groups are most simply generated by augmenting the chiral 

groups with improper operations that generate no new proper operations. This is 

always possible since the proper operations of an achiral point group form one it 
its subgroups. 

Augmentation by the inversion i 

C2nh- S(2n+i), D2nh> D(2n+i)d. Tfa, Q,, Ih, Z,,: From Rule 6 we know that i commutes 

with all other point operations. Addition of i to a chiral group therefore adds no 

new proper operations and doubles the size or order of the group. The groups 

listed above result from the augmentation of the point groups C2n, C(2n+i), D2n, 

D(2n+i). T, O, I, Z, respectively, by the operation i. The label C2nh means the 

group contains C2n and a CT),; S(2n+i) contains all the multiples of the operation 

S(2n+1); D2nh Contains, among other operations, those of D2n and 2n Oy planes 

containing the C2 axes; D(2n+i)d is also generated from Dn,; however, it is quite 

different from D2nh as it has its vertical reflection planes, a^, bisecting the C2 axes 
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and also has S2(2n+i); T|j, Oh, It, are simply the achiral versions of their chiral 

counterparts. 

Augmentation by a reflection plane a 

In order for a to generate no new proper operations it must transform 

proper rotation axes into the same or other axes of the same order. Thus, any 

augmenting plane that must generates no new proper operations must either 

contain any axis, or be perpendicular to it, or bisect two rotation axes of the same 

order. 

Cnh, Dnh- Addition of a horizontal reflection plane whose axis is parallel to the Cj, 

axis of Cq and generates, respectively, and D^h- D^h also has Oy planes, 

and may be generated by augmenting D,, with a reflection plane that contains both 

Cn and one of the C2 axes of D^. 

Dqij; Augmentation of by a dihedral reflection plane, aj, that has its axis 

perpendicular to Cj, (so the plane contmns Cj,) and bisects two neighbouring C2 

axes of Di, leads to D„d. As noted above, contains 820. so Dn^ is a higher 

order rotation group than its label indicates, but the maximum order rotation is 

improper not proper. 

Tj: Two types of reflection plane may be added to T to generate achiral groups 

that do not have any additional proper operations. Addition of a plane whose axis 
is parallel to one C2, contains the other two C2 axes, and exchanges (and inverts) 

two pairs of C3 axes leads to Tjj. Alternatively, a reflection plane containing two 

C3 axes and one C2 axis also generates no new proper operations. The resulting 

point group in this case is Tj, of which methane is a common example. 

Augmentation by an improper rotation 

The only new point groups that augmentation by S,,, n> 2, can yield are 

ones without i or a. So by Rules 2 - 5 we conclude that the final point group we 

require is 84,, resulting from the augmentation of €2^ by 840. It sometimes also is 

convenient to view D2nd as resulting from the augmentation of D2n by 84^, and T^ 

as resulting from the augmentation of T by 84. 
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APPENDIX 3 

The Jahn-Teller Theorem 

The proof of the Jahn-Teller theorem is seldom reproduced, but it is one of 
the simplest symmetry proofs, especially in the original form as produced by Jahn 
and Teller. The proof also shows why the theorem holds and what its 
consequences are. 

Let H be the electronic Hamiltonian of the system. At any point, Q^, on the 
potential energy surface, a Taylor Series expansion with respect to any normal 
coordinate O', may be written: 

H(Q'^)=H(Q, + ZQy}^H(Q,) + ^lbQ:^+ ... 
oQ 

Using perturbation theory and staying within the Born-Oppenheimer 
approximation, the potential energy is 

E(a>+bQ'')=E(QJ + h 
dH 

ae 
V |0 V bQ^+ ... 

where is the molecular wavefunction for the system at 2^. If is a minimum 

9 K 
energy point, then = 0 for all coordinates Q'^, which means that either 

ae' 
(,= 0 or the spatial symmetry of the integral is such that it cancels out and 

dH 

dQ^' 

gives a value of zero, i.e. 

Ajg <x rw X / X Ly X r V ^ Ty 
/aolo 

What Jahn and Teller showed by determining the symmetries of all vibrations for 
all molecules (their paper is a very good general reference for this reason) was that 
for non-linear molecules at least one non-totally symmetric vibration has the 
symmetry such that 

for all degenerate \|/. Thus, if the electronic state of a non-linear molecule is 
degenerate, then at least one molecular vibration takes the molecule to a lower 
symmetry but more stable geometry. 
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INDEX 

a-helix, see protein 
3-acetoxy-tetrahydropyran, 80 
AAIM: see atom-atom interaction 

model 
achiral, 39, 180 
actinides, 132/ 
activation volume, 63 
adamantanones, 83 
adenine, 164/ 
Al: see Group 13 
alums, 131 
amino acid, 6, 163, 172/ 
anomer, 81 
anomeric effect, 81 
anti-bonding: see orbital 
antiperiplanar, 83 
antisymmetrised product, 57 
ao: see atomic orbital 
arachno: see polyhedron 
As: see Group 15 
atom-atom interaction model, 14, 28, 

32, 57, 63, 74, 96/ 122, 124/ 
150/ 

for carbon molecules, 78 
for ML2, 74 
for ML3, 76 

atom-atom repulsion model, 14, 123, 
152 

atomic orbital: see relevant orbital 
entries 

aufbau principle: see electron 
configuration 

augment: see point group 

P-sheet: see protein 

Bailar twist, 68, 126 
Ba: see Group 2 
Berry pseudo-rotation, 61, 64 
BH3, 28 
B2H6, 28 
Bi: see Group 15 
bond 

two-centre, 77, 80, 87/, 134 
three-centre, 85, 87/ 

covalent, 67/ 
directional, 144 
F-F, 97 
glycosidic, 166 
in clusters, 139/ 
ionic, 67/ 
length, 96 
localised, 82 
M-M, 143/ 
overlap of orbitals, 81 
Jt, 76, 77, 106, 117 
phosphodiester, 164 
planar zig-zag, 83 

o, 105, 110 
strength, 10, 80/ 96 

bonding 
boranes, 85/ 
covalent, 71, 112, 140 
dative, 111 

<f-orbitals in, 95 
ionic, 71 
metal-ligand, 110/ 

boranes, 85/ 142/ 
bonding, 86/ 
pentaboranes, 91/ 

Born interpretation, 42 
Bom-Oppenheimer approximation, 9 
BrF3, 97, 98 

butane, 79 
Ca: see Group 2 
carbon based chemistry, 77 
carbonyl, 83 
catenated carbon systems, 78 
CFSE: see crystal field stabilisation 

energy 
CFT: see crystal field theory 
C3H6, 8 
character, 42/ 
character table, 42/ 

C2v,43 
D3,47 
Oh, 51 

Td, 49 



186 Index 

chelate bite, 122, 123 

chiral, 6, 39/, 168 

chloroform, 4 

classical symmetry selection rule 

procedure, 63/ 

normal mode, 63/ 

rearrangement of polyhedra, 65 
CIF3, 97, 98 

closo: see polyhedron 
cluster 

borane, 85/ 

transition metal, 139/ 
Cjsj: see coordination number 

CO, 21, 140/ 

Co2(CO)8, 143, 154 

Co4(CO)i2, 157 

[Co6(CO)i4]2-, 144 

[Co6(CO)i4f‘, 144, 145, 149, 152, 159 

[C06(C0)i5]2-, 152, 154 

[Co6C(CO)i3]2-, 159 

[Co(ethylenediamine)3]^''', 10 

[Co(NH3)4Cl2r, 5 

cohesive energy, 147 

concerted mechanism, 64/ 
conformer, 6 

anti, 159 

endo, 159 

exo, 159 

gauche, 74, 159 

syn, 159 

Irons, 74, 159 

coordination number, 23, 73, 95/ 107 
definition, 23 

determination, 25, 89/ 

determination for transition metal 

complexes. 111, 120/ 

of 2, 74, 108 

of 3, 76, 108 

of 4, 76, 108 

of 5, 109, 133 

of 6, 109 

of 7, no 

of 8, no 

of 9, no 

of lanthanides and actinides, 134 
of metal carbonyls, 140 

survey of for transition metal 

complexes, 108/ 

crystal field stabilisation energy, 112, 

115 

and coordination number, 119 

of hexaquo systems, 115 

MLg, 118 

no 7t interactions, 117 

a and n interactions, 117 

crystal field theory, 106/ 112 

inadequacies, 116 

orbital energy level diagram, 114 
zero energy, 112 

CSSRP: see classical symmetry 

selection rule procedure 

Cu(II)-Ag(lI)-Au(II) geometries, 108 

[Cu(H20)6]2/ 3 

cyclohexane, 4, 79 

cytosine, 164/ 

A: see crystal field stabilisation energy 

deltahedral, 57, 86, 145 

diatomics, 14/ 
F2, 97 

homonuclear, 71 

see molecular orbital theory 

potential energy, 9 

see valence bond theory 

1.2- dichloroethane, 7 

1.2- dichlorethene, 7 
dispersion force, 29 

disulfide bridge, see protein 

DNA, 163 

A-form, 167f 

B-form, 165/ 

bases, 164/ 

double helix, 167/ 

poly[(dA-dT)]2, 169 

sugar, 164 

Z-form, 167/ 

electron affinity, 72 

electron configuration, 12 

aufbau principle, 17, 113 
electron count 

metal valence, 118/ 144/ 141 

electron deficient, 101 

electron repulsion 

and cluster geometries, 147 

eighteen-electron rule, 24,112/119, 

140/ 151 
MLg, 118/ 

non-octahedral systems, 119 

eight-electron rule, 24,73, 77, 140 

electronegativity, 72/ 78/ 84, 97/ 

electronic effects, 14, 106, 140/ 
energy 

changes, 9 

clusters, 142/ 

cohesive, 147 
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Gibb's free, 8 

internal, 8 

minimum, 3, 8 

partitioning, 142/ 

potential, see potential energy 
enantiomer, 6, 64 

entropy, 8, 163 

ETA: see extended topological 

approach 

ethane, 7 

extended topological approach, 88/ 

[Fe2(CO)8]2-, 143, 155 

Fe2(CO)9, 143, 155 

Fe3(CO)i2,154/ 

[Fe6C(CO)i6]2-, 159 

fluxional, 109, 155/ 

fo: see frontier orbital 

force field, 32 

fragment 

clusters as sum of, 149/ 

formalism, 22 

molecular, 81 

of polyhedron, 86/ 

frontier molecular orbital: see 

molecular orbital 

frontier orbital: see orbital 

Ga: see Group 13 

Ge: see Group 15 
generating set: see point group 

geometry 

definition, 5, 142 

glucose, 81 

glycine, 4 

Group 2 compounds, 103 

Group 13 compounds, 102/ 

Group 14 compounds, 101/ 

Group 15 compounds, 101/ 

Group 16 compounds, 100/ 

Group 17 compounds, 97/ 

Group 18 compounds, 100/ 

group (symmetry): see point group 

guanine, 164/ 
H2: see specific entries 

halogen compounds: see Group 17 

hexaquo systems 

crystal field splitting, 115 

geometry of, 131/ 

high spin / low spin, 115/, 121, 122, 

129 

ho: see hybrid orbital 

HCN, 74 

HCO, 74 

Hoechst 33258, 3 
H20s3(CO)jo, 146 

H20s6(C0)i8, 155 

[HOs6(CO)i8r, 154 

Hund's rules, 54, 113 

hybrid orital: see orbital 

hybridisation, 22, 77, 96/ 

hydrogen peroxide, 6 

hydrophobic, 173 

In: see Group 13 

interactions 

1-3,81 

1-4, 83 

interhalides: see Group 17 

ionic model, 135 

ionisation energy, 72 
MCOp, 158 

lr6(CO)i6, 154 

isolobal analogy, 149/ 
isomer, 6 

of clusters, 154 
isomerism 

conformational, 6 
optical, 6 

structural, 8, 156 

isomerisation: see rearrangement 

and relevant geometries 

Jahn-Teller 

effect, 2, 106, 108, 120,130/ 

theorem, 130/, 173 

Langmuir-Blodgett film, 79 
lanthanides, 132/ 

contraction, 133 

LFT: see ligand field theory 

ligand 

electron donating properties, 139/ 

encapsulated, 142, 145 

migration, 157 

7C-donor, 116, 117, 131 

a-donor, 116, 117/ 

7t-acceptor, 116, 117/, 129/ 131 

ligand field theory, 106, 116/ 

ligand repulsion model, 122 

linear dichoism, 167 
Li20, 27 

lone pair, 26 

stereochemically active, 102 

stereochemically inactive, 96, 102 

low spin: see high spin / low spin 

macromolecules, 163/ 

mannose, 81 
M2(C0)„, 155 



188 Index 

M3(C0)„.155/ 

metal polyhedron: see polyhedron 

methane, 2,41 

mfo\ see molecular fragment orbital 

Mg: see Group 2 
ML2, 74/ 103i 

ML3, 76/ 97, 102/ 

ML4, 76/ 98, 101/ 

ML5, 97,101 

MLg, 100 

ML7, 97 

M4L„, 157 

M6L„, 158 

M„, 143/ 

MM: see molecular mechanics 

[MnCy'*-, 10, 53/ 116 

Mn2(CO)io, 154 

mo: see molecular orbital 
MO energy levels: see molecular 

orbital energy levels 
MO theory: see molecular orbital 

theory 

molecular fragment orbital: see 

molecular orbital 

molecular geometry: see geometry 

molecular orbital 

anti-bonding, 45/ 

as sum of ao's, 15, 146 

bonding, 45/ 

combination of sao's, 42,45 

definition, 15 

fragment, 81, 111, 116 

from symmetry, 41/ 

frontier, 90, 149 

localised, 22,150 
molecular orbital energy levels 

boron hydride fragments, 89 

diborane, 91 

ethane, 91 

from symmetry, 45/ 
Hi, 15 

H3,46/ 

HCN, 74 

HCO, 74 

heteronuclear diatomics, 21,74 

homonuclear diatomics, 17/ 

hydrocarbon fragments, 90 

[MnCle]'*', 53/ 
SiF4,46,48/ 

triatomics, 74/ 

MO theory, 14/ 17/ 

applied to clusters, 146 

boranes, 86, 88 

fragment formalism 22, 74, 81, 86/ 

111 

H2,1/ 
molecular mechanics: 14, 30, 78, 175 

molecular structure 

definition, 5,134 

N: see Group 15 

Ni(ll)-Pd(ID-Pt(n) geometries, 121 

nickel cyanide, 5 

nido, see polyhedron 

nobel gas: see Group 18 

nodes, 45,146 

non-bonded radii, 14, 25/, 30,122 

normal mode, 63 

and reactions, 63/ 

nucleic acid, see DNA 

nucleotide, 163/ 

octahedral complexes, 109, 111/ 

rearrangement, 62 

octet: see eight 

operation: see symmetry operation 

orbital, 11 

angular functions, 12, 13 

anti-bonding, 24,43/, 112 

bonding 24,45/ 112 

/ 12, 15,48, 51, 95,100, 111/, 132,140 141 

d and wavefunction degeneracy, 130 

diffuse, 96 

energy, 12 

/,132 

frontier, 90 

hybrid, 24,73, 89, 90 

hybrid, 24, 27 

hydrogenic, 14 

molecular fragment, 90/ 144/ 

non-bonding, 24, 45/ 

non-hydrogenic, 12 

overlap, 10,45/ 127, 122 

p, 12/48, 108, 112, 116, 132 

radial distribution function: see entry 

r, 12, 15, 105,126/ 141 

sip energy gap, 17, 96 

a, 7t, 18,76, 116/ 140 

symmetry adapted: see sao 

valence, 13/ 106, 110, 111, 116, 

132, 144 

Os3(CO)i2, 156/ 
Os6(CO)i8, 145 

[Os6(CO)i8]2-, 145, 154 

P: see Group 15 

p block 

middle, 100 
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n-acceptor: see ligand 
7C back-bonding, 140 

7C-donor: see ligand 

parameters: see molecular modelling 

Pauli exclusion principle, 14, 53 

Pb: see Group 14 

PE: see potential energy 

penetration of electrons, 12, 73 

pentaboranes, 90 

peptide bond, see protein 

periodic table, 11 

d-block, 11 

/-block, 11 

left hand side compounds, 102/ 

planar zig-zag, 83 

point group, 37/ 

achiral, 39,180/ 

chiral, 39,179/ 

generating sets, 39,179/ 

generation, 38,179/ 

Schoenflies notation, 38 

polyhedral skeletal electron pair theory, 

polyhedron 

arachno, 57, 86 

boranes, 86 

closo, 57, 86, 96, 84 

labelUng notation, 57 

ligand, 57, 149/ 

ligand determined by repulsion, 152/ 

metal, 142/ 

metal and ligand, 142, 150/ 
ML„, 58/ 107/ 

nido, 57, 86 

rearrangement, 60/ 

relaxation, 58/ 135 

potential energy, 9, 31 

diatomic, 9 

molecular mechanics, 31 

projection opterator, 42/ 

protein, 163,171/ 

a-helix, 172/ 

P-sheet, 172/ 

P-turn, 172 

disulfide bridge, 173 

folding, 79, 174 

purine, 164/ 

pyrimidine, 164/ 

radial distribution functions 

hybrid orbitals, 24 

hydrogen, 12 

Ray-Dutt twist, 68, 126 

reactant, 60/ 

reducible representation, 44/ 
Rh4(CO)i2,158 

Rh6(CO)i6,145,159 

[Rh6C(CO)i3]^', 151,159 

ring pucker, 80 

Ru3(CO)i2, 154, 156 

S: see Group 16 

sao: see 

saw-horse, 98 

Sb: see Group 15 
SbPhj, 27 

Se: see Group 16 

shielding of electrons, 12,73, 133 

Si: see Group 15 

Sn: see Group 15 

spectrochemical series 

ligand, 108,115,128 
metal, 115 

spin pairing, 113 

square planar complexes 

isomerisation, 68 

Sr: see Group 2 
SrF2, 27 

stable geometry, 10 

stereochemical changes, 60/ 

stereoelectronic effects, 80/ 

stereoelectronics and reactivity, 84 

steric effects, 1, 14, 108/ 120,141/ 

steric model, 23/ 

steric plus electronic models, 14, 22, 57 

steric vs. electronic, 106, 111, 120/ 140 

structure 

definition, 5 

primary, 163/ 

secondary, 163/ 

tertiary, 163/ 

substitution reaction: see trans effect 

sugar, 4, 6, 81/ 

inDNA, 164, 171 

pyranose, 168 

see conformation 

symmetry, 10/ 35/ 

changes, 63 
cluster geometry, 143 

definition, 10 

of normal modes, 54 

of orbitals, 18 

of wavefunctions, 54 

operation: see point group 

relationship to energy, 10, 64 

symmetry adapted orbital 
Clfi, 53/ 

Fa, 50/ 
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H3,47 

Mn, 54 

[MnClftf", 54 
K-system of H2CCHCH2,44 
SiF4, 50 

symmetry operation 

definition, 36 

identity, 36 

improper, 36, 38, 18/ 

inversion, 36, 180 

multiplication of, 37, 177/ 

point, 36/ 177/ 179/ 

see projection operator 

proper, 36, 38, 179/ 

reflection, 36, 181 

T-shape, 96 

TA: see topological approach 

Te: see Group 16 

template, 4, 5, 57/ 85 

high symmetry, 10, 65/ 107/ 121 

second row systems, 76/ 
symmetry, 69 

transition metal complexes, 110, 
121,127, 133 

tensor surface harmonic theory, 136/ 

tetragonal: see Jahn-Teller effect 
valence bond, 14 

H2, 15 

van der Waals 

attraction, 28 

radii, 26 

VB theory: see valence bond 

vibrations. If, 54/ 

see normal mode 

trans influence, 121 f 

transition metals, 105/ 

transition metal clusters, 139/ 

transition state, 39, 60, 61VSEPR theory, 26/ 

29, 30, 74/ 96/ 

for carbon molecules, 78 
for ML2, 75 

for ML3,76 

W-effect, 83 

Wade's rules 

for boranes, 86, 88/ 

for transition metal clusters, 144/ 

Walsh Diagram, 75 

/Tl: see Group 13 

topological approach, 87/ 

thalidomide, 6 

thymine, 164 

torsion angle, 168, 174 

trans effect, 127/ 

m-chelate, 121 

geometry, 122/ 

isomerisation, 62/ 67/ 125/ 

virial theorem, 18 

wavefunction 

degeneracy, 123 

normalised, 44 

symmetry of, 56 

zig-zag 

planar, 83 

Z-DNA, 168 
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3 1496 00624 0223 The first step towards understanding the chj 

is to know its geometry and to begin to understand why it adopts 

that shape. This book examines the underlying principles that gov¬ 

ern the shape or shapes adopted by any given molecule. These 

underlying principles are always operative, but their relative 

importance varies. By learning how to interpret the geometry a 

chemist can gain an intuitive feel for the behaviour of molecules. 

The main focus of this book is on the arrangement of atoms about 

a single atom, though attention is paid to molecules in which the 

central atom is replaced by a cluster of atoms and to some of the 

consequences of small, local variations in geometry for DNA and 

proteins. An understanding of the concepts covered in first year 

chemistry courses has been assumed, though it has been written 

in such a way that it should be useful to chemists at different 

stages of development ranging from undergraduate to research 

worker. 

CONTENTS: Definition and determination of molecular geometry: 

A unified view of stereochemistry and stereochemical changes: 

The geometry of molecules of second row atoms; Main group ele¬ 

ments beyond the second row; Complexes of transition metals and 

f-block elements; Organometallic compounds and transition metal 

clusters; Macromolecules: small changes and large effects: Rules 

for multiplication of point symmetry operations; Index 
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