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Preface 

This book is based on the experiences of a twenty-five lecture course given to 
second year undergraduate students. The main aim of both book and course 
is to provide a unified approach to the concepts and use of symmetry. There 

are some excellent texts containing treatments of the subject designed specifi- 
cally to cover certain applications, notably X-ray crystallography and vibra- 
tional spectroscopy, but few attempts have been made to provide a unified 

approach in a student text. 

We begin by considering the ways in which an object can be repeated in space 

by translation, rotation, reflection and inversion. Molecules can be discussed in 

terms of symmetry which involves only rotation, reflection and inversion and of 

combinations of these symmetry elements. This aspect of the topic is developed 

in a Chapter on point group symmetry. Crystals can only be described in terms 

of all the symmetry elements and their combinations and this theme is developed 

under the heading space-group symmetry. We have introduced the mathematical 

concepts of group theory as they are required to enable us to expand the useful- 

ness of concepts of symmetry and to provide a basis for discussions on and 

systematisation of the various physical properties of molecules and crystals. The 

last two chapters of this book deal with applications of the concepts discussed 

previously to problems of interest to the physical scientist. 

Throughout this book we have attempted to illustrate both the development 

and the application of the concept of symmetry by means of numerous examples. 

The reader is given the opportunity to follow through worked examples both in 

the main text and in the questions at the ends of the chapters. We believe that 

treatment of symmetry in this way leads to the most satisfactory presentation 

of the subject for undergraduates. 

Finally, we should like to thank all those who assisted in the production of 

this book; this includes those who prepared the typescript and those of our 

colleagues and students with whom we have had many valuable discussions on 

the topics dealt with in the text. 

J.D.D. 

S.D.R. 
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Introduction 

The concept of symmetry has applications in many aspects of chemistry and the 

use of a knowledge of symmetry and of the mathematical principles governing it 

is often a common feature in otherwise unrelated work. For example the deter- 

mination of the crystal structure of a protein, the interpretation of the vibrational 

spectrum of a vapour, and a molecular-orbital calculation on a conjugated organic 

molecule are related by a common requirement to make use of arguments based 
on symmetry. The importance of a knowledge of the basic symmetry elements, 

of their combinations, of the mathematical theory which describes their operation, 

and of the applications of symmetry in various aspects of chemistry cannot be 

overstressed. 

External Symmetry in Crystals 

The external faces of crystals generally provide a chemist with his first 

introduction to the importance of symmetry. The external faces of a crystal are 

of course related to the internal symmetry of the material and represent the 

appearance at the surface of the slowest-growing of the many possible faces of 

the crystal. The element copper has a face-centred cubic structure (Figure 1.1) 

and crystallises in the form of an octahedron (Figure 1.2). The faces of the 

octahedron represent the slowest growing planes of the copper crystal, which are 

the planes containing all of the atoms in the square diagonals of three of the 

cube faces. This is illustrated by the plane through atoms | to 6 in Figure 1.3. 

Growth along this plane produces the face labelled A in the octahedron in 

Figure 1.2. . > 

The external form of the crystals of a material is not invariant because 

any factor which affects the rate of growth of the crystal in various directions 

will affect the types of faces appearing at the surface. Alums crystallise in 

a form based on an octahedron with extra faces (Figure 1.4) but, if the crystals 

are grown at the bottom of a beaker, no growth can occur on the face which 
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Figure 1.1 Face-centred cubic structure of copper 

. 

Figure 1.2 Octahedral external form of copper crystals 

Figure 1.3 Plane of growth of copper crystal which forms one of the octahedral faces 
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Figure 1.4 External structure of an alum crystal 

\ 

Figure 1.5 Triangular tablet form of an alum crystal formed when growth along one 
face is prevented 

lies on the beaker and a triangular tablet (Figure 1.5) is formed instead of a 

complete octahedron. 

Sodium chloride crystallises as cubes from aqueous solution but addition of 

a small quantity of urea to the solution results in the development of small octa- 

hedral faces at the corners of the cube and addition of about 10 per cent of urea 
results in the crystallisation of the sodium chloride as octahedra. The urea does 

not enter the sodium’*chloride lattice but, because it is preferentially absorbed on 
planes parallel to the octahedral faces, it suppresses the growth of the crystal along 

these planes and causes them to develop slowly enough to appear at the surface. 

The external shape of a sodium chlorate crystal can likewise be changed from its 

normal cubic form when grown from aqueous solution to a tetragonal form by 

the addition of about 8% of sodium borate. 
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Although the final shape of a crystal does depend up
on the conditions under 

which it grows, two of its properties remain invariant; (i) its internal structure, 

and (ii) the angles between the faces at the surface. The internal structure of 

sodium chloride, represented by the relative positions of the atoms in the 

crystal, remains the same whatever the external form and this can be 

demonstrated by a constancy in the X-ray diffraction patterns for the various 

shapes of crystal. If the faces which appear at the surface can be identified, it 

can readily be shown that the angle between any two faces remains constant 

irrespective of any changes in the relative surface areas occupied by these faces. 

The external faces of a crystal are generally identified by a set of three integers 

(h k 1) called Miller Indices. These indices are derived from the intercepts that 

the plane forming the external face makes on the major axes of the crystal. Ifa 

crystal has major axes x, y, Z of length a, b, c respectively as in Figure 1.6 then 

the Miller indices are derived from the intercepts (in fractions of the axes lengths 

a, b and c) of the plane with these axes. The indices are obtained by taking the 

reciprocals of the intercepts and clearing the fractions, if necessary, by multi- 

plying through by a small integer. A plane which cuts the three major axes with 

intercepts of 3a, $b and 4c respectively would have Miller indices (3 6 4), i.e. 

formed by taking the reciprocals of the intercep
ts, 3/2, 3/1 and 2/1 and clearing 

the fractions by multiplying through by 2 to give
 (3 6 4). Miller indices of 

Figure 1.6 Diagram to show planes with Miller indices (2 2 3), (1 1 1) and (1 1 1) 



INTRODUCTION 5 

planes forming crystal faces are conventionally placed in brackets as shown. If a 

plane cuts any of the major axes with a negative intercept a negative sign is placed 

above its Miller index. For example a plane which cuts the three major axes 

with intercepts of —$a, —4b and 4c respectively will have the Miller indices 
(3 6 4). The intercept of a plane on an axis with which it is parallel is infinity 

and its Miller index is 0. In Figure 1.6 the plane LMN has intercepts of 4a, 4b 
and $c and thus has Miller indices (2 2 3). The plane PQR has intercepts of 
la, 1b and 1c along x, y and z and is thus the (1 1 1) face and the plane STU 

with intercepts —1a,—1b and —Ic is the (I I 1) face. The faces of the octa- 
hedron (Figure 1.2) are planes of the type(1 1 1),(1 1 1),(1 T 1)etc. and 

the faces on the cubic crystals of sodium chloride are of the type (1 0 0), 

(0 1 0),(0 O T)etc. 

Stereographic Projections 

One of the most convenient ways of representing the fact that angles between 

faces are constant for a given crystalline material is by means of a stereographic 

projection. This is a projection of the external symmetry of the crystal on the 

equatorial circle of a sphere which has the centre of the crystal at its centre. These 

projections of crystal faces are particularly useful in geological classifications of 

crystals but, in general, stereographic projections are a convenient means of 

representing three dimensional symmetry in two dimensions. The construction 

of a stereographic projection will be illustrated in this chapter for an octahedral 
crystal, but more general uses of these projections will be discussed in later 

sections. 

Figure 1.7 

and Construction of the stereographic projection of an octahedral crystal 

Figure 1.8 
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The stereographic projection of an octahedral crystal is constructed by 

placing the centre of the crystal at the centre of a sphere. The sphere’s radii 

which are perpendicular to the faces of the octahedron are then drawn as shown 

in Figure 1.7 and the points at which these radii cut the surface of the sphere 

are marked. The stereographic projection is then obtained by joining all of the 

points marked in the northern hemisphere to the south pole of the sphere and 

all points in the southern hemisphere to the north pole as shown in Figure 1.8. 

The intersections that lines from the north pole make with the equatorial plane 

of the sphere are marked by open circles (©) and the intersections of lines 

from the south pole are marked by closed circles (@). For the octahedral 

crystal, lines from both poles cut the equatorial plane at the same point and this 

is represented by a closed circle within an open circle (©). The stereographic 

projection for the octahedral crystal consists of the equatorial circle with the 

points of intersection of the lines from the poles marked as in Figure 1.9. 

Ores) 

are 

Figure 1.9 The stereographic projection of an octahedral crystal 

Internal Structure and Symmetry 

Tartaric acid is an optically active material and the crystals of its dextro- and 

laevo- forms are mirror images of each other as shown in Figure 1.10. The 

molecules of tartaric acid and the atoms in the molecules are distributed in 

space within the crystals in strict accordance with the laws of symmetry. In fact, 

in spite of the large variety of chemical substances which are crystalline solids and 

in spite of the possible variations in external symmetry, any crystal must belong 

to one of only 230 possible crystal symmetry types. These are the 230 space 

groups. If we extract from the crystal one of the molecules of tartaric acid then 

the symmetry of that molecule in isolation is characterised by its point group. 

Most molecules (including tartaric acid) belong to one of only 32 crystal point 

groups. There are some molecules, however, which do not belong to one of the 

32 crystal point groups. The 32 groups arise because there are restrictions on the 

axial symmetry of close-packed three-dimensional solids. Thus 5-, 7-, 8-, and 

infinite-fold axes (see page 73) are permitted in molecules but not in crystals. 

Many of the properties of the molecule of tartaric acid are governed by its 
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K_ 00! / e/a 
(or (1017 

LAN fis TRS, 

101 101 

dextro /aevo 

Figure 1.10 The external form of the dextro- and laevo- forms of tartaric acid 

symmetry. For example its optical activity and vibrational spectrum are 
governed by, and can be described in terms of, its symmetry. The molecular 

orbital description of the bonding in the molecule is also based on the symmetry 

properties of the molecular orbitals and of the atomic orbitals from which they 

are formed. 
In the course of this book we shall develop from a consideration of the basic 

symmetry elements and of their combinations to a discussion of space and point 

group symmetry. We shall introduce the mathematical concepts of group theory 

as they are required to enable us to expand the usefulness of concepts of 

symmetry and to provide a basis for discussions on and systematisation of the 

various physical properties of molecules and crystals. 

PROBLEMS 

1. What will be the final shapes of two-dimensional crystals of shapes A and B 

if the slowest growing faces are those indicated by the arrows? 
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2. What are the Miller indices of the planes which have the following intercepts 

along the major axes of a crystal: 

(i) 4, 4b, 3¢ 
(ii) 3a, b, $c 
(iii) 42, b, -c 
(iv) ta,—4b,-c? 

3. Draw a diagram to represent the planes with Miller indices (3 2 2)and(3 2 2) 

in a crystal system with three axes at right angles and of length a, b andc 

respectively. ; 

4. What are the Miller indices of the faces of a regular tetrahedron? 



ji 

Symmetry Elements and 
Operations 

Symmetry Elements 

There are only four ways in which an asymmetric object can be repeated in 

space. These are the four basic symmetry elements of: 

Translation — the three dimensional repeat pattern 

Reflection — symmetry about a plane 

Rotation — symmetry about an axis 

Inversion — symmetry about a point 

These symmetry elements will be described in detail using the figure 7 as an 

asymmetric object. There are two distinct systems of nomenclature in use: 

that used by crystallographers (the Hermann-Mauguin system) and that used 

by spectroscopists (the Schoenflies system). Both systems of nomenclature 

are introduced at this stage to enable the reader to become conversant with 

the two and to be able to interconvert them. 

TRANSLATION 

In translation symmetry the asymmetric object is repeated in space at 

regular intervals by moving it in a given direction through a constant distance 

t, For example, translation of the figure 7 along a line by a translation ¢ gives 

the one dimensional repeat pattern 

Tete] et] 

If the object is repeated in two dimensions by two translations (t; and f,) the 

repeat pattern is that of the plane array of 7s shown in Figure 2.1 and if the object 

is repeated in three dimensions by three translations (¢,, f2 and tz) the repeat 

pattern is that of the space array of 7s shown in Figure 2.2. For example the iron 

atoms in the body-centred cubic structure of the a-modification of the element 



10 SYMMETRY AND STEREOCHEMISTRY 

Te 7 Té 

ia if 16 

¥ RGade wed, v 
<—_ 

Figure 2.1 A plane array of asymmetric objects 

% fi 7 cfs ie ek 7 7 

% v iG 7 

7 a q 

te 

nT ie a 
. ie Isr 7 ; 

eee 

Figure 2.2 A space array of asymmetric objects 

t B 

Figure 2.3 Cubic space array of iron atoms in a—Fe showing the three mutually 
perpendicular unit translations 

provide an example of a space array of atoms repeated in space by three equal 

translations at right angles (Figure 2.3). 

REFLECTION 

In reflection symmetry the asymmetric object is repeated in space by reflecting 

it across a mirror plane. 



SYMMETRY ELEMENTS AND OPERATIONS ll 

m 

The symbols for reflection are m (crystallographic) and o (spectroscopic). 

Figure 2.4 shows a number of examples of molecules containing mirror planes. 

The Hermann-Mauguin system of nomenclature does not distinguish between 

the various orientations of a mirror plane in a molecule, but the Schoenflies 

system recognises three types of plane. These are designated oy, 0, and og. The 

subscripts stand for horizontal, vertical and diagonal respectively, and refer to 

the orientation of the plane with respect to the principal rotation axis (see next 

section) which conventionally is taken as being vertical. The need to refer mirror 

planes to a rotation axis does not arise in crystals because their orientation can 

instead be referred to the major crystal axes. Some of the molecules in Figure 2.4 

Mm, % JA 

(a) H 

m, oy 

One side is vertical mirror 
image of the other 

mOg contains two bonds and Plane of molecule is 

bisects the opposite angle Planes containing two bonds are 9, 

Planes bisecting bond angles are a, 

Figure 2.4 Types of mirror planes which occur in molecules 
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contain more than one mirror plane of a given type but only one example of 

each type is shown for any molecule. 

ROTATION 

In rotation symmetry a right-handed asymmetric object is repeated in space 

by rotating it through an angle of 360° /n, where n is an integer or infinity, to 

give another right-handed object. Figure 2.5 shows how a 7 can be repeated by 

rotations through 360°/n to give n-fold axes where n has any integer value from 

one to seven. The symbols for rotation axes are n (crystallographic) and C;, 

(spectroscopic). Examples of molecules containing each of the n-fold axes are 
also shown in Figure 2.5. The molecules used to describe the various axes are: 

1-fold, HC1; 2-fold, formaldehyde; 3-fold, chloromethane; 4-fold, xenon oxy- 

fluoride; 5-fold, ruthenocene; 6-fold, benzene; 7-fold, the tropylium ion. The 

axes are not the only symmetry elements present in the molecules in Figure 2.5. 

All of them, for example, contain at least one mirror plane. Some of them contain 

other rotation symmetry axes, benzene has 2-fold and 3-fold axes in addition to 

the 6-fold axis, xenon oxyfluoride has 2-fold axes in addition to the 4-fold 
axis and the molecular axis of HC1 is an axis of infinite order. The internuclear 
axis of any linear molecule must, in fact, be an axis of infinite order because 

any rotation, however small, about this axis leaves the molecule in a configura- 

tion indistinguishable from the original. If a molecule contains axes of different 

orders then the axis of highest order is the principal axis of the molecule. Thus 
the 6-fold axis of benzene is its principal axis. 

It is convenient, for the purposes of producing the projections described in 
later chapters, to have diagrammatic symbols to represent the rotation axes. The 

symbols used for rotation axes are the closed polygons shown on the axes in 

Figure 2.5. For example the symbols for 2-, 3-, 4- and 6-fold axes are 

6 A gi @ 

INVERSION 

In inversion symmetry an asymmetric object with coordinates (x,y,z) is con- 
verted to an object with co-ordinates (—x,—y,—z) by inversion through a point. 
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The symbols for inversion (centre of symmetry) are 1 (crystallographic) and 
i (spectroscopic). In a molecule the centre of inversion may or may not be 

occupied by an atom. Figure 2.6 shows the positions of the centres of symmetry 

in the molecules XeF,, with centre at the Xe atom, and C,H), with centre in 

the middle of the C=C bond. Inversion can be regarded as a special case of 

reflection, i.e. reflection through a point rather than through a plane. 

} = 3607, 

6. 7 as 
n=\ \-fold axis ee? 

| 

Any axis Lr the internuclear 
axis is a I- fold axis 

n=2 2-fold axis 7 
— 

4 
5 Cl 

n=3 3-fold axis | 

eo Cc 

aS SiG 4 

1c) 

v 

2aCs 

3 

7 y 

n=4 4-fold axis 

7 Ni 

4,04 

Sage Sige 

Figure 2.5 Types of rotation axes which occur in molecules and ions 
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n=5 5- fold axis 

X 

y 

; a 

7 

> 

n=6 6-fold axis 

Cz 
Ee 

? 

S 
n=7 7-fold axis 7 7, Ce 

r 

on 

A 

Figure 2.5 (cont.) Types of rotation axes which occur in molecules and ions 
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F F 

po | 
oe 

F F 

CSS C——H 

(a) (b) 

Figure 2.6 Typical locations of centres of symmetry (inversion) in molecules 

(a) centre of symmetry is occupied by Xe atom 

(b) centre of symmetry is midway along the C = C bond 

ROTATION, REFLECTION AND INVERSION SYMMETRY IN CRYSTALS 

We have used molecules and ions to illustrate rotation, reflection and inversion 

symmetry, but these elements can also be found in crystalline materials. For 

example the following symmetry elements can be picked out in the cubic unit 

cell of sodium chloride as illustrated in Figure 2.7 

(i) 2-fold axes, parallel to a square diagonal, through any sodium or chloride 

ion 
(ii) 3-fold axes, parallel to the cube diagonal, through any sodium or 

chloride ion 

(iii) 4-fold axes, parallel to a cube edge, through any sodium or chloride 

ion 

(iv) mirror planes — all planes which contain two of the cube edges are 

mirror planes 

(v) centres of symmetry at the centres of any sodium or chloride ion. 

(also @ ) 
through face centres 
parallel to cube edge 

along square 

diagonal along cube diagonal 

Figure 2.7 (a) | Typical rotation symmetry axes in crystals of sodium chloride 



16 SYMMETRY AND STEREOCHEMISTRY 

Figure 2.7(b) | Centre of symmetry and typical mirror planes in sodium chloride 

Symmetry Operations 

We have so far considered symmetry in terms of the generation of an array of 

asymmetric objects in space. For example a 3-fold rotation axis is an example of 
a symmetry element; it reproduces an asymmetric object in space to give the 

pattern of Figure 2.8a. A symmetry operation, however, is the process by which 
an array equivalent to the original can be produced by operation of a symmetry 

element. For example, if we start with an array of 7s in the orientation of 

Figure 2.8b in which 7A is in position 1, 7B is in position 2 and 7C is in position 

3, and then perform the operation of rotation through 360/3 = 120° the array 

takes up the configuration of Figure 2.8c with 7A in position 2, 7B in position 

3 and 7C in position 1. This new configuration is equivalent to but not identical 

\ 4 se 2 

C3 —————3—__> 

7 (a) was; (b) <2 376 (c) AN.2 

Figure 2.8(a) An array of asymmetric objects generated by a 3-fold rotation axis 
(b) The original and 

(c) the new orientation of the array of asymmetric objects produced by a 
rotation through 120° about a 3-fold axis 
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with the original. The difference between a symmetry element and a symmetry 

operation is that the operation permits consideration of the orientation of a 

molecule or an array while the element considers only the repetition of the 

asymmetric unit of the array in space. 

If we are considering new orientations produced by symmetry operations, 

translation symmetry is not relevant because it produces a displacement in 

space but not a new orientation. We need only consider reflection, rotation and 

inversion and for this purpose it is convenient to discuss molecules as examples. 

The reflection symmetry element is the plane of symmetry, m or 9, which 

divides the molecule into two halves which are mirror images of each other. 

The rotation symmetry element is the axis of symmetry, ” or Cy; when a 

molecule is rotated by 360°/n about such an axis it assumes a configuration 

equivalent to the original. 

The inversion symmetry element is the centre of symmetry, 1 ori. If the 

centre of symmetry is placed at the origin of a Cartesian co-ordinate system, 

then to any atom at (x,y,z) there corresponds an identical atom at (cay, 2): 

The process, by which a configuration equivalent to the original is produced, 

is the symmetry operation. Reflection at a mirror plane can produce only one 

such configuration, and the reflection element is said to generate one symmetry 

operation. Both the operation and the element are designated by the same 

symbol. Figure 2.9 shows that each reflection at a mirror plane in BF; produces 

one configuration equivalent to the original. 

The process of rotation about an n-fold axis, however, produces n such con- 

figurations, and the rotation element is said to generate n symmetry operations. 

When a configuration equivalent to the original is produced by a rotation 

through 

soe 360° 
n 

about an axis, the symmetry operation is designated Ck, k can have any integer 

value from 1 ton. For the C3 axis in BF3, k takes the values 1, 2, 3 and, in 

general, for any Cy, axis, 7 equivalent configurations are produced. When k =n, 

(as for C3 in Figure 2.10) the configuration is not merely equivalent to, but 

identical with, the original and the operation C7 is thus equivalent to the so- 

called identity operation J. Many texts designate this as F, but we have preferred 

Tso as to avoid confusion with another conventional meaning for £. If we look 

at Figures 2.9 and 2.10 we can also see that the performance of two successive 

symmetry operations leads to a configuration equivalent to the original. Now 

it is always true that there is some single operation by which this new configura- 

tion could have been attained. Consider the initial configuration, which we can 

represent as A1B2C3 (i.e. fluorine atom A occupies position 1, and so on). If 

we perform the operation 01, which is reflection at the mirror plane going 
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Fa Fe ' { 

B B Fa 

| 

fore peiteh ae ute 
B 

Fa a \ | 
Fe 5 2 Fe 

Lae ad 
B B 

Fa 3 ore 

Figure 2.9 Equivalent configurations produced by reflection at mirror planes in the 
BF, molecule 

ods 
fo A 

c?2 

B —___3______, 

5 2 2 

Fa 
| 

i a 

=o 

2k 

Figure 2.10 The three equivalent configurations generated by the 3-fold axis of the BF, 
molecule 
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through position 1, we get A1B3C2. Now perform oy, , which is reflection at 

the plane going through position 2. The atom now in position 2 (atom C) is 

unaffected; A and B change places, giving the configuration A3B1C2. Figure 

2.10 shows that this configuration could have been attained in one step, by the 

operation C3. Thus we can write, symbolically, 

= 12 
Oy20y1 =C3 

which means that if we perform first o,, and then 0,2, the effect is the same 

as if we had performed C3 only. The first operation to be performed is always 

written to the right of the second, because, in general, the order of performance 

makes a difference. If we had performed oy, followed by 0,1, we would get 

Oy2 Oy 
A1B2C3——> A3B2C1———> A2B3C1, 

and this last configuration would be achieved by the single operation C ae 

S010 ys C4: 

MULTIPLICATION TABLES 

For any molecule, we can construct a multiplication table of symmetry 

operations, showing the effect, or product, of any two successive operations. 

Consider NF, in the trans form. This has a centre of symmetry, at the 

mid-point of the N—N bond; the plane of the molecule is a plane of symmetry, 

and since it is perpendicular to the only axis of rotation, it is a oy; the axis 

itself is aC, and thus generates the two operations Ce en: 

Table 2.1. Multiplication table of symmetry operations for trans-N,F, 

I C} on i first operation 

second ik iD C3 oh i 

operation Cc} C} I i oh 
2 

Oh oh i I C; 

i i oh ci hi 

It is important to notice the following points about Table 2.1: 

(i) The product of any two symmetry operations of the molecule is itself 

a symmetry operation of the molecule; 

(ii) Whichever operation we carry out first, there is always a second 

operation such that the product of the two is the identity. This second 

operation is called the inverse of the first. 
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Now consider the ammonia molecule. This has six symmetry operations, three 
of which, C3, C?, C? (=) are generated by the C; axis. The remaining three 
are each generated by a plane of symmetry. Each plane of symmetry contains 

one of the N—H bonds, and the planes are 0, since the C3 axis lies in each of 

them (and is in fact the line formed by their intersection). If we label the planes 
as in Figure 2.11, we obtain the multiplication table of Table 2.2. 

Figure 2.11 Symmetry elements of the NH, molecule (mirror planes shown in plan) 
Note that the numbering of the o, is with reference to fixed positions; if 
atom A is originally in position 1, the plane passing through that position 
is always oy, irrespective of which atom occupies position 1 

Table 2.2, Multiplication table of symmetry operations for NH, 

first 
Oy; operation 

I 

second Cj 
operation 

C3 

Oy 

Sy2 

Sys 
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The statements (i) and (ii) made above about Table 2.1 are also true of Table 2.2. 

However, there is one important difference between the two tables. In Table 2.1, 

it is immaterial which operation is carried out first; if we interchange the rows 

and columns, the table remains unaltered. Further, according to the definition of 

an inverse given in (ii), every operation is its own inverse. Neither of these state- 

ments is true of Table 2.2; it does in most cases make a difference which opera- 

tion is carried out first, and not every operation is its own inverse. In these 

respects, molecules whose highest order rotation axis is 2 always have a multiplication 

table like Table 2.1; those whose highest order rotation axis is greater than 2 

have a table like Table 2.2. 

The following general rules are helpful in the construction of multiplication 

tables: 

1. The product of two rotations is always a rotation. 

2. The product of two reflections is always a rotation. If the two reflection 

planes intersect at an angle ¢, the resulting rotation is through 26. 

3. The product of a rotation and reflection in a plane containing the rotation 

axis is a reflection in another plane containing the axis. If the angle of 

rotation is ¢, the angle between the two reflection planes is ¢/2. 

4. The following operations commute (i.e. the order in which they are 

performed is immaterial): 
(a) two rotations about the same axis; 

(b) two reflections in perpendicular planes; 

(c) two rotations by 180° about perpendicular axes; 

(d) a rotation and a reflection in a plane perpendicular to the rotation 

axis; 

(e) any operation and the inversion operation; 

(f) any operation and the identity. 

5. Every operation occurs once in each row and column of the multiplication 

table. 

In this chapter we have discussed the basic symmetry elements of translation, 

rotation, reflection and inversion and have considered their operations. Molecules 

can be discussed in terms of symmetry which involves only rotation, reflection 

and inversion and of combinations of these symmetry elements. This aspect of 

symmetry and stereochemistry is developed in Chapter 3. Crystals can only be 

described in terms of all of the symmetry elements (including translation) and 

their combinations, and this theme is developed in Chapter 4. The multiplication 

tables constructed in this chapter contain the necessary information which makes 

it possible to apply symmetry considerations to the descriptions of physical 

properties. This information, however, is not in a form in which it can be 

readily used. The application of group theory described in Chapter 5 depends 

on the conversion of this information into a usable form. 
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PROBLEMS 

1. In octahedral crystals of NaCl, which are the directions of the 4-fold and 

2-fold axes? 

2. Pick out the mirror planes in the following molecules or ions: 

(a) HOCI (d) XeF, 

(b) H,0_ fe. CCl, 

(c) NOs (f). SF 

3. Pick out the rotation axes in the following molecules or ions: 

(a) N,O (d) cyclopentadieny! anion 
(b) CO, (ec) PtCl,?— 

(c) SO, (f) ethane (staggered configuration) 

4. Which of the following molecules or ions contains a centre of symmetry? 

(a) N> (e) SiCl, 

(b) AuCl,~ (f) naphthalene 
(c) benzene (g) cyclohexane (chair) 

(d) SFe¢ (h) cyclohexane (boat) 

5. Construct multiplication tables for the symmetry operations of: 

(a) formaldehyde 

(b) XeOF, 

(c) p-dichlorobenzene 

6. Verify the general rules 1-5 (page 21) in so far as they apply to the tables 
constructed in the previous problem. 
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Point Group Symmetry 

Molecular symmetry is characterised by three of the four basic types of symmetry 

element, these three being reflection, rotation and inversion. We can distinguish 

two types of symmetry element, simple and compound. The simple elements of 

reflection, rotation and inversion have been described in Chapter 2, but we can 

also form compound symmetry elements by combining rotation with either 

reflection or inversion to give rotor-reflection and rotor-inversion axes respectively. 

ROTOR-REFLECTION AXES 

In these compound elements, an asymmetric object is rotated through 360°/n 

and then reflected in a mirror plane. Such axes are designated 7 in crystallo- 

graphic and S,, in spectroscopic notation. Figure 3.1 shows the 1-fold and 2-fold 

rotor-reflection axes. 

~ y2: 7\ \ 
GINS 27 es J 

pape eee a = 

Gi / / / 
/ / 

Lee ee 7 LEANN Sie ee Se ye pee teh 

2 

S 43 

TS 2,52 

Figure 3.1 1-fold and 2-fold rotor-reflection axes 
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The 1-fold rotor-reflection axis requires the asymmetric object (a figure 7) to 
be rotated through 360°/1, that is, back to its original position, and then reflected 

in the mirror plane. The 2-fold rotor-reflection axis requires a rotation from 

position 7, through 360°/2 to position 7, , followed by reflection in a mirror 

plane to position 73. (7, and 73 are thus related to one another by a 2-fold rotor- 

reflection axis.) 

ROTOR-INVERSION AXES 

In these compound elements, an asymmetric object is rotated through 360°/n 

and then inverted through a point. Such axes are designated 7 in crystallo- 
graphic notation. There is no alternative spectroscopic notation because, as 

shown below, there is an S,, axis corresponding to every 7. The order of the 

S» and 7 is not necessarily the same because the S,, axis takes the order corres- 
ponding to the rotor-reflection axis 7. 

Figure 3.2 1-fold and 2-fold rotor-inversion axes 

Figure 3.2 shows the 1-fold and 2-fold rotor-inversion axes. The 1-fold rotor- 
inversion requires an asymmetric object to be rotated through 360°/1 and then 
inverted through a point. The 2-fold rotor-inversion axis requires a rotation from 
position 7, through 360°/2 to position 73, followed by inversion through a point 
to position 7; (7, and 73 are therefore related by a 2- fold rotor-inversion axis.) 
Comparison of Figures 3.1 and 3.2 shows that 1=S, (2) and 2 is identical with 
Sy (1). Table 3.1 shows the equivalence of rotor-reflection and rotor-inversion 
axes, and lists the conventional crystallographic and spectroscopic symbols for 
these axes. The diagrammatic symbols used in projections are the open polygons 
with the order of the rotor-reflection axis, as illustrated in Table 3.1. 
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Table 3.1. Equivalence of rotor-inversion and rotor-reflection axes 

Axes 

Rotor- Rotor- Conventional symbol 
reflection inversion crystallographic spectroscopic Diagrammatic 

Table 3.1 shows, as does comparison of Figures 3.1 and 3.2, that the 1-fold 

rotor-inversion and the 2-fold rotor-reflection axes are equivalent to a centre of 

symmetry. In fact 1 is the conventional symbol for a centre of symmetry in the 

Hermann-Mauguin nomenclature because of its equivalence to a centre of 

symmetry. Similarly the 2-fold rotor-inversion axis and the 1-fold rotor-reflection 

axis are equivalent to a plane of symmetry. 

The rotor-reflection axis constitutes another symmetry element in terms of 

which molecular symmetry is to be described. Figure 3.3 shows the configurations 

generated by the S3 axis in the trigonal bipyramidal molecule PF; . We see that, 

unlike C3, S3 is not equivalent to the identity. 

Rule 4(d) on page 21 regarding operations which commute, states that a 

rotation commutes with a reflection in a plane perpendicular to the rotation 

axis. Now we can write S4 as (C3 x 0,) or (op x C}). Therefore: 

Bs =(C} x 0) x (C5 x on) x (C4 x on) = (C3 X Op X Oh X On) 

Since C3 is equivalent to the identity and (a, x op) is also equivalent to the 

identity, we have S3 = o,,. By similar reasoning we can see that Sh is always 

equivalent to o, whenn is odd, and is always equivalent to the identity when 

n is even. Table 3.2 which is the multiplication table for the operations of the 

symmetry elements present in allene (see Figure 3.4) illustrates these points. 

Figure 3.5 shows the directions of S, axes (n = 2, 3, 4 and 6) in trans 

1,2-dichloro-1,2-dibromoethane, BF3, methane and S¢ respectively. 

Except for trans 1, 2-dichloro-1, 2-dibromoethane, all these molecules 

possess symmetry elements other than the S,, axis. For example, the S, axis in 

methane is also a C,, hence the use of the symbol shown in Figure 3.5. Similarly 

the Sg in the sulphur allotrope S¢ is also a C3. The sulphur allotrope Sg contains 

an Ss (C4) axis. 
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Table. 3.2. Multiplication table for the symmetry operations of allene 

| ip Ser Coa Sie Cran C1) Od; Od> 

I I C} s! 83 Ce oe a: 

Sa I Si S4 Crazy) aay Oda Odi 

Si S; S3 CS I od ods Cray Caq) 

S3 S3 Sa I & od: da Ci(2) aay 

Gay | Gay Gey Wd Od: I C Ss Sa 
Ce Cu, Cig ea: od, I S3 Si, 

on od ds Ga. CC) aS Ss I Cc! 

Cd> Od od Coa CG) Se So G in 

Cp(2) 

Figure 3.4 Symmetry elements present in the allene molecule 

We have seen that molecular symmetry can be defined in terms of the 

symmetry elements which the molecule possesses. In a molecule, the require- 

ment that the centre of mass remains invariant to any symmetry operation means 

that all symmetryelements must pass through a point. It is convenient to set up a 

systematic classification which describes the combination of symmetry elements 

passing through that point without specifically enumerating them. In order to do 

this we should first see whether there are any restrictions on the ways in which 

symmetry elements can be combined in a given system. The allowed combinations 

of elements constitute the basis of the point group classification. 
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E 

B 
i 
| 

S | 
F 

S2 Sa 

H 3 6 

4 (d) Ss 
(c) Si 

Figure 3.5 Directions of rotor-reflection axes in some molecules 
(a) S, in trans-1,2-dichloro-1,2-dibromoethane 
(b) S,=C, in BF, 
(c) S, in methane 

(d) S, in the S, allotrope of sulphur 

Point Group Classification 

Rotations, reflections and inversions may be combined in an infinite number 

of ways, but not all imaginable combinations are possible, nor does every possible 

combination define a different symmetry. These restrictions arise because of 

certain interrelations between symmetry elements, as follows: 

1. The intersection cf two reflection planes is a symmetry axis. If the angle 
between the planes is 180 °/n, the axis is of order n. 

2. Ifa reflection plane contains an axis of ordern, there must be — 1 other 
such planes separated by angles of 180°/n. 
3. If there are two C, separated by 180°/n there must be a G, perpendicular 
to them. 
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4. If there is a C,, with a C, perpendicular to it, there must be a further 

n—1 Cy axes, separated by 180°/n, 
5. The presence of any two of the elements C, (n even), o7,, i automatically 

implies the third. 

In view of the restrictions 1 to 5 above, we cannot have a combination of 

symmetry elements such as (C;, + moy) unless m =n. Figure 3.6 shows this for 

the case n = 2. 

Figure 3.6 Illustration that the intersection of n mirror planes is a C, axis for the case 

where n = 2 

An example of the identity of apparently different descriptions of symmetry 

involves the symmetry element S3. By definition, this is a rotation about an 

axis through 360°/3 followed by a reflection in aplane perpendicular to the 

axis; we could, therefore, describe this symmetry by the combination (C3 +0;). 

Thus these two descriptions, S3 and (C3 + oy) define the same symmetry, as 

Figure 3.3 has already shown. Subject to the above restrictions, a molecule may 

have any combination of symmetry elements, but the great majority of molecules, 

and all crystals, have symmetries in which the only allowed values of n, the 

order of an axis, are 1, 2, 3, 4, 6. If we introduce this third restriction, there are 

now only 32 possible combinations of symmetry elements, (i.e. of rotation,. 

reflection, inversion and rotor reflection). These are called the Crystallographic 

Point Groups and they are listed in Table 3.3 along with their Schoenflies and 

Hermann-Mauguin symbols. 
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Table 3.3. The 32 Crystallographic Point Groups 

Schoenflies symbol Hermann-Mauguin symbol 
Full Short 

(minimum elements required 
to describe group) 

Gi 1 1 

Ci(S,) ‘f 1 

CiCc 7) m m 
iS 3 2 
Cih 2/m 2/m 

Cy mm2 mm 

DV) 222 22 

Dn (Vn) 2/m2/m2/m mmm 

Ga 4 4 

Sy 4 4 
Cah 4/m 4/m 

D,q(Va) 42m a 
Gry, 4mm 4m 

Ds, 422 42 

ID 4/m2/m2/m 4/mm 

Ge 3 3 

C3i (S, ) a a 

Czy 3m 3m 

Ds 32 32 

D3d 32/m 3m 

Csh 6 6 

Ce 6 6 
Coh 6/m 6/m 

D3h 6m2 6m 

Coy 6mm 6m 

D, 622 62 

Deh 6/m2/m2/m 6/mm 

Li 23 a2 
Th 2/m 3 mS 

Tq 43m 43m 

Oo” 432 43 

On 4/m32/m moni 
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THE SCHOENFLIES NOTATION 

The Schoenflies symbols indicate the elements which generate the group and 

the 32 crystallographic point groups are made up as follows: 

1. Groups whose only symmetry element is a rotation axis (C;, Cy, C3, C4, Ce). 

2. Groups whose only symmetry element is a rotor-reflection axis. With the 

exception of S4, all of these can be, and usually are, expressed in terms of other 

combinations of symmetry elements, and will be dealt with under those headings. 

Groups of the type C,, and S;, are said to be of order n; this means that they 

possess 7 symmetry operations (which are generated by the one n-fold axis). 

3. Groups consisting of ann-fold rotation axis with n 2-fold axes perpendicular 

to it. These are the so-called dihedral groups D, (D2, D3, Da, Dg). 
4. Groups consisting of an n-fold rotation axis and 7 vertical planes of symmetry. 

These are the C,,, groups (Cy, C3y, Cay, Coy and also C,y =C;). 

5. Groups consisting of an n-fold rotation axis and a plane perpendicular to it. 

These are the C,,;, groups (Cy, Can, Con and C3, which is equivalent to $3). 

6. Groups consisting of an n-fold rotation axis and a centre of symmetry. These 

are the C,,; groups (C;, C3;) which are equivalent to S), when n is odd. 

All groups of the type Dy, Cny, Cyn and Cy; are of order 2n, and this is the 

logic behind regarding S3 as C3y, since the combination of (C3 + 07) generates 

six operations, which is 2n as in the other C,,, groups. 

7. Groups consisting of an n-fold rotation axis, n 2-fold rotation axes and a 

horizontal reflection plane. These are the Dyy, groups (D27,, D3, Dan, Den)- 

8. Groups consisting of ann-fold rotation axis, n 2-fold rotation axes and n planes 

bisecting the angles between the 2-fold axes. These are the D,g groups (Dog, 

D3q). 
Dyn and Dyg groups are of order 4n. This arises for Dyp because such groups 

combine the 2n operations of the D,, group (” operations generated by the 

C,, and one by each of the n C,) with o7,, which doubles the number of operations 

again. For Dyg the way in which the 4n operations are generated from the 2n of 

the D,, group depends on the parity of n. If is odd, the point of intersection of 

all the axes is a centre of symmetry and this doubles the number of operations. 

Ifn is even, the C,, is also an Sj, , producing the 2n operations in addition to 

the 2n of the parent D, group. 

We have now accounted for the 27 so-called Axial point groups. This name 

derives from the fact that the symmetry involves one principal axis which is 

a unique axis, that is, either the only axis or the axis of highest order and the 

only one of that order. 

A difficulty arises here over the D2, Dg and D2, groups, where there are 

three mutually perpendicular 2-fold axes. In the D> q group, one can distinguish 

the unique axis since it is also an S4 (e.g. the C = C =C direction in allene). The 

same would apply for the D, group, which would be the point group of allene 

if the angle between the two CH) planes were not 0° or 90°. With D,;, the unique 
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(a) 

NH3 

cl sm? 
co / 

Cl Cl vA \ 
a cl 

NH3 

2) (c) 

Figure 3.7 The unique 2-fold axis in some molecules with D,, D,g and D,p, symmetry 
(a) Unique C, axis in allene. When ¢ is 90°, allene has Da symmetry and 

the C, is also an S,. If ¢ were not 0° or 90°, allene would have D, symmetry. 
(The direction of the unique axis would be the same but it would not be 
an S, axis) 
(b) The axis perpendicular to the plane of the p-dichlorobenzene molecule 
is designated as the unique axis. The symmetry of the molecule is D,, 
(c) In the hypothetical molecule of D,;, symmetry, there are three 2-fold 

axes, any one of which could be chosen arbitrarily as the ‘unique’ axis 

axis is taken perpendicular to the molecular plane if the molecule is planar (as 

in p-dichlorobenzene), but if the molecule is octahedral MX, Y,Z, the choice 

of unique axis becomes arbitrary. Figure 3.7 illustrates these points, 

The remaining 5 crystal point groups are the Cubic point groups, since they 

are based on the rotational symmetry of figures which can be inscribed in a 

cube. The simplest of the 5 cubic point groups is the group 7, which consists of 

the rotation operations of a regular tetrahedron. The symmetry elements are 

thus seen to be the four cube diagonals, which are each a C3, and three 2-fold 

axes passing through the centres of opposite faces; these are each a C,. Since 
the four C3 each generate a C3 and a C3 the group T has 12 symmetry 
operations. The 3-fold axes are shown in Figure 3.8. 

A tetrahedral molecule XY, belongs to the group 7g; as well as the twelve 

rotation operations there are now 6 planes of symmetry, each of which contains 

two atoms and bisects the angle between the bonds to the other two. The three 

C, now also become Sq which each generate the operations $4 and $3 (SZ = C, 
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Figure 3.8 A tetrahedron inscribed in a cube. The four cube diagonals are the four 
3-fold axes which represent the minimum symmetry for any cubic figure. 

If a tetrahedral molecule XY, were placed in the cube with X at point Aa 
possible set of positions for the Y atoms is on corners 1, 2, 3, 4 

so does not count as a separate operation). There are thus 24 operations in the 

group Tq. 
The other group based on the rotation operations of a tetrahedron is Ty, 

which is obtained by combining the 12 rotation operations of T with a centre 

of symmetry, giving a total of 24. The group O is also of order 24, consisting of 

the rotation operations of a regular octadehron. The axes which were 2-fold axes 

in the group T now become 4-fold axes in addition, as Figure 3.9 shows. 

Figure 3.9 Rotation axes of an octahedron. The three C, axes through opposite vertices 

of the octahedron and the mid positions of the cube faces are also C, ; the 

other C, axes pass through the mid points of opposite edges of both the 

octahedron and the cube in which it is inscribed 
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There is also another set of 2-fold axes, which pass through the centres of oppo- 

site edges of the octahedron and of the cube in which it is inscribed. Finally, if 

the elements of the group O are combined with a centre of symmetry, the group 

Op, which is the point group of all octahedral molecules XY¢, such as SF¢, is 

obtained. The 48 operations of the group now include 9 planes of symmetry 

and the three C, also become Sq, while the four C3 become S¢. 

The alternative designations among the Schoenflies symbols in Table 3.3 

arise for a variety of reasons: 

1. D, is sometimes designated V (German, Vierergruppe). 

2. Sy is equivalent to C,; when n is odd. 

3. In the group whose only symmetry elements are the identity and a plane 

of symmetry (which is necessarily the molecular plane when the molecule is 

planar), the C, axis which represents the identity can be considered as either 

perpendicular to, or contained in, that plane. The plane is thus either a oy, or 

a dy, so the group can be called Cyp or Cyy, but is usually called Cs. 

THE HERMANN-MAUGUIN NOTATION 

The Hermann-Mauguin symbols for any point group is a list of the symmetry 

elements which describe the group. The short form lists the minimum number 

of symmetry elements required to completely define that point group. If we 

follow the same pattern that we used to describe the Schoenflies notation we 

have the following Hermann-Mauguin groups in their full form. 

1. Groups whose only symmetry element is a rotation axis (1, 2, 3, 4, 

2. Groups whose only symmetry element is a rotor-reflection axis (1, 

3,4, 6). The symbol m for mirror plane is used in preference to 2. 

3. Groups consisting of an n-fold rotation axis within n 2-fold axes perpendicular 

to it (222, 32, 422, 622). Note it is not necessary to specify all of the 2-fold axes 

because operation of ann-fold axis on one 2-fold axis perpendicular to it generates 

all n 2-fold axes. Thus the shortened forms of these symbols for these groups are 

designated n2. 

4. Groups consisting of an n-fold rotation axis and 7 vertical planes of symmetry 

(mm2, 3m, 4mm, 6mm); again the short form symbols are the minimum number 

of elements required to describe the group. For example a 2-fold axis and two 

vertical mirror planes should logically be 2mm but as we have seen in Figure 3.6 

the presence of any two of these elements (i.e. mm or 2m) implies the third. 

mm is conventionally taken as the short symbol for this group and the 2 is taken 
as the redundant element as far as describing the group is concerned. 

5. Groups consisting of an n-fold rotation axis and a plane perpendicular to it. 

The symbol used for a plane perpendicular to an n-fold axis is n/m and the 

groups are 2/m, 3/m = 6, 4/m, 6/m. The symbol 6 is preferred to 3/m as the 

description of the group. 

6. Groups with n-fold rotation axes and a centre of symmetry. The groups in this 

6). 
I= 

m, 
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Schoenflies list, C; and C37, are the groups I and 3 respectively in Hermann- 

Mauguin notation. 

7. Groups consisting of ann-fold rotation axis, n 2-fold axes and a horizontal 

reflection plane (mmm, 3/mm = 6m2, 4/mmm, 6/mmm) 6m2 is preferred to 

3/mm as the symbol for this group. Again the short forms listed are the necessary 

elements. 

8. Groups consisting of an n-fold rotation axis, m 2-fold rotation axes and 

n planes bisecting the angles between the 2-fold axes. These are the Schoenflies 

groups Dyq and D3q for which the Hermann-Mauguin symbols are 4m and 3m. 

9. The Hermann-Mauguin symbols for the cubic point groups are 23, 2/m 3 

(= m3), 43m, 432 and m/4 3 m/2 (= m3m) which had the Schoenflies symbols 

T, Tn, Tg, O and Op respectively. 

The Hermann-Mauguin symbols for the 27 axial point groups fall into seven 

classes with general symbols xn, 7, n2, nm, n/m,n/mm, fim. If we take n as being 
1, 2, 3, 4 or 6 it would appear that there are 35 of these point groups. This 

number, however, reduces to 27 as can be seen from Table 3.4 because certain 

of the possible combinations are equivalent to other point groups. This provides 

another illustration of the statement made earlier in this chapter that not all 

possible combinations of symmetry elements define different symmetries. 

Table 3.4. The possible axial point groups in the Hermann-Mauguin nomenclature 

General Possible point-group with n-fold axis, (n = 1, 2, 3, 4, 6) 
point-group 

class 3 4 

2 3 4 
n (2 =m) 3 4 
n2 (12 =2) 22. 32 42 
nm lm=m 2m =mm 3m bs 4m 
n/m (1/m=2 2/m (3/m =6) 4/m 
n/mm (1/mm=2m) | 2/mm=mmm | (3/mm=6m) | 4/mm 
am (Im = 2/m) (2m = 2m) 3m 4m 

Allocation of Molecules to their Point Groups 

We have so far described the 32 crystallographic point groups in which the 

necessity for translation symmetry ina crystal restricts the possible values of 

n to 1, 2, 3, 4 and 6 for both rotation and rotor-reflection axes. For molecules 

this restriction does not apply and, accordingly, point groups involving axes 

of any order are allowed. No new general type of point group arises, so that 

we still have to assign any given molecule to a point group of the type Cy, Sy, 

Dn, Cny» Crh» Dna» Dnn (axial point groups) or to one of the five cubic point 

groups T, Tj, Tg, O, On. Most molecules belong to one of the 32 crystallo- 

graphic point groups, and Tables 3.5 and 3.6 list these, with examples of real or 

hypothetical molecules belonging to them. Some molecules belong to one of 
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Type 

Cn 

Sn 

Chh 

WwNnre 3 

DNPWYP 

3(S;) 

at 
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Table 3.5. Molecules and ions belonging to one of the 27 axial crystallographic 

Shape 

planar but 
non-linear 
pyramidal 

planar V shape 
planar Y shape 
planar T shape 
derived from plane 

square 
derived from 

tetrahedron 
derived from tr+ 

point groups 

Molecule or ion 

CHFCIiBr 

H,0, 
1, 1, 1-trichloroethane 

not known 

not known 

' 

3,4, 7, 8-tetra- 
methyl-1-aza-spiro- 
[4, 4 ]-nonane 

not known 

HOCI 

SOCl, 
H,O 
H,CO 
CIF, 

cis-Pt(NH, ), Cl, 

CH, Cl, 

gonal bipyramid SF, 
derived from hexa- 

gon 
pyramidal 

pyramidal 

derived from 

octahedron 

not known 

chlorobenzene 

NH, 

XeOF, 

SF, Cl 

trans- N,F , 
H, BO, 

not known 

not known 

Remarks 

Provided the two ends 
are gauche 

Molecules X(Y¥Z), would 

have such point groups if 
they were non-planar, with 
all XYZ equal, but not 

180° 

(see Figure 3.12) 

Molecules X, Y,,, would 
have such point groups if 
the two Yy groups were 
gauche, e.g. ethane in the 
gauche form would have 
the point group D, 

One equatorial position 
is unoccupied 

The Xe—O bond lies along 
the C, axis 

The S—Cl bond lies along 
the C, axis 

This molecule is planar with 
all the BOH angles equal but 
not 180° 



Group 

Is 

Th 

Tq 

On 
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1(G;=S,) 

3 

2 derived from 
plane square 

derived from 
octahedron 

derived from 
hexagon 

X, Yn molecule 
with the Y, 
groups eclipsed 

3 equilateral triangle 
derived from 

hexagon 
trigonal bipyramid 

4 plane square 
derived from 

octahedron 
6 plane hexagon 

2 X, Y,,, molecule 
with Y, groups 

staggered 

trans- HCIBrC— 

CBrHCl 
[Co(NO, ), ]°~ This is the symmetry of the 

ion in the Na salt. Opposite 
NO, groups are gauche. 

trans- Pt(NH, ), Cl, 

trans-[Co(NH,) , Cl, Br, ] 

p-dichlorobenzene 

B, Cl, (solid) 
BCL, (vapour); NO,— 
1,3,5-trichlorobenzene 

PCl, (vapour) 
XeF, 
trans- [Co(NH,), Cl, is 

Benzene 

B, Cl, (vapour) 

C, H, 

Table 3.6. Molecules and ions belonging to one of the S cubic point groups 

Molecule or ion 

Not known 

[(Co(NO, )g I? 

CCl CCH), 
Not known 

SF, 

Remarks 

The CH, groups of C(CH,), can be 

rotated so as to reduce the symmetry 

of the molecule from Tg to T 

This is the ideal symmetry of the 

ion and occurs when opposite pairs 

of nitro groups are eclipsed 
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Table 3.7. Molecules and ions belonging to a non-crystallographic point group 

39 

Type n Shape Molecule or ion Remarks 

Gay 2 Pentagonal bipyramid XY, If the I atom of IF, were 
with the central X atom moved out of the equatorial 
out of the equatorial plane the symmetry of the 
plane molecule would be reduced 

from D, 7, to C, » 
co Linear N,O Any linear molecule without 

a centre of symmetry has this 
group 

Dyn 5 Pentagonal bipyramid XY, ReF,, IF, 
with X in the equatorial 
plane 

Plane pentagon 
Pentagonal prism 

7 Plane heptagon 

Cyclopentadienyl anion 
Ruthenocene 

Cycloheptatrienyl 
(tropylium) cation 

co Linear CONC pide, Ornit Any linear molecule with a 
linear centre of symmetry has 

this group. 

Dyg 4 Puckered octagon Sulphur (S,), cyclo- 
octatetraene (‘crown’ 
form) 

5 Pentagonal antiprism Ferrocene 

the non-crystallographic point groups; a list of the more important of these 

groups is given in Table 3.7. 

Figure 3.10 gives a scheme for assigning molecules to their point groups, 

and we now consider some examples of these assignments, which are made by 

answering the questions in this figure. Figure 3.10 uses only the Schoenflies 

notation but the Hermann-Mauguin symbols are also given for the specific 

examples considered and in some of the other tables. 

1. A molecule whose point group is of the type Cy(n); H2O2 

The elements present in HO, are shown in Figure 3.11. 

(a) Is there a C,? YES 

The C,, of highest order is the C, through the mid-point of the O—O bond and 

bisecting the angle between the two HOO planes. 

(b) Is it unique YES (there is no other 2-fold axis) 

(c) Is it the only axis? YES 

(d) Is the Cz also an Sz? NO 

NO (e) Are there any planes of symmetry? 

This sequence of answers shows that the molecule belongs to a C, point group 

and, since n is 2, the point group of Hz 02 is C2 (2). 
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2=Cp2 (passes through mid point of 
O-O bond and bisects }) 

$ 

Figure 3.11 Symmetry elements of H, O, 

C2,S4 =4 

H-7-CH3 a cH H-4-CH3 

8 e a 
a — 

H-8-CH, ore | | Ch H-3-CHs 
5 cn: | Si | os Rotation through 90° N Rotation in plane aa 

my about the Cp axis we 5 ir toCs through a set 

5. No | Ho atom NI. 9 6 

ae 

H Tes as Hy | a 
raee mrss “CH3 ae 

mu SS CH3 CHz 

CH; CH3 

Figure 3.12 The molecule B (= 3, 4, 7, 8-tetramethyl-1-azaspiro-[4, 4]-nonane), 

showing the effect of the compound operation S, 

2. A molecule whose point group is of the type Sz; a substituted spiran (B) 

This molecule is shown in Figure 3.12 
(a) Is there aC,? YES 

The C,, of highest order is the C, bisecting the two rings which lie in planes at 

right-angles. 

(b) Is it unique? YES 
(c) Is it the only axis? YES 

(d) Is the C,, also an Sy? YES 
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It is an S,4. Since the two rings lie in planes at right-angles, rotation through 

90° interchanges the orientation of the top and bottom rings; then the reflection 

at the plane through the central atom, perpendicular to the axis, exchanges the 

rings again. 
Since the only symmetry element is a C, which is also an Sq, the molecule B 

belongs to the point group S4 (4). 

3. Molecules whose point groups are of the type Dyn 

(i) Allene in the ‘gauche’ form. (This isa hypothetical molecule.) 
If the two planes containing the methylene groups in allene are rotated with 

respect to one another by some angle other than 0° (eclipsed form) or 90° 
(staggered form) then we have the so-called ‘gauche’ form. Figure 3.13 shows 

this form in two views, illustrating the two different types of C, axis. 

pF O*, 90° 

(a) 

Figure 3.13 (a) Perspective view of ‘gauche’ allene, with the C, axis along the C=C=C 

direction 

(b) End view of ‘gauche’ allene, showing the directions of the C,' axes 

(a) Is there a C,? YES 

(b) Is it unique? ? 

This point demands some discussion. Although there are only three axes, all 

of the same order (2), there is a sense in which we can say that the C, axis along 

the C=C=C direction is unique, because the atoms which are invariant to rotation 

about this axis (the three carbon atoms) are not the same as those invariant to 

rotation about the C,’ axes (only the central carbon). Distinctions of this nature 

can be made for the 3 2-fold axes in molecules of the point groups D2q and D2, 

but not always for those of the point group Dyp. Figure 3.14 illustrates this. We 

have decided to neglect these finer distinctions, and use ‘unique’ in the stricter 

sense of being the only axis of that order, since this enables us to treat all mole- 

cules of the point group D2, on the same footing: thus the answer to question 

(b) is NO. 
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Co 

Figure 3.14 (a) In p-dichlorobenzene the C, axis through the two Cl atoms leaves 4 

atoms invariant to rotation around it, and could therefore be designated as 
the unique axis, since the other two C, axes leave no atoms invariant to 
rotation 
(b) In this complex, each of the three 2-fold axes has 3 atoms invariant to 
rotation about it, so there is no sense in which any of the axes is unique 

There are, in fact, three C, axes. 

(c) Are there any planes of symmetry? NO 

The molecule thus possesses only three C, axes and belongs to the point 

group D,(222). 

(ii) Ethane in the ‘gauche’ form. (This is a hypothetical molecule) 

Here the ambiguity about the unique axis does not arise. 

(a) Is there a C,? YES 

The axis along the C—C direction is a C3(3). 

(b) Is it unique? YES 

(c) Is it the only axis? NO 

There are three other axes, each passing through the mid-point of the C-C 

bond and lying in planes which bisect the angles $1, ¢2, 3, shown in Figure 3. Te 

(d) Is its order ce? NO 
(e) Are there any planes of symmetry? NO 

The ‘gauche’ form of ethane belongs to the point group D3 (32). 

4. A molecule whose point group is of the type Dna 

The reader may verify, by repeating the steps of example 3, that the normal 

forms of allene and ethane belong to the point groups Dy q and D3q respectively. 

A molecule of a rather different geometrical type with a D,g type point group 

is the puckered hexagonal molecule formed by the S¢ allotrope of sulphur. 

(a) Is there a C,? YES 



Figure 3.15 

Figure 3.16 
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End-on view of the ‘gauche’ form of the ethane molecule. ¢, defines the 
angle between the planes containing H, and the two carbons, and the two 
carbons and H,. A C, lies in the plane bisecting ¢, , and passes through the 
midpoint of the C—C bond 

(S,73);C3 

Plan view of S, molecule, with two planes defined by atoms 1, 3, 5 and 2, 

4, 6 respectively. C, axes pass through atoms 1 and 4, 2 and 5, 3 and 6; the 

planes containing these axes, and perpendicular to the planes of atoms 1, 3, 

5 and 2, 4, 6 are planes of symmetry 
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Figure 3.17 A plane of symmetry and a 2-fold axis in the S, molecule 

It is the 3-fold axis passing through the ring in a direction perpendicular to 

the planes defined by atoms 1, 3, 5 and 2, 4, 6 as shown in Figure 3.16. 

(b) Is it unique? YES 

(c) Is it the only axis? NO 

(d) Is its order °°? NO 

(e) Are there any planes of symmetry? YES (see Figure 3.17) 
These planes all intersect in the C3 axis, so the Sg molecule belongs to the 

point group D3 q. (32/m). 

5. A molecule whose point group is of the type Dyn; 1, 3, 5-trichlorobenzene 

(a) Is there a C,,? YES 

There is a 3-fold axis passing through the centre of the benzene ring, perpen- 

dicular to the plane of the molecule. 

(b) Is it unique? YES 

(c) Is it the only axis? NO 

There are three C lying in the plane of the ring, each passing through one 

chlorine and one hydrogen atom. 

(d) Are there any planes of symmetry? YES 

There are four, of which three lie in the direction of the C,, and are perpen- 

dicular to the plane of the ring. They intersect in the C3 axis and are therefore 

three o,. The fourth is the molecular plane, which is perpendicular to the 
C3 axis, and is therefore a o,,. 1, 3, 5-trichlorobenzene belongs to the point 
group D3 (6m2). 

6. A molecule whose point group is of the type Cyn; H3BO3 

Figure 3.18 shows the H3 BO3 molecule. It is planar, with all the BOH 

angles equal but not 180°. All of the OBO angles are equal. 
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B 

x 

0 

pa 
H 

Figure 3.18 The H,BO, molecule 

(a) Is there aC,,? YES 
As all the OBO angles are equal, and all the BOH angles are equal, there must 

be a C3, through the B atom, perpendicular to the molecular plane. 

(b) Is it unique? YES 
(c) Is it the only axis? YES 
(d) Is the C,, also an S,,,? NO 

It is, in fact, an S3 (6). 
(e) Are there any planes of symmetry? YES 

There is one, the molecular plane. It is important to realise that the plane of a 

planar molecule is a plane of symmetry — this seems so trivial that it is often 

forgotten when attempting to assign molecules to their point groups. Since this 

plane is perpendicular to the Cy axis, it is a oy and H3BO3 belongs to the point 

group C3p. (6). 

7. Molecules belgnging to point groups of the type Cny; CH, Cl, and SF, 

Some types of molecule are easily recognisable as having C,, symmetry. 

Pyramidal molecules XY, where the lines joining the Y atoms enclose a 

regular n-sided figure constitute one such type; examples are NH3, PCI. If an 

atom Z is added to such an arrangement, the X—Z bond being in the direction 

of the C,, axis, the symmetry is again Cy. Such molecules include CH3 Cl and 
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Sie 

iit fh Vr 
|! Al oe ail

 
| NT 

Figure 3.19 The symmetry elements of CH, Cl, 

XeOF,. The C,,, symmetry of the molecules CH, Cl, and SF, is perhaps less 

intuitively obvious. 

(i) CH, Cl, 
(a) Is there aC,,? YES 

It isa C, and bisects both the HCH and CICCI angles (see Figure 3.19). 

(b) Is it unique? YES 
(c) Is it the only axis? YES 

(d) Is the C,, also an S,? NO 

(e) Are there any planes of symmetry? YES 
The plane containing the CCl, group and bisecting the HCH angle, and that 

containing the CH, group and bisecting the CICCI angle, are both planes of 

symmetry which contain the C, axis, and are therefore two o,. CH,Cl, therefore 

belongs to the point group Czy (mm?). 
(ii) SFq 

SF, is now considered to have a trigonal bipyramidal epee with one 

of the equatorial positions unoccupied (see Figure 3.20). 

o (axial)=m 

C2=2 

> o (equatorial) =m 

Figure 3.20 The symmetry elements of SF, 
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(a) Is there a C,,? ‘ YES 

It isa C, and bisects the FSF (equatorial) and the FSF (axial) angles. 

(b) Is it unique? YES 

(c) Is it the only axis? YES 

(d) Is the C, also an Sz»? NO 

(e) Are there any planes of symmetry? YES 

As for CH, Cl,, there are 20,. In SF4, one oy contains the equatorial, and 

one the axial fluorine atoms. The C, is their line of intersection. SF4 belongs 

to the point group Cz, (mm2). 

8. Molecules belonging to the cubic point groups; CCl4 and SF. 

The above two molecules represent the most important of the cubic point 

groups, as far as molecular symmetry is concerned, though a few molecules with 

Ty; symmetry are known. 

In CCl, there are four 3-fold axes, directed along the C—Cl bonds; these 

constitute the minimum requirements for cubic symmetry. If the molecule were 

inscribed in a cube with the Cl atoms at the alternate corners, the four C3 (3) 

axes would lie in the direction of the cube diagonals. In addition to the four 

C3, there are three C) (2) which are also S4 (4). In terms of the molecular 

symmetry, they would bisect the opposite pairs of angles; in terms of the 

symmetry of a cubic figure, they join the centres of opposite faces. In a cube 

with all eight corners identical, they would, of course, be 4-fold axes. If we look 

at the CCl, molecule, we find symmetry elements other than the rotation axes; 

each of the six planes containing two chlorines and a carbon is a plane of sym- 

metry. (0g =m) There is, however, no centre of symmetry, so CCl, belongs to 

the group Tg. (43m). 

In SF, the lines joining opposite fluorine atoms (of which there are three 

pairs) are the three C,(4) axes; these are also C, (2) axes, since a configuration 

equivalent to the original is obtained by a rotation through either 90° or 180° 

about these axes. Further, these axes are also S4 axes, as Figure 3.21 shows. 

The S atom is situated at a centre of symmetry and there are nine planes of 

symmetry (m). Three of these are oy, containing four fluorine atoms as well 

as the sulphur; the other six, which are ag, bisect FSF angles and contain only 

the sulphur atoms. Since SF, contains planes of symmetry and a centre of 

symmetry as wel] as the three Cy axes, it belongs to the point group Op, 

(4/m 3 2/m). 

The position of the S. = 3 axis used in the full Hermann-Mauguin notation 

is shown in Figure 3.22. 

Two points, which have only been implied so far, should now be made 

explicitly. 
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4 F 5 
Fe Ts 

Fe F, F, Cc E 0 2 G 2 3 

(b) 
4 5 Fa | 

' 4 5 
Fp Fe Fe Fa Fo 

(a) C4 

(c) 
Fe Fe Fo Fp Fe 

6 ES 3 S. 6 2 3 

4 | 5S 
a Fe Fp Fp 

Fe Fy Fe 
6 2 S) 

Figure 3.21 Different configurations produced when the axis 1—2 in SF, is treated 
as (a) a C, (b) aC, (c)anS, 

Figure 3.22 The positions of the S, = 3 axes in octahedral SE 
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1. It is not necessary, in general, to identify every symmetry element in the 

molecule to assign it to its correct point group. If, for instance, the reader 

goes through the argument of example 3, he will see that it is not necessary 

to identify then C, axes in order to assign the hypothetical gauche forms of 

allene or ethane to the groups D, and D3 respectively. It will, however, in 

later applications, be necessary to identify these elements. 

2. In many cases, the same axis can correspond to more than one symmetry 

element. Sometimes, as in example 2, where we found the same axis to be 

aC, and an Sq, it is necessary to realise that such a situation exists in order 

to assign the correct point group. In other cases, such as in SF,, where the 

C, axes are also C, and S,, and in tetrahedral CCl,, where the C, axes are 

also S4, it is not necessary. Again, there will be applications considered later 

where it is important to realise that the same axis corresponds to more than 

one symmetry element. 

Reduction of Symmetry 

As we shall see in Chapter 6, many of the physical properties of a molecule 

depend on its symmetry. The chemist makes use of this dependence in two 

ways. Firstly, if he is studying a molecule about whose shape he knows nothing, 

he can work out all its possible configurations, assign a point group to each of 

them, and then make predictions about the physical properties to be associated 

with each suggested configuration. Secondly, he may be studying a molecule of 

known symmetry and may wish to determine the nature of the products found 

in various reactions involving it. In many cases, particularly involving co- 

ordination compounds, possible products may have the same composition but 

different symmetry. For instance we may convert the hexamminocobalt(IID) ion 

to either the cis- or trans- dichlorotetramminocobalt(III) ion, and the best way to 

determine which of these has been formed is to study those physical properties 

which depend on the symmetry of the two possible products. In the light of 

this application, it is clearly useful to be able to work out how the symmetry of 

a molecule is affected by making originally equivalent features non-equivalent. 

We may recognize, in principle, two ways of doing this: 

1. A distortion of the molecule involving changes in bond lengths and/or bond 

angles. 

2. Replacement of atoms or groups of atoms by others which are not identical 

to them: ; 

In general, the second of these effects will imply the first, but the converse is 

not necessarily true, since a distortion of the molecule may arise simply from the 

application of a field. In order to illustrate the idea of reduction in symmetry, 

we shall consider both types of effect. 

We can consider three high-symmetry point groups from which all the others 
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can be obtained by various distortions. These three groups are: 

(i) the octahedral group Op 
(ii) the tetrahedral group Tg 
(iii) the group of the plane hexagon, Dep. 

Although all the symmetry elements of Tq are also elements of Op (we say 

that Tj is a Sub-Group of Oy, a term which will be explained in Chapter 5) it 
is not really convenient, particularly in terms of molecular symmetry, to think 

of Tg as being obtainable from Op, by distortion. Figure 3.23 illustrates this by 

showing cubes with atoms at the corners of the polyhedra. 

| 

Figure 3.23 A cube with atoms disposed so as to give octahedral or tetrahedral 
symmetry 

In considering the ways in which the symmetry of a given molecule or array 
of atoms is reduced by distortion, we need to determine which symmetry elements 
are destroyed by, and which are retained in spite of, the distortion. We shall 
illustrate this by means of simple geometrical figures as well as molecular shapes. 

REDUCTION OF SYMMETRY FROM On 

1. By tetragonal distortion 

A distortion along one of the 4-fold axes, as shown in Figure 3.24, will leave 
that axis as the only C,; the symmetry will be reduced to that of a plane square 
(D4p), all the 3-fold axes and the elements associated with them being destroyed. 

The symmetry of the plane square can be then reduced in a number of ways, 
shown in Figure 3.25, 
(a) Reductions in which the centre of symmetry is retained. 

If the figure formed by the two diagonals is considered, the symmetry can be 
reduced by making the diagonals unequal in length (D2), or by adding feet to 
each of the diagonals to give a swastika shape (C4y). 
(b) Reductions in which the centre of symmetry is not retained, but some planes 
of symmetry are kept. 
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| er 
Co72 : 

C= 4 

Figure 3.24 Effect of tetragonal distortion of a cube giving a figure with D, , symmetry 

If the four half-diagonals are kept equal in length, but their point of inter- 

section is moved out of the plane, the symmetry becomes that of a square-based 

pyramid (C4). 

If a plane square is folded along one diagonal the resultant figure is then a 

puckered four-membered ring and each diagonal lies in a plane of symmetry. The 

axis which was both a C, and an S, in the plane square is now a C4 only, and the 

symmetry of the figure is D2 q. 

(c) Reductions in which only symmetry axes are retained. 

If two plane squares are superimposed so that their centres are coincident 

and the diagonals of one do not coincide with those of the other, nor bisect the 

angles formed by them, the symmetry elements retained are one C, and four C2, 

giving the point group D, . 

2. By rhombohedral distortion 

If an octahedron is elongated in the direction of one of the C3 axes, this 

becomes the only such axis and all the symmetry elements involving the 4-fold 

axes are destroyed. The point group resulting from such a distortion is D3g. The 

solid figure with this symmetry is the trigonal antiprism and its symmetry can be 

reduced in two,ways, neither of which retains the centre of symmetry. 

(i) If the face ABC of the trigonal antiprism is rotated through some angle 

(other than 60° or an integral multiple of it) relative to the face DEF, the C3 is 

no longer an Sg and the three og disappear, leaving a figure of D3 symmetry. 

(ii) If we replace the face ABC by a point G at its centre, and join D, E and 

F to this point, we have a triangular-based pyramid of C3y symmetry. The C3 

is no longer an S, and the 2-fold axes are destroyed. 
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D2p D4 
(The dotted lines lie in a plane 
below that of the full lines) 

D2p Ca, Dog 

Figure 3.25 Figures with D,», symmetry and their reduction to lower symmetries 
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Figure 3.26 A regular octahedron (left) and the trigonal antiprism of D,g symmetry (right), 

produced by elongating the octahedron along one of the C, axes 

Another figure with D3g symmetry is the puckered hexagon shown in Figure 

3.16. The symmetry of this can be reduced to Sg by adding bonds orientated in 

such a way that the three 2-fold axes and three planes of symmetry are 

destroyed, but the centre of symmetry and the Sg axis are retained. Figure 3.27 

shows this reduced symmetry. 

Figure 3.27 Puckered hexagon X,Y, with S, symmetry, If the six X-Y bonds are 

removed, the figure has D,g symmetry 
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REDUCTION OF SYMMETRY FROM Tq 

1. By tetragonal distortion 

Consider the tetrahedron inscribed in a cube, as shown in Figure 3.8. The 

axes joining opposite face-centres are S, and the cube diagonals are C3. If we 

elongate the cube in the direction of one of the S4 axes, this becomes the only 

S4 axis and the 3-fold axes are destroyed. The symmetry of the resulting figure 

is D2g. One can see this by comparing the shapes of methane and allene, which 

are shown in Figure 3.28, as inscribed in a cube and in a tetragonal! prism 

respectively. 
A further reduction of the Dg symmetry can be effected by rotating one of 

the CH, groups in allene relative to the other; this leads to D, symmetry since 

the axis lying the in C-C—C bond direction is no longer an.S4 axis and the planes 

containing the CH, groups are no longer og. 

Sy (F) 

This is no longer 
ca . 

an Sz axis 

This is no longer 
an S4 axis 

Figure 3.28 Methane inscribed in a cube, and allene inscribed in a tetragonal prism 
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2. By pyramidal distortion 

If the cube in which the tetrahedron is inscribed is elongated along one of the 

cube diagonals all the 4-fold axes are destroyed and the direction of elongation 

becomes the only C3 axis. The only planes of symmetry retained each contain 

the C3 axis and one of the other bonds, so that the distortion results in C3, 

symmetry. 

If the cube is distorted in the directions of the diagonals such that there are 

two sets of two equivalent directions, the symmetry is reduced to C,,, and if the 

distortion is such as to lead to one set of two equivalent directions and to two 

other directions which are not equivalent to those or to each other, the symmetry 

is reduced to C,. Figure 3.29 illustrates these reductions in symmetry. 

ie rs 
Elongation of 4 ~Elongation of r,and 7, equally 

C3 \- 3444 (= 45) 

One of three 

oy 

Figure 3.29 Progressive reduction in symmetry of a tetrahedron 

2 

REDUCTION OF SYMMETRY FROM Dp, 

We may consider the possible distortions of the plane hexagon, which retain 

a 3-fold or 6-fold axis, in terms of the retention or destruction of two symmetry 

elements, namely, the plane of the hexagon, which is a o7,, and the centre of 

symmetry i. Table 3.8 shows the results of the possible distortions. 
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Table 3.8. Results of reducing the symmetry of a plane hexagon 

Retained Destroyed Resultant 
Element I on, I on point group 

" Ch 

J J D3d 

J J Dah 
J =f Coy or De 

Con is a point group not normally found; Figure 3.30 shows how it may be 

derived from a figure of Dgy symmetry. The common point group D3,, as well 

as being derived from the plane hexagon, occurs in the form of two three- 
dimensional figures, the trigonal prism and the trigonal bipyramid, shown in 
Figure 3.31. The first of these is more often found as a co-ordination polyhedron 

(for example, the AlO, arrangement in some alums) than as a discrete molecule, 

but the trigonal bipyramid and some of the lower-symmetry figures derived from 

it are common molecular shapes, as Table 3.5 and Figures 3.20 and 3.32 show. 

(The dotted lines lie ina plane below 
that of the full lines) 

Figure 3.30 Some possible reductions in symmetry of a figure whose point group is Dey 
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Equilateral triangle 

(a) 
Trigonal prism 

(b) 

Trigonal bipyramid 

showing bond directions 

(c) 

Figure 3.31 Some figures of D,, symmetry 
(a) equilateral triangle 
(b) trigonal prism 
(c) trigonal bipyramid showing bond directions 

Cl 

Cl 

Cl 

C2 v Cav 

Figure 3.32 Possible configurations of PCl,F, based on the trigonal bipyramid 

A figure whose symmetry is D3y can be distorted by destroying the 3-fold 

axis, giving Cy symmetry; the oy, giving C3, symmetry; or the three vertical 

planes of symmetry, giving D3. Figures 3.32 and 3.33 illustrate these possibilities. 

If the plane hexagon of De, symmetry is distorted so as to form a hexagonal 

based pyramid, the point group C¢y,. which is not so far known as a molecular 

shape, is formed. 

We can also have distortions of Dg, in which only 2-fold axes are retained; 
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—— | 
Coy Cay 

(The dotted lines lie in 
a plane below that of 

full lines) 

A 

Cay Cay 

Figure 3.33 Figures with D,, symmetry and their reduction to lower symmetries 

Figure 3.14(a) shows how Deg, symmetry may be reduced to D,. In Figure 3.30, 

the figure of Cg, symmetry derived from that of Deg, symmetry may be reduced 

to one of Cy, symmetry by removing any two of its three arms. 

The very low symmetry point groups C2, Cs, and C;can be obtained in so 

many ways that it is not worth considering them in detail. Although the above 

treatment is not exhaustive, it deals with the more important possibilities, and 
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Figures 3.34 a, b, and c give a complete chart of the possible routes by which 

one point group can be formed from another. 

Stereographic Projections and Point Groups 

As we saw in Chapter 1 a stereographic projection on the equatorial circle of 

a sphere is a convenient way to represent three-dimensional symmetry in two- 

dimensions. Among the most useful of these projections are those which repre- 

sent the point groups. In order to describe the 27 crystallographic axial point 

groups we need only provide a means of representing horizontal and vertical 

mirror planes and rotation axes (including rotor-reflection axes) on the equatorial 

circle of a sphere which contains the central point of the group at its centre. To 

describe the cubic point groups, however, we also need to be able to represent 

planes and axes which make angles other than 90° or O° with the equatorial 

plane. 

Two different types of diagram are useful in describing point group symmetry; 

these are the Point-group Diagram and the Equivalent Positions Diagram. The 

point group diagram is simply a projection of all of the symmetry elements of the 

group. The equivalent positions diagram also shows, in projection, what happens 

to any general position (x,y,z) on operation of the symmetry elements of the 

group. The symbols used to represent the various symmetry elements will be 

described as we gradually build up a set of stereographic projections to represent 

all 32 of the crystallographic point groups. 

HORIZONTAL MIRROR PLANES 

A horizontal mirror plane is a plane coincident with the equatorial circle which 

is used for the projection. In order to distinguish between point groups with and 

without a horizontal plane we enclose the projection in an open circle if there is 

no plane, and in a closed circle if there is a horizontal plane. 

oe 

Schaiey, 
m 

C, C5 

no horizontal plane horizontal plane 

The point group which contains no symmetry elements other than the identity 

is 1(C,) and so the open circle is the point group diagram for this point group. 

Similarly, the point group which contains only a horizontal mirror plane is m (C,) 
and the closed circle is the point group diagram for this point group. 
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The equivalent positions diagram for any point group is obtained by taking a 
projection of any general position (x,y,z) in the northern hemisphere of the 
sphere. Since this point is in the northern hemisphere it will be represented in 
projection as @. If the operation of any symmetry element converts this point to 
a point in the southern hemisphere, it will then be represented in projection as 0. 
The equivalent positions diagrams for the point groups 1 and m are: 

ou 
( 
ey 

because in 1 (C, ) there are no symmetry elements to operateand in m (C,) the 
only symmetry element reflects the position in the northern hemisphere into the 

southern hemisphere, i.e. it converts the general position (x,y,z) into (x,y,-z). The 

example of a molecule with point group C; (1) from Table 3.5 is CHFCIBr. If we 

take the centre of the hydrogen atom as a general position in this tetrahedral 

molecule, we can see that there is no other equivalent position in the molecule 
and it is this fact that the equivalent positions diagram represents. The molecule 

with point group C, (m) from Table 3.5 is the bent planar molecule HOCI and 

again the equivalent positions diagram for this point group represents the fact that 

any position in the molecule must be reflected across the plane of the molecule. 

VERTICAL ROTATION AXES AND ROTOR-REFLECTION AXES 

These axes must cut the north and south poles of the sphere and will, on 

projection, lie at the centre of the equatorial circle. This can be represented by 

placing the appropriate polygon for the axis at the centre of the stereographic 

projection, i.e. 

: A a @ 

respectively for 2-, 3-, 4- and 6-fold rotation axes and 

0 A @ @ 

respectively for 2-, 3-, 4- and 6-fold rotor-reflection axes with their implied 

rotation axes where appropriate. 



64 SYMMETRY AND STEREOCHEMISTRY 

The point group diagrams for the groups which contain rotation axes as their 

only symmetry elements are thus: 

iN aa a aes 

(OTN aan 
ee 

2 = 4 6 

C2 C3 Cy Ce 

@ 

LS need See a eee 
2 3 & 6 
Cy C3 Ce on 

because the n-fold axes rotate the general position through 360°/n but keep it 
in the northern hemisphere. If we take the molecule H,O, which has the point 

group C, (2), we can see from Figure 3.11 that any position (for example the 

centre of one of the hydrogen atoms) has an equivalent position (the centre of 

the other hydrogen atom) related to it by a 2-fold axis. 

The point group diagrams for the groups which contain only rotor-reflection 

axes are: 

= % ot a | 

Remember that the Hermann-Mauguin symbols for these axes (groups) are those 
of the rotor-reflection axes, while the diagrammatic symbols are those for rotor- 

inversion. Because each rotation is combined with a reflection, the positions in 
the equivalent positions diagram are alternately in the northern and southern 

hemisphere. It is not possible to construct an equivalent positions diagram for 
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6 and so the diagram for 3/m which is an identical symmetry to 6 is used. 
H3 BO; (Figure 3.18) has 3/m= 6 symmetry. The equivalent positions diagrams 
for these groups are: 

a ok a 

ye 
eg) 

The implied 3-fold rotation axis in C3, (6) and the implied 2-fold axis in S4 (4) 

are clearly seen from these projections. The equivalent positions for S4 (4) can be 
verified for a real case by reference to the spiran molecule of Figure 3.12. 

Apart from 3/m = 6, the other point groups which contain an n-fold vertical 

axis and a horizontal mirror plane are 2/m, 4/m and 6/m, the equivalent positions 

diagrams for which are: 

© 

§ a a @ S 

© © © © 

op ve ei 

Con Can CEn 

HORIZONTAL SYMMETRY AXES 

Horizontal symmetry axes lie in the plane of the stereographic projection 

along one of the diagonals of the circle. They are denoted by placing the appro- 

priate polygons for the symmetry axes at the points where the diagonal cuts the 

surface of the circle and drawing in the diagonal as a dashed line. For example, 

a 2-fold horizontal rotation axis would be denoted by 

+ ---4 

The point group diagrams for the groups which contain an n-fold vertical 

rotation axis and 1 2-fold rotation axes are: 
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} ; 
) 

Il I poo hay eee era \ awl, 

be---b--4 | ee = eee eS 

. Z Yeas me ! es ieee 
Cae es as ae ee Mw 

222 oe 422 622 

52 Dz Ds 25 

The horizontal 2-fold axes rotate the general position into the southern 

hemisphere and the n-fold axis repeats both of these positions n times by 

rotations through 360° /n. This gives the following equivalent positions diagrams. 

ee a ps ae mo 
, @)9 \ \ ‘ Oo 1 od’ g ne oa, 

/ fo 1 en FO x he LON oN ek 
1 \ ice Sa) aon, Salley OA, 7220 

boar Naat eee toMacwe C a 
\ 1 Se Non 

e / ole SS 

~ Se ee Sale wy” 

222 32 422 622 

D2 D3 D4 Ds 

The hypothetical gauche forms of allene (Figure 3.13) and of ethane (Figure 

3.15) have D, and D3 symmetry respectively. 

VERTICAL MIRROR PLANES 

In projection, these planes are diagonals of the circle and are represented by 

drawing in the diagonal as a full line —-__-_. If a horizontal symmetry 

axis which is normally denoted by a dashed line, as shown above, also lies in a 

mirror plane, then the diagonal is drawn as a full line, e.g. 

-———__—4 
The equivalent positions diagrams for the groups which contain an n-fold 

rotation axis and n vertical mirror planes are: 



POINT GROUP SYMMETRY 67 
The molecules CH, Cl, and SF4 (Figure 3.19) have Cy symmetry. 
The equivalent positions diagrams for the remaining six axial point groups 

are: 

6/mm 32/m 42m 

26n 239 Dog 

and molecules having the symmetry of two of them, the S, sulphur allotrope 

(Figures 3.16 and 3.17) (D3q) and 1, 3, 5-trichlorobenzene (D3,,) have been 
discussed earlier 

SYMMETRY ELEMENTS NOT IN HORIZONTAL OR VERTICAL PLANES 

An axis which cuts the plane of projection at an angle other than 0° or 90° 

is shown by placing the appropriate polygons at the points, in projection, where 

the axis cuts the sphere. These points are then joined by a dotted line (no mirror 

plane) or by a full line if the axis is coincident with a mirror plane. For example 
a 3-fold axis of this type would be represented as: 

— 

ie a 

(A uals) 

\ 
<r 7. 

A sloping plane of symmetry cuts the sphere in a great circle. Projection of this 

leads to curves lines (arcs of circles) in the equatorial circle. For example the 

diagonal plane of a cube cuts the sphere in a great circle at the four corners of 
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the cube which lie in the plane. When this type of plane is projected we obtain 

a diagfam such as: 

The equivalent positions diagrams for the cubic point groups which contain 

axes and planes of these types are: 

4 3%, (m3m) 
On 

MULTIPLICATION TABLES 

Stereographic projection provides a means of working out the components of a 

multiplication table. Figure 3.35 shows a proof, using stereographic projection, 
that Oy1 x C3 =0y for the multiplication table for C3, (Table 2.2). 

PROBLEMS 

1. Pick out the rotor-reflection axes in the following molecules: 
(a) ethane (b) trans-1, 3-butadiene 

(c) BFs (d) SF¢ 
2. Work out which rotor-reflection axes are equivalent to the rotor-inversion 
axes 8 and 10. 

3. Show that the following pairs of point groups are equivalent: 

(a) Cs, and S; (b) Cs; and S49 

(c) Cy; and Cyyp (d) Czy and S3y 
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Take the stereographic projection for C3, with axes numbered as 

' SN 

follows ( If we take the general position 

2 
Se 
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ae ~N ee 

/e \ - ‘ 
[ and operate e onit i.e operate! A \ 

\ y \ / 
ng aa - 

the general position becomes ( za lf we follow 

\ y 
ae ah 

VA Be 

this by the operation o,, i.e. by os we get 

nee a 
ted 

a aN 

( which is_ identical to the single operation oy i.e. 

Soe a0 fe 
2S 

i S 

\ on the general position. 

Ss Ee 

Figure 3.35 Stereographic projection and multiplication tables 

4. We do not designate any point group as being of the type S,y. If a molecule 

has an Sz, axis where n > 1 together with planes of symmetry which intersect 

in that axis, what other elements of symmetry must it have and how else could 

its point group be designated? 

5. Why is the point group Dg, q not a crystallographic point group? 

6. What are the point groups of the capital letters of the alphabet, assuming that 

they have their most symmetrical forms. Assume also that they are solid figures. 

7. What are the point groups of the following forms of the capital letters and 

numbers: 
(a) | asdistinct from I 

(b) L as distinct from L where both arms are of the same length 



70 SYMMETRY AND STEREOCHEMISTRY 

4—- Coordination 5 - Coordination 

Square — based 
Tetrahedron 

prism 

Trigonal — biprism 

6 — Coordination 

Pentagonal — 
based 

Trigonal prism Octahedron pyramid 

7- Coordination 

Hexagonal — 

based 
pyramid 

Pentagonal biprism 

8 —Coordination 

ae 

<> 
Cube Hexagonal biprism 

Figure 3.36 
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(c) X asdistinct from X where all angles are 90° 

(d) 4 as distinct from 4 
(e) 3 asdistinct from 3 

(f) 8 asdistinct from 8? 
8. What are the point groups of the solid figures shown in Figure 3.36, which 
represent possible 4-, 5-, 6-, 7- and 8- co-ordination polyhedra. 
9. What are the point groups of the following molecular shapes? 

Xx x x 

X 7 x 

Xx 

x x ‘ 

Xx 
x x 

x 
X x 

x 
x 

: x 

Xx x y 

x 

. | 

| | 
x | x x | x 

* | | 
| | 

Xx 

x 
Figure 3.37 

10, What are the point groups of the organic molecules shown in Figure 3.30% 

11. What are the point groups of all the possible configurations obtained by 

replacing one X by a Y in each of the molecular shapes of Figure 3.37? 

12. What are the point groups of all of the possible configurations obtained by 

replacing two of the X groups by two Y groups in each of the molecular shapes of 

Figure 3.37? 

13. Draw the stereographic projections for Csy, D7 , Csh- 

14. Show asa stereogram what happens to a general point on operation of 

the following symmetry elements: 

(a) On? (b) Gy, (c) C.(d C2; (e) S45 Saale) Se- 
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Figure 3.38 



Space Group Symmetry 

In Chapter 3 we considered all of the possible symmetries arising from simple 

and compound elements of rotation and reflection. We saw that, if we restrict 

the order of the rotation or rotor-reflection axes present to n = 1, 2, 3, 4 or 6 

then there are only 32 possible overall symmetries; these are the 32 crystal point 

groups. The limitation on the order of the axes arises from the need to pack 

asymmetric groups in space to form crystals obeying the requirements of 

translation symmetry. If we consider the two dimensional analogy of laying 

tiles on a floor, it is clearly possible to cover all of the floor area with square, 

oblong, triangular or diamond shaped tiles. It is not, however, possible to cover 

all of the area with, for example, pentagonal or heptagonal tiles. Extending the 

analogy to three dimensions it is possible to close-pack units based on oblique, 

diamond, rectangular, hexagonal or square cells but we cannot form a close- 

packed crystal if the order of the axis is 5 or 7. 
In this chapter we shall consider the possible symmetries arising from the 

presence of combinations of simple and compound elements of translation, 

rotation and reflection. We shall see that there are only 230 possible overall 

symmetries and these are the 230 space groups. 

Lattices and Cells 

We saw in Chapter 2 that translation symmetry gives rise to plane and space 

arrays of asymmetric objects. These asymmetric objects can range from a single 

atom in some eJement crystals to large and complicated molecules in protein 

structures, The complexity of the asymmetric unit is not, however, important 

in discussing translation symmetry. Crystallographers simplify the plane and 

space arrays by replacing the asymmetric objects by points such that the environ- 

ment of every point is the same. These points are called lattice points and the 

plane and space arrays become plane and space lattices. If we replace each seven 

in Figures 2.1 and 2.2 by points such that the environment of each point is the 
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te 

Figure 4.1 (a) Plane lattice (b) Space lattice 

same (for example the point at which the two arms of the seven meet) then we 

obtain the plane and space lattices of Figure 4.1. 

A plane lattice can be described by a number of sets of translations. In 

Figure 4.2 each of the sets of translations ¢;f, t1t3, tit4, tats, ts describe 

small cells which, when repeated in two-dimensional space completely describe 

the lattice. There is obviously an infinite number of such cells. t)f2 and f;t4 

are called Primitive Cells because they contain within their boundaries only one 

lattice point. t,f3, tats and ts, are Multiple Cells because they contain more 

than one lattice point. Clearly any plane lattice can be described by any one of 

a large number of cells defined by two translations and the angle between them. 

The important cell, however, is the Unit Cell which is generally defined as the 

smallest or most symmetrical cell which on repetition in space will completely 

describe the lattice. The unit cell may be primitive or multiple depending upon 

the type of lattice. The five possible plane cells are listed in Table 4.1 and 

described in Figure 4.3. 

Figure 4.2 Sets of translations describing a plane lattice 
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Table 4.1. The five types of plane lattice 

Cell Shape Translations a and b Angle Y Figure 

Oblique a#b y #90° 4.3(a) 

Oblique (diamond) a=b 7 #90 4.3(b) 
The diamond cell is the smallest cell but it is 
often replaced by the centred cell of Figure 
4.3(c) which, although larger, is a better 
description of the lattice. 

Rectangular a#b y =90° 4.3(d) 

Square a=b y = 90° 4.3(e) 

Hexagonal a=b y = 60° 4,3(f) 

or a=b y = 120° 4.3(g) 
This is a special case of a diamond cell 

a 
e e e e ‘ e 

Ya 1 ‘\ < 
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b ° i = , ° » 

a “ ‘ y 

eS e e e e ‘ e 
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(d) (e) 

e e e e = es ° 
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° ° ° iZO mee \ - 
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a a e ag e 

60 \ 
a e 

---— e e e e e 

(f) (g) 

Figure 4.3 The five plane lattice types. (a) oblique, (b) and (c) the primitive and centred 

oblique (diamond), (d) oblong, (e) square, (f) and (g) primitive and centred 

hexagonal 
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Oblique and rectangular cells have 2-fold rotational symmetry, square cells 

have 4-fold rotational symmetry and hexagonal cells have 6-fold (cell with 60° 

angle) or 3-fold (cell with 120° angle) rotational symmetry. 

In three dimensions the unit cell is described by three translations and three 

angles. 

(2x6 
wv 

b a 

There are six possible shapes for the three-dimensional unit cells. These are the 

six Crystal Classes listed in Table 4.2. 

Table 4.2. The six crystal classes 

Cell translations Cell angles 

Triclinic a#b#c atXtpy 
Monoclinic afbFC a= 7 =90°, B #90° 
Orthorhombic Beav ee a=B=y= 90° 
Hexagonal a=b#c a=6=90° y=120° 

Rhombohedral a=b=c a= p= 90 
Tetragonal a@=bD+e a=p=y=90° 

Cubic a=b=e a=B=7=90° 

The hexagonal and rhombohedral cells belong to the same crystal class and are 

based on the alternative 6-fold and 3-fold cells of the hexagonal plane lattice. 
Every crystal class must have a primitive cell associated with it but multiple 

unit cells are also possible. The four possible types of cell, primitive (P), body- 

centred (I), face-centred all on faces (F) and face-centred on one face (A, B or 

C depending upon the face which is centred) are shown in Figure 4.4. Primitive 

cells must of course contain only one lattice point within their boundaries; the 

body- and face-centred (one face) cells contain two lattice points and the face- 

centred (all faces) cell contains four lattice points. 

Primitive cells exist in all six crystal classes and we can work out which of 

the multiple cells are possible for each crystal class. If we start with a primitive 

lattice cell we can add additional lattice points to it in the following three ways: 

(a) at the centre of the cell to make it body-centred 

(b) at the centres of all six faces to make it face-centred on all faces 

(c) at the centres of one pair of opposite faces to make it face-centred on one 

face. 
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Figure 4.4 The four possible three dimensional unit cells, Primitive (P), Body-centred 

(1), Face-centred on all faces (F), Face-centred on one face (A, B or C). An 

atom at a corner of a unit cell contributes 4 to that cell, at an edge 4 and 

ona face } 

Having done this for each of the crystal classes we can check which of the 

forms of centring are possible by answering the following three questions: 

1. Is the new array of points still a lattice? If the new array cannot be described 

completely by a set of three translations and angles, the centring is not possible 

for the crystal class being considered. 

2. Has the symmetry of the cell been altered? Obviously if any type of centring 

alters the symmetry of the cell, it no longer belongs to the crystal class being 

considered. 

3. If the arrangentent is still a lattice and the symmetry has not altered, is the new 

arrangement identical to any of the other arrangements for the crystal class being 

considered? This allows for the possibility that one of the centred cells may have 

an identical symmetry to the primitive cell or to one of the other centred cells. 

In the cubic system the body-centred and face-centred (on all faces) cells 

form lattices, remain cubic and are not identical with each other or with the 

primitive cell. Thus P, I and F cells are permitted in the cubic system. Addition 

of lattice points to one pair of opposite faces of a primitive cubic cell destroys 

the 4-fold axes parallel to these faces and the 3-fold axes across the cube diagonals 

and, therefore, the cubic symmetry (see Figure 4.5 a). Single face-centred lattices 

(e.g. C) are thus not allowed in cubic symmetry. 

In the tetragonal system the body-centred cell is permitted. The lattice based 

on a tetragonal cell centred on all faces can also be described in terms of a tetra- 

gonal body-centred cell, i.e. the cell at 45° to the centred lattice in Figure 4.5 b. 

The relative lengths of the translations describing these two cells are not the 

same but nevertheless they have the same symmetry. Thus for tetragonal systems 

F = I. By similar arguments it can be shown that face-centring on the oblong 

faces (A and B) destroys the tetragonal symmetry (i.e. the 4-fold axis) but 

centring on the C face produces a lattice which can also be represented by a 

primitive cell at 45° to the original. Thus for the tetragonal system C = P. 

In the orthorhombic system all four possible cells are permitted. 
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(a) 

Figure 4.5 (a) Face-centring of cubic cell on one face destroys cubic symmetry. 
The cube diagonals are no longer 3-fold axes and the axes through the 
non-centred faces are now 2-fold not 4-fold 
(b) The equivalence of face-centred (F) dotted lines, and body-centred (I) 
full lines, tetragonal cells 
(c) The primitive and C-centred hexagonal cells 

In the hexagonal system I, F, A and B centring are not permitted. The 

simplest cell is primitive but the lattice is often described in terms of the larger 

C-centred cell shown in Figure 4.5 c. The only cell allowed in the rhombohedral 

system is the primitive cell which is usually given the symbol R. Again in the 
rhombohedral system it is possible to pick out a larger centred cell which is 
sometimes a better description of the lattice. 

In the monoclinic system B-centring (i.e. centring on the unique face) is 
equivalent to the primitive cell. A-centring and the centred cells I and F are 
equivalent to C. The primitive cell is the only allowed triclinic cell. 

There is thus a total of fourteen possible types of three-dimensional cell. 

These are the fourteen Bravais lattices shown in Figure 4.6. 

The lattice type of a crystal has a marked effect on its X-ray diffraction 

patterns and, as we shall see in Chapter 6, it is relatively simple to obtain informa- 

tion on the size and shape of a unit cell and on its type of Bravais lattice from 
single crystal X-ray data. 
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cubic cubic cubic 

I 

tetragonal tetragonal 

I : 

orthorhombic orthorhombic orthorhombic orthorhombic 

Pp I a Cc 

rhombohedral ae 

P (R) 

triclinic 

P 

monoclinic monoclinic 

P Cc 

Figure 4.6 The 14 Bravais lattices 
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Compound Symmetry Elements of Translation with Rotation and Reflection 

SCREW AXES 

In these compound symmetry elements a right-handed rotation of 360° /n is 

combined with a translation parallel to the rotation axis. This is illustrated in 

Figure 4.7 by a rotation of 7a through ¢ = 360°/n to position 7b followed by 

a translation, t, to position 7c. The operation of the symmetry element is 

equivalent to a screw motion and hence the term screw axis. In Figure 4,7 the 

asymmetric units 7a and 7c are related by an n-fold screw axis. 

7a o> 
<—_——_ + ——> 

Figure 4.7 An n-fold screw axis 

The symbols used to denote screw axes are, where n is the order of the 

rotation axis and m denotes that the length of the translation t is m/n of the unit 

cell edge. For example the symbols 2, denote a screw axis formed by rotation of 

an asymmetric object through 360°/2 followed by a translation of 1/2 of the cell 

edge. The diagrammatic symbols for screw axes consist of the solid polygon for the 

rotation axes with the sides of the polygon extended to represent the translations 

m/n. Since the order of the rotation axis is restricted in crystal symmetry there 

are only eleven possible screw axes. These are listed in Table 4.3 along with their 
diagrammatic symbols. 

In crystals there are three possible 2-fold axes, the normal 2-fold rotation 

axis (2), the 2-fold rotor-inversion axis (2= m= 1) and the 2, screw axis. These 

axes are shown in Figure 4.8. Similarly there are four possible 3-fold axes: 3, 3 

(=6), 31; and 35. These are also shown in Figure 4.8. In discussing screw axes 

we have so far considered only right-handed rotation. We can see, however, 

from Figure 4.8 that a left-handed rotation does not produce a different type of 

screw axis. The 3, axis for example is a right-handed rotation of 360°/3 combined 

with a translation of 1/3 of the cell edge, while 3, is a right-handed rotation of 

360° /3 combined with a translation of 2/3 of the cell edge. The 3, axis can, how- 
ever, also be formed by a left-handed rotation of 360°/3 followed by a translation 
of. 1/3 of the cell edge, and 3, by the left-handed rotation followed by a 2/3 
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Table 4.3 The Eleven screw axes 

2- fold screw axis 2 

3- fold screw axes 3, 35 

A A 

ao fold screw axes 4, 4, 4, 

@ a 

6-fold screw axes 6, 6, 6, 64 6. 

@ s 

ia Ni Si) Ai 

2 ie 

ie 5 Ni y 

2 2=m 2, 

7 « 2 
5 é y 

z 7 

% 7 Hh 

y os i 

7 iG 2 

3 326 

Figure 4.8 The possible types of 2-fold and 3-fold axes in crystal symmetry 

translation. This means that 3; and 3, are in fact mirror images of one another. 

This can be seen from Figure 4.8 and from the symbols in Table 4.3. By similar 

arguments 43 is the mirror image of 4,, 65 is the mirror image of 6, and 6, the 

mirror image of 6. The diagrammatic symbols of Table 4.3 show these relation- 

ships. 

Again the presence of screw axes can affect the X-ray diffraction pattern of a 

crystal and this will be discussed in Chapter 6. 
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GLIDE PLANES 

In these compound symmetry elements translation is combined with reflection 

in a plane parallel to the direction of the translation. The translation of a glide 

plane is always an integral fraction of the normal translation of the lattice (i.e. the 

cell edge). This gives rise to the three important types of glide plane: axial, diagonal 

and diamond which are listed in Table 4.4 

Table 4.4. Types of glide plane for a crystal with unit cell edges a,b,c . 

Type of Glide Plane Extent of the glide (translation) Symbol 

axial a/2 a 

axial b/2 b 

axial Gio c 
' ath es DEae _ Omine nl 

diagonal ae je 9) 

; 0 DD AC ee CNG 
diamond ie ta d 

Figure 4.9 a shows an axial glide plane formed by a translation of a/2 which 
moves 7a to 7b followed by reflection in a mirror plane parallel to the translation 
direction to 7c, The figures 7a and 7c are thus related by the axial glide plane. 
Figure 4.9 b shows an array of sevens which are related to one another by a 

<— b— 

| G t € 

og ia Te 
7a<—_% —>?b<__%, 37a % 

4 = Tes 7 

(a) (b) 

Figure 4.9 (a) An axial glide plane (b) an array of sevens related by a diagonal glide 
plane 

Ga 
diagonal glide plane with a glide of 2 Again this type of symmetry element 
can be detected from single crystal X-ray diffraction patterns as described in 
Chapter 6. 

Space Groups 

We are now in a position to describe the combinations of translation, rotation 
and reflection symmetry which make up the 230 space groups. First of all, how- 
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ever, let us consider the information that we have available to describe three- 

dimensional symmetry. 
1. We know that there are 32 crystal point groups, i.e. combinations of rotation, 

reflection and rotor-reflection symmetry. Any asymmetric unit which is built 

into a space lattice must have the symmetry of one of these point groups. 

2. We know that there are six crystal classes; triclinic with 1-fold symmetry, 

monoclinic and orthorhombic with 2-fold symmetry, tetragonal which has a 

4-fold axis, cubic which contains both 3-fold and 4-fold or 2-fold axes and 

hexagonal and rhombohedral with 6-fold and 3-fold axes respectively. 

3. We know that, for some of the crystal classes, certain centred cells are per- 

missible in addition to the primitive cell. 

4. We know that, in addition to rotation and rotor-reflection axes, we have 

the possibility of screw axes in crystals and that reflection planes in molecular 
symmetry can replaced by glide planes in crystals. 

The 230 space groups are obtained by considering the application of point 

group symmetry to the crystal classes and the Bravais lattices and allowing for 

the compound translation symmetry elements of screw axes and glide planes. 

If we work through a number of examples of combining all of the possible 

symmetry elements, it should become obvious how the 230 space groups have 

been built up. 

First of all we must consider the application of the 32 point groups to the 

crystal classes. Not every point group is compatible with any crystal class, For 

example, for an asymmetric unit to fit into a cubic unit cell it must itself have 

cubic symmetry. The only point groups which are compatible with the cubic 

crystal class are thus the five cubic point groups. Similarly the requirement of a 

4-fold axis for tetragonal crystals, of a 6-fold axis for hexagonal crystals and of 

4 3-fold axis for rhombohedral lattices limits the number of possible point groups. 

Table 4.5 lists the point groups compatible with each of the crystal classes. 

Table 4.5. The point groups compatible with the crystal classes 

Triclinic ti at 
Monoclinic 2 ioe) i 

Orthorhombic 222, mm2, mmm 

Tetragonal 4, 4, 4/m, 422, 4mm, 42m, 4/mmm 
Rhombohedral 3, 3, 32, 3m, 3m 
Hexagonal , 6, 6, 6/m, 622, 6mm, 6m2, 6/mmm 
Cubic 23. m3, 432, 43m, m3m 

The next stage in the development of the space groups is to consider the 

application of the point groups to every possible Bravais lattice of the crystal 
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class. The triclinic system is a simple one because it has only one lattice type, 

the primitive lattice, and there are two point groups compatible with this three- 

dimensional symmetry (i.e. 1 and 1). There are no rotation axes or mirror planes 

in the point groups 1 and I which could be replaced by the alternative screw 

axes or glide planes and, therefore, there are only two triclinic space groups: 

(i) combination of the point group 1 with the primitive lattice P, i.e. P1 

(ii) combination of the point group 1 with the primitive lattice P, ie. PI. 
In the monoclinic system there are two possible Bravais lattices P and C and three 

point groups. To have the centring on the C face, the monoclinic cell must be 

described in a form with b as the unique axis, that is witha #b #c,a=y=90°, 

6B #90°. We can combine the primitive cell with the three point groups to give 

the space groups P2, Pm and P2/m. In monoclinic crystal symmetry we can have 

the screw axis 2, as an alternative to 2 and the glide plane c as an alternative 

to m (a,b,n and d glide planes are not compatible with monoclinic symmetry). 

These alternatives give rise to space groups with all the possible combinations, 
P2,, Pc, P2,/m, P2;/c. We can also combine the C-centred cell with the three 

point groups to give C2, Cm and C2/m. The same alternatives are possible but 

only two of them (Cc and C2/c) are unique space groups — the other combina- 

tions with the alternative compound translation elements have the same symmetry 

as one of the other groups in the set. The application of the three monoclinic 
point groups to the two possible Bravais lattices of this system therefore gives 

rise to a total of 13 space groups. Table 4.6 shows the allocation of the space 

groups to the Bravais lattices in each crystal class. 

Table 4.6. Distribution of space groups among the Bravais Lattices 

No. of point No. of Space Groups which are: Total No. of 
Groups P F I C(or A) Space Groups 

Triclinic 2 2 _ _ _ 2 
Monoclinic 3 8 — - 5 13 
Orthorhombic a 30 5 9 15 59 
Tetragonal fi 49 = 19 68 
Rhombohedral 5 250 — — _ 25 
Hexagonal 7 Dies _ = - Di 
Cubic 5 15 11 10 36 

*: The smallest hexagonal and rhombohedral cells are P but larger centred cells are some- 
times taken as a better description of these systems, 

Taking one further example from the tetragonal system, it can be shown that 
six space groups arise from combinations of the point group 4 with the two 
possible Bravais lattices of this system (P and I). These Space groups are: 

P combined with the 4-fold rotation axis P4 
P combined with a 4, screw axis P4, 
P combined with a 4, screw axis P4, 
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P combined with a 4, screw axis P4, 

I combined with the 4-fold rotation axis » 14 

I combined with a4, screw axis 14, 

All other combinations reduce to one of this set. 

SPACE GROUP NOMENCLATURE 

_ We have already written down the symbols for a number of space groups. P1, 
P1, Pm, C2/m, P4, I4, etc. are all Hermann-Mauguin symbols for space groups. 

As with point-group symmetry, the logic of the Hermann-Mauguin nomenclature 

is the listing of the number of symmetry elements required to describe the space 

groups and the rules for listing these symbols are set out in this chapter. Space 
groups can also be described in terms of a Schoenflies notation which is an 

extension of the point group symbolism. Unlike the Hermann-Mauguin nomen- 
clature, however, the main crystallographic symmetry elements are not immediately 

clear from the Schoenflies notation. For this reason the Schoenflies symbols are 

given in the complete list of space groups (Table 4.8) but are not discussed in 

detail in this book. 

The first Hermann-Mauguin symbol for a space group is always that of the 

lattice type, i.e. P,I,F,C,A. The subsequent symbols then refer to the nature of 

the axes (rotation, rotor-inversion or screw) corresponding to definite directions 

in the lattice. Symbols representing the symmetries must be given for enough 

directions in the lattice to provide a complete description of the space symmetry. 

The symbols which are used are those which we have already defined and their 

meanings in space group nomenclature are given in Table 4.8 with reference to a 

particular direction in space (the a axis of the lattice). The symbols have similar 

meanings with reference to other directions in space as can be seen from the 

examples of space group nomenclature quoted later in this chapter. 

Table 4.7. Meanings of typical symbols used in space group nomenclature given with 

reference to the a axis 

2 the a axis is 2-fold rotation axis 

2, the a axis is a 2-fold screw axis 

4 the a axis is a 4-fold rotor-inversion axis 

m the a axis is a 2-fold rotor-inversion axis, i.e. there is a mirror plane normal 

to it 

b there is an axial glide plane perpendicular to a with glide b/2 

c there is an axial glide plane perpendicular to a with glide c/2 

; é 4 ; F pe Dee 
n __ there is a diagonal glide plane perpendicular to a with glide ae 

: SD 
d __ there is a diamond glide plane perpendicular to a with glide a 
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Table 4.8. The 230 Space Groups 

H.M. (short) = short form of the Hermann-Mauguin symbols 

HLM. (full) = full form of the Hermann-Mauguin symbols 

S = Schoenflies symbols 

Space Group No. 

Triclinic 

2 

Monoclinic 

Orthorhombic 

16 
17 
18 
19 
20 
Dt 
22 
23 
24 
25 
26 
Dy 
28 
29 
30 
31 
32 
33 

34 
35 
36 
37 
38 
39 
40 
41 
42 

HM. (short) 

Pl 
Pl 

p2 
Poe 
C2 
Pm 
Pc 
Cm 
Ce 
P2/m 
P2,/m 
C2/m 
P2/c 
PQ A/c 
C2/c 

P222 
P2228 
P27 2,2 
P2224 
(222 
C222 
F222 
1222 
ees 
Pmm2 
Pmc2, 
Pcc2 

Pma2 

Pca2, 
Pnc2 

Pmn2, 
Pba2 

Pna2, 
Pnn2 
Cmm2 
Cme2, 
@ce2 
Amm2 

Abm2 
Ama2 

Aba2 
Fmm2 

HLM. (full) 

Pi 
Pl 

PDT 
P12,1 
C121 
Pim1l 
Plcl 

Clm1 
Clcl 

P12/m1 
P12: /m1 
C12/m1 
P12/cl 
P12: /cl 
C12/cl 

P22) 
P222) 
P2no 2 
Pon a2, 
C222) 
222 
F222 
1222 
Denes 
Pmm2 
Pmc2, 
Pcc2 

Pma2 
Pca2, 
Pnc2 

Pmn2, 
Pba2 

Pna2, 
Pnn2 

Cmm2 
Cme2, 
Ccc2 

Amm2 

Abm2 
Ama2 
Aba2 

Fmm2 
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43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

Tetragonal 

75 
76 
id 
78 
72 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
9% 

SPACE GROUP SYMMETRY 

HM. short ALM. (full) 

Fdd2 Fdd2 

Imm2 Imm2 
Iba2 Iba2 
Ima2 Ima2 

Pmmm P2/m2/m2/m 
Pnnn P2/n2/n2/n 
Pccm P2/c2/c2/m 
Pban P2/b2/a2/n 
Pmma P21 /m2m/2/a 
Pnna P2/n21 /n2/a 
Pmna P2/m2/n2; /a 
Pcca P21 /c2/c2/a 
Pbam P2; /b21 /a2/m 
Pcecn P23 /c21 /c2/n 
Pbem P2/b21 /c21/m 
Pnnm P2; /n21/n2/m 
Pmmn P2; /m21/m2/n 
Pben P2; /b2/c21 /n 
Pbca P21 /b21 /c21 /a 
Pnma P2; /n21/m2; /a 

Cmem C2/m2/ c21 /m 
Cmca C2/m2/c21 /a 
Cmmm C2/m2/m2/m 
Ccem C2/c2/c2/m 
Cmma C2/m2/m2/a 
Ceca C2/c2/c2/a 
Fmmm F2/m2/m2/m 
Fddd F2/d2/d2/d 
Immm 12/m2/m2/m 
Ibam 12/b2/a2/m 
Ibca I fo2 {e/a 
Imma 12/m2/m2/a 

P4 P4 

P4, p4, 
P4, P4, 
P4, P4, 

14 14 
14, 14, 
P4 P4 
14 14 
P4/m P4/m 
P4, /m P4,/m 
P4/n P4/n 
P4,/n P4, /n 
14/m 14/m 
14, /a 14, /a 
P422 P422 

P42,2 p42,2 
P4, 22 P4, 22 

87 
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93 
94 
DS 
96 
oi 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
ale, 
PN 
114 
1S; 
116 
al 
118 
de'9 
120 
zal 
122 
123 
124 
i235 
126 
127 
128 
129 
130 
131 
32 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

Rhombohedral 

143 
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P4, 22 
P4,2,2 
P4,22 
P4,2,2 
1442 
14,22 
P4mm 
P4bm 

P4,cm 
P4,nm 
P4cc 
P4nc 
P4, mc 
P4, be 
14mm 
14cm 

14, md 
14, cd 
P42m 
P42c 
P42,m 
P42,c 
P4m2 
P4c2 
P4b2 
P4n2 
14m2 
14c2 
142m 
142d 
P4/mmm 
P4/mcec 
P4/nbm 
P4/nne 
P4/mbm 
P4/mnc 
P4/nmm 
P4/ncc 
P4, /mme 
P4, /mem 
P4, /nbc 
P4, /nnm 
P4, /mbc 
P4, /mnm 
P4, /nmc 
P4,/ncm 
14/mmm 
14/mcm 
14; /amd 
14, /acd 

P3 

HM. (short) HM. (full) 

P4,22 
P4, 2,2 
P4,22 
P4,2, 2 
1442 

14, 22 
P4mm 
P4bm 
P4,cm 
P4,nm 
P4cc 
P4nc 
P4,mc 
P4, be 

14mm 
14cm 
14,md 
14, cd 
P42m 
P42c 
P42,m 
P42, c 
P4m2 
P4c2 
P4b2 
P4n2 
14m2 
14c2 
142m 
142d 
P4/m2/m2m 
P4/m2/c2/c 
P4/n2/b2/mi 
P4/n2/n2/c 
P4/m2, /b2/m 
P4/m2,/n2/c 
P4/n2,/m2/m 
P4/n2,/c2/c 
P4,/m2/m2/c 
P4,/m2/c2/m 
P4,/n2/b2/c 
P4,/n2/n2/m 
P4,/m2,/b2/c 
P4,/m2,/n2/m 
P4,/n2,/m2/c 
P4,/n2,/c2/m 
14/m2/m2/m 
14/m2/c2/m 
14, /a2/m2/d 
14, /a2/c2/d 

P3 

_ ON 

S) Se sis PRP RKP eR ED ToT TaAsNS 

ve 
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144 
145 
146 
147 
148° 
149 
150 
151 
io? 
i538 
154 
155 
156 
157 
158 
159) 
160 
161 
162 
163 
164 
165 
166 
167 

Hexagonal 

168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 

SPACE GROUP SYMMETRY 

HM. (short) 

P3, 
P3, 
R3 
P3 

R3 
P3122 

P32i 

P3, 12 
P3, 21 
P3,12 
P3,21 
R32 

P3m1 

P31m 

P3cl 

Ps ie 

R3m 

R3c 

P3lm 
P31c 
P3m1 
P3cl 
R3m 
R3c 

HM. (full) 

PS, 
P3, 
R3 
P3 
R3 
P312 
P321 
P3, 12 
P3,21 
P2342 
P3, 24 

P6/m2/m2/m 
P6/m2/c2/c 
P6,/m2/c2/m 
P6,/m2/m2/c 

89 
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Space Group No. HM, (short) HM. (full) S 

Cubic 
195) P23 R23 Tie 

196 F23 F23 Ee 
OW 123 123 Te 

198 P2,3 P2,3 T4 
199 D3 Dee Ts 
200 Pm3 P2/m3 T}, 
201 Posy P2/n3 T}, 
202 Fm3 F2/m3 T} 
203 Fas F2/d3 TH, 
204 Im3 12/m3 Tr 
205 Pa3 P25) Ty: 

206 Ia3 12, /a3 T 
207 P432 P432 O} 

208 P4, 32 P4, 32 O? 

209 F432 F432 Oz 
210 F4, 32 F4, 32 o* 
Daal 1432 1432 Oz 

ae P4, 32 P4, 32 oe 
2413 P4,32 P4, 32 oO’ 

214 14, 32 14, 32 o° 
215 P43m P43m Ty 
216 F43m F43m T?, 
Diy, 143m 143m Ta 
218 P43n P43n I 
219 F43c F43c rT 
220 143d 143d _ ry 
De Pm3m P4/m32/m On 
222, Pn3n P4/n32/n O}, 

223 Pm3n P4,/m32/n op, 
224 Pn3m P4,/n32/m O}, 
225 Fm3m F4/m32/m O; 
226 Fm3c F4/m32/c O}, 
227 Fd3m F4,/d32/m Oh 

228 Fd3c F4, /d32/c OF 
229 Im3m 14/m32/m O}, 
230 la3d 14, /a32/d OY 

The directions along which we must list the symmetry elements vary with 
the crystal class as described below. 
Triclinic — only one symbol is required because it represents all directions in 
space. As we have seen previously the symbol must be either 1 or T depending on 
whether there is or is not a centre of symmetry in the system. P1 and PI there- 
fore represent the two triclinic space groups. 
Monoclinic — only the one symbol is required and that describes the nature of 
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the unique axis. The following notations represent typical monoclinic space 

groups: 

P2 — a primitive cell in which the unique axis is a 2-fold rotation axis 

P2, — a primitive cell in which the unique axis is a 2; screw axis 

Cm — acentred cell in which the unique axis is a 2-fold rotor-inversion 

axis 

Pc -— a primitive cell in which there is a glide plane perpendicular to the 

unique b axis with a glide of c/2 

€2/m— acentred cell in which the unique 2-fold axis has a mirror plane 

normal to it. 

In a monoclinic lattice with b as the unique axis the symmetry about both a and 

c is 1, The space group symbols could be written in full to give the symmetry 

about all three axes, e.g. P2 could be written as P121. This is not normally done 

because the 1-fold axes along a andc are redundant symmetry elements. It may, 

however, be helpful to remember that we are in effect specifying the symmetry 

about all three axes in writing down a monoclinic space group symbol. 

Orthorhombic — in the orthorhombic system the lattice type symbol is followed 

by three other symbols which represent the symmetries about all three of the 

orthorhombic axes in the order a,b,c. Typical orthorhombic space groups are: 

P2,2,2; — primitive cell with screw axes along a, b andc 

C222 — cell centred on the C-face with 2-fold rotation axes along 

a,b andc 

Iba2 — body centred cell in which the symmetries about the three 

axes are: 

(a) axial glide plane perpendicular to a with a glide of b/2 

(b) axial glide plane perpendicular to b with a glide of a/2 

(c) the c axis is a 2-fold rotation axis 

Fdd2 — a cell centred on all faces in which the symmetries about the 

three axes are: 
; bt 

(a} diamond glide plane perpendicular to a with a glide of 2 

+ 

(b) diamond glide plane perpendicular to b with a glide of — 

(c) the ¢ axis is a 2-fold rotation axis 
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Pnma — a primitive cell in which the symmetries about the three axes 

are: 
: b+ 

(a) diagonal glide plane perpendicular to a with a glide of 5 - 

(b) a mirror plane normal to b 
(c) axial glide plane perpendicular toc with a glide of a/ 

Tetragonal — The lattice type Cae is followed by three symbols which 

represent respectively: 

(i) the symmetry of the 4-fold axis, ie. the c axis 
(ii) the symmetry about the a and b axes. Thea and b axes must have the same 

symmetry in the tetragonal system 

(iii) the symmetry along the 110 and 110 planes (i.e. the square diagonals). 
Typical tetragonal space groups are: 

P4nc — a primitive cell in which the c axis is a 4-fold rotation axis in 

which there are diagonal glide planes perpendicular to the a and 
d WG 

and—, 

there is an axial glide plane perpendicular to the square diagonals 

with a glide of c/2. 

I4/mmm  — a body-centred cell in which the c axis is a 4-fold rotation axis 

with a mirror plane normal to it and in which there are mirror 
planes normal to the a and b axes and the square diagonals. 

b axes with glides ath = respectively and in which 

Hexagonal — Hexagonal lattices can be described in terms of a four co-ordinate 

system x,y,z,u where x,y and z are the a,b and c axes respectively and wu lies in 

the ab plane as shown in Figure 4.10. In the hexagonal system the lattice type 

symbol is followed by three other symbols which represent: 

(i) the symmetry of the 6-fold axis, the c axis, or, if the lattice is'rhombohedral 

the symmetry of the 3-fold axis 

(ii) The symmetry about the a,b and u axes 

(iii) the symbols for the diad axes normal to the a,b and wu axes in the 0001 
plane. 

A typical hexagonal space group is Comm and a typical rhombohedral space 
group is P312. 

Cubic — In cubic symmetry the three symbols following the lattice type symbol 
represent the symmetries in: 
(i) the 100 planes, i.e. the three equal cell translations 
(ii) the 111 planes, i.e. the cube diagonals 
(iii) the 110 planes, i.e. the square diagonals 
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— Oe 

a 
Figure 4.10 Thea, b and u axes of a hexagonal lattice in the plane perpendicular to the 

c axis 

Typical cubic space groups are Fm3m, 1432 and P4, 32. 

In some space groups it is not necessary to list all of the symbols. This can 

arise when the symbol has only the minimum symmetry about the last direction 

or directions listed. For example the tetragonal space group P4 is completely 
described by these symbols and there is no need to specify the symmetries about 

the 100 and 110 planes. Table 4.8 is a list of the 230 space groups and it contains 

the Hermann-Mauguin (HM) symbols, the symbols for the full symmetry elements 

and the Schoenflies (S) notation. 
It is often convenient to consider the plane symmetry obtained when a three- 

dimensional array is projected on to one of its faces. This two-dimensional 

symmetry gives rise to the 17 plane groups listed in Table 4.9. These plane 

groups arise from the application of the point groups listed to the plane lattices 

Table 4.9, The 17 plane groups 

No. Lattice Point Groups Plane Groups 

Oblique 

Rectangular 

Hexagonal 

14 
15 p3lm 

16 
p6 

17 
p6m 
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of Figure 4.3. The plane group notations are similar to the space group notations 

in that they have first the symbol for the plane lattice type (p or c depending 

upon the type of plane lattice — primitive or centred). This symbol is then 

followed by symbols representing the symmetries in the plane of the projection 

(the ab plane). In two-dimensional space all glide planes are denoted by the 

symbol g. This is because the translation of the glide is fixed by the position of 

the glide plane. For example, in two dimensions a glide plane perpendicular to a 

must have a glide of b/2 because b is the only other translation. 

Space Group Diagrams and Equivalent Positions Diagrams 

SPACE GROUP DIAGRAMS 

Space group diagrams, like stereographic projections, are designed to present 

all of the symmetry elements of a space group in a diagrammatic form. The 

diagrams are usually ab projections bounded by a thin line unless the a or b 

directions contain mirror or glide planes. The diagrams have the b axis horizontal 

with its positive direction from right to left. The positive direction of the a axis is 

from the top to the bottom of the diagram. The symbols used in these diagrams 

are given in Table 4.10. 

Table 4.10. Symbols for space group diagrams 
Diagrammatic symbols for element 

Symmetry element Normal to the plane of projection Parallel to the plane of 
projection 

m a “tui 
a ee a mee va bam atl 

Cen | none 

a ee 

ie rotation axes closed polygons as before 

rotor-reflection axes | open polygons as before 

Screw axes polygons with extended sides as before eT 

rotor-inversion axes sometimes closed polygons with a small 
open circle at the centre are used, e.g, 
9 Aetc. 

The space group diagrams for P1, P1, P2, 2,2, Pmm2, Pna2,, Pmmm, P4,/n and 
P4mm are shown in Figure 4.11 and explained below: 

(a) P1 There are no symmetry elements in this space group other than the 
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identity and so the space group diagram is simply an oblique polygon with its 

sides drawn in as thin lines. 

(b) Pl The centre of symmetry in this group is shown by the presence of the 
2-fold rotor-reflection axes in the correct positions within an oblique polygon. 
The sides of this polygon are again drawn in as thin lines, 

(c) P2;2,2 The space group diagram for this symmetry is a rectangular 
polygon again with its sides drawn in with thin lines. The 2-fold axis along c 
(normal to the plane of the projection) is shown by the solid polygon symbols 

for the 2-fold axes. The positions of the 2, screw axes along the a and b directions 
are shown by the half arrows. 

(d) Pmm2 The space group diagram shows the two mirror planes parallel to 

the a and b directions meeting at a 2-fold axis in the centre. The positions of the 
related 2-fold axes and mirror planes (along the sides of the rectangular diagram) 
are also shown. 

(e) Pna2, shows the use of symbols for n (normal to the a direction), a 

(normal to the b direction) and 2, along the c axis. 
(f) Pmmm This diagram is similar to that for Pmm2 except that the additional 

mirror plane parallel to the ab plane is shown by the rectangular symbol at the 

top right-hand corner. The 2-fold axes along the a and b directions show where 

pairs of mirror planes meet and are indicated by arrows. 

(g) P4,/n The positions of the 4, axes along c and of implied 4-fold rotor- 

reflection axes are shown. This space group is centrosymmetric and the centres 

of symmetry are at the positions shown by the 2-fold rotor-reflection symbols. 

The 1/4 beside this symbol indicates that these centres are at a height of c/4 

above the ab plane. The symbol for the diagonal glide plane parallel to the ab 

plane is shown in the top right-hand corner of the diagram as this is also at a 

height of c/4. 
(h) P4mm The positions of the 4-fold axes along c, and the mirror planes 

normal to the a and b directions and to the square diagonals are shown. The 

glide plane and the 2-fold rotation axes are symmetries which result from the 

4mm. 

EQUIVALENT POSITIONS DIAGRAMS 

As in the case of the stereographic projections of the point groups, we can 

produce equivalent positions diagrams for the space groups. These diagrams are 
explained for the eight space groups of Figure 4.11 and are illustrated in Figure 

4,12, The general position x,y,z is shown on the diagram as an open circle o 
followed by + or — to distinguish between positions which are +z (i.e. above the 

plane of the projection) or —z (below the plane of projection). The open circle is 

also assumed to be right-handed, if the position is inverted through a centre it 

would become left-handed and would be shown as an open circle containing a 

comma, o. The symmetry elements are not included in the equivalent positions 
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(a) 

P4./n 
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Figure 4.11 
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(b) 

Pmm2 

(d) 

<_ v 
Pmmm 

(f) 

NS 
Space group diagrams for (a) Pl, (b) PI, (c) P2, 2, 2, (d) Pmm?2, (e) Pna2, 
(f) Pmmm, (g) P4,/n (h) P4mm. 
The 5b axis is horizontal with its positive direction from left to right. The a 
axis lies up and down the page with its positive direction from the top to 
the bottom of the diagram 
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Figure 4.12 Equivalent positions diagrams for the space groups (a) PI, (b) PI, (c) P2, 2, 2, 
(d) Pmm2, (e) Pna2,, (f) Pmmm, (g) P4,/n (h) P4mm 
The axes are defined in the same way as in Figure 4.11 
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diagrams which are generally divided into four quadrants for convenience. 

The equivalent positions diagram for P1 (Figure 3.12a) shows that if we take 

the general position x,y,z, there is no equivalent position within the cell. This 

means that if we place an atom centre at x,y,z, there is no other atom in the 

unit cell that is related to it by symmetry. For P1, therefore, there is only one 

general position x,y,z. If we place an atom in the general position x,y,z in Pi it 

must be inverted by the centre of symmetry and also appear at —x,-y,—Z. There 

are thus two equivalent positions in the space group Pi and these are x,y,z and 

—x,—y,-z. This means that, if we place an atom at the position x,y,z, there must 

be an identical atom in the position —x,—y,~z. It is interesting to consider the 

effect of placing an atom at one of the centres of symmetry, for example at 

0,0,0. Since this atom lies on the centre of symmetry, it has no related equivalent 

position (identical atom within the cell) and is therefore a Special Position of 

the space group. Space group diagrams always show the general equivalent 

positions, that is the maximum number of sites within the cell that are symmetry 

related. It is generally a simple and worthwhile task, however, to find out the 

effect of placing an atom on one of the symmetry elements of the group. Volume I 

of the International Tables for X-ray Crystallography (published for the 

International Union of Crystallography by the Kynoch Press, Birmingham, 

England) contains full details of all space groups with the relevant diagrams and 

lists of the general equivalent positions and all special equivalent positions. In 

this chapter we shall list the general equivalent positions and some of the special 

positions for the remaining space groups in Figure 4.12 (i.e. 4.12 c to 4.12 h). 

P2,2,2 If we place an atom in the general position x,y,z, the symmetry elements 

of this group generate four equivalent positions at: 

xyz; —-x,-yz; 4&+x),4—-y),-2z; and — x), 4+), -z. 

These equivalent positions are shown in Figure 4.12(c). If we place an atom on 

the 2-fold axis it can have any value of z, but the co-ordinates of x and y are limited 

to either 0, 0 or 04. There are thus two special 2-fold equivalent positions for 

this group at 
(i) 03,z and 4,0z 

(ii) 0,0,2 and$4,-z 
That is, if we place an atom on the 2-fold axis there can only be one other atom 

in the cell which is related to it by the symmetry of the group. This can be seen 

either by drawing an equivalent positions diagram with an atom at 0, 0, z or 

simply by substituting the values x = 0, y = 0, z =z in the list of general equivalent 

positions which will then reduce to only two different positions. 

Pmm2 This space group has a 4-fold set of general positions (Figure 4.12 d) at 

XY,2Z3 —X—-V3Z5 X,-Y23 — XYZ 
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There are 2-fold special positions if an atom lies on one of the mirror planes 
(e.g. x,0,z) and 1-fold special positions if the atom lies at the intersection of two 
of the mirror planes (e.g. 0,0,z). 

Pna2, The equivalent general positions (Figure 4.12e) are 

x,y,2; —x,—-y,4 +z); 2 —x),G +y),G +z); +x), -y),z 

There are no special positions. The 4 + symbol in the diagram indicates that 
the co-ordinates of the points in the c direction are } + z. 

Pmmm The eight equivalent positions of this group are 

X,y,zZ, saga Vigligh Nia sees NV aes SN ae asta So Ni) saan Si —X,Y,Z; 25 EA, 

The symbols in Figure 4.12(f) show that there are two equivalent positions with 
the same x and y co-ordinates but differing z co-ordinates, For the above symbol 

this means that there is a right-handed object at x,y,z and a left-handed object at 

X,V,~Z. 

P4,/n The eight equivalent general positions of this tetragonal space group are: 

X,Y,2Z; —X%,-y,2Z; (+x), +y),G -2z); G—),G —y),G — 2); —y,x,-2; 
Via sian 25) G — y),G + 1G eZ): G +y),G 2 x), ct Ze 

P4mm The eight equivalent general positions of this tetragonal space group are: 

xX ,),Z; aN 5h 5) —X,),Z, Naty igi) yX,Z; Vp eis) —),X,Z, Ve se. 

The importance of a knowledge of space group symmetry (and of the equivalent 
positions generated by the symmetry elements present) in the determination of 

crystal structures will be discussed in Chapter 6. 

PROBLEMS 

1 With the aid of suitable diagrams show that a C-centred tetragonal cell is 

equivalent to a primitive tetragonal cell. 
2 To which crystal class do each of the following space groups belong. Explain 

the meanings of the symbols in each case. 

(ajperecm -(b)) Paec, (e) P3; (d) Ama2, (e) F432, 

(f)  P2,/m, (g) P6322, (h) 14, cd. 
3 Draw the plane group diagrams for the following two-dimensional plane 

groups: 
(i) P1 (oblique) (ii) Pm (rectangular) 

(iii) Pg (rectangular) (iv) Pmm (rectangular) 

(v) P2 (oblique) (vi) P4 (square) 
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4 Draw the equivalent positions diagrams for the plane groups listed in question 

3 above 

5 What are the co-ordinates of equivalent atoms for the special positions which 

result from placing an atom in the positions: 

(i) 

(ii) 

(iii) 
(iv) 

(v) 
(vi) 
(vii) 

on one of the mirror planes in Pmmm (Figures 4.11 f and 4.12 f) say 

on (a) x,0,z or (b) x,y,0. 

on the intersection of two of the mirror planes in Pmmm, say on 

(a) 2,3, or (b) 2,y,0. 
on the intersection of three of the mirror planes in Pmmm say on 0,0,0. 

at the centre of symmetry in P4, /n (Figures 4.11 g and 4.12 g) say at 

1/4,1/4,1/4. 
on a4 axis in P4,/n say on 0,0,0. 
on a mirror plane in P4mm (Figures 4.11 h and 4.12 h) say on x,0,z. 
at the junction of the 4-fold axis and the two mirror planes of 

P4mm say on 0,0,z. 

6 Explain why the symbols P321 and P312 represent different space groups 

while P2,22 and P222, represent the same symmetry. 

7 Which of the following pairs of space group symbols represent different 

space groups: 

(a) 
(b) 
(c) 
(d) 
(e) 

P2 ea. 
P6m2 , P62m 

Pcca » Pock 

P4,32, = «P432 

C222) 5 Azz2 



Group Theory 

Symmetry Operations as a Group 

In Chapter 2 we saw the effect of subjecting a molecule to successive symmetry 

operations, and collected the information into a multiplication table, of which 

Tables 2.1, 2.2 and 3.2 are examples. If we study these tables, we see that the 

following rules apply. 
(i) Whenever we perform two successive symmetry operations, A, B on a molecule, 

the result is the same as would have been produced by some single symmetry 

operation of the molecule. This is the so-called Combinative Law, 

(ii) If we perform three symmetry operations, A, B, C, we get the same result 
whether we perform C followed by the product AB, or the product BC followed 

by A. 

This is the so-called Associative Law (AB)C = A(BC) 

(iii) For every operation A there is an inverse which we can designate A such 

that A—1A = 4A7" =I, the identity. 
(iv) The operation J exists, and for every operation A, we have AJ = JA = A. 

Since the symmetry operations of a molecule obey the four rules given above, 

they form a Group. Note that, although the designation ‘point group’ comes from 

the fact that all the symmetry elements of a molecule pass through a point, the 

group consists of the operations, not the elements. Confusion often arises here 

because the members of a group (i.e. the symmetry operations, in this case) are 

sometimes referred to as the elements of the group. 

As we stated in Chapter 2 the multiplication tables for the symmetry operations 

of a molecule contain the information we need in order to simplify physical prob- 

lems by considering them in terms of molecular symmetry. 

To transform this information into a more readily usable form, we can try to 

find a set of functions which multiply in the same way as the symmetry operations. 

Suppose we rewrite Table 2.1 as Table 5.1 replacing /, Cz, On, iby A, B,C, D, 
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can we find four functions A, B, C, D such that the multiplication table is still 

true? 

Table 5.1. Another version of the multiplication table of the point group C,,, previously 

given as Table 2.1 

If we can find such a set of functions, that set is said to represent the symmetry 

operations. The four rules given above, combined with the fact that, in general, 

multiplication of the symmetry operations is not commutative, suggest that a 

matrix would be a suitable type of function to represent a symmetry operation. 

If we are to use matrices to represent symmetry operations, we need to know 

how to multiply matrices. If we have two matrices O, R, their product P is formed 
by multiplying, term by term, each row of Q into the corresponding column of 

R, as illustrated in the example below. This requirement means that it is not 

always possible to form a matrix product; matrices which can be multiplied 

together are said to be conformable. A matrix is simply an array of numbers 

written as rows and columns, thus 

SE Rae 

is a matrix and is said to be rectangular since it has two rows and three columns, 
while 

4 1] 

Sa 

is said to be square since it has two rows and two columns. 
All matrices which can represent symmetry operations are square. 

MATRIX MULTIPLICATION 

The conformability condition is usually stated as follows: 
For matrices to be conformable, the number of rows in one must be the same 

as the number of columns in the other. To be more specific, one should say that 
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the product QR can be formed when the number of columns in Q is equal to 

the number of rows in R, while the product RO can be formed when the number 

of columns in R is equal to the number of rows in Q. 

So for: 

ate —< qi liao 

(i) Q= R= : 
1 Sn q2 LD 

We can form RQ but not QR. 

23 4 Gia G19 Ti 

G)7<G = Ks : 
LAG 5 21 G22} |ra1 

We can form QR but not RQ. 

3 4 Le 

(iii) O = ee 
506 7 8 

We can form both OR and RO. 

(a) for (i) P=RQ-. Pi = Vik IK 

11911 +112 921 3x2 + 4x1 a 

roi dia + 122921 Ox 2 +300! i 

(0) for Gi) P= OR *. pig = & GikTkj 
ii 11 + 4i2V121 2x4 + 3x5 a 

d21 711 os 1x4 +6x5 34 

In the co-ordinate transformation due to clockwise rotation by an angle 0, the 

transformation matrix is correctly expressed as 

| cos x 

y’ —sind cos) Ly 

P O R 2 

This is illustrated by Figure 5.1 

where x’ = xcos0 + ysin@ 
y' =—xsin@ + ycos 

compare this with example (ii) above. 
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y ey 

P (x,y) * P(x yix rd) 

P'(xy') x 

_—_____9—__>% Se x 

Figure 5.1(a) Rotation of OP through @ in a clockwise direction is equivalent to rotation 

of the axes through @ in an anti-clockwise direction, 

x'=OA= OF +EA=CD +FP=ysin@+xcos@ 

y'= OB= OC —CB «-ycos@—yxsin@ 

Figure 5.1(b) | On rotation of the axes through 6 in an anti-clockwise direction, the new 
co-ordinates of P are x’ = x cos@ + y sind, y’ = —x sin@ + y cosé 

By the rule we have pj; = 2 ikl kj 

* Prix =Qiilia + Q12%21 =Cos0.x + sind.y 
Poi =G21%21 + G2r2%o1 =—sinb.x + cosb.y 

Also note that, if one matrix has m rows and n columns, while the other has 
n rows and p columns, their product will have m rows and p columns. In the 
co-ordinate transformation matrix, Q has 2 rows (m) and 2 columns (7), while 
R has 2 rows (1) and 1 column (p), so P has 2 rows (m) and 1 column (p). 
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MATRICES AS REPRESENTATIONS OF SYMMETRY OPERATIONS 

We may illustrate the representation of symmetry operations by matrices 
using Table 2.2, the multiplication table for the NH3 molecule. 

We see that Oy10y2 =C} 

Oy20y1 = C3 
Now since the matrix expressing the effect of a rotation through an angle @ is 

cos) sind 

—sin? cos0 

the matrix representing a rotation through 120°, that is, the operation C3}, is 

- cos 120° sin 120° . stl 

-sin 120° cos 120° -V3/2 1/2 

while that representing a rotation through 240° (C3) is 

cos 240° sin 240° 1/2 -V3/2 

—sin 240° cos 240° Va 1/2 

Now consider the matrices 

1 ‘ ies V3 
Of R= 

0 -1 V3(2> a2 

Sy ex 3/2 

-V3/2. -1/2 

—1/2 fie 

V3/2 1/2 

Since OR is the matrix expressing C3, and RQ is that expressing C3, QandR 

can be used to represent the symmetry operations oy; and oy. 

In practice the problems we have to solve do not depend on determining the 

actual matrices which make up a representation of the symmetry operations; we 

need to know only the characters of the matrices, The character (x) is the sum of 

the diagonal elements of the matrix, and is also referred to as the trace or spur. 

The product OR is 

and the product RQ is 



106 SYMMETRY AND STEREOCHEMISTRY 

The characters of the matrices QO, R, OR, and RQ are 0, 0,—1 and —1 respectively. 

In any case, there is an infinite number of representations of a group of symmetry 

operations, but only a very few of these are of interest. One such representation 

is formed by considering the displacements of the atoms of a molecule, in 

Cartesian co-ordinates. Figure 5.2 illustrates this for a triatomic molecule AB, 

of Cy, symmetry. The symmetry operations are I, Cy, oy(vz) and 0, (xz). These 

two reflections are the reflections at the molecular plane and at the mirror plane 

perpendicular to the molecular plane, respectively. We may express the effects of 

the symmetry operations by drawing up a transformation table. 

Table 5.2. Transformation table for the Cartesian displacements of AB, with C, y symmetry 

Operation 

Co-ordinate 

xy xy * x; xy 

Vi V1 aon as 4 

Z4 2, 2; Z; 2, 

X5 Xo —X3 —% 4 X3 

V2 Vo 3 Vo aa 

Zo Z, Z3 Zo 23 

Me Xs Xn Xs Xy 

V3 V3 a va a2 

Zs Ea ae Z5 Z4 

Figure 5.2 Cartesian displacements for the atoms of a molecule AB, with C,) 
symmetry. The C, axis lies in the direction of z, and the plane of the 
molecule is the yz plane 
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For each operation, the relation between the original co-ordinate and the 

transformed co-ordinate (designated by a prime) produced by the operation can 

be expressed in matrix form, as follows: 

0 ce 

, 

al V4 

, 

Z4 wa 

’ 
X2 x 

ft —_— 

72 ae ee 

, 

22 Z9 

, 
x3 x3 

’ 
V3 

V3 

i 

Z| 
23 | 

! al 
x . OmO40 0 010 0 o| |x: 

| 
| | 

yt QO =! ve 0 010 QUO] ty; 

| 

Pay Oh ORIromoe OT Om0RO) |Z, 
pt 

| | 

ae Qe OmOr Oe OM O10. 0) || 5 

I 

GV = ho OOS ORON O10)» 
| ' 

29 ORO OT OF ON ONO 1) | Ze 

| 

x5 (ied OF -188 02 07,07 OFF 0)" x; 

’ 
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C= 0,(yz) 

! | 
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Se 
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oS oO 

D = oy(xz) = oy 

' i 

41 0 0:0 0 0;0 0 xy 

22 

x3 

v3 

23 
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Each symmetry operation is represented by a 9 x 9 matrix, and this representation 

in Cartesian co-ordinates can be written shortly as 

I Cartesian | 9 il 3 ] 

where the numbers in each column are the characters of the matrices representing 

each symmetry operation. 

Reducibility and Irreducibility 

The representation formed by these four matrices is said to be reducible. This 

arises as follows: 

Let the matrices representing J, C,, oy, 0, be labelled A, B, C, D respectively. 

There is some matrix Q with an inverse Q~ such that 

O40 =A' 
O7'BO = B' 
Q"CQ=C 

O-'DQ=D' 

where A’, B’, C’, D' are all blocked out in the same way. In fact, in this case, 

each of the four matrices A’, B’, C’, D’ has non-zero elements only on the leading 
diagonal. If, after this reduction, no further matrix R (say) can be found such 

that 

R'A'R=A: 
R™B'R=B" 
R7OC R=C 
RD R=D" 

where A”, B”, C’, D" are blocked out in the same way then the set of matrices 

A’, B', C, D’ forms an irreducible representation. In the case considered here, 

there is no matrix R leading to a further reduction, so that the matrices 

A’, B’, C, D' are irreducible. 

As we show later, we do not need to know Q, so only the transformed 

matrices A’, B’, C’, D' are given and Q~' AQ, etc. are not worked out. 
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The four transformed matrices are 

1 1 

A'= (1) 1 B'=(C2) = 

C' = (oy) i D' = (0) 1 

If we label the diagonal elements of these four matrices as La by, ey d i then 

each set such as a4, 611, Ci1, 411 isan irreducible representation. 

Table 5.3. Irreducible representations formed by the matrices A’, B’, C’, D' 

il, 2roies) || l 1 1 1 

4 1 1 -1 -1 

5 or 6 1 =ill =I 1 

3629 |) 1 aol 1 el 

Characters of the irreducible representations of the common point groups are 

given in the character tables collected as Appendix 2, but a few character tables 

which are required in working out examples are also given in the main text (e.g. 
Tables 5.4, 5.8, 5.11). 

Comparison with the character table of the point group C, (Table 5.4) 
shows that all four of the irreducible representations of the group occur; the 
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Table 5.4. Character table of the point group Cay 

oy(z) o'y(xz) 

ee 1 1 1 

ae st 1 = | 

Beo\ 1 i = 1 

Bet =i 1 ={ 

reducible representation formed by the original set of matrices A, B, C, Dcon- 

tains the A, irreducible representation three times, the A, once, the B, twice 
and the B, three times. 

Note also that the character of the representation formed by the matrices 

A’, B', C, D’ is the same as that formed from the matrices A, B, C, D, that is to 
say the transformation A’ = Q—' AQ leaves the character of A unaltered; similarly 

for B’ = Q' BQ, C =Q-'CQand D' = Q~'D@. If we were to find the matrix 
Q and its inverse Q—' , we would be carrying out an explicit reduction of the set 

A, B, C, D. We are, however, not normally interested in the nature of Q and Q" ; 

what we need to know is how many times each irreducible representation of a 

group occurs in any reducible representation which we construct, and we can do 

this without finding Q and OQ 

Classes of Operations 

We saw earlier when discussing the use of matrices in representing symmetry 

operations, that the matrices Q and R, which we used to represent reflections at 
the symmetry planes in the NH3 molecule, both had characters of 0. Further, 

the matrices P (= QR) and P’ (= RQ) each had the character —1 and represented 

rotations about the 3-fold axis. In a qualitative way, therefore, it seems that in 

this case operations of the same type have the same character. We can express 

this similarity between symmetry operations in a more formal manner by 

considering what is meant by a class. We know that every element X of a group 

(i.e. symmetry operation of a molecule) has an inverse X~' such that XX" = 

XX =I, the identity. Now consider Table 5.1, and let each of A, B, C, D be 

taken as X in turn. Since A represents the identity element J, Table 5.1 shows 

that every element is its own inverse. Let the inverse of B be called B™ ; then 

BB =B-'B =A. Table 5.1 shows that if we perform B first, we need to per- 

form B again to get A as the product. Similarly, the operation which has to 

precede B in order to get A as the product is itself B. The same holds for C and 

D. We can draw up a table (Table 5.5) showing the result of performing X_'GX 

where X is A, B, C, D in turn and G is A, B, C, D in turn. 
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Table 5.5. X-' GX where G, X represent operations of the point group C,, 

If Xis A andG is A, then X'GX = AAA =A. 

If X is A and G is B, then X-' GX = ABA. 

Now ABA = A(BA) and from Table 5.1, (BA) = B then A(BA) = AB = B. 

If X is B and G is A, then X—' GX = BAB = B(AB). 

From Table 5.1 (AB) =B and BB=A. 

By repeating this reasoning, the reader may verify the remainder of the results 

of Table 5.5. The table shows that, for every element G, X—GX =G. Therefore, 

every element G is said to be a in class by itself. Qualitatively this seems reason- 

able, since every element is of a different type. A represents I, B represents C2, 

C represents on, and D represents i 

Now consider the ammonia molecule, whose multiplication table was given as 

Table 2.2. If we rewrite Table 2.2 with J = A, C3 = B, C3 =C, oy; =D, oy2 =E£, 
Oy3 =F, the new table (Table 5.6) is as shown. 

Table 5.6. Another version of the multiplication table previously given as Table 2.2 

The inverses of the elements are as follows: 

A 2/4; BAG Ce, = 3) D-) = Db =i 
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We may now construct the table giving X¥~-' GX, where X, G are in turn, A, B, C, 

D, E, F, similarly to Table 5.5. 

Table 5.7 X * GX where X, G represent the symmetry operations of the point group Cy 

Table 5.7 shows that if G =A, X-'GX isA for all X. Therefore A is in a class 
by itself. If G = either B or C, X-'GX is either B or C. Thus B and C forma 

class. Finally, if G = D, E or F, X-'GX isD, E or F, so that D, E and F form yet 

another class. Further, the members of any one class are operations of the same 

type, B and C being C3, C3, while D, E, F are 0,1, 0y2, Oy3. The group contains 

6 symmetry operations altogether; the number of symmetry operations is the 

Order of the group (h). There are three classes, and the number of elements in 

each class is an integral divisor of h. The importance of this division of elements 

into classes is that all the operations of a class have the same character. Thus we 
can write the character table of the group C3, in the compact manner of Table 

5.8 instead of the extended manner of Table 5.9. 

Table 5.8. Character table of the point group C,, 



114 SYMMETRY AND STEREOCHEMISTRY 

Table 5.4 and 5.8 both illustrate the fact that for any point group, the number 

of irreducible representations is equal to the number of classes. 

LABELLING OF IRREDUCIBLE REPRESENTATIONS 

Table 5.4 contains the symbols A,, Az, By, Bz which designate the 

irreducible representations of the point group Cy; Table 5.8 contains A,, A» 

and E which designate those of C3,. Most chemists use this system, which is 

due to Mulliken. The meanings of the symbols commonly used are as follows: 

A and B each designate a one-dimensional representation, that is, one in which 

the character of the identity operation is 1. One-dimensional representations 

which are symmetric to rotation about the rotation axis of highest order are 

labelled A; those which are antisymmetric to such a rotation are labelled B. 

Subscripts g, u denote symmetry or antisymmetry with respect to inversion at a 

centre of symmetry; superscripts "denote symmetry or antisymmetry with 

respect to reflection at a horizontal plane, oj. For one-dimensional representa- 

tions only (excluding those of the point groups D, and D2,), the subscripts 1 

and 2 denote symmetry or antisymmetry with respect to reflection at a vertical 

(o,) or diagonal (og) plane. 
For D, and Dy), we have the symbols B,, Bz, B3. These groups have three 

mutually perpendicular 2-fold axes. Representations labelled A are symmetric 

with respect to rotation about each of them; those labelled B are symmetric 

with respect to rotation about one of them only. By convention, B;, Bz, B3 

denote symmetry with respect to rotation about the z, y and x axes respectively. 

For two-dimensional representations denoted by F and for three-dimensional 
representations denoted by F, the g, u and ’" symbols retain the same meaning, 

but the numerical subscripts do not. It is sufficient for the purpose of the appli- 

cations dealt with in Chapters 6 and 7 to regard these as arbitrary labels. 

Reduction of a Representation 

The use of group theory in solving physical problems depends to a large 

extent on constructing a reducible representation for the property which is of 

interest, and determining how often each of the irreducible representations of 

the group occurs in the reducible representation. Although this can be done 

explicitly, as we have seen, this is normally a very long and complicated pro- 

cess. We can, however, use some of the properties of irreducible representations 

to derive a simple formula which can be readily applied. The two properties of 
importance in this respect are 

(i) The sum of the squares of the characters in any irreducible representation is 
equal to the order / of the group 

% [x(R)]* =h (5.1) 
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(ii) We may regard any irreducible representation as a vector with h components, 

each component being the character of an operation in that representation. Two 

vectors representing two different irreducible representations (say I; and Ij) are 

orthogonal. If the characters of I, Ty for any operation R are Xi(R), xX(R), then, 
for these vectors to be orthogonal 

2X Xi(R )xj(R) = 0 when i #] (322) 

Now consider a reducible representation [ whose character for each operation 
R is x(R). We know that, if the representation is reducible, there is some similarity 

transformation which will reduce each of the matrices (A, B, C. ..) making up T° 

to another set (A’, B’, C... .) which is arranged in blocks about the leading 
diagonal, each corresponding set of blocks making up one irreducible representa- 

tion of the group. Now x(R) is unchanged by a similarity transformation. Let 

the jth irreducible representation appear a; times 

XUR) = % a7xj(R) (5.3) 

Multiply both sides of (5.3) by x;(R), where x;(R) is the character of the ith 

irreducible representation, and sum over all operations R. Then 

EX(R)Xi(R) =z 2ajxj(R)xi(R) 

=2e ajx;(R )xi(R) (5.4) 

For each term in the sum over j, we have 

2 ax j(R)xXi(R) = G; & xj(R)Xi(R) 

But when i #j, = Xj(R xR) = 0, from (5.2) 

and when i =/, x xj(R)xi(R) = 2 1x(R)] 2=h 

Thus 2 aX (RXi (R) =haj6;; where 5;; = 1 when i =j, and 0 when i ¥/j. 

(5.5) 

Since all terms are zero unless i = j, we can rewrite (5.5) as 

Ex(R)xi(R) = hay 
: 1 “aj =F EX(R)xAR) (5.6) 

This equation applies to the character table in its expanded form, where the 

character for every operation is written down separately. If we use the table in 



116 SYMMETRY AND STEREOCHEMISTRY 

its normal form, we must take account of the fact that an operation will in 

general occur gp times, so that (S.6) should be used in the form 

a; =, DERXRIGR) (5.7) 

Thus, to find how many times the /th irreducible representation occurs in a 

reducible representation, we construct a term of the form 

(number of operations in the class times the character of that operation in the 

reducible representation times the character of the same operation in the jth 

irreducible representation) 

for each operation of the group. The sum of these terms, divided by the order of 

the group, gives a;. Let us illustrate this by reducing the representation 

I Gs Oy(yz) oy(xz) 

9 ae 3 1 

of the group C,) which we constructed earlier. The characters of these operations 

in the four irreducible representations are given in Table 5.4. Since gr, the num- 

ber of operations in each class, and x(R), the character of each operation in the 

reducible representation, do not depend on which irreducible representation we 

are considering, we may begin by writing down grx(R) 

I C) vy(vz) oy (xz) 

To find how many times the A, irreducible representation occurs, we need to 

multiply each term gp x(R) by x(R) for the same operation in the A, representa- 

tion. Table 5.4 shows that for every R, x4,(R) = 1, so we have 
1 

aA.) => 2 8RX(R)X(4, (RY 

l 
4 (O41) 46.1) +. )}s3 

For the A, representation, x(/) and x(C,) are 1, but x(o,) and x(o,) are 1; 
thus we have 

a4,) =4 (9.1) + C1.) +B-1) +(1-1] =1 
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Similarly 

aB,) =4 hee). 1) +31) +0.) > 2 

4B.) =4 (9.1) + (-1— 1) + G.1) + (1-1)] = 3 

Now let us carry out the reduction of a representation of a group where the 

classes of symmetry operations contain more than one member. The point group 

C3, whose character table was given as Table 5.8, is such a group. Let us take 

the representation [ whose character y(R) is 

(5.8) 

Combining this with the characters of the irreducible representations given in 

Table 5.8, we have 

a(A,) =2 [(6.1) + (0.1) + (6.1)] =2 

a(A,) =2 (6.1) + @.1) + (6-1)] =0 

1 = 
QB) =e (6.2) + (0.-1) + (6.0)] =2 

Therefore, the reducible representation whose character is given by (5.8) above 

contains the A, and E£ irreducible representations twice each, and does not 

contain the A, irreducible representation. We would write this conclusion as 

3 [=2A, +2F 

We can always determine by inspection whether the character of a representation 

is that of an irreducible representation, because if it is, it will appear in the 

relevant character table. If it does not appear in the table, there are two possibilities; 

it is either a reducible representation, or it is not a representation at all. Consider 

Table 5.1 which symbolises the relations between the symmetry operations of the 
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point group Cz,,. Suppose we suggest, as a possible representation, A=1,8 == 

C= 1, D= 1. Then we can see whether the products formed by these multiplica- 

tions are those demanded by Table 5.1. 

Table 5.10. To show whether A = 1, B=—1, C= 1, D= 1 isa representation of C,p, 

Product Expected value Actual value 
(Table 5.1) 

AVNS Neil Af 1 A= it 

BA=-1x1 B=-1 B=-1 
CA= 1x1 Gar C= 

DA= 1x1 D= 1 Ds | 

AB= 1x-l Sl Bel 
BB == lex A= 1 Alsat 

CB= 1x-1 iDy= “il D——i 

The discrepancy shown in Table 5.10 regarding the product CB = D is sufficient 

to demonstrate that the representation suggested is not a true representation of 

the group. This way of demonstrating such a conclusion, is, in general, rather 

tedious, and we can test the possibility more readily by using (5.7). The character 

table of the point group Cy is given as Table 5.11 

Table 5.11. Character table of the point group C,, 

Then we have 

a4) =1/4 [(.1)+@1.1)+(1.1+(.D) = a 2 

Gc Arka 1/4 [DG el) (1-1) ee = 
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ap, = 1/4 ((1.1)+C1.1)+(1.1)+(1-1] =0 
As we see, the total number of irreducible representations contained in the 

representation whose character is given above, is zero. This shows very clearly 
that the representation is not a true representation. However, it is not necessary 
for the total to be zero in order to show this; any fractional answer such as 

aAg = or any negative answer such as a4, = “5 is sufficient to show that the 

proposed representation is not a true one. In practice, we will find the check by 
reduction very useful in showing whether we have constructed reducible repre- 

sentations correctly. There will be many such examples in Chapters 6 and 7. 
Note that in checking by the first method, we have to multiply the actual 

matrices together, and not their characters. Where we have a one-dimensional 

representation, it consists of a single number, which is really a 1 x 1 matrix 

and, since the matrix has only this one element, the matrix and its character are 

identical. For degenerate representations (i.e. of dimension greater than 1), the 

matrix and its character are, of course, not the same. 

PROBLEMS 

1 IfO B,S, T are the following matrices: 

Least 3 4 - o-f ifa=fs)s-n or-[, $4). 
roan 1 

state which of the products can be formed, and determine them. 

2 Construct the reducible representation in terms of Cartesian displacement 

co-ordinates for a molecule A,B, of C,, symmetry, and determine how many 

times each irreducible representation of the group Cj occurs in it. 

3 Show, by constructing a table of X 1GX, that the symmetry operations 

of the point group S4 fall into four classes. 

4 With the aid of the character tables in Appendix II, reduce the following 

true representations of the point groups given: 

(a) Tg 
I 8C3 3C, 6S4 60g 

x(R) | 10 1 2 0 4 

i 2C3 3C; On 253 30, 

x(R) 6 0 2 2 2 D 

(b) Dsp 
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5. By constructing the group multiplication table, and multiplying together 

the appropriate matrices, show whether the following representations of C) y 

are true representations 

I C2 oy(yz) oy (xz) 
(a) i 1 -1 1 1 

(b) i od... oO} ls. 0] Fl. 0 

mee 

Oo 0 +] lO 4 es 

6. By using equation (5.7), show whether I’, of question 5(b) is a true representa- 

tion of Cy y, and if so, reduce it. 



Symmetry and Physical 
Properties 

In the previous chapters we have considered the basic symmetry elements and 

their operations. We have discussed point group and space group symmetry and 

have introduced the concepts of group theory. We are now in a position to con- 

sider the effects of symmetry on various physical properties of crystals and 

molecules and of the implications of a knowledge of symmetry in the determina- 

tion of crystal and molecular structure. 

In crystal symmetry we shall see how the technique of X-ray diffraction is 

used to determine the crystal class and Bravais lattice of a crystalline material. 

We shall also see how the same technique can be used to give information on 

the space group to which the material belongs. The importance of a knowledge 

of space-group symmetry in simplifying the task of determination of crystal 

structure will be explained. 

The symmetry of a molecule has a profound effect on its physical properties. 

The existence of dipole moment or optical activity in a molecule is compatible 

only with certain types of point group, and ‘point group symmetry also determines 

the number and activity of the bands observed in the vibrational spectrum of a 

molecule. Once the point group of a molecule has been determined, the arrange- 
ment of the atoms may be deduced, though not the interatomic distances. 

Similarly, we may decide on pure symmetry arguments which transitions between 

the energy levels of a molecule are allowed, though not which are energetically 

feasible. We should therefore bear in mind that symmetry arguments, though of 
great value, are in an important sense qualitative and not quantitative. 

Symmetry and X-ray Crystallography 

In Chapter 4 we saw that a crystalline array of asymmetric objects could be 

more simply represented by replacing each asymmetric unit by a lattice point 

to produce a space lattice. This simplification of a three-dimensional structure 
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Figure 6.1 Conditions for reinforcement of diffracted X-radiation from a lattice 

can also be used to simplify discussion of diffraction effects. If we consider a 

two-dimensional lattice, such as that shown in Figure 6.1, we can regard it as 

being made up of stacks of parallel planes, AA’, BB’, CC’, etc, in which the 

distance between adjacent planes is d. This lattice can act as a diffraction grating 

for X-radiation and we can work out the conditions for reinforcement of the 

diffracted beams as follows: 

If we consider a beam of X-radiation with a wavefront XY hitting the lattice 

with an incident angle 6, some of the X-rays will be reflected (diffracted) at 

position Z by the upper plane (AA’) and some at Y by the lower plane (BB’). 

If we want to find out the conditions under which these reflected beams will 

reinforce each other we must apply the normal laws of reflection, i.e. the 

condition for reinforcement is that the path difference must be an integral 

number of wavelengths (A) of the radiation used. 

The path difference is YZ — XZ 

.. for reinforcement YZ — XZ =nvd 

1ker YZ— YZ sind =nd 

ws YZ (1 — sind) =nr 

but @ = 90-206 

i YZ (1 —sin [90—26]) =nr 
YZ (1=cos2@) =nnr 

¥ YZ . 2sin?6 =n, 
but YZ = 4/sinO 
is 2d sind =nr 

This relationship nA = 2d siné is called Bragg’s Law, and means that, if we 

have a diffraction grating made up from planes through lattice points, diffraction 

only occurs when the incident angle of the X-radiation has a value such that 

nd = 2dsing. 
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X-RAY DIFFRACTION AND THE UNIT CELL 

The lattice which describes a crystalline material can be divided up into stacks 
of parallel planes in an infinite number of ways. Figure 6.2 shows a two-dimen- 
sional lattice divided up into various stacks of parallel planes with spacings dm 
each one of which will have its own diffraction condition nd = 2dm sind »,. These 
arguments are readily extended to three-dimensional lattices where again it is 
possible to pick out stacks of parallel planes. Each stack of parallel planes in a 

three-dimensional lattice represents a possible crystal face. As we have seen in 
Chapter 1, the faces actually appearing at the surface will be those planes on 
which crystal growth is slowest. We can identify the stacks of parallel planes 

by the Miller indices (h,k,/) in the same way as crystal faces are identified by 

these indices. The Miller indices of a stack of parallel planes represent the 
orientation of the planes with respect to the three major axes of the crystal. The 

Figure 6.2 Stacks of parallel planes in a two-dimensional lattice. 

indices for a given stack of planes in a lattice can be obtained by counting the 

number of times the planes cut the axes from one lattice point to the next, 

including one of the lattice points. If we assume that the lattice of Figure 6.2 

is the ab plane of a crystal then all of the stacks of planes shown lie in the 

plane c = 0 and therefore all of them have / = 0. The planes with spacings d; cut 

the a axis at each ‘lattice point and h = 1, the planes lie parallel to the b axis and 

k =0. The Miller indices of the planes pets spacing d, are therefore (100). 

Similarly those with spacing d, are (010). The stack of planes with spacings d3 

cuts both the a and b axes once between the lattice points and therefore has the 

Miller indices (110). The stack of planes with spacings d, has indices (230). 

In a single crystal each stack of parallel planes is unique and has a definite 



124 SYMMETRY AND STEREOCHEMISTRY 

Figure 6.3 Part of a reciprocal lattice (origin at O) showing the planes which produce 

each diffraction lattice point 

orientation with respect to the axes of the crystal. If the crystal is rotated about 

one of its major axes and in an X-ray beam, each stack of parallel planes will, in 

turn, give a spot focus diffraction beam when the Bragg’s Law conditions are 

obeyed. Thus, from a lattice in real space, in which each point has an identical 

environment, we produce a new lattice in which the lattice points are the 

diffraction spots each one of which is produced by reflection of X-radiation 

from a stack of planes. This lattice of diffraction spots is called a Reciprocal 
Lattice of which Figure 6.3 is an example. The reciprocal lattice is so called 
because the reciprocal cell dimensions (a*, b*, c*, a*, B*, y*) are related to the 

real cell dimensions (@, b, c, a, 8, y) by a reciprocal relationship. Distance in 

reciprocal space is proportional to the reciprocal of the distance in real space 

(e.g. a* = k/a) and reciprocal space angles (except for triclinic cells) are the 

supplements of real cell angles, (e.g. a* = 180 — a). Figure 6.4 shows the 
relationship between two-dimensional real and reciprocal cells. 

Gnas 

(a) (b) 

Figure 6.4 Relationship between a real and a reciprocal lattice in two dimensions. (a) 
for a rectangular system the real cell is OACB and the reciprocal cell OXZY 
(b) for an oblique system the real cell angle y is the supplement of y* 
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The X-ray diffraction pattern of a single crystal gives us information on the 

size and shape of the reciprocal lattice and from this we can get the size and 
shape of the real cell, i.e. we can determine the crystal class. Once we know the 
crystal class we have reduced the possible number of space groups from 230 
to the number associated with its crystal class (see Table 4.5). The proportionality 
constant for rectangular crystals is the wavelength (A) of the X-radiation used 

and the relationship between the real and reciprocal cells is: 

a=v/a* a= 180-a* 

b =Nb* B = 180-B* 
c=Ne* y= 180-y* 

For example the reciprocal cell dimensions of rutile (TiO, ) obtained with Cu Ke 
radiation are a* = b* = 0-336 r.u. (reciprocal units). c* = 0-521 r.u.a* =6* = y* 
= 90°. The crystals are therefore tetragonal with 

eo oA 
G=D = 0.336 4.59A c 0-521 2-96A 

Once we know that a material, such as TiO,, crystallises in the tetragonal system 

we have reduced the number of possible space groups from 230 to the 68 com- 

patible with this crystal class. 
The reciprocal cell dimensions for BaSO, obtained with Cu Ka radiation are 

a* = 0-215 r.u., b*' = 0-174 r.u., c* = 0-283 r.u. a* = B* = y* = 90°. The crystals 
of BaSO, are therefore orthorhombic with a = 7-13A, b = 8-86A,c = 5-41A 

and the number of possible space groups for this system is reduced from 230 to 

the 59 compatible with orthorhombic symmetry. 

The relationship between the real and reciprocal cells for non-rectangular 

systems is more complicated and, for example, for monoclinic cells with the b 

axis unique is 

= A ek GE 

Z a*sin8 bs 
ee 
c*sinB 

a=a*%=90° B=180-B* y=y7*=90° 

and for hexagonal crystals with c unique 

r r 
ae a*sin60 Cc 

a=B=a*=B*=90° y=60° = 180-4*. 
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The reciprocal cell dimensions of d-tartaric acid obtained with Cu Ka radiation 

are a* = 0-203 r.u., b* = 0-257 4.u,, c* =0-253 rus a* = 7" = 90°, BX =79° 502 

The cell is therefore monoclinic with dimensions, a = 7-72A, b = 6-00A 

c = 6-20A, B = 100° 10’. The number of possible space groups for D-tartaric 

acid is reduced to the 13 compatible with the monoclinic class. 

X-RAY DIFFRACTION AND THE BRAVAIS LATTICE 

The reciprocal lattice obtained from X-ray diffraction studies on a crystal 

enables us to determine the size and shape of the unit cell in real space. A study 

of the type of reciprocal lattice produced can also give information on the type 

of Bravais lattice to which the crystal belongs. The type of cell can be identified 

by systematic absences of reciprocal lattice points for X-ray reflections of the 

type h k 1. The types of systematic absences shown by the various lattices are: 

(i) If A k 1 reciprocal lattice points are absent when h + k + Lis odd, the 

cell is body centred (I). 
(ii) If h k I reciprocal lattice points are absent when h + k is odd, the cell is 

C-face centred (C). Similar conditions apply to A and B centring. 
(iii) If h k 1 reciprocal lattice points are present only when h + k, and 

h +l, and k +/ are even, the cell is face-centred on all faces (F). 
(iv) If there are no systematic absences of reciprocal lattice points the cell is 

primitive (P). 

It is important in looking for absences of reflections producing a reciprocal 

lattice that we distinguish between systematic absences and those due to chance 

zero intensity reflections. For a set of absences to be systematic all reflections 

of the set must be absent. The list of systematic absences given above for the 

Bravais lattices is general and applies to single crystal data for all crystal classes. 

The X-ray powder diffraction patterns of cubic crystals, however, provide a 

22! 
Miller Indices of reflection 100 10 Ill 200-210 2i| 220 aan ee Sli e222 

Pattern of lines if cell is: 

Pi fol |S se 
Body - centred | | | | | | 

Face - centred (F) | | | | | 

Figure 6.5 X-ray diffraction powder patterns for cubic crystals 
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simple example of these effects. As we can see from Figure 6.5 the powder 
pattern of a primitive cubic cell contains all of the possible reflections in the 
region illustrated, the body-centred pattern contains no reflections for which 
h +k +1is odd and the face-centred (F) pattern contains only reflections where 
all binary combinations of the three indices are even, 

Reference to Table 4.6 shows that a knowledge of the Bravais lattice of a 
crystal can again restrict the number of possible space groups for the system. For 
example the 59 possible orthorhombic space groups are reduced to 30, if the cell 
is P; to 5, if the cell is F; to 9, if the cell is I and to 15 if the cell is A or C. 

X-RAY DIFFRACTION AND SPACE GROUPS 

In X-ray diffraction studies it is possible to obtain information on two- 

dimensional sections of the reciprocal lattice. The most useful sections are the 

hk 0,h Oland 0K 1 layers of the lattice because from them we can obtain 

information on the symmetry about the a, b and c axes respectively. Again the 

symmetry information is obtained from systematic absences of X-ray reflections. 

This is illustrated in Table 6.1 which lists the absences and the possible reflections 
expected in an h k 0 projection for a number of possible symmetries about the 

Cc axis. 

So far we have made use of systematic absences without explaining why a 

given type of crystal symmetry should produce absences in a reciprocal lattice. 

This we can now illustrate with reference to the simplest case, the absences 
produced by a screw axis, Figure 6.6 shows a real lattice which has a 2; axis 

parallel to a as shown. The stack of parallel planes (100) will give diffraction when 

A = 2asind (i.e. djo9 =a), that is, when reflections from the surfaces DD and FF 

are one wavelength apart. The presence of the screw axis, however, means that 

there is another surface (EE) 2/2 from DD and FF. Reflections from this surface 

will be exactly out of phase with those from DD and FF and will cancel them 

out. This will happen for every (00) plane where h is odd. For the (200) 

D}--—- D 

| 
Yo 

: tay an | 6 a = oo 

a | 

Figure 6.6 A 2-fold screw axis and systematic absences of X-ray reflections 
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plane, however, the reflections from DD and FF are two wavelengths apart 
(i.e. 2A = 2asin@), This means that reflections from EE will differ by A and that 
they will reinforce those from DD and FF. Every reflection h 0 0 for which 
h is even will likewise be present. 

It would appear that if we obtain the zero layer h k 0,401, 0K 1 lattices 
about all three major axes of a crystal, we can write down the space group for 
that crystal, This is true for a number of space groups. For example, if we have 
the following systematic absences for an orthorhombic crystal: 

hkI —no absences P 

OkI —no absences 

hOl —no absences 

hkQ —no absences 

h0OO —absent whenh is odd 21 

O0kOQ —absent when k is odd 2; 

Q00O/ —no absences 2 

We have screw axes along the a and b axes as the only symmetry elements and 

the space group is P2, 2, 2. This space group is one of the 70 that are uniquely 

determined by systematic absences. The other 160 are not uniquely determined 

because systematic absences are produced by translation symmetry effects and if 
two or more space groups differ by only pure rotation or reflection symmetry 

these absences cannot distinguish between them. For example the triclinic space 

groups P1 and P1 differ by only the centre of symmetry and we cannot distinguish 

between them by systematic absences. Similarly if an orthorhombic crystal has: 

hkl —no absences iB 

Oki —absent whenk +/ is odd n 

hOl  — absent when h is odd a 

hk0O, —no additional absences not 

hoo covered by the absences 

0kO listed above 
0Of — absent when / is odd 24 

the space group should be Pna2, . This space group, however, is not uniquely 

determined because it differs from Pnma only by the presence of a centre of 

symmetry in Pnma. 

From X-ray diffraction data we can obtain information on the size and 

shape of the unit cell of a crystal, its Bravais lattice and its space group. For 

some symmetries the space group is not uniquely determined but is reduced 

to a small choice, usually two but in any case to a maximum choice of four. 

In these cases the final space group determination must be made by other 
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methods such as optical microscopy, tests for the absence of a centre of symmetry 

(presence of pyro- or piezo-electricity or in some cases optical activity), or by 

statistics based on the intensities of the diffracted X-ray beams. 

SPACE GROUP INFORMATION AND CRYSTAL STRUCTURE 

Space group information on a crystal is obtained directly from the reciprocal 

lattice produced by X-ray diffraction. To obtain the positions of the atoms it is 

necessary to measure the intensities of all of the X-ray reflections and from these 

to obtain, essentially by trial and error methods, structural information. A 

knowledge of the space group and of the number of atoms contained in the cell 

is, however, very important because this simplifies and sets the size of the problem 

for the crystallographer. 
Once we know the unit cell shape and size we can obtain the number of 

formula units in the cell provided we know or can obtain the density of the 

crystals. The number of formula units (Z) is given by the relationship 

eels 
4 7-66 

where p is the density in g/cm*. V is the unit cell volume in A? (Table 6.2 gives 

the formulae used to obtain V for all crystal classes) and M is the is the molecular 

weight of the formula unit. 

Table 6.2. Cell volumes for the various types of cell 

Cell Volume 

Cubic a 
Tetragonal a’b 
Orthorhombic abc 

Monoclinic abcsing 
Hexagonal abcsin60° 
Rhombohedral a®[1—3cos?a + 2cos? a] 

Triclinic abc[1 + 2cosa cosB cosy — cos? a — 
cos? B — cos? y]2 

It is not necessary to have a very accurate density measurement because Z 
must be a whole number and the density need only be accurate enough to 
indicate the value of Z. 

Zinc hydroxide has an orthorhombic unit cell with a = 8-53A, b = 5-16A, 
c= 4.92A and thus has V = 216-5A°. The molecular weight of the Zn(OH), unit 
is 99-37 and its density is 3-07 g/cm>. This gives Z = 4 and means that there are 
four Zn(OH), groups in the unit cell. From the point of view of structure deter- 
mination, this suggests that in order to describe the complete structure we need 
only determine the position of four Zn atoms, four O atoms and eight H atoms. 
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The space group for this material is, however, known to be P2, 2,2,. This space 
group has a 4-fold set of general equivalent positions at 

XYZ; 3 —x)F,4 +2); G+x)G-y)Z %G+ y)G-z) 

and no special positions, Since we have to fit four zinc atoms into the cell, if we 
know the position of one of them, the space group requirements will automatically 
generate the other three. The same is true of the oxygen and hydrogen atoms. This 
means that, because of our knowledge of space group symmetry, we have reduced 
the size of the problem of determining the structure of Zn(OH), to a minimum, 
ie. we need only find the positions of one Zn atom, one O atom and two H atoms 
to describe the structure completely. 

Similarly PdS, has an orthorhombic cell with a = 5-46A, b = 5-544, c=7-53A 
and contains four formula units in a cell with space group Pbca. The cell therefore 

contains four Pd atoms and eight S atoms. The space group has an 8-fold set of 

general equivalent positions at 

xy,2; (F+x)G-y)Z %4G+y),4-2); G-~7G+2); E72; 

(3 —x),@+y)z; x4-y),G +2); b+x)pG-2). 

The eight sulphur atoms lie in these equivalent positions in the cell and we only 

need to determine the position of one of them. Since there are four Pd atoms 
in the cell they must be placed in special positions. The only set of special 

positions in this space group are those produced by placing atoms at a centre of 

symmetry, e.g. at 

me PLN leis 
0,0,0; 2470; 03,3; 504: 

In this example a knowledge of symmetry alone fixes the positions of the Pd 

atoms in the cell and all that is required to complete the crystal structure is the 

location of one S atom. 
The measurement of the positions of the diffracted X-ray beams from a single; 

crystal gives us the reciprocal lattice. From this we can obtain the size, shape 
and Bravais lattice of the unit cell (the smallest building block of the crystal) 

and, with a knowledge of the density, the number of formula units in the cell. 

Information on the space group of the system can also be obtained from 

absences in the zero layer planes of the reciprocal lattice. This is the maximum 

amount of information that can be obtained from measurements of the positions 

of the X-ray reflections. In order to carry out a crystal structure determination we 

must make use of measurements of the intensities of these reflections. In every 

structure determination, however, the aim is to derive the structure from as few 

variable parameters as possible. It would be possible to obtain the structure 
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by locating the position of every atom in the cell independently, but this is 

clearly wasteful if we know the space group of the system. As we have seen, the 

importance of a knowledge of the space group is that it does minimise the 

number of atomic positions that have to be determined. ; 

Symmetry-determined Properties of Molecules 

Much information can be deduced about the physical properties of a molecule 

from consideration of its point group symmetry. Such deductions may be viewed 

as arising from the principle, due to Neumann, that the physical properties of a 

system are invariant to its symmetry’ operations. We cannot alter any physical 

property of a molecule simply by carrying out a symmetry operation on the 

molecule. Some of the more important physical properties of molecules to which 

such arguments apply are electric and magnetic dipole moments, optical 

activity and electronic and vibrational spectra.. 

ELECTRIC DIPOLE MOMENT 

The existence of a permanent electric dipole moment in a molecule can be 

determined by a simple symmetry argument; further, this argument also gives 

the direction in which the dipole moment lies if it exists. The symmetry argument 

cannot tell us which is the positive and which the negative end of the dipole, nor 

can it tell us anything about its magnitude. 

There are three situations in which a molecule can have no permanent dipole 
moment: 

1. If the molecule has a centre of symmetry. 

2. If the molecule has a plane of symmetry perpendicular to the principal axis. 

3. If the molecule has more than one axis of rotation. 

Electric dipole moment, y is a vector and is defined as follows: 
If positive and negative charges + q are separated by a distance r, then w = qr and 

the magnitude of wis the product qr. Now by Neumann’s principle the 

vector w must be invariant to the symmetry operations of the molecule. Therefore 

the line representing the vector must be coincident with every symmetry element 

of the molecule. If the molecule contains a centre of symmetry, the vector wu can 

be wholly coincident with this one point only if the magnitude of p is zero. In 

the other two cases, the symmetry elements themselves are not coincident — we 

either have a plane perpendicular to an axis or we have more than one axis — and 

the vector cannot lie in these non-coincident directions simultaneously, so again 
its magnitude must be zero. Possession of a permanent electric dipole moment is 

therefore confined to those molecules with only a single rotation axis, belonging 

to C, point groups, and to those in which all the symmetry elements intersect in 

one line. (This situation occurs only with the C,, point groups, where the noy 

planes intersect in the C,, axis.) In both cases the direction of y is the direction of 
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Dipole moment is directed along the C, axis 

Figure 6.7 Dipole moment and symmetry 

the C,, axis. We should note that molecules belonging to S, groups do not have an 
electric dipole moment; although the symmetry element is formally written as 

(for example) S4, it really consists of two elements, a rotation axis and a plane 

perpendicular to that axis. Figure 6.7 illustrates this discussion. 

OPTICAL ACTIVITY 

A compound is optically active if its mirror image is not superimposable on 

the original. This situation occurs only in molecules which do not have a rotor- 

reflection axis. All other criteria which have been suggested are really more 

specialised versions of this condition. Optically active molecules must therefore 

have a point group C,, D, or T. 

(a) The asymmetric carbon atom 
A molecule containing a carbon atom with four different substituents arranged 

tetrahedrally may be deprived of all symmetry except for the trivial symmetry 

element C,. This may be illustrated by a simple molecule of the form Cabcd such 

as lactic acid, or a molecule in which only some of the carbon atoms making up its 

skeleton are asymmetric; sugars fall into this category. Figure 6.8 shows some 

molecules with asymmetric atoms. All such asymmetric molecules are optically 

active, but not all optically active molecules are asymmetric. 

Any molecule Xabcd where X is tetrahedrally co-ordinated is asymmetric; mole- 
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CH, 

ae 

COOH 

Lactic acid 
a-D- glucose 

Figure 6.8 Optically active molecules which are asymmetric 

cules in which X is Si, Ge, Sn, N, P and As are known. One such molecule is the 

organo- tin derivative: 

CH; 

Sn 

a 
Oe ieee: 

(b) Dissymmetric molecules 
It is often stated, correctly, that molecules with a plane or a centre of symmetry 

must be optically inactive, since the possession of these symmetry elements leads 

to the existence of superimposable mirror images. This is another specialised 

version of the conditions involving rotor-reflection axes, for we have already 

seen that the plane of symmetry, m or 9, is equivalent to the rotor-reflection 

axis S,, while the centre of symmetry, I or i, is equivalent to the rotor-reflection 

axis S>. 
It is possible for a molecule to retain some symmetry elements and still display 

optical activity. The possession of a rotation axis, n or C,, does not lead to the 

existence of superimposable mirror images. Such molecules are known as dis- 

symmetric molecules. An example is 1,3-dichloroallene, in which the only 
symmetry element is a 2-fold axis (see Figure 6.9). Similarly the hypothetical 

‘gauche’ form of ethane would be optically active, although possessing four 

symmetry elements, a C3 and 3C,, as shown in Figure 3.14. 

The converse of the statement made at the beginning of this section is not 

true, for there are some optically inactive molecules with neither a centre nor a 

plane of symmetry. These are the molecules with 7-fold rotor-reflection axes 

where n is 4 or an integral multiple of 4. The best known of these have S, axes; 

one example being the spiran illustrated in Figure 3.12. 
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( Disalicylato - boron) * 

Figure 6.9 Optically active molecules and ions which are dissymmetric 

An example from inorganic chemistry of an optically active dissymmetric 

species based on a tetrahedral shape is the B(salicylato)3 ion. 

(c) Atropoisomerism 

One apparent contradiction to the general statement that the absence of an 

S;, axis necessarily implies optical activity has been discovered. The molecule 

A(= (dextro)-menthyl (laevo) menthyl-2, 6, 2’, 6'-tetranitro-4, 4'-diphenate) 

illustrated in Figure 6.10 is optically inactive though it possesses no symmetry 

elements at all. The only form in which it could have any symmetry elements 

is that in which the two phenyl rings are coplanar, and repulsion between the 

nitro groups prevents this form from being assumed. In some tetra-ortho‘sub- 

stituted biphenyls, optical activity is found because there is a large potential 
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O,N 
: NO, 

NO, 
0 O,N 0 

Figure 6.10 An optically inactive molecule with no symmetry elements (dextro)- 

menthyl (Jaevo)-menthyl-2,6,2 ,6 -tetra nitro-4, 4'-diphenate) 

energy barrier to rotation about the central bond and the two optical isomers are 

isolatable; this is the phenomenon of atropoisomerism. Where, however, there 

is virtually free rotation so that very many conformations are stable, every mole- 

cule with a conformation such that it rotates the plane of polarised light by some 

angle in one direction will have corresponding to it another molecule causing an 

equal and opposite rotation. Thus, on the average, the substance will be optically 

inactive. In the case of the molecule A, the free rotation giving rise to the inactivity 

is about the 4, 4’ bonds linking the carboxylate groups to the rings. 

(d) Optically active species based on non-tetrahedral shapes 

The stereochemistry of octahedral complexes has in a number of cases been 

elucidated by studies of optical activity. Two common arrangements leading to 

the formation of optically active species are MB3, where M is a metal atom and 

B a bidentate ligand of C,,, symmetry spanning cis positions (see Figure 6.11) 

and MB, L,, where the two monodentate ligands L occupy cis-positions, and the 

two ligands B also span cis-positions. The first of these arrarigements has the point 

group D,; one well-known ion with this symmetry is [Co(ethylenediamine)s ]*”. 

If the symmetry of B is reduced (say to C, as in the glycinate ligand 

/aevo dextro 

Figure 6.11 Optical isomers of Co(en)3* 
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Co 

a 
Cl 

en 

Hit | ee 
en nu Cl 

| Co Ce 

Cl 
en 

Trans form : inactive Cis form : active 

Figure 6.12 Optically active and inactive isomers of [Co(en), Cl,]* 

NH,CH,COO ) the overall symmetry of the complex will also be reduced 
and the molecule or ion will still be optically active. As an example of the 

second arrangement we may consider cis-[Co(ethylenediamine), Cl, ]*, which 

has C, symmetry. Here we may distinguish between the cis- and trans-forms, 

since the trans-form has two planes of symmetry bisecting the equatorial plane 

and intersecting on the C, axis along the Cl—Co—Cl direction and is inactive. 

Figure 6.12 illustrates this. 

Normally an arrangement based on a square-planar skeleton will be inactive, 

since the molecular plane is a plane of symmetry, but, by appropriate substitution, 

a molecule with no plane of symmetiy may be produced. The complex illustrated 

in Figure 6.13 was prepared in order to demonstrate that the arrangement of the 

bonds round Pt was not tetrahedral. If the bonds around the Pt were tetrahedrally 

disposed, the molecule would possess a plane of symmetry (the plane of the ring 

containing the CH3 groups) and hence exhibit no optical activity. It is true that 

H H 
& 4 
.C———H,N NH, ———C 

cdl, . om ea . Al 

H 
See e. ne ee , : 

7 
CeHs 

Hz 

Figure 6.13 An optically active complex in which the central atom makes four coplanar 

bonds with the ligands 
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optical activity would be shown if the arrangement around the Pt were either 

square-planar or tetragonal-pyramidal, but studies of other complexes in fact 

eliminated the second possibility. 

VIBRATIONAL SPECTRA 

The study of vibrational spectra in connection with molecular symmetry 

yields the answers to three questions, namely: 

1. How many vibrations of the molecule belong to the each of the irreducible 

representations (symmetry classes) of the molecular point group? 

2. Which of the vibrations display infra-red or Raman activity? 
3. What is the direction of polarisation of a given vibration? 

The motions of a vibrating molecule may be described in an infinite number 

of ways, but the most convenient description is to resolve them into a set of 

modes of motion called the normal modes. In a given normal mode, the atoms 

all move with the same frequency and in phase. It is simple to construct a 

reducible representation for the normal modes and the representation is then 

reduced using 

ay = EERXRIX(R) (6.1) 
which gives the number of times each irreducible representation appears in the 

reducible representation and consequently tells us how many vibrations belong 

to each symmetry class. 

Let us call the reducible representation for the normal modes of a molecule 

Ty. Note that this includes all the modes of motion, that is, translational, rota- 

tional and vibrational modes. The character y» of this representation is simply 

Nrxr, where Np is the number of atoms left unshifted by the operation R, and 

XR is the character of the operation. 

To find the character of an operation we require to know whether it is a 

rotation only (a so-called proper rotation) or a rotation combined with a reflec- 

tion (an improper rotation). 

We showed earlier that a line OP terminating at P(x,y) rotated through an 

angle @ gave rise to a new line OP’ where the co-ordinates (x’,y’) of P’ were 
related to (x,y) by 

x' =xcos6 + ysind 
y' =—xsin 0 + ycos@ 

which we express in matrix form as 

, 5 

x cos@ sin@ x 

y —sind cos@ | iy 
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the character of the matrix being 2cos . Now if we consider a general point P 
(x,y,z) and rotate OP about the z axis to give OP’ where P’ has the co-ordinates 
(x’, vy’, z'), we shall have 

x’ cosé sind O| [x 

" |y'| = |-sin@ cosé O| |» 

Zz 0 0 Liitlg 

and the character of the matrix for rotation through an angle 6 is 1 + 2 cos@ 

If the rotation is combined with reflection at the (xy) plane, then the transforma- 

tion will involve a change from z to —z, and the matrix will be 

x cosé sind O| |x 

y | = |-sin@ cos@ O| |» 

z' 0 O -l} Lz 

and its character is—1 + 2 cos@. We may summarise this by writing (Ry = +1 +2 

cos @ where R involves a rotation through an angle 0 (= 360° /n for aC, or Sy 

operation) and the + signs refer to proper (C;,) and improper (S;,) rotations 

respectively. 

The following special cases are important: 
For the identity we have x’ =x, y’ =y, 2’ =z. Thus the matrix is 

x’ MeO OP Ex 

pot 0 S10 py 

z’ O20 dah bz 

Its character is +3; by comparison with the general form we see that 

cos6 =1,sin@=0.1+2 cos 0° = 1+2=3 so the identity operation corresponds 

to a rotation through 0°. 

For the inversion operation, x’ =—x, y’ =—y, z’ =—z. In this case, each of the 

diagonal elements is —1 and all other elements are zero. By comparison with the 

general form cos@ =—1, sin@ = 0, so @ = 180°, corresponding to the designation 

of the inversion as S,. 

For a reflection only, x' =x, y’ =y, z’ =z. We therefore have 

x’ (eee Oils lese 

y= 10 1” Ol Ty 

z 0. 0 =e, 

with character 1. In this case we have 0 = 0° and since the reflection is an improper 
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operation we expect its character to be — 1 + 2cos 6 =-1 + 2=+ 1, as shown. This 

corresponds to the designation of the reflection as S;. 

Thus we can write xy =Nrxp = (+1 +2cos 0). From this we have to take out 

those parts of the representation, Fyans Corresponding to the translational and 

Tot to the rotational motion of the molecule. The charactey X trans OF Dine 15 

given by +1 + 2cos0, and the character Xrot Of Tyo by 1 + 2cosO (= Gens): 

Thus Xym = Xo — Xtrans ~ Xrot, and then we can find out how many times each 

irreducible representation of the molecular point group appears in 'yjp. 

Let us take BF as an example. By following the sequence given in Chapter 3 

we may see that BF; belongs to the point group D3;,. We next need to determine 

Np for each symmetry operation. Np will usually * be the number of atoms lying on 

the corresponding symmetry element; if, for example, an atom lies on an axis of 

rotation it is unshifted by a rotation about that axis; similarly, if it lies on a 

plane of symmetry, it is unshifted by reflection in that plane. 

The symmetry operations of the group D3, are given in the character table 

as I, 2C3, 3C2, op, 253, 30,. For the identity, Np is of course equal to the 

number of atoms in the molecule, and in this case is 4. The C3 axis (which is also 

the S3 axis) is the axis through the B atom perpendicular to the molecular plane, 

and only one atom (the B atom) is therefore invariant to the corresponding 

operations. All four atoms are invariant to 0, , which is by definition a plane 

perpendicular to the principal axis, and is thus the molecular plane. One B and 

one F lie on each of the o, and thus on each of the C, formed by the intersection 

of oy with o,. We can now set up a calculation table (Table 6.3) showing xr and 

Np for each operation, and giving Xo, Xtrans» Xrot 2Nd Xvp- 

Table 6.3. Calculation table for determining xj, of BF, with D,, symmetry 

Proper operations Improper operations 

R I 20: ate oh aS 30, 

Nr 4 1 2 4 1 2 

XR =+1+ 2cosd 3 0 al 1 = 1 

Xo =NRxr 12 0 =) 4 a9 2 

Xtrans ~ XR 3 0 -1 1 =) 1 

Xrot.~ *Xtrans 3 0 =] =A 2 =| 

Xvib = Xo — Xtrans — Xrot 6 0 0 4 2 2 

*This statement is true for all symmetry elements except Sy. Since S, symmetry elements 
include both a rotation axis and a horizontal mirror plane, an atom must lie on both the 
axis and the plane to be invarient to S,, 
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Table 6.4. Characters of the irreducible representations of D, ;, 

In order to reduce xy, we need the characters of the irreducible representations 

of the point group D3;,; these are given as Table 6.4. 

In reducing Xyip according to equation (6.1) above, it is convenient to begin by 

forming the product gpx(R). Note that x, is now the reducible representation 

which is in general called x(R) in the equation. Table 6.3 gives x(R) and Table 

6.4 gives gp so we have from these 

R I 2C3 3C, Of DS 3 3 Oy 

grX(R) | 6 0 0 4 a ° 
The order of the group, which is the number of symmetry operations, is 12. 

Then from (6.1) 

1 a(a') = 75 (6.140.140.1+4.1 +(-4.1) 4.6.1] =1 

(Al) = (6.1 + 0.1401) +4.1 + (4.1) + 6-1) = 0 

az’) = [6.2 + O(-1) + 0.0+4.2+(C 4)C1)+ 6.0] =2 

(At) = Fy (6.140.140.1441) + AY) + 61)] = 

a(An) = “ [6.1 + 0.1 + O(—-1) + 4-1) + C4)C-1) + 6.1] =1 

a(g") = 316.2 + OC1) + 0.0 + 4(-2) + 4.1) + 6.0] =0 

Thus for BF; with D3, symmetry, Typ = 144 + 2E "+ 1A4;; there is one vibration 

of A‘, symmetry, one of A3 and 2 of E’. We may check this to some extent if we 

recollect that a four-atomic non-linear molecule has (4 x 3 — 6) = 6 modes of 

vibration. Since the E’ vibrations are doubly degenerate, they count as 2 each and 

the total number calculated is indeed 6. 

The infra-red or Raman activity of a vibration may be found from the 

character table. In addition to containing the characters of the irreducible repre- 

sentations of a point group, character tables also contain three sets of symbols: 
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1. The symbols Ry, Ry, Rz refer to the irreducible representations to which the 

rotational modes of motion of the molecule belong. We shall not discuss these 

further as they are not relevant to the problem. 

2. The symbols x,y,z or M,, My, M, or Ty, Ty, Tz. These are all equivalent: the 

symbols x,y,z designate those irreducible representations which transform in the 

same way as the co-ordinates of a general point (x,y,z) under the symmetry 

operations of a point group. Both the components of the dipole moment operator 

(M) and the translation operator (7) transform in the same way as the co-ordinates 

of a general point. The vibrations belonging to any irreducible representation trans- 

forming in the same way as any of these co-ordinates are infra-red active. We shall 

explain and illustrate this point below. 
3. Binary combinations of the co-ordinates, such as XV ne RY Via 

linear combinations of these. These may appear on their own or as subscripts to 

the symbol a. Vibrations belonging to irreducible representations transforming 

in the same way as these binary combinations are Raman-active. The symbol a 

designates the components of the polarisability tensor. For a vibration to be 

Raman-active, it must involve a change in polarisability and at least one of the 

components of a must be non-zero. 

One sees in many books the relation u = aF, where p is the dipole moment 

induced in a molecule by the application of a field F. Both the dipole moment 

and the field are vector quantities, and the polarisability a is a scalar quantity 

only when the directions of u and F are parallel. In general, uw and F are not 

parallel and each component of y is related to every component of F, as follows 

Uy = OxxFy + Oxy hy + Oy 2Fz 
My = yxy + ayyhy + Oy 2F 

Mz =OzxPy + Ozyhy + azzh' 

The nine components of a constitute a second-rank tensor. Since it is symmetric 

(a7 = aj;) there are only six independent components. The simple relation 

LM = aF is true when ayy = Qyy = azz = a, and all other components are zero. 
We said earlier that irreducible representations transform in the same way as 

co-ordinates or combinations of co-ordinates. Let us discuss this for the point 

group C2,, Under the four symmetry operations of this group we have 

(x,»,z)-5@,y,2) 

(x,y,z) 2@ (x, -y, z) 

(x,y,2) OXY), (x, Ve 2) 

(x,y,z) 5, —, -z) 
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where C,(z) and o7, (xy) denote that the C, axis is taken in the z direction and 

the plane of symmetry is the (xy) plane. If we write down the four matrices 

representing these transformations, we have 

y C2(z) On (xy) i 

Cm meeOu Oru tO OO) 1-1 0-0 

eevee ma Oe Oat ON Ov =] 

If we now tabulate the matrix elements involving x, y and z for each operation, 

we have 

Comparing these with the characters of the irreducible representations of Cy; 

given in Table 5.11, we see that x and y have the same coefficients as the repre- 

sentation B,,, while z has the same coefficients as A,,. This is what we mean by 

saying that a co-ordinate transforms in the same way as an irreducible representa- 

tion. In order to find out how the binary combinations transform, we can, for 

a non-degenerate point group such as Cy, form the so-called direct product of 

the representations of the single co-ordinates; for instance, if we want to know 

how (xz) transforms, we multiply together, for each operation, the character 

for x and the character for z. If we carry this out for all six binary combinations, 

we obtain 

Comparison with the character table shows that the first four combinations 

transform as Ag and the other two as Bg. Thus the complete character table 

including the labelling of irreducible representations which transform as the 

angular momentum components Ry, Ry, Rz reads 
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Character table for the point group C,), 

I C2 On 

aera 1 1 
eee fet 

ea =p et 
pee =i 1 

Thus vibrations of the classes Ag and By are Raman-active, while those of the 

classes A,, and B,, are infra-red active. Note that no class contains vibrations 

which are both infra-red and Raman-active. This is true of all point groups con- 

taining a centre of symmetry, and illustrates the well-known rule of Mutual 

Exclusion. This rule states that, for a molecule with a centre of symmetry, no 

vibration can be both infra-red and Raman-active. We can see how this separation 

comes about for the group C2); the same argument applies to any centro-sym- 

metric point group. If any one of the co-ordinates is inverted through the centre 

of symmetry, it changes sign; thus each of x, y, z is antisymmetric to inversion 

and is, by definition, of type u. On the other hand, all binary combinations 

involve two changes of sign and this double change is symmetric to inversion; 

thus binary combinations are of type g. Since infra-red active vibrations belong 

to representations transforming as single co-ordinates, they always belong to 

u representations, Raman-active vibrations belong to representations transform- 

ing as binary combinations, which are always g. Thus no vibration of a molecule 

belonging to a centro-symmetric group can be both infra-red and Raman-active. 

An alternative method of arriving at the infra-red or Raman activity of 

molecular vibrations is to obtain the characters of the reducible representations 

I, for dipole moment and [, for polarisability, and to determine which 

irreducible representations they contain. Any irreducible representation con- 

tained in I’, corresponds to infra-red active vibrations, and any irreducible repres- 

entation contained in I’, corresponds to Raman-active vibrations. The character, 

X, of Ti, is the same as Xtrans, namely, +1 + 2 cos@. The character, xq of Ty is 

2cos@ (+1 + 2cos0), so these are easily obtained. Consider the point group D3, 

as an example. We have in our previous calculation (Table 6.3) already obtained Xtans- 

A further table (Table 6.5) can now be set up. 

Table 6.5. Calculation table to determine x,, and xq for the point group Dy, 

Operation 

+1 +2cos@ 

2cosé 

Product 
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It is left for the reader to show, by reduction of the reducible representations, 

that I, = 14 + 1B’, while [gq = 2A;+ 1£”. Note that the numbers of times 
each irreducible representation appears in I, or Ig is not the number of vibra- 

tions in the symmetry class. It is in fact the number of components of the dipole 

moment operator M or polarisability tensor a which transform as the given 

irreducible representation (or, in the case of degenerate representations, the 

number of sets of such components). For D3;,, we may summarise this informa- 

tion as Table 6.6. 

Table 6.6. Infra-red and Raman activity of vibrations under D,}, symmetry 

Symmetry class Infra-red activity Raman activity 

Ai inactive ACIVERG aetna eae 

Ar inactive inactive 
ea active (x,y) active (x? —y”, xy) 
Aly inactive inactive 
A, active Zz inactive 

JH inactive inactive 

For completeness the components of M and o transforming as the various irre- 

ducible representations are shown, though it must be emphasised that the 

reduction of 1, and Tg tells us only how many such components there are but 

does not identify them. Components in brackets are degenerate pairs. Note that 

one component of M transforms as A, and one degenerate pair as F ", correspond- 

ing tol, = 1A} + 1Z’, while two separate components of a transform as A, and 

one degenerate pair as E’, corresponding toTy= 241+ 12". 

Combining this information with the previous calculation which showed the 

vibrations of BF; with D3, symmetry to be 1A,’ + 144 + 2E’, we see that the 

infra-red spectrum of BF3 should contain three bands (143 + 2H’) and the Raman 

spectrum three (14) + 2’). There are two coincidences — that is, bands appear- 

ing in both the infra-red and Raman spectra. 

When one wishes to use vibrational spectroscopy in determining molecular 

symmetry, the procedure is to work out, for each possible point group of the 

molecule, the total number of vibrations, and the numbers active in the infra-red , 

in the Raman, and in both (coincidences) and compare the observed spectra with 

the predictions in each case. Some recent investigations of this nature include the 

assignment of C,, symmetry to SF,, the demonstration of the ionic nature of 

TeCl, in the solid, where it is TeCi, Cl (the TeC1,* is pyramidal), and the discovery 

that B,Cl, is non-planar with D2 symmetry in the liquid and vapour, in contrast 

to its crystal structure, where X-ray diffraction measurements have shown it to 

be planar with Dg symmetry. 
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Selection Rules and Polarization 

Consider a transition involving a change in some property, the property being 

associated with an operator X. If the wave functions associated with the initial 
and final states of the system are ¢;, df respectively, then the probability of the 

transition occurring is proportional to the transition moment, which is given by 

the integral (¢;X¢,dr. 

If we are discussing electric dipole transitions, such as we observe in electronic 

and vibrational spectra, then the operator X will be the dipole moment operator 

M which is a vector with components M,, My, Mz. The probabilities of a transition 

occurring with the electric vector of the incident radiation parallel to the x, y or z 

directions will thus be given by 

SO:Mx bdr, [O)My ddr, [O;Mzo,A7, 

respectively. 

At least one of these integrals must be non-zero in order for the transition to 

occur, and such an integral can be non-zero only if it is, or contains a component 

which is, symmetric to all the operations of the group. This condition arises 

because the transition moment, being a physical property of the system, must be 

invariant to all the symmetry operations of the group, (i.e. totally symmetric). 
The question of whether the integral is totally symmetric is answered by 

constructing the character of the reducible representation formed by multiplying 
together the characters of the irreducible representations to which ¢;, of and the 
dipole moment component belong. In this connection we should recall that 
M,,, My, Mz transform like x,y, z respectively. 

If we are considering transitions from the vibrational ground state to an 

excited state, the problem is somewhat simplified because the vibrational ground 
state always has a totally symmetric wave function. The character of every opera- 

tion in the totally symmetric irreducible representation is +1, so we need only 

form the products of the characters of the irreducible representations to which 

the co-ordinates and the final-state wave functions belong. 
Consider a molecule of C,; symmetry; the totally symmetric representation 

is Ag. We wish to investigate the possibilities of electric dipole transitions to 
excited vibrational states of classes A g Au, Bg, By. Now we have shown previously 
that x and y transform as B, while z transforms as A,,. From the character 
table of C,, we can work out all the direct products and find out whether they 
are, or contain, the A, representation. If so, the transition is allowed with the 
electric vector of the incident radiation parallel to that direction. 

The only direct products which involve the A, representation are those 
resulting from a transition to an A,, state with the electric vector of the radiation 
parallel to z, and from a transition to a B, state with the electric vector parallel 
tox ory. 

When we carry out a study of the vibrational spectrum of a single crystal or an 
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Table 6.7. Direct products of irreducible representations of dipole moment components 

and excited states for C,, symmetry 

Direction 
class of 

excited state 

oriented film, we can arrange the sample in a known orientation with respect to 

the incident radiation and thus identify the symmetry classes to which the 

observed vibrations belong. Exactly the same analysis can be carried out for 

transitions involving a change in polarisability in order to determine the excited 

states accessible from the ground state by Raman scattering; Table 6.8 shows 
these possibilities. 

Table 6.8. Direct products of the characters of the irreducible representations of 
polarisability components and excited states for C, , symmetry 

Component 
Excited states 

Here we see that we can reach the Ag excited state if any of the components 

x?, y?, z? or xy of the polarisability tensor is non-zero and the By, excited state 

if yz or xz is non-zero. Again it is possible to orient samples so as to investigate 

each component in turn and identify the symmetry class of each vibration. 

In studying transitions where the initial state is not totally symmetric we 

need to form the product x (initial state) x x (operator component) x x (final 

state). This occurs in vibrational spectra only when the initial state is an excited 

state, and is not a common situation. In electronic spectra, however, this is the 

usual situation, since the wave function of the ground state is very often non- 

totally symmetric. Consider the electronic configuration shown in Figure 6.14 

belonging to a molecule of C,, symmetry. We wish to establish whether electric 

dipole transitions are possible from either $3 or ¢4 to either ds or d¢. 

We need to form the direct products x(initial state) x x(dipole moment com- 

ponent) x x(final state) and see if any of these belong to or contain the totally 

symmetric representation of the group C2,; that is the A, representation. In 
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B,* $e 

* 
A, ds 

“TIFT Te ae ae 

ayer rere ee 

eee 

—_____4-_____ 4, 4, 
Figure 6.14 Possible electronic configuration of a molecule of C,, symmetry (starred 

levels are antibonding) 

Table 6.9 we have the necessary information, and the results are given in Table 

6.10. It is convenient to begin by forming y(initial state) x y(final state); as the 

characters are all numbers, the order in which they are multiplied is immaterial. 

Table 6.9. Character table of the point group C, , 

Nf C, Oy(VzZ) oy(xz) 

A, 1 1 fi 1 Zz ony eee 
A, 1 1 ll —1 xy 
B, 1 al =I 1 x XZ 
B, 1 all I al y yz 

Table 6.10. Symmetry classes of the direct products of the irreducible representations of 
$j X bf xX co-ordinate 

A, B, A, B, 

At At BY Bz 
A, B, B, A, 

B, A, Ay B, 
B, As A, B, 

2(A,) A, B, B, A, 

The totally symmetric representation is given by the products (A, Az), 
(B, A¥x) and (A, Bry). 

Thus we may have electric dipole transitions from $3(A,) to $5 (A i); b4(B,) 
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to p, (AF) and $3(A;) to ¢6(B¥) with radiation whose electric vectors are 
parallel to z, x and y respectively. No transition between ¢,(B, ) and ¢¢ (B34) is 

possible. 
We should bear in mind that these selection rules are deduced purely on 

symmetry grounds and that they tell us nothing about whether the process under 

consideration is energetically feasible. Similarly in the earlier discussion of 

optical activity and dipole moment we found that it is possible to discuss only 

whether or not the molecule possesses these properties, and not their magnitude 
or sense. 

PROBLEMS 

1. A lattice contains stacks of parallel planes with the d-spacings listed in the 
table below. CuK, radiation (A = 1-542A) is passed through the lattice at the 
incident angles (9) shown. At which values of 8 do each of the stacks of parallel 
planes give a diffracted beam? 

Gr= S10 14 17, 20° 24 36 
d-spacings (A). 8-88 4-44 3-19 2-34 2-25 1-89 1-31 1-00 

2. What are the Miller indices of the stacks of parallel planes in the plane lattice 
shown below if this lattice represents the ac plane of a crystalline material? 

a2 a2 

a3 

— 

e 
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3. Given the reciprocal cell dimensions obtained with CuK, radiation (A = 1.542A) 

for the following materials, what are their real unit cell dimensions and to 

which crystal class do they belong? 

(i) Mo, a* =b* =c* =0-371 ru. 
at = 6* = y7* =90° 

(ii) Sucrose a* = 0-145 r.u., b* = 0-177 r.u., c* = 0-204 r.u., 

a* = y* = 90°, B*=77° 
(iii) SnS_ a* = 0-387 r.u., b* = 09355 1.6% SO) 3iaeus 

at = B* = y* = 90° 

(iv) Sm(OH); a* = b* = 0-282 r.u., c* = 0-428 r.u., 
a* = B* = 90°, y* = 120° 

(v) urea a* = b* = 0-273 1.u., c* = 0-328 T.u., 
a* = B*¥ =+* = 90° 

4. The d-spacings of cubic powder lines are given by the following formula 

a oR ae ee 
hkl (h? + k? +17); 

Given the value of a and the first five observed powder lines for the following 

materials, deduce the type of Bravais lattice for each material. 

material a(A) d-spacing of first five observed lines (A) 

(i) Snl, | 12.273 167.00 95-499 5:00) 3-54 eG 
(ii) Cd, | (5-388 2) CHiN 2-61, $190. le 
(iii) PaPd; | 4-014 | 4.01 2-84 2.32 2.01 41:80 
(iv) a-Sn | 6-489 | 3-75 °2.29 4.96 1-62) [149 
(v) V2.0 110-604 | ea "3506 )-65, 50s 

5. What are the cell contents in formula units for the following materials with 
given cell dimensions and density. 

; density 
material cell dimensions (lengths in A) (g/cm?) 

(a) nitroguanidine orthorhombic a = 17:58 b= 24-84 c=3: : (CHEN, O.) 84 3-58 1-78 

(b) p-nitrophenol monoclinic a = 6-17 b= 8: =11- = : . fCoHNOD 6:17 b=8-95,c = 11-74, B = 103 1-46 

(c) a-resorcinol (C,H, O, ) orthorhombic a = 10-53 b = 9-53 c = 5-66 1-28 
(d) SnI, y cubic a = 12-273 4:50 
(e) (CH, C, H, NC), Col, tetragonal a = 14-45 c = 16-02 SS 
(f) TiS (high temperature rhombohedral a = 9-04 a = 21°48' 

form) 4-50 
(g) covellite (CuS) hexagonal a = 3-796 c = 16:36 4-66 
(h) Ni(H, O), (SnF,), triclinica = 6°55 b = 6-73 c= 6-50 

a=96-0° B= 104-4° y= 98-1° 3-30 
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6. The following compounds from question 5 above have as their only systematic 

absences of X-ray reflection: 

(a) nitroguanidine h k ] absent when h+k,k+landh+ are odd 
Ok7 absent when k +/ is not divisible by 4 
hOl absent when/ +h is not divisible by 4 

(b) p-nitrophenol h 0 / absent when / is odd 
0 k O absent when k is odd 

(c) @-resorcinol 0 k / absent when k +/ is odd. 
h Olabsent when h is odd 

0 0 / absent when / is odd 

(d) Snly 0&1 absent when k is odd 
(e) (CH3CgH4NC),Col, hk 0 absent when h is odd 

0 0/ absent when / is not divisible by 4. 

what are their space groups? 

7. (i) If compound (h) of question 5 has the space group P1, where do the Ni 

atoms lie in the unit cell? (For details of space group P1 see Figs 4.11b and 

4.12b). 
(ii) A compound AB, has a cell content of 2 and has space group P2,2,2 
(Figures 4.11(c) and 4.12(c)). Where must the A atoms lie in the cell? 

(iii) A compound XY,Z, has a cell content of 1 and has space group Pmm2 

(Figures 4.11(d) and 4.12(d)) Where must the X and Y atoms lie in the cell? 

(iv) Comment on the suggestion that a compound AB, with a cell content of 

2 has the space group Pna2, (Figures 4.11(e) and 4.12(e)). 

8. Which of the following molecules is expected to have a permanent electric 

dipole moment? 

(a) chlorobenzene (b) o-dichlorobenzene (c) p-dichlorobenzene 
(d) COC, (e)H, 0, (f) SOC, 

(g) SO2Cl, (h) CH; Cl (i) SF; Cl 

(j) cis-N2 F (k) trans-N2 Fy 

9. Is it possible, on the basis of the existence or non-existence of a permanent 

dipole moment for the molecule or ion, to solve the following problems? 

(i) Two configurations have been suggested for CIF3;, namely 

Cl eC 

A= pyramidal, and B= amr spr. 

ai 
FE . F 

Which is correct? 

planar 
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(ii) A molecule whose formula is C3H, is either cyclopropene or methyl- 

acetylene. Which is it? 
(iii) H, BO} is planar with the boron atom at the centre of an equilateral 

triangle of oxygen atoms. All the BOH angles are equal and all the B—O and 

O—H bond lengths are equal. Is the B-O—H system linear? 

(iv) SF4 has a trigonal bipyramidal structure in which either one axial or one 

equatorial position is not occupied by a fluorine atom. Which is correct? 

(v) [Co(ethylenediamine), Cl, ]* (green) goes to a red form on evaporation of 

a neutral aqueous solution at 90°C. Can it be shown that the green form is the 

trans-isomer and the red form the cis-isomer? 

(vi) Two structures have been suggested for the complex [Ni(CN)s]° , namely, 

A, a square-based pyramid and B, a trigonal bipyramid. Which is correct? 

10. Which of the following molecules or ions is expected to display optical 

activity? 

(a) (Co(C,O2)s4 « (b) Glycine, NH, CH, COOH 
(c) alanine, CH3 CHNH, COOH (d) spiro—(4,4)—nonane 

(e) spiro—(4,5)—decane (f) cis- 1, 2-dichlorocyclopropane 

(g) trans- 1, 2-dichlorocyclopropane (h) cyclohexanone 

(i) cis[Co(NHs )4 Cl, ]* (j) cis- [Co(Cz Og )2 Cl, ] >” 

11. Is it possible, on the basis of the existence or non-existence of optical activity 

of the molecule or ion, to solve the following problems? 

(i) Problem 5 of question 9. 

(ii) Problem 6 of question 9. 

12. Suggest a complex of Pt which could be made in order to test, by studies of 

optical activity, whether the arrangements of four bonds about the Pt atom were 

tetragonal-pyramidal rather than square-planar. 

13. Determine the distribution of vibrations among symmetry classes for the 

following molecules or ions, whose point group symmetry is given: 

HO, (C2) MoF, (On) 

COCI, (Cry) AuCl, (D4 n) 
BrO3 (C3y) C,H. (D3q) 
p-dichlorobenzene (Dp) CCl, (Tq) 
XeOF, (Cay) B,C Ws) 

14. Show, by constructing I, and C4, which symmetry classes of the following 

point groups contain vibrations which are infra-red or Raman-active. 

(a) C3y (b) Dog (c) D2 (d) Den 
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15. Show, by forming the integrals f OiMoy, Sas, that the selection rules for 

vibrational activity under C,, symmetry are 

A, 
A, 
By 
By 

Z 

x 

+ 

ee ree 

XY 
Bs 
yz 

16. Determine the selection rules for an electric dipole transition between $ 
and ¢;, and between ¢, and ¢¢, in the system illustrated in Figure 6.14. 
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Symmetry and Theories of 
Bonding | 

The character table of a point group describes the irreducible representations of 

that group. As we have seen, it is set up by considering how any general point or 

function behaves on operation of the symmetry elements of the group. This is 

important because it means that, for a given point group, any function must 

behave (transform) either as one of the irreducible representations or as a combina- 

tion of these representations. Tables 7.1 to 7.3 show how the functions x, y, z, 

xy, XZ, yz, x? —y? and z* transform in the following point groups. 
(a) Cy, where the z axis lies along the 2-fold axis, the yz plane is 0, and the 

xz plane is o’y. 

Table 7.1. Character table for C,, symmetry 

Coy - C, oy(z) a’ y(xz) 

A, 1 1 1 1 ZA 2 Ve eX ay 
A, 1 1 -1 —] Ree xy 
Ba 1 all ==l 1 Ry Ee: 
B, 1 eal 1 ae Re y, YZ 

ie. the functions z, z?, x? —y” transform as the irreducible representation A, ; 

xy transforms as A,;x and xz as B,;and y and yz as B,. The characters of 

functions such as xy and z? can be worked out as described in Chapter 5 because 

they are the products of the characters for the components of the function, i.e. 

xy and zz. 

(b) C3, where the z axis lies along the 3-fold axis. 

Table 7,2. Character table forC,,, symmetry 

Cry - 2C3;(z) 3 oy 

A 1 1 1 ae 
A, 1 1 = R; 
E 2 -1 0 | (Re, Ry)! (xz, yz),Qx? — y?, xy) 
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ie. the functions z and z? transform as the irreducible representation A,. The 
bracketed functions (x,y) (xz, yz) and (x? —y?, xy) transform together in pairs 

as the irreducible representation £. For example, operation of the C3 element 

of the oP on a point with co-ordinates (x, y) gives a new point with co-ordinates 

(-4x + “4Y, = 3x —3 y). This shows that a function containing x is converted 
to a function containing both x and y and means that these must transform to- 

gether as a degenerate pair in C3, symmetry. 

(c) On Table 7.3. Character table for O;,, symmetry 

6C, 6C, 6S, 8S, 30, 60g 

Aig | 1 Lah hee: i 1 1 1 1 S 

A,y|\1 1 1 1 1 -1 -1 -1 -1 -l 

aeetineeetie fll = eet = 
A,y | 1 1 1 -1 -1 -1 1 -1 -1 1 

E, eet et OO ec2ee 0 o=1, 2. 50 (z?,x? —y?) 

E 2, —1 2 Oe? ee eee 2) 

Dig 12 0 -1 -l 1 Bee =1 =I | (3Ry.Rz,) 

Dar Ves 0 1 1 (x,y,Z,) 

T, g 3 0 (xy, Z, XZ) 

Ty | 3 0 

The functions z? and x?-y” transform as a doubly degenerate pair with Ey 

symmetry. The functions x, y and z transform as a triply degenerate set of Tiy 

symmetry; likewise xy, yz and xz transform together as Tg. 

Atomic orbitals are described by wave functions which can be represented in 

polar co-ordinates as the product of a radial and an angular function, e.g. 

px =R.sinO.cos¢ and, since x = r. sin? .cos$, Py = (R/r)x where R is a radial func- 

tion dependent upon the distance r from the nucleus. R/r is invariant to all 

operations of any group and thus a Dx orbital transforms in the same way as the 

function x. Similarly py and p, transform as the functions y and z respectively 

and dyy, dxz, dyz, dx? —y? and dz? transform as the functions xy, xz, yZ, 

x? —y? and z? respectively. Thus in the character tables for Coy, Csy and Op 

we have picked out the irreducible representations which transform in the same 

way as the p- and d-orbitals of molecules having these symmetries. An s-orbital 

is spherically symmetrical and no operation of any group can alter that. s-orbitals 

must therefore transform in a group as the spherically symmetrical (= totally 

symmetric) irreducible representation which has the character +1 for all 

operations, ie. A, for Coy and C;, and Ajg for Op. 

Most theories of bonding somehow make use of the knowledge of the way in 

which the atomic orbitals on the central atom of a molecule transform. In this 

section we shall consider the symmetry implications involved in crystal field 

theory, in the concepts of orbital mixing and in molecular orbital theory. 
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Symmetry and Crystal-field Theories 

Crystal field theory considers the effect of electrostatic fields on the atomic 

orbitals of the central atom of a group. In a completely spherical field p-orbitals 

and d-orbitals would transform as a 3-fold degenerate set and a 5-fold degenerate 

set respectively. If the electrostatic field is not spherical the orbitals need not 

remain degenerate. If we have an atom in the centre of a field with octahedral, 

On, symmetry, for example, we have already seen that the d-orbitals are no 

longer degenerate (Table 7.3) but that they transform as a triply-degenerate set 

(symmetry T2g) and a doubly degenerate set (E,). Thus, by consideration of 

symmetry alone, we can state that an element (e.g. a transition metal ion) in an 

octahedral field will have its d-orbitals split into two sets of differing energy. 

What symmetry arguments cannot tell us is which of the two levels has the lower 

energy. It is only by considering the energetics of the repulsive forces on the 

d-orbitals that we can show that the 7g orbitals have the lower energy. Reference 

to the character table for O, symmetry shows us that the p-orbitals of an atom at 

the centre of an octahedral field will remain degenerate and would transform as 

the irreducible representation, 7; ,,. If we consider the p-orbitals of an atom in 

the centre of a field of C3, symmetry, however, we find that (Table 7.2) they 

are no longer triply degenerate but that they must transform as a doubly 

degenerate F set (px and p,) and a non degenerate A, set (p,). Again this means 
that, from symmetry arguments alone, we can show that the p-orbitals of an 

atom in a field of C3, symmetry are split into two levels, p, and the degenerate 

pair p, and py. Again, however, we cannot say from symmetry arguments alone 

whether the p, orbital has the higher or lower energy and again reference must 

be made to the detailed energetics of the system to answer this question. 

SYMMETRY AND ORBITAL MIXING 

In theories of bonding which involve orbital mixing (hybridisation) the 
atomic orbitals of one or more of the atoms forming the molecule are considered 
to interact to form new types of orbitals. These concepts of orbital mixing are 
also based on considerations of symmetry, as can be seen from the following 
examples. 

If we consider that the p,-orbital of the molecule BF; lies along the 3-fold 
axis and that the p,- and p,-orbitals lie along the directions shown it is obvious 

4 

ty hee 
ee 

neces 
F->py 

Se aa Ga) 

se 
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that the atomic orbitals of the B atom are not in the correct positions to form 
o bonds to the three fluorine atoms. What we must do is to obtain the total 

character of the orbitals involved in the bonds to the fluorine atoms and then, 

by reference to the character table for D3, symmetry, work out which combina- 

tion of atomic orbitals of the B atom is forming the bonds. 
The symmetry elements present in D3, symmetry are J, 2C3, 3C2, 253, on 

and 30,. We can determine the total character of the bonding orbitals by labelling 

the three bonds 1, 2, 3 and finding out how they behave on operation of all of 

the elements present. 
If we operate the identity on the three bonds they remain in the same positions 

and this is also true for operation of o,. Expressing this in matrix form we get 

a matrix of character 3. 

{arr 0 

MGs 3) | 0 10) =o, 2.3) 

Ot Onn t 

On operation of the 3-fold axis C}, bond 1 becomes bond 2, bond 2 becomes. 

bond 3 and bond 3 becomes bond 1. 

Omar el 

C1192, 3) =(t, 2,3)|1 0 0 

Oe 

This matrix has character 0 and similarly the matrices representing the operation 

of C3 and the S3 axes have character 0. 

Operation of the 2-fold axis or the vertical mirror plane through bond | leaves 

it unchanged but does interconvert bonds 2 and 3, i.e: 

i020 

oy(1, 2,3) =(1, 2,3)] 0 0 1) =C,(1,2,3) 

Opi 0 

This matrix has character 1 as do the matrices representing the operations of 

the other 2-fold axes and vertical mirror planes. 

The total character of the orbitals forming the three o bonds in BF; is thus: 
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Reference to the character table for D3, symmetry (Table 7.4) shows that 

x can only be produced by the sum of the irreducible representations 4; +E’. 
Thus the total character of the three bond orbitals is made up by contributions 

from the s-orbital (A}) and the doubly degenerate p,- and p,-orbitals (E’), i.e. the 

boron atom is using three sp? hybrid orbitals. 
Table 7.4, Character table for D, }, symmetry 

SX byte A, 
A, 
Aj 
Ay Z 
E (x, y) (x?—y?, xy) 
E" (Rx,Ry) | &z, yz) 

In the previous chapter we saw that there was no need to work out the total 

character of a vibration from first principles. Instead we could obtain the charac- 

ter for each operation by counting the number of atoms which were not shifted 

by the operation of a symmetry element. In the same way we can obtain the 

total character of a system of bond orbitals by counting the number of orbitals 

which do not change on operation of the symmetry element. 

For example for BF3 

(i) operation of J or of oy leaves all three bonds in the same position 

es x) = 3 = x (on) 
(ii) ppoatan of C3 or of S3 changes the relative positions of all the orbitals 

x(C3) = 0=x(S3); 
(i) operation of C, or of 0, leaves one orbital in its original position 

x(C2) = 1 =x(oy). 
We thus obtain the same result for the total character 

I IC, 3C2 25; On 30y 

Xtotal 3 0 1 0 3 1 

as we did from first principle arguments. 

By similar methods we can obtain the total character of the four orbitals in 

methane. 



SYMMETRY AND THEORIES OF BONDING 159 
The elements present in the point group Tg are 

I 8C3; 60g 6S, 3C, 

and we can show that: 

(i) all four orbitals remain the same on operation of J; 
(ii) only one orbital remains the same on operation of-any of the 3-fold axes 

(e.g. orbital 1 for the C3; shown); 

(iii) two of the orbitals remain the same on operation of a og (e.g. orbitals 3 and 
4 for the og shown); 

(iv) none of the orbitals remains the same on operation of S4 or C,. 

The total character of the bond orbitals is thus: 

Xtotal | 4 1 ey 0 0 

and reference to the character table for Tg symmetry shows that the total charac- 

ter must be made up of contributions from A, (s-orbital) and T, (triply degenerate 

Px, Py and pz orbitals). 

Table 7.5. Character table for Tg symmetry 

Ss 

n = 

(2 a) 

Sy hb 
» 

(RyRy Rs 
~ 

(x,y,Z) (xy, x2, YZ) 

Note that, in general for tetrahedral molecules XY4 Xtotal =A, +T, canbe 

satisfied by the combinations 

s(A,)+ (@x, Py, Dz)(T2) or s(A1) + (dxy,dxz,dyz )(T2) 

For methane only the former combination is possible because the carbon atom 

has no energetically accessible d-orbitals but for molecules such as SiF,, GeCl,, 

etc. we must decide on energetic grounds whether there is any d-orbital 

participation in the o bonding. 

The character of any function in a group can always be obtained by finding 

out how it varies with each operation of the group. We have seen that, if a single 

function, atom or orbital is invariant to an operation, it contributes +1 to the 

character. If, however, the operation changes the sign of the function but other- 

wise leaves it unchanged then a contribution of —1 is made to the character. We 

can illustrate these effects by working out the character of the pz-orbital in BF3. 

Figure 7.1 shows that the orbital does not change position or sign on operation 
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Figure 7.1 Operation of the elements of D,, symmetry in the p, orbital of BF,. 

of I, C3 or oy, but that it changes its sign but not its position on operation of 

C,, 53 or on. This gives us the total character of the p,-orbital as: 

which is the irreducible representation A, of the point group D3p, (see Table 7.4). 

Symmetry and Molecular Orbital Theory 

The molecular orbital approach to bond descriptions is based on the assump- 

tion that orbitals of the same symmetry in two adjacent atoms or groups can 

overlap to form bonding orbitals. The bonding orbital will be a linear combination 

of the atomic or group orbitals and associated with this there will be a corres- 

ponding linear combination with antibonding properties. From the point of view 

of symmetry arguments alone, it is not necessary to know the value of the 

normalising constants in the linear combinations, and for this reason we have 

chosen to omit them in most of the discussion in this book. The constants are, 

however, included in figures or tables for some of the examples discussed. 

The simplest molecular orbital descriptions are those for the homonuclear 

diatomic molecules such as Ny and O,. These descriptions involve only the 

overlap of the s- and p- orbitals of the atoms forming the bond as illustrated in 

Figure 7.2. The symmetry symbols given for the molecular orbitals in this 

diagram are those of the corresponding irreducible representations of the point 

group D.oy (Table 7.6). The energy level diagram of Figure 7.2 is simplified and, 

even for some homonuclear diatomic molecules it is necessary to allow some 

s—p mixing. Mixing of s- and p,-atomic orbitals on both the C and O atoms in 

the heteronuclear diatomic molecule CO is necessary in order to explain the 

energy of the C—O bond and the fact that the ‘molecule acts as a donor through 

the carbon atom. Figure 7.3 shows that s- and p,-orbitals on any atom can be 

mixed to give two new orbitals s + p, and s— p,. These new orbitals can then 
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Overlap of s— and p-orbitals in diatomic molecules 

() o*- Antibonding 

Yecay” Wop) 

F(a) S(B) 

V wa) Wee) o — Bonding 

Waar? Wa) 

oS, &) o*— Antibonding 

Cone) Rae W. 2a)— We 2B) 

P2n) P2(B) 

Yoz(a) Yer) ee te) o — Bonding 

Poza) J ore) 

A 1*— Antibonding 

O ts G 
Pray OF Py(a) Px(p) Pye) Wercay” Verte) 

x 

e.g. 
Yor (a) Yoxe) 

A B a — Bonding 

> 
Peay t Yx<¢B) 

Molecular orbital description of homonuclear diatomic molecules 

| (sh) 
Atomic orbitals Molecular orbitals Atomic orbitals 

atom A molecule AB atom B 

Figure 7.2 Overlap of s and p atomic orbitals and the molecular orbital description of 

homonuclear diatomic molecules 
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Figure 7.3 S-p mixing and the molecular orbital description of CO 
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Table 7.6. Character table for Doo, 

2 CLD. [ 28.2 

1 re Xie yseze 
1 dae 

—2cos® ... (xz, yZ) 
RICOSi2 Dees (x? —y?, xy) 

—l 
—] 

2ICOSI@. Sass 2 cos ® 

2cOs2O. 4... —2cos2®... 

combine with orbitals of identical symmetry on another atom to give o bonding 

[o(s + pz), o(s —pz)] and o antibonding orbitals [o*(s + pz), o*(s — pz )] . Figure 7.3 
also shows the energy level diagram for CO. In this diagram the symmetry 

symbols shown are those of the irreducible representations of C..y. It should be 

stressed once again that symmetry arguments alone can only predict the types 

of molecular orbital which should be found and that they give no information 

on the energies of these orbitals. The order of molecular orbitals in the energy 

diagrams of Figures 7.2 and 7.3 are based on information in addition to that 

obtained from symmetry considerations. 

In the molecular orbital description of polyatomic molecules we have to 

devise a means of working out which orbitals on the various atoms or groups 

have the same symmetry. The central atom of a polyatomic system is unique 

in that it lies on all of the symmetry elements of the point group of the system. 

This means that the atomic orbitals of the central atom will transform as 

irreducible representations of that point group. For example, the oxygen atom 

of the water molecule lies on all of the symmetry elements of the point group 

C, ». If we adopt the axes used to construct the character table for C2, (Table 

7.1) then the s- and pz-orbitals of oxygen transform as A, , px as B, , and py as 

B,. The other atoms of a polyatomic system (e.g. the hydrogen atoms of water) 

do not lie on all of the symmetry elements of the group and cannot transform 

as one of its irreducible representations. We can, however, consider the various 

linear combinations of the orbitals on other atoms and find out whether any 

of these transform as irreducible representations of the group and whether any 

of the combinations (Group Orbitals) have the same symmetries as the atomic 

orbitals of the central atom. Only two linear combinations of the s-orbitals on 

the hydrogen atoms of water are possible s(4) + S(gyand s(4) — S(B) (see Figure 

7.4). The wave function 

1 
i= FU say * Yspy) 

has the same symmetry as the s- or p,-orbitals of the oxygen atom, i.e. Ay. 
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Ce Sale 

a oe 
> = (Yscay + ¥scor) Ee Z Your ¥ ¥siey) 

Figure 7.4 Linear combinations of hydrogen s orbitals in the water molecule 

The wave function 

1 
Wa = 5 Ws) - Wsp)) 

has the same symmetry as the py-orbital (Bp). These statements can be checked 

by inspection of the diagrams in Figure 7.4 but can also be verified by operation 

of the symmetry elements in the group on the linear combinations. If we consider 

the linear combination s(4) + (gy (+ + in the diagram) and operate the symmetry 

elements of the group we get the same pattern each time, i.e. + +. Likewise, opera- 

tion of the elements J and o)(vz) on the combination s(4) — s(gy(+ — in the 

diagram) gives the same pattern (+ —) but operation of C, and oy(xz) gives the 

pattern (— +) in which the:s- orbitals are in the same relative positions but have 

different signs. 

The characters of these group orbitals are therefore: 

Oy (xz) Oy(vz) 

S(A) + S(B) 

S(A) ~ S(B) 

Once we know which group orbitals have the same symmetry as the atomic 

orbitals we can construct a molecular orbital diagram. For example, in the water 

molecule the group orbital s;4) — s(g) has the same symmetry as the p,-orbital 

and so we have one bonding and one anti-bonding molecular orbital with sym- 

metry B,. Similarly we can have bonding and anti-bonding molecular orbitals 

with symmetry A, but we cannot, by symmetry arguments alone, decide 

whether the oxygen atomic orbital used in bond formation is the s- or pz- 

orbital, both of which transform as A,. If we assume that the s-orbital is used 

in bond orbital formation then the pz-orbital must be a non-bonding orbital of 

symmetry A,. Similarly, since there is no group orbital combination which 

transforms as B,, the p,,-orbital of oxygen is also non-bonding. Figure 7.5 

illustrates the molecular orbital energy diagram for water. 
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Px Py Sp (Bo) 

(Bs) (Bo) ean 

O atomic orbitals H group orbitals 

molecular orbitals 

Figure 7.5 Molecular orbital description of the water molecule 

The molecule SO, also has C,) symmetry and we can extend the arguments 

used in the molecular orbital description of water to deal with cases like SO for 

which a large choice of bonding atomic orbitals is possible. The orbitals on the 

oxygen atoms which are responsible for forming the o bonds to the sulphur are 

presumably either p-orbitals or sp hybrids of some sort. It is not necessary, from the 

point of view of symmetry, to know what type of oxygen orbital is forming the 

bond. It is sufficient to know that on each oxygen atom there is a o bond-forming 

orbital. We can see from Figure 7.6 that the combinations of these o-type orbitals 

which have the same symmetry as orbitals in the sulphur atom are 0(4) + 0(B) 

(Agosps ds. ae —y*) and 0(4) — 0(B)(B2: Py, dyz). The symmetries of the 

o-bonding orbitals are thus the same as those for the water molecule, as in fact 

they must be. In the case of SO, , however, there is the additional energetic prob- 

lem of possible d-orbital participation in the bonding. There are no combinations 

of o-type oxygen orbitals that have the same symmetry as the p,,- or d,,,-orbitals 

on the § atom. The oxygen atoms do, however, have other orbitals available which 

are capable of forming 7 bonds and the combination (4) + ™B) (i.e. p,,-orbitals 

or suitable hybrid orbitals on the oxygen atoms) has the symmetry B, (Px or 

dx; on sulphur). The example shown in Figure 7.6 is of the symmetry equivalence 

of Tay + TB) and p,,. There are no combinations of either o or 7 type orbitals 

in the oxygen atoms which have the same symmetry (A,) as the dyy in sulphur. 

The A, orbital must therefore remain non-bonding in the molecular orbital 



166 SYMMETRY AND STEREOCHEMISTRY 

o —bond orbital combinations Atomic orbitals on Symmetry 

S on oxygen sulphur 

G) CG) $, P17 2, A,2-y2 A, 

A B 

Tart ep) 

iS) 
eke 

&) = PrP yz Ba 

%ay FB) 

7 —bond orbital combinations 
on oxygen 

@ + + 
a > Pe ’ qs By 

A (-\ B 

(ay aba 
© a) 

Tayt TB) 

Figure 7.6 Group orbitals in the molecular orbital description of SO,. 

diagram. The bonding molecular orbitals in the molecular orbital description must 

all have one of the symmetries A,, B, and B, and, if we neglect d-orbital participa- 

tion in the bonding, the detailed molecular orbital energy level diagram for SO, 
is that shown in Figure 7.7. 

The reader can verify that for a square planar molecule XY, the group orbitals 

in Table 7.7 have the same symmetries as atomic orbitals on the central atom. 

(The character table for Day, is given as Table 7.8). 

LIGAND-FIELD MOLECULAR ORBITAL THEORY 

The ligand-field molecular orbital theory is simply an extension of molecular 
orbital ideas to explain the properties of transition metal molecules and ions. The 
group orbitals in this case are the combinations of suitable orbitals in 

the ligands. For example, every ligand in an octahedral transition-metal complex 
contains a lone pair orbital which is capable of forming a o bond with the transi- 
tion metal. The ligand group orbitals are found by taking linear combinations of 
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Figure 7.7 Molecular orbital energy level diagram for SO, showing the allocation of 

the eighteen available electrons to molecular orbitals 

Table 7.7. Group orbitals for square-planar molecules XY, 
Atomic orbital on 

central atom o group orbitals n group orbitals Symmetry 

0(a) + 9(B) + 9(G)t %(D) 5, Ag 

O(A) + 0(B)~ 9(C)~ °D) dx? —y? Big 
Ta —7™R+™C-—T™)D) dxy Brg 

0(A)~ 9(C) TA-T™C Px E, 

o(B)— %(D) ™B —T™) ue 

S. 
y E. 

= Geo ie 

= 
Dz Aoy 
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Table 7.8. Character table for D, , symmetry 

Dy | E20, Cy 2 2 ee re 

Aw | ta jul 1 1 1 15 ae 1 1 1 [2 eee 

Agel. a 1 -1 -1 [6 et 1 -1 -1/R, 

Bee ileal 1 1 -1 1 -1 1 ec | gee 

Be alee! 1 -1 1 ie 1 - 1 xy 

Eg 2 “0-2 "0 9 2p a5 Vw 0 | RyRy) | (z,y2) 

A oe 1 1 1 1 -1 1 1 1 

Arle me 1 1 1 i =i 1 1 1 z 

Boao) ieest 1 1 -l -1 1 -1 -l 1 

Be, oad | {i Ie -1 i <4 

Ey 2°) .0 7 22-0 a 20 1) 0 ead (x,y) 

the wave functions of these lone-pair orbitals neglecting as a first approximation 
any ligand—ligand interaction. If we consider the octahedral complex: 

Ly 

a 
a Le oi 

a‘ pee nee 

F te tee 

M 

| 
| 
| 
| 
| 

| 

Lg 

in which the wave function representing the lone-pair orbital on ligand A(L,) is 

0(A) etc. then we can tabulate (Table 7.9) the ligand group orbitals which have 

the same symmetry as the atomic orbitals in M. The ligand group orbitals are also 

shown diagrammatically in Figure 7.8. 

We can thus form o molecular orbitals by combining the atomic orbitals s, 

Px, Py, Pz, dx? — y?, and dz? with the ligand group orbitals of corresponding 

symmetry. This gives rise to the familiar ligand-field molecular orbital diagram 
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» Similar combinations give dz and dz. 

Interaction between the atomic orbitals of an atom and ligand group 
Figure 7.8 

orbitals for O, symmetry 
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Table 7.9. o-ligand group orbitals for octahedral (O;,) symmetry 

Atomic orbital of 

Ligand group orbital central atom Symmetry 

1 
«fe PIA) * ORY * OC) Say ey at? s Aig 

B (o(4)~ 9@B)) Dz 

a (o¢¢)— 9(~D)) we Ext 

e (oe) — 7(F)) Py 

5 (0(c)~ 94) * 1D) — 948) dy? _ y? E, 
1 

rz (291A) t+ 20(B)— 8(C) — F~D) — FE) — FY? 

of Figure 7.9. Again, symmetry arguments alone cannot predict the energies of 

the molecular orbitals but can only predict which combinations of ligand and 

metal atomic orbitals are possible. In Figure 7.9 the T,, orbitals on the metal 

(dy y, dxz, dyz) remain non-bonding because there is no combination of ligand 

o-type orbitals which has T,g symmetry. The energy gap between this T>¢ level 

and the E¥ anti-bonding orbitals is the ligand-field splitting, A. 

Although no combination of o bond-forming orbitals on the ligands has the 

Pp 

Ss 

d 

Aa Tw fe 

metal atomic molecular orbitals o — ligand - group 
orbitals orbitals 

Figure 7.9 The o-ligand-field-molecular-orbital diagram for Oj, symmetty 
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same symmetry as the d,,-, dyz- and dyz-orbitals, the following combinations of 

m bond forming orbitals do have the correct symmetry (see Figure 7.8): 

"pay "py * "(cy "P~wy = Axz 

"pay "Peey* "Pay "Py = Fyz 

diye) RTT aT = (0) 
(E) Ey SPC) PD y +S 

We can now complete the ligand-field molecular orbital diagram for O, symmetry 

by allowing for the formation of T, 7 bonding and m* antibonding orbitals 

(Figure 7.10). 

metal atomic molecular orbitals o - and 7 - ligand 

orbitals group orbitals 

Figure 7.10 The ligand-field-molecular-orbital diagram for Op symmetry including 

m-bonding 

The ligand-field molecular orbital description of compounds of other 

symmetries can be set up ina similar manner and that for square-planar molecules 

and ions can be deduced from Table eas 

Symmetry and Molecular Orbital Calculations 

The calculation of energy levels and of molecular orbital coefficients by 

Hickel and related methods gives a determinantal equation whose order is equal 
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to the number of molecular orbitals formed. By taking the symmetry properties 

of the molecule into account, the determinantal equation can be broken down 

into a number of equations of lower order, making the computation very much 

simpler. 
One of the most important applications of this treatment is concerned with 

the solution of the determinantal equation for conjugated systems. The problem 

here is to determine the energies of the molecular orbitals formed from those 

atomic p-orbitals of the carbon skeleton which are not involved in the formation 

of o bonds. The procedure for solving this problem with the aid of the symmetry 

properties of the molecule can be broken down into four steps. 

1. Find the point group of the molecule under consideration and label the 

atomic p-orbitals ¢, , 62---, dx, --bn- 

2. By applying the symmetry operations of the sub-group consisting of the 

proper rotations of the molecular point group, find the character x(p) of the 

reducible representation formed by the atomic p-orbitals, and break this down 

into its component irreducible representations using 

1 
dj = 7 & &RX(R)X(R) 

The reason why we use the rotation sub-group only is because all p-orbitals have 

the same symmetry with respect to the plane of the molecule, and so the 

inclusion of this symmetry element does not help to reduce the determinantal 

equation. 

3. Construct the required number of ‘symmetry-adapted orbitals’ indicated by 

the result of (2). 

4. Set up the determinantal equation for the orbitals of each irreducible 

representation and solve the equation for the energy levels. 

As a first example let us apply this technique to butadiene. 

Step 1. There are two possible molecular point groups, corresponding to a ‘cis’ 
form of symmetry C, and a ‘trans’ form of symmetry C3, respectively. In either 
case the proper rotations of the group consist solely of J and Cy, so that the 
rotation sub-group is C,. Since there are four carbon atoms, there are four atomic 
p-orbitals which we will label ©, ; ®,, 6,, @,. 

Step 2. The character of the reducible representation for the p-orbitals is simply 
the number of orbitals remaining invariant to each symmetry operation. With the 
carbon atoms designated as: 
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we see that the behaviour of the orbitals under the two symmetry operations is 

as follows: 

Number of 

invariant orbitals 

Using the character table of the group C, (Table 7.10) we find that the reducible 

representation formed by the orbitals ©, , &,, 63, 4 contains the irreducible 

representations A and B twice each. 

Table 7.10. Character table of the point group C, 

CG lE Gr 

A 1 1 Rz ZV Cane ey, 

B 1 —1 |Rxy, Ry) X,Y, V2, x2 

aA) =4[1.1.4+ 1.1.0] =2 
a(B) =4[1.1.4-—1.1.0] =2 

We therefore need to construct two symmetry-adapted orbitals of class A and 

two of class B. 

Step 3. The most commonly used procedure for constructing such orbitals may 

be expressed by the equation 

0) = ER&e x(R) (7.1) 

Let the orbital to be constructed be ¢;, which belongs to the jth irreducible 

representation. Suppose we choose a member ®G of the original set and generate 

¢; from @g, then the procedure is to write down for every operation of the point 

group, the result (R®g) of performing the operation R on ®g, and then to 

multiply this result by x;(R), the character of R in the jth irreducible representa- 

tion: ¢; is then the sum of all such terms. 

Let us generate an orbital 6, (A) starting from ®, as generator. There are only 

two operations of the group C2, these being /, C,; we can thus write equation 

(7.1) explicitly as: 

$1 (A) =I®, x4) + Cr 1 -X4 (C2) (7.2) 
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Now the result of performing the operation J on ©, is ®,, while C, performed 

on ®, gives ®, ; thus we can re-write (7.2) as: 

$1(A) = ®1x4(Z) + 4X4 (C2) (73) 

The character table for the point group C, shows us that the character of J in 

the A representation is 1, and so is the character of C, in the A representation. 

Substituting these values as (7.3) we have 

o:(A)=®, x 1+, x 1 
=6, +, (7.4) 

This is not normalised; in order to normalise ¢, the sums of the squares of the 

coefficients of the ©; must be 1; thus on normalisation 

¢,(A) = po + @,) (7.5) 

We need to generate a second orbital of class A, , (A), and this must be ortho- 

gonal to ¢, (A). For two orbitals ¢; = Deine, oj = Lj Pr, to be orthogonal, the 

coefficients cjx, cjx must satisfy the condition 

LCiKC ik =0 

Repetition of the procedure in this step, starting with ®g = ®, gives: 

b2(A)= (2 +43). 
It is clear that ¢, is orthogonal to ¢, since only ®; and ®4 appear in ¢, while 

only ®, and ®3 appear in ¢,. We now need to construct two orbitals $3, ¢4 of 

class B; since the character of C, in the B representation is—1, the use of ®, and 

®, as generators of $3 and ¢,4 will produce 

63(B)= (1 ~ 4) 

b4(B)= Fs ~ @) 

Step 4. The construction and solution of the determinants may now be carried 
out. For the butadiene molecule we could write the determinantal equation in 
full as 

HT he Ess 4 a Ay 4 — ES; 2 FA; 3 = TS ta Fy4 —ESy4 

Ay, —ESy, Hy2—ES22. Ao; —ES.3 Hy4 —ES24 

Hz, —ES3, H32.—ES3. H33—ES33 Hs —ES34 

Hy, — ES41 Ha, — ES42 Hy3 —ESq3 Ha4 — ESq4 
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where 

Ai; =| giteona 

Hix = [oracoxar - | bd bdT 

Sii = [ gidr 

Sik = f PiPK aT 

Now the advantage in factoring out this 4 x 4 determinant into two 2 x 2 deter- 

minants is that cross terms Hj, where ¢; and $x belong to different irreducible 

representations (symmetry classes) are identically zero. Further, if the set of 

wave functions ¢j, ¢; . . . belonging to any one class are orthogonal and norma- 

lised, Sj; = 1 and Six (1 + k) = 0. 

Thus in butadiene, where we now have four symmetry-adapted orbitals 6, , $2 

of class A and $3, ¢4 of class B, the terms Hi 3, M14, H23, 424, H31, Asi, H3>, 

H, > are all zero. If we also put in the values of Sj and Six appropriate to the 

orthonormal sets, the determinant becomes 

Hine in : 0 0 

Hy H,.,-E, 0 0 
bar is = (9) 

0 0 His3 2k H34 

| 

0 0 | Has Haye 

and the two 2 x 2 blocks can be solved separately. 

From the definition above, we have 

1 1 

Ay, = | ettnar=| flo + Bq] H lh 
+ , | dr 

-L{(@.300, +O, HP, cts P,HP, + D, HD, dT 

If we now make the definitions 

| [eiscenar = Qj 

[eae xar = Bix 

and introduce the Huckel assumptions that all a; are equal and that all Bix 

(i adjacent to k) are equal, while all Bjx @ non-adjacent to k) are zero, we see that 

H,, =3(0 +0404 0)= 0. 
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Evaluating the remaining terms 

] 
Ay. =H, = [6:30.48 ={ ples + Py ]H AlP2 + ®3|dr 

= ia, HP, ap ®, HP; + ©,HP, te , HP; )dr 

=4[B+0+0+8] 
= : 

1 1 
A> =[,30,4r=[ 10, +3] KH Ale + @3|dr 

= i[@, HP, ot d, HP, ®, HP; te ®, HO; )dt 

=k[a+B+B+al 

=a + B 

The reader may verify that H33 = H,;, =a 

H34 = Ha43 =A. =H, =B 

Hyg, =a-B 

The two parts of the original determinant now read: 

oF B = : P 
B ong | = 0 for the energies of the orbitals $1, ¢. of class A 

eo-E £8 2 k ; 
8B en | = 0 for the energies of the orbitals $3, 4 of class B 

If we now adopt the usual procedure of dividing through by 6 and writing 

aaa 

B 

the determinants become 

% | | 20 orx? +x-1=0 pane eX mtaeNG = 

DG 1 = 2) tee ee | 0 orx° =x = =} 
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the first determinant gives the energies of the A orbitals as 

=i + 
r: =I --1.618 or +0-618 

while the second gives the energies of the B orbitals as 

-1n5 - ~0-618 or +1-618. 

Thus the two levels of class A have energies (a + 1-6186) and (a — 0-6188), 

while those of class B have energies (a@ + 0-618() and (a— 1-6186). Note that we 

do not, as in the ordinary calculation, attempt to associate these energies Fy, FE, 

E3, E, with the symmetry-adapted orbitals ¢, , 62, $3, 64. This is because these 

orbitals are not, in general, the true molecular orbitals. They are only the true 

orbitals if the Hj, terms (i #k) are zero. The true orbitals, which we shall 

designate W1, W2, W3, Wa, are linear combinations of the symmetry-adapted 

orbitals. If we wish to determine charge density, bond order or free valence 

index, we need to obtain the true molecular orbitals. The procedure is now 

illustrated for butadiene. 

Consider first the orbitals of class A. The level of lowest energy is 

E, =a + 1-6186; call the orbital associated with this energy level W, and let this 

be some linear combination 

Wy see [¢, +x] where ee the normalising factor. We now 

may solve for x as follows 

E, =a+t 1-6186 

But By = (yi. dr 

Ta | + x2) H(b, +x¢2 dt 
A +X 

“(4x2 | [3004 + 2xo, Hb, + x7b.Hb, | dr 

But [eae ar = Hy, =a 

fous. drt = Hy, =8 

‘ forIo. dr=—H =at$ 

Eye ee fa + 2Bx +x? (a+ B)] =a + 1-6188 

a + 2Bx +x? (a +B) =(1 + x7)(a + 1-6188) 
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The terms in a@ cancel, leaving 

2Bx + x?B = 1-6188 + 1-618x7B 

on dividing through by 6 and rearranging 

0-618x? — 2x + 1-618 =0 

from which x = 1-618 

f 1 
Thus Vy = 7 41-6185 + 1-618 5 | 

1 1 1 

7 (1 + 1-618")?  A@ + By) +1.618°7 Vr (@, + ®) 

= 0-376 (@, + bg) + 0-607 (@, + 3) 

The other energy level corresponding to an orbital of class A isE3 =a — 0-6188. 

We may form wW3 as the linear combination 

W3= 1 +x?)z (¢; — x2) = 

a= [vaivs Gh = aa [(ossee, — 2xo, Ho, + x? by Hb )dt 

= os [a — 28x + x?B] =a—0-6186 

Then, proceeding as for FE; we have 

—2x +x? =—-0-618 (1 +x?) 

1-618x? — 2x + 0-618 =0 

from which x = 0-618 

and W3 = 0-607 (b, + &,)— 0-376 (&, + &;) 

For the energy levels associated with orbitals of class B, we have 

FE, =a + 0-6186; Y. = 63 +x¢q4 where x = 0-618 

giving W2 = 0-607 (®, — &,) + 0-376 (6, — @3) 

and Bi, =a— 1-6186; v4 = 63 —xd4 where x = 1-618 

giving W4 = 0-376(®, — &,)— 0-607 (@, — 63) 

For planar cyclic conjugated systems, of which benzene is the best-known, 
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the procedure for determining the energies is slightly altered. The alteration 

involves omission of the second step; this is because the reducible representation 

formed by the p-orbitals of such systems contains every irreducible representa- 

tion of the rotation sub-group C, once. With the atoms labelled as: 

we now carry out the remainder of the procedure for benzene. 

1. The point group of benzene is De, and the p-orbitals are labelled ®, — ®. The 

required sub-group of Dey is Cg. Table 7.11 is the character table of the point 

group C,. 

Table 7.11. Character table of the point group C, 

jay (Osc, Cha Ci” Ct 

1 1 1 1 Ree PB Se SB ae 

1 oat 1 -1 
—e* Sal —e e* | (Rx Ry)) Gy)&z,¥2) 

—€ al —e* € 

—€ 1 —e* —e (x? —y?, xy) 

—e* 1 -€ —e* 

€ = exp (2ni/n) =cos2n/n + i sin2n/n 

e* is the complex conjugate of € = cos2n/n —i sin2n/n where n is the order of 

the rotation axis = 6 

2. Step 2 is omitted since we know that each irreducible representation occurs 

once, that is, we require one orbital of class A, one of class B, and one derived 

from each of the degenerate pairs of £, and E'. 

3. To construct the symmetry-adapted orbitals, we need to know what happens 

to each orbital under the symmetry operations of the group C¢. This information 

is usually presented as a so-called transformation table and is given here as Table 

F12. 

Table 7.12. Transformation table for the atomic p-orbitals of the carbon atoms in benzene 

I cd c C, C2 Cs 

1 Ds 3 4 5 6 

2 5 4 5 6 1 

3 4 5 6 1 2 

4 5 6 1 2 3 

5 6 1 2D 3 4 

6 if 2 3 4 5 
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Using equation 7.1, with ®, as the generating function @qin every case, we 

obtain the following un-normalised symmetry-adapted orbitals: 

$1 (A) = B, +O, + O3 + Oy + Os + De 

,(B) = 8, —®, + &b; —b, + Os — De 

$3(E;)a = 2, + eb, —e*b, — B, —e@, + e* He 

o4(E,)b = @, + e*b, — eb; — By —e*, + ED, 

os(E,)a =, —e*h, — eb; + O, — e*b, — eB, 

b6(E,)b =P, — eb, —e*b, + O, — eb; — e* De 

The orbitals $3, ¢4, 5, ¢6 cannot be conveniently used in the calculation of the 

energy levels because of the complex terms which they contain. However, since 

63,4 and $s, ¢ each constitute a degenerate pair, any linear combination leads 

to the same energy. The complex terms can be removed if we form four new 

symmetry-adapted orbitals as follows: 

, , ] li , 

b3 =93 + o4 ba SPs — $4) 

fi , 1 , v 

bs =o5 + be 6 == (os — b6) 

Since e= cos 2+ isin, e* = cos 2" — i sin 

we have 

ete*=2 cos 28=] 
6 

e—e* = 2isin =i, UE 

INS $3 =2, +b, — 6, — 26, —O, + Oe 

$4 =V/3(b2 + &3 —B; — B,) 

Qs =29; —®, — 3 + 20, =D —@D, 

Pe =/3(®, — 3 + Os — Be) 

On normalising the six orbitals are now 

1 
P1(A) =e +P, +, +, + bs + Pe) 

oe 
$2(B) Sees —@, + db, —O, + db; — B,) 

1 
$3 (E) i +, =A — 28, —®, +D,) 
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$a(E,) =3(®2 +; —B; — B,) 

] 
s (E>) ee —@, — 63 +20, —; — Be) 

$6(E,) =2(®, —B; + &; — Be) 

We have now broken the energy-level problem down into four smaller problems; 

there is one orbital of each of the classes A and B, giving linear equations for the 

corresponding energy levels, and two of classes F; and EF’, giving quadratic, 

equations for the corresponding energy levels. 

The energy £4) associated with the A orbital is given by 

E(A) =[o Ho, dT 

ey 
V6 Ve 

= (60+ 126) =a + 28 

[les +, +O, +, +O; + Oe |H[D, +B, + hz + Oy + Os + &, | dr 

Similarly 

£@) ae Hop aT 

= 7% Jello —-®, +B —D, +; — ©, | I[®, —®, + ®, — Py + ®, — @,|dr 

1 = <[6a — 128] = 0-26 

The symmetry-adapted orbitals of classes A and B must be the true molecular 

orbitals, since the secular equations are simply 

[H,, —-E4] =0, [M4o2—-Fp] =0 respectively 

For the orbitals of Class E, , which are a degenerate pair, we have 

E\e,) [0s Ho3drT =| Ho,dt 

1 

| es30e0ar = 75 «7 (2% +p — D3 — 2b, — bs +H] 

H [2P, + @, — ®, —2®, -@®, + DB, |dr 

= 5 [120 + 128] =a +8 

The reader may verify that f¢4Hqdr = 4(4a + 48) = a + B also. 

Further, we may calculate the value of the off-diagonal element H34 = f¢34(¢4dr = 

ml eh 1 po, + Dy —B; — 2b, — &; + Oe] H[H, +b; — Bs — Be Jr 
V12 
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and we may conveniently tabulate the products as shown: 

$3 29, ®, —, 28,4 —®; D 

Pa 
®, | 28 a B 0 0) 0 
®, | 0 B a 2p 0 0 

—, | 0 0 0 28 a -B 
=e |-26 0 0 (hake =a 

’ 

From the previous table we see that the value of Hz, is zero. This means 
that the two symmetry-adapted orbitals ¢3, ¢4 of class E, are also true mole- 

cular orbitals W3, Y4. Finally, for the energies of the EF, orbitals we have 

Ee, aa [9 Ibs at =|. Hobe dt 

Taking [6 Ho,d7T this time, we have 

Eve.) =% X ft, — 3, +; —B.] H[G, — 3 + OB; — Be | dr 

= 4 [40-48] =a-B 
The reader may verify, firstly, that | 6; H¢,d7 = 5 (120 — 128)=a— 8 also, and 

secondly that Ho6dr = 0, showing that the symmetry-adapted orbitals $5, ¢ 

are the true orbitals W5, Wg. 
It is perhaps of interest to determine the irreducible representations of the full 

point group, Dey, to which these orbitals belong. While it is possible to do this 
simply by constructing the character of the reducible representation of the 
p-orbitals for the full point group, and breaking this down into its component 
irreducible representations, it is not necessary to do this. First of all we know that 
all the orbitals must be antisymmetric with respect to the operation 0}, since 
this reverses the signs of the lobes above and below the molecular plane. Thus the 
irreducible representation to which each orbital belongs must be one in which the 
character of oy is negative. For the £ orbitals, this immediately shows that the F, 
orbitals belong to Ey and the £, to £,,. Also the A orbital must be either A, , 
or Az, and the B orbital either By, or By¢. We can make this distinction by 
considering the behaviour of the orbitals under reflection in one of the vertical 
planes which pass through the opposite atoms. Consider the reflection in the 
plane passing through atoms 1 and 4. This will interchange atoms 2 and 6, 3 and 
5. Since the p-orbital itself is symmetric to such a reflection, we need to consider 
only the signs of the coefficients in the orbital. Interchange of ©, with ®, and 
3 with Bs leaves g, unaltered; its character to o, is therefore +1 and it therefore 
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$2 (B2,) er F2=a-2B 

$5 $; (Eau) ——_  —§- ——— Es5-Ee=a-B 

bs $4(E ig) ————_ E3*Eqgzat+B 

P, (Aa) ——— E\=at+28 

Figure 7.11 Energy levels in benzene. 

belongs to the irreducible representation A4,,. In 2, also, these interchanges 
leave the orbital unaltered, showing that ¢, belongs to Bz g. Figure 7.11 shows 

the energies and symmetries of the molecular orbitals of benzene. 

Conservation of Orbital Symmetry in Chemical Reaction 

Up to now we have been considering descriptions of orbitals in terms of 

symmetry which enable us to explain the structures and physical properties of 

molecules. It is, however, possible to make use of symmetry arguments to 

explain and predict the course of certain chemical reactions. The Woodward- 

Hoffman approach shows how the need for conservation of orbital symmetry 

between reactants and products in processes such as cyclo-addition and electro- 

cyclic reactions can be used to formulate acceptable hypotheses concerning the 

nature of the reaction paths involved. Let us illustrate this approach with respect 

to the following four reactions: 

(a) The ring opening reaction of cyclobutene 

iol = 

(b) The electrocyclic reaction of hexa-1,3,5-triene 

> 

(c) The cyclo-addition of cisoid-buta-1,3,-diene to ethylene 

artic 
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(d) The cyclo-addition of two ethylene molecules to give cyclobutane 

|. Breil caer 

We can consider the approach as involving four stages: 

1. Determination of the symmetry of the molecular orbitals of the reactants 

likely to be involved in the reaction with respect to the symmetry elements 

present in the molecules. We do not have to consider the symmetry of the 

orbitals with respect to all of the elements present, but only with respect to 

those which bisect the bonds being broken in a cyclo-reversic~ ~~ formed during 

a cyclo-addition. 

2. Determination of the symmetry of the relevant molecular orbitals of the 
products, i.e. these orbitals which arise as a result of the reaction. The symmetry 

considerations are the same as those of the previous stage. 

3. Construction of a Correlation Diagram for the molecular orbitals of the 

reactants and products. 

4, Determination from the correlation diagram whether there is orbital conserva- 

tion in the ground states or the excited states of the reactants or products. From 

this information we can predict acceptable reaction paths. 
In the reaction (a) the reactant is cyclobutene. In order to form cisoid-buta-1 ,3- 

diene from this we must break one 7 and one o bond and form two new 7 bonds. 

The orbitals involved in the bond breaking and formation are shown in Figure 7.12 

which also shows the order of energy levels for the possible combinations of these 

orbitals. In the ground states of the molecules the electronic configurations would 

be those indicated. Figure 7.13 shows the symmetry elements of the reactant and 

product molecules with respect to which the orbital symmetry is to be considered, 
i.e. the elements (Cj, 0,) which bisect the bonds being broken in this cyclo- 

reversion. Table 7.13 shows the symmetry of the orbitals of the reactant and 

product with respect to C, and oy. 

° 

Table 7.13. Symmetry of cyclobutene and buta-1,3-diene orbitals with respect to C, and o, 

cyclobutene cisoid-buta-1,3-diene 
C, Oy C, Oy 

Ga A A 4 S A 
are S A 3 A S 
T A S d, S A 
o S S On A S 

S = molecular orbital symmetric with respect to the symmetry element 
A = molecular orbital antisymmetric with respect to the symmetry element. 
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o* 
P, 

it 

| 
\/ 

* T > 2 

te N 
T , 

MM ely 
y (-) I! ?, 

Figure 7.12 Orbitals involved in the reaction cyclobutene + cisoid-buta-1,3-diene and 

the energy level diagrams for the molecular orbitals in the isolated molecules 

Co A 
4 \2v 

Figure 7.13 The C, and o, symmetry elements which bisect the bond broken in the 

cycloreversion reaction cyclobutene = cisoid-buta-1,3-diene 

This information enables us to construct the correlation diagrams of Figure 

7.14. A correlation diagram is constructed by first listing the relevant molecular 

orbitals of the reactants and products, taking into account the approximate 

energies of the various orbitals, and then joining reactant and product levels 

which have the same symmetry. The approximate energies of the levels of 

product and reactant cannot be obtained from symmetry considerations but 

must be estimated by other means (e.g. Hiickel and related calculations). We 

can see from Table 7.13 that we cannot, if orbital symmetry is to be conserved 
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construct a correlation diagram to represent the cyclo-reversion of cyclobutene 

via a transition state which preserves both of the symmetry elements C, and o,. 

We cannot construct such a diagram because we do not have product orbitals with 

SS and AA symmetry with respect to the elements to match those of the reactant. 

That these observations must be correct can be seen from Figure 7.15 which 

shows how the o-bond in cyclobutene can be broken. To break this bond and put 

orbitals in the correct positions for bond formation in cisoid-buta-1,3,-diene 
they must be rotated out of the plane of the cyclobutene ring containing the 

bond in one of the ways shown. The conrotatory mode preserves the C, axis 

through the cyclobutene bond being broken while the disrotatory mode retains 

the mirror plane (see Figure 7.15). In the conrotatory mode electrons from the 

C2 => 
f oa CO Disrotetory 

preserving oy, 

_-Conrotatory 
ae 

preserving Cp 

Figure 7.15 Conrotatory and disrotatory modes of bond breaking in cyclobutene 

ground state in cyclobutene would form the ground state electrons in cisoid- 

buta-1,3-diene and such a reaction can result from a thermal process. For a 

reaction path to involve the disrotatory mode, however, there must be some 

population of the A(7*) level of the reactant in order to obtain the ground state 

configuration of the product. Such a reaction can only occur with the excited 

state of cyclobutene and thus results from a photochemical process. 

In the reaction (b) the reactant is hexa-1,3,5-triene and the product cyclo- 

hexa-1,3-diene. In this ring closure reaction, we must consider the symmetries of 

the molecular orbitals in Figure 7.16 with respect to the symmetry elements 

(C2 and o,) which bisect the bond being formed in cyclohexa-1,3-diene. Again 

we cannot construct a correlation diagram to represent a transition state in 

which both C, and oy are preserved. We can, however, construct the correlation 

diagrams of Figure 7.17 in which (a) C is preserved (conrotatory) and 

(b) oy is preserved (disrotatory ). In this reaction the mode which involves elec- 

trons in ground state orbitals of the reactants is the disrotatory mode which must 

therefore represent the thermal process, The conrotatory mode requires the 
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Symmetry 
% ae with respect to 

Symmetry C2 Fy 
a # with respect to ae ea 

Co Ty 

+ - Gegd iS ack = 

3F ot ty 

= = + = 7m? S A 

+ + Ps A Ss 

* 

+ = 4 SA 
— — 

+ — 

ee aie Ss A 

+ ae als $3 A S 

+ = =r + 

+ = ae pL Ns 

a t 

a + tl Cn SaaS 

ae - al ?, A s =D 

Only the sign of the upper lobe of each 
m- bond forming orbital is shown 

Figure 7.16 Orbitals involved in the reaction hexa-1,3,5-triene + cyclohexa-1,3-diene, 

showing their occupation in the isolated molecules and their symmetry 
with respect to the elements C, and o, bisecting the bond to be formed 

population of the antibonding orbital (¢4) and must represent the photochemical 
process. 

We may observe that in reaction (a) the thermal reaction involves the con- 

rotatory mode while in reaction (b) it involves the disrotatory mode. The obvious 
difference in the two reactions lies in the number of electrons involved in the 

process, 4 electrons in (a), 6 in (b). The Woodward-Hoffman approach shows how 
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the number of electrons involved in a reaction determines the rotary modes of the 

thermal and photochemical processes. The correlation diagrams for the conrota- 

tory mode are always of the same type in that they involve crossing over in 

pairs starting from the lowest level. This is illustrated in Figure 7.18 a which 

is a generalised diagram showing crossing over of the type 1>2, 2-1, 374, 43, 

etc, Likewise the diagrams for the:disrotatory mode are alike in that the first 

crossover is always 1>1 and then they involve crossing over in pairs starting 

from the second level. This is illustrated in Figure 7.18(b) which is a generalised 

diagram showing crossing over of the type 1>1, 2>3, 3>2, 45, 5-4, etc. We 

can see how the number of electrons involved in the reaction determines the 

rotatory sense of the thermal and photochemical reactions by considering a few 

examples. 
If two electrons are involved in the reaction, only the levels 1 and 2 of the 

generalised diagrams of Figure 7.18 need be considered. Level 1 would then be 

bonding and level 2, antibonding. For disrotation the transfer of electrons 

between reactant and product orbitals would be 1+1, only ground state orbitals 

would be involved and the process would be thermal. For conrotation the trans- 

fer of electrons to the product ground state would proceed via level 2 of the 

reactant (i.e. an excited state of the reactant) and the process would be photo- 

chemical. If four electrons are involved in the reaction, levels 1, 2, 3 and 4 of 

Figure 7.18 are required. Levels 1 and 2 would be bonding and levels 3 and 4 

antibonding. Reaction (a) described earlier is an example of a process involving 

four electrons and we have seen that in this case the thermal reaction is con- 

rotatory and the photochemical reaction disrotatory. If six electrons are involved 

in the reaction, levels 1 to 6 are required, 1 to 3 being bonding and 4 to 6 being 

antibonding. Reaction (b) described earlier is an example of a process involving 

six electrons and we have seen that in this case the thermal reaction is disrotatory 

and the photochemical reaction conrotatory. Figure 7.18 can be used to work 

out the rotatory sense of the thermal and photochemical processes for reactions 

involving any even number of electrons and the result can be expressed in the 

following generalisation. If there are 2n electrons involved where n is odd the 

thermal process is disrotatory and the photochemical process conrotatory but if 

2n electrons are involved where n is even the converse is true. 
In reaction (c) we have two reactants, cisoid-buta-1,3-diene and ethylene, 

involved in a cyclo-addition to give cyclohexene. In cases like this we must 

consider the ways in which the bond orbitals can orientate themselves in the 

reactant molecules in order to permit interactions. Figure 7.19 shows the ways 

in which the outermost orbitals forming the 7-bonds can orientate themselves 

to enable a reaction with similar orbitals on ethylene to take place. The two 

possible modes of orientation of orbitals on a single reactant are suprafacial 

(Figure 7.19 a) and antarafacial (Figure 7.19 b). The suprafacial mode clearly 
preserves a mirror plane while the antarafacial mode preserves a C, axis. If we 

consider two reactants there are four possible combinations of suprafacial (s) and 
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Z V/ cy 

m 

eo 
= ha 

Oo 

/_\ fs 
a Vy 

(a)  suprafacial (b) antarafacial 

Figure 7.19 Suprafacial and antarafacial orientation of orbitals on cisoid-buta-1,3-diene 

antarafacial (a) orientations viz. ss, as, sa and aa. If the two reactions happen to 
be identical (e.g. ethylene and ethylene) then we cannot distinguish sa and as. 

For reaction (c) we can construct the correlation diagrams (Figure 7.20) for the 

cases where a mirror plane and a C, axis are conserved throughout the reaction, 

i.e. for the ss and aa cases. These correlation diagrarns have the molecular orbitals 

for both reactants on the left and those for the product on the right. In reactions 

involving more than one reactant the correlation diagram has to be constructed 

with respect to a symmetry element linking all of the reactants and the product. 

In the reaction between cisoid-buta-1 ,3-diene and ethylene we can see that the 

Aog+-+- S ot 
3 ee 55a 

+-+- Ag, S$, 

2 
7. ES 5 +-Ar Anr*+- S1* Sat 
2 
+--+5 S $s Ad, 

+S Ag S$, 

2 5 tim Sm ++ At At 
5° 
2 

++++5S Bat td age 3%, 
| ae. ++++ oo ees 

ss aa oj 

Figure 7.20 Correlation diagrams for the reaction cisoid-buta-1,3-diene + ethylene 
= cyclohexene 
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correlation diagrams for the ss and aa cases are similar, in that bonding levels of 

the reactants correspond to the bonding levels of the product. There is no corre- 

lation which crosses the bonding-antibonding energy barrier (see Figure 7.20). 

Since the reactant orbitals required are ground state orbitals the reaction is 

symmetry allowed in the ground state. If an electron were to be promoted to the 

first excited state the reaction would become symmetry forbidden because of the 

absence of a bonding-antibonding crossover. 

In reaction (d) we have two reactants, both of which are ethylene molecules, 

involved in a cyclo-addition to give cyclobutane. Again we can construct the 

correlation diagrams for the ss and aa cases. These diagrams, which are shown in 

Figure 7.21, differ from those of Figure 7.20 in that there is a crossover between 

reactant antibonding levels and product bonding levels. This means that, if the 

reactant electrons remain in their ground state orbitals, reaction cannot occur 

and thus the reaction is symmetry forbidden in the ground state. The reaction is, 

however, symmetry allowed in the excited state and will proceed if a reactant 

electron is promoted to an antibonding molecular orbital. 

So far we have only considered reactions involving the most obvious approach 

of two reactants. This has allowed us to construct correlation diagrams for the 

aa and ss cases. For some reactions it is possible to construct correlation diagrams 

for sa and as modes of interaction provided we can work out a suitable geometry 

of approach. For example this can be done for the ethylene + ethylene reaction 

provided the two molecules approach orthogonally (Figure 7.22). There is, how- 

ever, no suitable mode of approach which would enable us to construct meaningful 

correlation diagrams for the sa and as modes in the ethylene-cisoid-buta-1 ,3-diene 

reaction. 

Figure 7.22 Orthogonal approach of two ethylene molecules permitting an as mode of 
reaction 
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The Woodward-Hoffman approach again shows how the numbers of electrons 

involved in a reaction can be used to determine whether a cycloaddition process 

is symmetry allowed in the ground state or the excited state. Processes involving 

ss or aa modes are symmetry allowed in the ground state if they involve a total 

of 2n electrons when n is odd and symmetry allowed in the excited state if they 

involve a total of 2” electrons when n is even. 

PROBLEMS 

1. Show by considering the effect of the operation of the symmetry elements of 

the appropriate point group that 

(a) py has symmetry B, in C, (character table page 154) 
(b) d,2 has symmetry A, in C3, (character table page 154) 

(c) dy2_y2has symmetry Byg in Dap (character table page 168) 

(d) pz has symmetry A, in D3 (character table page 221) 

(e) dy has symmetry B in C4) (character table page 222) 

(f) feyz has symmetry Az, in Op (character table page 155) 

The f, yz orbital has the following shape 

2. By reference to the appropriate character tables (see appendix II) explain the 

likely splittings of p- and d-orbitals in electrostatic fields of symmetry 

(a)Dan (b)Daq (c)Ds (d)D3n (€)Doqg (f)Cs (g) Coy 

3. Work out the total character of the o bond orbitals in the following molecules 

and list the atomic orbitals of the central atom which would contribute to the 

hybrid. 

(a) SFe with O, symmetry. 

(b) XeF, with Day symmetry. 

4. The seven f orbitals are fr yz, fx(y? — 27)» fy? ~ x2) Sa(x? ~y?),fx3 Fy 

and f,3 . If the following functions transform in O, symmetry xyz, as A 2y; 
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Co y o), Tiu, {x(y? = 7? YZ? Pay oe" =" yt, Tu 3 how would the 

f orbitals be split in an octahedral field? 

5. Show that the energy levels of the allyl system are a +26, a, a -V28 and 

obtain the true molecular orbitals. 

6. Find the energy-levels and true molecular orbitals for cyclopropene assuming 

(i) an equilateral triangular shape and (ii) an isosceles triangular shape for the 

molecule. ‘ 

7. Verify, by determining the character of the reducible representation formed 

by the p-orbitals forming the conjugated system in benzene, that, under the full 

point group symmetry (D¢7,) the orbitals are Ap, + Bog tEig tEoy. 



Appendix I Answers to 
Problems 

Chapter 1 

1. (a) rectangular (b) diamond shaped 

2a) 2) (ii) (4 3 6) 
(iii) (2 1 1) (iv) (4 2 1) 

3. The diagram should be similar to that of Figure 1.6. The (3 2 2) plane can be 

illustrated by drawing the triangle formed by joining points which are 4a along x, 

1 along y and $c along z. The (3 2 2) plane is similarly illustrated by joining 

the points which are 4a along x, 4b along y and 4c along z. 

ASC) 141), (1 Peete: 

Chapter 2 

1. The lines joining the centres of opposite faces are 4-fold and 2-fold axes. Lines 

coincident with the square diagonals are 2-fold axes. 

2. (a) The molecular plane is a oy. - 

(b) The molecular plane and the plane perpendicular to it, bisecting the HOH 

angle are both oy. 

(c) The molecular plane is a oy, and the three planes perpendicular to it, each 

containing an N—O bond, are 30y. 

(d) The moleoular plane is a oy; there are four o perpendicular to it. Two of 

these bisect an FXeF angle and are designated og; the other two each contain 

two Xe-F bonds and are oy. 

(e) Any plane containing the carbon and two of the chlorine atoms is a og. 

There are six of these. 

(f) There are three o, containing the sulphur and four fluorine atoms, and 

six 0g which each bisect a pair of vertically opposite FSF angles. 
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3. (a) The internuclear axis isa C.. 
(b) The internuclear axis is a C.. and any line through the carbon atom, 

perpendicular to this axis, is a C,. There is an infinite number of C, axes. 

(c) The line bisecting the 0So angle isa C). 

(d) Each line bisecting a ccc angle is a C,. There are 5 of these. The line 

through the centre of the anion perpendicular to the plane in which it lies is 

aC;s. 

(e) Cy axes Jie in the CL-Pt—Cl directions and also in the direction of the lines 

bisecting CIPtCl angles. The line through the Pt atom perpendicular to the 

plane in which the anion lies isa C, andaC). 

(f) The C—C direction is a threefold axis. There are three C, axes whose 

directions are shown in Figure 3.15. 

4. (a) (b) (c) (d) () ©). 

D(A) 

if C, Crs Oy 

iE it C, Op On 

G C if one ony 
oy | ov Oy I Cc; 
oy Oy Oy C3 di 

0, is the molecular plane 

(b) 

1 = 
I Gh C, Cc; =C, Op Sp. Odi Cd. 

I I Cy Cy C, Cp, Gp, Tdi da 

1 1 
Cc C, C, I CG Odi Sd2 Sp. Dy, 

3 
Cy Cy is C, Cy [d2 [1 Op, 9p. 

[1 | %, Fp. Gd Sp. I C, CE Cy 

Opy |) Spa Cau Cas Cn, CG; ie GC GS 

[di | [Cd Oy Sp2 Sd2 Cy Cy i C, 

Gass fae Sy. %1 Odi G Cy C, I 

With the labelling shown in the figure on page 27. 
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C,0) 

The axis perpendicular to the molecular plane is the z-axis and that through the 

two chlorine atoms is the y-axis. 

Chapter 3 

1. (a) The S¢ axis lies in the direction of the C—C bond. It is also a C3 axis. 

(b) The S, axis is perpendicular to the molecular plane and passes through 

the mid-point of the central C—C bond. 

(c) The S3 axis passes through the boron atom and is perpendicular to the 

molecular plane. It is also a C3 axis. 

(d) The lines joining opposite fluorine atoms are S4 axes; they are also Cy 

and C,. The lines joining the mid-points of the triangular faces of the SF. 

octahedron are S, axes and also C3 axes. 

Me 5 = Sis 10 es Ss 

3. (a) The equivalence of operations between Cs, and Ss is as follows: 

Si = Ch x op; S2= C2583 = C3 x on3S$ = C3; S3 = op; 

S6 =Cl;S2=C2 x on; S$ = C3382 = CE x op; 8'8 = 
So every operation of S; is equivalent to an operation or combination of 

operations of Csp. 

(b) The equivalence of operations between Cs; and Sjo. 

S1'o = C3 x1 Si =C3 

So =C5 Sip = C3 xi 

Syo =C3 xi Sto = CE 

Sio = C3 So =C3 xi 

Sy =i Sio = 

(c) The equivalence of operations between C2; and Cop. 

C2; consists of the rotation operations Ch, C3 and their products with 7, 

Cy» consists of the rotation operations Ci, CZ and their products with op 

Ch xi= Op =Cs xO, 

CZ xi=i=Ch xo 

(4) 8} = C3 x on; S3 = C383 = 383 x On = C3355 x OH = C3 x On; 

S3 x on =L. 
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4. There are two possibilities. For n odd, addition of no, planes to the Sy 
group gives the same set of operations as the addition of these planes to a Cyy, 

group since C,;, =S, when n is odd. The intersection of each oy with the oy 

of Crp gives aC axis; thus we have aC, axis with nC, axes perpendicular to 

it. Together with the planes of symmetry these elements make up a Dyp group. 

Thus, for example, 

S3y =D3p 

For n even, the elements of an S,y» group are one S,, one C(y/,) coincident with 

it, n/2C,, nog, and a centre of symmetry if n/2 is odd. This is the same set 

of elements as that which constitutes the point group Dj@/,)q. Thus, for even, 

Sny = Din/, a3 for example, Sey = D3 q.- 

5. Because one of its elements is an Sg axis. 

6. Deon: O; Dah: X; Die BYE Dyn: H, I; Crh: N,S,Z; Cry: A, B, Ee D K, i M, 

T,, U,V, WiC, & G, J. PLO. 

7. (a) Doon; (b) Cs; (c) Don; (d) Cs; (€) Cs; (f) Cry. 

8. Tetrahedron, Tg; trigonal biprism, D3; square-based pyramid, C4); trigonal 

prism, D3, ; octahedron, Oy; pentagonal-based pyramid, C;,; pentagonal 

biprism, Ds, ; hexagonal-based pyramid, Cg; cube, Oy ; hexagonal bipyramid, 

Deh . 

5 (a) Dons (b) Dans (Cc) Cay; (4) Ta; (©) Dans (f) Dans (8) Coy; (h) Op; 
1 Cry. 

10. Cy; Coy; Cap; Caps Coys Can; Coys Crp) Cops Coys Cy Cay Day esa 

11. (a) Coy (b) Cay; (c) Cs; (d) Czy; (€) Cry; (f) C3, for Y in an axial position, 
C; v for Y in an equatorial position; (g) C, for Y in an axial position or an equatorial 
position; (h) C4 ,; (i) C4y if Y is trans to the lone pair, C, if Y is cis to the lone pair. 

12. (a) Don; (b) Coy; (c) Cs; (d) Coy; (€) Dap if Ys are trans, Cy if they are 
cis; (f) Both Y axial, D3,; both Y equatorial, Cy; one Y axial and one equatorial, 
Cs; (g) Both Y axial, C,,; both Y equatorial, C, ,; one Y axial and one equatorial, 
C,; (h) Y trans to each other, Dan; cis, Czy; (i) Both Y cis to lone-pair, and to 
each other, C;, both Y cis to lone-pair and trans to each other, Czy, one Y cis and 
one Y trans to lone-pair, C,. 

ES: 

5A 
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14. These to be worked out as shown in Figure 3.35. 

@eie ~ a N N 

fi \ / \ /e x 
/ \ / x, We \ 

| e | \ 
tna to 0" a é / \ 

NS Ve 

(a) (b) (c) (c) 
horizontal vertical 

ee ee aca ae ae Te <a 

7 v ~ a N al oi 

/ e. /®@ Oo \ je \ a \ 

| e \ i; \ i ‘ if \ 

\ . pa 8 | ! 0 i° @ 
\ if \ rn ; . / 

\ \ O \ 
ere ss So ae vee aa / Si ay 

(d) (e) (f) (g) 

Chapter 4 

2. (a) Orthorhombic, primitive cell, axial glide planes (glides “/2) perpendicular 

to both a- and b-axes, c-axis is a 2-fold rotation axis. 

(b) Tetragonal, primitive cell, unique axis is a 4-fold rotation axis, axial glide 

planes (glides ©/2) perpendicular to the 100 and 110 directions. 

(c) Rhombohedral, primitive cell, unique axis is a 3-fold rotation axis. 

(d) Orthorhombic, face-centred cell centred on one face, the A-face, mirror 

plane normal to the a- axis, an axial glide plane (glide a/2) perpendicular to the 

b- axis, the c- axis is a 2-fold axis. 

(e) Cubic, face-centred cell, centred on all faces, the 100 directions are 4-fold 

axes, the 110 directions are 3-fold axes and the 111 directions 2-fold axes. 

(f) Monoclinic, primitive cell, the unique axis is a 2, screw axis with a mirror 

plane normal to it. 

(g) Hexagonal, primitive cell, the unique axis is a 63 screw axis, the other 

important directions in the cell (see page 93) are all 2-fold axes. 

(h) Tetragonal, body-centred cell, the unique axis is a 4, screw-axis, there 

are axial glide-planes (glide c/2) perpendicular to the a and b axes and diamond 

glide planes (Be at perpendicular to the square face diagonals. 

4 
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Tove ad pra aa 
pl pm pg 

p2 p4 

a ls ie an 
pmm 

5. (i) (a) x,0,z; ¥,0,Z; x,0,Z; X,0,z 

(b) x,y,0; X,9,0; X,y,0; x, 7,0 
(ii) (a) $,3,25 4,4,2 (b)5,¥,034,7,0 
(iii) 0,0,0. 

(witstae sass ae 
(v) 0,0,0; 4.3.4 
(vi) %,0;25%,0,2; 0x2 20,%,23 

(vii)0,0,z 

6. The symbols P2, 22 represent an orthorhombic space group and can be con- 

verted to P222, by simply changing the order of the axes froma, b, c to b, c, a. 

P312 and P321 represent rhombohedral space groups with 3-fold axes in the 

unique direction. They differ because P312 has 1-fold symmetry about the a and 
b axes and 2-fold symmetry about the axes normal to a, b and in the 0001 plane 

while P321 has 2-fold symmetry about the a-and b-axes and 1-fold symmetry 
along the other specified axes. 
7. (a), (b), (d). 
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Chapter 5 

1. The products which can be formed are: QT, RS, ST, TO, TR 

eno 5 3, 0 

Of) os RS = 15 0 

hey, 0 

ST=[1 4 2] ro =|"? oa 

IR=f21 7] 

2. Taking the 2-fold axis as the z-axis and the molecular plane as the (xy) plane, 

we have 

I C2 (z) O(x i 

Te ae 12 0 4 0 

The table of (GX) is as follows: 

From this table, ~! =/ 

Cris os C, 

si! = 53 
Sse 

Then the table of X¥—! GX is 

4. (a) P=24, +E + 2F, 
(b)T=24,12 +E 
(e) P=AqtAg4 2E 
(d)P =A, +B, +E 
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5. The group multiplication table for Cy is 

t 

Oy 

In I, we have oy x C, = 1 x-1 =—1 #0,’ (= 1); thus I, is not a true representa- 

tion of Cy. 
’ 

For ['y, multiplication of the matrices gives: 

The four asterisked product matrices do not satisfy the multiplication tabie. 

Note that the character of the representation formed by these matrices is 

I C, Oy Oy’ 

X=| 2 = ] a=) 

which reduces to "= $A, + $B;, again showing that it is not a true representation. 

Chapter 6 

1. Diffraction will be given for the plane with the given d-spacings at the 

following angles of 6, 8-88A at 5°, 4-444 at 10°, 3-194 at 14°, 2-34A at 17°, 
2-25A at 20°, 1-894 at 24°, 1-31A at 36°. 1-00A does not give a diffracted beam 
at any of the 6 values listed. 

2. dy, 001; d,, 101;d,, 101;a,, 100;d,, 201;42) 202. 
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3. (i) Mo, cubic a = 4-16; (ii) sucrose, monoclinic, 
a= 10-91, b =8-71, c = 7-76, B = 103°, (iii) SnS, orthorhombic, a = 3-99, 
b = 4.34, c = 11-17; (iv) Sm(OH)3, hexagonal, a = b = 6-32, c = 3-60, y = 60°, 
(v) urea, tetragonal, a = b = 5-64, c = 4-70, 

4. (i) Snl, — P, (ii) CaF, — F, (iii) PaPdg — P, (iv) a-Sn— F, (v) Y, 03 — 1. 

5. (a) 16 (b) 4 (c)4 (d)8 (e)4 (£)3 (2) 6 (h) 1. 

6. (a) Fdd2 (b) P2,/c (c)Pna2, (d) Pa3 (e) 141 /a. 

7. (i) Ni atoms must be at the centre of symmetry. 
(ii) A atoms must be on the 2-fold axes, e.g. at 0, 0, z and 3, $,zorat 0,4,z 

and 3, 0, z. 
(iii) The X atoms must lie on both mirror planes. The Y atoms must lie on 

one of the mirror planes. 
(iv) AB, with a cell content of 2 could not have space group Pna2,, because 

there are no 2-fold special positions in this symmetry to accommodate the 

two A atoms. 

8. The point group of each molecule is given and it is also stated whether or not 

the molecule has a permanent dipole. 

(a) Coy yes; (b) Cy, yes; (c) Don, no; (d) Coy, yes; (€) C2, yes; (f) Cc=Civ, yes 
(g) Cry, yes; (h) Czy, yes; (i) Cay, yes; (j) Cay, yes; (k) Con, no. 

9. (a) No. A and B both belong to C,, point groups, which are C3, and C2, 

respectively. 
(b) No. Cyclopropene and methylacetylene have point groups C2, and C3, 

respectively. 
(c) No. The configuration with the linear BOH systems has the point group 

D3y; the other configuration has the point group C3y. 
(d) No. The unoccupied axial and equatorial positions lead to the point groups 

C3y and C,y respectively. 

(e) Yes. The ethylenediamine ligand itself has C,, symmetry, giving the point 

groups D2 for the trans- and C, for the cis-isomers. 

(f) Yes. The square-based pyramid and trigonal bipyramid belong to the point 

groups C4, and D3, respectively. 

10. The point group of each molecule is given, and it is also stated whether or not 

the molecule or ion is expected to be optically active. 

(a) D2, yes; (b) Cs, no; (c) Cy, yes; (d) Daa, no; (€) Cay, no; (f) Coy, no; 

(g) Cp, yes; (h) Cs, no; (i) Cry, no; (j) C2, yes. 
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11. (a) Yes. The cis-form is optically active but the trans-form is not. 

(b) No. Both configurations have Sy axes; the planes of symmetry are 

equivalent to S,. In addition, the second configuration has an $3 axis 

passing through the axial CN groups and the central Ni atom (assuming the 

Ni — C=N system to be linear). 

12. Any complex Ptabcd where a, b, c, d are all different substituents may be 

used as long as the plane containing them is a plane of symmetry. In this case, 

the complex will have C, symmetry if the arrangement of the bonds is square- 

planar and C, if it is tetragonal-pyramidal. The second of these configurations 

should display optical activity. Pta, bc is also suitable provided that the two 

identical substituents occupy cis-positions. 

13. The calculation table and I, are given for each molecule or ion. 

(a) H, 0, Proper 
R I Cy h=2 

Np + 0 

Xp = 214 2008 3 al 

Xo ="RXR 12 0 

Xtrans — XR 3 st 

Xrot ~ +Xtrans 3 ia 
Xvib — 6 +2 

Xo — Xrot — Xtrans 

Tym =4A4 + 2B 

(b) COCI, Proper Improper 

Oy(yz) oy(xz) h=4 

Vv =3A, + By + 2B, 

If the (xz) plane is taken as the molecular plane, so that the values of np for 

o,(vz) and o,(xz) are reversed, ,;, becomes 3A, + 2B, + By. This ambiguity 
always occurs with molecules of C,, symmetry. 
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(c) BrO3 | Proper Improper 
30, h=6 

Vip 21347438 

Note that this is the first problem in which we have had to take gp into account 

in the first two problems, there was only one symmetry operation in each class. 

In this case we have 30,, so that 

ErXvb =! 2C3 30y 
6 0 6 

(d) p-dichlorobenzene 

Proper Improper hA=8 

R LT C,@) ©,0) Cox) i o(xy) a(xz)_— o(vz) 

Vvin = 6A yg + SBig + Bog a 3B3g a 2A, + 2bia + SB y te 3B 34) The same 

type of ambiguity arises as in problem (b). The answer given above is correct 

for the labelling of planes and axes given on page 199, 

» 
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Improper 

Xrot 

Xvib 12 4 2. 

SRrXvin | 12 8 4 

Dyin = 3A, + 2B, + Bs + 3E 

It is conventional to take the o, as the symmetry planes containing the Xe—F bonds 

and the og as the symmetry planes bisecting the FXeF angles. 

(f) Bo Cl, 

Proper Improper h=8 

R 20g 

np 6 Z 0 0 4 

XR 3 =} =} | 1 

Xo 18 0 0 0 4 

Xtrans 3 = =I =] 1 

Xrot 3 =f | 1 = 

Xvib i2 0 2 0 4 

ER Xvib re 0 4 0 8 

Typ = 3A, + By + 2B, +3E 

Note that although the two boron atoms lie on the S, axis, they are not invariant 

to the operation because they are exchanged by the reflection which follows the 

rotation through 90°. Also note that in addition to the C, which is equivalent to 

S4’, there are two other 2-fold axes labelled 2C,. They are distinguished from C, 

because they do not leave the same atoms invariant. 
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Improper , h=48 

Pvp =Aig + Eg +T 22 ts 2T ia + Toy 

In this molecule, there are three 4-fold axes, which lie along the bonds directed 

towards atoms which are trans to each other. These axes generate 6C, and 3C, 

(= C3); they are also. S4 axes. Note that the same atoms are not invariant to C, 

and S,4 since, as in the previous example, the end atoms are interchanged by the 

reflection part of the S, operation. The 30, each contain four bonds directed 
to the corners of a plane square. The 3C,' are formed by the intersection of the 

6g With the op; the og contain two collinear bonds and bisect a pair of inter- 

bond angles. 

(h) AuCl, 

Proper Improper 16 

R C, 2C, ; Zo» si On 20, 

Nn OW 

| 

Nn SNe 

| 

DW Re KS We 

| 

Dyn =Aig+Bigt Bog tAru + Bou + 2Eu 

In this molecule there are three different types of Cy axis;C,=C%4, C,' formed 

by the intersection of 0, with the molecular plane oy and C, " formed by the 

intersection of og with o,. The o, contain bonds and the og bisect inter-bond 

angles. The C4 is also an S, and the Cy =§? is thus identical with the C,=C%. 
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Improper h=12 

G) CCl Proper Improper h=24 

R I 8C3 3C, 654 60g 

NR 3 2 1 1 8 

Xp 3 0 = =| 1 

Xo 15 0 ai | 3 

Mins 3 0 | =f 1 

Xeot 5 0 asi 1 =I 

Xvib 9 0 1 =} 3 

&R Xvib 9 0 3 —6 18 

Pvp =A, t+ +27, 

The 3C, are generated by the S4 (C,=S%). 

14. (a) Cay 

R i 2C3 30y h=6 

Xu =£1 + 2cosd| 3 

2cos0 

Xa =@2c0s0 Ny 

[i =A, +8, Fy = 2A; + 2 

Thus vibrations of classes A, and F are active in both the infra-red and Raman 

effect. 
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(c) D2 

h=4 

Py =B, + By + B3; I = 3A, +B, + By +B, 

(d) Deh 

PC Ca OC ache a Sg 8. 0j oO 7080p) Lh = 24 
Sees) 2-1-1, 3-2. 0) 1-1 

1-1 -2 =e 19o4 A> 0D 

2 10 2a 

Ty, =Aw + Biy; Vy = 2Aig t Eig +E rg. 

Xu 

15. Consider the transformations of a general point (x,y,z) under the symmetry 

operations of C, y 

1er02210 

(x.¥.Z) acEN (x,y,Z)3 transformation matrix one ° 

Cie ae 

cea 0 

(x,y,z) @2@), (x2) 0 -1 0 
0 1 

| 

oro or Oo - © oO ———— 

(x,y,z) 2202), (-x, y, Z) 

1 0 

(x,y,z) Ov&2), (x,y,z) : -] j 
0 0 
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Then we may list these transformations as follows: 

Cx(z) oy(vz) 9) (xz) 

Comparing these with the character table of Cy, we see that z has the same 

character as A,,x as B, and y as By 

The initial vibrational state is the totally symmetric A; state. 

The character of the direct product (¢;M¢r) has to be the character of the 

totally symmetric representation in order for the transition to occur. From 

the character table we have 

x(Ay 241) =X(A1);_ X(41xB1) = x(A1);- X(AwB2) = x(A1) 

For the Raman selection rules we need to form the characters of the direct products 

x, V)Z xy, xeand yz 

C,(z) oy(vz) Oy(xz) 

1 1 1 Ay 
-1 =] 1 B, 
-1 1 -] B, 
1 -1 =] A> 

Combinations whose character is the character of A, are therefore: 

oi o of 
At V2 nAg 
Ae Xz: B, 

A, yz B, 

A, xy A, confirming the selection rules given. 

16. bi(b2)Bi 

O95 )A1 ($6 )B2 

Component 

x(B,) A, B, 

y(B2) A, Ay 

z(A,) B, Ay 

Since the combinations (¢, x ¢s5 ) and (¢, y $6) have the character of A,, the 

transitions from @, to ¢s in the x-direction and from $, to ¢¢ in the y-direction 

are permitted. 
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1. Best to draw diagrams of the orbitals and operate the eo of the group 

on them. 

2. The p- and d-orbitals will be split into sets of symmetry: 

symmetry 

of field Px BPEL YS Pz dz2 dy? ~y? dyy dyz dy 
— LO 

Dah 

Dad 

Ds 
D3h 

Dod 

Cay 
Cory mmoan oe B® 

3. (a) Vsp, 

Ey Ary Aig Big au . Eg : 
Ey B, Ay E3 

—E— Ar Ay Swe —f 

E Aye Ay E aE 

ian er, Ad B, By ees 
E Az Ay By B, E 

B, B, Ay At A, Ag B, B, 

=AigtTiy + Ey 

i.e. S, Px, Dy, Dz, Ax? — y? and dz? orbitals 

(b) Vxer, =Aig + Ey +Big 

i.e. S, Px, Py and dy2 — y? orbitals 

4. The orbitals would be split into 3 sets 

(i) feyz with symmetry A>, 

(ii) The triply degenerate set f,3, fy3, f;3 with symmetry 71, 

(iii) The triply degenerate set f(y? —27), fy? — x?) Sz(x? —y?) with 

symmetry Ty 

5. Labelling the carbon atoms ee eS we proceed as follows: 

Step 1 

Step 2 

Number of 

The allyl system has the point group C2, and its rotation sub- 

group is C, 

The transformation table for the orbitals under the operations of 

the point group C} is 

unshifted orbitals 

Using Table 7.10 we have a4) =4[ 
4@) =4[1. 
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Thus we need two symmetry-adapted orbitals of class A and one of class B. 

Step 3 Using ®, as a generating function we have 

$,(A) = [@,.1+C,®,.1 

= ®, + ®, 

= ph + 3) on normalisation 

The same symmetry-adapted orbital would be obtained using 3 as the generating 

function. 

Using ®, as a generating function we have 

$7 (A) = IB,.1+C, 2.1 

= 6, + db, 
= ®, on normalisation 

Using ®, as a generating function for an orbital of class B we have 

3 (B) = I®, oll at C2 ®, (-1) 

= ®, ae ®, 

= vale — ®, | on normalisation. 

If @3 is used instead of ®,, the signs of the coefficients will be reversed. It is not 

possible to generate an orbital of class B from ®. 

Now Ay, = {o,Ho,dr 

bp aad 
ae ao [b, + 3] H[, + b3] dr 

1 
=5 [e300 ats €,HD, + 2®, HDs |dr 

=5[a+a+0] 

= Oe 

Hy. = fb2.H bdr 

= f®,H®, dr 

=O. 

Ay, = J. Hedadr = | [, +5] 30D, ar 

= jxl26] = v2 
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Thus the secular determinant for the energy levels corresponding to the orbitals 

of class A is 

a-E J/28 

=0 whose solutions are F =a +./26 

V2B  a-E 

For the orbital of class B, 

1 1 
H33 =fo3H 3dr = a Valle: — ®3 )H(®, — &3) |dr 

as = 5 [2a] 

=a 

Thus for the orbital of class B the determinant is simply 

la—E|=0 sok =a. 

Since H33 is the only term, the symmetry-adapted orbital is the true molecular 

orbital. 

For the orbitals of class. A, consider the possibility 

Wi = 1[O, + x2], with E = a ++/28 
ae (1 +x”)? 

Then at V268 =SikYidr 

Te \@ +x )H(p, +xb2 dt 

{[o.3¢6, + 2xo, Ho +x > Ho, Jr 
ara 1+x? 

“st [a + 2/2x8 + x? a] 

V2(1 +x?) = 2/2x 

Lath 

wel lg [ges +0) +4 

i pes +83) +4 

@, +\/2 &, + 3] 
NOY 
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For the other orbital of class A, with E =a — 4/28 we have 

i Ml 
V2 = ki ea) Ws — xz] 

a-V78 = | WaHWaar 

te fae 1) fles3e0s - 2xb1 Ho. + x72 Hb, lar 

“(Go ) [a — 2\/2Bx + x? a] 

- Ji +22) = 2 
x = 1 as before, giving 

V3 “5 | als +$3)~ 

= 5 [0 -V282 + 3] 

and 

6. Cyclopropene with the equilateral triangular shape has the point group D3, 

and we can thus classify the orbitals according to the irreducible representation 

of the point group C3. The transformation table for the orbitals is 

As with benzene we need to construct one orbital of each irreducible representa- 

tion of the C,, point group. Using ®, as the generating function, we have the 
un-normalised orbitals 

$1 (A) = (®; + 2 + 3) 

$2 (E) = ®, +eb, + e*b, 

$3(E) =, + e*b, + ed, 

In this case € = oe isin 
3 

Ws een 3 3 
dn _ 1 an _v3 

(083 yp eas 



APPENDIX I 217 

Thus € + e* =—-1, € — e* =i /3 

Forming ¢ = , +3 we obtain 

b2 = 20, —&, — 83 

and from i¢3 =, — 3 we have 

$3 =V3(®, — ®3) 

Normalising these orbitals we have 

py = Aer +6, +9;) 

by = e021 =) 6.) 

b3= (br ~ 4s) 

Ey = So,Hbydr = 5 [le +b, + b3]H[b, +b + 5 |dr 

= 5 [30 + 66] 

=a +28 
1 

E, = [o,Ho2dT = (2, -—®, =; ®,]H (29, =e ®, ar ®, |dr 

= £[60- 66] = a-B 

E3 = [b,Hsdt =5\[2 ~ &5]H [2 ~ 3 lar 
= 5 [20-28] = 0-6. 

The true molecular orbital y, is equal to ¢, since it is the only orbital of class A. 

Also, Hy3 = H3, = S¢2Hb3dT 

1 
EastD fre, aaa ®, aa ©, |H[®, = ®, jdt 

=0 

and since H 3 = H32 = 0, ¢ and ¢; are the true molecular orbitals y. and W3. 

Cyclopropene with the isosceles triangular shape is the same, from the symmetry 

aspect, as the allyl system. The calculation is exactly similar to that for allyl 

except that, as atoms | and 3 are now adjacent atoms of the cyclic system, 

H,3 =H3, =8. 
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Thusfor = pls + Pa) Ay, =atB 

b2 = ®, Hy. =a 

at+B-E 26 

FA; = [61 Hb.d7 =\/28 . =0 

V26 a-E 

E=a+ 26 ora. 
1 ’ 

$3 = Jr —3), H33=a—B 

Since H,, is not zero, ¢, and @, are not true molecular orbitals 

i \3 
Wi= Tee [1 + xo | 

Ey =a+ 26 =f, Hy, dr 

: (a)[lt6. +xb_]H[b1 +62 Jar 
REY 

| torsee, + 2xo, Ho, + x7 b.Ho,|dr "1 +x2 

= ha Mle + 8) + VB + x70] 
(w+ 26)(1 + x?) =a(1 + x?) + B(1 + 2/2x) from which x =F 

1 
Thus Wi oy 52 5 +O3)+ 562] 

1 
a +, + B3] 

aL 

W2= (22) [$1 — xo] 

E,=a-B =fW,HVrdr 
E zi [61 — x2] H[d1 — x0 |r 

1 

~T+x2 | ($1461 — 2xd, Hb. + x" b.Hb)dr 
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1 

= Ty ge let B— 2/ 28x + x? a] 

— BC +x?) =B—2%/2Bx 

x? —2\/2x +2=0 

xaV/2 

1 
V2 = jfeies — 28, + B3] 

Va =¢s = bs ,) 

So the change in shape of the cyclopropene molecule does not affect either the 
energy levels or the molecular orbital coefficients at this level of approximation. 

7. The character x(R) of the p-orbitals under the symmetry operations of the 

full point group of benzene is: 

PC eel pC rm) 0G, 5 2552S) Of 30,7 30) 

MajnourOset 0) 90 —22 0 05 0° 70° 6-0-2 
eee. 02 F006 050 0° 05 650 -% 

(Remember that the operations C’, and oy, turn the orbital upside down, so that 

it makes a negative contribution to the character.) 

The order h of the Dez, point group is 24, and from the relevant character 

table we have 

X(R) = x(42u) + X(Brg) + xX(Eirg) + XEru) 
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(a) POINT GROUPS WITH NO PRINCIPAL AXIS 

G I Ce IT on 

A 1 A Pe LoS Xy Vy B22 My 
A” 1 = 

RyRy Zee PZee se 

Ny, 2, RV, Me Ve 
XV. 2 

(b)C, POINT GROUPS 

C, See Table 7.10 p. 173 

e€ = exp (27/3) 

C, See Table 7.11 p. 179 

(c) D, POINT GROUPS 

D, | 1 C, (z) ONG) — LENG?) 

ASTI 1 1 1 x7 Do, oe 
Bs 1 1 = = Rey, 
B, 1 ll 1 ll Ry | y, xz 
IBS 1 —1 =i 1 R x X, YZ 
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vn 

D; 
A, x? +y?, 2? 

A, Zz 
E (x, y)(x? —y?, xy)(xz, yz) 

D, 
A x? +y? z? 

a : 3 x2 —y? 
A y 

E 
xy 
(x, y)(xz, yZ) 

I 

1 epee 
1 =a 1 = z, x? —y?, xy 

4 ip 5 (xz, yz) (x, ¥) 

€= exp (2mi/3) 

ie Xo ch y2ez 

e* iy) 

ones Ray a, yz} 
fi <1 =1) =] Zz 

€ * —] Ee. -ex 

e* € —] —¢e*F —€ (x, y) 

oy pemd pees fee be et et ee | 
e = exp (27i/8) 

(x? —y?, xy) 

ee eee 

(ec) Gy POINT GROUPS 

C.,y: See Table 7.1 Pp. 154 

C,y : See Table 7.2 p. 154 

raaZ a 

x? —y? 

xy 
(x, y), (x2, yz) 
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Cey | I 2G, Ge Soy 

Ape el 1 1 1 a 

AGwA aL 1 1 —1 | Rz 

Ee 2; 2cos7 2” 2co0s144° 0 (Rx, Ry) (x, Y) (vz, xz) 

Eee? 2cos144° 2cos72° 0 (x? —y?, xy) 

2630 Cr Joes 

1 1 1 1 i Zz? 

pe por Hal Se ee 
—1 1 —l 1 —1 

eid. | sie met 
1 -1 -2 0 0 | (Re Ry) | &, y)@&z, yz) 

Ae) = 

vw 

~ 

tr tn 5 to bs | NNR eee] SS x -1 -l 2 0 0 (x? —y”, xy) 

ex To) Ce ec, 

A, == 1 1 Riv f gen Hye" 
A, == 1 1 eel. Rz 
£,=0 2 2cosb a 0 (Ry Ry) | (, y)(z, yz) 
E,=A 2  2cos2® 0 7 = yey) 
E,=2 2 2cos3® 0 

(f) Cp, POINT GROUPS (C,y see Chapter 6 page 144) 

ap, Ss S3 e = exp(27i/3) 

1 1 1 | R, are 
1 * 

ee: (x, y)(x? — y?, xy) 
al ==il al Z 
=i =é eee 
yas gee a4 RoR) ee 

C,(%) i olxy) ez) 

iL 1 1 1 Xa ay eee 

—l 1 1 eel xy 

—l 1 -1l 1 XZ 

1 1 =i =i yz 

ho ih —1 

| 1 Zz 

al 1 eat y 

it 1 1 x 

D,y See Table 7.4 Pp. 158 
D,p See Table 7.8 p. 168 



APPENDIX II 

S ee Ce SC go, OS, O88, 50, 
Betty 1 1 ait 1 1 
ANY 1 1 ai 4 1 1 =i 
E, 2 2cos72° 2cosl44° O22 200872 2c0sl442 0 
E, | 2 2cosl44° 2cos72° 0 2 2cosl44° 2cos72° 0 
aa 1 1 Sees es i =i 
AA fae at tT Vie aren =I 1 
Ey | 2 2cos72°  2cos144° 0 -2 —2cos72° -2cosl44° 0 
ee 2 2cosl44° 2cos72° 0 -—2 -2cosl44° —2cos72° 0 

CONC 80 8C" 7 98. 28. 6), Say 3cy | 

ee 1 i 1 1 ioe 1 1 1 1 Det Vapi 
A ia 1 1 =il ail el! 1 ia est arise 
eee hele 1 8G ey eet 
Byg| 1 -1 f  f£ +1 197 lei ere ty ihe a2 
Eig| 2 1 I 2 0 0 2501 aol ee 0 0 | (Rye Ry) | &z, yz) 
E,g| 2 —1 ek Z 0 0 2 = =lll 2; 0 0 5 yer ey) 
Yale dei I 1 1 1 iy Salk Si | I 

miveerte eet fer jy ar ay) ia 1s. z 
Bi heel V1 1 ol | =i ib al 1 
Bet ee i =i al Lo =ho A =i! 1 i sail 

Ev, }.2 1 -1 =2 0 0 -2 -1 1 IFO 0 (x, y) 
E.u Za aa 2 0 Q =—2. 1 Lo =e 0 0 

Dop See Table 7.6 p. 163 

(h) Dng POINT GROUPS 

Dia 

x? tayo. a 

x2 —y? 

Zz, xy 

Sen sc tC, 
1 1 1 
1 1 (ele 41 
1 -1 1 teat 
a 1 =I 1 
(=~ 82 0 0 

5) 0 2 0 0 
0 2 -2 0 0 

(i) CUBIC POINT GROUPS 

Tq See Table 7.5 p. 159 O; See Table aoe palo) 

(x, y)(xz, yz) 

x? +y?, 2? 

es 

(x, y) 
CP 2 XY) 
(xz, yz) 
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Antarafacial orientation of reactant 

orbitals, 190 

on cisoid-buta-1,3-diene, 192 

Arrays, plane and space, 9, 73 

Asymmetric carbon atom, 133 

Atomic orbitals, 
transformation properties of, 155 

Atropoisomerism, 135, 136 

Bragg’s Law, 122 

Calculation table 
for characters of dipole moment 

and polarisability, 144 

for determining the number and 

activity of molecular 

vibrations, 140 

Cell dimensions 

relation to volumes, table of, 130 

relations between real and reciprocal, 

124, 125 

Cells, 73 

body-centred (I), 76, 79, 127 

face-centred (A, B, C), 76, 79 

face-centred (F), 75, 79, 127 

multiple, 74 

primitive (P), 74, 75, 79, 127 

unit, 74, 76 

Cells (cont.) 
number of formula units (Z) per, 130 

Cells, plane 
hexagonal, 75 

oblique, 75 

rectangular, 75 

square, 75 

Cells, three-dimensional, 76 

cubic, 76, 78, 83 

hexagonal, 76, 78, 83 

monoclinic, 76, 83, 125 

orthorhombic, 76, 83 

rhombohedral, 76, 83 

tetragonal, 76, 78, 83 

triclinic, 76, 83 

volumes of, 130 

Centre of symmetry, 17, 25 

tests for absence of, 130 

Character (x), 109, 114 

of bonding orbitals, 157, 158 

functions, 159 

group orbitals, 164 

matrices, 105 

operations, 

identity, 139 

inversion, 139 

reflection, 139 

rotation, 138, 139 
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Character (x) (cont.) 

tables, 110, 154 

Character tables of point groups, 

Calis 

Cyn, 118, 144 

Coy, 111, 148, 154 

C3y, 113, 154 

Ce 172 

D3p, 141, 158 

Dah, 168 

DOs 

On, 155 

Tato? 

Remaining character tables as 

Appendix II, 220—3 

Coincidences, 145 

Conrotatory mode, 

corresponding to photochemical 

processes, 190 
corresponding to thermal processes, 

187, 190 

generalised correlation diagram for, 

190, 191 

of bond breaking in cyclobutene, 

187 

Correlation diagram, 184 

construction of, 185, 187 

for cisoid-buta-1,3-diene and 

ethylene=cyclohexene, 192 

for cyclobutene~cisoid-buta-1,3- 

diene, 186 

for ethylene + ethylene=cyclo- 

butane, 193 

for hexa-1,3,5-triene>cyclo- 

hexa-1,3-diene, 189 

generalised, 

for conrotatory modes, 190, 191 

for disrotatory modes, 190, 191 

Crystal classes, 76, 83 

determination of, by X-ray 

diffraction, 121, 125 

point groups compatible with, 83 

INDEX 

Crystal field theory, 155 

and symmetry, 156 

Crystals, 

external faces of, 1 

rectangular, 125 

Crystal structure, 

and space group information, 130 

Crystal systems, 

cubic, 92 

hexagonal, 125 

monoclinic, 84 

orthorhombic, 91, 125, 129 

rhombohedral, 92 
tetragonal, 84, 125 

triclinic, 84, 129 

Cyclo-addition reaction, 183 

of cisoid-buta-1,3-diene and 

ethylene to give cyclohexene, 

190 

of cisoid-buta-1,3-diene to 

ethylene, 183 

of ethylene + ethylene to give 

cyclobutane, 184 

whether symmetry allowed in 

ground or excited state, 195 

Cyclo-reversion reaction, 184 

of cyclobutene, 187 

Determinantal equation, 171 

for benzene, reduction of, 180 

for butadiene, in full, 174 

reduction of, 175 

solution of, for congugated systems, 

Diagram, 

equivalent positions, 62, 63, 94, 95, 

97 
point group, 62 

space group, 94, 96 

symbols for, 94 

Dipole moment, 121 

direction of, 132, 133 

electric, 132 



INDEX 

Dipole moment (cont.) 
magnetic, 132 

magnitude of, 132 
point groups compatible with, 121, 

132 
symmetry elements incompatible 

with existence of, 132 

Direct product, 143 

of irreducible representations 

of Czy, 147 
of Cay. 148 

Disrotatory mode, 

corresponding to photochemical 

processes, 187, 190 

corresponding to thermal processes, 

190 
generalised correlation diagram for, 

190,191 
of bond breaking in cyclobutene, 

187 
Distortion, 

pyramidal, 55 

rhombohedral, 51 

tetragonal, 50, 54 

Electrocyclic reaction, 183 

of hexa-1,3,5-triene, 183 

Glide planes, 82, 83 

axial, 82 
diagonal, 82 

diamond, 82 

symbols for, 82 

Group, 101 
orbitals, 163, 166 

character of, 164 

for square planar XY4, 167 

o for octahedral symmetry, 170 

170 

Group theory, 101 
associative law in, 101 

combinative law in, 101 

Zeal 

Hermann-Mauguin notation, description 

of, 34 

Hiickel methods, 171, 185 

assumptions used in, 175 

Hybridisation, see Orbital mixing 

Identity, 101, 111 

operation, character of, 139 

Inverse, 101, 111, 113 

Inversion symmetry, 9, 12 

in crystals, 15 

Irreducible representations, 109, 110, 

114 

labelling of (Mulliken system), 114 
of common point groups, 110 

orthogonality of, 115 

rotational modes of motion, 142 

transformation of, 

as binary combinations of 

co-ordinates, 143 

as co-ordinates, 142 

as the angular momentum operator, 

143 

as p- and d-orbitals, 155 

as s-orbitals, 155 

Lattices, 73 

Bravais, 78, 79, 83, 121, 127, 131 

hexagonal, 93 

plane, 74 

five types of, 74, 93 

reciprocal, 124, 126, 131 

space, 74, 121 

Ligand-field molecular orbital theory, 

166 

Ligand-field splitting (A), 170 

Matrices, 102 

character of, 105 

conformable, 103 

irreducibility of, 109 
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Matrices (cont.) 

multiplication of, 102 

products of, 102 

rectangular, 102 

reducibility of, 109 

square, 102 

symmetry operations, use as 

representations of, 102, 105 

transformation, 103 

Miller indices, 4, 123 

of a stack of parallel planes, 123 

Mirror plane, 17 
diagonal, stereographic projections 

for, 67 

horizontal, stereographic projection 

for, 62 

vertical, stereographic projection 

for, 66 

Modes, 

normal, 138 

reducible representation for, 138, 

140 
rotational, 138 

reducible representation for, 138, 

140 

translational, 138 

reducible representation for, 138, 

140 

vibrational, 138 

reducible representation for, 138, 

140 

Molecular orbital calculation, 

and symmetry, 171 

Molecular orbital descriptions, 
of H,0, 165 

of heteronuclear diatomic molecules, 

160, 162 

of homonuclear diatomic molecules, 

160, 161 

of polyatomic molecules, 163 
of SO,, 166, 167 

S-p mixing essential in, 160 

INDEX 

Molecular orbital theory, 155 

and symmetry, 160 

ligand-field, 166 

Multiplication tables, 19, 100 

for allene, 27 

for N2F2, 19, 112 
for NH3, 20, 112 

rules for constructing, 21 | 

stereographic projections, relation 

to, 68 

Mutual exclusion, rule of, 144 

Neumann’s principle, 132 

Nomenclature, 

Hermann-Mauguin, 9, 29 

Schoenflies, 9, 29 

symbols, definitions of, for 

symmetry elements, 
Conte 

Lar7. 

i,.13 

Teele 

Nols 

n, 24 

nm, 23 

Sn, 23, 24 

og, Eh 

geil 

Of, 11 

Oy, 11 
Normalisation, 174 

Operator, 

dipole moment, 142, 146 

translation, 142 

Optical activity, 6, 121, 131, 133 

asymmetric molecules and, 133 

centrosymmetry of crystal and, 130 

dissymmetric molecules and, 134, 

135 

free rotation and absence of, 136 

incompatibility of rotor-reflection 

axis with, 133 



INDEX 

Optical activity (cont.) 
of octahedral complexes, 136 
point groups compatible with, 121, 

133 
square-planar arrangement of bonds 

and, 137 — 

Orbital mixing, 155 

and symmetry, 156 

Orbitals, 

group, see Group orbitals 
symmetry-adapted, 172, 176, 182 

construction of, 173, 179 

relation to true molecular orbitals, 

176 

Orbital symmetry, conservation of, 

in chemical reactions, 183 

in product excited states, 184 

in product ground states, 184 

Orthogonality condition, 174 

Physical properties, 

invariance of, to symmetry 
operations, 132 

symmetry and, 121 

symmetry-determined, 132 

Piezoelectricity, 130 

Plane figures, symmetries of, 

equilateral triangle (D3y), 57 

hexagon (D6), 50, 55 

rectangle (D2), 50 

swastika, 50 

Plane groups, 93 
Hermann-Mauguin symbols for, 93 

table of, 93 

Plane of symmetry, 17, 25 

Point groups, 6 

axial, 31,35 | 

classification, 27, 28, 35, 38 

crystallographic, 29, 62, 73, 83 

molecules belonging to, 35, 36 

table of, 30 

229 

Point groups (cont.) 

cubic, 32 

dihedral, 31 

equivalent positions diagrams for, 62 

irreducible representations of, 
vibrations belonging to, 138 

non-crystallographic, molecules 

belonging to, 39 

non-degenerate, 143 

order of, 31, 113, 114 

sub-groups of, 50 
stereographic projections and, 62 

symmetry-determined properties 

and, 132 

Polarisability, 

reducible representations for, 

character of, 144 

tensor, 142 

Pyroelectricity, 130 

Reciprocal lattice points, 

systematic absences of, 126 

Reducible representations, 109, 114 

for dipole moment, 144 

for p-orbitals in conjugated systems, 

Tz 

for polarisability, 144 

reduction of, 114, 138 

Reflection symmetry, 9, 10 

in crystals, 15 

Representations, 105, 109 

degenerate, 119, 145 

formula for reduction of, 115, 116 

irreducible, see irreducible 

representations 

one-dimensional, 114, 119 

reducible, see reducible 

representations 

three-dimensional, 114 

two-dimensional, 114 

true, 119 
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Ring opening reaction, 183 

of cyclobutene, 183 

Rotation axes, 12, 81 

corresponding to more than one 

symmetry element, 49 

principal, 140 

stereographic projection for, 63 

symbols for, diagrammatic, 12 

unique, 31, 41 

Rotations, 

character of, 138 

improper, 138, 139 

proper, 138, 139 

Rotation symmetry, 9, 12 

in crystals, 15 

principal axis of, 11, 12, 140 

Rotor-reflection axes (7, S,), 23, 25 

equivalence to rotor-inversion axes, 
25 

Hermann-Mauguin, symbols for, 

64 

stereographic projections for, 63 

symbols for, diagrammatic, 25 

Rotor-inversion axes (n), 24, 25, 81 

equivalence to rotor-reflection axes, 
25 

symbols for, diagrammatic, 25 

Scheme for assigning molecules to 

their point groups, 38 

examples of use of, 

for point groups of type Cy, 39 

for point groups of type Cp, 44 

for point groups of type Cyy, 45 

for point groups of type Dy, 41 

for point groups of type Dyn, 44 

for point groups of type Dng, 42 
for point groups of type Oy, 47 

for point groups of type S2,, 40 
for point groups of type Tg, 47 

INDEX 

Schoenflies notation, description of, 
31 

Screw axes, 80, 83 

diagrammatic symbols, 81 

symbols for (nj), 80 

Selection rules, 146 

for electric dipole transitions, 146 

for Raman activity, 147 

and polarisation, 146 

Solid figures, symmetries of, 

cube (Op), 50 
octahedron (Oy), 50, 53 
pyramid, hexagonal-based (C¢y), 

Ew 
square-based (C4,), 51 
triangular-based (C3y), 51 

tetrahedron (7g), 50, 70 

trigonal antiprism (D3g), 51, 53 

trigonal bipyramid (D3,), 56, 57 
trigonal prism (D3;,), 56, 57 

Space group diagrams, 94, 96 

Space group information and crystal 

structure, 130, 131 

Space groups, 6, 73, 82, 129 

combinations of symmetry elements 

forming, 82 

cubic, 84, 92 

distribution among Bravais lattices, 

84 

equivalent positions in, 98, 131 

Hermann-Mauguin notation for, 85 

hexagonal, 84, 92 

monoclinic, 84, 90 

orthorhombic, 84, 91 

rhombohedral, 84, 92 

special positions in, 98, 131 

tables of, 86 

tetragonal, 84, 92 

triclinic, 84, 90 

uniquely determined by systematic 

absences, 129 

Space, reciprocal, 124 

» 



INDEX 

Spectrum, 

electronic, 121 

vibrational, 121, 138 

Stereographic projections, 5, 62 

and multiplication tables, 68 

for elements not in horizontal or 

vertical planes, 67 

for horizontal symmetry axes, 65 

Structures, 

body-centred cubic, 1, 9 

face-centred cubic, 1 

Suprafacial orientation of reactant 

orbitals, 190 

on cisoid-buta-1 ,3-diene, 192 

Symmetry and theories of bonding, 

i54 

Symmetry elements, 9 

compound, 23, 40, 80, 82 

interrelations between, 28 

of an octahedron, 32 

of a tetrahedron, 33 

redundant, 34 

simple, 9, 23 

Symmetry operations, 16 

as a group, 101 

classes of, 111 

invariance of atoms to, 140 

invariance of physical properties to, 

132 

inverses of, 19 

representation by matrices, 105 

symbols representing, 

CAT 
Le 

19 

SK, 25 
G19. 4 

which commute, 21 

Symmetry, reduction of, 49 

from hexagonal, 55 

from octahedral, 50 

from tetrahedral, 54, 55 

231 

Systematic absences, 126 

due to body-centring, 126 

face centring on one face, 126 

face centring on all faces, 126 

screw axes, 127 

table of, 129 

translational symmetry elements 

and, 129 

which uniquely determine space 

groups, 129 

Transformation table, 106 

for Cartesian displacement 

co-ordinates, 106 

for p-orbitals of conjugated systems, 

1734179 

Transition moment, 146 

invariance to symmetry operations 

of, 146 

Transitions, 

between energy levels, 121 

electric dipole, 146 

involving non-totally symmetric 

initial states, 147 

vibrational, 146 

Transition state, 

symmetry elements preserved in, 

187 

Translation symmetry, 9, 17 

Vibrations, 

infra-red activity of, 138, 144 

polarisation directions of, 138 

Raman activity of, 138, 144 

symmetry classes of, 138 

Woodward-Hoffman, 183 

rule for cycloaddition reactions, 

195 
rule for rotary senses of photo- 

chemical and thermal 

processes, 190 
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X-radiation, 

and space-group information, 131 

intensity of reflected, 130 

reflection of, 124 

X-ray crystallography, 

symmetry and, 121 

INDEX 

X-ray diffraction, 121 

and unit cell, 123 

powder patterns for cubic crystals, 
126 

reinforcement condition for, 122 



Index of Compounds Discussed in the 

Main Text 

alums, 1, 56 

allene, 25, 27) 31,/32;42;54 

barium sulphate, 125 

BCl3, 37 

B2Cly, 37, 145 

benzene, 12, 14, 37, 178, 179, 183 

BF,, 18, 25, 28, 1405145,,156;:157, 

158, 159 

butadiene, 172, 174, 175, 177, 184, 

185, 186, 187, 190, 192, 194 

C(CH3)q, 37 

CCly, 37, 47 

CH; 11; 25,28, 54; 158, 159 

CH3Cl, 12, 13, 45 

CHC13, 133 

CHFCIBr, 36, 63 

Cyii5,13; 15, 39 
C,H,, 183, 184, 190, 192, 193, 194 

@,H,, 37,42 

CH,Cl,, 36, 45, 67 

CsHs , 39 

chlorobenzene, 36 

CIF3;,36  - > 

CO, 160, 162, 163 

CO,, 39 

C302, 39 
Co(ethyienediamine)3*, 136 
Co(ethylenediamine),Cl,*, 137 

Co(NH;)2”, 49 
cis-Co(NH3)4Cl,", 49 
trans-Co(NH3)4Cl,", 37, 49 
trans-Co(NH3)2 Cl, Br, , 32, 37, 42 

Co(NO,)2,, 37 

copper, 1 

COS, 11 

cyclobutane, 184, 193 

cyclobutene, 183, 184, 185, 186, 187 

cyclohexa-1,3-diene, 187, 188, 189 

cyclohexene, 190, 192 

cyclooctatetraene, 39 

cyclopropane trans-1,2, 

dicarboxylic acid, 135 

3,6-diamino-spiro-3,3-heptane, 135 

1,3-dichloroallene, 134, 135 

p-dichlorobenzene, 32, 37, 42 

trans-1,2 dichloro-1,2-dibromoethane, 

2528.34 

(disalicylatoboron)’, 135 
ferrocene, 39 

formaldehyde, 12, 13, 36 

GeCl, 159 

a-D-glucose, 134 
glycinate ion NH,CH,CO, , 137 

H3BO3, 36, 44, 65 

HCl; 125.13 

hexa-1,3,5-triene, 183, 187, 188, 189 



234 INDEX OF COMPOUNDS 

HOC], 36, 63 
H,0, 36, 163, 164, 165 

H,0,, 36, 39, 64, 133 

IF,, 39 
iron, 9 

lactic acid, 134 

dextro-menthyl, laevo-menthyl- 

2,6,2',6’-tetra-nitro-4,4’- 
diphenate, 135 

Nz, 160 
NH3, 11, 20,.36,.45, 105; 111 

trans-NF,, 19, 36 

NO3, 37 

N, O, 39 
O,, 160 
palladium disulphide, 131 

PCl3, 45 
PCl,, 37 
PCI,4F, 57 

PF;, 25,26 
cis-Pt(NH3)2Cly, 36 

trans-Pt(NH3)2Cly, 37 

Pt [((NH)2 )o(CH.C6Hs)2] [(NH)2- 
CH,(C(CHs)9}], 137 

ReF,, 39 

ruthenocene, 12, 14, 39 

SF, 36, 45, 67, 145 

SF¢, 34, 37, 47, 48 

SF,;Cl, 36 

SiF4, 159 
Sn(CH3)(C,H;)(n-C3H,)I, 134 

SO,, 165, 166, 167 

SOCI,, 36 

sodium chlorate, 3 

sodium chloride, 3, 15, 16 

sugars, 133, 134 

sulphur-6, 25, 28, 42, 43, 67 

sulphur-8, 25, 39 

tartaric acid, 6, 126 

TeCl,*, 145 
tellurium tetrachloride, 145 

3,4,7,8-tetramethyl-1-aza-spiro(4,4)- 

nonane, 36, 40, 65 

titanium dioxide, 125 

1,3,5-trichlorobenzene, 37, 44, 67 

1,1,1-trichloroethane, 36 

tropylium ion, C;H,", 12, 14, 39 
XeFg11, 13715, 37 

XeOF,, 12, 13, 36, 46 

zinc hydroxide, 130 
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