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oe ee is a word 
used often in everyday language, 
and we all recognize symmetry 
when we see it. The human 
body, butterflies, flowers, 
animals, buildings, decorations, 
artistic creations and countless 

other natural or human-made 
objects are symmetrical. 

In the sciences, symmetry is 
frequently used as a technical 
term. Unlike other technical 
words, however, where there is 
an appreciable difference in 
meaning to scientists and the 
general public, symmetry means 
more or less the same thing to 
both technical and nontechnical 
people alike. 

But what is symmetry, really? As 
with other fundamental concepts, 
it is not easy to provide a simple 
definition. 

The Cathedral in Milan, Italy 



Our Ability to Geometrize 
The human eye and mind have a 
remarkable ability to discern 
patterns or characteristic shapes 
even when there are irregular- 
ities or omissions in an overall 
pattern. Look, for example, at the 
beautiful medieval pattern of this 
Portuguese stamp. 

Although the design is quite 
complete, some of the corners, 
especially the lower left edge, are 
damaged. Yet as we look at the 
stamp, we unconsciously skip 
over the damage and see the 
whole pattern as if it were 
perfect. 

RiGHT: An unusual example of 
multiple reflection: the pagoda and 
its reflection appear in both real life 

and in the young artist’s painting. 

xiv SYMMETRY 

Or consider what appears to be a worn piece of wood with some 
unintelligible writing on its sides. It looks as if it were found on the 
banks of a river. It is, in fact, a minisculpture by a contemporary 
Swiss artist. Geometrically speaking, this object would not qualify as 
being symmetrical (or as being a cube, for that matter). Yet we have 
no difficulty in recognizing it as such. 



Harmony and Proportion 

Thus far we have discussed not only geometrical 
symmetry, but also how strict geometrical criteria 
can be relaxed. Beyond geometrical definitions, 
though, there is another, broader meaning to 
symmetry—one that relates to harmony and 
proportion, and ultimately to beauty. This aspect 
involves feeling and subjective judgment and, as a 
result, is especially difficult to describe in tech- 
nical terms. 

In fact, much of what you will see in this book has 
to do with the beauty and harmony we have 
discovered in our travels throughout the world. We 
have taken photos and utilized graphic material 
that not only conform to one or more defined 
symmetry principles, but that have often appealed 
to our aesthetic sensibilities as well. 

A Unifying Concept 

When all these materials are assembled in a book 
(or in one’s mind, for that matter), a fascinating 
theme emerges: symmetry is a unifying concept. 

Human fields of study, especially in modern times, 
have become increasingly compartmentalized. 
This is especially true in education. The sciences, 
the humanities, and the arts have all drifted apart 
over the years. There has also been an increasing 
trend toward separation (or specialization) within 
the scientific world itself: physics, chemistry, 
biology, etc. 

Symmetry, however, can provide a connecting 
link. It is a unique tool for reuniting seemingly 
disparate fields of endeavor. Accordingly, 
symmetry can provide insight into what has been 
lost in the separations. 

And considerations,of harmony and proportion 
further help us to relate things that at first glance 
may appear to have no common ground at all. 

The bridging ability of the symmetry concept is 
a powerful tool—it provides a perspective from 
which we can see our world as an integrated 
whole. 

Sculpture, 
Simétria, in 

the Prado, 
Madrid, 
Spain 

xV 
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Two Major Symmetry 
Classes 

There are many kinds of 
symmetry, but most of them can 
be divided into two large classes: 
point groups or space groups. 

SYMMETRY 

Point Groups 

Here, the identifying factor is that at least one special point in the 
object or pattern differs from all the others. This special point (also 
called unique point) has an important distinguishing feature: it 
remains unchanged no matter what type of symmetry operation is 
performed. Such symmetries belong to the point-group category. 

A circle, for example, has at its center a unique point, as you can see 
in the black and white cobblestone pattern in this Italian piazza. 
There is no other point equivalent to the center in the entire pattern. 
If we rotate this circular pattern around its center, the pattern 
remains unchanged, regardless of its position. 

This is point-group symmetry because: 

e there is one point, the center, which is unique 

e that point is not repeated elsewhere in the pattern 

e the point does not change during rotation 

Let’s consider another example. The human face has bilateral 
symmetry. If you look at the Matisse painting on page xii, you will 
see that all points along the line dividing the face vertically are 
unique points—the center of the forehead, the tip of the nose, the 
midpoints of the lips, etc. When you reflect one side of a face to 
produce a mirror image, these unique points stay in place. Thus 
reflection is another type of point-group symmetry. 
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Space Groups 

In the other class of symmetries, there is no special point in the 
object or pattern that is different from all the others. These are the 
space groups. In this Italian pavement, for instance, the pattern is 

created by a (seemingly) endless repetition of an arc. 

Here the arcs in the pattern extend in two directions—length and 
width. The corresponding symmetry is called a two-dimensional 
space group. In general, space groups can be one-dimensional, two- 
dimensional or three-dimensional—according to whether the repeti- 
tion extends in one, two, or three directions. 

Some simple drawings can 
further illustrate the difference 
between point groups and space 
groups. 

The symmetries of a single cube 
belong to the point groups, 
since the cube has a unique 
point—its center. 

a 
If we repeat this cube in an 
endless row, we get a one- 
dimensional space group: 

ttt 
Repeating the cube in an endless 
plane, we get a two-dimensional 
space group: 

i 
And, finally, repeating it in space 
by stacking cubes up in an 
endless structure, we get a three- 
dimensional space group: 

@ 



Organization of This Book 

The structure of the book is based on the two main symmetry 
classes just described. 

¢ The first half (chapters I-IX) deals with point-group symmetries. 

e The second half (chapters XI-XV) covers space-group symmetries. 

e¢ The middle (chapter X) is quite special. It is about the symmetry 
of opposites, or antisymmetry, where geometrical symmetry is 
combined with color changes or other property reversals. 

This is primarily a visual book. Because so many things related to 
symmetry have visual appeal, we have used photos, drawings, and 
paintings to illustrate basic symmetry concepts. The language is 
simple. We want everyone to be able to understand this book, so we 
have made a conscious effort to avoid technical terms. However, 
where specific recognized principles of symmetry are first introduced 
(such as symmetry operations or elements, we will use boxes to 
define the terms. (See pp. 2, 39, 124, 131, for example.) 

The single, most important purpose of this book is to help you notice 
the world around you, to train your eye and mind to see new patterns 
and make new connections. A few years ago, soon after we had 
presented a slide show on symmetry, someone came up to us and 
said, with genuine anger, “You and your silly symmetries. I can’t 
help seeing them everywhere since your talk.” 

We couldn’t have been more delighted! 

rice psa Mogdolra aap tac 
Istvan Hargittai Magdolna Hargittai 
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BILATERAL SYMMETRY 

Mirror Symmetry 

Bilateral symmetry is the 
symmetry everybody is aware of, 
and to many people this is 
symmetry itself. Bilateral 
symmetry occurs when two 
halves of a whole are each other’s 
mirror images. Accordingly, 
bilateral symmetry is also called 
mirror symmetry. 

Let us define some terms that you 
will see at various places 
throughout the book: 

The action that characterizes a 
particular type of symmetry is 
called a symmetry operation. For 
example, using a mirror to make a 
whole from one of the halves of an 
object is a symmetry operation. 

The means (tool) whereby the 
operation is performed is called a 
symmetry element. For example, 
the symmetry element here is a 
mirror. 

We will use boxes, as below, to 
define symmetry types, operations, 
and elements, as well as other 
important terms and symbols. 

Symmetry type 

Bilateral symmetry: 
Two halves of the whole are each 
other’s mirror images 

Symmetry operation (action) 

Reflection: 
Reflecting one-half of an object 
reconstructs the image of the whole 
object 

Symmetry element (tool) 

Mirror plane: 
Also called reflection plane or 
symmetry plane. Applying a mirror 
plane to either of two halves, the 
whole is recreated 

2 SYMMETRY 
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: Papilio machaon 

The left half of the 
butterfly and its 
mirror image 
depict the whole 
butterfly 

The right half of 
the butterfly and 
its mirror image 

also depict the 
whole butterfly; 
therefore the 
butterfly has 
mirror symmetry 



Tyger! Tyger! burning bright 
In the forests of the night, 
What immortal hand or eye 
Could frame thy fearful symmetry: 

William Blake 
“The Tyger” 

If the two halves are not mirror 
images of one another, the 
application of a mirror does not 
recreate the original object or 
figure. For example, the letter R 
does not have mirror symmetry. 

The letter A, however, does have 
mirror symmetry. 

We don’t actually have to use a 
mirror to determine whether or 
not something has mirror 
symmetry. Just imagining a 

mirror in place between the left 
and right halves and envisioning 
the result is enough. Examples of 
bilateral symmetry abound in 
our daily lives. Moreover, this 
form of symmetry has been 
utilized repeatedly in the fine 
arts, as we shall see throughout 
the following pages. 

Looking at these beautiful tigers 
and reading Blake’s poem, we can 
understand that symmetry in this 
context means more than just the 
geometrical exactitude of the left 
and right sides of the tiger—here 
it is equivalent to beauty and 
harmony. 



I. BILATERAL SYMMETRY 

In Plants 

The symmetry of plants is 
diverse. There are, however, 
some flowers, such as orchids, 
that have only mirror symmetry. 
So far, some 25,000 kinds of 
orchids have been described and 
they all exhibit mirror sym- 
metry. Here are some examples 
from Oahu, Hawaii. 

If you look at these orchids, you 
can see their bilateral symmetry. 
Put a mirror down the middle to 
reflect one side and the original 
image will be recreated. 

The arrangement of leaves on. 
stems frequently exhibits mirror 
symmetry. 

\ 
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The Human Body 

I~ NS 

Leonardo da Vinci's 
famous drawing 

displays the proportions 
of the human body 

and stresses its 
bilateral symmetry. 

ow bewitching the beauty of the human body, composed not 
of paint or stone, but of living, corruptible matter, charged with the 
secret fevers of life and decay! Consider the wonderful asymmetry 
of this structure: Shoulders and hips and nipples swelling on either 
side of the breast, and ribs arranged in pairs, and the navel centered 
in the belly’s softness, and the dark sex between the thighs. 
Consider the shoulder blades moving beneath the silky skin of the 
back, and the backbone in its descent to the paired richness of the 
cool buttocks, and the great branching of vessels and nerves that 
passes from the torso to the arms by way of the armpits, and how 
the structure of the arms corresponds to that of the legs! 

Thomas Mann 
The Magic Mountain 

NON 

The symmetry of the human body 
is clearly illustrated by the 

sculptures at right. 

Leonardo da 
Vinci, 

Schema-delle 
proporzioni 
del corpo 
umano 

LEFT: 

Standing 
Buddha, 
China, 18th 
century 

RIGHT: King 
Mykerinos 
with goddess 
Hathor and 
nome goddess, 
Egypt, 2720 B.c. 



BILATERAL SYMMETRY 
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The Human Face 

The human face contains mirror 
symmetry. However, sometimes 
there are minute variations on the 
two sides of the face which can be 
quite conspicuous. Portrait artists 

may render a face so that it appears 
more symmetrical than it is in 
reality in order to “idealize” the 
subject or to please the person who 
commissioned the work. 

NGI 

Buddhist temple, Korea 

Aztec stone 

sculpture 

Sculpture of aH ungarian king 

St. Peter on St. Peter’s Square, 
Vatican City 

Egyptian 
sculpture 



I. BILATERAL SYMMETRY 

Notice the characteristic bilateral 
symmetry in these Native 
American masks and sculptures. 

Kwakiutl mask 

Dancing mask, Et - Dancing mask, 
Bellabella Indians of — Bellabella Indians of 
British Columbia British Columbia 

Eskimo mask 
Dancing mask shaped like Dancing mask, 

bird’s head, Bellabella Indians Bellabella Indians of 
of British Columbia British Columbia 

Double-headed serpent, Kwakiutl 
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Right Left Right sAlviA ved Left 
(a) (b) (c) 

(a) The real face of the poet Edgar Allan Poe. (b) The right side of 
Poe’s face with its own reflection. (c) The left side of the same face 
with its own reflection. Pictures (b) and (c) are strikingly different, 
emphasizing as they do the differences between the left and right 
sides of the poet’s face. 

Some artists stress the mirror 

symmetry of the human face by 
using the reflection plane. 

There have been speculations 
that the right side of the human 
face is more “public,” while the 
left side is more “private.” 
Others have argued that the right 
side is more representative of the 
whole face than the left side. 

LeFT: Jeno Barcsay, Woman's head 

LEFT: George Buday, 
Miklés Radnéti, woodcut 

RiGHt: Pablo Picasso, Woman’s head 

Compare the two sides of your 
face by standing in front of a 
mirror or shop window. Are there 
any differences? 



I. BILATERAL SYMMETRY 

Double Heads 

Brussels, 
Belgium 

This double-headed dog was drawn merely to attract St. Petersburg, Russia 
attention in a Belgian ad. 

Zurich, 

Switzerland 

Prague, Czech Republic 

A double-headed eagle was a 
popular symbol of empires, 
such as the Hapsburg and 
the Romanov. 

Leuven, 
Belgium 

Speer eps 

Toledo, Spain 
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Ss 

The % we =4 mix 2 ms 

The Kunjongjon Hall in Seoul, 

Bilateral symmetry commonly 
appears in buildings of all sorts. 
George Washington’s home in 
Mount Vernon, Virginia, shows 
approximate bilateral symmetry, 
However, the second window from 
the left, upstairs, isnot really a _ 
window at all. (You discover this 
when you go inside the house.) 
Apparently the first American _ 
president was so fond of symmetry _ 
that he had the missing window 
painted on the outside wall, and > 
this blind window has been 
preserved ever since. 



BILATERAL SYMMETRY 
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The whole assembly of St. Peter’s Square in Vatican City shows bilateral Old gate, downtown Budapest, Hungary 
symmetry, which can best be appreciated when viewed from the cupola of 
St. Peter’s Cathedral 

Iolani Palace—the former royal 
residence in Honolulu, Hawaii 

Y 



I. BILATERAL SYMMETRY 

Religious art often embraces 
bilateral symmetry to express 

divine harmony. 

ABOVE: Venice, Italy . 

RicHT; Church and fresco in 
Zagorsk, Russia 

Some composers rely heavily on bilateral 
symmetry in their works; others ignore it. 

One can imagine a horizontal mirror plane in 
Johann Sebastian Bach’s Contrapunctus, where the 
symmetry plane relates the upper and lower parts. 

At right is a small piece from Béla Bart6k’s 
Microcosmos. It was composed for children. Here 
the mirror plane is vertical, dividing the small 
piece into a left-hand part and a right-hand part. 
This piece was played for some schoolchildren. 
While listening to it, the children were asked to 
draw what came to their minds. Their drawings 
invariably had patterns of bilateral symmetry, as 
shown in the three drawings below: Children’s drawings 

14 SYMMETRY 
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Hl. SHAPE & MOVEMENT 

Forward Motion: Bilateral Symmetry 

Different shapes have different symmetries, and 
the shapes that develop in nature and appear in 
human-made objects are closely related to motion. 

_ Humans and most, though not all, animals have a 
left side and a right side. Their bilateral symmetry 
is a consequence of their mode of motion. They 

_ move mainly forward in their respective environ- 
ments—walking, running, flying, swimming, or 
even crawling. 

Yj 

_ Bilateral symmetry: 
wo halves of the whole are each other s mirror mages _ 

Reflection: 
Reflecting one-half of an n object: reconstructs thei image of 
the whole object 

Symmetry element (tool) | 

Mirror plane: 
Applying a mirror plane to either of two halves, the whole 
is recreated . 

OveRLEAF: Parachutes exhibit vertical descending motion 
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: : ABOVE LEFT: Buda Castle area, 
—- ~*~, Budapest, Hungary 

ABOVE RIGHT: Policemen on horses, 
New York City, New York 

_ 

Tail of a whale, Atlantic Ocean, off 
Plymouth, Massachusetts 

17 



Hl. SHAPE & MOVEMENT 

The need for forward motion has 
caused the front and the back of 
both animals and insects to 
develop differently, and the left 
and right sides to be the same. 

SN 
a 
SEARS 

"es 
2s 

H aN 

y S 

1 NOVHOWW Onidvd 

Harlequin 
longhorn 

Japanese stamp 
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A day at 
the zoo, 
Honolulu, 
Hawaii 

19 



Hl. SHAPE & MOVEMENT 

In Land, Sea, and Air 
Vehicles 

Almost all vehicles have 
bilateral symmetry. They are 
human-made objects and 
bilateral symmetry is deliber- 
ately created for mobility. For 
efficient movement forward, the 
two sides must be balanced. 

Vehicles in 
Budapest, 
Hungary: 

LEFT: 

Work truck 
RIGHT: 

Old Citroen 

\ y 
V7 ass 

Folies bas 

Two boats, Danube River 
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Airship-— 
Zeppelin 

Of course, the bilateral Nowadays most cars have If we reflect the other side, there 
symmetry of vehicles is not mirrors on both sides and with will be no mirror and, although 
perfect. This BMW, forexample, _ this arrangement look more this car is just as symmetrical as 
has a mirror only on the driver's symmetrical. Here symmetry the one with two mirrors, it will 
side, which destroys what would _ was achieved by reflecting the not comply with motor vehicle 
otherwise be perfect external driver’s side of the car. codes. 
bilateral symmetry. 

CENTER: 
Jet taking 
off from 
National 
Airport in 
Washington 
DG: 

RIGHT: 
Space shuttl 

_ (model) 

An exception: This motorcycle with a sidecar has 
no bilateral symmetry. It looks as if it might go in 
circles rather than straight ahead 
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Hl. SHAPE & MOVEMENT 

Vertical Motion: 
Cylindrical Symmetry 

Rockets travel vertically from 
the surface of the Earth. 

There is no reason for them to 
have bilateral symmetry. Even 
those large space stations and 
space-towns that may be a thing 
of the future are usually depicted 
as round. They will have 
cylindrical symmetry. 

The top and bottom of a rocket 

are different, but around its Apollo 9 Command Service Module Apollo 11 
vertical axis, it is the same all photographed during Apollo 9 Earth 

around. It has cylindrical orbital mission 
symmetry. 

What are the differences Parachutes and hot-air balioons also 

between bilateral symmetry and have cylindrical symmetry. Their 
cylindrical symmetry? movement is also perpendicular to 

the Earth’s surface. 
For one thing, you can always 
distinguish a left-hand and a 
right-hand side in objects with 
bilateral symmetry. With a 
rocket you cannot; as you go 
around the rocket, all 
directions are equivalent, 
hence cylindrical 
symmetry. 

Annual International Balloon Fiesta, 

Albuquerque, New Mexico 
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Spherical Symmetry 

Plants do not move forward. They grow upward and outward, but 
stay rooted in the same place. Thus, for a stem, there is no left-hand 
side or right-hand side; there is no bilateral symmetry, but rather 
cylindrical symmetry. 

The top of the dandelion is the same all around. This is an example 
of spherical symmetry. Whereas a rocket changes shape up and 
down its vertical axis, the dandelion top looks the same all around. 
It has spherical symmetry. There are many other flowers with 
virtually perfect spherical symmetry. 

-  Rucut: The pollen of the 
hollyhock exhibits beautiful 

spherical symmetry 
(magnification x 100,000) 

‘Spherical symmetry: 
Everything i is whe same in all 

British stamp 
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Tree rings 

from a 
southern 

pine 

24 

SHAPE & MOVEMENT 

More Cylindrical Cylindrical symmetry is characteristic for trees as well, although 
Symmetries trees appear in many different shapes. The trunks of trees have 

cylindrical symmetry—the trunk grows an additional ring each year. 
When the trunk is cut through, perpendicular to its axis, you can see 
these annual rings. 

The overall shape of tree foliage (as opposed to the trunk) varies 
greatly, and may be near-spherical or conical. 

Tree near Aveley, Essex, England 

Trees may also have bilateral 
symmetry, but this is 
accidental or human-made. Bis oro 

Christmas tree, Rockefeller Plaza, Palm tree in Honolulu, Hawaii 
New York City, New York 

SYMMETRY 



Mount Fuji, Japan 

Mushrooms are excellent 
examples of cylindrical 
symmetry. So is the so- 
called mushroom cloud that 
quickly forms following a 
nuclear bomb explosion. 
The cloud is moving 
upward so quickly that the 
wind does not dissipate it 
and it develops the same 
shape as the mushroom. 

Mushrooms 

\ 

Li 

Volcanos have cylindrical 
symmetry, thanks to their 
formation in an upward 
direction. This can be seen in 
the conical shapes of their tops. 

DEAEEKE[_BEKSSE 
~ < y 

: sa 

Mushroom cloud from atomic 
bomb explosion 

Yj 

ABOVE: 
Mount 
Fuji on 

Hungarian 
stamp 

LEFT: Mount 

Fuji on 

Japanese 
stamp 

eduax noeanka-Amanila phalloides 

“Ba 1986 [IOSTA CCEP 

ABOVE: 
Soviet stamp 
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Hi. SHAPE & MOVEMENT 

Stalagmites and stalactites form 
in vertical directions, hence they 
possess cylindrical symmetry. 

With the individual dendrites 
in this iron deposit, there is no 
cylindrical symmetry; rather, 
they have bilateral symmetry. 
Neighboring dendrites prevent 
completion of cylindrical 
symmetry. 

Stalagmites in cave Stalactites in cave 

RiGcut: Electrolytically deposited 
copper (magnification x 1000) 

Directionally solidified iron den- 
drites from an iron-copper alloy 
after dissolving away the copper 
(magnification x 2600) 

For cylindrical symmetry to 
develop, spatial freedom is 
necessary in all directions 
around the axis of the imaginary 
cylinder. There was apparently 
such freedom for this 
electrolytically deposited copper, 
which displays approximate 
cylindrical symmetry. 
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Hil. RIGHT HAND, LEFT HAND 

Hands 

Some objects may in themselves 
have no symmetry at all, but 
they can occur in pairs where 

the two are related by mirror 
symmetry. An obvious case in 

point is the human hand. 

If we place either of our hands in 
front of a mirror, we see the 
other hand in reflection. (Facing 
your two hands together pro- 
duces the same effect.) In other 
words, each hand is the other’s 
mirror image. The two hands 
together constitute a system that 
has mirror symmetry. Neither 
our left hand nor our right hand 
alone has mirror symmetry (or 
any symmetry, for that matter). 

Buddha, Tokyo, Japan 

Heterochiral 

Our two hands are not identical and they are not superimposable; 
that is, they cannot be brought into coincidence with each other. 

Each of our two hands has its own sense, or direction, and the two 
have opposite senses, or directions. For example, with one hand, the 
first finger is to the left of the thumb; with the other, it is to the 
right. This “handedness” also has a Greek name: chiral (the Greek 
word for hand). The phenomenon is called chirality. Our two hands 
have opposite senses; they are called heterochiral. 

OVERLEAF: Creation of Adam, Michelangelo, Sistine Chapel, 
Vatican City. Detail of the hands of God and Adam 
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Tombstone in an Israeli cemetery 

a ee OO Oe CO Ow ON Oe 

c 
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5 Australia 27¢ 
See 

Australian stamp 

Chiral: 
_ Describes an bie that cannot be 
‘su erimposed on its mirro image 

 Heterochiral: 
Two objects with opposite senses 

hetero: Vera Székely, 
reek heteros, ‘meaning “other” I Would Like 

to Be Loved 

United Nations stamp 
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Hi. RIGHT HAND, LEFT HAND 

Besides the hands, other parts of 
the human body form hetero- 
chiral pairs, such as the legs and 
the ears. They also appear as non- 
superimposable mirror images. 
Our left leg, for example, has the 
same sense as our left hand. (The 
thumb of our left hand is related 
to the fingers in the same way as 
the big toe of the left foot is 
related to the other toes.) 

Part of a sculpture in Newport, Rhode Island 

Homochiral 

Our two hands are both chiral, 
and they are both heterochiral Umweltgipfel: Nord-Siid-Sireit ums Uberleben 

because they have opposite 
senses: one is right, one is left. 
The two left hands of two people 
are both chiral, and they are 
homochiral in their relationship 
to each other because they have 
the same sense. 

RicHt: Heterochiral and homochiral 
pairs of hands on the covers of the 

German magazine Der Spiegel 

4 fr fe Be Se OP ON os a ot ee TR on OER oa 
Lert: Homochiral pair of hands on 
an American stamp ‘ Volunteer 

lend a hand 

» USA 20c } 
Le ae Sr 

Homochiral pair of hands as a logo 
at a Swiss railway station 
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In soccer it is important to have both left-footed 
and right-footed players. Soccer is different from 
football, where hands are important; in soccer the 
player must not touch the ball with the hands at 
all. (What Americans call soccer, Europeans call 
football.) 

While there is no bias against left-footed players in 
soccer (in fact, they are often much sought-after), 
left-handed children used to be frowned upon and 
discriminated against. Nowadays both parents and 
teachers have learned that there is nothing wrong 
with being left-handed. However, left-handed 
people may still feel some effects of slight discrim- 
ination, since so many tools and devices have been 
constructed solely for right-handed people— 
guitars, golf clubs, scissors, and so on. 

k, homos, meaning - 
LL. 

Left-footed soccer player 

Right-handed chairs (only) in an old classroom, Depart- Right- and left-handed chairs in a modern classroom, 
ment of Chemistry, University of Connecticut, Storrs Department of Physics, University of Connecticut, Storrs 
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RIGHT HAND, LEFT HAND 

Molecular Chirality 

Crystals and molecules can also 
be either right-handed or left- 
handed (such as quartz crystals), 
although many crystals and 
molecules have no handedness. 
The discovery of chirality itself 
is related to crystals. In his 
famous experiments in 1848, 
Louis Pasteur recrystallized a 
salt of tartaric acid and obtained 
two kinds of small crystals; their 
shapes were mirror images of 
each other. 

Molecules of many substances 
can also be right-handed or 
left-handed. Living organisms 
contain a large number of such 
molecules. All naturally 
occurring amino acids are chiral 
(except one of them: glycine). 

Here is an illustration showing a 
pair of hands with a pair of 
right-handed and left-handed 
amino acid molecules. This 
illustration appeared in a book 
by R. N. Bracewell discussing 
the possibility of intelligent life 
in outer space. 

Right- and left-handed 
amino acid molecule 
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Tartaric acid crystals 



A spiral staircase that changes its 
chirality 

HH 0 0 HH 
V4 l| I WW c C C ae Ee Oe 

HoNCO CONH, 
4N IN 

HoN oH H NH, 

bitter sweet 

Bitter/sweet structural formulas for asparagin 

Many biologically important chemical compounds exist in left- 
handed and right-handed forms, and the biological activity of the 
two forms may be very different. The left-handed form, for example, 
may be a cure, and the right-handed one may be indifferent, or even 
a poison. You may remember Lewis Carroll’s Through the Looking 
Glass in which Alice is wondering: “Perhaps Looking-glass milk 
isn’t good to drink.” As a milder example, humans metabolize only 
right-handed glucose. Left-handed glucose, although still sweet, 
passes through the system untouched. Chiral separation thus opens 
up new frontiers in what synthetic chemistry can do for feeding and 
curing people, and perhaps keeping them slim as well. An example 
of a chiral pair with differing characteristics is the organic acid 
asparagin. 

Chirality and Life 

There is a unique situation in that all amino acids in living 
organisms occur as left-handed, but never right-handed. Other 
substances important for life, such as nucleotides in nucleic acids, 
appear in right-handed versions only. That some substances occur 
always left-handed and others always right-handed is characteristic 
for all life processes, and is the same in humans, animals, plants, 
and microorganisms. Why this happens is a great puzzle, one that 
can’t be solved satisfactorily at this time. (Nobel Laureate V. Prelog 
has suggested that this phenomenon is a problem of molecular 
theology!) 

It seems easier to answer the question as to why one substance 
consistently occurs as left-handed and another as right-handed. 
Imagine a spiral staircase. Spiral staircases are chiral, and either 
right-handed or left-handed, depending upon their direction. (We’ll 
discuss spirals in more detail later.) Let’s say this is a left-handed 
spiral staircase that suddenly switches to right-handed. What 
happens? The continuity of the staircase is interrupted and you 
bump your head on the stairs. This example demonstrates why once 
a system starts out left-handed, it should remain consistently 
left-handed, and vice-versa. If only some components of a complex 
molecular system are replaced by their mirror images, a chaotic 
system emerges, such as this spiral staircase. 
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I. RIGHT HAND, LEFT HAND 

Creating Chiral Shapes 
by Dissection : 

Let’s talk about some simpler ——— 

aspects of chirality. First, let’s 
dissect an equilateral triangle 
into parts which themselves : 
also possess mirror symmetry. 
Here, the dissected parts are not The products of this dissection are not left-handed or right-handed; 

chiral. (They can be super- they have no handedness (they can be superimposed) 

imposed one over the other.) 

Then dissect another equilateral 
triangle into left-handed and 
right-handed parts. Here, the 
dissected parts are chiral. (They 
cannot be superimposed one 
over the other.) > ga 

ira 

The products of this dissection are left-handed and right-handed 
(they cannot be superimposed) 

Let’s now dissect an apple. 

Cutting an apple in the usual 
way gives us two halves that are 
not left-handed or right-handed. 
Each half is mirror-symmetric. 

34 SYMMETRY 



Apple cut into pair of left-handed halves 

We may also ask, Can an apple 
be dissected (like the triangle) 
into left-handed and right- 
handed halves? No. However we 
try, it proves impossible. It is 
possible, though, to dissect it 
into a pair of two left-handed or 
a pair of two right-handed 
halves. 

In fact, from two different apples 
you can produce a pair of 
opposites: a pair of right-handed 
and left-handed halves—but they 
cannot be combined into one 
apple. ‘ 

The French call this parlor trick 
“La Coupe du Roi” (“The Royal 
Cut), 

One of the two left-handed and one of the 
two right-handed halves will not combine 
into a whole apple. 

Apple cut into pair of right-handed halves 

Recipe for 
“La Coupe du Roi” 

Make two vertical 
half-cuts through the 
apple; one from its top to 
its equator, and the other, 
perpendicular to the first, 
from its bottom to its 
equator. Then make two 
nonadjacent quarter cuts 
along the equator of the 
apple. Following these 
cuts the apple should split 
into two homochiral 
halves. This recipe can be 
followed in two senses 
and thus produce two 
left-handed halves in one 
case and two right-handed 
ones in the other. 

35 



RIGHT HAND, LEFT HAND 

Right Brain, Left Brain 

It seems well established that the left hemisphére of the brain 
governs the right side of the body and the right hemisphere, the left 
side of the body. The left hemisphere is involved with mathematical 
and scientific thought and verbal expression, whereas the right one 
is involved with artistic expression and intuitive thinking. However, 
it has also been suggested that each side can take over the other’s 
function if necessary. 

There is a popular American book called Drawing on the Right Side 
of the Brain by Betty Edwards. It consists of exercises and techniques 
that encourage the reader to make the switch to the more intuitive, 
artistic right side of the brain to facilitate artistic expression. 

Right and Left in the Universe? 

Left and right may not be as equivalent as has been presumed for a 
long time. A physics experiment in 1957 shook some fundamental 
notions of modern science. A cobalt-60 isotope was cooled down to 
near absolute zero Kelvin (the lowest possible temperature) and placed 
in a strong magnetic field. Cobalt-60 normally emits electrons in all 
directions. Under these extreme conditions, however, it was expected 
that the electrons would line up with the magnetic field and emerge 
equally from the two poles of the cobalt-60 nucleus. However, it was 
observed that more electrons came out from one side than the other of 
the otherwise uniform nucleus. Thus, a sort of left and right could be 
distinguished, indicating that our physical world does not have perfect 
right/left symmetry. 
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PINWHEELS & WINDMILLS 

Rotational Symmetry 

The pinwheel has rotational 
symmetry. We can easily rotate 
the pinwheel by blowing air at 
it gently; outdoors, even the 
slightest breeze will rotate it. 

As the pinwheel slowly rotates, 
we see that at each quarter turn 
it is in anew position, yet it 

looks exactly the same as it did 
at the start. 

If all its petals are the same 
color, then we can hardly 
distinguish the original position 
from the new positions after one 
quarter turn, two quarter turns, 
or three quarter turns. After 
four quarters (that is, after a full 
rotation) we are back to the 
starting position. This is called 
4-fold rotational symmetry. If 
we mark one of the blades, then 
it is much easier to keep track 
of the pinwheel’s rotation. 

full rotation 
(back to original) 

initial 1/4 turn 1/2 turn 3/4 turn 

Although the pinwheel has 
rotational symmetry, it has no 
mirror symmetry. If it did, there 
would be a symmetry plane 
dividing it into two halves that 
would be each other’s mirror 
images. However, it is impossible 
to divide a pinwheel this way. What we see does not look like the 
pinwheel at all. Thus, the pinwheel has no mirror symmetry, only 
rotational symmetry. 

OVERLEAF: Four-blade propeller in the Technical Museum, Budapest, Hungary 



Z 7 
Take the letter Z, for example. It 
has rotational symmetry. We 
can rotate it around an axis, 

perpendicular to the paper and 
find that during a complete 
rotation, it appears in the same 

position twice. It has 2-fold 
rotational symmetry. 

On the other hand, it does not 
have mirror symmetry. 

It is interesting to note that 
different kinds of symmetry 
may give us different feelings 
about motion. The presence of a 
symmetry plane makes things 
seem stationary, while 
rotational symmetry conveys 
the impression of movement. 

Make Your Own Pinwheel: 

Cut a piece of paper into a square shape, and 
by folding it, find its diagonals. Then cut the 
paper at each corner along the diagonals to 
somewhat more than a quarter of their 
lengths. Next, fold one corner of each quarter 
to the center, then the other three corners one 
after the other, and then pin the center to a 
thin rod. If you blow on it, it will spin. 
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IV. PINWHEELS & WINDMILLS 

Rotating Blades 

Rotating parts of various 
machines, such as propellers, 
have rotational symmetry only. 
The familiar windmills in 
Holland with four blades are 
very much like pinwheels. In the 

old days, wind power 
was used to rotate huge 

mill stones for grinding grain 
into flour. Rotational symmetry 
exclusively, as in the pinwheel 
or windmill, means that all the 
blades curve in the same direc- 
tion. (This facilitates catching 
the wind.) 

There is also a famous windmill 
in classical literature—the one in 
Spain that the self-proclaimed 
knight Don Quixote thought to 
be a four-armed giant. He tried to 
fight it, needless to say, unsuc- 
cessfully. (Hence the expression, 
“tilting at windmills.”) 

Recently, windmills have been 
utilized extensively as an 
alternative means of producing 
electricity without the need to 
burn nonrenewable fuels, such 
as oil and coal. Six-blade 

windmill 



Hubcap with 
5-fold 
rotational 
symmetry 

Wheel with 
7-fold 
rotational 
symmetry 

Electricity-generating windmills, Altamont, California 

Below are antique rotating waterwheels in front of the technical Pelton venice! 
museums in two different countries. They are motionless now of water- 
because they are no longer operational. By curious coincidence, both powered 
of these technical museums chose to display many-fold rotational electric 
symmetry at their entrances. generator 

BELOW LEFT: Rotating waterwheel in front of the Technical Museum, 
Oslo, Norway 

BELOW RIGHT: Rotating waterwheel in front of the Technical Museum, 
Budapest, Hungary 
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IV. PINWHEELS & WINDMILLS 

NG 

Two-fold, Washington, D.C. 

Sculptures 

Rotational symmetry is 
also evident in these 
sculptures of dolphins and 
fish in interlocking 
positions. Interestingly, 
these occur in widely 
diverse parts of the world. 

Taiwanese stamp 

Two-fold, 
Rome, Italy 
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Logos 

Bank logos often have rotational 
symmetry only. 

Security First National Bank, United Bank of Colorado, 2-fold 
2-fold 

Pittsburgh National Bank, 3-fold American Service Bank, 3-fold Chase Manhattan Bank, 4-fold 

First American National Bank, Korea Housing Bank, 5-fold Crocker Bank, 6-fold 

5-fold 

Korea Exchange Bank, 
4-fold 

When our daughter Eszter was 
small, she suggested that banks 
have logos with rotational 
symmetry because they turn 
money around. 
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IV. PINWHEELS & WINDMILLS 

Two- and Three-Fold 
Rotational Symmetry 

The logos of the British, 
Austrian, and Spanish railway 
systems, as well as the Tokyo 
and Seoul subway systems, have 
2-fold rotational symmetry only, 
implying travel in one direction, 
then back. 

\ 
yp 2 ’ British railway logo 

Bahn/Rail 
Austrian railway logo seis 

et BK sR ee 

The coat of arms of the Isle of Man 



Four-Fold Rotational 
Symmetry 

Taiwanese and German stamps 

show 4-fold rotation 

p> PPIs 

a9 
Eiltwicklungseusammenarbeit> 

iD 

Der alte Wahlspruch Im ,,neuen* Reich: 

BLUT UND EISEN 

2 oN as Z 

Sign in New York City, New York Door handle in Jaen, Spain 

The swastika has 4-fold sym- 
metry. It has been an ornament 
since prehistoric times, but it is 

also associated with the shameful 
period of Nazism and the Third 
Reich. It is illustrated here with a 
directional sign to a Buddhist 
temple and an anti-Nazi poster 
by John Heartfield. 

The Aurelia insulinda jellyfish 
has 4-fold rotational symmetry. 
This type of symmetry may be 
due to its circling motion in 
capturing food. 
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IV. PINWHEELS & WINDMILLS 

Five- and Many-Fold 
Rotational Symmetry 

NASA’s symbol, shown on the wall 
of one of the buildings of the Florida 
Space Center, uses 5-fold rotational 
symmetry 

The logo of Southern New England 
Telephone also has 5-fold 
rotational symmetry 

An irregular pentagon is 
surrounded by tires forming a 
“&-fold symmetrical pattern in the 
advertisetnent of a Corpus Christi, 

Qa” tire oC 

oo a Z \. Logo of exchange company in 
Madrid, Spain, showing 8-fold 

_ rotational symmetry 

This seedpod of the autograph tree 
(Honolulu, Hawaii) has 9-fold 
rotational symmetry 

Manhole cover in Moscow with 16-fold 
rotational symmetry pattern 

2. A Unitek States stamp commemor- 
§ ating friendship with Morocco 
' display. 8 12-fold rotational symmetry 

< 
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Flowers 

There are many flowers with 
only rotational symmetry. 
Shown here are seven such 
flowers from Hawaii. 

LEFT: Crown of Thorns—2-fold 

Ixora—4-fold 

4 
Tiare (Gardenia Taitensis)—6-fold Tiare—7-fold Tiare—8-fold 
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IV. PINWHEELS & WINDMILLS 

Rotational Motifs 
in Buildings 

Churches, synagogues, and old 
buildings are often decorated by 
motifs that have rotational 
symmetry only. 

Small town 
in Italy 

Budapest, 
Hungary 

Portuguese tiling, Lisbon 
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Folk Art 

Decorations displaying exclusively rotational symmetry often occur in folk arts. Old Native American 
pottery has decorations with a wealth of rotational-only symmetry. 

Mimbres pottery, 4-fold 

Pima pottery, 5-fold 

Pueblo pottery, 7-fold Pueblo pottery, 7-fold Mimbres pottery, 8-fold 
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IV. PINWHEELS & WINDMILLS 

Creating Rotational 
Patterns 

The Spirograph toy may be used 
to create patterns of rotational 
symmetry only. SN 

There is no symmetry plane in RSS 
these patterns, only rotational Se So ie 
symmetry, and each is chiral. 

The patterns can be created either 
left-handed or right-handed as 
shown here by a 5-fold motif. It 
is our choice which of the motifs 
is designated left-handed and 
which right-handed. 
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V. REFLECTION & ROTATION 

Combining Symmetries 

Up to this point, we have shown 
two basic symmetry operations: 

reflection and rotation. The two 
of them have occurred separately, 
either reflection as in bilateral 
symmetry, or rotation as in 2- 

fold and many-fold rotation. For 
example, on page 3, the letter A 
had only mirror symmetry, while 
the letter Z on page 39 had only 
rotational symmetry. 

The two types of symmetry 
elements, reflection planes and 
rotation axes, can also appear 
together, and in fact this often 
happens. 

Let us look at the letter H: 

ae 

Fl itl] ZAK A 
It has two reflection planes and 
one 2-fold rotation axis. 

OVERLEAF: Sculpture with 12-fold reflectional and rotational symmetry in 
San Francisco, California, with the Bay Bridge in the background 
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Rotational and Mirror Symmetry in Flowers 

Flowers show more diversity in symmetry than animals. In the 
animal kingdom, the most common symmetry is bilateral (or 
mirror) symmetry, and this implies the presence of one symmetry 
plane only. Most of the flowers we have looked at so far have only 
rotational symmetry (see p. 47), but many other flowers have 
several symmetry planes as well. 

This is a three-petal flower. We can place a mirror plane across each petal. 

Bilateral symmetry means the 
presence of one mirror plane 
only. When there are several 
mirror planes, we could call the 
symmetry multilateral but no 
one really uses this word as 
applied to symmetry. Generally, 
when we speak about mirror 
symmetry, it may mean the 
presence of one or more mirror 
planes, whereas there is always 
only one mirror plane in 
bilateral symmetry. 

Thus, this flower has three mirror planes. These mirror planes are 
also called reflection planes. 

ae 
1/3 rotation 2/3 rotation full 

rotation 
(back to original) 

initial 

Now let’s rotate this flower around its stem. If the three petals are 
identical, it will look the same in its rotated position. With a three- 
petal flower, one-third rotation of a full revolution brings back the 
original flower, or at least it looks like that. The same happens with 
two-thirds of a full revolution. Finally, after a complete rotation, the 
flower not only looks the same but it is indeed back to its original 
position. You can mark one of the petals, at least in your imagina- 
tion, to see that this is correct. Thus, this flower has 3-fold 
rotational symmetry. 

Mirror symmetry and 3-fold rotational symmetry are present in the 
three-petal flower at the same time. In terms of symmetry, this 
flower is very different from the pinwheel. Whereas the pinwheel 
had only rotational symmetry, the flower has both reflectional and 
rotational symmetry. 
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V. REFLECTION & ROTATION 

We have already seen why the 
pinwheel does not have mirror 
symmetry, but only rotational 
symmetry (see p. 38). It would 
seem natural that flowers would 
have both rotational symmetry 
and mirror symmetry. Flowers 
need not rotate. Thus, it is 
curious that some flowers, 
nevertheless, have rotational 
symmetry only and no mirror 
symmetry. Some botanists 
explain that this may be due to 
genetic accidents. 

7 
\ 

There is a stone carving on old 
ruins along Via Appia Antica in 
Rome with two flowers. One has 
only 4-fold rotational symmetry, 
while the other has rotational 
and mirror symmetries. Roman 

masons obviously used such 
flowers as models. 

Vinca minor Norwegian tulip LV OVS CA 

The common clover has the 
same symmetry as the three- 
petal flower. The rare four-leaf 
clover has four reflection planes 
and a 4-fold rotational axis. 

y 

- * 6 eur 

Four-leaf clover on a United States 
stamp Winans 
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Cherry blossoms in Japan 

Carrion flower 



V. REFLECTION & ROTATION 

Daffodils 

ABOVE AND BELOW: Korean beam-end decorations with 6-fold and 5-fold symmetry 
vase — 
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lar to its dicu d in the plane perpen when the apple is dissecte 

The seedpod of the Oriental poppy has 16-fold symmetry 
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The top of the cotton plant displays 

Apple blossom with five petals 

5-fold symmetry 



V. REFLECTION & ROTATION 

Primitive Organisms 

Primitive organisms have 
beautiful symmetrical shapes 
showing both rotational and 
mirror symmetry. Jellyfish seem 
to prefer 4-fold symmetry, as 
depicted here. 
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As shown above, many starfish 
have 5-fold symmetry. 

Starfish with eleven legs 
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Lert: Sea urchin with 5-fold 
symmetry 

Star corals with 6-fold symmetry 

REFLECTION & ROTATION V. 

many-fold symmetry 
RIGHT: Sea urchin with 
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In Overhead Lighting 

This streetlight has 8-fold 
symmetry. Besides the 8-fold 
rotational symmetry, there are 
eight symmetry planes: four 
going through the lamp bodies, 
and four going in between them. 

Four symmetry planes going through 
lamps 

y 
xX 

Four symmetry planes going in 
between lamps 

This chandelier has 16-fold Streetlight in St. Peter’s Square, 
symmetry—again, both reflection Vatican City (6-fold symmetry—the 
and rotation seventh lamp is the center) 

Streetlight with 4-fold symmetry, Paris, France 
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V. REFLECTION & ROTATION 

Logos 

Logos often have both rotational 
and mirror symmetry. 

Mitsubishi ad in Hiroshima with 
3-fold symmetry, both reflection 
and rotation 

Nay 

> 
Logo of the Sarajevo Winter 
Olympics (1984), with 4-fold 
symmetry Ulu IYUIUU TU 

The advertisement of a Sapporo, Japan, food company in the shape of a 
snowflake has 6-fold symmetry. (Disregard the five-pointed star in the 
middle that destroys the 6-fold symmetry) 

The 
Hokkaido 
flag with 

7-fold 
symmetry 

Another example of Hokkaido’s seven-pointed star logo, Sapporo, Japan 
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Some hubcaps 
d rotation 10n an 

Hubcaps in the display of a Seoul, Korea, auto parts shop 
have rotational symmetry only, others have both reflect 



Vu REFLECTION & ROTATION 

In Architecture 

The cupolas of many state 
capitols and other important 
buildings have reflectional and 
rotational symmetry together. 

Atomic Fe es 7 
bomb ; _ 2 — _. 

memorial, 
Hiroshima, 

Japan 
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The world-famous lean 

REFLECTION & ROTATION 

France 

ar 1n 

Delhi, India 

in 
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V. 

Hungary 

The Qutb 

= 
ma 

a8 S mA 

S, 

NEAR RIGHT 
One of the 
two towers 
of the ma 
ynagogue in 
Budapest, 

ari. 



11 Some towers of the Vasilii Blazhenn 
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Vu. REFLECTION & ROTATION 

Radial Symmetry 

When the symmetry gets so 
many-fold that the shape begins 
looking more like a circle than a 
many-sided polygon, we may call 
it radial or cylindrical symmetry 
(see p. 22). The plant at right has 
“many-fold” symmetry. 

Papercutting 

Papercutting is a favorite 
children’s pastime: Not only does 
artfully cut paper show beautiful 
symmetries, but symmetry 
makes cutting the patterns very 
economical. By folding the paper 
several times and cutting through 
several layers of paper, multiple 
identical patterns are created 
simultaneously. 

Fact to Consider: 

Rotational symmetry, as we have 
seen, may appear alone, without 
reflection. But if an object has 
more than one symmetry plane, 
it always has rotational 
symmetry as well. The only case 
where reflection is not accom- 
panied by rotation is when there 
is bilateral symmetry, with only 
one mirror plane. 
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VI. SNOWFLAKES 

FO SYMMETRY 

nowflake knew that she was beautiful. She 

was made up of pure, shining crystals, like 

fragments of glass or spun sugar. She was all 

stars and arrows, squares and triangles of ice and 

light, like a church window; she was like a flower 

with many shining petals; she was like lace and she 

was like a diamond. But best of all, she was herself 

and unlike any of her kind. For while there were 

millions of flakes, each born of the same storm, yet 

each was different from the other. 

Paul Gallico 

Snowflake 



Some of the most beautiful 
examples of reflection and 
rotation in nature can be seen in 

snowflakes. For one to observe 
falling snowflakes individually, 
the weather must be dry and 
cold. When the conditions are 
right, the experience can be so 
captivating that you can’t get 
enough of them. Snowflake after 
snowflake after snowflake: they 
are not only beautiful jewels, but 
each is unique unto itself. 

Hexagonal arrangement of water 
molecules in the ice crystal 

Hexagonal Symmetry 

The hexagonal symmetry of 
snowflakes is a consequence of 
the internal hexagonal 
structure; that is, the 
arrangement of the water 
molecules in the crystal, as 
shown in the drawing at left. 

However, what is puzzling is 
that each snowflake has a 
different shape. Furthermore, 
even the smallest variations 
from the basic underlying shape 
of a snowflake are repeated in 
all six directions. 

Each snowflake which develops 
unhindered has 6-fold 
symmetry. It has six reflection 
planes (three going through the 
branches, and three between 
them) and a 6-fold axis of 
rotation. It has other 
symmetries besides, one of 

Stamps with 
snowflake motifs 

them being a reflection plane in 
the plane of the snowflake self. . 
Through this plane, you could 
slice the snowflak into two - 
thinner snowflakes. - ee 

mm plane: 
_ Applying a mirror plane to either 

_ two halves, the whole is recreated 

: Rotation: 
“When an object i is foited around — 
_ its axis, it appears inthesame | 
position two or more times 

- Symmetry element (tool) 
‘Axis of rotation 
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Vi. SNOWFLAKES 

The uniqueness of snowflakes 
may be related to the way they 
grow. Water starts crystallizing 
into ice in a flat 6-fold pattern 
and grows in six equivalent 
directions. As ice quickly 
solidifies, heat is released, and 
the heat flows between the 
branches, thereby facilitating 
dendritic, or treelike, growth. 

Diversity in Shape 

Minute differences in the local 
conditions of two individually 
growing ice crystals make them 
develop differently even though 
they may be growing next to 
each other. This situation is 
what produces the endless 
variety of shapes. Growing snow 
crystals are highly susceptible to 
any kind of change, and even a 
small force will cause spectacu- 
larly large deviations in the 
growing pattern of a snowflake. 

Ui. N 
R 

Y/ 

~ No two snowflakes are ever — 
exactly the same 
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Uniform Growth 

This explanation for the varia- 
tions in shapes of snowflakes is a 
reasonable one. An amazing 
thing is that all minute variations 
occur in all six directions, 
something that has puzzled 
people for some time. Thirty 
years ago, an American scientist, 

D. McLachlan put it this way: 
“How does one branch of the 
crystal know what the other 
branches are doing during 
growth?” He noted that the kind 
of regularity encountered among 
the snowflakes is not uncommon 
among flowers and blossoms or 
among sea animals in which 
hormones and nerves coordinate 
the development of the living 
organisms. However, snowflakes 
are not living organisms, as they 



Looking Back 

For ages, people have been 
interested in snowflakes. The 
oldest known recorded statement 
on snowflake forms dates back 
to the second century B.c. in 

- China. Six was a symbolic 
number for water in many 
classical Chinese writings. The 
examination of snowflake shapes. 
and their comparison with other 
shapes was apparently consider- 
ed to be of great importance in 
East Asia. As a forerunner of the 
modern investigations into the ~ 
correlation between snowflake 
shapes and meteorological 
conditions, it was noted in the 
thirteenth century: 

consist of nothing other than 
water molecules. McLachlan’s 
explanation for the coordination 
of the growth among the six 
branches of a snow crystal is 
based on thermal and acoustical 
waves in the crystal. These waves 
ensure the identical development 
in all six branches and this 
development is independent of 
the particular branch in which 
the change of the conditions 7 

occurred in the first place. The McLachlan’s illustration of the J. Needham & Lu Gwei-Djen 

coordinated growth of the six coordinated growth of the six Weathes =? 
branches produces strikingly branches of snowflakes based on his 

different overall shapes but See HENGE, Ne Oe 

identical branches. 

The Yin embracing Yang gives hail, 
the Yang embracing Yin gives sleet. 
When snow gets six-pointedness, 
it becomes snow crystals. 
When hail gets three-pointedness, — 
it becomes solid. 
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VI. SNOWFLAKES 

Johannes Kepler was the first 
European to recognize the hexa- 
gonal symmetry of snowflakes 
and in 1611 he published a 
small booklet entitled The Six- 
cornered Snowflake. 

In 1635, René Descartes 
observed the shapes of snow 
crystals and drew them. 

Snowflakes as drawn by René Descartes in 1635 

F424 SYMMETRY 

Among later works, William 
Scoresby’s observations and 
sketches are especially impor- 
tant. Scoresby, who went on to 
become an Arctic scientist, 
made the drawings at right in his 
log book in 1806. He was 16 at 
the time and on a voyage with 
his father to the whale fisheries 
in Greenland. 

aN 

A page from William Scoresby’s log 
book, 1806 



Ricut: A few years after Scoresby, 
in 1832, Sekka Zusetsu of Doi, 
Japan, did a series of excellent 

sketches of snowflakes 

Ch Lie, é 

Scoresby’s 
sketches o, 
snowflake: 
from his Io 
book, 180¢ 
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Vi. SNOWFLAKES 

6000 Photos 

The most famous book on snow- 
flakes, Snow Crystals, by 
W. A. Bentley and W. J. 
Humphreys, appeared first in 
1931. Bentley devoted his life to 
taking photomicrographs of snow 
crystals, and collected at least 
6000 such photos in his work- 
shop at Jericho, Vermont. Over 
2000 of them appeared in this 
book, with text by Humphreys. 
Bentley’s photomicrographs have 
been reproduced innumerable 
times in various places, often 
without credit. 

76 SYMMETRY 

W. A. Bentley photographing snow crystals 



_.. the exquisite precision of form displayed by these little jewels, 

insignia, orders, agraffes—no jeweller, however skilled, could do finer, 

more minute work ..° And among these myriads of enchanting little 

stars, in their hidden splendour that was too small for man’s naked 

eye to see, there was not one like unto another; an endless inventive- 

ness governed the development and unthinkable differentiation of one 

and the same basic scheme, the equilateral, equiangled hexagon... . 

Thomas Mann 
The Magic Mountain 
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VI. SNOWFLAKES 

Artificial Snowflakes 

Another outstanding contribu- 
tion is Ukichiro Nakaya’s Snow, 
which first appeared in Japanese 
in 1938. It has been reprinted 36 
times, the last time in 1987, and 
is now out of print. Its English 
version, Snow Crystals, was 

~~ published in 1954. Working in 
~ Hokkaido, the northernmost big 
island of Japan, Nakaya recorded 

a naturally occurring snow 
~ erystals, classified them, and 
_ investigated their mass, speed of 
fall, eleetrical properties, frequen- 
ey of occurrence, and so on. He 

- also developed methods of 
producing snowflakes artificially, 

__ and sueceeded in determining the 
_ conditions of formation for 
_ different types of snowflakes. 

GN 

<< “\ 

Aye 

Ricut: Nakaya’s classification of 
= snow crystals 

U. Nakaya taking m 
his laboratory 

~ ~~ 

easurements in 

Sculpture on the campus of 
Hokkaido University, Sapporo, 
Japan, honoring U. Nakaya and 
commemorating the birth of the 

first artificial snowflake, 1936 
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Vil. BUILDINGS FROM ABOVE 

Polygons 

If we fly in an airplane over a 
city and look down at the build- 
ings directly below, we see only 
their outlines. These shapes are 
polygons. 

Regular polygons are the equilat- 
eral triangle, the square and so 
on; with an ever increasing num- 
ber of sides, the regular polygon 
eventually becomes a circle. 

el 
a 
Symmetries of 
Regular Polygons 

For a regular polygon, all angles 
are the same and all sides are of 
equal length. When these 
requirements are relaxed, 
polygons may appear in a great 
variety of irregular shapes. 

First take a regular polygon with 
an even number of sides, for 
example, the regular hexagon. 
Some symmetry planes of the 
regular hexagon connect opposite 
corners, others connect the mid- 
points of opposite sides. Altogeth- 
er, the regular hexagon has six 
symmetry planes this way. The 
intersection of these symmetry 
planes is in the center of the 
regular hexagon, and a 6-fold axis 
of rotation goes through this 
point perpendicular to the plane 
of the hexagon. This is, of course, 
the symmetry of the snowflake, 
among others. 

OVERLEAF: 
Skyscraper in Chicago, Illinois 
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The regular pentagon is a regular polygon with an odd number of 
sides (five). 

For the regular pentagon, each symmetry plane connects a corner 
with the midpoint of the opposite side. Altogether, it has five such 
symmetry planes. Then there is also an axis of 5-fold rotation going 
through the intersection of the symmetry planes and perpendicular 
to the plane of the pentagon. 

Both the regular hexagon and the regular pentagon have an 
additional symmetry plane that is the plane of the polygon itself. In 
most of the previous examples, this perpendicular symmetry plane 
was not present. It occurs only when you see the same thing when 
looking from both top and bottom. Obviously this is true for the 
snowflake, but not for a flower or a building. 

ow 

The circle has an infinite number of symmetry planes (only a few of 
them are shown on the drawing) and an infinite-fold axis of rotation: 

No matter how little we turn the circle around this axis, it is enough 
for it to act as an axis of symmetry. 

We may also say that the circle has cylindrical symmetry or radial 
symmetry (see pp. 22 and 68). Of course, the circle has rigorous 
geometrical symmetry, whereas the stems of plants and the trunks 
of trees have only approximate symmetry. 

" Rotation: | _ Reflection. 
_ When an object i is potaied around Reflecting one-half of a an sob 
_ its axis, itappearsinthesame __ __ reconstructs the i Image of the v Pole 
position two or more times | object  —ss 

Symmetry element (too!) 

_ Mirror plane: 
_ Applying a mirror plane: to either 
two halves, the whole is recreated 

| Symmet element (tool) 
Axis of rotation . 

fey y 
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Vil. 

The Eiffel 
Tower, as 
seen from 
below at 

night 

Washington 
Monument, 

Washington, 
DG: 

82 

BUILDINGS FROM ABOVE 

Famous Shapes 

Now let’s return to the shapes of 
buildings from above. 

Two famous structures in 
Washington, D.C., have very 
simple, highly symmetrical 
outlines from above. The 
Washington Monument looks 
like a square from above with 
circles around it. The Pentagon 
(next page), headquarters of the 
Department of Defense, 
expresses its shape in its name. 

SYMMETRY 

The Eiffel Tower in Paris, France, has a square outline 



Two- to Six-Fold 
Symmetries 

Pentagon, 

Washington 
_ DG 

Wi ee SEN aly 

Castillo de San Marcos, St. Augustine, Florida 

The Lincoln 
Memorial 
has a 
rectangular 
shape 

The Lincoln Memorial is an 
elegant rectangle with 2-fold 
symmetry only, while the 
Pentagon and the old fortresses 
depicted here were also built in 
simple outline shapes with more 
symmetries. 

Varad, 
Hungary 

St. Petersburg, Russia 
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Castel del Monte, Apulia, southern Italy, with a multitude of regular 
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Round-Shaped Buildings 

The buildings shown here all 
have circular outlines for their 

shapes. 

An ancient 

example of 
the circular 
outline is the 
Coliseum in 
Rome, Italy 

SE PES 84 ee 

Residential 
buildings in 
Fukuoka, 
Japan 
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Luzhniki Stadium, Moscow, Russia 

85 



Vil. BUILDINGS FROM ABOVE 
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This mosque in Acca, Israel, has both square and circular outlines 
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Vill. CUBES & OTHER POLYHEDRA 

The Cube and Its Symmetries 

In the last chapter we talked about polygons, which are two- 
dimensional. Now we will extend our considerations into space and 
discuss three-dimensional objects and their symmetries. 

The cube is a three-dimensional body. It has six sides and is 
sometimes referred to as a hexahedron. Each of its sides is a square. 
The cube is highly symmetrical, because it has many different kinds 
of symmetry, as indicated in these drawings. 

First, there are three mirror planes parallel to the sides, or faces, of 
the cube, as shown at right. 

There are also other mirror planes connecting opposite edges, altogether 
six of them. 

Incidentally, the crossings of these planes are themselves important 
symmetry elements. They are 4-fold rotational axes. They go 
through midpoints of opposite faces. If you rotate the cube around 
any one such axis, you will see the same cube four times during a 
complete rotation. 

s mmetr element (tool) 
_ Mirror plane: — a 
: Applying a mirror plane to either of 

OVERLEAF: Sculpture in New York two halves, the whole i is recreated 
City, New York 
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There are also 3-fold rotation axes diagonally The 2-fold rotation axes connect midpoints of 
connecting opposite vertices (corners) of the cube. diagonally opposite edges. There are six such 
There are four of them. axes altogether. 

The many symmetries of the cube may be a little hard to 
visualize, but if you take a cube (sugar cube, for example) 
and rotate it in your hands around these different axes, you 
will see the 2-fold, 3-fold and 4-fold symmetries. Better 
yet, you can make a paper model from this outline: 

Fold-out of cube. To make model, 
trace or photocopy this, fold and tape 

together. (See fold-outs of the other 
four regular polyhedra on p. 93.) 
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Vill. CUBES & OTHER POLYHEDRA 

The Five Regular Polyhedra 

As the square is a regular polygon, the cube is a regular polyhedron. 

We have seen that there is an infinite number of regular polygons. 

oS OOS. 
7 
However, there are only five regular polyhedra. They are the 
tetrahedron, hexahedron (cube), octahedron, dodecahedron, and 
icosahedron. Their names indicate the number of faces: 

Ly 
Tetrahedron = 4 faces Hexahedron (cube) = 6 faces 

Octahedron = 8 faces Dodecahedron = 12 faces Icosahedron = 20 faces 
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These regular polyhedra constituted an important part of Plato’s natural philosophy and are thus also 
called Platonic solids or Platonic bodies. (Plato lived from 427-347 B.C.) 

The tetrahedron, cube, and octahedron are relatively simple shapes, while the discovery of the 
dodecahedron and the icosahedron was referred to as “. . . one of the most beautiful and singular 
discoveries made in the whole history of mathematics.” (Hermann Weyl, Symmetry, 1952) 

The regular polyhedra have been known from 
time immemorial. In fact, H. S. M. Coxeter, 
Professor of Mathematics at the University of 
Toronto, who was called “the geometer of the 
20th century,” likened the question of who first 
constructed the regular polyhedra to asking the 
question of who first used fire. 

... the chief reason for studying regular 
polyhedra is still the same as in the times of the 
Pythagoreans, namely, that their symmetrical 
shapes appeal to one’s artistic sense. 

H. S-M. Coxeter 

Regular Polytopes, 3rd ed. 
1973 

H. S. M. Coxeter visiting at Smith College, Northampton, 
Massachusetts, 1984 

Characteristics of the Regular Polyhedra 

Shape Number Number Number 
Name of Faces of Faces of Vertices _ of Edges 

Tetrahedron Triangle 

Cube Square 

Octahedron Triangle 

Dodecahedron Pentagon Euler's formula: v + f=e+2 

For example, the octahedron: 
Icosahedron Triangle v (vertices) + f (faces) = e (edges) + 2; 

6+8=124+2 
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Vill. CUBES & OTHER POLYHEDRA 

Duality 

The cube and the octahedron are dual to each ~ 
other. Both have 12 edges. The cube has 6 faces 
and 8 vertices, and the octahedron has 8 faces and ; 
6 vertices. 

The dodecahedron and icosahedron are also dual to 
each other. Both have 30 edges; the dodecahedron 
has 12 faces and 20 vertices, while the icosahedron 
has 20 faces and 12 vertices. 

The tetrahedron stands alone among the five. \/ 
(It has no dual polyhedron.) 

Symmetries of the \ 
Regular Polyhedra — ie 

Only a few characteristic 
symmetry elements are shown ; 
for each of the five regular 
polyhedra. For example, with 
the cube, we are showing only 
one each of the 2-fold, 3-fold, 
and 4-fold rotation axes and 

only two of the mirror planes. Om 

Models of the Regular 
Polyhedra (Opposite) 

Again, the symmetries of the 
regular polyhedra are easier to 
see if we take them into our 
hands. On the opposite page are 
patterns that you can use to 
construct four of the five 
regular polyhedra. (See p. 89 for 
the cube pattern.) You can 
make these out of paper by 
tracing, or you can use 

cardboard for sturdier models. 
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Models of the Regular 
Polyhedra 

Trace or use a copy machine, then cut 
out, fold along lines, and tape or glue 
together. 

Note: you can enlarge these on a copy 
machine. 

Octahedron 

Tetrahedron 

Dodecahedron 

[\/\/\/V/\\ 
Be \Z\/ \/\ 
LIVNI... 
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ty /) 
Regular Polyhedra | eS 
in Nature Circoporus 

\ sexfurcus Sj; a 

The cube is the best PK an ee 

known among the regular 
polyhedra in the world 
around us. 

Many primitive organisms are 

shaped like regular polyhedra, 
such as radiolarians. f 

Radiolarians with polyhedral shapes 

Circogonia 
icosahedra 

Circospathis 
novena 

Circorrhegma 
dodecahedra 

LB) 

Many viruses have icosahedral Here is the packing of spheres in an 
shapes. (An example is the icosahedron 

Polyoma virus) 
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Kepler’s planetary model, in which all five regular polyhedra are used to 
describe the trajectories (paths) of the six planets known at that time. 
(Johannes Kepler, Mysterium Cosmographicum, 1595) 

= 

Cube 

Tetrahedron 

Dodecahedron 

Icosahedron 

Octahedron 

Kepler’s Ratios 

Ratio of Inner to Outer 
Planetary Orbit (x 1000) Using 

Ratio of Inscribed to 
Circumscribed Sphere 
(x 1000) the Copernican Distances 

1000 Saturn 

MER eeecode SRL ee REE 572 Jupiter/Saturn 

a6 Po NAO nb ee aR 290 Mars/Jupiter 

TAS Sater ict onto cree ee 658 Earth/Mars 

TASIs Maney rece cee ee 719 Venus/Earth 

OA teen oro ere eee 500 Mercury/Venus 

The Regular Polyhedra 
in a Planetary Model 

Regular polyhedra have always 
fascinated people. Sometimes 
people would infer their presence 
even when they were not really 
there. For example, in the 16th 
century, when planetary motion 
was not yet understood, Johannes 
Kepler prepared a model in which 
the regular polyhedra were nested 
within each other. 

According to Kepler’s planetary 
model, the greatest distance of one 
planet from the sun stands in a 
fixed ratio to the least distance of 
the next outer planet from the 
sun. Only six planets were known 
in Kepler’s time and he described 
their distances by five such ratios. 
A regular solid can be interposed 
between two adjacent planets so 
that the inner planet, when at its 
greatest distance from the sun, 
lies on the inscribed sphere of 
the solid, while the outer 
planet, when at its least dis- 
tance, lies on the 
circumscribed 
sphere. 

Today, of course, 
we know that ¢ 
this model is 
wrong. 
However, 

itisa 

beautiful 
model and 
symbolizes — 

Kepler’s attempt at A 
attaining a unified approach ™.. 
to such diverse branches of the 
sciences as (what we call today) 
astronomy and crystallography. 
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In Harmonices Mundi, Kepler 
used the five regular polyhedra 
to represent what people 
considered in his time the four 
elements and the universe: 

Tetrahedron 

Fire 

The five regular solids drawn by 
Johannes Kepler in Harmonices 
Mundi, Book II, 1619 

Octahedron 
Air 

Icosahedron 

Water 

Dodecahedron 

The Universe 
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Artistic Dodecahedra and Icosahedra 

Salvador Dali 
holding a 

pentagonal 
dodecahedron. 

Drawn by Ferenc 
Lantos after a 

photograph 

Leonardo da Vinci, illustrations to Luca Pacioli: De 
Divina Proportione, 1509 {; 

| iy 
y 

[ 
Artists have often 

attributed mysterious qualities to 
the pentagonal dodecahedron. 

Horst 
Janssen, 
Crystal- 

Slave 

Herbert Hauptman, 
(Chemistry Nobel 
Laureate, 1985) and 
two of his stained glass 
models. ABOVE LEFT, 
icosahedron. AT RIGHT, 
pentagonal 
dodecahedron 
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Star Polyhedra 

The five regular polyhedra are 
convex polyhedra. Convex 
means having surfaces that 
bulge outward. Thus, the angles 
formed by any two faces joined 
along a common edge are always 
less than 180 degrees. If we 
remove this restriction, there are 
four more regular polyhedra, 
called regular star polyhedra. 

Great dodecahedron Great icosahedron 

A curious appearance of a star polyhedron just beneath the cross on top of 
the sacristy of St. Peter’s Cathedral, Vatican City 

Small stellated dodecahedron 

Great stellated dodecahedron 
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Archimedean Polyhedra 

In addition to the regular poly- 
hedra, there are various families 
of polyhedra with decreased 
degrees of regularity. One such 
family is the thirteen so-called 
semiregular polyhedra, shown 
here. It is believed that they 
were first described by Archi- 
medes; therefore they are also 
called Archimedean polyhedra. 

Characteristics of the 

Archimedean polyhedra: 

e All their faces are regular 
polygons 

e Their vertices are all alike 

e Their faces are not all of the 
same kind. (This is where 
they differ from the regular 
polyhedra) 

The simplest semiregular 

symmetrically shaving 
off the corners of the 
regular solids: 

Truncated octahedron 

The other eight Archi- 
medean polyhedra are 
shown here: 

Greater 

thombicuboctahedron 

Rhombicosidodecahedron 

polyhedra are obtained by Ch 

Truncated tetrahedron 

Truncated dodecahedron 

Cuboctahedron 

oe | 

Greater rhombicosti- 

dodecahedron 

Truncated icosahedron 

Rhombicuboctahedron 

Snub icosidodecahedron 
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The Buckyball Molecule 

Today, the truncated icosahedron 
is an exceptionally important 
polyhedron due to the recently 
discovered Cg, molecule called 
buckminsterfullerene, or in short, 
buckyball. Many names were 
proposed for this newly discovered 
substance. One of them in Europe 
was “footballene.” However, what 
Europeans call football, Americans 
call soccer, so in the United States 
this would have to be translated as 
“soccerene.” 

The molecule was named after 
R. Buckminster (Bucky) Fuller, the 
inventor and designer who used 
icosahedral geometry as the basis 
for his geodesic domes. 

AsBoveE: R. Buckminster Fuller’s 
geodesic dome at the Montreal 
Expo in 1967 

Lert: R. Buckminster Fuller 
(1895-1983) at Pacific High 
School, Saratoga, California, 1970 

The structure of the superstable C,, 
molecule in which the tetravalency 
of all carbon atoms is neatly 
maintained 

ABOVE: Truncated icosahedron 
model made with Steve Baer’s 
Zometool model kit 

Ivory Coast stamp honoring the 
football world championship, 

Argentina, 1978 
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A page from Bochvar and Gal’pern’s 
1973 paper in the Russian journal 
Dokl Akad. Nauk SSSR 

nature 
INTERNATIONAL WEEKLY JOURNAL OF SCIENCE 
Volume dS NabGS2 16:20 Newnes 1995 150 

SIXTY-CARBON CLUSTER 
AUTUMN BOOKS 

Harvey Brooks Hendvik B. G. 
(transtieenation of MIT) {physics and paysicisty) 

EN. Johason-Laird Gordon Thompyon 
(brvin amd mind) {imensions of nuclear prot feration) 
Anthony W, Chine Jacques Ninio 
(psychoanalysis as eligion) origins of life) 
A.O, Lucas Edward Harrison 
(waron disexse) Gteps thragh the cosmes) 
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A page from Osawa’s 1970 paper in 
the Japanese journal Kagaku 

— 3] 

Fuller’s ideas inspired the 
chemists who discovered this 
substance in 1985 to theorize 
that its structure was a trun- 
cated icosahedron. In 1991, this 
hypothesis was proven valid. 
An interesting footnote in 
science history, as it turns out, 

was that a Japanese scientist, 

E. Osawa, in 1970, and two 
Russian scientists, Bochvar and 
Gal’pern, in 1973, conjectured 
on the possibility of such a 
molecule on the basis of 
symmetry considerations. Alas, 
their papers were published 
only in Japanese and Russian. 

Buckminsterfullerene was 
named “Molecule of the Year” 
in the December, 1991, issue of 
Science magazine and made the 
cover of numerous other 
journals as well, of which only a 
small sample is presented here. 

D 3461 E 

International Edition in English 

Reviews: Cy gional 
fighlights: Si Clusters Phosphorus Nit 

mninpeslizstion 
A Techactony 
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Earthquakes in the Bible 
Sex and the deathwatch beetle 

Is meditation good for you? 
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Prisms and Antiprisms 

Another family of polyhedra is 
the prisms and antiprisms, and 
there is an infinite number of 
them. A prism has two equal 
and parallel faces that are joined 
by parallelograms. An antiprism 
also has two equal and parallel 
faces, but they are joined by 
triangles. 

Prisms 

Antiprisms 
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Earth as photographed from the 
Apollo 17 spacecraft during the 
final lunar landing mission in 
NASA’s Apollo program. This view 
extends from the Mediterranean 
Sea area to the Antarctica south 
polar ice cap. Note the heavy cloud 
cover in the Southern Hemisphere. 
Almost the entire coastline of the 
continent of Africa is clearly 
delineated. The Arabian Peninsula 
can be seen at the northeastern 
edge of Africa. The large island off 
the southeastern coast of Africa is 
the Malagasy Republic. The Asian 
mainland is on the horizon toward 
the northeast 

Statue in front of the World Trade 
Center, New York City, New York 

The Sphere 

Finally, the sphere deserves 
mention. It is one of the 
simplest possible figures, which 
is why it has an unlimited 
amount of symmetry. For 
example, any of its diagonals is 
an infinite-fold rotational axis 
and there is an infinite number 
of such diagonals. It also has an 
infinite number of reflection 
planes going through any of the 
diagonals. We have already seen 
examples of spherical symmetry 
from nature on page 23 
(although those examples 
illustrate not geometric, but 
approximate spherical 
symmetry). 

Gas storage 
tank in 
Inchon, Korea 

_.. the spherical is the form of all 
forms most perfect, having need 
of no articulation; and the 
spherical is the form of greatest 
volumetric capacity, best able to 
contain and circumscribe all else; 

and all the separated parts of the 
world—I mean the sun, the 
moon, and the stars—are 

observed to have spherical form; 
and all things tend to limit 
themselves under this form—as 
appears in drops of water and 
other liquids—whenever of 
themselves they tend to limit 
themselves. So no one may doubt 
that the spherical is the form of 
the world, the divine body. 

Copernicus, 
De Revolutionibus Orbium 

Caelestium, 1543 
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in Sculptures im Polyhedra 

S } imple though they may be 
polyhedral shapes are frequently 

ith used in modern sculpture w 
Its intriguing resu 
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Sculpture in Pécs, Hungary, by Victor Vasarely 
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Garden lantern in the Shugakuin 
Imperial Villa, Kyoto, Japan, with 
cuboctahedron top decoration 

Decoration of a marketplace in 
Moscow, Russia 

Truncated icosahedron climber 
in a playground on the campus 

of Hokkaido University, 
Sapporo, Japan 
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Japan 

NEMA SAN ~~ 

Leonardo da Vinci, illustration to 

Luca Pacioli: De Divina 
Proportione, 1509 

Playground in Tel Aviv, Israel 





IX. BALLOONS, WALNUTS & MOLECULES 

Balloons 

We described various polyhedral shapes in the last 
chapter. Now we are going to see how clusters of 
various objects in their actual settings form differ- 
ent polyhedral shapes. We shall also investigate 
why these polyhedral shapes appear so frequently. 

We'll start by asking what happens when things 
have to arrange themselves on their own within a 
limited volume. What are the shapes they form? 
What are the symmetries? 

We can imagine as many symmetry planes 

through them as we like. 

We can tell a lot by connecting balloons in small 
groups. Balloons are very flexible, commonly 
available, and work well in demonstrating certain 
geometrical principles. Balloons come in various 
shapes; some are long and rather narrow, like hot 
dogs, others are more or less round. We’ll use the 
round type here; as you'll see, this shape means the ‘ 
balloons have to elbow each other for space when 
they’re connected. 

Let’s see what happens when we form small groups 
of two, three, four, five, and six balloons. We’ll 
connect the balloons at their navels. 

Two balloons lie along a straight line when 
connected. 

There is also a symmetry plane reflecting the 
two balloons into each other. 

Two balloons make a straight line Then there is an infinite-fold axis of rotation 
along their connecting line, and an infinite 
number of 2-fold rotation axes going through 
the connecting point. They are perpendicular 
to the infinite-fold rotation axis (only one of 
these 2-fold axes is shown). 

OVERLEAF: Cluster of four walnuts 
growing together 
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PS Three balloons make an Four balloons make a 
equilateral triangle _ tetrahedron 

Three balloons form an Four balloons connected together 
equilateral triangle. This take the shape of a tetrahedron, 
triangle has all the symmetries _ one of the five regular polyhedra. 
that the three-petal flower has 
(see p. 53), and even more: it 
also has one symmetry plane 
that is perpendicular to the 
other three planes and bisects 
the three balloons. 

Five balloons are a little difficult to connect. To do this, first form a 

group of two balloons and then another of three, then put the two 

groups together. + => 

The overall shape is of two triangle-based pyramids joined at their 

base. It is called a trigonal bipyramid. 
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IX. BALLOONS, WALNUTS & MOLECULES 

Six balloons can be connected by bringing a group of two and a group of four together. 

This gives us an octahedron, another one of the five regular polyhedra. 

Incidentally, the octahedron is also a tetragonal bipyramid; that is, 
two square-based pyramids joined at their base. 

To summarize, when the balloons are connected at the navels, they will 
naturally cluster in these shapes: 

Number of Balloons Arrangement 

Two A line 

Three Equilateral triangle 

Four Tetrahedron 

Five Trigonal bipyramid 

Six Octahedron 

Since these connected groups of balloons are flexible, we can force them to 
form other shapes. For example, the tetrahedral shape of the four balloons can 
be forced into a square planar shape. However, as soon as we stop interfering 
with the cluster’s natural tendencies and leave the balloons alone, they 
immediately rearrange themselves into the previous tetrahedral shape. 
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The Origin of Shapes 

When these balloons cluster, they are rather 
crowded around their connecting point. They 
seem to be elbowing each other for space until 
they assume the most economical positions about 
the connecting point. 

This whole question can be reduced to the simple 
mathematical problem of arranging points on the 
surface of a sphere in such a way that the points 
are at maximum distances from each other. 

Why is this? Each of the components, here 
balloons, takes up space. So the best arrangement 
will be when they are as far from each other as 
possible (allowing each maximum space). The 
arrangements of up to six points, shown for the 
balloons on the previous pages and shown for the 
points on a sphere at right, are the best for 
utilizing available space with maximum 
efficiency. However, for more than six points, or 
more than six balloons, there may be several 
arrangements about equally good for utilization of 
available space, so it is difficult to predict what 
arrangement or shape to expect. 

Two points are at the 
two ends of a 

diagonal of the 
sphere, forming a line 

Three form an 
equilateral triangle 

along a circumference 
of the sphere 

Four points will have 
the shape of a 

tetrahedron 

Five form a trigonal 
bipyramid 

Six make an 

octahedron 

OOO 
gS 
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Walnuts 

Sometimes walnuts grow Ll dé | m. 
together in small clusters on _ 
trees. Most of them grow singly 
or in twos, but threes and even 
fours are not uncommon. A 
cluster of five is unusual, and 
six is truly rare. Groups of 
chestnuts exhibit similar 
patterns, but we have yet to see 
larger clusters. 

It is not surprising that the 
walnut clusters have the same 
shapes as the balloon groups. 
Just as the balloons group them- 
selves (due to their elasticity), so 
do the walnuts (as they slowly 
grow), elbowing each other for 
space to find the most 
advantageous arrangements. 
These arrangements are the 
ones where they best utilize the 
available space, as the points- 
on-the-sphere model has shown 
on the previous page. 

This is but one example 
showing that the forms and 
shapes in nature develop 
according to some underlying 
principles, among which the 
need for space is of primary 
importance. 
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Molecules 

The previous considerations on shape find an important application 
in chemistry in understanding the structure of molecules. A 
molecule is the smallest part of a substance that can exist in a free 
state and still retain its chemical identity (such as how it reacts 
with other substances). Molecules consist of atoms held together 
by strong bonds. For example, the water molecule consists of three 
atoms—one oxygen and two hydrogens. When they say that a new 
drug has been synthesized, it means that molecules of a new 
substance were made. Molecules may react with each other to 
produce new molecules. 

We already mentioned molecules in chapter III (p. 32) where we 
discussed their handedness (chirality). We also mentioned that 
molecular chirality was important in determining the behavior of 
molecules. The chirality of molecules is part of the spatial structure 
describing the direction of arrangement of their constituent atoms. 

Generally, it is important to know the shape of molecules. It is 
more than just the order in which the atoms are arranged, it is also 
the shape of this arrangement. This three-dimensional arrangement 
of the atoms in a molecule is the structure of the molecule. All 
properties of a molecule are closely related to its structure. 

The atoms in the molecule are linked together by pairs of electrons. 
Usually each of the two atoms being linked together contributes an 
electron to this linkage. A pair of electrons can make the two atoms 
stick to each other very strongly. 

Usually the electron pair linking two atoms is depicted as a straight 
line between the symbols of the two atoms in a molecule. Thus, for 
example, in the silicon tetrafluoride molecule, there is a silicon 
atom in the middle and there are four linkages connecting each of 
the four fluorine atoms to the silicon atom. Each of these linkages 
is symbolized as Si-F. 

This is convenient but not very realistic, because the electron pair 
connecting the silicon and fluorine atoms is better expressed as a 
certain domain in space, rather than a thin line. This bond of the 
electron pair takes up some space that might be compared to a 
balloon or a walnut, rather than to a thin line. Having grasped this 
concept, we are then not surprised to find that the arrangement of 
the four electron pairs (that is, of the four Si-F bonds about the 
silicon atom) will be tetrahedral. 

Silicon 
tetrafluoride 
molecule 

A more 

realistic 
version of the 
above 
molecule, 
showing the 
four linkages 
in space 
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Thus, by analogy: 

The two bonds in magnesium F —— Mg a F 

difluoride will be along a 
straight line. 

The three bonds in aluminum 
trifluoride form an equilateral 
triangle. 

oe 

The five bonds in phosphorus 
pentafluoride make a trigonal 
bipyramid. 

a 

The six bonds in sulfur 

hexafluoride form an 

octahedron. 

(See the balloon groupings, Es 
pp. 108 — 110.) F 

F 

While we could take the balloons and the walnuts 
into our hands, molecules are fantastically small. 
They are not visible under a microscope with 100 
or even | million times magnification. (A 
molecule is about as much smaller than the head 
of a pin as the head of a pin is smaller than the 
whole earth.) Yet scientific experiments and 
computations allow scientists to determine the 
shapes of molecules and measure their sizes. 
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The origin of form and shape and their 
symmetries make a natural connection among the 
balloons, walnuts, and molecules. Groups of 
balloons and walnuts do not come in many vari- 
eties, but molecules do. So it is very convenient to 
establish some simple and generally valid rules on 
the basis of our observations. These rules then 
help us predict the shape of molecules without the 
necessity of carrying out complicated experiments 
and computations each time we want to deter- 
mine these shapes. 
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xX. ANTISYMMETRY 

The symmetry of opposites is 

called antisymmetry. Each 
symmetry has its corresponding : 

antisymmetry. Antisymmetry 

means that a property (color, for 
example) turns into its opposite 

during the symmetry operation, 

as when we apply a mirror. 

Here a swan looks into a mirror 

and we see its reflection. 

Suppose the same swan looks 
into an imaginary mirror—one 

that will not only reflect the 
swan’s image, but will also 
reverse the black and white 
colors. Let us call this imaginary 
mirror an antimirror and this 
process antireflection. 

Reflection: 
Reflecting one-half of an object 
reconstructs the image of the whole 
object 

Symmetry element (tool). 
Mirror plane: . 
Applying a mirror plane to either of 
two halves, the whole is recreated _ 
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Antimirror Symmetry 

Here are a few more illustrations of antimirror symmetry: 

ha 
1&2 are related by mirror symmetry 

Kellemes 

karaécsonyi tinnepeket 

és eredményekben gazdag 

ie dj esztend6t kivan 

3&4 are related by mirror symmetry 

1&4 are related by antimirror symmetry 

2&3. are related by antimirror symmetry 

Hungarian 

wine ad 

& oe 
/ uty 
b *, 

1%, <en: 
4% 

4 oo! 

At SN 
aS | 

Ae Were a 
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Antirotational Symmetry 

Color changes may be introduced 
by rotational symmetries as well. 
Antirotational symmetry means 
that, during rotation, the object 
reoccurs more than once, but 
with one of its properties reversed 
at each step. 

Thus, here we have 2-fold, 4-fold, 
and 6-fold antirotational 
symmetry. 

Antisymmetry in 
the Universe 

A natural symmetry of opposites 

seems to be built into the very 
fabric of existence. Modern 
physics has discovered the 
presence of antimatter. When 
matter as we know it collides 
with its antimatter counterpart 
(an electron with an antielectron, 
say), the two are annihilated. The 
universe is still here only 
because, as some theories hold, 
antimatter is in extremely short 
supply. Most of it did not even 
survive the first microsecond of 
the Big Bang, which supposedly 
brought the cosmos into being. 

cosmic force split into two 
opposing parts called Yin and 
Yang. These represent naturally 
occurring dynamic energies that 

are in opposition: night/day, 
hot/cold, male/female, young/ 
old, etc. The symbol for Yin/Yang 
looks like this: 

Interestingly, the Chinese Taoists 
had a similar theory about 
creation. They believed a unified 

Rotation: | 
When an object is rotated around its _ 
axis, it appears in the same position _ 
two or more times _ 

symmetry element (tool) 

Axis of rotation 

Antirotation: __ 
Rotation accompanied by nboperty 
reversal at each step 

Symmetry element (tool) 

Antirotation axis 

SYMMETRY 

Vo % 
Notice that a small area of black 
swirls to a large area that con- 
tains a dot of white, and vice 
versa. This means that black and 
white (or whatever energies they 
represent) carry within them the 
seed of their opposite, so that 
when, in their movement, they 
reach the extreme limit, they 
turn into their opposite. 

The central motif in the flag of 
the Republic of Korea is an 
example of the same 2-fold anti- 
rotational symbol. It is thought 
that the wavy shape of division 
between the two halves (resulting 
in rotational symmetry, rather 
than reflection) conveys the 
feeling of harmony between the 
two halves and not merely the 
contrast between them. 
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“This is perestroika to some.” (Soviet 
poster, 1987) 

Print by Victor Vasarely 
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More Subtle Examples of Antisymmetry 

So far we have seen examples with geometrically rigorous rules of 
antisymmetry. Even in the last example, the Yin/Yang motif is 
geometrically rigorous. However, when we consider other properties 
of this symbol, for example, male/female, we depart from strict 
geometrical rules: here we have the symmetry of opposites, but they 
are not antisymmetrical in the same rigorous sense as is a color 

reversal. 

In the next example, the two ballet dancers show 2-fold antirota- 
tional symmetry in which there is not only color change, but gender 
change as well. Here we may consider either color or gender as the 
property being reversed during rotation. Please note, however, that 
there is no strict geometrical relationship between the two “parts,” 
that is, the female and male dancers. Yet we have no difficulty in 
perceiving an antisymmetric relationship here. 

There was an award-winning poster in Moscow in 1987 entitled 
“This is perestroika to some.” Perestroika is the 
Russian word for “restructuring,” introduced by & asso 
then-President Mikhail Gorbachev in the mid- 
’80s, when he thought that structural reforms 
could save his country. This poster apparently 
implied dissatisfaction with the way it was 
being carried out. The designer of the poster 
used a simple color reversal to illustrate the 
lack of substantial changes. 

As we have seen with the ballet dancers, it is 
not only colors that may change. 
Antisymmetry may involve any kind of 

property. It is important only that we theses 

specify what property is changing into its sg 

opposite. For example, both in the 3 1 30 

Vasarely drawing below and in the PO Po 5 Vasarel 
decoration of this car, antireflection causes not only Ries. 4 ibe on 
the colors to reverse but the circles to change into squares, and y Fien a 

vice versa as well. stamp 

Op-art style paint job 
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GEO ™ 

The antireflection principle 
changes winter into summer in 

the logo of a Boston sporting 
goods store. (Part of the logo is 
half of a snowflake, the other 
part is half of the sun.) 

Here is antisymmetry in a gas 

station. Not only do the colors 
of the letters reverse, but a more 
important property is reversed: 

the type of service provided. 

You could think of these two 
Coke machines as being related 
by antimirror symmetry with a 
color reversal. And, actually, it’s 
not only the colors that change 
into opposites. There is another, 
more important property being 
reversed here: the sugar content 
of regular Coke and diet Coke. 

Male worker with hammer and 
female peasant with sickle related 
by antireflection. Sculpture by Vera 
Mukhina, Moscow, Russia 

Coke machines related by color 
reversal and sugar content reversal 

Although the examples on this 
page all display the symmetry of 
opposites, there is again no strict 
geometrical correspondence. 
When an antimirror plane is 
positioned between the two 
halves of the Herman’s logo, or 
between the man and woman in 
the Russian sculpture, there is 
no geometrical correspondence 
between the two parts. 



Antisymmetry in Geography 

Most of our readers are probably from the Northern Hemisphere, so James Reston’s description of New 
Zealand will be easily perceived as an expression of antisymmetry: 

... Nothing is quite the same here. Summer is from December to March. It is warmer in the North 
Island and colder in the South Island. The people drive on the left rather than on the right. Even the sky 
is different—dark blue velvet with stars of the Southern Cross—and the fish love hooks... . 

James Reston 

International Herald Tribune, 1981 

Antisymmetry as a-Literary Device 

Some of the greatest writers have employed the symmetry of opposites as a narrative technique to evoke 
a mood or to describe a situation. Look at the oft-quoted opening of A Tale of Two Cities by Charles 
Dickens: 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of 

foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was 
the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before 
us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way 
—in short, the period was so far like the present period, that some of its noisiest authorities insisted on 
its being received, for good or evil, in the superlative degree of comparison only. 

Or take the following example from the short story “Two Diagnoses” by Frigyes Karinthy, a Hungarian 
writer of the 1930s. The same person goes to see a physician at two different places on two different 
occasions. At the recruiting station he would obviously like to avoid getting drafted, while at the 
insurance company he would like to acquire the best possible terms for his policy. His answers to iden- 
tical questions of the physicians are related by antisymmetry. (This is an edited excerpt.) 

How old are you? 

Your I.D. says you're 32. 

Are you ever dizzy? 

At the recruiting station 

Broken-looking, sad, ruined human 
wreckage, feeble masculinity, haggard 
eyes, shaky movement. 

Old... very old, indeed. 

(With pain) To be old is not to be far 
from the cradle—but near the coffin. 

Don’t mention dizziness, please, 
Doctor, or Ill collapse at once. I 
always have to walk in the middle of 
the street, because if I look down from 
the curb, I become dizzy at once. 

At the insurance company 

Young athlete with straightened 
back, flashing eyes, firm movement. 

(Coyly) You know, I’m almost 
ashamed to be so young... 

To be young is not to be near the 
cradle—but far from the coffin. 

Quite often, sorry to say. Every time 

I’m aboard an airplane and it’s upside- 
down, and breaking to pieces. Other- 
wise, not... 
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And finally, use your imagination in the following 
anecdote. Can you see an antisymmetrical 

connection? 

A Marquis at the court of Louis XIV enters his 
wife’s boudoir and finds her in the arms of a 
Bishop. The Marquis then walks calmly to the 
window and goes through the motions of blessing 
the people in the street. 

“What are you doing?” cries his anguished wife. 

“Monseigneur is performing my functions,” 
replies the Marquis, “so I am performing his.” 

Arthur Koestler 

The Act of Creation, 1964 

Angel and devil, Notre Dame Cathedral, Paris, France 
Te e “ we 

LL ae Was 
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MI. REPEATING EVERYTHING 

Translational Symmetry 

In border decorations, a pattern 
can be generated simply by » 
repeating a motif. This is 
symmetry again, but a very 
different kind of symmetry from 

what we have seen so far. seecsoeeerzoerereczececces 
The symmetry operation here is 
translation. The principle is the 
same as in reflection or rotation. 

We have a simple means of 
creating the same thing again 
when in a different position. 
Translational symmetry means 
shifting and repeating the motif 
—the resulting pattern is 
periodic. Periodicity is thus 
created by infinite repetition of 
the same motif. 

We may see translational 
symmetry everywhere: border 
decorations, parking meters, 

gutters, water fountains, lamps, 
columns, trees, soldiers, etc. 
The simple rule for generating 
these patterns is to define the 
basic motif, then repeat it at a 
certain distance again and again. 

‘Symmetry type - 
Translational symmetry: — 
Repeating the same object or motif 
simply by ping it a constant 
distance 

Svrnmetry operation (action) 

Transtation 

Symmetry element (tool) | 

Constant shift 

Poriadicity: 
The repetitive occurrence of exactly 
the same motif _ 

OVERLEAF: Colonnade on St. Peter’s . 
Square, Vatican City ABOVE TWO PHOTOS: Walls of the Great Mosque in Cordoba, Spain 
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Columns and trees on the campus of the State Univers 

Moscow, Russ 
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FAR RIGHT: 

Moscow, 

Russia 

RIGHT: 

School 
buses in 

Storrs, 

Connecticut 

FAR RIGHT: 

Aqueduct 
from Roman 

times in 
Sicily, Italy 

RIGHT: 
Railway 

terminal in 
Rome, Italy 

: rn . CO aN 

Parking §& = ¢ 4 | oe Cae ike. = 

meters in 
Baltimore, 
Maryland 

Gutters in 

Manezh 

Square, 
Moscow, 

Russia 

Water fountain from Roman times, near L’Aquila, Italy 
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Repetition of a motif can extend to infinity, at 
least in our imaginations. An important feature of 
translational symmetry is that, at least in 
principle, it is not terminated. Thus, whenever we 
describe translational symmetry here, and later in 
more complicated cases, we will visualize 
extension to infinity. 

Railroad tracks are ideal examples of patterns 
going on to infinity. So are fences. 

129 



XI. REPEATING EVERYTHING 

RIGHT: 
Liberty 
Bridge, 

Budapest, 
Hungary 

FAR RIGHT: 

Korea 

Fences can demonstrate the eco- eC oe = 

nomical aspects of translational XK Co CXC KC OOC 
symmetry. We can use the I. se oe 
principle of mass production: we 
merely design and produce one 
structural element and then 
produce as many identical copies 
as needed. 

x . ae 

| ee Va VV Wane ee AES 

8,9 ,2, 0. 8@@ 0186 ,2.6,e. xX XY 

8 $08 

St. Petersburg, Russia 

Korea 
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Repetitive Symmetry 

So far, we have looked at examples of simple 
translational symmetry; that is, simple shifting of 
the basic motif from one position to another 
position and then to another position, and so on. 
Translational symmetry is also called repetitive 
symmetry. However, repetitive symmetry has a 

broader meaning. Repetition may be achieved by 
other means as well. It is not only simple 
translation, but also other symmetry operations, 
such as reflection or rotation, that can be repeated. 

The Seven Classes of Band Patterns 

As an example, let’s choose a black triangle for our 
basic motif and find all the possibilities for its 
repetition: 

4. Here the triangle is simply shifted a certain 
distance: This process is simple translation. We 
have already seen many examples of translation 
on the previous pages—street lamps, trees, 
soldiers, and so on. 

2. Repetition is achieved by a combination of 
translation and horizontal reflection. 

This combination is achieved as follows: 

These steps are then repeated over and over: 

Symmetry type 

Repetitive symmetry: 
Repeating the same object or motif 

Symmetry operation (action) 

Repetition: 
Repeated application of the same sumer operation— 
petigcion, veo or es Translation | 

symmetry eioment (tool) 

The tool corresponding to whatever operation is repeated 
(mirror plane for reflection, axis of rotation for rotation, 
constant shift for translation) 

PE A A 

.and so on. 

r-- --—2> 
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The emerging pattern is: 

The dashed line (—- — — —) on the drawing - 
indicates the presence of this combined symmetry 
element: translation followed by horizontal 
reflection. This symmetry element is also called a 
glide reflection plane. 

Glide Feflection plasic: 
Acombined consecutive spp iation of translation and 
oe reflection  _- . 

3. The repetition at right is achieved by 2-fold 
rotation of the single triangle motif, as shown 
below. 

® jis used to show the presence of the 2-fold 
rotation axis. 

4. Repetition here is achieved by vertical 
reflection. Horizontal and/or vertical thick lines 
on the drawings indicate the presence of reflection 
planes (horizontal and/or vertical). 
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5. Repetition is achieved by horizontal 
reflection and translation. 

6. Repetition is achieved by 2-fold rotation, 
followed by vertical reflection. 

- 

7. Repetition is achieved by alternating 
vertical and horizontal reflections. 

Looking at patterns 6 and 7 we can see that 
the combined application of symmetry 
elements to a motif may generate additional 
symmetries. For example, in pattern 6, the 
application of vertical reflection and 2-fold 
rotation generates glide reflection. In pattern 
7, the combined application of two kinds of 
reflection generates 2-fold rotation as well. 
All symmetry elements (such as reflection 
planes and rotational axes) are indicated in 
the drawings. 

Here we have shown seven possibilities of 
how to create one-dimensional repetitive 
patterns, and curiously, there are no other 

possibilities. 

ra ATAM 
Let’s now consider some practical examples of 
these patterns. 

Below: from one footprint, the next is generated by 
glide reflection; that is, by a combination of 
translation and horizontal reflection. Thus, these 
footprints (and also the oarsmen on the next page) 
belong to pattern 2 in the series of seven classes 
shown on these pages. 
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On the other hand, the 
legs of the centipede 
can be considered as 
belonging to pattern 5, 
a combination of 
horizontal reflection 
and translation. 



Hungarian Needlework 

All seven classes of the band patterns are =i ot Te 
illustrated here by Hungarian needlework, de ew Mara L Un Naar e or 
collected by noted Hungarian folklorist Mrs. Re ap ceric irerer 
Gyorgyi Lengyel. It may take you a little while to oR 

1 Pa Se a | ae ee en a | a, a | 
recognize the seven symmetry classes of these and ‘i aganaaes 3 3 

similar patterns, but if you look at the drawings of 
the small black triangles under each example, the 4. Edge decoration ~~ | wa | a 

patterns should emerge in your mind. of bed sheet 

SA Sa area Ma) Rca SP) aPC S| aPC | ana | a 
Oat oa as es ool ae ee Eee oe 

1. Edge decoration 
of tablecloth ll | lie af yr 5. Decoration of 

shirt front 

2. Pillow-end 

decoration 

oT hla | le 
apie | anlage. | aye | 

3. Decoration patched WW | wr | 
4 + SAU on shepherd's felt coat + at +——+- - 7. tblecioth 

decoration 
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On this and following pages are examples of other band patterns, including Greek, Roman, Egyptian, 
Mexican, Native American, Arabic, Persian, Japanese, and Chinese decorations. 

Greek Ornaments 

Fret ornament 

Fret ornament 

Terra-cotta ornament 

Fret ornament 

ant! 

Pec a eae 
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| 
HNN ~=© Border designs in terra-cotta 

» Egyptian Border Designs 
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Mexican Patterns 

Cylindrical stamp 

Xicalcoliuhqui designs 
combined with spiral 

motif, from Mexico City 

Native American 
Designs 

Decorations on pottery deserve 
special mention, because in a 
way they fulfill the criterion for 
infinite repetition of patterns; 
they never end as we rotate the 
pots. 

Pueblo 

pottery 
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Arabic Patterns 

Wall tiles in the Mihrab of the Mosque 
of Cheykhoun (14th century) 

Ceramic wall tiles, borders 
(16th century) 

Ceramic wall tiles, borders 
(16th century) 

Ceramic wall tiles from the monastery 
of the Dervishes (17th century) 

Wall mosaic (15th — 16th centuries) 
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Persian Border Designs 

RIGHT & BELOw: Stucco border 
patterns from the Masjid-i-Jami in 

Isfahan, the Masjid-i-Jami in Nayin 
(10th century) and other buildings 

RIGHT & BELOw: Stucco border 
patterns from Varamin, Bostam, and > 

a mausoleum in Qum 
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Japanese Border Designs 

These designs incor, 
recognizable m 
abstract pattern 

corporate 
otifs as well as more 
S 
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Building Decorations 

Border patterns are often used to 
decorate buildings and for 
mosaic paving patterns. 

a7 

Small Italian island off Sicily, Italy 
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Papercutting 

A simple technique for 
generating border decorations 
is papercutting. 

Inducing the Feeling 
of Motion 

Border decorations may induce 
the feeling of motion. They 
may also convey the feeling of 
direction. Thus, such decorations 
may help to move crowds of 
people in underground passages, 
railway stations, and similar 
places without signs telling 
people explicitly to go in this 
or that direction. 

CVOVOCOW WO) 
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Helices 

The border decorations intro- 
duced in the previous chapter 
show the extension of periodic 
repetition in one direction. With 
helices and spirals, there is also 
repetition in one direction, but 
the difference is that they are 
accompanied simultaneously by 
rotation. 

What is the symmetry of a spiral 
staircase? Is it rotational or 
translational? It is both. With 
each step, there is a movement 
along the axis of the spiral 
staircase and a small rotation as 

well. A little translation and a 
Ricut: Spiral little rotation at the same time, 
staircase at repeated, in principle, to infinity. 
a Tel AVIV 1p yeality, of course, all spiral 

fire station, : 
staircases end somewhere, but 

Israel ‘ 
they need not do so in your 

Far ricut. imagination, where they can go 
Ottawa, on to infinity. 
Canada 

RIGHT: 
Sicily, Italy 

FAR RIGHT: 
Fukuoka, 

Japan 

OVERLEAF: Spiraling plant (Euphorbia 
myrsinites) in Pécs, Hungary 
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Rotation: | oo 
When an object is rotated around 
its axis, it appears in the same 
position two ormoretimes 

Symmetry element (tool) _ 
Axisofrotation 



Seoul, Korea 

Spiral staircase in a bombed-out 
palace near Potsdam, Germany 
(photograph taken in 1980) 

Kyoto, Japan 

Frank Lloyd Wright’s Guggenheim 
Museum in New York is itself a huge 
spiral staircase, although there we 
have to walk round and round up a 
ramp, rather than climbing stairs 

RiGHT: The impossible stairway: 
With a small trick in the 

drawing, it’s possible to give the 
impression of a stairway on which 

one can walk around to infinity 

To be exact, the spiral staircase— 
extending to infinity in our 
imagination—does not have the 
symmetry of a spiral. Rather, it 
has the symmetry of a helix. This 
symmetry is characterized by a 
constant amount of translation 
accompanied by a constant 
amount of rotation. The 
symmetry of a spiral differs from 
that of a helix in that the amount 
of rotation and translation in a 
spiral changes gradually and 
regularly. 
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Grape decorations around columns at an Eastern Orthodox monastery in Zagorsk, Russia 

The columns in a monastery in Zagorsk, Russia 
(above), are decorated with grapevines displaying 
helical symmetry. 

The directions of the two helices, however, are 
different, with mirror symmetry between the two. 
Thus, helices, as well as spirals, may be left- 
handed or right-handed—they may be chiral. 

On an entirely different scale, many biologically 
important macromolecules have helical structures, 
as shown at right. 

Spirals 

The helix may also be considered a special case of 
a spiral in which the amount of rotation and 
translation remains constant. While a helix always 
extends in three dimensions, a spiral can also be 
drawn on a piece of paper, that is, in two 
dimensions. 

®. Left-handed and right-handed 
Helical biological e Ker helices from a textbook on 
macromolecule ) biochemistry 
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Australia, as photographed January, 1990, by STS-32 astronauts. The eye of 
the storm is visible in the center, with swirling bands of the storm rotating 
clockwise toward the center 

we Ax 

An oblique view of Hurricane Pefa in the Pacific Ocean east of Taiwan, 
in August, 1991, by STS-43 astronauts 

Tropical Storm Sam in the eastern Indian Ocean off the western coast of 

sho 

In Natural Phenomena 

Galaxies, cloud spirals, and 
water swirls all follow this 
pattern. An example easily 
observed in everyday life is the 
bathtub vortex. 

Bathtub 
vortex 
formed 
when water 
drains out 
of the bath- 
tub or wash 
basin 

The 
Whirlpool 
Galaxy in 
the constel- 
lation Canes 
Venatici. It 

is composed 
of stars, gas, 
and dust 

Clouds in a 
meteorologi- 
cal report 

149 



Xl. HELIX & SPIRAL 

In Art 

Spirals often occur in artistic 
creations of many varieties. 

Friedensreich Hundertwasser: The Neighbours II: Spiral Sun and Moon-house 

The Spiral Is the Symbol of Life and Death 

This spiral lies at that very point where inanimate matter is 
transformed into life. 

Iam convinced that the act of creation took place in form of a spiral. 

Our whole life proceeds in spirals. Our earth describes a spiral 
course. We move in circles, but we never come back to the same 
point. The circle is not closed. We only pass the same neighbour- 

_ hood many times. It is characteristic of a spiral that it seems to be a 
_ circle but is not closed. 

The true spiral is not geometric but vegetative. She has swellings, 
becomes thinner and thicker and flows around obstacles who are 
in her way. 

The spiral shows life and death in both directions. Starting from the 
La center, the infinite small, the spiral means birth and growth, but by 

Wallianiplake \acob/s pee getting bigger and bigger the spiral dilutes into the infinite space 
and dies off like waves who disappear in the calm waters. 

On the contrary if the spiral condenses from outer space, life starts 
from the infinite big, the spiral becomes more and more powerful and 
concentrates into the infinitely small which cannot be measured by 
man because it is beyond our conception and we call it death. 

The spiral grows and dies like a plant—the lines of the spiral, like a 
meandering river, follow the laws of growth of a plant. It takes its 
own course and goes along with it. In this way the spiral makes no 
mistakes. 

Vincent van Gogh, Starry Night in F. Hundertwasser, 1991 
St. Remy 

Computers can be used to create 
spiral wonders with relatively 
simple programs. 

CG 
Computer drawings of spirals : Bat 5 x ‘ 

by Clifford A. Pickover 
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Shells 

Lert: Fossil snails exhibited in a 
park in Vaduz, Lichtenstein. They 
were split down the middle, so 
that—just as positive and 
negative—the two photos have an 
antisymmetric relationship 

Native California snail 
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Life Forms 

Spirals occurring frequently in 
animals and plants indicate an 
underlying principle of mathe- 
matical control in certain aspects 

of life forms. 

RIGHT: 
Bighorn sheep 

Greater kudu, 

central Africa 

Tendrils of plants usually 
grow in long spirals, as shown 
here by the tendrils of the wild 
cucumber. The stalk of the 
storksbill fruit is straight when 
wet, but begins to twist into 
spirals as it dries. Stalk of storksbill fruit Tendrils of wild cucumber 
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Towers 

Towers frequently exhibit spiral 
symmetry. 

The Galilei 
Tower of the 
Heureka 
Exhibition, 
Ziirich, 
Switzerland, 
(1991) 

Malwiya, 
the Great 
Mosque, 

Samarra, 

Iraq, 
9th to 15th 
centuries 

aN < \ 

Tower of Babel, as painted by Pieter Bruegel the Elder, in 1563—the tower 
was a spiral with seven terraces in the ancient city of Babylon 

3 a co 

@ 
pp 

Towers in Copenhagen, Denmark Tatlin’s design for a monument of 
the Third International 
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The Fibonacci Numbers 

Perhaps the most beautiful occurrence of spiral symmetry in nature 
is the scattered leaf arrangement around the stems of plants, a 
phenomenon botanists call phyllotaxis. 

The stem of Plantago media certainly does not extend to infinity. 
However, if we take some philosophical liberties, we may consider 
the plant/seed/plant/seed/plant . .. sequence to extend to infinity, 
over a period of time. Thus, the leaf arrangement of a single stem 
could be thought of as part of an infinite series. 

Let’s now consider the relative positions of the leaves around the 
stem of Plantago media. Starting from leaf 0, circle the stem 
looking for the next leaf that would be exactly above the initial leaf. 
This will be leaf 8, and we discover that we have to circle the stem 
three times before we reach it. The ratio of the two numbers is 3/8, 
and this tells us that a new leaf occurs at each 3/8 part of the 
circumference of the stem. 

The simplest case is when the leaves occur on opposite sides of the 
stem as we move along it. An 
example is the leaf arrangement 
of the simple yellow flower 
Oenothera biennis. 

Again we start with a leaf labeled 
O, and circle the stem until we 
find another leaf exactly 
eclipsing the leaf 0. This will be 
leaf 2, after one complete circle 
around the stem. The ratio of the 
two numbers in this case is 1/2, 
telling us that a new leaf is 
always found at half of the 
circumference of the stem. 

Oenothera biennis 
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It has been suggested that having successive leaves on a stem 
separated in this way maximizes solar illumination and air for the 
leaves. 

The two cases demonstrated are characterized by 3/8 and 1/2, 
respectively. Other leaf arrangements for various plants: 

Circlings/leaf 
Plant numbers 
Common grasses, elm tree, basswood tree Le 
Sedges, beech tree, hazel tree 1g) 
Most fruit trees, oak tree 2/5 
Plantains, poplar tree, pear tree 3/8 
Leeks, willow tree, almond tree 5/13 

The numbers of necessary circlings and the leaf numbers can be 
arranged in separate series: 

Circlings: 1, 1).2, 3,5, ete: 

Peaves; 2, 3 -57,.6,.13, etc. 

In both these series, each number is the sum of the previous two 
numbers: 

1+1=2 

1+2=3 

9.43=5 
34+5=8 

5+8=13 

8+13=21 

134+21=34 

21+34=55,etc. 

The two series, that is, the series of circlings and the series of leaves, 
can be joined, and this can extend to infinity: 

Meee oe Oe =a 2134) (55 "SOs 44... etc. 

This number series is called the Fibonacci series after its 
discoverer, Leonardo of Pisa (Fibonacci), an Italian mathematician 
who lived in the 13th century. 

Hanging heliconia (Heliconia 
collinsiana), Hawaii 

“Human subtlety ... will never 
devise an invention more beauti- 
ful, more simple, or more direct 
than does nature, because in her 
inventions nothing is lacking, 
and nothing is superfluous.” 

Leonardo da Vinci 

The Notebooks (1508 — 1518) 
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In Leaves and Plants 

Beautiful examples of spiral leaf 
arrangements abound in plant 
life around the world. 

Cactus 

RIGHT: Echeveria, Pécs, Hungary 
RS 

Ginger, Hawaii Prickly cycad, Hawaii Echium, California Pineapple, Hawaii: 
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Hawaii 

Stalk of elephant ear Brussels sprouts, Pécs, Hungary 
(Kalanchoe beharensis), Hawaii 

In the botanical garden, 
Madrid, Spain 
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The Fibonacci numbers also 
occur in the numbers of the 
spirals of scales of pine cones 
observed from below. There are 
13 left-bound spirals of scales 
and 8 right-bound spirals, both 
Fibonacci numbers. 

Much larger Fibonacci numbers 
can be observed in the left-bound 
and right-bound spirals of the 
seed arrangement of daisies and 
sunflowers, the spikes of a 
cobweb thistle, as well as the 
florets of a cauliflower. Both the 
pine cone scales and the sun- 
flower seeds can be considered as 
if they were compressed leaf 
arrangements around their 
stems. Thus, the relationship to 
the previous plants is obvious. 

Sunflowers 

UA, Se ai RE eras 

NEWSE 

Cauliflower 
Singapore stamp 

with a daisy 

Numbers in nature:the mathematical daisy 

RicHT: Cobweb thistle (Cirsium 
occidentale), California 
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SE ame ao LOU : CLE Ze 
Michelangelo’s design of a continuous pathway in the quadrangle of the 
Capitol, Rome, Italy. (From an engraving by Du Pérac in 1569) 

Nay. Z We i Ne GREGG, N 

In Decorative Design 

Humans have adapted analogs 
of spiral forms throughout 
history in a wide variety of 
artistic creation. 

Lert: A Russian porcelain plate 
made around 1760 in St. 
Petersburg for the personal use of 
Empress Elizabeth I, daughter of 
Peter the Great 

BELow: White Mountain Apache 
design (Native American) 
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The Golden Ratio 

Let’s now look at the ratios 
characteristic for phyllotaxis (the 
arrangement of leaves around a 
stem), but this time consider the 
actual values for these fractions 
(with each step, the ratio more 
closely approximates the golden 
proportion): 

1/2 = 0.500 

We 01323 

2/5 = 0.400 

3/8 = 0.375 

5/13 = 0.385 

8/21 =0.381 

13/34 = 0.382 

21/55 = 0.382 

= 0.381966... 
This extremely important, 
so-called irrational number 
expresses the golden ratio, 
which, in turn, is derived from 
the golden section. 

Ceiling decoration in the 
Hermitage, St. Petersburg, 

Russia. (Note that the repeated 
motif is a double-headed eagle) 
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The Golden Section 

The golden section (also called the Divine Proportion) was said by 
Kepler to be “one of the two treasures of geometry,” and was 
considered by Plato (in Timaeus) as the key to the physics of the 
cosmos. This mathematical relationship appears repeatedly in 
growth patterns in nature and has fascinated mathematicians and 
artists for centuries. 

What is the golden section? It means that a certain length is divided 
in such a way that the ratio of the longer part to the whole is the 
same as the ratio of the shorter part to the longer part. In this case, if 
the whole is unity—that is, 1.000—then here you will divide 1.000 
into two parts, one of the length 0.618, and the other 0.382. 

Line AB is divided at C so that: 

The ratio of AC to AB is the same as the ratio of CB to AC. 



The Golden Rectangle 

There is a special rectangle with proportions corresponding to the 
golden ratio. It is called the golden rectangle. 

A A E B 

It is not difficult to construct such a rectangle. You will need a 
pencil, ruler, compass, and a right-angle triangle. First draw a square, 
AEFD, of arbitrary size. Then divide the line AE in half at A’. 

Then, with the compass and using A’ as center, draw an arc from F 
up to B, which intersects the extension of line AE at B. With your 
triangle, draw BC perpendicular to AB, meeting the extension of 
line DF at C. The new ABCD rectangle is a golden rectangle, in 
which AB is divided by E in exactly the golden section: 

AE:AB = EB:AE« 

That is, the ratio of the longer part to the whole is equal to the ratio 
of the shorter part to the longer part. This is why E is called the 
“golden cut.” 

The Logarithmic Spiral 

The construction of the golden rectangle is interesting also because 
it can show the connection among the golden section, spirals, and 
the Fibonacci numbers. To demonstrate: 

e Take the same rectangle ABCD and draw through its golden cut 
E, the line EF, which is perpendicular to AB and cuts off the 
square AEFD from the rectangle. The remaining rectangle EBCF 
is also a golden rectangle. 

e Continue cutting off the squares from within these golden 
rectangles. 

e Cut off the square EBGH from rectangle EBCF. This leaves the 
new smaller golden rectangle GCFH. 

e Then, from this cut off the square GCI], leaving the smaller 
golden rectangle, [FH]. 

e Next, from this rectangle, cut off the square JFKL, which leaves 
the golden rectangle H/LK, and so on. You can continue this 
process—at least in your imagination—indefinitely, until a 
rectangle, indistinguishable from a point, is reached. 

Then take a compass and from the inside corner of each square (F, for 
example, for square AEFD), draw an arc from one corner of the square 
to the diagonally opposite corner (D-E, for example). Then from H, 
draw arc E-G and so on. This procedure will give you a spiral. 
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Logarithmic Spiral and Golden Section 

There are several interesting mathematical relationships between 
the features‘of the golden rectangle and the spiral that show the 
connection between the spiral and the golden section. This spiral 
has been called by different names corresponding to one or another 
of its characteristics. Descartes called it the equiangular spiral, 
Halley called it the proportional spiral, and Bernoulli used the 
phrase logarithmic spiral. 

There is also a connection between the spiral and the Fibonacci 
series. The spiral passes through diagonally opposite corners of 
successive squares (D-—E, E-G, G-I, I-K, etc.). The lengths of the 
sides of these squares form a Fibonacci series. If the smallest square 
(not shown here) has a side of length a, the adjacent square also has a 
side of length a. The next, third, square has a side of length 2a, the 
next 3a, followed by lengths 5a, 8a, 13a and so on, which is the 
Fibonacci series. 

A beautiful feature of the logarithmic spiral is that although two 
segments of the curve have different sizes, their shape is always the 
same. If we take a smaller segment of this spiral and enlarge it on a 
copy machine, it can be brought into exact coincidence (fit) with a 
larger-size segment of the curve. The spiral does not have a terminal 
point. It can grow indefinitely, but its shape remains unchanged. 

This fundamental property of the logarithmic spiral corresponds 
precisely to the biological principle that governs the growth of 
many shells. The principle is the simplest possible: the size 
increases, but the shape remains the same. The only mathematical 
curve to follow this pattern of growth is the logarithmic spiral. This 
is why Jacob Bernoulli described it as spiral mirabilis (miraculous 
spiral) [Acta Eruditorum, 1691]. 

With the mathematical knowledge just gained, we can now return 
to our examples from nature with a more informed perspective. 
Note that the successive chambers of the nautilus seashell follow 
the form of the logarithmic spiral exactly. As the shell grows, the 
size of the chambers increases, but their shape remains the same. 



In the growth of a shell, we can conceive no 
simpler law than this, namely, that it shall widen 
and lengthen in the same unvarying proportions: 
and this simplest of laws is that which Nature 
tends to follow. The shell, like the creature within 

it, grows in size, but does not change its shape; 
and the existence of this constant relativity of 
growth, or constant similarity of form, is of the 
essence, and may be made the basis of a 
definition, of the equiangular spiral. 

D’Arcy W. Thompson 
On Growth and Form 

Leonardo da Vinci also recognized the principle at 
work, and wrote: 

The creature that resides within the shells 
constructs its dwelling with joints and seams, 
and roofing, and other various parts, just as a 
man does in the house which he inhabits; and 

this creature expands the house and roof 
gradually in proportion as its body increases and 
as it is attached to the sides of these shells. 

From T. A. Cook 
The Curves of Life 

Both the Fibonacci numbers and the golden ratio 
seem omnipresent in nature. The two are shown 

to be intimately related, since the golden ratio is 
obtained when we take fractions of very large 
Fibonacci numbers. You might well ask, What is 
the relation to symmetry, since the golden ratio 
seems to be so asymmetrical? There are two 
connections. One is that when patterns can be 
generated by simple rules, there is a kind of 
symmetry. The other (as we discussed in the 
introduction) is that a broader definition of 
symmetry would include harmony and 
proportion, and the golden ratio is certainly 
abundant in these qualities. 
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East 

German 

stamp 
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Proportions 

Shown here are two famous 
examples of the golden ratio, 
Michelangelo’s painting of 
Adam’s Creation in the Sistine 
Chapel, and the Bauhaus 
building. The proportions of 
Michelangelo’s painting are 
indicated by the architect 
G. Doczi. They represent the 
golden ratio. Bauhaus designs 
were famous for their 
proportions. 

G. Doczi, The proportions of Adam's 
Creation by Michelangelo (Sistine 

Chapel, Vatican City), all represent- 
ing the golden ratio, are indicated 

LE IS OSE Pr Pct LO LOE, PLO SE LO 

The Bauhaus building itself, built 
in 1926—Dessau, Germany 
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Patterns from Circles 

Earlier, in the chapter on repetition, we saw how 
to generate a pattern from a motif by translation or 
by other symmetry operations such as reflection or 
rotation, followed by repetition. We saw a great 
variety of endless patterns repeating in one 
direction. Now we are going to see the extension 
of repetition in two directions and the creation of 
planar repetitive patterns. In other words, we are 
going to talk about covering a plane. 

To build a repetitive two-dimensional planar 
pattern, first select a motif. For example, take a 
shape—the circle. 

First, repeat this motif in one direction by simple 
translation. This produces an endless row of circles. 

Next, repeat this row many times over. This way 
we get an endless network in two directions, that 
is, in a plane. Here, it is illustrated by Korean 
designs. The pattern on the right shows more 
efficient packing. 

4 
Ny Dl ll 

x 

‘Repetition: — 
_ Repeated application of the same symmetry operation— _ 

ction, rotation, or simple translation Ce 

etry element (tool) 
_ The tool corresponding to whatever operation is repeated 
_ (mirror plane for reflection, axis of rotation for rotation, 

_ constant shift for translation) 

OVERLEAF: Worker bees and their honeycomb 

SYMMETRY 

Constant shift 

Periodicity: — 

The repetitive occurrence of exactly the same motif _—. 



Patterns from Hexagons 

This network of equal-sized hexagons is periodic 
(repeating the same motif). It is periodic because 
all the hexagons are equal in size. Moreover, it is 
periodic in two directions because the hexagons 
cover the whole plane. 

To build a honeycomb from wax, bees first form 
a network of closely packed circles. The bees are 
near equal size and move around in circles, 

creating circles in the wax. Although the circles 
are as closely packed as possible, they do not 
cover the available surface completely. The 
liquid wax flows into the spaces between the 
circles and forms hexagons. The hexagons then 
cover the entire available surface without gaps. 

Newly born bees starting to emerge 
from cells 

« 
Worker bees create wax for combs 
from secretions of tiny abdominal 
glands 

Wax comb of honeybees: a 
masterpiece of art and engineering 

Worker bees 
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Base of offshore oil platform after it is turned upside down Oil platform being towed to destina- 
tion before being turned upside down 

Hexagonal Designs, Human-made and Natural 

This picture shows what looks like a honeycomb. Actually, it is a 
concrete base under construction for an offshore oil platform in the 
North Sea. The base consists of a network of regular hexagonal 
shapes, similar to the honeycomb. 

The symmetry of the oil platform as well as the symmetry of the 
honeycomb come from repetition in two directions. What is the 
most important difference between the network of circles and the 
network of regular hexagons? The regular hexagons cover the whole 
surface without gaps or overlaps, while with the circles, a lot of 

he gaps between the circles. The moth’s compound eye, 
(magnification x 2000), also shows 
hexagonal subdivision 

xagonal division of the surface 

All these are examples of 
approximate arrangements. 
(The hexagons are not perfect.) 
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Model of graphite structyre— 
the filled circles indicate the 
carbon atoms 

MU The structure of graphite layers, 
on the other hand, shows a vir- 

tually perfect system of closely 
packed regular hexagons. 

Covering the Surface 
with Regular Polygons 

Curiously, the only regular 
polygons (equal sizes) that can 
cover a surface without gaps or 
overlaps are the equilateral 
triangle, the square, and the 
regular hexagon. 

If we try to cover a flat surface 
with, for example, regular penta- 
gons of equal size, there will 
always be some gaps, no matter 
how we arrange the pentagons. 
There are always some rhombi 
(equilateral parallelograms) left 
between the pentagons. 

The same is true for regular 
octagons (eight-sided figures) of 
equal size in that they cannot 
completely cover the available 
surface. Here, there are always 
small square areas left uncovered 
between the octagons. 

Regular polygon: 
All its angles are equal and all its aN 

sides are of equal length 

ee 
ass 
sone 
Ses 

BELOW: Op-art drawing after Victor 
Vasarely 
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Similarly, none of the higher regular polygons, 
such as the regular nonagon (nine-sided figure), 
regular decagon (ten-sided figure), etc., can 
cover a flat surface completely. ‘ 

Although only three of the regular (and same- 
size) polygons can cover a surface without gaps. 
and overlaps (equilateral triangle, square, » 
equilateral hexagon), there is an unlimited — 
number of irregular polygons and other 
arbitrary shapes that can do this. 

We will explore some techniques for their . 
construction in the next chapter, Rhythm on 
the Wall. ; 

Patterns from Pentagons 

If the stipulation for equal size is relaxed for the regular 
and thus the pattern is no longer periodic, it is possible 
patterns covering the whole surface without gaps or overlaps. 
example is the pattern created from regular pentagons of 
changing size. an 

Take seven regular pentagons and combine six 
of these to make a large pentagon, as at far right: 

DN 

Take the seventh pentagon and div 

Take the five triangles g 

pentagon and use them t y 
take six more large pentagons and continue th 
described. op 

Note the triangular gaps in 
between the edges 

Game! TY PROC Oe IS 5) 
pecgeeeene OOO 

t 0S 
eee Nor eaves This pattern is the result 

of the construction 
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XIV. RHYTHM ON THE WALL 

Planar Patterns 

The honeycomb, the graphite 
structure, the oil platform, and 
the moth’s compound eye are 
examples of planar patterns. 
From any one-dimensional 

pattern with periodicity, it is 
easy to generate a planar pattern 
by repetition, extending the 
periodicity in two directions. 

Here are two movie billboards in 
Madrid, Spain. Now extend 
these patterns to infinity in your 

imagination. 

There are countless planar 
patterns around us; that is, 
patterns extending in two 
dimensions. The basic motif is 
repeated not just in a row but in 
the whole plane. It may be the 
decoration of a summer dress, 
the pattern of a veil, a field 
planted with trees, the arrange- 
ment of stones on the pavement, 
tiling, a brick wall, a brick 
chimney, roofing tiles, the roof 
structure of a basketball court, a 
parquet floor, fences, wallpaper 
designs, Andy Warhol paintings 
of Campbell’s soup cans or Coca- 
Cola bottles, and so on, and on 
and on. Each of these patterns 
can be looked at as part of an 
endless network generated by 
some simple rules, and if we do 

so, we can describe their The same border decoration is extended into a planar pattern next to this 
symunetry. billboard 

eriodicity: 
_ The repetitive occurre 
ye same motif 

NS ~ 

Repetition: 

for Ke axis of rotation for _ 
OverLEAF: Sophia Loren behind a _ rotation, constant “ for translation) 
veil. Photo: Denis Taranto, Jet-Set 
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Javanese 

batik 
designs 

Textile 
designs 

By AS 
Portuguese tiling, Lisbo n, Portugal Roof structure of a gymnasium in Storrs, Connecticut, under 

construction, 1988 
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XIV. RHYTHM ON THE WALL 

Lg So oS 

Fe st Ge 

Main square, Baja, Hungary 

Paving 
pattern in 

Annapolis, 
Maryland 

Street 
pavement in 

Japan 
L’Aquila, Italy 
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Seats at the 
Olympic 
Stadium in 
Seoul, Korea 

Fence in 

Taejon, 

Korea 

sie | 
Campbell Ca 

DOO NO Oa Tat Me 
Screen in front of a heater in a Manhattan building Andy Warhol, Coca-Cola Bottles 
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Roofing of village house, France Hungary ? Church roof in Budapest 
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Me 
Seon 

w, Russia Brick wale Mosco Japan iling, Temple roof t 

Spain f, Crimi, € roo Til Jaen, Spain ? Pavement 
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XIV. RHYTHM ON THE WALL 

Creating Planar Patterns _Let’s select a simple motif, such Now, let’s start with the same 
as a quarter of a circle: motif, but apply 2-fold rotation 

to create the one-dimensional 
pattern: * 

One easy way to make a pattern is 
on graph paper with squares. We 
choose a motif that is first 
repeated in one direction to create 
a row. This may be done by simple 
translation or by applying 
symmetry elements like reflection 
planes or rotation axes. (This is the 
way we made the patterns 
described on pages 131-133.) The 
row is repeated to make a planar 
network. Some very nice patterns 
emerge, especially if we ignore the 
underlying network of squares. Then repeat the row to make 

the planar pattern: 

Finally, erase the network: 

Finally, erase the network: e. 

LEE a 
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Now, take the same row, but Another possibility is to start Or use a horizontal reflection 
instead of simply repeating it, again with a quarter circle and plane to produce the planar 
apply a horizontal mirror to apply a glide reflection plane to network: 
produce the next row, andso on: produce the one-dimensional 
ce pattern: 

ee 

Then repeat this row: 
sean 

Or rotate the row 180° (2-fold 
rotation) to make the planar 
pattern: 

RTO There are countless possibilities. 
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XIV. RHYTHM ON THE WALL 

Filling the Surface 
Completely 

Some of the most attractive 
patterns are those that fill the : 
whole surface without gaps 
between the motifs or without the 
motifs overlapping. 

Then connect point A to point B 
with an arbitrary line (in ink). Then connect point A to point 

Start with a network of identical Keep this line within the C the same way with another 
parallelograms (in pencil): confines of one parallelogram: arbitrary line: 

Repeat these two lines in all the — Erase the underlying network of 
parallelograms: pencil lines: 

You can also do this starting with any other network 
of identical polygons. 
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A Canadian scientist, 
Francois Brisse, was so 

fascinated by such networks 
that he designed one for each of 
Canada’s provinces and 
territories. He used the symbol 
of the provinces as the basis for 
each drawing. To this basic motif 

he then applied various 
symmetries, just as we described 
for the quarter circle designs. 

The Northwest Territories of 
Canada, for example, has a polar 
bear as its symbol. A stylized 
polar bear was chosen as the 

basic motif. It was first rotated, 
and the resulting double bear was 
then repeated in two directions. 

Brisse made a drawing for the 
whole of Canada as well, starting 
from a maple leaf. The maple 
leaf is Canada’s national symbol, 
and he used a simplified shape to: 
create his network. The maple 
leaf was first rotated to produce 
a unit of four leaves of 4-fold 
rotational symmetry. This unit 

was then repeated in two direc- 
tions to cover the whole surface. 

“ee 
BELOw: Similar patterns appear 
to be quite common, in this 
Portuguese tile, for example 
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XIV. RHYTHM ON THE WALL 

Decorative Patterns 

Such patterns have been used by artists and artisans for hundreds 
of years. Now that you know something about them, you can look 
for interesting repeating decorations when visiting ancient places. 

In the old town of Badra in the Caucasian Mountains there is a 
building shaped like a cylinder. It is decorated by a mosaic dis- 
playing the word Allah some 200 times. This word covers the whole 
surface of the building. 

Here is the basic motif: It is then rotated like the maple 
leaf, and a unit with 4-fold 
symmetry emerges: 

alll = 

Boy 

Topkapi Palace, Istanbul, Turkey 

LSBSOOCENS 
CORKS 

~ 
se \ Ss 

Islamic decoration in Badra, Azerbaijan 

Decorations from Arab mosques and the famous Alhambra building 
in Granada, Spain (facing page) are conspicuously beautiful examples. 

Sidi bu Medien, Tlemcen, Algeria 
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Asove: Wall decorations from the 
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Floor tiles, church in Palermo, Italy 

Alhambra in Granada 
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XIV. RHYTHM ON THE WALL 

Seventeen Symmetry 
Classes for Planar 
Patterns 

Just as there were 7 possibilities 
for one-dimensional (repeating in 
one direction only) border decora- 
tions (see pp. 131-133), there are 
exactly 17 symmetry variations 

for two-dimensional (repeating in 
two directions) planar patterns. 
Here, all 17 are shown by exam- 
ples of Hungarian needlework, 
preceded by the corresponding 
patterns derived from the black 
triangle motif: 
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TOP AND 

CENTER: 
Patterns of 

indigo-dyed 
decorations on 

textiles for 
clothing. 

Sellye, 
Baranya 

County, 
Hungary, 1899 

Indigo-dyed 
decoration 

with palmetto 
motif 

N 

Vy 

4 
‘ 
‘ 

Vy Vy Vy 

Wr N 

an ae hak ak 
dM kak 

| 

\ 

‘ 

V,_* Vy > | 

an 1 ae iL Rak ak 



i, ef SENE G, S 

RENEE GW, I> SIA 
\ 

Pa 
“ANN NAY A, 

a \ A 

ip ve A LAIN {SS 

ye PY iy 

y 

yp Vn YN, 
‘load \ 

w% ois 

PP hey okt 
A. (= Fk. Agr 

Va NaS 4 iam uy 

“~~ 

Bird motifs from peasant vests. Northern Hungary 
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Decoration with tulip motif for tablecloth. 
Cross-stitched needlework, turn-of-the-century y < 

WN YN INVNVNIN INVNININ VNYVNVUIN 

Bed sheet border decoration with pomegranate motif. 
Northwest Hungary, 19th century 

o> 

Pillow-slip decoration with stars. Cross-stitched 
needlework. Transylvania, 19th century 

MN OOOO 
Pillow-slip decoration with peacock tail motif. 

Cross-stitched needlework. Much used throughout —E 
Hungary around the turn-of-the-century € < 

> FA a, 

Bed sheet border decoration with cockscomb motif. 
Cross-stitched needlework. | ' 

Somogy County, Hungary, 19th century x 
4 

| 

ae 
rise = 
>» 4 

y 
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Indigo-dyed decoration. Papa, Veszprém County, 
Hungary, 1856 

Children’s bag decoration. Transylvania, turn-of-the-century 

Pillow-slip decoration with scrolling stem motif. Much used 
throughout Hungary around the turn-of-the-century 

Blouse-arm embroidery. Bacs-Kiskun County, Hungary, 
19th century 
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Native American Designs 
ap de Re pnt me ates 

= Vs Ks So 

bogastweoy ‘all Memereranw FF Bre Ba secon, S Het 

be He 
pepe oe Pena d 

ps Skanes ee oR We cc cee ppseae Sree terest. 
oy Sal ek conan es ee it ve eoseoe Bearceesene 

— ae | i Sie 2% $a 

abhansephaccetcen ™ 

oF Msemaae 
Bad piescaenes 

2 ncmacn mys 155 Sh Saeco aes 
Pe a ae 

Sianeoes LO tome BE 
8 ene » 

idSglirrentaauiay | Thompson butterfly design 
Bt acces fe basket, British Columbia 

Thompson “necklace of bead” 
design basket, British Columbia 

wae Aeon 
saeo™ ott “ F 

Navajo Art U 

Thompson “fish net” design 
basket, British Columbia 

Lowe pos
et 

‘ USA
 92

 
: 

| 

, 

bane : 
eae 

Winnebago
 geometric design 

(oo me bag, Eastern Woodlands 
i 

Winnebago thunderbird design 
bag, Eastern Woodlands 

wanen ton eek eee ~ 
Y 

ie ARK 
NS td Seth 6218S « 

SONY 448 mae 
1 Mh eG EE 

Winnebago bag design with deer and 
thunderbird, Eastern Woodlands 
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MIV. RHYTHM ON THE WALL 

Artistic Patterns 

In this pattern, titled 
“Girls,” the basic motif 

being repeated is, of 
course, a girl. There are 
alternating rows of these 
girls. In every other row 
they are standing on their 
heads with the colors 
reversed, except for their 
faces. Here again, we have 

some antisymmetry in 

addition to repetition. 

This interesting drawing 
was prepared by an Azerbaijani scientist, Khudu 
Mamedov. Both Brisse (see p. 181) and Mamedov 
are crystallographers. Perhaps this is no accident. 
Crystallographers study the outer shape and the 
internal structure of crystals. Crystals are built 
from atoms and molecules by endless repetition in 
three dimensions. This is what makes them so 
symmetrical (as you will see in the next chapter, 
Diamonds & Glass). 

Another of Mamedov’s drawings is called Unity. It 
seems as if there is a message from history here. 
The old men are chained and on their knees, and 
the young are proudly standing. In spite of the 
overall uniformity, there are different expressions 
on their faces, especially on the old men’s faces. 
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Here is another Mamedov 
drawing. This one shows sea 
gulls. First a sea gull is rotated 
180° and then the pair is 
repeated in each row. The rows 
are repeated in such a way that 
each bird’s head is tossed in 
alternate directions below the 
other’s. 

The most famous drawings in 
this mode were created by the 
Dutch graphic artist Maurits C. 
Escher. Here, the basic motif is a 
fish and a boat. This pair is 
repeated in two directions to 

cover the whole surface. (M. C. 
Escher, Symmetry Drawing E 
fie 1062) 
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XIV. RHYTHM ON THE WALL 

The motif of this Escher drawing is formed from a 
bird and a fish. The pair is first rotated by half a 
turn, and this unit of the two pairs is then repeated 
in two directions. (M. C. Escher, Symmetry 
Drawing E 115—1963.) 

Another of Escher’s drawings contains four kinds of 
animals: a falcon, a fly, a butterfly, and a bat. 

f 

zal > ALS 

The basic unit is a square that consists of one-half 
of all four animals. This square unit is then repeat- 
ed by mirror reflections to cover the whole plane. 
(M. C. Escher, Symmetry Drawing E 81—1950.) 
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Various degrees of abstraction enliven artistic 
expressions. An interesting example of repetition 

with considerable variations is the picture named 
Homage to Greco by Hungarian painter Istvan 
Orosz. El Greco’s famous Study head is repeated in 
two directions, each with a different artistic style. 

Quite often, gradually changing planar patterns 
express some process in a powerful way. On the 
Israeli stamp below, the transformation occurs from 
the pattern of flowers to the pattern of regular 
hexagons, while 6-fold symmetry is retained 
throughout. 

Lert: Istvan Orosz, 
Homage to Greco 

BELOW: 

El Greco, 

Study head 

Wa- 3 > - fee3 anUNA 
Se hs oes 0 Se ke 

In an ad calling for protection of 
the African elephant, the pattern 
of elephants (on the left) displays 
translational symmetry in two 

directions. As we move from left 
to right, the elephants are 
gradually turned onto their 
backs, and eventually only their 
ivory tusks remain. The 
symmetry of the pattern is 
preserved throughout. 

) 
GOING GOING GONE 

The Aca Dephar i appearing (ct ram abot fv wien in ITs tanh» lion toay W's easy to rw the gocher, bu as gs we Duy hey, ware ey spree I we acta, wt have ime oe hem. For mare keratin, oto ake taxed contrbtin, contac he Man We ecedoben 177 Massachusetts Nenut, NW. Washingoe NC 20036, US A 

Ad in the International Herald Tribune, June 26, 1991 
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XIV. RHYTHM ON THE WALL 

Dancing with Symmetry 

First with single motifs, and then with border decorations, we have seen that a sense of motion can be 
conveyed if certain symmetries are present or absent. This is even more true with decorations covering a 

whole surface. : 

Joy 

The ones shown here, for 
example, have rotational 
symmetry only. There is no 
symmetry plane in them, only 
rotation. They give us a feeling 
of rotation, of circling. Patterns 
such as these may even make us 
want to dance around! These 
patterns might make good 
decorations for the walls of a 
dancing hall. 

Confusion 

Consecutive translation and 
horizontal reflection together is 
called glide reflection. It is 
thought to induce the feeling of 
confusion, so we must be careful 
when and where we use such 
decorations. These patterns 
contain translation and reflection 
in endless repetition. 

wor 

Calmness 

If we want to have an important 
meeting, if calmness and respect- 
ability are needed, we had better 
choose a hall decorated with 
patterns having plenty of 
symmetry planes, and, preferably, 
no rotational symmetry. 

Capitol Dome, Washington, D.C. 
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XV. 

From 

William 
Scoresby’s 
log book, 

1806 

Amethyst, 
Batut, 

Romania 

DIAMONDS & GLASS 

Crystals 

The snowflake (see p. 69) is a 
water crystal. The word crystal 
comes from the Greek 
krystallos, meaning “clear ice.” 
The name originated from the 
mistaken belief that the 
beautiful transparent quartz 
stones found in the Alps were 
formed from water at extremely 

low temperatures. By the 17th 
century, the name crystal was 
applied to other solids as well. 
Crystals generally have beautiful 
symmetrical shapes. 

Minerals 

Crystals have always fascinated 
people. Karel Capek, the Czech 
writer, wrote the following after 
his visit to the mineral collec- 
tion at the British Museum: 

There are crystals as huge as the 
colonnade of a cathedral, soft as 
mould, prickly as thorns; pure, 

azure, green, like nothing else in 
the world, fiery, black; mathe- 
matically exact, ... There are 
crystal grottos, ... architecture 
and engineering art... Egypt 
crystallizes in pyramids and 
obelisks, Greece in columns; 

Here are some beautiful crystal shapes from the collection of the 
University of Budapest. These can be seen by the naked eye. 

OVERLEAF: Open-air sculpture depicting the internal structure of a crystal, 
Seoul, Korea 

198 SYMMETRY 

the middle ages in vials; London 
in grimy cubes... To equal 
nature it is necessary to be 
mathematically and geometri- 
cally exact. 

He added a drawing to his words 
to express his humility in front 
of these miracles of nature: 

ie 

Pyromorphite, Dognacea, Romania 



Calcite, Gy6ngy6soroszi, “Amethyst, 
Hungary Telkibanya, Hungary Hungary 

Other crystals, much smaller, were photographed with an electron 
microscope. These photos show them at a few hundred to a 
thousand times magnification. 

Northupite 

Thenardite 

Calcite, Budapest, 

When an object is rotated around its 

Symmetry element (tool) 

_ Mirro 

The external symmetry of a 
crystal is due to its internal 
structure. However, the 
symmetry of the crystal shape 
and the symmetry of its internal 
arrangement may be 
fundamentally different. 

Rotation: 

axis, it appears in the same peer 
two or more times: . 

Axis of rotation : 

Reflection: : 
Reflecting one-half of an n object 

_ reconstructs the ima 
object 

Symmet element (tool) : 

or plane 
Applying a mirror plane to either of 
two halves, the whole is recreated 
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External Symmetry of Crystals and the Magic Number 32 

The external symmetry of crystals can be characterized by reflection planes and rotation axes, similar to 
the symmetry of polyhedra (see p. 87), as the crystal shapes are indeed the shapes of polyhedra. 

There are 32 possible crystal shapes. They are called the 32 Crystal Groups. They are shown by 
examples of actual minerals. (For one of the 32, no mineral has yet been found.) 

Triclinic and Monoclinic Or thorhombic Tetragonal Cubic (Isometric) 

Cy (] 1 C, 4 C3 3 1Ce5 

Sr-tartrate tetrahydrate Wulfenite Nal0,:3H,0 Nepheline 

Cup 4/m S¢ 3 

Dioptase Scheelite 

N= 
Hilgardite Diabolite Zincite 

Fluorite 

Chalcopyrite Benitoite 
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Stereographic Projections 

The 32 Crystal Groups can also be represented by so-called stereographic projections. For how 
these projections are made, see the next page. 

Triclinic and Cubic 
Or thorhombic Tetragonal Hexagonal ; 

Monoclinic ~ (Isometric) 
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Preparation of 
Stereographic Projections 

Stereographic projections 
represent the three-dimensional 
crystal shapes in two dimensions. 

First, draw the polyhedron 
(corresponding to the crystal 
shape) and draw a circle around 
it. This corresponds to a sphere 
around the crystal. Then extend 
the face normals (the lines 
perpendicular to the faces of the 
polyhedron) to reach the surface 
of the sphere as seen below. 
Thus, a set of points representing 
the faces of the crystal will occur 
on the surface of the sphere: 

Then draw a line from all the 
points in the Northern Hemi- 
sphere to the South Pole and mark 
the points on the equatorial plane 
with filled circles where these 
connecting lines intersect this 

plane.This will create a represen- 
tation of the faces of the upper 
half of the crystal within a single 
circle, as seen on the figure (only 
the front lines and points are 
indicated on these drawings): 
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The points that were on the 
equator originally will remain 
there: 

The initial and final steps of 
preparing stereographic 
projections are given below for 
the cube and for the octahedron: 

Next, connect the points in the 
Southern Hemisphere to the 
North Pole and mark the points 
on the equatorial plane with 
open circles: 

Finally, project the equatorial 
circle on the plane and indicate 
all the points that were drawn 
into the previous figures. Thus, 
we arrive at a representation of 

the whole crystal within a circle: 

(with all the points indicated here). 



Internal Structure of 
Crystals 

The symmetry of the internal 
structure of the crystal is 
characterized by periodicity in 
three directions. Thus, what we 
have seen in border decorations 
in one direction (see p. 124, for 
example) and for planar patterns 
in two directions (see p. 184, for 
example), we will now see for 

crystals in three directions. 

—e—_e_e__@"__e_e_0—__o— 

Repetition in one direction 

Repetition in two directions 

Two models of three-dimensional crystal lattices, the lower after an M. C. pee ee: 
Escher drawing 

Repetition in three directions 
(three dimensions) 

Periodicity: 
The repetitive occurrence of exactly 
the same motif 

Repetition: 
~ Repeated application of the same 
symmetry operati 
translation, reflection, or rotation 

Symmetry element (tool) — 
The tool corresponding to 
whatever operation is repeated 
(mirror plane for reflection, axis of — 
rotation for rotation, constant shift 
for translation) 

Kwan-Mo Chung, Cosmonergy. Artist’s rendition of internal structure: part 
of an open-air sculpture at a busy intersection in Seoul, Korea 
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The Magic Number 230 

Simple symmetry operations and 
their combinations provided 7 
possibilities for creating border 
decorations and 17 possibilities 
for creating planar networks. For 
three-dimensional periodicity, 
there are altogether 230 possibil- 
ities. The role of the basic motif 
is played by a small part of the 
crystal structure, whose “infinite 
repetition” by the symmetry 
operations of any of the 230 
possibilities produces the entire 
crystal structure. We can identify 
a very small part of the crystal as 
its basic building block. The 
infinite repetition of this part by 
symmetry operations builds the 
whole crystal. This basic building 
block of the crystal is called the 
unit cell. 

Diamond and Graphite 

Diamonds consist solely of carbon. Each carbon atom is surrounded 
by four other carbon atoms in a tetrahedral configuration. The 
carbon atoms are linked by strong bonds in all four directions. It is 
an extremely simple and stable structure, which accounts for the 
remarkable strength and hardness of diamonds. 

Carbon has another crystalline form, graphite.* As we have seen in 
Chapter XIII (p. 169), graphite has a layer structure and is not nearly 
as hard as diamond. Curiously, graphite is more stable than 
diamond under ordinary conditions. If left alone, carbon will form 
graphite, rather than diamond. To form diamonds artificially, 
crystallization must be done at very high pressure, tens of 
thousands of atmospheres, because diamond is much denser than 
graphite. Under ordinary conditions (that is, room temperature and 
atmospheric pressure), diamond will eventually turn into graphite. 
“Eventually” in this case means a very long time indeed. In fact, 
under ordinary conditions, diamond will last longer than the 
present age of our universe. 

Unit cell of diamond crystal; the 
spheres represent the carbon atoms 

*Until recently, diamond and graphite were thought to be the only modifications of 
carbon. Today we know of a third one as well, buckminsterfullerene (see p. 100). 
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Diamond ring 

Diamond and Glass, 

As we have seen, there is a rich variety of symmetry in the crystal 
forms of minerals. A piece of glass, however, may also be made into 
a highly symmetrical shape. Even though the piece of glass may 
acquire the same outer form as a piece of diamond, it will not 
acquire all the other properties of the diamond. This fact was 
recognized long ago. In 6th-century India, as portrayed in the Kama 
Sutra by Vatsyayana, one of the arts which a courtesan had to learn 
was mineralogy. If she were paid in precious stones, she had to be 
able to distinguish real crystals from paste. With the discovery of 
X-ray diffraction in 1912 it became possible to determine clearly 
whether a small, hard crystal was indeed a diamond. Glass has an amorphous structure 

(two-dimensional representation) Glass breaks easily. In fact, a diamond knife is often used to cut 
glass. The difference in strength comes from the difference in 
internal structure. Glass consists of silicon and oxygen atoms 
bound together in alternating but random fashion. 

Silicon and oxygen atoms can build a crystal, too—such as quartz. 
As quartz is crystalline, it is characterized by three-dimensional 
periodicity, whereas glass is amorphous, with no such order in its 
structure. The difference can be seen by comparing the two 
structures in a two-dimensional representation, as at right. 

To summarize, the fundamental differences in the properties of 
diamond and glass originate from the difference of symmetries in 
their internal structures. Diamonds are crystals and there is a 
highly symmetrical arrangement of carbon atoms in three Structure of quartz crystal (two- 
dimensions. Glass is not a crystal and its internal structure lacks dimensional representation) 
symmetry; there is no regularity and there is no periodicity. 
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Packing 

The building particles of a crystal 
may be atoms, molecules, or ions. 
Diamond and graphite consist of 
carbon atoms, ice consists of water 
molecules, and common salt 
(sodium chloride) consists of 
sodium ions (Na*) and chloride 
ions (CI-). The internal structure 
of crystals ensures the densest 
packing of the building particles. 
The stick and ball model, often 
used to depict the internal 
structure of crystals, is convenient 

to show the arrangement of the 
building particles in the crystal 
but does not convey a realistic 
impression of densest packing. 
(See also p. 113 for the 
representations of molecules.) 

Arrangement 

of sodium 
and chloride 

ions in the 
common salt 

crystal 

A better model for this purpose is 
one in which the building 
particles touch each other: 

The packing 
of sodium 

and chloride 
ions in the 

-ommon salt 
crystal 
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When Johannes Kepler 
examined snow crystals, he 
arrived at the idea of densest 
packing intuitively. 

He did not know about 
molecules and atoms, but 
imagined the internal structure 
of the snowflake as a heap of 
densely packed balls. He 
described this in 1611, and his 
drawing is very much like a 
heap of cannonballs. 

Crystal structure on British stamp 

> 
| WM 

cr Wirt Fs 

ABoveE: Kepler’s drawings of the internal structure of snowflakes 
BELOW: Cannonballs, Laconia, New Hampshire 



i Vio ri ) 

M. C. Escher’s Symmetry Drawing E 97—1955 

2 pa 4 

ry Drawing E 105—1959 

a 

M. C. Escher’s Symmet 

If the packing particles are simply spheres, such as carbon atoms or For an existing crystal, dove-tail 
sodium and chloride ions, not much variation is possible. However, packing is illustrated by an organic 
when molecules (which are seldom spherical) are building up the molecule with a complicated name 
crystal, minimizing the empty space between molecules to achieve (1,3,5-triphenylbenzene). 
densest packing is no trivial matter. Because empty space has to be 
minimized, symmetry planes are rarely present in the internal 
structure of crystals. Rather, the molecules are arranged in such a 
way that the concave part of one molecule accommodates the 
convex part of the other molecule. This is called dove-tail packing. 

M. C. Escher’s periodic drawings of dogs and of winged horses are 
excellent illustrations of this type of densest packing. Of course, 
these illustrations are only in two dimensions, and crystals extend 
in three dimensions, so you have to use your imagination. 

1, 8, 5-triphenylbenzene 
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Quasicrystals 

Quasicrystals are somewhere 
between amorphous bodies (like 
glass) and perfect crystals (like 
diamonds). 

Crystals are regular and periodic. 
These stipulations set severe 
limitations on the internal 
arrangements that can make a 
crystal. To understand this, we 
will look again at two-dimen- 
sional models. We have seen that 
it is impossible to cover a surface 
with equal-size regular pentagons 
(see p. 169). This can serve to 
illustrate (in our imagination) 
that certain symmetries—most 
notably 5-fold symmetry—are 
impossible in three-dimensional 
networks as well. We have also 
seen—in the example of the 

es ees 25 x 
regular pentagons of gall 
able suiace veld AL 

ieBOuBAOs mann 
(SSe iS Pape iS) PES 
WA, ‘a VZV ee man /\sa a, ae 
OZaes OLR 

on 
e PEEP SEIN SAA EY \auauien, ee Ee 

HOPI KOY¥ 

Albrecht Diirer’s drawing 

Creating a planar pattern with 

gradually changing-size regular 
pentagons (see p. 170) was 
originally considered more of a 
mathematical recreation than a 
truly scientific endeavor. The 
most famous planar network 
with long-range pentagonal 
regularity was created in tiles by 
the Oxford mathematician Roger 
Penrose in the early 1970s. 

display 5-fold symmetry. 

oR 
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Serendipity 

In 1982, Israeli scientist Dan Shechtman unexpectedly discovered 
the existence of three-dimensional solids with regular and nonperi- 
odic internal structures. Such structures are called quasicrystals. 

There is no order in glass. There is no way to tell from the structure 
of one part what another part’s structure will be. With diamond, on 
the other hand, knowing the structure of the unit cell tells us the 
structure of the entire crystal, and it will be the same throughout. 

The symmetry of a quasicrystal is categorized as being somewhere 
in between the lack of symmetry of amorphous glass and the perfect 
symmetry of diamond. Although the structure is not the same 
throughout, there are simple rules that enable us to describe it. 

Many scientists were greatly surprised at first by the discovery of 
quasicrystals. It took Professor Shechtman two years to get the report 
of his discovery published. The appearance of his paper in 1984 
caused a minirevolution in solid state physics and crystallography. 
Hundreds and hundreds of papers have followed. It is interesting to 
note that what started as an exercise in symmetry considerations 
evolved into a new branch of science. 

Asove: Dan Shechtman (1991) 

LEFT: Quasicrystal Al-Li-Cu 

BELOW: Sculpture resembling a 
quasicrystal by Swiss sculptor Peter 
Hdchler, Lenzburg, Switzerland BELOW: Scanning electron micrograph of quasicrystalline Al-Cu-Ru 
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EPILOGUE 

One can only marvel at the richness and diversity 
in the worlds of symmetry. Yet what we have seen 
here, in our mostly visual journey, is merely the tip 
of the iceberg. We have just scratched the surface. 
All of the subjects introduced, all the photos and °* 
drawings, all the roads embarked upon here can 
lead in many directions and may serve to introduce 
you to further discoveries and newer insights. 

A word of caution, however: at times you may get 
truly saturated with thoughts of symmetry. 
Focussing too much attention on regulation, 
repetition, balance or uniformity can be confining 
and irritating—can even become obsessive. 
Perfection may not be a suitable characteristic for 
human habitat. For example, in the 14th century 
Japanese Essays in Idleness, it is said that: “In 
everything . . . uniformity is undesirable. Leaving 
something incomplete makes it interesting, and 
gives one the feeling that there is room for growth 
... Even when building the imperial palace, they 
always leave one place unfinished.” 

Or in The Magic Mountain, Thomas Mann writes 
that snowflakes are “ .. . too regular, as substance 
adapted to life never was to this degree .. .” and 
how “... builders of antiquity purposely and 
secretly introduced minute variation from 
absolute symmetry in their columnar structures.” 

Similarly, some Muslim rug weavers believe that 
to make a pattern perfect will trap their soul. 
Therefore they introduce a very small change of 
color in an otherwise perfect pattern. 

Indeed, lack of symmetry may be as appropriate in 
some cases as its presence may be in others. Never- 

theless, we find symmetries everywhere; they are 
part of our environment and part of our existence. 
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Let us never forget then, that although symmetry 
is a fascinating concept for exploration and for 
unifying diverse fields of human endeavor, it is not 
symmetry alone that so enriches our lives. It is just 
an ingredient in nature and human creation, merely 
a tool. Symmetry only helps us understand and 
appreciate the beauty and wonder of our universe. 

Remember the person mentioned in the 
introduction who got irritated by the ubiquity of 
symmetries? We hope that something similar 
(minus the irritation!) will happen to you as a 
result of this book, that you will see new patterns 
and make new connections in the world around 
you. We hope that the concepts illustrated here 
will lead you to further exploration and study. And 
lastly, we hope that this heightened awareness will 
become a positive and enjoyable factor in your life. 

Note: If you wish to contribute to a future book 
on symmetry, write: 

Istvan & Magdolna Hargittai 
Eotvos University 

H-1431 Budapest, Pf. 117 Hungary 
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Istvan and Magdi are married and currently live in Budapest, 
Hungary. They have two children, Balazs, born in 1970, and Eszter, 
born in 1973. Both Balazs and Eszter spent several years in the U.S., 
since the family travelled together when Istvan was a visiting 
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Evanston, Illinois. Although he is in the same field as his parents, his 
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Istvan and Magdi specialize in molecular structure research. They 
are interested especially in the simplest, most fundamental 
molecules. They use an experimental technique called electron 
diffraction. In an electron diffraction apparatus, very fast electrons 
are deflected by leading them into the field of molecules. The 
deflected electrons strengthen and weaken each other (called 
interference) and the resulting diffraction pattern is photographed. 

A typical pattern is shown at right. It consists 
of a system of concentric rings. They resemble 
the pattern you see when you throw a stone 
into still water. 

From the diffraction pattern, it is possible to 
determine the distances between the atoms in 
the molecule. Then, from the interatomic _ 
distances, the shape and symmetry and the Diffraction diagram 
entire geometry of the molecule can be 
reconstructed. The Hargittais, along with colleagues, have built a 
unique electron diffraction apparatus over the years in Budapest. It is 
based on a rudimentary apparatus they purchased 25 years ago from 
a factory in the Ukraine. Their special equipment has attracted 
visiting scientists to the lab from all over the world. 

The symmetry of molecules, alas invisible to the naked eye, was the 
original incentive that directed the Hargittais’ attention to the 
symmetries of the visible world. They have been involved in the 
creation of several books on symmetry-related topics, but this is 
their first attempt at reaching the general public with their 
experiences and ideas on the subject of symmetry. 

Ezster and Baldzs 
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Bracewell, R. N., 32 
Bridges, xiii, 125, 130 
Brisse, Francois, 181 
Bruegel the Elder, Pieter, 153 
Buckingham Palace, 12 
Buckminsterfullerene, 100-101, 204n 
Buckyball molecule. See 

Buckminsterfullerene 
Buday, George, 9 
Buddha, sculptures, 5, 28 
Buildings. See Architecture 
Butterflies, 2, 18 

Calcite, 199 
Calmness, 194 
Campbell’s Soup Cans, 175 
Canadian symbols, 181 
Cannonballs, 206 
Capek, Karel, 198 
Capitol Dome, Washington, D.C., 64, 194 
Carbon, 169, 204 
Carroll, Lewis, 33 
Cars. See Automobiles 
Castel del Monte, 84 
Castillo de San Marcos, 83 
Cathedrals. See Churches 
Ceramic tiles. See Tilework 
Chemical bond, 113-114 

Children’s drawings, 14 
China: 

and snowflakes, 73 
and Taoism, 118 

Chinese lattice designs, 142 
Chinese papercutting, 68 
Chiral, 27-36, 148 

definition, 29 
Chirality, 27-36, 50, 148-149, 151 

and dissection, 34-35 
hetero-, 28-30 
homo-, 30 

of molecules, 32-33, 113, 148 
Chung, Kwan-Mo, 203 
Churches, x—xi, 14, 117, 122 
domes of, 64-65, 67 
Eastern Orthodox, 117-118 
floor tiles of, 183 
rotational motifs of, 48, 67 
star polyhedra on, 98 

Circle, 81, 166 
Circular shapes, 85-86 
Cloud spirals, 149 
Cobalt-60 experiment, 36 
Coca-Cola Bottles, 175 
Coke machines, 115, 120 
Coliseum, Rome, 85 
Colonnade, St. Peter’s Square, 123 
Color reversals, 119-120, 189 
Columns, 123, 126-128, 148 
Computer drawings, 150, 170 
Confusion, 194 
Constant shift, 124, 146, 166, 178 
Contrapunctus, 14 
Cook, T. A., 163 
Copernicus, 103 
Cosmonergy, 203 
“Coupe du Roi, La,” 35 
Coxeter Haswiie Oil 
Creation of Adam, 2.7, 164 
Crystals, 32, 190, 197-200, 208 

internal structure of, 199, 203-209 
quasi-, 208-209 
stereographic projections of, 201-202 
see also Snowflakes 

Crystal-Slave, 97 
Cube, xvii, 87-92, 95-96, 202 

fold-out of, 89 
Cupolas. See Domes 
Curves of Life, The, 163 
Cylindrical symmetry, 22-26, 68, 81 

definition, 22 

Dali, Salvador, 97 
Dandelions, 23 
Dendrites, 26 
Dendritic growth, 72-73 
De Revolutionibus Orbium Caelestium, 

103 
Descartes, René, 74 
Diamonds, 204—205 
Dickens, Charles, 121 
Diffraction diagram. See Electron 

diffraction diagram 
Dissection into chiral shapes, 34-35 
Doczi, G., 164 
Dodecahedron, 90-97 

star, 98 
Dog drawing, 207 
Domes, 64-66, 100 
Don Quixote, 40 
Double-headed symbols, 10, 160 
Dove-tail packing, 207 

see also Symmetry drawings (Escher’s) 
Drawing on the Right Side of the Brain, 

36 
Duality, of regular polyhedra, 92 
Diirer, Albrecht, drawing, 208 



Earth, 103 
Edwards, Betty, 36 
Egyptian border designs, 137 
Egyptian sculptures, 5, 7 
Eiffel Tower, 82 
Electrolytically deposited copper, 26 
Electron diffraction diagram, 213 
Electron pairs, 113-114 
Elephant protection ad, 193 
Equilateral triangle, 34, 80, 109-111, 169 
Escher, M. C., 191-192, 207 
Euler’s formula, 91 

Facades, 195-196 
ences) 130) 175; 1177 ze ‘ 
Fibonacci numbers, 154-155, 158, 

161-163 
Fish-boat drawing, 191 
Fish sculptures, 42 
Five-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Flatiron Building, 11 
Flowers, xii 

bilateral symmetry of, 4 
and Fibonacci numbers, 154-158 
reflection and rotation of, 53-57 
rotational symmetry of, 47 
and spiral forms, 156-158 

Fold-out polyhedra, 89, 93 
Fortresses, 83 
Forward motion, 16-21 
Fossil snails, 151 
Four-animal drawing, 192 
Four-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Fuji, Mount, 25 } 
Fuller, R. Buckminster, 100 
Fuzzy symmetry, xiii 

Galaxy, 149 
Galilei Tower, 153 
Gallico, Paul, 70 
Geodesic dome, 100 
Geometrical symmetry, xii—xiv, 6, 81 

see also Bilateral symmetry 
Girls, 190 
Glass, 205, 209 
Glide reflection, 132-133, 178-179, 194 

definition, 132 
Glucose, 33 
Gogh, Vincent van, 125, 150 
Golden ratio, 160-164 
Golden rectangle, 161 
Golden section, 160-162 
Goryokaku Castle, 83 
Graphite, 169, 204 ; 
Great Mosque, Spain, 124 
Greco, El, 193 
Greek patterns, 136 
Guggenheim Museum, 147 

H (letter), 52 
Hachler, Peter, 209 
Hackel, Ernst, 94 
Handedness, 28-36, 113, 148, 151 
Hands, 27-30, 32 
Hargittai, Istvan, 212-213 

Hargittai, Magdolna, 212-213 
Harmonices Mundi, 96 
Harmony, xv, 3, 14 
Hauptman, Herbert, 97 
Hawaiian plants, 47, 155-157 
Heartfield, John, 45 
Helical symmetry, 147-148 

definition, 147 
Helices. See Helix 
Helix, 146-148 
Hermitage ceiling, 160 
Heros’ Square, Budapest, 12 
Heterochiral, 28-30, 36, 151 

definition, 29 
and dissection, 34-35 
of molecules, 32-33, 113, 148 

Hexagon, 80, 83, 167-170 
Hexagonal symmetry, 71 
Hexahedron. See Cube 
Hokkaido, Japan, flag, 62 
Homage to Greco, 193 
Homochiral, 30-31 

definition, 31 
Honeycomb, 165, 167-168, 193 
Horns (animal), 152 
Hot-air balloons, 22 
Hubcaps, xii, 41, 63 
Human: 

body, xii, 5-6, 30 
brain, 36 
face, xvi, 7-9 
hands, 27-30 

Humphreys, W. J., 76 
Hundertwasser, Friedensreich, 150, 196 
Hungarian needlework, 135, 169, 184-187 
Hungarian Parliament, 12-13, 65 
Hurricane, 149 

Ice crystals. See Snowflakes 
Icosahedron, 90-97 

and buckyball molecule, 100-101 
star, 98 

Impossible stairway, 147 
Indian artworks. See Native American 

designs 
Insects, 2, 18, 134, 165, 167-168, 193 
International Herald Tribune ad, 193 
Iolani Palace, Honolulu, 13 
Islamic Allah mosaic, 182 
Isle of Man coat of arms, 44 
I Would Like to Be Loved, 29 

Jacob’s Dream, 150 
Janssen, Horst, 97 
Japanese border designs, 141 
Javanese batik designs, 173 
Jefferson Memorial, 85 
Jellyfish, 45, 58 
Jewish tombstones, 29 
Joy, 194 

Kama Sutra, 205 
Karinthy, Frigyes, 121 
Kennedy Center, 126 
Kepler, Johannes, 74, 95-96, 160, 206, 208 
Koestler, Arthur, 122 
Korean designs, 166, 189 

beam-end, 56, 143 
fences, 130 

Korean flag, 118 
Kunjongjon Hall, Seoul, 11, 126 

Lantos, Ferenc, 97 
Lattice designs, 142 
Leaf arrangements, 4, 154-157 
Leaning Tower of Pisa, 66 
Left-handedness, 31-35, 148, 151 
Lengyel, Mrs. Gyérgyi, 135 
Leonardo da Vinci, 5, 97, 106, 155, 163 
Leonardo of Pisa. See Fibonacci numbers 
Lincoln Memorial, 83 
Literary antisymmetry, 121-122 
Loeb, Arthur, 105 
Logarithmic spiral, 161-163 
Logos, 30, 43-44, 46, 62, 120 
Loren, Sophia, 171 
Luca Pacioli; De Divina Proportione, 97, 

106 
Luzhniki Stadium, Moscow, 85 

Macromolecules, 148 
Magic Mountain, The, 5, 77 
Magic numbers, 200, 204 
Magnetite adularia, 198 
Malwiya, the Great Mosque, 153 
Mamedoy, Khudu, 190-191 
Mann, Thomas, 5, 77 
Many-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Maple leaf drawing, 181 
Marine organisms, 45, 58-60, 94 
Masks, Native American, 8 
Matisse, Henri, xii, xvi 
McLachlan, D., 72-73 
Mexican border designs, 138 
Michelangelo, 27, 159, 164 
Microcosmos, 14 
Minerals. See Crystals 
Mirror image, 2-4, 16, 28, 30, 32 
Mirror plane, 2-3, 14, 52, 68, 71, 81, 88, 

92,109, 116, 178, 199 
definition, 2 
see also Reflection plane; Symmetry 
element; Symmetry plane 

Mirror symmetry, 2-4, 7, 9, 28, 34, 38-39, 
53-54, 58 
see also Antimirror symmetry; Bilateral 
symmetry; Reflection 

Molecules, 71, 113, 213 
buckyball, 100-101 
handedness of, 32-33, 113, 148 
macromolecules, 148 
shape of, 113-114, 206-207 
structure of, 113, 144 
see also Crystals 

Montmartre, On, 125 
Mosaics, 143, 182-183 
Mosques, 86, 124, 153, 182 
Moth’s eye, 168 
Motion: 

forward, 16-21 
inducing with decoration, 144, 194 
rotational, 37-41 
vertical, 15, 22-26 
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Motorcycle with sidecar, 22 
Mount Vernon, 11 
Movie billboards, 172 
Mukhina, Vera, 120 
Mushroom cloud, 25 
Mushrooms, 25 
Musical compositions, 14 
Mysterium Cosmographicum, 95 

Nakaya Ukichiro, 78 
Native American designs: 

bags, 188 
band patterns, 138 
baskets, 188 
masks, 8 
planar designs, 188 
pottery, 49, 138, 159 

Nature (journal cover), 101 
Nautilus sea shell, 162-163 
Navajo designs (stamps), 188 
Needham, J., and Lu Gwei-Djen, 73 

eedlework, 135, 169, 184-187 
eighbors II: Spiral Sun and Moon- 
house, 150 

Nesquehonite, 199 
New Scientist (journal covers), 101, 158 
Northupite, 199 
Notebooks, The (Leonardo da Vinci), 155 
Notre Dame Cathedral, 122 
Nucleotides, 33 

Octagon, 80, 84, 169 
Octahedron, 90-96, 110-111, 202 
Oenothera biennis, 154 
Oil platform, 168 
On Growth and Form, 163 
Op-art, 119, 169 
Orchids, 4 
Orosz, Istvan, 193 
Osawa, E., 101 

Packing, 94, 111-112, 166-170, 180, 
206-207 
see also Planar patterns 

Paintings, xii, xvi, 5,9, 14, 27, 29, 45, 97, 
105-106, 119, 150, 153, 169, 190-193, 
207 

Palais Royal, Paris, 126 
Pantheon, Paris, 66 
Papercutting, 68, 144 
Parachutes, 15, 22 
Parallelogram, 169, 180 
Pasteur, Louis, 32 
Pavements, xvi, xvii, 143, 174, 176 
Penrose, Roger, 208 
Pentagon, 81, 83, 169 

patterns from, 170, 208 
Pentagon, The (Washington, D.C.), 83 
Pentagonal dodecahedron, 97 
Perestroika poster, 119 
Perfect symmetry, xiii, 211 
Periodicity, 124, 166,.172, 203, 205 

definition, 124 
see also Repetitive symmetry 

Persian designs, 140, 189 
Phyllotaxis. See Leaf arrangements 
Picasso, Pablo, 9 

22 

SYMMETRY 

Pickover, Clifford A., 150 
Pinwheels, 37-39 
Pine cones, 158 
Planar patterns, 165-177, 181-183, 

188-196 
creating, 178-180 
17 possible symmetries of, 184-187 
see also Repetitive symmetry 

Planetary model, 95 
Plantago media, 154 
Plants: 

bilateral symmetry of, 4, 54 
cylindrical symmetry of, 23-25, 68 
and Fibonacci numbers, 154-155, 158 
and grouping of nuts, 107, 112 
and leaf arrangements, 4, 154-156 
rotational symmetry of, 46, 53-57 
spherical symmetry of, 23 
as spirals, 145, 152, 154, 156-158 
tendrils, 152 

Plato, 91, 160 
Platonic solids. See Polyhedra, regular 
Poe, Edgar Allan, 9 
Point groups, Xvi, Xvili 
Points on a sphere, 111, 202 
Polar bear drawing, 181 
Pollen, 23 
Polygons, 80-81, 169-170, 180 

architectural examples of, 82-86 
regular, 80, 169 
Polyhedra, 87-106, 108-111, 200 
Archimedean, 99 
models of, 89, 93 
and molecular shapes, 100-101, 
113-114 

regular, 90-97, 104-105, 109-110 
in sculptures, 87, 103-106 
semiregular, 99 
star, 98 
see also Crystals 

Poppy, Oriental, 57 
Pottery, Native American, 49, 138, 159 
Prelog, V., 33 
Prisms, 102 
Propellers, 37, 40 
Proportion, xv 

see also Golden ratio 
Proportions of Adam’s Creation, 164 
Pyramid (at the Louvre), Paris, 105 
Pyromorphite, 198 

Quartz crystals, 32, 205 
Quasicrystals, 208-209 
Qutb Minar, 66 

R (letter), 3 
Radial symmetry, 68, 81 

see also Cylindrical symmetry 
Radiolarians, 94 
Radnoti, Miklés, 9 
Railroad tracks, xii, 129 
Reflection, xii-xiv, 2, 9, 28, 52-53, 68, 71, 

81, 88, 109, 116, 172, 178, 199, 203 
antireflection, 116-117, 119-120, 122 
definition, 2 
and repetition, 131-144 
see also Bilateral symmetry; Mirror 

symmetry; Planar patterns; Reflection 
and rotation 

Reflection and rotation, 51-52 
in architecture, 64-67, 82-86 
of flowers, 53-57 
of logos, 62 
of papercutting, 68 
of polygons, 80-86 
of polyhedra, 88-106 
of primitive organisms, 45, 58-60 
of snowflakes, 69-78 
of streetlights, 61 
see also Planar patterns 

Reflection plane, 2, 9, 52-54, 74, 81, 88, 
103, 109, 116, 199-200 
see also Mirror plane; Symmetry plane 

Regular Isotopes, 91 
Regular polygon. See Polygons, regular 

definition, 80 
Regular polyhedra. See Polyhedra 

definition, 90 
Religious art, 14 

see also Buddha; Churches; Mosques 
Repetition, xii, 123-144, 146, 166, 172, 

178, 203 
definition, 131 

Repetitive symmetry, 123-131, 134-144 
and band patterns: classes of, 131-133 
creating, 178-180 
of crystals, 201-208 
definition, 131 
of planar patterns, 165-196 

Reston, James, 121 
Reversals. See Antisymmetry 
Right-handedness, 31-35, 148, 151 
Rockets, 22, 23 
Roman aqueduct, 128 
Roman border designs, 137 
Roman bridge, xiii 
Roman water fountain, 128 
Roofs, planar patterns of, 176 
Rotation, xii, 39, 52, 68, 71, 109, 
132-133, 147, 172, 178, 199, 203 
antirotation, 118-119 
definition, 39 
of regular polyhedra, 81, 88 
see also Planar patterns; Reflection and 
rotation; Spirals 

Rotation axis, 39, 52, 54, 71, 118, 132, 
178 
definition, 39 
of regular polygons, 80-81 
of regular polyhedra, 88-89, 92, 103, 
108-109 

symbols for, 39, 52, 81, 88 
Rotational patterns, creating, 50 
Rotational symmetry, 38-50, 53-54, 58, 

61-62, 67-68, 146, 194 
definition, 39 

Royal Cut, The, 35 
Russian plate, 159 

St. Isaac Cathedral, 64 
St. Peter, statue of, 7 
St. Petersburg, 83 
St. Peter’s Dome, Vatican City, 65 



St. Peter’s Square, Vatican City, 13, 123, 
126 

Salt columns, Dead Sea, 26 
Salt crystal, 206 
Schénbrunn Palace, 11 
Science (journal cover), 101 
Scoresby, William, 74-75, 198 
Sculptures, xv, 5, 7, 28, 30, 42, 51, 63, 78, 

87, 104-106, 120, 197, 203, 209 
Sea gull drawing, 191 
Seashells. See Shells 
Sea urchins, 60 
Seed arrangements, 158 
Seedpods, 46, 57 
Semiregular polyhedra, 99” 
Shechtman, Dan, 209 
Shells, 151, 162-163 
Sidi bu Medien, 182 
Simétria, xv 

Six-cornered Snowflake, The, 74* 
Six-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Snail shells, 151 
Snow Crystals, 76-77 
Snow (Nakaya’s), 78 
Snowflake, 70 
Snowflakes, 69-78, 170, 198, 206 

artificial, 78 
Soccer, 31, 100 
Sodium chloride, 206 
Solar system, Kepler’s model of, 95 
Space groups, xvii 
Space shuttle model, 21 
Sphere, 103 

arranging points on, 111, 202 
see also Spherical symmetry 

Spherical symmetry, 23-24, 103 
definition, 23 

Spiegel, Der (journal covers), 30 
Spiral Is Symbol of Life and Death, The, 

150 
Spirals, 145-150, 159, 166 

Fibonacci numbers, 154-155, 158 
logarithmic, 161-162 
in plants, 145, 152, 154-158 
in shells, 151, 162-163 
in staircases, 33, 146-147 
in towers, 66-67, 153 

Spiral staircases, 33, 146-147 
Spiral symmetry, 147-153 

definition, 147 
see also Spirals 

Spirograph patterns, 50 
Sports arenas, 85-86, 173 
Square, 80, 82, 86, 88, os 
Stalactites, 26 
Stalagmites, 26 
Stamps, xiv 

of Bauhaus, 164 
of castle, 84 
of crystals, 199, 206 
of daisy, 158 
of fish, 42, 168 
of hands, 29-30, 45 
of insects, 18, 193 
of Kepler, 95 

of Mt. Fuji, 25 
of Navajo designs, 188 
op-art, 119 
of plants, 23, 25,54, 158, 181 
of sculpture, 63 
of shells, 151 | 
of snowflakes, 71 
of soccer, 100 
with 12-fold rotational symmetry, 46 

Star corals, 60 
Starfish, 59 
Star polyhedra, 98 
Starry Night in St. Rémy, 150 
State capitol buildings, 64-65 
Stereographic crystal projections, 201-202 
Storms, 149 
Streetlights, 61, 125 
Sunflowers, 158 
Swans, 116 
Swastika, 45 
Symmetry (H. Weyl), 91 
Symmetry (types). See: Antimirror 
symmetry; Antirotational symmetry; 
Antisymmetry; Bilateral symmetry; 
Cylindrical symmetry; Fuzzy 
symmetry; Geometrical symmetry; 
Helical symmetry; Mirror symmetry; 
Perfect symmetry; Repetitive 
symmetry; Rotational symmetry; 
Spherical symmetry; Spiral symmetry; 
Translational symmetry 

Symmetry classes, xvi, 131, 135 
Symmetry drawings (Escher’s), 191-192, 

207 
Symmetry element, 2, 16, 39, 52, 71, 81, 

88, 109, 116, 124, 131, 166, 172, 178, 
199, 203 
see also Antimirror; Antirotation axis; 
Constant shift; Glide reflection plane; 
Mirror plane; Reflection plane; Rotation 
axis; Symmetry plane 

Symmetry operation, 2, 39, 124, 131 
see also Antireflection; Antirotation; 
Reflection; Repetition; Rotation; 
Translation 

Symmetry plane, 2, 38, 52-53, 61, 68, 71, 
80-81, 88, 108-109, 116, 199 
see also Mirror plane; Reflection plane 

Synagogues, 48, 66 
Székely, Vera, 29 

Tale of Two Cities, A, 121 
Taoism, 118 
Tartaric acid crystal, 32 
Tatlin, 153 
Tendrils, plant, 152 
Tetrahedron, 90-93, 95-96, 109, 111, 113 
Textile designs, 173, 184-187 

see also Needlework 
Thenardite, 199 
Thompson, D’Arcy W., 163 
Three-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Through the Looking Glass, 33 
Tilework, 48, 139, 173, 181, 183, 

189, 208 
roof, 176 

Tombstones, 29 
Topkapi Palace, 182 
Tower of Babel, 153 
Towers, 66-67, 86, 153 
Translation. See Translational symmetry 
Translational symmetry, 123-130, 146 

band patterns, 131-144 
definition, 124 
helical, 146-148 
planar patterns, 165-196 
spiral, 146-160, 163 

Tree rings, 24 
Trees, 247127, V'5i7, 
Trigonal bipyramid, 109-111 
Truncated polyhedra, 99 
“Two Diagnoses,” 12.1 
Two-fold symmetry. See Reflection and 

rotation; Rotational symmetry 
Giycerminenes 

Unique point, xvi 
Unit cell, 204 
Unity, 190 
Universe, 36, 118 

Varad, Hungary, 83 
Vasarely, Victor, 104, 119, 169 
Vasilii Blazhennii Cathedral, 67 
Vehicles, 20-21, 119 
Vertical motion, 15, 22-26 
Viruses, 94 
Volcanoes, 25 

Walls (of buildings), 124, 176, 182-183, 
195-196 

Wall tiles, 139, 183 
Walnuts, 107, 112, 114 
Warhol, Andy, 175 
Washington, George, 11 
Washington Monument, 82 
Waterwheels, 41 
Weather, 73 
Weyl, Hermann, 91 
Wheels, 41 
Whirlpool galaxy, 149 
Windmills, 40-41 
Winged horse drawing, 207 
Women’s heads, paintings of, xii, 9 
Wurtzite, 199 

Yin/Yang, 73, 118 

Z (letter), 39 
Zeppelin, 21 
Zometool model, 101 
Zoo animals, 19 
Zusetsu, Sekka, 75 
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CHAPTER I: 
Pace 1. Tiger—Fedezziik f6l a szimmetridt!, M. Hargittai, 
I. Hargittai. Tank6nyvkiad6, Budapest, 1989 

Pace 2.. Butterflies—The Observer's Book of Butterflies, 
W. J. Stokoe. © Frederick Warne & Co., London, 1937,1979 « 

Pace 3. Tiger—Fedezziik fol a szimmetridt!, M. Hargittai, 
I. Hargittai. Tankényvkiad6o, Budapest, 1989 

Pace 4. Background Redwood leaf—Art Forms from Plant Life, 
William M. Harlow. Dover Publications, Inc., New York, 1976 

Pace 5. Buddha—Ferenc Hopp Museum of Eastern Asiatic Arts, 
Budapest, photo by Agnes Kolozs; King Mykerinos—Lehnert & 
Landrock, Cairo; Nude—Charles Wilp, Diisseldorf; The Magic 
Mountain—This passage is in French in both the original 
German and English translation. English translation provided 
by Dr. Jack M. Davis, Professor of English, University of 
Connecticut, Storrs, Connecticut 

Pace 6. Gymnast—Tamias Szigeti, Magyar Hirlap, Budapest, 
Swimmer—MTI-Fot6 Archive, Budapest; Pushups, parallel bars, 
diver—Budd Symes Photography, Los Angeles 

PAGE 7. Aztec—American Indian Design & Decoration, 
Le Roy H. Appleton. Dover Publications, Inc., New York, 1971; 
Hungarian king—Fedezzuk f6l a szimmetridt!, M. Hargittai, 
I. Hargittai. Tankényvkiad6, Budapest, 1989 

PAGE 8. Masks—American Indian Design & Decoration, 
Le Roy H. Appleton. Dover Publications, Inc., New York, 1971; 
and Authentic Indian Designs, Edited by Maria Naylor. Dover 
Publications, Inc., New York, 1975 

Pace 9. Picasso—Museum of Fine Arts, Budapest; Edgar Allan 
Poe—Ame rican Antiquarian Society, Worcester, Massachusetts 

PacE 10. Leuven—Anne Watteyne, Leuven, Belgium 

PAGE 12. Heros’ Square—Janos Varaljai, MTI-Fot6, Budapest 

Pace 14. William Blake—Fitzwilliam Museum, Cambridge, 
U.K.; Children’s drawings—Koml6 Music School, Koml6, 
Hungary, courtesy of Maria Apagyi, Pécs, Hungary 

CHAPTER II: 

Pace 15. Parachute—Fedezztik f6l a szimmetriat!, M. Hargittai, I. 
Hargittai. Tank6nyvkiad6, Budapest, 1989 (digitally manipulated) 

Pace 18. Bugs (stamps excluded)—Animals, selected by 
Jim Harter. Dover Publications, Inc., New York, 1979 

PAGE 20. Work truck, boats—Dr. Istvan Gera, Budapest; Trolley 
bus, tram—Fedezztik fol a szimmetriat!, M. Hargittai, I. Hargittai. 
Tank6nyvkiado, Budapest, 1989 

Pace 2.1. BMW—Dr. Istvan Gera, Budapest; Airship, 
motorcycle—Fedezziik f6l a szimmetriat!, M. Hargittai, 
I. Hargittai. Tank6nyvkiad6, Budapest, 1989 

PAGE 22.. Apollo 11, Apollo 9—NASA, Washington, D.C.,; Hot- 
ait balloons—AP/Wide World Photos, New York 

Pace 2.3. Pollen—Dr. R. Klockenkamper, Institute fiir 
Spektrochemie, Dortmund, Germany 

PacE 24. Tree near Aveley—C.T. Ballard; Tree rings—Art Forms 
from Plant Life, William M. Harlow. Dover Publications, Inc., 
New York, 1976 

Pace 25. Mt. Fuji—AP/Wide World Photos, New York; 
Mushroom, mushroom cloud—Fedezztik fol a szimmetridt!, 
M. Hargittai, I. Hargittai. Tank6nyvkiad6, Budapest, 1989 

Pace 26. Salt columns—Palphot Ltd., Herzlia, Israel; 
Copper—Dr. Maria Kazinets, University of Be’er Sheva’, Israel, 

SYMMETRY 

Iron—Dr. J. Morral, University of Connecticut, Storrs, 
Connecticut 

CHAPTER III: 
Pace 28. Hands—Lloyd Kahn, Bolinas, California 

Pace 29. I Would Like to Be Loved—Vera Székely, Mulleron- 
Janury, France 

Pace 30. Covers of Der Spiegel— June 15, 1992, “Farewell to 
God” and May 18, 1992, “Who Owns the Earth,” Spiegel 
Publications, Hamburg 

PAGE 31. Soccer player—Budd Symes Photography, Los Angeles 

PaGE 32. Amino acid—The Galactic Club: Intelligent Life in 
Outer Space, © 1975 by Ronald N. Bracewell. Reprinted by 
permission of W. H. Freeman and Co., New York 

Pace 33. Spiral stairease—The Origins of Life: Molecules and 
Natural Selection, L. E. Orgel. John Wiley & Sons, Inc., New 
York, 1973 

Pace 34. Computer illustrations—Suzanne Parks, Bolinas, 
California, based on drawings by Ferenc Lantos, Pécs, Hungary; 
Apples—Lloyd Kahn, Bolinas, California 

CHAPTER IV: 

Pace 38. Computer illustrations—Suzanne Parks, Bolinas, 
California, after drawings by Ferenc Lantos, Pécs, Hungary 

PAGE 39. Making pinwheel—Ferenc Lantos, Pécs, Hungary 

PAGE 40. Water windmill—A Field Guide to American 
Windmills, by T. Lindsay Baker. © 1985 by the University of 
Oklahoma Press, Norman, Oklahoma 

Pace 41. Windfarm—George Steinmetz. Kenetech/U.S 
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