
a i 
: Wel ft 

ymmetry 

) WILEY 





Molecular Symmetry 



Digitized by the Internet Archive 

in 2022 with funding from 

Kahle/Austin Foundation 

https://archive.org/details/molecularsymmetrO000will 



Molecular Symmetry 

DAVID J. WILLOCK 

Cardiff University 

WILEY 
A John Wiley and Sons, Ltd, Publication 



This edition first published 2009 

© 2009 John Wiley & Sons Ltd 

Registered office 

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, 

PO19 8SQ, United Kingdom 

For details of our global editorial offices, for customer services and for information about how to apply 

for permission to reuse the copyright material in this book please see our website at www.wiley.com. 

The right of the author to be identified as the author of this work has been asserted in accordance 

with the Copyright, Designs and Patents Act 1988. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 

in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted 

by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print 

may not be available in electronic books. 

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names 

and product names used in this book are trade names, service marks, trademarks or registered trademarks of 

their respective owners. The publisher is not associated with any product or vendor mentioned in this book. 

This publication is designed to provide accurate and authoritative information in regard to the subject matter 

covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. 

If professional advice or other expert assistance is required, the services of a competent professional should 

be sought. 

The publisher and the author make no representations or warranties with respect to the accuracy or 

completeness of the contents of this work and specifically disclaim all warranties, including without limitation 

any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the 

publisher is not engaged in rendering professional services. The advice and strategies contained herein may not 

be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental 

regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and 

devices, the reader is urged to review and evaluate the information provided in the package insert or instructions 

for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the 

instructions or indication of usage and for added warnings and precautions. The fact that an organization or 

Website is referred to in this work as a citation and/or a potential source of further information does not mean 

that the author or the publisher endorses the information the organization or Website may provide or 

recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may 

have changed or disappeared between when this work was written and when it is read. No warranty may be 

created or extended by any promotional statements for this work. Neither the publisher nor the author shall be 

liable for any damages arising herefrom. 

A catalogue record for this book is available from the British Library 

ISBN 978-0-470-85347-4 (H/B) 978-0-470-85348-1 (P/B) 

Set in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India 

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham, Wiltshire 



Contents 

Preface 

1 Symmetry Elements and Operations 

1.1 Introduction 

1.2 Symmetry Elements and Operations 

1.2.1 Proper Rotations: C,, 

1.2.2 The Plane of Symmetry: o 

1.2.3 The Inversion Centre: i 

1.3 Examples of the Impact of Geometric Symmetry on Chemistry 

1.3.1 Oxygen Transfer via Metal Porphyrins 

1.3.2 Nuclear Magnetic Resonance: Chemical Equivalence 

1.4 Summary 

1.5 Self-Test Questions 

Further Reading 

More Symmetry Operations and Products of Operations 

2.1 Introduction 

2.2 Background to Point Groups 

2.3 Closed Groups and New Operations 

2.3.1 Products of Operations 

2.3.2 Fixed Symmetry Elements 

2.3.3 The Final Missing Operation, Improper Rotations: S,, 

2.3.4 Equivalences for Improper Rotation Operations 

2.4 Properties of Symmetry Operations 

2.4.1 Equivalent Operations and Equivalent Atoms 

2.4.2 The Inverse of an Operation 

2.4.3 The Order of the Product; Operations that Commute 

2.5 Chirality and Symmetry 

2.6 Summary 

2.7 Completed Multiplication Tables 

2.8 Self-Test Questions 

The Point Groups Used with Molecules 

3.1 Introduction 

3.2 Molecular Classification Using Symmetry Operations 

3.3 Constructing Reference Models with Idealized Symmetry 



vi Contents 

3.4 The Nonaxial Groups: C,, C;, C, 48 

3.4.1 Examples of Molecules for the Nonaxial Groups: C,, Ci, Ci 49 

3.5 The Cyclic Groups? C,,S, 50 

3.5.1 Examples of Molecules for the Cyclic Groups: Cy, Sn ays 

3.6 Axial Groups Containing Mirror Planes: C,,, and C,,, 5) 

3.6.1 Examples of Molecules for Axial Groups Containing Mirror. 

Planes? Cy, and C,, 58 

3.7. Axial Groups with Multiple Rotation Axes: D,,, Dig and Dyn 59 

3.7.1 Examples of Axial Groups with Multiple Rotation Axes: D,, 

Diana De, 61 

3.8 Special Groups for Linear Molecules: C,,, and Dn 64 

3.9 The Cubic Groups: 7, and O,, 65 

3.10 Assigning Point Groups to Molecules 69 

3.11 Example Point Group Assignments 69 

3.11.1 Example 1: Conformations of Cyclohexane 69 

3.11.2 Example 2: Six-Coordinate Metal Complexes tps 

3.12 Self-Test Questions le 

4 Point Group Representations, Matrices and Basis Sets ES 

4.1 Introduction 75 

4.2 Symmetry Representations and Characters % 

4.2.1 Water, HO, Cr 7S 

4.2.2 Direct Products 79 

4.3. Multiplication Tables for Character Representations 81 

4.4 Matrices and Symmetry Operations 82 

4.5 Diagonal and Off-Diagonal Matrix Elements 85 

4.5.1 Ammonia, NH, Cx, 85 

4.6 The Trace of a Matrix as the Character for an Operation 87 

4.7 Noninteger Characters 88 

4.7.1 Boron Trifluoride, BF ;, Dp 88 

4.8 Reducible Representations os 

4.8.1 Water, HO, Coy 9] 

4.9 Classes of Operations ES 

4.9.1 [Ni(CN)4}~, Day 93 

4.10 Degenerate Irreducible Representations 96 

4.10.1 Ammonia, NH;, C3, 98 

4.11 The Labelling of Irreducible Representations 100 
4.12 Summary 102 

4.13 Completed Tables 102 

4.14 Self-Test Questions 102 

Further Reading 103 

5 Reducible and Irreducible Representations 105 
5.1 Introduction 105 
5.2 Irreducible Representations and Molecular Vibrations 107 



6 

a 

5.3. Finding Reducible Representations 

5.4. Properties of Point Groups and Irreducible Representations 

5.5 The Reduction Formula 

5.5.1 Applying the Reduction Formula 

5.6 A Complete Set of Vibrational Modes for H,O 

5.7 Choosing the Basis Set 

5.7.1 Carbonyl Stretching Modes of [Fe(CO)s], D+, 

5.8 The d-Orbitals in Common Transition Metal Complex Geometries 

5.8.1 Square Planar, D4, 

5.8.2 Tetrahedral, T, 

5.8.3 Octahedral, O, 

5.8.4 Trigonal Bipyramidal, D4, 

5.9 Linear Molecules: Groups of Infinite Order 

5.10 Summary 

5.11 Self-Test Questions 

Applications in Vibrational Spectroscopy 

6.1 Introduction 

6.2 Selection Rules 

6.2.1 Infrared Spectroscopy 

6.2.2 Infrared Absorption and the Greenhouse Gases 

6.2.3 Interstellar H, 

6.2.4 Raman Spectroscopy 

6.2.5 Comparison of Infrared and Raman Selection Rules 

6.3. General Approach to Analysing Vibrational Spectroscopy 

6.3.1 Example: the C—H Stretch Bands of 

1,4-Difluorobenzene 

6.4 Symmetry-Adapted Linear Combinations 

6.5. Normalization 

6.6 The Projection Operator Method 

6.6.1 Projection Operator Applied to the C—H Stretches of 

1,4-Difluorobenzene 

6.6.2 The Projection Operator and Degenerate Representations 

6.7 Linking Results for Symmetry-Inequivalent Sets of Atoms 

6.7.1 Sets of Atoms Differing in Mass or Chemical Bond Strength 

6.8 Additional Examples 

6.8.1 Benzene, Der 

6.8.2 The fac and mer Isomers of Transition Metal Complexes 

6.9 Summary 

6.10 Self-Test Questions 

Further Reading 

Symmetry in Chemical Bonding 

7.1 Introduction 

7.1.1 Wave Phenomena and Interference 

7.1.2 The Born Interpretation of the Wavefunction 

Contents Vil 

110 

112 

118 

120 

122 

126 

126 

128 

[32 

137 

142 

147 

154 

161 

162 

163 

163 

165 

165 

13 

WAL 

IRIE 

184 

186 

187 

190 

I: 

195 

196 

198 

202 

203 

206 

206 

22 

pAUS) 

216 

PAG 



vill Contents 

Uy 

74 

iD 

26 

Ta 

7.8 

We) 

Bond Energies 

7.2.1 The Symmetry-Adapted Linear Combinations for the 

Molecular Orbitals of H,* and H, 

7.2.2 The Chemical Bond Energy from Molecular Orbitals 

7.2.3 The Molecular Orbital Energy 

7.2.4 Bond Order 

The Relative Energies of Hydrogen-Like Atomic Orbitals 

7.3.1 Radial Behaviour of Atomic Orbitals 

7.3.2 The Relative Energies of Atomic Orbitals in Different Elements 

7.3.3 The Relative Energies of Atomic Orbitals from 

Electronegativity 

The Molecules Formed by Other Second-Row Elements 

with Hydrogen 

7.4.1 BeH>, Beryllium Hydride 

7.4.2 BH;, Boron Hydride 

7.4.3 CH,, Methane 

7.4.4 NH,, Ammonia 

7.4.5 H,O, Water 

The Second-Row Diatomic Molecules 

7.5.1 Homonuclear Diatomics 

7.5.2 Heteronuclear Diatomics of Second-Row Elements 

More Complex Polyatomic Molecules 

7.6.1 Ethene 

Metal Complexes 

7.7.1 Complexes Containing o -Donor Ligands 

7.7.2. The Jahn-Teller Effect 

7.7.3 Complexes Containing Ligand Orbitals of 1 -Symmetry 

Summary 

Self-Test Questions 

Further Reading 

Appendices 

Appendix 1 H,O Models for Identifying the Results of Symmetry 

Operation Products 

Appendix 2 Assignment of Chiral Centre Handedness using 

Cahn-Ingold—Prelog Rules 

Appendix 3. Model of a Tetrahedron and the Related Cube 

Appendix 4 Model of an Octahedron 

225 

228 

232 

236 

238 

230 

239 

242 

244 

252 

252 

253 

258 

264 

269 

270 

270 

276 

278 

278 

284 

284 

287 

291 

295 

296 

297 

299 

303 

307 

313 



Contents — Ix 

Appendix 5 Matrices and Determinants S17 

A5.1 Matrices as Representations of Symmetry Operators eulg) 

AS.1.1 Products of Matrices 318 

AS5.1.2 Products of Matrices, Expressed as 

Summations oe) 

AS.2. Matrices for Solving Sets of Linear Equations 321 
Further Reading 324 

Appendix 6 The Mathematical Background to Infrared 

Selection Rules 325 

A6.1 Model Based on Classical Mechanics o25 

A6.2. Model Based on Quantum Mechanics 328 

A6.3.— Excited Vibrational States 309 

A6.4 Vibrational Modes for Polyatomic Molecules Ses) 

A6.5 Generalization to Arbitrary Transitions 336 

A6.6 Summary of Selection Rules B57 

Further Reading 338 

Appendix 7 The Franck—Condon Principle 339 

Appendix 8 Classical Treatment of Stokes/Anti-Stokes Absorption 343 

Appendix 9 The Atomic Orbitals of Hydrogen 345 

A9.1 Choice of Coordinate System 347 

A9.2 Separation of Variables 348 

A9.3. The Angular Equation 349 

A9.4_ Physical Interpretation of the Angular Equation 

Solutions 354 

A9.5 Angular Momentum 356 

A9.6 The Radial Equation 359 

A9.7. The Complete Atomic Orbitals 361 

A9.8 Expectation Values 364 

A9.9 Real Combinations to Form the Familiar Atomic 

Orbitals 367 

A9.10 Cartesian Forms of the Real Angular Functions 369 

A9.11 Endnote on Imaginary Numbers 370 

Further Reading Sie 

Appendix 10 The Origin of Chemical Bonding in H; 379 

A10.1 Chemical Bond Formation 376 

A10.2 H Atom and H* Cation 376 

A10.3 The Virial Theorem 379 

A10.4 H,* Molecule 381 

A10.5 Choice of Coordinate System for H;: Cylindrical Polar 

Coordinates 383 



x Contents 

Appendix 11 

A10.6 H,*: the Electron Kinetic Energy 

A10.7 H,*: the Electronic Potential Energy 

A10.8 The Chemical Bond Formation Energy Based on Rigid 

Atomic Orbitals 

A10.9 Optimal Radial Decay of Molecular Orbitals 

Further Reading 

H,O Molecular Orbital Calculation in C,, Symmetry 

Further Reading 

Appendix 12 Character Tables 

Index 

A12.1 Non-Axial Groups 

A12.2 Axial Groups 

Al220ieC Groups 

Al2.2.2 S, Groups 

AAS a Ge GrOUDS: 

Al2.2.4 C,, Groups 

Al2.2.5 D, Groups 

Al2.2.6 Dyg Groups 

Al2.2.7 D,, Groups 

A12.3 Cubic Groups 

A12.3.1 Tetrahedral, T, 

A12.3.2 Rotational Subgroup of T,,T 

Al2.3.3 Octahedral, O, 

A12.3.4 Rotational Subgroup of O;,,O 

A12.4 Groups for Linear Molecules 

386 

387 

393 

396 

309 

401 

406 

407 

407 

407 

407 

408 

408 

409 

410 

411 

412 

413 

413 

413 

414 

414 

414 

415 



Preface 

Symmetry is central to spectroscopy, chemical bonding theory and many other aspects of 

the molecular sciences. The idea of this book is to introduce the topic in a graduated way, 

from molecular structure, through point groups, leading into the powerful tools that group 

theory provides. Example models and applications are used at all stages to show how the 

sometimes abstract ideas are relevant to practical problems. It is designed to be a useful 

companion at all levels of undergraduate study and beyond. 

Chapters 1 and 2 introduce the ideas of symmetry elements and operations for the 

description of molecular geometry; this sets up the required symbols through examples 

of particular molecules. Chapter 3 looks from a slightly different perspective, laying out 

all the sets of operations that are contained in the common point groups and discussing 

why only certain sets are possible. For all three chapters Appendices 1, 2 and 4 give some 

paper models that can be used for visualization of the shapes that are not easily built 

using a molecular modeling kit. These paper models will also be available from the web- 

site. The reader interested in the applications of symmetry, without too much detail of the 

background, may wish to skip over Chapter 3 on the first reading. 

Chapters 4 and 5 introduce the concepts of group theory, which makes symmetry 

indispensible for understanding many areas of chemistry. This book concentrates on 

applications in vibrational spectroscopy and molecular orbital theory and so illustrative 

examples are drawn from these areas. 

Chapter 6 covers applications in vibrational spectroscopy, specifically dealing with 

infra-red and Raman. The chapter explains how symmetry is used to rationalise exper- 

imental data to help determine the shape and structure of molecules. To do this some 

background on the physical origin of spectral bands and the role of symmetry in 

determining selection rules is given. 

Finally, Chapter 7 deals with molecular orbital theory. Molecular orbital pictures are 

quite straightforward to produce with modern software and the results of such calculations 

are used as illustrations throughout. The aim of this chapter is to demystify how molecular 

orbitals are obtained from sets of atomic orbitals. Some fundamental concepts, such as the 

idea of electronegativity and the factors that influence the strength of bonding are reviewed. 

Further appendices are linked to each chapter to provide a more detailed coverage of 

material such as spectroscopic selection rules, the mathematics of matrices and back- 

ground quantum mechanics. The flow of the text will work without these, but curiosity 

should hopefully draw the reader to them. 

Many people have helped me in the production of this book, most notably those that 

have reviewed various parts of the manuscript; Mike Hewlins, Peter Knowles, Massimo 

Mella, Jamie Platts and Edward Jeffery. They have been thorough in their reading of the 



xii Preface 

text and frank in their comments on it, for which I am very grateful. Dai Hibbs, Bernard 

Richardson and Mike Coogan also provided some images from their own research, which 

has notably enlivened the presentation of the practical implications of symmetry. I have 

also taught the topic for a number of years with Simon Aldridge and Chris Morley, and 

have benefited greatly from their ideas. 

David J. Willock 
Cardiff, November 2008. 

Powerpoint slides of all figures from this book, along with other supplementary material 

can be found on this book’s webpage at www.wileyeurope.com/college/willock 
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Symmetry Elements 
and Operations 

1.1 Introduction 

This cae eal lay out the font language used in the area, using illustrative exam- 

ples of particular molecules throughout. We will then apply the ideas of symmetry to 

describe molecular structure and bonding in molecules and to consider the implications in 

spectroscopy. 

Even in our surroundings we often look for symmetry, Figure 1.1 shows a picture of 

a wood engraving entitled Fish, Vignette made in 1955 by the artist M.C. Escher. In this 

work, the intertwined fish are shown set inside a hexagonal border. All of the fish illustrated 

have the same shape and they are designed to fit together perfectly. Six of the fish touch 

fins in the centre of the image and each of these has a partner with a fin on a corner of 

the hexagon. If we imagine rotating the picture by 60° about the central point, each fish 

would move to a new position and exactly replace a fish of opposite colour. This property 

gives the picture an attractive quality, but it also tells us that we could reconstruct the 

whole image by knowing the shape of the fish and the initial position of any pair, simply 

using six equivalent sections placed according to the rotation. At each step all we need 

do is remember to change the colours of the fish. The image is said to have rotational 

symmetry, and the techniques of this book provide a concise method of stating the rules 

for the construction of the picture. 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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Figure 1.1. M.C. Escher’s ‘Fish, Vignette’ Copyright 2008 The M.C. Escher Company- 
Holland. All rights reserved. www.mcescher.com. 

Figure 1.2 shows the ceiling of the Arab Room of Cardiff Castle. It is clear that the dec- 

orators have gone to a lot of trouble to use symmetry. In this case, a rotation of the image 

through 90° would interchange the positions of the windows; but, since they are identical, 

the pattern would appear unchanged. Four such rotations are possible, with the last return- 

ing each part of the ceiling to exactly its initial location. This image also has additional 

symmetry properties not possessed by Escher’s fish. Imagine a line drawn horizontally 

across the image so that it passes through the centre of the left- and right-hand windows. 

The two sections of the image are now reflections of each other, with each feature in the 

upper part of the picture repeated in the lower half, as if reflected in a mirror standing 
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Figure 1.2 Arab Room ceiling, Cardiff Castle. Copyright: Cardiff Council. 

perpendicular to the line. The mirror can be thought of as a plane of symmetry, and this 

image contains four such planes. 

We can also look for planes of symmetry in nature. The fern frond shown in Figure 1.3 

looks perfectly normal at first glance. However, on close inspection it can be seen that the 

left side of the leaf is just a reflection of the right-hand side on the surface of a pond. The 

picture is shown with the water surface vertical, which enhances the illusion. From half 

the leaf and its reflected image we can easily imagine the complete structure. 

In chemistry, symmetry is not simply to do with beauty. It affects the properties of 

molecules and, in particular, influences the spectra we observe. For instance, most people 

would say that benzene is a ‘more’ symmetric molecule than fluorobenzene (Figure 1.4), 

since the fluorinated carbon should be different to the other carbon atoms. Figure 1.5 shows 

that this simple substitution has a profound affect on the infrared (IR) spectra of the two 

molecules. 

The IR spectrum of benzene is very simple, showing only four main bands. On substitu- 

tion with a single fluorine atom to give fluorobenzene, the spectrum becomes much more 

complex, with many more bands appearing between 400 and 1600 cm". 

We know that IR spectra are the result of radiation exciting vibrational modes in a 

molecule. The number of possible lines is related to the number of vibrational modes for 

the molecule in question. Since each atom in a molecule can move in three dimensions 

(X, Y, Z), both benzene and fluorobenzene will have a total of 36 degrees of freedom. For 
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Figure 1.3 The frond of a fern imaged at the surface of a pond. Although we see a complete 
leaf, the left-hand side is actually a reflection. In fact, the segments (or pinna) on opposite 
sides of a frond are usually not quite mirror images of one another, as the points at which the 
pinna attach to the stem are staggered. 

(a) (b) 

Figure 1.4 The structures of (a) benzene and (b) fluorobenzene. 
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Figure 1.5 The infra-red spectra of (a) benzene and (b)_flugrobenzene. Note that the 
transmittance scale is logarithmic and the drop in the base line between around 700 and 
500 cm is a feature of the instrument. Data kindly provided by Dr Mike Coogan, School of 
Chemistry, Cardiff University. 

To understand and quantify these differences in spectra we need more rigorous defini- 

tions of symmetry than simply saying benzene is ‘more’ symmetric than fluorobenzene. 

The geometric constructs of molecular symmetry help us to define a molecule’s symmetry 

and the use of group theory allows us to predict the number of absorption lines that will 

be observed. 

To achieve this we look for features in the geometry of a molecule that give rise to 

its symmetry. The most easily recognized of these features, or symmetry elements, are 

rotational axes (lines of symmetry) and mirror planes (planes of symmetry). These will 

be discussed in the remaining sections of this chapter, along with the inversion centre, 

which is a point of symmetry. There are other symmetry elements and operations is that 

are possible, and we will meet these in Chapter 2. The symmetry elements imply that 
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there are symmetry operations: actions that can be carried out which appear to leave the 

molecule unchanged. If a molecule has multiple symmetry elements then there will be at 

least one point in space which lies within them all. For example, Figure 1.8 shows that all 

the rotation axes of ferrocene meet at the central point where the ss atom is located. For 

this reason, the symmetry of molecules is often referred to as point group symmetry. The 

idea of this book is to introduce the ideas of point group symmetry and its, application in 

vibrational spectroscopy and the molecular orbital (MO) description of chemical bonding. 

In periodic systems (such as crystal structures), other symmetries exist to do with trans- 

lation between equivalent molecules. See the Further Reading section at the end of this 
chapter for a book on this topic. 

1.2 Symmetry Elements and Operations 

1.2.1 Proper Rotations: C, 

The geometric properties of shapes that make them symmetric can be classified by their 

symmetry elements. The validity of a symmetry element can be checked by carrying out 

the corresponding operation and then comparing the object with the starting point. For 

example, imagine constructing an axis for a water molecule which runs through the oxygen 

atom, bisecting the H—O—H angle, with the axis in the plane of the molecule. This con- 

struction is shown in Figure 1.6, which also illustrates the result of rotating the molecule 

by 180° around the axis. After the rotation, we end up with a view of the water molecule 

identical to the starting point, so much so that if we had not labelled the hydrogen atoms 

it would be indistinguishable from the original. This result shows that the axis we have 

drawn is a symmetry element of the molecule and the act of rotating the molecule is the 

corresponding symmetry operation. The rotation operation also shows that the two hydro- 

gen atoms in the water molecule are equivalent; if a symmetry operation can interchange 

two atoms, then the atoms must occupy identical chemical environments. 

(aN 
! C) operation 

oie O ei pe amy 

C, element 

Figure 1.6 The C, symmetry element of water and the result of the C, operation. 

Rotational elements and operations are labelled using a capital C. For rotations by 180° 
there are two positions of the molecule which appear identical, the starting point and the 
molecule after the rotation, so a subscript 2 is added to the label: C). This subscript is 
known as the order of the rotation axis. 

To emphasize the difference between elements and operations further, consider the 
structure of ammonia shown in Figure 1.7. A C; axis is present: the symmetry element 
is a line running through the nitrogen atom and the centre of the triangle formed by the 
three hydrogen atoms. 
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Figure 1.7 The C; axis of ammonia and the corresponding operations. The lower image 

shows a ball-and-stick model of ammonia in roughly the same orientation as the chemical 
drawing pictures above. The superscript on the operations gives the number of rotations 
starting from the initial configuration. 

The C; axis actually has two symmetry operations associated with it, as can be seen in 

Figure 1.7: a rotation by 120° and a rotation by 240°. By convention, a rotation operation 

moves ms clockwise when looking down the .axi ae 
operation sequence shown in Figure 1.7, a clockwise rotation by 120° takes each hydrogen 

atom to the position of one of its neighbours. A second application of the operation takes 

each hydrogen atom to the original position of its other neighbour. To distinguish the two 

operations we add a superscript to indicate how many times the operation has been applied. 

So C;° means that, starting from the original configuration, two successive rotations of 

120° are applied, i.e. a total of 240°. 

Molecules may contain more than one rotation axis, and those axes may have different 

orders. In this situation, the highest order axis is termed the principal axis. As an example, 

Figure 1.8 shows the structure of ferrocene (di-cyclopentadienyl iron(Il)). This complex 

has a Cs; axis, which is the line joining entres of the cyclopentadiene rings through 

the Fe centre (Figure 1.8a). In addition, there are five C, axes that run through the Fe 

atom parallel to the ring systems and perpendicular to the principal axis. These are best 

seen looking down the principal axis direction, as shown in Figure 1.8b. The C, rotation 

operations cause the exchange of the cyclopentadiene rings, whereas the C; operation 

simply rotates each cyclopentadiene ring around its centre. There is a convention that 

molecules are orientated_so that the principal axis defines the vertical direction and that 

this is also_aligned with the Cartesian Z-axis. This means that the vertical direction in 

Figtre 1.8a runs up the page, whereas ‘vertical’ in Figure 1.8b is into the page. 

The symmetry elements for a molecule are fixed in space: as we move the atoms under 

a given operation the symmetry elements are not shifted. For ferrocene, the atoms of the 

complex can be moved between any of five arrangements using the principal axis. In any 
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(b) (a) 

Figure 1.8 The structure of ferrocene, illustrating (a) the Cs axis and an example C) axis; 
(b) a plan view of the molecule showing all five C, axes. 

. So, after a C; Cenion the aepanen A (he atoms et any of 

the C, axes is shifted to one of its neighbours; this implies that all the C, axes have an 

equivalent environment of atoms, and so they are treated as equivalent axes. 

always be C, and C, 
olecule ere 

— = 
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Figure 1.9 The structure of benzene showing the two sets of three C, axes in the molecular 
plane; the principal C, axis is perpendicular to the plane and passes through the centre of the 
molecule at the crossing point of the CJ and C,’ axes. 

axes are 60° apart, anc 

OCLC C,’ axes. Ho 

é We have made the choice iat hen axes joining ie 

atoms end be apoled Cr and that those between the bond centres that do not contain 

any atoms in the symmetry element are labelled)”. ~~SCS~S~SCS 
rther possibility for multiple rotation axes is to have more than one candidate for the 

principal axis. For example, the highest order axis for ethene is a twofold axis, but there 

are three nonequivalent C, axes, as shown in Figure 1.10. The choice of principal axis is 

now arbitrary, and it is usual to assign each axis a Cartesian label (X,Y or Z) so that they 

cain be referred 10 explicitly. 

1.2.2. The Plane of Symmetry: o 
See Se 

If a plane exists for which reflection of each atom in a molecule gives an indistinguishable 

configuration, the molecule is said to have a plane of symmetry, which is given the label o. 
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Figure 1.10 The structure of ethene showing three distinct C, axes. 

The symmetry element is the plane itself, since all go in the plane remain unchanged 

by the operation of reflection. Fo 

shown in Figure 1.11. These are ae euane x abe ling the nae ied Eye to the 

molecule o and the plane of the molecule itself o’. The C, axis of water 1s the only axis, 

a itisa on. means that the mirror 

> laren PRESTR ri onilymanic'dsereuibeotipr i is added to remind us of this, giving oy 
and oy’. 

‘al "> ~- Element Ge 
A 

Operation a, 

‘ 

SSS Elemention,, 

Operation oy’ 

Figure 1.11 The two mirror planes for the H»O molecule showing the difference between o, 
and oy’ operations. The inset shows the relationship between the mirror planes and a reference 
axis system. 

Which plane is which is a somewhat arbitrary choice; however, the designation 
described here 1 is quite one used and is basec the adenment of the symmetry planes 

of 
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We also take i to bei in the molecular plane, and so X must be per- 

1 1n FI 

Figure 1.12 The rotational symmetry elements of BF,. To the left is a flying wedge drawing 
looking from the side of the molecule in the same orientation as the perspective ball-and- 
stick model below it. The C, axes are shown with the molecule viewed looking down on the 

molecular plane. 

move the AtSonE atoms eee rete planes, but ach will es contain one fluorine 

atom and Ques the other two into one er So, althous 

Figure 1.13 The two types of symmetry plane for BF;: (a) an example of a vertical plane; 

(b) the horizontal plane oy. 



12. Molecular Symmetry 

More complex collections of rotation axes and planes require the definition of an addi- 

tional type of mirror plane. To illustrate this we can return to the case of benzene. In 

Figure 1.9 we showed that there are two sets of rotation axes in the molecular plane of 

benzene and labelled these C,’, for the axes passing through opposite atoms, and C,", for 

the axes passing through opposite bonds. There are also two sets of three mirror planes 

which each contain the principal axis and either a C,’ or C,” axis. Both types of mirror 

plane are vertical, but we need to distinguish them from one another. Each of the first set 

contain a C,’ axis and these are labelled o,. Planes in the second set are vertical, but are 

also _in between the Cy” axes; this sontof vertical plane is called a dihedral plane and_is 

given the symbol oy. The relationship of the o, and 4 planes to the C,' axes in benzene is 

shown in Figure 1.14. 

Figure 1.14 The vertical (o,) and dihedral (a4) planes of benzene and their relation to the 

C, axes. The bonds in front of the planes have been thickened. 

The dihedral plane has been introduced using an example where there is more than one 

type of vertical plane. However, oy planes are defined by their relationship to the horizontal 

C,’ axes; this means that CLG i mi ee 
— - 5 iain = 2 = 

An example of a molecule with. ‘no o, planes is ethane in its staggered confor- 

mation. The principal axis in this case is a C3 axis running along the C—C bond, and the 

molecule is shown orientated vertically in Figure 1.15a. The illustrated dihedral plane of 

symmetry contains the two carbon atoms, H, and Hy. There are horizontal C, axes passing 

through the C—C bond centre, but they are not in the mirror planes, as can be seen from 

a Newman projection along the principal axis in Figure 1.15b. Figure 1.15a and b shows 

two of the three C, axes: one rotates the molecule so that H, and H, interchange, while 

with the other H, and Hs; are swapped. The mirror plane in the diagram bisects the angle 

between these two axes and so is labelled o4. The oj operation would swap H; with Hy 

and H, with H;. There are three C, axes for ethane and, correspondingly, there are three 

04 planes. 

The dihedral plane also occurs when-there is more than one type of vertical mirror plane 

even_if there are no horizontal C) axes. Figure 1.15c shows a metal complex with four 

equivalent equatorial ligands. The internal structure of these ligands L will be assumed 

not to affect the symmetry properties of the complex. The complex has a principal axis of 

order 4, so there is a vertical C) axis (C,? = C>). However, the two axial halogen atoms are 

different (Cl and Br) and so there are no horizontal C, axes. There are two mirror planes 

that each contain two trans-L ligands; these are labelled o,. The figure also shows one 
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Figure 1.135 (a) An example dihedral plane og for ethane in the staggered conformation and 
the two C, axes it lies _b . (b) A Newman projection view showing the o4 plane bisects 
the angle between the C, a (c) An example metal complex with no horizontal C axes. 

Re nn 

example of another pair of planes that only contain M and the halogen atoms, and reflect 

cis-L ligands into one another. This plane bisects the angle between the two o, planes and 

so is labelled o4. The other o4 plane woul dicular to the page. 

Problem 1.1: In Section 1.2.3, Figure 1.19 shows the structure of the square planar 

complex [PtCl,]*~, find and label all the proper rotation axes and planes of symmetry 

for this structure. Remember to consider the full set of operations for high-order axes. 

1.2.3. The Inversion Centre: 7 

So far, we have looked at symmetry operations for which the corresponding elements are 

the plane (a reflection operation) and a line (the rotation operation). The next symmetry 

element is the imversion centre, labelled i. The Operation of inversion leaves only a single 

point unchanged, and so it is often Telerred to as a centre, or point, of symmetry. The 

inversion operation is illustrated in Figure 1.16 with two pairs of points, A, A’ and B, B’, 

which represent atoms in a hypothetical molecule. For each pair, the points are equidistant 
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x 
. 

x 
‘ 

. 
. 

‘ 
‘ 

x 

Figure 1.16 An illustration of the inversion centre operation. Under inversion, each point in 
a molecule is moved through the inversion centre to a position on the opposite side of the 
centre and at the same distance from the centre as the original point. In this case, atom pairs 

A—A’ and B—B' are linked by the inversion centre 1. 

from the inversion centre, and the lines between A and A’ and between B and B’ include 7. 

To perform the inversion operation we imagine moving each atom in the molecule along 

a straight line to the inversion centre and then moving them along the same line beyond 

the centre to a distance equivalent to their starting point. For the hypothetical example, 

A and A’ would be interchanged, as would B and B’. If the inversion operation result is 

indistinguishable from the initial geometry, then the molecule has an inversion centre. The 

inversion operation can be thought of as similar to the reflection operation, but referred to 

a point rather than a plane. 

In two dimensions, we can illustrate the difference between the inversion centre and a 

simple reflection using lens optics. In Figure 1.17a, a drinking glass is used as a cylindrical 

lens behind which a piece of paper carries the word ‘Reflect’ and is backlit in the set-up 

shown in Figure 1.17a. When viewed through the glass at a distance beyond the focus 

of the cylindrical lens the word is reversed, as shown in Figure 1.17b. This result is the 

same as if we had reflected the word through a plane perpendicular to the paper. The 

optical quality of the drinking glass is low, so distortion of the letters is also apparent. If 

we use a small pocket lens in a similar set-up (Figure 1.17c), then the result is not only 

the reversal of the word, but also the top and bottom of the letters are swapped over, as 

shown in Figure 1.17d. Figure 1.18 shows ray diagrams of the optics for the cylindrical 

and normal lens. In the cylindrical case (Figure 1.18a) the rays from the object (the word 

‘Reflect’ in this case) are bought to a line focus because the lens has no curvature in the 

vertical direction. When the viewer is placed beyond the focus, rays from the left of the 

object appear to the right and vice versa, leading to the observed reversal. For the hand 

lens (Figure 1.18b) the focus is a point and so, in addition to left and right reversing, top 

and bottom are also swapped. 

These are two-dimensional examples, because the words are planar; in fact, the third 
dimension, perpendicular to the paper, is used to carry out the operation using the optics. 
A square planar species, such as the [PtCl,]’~ ion shown in Figure 1.19a, has a centre of 
inversion, and the operation seems to act much like our optics example. On inversion, the 
chlorine atoms trans to each other in the original molecule are interchanged. 
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Reflect 

(c) 

Invert 

Figure 1.17 A two-dimensional illustration of the difference between reflection and inversion 
operations. (a) The set-up used and (b) the result of viewing the word ‘Reflect’ through a 

cylindrical lens. (c) The set-up and (d) result of viewing the word ‘invert’ beyond the focal 
point of a hand lens. 

However, in three dimensions the inversion operation will swap left with right, top with 

bottom and back with front simultaneously. For this to be a symmetry operation which 

leaves the molecule unchanged, the centre of inversion symmetry element will always be 

at the centre of the structure. So the Pt atom in [PtCl,]?~ remains in the same position after 

the operation. Figure 1.19b shows the three-dimensional example SF,; here, the central S 

atom is on the inversion centre and so remains in the same place after inversion, but, with 

the F atoms labelled, it can be seen that atoms trans to one another are again swapped over. 

The molecular models of these two structures in Figure 1.19c should help to visualize the 

process. 
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Problem 1.2: Square planar complexes have five planes of symmetry; using the struc- 

ture of [PtCl,]?~ from Figure 1.19a, find these planes and sketch out the result of each 

associated operation on the positions of the Cl atoms. Hence, confirm that no mirror 

plane gives the arrangement shown after the inversion operation in Figure 1.19a. 

1.3. Examples of the Impact of Geometric Symmetry on Chemistry 

So far, we have only considered some of the geometric factors involved with symmetry. 

Even so, the use of symmetry to identify equivalent atoms or groups in molecules already 

allows some insight to be gained into the way symmetry can be used to interpret the chem- 

ical behaviour of molecules possessing, or lacking, the symmetry elements introduced so 

far. We can also start to explore how symmetry helps deduce chemical structure from 

experimental data. 

1.3.1 Oxygen Transfer via Metal Porphyrins 

Rotation axes and mirror planes are very common symmetry elements in molecules and 

can lend important properties to the structure. For example, in biology, the porphyrin ring 

(Figure 1.20) is the basic structure of an important class of tetra-dentate ligands. The ide- 

alized unsubstituted ring has a C, principal axis at its centre perpendicular to the plane of 

the ring. This will give rise to two C, (C, and C,°) and one C, (C,’) operations. Figure 1.20 

also shows that there are four C, axes in the plane of the ring: two C,’ and two C,”. Each 

of these axes can be used to turn the planar molecule over so that the upper and lower 

faces are interchanged. Since this is achieved through symmetry operations, it implies 

Figure 1.20 The porphyrin ring structure. A C, axis passes through the centre of the ligand 

perpendicular to the molecular plane; this is also a Cy axis, since C,' = C,*. The four C axes 

shown in the molecular plane form two sets of two, labelled C,' and Cy”. 
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that the two faces of the ring are identical. This does have important consequences for 

the biological processes involving porphyrin rings. In particular, complexes of Fe** with 

more elaborate porphyrin ligands are essential for the function of haem, which 1s involved 

in oxygen storage in the haemoglobin component of blood. When it is oxygenated, the 

central Fe atom carries a single oxygen atom which sits above the plane of the ring and it 

is coordinated by part of the host protein structure from below. Since the two faces of the 

porphyrin ligand are linked by symmetry operations, it does not matter ‘which way up’ the 

porphyrin is orientated as it is incorporated into the protein. 

1.3.2 Nuclear Magnetic Resonance: Chemical Equivalence 

An important use of symmetry is as an aid in the determination of molecular structure 

from spectroscopic data. We often know the molecular formula of a new compound, but 

this does not tell us the molecular structure. In a nuclear magnetic resonance (NMR) exper- 

iment, a macroscopic sample of an unknown compound is exposed to a strong magnetic 

field. Magnetic nuclei in the sample will have different energies depending on the orien- 

tation of their magnetic moment with respect to the external field. According to quantum 

mechanics, the magnetic moment of a nucleus is dependent on its spin. For nuclei with a 

spin of 1/2, such as 'H or "°C, two states will be possible: one with the spin aligned with 
the external field and one with the spin aligned opposite to the external field. The energy 

difference between these two states is small, of the same order of magnitude as the energy 

of a photon of radio-frequency electromagnetic radiation. This means that, if the sample 

is probed using radio-frequency waves, we will see an absorption when the photon energy 

exactly matches the energy difference between the two magnetic states of the nucleus. 

In NMR spectroscopy, the probe frequency of the radio waves is actually held fixed and 

in the original approach the magnetic field applied was scanned through a range of values. 

The energy difference between the two spin states will be altered as the field is scanned, 

and a strong absorption will be observed when the energy difference exactly matches the 

probe radio-frequency. In most modern machines the ‘scanning’ process has been replaced 

by a pulsed approach, which allows all environments of a given nucleus to be analysed 

simultaneously. 

In addition to the magnetic field applied in the experiment, the nuclei also experience 

the magnetic field created by the electrons and other magnetic nuclei in the molecule. The 

electronic effect tends to be larger than the nuclear influence on the local magnetic field at 

a given nucleus and so the nuclear effects are only resolved in high-resolution spectra. In 

the following examples we will only consider low-resolution spectra, and so will ignore 

the magnetic coupling between nuclei. The magnitude of the electronic contribution to the 

local magnetic field depends on how the electron density is distributed in the molecule; in 
particular, the field from the valence electrons will depend on the other elements present 
and the types of bonding holding the structure together. So, the energy separation between 
the spin states depends not just on the applied field from the NMR machine, but also 
on the local chemical environment of the nucleus being probed. This makes NMR an 
extremely useful technique in chemistry, because the positions of the NMR bands provide 
information on the molecular structure of the sample. 

Generally, NMR spectra are plotted in terms of chemical shifts, which are the absorp- 
tion frequency differences between the sample nuclei and the same element ina laboratory 
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standard. For carbon ('°C) and hydrogen ('H) NMR experiments, a commonly used 

standard is tetramethylsilane (TMS). The chemical shift 5 is defined as 

Vi) 

See eC) (1.1) 
Vrms 

where v is the absorption frequency of the sample atoms and vpyg is the absorption of the 

corresponding element (°C or 'H) in the standard. This chemical shift is dimensionless, 

since the reference absorption frequency appears in the denominator; this ensures that 

experiments on spectrometers with different probe frequencies give the same chemical 

shift values for a given sample. The difference in frequencies observed between samples 

and the standard is typically only a few kilohertz, whereas the probe frequency will be in 

the 200-1000 MHz range. Hence, the factor of 10° is introduced to give chemical shifts 

that can be quoted using simple numbers, typically 0-12 for 'H NMR, and the shifts are 

quoted as parts per million (ppm). 

The chemical shifts from a 'H NMR spectrum are used as an indication of the chemical 

environment of each proton in the molecule of the sample. If two hydrogen atoms are 

linked by a symmetry operation, then they will have the same environment and are referred 

to as chemically equivalent. The line in the 'H NMR spectrum for each will occur at exactly 

the same position, and so the intensity of the peak at this chemical shift will be twice that 

of a hydrogen atom in a unique environment, i.e. not linked to any other hydrogen atoms 

by symmetry operations. This allows us to use the intensity of the peaks as an indication 

of the number of equivalent hydrogen atoms in a molecule and so may help to determine 

the sample’s molecular structure. 

As an example, Figure 1.21 shows a computer-generated 'H NMR spectrum for a com- 

pound with the chemical formula C,H,4. There are several possibilities for the molecular 

structure of this sample, two of which are given in Figure 1.22. The spectrum shows two 

peaks with the lower chemical shift having a height six times that of the other signal. 

Intensity 

= —; eee —= 

3 2 1 0 

Chemical shift (ppm) 

Figure 1.21. A 'H NMR spectrum for a compound with the chemical formula CsHi4 

generated using the ChemDraw package. 
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(a) (b) 

dimethylcyclohexene bicyclo[2.2.2]octane 

\ 

Figure 1.22 Two possible molecular structures for the chemical formula CgHy4. 

This implies that there are only two environments for the 14 hydrogen atoms and they are 

divided into a set of 2 and a set of 12. Three-dimensional structures of the two alternatives 

are shown in Figure 1.23, along with examples of the rotation axes and mirror planes that 

are symmetry elements of the structures. 

(a) 

(b) 

D-€> - - 

Figure 1.23 (a) The C, axis in dimethylcyclohexene and (b) the principal C, axis and 
example symmetry planes for bicyclo[2.2.2]octane. 

Only bicyclo[2.2.2]octane has a structure consistent with the spectrum, since the two 

hydrogen atoms that lie on the principal axis (C;) are linked by oj, and by 7 and all of the 

other 12 hydrogen atoms are linked by combinations of o;,, o,, C; and i operations. None 

of the symmetry operations would interchange the axial hydrogen atoms with any of the 
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hydrogen atoms in the CH, groups, and so there are two distinct sets of hydrogen atoms. 

This gives the same division of the hydrogen atoms between the two environments that 

was implied from the spectral data. The dimethylcyclohexene alternative has only a C, 

axis and no other symmetry axes or planes. As we shall see below, this means that it has 

hydrogen atoms in at least three different environments, and so would be expected to give 

a more complex 'H NMR spectrum. 

The absorption event in an NMR experiment takes a short, but finite, time. If the pro- 

ton in a 'H NMR experiment is moving rapidly, then it may experience more than one 

environment on the time scale of the experiment and only the average chemical shift will 

be observed. For example, methyl groups are usually undergoing rapid rotation at room 

temperature, and so the three hydrogen atoms will appear equivalent even though they 

may not be linked by symmetry operations. In the spectrum of dimethylcyclohexene we 

would see only a single chemical shitt for all six of the methyl protons, since the two 

methyl groups are linked by symmetry operations in the static structure. Similarly, molec- 

ular motion would be expected to cause the hydrogen atoms of each CH) group in the ring 

to interchange rapidly from axial to equatorial as the ring changes its conformation. The C, 

axis implies that the two CH, groups adjacent to the methylated carbon atoms are equiv- 

alent and that the remaining CH, groups are also equivalent to one another. This gives at 

least three distinct 'H NMR signals. 

This type of analysis can also give some information on the dynamics of molecular 

motion. Figure 1.24 shows the structure of Al,(CH;).. The symmetry axes and mirror 

(a) 

Cae 
Gece J) E2CHG 

~--- === AF - - f--- A EE=----- CY) 
H.C x: “NCH, 7 

C(Z) Hs 
iC) 

a(YZ) 

Figure 1.24 The structure of Al,(CH3), showing (a) the rotation axes and (b) mirror planes 

assuming the structure of the methyl group can be ignored. 
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(a) (b) 

J a 

Figure 1.25 'H NMR spectra of Al,(CH3)¢: (a) at —40 °C; (b) at 20°C. 

ee ; ee Se —_ 

planes for the structure are illustrated assuming that the internal structure of the methyl 

groups can be ignored due to the rapid rotation discussed above. Using the symmetry 

operations, we see that the methyl groups form two sets: The four methyl groups that 

have only one bond to an Al atom (terminal methyl groups) and the two methyl groups 

that bridge between Al atoms. Figure 1.25a shows the 'H NMR spectrum for Al,(CH3)¢ 

taken at a temperature of —40 °C. As expected, we see two chemical shifts, with the signal 

for the terminal methyl hydrogen atoms more intense than that for the hydrogen atoms 

of the bridging methyl groups. However, a spectrum of the same sample taken at 20 °C 

shows only a single peak, as illustrated in Figure 1.25b. This peak has a chemical shift in 

between the values found for the terminal and bridging methyl hydrogen atoms at lower 

temperature. This suggests that at 20 °C there is a rapid interchange of the terminal and 

bridging methyl groups so that the hydrogen atoms sample both environments. A possible 

mechanism for this process is shown in Figure 1.26. Here, exchange is achieved without 

dissociation of the dimer, a bond between an Al and bridging methyl group is broken by 

thermal excitation and then a simple rotation converts the methyl group labelled C,H; from 

terminal to bridging. 

Hy 
Cc C)H3 CH; 

HC sea qc? OHS HC cy Nate Cs 
Hc es “CH; Ror Ne CH HC rue ““CH, 

Cc 
H Hg H, 

Figure 1.26 Possible mechanism for the rapid interchange of terminal and bridging methyl! 
groups in Al, (CH3)¢. 

1.4 Summary 

Symmetry elements are imaginary geometrical entities that are the signature of symmetry 
OOo Y . aa . . 

properties in objects. So far, we have seen that a line of symmetry is required for a rotation 
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axis, a plane for a reflection and a single point for inversion. The symmetry element is 
the set of points that are not moved when the corresponding symmetry operation takes 
place. 

Symmetry operations are the actions, such as rotations or reflections, that can be used to 

trakSTOE or COT such a way that, after the operation, it is indistinguishable from the 

Starting point. 

The symmetry elements and operations of a molecule are given standard symbols, 

including: 

¢ Proper rotation axes, labelled C,, where n is the axis order. The highest order axis 

present for a given molecule is called the principal axis and defines the vertical direction 

used to orientate the molecule in space. 

¢ Reflection planes, labelled o , with three possible subscripts: 

— oy, a vertical mirror plane, contains the principal axis — if there are horizontal C) axes, 

then o, will also contain those of highest priority; 

— 6,4, a dihedral mirror plane, also contains the principal axis — if there are horizontal C, 

axes, then o, will bisect the angle between those of highest priority; 

— 0, a horizontal mirror plane, is perpendicular to the principal axis. 

e Inversion centre, labelled i, has a single point as the symmetry element. Inversion 

reGuires each point in the molecule to have an equivalent point on the opposite side 

of the centre of symmetry and equidistant from it. A molecule may have at most one 

point of inversion. 

Atoms in a molecule that are linked by symmetry operations have identical chemical 

environments, and so identical NMR chemical shifts. 

1.5 Self-Test Questions 

These questions are designed to give you practice at applying the concepts learned in this 

chapter. Most of the questions for this chapter require you to visualize the geometry of a 

molecule, and you may find it useful to construct models. In the illustrations here, as in the 

rest of the text, we continue to use the convention that C atoms are not explicitly labelled 

in organic molecules and hydrogen atoms are omitted unless the geometry is ambiguous 

without them. The ‘flying wedge’ convention is also used to indicate bonds above and 

below the plane of the paper. 

1. For each of the molecules in Figure 1.27 identify all of the rotation axes present, giv- 

ing the order of each axis and describing any that form a set of identical axes. You 

should make sketches of the molecules viewed from different directions to illustrate 

your answer. 
2. Give the orders of the principal axes for the molecules illustrated in Figure 1.27. 

3. Identify all the mirror planes present in the molecules of Figure 1.27 and use the rotation 

axes you have found to label them as oy, o4 OF Oj. 
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(a) 

Cyclohexane, Cyclohexane, chair 

boat conformation conformation 

Figure 1.27 Example molecules for symmetry analysis. 

4. How many distinct 'H NMR peaks would you expect for each molecule containing H 

atoms in Figure 1.27? 

5. Draw molecular structures of each of the isomers of difluorobenzene and identify all 

axes and mirror planes of symmetry for each case. 

Further Reading 

Crystal symmetry is covered in several texts, including: 

Senechal, M. (1990) Crystalline Symmetries: An Informal Mathematical Introduction. Adam Hilger 

CUSBNO=7 50200041 8 spec ruc ood 
Franzen HF (1994) Physical Chemistry of Solids, Basic Principles of Symmetry and Stability of 

Crystalline Solids. Scientific Publishing (ISBN 9-8102-1154-6). 
a 
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More Symmetry Operations 
and Products of Operations 

2.1 Introduction 

In this chapter we will explore further the symmetry operations that are used to describe 

molecular structure. New operations are introduced to complete the set used in molecular 

symmetry. Particular sets of operations often recur, with many molecules having the same 

collection of operations. Once we establish how the properties of a molecule depend on 

the set of valid operations, this will mean that we can actually infer the properties of many 

related molecules of the same symmetry. The sets of operations are referred to as point 

groups, and our main task in this chapter is to introduce the concept of a point group. 

The formal construction of the point groups most commonly used in chemistry is carried 

out in Chapter 3. The properties of the point groups, and their application in vibrational 

spectroscopy and MO theory, are then the subject of the remainder of the book. 

The definition of a point group comes from the general idea of a group in mathematics. 

For molecular point groups to take advantage of general group theory we require two 

additional symmetry operations to be defined: the identity and the improper rotation. These 

operations are introduced in the first half of the chapter through the idea of a group being 

closed. 

2.2 Background to Point Groups 

In Chapter 1 we covered three types of symmetry operation: m rotations about an axis of 

order n, C,,"; reflection through a plane, o,, 04 or o),; and inversion through a point, 7. Point 

groups arise from the observation that a given set of operations is valid for more than one 

molecule. For example, Figure 2.1 shows that both water and fluorobenzene have a single 

Molecular Symmetry David J. Willock 
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Figure 2.1 The symmetry elements of water and fluorobenzene; in this case, each element 

has only one corresponding operation. 

C, axis and two vertical mirror planes, o, and o,’. These molecules do not have any other 

rotation axes or mirror planes and do not have an inversion centre; so, according to the 

operations met so far, this set completely describes the symmetry of both molecules. The 

two molecules are said to belong to the same symmetry point group because they have 

exactly the same set of valid symmetry operations. 

2.3 Closed Groups and New Operations 

2.3.1. Products of Operations 

In general, the idea of a point group is a mathematical abstraction that helps us classify 

molecular geometry. A point group is a list of all symmetry operations that an object which 

belongs to the group can undergo and remain apparently unchanged. The set of operations 

that form a group must be complete, in the sense that if any two members of the group 

are applied in succession the result must also be a single operation which is a member 

of the group. This means that the group is ‘closed’, i.e. it is not possible to generate a 

new symmetry operation by combining those in the group. This property of groups can be 

useful: ensuring that the group of operations is closed is one way of checking that all the 

operations that are possible have been identified. The requirement for a group to be closed 

also leads to further symmetry operations, as will be shown in the following sections. 

Multiplication Table for H,O 

To check that a group is closed we form the product of each pair of operations within 

the group and find the single equivalent operation that achieves the same end point. The 

product of a pair of symmetry operations is defined as the result of applying them in 

succession. Taking H,O as an example, Co,’ is the product of a vertical reflection through 

the molecular plane and a 180° rotation and is achieved by carrying out the reflection 

followed by the rotation. This would be one possible combination of operations for the 

H,O molecule; and if the group is closed, all such products should be equivalent to a single 

operation. A complication can arise in finding the single operation that is equivalent to the 

product. For the example of C,o,’ the hydrogen atoms would be swapped but either the 

C, operation or the o, operation alone would also interchange them; so, by looking only 
at atom positions, it is impossible to tell which operation to chose. There is not enough 
information in just the atom positions to tell the operations apart; some way is needed to 
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orientate the atoms in space. To do this we can add a set of vectors to the oxygen atom 

of the molecule. These are initially aligned with the global coordinate system, for which 

we will use capital letters. By convention, the molecule is orientated with its principal axis 

(here the C, axis) along the Z-direction, the Y-direction is set in the molecular plane and 

the X-direction is then perpendicular to the plane. 

The vectors on the oxygen atom are aligned with their respective directions in the start- 

ing diagram for each operation as shown in Figure 2.2. This differentiation between the 

global coordinate system and the atom-based vectors will become important when we con- 

sider multiple operations later in this chapter. Figure 2.2 illustrates how these vectors can 

be used to differentiate between the rotation and reflection operations. The C, operation 

leaves the z-vector unchanged because it is along the direction of the rotation axis, but x 

and y are both reversed. The o, operation, which is reflection in the XZ plane, only reverses 

(a) 7" 
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4 

ub 
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(b) MG 
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Figure 2.2 The symmetry operations for HO, including the result of the operations on a set 

of vectors added to the oxygen atom: (a) C) is along Z and so reverses only x and y; (b) oy 

contains x and z and so only reverses y; (c) a,’ contains the y and z vectors so only reverses x. 
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the y-vector, while the o,’ operation leaves both y and z unchanged and only reverses x. 

Once the vectors are taken into account, the operations do give different results. 

To see exactly the result of successive operations, the end point of one operation is used 

as the start point of the next. Some products are easy to visualize; for example, the product 

C,'C,', i.e. a rotation by 360°, leaves the molecule unchanged and in exactly the same 

configuration as the starting point. If we are to have a closed group, then this combined 

operation must be the result of a single operation in the group, and so a new operation is 

introduced, the identity operation E. 

On application of the identity operation E, nothing moves at all; so the entire molecule 

is the symmetry element. No matter what the shape of a molecule, a rotation of 360° 

about any axis would give an indistinguishable arrangement of the atoms. This is 

because a rotation of 360° is equivalent to doing nothing to the molecule. It does not 

matter what axis is used, or even if the operation is done at all, and so all molecules 

possess the identity symmetry element. We will see that other repeated applications of 

other symmetry operations can also lead to the case of an identical molecule. 

For more complex sequences of operations it is helpful to use drawings or models 

including the vectors to understand the results of successive operations. Appendix | gives 

some templates for paper models of water illustrating the vectors used here for each end 

point shown in Figure 2.2. 

To identify all the possible products systematically, a multiplication table of symmetry 

Operations can be drawn up in which each row and column of the table has one of the 

symmetry operations as a heading; the body of the table then contains the operation result- 

ing from the product of that row and column. The starting point for the case of H,O is 

given in ‘Yable 2.1 and it is left to the reader to complete this following the instructions in 

Problem 2.1. 

Problem 2.1: The results of the operation products for Table 2.1 have been left blank. 

Work out the single operation equivalent to each product and fill in the table. The paper 
models from Appendix | can be used to help in this exercise. Start with the model repre- 
senting the result of the first operation and then carry out the second. Compare the con- 
figuration obtained with the three other models to identify the end point. You should find 
that for every pair of operations there is always a model that looks the same as the end 
point you have come up with. A completed table is included at the end of the chapter. 

Table 2.1 The multiplication table for the HO symmetry operations. 

First operation - - - -------------- & 

Second E G o\ (XZ) owlY2) 
operation 

I 

Gs 

0 (XZ) 

¥ o,'(YZ) 
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The multiplication table for H,O contains only operations we have already identified: 
E, C2, a, and o,’. This confirms that this set of operations forms a closed group and is a 
reassurance that no symmetry operations have been missed. 

2.3.2 Fixed Symmetry Elements 

Multiplication Table for NH; 

In the example of H,O above we used the idea of a global axis system, X, Y, Z. This 

axis system is used to define the positions of the symmetry elements of the molecule 

and, once set, the global axis system is not moved by any operations that are carried out. 

This means that the symmetry elements should be considered immovable and symmetry 

operations only move the atoms in the molecule. This becomes especially important when 

molecules with more symmetry elements are considered. For example, ammonia (NH;) 

has a principal axis of order 3 and three vertical mirror planes, as shown in Figure 2.3. 

a 
¥ 

Figure 2.3 The symmetry elements for ammonia (NH3;): (a) viewed with the principal axis 
in the plane of the page; (b) viewed along the principal axis with the mirror planes labelled 
following the text. 

In this case the vertical mirror planes are actually equivalent, since they each contain 

one N—H bond. However, to carry out the multiplication of operations we will add an 

additional label to the mirror planes so that they can be distinguished. In the initial config- 

uration, we have chosen o,*, o,® and o,° to be the planes containing N—H,, N—H, and 

N—H,; respectively (Figure 2.3b). 

This choice sets the location of each mirror plane in space; so, to work out the product 

of two operations, it is necessary to hold the planes in place during the whole manoeuvre. 

For example, the product o,“C;' is illustrated in Figure 2.4. This involves a rotation around 

the principal axis which brings H; into the o,* plane. Reflection by the plane then swaps 

H, and H,. Comparing the final configuration with the start point, it can be seen that H, 

has returned to its original position but H, and H; have been interchanged, a result that can 

be achieved by o,? alone, i-e.: 

oe OF omy (2.1) 
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Figure 2.4 The o,C;' operation product for NH;. Note that the positions of the symmetry 

planes are set in the global coordinate system and so remain constant throughout. 

Before completing the multiplication table we will write down some observations on the 

types of answer to expect for these products; this will help narrow down the possibilities 

for this exercise and for more complex cases. 

(i) A product between two rotation operations around a common axis is simply the sum 

of the individual rotations, here C;'C;' = C;°. If the total rotation exceeds the order of 

the axis, then the number of operations should be reduced by subtracting the order. This 

follows from the definition we used for the identity: 

CaF 0 CC, =C, =G C, =#@ GG (2.2) 

(ii) The product of a rotation with a reflection through a vertical mirror plane will give 

another reflection. In this NH; example, the rotation does not change the order of the H 

atoms. A reflection swaps two H atoms and so the order is changed from clockwise to 

anticlockwise. The result cannot be the identity or a rotation, so another mirror plane is 

the only choice. 

(111) The product of two reflections in vertical mirror planes is the same as a rotation 

about the principal axis. Reflections swap the order of the H atoms, so two reflections will 

return them to the initial clockwise ordering. Reflection in the same mirror plane twice is 

the identity, which is included in this general statement through Equation (2.2). 

Problem 2.2: The multiplication table for NH; has been left partially blank (Table 2.2); 

you should use the above rules to say what type of operation is possible in each case 

and then fill in the missing entries using a model of the molecule as described below. 

The model should use different colours for the three hydrogen atoms to represent 

H,, H, and H;. Place the model on a piece of paper; use the initial positions of each 

hydrogen atom and define the mirror planes following Figures 2.3 and 2.4. Starting with 

the model aligned with the paper, carry out the two operations required for the particular 

product, keeping the paper reference fixed in place. To carry out a reflection simply 

swap the two hydrogen atoms that are not in the mirror plane. The single operation 

for each product can be found by comparing the final configuration of the model with 

the reference on the paper. Before doing the next product, realign the model with the 

original starting point. A completed table is included at the end of this chapter. 



More Symmetry Operations and Products of Operations 31 

Table 2.2 The multiplication table for the NH, symmetry operations. 

First operation - - - ---------- be 

Second de Gi Ge ios Tes os 
operation ; : 

le E ey (Gas ow oye 

Gy (Ge! (Ses E Ove Oy 

' Cc. 

Ou Oy Oy on E Ce 

‘ Oy ue os (one Ce ei 

Gis Ou. (a, (on Ge lE 

2.3.3 The Final Missing Operation, Improper Rotations: S,, 

The Case of Ethane 

Ethane in the staggered conformation belongs to a more complex symmetry group than 

water or ammonia. The elements of rotation, reflection and inversion present for staggered 

ethane are shown in Figure 2.5. The highest order axis present is the C; axis along the 

C—C bond (Figure 2.5a), and so this is the principal axis, defining the vertical direction. 

There are also three equivalent C, axes perpendicular to the planes that contain the C—C 

bond and each pair of trans hydrogen atoms (H, and H, in Figure 2.5b, for example). The 

C axes pass through the centre of the C—C bond and the C, operations swap hydrogen 

atoms from either end of the molecule, as illustrated in Figure 2.5b. Each of the planes used 

to define the C, axis directions is also a mirror plane for the molecule. Comparing the posi- 

tion of the C, axes and the mirror planes in the Newman projection of Figure 2.5c shows 

that these planes are between the C, axes and so should be labelled o,. The molecule also 

contains an inversion centre which swaps the two carbon atoms over and moves hydrogen 

atoms from one end of the molecule to the other (Figure 2.5d). By comparing the result 

of the C, rotation in Figure 2.5b with that for the inversion in Figure 2.5d it can be seen 

that the rotation and inversion are indeed different operations leading to different arrange- 

ments of the labelled atoms. The Newman projection shows that the C, rotation leads to 

a reversal in the order of the hydrogen atoms within each methyl group from a clockwise 

arrangement of H,, H, and H; to an anticlockwise ordering, whereas the inversion centre 

preserves the clockwise order. 

If the symmetry group of ethane is to be closed, then it must be possible to write down 

a single operation that can replace any combination of two other members of the group. 

Figure 2.6 shows the result of a C;' rotation followed by inversion. The C; rotation moves 

the hydrogen atoms around by 120° but does not interchange them between the ends of 

the molecule or change the H ordering. After inversion, the hydrogen atoms are swapped 

between the ends and the ordering remains clockwise. However, this is clearly a differ- 

ent configuration from that for the i operation alone. The only other operations that swap 

hydrogen atoms from the top and bottom of the molecule are the C, rotations, and we have 

seen that these change the ordering of the hydrogen atoms from clockwise to anticlock- 

wise. Accordingly, within the operations identified so far, no single operation can replace 

the ics product, and so the group is not closed. 
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(a) (b) 

H 
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(c) (d) 

Figure 2.5 Symmetry elements and example operations for ethane in the staggered confor- 
mation; each example is shown both in flying wedge representation and in Newman projec- 

tion. (a) The C; principal axis, defining the vertical direction; (b) C, axis for HXH-C—C—H¢ 
plane; there are three equivalent C, axes, (c) one of the three equivalent o4 planes; in the 
Newman projection the plane is shown to be between the C, axes, hence the dihedral 
designation; (d) the inversion centre. 

In fact, the reason that this problem has arisen is that we are still lacking one symmetry 

element and its corresponding operation, the improper rotation S,,. 

An improper rotation S, is actually a combination of two operations: a rotation about 

a C,, axis and then a reflection through a plane which is horizontal with respect to the 

axis. This operation is defined as the two procedures together. The molecule has an S,, 

axis of symmetry if the combined rotation—reflection gives a result indistinguishable 

from the start point. After just the rotation the structure may be completely different 

from the start point; neither the C,, axis nor the mirror plane need be symmetry elements 

themselves. 



More Symmetry Operations and Products of Operations 33 
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Figure 2.6 The compound operation iC, for ethane in the staggered conformation: (a) using 
flying wedge notation; (b) in the Newman projection. 

(b) 

He H3 Cc H He Hy He 
6 Onn 

Hy Hy ==. (hm —y Hs H; 

Hs Ay H, Hy H, Hy 

Figure 2.7. Summary of the improper rotation operation for ethane in the staggered 
conformation. 

The missing symmetry operations for ethane in the staggered conformation are improper 

rotations. Ethane has an order 6 improper rotation axis, Ss, which is illustrated along with 

the S,' operation, in Figure 2.7. After describing the operations that the S, axis leads to, 

we will use them to close the symmetry point group of ethane. 

The Newman projection in Figure 2.7b shows the ethane molecule looking directly 

down the C—C bond. If all the hydrogen atoms were in the same plane, we would 
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expect a C, axis to be present along the C—C direction. In fact, a rotation by C, changes 

the molecule and so is not a symmetry operation. For example, in the first picture in 

Figure 2.7a, H; appears at the top of the molecule and the C—H, bond points out of 

the page to the right of C,. After the C, rotation, H;, is still at the top of the molecule but to 

the left of C,, where there was no hydrogen atom in the original molecule. However, in the 

Newman projection of Figure 2.7b, it can be seen that, after the rotation, H, is directly over 

the original position of Hs. So, if we take the structure generated by the rotation and reflect 

it through a horizontal plane through the centre of the C—C bond we generate a new con- 

figuration which is indistinguishable from the first. This means that the combined rotation 

and reflection is a symmetry operation for the molecule. Note that the only point that is 

unaffected by the combined operation is the centre point of the C—C bond; so, like the 

inversion centre, the symmetry element for the operation is a point. However, the element 

of an S,, axis is often taken to be the rotation axis because this direction is required to per- 

form the operation. The order of the axis in ethane is 6, and so the staggered conformation 

of ethane has an S, improper rotation symmetry element. 

2.3.4 Equivalences for Improper Rotation Operations 

The number of operations from an improper rotation axis depends on the order of the axis 

and on the removal of any operations that can be written more simply. The number of 

operations can be seen by repeatedly carrying out the improper rotation until the original 

configuration is obtained. For example, the result of six successive S, operations on ethane 

returns the molecule to its starting configuration, as shown in Figure 2.8. 

Simpler operations which give the same result can be identified for some of the S, 

operations by comparing each of the intermediate structures with the starting point. For 

example, S,° and S,’ involve an even number of applications of the horizontal mirror plane 

that is part of the improper rotation. This places the hydrogen atoms at the same ends of the 

molecule as in the original configuration, but rotated away from their original positions. 

These results can also be obtained by a simple rotation using the C; axis, and so we write 

the equivalences S = Cy ands. = Cr Similarly, the <2 operation gives the same result 

as the inversion centre, and so only the latter is included in the list of unique operations 

for the molecule. In addition, the S,° operation is equivalent to the identity, and so the S, 

element leads to only two unique operations: S,' and S,°. These observations on the S, axis 

can be generalized to any improper rotation of even order. 

When an improper rotation has even order: 

m 

1. S,°" = Cy)", m = 1 to n/2; that is, for any even number of operations there is an 

equivalent simple rotation. 

2. S,"" = i for n/2 odd, S,"”? = C), for n/2 even; that is, when the improper rotation is 

carried out half as many times as the order of the axis there is an equivalent ‘simple’ 
operation. Here, there are two scenarios. (i) If n/2 is odd, the repetition of the improper 
rotation implies an odd number of oj, reflections and a C, rotation; the result is then the 
same as the inversion operation i. (ii) If n/2 is even, the molecule will not appear to have 
been reflected through oj, and so S,,"" is simply an instance of (1). 

3. S," = E; that is, carrying out the even ordered improper rotation the same number of 
times as its order results in a configuration identical to the starting point. 
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Figure 2.8 The complete set of 55 operations illustrated using ethane viewed along the C—C 

bond in the Newman projection. Note that each operation is labelled by its relation to the 

starting point (top left). 
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These observations also imply that, if an improper axis of even order is found, there must 

be a rotation axis with half its order and an inversion centre. Also, for a molecule with an 

inversion centre, there must be an improper axis of rotation. In the case of a molecule with 

an inversion centre but without any simple rotation axes, the improper rotation is an S, 

axis. However, this S$, axis is not usually quoted, since S,' = iand S,’ = E, so there are 

no unique operations associated with an S, axis. \ 

The improper rotation consists of a rotation and reflection. Even though the axis and 

horizontal plane need not be elements themselves, if they are present then the improper 

rotation will also be a symmetry element. For example, the planar molecule BF; has a 

principal C; axis and a horizontal mirror plane o;, and so there is also an S; axis collinear 

with the C;. For planar molecules, the reflection in 0, does not alter any atom positions; 

however, if we place a vertical arrow on one of the F atoms, then it will be reversed by the 

reflection. In later chapters, the addition of arrows like this will be used in the analysis of 

molecular vibrations and is referred to as a basis. A basis allows us to study the effect of 

symmetry operations not only on the atom positions but also their motion. In Figure 2.9 

the idea is simpler: we add the arrow to highlight operations which turn the molecular 

S3=C3 
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S3 =O), Ee 

| [ 

SJ=C3 | 
sa Filttw,. » E 
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$3 
5 

S3 Flin 
a aR F 
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| IIs: 

SS=E | 
Ss Flin, -B F 

hati 

Figure 2.9 The complete set of $3 operations illustrated using BF;. Note that to show the 
result of each operation fully requires an arrow perpendicular to the molecular plane. Each 
operation is labelled by its relation to the common starting point (top left). 
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plane over. The effect of repeated S$, improper rotations on the BF; molecule can then be 
followed more clearly. 

After even numbers of operations the arrow returns to the top face of the molecule, and 
so there is an equivalent simple rotation that can give the same result. Since the order of 
the axis is odd, S;° does not return the molecule to its start point; although all the atoms 
are in the same place as in the original configuration, the arrow is RomEuE down, and so 
S;° = o,. Only after six applications of the operation do we find that $;° = E. In this case 
there are only two unique operations arising from the S; axis: S,! and S,°. 

In general, for an odd ordered improper rotation: 

1. S,°" = C,?, where m runs from 1 to (n — 1) and p = 2m for 2m < n or p = 2m — n for 
2m > n; that is, an even number of applications of an odd-order improper rotation is the 
same as a related simple rotation. The operations with rotations less than 360° can also 
be described as the same number of simple rotations, and improper rotations involving 
angles greater than 360° are related to odd numbers of simple rotations. 

2. S," = oy; that is, carrying out the improper rotation a number of times equal to its order 
results in a simple reflection through the horizontal mirror plane. 

3. S,°" = E; that is, it requires 2n applications of the operation to return the molecule to 
its starting configuration. 

2.4 Properties of Symmetry Operations 

2.4.1 Equivalent Operations and Equivalent Atoms 

It is worth pausing at this point to think about what the symmetry operations are doing 

when used to describe the molecular geometry. As an example, we will return to the case 

of ethane, for which the operations E, C;', C;°, 3C, (three equivalent C, axes), i, S¢', 
Ss and 304 have now been identified, i.e. a total of 12 unique operations. The results 

of these operations have been described in terms of the rearrangement of the hydrogen 

atoms around the framework of the ethane structure. The two methyl groups that form 

the molecule always remain with the same composition, even when the atom labelling 

is taken into account, so that C,H;—-; forms one methyl and C,H, the other. However, 

the symmetry operations can change the end of the molecule occupied by each methyl 

group and can change the ordering of hydrogen atoms within the group, from clockwise to 

anticlockwise. The symmetry operations give a systematic way to rearrange the equivalent 

atoms within a molecule so that each atom ‘visits’ all chemically equivalent positions. This 

idea was used in the discussion of NMR spectroscopy in Chapter 1. 

We limit the list of operations by identifying equivalences so that there is no redun- 

dancy; each arrangement of the labelled atoms in the molecule is generated only once. The 

hydrogen atoms of ethane are particularly useful for this. If we chose the carbon atoms, 

then there are only ever two arrangements: the carbon atoms sit on the C3 axis and in the 

three mirror planes and so are unchanged by C;' or C;° rotations or any simple reflection. 

They are also swapped over by S,' and S,° any C) rotation or i. The carbon atoms do not 
show the full effect of these operations because they are at special symmetry positions. 

For the same reason, in planar molecules like BF;, no atom sets show the full effects of 

symmetry operations; in particular, the mirror plane containing all the atoms will always 
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appear to give the same result as E. This is why arrows need to be added to fully appreciate 

the result of the improper rotations illustrated in Figure 2.9. 

2.4.2 The Inverse of an Operation 

With the inclusion of the improper rotation the set of symmetry operations, used in chem- 

istry is complete and we may look at the relationships that occur between operations. 

Earlier in the chapter we introduced the identity operation E; when this is used to form 

a product with any other operation, X say, the result is the same as if the operation was 

carried out alone: 

Xe XN (23) 

E plays a role in symmetry operations similar to the number | in ordinary algebra, where 

the equivalent equation would be 

ee Xo aX (2.4) 

The existence of unity in normal algebra also implies that all numbers have an inverse, 

X~!, with the property 
ve ye (2.5) 

For a number, X~' = 1/X; however, it is not clear what ‘dividing by’ a symmetry operation 

means. We just require that there is an operation X~' which has the property, 

XX =F (2.6) 

The identity operation is present in all point groups; so, if X is in a given point group, then 

so is X~!. A list of operations and their inverses is given in Table 2.3. 

Table 2.3 A list of operations and their inverses. Note that m and n are integers and the 

subscripts on the mirror planes indicate that any mirror plane is its own inverse. 

Operation X Inverse X~! Operation X Inverse X~' 

le le Sh,d.v Oh,d,v 

Ge (Gate! Ss,” (n even) 

i i S,” (n odd) Seo 
oe 

The operations £, i and any mirror plane are their own inverses. The inverse for a rotation 

depends on the order of the axis. If an axis is of order n, then C,”" = E and so the inverse 

of a C,"" rotation is simply the number of additional rotations required to complete 360°, 

ier Ge aes 

A similar argument applies to improper rotations of even order. However, improper 

rotations of odd order require two complete rotations before the original configuration is 

regained, and so a factor of 2 is introduced in the inverse. 
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Problem 2.3: Find and confirm (by forming X~'X) the inverse operations for (i) S,°, 
(ii) C;* and (iii) S,°. 

2.4.3 The Order of the Product; Operations that Commute 

Equipped with the full set of symmetry operations it is now possible to check that any 
group of molecular operations is closed, and so we return to the problem of ethane in its 
staggered conformation. Ethane contains a set of equivalent C, axes and a set of equivalent 
dihedral mirror planes oy. For the purposes of this exercise these must be distinguished so 
that the exact equivalence of the products of operations may be discerned. The notation 
to be used is given in Figure 2.10. From the diagram of the molecule in the space-filling 
representation (Figure 2.10a) the C, axes can seen to be equivalent: they all go through 
the centre of the C—C bond and are perpendicular to it. Looking down the C, axes, it can 
also be seen that each C, axis lies in-between C—H bonds that are at opposite ends of the 
molecule. With the atoms labelled as shown in Figure 2.10b we can distinguish the result 
of each C, operation. For example C,* will cause H; to be swapped with H,, but C,® will 
cause H, to swap with Hy. 

Figure 2.10 Labelling used for the sets of equivalent C, axes and dihedral mirror planes for 
the purposes of constructing the multiplication table for ethane. Note that the oy planes have 
been labeled so that A initially contains H,, B initially contains H, and C initially contains H3, 

the C, axes have also been labeled for the a4 plane to which they are perpendicular. 

As before, when generating products of operations for the multiplication table, the sym- 

metry elements are thought of as fixed in space, set by the global axis system. For example, 

C>* will alter the positions of the hydrogen atoms but not the location of C,”. 

Applying each pair of operations in turn gives the full multiplication table shown in 

Table 2.4. This table is considerably more complex than that for the examples of water and 

ammonia used earlier because the number of individual operations is greater. However, the 

rules set out for the products of the principal axis with vertically orientated mirror planes 

can also be seen to apply to the dihedral planes in this case. 
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Table 2.4. The full multiplication table for ethane in the staggered conformation. The 

additional labels on the C) axes and aq planes are defined in Figure 2.10. 

E (Ca! C; 2 Cc Ge Gc. / Ga Ge oan og? Og 

es mit ae ee re ee eS a er rs A 

Op. Ge C,! Ge IB Ce (a (ere 5. / 5 ogo" Onn aa? 

(Cx Ce E Ge ‘Cw Ge Oe Gt Gee / Og Og Og 

1 A C B 1 2 
Og Od aa? Gan / See Sé C, CG CG E & C3 

1 5 B A Cc 2 1 
O7”d Od oie oq S6 I S6 GC C, C, Gs E C; 
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1 
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. & B A 1 2 

v ag° Gat Ori” og? Se Se ! C, C, C, C3 C; E 

Table 2.4 also illustrates that the result of the product of two symmetry operations often 

depends on the order that they are executed. For example: 

CRIES = Soe but Co, _ SS which means that o Ce = = Car (2.73 

When the result of a pair of operations depends on the order in this way it is said that 

the operators do not commute. In the multiplication of real numbers, the product does not 

matter on the order used, and so multiplication of simple numbers is commutative, whereas 

the product of symmetry operations may not commute. In the earlier example of H,O we 

did not see this order dependence of the products, and so there are some pairs of operations 

that do commute. 

ae 
Pairs of operations that will always commute arise for any product involving the cases: 

1. Two rotations around the same axis. 

2. The inversion centre and any reflection or rotation, simple or improper. 

3. Reflection through two planes which are perpendicular to one another. 
4 

5 

. C, rotations about perpendicular axes. 

. Rotation followed by reflection in a plane perpendicular to the rotation axis. 

All of the operations for the H,O molecule fall into one or other of these categories. 

For each of the multiplication tables we have derived in this chapter, each row and 

column contains all of the symmetry operations with no repeats but in a different order to 

any of the other rows or columns. This is a general property of multiplication tables and 

should be borne in mind when checking results. 
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2.5 Chirality and Symmetry 

Chiral molecules have the property that they cannot be superimposed on their own mirror 

images. This means that a chiral molecule can exist in at least two forms which have iden- 

tical connectivity between the atoms but which are different geometrically. The two forms 

will be mirror images of one another and are referred to as enantiomers. The properties of 

the enantiomers are identical unless we probe with a second chiral object. For example, 

pure, single enantiomer, samples of a chiral compound will have identical melting points 

and solubilities in nonchiral solvents. However, they will react differently with a single 

enantiomer of another compound. 

Many naturally occurring organic molecules are chiral. For example, limonene 

(1-methyl-4-isopropenylcyclohex-l-ene) has two enantiomers. These are labelled 

S-limonene and R-limonene, from the Latin words for left (Sinister) and mght (Rectus). 

The assignment of these labels follows a set of rules devised by Cahn, Ingold and Prelog, 

which is discussed in Appendix 2. Both enantiomers of limonene are formed naturally and 

are a large part of the molecular mixture determining the smell of citrus fruits. The two chi- 

ral forms are sensed differently: S-limonene smells of lemons, whereas the mirror image 

compound R-limonene smells of oranges. The left-handed structure, S-limonene, is shown 

in Figure 2.1 1a and the right-handed structure, R-limonene, is shown in Figure 2.1 1b. 

(a) (b) 

S-limonene R-limonene 

Figure 2.11 The molecular structure of the enantiomers of limonene: (a, c) the chemical 

structure and ball-and-stick three-dimensional model of S-limonene; (b, d) corresponding 

illustrations for R-limonene. 
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Figure 2.11c and d show three-dimensional representations of the two enantiomers ori- 

entated to emphasize that they are reflections of one another. If you have a modelling kit 

you should construct models of the two enantiomers shown in Figure 2.11c and d and 

confirm that they cannot be superimposed on one another. 

Inspection of Figure 2.11 should concentrate on carbon 4 (C4), which is at the bottom of 

the cyclohexene ring in each diagram. If we move from C4 around the ring\in a clockwise 

direction, we arrive at C6 after two bonds; this is a saturated (>CH2) carbon centre. Mov- 

ing around the ring in the anticlockwise direction from C4 we arrive at C2, which is a 

carbon atom in the double bond of the ring, so that the two sections of the six-carbon ring 

either side of C4 are different. The other two substituents on C4 are an isopropyl group 

and a hydrogen atom, so that the four substituents on C4 are different to one another. This 

is one way of generating a chiral molecule; if a molecule contains one centre that has four 

different groups attached, in such away that the four groups are not coplanar, the molecule 

will be chiral. Since the chirality in this case arises from the substitution patterns possible 

at a single atom, e.g. C4 in our example, the atom which is substituted is called a chiral 

centre. Swapping any two of the groups at the chiral centre will give the other enantiomer. 

However, for carbon centres, the energy required to swap two groups is usually large and 

so if a single enantiomer is created it will be stable and so observable. 

The use of symmetry in determining which molecules can be chiral can be discussed 

based on the fact that enantiomers are related to one another by reflection. Any object 

has only one mirror image; it does not matter where the mirror is positioned to reflect 

the object. This immediately tells us that a molecule with a plane of symmetry cannot be 

chiral, because we generate an identical molecule when it is reflected in the symmetry 

plane and so the molecule must be indistinguishable from its mirror image. In fact, if there 

is any symmetry operation that links a molecule with its mirror image, then the molecule 

cannot be chiral. 

Simple mirror planes are not the only symmetry elements that use reflection. If a 

molecule possesses an improper rotation axis, then the reflection through the mirror plane 

used in the symmetry operation will also link the mirror images. So any molecule contain- 

ing an improper rotation axis as a symmetry element cannot be chiral. Also, since S,° = i, 

the inversion centre also precludes chirality. 

So, the most general statement for identifying molecules that are chiral is that: 

Chiral molecules must belong to a point group without mirror planes, improper rotation 

axes or the inversion centre. 

2.6 Summary 

1. Molecules that can undergo an identical set of operations belong to the same symmetry 

point group. The idea of a group is really a mathematical abstraction, and for a set of 

operations to form a proper group the following must apply: 



(1) 

(ii) 

(111) 
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The product of any two members must also be a member of the group; this means 

that the group is ‘closed’, i.e. a new symmetry operation cannot be generated by 

combining the ones in the group. 

There must be an identity operation E; this is just a matter of remembering to write 

it down, since all objects have the identity element. Any molecule is unchanged 

by the identity operation (i.e. doing nothing), and so all molecules have at least E. 

Every member of a group must have an inverse, i.e. if you carry out an operation 

there must be another member of the group that undoes that operation. This is one 

reason for having the identity operator; for example, the inverse to o, is o, itself, 

since oo, = E. Reflections and the inversion operation are their own inverses 

in this way, but operations involving rotations have more complex inverses, as 

detailed in Table 2.3. 

. The symmetry elements of a point group are defined with respect to a global axis system 

and so do not move under any of the operations of the group. 

. To check that a group is closed, a multiplication table should be constructed giving all 

the products of operations in the group. 

. Symmetry operations need not commute: In general, the order in which two symmetry 

operations are applied will affect the result, giving different equivalent single opera- 

tions. The conditions under which operations do commute (i.e. the result is the same 

irrespective of order) is discussed in Section 2.4.3. 

Tables 

2.7 Completed Multiplication Tables 

2.5 and 2.6 give the completed multiplication tables for H,O and NH;. 

Table 2.5. A completed multiplication table for the H,O symmetry 

operations. 

PiSt OPEN OI) 3a eet > 

Second 
operation 

Table 2.6 A completed multiplication table for the NH; symmetry operations. 

Fifst Operations: =< <.6 2 = 9 = = > 

Second ec ( Oy o® Ge 
operation 
: Cy Ce Oy ae htt 

: Ci le ae ‘oh Oy 

: E C;" Oy" Oy oye 

Oy Cre E Gg. Gee 

ee Gu (Ge EB C; 

vy on Oy Gey Ge E 



44 Molecular Symmetry 

2.8 Self-Test Questions 

ie The principal axis direction is usually used as the Z-direction when orientating a 

molecule in space. For the case of BF;, draw the molecule with the fluorine atoms 

labelled 1-3 and sketch a p, orbital on each fluorine atom. 

(a) By considering the effect of the symmetry operations on each orbital show that: 

i. the C,;' and oj, operations lead to different results to the S;' operation they make 

up; 
ii. the S;* operation leads to an identical result to the C;' operation. 

(b) The orientation of the orbitals in part (a) can be represented by a single arrow on 

any of the atoms in the molecule. Using this representation, draw up a multiplication 

table for the BF; case. It will help to use a model and a piece of paper to mark the 

reference frame, as described in Problem 2.2. In addition, some feature, such as an 

additional plastic ‘bond’ should be added perpendicular to the plane of the molecule 

to represent the orientation of the orbitals. 

. If we orientate a water molecule as in Figure 2.1 and then move one of the hydrogen 

atoms in the Z-direction, which way would each of the symmetry operations expect 

the other hydrogen to go? Draw diagrams to support your answer. What happens if we 

move the hydrogen in the X-direction (perpendicular to the plane of the molecule)? 

. We have seen that C,” = E. This is equivalent to saying that a C, rotation followed by 

another C, rotation is the same as the identity operation. Using the example molecules 

suggested, work out the single operation which gives the same result as each of the oper- 

ation products listed below. In each case, apply the rightmost operation first, number the 

atoms and add any vectors required to help you identify the configuration generated. 

(a) G, Ce using the square planar complex [PtCl,]*~, take C,* to be along 

Cl,-Pt-CL;. 

(B) Ger using benzene. 

(c) Sio' C2 using ferrocene, refer to Figure 1.8 for the structure. 

(d) C,(Z) o( XZ) using ethene, refer to Figure 1.10 for structure and orientation. 

. In the main text of Chapters 1 and 2 we have looked at some aspects of the symmetry 

for the following molecules: 

(a) H,O 

(b) NH, 

(c) benzene 

(d) fluorobenzene 

(e) BF; 

(i) TPtel 
(g) C,H, (staggered). 

Write out all the symmetry elements and operations for each molecule and make a note 
of any that have exactly the same set. 
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The Point Groups Used with 
Molecules 

3.1 Introduction 

In this chapter we will review the common point groups found in chemistry and arrive at 

a simple methodology to assign any molecule to a point group. Example molecules will 

then be discussed in Chapter 4. The properties of each point group are encapsulated in the 

character tables listed in Appendix 12. Each table contains the point group symbol and a 

listing of the symmetry operations on the top line of the table. The meaning of the rest of 

the symbols in these tables will become clear in later chapters. Here, we just point out that, 

once a molecular point group assignment has been made, the operations that are allowed 

for the molecule can be checked by reference to the point group character table. 

3.2 Molecular Classification Using Symmetry Operations 

The fact that molecules have a three-dimensional structure and shape was shown by Louis 

Pasteur in 1848 in some critical experiments on crystalline salts of tartaric acid that formed 

part of his doctoral studies. Tartaric acid is a naturally occurring compound that is extracted 

from grape juice and sometimes crystallizes as potassium bitartrate from solution in wine. 

Pasteur concentrated on the related compound sodium ammonium tartrate. The two forms 

of tartrate were chemically identical, but a solution of potassium bitartrate would rotate 

the plane of polarization of plane polarized light to the right whereas a solution of sodium 

ammonium tartrate would not. Pasteur studied the crystal structures of tartaric acid salts 

and found the crystallites themselves were chiral, i.e. the facets of the crystals occur in 

two forms that are mirror images of one another, so that the two crystallite forms can- 

not be superimposed. In the pure potassium bitartrate, only ‘right-handed’ facets were 

Molecular Symmetry David J. Willock 
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observed; however, the sodium ammonium tartrate consisted of a mixture of left- and 

right-handed crystals. By picking out the two forms from the mixture (using tweezers), 

Pasteur was able to make solutions of only left-handed or only right-handed crystals and 

showed that the solution of left-handed crystals gave the opposite optical rotation to that 

from the right-handed crystals. This demonstrated that the building blocks of the crystals 

in the two crystal forms were different from one another, since the crystal structure is lost 

in solution. The conclusion that Pasteur drew was that tartaric acid molecules themselves 

have a three-dimensional shape and can be left- or right-handed. This type of molecule 

he classified as asymmetric, and he inferred that molecules that do not rotate the plane 

of polarized light must be symmetric. We now know that naturally occurring tartaric acid 

occurs as either the R,R or S,S molecular structures, as shown in Figure 3.1, and that Pas- 

teur was fortunate to find an example where the crystallization process itself separates the 

two enantiomers. 

(a) (b) 

OH O 

HO HO 

OH 

O OH O OH 

(R,R)-tartaric acid (S,S)-tartaric acid 

as 

Figure 3.1 The naturally occurring chiral forms of tartaric acid: (a) R,R and (b) S,S. The 
molecular models in the lower part of the figures are both set with the OH groups pointing 
backward so that the mirror image relationship between the two forms can be readily seen. 

This was the first example of classification based on molecular shape and gave some 

indication of the physical properties of molecules that were classified as symmetric 

compared with those that were labelled asymmetric. However, chirality is not the only 

manifestation of molecular symmetry, and so a more complete classification of molecu- 

lar shape has been developed; the system of point groups. To classify the symmetry of a 

molecule we derive its point group, which carries much more geometric information than 

Pasteur’s symmetric or asymmetric designation. 

The system of labels used for molecular point groups comes from the work of Schénflies 

(1853-1928). The symbols are designed to carry information on the symmetry elements 

present in the object being discussed. The symmetry of a molecule is governed by the 

bonding geometries that are preferred by the particular atoms or chemical groups from 
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which it is formed. This means that the point groups which contain symmetry operations 
that coincide with the preferred geometries are more popular than others. For example, 
small symmetric molecules based on four-coordinate carbon atoms often have C 2 or C; 
axes, as shown in the examples of Figure 3.2. However, for this type of molecule, C, axes 
are less common. 

13 
H H 

gn" OS 
wy 

chy AS ONY H 
Gl ' (i 

chloroform dichloromethane 

Figure 3.2 Example molecules based on a four-coordinate carbon atom: trichloromethane 
(chloroform) has a C; axis and dichloromethane has only a C, axis. 

The point groups we will consider can be linked into families, and the groups that are 

not very common in their own right form important subgroups of more ubiquitous family 

members. In this chapter, each family of point groups will be considered in turn by looking 

at the operations in the group itself using idealized model structures. Once the general form 

of the set of point groups is outlined, some example molecules from particular members 

of the family will be presented. 

3.3 Constructing Reference Models with Idealized Symmetry 

The symmetry operations of a group relate equivalent atoms for any molecule conforming 

to the group symmetry. So far, we have looked for the presence of an operation by imagin- 

ing the result of carrying it out and checking that atom positions interchange correctly. In 

this chapter we will look for the possible combinations of operations that can form proper, 

closed, groups, and this exercise can be carried out in a slightly different way. If we take 

a single atom and apply a symmetry operation, then the atom will, in general, move to a 

different position. This movement will occur provided the atom is not at a special symme- 

try point: on the axis of a rotation or in a mirror plane, etc. In a molecule for which the 

symmetry operation is valid, the new position will be occupied by an equivalent atom. If 

we wish to see what a molecule in a particular point group should look like, this movement 

of one particular atom, or set of atoms, can be used to generate a ‘typical’ object for the 

point group. The application of all of the operations of the group to such a set of gener- 

ating atoms will produce a model object conforming to the point group. As examples we 

will consider simple cases with up to four generating atoms; one or two of these will be 

positioned at any special symmetry points and the remainder will be at general positions. 

After each section on a particular set of symmetry point groups we will discuss examples 

of molecules that belong to those groups. We start with the simplest groups containing 

either no principal axis or a single rotation axis. These are given group symbols beginning 

with capital C. 
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3.4 The Nonaxial Groups: C,, C;, C, 

If there are no symmetry axes present, then there are only a few options for the symmetry 

elements that can be used in a group. The simplest of these is the group C,. The symbol C, 

implies that the principal axis is of order 1. That is a rotation by 360°, and so really only E 

is present, but the symbol is used for consistency with groups containing More symmetry 

elements. Clearly, many molecules belong to this group, and it is a trivial subgroup of all 

other point groups. 

A C; symmetric molecule must contain at least four atoms. This is because any three 

atoms can be used to define a plane, which would be a symmetry plane for the tri- 

atomic. Similarly diatomic molecules always contain a symmetry axis joining the centres 

of the two atoms and these belong to a special pair of symmetry groups, C,,, and Dxn, 

which we will meet later in this chapter. Figure 3.3a shows a three-dimensional set of 

points that form an object with C, symmetry. The points are shaded differently to indi- 

cate that they represent different chemical elements and so cannot be related to each 

other by symmetry. They are also joined by lines to emphasize that they are not copla- 

nar, and the triangular face of the object which is closest to the viewer is marked with 

a line. 

(c) 

{fe I SS 

Figure 3.3 Example objects with (a) C,, (b) C, and (c) C; symmetry. The differently shaded 
points should be thought of as atoms of different chemical elements. The label 1 has been 
added to suggest points that are the initial positions used to generate symmetry images of the 
same shading. 

The other two point groups in this section contain only a single additional operation. 
This operation must be its own inverse to ensure that the group is closed and so the choices 
are a single mirror plane or the inversion centre. The case of a single C, axis comes under 
the cyclic groups C,, discussed below. 

If a molecule contains only a symmetry plane it has C, symmetry, and by convention 
the plane is labelled as horizontal, o,. In Figure 3.3b we have introduced a mirror plane 
into the C, object of Figure 3.3a, so that it contains the points that are shaded grey. With 
the mirror plane present the black and white points each have a reflection image on the 
opposite side of the mirror plane and so a real object with a plane placed in this way must 
have equivalent atoms at the new positions shown. The points shaded grey are in the plane 
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and so do not generate any images. The resulting six-point object has C, symmetry. It is 

not the simplest case; we could have chosen a plane containing three of the points for 

example, but it illustrates the relationship between the new structure and the C, object we 

used as the starting point. 

The third nonaxial group contains only the identity operator and inversion centre 7, and 

this point group is given the symbol C;. An example of a C; object generated from the 

C, structure of Figure 3.3a is shown in Figure 3.3c. We have chosen to place the inversion 

centre at the top right point in the generating structure, and so this point occurs only once in 

the resulting object. The other three points generate new positions in the C; object through 

the action of the inversion operation. Each of these pairs of points would hold an atom of 

the same chemical element, and it is an arbitrary choice which we consider as the ‘original’ 

and which the ‘generated’ point. 

3.4.1 Examples of Molecules for the Nonaxial Groups: C,, C;, C; 

There are many molecules that conform to the C, point group; for example, dichloroflu- 

oromethane (Figure 3.4a) and secondary amines such as N(CH;).H (Figure 3.4b). More 

complex examples include tropinone, Figure 3.4c and d, which is a natural product used 

(a) (b) 
' On ! 
1 i] 

1 1 

\ uN. ' 

H,CWY “st 
i} 

eG. 
dichlorofluoromethane dimethylamine 

(c) (d) 

O N— 

C, 
tropinone 

(e) OH 

O 

@ : 

O | 2% 

atropine 

Figure 3.4 Example molecules conforming to the nonaxial group C,; each molecule has only 

a mirror plane and E as symmetry element. Tropinone, structure (c), is shown as a three- 

dimensional model in (d) and is a precursor to the C, (only symmetry element E) molecule 

shown as (e). 
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as a precursor for the production of the C, molecule atropine, Figure 3.4e. Atropine is an 

auxiliary drug used in anaesthesia to control secretions by the salivary and gastric glands 

during operations on these areas of the body. 

If a molecule has only an inversion centre present it has C; symmetry. Examples of 

this point group are less common, but substituted ethanes such as (1S,2R)-1,2-dichloro- 

1,2-difluoroethane (Figure 3.5a) can take on conformations with C; symmetry, and some 

bimetallic complexes, such as the general structure shown in Figure 3.5b, also fall into this 

classification. 

(a) Cl (b) 

a ee x " 

| a ee 
F Wy c. x | Sire oll umes 
Cl H ie aes 

(1S,2R)-1,2-dichloro-1,2-difluoroethane 

Figure 3.5 Molecular structures with C; symmetry: (a) a particular conformation of (15,2R)- 
1,2-dichloro-1,2-difluoroethane; (b) a bridged transition metal complex shown with nonspe- 
cific metal centre M and ligand L,X labels. 

3.5 The Cyclic Groups: C,, S,, 

Cyclic groups contain only operations derived from the repeated application of a single 

rotational symmetry operation. The point group is C,, if the repeated operation is a simple 

rotation, and we have the point group S,, if it is an improper rotation axis. In both cases the 

subscript denotes the order of the axis. 

All the operations in a cyclic group commute with one another, because a product of two 

operations can easily be written as the root operation applied multiple times. For example: 

Clee = Ce = OA bake (3.1) 

A group with this property is termed Abelian. 

C>, the simplest of the C, groups, is another example in which there is only a single 

operation other than E present, since C) is its own inverse. 

For groups containing axes we will use a group order of 4 to generate our typical objects. 

The C; example is shown in Figure 3.6a and the S, object is shown in Figure 3.6b. The 

identification convention for the points introduced for the earlier examples is also used 

here. However, the points are arranged so that the light and dark grey shaded ones are on 

the symmetry axis and the black and white points are not. Since the points on the axis are 

not affected by the rotation operation, the grey points do not generate any new images. 

However, the black and white points form sets of four points: the initial one (marked 1 
in Figure 3.6a) and three symmetry images that correspond to the C,', C, = C,? and C,> 
operations which define the columns of the character table (Figure 3.7a). The C,', rotation 

by 90° clockwise, and C,°, rotation by 90° anticlockwise, turn out to have equivalent effects 
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Figure 3.6 Objects generated for (a) C, and (b) S, symmetry groups. Grey atoms have 
been placed on the symmetry axis and atoms marked as 1 are suggested initial points for 
the generation of the set of atoms with the same colouring. The lower diagrams are plan views 
looking at the upper diagrams from above; lighter lines are used to indicate points further 
from the viewer. In the plan view for (b) the base is drawn smaller than the top of the figure 
for clarity. 

Figure 3.7 The top lines of the character tables for (a) C4 and (b) S4 point groups. 

in the symmetry analysis of molecular vibrations or orbitals. In the character table, the 

column headed 2C, is shorthand for these two C, operations. In general, the columns of 

a character table can refer to more than one operation; these are referred to as classes of 

operations. 

The whole set of operations produces an axial ‘molecule’ in which there are four 

equivalent substituents at either end. The black and white points are at different dis- 

tances from the axis, and so the radii of the circles drawn to show the relationship 

between images in Figure 3.6a are different, emphasizing that there are no symmetry- 

equivalent points at opposite ends of the object. Below the three-dimensional sketch is 

a plan view of the same structure. For the points at either end of the object, we could 

also think to introduce vertical mirror planes relating the points to their opposite images 

within the same terminal group. However, the offset in orientation between the two ends 

is such that these mirror planes would not be symmetry elements of the object as a 

whole. 
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Groups containing only S,, axes must be of even order. This is because point groups 

containing odd-order improper rotation axes will always have the associated horizontal 

mirror plane as an additional symmetry element through the equivalence, S,," = 0, (n odd), 

defined in Section 2.3.3. The S; group is synonymous with the C; group, since Sy =tand 

so the group character table listings in Appendix 12 begin with S,. The top line of the S, 

character table is reproduced in Figure 3.7b. The equivalences for the improper rotation 

axes also lead to the inclusion of simple rotations in these character table headings, since 

an even-order S,, axis implies the presence of a C,,. rotation axis. 

An example of an object belonging to the point group S, is constructed from our four 

generating points in Figure 3.6b. The plan view in Figure 3.6b is drawn looking from above 

the object, and the lower atoms are drawn on the inner circle for clarity. In this example, 

we have placed the grey atoms on the S, axis and put the black and white generating points 

at the same distance from the axis at opposite ends of the object. The S; operation involves 

a rotation by 90° followed by a reflection through a mirror plane perpendicular to the axis. 

The mirror plane is at the midpoint on the axis joining the two grey atoms. This means 

they must be equivalent to one another, and so they are shaded the same and one is marked 

as a generator. The black and white points are off axis, and so generate three images each. 

The reflection part of the S, operation results in atoms being swapped from one end of the 

‘molecule’ to the other, so that the two ends have an equal number of each type. This also 

means that the related substituents at either end of the molecule must be equidistant from 

the axis. 

3.5.1 Examples of Molecules for the Cyclic Groups: C,,,S, 

There are several examples of simple C, symmetric molecules, including hydrogen 

peroxide (H,O, Figure 3.8a) and (15,2S)-1,2-dimethylcyclopropane (Figure 3.8b). By 

definition, C, groups do not contain improper rotation axes, and so molecules in these 

(b) 

was “ny 

(1S,2S)-1,2-dimethylcyclopropane 

Figure 3.8 Example molecules from the C, point group. (a) The O—H bonds of hydrogen 
peroxide are not coplanar; the only symmetry operations for this molecule are E and C. 
(b) (15,25)-1,2-Dimethylcyclopropane. Three-dimensional models of each molecule are 
shown to the right of the chemical drawings. 
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Ry 

R, R, 

Figure 3.9 The C, symmetric Salen ligand. This tetra-dentate anionic ligand is an example 
of a chiral molecule used as a metal ligand in enantioselective catalysis. The (R,R) form of 
the ligand is shown here. A variety of groups can be used in the positions marked R, and Ro, 
including phenyl (—C,Hs) and tert-butyl (—C(CH;3)3). 

groups may be chiral, as shown by the second of these examples. One important case 

is that of chiral salen ligands, such as the example shown in Figure 3.9. This molecule 

is C) symmetric and can be used as a tetra-dentate ligand for a transition metal centre 

such as Mn or Cr; the conformation in the figure is that expected for the ligand coor- 

dinated to a metal centre. Salen ligands contain two chiral centres at the substituted 

carbon atoms of the cyclohexane ring. Complexes using the salen ligand are important 

homogeneous catalysts for the epoxidation of alkenes. In these reactions, the chirality of 

the ligand influences the chirality of the product, and so enantioselective epoxidation is 

possible. 

Problem 3.1: Check the assignment of the chiral centres made in the caption to 

Figure 3.9 is correct. 

C, groups of higher order are less common than C,. One notable example is triph- 

enylphosphine, (PPh, Ph = phenyl group, C,H;) a ligand used widely in the chemistry of 

metal complexes. The three phenyl rings can avoid steric interactions by orientating like 

propeller blades in the C; symmetric structure shown in Figure 3.10. 

Examples of molecules with S, symmetry are relatively rare. An example in organic 

chemistry is 1,3,5,7-tetramethylcyclooctatetraene (Figure 3.1 1a and b). This structure con- 

tains an eight-membered ring with alternating single and double bonds between carbon 

atoms. This ring system is not aromatic; the bonds are localized as shown in the chemical 

drawing picture of Figure 3.1 1a. The localization of the bonds leads to a nonplanar struc- 

ture with the geometry shown in Figure 3.1 1b. The 1,3,5,7-methy] substituents frustrate the 

horizontal C, axes and vertical mirror planes that are present for the unsubstituted ring, and 
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C3 

Figure 3.10 The structure of PPh3, a molecule with C3; symmetry. 

(a) (b) 

1,3,5,7-tetramethylcyclooctatetraene 

(c) 

Figure 3.11 Chemical compounds with 54 symmetry: (a) chemical structure and (b) three- 
dimensional model of 1,3,5,7-tetramethylcyclooctatetraene; in both cases H atoms are 

omitted for clarity. (c) A cyclic phosphazene with the formula N4P4Cls also belongs to the 

S4 point group. 

so this structure has $, symmetry. Similar molecular structures are found for cyclic phos- 

phazenes, which are inorganic compounds containing alternating N and P atoms with two 

substituents on each P atom. An example with the molecular formula N,P4Cls, which also 

has S, symmetry, is shown in Figure 3.1 1c. 
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3.6 Axial Groups Containing Mirror Planes: C,,, and C,,, 

In these groups there is only one axis and the subscript n in the group label is used to indi- 
cate its order. The single axis must be the principal axis and defines the vertical direction 
for the molecule. The C,, point groups contain a single horizontal plane, while the C,, 
groups have n vertical planes as discussed below. 

We begin with an idealized C,, object created from four generating points. Two of 
these are placed on the axis and two off axis, as shown in the two alternative settings 
in Figure 3.12a and b. The points are positioned so that one of the vertical mirror planes is 
the plane of the paper, as shown by the dotted rectangle labelled o,. In Figure 3.12a, the 
mirror plane is valid for both sets of off-axis points, since the generating points at either 
end of the molecule are also in one of the two o, planes; this is reminiscent of a molecule 
in an eclipsed conformation. 

Figure 3.12 Objects in the Cy, point group generated to give (a) eclipsed and (b) staggered 
geometry. The points marked ‘1’ are suggested start points for generating the figures. The 
lower diagrams are plan views with shading used to give a sense of depth. 

The alternative arrangement, shown in Figure 3.12b, is to have one generating point in 

the o, mirror plane and one placed in the oy plane. Figure 3.12b shows that this implies a 

staggered conformation for the imaginary molecule, with, in this Cy, example, an angle of 

45° between the o, and oy. Any other relation between the positions of the sets of points at 

either end of the object would not be consistent with this arrangement of the mirror planes, 

and so the symmetry of the object would reduce to C4. 

From Figure 3.12a and b we can also see that any atom which is away from the principal 

axis of a C,, molecule will have n symmetry-related atoms by virtue of the n rotational 
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operations around the axis. If we assume an atom is in one of the vertical mirror planes, 

then it must follow that all of the symmetry-related atoms are also in mirror planes. In 

the example of Figure 3.12a this leads to two o,. We can also position vertical planes as 

the bisectors of the angles between the two o, planes. These new planes are in a different 

environment: in Figure 3.12a they contain no atoms and in Figure 3.12b they contain atoms 

from the other set. Since the new planes bisect the angles between the o, planes, they are 

labelled o,. 

If we generate an example object for an odd-order axis, such as the C3, case shown in 

Figure 3.13, then the distinction between o, and ay is no longer relevant. All mirror planes 

contain only one of each type of point and also bisect the angle between other planes. In 

this case the vertical planes are all identical and are simply labelled o,. This difference is 

seen in the listing of the point group operations at the top of the corresponding point group 

tables (Figure 3.14). 

Equivalent mirror planes are another example of a class containing more than one sym- 

metry operation in a group. They have identical arrangements of atoms around them and 

Figure 3.13 An object in the C3, point group; in this case, all vertical mirror planes are 
equivalent, as can be seen in the plan view, and so only the label o, is used. 

(a) 4 E XE Cr 20, 204 | 

| 

(b) Cle 2G a 

Figure 3.14 The headings used in (a) the Cy, and (b) the C3, character tables. 
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so give equivalent results for any property of the molecule, as we will see in later chapters. 

The character tables require only one column for each class of operations, but the num- 

ber of equivalents is noted in the column heading; hence, for example, 20, appears as a 

heading in the C,, character table. 

In general, C,, point groups have n-mirror planes each of which contain the principal 

axis. For even-order axes these are split into two groups, o, and oy, but for groups with 

odd-order principal axes the planes are all equivalent and are labelled o,. 

The objects generated from our three generating points for the C,,, point groups are 

shown for the even- and odd-order axis cases in Figure 3.15a and b respectively. The 

tops of the corresponding character tables are given in Figure 3.16. Again, we consider 

the examples of an order 4 axis for the even example and order 3 for the odd. With the 

horizontal mirror plane placed equidistant from the two grey points which define the axis, 

these points become symmetry equivalent and so have been shaded similarly. The off-axis 

generating points are now part of a 2n set, because each point above the plane must have 

an equivalent point below. In the C,,, point groups the mirror plane is perpendicular to the 

axis, and so there must also be an improper S,, axis collinear with the principal axis. For 

(a) 

Figure 3.15 A general object generated from the three points marked ‘1’ and the symmetry 

operations of the (a) C4, and (b) Cs point groups. 

Cay | E Nn Ci 1 DSa On | 

imho | 
(b) Cy EP 26; “o, Hs 

Figure 3.16 The headings of (a) the C4, and (b) the C3, point groups. 
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the even axis case (Figure 3.15a) the principal axis must also be a C> axis, which means 

that there will also be an inversion centre (i = S70 

For the odd-order axis case the only operations in the group are the principal axis rota- 

tions, the horizontal mirror plane reflection and the improper rotations generated by taking 

these two together. 

Since these groups contain mirror planes, molecules belonging to C,,\or C,, are not 

chiral. 

3.6.1 Examples of Molecules for Axial Groups Containing Mirror Planes: Gr 

and Cry 

The Cs, point group is extremely common; we have already met water and mono- 

substituted benzene rings such as fluorobenzene (Figure 2.2), which fall into this point 

group. There are many other examples, such as urea and furan shown in Figure 3.17a and 

b respectively. C3, is also a common point group, claiming molecules such as chloroform 

(CHCI,) and 1,1,1-trichloroethane, which are shown in Figure 3.17c and d respectively. 

(a) (b) 

urea furan 

Wy, 
' 
' Cl 

ci\ 
(Gil 

chloroform 
1,1,1-trichloroethane 

Figure 3.17 Molecules belonging to (a) the C,, and (b) the C,, point groups. 

It is less easy to find examples for the C,,, point groups; there are several Cy, molecules, 

such as (£)-1,2-diphenylethene (common name stilbene), shown in Figure 3.18. This 

molecule is planar due to conjugation between the ethene double bond and phenyl! sub- 

stituents. Any planar molecule must have the plane of the molecule as a symmetry element, 

and in this case this is the only symmetry plane present. The principal axis is C, and is per- 

pendicular to the plane, which must, therefore, be labelled o;,. Since C, and oj, are present 

we must have an S, axis, but the only resulting operation is equivalent to an inversion 

(i = S5') and so only 7 is quoted. 
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(£)-1,2-diphenylethene 

Figure 3.18 (a) The structure of (E)-1,2-diphenylethene, which belongs to the Cy, point 
group, and (b) a ball-and-stick model showing the Cy, symmetry elements. 

3.7. Axial Groups with Multiple Rotation Axes: D,,, D,q and D,,, 

Groups containing multiple rotation axes which do not fall into the cubic groups that we 

meet later on are given point group labels beginning with D. The first set of these contains 

only rotation axes and are simply referred to as D,, groups, for which the subscript n gives 

the order of the principal axis. The second set of axes is always C and perpendicular to 

the principal axis passing through the centre of the molecule. This arrangement means that 

there are nC, axes, since there will be n equivalent orientations of the molecule around 

the principal axis and each of these must also have a C, rotation that is a valid symmetry 

operation. 

There are very few examples of molecules belonging to the D, point groups, but they 

provide important subgroups of the more common D,, and D,, point groups. The D,, 

groups can be thought of as distortions of molecules in these higher symmetry point groups 

that destroy the mirror planes present. We can, of course, use the generation method to con- 

struct a D, object as an example of this type of point group. This is shown in Figure 3.19a: 

the grey points are placed on the principal axis equidistant from the centre of the object and 

so they become symmetry equivalent. The principal axis in this example is even ordered, 

and so is also the first C, axis we would identify (CP =-G): Looking at the plan view, 

there are two distinct sets of C) axes perpendicular to the principal. The first are directly 

under two of the points generated from the black circle, and these are labelled C,’. The 

second pair of C, axes bisect the angles between the C,’ pair and are not under any points 

in the plan view. Since they are in a different environment to either the C, or C,’ axes, they 

are labelled C,”. The generating points off axis are now members of sets of eight, since the 

two ends of the structure are linked by the horizontal C,’ axes. 

The D,, groups are extensions of the related D,, groups by the introduction of dihedral 

mirror planes in between the horizontal C, axes, as shown in Figure 3.19b. To continue 

with four generating points and a principal axis of order 4 would lead to highly cluttered 

diagrams, so we have reduced the number of generating points to two: an on-axis grey 

point and an off-axis black point. The grey point on the axis is not central, and so the 

C,' or Cy” operations will generate a second grey point. However, because the principal 
axis operations leave points on the axis unaffected, only two points are generated. Off-axis 



60 Molecular Symmetry 

Figure 3.19 Illustrative constructions for (a) D4, (b) Dag and (Cc) Ds, point groups. In each 
case the points marked ‘1’ can be thought of as generating points, and all symmetry-equivalent 

points have identical shading. 

points that are not on the C,’ or C,” axes lead to 2n symmetry-equivalent points, and 

so the black circle in the D4, example has spawned seven images. The dihedral mirror 

planes require that the off-axis points are arranged either on the mirror planes or in pairs 

of points equidistant from the planes. We saw in the Cy, examples of Figure 3.12 that 

this requirement in that case leads to molecules that are either in an eclipsed or staggered 

conformation. Here, D,,, is the point group for molecules in a staggered conformation in 

which the two ends of the molecule are equivalent. 

We have already discussed an example of this sort of point group in Chapter 2, where 

the product table for ethane (D;,) in the staggered conformation was derived, resulting in 

Table 2.4. Referring back to that table, it can be seen that the section based on products 

of simple rotations only ever generates other simple rotations or the identity. This shows 

that C; and D, are self-contained, closed, subgroups of D3,. This can be a useful property 

to exploit in a symmetry problem. We can initially work in a simpler subgroup requiring 

less operations to be considered and then check that our results are consistent with the 

complete group. This approach is used in many of the problems tackled in Chapters 6 

and 7. 

Ifa molecule with the symmetry elements of D, also has a horizontal mirror plane then it 

belongs to the Dy, point group. The general structure for this case is shown in Figure 3.19¢c, 

where again we have used one on-axis (grey) and one off-axis (black) generating point. 

The horizontal mirror plane implies that the two ends of the object have equivalent points 

which are eclipsed in the plan view of the molecule looking down the principal axis. The 

presence of the horizontal plane and C, axes also implies that there must be vertical and 

dihedral mirror planes present for the group to be closed. For example, Figure 3.20 shows 
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Figure 3.20 A combined o4C,' operation in the D4, point group, showing that o,Cy' = oy. 
The vertical plane is the plane of the paper containing the off-axis points 1, 3, 5, 7; comparing 
the start point and the end, these points are in their original positions, whereas the pairs 2, 4 
and 6, 8 have been swapped as expected for the single reflection through oy. 

that the product of a C,’ axis and the horizontal mirror plane is equivalent to a reflection in 

a vertical mirror plane, 1.e. 

GG = 0) (3.2) 

Since the group must be closed, the o, planes must also be possible operations in the 

group. These sorts of relationships limit the number of point groups that are possible. 

Problem 3.2: Show that the product of a C,” axis and the o, plane in the D4, point 

group implies that there are also o, mirror planes. 

3.7.1 Examples of Axial Groups with Multiple Rotation Axes: D,, D,q and Dy», 

In the previous section we noted that the D, point group is quite rare. However, it does 

form a subgroup of the much more ubiquitous D,,, and D,,, point groups. 

Figure 3.21 shows two examples of molecules in the D,, point groups. Allene is the 

common name for the molecule propa-1,2-diene (C;H,), which has a bond angle of 180° 

at the central C atom (Figure 3.21a). The two double bonds form at right angles to one 

another, and so the terminal CH, groups are staggered. This gives an S, axis along the 

same line as the C, axis containing the three C atoms, and this C, axis is accordingly taken 

as the principal axis. The improper rotation and the additional C,’ axes can be seen more 

clearly in the view down the principal axis shown to the right in Figure 3.21a. This view 

also shows the og mirror planes which are in between the axes. 

Symmetry operations for ethane in the staggered conformation were covered in 

Section 2.3.3, including the illustration of example operations in Figure 2.5. It should 

now be clear that these are just the operations required to classify ethane as belonging to 

the D3, point group. 
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(a) H 

(b) 

Figure 3.21. Example molecules belonging to Dna point groups (a) propa-1,2-diene, Dya, 

(b) ferrocene, Dsg. 

The axial symmetry elements for ferrocene are shown in Figure 3.21b along with the 

dihedral mirror planes. Since the principal axis in this case is C;, ferrocene belongs to the 

Dsq point group. 

It should be noted that if any of our example molecules had a slightly different ‘twist’ 

along the principal axis, then the dihedral mirror planes would no longer be valid and the 

symmetry would be reduced to D,,. 

Molecules in D,, point groups are shown in Figure 3.22. Ethene is a classic exam- 

ple of Dy, symmetry, and the C, axes and mirror planes are overlaid on this molecule in 

Figure 3.22a. This group contains only C, axes, and none has the collinear S, axis we used 

to identify the principal axis in the D), example. Hence, the designation of the vertical 

direction for the ethene molecule is an arbitrary choice from the three possibilities. This 

is recognized in the headings of the character table by assigning each of the C, axes to a 

Cartesian axis direction, X,Y or Z, rather than giving one a higher priority than the other 

two. The usual convention with planar molecules, when such ambiguity arises, is to set Z 

perpendicular to the molecular plane and then X and Y are set as shown in Figure 3.22a. 

Labelling of the mirror planes follows the same convention and all planes and axes meet 

at a central point, which is the site of an inversion centre. 
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(b) 

+ 

Figure 3.22 Example molecules belonging to D,, point groups: (a) ethene, D»,; (b) the 
trans-isomer of [Co(NH;)4Ch]*, Day. 

The trans-isomer of [Co(NH3;),Cl]* has a C, axis defined by the Cl—Co—Cl line, 

as shown in Figure 3.22b. The four amine ligands are in the horizontal mirror plane, 

which also contains four C, axes (two, C;’, along Co—NH; bonds and two, C,”, bisect- 

ing H;N—Co—NH, angles). The complex is shown with the principal axis running from 

front left to back right of the diagram, but remember that this axis sets the vertical ref- 

erence direction used in discussing the geometry. This complex is an example of the D4, 

point group. Note that in this assignment we have ignored the amine H atoms. The amine 

ligands are able to rotate freely around the Co—NH,; bonds, and so the orientations of 

the H atoms will be dynamically averaged out and will not influence the properties of the 

complex. 

Problem 3.3: Elemental sulfur can form molecular Sx ring structures which belong to 

the D4, point group. Sketch out the conformation of Sx this implies. 

Problem 3.4: Benzene (C,H,) is a planar molecule with a principal C, axis. Assign its 

point group and illustrate the positions of the symmetry elements on sketches of the 
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molecule. Remember that, once the point group is assigned, the full list of symmetry 

operations can be read from the top of the character table in Appendix 12. 

3.8 Special Groups for Linear Molecules: C,,, and D..4 

To construct general objects for the axial groups, we have used points on the principal axis 

to show that operations involving this axis leave these points unaffected. In groups with an 

axis of order infinity, any off-axis points would generate an infinite number of new atom 

positions under the rotation operation. This means that any molecule belonging to these 

groups must be linear. The principal axis will then contain all the atoms in the molecule, 

and so any rotation will leave the atom coordinates unaffected. The order of the axis is 

infinite, since there are an infinite number of possible angles of rotation which leave the 

molecule in an identical state. In a similar way, any plane containing the axis must be a 

valid symmetry element for the object, since it will contain all the points belonging to the 

structure. So, there are also an infinite number of vertical mirror planes present. 

Figure 3.23 shows the two point groups that arise for linear molecules. If the two ends 

of the molecule are different, then the only symmetry elements are C,, and the vertical 

mirror planes, so the point group is C,., by analogy with C,,, C3,, etc. If the molecule has 

equivalent points at either end of the axis.then it will also have a horizontal mirror plane o;, 

and an infinite number of C, axes perpendicular to the principal axis. In this case the point 

group will be D..n, since the same types of element are present as for D,,, point groups. 

The character table titles for these two groups are shown in Figure 3.24. The presentation 

(a) (b) 

ie an ee oa cio Oe Ss Re " 
oe Beea Ct BIO eed . a eee Ge eee Soh a es bs. 1 S) 2 

' 

Figure 3.23 Objects constructed for (a) the C.. and (b) Dy point groups. In each case, 
only a small selection of the infinite number of possible oy planes is shown. 

Coe el Go een somes 
(a) 

% ' Doni 2Ce Wey boca, in Cas ne meee me 

Figure 3.24 The headings used for the character tables for linear molecules: (a) Cae 
(b) Doon. In each case, the column heading ’...’ indicates an infinite number of similar oper- 
ations to the preceding column and the superscript ® refers to the angle of rotation for the 
operation. 
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of the character table data requires the infinite number of operations to be noted, and this 

is done by adding lines of dots to the title line to indicate that a sequence of related oper- 

ations is present. The notation C,,° is used for the rotation operations about the infinite 

axis, where ® indicates the angle of rotation for the operation. There are two operations 

for each angle, since clockwise and anticlockwise rotations belong to the same class. 

Linear molecules are rather straightforward to visualize and so we will not provide illus- 

trative examples here. Diatomic molecules, such as O5, Cl, and N), provide good examples 

of molecules in the D, point group, alongside the linear molecules ethylene, C,H» and 

CO,. Diatomics formed from two different elements, such as CO, NO and HF, belong to 

the C..y point group, along with more complex linear molecules such as hydrogen cyanide 

(HCN). 

3.9 The Cubic Groups: 7, and O,, 

The point groups covered so far, with the exception of the simple C,, C, and C;, cases, 

have had a principal axis which is straightforward to define and no other axes of order 

higher than 2. Those point groups describe well the wide range of molecules that can be 

considered to be axial or planar. In this section we turn to cases that are often regarded as 

higher symmetry objects in which there are multiple axes of order higher than 2. This set 

of related groups is best thought of as the symmetry groups for simple solid shapes. We 

will deal with two common cases of tetrahedral and octahedral molecules and show how 

these relate to the symmetry of the cube. There are some molecules of very high symmetry, 

such as buckminsterfullerene (C¢9) in which all 60 C atoms are symmetry equivalent, but 

the consideration of such cases is beyond the scope of this introductory text. 

The tetrahedron is an important shape in chemistry. Methane, the complex [Ni(CO),] 

and many other molecules in which a central atom has four equivalent bonds take on this 

geometry. The symmetry of the tetrahedron is best discussed with reference to a solid 

model, and a paper template is provided in Appendix 3 from which a tetrahedron and the 

related cube can be constructed. This paper model also has some representative symmetry 

elements drawn on it which are also illustrated in Figure 3.25. The highest order axes are 

C; which join each corner of the tetrahedron to the centre of the opposite face. There are 

four corners, and so there are four axes; each gives rise to two operations (C;' and C;°), 

and so 8C; appears in the title line of the character table (Figure 3.26a). 

Figure 3.25b shows that there are also C, axes which run through the centres of opposite 

edges of the tetrahedron; for methane, these axes bisect two of the H—C—H angles. The 

tetrahedron has six edges and so there are 3C, operations. The lines of the C, axes are 

shared by S, axes; these are best seen by looking down an axis direction, as shown in 

Figure 3.25c, in which the mirror plane used in the improper rotation is also given. The We 

operations are identical to the C, rotations we have already identified, and so only S,' and 

S,° are counted at the head of the character table; with three axes this shows 65,. Finally, 

there are six mirror planes, each of which contains an edge of the tetrahedron and bisects 

the opposite edge, as shown in Figure 3.25d. This means that each plane contains two of 

the C; and one of the C, axes. Since the C; is the highest order axis, we would expect it to 

define vertical; however, there is now no clear choice between the C3 axes to be made, as 

they are all equivalent. This influences the designation of the six equivalent mirror planes, 
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(a) (b) 

3C, & 6S, 
1 Cy 

(c) (d) 

Figure 3.25 The symmetry elements for the operations of tetrahedral Ts symmetry. (a) The 
4C; axes giving 8C; operations, (b) the 3C, axes, (c) a view down one of the three S4 axes and 
the mirror plane that is used as part of the improper rotation and (d) two of the six dihedral 
mirror planes. 

T, E 8C3 3 Cp 654 604 

(a) 

(b) Ovn| Ee 8 Cz, 6G 60, & SC =iCP), in Oe be See aoe a 

Figure 3.26 The headings from (a) the Ty and (b) the O, character table. 

two of which are shown in Figure 3.25d. Each mirror plane contains two of the C; axes, 

and so a given mirror plane will have a vertical orientation with respect to either of these. 

The angle between the other two C; axes is bisected by our example plane, and so the 

designation oy is used. 

The tetrahedron symmetry elements can be thought of as a subset of those of a related 

cube. If we draw a cube and place atoms at half of the eight corners such that on any face 

they are diagonally opposite to one another, then the atoms will define a tetrahedron, as 

shown in Figure 3.27a. The paper model of a cube from Appendix 3 is made with one 

open side so that the tetrahedral model can be inserted into it in the same orientation. 

This relationship between the cube and the tetrahedron shows how the tetrahedron can be 



The Point Groups Used with Molecules 67 

Figure 3.27 The relationship between the cube and (a) the tetrahedron and (b) the octa- 
hedron. The axis system shown can be used as a common reference frame for all three 
figures. 

orientated with respect to an axis system. The axis system marked on the models and in 

Figure 3.27 have X,Y and Z each emerging from the centre of a cube face with the origin 

of the axis system at the cube centre. This places each axis along a C, symmetry axis for 

the cube. The tetrahedron and the cube share the same centre, but the X,Y and Z axes each 

pass through the centre of an edge of the tetrahedron, i.e. along the C, axes. We will use 

this axis system in later chapters to orientate basis functions, such as the atomic orbitals 

(AOs) of the central atom of a tetrahedron. 

Figure 3.27b shows how an octahedron can also be constructed inside the cube. This 

time, the corners of the octahedron are at the centre of the faces of the cube and so the X,Y 

and Z axes are along the lines from the centre of the figure to its corners; in an octahe- 

dral complex, this would be along the metal centre—ligand bonds. These lines are C, axes 

for the octahedron and the cube; in fact, all the symmetry elements of the cube are also 

valid for the octahedron and both belong to the O, point group. The symmetry elements 

for the operations listed in the character table headings (Figure 3.26b) are illustrated in 

Figure 3.28 using the two objects nested in the same way as shown in Figure 3.27b. The 

highest order axes are C,, which pass through the centres of opposite faces of the cube 

and through opposite corners of the octahedron (Figure 3.28a). These are collinear with 

the X, Y and Z axes defined in Figure 3.27b. Each C, axis gives rise to two C, operations 

(C,', C,°) and there must also be a C, axis along the same line, since C,° = Cy'. So these 

three axes account for the 6C, and 3C,(= C,’) column headings in the O,, character table 

(Figure 3.24b). Joining opposite corners of the cube are the C; axes shown in Figure 3.28b; 

these axes also pass through the centre of opposite faces in the octahedron. There are eight 

corners to the cube, so there are four such axes; each gives two operations (C;' and C Aap 

and so 8C; heads up the second column of the character table. Figure 3.28c shows that 

there are a further set of C, axes joining the centres of opposite edges of the cube which 

also pass through opposite edges of the octahedron. There are 12 edges in each figure, and 

so 6C, axes with associated 6C, operations. 

The improper S, axes are more difficult to see than the C axes, but it helps to look 

directly along the C; axis of the three-dimensional model as shown in Figure 3.28d. From 

this view it is clear that a rotation by C,' would bring the three foreground corners (marked 
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(a) 6Cy, 6S, & 3C, (= C,’) 

Figure 3.28 The symmetry elements of Oj, to which the cube and octahedron belong. 
(a) C3 axes, (b) Cy axes, (Cc) Cy axes, (d) an S_ axis and the mirror plane that forms part 

of the operation; there are four such axes collinear with the C, axes. (e) The 30, planes and 

(f) two of the 604 planes; these contain the C, axis along Z; the other og planes are in identical 
pairs containing X or Y. 

with large points in the diagram) directly over the three background points. A reflection 

through the plane perpendicular to the C; axis and passing through the cube centre would 

then produce a geometry indistinguishable from the starting point. This means that the S, 

axes are collinear with the C; axes. We saw in Chapter 2 that any S, axis only leads to 

two operations that cannot be written more simply (S,' and S,°), and so the character table 

contains a heading 8S,. 
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The fact that there are three C, axes means that there is no single ‘correct’ choice of 

principal axis, and so the direction of ‘vertical’ is an arbitrary selection from three equiva- 

lent possibilities in O, symmetry. This leads to the curious situation that there are three o,, 

planes. These planes are shown in Figure 3.28e; they pass through the centre of the cube, 

each parallel to two cube faces, and would contain four of the six ligands in an octahedral 

complex. This designation of 30; just reinforces the idea that the three mutually perpendic- 

ular C, axes are equally valid ‘vertical’ directions. There are also six further mirror planes, 

each of which contains two opposite edges of the cube and bisects four of the faces of the 

octahedron. Two of these planes are shown in Figure 3.28f. These are designated oy, since 

they each bisect the angles between the two C, axes that are ‘horizontal’ for their own par- 

ticular choice of ‘vertical’. The improper S, symmetry elements are simply compounded 

operations of each C, and its corresponding oj. 

3.10 Assigning Point Groups to Molecules 

In discussing the point groups that are used to described the geometry of molecules we 

have moved from simple cases containing only a single operator, through the various axial 

groups and finally to the high-symmetry tetrahedron, octahedron and cube. A first step in 

studying the symmetry properties of any molecule is to assign its point group correctly. 

The systematic presentation allows us to break this task down into a series of questions 

to aid the assignment process. The basic questions that should be asked when confronted 

with a molecular structure are: 

1. Does the molecule belong to a high-symmetry group such as O, or Ty? 

. Does the molecule have any symmetry axes? If not, it must be in a nonaxial group and 

can be classified as C,, C; or C). 

3. If the molecule is axial, is the principal axis the only proper rotation? If yes, then it 

must belong to a C or S$ type group. Or are there horizontal C, axes which place it in a 

classification of D type? 

i) 

More detailed questions can be added to these broad categorizations to allow a point 

group assignment to be made. One strategy is summarized in the flow diagram shown 

in Figure 3.29, and in the following sections we will apply this approach to some example 

structures. 

3.11 Example Point Group Assignments 

3.11.1 Example 1: Conformations of Cyclohexane 

The simple chemical drawing picture for cyclohexane shown in Figure 3.30a gives the 

impression of a planar ring. However, each carbon in the ring has four bonds, and so 

the ring is puckered. One possible conformation for cyclohexane is the chair form shown 

in Figure 3.30b. The ring puckering is best appreciated by building a three-dimensional 

molecular model or using a graphical ball-and-stick representation (Figure 3.30c). The 

advantage of the three-dimensional model is that the molecule can be viewed from many 
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Does the molecule belong to 

ahigh-symmetry group such | Y&S 
as the tetrahedral 7, or 
octahedral O,, groups? 
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axes present with n > 1? 
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Figure 3.29 Flow diagram for point group assignment. 
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(a) (c) (d) 

Figure 3.30 The structure of cyclohexane: (a) standard chemical drawing diagram, (b) ball- 
and-stick model showing ring puckering in chair conformation and (c) view down C;, principal 
axis. 

alternative angles and so it is much easier to pin down the symmetry elements. For exam- 

ple, in the cyclohexane case, looking down on to the six ring to give the view shown in 

Figure 3.30d reveals that the principal axis is C;, so we are on the right-hand branch of 

the flow diagram (Figure 3.29) with n = 3. Still looking down the principal axis, it appears 

that a C, rotation will bring each carbon atom to the position of one of its neighbours. 

However, due to the ring pucker, alternate carbon atoms are actually on opposite sides of 

the average C atom plane. This means that a C, rotation followed by a reflection is a sym- 

metry operation but a simple C, rotation is not, i.e. we have an S, axis collinear with the 

C,. This S, operation can also be seen from the positions of the H atoms in the side view of 

Figure 3.30c, since the vertical C—H bonds alternate from pointing up to pointing down 

around the ring. The next question on the flow diagram asks if there are further elements 

other than i (remember i = S,'). There are other elements; in particular, there are three 

horizontal C, axes which run between opposite bond centres, and so we must have one of 

the D point groups. There is no horizontal plane of symmetry, but there are vertical planes 

which contain opposite CH, groups. These bisect the angle between the horizontal C, axes 

and so are labelled og. With a principal axis order of 3 we have the point group D,,. 

Another possible conformation for cyclohexane is the boat structure shown in 

Figure 3.31. This structure is slightly higher in energy than the chair conformer, but is still 

accessible at room temperature and above. In the boat conformation, the ring puckering 

(a) (c) 

c 

Figure 3.31 Cyclohexane in the boat conformation: (a) chemical drawing representations, 

(b) side view and (c) view down C), axis of ball-and-stick model. 
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is less regular and the principal axis becomes C;, as can be seen in the plan view of 

Figure 3.3lc. There is no improper rotation axis this time and there are no horizontal 

C, axes. Since the principal axis is the only axis present, we have one of the C, point 

groups with n = 2. Following the flow diagram of Figure 3.29, there are no horizontal mir- 

ror planes, but there are two vertical mirror planes. The first contains the two CH) groups 

that are ‘up’ in Figure 3.31b (forming the prow and stern of the “boat’) and the second 1s 

perpendicular to this and runs through the centre of the two C—C bonds formed by the 

other four C atoms (reflecting the prow into the stern). These planes are both vertical, but 

they are in different environments and so are labelled o, and o,’. So, we arrive at the point 

group C,. 

The fact that the same molecule can have conformations in different point groups is 

extremely common. Symmetry does not dictate which conformation should be preferred, 

since it only describes the structure. However, by working out the spectroscopic properties 

of each conformation with the restrictions imposed by symmetry taken into account we 

can identify whether a particular conformation is dominant based on experimental data. 

3.11.2 Example 2: Six-Coordinate Metal Complexes 

Transition metal complexes with six ligands are very common; for example, the hexaaquo 

complexes of Ni** and Cu** shown in Figure 3.32. The Ni complex (Figure 3.32a) is very 

regular with all the Ni—O distances at 2.07 A and all O—Ni—O angles at 90°. Ignoring 

the detailed structure of the water molecules, we can immediately assign this Ni complex 

as belonging to the octahedral O, point group. The Cu*+ complex in Figure 3.32b, on the 

other hand, is not quite a regular octahedron. The Cu—O distances for the axial ligands 

are 2.38 A and the four equatorial Cu—O distances are around 1.95 A. This means that 

the C, axes present in an octahedral complex along the lines joining opposite equatorial 

ligands are not valid in this case; the symmetry is different to the Ni>* example. This is 

often viewed as a reduction in the symmetry for the copper complex, i.e. we may imagine 

that with six ligands the complex will adopt O,, but in fact we find some of the symmetry 

elements are not valid for the structure; the complex has ‘reduced’ its symmetry for some 

reason. In this case the reason is electronic in nature and is commonly referred to as the 

Jahn—Teller effect. The electronic background to this will be covered later, but for now we 

OH, 
OH, =z 

2.07 2.38 

2.07 2.07 
H,0 a Nee OH, H,O io oS OH, 

eS 2+ a 1 u 

H,0 4 97 2.07, OH H30 ~) 95 Ba OH, 
2.07 

2.38 
OH, 

OH, 

Figure 3.32 Two hexaaquo transition metal complexes: (a) [Ni(H,O)P*+; (b) [Cu(H,O)P*. 
Distances are given in Angstroms. 
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will just assign the point group to allow a description of the symmetry reduction. Although 

the C, axes across the equatorial ligands have been lost, the C, axis joining the axial ligands 

remains, and so this is the principal axis. The flow diagram in Figure 3.29 next requires us 

to look for S;,, collinear with the C,. There is no Sg axis, but there are four horizontal C, 

axes which fall into two sets. The first are the axes running between opposite equatorial 

ligands (they would be C, in perfect O,,); these are labelled as C,’, as the highest priority C; 

axis 1s along the principal axis (C,° = C)). The second set of horizontal C, axes bisects the 

O—Cu—O angles in the equatorial plane, and these are referred to as C,”. The presence 

of these axes places us in a D-type point group. In this case there is a horizontal mirror 

plane, the equatorial plane, and so the point group is Dy,. 

In transforming from our imaginary octahedral hexaaquo Cu*t complex to the observed 

structure; two of the ligands that are opposite to one another have moved further away 

from the copper centre than the other four and the symmetry of the structure has become 

axial in nature. To describe this sort of axial distortion, therefore, we would say that the 

complex symmetry is reduced from O;, to D4y. 

3.12 Self-Test Questions 

1. We now have all the information required to be able to place any molecule in its point 

group by using the flow chart in Figure 3.29. Assign the point groups of the molecules 

shown in Figure 1.27 that have not been covered in the text. You should build models 

of any but the simplest structure. 

2. Sketch the three isomers of difluoroethene and assign the point group of each. 

3. The molecule B,Cl, consists of planar BCI, units joined via a B=B bond. Rotation 

about the B—B bond is possible. Using the flow chart given in Figure 3.29, determine 

the point group of the molecule if the two BCI, groups are: 

(a) eclipsed; 

(b) staggered; 

(c) half-way between ideal eclipsed and staggered conformations. 

4. The molecules shown in Figure 3.33 are labelled according to their point groups. Each 

one has an improper rotation axis, as labelled below the structure. 

(a) (b) (c) 

ths C3, H Dsq 

c : on ‘3 H, 
H | 1 Vi H, 

* H B Hees 
ge Bet al Bs i H 

O O 6 H H, 

H 

S4 S3 S6 

Figure 3.33 S, axes present in the point groups for (a) methane, CH,, (b) B(OH); and 

(c) the staggered conformation of ethane. 
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(a) Draw a sketch of each molecule with the hydrogen atoms labelled showing the 

appropriate S,, axis/axes. 

(b) For each molecule, draw the result of successive operations (S25 245 ) ete tor 

the improper rotations and show the results of multiple applications. To do this you 

should use the approach from Figures 2.8 and 2.9. In the case of the planar molecule 

HBO; you will need to add a vertical arrow on one of the H atoms,\to illustrate the 

effect of the reflection component of the S3 operation. 

(c) From your drawings, identify any equivalent operations (e.g. S¢~ = C;3'). Hence, 

explain why the 7, group contains six S, operations, the C3, group contains two S$; 

operations and the Dz, group contains two S, operations. 

. In the main text we showed that the trans-isomer of [Co(NH;)4Cl,]* belongs to the Dy, 

point group; assign the point group of the cis-isomer, ignoring the structure of the amine 

ligands. 

. Draw the structure of (1R,25S)-1,2-dimethylcyclopropane and assign its point group. 

You should recognize from your result that this molecule is not chiral. Explain why this 

is from both a symmetry and a structural point of view. 

. BF; is a planar molecule with a C; principal axis and three vertical mirror planes. Use 

the products of the operations accompanying these symmetry elements to show that the 

point group for the molecule contains a total of 12 operations and list them. 

Identify the point group of BF; and compare your list with the class headings in the 

corresponding character table in Appendix 12. 



4 

Point Group Representations, 
Matrices and Basis Sets 

4.1 Introduction 

The painting in Figure 4.1 is called Bowl of Fruit, Violin and Bottle and was created by 

Picasso in 1914. At first glance it is difficult to see the three items of the title; but as the 

picture is studied, elements of each emerge. The painting is not the sort of image of the 

subject matter that a photograph would give; rather, it provides an abstract representation 

of the items. In this example, even the method of production is a representation; the picture 

looks like a collage, but is in fact an oil painting. 

Representations have a special place in the symmetry of molecules. Up to now we have 

concentrated on the effect of symmetry operations on the atom positions in a molecule. 

It is this that defines the point group to which a molecule belongs. Representations give 

information about the affect of symmetry operations not only on the atom positions, but 

also on other attributes of a molecule, such as molecular orbitals or vibrational modes. 

The representations that are possible for any of these additional properties are fixed by 

the point group, and we can define the complete set of representations for a point group 

prior to examining a particular molecule. The main aim of this chapter is to explore the 

definition and origins of representations in molecular symmetry. To do this we will also 

delve a little deeper into the idea of a basis in symmetry analysis. 

4.2 Symmetry Representations and Characters 

4.2.1 Water, H,O, C2, 

In Chapters 1-3, the symmetry operations which lead to identical atomic arrangements 

for a wide range of point groups have been discussed. In a few cases, additional objects 

such as vectors on particular atom centres were used to highlight the differences between 

Molecular Symmetry David J. Willock 
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Figure 4.1. ‘Bow! of Fruit, Violin and Bottle’ by Picasso. Reproduced with permission. 

Copyright Succession Picasso/DACS 2008. 

symmetry operations. For example, H,O belongs to the point group C3, with the sym- 

metry elements illustrated in Figure 4.2. Based on the atom positions alone we cannot 

tell the difference between the C, rotation and the o, reflection, because either opera- 

tion swaps the positions of the hydrogen atoms. To distinguish the operations requires 

additional information. 
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Figure 4.2 The symmetry elements of the Cy, point group of H,O. 

Figure 4.3 shows the effect of each Cy, operation on the O(2p,) orbital, demonstrat- 

ing that the orbital is reversed by C, but not by o,; so, although the atom positions are 

indistinguishable after these operations, the O(2p,) orbital is transformed differently. 

Problem 4.1: Figure 4.3 also contains pictures of the O(2s), O(2p,) and O(2p,) orbitals; 

insert the result of each symmetry operation for these in the appropriate position. The 

paper models of H,O (from Appendix 1) may be useful for this exercise, as they can 

be used to find the effect of each symmetry operation on the x, y and z vectors at the O 

atom. A completed version of the figure is included at the end of the chapter. 

It is clear that each of the p-orbitals on the O atom in the H,O example responds dif- 

ferently to the symmetry operations: sometimes they are unaffected and sometimes they 

are reversed. Rather than draw out each orbital every time, it is possible to use a sim- 

ple numerical scheme to represent the effect of each symmetry operation on each orbital. 

These numbers are known as the characters of the operation in the representation. 

The characters give numerical factors relating each transformed orbital to its original 

form. If it is unchanged by the operation we write | and if it is reversed we write —1. 

For example, from Figure 4.3 it can be seen that the O(2p,) orbital is unaltered by the 

operations E and o,; so, under these operations, O(2p,) has character 1. For the operations 

C, and a,’ the phase of the O(2p,) orbital is reversed, giving a character of —1. 

The characters for all of the orbitals shown in Figure 4.3 are given in Table 4.1. The 

O(2s) and O(2p.) orbitals transform identically under all four of the C,, operations, and so 

Table 4.1 is overly long. In fact, the position of the O atom itself transforms in the same 

way: it is unaffected by all symmetry operations and so would have a character of | in 

each column. Since many properties of the molecule may transform in similar ways, we 

introduce labels for each of the possible standard sets of characters. These standard sets 

of characters are referred to as irreducible representations for the group and the pattern of 

characters for each of them forms the body of the character tables in Appendix 12. 
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O(2s) orbital 

~o-—} Oe 
Se 

O(2p,) orbital (in plane of molecule) 

AG AG) 

se) ee! 
O(2p,) orbital (perpendicular to plane of molecule) 

Figure 4.3 The transformations of the valence atomic orbitals on O in H,O under the 
operations of the C,, point group for the reader to complete. Note that the 2p, and 2p, 
orbitals are viewed looking down onto the molecular plane so that the atoms and principal 
axis are in the plane of the page. Flying wedges for the O—H bonds in the diagrams for the 
2s and 2p, orbitals indicate the view is down the principal axis with the H atoms above the 
plane of the paper. The symmetry elements for each operation can be seen in Figure 4.2. A 
completed table is included at the end of the chapter as Figure 4.12. 
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Table 4.1 Character representations for the 
transformations of the 2s and 2p orbitals in Cy. 

Gy E CG, o(XZ) —9,'(YZ) | Orbital 

1 1 ] ] 2s 
1 1 1 ] 2p, 
a 1 =" 2px 
| ="|I —1 ] 2Dy, 

The character table required for the 2s and 2p orbitals of O in C3, water is shown in 
Table 4.2. The representation for O(2s) and O(2p.) is A; this label is used in most point 

groups to indicate the representation for features that are unaffected by any operation. For 

the O(2p,) orbital, the C, rotation and the o,’ reflection operation each cause a change in 

sign, leading to characters of —1. This orbital is accordingly assigned a different label: B,. 

The O(2p,) orbital also changes sign with the C, rotation, but is inverted by o, while o,’ 

leaves it unchanged. The set of characters appropriate to O(2p,) are generally referred to 

as the B, representation. | 

Table 4.2 Labelled representations for orbital 
transformations of the 2s and 2p orbitals on O in 
the C,, molecule H,O. Note that 2s and 2p, have 

the same A, representation. 

o(XZ) Ou 4) Orbital 

A, IES, PN}; 

B, 2px 

B, 
2py 

4.2.2 Direct Products 

There is a further representation possible in the C,, group, but none of the orbitals con- 

sidered so far transform in the correct way for us to have found it. To see why a new 

representation is required we will consider the O(d,,) orbital. Looking back at the p-orbital 

results, it can be seen that orbitals O(2p,) and O(2p,) transform in the same way as vectors 

along the corresponding Cartesian axes. The d,, orbital can also be constructed from the 

corresponding function: xy. Figure 4.4a shows a plan view of the orbital with the positive 

and negative phase lobes shaded white and black respectively; Figure 4.4b shows the same 

orbital plotted using a computer simulation package in three dimensions. The phase of the 

orbital depends on which quadrant of the XY plane we look at: when both x and y of a point 

are positive, the function xy will be positive; when either is negative, xy is negative; and 

when both are negative, the product xy will give a positive value. Also, along the X-axis, 

the y-coordinate of any point is zero and so xy = 0; similarly, along the Y-axis x = 0 and 

so xy = 0. This is just the behaviour pattern of the orbital, and so we have constructed the 

d,, orbital from the product xy. 
So will O(d,,) in H,O have transformation characters that follow the product of the 

characters for O(p,) and O(p,)? This idea is tested in Table 4.3, which shows the characters 

we have already obtained for the x and y functions and the result when they are multiplied 
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—xX, +y 

(a) : POUL, 
so xy negative ent 

so xy positive 

— ——_— = 

+x, -y 

so xy negative 

l 

I 
—Xx, -y ] 

so xy positive ; 

Figure 4.4 The dy, orbital. (a) Sketch looking down the Z-axis showing how the function xy 

gives the phase of the orbital in the four quadrants of the XY plane; xy is also zero along each 

axis (along X, y = 0; along Y, x = 0) and so the nodes along the X and Y axes are also given. 

(b) A calculated iso-density surface. 

Table 4.3. Transformation of d,, in Coy, from the direct 

product of characters for the x and y functions. 

CG a(XZ) a,/(YZ) | Orbital 

Ay 1 =i 2p, 
=| =| 1 2p, 

1 =F ={ 3d, 

together to calculate the characters of the xy function. To show that these characters are 

correct for O(d,,) we can look at the affect of each symmetry operation on the O(d,,) orbital 

itself and obtain the characters independently. The result of each operation is illustrated in 

Figure 4.5, which shows that the values obtained using the product approach in Table 4.3 

are indeed correct. The phase pattern of the orbital is not changed by the E or C, operations, 

Figure 4.5 The effect of C,, operations on a dy, orbital placed on the O atom of H,O. The 

flying wedge representation indicates the molecule is viewed down the C, axis. 
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but is reversed by either o, or o,’. The new set of characters is given the label A, and this 
completes the standard set of representations for the C,, point group. 

The use of a character by character multiplication of two representations to obtain the 
characters for a new function is referred to as a direct product. In this example we have 
found that the representation for the d,, function is the direct product of the representations 
for p, and p,. This is another property of groups that we will make use of in future chapters; 
in general, the direct product of any two representations in a group can be expressed as a 
sum of representations from the group. In this case we have found that 

B, xX B, =A, (4.1) 

so the resulting summation requires only a single term, A. We will find in Chapter 6 that 
direct products of this type are useful in calculating the properties of integrals required 
by spectroscopic selection rules. In that chapter we will meet more complex examples of 
direct products. 

Problem 4.2: The O(p.) orbital in the H,O example has a representation A;. Show that 

this implies that the O(d,,) and O(d,.) orbitals will have the same representation as the 

O(p,) and O(p,) functions respectively. Check your solutions by drawing diagrams for 

the result of each Cj, operation with the O(d,,) and O(d,.) orbitals. 

Problem 4.3: By considering the direct products show that: 

1. The direct product of A; with any representation in C,, simply gives the representa- 

tion back again. 

2. The direct products A, x B, = B, and A, x B, = B, are correct in C),. 

We will look more closely at the origin of the representation labels in Section 4.11, but 

first we have to consider the types of character that can occur and their relationship to the 

more complete matrix representations for point group operations. 

4.3 Multiplication Tables for Character Representations 

To be valid representations, the sets of numbers we have produced for the A,,A,B, and B; 

representations must each act in the same way as the symmetry operations themselves. For 

example, we found in Chapter 2 that C,o, = o,’ for the C, point group of H,O. In the A, 

representation, both C, and o, have character 1 and so the character product is 1, which 

is also the character of o,’. This must hold for the whole multiplication table between the 

symmetry operators. For A,, the table is quite trivial, since it contains only 1s. However, 

the other representations must also give consistent multiplication tables. 

The C, group multiplication table was constructed from the group operations in 

Problem 2.1 and the result is reproduced in Table 4.4a. The same table using the B, rep- 

resentation characters is given in Table 4.4b. In this representation version, the operation 

symbols for the row and column headings are replaced by the corresponding B, characters. 

The result of a product of operations then becomes a simple numerical multiplication of 
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Table 4.4. The complete multiplication table for (a) the 

C,, group operations and (b) the B, representation. 

(a) 
Gx EB GC, a, (XZ) eZ) 

E E G oy ay! 

Sc Cc E Gy. Wy 4 

Oy (xZ) (ok, On E G 

G, (vz) |) “eg. Oy C, E 

(b) 
Cy Breall 1 1 —1 

=| —1 1 = | 

—1 =| | —] 1 

the characters, with the only possible outcomes in this example being +1. To check that 

the table is consistent with the results of the full operations, you should confirm that the 

numerical value obtained in each case in Table 4.4b is the correct value for the operation 

in the equivalent position in Table 4.4a. 

Problem 4.4: Write out multiplication tables for the A, and B, representations in Cry 

and confirm that they are also consistent with Table 4.4a. 

4.4 Matrices and Symmetry Operations 

Although the simple single number representations for a group, such as the example of 

B, in C,, do reproduce the multiplication table, we have lost some information by using 

characters as representations. From the B, character multiplication table it is not possible 

to say whether C,o, = 0,’ or C3, since Table 4.4b shows that both possibilities have 

character —1. 

We have met this type of problem before: in Section 2.3.4, the equivalences of some 

improper rotations could not be understood from the atom positions alone. In the example 

of the planar molecule BF;, the results of C;' and S;' appeared to be equivalent if only 

the atom positions are considered. However, the two operations do give different results 

for objects not in the molecular plane. To show this difference we added a basis vector 

perpendicular to the plane of the molecule on one atom. After C;' the orientation of this 

vector remained the same as the starting point, but after $,' it was reversed. 

In Table 4.4b there is not enough information in the single representation to distinguish 

the operations. Effectively, by only looking at the B, representation we are concentrating 

only on the 2p, orbital. If we were to consider the 2p, and 2p, orbitals at the same time, 

then Table 4.3 shows we would get the results E (1, 1), C) (—1,—1), o, (1, —1) and 

o,’ (—1, 1), where the characters are written as (2p,, 2p,). Now the pairs of characters 

are different and the use of multiple basis vectors at the same time allows the four C,, 

operations to be differentiated. 
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So, if the results of operations on sets of basis vectors are considered collectively, we 

gain more information than when they are considered in isolation. This approach is formal- 

ized in the matrix representation of symmetry operations. The matrices are mathematical 

objects that contain enough information to carry out the symmetry operations on a whole 
set of basis vectors simultaneously. 

To show how the matrix approach works, we will go over the (2p,, 2p,) example more 

formally. We have used an equivalent set of basis vectors for the water problem before. 

Figure 2.2 shows a set of vectors labelled x,y and z on the O atom of H,O along with the 

transformation that occurs after each of the symmetry operations in C), is applied. These 

vectors have exactly the same symmetry properties as the p-orbital set on the O atom, since 

they are their functional forms. The paper models from Appendix | can also be used to 

follow the transformations discussed with this basis. If we consider the x and y vectors 

together, the C, transformation can be written as, 

ie) a) 
since the C) rotation reverses both x and y. In this equation, we have brought together the 

transformation of x and y into a single relation by writing them in column vector form. To 

obtain characters, we would now identify factors which relate the rotated vectors to the 

original set, i.e. how to write the new vectors in terms of the old. In this case both vectors 

are reversed, so the result in Equation (4.2) could be written, 

eae aura: (4.3) 

y =0xx+-I1xy 

where the prime has been added to indicate the vectors after transformation. This way 

of writing the equations is more complete than Equation (4.2) because it allows for the 

possibility that the new vectors are composed of any combination of the original ones; the 

zero terms are included to show that x’ has no component along the old y-direction and y’ 

no component along the old x. 

Formulae such as Equation (4.3) are written using matrix notation by making the square 

block of the coefficients from the right-hand side into a matrix and writing the co-ordinates 

as column vectors: 

Xe —l1 0 % 

bedeily pee Ges 

The matrix given in Equation (4.4) is another possible way to write the C, axis operation. 

It actually contains the characters for both the B, and B, representations we identified 

earlier for the 2p, and 2p, orbitals. The manipulation of matrices and vectors is covered in 

Appendix 5, where the rules for multiplying the matrix into the vector on the right-hand 

side of Equation (4.4) are discussed. 

A matrix representation for each symmetry operation in C;, can now be written down 

and the results checked by constructing a multiplication table from the matrices rather than 

the characters. 
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Problem 4.5: Show that the matrix representations for the operations in C,, acting on 

the x, y basis centred on the O atom of H,O are; 

1 0 =a as 2 at 9) eG 8) 63) ef) 
It can be seen straight away from the solution of Problem 4.5 that there is no ambiguity in 

the matrix representation: the four matrices are different from one another, and so we can 

tell the operations apart. 

For the matrices to be proper representations of the operations their products should 

reproduce the group multiplication table (Table 4.4a). The product of two operations, such 

as C)o,, means take the original vectors, transform by the vertical reflection and then apply 

a C) rotation to this intermediate result. We could carry this out in two steps: 

mo Nes oa = Laat) Lame eS: 

Eee Nye) ENO Me Wy ey 

a Xe —1 0 x —x x 

(") (;) ( 0 “) i) ( y (;) 

Here, a double prime is used to indicate the vectors after both transformations. In the last 

step we have found that the two operations result in x being reversed and y returning to 

its original state. This is just the same as the single o,’ reflection, and so the equivalence 

C,0, = 0,’ is shown without the earlier confusion. 

Appendix 5 shows how the multiplication rules for matrices and vectors can be extended 

to arrive at this conclusion more rapidly. We can write the C,o, product directly as 

E=ca()=G 6 YO IQ y y 0 —1 Q -l iy 0 ] yy, 

The product matrix is the same as that for o,’ from Problem 4.5, confirming the result we 

found by applying the matrices sequentially: C,o, = o,’. 

Table 4.5 gives the full multiplication table for C,, using this matrix representation. 

Because the product of any operation with E is the same as the operation alone, the first row 

and first column of this table are simply the matrix representations for the four operations. 

Using these as references it is easy to check that the other six matrix products correspond 

exactly with the result for the operations given in Table 4.4a. 

This section has shown that the matrix representation, used with a suitable set of basis 

vectors, can remove the difficulty of finding exactly which operation results from a given 

product in the same way as the introduction of basis vectors showed the difference between 

apparently equivalent operations. In fact, the matrix representation allows us to follow 

exactly what happens to a given basis under a symmetry transformation. In the next 

few sections we will explore the use of matrices in symmetry more fully and define the 

relationship between the matrix and simpler character representations. 
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Table 4.5. The multiplication table for the C,, point group using the 
matrix representation of operators for the x and y basis. 

Problem 4.6: By forming matrix products, check each of the entries in Table 4.5 and 

confirm that each product gives the matrix for the operation expected from Table 4.4a. 

4.5 Diagonal and Off-Diagonal Matrix Elements 

4.5.1 Ammonia, NHs, C;, 

In the H,O example the basis is set up to represent the 2p, and 2p, orbitals on the oxygen 

atom. The operations on this basis only ever give a character of +1 or —1 for each orbital, 

because the orbitals are either unaffected or have the phase pattern reversed. We now move 

on to examples in which the basis set is changed in more complex ways. 

Figure 4.6 shows the basis of N—H bond vectors in the ammonia molecule, which 

belongs to the point group C;,. These vectors give the direction of movement for the 

H atoms in vibrational modes of the molecule involving N—H stretching motion. From the 

figure we can see that the C;' operation causes each basis vector to move to the position of 

one of its neighbours. In Figure 4.6, the basis vectors after the transformation have been 

marked with a prime, and comparing these to the original set we can write, 

D—D; 

Da after C;' (4.8) 

by = 03 

Cs 
A 

is 

¢ 
bit 

Figure 4.6 The ammonia molecule (point group C3) with a basis of N—H bonds marked. 
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The result is that b,’ has replaced the original b,, while b,’ is in the position previously 

occupied by b, and b,’ has the original b; position and direction. 

This is more complex than in the H,O example, since vectors are now interchanged. 

This makes it difficult to write down exactly what the operation does in terms of single 

characters, because any of the new functions could be composed from any of the original 

set. The matrix representation allows for this: each new vector is written as a linear com- 

bination of the original basis vectors. Figure 4.6 can be used to construct the relationships 

required by inspection: 

bi =0xb)+1xb;+0x Dd, 

b= 0% bj + OX by 1 xD; (4.9) 

b= 1% bp 0 xb, 4-0 x Ds 

The column vector notation can now be used to combine all three equations into one matrix 

equation. 

The position of an element in the column is set by the starting point of the initial basis 

vectors. After a transformation, the positions in the column are filled by working out the 

vector that is now aligned with the reference for each element, i.e. we write the column 

vector 
vector now along original b, 

vector now along original b, (4.10) 

vector now along original b; 

So, the observed transformation of the basis for the Ce operation in Figure 4.6 would be 

written 

b, b; 
bh] > 1d, (4.11) 
b; bo 

In this formula, an arrow, rather than an equals sign, is used to show that a transformation 

has taken place. The primes for the transformed column vector can be dropped because the 

position of the b-vectors in the column indicates the transformation that has taken place. 

The representation of the symmetry operation by a matrix allows all three of the trans- 

formation equations in Equation (4.9) to be written down in one go based on the column 

vector notation: 
OsnO db) o/b; b; 
se Voyet) (gas | ean by (4.12) 
OC TLEI Nae by 

Comparing this transformation matrix with the earlier H,O examples, we see that the O 

atom orbital cases contained only elements on the diagonal positions in the square matrix, 

whereas the diagonal elements here are all zero. In the H,O case, basis vectors were 

either left alone or reversed, and in Section 4.2 these results were given characters +1 

and —I1 respectively. In this example, the transformation results in each of the basis vec- 

tors moving to the position of one of the others, and so they completely lose their original 

‘character’. Correspondingly, the diagonal element in the matrix for the vector will be 

zero. 
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In general, the diagonal terms in a transformation matrix tell us how much of each 

original basis function is retained. The off-diagonal terms give additional information on 

exactly how to build the new functions from the old. 

So, the character for a particular operation and basis function is just the associated diag- 

onal element in the matrix. In the NH; example, the C,' rotation would have a character 

of 0 for each of the basis vectors. 

A zero character for a basis function simply implies that it has been transformed into 

some combination of the other members of the basis set. 

4.6 The Trace of a Matrix as the Character for an Operation 

The character we assign for a particular basis vector has been linked to the diagonal ele- 

ment in the operation’s matrix. This can be generalized to say that the sum of the diagonal 

elements of a matrix representing an operation on a particular basis is the sum of the 

characters for the basis under that operation. In matrix algebra, the sum of the diagonal 

elements of a matrix A is known as the trace of the matrix, Tr(A), i.e. 

Qi, Aya a3 3 

A=]@ 1 G2 43 Tr(A) = Yo ay = au + ax + ay; (4.13) 

43; 432 33 i=l 

This example shows the trace for a 3 x 3 matrix, but the idea of taking the sum of diagonal 

terms can be extended to matrices of any order. 

Using the trace rather than picking out particular elements of the matrix allows a single 

character to be assigned for the result of the operation on the entire set of basis func- 

tions being considered. This will turn out to be a useful tactic in dealing with symmetry 

problems, since it allows whole sets of basis vectors to be considered together. 

For example, the ammonia molecule belongs to the point group C3, and so, in addition to 

the principal axis, there are three vertical mirror planes. The result of a reflection operation 

is shown in Figure 4.7; to see the how the transformation affects the basis set, one of the 

three degenerate mirror planes has been chosen as an example. The mirror contains the 

b; vector, and so the superscript C has been added to the mirror plane symbol following 

the convention employed in earlier chapters. 

Figure 4.7 The effect of the oy“ plane reflection on the basis of N—H bonds on ammonia. 
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From Figure 4.7, the reflection has swapped b, and b, but has left b; unchanged. The 

matrix corresponding to this operation can be deduced from this result: 

b, 0) ] 0 b, by 

Oe Dy. ls 1 OO bs) = Dj (4.14) 

bs 0) 0 My AN: b; 

The other two vertical mirror planes have similar matrices: 

b, 1 0 0 b, b, 

Sb | =| 0 Oa belle 
b; (Cee el ete b; b, 

(4.15) 
b, O° OT b, b; 

oe by = 0 1 by = by 

b, iets b; b, 

Here, o,* and o,® are the planes containing vectors b; and b, respectively in the original 

configuration. In all three cases the matrices swap two of the basis vectors and leave one 

unchanged. If we add up the diagonal elements of each matrix we find that the trace is | in 

each case, and so the total character of the three N—H bonds under any of the reflection 

operations is |. The three matrices differ in which of the diagonal elements is 1, but the 

trace has the same value in each case; this is a consequence of the equivalence of the three 

mirror planes and means that only one heading, 30,, needs to appear in the C3, character 

table for all three mirror planes (see Appendix 12). 

Problem 4.7: Using the basis of N—H bonds defined in Figure 4.6, write down the 

matrix representation for a C;’ operation. Take the trace of this matrix and, hence, 

show that C,° and C;' operations have the same character for this basis. 

4.7 Noninteger Characters 

The examples up to now have been chosen so that each operation causes a given basis 
vector to be unaffected, reversed or transformed into a different basis function. In the 
analysis, we have shown that the matrix representation allows us to describe each of these 
transformations leading to the characters of +1, —1 and 0 respectively. However, if the 
basis vectors are not arranged to fit nicely with the symmetry elements, then the character 
assignment may not be so straightforward. 

4.7.1 Boron Trifluoride, BF;, D3, 

For example, Figure 4.8 shows the result of the C;' operation on a p,(B) orbital in the 
BF; molecule. The orbital is no longer aligned with either the X or Y direction after the 
operation, so assigning its character requires some additional attention. The new orbital 
is in between the X and Y axes and so could also be constructed by some mixture of the 
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Figure 4.8 The effect of a C,' rotation on the p, orbital of B in BF;. Note that the principal 
C; axis is pointing into the page, along the negative Z-direction. 

original p, and p, orbitals. The character is just the amount of the original p,(B) orbital 

present in such a linear combination. 

The proportions of p, and p, orbitals can be calculated using trigonometry, and the 

process is easier to follow if the orbitals themselves are replaced with vectors to represent 

their functional forms, as shown in Figure 4.9a. The direction of a vector in this diagram 

F, F, F, 

Figure 4.9 A simplified representation showing the result of a rotation through 6° about the 

Z axis on (a) a p, orbital and (b) a py orbital (--+: the global axes; —>: the vectors repre- 

senting p-orbitals; >: vector components). Note that the Z-axis is perpendicular to the page 

(c) The general definitions of sine and cosine functions based on a right-angle triangle with 

the hypotenuse (hyp) opposite the right angle, and adjacent (adj) and opposite (opp) sides 

defined with respect to @. (d) A graphical illustration of the sum —(1/2) p,—( US IN ee (0 

using the same shading of phases as Figure 4.8. 
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should be thought of as the orientation of the orbital and the length of the vector as its size. 

The original p, and p, vectors are aligned with their respective axes. Figure 4.9a shows 

that, for an arbitrary rotation of the p, orbital by an angle 6, the new vector p,’ will not 

usually be perfectly aligned with either the original p, or p, vectors. In fact, only 6 = 0 

or 180° will align p,’ with p, to give characters of +1 and —1, and only 6 = 90° or 270° 

will align p,’ with p,, either giving a character of 0. For any other values of,6 we can use a 

linear combination of the original basis functions to produce the new p-orbital orientation. 

In the BF; example, 9 = 120°, but for now we will continue with the general case and 

insert this angle for 0 at the end. 

The general formula for the linear combination can be written: 

joe — Grails + C.2Py (4.16) 

where c,, and c,. control the amount of the original p, and p, orbitals used in the trans- 

formed function and are coefficients we have to find. In this case c,, is the character for 

the p, orbital, and the diagram shows that it represents the component of p,’ along the p, 

direction. This limits the range of characters that are possible for the p, orbital to between 

—1 and +1, because the component of a vector can never be greater than its magnitude. 

The length of the vectors representing p, and p, are the same and are not affected by the 

rotation. With this in mind we can use the trigonometry of the diagram in Figure 4.9a to 

find the coeffiecients. Figure 4.9c is a reminder of the general definitions of the sine and 

cosine functions; applying these to the right-angle triangle with 6 marked in Figure 4.9a 

gives 

X X . CQ y 

cos(@) = x IPxl 20, eel Sin()= ue | i (4.17) 
Ip.'| Ip.’| 

Here, we have used the convention that vertical lines mean the length or magnitude of a 

vector. Equation (4.16) now becomes 

Px = p, cos(@) —p, sin( 4) (4.18) 

Here the minus sign indicates that the opposite edge of the triangle in Figure 4.9a is in 
the opposite direction to p,, the c,. coefficient in the linear combination must take this into 
account. Similar considerations using Figure 4.9b show that the p,’ vector can be written as 

Py’ = pr sin(@) +p, cos( 4) (4.19) 

Equations (4.18) and (4.19) can be combined into a single form using matrix algebra: 

Pp; \.. (cos(@) —sin(@)\ fp, 
@ es cos(@) or (4.20) 

For the particular example of the p-orbitals on B in BF;, @ is 120°: so: 

(P _ (cos(120) —sin(120)\ /p,\ _ 1/2 —/3/2 Ds 

py'/ — \sin(120) —-cos(120) } \p,} — \./3/2 =1/2 py (4.21) 
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So, this rotation gives a p,’-orbital which can also be generated as the sum: 

ae 2 Py 5 Pr (4.22) 

which contains a contribution from the original p, orbital that is half the size and opposite 

in phase to the original. This equation is illustrated graphically in Figure 4.9d. 

Now, using the rule that the character of the transformation is the diagonal element of 

the matrix, we find a character of cos( 120) = —1/2 for each orbital. From the trace of 

the matrix in Equation (4.21) we obtain a combined character for the p, and p, orbitals 

of 2 cos( 120) = —1. 

Problem 4.8: The BF, molecule also contains three vertical mirror planes, each con- 

taining a B—F bond. Using the geometry of Figure 4.8, draw the result of the reflection 

through the mirror planes containing each of the B—F bonds. From your diagrams, 

write down the matrices for the effect on the p, and p, orbitals. Hence, derive the reflec- 

tion matrices for this basis and show that the three matrices have the same trace and so 

these equivalent operations have the same the total character. 

4.8 Reducible Representations 

A set of basis functions set up to analyze a problem will usually contain more objects than 

any of the standard representations listed in the character tables. The standard character 

sets are referred to as irreducible representations; this is because they describe the simplest 

symmetry behaviour of orbitals or vibrations in the point group. In general, it is easy to set 

up a basis to describe the problem in hand and work out a representation for the set as a 

whole by summing the characters of each basis function. Then we need to break down this 

reducible representation into a set of standard irreducible representations. 

4.8.1 Water, H,0, Ge 

In the H,O example used in Section 4.3, for instance, the x and y vectors used as a basis on 

the O atom would have a matrix representation for C,, point group operations as follows: 

i) @ —l1 0O eC ; fal O 
E=(, '} Ea(5 “i a. (x2) = (4 *) BAN 4 

(4.23) 

ilirace:: 2 —2 0 0) 

We have now seen that the trace of each of these matrices is the summed characters for 

the basis vectors under their respective operations. In fact, it would be possible to write 

down the sum of characters for the basis without knowing the entire matrix representation. 

For any basis, we could just consider each vector in turn and ask the question: “How 

much of the original basis vector remains after the transformation?’ Under the identity 

E, the x and y vectors are both unchanged, giving a total character of 2, the C, rotation 
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reverses both vectors, a character of —2, and each of the reflections leaves the vector it 

contains unchanged but reverses the other one, | — | = 0. So we have found the trace of 

the matrices by inspection. This is the approach we will adopt in the remaining chapters 

of this book. What we need to do now is show that the trace is sufficient to identify the 

appropriate irreducible representations. 

For the C,, point group, we have already found all the standard labels, and the characters 

for the irreducible representations are given in the character table shown in Table 4.6. None 

of these standard representations have a 2 under the E column; in fact, they all have 1. This 

is not a surprise, since we have already shown that x belongs to the B; representation and 

y to the B, representation by inspecting each basis vector in turn in Section 4.2. So the 

totalled character for the basis obtained above could be reduced to those for B,; and Bo, 1.e. 

the characters for the individual vectors. Table 4.7 shows that the sum of the characters 

B, + B, agrees with the totals laid out in Equation (4.23). The reducible representation is 

usually given the symbol I’, and so in this case we have shown that 

In general, it will be possible to simplify the total representation for a basis of our choos- 

ing into a sum of the standard irreducible representations from the point group character 

table. The reducible and irreducible representations are linked by the fact that the sum of 

characters of the irreducible representations for a basis must give the characters of their 

reducible representation: 

i a= ye nixiC C) (4.25) 

U 

Here, we use the symbol x for a character, the subscripts [ and i indicating that the 
character is taken from the reducible representation and the ith irreducible representation 
respectively, for a given class of operations C. This formula simply says that the diagonal 

Table 4.6 The C,, character table. 

Cry le G (hy Gy. 

A, 1 1 1 i Z ore are as 
Az 1 1 —1 —1 R, Xy 

B, 1 —1 1 —1 x, Ry XZ 

By 1 =] =| ] VAI || Wee 

Table 4.7. The sum of the characters 

from the B, and By representations in 

the Cy point group. 

Gx IE G on Ou 

B, 1 =| | =| 
By | =| =| 1 
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elements of the matrices for the full basis set must sum to the same value as those of the set 

of irreducible representations from which it is composed. The value of n; in Equation (4.25) 

is set to the number of times we have to use irreducible representation i in forming the 

reducible representation I’. 

In Chapter 5 we will exploit this relationship between the reducible and irreducible 

representations further and find a general formula for obtaining the n; values that control 

the composition of I’ for any basis and any point group. This chapter finishes with a few 

more examples of reducible and irreducible representations. 

4.9 Classes of Operations 

In the previous sections we have seen how the matrix representation allows us to follow 

the transformation of a set of basis vectors under the operations of a point group. We have 

also linked the characters that were introduced at the start of this chapter to the diagonal 

elements of the matrix for a given operation. A particular basis vector can have characters 

ranging from —1 to +1, corresponding to it being reversed by the operation or left alone, 

and any value in between. Fractional values correspond to the transformed basis function 

retaining part of their original form when we think about building the new vector from a 

linear combination of the initial basis set. 

The character tables listed in Appendix 12 give standard sets of these characters for the 

irreducible representations of each point group. We saw in Chapter 3 that the top row of 

the character table gives a list of the unique operations in the point group. In many cases 

the operation symbol is preceded by a number which gives the number of equivalent oper- 

ations of that type. These equivalent sets of operations are referred to as classes of opera- 

tions, and now we can see how the same character arises for any operation within a class. 

4.9.1  [Ni(CN)4}*", Dan 

Table 4.8 shows the standard character table for the D4, point group. The top row of the 

character table is the list of the operations valid in this point group. This list always begins 

with the identity operator, and in groups like D,,, which contains a rotational subgroup, the 

rotational operations are given next. The principal axis is the C, axis and the corresponding 

Table 4.8 The D4, character table. 

KG) G WG DE" / DSi, On Dory 20¢ 

1 ] 1 ] 1 i i il Nee oN ness 

1 —] = 1 1 1 —1 —1 Re 

= 1 —1 1 —1 1 | —1 x? — y? 

1 

OO 

=o 

ha |] Sa Sa hb aa aS aS 

— = 
| — | i | — | —e 

| — 

oO 
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column heading is 2C,. The number 2 signifies that the group contains two C, rotations, 

which have the same character for all irreducible Repteseaitalipiie: These are the C,' and 

C,° operations. The C,° operation can also be written C,' and this is the heading of the 

next column. 

A typical molecule belonging to the D4, point group is a square planar transition metal 

complex such as [Ni(CN),]’~, and the two rotations are illustrated in Figure 4.10. The 

figure also shows the result of the rotation using a basis consisting of x, y and z vectors on 

the central Ni atom of the complex. Note that this set of basis vectors is initially aligned 

with the corresponding reference directions, X, Y and Z, but that after the operations the 

reference axes remain fixed and only the basis vectors have rotated. This emphasizes 

that the symmetry elements are not shifted during nee? Meer ge From inspec- 

tion of Figure 4.10, the transformation matrices for the G; and Gy operations in this 

basis are 

0 0 CR Gi 6) 
C= l1-0 0 and C,=|{-1 0 0 (4.26) 

0 1 Ga) A 

Although the C,' and C,’ matrices have different off-diagonal elements, the trace of each 

is 1. In fact, the trace of the matrices for these operations would be equal irrespective of 

the basis chosen. A character table only lists the characters for the standard sets of rep- 

resentations, and so the C,' and C,° operations can be put together in a single column. 

In this way the columns of the character tables may contain more than one operation 

and the operations contained in any column are linked by having the same character. The 

columns of the character table contain classes of operations which may be sets of one or 

more actual operations. This example shows that, in D4,, a 90° rotation clockwise (c.4) 

Figure 4.10 The D,, complex [Ni(CN)4)~, showing a basis of x, y, z functions representative 
of the p-orbitals on Ni’*. The effects on the basis of (a) the C,' operation and (b) the C3 
operation are illustrated. 
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is equivalent to a 90° rotation anticlockwise (C,°). However, as noted earlier, the C,’ 

operation is listed separately, as the first C, rotation. The corresponding matrix is 

C= (00: SG (4.27) 

which means that the 180° rotation reverses x and y but leaves z unchanged and so has a 

total character of —1 for this basis. 

As a further example, we can see from Table 4.8 that the two vertical reflection planes 

in D4, are in the same class. Figure 4.11 shows the two o, planes, which are labelled o,* 

and o,®; from the diagram, we can write down the operation matrices as 

Let. On PG Seon’ 

Ce | 0 at ands 03 = (404 (1220 (4.28) 

OE laa OF Oru 

In this case, either x or y is reversed by the reflection and the other two vectors are left 

unchanged, so the trace of the matrix is | in both cases. This allows the two mirror planes 

to be placed in the same class and gives the 20, heading in the point group table. 

AZ 

Figure 4.11 The D4, complex [Ni(CN)4/~, showing a basis of x, y, Z functions representative 

of the p-orbitals on Ni?*. The effects on the basis of (a) the o,* operation and (b) the o,° 

operation are illustrated. 

Problem 4.9: Draw sketches similar to Figures 4.10 and 4.11 showing the symmetry 

elements for each of the remaining D,, operations listed as classes in Table 4.8. From 

your sketches, write down a matrix representation for each operation and then from the 

matrices: 

1. Confirm that each of the 2C,’, 2C,”, 2,, 20, and 20, classes contain two operations 

which in each case have the same character. 

2. Show that the traces of the set of matrices give the character set shown in Table 4.9. 
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Table 4.9 The reducible character representation for the x, y, z basis on the central Ni 

atom of the D4, complex as [Ni(CN) 4). 

Dial 2G Cert ome ONS, koe Does 2oa | 

oes 1h =a 1 3 et 1 Tea 

\ 

Problem 4.10: Using the matrices derived for the D4, point group in Problem 4.9 check 

that the matrix product method gives the correct result for the following compound 

operations: 

(i) Cy' Cy; ii) Cp/(X)o4(AZ); Gili) Ss°oy; (iv) iS4". 
Here A indicates the line X + Y, i.e. the line in the XY plane at 45° to both the X and 

Y axes. 

To do this, first refer to the basis defined in Figure 4.10 and write down the result 

you expect in terms of the operations themselves, then compare the result of the matrix 

product with the corresponding single operation matrix. 

4.10 Degenerate Irreducible Representations 

In the characters listed for the x, y, z basis in Table 4.9 there is an entry of 3 under the 

identity operation E. The identity operation leaves all basis vectors unchanged, so this just 

shows that there are three basis vectors. However, in the standard character table for the 

D4, point group (Table 4.8) there are no entries with 3 under the identity class column, so 

this must be another example of a reducible representation. If we wish to assign standard 

labels from the character table to the x, y, z vectors, then we must simplify the situation by 

breaking the basis down into smaller sets in the hope of identifying which standard labels 

to use. 

The complete set of matrices we have built up for the D4, operations with the central 

atom x, y, z basis of Figures 4.10 and 4.11 show that it is possible to interchange x and 

y, but z is always left alone or reversed. For example, the C,' and C,* operations have the 

matrices shown in Equation (4.26) and these lead to the transformations (x + —y, y > x) 

and (x — y, y + —x) respectively. This linking of the x and y basis vectors can also 

be seen from the diagonal elements of the matrices. Equation (4.28) also shows that the 

vertical mirror plane o,* has a —1 contribution to the trace of the matrix from the y basis 

function and a +1 from x, while o,® has a —1 contribution from x and —1 from y. If 

we tried to separate x from y the two operations will no longer fall into the same class, 

since the individual basis functions have different characters for a particular mirror plane. 

Only for the two basis functions together is it valid to have a single class for the vertical 

reflections, since the total character for x and y is then zero for both mirror planes. The 

character for z is the same in both matrices, and so it would not matter if we treated this 
basis vector separately. 

In fact, the x and y functions are never interchanged with z by any of the operations in 
D4, and so we can split them off together and consider z on its own. For example, the C,! 
operation would become 
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x 0 -1 O Ke 0 -1 x 

Cy Vee i 0 0 VO y (4.29) 

(OO men Z Zz NX 

This splitting down of the matrix from a3 x 3 form toa2 x 2+ 1 x I has reduced the 

size of the problem. The full set of 3 x 3 matrices for each of the operations in D4, could 

be made simpler in this way, but we cannot break down the relationship between x and y 

any further, since some of the operations interchange them. 

So the 2 x 2 + 1 x I representations are the irreducible representations we seek. In 

the D4, character table (Table 4.8) there are two irreducible representations with 2 under 

the identity class, E, and E,. The pair of p, and p, orbitals are reversed by the inver- 

sion operation, and so the character under the i column in the table has to be —2; this 

suggests that we should assign the irreducible representation £, to the x, y part of our 

basis. 

The x, y, z basis centred on the point of the group (here occupied by the Ni atom) is 

quite a common problem, and so the right-hand column of the character table indicates 

which representation to use. In this case (x, y) occurs in the right-hand end of the E, row, 

indicating that we have correctly assigned these two vectors as contained, together, within 

the E, representation. 

What the EF, representation assignment is showing is that the x and y basis vectors on 

the central atom of a Dy, complex have identical environments. This has implications for 

any molecular objects that have the same character set. For example, it tells us that the p, 

and p, orbitals will form a degenerate pair in this molecular geometry, i.e. any molecular 

orbital containing p, will have an identical partner involving p, and the two molecular 

orbitals will have the same energy. 

Table 4.9 gives the total characters for x,y and z, the set of which has been labelled 

I’; this is the convention for any reducible representation. We have assigned x, y to the 

E, irreducible representation. The £,, characters give the x, y contribution to the character 

for the reducible x, y, z basis, so the z characters are simply the difference between the 

values for x, y, z and those for E, as set out in Table 4.10. We could also have obtained this 

result from the matrices for the x, y, z basis directly; however, this type of manipulation 

using only the characters of operations becomes easier as the basis set size increases. 

Table 4.10 gives a difference with character | under the E operation, since it represents a 

single object, the z basis vector. If we compare the whole character set with the standards 

Table 4.10 Subtraction of the E, irreducible representation characters from T for the x, y, z 

basis on the central Ni atom of the D4, complex as [Ni(CN) 4). 

D4, E KG: CG, 265 Gs / 254 On PA, 204 

Ir 3 1! —] —] —] —3 — 1 1 1 XSEVaZ 

ES 2 O —2 O 0 —2 0 2 O 0 (x, y) 

T—E&, 1 1 1 —1 —1 1 1 1 1 1 Za 
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listed in Table 4.8, then an exact match occurs with the Az, irreducible representation and, 

indeed, the right-hand column contains the z symbol. 

The reduction we have deduced can be summarized by the equation 

re EE ate An (4.30) 

which simply means that the reducible representation I for the x, y, z basis set can be 

reduced to E, + A>, and that none of the other standard irreducible representations listed 

in Table 4.8 is relevant for this basis. 

Problem 4.11: The 2 x 2 matrices for the D4, operations on the irreducible x, y basis 

are simply the upper left section of the 3 x 3 matrices from Problem 4.9. Use these 

matrices to confirm that the x, y basis has the same characters as the standard EF, in 

Table 4.8 for all classes of operations. 

4.10.1 Ammonia, NH3, C3, 

Another example of degeneracy is found in the C;, example of the N—H bonds of ammo- 

nia that we used in Sections 4.5-4.8. From Figure 4.7, the vertical reflection plane a 

swaps the N—H bond basis vectors b, and b, but leaves b; unchanged. Similar diagrams 

can be drawn for reflections through the equivalent planes o,* and o,*. Each of the planes 

contains one of the N—H bonds and causes the other two to be swapped over. The matrices 

corresponding to these operations can be deduced from this result: 

ke 8) 08 Or Oo 1 0 

Oe 0) 2On it ioe Rie BL) rao eae (4.31) 

OF aia Oo OS OS I 

In the standard C3, character table shown in Table 4.11 there is only the single heading 

30, for reflections, i.e. the three planes belong to the same class. If we add up the diagonal 

elements of each matrix we find that the trace is 1 in each case, and so the total character 

of the three N—H bonds under any of the reflection operations is 1, consistent with this 

grouping of the mirror planes into a single class. In this case, the equivalent operations 

arise from the fact that three mirror planes are drawn in three identical environments; each 

contains one N—H bond and the associated operation causes the other two N—H bonds to 

be swapped over. The off-diagonal elements in the matrices allow each of the N—H basis 

Table 4.11 The C,, character table. 

C3y 

x2 ale Ve, 7 

A) 

(x? — y?, xy), (xz, yz) 
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vectors to visit any of the three positions in the original configuration of the molecule. This 
means that the three basis vectors are indistinguishable; anything we can say about b, will 
also be true of b, and b;. Also, if we use one N—H bond in a basis then we must include 
all three; a basis of just b) and b; would involve transformations that would require us to 
include b, also. 

We cannot tell the three N—H bonds apart in the molecule, and so observables to do 
with the individual bonds or H atoms, such as the proton NMR shifts, will be identical. 
However, we show below that the vibrations due to N—H stretching motions need not 
form three degenerate modes. 

Problem 4.12: Using the basis of N—H bonds defined in Figure 4.6, show that the 

reducible representation for the three N—H bond vectors b,, b) and b, is as shown in 

Table 4.12. 

Table 4.12 The reducible 

representation for the basis 
of N—H bonds defined for 

the C3, molecule ammonia 

in Figure 4.6. 

There is no need to use full matrix expressions for the operators in this case. Consider 

an example operation from each class and arrive at the character using the rules: 

1. if a basis vector is unchanged, add 1; 

2. if a basis vector is swapped with another member of the basis, add 0. 

In this case, no basis vectors which stay in position are ever reversed. 

The reducible representation for the three N—H bonds is shown in Table 4.12. The 

irreducible representations from which this is composed must be from the standard set of 

Table 4.11. To obtain the correct match we can use the property given by Equation (4.25): 

that for each class of operations the appropriate standard irreducible characters sum to give 

that of the reducible representation. 

In relatively simple cases, such as the three N—H bonds in ammonia, we can deduce 

the values of n; that govern how many of each irreducible representation are present by 

inspection: 

1. Under the identity operation E, I has a total character 3. There are several combinations 

of the irreducible representations that could give this character; for example: 

3A, or 3A, or A, + E... (4.32) 

However, the sum must work with the same values of n; for all classes of operation. 
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2. Under the 2C, class we have yp = 0, and so the only combinations which satisfy both 

the E and 2C; classes are 

A, +E and A,+E (4.33) 

To distinguish between these we can use the final character. 

3. Under 30, we have found 1, and so only A, + £ will satisfy all three of the symmetry 

classes simultaneously. 

We have shown that, for the three basis vectors from Figure 4.6: 

DP =A;-2 (4.34) 

So, although the three basis functions in this problem are equivalent, this result means 

that they can be used to construct three irreducible representations, only two of which are 

degenerate (in the E representation). 

We will see later that the irreducible representations found here provide descriptions of 

the molecular vibrations that involve the N—H stretching modes of the ammonia molecule. 

The vibration of the molecule is a collective motion of all the atoms that make it up, and 

these irreducible representations are describing these collective motions. The vibrations 

fall into three patterns: two are a doubly degenerate pair (E) and the third a separate single 

vibration (A,). 

Before we deal with drawing out these molecular vibrations in Chapter 6, we will 

look at a more general way to decompose reducible representations into their irreducible 

constituents in Chapter 5. 

Problem 4.13: Using the basis of N—H bonds defined in Figure 4.6, write down the 

matrix representation for Ce and. Ce operations. Take the trace of these matrices and, 

hence, show that the two operations have the same character for this basis. This confirms 

that the two C; rotations belong to the same class. 

4.11 The Labelling of Irreducible Representations 

In this section we make some general comments on the labels used for irreducible repre- 

sentations. The labelling scheme now commonly adopted for irreducible representations 

was put forward by R.S. Mulliken. We have met some of the symbols used in the preceding 

sections, but have just taken their assignment directly from the relevant character tables. 

However, Mulliken did have a logical structure to the assignment of the labels, and an 

overview of this may help in understanding the behaviour of the irreducible representations 

in later chapters. Below is a simple summary of the meaning of the symbols used: 

1. All representations for single objects (nondegenerate) are designated either A or B. 

Doubly degenerate representations are given the symbol E and triply degenerate 

representations T. 

2. A representations have character | with respect to the principal axis primary operation, 

while B representations have character —1 for the principal axis. 
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3. Subscripts 1 and 2 are attached to A and B labels to indicate those that are symmetric 

(subscript 1) and antisymmetric (subscript 2) with respect to a C, axis perpendicular to 

the principal axis or, if the axis is absent, to a vertical mirror plane. Symmetric means a 

character +1 and antisymmetric a character of —1. 

4. In groups with a centre of inversion i, the subscripts ‘g’ and ‘u’ are added to symbols of 

representations which are symmetric and antisymmetric respectively for the inversion 

operation. These symbols come from the German words gerade meaning ‘even’ and 

ungerade meaning ‘odd’. 

5. Primes and double primes are attached to letters to indicate those that are symmetric 

and antisymmetric with respect to o;, in groups that do not contain i. 

Points 4 and 5 come about from the idea of subgroups. For example, in Chapter 2, 

the multiplication table for ethane in the staggered conformation was considered, which 

we now recognize as an example in the Ds, point group. The D3, multiplication table 

(Table 2.4) shows that the identity operator and the simple rotations could be taken for a 

group in their own right, because no other operations result from their products. This type 

of subgroup, in this case D,, is called a pure rotational group, since it contains only simple 

rotations. 

Looking along the row of the multiplication table for the inversion centre, it is also clear 

that all the other members of the full D3, point group occur as a product of one of the 

simple rotational operations and the inversion centre. In the D3, character table there are 

three different possibilities for the characters under the pure rotation subgroup: labels A,, 

A, and E. For each of these there are then two possibilities for the behaviour of an object 

under the inversion operation: 

1. If the object has even symmetry under 7, then the product of each member of the sub- 

group with 7 will lead to the same character as the subgroup member itself. These are 

the even irreducible representations given the additional subscript ‘g’. For the gerade 

representations in D3, the first three characters for the rotational subgroup are simply 

repeated under the operations generated by their product with i, so that the E, 2C3, 3C; 

characters are repeated under 7, 2S, and 304. 

2. If an object has ungerade symmetry with respect to inversion, then it will have a neg- 

ative character in the i column and the operations generated from combinations of the 

rotational subgroup members and i will have the opposite sign to that of the simple 

rotation involved. These are the representations labelled ‘u’. 

In groups without an inversion centre but containing a horizontal mirror plane, a similar 

argument can be put forward based on the combination of the pure rotational subgroup 

with the o;, plane. 

The points listed above still do not give a complete set of explanations for Mulliken’s 

symbols. For example, the numerical subscripts used on E and T representations are not 

covered. However, these require mathematical explanations that are beyond the scope of 

this introductory text, and so we shall regard them simply as standard labels. 
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4.12 Summary 

In this chapter, we have covered the idea of symmetry representations in terms of 

characters and matrices. The highlights are: 

1. A representation of a set of symmetry operations allows the operations to be manipu- 

lated algebraically. The representation must give the same multiplication table as the 

operations themselves. 

2. Matrices allow the effect of operations on sets of basis vectors to be written down 

algebraically and show exactly how basis vectors are transformed under each operation. 

3. The character for a basis function under a given operation is a single number that 

describes how much of the original function remains after the transformation. For a 

single basis function it will be in the range —1 to +1. 

4. Total characters for sets of basis functions are the trace of the corresponding matrix. 

5. Character tables for the point groups give the sets of characters for the simplest 

representations in the group. These are the irreducible representations. 

6. For a basis set of our choosing we will usually arrive at a set of characters that are not 

present in the character table. This is a reducible representation given the symbol I, 

and it will always be possible to express [’ as a sum of the irreducible representations. 

7. Any reducible representation can be constructed as a linear sum of the standard irre- 

ducible representations. For the correct linear combination, the sum of the characters 

for the irreducible representations in each class will give the reducible character, i.e. 

xr(C)= D> nix(C) 
U 

where the symbol x is used for a character and the subscripts and i signify the 
reducible representation and the ith irreducible representation for a given class C respec- 
tively. n; is a positive integer (which can be zero) that gives the number of times the 
irreducible representation i is present in the reducible representation I. 

4.13 Completed Tables 

Figure 4.12 gives the completed table for Problem 4.1. 

4.14 Self-Test Questions 

1. Derive a reducible representation for the four CN bonds in the D4, complex [Ni(CN),]? 
pictured in Figure 4.11. By comparing your results with possible combinations of the 
irreducible representations given in Table 4.8 identify the set that are equivalent to your 
reducible representation. 

2. Write out matrices for all the operations in C,, for the basis of N—H bonds shown in 
Figures 4.6 and 4.7. Using your matrices, derive a multiplication table for the operations 
in the C3, point group and check your results against operations carried out on a model 
of the molecule. Remember that the symmetry elements are fixed in space and do not 
move when operations are carried out. 
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O(2s) orbital 

ae) 
O(2p,) orbital (in plane of molecule) 

Bite tie) A 
AE) AL ALE) AR 

O (2p,) orbital (in plane of molecule) 

P2792 92K) oe 

O(2p,) orbital (perpendicular to plane of molecule) 

te ee) 
$- @)- A-e) 

Figure 4.12 A completed version of the transformations of the valence AOs on O in H,O 
under the operations of the Cy point group for Problem 4.1. 

| t 

Further Reading 

The original paper by R.S. Mulliken including his assignment of irreducible representation 

labels: 
Mulliken RS (1933) Physical Review 43: 279. 
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Reducible and Irreducible 

Representations 

5.1 Introduction 

Figure 5.1 shows the fundamental vibrations of the sound board of a guitar. The motions 

of the sound board as it vibrates have been resolved using a laser interferometer to give a 

contour plot of the distortions of the surface caught at an instant in time. These vibrational 

motions are sustained because they correspond to the resonant frequencies of the sound 

board. For the listener, the correct resonance of the instrument gives the guitar the mixture 

of tones and overtones that distinguishes it from other instruments. 

From a symmetry point of view the sound board of the guitar would be classified as 

belonging to the point group C,,: there is a C, axis which runs along the line defined by 

the finger board (vertical in the images of Figure 5.1), a vertical mirror plane perpendicular 

to the board o, and the plane of the board itself o,’. However, the shape of the distortion 

due to the vibrations does not follow all of the symmetry operations in the point group 

in the same way. For example, the second vibration in Figure 5.1 involves the left- and 

right-hand sides of the sound board moving in opposite directions at a given instant: if the 

left-hand side is moving toward the viewer, then the right-hand side will be moving away. 

This is why the centre of the sound board, along the line of the C, axis, stays stationary 

at all times: it is a node in this vibrational mode. If the distortion were taken into account, 

both of the vertical mirror planes would no longer be symmetry elements; but rather than 

assign a new point group to the distortion, we will use the irreducible representations of 

the point group to describe it. 

The characters under the operations of the C,, point group for the Figure 5.1b vibration 

are set out in Figure 5.1g. This shows that the C, rotation leaves the distortion of the 

sound board apparently unchanged, giving character 1, while for a reflection through either 

mirror plane the motion of the vibrating sound board would appear to be reversed. This 

is equivalent to multiplying the original distortions by —1, and so this is the character 

for the o, and o,’ operations. Along with the character of 1 under the identity operation, 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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(a) (b) (c) 

Figure 5.1 The fundamental modes of a guitar sound board photographed using laser inter- 
ferometry. As the instrument vibrates, the distortions of the board perpendicular to its surface 
effectively amplify the sound of the vibrating string. The contour patterns are caused by the 
differing path lengths of the laser light reflected from the sound board. The frequency of vibra- 
tion increases from (a) to (f). (g) Assignment of characters to mode (b) using the C2, point 
group operations; the diagrams to the right give the shape of the distortion of the sound board 
looking down the C, axis. (Source: These images were kindly provided by Dr Bernard E. 
Richardson, School of Physics, Cardiff University.) 

this character set is identical to the standard irreducible representation A); the vibration of 

Figure 5.1b is an A, vibration. 

To generate the pictures of the guitar in Figure 5.1, the board was excited in a precise 

way to allow only a single resonant vibration in each case. Any vibration of the board while 
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the guitar is being played will be a mixture of all the possible resonances. For a given note 
the resonance for that particular pitch is dominant, but the others are still present to a 
smaller extent. The motion of the sound board while the guitar is played will be much 
more complex than the fundamental modes shown in Figure 5.1. However, any motion 
can be built up from a combination of the fundamental modes, and so the identification of 
these modes, particularly their symmetry properties, is important in the vibrational analysis 

of any object. Our main concern will be molecular vibrations for which the fundamental 

modes can be described in terms of atomic displacements. 

In Section 4.8 we found how the matrix representation of a set of basis vector transfor- 

mations for a point group can sometimes be made simpler. For example, the 2 x 2 matrix 

representation for x, y at O in H,O can be reduced to two ‘1 x 1’ matrices (i.e. a simple 

number for each operation) for x and y. This process of simplifying a representation to 

a set of irreducible standard representations is central to the application of symmetry in 

chemistry and corresponds to finding the fundamental modes of vibration that underlie 

molecular motion. 

In this chapter we will use examples from the vibrational modes of H,O and NH3, 

amongst others. The other application area discussed in this book is the derivation of 

molecular orbitals (MOs) from sets of atomic orbitals (AOs). To illustrate the application 

of the reduction formula in this area we turn to the AOs of transition metal centres in com- 

plexes of various geometries, to illustrate the link between the reducible and irreducible 

representations. The goal is to be able to work out the appropriate set of irreducible repre- 

sentations for any basis without resorting to the matrix representation. We saw at the end of 

Chapter 4 that the reduction process is actually possible using only the characters for each 

class of operations. These are straightforward to define by inspection of a suitable basis, 

as we show in the example of Section 5.2. The reduction process in Chapter 4 was carried 

out by inspection, but a more solid link between reducible and irreducible representations 

is provided by the reduction formula. This will be derived in Section 5.5 from the general 

properties of the character representation in any point group presented in Section 5.4. The 

formula’s application is then outlined using examples in Sections 5.6—5.9. Here, we will 

find that the irreducible representations give the fundamental symmetry labels for vibra- 

tional modes or AOs/MOs. The identification of the pattern formed by each mode in terms 

of atomic motion for vibrations, and the construction of MOs from linear combinations of 

AOs, will be the subject of Chapters 6 and 7. 

Problem 5.1: Confirm that the vibrations in Figure 5.1a and c can be assigned to the By 

irreducible representation. 

5.2 Irreducible Representations and Molecular Vibrations 

In Chapter 1, the number of degrees of freedom for a molecule was calculated by con- 

sidering the motion of each atom in the X,Y and Z directions. Each atom can move in 

three dimensions, and so a molecule containing N atoms has 3N degrees of freedom. The 

discussion of the guitar vibrations above shows that the actual motion of the atoms in a 
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vibration is likely to involve the whole molecule rather than just particular atoms. Each of 

these fundamental collective motions can be assigned an irreducible representation from 

the molecular point group. The motion of symmetry-related atoms will respond to the 

group operations following the corresponding characters. 

Figure 5.2 shows an H,O molecule with a basis of nine vectors included to allow us to 

describe the motion of each atom. These basis vectors are labelled x, y, z with the appropri- 

ate atom label as a subscript and are initially aligned with the reference axis system, X, Y, Z. 

(a) 

Figure 5.2 (a) Basis vectors for describing the motion of atoms in H,O along the X, Y and Z 
directions and the effect of a C,' rotation. (b) A combination of H, and H; movements along 

X that has a character of 1 for C,'. (c) Combinations of H, and Hy, in the molecular plane 

can be obtained which have character 1 for all operations in C,, and so are compliant with 

an A, vibration. The reference axis system is shown in the foreground of each diagram and is 
orientated using the convention that the Z-direction aligns with the principal symmetry axis. 
Note that the reference axis does not move during the rotation, all symmetry elements are 
referred to this axis system. 

The direction of motion of an atom as part of a vibration is usually restricted by the 

symmetry properties of the irreducible representation. For example, imagine that the O 

atom in Figure 5.2a is moving in the X or Y directions along the basis vectors xo Or yo 

respectively. The basis vectors shown in the figure are the same as those defined for the 

paper models in Appendix 1, and so it may help to have those to hand here. We can ask 

would this type of motion be compliant with a molecular vibration belonging to the A, 

representation? The A, representation has character | for all four of the symmetry elements 

of the C,, group. However, Figure 5.2a shows that a rotation around C, would alter the 

directions Xo and yo to —Xo and —yo and so motion of O in these directions would appear 

reversed, giving a character of —1. This means that motion of the O atom in the xo or yo 

directions is not possible in an ‘A, vibration’. 

Movement along Zo is unaltered by any of the operators in the group, and so an A, 

vibration can have the O atom moving only in the Z-direction. Note also that the right-hand 
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column of the C,, character table in Appendix 12 contains the symbol z against A,, but x 

and y are elsewhere. 

For H, and H, we have to consider the movement of both atoms together, because they 

are linked by the symmetry operations of the C,, point group. What if H, were to move 

out of the molecular plane upward in the direction of the basis vector xy, in the starting 

configuration of Figure 5.2? The C; rotation would swap H, with H, and its motion would 

then be downward, following X},- In the molecular vibration, we could have a character of 

| for the C, rotation if H, were also moving in the —X direction in the original orientation 

of the molecule; then, the motion as a whole would appear unchanged. This arrangement 

of H, and H; is shown in Figure 5.2b. However, we need characters of 1 for all symmetry 

operations for an A, vibration, and the Figure 5.2b combination has —1 for both o,(XZ) and 

o,'(YZ) and so contravenes the restrictions of the irreducible representation. It is actually a 

similar motion to the sound board in Figure 5.1b and g. So, motion of the H atoms out of 

the molecular plane is not possible for an A, vibration. 

Now let us take H; moving in the YZ plane so that it moves toward the O atom, i.e. 

it has motion in the (Y, Z) direction (Figure 5.2c). In this case the C, axis leaves the 

motion unchanged only if H, moves in the (—Y, Z) direction. This is also the set of H 

movements required by o,(XZ) and o,'(YZ) for a character of 1. Provided the two H atoms 

move together in this way, this would be consistent with the A, irreducible representation. 

The molecular structure suggests that one possible A; vibration consists of both H atoms 

moving toward the O atom in unison and the O atom only moving only along the Z-axis. 

This would cause the O—H bonds to be compressed and stretched in phase with one 

another, a vibration commonly referred to as the symmetric stretch mode (Figure 5.3a). 

a) (b) ( ° 6 

an De ae PN H, 

Hy Hy Hy 
Symmetric stretch mode v (A,) Antisymmetric stretch mode v (B) 

of H,O of H,O 

Figure 5.3. Vibrational O—H stretching modes of H,O which fall into the (a) A, representa- 

tions and (b) B, representation. 

The molecule as a whole never actually moves during a vibration, so the motion of the 

H atoms and the O atom must be balanced with no net centre of mass motion. As the 

H atoms move toward the O atom, the O moves down the principal axis in such a way 

that the centre of mass of the molecule is held fixed. This is shown by the arrangement of 

the arrows in Figure 5.3a, with a shorter arrow on O due to its higher mass. 

Problem 5.2: The antisymmetric stretch mode of H,O is shown in Figure 5.3b. 

Show that this conforms to the B, irreducible representation. You should use the 

same molecular orientation as Figure 5.2a. The Cx, character table can be found in 

Appendix 12. 
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5.3 Finding Reducible Representations 

In the previous section we deduced irreducible representation labels for two of the vibra- 

tional modes of H,O by inspecting the molecular geometry and thinking about the possible 

movements of the atoms. This is easy enough for simple molecules but the representation 

for a particular atomic motion may not be so straightforward for more,complex cases. 

Also, if there are many vibrational modes, it is unlikely that we would find them all by 

inspection. What is required is a general method to find the representations for all possible 

molecular vibrations. The approach we will use is first to identify all the irreducible rep- 

resentations that are present for a given basis and then interpret each of them in terms of 

combinations of the basis functions. The rest of this chapter is dedicated to the first part of 

this process and the second part is the subject of Chapter 6. 

Staying with the vibrational analysis problem, for a molecule with N atoms we would 

expect 3N degrees of freedom, since each atom can move in three dimensions. For non- 

linear molecules, such as H,O, the molecule as a whole will have six degrees of freedom: 

three translations and three rotations. This means that we would expect 3N — 6 vibrations. 

Each of these vibrations will be a collective motion, potentially involving all of the atoms 

in the molecule. 

However, we can derive the irreducible representations before the patterns of atomic 

motion in the vibrational modes are actually identified. This is done by first imagining that 

each individual atom is independent of the others. For example, Figure 5.2a shows a basis 

of nine vectors for the atoms in the H,O molecule. This gives us the expected number of 

degrees of freedom, since 3N = 9 for H,O. If we were to set up a matrix representation 

for, say, the C, operation in the C,, group for this basis, then we would have to use the 

9 x 9 matrix shown in Figure 5.4a. 

We saw in Figure 5.2 that because the H atoms are swapped over by the C} rotation 

so are their basis vectors. This shows up in the matrix representation as the two sets of 

nonzero off-diagonal elements in the lines for H,; and H). These are off-diagonal elements 

because the axes are moved to different atom positions by the rotation. Application of 

the matrix to the nine basis vectors is shown in Figure 5.3b, confirming that it correctly 

reproduces the operation. 

The character for the C)' operation using this basis is given by trace of the matrix, i.e. 

the sum of the diagonal terms, which is —1. This is the last time we will resort to the matrix 

representation, because this example establishes the following simple rule: 

If an operation moves an atom to a symmetry-equivalent position, then all basis vectors 

to do with that atom will give rise to only off-diagonal elements in the transformation 

matrix and so contribute zero to the character for the operation. 

The o,(XZ) operation also swaps the H atoms, and so we need only consider the basis 

vectors on the O atom to derive the total character for this operation. This plane causes the 

transformation 
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Figure 5.4 A full matrix for the C, rotation of HO shown in Figure 5.2 accounting for the 
transformation of all nine basis vectors. 

Xo > Xo character= 1 

vi Ve character = —1 

character= 1 (S21) 
LA ae A) = 2 

otal 

So the total character for all nine basis vectors under the o,(XZ) operation is 1. For the 

o,'(YZ), which is the plane of the molecule, none of the atoms are moved and we find the 

following characters: 

Ay > ch. SS — 1 Xp > —Xp, ch. = —1 Ky, > =Xp,, Che = —1 

Yu, > Ya,,ch.= 1 Yo—> yo,ch= 1 Yn > Yay che= 1 ©) 

li > fy CD. = 1 Lg gy Ch Zn, > Za, ch = 1 

otal — sel otal tO wae Total H,= 1 

Grand Total= 3 

Because y and z basis vectors are in the plane, they are unaffected by the operation 

and contribute 6 to the total character for the basis. However, all the x basis vectors are 

reversed, contributing —3. So the total character for the basis is 6 — 3 = 3. 

Finally, the E operator will leave all the vectors in the basis unchanged and so has 

character 9. The E operation always does nothing to the basis vectors, and so the E column 

in a character table gives the number of basis objects in the representation. The characters 

for the nine basis vectors are summarized in Table 5.1. In the C,, group there are no 
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Table 5.1. The character set for the repre- 

sentation of the nine basis vectors used to 

represent the degrees of freedom of H,O 

defined by the basis of Figure 5.2. 

Coy | E C, a, (XZ) ay (YZ) 

Ir | 3) =| ] 3 \ 

degenerate representations and so, clearly, this representation using three vectors per atom 

is reducible. 

In the leftmost column of Table 5.1 the symbol I (Greek capital Gamma) is used for 

the representation summed over all basis vectors. I" is the general symbol employed for a 

reducible representation. 

In Chapter 4 we found all the irreducible representations for the C,, point group, the 

possible labels are A,, A>, B; and B,. Each of these has a character of 1 under the FE oper- 

ation column of the character table, and so each irreducible representation deals with only 

one object. 

T must contain the two fundamental vibrations we found in Section 5.2 and seven other 

motions of the molecule. Several different motions can have the same symmetry label, 

provided each conforms to the character set for that irreducible representation. However, 

it is a daunting task to try to find all nine molecular motions by inspection. In the next 

two sections we derive an equation that automatically pulls out the irreducible representa- 

tions from a reducible set of characters. We will then apply the formula to this particular 

case of H,O. 

5.4 Properties of Point Groups and Irreducible Representations 

To obtain the reduction formula we first need to look at the general properties of point 

groups a little more closely by defining a few general properties and some useful terms. 

Property 1: The set of allowed operations in a point group are split into classes 

of the same type. The operations in a class have the same character for all irreducible 

representations, and so only one heading entry occurs for each class in a character table. 

The number of operations in a given class is denoted g,. 

The idea of classes was introduced in Section 4.9, where we found that related opera- 

tions in a group can have the same trace in the matrix representation. If this is the case for 

any choice of basis, then the same character will always arise whichever operation from 

the class is selected, and so only a single column is required in the character table. 

To illustrate further how operations can fall into the same class, we will look at the 

D3, point group, for which cyclopropane (Figure 5.5) serves as an example molecule. 

Figure 5.5 also shows some example symmetry elements from D3,. The principal C; axis is 

perpendicular to the plane of the three C atoms and passes through the centre of the triangle 

they define. This axis leads to two operations, C;' and C;’. We can use as a basis the 
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Figure 5.5 Cyclopropane as an example molecule belonging to the D3, point group. 

positions of the six H atoms to think about the transformations caused by these operations. 

For C;' and C,”, each of the hydrogen atoms would move as follows: 

Gee yr, Hy i He A and? pss Be Se eS, 

Cee H, — H;,H, — H,,H; — H, and H, — Hy,H; — Hy,H, — Hs 

Since all the atoms are relocated, both of these operations have a total character of 0 and 

so may be grouped into the same class. This class consists of two symmetry operations, 

and so g. = 2 giving a column heading of 2C; in the D3, character table (Appendix 12). 

In this case, both symmetry operations arise from a single symmetry element. 

If we consider the vertical mirror plane shown in Figure 5.5, there is a single associated 

operation: 

Onn: H, => El — H;, H; — H, and H, —- H,, H; => Hg, He a H; 

In this case there are two H atoms left unaffected (the two in the mirror plane), and so 

the total character would be 2. However, the plane shown is only one choice of three 

possibilities; there is also a o, plane containing H, and H; and one containing H; and 

Hg. The three planes are indistinguishable from one another and so give the same total 

character in our basis, or any other that we could choose. Accordingly, the o, planes form 

a class with g, = 3. This is a case in which a class consists of three symmetry operations 

from three indistinguishable symmetry elements. 

The grouping of symmetry operations into classes must imply that the character is the 

same for all operations in the class irrespective of the basis used. For example, from the D3, 

example, rotation around the horizontal C, axis shown in Figure 5.5 gives the following 

result: 

C, = Hy = HH, — Hen H, and HH, —.H,,H; — H,H.— HH: 
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which again has a total character of 0, and so we may consider grouping the C, and C; 

operations. However, selecting the C atom positions as a basis, the two operations give 

different characters: 

C;': Cy —> Cy,C, > C3,C; > C, _ total character 0 

C2: C, > Cy, > Cy,C > C total character 0" 

C!: C eG, ~ G,C; > C, total character 1 

So, while the C; operations still give the same character as each other, for the C,' rotation 

the C atom on the axis is unaffected and we find a total character of 1. This means that the 

C, operation cannot be in the same class as C; and Cr- 

The C, axis is one of a set of three (each passes through a C atom and the centre of 

the opposite C—C bond). Rotation around any of these axes leaves one C unaffected but 

swaps around all the H atoms; so, in either basis set, any of the three axes gives the same 

total character. The three C, axes form another class within the D, point group; so, in 

the corresponding character table heading we see 3C, and would assign g. = 3 when 

considering this class. 

In Section 5.5 it will be shown that any set of characters we obtain for a basis of our 

choice can be reduced to a summation of the standard irreducible representations from the 

character tables. This means that a sufficient condition for putting a given set of operations 

in the same class is that they have the same character for all irreducible representations. 

In general, operations that can be collected together fall into one of the two types we have 

discussed here. 

The first type has operations that are linked to the same symmetry element, such as 

C,” and CF However, operations linked to the same element will not always fall into the 

same class; for example, in Ds, the C,' and C,° rotations associated with the principal 

axis are in the same class, but the C,° operation is listed separately in the character table 

as C,. The second types of operation that fall into the same class are those for sets of 

symmetry-equivalent elements, such as the three equivalent mirror planes in D3,. 

It is also possible that symmetry-equivalent elements each give more than one operation 

to a class. For example, in the octahedral point group O, there are four equivalent C; axes, 

each of which contributes two operations which are in the same class (C ;' and C,”), and so 

the heading in the character table reads 8C;. One of these C; axes is marked on the paper 

model of an octahedron from Appendix 4. 

Problem 5.3: Show that each operation below belongs to a class with g, > | and assign 

the value of g.. Illustrate your answer with sketches of the result for each operation and 

derive the relevant total characters using the suggested structure and basis: 

1. oy, in the D3, point group, using a basis of the hydrogen atoms in staggered ethane 

(e.g. see Figure 2.5c). 

2. $,', in the D,, point group, using a basis of x, y, z vectors on the central atom of a 

square planar complex (e.g. see Figure 4.10); 

3. all C;' and C;” operations in the 7, point group, using as a basis the C—H bond 
vectors in methane (see also the model tetrahedron from Appendix 3). 
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Property 2: The order of the group is the total number of operations that are in the 
group and is given the symbol h. 

Finding the order of a point group is simply a matter of totalling the number of unique 
operations. In the previous section we considered the C,, point group with H,O as an 
example; this contains the operations E, C), 0,(XZ) and o,/(YZ), and so h = 4. 

In Chapter 4 we also considered the D4, group, which has the following operations: 

Ee Nor (Grn 203; 26 il Sun On; Dow 264 

Notice that in this list the equivalences discussed in Chapters 1 and 2 have been accounted 
for so that only unique operations are listed. Multiple operations in the same class are 
written as a single entry in the list; the number of operations within each class g. is noted 
by a number in front of the symbol for the operation. This is the list that appears at the top 

of the character table in Appendix 12. 

Counting up the total number of operations shows that the order of the D4, group is 

16. From a standard character table, the value of h can be calculated from the total number 

of operations given in the column headings. Mathematically, this summation process can 

be written: 

ee ee (5.3) 
(E, 

where the C under the summation sign indicates that the sum is over all classes of oper- 

ations within the point group. Equation (5.3) means that the order of a group is the sum 

of the number of operations in each class. This makes calculating the order of the group 

when we have the point group table a simple matter of adding the numbers at the head of 

each column. For example, the character table for the D3, group in Appendix 12 has the 

class headings E, 2C3, o,, 2S; and 30,, making the g, values 1, 2, 1, 2 and 3 respectively. 

Summing these gives the order of the group, h = 9. 

Property 3: The number of irreducible representations in a point group is equal to the 

number of classes, 1.e. all character tables are square. 

Property 3 can be confirmed by inspecting any of the character tables in Appendix 12. 

For example, the D;, point group for molecules such as ethane in the staggered conforma- 

tion has the headings 

E, 2C3, 3C), t, 286, 304 

so that there are six classes. 

The irreducible representations listed for D3, are 

Ais; Ad, DA Weve re Ey 

so there are six of these as well. 
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Property 4: The sum of squares of the characters of an irreducible representation for 

all operations is equal to the order of the group. Since g. gives the number of operations 

in a class, this can be written 

Walt Oras (5.4) 
jG \ 

where x;,(C) is the character for the ith representation and Cth class of operators. 

To illustrate Property 4, we begin with the C>, point group; since there are no equivalent 

operations, all the values of g. are | and the totals are straightforward to calculate: 

for A: Sela Gr = ei Tee Pe eee oc 

fords: Dadxm(OQP = 1x + 1x? + ix(-1? + 1x(-1P=4 
for By: ba co 

for By: ¥ gl x06 OOF 

from class: 

hoe 2 35 i(iby 42 see 2 oa Sir 

le? 42 ib<(ibF = ise( Se 4p loci 

SS Se SS as 

Ig C; o,( XZ) yOu) 

(3-3) 

The order of the group is 4, and so this property is confirmed for all of the irreducible 

representations of the C,, point group. 

For groups with equivalent sets of operations the corresponding values of g. will be 

greater than |. For example, in the tetrahedral point group, 7,, the character table in 

Appendix 12 states that there is one operation in the identity class, 8 operations in the 

C; class, 3 in the C, and so on. If we sum the number of operations in all classes we obtain 

the order of the group, i.e.: 

h=)°g.=1+8+3+6+6=24 (5.6) 
Cc 

Taking the irreducible representations A, and E as examples, the sums for Property 4 are 

forA2: > gel xa,(C) = 1x1? + 8x i? + 3x1? +6x(—1)?+6x(=—1)= 24 . 

forE: > g.[xe(C) = 1x2? +8x(—1)?+ 3x22 4+ 6x0 + 6x0? =24 - 
from class : 

—__——— —S—’ SS ————’ —_—— 

E 8C; 3C) 6S4 604 

(5:7) 

In both cases the sum gives the order of the group, and so Property 4 is confirmed again. 
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Property 5: Any two different irreducible representations are orthogonal, this can be 

summarized by the formula 

YsxlOxQ=0 iff (5.8) 
G 

where x,;(C) and x;(C) are the characters for the ith and jth representations for the Cth 

class of operators. 

To demonstrate the orthogonality property we will use some more examples from the 

character tables in Appendix 12. The C, point group has no equivalent operations, so 

all four classes have g. = 1. Applying Equation (5.8) to the B, and A, representations, 

we find 

Dc XBg(C) Xay(C) = Ix1lxl + 1x(-1)x1 +1 x 1x(-—1) + 1x(-1) x(-1) 
é 

= 1 _ 1 — 1 + 1 = () 

from class : 
—— — — —_ —— ee 

E Co i Op 

(6.9) 

For point groups with multiple operations in the same class the values of g, may be 
greater than 1. Using an example from the irreducible representations A; and E’ in D3: 

¥ BeXAg(C)xXe(C) = 1x1x2 +2x1x(-1) + 3x(-1)x0 
G@ 

from class : 
ee ————— _——— es 

E 2C; 3Cy 

= xix 2 45 2 Ix(-1) + 3xEl) x0 =0 

(5.10) a ee ee 

On 283 BGe 

We have seen some instances in which the characters are noninteger and so some addi- 

tional care is required with the summations of Properties 4 and 5. For example, in Ds,, the 

doubly degenerate representations have characters expressed as cosines of angles for the 

operations involving the principal axis. The summation for the orthogonality condition of 

the irreducible representations E,’ and E,’ then becomes 

S- gexey(C) xXey(C) = 4 + 8.c08( 72) cos( 144) +8 cos( 144) cos( 72) +4 

Z + 8 cos( 72) cos( 144) +8 cos( 144) cos( 72) 

= 8 + 32 cos( 72) cos( 144) 

=8—32x 7 

=; (5.11) 

where angles are given in degrees. 
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Property 4 for these two representations can also be demonstrated: 

for E,’ Deal Xe,(C) P = 4 + 8cos"( 72) +8 cos?( 144) +4 + 8 cos?(72) +8 cos*(144) 

if = 8 + 16cos*(72) +16 cos*(144) 

= 8 + 16[ cos?(72) + cos*(144) ] ' (5,12) 

<j 
=8+16x; 

= 2() 

for Ey’ Y> glxey(C)? = 4 + 8.0c0s"( 144) +8 cos’( 72) +4 + 8 cos?( 144) +8 cos’( 72) 
Ceclasses =e ee 16 x 3 (55113) 

4 

iA) 

The order of the Ds, point group is 20 and so Equation (5.8) is seen to hold. 

The orthogonality condition is linked to the idea that the fundamental vibrations of a 

molecule should be independent of one another. If the fundamental vibrations each have 

the symmetry properties of one or other of the irreducible representations, then those 

which belong to different representations will naturally be orthogonal. Looking back at 

Figure 5.3, we assigned the symmetric stretch of H,O to A, and the asymmetric stretch 

to B,. The orthogonality condition means that there is no way to scale the A, vibration 

and generate the B, or vice versa. Both are required for a full description of the stretching 

modes of H,O, but any other vibration that only involves O—H stretch could be written as 

a combination of these two. 

Later on we will meet vibrations that have the same symmetry labels as one another; 

however, the combination of basis functions (pattern of basis set arrows) used will differ 

in such a way that these modes, too, are orthogonal to each other. 

The next section shows how properties 4 and 5 can be used to help us find out how 

many times an irreducible representation occurs in any reducible representation for which 

we have the character set. This will allow us to calculate the irreducible representations 

contained in any reducible set of characters without recourse to the matrix representation 

of Chapter 4. 

Problem 5.4: Show that the following irreducible representations are orthogonal to one 

another: 

1. By, with all ungerade representations in D>; 

2. A>, with each of the triply degenerate representations in O,; 

3. E, and the other doubly degenerate representations inD4g. 

5.5 The Reduction Formula 

In Chapter 4 we saw how a representation could be used to mimic the symmetry proper- 
ties of a molecule by describing the interaction of group operations with a particular basis. 
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Any collection of basis vectors that complies with the molecular symmetry can generate a 

character representation of the group, but in most cases it will be a reducible one and so 

can be simplified. In this section we will show that the simplification of a reducible repre- 

sentation I’ can be made using the data for the set of irreducible representations available 

in the standard character tables. 

Section 4.11 used the matrix representation to deal with a set of three basis vectors x, y, 

z on the central atom of a square planar D4, complex. It was shown that this basis can be 

reduced to E, + A>, by inspection of the matrices for the operations in the D4, group. The 

characters for the reducible and irreducible representations are shown in Table 5.2. 

Table 5.2 The reducible representation for the x, y, z basis on a central atom 
in a D4, complex, and its composite irreducible representations. 

D4p E 2G, CG DEX ES" / 254 OL 20, 204 

ip 3 1 —1 —1 —1 —3 -T | 1 i XV iee 

The breakdown of the 3 x 3 matrices into 2 x 2 and | x 1| does not affect any of the 

diagonal elements, which are the characters of our irreducible representations. This means 

that the irreducible characters in each class must add up to the character in the reducible 

representation they were derived from. 

By inspection of Table 5.2, it can be seen that this is indeed the case. For any class 

of operations in the group, the characters of the irreducible representations sum to give 

that of T. 

Writing characters from the irreducible representations in class C as xp,(C) and x4,,(C) 

and that for the reducible representation as x-('C) we have 

Xr (OC) = Xe, (OC) +X, (©) (a4) 

This is a special case for the basis used. In general, any of the irreducible representations 

available in D,, could have been present, and the sum for x;(C) is 

xXr(C)= > 1njx)(C) (5.15) 
J 

where n, is the number of times that the jth irreducible representation occurs. These n; 

values may be 0; from Table 5.2 in our Dy, example, we expect all values to be 0 except 

those for the E, and A>, representations, which will each be 1. In this case, Equation (5.15) 

would become Equation (5.14). 

So far, this is just a recap of the discussion leading to Equation (4.25). Now, Equa- 

tion (5.15) will be used along with Properties 4 and 5 to obtain an expression for the set of 

n, for the general case. This makes it possible to write down the make-up of any reducible 

representation in terms of the irreducible ones. 
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Properties 4 and 5 are embodied in Equations (5.4) and (5.8), which require a sum over 

classes and involve products of characters. Equation (5.15) can be converted to a simi- 

lar form by multiplying the left- and right-hand sides by a character from an irreducible 

representation i and then summing over all classes. This will give 

YS gex(C)xr(O) = Di sexKO) > mx (5.16) 
€ Cc j 

Changing the order of summations on the right-hand side produces 

Y- sexi( C) xr(C) = Dy DY Bex O) XO) (5.17) 
e J Cc 

We now have a sum over classes for two reducible representations, i andj. The outer sum 

on the right hand side says that all values of j, from 1 to the number of irreducible represen- 

tations in the group, must be considered. However, because the irreducible representations 

are orthogonal (Property 5), this sum is zero if i and j are different. 

As each of the terms in the sum over j are considered, the case i = j will naturally occur. 

In that instance, the sum over classes will be h (Property 4). This means that, whatever 

representation we chose for i, the only term in the sum over classes that survives is that 

with i = j, so that Equation (5.17) becomes 

Y- sexi ©) xr(C) = nih (5.18) 
c 

A small rearrangement gives the reduction formula: 

1 
ni, = jp 2a BAKO xXr(C) 

Equation (5.19) gives the number of times, ;, an irreducible representation 7 occurs 

within a reducible representation I’. It is based only on information obtained from the 

standard character table (h, g. and x,(C)) and the characters for the reducible representation 

(xr(C)) which can be derived from a suitable basis. This is an extremely useful equation 

and is known as the reduction formula, since it allows any I’ to be reduced to a set of 

standard irreducible representations. 

5.5.1 Applying the Reduction Formula 

To see how the reduction process works we can return to the x, y, z basis in the D4, exam- 

ple, taking the ith representation to be each of the irreducible representations for the point 

group in turn. Table 5.3 shows all the terms in the summation for each irreducible repre- 

sentation and demonstrates that the summation in Equation (5.19) gives zero for every one 
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Table 5.3 The terms required for the application of the reduction formula to the x, y, z basis 
on a central atom in a D4, complex. 

Dan [EERE CG MG — AGS" / 2S4 Oh Do 208 n= NG 

IP 3 1 —] —1 —1 —3 —1 1 | 1 

BeXi( OC) xr(C) Yc BcXil C) xr(C) 

Aye 3 eee pee ie ee Eat ae iD) 0 
Age | 3 el 2 203) i el) HOD 0 
CO Se’ ae ae) pee es te a 0 
Bog 3 —2 -1 2 —2 -3 2 | —2 2 0 

ho eS eae Be 0 2S On ay Wi 0 
Au 3 2 -!1 —2 —2 3 2 -—-!1 —2 —2 0) 

Au 3 2 we —'l 2 2 3} 2 —-!1 2 2 16 

Bary 3 —2 —-1 —2 LD 3 —2 -!1 —2 2 O 

Boy ES —2 -1 2 —2 3 —2 -1 2 —2 O 

le 6 O 7 O 0 6 O 2 O O 16 

except A>, and £,, for which the summation gives 16. The order of the group is also 16, 

and so Equation (5.19) shows that 

vessel Vs by ara Wie (5.20) 

i.e. the reducible representation I’ contains 1A), and 1, irreducible representations, as we 

found using matrices in Chapter 4. The representation I was constructed from three basis 

functions and we have found irreducible representations which are for a single object (A>) 

and a degenerate pair of objects (E,). 

For any application of the reduction formula we will always find that the number of 

objects in the irreducible set of representations is equal to the number used in the 

definition of the reducible representation, i.e. the number of basis functions. 

Problem 5.5: BF; is a molecule in the D3, point group. Show that the basis of F(p,)- 

orbitals shown in Figure 5.6 has the reducible representation given in Table 5.4. 

Figure 5.6 A basis of F(p,) orbitals in BF. 

Table 5.4 also gives another illustration of the application of the reduction formula to the 

basis of three F(p.)-orbitals for BF;, shown in Figure 5.6. In the reducible representation, 



122 Molecular Symmetry 

Table 5.4 The reducible representation for the F(p,) basis on BF, 
shown in Figure 5.6 and the application of the reduction formula to it. 

D3, E 2C; 3C, On 253 Be = 12 

r 3 0 —1 —3 0 1 

BeXr Xi Se Sok Are) 

i Pe a: =4 3 0 ' 
AG es 3 8 =% 0 
EF | 6 0 -6 0 0 
AS =3 3 3 0 
Ag NS 3 3 3 12 
E” | 6 0 6 0 12 

the 2C; and 2; classes have character 0 in I’, and so the terms for these columns in the 

reduction formula must always be zero. The order of the D3, point group is 12, and so 

summation over classes shows that 

Tl = 1A,"+ 12" G21) 

This means that the three p. orbitals can be taken together in one pattern conforming to 

A,” and two degenerate patterns following E”. In mathematical terms, the patterns are 

symmetry-adapted linear combinations (SALCs) of the orbitals that conform to the irre- 

ducible representations. The three orbitals taken together as drawn in Figure 5.6 would 

give an SALC with a character of —1 for any operation that flips the molecule plane over 

and +1 for all others. This is exactly the character set for A)”, and so we have found a pic- 

torial representation of the SALC. Finding the two degenerate E” SALCs is more complex 

and is left to Chapter 7, where MOs are discussed in more detail. 

5.6 A Complete Set of Vibrational Modes for H,O 

In Chapter | it was noted that the number of vibrational modes of a molecule can be 

calculated by counting the degrees of freedom of the atoms (three per atom for X,Y and Z 

movement) and subtracting the degrees of freedom for motion of the molecule as a whole, 

three for its translation and (for nonlinear molecules) three for rotation. This was used in 

Section 5.2 to arrive at a reducible representation for the basis of nine atomic degrees of 

freedom for HO, the classic C,, molecule. The characters for this representation were 

given in Table 5.1. We can now apply the reduction formula to identify the irreducible 

representations for the three vibrations of H,O. 

Table 5.5 gives the terms generated by the reduction formula for each of the irreducible 
representations in C,,. This shows that 

I = 3A, + Ay + 2B, + 3B, (5.22) 

As expected, the nine basis vectors have produced nine irreducible representations, but 
only 9 — 6 = 3 of these can correspond to molecular vibrations. The others are motions of 
the molecule as a whole. 
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Table 5.5 The application of the reduction for- 
mula to the nine basis vector representation of H,O 

atomic degrees of freedom defined in Figure 5.2. 

Gol  G ROD. eV h=4 

r =| 1 3 

1 
&Xr(C) x( C) ue apm 

AS ore a4 1 2 12 3 
ik: es ees aS 4 1 
Bealeoe moe = 3 8 2 
Be We Ont 1 =) ie 3 

There are three translations and three rotations of the molecule as if it were a rigid body. 

For any molecule in the point group, the rigid body motions will have the same irreducible 

representations. In the standard character tables of Appendix 12 the symbols x, y, z and R,, 

R,, R, are written in the rightmost columns and can be used to identify the representations 

for rigid-body movement and rotation respectively. So, most of the time, it is just a matter 

of referring to the character table to find the irreducible representations that should be 

removed and so isolate the vibrational mode symbols. 

However, to demonstrate how the rigid-body motion conforms to the irreducible rep- 

resentations, in this example we will go over the effect of symmetry operations on the 

translational and rotational motion of H,O. 

The three translations are motions along the axes of the coordinate system which follow 

the symbols x, y or z in the right-hand column of the character table. The standard C,, table 

is reproduced in Table 5.6 and the assignments made for translation are easily checked. For 

example, the molecule moving as a whole along the Y-axis direction is assigned to the B, 

representation. To see this we could place a basis vector y at the centre of mass of the 

molecule parallel to the Y reference axis in Figure 5.2, which would represent the motion. 

The centre of mass of the molecule lies on the C, axis nearer to the O atom than either of 

the two H atoms due to the greater mass of the former. 

Table 5.6 The standard character table for the Cj, point 

group. 

A y-vector placed at the centre of mass responds to the symmetry operations in the 

same way as the y-vector on O in Figure 5.2a: after a C, rotation or reflection in the 0,(XZ) 

plane it would be reversed, corresponding to a character of —1, while the y-vector would be 

unaffected by the identity operator E or a o,'(YZ) reflection so that these have a character 

of 1. This set of characters is just the B, representation, and so we have confirmed that 

motion in the Y direction should be assigned to the B, representation. 
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Problem 5.6: Confirm that movement of the H,O molecule as a whole in the X and Z 

directions follows the B; and A, representations respectively. 

Translations of the molecule as a whole are clearly not vibrations, so we remove them 

from the list of irreducible representations found for the full basis to give 

IPR, y= 2A +A; +B, + 2B, (5.23) 

Now I(R, v) contains the remaining representations for the rotational and vibrational 

degrees of freedom. 

The rotations of the molecule as a whole are shown in Figure 5.7. In the character 

tables of Appendix 12 and in Table 5.6 these are given the labels R,, R, and R, next to their 

respective irreducible representations. The effect of operations on rotations is a little harder 

to visualize and it is useful to refer to the paper models from Appendix | at this point. 

Xx 

| R, 

Figure 5.7 The affect of a C; symmetry operation on the rotational motion of the H,O 
molecule. : 

Figure 5.7 shows the result of a C,' operation on the rotational motions around each axis. 

To assign a character we have to image what would happen to the direction of the rotation 

when the operation is carried out. For example, taking the clockwise rotation around the 

Y-axis in the starting structure, at the instant shown we would expect the H atoms to be 

moving toward the top of the diagram while the O atom moves downward. After the C, 

rotation these movements would be reversed, so the direction of rotation would change 
from clockwise to anticlockwise, giving a character of —1. In Figure 5.7, this is shown by 

the curved arrow around the Y-axis changing direction after the operation. To emphasize 
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the operation has taken place, the arrows indicating rotation around X and Y have also been 
moved, but, as usual, the reference X, Y and Z axes are kept fixed. Rotation around X is also 
reversed, but that around Z is not affected by the operation as it involves rotation around 
the symmetry axis. 

Figure 5.8 shows the rotations around the three reference axes and the result of a 0,'(YZ) 
operation: reflection through the molecular plane. In this case, rotation around either Y or 
Z appears reversed, giving a character of —1. The X axis is perpendicular to the plane, and 
while the arrow indicating the direction of rotation has been relocated by the operation, its 
direction is unaltered, giving a character of 1. 

X 
yk R, . 

Dr, 

Figure 5.8 The effect of a o,/(YZ) symmetry operation on the rotational motion of the HyO 
molecule. 

Problem 5.7: Drawing diagrams similar to Figures 5.7 and 5.8, show that the o,(XZ) 

operation gives the expected characters for R, (from B,), R, (from B,) and R, (from A)). 

So, the irreducible representations for the rigid-body movement and rotation of H,O 

have now been identified and we can remove them from the total set of irreducible 

representations derived from the atomic degrees of freedom. This leaves us with 

(py 2A 5 (5.24) 

These are the three irreducible representations for the vibrational degrees of freedom for 

H,O. Two of these we have already met in Section 5.2: the A; symmetric stretch and the 

B, antisymmetric stretch shown in Figure 5.3. The remaining vibration also has an A, 

representation; this is the bending mode illustrated in Figure 5.9. This collective motion of 
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O 
. 7 

ee ae 
Bending mode v (A,) of H,O 

Figure 5.9 The A, symmetric bending mode of HO. 

the molecule is not affected by any of the operations of the point group and so conforms 

to the A, irreducible representation. 

The O—H bonds do not change length in the bending mode, while the H—O—H angle 

is constant in the A, stretching vibration. So, although we have found two A, vibrations, 

they are still orthogonal to one another. 

The method of obtaining pictures of the vibrational modes which conform to the irre- 

ducible representations, such as those of Figures 5.3 and 5.9, will be discussed more fully 

in Chapter 6. In the remainder of this chapter we cover some more examples of the applica- 

tion of the reduction formula to find the irreducible representations for modes of vibration 

and for atomic orbitals. 

5.7 Choosing the Basis Set 

The basis set size is determined by the particular problem in hand. In the analysis of H,O 

in Section 5.2 we concentrated on the stretching vibrations of the O—H bonds. This is 

a problem which could be approached using a basis as simple as the two bond vectors. 

However, with that basis we would miss the bending mode that was identified by using the 

nine basis vectors that represent the full atomic degrees of freedom. 

In general, the basis vectors to use for an analysis should be capable of describing the 

motions or orbitals which are sought. For example, in Figure 4.6, the basis vectors placed 

on the three N—H bonds of NH; were used to illustrate the result of a C;' rotation. As in 

our H,O example, this choice of basis set would be suitable for studying the vibrational 

stretching modes of the NH; molecule, but it would not allow any bending modes involving 

changes of H—N—H angles to be described. This would require a different or extended 

basis set with vectors arranged perpendicular to the N—H bonds. The important thing to 

consider when choosing the basis set is that enough basis functions are included to cope 

with the problem without overcomplicating the analysis. 

If we wish to carry out a full vibrational mode analysis on a molecule containing N 

atoms, then there will be 3N degrees of freedom. To be sure of capturing all modes of 

vibration, a 3N set of basis vectors would be required. However, if the molecule has par- 

ticular vibrational modes that we know will be in a distinct region of the spectrum, then 
this can be reduced. 

5.7.1 Carbonyl Stretching Modes of [Fe(CO);], D5), 

A notable case in which the region of the spectrum to be dealt with is known is that 
of carbonyl! ligands in transition metal complexes. The carbonyl ligand stretching modes 
occur in the range 2100-1700 cm '. This region is usually not shared with other functional 
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groups in a compound, so that bands observed here can be assigned to the C=O stretching 

modes. 

For example, the trigonal bipyramidal pentacarbonyl-iron complex [Fe(CO);] shown in 

Figure 5.10 belongs to the D, point group. The complex contains 11 atoms, and so a full 

vibrational analysis would require 3 x 11 = 33 basis vectors. However, if we are only 

interested in the C=O bond stretching modes, then a suitable basis set would only require 

the five C=O bond vectors shown in Figure 5.10. The basis vectors have been drawn to the 

side of the C=O bonds for clarity, but should be treated as lying directly along each bond. 

Figure 5.10 The trigonal bipyramidal complex [Fe(CO)s], point group D3. A suitable basis 
for obtaining the irreducible representations of the carbonyl! stretching modes is shown. 

The set of total characters form a reducible representation which is summarized in the 

first row of Table 5.7. These are obtained by considering an example operation from each 

class in turn: 

Table 5.7 The reduction formula is applied to the basis 
of five C=O bonds in the D3, complex [Fe(CO)s], shown 

in Figure 5.10. 

The identity operator, as always, leaves all basis vectors unchanged, and we simply 

count the number in the basis to arrive at a character of 5. 

The C; axis contains the two basis vectors on the axial carbonyl ligands, and so these 

remain in place after any C, rotation. However, the equatorial ligands are moved by either 
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the C;! or C,’ operation, contributing 0. This gives a total character of 2 for the basis in 

the 2C; class. 

There are three C, axes, each of which contains one of the equatorial C=O ligands; 

thus, on rotation, one ligand will stay in place while each of the other four ligands is 

exchanged with a partner. For example, rotation around the axis containing basis vector b, 

will result in b; swapping with b, and b,; swapping with b;. This gives a total character of 

1, whichever axis we choose. 

The horizontal mirror plane contains the three equatorial ligands, and so reflection 

simply exchanges b, and bs, giving a total character of 3. 

The improper rotation moves the equatorial ligand positions in the same way as the 

simple rotation around the principal axis; however, the additional oj, reflection also swaps 

b, with bs, so that the total character is 0. 

Finally, the three equivalent vertical mirror planes each contain the axial ligands and 

one of the equatorial C=O groups, contributing 3 to the total character for this operation. 

Each o, reflection swaps the remaining two basis vectors, and so they contribute 0. 

Taking the values of x,(C) for each of the irreducible representations from the standard 

D», character table in Appendix 12, we can now apply the reduction formula to this prob- 

lem. The values of the individual triple products required in the summation are written out 

in Table 5.7, which shows that the reducible representation has the composition 

IF = DAS SF E’ + A,” (9:25) 

From five basis vectors we have identified only four irreducible representations, but E’ 

is doubly degenerate and so contains two different vibrational modes, i.e. the five basis 

vectors have been used to generate five vibrations. These will occur at four different 

frequencies, since the two modes within E’ must have the same vibrational frequency. 

However, this does not tell us that there will be four vibrational bands in an IR spectrum, 

because to observe a spectral band we require vibrations that absorb light. To find out 

which vibrations are IR active requires the use of selection rules, and that will be covered 

in Chapter 6. 

5.8 The d-Orbitals in Common Transition Metal Complex Geometries 

The d-orbitals of transition metal atoms in the gas phase are degenerate with one another, 

meaning that a d-electron has the same energy irrespective of which particular d-orbital it 

occupies. This degeneracy is lifted when a transition metal is part of a complex, so that the 

energies of the orbitals will differ according to their disposition with respect to the ligands 

of the complex. There are two common ways to discuss the bonding in transition metal 

complexes. 

In the first, d-orbitals on the metal centre are viewed as interacting with the field 

generated by the ligands. This field is not spherically symmetric, since the ligands are 
arranged in a particular geometry and so electrons in the d-orbitals on the metal can 
experience different effective environments. This leads to the splitting of the d-orbitals 
into sets of energy levels, some of which may be degenerate if two or more d-orbitals 
have an equivalent environment in the complex. This level of degeneracy can be dis- 
cussed based on the symmetry of the complex without specific consideration of the orbitals 
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on the ligands themselves. This is the starting point for ligand field theory, which will 
be used here to discuss the symmetry of the p- and d-orbitals for an atom at the cen- 
tre of a complex in a few common geometries. An s-orbital is spherically symmetric 
and so, for the central atom in a complex, always has the totally symmetric represen- 
tation of the point group (character | for all classes!). A more complete picture of the 
bonding in metal complexes is provided by molecular orbital (MO) theory, in which the 
mixing of ligand and metal orbitals is considered explicitly, but we will leave that until 
Chapter 7. 

In the following examples, the point group of a variety of complexes is used to derive 

the symmetry labels for the atomic orbitals (AOs) of the central atom. The central atom 

orbitals are at the intersection of all the symmetry elements in the point groups considered 

and so are never moved through space by an operation. However, they may be reorientated, 

and so we will work out the characters for each AO set (p, d) and then apply the reduction 

formula to find the appropriate irreducible representation labels. These results will be used 

in Chapter 7 when assembling MOs for some of the complexes, and there we will use the 

fact that the standard character tables have the p and d functions written in the rightmost 

columns. For the central atom, this means that we can simply read off the symmetry label 

from the table. 

The following pages demonstrate how these assignments are made, but first we will 

review the functional forms of the d-orbitals. 

The Schrédinger equation can be solved for the case of a single electron bound to a 

positively charged nucleus to give the familiar s, d, p, ... energy levels. These solutions 

are exact for the H atom, but electron—electron interactions complicate matters for heavier 

elements. As a starting point, we can treat each electron in the heavy atom system as if 

it interacts only with a nuclear charge adjusted for shielding due to the other electrons. 

The origin of these ‘hydrogen-like’ orbitals from solutions of the Schrodinger equation is 

covered in Appendix 9, and we meet them again in Chapter 7. 

Each AO function can be thought of as the product of a radial and an angular part. The 

radial part describes the shape of the wavefunction as we move away from the nuclear 

centre. The angular part describes the shape of the wavefunction as we move around the 

nuclear centre. The d-orbitals are generally labelled according to their angular functional 

forms; for example, as we saw briefly in Section 4.2.2 d,, means that the orbital has 

its largest amplitude in the XY plane with a phase pattern that follows the xy function. 

Figure 5.1 1a shows that the amplitude of the d,, function is zero when either x or y is zero, 

and the d,, function has its greatest amplitude for a given distance from the origin when 

x and y are of equal size. The phase of the d,, function depends on the signs of x and y, 

so that d,, has a positive phase if both are positive (xy) or both are negative (—x x —y), 

whereas the phase of d,, is negative if only one of x or y is negative (e.g. —x x y). If we 

start from any point and move round the nuclear centre we see that the phase changes for 

each quadrant of the xy plane. 

The d.2_,2 function (Figure 5.11b) also has its largest amplitude in the XY plane, but 

now the function has a positive maximum on the X-axis and a negative maximum on the 

Y-axis. 
The d,, and d,, orbitals have shapes analogous to d,,, but based on their different 

coordinate functions. 

The d.2 orbital does not have the same appearance as the other four d-orbitals: it has 

positive lobes along the z and —z directions and a toroidial (‘doughnut’-like) shaped lobe 
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(a) 
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(b) 
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Figure 5.11 The phase pattern for (a) a dy orbital and (b) a d,2_,2 orbital. These diagrams 
show slices through the orbitals in the XY plane; to the left the amplitude of the function in 
the plane is show on the Z-axis, while to the right a contour representation is shown with light 
areas representing positive phase and dark areas negative phase. 

Figure 5.12 The d,2 orbital. 

in the xy plane, as shown in Figure 5.12. The reason behind this difference is the way 
the d-orbital functions are conventionally constructed in the Cartesian axis system. We 
know that there are 10 transition elements in the third row of the periodic table. Since each 
orbital can hold up to two electrons, this means there must be five d-orbitals. However, 
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the Cartesian axis system would naturally yield six angular functions that are suitable for 
d-orbitals, namely: 

er ee, (5.26) 

The first four of these we have already discussed. To make the fifth d-orbital, a linear 
combination of the remaining two is taken, i.e. 

Z—-x¥ +7 —-y=27-7-y (S224) 

which gives the familiar orbital shape. This construction is illustrated in Figure 5.13. 

x 

Figure 5.13 The construction of the d,2 orbital as a linear combination of d,2_,2 and d,2_,2. 

The linear combination for d.2 has one drawback: the orbital now contains more volume 

than the other d-orbitals, since it is the sum of two functions. The volume of the orbital 

relates to the probability of finding an electron; in fact, an integral of the square of the 

wavefunction over a given volume gives this probability. The five d-orbitals must each 

give a total probability of 1, and so an additional factor is used to scale the dz orbital back 

down to size. 

With this normalization factor included, the angular d.2 function becomes 

ale 
V3 

To see how the normalization factor works, consider squaring this function starting from 

it written as its constituent z? — x* and z* — y’ functions: 

(22 —x —y’) (5.28) 

ass oe) Dg) ae il De ok _ yy? 42(2 —7)(2—-y¥ 5.29 
{ tc: x)+(Z 1] ria. Dey) ee Czy G29) 

The first two terms in this expression are the squares of the orbitals we have combined 

to form d.2; since these contain the same volume as all the other d-orbitals, an integration 

over all space will give 1 for each. The third term contains the product of the d.2_,2 and 

d2_,2 orbitals, and so is the volume that they have in common; their overlap. As can be 

seen in Figure 5.13, these orbitals share space only on the Z axis but have separate lobes 
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in the XY plane. This will give an integral of 1/2, and so the three terms sum to 3 and the 

normalization factor then reduces this total volume to 1, as required. 

In this exercise we have found a normalization factor that brings the z’ orbital onto the 

same scale as x2 — y?. In Appendix 9 (Table A9.1) it is shown that the normalized functions 

for all five d-orbitals are, 
1 

e/a \eez 

DENG r 

1/15 \2 yz 

DB Nog r 

1 

Z (2) 3 (5.30) 

yee 
4\n lie 

Where r is the distance from the nuclear centre. These functions also show that to bring 
x’ — y* to the same scale as xy etc., requires a future factor of 2 to be included. To carry 

the full normalization constants in the calculations of the next few sections would be cum- 

bersome since symmetry is really only concerned with how the functional forms change 

after symmetry operations and the proportions of the original basis set required to obtain 

the same result. Hence we will only use relative scaling factors when required. We will 

meet normalization factors again in Chapters 6 and 7. 

To work out how the d-orbitals are affected by the symmetry of their environment, 

we will first analyse a basis of the x, y and z vectors at the central metal atom of each 

complex geometry. This will automatically show how the p-orbitals respond to each 

operation. 

The results can then be used to deduce the functional form of each d-orbital after the 

transformation and so find the required character set for the d-orbitals. In general, the 

p- and d-orbitals will give reducible representations to which we can apply the reduction 

formula to find the irreducible representations for the point group. 

5.8.1 Square Planar, D4, 

The x, y, z basis vectors on the central atom in a D4, complex have already been considered 

in Section 4.9, where the orientation of the basis is defined in Figure 4.10. It was shown 

that the three vectors, and so the corresponding p-orbitals at a central metal atom, reduce 
to the A,, and EF, irreducible representations. 

Table 5.8 gives the transformations of the x, y and z vectors for a representative operation 
of each class of D4,. We now know that the operations in a class give identical characters 
for any irreducible representation. This means that only one example from each class of 
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iw 

me 
z Cy'(X) yo 

, f, C5 (X) A x al wy 

Cy (X) ; a x -- en X < Y 

\ \ 

Figure 5.14 The C,(X) operation for the x, y, Z basis of a D4, square planar complex. 

operations need be considered when looking for the transformation of a given basis, and 

suitable choices have been made in Table 5.9. 

The d-orbital functions xy, xz, yz, x2 — y? and 2z? — x* — y’ are treated by constructing 

them from the results for x, y and z. For instance, the change to the x, y, z basis after the 

C;,(X) operation is illustrated in Figure 5.14. Algebraically this can be written: 

x—>x, yo-r-y andz— -z (5:31) 

These formulae use arrows rather than equals signs to indicate the result of a transfor- 

mation. They interpret the result of the operation (the vectors marked x’, y and z in 

Figure 5.14) in terms of the initial basis. Immediately, Equation (5.31) demonstrates that 

p, has a character of 1 while p, and p, each have character —1. 

For the d-orbitals we simply obtain the transformed functions using the behaviour of the 

x, y, z basis so that: 

xy = x(—y) = = character — 1 

XZ —> —XZ character — | 

yz —(—y)(—z) = yz character 1 
2 Dw 3) a2 2 2 (5.32) 

Me n= ey) eee character 1 

and 

22 —x —y > 27?-x-y character 1 

From this example and Table 5.8 there are three possible outcomes for the d,,, d,. and 

d,.-orbital functions: 

1. A function is unaffected by the operation. This can be the case even though the x, y and 

z vectors have altered; for example, following the C, operation x and y become —x and 

—y, but for their product the two minus signs give a plus and so xy is unaffected. In 

these cases a character of | for the function is assigned. 

2. A function is transformed to its own negative. This means that the areas of positive 

and negative phase will have been switched for the function. This could also have been 

achieved by a multiplication by —1. Hence, the character in this situation is —1, e.g. yz 

under the o,(XZ) operation. 

3. A function is transformed into one of the other d-functions. The d-functions are effec- 

tively our basis set in this analysis; so, if a function is transformed completely into 

another basis function, then a character of 0 is taken, e.g. xz under the o4(LZ) operation 

becomes yz and so would have character 0. 
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The d,2_,2 and d.2 orbitals can be treated similarly, so long as the full functional form 
for d.2 is used. For example, under C,"(L) using the x, y, z transformations from Table 5.8: 

x —_ ve = y oat x (5.33) 

and 

ae I 
(27° -x° -y’)> (2 ye, 5.34 

/3 J3 ame 

This means that the x* — y’ orbital will be assigned a character of —1 and z? will be given 
a character of 1. Based on the axis transformations of Table 5.8, we can now work out the 
characters for any of the d-functions, and these are given in Table 5.9. 

Table 5.9 The characters for each orbital function under the operations 
defined in Table 5.8 and their sum to give T'(d). 

D4p, Eg Me Cs OG (LP AaGe on loi XZ eat hZ) 

xy ie fe ne i 1 

XZ (We Aye Ba Ot One 1 0 

yz ican aI 1 Oh 1 OE, PS 0 

Because the z-vector is never interchanged with x or y in the D4, point group, the char- 

acter for d.2 will be | for all operations. Similarly, x and y can only be left alone or 

interchanged, so x* — y’ will give either +1 or —1, but not 0. 

The characters for the individual orbitals in Table 5.9 are dependent on the choice of 

operation within a class. For example, from the 2C,’ class we chose the C’(X) rotation 

axis and obtained the characters —1 and +1 for d,, and d,, respectively. Had we cho- 

sen C,'(Y), then the result for the individual orbitals would be reversed: +1 for d,, and 

—I for d,,. However, the sum of these characters is the same for both choices of axis, 

and so the character totals for [(d) in Table 5.9 would be the same for any choice of 

operations. 

This reducible representation contains five objects, and so a total character of 5 appears 

under the FE operator column. In addition, each of the d-orbitals has gerade symmetry, 

since they are unchanged by the inversion operation, so there is also a total character of 5 

under i. 

In Table 5.10, the reduction formula is applied to P'(d) in the D4, point group, with the 

result that 

I'd) = dig + Dig + Dry + ee (5.35) 

where we have followed the convention of using lower case letters for the symmetry rep- 

resentation labels of orbitals. This convention allows the upper case letters to be reserved 
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Table 5.10 Application of the reduction formula to P(d) in Dyn. The >>- column gives 

the summation required for the reduction formula: Y)c 8c Xil ©) xr CG): 

Din EBC Cee Cee GH nag oe Omg | n= We 

T'(d) 5 -1 1 1 1 5 -1 1 ] 1 

Bexr(C) xi(C) ean 

Aig 5 -—2 1 DD 2 5 -2 ] 2 2D 16 

A2g 5 -2 2 2 5 -2 1 —2 -2 0 O 

Big eee | 2 =2 5 2 1 2 -2 16 1 

Bog Ba 1 -2 2 5 D 1 =2 2 16 1 

E, 10 O —2 0 ORO QO —2 0 0 16 1 

Au 5 -—2 1 2 --5 2 —-1 —2 -2 0 O 

Adu 5 -2 i =2. =) =9 2 =! 2 zB 0 O 

Buy 5 2 1 2 —-2 =-5 —2 =1 =2 2 0 O 

Boy Hy 2 l= 2 2 -5 —2 -1 2 -2 0 0 

ley 10 oO -2 0 O —10 0 2, 0 0 0 0 

for the multi-electron states (also known as term states) that are used in the description of 

electronic spectroscopy. 

The e, label indicates a doubly degenerate level, it represents two d-orbitals, and so the 

right-hand side of this equation does contain five orbitals as required. The four irreducible 

representations all have gerade symmetry, in line with the d-orbitals that underlie them. 

This symmetry analysis indicates that the five d-orbitals, which are all equivalent for the 

isolated metal ion, will split into four levels in a square planar D,, environment, with one 

of these levels doubly degenerate. 

Symmetry alone cannot give the energetic ordering of the orbital energy levels, since this 

is determined by their physical interaction with the ligand environment. In a ligand field 

model, the orbitals are ordered such that those with strong interactions with the ligands are 

highest in energy, the argument being that electrons in these AOs would be repelled by the 

ligand based electrons. We can use this to sketch out the orbital energy diagram as shown 

in Figure 5.15. 

i omeniaiaiatienl Aor F 

Figure 5.15 The d-orbital energy levels for the central atom of a D4, complex. 
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The highest energy orbitals are those in the XY plane, with x? — y* above xy because its 
orbital lobes are pointing along the axes toward the ligands. 

The xz and yz orbitals are lower in energy; an electron occupying either of these orbitals 
does not enter the XY plane because this is also a nodal plane. These two degenerate 
orbitals are in the e, irreducible representation, since X and Y are equivalent directions 
in the complex. 

Finally, the d» orbital has the lowest energy of the set, since the lobe along the Z-axis 

avoids the ligands altogether. 

5.8.2 Tetrahedral, 7, 

To see how p- and d-orbitals on a central atom in a molecule or complex with 7, symmetry 

transform, we can use the same approach as covered above for D,,. 

First, we write down the effect of an example operation from each class on an x, y, 

z basis and then use this to obtain the transformed functional forms for the p-orbitals. 

Once the x, y, z basis has been dealt with, the products required for the d-orbital functions 

can be deduced and a reducible representation obtained from the set of example opera- 

tions. Application of the reduction formula then gives the irreducible labels for the p- and 

d-orbitals. 

Complexes with four identical ligands arranged around a central metal ion, such as the 

Co** complex [CoCl,]*-, fall into the 7, point group. Figure 5.16 shows this complex and 

also illustrates the outline of the tetrahedron formed by sketching lines between the Cl 

ligands. The 7; point group contains four equivalent C; axes and three equivalent C, axes 

along with six o, planes, which were discussed in Section 3.9. The choice of symmetry 

element for this exercise will follow those illustrated in Figure 5.16 and on the paper model 

of the tetrahedron and its associated cube from Appendix 3. By placing the tetrahedron 

inside the cube, the positioning of the reference axis system can be seen in the three- 

dimensional model. 

Figure 5.16 An example tetrahedral complex, [CoCl,]’~, overlaid with the reference axes in 

their standard orientation. (a) The symmetry axes and (b) the og plane used in the symmetry 

analysis of the main text. 

Table 5.11 gives the result of each selected operation on the x, y, z basis and the result- 

ing d-orbital functional forms. The xy, yz and xz functions are unaffected, transformed 
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into —1 times the original function, or changed into a different product altogether. This 

makes the assignment of a character for these three functions straightforward. For exam- 

ple, xy becomes —yz under C;', and so because the transformation has taken xy into another 

member of the d-orbital basis set we assign a character of 0. 

In most of the entries of Table 5.11 the functional form for the d.2 and dy_,2 functions 

can be seen as simply unchanged or multiplied by —1 and so character assignment can be 

made accordingly. 

However, for d.2 and d,2_,2 under the C ;' rotation, the character assignment is a little 

less clear-cut. In this case, the x° — y* function follows 

vya-yoy-27 (5.36) 

The result indicates that the orbital has changed, but it is not instantly recognizable as 

another member of the basis set. This transformation is shown in Figure 5.17a, and com- 

parison with Figure 5.13 shows that one of the orbitals used to create the d.2 orbital has 

been produced. So, we may expect some part of the 2z* —x* — y’ function to now be present 

at the expense of the x* — y”. 

(a) 

Figure 5.17 The C,' operation in Ty showing the result for (a) the d_,z and (b) the 

d,2 orbitals. 

The new function contains y and z squared, but no products such as xy, yz or xz, and so its 

composition in terms of the d-orbital basis will only contain contributions from 2z°—x —y" 

and the original x* — y’ function. So we can write 

ee a = ba Sy) (5.37) 
V3 
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in which the factor of 3 is required to normalize the 2 when mixing with x° — y’, see 

Equations (5.28) and (5.29). The coefficients a and b control how much of each inate 

function is used. To find the appropriate character we must obtain the amount of the x* — y* 

function remaining after the transformation, i.e. the value of b. Equation (5.37) links two 

orbitals that have a value at every point in space and so the left and right sides must be 

the same for any choice of x, y and z. For this to be the case the coefficients of x° must be 

balanced and those of y’ and those of z’, so that 

(ase, from x coefficients 

we 

— 2 ; 

1 = —-bD from y coefficients (5.38) 

/3 

-l= fal from Z coefficients 

This comparison of coefficients gives three equations for two unknowns, and so we can 

solve for a and b. From the z’ coefficients we obtain 

a= —— (5.39) 

Then, from either the x° or y’ coefficients: 

1 i 
0==+b from De l1=-~-b from y" 

25 21 (5.40) 
—— Pecos 

2 2 

So the character for the x* — y’ orbital with the C;' operation is —1/2. 

Similarly, for the d.2 function, the C;' operation leads to 

1 9) ed 9 6) 9 

—(2z7-x 2 
, 1 
i 2x —y =z 5.41 as y= aS . ) ( ) 

Again, the result is not recognizable as one of the basis functions and so must be con- 

structed from a linear combination of the original set. As before, we can exclude xy, yz and 

xz, as these products do not occur in the new function. So, the required linear combination 

must obey the relationship 

| 2 2 2 a 2 2 2 2? 2 

—(2x° —y — 7) = —(27 -—x —y)+b(x -y : Ta y a! x =) Oe —y) (5.42) 
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Now there is a fresh pair of coefficients a and b. This time the character will be how much 

of the dz orbital remains in the new function, and so we are looking for the value of a. 

Comparing coefficients of z° allows this to be obtained directly: 

(5.43) 

So the character for d» under C,' is also —1/2. 

The full set of characters for the p- and d-orbital functions in 7, are given in Table 5.12, 

along with their sums that give the reducible representations. 

Table 5.12 The characters generated by the transformations of 
the p- and d-orbital functional forms under a symmetry opera- 
tion from each class in Tg and the summation giving the total 
representations for p- and d-orbitals. 

Tg E (os @ ST Od 

x 1 0 =" 0 0 

y 1 0 ell 0 0 

Zz 1 0 1 0 0 

I'(p) 3 0 —1 —1 1 

xy 1 0 ] =| 1 

XZ 1 0 call 0 0 

yz 1 0 =| 0 0 

x? — y? 1 =| 1 eal =| 

27-xX-y? | 1 —1/2 1 1 1 

T(d) 2) =| 1 all 1 

For the p-orbitals the character set obtained for I'(p) is identical to that for f, in the Ty 

character table, so: 
hep = 2 (5.44) 

This means that all three p-orbitals are degenerate. In the model of the tetrahedron, X, Y 

and Z each pass through the centre of an edge, and so this result confirms that these three 

directions are symmetrically identical. 

Application of the reduction formula to ['(d) is summarized in Table 5.13, where we 

find that 

M(dj=e+h (5.45) 

So the five d-orbitals are split into a set of three degenerate orbitals (t,) and a degenerate 

pair (e). 
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Table 5.13 Application of the reduction formula to T'(d) in Tg. 

Tg le 8C, 3G 6S, 604 h =p 

T(d) 5 ={ 1 =| 1 

Bexr(C) xi C) Bie ae 

ix 5 =3 3 —6 6 0 Ou 

A> 5 = 3 6 =6 0 0 

E 10 8 6 0 0 24 1 

ip 15 0 3 6 6 0 0 

le 15 0 = 6 6 24 1 

Figure 5.18 The d-orbital energy levels for the central atom of a Tg complex; the diagram to 
the right shows the reference axis system for the tetrahedron, with illustrations of the xy and 

z* orbitals. 

Table 5.11 shows that the functions xy, yz and xz can be transformed into one another 

but are never mixed with 2z? — x* — y* or x° — y’. The latter two orbitals have lobes which 

point along the reference axis directions, i.e. at the edges of the tetrahedron and between 

the ligands of any complex. So, according to ligand field theory, the e orbitals (d.. and 

dy.) are lower in energy that the f, orbitals, xy, yz and xz, as shown in Figure 5.18. The 

energy gap between the e and f, levels is given the symbol A, and the size of this gap 

depends on the ligand field strength for the particular complex. 

5.8.3. Octahedral, O,, 

A complex with octahedral O, symmetry has six identical ligands equidistant from a 

metal centre. An example of the Mn’*+ complex, [Mn(H,O),]**, is shown in Figure 5.19a, 

and the symmetry elements to be used in the analysis in this section are illustrated in 
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i 
Figure 5.19 (a) An example octahedral complex, [Mn(H,O),/°+, belonging to the O}, point 
group. The example symmetry axes (b), 0, plane (c) and og plane (d) used in the analysis of 
the main text. 

Figures 5.19b-d. In the assignment of [Mn(H,O),]** to the O, point group we have ignored 

the positions of the H atoms on the H,O ligands. This is justified because the structure 

shown is just one possibility for the positioning of the H atoms; rapid rotation of the lig- 

ands will lead to a ligand field which averages all possible H locations, giving the complex 

effective O,, symmetry. 

The symmetry elements for O, were discussed in Section 3.9. To set up the reference 

frame for the complex it is usual to align the axis system with the metal ligand bonds so 

that the ligands can be thought of as lying at the corners of the standard octahedral shape. 

This arrangement is also used in the three-dimensional model from Appendix 4, which 

also has the same set of example symmetry elements drawn on the paper octahedron. 

Table 5.14 shows the result of operations using the selected symmetry elements on an 

x, y, z basis which is initially aligned with the reference axis system. The effect on the 

d-orbital functions is obtained by forming the appropriate products after the transforma- 

tion. As we found in the D,, and 7, point groups, the xy, xz and yz functions are linked by 

several of the symmetry operations, with the result that we can assign a character of +1 

(function unaffected), —1 (function transformed to negative form of same product) or 0 

(function transformed to different product). 

However, under C;', C) and S,' we find that the x? — y’ and 2z* — x° — y’ are changed 
into functions that are not present in the original basis set. For example, under C;' we find 

Hy S27 x (5.46) 

and 

1 1 : ‘4 
(=x =) == (27 7 = 27) (5.47) 
J3 J3 
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Figure 5.20 The effect of a C;' rotation in Oy on (a) d= z.and (bp) daa, 

These transformations are illustrated in Figure 5.20, which shows that the corresponding 

orbitals are orientated in a nonstandard way. 

To find the characters for these orbitals we need to form linear combinations of the 

original basis set that are equivalent to the transformed functions. The functions we seek 

contain no products of axes; so, in a similar manner to the earlier 7; example, the xy, xz 

and yz functions can be disregarded. Taking the z* — x° case first: 

a 
2 = 52 —s (on — x a ay +b( x? aa a) (5.48) 

J/3 ‘4 . 

for which b is the amount of the original x° — y* remaining after the transformation, i.e. 
the character. This appears in the coefficient of both x° and y’; however, these coefficients 

will also contain the unknown coefficient a, so this must be obtained first. From the z* 

coefficients we have 

ie. a= — (5.49) 

Now, from the y” coefficients: 

a a 1 
0 =——-—b giving D=-——= andso D=--— (5.50) 

J3 one J3 2 

i.e. the character for the transformation of x2 — y” by the selected C;' operation is —1/2. 

For the 2z? — x* — y’ case we start from the result of Equation (5.47) and form a new 

linear combination with unknown coefficients: 

1 a 2 2 2 2 ye ae ye ey) Oe Sy) (5.51) Wee y ) z 
V3 
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This time the coefficient a is the required character, so we can use the z2 coefficient to 

obtain it directly: . 

aan = otha 1a ee (5.52) 
Kes 2 

The characters for all functions under each example operation are listed\ in Table 5.15, 

which also gives the total characters for the reducible representations of the sets of p- and 

d-orbitals. 

Table 5.15 The characters generated by the transformations of the p- and d-orbital functional 
forms under a symmetry operation from each class in O, and the summation giving the total 
representations for p- and d-orbitals. 

Op B (Sy ee OG eee =) i Sie oe oh 4 

x ; 1 0 0 =f —1 0 ) 1 

1 Co! = =| 0 1 

1 0 0 1 1 =i On =I 1 

T(p) 3 On 1 = aI 0 1 1 

xy 1 0 oii 1 (hs 0 1 1 

XZ 1 0 1 =i 1 (ee 

yz 1 0 0 —1 1 0 =| 0 

—¥ 1 S12 jy 1 1 sea rs 6/2 1 =| 

Wee =r | = 1/2 172 1 1 1 tie 1 1 

T(d) es id 1 eee eS 1 1 

Problem 5.8: In Table 5.14 under the S,' operation we find the transformations 

2 2 | 2 I - 2 ea ¥_Wis y ey and = 07 Ve ae ae (5.53) ae 3 
The corresponding characters in Table 5.15 are both —1 /2. By finding the appropriate 
linear combination coefficients, confirm that this assignment is correct. 

Because we have assembled the reducible representations for complete sets of orbitals, 
the character totals obtained are independent of the choice of symmetry elements or 
operations from each class in the point group. We can now proceed to using the reduc- 
tion formula to find the irreducible labels for p- and d-orbitals in O,. For the p-orbitals, 
inspection of the standard character table from Appendix 12 shows that 

I(p)= ty (5.54) 
The p-orbitals are each reversed by the inversion centre, since the positive- and negative- 

phase regions are swapped by this operation. This leads to a —3 total character under 
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i and implies that the irreducible representation is ungerade. The three p-orbitals each 
point along a reference axis direction, i.e. along equivalent metal—ligand bonds, and 
so they remain degenerate in this complex geometry, as confirmed by this irreducible 
representation assignment. 

For the d-orbitals we will apply the reduction formula. To make the job easier note that 
these functions are not changed by the inversion centre, since they all contain only even 
products of the x, y and z basis. This means that the d-orbitals have gerade symmetry, and 
so we only include irreducible representations with the ‘g’ subscript in the reduction. The 
application of the reduction formula is laid out in Table 5.16, which shows that 

P(d) =e, + hy (5.55) 

As we found in the 7; case, the five d-orbitals are split into a degenerate set of three 

(t2,) and a degenerate pair (e,). In this case, however, the reference axis system is aligned 

with the metal—ligand bonds, and so the e, orbitals interact more strongly with the ligand 

set than those of the 4,, making the former higher in energy, as shown in Figure 5.21. The 

energy gap between the 1, and e, levels is referred to as the ligand field splitting parameter 

and is given the symbol A,, and the size of this gap depends on the type of ligand used in 

the complex. 

5.8.4 Trigonal Bipyramidal, D3, 

Complexes formed with five identical ligands may have the trigonal bipyramid struc- 

ture shown in Figure 5.22a. This geometry belongs to the D3, point group and the set 

of example symmetry elements we will employ for the following analysis are defined in 

Figure 5.22b. In the complex, two of the ligands are opposite, or trans, to one another, 

defining the principal C; symmetry axis, which is assigned as the Z-direction. The other 

three ligands are in the equatorial plane with L—M—L angles of 120°. The choice of the 

reference X and Y directions is less clear for D3, than in the earlier examples, and here 

we make the choice that X will be along an M—L bond with Y placed to complete the 

right-handed axis system. 

We begin with the effect of each operation on an x, y, z basis which is initially aligned 

with the reference axis system at the central M atom. The C; axis is along the Z direction, 

and so the z basis function is unaffected by the rotation. However, the x and y basis vectors 

are rotated by 120°. This means that the transformed x and y vectors are made up of a linear 

combination of both of the original vectors. The general formula for the transformation of 

x and y by a rotation is discussed in Section 4.7. For this rotation we obtain 

Li ew/3 
x’ = xcos( 120) —y sin( 120) = ae = was (5.56) 

3 1 
y =xsin( 120) +ycos( 120) = a, a 57 Go) 

The angles are given in degrees and primes have been added to indicate the basis vectors 

after the C;' rotation. 
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me 55, XY, XZ, YZ 

Figure 5.21 The d-orbital energy levels for the central atom of an O, complex; the diagram 
to the right shows the reference axis system for the octahedron. 

Figure 5.22. A complex with trigonal bipyramid geometry belonging to the point group D3p. 
(a) The structure and reference coordinate system. (b) The symmetry elements used in orbital 
analysis for this complex. 

This is a new situation; in the previous examples the x, y, z basis has had only characters 

+1, 0 or —1. In this case we find the p, and p, orbitals would be transformed into mixtures 

which each contain —1/2 of the original orbitals, i.e. a character of —1/2. 

To find the transformed d-orbital functions we must take into account the full functional 

forms found for the single vectors. For example, the xy function will become 

xy (5.58) 

so that the d,, orbital after the transformation can be thought of as a mixture of the d,, and 

d.2_,2 orbitals. Notice that a factor of a half has been used for the x° — y* to account for 

the different normalization factors in the full functional forms of Equations (5.30). The 

mixture found in Equation (5.58) is not too surprising, as we have rotated the orbital in the 

XY plane and both d,, and d,2_,2 have lobes in this plane, but with different orientations 

relative to the X and Y reference directions. The rotation is just equivalent to mixing the 

two orbitals in the plane together in the correct proportions, as illustrated in Figure 5.23. 

Equation (5.58) gives us the character for the transformation of d,, by the C;' operation 

as —1/2. 
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(a) 

(b) 

Y Ve 

., xo 2 x 

Mf VA Y, 

ns X 2 2 xX 

1 V3 
aim d cy — cr dp 

Figure 5.23 (a) The affect of a C,' rotation on the d,y orbital in a D3, complex. The structure 

is viewed down the principal axis and one M—L bond is aligned with the X direction. (b) The 

same result obtained as a linear combination of d,y and d,2_,2. 

Similarly, the d,2_,2 orbital rotation can also be achieved by mixing it with the d,,. To 

obtain the coefficients that control how they must be mixed, we simply write out the new 

function using the transformed x and y basis vectors: 

I J3 
se eS “9 % (5.60) 

yz =| —x-=y Jz 
D, 2 

J3 1 
= XZ — =YZ (5.61) 
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We should expect the d.2 orbital not to be altered by a C;' operation, since the major 
lobe of the orbital is orientated along the rotation axis. This is not obvious at first from the 

basis vectors, but if we insert the transformed x, y, z vectors into the full functional form 

of the d., orbital we obtain 

2 2 2 2 I 3 2(z' — (xP — (y'P = 27 ( x 2 (-: >] 

SO y (6162) 

where we have left out the normalization factor for simplicity. The result is that the d2 

function is unaltered by the C;,' rotation, as expected from its alignment with the principal 

axis. 

The complete set of transformations using the symmetry elements illustrated in 

Figure 5.22b is given in Table 5.17. For most of the operations the derivation of these 

functions is straightforward. The improper S;' rotation has the same effect on x and y as 

C,' but it causes z to become —z, and so we can obtain the d-orbital functions for this oper- 

ation by taking the C;' results and replacing z with —z. The character for each orbital under 

each operation can be worked out from Table 5.17, remembering that what is required is 

the amount of the original function still present after each transformation. These charac- 

ters are summarized in Table 5.18, which also gives the sums required for the reducible 

representations of the p- and d-orbital sets. 

Application of the reduction formula to the reducible representations is detailed in 

Table 5.19, from which we obtain 

T(py=e' +a," (5.63) 

and 

T(d)=a,' +e +e" (5.64) 

Remarkably, this analysis shows that the p, and p, orbitals are degenerate as they form 

the e’ representation found in I’(p). This means that the interaction with the ligands for 

a p-orbital aligned with an M—L bond, along X in Figure 5.22a, is equivalent to that for 

a p-orbital along Y, not directly aligned with a ligand at all. In the X case, one lobe of 

the orbital is directed toward a ligand while the other is in the middle of the other two 

equatorial ligands and so has the lowest possible interaction. In the Y direction, both lobes 

interact less strongly than if they were directed straight at a ligand, but more strongly than 

if placed in between two equatorial ligands. The net effect is that the two environments are 

exactly equivalent. 

This observation can also be made for the d-orbitals which Equation (5.64) shows are 

split into a single a,’ type (d.2) and two pairs of degenerate orbitals e’ (d,2_,2, d,,) and e” 

(d,., d,,). The orbital energy levels are illustrated in Figure 5.24. 
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Table 5.18 The characters generated by the transformations of the p- 
and d-orbital functional forms under a symmetry operation from each 
class in D3, and the summation giving the reducible representations for 
p- and d-orbitals. 

D3p oar e G ey Oh $3" Or 

x 1 —1/2 | 1 2, il 

y 1 —1/2 —1 | —1/2 =| 

Zz 1 1 —1 —1 —1 1 

I(p) 3 O —1 | = 1 

xy 1 Sy = 1 ei? a 
XZ 1 —1/2 —| —1 1/2 | 

YZ 1 —1/2 1 —1 2 =| 

x? —y? 1 —1/2 1 1 —1/2 1 

2z* —x* —y? 1 1 1 1 1 1 

Table 5.19 Application of the reduction formula to T(d) in Oy. In this case only the gerade 
irreducible representations need be considered, as each of the d-orbitals is gerade. 

3G) On 253 Bon h wp 

—1 1 —2 1 

eral C) xr(C) De De we 

—3 1 —4 3 0 0) 

3 1 —4 —3 0 O 

0 2 4 0 12 1 

-3 —] 4 —3 O 0) 

3 —1 4 3 12 1 
0 =) —4 0 0 0 

I'(d) § —1 1 1 1 | 

£eXi( ©) xr(C) Se ho} Yc 

Ay 5 —2 3 1 D 3 12 1 

Ay’ 5 —2 —3 1 2 —3 0 0 

Es 10 y 0 2 —2 0 ile. 1 

Ay” 5 —2 3 —1 —2 =3 0 0 

Al 5 -2 —3 —1 —2 2 0 0 
ie" 10 2 O —2 D, O 12 1 

(a) (b) 
ce: rs e’, se. XY 

Cord exe e, x,y 

are? 
ed Grane — ay .% 

Figure 5.24 The orbital energy levels for (a) the p- and (b) the d-orbitals in a D3, complex. 
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5.9 Linear Molecules: Groups of Infinite Order 

When we try to find the irreducible representations for vibrations or orbitals in a group 

containing a C,, axis there is a stumbling block. The infinite axis gives rise to an infinite 

number of operations, since a rotation by any angle about the axis of a linear molecule is 

a symmetry operation. This means that the order of these groups, h, 1s infinity and so the 

1/h term in the reduction formula is always zero. There are several approaches in the lit- 

erature to coping with this problem. The most straightforward is to deduce the irreducible 

representations by inspection of the character set in the reducible representation. In this 

section we will see how this allows the elimination of sets of irreducible representations 

that are not consistent with the reducible character set. This process will result in only one 

sum which is able to give all the characters of the reducible representation. 

The reducible representation in these groups can be assigned in the normal way. We 

consider the effect of an example operation on each member of the basis to assign a char- 

acter for each class of operations in the group. To proceed with the reduction into the set of 

standard irreducible representations we return to the basic idea from which the reduction 

formula was derived in Section 5.5. 

Equation (5.15) states that, within each class, the sum of the characters from the set of 

irreducible representations which make up a given reducible representation I’ sum to the 

character obtained for that , y-(.C). This sum must work for every class; so, once a par- 

ticular alternative combination of irreducible representations is shown to be inconsistent 

with the x-(C) in any class, we need not consider that mix again. 

For example, the linear molecule CO, belongs to the point group D,.,. If we wish to 

analyse the C=O stretching modes in this molecule then we can use the basis of the 

two bond vectors shown in Figure 5.25. There are two basis vectors, and so under the E 

operation of the reducible representation we must have a character of 2. Both vectors are 

on the axis of the molecule, and so any rotation around the C,, axis will have a character of 

2 also. Likewise, the vertical mirror planes in the group each contain the molecular axis, 

leading to a character of 2 again. The remaining operations in the group, i, S,,° or any 

C, axis, will exchange the basis vectors, giving a character of 0. The resulting reducible 

representation is given in Table 5.20. 

Figure 5.25 The Dx, molecule CO, showing a suitable basis for the analysis of the C—O 

stretching modes. 

Table 5.20 The reducible representation for the C—O stretch- 
ing modes of CO). 

Deke Wee eee eg ONCE) ie em ee 

r 2 2 or 2 0 0 fe 0 

Now the standard character table is shown in Table 5.21, and so we have to look for 
combinations of irreducible representations that correspond to T°. The first restriction is 
that the irreducible representations must give only two objects, because we have used 
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two basis vectors. This limits our choice to any two (including two the same) of the 5 

representations or a single I or A type — by leaving the subscripts and superscripts out at 

this point we are leaving our options open. 

Under the principal axis, the Il- or A-type representations give cosine functions of the 

angle of rotation. For our reducible representation, yr(C..) = 2, and so II- or A-type 

representations do not fit at all. 

The correct combination must be two ¥ representations. At this point, any of these 

would be allowed because they each have character | under 2C,,, in Table 5.21. However, 

under the ooa, class the &~ (both gerade and ungerade cases) have —1. This means that 

the inclusion of these in our linear combination will lead to a total character of less than 

the required 2. So the set of irreducible representations we seek can only contain &* types. 

Next, looking at the inversion centre column, in I. we find 0, and since gerade repre- 

sentations have character | under i and ungerade —1, the only possible combination of 

irreducible representations remaining 1s 

fez seeps (5.65) 

So, the stretching vibration consists of one gerade and one ungerade X~ representation. 

These are the linear molecule versions of the symmetric and unsymmetric stretch modes 

which were found for the O—H stretching modes of H,O. 

As a further example of the reduction procedure in groups containing a C., axis we will 

consider the symmetry labels for the 6p- and 5d-orbitals of the Au atom in the complex 

Au(CN), . This cyanide complex of Au* is important in gold production because it is 

used in the recovery of the metal ion from aqueous solution formed using mineral ores. It 

is another linear molecule belonging to the D.., point group, as illustrated in Figure 5.26. 

Figure 5.26 The D,, complex Au(CN))_ showing the reference axis system and symmetry 
axes used in the main text. 

To derive the symmetry labels we will follow the same procedure as introduced earlier: 
forming the transformed p-orbital functions based on the x, y, z basis and then using the 
results to generate the transformed d-orbitals. 

Table 5.22 summarizes the transformations of the x, y, z vectors for one example of 
an operation from each class of the D.., point group and Table 5.23 gives the resultant 
characters. Under E we must have 3, because the identity operator simply gives a count of 
the number of objects in the representation. 

A rotation by ® degrees around the principal C,, will not change the p. orbital, as this 
is aligned with the axis. However, the p, and p, orbitals are perpendicular to the axis, and 
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Table 5.22 The transformations of the x, y, z basis for the central atom ina Doh Complex for 
an example operation from each class. 

SOE er me ay (XZ) i a ee ON 

x x x cos(®)—ysin(d)  ... x = CCN) = SIMO) gs x 
y y xsin(®)+ycos(®) ... =V —y xsin(®)+ycos(®) ... = 
Z Zee Z =—Z SZ =F 

these are rotated so that they make an angle ® with their original direction. As we saw in 

Section 4.7, this means that the character for each of the p, and p, orbitals will be cos(®), 

and so the total character for the p-orbital set is 1 + 2 cos( ®). | 

For the vertical reflection plane we can choose any operation from the infinite set; it is 

convenient to pick a plane containing either X or Y. Taking the XZ plane reflection will not 

change either p, or p,, but p, will be reversed, so we have a total character of 1. 

The inversion centre reverses all three p-orbitals, and so we assign a character of —3. 

The improper rotation affects the p, and p, orbitals in an identical fashion to the simple 

rotation, but additionally p, is reversed by the reflection through the horizontal plane, i.e. 

the required character 1s —1 + 2 cos( ®). 

Finally, we can choose any axis perpendicular to the principal axis as an example C; 

symmetry element. Taking the X axis, the p, orbital will not be affected by the rotation, 

but both p, and p-, will be reversed, giving a total character of —1. 

So we have arrived at a reducible representation for the p-orbital set which is summa- 

rized of Table 5.23. There is no immediate match with any of the standard representations, 

and so this must be a reducible representation. 

Table 5.23 The reducible representation derived for the p-orbitals of the central atom 
in a Dx», Complex. 

De oh pee een 25° ee 
rip) | 3 1+2cos®) ... 1 See oe 

Now we will consider each class of operations to narrow down the possible standard 

irreducible representations that can be present until we arrive at only one option. The 3 

under the E class reminds us that there are three orbitals being represented, and so our 

combination must consist of either three D-type representations or one & and one doubly 

degenerate representation. Under the inversion centre 7 the total character is —3, and so 

all three orbitals must be reversed by the inversion. This means that any irreducible repre- 

sentation present must have ungerade symmetry; if we assigned a gerade representation, 

then it would contribute positively under i. This eliminates all gerade representations from 

further consideration. 
Under the 2C,,° class we have 1 + 2 cos( ®); the cosine term can only come from the 

Il, representation because the © representations give +1 or —1 in this class, while the A 

representations have cosines of 2®. So, two of the orbitals fall into the Il, representation; 

we know that these are the p, and p, orbitals from our derivation of the reducible represen- 

tation. The remaining irreducible representation for p, must be of & type. The two possible 
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alternatives, ©,* or , , each give the required | under 2C...°. However, they differ under 

the o, class; here, the I, representation has a 0 and so the reducible representation value 

of 1 can only come about by assigning p- to D,*. So we have assigned the irreducible 

representations for each of the p-orbitals unambiguously. 

Problem 5.9: Check that the sum I, + ¥,* gives the correct character for the reducible 

representation of the p-orbitals (Table 5.23) in all classes of the D,., group. 

We can now find the transformed d-orbitals for each operation using the results for the 

x, y, z basis from Table 5.22. For the C..° and S,,° a little algebra is required; for example: 

x'y = [xcos() — ysin(®) | [xsin(@) + ycos(®) | 

= (x° — y’) (cos (®) sin (®)) + xy (cos* (®) — sin* (®)) (5.66) 

= (; (x7 — )) sin (2®) + xy cos (2®) 

in which we have made use of the trigonometric identities 

sin(2®) = 2 sin(®) cos (®) (5.67) 

and 

cos(2®) = cos*(®) — sin’*(®) (5.68) 

Note that in Equation (5.66) the factor of 1/2 has been bracketed with x° — y” as this is the 

required normalization factor for mixing this orbital with xy (see Equations (5.30)). The 

relation holds for both operations, because the only difference between them is that S,,° 

reverses the z basis vector, and this will not affect d,,. 

Similarly, for the d.2 orbital under C,,° we find 

» > 

2(zP —(x YP —(y'P = 22 — [xcos () — ysin(®)] — [xsin(®) + ycos(®)] (5.69) 

We would expect the d.2 orbital to be unaffected by the rotation as it is aligned with the 

principal axis. To see this from the algebra we need to expand the two brackets on the 

right-hand side of Equation (5.69): 

[x cos (®) — ysin (©)] = x° cos’ (®) + y’ sin’ (®) — 2xy cos (®) sin (®) (5.70) 

and 

[x sin (®) + ycos (®) li = x sin’ (®) + y’ cos* (®) + 2xy cos (®) sin( ®) (Sa) 
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If we remember the identity 

cos’ () + sin? (®) = 1 (5.72) 

then Equations (5.70) and (5.71) add to give 

x+y (5.73) 

and so it has been shown that 

ay 

Az) Ax) (= 27 xe ay (5.74) 

as required. 

The transformed functions in Table 5.24 can each be obtained in this way. 

Problem 5.10: Confirm the transformed functions for the yz, xz and x* — y’ functions 
in Table 5.24 are correct. 

The data given in Table 5.24 allow us to assign the characters for each orbital func- 

tion, and these are laid out in Table 5.25. Inspection of the results for C,,° gives three 

alternatives: cos(2®), cos(®) and 1. Since these results occur for different irreducible rep- 

resentations in the standard D,., character table, we have only summed characters for 

functions with the same response to C,,° in the I rows of the table. Comparison with the 

standard character table shows we have recovered 

RG = yi An ee ee (5.75) 

These assignments agree with the rightmost column of the character table. Note that we 

have found only gerade symmetry labels, since d-orbitals are unaffected by inversion. In 

this case the d.2 orbital is most strongly interacting with the ligands, followed by those 

of Il, symmetry, with A, the lowest in energy according to ligand field theory. The corre- 

sponding energy diagram is shown in Figure 5.27. One point to note about the CN ligands 

is that the z-antibonding orbital on the ligand will be able to interact with the IT, orbitals 

on the metal. This kind of interaction is not well treated in ligand field theory, as the orbital 

structure of the ligands is ignored. 
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Table 5.25 The characters derived for the d-orbital functions for the central atom in a ID je 
complex. 

Dek E Ce ma oy (XZ) / Cee ah C,(X) 

Xy | cos(2 ®) Ants —1 | cos(2 ®) Nee =| 

WE | cos(®) Bye 1 | cos(®) Ree —] 

yz 1 cos(®) are: —1 1 cos(®) 1 

x —y? 1 cos(2®) 1 1 cos(2@) 1 

Ze 1 1 1 1 1 1 

T'(xy, x? — y*) 2) 2 cos(2®) ne 0 2 2 cos(2®@) 0 

INE, Wa) A 2 cos(®) 0) 2D 2 cos(®) 0 

T(z’) 1 1 1 1 1 1 

Figure 5.27 The ligand-field-derived energy diagram for the central metal atom d-orbital 
system of a Ds, complex. 

5.10 Summary 

In this chapter we have covered the use of representations in symmetry analysis. The 

general approach to problems in symmetry can be written out as follows. 

1. Decide on the point group of the molecule using the symmetry operations the atoms 

obey. 

2. Decide on a basis for the analysis, using a suitable set of atom displacement vectors 

for vibrational modes or sets of atomic orbital (AO) functions for the description of 
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electronic states. The complete basis for vibrational modes is a set of three vectors on 

each atom, but sometimes a simpler basis will give information on specific vibrations. 

3. Generate the reducible representation of the basis by inspection using example opera- 

tions from each class in the point group. 

4. Reduce the representation to its components using the reduction formula: 

1 
n= h 28x Xi ©) 

where n; is the number of times the ith irreducible representation occurs in the reducible 

representation I", g, is the number of operations in the Cth class and h is the order of 

the point group. The character x;(C) is that found for the reducible representation for 

the chosen operation from class C and x;(C) is the character from the character table 

for the irreducible representation i in class C. 

5. If a vibrational analysis using 3N displacement vectors is being carried out, then the 

representations that correspond to simple molecular translation or rotation must now 

be removed. In a character table, the irreducible representations for these degrees of 

freedom are indicated in the rightmost columns with the symbols x, y, z and R,, R,, R:. 

6. For the AOs at a central atom in a complex or molecule with a given geometry, the 

reducible representation for the p-orbitals can be constructed from a basis of x, y, z vec- 

tors initially aligned with the reference directions. For the d-orbitals, the five functions 

after a given transformation can be generated using products of the transformed x, y, z 

vectors. Characters are then assigned by direct inspection where possible, or by finding 

a linear combination of the original d-orbital set which reproduces the transformed 

function. 

5.11 Self-Test Questions 

1. In Section 5.6 we identified a third vibrational mode for H,O with the A, symmetry 

representation. Draw a diagram showing the atom movements in this third mode and 
show that the set of vectors you use transforms correctly with each operation in the 
group. 

2. Using the relationships listed as Properties 4 and 5, show: 

(a) the B, representation in group Cy is orthogonal to all the other representations in 
the group and gives a sum of squares which is the group order; 

(b) each of the gerade representations in Cy, is orthogonal to all of the ungerade 
representations. 

3. If one of the Cl” ligands in the [CoCl,]>> complex were replaced with F~ the point 
group would change to C;,. Derive the irreducible representations for the p- and 
d-orbitals in this point group. What effect has the substitution had on the degree of 
degeneracy in the metal orbitals? 



6 

Applications in Vibrational 
Spectroscopy 

6.1 Introduction 

The Horsehead Nebula, shown in Figure 6.1a, is one of the most spectacular images 

of astronomy. The nebula is roughly 1500 light years distant and can be found in the 

constellation of Orion. Images of the quality shown here are only really possible using 

powerful telescopes, but the whole nebula can be seen with the naked eye as the central 

star in Orion’s sword. The dark molecular cloud that forms the horse’s head is visible only 

because its obscuring dust is silhouetted against a bright emission region of the nebula. 

The light from the emission region and of stars that are behind it as viewed from Earth 

must pass through the dust cloud. Any molecular species in the nebula will absorb light 

at characteristic frequencies, just like samples in a laboratory spectrometer. So we know 

the molecular composition of nebulae such as this one from the spectral analysis of light 

passing through them. The vibrational spectra of molecules in the cloud are identical to 

reference samples on Earth, and so is the symmetry of their vibrations. The spectra shown 

in Figure 6.1b are a fingerprint for the vibrational excitation of H, when this molecule is 

already above the vibrational ground state. So we not only know that H, is present, but 

that there is intense radiation in the area capable of exciting the diatomic molecule. This 

conclusion hinges on an understanding of symmetry. In this chapter we will find out how 

symmetry is used in the interpretation of molecular vibrational spectra. 

The chapter is roughly divided into three sections. In the first (Sections 6.2 and 6.3) we 

look at the background theory of vibrational spectroscopy, including the selection rules for 

IR and Raman spectroscopy. We can already use reducible representations and the reduc- 

tion formula to determine the symmetry labels for the vibrational modes of any molecule. 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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Relative Intensity 

0.0 - HD 37903 

1270 1272 1274 1276 

Wavelength (A) 

Figure 6.1 (a) The Horsehead Nebula in the constellation of Orion. (b) Hubble Space 
Telescope Imaging Spectrograph (STIS) observations of HD 37903 showing vibrational fine 

structure of the UV region of the spectrum. The observed lines are evidence of UV absorption 
by vibrationally excited H,. (Source: Meyer DM, Lauroesch JT, Sofia UJ, Draine BT, Bertoldi F 
(2001) The Astrophysical Journal 553: L59-L62. Reproduced by permission of the AAS.) 
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The selection rules allow us to determine the number of bands to expect in vibrational spec- 
tra, since only vibrations belonging to certain irreducible representations lead to bands in 
the spectra. 

In the second part (Sections 6.4-6.7) we will consider what the vibrations belonging 
to a given irreducible representation ‘look like’. This involves the construction of linear 
combinations of the basis of atomic movements that are consistent with the characters of 

the irreducible representation. These combinations are known as symmetry adapted linear 

combinations (SALCs). SALCs are a general way to visualize the molecular properties 

that correspond to the objects with the irreducible symmetries identified by the reduction 

formula. The method we shall use to obtain these SALCs is the projection operator, which 

is introduced in Section 6.6 and will also be employed in Chapter 7 to find molecular 
orbitals. 

Finally, in Section 6.8, examples of vibrational analysis and its use in differentiating 

molecular isomers will be given. 

6.2 Selection Rules 

Selection rules are used in spectroscopy to determine whether a transition between two 

energy states within a molecule will show up in its spectrum. To be seen the transition has 

to be able to couple to the light which is used as a probe. This coupling is controlled by 

integrals over the initial and final states for the transition and the appropriate molecular 

property for the type of spectroscopy. 

IR absorption occurs when the transition between two vibrational states of a molecule 

has an energy matching the photon energy of the probe radiation and the transition causes a 

change in the molecular dipole moment. If there is no change in molecular dipole moment 

during the vibration, then there will be no absorption and we say that the mode is not 

allowed by the selection rules. 

Raman spectroscopy uses higher energy probe radiation and the spectrum is caused by 

the link between the vibrational and electronic states of the molecule through molecular 

polarizability. If the vibration causes no change in polarizability then the selection rule 

will not be satisfied and no spectral signature is observed for that vibration. 

Symmetry controls the yes/no decision of the selection rules, determining which vibra- 

tions will lead to absorption and, hence, the number of bands to expect. However, 

symmetry does not allow the calculation of the band position (frequency) or intensity, 

as these are controlled by physical properties of a molecule such as bond strengths and the 

masses of the constituent atoms. 

In the next two sections we consider the selection rules for IR and Raman spectroscopies 

in more detail. 

6.2.1 Infrared Spectroscopy 

When the irreducible representations for the vibrations of a molecule have been identified, 

the collective motions of the atoms that constitute each mode can be thought of as a simple 

oscillator to be described with quantum mechanics. As the molecule vibrates in a given 

mode it moves through a potential energy surface that is set by the chemical bonds of 

the system. For small displacements, which are all that occur at room temperature, we 
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usually assume that the potential energy surface is harmonic, i.e. the change of energy as 

the molecule vibrates is proportional to the square of the displacement from the minimum 

energy point. ow 

To picture this we can define a coordinate q for any vibrational state which is a sin- 

gle value to indicate how far from equilibrium the oscillation has moved. An example 

for the symmetric stretch in H,O is shown in Figure 6.2. Here, the vibrational motion 

involves the H atoms moving from/toward the O atom in phase with one another while the 

O atom moves only along the C) axis. The idea of the normal mode coordinate q is that it 

describes where in this collective motion the atoms are at any given time. In the harmonic 

approximation the potential energy for this vibrational motion is proportional to q’. 

Figure 6.2. The normal mode coordinate for the symmetric stretch mode (A,) of water. 

The illustrations in Figure 6.2 show that for g negative, to the left of the minumum in 

the potential energy curve, the H atoms are moving toward the O, while for g positive they 

are moving away. 

Each mode has a set of energy levels that form a regular ladder of states, with energies 

E,, given by 

a = (n + t)hv (6.1) 

Here, n is a quantum number taking values 0, 1, 2 . . . . etc., the vibrational frequency, v, is 

ins ' units of the mode and h is the Planck constant (6.626 x 10~** Js). The lowest energy 

state (n =() and the first excited state (n = 1) differ in energy and in the amplitude of the 

oscillation. In the higher energy state the atoms can move further from the minimum point 

before bond strain forces cause them to return. 
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In Appendix 6 it is shown that the simple form of Equation 6.1 is a direct consequence of 
the harmonic approximation, and anharmonic corrections are required for the most accu- 
rate spectroscopic analysis. However, the harmonic model is perfectly adequate for most 
cases in which spectroscopy is used to identify polyatomic molecules, and so we will 
continue to use it here. 

Any given molecule in isolation will have a quantum number n for each of its vibrational 
modes and will remain in the same state indefinitely, unless some external factor intervenes 
so these vibrational states are refered to as stationary states. To move between stationary 

states we must supply energy to the system, and one way to do this is by exposing the 

molecule to light. The light wave used as a probe in a spectrometer can be thought of as a 

stream of photons each with an energy E,, given by 

Eon = Avon (6.2) 

where v,;, (s~') is the frequency of the oscillating electromagnetic field that constitutes the 

light beam. 

A photon can be absorbed if the photon energy is exactly right to excite the oscillator 

into a higher vibrational level, as shown schematically in Figure 6.2. This is simply an 

example of the conservation of energy; the photon is being lost by exciting the vibration 

and so the photon energy must exactly match the difference in energy of the two vibrational 

states: 

En —(n- lh (n-ne 

=hv (6.3) 

If the photon is absorbed, then the light intensity at the frequency corresponding to 

the molecular vibration will be reduced, which is observed as an absorption band in the 

spectrum. In Appendix 6 we show that, within the harmonic approximation, absorption 

from state n to state n + 1 can occur, but not to higher energy states. For a molecular 

vibration in the ground state (n=O), absorption may occur to the first excited state (subject 

to the selection rules discussed below) when the photon energy matches the vibration 

energy. However, even if the light frequency is 2v, the n = 0 to n = 2 will not be seen. 

In practice, absorptions at frequencies near 2v, referred to as overtones, can sometimes 

be observed because molecular bonds are not perfectly harmonic. The absorption due to 

overtones is generally weaker than that at v. 

Matching of the photon energy to the vibrational transition is not the only requirement 

for an absorption to be seen. The light must also be able to cause the transition by coupling 

the ground and excited states. The strongest effect that can give a transition is the inter- 

action of the electric field of the light wave and the change in molecular dipole moment 

caused by the vibration of the molecule. An outline of the physics behind this coupling 

can be found in Appendix 6, but the key result from a symmetry point of view is that the 

strength of the coupling depends on the transition dipole moment Mo), given by 

Mo. = / Wilko dt (6.4) 
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where jx is the dipole moment operator, (ex, ey, ez); this is a vector because the dipole 

moment has X, Y and Z components. In the integrand, Wo is the initial stationary state, 

which we take to be the ground state (n = 0), and y, the excited state. Strictly, we should 

use the complex conjugate of y,, but Appendix 6 shows that the harmonic oscillator wave- 

functions are real (as s/—1 does not appear) and so the function and its complex conjugate 

are the same. 

In Equation (6.4) the volume of an infinitesimal region required for the integration is 

written dr. 

The integral for the transition dipole moment Mp; is taken from —oo to +00, 1.€. over 

all space. This ensures that we capture all possible positions of the atoms and associ- 

ated electron density during the vibration. For the selection rules, we will never have 

to evaluate Mo,, just find out if it has to be zero by symmetry or not. No matter what 

the point group of the molecule, if the integrand in Mo; belongs to anything other than 

the totally symmetric representation (usually A,) then the integral will be zero. In any 

other irreducible representations there will be some operation that reverses the sign of 

the integrand, and this automatically implies the integral will be zero. For example, 

if the irreducible representation of the integrand has a —1 character for a reflection, 

then the two ‘halves’ of the function on either side of the corresponding mirror plane 

will have opposite signs and so the integration of one half will cancel the other. An 

example function with B, symmetry for the C,, point group is shown in Figure 6.3. 

An integration over all space implies the range y = —oo to y = oo and clearly 

the result from the left- and right-hand sides of the o,(XZ) plane will cancel for a B; 

function. 

Figure 6.3 An example of a function with the correct behaviour for the o,(XZ) plane in the 
B, irreducible representation of the Co, point group. 
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The IR selection rule depends on the fact that the transition dipole moment integral 

must be nonzero in order to observe the transition as an IR absorption band. This means 

that the integrand for Mp; must have A, symmetry. 

To use this definition, we require the symmetry of the integrand yy; zw . As explained in 

Appendix 6, the ground state will always belong to the A, irreducible representation. The 

first excited state vibration will have the same irreducible representation as the underlying 

vibrational motion, described by the normal coordinate q. 

The dipole moment operator has three components with the same symmetry as the sim- 

ple x, y and z functions, and these are usually noted in the right-hand columns of character 

tables. 

To identify those vibrations which cannot have a finite transition dipole moment and 

so exclude them from the assignment of spectroscopic bands, we will use the idea of 

direct products (introduced in Chapter 4) to look at the symmetry of the integrand in 

Equation (6.4) for a few examples. 

H,O, Cr, 

We have already found that the symmetric vibration of H,O, illustrated in Figure 6.2, 

belongs to the A, irreducible representation. The symmetry representations for the com- 

ponents of the dipole operator are the same as x,y and z from the C,, character table 

in Appendix 12 the right-hand columns tell us that these belong to the B,,B, and A, 

irreducible representations. The three components of the dipole operator each give an 

integrand; for the symmetric stretch these are 

Wii Wo => A x Bi XA, = B, 

W, Myo => Ai x By x A; = By (6.5) 

Wi beWo => Ay X Ay X AL = At 

To obtain these products, we multiply, class by class, the characters of the irreducible 

representations and then look for a match between the result and a row of the charac- 

ter table. In these examples, A, has character | for all classes, and so the solutions are 

straightforward. 

Equation (6.5) says that, to get the y-component of Mo,, we have to integrate a function 

with B, symmetry from —oo to +00, which Figure 6.3 shows must give zero because 

the function will have opposite signs either side of the o,(XZ). Similarly, the B integrand 

generated by ju, has a -1 character under o,/(YZ) and so will lead to a zero integral. For the 

H,O symmetric stretch, only j1, gives an A, integrand. 

This is sufficient for us to conclude that the symmetric stretch will lead to an absorption 

band and also that this absorption is due to a transition dipole moment aligned with the 

Z-axis in the standard symmetry setting. The physical interpretation of this result can be 

understood from a diagram of H,O in the standard setting, such as Figure 6.3. As O is more 

electronegative than H, both O—H bonds will have local dipole moments pointing from O 

toward H. In the A, vibration the O—H bonds move in phase, and so the ¥-components of 

these dipoles, which are in opposite directions to one another, always cancel out. However, 



170 Molecular Symmetry 

the Z-components are in the same direction, so we see a changing dipole moment aligned 

with the Z-axis in the A, vibration. 

The antisymmetric stretch mode of water has a B, irreducible representation, so now the 

three components of the integrand have the following symmetry: 

W bexWo = Br x B, x A; =A, 

Wi LyWo = B, x B, x A — A, (6.6) 

Wi MeWo = Br x A, xX A; = B, 

Here, the only direct product which gives an A, representation is jz,, and so we conclude 

that the antisymmetric stretch is an IR-active mode because the vibration has a changing 

dipole in the standard ¥-direction. 

Problem 6.1: The direct product required for the jz, component of the dipole in Equa- 

tion (6.6) is shown fully in Table 6.1. Check the other direct products in Equation (6.6) 

are correct. The fact that the characters of the A; representation are all 1 means that 

this acts like the number 1 in ordinary multiplication; it leaves the representation 

product unchanged. Accordingly, each product requires at most two representations to 

be multiplied. 

Table 6.1. The direct product for the 4. Component of 
Equation (6.6). 

Ly (Coy) oy (YZ) 

B, x B, <AV=A> 

Problem 6.2: Show that in a group containing the inversion centre the dipole moment 

components must have ungerade representations. Hence, demonstrate that Mo; must be 

zero for any gerade representation. 

Because the ground-state vibration always has A, symmetry, the triple product required 

for the selection rules only depends on the symmetry of the vibrational mode and the 

related axis. Any product of a simple nondegenerate irreducible representation with 

itself will give A,, and any product of two different irreducible representations cannot 

give A,. So the selection rule for choosing IR-active modes can be restated simply as 

follows: 

To be IR active a vibrational mode must belong to an irreducible representation which 

matches that of one of the Cartesian axes, x, y or z. 
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[Fe(CO)s ], Dy 

The statement of the selection rules given above also applies to degenerate modes of vibra- 
tion. For example in Section 5.7 we show that the C=O vibrational modes of the D3, 
complex [Fe(CO)s] have the irreducible representations: 

2A, +E +A,” (6.7) 

Inspection of the character table in Appendix 12 shows that the simplified selection rule 
gives the A,” mode as IR active for a transition dipole moment in the Z-direction and the E’ 
doubly degenerate modes as both active: one for a transition dipole moment along X and 
the other along Y. The two A,’ modes would not give rise to absorption and so would not 
be seen as bands in the IR spectrum. 

To check that the £’ representation conforms to the earlier statement of the selection 

rule we need to form the products for the integrands: 

Wil.Vo WibyYo > EXE x A, 

Will.Wo => Ex AZ x A, (6.8) 

We have grouped the jz, and 1, cases together because they form a degenerate pair within 

the E’ representation. The first direct product is set out in Table 6.2. Under the identity 

operator we have generated the character 4; since no irreducible representation contains 4 

under this column, this product must be reducible. In Table 6.3, the reduction formula is 

applied in the normal way to obtain 

Boek = AY eA (6.9) 

Table 6.2 The direct product of E' with itself in point group D3p. 

Mx, My (D3) | le 2C;3 3G Oh 253 30, 

fe 2, —1 0 D —] 0 

je je = | 4 1 0 4 i O 

Table 6.3 Application of the reduction formula to the E' x E' direct 

product from Dy. 
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This reduction procedure shows that the E’ x E’ product contains the Aj’ representation, 

i.e. the totally symmetric representation (all characters equal to 1) in D3,. So we can say 

that both of the vibrations in E’ will be IR active, but because they are degenerate they will 

occur at exactly the same frequency, giving rise to only one spectral band. 

\ 
\ 

Problem 6.3: By forming the direct product E’ x Aj, show that the E’ vibrational modes 

will not give a transition dipole moment in the Z-direction for the [Fe(CO);] carbonyl 

stretching modes. 

jell Cae 

Diatomic molecules, such as HF, are having only a single vibrational mode. HF belongs 

to the point group C,.,, and in the standard symmetry the axis of the molecule is set along 

the Z-axis. For the single bond stretch mode the two atoms move out of phase with one 

another and we can derive the irreducible representation by inspection with reference to 

Figure 6.4. 

Figure 6.4 The bond stretch mode of a diatomic molecule such as HF. 

The two classes of operation in this group, other than the identity, are 2C x, which is 

rotation around the molecular axis, and ooo,, reflection through any plane containing the 

two atoms (see Appendix 12). Neither of these sets of operations would change the appear- 

ance of the stretching mode, and so we conclude that it is fully symmetric in the group with 

irreducible representation ©*. This symbol is part of the special nomenclature for linear 

molecules and is equivalent to A; in other groups, having character 1| for all classes of 

operations. From the character table we see that this will also be the representation for the 

Z-component of the transition dipole operator, and so the mode is confirmed as IR active. 

A, Dh 

If we carry out the same analysis on a homonuclear diatomic, such as Hp, then additional 

operations are present because the molecule is now in D,, and so is unaltered if the two 

atoms swap over. This introduces the inversion centre 7 at the middle of the bond and the 

improper rotation class 2S..°. However, the vibration remains totally symmetric, so that 

for H, the stretching mode belongs to the irreducible representation ©,’ . 

Problem 6.2 shows that the components of the dipole operator in a group containing 

the inversion centre will always belong to ungerade representations. This is an important 

result which leads to the following statement: 

In point groups containing the inversion centre, only vibrations which belong to 

ungerade irreducible representations can be IR active. 
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An immediate consequence is that the vibration of a homonuclear diatomic will not be 
IR active. 

6.2.2 Infrared Absorption and the Greenhouse Gases 

IR absorption by gases in the atmosphere is thought to be responsible for climatic warm- 
ing effects. Sunlight in the visible and ultraviolet (UV) parts of the spectrum that arrives at 

the surface of the Earth is absorbed and partially re-emitted in the IR region. The Earth’s 

atmosphere is roughly 78% nitrogen, 21% oxygen, 0.93% argon, 0.04% carbon dioxide 

(CO), along with small amounts of methane (CH,) and water vapour. Nitrogen and oxy- 

gen are present as homonuclear diatomic molecules and so, as we have seen, their bond 

vibrations will not absorb IR radiation. The atomic argon component is similarly benign 

and so if only these three gases were present the heat radiated by the Earth would escape 

back into space. 

However, CO, CH, and water all have IR-active vibrations. Hence, these relatively 

minor constituents of the atmosphere will absorb IR radiation, trapping some of the radi- 

ated energy and warming the planet. With these gases present the atmosphere acts in a 

similar way to the glass of a greenhouse: visible wavelength radiation can pass through 

the glass into the greenhouse where it is absorbed by the plants and soil and is partially 

re-emitted at IR wavelengths. Glass is practically opaque in the IR and so the re-emitted 

energy is trapped, warming the interior of the greenhouse. The absorption of energy by 

IR-active vibrations of atmospheric components causes heating in a similar way. 

To some extent the Earth’s greenhouse effect is a good thing; the surface temperature of 

the moon varies between —233 and +123°C. The moon’s lack of an atmosphere means 

that all the radiation from the sun reaches the surface during the daytime and heat emitted 

by the surface is rapidly lost to space during the night. On the Earth these extremes are 

tempered by the atmosphere with the ‘greenhouse’ gases helping to hold the heat radi- 

ated by the planet’s surface through the night-time. However, since the amount of heat 

retained by the atmosphere is dependent on the concentration of relatively minor compo- 

nents, increases in the average amounts of CO,, CH, and other IR-active molecular species 

will lead to additional warming of the planet. 

Hp O,” C,, 

We can now show that the three main greenhouse gases are IR active as a result of their 

molecular symmetry. For the case of water, we have already found in Section 5.6 that the 

irreducible representations are 

Dy) =2A eB, (6.10) 

The two A; modes are the symmetric stretch and bending motions and the B, vibration is 

the asymmetric stretch. By reference to the standard character table in Appendix 12 for 

Coy, we find that all three modes are IR active, because Z belongs to A; and y to By. 

CO>, Doon 

CO, is a linear triatomic molecule belonging to the point group D.». A basis which gives 

three degrees of freedom to each atom is shown in Figure 6.5a. This basis can be split into 
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(a) 

2(O}) 

x’ (O;) 

Figure 6.5 (a) The full basis for the vibrational modes of CO, with three degrees of freedom 
per atom. (b) The effect of a C..” operation on the x and y components of the basis. 

two sets according to their response to a C,,° rotation. The three z vectors are aligned with 

the principal axis, and so each has a character | for this operation. However, the x and 

y vectors rotate through an angle ® (Figure 6.5b) and so, as we saw in Section 4.7, they 

each have a character of cos(®). It makes sense to form one reducible representation for 

the three z vectors and one for the six x and y vectors. The full set of characters for these 

two reducible representations is given in Table 6.4. 

Table 6.4 The reducible representations for the z and (x, y) vectors of CO). 

E pM rete ae ooo, i 2S. oN 0oC> 

3 3 ae 3 —] —] oh: —1 

6 6 cos(@) rive O —2 2 cos(®) abs O 

Problem 6.4: Confirm the character assignments in Table 6.4 using the basis shown in 

Figure 6.5a. Remember that the improper S,,° rotation swaps the two O atoms over, 

whereas the C,,° rotation does not. 
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Application of the reduction formula to the groups of infinite order (D,., and C..,) 

is problematic because the order of these groups h = oo. In this book we have used 

an approach based on the equation from which the reduction formula was obtained in 

Section 5.5: 
Kel C=) KCC) (6.11) 

4 

This equation says that any reducible representation can be constructed, character by char- 

acter, from the irreducible representations of the group. This can be used to deduce the 

irreducible representations present by working through the reducible character set and 

eliminating combinations that are logically impossible. The process for the two reducible 

representations for the vibrations of CO, is laid out in Figures 6.6 and 6.7, along with 

checks that the irreducible representations determined give the correct character sums. 

No ‘cos’ terms, 

so must be 

from & reps Must be from 

3 x (+1), so only 

X* reps possible Must be from 2 x (—1) + 1, 

so have T(z) = 22,"+ 2," 

Des Pe 20. eg, i 25S. 20 

zy, 1 1 or a! 1 

a l 1 1 -1 -l -1 

Dee or SU nt SSO Me ip Aes el Ee) 

Figure 6.6 The reduction procedure for T(z) of the z vectors of CO}. 

6 6cos(®) ... O —2 2cos(®) 

aan Six basis vectors can 

only give 6 cos(®) if we ; 

only have II reps. These Must be from 2 x (—2) 
are the doubly + 2, so have 
degenerate reps, so we T(x, y) = 211, + IB 

have three irreducible 

reps to find 

Duy Weel Wacker eae a5¢ 

I, D2 Cos(@)) 0. 2 -2cos(®) 

Il, 2 2cos(®) .. O -2 2 cos(®) 

PMT I, 6 6cos@) .. O —2 2 cos(®) 

Figure 6.7 The reduction procedure for (x, y) of the (x, y) vectors of COp. 
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By this elimination procedure, the reducible representations are found to be: 

l(j=20,*°+5,* and I(x,y)=2T,+ ll, (6.12) 

A full basis of three vectors per atom has been used, and so some of these irreducible 

representations will be for simple motion of the whole molecule and its’ rotation. The 

character table shows that movement in x and y belongs to IT,. This is a doubly degenerate 

representation, so that only one instance need be removed from I(x, y). 

Similarly, rotations about X and Y axes are degenerate in I,. Note that Rz, the symbol 

for rotation around Z, has not appeared, for any linear molecule rotation around the molec- 

ular axis has no effect on the atom coordinates and so is not a degree of freedom for the 

molecule. 

Motion in the Z-direction, on the other hand, is a degree of freedom and has the 

representation ©,*. So we are left with the vibrations 

i= ae andi (a3) ame (6.13) 

So, for this linear molecule, we have found four vibrational modes. &,” and x, are the 

symmetric and antisymmetric stretch modes, similar to those found for H,O. There are 

also two bending modes, which are degenerate with one another, bending in the XZ plane 

and bending in the YZ plane. The character table indicates that the antisymmetric stretch 

and the bending modes are IR active, and so CO, can absorb IR radiation from the surface 

of the Earth. 

In this analysis of the linear triatomic CO, we have found one more vibration than was 

obtained for the nonlinear H,O case. This is due to the loss of the rotational degree of 

freedom around the molecular axis. Instead of the rotation and single bending mode for 

H,O, we find two degenerate bending modes for the linear triatomic case. For a linear 

molecule containing N atoms there will always be 3N — 5 vibrational modes, one more 

than the 3N — 6 for the nonlinear case. 

Problem 6.5: The other greenhouse gas mentioned above is CH,, which belongs to 

the 7, point group. Using the basis shown in Figure 6.8, demonstrate that the C—H 

stretching modes of this molecule have the reducible representation shown: 

\WW 
ean, 

H; Hy y Si 

Figure 6.8 A basis of the four C—H bonds for obtaining the reducible representation for the 
stretching modes of CH,. The corresponding reducible representation is shown to the right. 
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Then apply the reduction formula to show that 

If => A + T> 

This basis is the four vectors along the C—H bonds and so only vibrational modes due 
to C—H stretches will be found. This means there is no need to remove translations or 
rotations after the reduction procedure. 

In Problem 6.5 you found that the triply degenerate 7, modes are contained in the 

reducible representation for the C—H stretches. In the standard character table this repre- 

sentation has all three of x, y, z, indicating that IR absorption due to the C—H stretching 

mode will be possible. 

6.2.3 Interstellar H, 

In Section 6.2.1 we pointed out that the vibration of a homonuclear diatomic will not be 

IR active. So where does this leave the spectral bands shown in Figure 6.1 for H, from the 

observations of the Horsehead Nebula in the introduction to this chapter? 

It should be remembered that most of the discussion in this chapter is aimed at laboratory 

analysis under ‘normal’ conditions. We assume that the selection rules are to be applied for 

molecules initially in the ground vibrational state in an IR spectrometer, so that Mo, is the 

important coupling factor and the symmetry of the initial state of the vibration excited by 

the IR radiation is always totally symmetric. This has led to the simple selection rule that 

a vibration must have a symmetry representation that matches one of the dipole moment 

operator components to be IR active. 

The H, bands observed in the interstellar spectra are actually features of excitation from 

the electronic ground state for which the affect of vibrations can be seen in the fine struc- 

ture. The primary excitation is electronic rather than vibrational, and so a different set of 

selection rules will apply. The origin of vibrational fine structure can be understood in 

terms of the Franck—Condon approach to electronic excitations discussed in Appendix 9. 

The spectra shown in Figure 6.1 require 14 excited vibrational states of the ground 

electronic state to be taken into account to explain all the fine structure that is seen. 

The researchers analysing the spectra conclude that H, in this interstellar region is being 

formed on dust particles and then dissociated by intense UV radiation. So the spectra have 

yielded information on the conditions in this region of space, the presence of dust and the 

composition of the interstellar gas in chemical terms. 

The vibrational fine structure of electronic transitions is also responsible for Raman 

spectra used in the laboratory. In the next section we discuss the appropriate selection 

tules for this particular analytical tool. 

6.2.4 Raman Spectroscopy 

Raman spectroscopy probes the vibrational states of a molecule in a very different way 

to IR. The photon energy used is much higher (in the visible or UV part of the spectrum) 

and so causes an electronic rather than vibrational excitation. The light source will be 
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monochromatic, typically a laser, so that the probe frequency v, is set by the experimenter. 

As light passes through the sample, a small fraction (typically 1/1000th) of the inci- 

dent beam will be scattered by interaction with the molecular species present. In Raman 

spectroscopy, the scattered light is sampled and its frequency compared with the probe 

frequency. 

The ability of Raman spectroscopy to give information on the vibrational states of a 

molecule depends on the role of the vibrational states during the relaxation processes that 

occur during the scattering event. We will see in the rest of this section that the energy of 

the scattered photon can differ from that of the incident radiation by an amount linked to 

the energy of the vibrational states of the molecule. In Raman spectroscopy, the measured 

frequency differences correspond to the frequencies of the vibrations of the molecules. 

Of course, not all vibrational modes will be observed since there is a selection rule that 

controls which modes of a molecule are Raman active. 

Electronic Excitation and Molecular Structure 

The scattering of light does not require an electronic transition between electronic energy 

levels to occur, so that the incident light frequency used in Raman spectroscopy need not 

coincide with the energy required for such a transition. If a tuneable laser is used, then the 

frequency can be adjusted to give an electronic transition for the molecule of interest; the 

technique is then referred to as resonance Raman and an increased scattering intensity is 

observed. In this discussion we will refer to the electronically excited state. In resonance 

Raman this will also be a stable electronic state of the molecule; in the more usual case of 

working, off-resonance excitation causes transition to a ‘virtual’ state that only exists for 

the short time of the scattering event. 

To begin, we consider the effect of an electronic excitation on the bonding forces 

between the atoms of a molecule. It is useful to first consider this as a simple diatomic. 

The bonding forces can be pictured by drawing a graph of the molecular energy versus 

bond length, which typically has the shape of a Morse curve, e.g. the lower curve of 

Figure 6.9a. The lowest energy point on the curve gives the optimum bond length for 

the molecule. 

Compressing the bond leads to a rapid increase in energy, as the nuclear repulsion 

between the two atom centres overrides the attraction between them due to the elec- 

tronic bonding states. The origin of these bonding states will be covered in more detail 

in Chapter 7. 

If the molecule is stretched relative to the Morse curve minimum point, the energy 
again rises as the atoms begin to separate and their bonding interactions weaken. At large 
separations the two atoms would not be bonding at all and the Morse curve goes to zero. 

So far, our description of the molecule depends only on the electronic states and the 
nuclear repulsion. Molecules are constantly vibrating due to thermal motion, and we 
have seen that this leads to vibrational states with energies quantized into levels given 
by Equation (6.1). In the Morse curves of Figure 6.9 this is represented by overlaying the 
vibrational states on the Morse curve as a series of horizontal lines. This representation 
was also used with the harmonic approximation to the Morse curve in Figure 6.2. 

We can now show how the vibrational states can affect relaxation after an electronic 
excitation. If an electron is excited by the absorption of a photon it will move to a higher 
electronic state (be that real or ‘virtual’ ) and so interact differently with the nuclei and other 
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Eon = Von 

Stokes radiation 

, 

Voh <Vph 

7 

AV=Vph—Vph=Yvib 

Figure 6.9 (a) Illustration of the Franck—Condon principle for a vertical excitation and 
re-emission at the same frequency; Rayleigh scattering. (b) The origin of Stokes lines in Raman 
bands: on relaxation, the emitted photon frequency differs from that absorbed by an amount 
dependent on the vibrational energy levels. In each diagram, the lower Morse curve represents 
the electronic ground state with vibrational levels included as a ladder of states. The excited 
state has a different Morse curve, being higher in energy and shifted to right to indicate longer 
bonds in the excited state. An electronic excitation is shown vertically on the diagram giving a 
vibrationally excited molecule in the higher electronic state. (Used with permission from the 
Journal of Chemical Education (1967) 44:1, page 4; Copyright 1967, Division of Chemical 
Education, Inc.) 
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electrons. This will alter the bonding forces discussed above; in particular, the optimum 

geometry will be different in the electronic excited state to that in the ground state. The 

excited state is higher in energy than the ground state, and so the excited-state Morse 

potential is drawn above the ground state in Figure 6.9a. 

The difference in energy levels for the electronic states is usually much greater than 

that for the molecular vibrational states; hence the need for higher energy photons for 

the excitation! This also means that the two Morse curves are separated further than the 

spacing between the vibrational energy levels they contain. We think of each electronic 

state as having a subset of vibrational states. To define the state of the molecule fully we 

would need to specify the electronic and the vibrational states. 

The effect of excitation on the geometry of the molecule is also represented in 

Figure 6.9a. In the electronic excited state the nuclei will be less strongly bound than 

the ground state, so that the optimum structure will tend to be expanded by the excitation. 

This is shown in the figure by placing the optimum of the potential in the excited state to 

the right of that in the ground state. 

The Absorption Process 

Since electrons have much lower mass than the nuclei of the molecule, the photon absorp- 

tion and electron transition can occur much faster than the molecular geometry can 

respond. Hence, the system will ‘arrive’ in the excited state at the ground-state molec- 

ular geometry, as shown by the vertical arrow in Figure 6.9a; indeed, such a process is 

often referred to as a vertical transition. The idea that electronic transitions occur without 

an initial change in the molecular geometry is called the Franck—Condon principle. 

A treatment of the excitation process based on a quantum model is given in Appendix 7. 

Here, we use the result that, because the excited state Morse curve is shifted to the right 

in Figure 6.9, the vertical transition implies that it is relatively easy for the molecule to 

have a vibrational state with a quantum number greater than zero in the electronic excited 

state. After absorption, the electronic structure will relax back to the ground state and 

must release the excess energy. The most probable process is to emit a single photon that 

allows relaxation directly back to the ground state. It is easy to see that this photon will 

have the same energy, and so the same frequency, as the absorbed photon (Figure 6.9a). 

This process is referred to as Rayleigh scattering, and the direction in which the photon is 

emitted is random. 

Raman spectroscopy depends on alternative relaxation processes to Rayleigh scattering, 

for which the energy released as a photon by a molecule during relaxation back to the 

ground state is different to the energy of the exciting photon. The difference occurs because 

emission is accompanied by a change in the vibrational state of the molecule. 

In Figure 6.9b we see that the molecule starts in an n = 0 vibrational state but is returned 
to the n = | state. The difference between the exciting photon energy and the photon emit- 
ted in the relaxation process is simply the difference in energy between the two vibrational 
levels; hv,. Here the subscript ‘v’ in v, is used to emphasize that this is the frequency of 
the molecular vibrational mode. In the illustration of Figure 6.9b the emitted photon is 
lower in energy than the exciting photon. This is observed as a band shifted downward in 
frequency relative to the Rayleigh scattered light; such processes are referred to as Stokes 
absorptions. 
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Eon =hVph 
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F Av= veh —Vph = Yvib 

Figure 6.10 Illustration of an absorption leading to an anti-Stokes Raman band. Note that 
the molecule is initially in a vibrationally excited state. 

Anti-Stokes absorptions can also occur; these give a band with higher frequency than 

the incident light source. However, this requires the system to have initially been in a 

vibrationally excited state, as shown in Figure 6.10. The thermal population of the excited 

vibrational states is usually low at normal laboratory temperatures, and so the anti-Stokes 

bands have lower intensity than the Stokes bands. 

Figure 6.11 shows the Raman spectrum for tetrachloromethane. The intensity of the 

central Rayleigh scattered peak is off the scale: the Raman peaks are only about 1/1000th 

of the scattered light intensity. For each Stokes peak to the left of the centre there is 

a corresponding anti-Stokes band to the right. The anti-Stokes bands have lesser inten- 

sity, reflecting the low number of molecules in the electronic ground state which are 

vibrationally excited. 

The Selection Rule for Raman Spectroscopy 

Figures 6.9 and 6.10 illustrate the energy balance for the Raman process but do not tell 

us about the selection rules that must be applied. To illustrate how the selection rules 

come about, a classical, non-quantum, picture is actually quite useful as a starting point. 

Figure 6.12 shows the classical picture of a molecule of urea as a light wave of UV 

frequency passes. 

The light wave causes oscillations in the electromagnetic field and the diagram illus- 

trates how the electrons respond to the electric component. In the quantum model we have 

used the Franck—Condon principle, which states that the electronic transition occurs on a 

much shorter timescale than any nuclear motion. Correspondingly, at the UV/visible fre- 

quency, in this classical approach the nuclei of the molecule are too slow to respond, but 

the electron density will move in sympathy with the frequency of the light. The charge den- 

sities illustrated in Figure 6.12 show this effect. In this illustration, when the phase of the 



182 Molecular Symmetry 

Light Frequency — cm"! 

22200 22600 23000 23400 

{i T Al if Se =e i ae ar ( | ae 

2 
5, & \ 
NN NN 

nN 

22720 

— 

22148 22176 

22938 
23156 

2 

Relative Intensity —> 
23397 

1 Raman Frequency — cm™ 

Figure 6.11 Raman spectrum of tetrachloromethane (carbon tetrachloride) taken using the 
blue line of a mercury arc lamp to give an exciting frequency of 22 938cm~'. The top scale 
shows the wavenumber of the radiation detected, the Rayliegh line is shown in the centre 
of the diagram and the bottom scale shows the relative frequency shift. Stokes lines occur 
at lower frequencies to the left of the Rayleigh line and anti-Stokes to the right. (Used with 
permission from the Journal of Chemical Education 77:5 (1967). Copyright 2000, Division of 
Chemical Education, Inc.) 

electric field is positive, movement of the electron density to the right occurs, whereas the 
charge cloud moves to the left with a negative field. So the dipole moment of the molecule 
will be constantly changing because the negative charge of the electrons is shifting at the 
frequency of the exciting radiation. The effect of the field is opposed by the presence of 
the charged nuclei, which try to restore the charge density to the zero field situation. 

The induced dipole j4i,4 will depend on the particular molecule under consideration, and 
the controlling molecular property is called the polarizability a of the molecule: 

Hind = aE (6.14) 

where E is the electric field of the light wave. The polarizability a is constant for the 
molecule fixed at its equilibrium geometry, and so the induced dipole oscillates at the 
frequency of the light and re-emits that frequency in all directions (except the direction 
of the induced dipole vector itself). This gives rise to the Rayleigh scattering line at the 
centre of all Raman spectra. However, as the molecule vibrates, the relationship between 
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Figure 6.12. An illustration of the polarization of electron density by a light wave in the 
classical picture. The electric field variation is shown to the right and plots of the electron 
density of urea at various points in the oscillation of the electric field are illustrated to the left. 
When the phase of the electric field is positive, the electron density moves to the right; when 
the phase is negative, the density moves to the left. These changes of the molecular dipole 
moment through polarization of the electron density require energy, which is absorbed from 
the light wave. The chemical structure of urea (CN,OH4) is shown bottom left. 

the nuclei and the electron density is changing and so, potentially, the polarizability of 

the molecule will be changed by the molecular vibration. We show in Appendix 8 that 

this change of polarizability can lead to shifts in the emitted light frequencies giving 

the Stokes/anti-Stokes bands if the vibration causes a change in the polarizability of the 

molecule. Moving back to the quantum picture, this gives the coupling factor: 

Mo. = f vrdon dr (6.15) 

where Aq is the change in the molecular polarizability when the vibrational state shifts 

from n = 0 ton = 1, ie. from Wo to y;. The selection rules are now based on the fact that 
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only vibrations belonging to certain irreducible representations can have nonzero values 

of the coupling integral, Equation (6.15). 

So far, the induced dipole moment has been treated as a simple number. However, a 

dipole has a definite size and direction, i.e. it is a vector quantity, as is the electric field of 

the light wave. In general, ~ must be a matrix which relates the three components of E to 

the three components of lina: 

[bs Ce OF ee 1a 

My = Alyx Ayy Ay Ey (6. 16) 

pL Zz Oy -y a2, Ne) Z 

The matrix allows for the dipole due to polarization being in a different direction to the 

field of the radiation. For instance, an electric field in the x-direction may induce a dipole 

in the y- or z-directions. The matrix is symmetric, so @,, = @,, etc., and there are only 

six independent coefficients. If the molecular vibration causes a change in any of the 

components of a we will see a band in the Raman spectrum. Just as in the case of the 

IR selection rules, we find that only vibrations whose irreducible representations match 

one or more of the representations appropriate to the components of a can have nonzero 

coupling elements. 

The three diagonal elements of the Cartesian polarization matrix can be simplified to 

two in spherical polar coordinates in a similar way to the d-orbital functions considered in 

Section 5.8. So, in the character tables, functions used for the d-orbitals can also be used 

to identify Raman-active vibrational modes. Thus, the Raman selection rule can be stated 

as follows. 

Raman bands arise for molecular vibrations which alter the polarizability of a molecule. 

The polarizability coefficients transform as 2’, x” — y’, xy, xz, yz and so are in the same 

representations as the products of axes shown in the right-hand column of a character 

table for the molecular point group. A vibration must have one of these representations 

to be Raman active. 

6.2.5 Comparison of Infrared and Raman Selection Rules 

We have now discovered that the selection rules for Raman and IR spectra are different. 

The IR selection rule requires a vibration to belong to the same irreducible representation 

as xX, y, Z, whereas vibrations are Raman active if they belong to irreducible representations 

for the products of axes. This means that vibrations that show up in IR spectra need not be 

present in Raman and vice versa. 

In particular, if a molecule belongs to a point group containing the inversion centre, 
then IR active vibrations must be ungerade. We can now see that Raman-active modes in 
the same situation must be gerade because the products of x, y, z will be unchanged by 
the inversion operation. For example, in Section 6.2.1 we found the gerade representation 
Dg" for the single vibrational mode of a homonuclear diatomic molecule. In the standard 
character table the right-hand column shows that this representation is also used for the 
function z*. So the bond stretch of homonuclear diatomic molecules is Raman active. 
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For more complex molecules in point groups with the inversion, centre vibrations that 

are IR active will also have irreducible representations that are ungerade while Raman- 

active modes will be gerade. Since different vibrations will usually occur at different 

frequencies, it is unlikely that bands in the two spectra will appear to be coincident. 

For example, trans-1,2-dichloroethene has an inversion centre as it belongs to the point 

group C>,, the IR and Raman spectra for this molecule are compared in Figure 6.13a. This 

molecule has six atoms, and so 3 x 6 — 6 = 12 vibrational modes. The total number of 

bands in the Raman and IR spectra is fewer than 12 because some vibrations are too low 

frequency to be detected in the range shown. However, it can be seen that the Raman and 

IR frequencies are indeed different to one another. 

(a) 3126 em! 
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Figure 6.13 Comparison of IR and Raman spectra for the isomers: (a) trans-1,2- 

dichloroethene (C,,); (b) cis-1,2-dichloroethene (C,,). Raman spectra are shown as solid 

lines and IR spectra are shown as dotted lines with peaks pointing downward (the measured 

transmittance T was converted to absorbance A using A = —logT). The listed vibrational 

frequencies were estimated using a computer modelling package; those marked ‘off scale’ 

are below the range of the experimental spectrometers. Peaks marked as two vibrations have 

distinct frequencies but cannot be resolved by this apparatus. (Source: McClain BL, Clark SM, 

Gabriel RL, Ben-Amotz D (2000) Journal of Chemical Education 77: 654.) 

This is not the case for molecules that belong to other point groups. For example, the 

cis isomer of 1,2-dichloroethene belongs to the C,, point group. Here, the character table 
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in Appendix 12 shows that the A; irreducible representation has both z and z assigned 

to it, and so a totally symmetric vibration will be present in both IR and Raman spectra. 

The spectra for cis-1,2-dichloroethene are shown in Figure 6.13b, and several bands can 

be seen to be coincident. 

\ 
‘ 

6.3. General Approach to Analysing Vibrational Spectroscopy 

We are now in a position to predict the bands that may exist in the vibrational spectra (IR 

or Raman) for a given molecule. A few examples have already been covered, but the steps 

that should be followed can be summarized as follows: 

1. Decide on the point group of the molecule using the symmetry operations the atoms 

obey. 

2. Decide on a basis for the vibrations of interest. The complete basis for vibrational modes 

is a set of three vectors on each atom, but a simpler basis may be more convenient to 

give information on specific vibrations. 

3. Generate the reducible representation I’ of the basis by assigning characters for each 

basis vector according to the effect of an example operation from each class. If a basis 

vector is unaffected by the operation, then it contributes 1 to I’; if it is reversed, then 

it gives —1; and if it changes completely (e.g. if the atom on which the basis vector 

is sited moves), then a contribution of O results. Intermediate values occur for rotated 

basis vectors, as discussed in Section 4.7. T° is then the sum of the characters obtained 

for the members of the basis set; one summation for each class of operations in the point 

group. 

4. (a) For a nonlinear molecule, reduce the representation to its components using the 

reduccdon formula: 
i 

n= 2 8eXe( C) xi( C) (6.17) 

which gives the number of times n,; that representation i (A;, A>, etc.) occurs in the 

reducible representation I’. The summation is across the classes of the point group and 

contains terms which are the product of the number of operations g. in class C, with 
the characters from the reducible and irreducible representations for that class, xr(C) 

and x;(C) respectively. The order of the group / is the total number of operations in the 
group which can be obtained by summing the values of g. from the column headings 
for the group classes. It is useful to carry out this process using tables to lay out the 
terms in the summation. 

(b) Linear molecules will belong to either the C,,, or Dx) point groups, both of which 
have h = oo. To carry out the reduction step we make use of the relationship 

xr(C)= > nix ©) (6.18) 
l 

That is, the character of the reducible representation in any class of the point group 
will be the sum of the characters from its component irreducible representations. This 
must be true for all classes, and so we can work across the columns of the character 
table eliminating combinations that do not comply until a unique solution is found. 
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This approach was used in our discussion of the IR absorption properties of CO, in 
Section 6.2.2. 

5. If the basis captures molecular movement or rotation, then remove the corresponding 

representations. For example, if three vectors per atom are used for a full vibrational 

analysis of a nonlinear molecule, then we will find six irreducible representations that 

do not describe vibration, one each from the group’s standard representations for x, y, 

z and R,, R,, R,. For a linear molecule, rotation around the molecular axis R, is not a 

degree of freedom and an additional vibrational mode will be found. 

6. Use the character table to decide which modes are [R and which Raman active. The 

IR-active modes will be the remaining representations that have labels corresponding 

the those of x, y or z in the character table. The Raman-active modes will be those 

belonging to the representations for products of x, y, z usually written as 2’, x* —y’, xy, 

xz and yz. 

In the following section we cover an example of the application of this recipe. 

6.3.1 Example: the C—H Stretch Bands of 1,4-Difluorobenzene 

With the addition of the selection rules we now have enough tools to use symmetry to 

decide on the irreducible representations for the vibrations of a particular molecule and 

then pick out those modes which are IR and/or Raman active. In this example we will 

apply the general approach above to the C—H stretching modes of 1,4-difluorobenzene. 

1. Symmetry point group assignment. The structure of 1,4-difluorobenzene is shown in 

Figure 6.14a. This molecule is a simple substituted benzene. In benzene there is a 

C, axis through the centre of the ring perpendicular to the molecular plane. However, 

because of the two fluorine atom substituents, this is not a symmetry element for 1,4- 

difluorobenzene; the corresponding axis is only C). There are two other C, axes present 

in the plane of the molecule, one joining the fluorine atoms and the other perpendicular, 

bisecting the (H)C—C(H) bonds. 

(a) 

H; H, 

Figure 6.14 (a) The structure of 1,4-difluorobenzene and (b) a suitable basis for the analysis 

of the C—H stretching modes of this molecule; the Z-axis is perpendicular to the plane of the 

molecule pointing out of the page. 

The choice of principal from the three C, axes is arbitrary, but it is common to take Z 

perpendicular to the molecular plane. In Figure 6.14b, X is then taken to be collinear 

with the C—F bonds and Y is set to give a right-handed axis system (turning from X to 
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Y will take a right-handed screw in the Z-direction). The rotation axes are then labelled 

according to the direction in space with which they are aligned: C,(X), C,(Y), C,(Z). 

There are also three mirror planes, a (XY), o(YZ) and o(XZ); so, whichever axis we 

choose as principal, one of these will be a horizontal mirror plane o;,. Following the flow 

chart given in Figure 3.29, we assign the point group D,, and note that the molecule 

must also have an inversion centre 1. 

2. Basis set choice. In this example we are only interested in the C—H stretching frequen- 

cies. These will be distinct from other modes because the small mass of the H atoms 

results in relatively high-frequency vibrations (around 3000 cm~'). There are four C—H 

bonds, and so the four basis vectors b, — b, in Figure 6.14b will form the basis set. 

3. Generate the reducible representation. By carrying out an example operation from each 

class of the point group we can examine the effect on the basis vectors, remembering 

that a basis vector that does not change contributes a character of | and a basis vector 

that is reversed gives a character —1. The movement of a basis vector to a different 

position in the molecule implies off-diagonal elements in the operation matrix and a 

zero on the diagonal, i.e. a character of 0. Applying this to the case of the b; —b, basis 

in Figure 6.14b gives the results of Table 6.5. 

Table 6.5 The reducible representation for C—H stretch modes of 
1,4-difluorobenzene. 

Day || B= CHZ) GY) a) oS oleZ iy oir) 

iP 4 0 0 0) 0) 4 0 0 

4. Reduce the representation. The sums formed in the application of the reduction formula 

are given in Table 6.6. In this table the symmetry classes that have reducible representa- 

tion characters of 0 are omitted as they will not contribute to the totals in any irreducible 

representation. The order of the D», point group h = 8, so that the reduction process 

yields 

SA igs bans, (6.19) 

5. Remove molecular movement/rotation. This basis is designed to include only specific 
bond vibrations, so no molecular translations or rotations need to be removed. 

Table 6.6 Reduction of the reducible representation for C—H_ stretch 
modes of 1,4 difluorobenzene: (a) gerade and (b) ungerade irreducible 
representations. Note that only classes with nonzero character for T from 
Table 6.5 are considered here. 

(a) (b) 
Dyp E a (XY) Dy, | E oa (XY) 

ic 4 4 ‘i 4 4 

8eXi(C) xr(C) Dee eX C) Xr(C) ‘ae 

Ay 4 4 8 Ai) =A 0 
Bigot 4 8 Big =4 0 
a read =A 0 Bag |e 4 8 
3g 4 4 O B3y 4 4 8 
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6. Identify IR- and Raman-active modes. From the standard D,, character table in 

Appendix 12, the right-hand columns indicate the following: 

(i) IR active — B,, and B,,, which correspond to transition dipole moments in y and x 

respectively. Note that the basis is confined to the XY plane and so does not capture 

C—H out-of-plane bending modes, which would be at much lower frequencies 

than the stretching modes of interest here. 

(ii) Raman active — A, and B,,, which have x’, y’, z’ and xy respectively in the 

rightmost column. 

This is an example of a point group with an inversion centre and so we have found only 

ungerade modes as IR active and only gerade modes as Raman active. Even though there 

are four vibrational states, we will only see two absorption bands in the IR and two in the 

Raman spectra, and the IR and Raman band frequencies are not likely to coincide. 

Problem 6.6: The structure of 1,2-difluorobenzene is shown in Figure 6.15. This isomer 

belongs to the C,, point group. Using a basis of the four C—H bonds, demonstrate 

that the reducible representation in this case is that shown in Table 6.7 and apply the 

reduction formula to show that 

Lo 247 28> (6.20) 

Using the standard character table, identify those modes which will be IR active and 

those that will be Raman active. In this case, there is no inversion operation in the point 

group and so a vibration may be both IR and Raman active. 

Figure 6.15 The structure of 1,2-difluorobenzene. 

Table 6.7 The reducible representation for C—H 
stretch modes of 1,2-difluorobenzene. 

Gy E CG a, (XZ) Cy (WZ) 

IR: a 0 0 4 

The above example and problem cover the symmetry analysis of two isomers of diflu- 

orobenzene. We find that the 1,4-isomer has only two bands in each of the IR and Raman 

spectra and that these bands will not coincide. In contrast, the 1,2-isomer has all four C—H 

vibrations active in both IR and Raman spectra and so, clearly, there will be bands common 

to both techniques. 
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This sort of analysis provides a powerful use of spectroscopy to aid in the identification 

of molecular structure through the application of symmetry. If we had made a sample 

of difluorobenzene and believed it to be a pure isomer of either the 1,4- or 1,2-form, 

vibrational spectroscopy would provide one way to distinguish which isomer we had made. 

Problem 6.7: Figure 6.13 shows the experimental spectra of two isomers of 1,2- 

dichloroethene. The set of basis arrows shown in Figure 6.16 is one possible choice 

of the three arrows per atom for a complete basis. This choice has the advantage that 

each atom has one basis arrow perpendicular to the molecular plane and one aligned 

with a bond. 

Figure 6.16 One choice for a complete basis set for either isomer of 1,2-dichloroethene. 
The © symbol is used to imply an arrow coming out of the page. 

1. Show that the irreducible representations for the 12 vibrational modes are: 

Cag OAR Dy Ag ce (6.21) 

Gas ‘ ia SA; as 2A> + B, = 4B, (6.22) 

(remember to align Z-direction with the principal axis, with Y in the molecular plane 

for C>,). 

How many IR and Raman bands would you expect to see in the spectra of each 

isomer of 1,2-dichloroethene? Is your prediction higher or lower than seen in the 

experimental spectra? 

2. For cis-1,2-dichloroethene, some bands are too weak to be detected in the experi- 

mental spectra. However, all active modes in the frequency range of the spectrometer 

can be seen for trans-1,2-dichloroethene (Figure 6.13a). The modes that are off 

scale in Figure 6.13 have the atom displacements shown in Figure 6.17. Assign 

irreducible representations to each of these modes and hence decide on their IR or 

Raman activity. Using this information, confirm the number of modes predicted in 

part (1) is correct. 

6.4 Symmetry-Adapted Linear Combinations 

The preceding sections have shown how to use symmetry analysis on a basis of vec- 
tors to determine the irreducible representations for molecular vibrations. In building 
the reducible representation the basis vectors are treated as individual objects to which 
characters are assigned. This makes the total character for the basis easy to calculate by 
summing the results for each of the basis vectors in isolation. 
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Cl 

Cl H H¥ Pol 

Us \ V7 “<b V2 

Figure 6.17 The atomic motions in the ‘off-scale’ vibrations of trans-1,2-dichloroethene from 

Figure 6.13. The © symbol is used to imply motion out of the page € and indicates motion 
into the page. These symbols are placed to the side of the atom labels to avoid obscuring 
them. In these diagrams the C—CI bonds are shown to be longer than the C—H or C=C 
bonds, as they are. 

We have also looked at specific examples of the molecular vibrations themselves; these 

are usually collective motions of the atoms. For example, the symmetric and antisymmetric 

stretch modes of H,O are shown as v(A;) and v(B;) in Figure 5.3, and Figure 6.17 shows 

three modes of trans-1,2-dichloroethene to which single symmetry labels were assigned 

as part of Problem 6.7. 

What is now required is a method which can be applied after the reduction process to 

give the collective motion of each irreducible representation in terms of the basis automat- 

ically. This is the job of the projection operator, which is explained in the next section. 

Here, the use of the basis to describe collective motions of the atoms of a molecule is 

discussed so that it is clear what the projection operator is aiming for. 

Collective functions formed from the basis which belong to a particular irreducible rep- 

resentation are referred to as symmetry adapted linear combinations (SALCs). In essence, 

each SALC can be thought of as a sum over all the basis functions: 

pana (6.23) 
J 

where ¢; is the ith SALC function, 5; is the jth basis function and c;; is a coefficient which 

controls how much of b; appears in ¢;. The values of cj can be positive, negative or 

even zero. The projection operator is used to find the coefficients consistent with each 

irreducible representation. 

As a simple example, the O—H stretching modes of H,O could be obtained from the 

basis of the two O—H bonds shown in Figure 6. 18a. 

Problem 6.8: Confirm that the basis of Figure 6.18a leads to the reducible representa- 

tion shown in Table 6.8 and, hence, that 

Tr=A,+8B, (6.24) 

In the symmetric stretch (A,) mode, shown in Figure 6.18b, the two H atoms move in 

phase with one another while in the antisymmetric (B,) motion the H atoms are out of 

phase. This can be captured by setting 
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(A) = b, + bo (6.25) 

and 

$( Br) = b, — by (6.26) 

(a) 
O 

ae 
H, Hy 

(b) (c) 

oe , —— bea ° ae 

1 2 ee 
PlA,)=b, +b, Hy ay P(B) =b, — by 

(d) 

Figure 6.18 (a) A simplified basis of the two O—H bond vectors for the stretching modes 

of HO. (b) The SALC for the symmetric stretch mode and (c) the SALC for the antisymmetric 

stretch mode. (d) The effect of a C,' rotation on the B, mode; note that after the operation 

the basis vectors are labelled relative to the original setting of (a). 

Table 6.8 The reducible representation for 
the O—H bond vectors in H,O. 

GG, is C, 0, (XZ) AVES) 

Ir 2D 0 0 2 

These are linear combinations of the type suggested by Equation (6.23). The symmetric 

mode (Equation (6.25)) has been arbitrarily chosen as mode 1, so we have c;; = cj. = 1, 

and the asymmetric mode as mode 2 has cy; = 1,¢x = —1. In this way the individual 

modes can be thought of as sets of coefficients for the basis functions. Because the basis is 

simplified to two bond vectors, this analysis does not give the O atom motion that is shown 

in Figure 5.3; however, since the symmetry analysis for these two modes does not require 

this part of the motion, we will ignore it for now. 

To see how these SALCs conform to the symmetry irreducible representations, it is 

interesting to consider the affect of the C,, symmetry operations on the functions them- 

selves. For example, after a C,' operation the two H atoms swap over and so do the basis 

vectors. However, the mode is a function of both vectors, and it is the symmetry of the 

overall function that determines the value of its character. Looking at the result for each 

function as a whole, there are still vectors at H, and H,. For the symmetric mode, b; and 

by will have swapped but the function looks identical: it is still b; + b), so has a character 

of 1. In terms of the old basis, b; has become b, and vice versa. 

For the antisymmetric mode, b, and b, would also be swapped by a C,' rotation, but the 

sign of b, was opposite to b, so the function changes sign, i.e. 

(By) = by; — by > b, — b, = —G( Bs) (6.27) 
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Now the function as a whole has a character of —1, as required by the B, irreducible 

representation. Note that in doing this comparison the vector which has ‘arrived’ at the 

original H, position is compared with the original b,, i.e. we are expressing the transformed 

basis in terms of the original vectors, as shown in Figure 6.18d. 

Problem 6.9: The results each of the operations in C,, on @(A,) and #( B>) are summa- 

rized in Table 6.9. Confirm that the set for #( B,) are correct using the method described 

for the C, example above. 

Table 6.9 The results and corresponding characters of Cy, operations 
on the symmetric (A,) and antisymmetric (B,) modes derived from the 

OH bond basis. 

Gy le G oy (XZ) ay (YZ) 

$(A;)= b, + by b, + by b, + by b, + by b, + by 
Character 1 1 1 | 

$( By) = b, — by b, — by —b, + by —b, + by b, — by 
Character 1 = =I 1 

6.5 Normalization 

Symmetry cannot tell us about the frequency of a vibration or the amplitude of oscillation, 

because these are determined by physical factors such as the bond strengths and atomic 

masses for the particular molecule being studied. Symmetry does give information on the 

phase pattern for each fundamental vibrational mode of the molecule, i.e. the relative direc- 

tions of motion of atoms. It is useful to separate this factor from the physical factors by 

choosing the coefficients in Equation (6.23) so that the length of the vector of coefficients 

is 1. Then, if some other method is available to calculate the magnitude of the vibration, we 

simply multiply the mode produced from symmetry analysis by that magnitude. The basis 

set vectors themselves are chosen to represent directions of motion, and so their lengths 

can also be taken as 1. 

To find the magnitude of any vector we can make use of the vector dot product, defined 

as 
a-b= |a||b| cosé (6.28) 

where the vertical lines indicate the length or magnitude of a vector and 6 is the angle 

between the two vectors. This gives the apparently trivial result that 

b, s b, — by : by = ] (6.29) 

i.e. the vector dot product of any basis vector with itself is the square of the magnitude of 

the vector (since cos(0) = 1). This will be useful when we come to find the magnitude of 

a linear combination of vectors (see below). 

The basis vectors have also been chosen so that they are independent of one another, 

i.e. the motion of H, can only be described using 5; and the motion of H, can only 
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be described using bj. This means the basis vectors are orthogonal to one another, 

and so 

b,-b, =0 (6.30) 

This result is not based on the geometry of the problem: b, and b, are not at 90°; it is 

simply a consequence of the independence of the basis vectors. 

For the fundamental modes represented as SALCs, normalization requires a magnitude 

of 1. Taking the dot product of a whole SALC with itself will give the square of the 

magnitude (from Equation (6.28) with 6 = 0°), which must also be 1. To ensure that any 

arbitrary mode has this property, we choose a factor, called the normalization factor N, and 

scale the vibrational mode to fulfil this constraint. Writing 

$: =N > - cyb; (6.31) 

j 

the normalization factor can be worked out by taking the dot product of the function with 

itself and then finding N in terms of the coefficients of the basis vectors. For instance, in 

our H,O stretching mode example, we require 

gp: $1 =N*(b, + by) -(b, +b) = 1 (6.32) 

Since b, and b, are orthogonal and normalized, we can use Equations (6.29) and (6.30) to 

multiply out the brackets to give 

2N’ = | (6.33) 

and so find 

] 
N=— 6.34 

V2 boa 

The same factor also applies to the antisymmetric vibration, and so the normalized modes 
are written as follws: 

symmetric stretch P(A) = = b, + by) 

= (6.35) 
antisymmetric stretch ¢( B,) = —=(b, — bp) /2 1 

This dot product example shows that, provided the basis set is orthogonal and normal- 
ized, the normalization factor for the ith linear combination of basis functions will be 
simply related to the corresponding coefficients, i.e. 

N; = (6.36) 
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Problem 6.10: One of the fundamental modes for the N—H stretch in ammonia (C3,) 

is a symmetric stretch, which can be written 

od = N(b, + b, + b3) (6.37) 

using the basis vectors defined in Figure 4.6. Calculate the normalization factor N in 

this case, assuming b,—b; are orthogonal and normalized. 

6.6 The Projection Operator Method 

The projection operator method for obtaining a picture of the motion represented by each 

of the irreducible representations begins by considering the effect of each operation in the 

group on one, or a subset, of the basis vectors for the symmetry-related atoms. 

Let us illustrate the method by finding SALCs equivalent to Equations (6.25) and (6.26), 

which were simply stated in Section 6.4, using the two-vector basis for the O—H stretch- 

ing modes of water shown in Figure 6.18a. If we take the b, basis vector, which is along 

the O—H, bond, and apply each of the C,, operations, the results obtained are as given in 

the first row of Table 6.10. The E and o,'(¥YZ) operations (the plane of the molecule) do 

not affect the positions of the basis vectors, and so b, is simply transformed into itself. In 

contrast, the C, and o,(XZ) operations swap over b, and b,; these two basis functions are 

linked by the operations of the group. 

Table 6.10 The result of each of the C,, operations on the generating 

vector b,; and the resulting functions using the characters from each 

irreducible representation as coefficients in linear combinations. 

Gy E C, oy (XZ) OyhYZ) Sum 

b, lox lay: by b, 

Ay b, by b, b, 2(b, + bp) 

A2 b, by => —b, 0 

B, b, —b, by —b, 0 

B, b, —b» —b> b, 2(b, — bp) 

Table 6.10 also shows the result of multiplying the result of each operation by a character 

in an irreducible representation and then summing the results to give a function of b, and 

b,. The sums for the irreducible representations A; and B, generate the functions of the 

same symmetry we have already seen, give or take a numerical scaling factor. The sums 

for the other irreducible representations are zero. 

This very useful result is the basis of the projection operator method. The ‘projection’ 

is the use of the operations from the group to give the effect for a particular ‘generating’ 

basis vector, e.g. a C) rotation transforms b, into b). The character multiplications give the 

correct relationship between the original and projected vector for the particular irreducible 

representation. In a B, vibration (Figure 6.18c), the vector actually present at H, is in 

the opposite direction to the C, projection of b,, and the multiplication by the appropriate 



196 Molecular Symmetry 

character from B, gives the required minus sign. Summation of the results collects together 

a linear combination of basis vectors that is bound to follow the irreducible representation. 

If this summation gives zero, then there is no projection of the generating basis vector that 

conforms to the irreducible representation. 

The two nonzero sums have the same relationship between b, and by as was found 

earlier; normalization, as set out in Section 6.5, would yield the standard forms of 

Equation (6.35). 

In this example, we have used a basis of two vectors and constructed two SALCs, so 

the job is done; both modes that the basis can represent have been obtained from a single 

generating vector. We will see below that this is not always the case. 

Problem 6.11: Show that using b, as the generating vector would lead to conclusions 

equivalent to those drawn from Table 6.10. Remember that the SALCs only tell us about 

the relative motion of the two O—H bonds. 

For the general case, the projection method automates this process through the 

application of the equation 

Pa) (6.38) 
dl] 

where i refers to an irreducible representation in the point group for the molecule and / is 

an index indicating a symmetry operation in the group. 7; is the jth symmetry operation 

and it acts on the generating vector v. The character for the ith irreducible representation 

under the jth operation is given the symbol y;,(/). Note that, unlike the reduction formula, 

the sum is over all the operations of the group, rather than the classes of operations. 

6.6.1 Projection Operator Applied to the C—H Stretches of 1,4-Difluorobenzene 

The relative motions can be more complex when we have a larger set of basis vectors: 

however, the idea of using the basis to build up the fundamental modes using the projection 

operator can still be used. Each mode will be described by a symmetry adapted linear 

combination (SALC) of the basis vectors used in the symmetry analysis. 

As an example application of the projection operator to a slightly more complex case, 

we will return to the C—H stretch vibrations of 1,4-difluorobenzene that were first met 

in Section 6.3.1. There, the basis vectors were labelled b, to b, for the C—H, to C—H, 

bonds (Figure 6.14b). Applying the reduction formula to this basis yielded 

iP = Ag + Bi. a B, =F Bx, (6.39) 

To apply the projection operator, we arbitrarily select b, as the generating vector and 
then consider the result of each operation of the point group in turn. This is laid out in 
Table 6.11 along the row labelled 7b. T; is used in the projection operator to represent 
the jth operation of the group. So here, 7 = 1 would mean the E operation, j = 2 the 
C,(Z) rotation, etc. This first row of the table lists the transformed b, vector in terms of the 
original basis in each case. So, for example, reflection in the o(XZ) would send b, to the 
by position. 
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Table 6.11 Application of the projection operator to the irreducible representations found 
for the C—H stretch modes of 1,4-difluorobenzene. For basis set and reference axis system 

see Figure 6.14b. 

C(Z) GY) GlX) fa (XY) (XZ) o (YZ) | Pib) = D0) xil/) Tid 

b; b, by b, b, b> ly. 

b, b, by b; b, by b, a + by + b; ee 

b; —b, —b, b; b, —b) —D, 2(b =e ale b, <= by) 

—b3 bs —b, —b; b, —b, by 2(b —b3;+ ba) 

—b; —b, b» —b; b, b» —b, 2, =i ee b; — by) 

Application of the projection operator (Equation (6.38)) for a particular irreducible rep- 

resentation involves multiplying these results by the correct character for the operation and 

then summing the results. The terms generated for the four irreducible representations for 

the C—H stretch modes from Equation (6.39) are also given in Table 6.11 with the result- 

ing sums in the final column. In general, the projection operator will give the functional 

form, but without normalization. The method of Section 6.5 allows normalization factors 

to be determined, and the resulting normalized SALCs are given in Figure 6.19 alongside 

illustrations of the vibrations. 

AY AY 

Hy H, Hy Hy 

F, F-> Fy F\-> 

H, H, H; H, 

A A 
Hy ‘ Hy Hy : Hy 

F, F,-> F, F,-> 
X 

H; H, H Hy 

Boy = Ya(b, — by — b3 + 4) B3, = Yad, + by — b3 — by) 

Change of dipole in Y: IR active Change of dipole in X: IR active 

Figure 6.19 The SALCs for the C—H stretch modes of 1,4-difluorobenzene. 
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The modes give a further illustration of the selection rules derived at the beginning of 

the chapter. In Section 6.3.1 it was shown that we expect only the By, and B;, to be IR 

active. The C—H bonds in 1,4-difluorobenzene will have local dipole moments with a 6+ 

charge on H and 5— charge on C: as a C—H bond shortens, the local dipole will decrease, 

and as the bond lengthens, the local dipole will increase. The motion of the A, and B,, 

modes does not give IR activity because the changes in local dipoles opposite one another 

cancel out. For the B>, and B3, modes, the changes in local dipoles opposite to one another 

reinforce and the net effect is a changing dipole moment in the Y-direction for B,, and 

in X for B;,. This was predicted from the rightmost columns of the D>, character table in 

Section 6.3.1. The origin of Raman selectivity is more difficult to visualize, as it depends 

on the properties of the polarization matrix. 

6.6.2 The Projection Operator and Degenerate Representations 

The choice of the generating vector for a point group without degenerate states is quite 

straightforward. In the examples so far we have simply taken the first basis vector in the 

list and used this as the generating vector. In Problem 6.11 it was found that selecting any 

of the other vectors in the basis would give equivalent results. 

If the reduction formula has given degenerate representations then we expect two vibra- 

tions for each E representation and three for each T representation. But the projection of a 

single vector will give only a single mode, and so we must find an alternative generating 

function for the others. 

Ammonia, NH3, C3, 

As an example we will look at the N—H stretching modes in ammonia. The basis of 

N—H bonds in ammonia was used in Chapter 4 as part of the development of matrices 

in symmetry. We can now use this basis (defined in Figure 4.7) to consider degenerate 

vibrations of a molecule. The reducible representation and the application of the reduction 

formula for the three-vector basis is shown in Table 6.12. Once the totals are divided by 

the order of the group (h = 6 in C;,), we find 

IN Susy te 8 (6.40) 

So the three basis vectors give rise to a vibration of A; symmetry and two degenerate 

vibrations conforming to the EF irreducible representation. From the character table we 

expect the A, and E modes to be both IR and Raman active. 

Table 6.12 Application of the reduction formula to the ammonia 
N-H bond basis defined in Figure 4.7. 

Ge le De 30, n= 

Ir 3 0 1 

Bex C) xr( ©) ye FO) xeO) 
Ay 3} 3 6 

A? 8 —3 O 

6 
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To find the linear combinations of the basis vectors for A, and the first part of the E 

representation we can apply the projection method arbitrarily taking b, (the N—H, vector) 

as the generating vector. The results are summarized in Table 6.13, where the three mirror 

planes in the 30, class are considered separately using A, B and C superscripts to refer to 

planes containing the N—H,, N—H, and N—H,; bonds respectively. 

Table 6.13 Application of the projection operator method to the ammonia N—H bond basis. 
The vertical mirror planes have been labelled A, B and C to signify the planes which, in the 
initial configuration, contain the basis vectors b,, by and b, respectively. 

E Gs (OR Oy Oy 

b, bo b b, b, by 2(b, + by + b3) 

2b, —b, —b; 0 0 0 2b, — b2 — b; 

For the A; case we end up with a function in which the b vectors are present with the 

same sign and same weight. This represents a vibration of the molecule in which the three 

N—H bonds oscillate with the same amplitude and in phase with one another, akin to the 

symmetric stretch mode of HO. The normalization factor for the A; mode was found in 

Problem 6.10, so we know that this function with unit length would be 

1 
(Ai) = a aa) (6.41) 

This vibration is illustrated in Figure 6.20a. 

In Table 6.13, projection of b, using the E irreducible representation produces a mode in 

which the N—H, vector oscillates out of phase with the other two vectors and with twice 

the amplitude (Figure 6.20b). 

Problem 6.12: Show that the normalized form for this first of the E representation 

functions can be written as 

1 
WA 2b, — bz — b;) (6.42) oi(E) = 

To generate the second mode of the E representation requires the projection of a different 

function of the basis set. Choosing b, or b; alone will only produce an analogous mode 

to that found in Table 6.13, but with a different vector playing the role of b,. The three 

H atoms in ammonia are indistinguishable, so these would merely be alternative ways to 

write down the mode already identified. What is needed is a function orthogonal to the E 

mode described by Equation (6.42) which we can use in the projection method to generate 

the partner E-type vibration. There are two functions which can be written down easily 

that have the required orthogonality property. 

The first is 

b, +b, +b; because (b, + by + b3)( 2b, — by — b3) = 2b, — by” — b;” = 0 (6.43) 
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Ay: (by + by + bs) 

(b) 

H; 

a 
E mode from projection of b,: E mode from projection of b — b3: 

5 (2b: ~ babs) J (b2- 43) 

Figure 6.20 The N—H stretching modes of ammonia shown as SALCs of the three-bond 
vector basis. (a) The A, symmetric stretch mode; (b) and (c) the degenerate pair of modes 
for the E irreducible representation. 

and we have assumed b,, b, and b; are orthogonal to one another and normalized (Equa- 

tions (6.29) and (6.30)). This is just the same as the A, mode in Table 6.13, and so is not a 

good candidate as a generating vector. 

The second orthogonal function is 

b,—b; because (b, — b;)(2b, — bo — b;) = —b.? +b,’ =0 (6.44) 

Problem 6.13: Show that b, — b; is also orthogonal to b, + by + by. 

The projection operator for the E representation of this new function is shown in 

Table 6.14. The function is unaltered by the process other than a scaling factor; after 

normalization we obtain 

o)( E) = = by, — b3) (6.45) 

The form of this vibration is shown in Figure 6.20c. It should be remembered that ,(E) 
and #,(E) form a degenerate pair which are found in this form because of our choice of b, 
as the initial projection operator. They look like very different motions, but symmetry tells 
us that they belong to the same degenerate irreducible representation and so must have the 
same vibrational frequency. 
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Table 6.14 The projection operator applied to the proposed generating function (b, — b;). 

C3y E Ge Cy oy® oy® ay© | Pi(by — b3)= Dy xi(/) T)(b2 — b3) 

ET;(b2 — 63) | 2(b2 — b3) (b3 — by) (by — bo) 0 0 0 3(b2 — b3) 

To check that the ,(£) and @)(£) vibrations give the correct characters for the E repre- 

sentation we have to consider the effect of a symmetry operation from each class of the C3, 

point group and deduce the relevant characters. This is difficult to do based on diagrams 

alone, but the procedure introduced for d-orbitals in Section 5.8 can also be brought to 

bear here. 

If the C;' rotation operation is carried out for the two E vibration functions shown in 

Figure 6.20b and c we find 

1 
OE (as) 

6 

HS (6.46) 
(—b, + 3) 

/2 

Now, to find the character we need the amount of each original vibration still present 

in the transformed functions in each case. So, the transformed functions are written as a 

linear combination of the original functions with coefficients to be determined. For ¢,(E£) 

this means 

)( E) > 

I P q 
Oe Da Oy) (20) = y= Da) ae =O, =D) (6.47) ks 3 1 U6 1 3 /2 3 

where p and g are unknown constants and by finding p we will obtain the amount of the 

original ¢,(£) function required to construct the transformed version, i.e. its character. 

For Equation (6.47) to work there must be equal numbers of each basis set on the left- 

and right-hand sides of the equation. Comparing the 5, coefficients gives 

—1 2 1 
ad so that p=—-— (6.48) 

Vem Ye 2 
This is the contribution to the character under the 2C; class for the first mode in the pair 

of E vibrations. 

For the second, we again write down a linear combination of the original functions, but 

this time we are looking for coefficients to give the transformed ¢,(£) vibration, i.e. 

ey —b, + b3)= if (2b, — by pee cbs — bs) (6.49) 
V2 v6 V2 

This time the value of g gives the required character since the left-hand side of the equation 

is the transformed ¢(£) function. Unfortunately, on the right-hand side of Equation (6.49) 

there are no basis vectors which only have gq in their coefficients, and so we must solve for 

p first using the b, vector: 

=l 22p J/6 
or a iy Aa (6.50 

Tie ae 2/2 

Note that p and q in this process are just being used as unknown variables and the values 

obtained depend on the transformed function being considered; there is no reason why 

Equations (6.50) and (6.48) should find the same value of p. 
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Using the result from Equation (6.50) in a comparison of the b, coefficients in 

Equation (6.49) now gives 
1 Cia 

0 = ——+— 1¢e. —x (6.51) 

DN phe A) 

which is the character required for the second function in the pair detived for the E 

irreducible representation. 

The sum of the characters obtained for ¢,(E) and ¢,(E) is —1, which agrees with the 

entry under the 2C; class of the standard C;, character table (Appendix 12). This, along 

with the solution to Problem 6.14, confirms that the two vibrations shown in Figure 6.20b 

and c as a pair are consistent with the E irreducible representation, at least for the 2C; class. 

Problem 6.14: Under the identity class of C;, modes, @(E) and @,(E£) clearly give a 

character of 2. To complete the check that this pair of modes follows the characters of 

the E irreducible representation, use the above procedure for the 30, class. Note: this is 

most easily done by using the o,* plane (containing H, in Figure 6.20) as the example 

operation. 

6.7 Linking Results for Symmetry-Inequivalent Sets of Atoms 

The projection operator results provide SALCs for symmetry-related basis vectors. 

Because it depends on the symmetry operations of the point group, the method does not 

provide information on the relative motion of symmetry-inequivalent atoms. For example, 

the basis of four C—H bond vectors shown in Figure 6.21 could be used to investigate 

the C—H stretch modes of the C,, molecule 1,2-difluorobenzene. The four basis vectors 

easily split into two subsets (b, with b, and b; with b,) because none of the point-group 

operations interchange vectors between these pairs (e.g. b, and b; cannot be swapped by 

an operation). Projection of the b, vector would give the two functions already seen with 

the simple H,O example: 
1 

o(A;) = Va! + b) 

1 (6.52) 

B,)= —(b, — bo p(B) a5 1 2) 

Figure 6.21 A basis of four C—H bond vectors for the C—H stretch modes of the Gs 
molecule 1,2-difluorobenzene. 
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These do not involve b,; or b, because these basis vectors are not symmetry related to ),. 

Another two functions can be obtained by projection of, say, b;, to give 

l 
o(A\) = Vat + b,) 

p( By) = = b, cd by) 
a 

To get the overall picture of the vibrations we need to link together the modes for the two 

sets of H atoms. This has to be done so that only modes of like symmetry are combined. 

This ensures that in, say, an A, mode for the molecule as a whole the movement of each 

subset of atoms must conform to the same irreducible representation. 

However, the subsets may move in phase with one another or out of phase with one 

another. So, adding superscripts to indicate the subsets, the two pairs of basis functions 

give four possible results: 

(6.53) 

(Ay) = 6% (Ay) +6**(A)) = (0, + > +b; 45,) 

$2( A) = $'(A)) —@*(A)) = (b, + bp — b; — By) 

(6.54) 

$:( Bi) = $7(B,) +6*(B) = (b, Dp 0) 

-s|-8)“8l- 
$2( Bi) = 6'(B,) —6**( By) = (1 — by — b; + by) S 

Note that from a basis of four bond vectors we have again arrived at four vibrational 

modes. The addition of two normalized functions in Equation (6.54) gives new functions 

that are no longer of unit magnitude. However, it is straightforward to use the procedure 

of Section 6.5 to renormalize, i.e. scale by a factor which restores the magnitude to one. 

The renormalized vibrations are given in Figure 6.22, along with illustrations of the 

modes. In contrast to 1,4-difluorobenzene, there is no cancellation of opposing dipoles for 

any of the modes; so, in line with the selection rules, all are IR active. The earlier analysis 

using the right-hand column of the character table also indicated that all four will also be 

Raman active. 

Problem 6.15: Show, using the projection operator method, that combinations of the 

mode using different symmetries such as 

$'(A\) +6™( Br) (6.55) 

are inconsistent with either irreducible representation. 

Hint: write out the function explicitly in terms of the b vectors and tabulate the 

projection operator results for each irreducible representation. 

6.7.1 Sets of Atoms Differing in Mass or Chemical Bond Strength 

The sets of inequivalent C—H bonds in the above example are of very similar chemical 

character, and so it is a good approximation to renormalize the bond vibrations to give 
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$y (Bz) = 4(b, —by +b; - by) > (Bp) = 4(b, — by —bs + by) 

Figure 6.22. The four C—H stretching modes obtained for 1,2-difluorobenzene. Note that 
the Z-direction is along the principal axis and y is in the molecular plane. 

the functions shown in Figure 6.22. This will not be the case when the atom masses or 

chemical bond strengths for atoms in different subsets are not the same, as the relative 

atom displacements will also depend on these factors. This means that renormalization is 

not possible on the basis of symmetry alone. However, the phase patterns that give us the 

relative motion of the atoms can still be obtained. 

As a simple example we return once again to the stretching modes of H,O. In 

Figure 6.18 we defined a simple basis set of vectors so that each of the H atoms had a 

basis vector pointing down their respective O—H bond. This choice of basis vectors leads 

to the H atom motions for the stretching modes with the normalized SALCs: 

1 
o(A;)= —=(0, + bo) 

2 
2 (6.56) 

OCB;) = —=( by; — 95) Wp) 

The symmetry operations of the C, point group link the two H atoms, but the O atom 

is Clearly always distinct; for a complete picture we need to add in the O atom motion. 
Each of the SALCs constructed for the H atoms has been given a symmetry label, and 
so in each case the O atom must move in a way that conforms to the symmetry of the H 
atom movement. In Section 5.2 it was shown that the O atom can only move along the 
direction defined by principal axis in an A; mode and only in the in-plane Y-direction in a 
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(a) | b, 4 

(b) 4 

a ON pe 
A, H, H, H 

b, +by +c; ob3 b, +by—C 9b; 

A,, movement of molecule A,, Symmetric stretch 

in Z-direction 

(d) (e) 

rene 50 Ble NS. Ses 
H, Hy H, Ea 

b)— by +¢3,.9b4 by — by — C404 
B,, movement of molecule B,, antisymmetric stretch 

in Y-direction 

Figure 6.23 (a) A basis for including O motion in the vibrational analysis of H,O stretching 
modes; (b, c) A; SALCs; (d, e) By SALCs. 

B, mode. So, to account for the O atom we need only add two more vectors to the basis 

(Figure 6.23a). 

For the A, case there are only two possibilities for the O atom: either it moves in phase 

with the H atoms or out of phase with them in the direction defined by b;. So, there are 

two SALCs for the system as a whole that conform to the A, irreducible representation: 

$\(A\) = b, + bo + €1,.0b3 

$2(A;) = db; + by — C20b3 
(6.57) 

Here, the coefficients c; and c),9 are used to emphasize that the magnitude of the move- 

ment of the O atom will not be the same as for the H atoms. The absolute amplitude of the 

H and O atom displacements will not be determined here, so we have also abandoned the 

normalization factors from Equation (6.56). In fact, in a vibration, the O atom will move 

to ensure that the centre of mass of the molecule remains static as the atoms oscillate. The 

O atom is more massive that the H atoms, so its amplitude of oscillation will be smaller 

than that of its H neighbours. 

The first A; function of Equation (6.57) involves all of the atoms moving in a simi- 

lar direction (Figure 6.23b). This pattern of vectors will cause the centre of mass of the 

molecule to be displaced; so, it is not a vibration at all, but represents one of the transla- 

tional degrees of freedom for the molecule as a whole. Figure 6.23c shows that the second 

SALC is a vibration; the O atom moves down the page as the H atoms move up; so, by 

choosing the correct value of c),9, the centre of mass of the molecule will remain station- 

ary. This is the symmetric stretch of the H,O molecule we first met at the beginning of 

Chapter 4. 
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The second linear combination from Equation (6.56) has B, symmetry and so can be 

accompanied by movement of the O only in the plane of the molecule perpendicular to the 

principal axis following b,. Again, this leads to two possibilities: 

$3( By) = b, — by + €3,.0b4 
(6.58) 

d4( Br) = by — by — C404 

Figure 6.23d shows that the first of these has all the atoms moving to the right, so the 

centre of mass will be displaced and this function cannot represent a pure vibration. 

The second function, Figure 6.23e gives an SALC with the correct phase pattern for the 

antisymmetric stretch of HO. 

In this analysis, the basis vectors have been aligned to best represent the vibrational 

motion of the molecule, e.g. with 6, and b, along O—H bonds. If it was our intention to 

study the movement of the molecule as a whole, then a better basis would have the vectors 

on H atoms aligned with the reference axis system, but then the vibrations would become 

more complex mixtures of basis vectors. Correspondingly, the functions we have discarded 

(Figure 6.23b and d) are not ‘pure’ translations; the A, example contains a mixture of 

translation and the symmetric vibration and the B, a mixture of translation and rotation 

around X. To some extent the alignment of the basis is arbitrary, but life is made easier if 

vectors are chosen that will give simple functions for the properties of interest. 

A much more detailed discussion of the choice of basis for a quantitative description of 

molecular vibrations is given in the text by Bright Wilson et al. referenced in this chapter’s 

Further Reading section. This covers the use of mass-weighted coordinates and systems 

of internal coordinates based on bond vectors, bond angles and dihedral angles. Here, we 

are interested in the application of symmetry to vibrational spectroscopy to understand 

selection rules, and usually the much simpler basis of a few carefully chosen atom or bond 

displacements will suffice. 

6.8 Additional Examples 

To finish the chapter we will cover a few additional worked examples of the application of 

symmetry to molecular vibrations. The first is the case of the highly symmetric molecule 

benzene, which we noted in Chapter | has a surprisingly simple IR spectrum. 

6.8.1 Benzene, Dg, 

Benzene belongs to the group Dg,. In this example we will consider a complete basis 
covering the three degrees of freedom for the 12 atoms. The basis will be written with 
three vectors per atom, labelled u,v and z, and defined so that z is perpendicular to the 
molecular plane, each u is aligned with the atom’s C—H bond and each vy perpendicular to 
u and z, i.e. in the molecular plane, as shown in Figure 6.24. 

This basis has the z vectors on each atom aligned with the principal C, axis, which 
defines the Z-direction of the normal frame of reference. The wu vectors are placed to rep- 
resent the C—H stretch modes that we will find, and v is chosen to give the third degree of 
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Figure 6.24 A basis of 3N vectors for the Dg, molecule benzene. 

freedom of each atom. The X and Y directions are taken so that C—H, is aligned with Y; 

this means that the u vectors of the atoms C,, H;, Cy and Hy, are also along Y, but the other 

u basis vectors are not. 

There are 36 basis vectors, and the effect of each operation of the Ds, group gives the 

reducible character set shown in Table 6.15. These characters are obtained by considering 

the effect of an example operation from each class in the point group on the basis. 

Table 6.15 The reducible representation obtained for benzene with a basis of three vectors 
per atom. 

Den le Ge 2C3 C, scp 3G" / 283 2S6 On 304 Byer, 

it 36 0 0 0 —4 O 0 O 0 12 0 + 

As usual, the identity operator E leaves all basis vectors unchanged and so simply counts 

the number of basis vectors. 

The element for the rotations 2C,, 2C; and 2C, is the vertical axis through the centre of 

the molecule. Any rotation around this axis interchanges the atoms, and so all basis vectors 

are changed completely. 

The 3C,’ axes, through opposite atoms, interchange all atoms except the four on the axis 

employed. For these four atoms the z and v are reversed but u is unaltered, giving character 

—2-+ 1 = —1 per atom on the axis and so a total of —4. 

The operations in the classes 3C,", i, 2S; and 2S, all interchange atoms so that none 

remains in its original position, giving a character of 0. 

The o; operation is a reflection in the plane of the molecule; this leaves all atoms in 

place with all wu and v basis vectors unaltered and each z is reversed, giving a character of 

| per atom, making a total of 12. 

The mirror planes for the 30, class contain the principal axis and dissect opposite bonds 

in the ring. Each oy operation swaps atoms with their images; hence the character is 0. 

The 30, planes each contain the principal and a C,’ axis; that is, on reflection, four 

atoms are left in place with uv and z unaltered but their v reversed, giving a character of | 

per unaltered atom and so a total of 4. 
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Table 6.16 The application of the reduction formula to the reducible representation for the 

vibrational modes of benzene (Table 6.15). The classes with zero in TP’ are omitted as they will 

not contribute to the summation. However, the order of the group h is set by the total number 

of operations in the complete Der character table. 

Den E BC On 30, h=24 

if 36 —4 | 4 

gexi( OC) xr(C) ae eX OC) xr(C) nj 

Aig il << BOS 1 3x-4~x 1 Ne Se Il Bex | 48 2 

A2. Se BOs< | 3x—-—4~x-1 il Se 2 Se Il 3x4x-1 48 2 

Bi. ies Onaull 3x-4~x 1 ses 1 3x4x-I O O 

Bo, 1x36x1 3x-4~x-I1 1x12x-1 3x45 48 2 

Eig 1x36x2 3x —4x0 (lanl area) 48 2 

Fo, 1x36x2 3x-4x0 leaps Bye Ah) 96 4 

Aw ix<s65cl 93 <—45al 1x12x=1 3x4x-=-1 O 0 

A2u 1x36x1 3x-4~x-1 1x12x-1 Boe aoe | 43 2 

By se SG <1! 3x-4x1 lanl Zeal BOaa eel 48 2 

Boy sk BOX il 3x—-4~x-1 115% 12 x1 3x4x-1 48 2 

lena 1x36x%2  3x=4x0 ileauleexe 3 sea sey) 96 4 

Exe 1x36x2 3x-4x0 I 12 <2 34-0 48 2. 

To find the irreducible representations present requires the use of the reduction formula. 

It is worth noting that several of the classes have given a 0 in the character set for I, and 

so will not contribute to the sum in the reduction formula (Equation (6.17)). In this case, 

only the E, 3C,’, o, and 30, classes need be considered. The application of the reduction 

formula is summarized in Table 6.16; even though only a few classes contribute, the order 

h = 24 is still the total number of operations in the full Ds, point group. From the final 

column :n the table we find that 

IP — 2Aye + 2A. ar 2Brg =F Dig SF AE, =F 2Arn + DB ae 2B oz 4E,, ae QE (6.59) 

This means we have 12 singly degenerate vibrations (labelled A or B) and 12 doubly degen- 

erate vibrations (labelled £), giving a total of 36, as required by the use of 36 basis vectors 

to describe the atomic motions. Of these, six will be simple movements or rotations of 

the molecule as a whole. We can find out which these are from the character table: the 

symbols x and y occur with the irreducible representation £,,, z with A>, and R,, R, and R, 

with E|, and A>,, so the corresponding number of each irreducible representation needs to 

be removed from I’, remembering that EF states are doubly degenerate. This leaves the 30 

modes 

I( vib) = 2Aig + Ang = 2B. = Fig st 4B. ae Ao ae 2Biy =F 2Boy == Sy an ae QE ny (6.60) 

The character table indicates that IR-active modes will have symmetry A>, and E),. These 

are present in I'(vib) as A, +3£),y, 1.e. there are seven vibrational modes that are IR active, 

but we only expect four bands in the IR spectrum, since six form degenerate pairs. Way 

back in Figure 1.5 we saw that the experimentally observed IR spectrum of benzene does 

indeed have only four bands. The products of axes in the character table follow Aj,, Ei, 
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and E>, irreducible representations and all are present in (vib). Equation (6.60) gives a 

total of 12 Raman-active vibrations with degeneracy, leading to seven bands. 

Application of the projection operator with such a large number of operations is quite 

time consuming. However, it is possible to reduce the effort required by first considering 

only the rotational subgroup operations concerned with the C, axis. The classes E, 2C,, 

2C3 and 2C, form the C, subgroup of De,, because any products of operations of this 

smaller set are contained within it. 

In addition, we can reduce the number of basis vectors that need to be used by noting 

that the A>, vibration is expected to give a change of dipole moment in the Z-direction 

(from the character table), so projection of u or v basis vectors can be neglected. The 

projection using the H, atom z vector in the C, subgroup is given in Table 6.17 and simply 

gives 

P(A) = 2% + 2+ 23 + 24 + 25 + % (6.61) 

Here, the subscripts refer to the atom positions around the ring as labelled in Figure 6.24. 

A quick check across the full list of operations for the D,, group confirms that this func- 

tion has the correct form for the A, representation. For example, the o, operation would 

reverse all the z-basis functions and so give the same result as —1 times the Equation (6.61) 

function. This is the character under the o, column of the D¢, point-group table for A>,; so, 

we have found the motion of the H atoms in the @(A>,) mode. 

Table 6.17 Projection of the z, basis vector in the A representation of the C, rotational sub- 
group. This provides a candidate function for the motion of the C or H set of atoms in the Ao, 
irreducible representation of Dg, benzene. 

(&: E (Ge : Ge ‘ C3 I C3 A CG, Total 

Z, Z, Z) Z6 Z3 Z5 Z4 Zale inl 2o ale Ale eG 

The same analysis of the carbon atom basis would give a similar result, and so we obtain 

two possible SALCs that describe A, motion: 

P( An) = Ccoh(An) +eHP(An) or (An) = ccb(Am) —CHb(Aw) (6.62) 

Here, the coefficients cc and cy refer to the C and H atoms respectively. The relative 

magnitudes of these coefficients will depend on the atomic masses, so we would expect 

the H atoms to move with greater amplitude than the C atoms. 

In the first of these functions the C and H atoms move in phase along the Z-direction. 

This is not a vibration, but the translation of the molecule as a whole along Z which was 

removed by inspection of the character table in the change over from I’ to P(vib). 

In the second SALC of Equation (6.62) the C atoms and H atoms move out of phase: 

as C atoms move downward, H atoms move upward, and vice versa. This is shown in 

Figure 6.25a, and it can be seen that this mode does result in the expected changing Z- 

dipole for the A>, vibration. 

The other IR-active modes have the £), representation, and the character table indicates 

that these give rise to transition dipole moments in the X or Y directions. For these modes, 
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Vaile’ 
E,,, mode from u E,,, mode from uy +3 lu 1 lu 4 ; 

projection projection. 

(EB jy) = 2 + uy — U3 + 24 —Us + Ug Qp(E jy) = Ua +3 — Us — Ug 

Figure 6.25 Example IR-active modes obtained using the projection operator method for 

benzene. (a) The Az, mode giving a changing dipole moment along Z; (b, c) degenerate 

CH stretching modes belonging to the E,, representation. 

displacement along the z vectors will not occur, and so the projection should concentrate 

on the uw and v vectors only. 

Table 6.18 shows projection of the u, vector, on H, in the C, rotational subgroup. This 

leads to the SALC 

,( £,) = 2u, + uy — U3 + 2u4 — Us + Ug (6.63) 

Note that only u-type vectors, i.e. those aligned with the C—H bonds, have appeared in this 

projection. This mode will correspond to a collective stretching mode, which is illustrated 

in Figure 6.25b. By inspection, it is clear that this mode has ungerade symmetry (it changes 

sign with the i operation) and so is also the first part of @,(£),) in the full Dg, point group of 

benzene. In the character table, E,, has —2 under 7, because both of the degenerate modes 

contribute to the characters. The transition dipole moment for this mode is aligned with 

the Y-direction. 

Equation (6.63) gives the first of two degenerate vibrations; to obtain the second we 

need a new generating vector that is likely to lead to an orthogonal result. In $,(Ej,), uo 

and u; occur with opposite sign, so that H, and H; move out of phase with one another. 

Accordingly, a possible choice of generating vector is one which forces these two atoms 

to move in phase with one another, the simplest form of which is 

Uy + Us (6.64) 
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Projection based on this function is also shown in Table 6.18 and yields the following 

SALC: 

o( E,) = uz + U3 — Us — Ug (6.65) 

The factor of 3 in the table is common to all vectors, and so removing it does not affect 

the relative motion of the atoms. The second E,, mode is illustrated in Figure 6.25c, which 

shows a changing dipole moment along X. 

For these stretching modes we could again find the corresponding projections for u 

vectors on the C atoms and take combinations of the H and C SALC functions. However, 

in stretching modes, the C atoms simply move out of phase with their own H atoms, and 

so the mode can be visualized based on Equations (6.64) and (6.65) alone. 

Problem 6.16: (a) Confirm that the sum of the characters for ¢,(E) and $,(E;) under 

the Dg, operations other than those in the C, subgroup, conform to the assignment of 

these modes to Ejy. 

(b) Show that another pair of E,, modes can be obtained from the set of v basis 

vectors. 

We have used symmetry to identify the irreducible representations for the molecular 

vibrations and selection rules to decide how many of these should be IR active. The projec- 

tion operator then shows us the pattern of atomic movements consistent with each mode. 

However, symmetry alone cannot determine which vibration goes with which band in 

the experimental spectrum (Figure 1.5). For that, some knowledge of the bond strength 

and effective masses involved is required. For example, Figure 6.25 shows that the F,, 

modes are combinations of C—H stretch movements, whereas the A>,mode is out-of-plane 

movement of the H atoms. Bond compressions usually occur at higher frequencies than 

bending or these out-of-plane motions, and so the £|, modes will be associated with the 

high -frequency band (around 3000 cm). 

6.8.2 The fac and mer Isomers of Transition Metal Complexes 

The vibrational spectra of metal complexes containing CO can be a useful probe of their 

structure and chemical bonding. The stretching vibration usually lies in the range 2100— 

1700cm™' and can usually be distinguished from the vibrations of other ligands. We will 

see in Chapter 7 that the C=O bond strength, and so its vibrational frequency, is affected 

by its bonding to a metal centre. This means that the IR spectra of complexes containing 

CO can give insight into molecular bonding. 

In this section we will show how symmetry analysis can help decipher the spectrum by 

determining how many bands to expect for a given molecular geometry. This allows us 

to distinguish between possible isomers. For example, the general six-coordinate complex 

ML;(CO), can occur in one of two isomeric forms: 

e Figure 6.26 shows the facial (fac) isomer, in which all three CO ligands are on the same 
triangular face of the octahedron of metal coordination sites. This belongs to the C3 
point group. 

¢ The meridian (mer) isomer, which has the three CO ligands in the same plane, is also 
shown in Figure 6.26 and gives a C>, structure. 
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=—© | sla 

o=c | eS rip | — 
i IE; 

fac-isomer, C3,, mer-isomer, C>, 
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If 
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ae eee 

om 

C3 axis into page 

Figure 6.26 The facial (fac) isomer and meridian (mer) isomer of the general complex 
ML3(CO);. In each case the upper diagram shows a sketch in the normal orientation for 

‘octahedral’ complexes and the lower pictures use a view that should make the symmetry 
elements easier to see. The basis arrows along carbonyl bonds that are used in the vibrational 
analysis of carbonyl stretching modes are drawn slightly to the side of each ligand for clarity. 
Note that, for the C,, mer-isomer, the basis vectors b; and b) are symmetry related to each 

other, but not to b;. 

The analysis of the fac-isomer is identical to the ammonia N—H stretching modes 

example of Section 6.6.2, so that the three basis vectors give rise to three vibrational modes 

with irreducible representations: 

Ae (6.66) 

Vibrational modes following the A, and E representations will be IR active; however, 

because the two vibrations in the E representation are degenerate, only two IR bands would 

be expected. The pattern of CO bond stretches in these modes is analogous to the N—H 

stretching modes shown in Figure 6.20. 

For the C;, mer-isomer the o,’ plane will be taken to be the one containing all three 

CO bonds, as drawn in Figure 6.26. The reducible representation for this isomer generated 

with this setting is shown at the top of Table 6.19. This table also shows that the application 

of the reduction formula gives 

l= 2A,+B, (6.67) 

For the C,, case we have found three irreducible representations, all of which are IR 

active. 



214 Molecular Symmetry 

Table 6.19 Application of the reduction formula to the three CO bond 

basis for the Cy, mer-isomer of ML; (CO). 

Cry le GC a, (XZ) ay'(YZ) + l= x 

Ir 3 1 il 3 

Bex)( C) Xr(C) De \ Nj 

A, 3 1 | 3 8 ez 
A? 3 i =| =3 0 0 
B, 3 all ] =s 0 0 
By 3 =| = 3 4 1 

Problem 6.17: For the C,, isomer, the basis vectors b, and b) are symmetry related. 

Use the projection operator method to show that the A, and B, SALCs have the form 

Q(A,)=b, + by 

(By) = b, — by 
(6.68) 

The C=O bond on the C, axis, with basis vector b;, 1s separate from b, and b, because 

it is not exchanged with them by any of the symmetry operations. b; lies on the symmetry 

axis, So it can only have an A, representation. This means it can only be involved in linear 

combinations with the A, function found for the b, and Dj set, i.e. 

$\(A;) = b; + b, +b (6.69) 

and 

do(A;) = b; + by — b; (6.70) 

oe | Mee) eee | 2c SSE eae = 
Re ae “c= 5 —— - ™ Wom 

i, Ie 

A, A, 

1 

Se ees SoVes 
|< ~ = 

o=F | C=o 

IL 

B 

Figure 6.27 The three C=O stretching modes for the mer-isomer of ML;(CO)3. The arrows 
are drawn to show the motion of the O atom in the extension or compression of the individual 
ligands. 
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In the B, vibration, b; must have a zero coefficient, so that 

$3( Bz) = b, — by (6.71) 

These three vibrations are illustrated in Figure 6.27. From the character table, all three 

modes are expected to be IR active. 

The number of predicted bands is an important difference between the isomers. If a 

compound ML,;(CO); is synthesized, then one clue to its structure will be the number of 

IR bands in the CO stretch region of the spectrum. If two bands are observed, then it would 

indicate the fac-isomer had been made, whereas three bands would be evidence pointing 

toward the mer-isomer. 

6.9 Summary 

Section 6.3 gave a summary of the application of the reduction formula to a basis to iden- 

tify the irreducible representations for vibrations. The more general points covered in this 

chapter are as follows. 

1. Symmetry can be used to identify the transitions between energy levels that will be 

unable to couple to the probe radiation in spectroscopic experiments and so predict 

those transitions that will not be observed. This is the basis of the selection rules. 

2. Often, isomers of a molecule or complex will have different point groups and so may 

have different numbers of allowed transitions; symmetry analysis can then be used to 

interpret spectra and aid identification. 

3. In quantum mechanics, the coupling between light and a molecule depends on 

integrals such as 

M; => i) WOW, dt (6.72) 

where O is an operator, 7; is the wavefunction for the initial state and y; the wave- 

funtion for the excited state. Only if M, is finite will the transition from yy to yy; 

be observable. This means the integrand y,Ow, must belong to the totally symmet- 

ric representation for the point group of the molecule (character | for all symmetry 

classes). 

4. The irreducible representation of the integrand for Equation (6.72) can be calculated 

using the method of direct products. 

5. For vibrational spectroscopy, under laboratory conditions, 7; will usually be the 

ground-state vibration, which always belongs to the totally symmetric irreducible rep- 

resentation. The excited-state vibrations will have the symmetries derived from the 

analysis of a suitable basis. 
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6 

10. 

12? 

. For IR spectroscopy, the appropriate operator is the transition dipole moment. This 

has components with the same symmetry as x, y and z. The selection rule for IR spec- 

troscopy requires that a vibration must have the same irreducible representation as one 

of x, y and z. 

. For Raman spectroscopy, the appropriate operator is the molecular polarizability. This 

has components with the same symmetry as the products Ky Vs Os AY; RE and Vo Or 

their linear combinations. The selection rule for Raman spectroscopy requires that a 

vibration must have the same irreducible representation as one of these products or 

their linear combinations. 

. The pattern of atom motion in a vibration can be pictured as an symmetry adapted 

linear combination (SALC) of the basis used to obtain the irreducible representations. 

The SALC as a whole must conform to one of the irreducible representations identified 

using the reduction formula. 

. The SALC for an irreducible representation can be determined using the projection 

operator method (Section 6.6). This builds the linear combination by considering the 

effect of each operation in the group on a generating vector with a coefficient assigned 

from the character of the irreducible representation. This process requires all symme- 

try operations for the point group to be considered, i.e. operations within the same 

class must be considered separately. 

For groups containing large numbers of operations, the projection operator method 

should first be carried out with a rotational subgroup. The results can then be assigned 

to the correct irreducible representations by considering the behaviour of the resulting 

functions for the additional operations of the full point group. 

. For degenerate representations, the projection operator requires a different generating 

function for each of the equivalent vibrations. The first can simply be a single vector 

which will generate an SALC. The rest of the generating functions should be chosen 

so that they will give a result orthogonal to the first. 

When the basis contains subsets of symmetry-related vectors, separate SALCs will be 

obtained for each subset. These can be combined by taking further linear combinations 

within which each subset has the same irreducible representation. 

6.10 Self-Test Questions 

N 

. In the benzene example, the projection of the z and wu vectors from the basis in 
Figure 6.24 gave an A>, and one pair of degenerate E), vibrations. Use the projection 
operator method and the v, vectors to derive the SALC for C—H group bending modes 
which have the E;, representation and so can be IR active. 

. The carbonyl stretches of a square planar complex, M(CO),, can be derived from a 
basis made up of four vectors, one along each of the C—O bonds (pointing from 
C to O). From this basis, derive the reducible representation that makes up the C—O 
stretches and use the reduction formula to identify the irreducible representations it 
contains. Identify which vibrations will be IR active and which Raman active and use 
the projection operator method to sketch out each of the four vibrations. 

. The complex MnI(CO); shows three IR and four Raman bands in the CO stretch- 
ing region of spectra. Assign the point group of the six-coordinate complex, derive 
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the irreducible representations for the CO stretching modes and, hence, explain these 

observations. 

4. Iron tetranitrosyl, Fe(NO),, has been synthesized from Fe(CO), by treatment with NO 

under pressure. It is a very reactive complex that decomposes even under an inert atmo- 

sphere. It has a suggested structure of [Fe(NO*),|NO~, supported by the observation 

that it shows two IR absorptions in the NO? stretch region. Possible structures for the 

[Fe(NO*),] complex include D3, or C3, point groups. 

(a) Using a suitable basis, identify the irreducible representations for NOt stretching 

vibrations that are IR active for each complex geometry and so identify the most 

likely geometry. 

(b) For each of the irreducible representations you have identified, sketch the motion of 

the NO* atoms during the corresponding vibration. Explain your answer in terms of 

compliance with the characters of the representation and the spectroscopic selection 

rules. 

5. (a) Explain why molecules which belong to point groups having centres of inversion 

will have IR-active vibrations with only ungerade representations. 

(b) Using a basis of six C—H vectors, identify the representations for all the ungerade 

C—H stretching vibrations of benzene. 

(c) Two of the ungerade C—H stretch vibrations of benzene lead to observable IR 

absorption; explain why only one band is seen experimentally. 

(d) Using the projection operator, obtain a normalized SALC representation of the 

vibrational motion of the C—H stretch mode of benzene which is ungerade but 

not IR active. Based on your SALC, illustrate the relative phases of motion of the 

C—H bonds in this vibration using the basis from (b). Why does this mode not give 

a transition dipole moment? 

6. In Section 6.3.1 and Problem 6.6 the irreducible representations for C—H stretching 

modes of 1,4- and 1,2-difluorobenzene are derived. 

(a) Using the projection operator method, find normalized SALC representations for all 

modes in each case. Confirm that your functions have the expected behaviour for 

the group operations by deriving the characters for each mode and comparing with 

the relevant irreducible representation. Note: for degenerate modes, the characters 

for the individual vibrations should be summed. 

(b) Show that the SALC functions you have derived for the C—H stretching modes are 

orthogonal to one another. 

Further Reading 

For a full discussion of quantitative vibrational analysis, see: 
Bright Wilson E, Decius JC, Cross PC (1980) Molecular Vibrations: the Theory of Infrared and 

Raman Vibrational Spectra, new edition, Dover Publications (ISBN: 0-486-6394-X). 
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Symmetry in Chemical Bonding 

7.1 Introduction 

In earlier chapters we classified the symmetry of atomic orbitals (AOs) in a number of 

example molecules. It is now time to develop the ideas of molecular orbital (MO) theory 

and use it to describe chemical bonding. Symmetry classifications help in the MO descrip- 

tion of chemical bonding because symmetry controls how the AOs on neighbouring atoms 

mix together. MOs are the wavefunctions for electrons in the complex field of the many 

nuclei and other electrons that make up a molecule. The complexity of MOs can be dealt 

with by constructing them from the AOs of the isolated atoms. The MOs are formed by 

mixing the AOs based on the idea of interference described by the superposition of waves: 

when waves come together in the same phase they reinforce one another, whereas waves 

of opposite phase will tend to cancel each other out. 

In this chapter we will find that only AOs of the same symmetry can mix by superpo- 

sition to give MOs. To construct MOs, the symmetry of the AOs for the interacting atoms 

are first established and then each matching set is used to produce SALCs which predict 

the shapes of the MOs. This is simply an application of symmetry analysis to a basis of 

AOs, and so we will always be able to construct the same number of MOs as there are AOs 

in the basis. 

Symmetry cannot tell us the relative energies of these orbitals, and so we also review 

some ideas in chemical bonding and atomic electronegativity to allow the energetic order- 

ing of MOs to be judged. We begin, in the next section, by outlining the idea of interference 

and superposition of waves. Then we will discuss the link between MOs and the electron 

density that is probed in experiment. The approach is to overview the general concepts of 

MO theory using some quite complex-looking examples. Then, in later sections, a more 

detailed analysis of chemical bonding and MO theory will be undertaken using simpler 

cases in greater depth. 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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7.1.1 Wave Phenomena and Interference 

Everyday life offers many opportunities to observe wave-like phenomena and the inter- 

ference patterns formed between waves. When raindrops hit the surface of a puddle or 

pond, circular patterns of surface waves are sent out from the points of impact. A typical 

scene is shown in Figure 7.la. Interference occurs where the waves meet: for points on 

the surface of the pond at which waves arrive in phase, the disturbance of the surface is 

greater than for either wave alone; in contrast, where they arrive out of phase, the peaks 

and troughs tend to cancel out, resulting in less local disturbance. This gives rise to the 

cross-hatch pattern visible in the close-up of two particular drop impacts in Figure 7.1b. 

(a) 

Figure 7.1 (a) The pattern of surface waves caused by raindrops hitting the surface of a 
pond. (b) A close-up of two particular circular waves; in the space between the impact sites 
the pattern due to interference can be seen, particularly in the region highlighted by the white 
circle. This pattern arises from superposition of the waves, so that two peaks arriving at the 
same point reinforce one another while a peak and a trough will cancel out. 
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To obtain the disturbance at any point we have to add together contributions from all the 

waves generated by the rain drops; that is, we have to use superposition of the individual 

waves. 

The idea of the superposition of waves is useful to bear in mind when we deal with 

chemical bonding: the individual waves are akin to the AOs and their superposition gives 

the MOs of sets of atoms. We should expect regions where the AOs are in phase to result 

in a relatively large wavefunction amplitude, while regions where opposite phases come 

together will give a low, or even zero, amplitude. 

However, the analogy with water waves can only be taken so far. For example, the water 

waves travel away from the impact centre until the disturbance falls to zero, whereas the 

MOs are stationary solutions of the Schrédinger equation: the attraction to the atomic 

nuclei holds the electrons in place and the wavefunctions describe how electrons may 

distribute themselves around the nuclei. They will remain undisturbed in these patterns 

indefinitely unless acted upon by some external agent, such as light of sufficient photon 

energy to cause an electronic excitation (see Appendix 7). In addition, there is only one 

interference pattern on the surface of the pond in Figure 7.1, while there will be as many 

MOs as there are AOs. This follows because the AOs are a basis from which the MOs are 

constructed as symmetry adapted linear combinations (SALCs). 

Figure 7.2 shows an example MO for the polyaromatic molecule phenanthrene. Here, 

the MO is formed from the C atom p-orbitals that are perpendicular to the molecular 

plane. In areas in which these AOs are in phase, constructive superposition occurs and 

Constructive superposition 

of in-phase AOs 
Destructive superposition 

of out-of-phase AOs. 

Note: zero orbital on 

central C atom, 

C(2) 

Figure 7.2. An example MO from the aromatic molecule phenanthrene (C\4Hjo). This MO 

is formed from a linear combination of the C(2p) orbitals which are perpendicular to the 

molecular plane. Areas of constructive and destructive superposition of AOs are indicated. 

The chemical structure of phenanthrene is shown bottom left. 
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the p-orbitals join up across the molecule. In regions where the p-orbitals meet out of 

phase, destructive interference results in zeros in the wavefunction, which means that the 

AOs of some atoms (e.g. C(2)) make no contribution to this particular orbital. This MO is 

part of a set that gives the delocalized z-electron density of aromatic molecules such as 

phenanthrene. The H(1s) atom basis functions are not involved in this MO because their 

symmetry does not match that of the p-orbitals perpendicular to the plane. 

Problem 7.1: In this problem we will look at the symmetry of the MO shown in 

Figure 7.2. The whole orbital should be thought of as a single object in your analysis. 

1. What is the point group of phenanthrene? 

2. Write down the characters for the MO of Figure 7.2 for each class of operation in 

the point group. (Remember, if an operation appears to leave the orbital unchanged 

then the character is 1; if it swaps positive and negative phases, then the character is 

—1.) 

3. Compare your characters with the standard table in Appendix 12 and, hence, assign 

an irreducible representation to the MO. 

Computer packages capable of calculating MOs, such as those in Figure 7.2, are now 

widely available and have been used for some of the figures in this chapter. These programs 

produce the SALC MOs that we will discuss. Having a computer to generate the shapes of 

the MOs is very useful, but their description and properties are still best understood with 

the insight gained from symmetry. 

7.1.2 fhe Born Interpretation of the Wavefunction 

In quantum mechanics, the wavefunction itself is not an ‘observable’ quantity. This means 

that it cannot be directly measured by experiment. What we can measure is the electron 

density. For example, the intensity distribution of X-rays in the diffraction pattern from a 

crystalline material depends on the electron density of the sample. In low-resolution X-ray 

diffraction experiments, the pattern is used to identify the high electron density concen- 

trated at the atom centres, and so X-ray diffraction is often used to determine molecular 

structure. However, high-resolution X-ray diffraction can map out the electron density in 

some detail; for example, Figure 7.3 shows data taken for (Z)-N-methyl-C-phenyInitrone. 

Nitrones are a class of organic molecules containing the C=N(+)—O(—) group which are 

used as radical trapping agents. They are able to interact with short-lived radical species 

to produce much longer lived nitroxide radicals that can be observed using electron spin 

resonance. 

The map in Figure 7.3 shows the difference between the charge density found in the 

molecular crystal and that expected for the same set of atoms with no chemical bonding 

interactions. Solid contours indicate regions in which electronic density has been increased 

by chemical bond formation, while dotted contours are used to show electron densities 

that have been lowered. In general, charge has accumulated in the internuclear regions at 

the expense of areas remote from the nuclei, so that the spherical isolated atom charge is 

rearranged in a molecule by building up electron density in the chemical bonds. Around the 
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Ga ~ O45) e 
Ott) “4 Hay “pe ii 

Figure 7.3 An example experimental electron density difference map for (Z)-N-methyl-C- 
phenylnitrone. The solid (dashed) contours are for an increased (decreased) electron density 
compared with a simple sum of noninteracting atomic densities. The inset in the top left 
shows a chemical structure of the same molecule in roughly the orientation in the contour 
plot. (Source: Hibbs DE, Hanrahan JR, Hursthouse MB, Knight DW, Overgaard J, Turner P. 
Piltz RO, Waller MP (2003) Organic & Biomolecular Chemistry 1: 1034-1040.) 

oxygen atom O(1) the charge density has also increased in two distinct lobes at roughly 

120° to the N(1)—O(1) bond. This is an image of the ‘lone pair’ density at the oxygen 

atom, showing that the surplus electrons that are not used in chemical bonding tend to 

concentrate in regions orientated in definite directions with respect to the chemical bonds. 

The experiments that generate charge density maps show us how the electrons as a 

whole are distributed in a molecule, but do not show the orbitals they occupy. In the Born 

interpretation, the electron density p(r) at a point r is linked to the set of occupied MOs 

o(r) by a summation of the wavefunction magnitudes squared: 

Noce 

p(r) dt = D> nd!(1) g(r) de (7.1) 
i=1 

where drt is an infinitesimal volume element of space around the point r and n; is the 

number of electrons occupying MO 7. We can ignore empty orbitals in this calculation, 

and so the sum is over all occupied orbitals N,... The astrerisk on the first wavefunction 

in the sum indicates that the complex conjugate of the orbital should be used. This is one 

consequence of the fact that wavefunctions cannot be observed directly; and so they may 

contain imaginary numbers. The role of imaginary numbers in wavefunctions is outlined in 
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Appendix 9; for now, though, we just note that the product of a function with its own com- 

plex conjugate gives a real (nonimaginary) value that is the magnitude of the wavefunction 

squared; the wavefunctions may contain imaginary numbers, but the density will be real 

and so observable. 

So the product in the summation in Equation (7.1) can be interpreted as the square of the 

‘size’ of the wavefunction at the point r. The square of the wavefunction will be positive 

even when the phase of the wavefunction is locally negative. However, the phase of the 

wavefunction is important in chemical bonding since it determines the interference pattern 

when MOs are constructed from two or more AO functions, as we saw in Figure 7.2. 

The relationship in Equation (7.1) is illustrated in Figure 7.4, which shows an exam- 

ple set of MOs calculated for the polyaromatic molecule phenanthrene (C,,Hjo). The four 

Energy 

N. cc 

DO ee 
i=l 

Electron density, p(r) 

-—------ - - - - - - - - - 

Figure 7.4 The relationship of the electron density to the occupied MOs using the example 
of phenanthrene. The MO diagram on the left of the figure is drawn with the convention that 
orbital energy increases up the page. In the ground state, MOs are filled from the lowest to 
the highest by pairs of electrons. For phenanthrene, the highest occupied MO (HOMO) is 
number 47, leaving number 48 empty and so the lowest unoccupied MO (LUMO). The Born 
convention gives the formula, shown to the right (Equation (7.1)), to relate the observable 
electron density to the underlying MOs. 
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MOs (numbers 45-48) are set out in order of energy, with the lines on the left of the 

diagram indicating their energy levels. Each energy level is a quantum state that differs 

in the spatial pattern of the MO. In addition, the electrons can have their spin in one of 

two possible orientations: spin up and spin down. This means that each MO can accom- 

modate up to two electrons, as indicated by the pair of arrows in each occupied energy 

level. Working out which orbitals will be occupied requires the number of electrons in the 

molecule to be calculated: neutral carbon atoms have the electronic configuration 1s? 2s” 

2p’ and hydrogen atoms have Is!, so that the energy levels in phenanthrene must accom- 

modate 6 x 14+ 1 x 10 = 94 electrons. The lowest energy state for the system is obtained 

by filling the energy levels from the bottom up, so in Figure 7.4 all orbitals from 1 to 47 

are occupied and those from 48 upward are empty. This is the ground-state configuration 

for the molecule, which gives the electron distribution with the lowest energy. The ground 

state is used to discuss chemical bonding for molecules free of external influences (such as 

excitation by photons). For phenanthrene, Equation (7.1) states that the observed electron 

density distribution is the sum of the squares of the amplitudes for MOs 1—47 with each 

having an occupation number n; = 2. 

In the ground state, the HOMO contains the most weakly bound electrons and so will 

be important for intermolecular interactions that involve donation to another molecule. 

Likewise, the LUMO can be thought of as available to receive donated electrons. 

7.2 Bond Energies 

The MOs discussed above give the distribution of electrons around the nuclei, and we will 

spend most of this chapter looking at the energy levels this creates for the electrons. The 

electrons and nuclei of the molecule have opposite charges; thus, they will have attractive 

Coulomb interactions that depend on the way the electrons are distributed, and so on the 

wavefunctions. In addition, we will also see that the electron kinetic energy is determined 

by the shape of the MOs. In this section we will outline how the MO energies fit in with 

the idea of bond energy. 

If we think about a simple diatomic molecule, the MOs formed from the two sets of 

AOs may have lower or higher energy than the constituent AOs. Those with lower energy 

are referred to as ‘bonding’ orbitals and those with higher energy as ‘antibonding’ orbitals. 

For a diatomic molecule, such as H, the concept of the bond energy is well defined and 

we would like to relate the MO energies to this experimentally measureable quantity. For 

a diatomic molecule the bond energy is the energy that must be supplied to dissociate the 

bond, separating the atoms so that they no longer interact: 

H, — 2H (7.2) 

Experimental measurements will actually give the bond enthalpy change AH for this pro- 

cess, which is related to the change of internal energy AU for an experiment taking place 

at constant pressure P by 

DM Fee NGS cd (ig) 

Clearly, the change of volume for Equation (7.2) will be considerable, as 1 mol of a 

diatomic gas is being converted to 2 mol of monatomic gas. This effect is subtracted out 
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in most references to give the change of internal energy, which is more relevant to the 

chemical bond dissociation energy. 

From a molecular perspective we can think of plotting the bond potential energy as a 

function of the internuclear separation, as illustrated in Figure 7.5. The low point on this 

plot corresponds to a minimum energy D.. This is marked in this figure as the energy 

difference between the bottom of the potential well (at R,) and the atonis separated to 

large R. 

Figure 7.5 The potential energy of two atoms as a function of their internuclear distance. 

The potential energy minimum is at the optimal bond length R, and defines the minimum 

bond potential energy D.. The observed bond dissociation energy is smaller by an amount 

equal to the zero-point vibrational energy E}. 

The potential energy curve in Figure 7.5 is the Morse curve we first met in Section 6.2.4. 

There, the discussion of vibrational motion concentrated on the region near the poten- 

tial minimum and the vibrational energy levels E’ were described with the harmonic 

approximation 

Ee (2b) av (7.4) 

with n a quantum number taking values 0, 1, 2, ..., v (s~') the vibrational frequency of the 

mode and h the Planck constant. The superscript v has been added to E* to distinguish it 

from the electronic energy levels discussed in the rest of this chapter. 

The harmonic approximation is valid because the movement of the atoms around the 

optimal bond length R, in a vibration is small. However, Equation (7.4) tells us that a 

molecule can never quite attain the minimum energy on the bond potential curve because 

it will always have vibrational energy of at least the n = O vibrational state, ie. E) = 

Shy. This quantity is the zero-point energy (ZPE) for the bond. Figure 7.5 shows that the 

experimentally observed bond dissociation energy D, will always be less than estimates 

based on the minimum potential energy by an amount equal to E>. 

The dissociation process involves the atoms moving from R, to become noninteract- 

ing atoms and so D, and D, are quoted as positive values. The effect of the ZPE on 

bond energies is small, but significant. For example, Table 7.1 quotes the experimental 

bond dissociation energy D, for H, as 432kJ mol™'; the vibrational frequency of H) is 

4160cm', so the bottom of the potential energy well would be 25 kJ mol"! lower, giving 

D. = 457kJ mol~', due to the ZPE. 
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Table 7.1. The bond lengths and bond dissociation 
energies for the diatomic species Hj, H,* and He". 

Values for bond dissociation energies are taken from 
Linde DR (ed.) (2005-6) CRC Handbook of Chemistry 
and Physics, 86th edition, Taylor and Francis, adjusted 
to OK. 

Molecule Bond length/ A Bond dissociation 

energy De; kJ mol! 

Hp 0.74116 432 
H,* 1.06 DADE) 
He,* 1.08 230 

Problem 7.2: The vibrational frequency of D, is 2990 cm™!. Assuming that the chem- 

ical bond in D, is identical to that of H,, show that there will be a difference between 

the observed dissociation energy and potential minimum of 18 kJ mol"'. 

For polyatomic molecules, the bond dissociation energy refers to one particular bond 

cleavage event, while the bond energy is the average for the series of bond disociations 

required to separate the molecule into atoms. For example, for H,O: 

H,O — eOH + eH D, = 493kJ mol! 

eOH > eeO+eH D, = 424kJ mol"! 

So, it is harder to remove the first H than the second. The bond energy for HO is the 

average of these two, i.e. 459 kJ mol~'. Note that in these expressions we have separated 

the bonds into neutral radicals, hence the ‘e’ symbol. The bond energies refer to these 

homolytic cleavage processes, rather than to the heterolyic splitting of H.O to produce an 

anionic hydroxyl and proton. 

In our analysis of the MO picture of the chemcial bond we tend to ignore the ZPE effect. 

Although it is important, it is easier to work with the larger energy changes that occur due 

to the rearrangement of electrons and nuclei during bond formation and then reintroduce 

vibrational energy differences if comparison with experiment is needed. 

The energy of the electronic system £,,, as estimated by MO calculations, is simply a 

sum over all the occupied orbital energies: 

Nocc 

Ea = yn; (Ges) 

i=1 

So, we can estimate the contribution of the electronic states to the bond dissociation energy 

if we know the orbital energy levels £; for the reactant and product sides of reactions such 

as in Equation (7.2). In the next few sections we outline the application of the Schrédinger 

equation to the simplest of molecules H,* and H>. This will allow us to obtain the orbital 

energy levels for these molecules. We will also see how the shapes of the orbitals and 

the way they are built from an AO basis can give insight into their relative energies. This 
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means we can roughly estimate the contribution of an orbital to the stability of a molecule 

without recourse to complex calculations. 

The Schrédinger equation used to develop MO theory should contain potential energy 

terms for the interaction energy of the electrons with nuclei and electrons with each other. 

The bond energy also requires the change in internuclear repulsion to be quantified: the 

repulsion between the nuclei in the molecule is not present in the separated atoms of Equa- 

tion (7.2), and so there must be an unfavourable nuclear contribution to the bond energy. 

However, as the nuclei are well represented as point charges, this term is quite easy to 

calculate. 

The interactions of electrons and nuclei largely depend on Coulomb’s law, which says 

that the interaction energy between charges depends on the reciprocal of their separa- 

tion. If the separation becomes infinite, then the calculated potential energy tends to zero. 

As opposite charges interact (e.g. nuclei and electrons), the result is a negative energy. 

Accordingly, MO calculations usually give negative energies, and when they are used in 

bond energy calculations, along with an estimate of the internuclear repulsion, it is the 

bond formation energy —D, that is obtained. 

7.2.1. The Symmetry-Adapted Linear Combinations 

for the Molecular Orbitals of H,* and H, 

The dihydrogen cation H,” is the simplest molecular species we can study; it has only one 

electron, and so the corresponding Schrodinger equation can actually be solved exactly. 

This makes it an ideal subject for considering the concept of a chemical bond at a fun- 

damental level. In Appendix 10 we cover the question of why H,” should be stable with 

respect to a separated H atom and H* cation in some detail. The study of H,” gives us 

insight into the contributions that make up the stabilization energy from the various inter- 

actions between electrons and nuclei. We will comment on these contributions to bonding 

after setting up the relevant MOs. 

In the linear combination of AOs model, the MOs are built from the AOs derived for 

H-like atoms (see Appendix 9). The H atom in isolation has the simple electronic structure 

1s', and so in the H, molecule, or its cation, we are interested in SALCs of the two atomic 

s-orbitals centred on the two H nuclei. 

H,*, H, and any other homo-diatomic molecule belong to the point group D,,,. Tak- 

ing the two s-orbitals as sketched in Figure 7.6a as a basis, any operation which does 

not swap the atoms over will have character 2, while any operation which interchanges 

the atoms will have character 0. It is then easily shown (Problem 7.3) that this reducible 

representation gives two SALCs: 

los” = N,,(s( H,) +s8( H,)) (7.6) 

20,* = No (s(H,) —s( H2) ) (7.7) 

where N,, and N>, are normalization constants. The convention in chemical bonding is 
to use lower case symmetry labels for MOs and to number those of the same symme- 
try sequentially from the lowest energy SALC to the highest. In the case of molecules 
belonging to the D,., group, the distinction of gerade (g) and ungerade (u) orbitals in this 
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(a) 

20,* = No, (s(H,)-s(H)) 

lo,* = Nj, (s(Hy)—-s(H)) 

Figure 7.6 (a) The two 1s orbitals for the H, molecule sketched as noninteracting orbitals, to 
the right is a plot of the radial decay of the 1s orbitals away from the nuclear centres. (b) The 
MOs for the Hz molecule. In the 10,* SALC the AOs reinforce one another in the internuclear 

region, building up negative charge between the two positive nuclei. In the 2o,+ combination 
the two s-orbitals have opposite phase and cancel each other at the bond centre. 

numbering scheme is neglected. This will make the comparison between homonuclear 

diatomic (D..;,) and related heteronuclear diatomic (C,.,) molecules more straightforward. 

Problem 7.3: Write out the reducible representation for the basis of two H(1s) orbitals 

in the H, molecule. Then use the elimination method introduced in Section 6.2.2 to 

confirm that the irreducible representations o,* and o,* are correct for the SALCs in 
Equations (7.6) and (7.7). 

Figure 7.6a shows sketches of the two basis function orbitals drawn as noninteracting 

spheres around the H atoms. The illustration to the right shows the radial profile of the 

basis functions. In the molecule, the two orbitals overlap, and so the MO will be affected by 

the interference of the s-orbital functions in this internuclear region. Both s-orbitals have 

the same phase for the lo," SALC, so in the overlap region they reinforce one another, 

leading to an increased charge density compared with that of either s-function alone. The 

2o0,* MO, on the other hand, has destructive interference in the internuclear region, leading 

to a reduced wavefunction amplitude which falls to zero at half the bond length and gives 

a negative phase orbital around H), as indicated by the SALC in Equation (7.7). 

For the corresponding electron density we can make use of the Born interpretation of the 

wavefunction again. This states that the product of the wavefunction and its own complex 

conjugate gives the probability per unit volume of finding an electron occupying the orbital 
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at a given point in space. In this case, the 1s basis functions are real (they contain no 

imaginary part); so, if we choose any point r, the probability becomes 

Petree =a, er , (7.8) 

where lo, *(r) is the value of the wavefunction at point r and 6T is a small volume around 

r. We can never define the probability of the electron being exactly at r, only within this 

small volume centred on r. 

Writing the 1o,* MO as its SALC of the basis functions from Equation (7.6) gives the 

probability in terms of the basis functions: 

Pry (1) 8 = Nig? 2ST + Nyg?8y75T + 2Nig 51825T (7.9) 

where the shorthand s; = s(r,H,), i.e. the value of the ith s-orbital at position r, has been 

introduced. 

Applying the same procedure to the 20,* MO from Equation (7.7) gives 

Pry (nr) 80 = Nyy28y28t + Niy?8275T — 2Niy751525T (7.10) 

Equations (7.9) and (7.10) say that the electron density associated with the lo,” or 20,” 

MO at any point is actually made up of two types of contribution. The first two terms 

contain s;7 and s,”, and so involve only single basis functions; but the third term, s;5>, is a 

mixture of basis functions, so we will now look at how these terms contribute to the total 

density. 

To imagine the shape of the density it is useful to simplify the three-dimensional func- 

tion defined for P(r) by reducing to one dimension in some way. A D,,, molecule is 

conventionally taken to be aligned with its principal C,, axis along the Z-direction; it 

must also have cylindrical symmetry, and so the density will be constant around any circle 

centred on the molecular axis and parallel to the XY plane. So one way to simplify P(7) is 

to integrate over planes perpendicular to the molecular axis and then plot these values as 

a function of z. This is like taking slices through the molecule and then plotting the total 

density from each slice at its z coordinate. More detail of the required procedure is given 

in Appendix 10. The results for the lo," and 20,* SALCs are illustrated in Figure 7.7a 

and b respectively. For the 1o,* MO the first two terms are added to the contribution from 

the basis overlap 2N, S55, and this leads to a high value for the density in the internuclear 

region for (1o,*)*. In the 20,* case the overlap contribution is subtracted from the first 

two terms, and so there is a lowering of the density in between the nuclei. In Appendix 9 
it is shown that the H 1s orbital follows an exponential function: 

5 

I Lees 
5; = AGxp (-2) with A= aE (—) C/AGh) 

0 0 
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Figure 7.7 The components of the bond density from different basis products calculated for 
H,* in (a) the 10,* and (b) 20,* linear combinations. In these diagrams, the density in planes 
perpendicular to the z-coordinate has been integrated to give a one-dimensional plot. 

where r; is the distance from the ith nucleus and dp is the Bohr radius. For the plane on the 

bond centre all points are equidistant from the two nuclei; so r,; = r, meaning that 

and 

5 ry ro > 2r; 
S157 = A* exp rex exp or =A eXO Se Ca2) 

0 0 0 

on the bond centre plane. This ensures that the density of the 20,* orbital is always zero 

at the bond centre whatever the internuclear distance. 

The density plots of Figure 7.7 have been drawn with appropriate normalization con- 

stants for the experimental bond length in H,*. To find these normalization constants, the 

Born interpretation of the one-electron wavefunctions has been applied to an integration 

‘over all space’ of the MOs. The density plots give the probability of finding the electron 

on a given z-plane. If we integrate all along the molecular axis, we sum ( 1o,*)? or (20,*)° 

through all space and must find a total probability of 1. This is the normalization condition 

for one-electron wavefunctions: integrating the probability over all space must result in a 

unit probability. 

We will use a simple shorthand for such ‘all space’ integration; for example, for the 

(1o,*)° integration we write 

[ro ar = f (10,*? duane Is art | s: ar +2 f ss dr | =1 (7.13) 
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The full three-dimensional integrations are laid out in various coordinate systems in 

Appendices 9 and 10. The first two integrals here are over the squares of AO basis func- 

tions. We can reasonably expect these to be normalized, and so the first two integrals are 

each 1. The third integral arises from the orbital overlap and accordingly is referred to as 

the overlap integral S,»: 

S12 _ [se dt (7.14) 

We did not meet this sort of term in Chapter 6 because all basis vectors in the vibrational 

analysis were taken to be orthogonal to one another, so that such terms integrate to zero. 

However, we cannot assume that the basis functions are orthogonal here. Orthogonality 

would imply that the basis functions are completely independent, but Figure 7.6b shows 

that the two basis functions of the AOs interact strongly, particularly in the overlap region. 

So, to work out N,, from Equation (7.13), the integral over the product of s; and s5 has to 

be retained. We can only calculate the normalization factor based on this overlap integral: 

2 
1 

2Nig ( I Sp) = 1 so that Nig = Vp sa (7a) 

12 

For the 1o,* orbital the overlap integral quantifies the build up of charge in the internuclear 

region. When the nuclei are far apart, S,, will tend to zero and N,, becomes 1/\/2, the value 

found for two equally weighted orthogonal functions in Chapter 6. As the nuclei approach, 

some of the density is described by the overlap integral, and so N;, is reduced to ensure 

the wavefunction remains correctly normalized. 

Problem 7.4: Show that for the antibonding MO 2o,* the normalization factor is 

1 
Ne a 

~ V2CL = 5:9) 
(7.16) 

Problem 7.4 shows that the overlap integral appears with a negative sign in the 20,* MO 

normalization factor. In the density plot, it can be seen that the overlap contribution is now 

subtracted from the single basis function components. As the overlap becomes significant, 

the normalization factor has to increase to ensure the overall density remains normalized. 

Note that since $,, is in the range 0-1, a negative sign cannot appear in the square root of 

the denominator of Equation (7.16). 

7.2.2 The Chemical Bond Energy from Molecular Orbitals 

Figure 7.5 implies that for atoms to come together in a molecule the total energy must be 

lower than for the atoms in isolation. So, to get an idea of what a chemical bond is, we 

need to estimate the energy of the MOs using the Schrédinger equation. 
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In Appendix 10 we look in detail at the simplest molecular system, the dihydrogen 

cation H,*. This is a molecule with only one electron, and so only electron—nuclear and 

nuclear—nuclear interactions need be considered. Here, we summarize the findings of 

Appendix 10 and identify the contributions to the total energy of the molecule in terms 

of the basis functions. 

To estimate the MO energies we turn to the Schrédinger equation applied to the MO 

SALCs, which is simply written thus: 

H¢; = Eid; CAT) 

Here, the subscript i is used to label the MO, ¢;; for this H,* example, taking i = | would 

set ¢; to lo,*. The MO is a function that, as we have seen, describes how an electron 

is distributed over space. In Equation (7.17), H is the Hamiltonian, which contains the 

operators to obtain the energy of the electron averaged over its distribution; the result is 

the orbital energy E;, which is a simple number. 

The chemical bond formation energy is the energy gained when the H atom and H* 

cation come together to form the molecular cation in its ground state. We can work out 

the energies of the two orbitals lo,* and 20,* from Equation (7.17) as outlined below. 

As a first estimate of the chemical bond energy with the electron in one or other of these 

orbitals, we then just need to add the internuclear repulsion energy and remove the H 1s! 

energy of the atomic state. The results are plotted as a function of internuclear separation 

in Figure 7.8. 

Energy/kJ mol"! 

1000 

Figure 7.8 The potential energy of H,* as a function of the internuclear distance. The MO 

occupied by the single electron is indicated next to each curve. 

To obtain Figure 7.8, the Hamiltonian for the electron states was first split into electronic 

kinetic T and potential V operators: 

(T + V)¢; = E:¢; (7.18) 

Appendices 9 and 10 discuss the forms of the T and V operators for the hydrogen-like 

AOs and H,* MOs respectively. The potential depends on the particular system; for the H 

atom there is just the field of the single proton, while the electrostatic interaction of the 



234 Molecular Symmetry 

electron with the two nuclei is needed for H,*. Here, we are talking about the potential 

energy of the electron rather than the potential energy of the whole molecule, and this 

depends on the way the MO that the electron occupies is distributed around the nuclei. The 

kinetic energy of an electron in an MO is related to the second derivative, or curvature, of 

¢; with respect to its coordinates. 

It should be expected that the MOs are normalized, so we can obtain an equation for £; 

by multiplying both sides of Equation (7.18) by ¢ (the complex conjugate of ¢;) and then 

integrating over all space: 

co 

E;= [ort V)¢ dt = [ ors dr + | ove dr = (T(H,*);) + (UCHQ");) 

—0o 

(7:19) 

The MO normalization condition has been used to set the integral formed on the £; side 

of the equation to 1. The integral on the H side cannot be dispatched so simply, because 

H (= T + V) is an operator rather than a simple number like E;. These integrals give 

the kinetic and potential energy of the electron averaged over the electron distribution in 

orbital i. These averaged properties are commonly called ‘expectation values’, and the fact 

that the averaging has been carried out is indicated by the angular brackets ( ). So, we will 

denote the expectation value of the kinetic energy as (T(H,”);) and that of the potential 

as (U(H,*);). The individual contributions to the bond formation energy are obtained 

by subtracting the corresponding expectation values for the atomic H state from which the 

molecular ion has been formed. Since Equation (7.19) only deals with the electronic states, 

we also have to add in the nuclear—nuclear repulsion V,, given by 

— iS 

ag Am eR > 

(7.20) nn 

where ¢€ is the permittivity of free space (8.854 x 107’? C? N“! m~”). The calculated 
interatomic bond potential for H,*, along with the kinetic and potential energy contribu- 

tions, is plotted for the electron ground-state 1o,* MO in Figure 7.9. Units of kilojoules 

per mole have been used to allow comparison with the experimental bond dissociation 

value. The minimum on this curve gives an estimate for the bond formation energy 

of —225kJmol~', which compares reasonably well with the measured bond dissocia- 

tion energy of 255kJ mol”! from Table 7.1. More accurate calculations can be made by 

extending the basis set on the atoms to p- and d-orbitals (see Further Reading section of 

this chapter). 

Figure 7.9 shows how both the kinetic and potential expectation values are important 

in bond formation. The major attraction between the centres at large nuclear separations 

is a lowering of the electron kinetic energy as it spreads out in the molecular bonding 

orbital, reducing the curvature of the orbital. The potential energy is actually greater than 

the atomic state for separations above about 1.9 A, but below this it falls rapidly and is the 

dominant negative term at the equilibrium geometry. 

For the simplest of examples, i.e. H)*, Appendix 10 shows that there are three important 

contributions to the bond formation energy which can be understood in terms of the orbital 

and density plots for the lo,* and 20,* molecular orbitals (Figure 7.7): 
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Figure 7.9 The contributions of the electron kinetic and potential energy expectation values 
to the interatomic potential curve for H)*. The internuclear term is also added to ensure the 
potential goes to zero at large R,. The inset plot (bottom right) shows the electron density 
integrated over planes perpendicular to the bond axis with the basis set decay factor optimized 
at the potential minimum; the dotted curve shows the density that would be obtained using 
the decay factor for an isolated H atom. 

1. The kinetic energy. The build up of electron density between the nuclei in 1o,* means 

that the wavefunction along the H—H bond has a more gradual variation with internu- 

clear distance than would be the case for either atom in isolation. This makes the second 

derivative, and so the kinetic energy, lower in this region than at a similar position in 

the orbital of the isolated atom. In contrast, the 2o,* SALCs falls more rapidly, passing 

through zero at the bond centre. A zero in a wavefunction such as this is referred to 

as a node and, in general, the kinetic energy increases with the number of nodes (see 

Appendix 10). This is a contributing factor to the order of the energy levels for the 

wavefunctions of, for example, phenanthrene (shown in Figure 7.4). 

2. The potential energy. The two nuclei have the same positive charge and so will tend 

to repel each other. The constructive interference in the 1o,* orbital will increase the 
density in the internuclear region and so place some negative charge between them, 

countering the internuclear interaction and so lessening its destabilizing effect. Taking 

these together, the electron density can be thought of as shielding the nuclei from one 

another. This is often seen as a signature for a chemical bond; for example, in the 

electron density plot of Figure 7.3 there is a build-up of density between neighbouring 

atoms, and this signifies chemical bonding. 

However, the density plots in Figure 7.7a show that the probability of finding the 

electron in H,* occupying 1lo,* outside of the internuclear region is still considerable, 

and so the shielding must be incomplete. For H,*, the net effect of nuclear—nuclear and 

electron—nuclear interactions based on AOs is to destabilize the molecule. The shielding 
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effect in the 20,* orbital is clearly less, as the internuclear region actually has reduced 

electron density compared with noninteracting atoms at the same separation. 

3. If we limited ourselves to basis functions which are optimized for the atomic state we 

would have to conclude that the bond formation energy in H,” comes from the decrease 

in kinetic energy as the electron moves from an atomic to a molecular bonding orbital. 

However, it would be surprising if the radial decay of the s-orbitals remained the same 

in the H,* molecule as in the H atom, because the nuclear potential has been changed 

by the inclusion of a second nucleus. The inset in Figure 7.9 gives a plot of the electron 

density in the bonding orbital and shows that the changing environment as the electron 

moves from the AO to the MO causes a contraction around the nuclei. On average, the 

electron spends more time close to the nuclei than it would if we use the Is orbital basis 

with the decay constants from the atomic states. The expectation value for the potential 

energy is lowered by this effect, making it the stabilizing term in the bond formation 

energy. 

This final point is a subtle effect that we will not consider again; the qualitative picture 

can be obtained without it. However, in calculations using computer packages (such as 

the H,O example given in Appendix 11), the basis set usually contains more than one 

basis function for each AO to account for such changes of shape. The idea is to have 

functions that decay differently with distance from the nuclei. If we have one function 

that goes toward zero faster than the atomic Is function and one that decays more slowly, 

then a linear combination can give any behaviour in between. This gives the basis set in a 

calculation the flexibility to reproduce the contraction effect discussed in point (3) and so 

give a lower bonding orbital energy than would be found for just a single basis function 

for each atomic orbital. 

7.2.3 The Molecular Orbital Energy 

To appreciate the MO picture of chemical bonds, the level of detail given above is not 

actually required. We will not usually even be concerned with separating the Hamilto- 

nian into its kinetic and potential components. However, we do need to consider the role 

of the overlap of basis functions in the chemical bond energy. Using the example of H; 
with the SALC representation for the bonding orbital lo,* (Equation (7.6) with Ni, from 
Equation (7.15)), we can estimate the orbital energy from the expectation value of the 
Hamiltonian: 

FE, = me + 5.) H(s,; +8) dt 

1 i ra : 
= X145) s\Hs, dt + i 5SyoHsy dt + J S,Hs, dt + i soHs, dt 

od a 7 =20 (7.21) 

The first two terms here involve only a single basis function; these represent the energy an 
electron would have if confined to either of the single s functions; to simplify the discus- 
sion, the value of such integrals will be written as Q. The second two integrals involve both 
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basis functions and are only nonzero when the H atoms are interacting. These are referred 

to as resonance integrals 6 and are the major part of the chemical bonding energy of the 

system; with these substitutions we obtain 

O- 8 
a — GD) 

Aa BS St ae 

Similarly, substitution of the SALC for 20,* results in 

G23) 

When the H atoms are well separated, and so not interacting, both S|, and 6B become 

zero. E\, and Ey, each reduce to Q, the energy of an isolated H atom. However, as the 

internuclear distance decreases, the orbitals overlap and the electron originally on H, can 

lower its energy by also interacting with the nucleus of H,. Similarly, the electron origi- 

nally with H, can also feel the influence of the H, proton. These interactions result in a 

negative resonance integral 6, and so we find F,, < E,. The more the overlap between 

the orbitals, the greater is the magnitude of 6, which stabilizes lo,* and destabilizes 20,* 

with respect to the free atoms, as illustrated in Figure 7.10. In this type of MO diagram 

we concentrate on the MO energies at one particular internuclear distance and how they 

differ from the reference atomic states. The separation chosen will usually be the opti- 

mum bond length, and so the electronic contribution to the bond formation energy can be 

estimated from the sum of the individual electron energies as given by the orbital ener- 

gies. We concluded from Figure 7.8 that 1o,* is a bonding orbital and 20,* antibonding. 

The same information can be drawn from the MO diagram: the lo,* level is below the 

atomic reference and the 20,* is above. Equations (7.22) and (7.23) also indicate that the 

energy increase incurred by occupying the 20,* orbital will outweigh the decrease from 

occupying the bonding lo,* level. 
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Figure 7.10 An MO diagram for H2, showing the formation of bonding 10,* and antibond- 
ing 20,* orbitals. The 20,* orbital is higher in energy, as destructive interference between 

the nuclei would lead to a low charge density. However, in H2, only the bonding orbital is 

occupied, stabilizing the molecule with respect to the separated atoms. 

Figure 7.10 shows electrons as half arrows, with the arrow direction indicating the elec- 

tron spin. In isolation each H atom has a |s' configuration; in the molecule, the lo," MO 
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has a lower energy than the 20,*, and so both electrons are placed in the 1o,* level with 

antiparallel spins. This means that only the energy lowering state is occupied and so the 

molecule is stabilized by its electronic structure. 

In the H, molecule there will, of course, also be electron—electron interactions, which 

tend to be repulsive; but for a large class of molecules, a working, qualitative, under- 

standing of bonding can be obtained by assuming that the nuclear—electron interaction is 

dominant. 

7.2.4 Bond Order 

The MO picture gives an easy appreciation of the concept of the bond order of a chem- 

ical bond. The bond order quantifies the degree of covalent bonding between atoms. A 

simple estimate of bond order between two atoms, A and B, can be gained from a simple 

inspection of the MO diagram using the definition 

1 
Bap = 5 (Moone ae Wasa) (7.24) 

where Mong ANd Nani are the number of electrons in the bonding and antibonding MOs 

respectively. For H,, placing the two available electrons into the stabilizing MO, lo,”, 

leads to a bond order of 1. If an electron is removed from H, to produce the molecu- 

lar cation H,*, then the bond order will reduce to 1/2. The effect of this can be seen in 

Table 7.1. The bond length of H, is around 0.74 A and the energy to separate the molecule 

into its constituent atoms, the bond dissociation energy, is 432 kJ mol~'. The bond length 

of H,* is 0.32 A longer than H, and the bond energy 177kJ mol"! less. So, the lower bond 

order gives a weaker chemical bond. Table 7.1 also gives data for the He,” molecular ion, 

which has the electron configuration (10,*)° (20,*)'. The data for He.” is similar to H2”, 

which may be expected since it also has a bond order of 1/2. 

The hypothetical molecule He, would have a bond order of 0. In fact, the overlap integral 

in the denominator of the energy-level equations, Equations (7.22) and (7.23), means that 

the ungerade symmetry MO destabilizes this system slightly more than the stabilization 

gained by filling the lo,* level. Accordingly, He is unstable with respect to isolated He 

atoms, and so helium is a monatomic gas. 

The bond order from Equation (7.24) is a useful ‘rule of thumb’ estimate of the relative 

bond strengths to expect from MO diagrams. However, it does not take into account several 

factors which are important for estimating actual bond energies. 

First, the effect of the overlap integral in Equations (7.22) and (7.23) is ignored. In the 

comparison of H, and H,", the longer bond length of the molecular cation will lead to 

a smaller overlap integral between the two H(1s) AOs forming the bond. This makes the 

orbital intrinsically less bonding, since the resonance integral f will be less negative. 

Second, electron—electron repulsion is not taken into account. From the relative bond 

orders of H) and H,* we would expect H)* to have around half the bond energy of Hb, 

with the longer bond length of the cation indicating an even weaker bond. However, from 

the data in Table 7.1, H,* actually has a bond energy 0.59 that of Hs, i.e. the cation has a 

stronger bond than expected. H)* has only a single electron in the 1o,* bonding orbital, 
and so there is no electron—electron interaction, as is present in Hj, which leads to the 
neutral molecule being less stable than expected based only on the bond order estimate. 
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These are important points; for any quantitative work, electron—electron interactions 

must be taken into account, and the theories underpinning computation of MOs do this at 

various levels of accuracy. Approaches such as Hartree—Fock or density functional theory 

adapt the Hamiltonian operator to include electron-electron terms in an averaged way 

so electrons see the Coulomb field of each other averaged over the calculated density 

associated with each MO (see the Further Reading section in this chapter). 

In the H, example, the atoms coming together in the molecule are identical. This results 

in MOs in which the electrons are evenly spread between the two nuclei (as illustrated for 

H,* in Figure 7.7). Bonds formed through sharing of electrons between nuclei are termed 

covalent. In later sections we will consider cases in which the electrons are not evenly 

shared between the nuclei, so that the electronic charge is polarized toward one or other 

of the atoms. In extreme cases this will lead to charge transfer from one atom to the other, 

giving an anion and cation pair in an ionic bond. 

Moving beyond the H, example, we will need to consider higher angular momentum 

AOs (p, d, etc.). One aspect of constructing MO diagrams like Figure 7.10 for heavier 

atoms is how to place the reference AOs correctly, i.e. where are the p-orbitals rela- 

tive to s? For bonds between different types of atom we will also have to estimate the 

relative energies of the contributing AOs. These aspects are dealt with in the following 

two sections. 

Four important generalizations can be made from this section: 

1. An energy level in an MO diagram gives the energy an electron occupying that state 

would have. The total electronic energy is obtained by summing over the occupied 

energy levels. 

. The resonance integral, representing the bonding interaction, is negative and 

increases in magnitude with the overlap between the AOs. 

3. Filling bonding orbitals with electrons stabilizes a chemical bond, but this is offset 

if the corresponding antibonding orbital is also occupied. 

4. A simple definition of the bond order is the number of electrons in bonding orbitals 

minus the number in antibonding orbitals, divided by two. Hence, H, has a bond 

order of 1 while He, would have a bond order of 0. 

tO 

7.3 The Relative Energies of Hydrogen-Like Atomic Orbitals 

7.3.1 Radial Behaviour of Atomic Orbitals 

The basis functions used in constructing MOs are the AOs based on the hydrogen atom 

solutions of the Schrédinger equation discussed in Appendix 9, with the proviso that accu- 

rate energies will require flexibility in the radial decay constants. Before moving on to 

molecules more complex than H), it is worth looking at the shapes of the AOs relevant for 

the first row of the periodic table. We have already used the shapes of s-, p- and d-functions 

to discuss the symmetry of particular AOs (e.g. the d-orbitals of the central metal atom in 

transition metal complexes were covered in Section 5.8). These shapes are based on the 
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angular part of the AOs, i.e. how the orbital changes as we move around the atom centre. 

The s-functions are independent of the angular coordinates, whereas a p-function has a 

preferred direction (X, Y or Z ) and has opposite phases on opposite sides of the atom. For 

bonding we will need to consider the mixing of these functions on neighbouring atoms, 

and so the decay of the functions away from the nuclear centres is also important. 

Figure 7.1 1a shows the radial functions R(r) for the H atom Is, 2s and 2p orbital func- 

tions defined in Appendix 9. The Is orbital is a simple exponential decay with distance 

from the nucleus r (Equation (7.11)). The 2s function looks similar at small r values but 

passes through zero and becomes negative at just over 1 A. This, and any other point on 

the radial plot, actually represents a whole set of points at that radius defining a sphere 

centred on the nucleus. A zero in a wavefunction is referred to as a node; this is the radial 

node in the 2s function. 

A 2p orbital has a radial part which is zero at r = 0 and has a maximum near to 1 A, 

with no radial node. In the angular function, as it must pass through zero to move between 

(a) 

(b) 

4nR(r)?r2 

0.4 

| 
0.6 | 

| 
| 

02f 

Figure 7.11 (a) The radial part of the H atom AOs R(r) for 1s, 2s and 2p functions plotted 
against distance from the nucleus r. (b) The radial probability functions for the same set of 
AOs. 
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the positive- and negative-phase lobes, so the orbital stands perpendicular to an angular 

nodal plane. 

All three radial functions decay toward zero at large r, with the 1s orbital approaching 

this limit more quickly than the 2s or 2p. This shows that electrons occupying these states 

would be localized by attraction to the positive atomic core, since the probability of finding 

an electron in such a state a long way from the nucleus will be vanishingly small. 

The wavefunction can be used to obtain the probability of finding an electron at any 

particular distance from the nucleus by integrating over the surface of the sphere at that 

distance. As can be seen from Figure 7.12, the infinitesimal volume concerned depends 

on the surface area of the sphere of radius r. The mathematics of this is discussed in more 

detail in Appendix 9, but here we note that the relevant function for the radial probability is 

actually 47 °R(r)*. The 477° factor arises because the infinitesimal volume at a particular 
distance from the nuclear centre increases with 7°. So there is four times more volume at 

2 A from the nucleus than at 1 A. The plots of the probability function for 1s, 2s and 2p 

orbitals are shown in Figure 7.1 1b. 

The Is function shows a peak at around 0.529 A; this is known as the Bohr radius dp 

and is the basic unit of distance used in the atomic units system discussed in Appendices 9 

and 10. The same value was derived by Bohr as the radius for the orbit of the electron 

based on a classical physics analysis of the electrostatic interaction between the electron 

and nucleus in a hydrogen atom. 

Figure 7.11b shows that the Is orbital of a second-row element is much more compact 

than the 2s or 2p functions and so it is usually thought of as part of the atom core; it remains 

atomic-like even in molecules, while the 2s and 2p orbitals can become mixed into MOs. 

This leads to the idea of the valency of an atom, which is the number of electrons in these 

outer orbitals. As we progress down the periodic table, laying out all the occupancies of the 

Figure 7.12 The infinitesimal volume at a distance r from the nucleus is the product of the 

surface area of a sphere of radius r and an infinitesimal change of radius dr. The surface area 

of the sphere has the effect of introducing a 4s factor into the probability of finding the 

electron at that distance (see Figure 7.11b). 
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core orbitals becomes tiresome, and so it is common practice to list the equivalent ideal gas 

symbol for the core electrons and then only quote the detail of the valence orbitals, so that: 

Onls2s-2p° becomes _ O: [He] 2s”2p* 

S: 1s?2s?2p°3s73p* becomes S: [Ne] 3s73p* 

and 

Se: 1s?2s?2p°3s73p°3d'°4s*4p* becomes __ Se: [ Ar] 3d'°4s*4p* 

This makes it easier to recognize why atoms from the same group of the periodic table, 

such as these examples, have similar chemical properties. 

The radial node in the 2s function gives it a minor peak in the probability density below 

the Bohr radius, which is not present for 2p. This means that a 2s electron will spend more 

time close to the nuclear centre than will one in a 2p atomic orbital. This, in turn, implies 

that the 2s orbital has a lower energy than the 2p orbital. The main peak in 2s is at just 

under 3 A, a little beyond the peak in the 2p radial function; so, despite its lower energy, it 

is still available to mix with orbitals from neighbouring atoms in molecules. 

These pictures of the orbital radial probabilities will be useful in understanding the 

relative energies of the AOs in the next section. 

7.3.2 The Relative Energies of Atomic Orbitals in Different Elements 

For the MO diagram of H, in Figure 7.10 the atomic energy levels for the two atoms are 

drawn at the same level, since they are identical atoms. For molecules containing atoms of 

different types we must estimate the relative energy of the constituent atomic states. 

There are experimental probes of the electronic energy levels of atoms and molecules. 

Perhaps the simplest is provided by the ionization energies of the elements which have 

been obtained by determining the photon energies required to eject electrons from essen- 

tially isolated (gas-phase) atoms. The photon energy is simply related to the light frequency 

v(s—') by the Planck constant h. For example, by measuring the lowest frequency radiation 

with which it is possible to ionize Li atoms, we are probing the ionization event 

Li(2s') Ap 128°) +e (7.25) 

To a first approximation, the lowest photon energy hf at which ionization occurs gives a 

direct estimate of the energy of the orbital from which the photoelectron was ejected. For 

atoms with occupied 2p orbitals there are two primary ionization energies; for example, 

carbon can be ionized as follows: 

C(2s*2p’) +hv, > Ct(2s*2p') +e7 (7.26) 

Or, 

C(2s°2p*) +hv, > C*(2s'2p*) +e7 (7.27) 

where the subscripts s and p indicate that the required energy to ionize from a 2s state will 
be different from that required to ionize a 2p electron. 
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Table 7.2 The atomic configurations and ionization potentials (eV) for 
the first two rows of the periodic table. For boron and heavier elements 
it is possible to ionize from either 2s or 2p states, and so this data gives 
an estimate of the energy differences between these orbitals. 

Atom Zz Atomic config. Is 2s 2p 

H 1 1s! 13.6 — ~- 
He ne 1s? 24.6 — — 

Li 3 [He]2s'2p° — 5.4 o— 
Be 4 [He]2s?2p° —_ 93 -— 
B 5 [He]2s*2p' = 14.0 8.3 

( 6 [He]2s*2p? — 19.4 10.6 
N i, [He]2s*2p° — BS S6) Be 

O 8 [He]2s?2p4 eS 372315 8 
F 9 [He]2s22p5 =e 40>. 18.6 
Ne 10 [He]2s*2p® 48.5 21.6 

The ionization energies for the first two rows of the periodic table are given in Table 7.2. 

Figure 7.11 shows that for second-row elements the two electrons that occupy the Is 

energy level remain close to the nucleus, and so the Is energy level is much lower than 

the 2s or 2p states. Electrons in the 2s and 2p states of first-row elements spend most of 

their time outside the inner shell volume; so, on average, they experience a nuclear charge 

which is shielded by the core electrons. The shielding has an effect on the atomic energy 

levels of the outer or valence electrons, so that, for example, the ionization energy of Li 

(1s°2s') at 5.3917 eV is actually lower than that of H, which is 13.5984 eV, despite the 

3+ nuclear charge of Li. The core electrons of Li shield the valence orbitals so that the 

effective nuclear charge, as far as the 2s and 2p orbitals are concerned, is around the same 

as the 1+ of the H nucleus. The H 1s! electron is in a state closer to the positive charge, so 

is lower in energy and more difficult to ionize than the Li 2s! electron. 

The small peak in the 2s probability function shown in Figure 7.1 1b exposes an electron 

in this state to the unshielded nuclear charge slightly more often than a 2p electron, and 

so the 2s state is always the lower in energy. Hence, for all elements with both 2s and 

2p electrons in Table 7.2 the ionization energy for 2s is greater than for 2p. As we move 

from left to right across the periodic table the nuclear charge increases and this difference 

becomes larger. Figure 7.13 extends this comparison to the third and fourth rows of the 

periodic table. The same trend, of the gap between ns and np orbitals becoming wider 

across the row, can be seen lower down the table. However, the range of values observed 

for rows 3 and 4 is less than for the second row, as the higher principal quantum number 

for these levels places the electrons, on average, further from the core of the atoms. 

It is also notable from the values in Table 7.2 that the ionization potential of He is not 

quite twice that of H. This is due to the electron—electron repulsion between the two Is 

electrons confined to the same spatial orbital in He. In the equations discussed so far, 

the electron—electron repulsion has not been explicitly included. In the H, example we 

simply assume that this effect is outweighed by the attractive interaction between the elec- 

trons and nuclei, so that it is favourable to put both electrons in the bonding MO despite 

the resulting electron—electron repulsion. The MOs obtained give the correct qualitative 

picture, but a more accurate account of the electron—electron interaction is required to 
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Figure 7.13 The difference in the ionization potentials for ejection of electrons from the ns 

and np states of the main-group elements Li-Kr. 

generate accurate values for the orbital energies. In the remainder of this chapter we will 

continue with the qualitative approach, and so no actual energy scales appear on the MO 

diagrams. The graphical images of MOs are obtained within the Hartree-Fock approxima- 

tion, which does include electron—electron interactions through averaging over the electron 

distribution corresponding to each occupied MO. 

7.3.3 The Relative Energies of Atomic Orbitals from Electronegativity 

LiH and HF 

In the previous example of H, we saw that the covalent bond lowers the electronic energy 

by allowing the electrons to interact with more than one nucleus. In diatomic molecules 

with D,., symmetry (i.e. composed of a single element), the sharing of electron density 

must be even between the two nuclei. When atoms of different elements form a diatomic 

molecule, the relevant symmetry will be C,,, because the symmetry elements which inter- 

change the nuclei are no longer valid. In addition, the nuclear charges will be unequal, and 

sO we may expect the electron density to be biased toward the more attractive of the two 

atomic cores. 

One measure of the relative attractive power is the ionization potential discussed in the 

previous section. The higher the energy required to remove an electron from an atom, the 

more strongly the electrons must be attracted to the atomic core. So, we should expect 

that the greater the difference between the atomic ionization potentials of the atoms in a 

diatomic molecule, the more ionic the bond will be. 

As examples of very polar bonds we will consider LiH and HF. Table 7.2 shows that 

the ionization potential of Li is 5.4eV while that of H is 13.6 eV, and F has an even higher 

value of 18.6 eV. Hence, in the LiH molecule, we can already see that bonding electrons 

will be able to lower their energy by spending more time close to the H nucleus. Similarly, 

in HF, a lower energy will be obtained if the valence electrons are biased toward the F 

centre. 

However, an atom in a molecule is not quite the same as one in isolation. We have 
seen, for example, that the wavefunction for H,” is more compact than we would expect 
from the AO decay constants (inset in Figure 7.9). For the relative energies of atomic states 
used to sketch MO diagrams, some estimate of an atom’s ability to draw bonding electrons 
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towards itself when in a molecule is required. This atomic property is known as the atomic 

electronegativity. Unfortunately, measuring the property of one atom within a molecule is 

a difficult task, and so estimates of electronegativity are obtained indirectly. 

In the first attempt to quantify the electronegativity of atoms in molecules, Pauling com- 

pared the bond dissociation energies of heteronuclear diatomics such as HF with that of 

the homonuclear diatomics of the constituent atoms. In the homonuclear cases we expect 

to see an equal sharing of electron density in a covalent bond, typified by the H, example 

covered earlier. In the covalent bond, stability arises from the electron—nuclear interaction, 

as represented by the resonance integral. The strength of this interaction depends on the 

type of nuclei, but if a heteronuclear diatomic molecule forms with a mainly covalent inter- 

action, then it is reasonable to expect that the bond energy should be close to the average 

of the homonuclear diatomics of the constituent atoms. There are cases where this appears 

to be the case; for example, taking values from Table 7.3: 

Table 7.3. The bond lengths and bond dissociation energies for a range of diatomic 
molecules. Values for bond dissociation energies are taken from Linde DR (ed.) 
(2005-6) CRC Handbook of Chemistry and Physics, 86th edition, Taylor and 
Francis, adjusted to OK. 

Molecule Bond Bond Molecule Bond Bond 

length/A dissociation length/A dissociation 
energy energy 

Da Kimo D,/kJ mol"! 

H, 0.74116 432 LiH 1.5953 230 

Li, 2.672 110 BH 25 336 

B> 1.589 274 Gal eZ O2 334 

Bi, — 195 NH 1.045 B39 

CG 1.2425 602 OH 0.9706 426 

No 1.0976 942 HF 0.9168 566 

O> 1.20741 494 HCl 1.2744 427 

F, 1417 NS HBr 1.4145 362 

Nap 3.078 72 HI 1.609 295 

Gk 1.988 239 BrCl ZA38 DAYS 

K 3.923 49 BF WAG 728 

Bro 2.2809 190 BN 1.281 385 

lp 2.6666 149 BO 1.2043 805 

C®@ ei} 1072 

NO Hokey 627 

D,( HD = 295 kJ mol! 

whereas 

(D,(H2) +D,(12)) /2 =(432 + 149) /2 = 290.5 kJ mol ! 

So, in the HI molecule, the bond energy is close to the average for H; and I). 

However, there are many contrary examples: 

D,( HEF) = 566kJ mol! 

whereas 

(D.C Hi) D.C F) ) 2 (432-4 155) /2 = 293.5 kimol— 
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meaning that the HF bond is much stronger than we would expect from a purely covalent 

model. We have already noted that the ionization potential of F is considerably greater 

than that of H, so the bonding electrons in HF will tend to locate nearer to the F atom than 

to the H centre. Stabilization is achieved by charge transfer between the nuclei rather than 

by sharing of electron density between them. 

In LiH, the bond energy is actually lower than expected for a purely covalent interaction, 

since 

D,(LiH) = 230kJ mol”! 

whereas 

(D,( Liz) +D,(H2) ) /2 =( 106 + 432) /2 = 269kJ mol’ 

This makes LiH difficult to observe as a diatomic molecule because it is unstable with 

respect to homoatomic molecules of its constituent elements. 

Pauling suggested that these comparisons of bond dissociation energies can be used to 

build up a relative scale of electronegativity, a measure of the attraction of an atomic core 

to draw electron density toward itself when part of a molecule. 

The Pauling values are reproduced in Table 7.4. We see that the electronegativity of 

H, at 2.10, is greater than that of Li (0.98) but less than that of F (3.98), because the 

bond energies of LiH and HF differ greatly from the average of the relevant homonuclear 

diatomics. In LiH the valence electrons loiter around the H atom, whereas in HF the F 

atom is more attractive. This is reflected in the names of the molecules, lithium hydride 

contains hydrogen as a negative centre, while in hydrogen fluoride it is the F atom that 

is the more negative of the two atoms in the molecule. The electronegativity of I at 2.66 

is much closer to the H value than either F or Li, because the bond dissociation energies 

suggest that the bond in HI is largely covalent. 

Many other attempts have been made to quantify electronegativity. For example, Allred 

and Rochow developed a scale based directly on the atomic radii of atoms in molecules. 

They argued that the electronegativity should be proportional to the electric field at an 

atom’s surface within the molecule. The position of this atomic surface was estimated 

using covalent radii R., and the electric field at this distance then depends on the effective 

nuclear charge Z. of the atom. In their scheme, the electronegativity x,p is calculated via 

0.3590Z.¢ 
Xar = 0.744 + ae (7.28) 

Cc 

The inverse dependence on the square of the radius comes directly from the electric field 
of a point charge. 

A third definition of electronegativity was put forward by Mulliken. In his work, the 
average of the ionization potential / and electron affinity A. of the isolated atoms was 
used: 

m= 5 +A) (7.29) 
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The electron affinity is the energy gained when an electron is added to a neutral gas-phase 

atom, and so Mulliken’s electronegativities average the ability of a neutral atom to retain 

its outermost electrons and its ability to attract an additional electron to form an anion. 

The Allred and Rochow and the Mulliken scales place the atoms of the periodic table 

in roughly the same order as the Pauling scale; so, for our placement of the AOs in an 

MO diagram, the values in Table 7.4 will suffice. The other definitions help to highlight 

different approaches to the concept of electronegativity. . 

We can now use the electronegativity values to place the AO levels at the correct relative 

energies before drawing an MO diagram. The LiH case is shown in Figure 7.14; because H 

is more electronegative than Li, the H(1s) AO is drawn lower than the 2s or 2p orbitals of 

Li. The trend seen in the ionization potentials across the first row in Figure 7.13 suggests 

that the 2s and 2p states of Li will be relatively close together, and these levels are placed 

accordingly. 

lot 1s (o*) 

Figure 7.14 The orbitals of LiH. The AOs of H are drawn lower than those of Li due to the 
difference in electronegativity. This makes the occupied 20% orbital predominantly H-like. In 
the MO diagrams, the position of H is shown with a white sphere and that of Li by a dark grey 
sphere. 

There are no operations which Swap atoms over in C,,y symmetry, there is only the iden- 
tity E, the infinite number of operations associated with the C,. axis and the infinite number 
of vertical mirror planes that contain the molecular axis. Conventionally, we align the Z 
axis with the principal axis, along the molecular bond. The character table in Appendix 12 
shows that 1s, 2s and 2p. AOs belong to the o+ irreducible representation, while 2p, and 
2p, are degenerate, belonging to the representation. 
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When the AOs interact to form bonding and antibonding MOs, part of the bonding 
density is described by the overlap integral (see Figure 7.7). There are now two choices 
for the symmetry of the orbitals on the Li centre, giving two possible types of overlap 
integral to consider: 

Sy = / Xe we ae (7.30) 

which is a totally symmetric integrand, and 

Sis / Kor rde (7.31) 

which does not have a totally symmetric integrand. 

In the first case, when the orbital on H and that on Li have the same symmetry, the totally 

symmetric integrand can give a finite overlap and so a mixed MO can be created. For the 

second case, Equation (7.31), we are proposing to take an integral over the product of two 

functions which belong to orthogonal irreducible representations. Their product will not 

belong to the totally symmetric representation of the group, so this overlap integral has to 

be zero. 

This observation greatly simplifies the construction of MOs, since only the AOs of 

matching symmetry on the two atoms will mix. Figure 7.14 shows the construction of 

the MOs for LiH. The lowest energy orbital is just the Li 1s state, labelled 1lo*. Although 

this has the correct symmetry to interact with the H Is AO, it is in the Li core and so has 

only a small overlap with the neighbouring atom (see Figure 7.11). The energy level for 

this MO is drawn at the same level as the Li Is reference, as it is only weakly affected by 

the presence of the H atom. The next level, 20*, is formed by the interaction of H 1s and 

Li 2s and 2p, states, although the lower energy H Is AO is the major contributor: the MO 

plot shows a large lobe on the H centre and only a minor component on the Li atom. This 

orbital is lower in energy than any of the contributing AOs, and so is bonding in nature. 

The strong bias of the occupied 20+ toward H corresponds to the difference in elec- 

tronegativities between Li and H. In the MO diagram, the H Is state is closer in energy 

to the 20* MO and so dominates the SALC formed from mixing the available valence 

orbitals of o* symmetry. The distribution of the occupied 20* orbital leads to a net neg- 

ative charge on H, because the MO contains two electrons and so these are concentrated 

around the single proton. Correspondingly, the Li centre is positively charged and the 

chemical bond is largely electrostatic in nature, making LiH an ionic compound. 

Since Li contributes three electrons and H only one, there are four electrons to accom- 

modate in the MO scheme; so, only lo * and 20% are filled and all higher energy states are 

empty. Moving up to the unoccupied MOs, we find 30 *, again formed from the valence o* 

symmetry AOs, but now with Li 2s and 2p, dominant, as these AOs are closer in energy to 

the MO than is H(1s). This orbital is higher in energy than the H Is and Li 2s AOs, and so 

is antibonding in nature. The MO plot shows that, if occupied, it would move charge den- 

sity to the Li atom and out of the internuclear region, destabilizing the ionic bond formed 

by 20": 
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The next level up is 17, a degenerate pair of states formed from the Li 2p, and 2p, AOs. 

There are no orbitals of corresponding symmetry on the H atom in this energy range, so 

these orbitals remain Li-like and are neither bonding nor antibonding. These are nonbond- 

ing states by symmetry, and their energies are practically the same as in the isolated Li 

atom. Accordingly, the energy levels are drawn at the same level as the reference AOs. 

The final state is 40*, a linear combination of H 1s and Li 2s and 2p,. 

It has been noted that LiH is actually very difficult to prepare as a gas-phase diatomic 

molecule. We have seen that the very polar nature of the Li. . .H interaction produces essen- 

tially the lithium cation Li* and the hydride anion H. These species attract one another 

electrostatically, and so a mixture of Li and H can form an ionic solid having the rock- 

salt structure (typified by NaCl). In this solid phase, each ion has six neighbours of the 

opposite charge and so the total binding energy per atom in the solid is much greater than 

for the gas-phase dimer. The electron affinity of the H atom is quite low, and so complete 

electron transfer to produce a hydride with this degree of ionicity is only really possible 

for the easily ionized Group | metals. In addition, LiH is liable to rapid decomposition in 

the presence of any source of H*, even H,O. 

At the other end of the second row of the periodic table, fluorine also forms a diatomic 

molecule with hydrogen. HF also belongs to the C,,, point group. The MOs for HF are 

Figure 7.15 The orbitals of HF. The AOs of H are drawn higher than those of F due to the 
difference in electronegativity. In the MO diagrams, the position of H is shown with a white 
sphere and that of F by a dark grey sphere. 
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shown in Figure 7.15 and are labelled similarly to those of LiH. However, F is much 
more electronegative than H, and so the reference AOs for F are drawn lower than 

those of H. The first valence MO, 20%, is correspondingly dominated by the F atom, 
2s orbital. 

We are now at the right-hand end of the second row of the periodic table; F has seven 

valence electrons to place in the MO scheme so that, with the single H(1s) electron, there 

are a total of eight. Figure 7.15, therefore, has all MOs up to the degenerate Iz pair 

occupied. The electronegativity difference between H and F is actually greater than that 

between H and Li. However, the 30% orbital in HF, which contains a significant contri- 

bution from the H(1s) orbital, is occupied. Accordingly, HF is a polar molecule with F 

negatively charged, but the charge transfer is not as complete as seen in the LiH example. 

The first unoccupied state is 40 *, which is an antibonding orbital, with the expected large 

H(1s) component. 

The HF molecule is stable with respect to the associated elemental diatomics. How- 

ever, in the solid or liquid phase the polarity of the HF bond gives rise to intermolecular 

interactions between each positively charged H atom and the negatively charged F atom 

of a neighbouring molecule. In the solid state this results in chains of molecules with 

an angle between adjacent molecular axes of around 116°. These H-bonding interac- 

tions have a large electrostatic component, and so the density, rather than particular 

MOs, should be used to explain the directional preference. Density is a sum over occu- 

pied orbitals. Here, 20* is largely spherical around F, 307% has a large lobe to the side 

of the F atom along the molecular axis, and the Iz orbitals are at 90° to the axis. 

The directionality of the charge distribution around the F atom comes from the sum 

of 307% and 1z orbitals, which results in the observed directional intermolecular bond- 

ing. This type of nonuniform electron distribution is often referred to as lone pair 

density. 

The lone pair density observed in the (Z)-N-methyl-C-phenylnitrone example discussed 

in Section 7.1.2 (Figure 7.3) shows a similar nonspherical distribution of charge around 

the O atom of the N—O™ group. MO calculations on the nitrone would give nonbonding 

orbitals similar to those found here for the simpler example of HF. 

Points to note from this section: 

1. The reference AOs in MO diagrams should be placed according to the atomic 

electronegativities; a high electronegativity gives a low-lying orbital. 

2. Only AOs of the same symmetry can mix to form bonding and antibonding MOs. 

3. AOs which do not match the symmetry of orbitals on neighbouring atoms, such as 

the F(2p,) and F(2p,) states in Figure 7.11, are nonbonding by symmetry. 

4. MOs formed from energetically different AOs have SALCs whose largest contribu- 

tion is from the energetically closest AO. At the extreme, this leads to practically 

nonbonding states for very different AO energies, e.g. the core states of second-row 

elements. 

5. The electron density is important for understanding intermolecular interactions. In 

an orbital picture, the density arises from a sum over occupied orbitals. 
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7.4 The Molecules Formed by Other Second-Row Elements 

with Hydrogen 

7.4.1  BeH),, Beryllium Hydride 

BeH, is a linear molecule belonging to the D,,;, point group. For this triatomic molecule the 

two H atoms are related to one another by symmetry. We cannot assign symmetry labels 

to each H 1s orbital, as has been done for the LiH and HF diatomic examples, because 

some of the symmetry operations swap over s(H,) and s(H,). To get around this, we first 

of all form symmetry adapted linear combinations (SALCs) of the H 1|s orbitals and then 

see how these combined orbitals interact with the central Be atom. Finding the SALCs for 

the H atoms is an identical problem to the H, MOs, and the results are drawn to the right 

of Figure 7.16. In BeH,, the H atoms are quite far apart and so the o,* combination is only 

marginally higher in energy than the o,*. 

9 eon 
40 

Be BeH, H, SALCs 

Figure 7.16 The orbitals of the D.., molecule BeH». The two H(1s) orbitals are taken as the 
SALCs shown to the right and the valence orbitals of Be are shown to the right. 

Table 7.4 gives the electronegativity of H as 2.10 compared with the Be value of 1.57. 
Accordingly, the H SALCs are drawn lower than the Be valence AOs in the reference levels 
of the MO diagram. The Be atom has an [He]2s°2p° ground-state electronic configuration; 
so, we cannot directly obtain the separation of 2s and 2p orbitals from the ionization poten- 
tials discussed in Section 7.3.2 because the p-orbitals are empty. However, we can estimate 
that this gap is quite small based on extrapolation of the trend shown in Figure 7.13, the 
ionization energy difference across the row of the periodic table. So, in Figure 7.16, the 
Be 2s and 2p levels are drawn closer together than the corresponding orbitals for F in 
Figure elo: 
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As usual, the principal symmetry axis is taken to be aligned with Z, and so the Be 2s 

and 2p, AOs belong to the o,* and o,,* representations respectively, while 2p, and 2p, are 

degenerate, belonging to z,. . 

The MOs for BeH, are shown in the centre of Figure 7.16. The lowest lying valence 

orbital is 20," formed from the interaction of Be(2s) and the o,* linear combination of 

H(1s) AOs (the lo,* is the core 1s state on Be that is not shown). In the graphic of this 

orbital, a small lobe centred on the Be atom can be seen; this is caused by the radial node 

in the Be 2s AO. 

The next orbital is 30,*, which contains the Be 2p. and o,* SALC of H(1s) orbitals. 

This is the HOMO, as there are only four electrons to accommodate in BeH,. The LUMOs 

are the degenerate pair of Be 7, orbitals; there are no corresponding H orbitals low enough 

in energy to form a significant interaction, and so these are nonbonding states. 

The linear structure of BeH, maximizes the overlap between the Be 2p, and the a, com- 

bination of the H Is orbitals in the HOMO state. Since only occupied orbitals contribute 

to the energy of the molecule, this is preferred in this case over a bent (C,,) triatomic 

molecule, which we will see in considering H,O. The C,, geometry does allow more 

mixing between the 2p orbitals on the central atom and H SALCs, but with less efficient 

overlap in each of the MOs formed. 

7.4.2 BH;, Boron Hydride 

The next element across the second row is B with an [He]2s*2p' electronic ground state. In 

its simplest form the compound BH; is a planar, D3,, molecule. To orientate the molecule 

we take the Z-axis to be along the principal, C3, axis and place the X-axis along B—H,. 

From the standard character table in Appendix 12, the B valence orbital symmetries are 

282aia 2p Gs andy) 2p.32py: € (7.32) 

So we have a degenerate pair of 2p orbitals in the molecular plane. 

The three H atoms are interchangeable by the symmetry operations of the group; so, 

before drawing up the MO diagram, SALCs of the H(1s) states will be constructed. 

Problem 7.5: Using the basis shown in Figure 7.17 and an example of one opera- 

tion from each of the classes given in the D3, character table (Appendix 12), find the 

reducible representation for the basis of three H(1s) orbitals in BH;. The answer can be 

checked against the reducible representation I in Table 7.5. 

Z out of page 

Figure 7.17 A basis of three H(1s) orbitals for construction of the H atom SALCs in BH. 
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Table 7.5. The reduction of the reducible representation 

for the three H(1s) AOs in BH3. 

Dp, Ee 2G 3G On 253 Yon, h =i fp lip 

ear 40 1 

&cxil C) xr(C) 5 eT is SP, 
w SS 

From the reducible representation we must identify the irreducible representations for 

the H(1s) orbitals so that those that match with the B atom orbital symmetries listed above 

can be identified. The reduction is laid out in Table 7.5. 

In this table there are zeros for the reducible representation under the symmetry classes 

2C; and 2$3, because rotations around the principal axis interchange the H(1s) orbitals. In 

the reduction, the corresponding columns are left blank because they cannot contribute to 

the sums required by the reduction formula: 

1 
m= > dX exit C) xr(C) (7.33) 

We first met this formula in Section 5.5; h refers to the order of the group, g. is the number 

of operations under class C, x-(C) is the character for the reducible representation of the 

basis (obtained in Problem 7.5) and x;,( C) is the standard character for the ith irreducible 

representation in class C from the character table. 

Table 7.5 shows that the SALCs for the three H(1s) orbitals belong to the A,’ and E” 

irreducible representations. To obtain the orbital patterns for these we use the projection 

operator method introduced in Section 6.6. To simplify the process, it is useful first to 

work with the rotational subgroup D3, which is part of the D3, operator set. This is self- 

contained, because the product of any two operations is still within the subgroup. When 

the SALC functions with the symmetry of the subgroup have been obtained we will just 

need to check which irreducible labels they conform to in the full D3, point group. 

The use of the projection operator in D; is shown in Table 7.6. The easiest approach 

when using the projection operator is to take one of the basis functions alone as the gener- 

ating vector and work out the functional form for each irreducible representation in turn. 

In Table 7.6 we use s, as the generating vector. This gives an a, MO which has all the 

H(1s) orbitals in phase with one another. In D3, the a,’ representation also has character | 

under both types of mirror plane and the improper rotation classes. The sum of all H(1s) 

orbitals in phase is easily seen to conform to this. 

Projection of s, for the E irreducible representation of the D; group gives the SALC: 

$\(e) = N,( 2s; — 52 — $3) Se, (7.34) 
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Table 7.6 The projection operator method for finding the SALCs for H(1s) orbitals in BH, 
using the D; rotational subgroup of D3,. The assignment of the horizontal C, axes follows 

the convention that C,*, C,° and C,° are through B—H,, B—H, and B—H, respectively, as 
shown in Figure 7.13. 

Ds; E C,' C. Gi eGye ass Piv = pay xil) Tv 

A, Ts Sy So $3 S| o8 So 2( Sy + 52 +53) 

ET js, 25, = S95 5G O O 0 25, ey ee} 

ET;(S — $3) Sy — $3 53 — Sy 51 — 5S) 0 0 0 2(S) — S3) 

The relative size of the coefficients shows that the lobe on H, is twice as large as those on 

H, and H; and has the opposite phase, as illustrated. Note that, since the X-axis is aligned 

with B—H,, this orbital is complementary to the B(2p,) part of the e degenerate pair of 

the B atom, but orthogonal to B(2p,). 

Before checking that ¢,(e) from the D; projection is the right form for ¢,(e’) in D3,, we 

need to find the second of the pair of SALCs for e. This should be able to form a bonding 

orbital to B(2p,) and be orthogonal to ¢,(e). In the SALC of Equation (7.34) the s, and 

s3 contributions are in phase (they both appear with a negative sign). As we expect ¢)(e) 

and @,(e) to be orthogonal to one another, a good guess at the generating function for 

the second of the e pair is 5; — s3, in which the orbitals are out of phase. This is used in 

the final line of Table 7.6 and confirms that this is a combination that conforms to the FE 

representation. 

Problem 7.6: (a) If the small overlap between the H(1s) orbitals in BH; is ignored, 

then the SALCs identified in Table 7.6 for the e representation can be written with 

normalization factors as follows: 

1 
p\(e)= wen S78) (F.33) 

and 
1 

go e) = var” — §3) (7.36) 

Assuming that each s function is itself normalized, confirm that the normalization 

factors in these equations are correct and that the two SALCs are orthogonal to one 

another. 
(b) We have used the rotational subgroup D, to derive the functional forms for the 

two degenerate e SALCs. Using the normalized forms given above, show that they also 

behave correctly for the e’ representation of D3, by checking the characters are correct 

for the remaining operations. 
Approach. To check that the functions are correct we need to find the character for 

their transformations with each operation in the group. To do this we first apply an 
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operator and work out the transformed function. This can then be equated to a lin- 

ear combination of ¢,(e) and @,(e) with unknown coefficients to obtain the character 

for the transformation, i.e. the amount of the original function still present after the 

transformation. 

This technique was applied to find characters for d-orbitals in various $ymmetries in 

Section 5.8. Here, we must remember that the two functions are degenerate and so the 

character in the standard D3, table should be the sum of the two we derive. 

Example. For the o,” operation, reflection through a mirror plane perpendicular to 

the molecule and including the B—H, bond gives 

S) > 83 Sy —> S> 53> 8, G37) 

so that the functions become 

aD 
1 pe 

a cag AC ee) xe = So, (7.38) 

and 

B 

te Aes aad 
$12) (ssi st Par (7.39) 

To find the characters for this operation we have to construct the new functions from 
the original SALCs; for the transformed ¢,(e’) we write 

1 Ge. b 
Ee 82 Ugg at ce eee (7.40) 

where a and b are coefficients that control the mixing of the SALCs. Comparing s, 
coefficients: 

=] 2a d 1 
SS Sie and so Ca 
Mita ek 5 a) 

a is the amount of the original ¢,(e’) still present after the o,” transformation, i.e. the 
character for the first function of the e’ pair. 

For ¢)(e’) we write 

1 a 
5 ee a ve se eA: 53) (7.42) 

Again, the coefficients of 5, can be used to find a: 

2a 1 J3 
— = — — or ——————— 
/6 /2 2 pas 
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The character in this case is the value of b. Now we know the value of a, comparing 
coefficients for s; gives 

1 
= 0 so that b= 5 (7.44) 

This shows that 

| 3 1 
wee —5)=- (2) = (28, — Syeda) (;) ls — 53) (7.45) 

The pictorial equation contains the same information as the algebra; when trying to 

image the effect of the coefficients on the orbital images it is useful to remember that 

the negative sign of the first term will reverse the phases of the orbital shown. 

So, from Equations (7.41) and (7.44) the characters for ¢,(e’) and ¢,(e’) for the o,® 

operation are —1/2 and +1/2 respectively, giving a total character for the e’ pair of 0, 

as expected from the 30, class of the standard character table. 

Note. The algebra is much simpler if we choose the o,* mirror plane as an example 

from this class, because then the functions are not mixed and the characters can be 

obtained by inspection. o,® was chosen in this example to help with cases for which the 

algebra cannot be avoided, e.g. S;'. 

The solution to Problem 7.6 demonstrates that the functions found to have e symmetry 

in the D; projection do indeed have e’ symmetry in D3,. The three H(1s) SALCs have prac- 

tically the same energy, as there is negligible overlap between H(1s) orbitals. However, on 

the right-hand side of the BH; MO in Figure 7.18 they are shown with the a,’ combination 

slightly lower than the two degenerate e’ orbitals for clarity of presentation. 

Table 7.4 gives an electronegativity for B of 2.04, which is less than the 2.10 of H, but 

closer than was the case for Li. This means that the 2p AOs of B are drawn slightly higher 

than the three linear combinations of H Is orbitals. The valence AOs of B were assigned 

symmetry labels, by reference to the right-hand column of the standard character table in 

Appendix 12, in Equation (7.32). 

To form MOs, all that needs to be done is to match the symmetry of the B valence 

orbitals to the H SALCs, and Figure 7.18 shows the resultant MOs in the central part of 

the diagram. 

Ignoring the B core Is state, the lowest lying valence orbital is 2a’ formed between the 

B(2s) and the H SALC in which all H atoms have the same phase. In the graphic of the 

MO, the radial node of the B(2s) orbital gives rise to a small inner sphere around the B 

nucleus. 

The next two orbitals are a degenerate pair, formed from the e’ H SALCs and the two 

B(2p) orbitals that are in the plane. These are the highest occupied levels for the molecule. 
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H, SALCs 

Figure 7.18 The MO diagram for the D3, molecule BH;. For clarity, the dotted lines for the 

a,’ orbitals are drawn in a different style to those for the others. 

The lowest unoccupied orbital is B(2p,), which has no partner in the H SALC set and so is 

the nonbonding state, la,’. 

The six bonding electrons are shared between three B—H bonds, and so each has a 

bond order of 1. The valence count around the B atom falls short of the octet required to 

complete the atomic shell, and so BH; is electron deficient. The empty la,’ MO readily 

accepts donation of electrons from other molecules, and so makes BH; a Lewis acid. It also 

allows BH; to dimerize to give a structure with four-coordinate B atoms sharing two of the 

six H atoms in a bridging motif similar to the Al,(CH3)3 structure discussed in Chapter 1 

(Figure 1.26). 

The higher energy MOs, 2e’ and 3a’ are antibonding complements to the bonding 

orbitals already discussed; they are higher in energy than the original atomic states and so 

would destabilize the molecule if occupied by electrons. Note the change of relative phase 

of the central B atom orbitals with respect to the H SALCs, leading to nodes between the 

atom centres. 

7.4.3  CH,, Methane 

Methane, CH,, has 7; symmetry. The C atom sits on a special point at the centre of 

the molecule, which is contained in all symmetry elements, and so we can simply read 

the irreducible representations for its valence orbitals from the standard character table 

(Appendix 12): 

C(2s): a, C(2p,),C(2p,) and C(2p,): (7.46) 
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(b) 

Figure 7.19 (a) The axis system used for a tetrahedral molecule such as methane, showing 
the positions of some symmetry axes. (b) One of the six og mirror planes in Ty. 

The paper model given in Appendix 3 shows the arrangement of the X, Y and Z axes 

for the geometry of the cube and the related tetrahedron; the axes are also overlaid on 

a model of CH, in Figure 7.19, along with some example symmetry elements. The C; 

axes run along the C—H bonds, while the C; and collinear S$, axes bisect the bond angles 

and are aligned with X, Y and Z directions. The mirror planes, e.g. og in Figure 7.19b, 

each contain two of the C—H bonds and act to reflect the other two H atoms into one 

another. 

The choice of axes system given in Figure 7.19 means that the X, Y and Z directions 

are each on a line passing through the centres of opposite edges in the tetrahedron. This 

setting places each C(2p) orbital along the line in between opposite pairs of H atoms (on 

the C, and S, axes), emphasizing the fact that they are degenerate, with all three assigned 

together to the 7, representation. 

Problem 7.7: Using a basis of the four H(1s) orbitals in CH,, obtain the reducible 

representation I’ given at the top of Table 7.7. 

Table 7.7 The reducible representation for the 
four H(1s) orbitals of CH, and the application of 

the reduction formula. 

8C;” 3G" 6S, 

1 0 0 

BeXi( OC) Xr(C) 
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For the four H(1s) orbitals we can obtain the irreducible representations by applying 

the reduction formula to the reducible representation. Table 7.7 shows that this process 

results in 

fea eb oe (7.47) 

Projection using the s, orbital as a generating vector with the rotational subgroup T is 

laid out for these two irreducible representations in Table 7.8. For A;, a function with all 

the H AOs present with equal weight and with the same phase is obtained: 

a = Si a2 8) ae 8a ae (7.48) 

where we have dropped the multiplier found in the table and stick to the convention that 

lower case letters are used for MO labels. This MO will form bonding and antibonding 

states with the central C atom 2s orbital, which has the same symmetry. 

The projection operation for the T representation using s, gives a function in which the 

generating AO has a coefficient three times the other H(1s) AOs and with the opposite 

phase: 

( t) = 35; — S. — 53 — Sa idl (7.49) 

This function is not suited to interact with any particular C(2p) orbital because it is 

‘aligned’ with the C—H, bond, rather than any of the C, axes. 

Let us take a step back and construct a generating function designed to interact only with 

2p.. In Figure 7.19a, H, and H; are equidistant from the positive Z-axis and so we would 

expect s; and s3 to have the same phase as one another. A possible generating function that 

could lead to this is 

Sse el (7.50) 

This function is also projected for the T irreducible representation in Table 7.8 to give 

pi (t) = 51 — 5. + 83 — 54 ace (7-51) 

which is clearly suited to interact with the C(2p.) orbital, which would be vertical in the 

sketch. However, its interaction with C(2p,) and C(2p,) orbitals would be zero, since they 

are along the other two C, axes, which each have one positive- and one negative-phase 

H(1s) orbital to either side. Similar generating functions can be used to produce SALCs 

aligned with 2p, and 2p,, and Table 7.8 shows that these are 

1 Ih 

b2( 1) = $1 — $2 — 83 + 84 es s(t) = 8; + 5. — 53 — 54 = ®@ 7.52) 
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The sketches use the same atom layout as Figure 7.19, and so it should be clear that they 

each complement a single C(2p) AO. 

Problem 7.8: Show that the three SALCs found in Equations (7.51) and (7.52) are 

orthogonal to one another. \ 

The simple projection of the s, orbital in Table 7.8 does result in a function that could 

be taken as one of an alternative set of three SALCs. However, we decided to abandon it 

because it was not suitably aligned to bond to a single C(2p) orbital in the axis system of 

Figure 7.19. Now we can see that it is related to the three t; SALCs found by deliberately 

constructing linear combinations aligned with the axis system at the bottom of Table 7.8. 

Inspection of the formulae shows that 

g(t) +@2( 1) +03( 2) = 35, — 82 — 83 — Sg (753) 

i.e. the first function found is a linear combination of the final three SALCs and so is not 

orthogonal to them. The three basic functions we have found are well suited to the MO 

construction because they are aligned with the axes that are used to define the direction of 

the C(2p) orbitals. 

The MO diagram for CH, is shown in Figure 7.20; in this instance, C has a higher elec- 

tronegativity than H (Table 7.4) and so its AOs are drawn lower than the H(1s) SALCs. 

The lowest energy MO formed from the valence AOs is 2a,, which is a linear combination 

of C(2s) and the totally symmetric H(1s) SALC. This is lower in energy than the } MOs 

85 SESS 
Se a aes 

7 
7 

y Cs 

| 

2s (a4) 

G H, SALCs 

Figure 7.20 The MO diagram for CH, in the Tg point group. 
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largely because the C(2s) state is below the C(2p) orbitals. Next are the three degenerate 

tf, states which involve each of the C(2p) orbitals and the corresponding H(1s) SALC con- 

structed in Table 7.8. Since there are eight valence electrons in CH,, these tf, states are the 

highest occupied orbitals. The lowest unoccupied state is 3a,, the antibonding counterpart 

to 2a). 

In this description of CHg, all eight valence electrons are in bonding MOs, and so Equa- 

tion (7.24) gives a bond order of 4. Since there are also four C—H bonds and the orbitals 

distribute the electron density evenly between them, we consider each to be a single bond. 

In the MO picture, the bond order arises from equal contributions from each of the low- 

lying 2a, and 1t, MOs to each C—H bond; no particular pair of electrons is associated 

with a particular bond. 

A common approach for the discussion of bonding to tetrahedral carbon centres, as 

typified by CH4, is to introduce hybridization of the C atom orbitals to give four equivalent 

sp’ combinations. This does account for the fact that the four C—H bonds are equivalent; 

however, it predicts four degenerate energy levels for the electron orbital states, and we 

see below that this is difficult to reconcile with photoelectron spectroscopy data. 

The experimental photoelectron spectrum (PES) of CH, is shown in Figure 7.21. Here, 

light is used to eject electrons from the molecule and the spectrum is based on the kinetic 

energy of the electrons emitted. To a first approximation the electron kinetic energy is 

the difference between the incident photon energy and the electron binding energy. So 

the spectrum shows peaks that correspond to the ionization energies for the MOs. Two 

well-separated photoelectron emission regions are seen in the spectrum. The lower energy 

region contains three broad peaks that merge together, centred at 13.6 eV, 14.4 eV and one, 

giving the shoulder, at 15.0 eV. These are accompanied by sharper features which decorate 

the broad peaks. This area of the spectrum contains signals due to excitation from the 

It, level of CH,. The sharp features are caused by coupling of the ionization event with 

the vibrational states of the molecule and cation formed after ionization. The origin of 

the three peaks is dealt with in the questions at the end of this chapter, and is related to the 

triple degeneracy of the t, MOs. 

At the higher binding energy end of the spectrum, a single broad feature is seen at 

around 23 eV, again overlaid with sharp peaks due to vibrational coupling. The vibrational 

origin of these features is evidenced by their regular spacing, as expected from the energy 

12 13 14 15 16 17 18 19 20 P| 22 23 24 25 

Inonization energy/eV 

Figure 7.21 The PES of the valence orbital region of CH. The original spectra were reported 
in two sections (from 12 to 16.3 eV and from 21.9 to 24.2 eV ) and are bought together here 

on a single energy scale. The vertical axis is photoelectron intensity in arbitrary units. Adapted 

from Potts A.W., Price W.C. (1972) Proceedings of the Royal Society of London, Series A 326: 

165-179. With permission from the Royal Society. 
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levels of the harmonic oscillator (Equation (7.4)) used to describe vibrational modes in 

Chapter 6 and related appendices. This feature is consistent with ionization of the 2a, MO 

of CHy,: it is at higher energy than the If, band as the orbital is lower lying. Its intensity 

is actually notably less than the If, ionization feature, and by more than the factor of 3 

expected from the relative degeneracies. This is likely due to the compact nature of the 

2a, orbital compared with each of the three 1t, MOs, as the former contains a dominant 

component from the C(2s) AO. So the 2a, level presents a smaller ‘target’ for the incident 

photons to strike. 

This spectral data seems difficult to understand using an sp° hybridization model, but 

arises naturally from the MO approach used here. 

7.4.4 NH;, Ammonia 

Ammonia has a pyramidal structure with the N centre above the plane of the three H atoms. 

The molecule belongs to the C;, point group, and reference to the standard character table 

in Appendix 12 shows that, with the principle axis aligned with Z, the N valence orbitals 

have the following irreducible representations: 

PEL PAS SOE S 2D, 2Py € (e543) 

For the H(1s) irreducible representations we can make use of the fact that C;, shares a 

rotational subgroup with D,,, namely C;. We have already derived the SALCs for our 
analysis of BH; MOs in the more complex D, subgroup, and the same combinations can 
be used here: 

i 
a, = ae + S2 + $3) (7.33) 

and the degenerate pair: 

pi(e)= Se(25 152 — 83) p2(e) = anu — 53) (7.56) 

A check of the characters for these functions in C3, should confirm the irreducible repre- 
sentation assignments. For the e representation, the methodology of Problem 7.6 should 
be followed. 

The MO diagram for NH; is shown in Figure 7.22. Nitrogen has a higher electronega- 
tivity than H (Table 7.4), and so in the MO diagram its valence orbitals are drawn lower 
than the H SALCs. In addition, the separation of the 2s and 2p states is greater than in 
diagrams for elements earlier in the period because of the increased core charge as we 
move across the row of the periodic table. This trend was quantified in the discussion of 
ionization potentials (see Figure 7.13). 

As before, the lowest energy orbital in this system is actually the core Is state of the 
heavy atom, labelled 1a, in the molecule. However, we are only interested in chemical 
bonding, so this is not shown in Figure 7.22. The first MO formed from valence AOs is 
2a,. There are three orbitals which can contribute: N(Qs), N(2p.) and the a; SALC of the 
H(1s) AOs. The N(2s) orbital is the closest in energy to the 2a, MO and so is the dominant 
component. The next two MOs are the degenerate le states formed from the combination 
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2s (a)) 

N H, SALCs 

Figure 7.22. The MO diagram for the C,, molecule NH3. For clarity, the dotted lines for the 
a, orbitals are drawn in a different style to those for the others. 

N(2p,) and N(2p,) with their corresponding H(1s) SALCs. The final occupied orbital, 3a,, 

has a large N(2p.) character with only weak interaction with the H(1s) a; SALC. 

The unoccupied orbitals begin at 4a,, which has a larger contribution from the H(1s) a; 

SALC than the earlier a, MOs. Finally, the 2e antibonding doubly degenerate levels are 

the highest energy MOs. 

In the case of NH, a hybridization picture can be useful in understanding the bonding 

scheme. We have found three a, valence MOs formed from linear combinations of the 

functions: N(2s), N(2p,) and the a, SALC of the H(1s) AOs. We can view these linear 

combinations as the result of first mixing the N-centred AOs, to form sp hybrids, and 

then dealing with the interaction between these hybrids and the H atom SALC. This is 

consistent with the irreducible representations on the N atoms, as it will produce hybrid 

orbitals that have the same a, symmetry. The linear combinations forming the hybrids 

have to be orthogonal to one another and normalized. This can be achieved by linking the 

coefficients c,; and c, used in the hybrids so that 

h,(a,) = N,(c18 + cop-) Gist) 

and 

hy(a,) = Ny(c28 — eip-) (F358) 
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where N, is a normalization constant. This nomenclature for the hybrid orbitals empha- 

sizes that the new functions still have a, symmetry, because they are linear combinations 

of a, AOs. 

Problem 7.9: Assuming that the original s and p, AOs are normalized and orthogonal, 

show that: 

1. Any choice of coefficients c, and c, leads to orthogonal hybrid functions. 

2. The normalization constant will be 

1 
N= (7.59) 

Jato 

In Figure 7.23a, the case of hybrids formed from s and p states of the same energy 

results in equal contributions to form degenerate hybrids. The result of the mixing of an 

s and a p state on the same atom results in this way is a skewed distribution around the 

nuclear centre. A larger lobe is generated where the phases match (constructive interfer- 

ence), while a reduced lobe is seen where s and p phases are opposite to one another 

(destructive interference). When the energies of the s and p orbitals differ, the degree of 

mixing in the hybrids will depend on the energy separation between the AOs. It is more 

likely that the s orbital will be lower in energy than the p, as shown in Figure 7.23b. Here, 

the lower energy hybrid orbital will be of mainly s character, while the higher energy one 

me) a 
° — °—~ pees} nf 

(b) 

°— 

hy =0.100s —0.995p 

a aa® 
| h, =0.995s + 0.100p 

Figure 7.23 Examples of sp hybrid orbitals constructed from AOs which belong to the same 
irreducible representation. (a) AOs of the same energy would contribute equally to give 
degenerate hybrids. (b) When the energy separation between s and p states is larger, the 
hybrid orbitals are no longer equivalent. The grey spot in the h, orbital indicates the position 
of the nucleus, showing that mixing in 0.1p has polarized the s-orbital. 
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N ay, hybrids NH, H, SALCs 

Figure 7.24 The use of a, hybrid orbitals to understand the origin of the three NH; MOs of 
a, symmetry. 

is dominated by the p-orbital. In this illustration we have arbitrarily taken c; = 0.1; in 

general, the greater the difference in energy between the two AOs; the smaller c, will be. 

With such unequal weightings; each hybrid closely resembles the atomic state to which it 

is nearest in energy. 

The two hybrids for NH; are shown to the right of the original N AOs in Figure 7.24, 

where their use in constructing the a; symmetry MOs for NH; is illustrated. The 2s—2p 

separation for N is quite large and so the hybrids follow Figure 7.19b. The difference 

between the hybrid states is that the lobe of h,(a,) is skewed downward toward the H 

atom plane, and so this orbital has strong overlap with the a, H(1s) SALC, forming the 

bonding 2a, and antibonding 4a, MOs. In contrast, the larger lobe of h,(a,) is orientated 

away from the H atoms, resulting in a 3a, MO that is practically nonbonding, through poor 

orbital overlap with the H(1s) a, SALC. 

The use of hybrids of symmetry-matched AOs in this way is really just a change of 

the choice of basis set. It does not change the resulting electron density calculated for the 

molecule, as the sum over all occupied states (Equation (7.1)) will give the same result 

irrespective of the way the SALCs are formed. 

The hybrid scheme is clearer for estimating the bond order for NH3. Since the 3a, level 

is nonbonding it does not contribute to our calculation of bond order (Equation (7.24)). 

So, we are left with three doubly occupied bonding orbitals (2a, and the pair of le MOs). 

There are also three N—H bonds, so that each bond is single order. 

From the MO diagram, with or without the use of hybrids, the highest occupied state 

(3a,) in NH; has a large lobe above the N atom and away from the plane of the H atoms. 

This orbital is available to interact with other molecules and gives NH; its Lewis basic 
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character. The electrons occupying the 3a, are commonly referred to as the NH; molecule’s 

‘lone pair’. 

We have now seen two molecules of formula AH;: the planar BH; belongs to the Ds, 

point group and the pyramidal NH; has C;, symmetry. The structure adopted by any 

molecule should be that which minimizes its total energy. Once we have drawn the MO 

diagram, the electronic contribution to the total energy can be estimated by considering the 

occupied orbitals (Equation (7.5)). The total electronic energy is the sum of the occupied 

energy levels weighted according to the number of electrons they contain. 

Figure 7.25 shows how the atomic N states are related to the occupied MOs from 

Figure 7.22 and how these in turn are related to the orbitals that would be obtained for 

NH; in a planar D3, geometry. The C;, MOs are lower in energy than the atomic states, 

so that molecule formation is favourable. If we imagine moving from the pyramidal NH; 

structure to a planar geometry, then the 2a, state would actually increase in energy. This 

is because in the C3, structure the hybrid orbital h,(a,) overlaps with the H(1s) orbitals 

more effectively than would the 2s orbital alone. The 2s and 2p are hybridized in C;,, but 

in D3, symmetry they have different irreducible representations and so must be considered 

separately. However, the overlap of the p, and p, orbitals with the corresponding H(1s) 

SALCs in D3, is much better than in C;,, since the H atoms, and their Is orbitals, are in 

the same plane as the central atom. The 3a, orbital in the C3, structure is the second MO 

that uses an sp hybrid. The hybridization has lowered the reference AO with respect to 

the pure p, state that forms the nonbonding 1a‘, orbital in D3,. Figure 7.25 shows that this 

orbital increases in energy as we move from the C3, NH; structure to a planar D3, version. 

Overall, NH; has a lower total energy in the C3, geometry because of the stabilization of 

3a, and la,’ compared with the planar alternative. In the BH; molecule, 1a,’ is an empty 

orbital, and so the planar geometry is preferred due to the lower energy of the le’ levels 

compared with the le of C,. 

2s (2). ‘< : N, ~ 

2a, 

N NH,(C,,) NH3(D,,) 

Figure 7.25 The relationship between the N valence orbitals and the NH, MOs in C3, and 
in D3, symmetries. In the MOs, an additional three electrons are supplied by the H atoms. 
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In general, molecules adopt geometries, and so point groups, which minimize their total 

energy. An MO diagram can be used to judge the electronic contribution to the total 

energy from the occupied states. A comparison of the occupied states for alternative 

geometries can help explain the observed structures. 

7.4.5 H,O, Water 

The C3, structure of H,O has served as an illustrative example many times in earlier chap- 

ters. In Section 4.2 we went through the designation of the O valence orbitals in detail, and 

the results are used to label the AOs to the left of Figure 7.26. They are also drawn lower 

than the H(1s) SALCs because the electronegativity of O (3.44) is considerably higher 

than that of H (2.10). Table 7.2 also shows that the 2s—2p separation for O is larger than 

for earlier elements in the second row of the periodic table, and so the valence states of O 

are drawn further apart than, for example, those of N in NH, (Figure 7.22). The SALCs 

formed from the two possible combinations of the H(1s) phases are easily assigned to the 

a, and b, representations, shown to the right of the MO diagram. 

The lowest energy valence MO is the 2a, level, which has a large contribution from the 

low-lying O(2s) AO. The coefficients for the a; H(1s) SALC in this orbital are relatively 

minor, since they are at considerably higher energy. This can be seen in the accompanying 

a 5) ee j ES 0. a oY Oe a 7 eS by 

he 

2py 2p, 2p,-__ Xe 7 ot v4 / 
4 x y 3a), u 

/ / 
i / / 

iy v4 / 

ee / 
iy / 

Vy / 

Spt ------ my 
i Hee ie Oe ire hae 2a, 

2s (a,) Yes ; 

O be HO H, SALCs 

Figure 7.26 The MO diagram for H,O. 
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graphic, as the spheres used to mark the H atom positions are largely outside of the orbital 

contour, The next level, 1b;, does contribute to bonding, being formed from the 2p, and 

the b, H(1s) SALC, which are much closer to one another. Similarly, the 3a, level contains 

significant contributions from both the O(2p-) orbital and H(1s) a SALEG 

The HOMO is the nonbonding 1, level. This is the O(2p,) AO, which is perpendicu- 

lar to the plane of the molecule. The unoccupied orbitals are the antibonding 4a, and 2b, 

levels. 

The weak involvement of the H(1s) orbitals in the 2a, state leads to a bond order 

estimate of 2 split evenly over the two O—H bonds so that each is a single bond. 

Water is an essential component of biological systems and has many interesting phys- 

ical properties. For example, the density of ice at 0°C is actually less than that of the 

liquid state, and so the solid floats. This is unusual, since for most other molecules 

the intermolecular forces cause a denser packing in the solid state. However, the 

intermolecular bonding for H,O is directional in nature due to hydrogen bonding. The 

electronegativity of O is higher than H, and so the OH bonds are polarized to give posi- 

tively charged H atoms and a negatively charged O. In addition, the nonbonding electrons 

on O lead to an anisotropic distribution of electron density at O, commonly referred to as 

the O lone pairs. To obtain optimal intermolecular H bonding the structure that ice adopts 

is quite open, leading to a low density compared with the liquid state. 

Problem 7.10: In Figure 7.25 we compare the energy levels for NH; in C3, and D3, 

geometries. Here, H,O is taken to be C,,, whereas we have seen that BeH, is a linear 

D..», molecule with the MO diagram given in Figure 7.16. Draw a diagram linking the 

O atomic states in the alternative geometries and so demonstrate that the H,O structure 

is preferred when the 3a, state is occupied. 

7.5 The Second-Row Diatomic Molecules 

7.5.1 Homonuclear Diatomics 

All the molecules considered so far have had H as one of the participants in the bonding 

scheme. In this section we will start to consider the MOs produced for interactions between 

heavier atoms, beginning with homonuclear diatomics, A,, of second-row elements. Gen- 

eral MO diagrams for these diatomics will be constructed and then used to discuss the 

relative stability of those that are observed experimentally: N,, O) and F, and those that 

are not found under normal circumstances, Li,, Be,, B» and C;. In common with H;, these 

molecules all belong to the D,,, point group and so the 2s valence orbitals will be linked 

together as o,* and o,* SALCs: 

l 
ne = ——— (a5 = S>) (7.60) 

Of, = 265; —)) (7.61) 
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The orbitals will be numbered as we construct the MO diagram following the convention 
that o-symmetry orbitals are numbered without regard to the ‘g’ or ‘u’ labels. This time 
we will also need to cope with the p-orbitals on the two atoms in the diatomic. We have 
dealt with the symmetry of p and d-orbitals on the central Au atom in the D,., complex 
Au(CN), in Section 5.9. There, it was noted that the p. orbital (aligned with the molec- 
ular axis) belongs to a separate irreducible representation to p, and p,. For the diatomic 
molecules we must now take SALCs of p-orbitals on the two equivalent atoms. This means 

that it is not possible to assign symmetry labels to the individual AOs, only to their linear 

combinations. 

The reducible representation for the p, orbitals is given in the first line of Table 7.9. The 

operations which do not swap the two atoms over leave this basis unchanged, and so a 

character of 2 is found, while for operations that exchange the atoms we find 0. This is 

identical to the reducible representation for the s-orbitals discussed in Section 7.3, so that 

the same reducible representations must be present: 

se 

(7.62) Oy fg Pa — Da) 

1 
Ta = Va Pa + Pa) (7.63) 

Table 7.9 The reducible representations for the 2p valence orbitals of a second-row diatomic 
molecule. The p, and py orbitals (perpendicular to the molecular axis) are degenerate forming 
II, and I, combinations. 

en TLE i Claes ee: COG, i es se COCs 

pz w 2 aa 2 0 O bat 0 

Dy AO |] 2 4 cos(®) it 0 0 0 Ae 0 

ie 2 2 cos(®) ao 0 2 —2 cos( ®) ae 0) 

at, 2 2 cos(®) ae O —2 2 cos(®) ee O 

These linear combinations for the s and p, orbitals are shown in Figure 7.27a. Notice 

that the o,* SALC of the p, orbitals contains ‘“—p..’, Equation (7.62), while that for the 

s-orbitals has ‘+s’, Equation (7.60). This comes about because the inversion operation, 

which moves an 5, or p.; orbital to atom 2 in the molecule, also reverses the phase of the p. 

orbital, as shown in Figure 7.24b. For both types of orbital the o,* SALC is bonding and 

the o,* is antibonding. 

The reducible character set for the p, and p, orbitals is given on the second line of 

Table 7.9. We could proceed with the reduction following the elimination method covered 

in Section 6.2.2, but for brevity the result is given at the bottom of the table and a simple 

summation of the characters confirms that 

PCBy Dy) a (7.64) 

The corresponding SALCs are shown in Figure 7.27c. This time, the ungerade 7, 

combination gives bonding orbitals and the 7, are antibonding. 
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Figure 7.27. The SALCs for s and p states of a diatomic Dx, molecule. (a) The o,* and o,* 
combinations of s and of p, AOs. (b) The action of the inversion operation for s, and p,,. (C) 
The 1, and m, degenerate pairs formed from p, and py orbitals. 

Figure 7.28 shows a general MO diagram based on the SALCs we have generated. In 

this picture it is assumed that the o-symmetry MOs formed from the s-AOs do not mix 

with their counterparts of the same symmetry from p.. This will be the case if the energy 

erat 
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Figure 7.28 A general MO diagram for diatomic molecules A» for second-row elements. This 
diagram assumes no hybridization of the o,* or o,* combinations of s and of p, AOs. 
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difference between the s and p states is large, i.e. for elements from the right-hand end of 
the second row (see Figure 7.13). 

If the s and p states are closer in energy, then mixing of the MOs formed from s and Pp: 
can occur. Figure 7.29 shows how this affects the MO diagram for the diatomic molecule. 
The lowest energy valence orbital, 30,*, is shifted down in energy because mixing with the 
p.-orbitals in So, * leads to an increased orbital overlap in the hybrid state. The antibonding 
counterpart, 40,*, is also shifted down in energy since the sp hybridization gives a weaker 
overlap in the internuclear region and so this orbital becomes only weakly antibonding. 

a c(40,*) — c7(60,,") 

a mmm 0 (40,*) + €5(60,") 

CHO 30," 

— c1(30,") a c(5a,") 

eOCe 

Figure 7.29 The effect of hybridization on the MO diagram of Ay molecules. The orbital 
labels of the o hybrids are referred to using the same numbering system as for the nonhybrid 
case, i.e. starting from 30,* as the lowest energy state; they are numbered in order of energy. 

A similar effect can be seen for the 5o,* state, but, since this is bonding when formed 
purely from p,-orbitals, the loss of overlap density causes its energy to increase. Finally, 

the antibonding character of the 60,* is increased on sp-hybridization. 

The coefficients in the hybrids shown in Figure 7.29 will depend on the energy differ- 

ence between the orbitals of matching symmetry. This, in turn, depends on the separation 

of the AOs in the atomic states shown in grey in Figure 7.29. For closely spaced s and p 

orbitals, coefficient c, will be relatively large and sp-mixing gives the MO diagram to the 

right of the figure. When the AOs of the parent atoms are widely spaced, c, will tend to 

zero and we recover the MO diagram in the centre of Figure 7.29 (remember that multi- 

plying the entire MO by —1 does not change the energy of the orbital, only reverses the 

phase pattern). 

Perhaps the most important effect from hybridization is the change in the relative posi- 

tioning of 5o,* and 17,. Symmetry alone cannot determine which molecules will have the 

orbital ordering with 50,* above Iz, (significant sp-hybrids) and which will have 5o0,* 
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10 12 14 16 18 20 Pup) 24 

Ionization energy/eV 

Figure 7.30 The PESs for the diatomics N», O, and F,. Adapted with permission from 
Brundle C.R. and Baker A.D. (1977) Electronic Spectroscopy: Theory, Techniques and 
Applications, vol. 1, Academic Press (ISBN 0-12-137801-2). Copyright Elsevier. 

below 17, (independent s and p, SALCs). One way to obtain this information is from the 

PESs, which are shown for the stable molecules N,, O, and F, in Figure 7.30. 

The spectra show sets of peaks that can be assigned to ionization from each MO. Several 

closely spaced peaks are seen in most cases because of vibrational effects as the photoelec- 

tron leaves the molecule. For example, removing an electron from a bonding state will tend 

to weaken the molecular bond and so the nuclei will move apart, initiating vibration. These 

effects are different for o- and 7-symmetry bonds and so actually help in the assignment 

of spectral bands. 

From the relative atomic ionization energies the 2s and 2p orbitals in N are closer in 

energy than they are in O or F; so, if sp-hybrids are important for any of these molecules, 

then they will be for N,. The PES for N; is consistent with the hybrid MO diagram. The 

lowest energy ionization is assigned to the 5o,* state, and so the corresponding MO must 

be above the Iz, level. Also, the PES line for the 40,* level is roughly 6.9eV lower 

than the atomic N 2s ionization energy (25.6eV, Table 7.2), whereas the 30,* band is 

11.6eV higher in energy. This indicates that the stabilization of the chemical bond from 
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the 30,* MO outweighs the antibonding influence of 40,* by almost a factor of 2. The 

hybrid scheme easily explains this, because the overlap in the 40,* antibonding orbital is 

weakened on hybridization. Accordingly, the full valence electron configuration of N, is 

NoasersC4oe Gln) G50.) 

where the orbitals are written in order of stability left to right. Of these MOs, only 40,* 

is antibonding, and so Nj is assigned a triple-bond order. This gives N, the shortest bond 

length and highest bond energy of the second-row diatomics (Table 7.3). 

The O, PES in Figure 7.30 shows that the ionization energy for the 17, is now lower 

than that for So,*, so that sp-hybrids are much less important than for N,. Table 7.2 gives 

the 2s—2p energy difference in atomic O as 16.5 eV, compared with 12.4 eV for N. So both 

the PES and ionization potential data are consistent with an O, electronic configuration: 

Oni (sart)? (dae?) (So, (lag) C22): 

A calculated MO diagram which agrees with this experimental ordering of the energy 

levels for O, is shown in Figure 7.31. Note that the highest occupied level 277, is antibond- 

ing and so lies above the atomic p-states from which it is formed. This makes the threshold 

ionization energy for O, lower than for N>, despite the higher core-charge on the atoms, 

Figure 7.31 The MO diagram for Op. 
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and also leads to an O, bond order of 2. The 27, level is also doubly degenerate, and so 

the two electrons can reside in different spatial orbitals with their spins aligned, making 

O, paramagnetic. 

In the PES of O, the 5o,* band is split in two (Figure 7.30). This results from the 

two alternative spin states for the O,* cation that is formed on ionization; referring to 

Figure 7.31, removing the spin-down electron from 5o0,* will give a cation with three 

unpaired spins, while removing the spin-up electron will give a cation with only one 

unpaired spin. The difference in the energies of these alternative cation spin states leads to 

the observed splitting. A similar effect does occur for ionization from the 17, but the split- 

ting is smaller and it is masked by the broad spread of the vibrational peaks for ionization 

from this orbital. 

The third spectrum in Figure 7.30 is for F); this has the same ordering of peaks as O, but 

considerably more spread out. Now the antibonding 277, state contains four electrons, so 

that the bond order is | and the molecule is diamagnetic. The first ionization of F, requires 

more energy than O, because of the higher effective core charge of the F atoms. 

The PESs show that sp-hybridization is important for the diatomics from Li, up to N. 

So we can predict the ground-state electronic configurations of the unstable diatomics from 

the early part of the second row: 

Wie 3ae0\e A single bond. 

Be): (30,*)*, (40,7) Formally no net bonding, although the sp-hybrid 

scheme does suggest a weak interaction because both 

30,* and 40,* are lowered by hybridization. 

Boson (40q ei Cling) A single bond. This would also give a triplet ground 

state because the two electrons in the 17, level occupy 

different orbitals. 

Ce Ge, 7) Ao) Clim) A double bond with no unpaired electrons. 

Table 7.3 does list data for Li,, B, and C;, but, as expected from above, Be, is very 

difficult to observe experimentally. Li, has a weak single bond with an estimated energy 

of 106 kJ mol~'. This is much lower than the bond energy of H, because of the larger radius 

of the 2s orbitals compared with Is and the repulsion between the core states on the two 

Li atoms. This also leads to a very long bond length. 

The single bond of B, is considerably stronger; as we have seen, the 4o,* antibonding 

character is reduced by hybridization. The bond energy of C, is the highest in the set 

of these ‘unusual’ diatomics. In fact, B, and C, both have bond energies considerably 

higher than that of the more familiar F, molecule. However, under normal conditions, the 

electron-deficient nature of these elements, early in the second row, leads to a preference 

for forming metallic solids (Li, Be) or insulating solids consisting of extended covalent 

arrays (B, C). 

7.5.2 Heteronuclear Diatomics of Second-Row Elements 

When the two atoms in a diatomic are different, the molecule belongs to the C,, point 

group. There are several important diatomics from second-row elements; CO and NO, 

for example, are important in inorganic chemistry as ligands in inorganic complexes. The 

strong binding of CO to metal centres also makes it capable of inhibiting the Fe(haem) 
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component of haemoglobin, making it a dangerous asphyxiate. NO has an odd number of 

electrons and so is a free radical. As an atmospheric pollutant, NO is one of the agents 

that can cause ozone depletion. These molecules are products of incomplete oxidation 

present in car exhausts. The need to protect our environment has led to the development of 

multicomponent catalytic converters that effectively remove NO (through reduction to N, 

and O,) and CO (through oxidation to CO,). 

The two atoms in the heteronuclear diatomics are not related by any symmetry oper- 

ation, and so we can assign symmetry labels to the individual AOs and then match up 

symmetry-related sets in the MO diagram. The assignments are straightforward, taking 

the molecular axis as Z: 

e 2s and 2p, are unaffected by any symmetry operation and so will be o*. 

e 2p, and 2p, are perpendicular to the molecular axis and degenerate, giving 7 symmetry. 

The relative electronegativities of the two atoms in the molecule will give one set of AOs 

a lower energy than the other. 

The example of CO is shown in Figure 7.32. The ordering of the orbitals is similar to 

the hybrid scheme used for the homonuclear diatomics up to N>, with the 50* orbital in 

Figure 7.32 The MO diagram for CO. 
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between the Iz and 27 levels. In fact, the 5a *+ orbital shows more significant hybridization 

on the C side of the bond than the O, since this MO is much closer in energy to the C(2s) 

orbital than to the O(2s). The difference in electronegativities also means that the bonding 

Ix orbitals are polarized toward O. Correspondingly, the antibonding (and empty) 27 

orbitals have larger lobes on C than on O. The NO molecule has one additional electron to 

CO and so this must occupy one of the degenerate 27 orbitals. 

Problem 7.11: The bond length of NO* (1.062 A) is shorter than that of NO by 0.089 

A, whereas COt has a bond length (1.115 A) only —0.013 A shorter than CO. Use the 

MO diagram of Figure 7.32 to explain these observations. 

7.6 More Complex Polyatomic Molecules 

In Section 7.4 we considered the molecules formed by second-row elements with H. In 

each case there was only one heavy atom situated at the junction of all the symmetry 

elements, i.e. at the ‘point’ of the point group. This allows the symmetry labels for the 

p-orbitals of this atom to be taken directly from the right-hand column of the standard 

character table in Appendix 12. To form.the MO diagram, we then considered the SALCs 

for the H(1s) orbitals and matched symmetry labels to identify the MOs that will give 

bonding—antibonding interactions. 

In this section we introduce more complex molecules in which there are multiple heavy 

atoms. We now need to identify SALCs for the sets of atoms that are related by symmetry 

operations. The MO diagram is then constructed by matching irreducible representations 

for the SALCs. 

7.6.1 Ethene 

As a first example we consider the Dy, molecule C;H,. The two C atoms form one set 

of atoms and the four H atoms another. In the D,, point group there are three mutually 

perpendicular C, axes, labelled C,(X), C,(Y) and C,(Z). Figure 7.33 shows the axis system 

used in this analysis, which places X along the C=C bond and Z out of the molecular 

plane. The figure also gives the basis of four H(1s) orbitals for the SALC construction for 

this set of atoms. 

Figure 7.33 The axis system and basis used to obtain SALCs for the H(1s) orbital set in the 
D>, molecule ethene. 
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Table 7.10 The reducible representation for the H(1s) orbitals of ethene 
(Dy). In the application of the reduction formula (lower table) only the 
nonzero characters from T(H(1s)) need be considered. However, the order 
of the group (the total number of operations) is h = 8, irrespective of zeros in 
the reducible representation. 

Dob [5 C;(Z) C,(Y) Cy (X) / a (XY) a (XZ) a(YZ) 

I(H(1s)) 4 0 O 0 O 4 0 O 

Dp IE a (XY) 

I(H(1s)) 4 4 

PO eG), ee 
Ay 4 4 8 
Big 4 4 8 

: A eo 4 0 
3g 4 —4 O 

* 4 —4 0 

Baa 4 —4 O 

Boy 4 4 8 

B3y 4 4 8 

The reducible representation for the H(1s) AOs is easily obtained, since only E and 

a (XY) operations leave the atoms in place to give a total character of 4, while all other oper- 

ations interchange the atoms resulting in a character of 0. The application of the reduction 

formula is given in Table 7.10, where it is emphasized that the operation classes for which 

Xr = O need not be considered. The calculations give 

( H( is) = ag + big + bo, + b,, (7.65) 

Problem 7.12: Use the projection operator to obtain the normalized SALC H(1s) 

functions and show that your answers correspond to the orbital phase patterns below: 

You can check your assignments of irreducible representation labels to these 

diagrams with the right-hand side of the MO diagram shown in Figure 7.36. 

For the C atom orbital set we have to consider the eight C atom valence orbitals: 2s and 

2Px,,. on each atom. Table 7.11 shows the reducible representation for a basis of all eight 

orbitals; any operation which swaps the two carbon atoms has a zero entry. The C,(X) 

rotation does not swap the atoms, but it does reverse the p, and p, orbitals on each atom 

while leaving s and p, unchanged, so the total character is 0. Application of the reduction 

formula based on the three classes with nonzero entries gives 

(COs 2p)) = 2a -E big ba Hb On bs (7.66) 
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Table 7.11 The reducible representation for the valence orbitals of the car- 

bon atoms of ethene (D.,). In the application of the reduction formula (lower 

table) only the nonzero characters from T (C(2s, 2p)) need be considered. 

D>, L GZ “GV “GO” Foi “a7 aa) 

r(C2s;2p)) | 8 0 0 0 0 4 Aa 

De | Eo (XY) o(XZ) 

T(C(2s, 2p) 118 4 4 

BcXil C) Xr(C) we 
AG 8 4 4 16 
Big 8 4 =4 8 
Bog Qo ar 4 8 

B3p 8 —4 —4 0 

Le ope ee =4 0 
Bae 3: aad 4 8 
Bs. 8 4 —4 8 
Bs, 8 4 4 16 

The SALCs that these represent are obtained using the projection operator with the 

rotational subgroup D, in Table 7.12. Here, we use the observation that the symmetry oper- 

ations only link AOs of the same type on atoms 1| and 2, s, with s>, p,, with p,», etc. This 

allows the required functions to be obtained by projecting each orbital of atom | in turn. 

There is no inversion centre in the D, subgroup, so the ‘u’ and ‘g’ labels are assigned 

by inspection of the behaviour of each of the SALCs under the inversion operation. As 

usual, the scaling factors obtained from the projection can be ignored, and so we have the 

following functional forms: 

GCS) = "S54 So 

a,();)=Pa —P2 

Dig = Pyi ad Py2 

(67) 

Diy = bal + Pa 

boy = Py + Pyo 

Dyy(8)'= 81 — So 

O-O 

Aw 
be=pa-pa 8 

$3 
vane 
O-*@ 

Dxu( Px) = Px = P.2 

The molecule orientations in the sketches accompanying these equations are the same as 
shown in the inset in Figure 7.34. The main part of Figure 7.34 shows how these SALCs 
are derived from the AOs and their relative energies. The energies are estimated based 
on the degree of bonding/antibonding; for example, the 3a,, orbital contains a bonding 
interaction for the p,; orbitals which are aligned with the molecular axis. The overlap of 
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Table 7.12 The projection operator method applied to the C=C orbital 
set for ethene. The rotational subgroup D, is used to simplify the process 
and ‘u’ and ‘g’ labels required for the full Dy, point group are assigned in 
the text. The generating functions are the 2s and 2p orbitals of atom 1. 

D; le C;(Z) C3(Y) C,(X) P;b, = Es Xil/) Tb, 

Ts, Sy} Sy) So Sy 

ATjs, Sy S> S9 5 2(5, +5) 
B, Tis, Sy 5) —S) —S 0) 

By Tis, Sy —S> So —S, 0 

B3Tjs, Sy] = Sa) = 55 $1 2(S; — S>) 

D,; E C,(Z) C,(Y) C,(X) Pib) = D0) xi /) Tibi 

Tipx Px = Py —Px2 Px 

ATjpx1 Px —Px2 —Px2 Px 20D — Px2) 

B, Tipu Px —Px2 Px2 —Pu 0 

By Tips Pu Px2 —Pyx2 Sapa xt 0 

Bs Tipu Px Px2 Px2 Px 2( Px + Px2) 

D Pb; = DS, xil)) Tb, 

Tipyi 

AT py 0 
By, Tipy 2( Py — Py2) 
By Tipy, 2( Py + Py2) 
B; Tpy1 0 

D Pb, = S: xil)) Tb, 

Tipx —Pz2 —Pa 

ATP Pu Pz =Pz —Pu 0 

B, Tipx Pa P22 P2 Pa 2( Pz + Pz) 

By Tipu Pu —P2 —Pz Pu 2( Pr = Pz) 

B Tipx Pu =|) P2 =x 0 

the two p-orbitals in this “end-on’ arrangement is greater than the 1b,, or 1b,, SALCs, 

which have ‘side-on’ overlap, and so 3a), is drawn lower. 

In Figure 7.35, orbital sp-hybridization involving the matched symmetry 2s and 2p, 

SALCs is also indicated, most notably for the 3a,, orbital which lies at an energy between 

the atomic 2s and 2p levels. This hybridization shows how the bonding character of the 

3a), level is actually enhanced compared with either the 2s or 2p, orbitals alone. 

Figure 7.35 shows the C=C energy levels in the D,, point group and in the absence 

of the four H atoms. In this hypothetical situation the 15,, and 15, orbitals have the 

same energy, as do the 1b,, and 1b), SALCs. A comparison with the general MO scheme 

for homonuclear diatomics in Figure 7.28 shows that these would be the degenerate 

m-symmetry orbitals for C, while 3a,, would be a o-type MO. In Figure 7.36 we bring 

together the C=C and H(1s) SALCs to form the MO diagram of ethane, and it is found 
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Figure 7.35 The hybrid orbitals for the symmetry-related carbon atoms in ethene. 

that the C=C orbitals derived from p, have partners in the H(1s) SALCs but those from 

p. orbitals do not. Hence, the degeneracy expected for the 2 irreducible representations in 

Dx» is lost. The comparison of atom—atom bonds with the diatomic case leads to the com- 

monly used classification of MOs which include bonding/antibonding character as ‘o’ or 

‘7c’, even in quite complex, nonlinear, structures. For example, the single b,, MO formed 

here from the C(p_) orbitals in ethene is commonly referred to as a z-bonding MO. 
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Figure 7.36 The MO diagram for the D», molecule ethene, using hybrid orbitals. 

In the MO diagram of Figure 7.36 the H orbitals are placed higher in energy than 

the bonding SALCs of the C=C set since the electronegativity of C is greater than H 

(Table 7.4). The basis of AOs now contains 12 functions, and so there will be 12 MOs 

formed. However, to keep the diagram simple, only the six occupied valence orbitals and 

two lowest unoccupied levels are shown in Figure 7.36. The first five orbitals contain bond- 

ing C—C and C—H interactions, while the highest occupied level is the bonding C—C 

1b,, that is nonbonding for C—H. 

Problem 7.13: In the example of ethene, the two p, orbitals perpendicular to the molec- 

ular plane form orbitals of a z-bonding nature. For more complex alkenes we can treat 

the o-orbital system and zr-orbitals separately, as they will not mix by symmetry. The 

-orbitals usually also contain the chemically important frontier (HOMO and LUMO) 

orbitals. In this problem we will treat just the p,-orbitals of hexatriene and derive the 

relavant MOs. 
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1. Assign the point group of hexatriene from the chemical drawing shown below: 

ee a 

hexatriene \ 

2. Derive the reducible representation for the relevant set of p-orbitals; one per C atom 

perpendicular to the molecular plane. 

3. Apply the reduction formula (Equation (7.33)) to the reducible representation found 

in part (2) and list the irreducible representations for the zr-orbitals. 

4. Figure 7.37 shows the calculated MO diagram for the 7-system of hexene. Assign 

symmetry labels to the energy levels by identifying the irreducible representations 

of the orbitals illustrated. 

Figure 7.37 The MOs forming the m-system of hexatriene. 

7.7 Metal Complexes 

7.7.1 Complexes Containing o-Donor Ligands 

The irreducible representations for the p- and d-orbitals for a central metal atom in some 
common transition metal complex geometries were discussed in Section 5.8. We are now 
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in a position to understand how these orbitals interact with the ligand orbitals to give MOs 

with which to describe bonding in these complexes. We will concentrate on complexes in 

which the metal—ligand interaction is that of a o-donor ligand, i.e. in the isolated ligand 

the orbitals would be filled and the metal is sufficiently electronegative to receive charge. 

O;, Symmetry Complexes 

Octahedral complexes have six ligands equidistant from a metal centre at the corners 

of an octahedron. In this class we include hexaaqua complexes such as [Ni(H,O),]** 

shown in Figure 3.32a or [Mn(H,O),]*+ in Figure 5.19a. The o-donor orbitals from the 

H,O molecules can be thought of as the 1b, levels in the MO diagram for isolated H,O 

(Figure 7.26). These are the highest occupied states for H,O and so will most readily 

donate electron density to vacant orbitals on the metal centre. Formally, the symmetry of 

the complex is lower than O,, since the H atoms of the H,O cannot be arranged to conform 

to all of the point group operations. However, even at low temperature, the H,O molecule 

orientation around metal—ligand bond will be randomized by thermal motion. For example, 

the H,O molecules will be able to spin around the metal—ligand axis without disturbing the 

o-donor interaction with the metal. 

A simplified basis of just the o-donor orbitals from H,O is shown in Figure 7.38, along 

with some example symmetry axes from the O, rotational classes. Appendix 12 gives the 

rotational subgroup given for O, as O. 

Figure 7.38 The basis of o-donor orbitals for a six-coordinate complex in Oy, symmetry. The 

ligand donor orbitals are represented by the s, —s_ basis placed on the coordinate axis system. 

Also shown are some examples of the symmetry axes present and one of the horizontial mirror 

planes. The full set of operations is illustrated in Figure 3.28. 

Problem 7.14: The reducible representation for the six o-donor orbitals of Figure 7.38 

in the O rotational subgroup is given in Table 7.13. Adding up the total number of 

operations for O from the character table in Appendix 12 gives an order h = 24. Using 

the reduction formula (Equation (7.33)), show that 

T=atet+t (7-08) 
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Table 7.13 The reducible representation for 

the six a-donor orbitals shown in Figure 7.38, 

within the rotational subgroup O. 

Over OG. 3G Can) 6G, 6C, 

6 0 2 2 0 It 

For the central metal atom we can read the irreducible representations for the s-, p- and 

d-orbitals directly from the functional forms quoted in the right-hand columns of the O 

character table: 

M(nd,,),M(nd,.) and M(nd,.): t M(nd.2) and M(nd,2_,2): e 

M((n+ 1)p,),M((n+ 1)p,) and M((n + 1)p,): tf M((n+1)s): a,, (7.69) 

Rotational subgroup symbols are always linked to the longer list of irreducible represen- 

tations in the parent group. So, in this case, reading from the O, character table we find 

M(nd,,),M(nd,,) and M(nd,.): the M(nd.2) and M(nd,2_,2): e, 

M((n + 1)p,),M((n+ 1)p,) and M((n + 1)p.): tu M((n + 1)s): ayg- (7.70) 

The ‘g’ and ‘u’ labels can be understood from the effect of the inversion operation 7 on the 

AOs; d-orbitals are gerade and p-orbitals ungerade. 

For the ligand orbitals, we can deduce the phase pattern of the SALCs for each of the 

irreducible representations identified in Equation (7.68) through thinking about the bond- 

ing/antibonding orbitals that will be formed with the metal centre. These are shown to the 

right of the ligand reference levels in the MO diagram of Figure 7.39. 

“ue oe ie 4 4 4 ty y* = 

Py =a en 

e ON a 
3d g \ ot + e ‘ “ 

Nop’, lay, 

Figure 7.39 The MO diagram for an O;, symmetry complex with o-donor orbitals. 
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In the MO diagram, the ligand SALCs are drawn higher in energy than the metal 

d-states, because donation of electron density from the ligands to the metal is expected. 

The different symmetries for the ligand reference states have been separated out, but this 

is really just to allow clear illustration; the SALCs should be thought of as practically 

isoenergetic. All of the ligand SALCs match with metal-centred orbitals, and so there are 

six bonding orbitals: 1a,,, 1%, and le,. These are closer in energy to the metal d-orbitals, 

signifying that the bond density will be polarized toward the metal, as we would expect 

for a o-donor interaction. 

The next set of levels is the three nonbonding f,, MOs derived from the metal d-orbitals 

that have no symmetry match with the ligands. There are then six antibonding orbital 

complements to the bonding set: 2e,, 2a), and 1fy,. 

As the ligand orbitals are initially filled, we can think of the six bonding states as tak- 

ing up the ligand electrons. The metal d-electrons then enter the 4, and possibly the e, 

levels. This is, of course, an arbitrary choice, but gives a nice parallel to the ligand field 

approach in Chapter 5, where the ligand electrons were only present via their ‘field’ at the 

metal centre. The orbital filling shown in Figure 7.39 is representative of the d* complex 

[Ni(H,O),]?* with the configuration Ge.) . The two e, electrons are drawn in separate 

energy levels to minimize electron—electron repulsion. 

On the MO diagram, the crystal field splitting parameter is indicated by the symbol A,. 

In the MO picture, this is interpreted as the separation between the nonbonding fh, states 

and the antibonding 2e, levels. 

7.7.2 The Jahn-Teller Effect 

The MO diagram for O, symmetry complexes has its highest filled MOs in degenerate 

states for most transition metals. The Jahn-Teller effect is a change of geometry due to 

an uneven filling of such degenerate states. For example, Cu** in the hexaaqua complex 

[Cu(H,O),]°* has a d° configuration, one more than shown in Figure 7.39. This results in a 

filling of all MOs up to the e, states, with three electrons to be placed in these two MOs. In 

O,, symmetry there would be two choices: place two electrons in the e, level derived from 

the metal d.2 orbital and one in that from the d,2_,2 or two in d,2_,2 and only one in d.. 

When such an imbalance is present, a shift of the complex geometry to a lower symmetry 

can give a more stable system. 

In this case, two trans-H,O ligands have longer Cu. . .O distances than the four equa- 

torial ligands. So, the [Cu(H,O),]’* complex has D4, symmetry, as shown in Figure 7.40, 

and we will now show how this distortion is driven by MO energy by comparing the O, 

and D,, MO diagrams for d’ systems. 

D4, Symmetry Complexes 

The reducible representation and the application of the reduction formula for the D4, com- 

plex are set out in Table 7.14. This shows that the six o-donor ligand orbitals give SALCs 

with the following irreducible representations: 

TS 2 ete ae Gag en Ga) 
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Figure 7.40 The basis of o-donor orbitals for a six-coordinate complex after a distortion to 
D4, symmetry. The axial ligands represented by s; and s¢ are further from the metal centre than 

the equatorial ligands. Also shown are the axes used in the projection operator calculations: 
the principal Cy, collinear C, and the four horizontal C, axes. 

Table 7.14 The reducible representation and application of the reduction formula for the six 
a-donor orbitals in Dan, [Cu(H>O),]**. 

Dap E DC, C, AG NG i 2S, OL 20, 204 h == 1i6 

i 6 B 2 2 0 0 0 4 4 

Bcxil C) xr(C) Dell Mt ae 
Ag 6 4 2 4 4 8 4 32 2 
Ang 6 4 2 =4 4. =§ 4 0 0 
Big 6 =4 2 4 4 g  “=4 16 1 

2g 6 =4 2 =4 4 8 4 0 0 
Ee 12 QO + -=4 0 —8 0 0 0 0 
Av 6 4 2 4 —A —§ = 4 0 0 

Buu 6 =4 D 4 =a ee 4 0 0 
2u 6 =A 2 =4 =4 ee 0 0 
_ 2 Ca =4 0 8 0 0 16 1 

The projection operator method for the a), representation will give functions having 
the same phase at symmetry-related positions, because it has character | for all classes. 
In the D4, basis shown in Figure 7.40 there are actually two separate groups of o-donor 
orbitals. The operations in the group do not swap the axial with the equatorial ligands, 
so the orbitals s; to s, form one symmetry-related set and the axial orbitals, s; and s¢, are 
another. Accordingly, the two a\, SALCs are the combinations of the two sets in phase and 
out of phase with one another, i.e. 

Ag =Hyty+rs+8s+sstso and ay =s, +5. +53 +54 —S5 — 56 (72) 

For the b,, representation we can use the projection operator method along with the 
D, rotational subgroup of D4, as laid out in Table 7.15. The rotational subgroup does not 
contain the inversion centre, and so the gerade (g) and ungerade (u) labels do not appear. 
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Table 7.15 The projection operator method applied for the irreducible representations found 
from the reduction in Table 7.14 using the D, rotational subgroup. The designations of A and 
B axes are shown in Figure 7.40. 

Ces C=C) GP CP GI 6G | Bye xl) Ty 
| 

By Tjs, Sy ay) oa $3 Sy $3 55) yi 2(S4 = Op aps — 54) 

B, T)s5 Ss —S5 —S5 S5 56 S56 —S6 56 0 

ee 

A2Tjs,| 5; So S4 53 —S, —5; —S) —S4 O 

A2TjS5| $5 S5 S5 S5 —S¢ —S¢ —S¢ —S¢ A(s5 — S¢) 

ETjs, 251 O O —2s, O O 0 0 2(5, — 53) 

ETjs> 25> O O —25s4 0 O 0 0 2( 5) — S4) 

ET|Ss 255 O O —2s, O O O 0) 0 

After the projection, we can assign these labels that are required by the full point group 

by considering the effect of the inversion operation. The B, projection in D, with the s, 

orbital as a generating function gives 

b, = Sh — Sb ap Ss = @a78)) 

The projection based on the axial ligand orbital, s;, gives a zero result, and so the axial 

o-orbitals cannot take part in a SALC with b, symmetry. Under the inversion operation 

of the full Dy, point group, s; swaps with 5s; and s, with s4; this leaves the function in 

Equation (7.73) unchanged, so we assign gerade symmetry to give Dj,. 

Table 7.15 shows that the projection of the s, orbital for the A, representation in D, 

results in it visiting each equatorial position, but also that the resulting sum gives a function 

that is zero. This means that the equatorial o-donor orbitals cannot participate in the dy, 

SALC. On the other hand, the projection of the axial s; orbital gives a functional with a, 

symmetry in D, in which the axial ligand orbitals have opposite sign. For the inversion 

operation of the full D,, point group this would have a character of -1, and so we can 

assign 

An, = S5 — S¢6 (7.74) 

A quick check with the other operations in the full D4, group confirms that this function 

has the full set of characters required for the a, representation. 

Finally, for the e, representation required from the reduction result (Equation (7.71)), 

Table 7.15 contains the projection based on the s, orbital with the e representation of the 

D, group. This is also an ungerade function when we consider the i operation of the full 

point group, and so one of the pair of e, functions will be 

Gi Ges) 5 183 (7.75) 

In this case, the characters of the E, representation are zero for any operation that moves 

s, to either s5 or s4. So, a new function can be obtained simply by projecting s, to give 

d2( uy) = S2 — 84 (7.76) 
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However, if we try a projection of the axial orbital, s;, a zero is obtained, meaning that the 

axial ligands do not take part in the e, SALCs. 

These results are used to label the ligand orbitals in the MO diagram of Figure 7.41. The 

relative energies of the ligand orbitals are exaggerated to allow clear presentation in the 

diagram; the various SALCs would have practically the same energy as one another. The 

relative positions of the molecule orbitals for the D,, complex have been judged from the 

degree of overlap between each ligand SALC and its symmetry-matching metal-centred 

orbitals. In this case, both the 3d.2 and 4s orbitals have a,, symmetry, and so we could 

construct sd hybrids in a similar way to the sp hybrids considered in Figure 7.23. However, 

there is a clear match of the lower a,, ligand orbital with 4s and the other a,, SALC with 

3d.2. These involve all six o-donor orbitals, and so have been assumed to give the lowest 

energy MOs. 
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Figure 7.41 The MO diagram for the D4, complex [Cu(H,O),}*. 

The 1b,, bonding orbital is a combination of d_,2 and four of the ligand orbitals, and 
so is drawn next. In the Dy, structure of Cu(H)O),, the axial ligands are further away from 
the metal centre than the equatorial ligands, and so the le, level is below the la>,. This 
gives six bonding molecule orbitals into which can be placed the 12 electrons from the 
donor molecules. The first levels used for metal electrons are the nonbonding le, and 1b), 
orbitals. In the crystal field discussion of Chapter 5, the le, set of orbitals was taken to be 
slightly lower in energy than the Ibo, state, since the ligand field from the axial ligands is 
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weaker than from the equatorial ligands. However, the MO treatment simply sees these as 

nonbonding states which are drawn at the same level as the metal 3d orbitals. The next two 

levels are the antibonding 3a), and 2b, states. The longer M—O distances for the axial 
ligands means a smaller overlap for the metal and ligand orbitals in the 3a), arrangement, 

and so this antibonding orbital is the lower in energy. 

For Cu’* with its d’ configuration, the le,, 1b), and 3a), levels are all filled, but the 2b, 

orbital has only a single electron. 

Figure 7.42 compares the d-orbital configurations for the [Cu(H,O),|?* complex with 

O;, and D4, symmetries. In the D4, case the 3a), orbital has a lower energy than theO,, 2e, 

levels, as it is less antibonding because the axial ligands have moved away from the metal 

centre. Correspondingly the 2b,, orbital is higher in energy because the equatorial ligands 

are closer. However, since 2,, contains only a single electron, the effect is outweighed by 

the increased stability of its doubly occupied partner. So, the Jahn—Teller distortion results 

in a lowering of the total MO energy. 
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Figure 7.42 A comparison of the MOs with large d-orbital character in [Cu(H,O).]’* in the 
hypothetical O;, point group and the observed D4, symmetry. 

7.7.3 Complexes Containing Ligand Orbitals of 1-Symmetry 

The A, parameter marked on Figure 7.39 marks the separation of the h, and e, orbitals 

in an octahedral complex. These will usually be partially filled, and transitions of elec- 

trons between the states can be observed in the UV-visible region of the spectrum. Spectra 

of d' or d’ complexes show a single broad transition, which is a measure of the orbital 

separation. An example for the d! complex, [Ti(H,O),]**, is shown in Figure 7.43, and 

Extinction coefficient 

/arbitrary units 

a a Soe = ae oe (aaa 1 

5000 10,000 15,000 20,000 25,000 30,000 35,000 

Wave number (cm) 

Figure 7.43 Absorption spectrum of the [Ti(HO)¢]’* fon in the UV-visible range. 
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Table 7.16 The peak of the absorption 
band for some T?’* d' complexes. 

Complex Observed band/cm~' 

(Hele 13 000 
(Tiree 18 900 \ 

[Ti(H,O),]?* 20 300 
[Ti(CN)6}?~ 22 300 

Table 7.16 gives the main peak position as 20 300cm~'. The position of the peak is sen- 

sitive to the metal centre and ligand present. Table 7.16 also shows values for three other 

complexes containing Ti**. These indicate that the energy separation of the f,, and e, levels 

increases in the order 

Cl 2 Fe EO ENS (aD 

Interpretation of spectra for complexes with different d-orbital configurations is com- 

plicated by multi-electron effects; this requires a ‘term state’ approach to carry out the 

analysis, which is beyond the scope of this book. However, the results for the ligand effect 

are consistent with Equation (7.77) and have led to the development of the spectrochemical 

series for ligands which ranks them in order of observed A, parameter: 

linen 3 tee © lea ee ©) Lea Ola lean N ©) ON a ©) (7.78) 

Ligands to the left in this list have a small A, parameter value and are called weak field 

ligands, while those toward the right have a larger A, parameter value and are called strong 

field ligands. This terminology comes directly from the ligand or crystal field approach 

used in Chapter 5. To some extent the ligand field model predicts the observed trend. 

Thus, within the halogens, the more compact F~ anion has is a stronger field ligand than 

the large I- ligand. However, it is not clear why the neutral ligands H,O and NH; are 

actually stronger field ligands than these anions, nor why CN~ and CO should give the 

strongest ligand fields. 

To understand the ordering in the spectrochemical series, we have to consider z- 

symmetry ligand orbitals. 

In the halogens, the anions have filled p-orbitals that are perpendicular to the metal— 

ligand bonds. A suitable basis for studying the interaction of these with the metal centre 

is shown in Figure 7.44. For clarity, the basis is drawn as two sets of six orbitals, as each 

Figure 7.44 A basis of ligand orbitals with 1-symmetry for an Oj, symmetry complex. 
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ligand will have two p-orbitals perpendicular to the metal—ligand bond. However, we will 

treat this as a single set of 12 basis orbitals. 

The reducible representation in the rotational subgroup, O, is given in Table 7.17. These 

characters are obtained using the usual rules. A basis orbital that is unchanged by an oper- 

ation from the class contributes 1, an orbital that is transformed into a different basis 

contributes 0 and one that is reversed contributes —1. In particular, a rotation from the 6C, 

class leaves two of the ligands in place (those on the axis). However, the p-orbitals on each 

of the coordinating atoms on the rotation axis are rotated through 90° and so change to a 

different basis function. This means that a total character of 0 results under 6C,. 

Table 7.17 The reducible representation and application of 
the reduction formula to the basis of 12 m-symmetry ligand 
orbitals. 

© jE 8C, 3G (= Gre 6C, 6C, 

IP 2 0 Ak 0 0 

Beil C) xr(C) 

Ay iL Ae = 2 
“ayy |) 2 = 2 
E 24 —24 
ly \\ Me | 
T, | 36 (2 

The application of the reduction formula laid out in Table 7.17 shows that, in the O 

subgroup, we have 

P28 (7.79) 

In the full O,, point group of the complex we can obtain either a gerade or ungerade 

version of ¢; or ft from this basis. For example, Figure 7.45a shows how four of the p- 

orbitals can be used to form one of the t, patterns and there will clearly be a set of three 

equivalent such linear combinations. We know that this 4, arrangement of the p-orbitals 

will be able to mix with the 4, d-orbitals that are nonbonding in the o-donor MO dia- 

gram of Figure 7.39. One such interaction is illustrated in Figure 7.45a. Looking at each 

(a) (b) 

sie 

cle 
Figure 7.45 (a) One of three tg arrangements of the p-orbital basis of Figure 7.44. The 

bonding interaction with a metal d-orbital is shown. (b) The corresponding ty arrangement 

that cannot form bonds to metal d-orbitals. 



294 Molecular Symmetry 

metal—ligand part of this MO we can classify it as a 2-bonding interaction by the same 

type of comparison with the diatomic MO scheme used in our discussion of ethene. In 

Figure 7.45b, the same pair of basis functions are shown in a f, arrangement. These are 

unsuitable to interact with the metal d-states. 

So, orbitals with ‘7-symmetry’ perpendicular to the metal—ligand bonds. will generate 

a set of three tf, SALCs. These will form bonding and antibonding combinations with 

the metal 4, d-orbitals that are nonbonding for complexes with only o-donor aes 

Figure 7.46 shows the effect of this for the d-states of an octahedral complex with a d 

configuration. 

(a) { { 

(b) 
—_——_ =, 

Figure 7.46 The effect of the ty, set of ligand orbitals with m-symmetry for an Oy, complex. 
Two Cases are shown: (a) low-lying filled ligand orbitals; (b) high-lying empty ligand orbitals. 

In the case of halogen ligands, the p-orbitals will be occupied and low lying in energy 
(Figure 7.46a). The bonding orbitals that are formed through mixing with the comple- 
mentary d-orbitals will then be filled by the ligand electrons. The antibonding orbitals 
are moved up relative to the pure o-donor complex, and so the A, parameter is reduced. 
In this example we have assumed that the ligand field is now so weak that the eee 
gap is smaller than the electron pairing energy. A lower energy configuration can then be 
obtained by prompting two of the electrons to the e, levels. The high spin arrangement 
shown is common in complexes with weak field ligands for this reason. 
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Figure 7.46b shows the case of a ligand with empty high-lying states of mw -symmetry. 
This is typified by complexes containing CO ligands. The MO diagram of CO in isolation 
(Figure 7.32) has a highest filled orbital (So +) which gives it o-donor character. The lowest 
unoccupied orbitals are the 27 pair; these will clearly act like the basis of Figure 7.44 in 
a metal complex environment. Note that the larger lobes of both the 5a* and 27 CO 
orbitals are on the C-atom, which gives the ligand the best overlap with metal orbitals 
when bonded to a metal centre via the carbon atom. In the metal complex, the t, set of 
these 2-symmetry ligand orbitals will be high lying and empty, so Figure 7.46b shows 
that in this case the metal electrons move into the bonding orbitals created. Since these 
are lower than the nonbonding fh, set in the reference o-donor complex, the A, parameter 
appears to be larger. The electron pairing energy is now likely to be smaller than the energy 
to promote an electron to the e, level, and so we find a low-spin complex. 

These MO diagrams, including the affect of 7-symmetry ligand orbitals account for the 

observed spectrochemical series (Equation (7.78)) quite well. The lowest field ligands have 

low-lying filled 7-symmetry orbitals which result in a small A, parameter. The molecular 

ligands in the centre of the series (H,O and NH;) have no suitable 7-symmetry orbitals, 

and so only interact with metals as o-donors; and finally, the strongest field ligands have 

high-lying empty orbitals of 7-symmetry, and so lower the energy of the metal f,, orbitals, 

increasing the A, parameter. 

7.8 Summary 

In this chapter we have reviewed some ideas in chemical bonding theory to show how 

AOs can be combined to generate MOs. The main goal was to give the reader confidence 

in building MO diagrams. The general approach should now be clear: 

1. Identify the parts of the molecule that the MO diagram will require for the reference 

states. This may be simply single atoms (e.g. for the MO diagram of diatomics) or sets 

of symmetry-related atoms (e.g. the H atoms of ethene). 

2. Assign the irreducible representations of the reference states. For atoms at the centre 

of a molecule contained by all symmetry elements, these can simple be read from the 

relevant character table. For sets of symmetry-related atoms, the irreducible represen- 

tations will require a reducible representation I’ to be defined and the application of the 

reduction formula. 

3. For sets of symmetry-related atoms, the orbital patterns for each irreducible representa- 

tion should be drawn out using the SALCs obtained by the projection operator, where 

possible it is easier to work in a rotational subgroup initially. 

4. The relative energies of the reference states should be estimated based on the 

electronegativity of the atoms involved or with knowledge of the type of chemi- 

cal interaction (e.g. the donation from a Lewis acid to a base as in metal—ligand 

interactions). 

5. MOs are then generated by joining sets of reference state orbitals that have the same 

symmetry. There will always be as many MO states generated as AOs used in this 

process. 
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. The polarization of an MO will favour the energetically nearest AO reference orbital. 

In bonding orbitals, this usually favours the more electronegative element. 

_ When two reference orbitals match in symmetry but differ greatly in energy, the degree 

of polarization means that the MO will be practically nonbonding. For example, the 

core states of an atom may match in symmetry with the valence levels of a neighbour, 

but the energies will be very different. : 

. Reference orbitals that do not match any of the irreducible representations for the other 

atom or set of atoms are nonbonding by symmetry. 

Along the way we have also covered the idea of hybridization and taken the rather strict 

approach that only orbitals of the same symmetry should take part in hybridization. This 

makes it much easier to follow the symmetry arguments for building bonding/antibonding 

orbitals. We have also seen how the idea of o and 2-symmetry bonding derived from 

diatomic molecules in the D,,, point group is generally extended to molecules in other 

point groups, and even to metal complexes. In a similar way, the idea of hybridization to 

discuss structure is often used outside of the restrictions imposed by symmetry. 

7.9 Self-Test Questions 

i In Table 7.3, both BO and NO have a longer bond length and lower bond dissoci- 

ation energy than CO. Explain this observation based on the MO diagram for CO 

(Figure 7.32): 

. The PES for CH, shown in Figure 7.21 shows two distinct peaks and a shoulder. To 

explain this it is useful to consider the final state of the cation formed after ionization. 

The electronic structure of the CH,* cation in 7; geometry would contain a f, level 

with five electrons; show that distortion to D,4 symmetry will lower the system energy. 

Explain how this structural distortion gives rise to the observed multiple peaks through 

alternative arrangements of the electrons in the final state. 

. The ionization potential for the 3s state of Cl is 25.3 eV and that for the 3p is 13.7 eV. 

Using this information, construct an MO diagram for Cl,. Table 7.3 gives the bond 

length of Cl, as 1.988 A and the bond dissociation energy as 239 kJ mol~. The molecu- 

lar cation Cl,* actually has a shorter bond (1.8917 A) and a bond dissociation energy of 

415 kJ mol’. Explain the differences between Cl, and Cl,* based on your MO diagram. 

. The six p-orbitals that are perpendicular to the plane of benzene (D,,) are the basis for 

the z-symmetry orbitals of the molecule. 

(a) Derive a reducible representation for this basis and apply the reduction formula to 

obtain the irreducible representations for the 7-symmetry six MOs. 

(b) Apply the projection operator method to obtain the pattern of AOs in each of the 

MOs from (a). 

(c) Based on your sketches, estimate the relative energy of the MOs and, hence, obtain 

the MO diagram for the 7-symmetry orbitals of benzene. From your diagram you 

should be able to explain why the HOMO state of benzene is doubly degenerate. 

. Derive the MO diagram for a tetrahedral metal complex with o-donor ligands. For the 
ligand SALCs, reference to the case of methane (in Section 7.4) may be useful here; 
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the symmetry of metal d-states in Ty; was covered in Section 5.8. Complexes of Cr?* 
usually have tetrahedral geometries, while those of Cr>* are more likely square planar. 
Explain why this should be the case by comparing your 7, MO diagram with the D4, 
example in the text. 

6. In CO, and in SO, the two O atoms are related by symmetry. Derive MO diagrams for 
each molecule. Why should CO, be linear while SO, is not? 

Further Reading 

Physical data, such as ionization potentials and reference spectra can be obtained from the 

US National Institute of Standards and Technology (NIST), at http://physics.nist.gov/. 

References for electronegativity scales can be found in the following: 
Pauling P (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative 

electronegativity of atoms. Journal of the American Chemical Society 54: 3570. 

Pauling P (1970) General Chemistry. Dover Publications, New York (ISBN 0-486-65622-5). 
SS Ty 

Allred AL (1961) Electronegativity values from thermochemical data. Journal of Inorganic Nuclear 

Chemistry 17: 215. 

A very comprehensive coverage of chemical bonding with examples from relevant 
experimental data is given in: 
DeKock RL, Gray HB (1989) Chemical Structure and Bonding. University Science Books, Mill 

Valley, CA (ISBN 0-935702-61-X). 

The quantum chemistry of atomic states and bond formation is discussed in more detail 

by: 

Atkins PW, Friedman RS (1997) Molecular Quantum Mechanics. Oxford University Press (ISBN 

0-19-855947-x). 
——— 

Calculation of the bond energy of H,* with larger basis sets, and much more detailed 

coverage of quantum chemistry in general, can be found in: 
McQuarrie DA (2008) Quantum Chemistry. University Science Books, Mill Valley, CA (ISBN 978- 

: “50-4), 

A fuller discussion of MO theory applied to transition metal complexes can be found in: 
Kettle SFA sical Inorganic Chemistry: A Coordination Chemistry Approach. Oxford 

niversity Press (ISBN 0 19 850404 7). 

A full discussion of the experimental electron density plot of Figure 7.3 can be found in: 
Hibbs DE, Hanrahan JR, Hursthouse MB, Knight DW, Overgaard J, Turner P, Piltz RO, Waller MP 

(2003) Organic & Biomolecular Chemistry 1: 1034-1040. 
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Appendix 1 

H>2O Models for Identifying 
the Results of Symmetry 
Operation Products 

The following page contains eight images of H,O set out in pairs, either side of the vertical 

line. You should cut out each pair so that you keep the label above each set with it, as 

indicated by the dotted lines. Then fold each strip of paper along the vertical line and glue 

the two sides together using paper adhesive. Additional copies of these model templates 

can be obtained from the Web site associated with this book. 

Each model is viewed from the side on which the label can be read correctly. On this 

side the middle of each atom has a small white circle, pierce a small hole through the 

middle of the circle on the oxygen atom and then insert a burnt match so that the burnt end 

is away from the paper. This match represents the x-vector on the atom and the burnt end 

represents its direction. You should insert the matches so that: 

1. The ‘Starting point, E’, model and ‘After o,(XZ)’, models — burnt ends toward you. 

2. The ‘After C,’ and ‘After o/(YZ)’, models — burnt ends away from you, 1.e. the match is 

pushed almost right through the paper because the x-vector is reversed. 

There is a model for each of the operations in the point group of H,O. To perform a 

product of two operations, start by picking up the model which represents the first part of 

the product and hold it with the labelled side toward you. To carry out the second operation, 

do one of the following: 

1. E: do nothing. This just demonstrates the XE = EX = X, where X is any operation. This 

follows from the definition of E. 

2. Cy: rotate the model by 180° about the Z-axis. 

Molecular Symmetry David J. Willock 
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3. o/(YZ): take out the match, reverse it and put it back in the hole at the oxygen atom so 

that the burnt end is again away from the paper. This effectively reverses the x-vector 

to show it has been reflected in the plane of the molecule. The y and z vectors are in the 

YZ plane, and so reflection through the plane does not affect them. 

4. o,(XZ): imagine the model you are holding with the y-vector reversed. In this case the 

x and z vectors are in the mirror plane and so are unaffected by the operation. 

After completing the second operation, compare the model you have with the ones left 

over. Your new model should be identical to one of the other three, and this identical model 

provides the single symmetry operation corresponding to the product. 
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Appendix 2 

Assignment of Chiral Centre 
Handedness using 

Cahn-Ingold—Prelog Rules 

A centre of symmetry at a four-coordinate centre can be defined as left or right handed 

using a convention introduced by Cahn, Ingold and Prelog. The method is based on assign- 

ing a priority to each of the groups attached to the chiral centre. Figure A2.1 shows a 

generic tetrahedral centre with four attached groups a-—d and illustrates the process of 

assigning the R (rectus, right) and S (sinister, left) labels to each of the two enantiomers. 

— 

The molecule is classified as R or S according to the following steps: 

. Number the groups according to their priority, | for highest down to 4 for low- 

est priority; in the examples in Figure A2.1 we have assumed that the priority runs 

a>b>c>d. There is more detail on assigning priorities to groups below. 

. Orientate the molecule so that the highest priority groups are toward you and the 

molecule is viewed down the bond from the chiral centre to the lowest priority group. 

. The handedness is assigned according to the order of the priority read around the chiral 

centre in this orientation. If the 1-3 priority atoms are arranged in a clockwise fashion, 

then the chiral centre is R; if they are read in order in an anticlockwise fashion, then the 

centre is S. 

The most difficult part of the process is the assignment of the group priorities, for which 

the following rules are employed: 

1% Assign the priority of the atoms directly bonded to the chiral centre based on their 

atomic numbers, with atoms further down the periodic table having the higher priority. 

If a lone pair forms one of the groups, then it has the lowest priority. For unambiguous 

Molecular Symmetry David J. Willock 
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a a 

eee ee 

b b 
d d \ 

Assign priorities 

a(1) a(l) 

a cic) aaa 

b(2) b(2) 

Orientate centre — (4) 
Assign by order of (1)—(3) 

b(2) b(2) 

(1) 

Se Seen 4 

R-enantiomer S-enantiomer 

Figure A2.1_ General approach to assignment of handedness to a molecule with a chiral 

centre. In this example the groups are assumed to have priority a > b > c > d. 

cases, in which the four atoms joined to the chiral centre are different, this will suffice, 

as shown in Figure A2.2 for the example of 1-chloro-1-fluoroethane. 

2. If there are two or more atoms of equal priority, then move out to the next set of neigh- 

bours. There are now more possibilities, since there may be more than one atom at a 

second neighbour position along a given branch away from the chiral centre. Choose 

the highest priority from the set of second neighbours for each first neighbour and use 

those to decide. If there is no resolution, go out to further sets of neighbours until a 

difference is found. This means that the following group priorities would apply: 

= (Gh) El = = (Gige Be(Cl Ss 18 

— Ch CH,)H > (Ci CH) Hh, asin =e 

= (Cl) oe © a@lie)iine as F > H at the third neighbour level 
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H(4) 

Cl) 

H3C(3) or 

R-enantiomer 

Figure A2.2_ Example of 1-chloro-1-fluoroethane, a molecule whose chirality is determined 
solely by the atoms neighbouring the chiral centre. 

In addition, if there is a double or triple bond present, then it is treated as if there were 

two or three of that atom type present. For example: 

—CH( =CH,) > —CH,(CH;), as C > H for the ‘second’ C of =CH, 

—C=N > —CH(NH)s- as N > H for the ‘third’ N of=N 

A good illustration of applying the priority rules to higher order neighbours is provided 

by the example of limonene given in Chapter 2; the assignment is shown in Figure A2.3. 

Starting from the chiral centre, the hydrogen atom has the lowest atomic number of the 

immediate neighbours and so is assigned priority 4. The other three neighbours are C 

atoms, and so we have to move to second neighbours. The double bond of the isopropyl 

group gives the exo-cyclic group a higher priority that either of the routes around the ring. 

The other two groups, from the two sides of the ring, each have C as the highest priority 

second neighbour to the chiral centre; so, to distinguish these, we move out to third-order 

neighbours. Here, the side of the cyclohexene ring with the double bond is assigned the 

higher priority, since the double-bonded carbon atom takes precedence. Looking down 

the chiral centre to the hydrogen atom bond, the priority 1-3 groups are arranged in an 

anticlockwise fashion around the chiral centre, and so this structure is the S-enantiomer of 

limonene. 
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Third neighbour, 

Third =C (double bond) 

neighbour -C so higher than 

opposite -C 
ate) 

Highest first and Ss 

second neighbours 

all C so need third 

level. 

H assigned lowest 

priority, molecule 

orientated with this into 

page. 

C, at. no. 6. 

Second neighbour 

=C (double bond) 

so higher than 

either C in ring. 

Figure A2.3_ Assignment of handedness for S-limonene, the chiral centre is marked with a “*‘ 
To realize that this example is a left-handed molecule requires neighbours out to third order. 



Appendix 3 

Model of a Tetrahedron 

and the Related Cube 

This appendix contains templates for paper models of a tetrahedron and a cube. The final 
shapes are shown in Figure A3.1a. The cube dimensions are set so that the tetrahedron will 
just fit inside, as shown in Figure A3.1b. Additional copies of the model templates can be 
obtained from the Web site associated with this book. 

(a) (b) 

Figure A3.1_ The completed tetrahedral and cube models: (a) shown separately; (b) with 
the tetrahedron inserted into the cube showing the relationship between the two shapes. 

To construct the tetrahedron model: 

1. Cut around the outline of the pattern, including the flaps. 

2. With the printed side of the template downward, fold along all the solid lines; after 

folding each of the flaps, push it flat again. 

Molecular Symmetry David J. Willock 
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oh 

— 

Apply glue to each of the flaps and glue them under the side with the corresponding 

number indicated on the template. Flap 1 is to be glued in place first; flaps 2 and 3 

should then be glued together with light pressure applied to the outside of the tetrahedral 

shape formed. 

To construct the cube model: 

. Cut around the outline of the pattern, including the flaps. 

. With the printed side of the template downward, fold along all the solid lines that outline 

the squares, including the flaps; after folding each of the flaps, push it flat again. 

. Cut out the triangular areas marked ‘Remove’ using a sharp craft knife; it may help to 

place a ruler next to each line as the cut is made. Push out each triangle, taking care not 

to crease the remaining paper in the model. 

. Apply glue to each of the flaps and glue them under the side with the corresponding 

number indicated on the template. Flap | is to be glued in place first; flaps 2, 3 and 4 

should then be glued together. One side of the cube is left open, and so pressure can be 

applied to these flaps from inside the box shape formed. 
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Appendix 4 

Model of an Octahedron 

This appendix contains a template for a model of an octahedron. The final shape is shown 
in the photographs in Figure A4.1. The folding up of the template is quite straightforward, 
but to help you the destination of each flap to be glued is indicated on the template. Make 
sure you understand how the template folds up into the octahedron before cutting it out. 
Construction follows the steps set out below. Additional copies of the model template can 
be obtained from the Web site associated with this book. 

(a) (b) © 

Figure A4.1__ Two views of the completed octahedron model: (a) with a C3 axis vertical; (b) 
with a C, axis vertical. 

1. Cut out around the shape outline. 

2. With the printed side of the template downward, fold all solid lines; after folding each 

flap, push it back flat again. 

3. Apply glue to all flaps from the printed side of the template. 

Molecular Symmetry David J. Willock 
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4. Take flap number | and inserted it underneath the edge indicated on the template. You 

should make sure that the two solid lines are aligned at the join. 

5. Following the same procedure, glue the flaps in place in the order as numbered. Flaps 

4 and 5 should be glued at the same time, applying light pressure from outside of the 

octahedron. 
\ 

The markings on the octahedron show some examples of axes and mirror planes that are 

symmetry elements for the octahedron. Not all the elements are marked, since the model 

would become too complex. For example, there are four C; axes which pass through the 

centre of opposite triangular faces, but only one is marked. The geometry of the octahedron 

is discussed in more detail in Section 3.9. 
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Appendix 5 

Matrices and Determinants 

The idea of a matrix crops up a number of times in the mathematics of symmetry, both as a 

way to represent symmetry operations and in the solution of problems to which symmetry 

may be applied. In the Futher Reading section of this appendix, some references to detailed 

discussions of the mathematics of matrices and the related determinants are given; here, 

we cover the essential elements required to understand the more mathematical aspects of 

the discussion in the main text. 

A5.1 Matrices as Representations of Symmetry Operators 

In Chapter 4 we introduce the idea of a matrix representation for symmetry operations. 

The matrix is a compact way of writing several simultaneous equations in one go. For 

example, the effect of the C, operation on basis vectors x and y in the C, point group is 

given by Equation (4.3): 

x =-1xx+0xy 

y =O0xx+-l1xy (AS5.1) 

These equations say that the new position of the x basis vector is in the opposite direction 

to the original one and that the y basis vector is also reversed. In matrix notation, x and 

y are grouped into a single column vector and the coefficients of the two equations in 

Equation (A5.1) are used to form a square matrix: 

(i )-(% 4)G) asa 
Molecular Symmetry David J. Willock 
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To recover the equations we can multiply the vector by the matrix. The multiplication is 

carried out following the convention that the first element on the left is given by sum- 

ming the products of the first row of the matrix with the column vector on the right- 

hand side: 

Similarly, the second element on the left-hand side is a sum of products of the second row 

of the matrix and the column vector on the right-hand side: 

fae Na a Pale wo”) 

Since the matrix represents a symmetry operation, the act of multiplying the vec- 

tor by the matrix is often referred to as an operation, i.e. the matrix operates on the 

vector. 

Larger systems of basis vectors can be dealt with in much the same way. For example, in 

Section 4.5 we considered the effect of a C,' rotation on a basis of the three N—H bonds 

of ammonia in the C3, point group. As before, to carry out the multiplication the column 

b,, b>, b (representing N—H bonds 1-3) is multiplied by the top row of the matrix to give 

the vector now in the b, direction, then by the middle row to get the new term in b, and 

finally by the bottom row to get the new b;: 

b 
LOO = giving b, now replaced by b3 

OE 

(OQ) il b3 

=|b,| giving by now replaced by b, 

Oh © 

=| db, giving b3 now replaced by b, 

Om O mel 

0) 50 

by (AS.5) 

A5.1.1 Products of Matrices 

We can extend the algebra of matrices to include products formed by multiplying two 
matrices together. The product of the matrices must give a third matrix, since we know, 
for example, that the combined C,o, operation in the Cy, point group is equivalent to the 
other vertical reflection o,’. The multiplication of the two matrices can be carried out by 
treating the columns of the second matrix as vectors and multiplying each one by the rows 



Matrices and Determinants 319 

of the first matrix in turn. The row and column for each element in the resulting matrix is 
set by the row and column used in the multiplication. 

In the example of the combined C,o, operation this gives 

fete ene 

(DADA) te torneo 

ESI (2) wom otere0-0 

Flare csc oheees 

Checking the product matrix against Table 4.5 confirms that the matrix product acts just 
like the symmetry operations, since we have generated o,' from the product Coy. 

A5.1.2 Products of Matrices, Expressed as Summations 

For the simple 2 x 2 matrices used above the product is quite easy to write out in full. 

However, as the number of basis functions increases, it can become cumbersome to write 

out the full matrix and we may prefer to write out formulae for obtaining a general element 

of the product matrix. Products of matrices are obtained using the multiplication procedure 

of taking rows from the first matrix with columns from the second. To extend this to the 

3 x 3 case and beyond, we will look at the general matrix product: 

Qi 42 433 by, by dis 

P=AB= 42, Ay2 Ay by, by ba; (A5<7) 

43; 432 433 bx, by b33 

Here, A and B are any two 3 x 3 matrices whose elements are denoted a and b with 

subscripts giving the row and column of the element in that order. The product of A and 

B is the 3 x 3 matrix P. To generate the product, each column of the matrix B is treated 

like the vectors in the earlier calculations, being multiplied element by element with a row 

from the A matrix and then summed. Each row of the A matrix is used in turn, so that 

the three rows of A and the three columns of B form the nine sums of elemental products 

needed to generate a 3 x 3 matrix as the result. The product matrix elements are labelled 

by the row of A and column of B used in the multiplication. For example, element 1,2 

of the result p;. is found by multiplying each element of the second column in matrix B 
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by the corresponding element of row | from matrix A and then summing the three terms 

generated: 

3 

a P\2=4 1D) +4) yb 9 +41 3b32=2 ayy 

Pil P13 a a2 > by bi3 

P21 P22 P23 }=| 421 422 423 bo, bo3 

bs, b33 P31 P32 P33 43, 432 433 (A5.8) 

Pi 

P21 

(A5.9) 

In this way, each of the nine elements of the product can be built from the elements 

of the A and B matrices. The sums that are written out for the particular cases shown 

in Equations (A5.8) and (A5.9) have an index k which defines the column index of 

the a element and the row index of the b element used in each term of the sum. This 

index disappears in the final answer for the product element produced and only the 

fixed indices remain to define p. For an arbitrary product element p; we can use the 

formula 

3 

Py =) andy (A5.10) 
k=1 

which embodies the idea of producing the i,j element of the P matrix as a sum of products 

of the 7” row of A and jth column of B. 

A matrix product formed in this way can be used to generate matrices for the operator 

products we need when considering compound operations. For example, in the NH; case 

of Figure 4.6, a C,° rotation can be generated by applying the C;' matrix twice. This can 

be done by applying the C;' matrix once and then using the intermediate column vector in 

a second application: 

Oa Ol Oy OO} b, Om Oe b; by 

DOO Lb 200 Doe | = SOO) Om e=alabs 

OPEL Os aint b, Os Sha0 b, b, 

(A5.11) 
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But we can also use the matrix product to generate a matrix for the C,’ operation and then 
apply this as a single operation, giving the same result: 

“amd all O70 71 b, Cm 0 b, by 
D020 Po 0 ly eS ar | al Wee 
OS 0 OVO b; I 070 b; b, 

(AS. 12) 

So, as we found for the case of the simpler basis in H,O, the matrix representation of 
symmetry operations allows products of operations to be considered algebraically. This 
matrix product approach can be extended to matrices of any size and so for any size of 
basis. 

A5.2 Matrices for Solving Sets of Linear Equations 

Matrices also appear in the solution of problems in linear algebra because they provide a 
compact way of discussing sets of equations. For example if we have three unknowns, x, 
X, and x3; which conform to the similtaneous equations: 

AX) + AX) + a3xX3 = dy 

1X1 + AyX2 + Ay3X3 = dy (A5.13) 

3X1 + 3X2 + A33X; = d; 

where aj; and d; are constants; the equivalent matrix equation is 

ay, Ay a3 x) d, 

42, ay ay X2 = d, (A5.14) 

43; 432 433 X3 d, 

for which we can use the shorthand 

Aba (AS.15) 

This allows any algebraic manipulation to be carried out in the shorthand notation. For 

example, if we wish to find the values of x; in Equation (A5.13), then we can see 

from Equation (A5.15) that, if we can find the inverse matrix of A, the solution will be 

straightforward because 

A‘'Ax=A™'d gives x=A''d (A5.16) 

because A~'A = E, the identity matrix. 
To find the inverse matrix requires the introduction of the determinant. The determi- 

nant is related to the square matrices we use as representations for symmetry operations, 

but is a simple number formed in a systematic way from the elements of the matrix. 

To distinguish the determinant from a matrix it is written enclosed in straight lines, rather 
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than the brackets used to signify a matrix. So the determinant for the matrix A would be 

written 

JA] =| @ G2 a (A517) 

\ 

The evaluation of the determinant requires its simplification into sets of 2 x 2 sub- 

determinants, which can then be evaluated using the following prescription: 

ay a\2 
= 11 4q2 — 412472 (A5.18) 

ay, a2 

To evaluate a higher order determinant we choose a row of the determinant and form 

the product of each element with its co-factor. The co-factor is the sub-determinant 

formed by blocking the row and column for a given element and forming a determinant 

from the visible elements. For example, to form the co-factor c;; of the a); element in 

Equation (A5.17): 

QArn2 = An3 

432 33 
(A5.19) gives Cy; = 

When working out the value of the 3 x 3 determinant, a sign is also added to the co- 

factor following the chessboard pattern: 

SSR ote (A5.20) 

The co-factor takes the sign in the position corresponding to the element used to generate 

the co-factor. This means that the result for a,,; in Equation (A5.19) is given a positive sign, 

but if we require the co-factor for a,. we would use 

a3 

33 

gives cy) =— (A5.21) 

Since we have blocked one row and one column, the co-factor is always simpler than the 

parent determinant. The 3 x 3 determinant from Equation (A5.17) can now be simplified 

to the evaluation of three 2 x 2 determinants: 

Gy ay ay 
Qx0_— AA 

|A| =) i) S nN i) a3 | = ay 

43; 432— 33 

+a 
A323 a 

[-a 

= (422433 — 473032) —y2( Ay, 433 — A343, ) +A)3( A243. — A273) 

(A5.22) 
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We now have all the elements required to construct an inverse for a matrix. The inverse 
of a matrix has a more complex definition than that for simple numbers; for a matrix A: 

Po CoA) 

|A| 
(A5.23) 

where Co(A) is the determinant formed from the complete set of co-factors. This means 

that a co-factor is formed for each element using the row and column blocking method 

described above and the value of the co-factor is then placed at the position of the element 

used in the blocking process. The co-factors also require the signs given by the chessboard 

pattern of Equation (A5.20). The superscript ‘T’ implies the matrix is transposed (rows 

and columns interchanged) after it is formed. 

As an example, consider the C,' rotation matrix used in Section 4.9: 

(ei 46 
cl={1 0 0 (A5.24) 

O0n! 

This type of matrix is referred to as orthogonal, since its columns (or rows) are a set of 

mutually perpendicular vectors. In this case, the first column is aligned with Y, the second 

with —X and the third with Z, but any arrangement which makes the columns at right angles 

to one another will give an orthogonal matrix. Orthogonal matrices have the property that 

their inverses are simply the transposed matrix, and we will show that this is the case here 

by forming the inverse in the standard way and then comparing with the transposed matrix. 

The matrix of co-factors is quite straightforward in this case: 

OS 0 Os 0 
Co(C,')= | 1 0 0 so) Coi(C,)= | —1 500 (A5.25) 

OnE Ont © @ 7 

The determinant can be evaluated using Equation (A5.22). Many of the terms will be zero; 

the only co-factor required corresponds to the second element of the first row, and so has 

a negative sign. 

=! Cail | | zal (AS5.26) 

The fact that the determinant is 1 is another general property of matrices which represent 

symmetry operations. This ensures that the symmetry operation does not affect the size of 

any basis vectors on which it operates. 

So, we have found that the inverse of the C,' rotation matrix is given by 

(A5.27) 

SS SiS = 2] SS 

0 
(Gy =| 41 

0 
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Comparing this with Equation (A5.24), you will see that, as stated earlier, the inverse is 

simply the transpose of the original matrix. This is also a general property of matrices 

which represent symmetry operations, and it makes finding these inverses much easier 

than following this standard formula route. You should also be able to see that the inverse 

matrix is the same as the matrix we defined for C,° in the main text, i.e. the inverse matrix 

correctly gives the inverse symmetry operation. \ 

As a check of the calculation, we form the product of the matrix and its inverse: 

0 1 O 0 -—1 0 1 0 0 

CG) Gi = |e een) [0 0) = 110 tO VS (AS 28) 
Os wel 0 Oot OO. 1 

so the inverse multiplied into the matrix gives the identity matrix as required. 
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Appendix 6 

The Mathematical Background to 
Infrared Selection Rules 

In the main text we introduced the selection rules for IR spectroscopy via the transition 

dipole moment integral. This appendix gives a little more detail on the origin of the selec- 

tion rules, with explicit formulae for the vibrational wavefunctions. This also allows a 

more complete explanation of the observation that absorption due to transitions involving 

neighbouring levels (e.g. n = 0 to n = 1) are more easily observed than overtones which 

involve transitions to higher levels in the ladder of vibrational states. 

The diatomic molecule is a good place to start a discussion of molecular vibrations. 

There are six degrees of freedom: three translations of the molecule, two rotations and, 

so, only a single vibration, which is the bond stretch. In this appendix we will consider 

a diatomic molecule belonging to the C,,, using H—F as an example. It is conventional 

in symmetry problems to align the principal axis with the Z-direction. However, we have 

decided to break with convention here and align with X, because the variable x is more 

often used in mathematics. 

A6.1 Model Based on Classical Mechanics 

Figure A6.1a illustrates the vibrational motion of our model H—F molecule in the har- 

monic approximation. Here, the bond between the two atoms is thought of as a simple 

spring with spring constant k and equilibrium length /). The potential energy V stored in 

the spring is then proportional to the square of the extension or compression x with the 

constant of proportionality being k (Figure A6.1b): 

ise 
V= ee (A6.1) 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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Spring constant k 

1 VG) ="”ke 

Compression Extension 

Figure A6.1_ (a) Model of a diatomic molecule such as HF with the chemical bond rep- 
resented by a spring; (b) the potential V(x) versus bond extension x in the harmonic 
approximation; (c) the classical force versus x. 

The factor of one-half arises from the usual choice of k based on Hooke’s law; the restor- 

ing force due to the extension of a spring is directly proportional to that extension. So, 

following classical mechanics: 

ave” 

dx 
F= —kx (A6.2) 

This relationship is plotted in Figure A6.1c and shows that any distortion of the bond will 

generate a force which tends to move the atoms back toward the equilibrium bond length. 

At the equilibrium bond length the potential and the force are both zero. 

At any nonzero temperature the classical atoms of the molecule will also be moving; if 

the H atom has a velocity v with respect to the F atom, then the kinetic energy T to do with 

the bond distortion is 

aie hay of A63 es am) = 5 Mm dt ( : ) 

where f is the time variable and j1,, is the reduced mass of the two-atom system: 

1) a eran) 
— = — + — (A6.4) 
Mm My Mp 

with my and m, the masses of the H and F atoms respectively. 
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At all times the total energy (sum of potential and kinetic) E will have a constant value, 
and so we can use the conservation of energy to write 

ee ee ee oars EB A65 = r m x = . ore 2 (28>) 

This equation is readily simplified to give 

deyew nk ae DE 
a ee (A6.6) 
dt Um Um 

This is a differential equation for the bond extension x as a function of time. It tells us 

that the squares of the first derivative and the extension itself are linked. For this classical 

model of masses and a spring we should expect an oscillating solution, and so a good 

starting guess for the solution is 

dx 

x =Acos(wt) for which a = —Aw sin( wt) (A6.7) 

In this proposed formula for x, A will set the amplitude of the oscillation. The parameter 

@ is related to the frequency f of oscillation in reciprocal time units. The period over 

which the cosine function repeats is 27 radians and the period over which the extension 

completes a cycle of its oscillation is 1/f, so the two are related via 

w = 2nf (A6.8) 

The quantity @ is referred to as the angular frequency of the oscillation. 

We will now check that the proposed function for x in Equation (A6.7) is a solution of 

Equation (A6.6) and show how the angular frequency depends on the reduced mass and 

spring constant. 

Using the results of Equation (A6.7) in Equation (A6.5) we find 

; k : 2E 
A’ jo" sin’ ( wt) +— cos*( on) =— (A6.9) 

[L m m 

For an arbitrary choice of @ the left-hand side is still an oscillating function of time, while 

the right-hand side is a constant. The only way this equation can work for all ris if the two 

terms in the bracket give the same sum for any value of t. Remembering the trigonometric 

identity (see the end note to Appendix 9) 

cos’() +sin’(6)= 1 (A6.10) 

it is clear that this will only occur if 

i == LE O=_|/— (A6.11) 
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So the frequency of oscillation is proportional to the square root of the spring constant 

(the stiffer the spring is, the more rapid the oscillation is) and inversely proportional to the 

square root of the reduced mass (the heavier the atoms are, the slower the oscillation is). 

The amplitude of the oscillation can now be related to the total energy by substituting 

our result for w back into Equation (A6.9): 
\ 

A=,/— (A6.12) 
k 

So the amplitude is inversely proportional to the square root of the spring constant and 

proportional to the total energy available. This means that (for the same total energy) the 

stiffer the spring is, the lower the amplitude of vibration is; this is because the potential 

energy increases more sharply with the bond extension. 

We have shown that, in the classical picture, distortions due to atom motion that extends 

the bond will increase the potential energy and cause a restoring force that tends to 

shorten it. Also, if the bond is compressed, then the potential energy again increases, 

but the restoring force now favours extension of the bond. The result is oscillation with 

energy constantly switching between kinetic and potential. At the equilibrium point, the 

potential energy is zero and the kinetic energy is equal to the total. At the maximum exten- 

sion/compression (x = EA) the kinetic energy is zero but the potential energy is equal to 

the total (to show this, try substituting Equation (A6.7) with A from Equation (A6.12) into 

Equation (A6.1)). 

The total energy itself can take on any value; under thermal equilibrium, the range of 

total energies available to each molecule would be set by the Boltzmann distribution and 

depends on the temperature of the system. 

A6.2 Model Based on Quantum Mechanics 

The classical model works well when describing macroscopic systems of masses and 

springs. However, we run into difficulties when trying to apply the same mechanics to 

problems at the scale of atoms and electrons. For example, in the vibrating H—F molecule 
in Figure A6.1 the dipole moment of the molecule would be changing over the cycle of the 
oscillation. Such an oscillating dipole should radiate electromagnetic waves. In fact, this is 
how radio and television signals are broadcast; the transmitting aerials set up macroscopic 
oscillating fields from which radio waves emanate. If the same rules applied to the H—F 
molecule then it should spontaneously emit radiation at the frequency of the bond vibra- 
tion, losing energy until the atoms come to rest. From experimental observation we know 
that this is not the case: molecules can vibrate without radiating energy and their atoms are 
never at rest. 

Quantum mechanics gives us a way to deal with the behaviour of matter at the molecular 
level. In this approach, molecular vibrations are stable only in specific stationary states 
which define energy levels for the system. While in a stationary state the vibration still 
takes place, but no radiation is emitted. Radiation is only emitted or absorbed on transition 
between energy levels (see Figure 6.2). The state of a system, such as a vibrating molecule, 
is described in quantum mechanics by a wavefunction, and we will see below how the use 
of a wave-like description naturally gives discrete energy levels. 
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Following the motion of the oscillating bond in a stationary state, as we did for the 

classical model, no longer makes any sense in a wavefunction picture. All we can look 

for is the probability that an observation of the bond will see a particular extension. The 

probability of finding any particular value of x should be expected to depend on the value 

sought. For example, extensions of the bond which give a potential energy greater than the 

total should be very unlikely. The wavefunction yw gives the probability that the bond is 

between x and x + dx as the square of the wavefunction magnitude, |7(x) |* dx, and so we 

must expect y to be a function of x that approaches zero at large x. 

To obtain y we solve the time-independent Schrodinger equation for the system: 

ied: ee 
(= = 5k) Ui ay (A6.13) 

This equation is another statement that the total energy E is the sum of the kinetic energy 

and potential energy, but in this case there is no time dependence. These two contri- 

butions must be drawn from the wavefunction, and Schrédinger demonstrated that the 

kinetic energy should be a function of its second derivative with respect to position, the 

first term on the left of Equation (A6.13). A mathematical tool for extracting informa- 

tion from the wavefunction is called an operator, so this first term is the kinetic energy 

operator. 

The potential energy depends on the particular system. For the harmonic oscillator we 

can use the same form as the classical potential, Equation (A6.1), in Equation (A6.13). 

This is now the potential energy operator, since it is ‘operating’ on the wavefunction. The 

inclusion of the wavefunction will allow us to average the potential energy across all bond 

extension values weighted according to their probability. 

In Equation (A6.13), / is related to the Planck constant via 

ppg (A6.14) 
20 

It is useful to rearrange Equation (A6.13) in such a way that the second differential in x 

has no multiplying coefficient and to group the constants on the left-hand side into a single 

symbol: 

Py Bs PENS: 5 oe as 
Hi OE =— i pe where: 109 = i (A6.15) 

Solutions of Equation (A6.15) will require us to ‘try out’ or trial functional forms for y 

which have a hope of balancing the left and right sides; on taking the second derivative and 

simplifying the left-hand side we must end up with just a number multiplying y. Our trial 

function must also conform to any boundary conditions of the problem. Here, we know 

that at large positive or negative x the wavefunction must tend to zero, and so this is the 

required boundary condition. 

We can make a start using a basic property of the exponential function; the derivative is 

the same as the function itself: 

dy d-y 
if y=Aexp(Bx) then = = APexp(fx)= fy and —~=fy (A616) 
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Here, A and f are constants that give us some flexibility in defining the function y. This 

property gives us a promising lead, because the second derivative of y is just a number 

times y. However, such a simple exponential of x for y in Equation (A6.15) will not work, 

because x can take on both positive and negative values (extension and compression of 

the bond) and the boundary conditions require y to tend to zero at either extreme. An 

exponential function does tend to zero at large negative x, but it increases indefinitely for 

positive x. 

An exponential-type function that does have the correct behaviour for the boundary 

conditions is the Gaussian: 

Wa = Nexp (-=) (A6.17) 

The subscript ‘tr’ is added here to indicate that this is a ‘trial’ wavefunction, 1.e. it has a 

promising functional form, but there is some way to go yet. The constants N and £ control 

the height and width respectively of the Gaussian, and we need to see if there are values 

of these constants that allow y,, to satisfy Equation (A6.15). 

To use w%, in Equation (A6.15), its second derivative is needed. Here, the rules for 

differentiating a function of a function can help, so that if we write 

ye (A6.18) 
2 

then we can take the derivative of yf, as follows: 

Be er an A6.19 SS IN 2.90) { Sf) = = |= . oe i ee Bx exp( —u) XBWe ( ) 

The second derivative can then be obtained: 

Py,  d eee 
Ae ace es —BY. — xB ce =( Bx — B) Wu (A6.20) 

The left-hand side of Equation (A6.15) now becomes 

ad? We oD) 9 9 a. 9 

cee be OX We =( BX — BY) Ye — 2 Ve (A6.21) 

The right-hand side of Equation (A6.15) contains only numbers multiplying y,, and so for 
this solution to work we must not have any x* terms remaining. The only way to achieve 
this is to set 

B=a (A6.22) 

With this value for 8, our trial wavefunction has satisfied the equation because the oper- 
ators on the left-hand side have produced the trial wavefunction multiplied by a constant, 
and Equation (A6.15) becomes 

2 ime 
h2 

avy, = — Wu (A6.23) 
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The operators have now been dealt with and the wavefunction will cancel on both sides. 
This shows that we have found the value for B that makes our trial function into a working 
solution for the harmonic oscillator Schrédinger equation. 

Cancelling yy, in Equation (A6.23) and rearranging gives the energy corresponding to 
our trial wavefunction as 

ah? 

Taking the expression for a defined in Equation (A6.15), we find 

h | k 
(5s eee (A6.25) 

2V Um 

The square-root term is just the angular frequency obtained from a classical analysis of the 
vibration of two masses joined by a spring (Equation (A6.11)). So we have shown that the 

energy of the proposed Gaussian wavefunction is simply 

E = ~ho) (A6.26) 1 
2 

An alternative way to write this energy is using the frequency in terms of oscillations per 

second v; since w = 27 v, we have 

E = -hv (A6.27) 1 
2 

where the definition of h has been used to cancel the factors of 27. 

There is an apparent sleight of hand here; at the beginning of this section we stated that, 

in a stationary state, it was not worth thinking about following the motion of the atoms as a 

function of time, yet here we bring back the classical frequency of oscillation. Remember 

that the energy is linked to the spring constant and reduced mass by Equation (A6.25), so 

that it can be defined in terms of molecular properties. This equation happens to contain the 

expression for the angular frequency assigned from the classical model, and in the remain- 

der of this appendix we will show that this is also related to the photon energy required 

to cause a transition between stationary states. For this reason, the use of ‘frequency’ to 

discuss changes in energy in spectroscopy is common. 

The particular solution for the quantum harmonic oscillator is the first of a set of solu- 

tions; in fact, we have defined the ground state of the oscillator and the minimum energy 

that any vibrational mode can have: the zero-point energy. In the quantum picture, the 

atoms can never come to rest because the bond vibration energy can never be lower than 

that given by Equation (A6.27). 

In finding this solution we have set one of the variables, £, in the trial wavefunction; 

for the other (NV in Equation (A6.17)) we can make use of the interpretation of the wave- 

function in terms of a probability. The probability of finding the molecule with a particular 

value of the bond extension in between x and x + dx is given by 

P(y= vr dx (A6.28) 
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The asterisk refers to the complex conjugate of the wavefunction. If the wavefunction 

contains a real part a and an imaginary part b, then the complex conjugate is the same 

function but with i (i = /—1) replaced by —i. Then, y*y =(a—ib)(a+ib)=a@+bh = 

|y|°; note that although the wavefunction may contain imaginary numbers, the probability 

will always be purely a real number. ; 

Clearly, the bond must have some value of x, and so if we look over all possible values 

of x the probability of finding the correct bond extension is unity. This is often referred to 

as the normalization condition and can be stated mathematically as 

Hl ww dx=1 (A6.29) 

For the ground-state wavefunction of the bond vibration we have found a real function (i.e. 

no imaginary part), and so the integrand is simply the wavefunction squared: 

N? ‘f exp(—ax’) dx = 1 (A6.30) 

—0o 

This integral is the total area under the Gaussian curve, a standard result, so we can write 

= She a\\/4 
We ea Pa ey = (=) (A6.31) 

(04 I 

which allows us to complete the trial wavefunction definition: 

2 1 
ho = (=) exp (—) with @ = FV pink (A6.32) A 

This function is plotted as state n = 0 in Figure A6.2a. The line showing the level for 
the zero-point energy is also used as the zero line for the wavefunction plot. Where this 

® ae oa va) ©) A 

Figure A6.2 (a) The first four wavefunctions of the harmonic oscillator; (b) the squares of 
the wavefunctions, which give the probability of finding the bond at a particular extension x. 



The Mathematical Background to Infrared Selection Rules 333 

line intercepts the potential energy curve defines the amplitude of the classical oscillator. 
The wavefunction is decaying at this point, but there is a finite probability that extensions 
greater than the classical limit will be observed. 

A6.3. Excited Vibrational States 

We have found the ground state for the oscillator, but there are also other functions that can 
satisfy the Schrédinger equation. These will represent the excited states of the oscillator 
and become important when the molecule absorbs energy from the light used in IR spec- 
troscopy. The complete set of solutions for the wavefunctions of the harmonic oscillator 
are actually a product of the Gaussian function discussed above and a Hermite polynomial 
H,, which ensures that the cancellation of the x° function we forced by one choice of B 
in Equations (A6.21)—-(A6.23) also occurs for the excited states. The general solution for 

state n of the harmonic oscillator is then 

Vn = N,,H,,(xJ/@) exp (-=) 

with 
ON 

N, =(=) (A6.33) 
ue 

Here, n is an integer quantum number for the states of the oscillator; n can only have 

positive values, 0, 1, 2, .... N, is the normalization factor for the nth vibrational level 

and H,,(x./a) is the corresponding Hermite polynomial; a standard set of polynomials for 

which we use x./a@ as the argument. 
Explicitly, for the first four functions we obtain 

a\i/4 atx? Ae ax? 
ge (—) exp (- 5 ) y= (=) X€Xp (-=) 

1/4 2 3\ 1/4 : 
0 ic) (2ax* — 1) exp (-$) = (=) (2ax* — 3x) exp (-=) 

(A6.34) 

These wavefunctions are all real functions, and so the probability of finding the oscillator 

with a particular value of x when it is in one of these stationary states is just proportional 

to the square of the wavefunction at that value of x. The four functions and their squares 

are plotted in Figure A6.2a and b respectively. Each of these functions is normalized in the 

same way as Wo, so that an integral over all x will give 1. 

The vibrational state wavefunctions are also orthogonal to one another, meaning that 

an integral over all space of two different functions will yield zero. As an example, 

Figure A6.3a shows the product yy as a function of x; because this has equal area above 

and below the x-axis, an integral over all values of x must give zero. 

The energy of any vibrational state in the harmonic approximation is given by 

E, =(n + hv (A6.35) 
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Figure A6.3 (a) The product Wy gives a function whose integral over all x is zero and so 

these wavefunctions are orthogonal. (b) The product yxy gives a function which is positive 

everywhere and so has a finite integral. 

This equation for the state energy is obtained by substituting the general expression for the 

nth wavefunction from Equation (A6.33) into the Schrodinger equation, Equation (A6.15). 

Applying the kinetic and potential energy operators and then rearranging for E, as we did 

for the ground state, will then give this result. n is a quantum number; stationary states 

must have an integer value of n, and so Equation (A6.35) tells us that the energy levels are 

discrete, or quantized, with a separation between states of hv. 

It is worth making a brief comparison of these wavefunctions derived from quantum 

mechanics and the behaviour of a classical harmonic oscillator such as discussed at the 

beginning of this appendix. A classical harmonic oscillator is undergoing a constant inter- 

change of kinetic and potential energy. At the maximum displacement the spring in such a 

system would be under tension, all the energy of the system would be stored in the spring 

and the mass would be instantaneously stationary as it turns back toward the zero displace- 

ment point. As the mass moves, the tension in the spring would be reduced until at zero 

displacement there is no potential energy. At this point the mass has its highest velocity, 

i.e. all the potential energy has been converted to kinetic energy. The total energy of the 

system is always constant: at the extremes of motion we have all potential and no kinetic 

energy, and at the central point there is only kinetic energy present and no potential energy. 

In this classical picture, the maximum displacement is set by the total energy of the sys- 

tem, and the particle spends less time at the central point than at the extremes, since its 

kinetic energy, and so its speed, is a maximum at the centre. 

In the quantum picture, illustrated in Figure A6.2, the wavefunction at a given energy 

level is more or less confined by the points at which the energy level cuts the poten- 

tial curve. This would be the maximum displacements possible in the classical oscillator, 

since the total energy set by the energy level is then the same as the potential energy. 

The quantum model does allow for a finite possibility of movement beyond these limits, 

a tunnelling effect, but is essentially confined to the same region of space. The biggest 

difference between the quantum and classical models can be seen at low values of n, espe- 

cially the n = O state. The classical oscillator spends more time at the extremes of motion 
than at the centre. In contrast, the n = 0 state of the quantum oscillator has a peak at the 
centre, indicating the probability of being at the centre is higher than at the extremes of 
motion. As n increases (e.g. n = 3), peaks near the extremes become larger than those at 
the centre, and at very large n the classical picture would be recovered. 



The Mathematical Background to Infrared Selection Rules 335 

A6.4 Vibrational Modes for Polyatomic Molecules 

We have illustrated harmonic motion using a simple diatomic molecule for which the 

bond displacement is x. As described in the main text, the vibrations of polyatomic 

molecules are often quite complex mixtures of individual atom displacements. The 

patterns that are possible for the fundamental vibrations of a molecule can be classi- 

fied by the irreducible representations. The oscillation in any of these modes can then 

be analysed using a normal-mode coordinate (generally given the symbol g), which 

should be thought of as a single variable describing the extent of motion in a given 

vibration. 

The coordinate q carries the symmetry of the vibrational mode and will play the same 

role as x in our diatomic example. Classically, this would mean that all vibrations have 

the irreducible representation of the pattern of atomic movements. However, referring 

to Equation (A6.34), the quantum picture is different. In the ground state, g will only 

appear as its square; since the direct product of any nondegenerate irreducible represen- 

tation with itself is A,, this means that the ground state of any vibrational mode will 

also be A,. The first excited state will contain g in the Hermite polynomial, and so does 

have the same symmetry as the irreducible representation of the classical picture of the 

vibration. 
In an IR spectroscopy experiment we introduce light, an electromagnetic wave, which 

interacts with a molecule by disturbing the local electric field E;. In general, the electric 

field is a vector quantity, but here we will simplify matters by only dealing with the X- 

component (an arbitrary choice). The molecule can couple to the field through its dipole 

moment. For our diatomic molecule from Figure A6.1, the perturbation energy for an 

excitation from the n = 0 to n = | states will be given by 

Ex f vaso dx (A6.36) 

The integral is just our definition of the transition dipole moment Mp, in Equation (6.4) of 

the main text. 

As a simplification, we can imagine the molecular dipole is due to charges located on 

the atom centres. The two atoms have different electronegativities, so this molecule will 

have a charge separation with F and H carrying equal and opposite charges, F (5~) and H 

(5+). Such a separation of charge gives rise to a dipole moment, which is the product of 

the charge and the distance between the charge centres. 

The bond length extension is distributed according to the harmonic oscillator wavefunc- 

tions, and so jz, in Equation (A6.36) is itself a function of x. If we take the dipole moment 

of the molecule at its equilibrium bond length as jp and the extension of the bond as x, 

then we can write the dipole moment at any extension as 

du, 1 dy, 2? 
= : = eae A6.37 [Lx wot (Slat 5 (GE) ( ) 
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For small extensions the first two terms in this series will be all we need to worry about, 

so that the transition between states will depend on the coupling integral 

[o.@) 

Mo = if Wi c 7 () | Wo dx \ (A6.38) 

—0o 

Now, /Uo is just the permanent dipole of the molecule, which does not depend on x, and so 

can be treated here as a simple number, which means we can write 

dy, 

dx 
ean i! Vio dx + ( ) i Wixi ox (A6.39) 

We know that the vibrational state wavefunctions are orthogonal to one another, and so 

the first term is zero. This tells us that the permanent dipole moment of a molecule does 

not influence the absorption event required for IR spectroscopy. The integrand of the sec- 

ond term is plotted in Figure A6.3b; the inclusion of the operator x in this integral gives 

a function which is positive everywhere, and so the integral is nonzero. From a sym- 

metry point of view, the W function is totally symmetric, and so Y%(—x)= Yo(x). In 

contrast, y,(—x) = —w,(.x), so that in the C,., point group it has £,* symmetry (in the 

standard setting used in the character tables of Appendix 12 the molecular axis is aligned 

with Z). This is the same behaviour as the function x itself, and so the second integral in 

Equation (A6.39) has a totally symmetric integrand and so can be finite. 

A6.5 Generalization to Arbitrary Transitions 

So far, and in the main text, we have concentrated on absorption due to molecules ini- 

tially in the ground state. This will be the case for most general laboratory analysis of 

samples at low temperature for the high-frequency modes of chemical functional groups. 

This is because the spacing of the energy levels for these vibrations is sufficiently large 

compared with the thermal energy kgT (where kg is the Boltzmann constant) that only the 

ground state will be significantly populated. For lower frequency modes, such as the skele- 

tal vibrations of polyatomic molecules, it is possible to have a distribution of molecules 

in the different vibrational states to begin with. To finish this appendix we will generalize 

Equation (A6.39) to consider these cases. 

We can take the second term in Equation (A6.39) and substitute in the general solutions 

for the harmonic oscillator discussed earlier (Equation (A6.33)). For a transition between 

two arbitrary states m and n the coupling matrix term would be 

dye ; 
M nn = ae NnNn / H,,XH, exp (—ax) dx (A6.40) 

—0o 
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We have stuck with the x-direction to simplify the discussion but have dropped the 
subscript on the dipole moment, as now the molecular dipole for the polyatomic molecule 
need not be along X. There will also be transition dipole moments for y and z which should 
be taken into account in the same way. 

The Hermite polynomials have the following useful recurrence relationship: 

EG 
at = Hh + 2nH,_, (A6.41) 

This can actually be used to derive all the polynomials from Hy and H, by using the n = 
I case to derive H, and then the n = 2 case to get H; and so on. You may like to test that 
this expression holds for the polynomials in the first few wavefunctions given earlier in 
Equation (A6.34). 

In the consideration of selection rules, Equation (A6.41) allows us to transform the M,,, 
expression into integrals that only contain products of Hermite polynomials without the 
intervening x factor; that is, because 

a 

Xe eee + anH,,_, (A6.42) 

we may write 

Niner = NnNn i lal. (SH =F anH,.) exp (=o) dx (A6.43) 

—oo 

Now, we have seen that the wavefunctions form an orthonormal set, and so this integral 

can only be nonzero if 

i = se Jl (A6.44) 

This is an additional selection rule for allowed transitions in an IR absorption event; the 

vibrational quantum number can only change by +1. It should be remembered that this 

selection rule is based on the properties of the Hermite polynomials, which are only part 

of the wavefunctions under the harmonic approximation. 

A6.6 Summary of Selection Rules 

Equation (A6.44) will also apply to the particular case of transitions from the ground 

state, and so together with Equation (A6.39) forms the basis of the selection rules for IR 

absorptions within the harmonic oscillator approximation. In general, we can now say that 

an IR absorption will be observed if: 

1. The photon energy matches the spacing between harmonic oscillator energy levels, i.e. 

the photon frequency equals the classical frequency of vibration. This gives a transition 

involving only a unit change of quantum number: m =n + 1. 
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2. The dipole moment of the molecule changes during the course of a transition between 

the states in such a way that its derivative with respect to the atomic displacements is 

not zero. 

3. The excited vibrational state has the same symmetry as x, y or z in the molecular point 

group. 

Further Reading 

The mathematics of the IR selection rules and the use of the time-dependent Schrédinger 

equation to discuss the actual transition event between the stationary states is covered in: 
McQuarrie DA (2008) Quantum Chemistry, 2nd edn. University Science Books, Sausalito, CA 

((SBN-978-1-891380-50-4). SOS 
The standard properties of a whole host of mathematical functions, such as the Hermite 

polynomials, are covered in: 
[-4¢- Abramowitz M, Stegun IA (eds) (1970) Handbook of Mathematical Functions, Dover (ISBN 0-486- 

61272-4). 



Appendix 7 

The Franck—Condon Principle 

We have seen how Raman spectra depend on an initial electronic excitation followed by 

re-emission at a shifted frequency. In the main text this is explained with the aid of a 

diagram (Figure 6.9) showing how each electronic level of a molecule can be thought of 

as having a subset of vibrational energy levels. The Franck—Condon principle says that the 

electronic excitation will be vertical in such a diagram because the nuclei respond to the 

change of electronic structure on a much longer timescale than the electronic transition 

itself. In this appendix we will look at this in more detail and show how the vibrational 

states of the molecule enter into the integral controlling the electronic transition, making 

the electronically excited state likely to be also vibrationally excited. 

In our treatment of IR selection rules (Appendix 6) we have written wavefunctions 

for the harmonic oscillator without reference to the electronic state of the molecule. In 

fact, all the detail of the electronic states is assumed to be contained within the spring con- 

stant for the bond. To characterize the molecule fully we would need to take into account 

the nuclear and electronic coordinates when defining the potential energy. Rotational 

and translational degrees of freedom could also be included, adding more coordinates to 

describe the molecular motion of the system. However, we will only consider the internal 

structure of molecules, and so these additional factors will be left to one side. 

The wavefunction with the required information for the electronic and vibrational 

aspects of a molecule would depend on the coordinate set of the electrons r to account 

for the multi-electronic state and those of the nuclei R to account for the vibrational state. 

As a shorthand, the combined picture is referred to as a vibronic state. We use the symbol 

W to refer to states that contain information about multiple particles and write W(r, R) to 

mean that the state is a function of both electron and nuclear coordinates. 

The mass of a proton is 1836 times that of an electron, and so the electron has a much 

smaller mass than even the H atom nucleus. This difference allows the functional form 

of the total wavefunction to be simplified by treating the electronic and vibrational states 

separately. The separation of the nuclear and electronic degrees of freedom in this way is 
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known as the Born—Oppenheimer approximation and gives the following apparently trivial 

equation: 

Wr; R) = VC 7; R) nC; Y.) (A7.1) 

The semicolon here is used to separate the coordinates which enter directly into the func- 

tional form of the wavefunction from other factors on which the wavefunction depends. 

So, under the Born—Oppenheimer approximation: 

W.(7r; R) This means that the electronic part of the wavefunction is a function of 

the electronic coordinates only, but that these depend on the particular 

arrangement of the nuclei. The nuclei provide a potential in which the 

electrons move; changing the nuclei positions does change W.(r; R), but 

only through the effect of this potential on the electron coordinates. 

WC R; Y.) This means that the nuclear part of the wavefunction is a function of the 

nuclear coordinates only, but it does depend on the particular electronic 

state. On the timescale of the nuclear motion the electrons appear smeared 

out over a distribution defined by Y.. They create forces acting on the 

nuclei, e.g. controlling the value of the spring constant in the harmonic 

oscillator formulae. However, these are effectively averaged over the elec- 

tronic wavefunction, and so the electron coordinates do not explicitly 

appear. A change in the electronic state will influence Vy( R; Y.) through 

a change of these averaged effects. 

For electronic excitations, Equation (A7.1) is extremely useful. Consider the sort of 

excitation shown in Figure 6.7: 

Weo( 1; R) Uno( R; Yeo) > Wer(775 R) Urn Rs Ver) (A7.2) 

That is, a molecule originally in the ground vibronic state absorbs a photon with the correct 

energy to move to the first electronic excited state with a shift in the electronic coordinates 
from r to r’. This also places the molecule in the nth vibrational state of the electronically 
excited molecule. The Franck—Condon principle appears here since we assume that the 
nuclear coordinates R remain constant during the transition. 

As we have seen, for light to be absorbed, a change in dipole moment must occur so 
that the coupling matrix element between the two states is nonzero. In this case, we must 
consider both the nuclear contributions j1y and electronic contributions i, to the transition 

dipole moment operator, so that the required matrix element is 

M00 = / wi ( re R) Prnl R; Veo) ( Ltn ai [Le) Weo( ry R) Wno( R; We) dr dr’ dR (A7.3) 

where the integration is over all space for all electron and nuclear coordinates. Keeping 
the electron and nuclear contributions to the transition dipole moment operator sepa- 
rate reminds us that jy will only operate on nuclear wavefunctions, Vy(R;W,.), and 
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jt. will only operate on electronic wavefunctions, .(1r;R). So the Born—Oppenheimer 

approximation allows Equation (A7.3) to be rearranged to give 

M,n-00 = f vac) Weo(r;R) dr dr’ [voce Wer) Un Yno( R; Yeo) dR 

oF / Wan Rs Yer) Uro( Ri Yeo) dR i! MW (7S R) iteVo( FR) dr dr’ ~~ (ATA) 

The first term here contains an integral over the ground and excited electronic states. But 

we see in Chapter 7 that these will always be orthogonal to one another, so the first term is 

simply zero, leaving 

M00 = fo Wer) Uno R; Wo) dR [conn He Veo( r; R) dr dr’ (A7.5) 

This expression contains the transition dipole moment for the electronic states (the second 

integral) and symmetry rules will apply to this in the same way as we have seen for the 

vibrational states in the main text and in Appendix 6. That is, to be nonzero, the electronic 

transition must be such that the integrand has A; symmetry. How this comes about for 

electronic transitions we will not cover here. 

Figure A7.1_ The overlap integral for the ground-state vibration with the n = 2 vibration in 

the electronically excited state. The displacement to the right of the Morse curve in the excited 

state makes the overlap with the excited vibrational states larger than that for the ground state, 

and so the transitions to vibrationally excited states are more likely. 
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Interestingly, the vibrational states still affect the electronic transition. The integral over 

the nth vibrational state of the electronically excited molecule with the ground-state vibra- 

tion appears as the first integral in Equation (A7.5). This is the overlap between the ground 

state and excited vibrational wavefunctions illustrated in Figure A7.1. 

In Appendix 6 we show that the vibrational states are orthogonal to one another for a 

given bond potential. Figure A7.1 shows that the integral in Equation (A7.5) is slightly 

different: the ground-state vibration is in the potential from the electronic ground state 

and the vibrationally excited state is in the potential of the excited electronic state. In the 

electronically excited state the minimum of the potential has shifted to longer bond lengths 

and the spring constant will also have changed. The two sets of vibrational states are not 

orthogonal to one another, and so the first integral in Equation (A7.5) can have a nonzero 

value. 

Within the harmonic approximation, the Hermite polynomial factors in the vibrational 

wavefunctions (Equation (A6.33) and Figure A6.2) lead to a peak at the potential mini- 

mum for the ground-state vibration and near the maximum bond compression/extension 

for states with higher n values. These peak patterns, together with the shift in the bond 

potentials shown in Figure A7.1, make the overlap integral between the ground state 

vibration, Yxyo( R; W.o), and excited-state vibrations such as Vy,(R; W.,) greater than that 

with Wyo( R; Y.,). This makes it more likely that an electronic transition will result in a 

vibrationally excited molecule. 

In Figure A7.1, and throughout this text, we have retained the harmonic approximation 

to the bond potential even though we have drawn these as Morse curves. Wavefunctions 

taking into account the shape of the Morse potential can also be obtained, and the general 

conclusion that a vibrationally excited molecule is likely to be generated is still valid. 
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Classical Treatment of 
Stokes/Anti-Stokes Absorption 

The classical picture of the absorption of light of UV-visible frequencies is illustrated in 

the main text (Figure 6.12) using the polarization of a molecule of urea by the electric 

field of a light wave as an example. In this appendix we develop the mathematics that 

describe the response of the molecule to the light wave and show that the Stokes and anti- 

Stokes lines observed experimentally in Raman spectra follow from the modulation of the 

molecular polarizability by its vibrational motion. 

Any external electric field E will produce a change in the electric dipole of a molecule 

due to the rearrangement of the electron density in response to the field. We will begin by 

considering the electric field to be a simple scalar quantity; this is generalized to an electric 

field vector in the main text. In this simplified model, the induced dipole jung is propor- 

tional to the electric field and the proportionality constant is the molecular polarizability 

a, so that 

Hing = HE (A8.1) 

The electric field of a light wave will be oscillating at the frequency v of the radiation with 

amplitude Ep, so that 

E = E,cos(27 vt) (A8.2) 

where f¢ is time measured from a positive maximum in the field. Equations (A8.1) and 

(A8.2) say that the induced dipole moment varies as 

Hina = ak cos(27t vt) (A8.3) 

This just means that electron density of the molecule is forced to oscillate at the frequency 

of the incident light. 
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Molecular polarizability depends on the geometry and atom types that make up the 

molecule. So, the polarizability itself will be time dependent, changing as the molecule 

vibrates. If the molecule has a mode with frequency vo, then the polarizability will 

change as 
a = aj+(Aa) cos(27 vot) (A8.4) 

where Aq is the maximum deviation of the polarizability. 

The combined result of the vibration and field oscillation is given by substituting from 

Equation (A8.4) into Equation (A8.3) to give 

[Lina =[Oo+(Aq) cos(27 vot) ] [ Eo cos(27 vt)] (A8.5) 

To interpret this formula we can make use of an identity from standard trigonometry: 

1 
cosA cos B = Ae’: + B)+cos(A — B)] 

which allows Equation (A8.5) to be written thus: 

Aa 
Ling = AE cos(27 vt) | 2m(v + vo) t] +cos[ 27(v — vo) t]} (A8.6) 

So the induced dipole oscillates at a combination of the exciting frequency and the exciting 

frequency plus/minus the vibrational frequency of the molecule. 

In a classical model, any oscillating dipole emits radiation, and this is the source of the 

scattered light. Scattering at the incident frequency v is referred to as Rayleigh scattering, 

scattering at a lower frequency, v — vo, is called Stokes radiation and scattering at a higher 

frequency, v + vo, is called anti-Stokes radiation. 

Equation (A8.6) shows that the Stokes/anti-Stokes lines depend on the change of molec- 

ular polarizability Aw for the vibrational modes of the molecule. This allows us to develop 

the selection rules for Raman spectroscopy in Section 6.2.4. 

In the main text we arrive at the same conclusion regarding the possible frequency 

shifts based on a qualitative discussion of vibronic states. The complete quantum model of 

Raman spectroscopy also has to take into account the change of polarizability accompany- 

ing the transition between stationary vibrational states, which leads to the coupling factor 

in Equation (6.15). 



Appendix 9 

The Atomic Orbitals of Hydrogen 

The discussion of chemical bonding in the main text depends on the description of molec- 
ular orbitals as linear combinations of atomic orbitals. In this appendix we show how 
solutions of the Schrédinger equation for H-like atoms give us the atomic orbitals that are 
used as the building blocks in this approach. We will also take the opportunity to cover 
some basic ideas in quantum mechanics. 

By ‘H-like’ we mean that a solitary electron moves in the field of a positively charged 
nucleus. This avoids the complication of considering electron—electron interactions. For a 
qualitative insight into chemical bonding, these can be reintroduced later. 

To calculate wavefunctions for any stationary state of an H-like atom we would like 

solutions to the Schrédinger equation: 

i 
am, Y Xe + Xe = Foxe (A9.1) 

where fi is the Planck constant divided by 27, m, the electron mass and x, the wavefunc- 

tion for an electron experiencing the potential V with total energy E,; p is just an index to 

allow us to tell the many possible solutions apart from one another. As we go through out- 

lining the solution of Equation (A9.1) we will replace p with the quantum numbers for the 

atomic orbitals. In this appendix we will assume that the nuclear mass is so much greater 

than the electron mass that it can be treated as a stationary point around which the electron 

moves. The effects of removing this assumption and introducing the reduced mass of the 

system are very minor. 

Equation (A9.1) assumes nothing about the units of the quantities used. If we switch 

to atomic units (au) then the manipulation and solution of this formula becomes clearer 

because we remove the clutter of the physical constants. In au h = 1, m, = | and the elec- 

tron charge e = 1, 1.e. these quantities are used to define the units of angular momentum, 

mass and charge respectively. These units are actually derived from the solution of the H 
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atom problem, and so the unit of length is the bohr (0.529 177 A), which, as we will see, 

turns out to be the most probable distance between electron and proton in the H 1s orbital. 

The Schrédinger equation in au is written thus: 

Las 
=a Me + VX, = E,Xp \ (A9.2) 

The left-hand side of Equation (A9.2) should be thought of as a mathematical operator 

acting on the wavefunction to give the kinetic energy (first term) and potential energy 

(second term) for the wavefunction. The equation itself just states that these contributions 

must sum to the total state energy. 

The first term in Equation (A9.2) is the kinetic energy operator, which contains 

the Laplacian V* (‘del squared’). This is the three-dimensional equivalent to the one- 

dimensional kinetic energy operator we met for the harmonic oscillator in Appendix 6. 

In Cartesian coordinates, the Laplacian operator is defined as 

02 02 02 

We A9.3 
Ox? as dy? ‘i 02 ( ) 

i.e. the sum of the second derivatives with respect to the each of the components of the 

coordinate system. 
The second term in Equation (A9.2) is the potential energy operator acting on the wave- 

function. This will depend on the system under consideration. For the atomic orbitals of 

H it is the Coulomb interaction between the electron and the nucleus. The dimensions of 

the nucleus are much smaller than the atom itself, and so we can treat it as a point and it is 

convenient to place it at the origin of coordinates. The potential energy of an electron at r 

is then simply 

Left : 
V=-—-— with r= J/r’4+y427 (A9.4) 

r 

where, again, the use of atomic units gives a particularly simple form. The potential 

depends only on the effective charge on the nucleus Z.4 and the electron’s distance from 

the nucleus. For H itself Z.4 = 1, the proton charge, but for heavier atoms the electron 

sees the potential of the nucleus and the other electrons. Some idea of the effect of elec- 

trons that are closer to the nucleus than the one under consideration can be obtained by 

assuming that the effective potential is lower than that of the bare nucleus. For example, 

the Is electrons in an Li atom are closer to the nucleus than the 2s electron. The 2s electron 

experiences the attraction of the nucleus and the repulsion of the Is electrons and so ‘sees’ 

Lig 

The wavefunctions for the one-electron states of an H-like atom is a problem that is 

soluble analytically. We will not go all the way through the solution here, but we will 

examine the results that are available from other texts and show that they comply with the 

Schrodinger equation. We can then relate the solutions to the standard orbitals in common 

usage, such as 1s, 2s, 2p,, 2p,, 2p,, 3d,, 3d,,, etc. 
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A9.1 Choice of Coordinate System 

From Equation (A9.4) we see that the electron potential energy will have the same value 
at any point a distance r from the nucleus, i.e. any point on the surface of a sphere of 
radius r, Equation (A9.4) also shows that, in Cartesian coordinates, r actually depends on 
all three components of the axis system, which makes the direct solution of the Schrodinger 
equation quite difficult. However, if we transform to the spherical polar coordinate system 
illustrated in Figure A9.1, then the distance from the origin r becomes a single coordinate. 
In our problem, the potential energy of the electron is then a much simpler function than 
in the Cartesian case. 

Figure A9.1_ The spherical polar coordinate system. Any point P is defined by its distance 
from the origin r, the rotation angle @ away from the X-axis and the rotation angle @ away from 
the Z-axis. 

In spherical polar coordinates the r-coordinate of any point in space, such as P in 

Figure A9.1, sets the radius of the sphere on which the point lies. Pinning down the point 

to a particular location on the surface of this sphere is akin to finding a location on the sur- 

face of any globe, such as the surface of the Earth. Accordingly, the other two coordinates 

are angles which define the point’s longitude ¢ and latitude 6, although ‘latitude’ in the 

coordinate system is measured from the pole rather than the equator. 

The Laplacian operator in spherical polar coordinates becomes 

any de 1 9 a 1 & yal cde ( oe a nik Oa ai (ig) a=) ea A9.5 P ar (" a * 7 sin(6) 00 (sin a 2 sin’( 0) ag? ate 

To make the manipulation of equations involving the Laplacian easier, we will define more 

compact operators which contain differentials with respect to radial and angular degrees 

of freedom: 

(A9.6) 
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Direct comparison of Equations (A9.5) and (A9.6) gives the functional forms of the new 

operators; subscripts have been included to show which variables they included. 

A9.2 Separation of Variables \ 

The spherical polar expression for the Laplacian operator appears much more foreboding 

than the Cartesian coordinate version. However, this is not really the case, since now the 

Schrodinger equation can be split into radial and angular equations that can be solved 

separately. To see this, we first write the wavefunction as a product of a function that only 

depends on r and a function that only depends on the angles 6 and ¢: 

Xp(7, 8,6) = R,(7) ¥,(4, #) (A9.7) 

The first function, R,(r), will control the behaviour of the function on any line moving 

directly away from the nuclear centre, while the second gives the angular behaviour as we 

move around the nucleus. The Schrédinger equation for the H atom problem can now be 

written: 
1 Be gil 
—V?R, — 2Vr + 2E,1r + —A;,Y, = 0 (A9.8) 
R, : Y, 

This formula is derived by substituting from Equation (A9.7) into Equation (A9.2) with 

the Laplacian in spherical polar form (Equation (A9.6)). The energy term is moved to 

the left and the whole equation multiplied through by —2 and by 7°; this removes the 

r dependence in the angular part of the Laplacian operator. Finally, dividing through by 

R,Y, gives some terms that depend only on r and some that depend only on the angles @ 

and @. In Equation (A9.8), like terms have then been gathered together. The potential is 

only a function of r, as we saw in Equation (A9.4), and the total energy E, appears with 

the radial part of the equation because of our multiplication through by 7°. 

Notice that in the first set of terms the angular function has been cancelled when we 

divide by R,Y, but the radial function survived. This is because the angular function is not 
affected by the radial operators and so can be written to the left of them and cancelled. The 

radial function cannot be moved so easily, because it will be affected by the differential 

operators in the first term. A similar rearrangement has been used to cancel R, from the 

angular term. 

Equation (A9.8) has to be true at all points in space, meaning every set of values of r, 

0 and ¢. Imagine taking the value of the radial and angular parts at one particular set of 

coordinates and then just altering r while leaving 0 and ¢ alone. The value of the angular 

term in Equation (A9.8) would remain unchanged; so, if the value of the radial term were 

to alter, the equation would be violated. The only way to always keep the balance between 

the terms is if they always have equal and opposite constant values. 

So, Equation (A9.8) can be separated into a radial equation 

| 5 2) £} Bo VeRp = Vr? + 2B? = 10+ 1) 7) 
pl 
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and an angular equation 

lies 
—A2Y, =—I(1+ 1) (A9.10) 
ie 

We have chosen to write the constant that ensures Equation (A9.8) is obeyed as U(/ + 1), 

because this preempts the solution of the angular equation in which / will be shown to be 

the angular momentum quantum number. The solutions to Equations (A9.9) and (A9.10) 

will depend on the particular value of /, and so this has been added as a subscript to the R,, 

and Y,, functions. These two equations can now be solved separately. 

A9.3. The Angular Equation 

The angular equation can be rearranged to give a form that looks very like a Schrédinger 

equation with only a kinetic term: 

—A2,Y, =10+1) ¥, (A9.11) 

This is understandable; if we sit at a fixed radius and just vary the angular degrees of 

freedom, then the potential will be constant. The kinetic energy in this case is to do with 

the electron motion around the nucleus. 

The angular equation can be further subdivided into two differential equations, one 

involving only 6 and one for ¢, by writing 

Ye = OF, 0) ®,,( p) (A9.12) 

Writing out A; » explicitly, we obtain 

dO lp 1 ao, 

00 
) (1+ 1)sin°(@) b, og? ( ) oe sin( @) e (sin 0) 

Oo; 00 

from Equation (A9.11). Again, this equation can only work if the terms involving only 6 

give a simple constant which is equal and opposite to a constant from terms depending 

on ¢ alone. This constant is usually written as m;, which will define the second quantum 

number for the angular functions. 

Setting the term in Equation (A9.13) involving ¢ to —m; and those depending on @ to 

m,, after some rearrangement, the two differential equations are 

ID, 

Op? 
+ mo =0 (A9.14) 

and 

a Ray Glin bokeh) 2 m, sa Nd pera a yg gp ee eae We ear (A9.15) 
sind 00 (sin 00 )+ E Mean oe 
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The angular functions have to conform to boundary conditions; if we go right round the 

atom and return to the same point, then we must find the same value for the function. This 

means that 

Om (9 + 27) = Om (9) and Pp Cb + 27) = PnP) (A9.16) 

In Section A9.11 we show that Equation (A9.14) for ®,,, is related to an equation used 

by Euler to demonstrate the relationship 

exp( im) = cos( mq) +1 sin(m¢) (A9.17) 

in which i = /—1; so these solutions are expressed as functions containing imaginary 

numbers. The solutions have the required periodic nature, since both cosine and sine repeat 

once every 27 radians. The real (nonimaginary) parts are plotted out in Figure A9.2 for 

some choices of m,. For m,; = 1, 2, 3 we see that tracing the wavefunction around the 

nucleus gives a continuos wave. However, if we take a value that is a noninteger, such 

as the example of 1.5 in Figure A9.2d, then the wavefunction must break somewhere. 

A discontinuous function of this type cannot be a stationary solution of the Schrédinger 

equation and will not be seen in atomic orbitals. So Equation (A9.17) provides a solution 

for ®,,,() provided m, is an integer. Not shown in Figure A9.2 is the m,; = O solution, as 

this is just a constant, giving the same value for any position around the equatorial ring 

used in the figure. 

‘my; =1.5 

Figure A9.2_ Example real components of the solutions for the ®,,,(@) part of the angular 
equation. (a)—(c) Continuous solutions for m; = 1, 2 and 3. (d) A discontinuous function is 
found for a noninteger value of m). In each case the function is plotted around an equatorial 
ring with the value indicated as a Z-displacement. 
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As we have seen before, the quantization of the solution comes about when we impose 
the boundary conditions; because the electron is confined to move around the nucleus, it 
can only occupy particular states: those with an integer m, quantum number. 

Equation (A9.17) provides the functional form for ®,,,(@), but we usually work with 
normalized wavefunctions. Since the overall wavefunction is a product of angular and 
radial functions, normalizing each term individually will ensure a normalized function 
when they are brought together. 

We can obtain the normalization factor N» for ®,,,(@) from the integral 

16 

[ove de = N; / exp( —imP) exp(im@) dd = | (A9.18) 

Tt = 

where the limits are chosen to give a complete revolution around the Z-axis. This is a 
straightforward integral to do because the product of exponentials must give 1 for any 
value of m,. So we have 

51g 

N; | a6 =1 whichgives N, = —— A9.19 

=It 

The normalized solution can then be written as 

®,,, = exp( im) (A9.20) 

The direct solution of Equation (A9.15), for ©,,,,(), is much more involved and we leave 

that to texts dedicated to quantum mechanics, some of which are referenced in the Further 

Reading section of this appendix. The normalized solutions are 

, 2b MN ICL = [rr | lah 
Or, (9) = (FS i resent (cos 0) (A9.21) 

Here, pm are the associated Legendre polynomials, which can be obtained from the 

sources in the Further Reading section of this appendix. We go this far to note that ©,,,, 

is only defined for / being an integer and |m,| < /, since, while 0! is taken to be 1, the 

factorial of a negative number is not defined. 

The combination of ©,,, and ®,,, to give the angular part of the wavefunction defines 

the spherical harmonic functions, Yin, = ©im,®,,, Which are the solutions to the full angu- 

lar equation. The first six spherical harmonics are sufficient for us to develop H atom 

wavefunctions up to d-orbitals, and these are listed in Table A9.1 along with the real 

combinations that are in common usage, which are described later. Notice that all these 

functions conform to both of the angular boundary conditions given in Equation (A9.16), 

and so the spherical harmonics give continuous functions in 6 and @. 

A general property of the spherical harmonic functions is that 

=e 1G = (1 == 1) Von, 
(A9.22) 
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This property is consistent with the solution of the angular part of the Schrédinger equa- 

tion, since using the operator on the function gives back the same function multiplied by a 

number. The number in this case is always /(/ + 1), and this is the reason that the separation 

constant used to split the complete H atom Schrédinger equation into radial and angular 

parts takes this value. 

As an example demonstration that spherical harmonics are working solutions of the 

angular part of the Schrédinger equation, we will substitute Y,_, back into the angular 

equation, Equation (A9.11), and show that Equation (A9.22) is valid in this case. Using 

the function from Table A9.1, the left-hand side of Equation (A9.12) becomes 

: Se eB 
—AogVi-1 = —AAZ, sin(@) exp(—id) with A= 5 (=) (A9.23) 

Lumping together a group of constants into the factor A greatly simplifies the ensu- 

ing algebra, and we will keep redefining an ‘A’ factor for each problem tackled in this 

appendix. 

The operator A; » contains seperate differential operators for 6 and ¢ (see Equa- 

tions (A9.5) and (A9.6)). For the @ operator part, the exp( —i@) function can be written 

to the left of the operator to show it is not affected by differentiation with respect to 6. 

Concentrating on the @ operator part of Aj oX1-1, we then have 

1 r) ) 1 0 = ae: eee ; = ag: peas P 
exp( —id) Ec 50 (sin 0) =) | sin( 6) = exp( —i¢) ——— —(sin(@) cos(@) ) 

sin(@) 00 

(A9.24) 

- 1 2 Die Ph x _- 1 2 5D 4 

= €xp(—1¢) mc ae (6) —sin’(@) ) = exp( —i@) sn(6)< 1 —2sin(@)) 

where the differentiation of a product and the trigonometric identity cos?(6) + sin’(@) = 1, 

discussed in Section A9.11, have been used. 

For the ¢@ operator part of Ne Giese sin(@) can be written to the left of the operator so 

that 

sin(@) @? oes se eh aay _ exp(—ig) Rone 

(se aga Jeni) = (spas )om ae ne) Oe) 

where the last step makes use of i* = —1. 

We can now use these results (Equations (A9.24) and (A9.25)) in Equation (A9.23): 

sin(6)° ee ee ~ sin( 6) 

= 2A sin( @) exp( —i¢) 

—AjgYi-1 = —A exp( —i¢) 

= 2Y, 1 (A9.26) 
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We chose a spherical harmonic function with / = 1, which gives ((/ + 1) = 2, so 

Equation (A9.22) has been validated. 

It is a useful excercise to demonstrate that a few of the other spherical harmonics listed 

in Table A9.1 also conform to Equation (A9.22). 

A9.4 Physical Interpretation of the Angular Equation Solutions 

Concentrating on the mathematical solutions of the Schrddinger equation, we can easily 

lose touch with the physical problem that is being considered. We will now recap the 

classical picture of the electron motion in an orbit around the nucleus so that we can try 

to relate the solutions found for the angular equation to this more tangible model. This 

will also allow the differences between the classical and quantum pictures of matter at the 

atomic scale to be highlighted. 

In the classical H-like atom the electron is bound by its electrostatic attraction to the 

positively charged nucleus. The potential energy of the electron at a distance r from the 

nucleus was quoted in atomic units in Equation (A9.4); in SI units we would have 

Zee 
Y= ———_ (A9.27) 

Am €or 

where €p is the permitivity of free space. The force acting due to this potential is given by 

the negative of the potential gradient: 

(A9.28) 

This force acts along the radial vector, and the minus sign tells us that the attractive 
Coulomb force acts to try to reduce r. The potential energy and force are plotted as a 
function of r in Figure A9.3, which shows that both energy and force become increasingly 
negative as r decreases. 

Figure A9.3_ The Coulomb potential V and radial force F, as a function of the electron— 
nuclear separation r. 

Figure A9.4a illustrates the classical mechanics model of an electron circling a fixed, 
positively charged nucleus. The electron moving on an orbit around the nucleus has a 
velocity which continually changes direction but not magnitude. A changing velocity 
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Figure A9.4_ (a) The classical picture of an electron moving around a nucleus showing the 
relationship between the changing velocity 5v and angular displacement 5. (b) The linear 
momentum p and angular momentum L for the orbiting electron. 

implies acceleration, and so we will next obtain an expression for the electron acceleration 

a and use Newton’s law (F = ma) to link this to the Coulomb force. 

Figure A9.4a shows that for two points a small distance apart along the electron’s path 

the change of velocity is related to the angular displacement 5. At very small displace- 

ments the curvature of the path can be ignored, and the definition of angles in radian units 

then gives 

dv = vd (A9.29) 

If this displacement takes place in the short time 6¢, then we have the acceleration: 

dv ) d 
Z= Eee ve or taking dt > 0, a= ve (A9.30) 

Figure A9.4a also shows that this acceleration will be directed along the radius toward the 

proton, i.e. the negative r direction. Because r is our reference direction, a negative sign 

appears in Equation (A9.30). 

The differential of the angular displacement can be used to define an angular velocity: 

mee, = AOS ep ( ) 

The electron will sweep out 27 radians per revolution while it actually moves a distance 

of 27r, and so the angular velocity is related to the linear velocity via 

v=or (A9.32) 

which means , 

Fee (A9.33) 
i 

The acceleration is a response to the Coulomb force, so we can use Newton’s law to relate 

Equations (A9.28) and (A9.33): 

(A9.34) 
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The term on the right is the force along the radius that causes the electron to move around 

the orbit; this is referred to as the centripetal force. . 

Equation (A9.34) can give us the classical kinetic energy as a function of the radius of 

the orbit: 

ee ee \ (A9.35) 
2, 870 €or 

The total energy of the system is 

Znge 
poTey 2 (A9.36) 

8IEor 

So the total energy of the electron is negative, consistent with a bound state. In the classical 

model there is no quantization, and so no energy levels to describe the spectra of atomic H: 

To account for the observed spectral lines, Bohr postulated that only certain radii give rise 

to stable orbits that do not radiate electromagnetic energy. The energies of these orbitals 

can be obtained from the ionization potential and electronic spectra of H. For example, in 

Table 7.2 we give the ionization energy of H as 13.6eV. This means that the lowest lying 

orbital must have an energy of —13.6eV; Equation (A9.36) then gives a classical orbital 

radius of 0.529 A. This radius of the lowest lying H orbital is now used to define the natural 

length scale of the atomic units system: the Bohr radius. 

A9.5 Angular Momentum 

In the above discussion we introduced the idea of angular velocity as the rate of change of 

the angular coordinate ¢. To describe the rotational motion of the electron, such angular, 

rather than linear, quantities can actually be used more widely. 

Figure A9.4b shows that the electron has linear momentum p = m.v; we can also define 

an angular momentum L given by 

L=rxp_ orinFigure A9.4bas L=~rpsin (=) op (A9.37) 

Here, we have begun to write vector quantities using bold type, both linear and angular 

momentum have size and direction, and so are vectors, the magnitudes of vector quantities 

are shown in italics. In fact, the velocity, acceleration and force used in the preceding 

section are all vectors. However, since the Coulomb and centripetal forces both act along 

the radius vector, the effect of direction simply involves keeping track of the sign of the 

forces relative to the r-direction. 

In Equation (A9.37), r is the position vector for the electron and p its linear momentum 

tangential to the circle on which it moves around the nucleus; the angle between them is 

always 90° (st/2 radians), and so the sine of the angle between r and p is always unity. The 

product used to define L is a vector cross product, which says that the angular momentum 

is perpendicular to both the electron coordinate and the linear momentum of the electron. 

In this classical model, we choose the XY plane to coincide with the circle in which the 
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electron moves and then the angular momentum is aligned with Z. In the second expression 
given in Equation (A9.37) this is indicated by the z term, which is a unit vector along the 
Z-direction. 

The angular momentum is a constant of the orbital motion of the electron, whereas its 
linear momentum is constantly changing. The definitions in Equation (A9.37) recognize 
that what is constant is the magnitude of the momentum and the plane in which the electron 
moves. Hence, the angular momentum is defined as a vector perpendicular to the plane of 
motion. 

Equation (A9.32) allows the kinetic energy and magnitude of the angular momentum to 
be written in terms of the angular velocity: 

| 9 9 7 2 9) 

i 5 Mer wr asl (lL =( haar) (A9.38) 

These equations include the distance r of the electron from the nucleus, because, for the 

same angular velocity, an electron placed further from the nucleus would be moving faster. 

The quantity m,r° is the moment of inertia / of the electron, which plays much the same 

role in angular motion as does mass in linear problems. So we can convert these equations 

to read 

lee A ‘ 
T= slo and LV? =(Iow)* or LV? =2IT (A9.39) 

Angular momentum is a conserved quantity in both classical and quantum mechanics. 

In classical mechanics, this means that the angular momentum of a system will remain 

unchanged indefinitely unless acted upon by an external force (or strictly a torque for 

angular motion). 

In the quantum picture, the angular wavefunction will be a stationary state as defined by 

the quantum numbers / and m,. Angular momentum can still be defined, but we need an 

appropriate operator to obtain its value. The angular kinetic energy operator is defined by 

using the angular part of the Laplacian from Equation (A9.6) in the kinetic energy operator 

from Equation (A9.1): 

: le 
Vag Vins, = Fm, pa too tim (A9.40) 

where a ‘hat’ over a symbol is used to distinguish an operator from a number when the 

same symbol is used. We have also reverted to the Schrédinger equation with explicit 

constants for comparison with our classical model. 

The denominator of Equation (A9.40) contains the definition for the moment of inertia. 

Using this and the result from Equation (A9.22) for — A; grim we have 

2 se h 
To6Y im = ar l ar 1) Vie (A9.41) 
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By analogy with the classical analysis result, Equation (A9.39), we can also obtain an 

operator for the square of magnitude of the angular momentum: 

PY 9, = WT Vin = TOL 421) Yio and ie ie (A9.42) 

So the magnitude of the angular momentum is quantized and set by the quantum number /. 

This result also confirms that the natural unit for angular momentum is the Planck constant 

over 21. 

In the spherical polar coordinate system the angle @ sets the position away from the 

X-axis measured parallel to theXY plane (Figure A9.1). The normal to this plane is clearly 

the Z-axis. So the @ angle can be used to describe that part of the rotation which is about 

the Z-axis, i.e. the Z-component of the angular momentum L,. The angular wavefunction 

must also obey the differential equation 

ae) 
ee Im = LN ieg (A9.43) 

The left-hand side is the operator for the L, component of the angular momentum acting 

on the spherical harmonic function (see Further Reading section of this appendix). We can 

apply this operator to the general form of the spherical harmonic solutions: 

@ a . ) 
1 SEE exp( 1m?) Lee exp( 11,0) MY im, ( ) 

so that 

i= tik (A9.45) 

In the quantum description we have found the magnitude of the angular momentum and 
its Z-component. This gives a set of planes on which the electron can be thought to move, 
as illustrated in Figure A9.5a. The direction of the angular momentum can never be pinned 
down precisely; this is one manifestation of the uncertainty principle. The relationship 

Figure A9.5 (a) In quantum mechanics the angular momentum vector can be orientated 
anywhere on a cone around the Z-axis, so that the plane in which the electron moves is 
not fixed. (b) The magnitude of the angular momentum is controlled by the quantum num- 
ber I, while the magnetic quantum number m; determines the Z-component of the angular 
momentum. 
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between the / and m, quantum numbers is now seen to be a consequence of the vector nature 
of the angular momentum, as shown in Figure A9.5b. Because / defines the magnitude 
of the vector it must always be zero or a positive integer; m, controls the Z-component, 
which can be negative, but can never exceed the magnitude of the vector itself, so that 
—l<m, <l. 

A9.6 The Radial Equation 

To complete the solution of the Schrédinger equation we return to the radial equation in 
atomic units, Equation (A9.9), which can be rearranged to give 

pews i+ 1) -Z, 
ye |= ha ER (A9.46) 

2r2 2r r 

Here, we have introduced the final quantum number we need for this three-dimensional 

problem. This is the principal quantum number and is usually written as n. In this form 

we have what looks like a normal Schrédinger equation: the first term on the left being the 

radial part of the kinetic energy operator (see Equations (A9.6) and (A9.2)), the term in 

brackets a potential energy operator and on the right-hand side we have the state energy 

multiplying the wavefunction R,,. 

The potential includes the Coulomb interaction, which has been written explicitly in 

terms of the effective nuclear charge. But it also includes a term that depends on the angular 

quantum number /. This tells us that the effective potential in which the electron moves 

depends on the magnitude of its angular momentum. This observation is analogous to the 

centrifugal effect experienced by a macroscopic rotating body. 

In the classical description we showed how the centripetal force is generated by the 

Coulomb interaction and keeps the electron on its orbit. If we could instantaneously 

remove the electron—nuclear attraction the electron would continue along the tangential 

direction, flying away from the nucleus. This means that the electron motion is continu- 

ally acting to separate the particles but this is counteracted by the nuclear attraction. This 

aspect of the angular momentum is often called the centrifugal effect. 

In the quantum mechanics model, if the electron has angular momentum (/ 4 0), then 

the additional potential represents the centrifugal effect and becomes increasingly positive 

as the electron approaches the nucleus. At very short separations it overrides the attractive 

Coulomb potential, and so the wavefunction for the electron tends to zero as it approaches 

the nucleus. 

If an electron has no angular momentum (/ = 0) then only the Coloumb potential oper- 

ates and we see a finite value for the wavefunction at the nucleus (see Figure 7.11 in the 

main text). The idea of a stationary state for an electron that has no angular momentum is 

a purely quantum effect. In the classical picture, it is the angular momentum that prevents 

the electron being pulled into the nucleus. In the quantum picture, zero angular momen- 

tum is possible because the uncertainty principle will prevent the coordinate of the electron 

being fixed at that of the nucleus. After establishing the radial part of the wavefunction we 

will return to this point to show that, although the wavefunction is positive, the probability 

of the electron visiting the nucleus is still zero. 
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The general solution of the radial equation is not straightforward. We are interested in 

solutions for which the electron is in a stationary state bound to the nucleus. This gives 

a boundary condition that R,,(r)— 0 at large r values. The set of functions that satisfy 

Equation (A9.46) is then a product of an associated Laguerre polynomial, L*!( pr), and a 

decaying exponential that ensures this boundary condition is met: 
\ 
‘ 

Tae (atl la p OYE 
= ae ‘3 —-— th = — 

Rul 1) /( Fe ) [| 2161 pr) exp ( 5) with p ai 

(A9.47) 

From this general expression the factorial terms tell us that n must be a positive integer 

and that / < n — 1. nis the principal quantum number, which determines which electronic 

shell the orbital belongs to. 

The first few radial functions are listed in Table A9.2; for completeness, the length scale 

is shown in these functions by including the Bohr radius dp explicitly. 

Table A9.2. The solutions for the radial equation, Equa- 
tion (A9.7), for principle quantum number n from 1 to 3. Note: 
Zea is the effective nuclear charge, ao is the Bohr radius (0.529 

177 A), ris the radial coordinate, and p =( 2Z.#/Nnao). 

9 

To test out these solutions we will substitute some examples back into Equation (A9.46), 

remembering that this equation is in atomic units and so takes ap = 1. 

To obtain the kinetic energy term for Ry we will need 

2 a) > ) p 
VRo=A— | —5r) 
ee, or (: =) exp ( 5 
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oes - (-& + 2r) exp (57) 

por 

= (- - or) Ri (A9.48) 

where A = 2( Zei¢/do)*/*. Equation (A9.46) for this function now becomes 

po RY Loe 
(- Tava = ) Rio = EeRio (A9.49) 

Substituting back for p from the formula in Table A9.2, we find that the r dependence of 
the left-hand side is removed and it becomes a simple number. This can then be equated to 
the state energy, in atomic units: 

Why 

us (A9.50) E\y = — 5) 

So, for the H atom case (Z.4 = 1) the energy of the lowest lying orbital is half the 

potential energy at the Bohr radius, as found for the classical atom (Equation (A9.36)). 

A full comparison of the classical and quantum models required an estimate of the Bohr 

radius based on the quantum results, which gives the Z;,, term in Equation (A9.50). We 

will see how to obtain these estimates in the next section. 

Following the same procedure for the general R,, function, the energy of an H-like atom 

state with quantum numbers n and / is given by 

ip ; Zamee | 
E,, = — Seo ASPET STR ELVIS RS PY mat ee (A9.51) 

rie 8321785 n* 

Equation (A9.51) is able to account for the observed series of atomic spectral lines for 

atomic H. For the H atomic orbitals we have shown that the energy is independent of /. 

However, for atoms with more electrons, shielding of the nucleus is important. To a first 

approximation this can be introduced by changing Z.4, and we see in the main text that 

different values are appropriate for orbitals with the same principal quantum number but 

differing in /. This gives rise to different energies for atomic ns and np orbitals and explains 

how the energy difference between these varies across the periodic table. 

A9.7 The Complete Atomic Orbitals 

We now have all three quantum numbers for defining atomic orbitals: the principal quan- 

tum number n, the angular momentum quantum number / and the magnetic quantum 

number m,. We have also seen how the possible values of the quantum numbers are interre- 

lated. These are summarized in Table A9.3, which also covers the common nomenclature 

for atomic orbitals. This gives the principal quantum number followed by a letter indicat- 

ing the angular momentum quantum number, with s, p, d, ... referring to/ = 0, 1, 2,.... 
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Table A9.3. The quantum numbers for the first few energy levels of an H 

atom. These show how the atomic orbital shells are built according to the 

principal n, angular momentum I, and magnetic m, quantum numbers. 

n l Orbital label Values of my, No. of orbitals 

1 0 Is 0 Kh 

2 O Ds 0 1 

1 2p ve, 3 
3} O 35 0 ] 

1 3p 21,091 3 
2 3d —2, -—1,0, 1,2 5 

4 O 35 0 1 

1 3p =i 0.1 3 
2 3d —2,-1,0, 1,2 5 

3) At —3, —2, -1,0,1, 2,3 7 

For any atomic orbital quoted in this way there may be a level of degeneracy because the 

m, quantum number can have 2/ + 1 values. Since the radial equation does not contain 

m,, its value does not generally affect the orbital energy (unless the atom is in a magnetic 

field). So, orbitals occur in degenerate sets, i.e. all three 2p atomic orbitals have the same 

orbital energy F),. 

The orbital functions are formed as a product of the radial and angular solutions: 

Xnim; = Ru Vee (A9.52) 

As we have seen before, the wavefunction itself is not an experimentally observable 

quantity, but it is related to the probability of finding an electron in the orbital at a par- 

ticular point in space. The probability P, of finding the electron that is occupying a given 

wavefunction in an infinitesimal volume dt is given by 

Pe == on Xnim dt (A9.53) 

Figure A9.6 shows that a small volume element can be defined in spherical polar coor- 
dinates using small increments in the coordinates. This gives an infinitesimal volume: 

dr =r sin(6) dr dé do (A9.54) 

The probability depends on the complete wavefunction with its radial and angular parts 
combined. For example, if we wish to find the probability that the electron is at a distance 
r from the nucleus then we have to integrate over the angular degrees of freedom: 

P.(r) dr = / Hi Xin Xnim,?” Sin) dO dp ) 7 (A9.55) 
= 0 
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6r=rldrd0do 

=r? sin(0)6r605@ 

Figure A9.6 Geometry required to define a small volume element 5t in spherical polar coor- 
dinates according to the small changes 5r, 50 and 5@. The sides of the small element shown 
can be found using the definition of radians as the ratio of the arc length subtended by the 
angle and the radius. 

In effect, this proceedure sums the probability around a thin spherical shell of radius r and 

thickness 6r, as illustrated in Figure 7.12. The limits of the integrals in this equation can 

be understood with reference to Figure A9.1. The @ derivative runs from 0 to x (or 180°) 

sweeping out a half circle with its diameter on the Z-axis. Then, the @ integral covers a 

full circle from —zx to 1, ensuring that the half circle defined by 6 1s swept through a full 

sphere. 

Our atomic orbital functions are products of radial and angular terms, and so this type 

of multiple integral can be treated as a product of integrals over each of the coordinates. 

For the Is orbital, for example: 

Tt ™ 

Pioo( 1) Or = ff xiorxswr? sin(@) dé d@ | dr (A9.56) 

1a 0 

Taking the angular and radial functions from Tables A9.1 and A9.2: 

ore . ey 
Pyoo( 1) Or =A??? exp( —pr)r fap f sin (0) dd with A= Wie ( =!) (A9.57) 

0 = 
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These angular integrals are straightforward, with the integral over @ giving 27 and that 

over 6 a factor of 2. So that a factor of 417° arises in the probability function to give the 

surface area of the integration sphere and we have: 

Pioo(r) dr = 4r°A’ exp( —pr) 6r (A9.58) 

This probability is plotted as a function of r in Figure 7.11b, where we find that, although 

the wavefunction itself is finite at the nucleus (r = 0), this probability falls to zero as the 

volume available vanishes. 

The probability distribution for the 1s orbital also shows a maximum value which we 

can now determine mathematically. Taking derivatives with respect to r and remembering 

that 5r is just the shell thickness and so is constant, we obtain 

dP 00 dr = 40 A?(2r — pr’) exp( —pr) 6r (A9.59) 

So the gradient of the probability function is zero for r = 0, where we know Pioo(1r) 6 

7 = ULor 

D; DW a 
r=— forthe Isorbital p=" andso r=— (A9.60) 

p ao eff 

For H itself, Z. = 1, so we have found that the most probable distance for the electron is 

the Bohr radius that was determined from the classical approach. For heavier elements the 

value of Z. will be greater, giving a smaller radius to the 1s orbital due to the increased 

nuclear attraction felt by the electron. 

A9.8 Expectation Values 

An atomic property such as the electron position, or momentum, will vary with the elec- 

tron coordinate. In an experiment we rarely examine one atom, or if we do we observe 

it for some time. This means that experimental results are averages of the property over 

all possible electron positions according to the probability that the electron visits each 

coordinate. We now know that x, Xnim, dt is the probability of finding the electron at a 

particular coordinate, and so if we wish to find the value of a property that can be compared 

with experimental results we should integrate its value over all possible electron coordi- 

nates with this probability weighting taken into account. The resulting averaged properties 

are referred to as expectation values, as they give an estimate of the value to expect from 

experiments that average over many observations. Expectation values are written using 

angled brackets, to indicate that the average process has been carried out. 

To calculate a property we require the corresponding operator. In this appendix we have 

seen operators for kinetic and potential energy , as well as operators for the magnitude and 

Z-component of the angular momentum. 
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For example, (rio), the average radial position for an electron in an H-like atom 1s 
orbital, can be found using the simple operator r and the appropriate atomic orbital 
functions. To calculate the expectation value we would write 

™ Tt 

(T100) =f ff xcornia? sin(@) dr dé dp =a | ao f since) aa fr exp(—pr) dr 
=o 0h 0) 0 = 0 

(A9.61) 

As we saw earlier, the limits for the angular integrals give the surface of a sphere; the 
additional radial integral then ensures that we visit every point in space. Note that; although 
this integral is out to infinity; the decaying exponential in the integrand ensures a finite 
result is obtained. 

The angular integrals, again, give a factor of 41: 

co 

(ri00) = na? |r exp(—pr) dr (A9.62) 

0 

The radial integral is less straightforward, but does crop up regularly in these sorts of 

problem and can be solved by repeated application of the integration by parts method. The 

general result (for arbitrary power of r) is given in Table A9.4, which also lists the first few 

cases. Taking the value of the integral from the table: 

(Ac Lett : a 3 ag 

a ‘ p ( a ) 16225 2 Lote 

Table A9.4_ The first few integrals of the type required for the integration of 
the radial functions. The n = 0 case is straightforward and the other solutions 
are obtained by repeated application of the method of integration by parts. 
Note with the limits shown the result is |, =n/p"*". 

Solutions for integrals of the type /, = fre” dr 
0 

Application of limits 

S|- sol 

—pr 

Za, © 
yD —(2+2pr+ oe 

—pr 
€ 

—(6+6pr+3e°r + p?r) ie 

—pr 
e 

—(244+ 24or+ 12p?r + 40? + p'r) ro 
BIEL Slo yels 
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so that the average value of the radial position for the electron in the H Is orbital is actually 

one and a half times the Bohr radius. Looking again at the probability plot in Figure 7.11b 

shows that the distribution beyond ay shows a tailing toward large r; this explains why the 

average value is beyond the most probable. 

We can use the same approach to compare the average radial distance of 2s and 2p 

functions. 

For the 2s function, Tables A9.1 and A9.2 give 

p P 1 Left a 

o09 = Roo Yoo = AC2 — — th A= ——— A9.64 X200 20X00 ( pryexp ( =) Wi —=(2) ( ) 

So the expectation value for the radial coordinate of the electron in this case 1s 

TU 

(200) =a | ao [ since) <0 afr exp(—pr) dr 

0 0 

co 

mks 

ee) oo 

~4p [ exp(—pr) dr + p? | exp —pr) dr (A9.65) 

0 0 

The angular integrals are the same as before, but we now require three of the standard 

radial integrals from Table A9.4: 

6 24 120 , (48 

Remembering that p depends on the principal quantum number (see Table A9.2), and 

substituting back for A, we obtain 

ao 

Left 

(T290) = 6 (A9.67) 

So an electron in a 2s orbital is, on average, much further from the nucleus than a Is 

electron. 

For the 2p function we will take n = 2,/= 1 and m, = 1. Hence, reading the corresponding 

functions from Tables A9.1 and A9.2: 

Xo = Ro Yi; = Arexp (—£r) sin(@)exp(i@) with 

" 1 ze 3/2 3 1/2 

seals ae (A9.68) 
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The expectation for the average electron position in this orbital is then 

(To11) AL EP xgarxa? sin(@) dr dé dp 

=x 0 0 

=a [ao f sin'cay aa fr exp(—pr) dr (A9.69) 

—1 0 0 

Here, the use of the complex conjugate leads to a cancellation of the ¢-dependant complex 
exponential in the integrand. 

The integral of sin’( 6) can be carried out using the integration by parts method (see The 
Chemistry Maths Book from the Further Reading section in this appendix). 

The radial integral is one of the standard forms obtained from the general result in 

Table A9.3, and so we have 

es 7a ba 120 
ddi= 27 sin'(@) dé = 3 r exp( —pr) dr= ae (A9.70) 

p 
10 0 0 

Bringing these results together with the definition of A for this orbital, 

ao 
9. =i) (7211) Tue (A977 1) 

So, on average, electrons in both the 2s and 2p orbitals are further from the nucleus than 

the 1s orbital. In heavy atoms this means that the 1s? shell will effectively shield the n = 

2 states, making the Z.,; value smaller than the nuclear charge by almost 2. Within a shell, 

the situation for estimating shielding is more complex. Our calculations show that the 2s 

electron is, on average, further from the nucleus than the 2p. However, the radial node in 

the 2s state gives an inner peak in the probability plot of Figure 7.11b that is not seen for 

the 2p orbitals. This is close in to the nucleus and so lowers the energy of the 2s states and 

increases the shielding for the 2p, with the result that the 2s orbitals have lower energies 

than the 2p for all elements of the second row. 

A9.9 Real Combinations to Form the Familiar Atomic Orbitals 

The solutions for the angular part of the Schrédinger equation in Table A9.1 contain imagi- 

nary parts (i = /—1). Although we have shown that these cause no problems in describing 

atomic orbitals, we more often prefer to deal with real functions which can be drawn using 

the familiar pictures of p,, p, and p., etc. These are easily obtained when we notice that 

the angular solutions for m, 4 O are found in pairs, so that the m, solution is always the 

complex conjugate of that for —m, and the m, = 0 solution is always real. 
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The radial functions in Table A9.2 are already real functions and are common factors 

for the orbitals from which we will take linear combinations, and so we will concentrate 

on the spherical harmonic solutions of the angular equation in this section. 

For example, the two p-orbital angular functions 

Y,, = —Asin(@)exp(i@) and Y= A sin( 0) exp( —1) (A9.72) 

with A=(3/2x)! /2, are solutions for quantum numbers / = | and m, = +1 and —1 

respectively. 

A useful point to note is that, as well as being normalized, these functions are orthogonal 

to one another. To see this we extend the use of the ( ) expectation value brackets with no 

operator to mean the overlap between the functions: 

Tt ™ 

(Yul Yiu) = —a? f exp ~2i) ap f sin*(@) dé (A9.73) 

0 —T 

Now the integral over @ contains a nontrivial integrand. The solution of this is clearer if 

we make use of the mathematical identity in Equation (A9.17): 

1 

[ e020) dp = [ cos 2p) do -if sin(2¢) dd = 0 (A9.74) 

—T 

pe 

=TG 

These integrals are easily shown to be zero, as the limits are over a complete cycle of the 

cosine and sine functions. Straight away we have shown that 

(YulMi-1) =0 (A9.75) 

which means the functions are orthogonal. 

Any of the allowed solutions given in the first column of Table A9.1 satisfy the angular 

equation (Equation (A9.11)). This also means that any linear combination of the solutions 

will also be a valid solution. For example, taking the sum Y,; + Y\-1: 

—Ajg( Yu + Ya) = 1+ I) (Yn + Yi) (A9.76) 

is just 

—A2,¥n — AY = 1+ D Yn +14 DY (A9.77) 

So any linear combination can be split up to give matching terms on the left and right 

sides of the equation. This means we are at liberty to take combinations of the solutions 

and will look for ways to convert the imaginary solutions to real functions which do not 

have imaginary parts. 
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In this case the combinations are 

Yue = NeCVi-1 — Via) Yus =1NCY-1 + Ya) 
and (A9.78) 

= AN.2 sin(@) cos( ¢) = AN,2 sin(@) sin( d) 

where the second construction depends on the fact that i? = —1 and we have made further 

use of Equation (A9.17). The subscripts refer to /, the magnitude of m, and the type of 

linear combination used: ‘c’ signifies that cos( ¢) survives and ‘s’ that sin( @) is present. 

The imaginary functions were normalized so that the integration over all space of the 

corresponding probability gives 1, but this will not be the case for the linear combinations 

in Equation (A9.78). So we have included normalization constants NV. and N, which must 

be determined. This can be done quite neatly by making use of the orthogonality of the 

spherical harmonic functions. We require 

(YitelYirc) = 1 (A9.79) 

The left-hand side can be written in terms of the imaginary spherical harmonics: 

(te ne) = NOGY a — Ya) (Ye Ya) 
: (A9.80) 

(Voie ize Ng CV a Yew) a AY a Yan) Vr Yen) = Yaa Yaa) 

But we know that the original functions are normalized and orthogonal, so the overlap of 

like functions is one and overlap between functions is zero, so we have 

1 
2N?=1 andso N.=— (A9.81) 

Cc al, 

The same arguement can be used to show that N, takes the same value. These normalization 

constants have been included in Table A9.1. 

A9.10 Cartesian Forms of the Real Angular Functions 

Now, functions in the spherical polar coordinate system can be referenced back to the 

Cartesian coordinates via the relationships 

rsin(@)cos( @) 

rsin(@) sin( @) 

rcos(@) 

poe aye 

(A9.82) 
II (ST Sat 

II 

which can be shown from the geometry of Figure A9.1. Looking at the linear combinations 

of Equation (A9.78), conversion to Cartesian coordinates gives 

GaN x aN ae y 
Ve aay) and Ys = 26, ( ) — 
: (=) Je+y+2 - ANY [x oR yee 

(A9.83) 
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The denominator in both of these expressions is simply the distance from the origin, and 

so does not affect the angular behaviour of the functions. The first combination has an 

angular dependence which depends on the x-component of the Cartesian coordinate. This 

has its maximum value along the X-axis at a given distance from the origin. The second 

function has an orientation along the Y-axis, i.e. these are our familiar p, and p, orbitals. 

Table A9.1 also shows that the solution with / = 1 and m, = 0 is related‘directly to the p. 

orbital angular function. 

A9.11. Endnote on Imaginary Numbers 

In Appendix 6 we made a quick note that our wavefunctions may turn out to contain imag- 

inary numbers, i.e. they may contain i = /—1. For the electron wavefunction problems 

studied in this appendix, imaginary numbers become more important, and so this section 

will give a brief overview to show how they should be handled. 

The wavefunction may be imaginary, but the probability of finding the electron at a given 

location is a real number between 0 and 1. To ensure this is the case we use the complex 

conjugate in the probability definition, Equation (A9.53). For every wavefunction we can 

find a complex conjugate by simply replacing i with —1. This gives an easy route to the 

square of the magnitude of the wavefunction and demonstrates that a real value is always 

ensured: 

if x =(a+ib) then 

Ix? = x*x =(a—ib)(a+ib) ‘ age (A9.84) 
=a +b +1i(ab — ba) 

=— A? + hb 

All that is needed here is to remember that i? = —1. 

In this appendix we go a little futher and use the complex exponential in some 
of the wavefunctions. We are used to the idea that an exponential function describes 
rapidly increasing or rapidly decaying behaviour. Now we have to accept that a complex 
exponential is actually a periodic function, since it obeys the identity 

exp(id) = cos( f) +i sin( ¢) (A9.85) 

This is actually the way we identify the real and imaginary parts of the complex 
exponential. 

The usual method to explain Equation (A9.85) is to use the standard Taylor expansions 
of the three functions and show that they are equivalent to one another (see Further Reading 
section in this appendix). In this section we will just look at a few examples that confirm 
Equation (A9.85) is correct and that exp(i@) is periodic. 

First, using the complex conjugate approach to obtain the square of the magnitude of 
exp(1d) gives 
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lexp( ip)| = exp(1d) exp( —id) 

expli(d — o) | 
exp( 0) 

al 

(A9.86) 

Thinking of a number raised to a negative power as meaning ‘one over’ the same number 
raised to a positive power makes this simplification clear. Note that we have obtained a 
real number as the result again, even though the real and imaginary parts are not clearly 
laid out in exp( id). 

The same procedure for the right-hand side of Equation (A9.85) follows: 

|cos(@) +isin( @)|* =[ cos( ob) —isin( @) ] [cos(@) +i sin( ¢) ] 

cos*( $) + sin’( b) +i[ cos( p) sin( p) — sin( @) cos( b)) (A9.87) 

cos*(@) +sin’(¢) = 1 

The last step here is a trigonometric identity, which can actually be seen from the 
definitions of cosine and sine in a right-angled triangle: 

adj 

7 oO ee pp ey bal 

hyp opp 
hyp 

adj 
cos( p) = —— 

hyp (A9.88) 

So 
2 opp’ + adj’ _ hyp 

; Sul 
hyp” hyp 

cos*(@) + sin’(¢) = 

i.e. this is just a restatement of Pythagoras’s theorem. 

So far we have just shown that the two sides of Equation (A9.85) have the same size, so 

they could be the same thing, but there are lots of functions that have unit size and are not 

equivalent to one another. 

To show that they behave in the same way as functions we will solve a simple differential 

equation: 

d’ d 
u +y=0_ boundary conditions : y(0) = 2 and we =() (A9.89) 

dep? de o=0 

This is a second-order differential equation, but slightly less complicated than the 

Schrédinger equation tackled in the main part of the appendix. It is also a problem con- 

sidered by Leonhard Euler when complex exponentials were emerging in the world of 

mathematics. 
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To find a functional form for y we need to propose functions that could be differenti- 

ated twice and give back a similar function. Euler chose trigonometric and exponential 

functions as good candidates for trial solutions of this differential equation: 

y=Acos(ad) or y=Asin(ad) or y= Bl exp( Bd) + exp( 7b) ] (A9.90) 

where A, B, a and f are constants that need to be determined to fit with the differen- 

tial equation and its boundary conditions. Notice that, for this second-order differential 

equation, we have two constants in each trial function. A second-order differential 

equation requires two ‘integrations’ to be carried out, each of which introduces an 

undetermined constant. The values of the constants will be found from the two 

boundary conditions. Any more or any less constants in the function would not be 

satisfactory. 

For this particular set of boundary conditions we can immediately eliminate the second 

option because sin(0) = 0, but either of the others will work if we take A = 2 and B= 1. 

Taking derivatives: 

trial function 1 trial function 3 

dy ; dy _ . (A9.91) 
a 2a sin( ag) ne Blexp( Bd) — exp(—B¢) ] 

Both functions comply with the second boundary condition, that the derivative at ¢ = 0 is 

also zero. The result for trial function 3 depends on the sum of two exponentials originally 

proposed, and so was probably obtained after realizing that a simple exponential would 

fail at this hurdle. 

On to the second derivatives: 

trial function | trial function 3 

BF ees ae, (A9.92) Wo @ dp? = B’Lexp( BG) + exp( B9) ] 

= —ay =p y 

so that the original differential equation becomes 

—a’y+y=0 Byt+y=0 (A9.93) 

Function | clearly works if we take a = 1. Function 3 can also satisfy the equation, but 

only if we allow 6? = —1, which means that B = /—1 =i. 

The first solution of this equation shows that the answer is periodic; the second shows 

that an equally good solution contains complex exponentials. After solving the differential 

equation with these trial functions, Euler proposed that 

2 cos( @) = exp(id) + exp( —i¢) (A9.94) 

The solution of the differential equations alone is not a proof of this relationship; we 

have just found two functions each of which solve the equation. To fully confirm the 
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equality we also need the Taylor expansion proof mentioned above and available in the 
references of the Further Reading section in this appendix. 

Euler’s equality fits with Equation (A9.85) because the right-hand side is a sum of 
complex conjugates; so, if we use the earlier identity 

exp(id) + exp( —id) = cos( ) +i sin( &) + cos( d) —isin( @) = 2 cos( ¢) (A9.95) 

then Equation (A9.89) with the boundary conditions 

y(0)=2 and = " = (A9.96) 

along with the trial functions 

y=Asin(ag) and y= Blexp( Bd) —exp(—£¢) ] (A9.97) 

can also be used to show that 

2i sin( @) = exp( id) — exp( —id) (A9.98) 

Euler’s analysis provided us with the complex exponential to use in the place of trigono- 

metric functions in problems giving periodic functions. After a little practice it is often 

much easier to manipulate than sines and cosines. A useful excercise is to obtain Equa- 

tion (A9.98) from the boundary conditions in Equation (A9.96) and trial functions in 

Equation (A9.97) following the same route. 

Euler’s problem is very close to the equation for the function of ¢@ we obtained by 

separating variables for the angular equation: 

ie +m? =0 (A9.99) 
ap? 

The only difference is that now we have a coefficient for the ® term. Looking back at 

Equation (A9.93) shows that our choice of 8 would stem from B* = —m,, so the solutions 

that will now be found are 

® = exp (im) (A9.100) 

In the main text, the boundary conditions are then imposed to stipulate allowed values 

of Mm). 

Further Reading 

The classical mechanics of rotating bodies is fully covered in: 

Goldstein H, Poole C, Safko J (2002) Classical Mechanics, 3rd edition. Pearson (ISBN 0321- 

188977). 
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The H atom problem and the concept of angular momentum are dealt with in several 

texts, including: 

Atkins PW, Friedman RS (1997) Molecular Quantum Chemistry, third edition. Oxford University 

Press (ISBINO.19'655047-5),, 702 | panama) oan manne nea 
Brink DM, Satchler GR (1993) Angular Momentum. Oxford University Press (ISBN 0 19 851759 9) 

a ES A OTRAS PT problem, along 
with a more detailed look at imaginary numbers can be found in: 
Steiner E (1997) The Chemistry M Oxford Science Publications (ISBN 0 19 855913 5). 

A very readable discussion of the history and application of complex numbers is 

given in: 

Nahin PJ (1998) An Imaginary Tale, The Story of ./—1. Princeton University Press (ISBN 0-691- 

02795-1). 

The properties of spherical harmonics and the associated Legendre functions are 

given in: 
|-Abramowitz M, Stegun IA (eds) (1970) Handbook of Mathematical Functions. Dover (ISBN 0-486- 

61272-4). 

There are also sophisticated computer packages that can deal with the analytical mathe- 

matics required for some of the problems in this appendix. Most notable are Mathematica 

(http://www.wolfram.com/) and Matlab (http://www.mathworks.com/). 
eee) 



Appendix 10 

The Origin of Chemical 
Bonding in H,* 

In Chapter 7 of the main text we outline the various contributions to the stabilization 

energy of the simplest of all molecules: the H,* cation. The main goal there is to introduce 

the concepts of MO theory to use in more complex molecules. In this appendix, some 

additional notes are given on the role of the various components of the kinetic and potential 

energy terms that contribute to the chemical bond energy of the H,” cation. 

We will begin by following the general idea that a linear combination of AOs can be 

used to form MOs by taking the Is functions of the H atom derived in Appendix 9 as 

our basis. Half way through this discussion we will come to the conclusion that chemical 

bonds decrease the electron’s kinetic energy but increase its potential energy. However, we 

will find that the energies calculated violate an important theorem in the expected balance 

of average kinetic and potential energy for the molecular ion. 

This demonstrates that the linear combination of AOs using the radial decay factors for 

atoms cannot give a complete picture of chemical bond formation. The radial profiles of 

the orbitals also have to be allowed to adapt to account for the changing environment the 

electron experiences on moving from the AOs to MOs. Once this is done, the potential 

energy is decreased and the kinetic energy increased due to the contraction of the orbitals 

around the nuclei. 

The flexibility of the radial shape of the AOs used in the description of MOs is an 

important one in theoretical chemistry and will be discussed further in Appendix 11. 

Molecular Symmetry David J. Willock 

© 2009 John Wiley & Sons, Ltd 
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A10.1 Chemical Bond Formation 

The formation of a molecule from atomic hydrogen and an H* cation can be thought of as 

the reaction 

H+H* > H,* (A10.1) 

The chemical bond formation energy is just the energy change for this reaction. We would 

expect a stable bond to have a lower energy than that of the atoms or ions that are involved. 

So the chemical bond energy here should be negative. 

As discussed in the main text, Equation (A10.1) is the reverse of the usual experimental 

situation in which the energy required to dissociate from the molecular state is usually 

measured. However, for calculations, the association of the reactants is easier to consider, 

as at large separation the interaction terms that we will outline below all tend to zero. 

In the following sections we will use the Schrédinger equation to obtain the energy 

of the reactant and product side of Equation (A10.1)and so estimate the bond formation 

energy. In this analysis we ignore the zero-point vibrational energy of the molecular ion 

and so are calculating the molecular energy as if the structure could be frozen at the bot- 

tom of the interaction potential-well plotted in Figure 7.5. The addition of the zero-point 

energy based on the ground state of the harmonic oscillator (hv/2) is a straightforward and 

relatively small correction. 

As H,” has only one electron, the potential energy can be analysed using only nuclear— 

electron and nuclear—nuclear interaction terms, which can be calculated reasonably easily. 

In more complex molecules the electron—electron interaction must also be accounted for, 

which is a more difficult task. Indeed, the quest for methods to evaluate the electron— 

electron interaction accurately is still an active area of research in theoretical chemistry. 

A10.2. H Atom and Ht‘ Cation 

The reactant side of Equation (A10.1) has the H atom and an H* cation. The H atom con- 

sists of a negatively charged electron moving in the electrostatic potential of the nucleus, 

a single positively charged proton. The total energy of the H atom is referenced to the 
electron and proton separated, so that they no longer interact, and most of this section is 
concerned with obtaining the atom’s total energy in the lowest energy state. The cation on 
the reactant side of Equation (A10.1) is a completely isolated proton, and so its energy will 
be taken as zero. 

The H AOs and their related orbital energy values have been discussed in some detail in 
Appendix 9 (see Tables A9.1 and A9.2 and Equations (A9.51) and (A9.52)), 

The discussion of Appendix 9 also introduces the atomic unit (au) system, and we will 
use that again for our discussion of bonding. The atomic unit system takes the Bohr radius 
(1 bohr = 0.529 177 A) as the unit of length and uses the electron mass and charge to define 
the mass and charge fundamental units. The energy unit in this system is the hartree (1 Ha 
= 4.359 744 x 107'* J) and we will see how this arises in the solution of the H atom ground 
state. Chemical energies are often quoted in per mole units; for example, the bond energies 
given in Tables 7.1 and 7.3 are given in kilojoules per mole units. It is useful to note that 
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1 Ha x N, = 2.62546 x 10°J, and so 1 Ha mol”! = 2625.46 kJ mol”! 

in which N, is the Avagadro constant (6.02205 x 10? mol~!). 

In everyday chemical transformations the hartree is a very large unit. Even the strong 

CO bond quoted in Table 7.3 as 1072 kJ mol~' corresponds to a bond energy for each CO 

molecule of only 0.4075 Ha. However, the interactions between electrons and nuclei in 

atoms and molecules are in the hartree range, and so it is a sensible unit of choice. 

Adoption of the atomic unit system simplifies the Schrédinger equation for the H 
atom to 

eee 1 
—5V Xe a (~) Xp = eke (A10.2) 

In this equation, the first term gives the kinetic energy x, of an electron in the pth orbital 

using the Laplacian differential operator V*. The Laplacian operator is written out in full 

for the spherical polar coordinate system in Equation (A9.5). 

The second term in Equation (A10.2) contains the potential energy operator, which just 

defines the Coulomb interaction between proton and electron at separation r. It is useful to 

think of r as the electron radial coordinate relative to the proton fixed at the origin. On the 

right-hand side is the total energy of the pth orbital E,. 

For the comparison of atomic and molecular systems in their respective ground states in 

Equation (A10.1) we will only need the Is orbital, i.e. x9, which in atomic units is simply 

1 
|s) = rae (A10.3) 

Here, we have also switched to the bra and ket notation that was introduced by Dirac to deal 

with wavefunctions in an elegantly compact manner. In Dirac notation, a wavefunction is 

denoted by a ket; i.e. the 1s orbital has been written |s) and the corresponding complex 

conjugate would be shown as (s|. If a bra and ket appear in the right order to complete a 

‘bracket’, then integration is implied; for example: 

Asis) = ul sare —2r)r’sin(@) dr dé dé (A10.4) 
Tt 

—-x 0 O 

The right-hand side is the standard mathematical form for integration over all space 

discussed in Appendix 9. 

The 1s function depends only on the distance from the origin, and so the two angular 

integrals in Equation (A10.4) give a value of 41, and 

(s|s) = 4| r exp(—2r) dr = 1 (A10.5) 

0 

where the standard result from Table A9.4 has been used, and we find that the ket |s) 

defined in Equation (A10.3) is correctly normalized. 
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In Dirac notation, the Schrédinger equation for the H atom becomes 

es l 
V’|s) ( ) |S) == E15) (A10.6) 

2 r 

Multiplying from the left by the complex conjugate (s| we obtain 

| ‘i l 
pee (s| (=) |s) = E(s|s) (A10.7) 

Here, numbers are witten outside of the integration brackets, but operators need to remain 

inside, as they affect the functional form of the wavefunctions. 

We have just shown that the Is orbital is normalized and so the integral (s|s) on the 

right-hand side of Equation (A10.7) is just unity. Because of this we can use Equa- 

tion (A10.7) as another method for calculating the total energy for the ground state of 

the atom complementary to the solution of the radial equation used in Appendix 9. 

The integrals to the left of Equation (A10.7) have the form of expectation values (a 

concept we met in Appendix 9); they are integrals over all space for the |s) wavefunction 

containing operators for the kinetic and potential energy of the electron. Equation (A10.7) 

simply says that the total energy is calculated by summing the expectation values for the 

kinetic energy T and potential energy U components: 

1 , 
Bel) AU) = aan lV 1s) = 15 (<) |s) (A10.8) 

The Is orbital has no angular dependence, and so we can consider the contributions as a 

simple function of r. The implied integrations over the three spherical polar coordinates 

are best taken in two steps: an integration over the angular coordinates, @ and ¢, at fixed 

r, followed by an integration for all r values from zero to infinity. In the angular part of 

this process we are integrating over a spherical shell around the nucleus over which T and 

Energy/Ha 

panes 4 
r/boh 

—0.6 

—0.8 

Figure A10.1_ The contributions to the kinetic energy T, potential energy U and total energy 
E of an electron in the 1s orbital of atomic H as a function of the electron—nuclear separation r. 
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U will be constant. Figure A10.1 gives the result of this intermediate integration over the 

angular coordinates as a function of r so that we can picture the behaviour of the kinetic 

and potential energy as a function of the electron—proton separation. On the figure we are 

plotting T and U before the averaging over the r coordinate required for Equation (A10.8), 

and so the expectation value brackets ( ) have been dropped. 

Figure A10.1 shows that the kinetic energy of the electron is positive below around 2 

bohr and increases as the electron approaches the nucleus, because the attraction of the 

positive charge becomes stronger. There is a peak around 0.4 bohr, below which the lower 

volume available to the electron wins out over the increasing speed and the contribution to 

the kinetic energy falls off. 

Interestingly, the kinetic energy is negative above 2 bohr. From a classical point of view 

this makes no sense; kinetic energy is proportional to the particle speed squared and so 

should not be negative. A classical particle must balance its kinetic and potential energy at 

every point on its trajectory so that the total energy remains constant. In quantum mechan- 

ics, however, particles must only maintain this balance ‘on average’; hence the integrals in 

Equation (A10.8). This means the electron can move into classically forbidden regions in 

which their kinetic energy 1s negative, an effect referred to as quantum tunnelling. Here, 

the electron is classically confined to a sphere of radius 2 bohr centred on the proton but it 

can tunnel to greater distances, as indicated by the exponential decay of the wavefunction. 

The potential energy U in Figure A10.1 is negative for all values of r, giving a minimum 

around 0.5 bohr. 

The average kinetic (7) and potential energy (U) integrals can be calculated by integrat- 

ing the curves in Figure A10.1 from r = 0 to oo to complete the integration over all space 

implied by the bra-ket pairs in Equation (A10.8). We find 

i 
Si | igiy2j5) = : (U) = —(s| (=) |s) = —1 (A10.9) 

D 2 r 

To check these results you will need the standard integrals from Table 9.4 and the Lapla- 

cian operator in spherical polar terms (Equation (A9.5)) with the s-function defined in 

Equation (A10.3). You should also remember that only the radial differential of the 

Laplacian needs to be applied, because the s-function has no angular dependence. 

The atomic units system is built around the H atom problem, and so it is no surprise that 

the potential energy should be —1 Ha. 

A10.3. The Virial Theorem 

Equation (A10.9) shows that the values of the kinetic and potential energy for the 1s elec- 

tron are related by a factor of —2. This result is an example of the virial theorem. The virial 

theorem is a very general concept which says that for a particle moving in a potential that 

follows a power law, such as the Coulomb potential, the average kinetic and potential 

energy will be linked by a simple numerical factor. 

For a power law in which U = ar", with a the proportionality constant, the virial 

theorem states 

(T) = =(U) (A10.10) 
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This very powerful idea is valid for both classical and quantum systems. In cases described 

by quantum mechanics it only works when we have correctly identified a stationary state 

of the system, and so can be a useful test of results. 

Equation (A10.9) shows that (7) = — ; (U), which is the correct result for the Coulomb 

power law (n = —1). That the virial theorem is obeyed is also confirmation that the expo- 

nent in the |s) function (Equation (A10.3)) has the optimum form: we are correct to use 

exp(—r) rather than some other radial decay, such as exp(—¢r) with ¢ # 1, as will be 

checked in Problem A10.1. The electron is distributed as a function of r, so the decay 

constant affects the averaging process and so is important in calculating the expectation 

values of the energies. 

The virial theorem links the form of the potential the electron experiences to the balance 

between average kinetic and potential energies in the ground state. Figure A10.1 shows that 

the electron is more or less confined to a region 2 bohr from the centre of the atom, where 

its kinetic energy is positive. If the potential field for the electron were to change (e.g. by 

an increase of the nuclear charge), then both (7) and (U) would alter: (U) would become 

more negative due to the increased Coulomb interaction and (7) would become more 

positive because the wavefunction would be more strongly confined by the new potential. 

However, the virial theorem says that the balance would still give (T) = —+(U) in the new 

ground state and the shape of the wavefunction would have to alter to ensure this. 

The sum of (7) + (U) from Equation (A10.9) is —0.5 Ha, so the system is more stable 

with the electron in the Is orbital than with the electron and proton separated. Figure A10.1 

indicates that at the Bohr radius the total energy has its minimum value, but the total 

required for inclusion in the bond formation energy has to take into account the integral of 

the energy over the entire wavefunction, as indicated by the use of expectation values in 

Equation (A10.8). 

Problem A10.1: We can use the virial theorem to obtain the exponential decay constant 

in the 1s orbital function. To do this, consider the general form of a trial s-function 

with a decay constant ¢ and then we try to prove that only ¢ = 1 gives a wavefunc- 

tion that satisfies the virial theorem. The Greek letter ‘zeta’ is widely used to describe 

the decay constants for basis sets in computational chemistry, and so we have adopted 

that convention here. The normalized trial function |s,,) will be 

¢3/2 

Sir) = baa =a} (A10.11) 

1. Confirm that |s,,) is normalized for any choice of ¢. 

2. Using the approach laid out in Section A9.8, show that the expectation value for the 
potential energy is 

1 
(U) = —(sq (;) Sx) = —F (A10.12) 

You will need to make use of the standard integrals from Table A9.4 for the radial 
part of Equation (A10.12), and remember that the integration over 6 and @ will give 
a factor of 4x. 
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3. To obtain the expectation value of the kinetic energy it is useful to first apply the 

Laplacian (Equation (A9.5)) to |s,). Remembering that the trial function has no 

angular dependence, and so any differential with respect to @ or @ will be zero, 

confirm that 
—¢5/2 2 

V" Ise) = ia (- = c] exp( —Cr) (A10.13) 

4. With the result from Equation (A10.13), show that the expectation value for the 

kinetic energy of our trial wavefunction is 

1 . Ie 
(T) = == (Sul V [Sep = 7o° (A10.14) 

2 iz, 

5. The wavefunction for the H atom Is state must obey the virial theorem for the 

Coulomb central potential, i.e. we must have (T) = SoU). Show that only ¢ = 1 

gives a Is function obeying the virial theorem. 

Problem A10.1 shows that the expectation values for the kinetic and potential energy 

components for any trial wavefunction |s,) are dependent on the exponential decay 

factor ¢. The decay factor controls how the electron is distributed along the radial 

coordinate and so affects the averages taken to produce the expectation values. 

We can also think about this problem in another way by asking the question: What is 

the optimum decay factor that gives the lowest energy for the H atom? 

Equations (A10.12) and (A10.14) give the total energy as 

le E=(T)+W)=50°-¢ (A10.15) 

This dependence of the energy components and the calculated total on ¢ is shown in 

Figure A10.2. Notice that the total energy passes through a minimum value at ¢ = lI, 

which is just the parameter value we show is required for the virial theorem in Prob- 

lem A10.1. This means that a trial wavefunction that obeys the virial theorem will also 

give the lowest total energy. 

A10.4 H,* Molecule 

The product side of Equation (A10.1) is a D,, molecule, for which we take a linear 

combination of AOs to give a bonding and antibonding combination: 

|loy*) = Mig( 151) + |52)) |20.7) = No(|81) — |82)) (A10.16) 

The |1o,*) combination gives rise to a build-up of electron density between the nuclei, 

and so is expected to have a lower energy than the |20,*) state. For H,* we have only 

to accommodate one electron, so in the ground state it is placed in |1o,*), leaving |20,*) 
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Energy/Ha 

0.5 | aa E=(T)+(U) 

WU) 

= oe 

=) : 

Figure A10.2 The variation of the total energy E and its components, the kinetic energy (T) 

and potential energy (U) with the decay constant ¢ of a trial 1s-like function for the H atom. 

empty (refer to Figure 7.10). Moving the electron to the |20,*) orbital would then give the 

first excited state of the molecule. 

Here, we will look more closely at the terms contributing to the bond formation energy 

by attempting to quantify the various interactions. Initially we will use exactly the same 

function for the s-orbitals as defined for the H atom in the above discussion, but we will 

soon discover that this is not the best choice of basis functions for the molecular state. 

In Section 7.2 of the main text we show that the normalization constants N,, and N>, 

depend on the overlap integral between the AO on atom | with that on atom 2. This can be 

written using bra-ket notation as 

Si2 = (81|S2) (A10.17) 

From the main text we know that the normalization constants of the MOs N,, and N>, are 

given by 

1 1 
a Ny = —————- A10.18 

is J/2(1 + Si2) : V/ 2(1 — Si2) 

The wavefunctions from Equation (A10.16) with these normalization constants are plot- 

ted for the experimental H—H separation in H,* in Figure A10.3a and c. The |s,) orbital 

has been overlaid on the left-hand atom at the same scale to allow a comparison of the 

AOs and MOs. These plots are simply the value of the wavefunctions at each point along 

the C,, axis, and we see the same picture as used in the main text: The |lo,*) orbital has 

constructive interference with a build-up of charge between the nuclei, while destructive 

interference in this region in the |20,*) case leads to depletion of charge compared with 

the isolated atom. 
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Figure A10.3 The (a) \10,*) and (c) |20,*+) wavefunctions of H,*. These functions are plot- 

ted along the line of the C,, axis with the bond centre at the origin. The H—H distance is set 
at 2.00 bohr, which is the observed value from Table 7.1. The dotted line shows the atomic 1s 
function of the atom to left of centre. The other two diagrams show the integrated density for 
planes perpendicular to the Z-direction plotted against z, with (b) representing (10,*|\10,*) 
and (d) (20,*|20,*). 

For the energy terms we will need to carry out integrals over these MOs to quan- 

tify the electron—nuclear interactions. However, for the H)* molecule the spherical polar 

coordinate system becomes quite clumsy, because only one nucleus can be at the origin. 

A10.5 Choice of Coordinate System for H}: Cylindrical Polar Coordinates 

To make progress we will switch to cylindrical polar coordinates with the axis of the 

molecule along the Z-direction and the bond midpoint at the origin. This scheme is illus- 

trated in Figure Al0.4a. The coordinates are the distance from the molecular axis u, the 

angle ¢, measured in a plane perpendicular to the molecular axis, and the position along 

the molecular axis z. The cylindrical polar system is convenient because the |lo,*) and 

|20,*) MOs have cylindrical symmetry; these functions have a constant value around any 

circle in a plane perpendicular to the molecular axis, as does the charge density shown in 

Figure A10.4b. We will use this property to plot the values of the various integrals over 

u and @¢, at each value of z, so that we can illustrate how contributions to the various 

expectation values depend on position along the molecular axis. 
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(a) dr=u dd du dz 

Figure A10.4 (a) The coordinate system and definition of an infinitesimal volume dt for 

cylindrical polar coordinates, the factor u enters dt because of the definition of an arc length 

using angles measured in radians. (b) A slice through the H—H bond showing the charge 
density on a plane perpendicular to the H)*C,. axis. (c) The geometry used to obtain the 
distances r; and r, from each nuclear centre; these are the variables used in the s-orbital basis 

functions, since they define the nuclear-electron separations. 

The analytical integrals required to obtain expectation values for the H,” kinetic and 

potential energy contributions are still formidable; a better choice of coordinates for pen- 

and-paper solutions would actually be elliptical polar (see Further Reading section in this 

appendix). However, for the integrals required we will use numerical results generated 

using the Mathematica program, which also allows the plots of integrals over planes to 

be plotted against z. Powerful mathematics computer programs such as Mathematica take 

away the drudgery of long derivations for the integration or differentiation of complex 

functions and allow us to concentrate on the physical interpretation of results. While it 

is not essential to use Mathematica to follow the discussion here, familiarity with such a 

package can greatly increase your ability to play around with the equations used. 

As an example of integration in cylindrical polar coordinates we will calculate the total 

probability density for the |lo,*) MO using the integral 

(log? |lo,*) =m, f 46 f fs + $2) (8; + $2) u du dz (A10.19) 

—-~ 0 

The integral over the angle ¢@ is written separately because we know the orbitals have 

cylindrical symmetry, i.e. they do not depend on @ but will vary with u and z. To cover all 

space we will have to integrate right around the molecular axis, and so the limits of the 

@ integral cover the range of 27 from —z to z. The radial coordinate u is the distance 
from the molecular axis and can range from zero to infinity. The third coordinate in the 
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cylindrical polar system is the position along the axis z, which can take any value from 
—0o to +00. Figure A10.4a also shows that the infinitesimal volume for this coordinate 
system is u dd du dz. 

The s-functions for the two atomic centres still follow the form given in Equa- 
tion (AL0.3), but we must express the distance from each nuclear centre in terms of the 
cylindrical polar coordinates. Figure 10.4c shows a general point (open circle) and the vec- 
tors required to find the distance from each H atom nucleus. It is straightforward to show 
that 

K 1/2 2 
Ri» pon we Rip aT ' n= 5 +z) +uw and ae a= rid z} tu (A10.20) 

where 7; is the distance of the general point from nucleus i and R,> is the internuclear 
separation. These expressions assume we have placed the molecule with the bond centre 
at the origin. 

The angular integral in Equation (A10.19) simply gives 277, and so 

(Neale) = 2Nie I / if (5; + 52) (5; + 5.) u du dz (A10.21) 

—co 0 

These integrals are carried out in the Mathematica sheet for this appendix available 

from the Website, As a check that we obtain unity for the normalized molecular 

orbital in the new coordinate system. The integrals over ¢ and wu involve taking all 

contributions from planes perpendicular to the molecular axis at a particular z value, 

such as the plane illustrated in Figure 10.4b. By carrying out these integrations first 

we can plot the total for each plane against z and so obtain a picture of the con- 

tributions to the integral along the molecular axis. For this example, Figure 10.3b 

and d show a comparison of the calculated total density on each plane as a func- 

tion of z for the bonding and antibonding MOs. Each plot includes a comparison 

with the same calculation for an isolated H atom at the position of the leftmost 

nucleus (H,). 

The bonding orbital shows a build-up of density compared with the isolated atom, while 

the antibonding orbital gives rise to a lower total density in the internuclear region, going to 

zero at the bond centre. This interpretation was also drawn from the plots of the wavefunc- 

tions along the molecular axis (Figure 10.3a and c). However, as we are now integrating 

over an entire slice of density at each z-coordinate, the curves in Figure A10.3b and d 

are smoother and do not show the cusps (sudden change in gradient as we pass through 

the nuclei) that are seen in the plots along the molecular axis. Notice also that the dip in 

the density between the nuclei in the bonding orbital is much less than for the axial plot 

(Figure A10.3b compared with Figure A10.3a), showing that the total density integrated 

over planes between the H nuclei in the bonding orbital is almost constant. 

In the remainder of this appendix we will use this type of plot to illustrate the contri- 

butions to the calculated expectation values from planes perpendicular to the molecular 

axis. 
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A10.6 H,*: the Electron Kinetic Energy 

The kinetic energy for an electron in the |lo,*) bonding orbital will be given by 

1 \ 
(T)tog+ = SAS ING ikem Ne Tt [fe + 55)[V*(s; +82) ]ududz (A10.22) 

—oo 0 

And with the electron in the antibonding |20,) orbital we would have 

maa | 
(PP eye ae —5 ou" |9?(20,*) = N>,7r / / (= 5) (V7Cs) — 5) lw da'dz (A1023) 

—oo 0 

Now, we are in cylindrical polar coordinates and so must use the appropriate form of the 

Laplacian: 
les) a) [07 a? 

MP ape = A10.24 
(ux) Fi uw od? a Oz" ( ) 

We have chosen cylindrical polar coordinates to exploit the cylindrical symmetry of the 

H,* molecular ion. In the application of the Laplacian there will be no variation in the 

wavefunctions with the angular coordinate, so the differential with respect to @ will give 

zero and so only the derivatives with respect to u and z need be considered. The results still 

have to be integrated with respect to the ¢, it is just that the same value of the integrand will 

occur at any point on a circle centred on the molecular axis and in a plane perpendicular to 

it. This has already been exploited in Equations (A10.22) and (A10.23) with the integration 

@ giving 27 as before. The full detail of applying the Laplacian to the molecular orbitals is 

set out in the Mathematica sheet accompanying this appendix available from the Website. 

The kinetic energy integrated over planes perpendicular to the molecular axis is plot- 

ted in Figure A10.5. The bonding orbital (Figure A10.5a) shows a lower kinetic energy 

(b) T/Ha 

z/bohr z/bohr 

Figure A10.5 Plot of the kinetic energy integrated over planes perpendicular to the molecu- 
lar axis against the z coordinate for (a) |10,*) and (b) |20,*). The dashed lines in each case 
show the same data for an isolated H atom placed at the H, position. 
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than for the reference atomic orbital state (shown as a dotted line). The lower kinetic 

energy corresponds to the smooth density plotted in Figure A10.3b, which has a low sec- 

ond derivative. The total integrated area under this curve gives an expectation value for the 

kinetic energy of (7) logt = 0.3863 Ha, compared with the 0.5 Ha we found for the atomic 

case above. So the kinetic energy of the electron has been reduced on bond formation, and 

in this AO-based model this is one contribution to the stabilization of the H,* ion. 

The kinetic energy for the antibonding orbital is plotted in Figure A10.5b. The overlay 

of the atomic result in this case shows that the kinetic energy distribution in the |20,*) 

orbital has a very similar shape to the reference atomic plot for the H, atom in isolation. 

In the molecule, the second nucleus is equivalent, and so the electron kinetic energy has 

another peak associated with the part of the wavefunction near to this nucleus. The net 

effect is that the antibonding molecular orbital of the H,* ion has a much higher elec- 

tronic kinetic energy than the reference atomic state, (7’),,,+ = 0.9363 Ha. So, an electron 

occupying the antibonding orbital would have a higher kinetic energy than for the atomic 

state. 

Figure A10.3 shows that the bonding MO, |1o,*), has no node — it does not pass through 

zero — whereas the antibonding |20,*) wavefunction has a node at the bond centre. The 

observation that the orbital with a node feature has the higher kinetic energy is quite gen- 

eral, and we use it in the main text when discussing the MOs of phenanthrene (Chapter 7). 

The node introduces a greater degree of curvature, leading to significant second-derivative 

values as the wavefunction twists around to pass through the zero point. 

A10.7_ _H,*: the Electronic Potential Energy 

The potential energy of an electron in a molecular orbital involves interactions of the 

electron with the two nuclei; for the bonding orbital this is 

(lo, |(Vi + Vo) |Log*) = Nig ((s1| + (521) Vi + V2) C151) + [82)) (A10.25) 

where V, and V, are the potential energy operators for an electron due to its interaction 

with nuclei | and 2 respectively, i.e. 

1 
VY, =—— and V,=-— (A10.26) 

The negative signs in these expressions arise from the opposite charges on the electron and 

nuclei. 

The molecular potential energy must also take into account the nuclear—nuclear 

interaction, which is simply the Coulomb energy of the two protons: 

Vee (A10.27) 
Ri 

Since these are to be treated as fixed point particles, this gives the potential energy of the 

nuclear—nuclear term directly. 
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The symmetry of the molecule means that any integral involving V, will have an equiv- 

alent from the V, potential; for example, (s;|Vils;) = (s>|V>2|s2). This allows the set of 

integrals obtained on multiplying out Equation (A10.24) to be reduced to just three terms: 

(lo,*|( Vi + V2) |Log") = 2Mig’( (si |Vilsi) + (sal Vils2) + 2451 [Vi 153)) (A10.28) 

The electronic potential energy of the single H atom on the reactant side of Equa- 

tion (A10.1) is (s;|V;|s;), and so we can write down the potential energy change for the 

electron moving from the atomic Is to the 1a, orbital of the cationic molecule as 

(U(Hy*) )to,+ — (UCD) = (2Mig” — 1) (si Vilsi) + 2Nie ( (S2|Vils2) 

1 
+ 2(si|Vilso)) +5 (A10.29) 

12 

This is the potential energy change most relevant to bond formation, as it compares the 

molecular ion in its electronic ground state with the atomic reference, which is also an 

electronic ground state. 

A similar procedure for the antibonding MO gives the energy difference between the 

molecular ion in its first excited state and the H atom reference as: 

(UH aa = (UC) (2Nou” — 1) (5 |Vils1) 

. l 
+ 2Noy’ ( (S2|Vi|S2) = Phi Valse) ae (A10.30) 

12 

Comparing results from Equations (A10.29) and (A10.30) would allow us assess the effect 

of exciting the molecular ion, e.g. by irradiating with light of a specific frequency. 

The first three terms in these expressions give the contributions to the change in the 

potential energy of the electron as it moves from the atomic Is orbital to either of the 

molecular orbitals: 

ernie The origin of the integral (s,|V,|s;) 1s illustrated in the plot of 

(2M — 1) (s,|V,|5,) Figure A10.6b. It involves the interaction between a nucleus 

and the part of the electron density described by the associated 

Equation (A10.18) s-orbital, which is attractive and so gives a negative result. The 

says: thin solid line in Figure A10.6a shows the integral over planes 

= I plotted as a function of z. The corresponding integral for the 

= OA Sa) atomic |s) orbitals is shown as a dotted line on the same figure 

and is split evenly between the two nuclei for comparison. In the 

bonding MO the electron population is lower than in the atomic 

state because the electron is now shared with the other nucleus. 

This results in the positive difference shown as the thick black 

line in Figure A10.6a. 
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We can also see that a positive value should occur for this 
term from the form of the normalization coefficient in Equa- 
tion (A10.18). The overlap integral S,, can only be positive, so 
that aN < | (see Figure A10.7), which means that term 1 in 
Equation (A10.29) gives a positive, destabilizing, contribution 
to the bond formation energy. 

(2N1,°-1)s, |V;| 51) 

(a) Energy/Ha (b) 

0.2, 

z/bohr 

A, H5 z/bohr 

2Nig” (82 IVI 52) 

(©) H, H, z/bohr 

4 

z/bohr 

Energy/Ha 
0 

AN, 6° (51 [Vi] 52) 

Figure A10.6 The contributions to the three terms for the electron—nuclear potential energy 
difference between H,* with the electron in |10,+) and H integrated over planes perpen- 
dicular to the molecular axis. (a) The interaction of the density described by each |s;) basis 

function with the corresponding nuclear centre (thin line) is compared with the same inter- 

action for the isolated atoms scaled by a factor of 0.5 (dashed line); the difference gives a 
positive contribution to the bond formation energy (thick line). An illustration of the origin of 
this interaction is given in (b). (c) The interaction of the density described wholly by the |s) 
basis function with the potential due to the H, nucleus, as illustrated in (d), the correspond- 
ing integral for |s,) with H, is shown as a dotted line. (e, f) The integral value versus z and its 

origin from the overlap density for term 3 of the electron—nuclear potential energy discussed 
in the text. 
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(e) He z/bohr 

Energy/Ha H, H, a z/bohr 

Figure A10.6 (continued). 

5 

2Noy 
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Figure A10.7_ The dependence of the prefactor in the potential energy terms on the overlap 

integral Sy. 

(2N py’ = 1) (81 |\Valsi) 

Equation (A10.18) 

says: 
= 1 

N ae Se Se 

BN TAREE) 

Term 2, 2Ni,”(s2|Vi|52) 

For the antibonding case we have a very similar first term in 

Equation (A10.29). Figure A10.3d shows that the lower den- 

sity in the internuclear region actually means that an electron is 

more likely to be closer to its own nucleus than in the reference 

state in which the electron is split evenly between noninteract- 

ing atoms. This makes the potential energy from this term more 

negative than in the atomic reference state (Figure A10.8a) and 

so a stabilizing contribution is obtained. 

This time the normalization constant has —S,, in the denom- 

inator and so 2N>,° > 1, confirming that this term gives an 

overall negative contribution to the bond formation energy for 

an H,* molecular ion with the electron in the antibonding 

orbital. 

In the MOs the electron population described wholly by |s3) 

interacts with centre | and that wholly described by |s,) inter- 

acts with centre 2. These interactions are not present in the 

atom; since electron—nuclear interactions will be attractive, this 
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(b) 
H, H, 
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Figure A10.8 The contributions to the three terms for the electron—nuclear potential energy 
difference between H)," in the first excited state, with the electron in |20,*) and H integrated 

over planes perpendicular to the molecular axis. (a) The interaction of the density described 
by each |s;) basis function with the corresponding nuclear centre (thin line) is compared 
with the same interaction for the isolated atoms scaled by a factor of 0.5 (dashed line); the 
difference gives a negative contribution to the bond formation energy (thick line). (b) The 
interaction of the density described wholly by the |s,) basis function with the potential due 
to the H, nucleus; the corresponding integral for |s.) with H, is shown as a dotted line. (c) 

The integral value versus z from the interaction of the overlap density with H,; the interaction 
with H, is shown as a dotted line. 

2No," (S2|Vi |S>) 

tends to stabilize the molecule. Figure A10.6d shows the origin 

of this term and Figure A10.6c illustrates the contributions aver- 

aged over planes along the molecular axis for the bonding MO. 

A small kink feature can be seen for the integral over planes for 

each s-orbital at the z coordinate of the nucleus. At this point the 

centre of the integration plane gives a zero distance between the 

elemental charge and the nuclear centre. 

In the antibonding orbital we again have a negative contribu- 

tion from the second term in Equation (A10.30). Comparison of 

Figures A10.6c and A10.8b shows that the integrals over planes 

of this term for |2o,) are larger than for |1o,) at the same z. This 

is due to the behaviour of the 2N,,° factor as a function of the 

overlap integral S|, (Figure A10.7). 
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Term 3, AN, (51 |Vils2) The electron density described by the overlap (s;|s2) integral 

will have a Coulomb interaction with centre 1; this will be 

attractive. The factor of 4 arises from an identical contribution 

of the (s3|s,) density with centre 1 and both overlaps with cen- 

tre 2. Figure A10.6e and f shows the integral and the overlap 

density respectively for the bonding MO. The overlap builds 

up charge between the centres, but this charge is spread wider 

than the bond separation and so contributions to this term also 

occur further out. The ‘shielding’ of the internuclear interac- 

tion is really the sum of these terms and the nucleus—nucleus 

potential given by Equation (A10.26), and so this may be less 

effective than we might expect. In the energy integrals there 

are, again, sharp turning points at the nuclear centre used in the 

potential operator. 

AN (Siva iss) In the antibonding orbital the overlap integrals correspond to 

the loss of electron density from the internuclear region and a 

minus sign appears for this contribution in Equation (A10.28). 

The integral still evaluates to a negative value, and so this 

becomes a positive term as plotted in Figure A1l0.8c. Once 

again, the difference in the normalization constant means that 

this term has a greater magnitude than that for the bonding 

orbital. 

An important check on the potential energy contributions suggested by Equa- 

tions (A10.29) and (A10.30) is to consider what happens as R,, becomes large, i.e. we 

break the molecular bond. In the limit of separated, noninteracting, nuclei the overlap S;, 

must become zero, and so term 3 vanishes, because it gives the interaction of the density 

described by $,. with the nuclei. With no overlap we also obtain Mig” = N,,* = } from 

Equations (A10.18), and so term | becomes zero. Term 2 involves an interaction between 

centre | and the remote charge density on atom 2, which will also be vanishingly small due 

to the inverse power dependence of Coulomb’s law. So, at the limit of large Rj» there is no 

difference between the potential energies of either MO and an isolated H atom infinitely 

separated from H*, as required. 

However, the H + H* system contains two different species and so cannot conform to 

D.,.. Symmetry. At some point, as the bond is stretched, the electron must decide ‘which 

way to jump’, and this will destroy the molecular symmetry. By sticking to D,, we are 

forced to have a dissociated state of two H°** ions. This has the same energy as the ‘real’ 

reactants, but is not a correct physical picture. 

The contributions to the total potential energy of the H,* cation as a function of the 

internuclear distance R,. with the electron in the ground-state MO, |lo,*), are shown in 

Figure A10.9a. In the bonding orbital, the total potential energy is always positive and 

so tends to favour dissociation of the molecule into its constituent atom and ion at all 

internuclear separations. 

In contrast, Figure A10.9b shows that if we place the electron in the first excited state, 

|20,), then the total potential energy appears to be negative when this antibonding MO is 
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Figure A10.9_ The various terms in the electron—nuclear potential energy plotted as a func- 
tion of internuclear separation Rj,» for (a) Hz in the ground state, with the electron in |1o,"), 
and (b) H,* in the first excited state, with the electron in |20,*). In each case the internuclear 

repulsion energy is also shown, and the solid lines marked ‘Total’ are estimates for the bond 
formation energy at each Rj» value. In these calculations, the decay constant of the basis 

functions is fixed at the AO value (¢ = 1). 

occupied. This occurs because in the antibonding MO the contributions from the integrals 

involving only a single s-orbital are both negative and outweigh the unfavourable effect 

from the overlap integral. In the antibonding combination the electron density is, on aver- 

age, closer to the nuclei because of the node at the bond centre than in the reference atomic 

state (Figure A10.3d). 

A10.8 The Chemical Bond Formation Energy Based on Rigid Atomic 

Orbitals 

The above discussion of the potential energy should be unsettling: we have found that 

it is the kinetic energy in H,* that stabilizes the chemical bond with the electron in the 

ground state, while the potential energy is destabilizing. This seems to contradict the com- 

monly proposed picture of the chemical bond, in which the overlap density stabilizes the 
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molecule through the resulting attractive interaction with the nuclei. This interaction is 

attractive (term 3 above), but, for H,* at least, the electron density in the internuclear 

region will always be less than unity and will be insufficient to overcome the repulsive 

terms, particularly that of the two nuclei. 

We will find that the potential energy is important and stabilizing the bond. The fault lies 

in the use of the AOs to construct MOs. We have treated these as rigid entities with a radial 

decay set for the atomic state, but this is not appropriate to the molecular environment. 

To show how the rigid orbital model fails, we will estimate the bond formation energy 

using the terms described above and test the validity of the result with the virial theorem. 

Using the experimental H,* bond length of 2 bohr from Table 7.1, we find 

(T(Hp*))1e,+ — (TCH)) = 0.3863 — 0.5000 = —0.1137 Ha 

For Equation (A10.29), working through the integrals with Mathematica gives 

Term 1 : (2N;,” — 1) (s:|Vil51) = 0.3697 Ha 

Term 2: 2N,,”(52|Vi|s2) = —0.2979 Ha 

Term 3: 4Ni.°(51|Vils2) = —0.5118 Ha 

which leads to a change in electron—nuclear interaction energy on bond formation of 

(U(H3*) )icg+ — (U (H)) = —0.4400 Ha 

The nuclear—nuclear repulsion term from Equation (A10.29) is 0.5 and, as expected from 

Figure A10.9, this wins out to give a slightly positive (0.0600 Ha) contribution to the bond 

energy. Adding the kinetic and potential energy contributions together, we have an estimate 

for the bond energy of H* of —0.0537 Ha or —141 kJ mol '. 

This is 114kJmol~' lower in magnitude than the experimental bond energy 

(255kJ mol"! given in Table 7.1; remember that experimental bond energies give the 

energy required to sever the bond, while we calculate the energy change on forming it). 

Perhaps a more serious problem is uncovered if we test the virial theorem for the bond- 

ing orbital. Using the AOs as basis functions we have found that the kinetic energy is 

(PCH) ie = 0.3863 Ha and the potential energy (U( H,") )togt = —0.9400 Ha. The 

virial theorem requires that the ratio of kinetic to potential energy for this system should 

be —1/2, but this data gives 

(T(H2")) tog 0.3863 
iE ~ = —0.4110 (UG) )in,* 0.9400 

In fact, if we plot the expectation values for kinetic and potential energies as a function 
of the bond length, then the optimum value of the total energy using the atomic functions 
occurs around 2.49 A, as shown in Figure A10.10. This is significantly longer than the 
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Figure A10.10 The bond formation energy (labelled Total’) for H)* in the electronic ground 
state estimated using rigid basis functions (¢ = 1) as a function of R,>. The contributions from 
the expectation values of the kinetic ((T(H2") )iog+ — (T(H))) and potential ((U(H2*)) Gove aa 

(U(H))) energies are shown as dashed lines. ae 

experimental value. At this geometry the (7(H,*) )tog+ = 0.3827 Ha and (U(H,*)).,+ = 
—0.9475 Ha, a ratio of —0.4039, so the virial theorem for the electron is still not 
obeyed. 

For the antibonding state, working through the integrals from Equation (A10.30) with 
Mathematica gives 

Term 1 : (2N>,” — 1) (s;|V;|s;) = —1.4181 Ha 

Term 2: 2N>,7(s2|V;|s2) = —1.1426 Ha 

Term 3: —4N>,"(5,|V;|s2) = 1.9635 Ha 

These sum to produce a change in electron—nuclear interaction energy on bond formation, 

if the electron were to occupy the antibonding molecular orbital of 

(U(H,*))2.,+ — (UCH)) = —0.5972 Ha 

Once again, the nuclear—nuclear repulsion term is 0.5 Ha, and so we now find a slightly 

negative (—0.0972 Ha) contribution to the bond formation energy with the electron in the 

antibonding MO. This would be more than offset by the kinetic energy, which contributes 

0.4363 Ha to the bond formation energy with the electron in the |20,*) orbital. However, 

it still appears counterintuitive that the antibonding orbital should have a lower potential 

energy than the bonding orbital. 

The lack of a virial theorem for the molecule with the electron in |lo,*), and the strange 

behaviour of the potential energy term, implies that we have not really found the true 

ground-state wavefunction. 

The picture is not yet complete, and Problem A10.1 indicates why. The s-orbitals used 

to construct the bonding and antibonding combinations have radial decays optimized for 

the atomic state. In the H,* ion there are two nuclei, and so there is no reason why this 

decay factor should be suited to describe the MO. To address this we will optimize the 

energy with respect to the radial decay of the basis functions. 
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A10.9 Optimal Radial Decay of Molecular Orbitals 

In Problem A10.1 we proposed a trial form for the Is orbital in which the decay with 

distance from the nucleus is controlled by a parameter ¢: 

Ce 

Su) = exp(—¢r) (A10.31) 

It was also shown that the decay constant that was consistent with the virial theorem 

gave the lowest total energy for the atomic Is orbital. We can now apply this to the 

molecular case by recalculating the kinetic, potential and total energies for the electron 

in the |lo,*) orbital in H,* fixed at the experimental bond length but for a range of decay 

constants. The result is shown in Figure A10.11. 

(Tg) 10, + U2), rn /\6=1.238 \ S-\ 

=| (UG, ig,” ae 
/ % 

APES == 
= —2 0 2 4 

Figure A10.11 Plot of expectation values for the potential energy (U(H)") )i,, kinetic energy 
nab”) )1o, and total energy of an electron in the |10,+) MO of H,” at a nuclear separation 

of Ry, = 2 bohr against the basis function decay factor ¢. The diagrams inset to the side of 
the plot show the MO density at the ¢ values indicated compared with the ¢ = 1 distribution 
(dashed lines). 

For ¢ < 1 bohr', the |lo,*) orbital becomes more spread out; this has the effect of 

reducing the kinetic energy, as the MO has less curvature than when we use the AO decay 

constant in the basis. The more diffuse orbital also increases the potential energy, as the 

electron spends more time away from the nuclei. This wins out and the energy increases 

compared with the ¢ = 1 reference. 

For ¢ > 1 bohr', the |lo,*) orbital becomes more compact and the potential energy 

goes down. Of course, this also confines the electron more closely and increases the cur- 

vature of the wavefunction, and thus the kinetic energy. Near to unity the net effect is a 

lowering of the total energy, and a minimum is found for ¢ = 1.238 bohr~!. At higher 

values of the decay constant the kinetic energy increases more rapidly than the potential 

falls. 
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With this value of ¢ at a bond length of 2 bohr we find 

(T(H2") )icg+ = 0.5871 Ha (U(H2"))1o,+ = —1.1726 Ha Ha 

and so for the virial test we have 

(TCHS) n= 0587s mane 

(OC) Sn Gs eee 

For the optimized decay constant, the virial theorem is satisfied within the significance 

of the data. The total energy is also lower than that obtained with the rigid orbital model 

and we now have an estimated bond formation energy of —0.0855 Ha or —224kJ mol '. 

This is now remarkably close to the 255 kJ mol! for the bond energy given in Table 7.1, 

considering that we have neglected the zero-point vibrational energy and the basis is still 

quite simple (see Appendix 11). 

Note that now the electron kinetic energy is greater than the atomic reference state 

and stability is provided by the lower potential energy. The shrinking of the AOs around 

the nuclei increases the electron—nuclear favourable interactions and now outweighs the 

nuclear—nuclear repulsion. 

A plot of the bond formation energy as a function of the nuclear separation with the 

decay constant optimized is given in Figure A10.12a. The minimum for the total energy 

has now shifted to 2 bohr and the potential well is deeper than for the same calculation 

with the AO value of ¢. However, at large separation the potential is now incorrect, as the 

decay constant is too large for the atomic state. 
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Figure A10.12 (a) Plot of kinetic energy, potential energy contributions of and the total bond 

formation energy as a function of Rj2 using basis functions optimized at Ry, = 2 bohr, i.e. rigid 

orbitals with € = 1.238; the total energy plot for the rigid atomic basis functions (¢ = 1) is 

included for comparison. (b) Plot of the energy contributions and total with the basis decay 

constant obtained by minimizing the total energy at each Rj, value. 

A more accurate picture can be obtained by optimizing the value of ¢ for each internu- 

clear separation so that the electron wavefunction responds to the changing environment 

as the molecule is formed. This has been done in Figure A10.12b, which shows that the 
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correct behaviour is obtained at large Rj. We can also see from this plot that, at relatively 

large separations (above 3.5 bohr), the main attraction results from a decrease in the elec- 

tron’s kinetic energy which acts against the repulsion generated by the potential terms. 

Only as the bond length approaches the observed H,* internuclear separation does the 

potential energy switch over to negative values, and the confinement of the electron gives 

a net positive kinetic energy. Thus, at the optimal bond length the attractive contribution 

to the bond formation energy comes from the potential energy terms. 

The same procedure can be followed for the first excited state, and the energy compo- 

nents and total as function of R,. are shown in Figure A10.12. At each point the decay 

constant has been optimized to give the lowest possible energy for the electron in the anti- 

bonding |20,*) orbital. The total energy is positive everywhere, tending to zero only at 

large R,. So, the excited state of H,* is unstable with respect to dissociation. The poten- 

tial energy is negative down to almost the H,* bond length, where it is practically zero. 

The molecule is actually destabilized by the increased kinetic energy in the antibonding 

state. 

The value obtained for the optimal decay constant reflects the electron response to the 

potential of the nuclei. Since the electron distribution in the antibonding orbital is quite 

different to that in the bonding state, we obtain different basis function decay constants 

for the two orbitals. The optimal values of ¢ as a function of the internuclear separation 

is plotted in Figure A10.13. We have already seen that for the ground state the basis func- 

tions in the |lo,*) orbital contract as the molecule is formed, leading to a lowering of the 

potential energy. In the excited state, the values of ¢ that minimize the total energy in the 

|20,*) orbital for R,. below around 4 bohr are less than | bohr~'. This corresponds to an 

expansion of the MO compared with that obtained with the atomic basis functions, which 

will tend to decrease the kinetic energy by confining the electron less closely. 
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Figure A10.13 The optimized values of the basis decay factor ¢ as a function of internuclear 
separation Rj, for the |10,*) (solid line) and |20,*+) (dashed line) MOs. 

An important point to note from this study of a relatively simple system is that the AO 
functions as derived for isolated atoms are not the ideal basis for constructing MOs. In 
‘real’ molecular systems the orbital shape adapts to the potential it experiences. For quan- 
titative work we require basis sets that can reproduce this by responding to the potential 
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of the nuclei and, for larger problems, to the potential of the other electrons. This has led 
to the development of multiple ¢ basis sets which can provide the required flexibility by 

mixing several functions of the same angular momentum but with differing radial decay 

constants. 

In this example, we could have taken the linear combination of one function with ¢ = 

| bohr~! and another with ¢ = 1.238 bohr~! and used that as the basis function on each H 

atom. By adjusting the coefficient of each function in this linear combination so that the 

total energy is always minimized, we could then reproduce the ‘ideal’ orbital shape at all 

R,» values from the optimal bond length to larger separations. The idea of multiple ¢ basis 

sets is encountered again in Appendix 11. 

Further Reading 

The use of the bra-ket notation is fully discussed in: 
Dirac PAM (1981) The Principles of Quantum Mechanics. Oxford Science Publications (ISBN 

0-19-852011-5). 

The solution of the H,* problem using elliptical polar coordinates and with more 

elaborate sets of basis functions can be found in: 
McQuarrie DA (2008) Quantum Chemistry. University Science Books (ISBN 978-1-891389-50-4). 

Ee rN see: http://www. 
wolfram.com/. 





Appendix 11 

H,O Molecular Orbital 
Calculation in C2, Symmetry 

The MOs plotted for molecules containing main-group elements in Chapter 7 were 
produced using restricted Hartree-Fock (RHF)-level calculations. In this approach the 
electron—nuclear and electron—electron interactions are taken into account in the Hamil- 
tonian through Coulomb and exchange integrals, as described in the Further Reading 

section at the end of this appendix. The term ‘restricted’ means that spin-up and spin-down 

electrons must occupy identical spatial orbitals. 

The inclusion of the electron—electron interaction in these calculations involves terms 

in the Hamiltionian for each MO which depend on the current shape of all the other 

occupied states. The shapes of the orbitals, in turn, are controlled by the sets of coeffi- 

cients in the SALCs that describe the MOs in terms of basis functions. The optimization 

of the SALCs involves finding the set of coefficients which minimize the total energy 

of the molecule. Each electron experiences the potential of all the others, and so the 

MOs affect one another’s energies. The problem must be solved in such a way that the 

electron-generated potentials and MOs are consistent with one another. 

The results of such self-consistent field (SCF) calculations appear as coefficients for the 

linear combination of basis functions used in the calculations. In Chapter 7 we used a sim- 

ple basis consisting of only one function per AO. However, we have seen in Appendix 10 

that these minimal basis sets do not give reliable energies even for the simple problem 

of H,* unless the basis function decay constants ¢ are adjusted. In calculations for larger 

molecules of the type discussed here, this is accommodated by the use of more complex 

basis sets. These allow the orbital radial flexibility to be described by combining several 

basis functions with differing, but fixed, values of ¢. 

In this appendix we will look in detail at the results for the H,O example from Chapter 7, 

which employed a set of basis functions developed by Pople and co-workers with the code 

name 6-31G. This code tells us about the types and numbers of functions used in the 
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calculations. The letter ‘G’ says that Gaussian-type functions are used for the radial part 

of the AOs; that is, for a Cartesian basis set the functions used are 

XG = Nx‘*y’z exp( —tr) (A11.1) 

where N is a normalization coefficient and the values of a, b and c are set by the angular 

momentum quantum number of the orbital. A set of basis functions for a particular angular 

momentum take all positive values of a, b and c for which / = a + b +c. For example, the 

set p-orbitals have / = 1 and p,, p, and p, are generated by taking a = 1, b= 1 andc = 

1 in turn with the other two powers set to zero. The radial decay of Equation (A11.1) is 

controlled by the value of the ¢ (zeta) parameter; the larger this is, the more slowly the 

function decays with the distance r from the nuclear centre. 

Gaussian functions have the useful property that the product of two neighbouring func- 

tions can be expressed as another Gaussian whose position and shape are easily related to 

the parent functions. Hartree-Fock calculations require a large number of integrals over 

products of basis functions. These generate accurate expectation values for the energy 

(kinetic, electron—nuclear, including the resonance integral and electron—electron) and 

overlap integrals mentioned in Section 7.2. The process of calculating these integrals is 

greatly speeded up by the use of Gaussian functions. However, in Appendix A9 we found 

that the radial solutions to the Schrédinger equation for the H atom decay with the expo- 

nential of r and not 7°. So, using a single Gaussian per AO will give a poor representation 

of the radial form of the AOs. To counter this, each basis function is generated from a set 

of Gaussian functions: 

C=) 9d KG) (A11.2) 
p=! 

The basis functions used in the calculation of MOs are these linear combinations of n Gaus- 

sian functions. The mixing of the Gaussians is controlled by the contraction coefficients 

d,, which are determined as part of the basis set parameterization. 

The Pople code tells us the level of contraction (value of n) for each component of the 

basis set. In 6-31G the core basis functions are built from six Gaussians, while each valence 

shell AO has one basis function consisting of three Gaussians and one single Gaussian. 

This means that, in the valence region, each atom has two sets of basis functions for each 

AO, allowing additional flexibility in the optimization of the radial decay of the functions 

for each particular MO. In an MO, all three functions can play a role. For example, the 

contribution of the C s-type basis functions to the 2a, MO of methane (see Figure 7.20) is 

shown in Figure Al1.1c. All three functions are used to represent the C(2s) AO, optimized 

for the environment of the molecule. 

The H,O calculation for the discussion in the main text was carried out within the C,, 

point group symmetry and the calculated coefficients for the MOs pictured in Figure 7.26 

are given in Tables All.1 (for a, MOs), Al1.2 (for b) MOs) and A11.3 (for b, MOs). 

Each table gives the energy and occupancy of the MO along with the coefficients of the 

constituent basis functions, reporting only those functions of the correct symmetry to take 

part in the orbital. Figure Al1.2a shows the coordinate system that was used in the cal- 

culation with the principal axis along Z and the molecule lying in the YZ plane. To judge 



HO Molecular Orbital Calculation in C,, Symmetry 403 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure A11.1__ The radial functions used with s-type basis functions for C atoms in the 6-31G 
basis set. a) The six primitive Gaussians (dashed lines) are shown scaled by their contraction 
coefficients (d, in equation A11.2). Their sum gives the contracted function (solid bold line) 
used for the core region. b) The three primitive Gaussians (dashed lines) scaled by the con- 
traction coefficients and the contracted function (solid bold line) used for the valence region. 
c) Example use of all three basis functions to form the C(2s) atomic orbital in the 2a, molecu- 
lar orbital of methane. The three basis functions are shown as dashed lines scaled by the SCF 
coefficients given in the formula. The resulting summed radial function is shown as the bold 
solid line. 

the effects of the coefficients on the MOs, Figure A11.2 also shows examples of a, basis 

functions. The valence functions on H are linked together, as either a, or b, representation. 

This means that only a single coefficient is needed in each MO for H atom Is functions 

and in an a, MO they will always appear with the same phase. When the MO coefficient 

for this basis is positive we show white Is orbitals (Figure Al1.1b); a negative coefficient 

will reverse the orbital phase, and so shading is included in Figure Al 1.1c. The same shad- 

ing is carried through to an O(2p.) basis function in Figure 11.1d and e, which can also 

contribute to a; symmetry MOs. 

Since each atom has two valence basis functions, there are two coefficients for H(s) in 

Tables Al1.1 and A11.2. Similarly, the O valence basis contains two coefficients per MO, 

one for the contraction of three Gaussians and one for the single Gaussian basis function. 

In addition, the O core basis function is a contraction of six Gaussians, and we note that 

only a single s-symmetry core function is required. 

The lowest lying MO is la,, which is simply the O(1s) core state, and so the only 

significant coefficient corresponds to the core basis function. This is much lower in energy 

than the valence shell orbitals (by almost 19 eV) and so is not involved in bonding and was 
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Table A11.2_ The calculated energy, occupancy and basis function 
coefficients for H,O MOs of b, symmetry. Values in square brackets 
indicate the level of contraction in the 6-31G basis set. 

Energy Occ. H(s) H(s) O(py) O(py) 
(eV) [3] [1] [3] [1] 

1b, —0.726 2 =0375 —0.162 0.504 0.262 
2b, 0.303 0 0.045 1.966 0.330 0.844 

Table A11.3 The calculated energy, occupancy and basis function 
coefficients for H,O MOs of b, symmetry. Values in square brackets 
indicate the level of contraction in the 6-31G basis set. 

get: 

—0.498 oe 
. See 

Br [1] 

+al (H(s)) —al (H(s)) 

ee = ~soyuals (e) AL 

H H 

+O(p.) —O(p,) 

Figure A11.2 a) The orientation of the H,O molecule in the reference axis system used in 
the calculation. b) The a, SALC of the H(s) basis functions and c) the affect of a negative 

coefficient in a molecular orbital. d) An O(p,) basis function and e) the affect of a negative 
coefficient on this. 

not drawn on the MO diagram of Figure 7.21. The first valence level MO is 2a, which is 

a bonding orbital since the H(s) functions and the valence O(s) all appear with coefficients 

of the same sign; the small coefficient on O(p,) shows that there is some mixing of the 2s 

and 2p, AOs even though they are well separated energetically. 

The linear combination for the 3a, MO is illustrated in Figure Al 1.3. Here, the H(1s) a, 

linear combination is out of phase with the O 2s and 2p, orbitals and so an antibonding MO 

results. The mixing of the O(2s) and O(2p.) in this way also diminishes the positive lobe 

of the O(2p.) orbital in the MO to the extent that it does not show up at the contour level 

used in the graphic. Table A1l1.1 indicates that this orbital is not occupied, so that, despite 

its clear antibonding character, it does not contribute to the bond energy of the molecule. 

The remaining occupied orbitals are 1b, (Table Al1.2) and 1b, (Table A11.3). The 1b, 

orbital is bonding between the O(2p,) orbital and the b, combination of the H(1s) orbitals 

while 1b, is the O(2p,) AO which is perpendicular to the molecular plane and nonbonding 

by symmetry. For this reason, only the O(p,) basis functions appear in Table A11.3. 
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3a, =0.19a,(H(s))° + 0.1 1a, (H(s))!+ 0.070(s)° — 0.170(s)? -0.290(s)! + 0.560(p.)° + EY 

Ne ee na 

oo 1, oie 
ee —sime ——__— 

~&- 

Figure A11.3_ The composition of the 3a, molecular orbital in HO. The basis functions are 

distinguished by superscripts giving the level of contraction in the 6-31G scheme, with the 
SALC of the H(s) functions indicated as a,. The sketches under each set of terms give the 

atomic orbitals represented and then these are combined into the molecular orbital. 

Further Reading 

A good general introduction to quantum theory and its use in chemistry is provided by: 
Atkins BW, Friedman RS (1997) Molecular Quantum Mechanics Oxford University Press (ISBN 

0-19-855947-X). 

The background theory and implementation of electronic structure theory is treated in 

even greater depth in: 
Szabo A, Ostland NS (1982) Modern Quantum Chemistry, Introduction to Advanced Electronic 

Structure Theory. McGraw-Hill (ISBN 0-07-062739-8). 



Appendix 12 

Character Tables 

This appendix lists the standard character tables for the point groups met in the main text. 

The right-hand columns indicate the irreducible representations for common functions of 

x, y, z and rotations around the Cartesian axes, R,, R, and R,. Parentheses are used to show 

degenerate sets of these functions. 

A12.1 Non-Axial Groups 

A12.2 Axial Groups 

These groups contain one or more rotational axes with no equivalent axes of order higher 

than 2. The first set, the C, groups, form the smallest rotational subgroups of the corre- 

sponding C,,, Con, Dra and D,,, groups. These should be used to simplify the projection 

operator method for C,, and C,,,, while the D,, groups listed later should be employed for 

projections in D,,g and D,», groups. 

A12.2.1. C, Groups 

Gel EP iG | 

2 yj ak 
9 op EG, OS A 1 i | Bake 

B XZ, YZ be 10 XV Raouky 

Molecular Symmetry David J. Willock 
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Give 2C3 

FA te Dei iene XY +y?, 2 
E — (x.V), (Ry Ry) I =, KY), Ve) 

it |) BIR ae a anes 

DaCOswy s 2 cos 144° 

Eee COs) (AASB ee OSe yen 

Gal) 2G 

AS | 1 1 
Ba ly 1 
IE, || 2 1 

By 2) 1 

x2 jhe y, Zr 

(x? — y?, xy), (xz, yZ) 

A, 1 | ik | Y+y, 7 

E 2 =| 0 (x, y), (Ry Ry) (xe 7 Ve XY), (xZ, yz) 



Character Tables 

Cr le En CG 20, 204 

Aa| ak 1 1 1 ne Kary ces 
Ax |e 1 | —1 -1]/R, 
B, 1 =| 1 i =4 x? — y? 

By 1 —1 il —] 1 Xy 

E 2 O -2 O OT TCV Ree isp) I XZ, ¥Z) 

2G 5 Oy, 

1 i eZ x + y?, Z 
1 | —1/R, 

E, Dee COST 22 2 cos 144° OK, YR || KZ, V2) 

ig | 2 Deesiaee Mees 72° 0 (x? — y?, xy) 

(Ga B Ges 2C3 SOx, 

Ayal a 1 1 
A> | 1 1 | 
By | i =1 1 
Bole, 4 1 
E, 2 1 —1 
Es | 2 4 —1 

A12.2.4 C,, Groups 

Cr We G / Oh 

Ag \o1 1 1 PRE Ka Vy 
Ha 1 -1 De RyRy lexz yz 

AG Mh al 1 -1 -1)]z 
By | =i) =1 il |} 3%, SY 

Goh E 2C3 On 253 

i 1 1 it | OR re +y*,Z 

ae sea 2 St | Gy) (x? — y*, xy) 
Ale \anll 1 —-1 -1]2z 
E21 2 TR Ry a (xz V2) 

(Gras E En CG / Sa On 

Age 1 1 1 TR XE Wan 
Bea alee 1 1 -1 1 x? — y?, xy 
legs Wee OP 2 D Oa RR XZ, ys 

Jae, |b 1 1 to =f |= =i | 2 
Baal al 1 -1 1 -1 

é, | 2 QO -2 -2 0 Da xeay,) 

409 
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2G; 2G Of 25s 
253 

| 1 ile 4 

DiCOSe/2 2 cos 144° D2 PI TDP 

DECOSHIA Ace AC OSWew 2 2 cos 144° 

1 | =e 

2D COS f° 2 cos 144° —2 —2cos72° 

Dees (442 Yio 7 —2 —2cos 144° 

inal NR i?) a ME, (GS fh BSe 

1 

2 cos 144° 

DGB MOE 

—1 

—2 cos 144° 

— COs ie 

ho h |] Aa] NHN — — 

— _— _— _ 
| — 

A12.2.5 D, Groups 

x2 + ae Zz 

(Ry Ry) | OZ, YZ) 
(x? ne ie xy) 

The D, groups are rotational sub-roups of the D,4 and D,, groups that include the hori- 

zontal C, axes. These should be used to simplify the projection operator method for Dyg 

and D,,. 

De 

A | 1 
Bi || 
Bs |) 
Bavi\enl 

ID; | 16 2G, 

Ay | 1 1 9 dt 

Aa || 1 
B —1 

PaCOSWae a 2 cos 144° 0 

E, 2 cos 144° 2 cos 72° 0 

1 
| 

le |) 2 
2 

ee 
Moh 

(x? — y?, xy), (xz, yZ) 



B 

NOUNS hoe 
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Ds | EC, 2G. 3G 

A 1 1 1 1 x2 atte 7 2 
YZ 

Agi 1 1 =i) = aR: 

By} 1 —1 —1 | 

Pet sand elt Ge O 0 | (, y), (Rey Ry) | (xz, yz) 
Be Nee = 0 0 (x? — y?, xy) 

26s 204 

1 1 Keay, 2 
—-1 -1 

1 =| x2 = Ve 

=| 1 Xy 

0) 0 (yZ, XZ) 

IKE: 3G, I 2S¢ 

1 1 1 1 v+y?, 2 
—1 1 1 

- Oo 2 =1 Sy? xy (XZ AZ) 
1 -1 -1 

—1 -1 -1 
= O -2 | 

x ae Veo 2 

Oe Ve XY) 
(xZ, yZ) 

2C5 2057 2510° 2510 5a 

1 1 1 1 1 x? + y?, 2? 
1 1 —1 1 —1]R, 

2 cos 72° 2 cos 144° 0 DECOS ae 2 cos 144° = O| (Rx, Ry)| (xz, yz) 

2 cos 144° 2 cos 72° 0 2 cos 144° 2 cos 72° 0 (x? — y?, xy) 

1 1 1 —1 —1 

1 1 —1 —1 (i zZ 

DZ eosy/2— 2 cos (44250 —2cos72° —2cos144° 0} (x, y) 

2 cos 144° 2 cos 72° 0 —2co0s 144° —2cos72° 0 
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Daye 2G; Ge Ser 255 285) Wa, 

Ao 1 ime 1 1 + y7, 27 
Poy il 1 —1 (ed | —1]R, 

EY |2 2ee 2? LPesiWze © 2 Deeg 7s 2 cos 144° OFMOGy) 

Er 2 2cos 144° 2 cos 72° O22 cos 144°" 2 cos’ 72” 0 (x2 — y?, xy) 
Agel Wl 1 1-1 -1 —1 —1 

Ax MN 1 —1 -1 -1 —] eZ 

Ed eee COST ee COse 44 Ole DCOSH2e 2 Cos [AAS = On| (Re Ry)| (xz, yz) 

lex’ | 2 Bees idee 2 eos 72° QO —2 —2cos144° —2cos72° 0 

Dw |e 2G, 26) Gy 3G SG DS SoC OOO OF 

Ae en ee ait | | LW ithe SOU Lae clad en) Z 
Arg | I 1 1 1 -1 1 1 | (| 1 -—1 -1 IR 

Bye lt 1 -1 1 1 1 -1 1 -1 1 —-1 

Bo, | tI 1 -—-1 -1 1 1 —-1 1 -1 —-1 1 

Eig. 12 1 -1 -2 0 0 2 1 -1 -2 0 0 (Re Re) | MXZh Vz) 

Ee, ||2 =) =! 2 0 0 2 -1 -!1 2 O O (x? — y’, xy) 

Anil 1 1 1 1 1 —-1 -1 -—-1 -1 -1 -!1 

Ni |) ll 1 1 il 1 1 1 1 1 1 1 1 Z 

By, | 1 1 1 -1 1 1 -1 1 —-1 1 —-1 1 

By, | 1 —1 1 -—-1 -!1 1 -1 1 —-1 1 1 -1 

Eel ez: 1 -1 -2 0 O -—2 -!1 1 2 O O (x,y) 

Fy, |2 -1 —-1 D O O -2 1 1 -—2 0 O 

A12.3. Cubic Groups 

A12.3.1  Tetrahedral, 7, 

et Ea Ce Gm OS, OG, 

AG al i 1 1 x+y? +2? 
Aleve ety 
—E|2 -1 2 Se =e) 
RA 3 oO -1 Weel LCR Ry eis) 

ii 3 QO =-1 = TRV) (XZ, YZ, XY) 

PE sEeresG, 8G 

A 1 1 x? + We EZ: 

ileoest 2 (z?,x? — y’) 
Woe Ope IRE Ry Ra) M72) | OZ YZ, xy) 
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A12.3.3. Octahedral, O, 

6C, 3C,(=C,y) 7 654, 855 30, 604 co & D ® 

Ave || i 1 1 1 1 1 1 1 1 

xen \ | 1 -1 -1 1 1 -1 1 1 —-1 

Eee |wom al 0 2 2 QO —-1 2 

Tig | 3 Oo -1 1 —1 3 1 O -1 -1 

Ee \ 2 0 1 —-1 —1 3-1 O -!1 1 (XZ, YZ, XY) 

PX |) 1 1 1 1 —1 -—1 -1 -1 -!I 

Ion | 1 -1 -1 1 —1 1 -1 -1 1 

[Ere Vay 0 2 —2 1 -2 0 

Tes Oo -1 1 —1 —3 —-1 0 1 PO Ve 

ibe | 0 ‘el —1 —3 1 O 1 -1 

= ial 6 ah Ager Pa Cope) 

1 

1 ] 

1 1 ae 

2 2 cos(®) 0 Pe COS O) aoe 0 XZVZ 

g\ 2 ~2°cos(2®) 0 De 2 COS QD ae: 0 (x? — y*), xy 

Ds i ei ot ih erent Sel ao ete 
eaeeail. ct Sa ll etl a ean 1 

1H 2 2 cos(®) QO —2 2 cos(®) on ORGY) 

Ay | 2 —2 cos(2) 0 



Index 

Abelian groups 50 
Absorption 

infrared (IR) 5, 165, 173-7, 187, 336, 337 
in Raman spectroscopy 180-1 
Stokes/anti-Stokes 180-1, 343-44 

Absorption bands _ 5, 167, 169 
Alkenes, epoxidation of 53 
Allene 61 

Allred and Rochow scale 246 
‘All space’ integration 231 

Amines 49 
Ammonia 

bending mode 126 

bond order for 267 

degenerate irreducible representations 
98-100 

as Lewis base 267-8 
‘lone pair’ electrons in 267 

matrix representations 85-8 

multiplication table 29-31, 39, 43 

N—H bonds 98-100, 126, 198, 199, 318 
N—H stretching modes 195, 198-200, 213 

reflection operation 87 
structure of 7 

symmetry elements 7, 29 

symmetry operations 7 

vibrational stretching modes 126 
Angular equation 348-56, 368-9, 373 

Angular frequency 327 

Angular functions 368 
Angular integrals 364-7 

Angular momentum 356-9, 362 

defining units of 345-6 
higher 239 

quantum number 349, 352, 361 
Angular velocity 355, 356, 357 
Anharmonic corrections 167 
Anion and cation pair 239 
Antibonding orbitals 225, 237-9, 249, 251 

Anti-Stokes absorption 181, 182, 343-4 
Anti-Stokes bands 181, 183 
Anti-Stokes radiation 344 
AOs see Atomic orbitals 
Arbitrary states 336 

Arbitrary transitions 336-7 
Aromatic molecules 221, 222, 224 

Asymmetric molecules 46 
Atmospheric pollutants 277 
Atomic displacements 334, 338 
Atomic orbitals 

comparison with water waves 221 
functions 129, 160,224 

in heteronuclear diatomics 276-8 
higher angular momentum 239 
in homonuclear diatomics 270-6 
of hydrogen 345-73 
hydrogen-like 233, 239-51 
linear combination model 228 

molecular orbital energy and 225, 239-42, 
248, 251, 295 

in molecular orbital theory 219, 221, 295 
nonbonding by symmetry 250, 296 
out of phase 221, 222 
in phase 221 

radial behaviour of 239-42 
reducible representations for 161 
relative energies of 242-51 
rigid 393-95 
see also d—orbitals, p—orbitals, s—orbitals 

Atomic unit system 241, 372, 375 

Atoms 

chemical bond strengths 204 
chemically equivalent 19 
degrees of freedom 110, 112, 122, 123, 125 

heavy 278-84, 367 

hydrogen-like 345, 354, 361, 365 

masses of 193, 204, 326-8, 331, 334 

neutral gas-phase 248 

properties 364 
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416 Index 

Atoms (Continued) 

relative motion 204 

symmetry-inequivalent 202-6 

valency 241-2 

Atropine 50 
Avagadro constant 377 

Axial groups 55-64, 407-13 

Basis functions 93, 118, 121, 236 
in basis sets 126, 236 

in computer packages 236 
in constructing molecular orbitals 

6-31G set 401-406 
in reducible representations 91 
operations on sets of 87, 102 

SALCs and 191 
Basis sets 126-8, 236, 399 

Basis vectors 119, 122, 190 

in basis sets 126 

characters 93 

generating 195, 196, 198 
in linear combinations 196 

multiplying by matrix 318 

orthogonal 194 

subsets 202, 203, 216 

symmetry-related 202 
use in matrix representations 

vector dot product of 193 

Benzene 187 

C—H stretch modes 

degrees of freedom 5 
infrared (IR)-active modes 208, 210, 212 

infrared (IR) spectrum 3, 5, 206, 208-9 

mirror planesin 12 
molecular vibrations analysis 

structure of 4, 8,9 

symmetry elements 8,9 

symmetry operations 8, 9 
vibrational modes 5 

Beryllium hydride 252-3 
Bicyclo[2.2.2]octane 20 

Bimetallic complexes 50 

Bohr, Niels 356 

Bohr radius 231, 241, 360, 361, 364, 380 
as unit of length 356, 376 

Boltzmann constant 336 

Boltzmann distribution 328 

Bond compression/extension 212, 342 

Bond dissociation energy 226, 234, 238 

for diatomic molecules 244, 245, 246 

for polyatomic molecules 227 

Bond energies 225-39 

Bond enthalpy change 225 

Bond formation energy 228, 237, 380-2, 389 

239-40 

82-8, 102 

206, 210, 212 

206-12 

Bonding 

chemical 6, 203-4, 212, 219-95, 375-99 

electronic 178 
orbitals 225, 236-9, 251, 255, 295 

Bonding—antibonding interactions 278 

Bond lengths 237, 238, 245 \ 

Bond order 238-9, 267 
Bond strengths 193, 238 
Born—Oppenheimer approximation 340, 341 
Born interpretation 222-5, 229, 231 

Boron hydride 253-8 

Boron trifluoride 
character assignment 88-91 
improper rotation 36, 37 
rotational symmetry elements of 11 

Boundary conditions 350-1, 371-3 
Bowl of Fruit, Violin and Bottle 75, 76 
Bra-ket notation 377, 382 

Bra-ket pairs 379 
Buckminsterfullerene 65 

Cy, point group 117 

Cy, point group 204, 253 

character tables for 92, 123 

examples of 58 
guitar sound board comparison 106 
infrared (IR)-active modes 170, 173 

irreducible representations 116, 168 
matrix representations for symmetry 

operations 82-5, 91 

mer-isomers 213, 214 
multiplication tables for 
operations 193, 195 
order of 116 
reducible representations 91-3 
symmetry representations and characters 

75-81 
vibrational modes in 122-6 

Cy, symmetry, molecular orbital calculations in 

401-406 
C3, point group 198, 202, 264-5 

character table for 98 
degenerate irreducible representations 

98-100 
examples of 58 
geometry of 265, 268 
matrix reresentations of symmetry operations 

85-8 
reducible representations 9 
reflection operation 87 

C.»point group 229, 414 

C., point group 65, 276, 336, 414 

symmetry 186, 244, 248 
Cahn—Ingold—Prelog rules 41, 303-6 
Carbon dioxide 154, 173-6, 187 

81-2, 85 



Carbon monoxide 276, 277, 278 
Carbonyl ligands 126-8 
Cartesian axis system 10-11, 130, 131 
Cartesian coordinates 346, 347, 348 
Centre of symmetry 13 
Centrifugal effect 359 
Centripetal force 356, 359 
Character representations 
Character tables 

for C,.,point groups 414 
for C,, point groups 409-10 

for C, point groups 407-8 
for C,, point groups 408-9 
for D,,point groups 414 
for D,apoint groups 411-12 
for D,, point groups 412-13 
for D, point groups 410-11 
for non-axial groups 407 
for octahedral groups O, 414 
for S, point groups 408 

for tetrahedral groups Ty, 413 
Charge density 222, 223 

81-2, 119 

Chemical bond energy 232-6, 233, 375, 376, 
393-9 

Chemical bonding see Bonding 
Chemical shifts 18—22, 23 

Chessboard pattern 322, 323 

Chiral centre 42, 303-6 

Chirality 41-2, 46 
Chiral molecules 41-2 

1-chloro-1-fluoroethane 

Chloroform 58 

Classes of operations 51, 93-6, 112-18 

Classical mechanics 325, 357, 373, 379 

Closed groups 26-37, 43, 47 
Co-factors 323 

Complex conjugates 373 

Complex exponentials 367, 370, 371, 372 

Contraction effect 236 

Coordinates 

Cartesian 

cylindrical polar 
electron 364 

elliptical polar 384 
spherical polar 347, 358, 362, 363, 

369, 383 

systems 347, 358, 369, 383-5 

Coulomb energy 387 

Coulomb field 239 

Coulomb force 354, 355 

Coulomb integrals 401 

Coulomb interactions 225, 359, 377, 

380, 392 

Coulomb potential 379 
Coulomb’s law 228, 380, 392 

304, 305 

346, 347, 348 
383-86 

Index 

Coupling 165, 167 

factors 177, 183 

integral 336 

between light and molecule 215 
matrix 336, 340 

vibrational 263 

Covalent bonds 238, 244 

Crystal fields 290 

Crystal structures 6 
Crystal symmetry 24 

Cube 

model 308 
octahedron and 67-9 

symmetry of 65, 66, 68-9 
tetrahedron and 66-7, 137, 307 

Cubic groups 65-9, 413-14 
Cusps 385 

Cyanide complexes 156 
Cyclic groups 50-4, 407-8 

Cyclohexane 24, 69-72 

Cyclopentadiene ring 7 
Cyclopropane 112, 113 

Cylindrical polar coordinates 
Cylindrical polar systems 383 

383-5 

D2, point group 188, 189, 198, 278-83 

D3, point group 61, 101, 115 
D3, point group 147-53, 254, 257, 268 

carbonyl stretching modes 126-8 
character assignment 88-91 

complexes 171 

symmetry elements and operations 
112-14, 270 

D4, point group 119, 132-7 

applying reduction formula to 
character table 93 
classes of operations 

complexes 287-91 

degenerate irreducible representations 
symmetry elements and operations 

114, 115 
Ds, point group 117, 118 
Dg, point group 206-12 

120-121 

93-6 

417 

96-8 

Dacn point group 65, 154, 156, 173, 186, 228, 
252, 270, 296 

character table 155 

d-orbitals in 156, 158, 159, 162, 184 

infrared (IR)-active vibrations 172 

p-orbitals in 157, 158 

symmetry 244, 392 
Decay constant 396-9, 403 

Degenerate reperesentations 96-8, 100, 
198, 263 

projection operator and 198-202, 216 



418 Index 

Degrees of freedom 
angular 347, 349, 362 

atomic 110, 122, 123, 125 

benzene and fluorobenzene 5 

in diatomic molecules 325 

electronic 339-40 

molecular 5, 107, 110, 122, 325 

nonlinear molecules and _ 5, 110 

nuclear 339 

radial 347 

rotational 339 

translational 339 

D-electrons 128 

Density functional theory 239 
Density plots 235 
Destructive interference 266 

Determinants 317-24 
Diagonal matrix elements 85-7 

Diatomic gases 225 
Diatomic molecules 163, 178, 296 

antibonding orbitals in 225 
bond dissociation energy of 245, 

246, 296 
bonding orbitals in 225 
bond lengths 245 
bond stretching mode 127 
in C,,, and D,., point groups 

degrees of freedomin 325 
electron density in 244 
heteronuclear 229, 245, 276-8 

ionization potentials 244 
lithium hydride as 246 
molecular vibrations in 325, 328 
of second-row elements 270-8 
symmetry axisin 48 
see also Homonuclear diatomic 

molecules 
(1S, 2R)-1, 2-dichloro-1, 2-difluoroethane 50 

1, 2-dichloroethene 185, 186, 190, 191 

Dichlorofluoromethane 49 
Dichloromethane 47 

Di-cyclopentadienyl iron(II) see 

65, 244 

Ferrocene 

Differential equations 372, 374 

Difluorobenzene 24, 190 

1, 4-difluorobenzene 188 

C—H stretch modes of 

structure of 187, 189 
Dihedral mirror planes 12, 23 

Dihydrogen cations 233, 375-99 

bond formation energy 380-93 
chemical bonding in 375-99 

choice of coordinate system for 383-5 

electronic potential energy in 387-93 

electron kinetic energy in 386-7 

188-9, 197-8, 202 

molecular orbitals of | 228-32 
wavefunction for 244-5 

Dimethylcyclohexene 20, 21 

(1S, 2S)-1, 2-dimethylcyclopropane 52 

(E)-1, 2-diphenylethene 58, 59 
Dipole moment 216, 328, 335, 337, 340 

operator 168-9 
see also Permanent dipole moment, 

Transition dipole moment 

Dirac notation 377, 378 

Dirac, Paul 377 

Direct products 79-81, 169, 170, 215 

Dissociation process 226 
D-orbitals 201, 245 

in complexes with O, and Daj 

symmetries 291 
in D,., point group 56, 158-61 
finding characters for 256 
functional forms of 129 
in transition metal complexes 128-53 

Electric dipole 343 
Electric fields 335, 343 

see also Electromagnetic fields 

Electromagnetic energy 356 
Electromagnetic fields 167 

see also Electric fields 
Electromagnetic waves 

Electron density 
Born interpretation and 229-31 

chemical bonding and 235 
in diatomic molecules 244 

external electric field and 343 
intermolecular interactions and 251 

Mapee2225223 
molecular orbitals and 219, 224 

in Raman spectroscopy 181-4 

in (Z)-N-methyl-C-phenylnitrone 222, 
223525 

see also Charge density; “Lone pair’ density 
Electronegativity, 244-51, 295, 335 

Electronic bonding see Bonding 

Electronic excitation 177-80, 221, 339, 340 

see also Excited vibrational states 

Electronic spectroscopy 136 

Electronic states 162, 165-9, 177-81, 234, 
339-40 

Electronic transitions 

Electrons 

affinity 246, 250 
binding energy of 263 
coordinates 364 

d- 128 

kinetic energy of 234, 235, 263, 378, 379 
mass of 341, 372 

328,335 

180, 181, 341 



potential energy of 234, 235, 347, 378, 379 
see also Electron density 

Electron spin resonance 222 
Elliptical polar coordinates 384 
Enantiomers 41, 42, 46 

Energy levels 166, 336 
atomic 242 

electrons and 225 

in MO diagrams 239 

in molecular systems | 
orbital 227 

transitions 215, 336 

vibrational 226, 339 

Energy states 165, 167 
Epoxidation 53 
Equivalent atoms 
Equivalent axes 8 
Equivalent operations 
E representations 198 
Escher, M.C. 1 

Ethane 50, 60 
improper rotation operation 33-5 
methyl groups of 37 

mirror planes 12-13 
multiplication table 39, 40 

products of operations 39 
symmetry elements 31, 32, 39 
symmetry operations 31, 32, 33, 37, 39 
symmetry point group 31, 33 

Ethene 9-10, 62, 63, 278-84, 294 
Ethylene 65 

Euler, Leonard 371, 372, 373 

Euler’s equality 350, 372, 373 

Exchange integrals 401 

Excited vibrational states 
341, 342 

see also Electronic excitation; Electronic 

states 
Expectation values 234, 364-7, 378 

Exponential decay factor 381 

37-8 

37-8 

PINS, PAGS, BB!) 3)3h2) 

Facial (fac) isomers 212-15 

Fern frond 3,4 

Ferrocene 6, 7, 8, 62 

First-row elements 243 

Fish, Vignette 1,2 

Fluorobenzene 3-5, 26, 58 

Franck—Condon principle 179-81, 339-41 
Free radicals 277 

Furan 58 

Gaussian functions 330, 331, 333, 402, 403 

Gerade 101, 228-9, 286 
Global axis system 29, 39, 43 

Global coordinate system 39, 291 

Index 419 

Gold production 156 
Greenhouse gases 173-7 

Ground states 168, 335, 337 

bonding forces 180, 225 
of electrons 234, 341 

molecular vibration in 167 

vibrations 215, 342 

see also Electronic states 

Guitar sound board 105-7 

Haem 18, 276-7 

Haemoglobin 18, 277 

Halogens 292, 294 
Hamiltonian operator 

Handedness 303-6 

Harmonic approximation 
333, 342 

Harmonic oscillator 

331,310 
classical 332, 333 

energy levels of 264 

wavefunctions 168, 332, 335 

Hartree-Fock approximation 244 

Hartree-Fock calculations 401, 402 

Hartree-Fock theory 239 

Hartree (energy unit) 376, 377 

Hermite polynomials 333, 335, 337, 342 

233, 236, 239, 401 

HOMR2 20325); 

Sy ID), Bake SIS 

Heteronuclear diatomic molecules 229, 245, 

276-8 

Hexaaquo complexes 72-3, 285, 287 

Hexagons | 

Hexatriene 283, 284 

H—F molecule 325-8 

Homolytic cleavage processes 227 

Homonuclear diatomic molecules 

atmospheric gases present as 173 

bond dissociation energies of 245 

bond stretch of 184 

comparison with heteronuclear 
molecules 229 

molecular orbitals in 

of second-row elements 

HOMO orbitals 283 

Hooke’s law 326 

Horizontal mirror planes 23 
Horsehead Nebula 163, 164, 177 

Hubble Space Telescope Imaging Spectrograph 

(STIS) 164 

Hybridization 
in ammonia 265 

of C atom orbitals 263 

inethene 281 

in heteronuclear diatomics 277 

in homonuclear diatomics 272, 273, 276 

270-6, 281 
270-6 



420 Index 

Hybrid orbitals 
inammonia 265-8 

inethene 282, 283 

Hybrid states 267 

Hydrogen 
atom 233, 234, 366, 376-9 
atomic orbitals of | 345-73 

bond energy for 225 
bond order 238 
cation 375-99 
covalent bondin 244 

interstellar 177 
molecular orbitals 228-32, 242, 247 

stretching mode 172 
vibrational excitaton 163, 177 
see also Hydrogen-like atoms; Hydrogen- 

like atomic orbitals 

Hydrogen cyanide 65 
Hydrogen fluoride 172, 244-51 
Hydrogen-like atomic orbitals 129, 233, 

239-51 
Hydrogen-like atoms 
Hydroxyl 227 

345, 354, 361, 365 

ee 727K) 
Identity matrix 321, 324 

Identity operation 28, 38, 43 
Imaginary numbers 223, 224, 332, 350, 370-1 

Imaginary parts 367, 368, 370 

Improper rotations 31-8 
axes 236, 42,50, 52 

definition 32 

equivalences for 34-7 
of even order 34, 38 

inverse for 38-9 

of odd order 37, 38 
Infarared (IR) spectroscopy 

184-6, 215, 325-36 
Infinity 154 
Infrared (IR) absorption 165, 172-7, 336, 337 
Infrared (IR)-active modes 184, 185, 187, 189 

Infrared (IR) radiation 173, 176, 177 

Infrared (IR) spectra 3,5, 185, 186, 189, 

PIN, PIN) 
Infrared (IR) spectrometer 177 

Inorganic complexes 276-7 
Insulating solids 276 

Integrals 

angular 364-5 
Coulomb 401 

exchange 401 

overlap 232, 238, 249, 341 
radial 365-7 

resonance 237, 239 
Integration by parts method 365 

163, 165-73, 

Interaction energy 228 
Interference 219-22, 224 

Interstellar gas 177 

Inverses 
of matrices 
of operations 

Inversion centre 
Inversion operations 
Ionic bonds 239, 249 

Ionization energies 
for first-row elements 243 
in homonuclear diatomics 274-6 
for second-row elements 241, 243 

IR absorption see Infrared (IR) absorption 

Iron tetranitrosyl! 217 
IR radiation see Infrared (IR) radiation 

Irreducible representations 9i-—3, 102 
B representations 100-1 

definition 77 
degenerate 96-8, 100, 198-202 
deriving for water molecule 110 

E representations 100, 101 
gerade 101 
labelling of 100-1 

molecular vibrations and 
nondegenerate 100, 335 
orthogonal 117, 118, 249 
properties of point groups and 112-18 

reduction formula and 118-122 
Arepresentations 100, 102 
for single objects (nondegenerate) 100, 335 
of transition dipole moment integrand 168 
T representations 101, 102 
ungerade 172 

in vibrational spectroscopy 165 

Irreducible symmetries 165 
IR spectroscopy see (IR) Infrared spectroscopy 

323, 324 
38-9,43 
5-6, 13-15, 23,42 

14, 15, 17, 43 

107-9, 335-6 

Jahn-Teller effect 72, 287-91 

Kinetic energy 326-8, 340 
chemical bonds and 375 

in dihydrogen cation 381-3 

of electrons 225, 234, 235, 263, 378, 379 

operator 329, 334, 346, 359 

Ladder of states 166 
Laguerre polynomials 360 
Laplacian operator 357, 377 

applying to molecular orbitals 386 
in Cartesian coordinates 346 
in spherical polar coordinates 347, 348, 379 

Laser 178 
Legendre polynomials 351 
Lens optics 14 



Lewis acids 258, 295 

Ligands 

bonds with metals 142, 147, 151 

carbonyl 126-8 

cis-L 13 

fields 129, 161, 290-1, 292-5 

orbitals of —284—95 

salen 53 

tetra-dentate 17,53 

in transition metal complexes 72-3, 126, 
291-5 

trans-L 12-13 

triphenylphosphine 53 
o-donor 284~-7, 294 

Light 

coupling with molecules 215 

electric field of 167 

exposure of molecules to 167 
frequency 242 

in IR spectroscopy 335 
molecular response to 343 
scattered 344 

ultraviolet (UV) 164, 177, 181, 

291, 343 

visible frequency 181 
see also Infrared (IR) radiation 

Limonene 41, 305, 306 

Linear combinations 190-3 

Linear equations 321-4 
Linear molecules 154-60, 172 

point groups for (C..y and D.,) 64-5, 414 

rotation around molecular axis 187 

Linear momentum 355-7 

Linear triatomic molecules 173, 176 

Lithium fluoride 244-51 

Lithium hydride 246, 248, 249 

‘Lone pair’ density 223, 251, 268, 

270, 303 

LUMO orbitals 283 

Magnetic field 18 
Mathematica 384, 394, 395 

Matrices 
definition of 83 
elements of 85-7 
inverses of 321, 323, 324 
for operation products 320 
orthogonal 323 
products of 318-19 
as representations of symmetry operations 

82-5, 314-17, 323, 324 
for solving sets of linear equations 321-4 

Squatemes I 753211 
trace of 87-8, 92, 102 

Meridian (mer) isomers 212-15 

Index 421 

Metal-ligand bonds 143, 147, 294 

Methane 

C—H bonds 258, 263 

C—H stretching modes 176-7 

as greenhouse gas 173 

infrared (IR) active modes 177 

molecular orbitals in 258-64 

photoelectron spectrum 263 

tetrahedral geometry of 65 

Methyl groups 21, 22 

(Z)-N-methyl-C-phenylnitrone 222-3, 251 

Minimum energy point 166 

Mirror planes 5-6, 17 

in axial groups 55-9 

chirality and 42 

dihedral 12, 23 

horizontal 11, 12, 23 

multiple 11 

simple 42 

vertical 11, 12, 23 

see also Planes of symmetry 

Molecular classification 45-7 

Molecular energy calculations 227, 228 

Molecular orbitals 51, 219, 221, 222, 227, 

228, 244 

antibonding 225, 237-9, 249, 251 

basis functions in construction of 239, 240 

in beryllium hydride 252-3 

bonding 228, 235, 237-9, 249, 251, 
282-3, 295 

in boron hydride 253-8 

chemical bond energy from 232-6 

constructing from atomic orbitals 219 

diagrams 244, 248, 252, 294 

in diatomic molecules 225, 270-6 

in dihydrogen cations 228-32 

electron density and 219, 224 

energy 236-7 

inethene 278-83 

in hydrogen 228-32, 237 

of lithium hydride 248, 249 

in methane 258-64 

node feature in 387 

normalization condition 234 

occupied (HOMO) 223, 224, 225, 253 

in octahedral complexes 285-7 

optimal radial decay of 396-7 

ordering of 219 

polarization of 296 

in polyatomic molecules with multiple heavy 
atoms 278-84 

unoccupied (LUMO) 224, 225, 253 



422 Index 

Molecular vibrations p-orbitals in 146-7, 2846 

classical mechanics analysis 325-8 s-orbitals in 286 

in diatomic molecules 325, 326 Octahedral groups O, 65-9, 114, 142-8, 414 

in ground state 167 Octahedron 

independence of 118 subeand G78 

infrared absorption and = 165 wpdel 313215 \ 

quantitative description of 206 f : Pelee eG 

quantum mechanics analysis 328-33 TEICTENES 25 2)? 

representations 107-12, 190-1, 335 symmetry of 68-9 
in water 122 Off-diagonal matrix elements 85-7 

see also Vibrational modes Operator products 320 

Moment of inertia 357 Orbital plots 235 

Momentum 239, 356-9, 364 Orbitals 

Monatomic gases 225-6, 238 antibonding 225, 237-9, 249, 251 
Morse curve 178, 179, 180, 226, 341 bonding 225, 236-9, 249, 251, 295 

Morse potential 180 
MOs see Molecular orbitals 

Mulliken, R.S. 100, 101 

Mulliken scale 246 

calculation 89 

HOMO 283 

hybrid 265-8, 282, 283 

Multicomponent catalytic converters 277 of ligands | 284-95 
Multi-electron states (term states) 136 LUMO 283 

m— 283, 284 

Nebulae 163, 164, 177 reference 295, 296 

Neutral radicals 227 s- 129, 228, 229, 236, 266 
Newton’s law 355 o- 283, 285-90 
Nitrogen 173, 264 
Nitrogen (II) oxide (NO) 276, 278 

Nitrones 222, 251 

See also Atomic orbitals, d—orbitals, 

Molecular orbitals; p—orbitals 

Nitroxide radicals 222 Ducn 163 , 164 

NMR see Nuclear magnetic resonance Orthogonality 117-19, 232 
Nodes 235, 240, 387, 393 Orthogonal matrices 323 

Nonaxial groups (C,, Cj, C;) 48-50, 69, 407 Oscillating fields 328 

Nonbonding states 250, 253 Oscillation 327, 328, 331 
Nondegenerate representations 100, 335 Out-of-plane movements 212 

Noninteger characters 88-91 Overlap integrals 232, 238, 249 
Nonlinear molecules 5, 110, 122, 186, 187 Overtones’ 1679325 

degrees of freedom 5, 110 

Normalization 131-2, 193-5, 232, 333 

see also Renormalization 

Normal-mode coordinate 335 

Nuclear magnetic resonance (NMR) 

Oxygen 17-18, 173 

Ozone depletion 277 

andes Pasteur, Louis 45, 46 

chemical shifts 18-23 Pauling, Linus 245, 246 
experiments Oma Pauling scale 247, 248 

machine 18 Periodic table 239, 241, 242, 250, 264 

spectra 18-19, 21 Periodic systems 6 

spectroscopy 18, 37 Permanent dipole moment 336 

Nuclear mass 345 see also Dipole moment 

PES see Photoelectron spectrum 
Octahedral complexes 2 NE 

p-functions 240 
o-donor ligands in 284-7 
d-orbitals in 142-8, 284—7 Phenanthrene 221, 222, 224, 225, 235 

ligand orbitals of m-symmetry in 291-5 Phenyl 53 
molecular orbitals in 286 Phosphazenes 54 

normal orientation 213 Photoelectron spectrum (PES) 263, 274-6 



Photon energy 

angular frequency 331 

electron kinetic energy and 263 

in infrared absorption 165, 167, 337 
ionization energy and 243 
molecular orbitals and 221 
in Raman spectroscopy 177-8, 180 
in Rayleigh scattering 180 

relationship to light frequency 242 

Picasso, Pablo 75,76 

m-antibonding orbital 159 

m-orbitals 283, 284 
mt representation 248, 281 

m-symmetry 291-5 

Planar molecules 36, 37, 58, 62 
Planck constant 166, 226, 329, 345, 358 
Planes of symmetry 3,5, 10-13, 42 

see also Mirror planes 
Point groups 25-6, 45-103, 296 

assigning to molecules 69-73 
axial 55-64, 407-13 
character tables 45, 102 
classes of operations in 
cubic 65-9, 413-14 
cyclic 50-4, 407, 408 

definition 26 
families of 47 
identity operationin 38 
of infinite order 154~-60, 175 

for linear molecules 64-5, 414 
nonaxial 48-50, 69, 407 

order of 115, 116 

properties of 112-18 
sets of operations for 42-3 
subgroups 47, 101 
symmetry elements 43 

of water 299-300 
Point of inversion 23 
Point of symmetry 5, 13 

Polar bonds 244 
Polarizability 165, 182-4, 216, 343, 344 
Polar molecules 251 
Polyatomic molecules 

bond dissociation energy for 227 

identification 167 
molecular dipole for 337 
molecular orbitals in 278-84 
with multiple heavy atoms 278-84 

skeletal vibrations in 336 
vibrational modes for 335-6 

Polynomials 
Hermite 333, 335, 337, 342 
Laguerre 360 
Legendre 351 

Pople code 402 

112-14 

Index 

p-orbitals 

inammonia 266 

in octahedral complexes 143-9 

reducible representations 162 

in square planar complexes 132 

in tetrahedral complexes 137, 141 

in transition metal complexes 128 

423 

in trigonal bipyramidal complexes 151-2 

Porphyrins 17, 18 

Potassium bitartrate 45 

Potential energy 328-9, 334, 339, 346 

chemical bonds and 375 

in dihydrogen cation 387-93 

of electrons 234, 235, 347, 

Shs, SS) 
operator 329, 334, 346, 359 

Principal axis 7-8, 23 

Probe radiation 165, 215 

Projection operator 191, 195, 198-202, 
216, 254 

Projection operator method 195-202, 
216, 254 

Propa-1 2-diene 62 

Proper rotations 6-9, 23 

Pure rotation subgroup 101 

Pythagoras’ theorem 371 

Quantum mechanics 165-6, 345-6 

angular momentum in 357, 358-9 

balance of energy in particles 379 

behaviour of matterin 328 

coupling between light and molecules 

iva INS) 
magnetic moment of anucleusin 18 

virial theoremin 380 

wavefunction in 222 

Quantum oscillator 334 

Quantum tunnelling effect 334, 379 

Radial decay 396-9 

Radial equation 348, 359-61 

Radial functions 239-40 

Radial integrals 365-7 

Radiation 3, 163, 178, 182, 328 

Radicals 

free 2/7 

neutral 227 

nitroxide 222 

Radio-frequency waves 18 

Raman-active modes 184, 187, 189 

Raman spectra 177, 182-3, 185-6, 189, 

339, 343 



424 Index 

Raman spectroscopy 177-86 s-functions 240 

absorption process in 180-1 o-donor ligands 285, 294 

quantum model of 344 a-donor orbitals 285-90 

selection rules 163, 165, 181-6, 215, 344 o -orbital system 283 

Rayleigh scattering 179, 180, 344 Sine and cosine functions 89, 90 

Reducible representations 91-3, 102, Skeletal vibrations 336 

107, 118 Sodium ammonium tartrate 45, 46 

definition 91 s-orbitals 129, 228, 229, 236, 266 

finding 110-112 Spectra 

rear formula and 118-122 of d' and d’ complexes 291 

simplification 119 infrared (IR) 3,5, 185, 186, 189, 

DAO ING 
Reduction formula 112, 118-22, 161, 

Re cee ae 796 multi-electron effects and 292 

Redecnon nuclear magnetic resonance 18, 19, 21 

‘ Raman 177, 182-3, 185-6, 189, 339, 343 
operations 13, 14, 16, 23, 25, 27, 43 Vibrational 163; 165. 186 

planes 23 Spectrometers 19, 163, 167, 177 
symmetry elements 42 Spectroscopy 

Relative energies electronic 136 

estimation 295 ; experiments 215 
of hydrogen-like atomic orbitals 239-51 molecular structure and 1 

of molecules 1, 3, 165, 167 

Renormalization 204 nuclear magnetic resonance (NMR) 18, 37 
Representations see Irreducible representations; vibrational 6, 25, 163-217 

Reducible representations Spherical harmonic functions 351, 353, 354, 
Resonance integrals 237, 239 358, 368-9 

Resonance Raman 178 Spherical harmonic solutions 358 
Rock salt 250 Spherical polar coordinates 347, 358, 362, 
Rotational elements 6 363, 369, 383 

Rotational operations 6 Springs 325-6, 331, 334 
Rotational subgroups 216 Square matrices 317, 321 
Rotation axes 6, 17, 21, 23 Square planar complexes 13-14, 17, 114, 

equivalent 8 134-7, 216 

infinite 154 Stationary states 167, 328, 331, 
multiple 9, 11, 59-64 323-4, 338 
operations 13, 38 STIS see Hubble Space Telescope Imaging 

order of 7 Spectrograph 
principal 7 Stokes absorption 180, 181, 343-4 

proper 23 Stokes bands 181, 183 

Rotations 6-10, 23, 31-8 Stokes radiation 344 
see also Rotation axes Sulfur 63 

Row and column blocking method 322, 323 Superposition of eS 219, 220, 221 
Symmetry-adapted linear combinations 

(SALCs) 191-7, 235 
Sy basis functions 191 

combinations derivation 252-91 

Salen ligands 53. determination of 216 
SCF see Self-consistent field explanation 165 

Schéntflies, Arthur Moritz 46 for symmetry-related basis vectors 202 
Schrodinger equation Symmetry elements 6-17, 22-3 

SALCs see Symmetry-adapted linear 

applications 227, 228, 232, 376-8 see also Symmetry-equivalent elements 
for hydrogen atom 367, 376 Symmetry-equivalent elements 114 
solutions 129, 333, 345—50, 353-354 see also Symmetry elements 

Second-row elements 241-3, 252-78 Symmetry-inequivalent atoms 202-6 
Self-consistent field (SCF) 401 Symmetry operations 6-17, 23, 317-19 



Tartaric acid 45, 46 

Taylor expansions 370, 373 

Term states see Multi-electron states 

Tetrachloromethane 181, 182 

Tetra-dentate ligands 17, 53 

Tetrahedral complexes 137-42 
see also Tetrahedral groups 

Tetrahedral groups 65-70, 413 
see also Tetrahedral complexes; Tetrahedral 

point group 
Tetrahedral molecules 65-70 
Tetrahedral point grou 114, 137-43, 176, 262 

see also Tetrahedral groups 
Tetrahedron 

cube and 66-7, 137, 307 
model 307-8 
reference axis system for 142 
symmetry of 65, 66 

1,3,5,7-tetramethylcyclooctatetraene 53-4 

Tetramethylsilane (TMS) 19 

Thermal energy 336 
TMS see Tetramethylsilane 
Total energy 268—9, 327-8, 334, 348, 378-9 
Transition dipole moment 167, 168—9, 210, 

325, 335, 337, 340 
see also Dipole moment 

Transition metal complexes 

bonding in 128-9 

carbonyl ligands stretching modes 

NS 
containing ligand orbitals of m-symmetry 

291-5 
containing o-donor ligands 

d-orbitals in 128-53 
facial (fac) isomers 212-15 

infrared (IR)-active modes 215 

infrared (IR) spectra 212,215 

Jahn-Teller effect 287-91 
meridian (mer) isomers 212-15 

p-orbitals in 129 

with six ligands 72-3 
s-orbitals in 129 
vibrational modes of 213-15 
see also Octahedral complexes; Square 

planar complexes; Tetrahedral 
complexes; Trigonal bipyramidal 
complexes 

Transitions 325, 336-7, 341 

Translations 206 
T representations 198, 261 
Triatomic molecules 48, 173, 176, 252, 253 
1,1,1-trichloroethane 58 

Trichloromethane (chloroform) 47 

Trigonal bipyramidal complexes 
127, 147-53 

126-8, 

284-7 

Index 425 

Triphenylphosphine ligand 53 
Tropinone 49 
Tunnelling effect 334, 379 

Ultraviolet (UV) light 164, 173, 181, 291, 343 
Uncertainty principle 358 
Ungerade 101, 172, 228, 238, 286 

Urea 58, 181, 183, 343 
UV see Ultraviolet (UV) light 

Valency 241 

Vector dot product 193, 194 

Vertical mirror planes 23 
Vertical transition 180 

Vibrational energy levels 226, 339 
Vibrational excitation 163, 177-8 

Vibrational ground state 163 
Vibrationally excited states 341, 342 

Vibrational modes 

basis for 186 

of benzene 5 

of carbon dioxide 176 

of fluorobenzene 5 

of molecules 5, 161, 163, 167, 335-6 

Vibrational spectra 163, 165, 186 

Vibrational spectroscopy 6, 25, 163-217 

Vibrational states 167, 177-81, 325, 339-40 

energy of 333 
stationary 344 

Vibrational wavefunctions see Wavefunctions 

Vibronic state 339 

Virial theorem 379-80, 394, 395-7 

Virtual state 178 

Visible frequency light 178 

Water 

absorption bands 169 

antisymmetric stretch 
205, 206 

atomic degrees of freedom 

NAB), 723) 
basis vectors 108, 110 

bending mode 125, 126, 173, 176 

bond energy for 227 
in hexaaqua complexes 285 
infrared (IR) active modes 169-70, 173 

‘lone pair’ density 270 
matrix representation 83-6, 91 

molecular orbitals 269-70, 401-405 

motions of atoms 108-9 
multiplication table for 26-9, 40, 43 

170, 191, 192, 194, 

Oi we 

O—H bonds in 109, 126, 169, 191, 206 

O—H stretching modes in 109, 156, 191 

O valence orbitals 78, 103, 269 

physical properties 269 



426 Index 

Water (Continued) electronic 341 

planes of symmetry 10, 11 energy levels for 235 

products of operations 40, 299-300 excited 342 

proper rotation operation 6 ground state 342 

reducible representation 91-3 for harmonic oscillator 339 

rigid-body movements 123, 125 for hydrogen atoms | 345, 346 

rotational degrees of freedom 124 imaginary numbers in 223,'224, 369, 370 

tric stretch 166, 169, 173, 191-2, nuclear 340 

ae or 
one-electron 231, 346 

symmetry elements 6, 26, 76, 77 orthogonal 333, 334, 336, 341 

symmetry operations 6, 27 P laser 224 
ok in quantum mechanics 222, 328, 334 

symmetry representations and characters ‘Asef ro) 
759 vi cannes 3 

vibrational degrees of freedom 124, 125 ee 
FR a ee ake by Waves 220-2 

Veptanonat oc 2 mi see also Wavefunctions 
Wavefunctions 168, 225, 240, 244, 325, 335 

amplitude 221 X-ray diffraction 222 
Born interpretation of 222-5, 229, 231 

for dihydrogen cations 244 Zero-point energy (ZPE) 226, 331, 332, 376 
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