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Acronyms and Symbols
*

The following acronyms and symbols, which are generally defined where in-

troduced, are used consistently throughout the text. This list does not include

symbols for symmetry elements, symmetry operations, point groups, and ir-

reducible representations, which are described in Chapters 1 and 2. Some
symbols used uniquely with a particular topic have also been omitted but are

defined at the point of discussion.
J

AO atomic orbital

LCAO linear combination of atomic orbitals

MO molecular orbital

SALC symmetry-adapted linear combination; a wave function constructed

as an LCAO, consistent with the symmetry requirements of the sys-

tem

VB valence bond theory

dif dr dimension of an irreducible and reducible representation,

respectively

D t total degeneracy for a configuration, equivalent to the number of

possible microstates

g order of a subgroup

gc number of operations in a class

h order of a group; also, Planck’s constant in expressions for energy or

angular momentum

/ total angular momentum quantum number

l orbital angular momentum quantum number (individual electron)

L overall orbital angular momentum quantum number, also called the

resultant orbital quantum number

2L + 1 orbital multiplicity, equivalent to the orbital degeneracy of a term

m t
orbital magnetic quantum number

Ml overall orbital magnetic quantum number

ms spin magnetic quantum number (individual electron)

Ms overall spin magnetic quantum number

n principal quantum number (n — 1, 2, . . . )

rii number of times the ith irreducible representation contributes to a

reducible representation

(icontinued on back cover)
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For my students—
Past, present, and future





PREFACE

For more than 25 years, I have taught the junior-senior advanced inorganic

chemistry course and have introduced symmetry and group theory as tools

for studying bonding and spectroscopy. For most of this period there were no

treatments of group theory in the standard inorganic texts, and my students

were forced to rely mainly on the lecture material, occasionally supplemented

with a rudimentary self-teaching text. In the 1980s, inorganic texts that in-

cluded group theory began to appear, but in very limited number. In some
cases the text as a whole was not suitable for the level or organization of my
course, while in others the treatment of group theory was necessarily so brief

as to be of little help to most students. These frustrations, which should be

familiar to most professors of inorganic chemistry, compelled me in 1989 to

begin to write a text that would suit the needs of my course and most espe-

cially my students. Over the past eight years and seven offerings of the course,

that original idea has grown through a succession of drafts into the present

book. In the process, the manuscript developed beyond being a simple sup-

plement to existing inorganic chemistry texts (although that need persists) to

become a book that can also serve the needs of a stand-alone introductory

course on group theory at the advanced undergraduate or lower graduate lev-

els. Although it has evolved beyond the limits of its initial intent, this book

retains the original purpose that motivated my writing it—to provide students

with a thorough but understandable introduction to molecular symmetry and

group theory as applied to chemical problems.

In keeping with this goal, I have tried to write in a style that invites the

reader to discover by example the power of symmetry arguments for under-

standing otherwise intimidating theoretical problems in chemistry. To this

end, the text emphasizes the meaning and chemical significance of the math-

ematics of group theory, rather than rigorous derivation. Calling upon my
own remembered experiences in learning this material and upon my experi-

ence in teaching it for many years, I have tried to anticipate those questions

and troublesome points students typically have with the subject. As a practi-

cal matter, this book shows very explicitly some of the most effective tech-

niques for applying group theory to chemical problems. Some of these (e.g.,

the tabular method of reducing representations, the use of group-subgroup

relationships for dealing with infinite-order groups) are known to many sea-

soned practitioners but have somehow escaped presentation in other texts.

Other techniques and methods of approach are uniquely my own. In addition

to fundamentals of theory and application, I have tried to show how group

theory has contributed and continues to contribute to our theoretical under-

standing of structure and bonding. It is my belief that students gain a greater
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appreciation for any theoretical topic when it is shown how and when the

ideas evolved. I would hope that students will realize from this that symme-
try and group theory considerations are not peripheral to the theory of struc-

ture and bonding but rather are central to a complete understanding.

When teaching a graduate level course in group theory, I cover all topics

in this text, at least in the depth presented and essentially in the order of the

chapters. When teaching the junior-senior advanced inorganic chemistry

course, owing to the constraints of time and level, the coverage is more se-

lective in both range and depth. For this purpose, I customarily cover all of

the material in Chapters 1 through 4. However, since this is most students’

first encounter with symmetry and group theory, I do not think it necessary

to introduce the more advanced topic of projection operators, the subject of

Chapter 5. Therefore, I routinely skip this material at this level. In keeping

with this, I have written the succeeding chapters in this text so as not to de-

pend upon knowledge of projection operators. For the undergraduate course,

I do cover the use of group theory for deducing spectroscopic selection rules

for infrared and Raman activity (Chapter 6) but do not go into the depth of

coverage on overtones, combinations, and other spectroscopic complications

presented in Section 6.5. Likewise, with transition metal complexes I cover all

the topics in Chapter 7 but gloss over the details of splitting of terms and the

development of correlation diagrams (Sections 7.4 and 7.5), concentrating

more on the use of Tanabe-Sugano and Orgel diagrams for interpreting ab-

sorption spectra (Section 7.6). Beyond the confines of any course, this book

should serve the needs of advanced undergraduate students, graduate stu-

dents, and professional chemists seeking to learn or review symmetry and

group theory on their own. For this purpose, beyond Chapters 1 through 4,

readers should feel free to delve into the topics of the remaining chapters as

their interests and needs dictate.

Many individuals have contributed to making this a better book than it

would have been without their constructive criticisms. First and foremost, I

am most appreciative of the many students who used earlier editions of this

material in my courses and beyond, particularly those who were forthcoming

in their comments. While it is nice to receive compliments, I must confess I

more greatly valued your calling to my attention points of confusion and in-

cidents of errors in the earlier versions of the text. Likewise, I am indebted

to the many reviewers solicited by John Wiley & Sons who offered construc-

tive critiques of the manuscript at various stages of development. While I

have not incorporated every one of their suggestions (which at times were di-

vergent), I have gladly accepted every idea that seemed to further the goals

of the text, consistent with my general approach. I am especially grateful to

my colleague Professor Leverett J. Zompa for many useful discussions and

his critical review of Chapter 7. Finally, I would be remiss not to acknowledge

the much appreciated support and patience of Greg Cloutier throughout the

course of this project.

Robert L. Carter
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CHAPTER 1

Fundamental Concepts

Our focus in this text will be the application of symmetry arguments to solve

physical problems of chemical interest. As a first step in any application of

this sort, we must identify and catalogue the complete symmetry of the sys-

tem. Once this is done, we can employ the mathematics of groups to simplify

the physical problem and subsequently to obtain chemically useful solutions

to it. The advantages of this approach, relative to “brute force” techniques,

tend to increase as the symmetry of the system increases. When the system

has a high degree of structural regularity, complex problems can have ele-

gantly simple solutions. Even in seemingly simple cases, symmetry arguments

may provide insights that are difficult to achieve with other approaches.

We will confine our discussion to physical problems of isolated molecules

or complex ions. This means that we will only need to consider the symme-
try of the species itself, and not any symmetry that may exist as a result of as-

sociations with neighboring molecules. In general, the results we will obtain

will be correct for samples of dilute gases, where intermolecular forces and

influences are negligible. To a lesser extent, the results may be valid for certain

liquid samples and dilute solutions. However, in these cases observed behavior

may depart significantly from predictions based on the symmetry of the iso-

lated molecules. Sometimes these departures are, in fact, structurally revealing.

In the case of solids, especially ionic crystals and network solids, associa-

tions between individual molecules and ions may be considerable, and results

based on individual symmetries are least likely to be correct. Interaction be-

tween the oriented molecules or ions, and the regularity of the solid itself,

result in new kinds of symmetry relationships not found in isolated species.

An introduction to the symmetry of solids (space group symmetry) is beyond

the intent of this book, but can be found in introductory texts dealing with

crystallography or structure determination by x-ray diffraction. Nonetheless,

the principles we will explore in relation to problems of isolated molecular

species will provide a foundation for later study of applications based on crys-

tal symmetry.

1.1 Symmetry Operations and Elements

The symmetry of molecules is defined in terms of symmetry elements and

symmetry operations. A symmetry element is an imaginary geometrical entity

such as a line, plane, or point about which a symmetry operation can be per-

1



2 Chapter 1 Fundamental Concepts

formed. A symmetry operation is a movement of an object about a symme-
try element such that the object’s orientation and position before and after

the operation are indistinguishable. This means that the operation carries

every point of the object into an equivalent point or back into the identical

point.

Another way of determining whether a particular symmetry exists for an

object is to perform the following test. Observe the object, and then turn

away while someone performs the symmetry operation. When you turn around

and observe the object again, you should not be able to tell whether or not

the symmetry operation was actually performed. Note that the object need

not be in the identical position it had before the operation (although it may
be). It is only necessary that the position be indistinguishable and therefore

equivalent for the object to possess the particular symmetry.

To appreciate the difference between indistinguishable and identical po-

sitions, try the following exercise. Make a square cutout from stiff paper (e.g.,

card stock). Label the corners A, B, C, and D. Turn the labeled side down on

a piece of wood or heavy cardboard, and place a thumb tack in the middle,

so that the cutout spins freely. Check the identities of the corners in the start-

ing position, and then give the cutout a spin. Square it up so that the blank

side appears to be in the same orientation as it was before spinning. Now
check the identities of the corners. If they are the same as before, the posi-

tion is identical to the starting position. Otherwise, the position is simply in-

distinguishable. Note that without the labels, when viewed from the blank

side, you cannot tell an indistinguishable orientation from the identical (orig-

inal) one.

The symmetry of a molecule or ion can be described in terms of the com-

plete collection of symmetry operations it possesses. The total number of op-

erations may be as few as one or as many as infinity. Regardless of the num-

ber of operations, all will be examples of only five types. These are (1) a

seemingly trivial operation called identity
, (2) rotation (sometimes called

proper rotation ), (3) reflection, (4) inversion, and (5) a two-part operation

called rotation-reflection (or improper rotation). The elements about which

these operations are performed are, respectively, (1) the object itself, (2) a

line (rotation axis or proper axis), (3) a plane (reflection plane or mirror

plane), (4) a point (inversion center or center ofsymmetry), and (5) a line (im-

proper axis or alternating axis). All the corresponding symmetry elements will

pass through a common point at the center of the structure. For this reason,

the symmetry of isolated molecules and ions is called point group symmetry.

The simplest of all symmetry operations is identity, given the symbol E
(or I in older texts). Every object possesses identity. If it possesses no other

symmetry, the object is said to be asymmetric. As an operation, identity does

nothing to the molecule. It exists for every object, because the object itself

exists. The need for such an operation arises from the mathematical require-

ments of group theory, as we shall see later. Of more immediate concern,

identity is often the result of carrying out a particular operation successively

a certain number of times. In other words, if you keep doing the same oper-
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ation repeatedly, eventually you may bring the object back to the identical

(not simply equivalent) orientation from which you started. Normally, we will

want to designate the results of successive or compound operations by their

most direct single equivalents. Thus, if a series of repeated operations carries

the object back to its starting point, the result would be identified simply as

identity. This will become clearer as we examine the results of sequential sym-

metry operations throughout this section.

The operation of rotation is designated by the symbol Cn ,
indicating that

rotation about an axis by lirtn radians (360°ln) brings the object into an

equivalent position. The value n of a Cn rotation is the order of the rotation.

It is common to refer to the operation as an rc-fold rotation and to refer to

the corresponding element as an n-fold rotational axis. Sometimes the term

proper axis is used to refer to the element associated with rotation, distin-

guishing it from an improper axis, discussed later in this section. For exam-

ple, C4 indicates a fourfold rotation, by which rotation through 27r/4 = 90°

brings the object into an equivalent position, indistinguishable from the start-

ing configuration.

Figure 1.1 shows the effects of successive fourfold rotations about an axis

perpendicular to the plane of a planar MX4 molecule. The four identical X
atoms have been labeled XA ,

XB ,
Xc ,

and XD (i.e., XA = XB = Xc = XD ) so

that we can follow the results of each operation. Of course, without these la-

bels the atoms are indistinguishable, and the result of this (or any) symmetry

operation would be indistinguishable from the starting positions. In the fig-

ure we have arbitrarily defined the rotations in a clockwise manner, but we
could just as well have defined them in the opposite direction. It is only nec-

essary that we be consistent in defining successive rotations about the same

axis. Notice that carrying out two successive C4 rotations about the same axis

(which we could designate C4 ) has the same effect as a single C2 rotation

(27t/2 = 180°). Normally, the simpler notation, C2 ,
would be preferred. If we

continue with a third C4 rotation, we arrive at a new equivalent configuration,

which is the same as we would have obtained by a single fourfold rotation in

the opposite direction (here, counterclockwise). To avoid ambiguity, this is

designated C4 ,
meaning three successive fourfold rotations in our chosen di-

rection. In general, any Cn rotation carried out n —
1 times will have the same

effect as a Cn rotation in the opposite direction. If we designate a counter-

clockwise H-fold rotation as C then we may write in general C^
-1 = C

~

l

\

for example, C\ = C4
1 * Finally, if we perform a fourth C4 rotation, our MX4

molecule will be brought back into its starting (identical) position. Carrying

out four successive C4 operations about the same axis is equivalent to iden-

tity; that is, C 4 = E. In general, any Cn rotation carried out n times in succes-

sion will carry the object back into its original configuration; that is, C" = E.

Thus, as shown in Fig. 1.1, this single element, a C4 axis, is associated with

three unique symmetry operations: C4 ,
C 4 = C2 ,

C 4 = Cf 1
. The fourth op-

*For additional verification of this relationship, try demonstrating that C4 = C4
3 and C2 = C2

1

in Fig. 1.1.
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c\ = c2

XA
I

xd-m-xb

Xc

Iq

XD

xc-m-xa

XB

I
Q

xc
I

xb-m-xd

X,

xa-m-xc

XD

c 3 —t 4 _t 4

X,

xd-m-xb

Xc
Figure 1.1 Successive C4 clockwise rotations of a planar MX4 molecule about an

axis perpendicular to the plane of the molecule (XA = XB = Xc = XD ).

eration, C4 ,
is just a repeat of identity, E. The C4 and C4 rotations are often

described as two C4 rotations, where it is understood that one rotation is

taken in a clockwise sense, and the other is taken in a counterclockwise sense.

As this example shows, the symbol for carrying out m successive n-fold

rotations of 360°/

n

about a single axis is C™, where the result is the same as

a single rotation by (m/n)27r = {min)360°. To express the compound rotation

as its simplest equivalent, m and n are written such that the fraction min is in

its lowest form; for example, C4 = C2 ,
C% = C 3 , Cf = C4 . Furthermore, ro-

tations beyond full circle are expressed as the equivalent single rotation that

is less than 2tt = 360°. For example, C4 is a rotation by 450°, equivalent to a

90° rotation about the same axis; that is, C4 = C4 .

As we have seen, carrying out two C4 operations in succession about the

same axis is the same as C2 . In a formal sense, then, we may say that there
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also exists a C2 axis collinear with the C4 axis. These two axes (C4 and C2 )

are not the only rotational axes of MX4 . There are four other C2 axes in the

plane of the molecule, as shown in Fig. 1.2. These twofold axes are distin-

guished from the previously defined C2 axis by adding prime (') and double

prime (") to their symbols. In general, when two or more axes of the same n-

fold order exist, the axis or axes collinear with the highest-order axis or axes

in the system are designated without modification. All others of the same n-

fold order are distinguished by adding prime or double prime notations. In

the present case, the two C2 axes are defined so as to pass through more
atoms than the two C2 axes. Only two notations are needed for the four axes,

because both C2 axes belong to the same class, while the two C 2 axes belong

to a separate class. We will define the concept of class more generally later,

but for now note that the two C2 axes are geometrically equivalent to each

other and distinct from the C2 axes, which are likewise geometrically equiva-

lent to each other and distinct from the two C2 axes. In listing the complete

set of symmetry operations for a molecule, operations of the same class are

designated by a single notation preceded by a coefficient indicating the num-

ber of equivalent operations comprising the class. For square planar MX4 , the

rotational operations grouped by class are 2C4 (C4 and C 4 ), C2 (collinear with

C4), 2Ci, and 2 C'{.

The highest-order rotational axis an object possesses (i.e., the Cn axis for

which n is greatest) is called the principal axis of rotation. In some highly sym-

metrical systems (e.g., tetrahedron, octahedron), there may be more than one

principal axis, but most less symmetrical systems with rotational symmetry

will have only one. For planar MX4 ,
the principal axis is the C4 axis, about

which the operations of C4 and C4 are performed.

The operation of reflection defines bilateral symmetry about a plane,

called a mirror plane or reflection plane. Accordingly, if a molecule possesses

a mirror plane, it will be bisected by that plane. The symbol for the reflection

operation and its corresponding element (the mirror plane) is lowercase

sigma, a. If the operation of reflection exists, for any point a distance r along

a normal to the mirror plane there will be an equivalent point at a distance

—

r

(cf. Fig. 1.3).

Co

Co

X M X-

Figure 1.2 The C2 and C2 axes of a planar MX4

molecule.
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-r r

Figure 1.3 Two points, equidistant from a mirror plane

cr, related by reflection.

Figure 1.4 shows the five mirror planes found in a square plane, such as

a planar MX4 molecule. The five planes are grouped into three classes: crh ,

2 <rv ,
and 2crd . As with the C2 axes of planar MX4 ,

the class groupings of the

three kinds of mirror planes can be justified on geometrical grounds. Notice

that all mirror planes pass through a common point at the center of the mol-

ecule.

Figure 1.5 shows the effects of the reflection operations of these mirror

planes. As in Fig. 1.1, the four identical X atoms have been labeled XA ,
XB ,

Xc ,
and XD to show the effects of the operations. At first glance, the opera-

tion of crh appears to do nothing to the molecule, because it lies entirely

within the mirror plane. However, if each of the five atoms had a directional

property perpendicular to the plane (e.g., pz orbitals, or vibrational motions

of the atoms), the operation of ah would transform the property into the neg-

ative of itself. The effect of either crv operation is to leave two trans-related

Figure 1.4 Mirror planes of a square planar molecule MX4 .
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X atoms and the M atom unaffected and to transpose the other two trans-

related X atoms, which lie on either side of the vertical plane. The effect of

either ad operation is to exchange both pairs of X atoms across a dihedral

plane, leaving the M atom unaffected.

Note that for any mirror plane, performing two successive reflections

about the same plane brings the object back into its original (identical) con-

figuration; that is, aa = o2 = E. Thus, any mirror plane is associated with

only one operation, unlike a rotational axis, which may be a common element

for a series of operations.

The notation for the planes in planar MX4 is typical of the notation in

other systems with several mirror planes in various orientations. A ah plane

(horizontal mirror plane) is defined as perpendicular to the principal axis of

rotation. If no principal axis exists, ah is defined as the plane of the molecule.

A av plane (vertical mirror plane) and a ad plane (dihedral mirror plane) are

defined so as to contain a principal axis of rotation and to be perpendicular
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to a ah plane, if it exists. When both av and ad occur in the same system, the

distinction between the types is made by defining av to contain the greater

number of atoms or to contain a principal axis of a reference Cartesian co-

ordinate system (x or y axis). Any crd planes typically will contain bond angle

bisectors. In cases with only one type of vertical plane, either crv or ad may
be the conventional notation, depending on the total symmetry of the mole-

cule. For example, in the eclipsed conformation of ethane the three vertical

mirror planes, which intersect along the C3 axis of the molecule and contain

the two carbon atoms and two hydrogen atoms (one on each end), are con-

ventionally designated cry . In the staggered conformation of ethane the three

mirror planes, which also intersect along the C3 axis of the molecule and con-

tain the two carbon atoms and two hydrogen atoms, are conventionally des-

ignated crd . Fortunately, knowing whether a plane is to be called av or ad in

such cases is not crucial to applying symmetry arguments to physical prob-

lems. The conventions become apparent when using the standard tables that

list (among other things) all the symmetry operations for a particular system

(cf. Appendix A).

The operation of inversion is defined relative to the central point within

the molecule, through which all symmetry elements must pass. This is usually

taken as the origin of a Cartesian coordinate system. Relative to this system,

if inversion exists for the molecule, for every point with coordinates (x, y, z)

there will be an equivalent point at coordinates (—x, —y, —z). The central

point at (0, 0, 0), which is the element associated with the inversion operation,

is called an inversion center or center of symmetry. Viewed in a different way,

if inversion symmetry exists, a line drawn from any atom through the center

of the molecule will connect with an equivalent atom at an equal distance on

the other side of the molecule. The point at which all such connecting lines

intersect is the inversion center. Molecules that have inversion symmetry are

said to be centrosymmetric.

Both the element and the operation of inversion are given the symbol i.

Note that performing inversion twice in succession would bring every point

(x, y, z) back into itself, equivalent to identity; that is, ii = i
2 = E. Thus, like

a reflection plane, an inversion center has only one operation associated with

it. Furthermore, since the inversion center is always located at the central

point in the molecule, there can be only one inversion center in any system.

Planar MX4 is centrosymmetric. Relative to the starting configurations of

either Fig. 1.1 or Fig. 1.5, inversion interchanges the X atoms labeled XA and

Xc and also those labeled XB and XD . The central M atom, which is located

at the inversion center, is not affected. This example is somewhat restricted,

since all relations between equivalent points occur within the plane of the

molecule itself (the xy plane). Perhaps a better example, illustrating the

three-dimensional character of the inversion operation, is provided by an oc-

tahedral MX6 molecule (Fig. 1.6). Here the equivalent atoms lie equidistant

in positive and negative directions .along each of the three axes of the coor-

dinate system (i.e., ±x, ±y, ±z).
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Figure 1.6 Effect of inversion (/)

on an octahedral MXf, molecule

(XA = Xg = Xc = XD = XE = XF).

Another, even less restricted, example is ethane in the staggered config-

uration (Fig. 1.7). The inversion center is at the midpoint between the two

carbon atoms. The operation of inversion relates the two carbon atoms to

each other, and it relates pairs of hydrogen atoms on opposite ends of the

molecule. Note that there is no inversion center for ethane in the eclipsed

configuration. (Building models of the two conformations may be helpful to

see the difference.)

Rotation-reflection, as its name implies, is a compound operation. It is

also called improper rotation, to distinguish it from proper rotation, Cn .

Rotation-reflection consists of a proper rotation followed by a reflection in a

plane perpendicular to the axis of rotation. Actually, the order of performing

rotation and reflection in a plane perpendicular to the rotation axis can be re-

versed, giving the same result. Most practitioners, however, take their cue

from the name rotation-reflection and perform the two parts of the opera-

tion in that order. The axis of this operation is called an improper axis. Both

the operation and the element are given the symbol Sn ,
where n refers to the

initial rotation by 2irln = 360°!n.

The two parts of an improper rotation (C„ and crh) may be genuine op-

erations of the molecule in their own right, but often they are not. If both a

Cn rotation and a reflection perpendicular to the rotation (ah) do exist inde-

pendently, then the improper rotation Sn must also exist, since both its parts

are present. For example, in planar MX4 ,
both C4 and ah exist; therefore, the

operation S4 exists. The S4 improper axis in this case is collinear with the prin-

cipal proper rotational axis (C4). However, the presence of both C4 and crh is

not a sine qua non for the existence of S4 . A good example of this can be

found in a tetrahedral MX4 molecule, where each X-M-X angle bisector lies

along an S4 axis. Figure 1.8 shows the effects of the two steps of the S4 oper-

ation about one such axis. As before, the four equivalent X atoms have been

Figure 1.7 Ethane in the staggered configuration.

The inversion center is at the midpoint along the C-C
bond. Hydrogen atoms related by inversion are con-

nected by dotted lines, which intersect at the inversion

center. The two carbon atoms are also related by

inversion.
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XT

xc-m-xa

XB

Q
xc
T

XB M' XD

X

XT

XC

m-*x t

X

Figure 1.8 S4 improper rotation of a tetrahedral MX4

molecule (XA = XB = Xc = XD ). The improper axis is

perpendicular to the page. Rotation is arbitrarily taken in

a clockwise direction. Note that neither C4 nor ah are gen-

uine symmetry operations of tetrahedral MX4 .

labeled XA ,
XB ,

Xc ,
and XD so that the effects of the operations can be fol-

lowed. Notice that neither the C4 step nor the ah step by itself results in a

configuration that is indistinguishable (i.e., equivalent) to the configuration

prior to executing each operation. However, the net result of these two steps

in succession leads to a configuration which is, indeed, equivalent to the start-

ing configuration, if we disregard the artificial A, B, C, D labels.

As these two MX4 cases demonstrate, an S4 axis must exist when C4 and

c

j

h exist (e.g., planar MX4), but it may also exist if neither C4 nor crh exist (e.g.,

tetrahedral MXA As an exercise to see these kinds of possibilities in other

cases, you might build models of ethane in both the eclipsed and staggered

conformations and examine the effects of their improper rotations. Note that

in the eclipsed conformation there is a C3 axis collinear with the C-C bond

and a crh mirror plane that bisects the C-C bond and lies perpendicular to it.

Therefore, there must be an S3 axis collinear with the C3 axis. In the stag-

gered configuration there is no crh plane, although the C3 axis persists.

However, there is an S6 axis collinear with the C3 axis, even though neither

C6 nor ah exist.

Like proper rotations, a series of improper rotations can be performed

about the same axis. Figure 1.9 shows the results for successive S4 rotations

about an improper axis of tetrahedral MX4 . The direction of rotation (clock-

wise or counterclockwise) is unimportant, as long as successive rotation-re-

flection operations are carried out in the same direction. Note that succes-

sively carrying out two S4 operations has the effect of a single C2 operation

about the same axis; that is, S 4
= C2 . Thus the S4 axis is collinear with a C2

axis. Carrying out a third S4 operation, written S 4 ,
results in an equivalent con-

figuration, which also could have been reached by a single S4 operation in the

opposite direction (here, counterclockwise), shown as S 4
'

in Fig. 1.9. Keeping

with the chosen direction of rotation and to avoid ambiguity, the notation S 4
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M

X,

Xb-M^Xd

X

X,

si

XA-M^XC

M

-l

X,

X,

XD

M— X,

XB

Figure 1.9 Successive S4 operations on a tetra-

hedral MX4 molecule (XA = XB = Xc = XD ).

Rotations are clockwise, except 5 4
1

,
which is

equivalent to the clockwise operation S 4 .

is preferred. A fourth S4 operation results in the original configuration; that

is, Si = E. Consistent with the convention of designating operations by their

simplest notation, only S4 and S 4 are taken as improper rotations. The oper-

ations of S 4 and S 4 are equivalent to C2 and E, respectively, and are so des-

ignated. Thus, there are two S4 operations (S4 and = S4
1

) about this axis.

Figure 1.10 shows a tetrahedral molecule inscribed in a cube, a useful way
of presenting such molecules, as we shall see throughout this text. From this

we can see that the three equivalent S4 axes, which lie along the bisectors of

pairs of X-M-X angles, are collinear with the three C2 axes. These axes de-

fine the x, y, and z directions of a reference Cartesian coordinate system for a

tetrahedral MX4 molecule. In this highly symmetric system all three directions

are equivalent and indistinguishable, which implies that the three S4 improper

axes are geometrically indistinguishable from each other. Each improper axis

has two operations associated with it, S4 and Si = ST 1
. Consequently, the

three axes give rise to a total of six operations, which belong to a class des-

ignated 6S4 in tabular listings of the symmetry of a tetrahedral system.
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Figure 1.10 A tetrahedral MX4 mole-

cule inscribed in a cube. A C2 axis,

collinear with an *S4 axis, passes through

the centers of each pair of opposite

cube faces and through the center of

the molecule.

The lowest-order improper rotation that is not a simpler operation is S3 .

If we were to imagine a hypothetical Sx operation, this would be a “onefold”

rotation (i.e., E) followed by reflection. The first step does nothing, so the net

effect is simply the second step, the reflection. Thus, S\ = cr. If we were to

imagine a hypothetical S2 operation, this would be a C2 operation followed

by a crh operation. If we define the C2 axis as z, the effect of the first step

would be to convert every point (x, y, z) into an equivalent point at

(—x, ~y,z). The second step, a reflection across the xy plane, would trans-

pose every coordinate z into — z; that is, (—x, —y, z) -» (—x, -y, ~z). The net

effect of the two steps is to convert every point (x, y, z) into an equivalent

point at (—x, —y, — z). This is the single result of an inversion operation, so

S2 = i.

For improper axes with n> 3, each Sn element generates a series of Sn
operations. As we have seen with S4 ,

not all of these are uniquely improper

rotations (e.g., Si = C2 ,
S 4 = E). For a series of successive Sn operations, the

pattern of equivalences with simpler operations depends upon whether n is

even or odd. The following general relationships for S™ operations, where

n > 3 and m = 1, 2, ,
2n, may be useful at certain points:

1. If n is even, S" = E.

2. If n is odd, S" = cr and S%" = E.

3. If m is even, S™ = C™ when m < n and S™ = C™~n when m> n.

4. If Sn with even n exists, then Cn/2 exists.

5. If Sn with odd n exists, then both Cn and cr perpendicular to Cn exist.

1.2 Defining the Coordinate System

In many of our discussions it will be necessary to define a coordinate system

for a molecular species. In all cases we will adopt a standard Cartesian coor-

dinate system with axes x, y, and z defined by the so-called “right-hand rule.
”

By this convention, the positive directions of the three cardinal axes are de-

c2 ,
s4
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fined in the same sense as the thumb, index finger, and middle fingers of the

right hand when extended so that they are mutually perpendicular to each

other. Hold your right hand so that your thumb is pointing up, extend your

index finger as if pointing a gun, and bend your middle finger so that it is per-

pendicular to the other two. Your thumb, index finger, and middle finger now
correspond, respectively, to the z, x, and y directions of the Cartesian coor-

dinate system (cf. Fig. 1.11). Alternately, take the thumb, index finger, and

middle fingers as x, y, and z, respectively, in which case the palm must be ro-

tated face up to present the z axis in its usual perpendicular orientation (cf.

Fig. 1.11). Either mnemonic gives the same relative axis orientations. These

orientations are retained regardless of whether the system is shown with the

z axis pointing up or in some other orientation.

The orientation of a molecule’s bonds and bond angles relative to the co-

ordinate system is often defined on the basis of the symmetry of the mole-

cule. Generally, the following conventions are observed:

1. The origin of the coordinate system is located at the central atom or the

center of the molecule.

2. The z axis is collinear with the highest-order rotational axis (the princi-

pal axis). If there are several highest-order rotational axes, z is usually

taken as the axis passing through the greatest number of atoms. However,

for a tetrahedral molecule, the jc, y, and z axes are defined as collinear

with the three C2 axes (collinear with the three S4 axes).

3. For planar molecules, if the z axis as defined above is perpendicular to

the molecular plane, the x axis lies in the plane of the molecule and passes

through the greatest number of atoms (e.g., square planar XeF4 ). If the z

axis lies in the plane of the molecule, then the x axis stands perpendicu-

lar to the plane (e.g., bent H20).

4. For nonplanar molecules, once the z axis has been defined, the x axis is

usually chosen so that the xz plane contains as many atoms as possible.

If there are two or more such planes containing identical sets of atoms,

Figure 1.11 Two ways of assigning the thumb, index finger, and middle finger of the

right hand as mnemonics for the axis orientations of a Cartesian coordinate system.
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any one may be taken as the xz plane. Where a decision about the ori-

entation of the x axis cannot be made on this basis, the distinction be-

tween x and y is usually not important or is not generally fixed by con-

vention.

It is important to realize that these are conventions and not rules. When
comparing texts, you may occasionally find different choices of axis orienta-

tion for the same molecular system. In such cases, the quantitative and qual-

itative results based on symmetry arguments will be the same, varying only in

the labels used to describe them. Correlating the differences is generally

straightforward. At times it can be useful to choose a nonconventional ori-

entation of the coordinate system in order to emphasize particular relation-

ships between different compounds or different geometries of the same com-

pound.

1.3 Combining Symmetry Operations

We have seen that successive application of the same or different symmetry

operations sometimes has the same effect as a single operation. For example,

performing two S4 rotations in succession about the same axis has the net ef-

fect of a single C2 rotation. Likewise, performing a C4 rotation followed by a

dh reflection has by definition the same effect as the improper rotation S4 .

This kind of combination is called multiplication
,
although in this context the

term has a slightly different meaning than in the customary arithmetic sense.

The end result of carrying out different operations in succession may de-

pend on the order in which they are performed. In other words, combinations

of symmetry operations do not always commute. For this reason we need to

adopt a standard way of writing such multiplications so as to imply the order

of the operations. By convention, combinations of symmetry operations are

written in a right-to-left order. For example, BA means “do A first, then

If the result of BA is the same as could be achieved by a single operation X
,

then we write BA = X. Thus, S4S4 = C2 ,
and crhC4 = S4 .

As an example of noncommutative operations, consider a tetrahedron on

which we perform S4 followed by crv ,
and for comparison <xv followed by S4

(Fig. 1.12). The final configurations in both cases are indistinguishable, as

they must be for genuine symmetry operations, but the actual positions of the

four equivalent X atoms (labeled XA ,
XB ,

Xc ,
and XD) are not the same. To

get from one final configuration to the other we must perform a C2 rotation

about the same axis as the S4 improper rotation. Thus, S4(7V =£ avS4 ,
but rather

we see that S4av = C2crvS4 . The fact that commutation is not generally ob-

served does not mean that it is never observed. Indeed, many operations do

commute with one another; for example, C4ah = o-hC4 = S4 .

Let us examine the complete set of symmetry operations for a particular

molecule and determine all the binary combinations of the symmetry opera-

tions it possesses. Our example will be CBr2Cl2 ,
shown with its symmetry el-
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XD

Xc*-M—

X

A

s4 XB a
v

Xc XD

xb*-m—xd xa*-m-«xc

Xa Xb

s4

X,

xd-m-xb xt

X

xa

m-xd

Xc

Figure 1.12 The order of performing S4
and crv ,

shown here for a tetrahedral MX4

molecule, affects the result. The final po-

sitions in each case are not the same, but

they are related to each other by C2 .

ements in Fig. 1.13. The pairs of Br atoms and Cl atoms have been distin-

guished from one another by subscript a and b (Bra ,
Brb and Cla ,

Clb ) to fa-

cilitate following the effects of the operations. The complete set of symmetry

operations for the molecule consists of identity (£), a twofold principal axis

of rotation (C2), and two reflections about different mirror planes (crv and

crv). As shown in Fig. 1.13, the two Cl atoms lie in the av plane, and the two

Br atoms lie in the crv' plane. Rather than depict the effect of each operation

on the molecule, let us introduce a column matrix notation to indicate the po-

sitions of atoms before and after each operation. The carbon atom is unaf-

fected by any operation, because it lies at the center point of the system,

through which all symmetry elements pass. Only the Br and Cl atoms are

moved in any operation, so our matrices need only describe the positions of
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those atoms. Thus, a 1 X 4 matrix will suffice to describe the locations of

these four atoms. Each position in the 1 X 4 column matrix should be read as

a particular position in space, occupied by the designated atom. Using this no-

tation, we obtain the following results:

[E]X

Bra Bra

Brb Brb

Pa Cla

Clb Qcr

-

i

[C2]x

Bra Brb
Brb Bra

Cla Clb
cib Cla

Bra

i

—

£>

PQ

Brb Bra

Cla Cla

QcT*
i

Q

Bra Bra

Brb Brb
Cla Clb

1
Qa

7-

i
Cla

The symbols [E\, [C2], [crv], and [a'v] represent operator matrices, which act

on the original 1x4 matrices to convert them into the matrices that describe

the orientations after the symmetry operations.* We will examine the explicit

mathematical forms of these kinds of matrices in Chapter 2. At this point we
need only be concerned with the results for CBr2Cl2 . From the matrices

above, we see that (1) identity, £, leaves all atoms in their original positions;

(2) the twofold rotation, C2 ,
exchanges Br atoms with each other, and it ex-

changes Cl atoms with each other; (3) the reflection av ,
exchanges Br atoms

with each other, but leaves the Cl atoms in place; and (4) the second reflec-

tion, crl, exchanges Cl atoms, but leaves the Br atoms in place. Note that any

atom that lies on a particular symmetry element is unaffected by the associ-

ated operation.

Now let us consider the results for binary combinations of these opera-

tions, beginning with combinations in which each operation is performed

*Note that matrix equations are written in the usual mathematical way—that is, left-to-right no-

tation.
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twice. For each of these, performing the operation a second time brings the

molecule back into its original configuration, essentially undoing the result of

the first performance of the operation. Thus, we see EE = E
,
C2C2 = E

,

(jvav — E, and a'vcr'v = E. Among the mixed binary combinations, notice that

any combination with E, either as the first or second operation, gives the

same result as the nonidentity operation alone. This must be, since E really

does nothing to the molecule. Thus, we have C2E = EC2 = C2 ,
crvE = Ecrv =

cjv ,
a'vE = Ea'v = ct'v . The remaining mixed binary combinations are some-

what less obvious.

We can determine the net result of the product C2crv by the following

procedure. First perform crv on the original configuration to obtain an inter-

mediate configuration, and then perform C2 on this configuration to obtain

the final result. In matrix notation, the first step has the following effect:

Bra Brb

Brb Bra

Cla Cla

1
Qcr

- Qa
7-

From this configuration, we apply C2 to obtain the following effect:

[C2 ]
X

Brb U
PQ

Bra Brb

Cla Clb

Clb Cla

This final configuration is the same as could be achieved by a cr'v reflection

on the original configuration of the molecule:

Bra Bra

Brb Brb

Cla Clb

1
Q cr

-

i
Q

From this we see that C2 crv = or'v .

In the case of these two operations, reversing the order produces the

same final configuration. Applying the rotation first, we obtain

Bra Brb
Brb Bra

Cla Clb

_
C1b_ da

[C2 ]
X
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Following this with a crv reflection yields

Brb Bra

Bra Brb
cib Clb
Cla Cla

Once again, this is the same result as could have been achieved by a single cr'v

reflection. Since we reversed the order, this implies that combinations of C2

and crv commute; that is, C2 <xv = crvC2 = (r'v . In fact, all binary combinations

of the four operations of CBr2Cl2 are commutative. You should verify that

the following results are correct: (tvcf'v = a'vav = C2 and C2cr'v = cr'vC2 = crv .

The results we have just obtained can be summarized conveniently in a

multiplication table
,
such as the following:

E C2 crv cr'v

E
C2

(Tv

Vi

E
C2

o-v

(t'v

C2

E
(r'v

(Tv

(Tv

E
C2

cr'v

o-v

C2

E

Although all combinations of the present four operations commute, in gen-

eral this is not so, and it will be important to observe the order of combina-

tion. For multiplication tables of this type, the assumed order of combination

is row element (top) first, followed by column element (side). In our right-to-

left notation, the product BA = X would be read from a multiplication table

BcolumnArow = Bside^top X*

This multiplication table shows a number of features found in all such ta-

bles. For example, the first row of results duplicates the list of operations in

the header row, and the first column of results likewise duplicates the list of

operations in the label column. This must be so, because both involve com-

binations with E. Also, note that every row shows every operation once and

only once, as does each column. Furthermore, the order of resultant opera-

tions in every row is different from any other row. The same is true of every

column. Knowing these general features can greatly simplify constructing

multiplication tables for other cases.

1.4 Symmetry Point Groups

The complete set of symmetry operations exhibited by any molecule defines

a symmetry point group. As such, the set must satisfy the four requirements

of a mathematical group: closure
,
identity

;
associativity, and reciprocality. Let

us examine these requirements, continuing with the example of CBr2Cl2 and

the multiplication table we developed in Section 1 .3.
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Closure. If A and B are elements of the group G, and if = X
,
then A

is also in the group G. The term “element” is used in this context in its math-

ematical sense. The members of any mathematical group are the elements of

the group. In the case of symmetry groups, with which we are concerned here,

the group elements are the symmetry operations, not the symmetry elements.

The symmetry elements associated with the operations in general do not fit

the requirements for a mathematical group.

For symmetry groups, closure means that any combination of operations

must be equivalent to an operation that is also a member of the group.

Inspection of the multiplication table for the operations of CBr2Cl2 shows

that all binary combinations equal either E
,
C2 ,

crv ,
or cr'v . These four sym-

metry operations constitute the complete set of elements of a point group

called C2v . The multiplication table we developed in Section 1.3, then, is the

multiplication table for the group C2v . The number of operations (group ele-

ments) comprising the group defines the order of the group, designated h.

Thus, the order of the group C2v ,
is four (i.e., h = 4).

Identity. In any group G, there is an element E (the identity element),

which commutes with any other element of the group, X
,
such that EX =

XE = X. This requirement explains the need to define the symmetry opera-

tion of identity, which functions as the identity element for every symmetry

group. As the C2v multiplication table demonstrates, the identity operation

does indeed meet the requirements for the identity element of a group.

Associativity. The associative law of combination is valid for all combi-

nations of elements of the group. Thus, if A, B, C, and X are members of the

group G and C(BA) = X
,
then (CB)A = X

,
too. When carrying out sequen-

tial multiplications of operations, we may group the combinations into any

convenient pairs, so long as the order of combination is preserved. We must

preserve the order, because commutation is not generally valid; for example,

it may be that CBA ± BAC.
Using the C2v ,

multiplication table, we can demonstrate associativity for

any combination of three or more operations. For example, we can show that

C2(o-vcrv) = (C2crv)a'v . For the first combination we see

C2(o-va'v) = C2C2 = E

For the second combination we see

(G2ctv)ct v cryCFy E

Since both methods of association lead to the same result, they must be equal

to each other.

We should note that, contrary to generally observed behavior, all binary

combinations of the group C2v do commute. A limited number of other

symmetry groups are similarly composed entirely of commuting operations.

In the mathematics of groups, any group in which all combinations of
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elements commute is said to be Abelian. Therefore, the group C2v is an
Abelian group.

Reciprocality. Every element A of the group G has an inverse, A -1
,
such

that AA 1 = A~ XA = E. The meaning of the term “inverse” in this context is

not the same as the familiar algebraic sense, where jc and 1 /jc are the inverses

of each other. In the theory of groups, two elements are the inverses of each

other simply because their binary combination commutes and is equivalent to

identity. Some elements may be their own inverses (i.e., A = A~ x

). We have

seen some examples of symmetry operations that are their own inverses; for

example, C2C2 = E
,
era = E

,
ii = E

,
EE = E. Note that for the point group

C2v every operation is its own inverse.

Among the operations that constitute a point group, there generally ex-

ist smaller sets that also obey the four requirements of a group. These smaller

sets, which are groups in their own right, can be considered to be subgroups

of the larger group from which the elements were culled. In general, if g is

the order of a subgroup of a group whose order is h
,
then hlg = n

,
where n is

an integer. In other words, the order of any subgroup must be an integer di-

visor of the order of the parent group. However, it is not a requirement that

subgroups for all the allowed orders exist.

For C2v ,
where h = 4, only subgroups with orders g = 1 and g = 2 are

possible. In this simple case, subgroups of both exist. From the multiplication

table for C2v ,
we can identify the following subgroups, listed here with their

standard group notations and the elements comprising them:

Cl {£}

c2 IE, cy
Cs IE, crv \

Cs IE, ov')

Since every value of h has 1 as an integer divisor and every group must con-

tain the identity element, the group Ci? which consists of E only, is necessar-

ily a subgroup of any other group. Indeed, it is the only possible group with

order h — 1. A molecule that belongs to the group Q has no symmetry (other

than identity) and is therefore asymmetric. A molecule with only a C2 rota-

tional axis belongs to the point group C2 ,
and one with only a mirror plane

(cr) belongs to the point group Cs . In the list above, the group Cs {E, av }
and

the group Cs {
E

,
a'v]

differ only in the choice of which reflection plane of C2v

is taken to define them. Outside of that context, the point group Cs is defined

as the set
{
E

,
ah }, where the notation ah simply indicates the single reflection

plane of the group.

Note that the sets [E, C2 ,
<rv },

[E, C2 ,
a'v), or

{
E

,
av ,

a '

v)
are neither sub-

groups of C2v nor legitimate groups on their own. Aside from the fact that

these sets would have orders of g = 3 (not an integer divisor of the group or-

der h = 4), they do not show closure. In each case, combinations among the

nonidentity elements give elements outside the set.
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1.5 Point Groups of Molecules

The point group designations we have seen so far (C2v ,
C2 ,

Cs , Ci) are exam-

ples of the Schonflies notation. This labeling system is used by most chemists

and spectroscopists, and therefore we will use it throughout this text. By con-

trast, crystallographers prefer the Hermann-Mauguin notation, which is bet-

ter suited for designating the 32 crystallographic point groups and the space

groups used to describe crystal structures. Although we will not use

Hermann-Mauguin notation, as examples of their form, here are the desig-

nations that correspond to the Schonflies labels we have seen: C2v = mm,
Cs = m,C2 = 2, Ci = 1.

Table 1.1 lists specific point groups and families of point groups that are

important for classifying the symmetry of real molecules. As this shows, all

the chemically important point groups fall within one of four general cate-

gories: nonrotational, single-axis rotational
,
dihedral, and cubic. In the de-

scriptions of families of groups among the single-axis and dihedral categories,

n is the order of the principal axis, which can have a value from 2 to infinity,

Table 1.1 Common Point Groups and Their Principal Operations

Symbol Operations

Nonrotational Groups

Ci E (asymmetric)

c. E, (Th

Ci E,i

Single-Axis Groups (

n

= 2, 3, . . . ,
oo)

Cn F C C n ~ 1 c
. .

. , ^ n

CnV F C . . . ,
C"

_1
,
ncrv (n/2 crv and nl2 crd if « even)

Cnh E, Cn ,

/^n— 1 _
• • ' C' n •> CTh

Sin E, S2n ,

o 2n-l
• • • » ^2n

r̂ooy E, Coo, °°crv (noncentrosymmetric linear)

Dihedral Groups (n = 2, 3, . . . ,
oo)

D„ F C'-'m . .
.

,

cr\ «c2(±c„)
Dnd E C . . .

,

cr 1
, S2„, .... 5 2

2r\ nC2(±C„),

Dnh E, c„. . .
.

,

C" \ nC2(±C„), a*, nav

D ooh E, C„, Soo, o°C2(lCoo), cr^, 00crv ,
i (centrosymmetric linear)

Cubic Groups

Td E
, 4
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2 , 3
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2
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10C|, 15C2> t, 6510 , 65 ?0 ,

65,o , 65?o, 10S6 ,
10^ 6 ,

15cr (icosahedron, dodecahedron)
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depending on the specific group. As a practical matter, the value of n usually

is not greater than 8 for any real molecule one is likely to encounter, with the

important exceptions of linear molecules for which n = oo. Examples of mol-

ecules belonging to various specific point groups in each family are shown in

Fig. 1.14.

The listings in Table 1.1 for the single-axis and dihedral groups show se-

ries of rotational axes as C„, . .
.

,

C^
-1

. In keeping with the practice of indi-

cating operations as their simplest equivalents, some rotations in these series

may be represented more conventionally as equivalent lower-order rotations.

The same is true for series of improper rotations, as in the families of groups

S2n and Dnd ,
where certain members are equivalent to lower-order proper ro-

tations (e.g., Si = C4 ,
Sg = C2 ,

Sg = C4 ). Furthermore, in the families of

groups Cnh and Dnh ,
which have both rotational axes and a horizontal mirror

plane (ah ) perpendicular to them, there are necessarily corresponding im-

proper axes. Some of the improper rotations, however, are equivalent to

other operations. As we have seen, Si = ah and S2 = L Beyond these simple

equivalences, some combinations of rotation with reflection give improper ro-

tations and others give lower-order proper rotations. The equivalences for a

series of C

„

operations (m = 1, 2, . .
.

,

n - 1) combined with ah depends on

whether n and m are odd or even numbers. Specifically, if n is even, C™vh =
S„. If n is odd, C™crh = S™ when m is odd, and C™(rh = S™+n when m is

even. The details of these series, however, are not generally important for de-

termining the identity of a molecule’s point group or for applying symmetry

arguments to chemical problems. Complete listings of operations for all point

groups appear at the top of the standard character tables found in virtually

all books on chemical applications of group theory (see Appendix A). It is

generally more useful to understand the characteristic components that dis-

tinguish one family of groups from the others.

Nonrotational Groups. With their low orders (h = 1,2) and lack of an

axis of symmetry, the nonrotational groups represent the lowest symmetry

point groups. As previously noted, C\ is the point group of asymmetric mol-

ecules. The group Cs describes the symmetry of bilateral objects that lack any

symmetry other than E and ah . The external morphology of most mammals,

for example, is nominally bilateral, and therefore described by the point

group Cs. The trisubstituted borane shown in Fig. 1.14 is a molecular exam-

ple of Cs symmetry. The group Q, whose only nonidentity operation is in-

version (/), is not a commonly encountered group, since most molecules that

are centrosymmetric tend to have other symmetry, as well. The substituted

cyclobutane species shown in Fig. 1.14 would have Q symmetry.

Single-Axis Rotational Groups. The simplest family of these groups is C„,

which consists of the operations generated by a Cn rotation applied succes-

sively n times; that is, Cn ,
C%, . .

. , C„ = E. These groups are examples of an
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important type of groups, called cyclic groups. In general, a cyclic group of

order h is generated by taking a single element X through all its powers up
to and including Xh = E. All cyclic groups are Abelian, since all their multi-

plications commute. Although some molecules belong to one of the Cn point

groups (cf. Fig. 1.14), these groups are more frequently encountered because

of their utility in simplifying problems of applied group theory. They often

provide a more compact working group to solve problems for molecules that

actually have significantly more symmetry than just the series of Cn rotations.

All cyclic groups, including the Cn groups, have multiplication tables with

a characteristic form. As an illustration, consider the multiplication table for

the point group C4 ,
whose elements are the operations E

,
C4 ,

C4 = C2 ,
C4 .

C4 E C4 C2 Cl

E E C4 C2 Cl
c4 C4 C2 Cl E
C2 c2 Cl E C4

Cl Cl E C4 C2

The pattern of the products in each row, while unique, lists each element in

the same sequential order as every other row. It is as if the elements were on

a continuous scroll, which moves one position to the left with each successive

row. This takes the first element of a row and makes it the last element of the

next row. The columns scroll in a similar manner, moving elements up one

and bumping the first element to the last position with each succeeding col-

umn. As a result, same elements appear along right-to-left diagonals of the

table. Knowing this pattern makes it very easy to construct the multiplication

table for any cyclic group.

To the rotations of the corresponding Cn groups the family of Cnv groups

adds n vertical mirror planes, which intersect at the Cn axis. Molecular ex-

amples of these groups abound. The point group C2v ,
to which CBr2Cl2 be-

longs, is an example of this family. Other examples include NH3 (pyramidal,

C3v) and IF5 (square pyramidal, C4v ). (See Fig. 1.14.) The point group CooV ,

which has an infinite-fold Coo principal axis, is an important member of this

family. It is the point group of all noncentrosymmetric linear molecules (e.g.,

HC1, CIBeF).

To generate any of the Cnh groups, we need only add a horizontal mirror

plane to the series of Cn rotations of the appropriate cyclic Cn group. However,

since Cnah = Sn and C2ah = S2 = i, these groups also have n -fold improper

axes when n> 2, and they are centrosymmetric when n is even. A simple ex-

ample of this family is the C3h symmetry of trigonal planar boric acid, B(OH)3 ,

in which the B-O-H groups are presumed to be bent in the same direction

(cf. Fig. 1.14).

The groups of the S2n family are generated from 2n successive 2Ai-fold im-

proper rotations about a single axis. The last operation in the series is equiv-

alent to identity, S 2% = E. Since S2 = i and S 2n = Cn ,
inversion and proper ro-
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tations may be among the operations of the group. As the 2n notation im-

plies, only groups of this type with even-order principal improper axes exist.

The collection of operations generated by an odd-order Sn axis is the same as

that generated by the combination Cn and ah ,
which defines groups of the

type Cnh . Examples of molecules belonging to any of the S2n groups are not

common. An example of a molecule that would belong to the group S4 is

shown in Fig. 1.14.

Dihedral Groups. The dihedral groups have n twofold axes perpendicu-

lar to the principal w-fold axis. These C2 axes are called the dihedral axes.

Every symmetry operation of a point group also acts on the symmetry ele-

ments of the other operations. Therefore, the number and arrangement of the

dihedral axes are dictated by the n -fold order of the principal axis. For ex-

ample, suppose the principal axis of a dihedral group is C3 . Then, once we de-

fine one perpendicular C2 axis, the operations C3 and C 3 performed about

the principal axis will generate the other two C2 axes. Consistent with the C3

angle of rotation, all three C2 axes will be arranged at 120° from one another.

There are three families of dihedral groups: Dn ,
Dnd ,

and Dnh . The Dn

groups may be thought of as Cn groups to which n dihedral C2 operations

have been added. Unlike the Cn groups, the Dn groups are not cyclic. The
complex ion tris(ethylenediamine)cobalt (III), [Co(en) 3 ]

3+
,
in which bridging

ligands occupy c/s-related positions about the octahedrally coordinated cobalt

ion, is an example of D3 symmetry (cf. Fig. 1.14).

In the same manner, the Dnd groups are related by dihedral axes to the

Cnv groups. In Dnd groups the combination of rotational operations and ver-

tical mirror reflections (designated ad in these groups) generates a series of

S2n operations about an axis collinear with the principal axis. The staggered

conformation of ethane is an example of D

^

symmetry (cf. Fig. 1.14).

The Dnh family of groups bears the same kind of dihedral relationship to

the Cnh family. Like the corresponding single-axis groups, the Dnh groups in-

clude n -fold improper axes when n > 2 and are centrosymmetric when n is

even. Planar BC13 and the eclipsed conformation of ethane are examples of.

P3h symmetry. The group in which the principal axis is an infinite-fold

Coo, is an important member of this family. It is the group of all linear, cen-

trosymmetric molecules (e.g., Fl2 ,
C02 ).

The lowest members of the three dihedral families of groups, where
n — 2, are in one respect unique. They all have three mutually perpendicular

twofold axes, one of which is taken as the principal axis and hence the z axis

of the reference Cartesian coordinate system. In older works, the D2 desig-

nation was given the special symbol V. Therefore, the groups D2 ,
D2d ,

and
D2h were formerly identified as V, Vd ,

and Vh ,
respectively. This notation is

no longer used but may be encountered when consulting older references.

Cubic Groups. The cubic groups are associated with polyhedra that are

geometrically related to the cube (cf. Fig. 1.15). All are characterized by the
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Tetrahedron (Td )

Cube (Oh ) Octahedron (Oh )

Icosahedron (Ih ) Dodecahedron (Ih )

Figure 1.15 Polyhedra belonging to the

groups Td ,
Oh ,

and Ih .

presence of multiple, intersecting, high-order rotational axes. There are seven

groups of this type, three of which are frequently encountered. These three

(Td , Oh ,
Ih ) represent some of the most important geometries in chemistry.

The perfect tetrahedron defines the group Td ,
comprised of the following

24 operations , listed by classes: E
,
8C3 (= 4C3 ,

4

C

3 ), 3C2 ,
6S4 (= 3S4 ,

3S 4),

6crd . A threefold axis, generating the operations C3 and C 3 ,
emerges from

each of the four triangular faces of a tetrahedron (cf. Fig. 1.15). When a tetra-

hedral molecule is inscribed in a cube, as in Fig. 1 .10 ,
a C2 axis collinear with

the bisector of opposing bond angles emerges from each pair of opposite cube

faces. Three S4 axes, each associated with S4 and S 4 operations, are collinear

with these C2 axes. Any one of these can be taken as the z axis of a reference

Cartesian coordinate system. Also, when the tetrahedron is shown inscribed

in a cube, each of the four C3 axes passes through a pair of opposite corners

along a cube diagonal, collinear with an M-X bond (cf. Fig. 1.10). With

h = 24, Td represents one of the higher symmetries frequently encountered

in structural chemistry.

Two related cubic groups, T and Th ,
also have four intersecting threefold

axes. The group T is a subgroup of Td and consists of only the rotational op-

erations of the higher symmetry group. Molecules with T and Th are virtually

unknown. As we shall see later, the group T is sometimes used as a simpler

operating group to reduce the mathematical work of group theory applica-

tions for molecules that actually have Td symmetry. The complete sets of op-

erations for these groups may be found in Appendix A.
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The octahedron and cube (Fig. 1.15) both belong to the point group Oh ,

which is composed of the following 48 operations, grouped by class: E
,

8C3(= 4

C

3 ,
4C§), 6C4(= 3

C

4 ,
3C|), 6C2 ,

3C2 (
= 3C|), i, 6S4(= 3

S

4 ,
3S2),

8S6(= 4,56, 45|), 3crh(= axy ,
cryz ,

crxz ), 6 <tj. In the octahedron, a fourfold axis

emerges from each pair of opposite apices, whereas a threefold axis emerges

from each pair of opposite triangular faces. In the cube, a fourfold axis

emerges from each pair of opposite faces, whereas a threefold axis emerges

from each pair of opposite corners, extending the diagonals of the cube.

Although molecules with cubic symmetry are rare, octahedral species are

common among six-coordinated transition metal complexes. A rarely en-

countered subgroup of Oh is the rotational group O, whose operations are

simply the proper rotations that comprise Oh (see Appendix A). Like the Td
rotational subgroup T, O is sometimes used as a simpler operating group for

problems of molecules that actually have Oh symmetry.

Both the regular icosahedron and dodecahedron (Fig. 1.15) belong to the

point group Ih ,
composed of the following operations, listed by classes: E,

12

C

5 , 12C|, 20

C

3 , 15

C

2 ,
i, 12510 , 12Sf0 ,

20

S

6 , 15a-. With h = 120. it is the high-

est symmetry that one is likely to encounter (aside from CooV and D«>h ,
for

which h = °°). In the icosahedron (Fig. 1.15) a fivefold axis emerges from each

apex, while in the dodecahedron a fivefold axis emerges from the center of

each face. The icosahedral ion B 12Hf^* is an example of an Ih species. There

are currently no known examples of molecules with regular dodecahedral Ih

symmetry.* However, buckminsterfullerene, C60 ,
is an example of an even

higher-order polyhedron with Ih symmetry (Fig. 1.16). This soccer-ball-shaped

carbon species consists of a spherical net composed of five-membered rings

surrounded by six-membered rings. A fivefold rotational axis emerges from

each pentagonal face, and a threefold axis emerges from each hexagonal face.

Note that there are no sixfold axes, because each hexagon is surrounded al-

ternately by three pentagons and three hexagons.

As with the other cubic groups, Ih has a purely rotational subgroup, des-

ignated I. The complete set of operations of this group is listed in Appendix
A. This is not an important group for considerations of molecular symmetry.

Figure 1.16 Buckminsterfullerene (“bucky ball”),

C60 ,
an example of Ih symmetry.

*Dodecahedral eight-coordinate (CN8) complexes, such as [Mo(CN)8]

4 ~ and [ZrF8]

4 ^, actually

have D2d symmetry. [See J. L. Hoard and J. V. Silverton, Inorg. Chem. 1963, 2, 235; and D. R.

Sears and J. H. Burns, J. Chem. Phys. 1964, 41, 3478.]
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1.6 Systematic Point Group Classification

Identifying the point group of a molecule is a necessary first step for almost

all applications of group theory in chemistry. Given that the number of oper-

ations can be as high as 120 or even infinity, identifying a molecule’s point

group by finding all the symmetry operations is not a practical approach.

Fortunately, it is also not necessary. As we have seen, many operations are

associated with a common symmetry element (e.g., C3 requires C 3 about the

same axis); the presence of certain operations in combination requires the

presence of other operations (e.g., C3 and crh require S3); and each group can

be seen as a member of a family of groups with a characteristic set of sym-

metry elements (e.g., the dihedral groups all have a single n -fold principal axis

and n twofold axes perpendicular). The task, then, is reduced to finding the

essential symmetry elements of the molecule that classify its point group un-

equivocally.

The best way to determine a molecule’s point group is to look for key

symmetry elements in a prescribed sequence. Such a sequence is illustrated

by the “inverted tree” flow chart shown in Fig. 1.17. In using the flow chart,

look sequentially for the symmetries indicated on the perpendicular lines, fol-

lowing the right or left branches according to whether a particular kind of

symmetry is present (“Yes”) or absent (“No”).

The sequence begins by determining if the molecule has one of the read-

ily identifiable structures associated with certaiiP‘special groups.” These are

noncentrosymmetric linear CooV (e.g., HC1, FBeCl), centrosymmetric linear

D ooh (e.g., C02 ,
BeCl2), tetrahedral Td (e.g., CH4 ,

SO|
_

), octahedral Oh (e.g.,

SF6 ,
[Fe(CN)6]

4-
), and icosahedral or other polyhedral Ih (e.g., B 12Hi^, C60).

Note that the geometry must be perfect for a molecule to belong to one of

these groups. For example, while it is common in chemical discussions to re-

fer to the shapes of CH4 ,
CH3C1, CH2C12 ,

CHC13 ,
and CC14 as “tetrahedral,”

only CH4 and CC14 have the complete set of symmetry operations that define

Td . In this strict sense, the others are not truly tetrahedral. Both CH3C1 and

CHC13 belong to the group C3v ,
and CH2C12 belongs to the group C2v .

If it i^apparent that the molecule is not one of these readily identifiable

structuresrlook for a principal axis of rotation. If there is no axis of rotation

whatsoever, the molecule must belong to one of the low-symmetry nonrota-

tional groups—that is, Cs ,
Ch or C1 . The specific group from among these can

be determined by first looking for a mirror plane (often the plane of the mol-

ecule itself), which, if found, indicates Cs . If there is no mirror plane, look for

inversion symmetry, which, if found, indicates Q. The absence of both re-

flection and inversion indicates Cl9 the point group of an asymmetric species.

Often the molecule will have one or more rotational axes. If so, it is nec-

essary to identify the highest-order rotational axis, the principal axis, which

will be taken as the z axis of the coordinate system (cf. Section 1.2). If a prin-

cipal axis exists, it will interrelate the greatest number of atoms or groups of

atoms, which will define one or more parallel planes (not necessarily mirror
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Figure 1.17 Flow chart for systematically determining the point group of a molecule.

planes) perpendicular to the axis of rotation. The number of equivalent atoms

lying in any such plane will equal the order of the principal axis of rotation

(i.e., n value of Cn ). If the molecule happens to belong to D2 ,
D2d ,

or D2h ,
the

highest-order axes will be three mutually perpendicular twofold axes. In these

cases, choose as the principal axis the C2 axis passing through the largest

number of atoms.

Regardless of its order, once a principal axis has been identified, deter-

mine whether the molecule belongs either to one of the dihedral groups (

D

groups) orto one of the single-axis rotational groups (C groups). To make the

distinction^ook for n twofold axes (dihedral axes) perpendicular to the prin-

cipal Cn axis (indicated as “nC2 s 1 Cn
” on the flow chart, Fig. 1.17). These

must lie in a common plane, which may or may not be a mirror plane of the

molecule. For example, if the principal axis is C3 ,
look for three C2 axes at

120° to each other in a plane perpendicular to the C3 axis. The dihedral axes

must intersect at the center of the molecule, but they are not required to pass

through any of the atoms (although they often do).
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If there are n ‘twofold axes perpendicular to Cn ,
then the molecule be-

longs to one of the dihedral groups. To decide which one, begin brooking
for a horizontal mirror plane (cr^), which must contain the n twofold axes. If

one is found, the molecule belongs to the Dnh group corresponding to the

value of n for the principal axis. For example, if Q is the principal axis, the

group is D3h . If no horizontal mirror plane existsnook for n vertical mirror

planes intersecting at the principal axis (indicated as
unad s” on the flow

chart. Fig. 1.17). If found, these mirror planes indicate the Dnd group corre-

sponding to the value of n for the principal axis. It is crucial to look for a hor-

izontal mirror plane before looking for these ad planes, because both Dnh and

Dnd groups have vertical mirror planes, which therefore provide no basis for

distinction. If neither horizontal nor vertical mirror planes are found, then by

default the appropriate dihedral group is Dn .

If the molecule has a principal axis but lacks n dihedral axes, it belongs

to one of the single-axis groups. To distinguish between the possible groups,

begin as with the dihedral groups brooking for a horizontal mirror plane

{crh ). If one is found, the molecule belongs to a Cnh group, where the value

of n corresponds to the order of the principal axis. Thus, if the principal axis

is C3 ,
the group is C3h . If there is no horizontal mirror plane^look for n ver-

tical mirror planes intersecting at the principal axis (indicated “/rcrv’s” on the

flow chart, Fig. 1.17). If found, these mirror planes indicate the Cnv group ap-

propriate to the order of the Cn principal axis. If there are no mirror planes,

the molecule belongs to a C, or &>„ group. As a practical matter, it is more
likely to be the former than the latter. To decide, look for an improper axis

S2n collinear with the principal Cn axis. With the possible exception of an in-

version center (e.g., if the group is S6), the Cn and S2n axes should be the only

symmetry elements (other than identity) if the molecule belongs to one of the

S2n groups. If the molecule lacks both mirror planes and an improper rota-

tion axis, it belongs to one of the cyclic, purely rotational groups, Cn .

Among the single-axis groups, the Cnh groups are not frequently en-

countered. As previously noted, boric acid is a simple example of C3h sym-

metry (cf. Fig. 1.14). By contrast, the Cnv groups are probably the most fre -

quently encountered single-axis groups, and with practice they are among the

easiest to identify quickly. Both Cn and S2n groups are so infrequently en-

countered among simple molecules that properly assigning a molecule that

genuinely does belong to one of these groups can be tricky. As the S4 exam-

ple in Fig. 1.14 suggests, molecules with S2n symmetry tend to have somewhat

exotic structures. As an operating principle, one is well advised to double

check that certain elements have not been missed when the procedure seems

to suggest one of these rare groups. A well-known medical aphorism, offer-

ing sage advice to physicians attempting to reach a diagnosis from a set of

symptoms, is equally relevant to the process of determining a molecule’s point

group: “When you hear hoof beats, think horses, not zebras.”

As an illustration of the procedure, let us consider the systematic classi-

fication of the point group of PF5 (Fig. 1.18). You may find it helpful to refer
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to a physical model as we search for the key symmetry elements. At the start,

we recognize that PF5 is a trigonal bipyramid, and therefore not a shape be-

longing to one of the “special groups” (e.g., linear, tetrahedral, octahedral,

icosahedral). Therefore, we begin our systematic search for key symmetry el-

ements by looking for a principal axis of rotation. Either from Fig. 1.18 or a

model we may note that there are two symmetrically distinct kinds of bonds

in PF5 . Two bonds (the axial positions) lie 180° from each other and 90° from

the three other kinds of bonds (the equatorial positions). The three equator-

ial bonds lie 120° from each other within a plane. We can define a rotational

axis, collinear with the axial bonds, that relates the three equatorial bonds by

the series of rotations C3 , C 3 ,
and C 3 = E. By contrast, taking any one of the

equatorial bonds as an axis relates only the two axial bonds by the series of

rotations C2 and C\ = E. Thus, the axial bonds lie along a C3 axis, and the

equatorial bonds lie along C2 axes. There are no other axes of rotation, so the

C3 is the highest-order rotational axis of the molecule, which identifies it as

the principal axis. We now know that PF5 belongs to one of the rotational

groups.

We next determine if the group is single-axis (a C group) or dihedral (a

D group). To decide, we look for the three C2 axes perpendicular to the C3

principal axis (nC2 X Cn ,
where n = 3), the dihedral axes required of a D

group. We have already noted that the three equatorial bonds lie along C2

axes, so PF5 must belong to one of the D groups (i.e., D3h ,
D3d ,

or D3 ).

To decide among the possible D groups, we look for a horizontal mirror

plane (ah ), perpendicular to the C3 principal axis. The plane of the three

equatorial bonds is a ah plane. Its reflection operation interchanges the two

axial positions and reflects the three equatorial positions into themselves. At
this point we can conclude that the point group is D3h .

In determining that PF5 belongs to the point group D3h ,
we have ignored

some of the other symmetry elements of the group. The classification proce-

dure only concentrates on finding the characteristic elements that uniquely

define a group. For example, we have not sought out the three vertical mir-

ror planes (ctv) that are among the elements whose operations comprise the

D3h group. Each of the <xv planes passes through the two axial positions and

one of the equatorial positions of the trigonal bipyramid. The operation re-

flects these three positions into themselves, and it interchanges the other two

equatorial positions, which lie on opposite sides of the plane. These mirror

planes are not unique to D3h . If we had found these planes before finding the

ah plane, we might have incorrectly assigned the point group as D3dy which

also has vertical mirror planes. In other words, the order of carrying out the

classification procedure is critical to a correct determination. We might also

F

F Figure 1.18 Trigonal bipyramidal structure of PF5 .
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note that D3h has an S3 axis collinear with the C3 axis. This must be so, be-

cause both C3 and crh exist, and ahC3 = S3 by definition. Our classification

procedure does not require finding the S3 axis, since the point group in this

case is determined by the presences of other necessary elements.

Grouped by classes, the complete set of symmetry operations that com-

prise the point group D3h is E, 2

C

3 (= C3 , Cf), 3C2 , ah , 2S3 (= S3 , Sf), 3crv .

There are 12 operations in this list, so the group order is h = 12. The 12 op-

erations are associated with 10 symmetry elements: the object itself for E\ the

C3 proper axis for the C3 and C3 rotations; the three dihedral C2 axes, one

for each C2 rotation; the horizontal mirror plane for the crh reflection; the S3

improper axis (collinear with the C3 axis) for the S3 and S3 operations; and

the three vertical mirror planes for the three crv reflections.

The flow chart of Fig. 1.17 is a convenient mnemonic for learning sys-

tematic point group classification. However, with practice, reference to the

chart should become unnecessary.* Indeed, chemists experienced in symme-
try classification often can determine the point group of a molecule almost in-

stantly, even without needing to carry out a sequential analysis. In part, this

is possible because certain structure patterns recur frequently and become as-

sociated in the mind with their appropriate point groups.

The three conformations of ethane exemplify one type of recurring geo-

metrical pattern. To see the pattern, imagine the two sets of three hydrogen

atoms on each end of ethane as two triangles separated by a distance (cf. Fig.

1.19). Looking down the principal axis (C3), we find that the point group is

D3h when the triangles are aligned (eclipsed) and D3d when they are perfectly

staggered. We note further that if the triangles are slightly misaligned (skewed

configuration), the vertical mirror plane symmetry is destroyed and the point

Figure 1.19 Representations of the three confor-

mations of ethane as two triangles separated along

the C3 axis. The corresponding Newman projec-

tions are shown on the right.

*To help develop your facility with systematic classification, you might try verifying the point

group assignments given for the molecules shown in Fig. 1.14.
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group is D? (cf. Fig. 1.19).* We can generalize these relationships for any mol-

ecule that can be represented as two regular polygons separated along a prin-

cipal axis of rotation. When the polygons are eclipsed, the group is Dnh \
when

they are perfectly staggered, it is Dnd \
and when they are skewed, it is Dn . As

a test of this, you might want to make a model of ferrocene, Fe(C5H5)2 ,
and

systematically determine the point groups of the configurations resulting

from the three types of ring alignment.

1.7 Optical Activity and Symmetry

Many molecules can exist in either of two optically active isomers, called

enantiomers. When plane-polarized light is passed through separate samples

of enantiomers, one (the dextrorotatory isomer) will cause clockwise rotation

of the polarity, and the other (the levorotatory isomer) will cause counter-

clockwise rotation of the polarity. Compounds that can exist as enantiomeric

pairs are called chiral; and from the standpoint of symmetry considerations,

they are said to be dissymmetric. Dissymmetric is not the same as asymmet-

ric (despite what some dictionaries may suggest). Asymmetric means the ab-

sence of any symmetry other than identity. In contrast, dissymmetric mole-

cules may have significant, albeit limited, symmetry. Asymmetric molecules

are simply the least symmetric of dissymmetric molecules.

The hallmark of enantiomers is that they are nonsuperimposable mirror

images of each other. Figure 1.20 shows two examples of such dissymmetric

enantiomer pairs. As expected, asymmetric CHBrCIF has two nonsuperim-

posable isomers and therefore is chiral. However, the complex ion [Co(en)3 ]

3+

also exists as two enantiomers but has significant symmetry, belonging to

H

Cl

H

Cl

Co Figure 1.20 Enantiomers of dissym-

metric species. CHFCIBr (point

group Ci) is asymmetric, but

[Co(en)3]
3+

(point group Z)3 ) is not.

*You may want to build models of all three conformers to verify these point group assignments.

The dihedral axes can be difficult to see for the staggered and skewed configurations. Looking
at the Newman projections (cf. Fig. 1.19), you can find the C2 axes as bisectors of the angles be-

tween pairs of C-H bonds on the “front” and “back” of the projection.
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Figure 1.21 The structure of hydrogen per-

oxide (point group C2).

point group D3 . As this illustrates, chiral molecules may have some symme-
try. In general, the restriction is that a molecule is dissymmetric and may be

chiral either if it is asymmetric or if it has no other symmetry than proper ro-

tation. The point group D3 satisfies the latter criterion, since the group con-

sists of the operations E, 2

C

3 ,
3C2 . In light of these restrictions, only mole-

cules belonging to certain point groups are candidates for chirality. The
possible chiral groups are Cx (asymmetric), Cn ,

and Z)„.*

The traditional test of chirality is to draw or build models of the suspect

species to see if nonsuperimposable, mirror-image isomers exist. As a practi-

cal matter, this exercise need only be carried out if the molecule belongs to

one of the possibly chiral point groups. In most cases, molecules belonging to

any of these groups will be chiral, but in rare cases enantiomeric pairs cannot

actually exist. For example, hydrogen peroxide, H202 ,
whose structure is

shown in Fig. 1.21, belongs to the point group C2 but is not optically active.

While it is possible to build two models that are not superimposable, the dis-

tinction does not exist for the actual molecular structure, because relatively

free rotation about the 0-0 bond continuously interconverts the two hypo-

thetical enantiomers. Flere, stereochemical nonrigidity precludes chirality.

Problems

1.1 For the following molecules, which are shown in Fig. 1.14, sketch the locations

of all the symmetry elements, and list all operations associated with each sym-

metry element: (a) NH3 (C3v), (b) IF5 (C4v), (c) B(OH)3 (C3„), (d) BC13 (D3h ),

(e) C2H6 in the staggered conformation (D3d).

1.2 Given the set of operations [E, C4 ,
crh ), determine the other operations that must

be present to form a complete point group. [Hint: Consider all the products of

the given elements with themselves and with each other.] Identify the point

group for the complete set of operations. What is the order of the group?

1.3 Aside from the trivial group Ci, the point group formed from the complete set

of operations from Problem 1.2 has six subgroups. Identify the subgroups and

give the order of each.

*The rotational cubic groups T, O ,
and I can also be added to this list, but no molecules with

these symmetries are likely to be encountered.
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1.4 Cyclic groups are formed by taking the series of powers on a single element up

to the order of the group, such that G = [X, X2
, . .

.

,

Xh = E\. Taking each of the

following operations as the base element of a cyclic group, determine the series

of all operations that constitutes the group, identify the group, and develop its

multiplication table: (a) C3 ,
(b) C6 ,

(c) S4 . Identify all the subgroups of these

cyclic groups.

1.5 Develop the multiplication table for the group C2h, which consists of the opera-

tions E, C2 ,
i, and ah .

[Hint: Determine the effects of the operations on an arbi-

trary point whose initial coordinates are x, y, z.] Is this group Abelian?

1.6 Determine the point group of each of the following shapes:

(a) © (b) #

(d) 0 (e) <S>

(g) ^ (h)^
(j) a Styrofoam coffee cup (no decoration)

(k) a ceramic coffee mug with handle (no decoration)

(
l
) a dumbbell (no markings)

(m) a tennis ball, including the seams (one color, no markings)

(n) an airplane propeller with four blades

(o) a soccer ball, including the seams (one color, no markings)

1.7 Determine the point group of each of the following molecules or ions, whose

shapes can be determined by use of valence-shell electron-pair repulsion

(VSEPR) theory: (a) SeF5
“, (b) ClFj, (c) AsF 4 ,

(d) XeF2 ,
(e) XeF4 ,

(f) BeF 3 ,

(g) SiFj?“, (h) OCN“, (i) AsClJ, (j) OSF4 ,
(k) (ram-FNNF, ( 1 ) cis-FNNF, (m)

C1SSC1 (nonplanar), (n) S2O 3

-
,
(o) trims-(OH )4XeOi.

1.8 Consider the following ideal geometries for MX„ molecules (n = 3-6) and the

distortions described for each. What are the point groups of the ideal geometry

and the distorted geometry?

(a) MX3 trigonal planar distorted by lifting the M atom out of the plane.

(b) MX4 tetrahedral distorted by slightly flattening the molecule along one of

the C2 axes.

(c) MX4 square planar distorted by equally elongating two trans-related M-X
bonds.

(d) MX5 trigonal bipyramidal distorted by equally elongating or shortening the

two axial bonds.

(e) MX5 trigonal bipyramidal distorted by elongating one of the equatorial

bonds.

(f) MX5 trigonal bipyramidal distorted by elongating one of the equatorial bonds

and shortening one of the axial bonds (or vice versa).

(C) £

(f)

(i) $
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(g) MX6 octahedral distorted by elongating two trans-related bonds.

(h) MX6 octahedral distorted by slightly closing the 90° angles between the three

M-X bonds in both sets of ds-related positions.

1.9 Identify the point group for each of the following Fe3+ complexes with the biden-

tate oxalate ligand (ox = C2Oi~ ). Where allowed by the point group, determine

which complexes are chiral. [Hint: Use models to help identify the point group

and to verify the existence of enantiomers.]

(a) tris(oxalato)ferrate(III), [Fe(ox)3]

3_

(b) rra«s-dichlorobis(oxalato)ferrate(III), [FeCl2(ox)2]
3_

(c) d5-dichlorobis(oxalato)ferrate(III), [FeCl2(ox)2]

3 ~

(d) ds-dibromo-fra/?s-dichlorooxalatoferrate(III), [FeBr2Cl2ox]
3 ^

(e) ds-dibromodichlorooxalatoferrate(III), [FeBr2Cl2ox]
3_

.

1.10 Identify the point group of each of the following structures.
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Identify the point group of each of the following cyclopentane derivatives in the

configurations shown.
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F F F

F F

1.12 Identify the point group of each of the following structures.

(c) (d)



Problems 39



CHAPTER 2

Representations of Groups

As we saw in Chapter 1, describing a molecule’s symmetry in terms of sym-

metry operations conforms with the requirements of a mathematical group.

This allows us to apply mathematical techniques of group theory to describe

and analyze some of the molecule’s chemically interesting properties. The ap-

proach we take, in general, is to define a set of imagined vectors on the mol-

ecule’s various atoms to represent the properties of interest (e.g., atomic or-

bitals, hybrid orbitals, vibrational motions). These vectors, like the properties

they represent, may be related to one another in specific ways through the ef-

fects of the various symmetry operations that comprise the molecule’s point

group. The ways in which the vectors behave as a result of the operations

yield a symmetry description of the property of interest, which in turn facili-

tates defining the property in quantum mechanical terms.

A set of vectors, such as we have just described, can be used to elucidate

a molecule’s physical properties because it forms the basis for a mathemati-

cal representation of the point group. Consequently, in order to apply sym-

metry arguments to the solution of molecular problems, we need an under-

standing of mathematical representations of groups—their construction,

meaning, and manipulation. Our focus in this text is on applying group the-

ory, and not on rigorous mathematical development. Therefore, the approach

we will take will be decidedly nonrigorous. We will develop the concept of

representations and the techniques for manipulating them through specific

examples that illustrate fundamental principles and general results. Proofs of

the theorems and their consequential general results can be found in more

advanced texts.

2.1 Irreducible Representations

For our purposes, we may define a representation of a group as a set of sym-

bols that will satisfy the multiplication table for the group. The symbols them-

selves are called the characters of therepresentation.* * In the case of symme-

try point groups, with which we are concerned, the characters may be positive

or negative integers, numeric values of certain trigonometric functions, imag-

inary numbers involving the integer i
= V— I, or even square matrices. By

*The term “character” can have a double meaning. As we shall see, most often the characters of

a representation are characters of certain matrices.

40
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Table 2.1 Multiplication Table for C2v

way of introduction, we will first consider representations whose characters

are simply positive or negative integers. Recall the multiplication table we de-

veloped for C2v ,
in Section 1.3, shown here as Table 2.1. If we make a set of

substitutions for the four operations of the group such that the substituted

characters also obey the general relationships of this multiplication table,

then the set of characters will be a representation of C2v . We can find one

such representation by making the seemingly trivial substitution of the inte-

ger 1 for each of the four operations; that is, E — 1, C2 — 1, erv = 1, cr'v = 1.

With these substitutions, the multiplication table becomes

c2v E = 1 c2 = 1 crv = 1 cr'v = 1

E= 1 1 1 1 1

H
i—* 1 1 1 1

(Tv = 1 1 1 1 1

crl = 1 1 1 1 1

As uninteresting and obvious as these multiplication results are, they nonethe-

less do obey the same combinational relationships of the group elements them-

selves, albeit with extreme redundancy. Thus, the set of substitutions of 1 for

every operation is a genuine representation of the group. If this is true for C2v ,

we can see that it would be valid for any other point group, regardless of its

order or the operations of which it is composed. Indeed, the set of all 1 char-

acters makes the most fundamental representation for any point group. This is

called the totally symmetric representation. In the case of the group C2v ,
the to-

tally symmetric representation is designated by the symbol A 1 .

Somewhat less trivial substitutions, composed of both positive and nega-

tive values of the integer 1, can be used to construct other representations of

C2v . One set that obeys the relations of the multiplication table is

E= 1, C2 = l, crv — 1 ,
<=-

1

For this set the multiplication table takes on the following form:

c2v E = 1 C2 = 1 (Tv = -1 (T'v=
~

1

E= 1 1 1 -1 -1

C2 = 1 1 1 -1 -1

crv = — 1 -1 -1 1 1

<t'v
= — 1 -1 -1 1 1
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Although the connection between the products and the original operations is

sometimes ambiguous (e.g., an answer of +1 could mean either E or C2), the

results are nonetheless consistent with the original multiplication table (Table

2.1). Thus, the set of characters 1, 1, —1, —1 is a representation of C2v . This

representation is given the symbol A2 . Other sets of characters that satisfy the

requirements of the multiplication table (which you should verify) and there-

fore form valid representations are

E l, C2 1 CTy 1, (T y 1

E= 1, C2 = —
1, cry = -1, (t'v = 1

These representations of C2v are designated B1 and B2 ,
respectively.

These four sets of ±1 characters are the only sets that meet the criterion

of conformability with the multiplication table of the group. For example,

suppose we try the set

E=— 1, C2 = 1, CTV = 1, CTy — 1

With these substitutions the multiplication table takes on the form

C2v E= -1 C2 = l crv = 1 cr'v
= -1

E= -1 1 -1 -1 1

c2 = i -1 1 1 -1

CTV = 1 -1 1 1 -1
(j'

v
= “I 1 -1 -1 1

This is not the same as the results of the multiplication table for the original

operations of C2v . For example, we know that EE = E, but with E = —1 the

table above suggests that E combines with itself to give either C2 or crv ,
both

of which have been substituted by +1. Other discrepancies of this sort occur

throughout this table and show that the set -1, 1, 1, -1 is not a genuine rep-

resentation of C2v .

If we attempt to substitute other integers, say 0 or ±2, the results also will

not satisfy the requirements of the multiplication table. However, for other

point groups, representations with these characters may be possible. For C2v

the representations we have found (viz., A 1 ,
A2 , Bu B2) are the simplest and

most fundamental representations of C2v . For this reason they are called ir-

reducible representations of the group.

We can list the characters and related properties of the irreducible rep-

resentations of C2v in a tabular form, called a character table. A simplified

character table, based on the representations we have just developed, would

look like Table 2.2. Each row lists the individual character of each operation

for the representation named in the left-hand column. The labels for the ir-

reducible representations (A t ,
A2 ,

Bu and B2 ) are the standard Mulliken sym-

bolsr Their form and meaning are explained in Section 2.4.
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Table 2.2 Partial Character Table for C2v

C2v E c2 (Tv (Tv

Ai 1 1 1 1

a2 1 1 -1 -1

Bt 1 -1 ' 1 -1

b2 1 -1 -1 1

2.2 Unit Vector Transformations

In applying group theory to chemical problems we will need to use vector

representations for molecular properties. Therefore, we now turn our atten-

tion to the behavior of vectors—particularly unit vectors—when subjected to

the operations of the molecule’s point group. For illustration, we will continue

to use C2y For our purposes, a unit vector is designated by an arrow of an ar-

bitrary fundamental unit length (representing a unit of the vector property),

with its base at the origin of a Cartesian coordinate system [i.e., the point (0,

0, 0)] and its tip pointing in some particular direction.

Figure 2.1 shows a unit vector z relative to a Cartesian coordinate system.

In a molecule with C2v symmetry, such a vector would lie collinear with the

C2 axis. Let us examine the effects of applying the four operations of C2v on

this vector. Clearly, the identity operation leaves z in place, since E does noth-

ing. The C2 operation is performed about the same axis on which z lies, so it

too leaves the vector unaffected; that is, its orientation before and after the

operation is identical. The crv and a'v planes intersect along z, so the vector

lies in both of them. As a result, the reflections also leave z nonshifted.

Mathematically, we could express these results, the new positions of z after

each operation, by multiplying the unit vector z by +1 for each operation.

Later we will want to express such transformations for more general vectors

and sets of vectors, and these situations will require the use of n X n matri-

ces (where n is an integer). To be consistent with the methodology of more
general cases, let us express the present four multiplications by +1 for the

vector z as multiplications by trivial lxl matrices, symbolized by the use of

Figure 2.1 Unit vectors z, x, and y (left to right),
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square brackets (*[ ]). In this case, each matrix will be [+1]. We can summa-
rize the effects of C2v on z as follows:

Operation z becomes

In matrix

notation

E z
[
+ l]z

c2 z
[
+ l]z

crv z [+l]z

v'v z [+l]z

The four 1 X 1 operator matrices, which express the effects of the four

operations of C2v on the unit vector z, are called transformation matrices. In

this case, each transformation matrix is identical to the character of the op-

eration listed for the irreducible representation A 1 in the C2v character table

(Table 2.2). In other words, the characters of the A i representation express

the transformation properties of a unit vector z under the operations of C2v .

We say, then, that z transforms as A 1 in C2v . Irreducible representations are

sometimes referred to as species (or, more explicitly, symmetry species), so an-

other way of saying this would be that z belongs to the A 1 species of C2v.*

A less trivial set of transformations occurs when we apply the operations

of C2v to a unit vector x, as shown in Fig. 2.1. This vector lies in the crv plane

(the xz plane), which intersects with the a'v plane (the yz plane) along the C2

axis (cf. Fig. 1.13). Considering the operations in order, we note once again

that identity does nothing to the position of x. However, this time the opera-

tion C2 reverses the direction of x, making it point in the —x direction; that

is, x becomes -x. The vector lies in the av plane, so reflection in that plane

leaves it unaffected. Reflection in the a'v plane, to which the vector is or-

thogonal, reverses its direction, so that again x is transformed into -x. We
can summarize these results as follows:

Operation x becomes

In matrix

notation

E X [+l]x

c2 —x [-l]x

(Tv X [+l]x

V'v -x [-l]x

This time we see that the four transformation matrices are identical to the

characters of the B
A

irreducible representation of C2v (cf. Table 2.2).

*Use of the term “species” as a synonym for “irreducible representation” dates to the earliest

applications of group theory to problems of quantum mechanics. At 10 syllables, “irreducible

representation” is unwieldy (especially when spoken) but unambiguous. “Species,” with only

two syllables, is succinct but potentially ambiguous. The question can arise, “Are we referring to

the molecule or the symmetry of one of its properties?” In this text, when there might be

potential for confusion, we will use the more explicit terms “symmetry species” or “irreducible

representation.”
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Therefore, we can say that x transforms as B
x
in C2v ,

or, alternately, that x be-

longs to the B
\
species of C2v .

Finally, consider the effects of the C2v operations on a unit vector y, as

shown in Fig. 2.1. This vector lies in the cr'v plane (the yz plane). The effects

of the four operations can be summarized as follows:

Operation y becomes

In matrix

notation

E y [+i]y

c2 -y [— i]y
<rv -y [— i]y

<rl y [+i]y

Here the transformation matrices are the same as the characters of the B2 ir-

reducible representation of C2v (cf. Table 2.2). Thus we see that y transforms

as B2 in C2t , or equivalently that y belongs to the B2 species of C2v .

In addition to linear unit vectors, we will occasionally need to consider

vectors that suggest rotations about the three Cartesian axes . For example,

free gaseous molecules are constantly tumbling, and these motions can be re-

solved as rotations about the x, y, and z axes. In certain applications, identi-

fying these components of rotational motion with their related symmetry

species is important. Figure 2.2 shows a curved vector, R,, representing rota-

tion about the z axis. To analyze the effects of the operations of C2v on this

vector, we will assume that if an operation reverses the sense of rotation, the

vector has been transformed into the negative of itself. The operations E and

C2 do not affect the sense of rotation of Rz ,
so the operator matrices in both

cases are [+1]. To envision the effects of reflection, imagine the Rz vector en-

countering an actual reflecting mirror interrupting its circular path. As the

vector approaches the mirror, it will “see” its reflected image, coming toward

it with the opposite sense of rotation. Thus, the operator matrices for both crv

and a'v are [— 1]. These results can be summarized as follows:

Operation R, becomes

In matrix

notation

E Re [+i]R*

c2 Re [
+ l]Re

<rv -Re [~ l]Re

°'v Re [— l]Re

y

X

Figure 2.2 A rotational vector, R z.
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Table ‘2.3 Character Table for C2v with Linear and
Rotational Vector Transformations

C2v E C2 (fv v'v

Ai 1 1 1 1 z

A-2 1 1 -1 -1 R
B l 1 -1 1 -1 x, R v

b2 1 -1
/

-1 1 y, R*

As with the cases of linear unit vectors, we can compare the set of 1 X 1 ma-
trices with the characters of the various irreducible representations in Table

2.2. Here we see that they are identical to the characters of A2 . Thus, we can

say that R- transforms as A2 in C2v ,
or that Rz belongs to the A 2 species in

C2v . In similar fashion, we could show that the rotational vectors Rx and R v

transform as Bz and respectively
,
in C2v .

The transformation properties of both linear and rotational vectors are

matters of recurring interest in applying point group theory to chemical prob-

lems. Therefore, it is customary to list these properties in the character table

in a column to the immediate right of the character listings. For C2v ,
the ad-

dition of this information to the basic character table (Table 2.2) gives the ex-

panded character table, shown as Table 2.3.

2.3 Reducible Representations

Molecular properties are not always conveniently located along the axes of a

Cartesian coordinate system. More often they are oriented in general direc-

tions that can be resolved into vector components along the three cardinal di-

rections of the coordinate system. To see how the transformation properties

of general vectors relate to the irreducible representations of a group, con-

sider the vector v, whose base is at the origin of the system [the point (0, 0,

0)] and whose tip is at a general point with coordinates (x, y, z) as shown in

Figure 2.3. The orientation of the vector is arbitrarily chosen, and therefore

the coordinates (x, y, z) have no special values. As before, we will examine

the effects of the operations of C2v ,
on this vector.

z

X

Figure 2.3 A general vector v with arbitrary orientation.
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The base of the vector v lies at the origin of the system and will be unaf-

fected by any operation. Therefore, we need only concern ourselves with the

position of the tip of the vector. We will represent the three coordinates of

the tip, both before and after each operation, in a column matrix form. For

example, identity changes nothing, so we may write

[£]x

The symbol [E] represents a transformation matrix, whose specific form we
need to define. In the cases of the unit vectors we considered in Section 2.2

the transformation matrices had a trivial lxl format, since we only had to

account for the position of one coordinate in each case. For the vector v, we
must account for all three coordinates simultaneously. This requires that the

transformation matrices for each operation have 3X3 dimensions.

Before proceeding further with construction of the necessary transfor-

mation matrices, let us review some of the general properties of matrices and

the rules for multiplying them. A matrix is a rectangular array of numbers

that combines with other such arrays according to specific rules. The individ-

ual numbers are the elements of the matrix. Each element may be designated

by its row and column positions in the matrix. The following general matrix

illustrates the customary indexing system:

an a 12 “*

a2\ a22
' * * a2n

aml am2 *
* * amn

The dimensions of a matrix are specified as the number of rows by the num-
ber of columns. Thus, the general matrix above is an m X n matrix. The col-

umn matrix for the tip of the general vector v, for example, is a 3 X 1 matrix.

We will be concerned primarily with multiplication of matrices, for which

the order of combination is left to right. If two matrices are to be multiplied

together they must be conformable
,
which means that the number of columns

in the first (left) matrix must be the same as the number of rows in the sec-

ond (right) matrix. The product matrix has as many rows as the first matrix

and as many columns as the second matrix. For example,

flu

a2\

a31

a12

a22

a32

bn
t>21

b 12

^22

b\3

^23

C11

c2l

c3l

c12

c22

^32

c13

c23

c33

(2 . 1 )
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In general, if we multiply an n X m matrix with an m X / matrix, the result

will be an n X l matrix. The elements of the product matrix, cij3 are the sums
of the products aikbkj for all values of k from 1 to m; that is,

m
Cij /T aikbkj (2.2)

k= l

From Eq. (2.2), the elements in the product matrix of Eq. (2.1) are

Cll C12 c13 (flnhn + ai2b2i) (anbi2 + a\2b22) (anbi3 + a12b23)
C21 c22 <?23

= {d2\b\\ + #22^21) (a2ibi2 + a22b22) (d2\b\3 + a22b23)

_
c31 c32 c33_ (a31bn + a32b2i) (d3\b\2 + d32b22 ) (a3it>\ 3 + d32b23)

Given the requirement of conformability, it follows that matrix multiplication,

like combination of symmetry operations, is not in general commutative.

However, matrix multiplication is associative.

Returning now to the transformations of the vector v under the opera-

tions of C2v ,
we can see that the effect of the identity operation is expressed

by the equation

’l 0 0 JC {(1)* + (0)y + (0)z) X

0 1 0 y = K0)x + (l)y + (0)z) = y (2.4)

0 0 1 _z_ Ll(0)x + (0)y + (l)z}J _z

_

Thus, the matrix that describes the effect of E on the coordinates (x, y, z),

which we shall call the transformation matrix for the identity operation, is

"l 0 o’

0 1 0

0 0 1

The operation C2 does not affect the z coordinate of the vector, because

that component is collinear with the axis of rotation. However, C2 reverses

the sense of the vector’s x and y coordinates, transforming them into —x and
—
y, respectively. In matrix notation this is

’-1
0 0 X K-l)x + (0)y + (0)z) —x

0 -1 0 y = 1(0)* + (-1 )y + (0)zj = -y
0 0 1 _z_ |(0)x + (0)y + (l)z|J z_

(2.5)

The 3x3 matrix on the left of Eq. (2.5) is the transformation matrix for the

operation C2 .
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For cTyi which lies in the x

z

plane, the reflection will transform the y co-

ordinate into the nega tive of itself. The x and z coordinates, which lie in the

plane, will not be affected. In matrix notation this is

1 0 0 X |(1)X + (0)y + (0)z| X

0 -1 0 y = {(0)x + (-l)y + (0)z) = -y
0 0 1 _z_ L {(0)x + (0)y + (l)z) z_

(2 .6 )

Again, the 3X3 matrix on the left in Eq. (2.6) is the transformation matrix

for ov.

Finally, for cr'„ which lies in the vz plane, the reflection will transform the

x coordinate into the negative of itself and leave the v and z coordinates un-

affected. In matrix notation this is

1 0 0 X ((-l)x + (0)y + (0)z)
—X

0 1 0 y = 1(0)* + (l)y + (0)z) = y
0 0 1 _z_ L {(0)* + (0),y + (l)z) z_

Once again, the 3x3 matrix on the left of Eq. (2.7) is the transformation ma-

trix for the operation of o4»

In each of the cases of the three unit vectors x, y, and z, we saw that the

set of 1 X 1 transformation matrices that described the effects of the four op-

erations of C2v constituted the characters of a representation of the group (cf.

Section 2.2). In those cases the representations were identical to irreducible

representations of C2v . Likewise, the four 3x3 transformation matrices we
obtain from Eq. (2.4) through (2.7), which describe the effects of the opera-

tions of C2v on the coordinates of the general vector v, constitute the charac-

ters of a representation of the group. The test of this assertion is to show that

these matrices combine with one another in the same ways as their corre-

sponding operations, as dictated by the multiplication table of the group

(Table 2.1). For example, we know from Table 2.1 that C2E = C2 . Using the

corresponding transformation matrices for E [Eq. (2.4)] and C2 [Eq. (2.5)] we
obtain the following product*:

"l 0 0 ~-l 0 0 -1 0 0

0 1 0 0 -1 0 = 0 -1 0

0 0 1 0 0 1 0 0 1

The product is the transformation matrix for C2 ,
consistent with the product

for the operations themselves.

Remember that the order of writing combinations of operations is right to left, but the order of

multiplying matrices is left to right. Thus, in Eq. (2.8), the E transformation matrix is written to

the left of the C2 transformation matrix for the product C2E.
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Similarly, we vknow that crvC2 = (r'v . Using the transformation matrices

from Eq. (2.5) and (2.6), we obtain

"-1
0 0 "l 0 0

"-1
0 0

0 -1 0 0 -1 0 = 0 1 0

0 0 1 0 0 1 0 0 1

Again, the product matrix is the transformation matrix for the a'v operation,

consistent with the result for the combination of operations. All other com-
binations give results consistent with those of the C2v character table, a fact

which you should be able to verify. Thus, the set of four transformation ma-
trices satisfies the criterion for a representation of C2v .

We can list the four transformation matrices as characters of a represen-

tation in a tabular form, as we did for the irreducible representations. As
such, our representation for the transformation of the vector v, which in full

matrix form we shall designate Tm ,
would appear as follows:

C2V E C*2 0"y CTy

rm

1 0 0

0 1 0

0 0 1

’-1 0 (f

0-10
0 0 1

1 0 o"

0-10
0 0 1

~-l 0 o"

0 1 0

0 0 1

It is apparent that this representation is not one of the four irreducible rep-

resentations of the group (cf. Table 2.2). Rather, as we shall see, Tm is a re-

ducible representation that can be broken up as the sum of certain irreducible

representations.

In its present form, Tm is extremely unwieldy. We can recast it in a more

convenient form by noting a common property of all the transformation ma-

trices of which it is composed. If we examine the diagonal of each matrix run-

ning from upper left to lower right, we see that the elements in succession ex-

press how jc, y, and z, respectively, are transformed into themselves or the

negative of themselves. We can combine this information into one character

for each operation by taking the sum along the diagonal of each transforma-

tion matrix, known as the trace or character of the matrix. Doing this, we ob-

tain a different form of the representation Fm ,
which we shall call Tv ,

the rep-

resentation of characters:

E/ 6^2 CTy

Tv 3 -l 1 1

Being composed of single digits, this representation looks more like the irre-

ducible representations we have associated with the unit vectors x, y, and z.

However, the character 3 under the E operation makes it apparent that Tv is

not an irreducible representation of C2v . Rather, Tv is a reducible represen-
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tation, which is the sum of three of the irreducible representations of C2v .

With a little trial and error we could deduce that the irreducible representa-

tions A\, Bu and B2 uniquely add to give the representation Tv ;
that is, Tv =

A\ + Bi + B2 . We can see this by adding up the characters for each opera-

tion of the three irreducible representations:

C2V E C2 o-v (K

A\ 1 1 1 1

B l 1 -1 1 -1

b2 1 -1 -1 1

rv 3 -1 1 1

Relating this result to the vector v, which forms the basis for the reducible

representation, we see that the symmetry of the vector is a composite of three

irreducible representations (symmetry species), which represent the symme-

tries of more fundamental vectors. Note that the three irreducible represen-

tations of which Tv is composed are the three symmetry species by which the

unit vectors z (Ai), x (B 2 ), and y (B2) transform. This result makes sense when
we consider that any vector in three-dimensional space can be resolved into

i components along the three axes of a Cartesian coordinate system.

Although it is more convenient to deal with a representation of charac-

ters, such as Tv ,
the same reduction into irreducible representations can be

seen from a full matrix representation, such as rm . As we have noted, each

diagonal element, ciiy expresses how one of the coordinates x, y, or z is trans-

formed by the operation. If we mark off a series of 1 X 1 matrices along the

diagonals of all the 3x3 matrices, so as to exclude all zero elements (a

process called block diagonalization), we can isolate all the cu elements. Each

Cn element expresses the transformation of the x coordinate, each c22 element

expresses the transformation of the y coordinate, and each c33 element ex-

presses the transformation of the z coordinate for each operation. Our matrix

representation Tm after block diagonalization would look like the following:

C2V E C2 <*v <r'v

1 0 0 -1 0 0 1 0 0 -1 0 0

rm 0 1 0 0 -1 0 0 -1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

Reading across the first row (cn components), we see that the set of 1 X 1

matrices is the same as the set of characters of the B x irreducible representa-

tion, by which x transforms. Likewise, the second and third rows correspond,

respectively, to B2 ,
the symmetry species of y, and A 1 ,

the symmetry species

of z. Thus we see by block diagonalization that Tm reduces into the same
three irreducible representations as does Fv .
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In a representation of matrices, such as rm ,
the dimension of the repre-

sentation is the order of the square matrices of which it is composed. For a

representation of characters, such as Tv ,
the dimension is the value of the

character for the identity operation . This occurs because all cu elements are

+1 for the identity operation in all representations. By either definition, we
see that the dimension of the reducible representation for the transformation

of the vector v in C2v is 3. The dimension of the reducible representation must

equal the sum of the dimensions of all the irreducible representations of

which it is composed. In general, for a reducible representation with a di-

mension dr we obtain

dr
= n

tdi (2.10)
i

where d
t
is the dimension of each irreducible representation, and n

t
is the

number of times each irreducible representation contributes to the reducible

representation. For our reducible representation for the vector v, the three

contributing irreducible representations each have a dimension of 1 (dt
= 1),

and each contributes only once {n
t
= 1) to the total reducible representation.

When we apply group theory to molecular problems, we customarily gen-

erate a reducible representation that reflects the symmetry characteristics of

the property of interest. The subsequent reduction of this reducible repre-

sentation into its component irreducible representations will be an important

step in developing solutions to the problem. In simple cases, such as the ex-

ample we have just seen, the reduction can be accomplished by inspection or

trial-and-error techniques. This is most often the case when the dimension of

the reducible representation is small. For representations with larger dimen-

sions (generally, dr
> 4), a systematic method of determining the component

irreducible representations is more efficient. Before discussing this technique

(cf. Section 3.1), we need to become familiar with some additional features of

representations and character tables, especially those for more complicated

groups than C2v .

2.4 More Complex Groups and
Standard Character Tables

Appendix A shows character tables for all point groups that one is likely to

encounter in dealing with problems of real molecules. Some of these tables

have features we have not encountered in our examination of C2v . A case in

point is the character table for C3v ,
Table 2.4. The group C3v describes, for

example, the symmetry of ammonia and other such pyramidal MX3 species.

It consists of six operations (h — 6) grouped into three classes. There can be

only one identity in any group, so, as always, E stands in a class of its own.

The notation 2C3 in the character table stands for C3 and C 3 ,
which together

comprise a class. Similarly, the notation 3crv indicates that the three vertical
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Table 2.4 Character Table for the Point Group C3v

c3v E 2C3 3crv

A\ 1 1 1 z x2 + y
2

, z
2

A2 1 1 -1 Rz
E 2 -1 0 (x,y) (Rx,Ry) (x

2 - y
2
,xy)(xz,yz)

mirror planes, which intersect at the C3 axis with a 120° angle between them,

form a class of their own. From a geometrical point of view, operations in the

same class can be converted into one another by changing the axis system

through application of some symmetry operation of the group . In the case of

the group C3v ,
the operations of C3 and C 3 are interconverted by one of the

vertical mirror planes. Likewise, the three mirror planes are seen to form a

class because they are interconverted by C3 and C 3 .

A mathematically more general definition of class requires defining an

equality called the similarity transform. The elements A and B belong to the

same class if there is an element X within the group such that X~ lAX = B,

where X~ x
is the inverse of X (i.e., XX 1 = X lX = E). If X~'AX = B

,
we

say that B is the similarity transform of A by X
,
or that A and B are conju-

gate to one another. We should note that the element X may in some cases

be the same as either A or B.

In C3v ,
and indeed in any group, E forms a class by itself, because all sim-

ilarity transforms result in E. With itself, the similarity transform EEE = E.

With all other elements of the group the similarity transforms are X~ lEX =

X~ xX = E. To verify the other class groupings (2C3 and 3crv) we will need a

multiplication table for the group C3v . To avoid ambiguity, we define C3 and

C 3 in a clockwise direction, and we arbitrarily label the three cry planes as

shown in Fig. 2.4. Following the convention that an operation at the top is

performed before an operation at the side, we obtain Table 2.5, the multipli-

cation table for C3v . We note that C3 and C 3 are the inverses of each other,

Figure 2.4 Defining the orientations of

the mirror planes of C3v .
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Table 2.5 Multiplication Table for the Group C3v

c3v E c3 Cl 0-1 0-2 0-3

E e c3 Cl <71 02 03

c3 c3 cl E 0-3 O'1 02

cl C 2
3 E c3 0-2 03 01

0

1

0-1 0-2 03 E C3 Cl
O'! 0-2 03 0-

1

Cl E C3

03 03 0-1 ' 0-2 C3 Cl E

since C3C 3 = C3C3 = E. All other elements are their own inverses.

Furthermore, we can see that the order of performing operations is impor-

tant, because certain pairs of operations do not commute. For example, in

right-to-left notation, axa3 = C 3, but (j3dx = C3 . Thus, C3v is not Abelian.

Let us now take all the similarity transforms on C3 to discover what ele-

ments are in the same class with it.

ec3e = c3

C 2
3C3C3 = C3C3 = c3

C3C3C3 = c3E = c3

&lC3d\
= ^1^3 ~ C3

0’2C30'2
= d2d\

~ C 3

d3C3d3
= d3d2 = C 3

We see that all similarity transforms generate either C3 or C 3 ,
which means

that these two operations are members of the same class. The same general

result would have been obtained had we taken all the similarity transforms

on C 3 instead of C3 . You should be able to verify this and also verify in a sim-

ilar manner that the three mirror planes belong to a class of their own.

It is a general relationship of group theory (cf. Section 2.5) that the num-

ber of classes equals the number of irreducible representations of the group.

In the case of C3v ,
we see from the character table (Table 2.4) that there are

three irreducible representations, consistent with the three classes of the

group. One of these, labeled with the Mulliken symbol E (which should not

be confused with the identity element), has a dimension of 2 (d
t
= 2), as evi-

denced by the character of 2 for the identity operation. The irreducible rep-

resentation £ is a doubly degenerate representation. Doubly degenerate and

even triply degenerate representations are found in many chemically important
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point groups with principal axes greater than twofold.* The group D2d is a

notable exception, being a group with a twofold principal axis and yet having

a doubly degenerate irreducible representation (see the character table for

D2d in Appendix A). As an example of triply degenerate irreducible repre-

sentations (dj = 3), note the representations with the Mulliken symbols 7\

and T2 of the point group Td ,
shown in Appendix A. In all these cases, it is

important to understand that these are irreducible representations and not re-

ducible representations.

We can show the need to have a doubly degenerate irreducible repre-

sentation for the point group C3v by examining the transformation properties

of a general vector v under the operations of the group, much in the same

way we did for the group C2v (Section 2.3). We can simplify the process in

this case by recognizing that the projection of v on the z axis is unaffected by

any of the symmetry operations of the group. Consequently, in the 3X3
transformation matrices for each operation, the matrix elements c31 and c32

will always be 0, and the element c33 will always be 1. Furthermore, all oper-

ations affect x and y independently of z, so in each transformation the matrix

elements c13 and c23 will always be 0. Thus each operation involves a matrix

multiplication of the general form

~? ? o" X V
? ? 0 y = ?

oo _z_ _z_

With the z component’s transformation properties identified, we can turn our

attention to the x and y components by looking at the projection of v in the

xy plane. This will give us the remaining elements in each 3x3 transforma-

tion matrix.

In general, the transformation matrix for any operation in a class has a

form that is unique from the matrices of the other members of the class.

However, for any representation, whether irreducible or reducible, the char-

acter of the transformation matrix for a given operation is the same as that

for any other operation in the same class. In the case of C3v ,
the characters

for C3 and C\ are the same, and the characters for cru a2 ,
and a3 are the same

for any representation of the group. This permits, for example, listing one
character for each class of operations for each irreducible representation in

the character table. For our consideration of the transformations of the gen-

eral vector v in C3v ,
this means we need only construct the matrix for one rep-

*The groups I and Ih have irreducible representations with dimensions up to dt
= 5. Also, the

full rotational group R3 ,
which describes the symmetry of a sphere, has no limits on the dimen-

sions of its irreducible representations. These are not important groups for considerations of mol-

ecular structures one is likely to encounter. However, the group R3 has considerable theoretical

importance, as we shall see in Chapter 7.
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resentative operation in each class in order to obtain a set of characters for

the reducible representation. Furthermore, we are at liberty to choose any

convenient operation among those comprising the class. In the class com-
posed of C3 and C 3 ,

we will choose the simpler of the two, the C3 rotation.

Consistent with normal trigonometric practice, we will in this instance define

the C3 rotation in a counterclockwise direction. The effect of the C3 rotation

on the projection of the vector v in the xy plane is shown in Fig. 2.5. In the

class of three vertical mirror planes (3crv), it will simplify our considerations

to assume that our chosen mirror plane lies in the xz plane of the coordinate

system (cq in Fig. 2.4). The other two mirror planes (which we are ignoring)

lie at 120° and 240° from the chosen plane.

For the identity operation, we obtain the same transformation matrix that

would be found for a vector v in any point group [cf. Eq. (2.4)]:

"l 0 o" X X

0 1 0 y
—

y
0 0 1 _z_ _z_

(2 . 12 )

For crv ,
since we have defined our chosen plane as crxz ,

the x coordinate

will be unaffected, and the y coordinate will be changed into the negative of

itself. This gives the following matrix equation:

"l 0 o" X X

0 -1 0 y = -y
0 0 1 _z_ z_

(2.13)

The transformation by C3 is less straightforward. As can be seen from

Fig. 2.5, the new coordinates of the projection vector’s tip, the point (x',y
f

),

cannot be described solely in terms of x or y, independently of each other.

Rather, each new coordinate requires an expression in both x and y. From
trigonometry we can write

2tt 2tt i V3
(2.14)x ' = cos Tx ~sm~y

= “2 X “
“T*

y' = sin
2rr 2tt V3 i

(2.15)——x + COS— V =

3 3
'

=

2
X
2
y

y

Figure 2.5 Projection of v in the xy plane and the

effect of C3 in a counterclockwise direction.
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The need to have both jt and y terms to define either x' or y' causes the trans-

formation matrix to have off-diagonal elements that are nonzero:

1 V3
0

2 2
X

V3 1
0 y

2 2

0 0 1 z

7 * ^h.\ X '

{ 2 2 )

<N

1H
cm

=
y'

z z'

(2.16)

Equation (2.16) is a specific case of the transformation of a point (x, y, z)

through a counterclockwise rotation about the z axis through an angle 0 =

120°. In general, for a counterclockwise rotation about z through any angle 6

we may write

cos 0 -sin 6 o" X V"
sin 0 cos 6 0 y = y'

0 0 1 _z_ _z
f

_

(2.17)

If the rotation is taken in the clockwise sense, the signs on the sin 9 terms will

be reversed in Eq. (2.17).

Gathering together our three 3X3 transformation matrices from Eq.

(2.12), (2.13), and (2.16), we obtain the following*:

Qv E C3 crv

rm

1 0 0

0 1 0

0 0 1

-1/2 -V3/2 0

V3/2 -1/2 0

0 0 1

1 0 0

0-10
0 0 1

We can reduce this into its component irreducible representations by taking

block diagonals of each matrix. The blocks we take must be the same size

across all three matrices. The presence of nonzero, off-diagonal elements in

the transformation matrix for C3 restricts us to diagonalization into a 2 X 2

block and a 1 X 1 block. As a result, for all three matrices we must adopt a

scheme of block diagonalization that yields one set of 2 X 2 matrices and an-

other set of 1 X 1 matrices, as follows:

Qv E C3 (Tv

1 0 0 - 1/2 -V3/2 0 1 0 0

rm 0 1 0 V3/2 - 1/2 0 0 -1 0

0 0 1 0 0 1 0 0 1

*The full representation would also show a matrix for C\ and two matrices for the other av

planes. Our goal is to obtain representations of characters. Therefore, we can ignore these miss-

ing matrices, since their characters will be the same as those of the representative operations we
have chosen from their classes.
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Our inability to reduce this matrix representation into three irreducible rep-

resentations of 1 X 1 matrices, equivalent to characters, is a consequence of

the mixing of x and y by the operation C3 .

We can still obtain irreducible representations of characters by summing
along the traces (upper left to lower right diagonals) of the block matrices in

rm . This gives us the following two representations:

C3V E 2C3 3 (Tv

TX,y -1 0

r. l 1 1

The first of these, Tx y ,
is the doubly degenerate irreducible representation E

of C3v (cf. Table 2.4). In the third column of the character table, where the

transformations of linear and rotational vectors are listed, we see a notation

(x, y) along the row for the E representation. This indicates that the unit vec-

tors x and y transform as a degenerate pair. This means that in C3v there is

no difference in symmetry between the x and y directions, and they may be

treated as equivalent and indistinguishable. Thus, if a molecule with C3v sym-

metry possesses a property along x there will be an equivalent and indistin-

guishable property along y, which means they are degenerate. For example, in

a molecule with C3v symmetry, px and py
orbitals on a central atom are re-

quired by symmetry to have the same energy and be indistinguishable; that

is, they are a degenerate pair.

The second representation, Tz ,
is the totally symmetric representation of

C3v ,
given the standard Mulliken symbol A 1 (cf. Table 2.4). The notation z in

the third column of the character table indicates that a unit vector z would

transform by the totally symmetric representation in C3v . The fact that z

transforms by a different species than the degenerate pair (jc, y) means that

any property along z will be unique from properties along x and y. For ex-

ample, we have noted that px and py orbitals on a central atom in a molecule

with C3v symmetry would be degenerate. Since properties along z transform

by a different species, a pz orbital in such a molecule would be expected to

have a different energy and be distinguishable from the degenerate pair of px
and py orbitals. Unlike a free atom, the three p orbitals would not be funda-

mentally degenerate in such a system and would have the same energies only

by a fortuitous combination of circumstances, a condition known as acciden-

tal degeneracy. In other words, placing an atom in a C3v environment lifts the

threefold degeneracy of the p orbitals.

The third column of the character table for C3v also indicates the species

by which the rotational vectors transform. As the character table indicates,

Rz transforms as A 2 ,
and Rx and Ry

transform together as a degenerate pair

by £, the doubly degenerate representation.

Throughout the character tables (cf. Appendix A), the use of parenthe-

ses around two or three vectors means that they transform as a degenerate
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set. When two vectors are so grouped, the indicated pair transforms as a dou-

bly degenerate representation (e.g., x and y in C3v). When three vectors are

included, they transform as a triply degenerate representation. For example,

x
, y, and z transform degenerately as T2 in the group Td (see the character

table in Appendix A). Sometimes two or more vectors transform by the same

species but are not degenerate. In such cases, the vectors are not grouped

within parentheses. For example, in the group C2h both * and y transform as

the nondegenerate species Bu (see the character table in Appendix A). The
fact that Bu has a dimension of 1 (dt

= 1) precludes two properties from be-

ing degenerately transformed by that symmetry species. In C2h ,
the transfor-

mation of x is independent of y and vice versa, but both have the same sym-

metry properties as the Bu irreducible representation.

The last column of a character table lists the transformation properties of

the binary direct products of linear vectors. These are important because,

among other things, they correspond to the transformation properties of d or-

bitals. Thus, a notation such as z
2

,
jc
2 - y

2
,
xy, xz, or yz can be taken as indi-

cating the species by which the d orbital of the same designation transforms.

In this connection, a notation 2z
2 — x2 — y

2
, such as listed for the species Eg

in the point group Oh ,
can be taken as indicating the transformation property

of a dz
2 orbital (cf. Oh character table in Appendix A). Conversely, notations

such as x
2 + y

2 + z
2

(e.g., A lg in Oh ) or x2 + y
2

(e.g., A 1 in C3v ) do not cor-

respond to d orbital transformations in the usual formulation of the orbitals.

These notations occur because in some point groups the direct products for

certain pairs of vectors are spread across two representations. We will exam-

ine direct products in more detail in Section 3.5.

You may have noticed in perusing the character tables in Appendix A
that some groups have representations that use the imaginary integer i

=

V3! ,
or the symbols e = exp(2 niln) and e* = exp(—2m/ri), where n is the or-

der of the principal axis. For example, the Cn groups with n > 3 show these

kinds of characters (cf. Appendix A). Other groups with such characters in-

clude the Cnh groups with n> 3; the improper axis groups, S2n ;
and two of

the cubic groups, T and Th . All these groups contain one or more pairs of ir-

reducible representations that are complex conjugates of one another. The
paired representations appear on successive lines in the character tables,

joined by braces ({ }). Each pair is given the single Mulliken symbol of a dou-

bly degenerate representation (e.g., E, Eu E2 ,
E', E", Eg ,

Eu ). Despite this

symbolism, each of the paired complex-conjugate representations is an irre-

ducible representation in its own right. They arise in these groups because of

the fundamental theorem of group theory (discussed in Section 2.5) that re-

quires the number of representations in any group to be equal to the number
of classes in the group.

When dealing with applications in one of the groups with imaginary char-

acters, it is sometimes convenient to add the two complex-conjugate repre-

sentations to obtain a representation of real characters. When the paired rep-
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t>ns have i and —i characters, the addition is straightforward; that is,

- \—i) = 0. When they have e and e* characters, where e = exp(2m/n ), the

following identities are used in taking the sum:

ep = exp(2irpi/n) = cos 2np/n + i sin 27rp/n (2.18)

€*p = exp(—27ipi/n) = cos 277pin — i sin 2 77pin (2.19)

Combining Eqs. (2.18) and (2.19), we have

ep _|_ e*p = 2 cos 277pin (2.20)

Thus all complex-conjugate characters in the two irreducible representations

add to give real-number characters.

For example, the E representation of C3 appears in the character table as

follows:

where e = exp(27n/3). Using Eq. (2.20), the sum of the complex-conjugate

imaginary characters is e + e* = 2 cos 27t/3. Using this result when adding the

complex-conjugate irreducible representations gives

c3
|

E Cs Cf_

{£} 2 2 cos 277/3 2 cos 27t/3

This combined representation, composed of all real-number characters, can

be used instead of the two imaginary-character representations in various ap-

plications. However, as a sum of two genuine irreducible representations, the

real-number representation is not an irreducible representation. Rather, it is

a reducible representation and must be handled as such. To emphasize the

distinction, a real-character reducible representation formed by summing
complex-conjugate irreducible representations will be designated in this text

by surrounding the Mulliken symbol of the pair in braces; e.g., {E}.

Having examined irreducible representations of a variety of groups, we
now can describe the meaning of the Mulliken symbols. For groups of finite

order (h =£ qq). nondegenerate representations (d, = 1) are labeled A or B. As
previously noted, doubly degenerate irreducible representations {d

t
= 2) are

designated by E
,
and triply degenerate irreducible representations (d

r

= 3)

are designated by T. In older texts you may find triply degenerate irreducible

representations designated by F, a notation that is no longer used.

An A representation is symmetric with respect to the principal rotation

(Cn of highest order in the system). As a result, in the character table of the

group any A representation always has a + 1 character for the principal axis
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Cn operation. This means that a property that transforms as an A represen-

tation will retain its sense of sign after the Cn operation. For example, in C2v

the unit vector z transforms as because its sense remains unchanged by

the C2 operation. A B representation is antisymmetric with respect to the

principal rotation, which is indicated by the character - 1 under the principal

axis Cn operation in the character table of the group. In this case, a property

that transforms as a B representation will have a change of sign as a result of

the Cn operation. For example, in C2v the unit vectors x and y transform as

B\ and Z?2 ,
respectively, because their directional senses are reversed by C2 .

The infinite-order point groups Cxv and to which linear molecules

belong, use a Greek letter notation for the Mulliken symbols of the irre-

ducible representations. Nondegenerate representations are designated by 2.

The doubly degenerate representations are given the symbols II, A, land <F.

Any of these primary symbols may be modified by subscript or super-

script notations. These modifying notations indicate symmetry or antisym-

metry with respect to some symmetry operation other than the principal ro-

tation. In the case of nondegenerate representations, this symmetry or

antisymmetry results in a character of +1 or -1, respectively, for the refer-

enced operation. In centrosymmetric groups, a subscript gj(for German ger-

ade = even) indicates symmetry and a subscript u (for German ungerade =

uneven) indicates antisymmetry with respect to inversion (i). For finite-order

groups, subscripts ljand 2 (respectively indicate symmetry and antisymmetry

with respect to a nonprincipa l rotation (lower order than the principal axis)

or to a vertical mirror p lane (crQ . For nondegenerate representations of the

infinite-order groups Coo V and D xh ,
superscript + and - have the same mean-

ings as do 1 and 2 in the finite-order groups. Addition of prime f')* or double

prime (")* to a primary symbol indicates symmetry or antisymmetry with re-

spect to a horizontal mirror plane ( 07,).

Regardless of the group, the first-listed irreducible representation in the

character table is the totally symmetric representation of the group. The to-

tally symmetric representation is always composed of + 1 characters for all op-

erations of the group. Depending on the group, the Mulliken symbol for the

totally symmetric representation will be A, A 1 ,
A', A{, Ag ,

A lg , 2
+

,
or .

2.5 General Relationships

of Irreducible Representations

As you will appreciate, our development of the concept of representations in

the foregoing sections of this chapter has been by design mathematically non-

rigorous. In a more mathematically respectable development we would in-

voke the strictures of the Great Orthogonality Theorem to generate the lim-

ited set of irreducible representations that are allowed for each group. A
presentation of the theorem itself is unnecessary for our purposes, but is read-
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ily available in more advanced treatments.* Nonetheless, the Great
Orthogonality Theorem results in a number of important relationships among
the characters of representations and among the representations themselves.

Some of these have practical consequences. Therefore, we will simply state

without proof some of the general relationships arising from the Great

Orthogonality Theorem and seek to illustrate them with specific examples.

You will note that we have already used some of these.

1. The sum of the squares of the dimensions of all the irreducible represen-

tations is equal to the order of the group; that is,

E d 2 = h (2.21)
i

t

whete d
t
is the dimension of the zth irreducible representation and h is

the order of the group.

The character for the operation E in the z'th irreducible representa-

tion, Xi(E), is equal to the order of the representation. Therefore, in any

group we can verify this rule simply by squaring the characters for E and

summing over all representations; that is,

X [xmf = h (2.22)
i

For example, consider the partial character table for Td , shown below.

Td E 00 3C2 6S4 6ad =*h = 24

1 1 1 1 1 => d
t
= 1

^2 1 1 1 -1 -1 => d
t
= 1

E 2 -1 2 0 0 => di = 2

T\ 3 0 -1 1 -1 => di = 3

t2 3 0 -1 -1 1 => di = 3

Adding the operations in each class indicates that the group order is 24.

Using the characters under the E operation for the irreducible represen-

tations as values of dh we obtain by Eq. (2.22)

Z d‘=T \Xi{E)f = l
2 + l

2 + 2
2 + 3

2 + 3
2

i i

=l+l+4+9+9

= 24 = h

2. The number of irreducible representations of a group is equal to the num-

ber of classes.

We have seen this in our examination of character tables (cf. Section

2.4). In the partial character table for Td above, we see that the 24 oper-

*A presentation of the theorem without proof may be found in F. A. Cotton, Chemical

Applications of Group Theory, 3rd ed., John Wiley & Sons, New York, 1990, p. 81. Proof of the

theorem may be found in texts such as H. Weyl, The Theory of Groups and Quantum Mechanics,

Dover Publications, New York, 1950, 157; and H. Eyring, J. Walter, and G. E. Kimbal, Quantum

Chemistry, John Wiley & Sons, New York, 1944, p. 371.
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ations are grouped into five classes. Consequently, there are five irre-

ducible representations: A 2 ,
E, 7\, T2 .

3. In a given representation (irreducible or reducible) the characters for all

operations belonging to the same class are the same.

This fact, which we have seen demonstrated for the group C3v (cf.

Section 2.4), permits great economy in writing the character tables and

also simplifies generating reducible representations in various applica-

tions, as we shall see.

4. The sum of the squares of the characters in any irreducible representa-

tion equals the order of the group; that is,

X ^(R)}
2 = h (2.23)

R

where R is any operation of the group and the summation is taken over

all operations.

We can simplify Eq. (2.23) by using the fact that all operations in a

class have the same character (point 3 above). A class of gc operations R
will contribute the same value of Xi(R) to Eq. (2.23), a total of gc times.

Therefore we may write

I gAxARc)? = h (2.24)
Rc

where Rc is a class of operations R, and gc is the order of the class Rc . The
summation in Eq. (2.24) is taken over all classes of operations.

As an example, consider the T2 representation of Td ,
as listed in the

character table above (point 1). Applying Eq. (2.24), we have

X gc[XT2(Rc)f
=

(3)
2 + 8(0)

2 + 3(-l)2 + 6(-l)2 + 6(-l)2

Rc

=9+0+3+6+6

= 24 = h

5. Any two different irreducible representations are orthogonal, which
means

X gcXi(Rc)Xj(Rc) = 0 (2.25)
Rc

where \i and Xj are characters for the class of operations Rc of two dif-

ferent irreducible representations of the group (i.e., i =£ /).

Physically, this means two vectors that transform by different irre-

ducible representations are orthogonal. In general, this can be stated

mathematically for any two vectors, a and b, in p-dimensional space by
the expression

X a‘bi
= 0

/=

l

(2 .26 )
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where a t and are the projections of a and b in the /th dimension. Our
considerations are limited to three-dimensional space, so the summation
in Eq. (2.26) extends to p = 3.

As an example, consider the irreducible representations A2 and E in

the group Td ,
as shown in the character table above (point 1). By Eq.

(2.25) we obtain

X gcXi(Rc)Xj(Rc) = 1(1 X 2) + 8(1 X -1) + 3(1 x 2) + 6(-l x 0) + 6(-l x 0)
RC

= 2 - 8 + 6 + 0+0

= 0

Points 4 and 5, as represented by Eq. (2.24) and (2.25), can be combined

into one equation if we introduce a function notation that is used frequently

in quantum mechanics. The Kronecker delta function, is defined such that

Sij = 0 if i -=k j, and = 1 if i = j. Using the Kronecker delta, we can combine

Eqs. (2.24) and (2.25) into the following expression:

X gcXi(Rc)Xj(Rc) = hStj (2.27)
Rc

Problems

2.1 The operations of the group C2h are £, C2 ,
i, and crh .

(a) Without consulting the C2h character table, determine the sets of characters

comprising the irreducible representations by which the unit vectors x, y,

and z transform in C2h .

(b) Do the same for the rotational vectors Rx ,
Ry ,

and R,.

2.2 Consider a general vector v, whose base is at (0, 0, 0) and whose tip is at (x , y,

z), in the point group C2h-

(a) Derive the set of four 3X3 transformation matrices that constitute the

reducible representation, Tm , by which v transforms.

(b) Reduce rm into its component irreducible representations by block

diagonalization.

(c) Write the reducible representation of characters, Tv ,
that corresponds to the

matrix representation, rm .

(d) Show that Tv reduces to the same irreducible representations as Tm .

(e) Show that the four transformation matrices comprising Tm obey the same

combinational relationships as the operations of C2h •
[Hint: You will need

to work out the multiplication table for C2h .]

2.3 Consider the three p orbitals px , py ,
and pz ,

which are degenerate for an isolated

atom M. If M is surrounded by several X atoms, the electrostatic field they cre-

ate may lift the degeneracy among the p orbitals. By consulting the appropriate

character table, describe the degree of degeneracy among p orbitals allowed by

symmetry for each of the following structures: (a) MX2 ,
linear; (b) MX2 ,

bent;
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(c) MX3 ,
trigonal planar; (d) MX3 ,

pyramidal; (e) MX3 ,
T-shaped (as in C1F3);

(f) MX4 ,
tetrahedral; (g) MX4 ,

square planar; (h) MX4 ,
irregular tetrahedral (as

in SbF 4 ); (i) MX5 ,
square pyramidal; (j) MX5 ,

trigonal bipyramidal; (k) MX6 ,

octahedral.

2.4 Using the C3v multiplication table (Table 2.5), verify that the three av planes be-

long to the same class.

2.5 In C3v both C3 and C 3 belong to the same class, listed as 2C3 in the character

table. As members of the same class their characters for any representation are

the same.

(a) Demonstrate that both C3 and C 3 have a character of 1 for the A 1

representation, by which z transforms.

(b) Demonstrate that both C3 and C 3 have a character of -1 for the E
representation, by which x and y transform degenerately. [Hint: Write the

2X2 transformation matrices describing the actions of the operations on a

point (x, y) and determine their characters.]

2.6 Describe the implied symmetry of the following irreducible representations on

the basis of their Mulliken symbols: (a) Ag in C2h, (b) B2 in C4v ,
(c) E in Z)3 ,

(d)

in D3h ,
(e) E' in D3h ,

(f) Blg in D4h , (g) Eu in D4h ,
(h) Tg in Th .

2.7 Construct real-number representations by combining the complex-conjugate

paired irreducible representations in the following point groups: (a) C4 ,
(b) C6 ,

(c) C5 ,
(d) C7 .

2.8 Fill in the missing characters in the character table below, which is presented in

standard format. The symbols A, B, C, and D represent certain symmetry op-

erations, and E is identity.

E 2A B 2C 2D

r,

r2 1 1 -1 -1

r3 1 -1 1 1 -1

r4 1 -1 1 1

r5 0 0 0

2.9 For the point group O (cf. Appendix A), show that the group conforms to the

five generalizations from the Great Orthogonality Theorem presented in

Section 2.5.

2.10 Consider the point group C3 ,
consisting of the operations E, C3 ,

and C 3 .

(a) Write the three transformation matrices for a general vector v under the

operations of the group, thereby forming a reducible representation Tv .

(b) By block diagonalization, reduce Tv into two representations, Tz and Tx>y ,

by which the unit vector z and the pair of unit vectors x and y transform,

respectively.

(c) Rewrite Tx>y as a representation of characters, and show that it is equivalent

to the complex-conjugate pair of irreducible representations designated E in

the C3 character table.

(d) Explain why the representation E in the group C3 must be a pair of complex-

conjugate irreducible representations.



CHAPTER 3

Techniques and Relationships

for Chemical Applications

In this chapter we will consider some important techniques and relationships

that are frequently employed in chemical applications of group theory. Chief

among these is the systematic reduction of reducible representations, which

is necessary for nearly all applications. Other topics considered in this chap-

ter are important in certain circumstances, which one will encounter with less

regularity. Those wishing to progress immediately to applications can prof-

itably study Section 3.1 and then skip to the pertinent material in Chapters 4

through 7, returning to sections of Chapter 3 as needed. Those preferring a

more complete grounding before considering chemical applications may wish

to study all of this chapter first.

3.1 Systematic Reduction of Reducible Representations

We noted in Chapter 2 that applying group theory to chemical problems gen-

erally involves constructing a set of vectors on a molecule’s atoms to repre-

sent a particular property. The set of vectors is said to form a basis for a rep-

resentation in the point group of the molecule. The representation itself is

generated by subjecting the vector basis to all the operations of the group,

much in the manner that we carried out for the single general vector v in C2v

in Section 2.3. The dimension of the reducible representation, dn is propor-

tional to the number of vectors in the basis set, which may be quite large for

a complex molecule. As Eq. (2.10) shows, the sum of dimensions of the com-

ponent reducible representations, dh equals dr . Therefore, for a large dimen-

sion representation, the component irreducible representations and the num-

ber of times each contributes may be difficult to ascertain by inspection.

Fortunately, reducing a representation into its component irreducible repre-

sentations can be accomplished systematically.

For all groups of finite order, we can accomplish the reduction of a rep-

resentation by applying the equation

ScXiXr (3.1)
h c

where /?, is the number of times the irreducible representation i occurs in the

reducible representation; h is the order of the group; c is the class of opera-

66



3.1 Systematic Reduction of Reducible Representations 67

tions; gc is the number of operations in the class; Xi is the character of the

irreducible representation for the operations of the class; and xr is the char-

acter for the reducible representation for the operations of the class.

Consistent with Eq. (2.10), the sum of the products of the dimensions of the

irreducible representations multiplied by the number of times they contribute,

riidi, must equal the dimension of the reducible representation, dr .

In applying Eq. (3.1) to decompose a reducible representation, Tn we are

in effect asking the following question for each irreducible representation of

the group: “How many times does this species contribute to the collection

that adds up to rr
?” The answer in each case, nh may be zero (in which case

the irreducible representation is not a part of Fr) or any integer for which n
t
<

drldh consistent with Eq. (2.10). In principle, we successively apply Eq. (3.1)

for each and every irreducible representation of the group, starting with the

totally symmetric representation and working through all the others one by

one. Actually, we can stop at any point where we have found a sufficient num-
ber of irreducible representations to account for the dimension dr of Tr . To
find rii for a particular irreducible representation, we proceed class by class to

multiply together the^haracter of the irreducible representation for the class,

the^haracter for the reducible representation for the class, and the^iumber

of operations in the class, to gb/e the product gcXiXr • Then we™ all these

products for all the classes ancrrlivide by the order of the group, h.

We could write out all the terms of Equation (3.1) for each irreducible

representation in the conventional mathematical manner. However, this

process can become quite cumbersome, particularly if the group has many
classes. For example, the group Oh ,

the point group of octahedral species,

consists of 10 classes and consequently 10 irreducible representations.

Equation (3.1) for each irreducible representation will consist of 10 terms of

the product gcXiXr• Since there are 10 irreducible representations, the whole

process involves writing 100 such terms. Needless to say, all this writing of

mathematical terms invites error. Fortunately, there is a better way of orga-

nizing the work, called the tabular method
To illustrate the technique, consider the following reducible representa-

tion of the point group Td \

Td E cno00 3C2 6S4 6(Td

Tr 8 -1 4 -2 0

This trial representation has no particular meaning and has been constructed

simply for illustrative purposes. In actual applications, a reducible represen-

tation would be developed by subjecting a set of vectors for the property of

interest (a basis set) to the operations of the group. With the reducible rep-

resentation in hand, one would then proceed to decompose it into its com-
ponent species by Eq. (3.1).

*R. L. Carter, /. Chem. Educ. 1991, 68, 373-374.
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To reduce our trial representation, we will need a character table for the

group, which is shown in Table 3.1. The last two columns of the character

table have been omitted from Table 3.1 (cf. the character table for Td in

Appendix A), since we do not need information on vector transformation

properties to reduce Tr . Adding up the numbers of operations in all the

classes, we note that the order of the group is h = 24.

The arithmetic of applying Eq. (3.1) will be recorded on a tabular work
sheet with the form shown in Table 3.2. We will fill in the large central por-

tion of Table 3.2 with the various products gcXtXr along the rows for the irre-

ducible representations. Then we will sum across each row to obtain X val-

ues, and finally divide each sum by the group order, h, which for Td is 24. By
this procedure, we can generate the complete work sheet shown in Table 3.3.

Table 3.1 Partial Character Table of Td

Td E 00Ow 3C2 6S4 6 (Td

A ! 1 1 1 1 1

A2 1 1 1 -1 -1

E 2 -1 2 0 0

T\ 3 0 -1 1 -1

t2 3 0 -1 -1 1

Table 3.2 Work Sheet for Reducing Fr

Table 3.3 Completed Work Sheet Showing the Reduction of Tr

Td E o'00 3C2 6S4 6ad

rr 8 -1 4 -2 0 X 2/24

A\ 8 -8 12 -12 0 0 0

a2 8 -8 12 12 0 24 1

E 16 8 24 0 0 48 2

T\ 24 0 -12 -12 0 0 0

t2 24 0 -12 12 0 24 1
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From this we see that Fr = A2 + 2E + T2 . The proof that this is correct is that

the characters of the irreducible representations of this combination add to

give the characters of Tn as shown below.

Td E ocOw 3C2 6S4 6(Td

a2 1 1 1. -1 -1

E 2 -1 2 0 0

E 2 -1 2 0 0

t2 3 0 -1 -1 1

rr 8 -1 4 -2 0

When actually working out a work sheet such as Table 3.3, one moves

back and forth from the work sheet to the character table. To find n
t
for any

species, rake the characters of the irreducible representation from the char-

acter table (for our example, Table 3.1),Multiply them by the corresponding

characters for Tr ,
as shown on the work sheet (Table 3.2 or 3.3), ancFmultiply

each of those products by the number of operations in its class. Once all the

products in a line have been obtained, sum across the row (2) and divide by

the group order to obtain n
t
for that irreducible representation. Note, how-

ever, that the first line of products on the work sheet, which is the line for the

totally symmetric representation, always involves Xi values that are +1. Thus,

the first line of a work sheet really only involves multiplying the numbers of

operations in each class by the characters of Tr for each class, equivalent to

gcXr • Proceeding to the next and following lines, notice from the character

table that successive irreducible representations differ from one another by

simple changes in sign or multiplications of characters from the preceding line

(cf. Table 3.1). Recognizing this makes it easy to generate the successive lines

of the work sheet. We simply make the appropriate sign changes or multipli-

cations, as dictated by the character table, from either the first or previous

rows in the work sheet. In the case of Td ,
for example, the difference between

A i and A2 is a sign change for the characters of 6S4 and 6 crd . Thus our sec-

ond line of products is the same as the first except that the last two entries

have a negative sign (-1). Similar simple changes are made in successive rows

as we work through the n
t
values for all the irreducible representations of the

group.

In many cases, the reducible representation will have one or more 0 char-

acters, as is the case in our example. As Table 3.3 shows, any column of prod-

ucts under a 0 character in Tr will likewise be 0 and can be ignored in work-

ing out the rii values. Recognizing shortcuts such as this can greatly speed the

work, compared to writing out every explicit term of Eq. (3.1).

Laying out the work in tabular form aids in checking for arithmetic er-

rors. For example, we know that the sum across any row must be divisible by

the group order. If it is not, probably an error has been made in one or more
of the terms in the row. It is also possible that the original reducible repre-

sentation was constructed incorrectly (e.g., incomplete basis set of vectors, or

incorrect interpretation of the effects of the operations on the basis set). The
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error usually caiCbe detected by checking that the correct sign changes or

multiplications were made from one row to the next. For example, in Table

3.3, along the row for E, if we had inadvertently failed to change the sign of

the product for 8C3 from the row for A2 ,
the sum would have been 16 — 8 +

24 + 0 + 0 = 32, which is not divisible by 24. The error could be caught by

referring back to the character table and seeing that the character of +1 for

A 2 becomes -1 for E. While the same error could be detected in the stan-

dard mathematical expression for nE ,
in the tabular form there is no hunting

for which term corresponds to which class of operations. If no arithmetic er-

ror has been made in moving from one line to another, then the original re-

ducible representation may be faulty. Alternately, an error may have been

made in generating the first row, where the products are gcxr (e.g., failing to

multiply by the number of operations in the class, gc).

With all the n
f
results lined up in a column in the work sheet, it is easy to

verify that the sum of dimensions of the component irreducible representa-

tions is the same as the dimension, dn of the reducible representation, as re-

quired by Eq. (2.10). In our example, Eq. (2.10) works out as dr = (1)(1) +

(2)(2) + (1)(3) = 8, which is the dimension of Tn as shown by its character

for the identity operation (cf. Table 3.2 or 3.3).

As one proceeds through the work sheet, it is a good idea to keep an eye

on the running total of the dimensions of the found species. If at any point it

exceeds the dimension of the reducible representation, an error probably has

been made in one or more of the n
t
calculations. The error would be of a type

that would give a sum fortuitously divisible by the order of the group. Beyond

this kind of error detection, noting the running sum of the dimensions may in

some cases prevent carrying out unnecessary work. The reducible represen-

tation may consist of species that are listed in the upper lines of the charac-

ter table. If so, the dimension of the reducible representation will be satisfied

before reaching the bottom row of the work sheet. Therefore, continue row

by row in the work sheet only until a sufficient number of irreducible repre-

sentations has been found to equal the dimension of the reducible represen-

tation, consistent with Eq. (2.10). Unfortunately in our example the last-listed

irreducible representation contributed to Tr ,
so we had to continue through

the entire range of species. Regardless of whether one can stop the work early

or not, it is always prudent to verify, as we did, that the resulting collection

of irreducible representations does, indeed, add to give the reducible repre-

sentation.

3.2 Handling Representations

with Imaginary Characters

We noted in Section 2.4 that certain groups have irreducible representations

with characters that involve the imaginary integer V—T. These representa-

tions are grouped by braces as complex-conjugate pairs in the character table
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of the group. By long-standing convention, the pair is given the Mulliken sym-

bol of a doubly degenerate representation (e.g., E), even though each imagi-

nary-character representation is an irreducible representation in its own right.

We noted further in Section 2.4 that for many applications it may be con-

venient to combine the complex-conjugate pair into one real-number repre-

sentation by adding the two characters for each class of operations in the

group. Where necessary, the trigonometric identities of Eq. (2.18) and (2.19),

or their sum as Eq. (2.20), may be used for this purpose. This procedure is

justifiable in applications of group theory to real molecules, since the re-

ducible representation in such cases must contain both complex-conjugate ir-

reducible representations in equal number, if it contains either.* However,

one must not lose sight of the fact that the combined representation

—

although a genuine representation—is not an irreducible representation of

the group. To emphasize this in this text, we will surround the Mulliken sym-

bol for a combined pair with braces (e.g., {£}).

Using combined, real-number representations can avoid the complica-

tions of dealing with imaginary characters and minimize the number of times

rii needs to be calculated when reducing a representation of one of the imag-

inary-character groups by Eq. (3.1). However, the fact that the combined pair

is a reducible representation, and not an irreducible representation, causes

the answer for rc, to be twice what it should be for any combined representa-

tion.
f To illustrate this, we will construct a reducible representation in C4h by

adding together several irreducible representations of the group, including a

complex-conjugate pair. Then, we will take the resulting reducible represen-

tation, whose components we already know, and decompose it by Eq. (3.1) to

see if the result is the same. For this purpose we will use the character table

for C4h shown as Table 3.4, which has been modified by combining the two

complex-conjugate pairs of representations, Eg and Eu ,
into real-number rep-

resentations, designated
{
Eg }

and
{
Eu }, respectively (cf. the standard charac-

ter table for C4h in Appendix A).

Table 3.4 Modified Character Table for C4h

C4lh E c4 C2 Cl i Sl S4

Ag 1 1 1 1 1 1 1 1

Bg 1 -1 1 -1 1 -1 1 -1

\Eg \
2 0 -2 0 2 0 -2 0

Au 1 1 1 1 -1 -1 -1 -1

Bu 1 -1 1 -1 -1 1 -1 1

\EU )
2 0 -2 0 -2 0 2 0

*A fuller exposition of this point can be found in M. Tinkham, Group Theory and Quantum
Mechanics, McGraw-Hill, New York, 1964, p. 147; or M. Hammermesh, Group Theory and Its

Application to Physical Problems, Addison-Wesley, Reading, MA, 1962, p. 118.

tA mathematical justification of this can be found in R. L. Carter, J. Chem. Educ. 1993, 70, 17-19.
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Let the test representation be Fr = 2

B

g + {
Eg }

+ A u . By adding the char-

acters from these chosen, component representations we obtain the charac-

ters of fr :

C\h E c4 c2 Cl i si s4

B
s

1 -1 1 -1 1 -1 1 -1

Bg 1 -1 1 -1 1 -1 1 -1

\ES 1
2 0 -2 0 2 0 -2 0

A„ 1 1 1 1 -1 -1 -1 -1

rr 5 -1 1 -1 3 -3 -1 -3

Now, using the tabular method (Section 3.1), let us systematically reduce Tr .

This yields the following work sheet.

C4h E C4 c2 Cl i <*h s4

Tr 5 -1 1 -1 3 -3 -1 -3 2 2/8

Ag 5 -1 1 -1 3 -3 -1 -3 0 0

B
g

5 1 1 1 3 3 -1 3 16 2

\ES ]
10 0 -2 0 6 0 2 0 16 2

Au 5 -1 1 -1 -3 3 1 3 8 1

Bu 5 1 1 1 -3 -3 1 -3 0 0

{Eu} 10 0 -2 0 -6 0 -2 0 0 0

This result suggests (erroneously) that Tr = 2Bg + 2{Eg ] + Au . The n
t
results,

appearing in the 2/8 column of the work sheet, clearly are correct for the non-

degenerate species and for the absent combined representation
{
Eu ). However,

the answer for {£g }
is twice what it should be. Even if we had not known the

composition of Tr beforehand, we could have recognized that the overall re-

sult for all rii is incorrect, because the sum of the dimensions of the found

species exceeds that of the reducible representation, in violation of Eq. (2.10).

This doubling problem will always occur for combined, real-character rep-

resentations if they are used with Eq. (3.1) as if they were irreducible repre-

sentations. There is no problem if the individual imaginary-character represen-

tations are used to calculate nt
. For example, for our test representation Tn the

values of n
t
for Eg and Eu can be calculated by Eq. (3.1) with the individual

complex-conjugate representations, here designated Eg(1), Eg(2), Eu ( 1), and

Eu{2). The work sheet for these representations in separated form is as follows:

C4h E c4 C2 cl i <*h 24 2 2/8

Eg(1) 5 —i -1 i 3 -3i 1 3i 8 1

Es{2 ) 5 i -1 —i 3 3 i 1 -3 i 8 1

Eu(l) 5 —i -1 i -3 3i -1 -3 i 0 0

Eu(2) 5 i -1 -i -3 -3 i -1 3i 0 0

This correctly shows that Tr contains Eg( 1) + Eg{2)={Eg ).
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From this it might seem that one should always use the individual, imagi-

nary-character representations with Eq. (3.1). Although that approach will al-

ways avoid the doubling problem, in most point groups with imaginary charac-

ters (except groups like C4 , C4h ,
and S4) the complex-conjugate representations

involve the functions e = exp(2Trilrt) and e* = exp(— 2niln). These are very

cumbersome to manipulate with Eq. (3.1),, either in their exponential form or

as their trigonometric equivalents [Eqs. (2.18) and (2.19)]. Therefore, it is usu-

ally more practical to use the combined, real-character representations, as long

as one is aware of the doubling problem. If this practice is followed, the true

number of times a complex-conjugate pair contributes to the reducible repre-

sentation can be found by dividing the n
t
result from Eq. (3.1) by 2. For all other,

genuinely irreducible representations the n
t
results will be correct as calculated.

3.3 Group-Subgroup Relationships:

Descent and Ascent in Symmetry

One motivation for studying chemical applications of group theory is to un-

derstand how molecular properties change as structure changes. In many
cases, atomic substitution or molecular deformation leads to a new structure

that belongs to a higher-order or lower-order group. If the new point group

is higher order, ascent in symmetry has occurred; if the new point group is

lower order, descent in symmetry has occurred. In either event, there is often

a group-subgroup relationship between the old and new point groups. If as-

cent in symmetry occurs, certain properties that were distinguishable may be-

come degenerate in the new higher-order point group. Conversely, if descent

in symmetry occurs, where the new point group is a subgroup of the old, de-

generacies that existed in the old structure may be lifted, and formerly equiv-

alent properties may become distinguishable in the new configuration.

Knowing how the irreducible representations of a group correlate to the ir-

reducible representations of its subgroups can aid in predicting how certain

properties may change with changes in symmetry. This in turn can enable

chemists to infer structural changes on the basis of observed data, or to in-

terpret data more accurately when a known structural change has occurred.

Consider the resulting changes in symmetry to an initially octahedral

molecule, MA6 ,
when certain of the A atoms are substituted by B and C

atoms, as shown in Fig. 3.1. The operations of the point groups of the five

structures of Fig. 3.1 are summarized in Table 3.5. Examining the operations

in Table 3.5, we can see that structures II through V all belong to point groups

composed of operations that are found in the point group Oh ;
that is, they be-

long to subgroups of Oh . Furthermore, structures II through IV are related to

each other as successive subgroups of one another. Only structure V is not re-

lated to structures II through IV, because it retains the C3 axis from Oh ,
which

the others do not. However, like structures II through IV, structure V also be-

longs to a subgroup of Oh .
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Figure. 3.1 Group-subgroup relationships among some substituted octahedral

molecules.

Table 3.5 Symmetries of the Structures of Fig. 3.1

No. Group Operations h

I oh E, 8C3 ,
6C2 ,

6C4, 3C2(=C4), i, 6S4, SS6 ,
3ah ,

6ad 48

II D4h E, 2

C

4 ,
C2 ,

2C 2 ,
2C 2 ,

i, 2S4 ,
ah ,

2

a

v ,
2

a

d 16

III Qv E
,
2

C

4 ,
C2 ,

2o-v ,
2ad 8

IV C*2v E
,
C2 ,

4

V Qv £, 2C3 ,
3av 6
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What these progressive structural changes illustrate is a descent in sym-

metry through a hierarchy of related subgroups. The structures have been

arranged in Fig. 3.1 to show the group-subgroup family relations in descend-

ing group order. Progressing from top (structure I) down either branch, we
see that the successive subgroups are reached by loss of certain key elements

(cf. Table 3.5). For example, in going from Oh of structure I to C3v of struc-

ture V, the C4 and C2 axes, the ah plane, and the inversion center (i) are lost,

along with other related elements.

Structural changes of this sort, in which the basic geometry of the mole-

cule is essentially preserved, are fairly common. The continuity of group-

subgroup relationships between the structures represents ascent or descent in

symmetry. When the basic geometry changes abruptly, there may be no
continuous relationship between the groups before and after the change. For

example, when an MA5 molecule changes from trigonal bipyramidal geometry

(D3h) to square pyramidal geometry (C4v), or vice versa, there is no group-

subgroup relationship between the two (cf. Fig. 3.2). The operations of C4v

(h = 8) are not a subset of the operations of D3h (h = 12), nor the converse.

That D3h and C4v do not have a group-subgroup relationship should be

apparent even without examining the operations of the two groups. Recall

that the order of a subgroup must be an integer divisor of the order of the

group to which it is related (cf. Section 1.4). With an order of 8, C4v cannot

be a subgroup of D3h ,
whose order is 12. By the same reasoning, structure V

of Fig. 3.1 cannot belong to a subgroup of any of the groups of structures II

through IV.

When point groups are related as group and subgroup their irreducible

representations are related, too. For example, consider D4h and its subgroup

C4v . Table 3.6 shows a character table for D4h in which the operations shared

with C4v have been blocked off, and only the characters for the shared oper-

ations are shown. For each irreducible representation of D4h ,
the characters

for the shared operations define an irreducible representation of C4v ,
the sub-

group. Thus, there is a correlation between the representations of D4h and
C4v . There are only five irreducible representations in C4v ,

compared to 10

for D4h ,
so each representation of C4v correlates to two of D4h . This is shown

by the correlation diagram in Fig. 3.3.

C4v

(* = 8)

A

A

D3h

(h = 12)

Figure. 3.2 Square pyramidal and trigonal

bipyramidal structures of MA5 .
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Table 3.6 Character Table of D4h Showing Characters for Operations Shared

with C4v

&4h
'4v

*2 + y
2

, z
2 A lg

R
z

A2g

x 2 — y
2 £

lg

xy B2S

(RxlRy) (xz,yz) E
S

A \u

Z A 2u

Bu

b2u

(x,y) Eu

z, x
2 + y

1
, z

1

R
z

x 2 -y2

xy

(x,y) (Rx ,
R

v ) (xz,yz)

Figure. 3.3 Correlation diagram showing relationships between the species of D4h

and C4v .

The physical significance of correlations, such as those between the

species of D4h and C4v ,
is that a property that transforms as one representa-

tion in a group will transform as its correlated representation in a subgroup.

The character, *(/?), resulting from a transformation matrix that describes the

behavior of a vector or set of vectors that constitute the basis for a represen-

tation, depends only on R and its orientation relative to the coordinates of
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the system. Therefore, between a group and any one of its subgroups, repre-

sentations arising from the same vector basis will have the same x(R) values

for all operations that occur in both groups.

Often, two or more bases of separate representations of a group yield the

same set of *(/?) values for those operations that are carried over into the

subgroup. In such cases, the separate representations of the larger group will

correlate to a single representation of the subgroup. In other words, the sep-

arate bases in the group form a set of redundant bases for a single represen-

tation in the subgroup. We can see this by comparing the vector transforma-

tion properties of D4h and C4v ,
which are indicated in Fig. 3.3. For example,

note that in D4h the direct products x2 + y
2 and z

2
transform as A ig ,

and the

linear vector z transforms as A2u . When we examine these representations in

Table 3.6, we see for the five classes of operations of D4h that are shared with

C4v the characters are the same for both A lg and A2u Thus, x2 + y
2

, z
2

,
and

z all transform in C4v by the same irreducible representation, which in this

case is the totally symmetric representation, A. Likewise, all other pairs of

representations of D4h that correlate with a single representation in C4y share

the same set of bases.*

In many cases, degenerate representations of a group (Mulliken symbols

of the type E or T) may become two or three distinguishable bases in a sub-

group. When this happens the degenerate representation of the higher-order

group will correlate to two or three irreducible representations of the sub-

group. A doubly degenerate representation would split into two nonde-

generate representations. A triply degenerate representation would split in-

to either three nondegenerate representations or a combination of one

nondegenerate representation and one doubly degenerate representation, de-

pending on the group and subgroup.

In the case of descent from D4h to C4v ,
the bases for the doubly degen-

erate representations Eg and Eu retain their degeneracies and become the E
representation in the subgroup. The fourfold rotational symmetry of both

groups allows degenerate representations. However, if we descend further to

C2v ,
as when changing from structure III to IV in Fig. 3.1, the retention of

only a twofold axis prohibits degenerate representations. Thus, the degener-

ate representation E of C4v must be split into two nondegenerate represen-

tations in Qv
To determine the correlation, consider the C4v character table, shown as

Table 3.7, in which only the characters for operations shared with C2v are

listed. One immediately evident consequence of the descent in symmetry is

that the class of reflections 2av of C4v becomes two separate classes, av and

<r y,
in C2v . Therefore, the operations of C2v are listed on a separate line in

*The species A Xu , B Xu , and B2u of D4h show no vector transformations in either Fig. 3.3 or the

character table (cf. Appendix A). The basis for any of these species is simply not one of the usu-

ally tabulated vectors or direct products. Note, however, that the “missing” basis in each case is

also “missing” for the correlated species in C4v .
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Table 3.7 Character Table for C4v Showing Characters

for Operations Shared with C2v

C4v E 2C4 c2 2crv 2(Td

E c2 (?v, O-y C2y

A\ 1 1 1 A!
A2 1 1 -1 a2

Bi 1 n 1 A\
b2 1 i -1 a2

E 2 -2 0 ?

Table 3.7. Notice that there is no representation in C2v with characters corre-

sponding to the E representation of C4v . We can determine the two repre-

sentations of C2v that correlate to this set of characters by treating them as

comprising a reducible representation, TE ,
in the smaller group. By inspec-

tion, we see that T^ = B x + B2 :

C2v E C2 O-y <r'v

By 1 -1 1 -1

B2 1 -1 -1 1

r£ 2 -2 0 0

Combining this information with the correlations that are evident in Table 3.7

leads to the correlation diagram shown in Fig. 3.4.

The important point of this illustration is that the degeneracy that exists

in C4v is lifted on descending to C2v . This means that two properties that may
be indistinguishable by reason of symmetry (i.e., degenerate) in a molecule

of C4v symmetry will be distinguishable (i.e., nondegenerate) if the symmetry

is reduced to C2v .

Qv '2v

Figure. 3.4 Correlation diagram for C4v and

C2v assuming that the two crv planes of C4v be-

come <xv and cr'v of C2v .
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It is worth noting that the correlation between C4v and C2v would be dif-

ferent if we had assumed that the two crd planes of C4v became av and a y in

C2v - In this case, the correlations between B
v
and B2 of C4y with A 1 and A2

of C2v would have been reversed, becoming B
x
—> A2 and Z?2 —> A\. Thus, we

must take care to define which operations are retained when making corre-

lations between groups and subgroups where more than one choice is possi-

ble. The choice, however, does not affect the fate of any properties of a mole-

cule, merely the Mulliken labels attached to them.

Correlation tables relating most important groups with their subgroups

are shown in Appendix B. Where correlations differ by choice of retained op-

erations, the preserved elements are noted in the heading of the column for

the subgroup.

3.4 Reducing Representations of Groups

with Infinite Order

In Section 3.1 we noted that Eq. (3.1) can be used to reduce any reducible

representation of a group with finite order. Unfortunately, the division by h
,

the group order, makes this equation unsuitable for representations of the in-

finite-order groups, namely Coo V and D^h . In many cases involving linear mol-

ecules, the reduction can be accomplished by inspection, but for representa-

tions with higher dimensions a work-around technique may be useful.

One of the most practical alternative techniques for reducing representa-

tions of infinite-order groups, originally suggested by Strommen and

Lippincott,* takes advantage of group-subgroup relationships. Realizing that

Cooy and D 0oh are merely special cases of the family of groups Cnv and Dnh ,
re-

spectively, it follows that all members of these families are subgroups of their

respective infinite-order groups. Therefore, to avoid the problem of needing

to divide by infinity in Eq. (3.1), we can set up the reducible representation in

any convenient subgroup and correlate the component irreducible represen-

tations with the species for the infinite-order group. When applied to physical

problems, this technique amounts to pretending that the molecule has a lower-

order, finite group symmetry. Once the results are obtained, they are corre-

lated with the appropriate species of the true, infinite-order group.

Realizing that the infinite-order groups have an infinite number of irre-

ducible representations, we must concede that it is impossible to construct a

complete correlation between any subgroup and its parent infinite-order

group. However, for applications to physical problems such as we will con-

sider in this text, most of our concern will be with species of the group and
subgroup that are associated with unit vector or direct product bases, the

kinds that are tabulated in the last two columns of the character tables. Within

*D. P. Strommen and E. R. Lippincott, J. Chem. Educ. 1972, 49, 341-342.
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this limitation, it is possible to work out the meaningful correlations by match-

ing vector bases in the two related groups. Some correlations beyond these

are also easy to deduce.

The remaining question for implementing this strategy is which subgroup

to choose. In both CMV and the C* axis, which would correspond to the

axis of a linear molecule in either case, is taken as z of a Cartesian coordi-

nate system. Hence, the x and y axes lie perpendicular to the molecular axis.

In choosing the subgroup in which to work, it is usually most convenient to

pick a group that does not intermix jc and y coordinates (e.g., as would a

group with a C3 principal axis). A group with a C2 or C4 principal axis is geo-

metrically compatible with the orientations of x and y to each other, and

therefore either is generally a good choice for the working subgroup. The
groups with the lower-order principal axis (C2) have fewer operations and ir-

reducible representations, which minimize some of the work. Therefore, for

most applications, it will be most convenient to use C2v as a working subgroup

for a problem in Coo V ,
and to use D2h for a problem in Dxh . Correlation ta-

bles for these group-subgroup relations are shown as Tables 3.8 and 3.9.

To illustrate the technique, consider the following representation of the

group D2h ,
assuming that it is constructed as a working-subgroup substitute

for a representation in Dxh .

B>2h E C2(z ) C2(y) C2(x) i o{xy) (t(xz) <r{yz)

rr 15 -5 -1 -1 -3 1 5 5

With Eq. (3.1) and the tabular method (Section 3.1), we find

Tr = 2Ag + 2B2g + 2B3g + 3B lu + 3B2u + 3B3u

To find which irreducible representations would comprise Tr in the parent

group Dxh ,
we examine the correlations listed in Table 3.9. From Table 3.9

Table 3.8 Partial Table 3.9 Partial

Correlation Between Correlation Between

Coo V and C2v and D2h

C2v

A 1 = A±
A 2 — 22 a2

ex = n B\ + B2

E2 = A A\ + A2

D„h D2h

Ag

Big

n. Big + B3g

Ag + Big
Bin

A u

n„ b2u + b3u

A„ A u + Biu
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we see that Ag becomes 2g
+ and B lu becomes 2^ in D^h . Each pair

B2

g

+ B3g becomes the doubly degenerate species Ug ,
and each pair B2u +

B3u becomes the doubly degenerate species IT„ in D 0oh . Thus, in D^h we have

rr = 22+ + 2ng + 32 J + 3nu

Note that either in D2h or Dxh the sum of the dimensions of the component

irreducible representations is the same as the dimension of Tr;
that is, dr = 15.

3.5 More About Direct Products

The direct product listings that appear in the last column of a character

table show the symmetries of direct products between linear vectors. Actually,

direct product combinations can be taken between any number of irreducible

representations, whether or not they are associated with linear vectors. Indeed,

it is not even necessary in many cases to know the specific basis for the rep-

resentation. The relationships between individual irreducible representations

and their direct products are relevant to certain applications of quantum me-

chanics, such as spectroscopic selection rules. Therefore, it is useful to un-

derstand how direct products are generated in group theory and to know
some of the general results that have consequences for dealing with molecu-

lar problems.

For any direct product between two or more irreducible representations

of a group, the result will also be a representation of the group. Thus,

IWc . . .
= Tabc ... (3.2)

where the characters of the direct product representation Tabc _
for each op-

eration R of the group are given by

Xa(R)X„(R)Xc(R). . = Xabc.iR) (3.3)

To generate the representation for any direct product, we simply multiply to-

gether the characters of the component representations, operation by opera-

tion. The resulting representation may be either a reducible or irreducible

representation. In either case the dimension of the product, dp ,
is the prod-

uct of the dimensions of all the component representations:

dp = n dt (3.4)
i

We will illustrate the procedure and some general results using the group C4v ,

as shown in Table 3.10. We do not need the vector direct product listings, so

they have been omitted from the table.

1 . If all the combined irreducible representations are nondegenerate, then the

product will be a nondegenerate representation, too.
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Table 3.10 Partial Character Table for C4v

c4v E 2C4 c2 2av 5?<N

A\ 1 1 1 1 1

a2 1 1 1 -1 -1

1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

This follows directly from Eq. (3.4). For example, in C4v the direct prod-

uct B xB2 ,
formed by multiplying the characters of the two representa-

tions, is the irreducible representation A2 ,
as shown below.

C4v E 2C4 C2 2(Tv 2<7d

l

h

1 -1 1 1 -1

B2 1 -1 1 -1 1

a2 1 1 1 -1 -1

2. The product of a nondegenerate representation and a degenerate represen-

tation is a degenerate representation. The product may be either the origi-

nal degenerate representation or another of the same order (if such exists).

This, too, is a consequence of Eq. (3.4). For example, in C4v we ob-

tain B2E = E
,
as shown below.

c4v E 2C4 C2 2av 2ad

b2 1 -1 1 -1 1

E 2 0 -2 0 0

E 2 0 -2 0 0

In this case the product must be the original degenerate representation,

because there is no other in the group.

3. The direct product of any representation with the totally symmetric repre-

sentation is the representation itself

This follows because the totally symmetric representation in any

group consists of all +1 characters. For example, in C4v we obtain A XE =

E, as shown below.

c4v E 2C4 C2 2crv 2(7d

A\ 1 1 1 1 1

E 2 0 -2 0 0

E 2 0 -2 0 0
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4.

The direct product of degenerate representations is a reducible representa-

tion.

By definition, a degenerate representation is one for which d
t
> 2, so

the product of Eq. (3.2) will be dp > 4 for any direct product of degener-

ate representations. Since no irreducible representation has an order

greater than 3 (at least among the common finite groups), the product

must be a reducible representation.* For example, in C4v the product EE
yields the following characters:

c4v E 2C4 C2 2(Tv 2crd

E 2 0 -2 0 0

E 2 0 -2 0 0

r„ 4 0 4 0 0

By applying Eq. (3.1), it can be shown that the product representation,

Tp ,
decomposes as

T/7 = + A2 + B\ + Z?2

As always, the proof of this decomposition is that the sums of the char-

acters for the irreducible representations are the characters of the re-

ducible representation, Tp .

5. The direct product ofan irreducible representation with itself is or contains

the totally symmetric representation.

If the representation is nondegenerate, the product with itself must

be the totally symmetric representation, because the product characters

are all (±1)
2 = 1. If the representation is degenerate, its product with it-

self will be a degenerate representation (point 4, above) whose compo-
nent irreducible representations include the totally symmetric represen-

tation. (The proof of this is given under point 6, below.) The example of

EE in C4v shown above illustrates the point for the self-product of a de-

generate representation.

6. Only the direct product of a representation with itself is or contains the to-

tally symmetric representation.

This is most readily apparent for the product of two different non-

degenerate representations, for which at least one of the ;^a (jR);ft,(i?)

products must be negative. This is inconsistent with the totally symmet-
ric representation. More generally, we can determine how many times the

totally symmetric representation occurs in any Tp ,
regardless of dimen-

*The rarely encountered groups I and lh have degenerate representations with d
t
= 3, 4, 5, but

none with d
t
= 2. Hence, dp

> 9 for all direct products of degenerate representations in these

groups. Here, too, any product of degenerate representations is a reducible representation.
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sion, by solving Eq. (3.1). In the case of the totally symmetric represen-

tation, Xi = Xa -1 for all classes of any group. Therefore Eq. (3.1) yields

hnA = X ScXiXr = X ScXaXp = X ScXp (3.5)
C C C

All the characters of Tp are products of the characters of two irreducible

representations Ta and T^; that is, xP = XaXb for all classes of the group.

Furthermore, T
fl
and must be orthogonal, as required by Eq. (2.27).

Therefore, we may rewrite Eq. (3.5) as

ScXaXb tl^ab (3*6)
c

from which it follows that nA ~ $ab- Thus, nA will be zero for all

Tp = TaTb ,
except when Ta = Tb . This means that only the direct product

of an irreducible representation with itself can contain the totally sym-

metric representation. Moreover, Eq. (3.6) requires that the self-product

contain the symmetric representation once, and only once.

In addition to the points above, we can make some generalizations

about the Mulliken symbols of direct products between representations.

Recall from Section 2.4 that g and u subscripts indicate symmetry and

antisymmetry with respect to inversion. Likewise, prime (') and double

prime (") indicate symmetry and antisymmetry with respect to a hori-

zontal mirror plane. When representations with either of these symbols

are combined as direct products, the product representation or repre-

sentations will be symmetric to the referenced symmetry operation

(g or ') when both irreducible representations are symmetric (g or ') or

both are antisymmetric (

u

or"). If one is symmetric and the other is an-

tisymmetric, the product will be antisymmetric (

u

or"). In terms of the

Mulliken symbols, these results can be summarized as follows:

(g)(g) = (g) («)(“) = (g) (g)(w) = (k)

(')(') = (') ("K") = (') on = o
These results have consequences for selection rules in spectroscopy, as

well as other applications in quantum mechanics.

Problems

3.1 Reduce the following representations into their component species:

(a) d E 2S4 C2 1C'2 2(Td

Ta 4 0 0 0 2

(b) 6-3V E 2C3 3<xy

Tb 12 0 2
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(c) D3h E 2C3 3C2 (7h 2S3 3av

rc 5 2 1 3 0 3

(d) c4v E 2C4 c2 2(7v 2 (jd

18 2 -2 4 2

(e) D&h E 2C6 2C3 C2 3C2 3C 2 i 2S3 2S6 3 o-d 3 crv

Te 18 0 0 0 -2 0 0 0 0 6 0 2

(0 Td E 8C3 3C2 654 6ad

i> 15 0 -1 -1 3

(g)

Oh E 8C3 6C2

3C2
6C4 (=Ci) i 6S4 856 3 (Th 60

21 0 -1 3 -3 -3 -1 0 5 3

(h) D5h E 2C5 2cl 5C2 crh 2S5 2si 5<TV

Th 7 2 2 1 5 0 0 3

3.2 Reduce the following representations, from groups whose irreducible represen-

tations contain imaginary characters, into their component species:

(a) C

4

E c4 C2 cl

Ta 15 1 -1 1

(b) C3h E C3 Cl o-h s3 si

r„ 21 0 0 7 -2 -2

(c) C5 E C5 Cl cl Cl

rc 1 2 2 2 2

3.3 Using the transformation properties listed in the character tables, determine the

correlations between species of the following groups and their indicated sub-

groups: (a) C4v —» C4 ,
(b) D3h —> D3 ,

(c) D5d —» C5v .

3.4 Determine the correlations between species of D4h and D2d (a) when 2C 2 and

2ad of D4h become 2C 2 and 2 o-d ,
respectively, of D2d \

and (b) when 2C2 and 2 crv

of D4h become 2C 2 and 2ad ,
respectively, of D2d . [Hint: For each species of D4h ,

compare characters of the operations retained in D2d with the characters listed

for the various species of D2d .]

3.5 The following representations were generated in C2v and D2h to avoid working

in the true molecular point groups C^ v and D «/,, respectively. Determine the

species comprising the reducible representation of the infinite-order group in

each case.

(a) Qv E C2 crv o-'

15 -5 5 5

(*>) Dm £ C2(z) c2(y) c2(x) i <Kxy) °{xz) oiyz)

r„ 9 -3 -1 -1 -3 1 3 3

*

*
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t

3.6 Determine the species of the following direct products: (a) in D4d ,
B2 X B2 \

(b)

in Td ,
T2 X T2 ,

(c) in D6d ,
A x X E$, (d) in D2d ,

B1 X B2 \
(e) in C4h ,

Bg
X Au \

(f)

in D'ih, A\ X A2 .

,

(g) in C4h, Au X Eu ,
(h) in D2d ^

Eg
X Eu .

3.7 Consider the following sequential structural changes (I —> II —> III). For each se-

ries, indicate (i) the point group of each structure, (ii) the specific symmetry el-

ements that are lost or gained in the transitions I —> II and II —> III, (iii) whether

the transition II —

»

III represents descent or ascent in symmetry, (iv) whether the

point groups of II and III bear a group-subgroup relationship to each other, and

(v) whether the point groups of Land III bear a group-subgroup relationship to

each other.



Problems 87

3.8 For each sequence of structure changes in Problem 3.7, construct a correlation

diagram (similar to those shown in Figs. 3.3 and 3.4) that links the symmetry

species of the point groups of structures I, II, and (if possible) III, in succession.

Do not attempt to construct a correlation between point groups that do not have

a group-subgroup relationship. Note any degenerate symmetry species whose

degeneracy is lifted or any nondegenerate symmetry species that become degen-

erate as a result of the changes in point group with each transition.

3.9 Construct the correlation table for the group D4 ,
showing correlations of its

species to those of its subgroups C4 and C2 . Note that there are three possible

ways of defining C2 ,
depending on whether C2(=C 4), C 2 ,

or C 2 from D4 is re-

tained in the subgroup. Show correlations for all possibilities.

3.10 Verify the correlations between species of the group / and its subgroups T, D5 ,

C5 ,
D3 ,

C3 ,
D2 ,

and C2 ,
as shown in Appendix B.



CHAPTER 4

Symmetry and Chemical
Bonding

Atomic orbitals possess symmetry properties that can be associated with the

irreducible representations of the point group of the molecular system. When
two or more atoms form chemical bonds, these symmetries assume great im-

portance in determining what kinds of interactions can and cannot occur.

Moreover, symmetry and group theory can be used effectively as a means of

simplifying the complex quantum mechanical problem of constructing appro-

priate wave function descriptions of the bonding in molecules.

At the simplest level, consideration of the symmetries of orbitals on

atoms can help us understand the nature of the bonding interactions between

atoms in molecules. At a more detailed level, group theory arguments can

guide us toward construction of appropriate hybrid orbitals that are helpful

in reconciling the observed shapes of molecules with the atomic orbitals that

are available for bonding. At its most powerful, group theory can be used to

guide construction of general molecular orbitals for the entire molecule. With

quantitative data, this approach enables construction of a molecular orbital

scheme that can elucidate the electronic structure of a molecule. Use of a spe-

cial function in group theory called the projection operator (cf. Chapter 5)

can even aid in deducing the mathematical forms of the molecular orbital

wave functions.

4.1 Orbital Symmetries and Overlap

In 1939 Feyman and Heilman showed that the forces that hold positive nu-

clei together in bonds are essentially the same as would exist with a static dis-

tribution of negative charge. From this comes the association of a buildup of

electron density (i.e., increased electron probability) with the formation of a

chemical bond. In principle, the bonded state can be represented by a

Schrodinger wave equation of the general form

m? = EV (4.1)

where 9{ is the Hamiltonian operator
,
which describes the kinetic and poten-

tial energies of the system as functions of the masses and positions of all par-

ticles; ^ is a wave function solution to the equation, also called an eigen-

88
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function of tH; and E is the total energy of the system associated with 'F, also

called an eigenvalue. For a system consisting of i particles with masses mh sub-

ject to a potential energy V
,
which is a function of the positions of the parti-

cles, the Hamiltonian is

+ V(x
i9 yh zd (4.2)

As may be evident from Eq. (4.2), setting up and solving the wave equa-

tion for all but the simplest molecular systems is not a feasible approach.

Instead, it is customary to construct approximate wave functions for the mol-

ecule from the atomic orbitals of the interacting atoms. By this approach,

when two atomic orbitals overlap in such a way that their individual wave

functions add constructively, the result is a buildup of electron density in the

region around the two nuclei. This follows from the association between the

probability, P, of finding the electron at a point in space and the product of

its wave function and its complex conjugate*:

Poc'F'F* (4.3)

If the particle exists, the probability of finding it over all points throughout

space is unity, which leads to the normalization condition

jw*dT = 1 (4.4)

where dr indicates that the integration is performed over all coordinates of

space; that is, dr = dx dy dz. In order to ensure that Eq. (4.4) is satisfied for

a trial wave function, v|i, we may find it necessary to multiply by a constant,

N, called the normalization constant
,
such that

J(Aty)(M|<*) dT = N2
J«Mi* dr = 1 (4.5)

If v(i is a solution to Eq. (4.1), then so too is M|j, and the value of E in Eq.

(4.1) is unaffected.

We will be interested in constructing wave functions for the molecular

system using the wave functions of the individual atoms. The extent of over-

lap between two orbitals on atoms A and B, and hence the nature and effec-

tiveness of their interaction, is given by the Slater overlap integral

;

S = j^A^B dr (4.6)

The value of S can be calculated for H2 ,
but otherwise it must be approxi-

mated. For our purposes, it is only necessary to have a qualitative apprecia-

tion for Slater overlap integrals and a sense of whether a particular integral

is positive, negative, or zero. If S > 0, the overlap results in a bonding inter-

*This connection was first suggested by the German physicist Max Born in 192b, and it resulted

in part in his subsequent award of a Nobel Prize in 1954. Born’s interpretation was based on anal-

ogy with the wave theory of light, by which the intensity of a light wave is proportional to its am-
plitude; that is, I<xA2

.
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action, characterized by a reenforcement of the total wave function and a

buildup of electron density around the two nuclei. If S < 0, overlap results in

an antibonding interaction with decrease of electron density in the region

around the two nuclei. If S = 0, overlap results in a nonbonding interaction,

where the distribution of electron density is essentially the same as that de-

scribed by atomic orbitals on two adjacent atoms that do not have bonding

or antibonding interactions.

These kinds of interactions are relatively easy to visualize by bringing to-

gether the usual pictorial representations of the interacting atomic orbitals,

taking particular note of the signs of the wave functions. For this purpose, we
may use the simple “balloon” representations of atomic orbitals, such as

those shown in Fig. 4.1. These are actually rough representations of 90-99%
of the probability distribution, which as the product of the wave function and

its complex conjugate (or simply the square, if the function is real) is inher-

ently a positive number. The signs indicated in Fig. 4.1 are those of the wave
function, \P, itself and are shown only as a convenience for understanding

how wave functions combine in bonding interactions. Note that these are rep-

resentations for the simplest examples of each type of orbital (e.g., Is
,
2p, 3d).

Orbitals of each type (same value of the quantum number /) with higher than

the minimum allowed value of the principal quantum number n are spatially

more extensive, have more nodes, and (except of the 5 orbitals) have more
lobes. However, the symmetries of orbitals of the same type are identical, re-

gardless of the value of n.

For example, compare the contour diagram for a hydrogen 2p orbital with

that of a 3p orbital, as shown in Fig. 4.2. Both are symmetric with respect to

a Coo axis and any vertical mirror plane (av) passing through the lobes. As ob-

jects, the three-dimensional models of these would both belong to the point

group Cooy Likewise, all s orbitals belong to the full rotation group R3
!* All

“cloverleaf” d orbitals (dxy ,
dxz ,

dyz , ^-y
2
) belong to D2h (assuming attention

is paid to the alternations of wave function sign), and all dz
2 orbitals belong

to D 0oh . Therefore, for the purposes of analyzing symmetry aspects of orbital

interaction and bonding, we usually may use the simplest example of an or-

bital of a given type, regardless of the actual orbital that may be involved.

Consider the kinds of orbital interactions that may occur with S > 0.

Figure 4.3 (left side) shows six examples of such bonding interaction. As these

examples show, bonding results when all interacting regions of the two or-

bitals overlap with the same wave function sign. If a wave function for the

bond, Tr
,
were constructed from the two atomic wave functions, it would have

higher amplitude in the region around the two nuclei. Given that probability

is proportional to 'FT'*, this implies that the electron density about the nuclei

would also be higher.

*The infinite group R3 is composed of all point group operations in all possible orders to Cx and

Sx . It is the point group of any spherical object. All other point groups are subgroups of R3 . No
molecules have this symmetry; therefore, R3 was not discussed in conjunction with point groups

of molecules in Chapter 1.
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z

Figure 4.1 Balloon representations of atomic orbitals.

Figure 4.3 shows the two most frequently encountered kinds of positive

overlap, sigma (a) and pi (ir). A sigma bonding interaction (e.g., Fig. 4.3 left,

top three) is characterized by reenforcement along the internuclear axis. As
these and other examples in Fig. 4.3 show, the interacting orbitals need not

be the same type. A pi bonding interaction (e.g., Fig. 4.3 left, bottom three)

is characterized by equal reenforcement above and below the internuclear
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Contours at 0.0, 0.002, 0.004, 0.006, and 0.008 Contours at 0.0, 0.002, 0.004, 0.006 and 0.008

Figure 4.2 Contour diagrams of a 2px orbital (left) and a 3px orbital (right).

Indicated values for contours are calculated values of i|/ for hydrogen. [Reproduced

with permission from A. Streitwieser, Jr. and P. H. Owens, Orbital and Electron

Density Diagrams
,
Macmillan, New York, 1973.]

axis. Note that regardless of the specific interacting atomic orbitals, the two

regions of maximum overlap of a pi bond have opposite wave function signs

on opposite sides of the internuclear axis. As a result, the internuclear axis

and the entire plane perpendicular to the plane of maximum overlap define

a nodal surface (P = 0).

The difference between sigma and pi interactions can be described in

terms of symmetry with respect to the internuclear axis. As Fig. 4.3 shows,

sigma bonding interactions are symmetrical with respect to a C2 axis collinear

with the internuclear axis, and symmetrical to a crv plane containing that

axis.* By contrast, pi bonding interactions are antisymmetric with respect to

C2 and crv (coplanar with the nodal plane); that is, the wave function sign

changes with respect to these operations.

It follows from the overlap criterion of bonding that the interacting or-

bitals must also have these symmetries. Consequently, as a general approach

in group theory, we often represent atomic orbitals capable of sigma bonding

by vectors pointing from one atom toward another along the internuclear

axis. Likewise, orbitals capable of pi interactions are represented by vectors

perpendicular to the internuclear axis. Both of these vector representations

express the symmetry of the interaction without the necessity of specifying

which particular orbitals may be involved.

*In all cases of sigma overlap between s and p orbitals, the bonding interactions actually are sym-

metrical to Coo and an infinite number of av planes intersecting along the C* rotational axis.

However, possible sigma bonding and antibonding interactions involving a single lobe on a d or-

bital (e.g., dx2-y2 ± px in Fig. 4.3) require the more restrictive symmetry definition.
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S > 0

pz ± s(cr
,
a*)

S < 0

dxz ± px(ir, -it*)

^2 ± dXZ^’ Tf*)

Figure 4.3 Examples of positive (left) and negative (right) orbital overlap. Shaded

areas represent orbital lobes with positive wave function sign. (Axis orientations

vary.)

The right side of Fig. 4.3 also shows examples of antibonding interactions.

Note that the orbital combinations are the same as those shown for bonding

interactions, except that the signs on one of the interacting orbitals have been

reversed. Overlap with opposing signs creates destructive interference, re-

sulting in an antibonding state (S < 0). Both sigma and pi antibonding inter-

actions (cr* and 7r*) are possible. Their symmetries with respect to C2 and crv

are identical to those of the bonding interaction. The only difference is the

mathematical sense in which the wave functions have been combined. In gen-

eral, if two or more orbitals can be combined to define bonding combinations,

then they must also be capable of forming an equal number of antibonding

combinations of the same type (<x or 7r). In applied group theory, the vector

representations of orbitals used to describe cr and tt bonding combinations,

as described above, also allow for cr* and 7r* antibonding combinations.

Figure 4.4 shows four examples of nonbonding interactions, for which

S = 0. In all cases, any region of reenforcement (same wave function signs) is

counterbalanced by an equal region of destructive interference (different
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Figure 4.4 Examples of some overlaps that are re-

quired by symmetry to be zero (5 = 0).

wave function signs). Such interactions neither add nor subtract from possi-

ble bonding between atoms. In terms of symmetry, the nonbonding state re-

sults from a lack of shared symmetry between interacting orbitals. In essence,

an atomic orbital is nonbonding when there is no orbital of like symmetry
available on a neighboring atom.

For completeness, we should also note one additional type of bonding

and antibonding combination that can occur between d orbitals on adjacent

atoms. If z is taken as the internuclear axis, pairs of dx2-y2 or dxy orbitals on

adjacent atoms may interact with overlap on all four lobes of each. Interactions

of this type result in a delta bond ( 8) when S > 0 and a delta antibond (8*)

when S < 0. Relative to the internuclear axis, both combinations are sym-

metric with respect to C2 , but antisymmetric with respect to C4 . This kind of

interaction is postulated to describe metal-metal bonding in certain transit,

tion-metal cluster complexes .

4.2 Valence Bond Theory and Hybrid Orbitals

Historically there have been two major approaches for describing bonding on

the basis of interactions of atomic orbitals: Valence Bond Theory and

Molecular Orbital Theory. The valence bond (VB) approach, first described

by Walter Heitler and Fritz London in 1927, is the older and in many ways

simpler of the two. Both historically and conceptually, the VB model is an ex-

tension of the Lewis idea of bond formation through sharing of electron pairs.

The important addition of the VB model is the identification of specific

atomic orbitals on each atom that are assumed to be interacting to form

bonds. Like the Lewis model, the electron sharing is presumed to be local-

ized between pairs of atoms, so there is a strong correlation between orbital

interactions and bonding linkages in a polyatomic molecule. Because of this,

the VB approach tends to be more intuitively satisfying, even though it is of-

ten less successful in accounting for some of the quantitative details of mole-

cular electronic structure.

In the VB approach, the electron density between bonding atoms can be

defined on the basis of a new wave function, which in its simplest formula-

tion is a product of the wave functions of the interacting orbitals. For exam-

ple, consider two hydrogen atoms, each with a single electron, coming to-



4.2 Valence Bond Theory and Hybrid Orbitals 95

gether to form a bond. The simplest product wave function for this interac-

tion would have the form

* = [M1)}[1^(2)] (4.7)

The subscripts a and b represent the two atoms with their associated electrons

1 and 2, respectively, each assigned to a Is orbital on each atom. Actually, this

trial wave function does not give very satisfactory agreement with the exper-

imentally determined dependence of energy on internuclear separation (the

Morse curve). However, it can be improved by modifications that account for

the indistinguishability of electrons in a bond, the effective nuclear charge re-

sulting from the two nuclei, and possible contributions to bonding from other

orbitals (e.g., 2pz ). With these refinements, the empirical wave function gives

a satisfactory agreement with experimental results.

This general approach, which constructs localized bonds between pairs of

atoms, can be extended to polyatomic molecules. However, in such cases, due

consideration must be given to the geometrical orientations of the various

atoms in the molecule—that is, the shape of the molecule. According to the

Valence Shell Electron Pair Repulsion Theory (VSEPR theory) of Gillespie

and Nyholm,* the shapes of molecules can be understood on the basis of min-

imization of electron coulombic repulsions and considerations of atomic sizes.

The lengths and strengths of bonds are a consequence of these factors and

the effective distribution of electron density throughout the molecule. In the

VB approach, the total molecular electron density is partitioned into regions

corresponding to bonds between pairs of atoms. Taking this approach, it fol-

lows that the electron density associated with a bond is the result of effective

overlap between appropriately oriented atomic orbitals.

The need for appropriately oriented atomic orbitals consistent with the

molecular shape presents a difficulty, since the conventional atomic orbitals

(Is, 2s, 2p, etc.) generally do not have the correct geometries. This difficulty

led Linus Pauling to postulate the formation of hybrid orbitals consistent with

the geometrical requirements of molecules. For example, we can conceive the

formation of such orbitals for carbon in CH4 by a hypothetical process such

as that illustrated in Fig. 4.5. From the
3P ground state of carbon, arising from

the configuration ls
2
2s

2
2p

2
,
energy would be required first to achieve the

5S
state, in which all four valence electrons are unpaired (ls

2
2s

1
2p

3
). Additional

energy would then be required to create four tetrahedrally directed sp
3
hy-

brid orbitals from the 2s and 2p orbitals. The resulting hypothetical state, V4 ,

would provide the carbon atom with four appropriately oriented orbitals,

each with a single electron, to overlap with the four hydrogen Is orbitals,

leading to electron pairing and bond formation. The accompanying release of

energy with bond formation, giving a lower total energy state, is seen as the

impetus for hybrid formation.

*A discussion of VSEPR theory can be found in most introductory chemistry texts or the fol-

lowing: R. J. Gillespie and R. S. Nyholm, Q. Rev. 1957, XI, 339 ;
R. J. Gillespie, J. Chem. Educ.

1970, 47, 18
;
ibid. 1974, 51, 367

;
ibid., 1992, 69, 116 .
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Energy Bonded atom

Figure 4.5 Hypothetical energy

process for the formation of car-

bon sp
3
hybrid orbitals.

It is important to realize that this hypothetical process is merely a con-

venient artifice for reconciling the formation of directed bonds with our no-

tions of conventional atomic orbitals. The wave functions for the familiar

atomic orbitals are but one set of solutions to the Schrodinger equation, and

other solutions may be found as sums of these. In the case of tetrahedrally

bonded carbon, combinations of 2s, 2

p

x , 2

p

y ,
and 2

p

z lead to the following

four wave functions:

'I'l
=
\ (s + Px + Py + Pz) (4.8a)

=
\ (S+Px- Py~ Pz) (4.8b)

II
CO

\ (S-Px+Py- Pz) (4.8c)

II

\
(S ~ Px - Py + Pz) (4.8d)

Each resulting orbital has the same shape (as shown in Fig. 4.6) and is ori-

ented at 109° 28' from any other orbital of the set. The wave functions for sp
3

Figure 4.6 Contour diagram of a single

sp3 hybrid orbital. The two straight lines

indicate the two-dimensional projection

of a conical node. Indicated values for

contours are calculated values of i|i.

[Reproduced with permission from

A. Streitwieser, Jr. and P. H. Owens,

Orbital and Electron Density Diagrams
,

Macmillan, New York, 1973.]Contours at 0.0, 0.002, 0.004, 0.006, and 0.008
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hybrid orbitals, cast in this manner, are equally valid solutions to the

Schrodinger equation for carbon as are the wave functions for the 2s and 2p
orbitals themselves. The distinction between the hybrid orbitals and the stan-

dard atomic orbitals is merely a matter of convenience. The hybrid set is bet-

ter for describing the tetrahedrally bonded carbon atom, while the standard

set of 2s and 2p orbitals is better for describing the free atom. Indeed, as

Linus Pauling pointed out, “if quantum theory had been developed by the

chemist rather than the spectroscopist it is probable that the tetrahedral or-

bitals . . . would play the fundamental role in atomic theory, in place of the

5 and p orbitals.”*

We have considered the case of sp
3
hybrid orbitals only because they are

likely to be the most familiar. Actually, the sp
3 combination of standard

atomic orbitals is not the only one that can be involved in tetrahedral bond-

ing. We can identify all possible sets of orbitals that lead to tetrahedral geom-

etry by using techniques of group theory. In approaching the problem, we
must recognize the ways in which the standard atomic orbitals will transform

in any point group. We have seen that 5 orbitals, which in isolation could be

described by the full rotation group i?3 ,
are symmetric with respect to all sym-

metry operations. As a result, in any molecular point group an 5 orbital at the

center of the system will transform as the totally symmetric representation.

The orientation of the three p orbitals along the cardinal axes of the coordi-

nate system allows them to be represented by a unit vector along the same

axis. As a result, p orbitals transform by the same species as the correspond-

ing unit vectors (cf. Section 2.4), which are noted in the next-to-last column

of each character table. Finally, the d orbitals transform according to the

species of their corresponding direct products (cf. Section 2.4), as listed in the

last column of each character table.

Disregarding our knowledge of sp
3
hybrid orbitals for the moment, sup-

pose we wish to determine which specific atomic orbitals could be combined
to form a set of four tetrahedrally directed hybrid orbitals. We will presume

that such a set can be formed, and we will make it the basis for a represen-

tation in the point group of a tetrahedron, Td . If we subject this basis set to

the operations of Td ,
we can deduce the characters of a reducible represen-

tation, which we shall call F
r

. Reducing the representation Tt
into its compo-

nent irreducible representations will enable us to identify conventional or-

bitals with the requisite symmetries to form a tetrahedral set of hybrids.

We will represent the four equivalent hybrid orbitals by vectors, as shown
in Fig. 4.7, labeled A, B, C, and D so that the effects of the symmetry oper-

ations of Td can be followed. The base of each vector is at the center of the

system and will not be shifted by any operation of the group. Therefore, we
only need to consider the effects of the operations on the tips of the vectors.

We will use 4x1 matrices to represent the positions before and after each

*Linus Pauling, The Nature of the Chemical Bond
,
3rd ed., Cornell University Press, Ithaca, NY,

1960, p. 113.
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Figure 4.7 Vector basis for a representation of tetrahe-

dral orbitals in Td .

operation. The transformation effected by each operation will be represented

by a 4 X 4 transformation matrix, whose trace will generate a character for

the operation, which in turn will become part of our reducible representation

T, in Td . The group Td consists of 24 operations grouped into five classes.

Recall that for any representation the characters for all operations in the

same class must be the same. Therefore, we will only need to determine the

effect produced by any one operation of each class in order to determine the

character for all operations of the class. The effects of representative opera-

tions of each class are illustrated in Fig. 4.8.

For the identity operation, E
,
all vectors remain in their original posi-

tions. The effect, expressed in matrix notation, is

oooT-H ~A~ ~A~

0 10 0 B B
0 0 10 C C
0 0 0 1 D D

(4.9)

The trace of the 4 X 4 transformation matrix gives a character of 4 for the

identity operation for our reducible representation.

For the C3 operation, the projection illustrated in Fig. 4.8 shows the op-

eration for the axis passing through A and the center of the system. Since A
lies along the axis, its position is not changed by the C3 rotation. Rotating in

the clockwise manner shown, the positions of B, C, and D are interchanged

as follows: B is replaced by D, C is replaced by B, and D is replaced by C. In

matrix notation, this is

"l 0 0 o" ~A~ ~A~

0 0 0 1 B D
0 10 0 C B
0 0 10 D C

(4.10)

The resulting character from the transformation matrix is 1.
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B B

Figure 4.8 Effects of representative operations of Td on the four-vector basis for a

representation of tetrahedral hybrid orbitals.
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The C2 operation illustrated in Fig. 4.8 interchanges A and B and also C
and D. In matrix notation, this is

"o 1 0 o" ~A~ " B~
10 0 0 B A
0 0 0 1 C D
0 0 10 D C

(4.11)

The transformation matrix in this case yields a character of 0.

The S4 operation illustrated in Fig. 4.8 leads to the following matrix

equation:

~0 0 1 o" ~A~ ~ c
0 0 0 1 B D
0 10 0 C B
10 0 0 D A

(4.12)

This, too, yields a zero character for the transformation matrix.

Finally, the ad reflection in the plane of Fig. 4.8 leads to the following ma-
trix equation:

ooor—H ~A~ ~A~
0 10 0 B B
0 0 0 1 C D
0 0 10 D C

(4.13)

This gives a character of 2 for the transformation matrix.

Gathering all the characters from the transformation matrices of Eq. 4.9

through 4.13, we obtain the following representation:

Trf
E 00£ 3C2 6S4 6ad

r, 4 1 0 0 2

If we compare the characters of this representation with the actions that pro-

duced them, we can see a general result that will speed construction of re-

ducible representations of this type in other cases. Notice that the character

for each operation is equal to the number of vectors that are not shifted by

the operation. In the present case, E leaves all four vectors nonshifted; C3

leaves one vector, which lies on the axis, nonshifted; both C2 and S4 shift all

vectors, since none lies on the axis; and a crd reflection leaves two vectors,

which lie in the plane, nonshifted. Consequently, to construct the reducible

representation for any set ofhybrid orbitals, count the number of vectors in the

basis set that remain nonshifted by a representative operation of each class in

the point group of the system. The number of nonshifted vectors is the charac-

ter for the class in each case.
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The reduction can be accomplished by using Eq. (3.1) and the tabular

method, explained in Section 3.1. The Td character table needed to carry out

this process can be found in Appendix A (or see Table 3.1). The work sheet

for the reduction is shown below.

Td E o'oc 3C2 6S4 6(Td

r, 4 r 0 0 2 X X/24

A\ 4 8 0 0 12 24 1

a2 4 8 0 0 -12 0 0

E 8 -8 0 0 0 0 0

T\ 12 0 0 0 -12 0 0

t2 12 0 0 0 12 24 1

From this we see that T
t
= Ai + T2 . Note that the dimension of T,, dr = 4, is

satisfied by this sum of one nondegenerate representation and one triply de-

generate representation. This reduction can be verified by summing the char-

acters of A 1 and T2 :

Td E 00 3C2 6S4 6crd

A\ 1 1 1 1 1

T2 3 0 -1 -1 1

r, 4 1 0 0 2

Our results show that a set of hybrid orbitals with tetrahedral geometry

can be constructed by making suitable mathematical combinations of any or-

bital of A

i

symmetry with any set of three degenerate orbitals of T2 symme-
try. In other words, Yt

= A x + T2 is a kind of recipe for constructing the de-

sired hybrids. We now need to determine which combinations of specific

atomic orbitals fit this recipe.

Since 5 orbitals transform as the totally symmetric representation (A 1 in

Td), we know we can always include an 5 orbital as our A x orbital in the set

of four used to construct the hybrids. To be sure that no other orbitals might

be used as the A 1 choice (e.g., any individual p or d orbitals), we check the

next-to-last and last columns of the Td character table (cf. Appendix A). For

Ai there are no listings of vectors or direct products that correspond to atomic

orbitals.* It appears, then, that any tetrahedral hybrid set must include an 5

orbital and no other as the A 1 contribution. This does not mean, however,

that p or d orbitals cannot contribute to the hybrids, but if they do they can

only contribute as part of the T2 set.

To determine possible contributing orbitals for the triply degenerate set,

we look at the vector and direct product listings for the species T2 . Here we
find degenerate unit vectors (x, y, z), which in this context signify the three p
orbitals px , py ,

and pz . Likewise, we find the degenerate direct products (xy,

*Note that the notation x2 + y
2 + z

2
does not correspond to any of the conventional d orbitals.
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*

xzt yz), which signify a degenerate set of the three specific d orbitals, dxy ,
dxz ,

and dyz . Since there are two sets of orbitals with T2 symmetry, there are two

possible choices of triply degenerate orbitals to include in constructing a hy-

brid set. We can construct one set of hybrids as a combination of s (.A\

)

with

the three p orbitals px , py ,
and pz (T2) to obtain the familiar sp

3
hybrids, or

we can construct another set as a combination of 5 (^i) with the three d or-

bitals dxy ,
dxz ,

and dyz (T2) to obtain less familiar sd
3
hybrids. The wave func-

tions for the sp
3
hybrids have been shpwn previously as Eq. (4.8a)-(4.8d). The

wave functions of the sd
3
hybrids have the same mathematical form, except

that the wave functions for the appropriate d orbitals replace those of the p
orbitals in Eq. (4.8a)-(4.8d).

The question may arise, “Which hybrid set is correct?” The answer de-

pends upon the energies of d orbitals for the central atom, and whether or

not they are appropriate for significant participation in the bonding. For ex-

ample, in carbon the energy of the d orbitals lies so much higher than that of

the p orbitals that bonding in species such as CH4 and CC14 is adequately de-

scribed in the VB model by invoking sp
3
hybrids with virtually no sd

3
contri-

bution. For molecules with main group central atoms, such as S0 4 “, d orbital

involvement is generally minimal.* However, if the central atom is a transi-

tion metal (as in Cr0 4 ~), d orbital participation in the bonding may be sig-

nificant.

Note that the d and dz
2 orbitals cannot contribute to forming a tetra-

hedral set of hybrid orbitals, since in Td they transform as the species £,

rather than the required species or T2 . Also note that either hybrid set al-

lowed by symmetry is comprised of four conventional atomic orbitals, the

same as the number of hybrids being constructed. This correspondence be-

tween the number of atomic orbitals used and the number of hybrid orbitals

formed is general.

The approach we have taken with tetrahedral hybrids can be used to de-

duce appropriate atomic orbital combinations for hybrids consistent with the

other primary shapes predicted by VSEPR theory (e.g., linear, trigonal pla-

nar, trigonal bipyramidal, and octahedral). As an example, let us consider

constructing a set of two linear hybrid orbitals on a central atom. Such a set

might be used to describe bonding in a linear MX2 or MXY species, such as

BeH2 , C02 ,
or BeFCl. Previous familiarity with hybrid orbitals should sug-

gest sp hybrids as one possibility. The question here is whether there are

other combinations of atomic orbitals that could be used, as well.

The linear geometry of two equivalent hybrid orbitals belongs to the

point group D^h . Accordingly, we should take two vectors directed 180° from

one another as the basis for our representation in the group. This will yield a

*For further discussions of d orbital involvement in bonding with main-group elements see L.

Suidan, J. K. Badenhoop, E. D. Glendening, and F. Weinhold, J. Chem. Educ., 1995, 72, 583 ;
and

W. Kutzelnigg, Angew. Chem. Int. Ed. Engl., 1984, 23, 272.
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reducible representation T/ whose dimension is dr
= 2. As a representation in

an infinite-order point group, T/ cannot be reduced by applying Eq. (3.1).

However, with such a small dimension the reduction can be accomplished by

inspection, and it should not be necessary to use the technique described in

Section 3.4.

As suggested in our working of the tetrahedral example, we can gener-

ate the characters for all classes of the reducible representation simply by not-

ing the numbers of vectors that remain nonshifted by any operation in each

class. Our vector basis is simply the following two vectors:

From the character table in Appendix A, we see that the listed operations of

D^h are £, 2Cf, &(tv , /, 2S%, *>C2 . The notations 2CZ and 2SZ are proper

and improper rotations, respectively, of any order in both directions about the

z axis, in which both vectors lie. The notation *> crv indicates the infinite num-
ber of mirror planes that intersect along z ,

and °°C2 indicates the infinite

number of dihedral axes that are perpendicular to the z axis. The operations

E, 2CZ, and leave both vectors nonshifted. All other operations shift

both vectors. This leads to the following reducible representation:

Dock E 2ct i 2Si 00C2

r, 2 2 2 0 0 0

By inspection (cf. D^h character table in Appendix A), we can see that this

decomposes as T/ = x+ + x+
*g

^ . The proof of this is shown by summing the

characters of the Xg and Xu representations:

Doch E 2Ct °°o-v i 25* 00c2

s+*

g

1 1 1 1 1 1

X+*->u 1 1 1 -1 -1 -1

r, 2 2 2 0 0 0

This result means that we can construct a set of linear hybrid orbitals by
taking combinations of one orbital of Xg symmetry with one orbital of Xu
symmetry. Once again, since Xg is the totally symmetric representation in

D* /j, we can use an 5 orbital as part of a hybrid set. Beyond this, the direct

product listing z
2
in the character table (cf. Appendix A) suggests that a dz

2

orbital could be used in place of an s orbital in such a set.* Turning to possi-

ble orbitals of Xu symmetry, the character table shows only a unit vector list-

ing z ,
suggesting a pz orbital. Thus, we can construct two sets of hybrid or-

*The direct product listing x
2

4- y
2
for 2+ in D^h does not correspond to one of the conventional

d orbitals and can be ignored.
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*

bitals: the familiar sp set, made of 5 and p z orbitals; and a dp set, made of dz
2

and pz orbitals. Using the sp set as a model, the hybrid orbital wave functions

have the form

^1 = + Pz^ (4.14a)

V2 = fas-pz) (4.14b)

The shape of each sp hybrid is very similar to that of a single sp
3
hybrid, as

shown in Fig. 4.6, except that the sp hybrid has 50% p character (compared to

75% for sp
3
), and the node is tighter about the lobe with the negative sign. The

dp set has the same mathematical form as Eq. (4.14a) and (4.14b) with the sub-

stitution of dz
2 for 5. As with the previously discussed tetrahedral hybrids, dp

hybrids could make a contribution to a VB model of bonding in a molecule

with a central atom in the third or higher periods of the periodic table.

4.3 Localized and Delocalized Molecular Orbitals

In the VB approach the interacting orbitals in a chemical bond may be viewed

as retaining much of their atomic character. By contrast, the molecular orbital

(MO) approach seeks to construct new wave functions that define unique or-

bitals for the bonded system. In principle, the task amounts to defining the

Schrodinger wave equation for a system in which the nuclei of the individual

atoms are treated as if they formed a polycentric nucleus embedded in an

electron distribution that surrounds the entire molecule. Solutions to this

wave equation define MOs with characteristic energies. If the relative ener-

gies of these MOs are known, the ground-state configuration of the molecule

can be deduced by an aufbau process, much like that used for determining

the ground state configurations of single atoms. As with the case of isolated

atoms, the aufbau process obeys the Pauli Exclusion Principle and Hund’s

Rule of Maximum Multiplicity.

In practice, the exact construction and solution of a molecular wave equa-

tion is not feasible except in the simplest diatomic cases. Therefore, it is cus-

tomary to construct empirical wave functions as mathematical sums of wave

functions on the various atoms of the molecule. This approach is called the

Linear Combination ofAtomic Orbitals (LCAO) method. In the case of a gen-

eral diatomic molecule, AB, wave functions for the molecule take on the forms

'Pj = a\\) + b\\i

XV2 = a\\f - b\\i

(4.15a)

(4.15b)
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in which a and b are constants, sometimes called mixing constants
,
that reflect

the relative contributions of each wave function to the LCAO wave function.

The atomic orbitals (AOs) used to construct these MOs (a) must have simi-

lar energies, (b) must overlap appreciably, and (c) must have the same sym-

metry with respect to the internuclear axis. The last stipulation, understand-

ably, has significance for applying group theory to MO construction in

polyatomic cases.

If Eq. (4.15a) results in reenforcement (5 > 0), the resulting LCAO will

define a bonding MO. If that is the case, then Eq. (4.15b) defines an anti-

bonding MO (S < 0), which will have a node between the two nuclei. The an-

tibonding LCAO-MO always has a higher (less favorable) energy than the

corresponding bonding LCAO-MO.
Hybridization is not an essential feature of the MO approach. However,

if we recall that hybrid orbitals arise from wave functions that are as legiti-

mate solutions to an atom’s Schrodinger equation as those that give rise to

the conventional orbitals, it is reasonable to suppose that hybrid orbitals

could be used as a starting point in an LCAO-MO treatment of bonding in

polyatomic molecules. Assuming hybridization on the central atom, a priori ,

is most often useful when taking a localized MO approach. A localized MO
approach is essentially an extension of the VB model, whereby molecular or-

bitals are defined for pairs of atoms that are connected by chemical bonds.

The LCAO wave functions in this limited approach involve only two atoms

and take on forms such as Eqs. (4.15a) and (4.15b).

As an illustration of a localized MO model, consider the bonding in

gaseous BeH2 . The Lewis model for this species is simply H-Be-H, from

which VSEPR theory predicts a linear structure The electron density

about the molecule is represented by the contour diagram shown in Fig. 4.9.

The VB approach implicitly partitions this distribution into two equivalent

Be-H bonds, each formed by overlap of one sp hybrid orbital on the beryl-

lium atom with a Is orbital on a hydrogen atom. We can extend this model
to become a localized MO model by defining wave functions between pairs

of adjacent atoms with the following forms:

<7i
= a[sp(l)Be]

+ />[lsH '] (4.16a)

<r2 = a[sp(2)Be ] + £>[1sH"] (4.16b)

0-3 = a[sp(l)Be ]
- 6[LsH ] (4.16c)

crl = a[sp(2)Be ]
- 6[lsH"] (4.16d)

Here hybrid orbital sp( 1) on beryllium points toward hydrogen atom H', and
hybrid orbital sp(2) points toward hydrogen atom H". Equations (4.16a) and
(4.16b) lead to sigma-bonding MOs, and Eqs. (4.16c) and (4.16d) lead to

sigma-antibonding MOs (distinguished by superscript asterisk notation). The
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Figure 4.9 Electron density about

BeH2 . Indicated values for contours are

calculated values of iJj. [Reproduced with

permission from A. Streitwieser, Jr. and

P. H. Owens, Orbital and Electron

Density Diagrams
,
Macmillan, New

York, 1973.]

antibonding MOs cr*3 and have no electrons in the ground state of BeH2 .

Figure 4.10 shows a contour diagram for one of the localized sigma-bonding

MOs. As might be expected, it bears great similarity to an sp hybrid, magni-

fied by reenforcing overlap with the Is orbital on the hydrogen atom.

On the basis of this localized MO model, we can construct a qualitative

molecular orbital energy level diagram, such as shown in Fig. 4.11. Diagrams

such as this show, by means of tie lines, which AOs are used in formulating

bonding, antibonding, and nonbonding MOs by the LCAO approach. The or-

dering of levels of both AOs and MOs is meant to suggest the relative energy

order of the orbitals, from lowest at the bottom (most stable) to highest at

the top (least stable). The filling of electrons in the MOs follows in an aufbau

manner, using the available electrons from the participating atoms.

The scheme shown in Fig. 4.11 includes the beryllium 2px and 2py or-

bitals, which do not have the appropriate symmetry for either bonding or an-

tibonding overlap with the hydrogen Is orbitals (5=0). As such, they form

nonbonding ir
n
orbitals, which are essentially the 2p orbitals perturbed by the

presence of the two hydrogen nuclei at relatively close proximity.* The beryl-

lium Is orbital and its two electrons are not shown in this scheme, because it

is assumed that these are not involved with the bonding. As such they are

considered to be nonbonding core electrons.

Figure 4.10 Contour diagram of a local-

ized Be-H molecular orbital of BeH2 .

Indicated values for contours are calcu-

lated values of vji. [Reproduced with per-

mission from A. Streitwieser, Jr. and P. H
Owens, Orbital and Electron Density

Diagrams ,
Macmillan, New York, 1973.]

*These levels are designated ir
n

,
rather than cr

n
,
because their symmetry would permit 77--MO

formation if similar orbitals were available on the pendant (outer) atoms.
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Figure 4.11 Qualitative localized MO energy level scheme for BeH2 .

The localized MO scheme for BeH2 suggests that two pairs of electrons

are localized in degenerate bonding MOs (i.e., orbitals with equivalent ener-

gies). This is, however, somewhat misleading. The equivalence of the bond-

ing sigma MOs is artificial, since in setting up the problem we constrained the

electrons to be localized in two equivalent regions. In other words, this result

is an artifact of the way in which we chose to partition the total electron den-

sity shown in Fig. 4.9. Nonetheless, such localized MO models are useful for

discussions of chemical bonds and accounting for bonding and nonbonding

electron pairs. Moreover, it conforms to familiar notions of bonds and elec-

tron pairing growing out of classical Lewis models.

If we do not constrain electrons to localized bonds, a priori
,
we will ob-

tain a general or delocalized MO model. This approach usually yields MOs
with energies that are more consistent with electronic spectra and ionization

energies. However, this approach requires that we abandon the VB notion of

a chemical bond as the sharing of a pair of electrons by two adjacent atoms.

In the general MO approach, MOs and the electrons associated with them
typically extend across the molecule.

Hybridization is usually not a starting assumption for a general MO treat-

ment. Rather, we seek to identify bonding, antibonding, and nonbonding
combinations as LCAOs of ordinary AOs on all atoms of the molecule. For

simple molecules of the type MX„ we can approach the problem by match-

ing symmetries of the orbitals on the central M atom with those of mathe-

matical combinations of orbitals on the outer X atoms, called pendant atoms.

These mathematical constructs of pendant-atom AOs are called symmetry-
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adapted linear combinations (SALCs). Generally, the SALCs do not have

physical meaning outside their use in constructing MOs. When SALCs are

employed, the resulting LCAO-MOs take on the form

'Lmo = «^ao(M) ± Hsalc^X) (4.17)

in which the SALCs have the general form

vI'SALC = cx \\f1 ± c? \\f2 ± c3 \\f3 ± ••• ± Cn \\fn (4.18)

We can use techniques of group theory to determine the symmetries of

possible SALCs formed from pendant-atom AOs. Then we can determine

which SALCs will combine with which AOs on the central atom to form MOs
by the LCAO method. The process involves the following steps:

1. Use the directional properties of potentially bonding orbitals on the outer

atoms (shown as vectors on a model) as a basis for a representation of

the SALCs in the point group of the molecule.

2. Generate a reducible representation for all possible SALCs by noting

whether vectors are shifted or nonshifted by each class of operations of

the group. Each vector shifted through space contributes 0 to the char-

acter for the class. Each nonshifted vector contributes 1 to the character

for the class. A vector shifted into the negative of itself (base nonshifted

but tip pointing in the opposite direction) contributes -1 to the charac-

ter for the class.

3. Decompose the representation into its component irreducible represen-

tations to determine the symmetry species of the SALCs. The number of

SALCs, including members of degenerate sets, must equal the number of

AOs taken as the basis for the representation.

4 . Determine the symmetries of potentially bonding central-atom AOs by

inspecting unit vector and direct product transformations listed in the

character table of the group. Remember that an 5 orbital on a central

atom always transforms as the totally symmetric representation of the

group.

5. Central-atom AOs and pendant-atom SALCs with the same symmetry

species will form both bonding and antibonding LCAO-MOs.

6. Central-atom AOs or pendant-atom SALCs with unique symmetry (no

species match between AOs and SALCs) form nonbonding MOs.

To contrast this approach with the localized MO approach, let us gener-

ate the general MO model for BeH2 . Keeping in mind that the orbitals on the

various atoms must have similar energies for effective overlap, we can con-

fine our considerations, as before, to the 2s and 2p orbitals on the beryllium

atom and the Is orbitals on the two hydrogen atoms. The two hydrogen Is

orbitals can only form sigma interactions, so we will represent them as two

vectors pointing towards the central beryllium atom:
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The hydrogen Is wave functions, which these vectors represent, form a basis

for a representation in D^h . The SALCs that can be formed from them will

combine with beryllium AOs of the appropriate symmetry to form LCAO-
MOs.

Only E
,
2C^, and ^>av leave both vectors nonshifted. All other opera-

tions interchange the two vectors, shifting them through space. This gives the

following reducible representation:

DooH E 2Ct °°CTV i 2St 00C2

Tsalc 2 2 2 0 0 0

Note that this representation is the same as T/, which we generated for two

linear hybrid orbitals.* Thus, as with T/, TSalc decomposes into the sum of

the two irreducible representations Xg and 2J.
The result rSALC = 2g + means that one of the possible SALCs has

the symmetry
,
and the other has the symmetry It is not difficult to de-

duce the forms of these SALCs, since they are combinations of only two AOs.
The combination is totally symmetric to all operations of the group, in-

cluding inversion, which makes it a gerade function (hence the g subscript in

the Mulliken symbol). This can only occur if both Is wave functions on the

two hydrogen atoms are combined in a positive sense. The 2* combination is

ungerade
,
which implies a change of sign with the operation of inversion. This

would occur if one Is wave function were taken in the positive sense and the

other were taken in the negative sense (i.e., a subtractive combination). The
two normalized SALCs, then, must have the form

% = ( lsH- + 1«H") (4.19a)

—
V2^Sh _

^h") (4.19b)

These SALCs are illustrated in Fig. 4.12.

1S H' 1«H"

4>

4),

Figure 4.12 Symmetry-adapted linear combina-

tions (SALCs) of hydrogen Is orbitals for BeH2 .

*As we shall see in other cases, this occurs because there is no difference in symmetry between
a set of vectors pointing out from the center of a system and a set of vectors with the same geom-
etry pointing in toward the center of the system. Both give the same reducible representation.
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In order for the SALCs to form bonding and antibonding combinations,

AOs with the same symmetry properties must exist on the beryllium atom.

The AOs on beryllium that we assume might be involved in bonding are 2s

and 2p, implying that Is remains a nonbonding core orbital. As always, the s

orbitals of the central atom transform as the totally symmetric representation,

here 2g . The symmetries of p orbitals can be seen from the unit vector trans-

formation properties listed in the D^h character table (cf. Appendix A).

From those listings we see that pz transforms as 2^ and that px and py trans-

form as a degenerate pair by IIM .

The 2g symmetry of the 2s orbital on the beryllium atom matches that of

the SALC <Fg of the two hydrogen atoms. Following the form of Eq. (4.17),

we can form bonding and antibonding MOs with the following wave functions:

ag = c{2s + c2<Fg (4.20a)

C7g
* = c3^s ~ c4$g (4.20b)

The constants c1 ,
c2 ,

c3 ,
and c4 are mixing constants that reflect the extent of

interaction between the beryllium 2s orbitals and the hydrogen SALCs. The
labels (Tg and o-| follow customary practice, by which MOs are designated

with lowercase equivalents to the Mulliken symbols. In similar manner, the

2pz orbital matches the 2^ symmetry of the SALC, giving MOs with the

following wave functions:

cru = c52pz + c6<t>„ (4.20c)

<?u = c-,2pz - c8'I>„ (4.20d)

Representations of these molecular orbitals are shown in Fig. 4.13. Note

that these orbitals extend across the entire molecule and are not confined to

individual bonds. Nonetheless, the bonding MOs are characterized by reen-

forcement in the region of each Be-H bond, while the antibonding MOs are

characterized by a nodal plane passing between each Be-H pair.

The 2px and 2py
orbitals on beryllium, which form a degenerate pair of

Uu symmetry, have no matching SALCs with the same symmetry. This indi-

cates that they are incapable of forming either bonding or antibonding MOs.
Therefore, they remain as a degenerate set of nonbonding orbitals, desig-

nated t/
1

.

Figure 4.14 shows a qualitative energy level scheme for the delocalized

molecular orbitals of BeH2 . The cr
g-MO, which results from the most effec-

tive overlap and has no nodes, lies lower in energy than the ctm-MO, which is

interrupted at the beryllium atom by a nodal plane passing perpendicular to

the plane of the projection in Fig. 4.13.

As with the localized MO scheme (Fig. 4.11), we fill this scheme in an

aufbau manner with the four available valence electrons (ignoring the pair in

the presumably nonbonding core Is orbital on beryllium). This places two

pairs in bonding sigma molecular orbitals, as does the localized model.
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Figure 4.13 Linear combinations of atomic orbitals (LCAOs) and the resulting de-

localized bonding (ag and au ) and antibonding (cr| and cr*) molecular orbitals

(MOs) of BeH2 . Dashed lines indicate nodal planes perpendicular to the molecular

axis. Orbital energy increases from bottom to top.

Be BeH
2

2 H (SALCs)

Figure 4.14 Qualitative delocalized MO energy level scheme for BeH2 .
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However, the delocalized scheme shows that these two pairs do not have the

same energy, a consequence of the distinct symmetries of the ag- and cru
-

MOs.* Both the delocalized model configuration ( crg)
2
{cru )

2 and the localized

model configurations (cr1 )
2
(cr2)

2
give the same overall electron density for the

molecule (cf. Fig. 4.9). The difference between the two models is essentially

a matter of how that total electron density is partitioned. The delocalized

model, however, gives a more realistic assessment of the relative energies of

the bonding electrons. Without thfe artificial constraint of confinement to

Be-H pairs, the two bonding electron pairs are suggested by symmetry to

have different energies. Although data are lacking for BeH2 ,
energy distinc-

tions such as this, suggested by the symmetry results of a delocalized ap-

proach, generally are consistent with experimental results (e.g., photoelectron

spectroscopy). In other words, for BeH2 we should not expect to find two

pairs of electrons with exactly the same energy, contrary to the suggestion of

the VB and localized MO models.

If electrons are delocalized across the molecule, as the general MO ap-

proach suggests, then the concept of bond order between two adjacent atoms

in a molecule must be assessed in that context. In the case of BeH2 ,
the VB

and localized MO models clearly indicate that both Be-H bonds are in every

way equivalent, each being a single bond (bond order = B.O. = 1). The gen-

eral MO approach in no way contradicts this. To arrive at the same conclu-

sion, we must realize that the two pairs are in bonding MOs that extend

equally across both Be-H bonds. This results in a total bond order of 2 over

two identical Be-H bonds, or B.O. = 1 for each bond. In essence, each single

bond results from sharing half the electron densities of both the crg
- and au -

bonding MOs.
The ordering of levels in MO schemes such as Fig. 4.14 deserves some

comment. Strictly speaking, the relative energies of MOs cannot be predicted

without detailed calculations, subject to experimental verification. In the ab-

sence of such information, we can arrive at a tentative ordering of MOs for

simple molecules on the basis of some generally observed results. The follow-

ing generalizations may be used as guides to establishing a tentative ordering:

1. Bonding MOs always lie lower in energy than the antibonding MOs
formed from the same AOs.

2. Nonbonding MOs tend to have energies between those of bonding and

antibonding MOs formed from similar AOs.

3. Pi interactions tend to have less effective overlap than sigma interactions.

Therefore, 77-bonding MOs tend to have higher energies than cr-bonding

*It is possible under special circumstances for two orbitals of different symmetries to have vir-

tually the same energy, a condition called accidental degeneracy. This, however, is more the ex-

ception than the rule, and one should generally assume that different symmetries imply differ-

ent energies.
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MOs formed from similar AOs. Likewise, 7r* MOs tend to be less anti-

bonding and have lower energies than a* MOs formed from similar AOs.

4. MO energies tend to rise as the number of nodes increases. Therefore,

MOs with no nodes tend to lie lowest, and those with the greatest num-
ber of nodes tend to lie highest in energy.

5. Among cr-bonding MOs, those belonging to the totally symmetric repre-

sentation tend to lie lowest.

As a summarizing example, consider the delocalized MO treatment of

methane. It is reasonable to assume that the bonds are formed by interactions

of the Is orbitals on the four hydrogen atoms with 2s and 2p orbitals on the

carbon atom. The carbon Is electrons are assumed to be nonbonding. The
four hydrogen atoms in their sigma interactions with carbon may be repre-

sented by a set of four tetrahedrally oriented vectors pointing toward the cen-

tral atom (Fig. 4.15). These are taken as the basis for a representation in Td
to determine the symmetries of hydrogen SALCs. From a consideration of

shifted and nonshifted vectors, the following reducible representation

emerges:

Td E 6"00 3C2 6S4 6(Td

Tsalc 4 1 0 0 2

This representation is identical to Tt,
which we generated for a set of four hy-

brid orbitals in Section 4.2. Therefore, as before, it decomposes as rSALC =
Ai + T2 . This means that we can form one totally symmetric SALC and a set

of three degenerate SALCs.
The totally symmetric SALC is formed by taking all four hydrogen Is

wave functions in a positive sense. Using labels A, B, C, and D to distinguish

the hydrogen atoms, the normalized A 1 SALC can be written as

<J>1 = \ 1 1*

a

+ lsB + lsC + lsD }
(4.21a)

Z

Figure 4.15 Vector basis for a representation of

hydrogen SALCs of CH4
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The three degenerate SALCs of T2 are constructed by taking all possible

combinations of two hydrogen wave functions in a positive sense with two in

a negative sense. The normalized T2 SALCs have the form

<t>2 =
\

{lsA + 1*B - lie - 1*d} (4.21b)

(J>3 =
\

(lsA ~ Isb - l^c + 1*d1 (4.21c)

<d4 =
2
U5A —

I-Sb + l^C ~ I^d} (4.21d)

On carbon, both the Is and 2s orbitals have A 1 symmetry. If we assume

that the Is orbital is a nonbonding core orbital, then we may consider it as

forming the nonbonding MO ax . The 2s orbital will form bonding and anti-

bonding MOs with the A 1 SALC <Jh. The resulting LCAO-MOs have the forms

cr2 = Ci(2s) + c2<&! (4.22a)

at = c3(2s) - c43> i (4.22b)

The form of the LCAO for a2 is shown in Fig. 4.16. The antibonding combi-

nation [Eq. (4.22b)] results from changing the wave function signs on the hy-

drogen atoms, which is identical to the negative of the d> x SALC.

ct3 ct4 ct5

I
I

t2
Figure 4.16 Representations of the bonding LCAOs of methane. The four hydro-

gen atom wave functions are labeled A, B, C, and D to correspond with the nota-

tion of Eqs. (4.21a)-(4.21d).
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As the vector transformation properties in the Td character table indi-

cate, the three 2

p

orbitals have T2 symmetry and will form bonding and an-

tibonding combinations with the degenerate SALCs <F2 ,
$3 ,

and <F4 . With

each SALC, the bonding LCAO is formed by matching a 2p orbital whose

positive lobe is directed between two hydrogen wave functions with positive

sign, and whose negative lobe is directed between two hydrogen wave func-

tions with negative sign (cf. Fig. 4.16). The resulting wave functions for bond-

ing and antibonding MOs are

o-

3 = c5(2pz ) + c6<F2 (4.22c)

cr* = c7(2pz )
— c8<F2 (4.22d)

C4 = Cg(2py) + Ck/^3 (4.22e)

at = cn(2py )
- c12d>3 (4.22f)

C75
= c13(2px) + c14<F4 (4.22g)

= Ci5(2px)
— c16<F4 (4.22h)

Bonding MOs <r3 ,
cr4 ,

and cr5 are degenerate and necessarily have the same

energy. Antibonding MOs <x*, <7g, and of are likewise degenerate and have

the highest energy of all the MOs we have defined for CH4 .

Figure 4.17 shows a qualitative MO scheme based on the LCAO-MOs
defined by Eqs. (4.22a)-(4.22h). In the conventional manner, the energy lev-

els are labeled with the appropriate Mulliken symbols, written in lowercase.

This model contrasts noticeably with what might be expected from either a

VB or localized MO model. Instead of four equal-energy electron pairs con-

fined to four equivalent bonds, we see three pairs of electrons at one energy

level and a single pair at a lower energy level. The total electron distribution

predicted by this model is not significantly different from that predicted by

the more localized models, and all approaches predict that all four C-H
bonds are in every way equivalent. However, by the delocalized MO ap-

proach, the electron density of each C-H single bond is 75% from electrons

in the degenerate t2 MOs and 25% from electrons in the a x MO. The single-

bond order can be rationalized by seeing that all four pairs are equally delo-

calized over the four C-H bonds, implying that each bond results from one-

fourth of the four-pair density; that is, B.O. = 4/4 = 1.

The delocalized model of CH4 predicts that there are two different ener-

gies of electrons with a population ratio of 3 : 1. This is consistent with the ob-

served photoelectron spectrum
,
which measures ionization energies of valence

electrons by determining their kinetic energies after ejection by incident X-ray
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C ch4 4 H (SALCs)

2

p

x 2p v
2p.X

h

2s
a

\

a
l

11

Is cr
l
(core)

a
i

Figure 4.17 Qualitative delocalized MO energy level scheme for CH4 .

Figure 4.18 Photoelectron spectrum of CH4 .
[Adapted with permission of the

Royal Society of Chemistry from A. W. Potts, T. A. Williams, and W. C. Price,

Faraday Disc. Chem. Soc., 1972, 54, 104.]
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or UVradiation.* * If the energy of the incident radiation, hv, is known and

the kinetic energy, KE, of electrons ejected from a particular MO is mea-

sured, then the ionization energy of the electrons, IE, is given by

IE = Hv ~ KE (4.23)

The higher the ionization energy, the lower in energy lies the MO from which

the electrons were ejected. The photoelectron spectrum of CH4 (Fig. 4.18)

shows a large band at approximately 13.5 eV and a smaller band at approxi-

mately 23.0 eV. The larger band corresponds to ejection of the three electron

pairs in t2 bonding MOs—namely, cr3 ,
<x4 ,

and er5 . The smaller band arises

from ejection of electrons from the lower-lying a x MO, a2 ,
and therefore re-

quires greater ionization energy. Both bands have considerable vibrational

fine structure, characteristic of electrons ejected from bonding MOs.
Figure 4.18 does not show the band arising from the two electrons in the

core level which is essentially a Is orbital on the carbon atom. This ion-

ization energy is considerably higher (approximately 291 eV) than the ener-

gies required to eject electrons from the bonding MOs. X-ray photoelectron

spectroscopyf
is needed to observe the ionization band arising from cr1 .

The absence of four equal-energy pairs can be seen as a necessary con-

sequence of methane’s Td symmetry. Since the highest-dimension irreducible

representations of Td are triply degenerate (T\ and T2), there can be no

higher than threefold degeneracy among the MOs. In other words, the four-

fold degeneracy among electron pairs that VB and localized MO models sug-

gest is not allowed by the symmetry of the molecule. Therefore, while all

models give comparable qualitative results for bond types and strengths, the

delocalized approach generally gives more satisfactory predictions of electron

energy levels, consistent with the molecular symmetry.

4.4 MXn Molecules with Pi-Bonding

The examples we have considered up to this point have only involved sigma

interactions. Both BeH2 and CH4 have no pi-bonding interactions because

the pendant hydrogen atoms’ 2p orbitals lie so much higher in energy, and

there are too few electrons for additional bonding beyond the sigma interac-

*Brief introductory treatments of photoelectron spectroscopy may be found in some advanced

inorganic chemistry textbooks, such as G. L. Miessler and D. A. Tarr, Inorganic Chemistry

,

Prentice-Hall, Englewood Cliffs, NJ, 1991, p. 132ff. ,
and I. S. Butler and J. F. Harrod, Inorganic

Chemistry. Principles and Applications
,
Benjamin/Cummings, Redwood City, CA, 1989, pp.

230-237. More extensive treatments include D. W. Turner, C. Baker, A. D. Baker, and C. R.

Brundle, Molecular Photoelectron Spectroscopy
,
John Wiley & Sons, London, 1970; C. R. Brundle

and A. D. Baker, eds., Electron Spectroscopy : Theory, Techniques, and Applications, Academic
Press, London, 1977, Vols. I and II; and A. D. Baker and D. Betteridge, Photoelectron

Spectroscopy—Chemical and Analytical Aspects, Pergamon, Oxford, 1972.

tU. Gelius, J. Electronic Spectr. 1974
, 5, 985.
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4

tions. If the pendant atoms are members of the second or higher periods of

the periodic table, pi interactions with the p orbitals on the central atom may
be possible.

As an example of a simple molecule with both sigma and pi bonding, con-

sider carbon dioxide. Its 16 valence electrons result in the familiar Lewis

structure,

p=c==o

As predicted by VSEPR theory, carbon dioxide is a linear molecule (point

group Doo/z). In the VB model, the carbon atom is assumed to have sp hybrid

orbitals, each with two electrons, which form separate sigma bonds by over-

lap and electron-pair sharing with a 2

p

z orbital on each oxygen. This leaves

“empty” 2px and 2py orbitals on the carbon atom, which can form pi bonds

by overlap with a 2px orbital on one oxygen atom and a 2py orbital on the

other oxygen atom. In a “bookkeeping” sense, the oxygen 2p orbitals can be

considered to provide the electron pairs for the resulting pi-bond formation.

For example, if we assume that one oxygen atom (call it O a ) shares a pair

from its 2px orbital by overlap with and donation to a 2px orbital on the car-

bon atom, then the other oxygen atom (call it Ob ) shares a pair from its 2py
orbital by overlap with and donation to the 2py orbital on the carbon atom.

This simplistic model predicts two equivalent C=0 double bonds (

a

+ ir),

with the maximum C-Oa pi overlap in the xz plane and the maximum C-Ob

pi overlap in the yz plane. This leaves each oxygen atom with a nonbonding

2s and a nonbonding 2p orbital (either 2px or 2py ,
depending on which was

not used in pi-bond formation), each with two electrons.

A localized MO model follows directly from this VB model. Pairs of

equivalent sigma-bonding MOs (cra and crb ) would lie lowest in energy, with

pairs of equivalent pi-bonding MOs (7ra and 7rb) lying somewhat higher in en-

ergy. The highest-energy occupied MOs would be the nonbonding 2s and 2p
orbitals localized on the oxygen atoms, designated cra and <xb ,

and 77a and 7r£,

respectively. Unoccupied pairs of a* and 7r* antibonding MOs would lie

above these. The electronic configuration for this localized MO model is

[(^a)
2
(^b)

2
][(^a )

2
(77b )

2
][( (7”)

2
( (7g)

2
][«)

2
(7rg)

2
]

On the basis of either the VB or localized MO models, we might expect

each bond to have the typical C=0 bond length of 124 pm. Instead, the ob-

served length is 116 pm, suggesting a somewhat stronger bond. This is some-

times rationalized by admitting the following resonance forms to the Lewis

description:

0:0—C=0:© ©:O^C—0 : ©
On the basis of our localized MO model, we might rationalize the shorter

bonds by recognizing that it is equally probable that the maximum C-Oa pi

interaction might be in the yz plane, while the maximum C-Ob pi interaction

is in the xz plane, instead of the reversed orientations previously described.
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This is tantamount to postulating delocalization of it electrons across the en-

tire molecule. We can anticipate, then, that a general MO approach, which in-

herently assumes delocalization, might yield a more satisfying model.

In setting up a general MO treatment, we will assume initially that the

oxygen 2s electrons do not participate in bond formation, as we did with the

VB and localized MO approaches. Having for the moment ruled out interac-

tions with carbon AOs, we can assume that the two SALCs that can be de-

fined for these orbitals will be equivalent to two nonbonding cr
n MOs, whose

forms are

Vn
g (02v )

= ~^(2sa + 2sb) (4.24a)

< (02t )
= -±(2sa - 2sb) (4.24b)

These belong to the species and 2^, respectively, in Dxh . They are iden-

tical in form to the hydrogen SALCs of BeH2 shown in Fig. 4.12.

Having accounted for the 2s orbitals, we can turn our attention to form-

ing SALCs among the 2p orbitals on the two oxygen atoms. These will form

MOs by combination with the 2s and 2p orbitals on the central carbon atom.

Figure 4.19 shows a set of six vectors (three on each oxygen atom, for the 2px ,

2

p

y ,
and 2pz orbitals), which we will take as the basis for a representation for

oxygen SALCs. To avoid the problem of infinite order, we will generate the

representation in the subgroup D2 rather than the true group of C02 , Dnh ,

employing the correlation technique described in Section 3.4.

In D2h we obtain the following reducible representation:

h E C2(z) C2(y) C2(x) ' "(xy) <j(xz) o(yz)

Tsalc 6 -2 0 0 0 0 2 2

The character for the identity operation should be apparent, but the other

nonzero characters may not be as obvious. In the case of C2(z), the opera-

tion shifts the two x vectors and the two y vectors into the negatives of them-

selves, contributing -4 to the overall character. The two z vectors, however,

are not shifted by C 2(z) and contribute +2 to the overall character. The char-

acter for C2(z), then, is the sum -4 + 2 = —2. In a similar manner, a(xz)
leaves the two x vectors and the two z vectors nonshifted but reverses the di-

x
l *2

Figure 4.19 Vector basis for a representa-

tion of oxygen SALCs of C02 .
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rection of the y vectors, giving an overall character of +4 + (— 2) = +2. In

the case of cr(yz), it is the x vectors that are reversed, while the y and z vec-

tors remain nonshifted, giving an over character of +2.

The dimension of rSALC is sufficiently large to warrant systematic reduc-

tion. Using Eq. (3.1) and the tabular method described in Section 3.1, we ob-

tain the following work sheet:

B>2h E Ci(z) Ciiy) C2(x) i °i.xy) aixz) °iyz)

Tsalc 6 -2 0 0 0 0 2 2 X 2/8

Ag
6 -2 0 0 0 0 2 2 8 1

B lg 6 -2 0 0 0 0 -2 -2 0 0

B2g 6 2 0 0 0 0 2 -2 8 1

B3g 6 2 0 0 0 0 -2 2 8 1

Au 6 -2 0 0 0 0 -2 -2 0 0

B\u 6 -2 0 0 0 0 2 2 8 1

B2u 6 2 0 0 0 0 -2 2 8 1

b3u 6 2 0 0 0 0 2 -2 8 1

From this we see that rSALC = Ag
+ B2g + B3g + B 1 u + B2m + B3u in B>2h'

We can correlate these species with the equivalent species in D^h by using

Table 3.9. The ascent from the working group D2h to the actual group Dxh

reveals that the subgroup species B2g and B3g are degenerate as IIg in the true

group of the molecule. Likewise, the subgroup species B2u and B3u are de-

generate as Ylu in D„h . Thus, in TSAlc = SJ + ng + + Ilw . This

means that our six SALCs will be composed of two that are nondegenerate

and two pairs that will be doubly degenerate.

We must find the AOs on the central carbon atom that have the appro-

priate symmetry to form bonding and antibonding combinations with these

SALCs. The carbon 2s orbital transforms as the totally symmetric represen-

tation, From the vector transformation properties listed in the D^h char-

acter table, we can conclude that the carbon 2pz orbital transforms as 2£, and

that the 2px and 2py
orbitals transform degenerately as Ylu .

We are now ready to combine AOs with SALCs. As we proceed, it may
be useful to compare results with those obtained for BeH2 in Section 4.3.

Since both BeH2 and C02 are linear molecules, we should expect the sym-

metry species of the AOs on the central atom to be the same in both cases.

In BeH2 ,
the 2s and 2pz orbitals form sigma combinations with the hydrogen

Is SALCs of Xg and Xu symmetry, respectively. The 2px and 2py orbitals on

beryllium remain nonbonding. In C02 ,
the 2s and 2pz orbitals likewise will

have sigma interactions with the pendant atom SALCs of 2J and Xu symme-

try, respectively, but here the SALCs are formed as combinations of oxygen

2p z orbitals. The resulting LCAO-MOs have the following forms, where

terms between the braces are expressions for the SALCs:

<rg(s)
= cx2s + c^y^[2pz(a) + 2pz (£>)]j

(4.25a)
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cr*0) = c32s - c^[2p z(a) + 2p,(6)]j (4.25b)

au{z) = cs2pz + c6|^-[2/?z(«)
- 2pz(6)]j

<T*(z )
= c72pz - c8|^-[2pz(a)

- 2pz

(£>)]J

(4.26b)

(4.26a)

Unlike BeH2 ,
in C02 the degenerate 2px and 2py

orbitals on carbon have

matching symmetry SALCs with which they can form bonding and antibond-

ing combinations. These SALCs are formed from matching pairs of 2px or 2py
orbitals on the oxygen atoms. The LCAO-MOs so formed are degenerate

(IIM ), like the AOs and SALCs used to form them. They have the following

mathematical forms:

The LCAO-MOs defined by Eqs. (4.25)-(4.27) account for all matches

between SALCs and AOs. However, as the reduction of TSalc shows, there

is a degenerate pair of SALCs of Ug symmetry for which there are no match-

ing AOs. These SALCs are formed as the negative combination of a pair of

2px orbitals and the negative combination of a pair of 2py orbitals on the oxy-

gen atoms. Since they have no match among carbon AOs, they form two non-

bonding 7r
n-MOs:

Figure 4.20 shows representations of the bonding, nonbonding, and anti-

bonding tt-MOs. A delocalized MO energy level scheme for C02 ,
based on

the assumptions of the foregoing development, is shown in Fig. 4.21. The en-

ergy level scheme shows four pairs of electrons in bonding MOs and no elec-

(4.27a)

iru(y) = Cu2py + c12\-
2̂
p-Py(a) + 2p y(6)|j

(4.27b)

= c132px - cu\-^[2px{a) + 2pJC(fc)]J
(4.27c)

«}') = c152py - c'16|^L[2p v(«) + 2p v(6)]j
(4.27d)

(x) = p,(«) - 2p v(6)| (4.28a)

(4.28b)
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*

trons in antibonding MOs. This means there are four bonds, just as the VB
and localized MO models predict, but now the electrons are seen to be evenly

distributed across the molecule (see Fig. 4.20). The pi-bonding system, con-

sisting of ttu(x) and 7Tu(y) MOs, envelops the molecule. Although the indi-

vidual 77-MOs may be visualized as pairs of “sausages” with opposite wave
function signs (see Fig. 4.20), together they form a cylindrical “sleeve” of

electron density, partitioned along the internuclear axis by two orthogonal

nodal planes, dihedral to the x and-y axes. The delocalization of the pi-bond-

ing system gives extra strength to the C-O bonds in C02 ,
resulting in some-

what shorter C-O bond length.

Based on the MO scheme of Fig. 4.21, the electronic configuration of

C02 could be written as

[^]
2K] 2

[^)]
2
K(z)]

2
{[^(^)]

2
[^OOFHKMfKOOl2

}

or in simplified notation

K)V")2
K(*)]

2K«]2
K(*, y)]

4
K(*, y)]

4

From this we should expect the photoelectron spectrum to exhibit six bands, re-

sulting from ionizations from each of the levels. As seen in Fig. 4.22, this is es-

sentially the observed result, although the bands from the two lowest levels

(highest ionization energy) are beyond the range of the ultraviolet photoelec-

tron spectrometer used to obtain the spectrum. If our MO predictions are en-

tirely correct, we also should expect vibrational fine structure on the second,

0
n

0
p

0
n

0
p i 0nU

0 0
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0
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Figure 4.20 Representations of LCAOs and resulting 7r-MOs of C02 ,
projected in

the x

z

plane. Nodal planes perpendicular to the page are shown with dashed lines.

Degenerate LCAOs and MOs similar to those shown lie in the yz plane.
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Figure 4.21 Qualitative delocalized MO energy level scheme (simplified) for CO2 .
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Figure 4.22 Photoelectron spectrum of C02 .
[Adapted with permission from D. W.

Turner, C. Baker, A. D. Baker, and C. R. Rundle, Molecular Photoelectron

Spectroscopy
,
Wiley-Interscience, London, 1970.]

third, and fourth bands (counting from low to high energy), which arise from

the presumably bonding MOs ttu(x, y), au(z), and o^s), respectively. However,

only the second band, assigned to ionizations from iru(x, y), shows fine struc-

ture. The absence of fine structure on the third and fourth bands suggests that

both ag(s) and ctu(z) are nonbonding, contrary to our expectations from the MO
scheme in Fig. 4.21. (The absence of fine structure on the first band, assigned

to ionizations from the nonbonding tt^(x, y) level, is consistent with Fig. 4.21.)

The nonbonding character of the ag(s) and cru{z) MOs results from s-p

mixing. We initially assumed that only SALCs formed from the oxygen 2pz

orbitals would make effective bonding and antibonding combinations with

the 2s and 2pz orbitals on carbon. However, the oxygen SALCs formed from

the 2s orbitals have the same symmetries (2J and Xu) as those formed from

the 2pz orbitals. On the basis of symmetry alone, the 2s SALCs are as capa-

ble of forming the appropriate bonding and antibonding combinations with

the carbon 2s and 2pz orbitals as are the 2p z SALCs. Our assigning these

SALCs as nonbonding levels, localized to the oxygen atoms, was based on the

assumption that their energies were too different from those of the carbon

AOs to have effective overlaps. To the contrary, as the photoelectron spec-

trum suggests, these SALCs appear to have significant interactions with car-

bon AOs, as do the 2pz SALCs. Since both 2s and 2pz SALCs have the same

symmetry, they can mix in their interactions with the carbon AOs. This is

equivalent to postulating 2s-2p mixing on the oxygen atoms. This mixing sta-

bilizes the lower crg(02s) and cru (025) levels (i.e., lowers their energy), mak-

ing them bonding levels through overlap with carbon 2s and 2pz orbitals.

Consistent with this, we shall now designate these MOs 1 crg and lau . In the

same manner, mixing destabilizes the higher a-g(s) and cru(z) levels (i.e., raises

their energy), thereby reducing the effectiveness of their overlap with carbon
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2s and 2pz orbitals and making them nonbonding levels. In keeping with this,

we shall now designate these MOs 2a-
n
g and 2er". Both the ttu (x, y) and

7Tg(x, y )
MOs are unaffected by mixing, because they belong to different sym-

metry species. These mixing effects are represented in Fig. 4.23. Consistent

0 C 0

V*(Z) 3awe — -e^

a/(s) 3<x„

e — -e^

0 C 0

t

Figure 4.23 The effect of s-p mixing on the shapes and energies of the molecular

orbitals of C02 . [Reproduced with permission from R. L. DeKock and H. B. Gray,

Chemical Structure and Bonding
,
2nd ed., University Science Books, Sausalito, CA,

1989.]
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with the photoelectron spectrum, we may more accurately represent the elec-

tronic configuration of C02 as

[!ag]

2
[l criJ

2
[2crg]

2
[2o'”]

2
{[l7rM(x)]

2
[l7rM(y)]

2
}{[l7r"(x)]

2
[l7rg(y)]

2
}

or in simplified notation

(I<7g)
2
(la-„)

2
(2^)

2
(2^)

2
(l77u )

4
(l7r2)

4

Note that this configuration in no way alters our previous perceptions of the

bond order or bond strength. We still have a total of four pairs of electrons

delocalized in bonding MOs distributed across the two equivalent C-O bonds,

resulting in an approximate bond order of 2 for each bond.

The case of C02 illustrates several points that are worth keeping in mind
when constructing molecular energy level schemes for simple molecules, ei-

ther with or without the aid of group theory. In general, it is convenient to

make simplifying assumptions about which orbitals may or may not be most

significantly involved in bonding and antibonding MO formation. However,

the conclusions resulting from these assumptions should be reconciled with

experimental data whenever possible. In particular, whenever two or more
orbitals or SALCs have the same symmetries, they have the potential for mix-

ing. In general, like-symmetry orbitals will repel one another, with the lower

level becoming more stable (lower energy) and the upper level becoming less

stable (higher energy). Whether or not such mixing occurs, or effectively al-

ters the results from simpler assumptions that exclude mixing, depends upon

the particular properties of the molecule in question.

4.5 Pi-Bonding in Aromatic Ring Systems

In terms of Lewis and VB models, benzene is represented as a resonance hy-

brid of the two well-known Kekule canonical forms:

Each carbon atom is assumed to be sp
2
-hybridized with the remaining pz or-

bital available for pi interactions with similar orbitals on neighboring ring

atoms. Since each pz orbital is assigned one electron, the pi system consists of

six electrons. In either Kekule form, these add a total of three bonds beyond

the six sigma bonds in the ring. The two resonance forms imply that these

electrons are delocalized around the ring. Thus, each C-C bond has a bond

order of li

If we consider developing a delocalized MO model with the aid of group

theory, we immediately realize that, unlike the examples of MX„ molecules

we have seen thus far, benzene has no central atom whose orbitals are to be

matched with SALCs formed from combinations of orbitals on outer-lying
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z

X- Figure 4.24 Vector basis for a repre-

sentation of 7r-MOs of benzene.

atoms. Thus, we only need to consider interactions among the six 2p z orbitals

on the carbon atoms of the ring. Combinations among these six AOs form six

7r-MOs. The process is very much like that used to form SALCs in MX„ cases,

and in fact the difference between SALCs and the 77-LCAOs we shall form

is merely a matter of semantics.

Figure 4.24 shows a set of six vectors, representing the six 2pz orbitals on

the ring carbon atoms, which may be taken as the basis for a representation

in D6h ,
the point group of benzene. By examining the effects of the opera-

tions of Deh on these vectors, we arrive at the following reducible represen-

tation:

E>eh E 2C6 2C3 C2 3C2
'

3Q' i 2S3 2.S6 3dd 3Gy

r„ 6 0 0 0 -2 0 0 0 0 -6 0 2

The elements for C2 and crv pass through pairs of carbon atoms on opposite

sides of the ring. In the case of C2 ,
the vectors at those atoms are transformed

into the negatives of themselves, while all other vectors are transformed

through space, resulting in an overall character of -2. A crv operation reflects

two vectors into themselves and moves all other vectors through space, re-

sulting in an overall character of 2. The crh operation transforms all vectors

into their negatives, resulting in an overall character of —6. Except for iden-

tity, all other operations move all vectors through space, resulting in overall

characters of zero. By applying Eq. (3.1), it can be shown that T^ = B2g +
Eig + A2u + E2u . This indicates that the six 7r-LCAO-MOs consist of two that

are nondegenerate (B2g and A2u ) and two pairs that are doubly degenerate

(Eig and E2u ).

The forms of the pi-bonding LCAO-MOs are represented in Fig. 4.25.

The positions of nodal planes, which result from alternations of wave func-

tion signs, are indicated for each MO in Fig. 4.26. The lowest-energy 77--MO

is formed by taking the totally positive combination of pz orbitals on all six

carbon atoms:

77i
- +

<\>c + $d + <!v + 4>/) (4-29)

This combination, which has the full symmetry of the six vectors shown in Fig.

4.24, transforms as A2u . Note that this MO is symmetric with respect to C6 ,

antisymmetric with respect to ah ,
and antisymmetric with respect to /, all of

which is consistent with the Mulliken designation A2u (cf. Figs. 4.25 and 4.26).
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Figure 4.25 Delocalized tt-MOs of benzene. Solid and dotted line contours repre-

sent positive and negative signs of the wave function, respectively. [Reproduced with

permission from William L. Jorgensen and Lionel Salem, The Organic Chemist s

Book of Orbitals
,
Academic Press, New York, 1973.]
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^6* (b2g)

+

+

^1 (a2u)

Figure 4.26 Nodal planes (perpendicular to

the ring plane) for the pi-bonding and anti-

bonding MOs of benzene.

The next energy level consists of the degenerate pair of MOs tt2 and 7

r

3 ,
de-

fined by the wave equations

772
=
2V3^°

+ ~ ~ 2<^d ~ + (4.30a)

7T3 = + <\>c
-

4>e
-

<t>/) (4.30b)

As Figs. 4.25 and 4.26 show, these are symmetric with respect to inversion and
C2(z) rotation, which identifies them as the Eig MOs expected from the re-

duction of T^. The next highest MOs are a degenerate pair of antibonding

MOs, 77-4 and 77-*, whose wave functions have the form

TT* = 1(2<t>«
- - 4>c + 24>d

-
4>e - 4>/) (4.31a)

^5 = ~(~4>b + 4>c
“

<\>e + 4>/) (4.31b)
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These are the pair with E2u symmetry. Note from Figs. 4.25 and 4.26 that these

are antisymmetric with respect to inversion and symmetric with respect to C2(z),

as expected for the species E2u . The highest-energy MO is the antibonding 7T6>

formed by alternating signs on adjacent pz wave functions around the ring:

17-6 = + 4>(;
- 4>d + 4>f

-
<t>/) (4.32)

This combination has nodal planes perpendicular to the ring between each

pair of carbon atoms (see Figs. 4.25 and 4.26). The alternation of signs on the

pz wave functions around the ring makes this combination antisymmetric with

respect to C6 ,
antisymmetric with respect to crh ,

and symmetric with respect

to i, consistent with the species B2g .

The 77-MO scheme for benzene is shown in Fig. 4.27. Note that the en-

ergies of the MOs rise with increasing numbers of nodes (cf. Fig. 4.26). As
shown in Fig. 4.27, the three bonding orbitals are occupied with three pairs

of electrons. The configuration (7ri)
2
(7r2)

2
(7r3)

2
adds a total of three bonds to

the ring, in addition to the six from sigma bonds. Since these nine bonds are

distributed among six C-C pairs, the average bond order for any C-C bond

is li, consistent with the VB model based on two resonance forms. However,

with the general MO approach, the delocalization of pi electrons is a natural

consequence of the model.

The tt-MO scheme for benzene suggests that the six electrons are dis-

tributed in a 1 :2 ratio between two distinct orbital energies (a2u and elg). The
photoelectron spectrum of benzene is shown in Fig. 4.28. The assignment of

all bands to specific a and tt MOs has been subject to some controversy,*

since the bands for a levels appear to overlap with that for the lowest tt level.

Nonetheless, the band at 9.25 eV (labeled 7rA,7rB in Fig. 4.28), which shows

considerable vibrational fine structure, can be assigned reliably to tt2 and 7r3 .

^7

energy of isolated 1

2pz
carbon orbitals

J

*2u

u

772 e
\g ^3

*1

a2u

Figure 4.27 The 7T-MO energy level scheme for benzene.

*For a more complete discussion of the photoelectron spectrum of benzene see A. D. Baker and

D. Betteridge, Photoelectron Spectroscopy: Chemical and Analytical Aspects, Pergamon Press,

Oxford, 1972, p. 15ff.
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Orbital IP (eV)

Figure 4.28 Photoelectron spectrum of benzene. [Adapted with permission from

A. D. Baker and D. Betteridge, Photoelectron Spectroscopy : Chemical and

Analytical Aspects, Pergamon Press, Oxford, 1972.]

The band labeled ttc in Fig. 4.28, with approximately half the intensity of the

9.25 eV band, is tentatively assigned to tt1 . The bonding character of the MO
giving rise to this band is evident from the vibrational fine structure.

You may have noticed that the pattern of the levels in Fig. 4.27 mimics

the shape of the conjugated ring system being described—that is, a hexagon.

This phenomenon, sometimes called the polygon rule or the shadow method
,

is common to all the 77-MO schemes for other delocalized, single-ring struc-

tures. Thus, it is easy to write down the qualitative 77-MO schemes from the

ring geometries. In each case, the pattern of the 77-MO scheme is laid out in

the same geometrical arrangement as the polygon of the ring. The lowest

level is a nondegenerate bonding MO (a point of the polygon) which belongs

to the A representation by which z transforms in the molecule’s point group.

This symmetry species is antisymmetric to crh (and also i if inversion exits for

the ring system). For ring systems with an even number of carbon atoms, the

highest 77*-MO belongs to a B2 species. In all cases, the doubly degenerate

levels rise in energy in order of the numerical subscripts on their Mulliken

symbols; that is, E x < E2 . Overall, the ordering of levels from lowest to high-

est energy corresponds with increasing numbers of nodes. The midline of the

geometry separates 77 and 77* levels. For example, the 77-MO energy level di-

agram for the cyclopentadienyl anion, C5HJ (D5h), has a pentagonal pattern

consisting of a nondegenerate, lowest-lying bonding MO {a 2 ), two degener-

ate slightly bonding MOs of intermediate energy (e'), and two degenerate an-

tibonding MOs with highest energy (e").

The preceding description of 77-bonding in single-ring systems is only

qualitative. The Hiickel approximation provides a computational method for

determining the relative MO energies more quantitatively. Presentations of

Hiickel methodology in the context of symmetry arguments can be found in

more advanced texts.*

*For example, see F. A. Cotton, Chemical Applications of Group Theory, 3rd ed., John Wiley &
Sons, New York, 1990, Chapter 7.
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Problems

4.1 Determine the sets of specific atomic orbitals that can, be combined to form hy-

brid orbitals with the following geometries: (a) trigonal planar, (b) square pla-

nar, (c) trigonal bipyramidal, (d) octahedral.

4.2 Hybrid orbitals are usually discussed in the context of perfect geometries. Yet

in many cases the molecular structures for which these hybrids are postulated

deviate significantly from the ideal. For example, consider an ideally tetrahedral

MX4 molecule whose actual structure is slightly flattened along the z axis (a C2

axis in both the ideal and distorted geometries). What sets of atomic orbitals

could be combined to form hybrids with the appropriate orientations to describe

bonding in such a molecule? How do these results compare with the sp
3 and sd

3

hybrids appropriate for perfectly tetrahedral geometry?

4.3 Borane, BH3 ,
is an unstable compound produced by thermal decomposition of

H3BPF3 . Although it has not been isolated and structurally characterized, it

probably is trigonal planar.

(a) Develop a general MO scheme for BH3 . Assume that only the boron 2s

and 2p orbitals interact with the hydrogen Is orbitals (i.e., the boron Is

orbital is nonbonding).

(b) The photoelectron spectrum of BH3 has not been observed. Nonetheless,

if it could be taken, what would you expect it to look like, based on your

MO scheme?

(c) Compare and contrast the general MO description of BH3 with a valence

bond (VB) model and its related localized MO model.

4.4 Consider H20, a bent molecule for which Z. H-O-H = 104.5°.

(a) Develop a general MO scheme for H20. Assume that only the 2s and 2p
orbitals of oxygen interact with the hydrogen Is orbitals (i.e., the oxygen

Is orbital is nonbonding). The molecule’s plane should be taken as the xz

plane, the plane of crv in C2v .
[Hint: Two AOs match symmetry with one

of the SALCs, thereby forming three MOs. Both AOs contribute in varying

degrees to all three MOs.]

(b) The photoelectron spectrum (P.E.S.) of H20 has four bands (not including

ionizations from the oxygen Is core electrons) [cf. A. W. Potts and W. C.

Price, Proc. R. Soc. Lond. 1972
,
A326

,
181-197]. The three highest-energy

ionizations give bands with vibrational fine structure (although the highest-

energy band has not been resolved, owing to instrumental limitations). The

fourth band, from the least energetic ionization, shows no such fine

structure. Explain these results on the basis of your MO scheme, modifying

it if necessary to be consistent with the P.E.S. results.

(c) The VB description of H20 assumes sp
3
hybridization on the oxygen atom,

resulting in two lone pairs protruding like “Mickey Mouse” ears from the

back of the molecule. How well does this picture agree with the general

MO model and P.E.S. results? Justify your answer by making sketches of

the LCAO-MOs.
(d) Addition of two pairs of electrons to the MO scheme for BeH2 (Fig. 4.14)

would adapt it to describe bonding in H20, if water were linear. Compare

your MO scheme for bent H20 with this hypothetical scheme for linear
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H20. On the basis of these schemes alone (i.e., without using VSEPR
arguments) give reasons why H20 is bent rather than linear.

4.5 Consider NH3 ,
a pyramidal molecule, for which Z H-N-H = 106.6°.

(a) Develop a general MO scheme for NH3 . Assume that only the 2s and 2

p

orbitals of nitrogen interact with the hydrogen Is orbitals (i.e., the nitrogen

Is orbital is nonbonding). [Hint: Two AOs match symmetry with one of the

SALCs, thereby forming three MOs. Of these, the lowest energy MO is

essentially a bonding combination formed between the hydrogen SALC
and the 2s AO on nitrogen, and the highest MO is an antibonding

combination formed from a mixture of the two AOs and the same-

symmetry SALC.]

(b) The photoelectron spectrum (P.E.S.) ofNH3 has three bands (not including

ionizations from the nitrogen Is core electrons) [cf. A. W. Potts and W. C.

Price, Proc. R. Soc. Lond. 1972
,
A326, 181-197]. All three bands, even the

lowest-energy band, show evidence of vibrational fine structure (although

the highest-energy band has not been resolved, owing to instrumental

limitations). Explain these results on the basis of your MO scheme,

modifying it if necessary to be consistent with the P.E.S. results.

(c) The VB description ofNH3 assumes sp
3
hybridization on the nitrogen atom,

resulting in a single lone pair at the apex of the molecule. The Lewis base

character of NH3 is attributed to this lone pair. How does this model

compare with the MO description? Is the MO model consistent with the

Lewis base character of NH3? Explain.

(d) Addition of a pair of electrons to the MO scheme for BH3 (see Problem

4.3) would adapt it to describe bonding in NH3 ,
if ammonia were trigonal

planar. Compare your MO scheme for pyramidal NH3 with the hypothetical

scheme for trigonal planar NH3 . On the basis of these schemes alone (i.e.,

without using VSEPR arguments) explain why NH3 is pyramidal rather

than trigonal planar.

4.6 The allyl anion, [H2CCHCH2]~, has a delocalized, open, three-center p tt sys-

tem. Develop the MO scheme for this system, show the electron filling in the

scheme, and sketch the forms of the LCAO-MOs. [Hint: Although it is cus-

tomary to assume that p z orbitals are involved in forming prr orbitals, in this

case you may prefer to assume that px orbitals are used, in keeping with the

standard character table and conventions of defining z as the principal axis and

the yz plane as the plane of the C-C-C chain. If you assume that pz orbitals

form the pir orbitals and that the principal axis is x or y, you will need to alter

the character table to reflect the switched axes.]

4.7 Although BH3 is unstable (see Problem 4.3), the BX3 trihalides (X = F, Cl, Br)

are stable but reactive compounds that have been well characterized. A signifi-

cant advantage of the BX3 compounds is the potential for p7r-bonding between

the 2pz orbital of boron and the npz orbitals of the halogens (n = 2, 3, 4). This

bonding is most significant for BF3 .

(a) Develop a molecular orbital scheme for the /?7t-MOs of BF3

(b) Although the 2s orbitals on fluorine may be assumed to be nonbonding,

SALCs can still be formed among them. What are the symmetries of the

three fluorine 2s SALCs?
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(c) Assume that each of the fluorine atoms uses a 2p orbital directed toward

the central boron atom to form sigma interactions. What are the symmetries

of the three SALCs that can be formed from the three sigma-symmetry 2p
orbitals on the fluorine atoms?

(d) In addition to the fluorine 2p orbitals engaged in pi and sigma interactions,

there are three 2p orbitals lying in the plane of the molecule that may be

assumed to be nonbonding. What are the symmetries of the three SALCs
that can be formed from these 2p orbitals?

(e) Using your results from parts (a) through (d), develop a complete molecular

orbital scheme for BF3 . You may want to consider the P.E.S. of BF3 to

verify the order of occupied MOs [G. H. King, S. S. Krishnamurthy, M. F.

Lappert, and J. B. Pedley, Faraday Disc. Chem. Soc., 1972
, 54, 70].

(f) In part (d) we assumed that the fluorine in-plane 2p orbitals not engaged

in sigma interactions were nonbonding. On the basis of symmetry, are

bonding and antibonding interactions with boron precluded for these

orbitals? If bonding is possible, what effects would it have on the MO
scheme you developed in part (e)?

(g) Compare your MO scheme for BF3 with the MO scheme you developed

for BH3 in Problem 4.3. Are your MO descriptions consistent with the

relative stabilities of the two compounds?

(h) BF3 is a Lewis acid that readily forms adducts with Lewis bases; for

example, BF 3 -I- NH3 ->F3BNH3 . Based on your MO schemes for both

BF3 and NH3 (Problem 4.5), describe the likely mechanism by which the

adduct F3B-NH3 is formed.

4.8 Like benzene, the cyclobutadiene dianion, C4H4~, has six electrons in a delo-

calized 7r-system.

(a) Using methods of group theory and the polygon rule, develop a qualitative

77-MO scheme for the C4H4
~ ion. Label each MO by bond type and

Mulliken symbol, and show the filling of electrons in the scheme.

(b) Sketch the LCAOs for the 77-MOs.

(c) Explain why C4H4
~ would be expected to be much less stable than C6H6 ,

despite both species having six electrons in 77-MOs, in keeping with the

Hiickel An + 2 criterion for aromaticity.

(d) Neutral cyclobutadiene is a very unstable, nonaromatic species that appears

to have a rectangular structure (D2h ) composed of alternating single and

double bonds [cf. P. Reeves, T. Devon, and R. Pettit, /. Am. Chem. Soc.

1969 , 91, 5890].

On the basis of your MO scheme, account for the lack of stability of square

planar cyclobutadiene. Why is rectangular 1,3-cyclobutadiene a somewhat

more stable structure?

4.9 Using methods of group theory and the polygon rule, develop qualitative 77-MO

schemes for the following cyclic (CH)„ systems, assuming planar geometry

(Dnh ). Label each MO by bond type and Mulliken symbol. Show the filling of

electrons in the scheme for the neutral molecule, the +1 cation, and the -1

anion. Discuss the relative stabilities of the neutral molecule, cation, and anion,

(a) C3H3 ,
(b) C5H5, (c) C7H7 (use the C7 character table).
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4.10 Cyclopropane, C3H6 ,
is a remarkably stable molecule (m.p. — 127.6°C, b.p.

— 32.7°C), despite the extreme ring strain. Indeed, from a traditional VB ap-

proach, assuming s/?
3
-hybridized carbon atoms, one might wonder why it exists

at all. A delocalized MO model suggests that the ring receives stabilization

through /?7r-bonding, a result hardly expected for an alkane. Based on Gaussian

orbital SCF calculations and the photoelectron spectrum [cf. D. W. Turner, C.

Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy,

Wiley-Interscience, London, 1970, p. 203^], the electronic structure of cyclo-

propane can be written as

(&c-h)
2
(°"c-h)

4
( 77c-c)

2
( crc-c)

2
( 77c-c)

4
( <tc-h )

4

This configuration shows only the lowest-energy, filled MOs. There are also a

number of higher-energy, unoccupied bonding, nonbonding, and antibonding

MOs. The entire catalogue of MOs for cyclopropane can be deduced by break-

ing the problem up into three kinds of orbital interactions: (1) hydrogen Is with

carbon 2s and in-plane 2p interactions, leading to o-c_H-MOs of all types; (2) in-

plane carbon 2p interactions, leading to crc_c bonding and antibonding MOs;
and (3) out-of-plane carbon 2p interactions, leading to 77C_C bonding and anti-

bonding MOs. Proceeding through the following steps, determine the symme-

tries and bonding types of the MOs of cyclopropane.

(a) The most effective <tc_h interactions are formed between the six hydrogen

Is orbitals and the three carbon 2s orbitals. Determine the symmetries of

SALCs formed from the three carbon 2s orbitals. Then, determine the

symmetries of SALCs formed from the six hydrogen Is orbitals. By
matching symmetries, give the Mulliken designations and possible bonding

types for MOs that can be formed from carbon 2s with hydrogen Is

interactions.

(b) Less effective crc_H interactions are formed between the hydrogen Is

orbitals and the in-plane carbon 2p orbitals with the following orientations:

Determine the symmetries of SALCs formed from these three carbon 2p
orbitals. By matching symmetries with the hydrogen Is SALCs previously

determined, give the Mulliken designations and possible bonding types for

all MOs that can be formed.

(c) Ring sigma bonding results from in-plane carbon 2p orbitals with the

following orientations:
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#

4.11

Determine the symmetries of SALCs formed from these three carbon 2

p

orbitals, and give the Mulliken designations and possible bonding types for

all MOs that can be formed.

(d) Ring pi interactions result from out-of-plane carbon 2p orbitals with the

following orientations:

Determine the symmetries of SALCs formed from these three carbon 2p
orbitals, and give the Mulliken designations and possible bonding types for

all MOs that can be formed.

(e) On the basis of your results from parts (a) through (d), assign Mulliken

designations for the occupied orbitals in the electronic configuration given

above.

(f) Make sketches of the LCAOs for the occupied bonding MOs.

Diborane, B2H6 ,
has a structure with bridging hydrogen atoms.

H

H

H
>B

/
V""

r \ / n
H

H

H

The terminal B-H bonds are conventional two-center, two-electron (2c-2e) co-

valent bonds, but each B-H-B bridge is an electron-deficient, three-center, two-

electron (3c-2e) bond. Develop a general MO scheme in diborane’s point group,

D2h ,
for the pair of bridge bonds, assuming that each boron atom is sp

3
hy-

bridized. Although the choice of axes orientations in D2h is arbitrary, a typical

orientation would have the two boron atoms along the z axis and the hydrogen

bridges lying in the xz plane. In setting up the problem, use four s/?
3
hybrids, two

on each boron atom, as the basis for a set of SALCs, and take the Is orbitals on

the two bridging hydrogen atoms as a basis for a separate set of SALCs.

4.12 The term hypervalent is sometimes used to describe molecules in which the cen-

tral atom appears to exceed an octet. Examples include PF5 and SF4 (five elec-

tron pairs about the central atom), and SF6 and XeF4 (six electron pairs about

the central atom). Although hypervalence has often been rationalized in terms

of dsp
3 and d 2

sp
3
hybridization schemes, most recent theoretical studies suggest

that valence nd orbitals are not important for bonding in main-group elements

[cf. L. Suidan, J. K. Badenhoop, E. D. Glendening, and F. Weinhold, J. Chem.

Educ. 1995, 72, 583; D. L. Cooper, T. P. Cunningham, J. Gerratt, P. B. Karadakov,

and M. Raimondi, J. Am. Chem. Soc. 1994, 116, 4414]. From the perspective of

symmetry arguments, having nd orbitals with appropriate symmetry for bond-

ing with pendant atom SALCs does not require that they be fully used. In the

case of SF6 ,
ab initio SCF calculations suggest that the electron distribution on

sulfur is approximately 32% in 35, 59% in 3p, 8% in 3d, and 1% in 4p [A. E.

Reed and F. Weinhold, J. Am. Chem. Soc. 1986, 108, 3586].

(a) Ignoring any 4p participation, develop a qualitative sigma-only MO scheme

for SF6 that includes consideration of the symmetry properties of the 3d
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orbitals, but reflects their minimal involvement in the bonding. Assume
that each fluorine uses a single 2

p

orbital directed at the central sulfur (i.e.,

assume that fluorine 2s and the remaining 2p orbitals are nonbonding).

(b) Assuming that 3d orbital contributions to bonding can be ignored, what is

the approximate S-F bond order implied by your MO scheme? How would

you reconcile this with the observation that the S-F bond lengths (156 pm)
are shorter than expected for a single bond?

(c) An alternative approach to describe bonding in main group hypervalent

molecules uses three-center, four-electron (3c-4e) bonds formed by overlap

of p orbitals on the central and pendant atoms, [cf. R. E. Rundle, J. Am.
Chem. Soc. 1963, 85, 112; G. C. Pimentel, J. Chem. Phys. 1951, 19, 446].

Thus, SF6 is seen as three mutually perpendicular 3c-4e F-S-F bonds. What
is the S-F bond order in these 3c-4e bonds? If the bonding in SF6 were

closer to this model, how would your MO scheme need to be modified to

be consistent?

4.13 There is little evidence to support significant participation of 3d orbitals in the

bonding of PF5 . [cf. D. L. Cooper, T. P. Cunningham, J. Gerratt, P. B. Karadakov,

and M. Raimondi, J. Am. Chem. Soc. 1994, 116, 4414.] Develop a qualitative

sigma-only MO scheme for PF5 ,
using only 3s and 3p orbitals on phosphorous

and a single 2p orbital on each of the five fluorine atoms.

4.14 A satisfactory general MO description of the bonding in XeF4 can be developed

by considering only the 5s and 5p orbitals of Xe interacting with the 2p orbitals

of the four F atoms [cf. K. O. Christe, E. C. Curtis, D. A. Dixon, H. P. Mercier,

J. C. P. Sanders, and G. J. Schrobilgen, J. Am. Chem. Soc. 1991, 113, 3351]. The

2s orbitals of fluorine have considerably lower energy and can be assumed to be

nonbonding. For the purposes of electron counting, Xe may be taken to have

the valence configuration 5s
2
5p

2
,
as Xe4+ . Fluorine may be taken to have the

valence configuration 2p
6

,
as F~, distributed in the set of four atoms as follows:

eight electrons in 2px orbitals directed at the central Xe; eight lone-pair elec-

trons in 2py orbitals, orthogonal to the Xe-F bonds; eight electrons in 2pz or-

bitals, perpendicular to the molecular plane. Use these three groupings as three

separate bases for SALC representations, To-, r^y), and T^). By matching the

symmetries of these SALCs with the symmetries of Xe AOs, develop a quali-

tative general MO scheme for XeF4 . For simplicity, all fluorine SALCs not in-

volved in bonding and antibonding combinations with Xe orbitals may be

grouped together in the center of the scheme, without attempting to sort out

their relative energies. Actually, the highest occupied molecular orbital (HOMO)
is the antibonding combination of in-plane fluorine 2py orbitals. The antibond-

ing nondegenerate Xe-F cr* and ir* levels lie below the HOMO, among other

fluorine-only MOs.
4.15 X-ray structure analysis shows that N(CH3)4XeF 5 and related compounds con-

tain the planar pentafluoroxenate(IV) anion, the first example of a pentagonal

planar MX5 species [cf. K. O. Christe, E. C. Curtis, D. A. Dixon, H. P. Mercier,

J. C. P. Sanders, and G. J. Schrobilgen, J. Am. Chem. Soc. 1991, 113, 3351].

Taking an approach similar to that described for XeF4 (Problem 4.14), develop

a qualitative general MO scheme for the XeFJ ion. As with XeF4 ,
the HOMO

is the antibonding combination of in-plane fluorine 2py orbitals. The antibond-

ing nondegenerate Xe-F <j* and ir* levels lie below the HOMO, among other

fluorine-only MOs.
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Equations for Wave Functions

In Chapter 4 we formed wave functions for hybrid orbitals and molecular or-

bitals as linear combinations of specific atomic orbitals. In both cases the new
functions conformed to the symmetry requirements of the system, and as such

could be regarded as symmetry-adapted linear combinations (SALCs). In

very simple cases, such as BeH2 and C02 ,
the explicit expressions for the

SALCs could be deduced by inspection. But with even a relatively straight-

forward case like the pi molecular orbitals (7r-MOs) of benzene, we found

some SALCs whose mathematical forms were not intuitively obvious. It

would be useful for cases like these to have a systematic way of generating

the mathematical expressions for the SALCs. In this chapter we consider

methodologies for satisfying this need. The projection operator approach, on

which we will focus most of our attention, is a traditional and generally ap-

plicable method. However, as we shall see, the applicability of projection op-

erators has limits, and one must bring a certain amount of “chemical intu-

ition” to the analysis in certain cases.

5.1 Formulating SALCs with Projection Operators

The projection operator has been called a “function generating machine,” be-

cause it generates algebraic equations more or less automatically. In our case,

the functions we wish to obtain are linear combinations of atomic wave func-

tions (e.g., pendant atom SALCs, 7t-MOs of ring systems) formulated from a

collection of specific functions that form a basis set. As such, the functions we
seek may in general be regarded as SALCs. As we have seen, each SALC
must have the symmetry of an irreducible representation within the reducible

representation for the problem under consideration. To generate a SALC be-

longing to one of these symmetry species, a projection operator for the par-

ticular irreducible representation is applied to one function in the basis set.

As a result, the operator projects out the full linear combination for the

SALC in terms of all the basis functions in the set. If we wish to obtain all

the allowed SALCs, we must construct projection operators for each symme-

try species comprising the reducible representation. The particular function

to which we apply each projection operator can be chosen within the basis set

more or less arbitrarily, so long as all the functions of the set are related to

each other by symmetry operations of the group. We can be this arbitrary be-

cause the projection operator “knows” the existence of the other basis func-

138
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tions and how they are mathematically related to the reference function. This

is a consequence of the symmetry of the group and the symmetry relation-

ships dictated by the irreducible representation to which the projection oper-

ator belongs.

The projection operator for any symmetry species can be constructed ei-

ther in terms of the full operator matrices of the irreducible representation or

in terms of its characters. For nondegenerate irreducible representations the

two forms are equivalent. For doubly or triply degenerate representations the

full matrix form has the advantage of generating the two or three degenerate

functions in one mathematical process. However, to construct the projection

operator in this form, we must know all the explicit operator matrices com-

prising the degenerate irreducible representation. Moreover, we must know
the forms of these matrices for each and every operation, not just one repre-

sentative operation of each class. This is necessary for degenerate irreducible

representations, because all operations in a class usually have unique opera-

tor matrices, even though all have the same character. Listings of the full ma-

trix forms of the irreducible representations are not generally available, and

the effort of generating them does not justify the slight advantage obtained

from producing the two or three degenerate functions directly. Using the pro-

jection operator in characters is less cumbersome and more direct, but only

one function is generated immediately for doubly or triply degenerate irre-

ducible representations. However, the individual degenerate functions usually

can be generated either directly or by employing a variety of techniques,

some of which we will illustrate. Consequently, we will only concern ourselves

with the character form of the projection operator in this text.*

Suppose we wish to find the allowed SALCs constructed from a set of

functions <fo, . .
.

,

</>„, which form the basis for a reducible representation

of the group. We require that these basis functions be related to each other

by the operations of the group. Thus, each function is interchanged with it-

self or other functions in the set in either a positive or negative sense through

the effect of an operator, R, for each of the operations of the group. If we
wish to construct the SALCs associated with the ith irreducible representa-

tion, Sh we may apply the projection operator, Ph to any one of the several

basis functions,
(fit ,

according to the expression

Si « PA = xfRjA (5 . 1 )
n R

in which

di — dimension of the ith irreducible representation,

h = order of the group,

xf = each operation’s character in the ith irreducible representation,

Rj = the operator for the y'th operation of the group.

*For a derivation of both forms of the projection operator see F. A. Cotton, Chemical Applications

of Group Theory, 3rd ed., John Wiley & Sons, New York, 1990, Chapter 6.
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The result of the term Rfa is the basis function, either in the positive or neg-

ative sense, obtained when the reference function cf)t is subjected to the ac-

tion of the ;th operation. Note that the summation is.taken over all the indi-

vidual operations, and not simply over each class of operations. This is

necessary because each operation of a given class may transform </>r into a dif-

ferent member of the basis set.

The results of Eq. (5.1) are not the final wave functions we seek. To ob-

tain these, we normalize the functions generated from the projection opera-

tors, invoking the usual condition 7V
2
J\|m|/* dr = 1, where N is the normaliza-

tion constant. Therefore, we can routinely ignore the factor djh of Eq. (5.1),

which in all cases will be incorporated automatically within the normalization

constant. In addition to normalization, we must insure that all the wave func-

tions we generate meet the quantum mechanical requirement of orthogonal-

ity. Accordingly, for any two wave functions of the system we require that

/ dr = 0 if i =£ j.

In carrying out normalization or testing for orthogonality on SALCs, we
will be taking products of wave functions that are linear combinations of the

basis functions. These products have the general form

(M>i — «i+l<|>*+l
**’ — ^n4Vz)(^/4V — ^/+l4V+l

*"* “ ^m^m)

The basis functions composing these SALCs are presumably normalized and or-

thogonal. Thus, in carrying out the expansion of the products, terms of the type

cjj/cj)/ or 4v4v will t>e unity and terms of the type (i =£ j) will be zero. We can

generalize these results in terms of the Kroneker delta function, <5^, by writing

J4>,4>, dr = 5,y (5.2)

where 8^
= 1 if i = j and zero otherwise. As a result, we only need to concern

ourselves with the nonvanishing 4>/4>; terms, since all the cross terms (4>/<t>;)

will be zero.

To illustrate the use of projection operators, let us formulate the

(7-SALCs for the pendant atoms in an octahedral MX6 molecule. By the pro-

cedures described in Chapter 4 we can readily determine that the six SALCs
will have the symmetries T^ = A lg + Eg + Tlu . To find the mathematical

forms of these SALCs we will construct projection operators in each of the

three symmetry species. As we have noted, using Eq. (5.1) requires a term for

each and every operation of the group. Since the order of Oh is 48, we might

anticipate a rather cumbersome set of equations, each with 48 terms. However,

we can cut the work at least in half by carrying out the process in the rota-

tional subgroup O, for which h = 24. We choose O
,
rather than some lower-

order subgroup, because it preserves the essential symmetry of the parent

group, Oh ,
especially the degeneracies of its irreducible representations.*

*As we shall see in other cases, choosing a rotational subgroup of the molecule’s true group is

often a useful strategy for minimizing the labor of a problem. We can take this approach because

an axial group’s rotational subgroup either preserves the parent group’s degeneracies or lifts

them in a way that makes the correlation with the parent group species direct and unambiguous.
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This makes it easy to correlate the results obtained in the subgroup with those

that would be obtained in the full parent group. Note that in O we have the

symmetry species T cr = A + E + 7\, which have obvious correlations to the

symmetry species in Oh . In actual practice, we would avoid further unneces-

sary work by realizing that the A SALC is totally symmetric. This means it

must consist of the positive addition of all six sigma orbitals on the X atoms.

Therefore, we really do not need to use a projection operator to obtain it.

Nonetheless, as an introduction to the use of projection operators, we will

carry out the process here.

Figure 5.1 shows the positions of the six X atoms whose sigma orbitals

(labeled through cr6) point toward the central M atom. The corners of the

surrounding cube have been labeled a through d to provide reference points

for the orientations of the various symmetry elements and their operations in

the group O. The listing 8C3 in the O character table (cf. Appendix A) refers

to four C3 operations and four C3 operations performed about four axes that

run along the cube diagonals. Thus, the C3 axis we will label aa runs along

the cube diagonal that connects the two corners labeled a. The 3

C

2 ,
3

C

4 ,
and

3C\ operations are performed about axes that pass through pairs of trans-re-

lated positions and are so labeled. Thus, we will label the C2 axis that passes

through positions 1 and 2 as 12. The 6C2 axes lie in pairs in the three planes

that intersect at the center of the octahedron. Relative to the reference cube,

they pass through the midpoints on two opposite edges. We will label these

C2 axes according to the two-letter designations of the cube edges through

which they pass. Thus, the C2 axis that passes through the midpoints of the

two ac edges will be labeled ac. In the case of threefold rotations we will take

the clockwise sense viewed from the upper corners of the cube. The fourfold

rotations will be taken in the clockwise sense viewed from the cube face of

the lower numbered position (e.g., from the upper face abed for the axis 12).

Having carefully defined the orientations and directions of the operations

in this manner, we can proceed to determine their effects on an arbitrarily

chosen reference function of the basis set of six sigma orbitals. Taking the ref-

erence basis function as cr1 ,
the operations of O effect the following transfor-

mations:

c

Figure 5.1 Orientation of the basis functions

used to construct <x-SALCs for the six pendant

atoms of an octahedral MX6 molecule.
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0 E c3 C3 c3 c3 Cl Cl cl Cl C2 Cz C2

Label aa bb cc dd aa bb CC dd 12 34 56

Rpi o-i 0-5 0-3 06 04 03 O6 04 05 01 02 02

c4 C4 c4 C4
3 Cl Cl CL CL CL CL cl CL

12 34 56 72 34 56 ac bd ab cd ad be

o-

1

05 a4 <7l 06 03 0

2

0-2 V3 (74 05 06

In the table above, the row labeled Rp

\

indicates that E transforms crx into

itself, C3(aa) transforms cr
x
into <x5 ,

C3(bb) transforms crx into <x3 ,
and so forth.

We now can construct the projection operator P(A)ax by multiplying

each of the resulting basis functions shown above by the characters of the op-

erations in the A representation. Since A is the totally symmetric representa-

tion, all the characters are + 1 in this case. Adding lines to the preceding table

to show the characters of A and the resulting products x?Rj°i» we obtain the

following results:

O E c3 c3 c3 c3 cl cl cl cl C2 C2 C2

Label aa bb CC dd aa bb CC 72 34 56

Rp o
'

i

0-5 0-3 OS 0-4 <73 o-

6 0

4

0's or1 02 0-2

A 1 1 1 1 1 1 1 1 1 1 1 1

xfRjV1 01 05 03 06 0

4

03 06 04 <*5 O’] 02 02

C4 C

4

C4 cl cl Cl Ci Ci ci ci Ci C2

12 34 56 12 34 56 ac ab cd ad be

o-i 0-5 a4 o'

1

0*6 <73 or2 0-2 0-3 a4 0-5 0-6

1 1 1 1 1 1 1 1 1 1 1 1

o-i a4 o-i 0-6 Or3 02 02 03 o-

4 05 06

Summing all the xfRpi terms gives

P(A)<jx
4cr! + 4<t2 + 4cr3 + 4 <t4 + 4ct5 + 4cr6

oc (T\ + CT2 + <X3 + <X4 + (J5 + 06

which is the result we anticipated. Keeping in mind the general properties

represented by Eq. (5.2), normalization of P(A)ax gives



5.1 Formulating SALCs with Projection Operators 143

Af
2
/(°1 + + <X3 + (74 + (75 + dr

= TV
2
/(cr

2 + cr
2 + <x3 + cr4 + cr

2 + cr|) dr

= TV
2
(1 + 1 + 1 + 1 + 1 + 1) = 6N2 SB 1

=> N = 1/V6

Therefore, the normalized SALC is

2i(A) = 1/V6(cr
1 + a2 + cr3 + 04 + cr5 + cr6) (5 .3 )

To obtain the first of the two degenerate E SALCs we take the results

previously obtained for the transformations of (j\ and multiply them by the

characters of the E representation. From the O character table we see that

there are zero characters for 6C4 and 6

C

2 . Consequently, we only need to

consider the first 12 terms, shown in the upper half of our previous listing of

basis function transformations. Thus, the essential elements of the P{E)ax op-

erator are given by the following:

o E c3 c3 C3 Cl cl Ci cl Cl C2 C2 c2

Label aa bb cc dd aa bb CC dd 12 34 56

RjO"i o-i O5 o-3 0-6 a4 o-3 o-6 0~4 0'S o-i o-2 O'!

E 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2

xfRjO'i 2cr
i

-o-5 -0-3 -0-
6 -O4 -o-3 0~6 -O

4

O'

5

2ax 2(7-2 2cr2

Summing across all x?Rjcri gives

P{E)cfi oc
4(7i + 4 cr2 — 2a3 - 2a4 - 2a5 — 2cr6

oc 2a

i

+ 2a2 — cr3 — <j4 — a5 — cr6

which after normalization gives

22(£) = l/(2V
/
3)(2cr1 + 2a2 - a3 - a4 - a5 - a6) (5.4)

We can demonstrate that this is orthogonal to our first function, Si (A), as fol-

lows:

/(oi + cr2 + a3 + cr4 + cr5 -I- cr6)(2cr1 + 2a2 — a3 — cr4
— a5 — a6) dr

^ 2 + 2 — 1 — 1 - 1 — 1=0

However, S2(£) is only one of a degenerate pair. We must find the partner.

One way in which we can try to find the partner of S2(£) is to carry out

the E projection on a different basis function, say, cr3 instead of aA . Taking
this approach, we obtain the following results:
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0 E c3 C3 c3 c3 Cl Cl Cl cl c2 c2 c2

Label aa bb CC dd aa bb CC . dd 12 34 56

Rj(T3 0-3 O'! 0-6 O’! 0-6 (*5 O'

1

0-5 0-2 0*4 0-3 0-4

E 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2

2gt3 ~<r

1

-0-6 ~or

2

~P6 -0-5 -01 “ 0-5 “02 2(t4 2 0-3 2cr4

This gives

P(E)cr3 — 2(j
x
— 2(72 + 4 (t3 + 4cr4 — 2cr5 — 2cr6

~ CT] ~ (J2 + 2(73 + 2(74 — CT5 — (J6

On first encounter this may seem as good a result as that obtained from

P(E)cti. After all, it is orthogonal to 2i(A):

f(o i + cr2 + cr3 + cr4 + cr5 + cr6)(
— CT\ — cr2 + 2 <t3 + 2ct4 — cr5 — cr6) (/r

=— 1 — 1 + 2 + 2 — 1 — 1=0

In fact, if this were our first result for E
,
it would be an acceptable wave func-

tion. However, if we accept our previous result for S2(£) from P(E)cr1 ,
our

result from P(E)a3 cannot be an acceptable wave function, since it is not or-

thogonal with S2(E):

f(2(71 + 2(J2 - (73 - (74 - (75 - (76)(
- (T\

-
(72 + 2(73 + 2(74 ~ O5 “ (76) (/t

= —

2

— 2 — 2 — 2 + 1 + 1 = — 6=£0

Surely the two degenerate E functions must be orthogonal with each other,

as well as with 2i(A).

The problem we have just encountered—that two projection operators

give acceptable functions in their own right but are not acceptable partners to

each other—results from conflicting choices of axes. When we began with

P(E)cti we implicitly fixed the coordinate system. Let us say that the orienta-

tion was such that the z axis of the system passed through cq. If we then be-

gin again with P{E)ct3 ,
we implicitly reorient the z axis to pass through a3 . The

choice of which orientation to use is completely arbitrary, since all of the ba-

sis functions are equivalent. However, once we have chosen one orientation,

the degenerate partner must conform to that choice. In some cases, depend-

ing on the geometry of the system, the shift of the axis system when operating

on a different basis function may be of no consequence, and the partner func-

tion can be generated directly, in either its positive or negative form. In other

cases, choosing a different basis function may generate the same SALC as the

first choice, in either its positive or negative form. In still other cases, operat-

ing on a different basis function may generate a projected function that is a

linear combination of the first SALC and the partner SALC or SALCs.
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Our expression from P(E)ct3 is neither a partner to X2(E) nor the nega-

tive of X2(E) itself. Instead, it would appear to be a linear combination of

22(£) and the partner function we seek. This being the case, we need to find

the appropriate combination of P(E)cr\, the operator expression that gave us

22(£), and the expression for P{E)cr3 . In other words, the function we seek

has the form aP(E)ai + bP(E)cr3 ,
where a and b are small positive or nega-

tive integers. The correct values of a and b are those that yield a function that

is orthogonal to S2(£% as well as 2i(A). With a little trial-and-error manipu-

lation, we can obtain the missing partner as P(E)a1 + 2P(E)ct3 .

2(T\ + 2(T2 ~ (J3 — cr4 — cr5 — cr6

— 2Oi — 2(T2 + 4 cr3 + 4cr4 — 2cr5 — 2 cr6

3(j3 + 3<x4 — 3a5 — 3<t6

a cr3 + cr4 - cr5 - cr6

This result is orthogonal to X2(£),

J'(2cr1 + 2(72 ~ cr3 ~ a4 - a5 - (r6)(cr3 + a4 - cr5 - <r6) dr

= 0 + 0 - 1 — 1 + 1 + 1=0

and also to 2i(A),

f(a3 + (t2 + cr3 + cr4 + cr5 + (76)((73 + (74 - cr5 - (76) dT

= 0 + 0 + l + l — 1 — 1=0

The normalized partner wave function, then, is

23(£) = j
(cr3 + ct4 - o-5 - cr6) (5.5)

Another approach, which leads to the same result, is based on the fol-

lowing general property of degenerate functions: The effect of any group op-

eration on a wave function of a degenerate set is to transform the function into

the positive or negative of itself a partner
;
or a linear combination of itselfand

its partner or partners. For the purpose of finding the partner in the present

case, we will want to pick an operation that is unlikely to transform X2(E)

into itself in either a positive or negative sense. Any one of the C3 operations

would be good candidates for this task. Let us look at the effect of perform-

ing the C3{aa) rotation on 22(£). This operation effects the following trans-

formations on the individual basis functions: 0^ —» cr5 ,
cr2 —» cr6 ,

cr3 —> e^,

cr4 cr2 ,
cr5 —> <r3 ,

cr6 —> cr4 . Thus 22(£) is transformed as

(2ct
1
+ 2 <x2 — <x3 — cr4 — cr5 — cr6)

—
> (

— cr1 — cr2 — cr3 — cr4 + 2(75 + 2(76)

However, this is not orthogonal to X2(E)\

J(2(r\ + 2(72
—

cr3 — cr4 — a5 — cr6)(
— cr1 ~ cr2 — (J3 ~ cr4 + 2o5 + 2cr6) dr

= —

2

— 2 + 1 + 1 — 2-2 = -6^0
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This suggests that the new function is a combination of 22(E) and the part-

ner we seek, £3(E). As before, we can find 23 (ZT) by trying various combina-

tions of the new function and 22(£), again using orthogonality as the test for

a valid partner. In this manner we can find the form of £3(E) by adding two
times the negative of the new function to the negative of 22(E):

—2(7] — 2 ct2 + 03 +cr4 + <75 + <r6

+ 2(7! + 2(72 + J(73 + 2(74 — 4(75 — 4(76

3(73 + 3(74 — 3(75 — 3(76

oc or3 + a4 - cr5 - a6

This is the same result as we obtained previously, which on normalization

gives %3(E), as shown in Eq. (5.5). Note that if we had subtracted two times

the new function from 22(E) we would have obtained the negative of this re-

sult, which is merely the same as 23(E) taken in the negative. Our preference

for the form of 23(E) shown in Eq. (5.5), rather than its negative, is an arbi-

trary choice. The resulting function is orthogonal either way.* However, any

other addition or subtraction of 22(E) and the expression we obtained by per-

forming C3(aa) on 22(E) leads to a result that is not orthogonal. Consequently,

the choice of how to manipulate the two expressions to obtain the partner

function 23(E) is dictated by the orthogonality requirement. Quite simply, we
do whatever it takes to get to a function that passes this test.

We have now seen two ways of obtaining a partner function: (1) Apply

the projection operator for the degenerate representation to a different basis

function than that used to generate the first SALC of the degenerate set, and

(2) subject the first obtained SALC to an appropriate symmetry operation of

the group. Either approach gives the desired result, but performing a group

operation on the first SALC is clearly less work. Which operation to choose

for the job is not particularly important, so long as it does not merely trans-

form the first SALC into the positive or negative of itself. However, if one

happens to make the wrong choice, choosing another operation or possibly

the same operation about a differently oriented symmetry element usually

will give either the positive or negative of the partner function or a function

from which the partner can be obtained by suitable addition or subtraction

with the original SALC.
In some cases, the partner SALCs are not difficult to deduce once the

first function has been obtained. The three 7\ cr-SALCs for the six pendant

atoms of an octahedral MX6 molecule are a case in point. In similar manner

to our procedure for the two E SALCs, we can find the first of three degen-

erate T] SALCs by applying the appropriate projection operator to one of the

six basis functions. As before, we will use Since the character for 8C3 in

the 7\ representation is zero, we can skip the eight terms after the first term

for identity. Thus, we have the following results:

*Note that if two functions vf/fl
and i|>/, are orthogonal, such that dr = 0, then their negatives

are also orthogonal, since it must be that /(-vfQiW, dr = dr = J(
—

»!»«)(“W dr = 0.
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o E c3 c3 c3 c3 cl Cl Cl Cl c2 C2 C2

Label aa bb CC dd aa bb CC dd 72 34 56

RjO i 0i 05 03 06 04 03 06 04 05 0i 02 02

T\ 3 0 0 0 0 0 O' 0 0 -1 -1 -1

xfRpi 3(7! -0i -02 -02

c4 c4 c4 cl Cl Cl Cl Cl Cl Cl Cl Cl

72 34 56 12 34 56 ac bd ab cd ad be

0i 05 04 0i 06 03 02 02 03 04 05 06

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

0i 05 04 0i 06 03 -02 -02 -03 -04 -05 -06

Summing across the xfRj0'! results, we obtain the expression

P{Ti)di CC A(Ji
—

4(72 a 01 — 02

We can readily show that this is orthogonal to the previous three functions

for A and E
,
and on normalization we obtain the SALC

MTi) = 1/V2(oi - a2) (5.6)

In this case the companion functions are not difficult to discern from the

geometry of the system. We see that 24(7\) is the combination of two basis

functions from pairs of trans-related pendant atoms. We can conclude from

this that the other two functions must involve the same kind of combination

with the remaining pairs. Thus, we readily obtain the companion SALCs

MTi) = l/V2(a-3 - a4 ) (5.7)

MTi) = 1/V2(o-5 - a6) (5.8)

If a more analytical approach is needed, note that applying C3 and Cf about

the aa axis, for example, transforms 24(Ti) into these two functions.

In some cases, the character form of the projection operator of a degen-

erate irreducible representation does not yield a single SALC, but rather a

combination of SALCs. This occurs in the case of the cr-SALCs for the pen-

dant atoms of a tetrahedral MX4 molecule. Let us consider the use of pro-

jection operators to generate the expressions for the hydrogen SALCs we
used in constructing the LCAO-MOs for methane [Eqs. (4.21a)-(4.21d) in

Section 4.3]. As previously shown, the symmetry of the four hydrogen SALCs
is T = A 1 + T2 . Consistent with our previous notation (cf. Fig. 4.16) we will

label the four equivalent hydrogen atoms as shown in Fig. 5.2. Here we will
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4

B

Figure 5.2 Orientation of the Is basis

functions used to construct SALCs for

the four hydrogen atoms of methane.

simply indicate the functions as s, rather than Is, to avoid confusion in the

projection operator expressions.

The group Td has 24 operations (

h

= 24), which means that the projec-

tion operators will have as many terms. As before, we can avoid such cum-

bersome expressions by working in the rotational subgroup of the molecule’s

actual point group. In this case, the subgroup is T (cf. Appendix A for the

character table), which has half as many operations. We are only interested

in the two species and T2 of Td ,
which correspond to A and T in the group

T. We really do not need to use projection operators to deduce the mathe-

matical form of the A SALC, since this is the totally symmetric representa-

tion. Clearly, combining all four Is wave functions with positive signs, as

shown in Eq. (4.21a), is the only way to conform to the complete symmetry

of the group. This only leaves the problem of determining the forms of the

three degenerate T SALCs. From the character table for the group T, we see

that the characters for both 4C3 and 4C\ are zero, so we can skip the eight

terms associated with these operations. Thus, of the 12 terms for the projec-

tion operator for the representation T in the group T, only the four terms for

the operations £, C2(x), C2(y), and C2(z) are nonzero. Considering only these

nonzero terms, we obtain the following results for the T projection from the

reference basis function sA :

T E •• C2(x) c2(y ) C2(z)

RjSA SA SC SD SB

T 3 -1 -1 -1

3sA • -Sc ~SD -sB

This gives

P(T)sa oc 3^ - sc - sD - sB

This function is orthogonal to the A SALC, 4>i = y (sA + sB + sc + sD ), and

could be normalized to give the function

<D(7) = 1/(2V3)(3 - sc -sD - sB ) (5.9)

However, this makes no sense as an individual function when we realize that

the three T SALCs must overlap with the three degenerate 2p orbitals on the
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central carbon atom. As shown in Fig. 4.16, the lobes of each 2p orbital point

toward opposite faces of the reference cube of the tetrahedron. For example,

the positively signed lobe of the 2px orbital points toward the cube face of the

A and C hydrogen atoms, and its negatively signed lobe points toward the

face of the B and D hydrogen atoms. For bonding to occur, the signs on the

hydrogen wave functions in the SALC must match the signs on the central

atom with which they overlap. Thus, the SALC that matches the 2px orbital

must use the A and C hydrogen Is functions in a positive sense and the B and

D hydrogen Is functions in a negative sense. Similar matches must occur for

the 2py
and 2pz orbitals. From these considerations we might surmise that the

function projected by P(T)sA is a sum of the three SALCs we seek. In this

case we can see that the following three functions add to give the overall ex-

pression for P(T)sa \

P{T z
)sa otsA + sB -

s

c ~ sD (5.10a)

P{Ty )sA <xsA -sB -sc + sD (5.10b)

P(Tx
)sa <*sa - sb + sc ~ sd (5.10c)

P(T)sa oc 3sa — sB — sc — sD

With normalization, P(Tz
)sA ,

P(Ty )sA ,
and P(Tx

)sA become <F2 ,
$3 ,

and <J>4 ,

respectively, as shown in Eqs. (4.21b)-(4.21d).

As the preceding examples suggest, projection operators in character form

do not automatically generate sets of degenerate SALCs. Moreover, it is dif-

ficult to generalize a procedure by which all members of a degenerate set may
be most efficiently extracted from the initial projection. The best process in

each case depends upon the peculiarities of the system under study. Both the

geometry of the molecule and the form of the function that the projection op-

erator first generates will dictate what method is most expedient. In the fol-

lowing section we will show yet another strategy for obtaining the members of

degenerate sets. Although we will illustrate this for the 7r-SALCs of a conju-

gated ring system, the technique can be applied in other cases, as appropriate.

5.2 SALCs of Pi Systems

Projection operators can be used to generate 7t-SALCs just as effectively as

they can be used to generate cr-SALCs. The 7r-functions might be pendant
atom SALCs to be combined with 7r-symmetry orbitals on a central atom or

group of atoms, or they might be 7t-MOs in a conjugated ring system. The ap-

proach is basically the same in both cases. As an illustration, let us use pro-

jection operators to obtain the six 7T-MO wave functions for benzene, which
were presented without derivation in Section 4.5 [Eqs. (4.29)-(4.32)]. Taking
the six p z orbitals on the carbon atoms of the ring as basis functions for a rep-
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resentation in D6h we found that the resulting reducible representation breaks

down as Tn = A2u + B2g + Eig + E2u . Thus, we will need to construct pro-

jection operators for these symmetry species to form two nondegenerate

MOs and two pairs of degenerate MOs. For reference we designate the car-

bon atoms alphabetically in a clockwise manner about the ring, as shown in

Fig. 5.3. The six p z basis functions of the ring (cf>a ,
cj)b , </>c , 4>d , </>e , </y) have the

directional sense previously shown in Fig. 4.24.

We could construct our projection operators in D6h ,
for which h = 24, but

a more careful examination of the problem shows some ways in which the la-

bor of the process can be minimized. In particular, consider the characters of

the irreducible representations that comprise IV

D6h E 2C6 2C3 C2 3Ci 3C'i i 2S3 2S6 o-h 3 ard 3av

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1

B

2

g
1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E lg 2 1 -1 -2 0 0 2 1 -1 -2 0 0

e2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

The operations and characters in the box are those of the rotational subgroup

C6 . In the cases of the two doubly degenerate species, the characters are the

same as those in C6 if the complex conjugate paired irreducible representa-

tions comprising Et and E2 in that group are added together. (See Section

3.2.) Note that the characters for the subgroup operations are sufficient to dif-

ferentiate between the four symmetry species of T^. This suggests that we can

save a great deal of labor by applying projection operators in the subgroup

C6 ,
for which h = 6, rather than the full group D6h . Examining the characters

within the box in the table above and comparing them with the characters for

the representations of C6 ,
we see that the correlation of species from D6h to

C6 is as follows: A2u —> A; B2g —> B\ Elg —> E\, E2u —> E2 . Thus, in C6 the nec-

essary projection operators are those for A
,
B

, Ei, and E2 . However, as the

table for the group C6 (cf. Appendix A) shows, the E1 and E2 representations

are actually complex-conjugate pairs of irreducible representations, involving

the imaginary integer i
= V—T. This might seem like an inconvenience, but

in this case it provides an advantage. The descent in symmetry from D6h to

C6 lifts the degeneracy of the doubly degenerate representations, allowing us

to construct separate projection operators for each of the two complex-con-

jugate representations. Thus, we can obtain the two companion functions for

each degenerate pair relatively directly.

Figure 5.3 Position labels for the six 2p z basis functions used to form

tt-MOs of benzene.a
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We begin with the ^-symmetry function, which corresponds to A2u in

D6h . In the working subgroup C6 ,
A is the totally symmetric representation.

Therefore, we expect the result 11(A) = 1/V6 (<j>a + <f>h + </>c + (j)d + <\>e + </>/).

Indeed, the projection operator P(A)cj)a in C6 yields this result, as follows:

C6 E c6 C3 C2 Cl cl

Rj<t>a <f>a 4>b 4>C <t>d 4>e 4>f

A 1 1 l 1 1 1

\jRj(j>a 4*0 <t>b 4>c 4>d 4>e 4>f

=> 11(A) = 1/V6(<^ + (j)b + (f>c + 4>d + <t>e
+ <£/)

- ni (5.11)

This is identical to Eq. (4.29), the function for the lowest energy bonding

MO, 7T\.

The SALC for the B representation, which corresponds to B2g in D6h ,
is

obtained with equal alacrity:

c6 E C6 Cl C2 Cl cl

Rj<f>a 4>b 4>c 4>d (fie 4>f

B 1 -1 l -1 1 -1

XiRj<f>a 4>a ~4>b 4>c ~4>d <t>e ~*r

=> n(B) = iiV6(4>a - fa + 4>c - <t>d + 4>e - 4>f)
= *6* (5.12)

This is identical to Eq. (4.32), the function for the highest energy antibond-

ing MO, 776
*.

Closer examination of the results for A and B reveals yet another sim-

plification we can employ with conjugated ring systems such as benzene. Note

that the factors for the various </>’s in Eqs. (5.11) and (5.12) are the same as

the characters of the A and B representations, respectively. This occurs be-

cause the effect of the rotations in the group C6 is to carry the reference func-

tion
(f)a into all the basis functions around the ring in succession. Hence, when

we multiply by the characters of any irreducible representation, the resulting

projected function takes on the form

Xl<t>a + X2<t*b + X3<t>c + X\4>d + Xs4>e + X&f

where the coefficients xi • • • » X6 are the six successive characters of the

ith irreducible representation of C6 . Thus, we can write down the expressions

for the six 7t-SALCs simply by inspecting the characters in C6 for each of the

irreducible representations of T^. The characters in each case are the factors

for the </>’s, taken in order, in the SALCs prior to normalization. Applying this

method to the two doubly degenerate symmetry species, E\ and E2 ,
gives the

following four functions:
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*

P(El)4>a a
( <l>a + ~ “

<\>d
~

£<t>e + €*4>f) (5.13a)

P(Ei)<t>a « (4>a + e*4>h - 6<t>c - 4>d - €*<])e + €<pf) (5.13b)

P(E a
2 )<t>a « (4, - €*<t>b - e<f>c + <f>d - e*<t>e - e<j>f) (5.14a)

P(E2)4>a a
(4>a

-
e<t>b

- e*4>c + 4>d - e<f>e - €*4>f) (5.14b)

Note that by working in the rotational subgroup C6 ,
rather than the actual

group D6h ,
we have bypassed the problem of obtaining two degenerate func-

tions from a single projection operator. In C6 we obtain two separate equa-

tions for each pair of degenerate SALCs in D6h . However, as they stand, the

expressions are imaginary. Naturally, we would prefer to have real functions.

To obtain real-number expressions we take the positive and negative sums of

the complex conjugate pairs of functions in each case. For Eu by adding Eqs.

(5.13a) and (5.13b), we obtain

P(E‘l)4>a + P(El)<f>a
o=

[2<t>a + (e + e*)<t>b - (e + e*)<k - 2<j>d - (e + e*)<f>e + (e + e*)4>f ]

where

e + e*
2lT . . . 277

-

COS—- + i sin
6 6

l 2 tt . . 2tt\
^cos— -*sm—

j

2cos^ = 2(i) = l

Thus, we have

P(El )4>a + P(E\)<f>a a 2 (!)a + 4>b ~ </>c ~ 2(j)d ~ <j)e + (f)f

which after normalization gives

n(£f) = l/(2V3){2<fe, + 4>b - 4>c
-

2<f>d -4>e + 4>f]
= tt2 (5.15a)

This result is identical to Eq. (4.30a).

By subtracting Eq. (5.13b) from Eq. (5.13a) we obtain

P(E‘;)4>„ - P(Ei)4>a

« {0 + (e - e*)(t>b + (e - e*)<t>c + 0 - (e - e*)4>e - (e -

where

2tt . . . 2tt
=

| cos + i sin—

-

6 6

= 2 i sin '(f)
Thus, we have

/ 27T . . 27t\
cos — i sin

V 6 6 )

j'V

3

P(ET)4>a - P{EhMa « i^(4>b +
<t>c ~4>e~ <t>f)
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Although /V3 is imaginary, it is a nonzero constant, which can be factored

out prior to normalization. Accordingly, after normalization we obtain

n(£f) =| \4>b + 4>c -4>e~ <M = ^ (5.15b)

which is identical to Eq. (4.30b).

Following the same procedure with Eqs. (5.14a) and (5.14b) for E2 we
obtain

P(Ef)4>a + P{Eb
2 )4>a

«
\24>a - (e + e*)<t>b - (e + e*)4>c + 2

<f>d - (e + e*)<j>e - (e + €*)<£/)

and

P(E2)4>a - P(Eh2 )<t>a

a {0 - (e - e*)4>b + (e - e*)(f>c + 0 - (e - e*)4>e + (e - e*)<f>f)

* ~
<f)b + (j)c ~ <t>e

+

After normalization these yield

II(£?) = l/(2V3)(2^;
-4>b -4>c + 2<t>d 4>f)

= ^4* (5.16a)

and

n(£f) = \ [-<!>„ + 4>C
-

<fie
+

<t>f)
= 775* (5.16b)

which are identical to Eqs. (4.31a) and (4.31b).

The procedure we have followed for benzene can be extended to become

a general method for generating 7t-LCAO-MOs for similar conjugated ring

systems:

1. Write down an initial set of SALCs by inspecting the character table C„,

which is a subgroup of the molecule’s point group Dnh . These SALCs will

have the form x W>i + X2<t>2 + — + Xn<t>n ,
where xi xi'" Xn *re the char-

acters of the ith irreducible representation of the representation T^ in the

group Cn .

2. Make real functions for pairs of complex conjugate SALCs by adding and

subtracting the imaginary functions. Factor out any overall coefficients

containing i prior to normalization.

3. Normalize the functions.

This method also can be applied to obtain the 7t-SALCs of pendant atoms in

planar MXn molecules with Dnh symmetry.

5.3 Formulating Hybrid Orbitals

As we have seen in the preceding sections, the formation of SALCs involves

combining basis functions from the various atoms of the molecule into suit-

able LCAO functions that conform to the symmetry species of the reducible

representation. When we apply the projection operators for each symmetry
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species to a member of this basis set, we project the desired function for the

whole system. The basis functions are the known quantities, and the SALCs
are the solutions to the molecular orbital problem. In this sense, the unknown
whole (the SALC) is defined in terms of its known parts (the basis functions).

When we seek to construct hybrid orbitals as LCAOs, we must realize that

the process is actually the inverse. As we saw in Section 4.2, we begin with

the hybrids, with their desired geometrical orientations, as our basis set and

generate a reducible representation, whose component irreducible represen-

tations indicate the symmetries of the various atomic orbitals that may be

combined on the central atom. Here, the whole (the set of hybrids) is the

known quantity and the component parts (the atomic orbitals comprising

them) are the unknowns to be determined. As a result, if we were to apply

projection operators to the hybrids that form the basis set, we would obtain

expressions for each of the component conventional atomic orbitals (s , p, d)

as SALCs of the various hybrid functions. This is hardly the result we wish.

Rather, we would hope to be able to formulate the hybrids in terms of the

conventional atomic orbitals. Nonetheless, proceeding in this seemingly back-

wards manner can get us to the goal we seek. Once we have obtained ex-

pressions for the conventional orbitals in terms of the hybrids, we can take

advantage of the properties of matrices and their inverses to obtain the de-

sired expressions for the hybrids as SALCs of the conventional orbitals with

very little additional effort.

Let us illustrate this approach by developing the expressions for the four

tetrahedral sp
3
hybrids. As we saw in Section 4.2, taking a set of hybrid or-

bitals with tetrahedral orientation as the basis for a reducible representation

in the group Td gives Tt
= + T2 ,

which indicates that the 5 orbital and the

degenerate set of p orbitals may be combined to form four hybrid wave func-

tions, \Pc,
and T'D ,

as shown in Fig. 5.4. We could apply projection

operators for Ai and T2 (or A and T in the rotational subgroup T) to any one

of these hybrids, say and project functions for the 5 and p orbitals as lin-

ear combinations of the four hybrid orbital functions, which form the basis

set. Actually, we already carried out the equivalent of this process when we
developed the four hydrogen SALCs of methane in Section 5.1. In that case

we took four vectors directed inward, toward the center of the system, as our
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basis set, whereas now we take four vectors directed outward from the cen-

ter of the system. In terms of symmetry, this is a difference without distinc-

tion. Consequently, we can use the results we obtained previously for the hy-

drogen SALCs [the expression for A and the three expressions for T, Eqs.

(5.10a)-(5.10c)] to obtain the following normalized expressions for the four

conventional atomic orbitals in terms of the four hybrids:

S = \(^A + ^B + 'i'c + Vd)

Px = \ Wa
~ - VD )

Py = \ (Va - ~ + *D)

Pz = \ Wa + Vb ~ Vc - ¥d)

We can write these equations in matrix form as

5

Px

Py

Pz

2

1

2

j_

2

j_

2

1

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

_1

2

1

2

1

2

Va

%

%

(5.17)

The transformation of the ^’s for the hybrids into the conventional atomic

orbital wave functions is effected by the 4X4 matrix, which we shall call A.

Now, what we really seek is an equation for the inverse of the transformation

expressed by Eq. (5.17); that is,

%
%

*>n

^31

b4 i

b 12

^22

^32

^42

b 13

^23

^33

b43

b\4

^24

^34

b44

S

Px

Py

Pz

(5.18)

What we need to find are the b

^

elements of the B matrix of Eq. (5.18). Since

Eqs. (5.17) and (5.18) are the inverse transformations, it follows that the matri-

ces A and B are the inverses* of each other; that is, AB = AA-1 = B _1B = E.

*We denote the inverse of a matrix M as M 1 and require that M = MM -1 = E, where E is

the identity matrix. E is a diagonal matrix consisting of all l’s along the trace and 0’s everywhere
else. In general, the elements of E are given by the Kronecker delta expression (0 when
i # j, and 1 when i =
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However, A and B are orthogonal matrices, which means that the inverse of

one is the transpose of the other. As such, the elements in each successive row
of B are the elements from each successive column of A, and vice versa; that

is, (B)y = h tj
= aji. Using the transposed numeric coefficients from Eq. (5.17)

as the coefficients in Eq. (5.18), we obtain

%
%
Vc

IT

1

2

1

2

1

2

1

2

1

2

2

1
2

1

2

(5.19)

which gives the following four equations for the individual sp

3

hybrid orbitals:

^4 = \ (s + Px + Py + Pz) (5.20a)

% = j
(s - Px - Py + Pz) (5.20b)

Vc = J
(s + Px - Py - Pz) (5.20c)

% = j
(s ~ px + py ~ pz) (5.20d)

The procedure we have just seen can be extended to obtain the equations

for other sets of equivalent hybrid orbitals.

1. Taking the n hybrid orbitals as a basis set, construct and decompose a re-

ducible representation Thyb to identify the appropriate conventional or-

bitals to be combined.

2. Using the hybrids themselves or an equivalent set of pendant atom sigma

orbitals as the basis set, apply the projection operators for each of the ir-

reducible representations comprising Thyb to a representative function of

the set to obtain expressions for the conventional orbitals as LCAOs of

the hybrids. Normalize all functions.

3. Combine the equations obtained in step 2 into a single matrix equation,

using the coefficients to form the n X n transformation matrix A. Take

the transpose of A to form the transformation matrix B.

4. Write a matrix equation for the hybrids by applying the B matrix to a col-

umn matrix of the conventional orbitals, written in the same order as in

the previous matrix equation. Expand the matrix equation to obtain a set

of n equations, one for each hybrid orbital.
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5.4 Systems with Nonequivalent Positions

The molecular systems we have considered thus far have had geometries in

which all positions are symmetrically equivalent. In other words, every posi-

tion can be generated by applying the symmetry operations of the group to

any one of the positions. As a result, if we apply a projection operator to a

function at any position, the SALC we produce is an expression in terms of

functions at all positions. However, there are many molecular geometries in

which there are two or more distinct kinds of positions that cannot be inter-

changed by any operation of the group. Among the idealized geometries of

MX„-type molecules the trigonal bipyramid (tbp ) is probably the most famil-

iar example.

Let us consider constructing pendant atom cr-SALCs for a tbp MX5

molecule (e.g., PF5 ). We can then use the expressions for these SALCs to

formulate equations for dsp 3
hybrids on the central M atom, in the man-

ner described in Section 5.3. Figure 5.5 shows the labeling of sigma func-

tions and hybrid orbitals we will use in carrying out these tasks. Taking the

pendant atom sigma functions as the basis set, we can readily show that the

reducible representation for the SALCs in D3h is = 2A[ + A'{ + E'

.

As
previously noted, the symmetry of the SALCs is equivalent to that of a set

of hybrids with the same geometry, so these are also the symmetry species

of dsp
3
hybrids on the central M atom. Now, for a trigonal bipyramid we

know that no operation of D3h can convert one of the equatorial positions

(1, 2, and 3) into either of the axial positions (4 and 5), and vice versa.

Consequently, applying a projection operator to an equatorial reference

basis function can only yield a SALC in terms of cr2 ,
and a3 . Likewise

applying a projection operator to an axial reference function can only yield

a SALC in terms of cr4 and cr5 . Thus, if we choose to use projection oper-

ators, we are forced to break up the problem into two parts. In doing so,

we recognize that T^ can be seen as the sum of req = A{ + E' and Tax =
A[ + A2 for the equatorial and axial sets of positions, respectively.

Proceeding on this basis we can formulate separate sets of SALCs for the

two kinds of positions.

(X4

z

X

Figure 5.5 Positions of a trigonal

bipyramid.
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The SALCs for the equatorial set can be generated most readily with pro-

jection operators if we address the problem in the rotational subgroup C3 . As
usual, we can write down the SALC for the totally symmetric representation

(A{ in D3h ,
A in C3 ) directly:

4»eq(A0 = lA/3(ci + a-2 + <r3) (5.21)

Operating on the reference function cq
,
we can obtain functions for the two

degenerate SALCs (E

'

in D3h ,
E in C3) by inspection of the C3 character table:

P(Ea
)ai cq + ecr2 + e*(73

P(Eb
)ai oc (j\ + €*(t2 + ea3

By addition and subtraction, these two expressions lead to two real functions:

{P(£fl

)o-! + P(Eb)(Ti} a 2(7! - (72 - (73

=> <Kq
(E'

a
) = l/V6(2o-1

- <72 - a3) (5.22a)

[P(Ea)<T\ - P(EV!) « 02 - 03

=* <*>eq(E'
b
) = 1/V2(o-2 - 03) (5.22b)

The two SALCs for the axial positions can only involve positive and negative

combinations of cr4 and a5 . Therefore, by inspection, they are

= 1/V2(o-4 + 05) (5.23)

<MA5)
= 1A/2(ct4 - 05) (5.24)

If we consider the atomic orbitals with which these SALCs might inter-

act in an MX5 molecule, we can readily see the limitations of the approach

we have taken in constructing them. The AOs on the central metal atom with

matching symmetries are

s = A{, (px , py) = E'
, p z = A'i, dz2

= A[

We see from this that both A[ SALCs have the appropriate symmetry to form

bonding and antibonding combinations with both the 5 and dz2 orbitals on the

central atom. However, the two A[ SALCs we have just formed are either

confined to the xy plane [Eq. (5.21)] or to the z axis [Eq. (5.23)]. As a sim-

plifying assumption, then, we might match the 4>eq(Ai) SALC [Eq. (5.21)]

with the 5 orbital and the <$>ax(A[) SALC [Eq. (5.23)] with the dz2 orbital on

the central M atom. Using the dz2 orbital for the axial positions has some

topological justification, inasmuch as the axial positions are usually longer

than the equatorial positions in nonmetal MX5 tbp species. Nonetheless, ex-

cluding 5 orbital involvement with the SALC and dz2 orbital involve-

ment with the <$>eq(A[) SALC implies a model that must be regarded as a lim-

iting case. The segregation of the two A\ SALCs into either equatorial or axial

combinations is an artifact of the projection operator method in this case.
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Using the procedure described in Section 5.3, we may take the forms of

Eqs. (5.21)-(5.24) to write the matrix equation for the five conventional or-

bitals on M (s, px , py

f

dzi) as linear combinations of five dsp
3
hybrid or-

bitals. Using 'P to represent the hybrid functions, we have

s

Px

Py =

Pz

UzA

"1/V3 1/V3 1/V3 0 0
“

2/V6 -1/V6 -1/V6 0 0 ^2
0 1/V2 -1/V2 0 0 %
0 0 0 1/V2 -1/V2 %
0 0 0 1/V2 1/V2

Inverting the transformation matrix gives

>r
^2

% =

%
b5 J

1/V3

1/V3

1/V3

0

0

2/V6 0

-1/V6 1/V2

-1/V6 -1/V2
0 0

0 0

0

0

0

1/V2

-1/V2

0

0

0

1/V2

1/V2

S

Px

Py

From this we obtain five expressions for the hybrid orbitals:

'I', = 1/V3(s) + 2/V6(px)

V2 = 1/V3(s) - 1/V6(px) +

= 1/V3(5) - llV6(px) -

= 1/V2{dz2 + pz)

= l/V2(dz2 - pz)

(5.25a)

l/V2(py) (5.25b)

1/V2(py) (5.25c)

(5.25d)

(5.25e)

Like the SALCs we obtained previously, these must be regarded as a limiting

case, since the axial hybrids exclude contributions from the s orbital, and the

equatorial hybrids exclude contributions from the dz2 orbital.

The inability of projection operators to produce linear combinations of

both equivalent and nonequivalent functions limits us to obtaining artificially

segregated results. Ideally, the set of cr-SALCs for a tbp molecule should have

the form

± ci2a2 ± caa3 ± ci4a4 ± ci5<r5 ), i = 1, 2, 3, 4, 5

where the coefficients are nonzero, except as required by symmetry. In

other words, we should not exclude any pendant atom functions a priori.

Actually, we can obtain a set of more inclusive equations by taking a pictor-

ial approach. Very simply, we determine the form of each SALC by sketch-

ing the pendant atom orbitals and assigning their wave function signs to con-
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form with those of the matching central atom AO. These assignments give an

idea of how all the pendant atom functions must be combined in either a pos-

itive or negative sense in each SALC. The relative contribution of each pen-

dant atom to the SALC can often be deduced from the drawings or from re-

sults obtained by other means, such as projection operator methods. In this

manner, we arrive at the drawings shown in Fig. 5.6 for the tbp case.

We see from Fig. 5.6 that neither E' SALC makes use of cr4 and cr5 . These

positions fall within the nodal planes of the matching px and py orbitals on M,
thereby precluding effective overlap. Hence, by symmetry the expression for

<F2 must have zero coefficients for c24 and c25 ,
and the expression for <F3 must

have zero coefficients for c34 and c35 . Similarly, <F3 does not make use of al9

since it, too, falls within the nodal plane of the central py orbital. Thus, c3i = 0

in the expression for d>3 . From this we conclude that the two E' SALCs, <I>2

and <F3 ,
have the same forms as the SALCs we formulated by projection op-

erators [Eqs. (5.22a) and (5.22b)]. In the same manner, <f>4 does not use any

<x4

s +

o-

4

^5

pz + <t>4(A2 ) dz2 + 4>
5(Ai)

Figure 5.6 Identifying the forms of the SALCs for a tbp MX5 molecule by match-

ing wave function signs with central atom AOs with the appropriate symmetries.

(Positive regions are indicated with shading.)
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of the functions in the equatorial plane, because that is the nodal plane of the

pz orbital. Thus, for <f>4 the coefficients c41 ,
c42 ,

and c43 must be zero, and the

expression is identical to that obtained previously [Eq. (5.24)]. For these

three SALCs—which involve combinations of equatorial or axial functions,

but not both—the restrictions imposed by the projection operator approach

are not inconsistent with the physical restrictions of the molecular topogra-

phy. Therefore, they are complete and correct as originally formulated with

projection operators. This is not the case, however, with the two A{ SALCs.
We see from Fig. 5.6 that it is possible to form two A[ SALCs that in-

clude all five pendant atom functions, taken in suitable combinations so as to

form bonding and antibonding combinations with the s and dz2 orbitals.

However, since the equatorial and axial distances are generally not the same

in tbp structures, the coefficients for the two kinds of positions must in gen-

eral be different. However, given A[ symmetry, we can say with confidence

that ca = C/2 = c
t

3

and ci4 = ci5 for a perfect tbp structure. Now, we must re-

alize that the equatorial and axial coefficients will not be fixed values, since

the ratio of equatorial to axial bond lengths is highly variable among tbp mol-

ecules. Therefore, we cannot hope to formulate generally applicable equa-

tions for <f>! and 05 with fixed values for the axial and equatorial coefficients.

Nonetheless, we can propose expressions for an idealized case: a tbp struc-

ture in which the axial and equatorial bonds are equal. Although this is not

the typical configuration, it is approximated in some cases. For example, the

[CdCl5]

3-
ion in [Co(NH3)6][CdCl5 ]

has a bond length ratio Cd-Cleq/Cd-Clax
of 1.015.* In such a structure, all five pendant atoms would have equal over-

lap with the central 5 orbital, resulting in an expression for the chj SALC in

which all coefficients are equal. In the case of <J>5 ,
the signs for the equator-

ial functions must be opposite those of the axial functions, as shown in Fig.

5.6. If we assume equal contributions from equatorial and axial positions, the

SALC should have the form or4 + cr5 — 2/3(o^ + cr2 + cr3 ). Including these

two results with the three previously obtained, we can write the following

five, orthogonal, normalized SALCs for the idealized equal-bond tbp case:

h = 1/V5K + cr2 + o-

3 + cr4 + 05 ) (5.26a)

>

2 = 1/V6 (2cr1 — 02 — o-3) (5.26b)

3 = 1/V2(o-

2 - 03) (5.26c)

U = 1/V2(o4 - o-5 ) (5.26d)

<I>5 = 3/V
/

30{o4 + cr5 — 2/3(0"! + 02 + o-3)) (5.26e)

For a real tbp molecule with unequal equatorial and axial bonds, the coeffi-

cients of d>! and 05 would need to be appropriately adjusted. In making such

adjustments, normalization must be maintained, so that in each equation

Sc? = 1.

*T. V. Long II, A. W. Herlinger, E. F. Epstein, and I. Bernal, Inorg. Chem. 1970, 9, 459.
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As the tbp case illustrates, the functions generated by projection opera-

tors for molecules with nonequivalent positions are limited by the inability of

the point group operations to generate all positions. In such cases, partition-

ing the problem into SALCs for equivalent sets may offer a reasonable, if lim-

ited, first model. However, it must be recognized that the functions so ob-

tained are segregated into SALCs involving only equivalent basis functions,

whether or not that is appropriate to the case at hand. When necessary, a bet-

ter model may be achieved by modifying the projection operator results on

the basis of a pictorial approach. Regardless of the method used, the set of

equations obtained cannot be satisfactory unless all SALCs have been nor-

malized and are orthogonal to each other.

Problems

5.1 Consider the case of or-SALCs for the six pendant atoms in an octahedral MX6

molecule, as described in Section 5.1. Given X2(E) [Eq. (5.4)] from the projec-

tion operator P(E)ai, obtain the functions for P(E)ct2 ,
P(E)c

t

4 ,
and P(E)a5 . How

are these functions related to P(E)cr1

f

? Can the companion function to 22(£) be

obtained from any of these projections? If so, show how.

5.2 Consider the case of o--SALCs for the six pendant atoms in an octahedral MX6

molecule, as described in Section 5.1. Determine the effect of each of the three

C4 rotations on X2(£) [Eq. (5.4)]. Can the companion function to X2(£) be ob-

tained from any of these results? If so, show how.

5.3 Show that the three expressions for the triply degenerate T1 cr-SALCs of an oc-

tahedral MX6 molecule [Eqs. (5.6)-(5.8)] are orthogonal to each other and to the

A and E SALCs [Eqs. (5.3)-(5.5)].

5.4 Consider the hydrogen SALCs for methane. Show that the projection P(T2)sA in

the full group Td gives the same result as that obtained from P(T)sA in the rota-

tional subgroup T, as shown in Eq. (5.9).

5.5 Using projection operators, derive normalized functions for the four hydrogen

SALCs of the following molecules: (a) H2C=CH2 ,
(b) H2C=C=CH2 .

5.6 Derive equations for the normalized 7t-MOs of the following conjugated ring sys-

tems, assuming a regular, planar structure in each case: (a) C3H3 ,
(b) C4H4 ,

(c)

C5H5.

5.7 Consider a planar MX3 molecule, for which X is an atom capable of sigma-, out-

of-plane pi-, and in-plane pi-bonding with the central M atom. Derive equations

for the normalized SALCs of the X atoms for these three modes of bonding.

5.8 As in Problem 5.7, derive equations for the normalized SALCs of the X atoms

for a planar MX4 molecule.

5.9 Using the procedure described in Section 5.3, derive expressions for the individ-

ual hybrid orbitals comprising the following sets: (a) trigonal planar sp
2

,
(b)

square planar dsp
2

,
(c) octahedral d 2

sp
3

.

5.10 Given Eqs. (5.26a)-(5.26e), obtain expressions for the five dsp
3
hybrid orbitals

of a tbp MX5 molecule. Under what circumstances might such a set of hybrids

be proposed to account for the bonding in a tbp molecule?
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5.11 Derive a set of equations for the five-pendant-atom <x-SALCs of a square pyra-

midal (sp ) MX5 molecule, assuming that the valence orbitals on the central

atom may be described as dx2-y2sp
3
hybrids. How would your equations need

to be modified if the dz2 orbital were used instead of the pz orbital?

5.12 As an alternative to the projection operator method, S. K. Dhar [/. Coord.

Chem., 1993, 29, 17] has proposed a nonrigorous method of constructing SALCs
for MX„ molecules, based on the sum of the projections of the MX axes on the

reference axes of the valence orbitals of the central atom. For the problem of

obtaining SALCs for the tbp case, compare and contrast this approach to the

methods presented in Section 5.4. What are the underlying assumptions in

Dhar’s method in this case? What are the advantages and disadvantages of this

approach in general?



CHAPTER 6

Vibrational Spectroscopy

Theoretical chemists were aware of the power of group theory to handle prob-

lems in quantum mechanics as early as the late 1920s through the work of sci-

entists such as Herman Weyl,* but most experimentalists had little need and

even less interest in the subject. This changed after World War II with the de-

velopment of commercial Raman spectrometers and most especially infrared

spectrophotometers. Soon infrared spectroscopy became a standard laboratory

procedure, and with this grew a need to understand the theoretical underpin-

nings of the technique. Two texts from the post-war period dealing with vibra-

tional spectroscopy, which remain standard references today, are probably more
responsible than any others for making chemists in general aware of the ap-

plicability of symmetry and group theory to practical problems of the experi-

mentalist. The first of these, Gerhard Herzberg’s 1945 work Infrared and Raman
Spectra of Polyatomic Moleculesf contains spectroscopic data and assignments

for nearly all simple compounds studied prior to its publication. Moreover, it in-

troduced chemists to symmetry arguments, group theory techniques, and force

constant calculations, while establishing the notation and nomenclature for the

spectra of polyatomic molecules that has become standard today. Following

Herzberg’s book by a decade, Wilson, Decius, and Cross’ Molecular Vibrations*

introduced many chemists to matrix techniques for carrying out force constant

calculations and furthered understanding of the applicability of symmetry and

group theory methods, including analyzing spectra of related compounds
through group-subgroup relationships. As a result, many chemists who received

their training after publication of these works first encountered symmetry and

group theory in connection with their application to vibrational spectroscopy.

As with other applications of symmetry and group theory, these tech-

niques reach their greatest utility when applied to the analysis of relatively

small molecules in either the gas or liquid phases. In such cases, the observed

spectroscopic frequencies can be assigned to specific vibrational motions in-

volving all the atoms in the molecule. As the size of the molecule increases,

*Weyl’s classic 1928 work Gruppentheorie und Quantenmechanik is available as a reprint of the

1931 English translation, Group Theory and Quantum Mechanics, Dover Publications, New
York, 1950.

tG. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of

Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945. A corrected reprint edition of this

book has been published by Krieger Publishers, Melbourne, FL.

fE. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared

and Raman Vibrational Spectra, McGraw-Hill, New York, 1955. A paperback reprint of this book

has been published by Dover Publications, New York.
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and particularly if its symmetry declines, many of these vibrations have very

similar frequencies and are no longer individually distinguishable. At this

level, spectroscopic assignment is usually confined to identifying frequencies

associated primarily with specific chemical structures (e.g., functional groups).

We will, therefore, confine our discussions to smaller molecules, where the

power of symmetry and group theory is greatest. These are also the kinds of

molecules for which detailed force constant determinations are most tractable,

although we will not consider such calculations in this text.

6.1 Vibrational Modes and Their Symmetries

The individual atoms of a molecule are constantly in motion over the entire

range of real temperatures above absolute zero. These individual atomic mo-

tions result in three kinds of molecular motions: vibration, translation, and ro-

tation. To illustrate, we will first consider the simplest of molecules, a di-

atomic molecule AB.
First, suppose the A and B atoms move apart from their equilibrium in-

ternuclear distance, re (Fig. 6.1 a), so as to stretch the chemical bond (Fig.

6.16). As they move apart, away from the equilibrium position, they will ex-

perience a restoring force, F, in opposition to the motion. If we assume that

the molecule follows classical mechanics, the restoring force will be propor-

tional to the displacement from the equilibrium distance, A r, and vary ac-

cording to Hooke’s law:

F=-kAr (6.1)

where k is the force constant. At some point the restoring force will cause the

two atoms momentarily to arrest their travel away from each other, after

which they will reverse their motions and begin to travel toward each other.

As they approach one another they will pass through the equilibrium internu-

clear distance and continue to move together, until their mutual repulsions ar-

rest them at a minimum separation (Fig. 6.1c) and drive them back in the op-

to) At equilibrium

(b ) Stretched

Ar
(c) Contracted

Figure 6.1 Motions of a harmonic

oscillator, AB.
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posite direction. This periodic series of motions constitutes one cycle of the vi-

brational mode of the molecule as a harmonic oscillator. If the molecule were
to obey classical mechanics, the potential energy of the system throughout the

vibrational cycle would vary parabolically as a function of displacement:

V = ±k^rf (6 .2)

However, unlike a classical mechanical system, the energy of a real vibrating

molecule is subject to quantum mechanical restrictions. As such, the oscillat-

ing molecule can assume only certain values of vibrational energy. From the

Schrodinger equation for a harmonic oscillator, the allowed energy levels are

given by

E(\) = hv(y +
y) (6.3)

where v is the vibrational quantum number, whose values may be v = 0, 1
,
2,...;

v is the vibrational frequency in Hertz; and h is Planck’s constant. By long-

standing practice, vibrational spectroscopists usually quote frequencies in

units of cm -1
, called wavenumbers, defined as v = 1/A, where A is the wave-

length in centimeters.* In keeping with this, it is more convenient to define

the energy of the system in wavenumber units, called term values, T. The term

value is defined as T = E/hc, where c is the speed of light in vacuo in cm-s
-1

.

Thus, Eq. (6.3) becomes

r(v) = i>(v + |) (6.4)

Equation (6.4) suggests a model in which we have a series of equally

spaced energy levels, as shown in Fig. 6.2. The minimum energy of the sys-

tem, called the vibrational ground state, is attained when v = 0. Note that it

does not lie at the minimum of the parabola defined for the classical oscilla-

tor [Eq. (6.2)]. The classical minimum refers to the hypothetical condition of

a quiescent molecule with its atoms at the equilibrium internuclear separa-

tion. The difference between this hypothetical minimum and the actual min-

imum energy of a vibrating molecule in its ground state (v = 0) is called the

zero point energy. Notice that for increasing values of v and corresponding

higher values of vibrational energy the internuclear separation becomes

greater at the extreme stretch and less at the extreme compression of the vi-

bration. Hence, increasing vibrational energy occurs with higher vibrational

amplitude. The vibrational frequency of the harmonic oscillator in any state

is related to the force constant by

*Strictly speaking, wavenumbers (cm
-1

) are not frequency units, but rather reciprocal wave-

length units. However, v = c/A = cv

,

where c is the speed of light in vacuo, so wavenumbers are

directly proportional to frequency. Thus, “wavenumber” is routinely used as if it were a fre-

quency unit.
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5, E$ = (1 l/2)/iv

4, Ea = (9/2)hv

3, E3 = [7/2)hv

2, E2 = (5/2)hv

l,E
l = (3/2)hv

0,Eo = (l/2)hv

Ar(-) re Ar(+)

Internuclear separation

Figure 6.2 Energy levels of a harmonic oscillator.

where /jl is the reduced mass given by /x = mAmB/(mA + raB ), in which mA
and mB are the masses of the individual atoms. Note that v does not depend

on the value of the quantum number v. In other words, the molecule’s vibra-

tional frequency is the same in all states, even though the energy E (or T)

changes with v [Eq. (6.3)].

The basic quantum mechanical selection rule for a harmonic oscillator

limits changes in vibrational energy to transitions between adjacent states;

that is, Av = ± 1. Applying Eq. (6.4) to any two states v and v + 1, we see

that the energy separation between successive levels is AT = v. In other

words, for a harmonic oscillator the energy of the transition in wavenumbers

is the same as the molecule’s vibrational frequency, v.

Real molecules are not perfect harmonic oscillators. The variation of the

potential energy of the system with internuclear separation usually is not a

symmetric parabola, but rather tends to have the skewed appearance of a

Morse curve
, as shown in Fig. 6.3. This kind of potential energy dependence

describes the behavior of an anharmonic oscillator. By solving the Schrodinger

equation for the Morse potential, energy states for the anharmonic oscillator

as term values are given by the equation

T(\) = v(v + A)
- vxe{y + -|)

2 + •••
(6 .6 )

where xe is the anharmonicity constant. The higher terms in Eq. (6.6) are

usually small and are routinely omitted. The separation between any two
successive energy states, then, is given by

AT = v — 2xev{y + 1) (Av = ± 1) (6.7)

where v is taken as the value of the vibrational quantum number for the lower

energy state. With rare exceptions, xe is a positive number, so the separation

between successive states becomes progressively smaller as v increases.
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§0

q3
c
UJ

>-

Internuclear distance

Figure 6.3 Energy levels of an anharmonic oscillator (Morse potential curve). Note

the successively smaller separations between energy states as v increases (bottom to

top).

The frequency recorded for a molecular vibration by infrared or Raman
spectroscopy corresponds to the energy difference between two vibrational

states. A transition between the state v = 0 and the state v = 1 defines a vi-

brational fundamental Infrared absorption involves exciting a molecule from

a lower vibrational state, usually the ground state v = 0, to a higher state for

which v > 0.* For a fundamental, then, this transition is v = 0 —> v = 1. With

Raman scattering, Av = + 1 for the Stokes fundamentals (v = 0 ^ v = 1) and

Av = — 1 for the anti-Stokes fundamentals (v = 1 —> v = 0). However, in

most Raman work, only the Stokes frequencies are sought, since they are sig-

nificantly more intense. Thus, in most cases the observed spectroscopic fre-

quency of the fundamental corresponds to a vibrational transition for which

Av = + 1. This frequency, expressed in wavenumbers (cm
-1

), is AT in Eq.

(6.7). By this, taking v = 0, we can see that the spectroscopically observed fre-

quency for a fundamental is AT = v — 2xe v. This frequency will more closely

approximate the molecular vibrational frequency, v, when the anharmonicity,

xe ,
is extremely small. At the limit of a true harmonic oscillator (xe = 0), the

observed spectroscopic frequency is the same as the molecule’s vibrational

frequency. However, for many real diatomic molecules, the anharmonicity is

appreciable and causes a significant difference between the spectroscopically

observed frequency and the molecule’s vibrational frequency. Looking ahead

to polyatomic molecules, with which we will be primarily concerned, anhar-

*For most molecules at room temperature the thermal distribution of energies highly favors the

ground vibrational state. For example, for H 35
C1 at room temperature it can be shown that the

fraction of the molecular population with v = 1 to that with v = 0 is 8.9 X 10
-7

. Thus, virtually

all molecules are in the vibrational ground state.
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monicity is usually ignored in routine work. Ignoring anharmonicity in these

cases is often more a practical matter, since including quantitative allowances

for it would add an extreme level of complication to the analysis of the spec-

tra. Thus, to a certain degree of approximation, the spectroscopically ob-

served frequencies for most polyatomic molecules are routinely taken as

equal to the molecular vibrational frequencies.*

We have taken some care here to describe the atomic motions leading to

vibration, because these are the kinds of motions that can be directly mea-

sured with infrared and Raman spectroscopy. However, the atoms of a di-

atomic molecule also can move in ways that are not vibrational. Suppose both

A and B move in parallel in the same direction, resulting in a translation of

the entire molecule through space. This is not a periodic motion, so it has no

interaction with electromagnetic radiation; that is, it cannot be detected by

infrared or Raman spectroscopy. Since any motion in space can be resolved

into projections along x, y, and z of a Cartesian coordinate system, we can see

that for every molecule there must exist three translations, Tx ,
Ty ,

and Tz

(Fig. 6.4). Similarly, suppose A and B move in opposite directions perpen-

dicular to the bond axis. This will cause the molecule to tumble or rotate.

Unlike translation, rotation can be detected spectroscopically, because it oc-

curs with a repeating periodic cycle. However, the frequencies of rotations lie

in the microwave region and are not directly observed in the frequency range

of most vibrational spectroscopy. f From the standpoint of vibrational analy-

sis, rotations constitute a nonvibrational oscillation. For a diatomic molecule,

Figure 6.4 Movement of A and B
atoms resulting in translations of the

molecule AB.

*The effects of anharmonicity in the vibrations of polyatomic molecules become apparent in the

spectroscopic frequencies of overtones and combinations, as discussed in Section 6.5.

tWith samples in the gas phase, the presence of quantized rotational states can often be seen as

bands of fine structure (P and R branches in the infrared spectrum; O and S branches in the

Raman spectrum) on both sides of the frequency for the pure vibration (

Q

branch). They can

also be observed directly in the Raman spectrum as very low frequency bands on both sides

(Stokes and anti-Stokes) of the exciting frequency (Rayleigh line). In many cases the Q branch,

for the vibration without rotation, is not spectroscopically observable, being forbidden on the ba-

sis of quantum mechanical considerations. Further detail of the theory of vibrational-rotational

spectra, which is covered in most physical chemistry texts, is not essential to the purposes of this

chapter. See, for example, R Atkins, Physical Chemistry, 5th ed., W. H. Freeman, New York,

1994, Chapter 16.
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we can define rotational motions about the x and y axes (designated Rx and

Ry), but we cannot define such motion about the z axis (the bond axis), as

shown in Fig. 6.5. Spinning about the z ax s does not cause the molecule it-

self to move. Looking beyond the diatomic case, we can see that this is true

for any linear molecule, regardless of the number of atoms composing it.

However, for a nonlinear molecule the rotation about z does cause the mol-

ecule to tumble (cf. Fig. 6.6a,b). Thus, for all nonlinear molecules there are

three rotations, Rx ,
R v ,

and Rz .

Let us now consider the motions of a polyatomic molecule composed of

n atoms. The motions of each atom can be resolved into components s ong

R.lx

Figure 6.5 Rotations of a diatomic

molecule.No molecular rotation

R.lx

Figure 6.6 Rotations of (a) a linear molecule and (b ) a nonlinear molecule. A non-

standard axis choice has been made for the nonlinear molecule to facilitate comparison.
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the three directions of a Cartesian coordinate system. Therefore, any mole-

cule composed of n atoms possesses 3n degrees offreedom of motion. As with

diatomic molecules, these 3n degrees of freedom include vibrations, transla-

tions, and rotations. The vibrational motions of the atoms can always be re-

solved into fundamental vibrational motions for the entire molecule, called

normal modes of vibration. The number of these normal modes will be 3n mi-

nus the number of nonvibrational motions (i.e., translations and rotations).

As we have seen, a linear molecule has three translations and two rotations.

Subtracting these from the 3n degrees of freedom, we see that a linear mole-

cule possesses 3n — 5 vibrational modes. A nonlinear molecule has three

translations and three rotations. Therefore, a nonlinear molecule possesses

3n - 6 normal modes. Like the diatomic case, each normal mode of vibration

has a characteristic frequency and can assume a series of quantized energies.

The frequencies recorded by infrared and Raman spectroscopy arise from

transitions between these states. A transition of the type v = 0 —> v = 1 de-

fines a fundamental of the normal mode.

Although we have seen why a linear molecule has one less rotation than

a nonlinear molecule, you may be wondering how this necessarily implies that

a linear molecule has one more vibrational mode than a nonlinear one with

the same number of atoms. The answer is that one of the rotational modes of

a nonlinear molecule becomes a bending vibrational mode when the mole-

cule is made linear. This is most easily seen for a triatomic molecule, as shown

in Fig. 6.7.

Relative to the overall molecular symmetry, all of the 3n degrees of free-

dom—normal modes of vibration, translations, and rotations—have symme-
try relationships consistent with the irreducible representations (species) of

the molecule’s point group. In other words, we can catalogue all degrees of

freedom according to the appropriate Mulliken symbols for their corre-

sponding irreducible representations. To do this we locate a set of three vec-

tors along Cartesian coordinates at each atom, representing the three degrees

of freedom of that atom. We then make the entire set of 3n vectors a basis

for a representation in the molecule’s point group. The reducible representa-

Rotation

+ +

becomes

v Figure 6.7 One rotation of a

nonlinear triatomic molecule be-

comes a bending vibrational mode
if the molecule is made linear.

bending vibration



172 Chapter 6 Vibrational Spectroscopy

tion is then reduced into its component irreducible representations, which

correspond to the symmetries of the 3n degrees of freedom. The symmetries

of the translations and rotations can be identified from the character table

from the listed transformation properties for unit vectors and rotational vec-

tors, respectively. These are subtracted from the collection of symmetry

species comprising the overall reducible representation, leaving the collection

of Mulliken symbols for the 3n - 6 normal modes (3n - 5 normal modes for

linear molecules).

To illustrate, consider the bent molecule S02 (C2v ). Figure 6.8 shows the

vector basis for the reducible representation of the 3n degrees of freedom,

r3n . We will need 9X9 transformation matrices to show the effects of the op-

erations of C2v on the nine individual vectors. By extrapolation, we can see

that for any molecule we would need 3n X 3n matrices. Clearly, carrying out

this kind of mathematical work even for small molecules would be cumber-

some, so we will look for shortcuts to the full-matrix approach as we proceed

with this example.

For S02 ,
the identity operation, E

,
leaves all vectors in place. In full-

matrix notation this is

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

*i

yi

z i

X2

y2

z2

x3

ys

Z3

*1

yi

z 1

x2

yi

Z2

*3

3>3

Z3

(6 .8)

From the trace of the transformation matrix we obtain a character, \e ,
of 9,

which is the value of 3n for S02 . We can see from this that for any molecule

of n atoms it must be that \e = 3n.

The C2 rotation exchanges the two oxygen atoms and reverses the sense

of all jc and y vectors. In full-matrix notation this is

Figure 6.8 Orientations of vectors for S02 to form the basis for a representation of

the 3n degrees of freedom. The molecule lies in the yz plane.
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0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1

0 0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 1 0 . 0 0

-1 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

Xl -*3

yi .V3

Zi ^3

X2 -*2

y2 = ry2

z2 z2

x3 -X!

y3 -yi
Z3 z 1

(6.9)

This gives a character of -1 for the C2 operation. Note that only the central

3X3 block matrix, associated with the vector transformations of the non-

shifted S atom, contributes to the overall character of the full 9X9 matrix.

The a(xz) operation exchanges the two oxygen atoms and reverses the

sense of all y vectors. In full-matrix notation this is

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

*1
*3~

yi -J'S

Z

1

Z3

x2 x2

yi = -yi

Z2 z2

x3 Xl

ys -y1

Z 3 z 1

(6 . 10 )

This gives a character of 1 for the cr(xz) operation. Again, only the central

3X3 block matrix for the nonshifted S atom contributes to the character.

Finally, the cr(yz) operation leaves all atoms in place but reverses the

sense of all x vectors. In full-matrix notation this is

-1 0 0 0 0 0 0 0
0"

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

Xl -Xl

y 1 y 1

z 1 z 1

x2 x2

yi = yi

z2 z2

X3 x3

ys y3

Z3 z3

(6 .11 )

This gives a character of 3 for the cr(yz) operation. Here, all atoms remain
nonshifted, and all their associated 3x3 matrices contribute to the overall

character.
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We see from Eqs. (6.8) through (6.11) that each 9x9 operator matrix

contains three 3x3 block operation matrices, one for each atom. For any op-

eration Rt, all the individual-atom operator matrices (3X3 matrices) have

identical form and therefore have the same character, \i- Only individual-atom

block matrices that lie along the diagonal of the full operator matrix contribute

to the overall character for the operation, xr- Moreover, we see that only those

3x3 block matrices for atoms that are not shifted by the operation contribute

to the character of the overall matrix. Thus, to find Xr> the character for the

overall operation, count the number ofatoms that remain nonshifted by the op-

eration, Nh and multiply by the contribution per nonshifted atom, Xh that is,

Xr = NiXi (6-12)

where Xt is equivalent to the character of the 3X3 block matrices of which

the full matrix for the operation is composed. For the operations of C2v the

contributions per nonshifted atom for each operation, obtained from the

characters of the individual-atom block matrices for each operation, are

XE 3
, XC2

~ 1
? Xcr(xz ) Xofyz)

— 1

Note that the contribution per nonshifted atom for both reflections is the same,

even though the individual 3x3 matrices are different. This is an example of a

general result: The contribution per nonshifted atom for a particular operation is

the same regardless of the orientation of its associated symmetry element.

Moreover, the value of the contribution per nonshifted atom for a particular op-

eration is the same in any point group in which that kind of operation is found.

The values of Xi are important enough for this application that they have

been tabulated in some texts.* Actually, such tables are not needed, since the

values can be obtained easily from any character table, such as the one being

used for the molecule under consideration. From an examination of the indi-

vidual-atom transformation matrices in Eq. (6.8) through (6.11) we can see

that the individual elements cn ,
c22 ,

c33 (along the trace of the 3x3 matrix)

indicate the effects of the operation on the coordinates x, y , z ,
respectively, of

the atom on which they operate. Therefore, just like the general vector v we
considered in Section 2.3, the values for these elements will be identical to

the characters for the operation in the irreducible representations by which

the unit vectors x, y, and z transform. To find a needed value of Xu then, sim-

ply add up the characters in the character table under the operation for the

irreducible representations by which all three unit vectors transform. If two

or three unit vectors transform nondegenerately by the same species (e.g., x

and y in C2h, and jc, y, z in Q), double or triple the character for that species,

as the case may be, as the contributions of the associated vectors for each op-

eration. If two or three unit vectors transform degenerately by the same

*For example, see E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The

Theory of Infrared and Raman Vibrational Spectra, McGraw-Hill, New York, 1955, Table 6-1,

p. 105.
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species (e.g., (x, y ) in D4h ,
and (x, y, z) in Td ), use the listed character for that

species as the contributions of the associated vectors for each operation. To

illustrate, for C2v z transforms as Au x transforms as B^, and y transforms as

B2 . Using the characters from these three species we obtain the following val-

ues of Xi for the fom operations of the group:

C2V E C2 cr(xz) cr(yz)

Ai 1 1 1 1 z

B i 1 -1 1 -1 X

b2 1 -1 -1 1 y

Xi 3 -1 1 1

Using Eq. (6.12), we obtain the following characters for the reducible

representation T3„:

c2v E C2 <j(xz) cr(yz)

Ni 3 1 1 3

Xi 3 -1 1 1

r3„ 9 -1 1 3

From the character for E we see that the dimension of the representation is

consistent with 3n = 9. Note that the individual values of xr of which our T3n

is composed are the same as those from the traces of the full 9X9 operation

matrices in Eqs. (6.11)-(6.14).

We will use the tabular method to reduce T3n (cf. Section 3.1). The fol-

lowing work sheet incorporates the information needed to generate the re-

ducible representation, and it also notes the transformation properties of the

unit vectors and rotational vectors from the character table (cf. Appendix A).

C2v E C2 cr(xz) cr(yz)

N, 3 1 1 3

Xi 3 -1 1 1

r3„ 9 -1 1 3 X Hi

A\ 9 -1 1 3 12 3 z

a2 9 -1 -1 -3 4 1 Rz

B i 9 1 1 -3 8 2 X, Ry

B2 9 1 -1 3 12 3 y, Rx

This shows that T3n = 3A 1 + A2 + 2B
x + 3B2 . Consistent with Eq. (2.10), we

have found nine nondegenerate species for the nine degrees of freedom pos-

sible for S02 .

Our interest is in sulfur dioxide’s 3n - 6 = 3 normal modes of vibration.

We can find the symmetry species of the genuine normal modes of vibration
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by identifying and removing from T3n the species for the three translations

and three rotations the molecule possesses; that is,

^3n -6 = r3n — rtrans — rrot (6.13)

The species comprising rtrans and Trot are the same as those of the three unit-

vector and three rotational-vector transformations, respectively. From the C2v

character table, as noted in the worksheet above, we deduce that the transla-

tions are Ttrans = A t + B x + Z?2 ,
corresponding to Tz ,

Tx ,
and Ty ,

respectively.

Likewise, the rotations are rrot = A2 + B x + B2 ,
corresponding to Rz ,

Ry ,
and

Rx ,
respectively. Applying Eq. (6.13) we have T3n_ 6 = 2A 1 + B2 .

This result tells us the symmetry of the motions that constitute the three

normal modes of S02 . Two of the modes preserve the symmetry relationships

implied by the A x representation, which is the totally symmetric representa-

tion of the group. This means that the motions of the atoms in these two nor-

mal modes maintain the complete set of symmetry relationships of the group

C2v through all phases of the vibrational cycle. The third mode belongs to the

species B2 . From the characters of B2 (or from the symmetry and antisym-

metry implied by the Mulliken symbol) we know that this mode is antisym-

metric with respect to both C2 rotation and a(xz) reflection.

With only three atoms in the molecule, it is not difficult to deduce the

motions of these three normal modes. For the A 1 modes, both oxygen atoms

must be moving in phase in the yz plane.* If they were to move out-of-phase,

C2 and cr{xz) would not be maintained. If they were to move out of the yz

plane, they would cause molecular rotation (Ry if in the same direction, Rz if

in opposite directions). With these restrictions, we conclude that there are

only two types of totally symmetric motions. The two A 1 modes must be (a)

an in-phase stretching and contracting motion primarily along the bond axes

(symmetric stretching mode) and (b) a back-and-forth bending motion of the

O-S-O bond angle (bending mode). Likewise, the B2 mode must be confined

to motions in the yz plane, but the oxygen atoms must be moving in opposite

phases so as to be antisymmetric with respect to C2 and cr(xz )• The motion

implied by these restrictions involves contraction of one S-O bond while the

other S-O bond is stretching, and vice versa. This is an antisymmetric stretch-

ing mode. 1 The forms of all three normal modes are depicted in Fig. 6.9.

In addition to Mulliken symbol designations, normal modes are usually

identified by frequency numbers as v± ,
v2 , ^3,...(cf. Fig. 6.9). For S02 the ob-

served frequencies are v\ = 1151 cm
-1

,
v2 = 519 cm-1

,
and v3 = 1361 cm

-1
.

The numbering is often assigned systematically in descending order of sym-

metry species (as listed down the left column of the appropriate character

*The sulfur atom must also move in opposition to the oxygen atoms to maintain the position of

the center of gravity of the molecule. Otherwise, translation would result. Nonetheless, for the

present purposes, it is easier to envision the normal modes primarily in terms of the oxygen mo-

tions.

tOften such modes are called asymmetric, which literally means lacking symmetry. This, of

course, is not the case. Current practice favors the term antisymmetric, to indicate that the sym-

metry of the motion is in some respects contrary to the complete symmetry of the molecule.
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v2(A\)

Bend

v3IB2 )

Antisymmetric stretch

Figure 6.9 Normal modes of S02 . Arrow lengths

have been exaggerated for clarity.

table), and among modes of the same symmetry species in descending order

of vibrational frequency.* In the case of S02 ,
for example, the two totally

symmetric A x modes are assigned as v1 and v2 . Stretching modes tend to have

higher frequencies than bending modes, as observed in the case of S02 ,
so

the symmetric stretch is assigned as vx and the bending mode is assigned as

v2 . The B2 antisymmetric stretch, being lower in symmetry, is assigned as v3 ,

despite its having a higher frequency than either v1 or v2 . The relative order-

ing of observed frequencies tends to be the same for various molecules with

the same structure, so the assignment of modes to frequency numbers often

carries over from one compound to another. For example, H20 is a bent tri-

atomic molecule, like S02 ,
so its three normal modes are numerically as-

signed in the same way = 3657 cm -1
,
v2(A x ) = 1595 cm^ 1

,
v3(B2) =

3756 cm” 1

].
1

*For historical reasons, many of which are no longer evident, the numbering for certain well-

known structure types does not follow this convention. For example, the frequencies of octahe-

dral XY6 are traditionally numbered v\ 64 lg), v2 (Eg), v3 (7\M ), v4 (Tiu ), v5 (T2g), v6 (T2u ), in

keeping with the older form of the Oh character table (e.g., see G. Herzberg, Molecular Spectra

and Molecular Structure. II. Infrared and Raman Spectra ofPolyatomic Molecules, Van Nostrand,

Princeton, NJ, 1945, p. 123). Today’s character tables list gerade species first, then ungerade

species. If the numbering had been based on this ordering, the Tig frequency would be v3 . The
reasoning behind the frequency numbering of some other structures (e.g., XY4 square planar,

ZXY2 planar, ethane-type X2Y6 ,
and nonlinear X2Y2) is not as apparent. Except for these cases,

we will use systematic numbering by symmetry species.

fThe frequencies quoted for both S02 and H20 are for samples in the gas phase. The actual

spectroscopic bands show rotational fine structure (P , Q, R branches), subject to quantum me-
chanical restrictions. In the case of the A

x
modes infrared bands for the pure vibrations (

Q

branches) are forbidden.



178 Chapter 6 Vibrational Spectroscopy

For simple molecules such as S02 and H20 there is a one-to-one corre-

spondence between the number of fundamental frequencies and the number
of normal modes, because the low molecular symmetry does not allow de-

generacy. If the molecule belongs to a point group that has doubly or triply

degenerate irreducible representations, some vibrational modes may be de-

generate and therefore have identical frequencies. In these cases the number
of frequencies v2 ,

v3 , ...) will be less than the 3n - 6 (or 3n -
5, if linear)

normal modes.

As an example of a molecule with degenerate normal modes, let us con-

sider the symmetry of the normal modes of a tetrahedral XY4 molecule (e.g.,

CH4 ,
CC14 ,

S0 4“). Using the approach we detailed for S02 ,
we will count the

number of atoms that are nonshifted by each operation of the group (Td) and
multiply by the contribution per nonshifted atom for the operation. In the

case of Td the unit vectors x, y, and z transform degenerately as T2 ,
so the

contributions per nonshifted atom for the operations are identical to their

characters for the T2 representation (cf. character table for Td in Appendix

A). There is a single character for all operations of a class, and likewise a sin-

gle value for the contribution per nonshifted atom for all members of the

class. Since there are five classes in Td ,
we only need to consider five repre-

sentative operations, one from each class, to generate the reducible repre-

sentation.

Proceeding in this manner, we note that E leaves all five atoms non-

shifted, C3 (and likewise C 3) leaves the X and Y atoms on the chosen axis

nonshifted, C2 and S4 (and likewise S 4 ) leave only the central X atom non-

shifted, and any crd leaves the X and two Y atoms in the plane nonshifted.

From this we obtain the following work sheet.

Td E U00 3C2 6S4 6dd

Ni 5 2 1 1 3

Xi 3 0 -1 -1 1

r3„ 15 0 -1 -1 3 X n
i

A 1 15 0 -3 -6 18 24 1

a2 15 0 -3 6 -18 0 0

E 30 0 -6 0 0 24 1

45 0 3 -6 -18 24 1 (Rx ,
Ry ,

Rz )

t2 45 0 3 6 18 72 3 (x,y,z)

This shows that T3n = A x + E + 7\ + 3T2 . From the listed vector transfor-

mation properties, rtrans
= T2 ,

and rrot = 7\. Subtracting the translations and

rotations we obtain T3„_ 6 = A 1 + E + 2T2 . Thus, we predict that there should

be four frequencies: v2(E), v3(T2), v4(T2).
How can there be only four frequencies if by 3n - 6 we expect nine nor-

mal modes? One pair of modes, v2(£), is doubly degenerate and gives rise to

a single frequency. Three other modes are triply degenerate and give rise to

their own single frequency, v3(T2), while another three modes are triply de-

generate among themselves and give rise to a different single frequency, v4(T2).
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T2
Figure 6.10 Normal modes of vibration of a tetrahedral XY4 molecule. [Adapted

with permission from G. Herzberg, Molecular Spectra and Molecular Structure : II.

Infrared and Raman Spectra of Polyatomic Molecules, reprint 1991 with corrections,

Krieger Publishers, Malabar, FL.]

The individual modes giving rise to these four fundamental frequencies

of XY4 are shown in Fig. 6.10.* The frequency vx is a symmetric stretching

motion, also described as a “breathing” mode. The doubly degenerate v2 fre-

quency arises from two bending deformations, sometimes described as “skat-

ing on the sphere” of the four Y atoms. The frequency v3 arises from three

degenerate antisymmetric stretching motions. The frequency v4 arises from
three bending motions in which opposite pairs of Y atoms move in opposite

phases. The composite motion of these three modes is a kind of ‘ umbrella”

deformation (cf. Appendix C).

*Appendix C also shows the forms of the normal vibrational modes for tetrahedral XY4 ,
as well as

those for some other common structures. In these figures, doubly and triply degenerate modes are

shown with a single drawing representing the linear combination of the individual degenerate modes.
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6.2 Symmetry-Based Selection Rules and
Their General Consequences

We have seen in Section 6.1 that the various normal modes of a molecule can

be catalogued and analyzed in terms of their symmetry with respect to the

overall molecular symmetry. The question now arises whether or not these vi-

brations can be observed in the infrared and Raman spectra. What we seek

is a determination of the spectroscopic activity of the normal modes, also

called a determination of the spectroscopic selection rules. These selection

rules indicate which normal modes are active (allowed) or inactive (forbid-

den) in each kind of spectrum.

The spectroscopic activity of any normal mode depends upon quantum
mechanical restrictions that can be analyzed in terms of the symmetry of the

wave functions involved. For the moment we will confine our discussion to

fundamentals, which for any normal mode involve a transition for which Av =

± 1. The basic quantum mechanical selection rule for any such transition is

that the vibrational transition will have nonzero intensity in either the infrared

or Raman spectrum if the appropriate transition moment is nonzero. Normal
modes that do not meet this criterion for one or the other kind of spectrum

cannot be observed directly by that technique.

For infrared absorption to occur, the normal mode must have an oscil-

lating molecular dipole moment with the same frequency as the oscillating

electric field of the radiation. In terms of quantum mechanics, the transition

moment for the fundamental of a normal mode (v = 0 —> v = 1) can be written

M(0, 1) = j fovuh dr (6.14)

where ijj0 and i/q are wave functions for the ground and excited vibrational

states, and p is the oscillating electric dipole moment vector as a function of

the normal coordinate for the normal mode. The normal coordinate
,
usually

given the symbol Q, is a single reference coordinate by which the progress of a

normal mode can be followed.* Absorption will occur ifM A 0. The vector p is

a resultant of its components px , py ,
and pz ,

so we may rewrite Eq. (6.14) as

Mx = [
dr

My = f 'I'oVy'I'i dr (6.15)

Mz = f <AoMz</'i dr

If any one of these components is nonzero, the entire transition moment will

be nonzero.

*For a heteronuclear diatomic molecule, AB, the normal coordinate is expressed in terms of the

displacements of the two atoms as Q = ArA + ArB ,
where krAISrB = mBlmA ,

the ratio of the

masses of the atoms. The normal coordinate expressions are more complex for polyatomic mol-

ecules. See E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of

Infrared and Raman Vibrational Spectra, McGraw-Hill, New York, 1955, for details.
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We can analyze whether or not an integral of the form of Eqs. (6.14)

and (6.15) will be nonvanishing on the basis of the symmetries of the wave

functions and the components of p. To do this we use a general result of

quantum mechanics, presented here without proof, that an integral of the

product of two functions, jfAfB dr, can be nonzero only if it is invariant un-

der all operations of the molecule’s point group. This can occur only if the

direct product off^B is or contains the totally symmetric representation of

the point group. Applying this to the present case, if the integral for the

transition moment transforms as the totally symmetric representation, the

vibrational transition will be infrared allowed. Now, the ground-state vibra-

tional wave function
\fj0 is totally symmetric for all molecules (except free

radicals) and the excited state wave function t/q has the symmetry of the

normal mode. As we have seen in Section 3.5, the direct product of the to-

tally symmetric representation with any non-totally symmetric representa-

tion is the non-totally symmetric representation (e.g., in C2v ,
A 1 X B

l
=

Bf). In the present case this means that by itself the product has the

symmetry of i/q. However, the product of an irreducible representation with

itself is or contains the totally symmetric representation (cf. Section 3.5).

Thus, if any component of p has the same symmetry as i/q, the product pifx

will be totally symmetric and the integral will be nonvanishing. Since a di-

pole component can be represented by a vector, we can see that the sym-

metry species of px , py ,
and pz are the same as the unit vector transforma-

tions x
, y, and z, as listed in the character table. Therefore, a normal mode

belonging to the same symmetry species as any of the unit vector transfor-

mations x, y, or z will be active in the infrared spectrum. In other words, once

we know the symmetries of the normal modes, all we need to do is look at

the unit vector symmetries in the character table to see which modes are in-

frared active.

In the Raman experiment (Fig. 6.11), incident laser radiation with an os-

cillating electric field E impinges on a sample and induces an electric moment
P in the sample. The induced moment arises because the molecule’s electrons

are attracted toward the positive pole of the field and the nuclei are attracted

Figure 6.11 Typical experimental arrangement for Raman spectroscopy.
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to the negative pole. The induced moment is related to the field strength of

the incident radiation by

P = aE (6.16)

where the proportionality constant a is the polarizability, whose magnitude

changes as the molecule oscillates. For a normal mode to be Raman active

there must be a nonzero change in the polarizability with the normal coordi-

nate at the equilibrium configuration; that is, (da/dQ)0 =£ 0. The polarizabil-

ity is best expressed as a tensor, and in this form Eq. (6.16) can be recast as

Px «xx (*xy OLxz Ex

Py =
Qiyx OLyy OLyZ Ey

Pz <*zx OLzy OLzz Ez

(6.17)

where a
tj
= a

/7
. If the change in any one of these components is nonzero

[(doLijldQ)o =£ 0], then the mode will be Raman active.

In terms of the polarizability tensor, the transition moment for Raman ac-

tivity of a fundamental may be expressed as

P(0, 1) = J
ipoaEi/ji dr = E

J
ipo^i dr (6.18)

An integral of this form can be written for every component
,
giving com-

ponents Pij. If there is any component for which P
tj
± 0, then the entire mo-

ment will be nonvanishing [P(0, 1)^0], and the transition will be Raman ac-

tive. As with the transition moment expression for infrared activity [Eq.

(6.14) and (6.15)], the integral will be nonzero if it is totally symmetric. As
before, «/r0 is totally symmetric and ipi has the symmetry of the normal mode.

Thus, the integral will be nonzero if ipi and any component have the same

symmetry. The symmetries of the atj
components are the same as the binary

direct products of vectors, whose transformation properties are listed in the

last column of the character table. From this it follows that a normal mode
will be Raman active if it belongs to the same symmetry species as one of the

binary direct products of vectors listed in the character table for the molecule.

In Section 6.1 we saw that S02 has three normal modes: v^Af), V2(Af),

v^Bf). Looking at the character table for C2v ,
we find the following unit vec-

tor and direct product transformation properties*:

l2v

A\ z
2 2 2

* , y , z

A 2 *y

Bx X xz

b2 y yz

*The transformations of the rotational vectors Rx ,
Ry ,

and Rz have been omitted, because they

have no relevance to determining infrared and Raman activity.
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Both A x and B2 ,
the species of the three normal modes, have listings for unit

vectors and direct products. Therefore, all three modes are active in both the

infrared and Raman spectra. In other words, we should be able to observe

the same three frequencies in both the infrared and Raman spectra.

Likewise, we found in Section 6.1 that a tetrahedral XY4 molecule has

four frequencies for its nine normal modes: v\(Ai) 9
v2(E), v3{T2), vA{T2).

Looking at the character table for Td we find the following unit vector and

direct product transformation properties:

Td

A\ x2 + y
2 + z

2

a2

E (2z
2 -x2 - y

2
,
x2 - y

2
)

T\

t2 (x,y, z) (xy, xz,yz)

All three unit vectors transform degenerately as T2 ,
so only normal modes with

T2 symmetry can be infrared active. For tetrahedral XY4 ,
this means that only

v3 and vA can be observed by infrared spectroscopy. In contrast, A\, E
,
and T2

all have direct product listings, which means that modes with these symmetries

will be Raman active. Thus, we should be able to observe all four frequencies

by Raman spectroscopy. In summary, we have the following activities:

At E 2T2

V\ v2 v3 ,
v4

Raman Raman Infrared and Raman

Note that only the v3 and v4 modes are active in both the infrared and Raman
spectra. As such, each is said to be coincident in both spectra. This means that

we should expect to find a band for v3 at the same frequency in both the in-

frared and Raman spectra. The same is true for v4
*

Given the symmetry-based selection rules, examination of the character

tables allows us to draw the following general conclusions:

1. Infrared-active modes can be distributed among no more than three sym-

metry species

,

since activity is associated with the transformation proper-

ties of the three unit vectors. Raman-active modes can be distributed

among as many as four symmetry species, depending on the point group,

because the direct products typically span two to four species.

*Although coincident bands have the same frequency in both infrared and Raman spectra, they

generally do not have comparable intensities. This is a result of the very different phenomena
giving rise to the two kinds of spectra: photon absorption for infrared spectroscopy and inelastic

photon scattering for Raman spectroscopy. Thus, for example, a band for a given coincident

mode might be very strong in the infrared spectrum but very weak in the Raman spectrum, or

vice versa.
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2. In centrosymmetric point groups (those that have inversion, i), unit vec-

tors transform as ungerade species, and direct products transform as ger-

ade species. Therefore, infrared-active modes will be Raman inactive
,
and

vice versa
,
for centrosymmetric molecules. In other words, the infrared

and Raman spectra of centrosymmetric molecules should have no funda-

mental frequencies in common. This requirement is known as the rule of
mutual exclusion.

3. Unit vector and direct product transformations do not span all species in

some groups. Thus, some irreducible representations are not associated

with either a unit vector or direct product transformation. Nonetheless,

the molecule may have a normal mode that transforms by one of these

species. Thus, it is possible to have some normal modes that cannot be ob-

served as fundamentals in either the infrared or Raman spectra. These

spectroscopically inactive modes are often called silent modes.

4. The totally symmetric representation in every point group is associated

with one or more direct product transformations. Therefore, normal

modes that are totally symmetric will always be Raman active. Totally sym-

metric modes may or may not be infrared active, depending on the point

group.

Normal modes that are totally symmetric can be identified experimen-

tally in the Raman spectrum by measuring the depolarization ratio, p. As
shown in Fig. 6.11, the scattered Raman radiation has a polarization that can

be resolved into two intensity components, I± and
7||,

whose polarities are re-

spectively perpendicular and parallel to that of the exciting laser radiation.

The intensities of the separate components for each spectroscopic band can

be observed by using a Polaroid analyzer (e.g., a plane polarizing camera lens

filter). The spectrum is recorded with the analyzer in one orientation, say
7j|,

and then recorded again in the other orientation, I± . Using the recorded band

intensities, the depolarization ratio can be calculated as

9 =^ (6-19)

The value of p depends upon the symmetry of the polarizability, a
,
as it os-

cillates with the particular normal mode. In liquid and gas samples, with

which we are concerned here, the polarizability tensor for an individual mol-

ecule is randomly oriented. Therefore, throughout the sample all possible ori-

entations are represented. In terms of Eq. (6.16), when the oscillating electric

vector of the incident radiation, E
,
interacts with the sample, the resulting in-

duced moment, P, is the result for the average of all orientations of a. For

plane-polarized incident radiation, as produced by lasers, it can be shown

from scattering theory that the measured depolarization ratio from such sam-

ples should have (a) a value in the range 0 < p < 3/4 for any mode that is to-

tally symmetric and (b) the fixed value p = 3/4 for any mode that is not to-

tally symmetric. A band for which 0 < p < 3/4 is said to be polarized, and a
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Figure 6.12 Raman band intensities

7|l
and I± of CC14 for v1 (top) at 458

cm
-1

and v2 (bottom

)

at 218 cm
-1

.

The V\ band shows isotopic splitting

due to
35
C1 and 37

C1.

band for which p = 3/4 is said to be depolarized. In practice, for highly sym-

metric molecules one often finds p ~ 0 for polarized bands. This makes it very

easy to assign such bands to totally symmetric modes, even without calculat-

ing the ratio. On the other hand, owing to experimental imperfections, one

often finds that p is only approximately 3/4 for depolarized bands from non-

symmetric modes. Nonetheless, these deviations rarely cause confusion when
making assignments. Figure 6.12 shows the intensities in both the I\\ and I±

orientations for the v\(A{) and v2(E) Raman bands of CC14 . As can be seen,

in the I± orientation the vi(A x ) band virtually vanishes. Carefully obtained

values show that p = 0.005 ± 0.002 for vi(Ai) and p = 0.75 ± 0.02 for v2(E).

6.3 Spectroscopic Activities and
Structures of Nonlinear Molecules

<— Frequency

We have seen in the preceding sections that the number and spectroscopic ac-

tivity of normal modes depends upon the molecule’s symmetry. On this basis

we might expect that infrared and Raman spectroscopy could be used to dis-

tinguish between two or more possible structures that a particular molecule

might have. Indeed, this approach has been taken for many simple molecules.

Of course, as molecular complexity increases and symmetry decreases the abil-

ity to distinguish between various proposed structures diminishes, since the

predicted numbers and activities of normal modes are likely to be nearly the

same. Moreover, the ability to observe any predicted distinctions experimen-
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tally also declines. Nonetheless, within the limitations of relatively small mol-

ecules in gas and liquid samples, predictions from symmetry and group theory

can be effective tools to interpret vibrational spectra and deduce structures.

Suppose we consider a compound whose molecular formula is XY4 . As
we have seen, if the molecule is tetrahedral we should expect the 3n — 6 = 9

normal modes to give rise to four fundamental frequencies, all of which are

active in the Raman spectrum, and two of which are also active in the infrared

spectrum. Furthermore, the Raman band for v\ (Ai) should be polarized. We
can summarize these predictions as follows:

Td

Infrared 2 (2T2)
Raman 4 (At, E, 2T2)
Polarized HAt)
Coincidences 2 (2T2 )

This, then, sets the pattern of spectroscopic activities that characterizes a

tetrahedral XY4 molecule.

Now suppose we consider the possibility that XY4 might be square pla-

nar; that is,

Y

Y

Counting nonshifted atoms from each operation and using the contributions

per nonshifted atom in each case (the sum of A2u and E characters), we ob-

tain the following work sheet:

E>Ah E 2C4 C2 2C'2 2C'i i 2S4 ah 2av 2crd

Ni 5 1 1 3 1 1 1 5 3 1

Xi 3 1 -1 -1 -1 -3 -1 1 1 1

r3„ 15 1 -1 -3 -1 -3 -1 5 3 1 X Yli

A\g 15 2 -1 -6 -2 -3 -2 5 6 2 16 1 x2 + y
A2g 15 2 -1 6 2 -3 -2 5 -6 -2 16 1 R,

Big 15 -2 -1 -6 2 -3 2 5 6 -2 16 1 x2 - y
B2g 15 -2 -1 6 -2 -3 2 5 -6 2 16 1 xy

Eg 30 0 2 0 0 -6 0 -10 0 0 16 1 (Rx, Ry) (xz, yz

Aiu 15 2 1 -6 -2 3 2 -5 -6 -2 0 0

A2u 15 2 1 6 2 3 2 -5 6 2 32 2 z

Biu 15 -2 1 -6 2 3 -2 -5 -6 2 0 0

B2u 15 -2 1 6 -2 3 -2 -5 6 -2 16 1

Eu 30 0 2 0 0 6 0 10 0 0 48 3 (x,y)

From this we have V3n = A lg + A2g + B lg + B2g + Eg + 2A2u + B2u + 3Eu .

Subtracting the species of the rotations and translations, as indicated above,
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leaves r3„_ 6 = A lg + Blg + B2g + A2u + B2u + 2Eu ,
for a total of seven ex-

pected frequencies. From the unit vector and direct product transformations

listed above we obtain the following activities:

A\g B\g B2g
A2u B2u 2Eu

VX v2 va v\ v5 V6 ,
Vj

Raman Raman Raman Infrared — Infrared

(pol)

The forms of these normal modes are shown in Appendix C. Note that only

v\ (Aig), the symmetric stretching mode, preserves the complete symmetry of

D4h . Therefore it is the only mode expected to have a polarized band in the

Raman spectrum (indicated “pol” in the table above). The two doubly de-

generate frequencies, v6 and v7 ,
each consist of a pair of normal modes whose

individual motions are at right angles to one another in the plane of the mol-

ecule. The motions depicted for v6 and v7 in Appendix C are linear combi-

nations of the pairs of modes in each case. Notice that one of the normal

modes, v5(B2u ), which might be described as a deformation of the molecular

plane, is not active in either spectrum; that is, it is a silent mode. Therefore,

instead of seven frequencies, we should expect to observe only six directly:

three in the Raman spectrum and three in the infrared spectrum.

These predictions contrast significantly with those for a tetrahedral

structure:

Td D4h

Infrared 2 (2T2) 3 (A2u ,
2Eu )

Raman 4 (A,, E, 2T2) 3 (Alg, ,
B2g )

Polarized 1(40 1 (Aig)

Coincidences 2 (2T2 ) None
Silent modes None 1 (B2u )

First, there are three more frequencies than for a tetrahedral species. Second,

as a centrosymmetric molecule, planar XY4 is subject to the rule of mutual

exclusion; that is, none of the Raman frequencies is active in the infrared

spectrum and vice versa. These predictions suggest that it should be possible

to distinguish between tetrahedral and square planar XY4 structures on the

basis of the infrared and Raman spectra. Although the numbers of bands and

polarized Raman bands are not greatly different between the two models, the

predicted absence of coincidences for the square planar structure probably

would be a most telling distinction. Indeed, considerations of this sort were
used as part of the early verification of the tetrahedral structure of CH4

.*

If one or more atoms in a compound are substituted by some other ele-

ment, the symmetry often changes and with it the vibrational selection rules.

*See G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra

of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945, pp. 306-307.
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For example, consider substituting one hydrogen atom in CH4 with a deu-

terium atom to produce CH3D. While the new species is essentially tetrahe-

dral, the fact that the deuterium atom is approximately twice the mass of the

hydrogen atom reduces the symmetry to C3v . Consequently, the number of vi-

brational frequencies and their activities are those appropriate for this new
point group. We could determine the new selection rules de novo, but CH4

and CH3D are closely related by their group-subgroup relationship Td -> C3v .

Thus, we can think of the frequencies of CH3D as arising from perturbations

of the CH4 frequencies, caused by the descent in symmetry. This suggests a

correlation approach, making use of the correlation table in Appendix B that

links the symmetry species of Td and C3v .

Taking this approach, we can construct the correlation diagram shown in

Fig. 6.13. The nondegeneracy of the A 1 mode (i^) and the double degener-

acy of the E modes (v2) are retained with the descent in symmetry, but the

threefold degeneracy of the T2 modes (r3 and v4 ) is lifted to become a non-

degenerate A i mode and a pair of doubly degenerate E modes in the new
point group C3v . In both cases, deuterium substitution causes one of the three

degenerate modes to acquire a unique frequency from the remaining two.

Thus the four frequencies of CH4 become six frequencies for CH3D. The nor-

mal modes of these six frequencies (cf. XY3Z in Appendix C) have A 1 and E
symmetries, both of which in C3v are associated with unit vector and direct

product transformations (cf. character table in Appendix A). Thus, all six fre-

quencies of CH3D are active in both infrared and Raman spectra. Of these,

the three with A 1 symmetry should be polarized in the Raman spectrum.

We can take the same approach with CH2D2 ,
using the correlation from

Td to C2v (Appendix B). The C2v group does not allow degeneracy, so all de-

generate modes are split into distinct modes with unique frequencies on de-

scent from Td (Fig. 6.14). Thus all nine normal modes of CH2D2 have corre-

sponding individual frequencies. From the transformation properties listed in

the C2v character table, we conclude that eight are both infrared and Raman
active, but the A2 mode is exclusively Raman active.

ch4

(Td )

CH,D
(C3v)

R(pol) Vj
A AA

1 / A
1

V 1? v2 ,
v3

(Vl, v3a , V4J

R v2
17
Ej S £ V4 ,

v
5 ,

v6

(v2> v3bo v46c)

R, i.r. v3 ,
v4 T2

R(pol), i.r.

R, i.r.

Figure 6.13 Correlation diagram for the normal modes of CH4 and CH3D. CH3D
frequencies are indicated by their appropriate numbers for C3v and the correspond-

ing numbers for CH4 (in parentheses).
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ch4 ch2d2

(Td )
(C2v)

v,, v2 ,
v3 , v4 R(pol), i.r.

(v l.
v2a’ V3a- v4a)

v
5

R

(v2b)

v6> v7 R, i.r.

(V
31

v4b)

v8» v9 R, i.r.

(V3c. v4c)

Figure 6.14 Correlation diagram for the normal modes of CH4 and CH2D2 . CH2D2

frequencies are indicated by their appropriate numbers for C2v and the correspond-

ing numbers for CH4 (in parentheses).

We can summarize these results for CH4 , CH3D, and CH2D2 as follows:

ch4

Td

ch3d
c3v

ch2d2

C2V

Infrared 2 (2T2) 6 (3Au 3E) 8 (4/1,, 25,, 2B2)

Raman 4 (Au E, 2T2) 6 (3A u 3E) 9 (4/1 1 , A2 , 2Bu 2B2)

Polarized 1 (^ 1 ) 3 (3/1,

)

4 (4/1,)

Coincidences 2 (2r2) 6 (3Au 3E) 8 (4/1,, 2Bu 2

B

2 )

These predictions agree well with the observed frequencies for CH4 ,
CH3D,

and CH2D2 (Table 6.1).

Note that we could not use our results for CH3D to correlate directly to

CH2D 2 . Instead we began again with CH4 . This was necessary because there

is no group-subgroup relationship between C3v and C2v . By the same restric-

tion, we could not deduce the number of frequencies and activities for square

Table 6.1 Relationships Among Vibrational Frequencies (cm
-1

) of CH4 ,
CH3D, and CH2D2 .

a

CH4 (Td ) V\(A \)

2914

ME)
1526

MT2)

3020

Mt2)

1306

CH3D (C3v) ^2(^ 1 ) ME) v\(Ai) n(E) ^3(^ 1 ) v6{E)

2205 1477 2982 3030 1306 1156

CH2D 2 (C2v) ^2(^ 1 ) MA\) v5(a2) ^1(^ 1 ) v6{B x ) vg(B2) V4(A l) »7(Bi) Mbi)

2139 1450 1286 2974 3030 2255 1034 1090 1235

"Data from K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed.,

John Wiley & Sons, New York, 1970, p.113.
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planar XY4 by correlation with the tetrahedral case, because Td and D4h do

not have a group-subgroup relationship. In all such cases, where a group-sub-

group relationship does not exist, a direct correlation among chemically re-

lated structures is not possible. However, if two chemical structures share a

common subgroup, a correlation through that subgroup may be possible.

6.4 Linear Molecules

The procedure we have seen for nonlinear molecules can be applied to linear

cases. The reducible representation T3n is constructed in the same way, but

only five nongenuine modes (three translations and two rotations, Rx and Ry)

are subtracted to obtain the representation for the 3n — 5 normal vibrational

modes, T3n_5 . However, to reduce this representation we must circumvent the

problem of the infinite order of the molecule’s point group (either Dxh or

Coo V), since Eq. (3.1) is meaningless when h — ». As discussed in Section 3.4,

it is convenient to set up the problem in a finite subgroup (usually either D2h

or C2v) and carry out the reduction in that group. After subtracting the trans-

lations and rotations, the results in the finite group can be correlated to the

actual infinite-order group, using Table 3.8 (Coo V
** C2v ) or Table 3.9

(Doc/* ** D2h )• The activities of the normal modes can be determined, as be-

fore, from the unit vector and direct product listings in the character table for

or Coo V ,
as appropriate.

As an example of this approach, consider C302 ,
carbon suboxide:

b=c=c=c=6
This is a centrosymmetric linear molecule, so the point group is D^h- To avoid

the problem of the group’s infinite order, we will set up the representation T3n

in D2h ,
taking the molecular axis as z. By counting nonshifted atoms and mul-

tiplying by the contributions per nonshifted atom for each operation, we ob-

tain the following results:

B>2h E C2(z) QsO) C2(x) i aixy) oixz) <r(yz)

Ni 5 5 1 1 1 1 5 5

Xi 3 -1 -1 -1 -3 1 1 1

r3„ 15 -5 -1 -1 -3 1 5 5

This reduces as T3n = 2Ag + 2B2g + 2B3g + 3Blu + 3B2u + 3B3u ,
which has

the required dimension of 15. By inspecting the unit vector and direct product

listings in the D2h character table we determine that Ttrans = Blu + B2u + B3u

and Trot = B2g + B3g . Note that rrot is composed of only the two species cor-

responding to Rx and Ry ,
not Rz (B lg). Thus, T3n _ 5 - 2Ag + B2g + B3g +

2

B

Xu + 2B2u + 2B3u ,
which has the required 3n - 5 = 10 dimension. Using

Table 3.9 we can construct the correlation diagram shown in Fig. 6.15, which

shows that in Dxh r3n-5 = 2% g +11^ + 22^ + 2Uu . From the Dxh character

table we see that and Hg are associated with the direct product transfor-
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v6b »
vlb B

3u

Figure 6.15 Correlation from the working group D2h to the true group for the

normal modes of C302 .

mations z
2 and (xz,yz), respectively, indicating that the normal modes with

these symmetries are Raman active. The two modes with symmetry, the to-

tally symmetric representation, will be polarized. Likewise, we see that and

Uu are associated with the unit vector transformations z and (jc, y), respec-

tively, indicating that the normal modes with these symmetries are infrared ac-

tive. Note that C302 ,
being a centrosymmetric molecule, is subject to the rule

of mutual exclusion, so the infrared-active normal modes are not Raman ac-

tive, and vice versa. In summary, our predictions for C302 are as follows:

Dcoh

Infrared 4 (22 : + 2n„)

Raman 3 (22 g + ns)

Polarized 2 (22 +
)

Coincidences None

The infrared and Raman spectra of C302 are consistent with these expecta-

tions. However, demonstrating that the spectra were uniquely consistent with

a linear structure proved to be a less-than-straightforward task in this case.

As a result, the linear geometry of C302 was for many years in doubt, since

the spectra are complicated and could be plausibly interpreted on the basis

of alternative structures. Indeed, the controversy over the structure of C302

provides a case study of the difficulties that can be encountered in using vi-

brational spectra for structure elucidation.*

*See F. A. Miller, D. H. Lemmon, and R. E. Witkowski, Spectrochim. Acta, 1965, 27, 1709; and
W. H. Smith and G. E. Leroi, J. Chem. Phys., 1966, 45, 1765, as well as earlier references cited

in these papers.
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6.5 Overtones, Combinations, and Other Complications

We have seen that it is possible to predict the number and spectroscopic ac-

tivities of the fundamental transitions of the normal modes of a polyatomic

molecule. When applying these predictions to actual spectra a number of

complications can arise. On the one hand, weak intensities or instrumental

limitations can result in fewer observable frequencies than predicted. But

more often there are more peaks in the spectrum than one would predict for

the structure. Several factors can give rise to additional peaks in the infrared

and Raman spectra, the most common being the presences of overtone bands

and combination bands.

Although the fundamental selection rule for a harmonic oscillator allows

only transitions for which Av = ± 1, anharmonicity in the oscillations of real

molecules gives rise to weak spectroscopic bands from transitions for which

Av = ± 2, ± 3,..., ± n. For a normal mode vh such transitions represent the

first, second, and succeeding overtones of the fundamental, customarily des-

ignated 2vt , 3 nv
t

. The probabilities of these transitions, and hence their

band intensities, fall off rapidly with higher Av, so generally only first and (to

a lesser extent) second overtones are encountered in routine work. The ob-

served frequencies of overtones are nearly the appropriate whole number
multiplies of the frequency of the corresponding fundamental. However, since

the spacings between successive levels of an anharmonic oscillator are pro-

gressively smaller (cf. Fig. 6.3), overtone frequencies are almost always slightly

less than the whole-number multiple values.

It is also possible for excitations of two separate normal modes to cou-

ple, giving rise to combination bands of the type vk + vt . Less commonly,

combinations with and among overtones, having the general form nvk + mvh
can be observed. There can also be subtractive combinations, called differ-

ence bands
,
such as vk - vt,

or more generally nvk - mvt
. As with overtones,

intensities of both summation and difference combinations are typically much
less than those of fundamentals. This is especially true for combinations in-

volving overtones or differences. In most cases, owing to anharmonicity, the

observed frequencies tend to be slightly lower than the numerical sum or dif-

ference of the frequencies of the combined fundamentals.

Spectroscopic selection rules for overtones and combinations follow the

same considerations as those we have applied to fundamentals. For infrared

activity, an expression for the transition moment M, in the form of Eq. (6.15),

must be nonzero. For Raman activity, an expression for the transition mo-
ment P, in the form of Eq. (6.18), must be nonzero. Thus, an overtone or

combination will be infrared allowed if it belongs to the same irreducible rep-

resentation as one or more components of the electric dipole, equivalent to

the symmetry species of the unit vectors listed in the next-to-last column of

the appropriate character table. Likewise, an overtone or combination will be

Raman allowed if it belongs to the same irreducible representation as one or

more components of the polarizability tensor, equivalent the symmetry species
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of the binary direct products listed in the last column of the appropriate char-

acter table. Although these basic selection rules allow spectroscopic activity

for many overtones and combinations, generally only a few have sufficient in-

tensity to be observed. They tend to be more prevalent in the infrared than

the Raman spectrum. In light of this, spectroscopic selection rules are not

used to predict the numbers of such bands in the spectra, but rather to justify

an assignment of a suspect weak band. The question becomes “Is this over-

tone or combination allowed in this spectrum?” With these kinds of bands,

more than with fundamentals, the selection rules tell what can be, rather than

what probably will be.

The symmetries of overtones and combinations can be determined by

taking the direct products of the irreducible representations of the funda-

mentals involved. From the properties of direct products discussed in Section

3.5, we can anticipate that the resulting representation will be irreducible if

one or both of the component fundamentals of the overtone or combination

are nondegenerate. If both components are degenerate, the direct product

will be a reducible representation, requiring decomposition into its compo-

nent irreducible representations. We can combine our knowledge of the gen-

eral properties of direct products with the symmetry-based infrared and

Raman selection rules developed in Section 6.2 to make some general pre-

dictions about the activities of overtones and combinations. As we develop

these generalizations, we will illustrate with specific examples from the in-

frared and Raman spectra of CH4 ,
taken from data listed in Herzberg’s book.*

For reference, the fundamental frequencies of CH4 are listed in Table 6.1.

Recall that the direct product of any nondegenerate irreducible represen-

tation with itself is the totally symmetric representation. From this we may
conclude that the first overtone of any nondegenerate normal mode will be-

long to the totally symmetric representation. Since the totally symmetric rep-

resentation is always the symmetry species of at least one component of the

polarizability tensor, we may conclude that all first overtones ofnondegenerate

normal modes will be Raman allowed. Furthermore, inspection of the charac-

ter tables reveals that first overtones will be infrared forbidden, except for mol-

ecules belonging to the point groups C\, Cs , Cn ,
and Cnv . Only these small

groups have at least one of the unit vectors transforming as the totally sym-

metric representation. In the case of CH4 ,
the only nondegenerate fundamen-

tal is V\ = 2914 cm -1
. By what we have just seen, we might expect an overtone

2vl in the Raman spectrum near 2 X 2914 cm -1 = 5828 cm-1
. However, none

has been reported, probably owing to extremely weak intensity. This is an il-

lustration of the point previously made that the selection rules for overtones

and combinations are merely permissive or prohibitive, and not predictive.

The direct product of any degenerate representation with itself contains

the totally symmetric representation along with other irreducible representa-

*G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of
Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945, p. 308.
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tions. Therefore, we can extend the previous generalization to all fundamen-

tals; i.e., all first overtones are Raman allowed. Such overtones may be in-

frared allowed as well, without restriction to certain point groups, depending

on the other symmetry species that may compose the reducible representa-

tion. For example, consider the possible activities of 2v3 and 2v4 of CH4 . Both

fundamentals belong to T2 ,
and as such are active in both infrared and Raman

spectra. The direct product of T2 with itself is

Td E 00O 3C2 6S4 6 (Td

T2 3 0 -1 -1 1

t2 3 0 -1 -1 1

r(t2t2) 9 0 1 1 1

This reduces as Y(T2T2) = Ai + E + T± + T2 . As expected, this contains the

totally symmetric representation, A lt but it also contains E and T2 ,
which are

likewise symmetry species of polarizability tensor components. Thus, the

overtones 2v3 and 2v4 are Raman allowed by virtue of the three components

A 1 + E + T2 . The T2 species is the only one in Td that is associated with in-

frared activity, so these overtones are also infrared allowed. The symmetry

species 7\, which is also a component of T(T2T2), is not associated with ei-

ther infrared or Raman activity and can be ignored for the present purposes.

Herzberg lists 2v3 as 6006 cm-1
(cf. 2 x 3020 cm-1 = 6040 cm -1

) and 2v4 as

2600 cm-1
(cf. 2 X 1306 cm-1 = 2612 cm-1

) from infrared data.

The activities of combinations can be determined in similar manner.

Consider the combination v2 + v4 of CH4 . The species of the two fundamen-

tals are E and T2 ,
respectively, and their direct product is

Td E 00 3C2 6S4

E 2 -1 2 0 0

T

2

3 0 -1 -1 1

r(et2) 6 0 -2 0 0

This reduces as T(ET2)
= 7\ + T2 . This combination contains T2 , so it is both

infrared and Raman allowed. Again, the 7\ component can be ignored. An
infrared band at 2823 cm -1

has been assigned to this combination (cf.

1526 cm" 1 + 1306 cm" 1 = 2832 cm" 1
).

The activities of difference bands are determined in the same way as the

positive combinations. The symmetries of both positive and negative combi-

nations are the same. Thus, if a combination for vk + v, is allowed or forbid-

den, then a combination for vk — v, is likewise allowed or forbidden. For ex-

ample, combinations v3 ± v4 for CH4 have the symmetry T(T2T2)
= A x +

E + 7\ + T2 and are allowed in both infrared and Raman spectra. An in-

frared band at 4313 cm" 1
has been assigned to v3 + v4 (cf. 3020 cm" 1 +
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1306 cm
-1 = 4326 cm -1

), and another at approximately 1720 cm -1
has been

assigned to v4 - v3 (cf. 3020 cm
-1 - 1306 cm -1 = 1714 cm -1

).

The assignment of overtone and combination bands is usually uncertain,

particularly when degenerate modes are involved. In such cases, anhar-

monicity may cause splitting into sub-bands that correspond to the individual

symmetry species comprising the direct product. Even without this complica-

tion, assignment is often ambiguous and must be regarded as tentative. Often

several allowed overtones and combinations may have potentially similar fre-

quencies or may be obscured by stronger fundamentals. Of course, none is

expected to have much intensity, which makes such bands difficult to discern

above the spectroscopic noise.

Even with these complications, overtones may give useful information

not readily available by other means. Recall that for a planar XY4 species

there is one normal mode, v5(B2u), which is not active in either infrared or

Raman spectra (cf. Section 6.3). However, the first overtone of this mode
should be totally symmetric (A ig) and allowed in the Raman spectrum. In the

case of XeF4 ,
a weak feature at 442 cm-1

in the Raman spectrum has been

assigned to 2v5 ,
implying that v5 is approximately 221 cm -1

.* This value is

reasonable, given the other observed frequencies. This fortuitous observation

is virtually the only way to estimate the value of v5 from the spectra.

Although generally weak, overtones and combinations can sometimes

have surprisingly strong intensities when they fall near a fundamental with

the same symmetry. In these cases, the overtone or combination “borrows”

intensity from the fundamental. The two bands mix and split, losing their in-

dividual identities. One feature moves to higher frequency and the other to

lower, with both having comparable intensities. The phenomenon is known as

Fermi resonance. Fermi resonance is a necessary consequence of symmetry. If

two different states with the same symmetry were to have equal energies, this

would imply a degeneracy higher than that of the states’ symmetry species.

For example, if a totally symmetric fundamental were to have the same fre-

quency as a first overtone of a nondegenerate fundamental (also totally sym-

metric) there would exist a double degeneracy for a nondegenerate symme-
try species (the totally symmetric representation). This is an oxymoron.
Moreover, it is forbidden by the symmetry of the system. Therefore, acciden-

tal degeneracy among states with the same symmetry is forbidden. By mixing

and separating the two states, Fermi resonance avoids the symmetry contra-

diction that would otherwise occur.

A well-known case of Fermi resonance occurs in the Raman spectrum of

CC14 (Fig. 6.16). The fundamental v3(T2) has a frequency of 776 cm
-1

. The
combination v1 + v4 has the same symmetry (A

X
T2 = T2 ) and on the basis of

normal coordinate analysis has an expected frequency of 459 + 314 cm -1 =
773 cm \ which is virtually the same as v3 ,

given the breadth of the bands.

As a result, v3 and vx + v4 mix to form a Fermi resonant doublet. The Fermi

*H. H. Claassen, C. L. Chernick, and J. G. Malm, J. Am. Chem. Soc., 1963, 85, 1927.
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Figure 6.16 Medium resolution Raman spectrum of liquid CC14 showing the Fermi

doublet of v3 and vx + v4 with maxima at 762 cm
-1

and 790 cm
-1

. Neither band can

be assigned exclusively to one component.

doublet, shown in Fig. 6.16, has maxima at approximately 762 cm -1
and

790 cm -1
. Neither of these bands can be assigned exclusively to v3 or v\ + v4 .

The position of the fundamental v3 can be estimated from the trough between

the two bands. The same Fermi doublet is also infrared active by virtue of its

T2 symmetry and is easily observed (Fig. 6.17).

In addition to overtones, combinations, and Fermi resonance, “extra”

peaks may appear in the spectrum from isotopic splitting if one of the ele-

ments in the compound exists as two or more isotopes with relatively high

Figure 6.17 Infrared spectrum of the Fermi doublet

of CC\4 .
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abundances. In such cases, some spectroscopic bands may appear as multi-

plets. Although it is customary to refer to this fine structure as splitting, in re-

ality it is merely the superimposition of frequencies from the same or similar

modes of all the possible isotopically substituted molecular species. The ef-

fect tends to be most noticeable when relatively light atoms are involved,

since the masses among the isotopes are significantly different. We have seen

the effect of deuterium substitution on the; vibrational frequencies of CH4

(Section 6.3), where mD/mH = 2. In a naturally occurring sample of methane

the isotopic abundance of *D is only 0.015%, so band splitting from the pres-

ence of CH3D, CH2D2 ,
CHD 3 ,

and CD4 is undetectable. However, if the com-

pound contains elements such as boron (20% 10
B, 80% nB) or chlorine

(75.77%
35

C1, 24.23% 37
C1), some bands may show fine structure from the

mix of isotopically substituted species in the sample. Bands arising from nor-

mal modes in which the isotopically substituted atoms have highest amplitude

(e.g., stretching modes) are most likely to show splitting.

The band for v1 in the Raman spectrum of CC14 at high resolution (Fig.

6.18) shows components from all possible isotopically substituted species:

C 35
C14 ,

C 37
C1

35
C13 ,

C 37
C12

35
C12 ,

C 37
C13

35
C1, C 37

C14 . The actual symme-
tries of the various components are Td ,

C3v ,
and C2v ,

depending on whether

they have four, three, or two atoms of one of the isotopes. However, the mass

differences between 35
C1 and 37

C1 are relatively small (m31lm35 = 1.03), so all

molecules are virtually tetrahedral. The observed peaks arise from essentially

the same symmetric stretching motion from each isotopically substituted mol-

ecular species. Other bands in the spectrum are too broad to show compara-

ble fine structure.

460

cm-1

480 440 Figure 6.18 High-resolution Raman spectrum of the

symmetric stretching band (vx) of CC14 .
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Problems

6.1 Determine the number of frequencies, their symmetries, and the infrared and

Raman activities of the normal modes for the following molecules. Indicate the

number of polarized Raman bands and the number of frequencies that should be

coincident between the two spectra. Representations of the normal modes for

these structures can be found in Appendix C. (a) NH3 ,
(b) FeCl^

-
,
(c) H2CO,

(d) PF5 ,
(e) C2H6 (staggered configuration), (f) H202 .

6.2 Determine the number of frequencies, their symmetries, and the infrared and

Raman activities of the normal modes for the following molecules. Indicate the

number of polarized Raman bands and the number of frequencies that should be

coincident between the two spectra, (a) SeFs, (b) AsF 4 ,
(c) BeF 3 ,

(d) OSF4 ,

(e) trans-FNNF, (f) ds-FNNF, (g) S20|“ ,
(h) B2H6 .

6.3 H. D. Rix [/. Chem. Phys., 1954, 22, 429] interpreted incomplete vibrational data

for C302 on the basis of a C2h structure. Determine the number of frequencies,

symmetries, infrared and Raman activities, and the number of polarized Raman
bands expected for this structure. Compare these results to those predicted for

linear C302 (cf. Section 6.4).

6.4 There are several other structures that one might propose for XY4 molecules, be-

sides tetrahedral and square planar. Determine the number of frequencies, their

symmetries, the infrared and Raman activities, number of polarized Raman
bands, and coincidences for the following alternative structures. [Hint: You may
find it more expedient to use a correlation from either tetrahedral XY4 or square

planar XY4 , as appropriate.]

(a) A distorted tetrahedron, as predicted by VSEPR theory for four bond pairs

and one lone pair about the central X atom

(b) A distorted tetrahedron resulting from slightly squashing a perfect tetra-

hedron along one of its C2 axes

(c) A square pyramid in which the X atom is at the apex

(d) Planar XY4 with two rra/is-related bonds longer than the other two

6.5 Using a correlation approach, show the relationships among the normal modes
and their infrared and Raman activities for the substituted octahedral structures

I, II, III, and IV in Fig. 3.1. Summarize your results in a table listing infrared ac-

tive frequencies, Raman active frequencies, polarized Raman bands, and coinci-

dences.

6.6 Determine the number of frequencies, their symmetries, and the infrared and

Raman activities of the normal modes for the following linear molecules. Indicate

the number of polarized Raman bands and the number of frequencies that should

be coincident between the two spectra, (a) C02 ,
(b) OCN -

,
(c) H—C=C—H,

(d) Cl—C=C—H, (e) H—C=C—C=C—H.

6.7 The nitrate ion in aqueous solution shows a tendency to associate with a variety

of metal cations (e.g., Ag+
,
Cu2+ ,

Zn2+
, Hg2+ , Ca

2+
, Al3+ , Ce

3+
,
Th4+ ).

Depending on concentration and cation, the association may involve direct ion

pairing or pairing through one or more solvated water molecules. In dilute solu-

tions, where such association is minimal and N0 3 has nearly its idealized D3h

symmetry, four frequencies can be observed: 1400 cm -1
(infrared, Raman),

1050 cm
-1

(Raman, polarized), 830 cm
-1

(infrared), 720 cm-1
(infrared, Raman).
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[See D. E. Irish, A. R. Davis, and R. A. Plane, /. Chem. Phys. 1969 , 50, 2262;

D. E. Irish and G. E. Walrafen, J. Chem. Phys. 1967 , 46, 378; R. E. Hester and

R. A. Plane, J. Chem. Phys. 1964, 40, 411.]

(a) Assign the four frequencies of the “free” nitrate ion by frequency number (z^,

v2 ,
V3 ,

v4) and symmetry species. The numbering in this case is systematic by

symmetry species, giving priority to nondegenerate modes.

(b) Whether or not solvent water is involved, anion-cation association reduces

the effective symmetry of NO 3 ,
causing certain of the spectroscopic bands to

split into two components. Two geometries of cation-anion association are

plausible: (1) association along the C3 axis of the N0 3 ion and (2) association

in the N0 3 ion plane to one of the oxygen atoms. Predict the changes in the

infrared and Raman spectra that would occur with each of these modes of

association.

(c) In 7.2 M Ca(N03 )2 solution, where direct cation-anion association has been

postulated, six Raman frequencies have been observed: 1450 cm-1
, 1358 cm

-1
,

1052 cm -1
,
823 cm

-1
,
743 cm-1

,
717 cm

-1
. The band at 1052 cm

-1
is strongly

polarized, and the bands at 1358 cm-1
and 743 cm -1

appear to be weakly

polarized. From these data, which of the two modes of association appears to

occur in concentrated calcium nitrate solutions? [See D. E. Irish and G. E.

Walrafen, J. Chem. Phys. 1967, 46, 378.]

(d) The laser Raman spectra of 0.3-2.3 M A1(N03)3 solutions show an overtone

at approximately 1660 cm
-1

of the infrared-active fundamental at 830 cm
-1

(“free” ion). Explain why the overtone can be observed in the Raman
spectrum, but its corresponding fundamental cannot. Why is this overtone not

observed in the infrared spectrum? [See W. L. Grossman and G. Chottard,

Spectrochim. Acta 1970 , 26, 2379.]

6.8 Justify or refute the following generalizations:

(a) All even-number overtones
(2vh 4vh ...) are Raman allowed.

(b) All even-number overtones (2vh 4vh ...) are infrared forbidden.

(c) If a normal mode is infrared active, its odd-number overtones (3 vh 5vh . . .)

will be infrared allowed.

(d) All combinations between a totally symmetric fundamental and any other

fundamental (vs ± v
t) will be allowed or forbidden in the same manner as the

nonsymmetric fundamental (v
t).

(e) All combinations between a totally symmetric fundamental and the first

overtone of any other fundamental {vs ± 2^) will be Raman allowed.

6.9 The following frequencies and their assignments have been reported for isotopi-

cally pure 100MoF6 in the gas phase [R. S. McDowell, R. J. Sherman, L. B.

Asprey, and R. C. Kennedy, J. Chem. Phys. 1975 , 62, 3974.]:

Raman (cm x

) Assignment Infrared (cm x

) Assignment

741 ± 0.8 (pol) 1479.4 ± 0.5 V\ + V3
652.0 ± 0.5 1386.4 ± 0.5 v2 + V3
531 ± 3 2v4 913.1 ± 0.5 v2 + VA
380 ± 3 v4 + v6 739.3 ± 0.5 V3

317 ± 1 V5 262.7 ± 0.5 V4

233 ± 2 (pol) 2v6
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(a) From the Raman bands assigned as v4 + v6 and 2v6 ,
the frequency of the

fundamental v6 can be estimated to be 117 cm - 1
. Why is no band reported

at this frequency in either the infrared or Raman spectrum?

(b) The Raman band at 741.8 cm- 1
is nearly the same frequency as the infrared

band at 739.3 cm" 1
. How can we be certain that these bands are not from

the same normal mode?
(c) The data above show three Raman bands and three infrared bands assigned

to various overtones and combinations. Show that each of these assignments

is plausible on the bases of frequency, symmetry, and expected spectroscopic

activity.

(d) None of the overtones or combinations observed in the Raman spectrum is

observed in the infrared spectrum. On the basis of your results in part (c), is

this an expected result?

(e) Estimates of the frequency of v6 come from the Raman data only. Is any

combination of the type vt + v6 (i = 1, 2, 3, 4, 5) allowed in the infrared? If

so, approximately what frequency would it have? Account for the absence of

any such combination in the reported infrared spectrum.



CHAPTER 7

Transition Metal Complexes

It is not our intention in this chapter to duplicate the kinds of presentations

of transition metal chemistry that can be found in most standard advanced in-

organic chemistry texts. In particular, we will gloss over most quantitative as-

pects of the subject and ignore almost completely the descriptive chemistry

of coordination compounds. Rather, our focus will be on the physical conse-

quences that follow from the symmetry of transition metal complexes.

Nonetheless, a certain amount of duplication with other treatments will be

unavoidable but should ensure that our examination of the symmetry aspects

of transition metal chemistry is fully appreciated. In particular, it will be nec-

essary to have had some prior exposure to Russell-Saunders coupling terms

for various equivalent dn configurations. Consequently, we will undertake a

brief review of the fundamental concepts and terminology before addressing

the symmetry-induced effects. More detailed discussions of Russell-Saunders

terms can be found in most standard physical chemistrytexts.* *

7.1 Crystal Field Theory

In 1929 Hans Bethe published his classic paper on the splitting of terms in

crystals, which laid the foundation for crystal field theoryf The work, in

German, is long and difficult, requiring a thorough understanding of group

theory and quantum mechanics. Little wonder, then, that few English-speak-

ing scientists of the time, with the notable exception of theoreticians such as

J. H. Van Vleck,* adopted this approach for interpreting the magnetic and

spectroscopic properties of transition metal complexes. Instead, the valence

bond (VB) approach, championed by Linus Pauling and others, § was the

*For example, see any of the following: P. Atkins, Physical Chemistry
,
5th ed., W. H. Freeman,

New York, 1994, pp. 451-456; R. A. Alberty and R. J. Silbey, Physical Chemistry
, John Wiley &

Sons, New York, 1992, pp. 370-378; G. M. Barrow, Physical Chemistry
, 6th ed., McGraw-Hill,

New York, 1996, pp. 495-502.

fH. Bethe, Ann. Physik , 1929
, 3 [5], 135. An English translation of this paper, under the title

Splitting of Terms in Crystals, is available from Books on Demand, a Division of University

Microfilms, International, Ann Arbor, Michigan.

$J- H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press,

Oxford, England, 1932; Phys. Rev., 1932, 41, 208; J. Chem. Phys., 1935 , 3, 803 and 807.

§L. Pauling, J. Am. Chem. Soc., 1931, 53, 1367; J. C. Slater, Phys. Rev. 1931
, 38, 1109. Also see

L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960.

201
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dominant theory until the 1950s. This was probably because VB theory was

more accessible to most chemists and was more generally applicable to a wide

variety of compounds, not just transition metal complexes. Eventually, the

need to have theoretical tools to interpret the electronic spectra of complexes

prompted chemists to look back to the work of Bethe and Van Vleck. Lead

by L. E. Orgel,* many began to adopt the Crystal Field Theory (CFT) ap-

proach, and subsequently the Ligand Field Theory (LFT) and Molecular

Orbital (MO) Theory approaches, as well.

CFT, originally developed to account for the magnetic and spectroscopic

properties of crystals, looks at the effects on the electronic state of an atom

in a nonhomogeneous field created by electrostatic (ionic) interactions with

neighboring groups. This model may have some validity in the case of ionic

solids, but, when applied to a transition metal surrounded by several ligands,

the “electrostatic-only” starting assumption represents an admittedly extreme

approximation in most cases. Nonetheless, the qualitative results of CFT
agree remarkably well with ligand field theory, which employs empirically de-

termined corrections to account for metal-ligand orbital interactions. As we
shall see, it also agrees with results of the molecular orbital theory approach,

which can account for virtually any degree of metal-ligand orbital overlap.

As Van Vleck first pointed out, the various approaches, while superficially

different, yield comparable results. Even though we may regard the starting

assumptions of molecular orbital theory as fundamentally “better,” the di-

rectness of CFT makes it a useful shorthand for routine discussions of transi-

tion metal complex chemistry.

Transition metal ions are characterized by the presence of an incompletely

filled d subshell. Therefore, CFT looks at the relative energies of the d orbitals

on a central metal ion surrounded by a certain number of nucleophilic ligands,

arranged in a particular geometry. Changes in d orbital energies brought

about by the ligand environment and the new electron configurations made
possible by it alter the overall electronic energy state of the system. These

kinds of changes occur for complexes of virtually any geometry, but octahe-

dral six coordination is the most common among transition metal ions.

Therefore, we will consider the case of ML6 Oh first and in most detail.

An isolated metal ion belongs to the infinite-order rotation-inversion

point group R3 ,

f
consisting of all possible operations whose elements pass

through a common point. With such high symmetry, all five d orbitals (and

for that matter the several orbitals comprising any subshell, all of which share

a given pair of n and / values) can be degenerate. But if we surround the ion

with six ligands in an octahedral configuration, the symmetry will descend to

Oh ,
in which no higher than threefold degeneracy is possible. Note that the

highest dimension of any irreducible representation in Oh is d
t
= 3; for ex-

*L. E. Orgel, J. Chem. Soc. 1952, 4756; J. Chem. Phys. 1955, 1004 and 1819.

tThis group and its totally rotational subgroup are identified by several other notations, includ-

ing Kh and K; Rh(3) and R(3); R(3) and R +
(3); and 0(3) and 0

+
(3). We will only have occasion

to refer to the full group, and thus we have adopted the simple R3 notation.
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ample, T\ u ,
T2g . Thus, the degeneracy among the five d orbitals must be lifted.

If we associate the various d orbitals with their corresponding direct products

of the same notation, we can see from the Oh character table (cf. Appendix

A) that dxz ,
dyz ,

and dxy transform degenerately as and d2Z2-x2-y2 and dx2_y2

transform degenerately as Eg
* Thus, the d orbitals in an Oh ML6 complex

must be split into two sets, one labeled hg and the other labeled eg ,
with dif-

ferent energies.

We can verify that the d orbitals in an Oh field must divide into two de-

generate sets by determining which orbitals are related to each other by op-

erations of the group. The effect of a symmetry operation on an orbital is

merely a change in coordinates without a change in energy. Thus, if some op-

eration converts two or more orbitals into each other, they must be energet-

ically equal. Conversely, any orbitals that are not related to each other by

any symmetry operation cannot be degenerate (except, rarely, as an acciden-

tal degeneracy).

For the purpose of determining the degeneracies in Oh we only need to

look at one symmetry element, a threefold axis about which C3 and C 3 are

performed. Figure 7.1 shows such an axis in relation to the x, y, z coordinates

of an octahedral system. Before determining the effects of C3 and C 3 on the

d orbitals, it will be useful to recognize their effects on the x, y, z coordinates

themselves. Assuming clockwise rotations, we can see that the following

transformations will be effected:

Ci Cl

x —

»

Z y

y X z

z —

>

y X

Thus, x

,

y, and z are transformed into one another and must be degenerate

in Oh . Indeed, as the character table shows, they transform as 7\M ,
a triply de-

(«) (b

)

Figure 7.1 Two views of the same C3 axis of an octahedron: (a) the axis emerging
from a triangular face of the octahedron; and (b ) looking down the axis, between
the x, y, and z axes of the coordinate system.

*The notation d2z2-x2-y2 is the full label in Oh for the orbital more commonly identified as dz
z.

The more complete notation will be useful in the discussion that follows.
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generate symmetry species. We may note at this point that the three p orbitals

(px , py , pz ) transform as the vectors x, y, and z- Therefore, the interconver-

sion of these vectors by C3 and C 3 implies that px , py ,
and p z orbitals in the

same subshell on a central atom in Oh must still be degenerate, as they are

for a free atom.

We can use the interchanges among the x, y, and z coordinates to deduce

the transformations of the d orbitals by the C3 and C 3 operations about our

chosen axis. All we need to do is make the appropriate changes in the sub-

script designations of the various d orbitals. By this approach, we see that C3

and C 3 effect the following transformations:

c3 Cl

dXy~> dzx dyz

dyZ ~

>

dXy dzx
dzx ^> dyz dxy

tN1K1NKJ
fN

^3 d2y2-z2-x 2 d2x2-y2-Z
2

tr\1^3 dz
2-x2 dy2_ z

2

From the first three lines of these results we readily see that dxy ,
dyz ,

and dzx
interchange among themselves and must be degenerate. In keeping with this,

the corresponding direct products are listed in the Oh character table as a de-

generate set transforming byT2g. The degeneracy between d2z2 - x2 - y
2 and

dx2 _ y
2 (last two lines) is a little less obvious from these results, because the

transformed orbitals do not correspond to the conventional d orbitals with

which we are most familiar. However, we can define these new orbitals as the

following linear combinations of the conventional wave functions:

d2y2 -z2 -x2
= ~ (V2)d2z2 -x2 -y2

~
(3/2)dx2_y

2 (7.1a)

d^-^-z2 = ~ (l/2)d2z2-x2-y
2 + (3/2)dx2_y

2 (7.1b)

dz
2-x2 — + ( l/2)d2z2_x2_y

2 — (l/2)dx2-y
2 (7.1c)

dy2-z
2 = -

(l/2)d2z2_x2_y
2 - (1!2)dx2_y

2 (7.1d)

From these relationships we see that, while dz2_x2_y2 and dx2_y2 are not trans-

formed directly into each other, they are transformed into functions that are

linear combinations of each other. These combinations must have the same

energy as the original orbitals comprising them, so the starting orbitals must

have identical energies to each other, too. Note that the transformations of

the t2g orbitals do not involve the eg orbitals and vice versa. Indeed, there is

no operation of Oh that relates any of the orbitals in one set to those in the

other. This indicates that the two sets are not degenerate with each other and

therefore should have distinct energies.

Although we have demonstrated that the d orbitals in an octahedral ML6

complex divide into a triply degenerate set and a doubly degenerate set, we
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have not yet shown that the symmetries of these sets are t2g and eg ,
as indi-

cated by the Oh character table. To verify this, we must take the five wave

functions as a basis for a reducible representation in Oh and then decompose

this representation into its component irreducible representations. The re-

ducible representation can be constructed by using relationships that give the

characters, *[/?], for operations in spherical symmetry (the group R3 ) as a

function of the angular momentum quantum number, ;, of the wave function

or state under consideration. These relationships can be used with Oh or any

other point group, because all point groups are subgroups of R3 . As we have

seen in Section 3.3, the character for a group operation that is retained in a

subgroup is the same in the lower-order group. Thus, the following five rela-

tionships can be used as needed with any point group*:

X(E) = 2j + 1 (7.2)

rrcmi
sin(2 + yT>e

X[C(6)] =
sin 6/2

(7.3)

X(i) = ± (2j + 1) (7.4)

rrrml ^ sin(/ + l/2)(0 + it)

*[5(f?)] = ±
sin(0 + 7t)/2

(7.5)

x(a) = ± sin (J + 1/2)77 (7.6)

In these equations, E, C, i, S, and cr indicate the operations, where 6 is the ro-

tation angle for C and 5, and ir = 180°. The quantum number j can be re-

placed by / when considering an orbital, or it can be replaced by L when con-

sidering the total orbital angular momentum of a Russell-Saunders term (cf.

Section 7.4). Likewise,; can be replaced by 5 when considering electron spin,

or it can be replaced by 5 when considering the spin state of a term. The vari-

able sign (±) in Eqs. (7.4)-(7.6) is taken as +1 for gerade states and -1 for

ungerade states. In the case of one-electron wave functions, orbitals with

even-valued / (s, d
, g, etc.) are gerade (no sign change with inversion), so the

positive value is used. Orbitals with odd-valued / (p, / h, etc.) are ungerade

(sign changes with inversion), so the negative value is used.

Applying Eqs. (7.2)-(7.6) to the case of d orbitals (1=2) in an octahedral

field, we obtain the following reducible representation:

oh E 8C3 6C2 6C4 3C2 i 6S4 856 3(7h 6<td

rd 5-11-115 -1 -1 1 1

This reduces, as expected, to T
rf + T2g . As we have shown by our con-

siderations of the effects of C3 and C\, the d2z2_x2_y
2 and dx2_y2 orbitals are

*R. L. DeKock, A. J. Kromminga, and T. S. Zwier, J. Chem. Educ. 1979, 56, 510.



206 Chapter 7 Transition Metal Complexes

doubly degenerate, and so must constitute the eg set. Likewise, the dxy, dyz,

and dzx orbitals were shown to be triply degenerate, and so must constitute

the t2g set.

It now remains for us to determine the relative energy order of the d or-

bitals. If a transition metal ion were placed in a spherical field equivalent to

the charges on six ligands, the energies of all five d orbitals would rise to-

gether (degenerately) as a result of the repulsions between the negative

charges on the ligands and the negative charges of the electrons in the metal

orbitals. Now imagine localizing the ligand charges equidistant from the metal

ion along the axes of a Cartesian coordinate system, an octahedral arrange-

ment. Rearranging the charges in this manner should not cause any net

change in the energy of the system. However, under the influence of the di-

rectional field produced by the octahedral environment, the metal d orbitals

of the eg set will experience greater repulsions than those of the t2g set. This

occurs because the lobes of the orbitals in the eg set point directly at the lig-

ands, while the lobes of the orbitals in the t2g set point between ligands (Fig.

7.2). Relative to the energy of the hypothetical spherical field, the eg set will

rise in energy and the t2g set will fall in energy (Fig. 7.3), creating an energy

separation of A0 or 1ODq between the two sets of d orbitals. If the system is

to maintain the same overall energy, the energy increase of the eg orbitals and

the energy decrease of the t2g orbitals must be balanced relative to the energy

of the hypothetical spherical field (sometimes called the barycenter).

X t2g

Figure 7.2 Orientations of the d orbitals relative to six octahedrally arranged lig-

ands. (Note that axis orientations vary, so as to project orbitals in the plane of the

page.)
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A0 = 10D
q

+3/5A0 = +6Dq

-2/5A0 = -4Dq

Energy level of hypothetical spherical field _±_ 1 t2g

Energy R3 Oh

Figure 7.3 Splitting of d orbitals in an octahedral field.

Accordingly, the energy of each of the two orbitals of the eg set rises by

+3/5A0 = + 6Dq while the energy of each of the three t2g orbitals falls by

-2/5A0 = - 4Dq. This results in no net energy change for the system; that is

AE = E(eg) + E(t2g)
= (2)(+3/5A0 ) + (3)(-2/5A0 )

= (2)(+6D^) + (3)(-4Dq)

= 0 (7.7)

The magnitude of A0 depends upon both the metal ion and the attaching lig-

ands. It increases for similar transition metal ions in successive periods (i.e.,

first row < second row < third row), and it increases as the charge on the

metal ion increases (i.e., M2+< M3+
). For the same metal ion, A0 increases

for common ligands according to the spectrochemical series*

r < Br“ < S
2- < SCN~ < CP < N03

" < F~ < OH- < ox < H20 <
NCS~ < CH3CN < NH3 < en < dipy < phen < N02

~ < CN” < CO

In the context of CFT, the spectrochemical series represents an empirical result

that cannot be rationalized in terms of simple point charges. This is most evi-

dent in the case of CO, a neutral ligand that nonetheless produces the largest

A0 splitting. The spectrochemical series can, however, be rationalized in terms

of models that acknowledge orbital interactions between metal and ligands.

The ground-state electronic configurations of various transition metal ions

in octahedral complexes can be determined by filling the d orbitals in the two

levels according to the usual Aufbau process. Electrons are added to individ-

ual orbitals of the lower t2g level and then to the upper eg level, in keeping with

Hund’s rule of maximum multiplicity and the Pauli exclusion principle. For the

configurations d1

,
dt
2

, d
3

,
d8

,
d9

,
and di0

there is no ambiguity to the assign-

ments (Fig. 7.4). However, for configurations d4 through d7
both high spin\and

low spin configurations are possible, as shown in Fig. 7.4. The relative magnb
tudes of A0 and the mean pairing energy- P, determine which spin state results

in these cases. The mean pairing energy results from coulombic repulsions be-

tween electrons in the same orbital, as well as from the loss of exchange en-

ergy produced by distributing electrons across multiply degenerate orbitals.

*Abbreviations in this list: ox = oxalate, en = ethylenediamine, dipy = dipyradine, phen = o-

phenanthroline.
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d 1 d 2 d 3 d 4 d 4 d 5 d 5

high low high low
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i i i i u

e
s

i i i i u H

i u i H H u U

<2g

i H u U U H u

u U u u 11 11 11

d 6 d 6 d 1 d 1 d* d 9 d 10

high low high low

spin spin spin spin

Figure 7.4 Configurations for dx-d10
metal ions in an octahedral field.

The coulombic contribution to the pairing energy tends to fall off in the order

3d> 4d> 5d, as the orbitals become larger and the electron interactions are

lessened. A high spin configuration avoids pairing by spreading the electrons

across both the t2g and eg levels, while a low spin configuration avoids occu-

pying the higher energy eg level by pairing electrons in the t2g level.

In free atoms, the energy difference between subshells tends to be greater

than the pairing energy. Consequently, it is usually energetically more favor-

able to pair electrons in the same subshell, rather than promote them to the

next higher energy subshell. In contrast, the A0 energy gap in octahedral com-

plexes of transition metals is relatively small and is comparable to typical

pairing energies. In d
4-7 Oh cases a weak crystal field .'(small A0) favors the

high spin configuration, and a strong crystal field (large A0 ) favors the low
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spin configuration. For a given first-row transition metal ion, the magnitude

of the field depends largely on the nature of the ligand—that is, where it falls

in the spectrochemical series. However, second- and third-row transition met-

als tend to have larger A0 and smaller P values, which favor low spin config-

urations. In these heavier transition elements the more expansive 4d and 5d

orbitals achieve more effective interactions with ligand orbitals, resulting in

larger energy separations among them. Moreover, when two electrons occupy

the same 4d or 5d orbital, their interelectronic repulsions are less than they

would be in a more compact 3d orbital, thereby lowering the pairing energy.

We can apply similar CFT considerations to tetrahedral ML4 complexes.

As with the octahedral case, the operations of C3 and C\ make the orbitals

dxy ,
dyz ,

and dzx triply degenerate and the orbitals d2z2-x2-y2 and dx2_y2 dou-

bly degenerate. Applying Eqs. (7.2)-(7.6) shows that the two sets transform

as T2 and E, in keeping with the direct product listings in the Td character

table. Thus the dxy ,
dyz ,

and dzx orbitals are labeled t2 ,
and the d2z2_x2_y2 and

dx2_y2 orbitals are labeled e. Unlike the octahedral case, the relative energies

of the two levels are reversed. Although no d orbitals point directly at lig-

ands, the t2 orbitals are closer to ligands than are the e orbitals. This can be

seen by comparing the orientations of the dx2_y2 orbital (

e

set) and dxy orbital

( t2 set) relative to the four ligands, as shown in Fig. 7.5. The difference results

in an energy split between the two levels of A
t
or 10.Dq' * As Fig. 7.6 shows,

the e level is lower by —3A
t/5

= — 6Dq'

,

and the t2 level is higher by +2A
t/5

=

+4Dq' relative to the barycenter defined by the hypothetical spherical field.

Similar to the octahedral case, we might expect both high and low spin con-

figurations for d3 - d6 . However, A t is much smaller than A0 . For a given lig-

and at the same M-L distances, it can be shown that A
t
= 4A0/9, which is

much smaller than the pairing energy, P, in ordinary complexes. Thus, with

extremely rare exceptions, only high spin configurations are observed.

Figure 7.5 Orientations of and

dxy orbitals relative to the four ligands

forming a tetrahedral field, looking down
the z axis. The plane of the projection

passes through the orbitals. Shaded cir-

cles represent ligands that lie above the

plane of the projection, and unshaded

circles represent ligands that lie below it.

-^A
t
=10D

q

Energy level of hypothetical spherical field
" "

.
*2

+2/5A
t
= +4Dq'

-3/5A
t
= -6Dq ’

Energy R3 Td
Figure 7.6 Splitting of d orbitals in a tetrahedral field.

*The At energy gap is often called 10Dq, like the octahedral case. We shall use \0Dq' to avoid

confusion.
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7.2 Jahn-Teller Distortion and Other Crystal Fields

We can deduce the CFT splitting of d orbitals in virtually any ligand field by

(a) noting the direct product listings in the appropriate character table to de-

termine the ways in which the d orbital degeneracies are lifted and (b ) car-

rying out an analysis of the metal-ligand interelectronic repulsions produced

by the complex’s geometry. In a number of cases it is useful to begin with ei-

ther the octahedral or tetrahedral results and consider the effects brought

about by distorting the perfect geometry to bring about the new configura-

tion. The results for the perfect and distorted geometries can then be corre-

lated through descent in symmetry, using the appropriate correlation tables.

Real situations in which such an approach might be taken include distortions

produced by ligand substitution or by intermolecular associations.

Aside from these obvious cases, there is a more fundamental cause of dis-

tortion, called the Jahn-Teller theorem
,
which operates even with isolated

complexes composed of only one kind of ligand.* The Jahn-Teller theorem

requires that for any nonlinear molecular system in a degenerate electronic

state a distortion will occur so as to lower the symmetry and remove the de-

generacy. The theorem does not predict the exact nature of the distortion.

However, if the system is centrosymmetric, inversion symmetry will be pre-

served.

A Jahn-Teller distortion results in partial or complete lifting of the de-

generacies among some orbitals. In so doing, electrons may occupy lower-en-

ergy orbitals, resulting in a lower overall energy state for the system. One
consequence of this is that the “perfect” geometries really cannot exist as sta-

ble species for certain electronic configurations, since the distorted molecule

is the energetically preferred structure. In light of this, describing certain

complexes as octahedral, tetrahedral, or square planar is often really an ap-

proximation of their true structure.

We will examine electronic states and their associated terms in more de-

tail in Section 7.4. For the present purposes, we can identify octahedral

ground-state configurations subject to the Jahn-Teller effect by considering

the cases shown in Fig. 7.4. A degenerate electronic state results whenever

the electrons in either the t2g or eg levels can be distributed in two or more
ways among degenerate orbitals. For example, the d1

ground-state configu-

ration can have the single electron in any one of the three t2g orbitals, so the

electronic state is triply degenerate. In similar manner, we can see that with

equal probability any one of the three t2g orbitals could be vacant in the

ground state for d2 (t2g
2
), so this too is a triply degenerate state. Likewise, d3

(t2g
3
) is nondegenerate, d4 high spin (t2g eg ) is doubly degenerate, d4 low spin

(it2g )
is triply degenerate, and so forth.

+ By similar considerations for all the

*H. A. Jahn and E. Teller, Proc. R. Soc. 1937, A161, 220; H. A. Jahn, Proc. R. Soc. 1938, A164 ,

117.

tWe are only concerned with the ground state here. In most cases (e.g., d2
) other states arise

from a given dn configuration. See Section 7.4.
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configurations shown in Fig. 7.4, it becomes apparent that the majority rep-

resent degenerate ground states and must be distorted. Indeed, only the con-

figurations d3
,
d5 high spin, d6 low spin, d8

,
and d10

will be immune to

Jahn-Teller distortions in their ground states.

CFT considerations predict that distortions will be more pronounced for

the doubly degenerate configurations t2g
3
eg

l

\ t2g eg ,
and t2g eg ,

which have

an imbalance in the filling of the eg level. Lesser distortions result from triply

degenerate states, which have an imbalance in the distribution among t2g or-

bitals (viz., t2g ,
t2g ,

t2g
4

,
t2g

5
,
t2g eg ,

t2g eg ). The difference can be understood

by considering shielding effects and the orientations of the t2g and eg orbitals.

For example, consider the d9
case, which is doubly degenerate as a result of

the equivalence of the two specific configurations t2g
6
(dx2_y2)

2
(dz2)

1 and

t2g
6
(dx2_y2)

1
(dz2)

2
. In the first of these configurations, the pair of electrons in

the dx2_yi orbital would more effectively shield ligands in the xy plane from

the metal ion’s charge than the single electron in the dz
2 would shield ligands

along the z axis. If this were to occur, the ligands along z would be more
strongly attracted to the central metal ion and their M-L bond lengths would

be shortened relative to those in the xy plane. In the second configuration,

the reverse condition and effect would exist. In either case, the difference in

shielding would create an inequality among the M-L distances, producing a

distortion from perfect octahedral geometry. Shielding effects are less pro-

nounced for triply degenerate configurations, because the orbitals’ lobes are

oriented between the ligands. Thus, the resulting distortions are not as severe.

Although the exact nature of the resulting distortion cannot be predicted

from the Jahn-Teller theorem, the foregoing analysis of the d9 case suggests

that a tetragonal distortion might result. A tetragonal distortion to an octahe-

dron results from any change in geometry that preserves a C4 axis. This oc-

curs whenever two trans-related ligands are differentiated from the remain-

ing four. For example, a tetragonal distortion would occur if the M-L bonds

of two ligands lying along the z axis were either stretched or compressed

equally while maintaining equivalence among the four remaining ligands in

the xy plane (Fig. 7.7).* By either process, the symmetry would descend from
Oh to D4h . The descent in symmetry causes a partial lifting of the degenera-

cies among the d orbitals in the octahedral field. From the correlation table

that links the groups Oh and D4h (Appendix B) we see that the two eg orbitals

of the octahedral field become nondegenerate as alg and b lg in the tetrago-

nal field. From the direct product listings in the D4h character table (Appendix
A) we see that the aXg orbital is d2z2_x2_y2 (dz2), and the b\ g orbital is dx2_y2
in D4h . Similarly, the correlation table shows that the degeneracy among the

t2g orbitals in Oh is partially lifted to become b2g and eg in the D4h tetragonal

field. As the D4h character table indicates, the b2g orbital is dxy and the eg or-

bitals are dxz and dyz .

*This is only one of several possible tetragonal distortions. For example, the two M-L bonds
along z could be changed nonequivalently, in which case the symmetry would descend to C4v .

This, however, is not a centrosymmetric group, so this type of distortion would not result from
the Jahn-Teller effect.
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Figure 7.7 Two examples of a tetrago-

nal distortion on an octahedral complex:

(a) a stretch along z, and (b ) a compres-

sion along z.

The relative energy ordering of the orbitals depends on the direction and

magnitude of the tetragonal distortion. A distortion in which the two M-L
bonds along z are progressively stretched is an interesting case to consider,

because at its limit the two ligands would be removed, resulting in a square

planar ML4 complex. Moving the two ligands away from the central metal ion

lowers the repulsions between ligand electrons and the metal electrons in d

orbitals that have substantial electron distribution along z. Thus the energies

of the dxz ,
dyz ,

and dz
2 orbitals are lowered. If we assume that the stretch

along z is accompanied by a counterbalancing contraction in the xy plane, so

as to maintain the overall energy of the system, then the orbitals with sub-

stantial electron distribution in the xy plane will experience increased repul-

sions. Thus, the dxy and dx2_y2 orbitals rise in energy. As a result, the degen-

eracies among the t2g and eg levels of the octahedral field are lifted in the

manner shown in Fig. 7.8. The upper eg orbitals of the perfect octahedron

DAh

A

, big
(dx2_ y

2)

+8]/2

"8
1
/2

a ig{dz2)

A

*2g

b2g(dxy )

+2S2/3

”
”-82/3

eg^dxz> dyz 1

Increasing stretch along 2 >

Figure 7.8 Crystal field effects of a tetragonal distortion on an octahedral ML6

complex, deformed by stretching the two M-L bonds along z.
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split equally by an amount 51? with the dx2_y2 orbital (Z? lg in D4h ) rising by

+ §i/2 and the dz
2 orbital (aXg in D4h ) falling by -8

X I2. The lower t2g orbitals

of the perfect octahedron split by an amount 82 ,
with the dxy orbital (b2g in

D4h ) rising by +2S2/3 and the degenerate dxz and dyz orbitals (eg in D4h )

falling by -8
2/3. Both the 81 and 62 splittings, which are very small compared

to Ac ,
maintain the barycenters defined by the eg and t2g levels of the undis-

torted octahedron. The energy gap 8X is larger than that of 82 ,
since the dx2_y2

and dz
2 orbitals are directed at ligands. Note that the distortion has the same

effect on the energies of both the d^-f and dxy orbitals; that is, 8i/2 = 282/3.

As a result, their energies rise in parallel, maintaining a separation equal to

the A0 of the undistorted octahedral field.

If we carry out the opposite tetragonal distortion (compression along ^
the octahedral degeneracies will be lifted in the same manner, as required by

symmetry, but the ordering of the orbitals across both the 81 and 82 gaps will

be reversed. The energy of the dx2_y2 orbital (big) will fall by —81/2, and the

energy of the dz
2 orbital (aig) will rise by + 5i/2. Likewise, the energy of the

dxy orbital (b2g) will fall by -282/3, and the energy of the dxz and dyz orbitals

(eg)
will rise by -\-8

2/3. In this case, the energy of the dxy (b2g) and d^-y2
(b ig)

orbitals will fall equally with increasing compression along z (i.e., — 8^2 =
-282/3), maintaining a separation equal to A0 .

If we imagine continuing the stretching of M-L bonds along z, the orbital

splittings will become progressively greater, producing successively larger val-

ues of and 82 . Eventually the two ligands will be removed, resulting in a

square planar ML4 complex. At some point before this extreme the a\g (dz2)

level may cross and fall below the b2g (
dxy) level, resulting in the splitting

scheme shown in Fig. 7.9, the orbital energy level scheme for a square planar

complex.* Most square planar complexes are dH and less often d9 . In virtually

*The ordering of the lower four d orbitals probably varies among square planar complexes and

has been the subject of much debate. See A. B. P. Lever, Inorganic Electron Spectroscopy, 2nd

ed., Elsevier, Amsterdam, 1984, p. 537ff. and references therein.

r2g

ML6 Oh

b\
g{dx2 _ y2)

W
aig{dz2 )

eg^xz< dyz)

ML4 D4h

Figure 7.9 Crystal field splitting of

d orbitals for a square planar ML4

complex and its relationship to the

splitting for an octahedral ML6

complex.
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all d8 cases a low spin configuration is observed, leaving the upper bXg (dj-y?)

level vacant in the ground state. This is expected, since square planar geome-

try in first-row transition metal ions is usually forced by strong field ligands.

Recalling that the energy gap between the b2g (dxy) and b Xg {d^-y) levels is

equivalent to A0 ,
we would expect strong field ligands to produce a large A0

value, which would favor a low-spin configuration. For example, Ni
2+

ion tends

to form square planar, diamagnetic complexes with strong-field ligands (e.g.,

[Ni(CN)4]

2
"), but tends to form tetrahedral, paramagnetic complexes with the

weaker-field ligands (e.g., [Ni(Cl)4]
2-

). With second and third row transition

metal ions the A0 energies are inherently larger, and square planar geometry

can occur even with relatively weak field ligands (e.g., square planar [PtCl4]

2 ").

7.3 Molecular Orbital Approach
to Bonding in Complexes

The quantitative predictions of CFT, which are based on a purely electrosta-

tic model, require empirical corrections in order to give satisfactory agree-

ment with experimental results. With these corrections the model is known as

Modified Crystal Field Theory, or more commonly 'Ligand Field Theory

(LFT). The need for corrections to CFT arises from metal-ligand orbital

overlap, which implies a certain amount of covalence in the M-L interactions.

One manifestation of this is the observation from absorption spectra that

there is less repulsion between d electrons in a complex ion than in the free

gaseous ion. Covalent interaction with ligands allows metal electrons to be

delocalized onto the ligands, lessening repulsions. In effect, taking a CFT
view, the d orbitals have been “expanded” by the presence of the ligands. This

is the so-called nephelauxetic effect (Greek, nephele = cloud + auxesis =
growth; hence, “cloud-expanding”), which depends upon both the metal ion

and ligand. For a given metal ion, the ability of ligands to induce this cloud

expanding increases according to a nephelauxetic series\

F~ < H20 < NH3 < en < ox < SCN" < Cl" < CN" < Br" < I"

By using empirically determined constants for both ligands and the central

metal ion, it is possible to reconcile the ligand field model of a complex with

quantitative spectroscopic results. Discussion of these techniques is beyond

the intent of this chapter and can be found in some advanced inorganic chem-

istry texts.
1 For our purposes we would simply note that the need to modify

CFT to account for the nephelauxetic effect suggests that a molecular orbital

approach might be useful. Such an MO model could be adjusted for various

degrees of M-L orbital overlap, representing a range from polar covalent

*Note that the ordering of ligands in the nephelauxetic series is not the same as the spectro-

chemical series.

tFor example, see D. F. Shriver, P. Atkins, and C. H. Langford, Inorganic Chemistry
,
2nd ed., W.

H. Freeman, New York, 1994, pp. 585-595.
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bonding to nearly ionic interactions. Furthermore, an MO approach might al-

low us to understand the relationship between orbital overlap and the energy

separations among d orbitals in fields of various geometries.

We will only illustrate the molecular orbital approach for octahedral ML6

and tetrahedral ML4 complexes, but of course the methodology can be ap-

plied to any complex coordination or geometry. We will first examine the MO
model for ML6 complexes that have only sigma metal-ligand interactions,

such as M(NH3)6
+
complexes of first-row transition metal ions with +2 or

+3 charges. Unlike the CFT and LFT models, we will include consideration

of interactions with metal ion 5 and p orbitals. Once we have constructed our

MO model, we will be interested to see how it accounts for what in the CFT
and LFT approaches is the A0 separation between the d orbitals and of course

the nephelauxetic effect.

For the case of six sigma-bonding ligands, we take six vectors pointing to-

ward the center of a Cartesian coordinate system as our basis for a reducible

representation of SALCs, (Fig. 7.10). By ascribing a positive unit contri-

bution for each vector that remains nonshifted by any operation of a class, we
obtain the following representation:

oh E 00 6C2 6C4 3C2(=Cl) i 6S4 £cn0300 6(Td

r„ 6 0 0 2 2 0 0 0 4 2

This reduces as = A lg + Eg + TXu . Thus, we can define six SALCs with

three different symmetries, which can form bonding and antibonding combi-

nations with like symmetry AOs on the central metal ion.

To identify the symmetries of metal ion AOs we recall that an s orbital

transforms as the totally symmetric representation, p orbitals transform as the

three unit vectors, and d orbitals transform as their matching direct products.

Thus, in Oh we have

s — Cl\g

Pxi Pyt Pz t\u

dj-y2
, dz

2 = eg

^xyi dxz ,
dyZ t2g

X

Figure 7.10 Vector basis for a representation of six

sigma-bonding SALCs for an octahedral ML6 complex.
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The symmetries of the d orbitals are, of course, the same as noted in our con-

siderations of CFT. Comparing these symmetries with those of the SALCs we
conclude that the 5, px , py , pz ,

dx2_y2 ,
and dz

2 orbitals have the proper sym-

metries to form bonding and antibonding combinations with matching sym-

metry SALCs. The three t2g orbitals (dxy ,
dxz ,

dyz ), however, have no match-

ing SALCs and must remain nonbonding. This is a consequence of the

orientation of these orbitals relative to the ligands. We define the positions of

the ligands as lying along the Cartesian axes, so the lobes of the t2g orbitals

lie between the axes, precluding effective overlap with ligand sigma orbitals.

Recognizing the matches with AOs, we can write the six SALCs in the

following forms, in which the six ligand sigma orbitals (cr) are identified by

their positions on the Cartesian coordinates.* The aXg SALC, which matches

with the metal ns orbital, is

la = + CT—x + (Ty + (T-y + az + a-z) (7 .8)

The two eg SALCs, which match with (n — l)dz2 and (n — l)dx2_y
2 orbitals, are

^z2

2\/?P'
(Jz ^ cr~z (Jx x (Jy cr~y^ (7.9a)

^x2 -y2 = + O’-X - O-y- (T-y) (7.9b)

The three SALCs, which match with the npz ,
npx ,

and npy orbitals, re-

spectively, are

= ~ a-z) (7.10a)

=
V2K ~ <T ^) (7.10b)

=
~\/2

<(Ty ~ a-y^ (7.10c)

These SALCs and their matching AOs are shown in Fig. 7.11.

Figure 7.12 shows the resulting qualitative MO scheme for an octahedral

complex with only sigma interactions between the metal ion and ligands. This

scheme should be regarded as only an approximation for real complexes, and

the order and nature of the MOs may differ in individual cases. Nonetheless,

this scheme is sufficient for our purposes. Note that the 12 electrons provided

by the ligands alone are sufficient to fill the lowest three levels of MOs (alg , qM ,

and eg). Any electrons provided by the metal ion will result in an equivalent

filling of the t2g level and if necessary the eg level. Thus, the electron filling

above the six MOs in the lowest three levels is identical to the presumed filling

*The mathematical expressions for the SALCs can be determined either by a pictorial analysis

or by applying the techniques of projection operators, as described in detail in Section 5.1.
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P(hu)

d(e
g + hg)
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*
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g
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a
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Figure 7.12 Molecular orbital diagram for an octahedral complex with only sigma

bonding between metal ion and ligands.

of d orbitals in the CFT model. As with the CFT model, both high- and low-

spin ground states are possible for d4 through d7
metal ion configurations. In

the MO scheme A0 or lODq is defined as the energy separation between the t2g

and eg
* levels. The lower t2g orbitals are nonbonding and can be taken as es-

sentially the dxy ,
dxz ,

and dyz orbitals of the metal ion, which is not materially

different from the CFT view. However, the upper eg
* orbitals are now seen as

antibonding molecular orbitals. These are combinations of the dz
2 and d^-f

metal ion orbitals with the matching ligand SALCs of Eqs. (7.9a) and (7.9b),

taken with a negative sign. Although antibonding, the eg
* MOs when occupied

involve sharing of electron density between the metal ion and the ligands.

We can make allowances for varying degrees of covalent interaction be-

tween the metal ion and ligands by adjusting the MO scheme in Fig. 7.12. Our
primary interest is in interactions with the metal ion d orbitals. Without ad-

mitting the possibility of pi-bonding, no adjustment of the scheme can change

the localized character of the t2g orbitals. However, electrons occupying the
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eg
* MOs will have more or less delocalization onto the ligands depending

upon the relative energies of the metal ion d orbitals and the ligand sigma or-

bitals. If metal d orbitals lie higher in energy than ligand sigma orbitals (Fig.

7.13a), the eg
* MOs will lie closer in energy to the metal d orbitals and have

more metal ion character than ligand character. In this case, eg
* electron den-

sity will be more localized on the metal. If the disparity in levels is extreme,

this becomes an ionic model in which the eg
* MOs are essentially metal d or-

bitals, like the CFT approach. Thus, the CFT model is a special case in the

MO approach. As the energies of the metal ion d orbitals and the ligand

sigma orbitals become more comparable the degree of electron sharing (co-

valence) will become greater. More of the eg
* electron density will be delo-

calized toward the ligands (Fig. 7.13b). If the ligand sigma orbitals were to lie

significantly higher than the metal ion d orbitals, cg
* electron density would

be predominantly localized on the ligands (Fig. 7.13c). We note that the weak-

est ligands in the nephelauxetic series (F“, H20, and NH3 ) have low-energy

atomic or molecular orbitals relative to transition metal ion d orbitals. This is

more in keeping with the situation portrayed in Fig. 7.13a. Thus, for com-

plexes with these ligands, both t2g and cg
* electron density is essentially lo-

calized in metal d orbitals, not unlike the assumptions of the CFT model.*

In principle, an MO approach such as we have just described gives a fun-

damentally more complete view of the bonding. We can appreciate that the im-

M L M L M L

(*) (b) (c)

Increasing delocalization of e* electron density toward ligands —
Figure 7.13 Relationship between the relative energies of metal ion d orbitals and
ligand sigma orbitals to the delocalization of eg

* electrons toward either metal ion

or ligands.

*As we shall see shortly, F“ has occupied 2p orbitals with appropriate symmetry for pi-bonding

with t2g metal ion d orbitals. This does not essentially alter our analysis of why F is a weak
nephelauxetic effect ligand.
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plied covalence of the occupied bonding and antibonding MOs could account

for the discrepancies between CFT predictions about d orbital repulsions and

the experimental results. However, adjusting the scheme to reflect the quanti-

tative realities of the complex is far from trivial. If our interest is more quali-

tative—say, to understand the magnetic properties or visible spectra—the MO
model does not really add any information that is not already available from

CFT. To understand these properties we only need to concern ourselves with

the electronic configuration in the t2g and eg orbitals, which is precisely the con-

cern of the CFT model. CFT just ignores the lower filled MO levels, which have

little relevance to these problems. In the region defining A0 the two approaches

are equivalent. The difference lies in how we view the nature of the orbitals:

metal ion d orbitals in the CFT approach versus whole complex molecular or-

bitals in the MO approach. As chemists, we should be glad that this essential

equivalence exists, because it allows us to use the inherently simpler CFT
model for routine work, without the need to resort to the complications of the

more “correct” and quantitatively capable MO approach.

This kind of equivalence between the MO and CFT models persists even

if the ligands are capable of pi interactions. However, in these cases the MO
approach has the advantage of allowing us to understand the ability of some
strong-field ligands, especially those that are neutral, to produce large A0

splittings and (where possible) low-spin configurations. Given that the limited

sigma-only case presents computational difficulties, we can anticipate that the

situation will be even more complicated if we include pi-interactions.

Nonetheless, it is useful to consider at least qualitatively the implications of

pi bonding between the metal ion and ligands to see how they relate to the

simplifications of the CFT model.

To include pi-bonding in our MO scheme for octahedral ML6 complexes

we use the 12 vectors shown in Fig. 7.14 as a basis for a representation of

SALCs. These vectors might indicate occupied p orbitals (other than those

engaged in sigma bonding), such as the npx and np
y
orbitals on halide ligands

in complexes like CrX|
-
(X = F“, Cl

-
). These are classified as donor lig-

ands; because they have electrons to contribute to the pi system of the com-

plex. Alternately, the vectors might indicate other unoccupied pi symmetry

z

Figure 7.14 Vector basis for a represen-

tation of octahedral 7r-SALCs.
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AOs or MOs on the ligands, such the empty tt* antibonding MOs of CO and

CN“ in complexes like Cr(CO)6 and [Fe(CN)6]

4 ~. Since such ligands receive

electron density from the pi system, they are classified as acceptor ligands.

To determine the characters of. our reducible representation of pi sym-

metry SALCs, we ascribe a + 1 contribution for each nonshifted vector, a -

1

contribution for each vector transformed into the negative of itself, and a zero

contribution for all vectors moved off their original positions by any symme-

try operation. This gives the following reducible representation:

oh E u1
00 6C2 6C4 3C2(= C\) i 6S4 8S6 3 <rh

12 0 0 0 -4 0 0 0 0 0

This reduces as = Tlg + T2g + Tlu + T2u .

Recalling the symmetries we identified for the AOs on the central metal

ion in the sigma-only case, we recognize that now we can form pi-bonding and

antibonding combinations between the t2g orbitals (dxy ,
dxz ,

dyz ) and the tt-

SALCs of the same symmetry. This will change the character of the t2g level,

which we previously had identified as nonbonding in the sigma-only MO
scheme (Fig. 7.12). In addition, we have three TXu SALCs, which on the ba-

sis of their symmetry match with the three np orbitals on the metal ion could

form 77-MOs. However, we have already used these metal ion np AOs to form

bonding and antibonding o--MOs with the Tlu cr-SALCs (Figs. 7.11 and 7.12).

The sigma interactions are likely to result in more effective overlaps, so we
will assume that the np orbitals have only minimally effective interactions

with the Tiu 7r-SALCs. The TXu tt-SALCs, then, will be virtually nonbonding

in most cases, although they might be weakly bonding in certain complexes.

The remaining six tt-SALCs with Tig and T2u symmetry have no matching

AOs on the metal ion. Therefore, these SALCs must be strictly nonbonding.

We are naturally most interested in the T2g symmetry tt-SALCs, which

form bonding and antibonding combinations with the t2g metal ion d orbitals.

Using the notation in Fig. 7.14, these SALCs have the following forms:

n^, n^, and Uxy form bonding and antibonding combinations with dxz ,
dyz ,

and dxy AOs, respectively. Figure 7.15 shows the form of the LCAOs for the

bonding combinations.

The other potentially bonding tt-SALCs, with TXu symmetry, have the fol-

lowing forms:

(7.11b)

(7.11a)

(7.11c)
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z

Figure 7.15 Bonding 77--LCAO formed by dxz
with the Uxz SALC. Similar combinations occur

for dyz with Uyz and dxy with Uxy .

j(Vl - 7T3 + 775 - 7T7) (7.12a)

y(7T2 ~ 7T4 + 7710 - 77
-

12) (7.12b)

j(n6
- 7T8 + 7T9

- 77\ \

)

(7.12c)

where II Z ,
Ux ,

and Ilv have the proper combinations of ligand AOs to form

interactions with metal ion np z ,
npx ,

and npy AOs, respectively. As noted

above, these SALCs are less likely to have as effective overlaps with the

metal rip AOs as the cr-SALCs of the same symmetry [Eqs. (7.10)]. This can

be seen by comparing the LCAOs for pi-bonding and sigma-bonding formed

with the same metal np orbital (Fig. 7.16).*

If we consider expanding our sigma-only MO scheme to include the pi-

bonding, pi-antibonding, and nonbonding interactions we have identified, we
immediately recognize that the task is fraught with difficulties and uncertain-

ties. The identities of the central metal ion and the ligand, the relative ener-

gies of the orbitals on each, the nature and effectiveness of their sigma and

z z

npz + Ylz
npz + lz

Figure 7.16 Comparison of a t\ u 77-LCAO with a t\ u cr-LCAO formed with the

same metal npz orbital. The sigma combination results in more effective overlap.

Similar LCAOs are formed with npx and npy .

*The expressions for the nonbonding Tlg and T2u SALCs should be apparent from the symme-

try relationships indicated by their Mulliken symbols (or the characters of the irreducible repre-

sentations themselves), and verification is left to you as an exercise.
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pi orbital interactions, and even the electron filling in ligand orbitals will all

have effects in determining the energies and bonding characters of the mole-

cular orbitals. Thus, it is not possible to construct a detailed MO scheme that

will have general applicability to a range of octahedral complexes. The best

we can hope for is a simplified scheme that identifies interacting orbitals by

symmetry type, approximates their bonding type, and arranges MOs of the

same type in a plausible relative energy order. Figure 7.17 shows such a

scheme. Note that this scheme makes no attempt to distinguish between the

np

l lu

ns

a
ig

(n - 1 )d

e
g
+ hg

X

cr*-antibonding

hu

o-*-antibonding

a ig

<r*-antibonding

ir*-antibonding

f
2g

Tr
n-nonbonding

hg + hu

'TT-nonbonding or

weakly bonding

hu

.A*'*

v>

tt-SALCs

hg + hg +
hu + hu

TT-bonding

l
2g

cr-bonding

a
ig
+ e

g + hu

n

\ a-SALCs

«ig + + tlu

Figure 7.17 Simplified qualitative MO scheme for an octahedral ML6 complex with

pi-bonding.
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energies of same-type orbitals with different symmetries. In spite of its limi-

tations, this scheme provides us with a starting point for understanding the

relationships between the CFT and MO approaches to pi-bonded complexes.

To illustrate the filling of electrons into the scheme of Fig. 7.17, let us con-

sider the complex CrF^
-

. The Cr3+ ion has a d3
configuration, and therefore

it supplies three electrons. Assuming that the 2s electrons are nonbonding,

each F~ ion supplies six electrons, making a total of 36 electrons from ligands.

Thus, we should fill our scheme with 39 electrons. Thirty-six electrons are suf-

ficient to fill all levels through the nonbonding tlg and t2u MOs. The remain-

ing three electrons occupy individual t2g 7t*-MOs, resulting in a configuration

feg*)
3

>
equivalent to the CFT model’s configuration t2g . On the basis of this

MO scheme, A0 is defined as the energy gap between the pi-antibonding t2g
*

level and the sigma-antibonding eg
* level. The energies of the t2g

* and eg
* lev-

els will be sensitive to differences in the effectiveness of metal-ligand pi and

sigma interactions, respectively. Hence, the interplay between sigma- and pi-

bonding strength affects the magnitude of A0 . Likewise, the relative abilities

of a ligand to engage in these modes of bonding are important factors in de-

termining its position in the spectrochemical series.*

Tetrahedral ML4 complexes may also involve both sigma and pi metal-lig-

and bonding. To set up the problem we assume that each of the ligands pos-

sesses one or more sigma orbitals directed at the central metal ion and pairs

of pi orbitals perpendicular to the M-L bond axis. Let us assume that the lig-

ands are monatomic ions, such as halide ions, which could use ns and npz or-

bitals for sigma interactions and npx and npy orbitals for pi interactions with

the metal ion (n -
1 )d, ns, and np orbitals. For simplicity we will assume that

the ligand ns orbitals are essentially nonbonding and that only the np orbitals

have significant overlap with the metal ion orbitals. Before proceeding to the

determination of symmetries of SALCs, it will be useful to recognize the sym-

metries of the AOs on the central metal atom. From the Td character table

we have

s = di

Px-> Pyi Pz ^2

dx2—y2
,
dz2 6

dXy> dxz ,
dyZ t2

Once again, the symmetries of the d orbitals are the same as we noted in the

CFT approach.

The vector basis for a reducible representation of cr-SALCs is identical

to that we considered in the case of methane (Fig. 4.15). Thus the resulting

*The relationships between ligand sigma donor, pi donor, and pi acceptor abilities and the mag-

nitude of A0 are more fully discussed in many advanced inorganic chemistry texts. For example,

see B. E. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts and Models of Inorganic

Chemistry
,
3rd ed., John Wiley & Sons, New York, 1994, pp. 471-472.
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representation and its decomposition are the same; that is, Ta = + T2 . In

the case of methane, the SALCs were formed as various combinations of hy-

drogen Is wave functions [Eqs. (4.21a)-(4.21d)]. For ML4 we obtain a simi-

lar set of expressions using pz orbitals. The A 1 cr-SALC has appropriate sym-

metry to form sigma combinations with metal ns orbitals, although the

effectiveness of the overlap may be limited. The T2 (r-SALCs have appropri-

ate symmetry to form sigma combinations with npz ,
npy ,

and npx orbitals on

the metal ion. However, the dxz ,
dyz ,

and dxy orbitals also have T2 symmetry
and can likewise form combinations with these SALCs. From this we can an-

ticipate that there may be some degree of d-p mixing in the t2 cr-MOs. In con-

structing our MO scheme we will assume, for simplicity, that the t2 cr-MOs are

formed principally with the metal np orbitals, although d-p mixing may be

appreciable in specific complexes.

The vector basis for a representation of 7t-SALCs is shown in Fig. 7.18. A
pair of mutually perpendicular vectors is located at each ligand, oriented at right

angles to the M-L bond axis, for a total of eight vectors. All the operations of

Td ,
except identity and the threefold rotations, move the vectors off their po-

sitions, resulting in zero characters. In the case of C3 or C 3 about any one of

the M-L bond axes, the positions of the two vectors on the ligand become in-

termixed. This is similar to what we saw for x and y components of a general

vector in Section 2.4 [cf. Eq. (2.16)]. Assuming a clockwise rotation, the po-

sitions of the two vectors after a C3 rotation are described by the expression

'-1/2 -V3/2' X x'

V3/2 -1/2 y _ /_
(7.13)

From the operator matrix we obtain the character -1. With this result the re-

ducible representation for 77-SALCs is

Td E 00£ 3C2 6S4 6ad

8 -1 0 0 0

This reduces as = E + 7\ + T2 . The 7\ SALCs have no match in metal

atom AOs and will be nonbonding. The E SALCs will form pi combinations

X z

Figure 7.18 Vector basis for a representation of

7r-SALCs for a tetrahedral ML4 complex. The x

and y vector orientations on the ligands are de-

fined by taking the M-L axes as individual z

axes. The x, y, and z axes of the tetrahedron are

defined in the conventional manner, relative to

the symmetry elements of Td .
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np

l2

ns

(n - 1)d

e + tn

a*, Tr*-antibonding

ex*-antibonding

a*, 77*-antibonding

'TT*-antibonding
\

\\\

n^-nonbonding \\
-v>-

h

^-bonding \\

tt-SALCs

e +

77-bonding

a-bonding

a-SALCs

+ h

a
x + t2

Figure 7.19 Simplified qualitative MO scheme for a tetrahedral ML4 complex.

with the dx2_y2 and dz
2 orbitals on the metal atom. The T2 7t-SALCs, like the

(r-SALCs of the same symmetry, can potentially form combinations with both

t2 (n - l)d and np orbitals on the metal atom. Once again, the MOs that are

formed may involve some degree of d-p mixing. Since we have assumed that

the t2 cr-MOs mainly use the np orbitals, we will assume in similar manner

that the t2 77-MOs are formed principally with the metal (n - l)d orbitals;

that is, dxy ,
dxz ,

dyz . Nonetheless, the distinction between t2 cr-MOs and t2 77-

MOs is not as clean as we might like. None of the metal hg orbitals is directed

at ligands (the ideal orientation in sigma-bonding), nor is any one oriented at
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right angles to the bond axis (the ideal orientation in pi-bonding). Therefore,

each type of MO has some of the character of the other type in this case. We
shall assume that the bonding t2g MOs are essentially either sigma or pi, and

that the mixing is more pronounced .in the antibonding MOs.
The preceding considerations enable us to construct the simplified qual-

itative MO scheme shown in Fig. 7.19. As with the similar scheme for the oc-

tahedral case (Fig. 7.17), no attempt has been made to distinguish energies

between MOs of the same bonding type, and the ordering of levels is only

meant to be suggestive of a plausible arrangement. The nature and ordering

of MOs will depend upon the peculiarities of the complex in question.

Regardless of the ordering of lower lying levels, a scheme such as Fig.

7.19 allows us to see the equivalence of the MO approach with the CFT
model. Suppose we fill the scheme with the appropriate number of electrons

for a complex such as NiCll
-

. The four Cl
-
ligands supply six electrons each,

for a total of 24. Since Ni
2+

is a d8 ion, the total number of electrons is 32.

Twenty-four electrons will fill all lower levels through the t\ nonbonding level

in our scheme. The remaining eight electrons will fill the antibonding e and

t2 levels, giving a configuration (e*)
4
(r2*)

4
,
which is paramagnetic owing to

two unpaired electrons in the upper t2
* orbitals. This is equivalent to the CFT

configuration e
4
t2 . Also similar to the CFT model, A

t is defined in the MO
approach as the energy separation between the antibonding e* and t2

* MOs.
Thus, like the octahedral case, the essential parameters of the CFT model are

similarly defined in the MO model.

7.4 Terms of Free Ions with d n
Configurations

Our usual notation for electronic configurations simply indicates the number
of electrons that occupy particular sets of degenerate orbitals. Thus, we usu-

ally do not presume to know which specific orbitals the electrons are occu-

pying at any time, except when a degenerate set of orbitals is half-filled or

fully filled. Furthermore, except for a fully filled subshell, we rarely presume

to know which of the two possible spin states individual electrons have. For

example, we may know that two electrons in a d subshell have parallel spins

(the ground-state configuration of d2), but we cannot know which orbitals

they may occupy at any time nor whether the orientations of their spins are

both ms
= + 1/2 or ms = -1/2. Of course, this does not prevent us from iden-

tifying and cataloging all the possible pairs of m/ and ms values each of the

electrons in the configuration might have, consistent with the Pauli exclusion

principle. When we do this, each conceivable set of individual m t and ms val-

ues constitutes a microstate of the configuration. Some of these microstates

may be allowable arrangements in the ground state, and others may be al-

lowable arrangements in some higher-energy excited state.

For example, in the case of a single electron in a degenerate set of five d
orbitals (nd*), the electron can have any of the values +2, +1, 0, -1, -2
and either of the values ms

= ±1/2. Thus, there are 10 ways of arranging the
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electron with a particular spin and orbital assignment, making a total of 10

microstates. In this very simple case all microstates are part of the ground-

state configuration. With additional electrons the number of microstates rises

dramatically, and some will be associated with different energy states of the

configuration.

In general, for any allowed number of electrons in a set of degenerate or-

bitals (called equivalent electrons *), the number of possible microstates is

given by

,

(2N0 )\

' (2N0 - Ne)\Ne \

(7.14)

where D
t
is the number of possible microstates, called the total degeneracy of

the configuration; N0 is the number of degenerate orbitals in the set or sub-

shell; and Ne is the number of electrons in the configuration. Equation (7.14)

predicts the following numbers of microstates for ndx~10
configurations of a

free transition metal ionf
:

Configuration d 1 d2 d3 d
4 d5 d6 d7 ds d

9 dw

Microstates 10 45 120 210 252 210 120 45 10 1

In any microstate both the individual orbital magnetic moments (related

to mi) and spin magnetic moments (related to ms )
will interact with one an-

other, resulting in an energy state or term for the configuration. Except for a

fully filled configuration, no one microstate uniquely gives rise to a particu-

lar energy for the configuration. Instead, a number of microstates generally

contribute to a single term. Thus the terms are usually degenerate according

to the number of microstates giving rise to them. In Section 7.5 we will con-

sider the ways in which these degeneracies are partially lifted in ligand fields

of various symmetries.

The ways in which individual m
(
and ms values interact are not easily

evaluated for a real atom or ion. In fact, the notion that we can assign indi-

vidual mi and ms values to the electrons and assess their interactions on that

basis is really an extreme extension of the one-electron wave mechanical

model. However, in the absence of a better model (at least one that is prac-

tical), this assumption forms a reasonably good first approximation for as-

sessing the origins of the term energies in many cases. When it is appropriate

to invoke this assumption, the Russell-Saunders coupling scheme usually

gives an adequate approximation of observed behavior. Relevant to our con-

*For a free atom or ion, equivalent electrons occupy the same subshell and therefore have the

same pair of n and / values—for example, 3d
2

. Nonequivalent electrons with the same / value dif-

fer in their n values—for example, 3d14d 1
.

tin the case of dU) and all other fully filled configurations Eq. (7.14) has 0! in the denominator.

Recall that by convention 0! = 1, and therefore the equation remains determinate with a value

of D, = 1. This result is consistent with the easily demonstrated fact that there is only one way

to arrange 2Na electrons (as N0 pairs) in N0 degenerate orbitals.
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cerns in this chapter, the Russell-Saunders coupling scheme can be applied

successfully to first and second row transition metals, but it is less successful

with the third row transition elements. It is hopelessly inadequate with /-

block transition elements (i.e., lanthanides and actinides). A detailed de-

scription of the process by which the Russell-Saunders terms can be identi-

fied from the microstates of a configuration would be a needless digression

for our purposes. Therefore we will simply outline the concepts involved so

as to define the terminology and make the subsequent discussion more un-

derstandable.

In the Russell-Saunders coupling scheme the various terms that can ex-

ist for a particular configuration are indicated by a term symbol of the form

2S+1L

L and 5 are quantum numbers that relate to the overall orbital and spin an-

gular momenta for the system of electrons. Values of L may be 0, 1, 2,..., and

values of 5 may be 0, 1/2, 1, 3/2,.... Both are analogous to the quantum num-

bers / and 5 for single electrons. The number 25 + 1, which appears as the left

superscript in the term symbol, is called the multiplicity of the term. A third

quantum number, J, is often added to term symbols as a right subscript. J re-

lates to the total angular momentum arising from spin-orbital coupling. Its al-

lowed values are L + 5, L + 5 — 1, L + 5 + 2, ..., |
L - 5

1
. For a given L

value, the various values of J represent closely spaced energy sublevels of the

term energy. The multiplicity 25 + 1 equals the number of J values (and

hence the number of sublevels) for the particular L value when L > 5.* For

a given L value the energy differences between the sublevels of various J val-

ues are small and can be ignored for our purposes. Thus, in keeping with com-

mon practice, we will omit the J values from our term symbols. However, the

multiplicity indicated by the superscript 25 + 1 is retained, because it relates

directly to the spin state (and hence the number of unpaired electrons) of the

term. Accordingly, it is often called the spin multiplicity and used without ref-

erence to /.

Let us consider in more detail the quantum numbers that define the term

symbols. L is the overall orbital angular momentum quantum number for the

configuration and defines an energy state. It is related to the resultant orbital

angular momentum and to the resultant orbital magnetic moment of the sys-

tem, obtained by vectorial addition of the vectors related to the / quantum
numbers of the individual electrons. In keeping with this, L is sometimes
called the resultant orbital quantum number. The orbital angular momentum
for individual electrons has a magnitude of [/(/ + 1)

1/2
](/i/27t), and the

resultant orbital angular momentum has a magnitude of [L(L + l)]
m

(h/2ir).

There is a variety of ways in which the individual / values can add vectorially,

*The multiplicity cannot be equated to the number of J values when L = 0 or L < S. In such

cases the number of J values is 2L + 1. For example, if L = 0 only the single value J = S is pos-

sible.
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so a variety of L values can result for a given configuration of electrons. This

is true even when all electrons have the same individual / values. Figure 7.20

shows the L values that result from the possible ways in which / values can

be combined for the configurations p
2

(/ = 1) and d2 (/ = 2).*

In the term symbol notation the values of L are given capital letter des-

ignations, which correspond to the familiar lowercase atomic orbital notations

(5, p, d
, /, etc.):

Lvalue: 0 1 2 3 4 5

State: S P D F G H ...

After L = 2 the notation proceeds alphabetically (with the omission of /, to

avoid confusion with the total angular momentum quantum number, /). Thus,

we see that two p electrons give rise to the terms S, P
y
and D, and two d elec-

trons give rise to the terms S, P
y
D, F, and G, as indicated in Fig. 7.20.

For a given term the magnitude of the resultant orbital angular momen-
tum is fixed as [L(L+1)] 1/2

(/z/27t). However, the vector for the momentum
can have a number of allowed orientations in space relative to an applied

magnetic field, which defines the z direction of the system. The various al-

lowed orientations are associated with the overall orbital magnetic quantum

P
2

1 = 1

1=1

A

j

L = 2(D)

d2

1 = 2

1 = 2

L = 4 (G)

1=1 f>L = 1 (P)

1 = 2 L = 3(F)

<-*t J'->
L = 0 (S)

1 = 2

1 = 2

L = 2 (D)

,= 2y
L ~ 1 L = 0 (S)

Figure 7.20 Vector addition of individual / vectors to give L for configurations p
2

and d2 .

*As noted, the component and resultant vectors have magnitudes of [/(/ + 1)]
1/2

(/*/27t) and

[L(L 4- 1)]
1/2

(/i/27t), respectively. In Figure 7.20 vectors have been drawn as if their magnitudes

were l(h/27r) and L(hl27r), permitting the values of L to be obtained directly from the drawings.
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number,
ML ,

which can take on the 2L + 1 values ML = L, L —
1, 1 — L,

- L. Given this number of possible orientations, 2L + 1 may be regarded as

the orbital multiplicity or orbital degeneracy of the term. As shown in Fig.

7.21, a D term (L = 2, 2L + 1 =5) has five possible orientations correspond-

ing to Ml = +2, +1, 0, -1, -2. Each of these orientations has a projection

on z whose magnitude is ML(hl2Tv). In the Russell-Saunders coupling scheme

values of ML can be obtained as the sum of the m t
values of the individual

electrons; that is, ML = 2ra/. Thus it is possible to assign an ML value for each

and every microstate of a configuration. Since ML represents the possible ori-

entations of the orbital angular momentum vector, it follows that a given L
value must arise from a complete set of microstates with the 2L + 1 values

Ml = L, L —
1, ..., 1 — L, — L, which identify these orientations.

The overall spin quantum number
, 5, defines the spin state of the term,

and 25+1 defines the spin multiplicity. If the overall configuration associ-

ated with the term has no unpaired electrons, then 5=0, and the multiplic-

ity is 25 + 1 = 1, called a singlet state. One unpaired electron gives a doublet

state (5 = j, 25 + 1 = 2), two unpaired electrons give a triplet state (5 = 1,

25 + 1 = 3), three unpaired electrons give a quartet state (5 = |, 25 + 1 =

4), and so forth. The physical meaning of 5 is related to the resultant spin an-

gular momentum and to the resultant spin magnetic moment of the system.

Like L, 5 can be obtained by vectorial addition of the spin angular momen-
tum vectors related to the s quantum numbers of the individual electrons. In

terms of 5, the magnitude of the resultant spin angular momentum is [5(5 +
+ 1)]

1/2
(/j/27t). 5 is related to an overall spin magnetic quantum number

,
Ms ,

+z

Ml =+2

Ml = +1

ML = 0

A/l = -1

Ml = ~2
Figure 7.21 Possible orientations of the

resultant orbital angular momentum
vector for a D term (L = 2). The magni-

tude of the vector is V6(/i/27t) and its

projections on the z axis have magni-

tudes of ML(hl27r).
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whose allowed values are Ms = 5, 5 + 1, 1 — 5, - 5. These 25 + 1 values

indicate the allowed orientations of the spin angular momentum vector rela-

tive to an applied magnetic field, which defines the z direction of the system.

From this we can see that the spin multiplicity, given as 25 + 1, represents the

spin degeneracy of a particular spin state.

For a given spin state the magnitude of the spin angular momentum is

fixed as [5(5 + 1)]
1/2

(/z/27t), but its projections on the z axis in the allowed

orientations are given by Ms (h/2ir). Figure 7.22 shows the three allowed ori-

entations for the spin state 5 = 1. In the Russell-Saunders scheme we assume

that Ms is the sum of ms values of the individual electrons; that is, Ms =
where ms

= ±\. In this way each microstate can be assigned a value of Ms .

Since Ms represents the possible orientations of the spin angular momentum
vector, it follows that a given 5 value must arise from a complete set of mi-

crostates with the 25 + 1 values Ms = 5, 5 — 1, ..., 1 - 5, - 5.

From the preceding relationships it follows that a term having particular

values of both L and 5 must arise from the set of microstates that has the nec-

essary 2L + 1 values of ML and also the necessary 25+1 values of Ms . This

means that one can identify all the allowed terms of a configuration by sys-

tematically arranging all microstates in such a way as to be able to cull the

sets of Ml and Ms values with the appropriate ranges that define the vari-

ous terms. This is a straightforward but tedious process, especially for con-

figurations with large numbers of microstates. We shall not concern ourselves

with the mechanics of this task here, except to note that a variety of tech-

niques have been developed to carry out the labor.*

We have seen by vector addition that the configuration d2 gives rise to

the terms S, P, D, F, and G (cf. Fig. 7.20). With two electrons the only possi-

ble spin states are 5 = 0 (paired) and 5 = 1 (unpaired). Thus, the spin multi-

plicities of the terms can only be singlets and triplets. If the two electrons are

*Two good methods have been described by K. E. Hyde, /. Chem. Educ. 1975, 52, 87 and by

E. R. Tuttle, Am. J. Phys. 1967, 35, 26.

+ Z

Ms =+l

Ms = 0

Ms
= -1 Figure 7.22 Possible orientations of the resultant

spin angular momentum vector for a triplet term

(5 = 1, 25 + 1 = 3). The magnitude of the vector

is V2(hl2n), and its projections on the z axis have

magnitudes of Ms(h/27r).
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Table 7.1 Terms for Free-Ion dn Configurations

d" Free-ion Terms"

Total

Degeneracy

d°, dw 1s 1

d\d9 ?D 10

d\d8
'5,

lD , 'G,
3
P,

3F 45

d\d7 2
P,

2D(2),
2
F,

2G,
2
H, *P,

4F 120

d\d6
'5(2),

lD(2),
1
F,

1
G'(2),

l
I,

}P(2),
3D, }

F(2),
3G, 3H, 5D 210

d5 2
S,

2
P,

2D(3),
2
F(2),

2
G(2),

2H, 2
I,

4
P,

4D, 4
F,

4
G,

6S 252

"Terms for configurations d n and d10 n
are the same. A number in parentheses indicates the

number of times a term occurs, if more than once.

in different subshells (e.g., 3d 14d 1

), all terms will occur as both singlets and

triplets. But if we stipulate that the two electrons are equivalent, meaning a

configuration nd2
within the same subshell, the Pauli exclusion principle will

limit the possible combinations of m t and ms . By any of the systematic meth-

ods for determining terms from microstates it can be shown that the allowed

terms for the configuration nd2
are

l
S,

3P
,

1D, 3
F,

l
G. By Eq. (7.14) we know

that the terms for two equivalent d electrons arise from 45 microstates.

Therefore the sum of the degeneracies of all these terms must equal this num-
ber. The degeneracy of each term, equivalent to the number of microstates giv-

ing rise to it, is the product of its spin degeneracy times its orbital degeneracy;

that is, (2S + 1)(2L + 1). Thus, for the set of terms for nd2 we have (1)(1) +

(3)(3) + (1)(5) + (3)(7) + (1)(9) = 45. Table 7.1 lists the Russell-Saunders

terms for all dn configurations of equivalent electrons. Note that in each case

the total degeneracy of terms is equal to the number D t
given by Eq. (7.14),

as must be the case. The ground-state term can be identified by applying

Hund’s rules, but in general the actual energies of the terms, and hence their

relative ordering, must be determined from analysis of spectroscopic data.

7.5 Splitting of Terms

The orbital term symbols for free atoms and ions are identical to the symbols

for the appropriate symmetry species in the spherical group R3 . The irre-

ducible representations of R3 include all possible degeneracies, so there are

no inherent symmetry restrictions on possible orbital degeneracies. Thus, for

free-ion terms we can have fivefold degenerate D terms, sevenfold degener-

ate F terms, ninefold degenerate G terms, and so on. However, when a tran-

sition metal ion is subjected to a ligand field, the new point group usually

places restrictions on the maximum orbital term degeneracies. In Oh and Td ,

for example, the highest dimension irreducible representations are threefold

degenerate. Consequently, for octahedral and tetrahedral complexes, free-ion
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terms with orbital degeneracies greater than three (D,
F, G,...) must split into

new terms, each of which can have no higher than threefold degeneracy. In

effect, the higher orbital multiplicity terms [viz., (2L + 1) > 3] split as a re-

sult of the descent in symmetry from R3 to the finite point group of the com-

plex. In the ligand field all the term symbols, including those that are not split,

are redefined and newly designated with the appropriate Mulliken symbols

of their corresponding irreducible representations in the finite point group of

the complex.

From a physical standpoint, lifting the degeneracy among the d orbitals

can destroy the equivalence among microstates that give rise to a particular

free-ion term. Orbital assignments that were energetically equivalent in the

free ion may now be quite distinct in the environment of the complex. These

differences result in new coL actions of equivalent microstates, each of which

gives rise to a distinct ligana-field term. However, the total number of mi-

crostates for the configuration, as represented by D t ,
remains the same.

For example, for the free-ion configuration d1

,
placing the electron in any

one of the five d orbitals with either spin orientation is energetically equiva-

lent. These 10 microstates give rise to a
2D term. In an octahedral field, the

single electron may have either the configuration t2g
1
or eg\ corresponding to

the ground state and excited state, respectively. In the ground state, the elec-

tron can be in any of the three t2g orbitals with either spin orientation (ms =
This makes six equivalent microstates. Since there are three equivalent

orbital assignments, the overall orbital degeneracy (orbital multiplicity) is

three. Likewise, since there are only two overall spin orientations (Ms =

±y), the spin degeneracy (spin multiplicity) is two. As we shall see shortly,

the resulting term is
2T2g ,

in which the Mulliken symbol for the orbital term

is appropriately threefold degenerate. In the excited state configuration eg

there are two possible orbital assignments, each with two possible spin ori-

entations, making a total of four microstates. The associated term is
2Eg ,

in

which the Mulliken symbol for the orbital term is twofold degenerate. Note

that the total degeneracy of each ligand-field term, equivalent to the number
of microstates giving rise to it, is the product of its spin degeneracy times its

orbital degeneracy. Thus, for
2T2g we have (2)(3) = 6 and for

2Eg we have

(2) (2) = 4. Moreover, the sum of total degeneracies of the ligand-field terms,

6 + 4 = 10, is equivalent to D
t
for the configuration d1

.

The fate of any free-ion term in the point group of a complex can be de-

termined by applying Eqs. (7.2)-(7.6). Although it is possible to apply these

equations to both the spin and orbital terms (

S

and L states), the field does

not interact directly on the electron spin in a chemical environment such as a

complex ion. This means that the new ligand-field terms will retain the orig-

inal spin multiplicities of the free-ion terms from which they originate.* Thus,

However, if spin-orbital coupling (L-S coupling) and hence the J states are to be considered,

the symmetry effects on both the spin and orbital functions must be evaluated and combined.

For our purposes, the J states are unimportant, so we will ignore this aspect of the problem. See

R. L. DeKock, A. J. Kromminga, and T. S. Zwier, J. Chem. Educ. 1979, 56, 510.
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we only apply these equations to the L state of a free-ion term to determine

the identities of the terms that result from splitting in the ligand field. As we
proceed to this task, one important point needs to be made specifically re-

garding the use of Eqs. (7.4)-(7.6). These expressions have variable sign (±),

depending on whether the function is gerade or ungerade. We will be con-

cerned solely with terms arising from configurations of d electrons, which are

inherently gerade. Therefore we will choose the positive expression in all

cases.* Nonetheless, in noncentrosymmetric point groups (e.g., Td ,
D3h) the

resulting Mulliken symbol for the new state will not have a g subscript nota-

tion, which would be inappropriate in such groups.

Let us now consider the possible splittings of S, P, D, and F terms arising

from dn configurations in an octahedral field. An S state, for which L — 0, is

nondegenerate. As with an 5 orbital, it has no angular dependence and no ori-

entation in space. Consequently, without resorting to Eqs. (7.2)-(7.6), we can

conclude that in any point group an S term will not be split and will bear the

Mulliken symbol for the totally symmetric representation. In Oh this is A lg .

For a P term, for which L = 1, Eqs. (7.2)-(7.6) give the following represen-

tation in Oh \

oh E 00 6C2 6C4 3C2 i 6S4 8.S6 3ah 6crd

rP 3 0 -1 1 -1 3 1 0-1-1
Inspection of the character table shows that this isTlg. Thus, in Oh a P term

is not split, but becomes a triply degenerate Ti* term. 1 A D term, for which

L = 2, has a fivefold orbital degeneracy, as do d orbitals. Thus, in Oh ,
which

allows no higher than threefold degeneracy, the term must be split. Indeed,

applying Eqs. (7.2)-(7.6) yields a representation identical to that which we
generated for the d orbitals themselves (cf. Section 7.1), and the term is there-

fore split into a doubly degenerate Eg term and a triply degenerate Tig term.

Likewise, an F term (L = 3) is sevenfold degenerate and must split in an Oh

field. The reducible representation is

oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3ah 6dd

r> 1 1 -1 -1 -17-1 1 -1 -1

This reduces as rF -A2g + Tlg + T2g . Thus an F state will split in an Oh field

into a nondegenerate A2g state and two triply degenerate states, Tlg and T2g .

*By contrast, configurations of p or /electrons are inherently ungerade, requiring use of the neg-

ative sign in Eqs. (7.4)-(7-6).

tRecall that the threefold degenerate p orbitals transform as T1m in Oh ,
but as we now see a P

state transforms as T
[g . The transformations are different because the p orbitals are inherently

ungerade, but the P state arising from a d configuration is inherently gerade. Thus, when apply-

ing Eqs. (7.4)-(7.6), the negative sign is used with the p orbitals and the positive sign is used with

the P state.
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Table 7.2 Splitting of Free-Ion Terms of

dn Configurations in an Octahedral Field

Free-Ion

Term Terms in Oh

S

P
D
F
G
H
I

A2

g

+ Tlg + T2g
A ig + Eg + Tig + Tig
Eg + 2Tlg + T2g
A ig + A2g Tg + Tig + 2T2g

The splittings of other states (G,
H, I, etc.) can be determined in similar

manner and are shown in Table 7.2 for free-ion terms corresponding to L =
0-6. The splittings of free-ion terms and the Mulliken symbols for the lig-

and-field terms in other point groups can be obtained in similar manner by

using Eqs. (7.2)-(7.6), but it is usually more efficient to use the correlation ta-

bles (Appendix B) with the results of Table 7.2. For example, inspection of

the correlation table for Oh and Td shows that the splittings are identical in

both groups, except for the omission of the subscript g for the tetrahedral

states. Correlations with other groups (e.g., D4h ,
D3 ,

D2ci) are not as trivial,

but are equally straightforward.

We now know from group theory how various free-ion terms will split in

an octahedral field. It remains for us to determine how the ligand-field terms

for a certain configuration are ordered by energy and how their energies will

change with changes in the strength of the ligand field. Group theory alone,

of course, cannot provide quantitative answers. However, it is possible to ad-

dress the problem at least qualitatively with a correlation diagram
,
which

shows how the energies of terms change as a function of the ligand field

strength, measured as A0 . To construct the correlation diagram, we look at

two extremes: a weak field, just strong enough to lift the R3 free-ion term de-

generacies, and a hypothetical extremely strong field. On the left of this dia-

gram we show the energies of the free-ion terms and the Mulliken symbols

for the terms into which they are split in a weak octahedral field. On the right,

at the limit of an extremely large A0 separation between the t2g and eg or-

bitals, we show the energies of the possible electronic configurations for the

ground state and all excited states. At this limit we will assume that the in-

teractions between electrons in separate orbitals are negligible. We can then

identify the terms that will emerge from each of these configurations in a

slightly less strong field, where electronic interactions begin to be felt. The

job of constructing the diagram amounts to determining the correlations be-

tween terms in the weak field and the terms in the strong field. We will carry

out this task for the case of a d2
configuration in an octahedral field.
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Bethe developed a general approach, called the method of descending

symmetry , that can be used to construct the complete correlation diagram for

any configuration. Carrying out this procedure for the d2
case is a straight-

forward but somewhat involved process.* For purposes of illustrating the un-

derlying principles, we can take a somewhat less systematic approach to the

d2
case. Our strategy will concentrate primarily on identifying the triplet

states arising from the allowed d2
configurations in the strong-field case and

correlating them with the appropriate terms for the weak-field case. We fo-

cus on these terms because they have the same spin multiplicity as the ground-

state term for d2
. As we shall see (Section 7.6), terms with the same spin mul-

tiplicity as the ground state are of primary importance to understanding the

visible spectra of transition metal complexes. Moreover, taking this approach

in this case will also reveal the correlations for all the terms, both singlets and

triplets.

The free-ion terms and the ligand-field terms into which they are split in

a weak octahedral field, taken from Table 7.2, are listed below in order of in-

creasing energy of the free-ion terms (left to right).

Free-ion terms
3P lD 3P lG

Octahedral terms

(weak field)

3A2g

3T2g

lE
i

g% Tg
lAu

'Eg

%
The free-ion terms are listed in order of increasing energy running up the left

side of the correlation diagram we seek to construct (cf. Fig. 7.23). As we at-

tempt to correlate these terms with the terms from the extremely strong field

case, we will observe this principle: Only terms of the same spin state are

linked in both weak and strong fields. Thus, a singlet state in the weak field

does not correlate with a triplet state in the very strong field, and vice versa.

Moreover, a term does not change its orbital identity as a result of the field

strength. Thus, for example, a Tlg term in the weak field remains a Tig term
in the stronger field.

When we examine the 11 terms listed above for d2
,
we note that both the

3F and 3P free-ion terms give rise toX states, each of which is a distinct

state that must correlate uniquely to a triplet state from the extremely strong

field. To avoid confusion, we will label the terms
3TXg (

F) and 3
Tig (P), indi-

cating their origins in the free-ion terms. Now the question may arise as to

whether or not these two terms might reverse their relative energy order at

some field strength, implying that their correlation lines on our diagram
might cross. The answer to this question lies in a general observation called

*For a detailed development of the complete correlation for the d2 case by the method of de-

scending symmetry, see F. A. Cotton, Chemical Applications of Group Theory
,
3rd ed., John

Wiley & Sons, New York, 1990, pp. 270-273. For extension of the method to determine the

strong-field terms of other dn configurations, see D. W. Smith, J. Chem. Educ. 1996, 73, 504-507.
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Figure 7.23 Setup for preparing a correlation diagram for a d2
ion in an octahedral

environment. The spin multiplicities of strong field terms indicated with superscript

(1,3) are yet to be determined.
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the noncrossing rule
,
which has firm roots in quantum mechanics: States of the

same symmetry and same multiplicity do not cross
,
but rather repel one an-

other, thereby increasing their relative energy separation beyond a certain min-

imum as field strength increases.

We now consider the states in the extremely strong field, represented on

the right side of our diagram. At this hypothetical extreme we can have the

following three configurations:

In the absence of interelectronic interactions, we can assume that the ground

state is t2g
2

. The configuration t2g
1
eg

1
puts one electron in an orbital that lies

A0 higher, so the energy of this state lies higher by A0 . Likewise, the config-

uration eg promotes both electrons by this amount, so the energy of this state

is higher than the ground-state configuration by 2A0 .

If we now relax the field a little, so that the electrons just begin to inter-

act, each of the strong-field configurations will give rise to a number of en-

ergy states, depending upon how electrons with specific spins occupy specific

orbitals. Each of these new terms is uniquely associated with a collection of

microstates. For example, by Eq. (7.14) the configuration t2g has a total de-

generacy of 15. This means there are 15 ways of arranging the two electrons

by individual spins and orbital assignments within the t2g orbitals. Some of

these microstates will have the electrons with the same spin and some will

have the electrons with opposite spins. Therefore, both singlet and triplet

terms arise from this configuration. Likewise, the configuration eg ,
which has

two electrons occupying two degenerate orbitals, has a total degeneracy of 6.

Thus, there are six ways of arranging the two electrons in the two eg orbitals,

each resulting in a microstate. Again, both singlet and triplet states will arise

from this configuration. The configuration t2g eg involves two nonequivalent

electrons. There are clearly six ways of arranging one electron in the three t2g

orbitals (three possible orbital assignments with two possible spin orienta-

tions), and there are four ways of arranging one electron in the two eg orbitals

(two possible orbital assignments with two possible spin orientations). The
two electrons are in separate degenerate sets of orbitals, so the possible mi-

crostates are not restricted by the Pauli exclusion principle. This results in 24

ways of arranging both electrons in the configuration t2g eg \
that is, 6 X 4 =

24 microstates. Here, too, we can have both singlet and triplet states arising

from the configuration. Altogether these three configurations account for 45

microstates, equal to the total degeneracy for a d2
configuration. As expected,

subjecting the general configuration to an octahedral field, even a very strong

one, does not change the overall number of microstates.

We need to know the term symbols arising from these 45 microstates in

the slightly relaxed strong-field case. We can determine the Mulliken symbols
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for the orbital part of the term symbols by taking the direct products of the

irreducible representations of the individual electrons in the three configura-

tions. For the ground-state configuration t2g we take the direct product t2g x
t2g ,

which yields the following representation:

Oh E 8C3 6C2 6C4 3C2 i 6S4 856 3ah 6ad

i'(V) 9 0 1 1 1 9 1 0 1 1

This reduces as T(t2g
2
)
= A Xg + Eg + TXg + T2g . These, then, are the orbital

terms arising from this configuration in a strong but not extreme field. But

we also need to know the spin multiplicities of these terms if we are to make
the correlations with the weak-field terms. We can begin to sort out the spin

multiplicities by recalling that the total degeneracy of a configuration is equal

to the sum of the products of the spin degeneracies times the orbital degen-

eracies over all terms. Here, D
t
= 15, so we may write for the series of terms

A lg + Eg + Tlg + T2g

(a)(1) + (A)(2) + (c)(3) + (d)(3) = 15

where the unknown coefficients are either 1 or 3. This is satisfied if either Tig
or T2g is a triplet and the other two terms are singlets, or if both A lg and Eg

are triplets and the other two terms are singlets. In other words, at this point

any one of the following assignments is possible:

lA\g +
1Eg +

1Tlg +
3T2g

'Alg +
'Eg + ^lg + ' T2g

3A lg +
3Eg +

1Tlg +
1T2g

We can narrow the choices slightly by considering the possible orbital arrange-

ments of two unpaired electrons (a triplet state) for the configuration t2g \

There are three orbital arrangements for two unpaired electrons, so the triplet

state must have a triply degenerate orbital term (either
3Tlg or

3T2g in this

case). This means we have either
'A ig + 'Eg + 3

Tig + 'T2g or + lEg +
Tig + T2g ,

that is, we can rule out the third listed choice. Both remaining as-

signments satisfy the total degeneracy of the configuration, so we will need to

gather more information before deciding which of these is correct.

In similar manner, to determine the orbital terms for the configuration eg

we take the direct product eg X eg and obtain the representation

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3 crh 6(Td

IV) 4 1 0 0 4 4 0 1 4 0
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From the reduction of T(eg
2
) we obtain the terms A lg + A2g + Eg . As previ-

ously noted, the total degeneracy for this configuration is 6, so we may write

(a)(1) + (*)(1) -h'(c)(2) = 6

Clearly c =£3, so either a = 3 or b = 3 and the other two coefficients are 1.

Therefore we have either
3A lg +

1A2g +
xEg

or
1A lg +

3A2g +
1Eg . We can

come to the same conclusion by looking at how we could arrange two un-

paired electrons in two degenerate orbitals:

There is only one choice, so the orbital term for the triplet state must be non-

degenerate (either A lg or A2g in this case). Again, we will need to obtain

other information before deciding which possible assignment is correct.

Finally, the terms from the configuration t2g eg are obtained from the di-

rect product hg x which yields the representation

oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3(7), 6o-d

Ffeg eg) 6 0 0 0-2 6 0 0 -2 0

On reduction this gives the terms Tlg + T2g . As we have noted, the electrons

in this configuration are unrestricted by the Pauli exclusion principle.

Therefore they may have the same or opposite spins with all possible orbital

assignments. This means that both terms occur as both singlets and triplets.

As we have seen, the total degeneracy for eg t2g is D
t
= 24, which is uniquely

satisfied by the assignment
l Tlg +

lT2g +
3Tig +

3T2

g

.

Although we have not unambiguously decided all the spin multiplicities,

we can proceed to make the correlations. This will actually help us make the

spin assignments. At this point in the process our correlation diagram looks

like Fig. 7.23, where either the known or possible spin multiplicities have

been indicated for each term on the strong-field side.* We begin by examin-

ing the split terms from the
3F free-ion term on the left of Fig. 7.23. The 3A2g

term is unique among the weak-field terms, and it must correlate with the

unique A2g term from eg on the strong-field side. This term, then, must also

be a triplet. It now becomes evident that our choice of spin multiplicities for

the terms from eg must be
lA lg +

3A2g +
xEg . We turn now to the

3T2g term
arising from 3

F. This is the only triplet T2S term on the weak-field side (the

two otherT2g terms are singlets), so there can be only one such term on the

strong-field side. We have already identified a!T2s term from t2g eg on the

strong-field side, which must correlate with the
3T2g term from 3

F. This means
that the T

2

g term from t2g on the strong field side must be a singlet, and from
this it follows that the spin multiplicities for terms from this configuration

must be v4 Jg + Eg
+ ~ Tig + T2g . We now can make the correlation for the

*You may find it useful to fill in the correlations and spin multiplicities on Figure 7.23 as they

are explained in the rest of this paragraph.
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Figure 7.24 Complete correlation diagram for a d2 ion in an octahedral environment.
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remaining two triplet terms on the weak-field side; namely, 3
Tig (F) and 3Tlg

(P). From the noncrossing rule we conclude that
3Plg (

F) connects with
3Plg

from f2g
2

,
and 3Plg (P) connects with

3Pig from t2g eg . The remaining corre-

lations between singlet states on both sides can now be made by applying the

noncrossing rule. The resulting correlation diagram is shown in Fig. 7.24.

In principle, we could construct the correlation diagram for any dn con-

figuration in an octahedral or other field by taking an approach similar to

what we have shown here for the d2 case. However, as the number of mi-

crostates and terms increases with the number of electrons, the labor of con-

structing the correlation diagrams “from scratch” becomes considerably more

onerous. Fortunately, some general relationships between configurations,

terms, and ligand environments minimize the needed effort. To begin, we
noted in Table 7.1 that the free-ion terms for a configuration dn and a con-

figuration d10~n
are the same. Since each free-ion term splits into a specific

collection of terms in any ligand field, it follows that the splitting of terms for

a configuration dn is identical to that for the configuration d10~n
. However,

this does not mean that the correlation diagrams are identical. To the con-

trary, the order of splitting of a given dn term will show the reverse pattern of

that of a d10
~n

configuration in the same ligand field. Thus, the same ligand-

field term that becomes more stable (moves to lower energy) for a dn ion will

become less stable (moves to higher energy) for a d10~n
ion as A0 changes.

Consider the simplest pair of such configurations, d l and d9
,
in an octa-

hedral field. Both configurations give rise to a
2D free-ion term, which is split

into
2Eg and 2T2g terms in an octahedral field (cf. Table 7.2). Not coinciden-

tally this splitting is identical to the splitting of d orbitals in an octahedral

field. In the d l
case, the two terms in the octahedral field arise from the fol-

lowing configurations:

where the configuration t2g is the ground state and eg is the excited state

(higher energy). As previously noted, there are three possible orbital assign-

ments for the t2g configuration, giving rise to the
2
Tis term, and there are two

possible orbital assignments for the eg configuration, giving rise to the
2Eg

term. We can predict that as the A0 gap between the t2g and eg orbitals in-

creases with increasing field strength the
2T2g term will become more stable

and the
2Eg term will become less stable. Thus, the separation between the

two states will increase. In fact the separation is numerically equal to A0 ,
the

magnitude of the field. Relative to the energy of the
2D free-ion term, the

2T2g term will be stabilized by — (2/5)A0 and the
2Eg term will be destabilized

by + (3/5)A0 . From these considerations we readily obtain the correlation dia-

gram shown at the top of Fig. 7.25. Now the same terms will arise from the
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Figure 7.25 Correlation diagrams for d 1

(top) and d9 (bottom ) ions in an octahe-

dral field, illustrating the effect of hole

formalism.

2D free-ion term of a d9
configurations, but they now correspond to the fol-

lowing two configurations in the octahedral field:

hg
6
eg

3
hg

5
eg

4

We have introduced a hole symbol (o) here to mark the absence of an elec-

tron in an orbital. Using the hole as a marker, it is easy to see that the ground

state t2g
6
eg

3
configuration consists of two equivalent orbital assignments and

therefore must correspond to the
2Eg term. Likewise, the three possible or-

bital assignments for the hole in the configuration t2g eg verify that it gives

rise to the term. Thus, the energy ordering of the terms for d9 is the re-

verse of the d l
case. For the d9 (Oh ) case the

2Eg term is stabilized by — (3/5)A0

and the
2
T2S term is destabilized by + (2/5)A0 . From this we obtain the cor-

relation diagram shown at the bottom of Fig. 7.25.

The relationship between dn and dw
~n term splittings in the same-sym-

metry ligand field is sometimes called the hole formalism. The name comes

from seeing dn as a configuration of n electrons and dm
~ n

as a configuration

of n positive holes (equivalent to positrons), as illustrated with the configu-

rations shown for d 1 and d9
above. A configuration of n electrons will inter-

act with a ligand field in the same way as a configuration of n positrons, ex-

cept that repulsions in the former case become attractions in the latter case.

For example, for a d 1

ion in an octahedral field a transition from the ground
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state to the excited state involves promoting the electron by A0 . The same

kind of transition for a d9
ion involves demoting the hole by A0 . As we have

seen, the consequence of this hole formalism is reversal in the order of lig-

and-field terms arising from the same free-ion term. This principle can be ap-

plied to more complicated cases. The correlation diagram for d
I0~ n

can be ob-

tained by reversing the order of the sets of terms for the various t2geg

configurations on the strong field side of the dn diagram
,
relabeling for the ap-

propriate d10
~n

configurations, and redrawing the connecting lines, paying at-

tention to the noncrossing rule. Applying this technique, we can use the d2 oc-

tahedral correlation diagram (Fig. 7.24) to obtain the d8 diagram shown in

Fig. 7.26. Note that in the d2 diagram the sets of terms for the three t2geg con-

figurations on the strong-field side are ordered

[

3A2g, %, < [

3T2g,

3Tlg ,

1 T2g,

lTlg] < [

3Tlg ,

lT2g ,

lEg ,

but for the d8 diagram they are ordered

[

3Tlg , 'T2g , %, 'A lg ] < [

3T2g,

3Tlg ,
'T2g ,

'Tlg\ < [

3A2g,

' E
g ,

'A lg\

Comparing the two diagrams, we also note that the connections between cer-

tain weak-field terms and their strong-field counterparts have changed as a

result of the noncrossing rule.

A generalization similar to the hole formalism allows us to relate the cor-

relation diagrams for octahedral cases to those for tetrahedral cases. As we
have noted, the ligand-field term symbols for the states in a tetrahedral field

arising from any dn free-ion term are the same as those in an octahedral field,

except the labels for the tetrahedral terms omit the subscript g notation.

However, the energies of the new terms in the tetrahedral field have an in-

verted order. To understand this, recall that the splitting of d orbitals into e

and t2 levels in a tetrahedral field is the inverse of the splitting into t2g and eg
levels in an octahedral field. As this suggests, the tetrahedral and octahedral

fields have similar but opposite effects on the d orbitals. The same is true for

the terms arising from dn configurations. Thus, the correlation diagram for

dn(Td) can be obtained by reversing the order of the sets of terms for the vari-

ous t2geg configurations on the strong-field side of the dtl(Oh) diagram, rela-

beling for the appropriate dn tetrahedral configurations, omitting the subscript

g notations from all terms, and redrawing the connecting lines, paying atten-

tion to the noncrossing rule. This is essentially the same process we have seen

for configurations related by hole formalism. Therefore, the correlation dia-

gram for dn(Td) is qualitatively the same as that for d l0~n(Oh ), except for mi-

nor changes in labels of configurations and term symbols. For example, the

d2(Oh) correlation shown in Fig. 7.24 is essentially the same as the correla-

tion for d8(Td), and the d8(Oh ) correlation shown in Fig. 7.26 is essentially the

same as the correlation for d2{Td).

*The ordering of terms within each set is arbitrarily chosen for convenience in drawing the dia-

grams and therefore has no significance regarding relative energies within the set.
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Figure 7.26 Correlation diagram for a ds ion in an octahedral environment.
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The diagrams we have just constructed only show the splitting of terms

and suggest very qualitatively the senses of energy changes among the new
terms as the field strength varies. In actual practice, most chemists refer to a

more detailed set of semiempirical diagrams for octahedral complexes, origi-

nally developed by Yukito Tanabe and Satoru Sugano in 1954.* A complete

set of these diagrams for octahedral complexes of metal ions with the config-

urations d2 through d8 is shown in Appendix D. f The unique parameters and

plotting methods of the Tanabe and Sugano diagrams can be understood by

referring to a specific example, such as the d7
case shown in Fig. 7.27. Like

our qualitative correlation diagrams, these diagrams are plots of term energy

versus field strength. However, the energies of all states are plotted relative

to the energy of the ground-state term; that is, the ground-state energy forms

the abscissa of the plot. Moreover, the term energies and field strengths are

expressed as the variables E/B and AIB, respectively, where B is the Racah

parameter. The Racah parameter is a measure of the interelectronic repulsion

and is used to measure the energy difference between states of the same spin

multiplicity. For example, in the d7
case the difference between the

4F and 4P
free-ion terms is 15B, which for Co2+ is approximately 14,500 cm

-1
. By us-

*Y. Tanabe and S. Sugano, J. Phys. Soc. Japan , 1954, 9, 753 and 766.

tDiagrams for d l and d9 are not needed, since the diagrams shown in Figure 7.25 are complete

for those simple cases.

0 10 20 30 40 50

MB

Figure 7.27 Tanabe and Sugano di-

agram for d1 octahedral complexes.

[Adapted with permission from Y.

Tanabe and S. Sugano, J. Phys. Soc.

Japan 1954, 9, 766.]
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ing the appropriate values of the Racah parameter, the Tanabe and Sugano
diagrams can be used with a variety of metal ions and complexes. The d1

di-

agram, like all such diagrams for configurations that may be either high spin

or low spin, has a perpendicular line near the middle marking the change in

spin state. To the left of the line (low field strength, high spin), the ground

state is
4
7\ ,

emerging from the free-ion
4Fterm.* To the right of the line (high

field strength, low spin) the ground state is
2
E, and therefore it becomes the

abscissa beyond the spin-state crossover point. There is no discontinuity in

this. The high-spin
2E ground state is a continuation of the line for the low-

spin excited-state
2E term, which emerges from the

2G free-ion term. Note

that the line for the former high-spin ground-state
4
7\ term ascends as an ex-

cited state on the low-spin (right) side of the diagram. With many lines emerg-

ing from certain free-ion terms, it sometimes can be difficult to trace back the

free-ion origin of some of the octahedral terms, particularly on the diagrams

for high-spin/low-spin configurations. Keep in mind that the spin multiplici-

ties of the split terms must match those of the free-ion terms. Failure to rec-

ognize this has caused some texts to erroneously render the d6 diagram (cf.

Appendix D) with the high-spin ground-state
lA x term emerging from the

3D
free-ion term, rather than the correct

l
I term. 1

7.6 Electronic Spectra of Transition Metal Complexes

Perhaps the most striking feature of transition metal complexes is the array

of colors they present. Color results when a complex absorbs frequencies in

the visible region of the spectrum, causing transitions from the ground elec-

tronic state to certain of the excited states of the configuration. Since the elec-

tronic states arise from ^-electron configurations on the metal ion, the ab-

sorptions are said to result from d-d transitions. The unabsorbed portion of

the spectrum is transmitted, and results in the perceived color. Figure 7.28

shows the visible absorption spectra of [M(H20)6 ]

n+ complexes of first-row

transition metal ions in aqueous solution. For example, the d 1
ion [Ti(H20)6]

3+

has maximum absorbance at 20,000 cm
-1

,
corresponding to green light. The

transmitted frequencies are red and to a lesser extent blue, which combine to

give the characteristic purple color of the ion in solution.

The absorption of a complex ion at a given wavelength follows the Beer-

Lambert law

A = log(///0) = ecb (7.15)

where A is the absorbance, 70 is the intensity of the incident radiation, I is the

transmitted intensity, e is the molar absorptivity, c is the molar concentration,

and b is the path length of the light through the sample. With constant con-

centration and fixed path length it is customary to plot the spectra as ab-

*All octahedral terms warrant the use of the subscript g notation. However, since there is no am-

biguity, in the Tanabe and Sugano diagrams the g is customarily omitted for clarity.

fA. L. Hormann and C. F. Shaw, J. Chem. Educ. 1987
, 64, 918.
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nm nm

Figure 7.28 Electronic spectra of aqueous solutions of [M(H20)6]

n+ complexes of

first-row transition metals. [Reproduced with permission from B. N. Figgis,

Introduction to Ligand Fields
, Wiley-Interscience, New York, 1966, pp. 221 and 224.]

sorptivity (e) versus frequency or wavelength. As the examples shown in Fig.

7.28 indicate, the molar absorptivities at the maximum absorbing frequencies

in the visible region are relatively low for d-d transitions of octahedral com-
plexes (e.g., e ~ 5 - 100). By contrast, other systems, such as organic dyes,
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show values of molar absorptivities that are often >104
.* The e values are low

for visible absorptions of complex ions because the electronic transitions are

actually forbidden by either or both of the following two quantum mechani-

cal selection rules:

1. LaPorte’s Rule. If the system is centrosymmetric, transitions between

states with the same inversion symmetry (g -» g, u->u) are forbidden,

but transitions between states of different inversion symmetries (g u
,

g) are allowed.

2. Spin Multiplicity Rule. Transitions between states with different spin mul-

tiplicities are forbidden.

These selection rules, which would seem to preclude any visible absorption

spectra for octahedral complexes, are clearly violated routinely, as evidenced

by the colors that are so characteristic of transition metal compounds. We can

understand the mechanisms by which these rules break down by considering

the symmetry of the transition moments.

For purposes of molecular spectroscopy we routinely assume that the in-

ternal energy of the system can be expressed as the sum of rotational, vibra-

tional, and electronic contributions,

for which the individual energies are given by separate Schrodinger equations

of the form #i[/ = Ety. By this model, the absorption spectra of metal com-

plexes involve one or more transitions between an electronic ground state \\fe

and some excited state v|i'e . The transition will be observable as a band in the

absorption spectrum if there is a nonzero transition moment of the form

in which p is the electronic dipole moment operator, whose components re-

solve as p = px + py + pz . As we saw in connection with vibrational spectra

(cf. Section 6.2), Me will be nonzero if the symmetry of the transition belongs

to the totally symmetric representation, which for Oh is A lg . The product

tyeptye in Eq. (7.16) can be totally symmetric only if the product of two of

the terms is the same symmetry species as the third. Now in Oh x, y, and z

transform as 7\M ,
which is then the symmetry of the electric dipole moment

operator. However, we know that all the i|je ’s are gerade for an octahedral

complex. Thus, the product i|fep^ e
' must be ungerade (g X u X g = u) and

*In addition to d-d transitions, transition metal complexes typically have charge transfer transi-

tions between the metal ion and the ligands (M—»L or M<—L). These have very high molar ab-

sorptivities, but the absorption usually falls in the ultraviolet region. Here we are only concerned

with transitions in the visible region.

Eint - Er + Ev + Ee

This implies that the overall wave function is

'F = i|;ri|ivi|ie

(7.16)
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cannot be totally symmetric. In principle, then, Eq. (7.16) must always be zero

for an octahedral complex, as stipulated by LaPorte’s rule.

Transitions do occur because the electronic wave functions are not fully

independent of the vibrational functions. This means that the appropriate in-

tegral has a form such as

This v/frrational-electromc interaction is called vibronic coupling. As we saw

in Section 6.2, the vibrational ground state is totally symmetric, so iM>v has

the same symmetry as v|fe alone. Thus, inclusion of i|iv in Eq. (7.17) does not

affect the symmetry of the transition from what we had previously. However,

i|/ v
' may have the symmetry of any of the normal modes of the complex.

Regardless of the vibrational spectroscopic activity, if any one of these has the

appropriate symmetry so that the direct product \\fv
f

contains the to-

tally symmetric representation, the integral will not vanish. Regardless of the

electronic terms involved, we know that is ungerade, so i|j v
' must have

an identical ungerade symmetry in order for the entire product \\fefUL\\f e
r

\\iv
f

to

contain the totally symmetric representation. For example, in the case of a dl

ion in an octahedral field the only possible electronic transition is from the
2
Tis ground state to the

2Eg excited state (cf. Fig. 7.25). The symmetry of

is given by the direct product 2T2g X Tlu X Eg . Multiplying the char-

acters of these irreducible representations gives the reducible representation

oh E 00•P 6C2 6C4 3C2 i 6S4 8S6 3 orh 6od

re 18 0 0 0 2 -18 0 0 -2 0

which gives Ye = A Xu + Mu + 2Eu + 2Tlu + 2T2u . As expected, all species

are ungerade. If any one of these matches with the symmetry of a normal

mode, then the direct product for \\fe pL\\f e
r

\\f v
r

will contain the totally sym-

metric representation, and the integral for the transition moment will not

vanish. Now, the 3n-6 normal modes of an octahedral ML6 complex (cf.

Section 6.1 and Appendix C) are T3n _6 = A ig + Eg + 2Tlu + T2g + T2u . As
we see, within Te and r3„_6 there are matches of TXu and T2u ,

which means
the

2T2g->
2Eg transition is vibronically allowed through possible coupling

with the normal modes v3(Tlu), vA(Tlu), and v6(T2u ). By a similar analysis, it

can be shown that the possible electronic transitions for any octahedral com-
plex will be vibronically allowed.

Note that the normal modes responsible for the breakdown of the LaPorte
rule are those in which the vibration destroys the center of symmetry. Of
course, static loss of centrosymmetry would have the same result, as in the Z)3

complex [Co(en)3]

2+
. However, whether static or dynamic, such perturba-

tions from ideal centrosymmetry are minor, and the resulting molar absorp-

tivities are small. By contrast, the LaPorte rule does not apply to tetrahedral,

trigonal bipyramidal, and other noncentrosymmetric complexes. As might be
expected, such species tend to have higher molar absorptivities (e 100-200),

(7.17)
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but not as high as some other LaPorte-allowed transitions. All complex ions

show very high absorbance at higher frequencies, usually in the ultraviolet re-

gion, due to metal-ligand charge transfer transitions. These are g<—>u, al-

lowed by the LaPorte rule, and accordingly have very high molar absorptivi-

ties (e ~ 10,000).

We can understand the origin of the spin multiplicity selection rule if we
recognize that \\te consists of both orbital and spin contributions; that is, v|te =
v|;0i|i5 . On this basis we might rewrite Eq. (7.17) as

Building on our previous analysis of the LaPorte rule, this can only be non-

vanishing if = i\f s
', which means the two wave functions have the same

overall spin quantum number, S. Otherwise, the symmetry of the transition,

which is totally symmetric on the basis of the orbital and vibrational terms,

would change and not be totally symmetric.

Despite the spin multiplicity rule, transitions between different spin states

do occur, although with molar absorptivities that are even smaller than those

for LaPorte-forbidden transitions. In a spectrum with bands from vibroni-

cally-allowed transitions with the same multiplicity, spin-forbidden transitions

are likely to be too weak to be observed. However, in d5
high-spin complexes,

the only conceivable d-d transitions are spin forbidden and give rise to bands

with molar absorptivities typically 0.01-1. For example, Fig. 7.28 shows the

visible spectrum of [Mn(H20)6]

2+
,
which has many weak bands with e < 0.4.

The weak intensity of these bands accounts for the barely perceptible faint

pink color of this complex in solution.

Spin-forbidden transitions occur because of spin-orbital coupling. As we
have noted (cf. Section 7.4), the Russell-Saunders coupling scheme, which as-

sumes separately definable L and S values, is only an approximation, which

becomes less valid with the heavier transition metals. As a result, spin-for-

bidden transitions are more common among second and third series transi-

tion metal complexes.

The observed spectra of octahedral transition metal complexes can be as-

signed on the basis of the Tanabe and Sugano diagrams. All transitions are

presumed to originate from the ground-state term to the various upper-state

terms. The absorption spectra of most transition metal complexes, except as

noted, consist principally of bands arising from transitions that are LaPorte-

forbidden (vibronically allowed) and spin-allowed. Therefore, the most in-

tense bands arise from transitions to excited states with the same spin multi-

plicity as the ground state term. For example, for a d1
high-spin octahedral

complex, the Tanabe and Sugano diagram (cf. Fig. 7.27, left side) leads us to

expect three spin-allowed transitions:
4Tig(F) —>

4T2g(F),
4Tlg(F) —>

4A2g ,

4Tlg(F)
4Tlg(P). For [Co(H20)6 ]

2+
these bands are observed at 8000 cm -1

,

19,600 cm-1
,
and 21,600 cm

-1
,
respectively (cf. Fig. 7.28).

(7.18)
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In our discussion of correlation diagrams (Section 7.4) we noted that the

term splittings are reversed for dn and d l0~n
configurations of the same sym-

metry, and likewise they are reversed for dn(Oh ) and dn(Td) cases. These re-

lationships are used to advantage in an abbreviated set of correlation dia-

grams, originally devised by Orgel,** which may be used to predict the

spin-allowed transitions of octahedral and tetrahedral high-spin complexes.

Since the Orgel diagrams are only intended for use with spin-allowed transi-

tions, no correlations are shown for states with different spin multiplicities

from that of the ground-state term. Consequently, there is no Orgel diagram

for d5
,
since only spin-forbidden transitions are possible for the high-spin

case. Moreover, the Orgel diagrams cannot be used to interpret the spectra

of low-spin complexes. These restrictions allow the Orgel diagrams to take

advantage of yet another relationship between correlation diagrams, which

can be verified by inspecting the Tanabe and Sugano diagrams: In the same

ligand field (

O

h or Td), terms with the same spin multiplicity as the ground state

have identical splitting patterns for dn and dn±5 configurations. With this and

the previously identified relationships, the Orgel diagrams are related to each

other as follows:

1. dn(Oh ) and dn±5 (

O

h ) have the same diagram.

2. dn(Td) and dn± 5
(Td) have the same diagram.

3. dn
,
dn±5 (Oh ) is the reverse of dn

,
dn±5 (Td), and vice versa.

4. dn(Oh ) is the reverse of d10~ n
(

O

h ), and dn(Td) is the reverse of d10~n(Td).

As a result, we need only two diagrams, both of which are easily committed

to memory.

The simpler of the two Orgel diagrams (Fig. 7.29, top) can be generated

by extrapolating the lines for the term splitting scheme for the d 1
octahedral

case to the left side of the diagram (cf. Fig. 7.25). By the relationships we have

seen, the right side becomes the diagram for d1 and d6 octahedral and d4 and

d9
tetrahedral complexes, and the left side becomes the diagram for d4 and

d9
octahedral and df and d6 tetrahedral complexes. For these cases, the spec-

trum is expected to show a single band (

T

2—>£ or E-^Tf). The separation be-

tween the two states is A0 or A
t as the case may be, so the observed frequency

corresponds to the crystal field splitting energy.

The diagram generated from the d2
octahedral case is more complex but

its construction employs the same principles (cf. Fig. 7.29, bottom). This is the

diagram for d2 and d7
octahedral and d3 and d8

tetrahedral complexes on the

right, and d3 and d8
octahedral and d2 and d7

tetrahedral complexes on the

left. The correlation lines for the Ti(F) and 7\(P) states curve away from
each other as a consequence of the noncrossing rule (cf. Section 7.4). The
straight-line projections for these terms (without mutual repulsions) are

*L. E. Orgel, J. Chem. Phys. 1955, 23, 1004 and 1819.
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d}, d6 tetrahedral d l
, d

&
octahedral

d4
,
d9 octahedral d4

,
d9 tetrahedral

Figure 7.29 Orgel diagrams for interpreting spectra of octahedral and tetrahedral

complexes. [Adapted with permission from L. E. Orgel, J. Chem. Phys. 1955, 23,

1004.]

shown as dashed lines in Fig. 7.29. In general, three absorption bands are ex-

pected for complexes covered by this diagram. For complexes treated by the

left side of the diagram, the crystal field splitting energy (A0 or A
t ) can be ob-

tained directly from the lowest frequency band in the visible absorption spec-

trum (assigned as v{). For complexes treated by the right side of the diagram,

however, the crystal field splitting cannot be obtained directly, owing to the

mutual repulsion of the two 7\ states. In these cases it is necessary to carry

out a calculation involving estimation of the Racah parameter. Details of this

process are given in some advanced inorganic chemistry texts.*

*For example, see B. E. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts and Models of

Inorganic Chemistry, 3rd ed., John Wiley & Sons, New York, 1994, p. 252; or G. L. Miessler and

D. A. Tarr, Inorganic Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 331-333.
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The Orgel diagrams (and also the corresponding Tanabe and Sugano di-

agrams) predict either one or three bands for the absorption spectra of octa-

hedral complexes. As examination of Fig. 7.28 reveals, actual spectra do not

always show this ideal behavior. For example, note that the spectrum of

[Ti(H20)6]

3+ shows evidence of two bands, rather than the expected one

band from a
2T2g-^

2Eg transition. This is the consequence of the Jahn-Teller

effect (cf. Section 7.2). Both the ground-state and excited-state terms are sub-

ject to distortion, but the doubly degenerate
2Eg excited state-term is ex-

pected to experience the more pronounced distortion. If we assume a tetra-

gonal distortion leading to D4h , the excited state will be split into two new
terms,

2A lg and
2B lg . The relative energy ordering of these new terms cannot

be predicted, since it will depend on the nature of the distortion (e.g.,
2A lg <

2B lg for a stretching distortion along z). Regardless of the ordering of the new
terms the observed effect is the same. Ignoring any splitting of the ground-

state term, the splitting of the excited state gives rise to two possible transi-

tions (Fig. 7.30), which account for the band shape in the spectrum of

[Ti(H20)6 ]

3+ shown in Fig. 7.28. Similar evidence of band splitting from

Jahn-Teller distortions, either in the ground state or an excited state, can be

found in some of the other spectra shown in Fig. 7.28.

While Jahn-Teller effects create additional features, some spectra, such

as that of [V(H20)6]

3+ shown in Fig. 7.28, have only two bands when three

are expected from the Orgel diagram. In these cases the highest energy band

(v3 ) either falls in the ultraviolet, beyond the region shown, or is obscured by

the tail of the very strong LaPorte-allowed charge-transfer band in the ultra-

violet. For example, in the case of [V(H20)6]

3+
the missing band, which cor-

responds to a
3Tlg(F)^

3A2g transition, is estimated to lie at about 36,000

cm
-1

. Since this transition corresponds to the simultaneous excitation of two

electrons, the band is expected to have an extremely low molar absorptivity.

This prevents it from being observed in a region where the charge transfer

bands are beginning to rise in intensity.*

*B. N. Figgis, Introduction to Ligand Fields, Wiley-Interscience, New York, 1966, pp. 218-220.

-En

Tetragonal distortion —>

Figure 7.30 Jahn-Teller splitting of the
2Eg

excited state by a tetragonal distortion of a d 1

octahedral complex creates two possible spin-

allowed transitions. For simplicity, Jahn-Teller

distortion of the
2
T2g ground state has been

ignored. The ordering shown for the split terms
2A lg and

2B lg presumes a tetragonal distortion

involving a stretch along z. In general, neither

the nature of the distortion nor the ordering of

split terms can be predicted.
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Problems

7.1 In the gas-phase synthesis of buckminsterfullerene, C6o, it is possible to trap one

or more metal atoms inside the “bucky ball.” Such endohedrally doped fullerenes,

as they are called, are given formulas of the type M„@C60 . Suppose a single

transition metal ion having some dn - configuration (n ± 0) were trapped in the

center of a “bucky ball,” forming the species M@C60 . How would you expect

the energies of the d orbitals to be affected by this environment?

7.2 Determine the CFT splitting among d orbitals in ligand fields with the follow-

ing geometries. In each case, label the levels by Mulliken symbol and specific d

orbitals, (a) ML2—linear; (b) ML3—trigonal planar; (c) ML5—trigonal bipyra-

midal; (d) ML5—square pyramidal; (e) ML6—trigonal antiprismatic; (f) ML7
—

capped trigonal prismatic (the capped position is above one rectangular face of

the trigonal prism); (g) ML7—pentagonal bipyramidal; (h) ML8—square an-

tiprismatic; (i) ML8—cubic; (j) ML9—tricapped trigonal prismatic.

7.3 For an octahedral ML6 complex, show the effects on the orbital energies of the

t2g and eg levels from an orthorhombic distortion in which the two positions

along z are stretched (r' ±z > r±z ) and the two positions along x are equally

compressed (r' ±x < r±x). Is this a possible Jahn-Teller distortion?

7.4 In the manner shown in Section 7.1 for Oh ,
demonstrate that in the environ-

ment of a tetrahedral ML4 complex (Td) the operations of C3 and C\ make the

d orbitals of the t2 set degenerate with each other and make those of the e set

degenerate with each other.

7.5 We have noted that no operation of Oh interconverts the t2g and eg sets of d or-

bitals. Suppose you could add additional symmetry operations to an octahe-

dron, with the only stipulation being that the new element(s) be coincident with

the existing elements of Oh . What symmetry operations would you add to make
the t2g and eg sets of d orbitals equivalent? [Hint: It may be useful to consider

the d2z2_x2_y2 orbital as a combination of wave functions for the unconventional

orbitals dz
2_x2 and dz2-3,2:

z z z

These wave functions are among six that define orbitals with the familiar four-

lobed “cloverleaf” form seen for dxy ,
dyz , dzx,

and dx2_yz. Like dx2_y2, the lobes

of dz
2_x2 and dz

2_
y
2 lie along the axes indicated in the subscripts. Owing to re-

strictions on the quantum number mh only five functions can have physical sig-

nificance, so the dz
2—y

2 and dz
2_x2 functions are customarily discarded in favor
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of a single function, the conventional dz
2 wave function (here, d2z2-x2-y2), with

the form

d2z2-x2-y2 = (1lV2)(dz
i-x2 + df-yi)

For the purposes of this exercise, take these two components as if they had in-

dependent existence.]

7.6 Using Eqs. (7.2)-(7.6), verify that the five d orbitals of a central metal ion in a

complex with the following point group symmetries transform by the irreducible

representations indicated in the character tables: (a) D3h ,
(b) D2h, (c) C4v ,

(d)

Ih (Use the subgroup I and correlate the results to Ih .)

7.7 As in Problem 7.6, determine the irreducible representations by which the

seven /orbitals transform in the following point groups: (a) Td ,
(b) Oh ,

(c) D4h ,

(d) D3d .

7.8 Consider square planar ML4 transition metal complexes, (a) What configura-

tions of d electrons would cause Jahn-Teller distortions? (b) What kinds of

Jahn-Teller distortions might be expected for such complexes? (c) Why are vir-

tually all ML4 square planar complexes undistorted?

7.9 Consider a trigonal bipyramidal ML5 transition metal complex.

(a) Construct a simplified sigma-only MO scheme, assuming that only (n - l)d

orbitals on the central metal participate in bonding interactions with ligand cr-

SALCs (i.e., ignore interactions with metal ns and np AOs). Assume that the

energies of the SALCs lie lower than those of the metal AOs.

(b) How does the electron filling in this MO scheme compare with the pre-

sumed filling in the d orbitals in the CFT model?

(c) Sketch the LCAOs of the bonding MOs formed between the metal d orbitals

and their matching cr-SALCs.

(d) If the metal’s ns and np orbitals were included in your model, with which

SALCs could they potentially form bonding and antibonding combinations?

How might your simplified MO scheme need to be modified to accommodate

these additional interactions?

7.10

Consider a square pyramidal ML5 transition metal complex. Assume that M is

slightly above the basal plane, such that 6, the angle between the axial bond and

the four basal bonds, falls within the range 90° < 6 < 109.5°.

(a) Determine the symmetries of cr-SALCs for the five ligands, and determine

the symmetries of the (n - 1 )d, ns, and np AOs on M.

(b) Sketch the LCAOs for the bonding combinations between metal AOs and

ligand o--SALCs. Where two metal AOs compete for overlap with the same
SALC, decide on the basis of your sketches which one will form the more ef-

fective bonding and antibonding interactions, and assume that the other AO is

essentially nonbonding.

(c) Construct a qualitative MO scheme. (Do not be concerned about the exact

order of bonding MOs filled by ligand electrons or that of their antibonding

counterparts.)

(d) How does the filling of electrons in your MO scheme compare with the pre-

sumed filling in the d orbitals in the CFT model?

4



258 Chapter 7 Transition Metal Complexes

7.11 Consider a linear ML2 transition metal complex.

(a) Determine the symmetries of both (7-SALCs and 7t-SALCs.

(b) Assuming that ligand p orbitals are used for both sigma and pi-bonding,

sketch the forms and write mathematical expressions for the a- and 7t-SALCs.

(c) Identify the symmetries of (n
-

1 )d, ns, and np AOs on the central metal.

Indicate which AOs can form bonding and antibonding interactions with ligand

a- and 7t-SALCs. Are any AOs or SALCs nonbonding on the basis of symme-
try?

(d) Propose a qualitative MO scheme. Note any simplifying assumptions you

have made. Discuss how your scheme would need to be modified if these as-

sumptions proved to be invalid in a specific case.

7.12 Consider a square planar ML4 transition metal complex.

(a) Determine the symmetries of both cr-SALCs and 7t-SALCs.

(b) Identify the symmetries of (n - 1 )d, ns, and np AOs on the central metal.

Indicate which AOs can form bonding and antibonding interactions with ligand

cr- and 7r-SALCs. Are any AOs or SALCs nonbonding on the basis of symme-

try?

(c) Assuming that ligand p orbitals are used for both sigma and pi bonding,

write mathematical expressions for the cr- and 7r-SALCs.

(d) Sketch the LCAOs of bonding and nonbonding MOs.

7.13 Verify that the free-ion terms G, H, and I from d orbital configurations in an

octahedral field split into the ligand-field terms shown in Table 7.2. Would the

orbitals g, h, and i split in the same ways?

7.14 Given Table 7.2, work out the ligand-field terms corresponding to the free-ion

terms S, P, D, F, G, H, I from d orbital configurations in the following point

groups: (a) D4h ,
(b) D3 ,

(c) D2d, (d) D aeh .

7.15 Consider an octahedral ML6 transition metal complex with a d7
low-spin con-

figuration.

(a) The ground-state ligand-field term is
2Eg . Using “line-and-arrow” notation

(e.g., J_), show the microstates giving rise to this term.

(b) The ground-state ligand-field term originates from a
2G free-ion term. What

other ligand-field terms originate from 2G?

(c) How many microstates comprise the
2G term? Show that the complete set

of ligand-field terms originating from 2G is composed of the same total number

of microstates.

7.16 Why do configurations dn and dw
~n

give rise to identical ligand-field terms in

any given complex ion environment?

7.17 Using a procedure similar to that described for the d2 octahedral case, construct

the correlation diagram for a d2 ion in a tetrahedral field.

7.18 Develop the correlation diagram for a d9 ion in a square planar field. Assume

that the d orbital energies are ordered as shown on the extreme right side of

Fig. 7.9.
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7.19 Give explanations for the following:

(a) FeFe
-

is colorless, but Fe(CN)6~ is red.

(b) Molar absorptivities for absorption bands in the visible spectra of ML4 tetra-

hedral complexes tend to be higher than those of ML6 octahedral complexes.

(c) The visible spectrum of [Cr(H20)6]

3+ shows two bands (cf. Fig. 7.28).

(d) The visible spectrum of [Fe(H20)6]

2+ shows one band with two distinct

maxima (cf. Fig. 7.28).

(e) Cr0 4

_
and Mn0 4 are intensely colored ions, despite the d° configuration

of the central transition metal.

7.20 Consider a d8
square planar ML4 transition-metal complex.

(a) Assuming the d orbital energy sequence shown on the extreme right of Fig.

7.9, the singlet states in order of increasing energy correspond to the following

configurations: eg
4
a lg

2
b2g

2 < eg
4
a x

2
b2g b Xg < eg aXg b2g b\g < eg aXg b2g bXg .

Determine the ligand-field term symbols for these four states.

(b) The configurations given in part (a) suggest three possible spin-allowed

transitions. Identify them, using state-to-state notation (e.g., for d 1 Oh , the sin-

gle spin-allowed transition is
2T2g-^

2Eg).

(c) Since square planar complexes are centrosymmetric, d-d electronic transi-

tions are LaPorte-forbidden. As with octahedral complexes, such transitions are

spectroscopically observable because they are vibronically allowed. Which spe-

cific normal modes of square planar ML4 couple with each of the three spin-al-

lowed electronic transitions to make them vibronically allowed?
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APPENDIX A

Point Group Character Tables

1. The Nonaxial Groups

Cl E

A 1

Cs E Ch

A' 1 1 x, y, Rz *:
2

, y
2

.

•2
, xy

A" 1 -1 Z, Rx, Ry yz, xz

Q E i

A

g

1 1 RX ,
Ry, Rz

2 2 2x
, y , z

xy, xz, yz

Au 1 -1 x, y, z

The Cn Groups

C2 E C2

A 1 1 z, Rz

2 2 2x ,y , z ,xy

B 1 -1 x, y, Rx ,
Ry yz, xz

C3 E c3 cl e = exp(27ri/3)

A 1 1 1 z, Rz x2 + y
2

, z
2

ji e e*j
E

ii e* e J (x, y), (Rx ,
Ry) (x

2 - y
2

,
xy), (yz, xz)

c4 E C4 C2 Cj

A 1 1 1 1 z, Rz x2 + y
2

, z
2

B 1 -1 1 -1 x2 — y
2

, xy

E
I

1 i -1 -i]

u —i -1 ii (x , y ), (Rx ,
Ry) (yz, xz)
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Cl Cl ci e = exp(27ri/5)

A

Ei
e
2

e
2* e

* e
2* e

2
e

2 *
6

e
2*

2*

z, Rz

(x, y), (Rx ,
Ry)

x2 + y
2

, z
2

(yz , xz)

(x
2 - y

2
,
xy)

C6 jE c6 C3 c2 'Cl Cl

A 1 1 1 1 1 1

B 1 -1 1 -1 1 -1

T7 [i e — e* -1 — € «*1

[i e* — e -1 — 6* el

Z

T

fi — e* — e 1 — 6* ~e]
i^2

li — e — 6* 1 — € ~e*Jf

c7 £ c7 C? C7
3 C7

4
cl cl

A i 1 1 1 1 1 1

77 i
e 6

2
6
3

e
3* e

2* e*

Ex
1T e* £

2* e
3* e

3
6
2

6

77 i

[l £
2

£
3* e* e e

3
€
2*

E2
111 e

2* £
3

e £* e
3* e

2

i
[l 6

3 £* 6
2

e
2* 6 €

3*

e3
1[l e

3* e e
2* £

2 6* €
3

E Cg c4 cl c2 cf c4
3 c

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 6 i — e* -1 — € —i e

1 e* |-i — € -1 — 6* i e

1 i -1 —i 1 i -1 —i

1 -i -1 i 1 —i -1 i

1 -€ i e* -1 6 —

i

— 6

1 -e* —i 6 -1 e* i — €

z, Rz

(x> y)>

(Rx ,
Ry)

e = exp(27n'/6)

x2 + y
2

, z
2

(xz, yz)

(x
2 - y

2
,
xy)

z, Rz

(x, y),

(Rx, Ry)

e = exp(2m/l)

x2 + y
2

, z
2

(xz, yz)

(x
2 - y

2
,
xy)

e = exp(27rcV8)

A
B

Ex

E2

e3

z, Rz

(x , y),

(Ry, Ry)

x
2 + y

2
, z

2

(xz, yz)

(x
2 - y

2
, xy)

3. The Dn Groups

D2 E C2(z) c2(y) C2(x)

A 1 1 1 1
2 2 2

xr, y,
*1 1 1 -1 -1 z, Rz xy

#2 1 -1 1 -1
y, Ry xz

b3 1 -1 -1 1 x, Rx yz
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D3 E 2C3 3C2

A\ 1 1 1 x2 + y
2

, z
2

A 2 1 1 -1 z, Rz

E 2 -1 0 (x, y), (Rx ,Ry) (x
2 ~ y

2
,
xy), (.xz

, yz)

d4 E 2C4 C2 (=
IIo -fc-N) 2C’2 2C'i

A\ 1 1 1 1 1 x2 + y
2

, Z
2

A2 1 1 1 -1 -1 z, Rz

B i 1 -1 1 1 -1 x2 — y
2

b2 1 -1 1 -1 1 xy

E 2 0 2 0 0 (x, y), (Rx , Ry) (xz, yz)

d5 E 2C5 2C| 5C2

Ai 1 1 1 1 x2 + y
2

, z
2

a2 1 1 1 -1 z, Rz

Ex 2 2 cos 12° 2 cos 144° 0 (x, y), (Rx , Ry) (xz, yz)

E

2

2 2 cos 144° 2 cos 72° 0 (x
2 - y

2
, xy)

D6 E 2C6 2C3 C2 3C2 3C2

A\ 1 1 1 1 1 1 x2 + y
2

, z
2

a2 1 1 1 1 -1 -1 z, Rz

B i
1 -1 1 -1 1 -1

b2 1 -1 1 -1 -1 1

Ex 2 1 -1 -2 0 0 (x, y), (Rx , Ry) (xz, yz)

E

2

2 -1 -1 2 0 0 (x
2 - y

2
, xy)

The Cnv Groups

c2v E c2 <rv(xz)i crl(yz)

A\ 1 1 1 1 z x2
, y

2
, z

2

a2 1 1 -1 -1 Rz xy

B\ 1 -1 1 -1 x, Ry xz

b2 1 -1 -1 1 y, Rx yz

C?>V E 2C3 3crv

A
! 1 1 1 z x2 + y

2
, z

2

a2 1 1 -1 Rz
E 2 -1 0 (x, y), (Rx ,

Ry) (x
2 - y

2
,
xy), (xz, yz)
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C4V E 2C4 C2 2crv 2crd

Ai 1 1 1 1 1 z x2 + y
2

, z
2

A 2 1 1 1 -1 1
B\ 1 -1 1 1 1 x2 - y

2

b2 1 -1 1 -f 1 xy

E 2 0

\

-2 0 0 (a;, y), (Rx ,
Ry) (xz, yz)

c5v E 2C5 2Cl 5av

A\ 1 1 1 1 z x
2 + y

2
, z

2

A2 1 1 1 -1 Rz
E,

2 2 cos 72° 2 cos 144° 0 (x, y), (R «, R v ) (xz, yz)

E2 2 2 cos 144° 2 cos 72 c)

0 (x
2 ~ y

2
, xy)

Qv E 2C6 2C3 C2 3fjv 3cr
rf

A\ 1 1 1 1 1 1 z x2 + y
2

, z
2

1 1 1 1 -1 -1 Rz

B 1
1 -1 1 -1 1 -1

b2 1 -1 1 -1 -1 1

£1 2 1 -1 -2 0 0 (X, y), («*, £r ) (xz, yz)

E2 2 -1 -1 2 0 0 (x
2 - y

2
, xy)

5. The Cnh Groups

C2h E c2 i (Th

Ag 1 1 1 1
222

•r
, y , z ,

xy

Bg 1 -1 1 -1 xz, yz

Au 1 1 -
1 -1 Z

Bu 1 -1 -
1 1 x,y

C^h E C3 Cl (Th S3 S 3
5

e — exp(27nV3)

A' 1 1 1 1 1 1 Rz x2 + y
2

, z
2

E'
{!

e

e*

e*

6

1

1

€

6* D (x,y) (x
2 - y

2
, xy)

A" 1 1 1 -1 -1 -1 z

E"
c

6

e*

e*

6

-1
-1

— e

— e*
(Rx, Ry) (xz, yz)
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'Ah

B,

'5h

c4 c2 Cl i Sl (Th s4

1 1 1 1 1 1 i x2 + y
2

, z
2

-1 1 -1 1 -1 1 -l 2 2x - y , xy

i

—i

-1
-1

—i

i

1

1

"i

—i

-1
-1 (R„ Ry) (xz, yz)

1 1 1 -1 -1 -i -l z

-1 1 -1 -1 1 -l i

i

—i

-1
-1

—i

i

-1
-1

—i

i

i

i -ii
(x, y)

C5 Cl Cl Ct (Th S5 Sl sl sl

1 1 1 1 1 1 1 1 1

e e
2

e
2* e* 1 e e

2
e
2* 6* 1

e* e
2* e

2
e 1 e* e

2* e
2

e ]

e
2

e* e e
2*

1 e
2

e* e f
2
*]

e
2* € e* e

2
1 e

2* e 6* A
1 1 1 1 -1 -1 -1 -1 -1

6 e
2

e
2* 6* -1 — € -e2 -e2* — e* 1

e* e
2* e

2
e -1 -e* — e

2* -e2 -e ]

e
2

e* € e
2* -1 -e2 -e* — e —

e

2
*]

e
2* e 6* e

2 -1 -e2* — e — €* -A
c6 c3 C2 cl cl i Sl ^6 (Th s6 s3

e — exp(27n/5)

A'

E[

E '

2

A"

E'{

E\

C6h

x2 + y
2

, z
2

(x
2 - y

2
, xy)

(xz, yz)

€ = eXp(2 777/6)

B c
-1

1

-1 -1
1

-1

fi € 1
fT\
* -1 — e e* 1 6 — e* -1 — e e

'lg

u e* — e -1 — e* 6 1 e* — e -1 — e* €

1

— e* — e 1 — e* — e 1 — e* — e 1 — e* — €
;2g

1[1 — e — e* 1 - 6 -e* 1 — 6 — e* 1 — e — e
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

'u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

j

[1 e — e* -1 — 6 e* -1 — e e* 1 6 -e 5

lu
1Li e* — e -1 — €* 6 -1 — e* e 1 6* — e

I

— e* — 6 1 — e* — 6 -1 e* e -1 6* €
'2u

1,1 — € — e* 1 — e — e* -1 6 e* -1 e 6

R.

(RX ,
Ry)

x2 + y
2

, Z
2

(xz, yz)

(x
2 - y

2
, xy)

(x,y)
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6. The Dnh Groups

D3h 2G» 3Co o-h 2S3 3crv

A[

A'z

E
A\

A2

E

1

-1

0

1

-1

0

1

1

2

-1
-1
-2

1

1

-1
-1
-1

1

1

-1

0

-1

1

0

(x,y)

z

(Rx, Ry)

x2 + y
2

, z
2

(x
2 - y

2
,
xy)

(xz, yz )

E>4h E 2C4 C2 1C'2 2a i 2S4 o-h 2ov 2crd

A\g 1 1 1 1 i 1 1 1 1 1 x2 + y
2

, z
2

A2g 1 1 1 -1 -i 1 1 1 -1 -1 R z

Big 1 -1 1 1 -i 1 -1 1 1 -1 x2 -y2

B2g 1 -1 1 -1 i 1 -1 1 -1 1 xy

Eg 2 0 -2 0 0 2 0 -2 0 0 («*, Ry) (xz, yz)

A\u 1 1 1 1 1 -1 -1 -1 -1 -1

a2u 1 1 1 -1 -1 -1 -1 -1 1 1 Z

B\u 1 -1 1 1 -1 -1 1 -1 -1 1

b2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eu 2 0 -2 0 0 -2 0 2 0 0 (x,y)

Dsh E 2C5 2C| 5C2 o-h ITi

COCM 25? 5o\,

A{ 1 1 1 1 1 1 1 1 X2 + )>
2

, z
2

A2 1 1 1 -1 1 1 1 -1 R,

El 2 2 cos 72° 2 cos 144° 0 2 2 cos 72° 2 cos 144° 0 (x, y)

£2 2 2 cos 144° 2 cos 72° 0 2 2 cos 144° 2 cos 72° 0 (x
2 - y

2
,

A’{ 1 1 1 1 -1 -1 -1 -1

A2 1 1 1 -1 -1 -1 -1 1 z

E’{ 2 2 cos 72° 2 cos 144° 0 -2 -2 cos 72° -2 cos 144° 0 yz)

E’i 2 2 cos 144° 2 cos 72° 0 -2 -2 cos 144° -2 cos 72° 0



Appendix A Point Group Character Tables 267

D6h E 2C6 2C3 C2 3C'2 3a i 2S3 2S6 < 3crv

An 1 1 1 1 1 1 1 1 1 1 1 1 X2 + y
2

, z
2

A2g 1 1 1 1 1 -1 1 1 1 1 -1 -1 Rz

B ig 1 -1 1 -1 1 -1 1 -1 1 --1 1 -1

B ig 1 -1 1 -1 1 1 1 -1 1 --1 -1 1

Eig 2 1 -1 -2 0 0 2 1 -1 --2 0 0 (fi,, Ry) (xz, yz)

Eig 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (x
2 - y

2
, xy)

A 1u 1 1 1 1 1 1 -1 -1 -1 --1 -1 -1

A 2u 1 1 1 1 1 -1 -1 -1 -1 --1 1 1 z

B u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

&2u 1 -1 1 -1 1 1 -1 1 -1 1 1 -1

E u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y)

E2u 2 -1 -1 2 0 0 -2 1 1 --2 0 0

D$h E 2c| 2C 8 2C4 C2 4C2 4 / 25! 2S8 2S4 o-h 4ad 4orv

Aig
1 1 1 1 1 1 1 1 1 1 1 1 1 1 X2 + y

2
, Z

2

A2g 1 1 1 1 1 -1 -1 1 1 1 1 1 -1 -1 Rz

Big 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 1 -1

B2g 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1

E\g 2 V2 --V2 0 -2 0 0 2 V2 —V2 0 -2 0 0 (RX , Ry) (xz, yz)

Elg 2 0 0 -2 2 0 0 2 0 0 -2 2 0 0 (x
2 - y

2
,
xy)

E3g 2 —V2 V2 0 -2 0 0 2 —V2 V2 0 -2 0 0

A\u 1 1 1 1 1 1 1--1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 1 -1 - 1 --1 -1 -1 -1 -1 1 1 z

Biu 1 -1 -1 1 1 1 - 1 --1 1 1 -1 -1 -1 1

B2u 1 -1 -1 1 1 -1 1
--1 1 1 -1 -1 1 -1

Elu 2 V2 --V2 0 -2 0 0--2 —V2 V2 0 2 0 0 (x,y)

E2u 2 0 0 -2 2 0 0--2 0 0 2 -2 0 0

e3u 2 —V2 V2 0 -2 0 0 --2 V2 -V2 0 2 0 0

7. The Dnd Groups

E>2d E 2S4 C2 2C ’

2 2crd

A
1 1 1 1 1 1 x2 + y

2
, z

2

A2 1 1 1 -1 -1 R z

B 1 1 -1 1 1 -1 x2 - y
2

b2 1 -1 1 -1 1 z xy

E 2 0 -2 0 0 (x, y),

(Rx , Ry )

(xz, yz)
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e>3d E 2C3 3C2 i 2S6 3 (Td

A\g 1 1 1 1 1 1 X2 + y
2

, z
2

Alg 1 1 -1 1 1 -1 Rz
Eg 2 -1 0 2 -1 0 (RX , Ry) (x

2 - y
2

, xy).

(xz, yz)

A\u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2
- 1 0 (x,y)

D4d E 2S8 2C4 moo
co

(N C2 4C2 4 a-,/

A\ 1 1 1 1 1 1 1 x2 + y
2

, Z
2

A2 1 1 1 1 1 -1 -1 Rz
1 -1 1 -1 1 1 -1

b2 1 -1 1 -1 1 -1 1 z

Ex 2 V2 0 -V2 -2 0 0 (*, >-)

e2 2 0 -2 0 2 0 0 (x
2 - y

2
, xy)

e3 2 -V2 0 V2 -2 0 0 (xz, yz)

E>5d E 2C5 2Cf 5C2 i 25?0 0
Co

<N

A lg 1 1 1 1 1 1 1 1 -t
2 + y

2
, z

2

A2g 1 1 1 -1 1 1 1 -1 Rz

Eig 2 2 cos 72° 2 cos 144° 0 2 2 cos 72° 2 cos 144° 0 («„ «v) (xz, yz)

Eig 2 2 cos 144° 2 cos 72° 0 2 2 cos 144° 2 cos 72° 0 (x
2 - y

2
,
xy)

A\u 1 1 1 1 -1 -1 -1 -1

A211 1 1 1 -1 -1 -1 -1 1 z

Eiu 2 2 cos 72° 2 cos 144° 0 -2 -2 cos 72° -2 cos 144° 0 (*, V)

E2u 2 2 cos 144° 2 cos 72° 0 -2 -2 cos 144° -2 cos 72° 0

E>6d £ 2S12 2C6 2S4 2C3 2S?2 C2 6Ci 6(Td

Ai 1 1 1 1 1 1 1 1 1 X2 + y
2

, z
2

A2 1 1 1 1 1 1 1 -1 -1 Rz

S, 1 -1 1 -1 1 -1 1 1 -1

B2 1 -1 1 -1 1 -1 1 -1 1 z

Ei 2 V3 1 0 -1 —V3 -2 0 0 (x,y)

E2 2 1 -1 -2 -1 1 2 0 0 (x
2 - y

2
,
xy)

Ei 2 0 -2 0 2 0 -2 0 0

E4 2 -1 -1 2 -1 -1 2 0 0

E5 2 -V3 1 0 -1 V3 -2 0 0 (RX . Ry) (xz, yz)

8 . The Sn Groups

Sa E S4 C2 S2

A 1 1 1 1 Rz X2 + y
2

, z
2

B 1 -1 1 -1 z x2 - y
2

, xy

E
1!

i

—i

-1
-1 1 (x, y), (Rx , Ry) (xz, yz)
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A u

Eu

C\ si

CA si

-1 -1 -1
-1 — £ -€
-1 -£* — £

C2 si Cl

1 i 1

1 -l 1

-1 — £ —

i

-1 — £* i

1 i -1

1 —i -1
-1 £* i

-1 £ —i

(Rx ,
Ry)

z

0, y)

e = exp(27n‘/3)

x2 + y
2

, z
2

(x
2 - y

2
,
xy),

(xz, yz)

Si e = exp(27ri/8)

A
B

Ex

E2

e3

1

1

£

e*

i

-i

e*

£

1

1

i

—i
-1

-1

—i

i

—

1

-1
£*

£

-i

i

£

£*

1

-1

f 51

£

—i

i

— £

-£H

Z

(*> y),

(*» Ry)

2 , 2 2
X + y , Z

(*
2 - y

2
, xy)

(xz, yz)

9. The Cubic Groups

T E 4C3 4C| 3C2 £ = exp(27ri/3)

A 111 1 x2 + y
2 + z

2

E \
1 £ £* 1 (2z

2 - x2 - y
2

,E
\ 1 £* £ 1 x2 — y

2
)

T 3 0 0 -1 (Rx , Ry , Rz ), (x, y, z) (xy, xz, yz)
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oh E 00 6C2 6

C

4 3C2(
:-cj) « 6S4

r

'O
00 3 <rh 6crd

A lg 1 1 1 1 1 1 1 1 1 1 x2 + y
2 + z

2

Alg 1 1 -1 -1 1 1 -1 1 1 -1

Eg
2 -1 0 0 2 2 0 -1 2 0 (2z

2 - x2 - y
2

,
*2 - y

2
)

Tu 3 0 -1 1 1 3 1 0 -1 -1 (fl,, K v , R z )

Tig 3 0 1 -1 1 3 -1 0 -1 1 (xz , yz , *y)

1 1 1 1 1 -1 -1 -1 -1 -1

^2u 1 1 -1 -1 1 -1 1 -1 -1 1

Eu 2 -1 0 0 2 -2 0 1 -2 0

T

\

u 3 0 -1 1 1 -3 -1 0 1 1 (*> y , z)

T2u 3 0 1 -1 1 -3 1 0 1 -1

10. The Groups and D^h for Linear Molecules

c„ v E 2C£ »oy,

1 1 1 z x2 + y
2

, z
2

A2
=2~ 1 1 -1

2 2 cos $ 0 (x, y), (Rx , Ry) (*z, yz)

e2=a 2 2 cos 20 0 (*
2 - y

2
,
jcy)

E3=<t> 2 2 cos 3$ 0

Dooh £ 2C£ °°crv i 25j ooC2

K 1 1 1 1 1 1 x
2 + y

2
, z

2

sj 1 1 -1 1 1 -1 Rz

n* 2 2 cos 0 0 2 -2 cos 0 0 (Rx, Ry) (xz, yz)

a. 2 2 cos 20 0 2 2 cos 20 0 (x
2 - y

2
, xy)

s: 1 1 1 -1 -1 -1 z

s; 1 1 -1 -1 -1 1

n„ 2 2 cos 0 0 -2 2 cos 0 0 (x,y)

A„ 2 2 cos 20 0 -2 -2 cos 20 0
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11. The Icosahedral Groups

h E 12C5 12C\ 20C3 15C2 i 12510 125 io 20S6 15(7 V
± = K1 ± 5

1 '2
)

\ 1 1 1 1 1 1 1 1 1 1 x2 + y
2 + z

2

Tu 3 V
+

v~ 0 -1 3 V~
T

V 0 -1 (Rx , Ry, Rz )

T2S 3 V~
+

V 0 -1 3 T?
+

V 0 -1

Gg 4 -1 -1 1 0 4 -1 -1 1 0

5 0 0 -1 1 5 0 0 -1 1 (2z
2 - x2 - y

2
,

x
2 - y

2
.

xy, yz, zx)

Au 1 1 1 1 1 -1 -1 -1 -1 -1

Tiu 3 V
+

v~ 0 -1 -3 -
7]

-
7]
+

0 1 (*> y, z)

T2u 3 V 0 -1 -3 - v
+ -

7] 0 1

Gu 4 -1 -1 1 0 -4 1 1 -1 0

Hu 5 0 0 -1 1 -5 0 0 1 -1

Note: In these groups and others containing C5 ,
the following relationships may be

useful:

r

j

+ = 1/2(1 + 5
1/2

)
= 1.61803 . . .

= -2 cos 144°

rf = 1/2(1 - 5
1/2

)
= -0.61803 . . .

= -2 cos 72°

7] 7J



APPENDIX B

Correlation Tables

The tables in this appendix show correlations between the species (irreducible

representations) of a parent group and many (if not all) of its subgroups.

Where the correlation to a particular subgroup depends on which element of

the parent group is retained in the subgroup, the retained element is listed

under the heading of the subgroup in the table. For example, in the table for

C2v ,
either the a(xz) or the cr(yz) plane can be retained in forming the sub-

group Cs ,
resulting in the two different correlations listed. When the identifi-

cation of the retained element might be ambiguous in the subgroup, its labels

in the parent group and subgroup are linked by an arrow. For example, in the

correlation table for C6v ,
the listing crv —> <j(xz) for C2v means that the crv

plane of C6v becomes the cr(xz) plane of C2v .

The tables for certain large-order parent groups do not list correlations

to all of the smaller subgroups. In such cases, carry out the correlation in two

steps, using correlations to and from an intermediate group. For example, to

correlate Oh with C2v ,
first use the Oh table to correlate with Td ,

and then use

the Td table to complete the correlation to C2v .

Correlations between two smaller groups for which no individual corre-

lation table is shown can be deduced by finding the related groups within a

table for a larger group of which they are both subgroups. For example, the

correlation between the groups C4 and C2 can be found within the correla-

tion table for C4v . Accordingly, in the descent from C4 to C2 ,
the correlations

are A —> A, B —> A, and E -> 2B.

Paired complex conjugate irreducible representations, which occur in

groups Cm Cntj, and Sn with n > 3 and' the cubic groups T and Th ,
are indi-

cated by surrounding the Mulliken symbol in braces—for example, {£}.

Correlations of these species to species in another group (either parent group

or subgroup) always carry over both complex conjugate irreducible repre-

sentations to the same species in the related group. If the related group is a

subgroup that does not allow degeneracy, the complex conjugate pair become

two real-number nondegenerate species in the subgroup.

272
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Correlations between Coo V and C2v are given in Table 3.8, and those be-

tween and D2h are given in Table 3.9 (see p. 80).

c2v C2

Cs
.

<r(xz)

Cs

cr{yz)

Ai A A ' A'

a2 A A" A"

Bt B A' A"

b2 B A" A'

C3v C3 Cs

A, A A'

a 2 A A"

E E A ' + A"

c4v c4

c2v c2v

Vd c2

Cs

av

Cs

<Td

A t A A i A\ A A' A'

a 2 A A2 a 2 A A " A"

B x B A\ a2 A A' A"

b2 B a2 A\ A A" A'

E E B\ + B2 Bi + B2 2B A' + A" A' + A"

Csv C5 Cs

A\ A A'

a 2 A A"

Ex (£i) A' + A"

e2 [Ei) A' + A"
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Qv c6

Qv
O'v

C3V

°d

C2V

crv -> cr(xz) c3 c2

c,

<*v

c,

<*d

A, A Ai A\ A\ A A A' A'

A2 A ^2 A2 A2 A A A" A"

S, B ^1 A2 Bi A 5 A' A"

b 2 B ^2 A\ b2 A £ A" A'

Ei {£1) £ E B\ + B2 |£) 2£ A' + A" A' + A"

E2 \E2) E E A\ + A2 {£) 2A A' +A" A' + A"

C2/1 C2 Cs Ci

A A'

B A" Ag

A A" Au

B A' Au

C3/1 c3 cs

A' A A'

{£') (£) 2A'

A" A A"

(£") |£) 2A"

C4h C4 S4 C2h C2 Cs Ct

** A A A A' Ag

Bs
B Ag A A' Ag

\E
g]

{E\ |£) 2Bg 2B 2A" 2Ag

Au A B A u A A" A u

Bu B A A u A A" A u

{Eu\ [E\ |£) 2Bu 2B 2A'
1

2A u
1
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Csh C5 Cs

A' A A'

m \Ei) 2
A'

[E2 )
[E2 )

2A'

A" A A"

[E’i) i
£ii 2A"

[E2 } (£2 )
2A"

C^h c6 C3h 56 C2h C3 c2 Cs Q

Ag A A' Ag A A A'

Bg B A" Bg A B A" A

g

(£u ) (£1 !
|£"1 {£«) 2B

g (£) 2B 2A" 2Ag

\E2g \ {£2 )
{£') |£«l 2Ag (£) 2A 2A' 2A

g

Au A A" A u A u A A A" Au

Bu B A' Au Bu A B A' Au

[E,u] |£i) {£') (E„) 2BU {£) 2B 2A' 2AU

[E2u \ {£2)
(£") (E„) 2Au {£} 2A 2A" 2AU

B>2h D2

C2v

C2(z)

c2v

C2(y)

c2v

C2(x)

C2h

C2(z)

£2/1

C2(y)

C2h

C2(x)

c2

C2(z)

C2

C2(y)

C2

C2(x)

Cs

a(xy)

Cs

o-(xz)

Cs

<r(yz)

Ag A A 1 A
1

A l Ag Ag Ag A A A A ' A ' A '

B 1, £1 A2 £2 B\ Ag B
g

Bg A B B A

'

A" A"

b
2s B2 B 1 ^2 b2 Bs Ag Bg B A B A" A ' A"

Bis B3 £2 £1 A2 Bg Bg Ag B B A A" A" A'

A u A ^2 ^2 A2 A u Au Au A A A A" A" A "

B\ u B\ £2 A u Bu Bu A B B A" A' A'

B211 B2 b2 ^1 £1 Bu Au Bu B A B A ' A" A '

Biu B3 £1 A\ Bu B„ Au B B A A' A' A"
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Dsh d3 c3v C3h

C2v

crh -> <Tv(yz)

cs

<*h

Cs

crv

A[ A\ A t A' At A' A'

A'2 A2 A2 A' b2 A' A"

E' E E {£') At + B2 2A' A' + A"

A" A\ A2 A" A2 A" A"

A'i A2 A\ A" B 1
A" A'

E" E E \E"\ A2 + Bt 2A" A' + A"

Other subgroups: C3 ,
C2

D4h d4 C4v c4h c4

D2h

c2

D2h

a
D2d

c2 —> c2

C>2d
C'i —

>

Atg At At Ag A Ag Ag At At

A2g A2 A2 as A Big Big a2 A2

Big B 1 B ! Bg
B Ag Big Bt b2

B2g b2 B2 Bg
B Big Ag B2 B 1

Eg E E
1
Eg)

\E) B2g + B3g Big + B2g E E

Atu At A2 Au A A u A u Bi B 1

a2u A2 At Au A Btu Btu b2 b2

Btu B 1 B2 Bu B Au Btu At a2

B211 b2 Bt Bu B Btu Au a2 At

Eu E E [Eu) (£1 B2u + B3u B3u + B3u E E

See the next table for additional subgroups.
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B>4h

(cont.) S4

d2

C2
d 2

C'i

C2v c2v

C2 , Vd

C2v

c2

C2v

a
A Xg A A A A, Ai Ai Ai

A2g A Bi B i a 2 a 2 B
1

B
,

B\g B A B i A l a2 A\ Bi

B2g B B l A a 2 Ai Bi Ai

Eg (£| b2 a b3 b2 A b3 Bi A B2 Bi A B2 A2 + B2 A2 d B2

B A A a2 a2 a2 a2

a2u B B 1 B\ A\ Ai b2 b2

B\u A A Bx a2 Ai a2 b2

&2U A B 1 A A\ a2 b2 a2

Eu {£j b2 A b3 b2 + b3 B\ + B2 Bi A B2 Ai + Bi A i + Bi

See the next table for additional subgroups.

h C2h C2/i C2h Cs Cs Cs

(cont.) C2 C'2 C'i CTh <TV <?d

Aig Ag Ag Ag A' A' A'

A2g A Bg Bs A' A" A"

Big Ag Ag Bg A ' A' A"

B2g Ag B
g Ag A' A" A'

Eg 2Bg Ag Bg Ag + Bs
2A" A' A A" A ' A A"

Aiu A u Au Au A" A" A "

a2u Au Bu Bu A" A' A'

Biu Au A u Bu A" A" A'

B2u Au Bu Au A" A' A "

Eu 2BU A u A Bu Au + Bu 2
A' A' A A" A' A A"

Other subgroups: 3

C

2 ,
C,



278 Appendix B Correlation Tables

E>5h D5 Qv Csh C5
Gv

(Th “> O-(XZ )

A i ^1 Ai A' A A 1

A2 ^2 A2 A' A £1

£1 £1 {£!) |£i) Aj +

£2 £2 £2 {£2) {£2} Ai +

A? ^1 ^2 A" A ^2

^2 ^2 A\ A" A b2

E’{ £1 £1 [E'l] (£1) a 2 + #2

E'i £2 £2 [E'i] (£2) A2 + b2

Other subgroups: C2 , 2CS

D6 Qv Ceh c6

Dih

C'i

E>ih

C'i

Did

C'i

Did

Ci

E>2h

dh cr(xy)

av -» a(yz)

A\g A\ ^1 Ag A A[ A\g A\g Ag

A2g a2 ^2 A A a2 a2 A2g A2g B1,

Bi* B 1 £2 Bg
B A'{ A'i A\g A2g Big

B2g £2 £1 Bg B A'i A’i A2g A\g B^g

Eig £1 (£ig ) (£1} E" E" Bg Eg B2g + Big

Big £2 Ei l
£2«) (£2) E' E' Bg Eg Ag + Big

A\u a2 Au A A'i A'{ A\u A\u Au

A2u ^2 A\ Au A A'i A2" a2u a2u B\u

B\

u

£1 B x £« B Ai Ai A\u a2u b2u

B2u B2 B2 Bu B a 2 Ai A2u A\u Biu

E,u £1 £1 [E\u\ (£1) E' E' Eu Eu B2u + b3u

E2u £2 E2 {£2u\ (£2) E" E" Eu Eu A u + Biu

Other subgroups: 2Z)3 ,
2C3v , C3h ,

S6,
D2 ,

2

C

2v ,
3C2/l ,

3C2 , 3Cs, Ct
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D2d

d2

c2 —> C2(z) Qv

Ai A A A!

A2 A ^2

B i B A ^2

b2 B Si A!

E (£} B2 + $3 Z?i + 52

Other subgroups: 2

C

2 , Cs

Dm D3 S6 c3v c3 C2h

Aig Ai Ag A\ A Ag

A2g A2 Ag A2 A B
s

Eg E {£*} E (£1 Ag Dg

A\U A\ Au A2 A A u

A2u A2 Au A\ A Bu

Eu E [Eu] E f£) Au + Bu

Other subgroups: C2 ,
Cs , Ct

Dad Da Sg c4v Ca C2v

C2

C2(z)

C2

Ci Cs

A\ A\ A A\ A At A A A

'

A2 a2 A a2 A a2 A B A"

Bt A\ B a2 A a2 A A A

"

b2 a2 B A 1 A A\ A B A

'

Ei E (£>) E {£) B\ + #2 2B A + B A

'

+ A"

E2 B\ + B2 {£2 |
B x + B2 2B Ax + A2 2A A + B A ' + A"

e3 E (£3 )
E {£) + B2 2B A + B A' + A"
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e>5d D5 C5v C5 C2

A\g At A\ A A

A2g a2 a2 A B

E\g Ei E1 {£ 1 )
A + B

E2g E2 e2 [E2} A + B

A\u A, a2 A A

a2u a2 A t A B

Em Ei Ei {Ei) A + B

Eiu E

2

E2 {£2) A + B

Other subgroups: Cs ,
C

t

D6d D6 Qv £3 E>2d S4

c2

Cz(z)

C2

Ci

A\ A\ A\ >4 ! A\ A A A

a2 a2 A2 a2 a2 A A B

Bi A\ a2 At B1 B A A

b2 a2 A 1 ^2 E2 B A B

Ei Ei Ei E E {£) 2B A + B

E2 E2 E2 E B\ + B2 2B 2A A + B

E3 B\ + B2 B\ + B2 Ai + A2 E {£) 2B A + B

e4 e2 E2 E Ai + A 2 2A 2A A + B

E5 Ei E ! E E {£) 2B A + B

Other subgroups: C6 , C3v ,
C3 ,

D2 ,
C2v , Cs

T C3 D2 C2

A A A A

(£} {£) 2A 2A

T A + {E\ B\ + B2 + B2 A + 2B
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Th T s6 E>2h d2

Ag A A Ag A

\Eg) |£) [Eg ]
2A

S
2A

Tg T Ag + {£g} B\g + B2g + B3g B\ + B2 + B3

Au A Au Au A

[Eu 1 (£) {
Eu)

2A u 2A

Tu T Au + [Eu }
B\u + B2u + B3u B\ + B2 + B3

Other subgroups: C2v , C2h , C3 ,
C2 ,

Cs , Q

Td T c3v c2v E>2d

A\ A A\ A\ Ai

a2 A a2 a2 B
,

E {£) E A\ + A2 A\ + Bi

Ti T A2 + E A2 + B\ + B2 A2 + E

T2 T A\ + E A\ + B\ + B2 B2 + E

Other subgroups: S4 ,
D2 , C3 ,

C2 ,
Cs

O T d4 c4 D 3

d2

3C2

D2

C2 , 2C'2 C3

c2

c2

C2

C'2

Ai A A\ A A\ A A A A A

a2 A B\ B a2 A B] A A B

E \E\ A i + B x A + B E 2A A + B\ IE) 2A A + B

Ti
T A2 + E A + E A2 + E B\ + B2 + B3 B\ + B2 + B3 A + {E\ A + 2B A + 2B

T2 T B2 + E B + E Ai + E B\ + B2 + B3 A + B2 + B3 A + {E\ A +2B 2A + B
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o* o Td 7* E>4h D3d

A i A\ A\g Aig

A2g A2 A2 Big A2g

E E 1^1 Aig + B lg Eg

Tig T\ T1 r* A2g + Eg A2g + Eg

Tig T2 7*2 r« B2g + Eg A\g + Eg

A\u A\ ^2 Au A\u A\u

A2u A2 Au B\u Am

Eu E £ \Eu\ Am + B Xu Eu

Tiu T

\

r2 T1 u A2u + Eu A 2u + Eu

T2u T2 7i T1 u B2u + Eu A\u + Eu

Other subgroups: T
,
D4 , C4v ,

C4h ,
C4 , D3 , S6 , C3v , C3 ,

2D2h ,
D2d ,

2D2 , S4, 3C2v , 2C2/,, 2C2 , C„ Cs



Appendix B Correlation Tables 283

A
+
2B QQ

(N

+

cq
(N

+

<N

oq
(N

+

CO

M
Q

CO

GQ

+
(N

QQ

+

QQ

cq

+
<N

cq

+
cq

<T)

OQ

+
<N

oq

+
OQ

+

(*)

oq

+
<N

cq

+
oq

+

(N

co

o
g
+
g
+
g
+

<N

g
(N

+

Q

tq

+
(N

tq

+
(N

tq

+
(N

+

tq
<N

+

o'
g
+

CN

tq

+

~C4
tq

+

g

TS
tq

+

g
+

rM

tq

tq
r ^
tq

CS

tq +

Q + + + tq

tq +

h.

h< + +

g

*? O £c;



APPENDIX C

Normal Modes of Vibration

of Some Common Structures

V3a(E) V4«(£)

v^Af) v2(A2 ) v3(£') v4(£')

Planar XY3 molecules.

z

vi(Ai)

v4(B2 )

Planar ZXY2 molecules.

v2(Aj)

v5(fi2 )

v3(Ai)

v6<*1>

284
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vs(XY)

Planar (C2v ) Aj(p)

Non-planar (C2 ) A(p)

v2

v(XX)

Ai(p)

A(p)

B(dp)

v5

B2(dp)

B(dp)

Nonlinear X2Y2 molecules (p ,
polarized; dp , depolarized).

A(p)

v6

Pf(XY)

A2(dp)

A(p)

v4(T2 )

Tetrahedral XY4 molecules.

va(E)

v2(Ai)

v 5(£)

C3v ZXY3 molecules.

v3(Aj)
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Square planar XY4 molecules.

Trigonal bipyramidal XY5 molecules.



Y Y

vi(AiJ

^

v2(Ai5) v3(AiJ

vg(#u ) vio(Eg)

Ethane-type X2Y6 molecules.

VI 1
(Eg)

v4(Ai„)

^'
V
’

T
^ r .

>

"V r\? -‘-"V <$-
v 5(A2u ) v6(A2u ) v 7(Eu ) v8(Eu )

*

\ '

t"y?
v̂ i2(^J
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v8^BlJ
v(XY)

Bridged X2Y6 molecules.



E/B

APPENDIX D

Tanabe and Sugano Diagrams*

d2 B = 860 cm-1
for V(lll)

Adapted with permission from T. Tanabe and S. Sugano, J Phys. Soc. Japan 1954, 9, 766.



ro

o
ro

B _ (766 cm" 1
for V(ll)

d3 ~ [1030 cm" 1
for Cr(lll)

f 830 cm" 1
for Cr(ll)

B = \ 1140 cm" 1
for Mn(lll)

rf
4

L 1144 cm" 1
for Fe(IV)

290
MB



B= f 960 cm-1
for Mn(ll)

d5 1 -1100 cm-1
for Fed II)

R = 1058 cm-1 for Fe(ll)

1065 cm-1 for Cod II)

MB
50

291



E/B

d 7 S =970 cm-1
for Cod I)

d8 B = 1080 cm-1 for Nidi)

292
AIB



INDEX

Entries for symbols customarily set in capital letter italics (e.g., Schonflies no-

tations, Mulliken symbols, overall quantum numbers) are given before those

for words, phrases, formulas, and orbital notations, which are intermingled in

alphabetical order.

Abelian group, 20, 24

Absorption spectra:

[Co(H20)6]

2+
, 252

[M(H20)6]'
7+

complexes,

248-249

Jahn-Teller effect on, 255

[Mn(H20)6]
2+

, 252

[Ti(H20)6]
3+

, 248, 255

[V(H20)6]
3+

, 255

visible, 248-255

Anharmonic oscillator, 167

Anharmonicity constant, 167

Antibonding, defined, 90

Antisymmetric stretching mode,

176

Ascent in symmetry, 73. See also

Group-subgroup relationships

Associativity, 19

Asymmetric stretching mode, 176

(f. n.)

Asymmetry, 2, 20

and chirality, 33-34

Axis (axes), see also Rotation;

Rotation-reflection

alternating, 2. See also Axis

(axes), improper

dihedral, 25

improper, 2, 9

principal, 5

proper, 2, 3

of rotation, 2-5

Basis set, 138

Beer-Lambert law, 248-250

Bending mode, 176

B 12H12
2
~, symmetry of, 27

Block diagonalization, 51, 57

Bond order:

in BeH2 ,
112

in benzene, 126, 130

in C02 , 118, 126

Bonding, defined, 89-90

Buckminsterfullerene, C60 ,
see also

front cover

symmetry of, 27

endohedrally doped, 256

C groups, see also Single-axis

rotational groups

Cn groups, 22-24, 34

Cnh groups, 24

Cnv groups, 24

CooV ,
symmetry of, 24

C6o, see Buckminsterfullerene

Center of symmetry, 8. See also

Inversion center

Centrosymmetry, 8. See also

Inversion; Inversion center

Character table, 42. See Appendix

A for specific point group

tables

standard features of, 52-60

Characters:

Rri, irreducible representations

of, 205

of irreducible representations,

40^12

of a matrix, 50

293
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Characters (continued

)

for operations in the same class,

63

Charge transfer transitions, 250

(f. n.), 252, 255

Chirality, 33-34

Classes of operations:

geometrical definition, 5, 52-53

mathematical definition, 53-54

Closure, 19

Combination bands, 192-197

Combining symmetry operations,

14-18

Commutation, 14

Conjugate elements, 53

Contribution per nonshifted atom:

defined, 174

method of determining, 174-175

Coordinate system:

orientation of, 12-14

right-hand rule for, 12-13

Correlation diagram, 75-76, 78,

188-189. See also Term(s),

correlation diagram

Correlations, see also Appendix B
to C2v ,

80

D ooh to D2h, 80

group and subgroup

representations, 75

Crystal field splitting, see also

Term(s)

in D4h square planar, 213-214

in D4h tetragonal distortion,

211-213

in Oh ,
202-209

in Td , 209

Crystal field theory, 201-214

Cubic groups, 25-27

Cyclic groups:

defined, 22-24

multiplication tables of, 24

D groups, see also Dihedral groups

Dn groups, 25

Dnd groups, 25

Dnh groups, 25

Dooh ,
symmetry of, 25

Degeneracy:

accidental, 58, 195

of normal modes, 178

orbital (of terms), 231, 234, 240

of orbitals, 101

of properties, 58

spin (of terms), 232, 234, 240

total and number of microstates,

228, 233, 234, 240, 241

of vectors, listing in character

tables, 58-59

Degrees of freedom, 171

Delta bonding, defined, 94

Depolarization ratio, 184-185

Depolarized Raman band, 184-185

Descent in symmetry, 73. See also

Group-subgroup relationships

Difference bands, 192

Dihedral groups, 25

geometrical patterns of, 32-33

Dimension of representation(s),

52. See also Representation(s)

Direct products:

generalizations about Mulliken

symbols, 84

of irreducible representations,

81-84

of linear vectors, 59. See also

specific character tables in

Appendix A
Dissymmetry, 33-34

Dodecahedron, symmetry of, 27

Doublet state, defined, 231

Eigenfunction, 88-89

Eigenvalue, 89

Electronic spectra, 248-255

Electronic transitions:

charge transfer, 250 (f. n.), 252,

255

LaPorte’s rule for, 250-252

spin allowed, 252

spin forbidden, 252
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in [Mn(H20]
2+

,
252

spin multiplicity rule for, 250,

252

vibronically allowed, 251, 252

Enantiomers, 33

Equivalent electrons, defined, 228

F irreducible representation

notation, 60

Fermi resonance, 195-196

Flow chart for point group

classification, 28-29

Force constant, 165

Great Orthogonality Theorem,

relationships from, 61-64

Group, requirements of, 18-20. See

also Point Group(s)

Group-subgroup relationships, 20,

73-79. See also Appendix B

Hamiltonian operator, 88

Harmonic oscillator, 166

Hermann-Mauguin notation, 21

High spin configurations:

in octahedral complexes,

207-209

in tetrahedral complexes, 209

H202 ,
lack of chirality, 34

Hole formalism, 244-245

Hybrid orbitals, 95-104

AO composition by group

theory, 97-104

sp
3 wave functions, 95-96,

154-156

wave functions by projection

operators, 153-156

wave functions for tbp MX5 ,
159

I, notation for identity, 2

Ih ,
symmetry of, 27

Icosahedron, symmetry of, 27

Identity, 2-3, 19

Improper axis, see Axis (axes),

improper

Improper rotation, see Rotation-

reflection

Infrared spectra:

activity of normal modes in,

180-181, 183-184

of CC14 Fermi doublet, 196

Internal energy, 250

Inverse, 20

Inversion, 2, 8-9

Inversion center, 2, 8

Isotopic splitting, 196-197

J quantum number, 229

Jahn-Teller distortion, 210-214

effect on electronic spectra, 255

Jahn-Teller theorem, 210

Kronecker delta function, 64, 140,

155 (f. n.)

L quantum number, 229-230

LaPorte’s rule, 250-252

break down of, 251, 252

LCAO method, 104-105

Ligand field theory, 202, 214

Low spin configurations:

in octahedral complexes,

207-209

in square planar complexes,

213-214

in tetrahedral complexes, 209

Ml quantum number, 230-231

Ms quantum number, 231-232

Matrix (matrices):

character of, 50

conformability, 47

defined, 47

dimensions of, 47

elements, defined, 47

identity, 155 (f. n.)

indexing system, 47-48

inverse, 155

multiplication of, 48

operator, 16, 44, 174
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Matrix (matrices) (continued)

orthogonal, 156

trace of, 50

transformation, 44, 55, 172-173

transpose, 156

Method of descending symmetry, 237

Microstate(s):

defined, 227

number for dn
configurations,

228

and total degeneracy, 228, 233,

234, 240, 241

Mirror plane(s), 2, 5-8

dihedral (a
rf), 7

horizontal (crh), 7

notation of, 7-8

vertical (av), 7

Mixing constant(s), 105

MO scheme(s):

BeH2 ,
delocalized, 108-112

localized, 105-107

benzene 7t-MOs, 126-131

CH4 ,
113-117

C02 ,
118-126

effect of s-p mixing, 124-126

conjugated ring 7t-MOs,

generalizations for, 131

delocalized, 107-108

general, see delocalized

localized, 105

ML4 (Trf), sigma and pi bonding,

224-227

ML6 (Oh ), complete, 222-224

pi bonding, 220-224

sigma only, 215-220

ordering of levels in, 112-113

Molecular orbital theory, 94, 104.

See also MO scheme(s)

Morse curve, 95, 167

Mulliken symbols, 42, 60-61

Multiplication of symmetry

operations, 14-18

Multiplication table(s):

C2v ,
18

C3v ,
54

C4 ,
24

of cyclic groups, 24

defined, 18

Nephelauxetic effect, 214, 218-219

Nonbonding, defined, 90, 93-94

Noncrossing rule, 237-239, 243

Nonrotational groups, 22

Normal coordinate, 180

Normal modes:

coincident, 183

defined, 171

degenerate, 178

of linear molecules, 171, 190

of nonlinear molecules, 171,

175-176

numbering of, 176-177

silent, 184, 187

spectroscopic activity of, 180-185

symmetry of, 171-179

Normalization, 89, 140

Normalization constant, 89

Oh ,
symmetry of, 27

Optical activity, 33-34

Orbital degeneracy (of terms), 231,

234, 240

Orbital multiplicity, 231

Order, group, 19

Orgel diagrams, 253-255

Orthogonality requirement, 140

Overall angular momentum
quantum number, L, 229-230

Overall orbital magnetic quantum

number, ML ,
230-231

Overall spin magnetic quantum

number, Ms ,
231-232

Overall spin quantum number, S
,

229, 231

Overtone bands, 192-195

Pairing energy, mean, 207, 209

Pendant atoms, defined, 107

PF5 ,
point group classification of,

~

30-32
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Photoelectron spectrum (P.E.S.),

115-117

of benzene, 130-131

of CH4 ,
116-117

of C02 ,
122-124

Pi bonding:

in aromatic ring systems,

126-131

defined, 91-92

MXn molecules with, 117-126

in octahedral ML6 ,
220-224

in tetrahedral ML4 ,
224-227

Pictorial approach for SALCs,
159-162

Point group symmetry, 2

Point group(s), see also specific

types

defined, 18-20

families of, 21-27

of molecules, 21-27

systematic classification, 28-33

Polarizability, 182

Polarized Raman band, 184

Polygon rule, 131

Projection operators:

for conjugated ring 7t-MOs,

general method, 153

defined, 138-140

degenerate functions from, 139,

143-149, 151-153, 158

for hybrid orbitals, 153-156, 159

for hydrogen SALCs of CH4 ,

147-149

with nonequivalent positions,

157-162

for 7r-MOs of benzene, 149-153

for cr-SALCs of MX6 ,
140-147

for cr-SALCs of tbp MX5 ,

157-162

Proper axis, see Axis (axes),

proper

Proper Rotation, see Rotation

R3 , 55 (f. n.), 90, 202, 205, 233-234

characters of irreducible

representations of, 205

Racah parameter, 247-248

Raman spectra:

activity of normal modes,

181-182, 183-184

of CC14 :

Fermi doublet, 195-196

isotopic splitting of band,

196

v x and v2 bands,

depolarization ratio of, 185

depolarized band, defined,

184-185

depolarization measurement,

184-185

polarized band, defined, 184-185

Reciprocality, 20

Reduction of representations,

50-52

with imaginary characters, 70-73

infinite-order groups, 79-81

systematic, 66-70

tabular method, 67-70

Reflection, 2, 5-8

Reflection plane, see Mirror

plane(s)

Representation(s):

defined, 40

dimension of, 52

doubly degenerate, 54, 55

general relationships of, 52, 61-64

imaginary characters in, 59-60,

70-79

irreducible, 40-42

allowable dimensions of, 62

number of, 54, 62-63

orthogonality of, 63-64

relation of characters to order,

63

symbols for, see Mulliken

symbols

reducible, 46-52. See also

Reduction of representations

totally symmetric, 41

triply degenerate, 54-55
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Resultant orbital angular

momentum, 229-231

Resultant orbital magnetic

moment, 229-231

Resultant orbital quantum number,

L, 229-230

Resultant spin angular momentum,
231-233

Resultant spin magnetic moment,
231-233

Rotation, 2, 3-5. See also Axis

(axes)

operator matrix of, 57

order of, 3

proper, 2, 3-5

Rotation-reflection, 2, 9-12

equivalences with other

operations, 12

Rotational vector transformations,

45-46, 58

Rotations, molecular, 169-170

Rule of mutual exclusion, 184, 187,

191

Russell-Saunders coupling scheme,

228-229, 252

Russell-Saunders terms, see

Term(s)

S quantum number, 229, 231

S2n groups, 24-25

SALCs:
defined, 107-108

pictorial approach, 159-162

projection operator formulation

of, 138-159

Schonflies notation, 21

Schrodinger wave equation, 88-89,

250

Shadow method, 131

Sigma bonding, defined, 91

Silent modes, 184, 187

Similarity transform, 53-54

Single-axis rotational groups, 22-24

Singlet spin state, defined, 231

Slater overlap integral, 89-94

Species, symmetry, 44

Spectrochemical series, 207, 209

Spectroscopic selection rules:

electronic, 250-252

vibrational, 180-185

C302 ,
190-191

CH2D2 ,
188-190

CH3D, 187-190

CH4 ,
188

descent in symmetry effect,

187-190

generalizations for

fundamentals, 183-184

linear molecules, 190-191

overtones and combinations,

192-196

S02 ,
182-183

and structure, 185-191

XY4 square planar, 186-187

XY4 tetrahedral, 183, 186

Spin allowed electronic transitions,

252

Spin forbidden electronic

transitions, 252

in [Mn(H20)6]
2+

,
252

Spin multiplicity, 229, 231, 232. See

also Term(s), multiplicity of

Spin multiplicity rule, 252

break down of, 252

Spin state, 229, 231

Subgroup, see also Group-

subgroup relationships

defined, 20

order, 20

Symmetric stretching mode, 176

Symmetry element, 1

Symmetry operation, 1

Symmetry point group(s), see Point

group(s)

Td ,
symmetry of, 26

Tabular method for reducing

representations, 67-70

Tanabe-Sugano diagrams, 247-248,

252. See also Appendix D
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Term symbol, 229. See also

Term(s)

Term value, 166

Term(s):

correlation diagram(s), 236-248

d2 Oh ,
236-243

ds Oh ,
245-246

Orgel diagrams, 253-255

relationships between:

Oh and Td , 245, 253

d1 and d9 Oh ,
243-244

dT and d10~n
,
243-245, 253

dn and dn±

5

,
253

Tanabe-Sugano diagrams,

247-248, 252. See also

Appendix D
defined, 228

degeneracy of, 233

free ion, 227-233

letter symbols for L values, 230

ligand-field:

d 1 Oh ,
234

defined, 234

relation to free-ion terms,

235-236

multiplicity of, 229

splitting of, 233-248

Tetragonal distortion, 211-213

Total degeneracy, defined, 228. See

also Degeneracy

Trace of a matrix, 50

Transition moment:

electronic, 250

infrared, 180-181

Raman, 181-182

Translations, molecular, 169

Triplet state, defined, 231

Unit vectors, transformations of,

43-46, 58

V group notation, 25

Valence bond theory, 94-104

Valence shell electron pair

repulsion theory, see VSEPR
theory

Vibrational frequencies, 166-168

CC14 ,
Fermi bands, 195-196

CH2D2 ,
189

CH3D, 189

CH4 :

fundamentals, 189

overtones and combinations,

193-195

H20, 177

MoF6 ,
overtones and

combinations, 199-200

NCV, 198-199

S02 ,
176

and spectroscopically observed

frequencies, 168

XeF4 ,
silent mode, 195

Vibrational fundamental, defined,

168

Vibrational ground state, 166

Vibrational mode(s), see also

Appendix C
defined, 166

linear molecules, 171, 190

nonlinear molecules, 171,

175-176

Vibrational quantum number, 166

Vibronic coupling, 251

Vibronically allowed electronic

transitions, 251, 252

Visible spectra. See Absorption

spectra; Electronic transitions;

Electronic spectra

VSEPR theory, 95, 102

Wave equation, defined, 88-89

Wave function(s), 88-89, 140

LCAO method for, 104-105

normalization requirement, 89,

140

orthogonality requirement, 140

Zero point energy, 166-167
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Acronyms and Symbols

(icontinued from front cover)

N
Ne

Ni

N„

Pi

R

Rc

S

S

25 + 1

r

5*

TT, Tt", IT*

a, a", a*

<t>, 'P

<t>, ^

X, Xi?

X;

normalization constant of a wave function

number of electrons in a configuration of degenerate orbitals

number of atoms that remain nonshifted by a given symmetry

operation

number of degenerate orbitals in a set or subshell

projection operator for the ith irreducible representation

an operation of the group, or the operator for an operation

class of operations composed of gc members

spin quantum number (individual electron)

overall spin quantum number

spin multiplicity, equivalent to the spin degeneracy of a term

generic symbol for a representation

Kronecker delta function; 8$ = 0 if i =f= j and 8
i} = 1 if i = j

symbol for a particular normal mode of vibration or a specific

state-to-state electronic transition, where n = 1, 2, . . .

reciprocal wavelength, proportional to frequency, in wave
numbers (cm

-1
); pronounced “nootirdo”

Pi-bonding, pi-nonbonding, and pi-antibonding molecular orbitals,

respectively

Sigma-bonding, sigma-nonbonding, and sigma-antibonding

molecular orbitals, respectively

generic symbols for a wave function formed as an LCAO
generic symbols for AO wave functions composing an LCAO
wave function

character of a matrix, or the character for a particular operation

in a given representation

contribution per nonshifted atom for a given symmetry operation
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