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PREFACE 

This book has its origin in a lecture delivered by E.H. at the 
Erni Museum in Lucerne in 1980. It was the first in the annual 
lecture series ‘Panta Rhei’ (under the auspices of the Hans- 
Erni-Stiftung), dealing with the border areas between art and 
science, and aimed at anon-specialist audience. An expanded 
version of this lecture was pubhshed by the Hans-Erni- 
Stiftung, Verkehrshaus Luzern, in 1981 in a limited edition —a 
book now out of print — under the title Uber die Symmetrie in 
der Chemie. An abridged version of the same lecture, given 
before the Akademie der Wissenschaften in Gottingen, was 
published in the Jahrbuch der Akademie in 1986. 

slic present volume is an English language augmentation of 
the earlier book. Over the years several of its readers, partic- 
ularly Vladimir Prelog, Sason Shaik, and J.D.D., had urged 
that it should be available to a wider circle. In the end, J.D.D. 
took on the task of translating the text and, as things turned out, 
several sections were expanded in the process, and new top- 
ics added. However, it would probably never have come into 
existence without the persistence of our friend and colleague 
M. Volkan Kisakurek, who has acted as a catalyst through his 
constant enthusiasm, encouragement, and drive. He is respon- 
sible for the layout and production of this book. We are also 
much indebted to Ruth Pfalzberger for her friendly collabora- 
tion in producing the graphic artwork. 

Edgar Heilbronner 
Jack D. Dunitz 
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For there is a music wherever 

there is a harmony, order or 

proportion; and thus far we may 
maintain the music of the 
spheres; for these well ordered 
motions, and regular paces, 
though they give no sound unto 
the ear, yet to the understanding 
they strike a note most full of 
harmony. 

Sir Thomas Browne (1605-1682) 
Religio Medici 
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OhGaalr goddesses of memory only, the Muses are cred- 
ited with the encouragement of the creative arts and sciences 
—after all, one of the nine, Urania, was entrusted with responsi- 
bility for astronomy, the only natural science pursued in antiq- 
ulty. Yet the picture of the scientist depending on inspiration 
from the Muses may strike most people as somewhat incon- 
gruous. They would acknowledge that scientists are creative 
In a certain way but would view this kind of creativity as 
different in essence from the creativity of poets or painters. 
Perhaps the difference is not so great as one might imagine. 
Artists and scientists are both driven by a kind of fascination 
with the mystery of human experience and the search to give 
meaning to it. Moreover, although most people may think of 
scientific thought as a purely deductive process and of scien- 
tists as basically serious-minded, fantasy is an essential ingre- 
dient of creative science, and sometimes even a dash of crazi-: 
ness 1s needed when truly original ideas are called for. Of 
course, science is an inescapable feature of our modern 
world. For some it has a good image, for others a bad one, and 

in either case it has to be taken seriously, especially with 
regard to its unpredictable consequences. Likewise, for its 
practitioners it may be a calling or even a religion, for some it 
is an obsession, for others it is big business. But among these 
many aspects there is also in every scientific activity an ele- 
ment of play — the kind of play indulged in by children, which 
can be deadly serious or frivolous or, more often, both simul- 
taneously. Perhaps one should include this playful quality in 
the activities encouraged by the Muses. 

Tn this book we shall first try to show how such a primarily 
‘playful’ approach to symmetry has influenced the early de- 
velopment of one branch of the exact sciences, namely chem- 
istry. We then take a few examples from more modern devel- 
opments to show how formal symmetry considerations have 
‘become fundamental for a deeper understanding of molecu- 
lar structure and reactivity. 



Oh difficulty we have to face is that the interconnection 
between the playful aspect of symmetry on the one hand and 
an exact science on the other hand is not at all simple. It has to 
do with that jumble of formulas that may well evoke painful 
memories of tedious school lessons. This makes it hard to 
steer a secure course between the Scylla of irresponsible 
superficiality and the Charybdis of unintelligible jargon. A 
treatment rigorous enough to satisfy finicky criticism of ex- 
perts and at the same time gentle enough for the non-specialist 
is just not possible in the limited space available. At best we 
can strive for an impressionistic picture, similar to Monet's 
painting of Rouen Cathedral, which, closely viewed, is seen to 
lack all exact detail. It is intended to convey merely an overall 
impression of the building, of the interplay of light and 
shadow, even at the risk that the paint may be applied here 
and there somewhat too thickly and so cover or even falsify 
details which are irrelevant for us but may be precious to the 
expert in medieval architecture. 

HX 



IDE 
The world ts chiral and clinal, 
enjoy symmetry wherever you find tt. 

Vladimir Prelog 

The world around us is in general so little symmetrical that 
our recognition and awareness of striking exceptions may 
become lasting experiences. Fortuitous symmetrization, such 
as reflection in a calm mountain lake, can surprise and please 
us; on the other hand, its pictorial representation can all too 
easily acquire a kind of artificial quality, sometimes even an 
element of kitsch — although this cannot be said to apply to 
Hodler’s painting of the Thunersee reproduced below. 



On the other hand, the pat- 
tern of stars in the Firmament 
lacks any symmetry in spite of 
the elegant elliptical orbits 
traced out by the planets 
around the sun in the course of 
time. Thus, the need to orga- 
nize groups of stars together in 
separate compact though un- 
symmetrical constellations, as 
a kind of mnemonic device, 
had been recognized in very 
early times as an aid to finding 
one’s way in the unsymmetri- 
cal glitter of the night sky. In 
this low-symmetry environ- 

A few examples of symmetry in Nature. ment, the symmetry of small 
objects, in animate and inani- 

mate Nature, as revealed in flowers, leaves, animals, and in 
crystals, must have struck early man from his very beginnings 
as CONSpicuous. 

Ouch symmetry could have been perceived as ‘beautiful’ 
and even — as we shall see later — viewed as the expression of 
some deeper lying order. It 
is, therefore, not too surpris- 

ing that in the gradual course 
of human development, peo- 
ple set about enhancing the 
beauty of all sorts of objects 
with little or no symmetry by 
artificially ‘raising’ their sym- 
metry. For example, by polish- 
ing, a crystal could be shaped _ 
into a gemstone with regularly ~ z 
arranged facets and thereby 
made more attractive — and | 
more valuable. A few examples of gemstones. 



SO memeanon or symmetry 
augmentation has been used 
from earliest times as a means 
of producing ‘beauty’. Peri- 
Odic repetition of arbitrary, 

one dimension can be com- 

bined with reflection to pro- 
duce band patterns that can a aC ERR ET RT Oe 
be followed through al cul , A A A ® & ® & A BR MBM M 
tures, beginning with the 
wood-carvings of primitive 
peoples, through the friezes 
of classical temples, right up 
to the silk ribbons still tradi- 
tionally produced in Basel to- 
day. Band patterns, from classical friezes to silk ribbons. 

Ir the symmetrization process 
is extended into the plane, that 

is to say, by periodic repeti- 
tion in two dimensions, com- 

bined with reflection and rota- 
tion of the element of pattern, 

one can produce the famihar 
diversity of tilings, of carpet 
and curtain patterns, of par- 
quet floor patterns, and of 
Christmas present wrapping 
papers, in inexhaustible vari- 
ety. Many of us know and ad- 
mire the highly original and 
sometimes bewildering exam- 
ples by the Dutch artist 
Maurits Escher, who occupied 
himself deeply with the prob- 
lems of periodically symmetric 
patterns. Less well known are 
the earlier examples by Kolo- 
man Moser. 

Symmetric, periodic patterns by Koloman Moser 

(top) and Maurits C. Escher’. 7 
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Escher was inspired towards this unconventional style by a 
visit to the Alhambra palace in Granada, one of the wonders of 
the world as far as decorative symmetry is concerned. The 
artistic drive of the high Moorish civilization in Spain was 
restricted to the exploitation of abstract colored patterns, vi- 
sual imagery being forbidden in the Islamic faith. Not being 
limited in this way, Escher developed his own strange repre- 
sentational art, using fish, horses, lizards, human figures, etc., 

as the basic units of pattern, although, as he himself said, these 
figures were not consciously planned but were forced on him 
by the strict rules of periodic space-filling. 

The feeling for symmetry seems to be inborn in mankind. At 
a not particularly high level, it can lead to a lemming-like urge 
—well known to art dealers among their customers-—, a craving 
for a mirror-symmetrical complement to every object that 
passes for a work of art: for every little angel on the left, a 



little angel on the right must 
be found, in order to satisfy 
the symmetry-determined aes- 
thetic. This could be summa- 
rized in pseudo-mathematical 
form by the equation: 

I t tri ttl. 
beauty = constant x symmetry er ena ge ee tae 

The validity of this equation can hardly be denied by anyone 
who, even as a child, has experienced the gratifying fascina- 
tion of a Kaleidoscope. 

I is hardly surprising that the idea gradually arose that the 
forces which hold the world together must satisfy the desire 
for symmetry, even though this underlying principle might 
not be perceptible at first sight — or even at second sight — in 
the macroscopic material objects accessible to our senses. In 

relation to Nature, one found 
oneself in a somewhat an- 
alogous situation to those crit- 
ics who want to ascribe the 
perfect balance of Raphael's 
Madonna alba, for example, to 
the artist's conscious aware- 
ness of an underlying pentago- 
nal symmetry 
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In other words: The Gods 
must share with us this special 
liking {for ‘symmetry, even 
when it may not always be per- 
ceptible on the surface and-—as 
we shall see later — must some- 

: times give way to still more 1m- 

Madonna alba, by Raphael”. portant principles. 
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I. 
Der Regen ist eine primose Kersetzung 
luftahnlicher Mibrollen und Vibromen, deren 
Ursache bis heute noch nicht stixiert wurde. 

Karl Valentin 

The idea that the material world around us is composed of 
very small particles was put forward by Leucippus of Miletus 
(ca. 475 B.C.), a member of the Pythagorean school, and it was 
then taken up by Democritus of Abdera (ca. 460-370 B.C.). He 
taught that these particles, the so-called atoms, are indivisible 
(hence the name) and in constant motion, and that their impal- 
pable but nevertheless quite definite shapes determine the 
properties of substances. So, for example, the atoms of gases 
and liquids were supposed to be spherical and able to glide 
smoothly over one another, while those of solids were hard 
and rough and interlocked. He was also of the opinion that the 
taste and odor of substances were determined by the shapes 
of their constituent atoms. To be sure, this was no physical 
scientific theory in the modern sense, nor were any conclu- 
sions drawn that might have been experimentally verified. 
Two thousand years ago, one was still far from the recognition 
of the importance that planned experimentation would come 
to occupy in modern science — for this step we are indebted in 
the first place to Galileo. 

The classical four elements, fire, air, water, and earth were 
proposed by Empedocles (ca. 490-430 B.C.), who was also the 
first to write something vaguely resembling a chemical for- 
mula. For example, 

blood = 1/4 fire + 1/4 water + 1/4 earth + 1/4 air 

bone 1/2 fire + 1/4 water + 1/4 earth. 

These four elements were then taken over by Plato (427-347 
B.C.), who rejected the atomic hypothesis of his contemporary 
Democritus. Plato, as a Pythagorean, associated one of the first 
four regular polyhedra (the so-called platonic solids) with 
each element: tetrahedron = fire; octahedron = air; cube = 
earth; icosahedron = water. 

Ll 



These symbols had much the 
same significance as pre-1800 
chemical formulas, that is to 
say, before the emergence of 
the Daltonian atomic theory. 
Symmetry played an important 
role in Plato’s considerations. 
From the fact that the symbols — 
tetrahedron, octahedron, and 

icosahedron — could be de- 
composed into equilateral tri- 
angles which could be re-as- 
sembled to form the other 
polyhedra, Plato drew the con- 
clusion that fire, air, and water 
could be transformed into one 
another. On the other hand, 
since it was not possible to de- 
compose the cube, the symbol 
for the element earth, into 
equilateral triangles, but only 
into squares, he concluded that 

Platonic solids as symbols for the four elements earth could not be transformed 
and the quintessence. into fire, air, or water. 

The dodecahedron, bounded 
by regular pentagonal faces, 
was added later, as the fifth 
essence — the quintessence — 
reserved as symbol for the 
Universe, presumably  be- 
cause the construction of the 
pentagon with circle and 
straight-edge was at that time 
considered to be a triumph of 
mathematics. The  gquintes- 
sence, of a purer quality than 
the other four elements, was 
supposed to have been formed 

A classical Greek view of the transformations of 
ie, fire, air, and water into each other. 



at the creation of the Universe, when it flew upwards to form 
the stars. The pentagon and the related pentacle or five- 
pointed star seem to have retained a special kind of magical 
significance as symbol for purity well into modern times. They 
were — and possibly still are — used to help to ward off evil 
spirits and witches. ‘‘Das Pentagramma macht dir Pein?’’ asks 
Faust to Mephistopheles. 

IPiea the purely scientific point of view it is perhaps not so 
important that Plato proposed these highly symmetrical poly- 
hedra as symbols for the elements. Nevertheless, it is remark- 
able that those early philosophers were intuitively convinced 
that the fundamental building blocks of the elements, or at 
least their symbols, could not have any arbitrary potato-like 
shapes but must have a pleasing, highly symmetrical form. 

A special kind of symmetry consideration that goes back to 
Aristotle (884-322 B.C) depends on the relationships among 
the four elements and the properties that. characterize 

them. If these are represented 
graphically, one can produce 

FIRE a symmetrical scheme which, 
allowing for some exaggera- 
tion, can be described as the 

‘periodic system’ of the classi- 
cal four elements. If one of the 
four had been unknown, its ex- 

istence could have been pre- 
DRY dicted from the position of the 

gap in relation to the remain- 
ing three elements, plus a 
good admixture of fantasy. In 
spite of their far-reaching ide- 
alistic content, these ideas of 

EARTH Democritus and Plato have 
continued to be effective and 

HUMID: 3s COLD ; are the acknowledged pre- 
cursors of modern atomic the- 

Ory. =e 

Lf 

WAT ER 

The classical Greek ‘periodic system' of the 
elements. il) 



ince we are here not primarily concerned with in the history 
of chemistry, we jump to the 17th century, more precisely to 
the year 1611, when Johannes Kepler (1571-1630) presented 
his patron Johannes Mathaus Wacker von Wackenfels as a 
New Year's gift a treatise on the subject of hexagonal 
snowflakes (De Nive Sexangula)’. In this work Kepler tried to 
explain the macroscopic symmetry of a crystal by examining 
the manner in which the elementary building blocks might 
pack together. The specific example he chose was the hexag- 
onal symmetry of snowflakes. In this, of course, he did not 

think in terms of anything re- 
sembling what we would now 
call molecules, but rather in 
terms of spherical particles of 
water or ice. Only later, with 
the emergence of atomic the- 
ory, and in particular after the 
work of Dalton, did it become 
clear that molecules are in 
general not spherical but have 
more or less definite, usually 
unsymmetrical, shapes. We 
shall, however, disregard this 
historically important fact and 
take up Kepler's problem, 
namely the answer to the ques- 
tion of which macroscopic 
symmetries can result from the 
packing of spheres. It is worth 
mentioning that the same prob- 
lem had been successfully 
tackled by Thomas Harriot 
(1560-1621)° a few years ear- 
lier, in 1599. But, as if often 
happens in science: Kepler 
published first! 
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lr one covers a two-dimen- 
sional flat surface with iden- 
tical spheres, as illustrated 
for spherical atoms in the pic- 
ture taken from John Dal- 

Ein baeeccsnages repeat tons's book, A New System of 
eauare ae Sere ene arrangement of touching Chemical Philosophy, pub- 
packed spheres (Dalton)®. lished in 1808, and demands 

that each sphere is in contact 
with other spheres, there are just two highly symmetrical 
arrangements. 

In arrangement (1) each sphere is in contact with four others 
(for example, sphere 5 touches spheres 2, 4, 6, and 8), leading 
to a square lattice; in the other arrangement (2) each sphere 
has six nearest neighbours (for example, sphere 5 touches 
spheres 2, 3, 4, 6, 7, and 8), with the result that a hexagonal 
lattice is formed with acute an- 
gle of 60° and obtuse angle of 
120° In the latter arrangement 
the density of spheres on the 
surface is maximal. Starting 
with this densest packing of 
spheres in the plane and 
adding further spheres ac- 
cording to the same contact 
pattern, one obtains shapes (as 
shown in the illustration taken 
from the same book) that make 
it evident that this model leads 
to figures, or at least can lead 
to figures, with the typical 
hexagonal habit of snowflakes. 

Extended planar patterns made from Beers 
packed spheres (Dalton)°. 

al) 



The diversity and beauty of 
snowflakes, which occur in an 
infinite variety of shapes de- 
spite their selfsame symmetry, 
has been captured in the clas- 
sical collection of micro-photo- 
graphs made by W. A. Bentley 
and W. J. Humphreys, pub- 
lished in 1936, a sample of 

which is shown. 

Wren one examines Kep- 
ler’s theory of snowflake for- 
mation more closely, one no- 
tices that although it leads to 
local hexagonal symmetry it 
does not account for the strik- 

One page of snowflakes from Snow Crystals by ing regularity of the branching 
Bentley and Humphreys’. . in the snowflake as a whole, as 

was indeed mentioned by 
Kepler himself in his treatise. In spite of this shortcoming, 
which has not been satisfactorily resolved up to the present 
day, the model represents a very important step towards 
the explanation of the macroscopic symmetry properties of 
matter as a direct consequence of its invisible, sub-micro- 
scopic structure. This becomes especially clear when we con- 
sider briefly, instead of the two-dimensional case, the three- 
dimensional one, which was also already investigated in the 
early studies of Harriot and Kepler. 

W hen we leave the planar arrangements of mutually touch- 
ing spheres and examine how they can be made to fit together 
under the same conditions in space, we find that a given 
sphere can be in direct contact with a maximum of exactly 
twelve other spheres. There are two ways of accomplishing 
this. In one case (left) the upper triplet of spheres projects 
directly over the lower triplet, while in the second case (right) 
the upper triplet is rotated by 60° with respect to the lower 
one. 

16 



fi one continues these two ar- 
rangements in a regular way, 
one obtains two kinds of dens- 
est packing of spheres in 
space. The first (left) has 
hexagonal symmetry, the sec- 

ond (right) has cubic symme- The two arrangements of twelve spheres in 
try, as can be most easily seen contact with a central one. 
with the help of models. Al- 
though the densest packing of circles in the plane has been 
rigorosly proved, this has not yet been accomplished for the 
three-dimensional case if one allows the possibility that some 
irregular, l.e.,non-periodic, packings may have a higher den- 
sity than the periodic one. However, no one seriously doubts 
that the hexagonal and cubic arrangements do represent the 
densest three-dimensional packings of spheres. (At time of 
writing, the Chinese mathematician Wu-Yi Hsiang claims to 
have established just such a proof®.) 

Kepler tried to explain not only the shapes of snowflakes but 
also the shapes of honeycombs and of pomegranate seeds. 
The honeycomb problem is similar to the snowflake one, both 
depending on arrangements of hexagonal cells in the plane; 
the pomegranate problem is a little more comphcated, and in 
the course of solving it Kepler made a major discovery. He 

found that just as it 1s possible 
to cover the plane with paral- 
lelograms, equilateral trian- 
gles, squares, and hexagons, it 

be is possible to fill space not only 
es e eo with parallelepipeds, triangu- 

- | MOON lar, square, and hexagonal 
prisms but also with a special 
type of polyhedron, the rhom- 
bic dodecahedron, a convex 
figure with 12 faces and 14 ver- 
tices — which can be consid- 
ered as the 8 vertices of a cube 

Hexagonal and cubic close packings of spheres. plus 6 additional ones above 



Two aspects of the rhombic dodecahedron. 

the centers of the cube faces. This is the figure obtained from 
the cubic close packed arrangement of spheres if one sepa- 
rates each sphere from its 12 neighbouring spheres by plane 
faces. Kepler suggested that pomegranate seeds are round to 
begin with and retain this shape as long as they are small. 
However, as they continue to grow inside the confined space 
of the rind, they become squeezed together and adopt the 
polyhedral shape in order to fill the space as efficiently as 
possible. 

For the layman it is perhaps an amazing fact that the majority 
of metals crystallize in one or other of these two arrangements, 
either the hexagonal or the cubic close-packed arrangements 
of spheres, so that one can actually understand the structure of 
metals from the Kepler model of highly symmetric assemblies 
of spherical atoms in mutual contact. But here the reader may 
harbor the suspicion that this kind of argument is too simple 
and that just those examples have been chosen where the 
observed symmetry of crystals happens to fit our somewhat 
naive assumption of a densest packing of spherical atoms. This 
suspicion 1s completely justified. The general case is not quite 
so simple. The assumption of a spherical shape for polyatomic 
molecules would be a very crude approximation, about as 

18 



unsuitable as the assumption of 
spherical symmetry for cows 
as basis for the construction of 
a cowshed. Apart from such a 
large-scale idealization of the 
molecular shape, the spherical 
molecule hypothesis would distance, according to R. Boskovic’. 
also imply that the force with 
which two molecules attract one another at a fixed distance 
between their mid-points is independent of whether we rotate 
the one or the other molecule. It is also implicitly assumed in 
the Kepler model that this attractive force increases as the 
distance becomes smaller and is thus greatest when the two 
spheres are in direct contact, leading to the preference for 
densest packing. If one wished to explain deviations from 
densest packing while retaining the assumption of spherical 
particles, one would be compelled to assume at least that the 
force between two such spheres depends on the distance ina 
complicated manner. For certain distances there would have 
to be attraction, for others repulsion. A suggestion of this kind 
was indeed put forward by the Jesuit priest Rudjer BoSkovicé 
(1711-1778)°. His idea of the distance dependence of the force 
between two atoms is shown in the illustration, taken from his 
Theoria Philosophiae Naturalis published in Venice in 1763. 
With respect to an atom situated at the point A, the force is 
attractive for distances corresponding to the points F, K, O, 5, 
and repulsive for H, M, Q. (Note that what is here plotted 
against distance 1s not the potential energy of the system butits 
derivative.) 

"Today we know that this sort of oscillatory behavior is physi- 
cally unreasonable and we must reconcile ourselves to the fact 
that the spherical molecule model cannot be salvaged by such 
ad hoc tricks. Nevertheless, one should not pass over the fact 
that this attempt of BoSkovi¢ to rescue the symmetrical spher1- 
cal model by introducing a specific distance dependence for 
the force between the particles influenced the thoughts of 
many 19th century scientists, including, for example, Davy, 
Faraday, and W. Thomson (Lord Kelvin). 

iv) 



As it happens, molecules in general possess little or no sym- 
metry and their shapes are far from anything remotely recog- 
nizable as spherical. Moreover, the forces between them are 
sensitive to their mutual orientation. Under these circum- 
stances, one may wonder whether ‘symmetry’, whatever it 
may mean exactly, can be applied in a meaningful way to 
arrive at any conclusions whatsoever that are of chemical 
significance. This will only be possible if one can manage to 
apply symmetry arguments to problems where at first sight no 
symmetry appears to be present, where, indeed, the difficulty 
may lie precisely in the absence of any symmetry. It could also 
turn out that symmetry is a broader concept than might be 
inferred from the examples given so far. 
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One must classsify things 
not from without but from within. 

Charles Ferdinand Ramuz 

The folowing elementary examples are intended to illustrate 
the striking benefits that one can gain from the application of 
even the very simplest, purely intuitive symmetry consider- 
ations. Such considerations can lead to elegant and, above all, 
surprising solutions for problems which appear at first sight to 
have nothing to do with symmetry and which can be solved 
only with much more difficulty by other methods. One might 
call them, in the current jargon of commercial advertising 
spots, problems of the type: “‘Instant insight! All you do is add 
symmetry’. 

Example I 

‘Two players, A (who begins) and B(who follows), alternately 
lay cigars on a table under the sole stipulation that the cigars 
may not touch one another, as indicated in the following pic- 
ture for the situation after five moves. 

The first player who cannot 
lay down another cigar under 
(ilisssCOneition is) “the: loser 
Question: which of the two 
players, A or B, should win? 

In view of the complete free- 
dom of position alowed in this 
game, apart from the rule 
against touching, an unequl- 
vocal answer to this question 
might seem impossible at The cigar game. 

a 



first sight. However, if one 
symmetrizes the problem, one 
immediately finds a strategy 
that appears to lead B to vic- 
iory, For each “cigar “laid 
down by A, B can respond 

Strategy for the cigar game. by placing his cigar so that 
it is related centrosymmetri- 

cally to A’s with respect to the midpoint of the table, as indi- 
cated. 

Ir there is room for A to lay down a cigar then there must also 
be room for an additional cigar from B. Therefore A is in- 
evitably the first to fail to find room for an additional cigar and 
must lose. 

However, there is one possible first move by A for which 
there 1s no corresponding symmetry-equivalent move by B: A 
simply places the first cigar perpendicular to the table at its 
midpoint and thereby forces B to place his first cigar at an 
arbitrary, symmetry-breaking position. From here on, A can 
always respond to each of B’s moves by restoring the symme- 
try and hence, as the figure shows, stamp him as the loser. By 
his unorthodox first move, A can thus turn the tables on B. 

The symmetrization of the 
problem and the resulting 
strategy for A gives the answer 
to our question: the winner is 
A, if he remembers to make 
the right first move. 

Example II 

dere theorem of Pythagoras, 

that in any right-angled trian- 
gle the square on the hy- 
potenuse (c*) equals the sum The winning first move ! 



of the squares on the other 
two sides (a*+b*), may be 
branded in the memories of 
some readers as one of the ter- 
rors of their school-days. The 
usual proof, starting from the 
pictorial representation of the 
theorem, depends on the con- 
struction of auxihary hnes and 
on a long sequence of subtle 
considerations, going back to 
Euchd, about equal-area rect- 
angles, parallelograms, and 
triangles, in a manner that 
many students will remember 
as rather confusing. Pythagoras theorem. 

As shown by the Indian math- 
ematician Bhaskara II (1114— 

a 1185?) in the l2th century, one 
~ can arrive ata much more ju 

<b cid proof by symmetrizing the 
~*~ problem. We draw a square 

~ ' with the side a+b as well as 
“~ four copies of the right-angled 

< triangle with arms a and Db. 
oe Now we lay the four triangles 

on the square in each of 
~< the two symmetrical arrange- 

+—— atb——_> ~~ ments shown in the lower part 
: of the illustration. 

Dince the area covered by 
the four triangles must be the 
same in both cases, it follows 
that a-4b =o. The direct 
insight, obtained by sym- 
metrization of the problem, Is 

Proof of the Pythagoras theorem according to 

Bhaskara II, ie) Ov 



so immediate that the Indian scholar provided no explanation 
to the drawing, except for the laconic instruction: ‘‘Look!”’. 

Example III 

Consider a scalene triangle and construct an equilateral tri- 
angle on each of its sides, to give the geometrical figure 
shown below. Now show that the midpoints of these three 
equilateral triangles themselves form an equilateral triangle. 

ee 

lr youtry to prove this either by the usual arguments of Euclid- 
lan geometry or by using trigonometric formulas, you will 
probably end up with tedious constructions or lengthy mathe- 
matical expressions that are far from simple and not very 
elegant. On the other hand, the use of a symmetry argument 
provides a simple and immediately obvious solution. 

One only has to recognize that the figure consisting of the 
four triangles (the scalene one and the three equilateral ones) 
can be repeated periodically in such a way that it covers the 
plane. From the Figure it is easily seen that this periodic 
pattern has threefold rotational symmetry; for example, it is 
transformed into itself by a 120° rotation about the mid-points 



of any of the equilateral trian- 
eles, It follows that ihe trian= 
gles defined by these mid- 
points must have also 60° an- 
gles, and hence they are equi- 
lateral’?, 

IE esl sstacs these three ele- 
mentary mathematical exam- 
ples, we now consider three 
simple, well known problems 

in physics from a symmetry Tiling of the plane by the above geometrical 
point of view. figure. 

Example IV 

The law of the lever says that a system consisting of a thin 
beam plus two weights, as shown in A, is in equilibrium if the 
product of the weight G, and the length A, of the lever arm on 

the left side is equal to the 
product of the corresponding 
quantities G. and H, on the 
right side: 

Gx H=Gx H (1) 

The derivation of this law 
is far from trivial. Even Aris- 
totle was unable to solve the 
problem, which in his time 
had already been long recog- 
nized as unsolved. It was not 
Untilgia = centiigy slater eailal 
Archimedes of Syracuse (287— 
ala B.C.) gave the right an- 
swer in his De aequiponderan- 
tibus. 

The tiling has threefold symmetry, and the centers 

of the equilateral triangles themselves make 

a pattern of equilateral triangles. 2 



There is no doubt that equa- 
tion (1) must hold for the sym- 

B metrical case shown in B, since 
there the system must be in 
equilibrium ‘on symmetry 
grounds’. Equilibrium clearly 
holds when both weights are 
equal (G, = "*G. = 7G) sane 

ig 

Law of the lever. both lever arms equally long 
(Ae) Prom tis, mlen 

later, Galilei Gahleo (1564-1642) and independently Simon 
Stevin (1548-1620) derived a proof of the law (1) in which 
symmetry considerations play a primary role and which can 
be followed without difficulty even by those with only a frag- 
mentary relationship to physics and mathematics. 

These two authors consider a 
wooden board suspended at 
its midpoint and therefore (see 
A), on symmetry grounds, in 
equilibrium. 

The board is now sawn along 
the dotted lines into three 
parts: a thin beam B and two 
pieces of unequal lengths 2a 
and 2b, where 2a+2b = L, the 
initial length of the board. 
These two pieces and the 
beam are bored through in 
such a way that with the help of 
two threads the original sys- 
tem can be reconstructed, as 
shown in B. It is intuitively ob- 
vious that this system must still 
be in equilibrium if we neglect 
the weight of the two threads. 
Since the two pieces are sus- 

Proof of the law of the lever by a symmetry 
26 argument. 



pended from the beam only by the two threads, the equi- 
librium is not disturbed if they are both rotated by 90° to 
produce the system C. Apart from the shapes of the two 
weights G, and G,, this corresponds exactly to system A. Now 
the weight G, is proportional to the length 2a of the left piece, 
and the weight G, to the length 2b of the right piece, while the 
lever arms H, and H, have the values b and a, respectively, 
as can be seen directly from B. It follows that the prod- 
uct’Ge x) His proportional to 
aa x b = 2ab and the product 
Grea, NOncb a= faa in 
other words: in equilibrium 
both products must have the 
same value, thus establishing 
the lever law (1), 

Example V 

fine second example (see the 
Figure) from physics is closely 
related to the previous one. On 
the inclined planes AB and BC 
with equal altitude (see A) are 
two trolleys of weight G, and G, 
joined to one another by rope 
and pulley. We have to answer 
the question: when is such a 
system in equilibrium? An 
original and astonishing solu- 
tion to this question was pro- 
vided by the the Dutch scien- 
tist Simon Stevin whom we 
have already met in the previ- 
ous example. 

In place of the arrangement 
sketched in A, he considered 
first a pulley-chain of the 

length ABC, extending over proof of the law of the inclined plane, according to 
the two inclined planes ABand  Stevin. 
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mathematica. 

BC. The two ends A and C are connected by the additional 
stretch of chain ADC, hanging downward, as shown in dila- 
gram B. No one can doubt that such an arrangement is in 
equilibrium, for ifit were not so, the chain would start to rotate 
in one direction or the other and then continue to rotate 
forever. In other words: we would have a perpetual motion 
machine! Since the lower, hanging portion ADC of the chain is 
symmetrical with respect to a line perpendicular to the mid- 
point of the edge AC, it must exert the same force at Aand C. It 
can, therefore, be removed without disturbing the equl- 
librium of the remaining portion of chain lying on the inclined 
plane. From this, Stevin concluded that the two stretches of 
chain AB and BC, shown in diagram C, must be in balance. 
But the weights G, and G, of these two stretches must be 
proportional to the lengths AB = L,and BC = L,, respectively. 

Thus, Stevin established that 
equilibrium holds when the 
condition 

GQxhl=Gx h (2) 

is fulfilled. If the two stretches 
of chain AB and BC are now 
contracted into two masses, 
represented in the uppermost 
diagram by the two trolleys of 
weight G and G, the equi- 
librium condition (2) must still 
hold. 

oe % 
rine 

eg 

eae ee 
i 

Drevin was himself so im- 
pressed by this proof, which 
combines the impossibility of 
perpetual motion with a sym- 
metry argument, that he chose 
the picture of the closed chain 
as frontispiece for his book 
Hypomnemata mathematica, 

Frontispiece of Stevin's Hypomnemata published in Leiden in 1605 
(Figure, left). 
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Example VI 

On final example for the simplification of a problem by 
introducing symmetry considerations can be described, 
somewhat pretentiously, as an experiment in applied optics. 
When you look at yourself in a mirror, how large is the outline 
of your head on the mirror surface? Or, more precisely, what 
is the ratio of the size of this outline to the actual size of your 
head’? Experience shows that most people have trouble an- 
swering these questions, as one can easily convince oneself 
by posing them (with malice) in a circle of friends. Does the 
answer not depend on your distance from the mirror? One 
will even find that the correct answer often meets initially with 
outright disbelief. You can answer the question experimen- 
tally by tracing the outline of your head on the mirror surface. 

Looking at oneself in a mirror. 



Yet a quite elementary symmetry argument leads immedi- 
ately to the right result. In the preceding Figure, head (H) and 
mirror-image (M) are symmetric with respect to the plane of 
the mirror. Indeed, reflection is the very essence of symme- 
try, at least in our considerations so far. On symmetry 
grounds, then, M must be the same size as H. As can be seen 
without difficulty from the diagram, this means that the ‘light 
rays’ emerging from the eye of the observer H to the reflected 
head M must cut the mirror in such a way that the outline U is 
exactly half as large as Hor M. 

Moreover, by comparing the upper and lower diagrams, we 
can see that this result does not depend in the shghtest on the 
distance from the mirror. The correct answer is: the outline 
drawn on the mirror is exactly half as large as the head itself. 
Anyone who does not believe it is cordially invited to verify it 
by suitable experimentation in the privacy of the bathroom. 

A provisional stocktaking at this stage might stress the fol- 
lowing points: 

1, Where ‘symmetrization’ can be applied to a problem it can 
lead to a clear and immediately obvious solution. 

a. The symmetry argument is often transferable and hence 
applhcable to related problems that look different at first sight. 

3, Systematic application of symmetry arguments can lead toa 
deeper awareness of the relationships among the variables 
involved in a mathematical or physical problem, even when 
the symmetry aspect of the problem is not at all obvious. 
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Ren ne serre autant le coeur comme la symétrie. 
Crest que la symétrie, cest Pennut, 
et ennui est le fond méme du deuil. 
Victor Hugo, Les Misérables, Cosette, 4.1 

Where order in variety we see, 
and where, though all things differ, all agree. 
Alexander Pope 

The following elementary examples are intended to illustrate 
the striking benefits that one can gain from the application of 
even the very simplest, purely intuitive symmetry consider- 
ations. 

Betore we occupy ourselves any further with the use of sym- 
metry considerations in chemistry, it is necessary to go a little 
deeper into the underlying concept of symmetry. Until now 
we have merely assumed that we know by intuition and by 
feeling what we are talking about, but for more serious, practi- 
cal applications of the concept 
that is not enough. 

One approach is to define 
the symmetry of an object, 
for example, a molecule, by 
means of ‘symmetry opera- 
tions’. We illustrate this by a 
simple example. If we rotate a 
teacup by 180°, as indicated in 
the adjacent Figure, the initial 
and final orientations can be 
immediately distinguished: a 
cup for left-handers has been 
converted into a cup for right- 
handers. 

Lo Rotation os 

_ Ry 180 



On the other hand, if we carry out the same operation with a 
two-handled vase, as indicated in the lower part of the previ- 
ous picture, the initial and final orientations of the vase cannot 
be distinguished — assuming, of course, that the vase has no 
obvious flaws. In other words: if we had left the room, we 
would be unable to say, on our return, whether the vase had 
been turned through 180° during our absence or not. Such an 
operation, which converts an object ‘into itself’ is called a 
symmetry operation. In the specific example of our vase, the 
rotation round 180° is such a symmetry operation. To save 
words we designate it with the symbol C,. (The lower index 2 
means that only 1/2 of a full rotation, that is, 360°/2, has taken 
place.) We can say that the vase ‘possesses’ the symmetry 
operation C,, the cup not. More correctly, we should say that 
the vase possesses a twofold rotation axis as a symmetry ele- 
ment, but for brevity we shall often ignore the distinction 
between the symmetry element and the symmetry operations 
that are associated with It. 

iG addition to the C, operation, 
the vase possesses other sym- 
metry operations. Reflection 
across a plane that lies either 
parallel to the plane of the two 
handles (S) or perpendicular 
to this plane (S’) produces a 
mirror image that is distin- 
guishable from the original 
only insofar as it is displaced 
by an amount that is twice 
the distance between the vase 
and the reflection plane, as 
shown in the upper part of 
the adjacent diagram. In par- 
ticular, the mirror image is not 
rotated with respect to the 
vase, so that it can be brought 
into coincidence with the vase 
by pure translation —- whereby 
we assume in this ‘Gedanken- 

ae. Reflection of a vase. 



experiment’ that the mirror image can be moved through the 
reflection plane and out the other side. 

In our imagination we can place two mirrors S and S’ in the 
middle of the vase, as shown in the lower part of the previous 
diagram. In this arrangement, reflection converts the vase into 
itself. The two reflections thus constitute two additional sym- 
metry operations possessed by the vase, and we describe 
them in abbreviated form with the symbols a anda’. 

For technical reasons we always add one further symmetry 
operation, the identity operation J. This operation converts 
any object into itself, 1.e., it does not do anything and may thus 
appear to be rather trivial. Indeed itis, but its presence serves 
to guarantee the rule that the result of any sequence of symme- 
try operations is also a symmetry operation. Perform the C, 
operation twice in succession and you are back where you 
started; it is the same as if you had done nothing. The opera- 
tion that, applied to the result of any symmetry. operation MV, 
produces Jis called the reciprocal of M, designated M. 

Wines the vase allows exactly four symmetry opera- 
tions, namely, [| C,, 0, and a’, while the cup has only two, 
I and the reflection o. This difference in the number of sym- 
metry operations, four against two, allows us to quantify 
our intuitive feeling that the vase is ‘more symmetrical’ 
than the cup: the greater the number of symmetry opera- 
tions possessed by an object, the more symmetrical it is. 

Axnother advantage of the method of defining the symmetry 
of figures by means of symmetry operations is that we can 
classify together different objects that possess the same sym- 
metry operations as belonging to the same symmetry type. 
They are then said to belong to the same symmetry group. In 
this way, the cup, the knife, the dog, and the ethanol molecule 
shown in the next diagram all belong to the same symmetry 
group, because they all possess the reflection o as sole sym- 
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Classification of objects according to theirsymmetry. 

metry operation, apart from the trivial J. On the other hand, the 
vase, the double-bladed sword, the lolhpop, and the water 
molecule have the symmetry operations J, C,, o, and a’ in 
common. All four belong to the same symmetry group, which 
is a higher group than that of the first four examples, corre- 
sponding to the larger number of symmetry operations that 
characterize them. 

We do not wish to extend our symmetry-operation zoo any 
more than is absolutely necessary for the understanding of 
our further exposition. We therefore add only a few to the 
already mentioned non-trivial symmetry operations, C, anda. 
The trigonal pyramid, shown in the following Figure, with an 
equilateral triangle as base, can obviously be brought into 
self-coincidence by a rotation of 120°, either to the left or to the 
right. Analogously, we denote this symmetry operation with 
the symbol C,, since the amount of rotation, 120°, is equal to 
360°/3, one third of a complete revolution. It seems reason- 
able that we classify C, as a higher symmetry operation than 
C,, because now a threefold repetition corresponds to a com- 
plete revolution. If C, is a clockwise rotation of 120°, then 
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Rotation 

120° 

cc repetition of C; gives a clock- 
wise rotation of twice 120°, i.e 
one of 240°, equivalent to an 
anti-clockwise rotation of 120°. 
Thus, whereas the C, opera- 
tion is its own Meee this 1 1s 
not the case for C,: (C,)° i} 
and (C,)° = (Gy me it eu OlbnF 
ous notation. Since the opera- 
tion has to be repeated three 
times to produce the identity 
operation, we say that it is of 
order three. 

Is , Instead of the trigonal pyra- 
mid, we had chosen a genuine a 
Egyptian pyramid with a Symmetry operations ofa trigonal pyramid. 
square base as our example, 
this would be brought into self-coincidence by rotation of 
360°/4, corresponding to the symmetry operation C,. Notice 
fiance) =8e(@,) =(Cr (Cy) = Etrihencdlong the same 
track, a five-armed starfish possesses the symmetry operation 
C; and a snow crystal the symmetry operation C,. It hardly 
seems worth mentioning that C, 1s a higher symmetry opera- 
tion than C,, C, higher than C,, and C, higher than C,, 

Returning to the trigonal pyramid, it is apparent that this 
geometrical figure also shows mirror symmetry. It is brought 
into self-coincidence by reflection across each of three mirror 
planes, so that the trigonal pyramid, in addition to J, C,, and 
(C;)*, also possesses g, a’, and a’’ as symmetry operations; a 
total of six. On formal grounds, and so that we do not lose track 
of things, we summarize our symmetry operations in a Table 
(next page). The symbol is given for each symmetry opera- 
tion, as well as the order of the operation. If an object or a 
molecule possesses several symmetry operations, which is 
often the case, then the order of the overall symmetry is sim- 
ply the sum of the number of separate symmetry operations, 
including, of course, the identity operation I 
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X 

Rotation of a vase by 180° (operation C,) (top), considered as a coordinate transformation 
(bottom), depending on the position of the observer. 

Symmetry operations Symbol Order 

Rotation by 360°/2 — 180' Cy a 

S609 Sul 0° C, 3 

360°/4 90' C, 4 

360°/5 Ne Ge 5 

360°/6 60° Cg 6 

or a Reflection 

lhe what follows, we shall use the elementary concept of sym- 
metry operation as introduced in this chapter. On the other 
hand, the objects to which these operations refer will from 
now on be molecules, or more exactly molecular models, 

which we picture in a tangible fashion as spatial arrangements 
of atoms linked to one another. 
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Wren we talk about rotating an object, our vase say, through 
180°, there are two equivalent ways of looking at this opera- 
tion. As indicated in the previous Figure, we can rotate the 
object itself or we can rotate the coordinate system with which 
we describe the object . In three-dimensional space, a reflec- 
tlon 1s no more than reversing the direction of one of the 
coordinate axes, a 180° rotation is equivalent to reversing 
the directions of two of them, and inversion corresponds to 
reversing all three. 
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assigned a separate symbol, and begin around the time when 
chemists started to think in atomic and molecular terms. This 
was already the case by 1808, when John Dalton (1766-1844) 
published his principal work A New System of Chemical Phi- 
losophy, from which we have borrowed the Table of the ele- 

V V e skip over the alchemical era, when every substance was 

ments shown in the Figure below. 

Every circle in the Table cor- 
responds in Dalton's language 
to a ‘simple atom: 
assigns a weight 
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weight of a hydrogen atom. 
Out of these ‘simple atoms’ he 
then builds ‘compound atoms’, 
that 
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The Figure on the next page, 
taken from the same work, 

contains a selection of such 
Daltonian molecules, 

ing, for example, water (21), 
ammonia (22), nitric oxide (26), 
sulfuric acid ($1), alcohol @5), 
and sugar (387). These Dalton- 
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besides that, reliable analyses 
of most compounds were not 
available at the time. 

Onity two of Dalton’s basic 
assumptions are essential for 
our further considerations. 
The first is that the ‘simple 
atoms’ consist of spherical 
particles, and the second is 
that their combination to ‘com- 
pound atoms’ takes place in 
such a way that the latter are as 
symmetrical as possible. Here 
one should not be deceived by 
the planar representations. 
Dalton was one of the first who 
worked with actual molecular 
models, in which wooden 
balls, supposed to represent 
the ‘simple atoms’, were 
linked together by rods into 
the ‘compound atoms’ or 
molecules, just as we do today. 

In the same year that Dalton's 
fundamental work appeared, 
his countryman Wilham Hyde 
Wollaston (1766-1828) deliv- 

ered a lecture to the Royal Society"! in which he postulated 
that, in making geometric pictures of the relative positions of 
atoms in molecules, it was absolutely essential to consider all 
three spatial dimensions. He implicitly assumed that Nature 
always demands the highest possible symmetry of the 
molecules formed. For example, if three atoms combine in the 
proportion 2:1, then the two atoms of the first kind will ‘natu- 
rally’ take up positions on opposite sides of the central atom. If 
five atoms combine in the proportion 4:1, then, in Wollaston’s 
view, a stable molecule is obtained only when the first four 
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atoms are situated at the corners ofa regular tetrahedron with 
the second type of atom at its center. Presumably, Wollaston 
was somewhat afraid of his own audacity, for he ended his 
lecture with the comment that the postulated geometric 
arrangements of atoms were purely hypothetical. But in his 
inner convictions he, like Dalton, must have believed in the 
correctness of his hypothesis, for he added that it was perhaps 
too much to hope that the geometric arrangement of atoms 
would ever be known exactly. 

This ambiguous attitude, which we have taken into account 
by putting the words ‘atom’ and ‘molecule’ into quotation 
marks, has its reasons. Although Dalton, Wollaston, and other 
chemists of that period used chemical formulas — for which the 
Swedish chemist Jons Jakob Berzehus (1779-1848) had intro- 
duced the famihar letter symbols (H = hydrogen, C = carbon, 
N = nitrogen, O = oxygen) — quite in the sense of our contem- 
porary models, most chemists were of the opinion that these 
models had merely a heuristic value. In this connection, the 
balls of the models or the letter symbols of the formulas were 
supposed to stand merely as convenient representations for 
something that was denoted as ‘equivalents’, without refer- 
ence to any actual atomic and, especially, spatial structure of 
matter. By ‘equivalents’ was meant the corresponding 
amounts of the elements which could be combined to produce 
a given substance. We cannot here enter into this controversy, 
which lasted until the beginning of the present century. Some- 
what distorting the history of chemistry, we shall continue as if 
these early ideas of Dalton and Wollaston had been unop- 
posed in their effectiveness. 

In order to discuss molecules in a sensible way, we first need 
to define some concepts: the sum-formula of a chemical com- 
pound, for example, 

C,02H, 

tells us how many atoms of each type are combined in a single 
molecule of the compound; in this case, three atoms of carbon 
(C), three of oxygen (O), and six of hydrogen (H). It was once 
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believed that such a sum-formula was sufficient to fully charac- 
terize a given compound, and it came as a great surprise when 
the twenty-year old Justus Liebig (1803-1873) showed in 1823 
that silver fulminate (AgCNO), a highly explosive compound, 
had exactly the same sum-formula as the completely innocu- 
ous silver cyanate (AgNCO), which was being analyzed at 
around the same time by Friedrich Wohler (1800-1882). In a 
footnote to Wohler’s paper, Joseph Louis Gay-Lussac (1778- 
1850), editor of the Annales de Chimie et de Physique, made 
the revolutionary realization that with the same sum-formula 
the atoms could be hnked together in different sequences to 
give different molecules with quite different properties. He 
suggested, for example, as one possibility, that the cyanate 
might be AgCNO while the fulminate might be Ag,C,N,O,, 
and it is interesting that a continuance of this old but quite 
incorrect suggestion is still evident in the tabulation of inor- 
ganic substances in modern volumes of the Handbook of 
Chemistry and Physics, where silver fulminate is lhsted as 
Ag,C,N,O,. The wrong formula has been copied from one 
book to another for more than 150 years, a time span that 
contains almost the whole history of chemistry! 

Genome with the same sum-formula were called isomers 
by Berzehus. The deeper ground for the existence of isomers 
became apparent only later, when it was realized that, as a 
rule, each type of atom can only enter into a definite number of 
‘bonds’ with its nearest neighbors: for carbon four, oxygen 
two, hydrogen only one. This number is called the valency. 
The quadrivalency of carbon was postulated almost simulta- 
neously around 1858!" by the Scottish chemist Archibald Scott 
Couper (1831-1892) and the German chemist Friedrich 
August Kekule (1829-1896), whom we shall meet again in con- 
nection with the structure of benzene. We can imagine that 
each atom has the appropriate number of little hooks, which 
can be linked in pairs to make bonds between the atoms. This 
picture was developed in France, where even today ‘atomes 
crochus' is a still current expression in a quite different con- 
text. In reality, itis somewhat more complicated, but that need 
not bother us here. Taking account of the valency, we can 
generally join a given set of atoms into different patterns cor- 
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responding to different molecules. Molecules containing the 
same atoms arranged in different ways are called isomers, a 
few-of which are shown below for the sum-formula C,O.H,. 
They are dimethyl carbonate (1), glyceraldehyde (2), and 
lactic acid (3). 

CH, HC=0 CH, 

O HC—O# HC—OH 

= te C==0 

6 OF OH 
oh 
1 2 3 

Notice that multiple (double) bonds as well as single bonds 
can be formed between pairs of atoms. We simply join two 
pairs of hooks on each atom. The three isomers depicted 
represent only a few of the many possibihties for combining 
the atoms in C,0,H,. Formulas of this kind are known as struc- 
tural formulas, and we emphasize again that they merely show 
the manner in which the individual atoms are linked together: 
what we call the connectivity of the atoms in the molecule. 

Tn 1874 the Dutchman Jacobus Henricus van't Hoff (1852-1911) 
published a little pamphlet’? which later grew into the well 
known book entitled La chimie dans l’espace. In this book, the 
idea of the most symmetrical arrangement of atoms in 
molecules — subliminal in the minds of chemists since Wollas- 
ton — was postulated in a bold and quite definite way for the 
tetravalent carbon atom. Van't Hoff starts with the assumption 
that the four valencies of carbon are directed towards the four 
corners of a surrounding tetrahedron (Figure on the next 

page). 

Thus, a highly symmetrical spatial structure is predicted for 
the simplest hydrocarbon molecule, that of methane, CH,, as 
shown in the lower Figure on the next page, translated into a 
three-dimensional structural formula. To the unbiased reader, 
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the advance compared with 
Wollaston’s way of looking at 
things may seem rather mod- 
est, but from the resulting spa- 
tial models van't Hoff was able 
to draw far-reaching conclu- 
sions that have had a lasting 
influence on chemical thought 
and which we shall now dis- 

Van't Hoff model of the carbon tetrahedron. cuss in more detail. 

©; course, amolecule does not consist of little balls and rods; 
the individual atomic nuclei are held together by the elec- 
tronic cloud of the molecule. This cloud occupies the space 
between and around the individual nuclei, and in order to 
make a rough picture of this, the chemist today uses space-fill- 
ing models. A model of this kind is ulustrated in the following 
picture for the methane molecule. The transformation from the 
planar structural formula to the spatial van’t Hoff model and 
finally to the space-filling model for the lactic acid molecule 3, 
which we have already met, is shown in the Figure on the next 
page. 

Various ways of representing the methane molecule: sum-formula, connectivity diagram, 
ball-and-stick model, and space-filling model. 
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Connectivity diagram, ball-and-stick model, and space-filling model of lactic acid 3. 

Ask a chemist to choose a molecule at random from the round 
ten milhon known organic compounds, and it is quite likely to 
be benzene. Indeed, the importance and historical signifi- 

cance of the benzene molecule can hardly be exaggerated. At 
any rate, it is especially important from the standpoint of the 
role of symmetry considerations in chemistry. The problem 
that arose in the middle of the last century was the following. It 
was recognized that the benzene molecule consists of six car- 
bon and six hydrogen atoms, hence its sum-formula is C,Hg. It 
was also known that substitution of one or several hydrogen 
atoms by other univalent atoms, thatis, those with only a single 
valency hook, such as chlorine (Cl), led to a quite definite and 
narrowly restricted number of isomers. 

Sum-formula Number of isomers 

C,He 
C,HeCl 
Cle 
GAH.Cl. 
CACl, 
Couch. 
Gel: —s j= (GS) (Coy (GS) SS 



Ce He 

Ce Hs Cl, 

CeH.Clh ee Sy a 

CeH3 Cle ay Ld 4 

Ce H, Cls 

Ce Cle 

Relationships among the chloro-substituted 
benzenes C,H, _,Cl,, n= 0-6. 

Deen from the chemist's 
standpoint, this looked in the 
laboratory something like the 
picture shown in the adjacent 
Figure. If benzene (C,H) 1s 
allowed to react with chlorine 
so that only a single hydrogen 
atom (H) is replaced by a chlo- 
rine atom (Cl), one obtains as 
product only one compound, 
chlorobenzene (C,H,Cl). If this 
is again reacted with chlorine 
so that a second hydrogen 
atom is displaced by a chlorine 
atom — the chemist says substi- 
tuted — one obtains this time 
not just one compound with 
the sum-formula C,H,Cl, but 
instead a mixture that can be 
separated into three different 
compounds with the same 
sum-formula but with different 
properties. There must there- 
fore be three isomers, which 
require three different struc- 
tural formulas. Starting with 
the three C,H,Cl, isomers, sub- 
stitution of one of the remain- 
ing four hydrogen atoms by a 

further chlorine atom also yields three new C,H,Cl, isomers, 
as shown in the Figure above. The perplexing thing was, 
however, that not all of the three trisubstituted isomers could 
be obtained from each of the disubstituted ones. Thus, one of 
these isomers gave only a single product, another gave two, 
and the third gave all three. This connection and the relation- 
ship of the higher chloro-substituted benzenes to the lower 
substituted ones 1s shown by the arrows in the reaction 
scheme above. If this scheme is contracted by representing 
the isomers by points and the reaction arrows by lines, one 
obtains an abstract figure known to mathematicians as a 
graph. 
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W hat 1s new and remarkable here is that we are now not 
looking at individual molecules, but rather investigating their 
inherent symmetry through the nature of their interrelation- 
ships, symbolized by means of the graph. In the specific exam- 
ple of the chlorinated benzenes, the ‘relationship graph’ helps 
us to recognize the symmetry of the reaction pattern espe- 
cially clearly. The graph is symmetric with respect to the 
horizontal line (h) but not with respect to the vertical one (v). 

Ian own contributions to the benzene problem are 
reputed to have occurred in circumstances that have become 
firmly established in chemical mythology”. His 1858 recogni- 
tion of the quadrivalency of the carbon atom is supposed to 
have happened in a vision, while he was traveling on the 
upper deck of a London bus from Islington to Clapham Road, 
and, according to his own later account, he saw the cyclic 

structure of the benzene molecule in a day-dream while doz- 
ing in front of the fireplace in his bachelor study in the Belgian 
city Ghent in 1861. At least it must have been before his mar- 
riage, which took place in 1862. The cyclic formula was actu- 
ally presented only in 1865, while the story about the day- 
dream was told by Kekulé many years later, in 1890. It is 
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possible that his memory was at fault after such a long interval. 
According to all accounts, Kekulé was not of a secretive 
nature; on the contrary, he was in the habit of endlessly dis- 
cussing his ideas and his latest results with his students and 
colleagues. It is hard to believe that such an extroverted per- 
son could have kept a discovery of that importance a secret for 
several years, from 1861 until 1865, especially as there seems 
to have been no obvious reason for reticence. It is more likely 
that the symmetrical cyclic formula developed in his mind 
only gradually, starting with the idea of a ring formed by a 
closed chain of atoms. Indeed, in the 1865 publication Sur la 
constitution des substances aromatiques and also in the lec- 
ture that he dehvered on January 27th of the same year to the 
societe Chimigque de France with Louis Pasteur in the chair, 
Kekulé made use of the stretched ‘sausage formulas’, in which 

the ring closure is merely symbolized by arrows, as shown in 
the Figure below. 

1. Chaine ouverte. 2. Chaine fermée. 

3. La Benzine. 4, Benzine chlorée. 5. Benzine bi chlorée. 

> 

6. Alcool phénique. - 7, Acide oxyphénique. 8, Acide pyrogallique. 

9, Aniline. , 10. Diamido benzine. 11. Tri-amido benzine. 

Sausage formulas for benzene and its derivatives used by Kekulé in 1865}°. 



nom these formulas it is not 
exactly obvious how the sym- 
metry-required equivalence 
of the six carbon atoms comes 
about. An attempt to explain oe Povey Seats be Spohe paces ets 

this equivalence in terms of a symmetrical spatial models of the benzene 
highly symmetric molecular molecule according to Havrez'®. 
structure was made in 1865 by 
the now almost forgotten French chemist Paul Havrez, who 
made use of models with more than a little resemblance to the 
Kekulé ‘sausage formulas’ (Figure above). Although these 
constructions appear from a modern perspective to be be- 
yond good and evil, Havrez’s attempt to derive a model in 
which the atoms in space are symmetry equivalent is quite 
remarkable. 

During the period following 
Kekulé’s work, and indeed 
up to the year 1935, formula 
after formula was proposed 
for the benzene molecule, all 
designed to explain the equiv- 
alence of the carbon atoms and 
also the chemical and physical 
properties of the compound in 
terms of the high symmetry of 
its molecular structure. Some 
examples are collected in the 
accompanying Figure. 

The first iotmule links 
Kekulé’s two visions, the one 
about the quadrivalency of the 
carbon atom, and the one 
about the cyclic arrangement 
of the six carbon atoms in the 
benzene molecule. To satisfy 
the rules about joining pairs of 

Kekulé,1872 

We 

Collection of benzene formulas. 49 



valencies to make bonds, one has to assume that single and 
double carbon-carbon bonds alternate in the ring. This 
means, however, that the C, (rotation of 360°/6 = 60°) symme- 
try operation is lost, as the formulation allows only C, (rotation 
of 360°/3 = 120°). One unfortunate result of this reduction of 
symmetry is that it predicts the existence of two lsomers in 
which neighboring hydrogen atoms are replaced, for exam- 
ple, by chlorine atoms. In one of these isomers, 4, the carbon 
atoms carrying the chlorine atoms are hnked by a double 
bond, in the other, 5, by a single bond. 

i i 
Me Te 

bx i 6 
H~ No ell We Ser “et 

A : 
4 5 

ee enmenrains no isomers of this kind have ever been 
found. As a consequence, other more symmetric formulas 
were proposed in which this difficulty is avoided by insisting 
on the presence of the sixfold symmetry operation C,. The 
price to be paid was that these formulas do not satisfy the rules 
of the traditional style of writing; they require the assumption 
either of ‘free valencies’ jutting into space or of unrealistically 
long bonds. Ladenburg’s formula is a special case; spatially it 
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corresponds to a _ prismatic 
structure with an equilateral 
triangle as its base, a figure 
that gives the correct number 
of isomers but leads to a differ- 
ent reaction graph from what is 
actually observed. Ladenburg 
actually counted four dichloro 
isomers, 6-9, apparently not 
recognizing that two of these, 
8 and 9, onsymmetry grounds, 
must be related as mirror 
images. The reason was that he 
expected four, as he counted 
the two isomers correspond- 
ing to the Kekulé formulas 4 
and 5 as being different. (He 
also thought that there might 
be two 1,3 isomers, notwith- 
standing the fact that rotation 
by 120° would transform one 
into the other.) 

lS aeiine in 1872 Kekulé sug- 
gested that his original for- 
mula should be kept, but with 
the important supplementary 
hypothesis that the single and 
double bonds continually ex- 
change their positions, as indi- 
cated symbolically by the 

Isomers of chloro-substituted benzenes CgHg,Clp, 
n= 0-6. 

word ‘and’ in the bottom formula in the Figure on page 49. 
Thus, the problem of the surplus isomers was eliminated with- 
out having to break the rules that were then regarded as valid 
for formulating chemical compounds. From the Figure above, 
one can easily convince oneself that successive replacement 
of white hydrogen atoms (H) by green chlorine atoms (Cl) 
must necessarily lead to the observed number of isomers as 
indicated in the Table on page 45, and that, moreover, the 
graph of the relationships among the isomeric compounds is 
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Benzene structure according to F. W. Findig (N.O. Witt). 

correctly reproduced. Here one must bear in mind that each 
structural formula is drawn in an arbitrary orientation, while 

the corresponding molecule in space can be rotated at will. 
Thus, for example, in the structural formula of chlorobenzene, 
C,H,Cl, the single chlorine atom can be placed at any of the six 
symmetry equivalent positions. The molecule in question re- 
mains the same. 

Kexuié's proposal, forced on him by symmetry, was not 
regarded by all his contemporaries as the last word in wis- 
dom. This is shown by a parody, presumably written by O.N. 
Witt sunder the pseudonym Fe We. Eindig, “ime the leco 
humorous special number of the Berichte der durstigen 
chemischen Gesellschaft distributed as a festive gift at a meet- 
ing of the German Chemical Society. There it is demonstrated 
how Kekule’s formula can be derived on a= zoolo- 
gical basis; the carbon atoms are symbolized by monkeys 
whose tails, alternately free and clasped, reproduce the 
behavior of the double bonds, as illustrated in a drawing of the 
author (Figure above). 



With the chemical and physi- 
cal methods available at that 
time, it seemed hopeless to try 
to obtain any more definite 
information about the symme- 
try of the benzene molecule. 

All the more remarkable isthe odels of chloro- and bromo-substituted 
series of four papers pub- _ benzenes. 
lished in the period 1866-1874 
by Kekulé’s student and collaborator Wilhelm Korner (1839- 
1925) under the title Uber die Bestimmung des chemischen 
Ortes bei aromatischen Substanzen''. The problem was to 
prove the correctness of the symmetrical benzene formula by 
analyzing the number of isomers and the symmetry of the 
relationship graph shown on page 47 while maintaining the 
quadrivalency of the carbon atom. Today it is hardly possible 
for us to appreciate the extraordinary difficulty of this prob- 
lem with the then available methods, The point at issue can be 
explained in terms of molecular models of benzene, 
chlorobenzene, and the three isomeric bromochlorobenzenes 
(Figure above). In these, the medium-sized, green balls rep- 
resent the chlorine atoms, the larger, brown-colored ones the 
bromine atoms. It is seen that only three isomers of bro- 
mochlorobenzene, shown in the lower part of the picture 
above, can exist. If, in each of these, by some series of chemi- 

cal reactions, the chlorine atom could be replaced by a 
bromine atom, and vice versa, then, after the exchange, 

exactly the same compound should be obtained, provided 
that the benzene molecule has the hexagonal symmetry 
assumed by Kekulé. These exchange reactions, and 
analogous ones with benzene derivatives in which three (or 
more) hydrogen atoms were replaced by three (or more) 
other atoms or groups, were intended, taken together, to lead 
to a proof that all positions in the benzene molecule are indeed 
completely equivalent. By tackling and solving this problem 
Korner won a reputation as the philosopher of organic chem- 
istry, but how subtle symmetry considerations in chemistry 
can be is shown by the fact that the final point in his proof was 
established only in 1980, more than 100 years later, by the Yale 
chemist J. Michael McBride”® 



Deientists too tend to follow 
fashions. Following Kekule’s 
proposal of a cyclic structure 
for a chemical compound, 
many other formulas showing 
rings of aioms began to: ap: 
pear. It was unavoidable that 
some chemists, in their exu- 
berance, postulated cyclic for- 
mulas of the highest imagin- 

Gaudin's formula for the calcium salt of stearic able: Symmetry “ever where 
acid ~., these were totally inappropri- 

ate. As example, there is the 
French chemist Marc Antoine Augustus Gaudin (1804-1880), 
the first to make artificial rubies and sapphires and one 
of the clearest minds of his era, who in a weak moment 
proposed the formula shown in the Figure above, a veritable 
orgy of neo-Kekuléan hexagons, for the calcium salt of stearic 
acid. In reality stearic acid is a long-chain molecule 
CH,-(CH,);,-COOH corresponding to the model shown in the 
Figure below. 

Apart from such extravagances, which obviously originated 
from the idea that Nature prefers structures of the highest 
possible symmetry — quite in the sense of the ideas from 
Plato to Wollaston and strengthened under the impression of 

Space-filling model of the stearic acid molecule. 



the success of the highly symmetrical benzene formula — this 
belief in symmetry as a principle could also lead to false 
predictions, even in cases where its validity might have 
appeared fairly secure. 

The attempt to generalize Kekulé’s benzene formula led 
inevitably to the search for the eight-membered analog, cy- 
clooctatetraene 10. This molecule ought to consist of eight 
carbon atoms arranged in a ring with alternating single and 
double bonds. Extrapolating from the chemistry of benzene, 
and with the imphcit assumption that here too the principle of 
maximum possible symmetry must apply, it was expected that 
the two ‘Kekulé formulas’ below ought to provide a correct 
description of the molecule. 
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From this formula, cyclooctatetraene was expected to be- 
have as a regular octagonal planar molecule, with chemical 
and physical properties very similar to those of benzene. In 
1911 Richard Willstatter (1872-1942) succeeded in obtaining 
the compound, and it was a great surprise when it turned out 
to have quite different properties from those expected — it 
is very unstable and has not the slightest in common with 
benzene. In particular, as was found later, the molecule does 
not have the highly symmetric structure shown on the left of 
the next Figure’, which had been taken more or less for 
granted, but a non-planar structure of lower symmetry, as 
indicated by the model on the right of the next Figure. The 
deeper ground why this molecule has a lower symmetry than 
its maximum possible symmetry is quite subtle and was rec- 
ognized only in the middle of the 1930's by the German physi- 



Cyclooctatetraene models. 

cist Erich Hiickel*’ (1896-1980), one of the fathers of modern 
quantum chemistry. 

A\nother example of how a psychological ‘symmetry fixation’ 
can lead to false conclusions is provided by the cyclic satu- 
rated hydrocarbons. They are called ‘saturated’, because 
they contain no multiple bonds (unhke our benzene formula), 
but only single bonds between carbon atoms (C—C) or 
between carbon and hydrogen atoms (C-—H), so that the four 
valencies of each carbon atom are used to make bonds to four 
separate atoms. The first seven cycloalkanes with three to nine 
carbon atoms in the ring are shown in the following Figure. 

I was soon discovered that in the organic compounds found 
in Nature, such saturated rings occur with quite different 
frequencies. While the five- and six-membered rings are very 
widely distributed, the seven-membered ring is found only 
rarely and the others, the three-, four-, eight-, nine-, and 
higher-membered rings, practically never. In 1885, Adolf 
von Baeyer~ (1835-1917) gave what looked like an appeal- 
ingly simple explanation for this observation. With the 
assumption that all cycloalkanes have the highly symmetric 
planar structures shown in the following diagram, it is easy to 



Bond angles in planar cycloalkane models. 

calculate the angle between adjacent C-—C bonds. Now the 
‘natural’ directions of the four valencies of a carbon atom, for 
example in the methane molecule, are such that the angle 
between two bonds emanating from this atom make the ideal 
angle of 109.5° (the angle between lines drawn from the centre 
of a regular tetrahedron to its corners). In order to obtain the 
angles that occur in these hypothetically planar cycloalkanes 
the bonds must be bent either inwards or outwards by quite 
definite amounts 4. These 4 magnitudes are shown under- 
neath the formulas in the Figure above. If the individual bonds 
were to bend hke springs, it is clear that, except for the five- 
and six-membered rings, a considerable strain would arise. 
The further the deviation from the ideal angle of 109.5”, the 
more the angles would have to be deformed, and the greater 
the strain would be. This quantity, named Baeyer strain after 
its inventor, seemed to be a plausible and sufficient explana- 
tion for the observed frequency of occurrence of the various 
ring types in Nature. The only drawback was that it later 
proved to be quite incorrect for rings containing more than 
three carbon atoms, because these do not occur as planar 
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rings, as had been tacitly assumed ‘on symmetry grounds’. 
The only cycloalkane for which the carbon ring turns out to be 
planar is the one that cannot avoid it — cyclopropane, with a 
three-membered ring. The others are all puckered, more or 
less. 

In 1890 Hermann Sachse (1862-1893) had pointed out that 
two puckered, ‘strain-free’ forms of cyclohexane are possi- 
ble: a ‘symmetrical’, 11, and an ‘unsymmetrical’, 12, form, 

corresponding to what we now call the chair and boat forms. 
As Sachse observed, there are two kinds of positions for sub- 

stituents in the chair. form, which are interconvertible by a 
ring inversion process. He also noticed that the boat form 1s 
flexible, whereas the chair form is rigid, provided that the 
valency angles remain constant. 

11 12 

Sychee's views about the cyclohexane structure did not meet 
with acceptance, partly because they were at variance with 
Baeyer's strain theory, and partly for a deeper reason. They 
predicted the existence of at least two isomers of a mono-sub- 
stituted cyclohexane derivative, while many efforts to obtain 
more than one such isomer were uniformly unsuccessful. 
However, in 1918 Ernest Mohr” (1873-1926) revived Sachse’s 
long neglected model; he pointed out that the valency angle of 
120° required by a planar hexagonal ring was unlikely to be 
adopted ina cycloalkane molecule, and that rapid inversion of 
the chair form might explain the experimental failure to isolate 
more than a single isomer of a mono-substituted derivative. 
The isolation of two forms (trans, 13, and cis, 14) of decahy- 
dronaphthalene (or decalin for short) was a severe blow to the 
adherents of the Baeyer theory, and, by the mid-1920’s the 
Sachse theory of puckered, strain-free rings was more or less 
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_ accepted although it was still not known whether cyclohexane 
existed in the symmetrical chair form or the flexible form, or 
as a mixture of both. 

There is an amusing epilogue to this story. With the advent of 
crystal structure analysis (to be discussed later in this chapter) 
this method was applied in 1926 to crystals of hexachloro- and 
hexabromocyclohexane™’. From the results, it was quite clear 
that both molecules must have highly symmetrical structures; 
a threefold rotation axis combined with a centre of inversion, 
which would be compatible with the planar form and with 
sachse’s symmetrical chair form but not with his unsymmetri- 
cal form. Since, by this time, the planar form could be 
excluded, this left the chair form as the only possibilty. It is 
therefore quite puzzling to read the authors’ own account of 
their research: ‘‘It is of interest to note that Mohr’s theory of 
strainless rings.... is not compatible with our conclusions 
ner His three-dimensional formulas have a center of symmetry 
in one case, but nota plane of symmetry. Four carbon atoms of 
a given cyclohexane ring are coplanar, the 1, 4 carbon atoms 
being equidistantly placed above and below the plane. Sucha 
representation would not be tenable on the basis of our con- 
clusions’’. 

One can only guess that the authors had not looked at 
either Mohr’s or Sachse’s original papers (mentioned in foot- 
notes) but had read the background material in a review arti- 
cle published in the 1924 Annual Reports of the Chemical 
Society (also mentioned in a footnote). There the English 
chemist Christopher Ingold (1893-1970) reviewed the 
growing evidence for the Sachse-Mohr theory and illustrated 
his arguments with diagrams similar to 15, of the kind that 
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could be set by ordinary printer's type. Is it possible that these 

diagrams were interpreted as indicating puckered rings with 
unequal interatomic distances and lacking a threefold rotation 
axis? We shall never know. In a second paper on the crystal 
structure analysis, no mention was made of the somewhat 
paradoxical statements of the first paper; this time the evi- 
dence was interpreted as establishing the chair form 16 of the 
ring, with the substituents in the equatorial positions. 

peed of 

15 16 

The dogma of the instability of the many-membered rings 
was finally broken by Leopold Ruzicka (1887-1976). In connec- 
tion with studies of the olfactory components of musk, he syn- 
thesized a whole series of compounds, in which up to 30 
carbon atoms were linked in a ring. These rings are neither 
highly symmetrical nor planar, as Baeyer had assumed; 
rather, they are built from two parallel zigzag chains, linked to 
each another at both ends, as seen in the space-filling model of 
the many-membered cyclic ketone shown in the next Figure. 

IDemene rings can be fused together in all sorts of ways, and 
chemical compounds corresponding to many of these combi- 
nations have been made. In fact, some of them are rather 
famihar, such as naphthalene 
(17) and anthracene (18). The 
structure with a benzene ring 
fused to six other benzene 
rings has a high symmetry, the 
same as that of benzene itself, 
and is called coronene (19). If 
one continues the process of 
fusing benzene rings together 

Space-filling model of a hypothetical structure of a 
60 many-membered cyclic ketone. 



indefinitely, one arrives at an infinite hexagonal sheet of atoms 
(20). Graphite, the stable form of carbon, consists of stacks of 
such hexagonal sheets. The ease with which these sheets can 
shde over one another is responsible for the lubricating prop- 
erties of graphite. 

Diamona, the other well known and more expensive form 
of carbon, also has a highly symmetric repeating structure 
in which each atom is surrounded by four others at the 
vertices of a regular tetrahedron (Figure on the next page), 
in perfect agreement with the model proposed by van't 
Hofi. A crystal of diamond can be regarded) as a giant three- 
dimensional molecule, in which all the atoms are held 
together by chemical bonds. It is this property that is res- 
ponsible for the exceptional hardness of diamond — it is actu- 
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ally the hardest known sub- 
stance. Of course, diamonds 
have been known as highly 
prized gemstones since antiq- 
uity. But the claim made in 
advertisements that ‘diamonds 
are forever’ is exaggerated. 
A *ciainond- wis sacitially sless 
stable than the more humble 
form of carbon. Wait a few mil- 
lion years and a diamond is 
quite likely to transform into 

Unit cell of the diamond structure. graphite. 

A more recent example where an unqualified behef in max1- 
mal symmetry at all costs would have led to the correct answer 
is provided by the 60-atom cluster of carbon atoms, 21, discov- 
ered in 1985 by Richard E. Smalley and Harold Kroto, and the 
object of much attention since then”. This cluster can be made, 
along with smaller amounts of other clusters containing differ- 
ent numbers of atoms, by vaporizing graphite in a hehum 
atmosphere either with a laser beam or by electric heating. 
But the 60-atom cluster predominates. Why 60? As a bright 
student of symmetry might guess, and a soccer enthusiast 
would probably know, the answer is that 60 equivalent points 
can be placed on the surface of a sphere, and in such a way 



that all the rules of classical structural chemistry are satisfied. 
There is only one way to do this, and that is to place the atoms 
on the 60 vertices of a truncated icosahedron. The resulting 
figure has 12 pentagons and 20 hexagons, each pentagon 
being surrounded by and sharing its edges with five 
hexagons, each hexagon being surrounded by three pen- 
tagons and three other hexagons. It is seen to have a very high 
symmetry, that of the two regular Platonic solids, the icosahe- 
dron and the dodecahedron. It can be imagined as a kind of 
super benzene, but without hydrogen atoms, or, perhaps 
better, as a kind of spherical ball of graphite. The hydrocar- 
bon C,,H,, with the same symmetry (carbon atoms arranged 
at the vertices of a regular dodecahedron) had been synthe- 
sized by the American chemist Leo A. Paquette several years 
earlier. 

The Swiss mathematician Leonhard Euler (1707-1783) found 
a simple formula relating the numbers of faces (F), vertices 
(V), and edges (E) of any polyhedron: 

PasV=E +2. 

We can use this to find the number of vertices in any polyhe- 
dron that contains exclusively pentagonal and hexagonal 
faces. Let P be the number of pentagons and H the number of 
hexagons, then we have: 

eae sl 

V-=6P + 6H)/3 

E = (SP + 6H)/2 

since each vertex shares three polygons and each edge 

shares two. Applying Euler’s formula, 

(P + H) + (GP + 6H)/3 = (SP + 6H)/2 + 2 

from which P=12 and H is left undetermined. For H=0, we 
have the figure with 12 faces, 20 vertices, and 30 edges, the 



regular dodecahedron. And for each hexagon added, the 
number of vertices is increased by two. With H=a0, we again 
reach a figure that has the same high symmetry as the regular 
dodecahedron. 

In fact, the same highly symmetric arrangement of 60 protein 
sub-units is known to occur in the outer coat of several spher1- 
cal viruses, as was recognized by the molecular biologists 

Don Caspar and Aaron Klug in 1962, after the fivefold symme- 
try of these particles had become apparent from diffraction 
measurements. It is an economical way to cover the surface of 
the virus particle since the same genetic information can be 
used to make 60 copies of the protein sub-unit instead of a 
single giant molecule 60 times as large. 

Unfortunately, in our opinion, the Cg, molecule has been 
given the name buckminsterfullerene in honor of the Ameri- 
can engineer and philosopher R. Buckminster Fuller (1895— 
1983) who was responsible for the construction of geodesic 
domes built on the same geometric principle as the molecule. 
The name is so long and clumsy that it is commonly shortened 
and degraded to the even less attractive ‘buckyball’; the 
other all-carbon clusters based on 12 pentagonal faces are 
collectively known as fullerenes. Parents have the privilege 
of naming their children, but whether the discoverer of a 
new molecule is entitled to call it anything he likes is another 
matter; there ought to be rules for deciding this sort of thing. 

Today it is possible to answer the question, what does a 
molecule look hke, with relative ease since a whole palette of 
physical methods is available to determine the atomic 
arrangement in space as well as the interatomic distances. 
A direct, visual observation with a microscope is, of course, 

out of the question, because the wavelength of visible light 
is much too large for scattering by individual molecules to 
occur. On the other hand, the wavelength of X-rays is just 
about the same order of magnitude as the distances between 
the bonded atoms in molecules. Unfortunately, it is not possi- 
ble to make lenses that could produce a direct image of 
a molecule. These missing lenses can be replaced, however, 
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In a certain sense, by a com- 
puter, which calculates, from 
the observed X-ray diffraction 
pattern, the image that one 
would obtain in theory with 
such a system of lenses. The 
adjacent Figure shows one of 
the first images calculated 
in this way by the Scottish 
chemist John Monteath Robert- 
som 9(190! 1990); at shows a 
molecule of the platinum com- 
plex of the dyestuff phthalo- 
cyanine. This molecule has 
the formula 22 as can be read, 
with a little imagination and 
prior chemical knowledge, to- 
gether with the atomic coordi- Fic. 3. The projected electron density of platinum phthalocyanine. 

nates, directly from the X-ray Electron density map of (phthalocyanine)platinum, 
image. as obtained in an early X-ray diffraction study. 

W ith the help of modern computers coupled with computer- 
controlled instruments to measure the diffraction patterns of 
crystals — thousands of separate observations need to be made 
— such images can nowadays be obtained in a matter of weeks 

or days, rather than months or 
even years, as formerly. In this 
way the atomic arrangements 
in about 100,000 different 
molecules have been deter- 
mined so far by diffraction 
methods, using X-rays, neu- 
trons, or electrons. 

Apart from diffraction meth- 
ods, various spectroscopic 
methods have played an im- 
portant part in amassing the 
vast amount of information 
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about molecular structure that is available today. Most of these 
techniques depend heavily on symmetry arguments. For 
example, microwave and infrared spectroscopy, as well as 
Raman spectroscopy, yield information about the structure of 
molecules, provided they are not too complex. In the hquid 
and especially in the gas phase, molecules move with high 
velocities, collide with one another, tumble about, exchange 
energy. Depending on the method, one can obtain information 
about the structure and symmetry of molecules in vibra- 
tionally and rotationally excited states, while information 
about electronically excited states is provided by spec- 
troscopy in the visible and ultraviolet ranges. In nuclear mag- 
netic resonance spectroscopy, each nucleus broadcasts 
information about its local environment in the molecule; sym- 
metry-related nuclei thus give identical signals. 

Returning to benzene, the most conclusive evidence avail- 
able today for the ful hexagonal symmetry of this molecule 
comes from spectroscopic measurements. These show that 
the benzene molecule does not oscillate from one Kekulé 
structure to another but rather vibrates with only small ampli- 
tudes about the regular hexagonal structure in which all C—C 
bonds are of equal length and all C-C-C angles are 120°. This 
picture is confirmed by the best available theoretical calcula- 
tions. 

W aren molecules absorb energy and go into excited states, 
the symmetry of the excited state is not necessarily the same 
as that of the ground state. 
For example, if a benzene 
molecule loses an electron the 
resulting cation no longer 
has hexagonal symmetry but 
jumps around from one lower 
symmetry structure to another, <6 
as shown schematically in the cna 
adjacent Figure. 

Benzene Cation | 

CAS 

6 Schematic representation of the loss of symmetry of 
6 benzene on ionization. 



A curlous but surprisingly 
direct method for obtaining a 
picture of the spatial arrange- 
ment of the atoms in small 
molecules is provided by the 
coulomb explosion method”, 
shown schematically for the 
example of the molecule-ion 
H3, consisting of three hydro- 
gen atoms, as shown in the 

adjacent Figure. The posi- 
tively charged molecule is 
brought to a very high velocity 
in an accelerator, as used in 
physics, and shot through an 
extremely thin carbon foil. 
During this process, the Hj 
system does a kind of molecu- 
lar striptease, whereby its 
electrons are removed as it 
passes through the foil. The : Cs 

naked nuclei emerge on the Coulomb explosion method for determining the 
opposite side of the foil with triangular structure of Hj. 
still greater velocity. As these 
nuclei are positively charged, they repel one another, or in 
other words, their original structure is expanded. If they are 
allowed to collide with a detector some distance from the foil, 
the original structure of the molecule is expanded to such an 
extent that the impact holes can be observed directly under 
the microscope. From the positions of the holes, one can draw 
conclusions about the structure of the original particle, for 
example, that the hydrogen atoms in Hj are arranged at the 
corners of an equilateral triangle. 
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VIL. 
And should not I spare Nineveh, 
that great city, wherein are more than sixscore 
thousand persons that cannot discern 
between their right hand and thetr left hand; 
and also much cattle. 

Jonah, Chapter 4 

La Drotte et la Gauche, 
cest pas du tout la méme chose. 

Pierre Maurots 

The biblical quotation could mean that Nineveh, that great 
city, contained 120,000 young children, incapable of telling 
right from left, or perhaps 120,000 inhabitants, regardless of 
age, who were unable to perform this feat. One of the most 

fundamental problems of chemistry is concerned with just this 
concept, with which not only children have difficulty in every- 
day hfe. 

Everyone knows that the person who gazes at us in the mirror 
is the wrong way round. He has his watch on his right wrist, 
his heart beats on the right, and he shaves himself with his 
left hand, assuming that he is really right-handed. Although 
up 1s up and down is down, left and right are interchanged. 
It may seem puzzling but it is all quite logical. In Chapter 
V we saw that symmetry operations can be regarded as 
transformations of the coordinate system. In particular, reflec- 
tion in the xz plane corresponds to reversal of the direction 
of the y axis. We go from a right-handed coordinate sys- 
tem (in red) to a left-handed one (in blue), as indicated in the 
following Figure. The direction of the Z axis is unaltered. This 
is the reason why up and down are not interchanged but right 
and lett are, 
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Reflection converts a right-handed coordinate system (red) into a left-handed one (blue). 

Let us consider again the two-handled vase that we encoun- 
tered earlier; we know that it possesses, in addition to C,, the 
two symmetry operations og anda’. Ina Gedankenexperiment 
we now take the mirror-image of the vase from behind the 
mirror and displace and rotate it until it is brought into coinci- 
dence with the original vase. If this can be accomplished, as it 
can in the case of the vase, then the concepts of ‘right’ and ‘left’ 
become meaningless as far as 
the vase itself is concerned. 
The vase and its mirror-image 
are exactly equivalent. 

There are objects, however, 
whose mirror-images cannot 
be brought into coincidence 
with themselves by any dis- 

70 Reflection of a vase. 



placement or rotation whatso- 
ever. A hand is the classical 
example. The mirror-image of 
a left hand is a right hand 
(adjacent Figure). A right hand 
and a left hand cannot be 
brought into self-coincidence, 
as everyone knows who has_ A pair of hands. 
tried to put her right hand into 
a left glove. An object, or, for us more interesting, a molecule 
whose mirror-image cannot be brought into coincidence with 
the original by displacement or rotation is called chiral, from 
the Greek word for ‘hand’. A pair of such molecules is related 
to each other as left hand to right hand. Rotations and transla- 
tional displacements are called proper symmetry operations; 
they convert chiral objects into themselves. Reflection, on the 
other hand, converts chiral objects into their non-congruent 
mirror-images and is called an improper symmetry opera- 
tion. Molecules that contain the symmetry operation o or a 
combination of o with other symmetry operations can be 
brought into self-coincidence with their mirror images and 
are hence achiral. Molecules that lack improper symmetry 
operations and possess only proper ones are necessarily 
chiral. This makes a convenient test to see whether any given 
molecule of known structure is chiral or not. Consider the 
molecule 23; is it chiral or not? 

23 

One way to answer the question is to make a model of the 
molecule and also one of its mirror image, and then to move 
them around in the attempt to recognize whether the two are 
congruent, that is, whether they can be brought into self-coin- 
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Van't Hoff’s original, three-dimensional models. 

cidence. It is much simpler to look for the presence of im- 
proper symmetry operations in the molecular structure; if 
none are present then the molecule is chiral, otherwise it 1s 
not. Inspection shows that although molecule 23 is highly sym- 
metrical, the only symmetry operations present are twofold 
rotations — proper symmetry operations, three of them, about 
mutually perpendicular axes. The molecule 1s chiral; it has 
been given the name twistane. In fact, the vast majority of 
organic molecules, whether they occur naturally in hving or- 
ganisms or have been made synthetically, lack o operations 
and are thus chiral. The achiral ones are the exceptions, and 
they are usually very simple, containing only a few atoms. In 
the molecular zoo they are really curiosities. 

The existence of chiral molecules, related to each other as 
non-superimposable image and mirror-image, but having 
otherwise identical structures, was first postulated in 1874 
independently by the Dutchman Jacobus Henricus van’'t Hoff 
(1852-1911), whose original models are shown in the Figure 
above, and the Frenchman Achille Le Bel (1847-1930)'*. They 
showed that a carbon atom whose four tetrahedrally disposed 
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valencies carry four different 
atoms or groups (called an 
‘asymmetric’ carbon atom as 
indicated in the adjacent Fig- 
ure by four differently colored 
balls) can exist in two forms, ee ee 

which cannot be brought into = 4 pair of enantiomorphic models, corresponding 
coincidence with each other. to enantiomeric molecules 
These two forms are an exam- 
ple of a special kind of isomer, called enantiomers. The one 
enantiomer is, so to speak, ‘left-handed’, the other ‘right- 

handed’, whereby, as we are not dealing with hands or 
gloves, we have to leave it open as to which is assigned the 
one and which the other description. For substances that have 
been made synthetically from achiral precursors, the enan- 
tlomers are present in equal numbers, but for many purposes, 
e.g. for use in pharmacology, they have to be separated, and 
this can be a long and difficult matter because the enantiomers 
do not differ in their chemical or physical properties (except 
insofar as they interact with chiral environments). . 

On the other hand, organic substances that occur in Nature, 
those that are produced by or are building blocks of living 
organisms, are usually enantiomerically pure, that is, they 
consist exclusively of molecules of only one sense of chirality; 
for almost all naturally occurring molecules either the ‘left- 
handed’ or the ‘right-handed’ isomer is present in Nature —not 
a mixture of the enantiomers. 

This property of naturally occurring substances was recog- 
nized in an intuitive way by the great French scientist Louis 
Pasteur (1822-1895) before any detailed theories about molec- 
ular structure had been developed. Pasteur made observa- 
tions on the passage of polarized hght beams through solu- 
tions of various substances. The electromagnetic waves that 
constitute a light beam are transverse, that is, the vibration 
direction is perpendicular to the direction of travel (Figure on 
the next page). When a light beam passes through certain 
crystalline substances it is split into two beams that travel with 
different velocities and are therefore unequally refracted. If 
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Schematic representation of the rotation of the plane of polarization by an optically active 
medium. 

one of these beams is absorbed (as in a polaroid film) the 
remaining beam is plane polarized, that is, the vibrations take 
place only in a single plane. During the first half of the 19th 
century it became known that solutions of many naturally oc- 
curring organic substances have the property of rotating the 
plane of polarized light — one says that they are optically 
active. 

Tartaric acid is an optically active substance, and, in 1848 
Pasteur noticed that crystals of several salts of tartaric acid are 
hemihedral (this was the word used by crystalographers to 
describe chiral crystals) — they show a distribution of small 
facets that is not superimposable with its mirror image (Figure 
below). It occurred to Pasteur that there might be a general 
correlation; optically active substances yield hemihedral 
crystals and vice versa. Indeed, Pasteur formed the idea that 

‘the molecule of tartaric acid, whatever else it might be, is 

asymmetric and in such a way that the image is not superpos- 
able’. 

But there was a difficulty. One of the minor crystalline prod- 
ucts sometimes obtained from wine is the ammonium sodium 
double salt of tartaric acid. This gave a solution that was not 
optically active although the crystals were hemihedral, like 
those of other salts of tartartic acid. Pasteur examined the 
crystals carefully and made the 
remarkable observation that 
some had left-handed facets 
and some right-handed. He 
then separated these two kinds 
of crystal and found that they 
yielded solutions that rotated 
the polarization plane in oppo- 

; Enantiomorphic crystals of sodium ammonium 
74 tartrate”, 



site directions. Indeed, of the two solutions, the dextrorotatory 
one yielded an acid that was identical with normal tartaric 
acid, while the other gave anew mirror-image kind of tartaric 
acid, with properties identical to the normal one except for its 
opposite sense of rotation. Pasteur saw the connection be- 
tween the hemihedry of the crystals, the chirality (he called it 
dissymmetry) of their constituent molecules, and optical activ- 
ity. What was lacking was a theory of molecular structure, so it 
was left for van’t Hoff and Le Bel to explain these results 25 
years later in terms of a more detailed model. 

By the middle of this century it was possible by purely chem1- 
cal methods to correlate the sense of chirality of thousands of 
compounds. For example, all the 20 amino acids that occur in 
the polypeptide chains of proteins were known to have the 
same arrangement of groups, all either the one shown in for- 
mula 24 — or all the mirror image of this arrangement. Simi- 
larly, the ribose molecules that are part of nucleic acids and 
the glucose molecules of carbohydrates were all known to be 
derived from the same basic unit of glyceraldehyde 25 
(R = CH,) — or all from its mirror image. If one model was 
correct, then so was the other, but from chemical experiments 
alone it was not possible to decide if both models 24 and 25 are 
correct as shown below or if both should be reflected in a 
mirror. It was not known which side of the mirror corre- 
sponded to the real world and which to the mirror-image 
world. Moreover, many chemists beheved that this was an 
unanswerable question. 

COOH CHO ‘COOH 
HN iH H='—80H H=!—=0H 

R R HOH 
‘COOH 

24 25 26 
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In view of this uncertainty, the German chemist Emil Fischer 
(1852-1919) proposed that chemists should agree to use an 
arbitrary convention to represent one of the two chiral ar- 
rangements of atoms at a tetrahedral centre, leaving the ques- 
tion open as to which might ultimately turn out to be correct. 

In 1950 the question was answered by the Dutch chemist and 
crystallographer Johannes Martin Bivoet (1892-1980), who 
used a special type of X-ray diffraction experiment to show 
that the atoms in dextrorotatory tartaric acid were arranged as 
shown in formula 26 and not in the mirror-image arrangement. 
The connection between molecular and macroscopic chirality 
had been made. The method has since been applied to estab- 
lish the sense of chirality of hundreds of chiral molecules. 
Barring a few cases where errors were made, the results have 
been in complete agreement with those based on chemical 
correlations. Nowadays the ‘absolute configuration’ of chiral 
molecules containing tetrahedral centres is usually described 
in terms of a convention proposed in 1951 by Robert Sidney 
Cahn (1899-1981), Christopher Kelk Ingold (1893-1970) and 
Vladimir Prelog. 

The CIP system, dubbed after its inventors, consists mainly of 
a set of rules for putting the four groups around a tetrahedral 
centre into a priority sequence, a, b, c, d where a>b>c=>d., 
The first rule concerns the atomic number of the directly 
bonded atoms, for example, 

Brae 2b ON. C-bei 

Ir this is not enough to determine the sequence one proceeds 
to the second rule, which depends on mass number, for exam- 
ple, 

°H (tritium) > °H (deuterium) > 'H (protium) 

Or 

a) = Wo s a1@) 
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Ir the priority sequence cannot be decided by inspection of 
the directly bonded atoms, one proceeds outwards along the 
molecular formula to the next set of atoms and applies these 
rules as well as other more complicated rules there. Ulti- 
mately, for any such ‘chiral centre’ with tetrahedral valencies, 
the four groups can be arranged in a priority sequence. For 
example, in formula 26 for tartaric acid (next page) the groups 
around the carbon atom labeled 2 are: 

a =O). ='C(OOH), c= CtLOn COOH a= 1 

The sense of chirality is then assigned by the following con- 
vention: view the chiral center from the direction opposite to 
the group d of lowest priority. If the sense of rotation of the 
other three groups, froma to b to ¢ is clockwise, then the 
chirality sense is designated as FR (Latin, rectus). If you imagine 
ine three Groups 16 be arranged on the steering: wheel, oi 4a 
car, then the rotation a>b-—c will steer the car to the right). If 
the rotation sense is anticlockwise the car will be steered to 
the left, and the chirality sense is designated as S (Latin, sinis- 
ter). 

YD a) 

Pete carbon atom 2 in formula 26 is R. Since the two ends of 
the tartaric acid molecule are related by a C2 operation, a 
proper symmetry operation as opposed to an improper one, 
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we can immediately say that carbon atom 3 must also be R. 

Thus formula 26 represents (R,R)-tartaric acid, and 2Z repre- 

sents the enantiomeric (S,S)-tartaric acid. 

‘COOH COOH 

H!—0H R S HOmi—aH 

Hom =e R | aon 

‘00H COOH 
26 21 

COOH COOH 

spay R S HOM iH 

H=!—0H S R HOmi—H 

00H COOH 

28a 28b 

Formulas 28 represent a third isomer, (A,S)-tartaric acid or 
meso-tartaric acid, in which carbon atoms 2 and 3 have oppo- 
site senses of chirality. This molecule is achiral; the atoms can 
be arranged so that the two halves of the molecule are related 
by a reflection or an inversion operation. Reflection of 28a 
through a mirror converts the Ff group into S, the S group into 
RF, and the result is superimposable with the original. There 
are thus three isomers of tartaric acid: a pair of enantiomers, 
(R,F)- and (S,S)-, and a meso- form, (R,S). 

How many isomers should there be of the structurally related 
molecule with an additional carbon atom in the chain, trihy- 
droxyglutaric acid, formulas 29-32. 

The carbon atoms labeled 2 and 4 are chiral centers since 
they each have four different attached groups, while carbon 3 
does not appear to be a chiral center because two of its at- 

78 



‘COOH COOH 
Dai 

H=!—0H (R) HOm iH 
Ba 

He '—9OH He |—9OH | HOm/—H  HOm i —eH 
4! | 

HOm!—H (R) Hm! —OH 

°COOH COOH 

29 30 

COOH COOH 

Hm i—0H (S) HOmi—H 

He i—0H He|—90H | HOm|—9H  HOm!——H 

H=!—=0H S (R) HOmi—9H 

COOH COOH 

31 32 

tached groups are the same (-CH(OH)-COORH),. As in the pre- 
vious example, we have the pair of enantiomers, (R,R) and 
(S,S) (29 and 30), but what about the meso-forms shown in 31 
and 32. Are they the same or are they different? A moment’s 
reflection should reveal that they cannot be superimposed by 
any series of rotations and translations, and hence they are 
different. Reflection through a mirror converts each of them 
into itself and not into the other. So here there are four iso- 
mers, a pair of enantiomers (29 and 30) and two meso-forms 
(31 and 32). 

The CIP sequence rules can also be used to order the three 
groups attached to a central trigonal atom. For example, in the 
acetaldehyde molecule 33, where the three groups and the 
central carbon atom he ina common plane, the oxygenisa, the 
methyl group is b, the hydrogen is c. If we view the molecule 
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Teacup after many years of use by one of the 
authors. 

from one side of the plane, the sense of rotation a>b-c of the 
three groups is clockwise, from the opposite side it is anti- 
clockwise. In the CIP system, this difference is specified by 
saying that the one side is the Reside, the other the Siside. The 
two sides are related by reflection across the plane and are 
said to be enantiotopic. 

“H— 

Thus we can distinguish between the two faces of a molecule 
that contains a plane of symmetry as its only symmetry ele- 
ment. Why should one ever want to make such a distinction? 
It turns out that in many biological reactions the two enan- 
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tlotopic faces of a non-chiral 
molecule hke acetaldehyde 
behave quite differently; a 

reaction can occur specifically 
on one face but not on the 
cther. This may appear puz- 
zling at first sight but an anal- 
ogy from everyday life may 
help to make things clearer. 
A teacup has a plane of sym- 
metry as its only symmetry 
element. The two sides of the 
cup are enantiotopic, and a 
right-hander will always drink 
from the same side. After many 
years of service, one side of 
the cup may be quite worn 
while the other is still practi- 
cally unused, as shown in the 
adjacent Figure. 



ie quite some time it was 
believed that optical activity 
was a property of molecules 
containing carbon and neces- 
sarily connected with the pres- 
ence of ‘asymmetric carbon 
atoms’, those with four differ- 
ent groups attached by tetra- 
hedrally arranged valencies, Isomers of Pt(NH;,),Cl, according to Werner. 
as proposed by van't Hoff and 
Le Bel. This belief was shattered by Alfred Werner (1866- 
1919), who showed that a whole world of molecules, so-called 
coordination complexes, was based on the arrangement of six 
hgand atoms about a central atom with octahedral geometry, 
leading to new types of isomers”. For example, there are two 
substances with the molecular formula Pt(NH3),Cl,, one with 
the chlorine atoms at adjacent vertices of an octahedron, the 
other with them at opposite vertices (Figure above). Clearly, 
quite new types of comphcation can occur, and symmetry can 
be helpful in sorting them out. . 
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The molecule ethylenediamine H,N-CH,-CH,-NH, (en for 
short) can be joined to a central metal atom through both of its 
nitrogen atoms, forming a closed five-membered ring, known 
as a ‘chelate’ ring (Greek, chele, a claw). The results of attach- 
ing three such chelate rings to a cobalt atom are shown in 
formulas 34 and 35. The two mirror-image figures 34 and 35 
can be seen to contain only C, and C, symmetry operations, 
1.€., proper symmetry operations; in other words the two 
figures are chiral and therefore represent enantiomers. In 
one figure, all three chelate rings are turned as in a right- 
handed screw, in the other as 

in a left-handed screw. Indeed, 

Werner separated the sub- 
stance Co(en),Cl, into optically 
active forms, and their ‘abso- 
lute configuration’ has since 
been established by X-ray 
structure analysis of the crys- 
tals by the Byvoet method. 

he of the most important 
and best known chiral 
molecules, in view of its cen- 
tral role as information carrier 
in molecular biology, is de- 
oxyribonucleic acid (DNA), 
the famous  double-helix, 
whose structure was deci- 
phered in 1953 by James D. 
Watson and Francis H. C. 
Crick. As can be seen from 
the adjacent Figure, it consists 
of two cross-linked, right- 
handed helices (the same 
sense of helicity as a normal 
screw, the prototype ofa chiral 
object)*. 

live transformations of mo- 

lecules in living organisms 
take place within giant organic 
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bio-molecules known as en- 
zymes. A typical example is 
lysozyme, discovered in 1922 
by the same Alexander Flem- 
ing (1881-1955) to whom we 
are indebted for the discovery 
of penicillin. The structure of 
this macromolecule was deter- 
mined by David Chiltern 
Phillips and his collaborators ; 
by X-ray analysis in 1965. The IL a 
accompanying Figure givesan ~ 3#—_g@ 
impression of the complexity 
of this chiral system. Model of lysozyme with guest molecule”’. 

Disulfide bridge 

Nature thus manipulates chiral molecules with the help of 
chiral enzymes that contain active sites, cavities within which 
the actual chemical reactions take place. In the Figure above, 
such a guest molecule is indicated in darker tone within the 
lysozyme host molecule, which seems to grasp it almost hike a 
hand. Since the molecule to be altered as well as the enzyme 
itself is chiral, itis obvious that the sense of chirality of the two 
must be matched. Just as a left-hander has difficulty with a pair 
of scissors, which is designed for the right hand and thus 
cannot be grasped properly by a left hand, an enzyme is not 
very successful in catalyzing a reaction of a molecule with the 
wrong sense of chirahty. In the next Figure this is illustrated in 
a somewhat naive manner. The two mirror-image models on 
the left represent ‘left’ and ‘right’ enantiomeric molecules of 
phenylalanine. Only one of these, say the ‘right’, sits comfort- 
ably and can then be subjected preferentially to some alter- 
ation or other. When, on the molecular scale, the hand is 
replaced by an enzyme, this preference can be so strong that 
only one enantiomer, say the ‘right’ one, will be bound to the 
enzyme and then altered. Ifthe other enantiomer is presented 
nothing happens to it. 

Dinilarly, two enantiotopic groups of a mirror-symmetric 
molecule may suffer different fates in a series of biological 
reactions where enzymes are involved. In the achiral 
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Naive explanation of the specificity of an enzyme for one enantiomer over the other. 

molecule aminomalonic acid, 36, the two COOH groups may 
appear to be equivalent, but when the compound is 
presented to bacteria, one of these groups, say 1, is split off 
as carbon dioxide, leaving a molecule of glycine contain- 
ing specifically the COOH group 2. The spatial arrangement of 
C(1)OOH, NH,, and H is the same as in the naturally occuring 
series of amino acids (compare 24).The arrangement of 
C(3)OOH, NH,, and H is the mirror image. Thus the two ends 
are related as a right hand to a left hand, and the chiral en- 
zymes have no difficulty in distinguishing one from the other. 

‘COOH HN H 

HN H 
: HOOC ane 00¢ COOH 

36 
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We are now ina position to understand why the molecules of 
most compounds involved in living processes occur in only 
one sense of chirality. The presence of both enantiomers 
would require two sets of enantiomeric enzymes, which would 
mean at least a duplication of the metabolic energy required 
to build the essential chemical machinery and additional ge- 
netic information. However, a few enzymes have been identi- 
fied that can handle both enantiomers and even interconvert 
them. For example, mandelate racemase interconverts the 
enantiomers of mandelic acid, which is produced in the bio- 
chemical pathway in one enantiomeric form and utilized in the 
other. Since the equilibrium constant for this reaction must be 
unity, the rates of the forward and backward reactions must be 
equal at equilibrium, So it seems that here we have an enzyme 
that can cope with ‘right’ and ‘left’ hands with the same effi- 
clency. 

In Through the Looking Glass Lewis Carroll describes how 
Alice slips through the mirror into another world of the oppo- 
site chirality. Is it a coincidence that this book, which makes 
several references to the left/right dichotomy, was first pub- 
lished in 1872, only two years before the papers of van’t Hoff 
and Le Bel about the explanation of optical antipodes in terms 
of spatial molecular models? Lewis Carroll was the 
pseudonym of Charles Lutwidge Dodgson (1832-1898), a 
mathematician at Christ Church college at Oxford, who may 
well have been in a position to learn of the new exciting 
discoveries in chemistry that were calling for clarification in 
structural terms. One of Dodgson’s closest friends was the 
chemist Augustus George Vernon Harcourt (1834-1919), Fel- 
low of the same Oxford college and one of the first to study the 
rates of chemical reactions. Had Harcourt told Dodgson about 
the recent puzzling findings of Johannes Wislicenus (1835-— 
1902) concerning lactic acid? Wislicenus had shown that one 
of the substances present in muscle appeared to be identical 
with lactic acid obtained by fermentation of milk, except that 
solutions of the two substances rotated plane polarized light in 
opposite senses, and he was aware that this result was incom- 
patible with the then current structural theory and called for 
special explanation in geometrical terms. In 1873 he wrote 
“The facts force an explanation of the difference between 
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Alice, as seen from the two sides of the mirror, according to Tenniel’s illustrations. 

isomeric molecules with the same structural formula in terms 
of different arrangements of the atoms in space.’ Indeed, as 
van't Hoff acknowledged, it was this comment that stimulated 
him to occupy himself with the problem of the spatial arrange- 
ment of groups attached to carbon atoms. One might speculate 
that Dodgson and Harcourt may have discussed this stereo- 
chemical problem, perhaps at high table dinner, and that this 
may have been one of the underlying and perhaps even un- 
conscious stimuli for Through the Looking Glass. 

Inlet if we can believe Tenniel’s illustrations (Figure 

above), Ahce herself is curiously left unchanged as she passes 
through the mirror; her right side remains right and her left 
remains left, so that we may conclude that the spatial arrange- 
ment of all the molecules she consists of is also left un- 
changed”, If that were really the case, then one can only feel 
sorry for poor Alice! The rest of the world behind the mirror 
surface must certainly be reflected, and accordingly all the 
molecules and fundamental particles of which she consists, 
referring to the unchanged Alice, have the opposite, wrong 
sense of chirality. Before she passes through the looking 
glass, Alice even poses the question in her monologue with 

Kitty, her cat; Perhaps Looking-glass milk isnt good to 

86 



drink?"’. Alice’s unchanged enzymes would be unable to as- 
similate and digest the molecules of the reflected food, so that 
the poor child would die of hunger, quite apart from the fact 
that her whole metabolism would presumably have gone out 
of joint even earlier. It might even be worse! According to 
physics the encounter between the cis-specular Alice and the 
reflected matter on the other side might lead to a loud bang 
and to the total transformation of our heroine into radiant 
energy. 

Uniti 1956 most scientists took it more or less for granted that 
the laws of physics are mirror-symmetric; this was certainly 
true for the classical gravitational and electromagnetic inter- 
actions and it was generally assumed to hold for all other 
possible interactions as well. This belief was even elevated to 
the status of a principle — the principle of the conservation of 
parity, as it was called. In 1956, however, this was questioned 
by two young Chinese-American physicists, Chen Ning Yang 
and ‘Tsung Dao Lee, who suggested that parity may not holdin 
the world of elementary particles. In fact, they predicted that 
parity might be violated in the disintegration of certain parti- 
cles, including the f-decay of certain radioactive nuclei (in 
B-decay the radioactive nucleus emits an electron, thus 
raising its atomic number by one). An experimental verifica- 
tion soon followed; electrons emitted from a sample of a f- 
emitter were found to be predominantly left-handed (each 
electron is associated with a ‘spin’, and the sense of spin was 
found to be preferentially related to the direction in which the 
electrons were propagated as in a left-handed screw, as 
shown in the Figure below). This means that parity 1s violated 
at this level of physics, the level of the so-called weak interac- 
tlons. 

Most physicists were as- 
tounded by the news. The re- 
action of Wolfgang Pauli (1900— 
1958) 1s well known. When he 
learned that the crucial experl- 
ment was about to be made he 
commented: “I do not beheve 
that the Lord is a weak left-han- 

Electron, propagated as in a left-handed screw. 87 



der, and I am ready to bet a very large sum that the experi- 
ments will give symmetric results’. Paul had a very deep 
feeling for symmetry in physics, but for once he was wrong. 
On the other hand, one physicist who was not surprised by the 
news was Paul Adrian Maurice Dirac (1902-1984) who had 
predicted the existence of anti-matter some twenty years ear- 
lier. In 1949 Dirac had written: ‘‘I do not beheve that there is 
any reason for physical laws to be invariant under reflections, 
although all the exact laws of physics so far known have this 
invariance’’**. Dirac went on to explain that the laws of physics 
must be unaltered by rotations and translations, since these 
can be generated by infinitesimal changes — but this does not 
apply to reflections. Here the fundamental difference between 
the two kinds of symmetry operations, rotations and reflec- 
tions, between proper and improper symmetry operations, is 
expressed in the clearest possible way, and one can only be 
astonished at the directness and simplicity of Dirac’s argu- 
ment. 

The downfall of parity at the weak interaction level leaves the 
door open for a possible explanation of the origin of bio- 
molecular chirality. An atom can no longer be regarded as 
having spherical symmetry. The weak interaction makes a 
pair of mirror-image molecules shghtly inequivalent as far as 
their energies are concerned. One is shghtly more stable than 
the other, and from calculations it has been claimed that the 
energetically preferred ones are just those which occur in the 
bio-molecules of our earth —the L-amino acids and the D-sug- 
ars. However, the calculated difference is extremely small; it 
corresponds to an excess of one molecule of the energetically 
favored species in about 10'° molecules of the mixture at nor- 
mal temperature. Remember that if you toss up 10'° coins you 
do not expect to get exactly half heads and half tails. In fact, the 
odds that this should happen are infinitesimally small. From 
statistical theory there is about a one in three probability that 
the deviation from exact equality will exceed the standard 
deviation of the sample, which is here the square root of the 
total number of trials, in this case 10°. So the preference due to 
the asymmetry of the weak interaction might appear to pale 
into total insignificance, were it not for the fact that the evolu- 
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tion of biological systems has taken place over a very long 
time period and has involved many orders of magnitude more 
molecules than 10'°. Of course, other explanations are also 
possible. If life indeed happened only once then it was almost 
certainly on one side of the mirror plane or the other, not on 
both. It could have been merely a matter of chance. The ques- 
tion 1s still undecided. 

ices journey into the reflected world raises, however, a 
very practical problem that has a rather surprising solution. 
Chemists have learned how to make ‘left’ molecules out of 
‘right’ ones in the laboratory, or, in other words, a la Alice, 
how to pass chiral molecules through the mirror. How is this 
done? A preliminary comment is called for. 

Usp till now, for example in the discussion of the substitution 
reactions of benzene, we have considered exclusively the 
structure and symmetry of the molecules of the starting mate- 
rial , the so-called educt, and of the product, without bothering 
about the way in which the transformation actually takes place. 
In this respect, however, it should still be possible to show 
with the aid of our simple models how the reacting molecules 
approach one another, alter the relative positions of their 
atoms, and then move apart again. This process, which one 
must imagine spatially and in relationship to models, is called 
the reaction mechanism. One of the first to develop such ideas 
was the already mentioned Marc Antoine Augustus Gaudin, 
who was in this respect, however, far ahead of his time. In the 
next Figure, we show, as an example, how he imagined the 
transformation of a trigonal bipyramidal molecule with a C, 
axis to a Square pyramidal product with a C, axis; in this case, 
according to our convention, the product has a higher symme- 
try than the educt. 

Now we return to the problem at hand, the formulation in 
terms of our model of the mechanism of the ‘mirror-image’ 
reaction. The simplest chiral molecule imaginable consists of 
four different atoms that do not he in a common plane. In the 
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Figure below, they occupy the 
corners of a regular tetrahe- 
dron, but this is only for aes- 

Gaudin's imagined reaction mechanism. thetic reasons. 

Ir one wishes to convert the model on the left into its mirror- 
image on the right, one has to move one of the four atoms 
somehow or other (a few arbitrarily chosen ways are indica- 
ted in the left picture) through the plane containing the other 
three atoms. At the moment when the selected atom actually 
passes through this plane — for example, at one of the three 
spots indicated by small circles — the entire molecule is in a 
planar transition state, since at this instant all four atoms lie ina 
common plane. As a result, in the transition state on the way 
from ‘left’ to ‘right’ our molecule possesses the reflection ¢ as 
a symmetry operation, the mirror-plane coinciding with the 
common plane of the atoms. Presumably, the reader will find 
nothing surprising about this, since intuition may well suggest 
that such a mirror-symmetric arrangement of the atoms must 
necessarily arise in the transformation of a ‘left’ into a ‘right’ 
molecule by continuous deformation. This is by no means the 
case, however, as we demonstrate with a simple example. 

Transformation of one tetrahedron into its mirror image. 
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The adjacent Figure shows 
the model of a molecule in 
which a central atom — in prac- 
tice itis usually phosphorus ~—is 
linked to five other atoms, all 
different, at the vertices of a 
trigonal bipyramid. If the three 
equatorial atoms were the 
same, the molecule would 

Enantiomeric trigonal bipyramidal models. 

have the symmetry operation C, along the vertical axis as well 
as three vertical reflection planes. With the five vertices occu- 
pied by different atoms, the molecule has no symmetry. The 
model on the right is easily seen to be the mirror image of the 
one on the left. How can one pass from one to the other? 

One possible process (it is p robably not the way it actually 
goes but it illustrates the general idea) involves interchange of 
an equatorial atom and an axial one. This could happen, for 

60° & @ identical 

Possible sequence of steps involved in the trans- 
formation of a chiral trigonal bipyramuid into its 
enantiomer. 

example, by rotation of. the 
pair around an imaginary axis 
joining their mid-point to the 
central atom of the bipyramid 
(adjacent Figure), Itis seen that 
a sequence of three successive 
interconversions of this type 
is sufficient to transform the 
educt in the top left corner into 
the mirror-image product in 
the top right corner. The pro- 
cess that actually occurs is 
probably a httle more compli- 
cated. In it two of the equatorial 
atoms become axial while the 
initially axial pair becomes 
equatorial, one initially equa- 
torial atom remaining un- 
moved — the pivot atom. Again, 
it needs a sequence of three 
such interchanges to convert 
a chiral trigonal bipyramidal 
molecule into its enantiomer. 
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W hat is remarkable and perhaps even surprising is that at 
no point in these continuous transformations does an arrange- 
ment of the six atoms occur which possesses the reflection ¢ as 
symmetry operation! In other words: we have done the trick 
of moving from the front side of the mirror to the rear side 
without ever passing through the mirror itself! In a manner 
contrary to intuition, we have, so to speak, gone round the 
mirror into the mirror-image world. Perhaps most astonishing 
is that this is the way preferred by Nature, for, as far as we 
know today, the transformation of ‘right’ into ‘left’ molecules 
occurs by such, for us perhaps strange, mechanisms. 

Falsch 

lichtung 

manche meinen 
lechts und rinks 
kann man nicht 
velwechsern 
werch ein illjtum ! 

Ernst Jandl* 
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VIL. 
As I was going up the stair 
I met a man who wasn’t there. 
He wasn't there again today, 
I wish that man would go away. 

Anonymous 

lke help the primarily intuitive concept of symmetry to be 
grasped more precisely, we have introduced the idea of sym- 
metry operations (ao, Cs, ...). We recapitulate: a symmetry 
operation transforms an object, for example, a molecular 
model, ‘into itself’. By this we understand that after the symme- 
try operation has been carried out, we cannot distinguish the 
final state of the object from its initial one. As long as we 
consider only ideahzed objects, like the trigonal bipyramid or 
other geometric figures, or as long as the symmetry opera- 
tions are carried out purely in the spirit of a Gedankenexperi- 
ment, there are no difficulties. This applies to all the cases we 
have discussed so far. They all concern molecular models that 
we have implicitly taken to be rigid and perfectly symmetric. 
In the previous chapter, as far as symmetry was concerned, 
we discussed only rigid models of educts, products, and inter- 
mediate states, whereby in the last case we had to imagine that 
we stopped the motions of the atoms corresponding to the 
assumed reaction mechanism at some suitable point. In reality 
it is all somewhat more complicated. One reason for this can 
be understood if we try to answer the question, how, and 
under what circumstances, can the indistinguishability of the 
initial and final states be established? 

A quite simple example shows that the answer to the ques- 
tion, whether an operation is to be considered as a symmetry 
operation or not, depends on the degree of ‘depth’ of the 
observation. A human being shows superficial bilateral sym- 
metry. In our language, this means that reflection across the 
plane S’, as shown in the left side of the Figure on the next 
page, is a symmetry operation og. However, if we look as an 
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The apparent symmetry of the boy 1s only 
superticial. 

anatomist into the innards of 
the creature the same reflec- 
tion is no longer a symmetry 
operation at this level, since 
the heart and other organs are 
placed completely unsymmet- 
rically. 

A\iso the five-pointed  star- 
fish which appears to have 
the symmetry operation Cs 
(=. rotation: of (S60 /S7 =. 2) 
only has this property when 
we look at it from the outside. A 
zoologist would explain to us 
that the starfish shows at most 
bilateral symmetry, that is, 
mirror symmetry, when it is 
dissected, and even less at the 
molecular level. 

WV hether a rotation or a 
reflection is a symmetry oper- 
ation or not obviously de- 

pends, in these two examples, on how one makes the compari- 
son between the initial situation and the final situation, that is, 
the result of the operation. It can well be the case that we have 
no control over the ‘how’. Here is a simplified example. In the 
upper left part of the folowing Figure we see a vase with some 
pattern burned into it. Rotation by 180° produces the situation 
shown on the right, where the pattern is now turned away from 
the viewer. 

Does this 180° rotation correspond to a C, symmetry opera- 
tion or not? This depends on whether we make our observa- 
tion in the light or in the dark. In the first case, the answer is: 
no! The final situation differs quite clearly from the initial one, 
as anyone can see. In the dark, however, the vase is invisible, 
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The apparent symmetry of vases and hydrogen molecules depends on the method of 
observation. 

and we have to rely on tactile stimuli. The two situations cannot 
be distinguished by touch alone; under these conditions the 
180° rotation has become a symmetry operation. One might 

‘note, moreover, that for a blind person the 180° rotation will 
always be a symmetry operation for the vase in question, 
irrespective of whether it is light or dark. 

Could similar effects also play a part in observations of 
molecules? Yes, definitely, as one can demonstrate even with 
the simplest of all molecules, the diatomic hydrogen molecule 
H,. The electron cloud of this molecule hasa high symmetry. In 
particular, a rotation of 180°, which exchanges the two nuclei, 
brings the molecule into self-coincidence when we picture it 
with atomic models, for example. Since only the electron 
cloud is important for its chemical properties, this means that, 
as far as the chemist is concerned, the H, molecule is a highly 
symmetric object, which shows, in particular, the symmetry 



operation C,, One knows, however, that the nucleus of a hy- 
drogen atom behaves as a tiny magnet; in the previous Figure 
the north pole of this magnet is represented as an arrowhead. 
When two hydrogen atoms form a hydrogen molecule, they 
can do so with the two nuclear magnets oriented either oppo- 
sitely or in the same direction. The first kind of molecule is 
called para-hydrogen, the second ortho-hydrogen. From the 
last Figure, it is obvious that when we include the orientation 
of the nuclear magnets in our consideration, rotation of 180° is 
asymmetry operation only in the first case; in the second case, 
in ortho-hydrogen, the direction of both nuclear magnets is 
reversed by this rotation and hence the initial and final situa- 
tions are distinguishable, at least in an external magnetic field. 
If one utilizes an observational method that can register the 
direction of the nuclear magnets, then ortho-hydrogen will 
appear to have a lower symmetry than para-hydrogen. 

We thus have here on the molecular plane a very similar 
situation to that of our vase. For the ‘blind’ chemist, who can 
touch only the electron cloud, hydrogen is a highly symmetri- 
cal molecule, whose symmetry is expressed in its reactions 
with other molecules. From the viewpoint of the physicist or 
physical chemist, who can ‘see’ also the magnetic properties, 
there are two kinds of hydrogen molecules; one kind with the 
high symmetry favored by the chemist, and another kind, 
about three times more frequent, with lower symmetry. It may 
be remarked by the way that such a difference in symmetry 
which depends of the manner of observation can be very 
appealing from an aesthetic standpoint. Thus the regular pla- 
tonic solids decorated with Escher motifs (next Figure) still 
have their fullsymmetry from a tactile point of view, but this is 
reduced visually by the lower symmetry patterns. Few will be 
able to resist the fascination that emanates from this irritating 
discrepancy. 

A\nother factor, critical for symmetry considerations in chem- 
istry, which we have ignored so far in our discussion, is the 
time, or rather the time interval in which we can make our 
observations. Here again is another simple example in which 
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Platonic solids decorated with Escher patterns,designed by Doris Schattschneider and 
Wallace Walker”. 

we once more make use of our vase. Let us assume that the 
vase rotates with constant angular velocity about its vertical 
axis; this can be arranged by placing it at the centre of a 
gramophone turntable. Our observation instrument is a photo- 
graphic camera. The next Figure shows the sort of picture we 
would obtain with a flashlight photograph or, at the other 
extreme, with such a long time-exposure that the vase makes 
several complete rotations in the interval. 

We see that if the time-scale of the observation is very short 
relative to the time needed for a revolution of the vase, then 
only the reflection in the plane through the middle of the vase 
will be registered: under flashlight conditions, the vase has 
only this lower symmetry. On the other hand, if the time-scale 
of the observation is very long compared with the period of 
rotation then we obtain a different result. All positions average 
out, and the photograph corresponds to a rotationally sym- 
‘metric vase, that is, one with an apparently much higher sym- 
metry. This kind of differential symmetry assessment accord- 
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Flashlight and time-exposure photographs of a rotating vase. 

ing to the time-scale of the method of observation is very 
important in chemistry. Here is an example. 

In the previous chapter we mentioned that cyclohexane does 
not exist as a planar hexagonal ring skeleton, as Baeyer had 
earlier supposed, but rather —as Sachse had maintained -—asa 
non-planar form. The next Figure shows a molecular model of 
the chair form; the twelve hydrogen atoms are divided into 
two groups and characterized with different colors (white and 
red). The white hydrogen atoms stand alternatively above and 
below the carbon atoms, their C-H bonds being parallel to 
the molecular C3 axis, while the red hydrogen atoms occupy 
positions near the equator, the mean plane of the ring. They 
are therefore known as ‘axial’ and ‘equatorial’ hydrogen 
atoms. 

ite cyclohexane molecule has the ability to undergo a ring 
inversion process in which the carbon atoms carry out the 
indicated motions (for the sake of clarity, hydrogen atoms 
have been omitted in 37), as can be readily demonstrated with 
molecular models. 
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The axial and equatorial hydrogen atoms of cyclohexane are interchanged by ring 
inversion. 

i G 

37 

The result of this ring inversion is to interchange the orienta- 
tions of the two sets of hydrogen atoms. The model on the left 
of the Figure is converted into the model on the right, in which 
the initially axial hydrogen atoms (white) have become equa- 
torial, and the initially equatorial ones (red) have become 
axial. This is the inversion process that Mohr suggested as 
being responsible for the failure to isolate more than one 
isomer of a mono-substituted cyclohexane derivative. 
Molecules with the substituent in an axial position and those 
with the substituent in an equatorial position would be in rapid 
dynamic equilibrium with one another so that only the more 
stable of the two isomers would be isolable. 

A physical method, nuclear 1,esonance spectroscopy, per- 
mits hydrogen atoms in different environments to be distin- 
guished from one another. Each kind of hydrogen atom pro- 
duces a sharp peak signal, whose position ona recording strip 
is characteristic for the environment of the atom and whose 
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j a | intensity is proportional to the 

@ number of atoms in that envi- 
ronment. This is shown, some- 
what simplified, for cyclohex- 
ane in the spectrum at the bot- 
tom of the adjacent Figure. 
The red outlined signal corre- 
sponds to the equatorial hy- 
drogen atoms, the white out- 
lined signal to the axial ones. 

-50° Nuclear resonance spec- 
troscopy is a relatively ‘slow’ 
method compared with the fre- 
quency of the inversion pro- 
cess; in our example with the 

i Lee = 65° photographs of the rotating 
vase, it would correspond to a 
time-exposure. In order to 
make a clean ‘photographic’ 
separation of the axial and 
equatorial hydrogen atoms, 

-90° the speed of the inversion pro- 
cess has to be slowed down. 
This was accomplished for the 

Nuclear magnetic resonance signals of equatorial bottom | spectrum In the adja- 
(red) and axial (white) hydrogen nuclei of cent Figure by cooling the 
cyclohexane as a function of temperature. sample to —90 °C. 

RELL STREET E EDDILLESIA ‘SASSOON MRRP 

When the temperature of the sample is raised, the inversion 
frequency of the cyclohexane molecule increases, and the 
spectrum, like a photograph ofa fast moving object, becomes 
blurred, This is seen im the spectrum al—65 ~C, Finally; at 
temperatures above —S0 °C, the inversion frequency is so high 
that the molecule swings backwards and forwards through the 
inversion process innumerable times during the ‘exposure 
time’. Our measurement method then produces a signal cor- 
responding only to an averaged out molecule and hence it 
can no longer distinguish between the two types of hydrogen 
atoms. This is shown in the top spectrum of the previous 
Figure. 
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From the symmetry standpoint we thus find ourselves in a 
dilemma. At very low temperatures our measurement method 
tells us unequivocally that cyclohexane contains two kinds of 
hydrogen atoms, axial and the equatorial, indicating a lower 
symmetry with a C; rotation, as shown in the upper part of the 
previous Figure. At high temperatures, the same measure- 
ment method indicates a structure in which all twelve hydro- 
gen atoms are equivalent, as would only be the case for a 
planar hexagonal molecule, as long as one thinks in terms of 
rigid, inflexible models. As we see, this conclusion would be 
incorrect, for we know that we are here dealing with an arte- 
fact caused by the slow method of measurement which can 
produce only an averaged, blurred picture of the molecules. 
At any instant the molecule has a lower symmetry than that 
indicated by the averaged picture. 

This example makes clear that the manner in which one 
assesses the distinguishability or indistinguishability of the 
initial and final states after carrying out a rotation or reflection 
operation has a decisive influence on the answer. According 
to the method and experimental conditions, the answer could 
be ‘yes’ or ‘no’, and it is quite possible that both answers are 
meaningful, This will depend on what we want to know and on 
what characteristics of the molecule we focus our attention. 

Se far we have been tacitly assuming that molecules are rigid 
objects, like vases or double-bladed swords or lollipops or 
other objects whose symmetry properties we earlier brought 
into the discussion. This assumption is far from the truth and 
sometimes very far from the truth. All molecules have some 
degree of flexibility. At the very least, the atoms vibrate about 
their equilibrium positions, sometimes with considerable am- 
plitudes, and in more flexible molecules it is sometimes ques- 
tionable whether one can speak of a molecular ‘structure’ at 
all. As far as the more rigid molecules are concerned there is 
usually no problem in deciding what the molecular symmetry 
is. For a flexible molecule, however, there is the question of 
the temperature at which the observation of some molecular 
property is made and the ‘shutter speed’ of the observation 
concerned; for example, at low temperature cyclohexane ap- 
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pears to have two kinds of hydrogen atom, while at higher 
temperature only one kind as we observe only the ‘average’ 
of two rapidly interconverting structures. Or consider a 
molecule with a trigonal bipyramidal frame with five different 
types of atoms at the vertices. In the rigid arrangements shown 
in the upper Figure on page 91 the molecule has no symmetry, 
but if the molecule undergoes rapid interchange of equatorial 
and axial substituents, as described in Chapter VII, then, after 
some time, the averaged molecule would appear to have the 
fullsymmetry of a trigonal bipyramid but with one fifth of each 
type of atoms at each vertex — interesting as a mathematical 
concept but physically unreasonable. 

Another complication in the description of the symmetry of 
non-rigid molecules can be illustrated by the toluene 
molecule 38. In the conformation shown below, the molecule 
has mirror reflection as its only symmetry operation; all 
the atoms except two hydrogens of the methyl group lie in 
a common plane, and these two hydrogens are related by 
reflection across this plane; thus atoms b and c are symmetry 
equivalent but not atom a. 

Ha 

ey 

Hp 
38 mle 

New: imagine that the methyl group can rotate by 120° jumps 
about the exocyclic C-C bond so that its three hydrogen atoms 
change places. Insofar as hydrogen atoms are indistinguish- 
able, this operation converts the molecule into itself, or, in 
other words, the initial and final states of such a rotation cannot 
be distinguished. But this is just the characteristic that we used 
to define a symmetry operation in Chapter V. Nevertheless, 
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Windmill, an object showing symmetry due to internal rotation. Whereas the windmill as a 
whole belongs only to the point group C,, the internal rotation of the wing by 90° — or 
multiples of 90° — transforms the windmill into itself. 

we have to admit that this kind of internal rotation is intrinsi- 
cally different to the rotations, reflections, and inversions that 
we have been considering up to now as examples of symme- 
try operations. These involved no change in the relative posi- 
tions of the various parts of the object, whereas our new oper- 
ations involve motion of one part of the object relative to the 
rest of it. 

As we saw at the end of Chapter V, the usual symmetry 
operations such as rotations and reflections can be regarded 
as mere transformations of the coordinate system, and it is 
clear that the internal rotation of the methyl group of toluene 
cannot be described by such a transformation. A more de- 
tailed analysis of this kind of problem would take us into very 
deep waters, and many of the questions raised have not yet 

been answered to everyone's satisfaction. 
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IX. 
Der Aristall ist ein chemischer Friedhof. 

Leopold Ruzicka 

Let us examine a crystal..... the equality of 
the sides pleases us; that of the angles 
doubles the pleasure. 

Edgar Alan Poe 

For a long time, to speak with the words of Leopold Ruzicka, 
crystals were thought of by chemists as nothing other than 
‘chemical cemeteries’. Under the influence of modern solid- 
state chemistry and physics, this attitude has changed dramat- 
ically, especially since it has become apparent that an exact 
knowledge of the reactivity and dynamical properties of 
solids is vital for modern technology; one need only think of 
the importance of plastic materials and of solid-state electron- 
ics. Whereas chemical reactions in solids were once re- 
garded mainly as a nuisance, solid-state chemistry is today an 
acknowledged field, on which respectable international con- 
ferences with hundreds of participants are held. 

However, Ruzicka’s metaphor of the ‘chemical cemetery’ 
has a definite pictorial appeal: in a crystal the individual 
molecules are neatly lined up with their neighbors in tidy 
rows; although the molecules in a crystal are not motionless, 
they do not move far from their positions, quite different from 
the molecular mazurkas that can be imagined to take place 
during chemical reactions in solutions or in gases. The prop- 
erties of a crystal depend not only on the structure of the 
molecules out of which it is built but also on the details of the 
way in which these molecules are arranged and even on the 
defects and disturbances that may occur in such arrange- 
ments. In this chapter we enquire how the relative positions of 
the individual molecules to one another can determine the 
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Various types of packing, from Wollaston's Bakerian lecture wy 

structure and symmetry of the crystal as a whole. One exam- 
ple has already been encountered: how Kepler's ideas about 
the closest packing of spheres led to vahid models for the 
structure of many metals. If one abandons the idea that the 
elementary building blocks of the crystals must be spheres, as 
was done by William Hyde Wollaston in his 1812 Bakerian 
Lecture, from which the above picture is borrowed, then the 
diversity of possible macroscopic crystal symmetries is enor- 
mously increased. 

The science of crystallography can be said to have begun 
with the observation of the Danish anatomist and geologist 
Niklaus Steno (1638-1686) that although quartz crystals may 
differ widely in appearance, the angles between correspond- 
ing faces are always the same from one specimen to another. 
Similar observations were made about the same time for Ice- 
land Spar (calcite) by Steno’s fellow countryman Erasmus 
Bartholin (1625-1698), the discoverer of double refraction 
produced by this mineral. These findings were corroborated 
by Jean Baptiste Rome de Lisle (1736-1770), who noted that the 
interfacial angles differ from substance to substance but are 
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characteristic for a given substance. Thus, by the middle of the 
18th century it had been recognized that although natural 
crystals of a given substance can occur in very different 
shapes, they show the same pattern of interfacial angles. In 
1784 Abbé René Just Hat (1743-1822) published his book 
E'ssal d'une théorie sur la structure des cristaux appliqué a 
plusieurs genres de substances cristallines, in which he intro- 
duced the concept of space lattices and showed that this con- 
stancy of angles could be explained if the naturally occurring 
bounding planes of the crystal were assumed to be those that 
contain many lattice points. A similar phenomenon can be 
observed if one walks through a vineyard where the vines are 
planted in a regular array; certain directions stand out as 
containing prominent rows. Hauy suggested that crystals 
were built by regular repetition of fundamental units of pat- 
tern, but he did not believe that the ultimate particles were 
necessarily spheres; for him they could be of any arbitrary 
shape, and he called them ‘molécules intégrantes’. The fact 
that crystals are symmetric and not just any old shape puts 
restrictions on the possible arrangements. This leads to the 
purely geometric problem of finding all the types of symmetry 
that are possible by arranging a collection of identical objects 
in space. 

By the end of the 19th century, the geometrical theory of 
space lattices had been completed, leading to the recognition 
that there are only a finite number of ways of combining sym- 
metry operations with translations to make periodic patterns. 
In addition to the symmetry operations we have met up tul 
now, new combinations are possible; screw axes, combina- 
tions of rotation with translation parallel to the rotation axis, 
and glide planes, combinations of reflection with translation 
parallel to the reflection plane. There are, in fact, exactly 230 
such combinations, known as space groups, as was found 
almost simultaneously by Evgraf Stepanovich Fedorov (1852— 
1919) in Moscow, and Artur Moritz Schoenflies (1853-1928) in 
Gottingen, working quite independently of each another and 
using quite different approaches to the problem. The mathe- 
matical theory of crystallography had been completed, but, at 
the same time, nothing definite was known about the shapes of 
the particles on which the symmetry operations were sup- 
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Crystal structure of sodium chloride, from W. L. 
Bragg's The Crystalline State, 1937. 

posed to operate, i. e., the 
‘molécules intégrantes’. It was 
only after the discovery of X- 
ray diffraction in 1912 by Max 
Theodor Felix von Laue (1879- 
1960) that it became possible to 
look into the inner structure of 
crystals, as was achieved 
within afew months by Wiliam 
Henry Bragg (1862-1942) and 
his son William Lawrence 
Bragg (1890-1971) for diamond 
and simple ionic solids. 

Among the very first crystals 
tO be examined by the new 
method were those of the alkali 
halides, sodium chloride, for 
example, which was shown to 
be built from an alternating 

pattern of spherical sodium and chloride ions, just like a chess 
board — but in three dimensions. 

There were no discrete NaCl ‘molecules’ to be seen. It may 
be hard to imagine today the extent to which traditional chemi- 
cal concepts were upset by these results. In particular, the 
Enghsh chemist Henry Edward Armstrong (1848-1937), who 
was noted for his strong and outspoken views, made no secret 
of his unqualified rejection. In a letter to the English journal 
Nature he wrote”: 
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“Prof. W. L. Bragg asserts that in sodium chloride there 
appear to be no molecules represented by NaCl. The 
equality in numbers of sodium and chlorine atoms is 
arrived at by a chess-board pattern of these atoms; itis 
a result of geometry and not of a pairing-off of these 
atoms.....Chemistry is neither chess nor geometry, 
whatever X-ray physics may be.....It were time the 
chemists took charge of chemistry once more and pro- 
tected neophytes against the worship of false gods; at 
least taught them to ask for something more than chess- 
board evidence.”’ 



lier of course, it became clear that such highly symmetric 
structures are adopted only by the simplest ionic compounds 
and metals. Crystals of most compounds generally have much 
lower symmetry and have structures in which the individual 
molecules are clearly recognizable as discrete entities. 
Chemists have learned to live with the results of crystal struc- 
ture analysis, and, indeed, to depend on them. But even al- 
though the detailed atomic arrangements in more than 100,000 
crystals are known today, the general question, how does the 
shape of individual molecules determine the structure and 
symmetry of the crystal, is still unanswered. Given the molec- 
ular structure, it is still not possible to predict the way in which 
the molecules will arrange themselves in the crystal. This is a 
problem of physics, one where the difficulty lies in its sheer 
complexity rather than in any conceptual obstacles. The 
purely mathematical problem, what are the possible sym- 
metries that can be produced by periodic repetition of pat- 
terns, has been solved and is an ideal training ground for 
anybody with an interest in the systematic application of sym- 
metry arguments. Here, some simple preliminaries may give 
an idea of what is involved. 

We turn first to the simplest case, the generation of a line 
pattern, which we already met in Chapter Il. We start with a 
completely unsymmetrical shape, for example, a gnome, of 
the type known in German as a Gartenzwerg and portrayed in 
the left half of the Figure below. Reflection of such a ‘left’ 
gnome necessarily produces a ‘right’ gnome; these two non- 
superimposable gnomes will now serve us as a basis for the 
generation of all possible line patterns. 

Relative to our previous symmetry arguments about individ- 
ual objects or molecules, the new aspect is that the patterns of 
interest are now to be generated by periodic repetition of 

the same unit, our gnome, for 
example, at equal distances 
along a line. The top strip of the 
next diagram shows this for the 
most trivial case, that of simple 
repetition. 

e@ .. Ma 
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Line patterns made from the units shown in the 
previous Figure. 

The choice of additional symmetry operations is, of course, 
rather limited in a line pattern. We can rotate our gnome 
by 180° about an axis perpendicular to the translation direc- 
tion (C,, second row of the diagram) or we can reflect him 
across a line which must be either perpendicular to the trans- 
lation direction (third row) or coincides with it (fourth row). 
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Finally, we can try to combine 
these additional symmetry op- 
erations. By trial, or by appro- 
priate mathematical methods, 

one can show that there are, in 
principle, only seven different 
types of such one-dimensional 
strips, all of which are shown in 
the accompanying Figure. This 
means that although the motif, 

here our gnome, can be any- 
ining inmMaGinalole, = Iteremare 
only seven ways, so-called line 
QLroups> Im Which 10 icanwsoe 
repeated to make a symmetri- 
cal periodic linear pattern. 

A two-dimensional periodic 
pattern occurs when a given 
motif of pattern is repeated 
periodically along two non- 
parallel directions, as is famil- 
lar to us from wallpapers and 
Christmas wrapping papers. 
We choose some arbitrary 
point in one motif and consider 
the arrangement of all equiva- 
lent points obtainable by pure 
translation of the original 
point. This arrangement con- 
stitutes a net that has the same 
periodicity as the pattern itself. 
Or we can think of the net asa 
device that converts a single 



motif into the entire pattern. 
The position of the net can be 
chosen arbitrarily; itis only the 
relative arrangement of the net 
points, the lattice points, that 
matters. The net can be char- 
acterized, as shown in the adja- 
cent Figure, by a parallelo- 
gram whose sides may be 
chosen along two translation 
directions—a unit cell. There is 
no unique way of choosing 
sucha unit cell, but, regardless 
of this arbitrariness, the unit 
cell abstracted from the peri- 
odic pattern in this way and de- 
fined by the lengths of its two 
sides and the included angle is 
already a first, important clas- 
sification characteristic of such 

a two-dimensional periodic 4 simple two-dimensional periodic pattern; 
pattern. Three examples are _ the position of the unit cell is arbitrary. 
shown in the upper part of the 
next Figure — the general case of a lattice defined by an arbi- 
trary parallelogram, and two special cases in which the unit 
cell is rectangular (angle of 90° between the edges) or square 
(equal edges and 90° angle). 

As might have been expected, the number of possible ways 
in which additional symmetry operations can be combined 
with the translation operations is larger than in the one-dimen- 
sional case, but is not unlimited. Indeed, it can be shown 
without too much difficulty that, in spite of the apparently 
infinite variety of possible wallpaper patterns, there is only a 
finite number of essentially different types, known as plane 
groups — 17 to be precise, a number that may strike one as 
being astonishingly small! One reason for this drastic hmita- 
tion is that the possible rotations in such a two-dimensional 
pattern are restricted to C,, C3, C,, and C,. 
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ie particular, C.is forbidden; 
as one can easily convince 
oneself from the impossibility 
of covering a bathroom wall 
with regular pentagonal tiles 
(shown in the adjacent Figure, 
lower right). It is possible 
only with equilateral triangles 
(C,), squares (C,), or hexagons 
(C,). The three-dimensional 
case can be analyzed in an 
analogous way, leading to the 
230 essentially different com- 
binations of symmetry opera- 
tions that are possible in regu- 
larly repeating patterns — so 
we have Y line groups, l7 
plane groups, and 230 three- 
dimensional space groups. 

A related but somewhat sim- 
pler problem is to enumerate 
the possible external sym- 
metries of crystals, the crystal 

Various lattices and tilings of the plane. classes, or crystallographic 

point groups: the combina- 
tions of symmetry operations, excluding translations, that are 
consistent with the allowed rotation axes. The mathematical 
proof that there are only 32 such crystal classes was given by 
Johann Friedrich Christian Hessel in 1830. The following illus- 
tration is taken from his major work Kristallometrie oder 
Kristallonomie und Kristallogaphie, published in Leipzig in 
1831 but largely ignored and then forgotten until the end of the 
Cenluny: 

Crystals can be assigned to the correct class on the basis of 
their external shape, but it was only after the development of 
X-ray analysis, when information about the detailed internal 
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structure became available, 
that crystals could be assigned 
to the correct “space: group. 
As an example, we show the 
image of a projection through 
a crystal of hexamethylben- 
zene (Figure on the next page), 
first solved by Kathleen Lons- 
dale (1903-1971), from which 
not only the structure of the in- 
dividual molecules, corre- 
sponding to the formula 39, is 
apparent but also the manner 
in which these molecules are 
arranged in the crystal lattice. 

Naturally, H more complete 
information about the detailed 
structure of the crystal were 
required, this image would 
have to be complemented by a 
projection along some other eaeioe eee / MSDE ACL? SCRS Rb ELEY ESas 
direction or by various sec-  JJustration from Hessel’s book on crystallography. 

tions through the structure. 
From such a series of sections, a three-dimensional model of 
the crystal structure can be built. Such models used to be 

CH3 constructed from balls, repre- 
senting the atoms, and wooden 
or metal rods, representing 

CH3 CH3 the bonds, but these have now 
been superseded by com- 
puter graphics. 

CH3 CH; 

CH The determinanon “of ihe 
3 structures of many thousands 

39 of crystalline compounds 
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planar net with fivefold sym- 
metry is impossible. A few 
years before the discovery of 
quasi-crystals, the English 
mathematician Roger Penrose 
showed that if two shapes of 
tiles are allowed, tilings can be 
made that are almost periodic 
and show almost fivefold sym- 
metry. An example is shown in 
the accompanying Figure. It 1s 
based on two kinds of rhombs 
with equal sides, one with an- 
gles of 72° and 108°, the other 
with angles of 36° and 144°, 
which have to be fitted to- 
gether according to a ‘match- 
ing’ rule; the single and dou- 
ble arrows drawn on the edges 
of the rhombs in the lower part 

: of the Figure must be of the 
ae a — “1 same kind (both single or both 
Penrose tiling based on two types of rhomb. double) and in the same direc- 

tion. 

W ren one tries to make an actual tihng with these two shapes 
of tile, one soon finds that this apparently simple child’s game 
has fantastic levels of complexity. Try it! Make some outlines 
of the two shapes of tile and try to fit them together according 
to the rule mentioned above. You will begin by successfully 
tiung a small area and then possibly find that you have to 
retreat a little in order to make further progress. The arrange- 
ment at any given point depends on the arrangement at more 
distant parts of the pattern, so you will need to think ahead. 
You will also find out that there is not a unique way of arrang- 
ing the two kinds of tiles, there are an enormous number of 
different arrangements even for quite small areas to be cov- 
ered. In fact, the number of ways of tiling the whole (infinite) 
plane is of the order of the infinity of real numbers, that is, 
infinitely more than the infinity of integers. The pattern as a 
whole has no symmetry whatsoever. It never repeats but it is 
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obviously far from random; there are portions that have local 
periodicity and local fivefold symmetry. The diffraction pat- 
tern of a Penrose tiling has sharp reflections characteristic of a 
periodic crystal and has fivefold symmetry. In three- 
dimensions, two shapes of rhombohedra can be packed to- 
gether to fill space in an analogous way to that in which the 
tiles can cover the plane. 

Aitthough the calculated diffraction patterns of quasi-peri- 
odic structures represented by Penrose tilings are similar to 
those produced by quasi-crystals, it is still not at all clear 
whether such tilings have any actual physical relevance. 
There are still many unsolved and controversial problems 
concerned with the nature of quasi-crystals. They are proba- 
bly not, as had been once proposed, a ‘new form of matter’ but 
they have opened our eyes to the rich mathematical and physi- 
cal possibilities offered by quasi-periodic structures. 

Many properties of a crystal, especially its electric proper- 
ties, are largely determined by its symmetry, which is itself a 
consequence (not yet fully understood) of the forces holding 
the atoms or molecules together in the particular arrangement 
they adopt in the lattice. If the temperature of a crystal is 
gradually raised, there comes a moment when the thermal 
motion of the individual particles becomes so great that it 
overcomes the attractive, ordering forces; the crystal begins 
to melt into a liquid. In this process, the beautifully regular 
order, and the symmetry associated with it, is lost, as indicated 
schematically in the next Figure for a two-dimensional crystal 
with dense packing of spheres. 

A\tthough the individual particles in the liquid are still largely 
in direct contact with each other, and the immediate surround- 
ings of any given molecule still possess at least a certain ap- 
proximate symmetry, the destruction of the overall symmetry 
means that those properties of the crystal that depend on its 
symmetry are lost. In practice, it is this loss of symmetry that 
makes the study of liquids one of the most difficult chapters of 
physics and chemistry. 
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Introduction of disorder on melting. 

The fact that symmetry 1s pro- 
duced by the regular arran- 
gement of some motif and 
destroyed when this regularity 
is disturbed may suggest that 
symmetry must be involved 
somehow in problems con- 
cerning the relationship be- 
tween order and disorder. 

Before we examine this ques- 
tion, we must go backwards a 
litle and attempt to define 
more exactly what we under- 
stand by ‘disorder. A child's 
playroom is a good place to 
begin. Let us assume that 
six toys have to be accommo- 
dated in a chest containing six 
drawers. Maximum order is 
achieved when all six toys are 
located in one of the bottom 
boxes, as indicated in drawing 
7m Ol ine next ioure: 

lr we wish to play with the ball, 
for example, we need only 
open this particular box and 
we have it immediately. A first 
step towards ‘disorder’ would 
be made if we put one of the 

toys — we don't specify which — in the second box as shown in 
drawing B. As we have six different toys, there are six differ- 
ent ways to do this. If we distribute the toys over three or more 
boxes, the degree of ‘disorder’ increases, which means that if 
we are ignorant of the particular distribution we may have to 
open several boxes in order to find any given toy. Maximum 
‘disorder’ is achieved when there is one toy in each box; there 
are 6x5x4x3x2=720 ways of achieving this, one of which is 
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Gradual introduction of disorder of six toys In six boxes. 

shown in the drawing C. We take the number of possible 
arrangements, | for situation A, 6 for B, 720 for C, asa measure 
of the degree of ‘disorder’ in this simple system, consisting of 
six boxes and six toys, and we designate this number by the 
Greek letter 2. This approach, introduced by the Austrian 
physicist Ludwig Eduard Boltzmann (1844-1906), has proved 
to be remarkably fruitful in dealing with the problem we are 
discussing. With increasing number of toys and drawers, the 
number of possible distributions 2 increases rapidly; applied 
to chemistry, with its unimaginably large numbers of 
molecules and of states in which they may occur, the number 
of distributions becomes so enormous that we use the loga- 
rithm InQ instead of Q itself as a measure of disorder. In 
molecular systems disorder increases with temperature, and, 
to make the connection with measurable quantities, InQ is 
multiphed by a constant k to give a quantity S = klnQ, known 
as the entropy of the system. The formula S = klnQ, one of the 
most important in the whole of physics, is inscribed on Boltz- 
mann’s gravestone in Vienna. 

Away from the playroom, a rough analogy to the above 
example can be found in the behavior of the physical states of 
matter. A crystal containing a large number of molecules can 
be taken — cum grano salis — to correspond roughly to the 
situation shown in the next Figure. When the crystal melts, 

1 



the molecules usually (not 
always — remember that ice 
floats on water) require a little 
more room, and finally, when 

_ i the liquid evaporates to a 
Changes in state: crystal, liquid, gas. gas, we have again a system 

of maximum disorder. The 
changes in entropy for the transformations crystal—liquid and 
liquid—gas can be measured; in the first step the entropy 
increases by about 25 to 40 units (we ignore the question of 
how such units are to be defined) and in the second step itis, as 
might be expected, much larger, about 90 units. 

Ir we now believe that through this reference to our everyday 
experience we have the entropy concept under control, we 
will probably be disappointed by the next example. It seems 
reasonable to assume that the ‘disorder’ in a balloon contain- 
ing helium and in one containing xenon is the same, under 
conditions of equal volume, pressure, and temperature and 
hence equal numbers of atoms in the two balloons. It turns out, 
however, that the entropy of the xenon balloon is about 35% 
larger than that of the hehum balloon. This may suggest that 
other factors, such as the weight of the atoms, might play a 
role. Indeed they do. “The Lord is subtle’, as Einstein said 
“but not mahcious.’’ One of the factors that influence the en- 
tropy is the molecular symmetry. 

Dubstances containing highly symmetric molecules have a 
lower entropy, 1e., they are more ‘orderly than those 
containing low-symmetry mo- 
lecules. In this connection, 
however, we need to express 
the amount of symmetry by a 7 e ~ '®@ 
number. As mentioned earlier, / . ® \ . / @ 
this could be the number of —4a . Po e 
distinct symmetry operations  \ ° 0 fo 
possessed by the molecule, e y , @ 
but in the present context it is 
more relevant to take as the Qu a 
symmetry number X the num- fl oo a7 

Equal volumes of helium and xenon at the same 
temperature and pressure do not have the same 
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The symmetry number of ethylene is 4. 

ber of indistinguishable ways the molecule can be oriented in 
space. As an example, we consider the ethylene molecule 
CH,=CH,. For counting purposes, we imagine that we can 
label one of the hydrogen atoms by coloring it red. One then 
sees that there are just four ways of placing the red atom, 
corresponding to four indistinguishable ways of orienting the 
molecule if we now imagine the red color to disappear. The 
symmetry number 2 thus equals 4 (Figure above). 

metry numbers for a few other molecules are listed be- 
low. 

Molecule Pa, 

CO ] 
N, Zz 

Ethylene 4 
Methane 12 

Benzene i 

Chlorobenzene ZA 

1,2-Dichlorobenzene 2 

1,4-Dichlorobenzene 4 

Cubane 24 

We see that we get the right symmetry number 2 if we count 
only the rotation operations and forget about the reflections. 
Remember that, unlike rotations, reflection operations are not 
operations that one can actually carry out on objects, and the 
same applies to inversion of an object through a point in 
space. For these operations, one needs either mirrors or 
mathematics. This is why they are called improper symmetry 
operations, in contrast to rotations, which are proper symme- 

try operations. 
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For two isomers in chemical equihbrium, the one consisting 
of molecules with lower symmetry will be present in excess — 
other things being equal, as they are so often assumed to 
be in arguments of this kind, and as they so rarely are. 
Indeed, the amounts of the two isomers will be inversely pro- 
portional to their symmetry numbers 2. We discuss an ideal- 
ized example, that of the isomeric trichlorobenzenes, whose 
symmetry numbers are: 1,2,3-trichlorobenzene (40), » =2; 
1,2,4-trichlorobenzene (41), » = 1; 1,3,5-trichlorobenzene (42), 
2 =6. We may assume that the interconversion process con- 
sists of an exchange of a chlorine and a hydrogen atom within 
a given molecule, ie. a shift of a chlorine atom from one 
position to another, as symbolically indicated by the arrows in 
the following schemes. 

BG 
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As can be seen, there are four shifts which yield 1,2,4 from 
1,2,3, but only two which yield 1,2,3 from 1,2,4. Analogously, 
the number of ways in which the other transformations can be 
Deriormed is: Geior 193551524 1 for be 5 174293 for 
Poo Lao tor 1.235 173.5, The ratios<of the number of 
shifts for the forward and backward reactions are equal to the 
ratios of the symmetry numbers of the molecules involved, i.e. 
Ale (lige) 2 (14,4) = 2/1 = 2, and.so on, 

Ir all the shifts are equally probable, then, at equilibrium the 
amount orl 713,.1.2 4-ang 13-5 will bein the ratios 3 > Gealrane. 
inversely proportional to their symmetry numbers. Low sym- 
metry isomers are thus preferred over high symmetry ones. 
These conclusions can also be reached by arguments de- 
pending on the entropy. 

Indeed, with increasing symmetry number & the contribution 
to the entropy, thatis, the ‘disorder’, decreases, and by quite a 
substantial amount. Thus, the entropy difference between the 
two isomers, n-pentane, CH,CH,CH,CH,CH,, and neopentane, 
C(CH,),, arising from the difference in the molecular sym- 
metries, amounts to about 15 entropy units, a considerable 
fraction of the entropy change associated with the melting 
WLocecs: 

The difference in melting point between these two isomers 1s 
striking. The more symmetrical one, neopentane, melts at 
—16 °C an abnormally high temperature for a hydrocarbon of 
this size, while the less symmetrical one, n-pentane, melts at 
—130 °C. The explanation of the abnormally high melting point 
of neopentane also has to do with symmetry. As we saw ear- 
lier, a liquid is more disordered and hence has a higher 
entropy than a crystalline solid. The neopentane molecule has 
a nearly spherical shape and can rotate in the crystal without 
destroying the crystalline order. In other words, some of the 
excess disorder characteristic of a normal liquid is already 
present in the solid. Hence the change in entropy on melting 1s 
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smaller than usual. From thermodynamics we know that for 
two phases in equilibrium 

NG A= TAS Omkor 

T = AH/AS. 

The smaller the change in entropy, the higher the melting 
point — assuming that the heat of fusion is roughly the same in 
the two cases. Crystals that show this abnormal behavior on 
melting are called plastic crystals; their mechanical cohesion 
is weak and they can be regarded as a kind of intermediate 
stage between a crystalline solid and a normal hquid. 

In a plastic crystal, orientational order is lost but translational 
order is largely maintained. Crystals containing long rod- 
shaped or plate-like molecules often show another kind of 
abnormal melting, corresponding to another kind of interme- 
diate stage between crystalline order and hquid disorder. 
When these materials appear to melt they lose their transla- 
tional order but retain their orientational order. The ‘liquids’ 
so produced flow but they have strongly directional proper- 
ties. They are known as liquid crystals and have important 
industrial uses. 

I is an inevitable consequence of the second Law of Thermo- 
dynamics that the entropy of the universe increases towards a 
state of maximum entropy. From this point of view it could 
appear that the Gods, unlike humans, have a long-term prefer- 
ence for low symmetry. 
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Et sic angelus uno instante potest esse 
in uno loco et in alio instante in alto loco 
nullo tempore intermedio excstente. 

St. Thomas Aquinas 

The central element of a conversation about symmetry in 
chemistry should really be concerned with the remarkable 
role that symmetry plays in the description of the electronic 
structure of molecules or, more exactly, of the motion of elec- 
trons. Unfortunately, even an elementary account comprehen- 
sible to the layman is impossible in such a brief space, mainly 
because the behavior of electrons, which we would like to 
imagine as little balls, scarcely allows any analogy to the be- 
havior of those macroscopic objects that we encounter in ev- 
eryday hfe. The ‘common sense’ that we have inherited 
through evolution and learned through daily experience is a 
block to any intuitive approach to the behavior of microphysi- 
cal objects. 

We all learn in school that hght consists of electromagnetic 
waves of different frequencies, that is, different numbers of 
vibrations per second, and that a definite frequency corre- 
sponds to a definite color. The velocity of hght waves is great- 
est in a vacuum where it has a value represented by c= 3 10° 
meters per second. The velocity in dense media, such as glass 
or water is represented by u, whichis smaller than c, while the 
frequency v stays the same as in vacuum. The ratio of the two 
velocities n =c/u is known as the refractive index of the 
medium. The following diagram illustrates how two light 
waves of different velocities but the same frequency propa- 
gate. The distance covered in a given time interval is propor- 
tional to the velocity so, for constant frequency, the wave- 
length must be inversely proportional to the index of refrac- 
tion, that is, itis shorter in a dense medium than in a vacuum. 
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ince the light covers one wavelength 4 for each completed 
vibration, it covers N wavelengths for N vibrations. The fre- 
quency v is the number of vibrations per second, so we obtain 
for the velocities: 

CAV. AV 

We also learn in school that many problems in optics can be 
solved by a purely geometric analysis of the behavior of light 
rays, involving the tacit assumption that light can be regarded 
as a stream of particles, as suggested earher by the great Isaac 
Newton (1643-1727). Is there a bridge between these two con- 
tradictory viewpoints? The answer is in the affirmative. It de- 
pends on a principle formulated by the French mathematician 
Pierre de Fermat (1601-1665), according to which a ray of light 
between two points always travels along the path that requires 
the shortest possible time. According to this principle, in a 
medium Of variable reiractive mdexy lght will not go ina 
straight line but will minimize the time taken (not the path 
length) by bending into the region of lower refractive index 
where it will travel faster. The time 4t needed to traverse a 
path element of fixed length 4sis 4s/u where umay vary from 
point to point. Fermat's principle now requires that the path 
taken from light source A to observation point B (see the next 
Figure) is the one for which 

Z(At) = ¥(As/u) = (1/v)Z(As/2) 



is a Minimum, that is, the path 
that contains the smallest num- 
ber of wavelengths, as indi- 
cated in the sketch. It has to be 
kept in mind that these wave- 
lengths may be different, de- 
pending on how the index 
of refraction varies in the 
medium that is transversed by Path of light from A to B through a medium of 
the light ray. In a medium of variable refractive index. This path contains the 

j minimum number (N=8) of wavelengths. Any 
constant refractive index the other path (e.g. the dashed one, N=12Z), including 
light will travel in a straight the straight line from A to B, contains a larger 
line. Note that Fermat’s princi- number. 
ple itself has nothing to do with 
wavelengths. Indeed, it is doubtful whether Fermat had ever 
heard of the wave theory of hght, as Christian Huyghens's 
(1629-1695) famous book Traité de la Lumiere was published 
only in 1690, many years after Fermat's death. 

Following the fundamental discoveries of Max Planck (1858-— 
1947) and Albert Einstein (1879-1955), the French physicist 
Louis de Broglie (1892-1981) postulated in 1923 that every 
particle in motion, for example, an electron, is accompanied 
by a ‘wave’ whose wavelength A becomes shorter, the faster 
the particle is traveling, that is, the greater its velocity v, 
its momentum p = m,v and, accordingly, its kinetic energy 
E = m,v’/2, where m, is the electron mass. 

((C@=> 
p=Mv 



nes exact relationship is given by the de Broghe equation 
A = h/p, in which his Planck's constant. This naturally raised 
the question, whether one could proceed in exactly the oppo- 
site way, that is, describe the motion of such particles, and 
especially of electrons, by a type of theory that had been up till 
then reserved for describing waves. Indeed, only three years 
later, in 1926, the Austrian physicist Erwin Schrodinger (1887— 
1961) succeeded in achieving this and thus became the father 
of the so-called wave mechanics, which is today the basis for 
the description of electrons in atoms and molecules. It is inter- 
esting that the derivation of wave mechanics involves the as- 
sumption that all particles move in such a way that their path 
between two points, measured in de Broghe wavelengths, is 
again a minimum, harking back to the Fermat principle men- 
tioned above. The connection can be illustrated in terms of 
another principle, the Principle of Least Action, first formu- 
lated by Pierre Louis Moreau de Maupertuis (1698-1759), ac- 
cording to which the path followed by any moving object is the 
one for which the sum of all p(4s) contributions 1s a minimum — 
where p = mvis the momentum of the object as it traverses the 
path element As. 

In terms of the de Broglie relationship, the quantity 2pd4s 
is equivalent to hX (4s/A) so that minimization of the former — 
the Maupertuis condition — is equivalent to minimization of 
2 (As/A), which is just the same condition as we found for light. 
Thus, as Schrodinger showed, the known formalism for the 
propagation of light waves can be extended to cover the mo- 
tion of all particles; particles behave like waves, and waves 
behave like particles. 

Th addition to this principle, electrons have to obey certain 
‘traffic rules’ when several of them co-exist in a confined 
space, as In an atom or a molecule. One of these rules has a 
great similarity to the behavior of the angel described by St. 
Thomas Aquinas and quoted in the chapter heading, but oth- 
ers are far beyond the scope of any analogy taken from classi- 
cal physics or theology. 
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The most primitive model 
for electrons in a confined 
space, such as a molecule, is 
simply to confine them in a 
box of an appropriate size~’, as 
illustrated in the adjacent 
Figure with considerable po- 
etic license, for the electrons 
of oe — naphthalene 
(17), C,,H,, contains not merely 
three but 68 electrons! 

How do electrons respond 
when the space available to 
them is restricted? To provide 
at least a qualitative illustra- 
tion, we first consider the very 
simplest case of a single elec- 
tron moving backwards and 
forwards in a one-dimensional ; 
box. If this motion were to pro- Naphthalene molecule regarded as a box 
ceed according to the rules of containing electrons. 

classical mechanics, the elec- 
tron would traverse the box 

Oe 6.) with constant speed, bounce 
over and over against the walls 

| OL the Dox and tie Gellecied 
back each time to travel in the 

1 opposite direction but with al- 
ways the same speed. 

I we could make a long time 
exposure of such a classical 
electron, we would obtain a 
picture hke the one shown in 
the adjacent Figure: the elec- 
tron would be uniformly 
smeared over the entire re- 
HOM, Ol miOmMe x ucose tiie 

averse, Oye: spansseeapraiees 
EEE sat Ast bsteane ae phases ey 
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Classical electron in a one-dimensional box. 129 



Not observable 
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Quantum-mechanical electron in a one-dimensional box. 

somewhat different language, the probability of finding the 
electron at some arbitrary time would be the same for all 
points in the box. Obviously, this resultis completely indepen- 
dent of how fast the electron moves; anyway, our model im- 
poses no limitations on its speed and hence its kinetic energy. 
In the wave mechanical description, this is quite incorrect. 
Wave mechanics requires that the wave that accompanies the 
electron must fit exactly into the box, as shown in the Figure 
above, for the three longest waves. 

More exactly, as the Figure shows, an integral number of 
half-wavelengths must fit in the box, so if Lis the length of the 
box then n(A/2) = Lwhere ntakes the values 1, 2, 3,... etc. This 
kind of relationship is known as a quantization condition, the 
number nas a quantum number. The relationship in question 
means that only quite definite electron velocities and hence 
energies are permitted. One says that the energy is quantized, 
because it is only possible to pass from one state to another if 
an exactly defined quantum of energy is added to or removed 
from the system — here the electron in its one-dimensional 
Dox: 
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Schematic representation of wave functions and their squares. 

The wave function in itself has no physical significance. First 
of all, it must be stated that there is no way of telling whether, at 
any given moment, the wave corresponds to the full or to the 
dotted line in the diagram. It may, therefore, be advantageous 
to symbolize the wave functions as shown on the right side of 
the above diagram, where the opposite deflections of the 
wave are indicated by the contrasting colors, blue and yellow. 

Tn contrast to the classical behavior described earher, the 
wave mechanical electron is not uniformly distributed over 
the space available to it. The probability of finding it at any 
given point is proportional to the square of the amplitude of 
the wave at that point. In contrast to the wave itself, the result- 
ing electron ‘density’ is accessible to direct measurement, that 
is, itis an experimentally measurable quantity. Our simplified 
symbols for the wave and for the resulting electron density 
are shown face to face in the diagram above for the three 
states of lowest energy. 

ARS recapitulate: on the left are the symbols for the wave 
functions, where the contrasting colors signify opposite de- 
flections; and on the right are the corresponding electron 
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densities or probabilities, smeared over the length of the box. 
The latter are observable, the wave functions are not. It is 
customary to name the wave functions as y;, Wz, W3....1n order 
of increasing energy (which is the same as the order of 
decreasing wavelength since it can be shown that the energy 
of each such wave function is directly proportional to the 
square of the quantum number n, or, what is the same, in- 
versely proportional to the square of the wavelength). The 
corresponding electron densities are given by the squares of 
the wave functions (w,)*, (W2)*, (w3)*, etc. 

Ir we have only one electron, the state of lowest energy is 
obtained when the electron is described by the wave function 
of lowest energy y,. We say that the electron occupies the y, 
orbital. With many electrons, one might have thought that the 
state of lowest energy is obtained by putting them all into the 
y, orbital. This is forbidden, however, by one of the funda- 
mental rules that limit the motion of electrons: a given wave 
function or orbital can accommodate at most two electrons 
(and only then if the two have opposite spin). This is a conse- 
quence of a deep symmetry principle (too deep for us to go 
into here) first stated by the Zurich physicist Wolfgang Pauli 
(1900-1958). With many electrons, the state of lowest energy is 
obtained by filling the orbitals in order of increasing energy, 
two ata time, until all the electrons are accommodated. 

Ci. one-dimensional box, for the time being without its elec- 
tron, 1s symmetric. If rotated 180° about an axis perpendicular 
to the paper and passing through the mid-point of the box, it is 
brought into coincidence with itself; C, is asymmetry opera- 
tion of the empty box. According to physics, the observable 
electron density (y)* produced by the electron moving in the 
box must have just the same symmetry as the box itself. This is 
seen to be the case for the diagrams in the Figure on the 
previous page. More generally, this means that electrons con- 
fined within a small space by a potential, in our case the box, 
will have the same probability of occurring at symmetry- 
equivalent points, so that at these points the electron densities 
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will be equal, The physicist would say that the potential im- 
presses its symmetry on the electron density. All this seems, 
and is, eminently reasonable. 

A glance at the preceding Figure shows that the wave func- 
tions have a more comphcated symmetry behavior. Some, 
such as w, and ws, are indeed brought into coincidence with 
themselves by the rotation in question, but not others, y, for 
example. Here the two colors are interchanged by the C, 
operation, which means that the whole wave function changes 
its sign. Where there was a peak is now a valley, and vice 
versa. If we were to keep strictly to our previous definitions, 
then yw, would not be symmetric with respect to C,, but every- 
one will agree that this ‘unsymmetric’ behavior is quite differ- 
ent to the kind that pertains when we rotate a misshapen potato 
through 180°. The latter is unsymmetric with respect to C, in 
the true sense of the word. When only the sign of the wave 
changes, as for wy, under the C, rotation, we speak of ‘antisym- 
metry’. We thus see that our wave functions for an electronina 
one-dimensional box are either symmetric (y,, Wz, etc.) or 
antisymmetric (w,, Wa, etc.). Such symmetry-antisymmetry re- 
lations are to be found quite generally for the wave functions 
of the electrons in molecules, whereby a whole variety of 
different kinds of symmetric-antisymmetric functions are pos- 
sible, depending on the various symmetry operations that a 
molecule may possess. It is clear that a considerable extension 
and enrichment of symmetry theory is involved here. 

As a simple example of this new kind of symmetry behavior, 
consider the motion of an electron ina rectangular two-dimen- 
sional box, as indicated in the next Figure. A classical particle 
would bounce around the box hke a billiard ball, and, in 
particular, it would be confined to the inside of the box since it 
could never escape outside the reflecting walls. The symme- 
try of the box, that is, of the potential that limits the motion of 
the particle, is here defined by the following symmetry opera- 
tions: a 180° rotation (C,) about an axis through the midpoint of 
the box and perpendicular to its plane, and two reflections, o,, 



Electron in a two-dimensional, rectangular box, 
with schematic representations of the four wave 
functions lowest in energy. 
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and a,,, across the planes con- 
taining the x,zand y,Z axes, re- 
spectively. 

Here too we have a quantiza- 
tion condition that specifies the 
number of nodes in the al- 
lowed wave functions. To rep- 
resent the alternation of sign in 
different regions of the box, 

we again use contrasting col- 
ors without specifying which 
color corresponds to positive 
and which to negative values. 
The adjacent Figure shows 
four such wave _ functions, 
labelled aS W;, Ws, Wa, Wa. 
While yw, has the same sign 
throughout the whole area of 
the box, y, has opposite signs 
on opposite sides of the y,zZ 
reflection plane, yw, has oppo- 
Site SIONS Om OppOsiie sides.ol 
the x,zretlection plane, and wy, 
shows a chessboard-lke pat- 
tern. Each wave function is 
either transformed into itself 
or changes sign by the action 
of each of four symmetry oper- 
ations (we include here the 
identity operation for com- 
pleteness). The wave functions 
can thus be characterized 
by specifying this behavior, 
whereby we denote the first 
case as +1 and the second as 
-l|, The behavior of the four 
wave functions W,, Wo, Ws, W418 
then as given in the following 
Table: 



These combinations, known as irreducible representations, 
are the only ones possible for this group of symmetry opera- 
tions, and it follows that any acceptable wave function, regard- 
less of the number and type of nodes, must transform accord- 
ing to one of them. Alternatively, for those who like to use 
letters instead of numbers, we can use the symbols s = sym- 
metric and as = antisymmetric, in which case the Table looks 
like: 

I Cy O xz O yz 

W\ S S iS S 

Wa Ss as S as 

Wo S as as Ss 

Wa S S as as 

The extension to three dimensions is obvious. To a first ap- 
proximation, a lump of metal can be considered as a box 
containing a large number of electrons that are constrained to 
be within the box by a potential that is uniform throughout the 
box but rises steeply at the surface boundary. For a piece of 
metal of macroscopic dimensions, the allowed wavelengths 4 
are so long and the energy levels so closely spaced that they 
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Density Density 

Energy levels occupied at absolute zero and at a higher temperature. 

form an almost continuous range of energies. But the number 
of electrons is also enormously large, of the order of 10” per 
cubic centimeter. According to classical mechanics, they 
could all have the same energy, and, at the absolute zero of 
temperature, they could all occupy the lowest energy level. 
According to quantum mechanics, at absolute zero all the 
orbitals up to a certain energy level will be occupied by pairs 
of electrons with antiparallel spin, while orbitals having ener- 
gies greater than this will be empty. However, as the tempera- 
ture rises, electrons having energies close to this level can 
gain thermal energy, which allows them to move into the 
higher, unoccupied levels, as indicated in the Figure above 
for the case of a one-dimensional box. The electrons in the 
singly occupied orbitals can move freely within the metal, and 
under the influence of an external potential, they are responsi- 
ble for conducting the electric current. 

With the help of this kind of extended symmetry consider- 
ation and on the basis of wave functions that represent the 
motion of electrons in molecules, the chemist has learned to 
make predictions about the course of reactions and about the 
structures of the products. Some of these predictions would 
not be possible in other ways. Even the rules governing the 
local signs of the wave functions can enable far-reaching con- 
clusions to be drawn in a relatively simple way. This is illus- 
trated by an analogy, which may admittedly not quite hit the 
mark. 
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We have an 8 = 8 frame with 
two squares missing at oppo- 
site ends of a diagonal, and 
there are 31 dominoes, each of 
which can cover two squares. 
The question to be answered 
is: can one completely cover 
all 62 squares with the 31 domi- 
noes? Can 31 dominos cover the 62 squares ? 

leeereseinc the problem in a chemical context, one could say 
that the empty frame and the dominoes represent the ‘educts’, 
and the question can now be rephrased in terms of whether 
they can react to give the desired ‘product’, the completely 
covered frame, or not. Making use only of these components 
and their rather obvious symmetry properties, the question 
may seem to be not easily answerable. In particular, trial and 
error leads nowhere. 

The situation is completely altered when one considers the 
underlying ‘wave functions’ of the frame, which is then recog- 
nized to be nothing more than a chessboard with the squares 
at two opposite corners missing. Consideration of the colors of 
the individual squares shows immediately that our problem 
can be solved in a trivial way. The answer is ‘no’. Squares at 
opposite corners of a chessboard have the same color or 
‘sign’; in the next Figure they are both white, so the frame 
consists of 30 white and 32 black squares. Since each domino 
must cover two squares of opposite color or ‘sign’, two black 
squares, which cannot adjoin one another and hence cannot 
be covered with the last domino, must always be left over. 
There is no way the conditions can be satisfied, meaning that 
our ‘educts’ cannot possibly lead to the desired ‘product’. 
Admittedly, the analogy is somewhat far-fetched, but it strikes 
at the heart of the matter, as the following example should 
show. 

A preliminary remark is necessary here: the simplest 
molecule is the hydrogen molecule H,, in which two hydrogen 
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nuclei are held together by 
two electrons. The formation of 
this molecule can be pictured 
in the following primitive, but 
for our purposes adequate, 
manner. The left-hand side of 
the Figure below shows the 
two hydrogen atoms, or, more 

The answer is NO ! precisely, the symbolic repre- 
sentation of the wave functions 

for the two electrons that move round their respective nuclel, 
The two horizontal lines indicate the energy of these electrons 
on the energy scale shown on the left. 

Ihe form the molecule the two atoms must be brought to- 
gether, and this can be done so that their wave functions have 
either the same sign or opposite signs. When the wave func- 
tions overlap, the combination with the same sign yields a 

H-+-H—+H—H 

0 © 
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— 
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When two hydrogen atoms approach one another, their 1s orbitals overlap to give a bonding 
and an antibonding combination. 
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resultant wave function corresponding to a lower-lying, more 
stable energy level; conversely, the combination with oppo- 
site signs gives a higher-lying, less stable energy level. In the 
molecule, the symmetric, lower-lying level accommodates 
the two electrons. The antisymmetric combination, which has 
one node and is hence of higher energy (analogous to the 
energies of the wave functions for the electron in a box), 
corresponds to a destabilization relative to the separated 
atoms. Reducing this to a simple rule, overlapping of two 
wave functions of the same sign means bonding, overlapping 
of two of opposite sign means repulsion. This rule enables us 
to provide simple answers to complicated questions — like our 
chessboard example. 

Before we proceed further, a few words about the electron 
wave functions in atoms and simple molecules are called for. 
The above description of the bond in the hydrogen molecule 
H, starts out from the wave functions ®,, for the motion of the 
electrons in the two separated hydrogen atoms. These func- 
tions were spherically symmetric and had the same sign 
throughout the space occupied by the electrons in question, 
similar to the y, functions of our one- and two-dimensional 
boxes. Again analogous to the boxes, the hydrogen atom has 
states of higher energy described by wave functions contain- 
ing nodes — the greater the number of nodes, the higher the 
energy. The smallest possible energy increment thus leads to 
a wave function with one node, for example, to a wave function 
similar to y, with one horizontal plane of antisymmetry. 

Z 
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Formation of the bonding (nx) and antibonding (x*) molecular orbitals of ethylene from a pair 
of atomic p orbitals. 

Wave functions that describe the motion of an electron in the 
field of an atomic nucleus are called atomic orbitals. Atomic 
orbitals may be spherically symmetrical (s orbitals) or they 
may have a plane of symmetry (p orbitals) or more comphz- 
cated symmetry behavior (d and f orbitals). The letters that 
describe them derive from the early history of atomic spec- 
troscopy and were taken over into quantum mechanics when 
it became possible to explain patterns of spectral lines by 
quantum mechanical theories. 

Molecular orbitals may be obtained by combining atomic 
orbitals belonging to different atoms. Just as we can describe 
the bonding orbital of the H, molecule as a combination of two 
s atomic orbitals, we can also combine a pair of p orbitals to 
give a bonding orbital. Such orbitals have a special role be- 
cause the electrons whose motion is described by them are of 
relatively high energy and are important in determining the 
chemical and physical properties of molecules. The Figure 
above shows the combination of two atomic p orbitals to givea 
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Shorthand notation to characterize the symmetry behavior of the xn and n* orbitals of ethylene. 

bonding orbital of the ethylene molecule H,C=CH, (compare 
with the corresponding Figure on page 138 for the H, 
molecule). This type of bonding orbital obtained by the posi- 
tive combination of the two p orbitals is known as a z orbital. 
The negative combination, the z* orbital has one additional 
node and thus has a higher energy than the z orbital. 

Ethylene is a symmetrical molecule, containing the three 
reflection planes o,,, o,,, and o,, among its symmetry ele- 
ments. If the molecule is reflected across any of these planes it 
is transformed into itself. The symmetry behavior of the z and 
m* molecular orbitals is more complicated. The former is sym- 
metric with respect to a,, and ¢,, but antisymmetric with re- 
spect to a,,, while the latter 1s symmetric only with respect to 
g,,, antisymmetric with respect to the two others. Note, how- 
ever, that the corresponding electron densities, given by the 
squares of the orbitals, show the full symmetry of the ethylene 
molecule. 
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a) 

Chemists have become ac- 
1) customed to a kind of short- 

3 3 hand in which the symmetry 
 eemmeeenal behavior of molecular orbitals 

is depicted by showing the in- 
; dividual atomic orbitals, each 

Qe ess. . carrying a relative sign corre- 
WV sponding to its contribution to 

2 2 the combined orbital, as indi- 
enema cated in the previous Figure 

6 for ethylene. 

ey 9 Y, The adjacent Figure shows in 
a the same way the combinations 

& that can be made from the 
atomic p orbitals of the four 
carbon atoms of the butadiene 

Molecular x orbitals of butadiene. molecule H,C=CH-—CH=CH,. 

We now consider a simple example where the symmetry 
properties of such molecular orbitals can be used to make 
predictions about the specific outcome of a chemical process. 
The molecules naphthalene (17) and tetracyanoethylene (43) 
have the ability to combine together in a so-called molecular 
complex. In this complex, the planar naphthalene and tetra- 
cyanoethylene molecules stack one above the other, butitisa 
priori not obvious what relative position they should adopt. In 
the next Figure, two possibilities are indicated, both corre- 
sponding to arrangements that have the highest possible sym- 
metry and might therefore come into question if Nature should 
prefer the most aesthetically pleasing solution. 
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OF the basis of symmetry 
considerations and mathemati- 
cal calculations that are of no 
interest here, the signs of the 
wave functions of the electrons 

responsible for the bond be- Two possible symmetric arrangements of a 
tween the two molecules can naphthalene tetracyanoethylene complex. 
be calculated. The result of the 
calculation is shown graphically in the Figure below, which 
shows the relevant molecular z orbitals in the same shorthand 
notation as used on the opposite page for butadiene, with the 
only difference that we are now looking from one side of the 
plane of the molecule. 

A\ccording to the rule mentioned above, the two molecules 

should be superimposed in such a way as to secure the best 
possible agreement between the signs of adjacent atoms. This 
occurs for the arrangement shown in the Figure on the next 
page. For the sake of clarity, we have introduced a slight 
inconsistency into the picture. Each of the two molecular or- 
bitals is antisymmetric with respect to the plane in which the 
atoms lie. The diagram must be understood to show how the 
signs of the two molecular orbitals combine in the region 
between the molecules to produce the ‘in phase’ overlapping 
of the atomic orbitals. 

I may seem surprising that this is not one of the beautifully 
symmetric arrangements but rather one where the tetracya- 
noethylene sits over one side of the naphthalene molecule. An 
X-ray analysis of the crystalline complex shows that the low- 
symmetry arrangement is indeed realized. Obviously, Nature 

follows symmetry criteria that 
represent an extension and en- 
hancement of the purely intu- 
itive concept. Although every- 
thing is therefore much more 
complicated than Kepler ever 
imagined, he would neverthe- 
less have been very satisfied to 

Signs of the interacting orbitals of naphtalene and ; 
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know that symmetry largely 
determines the behavior and 
properties of molecules. 

Quite generally, the overlap- 
ping of atomic orbitals with the 
same sign leads to a stabiliza- 

Optimal overlapping of the orbitals shown in the tion of the (system, 1 “other 
previous Figure. words to bonding, while over- 

lapping of orbitals with oppo- 
site sign leads to destabilization. The systematic apphcation of 
this principle to explain chemical reactivity was initiated by 
the American chemists Robert Burns Woodward (1917-1979) 
and Roald Hoffmann, Their principle of the Conservation of 
Orbital Symmetry” classified certain types of reactions as 
being symmetry-allowed or symmetry-forbidden in terms ofa 
few simple rules based on the symmetry behavior of the 
orbitals involved. Symmetry-allowed reactions proceed 
smoothly from reactants to products, whereas symmetry-for- 
bidden ones either proceed by roundabout routes involving 
intermediates or do not occur at all. This conceptual approach 
was so far reaching and successful that it opened the eyes ofa 
generation of practical chemists to the potentialities of simple 
theoretical models, especially those derived from molecular 
orbital theory. After many years of comparative neglect, 
molecular orbitals suddenly became fashionable. 

Our final example illustrates how orbital symmetry con- 
siderations can be used to predict the course of a chemical 
reaction. Say we start with an unsymmetrically 1,4-disubsti- 
tuted butadiene molecule; call one of the substituents R, the 
other Q. If the two outer carbon atoms are now joined together 
to make a four-membered ring, two isomeric products are 
possible: a cis-disubstituted cyclobutene with the R and O 
groups on the same side of the ring plane, or a trans-disubsti- 
tuted cyclobutene with the two groups on opposite SUSIE as 
shown in the next Figure. 



We now make use of a 
heuristically very successful 
idea introduced by the 
Japanese theoretical chemist 
Kenichi Fukui, namely, the as- 
sumption that the chemical be- 
havior of a molecule is deter-  __ a 

mined primarily by its highest- 7 4 Disubstituted butadiene with the two possible 
lying occupied orbital, the one isomeric cyclization products. 
in which the most loosely 
bound electrons are found. This idea had previously been 
applied to atoms: many properties of a given atom can be 
correlated with its ionization energy, that is, the energy re- 
quired to remove one of the ‘outer’ or ‘valence’ electrons. In 
its extension to molecules, it imphes that the symmetry prop- 
erties of the high-lying orbital, the ‘frontier’ orbital, inter- 
preted according to the Woodward-Hoffmann rules, are deci- 
sive in determining the course of certain chemical reactions. 

The mz molecular orbitals of butadiene are shown in the Fig- 
ure on page 142. Each of the carbon atoms contributes one 
electron to the z system, so there are four electrons to be 
accommodated, and since only two electrons may be housed 
in the same orbital, the state of lowest energy is the one in 
which the two lowest orbitals wy, and yw, each contain two 
electrons. The higher of these, y,, is then the highest occupied 
orbital, so this is the frontier orbital whose symmetry proper- 
ties should determine the course of the ring-closure reaction, 
at least as long as the molecule is supposed to be in its elec- 
tronic ground state. 

On the left of the adjacent Fig- 
ure is shown the disubstituted 
butadiene molecule in the con- 
formation in which the atoms 
can be expected to lie before 
the ring-closure reaction oc- 
curs. On the lower left we see 
the frontier orbital w,, which is 
now supposed to determine 

Conrotatory and disrotatory motions leading to two 

different cyclization products of 1,4-disubstituted 4 
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the further course of the reaction. According to the Wood- 
ward-Hoffmann rules, in order to form the new bond the or- 
bital components at the two ends of the butadiene fragment 
must come together so that lobes of the same sign (here of the 
same color) match. This is possible only if the two end groups 
are rotated in the same sense, i.e., both clockwise or both 
anti-clockwise (the term ‘conrotatory’ is used to describe this 
type of coupled motion). The inevitable result is that the two 
groups R and Q end up on opposite sides of the ring plane. 
Thus, as long as the ring-closure reaction proceeds through 
the electronic ground state of the reacting molecule, we ex- 
pect to obtain the trans-isomer. 

But not all chemical reactions proceed through the electronic 
ground states of the reactants. Some reactions — photochemi- 
cal reactions — are promoted or accelerated by light: the mira- 
cle of photosynthesis, whereby water and carbon dioxide are 
converted into the molecules of hfe by the action of sunlight, is 
the most important example, while the fading of the dyes 
contained in curtains and other fabrics, or the changes that 
take place in sunburned skin, are more trivial everyday ex- 
amples. The first step in such chemical changes is the absorp- 
tion of light, or, more exactly, the absorption of a photon or 
energy quantum by a molecule, which is thereby converted 
into a state of higher energy. If the photon energy is small, the 
excess energy merely goes into the molecular vibrations or 
rotations, but if itis large enough the molecule can be excited 
from its electronic ground state into an electronically excited 
state. Such a change typically involves the promotion of an 
electron from a low-lying occupied orbital to a higher-lying 
unoccupied one. 

Tn our butadiene example, light absorption could lead to the 
promotion of an electron from the doubly occupied orbital y, 
to w3, the lower of the two unoccupied orbitals shown in the 
Figure on page 142. In such a case, this electron would be- 
come the most loosely bound one, and hence it should be the 
symmetry properties of y, rather than those of w, which 
should be decisive in influencing the reactivity. As indicated 
in the upper part of the last Figure, in order to satisfy the 



overlapping requirement, the two end groups must now be 
rotated in opposite directions, i.e., one clockwise, the other 
anti-clockwise (‘disrotatory’ motion as distinct from ‘conrota- 
tory’). The result is that in the photochemical ring-closure 
reaction the two groups R and Q end up on the same side of the 
ring plane to give the cis-isomer. 

Ai this point we have to confess that the above account of the 
cyclization of butadiene is not quite correct. In fact, the reac- 
tlon as described above does not happen at all; it actually 
proceeds in the opposite direction, that is, it goes from the 
cyclobutene derivative to the open-chain butadiene. This 
means that the Woodward-Hoffmann rules should actually 
have been apphed in the reverse direction, i.e., to predict the 
arrangement of the groups R and Q in the open-chain 
molecules, starting from their arrangement in the cyclic 
molecules. The experimental result is summarized below, and 
it is easily seen that this corresponds exactly to what would 
have been expected from the rules. 

GROUND STATE EXCITED STATE 

if goes without saying that these rules are enormously useful 
in planning the synthesis of complex molecules and in over- 
coming the stereochemical problems that arise there. It was, 
in fact, in the early stages of the synthesis of vitamin B,, that the 
effect of orbital symmetry rules was first discerned, and it was 
in its successful culmination by Woodward and by Albert 
Eschenmoser that the full power of these rules was made 
evident. 
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