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Preface to the First Edition 

It has been claimed that group theory is little more than applied common 

sense. If this is so, then it should be possible to present it in a way which 

avoids explicit use of formal mathematics and, in particular, matrix algebra. 

Matrix algebra is not a difficult topic and many students will have met it 

before entering university. To write a book simply to avoid its use would, 

then, seem a pointless exercise. Yet this is such a book, the reason for its 

existence lies deeper. In my experience, chemists prefer to think in terms of 

models and pictures rather than mathematics, they find it easier to describe a 

model mathematically than to start with a mathematical development and 

derive from it a picture. For a full understanding of group theory both picture 

and mathematics are needed and so it is usual to develop them together. 

Unfortunately, group theory is a sequential subject—each stage depends on 

preceding stages so that in a text there is a need for constant referral back to 

earlier pages. Because the mathematical treatment is more precise and 

comprehensive than the pictorial, the back references are most readily made 

to mathematical sections. My experience is that for most students the physical 

picture becomes more and more hazy as the mathematics takes over. This is 

the reason for the structure of the present book. The subject is presented 

pictorially—but accurately—so that the student is not referred back to 

mathematical equations but rather to pictorial explanations. If the text 

provides the pictures where, then, is the mathematics? The answer is ‘in the 

appendices’. These comprise a significant proportion of the book and, while I 

hope that they more or less stand on their own as a text on mathematical group . 

theory, they are also integrated with the main text. In this way I hope to have 

gained something of the best of both worlds! In the text itself I have avoided 

mathematics by using chemical topics as vehicles for the group theory. For 

much of the book the vehicle is chemical bonding but in the later chapters 

other subjects are covered. Throughout, I have tried to choose topic and group 

theory in a supportive manner; a topic is only included if it enables some 

development of the group theoretical theme. Conversely, the use of symmetry 

arguments must tell us something new about the particular topic. I have 

therefore been more concerned with establishing a firm basis than with its 

development. Thus, although both ligand field theory and the Woodward- 

Holfmann rules are included, neither is treated at any length because no new 

principles would have immediately emerged in an extension which are not 

covered elsewhere. 



xii PREFACE TO THE FIRST EDITION 

In writing the book I have assumed an elementary knowledge of valence 

theory—in particular, the shapes of atomic orbitals. However, whenever I have 

first used terms such as ‘orthogonal’ and ‘normalized’ I have given a reminder 

of their definition. 
The content of the book is largely determined by that group theory which 

should be of utility to an undergraduate although there are a few points at 

which I have included something simply because I find the topic fun and hope 

the reader does too! There is no discussion of space groups because for these it 

is the symmetry operations, and not the associated group theoiy, with which 

most students will be concerned. There is no section on the formation of hybrid 

orbitals because this would not have been in keeping with the presentation of 

the rather different approach to chemical bonding which forms a major theme 

in the book. However, this neglect should not be seen as reflecting on the 

concept of hybrid orbitals (which, in fact, have a secure basis—see D. B. 

Cook and P. W. Fowler, Amer. J. Phys., 49 (1981), 857), and which appear at 

several points in the text. 
Chapters 1 to 7 of the book contain basic material whereas Chapters 9, 10 

and 11 generally cover more advanced topics. Chapter 8 forms a bridge 

between these two sections. While I hope that the presentation in the last three 

chapters is one which the average reader will readily, follow, I have taken the 

opportunity to include aspects which are omitted in many textbooks. Here, too, 

I have used a chemically relevant topic as a vehicle to introduce some new 

aspect of group theory. 
Those who wish to approach some of the material in this book from a related 

but different viewpoint may find it helpful to listen to two audiotapes, called 

‘Symmetry in Chemistry’, which I have recorded for the Royal Society of 

Chemistry, London. 

I am grateful to those institutions at which I have been able to write or revise 

parts of the manuscript—the University, of Massachusetts (Amherst), 

Northwestern University, The University of South Paris and Turin University. 

In writing this book I have been helped by a—usually—tolerant family and 

by the constructive criticism of many colleagues at the University of East 

Anglia, by Drs H. Fritzer and A. Hutcheon in particular as well as several 

anonymous reviewers. To Mrs J. Johnson and Mrs M. Livock I owe a debt of 

gratitude for producing excellent typescripts from sometimes near illegible 

manuscripts. Defects and errors that remain are, of course, my own 

responsibility. 

Sidney F. A. Kettle 

Norwich, April 1984 



Preface to the Second Edition 

The major difference between the second and first editions of this book is the 

addition of two chapters dealing with space groups. These were explicitly 

excluded from the first edition but the increase in the importance of this area of 

chemistry made its continued exclusion untenable. In introducing it I have 

followed the principle which guided the pattern of contents of the first 

edition—that of the ‘need to know’. That only facts, concepts and procedures 

which are of immediate relevance and utility are to be included. It was this 

principle that delayed the discussion of the allocation of a molecule to the 

correct point group until Chapter 7 (because it was only then that all of the 

necessary symmetry operations had been introduced into the discussion). 

Similarly, in the treatment of space groups, the Hermann-Mauguin notation 

has been introduced quite separately from the notation used to denote the space 

groups themselves. To my knowledge, the approach to space groups in these 

chapters is not to be found in any other chemistry textbook, although it would 

be familiar to solid state physicists. This approach, combined with an attack on 

the problem of ‘why are there 230 space groups?’ offers, I believe, unique 

insights into space groups, their construction and utilization. Comparison with 

the first edition will show a myriad of small changes to the other chapters; 

more questions have been included and a section on ‘Further Reading’ added. 

As with the first edition, my hope is that this book will serve to bridge the gap 

between the qualitative discussions of symmetry found in many general texts 

and the rather mathematical treatments contained in more specialist books. 

Above all, I hope that it will make the simplifications and insights afforded by 

symmetry accessible to a wider range of students and that their confidence in, 

and the pleasure that they gain, from chemistry will increase as a result. I am 

indebted to Dr M. Schlegel-Zawadzka for help with the proofreading. 

S.F.A.K. 
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Theories in Conflict 

1.1 INTRODUCTION 

As its title implies, this book is concerned with the symmetry and structure of 

molecules. Of these, the latter—both in the sense of the geometric and of the 

electronic structure of molecules—has long been of concern to chemists. We 

shall be interested in both these aspects and will adopt the viewpoint that the 

geometric structure of a molecule tells us something about its electronic 

structure. The connection between the two will be provided by the molecular 

symmetry, or rather its expression in what is called group theory. Ultimately, 

however, this book is concerned with the chemical consequences of molecular 

symmetry, the application of group theory to molecules, and these extend far 

beyond the problems of chemical bonding. Rather, the problem of chemical 

bonding will be used as a particularly convenient—and important—way of 

introducing the concepts of symmetry and then extend to other areas of 

chemistry the application of the concepts revealed in this way. In an intro¬ 

ductory text such as this there will be no attempt to cover all of the uses of 

symmetry—an objective which it would be difficult to achieve in any text. 

Rather, some of the more important aspects will be detailed. The aim will be to 

provide a cover of the basics of the subject sufficient to enable the reader to 

apply them in other areas. Further, this will be done in a readable, almost 

entirely non-mathematical manner. Rather detailed but, hopefully still 

readable, mathematical treatments are reserved for the appendices. 

1.2 THE AMMONIA MOLECULE 

The ammonia molecule provides a convenient starting point for our study 

and it will be used to see the problem of chemical bonding in a rather 

unusual perspective, one that leads to the approach indicated above—the 

attempt to infer molecular bonding from molecular geometry (in contrast to 

the more common procedure of explaining molecular geometry in terms of 

chemical bonding). Several approaches to the bonding in the ammonia 

molecule will first be reviewed, approaches which have been in the 

chemical literature for many years. The reader may well not be familiar 

with all of them but should not spend too much time trying to master any 
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new ones—our concern is with generalities, not details. However, 

references are given to enable the reader to explore any of the approaches in 

more detail, should he or she so wish. 

1.2.1 The atomic orbital model 

This model has an historic importance—it is the only description to be found 

in many pre-1955 texts.1 Before looking at it, the facts. The ammonia molecule 

is pyramidal in shape; all three hydrogen atoms are equivalent, the HNH bond 

angle being 107° (Figure 1.1). The simplest, the oldest, explanation of the 

H 

Figure 1.1 The ammonia molecule. 

shape follows from the recognition that the ground state electronic 

configuration of an isolated nitrogen atom is (ls)2(2s)2(2p)3, each of the 2p 

electrons occupying a different p orbital. Each of these 2p electrons may be 

paired with the electron present in the Is orbital of a hydrogen atom by placing 

one hydrogen atom at one end of each 2p orbital so that each nitrogen 2p 

orbital overlaps with a hydrogen Is orbital. The result is an ammonia molecule 

which has the correct, pyramidal shape and which has all of three hydrogen 

atoms equivalently bonded to the nitrogen (Figure 1.2). However, the angle 

between any pair of 2p orbitals is 90° so that a bond angle of 90° is predicted 

z 

Figure 1.2 N-H bonding in NH3 envisaged as resulting from the overlap of 2p 
orbitals of the nitrogen with is orbitals of the hydrogens. Because the three nitrogen 2p 
orbitals have their maximum amplitudes at 90° to each other, bond angles of this value 
are predicted. 
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by this model. Agreement with an experimental value of 107° is obtained by 

postulating the existence of electrostatic repulsion forces between the hydrogen 

atoms. These repulsions cause the H atoms to repel each other—so that the 

bond angles increase. If, as seems probable, each N-H bond is slightly polar 

with each hydrogen carrying a small positive charge, this repulsion is 

nuclear-nuclear in origin. The consequent modification of the original bonding 

scheme as a result of this distortion of the bond angle from 90° is not usually 
considered. 

1.2.2 The hybrid orbital model 

This is detailed in many post-1955 texts.2 In this model an alternative 

description of the bonding in the ammonia molecule is obtained by hybridizing 

the valence shell orbitals of an isolated nitrogen atom, 2s, 2px, 2py and 2pz to 

give four, equivalent, sp3 hybrid orbitals pointing towards the comers of a 

regular tetrahedron. Because there are five electrons in the valence shell of the 

nitrogen atom, three of these hybrid orbitals may be regarded as containing one 

electron whilst the fourth is occupied by two electrons. As in the previous 

model, Is electrons from three hydrogen atoms pair with the unpaired electrons 

on the nitrogen, now in hybrid orbitals, to give a pyramidal ammonia molecule 

(Figure 1.3). Again, the three hydrogen atoms are equivalent but the bond angle 

is predicted to be 109.5°, the angle between the axes of a pair of sp3 hybrid 

orbitals. This value is in closer agreement with experiment than that given by 

the previous model but again some correction is needed if the experimental 

value is to be reproduced. This correction is usually made by invoking the 

effects of electron-electron repulsion. It is this electron-electron repulsion 

which forms the basis of a third model for ammonia and so the way that the 

‘hybrid orbital’ model is modified to give agreement with experiment is 

contained in the description of the next model. 

Figure 1.3 N-H bonding in NH3 envisaged as resulting from the overlap of sp3 
hybrids of the nitrogen with Is orbitals of the hydrogens. Because sp3 hybrids have 
their maximum amplitudes at 109.5° to each other, bond angles of this value are 
predicted. 
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1.2.3 The electron-pair-repulsion model 

This is the model described in many current texts.3 The first two models which 

have been considered seek to explain the structure of the ammonia molecule in 

terms of the bonding interactions between the constituent atoms. The atoms 

adopt the arrangement which makes bonding a maximum. In contrast, the 

present and the next model to be discussed explain the structure not in terms of 

bonding interactions (although these must exist to hold the atoms together) but 

by electron repulsion. They recognize that electrons repel each other and regard 

the structure as being determined by the requirement that the inter-electron 

repulsion energies are minimized. The first of these models is originally due to 

Sidgwick and Powell, but was subject to subsequent extensive elaboration and 

refinement particularly by Nyholm and Gillespie. 

In the ammonia molecule there are four electron pairs involving the valence 

shell of the nitrogen atom. These are the three N-H bonding electron pairs and 

a non-bonding pair (in the first of the models discussed above these non¬ 

bonding electrons were placed in the 2s orbital of the nitrogen; in the second 

they were placed in an sp3 hybrid orbital). Because electrons repel each other 

these four electron pairs would be expected to be as far apart as possible 

consistent with still being bound to the nitrogen atom (three pairs are also 

bound to hydrogen atoms). It follows that the preferred orientation of these 

four electron pairs is that in which they point towards the comers of a regular 

tetrahedron. Remembering that three of the electron pairs are N-H bonding 

and that their orientation determines the positions of the hydrogen atoms, a 

HNH bond angle of 109.5° is predicted, the tetrahedral angle, the same as that 

given by the second model. It is thought-provoking to recognize that the same 

bond angle can be predicted either by including bonding interactions or by 

ignoring them! The refinement of the electron-pair-repulsion model requires 

the recognition that there are two sorts of electron pairs, those involved in N-H 

bonding and those which are non-bonding and located on the nitrogen atom. 

The electron pairs which comprise the N-H bonds are each subject to strong 

electrostatic attractions from two nuclei, the nitrogen nucleus and that of one 

of the hydrogen atoms. In contrast, the non-bonding electrons are strongly 

attracted by one nucleus only, that of nitrogen. It therefore seems reasonable to 

expect that the centre-of-gravity of the electron density in the N-H bonds will 

be located at a distance further away from the nitrogen nucleus than that of the 

lone pair electron density. The recognition of this difference at once leads to a 

refinement of the model. The accurately tetrahedral arrangement of four 

electron pairs resulted from the assumption that all the electron pairs were 

precisely equivalent. In the absence of such equivalence a regular tetrahedral 

arrangement cannot be expected. It seems reasonable that the repulsive forces 

occurring between electron density located in two N-H bonds will be less than 

the electrostatic repulsions between the non-bonding pair of electrons and a 

N-H bonding pair, simply because the distance between the centres of gravity 
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of electron density will be greater in the former case. It would be expected that 

this difference in repulsion will lead the molecule to distort accordingly. The 

conclusion is that the HNH bond angle will be less than 109.5°. Although no 

quantitative prediction is possible with this simple model the qualitative 

prediction is in accord with experiment—the bond angle is 107°. These same 

arguments, applied to the ‘hybrid orbital’ model (Section 1.2.2), also lead to 
qualitative agreement with experiment. 

1.2.4 The electron-spin-repulsion model 

This is a little used model,4 although it seems to be undergoing a minor 

resurgence. It differs from the preceding model principally in its recognition 

that electrons behave as individuals—and so repel each other as individuals— 

rather than as pairs. It is therefore more appropriate to consider eight electrons 

associated with the nitrogen atom, four with spin ‘up’ and four with spin 

‘down’ than to think of there being four electron pairs (with no mention of 

spin). In the case of eight individual electrons the preferred orientation (in 

which the electrons are as well separated spatially as possible), would be 

expected to be one in which the electrons are located at the comers of a cube. A 

result of detailed quantum mechanics is the recognition that an additional 

repulsion exists between electrons of like spin, compared with the repulsion 

between electrons of unlike spin. So, it would be anticipated that an electron of 

given spin would have as its nearest neighbours at the comers of the cube 

electrons of the opposite spin. This means that in the cubic orientation of 

electrons there would be four electrons with spin ‘up’ defining one tetrahedron 

and four with spin ‘down’ defining another (if lines are drawn from one comer 

of a cube across the face diagonals to other comers and this procedure 

continued, just four comers are reached. These four comers define a regular 

tetrahedron. Another regular tetrahedron is defined by the four comers which 

remain—see Figure 1.4). So far in this model all of the electrons have been 

associated with the nitrogen atom and we have really been thinking of N3~, 

with eight valence shell electrons. It follows that when the hydrogen atoms are 

introduced they must be introduced as bare protons. These protons attract the 

eight electrons. The attraction between a proton and an electron does not 

depend upon whether the electron has its spin ‘up’ or ‘down’, although, of 

course, the extra repulsion between electrons of the same spin persists. The net 

result is that each proton attracts to its locality just one electron with spin ‘up’ 

and one with spin ‘down’. This attraction brings the two distinct tetrahedral 

arrangements of electrons into coincidence to give a single tetrahedral arrange¬ 

ment. The conclusion is that two electrons will be associated with each N-H 

bond and the remaining two will be non-bonding, just the same as we did for 

the previous model. Clearly, this model also predicts a bond angle of 109.5°, 

the tetrahedral value. It may be corrected in a manner similar to that described 
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t 

I 
Figure 1.4 The two tetrahedra associated with a cube. Note the association that occurs 
in Linnett’s model between these tetrahedra and the relative spins of the eight electrons 
placed at the comers of the cube. 

above for the electron pair model to give qualitative agreement with 

experiment. 
Although there is considerable overlap between the different models 

considered above, a survey of them does not lead to any definite conclusion 

regarding the relationship between the structure of and the bonding in the 

ammonia molecule. First, they are concerned with a relatively fine point— 

bond angles. They say nothing about the more important point (in terms of 

energy) of bond lengths. Second, all start with the supposition that only 

valence-shell electrons need be considered but then diverge in their explana¬ 

tions. These explanations are not totally distinct but what one model regards as 

the dominant factor another assumes to be relatively small. The first two 

models, effectively, say that the geometry is determined by the requirement that 

bonding interactions be maximized whilst the last two say that it is the 

consequence of the requirement that non-bonding repulsive forces be 

minimized. One point that they have in common, however, is the fact that none 

of them leads to a prediction that the ammonia molecule should be planar. 

1.2.5 Accurate calculations 

In 1970 dementi and his co-workers published the results of some very 

accurate calculations on the ammonia molecule.5 They were particularly 

interested in a study of the vibrational motion of the ammonia molecule in 

which it turns itself inside-out, like an umbrella in a high wind (Figure 1.5). 

Halfway between the two extremes of this umbrella motion the ammonia 
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H 

Figure 1.5 The ‘umbrella’ motion of the ammonia 
molecule. As the hydrogens move up so the nitrogen moves 
down (and vice versa) so that the centre of gravity of the 
molecule remains in the same place. 

molecule is planar. The potential energy barrier for the inversion is equal to the 

difference in total energy between the ammonia molecule in its normal, 

pyramidal, shape and the planar configuration. In order to obtain a theoretical 

value for this barrier, dementi carried out rather detailed calculations for each 

geometry. The results were very surprising. They showed that the N-H bonding 

is greater in the planar molecule—there is a loss of bonding of N-H bonding 

energy of approximately 7.0 x 102 kJ mole-1 (167 kcal mole-1) in going from 

the planar to the pyramidal geometry; this loss is accompanied by a slight 

lengthening of the N-H bond. Bonding favours a planar ammonia molecule. A 

comparison of the most stable pyramidal and most stable planar geometries 
shows that the electron-electron and nuclear-nuclear repulsion energies favour 

the pyramidal molecule over the planar by about 7.2 x 102 kJ mole-1 

(172 kcal mole-1). Repulsive forces favour a pyramidal molecule. Note the 

way that the bonding and repulsive energy changes between the two shapes 

almost exactly cancel each other. It is the slight dominance of the repulsive 

forces by 20 kJ mole-1 (5 kcal mole-1) which leads to the equilibrium 

geometry of the ammonia molecule in its electronic ground state being 

pyramidal. 
We are left with a most disturbing situation. There is no doubt that the 

strongest N-H bonding in the ammonia molecule is to be found when it is 

planar yet two of the simple models considered earlier in this chapter explained 

its geometry by the assumption that this bonding is a maximum in the 

pyramidal molecule! Similarly, the models based on electron-electron 

repulsion ignored both the fact that nuclear-nuclear repulsion is of comparable 

importance and the fact that their sum is almost exactly cancelled by changes in 

the bonding energy. This would not matter so much if there were some 

assurance that repulsive energies would outweigh the bonding in all molecules 

(molecular geometries could then reliably be explained using a repulsion-based 

argument). Unfortunately, no such general assurance can be given. This can be 

seen if the discussion of the ammonia molecule is extended to include some 

related species. 
The molecules NH3, PH3, NH2F, PH2F, NHF2, PHF2, NF3 and PF3 all have 

similar, pyramidal, structures and would be treated similarly in all simple 

models. But calculations by Schmiedekamp and co-workers6 have shown that 

the first four owe their pyramidal geometry to the dominance of repulsive 
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forces (bonding is stronger when they are planar) but the last four are 

pyramidal because the bonding is greatest in this configuration and dominates 

the repulsive forces (which now favour a planar arrangement)! Although this 

last sentence is marginally stronger than strictly permitted by the calculations, 

there is no doubt about the general conclusion. Although these eight com¬ 

pounds all have the same structure they do not all have it for the same reason, 

because of the close competition between repulsive and bonding forces. At 

present there are no rules to enable the prediction of which will win the 

competition in a particular case. 

Although simple explanations of molecular shape such as those described 

earlier in this chapter are very useful to the chemist—and are widely and 

fruitfully used—they can be considered only as guides because they are not 

infallible. They are more aides-memoire than correct explanations. It is for this 

reason, and because it happens to be particularly convenient for our purpose, 

that in this book the opposite strategy of using the experimentally determined 

shape of a molecule to infer details of the electronic structure of the molecule 

in that shape will be adopted. Few attempts will be made to explain why a 

molecule has a particular shape, although there will be many points at which 

the consequences of a particular geometry and its changes will become the 
focus of attention. 

Problem 1.1 Consider each of the models for the structure of the 

bonding in the ammonia molecule detailed above and for each indicate 

the importance (if any) that it places on (a) electron-nuclear bonding 

forces, (b) electron-electron repulsion forces and (c) nuclear-nuclear 
repulsion forces. 

Problem 1.2 Show that each of the models described in Sections 1.2.1 

and 1.2.4 predicts that the water molecule is non-linear (the bond angle is 
actually 104.5°). 

Problem 1.3 Hazard a guess at whether it is bonding or non-bonding 

forces which lead to NC13 having a pyramidal shape.7 

NOTES AND REFERENCES 

1. See for example, p. 65, Inorganic Chemistry, by Barry-Bamett and Wilson 
(Longmans Green, London, 1953). 

2. See for example, p. 159 of Valency and Molecular Structure by Cartmell and 
Fowles (Butterworths, London, 1956). 

3. The most recent account of the VSEPR model is to be found in The VSEPR Model 
of Molecular Geometry by R. J. Gillespie and I. Hargittai [Prentice-Hall (Allyn and 
Bacon), New York, 1991]. 
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6. A. Schmiedekamp, S. Skaarup, R Pulay and J. E. Boggs, J. Chem. Phys., 66 (1977), 

5769. 
7. An answer will be found in a paper by K. Faegri and W. Kosmus in the Journal of 

the Chemical Society (Faraday Transactions 2), 73 (1977), 1602 (be prepared for a 
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2 

The Symmetry of the Water Molecule 

An investigation into the consequences of molecular symmetry will begin in 

this chapter. In contrast to most texts, which develop the mechanics of group 

theory before its application, in this chapter and those following the two will 

go hand in hand. No ideas will be introduced until they are needed and 

immediately applicable.f This approach enables a non-mathematical discussion 

but means that aspects which appear early in most texts appear late in this. It is 

not until Chapter 7, for instance, that there is a general discussion of the 

symmetry of molecules, the allocation of the correct point group to a molecule. 

This is because it is not until then that the reader will have met all of the 

elements of symmetry needed. Following the discussion in the previous chapter 

it would be appropriate to develop our arguments with particular reference to 

the ammonia molecule. Unfortunately, this problem is, for the moment, too 

difficult and it will be deferred until Chapter 6. Instead, the water molecule will 

be considered in great detail. In so doing, an approach will be developed which 

will subsequently be extended to more complicated species (one of which is 

ammonia). With each increase in complexity of the molecule under study, so 

the power and scope of the group theoretical methodology available to the 
reader will increase. 

2.1 SYMMETRY OPERATIONS AND SYMMETRY 
ELEMENTS 

When we say that a molecule has high symmetry we usually mean that within 

the molecule there are several atoms which have equivalent positions in space. 

Thus, the tetrahedral symmetry of the methane molecule is manifest in the fact 

that the four hydrogen atoms are equivalent (Figure 2.1). Suppose that you 

have before you a model of the methane molecule which is so well constructed 

that no minor blemishes serve to distinguish one hydrogen atom from another. 

If you were to momentarily close and then open your eyes you would have no 

means of telling whether someone had rotated the model so that, although each 

hydrogen atom had been moved, the final position of the model was indistin¬ 

guishable from its starting position. Such questions provide a convenient 

approach to symmetry and is the approach which will be followed in this book. 

t It has been suggested that the book is written around a ‘need to know’ requirement. 
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Figure 2.1 The methane molecule, shown in perspec¬ 
tive. The important point is that all the hydrogens are 
equivalent. 

The symmetry of a molecule is characterized by the fact that it is possible, 
hypothetically at least, to carry out operations which, whilst interchanging the 
positions of some (or all) of the atoms, give arrangements of atoms which are 
indistinguishable from the initial arrangement. Note the phrase ‘hypothetically 
at least’. There is no requirement that all symmetry operations must always be 
physically possible in the way that a rotation is. As will be seen shortly, 
reflection in a mirror plane is an important symmetry operation. But if an atom 
lies in such a mirror plane then, presumably, a physical reflection in the mirror 
plane would mean one side of the atomic nucleus interchanging with the other 
and this is scarcely physically possible.f Of the operations that will be met in 
the following chapters only the rotation operations are physically possible. The 
others—such as the operation of reflection in a mirror plane or inversion in a 
centre of symmetry—are not. Those operations which cannot physically be 
carried out are called ‘improper rotations’ in contrast to the ‘proper rotations’ 
which are physically possible. A more precise definition of improper rotations 
will be given later (pp. 14 and 145). The distinction between physically 
possible and impossible operations is not important because our concern is with 
a mathematics, the mathematics of group theory and what is permissible in this 
mathematics, and not with ball-and-stick models and what is possible for 
them. 

It is helpful to consider a particular example and in this chapter, the 
symmetry of the water molecule will be the subject of study. This molecule and 
symmetry have the advantage of simplicity, both geometrically and mathemat¬ 
ically. Indeed, it is possible to gain familiarity with almost all of the important 
aspects of the application of group theory to molecules using it. Even in the 
later chapters of the book it will occasionally prove useful to return to the 
water molecule and take advantage of the simplicity which it offers. Our first 
task will be to obtain a list of those symmetry operations which turn the water 
molecule into a configuration indistinguishable from the initial one. 

t The operation of time reversal—scarcely physically possible—is important in some aspects of 
theoretical chemistry, although it is not one which will be considered in this book. It has the effect 
(mathematically) of converting an electron with a spin into one with j3. 



12 THE SYMMETRY OF THE WATER MOLECULE 

The most evident symmetry operation which turns the water molecule into 

itself is the act of rotation by 180° about an axis which bisects the HOH angle 

and lies in the molecular plane. Figure 2.2 shows the water molecule before, in 

the middle of, and after completion of this operation. Apart from the arrows, 

which have been added for clarity, the first and third diagrams are indistin¬ 

guishable. The elfect of the operation is to interchange the two hydrogen atoms. 

We say that ‘the two hydrogen atoms are symmetry-related’ or ‘they are 

symmetrically equivalent’. A rotation operation is denoted by the letter C 

(which may be conveniently thought of as derived from the symbol £). 

Because it takes two successive rotations to return each atom to its original 

position, the rotation operation is called a twofold rotation operation and is 

denoted C2, pronounced ‘see two’. The same symbol, C2, is used to denote the 

rotation operation and the axis about which the rotation occurs, although the 

distinction between the two is rather important. Some authors distinguish 

between an axis and the corresponding operation by writing the latter in bold 

type, thus C2. The use of bold type is very useful if one is developing the 

Ca 

Before 

During 

Figure 2,2 The conversion of the H20 molecule into an arrangement which is 
indistinguishable from the original by a rotation of 180° (360/2 = C2). In general, it is 
not possible to give symmetry operations the sort of physical reality which is attempted 
here. 
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mathematics of symmetry theory, group theory. In the present book, however, 

it will always be clear from the context whether an axis or operation is being 

discussed and bold type will not be used (because its use tends to make the 

subject look more daunting than need be the case). Twofold rotation operations 

are not the only ones which can exist, threefold (C3), fourfold (C4), fivefold 

(C5) and sixfold (C6) rotation operations are quite common in chemistry; there 
are examples later in the book. 

In. defining rotation axes (and the corresponding operations) it is necessary to 

require that the rotation which is repeated several times in order to return each 

atom to its original position is always carried out in the same sense (clockwise 

or anticlockwise). For a Cn axis, where n rotations in the same sense are 

required to reproduce the starting arrangement, each operation involves a 

rotation of 360°/n about the C„ axis. The language that is used is to say that the 
larger the value of n, the higher the rotational symmetry of the axis. 

The twofold rotation operation is not the only manifestation of symmetry in 

the water molecule. If the plane defining the water molecule were to be 

replaced by an infinitely thin mirror, as shown in Figure 2.3, then reflection in 

this mirror plane would have the effect of turning the water molecule into a 

configuration indistinguishable from the original one. This operation has the 

effect of turning the ‘front’ of the two hydrogen atoms and of the oxygen atom 

into the ‘back’ and vice versa. Mirror planes and the operation of reflection in 

them are both denoted by sigma—a—(the operation sometimes being 

distinguished by bold type) and, just as for rotation axes, various subscripts are 

used. In the present case the subscript v is appended to give the symbol ov. 

This subscript arises because when, as is the convention, the axis of highest 

symmetry (C2 in the present case) is arranged so as to be vertical, as in Figure 

2.3, then the mirror plane is also vertical. The subscript v on o is the initial 

letter of vertical. Thus, more jargon: a av mirror plane is vertical with respect 

to the axis of highest symmetry (this axis always lies in the av mirror plane). 

C2 
(vertical) 

Figure 2.3 The mirror plane of symmetry in the molecular plane of the H20 
molecule. The plane should be thought of as infinitely thin and serving to reflect one 
‘side’ of the molecule into the other. 
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Other subscripts on o which will be met are h (for horizontal) and d (for 

dihedral). They will be discussed in detail later in the book. 
The C2 and ov symmetry operations do not exhaust the symmetry possessed 

by the water molecule. Another feature of this symmetry is the existence of a 

second mirror plane. This mirror plane, which lies perpendicular to the 

molecular plane, is shown in Figure 2.4. Like the first, the second mirror plane 

contains the twofold axis (indeed, the line of intersection between the two 

mirror planes defines the twofold axis). It follows that, like the first mirror 

plane, the second is denoted crv. However, its effect on the molecule is quite 

different to that of the first—it has the effect of interchanging the two 

hydrogen atoms, for instance—and so it is necessary to distinguish between 

them. This is done by adding a prime to the symbol for the second mirror 

plane, thus: a(. Had the water molecule possessed a third type of vertical 

mirror plane (which it does not!) then this would have been denoted a'[. and so 

on. Note that a av is an improper symmetry operation—although its effect can 

be seen, it cannot physically be carried out. 
In this section it has sometimes been found convenient to talk of rotation 

axes and mirror planes almost as if they were physical objects. Collectively, 

they are called symmetry elements. Examples of other symmetry elements— 

such as a centre of symmetry—will be met later in this book. Although in the 

preceding paragraph it was convenient to talk about a symmetry operation and 

the corresponding symmetry element almost at the same time, it cannot be 

emphasized too strongly that in this book our real concern is with symmetry 

operations. Symmetry elements are introduced simply to enable the corre¬ 

sponding operations to be more readily understood, notwithstanding the fact 

that symmetry elements appear to have more physical reality than do symmetry 

operations. 

Figure 2.4 A second mirror plane of symmetry, perpendicular to the first, in the H20 
molecule. The line of intersection of the two mirror planes is the twofold rotation axis. 
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Problem 2.1 By a comparison of the terms ‘symmetry element’ and 

‘symmetry operation’ as applied to threefold (C3), fourfold (C4), 

fivefold (C5) and sixfold (C6) rotations suggest why it is important to 

recognize the difference between these terms. 

As can be shown by an abortive search, no other rotation axes or mirror 

planes exist in the water molecule, so that it would seem that the three 

symmetry operations which we have recognized define the symmetry of the 

water molecule. This, however, is not strictly so. We have already seen that the 

application of the C2 operation twice over regenerates the original molecule, 

with each atom restored to precisely its original position. It is easy to see that 

the same is true of the av and a' operations. That is, the end result of carrying 

out any of these symmetry operations twice is the same as that of leaving the 

molecule alone. The implication of this is that we should formally recognize 

the possibility that one way of turning a molecule into a configuration 

indistinguishable from the original is simply to leave the molecule alone. This, 

so called, identity operation will be denoted by the letter E (some books use /). 

No matter how much or how little symmetry a molecule possesses the identity 

operation always exists for it.f It is the set of four symmetry operations E, C2, 

ov and o[ which completely defines the symmetry of the water molecule. So, 

one way of talking about the symmetry of the water molecule would be to give 

this list. However, rather than give a complete listing of symmetry operations 

(which for some high symmetry molecules could be rather tedious) this 

information is compressed into a shorthand symbol which for the set of 

operations of the water molecule is C2v (pronounced ‘see two vee’). One talks 

of the water molecule as ‘having C2v symmetry’ or we talk of ‘the symmetry 

operations of the C2v point group’ (by which is meant E, C2, crv and o'v). 

The last phrase contained two new words, ‘point’ and ‘group’. The word 

‘group’ arises from the fact that the set of operations satisfy all of the 

requirements of mathematical group theory. These are covered in detail in 

Appendix 1. Here, it is sufficient to give an important and relevant example. 

Apply any two of the symmetry operations to the water molecule one after the 

other. The result is always equivalent to the effect of applying just one of the 

operations of the group (which may be different from the two that were used). 

Thus, as will be seen in detail later, for the case of the water molecule, 

following the av operation by C2 gives the same result as the application of the 

o'y. Indeed, this combination method is sometimes a useful method of making 

sure that all of the symmetry operations of a particular molecule have been 

found. There is a limit to the process, however. Eventually all of the symmetry 

operations that turn a particular molecule into itself will have been obtained. 

The successive application of two members of the set of operations will always 

t It is sometimes convenient to regard the identity operation as a C, rotation, i.e. a rotation of 
360°. This interpretation highlights the fact that although there is an infinite number of choices of 
Ci axis there is only one distinct Ct(E) operation. 
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produce a result which is equivalent to the application of another member of 

the set. Sets which are closed in this fashion are called groups. Our interest is 

in groups of symmetry operations (although there are many other types of 

group). For any group there has to be a specified method of combining the 

group elements—for symmetry operations it is applying them one after 

another. Other types of groups may have very different methods of combina¬ 

tion. The complete, formal, definition of a ‘group’ requires some mathematics 

and is reserved for Appendix 1 but it may help to give two more examples. 

Consider the three numbers 1, 0, -1. Do these form a group under the 

operations of addition or subtraction? While it is clear that all three numbers 

can be interrelated by these operations, it is equally clear that when the 

operation ( + 1) is applied to the number 1 the number 2 is generated. Similarly, 

(-1) applied to the number -1 gives the number -2. Clearly, 1, 0, -1 do not 

comprise the entire group because 2 and -2 have to be included. In similar 

fashion it can be seen that 3,-3 and, indeed, all integers between °° and -°o 

(plus and minus infinity) have to be included. This is an example of an infinite 

group. Groups such as this are of importance in the description of the 

translational symmetry found in crystal lattices, a topic which will be dealt 

with in Chapter 12 although the detailed group theory is not included in that 

chapter. 

As a second example consider the rectangular table shown in Figure 2.5. The 

top of the table has been divided into quarters and two of these are coloured 

black and two white. Were there no such colouration, the table would have the 

same symmetry as the water molecule, as shown in Figure 2.6. However, the 

presence of the coloured sections means that the av and cr' operations are no 

longer symmetry operations unless they are each combined with quite a new 

type of symmetry operation, that of changing colour, black into white and 

white into black. If these (reflection and colour change) operations are labelled 

(ctv) and (o'), then the operations E, C2, (o>) and (a') form a group.f 

Figure 2.5 A table showing black and white colour-change symmetry. The legs of the 
table reduce the symmetry so that it is not necessary to compare the top surface of the 
table with the bottom. 

fThis may seem a contrived example and perhaps it is. However, it is not too far from real 
applications in chemistry. Suppose we have a molecule which contains an unpaired electron. What 
is the symmetry relationship between a molecule with spin ‘up’ and one with spin ‘down’? One 
has to invent the operation of ‘spin change’, similar to that of ‘colour change’. Of course, the 
footnote on page 11 provides an alternative approach. 
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c2 

Figure 2.6 The C2v symmetry of the table of Figure 2.5 when uncoloured. 

As has been mentioned, a geometrical feature corresponding to a symmetry 

operation is called a symmetry element. Thus, corresponding to a rotation 

operation is a rotation axis; corresponding to a reflection operation is a mirror 

plane. Rotation axes and mirror planes (and also other similar things, such as a 

centre of symmetry) are examples of symmetry elements. For all molecules it 

is true that all the symmetry elements which they possess pass through a 

common point in the molecule (in the case of the C2v point group, perhaps 

confusingly, they pass through an infinite number of common points along the 

C2 axis). This is the reason that all such groups (of operations) are called point 

groups. Put another way, there is always at least one point which is left 

invariant (unchanged) by all of the operations of a point group. This point may 

or may not be a point at which an atom is located. 

Problem 2.2 Explain carefully what is meant by each noun and each 

adjective in the phrase ‘the symmetry operations of the C2v point group’. 

2.2 MULTIPLIERS ASSOCIATED WITH SYMMETRY 
OPERATIONS 

From the way that they have been defined above, it is evident that the effect of 

each of the symmetry operations of the C2v point group when applied to the 

water molecule, considered as a whole, is to turn the molecule into itself. An 

alternative way of putting this is to say that the effect of each of the symmetry 
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operations on the molecule is equivalent to multiplication by the number 1. 

That is, the effect of each of the operations can be represented as shown in the 

table below. 

Effect of the operation on 
Symmetry the water molecule 
operation (considered as a whole) 

E 1 
c2 1 
ov 1 

< 1 

The apparently pointless exercise of representing by the number 1 the effects 

of the behaviour of the water molecule under the symmetry operations begins 

to acquire some significance when we ask whether all quantities associated 

with the water molecule are, like the water molecule itself, turned into 

themselves by the operations of the C2v point group? It will be seen that they 

are not. Consider, for example, the oxygen 2py orbital shown in Figure 2.7. In 

Figure 2.8 are pictured the effects of the symmetry operations of the C2v point 

group on this orbital. It is evident that, whilst the identity and av operations 

have the effects of regenerating the original orbital, the C2 and o' operations 

have the effect of reversing the phases of the lobes. It follows that while the 

result of the application of the E and os operations may be represented by the 

multiplication factor 1, the effects of the C2 and a' operations have to be 

represented by the multiplicative factor -1. That is, the association between 
symmetry operations and multiplicative factors is: 

Symmetry Effect on the oxygen 
operation 2pv orbital 

E 1 
c2 -1 
av 1 
o'y -1 

Having obtained one such set of numbers the question at once arises of how 

many such sets can be found. Would any combination of 1 and -1 be 

acceptable? The answer is ‘no’. To explore this further, consider the effect of 

the symmetry operations of the C2v point group on the 2p, and 2p. orbitals of 

the oxygen. The 2pt orbital is shown in Figure 2.9, where the fact that the 

positive lobe is located above the plane of the page and negative lobe beneath 

this plane is indicated by the perspective of the diagram. In order to avoid 

completely obscuring the negative lobe behind the positive, the water molecule 
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z 

Figure 2.7 The 2pv orbital of the oxygen atom in H20. By convention, the y axis is 
taken to lie in the plane of a planar molecule. 

Figure 2.8 The effects of the symmetry operations of the C2v point group on the 
oxygen 2pv orbital in the water molecule. The point of importance is the relative phases 
of the orbital ‘before’ (left) and ‘after’ (right). 
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Figure 2.9 The 2px orbital of the oxygen atom in 
H20. By convention, the x axis is taken to be per¬ 
pendicular to the plane of a planar molecule. 

is viewed from a slightly skew position. Figure 2.10 shows the effects of the 

four symmetry operations of the C2v point group on the oxygen 2pv orbital. It 

is evident that, whilst the application of the E and crv operations result in the 

phases of the lobes of the orbital being unchanged, the application of the C2 

and ct' operations leads to a reversal of these phases. In this case the numbers 

representing the effects of the symmetry operations are shown below. 

Symmetry Effect on the 
operation oxygen 2px 

E 1 

c2 -1 
CTy -1 
a; 1 

A third set! Before proceeding, a note of warning is necessary. It is a 

generally accepted convention that the axis of highest rotational symmetry in a 

molecule (C2 in the case of the water molecule) is called the z axis. Although 

the direction of the z axis is therefore uniquely specified for most molecules by 

this convention it is seldom true that the same can be said for the x and y axes. 

In this book we are following a convention which has been suggested by 

Mulliken but is not always followed—that of requiring that a planar molecule 

lies in the yz plane. So, the reader may find that, in the case of the water 

molecule, what we have called the x axis some authors will call the y (so that 

the zx plane, rather than the yz, is the molecular plane). Had the x and y axes 

been interchanged then, of course, the sets of numbers to which they give rise 

in the above discussion would also be interchanged. 

We now return to the problem of the symmetry properties of the orbitals of 

the oxygen atom and consider the 2pz orbital. This orbital is shown in Figure 

2.11 and its behaviour under the symmetry operations of the group in Figure 

2.12. It is evident from this latter figure that, although the symmetry operations 

may have the effect of turning one side of the orbital into the other, this change 

is always accompanied by the retention of the phase of the lobes of the orbital 

so that the number representing the effect of each operation is 1 as shown 
below. 
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Symmetry Effect of the oxygen 
operation 2pr orbital 

E 1 
c2 1 
CTy 1 
a'v 1 

Figure 2.10 The effects of the symmetry operations of the C2v point group on the 
oxygen 2p, orbital in the water molecule. The point of importance is the relative phases 

of the orbital ‘before’ (left) and ‘after’ (right). 



z 

Figure 2.11 The 2p, orbital of oxygen in H2. By conven¬ 
tion, the z axis is taken to lie along the axis of highest 
rotational symmetry of a molecule (there are departures 
from this rule for molecules of very high symmetry). 

Figure 2.12 The effects of the symmetry operations of the C2v point group on the 
oxygen 2p, orbital in the water molecule. The point of importance is the relative phases 
of the orbital ‘before’ (left) and ‘after’ (right). 
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This set of numbers if the same as that obtained earlier as a description of 

the symmetry properties of the whole molecule. The conclusion is that 

although it is possible for quantities associated with the water molecule to give 

rise to the same set of numbers as the molecule itself, other alternatives are 

possible (such as those found for the 2py and 2pv oxygen orbitals). 

We now come to the key point in the argument which is being developed. 

This is that the differing symmetry properties of, for example, the 2py, 2pv and 

2pz orbitals of the oxygen atom in the water molecule (i.e. the fact that their 

symmetry operations differs), may be represented by the sets of numbers 

which have been obtained. Quantities which have different symmetry properties 

give rise to different sets of numbers. Evidently, the next question which has to 

be considered is whether the sets of numbers which have already been 

generated comprise a complete list of the different types of symmetry 

behaviour which may be shown by quantities (such as atomic orbitals) 

associated with the water molecule. The answer is ‘no’; there is just one further 

type of symmetry behaviour (i.e. set of numbers) which have yet to be 

obtained. Consider the symmetry properties of the 3dAJ, orbital of the oxygen 

atom. Although this orbital is not commonly included in elementary discussions 

of the electronic structure of the oxygen-containing compounds (because it is 

not a valence-shell orbital) it does none the less exist and would be included in 

most sophisticated calculations of the electronic structure of such molecules. It 

is shown in Figure 2.13. Note that where the product of coordinate axes xy is 

+ 

Figure 2.13 The 3d„ orbital of oxygen in H20. Note 
that the phases of the lobes of the orbital are those of 
the product xy. 

positive, the phase of the 3dA> orbital is also positive (this matching of phases 

is implicit in the use of the xy subscript). The effects of the symmetry 

operations of the C2v point group on this orbital are shown in Figure 2.14. This 

figure shows that the effect of the identity (E) and of the C2 operations is to 

regenerate the original orbital with unchanged phases. In the case of the crv and 

cr( operations, however, the phase of each lobe of the orbital is reversed. The 

appropriate multiplicative factors representing the effects of the operations are 

therefore as shown at the top of the next page. 

Four sets of numbers have now been generated. They are collected together 

in Table 2.1, although the order in which they are presented is not that in which 

they were obtained. 
Against each row of numbers is shown the orbital which leads to its 

generation, the (O)s indicating that the orbitals considered were those of the 
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Symmetry 
operation 

Effect on the oxygen 
3d*v orbital 

E 1 

c2 1 

CTV -1 

O'v -1 

Figure 2.14 The effects of the symmetry operations of the C2v point group on the 
oxygen 3dtv orbital in the water molecule. The point of importance is the relative 
phases of the orbital ‘before’ (left) and ‘after’ (right). 
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Table 2.1 

E C2 av o'v 

1 1 1 1 2p;(0) 
1 1 -1 -I 3d,v(0) 
1 -1 1 -1 2pv(0) 
1 -1 -1 1 2p,(0) 

oxygen atom. The surprising—and important—thing is that it is impossible to 

find an atomic orbital of the oxygen atom which will generate a set of numbers 

other than one of those given in this table. A test of this assertion can be 

obtained by considering the transformation of the 2s and the other 3d orbitals 

of the oxygen (3d22, 3dx2_y*, 3d,* and 3d>,2). Besides providing a partial proof 

of the assertion, this exercise will provide the reader with experience which 

will prove invaluable as the discussion develops. 

Problem 2.3 Show that 2s(0), 3d22(0) and 3dA.2_j,2(0) individually 

generate the same set of numbers as 2pz(0); 3d2A.(0) as 2pA(0) and 

3d>z(0) as 2p^,(0). In each case use the coordinate axis set shown in 

Figure 2.7 and operation labels indicated in Figure 2.4 (unless one is 

consistent, unexpected results can be obtained, as explained in the text). 

The assertion that one cannot add to the table of numbers given above 

suggests that this set of numbers has properties beyond those which might be 

expected from the way in which they were derived. This is so. Indeed, sets of 

such numbers will provide the basis for the discussion contained in almost all 

of the remainder of this book. As an illustration of the unexpected properties of 

these numbers, we make what might appear to be a digression to discuss in 

more detail the effects of applying two of the symmetry operations of the water 

molecule in succession. In fact, it is a discussion which touches at the 

fundamentals of the subject—although this would only become evident after a 

thorough study of Appendix 1. 

2.3 GROUP MULTIPLICATION TABLES 

Earlier in this chapter it was asserted that the effect of the successive appli¬ 

cation of symmetry operations of a group was always equivalent to the effect 

of some single operation of the group. This will now be investigated in detail 

for the C2v point group by considering, in turn, each operation and the effect of 

following it with each of the four symmetry operations of the group considered 

in turn. It will be helpful to focus attention on a particular molecule. The water 
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molecule is inconvenient for this particular purpose (because of the apparent 

equivalence of the effects of applying different symmetry operations, a 

phenomenon encountered several times already in this chapter) and instead the 

ethylene oxide, (CH2)20, molecule will be considered as an example. This 

molecule is shown in Figure 2.15. In this figure the hydrogen atoms have been 

labelled with the suffixes a, b, c or d—so that in order to study the effects of 

the symmetry operations on this molecule all that has to be done is to see how 

these labels are rearranged. The effects of the operations of the C2v point group 

on these labels are shown in Figure 2.16, a figure that should be studied 

carefully until the reader is fully conversant with it. It will be noted that each 

symmetry operation gives rise to a different final arrangement of labels—a 

feature which would not have been found with H20. 

o 

Figure 2.15 The ethylene oxide molecule C2H40. 

Because the identity operation does not change the distribution of the labels 

at all, it is evident that any operation preceded or followed by the identity 

operation gives rise to the same final arrangement as that operation on its own. 

It can immediately be concluded that: 

E followed by E = E 

E followed by C2 = C2 

E followed by av = av 

E followed by a(_= o'y 

C2 followed by E = C2 

av followed byE= av 

al followed by E = a' 

Less trivial is the result of the successive application of pairs of operations 

from the set C2, crv and o[. It has been pointed out earlier in this chapter that 

any one of these operations followed by itself gives rise to the initial 

arrangement and so the sequence is equivalent to the identity operation. That is, 

C2 followed by C2 = E 

<7V followed by ctv = E 

Oy followed by a'v = E 

The remaining combinations of operations are illustrated in Figure 2.17 and the 

reader may, by comparison with Figure 2.16, determine which single operation 



Figure 2.16 The effects of the symmetry operations of the C2v point group on the four 
hydrogen atoms of ethylene oxide. The point of importance is the relative pattern of the 
hydrogen atoms ‘before’ (left) and ‘after’ (right). 

is equivalent to each combination. The conclusion is that 

C2 followed by crv = o'v 

C2 followed by o'v = ov 

av followed by C2 = cr' 

av followed by a'v = C2 

followed byC2 = crv 

a' followed by av = C2 

These results are collected together in Table 2.2. 
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Figure 2.17 The effects of two successive operations of the C2v point group on the 
four hydrogen atoms of ethylene oxide. The single operation which corresponds to each 
combination of operations shown here may be determined by comparison with the 
patterns shown on the right-hand side of Figure 2.16. 

Problem 2.4 Check the entries in Table 2.2. 

It is usual in the mathematical theory of groups to refer to the law of combina¬ 

tion of group elements as ‘multiplication’ (although only rarely does the 

operation have anything to do with ordinary arithmetical or algebraic 

multiplication). So, in the present case, where two symmetry operations 

combine by being applied in succession, they are said to ‘multiply’. Thus we 

say ‘C2 multiplied by av is equal to a'’. Table 2.2 is therefore referred to as the 

multiplication table for the operations of the C2v point group.t 

Table 2.2 

C2v E 
First operation 

Cj CJy O y 

E E c2 av ol 
Second C2 C2 E CTy 

operation av av a\ E C2 
o[ ov c2 E 

t In Table 2.2 the results of the multiplication are independent of the order in which the operations 
are applied—the table is symmetric about its leading diagonal. This is not a general property of 
multiplication tables but it is one that makes that in Table 2.2 a particularly simple case to start 
with. 
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Problem 2.5 Construct a multiplication table for the operations E, C2, 

(crv) and (a') of the coloured table (Figure 2.5 and page 17) and thus 

demonstrate that the operations form a group (those wishing to pursue 

this a little further will find that the discussion towards the end of Section 

A. 1.2 of Appendix 1 has some relevance). 

Problem 2.6 By forming the group multiplication table show that 1, /, 

-i, -1 form a group under the operation of multiplying them together in 

the usual meaning of the word ‘multiplication’. The numbers 1 and -1 

are ordinary numbers and i - V—I (it is perhaps more useful to note that 
i2 = -1 and -z2= 1). 

Problem 2.7 Before using ethylene oxide as the example for Section 

2.3 the author considered urea, CO(NH2)2, as an alternative. He decided 
against it because although urea could have a structure with four 

hydrogen atoms arranged similarly to the pattern shown in Figure 2.15, in 

the crystal the molecule is planar, with two pairs of equivalent hydrogen 

atoms. Show that in both of these arrangements, planar and non-planar, 

urea has C2v symmetry. 

2.4 CHARACTER TABLES 

The reason for the digression in the previous section was to illustrate some of 

the properties of the sets of numbers contained in Table 2.1. This is done by 

combining Tables 2.1 and 2.2 in the following way. Choose any row of Table 

2.1, say, the second. Abstracting this row from the table, the association 

between symmetry operations and numbers is that shown below 

E C2 ov o\ 
1 1-1-1 

Turning now to Table 2.2, everywhere in this table that the operation E is 

listed, replace it by the number with which it is associated in the chosen row of 

Table 2.1. That is, it is replaced by the number 1. Similarly, wherever C2 

appears in Table 2.2 it is replaced by 1, whilst both crv and o\ are replaced by 

— 1. When these replacements have been made, Table 2.3 is obtained: 

Table 2.3 

1 1-1-1 

1 1 1-1-1 
1 1 1-1-1 

-1 -1-1 1 1 
-1 -1-1 1 1 
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The interesting—and important—thing about this table is that, if it is 

looked upon simply as a table in which numbers multiply each other, 

arithmetically, then the products are all correct. It is left to the reader to 

demonstrate that this statement is true no matter which row of numbers is 

selected from Table 2.1. Indeed, it is possible to approach the topic of the 

symmetry of the water molecule by first obtaining Table 2.2 and then inviting 

the student to attempt to find as many sets of numbers as possible that give an 

arithmetically correct table when substituted consistently into Table 2.2. Apart 

from the trivial set in which each operation is represented by the number 0, 

only those sets of numbers contained in Table 2.1 will be found to substitute 

correctly. This is a result that could not have been anticipated from the way that 

the sets of numbers were obtained. This is the first hint of the fundamental 

nature of the set of numbers of Table 2.1; more will be met in the next 

chapter.! 

Problem 2.8 Show, by an abortive search for alternatives, that only the 

sets of numbers contained in Table 2.1 substitute into Table 2.2 to give an 

arithmetically correct multiplication table (it is recommended that the 

reader decide in advance the number of sets that they are prepared to 
consider). 

Because of the close relationship between the multiplication of the 

operations of the C2v point group (given in Table 2.2) and the multiplication of 

the numbers in the rows of Table 2.3, each set of numbers may be regarded as 

representing (i.e. behaving in an analogous way to) the set of symmetry 

operations.! We shall speak of each row of Table 2.1 as being a representation 

of the symmetry operations. Further, we shall call them ‘irreducible representa¬ 

tions’ (the significance of the word ‘irreducible’ will not become evident until 

the next chapter, when the concept of a reducible representation will be 

introduced). In the discussion that follows it will often be necessary to refer to 

the individual rows in Table 2.1 and it is convenient to circumvent the need to 

write each one out in full by giving each a label. The labels commonly used are 
those shown in Table 2.4. 

Thus, the set of numbers given at the beginning of this section, (11-1-1), 

would be referred to as ‘the A2 irreducible representation of the C2v point 

group’. This sounds rather awkward when first encountered but it is the sort of 

phrase which occurs over and over again in the subject. Because the association 

between the symmetry operations and irreducible representations given in 

t This discussion explains why only the numbers 1 and -1 appear in Table 2.1. Had the number 2 
been associated with the E operation, for instance, then the product of multiplying E with £, in 
the group theoretical sense, to give the answer E—and so 2 by substitution—would not be 
arithmetically correct (arithmetic would call for the number 4). 
t Note that the word ‘multiplication’ in this sentence does not have quite the same meaning when 
applied to symmetry operations as it does when it refers to numbers. 
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Table 2.4 

C2v E c2 av a\ 

A. 1 1 1 1 2p,(0) 
a2 1 1 -1 -1 3d„(0) 

1 -1 1 -1 2p,(0) 
B2 1 -1 -1 1 2p,(0) 

Table 2.4 is unique to the C2v point group, this is indicated by including the 

group label in the top left-hand comer of the table. 

There is some system about the choice of the labels A,, A2, fi, and B2 

in Table 2.4. The A’s are distinguished from the B’s by the fact that they have 

numbers of +1 for the C2 operation whereas the B’s have -1 (in the general 

case, A’s have characters of +1 for rotation about the axis of highest symmetry 

while B’s have a character of -1). A,, by convention, is the so-called ‘totally 

symmetric’ irreducible representation and has +1 for all of its numbers. It is 

called totally symmetric because all the operations of the group turn something 

of A, symmetry into itself. Every group has a totally symmetric irreducible 

representation. Although it may not be labelled A, it is always the first A listed 

(it could be something like Ag or A' for instance). 
The system distinguishes A’s from B’s and A, from A2. This is really the 

end, although the distinction can be extended to the B’s by noting that 

irreducible representations with the suffix 1 are symmetric (character +1) under 

the crv operation whereas those with suffix 2 are antisymmetric (character -1). 

However, in the case of the B’s this distinction is marred by the fact that the 

distinction between av and o\ is somewhat arbitrary—interchange the use of 

these labels and the labels 5, and B2 would have to change too. In practice this 

means that it is advisable to check the notation used by each author—one 

worker’s notation may not be the same as the next. As long as one is consistent 

in the notation used for a particular problem there is no ambiguity about the 

final answer obtained. Similar considerations apply to many of the groups 

commonly used in chemistry. 
Just as the set of operations, (£, C2, ow, a'v) may be represented by any of 

the irreducible representations A,, A2, fl,, B2, so, too, individual symmetry 

operations, such as C2, are characterized, in each irreducible representation by 

a particular number (which, in general, varies from one irreducible representa¬ 

tion to the next). These individual numbers are termed characters and tables 

such as Table 2.4 are called character tables. As has already been indicated, 

character tables are of prime importance for the topics discussed in this book. 

The unexpected properties of the sets of numbers in Table 2.1 become the 

unexpected properties of character tables. It is these ‘unexpected properties’ 

(which are actually fundamental and far from accidental) which are at the 
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heart of their value in chemistry. In the next chapter, when the bonding in the 

water molecule is discussed, the existence, and to some extent the origin, of 

these properties will become clear. Because of their importance, this chapter 

concludes with some further comments on character tables in general and that 

of the C2v point group in particular. 
On the right-hand side of Table 2.4 the oxygen orbital is indicated which was 

used to generate a particular irreducible representation. Functions which have 

the property of generating an irreducible representation are commonly listed 

alongside character tables in this way. Such functions are called ‘basis 

functions’. It has been seen that the transformations of the oxygen 2py orbital 

under the operations of the C2v point group lead to the B{ set of 

characters—the oxygen 2py orbital is a basis function for the generation of the 

B] characters. This would normally be said a little more formally: ‘the oxygen 

2py orbital is a basis for the 5, irreducible representation of the C2v point 

group’. Alternatively, and more simply, ‘the oxygen 2py orbital has Bx 

symmetry in the C2v point group’.! 

Problem 2.9 Compare the multiplication table obtained in answer to 

Problem 2.5 with Table 2.2. Thus, or otherwise, construct the character 

table for the group of Problem 2.5. 

Problem 2.10 Repeat Problem 2.5 using the group of Problem 2.3. In 

this case it will probably be necessary to use the ‘or otherwise’ method 

and it may only be possible to generate an incomplete character table. The 

complete character table has the same set of characters as one that will be 
met in Chapter 11 (Table 11.1). 

Problem 2.11 Show that the dipole moment of the water molecule 

forms a basis for the A, irreducible representation of the C2v group. 

{Hint: the dipole moment must, by symmetry, be directed along the z 
axis.) 

Problem 2.12 Show that the translation of the entire water molecule 

along the y axis forms a basis for the B, irreducible representation of the 

C2v point group. Hint: represent the translation as an arrow and consider 

the transformations of this arrow and the direction in which it points. The 
y direction is given in Figure 2.7. 

t There is a subtle point here. When the symmetry is the focus of attention, an upper case 
(capital) letters is used. However, when the orbital is the focus of attention it is denoted by a 
lower case symbol: thus, ‘the b, orbital’. In this book the use of lower case symbols will largely 
be confined to diagrams. 
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Problem 2.13 Repeat Problem 2.12 but now consider a translation 

along the x axis and show that it transforms as B2. 

One final word, one which is not important at a first reading but which is 

included to help the reader understand the logic behind the sequence of the 

chapters in this book and to explain a word that will be used from time to time. 

The C2v point group is an Abelian point group. Abelian groups have multipli¬ 

cation tables which are symmetric about their leading diagonal (top left to 

bottom right)—inspection of Table 2.2 shows that this is true for the C2v 

group. That is, the result of multiplying two operations is independent of the 

order in which they are multiplied—of which operation comes first and which 

comes second. It is this, together with the fact that each operation multiplied by 

itself gives the identity, that makes the C2v group a particularly simple one to 

work with. An alternative (but equivalent) definition of an Abelian point group 

is to regard such point groups as those for which the character tables contain 

only numbers like 1 and -l.f The character tables of Abelian groups never 

contain numbers such as 3, -3, 2, -2 and 0. The reason why at the beginning 

of this chapter consideration of the ammonia molecule was deferred is that the 

character table of its point group contains the numbers 2 and 0 as well as 1 and 

-1. As will be seen in Chapter 8 (Table 8.2), this originates in the fact that the 

result of multiplying some of the elements of its group does depend on the 
order in which they are taken. 

2.5 SUMMARY* 

In a molecule the axis of highest symmetry is conventionally chosen to be the z 

axis; recommendations for the choice of x and y exist (p. 20). The concern of 

this book is with point group symmetry operations (pp. 11,14), which are 

named according to a conventional nomenclature (pp. 12, 13). These 

operations form a group (p. 15 and Appendix 1). In the present (and the next 

two) chapters the discussion is restricted to Abelian point groups (p. 33). In 

such groups, individual quantities—such as atomic orbitals on a central atom 

(pp. 18 et seq., 31)—that are transformed into themselves under the operations 

of the point group may have these transformations described by characters 

(p. 31). (An example of an Abelian group which shows a more complicated 

behaviour will be met in Chapter 11.) A complete collection of characters is 

called a character table (p. 31). Each row of characters is called an irreducible 

representation (p. 30); each of the individual quantities used to generate them 

jin Chapter 11 it will be seen that they can also contain complex numbers, such as i and -i, 
which are such that some power of them equals 1 (thus i4 = 1, for instance), 
t Page numbers refer to the page in the chapter on which a full discussion commences. 
Sometimes in the summaries words are used in a way that should be evident from the context but 

which will be discussed in detail in later chapters, e.g. ‘isomorphism’. 
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are said to be the basis for the irreducible representation that it generates 

(p. 32). Characters multiply together in a way that is isomorphous (p. 30) to 

the way that the operations of the point group multiply (p. 28 but see Appendix 

2). Irreducible representations are given labels in a systematic, but not always 

unambiguous, way (p. 31). 



3 

The Electronic Structure of the Water 
Molecule 

In Chapter 2 it was shown that it is possible to obtain sets of numbers (charac¬ 

ters)—called irreducible representations—by a study of the transformation 

properties of the atomic orbitals of the oxygen atom in the water molecule; the 

atomic orbitals served as bases for the generation of irreducible representations. 

Atomic orbitals are not the only things which may serve as bases. So, in Chapter 

2 some problems were concerned with the transformational properties of other 

quantities such as the dipole moment of the water molecule and it was seen that 

these serve as bases. In the following chapters a variety of bases will be met; for 

instance, when studying the vibrations of a molecule the small displacements of 

individual atoms will be used as bases. Sometimes, the set of numbers—the 

representation generated by the transformation properties of a basis set—appear 

in the character table. This is when an irreducible representation is generated. 

More commonly, however, the representation generated does not appear in the 

character table. In such cases the representation is a reducible one. One of the 

representations encountered in the present chapter is a reducible representation-, 

by studying it, a method of breaking up a reducible representation into a sum of 

irreducible representations will be obtained. However, to be able to do this it is 

necessary to recognize more of the special properties of the irreducible 

representations than those met in Chapter 2. Again, these will be developed with 

reference to the character table of the C2v point group. 

3.1 THE ORTHONORMAL PROPERTIES OF 
IRREDUCIBLE REPRESENTATIONS 

As indicated in Chapter 2, the sets of characters in the C2v character table have 

properties beyond those which might reasonably be expected from the way that 

they were derived. One set of these properties proves to be of great importance. 

Consider any irreducible representations of the C2v point group (Table 3.1) and 

multiply its individual characters by the corresponding characters of any other 

irreducible representation. Then sum the products of characters which have 

been obtained. So, consider as an example the A2 and Bx irreducible representa¬ 

tions. The sum of the products of characters is: 

[1 X 1] + [1 X (-1)] + [(-1) x 1] + [(-1) X (-1)] = 0 
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Table 3.1 

C2v E c2 o'y ' 

A, 1 1 1 1 2s(0), 2p,(0), xp{Ax) 
A2 1 1 -1 -1 
B, 1 -1 1 -1 2Py(0), rp(B{) 
b2 1 -1 -1 1 2p,(0) 

In this case, and for all others in which the characters of two different 

irreducible representations of the C2v point group are multiplied together, the 
sum is zero. If, however, instead of multiplying the characters of two different 
irreducible representations, the characters of an irreducible representation are 
squared and the answers summed, then a different result is obtained. For the B2 
irreducible representation: 

[lxl] + [(-1) x (-1)] + [(-1) x (-1)] + [1 x 1] = 4 

The sum of products is equal to four. The same answer would have been 
obtained no matter which of the irreducible reducible representations had been 
chosen. Four is also the number of operations in the C2v point group. This is no 
accidental coincidence. As mentioned in Chapter 2, every character table 
contains as its first row a series of 1 ’s, the characters of the totally symmetric 
irreducible representation. If these are squared and added then the result simply 
counts the number of operations in the group. So, for this irreducible repre¬ 
sentation at least (and for any other which has characters of either +1 or -1), 
the answer will always be the number of operations in the group, irrespective 
of how many operations there are. Because the number of operations in a group 
turns out to be an important quantity, it is given a name—it is called the order 
of the group. Thus, ‘the C2v point group is oft>rder four’. 

If, instead of choosing a row of the character table for the calculations of 
the above paragraph, the columns had been selected a similar result would have 
been obtained. The sum of the products of the characters in two columns is 
equal to zero when the characters come from two different columns. If the 
same column is chosen, i.e. the characters squared, then the sum of squares is 
equal to the order of the group. These results are known as the character table 
orthonormality relationships; a more general form of them will be discussed in 
Chapter 5 where it will be shown that they may be used to derive character 
tables as an alternative to the procedure used in Chapter 2. It is in large measure 
the existence of these relationships which enable symmetry considerations to 
simplify many problems in the physical sciences. They will be used frequently 
in this book. The word ‘orthonormaT is a composite of the words ‘orthogonal’ 
and ‘normal’ and embodies both. Orthogonal here means independent. When 
two things are orthogonal it means that one behaves—and can be discussed_ 
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without automatically requiring a change to the other. Thus, all the wavefunc- 

tions associated with an atom are orthogonal to each other. In the present case, 

we can talk of different irreducible representations quite independently of each 

other. Normal or normalized means ‘weighted equally’—and equal weighting 

usually means being given unit weight. This concept is most easily seen for 

two one-electron wavefunctions of an atom. Each wavefunction is normalized 

if, when we (mathematically) ask the question ‘How many electrons does each 

wavefunction describe?’ we obtain (mathematically) the answer ‘1’. If we 

obtained the answer ‘1’ for the first wavefunction but some different answer, 

say ‘1.83’ for the second we would say that the second was not normalized and 

we would have to modify it with a multiplicative scale factor so that we did, 

indeed, get the answer ‘1’. This scaled wavefunction would also then be said to 

be normalized. Later in this chapter we shall be effectively normalizing 

irreducible representations when we divide the number 4 (obtained by simple 

arithmetic) by the order of the C2v point group (the total number of operations 

in the group), which is also 4, to give the number 1. As implied above, the 

orthonormality relationships are best expressed mathematically and this is done 
in Appendix 2. 

Problem 3.1 Check that each of the irreducible representations of Table 

3.1 is orthonormal. 

3.2 THE TRANSFORMATION PROPERTIES OF 
ATOMIC ORBITALS IN THE WATER MOLECULE 

In this chapter it will be shown that C2v character table may be used to greatly 

simplify a discussion of the bonding in the water molecule. As usual, this 

bonding will be treated as arising from the interaction of orbitals located on 

the oxygen atom with those on the two hydrogen atoms. For simplicity, the 

discussion will largely be confined to the valence shell atomic orbitals of 

these atoms. That is, we shall consider the oxygen 2s, 2pz, 2px and 2p^ 

orbitals together with the two hydrogen Is orbitals. The transformation 

properties of the oxygen orbitals have already been discussed (Section 2.2 and 

Problem 2.3) and symmetry labels placed on them. The results are summar¬ 

ized on the right-hand side of Table 3.1; the hydrogen Is orbitals will be 

discussed shortly. It will prove convenient to use phrases like ‘orbitals of 

symmetry, by which, in the present example, is meant the 2s and 2p2 orbitals 

of the oxygen together with any orbitals of this symmetry which may 

subsequently be discovered (one arises from the hydrogen Is orbitals). In a 

similar way, the 2pv orbital of the oxygen will be referred to as ‘an orbital of 

Bx symmetry’, by which is meant that the characters of the 5, irreducible 

representation describe its transformations under the operations of the C2v 

point group. 
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So far in this book only the transformational properties of individual orbitals 

have been considered. However, it could happen that it becomes necessary to 

consider all three 2p orbitals of the oxygen atom together, as a set. What if the 

z axis had been chosen to lie in some arbitrary direction in the molecule rather 

than along the twofold axis (and, similarly, no symmetry constraints had been 

placed on the x and y axes)? A 2pz orbital pointing in an arbitrary direction 

would not be turned neatly into itself by all of the symmetry operations of the 

group. The behaviour of the 2px and 2py would similarly be complicated. In 

fact, any one of them, after being rotated or reflected, would have to be descri¬ 

bed as a linear combination, a mixture, of all three of the starting orbitals. We 

would have had to treat the orbitals as a set. Evidently, a careful choice of direc¬ 

tion for coordinate axes can simplify symmetry discussions!! Had we persisted 

in choosing arbitrary (but, of course, mutually perpendicular) directions for our 

axes the final result would have been the same—we would have ended up with 

2p orbitals transforming as A,, 5, and B2. However, the work involved would 

have been more difficult and it will not be until Appendix 2 has been read that 

the reader will be equipped to prove the assertion that has just been made. 

When we turn to the two hydrogen Is orbitals in the water molecule and 

attempt to place symmetry labels on them we are confronted with a similar 

problem. Should they be considered as individuals or as a pair? The answer to 

this question is simple (and covers the case of oxygen 2p orbitals oriented along 

arbitrary axes). Whenever one (or more) operations of the point group has the 

effect of interchanging or mixing orbitals (or, as sometimes happens, a little of 

both) then all of the orbitals which are scrambled must be considered together, as 

a set. This statement applies not just to atomic orbitals; it also holds for other 

quantities. For instance, in Chapter 9 it will be seen that the small atomic 

displacements used in the study of molecular vibrations are often scrambled by 

symmetry operations and these displacements have to be treated as a set. We 

return now to the specific problem of the transformation of the two hydrogen Is 

orbitals in the water molecule. In Figure 3.1 the behaviour of these two orbitals 

(which will be denoted hx and h2) under the symmetry operations of the C2v 
point group is shown. For the C2 and o'w operations the two hydrogen Is orbitals 

interchange but under E and av each remains itself. Something which remains 

unchanged under an operation gives rise to a character of 1 (the numbers which 

were introduced as multiplicative factors in Chapter 2 will now be referred to as 

characters). So, when two things remain unchanged it is both reasonable and 

correct to conclude that each makes a contribution of 1 to the character. 

aggregate character of 2 is obtained. For both the E and ov symmetry 

operations characters of 2 are therefore obtained. However, for the C~, and o'v 
operations a situation is encountered which has not previously been met, because 

t Throughout this book the author will be making educated choices of coordinate axes which 
simplify the subsequent discussion. The reader may find it amusing to try to catch him makine 
these simplifications. It is also a helpful exercise. 
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Figure 3.1 The behaviour of the two hydrogen Is orbitals of H20 under the symmetry 
operations of the C2v point group. The point of interest is the permutation of the labels 
hi and h2. 

When the transformation of several things is being considered together 

the character which they together generate under a symmetry operation is 

the sum of the characters which they generate as individuals. 

the orbitals /z, and h2 interchange under these operations. The fact that hlt for 

instance, disappears from its original position has to be described. The only 

evident way of doing this is by using a multiplicative factor (character) of zero. 

The same is true for h2. We can generalize this result as shown below. 

Symmetry operations which lead to all of the members of a set inter¬ 

changing with each other give rise to a resultant character of zero. If a 

symmetry operation results in some members interchanging while others 

remain in the same position, it is only the latter which makes non-zero 

contributions to the character. 
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This discussion contains no explicit recognition of the fact that hx and h2 

interchange under the C2 and cr' operations—only of their disappearance from 

their original positions. The correct way of describing the situation is by matrix 

algebra and is described in detail in Appendix 2. The present discussion avoids 

the use of matrix algebra and so it is not able to provide a description of the 

fact that /z, and h2 interchange. The more detailed treatment given in Appendix 

2 contains a proof of the two important rules given in the boxes above and 

shows that the transformation of hx and h2 under C2 and av leads to each 

contributing zero to the aggregate character.! 

The set of characters which has just been obtained is: 

E C2 av a'v 

2 0 2 0 

This set has properties which are rather different to those of corresponding sets 

which we obtained in Chapter 2 (and which we called irreducible representa¬ 

tions). For instance, when these characters are substituted for the corre¬ 

sponding symmetry operations in the group multiplication table (Table 2.2), the 
multiplication table obtained is not arithmetically correct.! 

Problem 3.2 Substitute characters for the corresponding operations in 
Table 2.2 using the correspondence 

E C2 av cr' 

2 0 2 0 

and check that the table obtained is not arithmetically correct. 

Problem 3.3 Show that the Is orbitals of the four hydrogen atoms of 

the ethylene oxide molecule discussed in Section 2.3 and, in particular, 

Figures 2.15, 2.16 and 2.17, form a basis for the following representation 
of the C2v point group 

E C2 crv o[ 

4 0 0 0 

3.3 A REDUCIBLE REPRESENTATION 

Although the set of characters generated at the end of the previous section is 

not identical to any of the irreducible representation of the C2v point group, it 

is equal to a sum of two of them. If the corresponding characters of the A, and 

t The zeros encountered in the text are there shown to be the diagonal elements of the appropriate 
transformation matrix. 

t It is very significant that when the transformation matrices of Appendix 2 are substituted, rather 
than characters, then the multiplication table obtained is correct provided that the rules of matrix 
multiplication are applied to the matrices. 
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Bx irreducible representations are added together, the same set of characters is 

generated as those obtained using hx and h2 as a basis: 

E C2 CTV CTy 
A, 1111 

Bx 1-11 -1 

A,+5, 2 0 2 0 

That is, the representation which was generated by the transformations of hx 

and h2 can be decomposed into a sum of irreducible representations. A 

representation which can be reduced to a sum of other representations is, 

reasonably enough, called a reducible representation. The use of the name 

‘irreducible representation’ for the representations appearing in the character 

table should now be clear. These representations cannot be reduced further, 

they are irreducible. There are similarities between reducible representations 

and irreducible representations, but there are also important differences.f A 
most important connection between reducible and irreducible representations is 

found in the orthonormality relationships (Section 3.1). These relationships 

provide a systematic way of reducing a reducible representation into its 

irreducible components. These relationships were introduced by multiplying 

the characters of two different irreducible representations together. What if, 

instead, one of the selected representations were reducible and only one were 

irreducible? Multiply the individual characters of the reducible representation 

generated by the transformation of hx and h2 by the corresponding characters 

of one of the irreducible representations of the C2v character table and sum the 

products. Choose, for example, the A2 irreducible representation: 

E C2 Oy Oy 

2 0 2 0 
A2 1 1-1 -1 

2 +0 -2 +0=0 

For the B2 irreducible representations the answer zero would also have been 

obtained. For the Ax and 5, irreducible representations, however, non-zero 

answers result. For example, for the Bx: 

E C2 Oy o'y 
2 0 2 0 

Bx 1-1 1 -1 

2 +0 +2 +0=4 

fOne of these has already been seen—for the C2v group the characters of a reducible repre¬ 
sentation do not multiply arithmetically to give a multiplication table in which there is a consistent 
correspondence between the numbers it contains and the operations in the corresponding group 

multiplication table. 
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It is not difficult to understand why A2 and 5, give different results. We 

know that the reducible representation is a sum of the A, and Bx irreducible 

representations. So, in the above procedure we were forming products of A2 

and of Bt with (A, + B,). That is, in the latter, the B, case, we were forming 

products between 5, and A, and between 5, and B, simultaneously. But the 

first of these gives a sum which is equal to zero, whilst the second gives a sum 

of four—as was seen in Section 3.1. That is, non-zero answers are obtained by 

the above procedure when from the character table there is selected an 

irreducible representation which is contained in the reducible. It is not 

surprising that an answer of 0 was obtained in the A2 case, because A2 is not 

contained in the reducible representation. This recognition leads to a general 

method for reducing reducible representations into their irreducible compo¬ 

nents. This is the method that has just been used for the BI reducible 

representation but, because it is so important, it is worthwhile to repeat it in 
detail, applied to the A, case. 

The steps involved are: 

Write down the reducible representation 

E C2 aw a' 

2 0 2 0 

Write down the characters of the selected (here, A,) irreducible representation 

1111 

Multiply the characters in the same column 

2 0 2 0 

Add these products together and then divide the sum by the order of the group 

4/4=1 

We conclude that our reducible representation contains the A, irreducible 

representation. Had it contained A, twice the final answer would have been 
2—and so on. 

Problem 3.4 Use the method described above to reduce the following 
reducible representations of the C2v point group. 

E C2 CTV a; 
(a) 2 0 -2 0 
(b) 3 -1 -1 -1 
(c) 3 1 -1 1 
(d) 3 1 1 -1 

Problem 3.5 Reduce the following reducible representations of the C2v 

point group and for each check your answer by adding together the 

characters of the irreducible representations to regenerate those given 

below (there is an aspect of the irreducible representations in this 
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problem which distinguishes them from those in Problem 3.4 and which 
makes this check worthwhile). 

E c2 C7y a\ 

(a) 3 -1 -3 1 

(b) 4 0 0 -4 

(c) 6 -4 -2 0 

(d) 9 1 1 1 

(e) 11 1 -3 -1 

3.4 SYMMETRY-ADAPTED COMBINATIONS 

What is the significance of the fact that the reducible representation generated 

by the transformation of the two hydrogen Is orbitals /z, and h2 may be 

reduced into a sum of A, and 5, irreducible representations? As has been seen, 

an irreducible representation such as A, describes the transformation properties 

of a single orbital as too does the 5, irreducible representation.t The signifi¬ 
cance therefore has to be that it is possible to derive from the orbitals h{ and h2 

one orbital, the transformations of which are described by the A, irreducible 

representation and a second orbital which transforms as Bx. Evidently, the next 

step is to investigate the form of these orbitals—to find out what they look 

like. There is a systematic method of carrying out this task but it will not be 

introduced until Chapter 4 (when it can be given a wider applicability than is 

possible here). For the present example a rather simpler argument will suffice. 

The reader will recall that in a discussion of the electronic structure of the 

hydrogen molecule, H2, two hydrogen Is orbitals combine to give bonding and 

antibonding combinations. If, hypothetically, the oxygen atom is removed 

from a water molecule a hydrogen molecule is left, albeit with a rather 

stretched H-H bond. It would be reasonable to expect that the combinations of 

hydrogen Is orbitals in this stretched H2 molecule would be related to the 

correct combinations of hydrogen Is orbitals in the water molecule. With 

neglect of overlap between the two atomic orbitals, the bonding and antibond¬ 

ing combinations of hydrogen Is orbitals in the H2 molecule have the form 

^(bonding) = — (hl+ hj 

^(antibonding) = -j= (/z, - h2) 
V2 

where the same labels for the hydrogen atomic orbitals have been used as in the 

water molecule. Consider the transformation of these bonding and antibonding 

t This is perhaps best seen in the context of the contents of the first box in Section 3.2, applied to 
the identity operation, E. The character under E simply counts the number of objects under 
consideration. 
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combinations under the operations of the C2v point group. The transformations 

of the bonding combination are shown in Figure 3.2 where, to emphasize the 

fact that it is a single orbital which is drawn, the component hydrogen Is 

orbitals have been joined together with a thick line. Clearly, under all of the 

operations of the C2„ point group this orbital is transformed into itself. That is, 

the combination \/Y2(hl + h2) is of Ax symmetry in the C2v point group. 

The transformation properties of the antibonding combination of hydrogen 

Is orbitals in the hydrogen molecule are shown in Figure 3.3. In this figure, 

again to emphasize that it shows the transformations of a single orbital, the two 

parts of the orbital are linked. The characters generated by the action of the 

operations of the C2v point group on this orbital are: 

E C2 crv a' 

1-1 1-1 

so that, as expected, it is of 5, symmetry. 

The bonding and antibonding Is molecular orbitals of the hydrogen 

molecule have the symmetries A, and £,, respectively, in the C2v point group. 

At the beginning of this section it was shown that there are A, and B, 

combinations of hydrogen Is orbitals in the water molecule but it was not 

possible to say what they looked like. Clearly, the molecular orbitals of H; 

C2 

crv 

<V 

Figure 3.2 The transformations of the H-H bonding orbital of H2 under the 
symmetry operations of the C2v point group. 



BONDING INTERACTIONS IN H20 AND THEIR ANGULAR DEPENDENCE 45 

Figure 3.3 The transformations of the H-H antibonding orbital of H2 under the 
symmetry operations of the C2v point group. The point of interest is a comparison of 
the phases of this orbital ‘before’ (left) and ‘after’. 

provide the answer. In the water molecule, rather than treating the two 

hydrogen Is orbitals separately, it is necessary to work with two combinations, 

one of A, symmetry and one of Bi. The A, combination is: 

VW = -7= (h\ + 
V2 

and the Bx combination is: 

i) = ~j= (hi ~ h) 

The argument used to obtain rp(A{) and rp(Bl) was based on plausibility rather 

than mathematical rigour. As indicated above, a more rigorous method will be 

developed in Chapter 4. 

3.5 THE BONDING INTERACTIONS IN H20 AND 
THEIR ANGULAR DEPENDENCE 

The two linear combinations of hydrogen Is orbitals in the water molecule 

which transform as the A; and Bx irreducible representations have now been 
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obtained. Although the mathematical form of these orbitals is one which 

neglects overlap between /z, and h2, this neglect in no way affects their 

symmetry species. 

We now come to a vital point in our argument. It involves as the key step an 

assertion which, for the moment, the reader is asked to take to some extent on 

trust. A proof will be given in Chapter 10 although a partial justification is 

included here. The assertion is that: 

Interactions between orbitals transforming as different irreducible 

representations are always zero.f 

That is, in a discussion of the bonding in a molecule the argument can be 

broken up into smaller, separate, discussions, one for each irreducible 

representation. This is an enormous simplification; the more the molecular 

symmetry, the greater its value. In the case of the water molecule, for example, 

the only orbital of B2 symmetry is the 2px orbital of the oxygen. There is no 

hydrogen Is combination of this symmetry and so the oxygen 2pv orbital does 

not interact with any other orbital in the molecule. That is, it is a non-bonding 

orbital located on the oxygen atom. This conclusion required virtually no work 

to obtain, yet it gives us chemically useful information on one of the orbitals 

of the water molecule. Symmetry arguments are useful! Incidentally, as a little 

thought about their transformation properties should confirm, when two (or 

more) orbitals of the same symmetry species interact, the final molecular 
orbitals are all of the same symmetry species as the initial orbitals. 

Figure 3.4 provides some justification for the assertion that consideration of 

bonding interactions can be confined to those between orbitals of the same 

symmetry species. It shows the overlap between the 2s orbital of the 

oxygen—of A, symmetry—and the 5, combination of hydrogen Is orbitals, 

V^(5,). It is evident that, although these orbftals overlap with one another, the 

overlap integral is zero since the regions of positive overlap are exactly 

cancelled by the regions of negative overlap. The zero overlap integral between 

2pA and the A, or 5, combinations of hydrogen Is orbitals rp{Ax) and ip(Bx)_ 

very relevant to the conclusion that 2pv is a non-bonding orbital_can 

similarly be demonstrated. The basis functions associated with the C2v 

character table—Table 3.1—provide a list of all the orbitals which interact 

with one another. The orbitals of A, symmetry which must be discussed are 

the 2s and 2pz orbitals on the oxygen, each of which interacts with the 

hydrogen Is combination ^(Aj). There are no orbitals of A2 symmetry and 

only two of 5, symmetry—the 2p, orbital of oxygen and a hydrogen Is 

t This statement concerns one-electron terms in the Hamiltonian. An analogous statement may be 
made which covers the two-electron terms. The general form of such statements will become 
evident in Chapter 10. 
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Figure 3.4 The zero overlap integral between an orbital of A, symmetry (oxygen 2s) 
and an orbital of B, symmetry (a linear combination of hydrogen Is orbitals). 

combination xp(Bx). We shall first consider the B{ interactions qualitatively but 

in some detail. 

The interaction between the 2p> orbital of the oxygen and the B, combina¬ 

tion of hydrogen Is orbitals will lead to bonding and antibonding molecular 

orbitals. A schematic representation of the overlap between 2p^ and *p(Bx), 
together with the form of the resultant bonding and antibonding molecular 

orbitals is shown in Figure 3.5. The bonding molecular orbital is an out-of- 

combinations 

Figure 3.5 Interaction between orbitals of B, symmetry, leading to bonding and 

antibonding combinations. 
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phase combination of 2py and ty{Bx) while the antibonding molecular orbital is 

an in-phase combination (if this pattern seems strange, compare the relative 

phases of 2py and xp(B^) in Figure 3.5). 

The 5, bonding orbital will surely be occupied by two electrons in the water 

molecular and so contribute to the molecular stability. There is an important 

point which must be made concerning this bonding molecular orbital. Consider, 

qualitatively, the dependence of the molecular stabilization derived from this 

orbital upon the HOH bond angle, 9. For the (hypothetical!) case of very small 

9, shown in Figure 3.6, the lobes of ip(Bl) overlap with 2py in a way that leads 

to a relatively small value for the overlap integral between them; the overlap 

integral decreases as the bond angle decreases. When 9 is very small, then, the 

interaction between the two orbitals of Bx symmetry, which varies roughly as 

the overlap integral, will be small and the 5, bonding molecular orbital will 

make little contribution to the molecular stability. As is qualitatively evident 

from Figure 3.6 (and is confirmed by more detailed calculations) as 6 increases 

(keeping the O-H bond length constant) the interaction between 2p>.(0) and 

rp{Bx) smoothly increases with 6 and reaches a maximum for a bond angle of 

180°. It is legitimate to conclude that, were this interaction the only thing 

determining the geometry of the water molecule, then H20 would be a linear 
molecule. Clearly, there is more to come! 

The interaction between the three orbitals of A, symmetry is a more difficult 

problem simply because there are three orbitals to consider, not two. In the case 

of the B, interaction, the final molecular orbitals were mixtures of the two 

starting. Similarly, we would expect the final A, molecular orbitals to be 

mixtures of 2s(0), 2pz(0) and xp(Ax). Although 2s(0) and 2pz(0) were 

introduced as separate functions they will be mixed (i.e. contribute to the same 

molecular orbitals) by virtue of their mutual interaction with rp(Ax) (induced 

by their mutual overlap with the hydrogen Is orbitals). Because of their 

original separation, it is unlikely that this mixing is very large. So, in the water 

molecule there will probably be an oxygefi 2s orbital mixed with a small 

amount of oxygen 2pz together with a second orbital which is largely 2p. 

mixed with a little of 2s. Both interact with the same hydrogen Is orbital 

Figure 3.6 Variation of overlap integral of the B, orbitals with variation in the bond 
angle in H20. 
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combination. The question immediately arises as to how many of the three 

resulting molecular orbitals will be bonding and occupied. Answers of 

guaranteed accuracy to this question will come either from experiment or from 

very accurate calculations. At a more approximate level it is usually safe to 

assume that interactions between orbitals will change orbital energies, but not 

dramatically. If, for the moment, H20 is regarded as a composite of an oxygen 

atom and H2 then in the oxygen atom the 2s orbital will certainly be occupied. 

In H2, the bonding combination ip(Ax) will certainly be occupied. So, it seems 

entirely probable that in H20 there are two molecular orbitals of A, symmetry 

which are filled with electrons and contribute to the bonding. It turns out that 

this is a correct description and that the composition of the orbitals is indeed 

that assumed; we shall briefly return to this model later. First, however, it is 

helpful to explore an alternative, simpler but less accurate, description of the 
A, bonding molecular orbitals. 

Consider the question ‘is it possible to obtain two combinations of the 2s(O) 

and 2p2(0) orbitals such that one does, and the second does not, interact with 

r/>(A,)?\ If this is possible then the problem has been reduced to the simplicity 

of the 5, case considered earlier; the interaction between two orbitals, not 

three. The simplification is possible, and the general way that it may be 

achieved is indicated in Figure 3.7. Figure 3.7 shows, schematically, that if in- 

phase and out-of-phase combinations of 2s(0) and 2pz(0) are taken then one 

of the resulting mixed (hybrid) orbitals is directed towards the hydrogen atoms 

whilst the second combination is largely located in a region remote from them. 

This second combination would be essentially non-bonding and we may, as a 

first approximation, ignore its interaction with xp{Ax). It is convenient to 

choose 2s (O) and 2pz(0) combinations which simplify the pictorial representa¬ 

tion of the problem and, therefore, to assume that they are sp hybrids of the 

form: 

-p [2s(0) + 2pz(0)] non-bonding 

and it is these which are shown, qualitatively, in Figure 3.7. 

Figure 3.7 In-phase and out-of-phase combinations of oxygen 2s and 2pz orbitals 

give two (sp) hybrid orbitals. 
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The problem has now been simplified so that it is analogous to that discussed 

earlier for the case of the Bx interactions; we have only the interaction between 

two orbitals, ip(Ax) and the second given above, to consider. These two orbitals 

will combine to give in-phase and out-of-phase combinations which are, 

respectively, bonding and antibonding molecular orbitals. These orbitals are 

shown schematically in Figure 3.8. Although excluded from participation in the 

bonding, the non-bonding orbital given above will almost certainly be occupied. 

It may be identified with a lone-pair orbital in the water molecule, the second 

lone pair orbital being 2px, which, as has been seen, is of Bl symmetry. 

O-H bonding O-H antibonding 

Figure 3.8 Interaction between orbitals of A, symmetry, leading to bonding and 
antibonding combinations. 

To complete the picture of the bonding in the water molecule, consider the 

relationship between the stabilization resulting from the interactions between 

the various orbitals of Ax symmetry and the value of the HOH bond angle. For 

this discussion it proves convenient to consider the interactions involving the 

2s(O) and 2pz(0) orbitals separately. It is evident, from Figure 3.9, that the 
magnitude of the interaction between 2s(0), and the hydrogen Is combination 

ip(Ax) does not depend upon the HOH bond angle. Because the oxygen orbital 

is spherically symmetrical the overlap integral is independent of the bond 

angle. So, this interaction does not vary with bond angle—and this is why it is 
convenient to consider the 2s(O) and 2pz(0) orbitals separately. 

The 2p2(0)-V'(A1) interaction is shown schematically in Figure 3.10. It is 

evident from Figure 3.10 that when 6= 180° there is a zero overlap integral 

Figure 3.9 An (A,) overlap integral which does not depend on bond angle (cf Figure 
3.6) because all orbitals concerned are spherical. ' 6 
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Figure 3.10 An (A^ overlap integral which varies with bond angle (cf. Figure 3.9) 
because one of the orbitals involved is non-spherical. 

and so no interaction between 2pz and xp(Ax). This result has its origin in 

molecular symmetry. The symmetry of a linear water molecule is no longer C2v 

but that of a different point group (called D„h). In this latter group the 2pz(0) 

orbital and ^(^i) are of different symmetries; it follows that they do not 
interact. Evidently, the interaction between 2pz(0) and ip{Ax) increases 

smoothly as the H-O-H bond angle decreases from a value of 180° and 

reaches a maximum at the physically unrealistic value 0 = 0°. Because the 

interaction of xp(Ax) with 2s(0) is independent of bond angle it is the 

interaction of tp(Ax) with 2p,(0) which determines the angular variation of the 

interaction of rp{Ax) with mixtures of 2s(0) and 2pz(0) orbitals; this 

interaction will tend towards a maximum at 6 = 0°. 

In summary, of the bonding interactions in the water molecule, those of A, 

symmetry favour a bond angle 0 —»0° and that of Bx symmetry leads to a 

stabilization which maximizes as 0-»18O°. The two interactions are opposed 

and the observed bond angle represents a compromise. It is easy to see that 

removal of an electron from the Bx bonding molecular orbital would reduce the 

tendency towards a large bond angle; this theme is developed later in the 

chapter. Incidentally, this example provides an illustration of an assertion made 

in Chapter 1; that symmetry arguments enable us to understand molecular 

structure rather than to predict it. Had the bond angle in water between 170° the 

discussion above could have been suitably modified (an angle of 180° would 

only have presented problems because the symmetry would no longer have 

been C2v). Our discussion has also enabled us to conclude that there is only one 

unambiguously non-bonding orbital. This, a pure 2pA atomic orbital of the 

oxygen atom, is of B2 symmetry. A second entirely non-bonding lone pair does 

not exist in the isolated water molecule (although most simple descriptions of 

the bonding in the molecule include one). However, in a rather less accurate 

model, a second non-bonding orbital of Ax symmetry can be introduced. The 

physical evidence for two lone pairs, and it is this evidence which provides the 

motivation for the simple pictures of bonding in the water molecule, comes 
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largely from structural data. Thus, in ice each oxygen is roughly tetrahedrally 

surrounded by four hydrogens, two close and two distant. It seems reasonable 

that each of the distant hydrogens should be associated, by hydrogen bonding, 

with a lone pair. However, it must not be forgotten that attaching two more 

protons to the water molecule, even loosely, will modify its electronic 

structure. So, for instance, each of the A, molecular orbitals of an isolated 

water molecule will also be involved in the bonding of these additional protons 

(just as is the case in methane). Further, the reader should be able to show that 

the Is orbitals of the distant hydrogens give rise to a combination of B2 
symmetry, so that even the—genuinely on a symmetry model non-bonding 

2pt orbital of H20 may become weakly involved in bonding in ice. 

Problem 3.6 The individual oxygen atoms in ice are surrounded by a 

distorted tetrahedron of hydrogen atoms. That is, they resemble the 

carbon atom of Figure 2.1 but two of the oxygen-hydrogen bonds are 

longer than the other two. The closely bonded pair are those discussed in 

Section 3.3. Show that the transformation of the Is orbitals of the more 

distant hydrogen atoms give rise to a reducible representation with 

A{ + B2 components. 

Problem 3.7 In a discussion of the bonding in H2S (bond angle 93°) 

the valence shell orbitals on the sulfur are 3s, 3p and 3d. Inclusion of the 

3d orbitals would increase the number of possible interactions with 

t/^(A,) and ip(B{) which would have to be considered. List all of the 

sulfur valence shell orbitals which could interact with each of them (use 
Table 2.4 and the results of Problem 2.3). 

3.6 THE MOLECULAR ORBITAL ENERGY LEVEL 
DIAGRAM FOR HzO 

The discussion has now reached the point at which it is possible to obtain a 

schematic molecular orbital energy level diagram for the water molecule. 

Rather than work with the first model presented above, the more accurate, we 

shall consider the approximate. This is because it is the model that is the more 

compatible with relatively simple ideas about the bonding in H20_it is the 

one most likely to be produced by simply following chemical intuition. 

Notwithstanding its approximate nature, it gives a good prediction of the 

relative ordering of molecular orbital energies and so gives hope that similar 

approximate models will also be of value for other molecules. We proceed by 

presenting a schematic energy level scheme in Figure 3.11 and then detail the 

arguments used in its derivation. Before doing this note that, in contrast to the 

discussion in the text, lower case symbols have been used in Figure 3.11. 

Strictly, as has been briefly mentioned earlier in a footnote, lower case symbols 
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are used to describe wave/unctions. Any wavefunctions—they could be 

vibrational wavefunctions, for instance, and this usage will be met in Chapter 

9. Thus, a one-electron wavefunction reasonably enough, characterizes a single 

electron. However, an orbital can be occupied by two electrons, each with the 

same (three-dimensional, spatial) wavefunction. The distinction in usage is a 

rather fine one and many, but not all, authors use lower case symbols for both 

orbitals and wavefunctions. The convention seems to be that in diagrams such 

as Figure 3.11 lower case symbols are used but in the associated text one is as 

likely to meet either ‘the orbital of A, symmetry’ as ‘the a, orbital’. In this 

book, upper case symbols will largely be used in the text and lower case 

symbols largely confined to diagrams. One important context in which lower 

case symbols are (almost!) invariably used in the literature is when orbital 

occupancies are specified. So, Figure 3.11 shows an orbital occupancy, starting 

with the lowest energy first and labelling orbitals of the same symmetry 
sequentially (la,, 2a!, 3a, ...) which is written as 

la!2 1 b* 2a* lb22 

Here the superscripts indicate the number of electrons in each orbital, two in 
each case. 

We now return to the details of Figure 3.11 and explain the arguments 

leading to the orbital energy sequence shown there. First, we have used a nodal 

plane criterion, which experience shows to be reliable.1 In the simple model 

of the water molecule there are just two bonding molecular orbitals, one of 

A, and one of 5, symmetry. Figures 3.5 and 3.8 reveal that although for both 

A, and fi, bonding molecular orbitals the oxygen-hydrogen interactions are 

entirely bonding, in the 5, case the hydrogen-hydrogen interactions are 
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Figure 3.11 A schematic molecular orbital energy level diagram for H20. 
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antibonding— xp(B,) corresponds to the antibonding combination of Is atomic 

orbitals in the hydrogen molecule. The corresponding component in the A, 

bonding molecular orbital is bonding (Figure 3.8) and so it is reasonable to 

anticipate that this orbital will be more stable than the Bx. That is, the orbital 

with the smallest number of nodal planes is usually expected to be the most 

stable. Second, to obtain the most probable order of the two non-bonding 

molecular orbitals (of Ax and B2 symmetries) note that the 2s orbital of the 

isolated oxygen atom is of a lower energy than the 2p s. It seems reasonable, 

therefore, that ip(Ax), which contains a 2s component, should be of lower 

energy than the B2 non-bonding orbital which is pure 2px (the same argument 

is also relevant to the A, and Bx bonding molecular orbitals and reinforces the 

previous conclusions about their relative order). There is another point which 

must be made in connection with Figure 3.11. In this figure the interaction 

between the hydrogen Is orbitals hx and h2 is shown as removing the 

degeneracy of these two orbitals. This splitting corresponds to the separation 

between the bonding and antibonding molecular orbitals of H2 (much reduced 

in the present case because of the large separation between the two hydrogen 

atoms). On the other hand, the mixing of the 2s and 2p orbitals of the oxygen 

combination *p(Ax) is shown as bringing these two closer together in energy. 

This is because if the combinations have the idealized sp hybrid forms which 
they were given earlier then they would be precisely equivalent (although 

differently orientated in space). It follows that if we were to work out energies 

associated with these two hybrids then we would expect to obtain the same 

result for each. The conclusion is, therefore, that when orbitals on the same 

atom are mixed to give general—not idealized—hybrid orbitals these hybrids 

should be regarded as having energies intermediate between those of their 
components. 

In the water molecule there are eight valence electrons available to be 

allocated to the four lowest molecular orbitals shown in Figure 3.11 (the 

electron configuration of the oxygen atom is ls22s22p4 and contributes six 

valence electrons; each hydrogen is Is1 and contributes one). It follows that the 

lowest four orbitals, two non-bonding and two bonding molecular orbitals, are 
occupied. 

3.7 COMPARISON WITH EXPERIMENT 

Is there any experimental test of the model that has just been developed? The 

most pertinent test would be the observation of individual orbital energy levels. 

Such data are provided by photoelectron spectroscopic measurements, in which 

electrons are ejected from individual molecules by high energy monochromatic 

radiation in a high vacuum. The difference between the (measured) kinetic 

energy of an ejected electron and the energy of the incident photons is the 

energy required to remove the electron from the molecule. A variety of electron 
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energies results, corresponding to a variety of molecular ionization energies. 

These ionization energies correspond very closely to the usual definition of 

orbital energy. An orbital energy is defined as the energy required to remove an 

electron from a molecule subject to the restriction that the orbitals of the other 

electrons in the molecule are unchanged. Evidently, this is a theoretical, rather 

than practical, definition—some readjustment of the orbitals of the residual 

electrons would be expected. Fortunately, however, the effect of these 

readjustments is usually rather small. It is therefore possible to use the 

ionization energies given by photoelectron spectroscopy to test our model. 

The photoelectron spectrum of water shows four peaks (of energies 

12.62 eV, 13.78 eV, 17.02 eV and 32.2 eV. Qualitatively, then, the photo¬ 

electron measurements support the energy scheme given in Figure 3.11. There 

are four different ionization energies arising from valence-shell electrons. A 

detailed analysis of the photoelectron spectrum can also give some idea of the 

symmetry species of the molecular orbital from which a particular electron is 

photo-ejected. In the case of the water molecule the 12.62 eV peak is probably 

associated with ionization from a B2 orbital, the 13.78 and 32.2 eV peaks with 

ionization from A, orbitals and the 17.02 eV peak with ionization from a 5, 

orbital, in agreement with the qualitative predictions of Figure 3.11. Agreement 

with the more accurate model is even better. The ionization from the most 

stable orbital (that at 32.2 eV) is from a largely 2s(0) orbital; ionizations from 

the other orbitals are from orbitals which have considerable 2p(0) contri¬ 
butions and so are relatively close together in energy. 

With the present-day computers it is possible to carry out accurate calcula¬ 

tions on molecules with fewer than, perhaps, fifty electrons. The water 

molecule with a total of only ten electrons should, therefore, be amenable to 

quite precise theoretical investigation. All of the accurate calculations which 

have been performed on this molecule lead to roughly the same orbital energies 

and demonstrate the presence of molecular orbitals of A, symmetry at about 14 

and 30 eV, a Bx at about 17 eV and one of B2 symmetry at about 12.5 eV. The 

agreement between these data and the photoelectron results is very good. That 

with Figure 3.11 is as good as could be expected. 

It is particularly encouraging to find that the qualitative symmetry based 

arguments which have been used to discuss the electronic structure of the water 

molecule should give results which are in excellent qualitative agreement both 

with those obtained by experiment and those obtained by detailed calculations. 

Hopefully, the same techniques may be applied to other molecules and similar 

qualitatively accurate results obtained. It is obvious that as molecular 

complexity increases the difficulty in arriving at an unambiguous energy level 

scheme will also increase. However, the symmetry of the water molecule is not 

particularly high. It is not unreasonable to hope that for larger, but higher 

symmetry, molecules the increase in molecular complexity will be compen¬ 

sated for by the increase in molecular symmetry and so the methodology will 

remain applicable. 
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3.8 THE WALSH DIAGRAM FOR TRIATOMIC 
DIHYDRIDES 

We are now in a position to reconsider in more detail a problem which we first 

encountered in Chapter 1—that of the significance which can be placed upon 

the observation that the bond angle in the electronic ground state of the water 

molecule is 104.5°. As shown in Section 3.5, the bonding interactions 

responsible for the stability of the water molecule are maximized at quite 

different bond angles. The stabilization resulting from the Bx interaction 

maximizes at a bond angle of 180° whereas that from the Ax interactions 

maximizes at a small bond angle. The observed bond angle represents a 

compromise, showing that interactions involving both 2py(0) and 2pz(0) are 

of importance. However, the total bonding is unlikely to show a strong 

dependence on bond angle because although a change in 6 will reduce the 

stabilization resulting from interactions involving orbitals of one symmetry 

species it will increase the stabilization accruing from the other. Only if water 

had been found to be linear could it have been concluded that the major 

contribution to the molecular bonding resulted from interactions between those 

orbitals which we have identified as being of Bx symmetry. Conversely, only if 

the bond angle were very small, say 60°, would it then have been valid to 

conclude that most of the stabilization resulted from the A, interaction. A 

diagram showing this behaviour schematically is given in Figure 3.12 where. 

At HOH = 180° 2o,and 1b2 become degenerate (linear triatomic) 

At HOH = 0°1b) and 1b2become degenerate (linear diatomic) 

Figure 3.12 A Walsh diagram for H20. 
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again, orbitals have been denoted by lower case symbols. In this diagram there 

is also recognition of the fact that at the 0= 180° limit the orbital which has, 

qualitatively, been called the A, non-bonding orbital loses its 2s component and 

becomes a pure 2p non-bonding orbital. This latter orbital is therefore 

degenerate with (i.e. has the same energy as) the non-bonding orbital which we 

have labelled B2. Conversely, the lower, bonding, A, orbital loses its 2p 

component and becomes a pure 2s orbital at 180°—and so is of lower energy 

in this limit. The non-bonding B2 orbital remains unchanged in energy as the 

bond angle changes (actual calculations show that it increases slightly in 

energy at the 180° limit but as this is caused by the effects of electron repulsion 

we have not included it in Figure 3.12). Figure 3.12 is specifically drawn for 

H20—but its general form is applicable to all MH2 molecules for M atoms 

which have similar valence shell orbitals to oxygen. Diagrams of this type were 

first introduced by Walsh2 and are therefore commonly known as Walsh 
diagrams. 

It is possible to directly relate the observed geometries of first row MH2 

molecules (in electronic ground and excited states) to the occupancy of the 

highest B2 and A, orbitals in Figures 3.11 and 3.12. Occupancy of the former, 

which is non-bonding, would be expected to have little effect on bond angle but 

the lower the occupancy of the latter the larger we expect the bond angle to be 

(and vice versa). Table 3.2 details relevant data and shows that when there are 

two electrons in the highest A, orbital an angle of about 103° results; one 

Table 3.2 

Orbital occupancy 

Molecule A, b2 Bond angle 

BH2 (excited) 0 1 180° 
bh2 1 0 131° 
CH2 (triplet excited) 1 1 136° 
CH2 (singlet excited) 1 1 140° 

NH2+ (excited) 1 1 144° 

bh2- 2 0 100° 

ch2 2 0 102° 

ch2- 2 1 99° 

nh2 2 1 103° 

oh2+ 2 1 107° 

oh2 2 2 105° 

nh2- 2 2 104° 

Data from E. Wasserman, Chem. Phys. Letters, 24 (1974), 18, 
and Y. Takahata, Chem. Phys. Letters, 59 (1978), 472 (note 
that in this latter paper and B2 are interchanged compared 
with the usage in this chapter). 
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electron in this orbital leads to a bond angle of about 140°. When this orbital is 

empty a linear molecule results. 

Problem 3.8 The following species have been the subject of theoretical 

investigations but their bond angles have yet to be determined experimen¬ 

tally. Predict approximate values for their bond angles 

FH23+, BeH2“, CH2~, BH|-, NH2+ 

3.9 SIMPLE MODELS FOR THE BONDING IN H20 

This chapter is concluded by investigating the relationship between the 

picture of the electronic structure of the water molecule which has been 

developed in the chapter and that given by models such as those discussed 

for ammonia in Chapter 1. The first model is that in which the oxygen atom 

in the water molecule is regarded as being tetrahedrally surrounded by 

electron pairs, two bonding and two non-bonding. The concordance between 

this model and the general pattern of energy levels shown in Figure 3.11 is 

easy to show. The bonding electron pairs (which have been called /?, and 

fi2) and the lone pair electrons (labelled /t and /2) are shown schematically 

in Figure 3.13. It is easy to show that the transformations of the two 

bonding orbitals /?, and /?2, considered as a pair, generate the reducible 
representation: 

E C2 ctv cr' 

2 0 2 0 

which has A, and Bx components. These, of course, are precisely the same 

symmetries as possessed by the bonding molecular orbitals shown in Figure 

3.11. It is also easy to show that the transformations of the lone pair orbitals, lx 
and l2, generate the reducible representation: 

E C2 av a' 

2 0 0 2 

which is also easily shown to be the sum of the A, and B: irreducible 

representations. These, again, are the symmetries of what have been identified 
as the lone pair orbitals in Figure 3.11. 

Problem 3.9 Generate the two reducible representations discussed 
above. Use Figure 3.13. 

It is interesting to consider the ‘tetrahedral oxygen’ model for H:0 in more 

detail. Let us start with the lone pair orbitals. Since they are localized on the 

oxygen atom we conclude that they must be derived from the valence shell 
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Figure 3.13 The tetrahedral arrangement of bonding 
electron pairs (/?) and lone pairs (/) in H20). 

atomic orbitals of the oxygen atom. But the only B2 valence shell oxygen 
atomic orbital is 2pA.(0), so the orbital of this symmetry which is a combina¬ 
tion of lone pair orbitals must be identical to that obtained from our symmetry 
based discussion. Similarly, the combination must be some mixture of 
2s(O) and 2pz(0), again in qualitative agreement with our earlier result. Study 
of the O-H bonding orbitals leads to a similar agreement with the model we 
have developed in this chapter. Because /?, and /?2 are bases for A, and Bx 
irreducible representations we conclude that 2s(0), 2p2(0) and */>(A,) may 
contribute to the A, combination. Similarly, 2p>(0) and xp{B{) contribute to 
the 5] combination—conclusions identical to those reached earlier. Further, 
the statement that /?, and /?2 are bonding means that the A, and B, combina¬ 
tions must be in-phase, bonding, combinations of oxygen and hydrogen 
orbitals. We conclude that the simple two bonding, two non-bonding orbital 
picture of the water molecule may readily be reinterpreted in the language 
which we have used in this chapter. Further, by using the energy-level criteria 
based on the number of nodal planes and the relative energies of atomic 
orbitals, discussed in the present chapter, the qualitative energy level diagram 
shown in Figure 3.11 can again be derived. 

The second simple model of the water molecule to be considered is one that 
is sometimes quickly discarded. This is the model in which only the 2p orbitals 
of the oxygen atom are considered as being involved in O-H bonding, the 2s 
orbital being, implicitly, regarded as non-bonding. In this model, the oxygen 2p 
orbitals which lie in the plane of the water molecule overlap with the hydrogen 
Is orbitals. The relevant oxygen 2p orbitals, which because it is a choice in 
accord with that made in setting up the group theoretical model, will be taken 
to be 2pz(0) and 2p>,(0), are orientated so as to point directly at the hydrogen 
atoms. This is shown in Figure 3.14; a bond angle of 90° is predicted. The 
oxygen 2pA orbital, which is perpendicular to the plane of the molecule, is non¬ 
bonding, precisely the role which we found it to play. The two non-bonding 
orbitals are, therefore, 2s(0) and 2pA(0), which are of A, and B2 symmetries, 
just as found above (their relative energies—one very stable A, orbital and one 
high energy B2 orbital—also agree with the symmetry-based model). It is easy 
to show that the two bonding orbitals which result from the overlap of the 
2pz(0) and 2p>,(0) orbitals (those in the plane of the molecule) with the 
hydrogen Is orbitals give rise to a reducible representation with A, and Bx 
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Figure 3.14 Bonding in H20 with 2p as the only oxygen orbitals involved. Note that 
the axis labels do not follow the convention adopted elsewhere in this book. 

components. Arguments analogous to those developed above for /5, and /S2 in 
the previous model demonstrate that the qualitative forms of the corresponding 
A, and fi, molecular orbitals are those deduced earlier in this chapter. It is 
perhaps pertinent to comment that this particular simple model gets closer to 
the results of accurate quantum mechanical calculations than does any other. It 
predicts a low-lying non-bonding 2s orbital, one pure 2p non-bonding oxygen 
orbital and two bonding molecular orbitals involving oxygen 2p orbitals. Yet 
this is a model which fell into disuse in the 1950s—perhaps it is time for its 
revival. 

Problem 3.10 Show that the 2pz(0) and 2p>,(0) orbitals shown in 
Figure 3.14 transform together as A, + £,. 

Problem 3.11 In the text a variety of alternative arguments, all leading 
to the same conclusion, have been used to arrive at the general form of 
Figure 3.11. Select and rehearse a single set of arguments leading to this 
figure. 

3.10 A RAPPROCHEMENT BETWEEN SIMPLE AND 
SYMMETRY MODELS 

It is useful at this point to review the development of the arguments in this 
book. In Chapter 1 it was concluded that simple models of molecular bonding 
cannot be expected to be infallible predictors of molecular geometry. However, 
in the present chapter it has been shown, at least for the case of the water 
molecule, that these simple models may usefully be reinterpreted. It is possible 
to recast them and to show that the bonding descriptions which they present are 
equivalent, qualitatively, to a symmetry-based description. Symmetry-based 
descriptions show that there can be different relationships between molecular 
geometry and the contribution to the bonding from the various bonding 
molecular orbitals. The stabilization resulting from one interaction may be 
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independent of geometry, others may be very sensitive to geometry. Different 
interactions may make a maximum contribution to molecular stability at quite 
different patterns of bond angles. Although not evident from the discussion so 
far, these conclusions have a general validity. 

It is here that the circle closes. Simple pictures of molecular bonding are 
perhaps more reliable predictors of relative energies of molecular orbitals than 
they are of molecular geometries (although more used for the latter rather than 
the former). When a simple picture fails to give a correct molecular orbital 
energy level pattern it is usually because there are some interactions in the 
molecule involving orbitals other than those considered in the simple model. In 
such cases the simple models are, none the less, usually good starting points 
for a detailed discussion. Finally, we note that, despite their apparent 
differences, when there is a variety of simple approaches to the bonding in a 
molecule, they usually lead to the same qualitative energy level diagram. 
Again, the only exceptions occur when different models include different 
interactions, but here the differences are themselves illuminating. 

What is the particular attraction of a symmetry-based approach which leads 
us to refer all other models to it? A computational advantage has already been 
mentioned—interactions are non-zero between wavefunctions of the same 
symmetry species so that the size of the problem, the number of interacting 
orbitals, is reduced. There is another important reason. Whenever excited 
electronic states or ionized species are considered it becomes essential to use a 
symmetry-based approach. This is because it is the only one which allows a 
simple connection between the discussion of the ground and excited (or 
ionized) states of a molecule. One illustration will make the point. Suppose an 
electron in the water molecule is excited from a bonding orbital to some high- 
lying, non-bonding, orbital and suppose that the excited electron comes from a 
single O-H bond. According to all of the simple models of the bonding in the 
water molecule those electrons associated with one bond are not associated 
with the other and so such an excitation would seem entirely possible. In the 
excited state the two O-H bonds would differ—one has only one bonding 
electron while the other has two. This is in contradiction to the observation that 
in all stable excited states of the water molecule the O-H bonds are equivalent 
(excluding unstable states from which dissociation into H + OH occurs). For a 
symmetry-based description, in which the bonding electron comes from a 
molecular orbital spread equally over both hydrogen atoms, the observed 
equivalence of the two hydrogen atoms in excited or ionized states follows 
naturally. A symmetry-based description is thus to be preferred because it can 
be applied to both ground and excited states.f 

t A paper which makes a direct connection between the models considered above and the 
photoelectron spectrum of the water molecule is J. Simons, ‘Why Equivalent Bonds Appear as 
Distinct Peaks in Photoelectron Spectra’, in J. Chem. Educ., 69 (1992), 522. 
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Problem 3.12 A student was heard to complain that ‘symmetry 

arguments make difficult problems even harder by adding another 

complicating consideration’. Write a one-page document assessing this 

point of view. 

3.11 SUMMARY 

The irreducible representations which appear in character tables are orthonor¬ 

mal (p. 35)—each component is independent of the others and carries equal 

weight. This property enables reducible representations (p. 41) to be reduced 

systematically to their irreducible components (p. 42). In the context of 

molecular bonding this enables the interactions between orbitals of each 

symmetry type to be discussed separately (p. 46). Such discussions, together 

with simple nodal-plane criteria (p. 54), enable qualitative molecular-orbital 

energy level diagrams to be constructed (p. 53) and the angular variation of 

each bonding interaction assessed (p. 51). This latter information may be 

conveniently represented as a Walsh diagram (p. 56). A symmetry analysis of 

simple pictures of molecular bonding reveals that they have similarities with 

each other and with the symmetry-based approach (p. 58). 
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4 

The D2h Character Table and the 
Electronic Structures of Ethene 

(Ethylene) and Diborane 

The present chapter has several objectives, in addition to those indicated by its 

title. First, to introduce a new symmetry group and its character table. The group 

has been chosen because it is related to the C2v group with which the reader is 

now familiar. It is not the simplest group that could have been used to discuss the 

bonding in ethene and diborane—the simplest would be the group D2, a group 

which will be met shortly—but this discussion itself is only part of the objective 

of the present chapter. Use of the more complicated, Dlh (pronounced ‘dee two 

aich’) group will enable a start to be made on an exploration of the relationships 

between groups and the corresponding character tables. A second objective is to 

present and to use the rather important technique of projection operators. Despite 

their somewhat unattractive name these provide a very simple method of 

obtaining functions transforming as a particular irreducible representation, 

otherwise as difficult as it is necessary and important. 

4.1 THE SYMMETRY OF THE ETHENE MOLECULE 

The effect of bringing two CH2 units, each of C2v symmetry, together to form 

an ethene molecule has the effect of generating additional symmetry elements. 

All of the symmetry elements of the ethene molecule are shown in Figure 4.1. 

As shown in this figure, each CH2 fragment is turned into itself by the 

operations that were met when discussing the C2v point group—that is, there 

are two perpendicular mirror planes, the intersection between them defining a 

twofold axis, common to the two CH2 units. As Figure 4.1 shows, the union of 

the two CH2 units to form ethene has the effect of generating two new C2 

rotation axes, the three twofold axes being mutually perpendicular. This 

immediately suggests their use as Cartesian coordinate axes, a suggestion 

which we shall follow. Note that each of the three C2 axes is unique. This is 

rather important because later in this book sets of twofold axes which are not 

unique will be met. In ethene, each twofold axis is unique because there is no 

operation in the group which interchanges any pair of them. This assertion can 

be checked after reading the next few paragraphs and a complete list of the 
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C2U) 

o-(xy) 

H 

Figure 4.1 The symmetry elements of the ethene molecule; the list is complete except 
for the identity element, which has to be added. 

ethene symmetry operations has been obtained. In high-symmetry molecules it 

is quite common for there to be a set of rotation axes (or mirror plane 

reflections or other operations) which are either interchanged or mixed! by 

other operations of the group. In such cases there is a corresponding compli¬ 

cation in the character table and it is this complication which we seek to avoid 

here—it will be met in the next chapter—by working with another example of 

an Abelian! point group (the C2v group of Chapters 2 and 3 is Abelian, 
something which makes it particularly easy to work with). 

When, as in this case, there are several apparently equally good choices for 

the z axis, it is usual to choose that axis which contains the largest number of 

atoms and so we shall take as z the twofold axis which passes through the two 

carbon atoms. It follows that the (local) z axis of each CH2 fragment (of C2v 

symmetry) is coincident with the molecular z axis. Just as in the C2v case, the 

labels of the other coordinate axes are determined by the convention that the 
planar molecule lies in the yz plane. 

As is evident from Figure 4.1 the mirror planes of each CH2 fragment persist 

as symmetry elements in the complete molecule. A third mirror plane exists in 

f We include the word ‘mixed’ here to make the statement rigorous. Its meaning will only become 
clear after reading Chapters 5 and 6. 
t It is not essential that the meaning of ‘Abelian’ is fully comprehended at the present point but it 
is given in Appendix 1 (Section A 1.3); comments on pages 64, 102 and 104 are also relevant. 
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the ethene molecule. This passes through the mid-point of the carbon—carbon 

bond and is perpendicular to that bond. Figure 4.1 shows that each of the 

mirror planes is perpendicular to one of the coordinate axes; equally, it lies in 

the plane defined by the other two coordinate axes. Rather than use a crv 

notation for the mirror planes, each mirror plane is conventionally labelled by 

the molecular coordinate axes which it contains: thus o(xy), o{yz) and o(zx). 
There will be more to say about these labels shortly. 

All of the symmetry elements listed so far are similar to those encountered 

in the C2v group. Additionally, however, the ethene molecule contains a centre 

of symmetry, a point such that inversion of the whole molecule through it gives 

a molecule which is indistinguishable from the starting one. This centre of 

symmetry is indicated by the star-like point at the centre of Figure 4.1. More 

strictly, a centre of symmetry is such that inversion of any point of the 

molecule in it gives an equivalent point. Pictorially, if a straight line is drawn 

from any point (the starting point) in the molecule to the centre of symmetry 

and then extended an equal length beyond the centre of symmetry, the terminal 

point of the line is symmetry-equivalent to the starting point. This element, and 

the corresponding operation are conventionally denoted by the lower case 

symbol A centre of symmetry, if there is one, is always at the centre of 

gravity of a molecule. A molecule may possess several rotation axes, several 

mirror planes but it can never possess more than one centre of symmetry. 

Problem 4.1 Draw a diagram of the ethene molecule and use it to 

compile a list of all the symmetry elements that it contains. Check your 

answer by reference to the discussion above and the list below. 

The symmetry elements of the ethene molecule provide a better example of 

the use of the word ‘point’ when talking about a point group than do the 

symmetry elements of the water molecule. As is evident from Figure 4.1, all of 

the symmetry elements have one point in common, all pass through a common 

point, located at the centre of gravity of the molecule (in this context, the 

identity element is best thought of as corresponding to a Cx rotation axis). 

In summary, then, and talking now in terms of symmetry operations rather 

than symmetry elements, the symmetry operations which turn the ethene 

molecule into itself are: 

E C2(z) C2(y) C2(x) i o(xy) o(zx) o(yz) 

This group of symmetry operations is commonly given the shorthand label D2h. 

A detailed discussion of such shorthand labels will have to be deferred until 

Section 7.5 because it will not be until then that all of the symmetry operations 

on which the classification is based will have been met; up to that point they 

will have to be discussed individually. It is clear that the label D2h requires 

some explanation. Point groups which contain a principal Cn axis and, 

perpendicular to this principal axis, n twofold axes are called dihedral point 
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groups and hence carry the label Dn (D for dihedral). If one CH2 group of the 

ethene molecule were to be slightly rotated about the z axis (so that the 

molecule becomes non-planar) then all of the mirror planes would be 

destroyed, as would the centre of symmetry. The resulting molecule would be 

of D2 symmetry. 

Problem 4.2 Show that when the two CH2 groups of ethene are rotated 

(twisted) by equal and opposite amounts about the z axis of Figure 4.1 

the molecule obtained has D2 symmetry (operations E, C2(z), C2(y), 

C2(x)). Note that for the simpler rotation described in the text (rotate one 

CH2 group by 6°) it is necessary to rotate the x and y axes, and the C2 

axes associated with them, by 0/2 about the z axis in the same sense to 

obtain an equivalent result. 

If, perpendicular to the principal rotation axis—that of highest n value in 

Cn—in a molecule there is a mirror plane, that is, a plane horizontal with 

respect to the Cn axis, then this mirror plane is denoted oh (recall that in 

Chapter 2 a mirror plane which is vertical with respect to the principal rotation 

axes, was denoted av). If a Dn group also contains a oh mirror plane then the 

point group is labelled Dnh. The present point group falls into this category 

once a difficulty has been overcome. This is that in the present group, D2h, no 

mirror plane has been called oh (or av, for that matter). The reason for this is 

that in D2h there are three C2 axes, any one of which might equally well be 

chosen as the principal axis. The mirror plane which should be labelled oh 

would depend upon which particular C2 axis is nominated as principal axis. In 

this particular case, where all three mirror planes are equally good candidates 

for being labelled ah the egalitarian solution is to give none of them this label 

but, rather, designate them as has been done above. However, egality cannot 

alter the claim of the group to be recognized-as one of the Dnh type; accord¬ 
ingly it is labelled D2h. 

4.2 THE CHARACTER AND MULTIPLICATION 
TABLES OF THE D2h GROUP 

In order to proceed further we must obtain the character table of the D2h point 

group. The procedure which was adopted for the C2v case—considering the 

transformations of a variety of basis functions—could be used to generate the 

D2h character table; the procedure is entirely analogous. For this reason, space 

will not be devoted to it. Rather, the reader is invited to use this method 
himself or herself in the following problem. 

Problem 4.3 Derive the character table of the D2h point group (Table 

4.1). In Chapter 2 the irreducible representations of the C2v character 

table were generated by considering the transformations of the orbitals of 



THE CHARACTER AND MULTIPLICATION TABLES OF THE D2h GROUP 67 

Table 4.1 Character table of the Z)2h group 

D2h E C2(z) C2(y) C2(x) i o(xy) o(zjc) o(yz) 

1 1 1 1 1 1 1 1 S, d.2, d 2 2 
1 1 -1 -1 1 1 -1 -1 dr„ 
1 -1 1 -1 1 -1 1 -1 

xy 

d„ 
*3g 1 -1 -1 1 1 -1 -1 1 

1 1 1 1 -1 -1 -1 -1 f 
*.» 1 1 -1 -1 -1 -1 1 1 p. 
B2a 1 -1 1 -1 -1 1 -1 1 Pv 
b3u 1 -1 -1 1 -1 1 1 -1 p* 

a unique atom (the oxygen in H20). In order to use this technique in the 

present problem it is necessary to first have a unique atom. This can be 

done by placing a hypothetical atom at the centre of gravity of the ethene 

molecule. Using just the familiar s, p and d orbitals it is not possible to 

generate the Au irreducible representation of the D2h point group. This 

irreducible representation can be generated using one of the f-orbitals, 

the fxy2 orbital, a diagram of which is shown in Figure 4.2. To enable a 

check on your answer to this problem, the atomic orbital(s) of the 

hypothetical atom which generates each irreducible representation are 

given at the right-hand side of Table 4.1. 

y 

Figure 4.2 The f,„ orbital of a hypothetical atom placed at the centre of gravity of 
the ethene molecule. Note that the phase of the orbital is positive in those regions of 
space in which the product xyz is positive. 

For every group there exists a group multiplication table; that for the D2h 

group is given in Table 4.2. Its derivation is analogous to the derivation of the 

C2v group multiplication table. Just as in the C2v case it will be found that when 

the appropriate substitution of characters for the corresponding symmetry 

operation is made in Table 4.2, any row of characters appearing in the D2h 
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character table turns Table 4.2 into a multiplication table which is arithmetic¬ 

ally correct. 

Problem 4.4 By combining (multiplying) pairs of operations of the D2h 

character table show that Table 4.2 is correct. 
Some help with this problem is provided by Section 2.3. Indeed, if 

the hypothetical molecule considered there—0(CH2)2—is flattened 

Table 4.2 Multiplication table for the D2h group 

D2h E C2(z) CAy) 
First operation 
C2(x) i o(xy) o(zx) o(yz) 

E E C2(z) C2U) C2(x) i o(xy) a(zx) o(yz) 

C2(z) C2(z) E CAx) CAy) o(xy) i a(yz) o(zx) 

c2(y) c2(y) C2(x) E C2(z) a(zx) o(yz) i o(xy) 

Second C2(x) C2(x) CAy) CAz) E o(yz) o(zx) o{xy) i 

operation i i o{yz) a(zx) a{xy) E CAx) CAy) CAz) 
a(xy) a{xy) i a(yz) a(zx) C2(z) E CAx) CAy) 
o(zx) a{zx) o(xy) i a(yz) C2(y) CAx) E CAz) 
a(yz) o(yz) o(zx) o(xy) i CAx) CAy) C2(z) E 

symmetrically so that it becomes planar then there results a molecule of 

the same symmetry as ethene which also contains the unique atom 

required for Problem 4.3. A further hint on how to solve this problem is 

provided by Figure 4.3. Take a general point in space (indicated by the 

solid star). Perform the first operation (in Figure 4.3, o(zx)) to give the 

cross-hatched star, follow it with the second operation (in Figure 4.2, /) 

to give the open star. Then ask ‘what single operation turns the solid star 

into the open one’ (in Figure 4.3, C2(yJ). One concludes that a(zx) 
followed by i is equivalent to C2(y). 

Problem 4.5 Take any four of the irreducible representations of Table 
4.1 and by substituting the appropriate character for each operation in 

Table 4.2 show that in each case an arithmetically correct multiplication 

table is obtained. If needed, Section 2.4 will provide guidance on this 
problem. 

4.3 DIRECT PRODUCTS OF GROUPS 

There are several interesting features of Table 4.2; for example, it is symmetric 

about either diagonal. Another is the way that it may be broken into four 

smaller blocks, pairs of which are identical. Similarly, the D2h character table 
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Figure 4.3 An illustration that a(zx) followed by i is equivalent to C2(y). In a similar 
way a C2 can always be treated as a combined with /; i can always be represented as C2 
combined with a. 

(Table 4.1) may also be broken into four blocks but now three of the blocks 

are identical and in the fourth the same set of characters appear, but with all 

signs reversed. There is a simple reason for these patterns. As is evident from 

Table 4.2, the operation o{xy) is equivalent to C2(z) followed by the inversion 

i. Similarly, cr(yz) equals C2(x) followed by i and o(zx) equals C2(y) 

followed by i. It follows that the operation of the D2h group may be rewritten 

as follows: 

E C2(z) C2(y) C2(x) 

are equivalent to 
E C2(z) C2(y) C2(x) 

Followed by E 

i o(xy) a(zx) a(yz) 

are equivalent to 
E C2(z) C2(y) C2(x) 

Followed by i 

That is, the operations of the D2h group may be obtained by forming all 

possible products of members of the set E, C2(z), C2(y), C2(x) which, as has 

already been seen, form the D2 group—with members of the set E, i—two 

operations which together form a group called the C, group (pronounced ‘cee 

eye’), to which we shall return shortly. Technically, one says that ‘the D2h 

group is the direct product of the D2 and Cv groups’—where ‘direct product’ 

means ‘form all possible products of one group of symmetry operations with 
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all of the symmetry operations of the other’.t When the operations of a group 

may be expressed as direct products in this way so, too, may the corresponding 

character tables. That is, the character table of the Dlh group is the direct 

product of those of the D2 and Q groups (and the phrase ‘direct product’ now 

refers to characters but its meaning is otherwise unaltered). The character table 

of the D2 group is given in Table 4.3 and that of the C, group in Table 4.4. 

They should, together, be compared with Table 4.1. The four blocks in Table 

4.1 are just the characters given in Table 4.3 with signs determined by Table 

4.4. Thus in three of the blocks Table 4.3 reappears with unchanged sign and in 

the fourth all of the characters are multiplied by -1. 

Table 4.3 

d2 E C2(z) c2(y) C2(x) 

A 1 1 i 1 

Si 1 1 -l -1 
b2 1 -1 l -1 

s3 1 -1 -l 1 

Table 4.4 

Cl E i 

4 1 1 

1 -1 

Problem 4.6 Multiply the character table 4.3 by the character table 4.4 

and thus generate Table 4.1. Note that ‘multiply’ here means different 

things for operations and characters. For the latter it means simple 

arithmetic multiplication but for the former it means ‘carry out the 

operations one after the other’. The way that the relevant operations 

multiply is indicated in this section; in order to generate Table 4.1 it is 

necessary to maintain the correct correspondence between products of 
characters and products of operations. 

t In this section an aufbau approach is used, a larger group being built up from subgroups. An 
important notation appears if the inverse pattern is studied and the decomposition of a group into 
subgroups considered. Because both C, and D2 may be obtained from D2h in one way and only 
one way they are both said to be invariant subgroups of D2h. In contrast, some other subgroups of 
D2h—one is C2v; another is C2—are not invariant subgroups because there is more than one way 
that they can be generated. This topic is dealt with more fully in Section 8.1; it is a topic which 
will become particularly important in Chapter 13. 
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An interesting thing about Table 4.3 is that the sets of characters that appear 

in it are the same as those of the C2v point group (Table 2.4), although the 

operations and irreducible representation labels are not the same in the two 

groups. Groups which have character tables containing identical corresponding 

sets of characters are said to be isomorphous groups.t Isomorphous groups 

need have no operation in common— except, of course, the identity operation, 

which appears in all groups. However, isomorphism between character tables 

means that there is a close connection between the groups. Thus, something 

true in one group has a counterpart in an isomorphous group. An illustration of 
this is given in Section 9.4. 

In the C, character table (Table 4.4) the only distinction between the irredu¬ 

cible representations is the behaviour of the quantities they describe under the 

operation of inversion in the centre of symmetry, i. Both irreducible representa¬ 

tions are denoted by A but something which is transformed into itself (i.e. is 

symmetric) under the inversion operation is distinguished from one which is 

turned into minus itself (i.e. is antisymmetric) by the subscripts g (from gerade, 

German for ‘even’) and u (from ungerade, German for ‘odd’) respectively; it is 

always true that a g suffix indicates an irreducible representation which describes 

something which is symmetric while the suffix u describes something which is 

antisymmetric with respect to inversion in a centre of symmetry. The reader will 

find it helpful to compare the use of g and u suffixes in the irreducible representa¬ 
tion labels of Table 4.1 with the corresponding characters under the i operation. 

Problem 4.7 For each irreducible representation in Table 4.1 which 

carries a g suffix (e.g. Ag) list the character under the i operation. Repeat 

this exercise for each irreducible representation carrying a u suffix (e.g. 

Au). Compare your result with Table 4.4. 

One final point. Lines have been included in Tables 4.1, 4.2 and 4.4 to clarify 

the discussion in the text. Normally they are omitted and, indeed, columns in 

these tables are sometimes permuted so that the pattern which is apparent from 

the way that these have been written here becomes less evident. In the compila¬ 

tion of character tables in Appendix 3 those that are direct products involving Ct 

have lines included (and, just for good measure, a few which are direct products 

involving a group which is isomorphous to C{ have lines included too). 

4.4 THE SYMMETRIES OF THE CARBON ATOMIC 
ORBITALS IN ETHENE 

The character table of the D2h group given in Table 4.1 will now be used in a 

qualitative discussion of the electronic structure of the ethene molecule. At first 

t Strictly, their multiplication tables must also show an analogous similarity but, in practice, the 
definition in the text is adequate. 
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sight one might expect that this discussion would be more complicated than 

that for the water molecule because we now have six atoms to consider. On the 

other hand, instead of working with a group with only four irreducible 

representations we now have eight, so that it might be hoped that the increase 

in symmetry will offset the greater molecular complexity. The first step is, as 

always, an investigation of the transformation properties of the various sets of 

atomic orbitals. Linear combinations of these orbitals will then be formed 

which transform as irreducible representations of the D2h group. Finally, the 

interaction between orbitals of the same symmetry species will be included and 

a qualitative molecular orbital energy level diagram obtained. 

The valence shell atomic orbitals that must be considered are the 2s and 2px, 

2py and 2pT orbitals of the two carbon atoms and the four Is orbitals of the 

terminal hydrogen atoms. Not one of these orbitals is unique—there is always 

at least one other, symmetry related, atom in the molecule with a similar 

orbital. This means that, in a sense, the present discussion must start at the 

point at which the discussion of the water molecule ended. Just as for the 

hydrogen Is orbitals in the water molecule, the transformations of correspond¬ 

ing orbitals of symmetry-related atoms must be considered together. As a 

simple example, consider the 2s orbitals of the two carbon atoms (Figure 4.4). 

Figure 4.4 Those symmetry operations under which (together with the identity 
operation) the two carbon 2s orbitals of ethene are not interchanged. 

Each of these orbitals remains itself under the C2(z) rotation, the o{zx) and 

o(yz) reflection operations and, of course, under the identity operation. For all 

the other symmetry operations of the group the two orbitals are interchanged. 

Now, if an orbital is unchanged by a symmetry operation it makes a contribu¬ 

tion of unity to the resultant character, while if it goes into another member of 

the same set it contributes zero, so the characters describing the transformation 
of the carbon 2s orbitals are: 

E C2(z) C2(y) C2(x) i o{xy) a(zx) a(yz) 

22 0 200 2 2 
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Either by trial and error, or by systematic use of the group orthonormal 

relationships which were met in Chapter 3 and which will be described in yet 

more detail in Chapter 5, it is concluded that this reducible representation has 
Ag + B,u components. 

Problem 4.8 Use the orthonormality theorem in the way described in 

detail towards the end of Section 3.3 to show that the two 2s orbitals of the 

carbon atoms in ethene transform as Ag + fl,u. Your solutions to Problems 

3.4 and 3.5 should give you any additional guidance you may need. 

The 2s orbitals of the two carbon atoms in the ethene molecule, considered 

in isolation, resemble the two hydrogen Is orbitals in the hydrogen molecule 

(or in the water molecule). It is reasonable, therefore, to anticipate that the 

linear combinations of these orbitals which transform as Ag and Blu will be 

similar to those which were obtained when discussing the water molecule. That 

is, if we call the carbon 2s orbitals 2s(a) and 2s(b), as shown in Figure 4.4, 
then the correct linear combinations are of the form: 

1 

a/2 
^2s(a) + 2s(b) and 

a/2 V 
2s(a) - 2s(b) 

Later in this chapter a systematic way of deriving such linear combinations will 

be obtained and these functions can then be checked. Whenever there are only 

two symmetry-related orbitals to be considered, the correct combinations are 

sum and difference combinations—like those above—irrespective of the 

details of the symmetry. Of the two combinations given above it is easy to 

demonstrate that the first has Ag symmetry and the second Blu. 

Problem 4.9 By drawing diagrams of them and considering their 

transformations under the operations of the D2h point group show that the 

two linear combinations given above transform as Ag and Blu, respect¬ 

ively. If you get the answers the wrong way round read the next para¬ 

graph and compare the phases you have chosen with those in Figure 4.4. 

There is a rather subtle aspect of this. Suppose that instead of choosing in 

Figure 4.4 to give the two carbon 2s orbitals the same phase they had been 

given opposite phases. The first combination above would, in this case, be an 

out-of-phase combination of the two orbitals, notwithstanding the + sign. The 

solution to this paradox is that in this case the first combination would have had 

Blu symmetry and not Ag while the second would be the Ag combination. The 

systematic method of obtaining such functions takes account of our arbitrary 

choices of orbital phases and corrects for them. It is important to note that one 

cannot work with combination functions like those given above unless the 

phases chosen for the component atomic orbitals is known. The simplest way 
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of giving this information is to state the symmetry of the combination, Ag or 

5lu. One might think that the simple way would be to choose all orbitals to be 

of the same phase. Unfortunately such a simplification is not always possible. 

Thus, there are two alternative ways of drawing the 2pz orbitals on the two 

carbon atoms; these are shown in Figure 4.5. In Figure 4.5(a) the 2pz orbitals 

are chosen so that the phasing of the 2pz orbitals coincides with that of the 

molecular coordinate axis system—the positive lobes point towards positive z 

and the negative lobes towards negative z. In Figure 4.5(b) the phase on one 

centre is reversed. This latter choice of phases has the advantage that under, 

say, the C2(x) rotation operation the 2pz orbitals are simply interchanged. In 

the choice of Figure 4.5(a) they are not only interchanged by this operation but 

the phases of their lobes are also reversed. Here there is no simplification 

offered by convention; different people may, with equal validity, choose the 

phases differently. It follows that care has to be taken to check the basic choice 

of phases used by each person writing on the subject. If we choose the phases 

indicated in Figure 4.5 (a) then the sum and difference combinations 

2pz(a) + 2pz(b) and 4= (2P;W - 2P*0>) 

are, respectively, the Blu and Ag (C-C a antibonding and bonding respect¬ 

ively) combinations of carbon 2pz orbitals. 

x 

Figure 4.5 Alternative phase choices for the 2pz orbitals of the carbon atoms in 
ethene. See the text for a discussion. 

Problem 4.10 Because the transformation of the carbon 2pz orbitals 

give rise to the same irreducible representations as do the transformations 

as the carbon 2s it follows that they transform in the same way (the 

jargon statement is ‘they transform isomorphously’). This means that the 

2pz orbitals in both Figures 4.5(a) and 4.5(b) give the reducible represen- 
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tation given in the text just before Problem 4.8. Show that this is indeed 

so, irrespective of which set of phases is chosen for the 2pz orbitals 
(Figures 4.5(a) and 4.5(b)). 

The Bla and Ag combinations of carbon 2p, orbitals are shown schematically in 

Figure 4.6. Also, in this figure the Ag and Blu combinations of carbon 2s 

orbitals are shown. In these diagrams the atomic orbitals on the two carbon 

atoms are shown as overlapping each other, although this overlap has been 

neglected in the expressions given above. This inconsistency is tolerated 

because it gives mathematical simplicity together with diagrammatic clarity. 

Although detailed calculations did not fully justify it, in our discussion of 

the water molecule it was found to be convenient to mix together the oxygen 2s 

(a) 

Figure 4.6 Blu and Ag (bonding and antibonding) combinations of 2pz and 2s orbitals 
in ethene. 
(a) Blu (antibonding) combination of 2pz orbitals. 
(b) Ag (bonding) combination of 2p, orbitals. 
(c) Ag (bonding) combination of 2s orbitals. 
(d) Blu (antibonding) combination of 2s orbitals. 
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and 2p2 orbitals. Since they had the same symmetry this mixing is allowed and 

the resultant picture that emerged was closely related to simple ideas on the 

bonding in the water molecule—and was an advantage when later looking at 

the latter in more detail. For the same reason the carbon 2s and 2p orbitals will 

be mixed in the present example forming, effectively, carbon sp hybrids. If 

these hybrids had been formed as a first step, a simpler discussion would have 

resulted. Unfortunately, this was not permissible because at that stage it had not 

been established that the carbon 2p2 and 2s orbitals transform isomorphously. 

Instead of going back to the start of the argument and working with sp hybrids 

it is easier to simply combine the Ag combinations of carbon 2s and 2pz orbitals 

and similarly for the Blu—the end result is the same. The result of mixing 

together—essentially, taking sum and difference combinations of—the two Ag 

orbitals of Figure 4.6 and (separately) the two BXa orbitals is shown schemati¬ 

cally in Figure 4.7. In each case both in-phase and out-of-phase combinations 

are shown. Two of these four orbitals will carry through, unmodified, into the 

final description of the ethene molecule. These are an Ag combination which is 

to be identified with the C-C a bonding orbital (Figure 4.7a) and a 5lu 

combination which is the corresponding C-C o antibonding orbital (Figure 

4.7b). The otherAg and B]u combinations (Figures 4.7c and d, respectively), 

which are largely directed away from the C-C bond, are involved in interac¬ 

tions with the terminal hydrogen atoms. 

The other 2p orbitals of the carbon atoms are readily dealt with. For the pairs 

of 2p, and 2p> orbitals a similar phase ambiguity exists as for the 2p; orbitals, 

Figure 4.7 (a) The Ag C-C o bonding orbital in ethene [this is, essentially, Figure 
4.6(b) plus Figure 4.6(c)]. 
(b) The Blu C-C a antibonding orbital in ethene [this is, essentially, Figure 4.6(a) plus 
Figure 4.6(d)], 
(c) The Ag carbon-based orbital involved in C-H bonding in ethene [essentially, Figure 
4.6(c) - Figure 4.6(b) note the - sign], 
(d) The Biu carbon-based orbital involved in C-H bonding in ethene [essentially 
Figure 4.6(d) - Figure 4.6(a)]. 
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although it is usually found to be less troublesome. In this chapter the phases 

shown in Figures 4.8 and 4.9 have been chosen. These orbitals transform as 
follows: 

2p,: Blg + fl3u 

y- ^3g "*■ ^2u 

Figure 4.8 Carbon 2px orbitals in ethene. The phases of the orbitals have been chosen 
to be identical to those of the x axis. 

Figure 4.9 Carbon 2pv orbitals in ethene. The phases of the orbitals have been chosen 
to be identical to those of the y axis. 

Problem 4.11 Show that the transformations of the carbon 2pA. orbitals 

of Figure 4.8 and the 2p^ orbitals of Figure 4.9 give rise to the following 

reducible representations 

E C2(z) c2(y) c2(x) i o(xy) o(zx) o(yz) 

2p, 2 -2 0 0 0 0 2 -2 

2pv 2 -2 0 0 0 0 -2 2 

and then, using the orthnormality theorem method of Section 3.3, that 

these reduce to the irreducible components given in the text. Check that 

interchanging the phases of the lobes of one of the p orbitals in Figures 

4.8 and 4.9 does not lead to any change in the above results. 

Symmetry-correct linear combinations transforming as the above irreducible 

representations are sum and differences of the carbon 2pA. and 2p>, orbitals of 
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Figures 4.8 and 4.9 and are shown in Figures. 4.10 and 4.11. The #3u combina¬ 

tion of carbon 2px orbitals shown in Figure 4.10 is immediately identified as 

the carbon-carbon n bonding orbital and the B2g combination as the 

carbon—carbon n antibonding orbital. Both of these will be earned through to 

the final energy level diagram. 
This is a suitable point at which to define the labels o and n. It is convenient 

to think of just two bonded atoms (which may be part of a larger molecule) 

and of a line which connects their nuclei. If an orbital—be it bonding or 

antibonding, localized or delocalized—has no nodal planes lying in the 

intemuclear line then it involves a a interaction in the region between the two 

nuclei. If there is a single nodal plane then the interaction is of n type; if two 

nodal planes then it is <3. If a molecule is planar then the ct/tt distinction 

extends over the entire molecule and one can correctly distinguish a molecular 

orbitals from n molecular orbitals (the former are symmetric and the latter 

antisymmetric with respect to reflection in the molecular plane). 

There is an element of inconsistency in Figures 4.10 and 4.11. The only 

difference between the 2p orbitals shown in Figures 4.8 and 4.9 is that the 

former are rotated through 90° relative to the latter. One would therefore 

expect to find that Figure 4.11 is identical to Figure 4.10 except for this 

same rotation. In anticipation that the primary interaction involving the B2u 

orbitals of Figure 4.11 is with the terminal hydrogen atoms, whereas there is no 

Figure 4.10 B3u and B2g combinations of carbon 2pv orbitals in ethene, shown in 
perspective. 
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Figure 4.11 B2g and B}g combinations of carbon 2p^ orbitals in ethene, shown in 
perspective. 

such interaction involving the orbitals of Figure 4.10, the carbon-carbon 
overlap has been ignored in Figure 4.11. 

4.5 THE SYMMETRIES OF THE HYDROGEN Is 
ORBITALS IN ETHENE 

We now turn our attention to the four hydrogen atoms of the ethene molecule 

and consider the 1 s orbital on each (which will be taken to each have the same 

phase). These orbitals are all equivalent one to another—they may be 

interconverted by the symmetry operations of the group—and so all four must 

be considered together. They are shown in Figure 4.12 together with the 

symmetry elements of the Z>2h group. Of the entire set of corresponding 

symmetry operations only the identity operation and the O\ (fx) operation leave 

any of the hydrogen Is orbitals in their original position and each of these 

operations leave all four orbitals unmoved; all other operations interchange all 

of them. The transformations of the four hydrogen Is orbitals therefore 

generate the reducible representation shown below. The reduction of this 

representation into its irreducible components provides a useful illustration of 

the use of the method described in Section 3.3—reducing it by trial and error 

could be a little tedious. First select an irreducible representation of the D2h 

E C2(z) c2(y) C2(X) i a(xy) o(zx) a(yz) 

4 0 0 0 0 0 0 4 
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Figure 4.12 The four hydrogen Is orbitals in ethene together with the symmetry 
elements of the D2h group (excluding the identity). 

group and multiply each character of the above reducible representation by the 

corresponding character of our selected irreducible representation. Add these 

products together and then divide by the order of the group (8 in the present 

case). The integer which results! is the number of times the selected irreduc¬ 

ible representation appears in the reducible representation. Thus, if the Ag 

irreducible representation is selected the calculation proceeds as follows: 

E C2(z) c2(y) C2(x) i a(xy) ct(zjc) a(yz) 

4 0 0 0 0 0 0 4 

4 1 1 l 1 1 1 1 1 

Products 4 0 0 0 0 0 0 4 

The sum of products is therefore 8. Division by the order of the group yields 

the result that the Ag irreducible representation appears once. Proceeding in this 

way with each irreducible representation selected in turn from the character 

table, it is concluded that the reducible representation has components 

\ + #3g + S.u + B2u 

t If a nonsense answer is obtained (for example, a fraction) then either an arithmetical mistake 
has been made or the reducible representation has been wrongly generated—this is one way in 
which such mistakes are commonly discovered. 



THE PROJECTION OPERATOR METHOD 81 

Problem 4.12 Show that the above reducible representation contains 

^3g + #iu + 52u components in addition to the Ag deduced in the text. 

4.6 THE PROJECTION OPERATOR METHOD 

Although not essential to a qualitative discussion of the bonding in the ethene 

molecule, it is very useful at this point to seek combinations of the four 

hydrogen Is orbitals, which, separately, transform as Ag, as fi3g, as Bla and as 

^2U- This will provide a relatively simple introduction to the important 

projection operator method. As a bonus, some idea of the form of the C-H 
bonding molecular orbitals will be obtained. 

We first consider the transformations of the individual hydrogen Is orbitals 

in much greater detail. Previously, we have only been concerned with whether 

or not a hydrogen Is orbital was turned into itself under a particular symmetry 

operation. If it did not do this the destiny of the hydrogen atom did not concern 

us. This is no longer the case. We shall now look in detail at one of the four 

hydrogen Is orbitals and determine the precise effect of each symmetry 

operation on this chosen orbital. Label the hydrogen Is orbitals as shown in 

Figure 4.12 and consider the transformation of the orbital which is labelled A. 

The following discussion will be made easier if an eye is kept on Figure 4.12 

and another(!) on Table 4.1 and the individual characters that it contains. Under 

the identity operation, A remains itself; under the C2(z) rotation it becomes the 

orbital labelled D; under the C2(y) rotation it becomes B, and so on. A 

complete list of its transformations is given in Table 4.5; it is important that the 
reader checks that this table is correct. 

Table 4.5 

E C2(z) c2(y) C(x) i o(xy) a(zx) o(yz) 

Under the operation 
A becomes A D B C C B D A 

Problem 4.13 Use Figure 4.12 to check that the above table of 

transformations is correct. 

We are now in a position to generate symmetry-correct linear combinations 

of the hydrogen orbitals. We know that the set A, B, C and D gives rise to a 

BIu combination and we shall now generate this combination. Consider orbital 

A and the effect of the C2(y) operation. Table 4.1 shows that under this 

operation a function transforming as Blu changes sign. It follows, therefore 

that orbitals A and B must appear in the Blu linear combination in the form 
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(A-B) since this expression changes sign under the C2(y) operation. Now 

consider the C2{x) and C2(z) operations—under which A interchanges with C 

and D, respectively. Because a Blu function changes sign under C2(x) but 

retains its sign under C2(z) it is evident that C and D must appear as -C and 

+ D. It follows that the Blu combination is of the (normalized) form: 

i(A-B-C+D) 

It is a simple matter to check that this combination does indeed transform 

correctly as Bla under all of the operations of the group. The important thing to 

recognize is the way that the sign with which an individual orbital appears in 

the result is determined by the appropriate character of the irreducible 

representation. 

The general method is at once evident. In order to generate a required linear 

combination we simply take the entries in Table 4.5 and multiply each entry by 

the corresponding character. The sum of the answers so obtained is the desired 

linear combination (although it will not be normalized). As an illustration of 

this method let us generate the B3g linear combination of hydrogen Is orbitals, 

by this, the projection operator, method: 

E C2(z) c2(y) C2(x) i o(xy) o(zx) a(yz) 

Under the operation 
A becomes A D B C C B D A 

*3g 1 -1 -1 1 1 -1 -1 1 

Product A -D -B c C -B -D A 

Sum: 2A - 2B + 2C - 2D 

The linear combination which is generated by this procedure is 

(2A-2B + 2C-2D). This function is not normalized since the sum of squares 

of coefficients appearing is 16, not 1; to normalize we have to divide by 
VT(i = 4 and so obtain the normalized B3g combination. 

5 (A - B + C - D) 

The Ag and B2u combinations are obtained in a precisely similar way. All 

four linear combinations are given in Table 4.6, and shown in Figure 4.13. 

Such combinations are often referred to as ‘symmetry adapted combinations’. 

Problem 4.14 Use the projection operator method to obtain the 

(normalized) Ag and Blu combinations of hydrogen Is orbitals. 

It is to be emphasized that each of the four diagrams in Figure 4.13 pictures 

one orbital and not four. An instructive exercise at this point is to attempt to 
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Table 4.6 

Symmetry species 
Linear combination of Is orbitals 

of hydrogen atoms in ethene 

4 2(A+B + C+ D) 

bh 5(A-B + C-D) 

*1 u 5(A-B-C + D) 

B2u 5(A + B-C-D) 

(a) 

Figure 4.13 The symmetry-adapted combinations of hydrogen Is orbitals in ethene. 
Note that the relative phases chosen for the individual hydrogen Is orbitals is evident in 
the Ag combination. Here, all were chosen with identical phase but had one been chosen 
with phase opposite to all of the others then this one would appear with a - phase in the 
Ag combination above. 
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generate from the data in Table 4.5 a combination transforming as an 

irreducible representation which is absent (and so is not listed in either Table 

4.6 or Figure 4.13)—for example 5lg. It will be found that the projection 

operator method has the great advantage of being self-correcting! 

Problem 4.15 Attempt to generate a combination of hydrogen Is 

orbitals which does not, in fact, exist. Any of the irreducible representa¬ 

tions 5lg, B2g, Au or fi3u may be chosen for this. 

4.7 BONDING IN THE ETHENE MOLECULE 

The symmetry-adapted linear combinations of hydrogen Is orbitals which have 

been obtained are of the correct symmetries to interact with some of the carbon 

orbitals. Thus, the Ag and 5lu combinations interact with the carbon sp hybrids 

which were formed earlier and which are shown in Figures 4.7(c) and 4.7(d) 

respectively. The 53g and fi2u are of the same symmetries as the carbon 2py 

combinations [Figures 4.10(b) and 4.10(a) respectively]. The resultant combi¬ 

nations are shown in Figure 4.14 where there is indicated, qualitatively, how 

they are derived from the earlier figures. 

Problem 4.16 Check that the molecular orbitals shown in Figure 4.14 

are correctly described by combining, qualitatively, the diagrams 

indicated below each molecular orbital. 

There are just four primarily C-H bonding molecular orbitals and four corres¬ 

ponding C-H antibonding orbitals (these orbitals are also either weakly C-C bond¬ 

ing or weakly C-C antibonding). In order to obtain even a qualitative molecular 

orbital energy level diagram some idea of the relative energies of the various C-FI 

and the C-C o and n bonding molecular orbitals must be obtained. It is simplest 

first to look at those orbitals involved in C-H bonding; it will probably be found 

helpful to refer frequently to Figure 4.14 throughout the next few paragraphs. 

There is no doubt about the most stable C-H bonding molecular orbital. This 

is the Ag orbital. It has two features which lead to its stability. First, just as the 

largely 2s(O) containing molecular orbital was the most stable in H20, so too 

here, an orbital containing an appreciable 2s(C) component is expected to be 

very stable. Second, the important interactions in which the Ag orbital is 

involved are bonding—it is both C-H and C-C o bonding. Rather similar 

arguments hold for the Blu largely C-H bonding molecular orbital. It contains 

a 2s(C) contribution and is C-H bonding but is C-C a antibonding. It is fair to 

conclude that the Blu orbital is next in stability after the Ag. The B2u and B3g 

C-H bonding molecular orbitals contain only carbon 2p orbitals so that 

they are expected to be at higher energy than the Ag and 5lu, which contain 

carbon 2s. Their relative energies can be related to the residual C-C bonding 
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C-H antibonding 
(Figure 4.13c — 4.7d) 

C-H bonding 
(Figure 4.13b + 4.1 lb) 

C-H bonding 
(Figure 4.13d + 4.1 la) 

Figure 4.14 Bonding and antibonding molecular orbitals in ethene. 

(which will be n in type) associated with each. The B2u C-H bonding orbital is 

also C-C bonding but the 53g is C-C antibonding. It seems clear that the B2u 

orbital is the more stable. In summary, then, the C-H bonding molecular 

orbitals are expected to decrease in stability in the order: 

Ag > Blu > B2u > Bh 

We now turn to the orbitals which are largely responsible for the 

carbon-carbon bonding. They are shown in Figures 4.7(a) and 4.9(a). There 
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is no doubt that the Ag largely carbon—carbon o bonding molecular orbital will 
be more stable than the B3u carbon-carbon ji bonding molecular orbital 
because one contains 2s(C) whereas the other contains 2pz(C). However, it is 
not easy to unambiguously relate their energies to those of the C-H bonding 
molecular orbitals. The following argument is indicative. The bond energy of 
a single C-C o bond is about 360 kJ mole-1, although it is to be noted that 
this figure is appropriate to a bond length slightly longer than that found in 
ethene. In contrast, the energy of an average C-H bond is about 
420 kJ mol-1. It seems reasonable, then, to anticipate that the stabilization 
resulting from the C-H bonding interactions should be somewhat greater than 
that of the Ag C-C o interaction. This means that it would be reasonable to 
expect the C-H bonding molecular orbitals which have a carbon 2s compo¬ 
nent (those of Ag and Bw symmetries) to be lower in energy than the 
carbon-carbon bonding orbital with a 2s component (that of Ag symmetry). 
We have, then, the stability order: 

Ag (C-H bonding) > filu (C-H bonding) > Ag (C-C bonding) 

The next lowest C-H bonding orbital is B2u and the question is whether its 
stability is sufficient to make it lower in energy than the Ag (C-C bonding). If 
we interpret the bond energy data given above as ‘the centre of gravity of the 
energies of the four C-H bonding interactions should be below the energy of 
the single C-C bonding interaction’ then the order 

B2u (C-H bonding) < Ag (C-C bonding) 

seems probable, although not certain. All that can be said is that it seems likely 
that the two will be of similar energies with perhaps the B2u the more stable. In 
fact, this is the pattern experimentally observed. 

The carbon-carbon n bonding molecular orbital, of S3u symmetry, is also 
best placed by appeal to experiment. A great deal of spectroscopic and other 
information on carbon-carbon n bonded systems can be rationalized on the 
assumption that it is a carbon-carbon n orbital which is the highest occupied 
orbital. So, the 53u (C-C bonding) is placed above the 53g (C-H bonding). 
Together with the other arguments above, this leads to the molecular orbital 
energy level pattern shown in Figure 4.15. There are four valence electrons 
from each carbon and one from each hydrogen to be placed in these orbitals, a 
total of twelve. They occupy the six lowest orbitals in Figure 4.15; in this 
figure only one antibonding orbital, the lowest, C-C antibonding orbital of B2g 
symmetry, is included. 

Figure 4.15 can be checked in two ways. First, appeal can be made to 
detailed accurate calculations on this molecule. Second, the results of 
photoelectron spectroscopic measurements can be used. This theoretical and 
experimental work agree on the energy level sequence of ethene. The results 
are given below, the calculated values' being given in parentheses. 
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Figure 4.15 Schematic bonding molecular orbital energy level diagram for ethene. 

1 b3a (C-C bonding) 10.51 (10.44) eV 
lZ?3g (C-H bonding) 12.85 (13.04) eV 

2ae (C-C bonding) 14.66 (14.70) eV 
l&2u (C-H bonding) 15.87 (16.07) eV 

D>.u (C-H bonding) 19.1 (19.44) eV 

K (C-H bonding) 23.5 (26) eV 

The agreement with the qualitative picture developed above is excellent, 

giving some confidence in the arguments that have been used. In particular, the 

hope that increased molecular symmetry would offset the greater molecular 

symmetry would offset the greater molecular complexity compared with the 

water molecule seems to have been justified. 

4.8 BONDING IN THE DIBORANE MOLECULE 

Our discussion of the ethene molecule can be extended to another molecule, 

diborane. Diborane, B2H6, is of interest because it is the simplest of the boron 

hydrides (boranes). These, as a class, are often called ‘electron deficient’ 
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because, whereas at least (n - 1) electron pairs are regarded as necessary to bond 
n atoms the boron hydrides all have fewer than 2(n- 1) electrons. Thus, there are 
only twelve valence shell electrons available in diborane to bond eight atoms. 
However, as will be seen, the term ‘electron deficient’ is a misnomer because the 
molecular structure is such that all bonding molecular orbitals are filled with 
electrons. Whereas diborane posed such a problem for simple bonding models 
that it appeared necessary to give it a separate classification, a symmetry-based 
discussion shows that there is no need to invoke new concepts. 

The structure of diborane is shown in Figure 4.16, from which it can be seen 
that it has four terminal hydrogen atoms and two borons which together have 
the same symmetry, D2h, as ethene (although the bond lengths and angles are 
different, of course). In addition, diborane has two hydrogen atoms out of, 
what is for ethene, the molecular plane. These two hydrogens are usually called 
the ‘bridge’ hydrogen atoms. It is the presence of these bridging hydrogen 
atoms in place of the C-C n bond of ethene that plays a major part in leading 
diborane to have a rather different chemistry to ethene. 

Figure 4.16 does not show all of the symmetry elements of diborane. 
Comparison with Figure 4.1 shows that the bridge hydrogens, located on the 
C2(x) axis of Figure 4.1, in no way diminish the D2h symmetry of the ethene- 
like B2H4 unit. Diborane, like ethene, has D2h symmetry. It follows that apart 
from that involving the bridge hydrogen atoms, the bonding in the diborane 
molecule must, qualitatively, be similar to that given in the previous section for 
ethene since boron, like carbon, has 2s and 2pA, 2pv and 2p: valence orbitals. It 
therefore seems reasonable to expect the retention of the same energy level 
sequence: 

Ag (B-Ht bonding) < filu (B-H, bonding) < B2a (B-Ht bonding) < fi3g (B-H, bonding) 

where the suffix t has been added to distinguish terminally bonded hydrogens 
from the bridge hydrogens. There is little'doubt that there is a substantial 
difference between the carbon-carbon bonding in ethene and the boron-boron 
bonding in diborane. This is shown by even a cursory study of the experimental 
data—the carbon-carbon bond length in ethene is 1.34 A while the 

Figure 4.16 The structure of diborane, B2H6, shown in perspective. 



BONDING IN THE DIBORANE MOLECULE 89 

boron-boron bond length is 1.77 A. The details of the B-B bonding will also 
be different from the C—C bonding in ethene because only the former has 
bridge hydrogens. Clearly, our discussion of the B—B bonding must start with 
these bridge hydrogens. 

The transformations of the Is orbitals of the two bridge hydrogen atoms in 
diborane generate the following reducible representation: 

E C2(z) C2(y) C2(x) i o(xy) a(zx) o(yz) 

200202 2 0 

a representation which has Ag + B3u components. As usual, the functions 
transforming as these irreducible representations are simply the sum and 
difference of the two Is orbitals (which are labelled E and F, as shown in 
Figure 4.17 and taken to have the same phase). That is, they are as shown 
below. 

Linear combination of 
Symmetry species bridge hydrogen orbitals 

4 i<E+F) 
*3u 

Problem 4.17 Check that the transformation of the two bridge 
hydrogen atoms in diborane are as given above. It is of particular 
importance to show that the two linear combinations of these orbitals 
transform as indicated. 

The only orbitals shown in Figure 4.5 with which it is reasonable to expect 
any important interaction involving these bridge hydrogen orbitals are the 

Figure 4.17 The Is orbitals of the two bridging hydrogen atoms of diborane. 
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boron-boron 71 bonding orbital of Ag symmetry (which will be similar to that 

shown in Figure 4.7(a) but with boron atoms in place of carbon) and the 

boron-boron n bonding orbital of 53u symmetry (which will resemble that 

shown in Figure 4.10(a)). The interactions between the bridge hydrogen 

orbitals and these boron-boron orbitals are shown qualitatively in Figures 4.18 

and 4.19. Which of the bonding interactions shown in Figures 4.18 and 4.19 is 

the more important? For the fi3u (boron-boron n bonding) orbital the B2H4 

plane is a nodal plane; its maximum amplitude must be out of this plane. In 

contrast, the maximum amplitude of the Ag (boron-boron a bonding) orbital is 

in the B2H4 plane. Because the bridge hydrogens are above and below this 

plane it seems probable that the interaction will be greater with the B3u boron 

combination than with the Ag. Whether this difference will lead to the orbital of 

B3u symmetry being beneath that of Ag (in Figure 4.15 the fi3u is above the Ag) 
cannot be unambiguously predicted—in fact, it does. An additional reason for 

this pattern is the greater B-B bond length in diborane compared to the C-C 

bond in ethene. Because of this difference, it is likely that the Ag B-B o 
bonding interaction is less than the C-C a interaction in ethene. 

In Figure 4.20 a schematic molecular orbital energy level diagram for the 

diborane molecule is given in which all of the above arguments are brought 

together. The left-hand side of this diagram shows schematically the ethene 

molecular orbital energy level pattern (Figure 4.15) which is then modified to 

take account of the bridge hydrogens. Qualitatively, the problem of the 

relative order of the fi2u (B-Ht bonding) and Ag (B-Hb bonding) orbitals, 

encountered for ethene, reappears here. The experimental and theoretical 

Figure 4.18 Schematic representation of the interactions of Ag symmetry involving 
the bridge hydrogens of diborane. 
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Figure 4.19 Schematic representation of the interactions of B}u symmetry involving 
the bridge hydrogens of diborane. 
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Figure 4.20 A qualitative molecular orbital energy level diagram for B2H6 and its 
relationship to that for C2H4. 
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data2 (the latter in brackets) are given below (where the suffix b indicates 

bridge hydrogens): 

lb3g (B-H, bonding) 11.81 (11.95) eV 
2og (B-Hb-B bonding) 13.3 (13.12) eV 

1^2u (B-H, bonding) 13.9 (13.73) eV 

!^3u (B-Hb-B bonding) 14.7 (14.04) eV 

l*lu (B-H, bonding) 16.06 (16.34) eV 

K (B-H, bonding) 21.4 (22.57) eV 

Again, an excellent qualitative prediction of the orbital energies has been 
obtained using our simple symmetry-based model. It is interesting to note that 
with the sole exception of that of B3u symmetry, every orbital in this list is at a 
higher energy than its counterpart in ethene, in accord with the higher chemical 
reactivity of diborane. 

Problem 4.18 The molecule N2H4, unlike B2H6 and C2H4, does not 
have D2h symmetry (it has a low-symmetry structure which may be 
regarded as similar to ethane with one hydrogen removed from each 
nitrogen atom). Use Figure 4.15 to explain why a D2h structure is not 
stable for N2H4. The discussion in the text associated with Figure 4.15 
hints at the answer to this problem. 

4.9 COMPARISON WITH OTHER MODELS 

Most discussions of the electronic structures of the ethene and diborane 
molecules concern themselves almost exclusively with the carbon-carbon 
double bond and the bridge bonding respectively. Some of these descriptions 
appear rather different to those which have been given in the present chapter 
and it is the purpose of this section to discuss the relationship between the 
various models. 

Consider ethene. Two models are commonly presented for this molecule. In 
the first, each carbon atom is sp2 hybridized, two of three sp2 hybrids being 
involved in bonding with the terminal hydrogen atoms while the third is 
responsible for the carbon-carbon a bonding. A ;r-bond is formed as a result 
of overlap between the 2p orbitals which were not hybridized. This model is 
pictured in Figure 4.21. The sp2 hybrid orbitals on one carbon atom have been 
labelled a, d and e and those on the second carbon atom, b, c and f. The 
hybrids which are involved in carbon-hydrogen bonding are a, b, c and d. It 
is easy to show that the transformations of these orbitals under the operations 
of the Z)2h point group follow (or, more precisely, are isomorphous to) those 
of the hydrogen Is orbitals A, B, C and D which were considered earlier in 
this chapter (Section 4.5). It follows that this hybrid orbital model identifies 
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Figure 4.21 The ‘sp^p*’ carbon atom model for the bonding in ethene. For 
simplicity the hydrogen atoms are omitted. The sp2 hybrids carry the labels a-f. 

the C-H bonding molecular orbitals as being of Ag, 53g, 5lu and B2u sym¬ 

metries, a conclusion identical to that reached above. It is also straightforward 

to show that the hybrid orbitals e and f form the basis for a reducible 

representation with Ag and B2a components, which must correspond to the 

C-C a bonding and antibonding orbitals. Again, the qualitative description of 

the C-C o bonding is identical to that of the symmetry-based model. The 

main differences can be seen when the two orbitals e and f in Figure 4.21 are 

compared with their counterparts in the model used above. These orbitals 

were regarded as equal mixtures of the carbon 2s and 2pz orbitals whereas in 

the hybrid-orbital model the s-orbital contribution is only one third. 

However, it will be recalled that when the 2s and 2pz orbitals were mixed in 

equal amounts it was mentioned that this was an arbitrary mixing, made on 

grounds of simplicity. The 1:1 ratio could, accidentally, have been correct. 

Equally, the hybrid orbital model could be right in its ratio of 1:2. Detailed 

calculations show that both are wrong—there are two Ag orbitals contributing 

to C-C bonding, one largely involving 2s(C) the other 2pz(C). The aggregate 

2s:2pz ratio is 1:1.3 so, from this viewpoint, the sp model adopted in the text 

is not too bad. A point of apparent divergence between the two approaches 

is to be found in the carbon-hydrogen bonding orbitals of 53g and B2u 
symmetries. In the symmetry-based description these orbitals contain no 

contribution from the carbon 2s orbitals. In contrast, one might expect there 

to be such a contribution in the hybrid orbital description since each hybrid 

contains a 2s component. This is not the case. If the form of the hybrid 

orbitals is written out explicitly and the appropriate linear combinations of 

them obtained using the projection operator method (these combinations are 

those given in Table 4.6 but with capital letters replaced by lower case letters) 

then it will be found that the carbon 2s orbital contributions also vanish in the 

hybrid orbital description. 
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Problem 4.19 The explicit forms of the relevant carbon sp2 hybrid 

orbitals are: 

a=is(C') + ip'(Cl)-ip'(Cl) 

d=;Hi)-;kp’(C')-7ip'(C') 

b = -j= s(cy + -j= P,(c2) + -L Pi(c2) 

c = s(c2) - -t= p/cy + -j= Pl(c2) 

where C, and C2 refer to the two carbon atoms. By substituting these in 

the explicit expressions for the B3g and B2u linear combinations given in 

Table 4.6 (but substituting the expression given above for a in place of A 

in Table 4.6 etc.) show that the carbon 2s orbital contributions vanish. 

A model of the carbon-carbon double bond in ethene which is historically 

important and which is still encountered is that in which the carbon atoms are sp3 

hybridized and each bond of the double bond is equivalent, as shown in Figure 

4.22. It is a simple matter to show that the two carbon-carbon bonding orbitals 

labelled a and b in Figure 4.22 provide a basis for a reducible representation with 

Ag and B3u components. These are the symmetries which have already been 

deduced as those of the carbon-carbon bonding orbitals. Indeed, if the projection 

operator method is used to obtain Ag and fi3u combinations of a and b (they are 

the sum and dilference of the two) then orbitals are obtained which are, 

essentially, identical to the carbon-carbon bonding orbitals shown in Figure 4.7 

and Figure 4.10. That is, the use of sp3 hybrids at each carbon atom is also 

consistent with the model of C-C bonding derived in this chapter, although such 

a description pictures the orbital on each carbon atom which is involved in this 

bonding as being one quarter composed of the carbon 2s orbital—the third value 

we have met! The use of sp3 hybrids to explain the C-H bonding is also 

Figure 4.22 The sp3 carbon atom model for the bonding in ethene. Hydrogens are 
omitted and the sp3 hybrids to which they bond are represented by rods. Shown in the 
diagram are the bonding orbitals formed by the overlap of sp3 hybrids on the two 
carbon atoms. 
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consistent with a symmetry-based discussion. Again C—H bonding molecular 

orbitals of Ag, Blu, B2u, and Big symmetries are obtained when the four C-H 

bonding sp3 hybrids are used to generate a reducible representation of the group. 

Perhaps the simplest description of the bonding of the bridging hydrogen 

atoms in diborane is the so-called banana bond picture. These bonds are shown 

in Figure 4.23; the close similarity with Figure 4.22 is immediately apparent. It 

is not at all difficult to show that the bridge bonds a and b in Figure 4.23 form 

the basis for two linear combinations, one of Ag symmetry and the other of 

B3u. These symmetries are the same as those of the orbitals shown in Figure 

4.20 as responsible for the bridge bonding. The similarity between the two 
descriptions follow at once. 

Figure 4.23 The ‘banana bond’ model for the bonding of the bridge hydrogens in 
diborane. 

When a chemist speaks of a quantity such as ‘the carbon-carbon bond’ or ‘the 

carbon-hydrogen bond’ he or she is frequently referring to quantities which do 

not, themselves, transform as an irreducible representation of the point group of 

a molecule. In such cases several other symmetry-related bonds exist and these 

together provide a basis set from which appropriate irreducible representations 

can be generated. Thus, in the present context one can say that ‘the C-H bonds in 

ethene (or B-H bonds in diborane) can be combined into combinations which 

transform as irreducible representations of the D2h point group. Localized orbitals 

constructed so that they are equivalent to one another in this way and which can 

be used to derive symmetry adapted combinations are often referred to as 

equivalent orbitals. The C-H bonding molecular orbitals shown in Figure 4.14 

are all different; in contrast most chemists prefer to think of equivalent orbitals, 

although they would probably prefer to call them localized orbitals. As was 

recognized in the case of the water molecule (Chapter 3), and again in the present 

chapter for ethene and diborane, these two types of pictures are usually 

equivalent to each other. Indeed, for all of the simple models which have been 

shown to be basically similar to the pictures obtained by the symmetry based 

approach used in this book, the orbitals which have been transformed to obtain 

reducible representations are all equivalent orbitals. That is, the approach 

developed in this chapter to the electronic structures of ethene and diborane is, 
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fundamentally, no different from those with which the chemist is more familiar 

(the same is true of the discussion at the end of Chapter 3). On the other hand, 

the symmetry based approach has considerable advantages. Thus, the observation 

that the C-H bonds in ethene are equivalent does not imply that the removal of 

any one C-H bonding electron requires the same energy as the removal of any 

other. The fact that there are several ionization potentials—as shown by 

photoelectron spectroscopy—only becomes clear in a symmetry-based 

description of the bonding. Despite this emphasis on symmetry it must be 

recognized that symmetry arguments, by themselves, tell us nothing about energy 

levels. It is only when these arguments are elaborated by including additional 

concepts, such as nodality, orbital composition and relative magnitudes of 

interactions, that relative energies emerge. 

One final point. In Section 4.2 it was seen that av operations are equivalent 

to C2 followed by i. This is a characteristic of all ‘improper rotation’ 

operations—they correspond to a proper rotation combined with /'. Other 

examples will be met later in this book. 

4.10 SUMMARY 

In this chapter it has been seen that point groups may be related to each other. 

When a point group is the direct product of two smaller groups (the jargon is to 

refer to such smaller groups as ‘invariant sub-groups’ of the larger group) then 

the multiplication tables of the larger groups may be derived from those of the 

smaller groups (p. 68) as may its symmetry operations (p. 69), character table 

(p. 70) and (usually) labels for its irreducible representations (p. 70). The 

technique of using projection operators to obtain linear combinations of a 

particular symmetry is most important (p. 81). As in the previous chapter, 

symmetry based models led to qualitative predictions of electronic structure 

which were in accord with the results of theoretical calculations, photoelectron 

spectroscopic data (pp. 87, 91) and also consistent with more traditional 
bonding models (p. 92). 
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5 

The Electronic Structure of Bromine 
Pentafluoride, BrFs 

Although the object of this chapter is a discussion of the electronic structure of 

bromine pentafluoride, this topic represents only about a third of its contents. 

The group theoretical methods that have been developed in the previous 

chapters must be extended to enable a discussion of almost any molecule, 

irrespective of its symmetry. This generalization is the major purpose of this 

chapter and takes up most of it. However, it is simplest to work with an 

example in mind and bromine pentafluoride is a very convenient one. The 

structure of the bromine pentafluoride molecule is shown in Figure 5.1. The 

bromine is surrounded by four fluorines at the comers of a square and by a 

fifth, unique, apical, fluorine situated so that the five fluorines form a square- 

based pyramid around the bromine atom. Perhaps surprisingly, the bromine is 

slightly beneath the plane defined by the four co-planar fluorines. A valence 

electron count shows that there are two non-bonding electrons on the bromine 

atom. These are presumably in an orbital directed towards the obvious ‘hole’ 

around the bromine which if filled would mean that the bromine is surrounded 

by six groups at the comers of an octahedron (octahedral molecules will be the 

subject of Chapter 7). The electron pair repulsion (Sidgwick-Powell-Nyholm- 

Gillespie) model (Chapter 1) suggests that lone-pair bond-pair repulsion will 

have a greater effect on the four co-planar fluorine atoms than will the 

repulsion between these bromine-fluorine bonds and the apical one. The 

consequence of this inequality will be that the coplanar B-F bonds will be bent 

Figure 5.1 The actual structure of the BrF5 molecule. For simplicity, in the text the 
bromine will be taken as coplanar with the four surrounding fluorines. 
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towards the apical fluorine atom, giving the observed geometry of the 

molecule. As a simplifying assumption, however, in this chapter it will be 

assumed that the central bromine is coplanar with the surrounding four fluorine 

atoms. 
The chapter will start in the way that most group theory problems start in 

chemistry. One looks up the relevant character table in a compilation of these 

(such as that given in Appendix 3). So, the character table for the C4v group 

will simply be presented—the bromine pentafluoride molecule has this 

symmetry. Hopefully, the reader will be unhappy with this procedure. The 

character table will, in fact, be derived later in the chapter, using a method 

rather different to those used in earlier chapters for the C2v and D2h character 

tables. There are many differences between the C4v character table and these 

two. Much of this chapter will be occupied by an exploration of these 

differences—this study is important because it will lead to the generalization 

of group theoretical concepts and techniques referred to above. In the C4v 

group there may be more than one symmetry operation corresponding to a 

single symmetry element and, correspondingly, the character table contains 

numbers other than 1 and -1. The most important generalizations will be of the 

orthonormality theorems. It is this generalization that will be used to generate 

the C4v character table. This table is given in Table 5.1; it is helpful to see it at 

this point because the reader can then be made aware of the problems (and of 
their solutions!) before they are encountered. 

Table 5.1 

C4v E 2C4 C2 2 av 2a; 

4, 1 1 1 1 1 
a2 1 1 1 -1 -1 

1 -1 1 - 1 -1 
b2 1 -1 1 -1 1 
E 2 0 -2 0 0 

In the C4v character table, confusingly, E appears in the list of irreducible 

representation labels as well as in the list of operations. In this new usage it 

labels an irreducible representation which describes the transformation of two 

things simultaneously (its character under the ‘leave alone’ operation is 2). 

Irreducible representations which describe the properties of two things 

simultaneously are often called ‘doubly degenerate’ irreducible representations. 

The reason for this will become evident later in this chapter. We shall start our 

discussion by looking in detail at the symmetry operations of the bromine 
pentafluoride molecule—of the C4v group. 

Problem 5.1 Both the D2h and C4v groups are of order eight—a total of 

eight operations is listed at the top of each table (compare Tables 4.1 and 
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5.1). However, their structures are rather different. Make a list of the 
qualitative differences between the two tables. 

5.1 SYMMETRY OPERATIONS OF THE C4v GROUP 

The perspective shown in Figure 5.1 is not the best for seeing the symmetry of 

the BrF5 molecule. This symmetry is most readily recognized by viewing the 

molecule along the bromine—axial fluorine bond as shown in Figure 5.2, from 

which it is clear that four fluorine atoms lie at the comers of a square. 

Evidently, the bromine-axial fluorine bond coincides with a fourfold rotation 

axis (i.e. a C4) of the molecule. This brings with it something new. In all of the 

symmetries previously considered there has always been a single symmetry 

operation associated with each symmetry element of a molecule. As a result, 

the same symbol has been used for operation and for element, leaving it to the 

context to make clear which was the subject of discussion. Although we shall 

persist with the latter convention it must now be recognized that there is not 

always a 1:1 correspondence between symmetry elements and symmetry 

operations. In the present case, although there is just one fourfold rotation axis 

in the BrF5 molecule there are two corresponding symmetry operations. The 

molecule is turned into itself by a rotation of 90° in either a clockwise or an 

anticlockwise direction about the fourfold axis. These two operations have the 

effect of interchanging the fluorine atoms of BrF5 in different ways and so are 

distinct operations. The clockwise and anticlockwise C4 rotations operations 

associated with the C4 axis are inseparable—one cannot have one without the 

other. Usually such pairs of operations are grouped together and written as 2C4, 

thus recognizing both their distinction and similarity. It will be seen that they 

are written this way in the C4v character table (Table 5.1). Operations paired 

and written in this way are said to be ‘members of the same class’. Although 

this is an adequate definition of ‘class’ for most purposes, the concept of class 

is an important one in group theory and it is dealt with more formally and fully 

in Appendix 1. Because a fourfold axis exists it follows that a rotation of 180° 

(two steps of C4 rotation) about this axis also turns the molecule into itself. 

However, this operation is not a C4 rotation but a C2, although, of course, you 

Figure 5.2 A view of the BrF5 molecule looking down 
the apical (axial) F-Br bond. All bonds have been 
omitted but the square formed by the four equatorial 
fluorines included in order to emphasize the fact that this 
is a view down a fourfold rotation axis. 
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cannot have the former without also having the latter. Strictly, one should think 

of there being a C2 axis coincident with the C4 axis. The generality is clear—a 

high rotational symmetry may, automatically, imply the simultaneous existence 

of coincident axes of lower symmetry. 
As has just been mentioned, the C2 rotation operation may be regarded as a 

C4 rotation operation carried out twice in succession (in the same clockwise or 

anticlockwise sense). Symbolically one can write 

C4 x C4 = C\ = C2 

where, following the discussion of Chapter 2, we have multiplied C4 by C4 to 

obtain C2. In the same way it is easy to see that 

C\ = c4-' 
—carrying out three C4 rotations in one sense, clockwise or anticlockwise, is 

equivalent to a single C4 rotation in the opposite sense and that 

C\ = E 

This is another point of difference with the groups met in previous chapters. 

For all of these groups it was found that any of their operations carried out 

twice in succession gave the identity, regenerated the original arrangement. For 

the C4 operation it takes four steps (and for a general Cn rotation it takes n). 
The other symmetry elements (and associated operations) of the BrF5 are 

fairly evident. In addition to the identity operation, the two C4 rotation 

operations and the associated C2 rotation operation (which, it should be noted, 

comprises a class of its own) there are four mirror planes which are indicated 

in Figure 5.3. It can be seen from this figure that these mirror planes are of 

two types. First, those which we have labelled crv(l) and av(2) in each of 

which lie the bromine and three fluorine atoms. It is impossible to have one of 

Figure 5.3 Mirror planes of symmetry in Figure 5.2 (bold). The square of Figure 5.2 
is again shown. 
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these operations without the other because of the C4 axis. A C4 operation 

rotates one of these av mirror planes into the other. They are therefore 

inextricably paired together. These operations therefore comprise a class 

which is written as 2 av and it appears in this form in the character table. 

Second, there are those mirror planes which have been labelled ol(l) and 

o'A2) in Figure 5.3. Each contains the bromine and the axial fluorine atom and 

again are interrelated by the C4 axis. They comprise the class 2a'v. Several 

comments are relevant at this point. First, all four of the mirror planes contain 

the C4 axis and so are av mirror planes, as they have been labelled. Second, 

many authors prefer to give the mirror planes which we have called 0^(1) and 

<7v(2) the labels od(l) and ad(2), or, as a class, 2crd. This is because in a 

closely related group— that of the symmetry operations of a square—they 

carry this label. Strictly, however, the loss in symmetry in going from this 

group to C4v forbids the use of the ad symbol (as will be seen in Section 7.1, 

this symbol has a rather precise meaning which forbids its use here). Third, a 

comment on the fact that av(l) and crv(2) are interconverted by a C4 rotation, 

as also are o'(l) and a'(2). When symmetry elements are interconverted by 

another operation of the group, it is a sure sign that the corresponding 

operations fall into the same class. Finally, it is the presence of the C4 axis, 

together with the vertical mirror planes that give rise to the shorthand symbol 
for the group, C4v. 

Collecting all of the symmetry operations of the C4v group gives: 

E 2 C4 C2 2 av 2 a\ 

and it is these operations that head the character table (Table 5.1). Although the 

next major task is to derive this character table, it is convenient first to consider 

a problem which will be encountered when using it. 

Problem 5.2 Either draw a diagram or (better) make a model of the 

BrF5 molecule and, by a study of this, make a list of the symmetry 

elements that it contains. Compare your list with that given above and 

explore the reason for any differences. 

5.2 PROBLEMS IN USING THE C4v GROUP 

When considering the transformation of something—an orbital or set of 

orbitals, perhaps—what should be done when there are two operations in a 

class? How is character generated in such a case? Although the formal answer 

to this is unattractive, the practical answer is simple. Formally, the correct 

procedure is to consider the transformations under each of the individual 

operations in the class and to take the average of characters generated. 

However, it is invariably the case that each of the symmetry operations in a 

class always gives the same character. This means that, in practice, all that has 
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to be done is to: 

Select a single symmetry operation from a class (and it quite often 

happens it is possible to set up the problem in such a way that there is one 

operation with which it is particularly easy to work) and take the 

character generated by this operation. 

There is yet one more problem which it is as well to consider before turning to 

the C4v character table. As has been seen, the axis of highest rotational symmetry 

is conventionally chosen as the z axis so that the C4 axis of BrF5 is clearly to be 

taken as the z axis. However, we are left with the problem of where to place the x 

and y axes. Perhaps the most obvious choice of direction is that shown in Figure 

5.4, in which the four fluorines are taken to define the x and y axes, but what is 

wrong with the alternative choice given in Figure 5.5? The solution to this 

problem becomes clearer when it is noted that the x and y axes, just like the av 

mirror planes in which they lie, are interchanged by the C4 operations, irrespec¬ 

tive of whether the orientation of Figure 5.4 or of Figure 5.5 is chosen for them. 

The orientations for x and y axes in these figures have an obvious attraction— 

they are choices which place the axes in mirror planes. A less attractive choice 

(but perfectly admissible one) such as that shown in Figure 5.6, still retains the 

property that x and y are interrelated by a C4 rotation. Clearly, the x and y axes 

must be treated as a pair (if the choice for one is changed so too must that for the 

other), just as the two av and the two a' mirror planes have to be treated as a pair. 

This intimate pairing of x and y axes is basic to the difference between the C4v 

character table and the Abelian character tables of earlier chapters in this book.? 

z 

Figure 5.4 One choice of direction for x and y axes in BrF5 (and consequent 
directions for the bromine 4pt and 4pv orbitals; the 4pA orbital is shown cross-hatched). 

t The argument presented here is not quite complete, as will be seen in Chapter 11, where the C4 
group will be explored. In that group the x and y axes behave as described above and yet the C4 
group is Abelian. As will be seen in Chapter 11, the dilemma is resolved in that the group contains 
an £ irreducible representation, in which the two components are said to be ‘separably 
degenerate’. 
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z 

OF 

(a) (b) 

Figure 5.5 An alternative choice of direction for x and y axes in BrF5 (and 
consequent directions for the bromine 4px and 4pv orbitals). 

z 

Figure 5.6 A third choice of direction for x and y axes in BrF5. 

The x and y axes are said to ‘transform as a pair’, a statement which will later be 

seen to be manifest in the fact that the x and y axes transform, together, as the 

E irreducible representation in Table 5.1. The choice of x and y axis 

directions—Figures 5.4, 5.5 and 5.6—is ultimately unimportant; after all, no 

physical property can in any way depend on the way we choose to place axes. 

Although this is an almost trivial statement, it is not so easy to elaborate it. This 

elaboration is discussed in more detail in Appendix 2. 

5.3 ORTHONORMALITY RELATIONSHIPS 

We now return to the problem of generating the character table of the C4v point 

group. In principle, the procedure of Chapter 3 could be followed and the 

transformations of atomic orbitals of the bromine atom used to generate the 

irreducible representations of this group. Unfortunately, a complete set of 

irreducible representations could not be obtained even if f orbitals on the bromine 

atom were included—although if g orbitals were also included it would suffice! 
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If this is the only method available for the compilation of a character table, then 

for the more complicated groups one would be left wondering whether a study of 

yet higher orbitals might uncover further, previously unrecognized, irreducible 

representations. Fortunately there are systematic methods available for the 

generation of character tables. One of these methods will now be described, one 

which relies on the existence of the orthonormality theorems which have already 

been used in a simple form in earlier chapters. The form in which they are used 

here is a simple extension of their earlier form, adapted to take account of the 

fact that there can be more than one operation in a class (this was one of the 

simplifications involved in using Abelian groups—they have one operation in 

each class, never more). The general proof of these theorems is rather mathe¬ 

matical and is given in Appendix 2. 

Of the theorems that follow, numbers 2, 3, 4 and 5 are those that are 

commonly called the orthonormality theorems.f 

Theorem 1 In every character table there exists a totally symmetric 

irreducible representation. 

Comment: The totally symmetric irreducible representation is the first given in 

any character table and has a character of 1 associated with each class of 

operation. It describes the symmetry properties of something which is turned into 

itself under every operation of the group. This really is a rather trivial theorem, 

introduced here for convenience. By definition, a molecule is turned into itself by 

every operation of the point group used to describe it. A totally symmetric 

irreducible representation must therefore exist for every point group. 

Theorem 2 Take each element of any row of a character table (i.e. the 

characters of any irreducible representation), square each 

and multiply by the number of operations of the class to 

which the character belongs and add the answers together. 

The number that results is an integer which is equal to the 

order of the group (i.e. equal to the total number of 

symmetry operations in the group). 

Comment: This theorem was first met in Chapter 3, when a systematic method of 

reducing a reducible representation into its irreducible components was obtained. 

Because an Abelian group was then involved, the number of operations in each 

class was one, so that there was no need to include the step of multiplying by the 

t In this chapter and all others up to Chapter 10, all the characters that will be met are real. The 
theorems that follow apply only to character tables with such real characters. When complex 
characters are encountered, changes to the theorems have to be made to deal with this. The 
changes that are needed are covered in Chapter 11. 
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number of operations in a class. For a non-Abelian group, for which there is 

invariably at least one class containing more than one operation, care must be 

taken to include this additional step, otherwise the number obtained at the end of 
the summation will not be that of the order of the group. 

Problem 5.3 Apply Theorem 2 to the irreducible representations of the 

C4v point group (Table 5.1). The order of this group is eight. 

Theorem 3 Take any two different rows of a character table (i.e. any 

two irreducible representations) and multiply together the 

two characters associated with each class. Then, in each 

case multiply the product by the number of operations in 

the class. Finally, add the answers together. The result is 
always zero. 

Comment: This theorem again, is one already met—when reducing reducible 

representations. On that occasion, because there was only one operation in each 

class there was no need to explicitly include multiplication by the number of 

elements in the class. In general, however, this step must be included. 

Problem 5.4 Apply Theorem 3 to at least five pairs of irreducible 

representations of the C4v point group (Table 5.1). The E irreducible 
representation should be included in at least two cases. 

As will be seen, Theorems 2 and 3 are at the heart of the method used to 

reduce reducible representations into their irreducible components. They are 

sometimes referred to as if the others did not exist and called, ‘the orthonor¬ 

mality relationships’. 

Problem 5.5 Look back at Section 3.1 and read the discussion on 

orthonormality given there. Why are Theorems 2 and 3 referred to as 

‘orthonormality relationships’? 

The fourth and fifth theorems are similar to the Theorems 2 and 3 but relate to 

the columns of a character table instead of the rows. They are new to the reader 

but it can readily be checked that they are correct when applied to all of the 

character tables met so far. 

Theorem 4 Consider any class (column) of a character table and 

square each of the elements in it; sum the squares and 

multiply the answer by the number of operations in the 

class. The answer is always equal to the order of the group. 
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Problem 5.6 Apply Theorem 4 to the columns of the C4v character 

table. 

Theorem 5 Consider any two different classes (columns) of the 

character table. This selects two characters of each irreduc¬ 

ible representation. Multiply these pairs of characters of 

the same irreducible representation together, and sum the 

results. The answer is always zero. 

Comment: In this case no explicit allowance has been made for the number of 

elements in a class. This is because multiplying by any factor which is common 

to all contributions to the sum would not change the final answer—it would 

still be zero. 

Problem 5.7 Apply Theorem 5 to at least five pairs of columns of the 
C4v character table. 

Theorem 6 This states that a character table is always square—it has 

the same number of columns as it has rows; there are as 

many irreducible representations as there are classes of 
symmetry operations. 

Comment: Yet again, it is easy to see that this theorem holds for all the 
character tables that have been encountered so far in this book. 

Problem 5.8 As was indicated in a footnote at the end of Section 2.4. 

some character tables contain complex numbers. Sometimes, authors of 

introductory texts attempt to protect their readers from such horrors by 

manipulation of the character table. The ‘character table’ for the group C4 
taken from one such text is given below. 

c4 E 2C4 C2 

A 1 1 1 
B 1 -1 1 
E 2 0 -2 

Show that this ‘character table’ does not fully obey Theorems 2, 4 and 5. 

(The correct character table will be discussed in detail in Chapter 11 and 
is given in Table 11.1.) 
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5.4 THE DERIVATION OF THE C4v CHARACTER TABLE 
USING THE ORTHONORMALITY THEOREMS 

In this section the C4v character table is derived systematically, in contrast to the 

hit-or-miss method of previous chapters (where the examples were chosen to 

give hits, of course). There are several methods of deriving character tables; that 

in this section is the easiest to understand, follow and use. The derivation of the 

C4v character table starts by using Theorem 6. The total number of symmetry 

operations in the C4v group is eight and it has already been seen that they fall into 

five classes. Because the character table must be square (Theorem 6) it follows 

that there are just five irreducible representations. Theorem 4 requires that the 

sum of squares of characters lying in the column corresponding to the identity 

operation is eight (the order of the group). Further, because of the nature of the 

identity operation (it counts a number of objects), none of these integers can be 

negative or zero. The only set of integers which satisfies these conditions is the 

set 1, 1, 1, 1 and 2 (12+ 12+ l1 + 12 -t-22 = 8). Including the totally symmetric 

irreducible representation (Theorem 1) we can write down the skeleton character 

table shown in Table 5.2, where the quantities a —> p have yet to be determined. 

Table 5.2 

E 2C4 c2 2 av 2a\ 

1 1 1 1 1 
1 a b c d 
1 e f g h 
1 i j k i 
2 m n 0 P 

Because an irreducible representation which describes the behaviour of a 

single object has characters which can only be 1 or -1, more strictly, are 

always of modulus unity (the object always goes into itself or minus itself, 

never into a different object under a symmetry operation) the entries a to Bin 

Table 5.2 all have values of either 1 or -1. 
Consider now the column corresponding to the C2 rotation operation. Again, 

by Theorem 4, the sum of characters in this column has to equal eight and 

since from the last paragraph the squares of b, f and j are each +1 it follows 

that n2 must be 4 so that n is either +2 or -2. In fact, it follows from the 

previous paragraph that each of the entries a to £, when squared, gives the 

number 1. From Theorem 4, and because each of the 2C4, 2ctv and 2a' classes 

have two operations in them, the elements m, o and p must each be equal to 

zero. If they had any other value, the sum of squares of elements in each 

column when multiplied by two, the order of the class, would give a number 

greater than eight. We are thus led to Table 5.3, in which all ± signs are to be 

regarded as independent of each other. 
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Table 5.3 

E 2C4 C2 2 av 2o[ 

1 1 1 1 1 
1 ±1 ±1 ±1 ±1 
1 ±1 ±1 ±1 ±1 
1 ±1 ±1 ±1 ±1 
2 0 ±2 0 0 

Consider the identity column in Table 5.3 together with one of the columns 

corresponding to any class of order two. For Theorem 5 to be satisfied (i.e. 

zero obtained when the products of corresponding characters are summed), 

the three characters listed for each class as ±1 must in fact, contain one +1 

and two -l’s. Since at this point in the argument the middle three rows of 

Table 5.3 are identical, two -l’s may be arbitrarily selected for any one class 

of order two. This we shall do for the 2C4 class. The new form of Table 5.3 

could be written down but first it is convenient to apply Theorem 3 (the sum 

of the products of characters multiplied by class orders must be zero) using 

the double degenerate irreducible representation given in Table 5.3 together 

with the first (totally symmetric) irreducible representation. Theorem 3 is only 

satisfied if the ±2 entry under the C2 class of the doubly degenerate irreduc¬ 

ible representation is actually -2. The characters of the doubly degenerate 

irreducible representation have therefore all been obtained. These results are 
brought together in Table 5.4. 

There are many ways of completing the generation of the character table. 

For example, apply Theorem 5 (the sum of products of elements of the two 

classes must be zero) to the columns headed by the E and C2 operations (the E 

and C2 classes) in Table 5.4. The theorem can only be satisfied if all of the 

characters in the C2 class are +1. Remembering this result, consider the first 

two rows (irreducible representations) of Table 5.4 and apply Theorem 3 (the 

sum of the products of characters multiplied by class orders must be zero). The 

only way in which a sum of zero can be obtained is if the two ±1 characters in 

Table 5.4 

E 2C4 C2 2 CTV 2 a' 

1 1 1 1 1 
1 1 ±1 ±1 ±1 
1 -1 ±1 ±1 ±1 
1 -1 ±1 ±1 ±1 
2 0 -2 0 0 
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the second irreducible representation are actually -1. These results are 
summarized in Table 5.5. 

Table 5.5 

E 2C4 c2 2 CTV 2 o\ 

1 1 1 1 1 
1 1 1 -1 -1 
1 -1 1 ±1 ±1 
1 -1 1 ±1 ±1 
2 0 2 0 0 

Perhaps the most evident thing about the residual unknowns in Table 5.5 is 

that the characters associated with the third and fourth irreducible representa¬ 

tions are the same. The application of either Theorem 3 or 5 readily shows that 

the four ±1 characters in Table 5.5 must be either 

1 -1 or -1 1 

-11 1-1 

Substitution of these sets of numbers alternately into Table 5.5 shows that they 

generate the same two irreducible representations; the alternatives merely differ 

in the order in which the irreducible representations are listed. The generation 

of the C4v character table is complete! 

Problem 5.9 The derivation of the C4v character table has been 

explained in some detail. It is important that each step is followed closely 

because this will give valuable practice in the use of the orthonormality 

theorems. If it has not already been done in reading this section, carefully 

check each step in the derivation of the C4v character table. 

The final character table is given in Table 5.6 where the commonly 

adopted symbols for the irreducible representations have also been included. 

Table 5.6 

> E 2C4 c2 2 ov 2o'y 

A, 1 1 1 1 1 z, z2, jt2 + y2 
a2 1 1 1 -1 -1 
B, 1 -1 1 1 -1 x2-y2 

b2 1 -1 1 -1 1 xy 
E 2 0 -2 0 0 (x, y), (zx, yz) 
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Note the difference between irreducible representations labelled B and those 

labelled A. Both are singly degenerate but the B’s are antisymmetric with 

respect to a rotation about the axis of highest symmetry (C4) whereas the 

A’s are symmetric. This particular distinction may be compared with that 

discussed in Section 2.4, where the A’s and B’s in the C2v point group were 

distinguished by their behaviour under a C2 rotation operation. The 

generalization is clear—for a group for which the highest rotational axis is 

Cn, A’s are symmetric with respect to this operation whereas B’s are 
antisymmetric. 

Problem 5.10 A fragment of the Cgv character table is shown below. 

Complete this fragment. 

n
 

oo ■< E 2 C8 2C4 2C8 C2 

A, 1 

a2 1 

5. 1 
b2 1 

Hint: Within this fragment there is no distinction apparent between A, 

and A2 or between B, and B2. Consider first behaviour under C8; the 

other entries follow because C4 and C8 are multiples of C8 and the 

characters under these operations must be consistent with that for C8. 

This problem illustrates yet another approach to the compilation of 

character tables and the sort of relationships that exist within them. A 

discussion which parallels that required to answer this problem is to be 
found at the end of Section 11.5. 

Problem 5.11 Use the second part of the hint in Problem 5.10 to 

explain why there are no B irreducible representations in the character 

table of the C7v group (or, indeed, any group containing a Cn axis when n 
is odd). 

We are now in a better position to discuss Table 5.6 than when it was first 

met as Table 5.1. There are five aspects of it on which it is appropriate to 

comment, all associated with the E irreducible representation. The first has 

already been mentioned, the label E itself. This is identical to the label used to 

describe the identity operation. Although this appears confusing, in practice it 

is not. This is because the contexts in which the two labels are used are always 

quite different, the context tells which is intended. In some texts, however, the 

ambiguity is avoided by a difference in typeface or, more simply but less 

frequently, by the use of the label I for Identity operation. Second, the 

occurrence of the characters 2 and 0 in this irreducible representation is 

something new and requires comment. The appearance of the character 2 for 

the identity, leave alone, operation means that two things are being left alone, 
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that the E irreducible representation describes the behaviour of a pair of objects 
simultaneously. The x and y axes of BrF5, no matter which choice is made for 
them, is such a pair. Another, closely related, example which will be consid¬ 
ered in detail shortly are the valence shell pA. and p^ orbitals of the bromine 
atom in BrF5. The character 2 here, then, means the same as when it was met in 
Chapter 3; that two objects remain themselves. However, the way that the 0 
appears is something new. Previously, this character was obtained because 
every object under consideration moved as a result of a symmetry operation. 
There is another way in which 0 can appear. This is when each object which 
remains unchanged is matched by one which changes its sign. The sum of 1 
and -1 is, of course, 0. An example of this will be met when the pA and py 
orbitals of the bromine atom in BrF5 are considered. Third, note the way in 
which the members of a basis set for the E representation are written (in the 
extreme right-hand column of the character table). The x and y axes are such a 
pair and are written (x, y) in contrast to the listing of functions which, 
separately and independently, provide a basis for a representation. The 
functions z and z2 each, separately, forms a basis for the A, irreducible 
representation. The way that either can do this independently of the other is 
indicated by the way they are written: z, z2. Fourth, this is a convenient point at 
which to formally introduce a piece of useful jargon (which we have already 
used!). Irreducible representations which describe the transformation of two 
objects simultaneously are said to be doubly degenerate whereas those 
describing the transformation of one are said to be singly degenerate. There are 
fundamental reasons for this usage but simplest is to note that if the objects the 
irreducible representations describe are orbitals, then for E irreducible 
representations there must be two orbitals with exactly the same energy. Were 
they not the same, the act of carrying out, for example, a C4 rotation would 
have the effect of changing energies (because it interchanges the orbitals, pA 
and py, for instance). The energy of an orbital would depend on whether or not 
we chose to do a C4 operation and this clearly is ridiculous. This dilemma is 
only avoided by the orbitals having the same energy, being degenerate. 

Fifth, if we were to construct a group multiplication table for the C4v group 
we would find that only the characters of the various A and B irreducible 
representations could be substituted for their corresponding operations to give 
an arithmetically correct multiplication table. The substitution fails for the E 
irreducible representation. The reason is that we should really use 2x2 
matrices to describe the E irreducible representation, not a simple number. 
When these matrices are substituted for the corresponding characters, and 
multiplied by the laws of matrix multiplication then a correct multiplication 
table is obtained. This is explained in more detail in Appendix 2. At this point it 
is appropriate only to comment that ordinary numbers may be regarded as 1 x 1 
matrices (whereupon the laws of matrix multiplication reduce to the ordinary 
laws of numerical multiplication) so that those irreducible representations 
containing only characters value +1 or -1 may also be regarded as involving 
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matrices. The connection between matrices and character tables is profound 

and important. Indeed, the name ‘character’ is the name given to the sum of the 

elements along the leading diagonal (top left to bottom right) of a matrix. This 

is no accident, as Appendix 2 makes clear. However, in almost all of the 

applications of group theory to chemistry there is no need to make explicit use 

of matrix algebra. Hence this book, in which there is no use of matrix algebra 

in the body of the text. 
Two quite different methods of generating character tables have now been 

encountered, that of using the transformations of suitable basis functions and 

that of the use of the character table theorems. As has been indicated, there are 

also other methods too. They will not be discussed. From this point on in the 

text, character tables will not be systematically derived. The procedure will be 

that almost invariably used—a character table is taken from a compilation such 

as that in Appendix 3. When appropriate, however, comments on various 

aspects of those that are met will be included in the text. 

5.5 THE BONDING IN THE BrFs MOLECULE 

We now return to the problem with which this chapter started, that of the 

bonding in the BrF5 molecule. The discussion will be simplified by consider¬ 

ing only cr-interactions between the fluorine and bromine atoms. Further, the 

possibility that d orbitals on the bromine may be involved in the bonding will 

be ignored. These are reasonable simplifications but it is as well to anticipate 

their consequences. First, each fluorine atom will have six valence-shell non¬ 

bonding electrons, a total of thirty in the molecule. There will be peaks 

arising from these electrons in the photoelectron spectrum of the molecule 

which may make it difficult to test the final model. Second, the neglect of 

bromine d-orbitals will mean that we will find, at most, three bonding 

molecular orbitals responsible for the a bonding of the four coplanar fluorines 

to the bromine atom. Of the bromine’s four valence shell orbitals one, 4pz, 

has a node in the plane containing the four fluorines and so cannot be 

involved in this bonding, leaving only three orbitals potentially available to 

bond to the four fluorines. 

As usual, the first thing to do is to consider the transformation properties of 

the bromine valence shell orbitals, 4s, 4pA., 4p> and 4pz (for simplicity, the 

prefix 4 will not be used in the following discussion). It is a simple matter to 

show that the bromine s and pz orbitals separately transform as A,. The only 

likely point of any difficulty arises from the fact that there are three classes 

containing two operations. What has to be done? As indicated above, the 

answer is ‘consider either operation’ (or, in the more general case in which 

there are more than two operations in the same class, consider any one—often 

one will be a particularly convenient and easy choice). Whichever of the 

alternative operations is chosen, the same set of characters will result. 
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Problem 5.12 Show that the bromine s and p7 orbitals do indeed 
transform as A{. 

Hint: The z coordinate axis is shown in Figure 5.4. Viewing the orbitals 

from the direction in Figure 5.2 should prove helpful. 

Problem 5.13 Repeat Problem 5.12 but using the other choice of 

symmetry operation for the 2C4, 2av and 2a' classes to that used in 
Problem 5.12. 

As has been indicated earlier, px and py transform together as E. However, 

this has to be shown, as does the fact that the result is independent of the 

choice of orientation of x and y axes (although the demonstration of this latter 

point will be incomplete because only the alternative axis sets of Figures 5.4 

and 5.5 will be considered). The transformation of the pv and pv orbitals of the 

bromine atom under the eight symmetry operations of the C4v group are 

detailed in Table 5.7 for the two choices of x and y axes. It is most important 

that this table should be worked through carefully. Note, in particular, that the 

behaviour of the two sets of p orbitals under the mirror plane reflections 

depends on the choice of x and y axis directions. Despite these differences, the 

character resulting from the transformations is the same for either choice, a 

most important result. Similarly, the sum of characters generated by pA and py 

Table 5.7 The transformations of the bromine px and py orbitals in BrF5. The table 
shows the orbital obtained when each operation operates on px and pv. Its contribution 
to the aggregate character is given in parentheses after each orbital 

E c4 C\ c2 Ml) av( 2) <(1) O'A 2) 

Px (Figure 5.4) 
becomes Pxd) -P,(0) P,(0) -Px(-l) -Px(-U Pxd) P,(0) -p,(0) 

py (Figure 5.4) 
becomes P,U) Px(0) -p*(0) -P/-D p,d) -Py(-l) Px(0) -p,(0) 

Px, py together 2 0 0 -2 0 0 0 0 

Px (Figure 5.5) 
becomes Pxd) -P,(0) P,(0) -Px(-l) -Py(0) P,(0) -Px(-l) Pxd) 

py (Figure 5.5) 
becomes P,d) P,(0) -Px(0) -p,(-l) -Px(0) Px(0) p,(l) -p,(-l) 

px, pv together 2 0 0 -2 0 0 0 0 

C4v E 2C4 C2 2 ctv 2a( 

Representation generated 
by px and pv together 20-20 0 
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is the same for all operations in any one class. The - consensus-characters 

generated by the p v and p^ orbitals under the operations of the C4v point group 

are given at the bottom of Table 5.7. The choice of x and y axes of Figure 5.6 

(or any other arbitrary choice) would also lead to the same set ofcharacters as 

those given in Table 5.7, although the truth of this is not self-evident. For the 

proof of the statement the use of matrix algebra is unavoidable. The reader 

who wishes to check out this particular aspect will have to turn to Appendix 2, 

where the proof is given. Comparison with Table 5.6 shows that the representa¬ 

tion which has been generated using pA and p^, as bases is the E irreducible 

representation of the C4v group. Because the x and y axes transform similarly 

to pA and py (just drop the p’s in Table 5.7 to obtain the transformation of the 

axes) it follows that these too transform as E, as asserted earlier in this chapter. 

The next task is to determine the irreducible representations spanned by the 

fluorine o orbitals involved in bonding with the bromine. No attempt will be 

made to specify in detail the composition of the fluorine a orbitals. Each will 

be a mixture of s and p orbitals but the participation of each of these compo¬ 

nents is not symmetiy determined and, in any case, the choice does not affect 

the qualitative conclusions that will be reached. For simplicity, in the diagrams 

in this chapter these hybrid orbitals will be drawn as spheres (in contrast, it is 

more convenient that they be drawn as pure p orbitals in Appendix 4). The next 

step is the usual one, a consideration of the transformation properties of these 

fluorine hybrid orbitals. That of the axial fluorine lies on all of the symmetry 

elements of the C4v group. All of the corresponding operations turn the orbital 

into itself. It therefore transforms as the totally symmetric irreducible 

representation of the C4v point group (A^. The hybrid a orbitals of the four 

symmetry-related fluorine atoms transform as a set and form a basis for a 

reducible representation which must be decomposed into its irreducible 

components. The generation of the reducible representation is straightforward 

but two comments are relevant. First, care has to be taken in the definition of 

av and o\ mirror planes. In this chapter the choice shown in Figure 5.3 will be 

followed. This choice is arbitrary but it is important to be consistent, otherwise 

meaningless results will be obtained. Second, as before, for the classes 

containing two symmetry operations either operation may be chosen to obtain 

the character. So, use that which is the easier (most people find that C4 is easier 

than Cl, for example). Following this procedure it should readily be found that 

the reducible representation generated by the fluorine a orbitals is: 

E 2 C4 C2 2 ctv 2 a'v 

4 0 0 2 0 

Now, this reducible representation has to be reduced to its irreducible 

components. Again, recognition has to be made of the fact that three classes 

contain two operations. The reduction of a reducible representation depends on 

the group theory orthogonality relationships given earlier in this chapter. In 

particular, Theorems 2 and 3 are relevant. So, the above representation has to 
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be multiplied by the characters of each irreducible representation in turn. These 

products are then multiplied by the number of operations in the class and the 

results summed. If no mistake has been made, the sum is a multiple of 8 (the 

order of the C4v group), the multiplication factor giving the number of times 

that the chosen irreducible representation appears in the reducible representa¬ 

tion. This is worked out for the case of the Bx irreducible representation below. 

E 2C4 c2 2 <7V 2ct( 

Reducible representation 
4 0 0 2 0 

By 1 -1 1 1 -1 
Multiply 4 0 
Number of operations in class 

0 2 0 

1 2 1 2 2 
Multiply last two rows 

4 0 0 4 0 

Add the entries in the last row; the sum = 8. We conclude that the Bx 

irreducible representation occurs once in the reducible representation. Repetition 

of this process shows that the reducible representation has A, + Bx + E 
components. 

Problem 5.14 Show that the reducible representation generated above 
has A, + E components in addition to the Bx. 

Labelling the fluorine orbitals as indicated in Figure 5.7, and proceeding as in 

Section 4.6, the normalized form of the linear combinations of fluorine hybrid 

orbitals which transform as the A, and Bx irreducible representations—the 

symmetry adapted combinations—are obtained. The discussion in Section 4.6 

is so close to that needed at this point that it will not be repeated. The only 

F 

Figure 5.7 The labelling and phases of the a hybrid orbitals of the four coplanar 
fluorines. For simplicity these hybrid orbitals are drawn as circles; the square of Figure 
5.2 is shown in perspective in this and following diagrams in order to locate the fluorine 
atoms without including all of them. 
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thing new is to point out that each and every operation of the group must be 

considered (so, both C4 and Cl). The character that is used to generate a 

particular symmetry-adapted combination is that in the character table, applied 

to each operation in a class. So, for the B] irreducible representation, both C4 

and C\ are associated with a character of -1. 

Symmetry Symmetry-adapted combinations 

species of fluorine orbitals 

A, 2 (a + b + c + d) 

5, |(a - b + c - d) 

Problem 5.15 Working with the labels of Figure 5.7, use the projection 

operator method to generate the Ax and Bx functions given above. 

The generation of the two combinations which transform as £ is a more 

difficult problem, and it will be considered in some detail. Those who 

experienced difficulty with Problem 5.15 should find the following discussion 

helpful. As for the A, and Bx combinations the projection operator method 

described in the last chapter will be used. Using the fluorine hybrid orbital 

labelled a in Figure 5.7 as generating element and mirror plane operations as 

labelled in Figure 5.3 the following transformations are found (they were 

probably generated in tackling Problem 5.15): 

Operation E C4 c\ c2 M 1) M2) MU M 2) 

Under the operation orbital a becomes 
a d b c c a b d 

The E irreducible representation 
2 0 0 -2 0 0 0 0 

Multiply 2a 0 0 -2c 0 0 0 0 

(C4 and Q are clockwise and anticlockwise rotations of 90° respectively.) 

The sum of products is 2a - 2c which gives, on normalization: 

as one of the E functions. Note, as emphasized several times already, that in 

the above derivation each operation of the group is listed separately. So, when 

there is a class comprising two symmetry operations, below each operation the 

corresponding character of the E irreducible representation is given. 

The wavefunction obtained, (l/V2)(a-c), is one member of the pair of 

functions transforming as E. How may we obtain its partner? In this function 
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there is no contribution from the orbitals b and d; we might reasonably expect 

them to contribute to the orbital we are seeking. If we consider the trans¬ 

formations of either of these orbitals and follow the projection operator 

technique used above it is a simple task to show that the function, 

(1/V2)(b - d) is generated. This is the second function for which we have been 
looking. 

Problem 5.16 Generate the second E function, (1/V2)(b - d). 

The functions (1/V2)(a - c) and (1 /V2)(b - d) transform as a pair under the E 

irreducible representation of the C4v group and are shown in Figure 5.8. The 

method used to obtain the second member of the degenerate pair was based on an 

enlightened guess. In the next chapter a more systematic method of generating 

such functions will be presented. One final word on these combinations. Whereas 

in the Ax combination adjacent fluorine a orbitals have the same phase—and so 

any interaction between them is bonding—in the Bx they are always of opposite 

phase. Any interaction between them is antibonding. In each of the E combina¬ 

tions there is no interaction between adjacent a orbitals (only trans orbitals 

appear in any one combination). This argument leads us to expect a relative 

energy order A, <E < Bx, a sequence which will be reflected in the presentation 

of the molecular orbital energy level diagram for BrF5 (Figure 5.12). 

We are now almost ready to consider the interaction between bromine and 

fluorine a orbitals. First, however, recall that the s and pz bromine orbitals 

separately transform as the A, irreducible representation. Analogous situations 

have been encountered in earlier chapters, when the corresponding orbitals were 

combined to obtain two mixed, hybrid, orbitals of the form (1 /V2)(s ± pz). This 

simplifying procedure will also be followed in the present case. One of the mixed 

orbitals is orientated in a way that should give good overlap with the o orbital of 

the apical fluorine atom, an orbital which, as has been seen, is also of A, 

symmetry; these steps are shown schematically in Figures 5.9 and 5.10. The 

remaining s-pz mixed orbital on the bromine atom points in the direction 

Figure 5.8 The two fluorine a hybrid orbital combinations which transform as E in 
the C4v point group and which are derived in the text. 
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and 

Figure 5.9 Hybrid orbitals (right) derived from bromine atomic orbitals (left) of A, 
symmetry in BrF5. 

A-) Br-F (axial)antibonding 

Figure 5.10 Bonding of the axial fluorine to the bromine atom in BrF5; some form of 
sp hybrid is envisaged as involved on each atom. 
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indicated by dotted lines in Figure 5.1 and therefore might be regarded as the 

orbital which (in the electron-pair repulsion model) causes the distortion of the 

molecule that was noted at the beginning of this chapter. Unfortunately, as will 

be seen, reality is perhaps more complicated than this. The complication arises 

from the fact that there is also a combination of o orbitals from the planar 

fluorines which has A, symmetry. Clearly, it can interact with A, orbitals of the 

bromine. However, one of these latter A, orbitals is pz and this has a nodal plane 

in which the fluorines lie (in our simplified geometry of coplanar bromine and 

fluorines). The basal plane fluorine Ax combination interaction will therefore be 

almost entirely with the bromine s orbital. Correspondingly, it seems probable 

that the bromine s orbital involvement with the axial fluorine and in the basal lone 
pair will be rather less than assumed above. 

The only other valence orbitals on the bromine atom are pt and p^ which, 

together, are of E symmetry. They are shown in Figure 5.4(b). They interact 

with the two fluorine o orbital combinations of E symmetry which were 

generated earlier in this section and which are shown in Figure 5.8. Provided 

the p orbitals and the fluorine orbital combinations are properly chosen—and 

this means that the same set of coordinate axes is used for each—then each p 

orbital only interacts with one o orbital combination. The orbitals in Figures 

5.4(b) and 5.8 are properly chosen and the results of their interactions to give 

what have been represented as sum (bonding) and difference (antibonding) 
combinations are shown in Figure 5.11. 

Figure 5.11 The two bonding orbitals and the two antibonding orbitals of E symmetry 
in BrF5 arising from interactions of the four coplanar fluorines with the central bromine 
atom. 

Problem 5.17 Repeat the above discussion of the interactions of 

orbitals of E symmetry using the choice of coordinate axes shown in 

Figure 5.5 (use the bromine p orbitals shown in Figure 5.5(b)). 
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Hint: The projection operator method used in the text automatically 

selected the coordinate axis choice shown in Figure 5.8 because of an 

(implicit) choice to consider the transformation of an individual fluorine 

o orbital (a). The method can be forced to give combinations appropriate 

to the axes of Figure 5.5 by considering, instead, the transformation of a 

pair of neighbouring cx orbitals. Thus, the pairs (a + b) and (a + d) are 

suitable pairs to use in tackling this problem. 

The above discussion is summarized in Figure 5.12, where, as has been 

recognized, there must be some uncertainty about the details of the positions of 

the orbitals of A, symmetry. Into the orbital pattern shown in this figure a total 

of twelve electrons (seven from the bromine and one from each fluorine 

orbital) have to be placed. It will be remembered that this diagram does not 

include the fluorine non-bonding electrons. 
There are some interesting consequences of Figure 5.12 and of our 

discussion of the bonding of the BrF5 molecule. We have suggested that one 

molecular orbital (of A, symmetry) is primarily involved in the bonding of the 

axial fluorine to the bromine. If this view is correct then this bromine-fluorine 

bond involves two electrons. In contrast, in the picture developed above, the 

strongly bonding molecular orbitals involving the planar fluorine atoms are of 

E symmetry (although there will be a smaller contribution from an A, orbital). 

That is, the four coplanar fluorine atoms are bonded to the central bromine 

atom by little more than two molecular orbitals. If this conclusion is correct, it 

suggests that the bonding between the bromine and each of the four coplanar 

fluorines is rather weak, a view supported by the fact that bromine 
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Figure 5.12 Schematic molecular orbital energy level diagram for BrF5. 
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pentafluoride is an extremely powerful fluorinating agent. Some further support 

for this difference between axial and planar fluorines is to be found in 

molecular structure determinations which show Br-F bond lengths of 1.68 A 
(axial) and 1.78 A (equatorial). 

Both theoretical calculations and photoelectron spectroscopic data are available 

for BrFs. For us they are complicated by the fact that in the above discussion all 

the electrons on the bromine and on the fluorine atoms which are not involved in 

o bonding have been omitted. These electrons, then, have to be regarded as non¬ 

bonding and so are expected to be relatively easy to ionize. Fortunately, some of 

the symmetries they span are not included in the a bonding set (A2, for example) 

and this helps to identify them. The highest lying, most easily ionized, electrons 

(at 13.5 eV in the photoelectron spectrum1) are believed to be the lone pair of 

electrons on the bromine atom. Then come at least three peaks (between 15 and 

17 eV) corresponding to ionization of the fluorine 2p non-bonding electrons, 

included amongst these are the lb,, 2a, and 3a, electrons of Figure 5.12. 

Between 18 and 22.5 eV are two peaks which are almost certainly composites 

but which have been reported as including ionization from the le and la, Br-F 

a-bonding molecular orbitals of Figure 5.12. Theoretical calculations are 

available for both C1F52 (which has a structure similar to that of BrF5) and BrF53 

itself. The two sets of calculations, which used somewhat different theoretical 

models, are in good qualitative agreement with each other and with the 

experimental data, although they suggest that perhaps the la, orbital of Figure 

5.12 is just a little too low in energy to be seen in the photoelectron spectrum. For 

us the most important general conclusion is the promising result that, once again, 

our relatively simple symmetry-based arguments lead to an energy level pattern 

which is in good qualitative agreement both with experiment and with detailed 

theoretical calculations. 

Problem 5.18 In our discussion of the bonding in BrFs we have ignored 

the presence of 4d orbitals on the bromine. The justification for this is 

that the 4d orbitals of the isolated bromine atom are so large and diffuse 

that they cannot overlap effectively with a valence shell atomic orbital of 

any other atom unless there is something which causes them to contract. 

Something may exist in BrF5 because the polarity of each of the Br-F 

bonds will be such that there will presumably be a significant build-up of 

positive charge on the bromine atom. One effect of this would be to lower 

the energy and decrease the size of the bromine 4d orbitals and thus 

perhaps make them available for chemical bonding. If this occurs we 

should have included the d orbitals in our discussion. This is an attractive 

hypothesis but one that is extremely difficult to test, even by detailed 

calculations. 
Show (a) that the bromine dz* orbital has A, symmetry and its dx2_y2 

orbital B, symmetry. This latter orbital is shown (contracted!) in Figure 

5.13 together with the B, combination of fluorine o orbitals with which it 
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Figure 5.13 (a) The R, combination of fluorine a orbitals, (b) The dxKy2 (RJ orbital 

of bromine. 

potentially interacts, (b) That both of the labels B] and dx2_yi would have 

to be changed if the coordinate axis set of Figure 5.5 were used in the 

discussion. 

5.6 SUMMARY 

In this chapter it has been found that operations may be divided into classes 

(p. 99) and that when some classes contain more than one operation the 

character table contains at least one degenerate representation (pp. 98, 111). 

The presence of a degenerate representation in the C4v group enabled the 

orthonormality relationships to be presented in a more general form (p. 103). 

The procedures previously used to reduce a reducible representation has to be 

modified in the more general case although the projection operator technique is 

basically unchanged (p. 113). Application of these techniques to the problem 

of the bonding in BrF5 suggested both a reason for its existence—polar Br-F 

bonds possibly enabling participation of bromine d orbitals in the bonding 

(Problem 5.18)—and for its reactivity—the four coplanar fluorines are not 

strongly bonded (p. 119). 
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6 

The Electronic Structure of the 
Ammonia Molecule 

In the first chapter of this book four different qualitative descriptions of the 

bonding in the ammonia molecule were discussed in outline. The symmetry- 

based approach has now been developed to a point at which this problem may 

be reconsidered in more detail. At the same time a problem encountered in the 

last chapter will reappear—that of the choice of directions of x and y axes. 

The form in which this problem appears is one which will lead to a general 

solution, a solution which will enable molecules of high symmetry, such as 
those which will be subject of Chapter 7, to be tackled. 

6.1 THE SYMMETRY OF THE AMMONIA MOLECULE 

The structure of the ammonia molecule is given in Figure 6.1 which also shows 

the symmetry elements possessed by this molecule. The axis of highest 

rotational symmetry (which will therefore be taken as the z axis) is a C3 

rotation axis and has associated with it clockwise and anticlockwise rotation 

operations (which, to help the reader remember this distinction, will be called 

Cf and C{; in a more general notation they would be called C3 and C3, 

following that used in the last chapter). In addition, there are three mirror 

planes each of which contains the threefold axis (and are vertical with respect 

to it—that is, they are av mirror planes), with one hydrogen atom lying in each 

mirror plane. The symmetry operations which turn the ammonia molecule into 

itself are therefore, 

E Cf C{ <7V(1) ctv(2) oy (3) 

This group is called the C3v point group, the shorthand symbol C3v indicating 

the coexistence of the C3 axis and the vertical mirror planes. 

Problem 6.1 Show that this set of operations comprises a group. 

Hint: It will be found helpful to refer back to Problem 4.4. The group 

multiplication table for the C3v group is given in Table 8.2. 
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z 

Figure 6.1 The symmetry elements of the ammonia molecule. One hydrogen atom is 

located in each mirror plane. 

The class structure of the symmetry operations of the C3v group is suggested 

from the similarities between the various operations and is 

E 2 C3 3crv 

Alternatively, the formal methods described in Appendix 1 may be used to 

deduce this class structure (the 2C3 class is given as a worked example in 

Appendix 1). The character table of the C3v point group is given in Table 6.1. 

In this table we have followed Table 5.6 and given the usual presentation of 

character tables. On the right hand side of the table are shown functions which 

are a basis for a particular representation. Thus the z axis, chosen following the 

convention which locates it along the C3 axis, transforms as Ax and the x and y 

axes, together, are a basis for the E irreducible representation. 

Table 6.1 

E 2C3 3av 

A, 1 1 1 z, z2, x1 + y2 
a2 1 1 -1 
E 2 -1 0 (x,y), (zx, yz), (xy, x2 - y2) 
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Problem 6.2 Use the theorems of Section 5.3 to derive Table 6.1. 

Note: this is a relatively short problem but one that gives excellent 

practice in the use of the orthonormality theorems. 

There is one particular point about the C3v character table which has to be 

discussed in detail. This concerns the axis pair (x, y) which, as shown in Table 

6.1, transform as the doubly degenerate irreducible representation E. Because 

they must be perpendicular to the z axis, the x and y axes lie in a plane 

perpendicular to the C3 axis. But where in this plane do they lie? This problem 

is similar to one which was discussed in Chapter 5 where, in the C4v point 

group, it was found that a variety of directions could be chosen for the x and y 

axes. So too, in the present problem there is no unique choice for the x and y 

axis directions. However, the present problem is more difficult than that 

encountered in the C4v case and so it will be examined in some detail. Suppose 

the x axis is chosen so that it lies in one of the crv mirror planes as is shown in 

Figure 6.2, which gives a view looking down the threefold axis. Two, related, 

problems at once arise. First, there is no evident reason why a particular mirror 

plane should be selected rather than one of the others. Second, the choice 

which has been made for the x axis means that the y axis is forced to be quite 

differently orientated in space. However, having made a choice we will stay 

with it and move on to the next problem, that of the effect of a C3 rotation 

operation on these x and y axes, shown in Figure 6.3. It is seen from this figure 

that the x axis is rotated so that it lies along one of the directions which could 

have originally been taken as the x axis but was not. Similarly, the y axis is 

rotated into a direction appropriate to this second choice of x axis. In Figure 6.3 

the alternative x and y axes are indicated by primes (so that x is rotated into x' 
and y into y'). This is a quite new situation. So far in this book symmetry 

operations have turned objects into themselves or interchanged them. Here, a 

symmetry operation has generated something which did not previously exist, or 

so it seems. Well, the truth is that the x' and y' axes did previously exist—it is 

X 

Px 

Figure 6.2 The choice of direction of x and y axes discussed in the text and 
consequent orientation of the p* and pv orbitals. The pv orbital is shown dashed. 
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x 

Figure 6.3 The x and y axes of Figure 6.2 together with an alternative set (x' and y') 
produced by a C3 rotation of x and y. In both cases the corresponding p orbitals are also 
shown. The x" axis will be referred to later in the text (following Problem 6.6). 

just that they were not revealed. However, a little work is involved in showing 

that this must be the case. 
As is clear from Table 6.1 the C3 rotation acting on the x, y axis pair which 

converts them into the x', y' axis pair is associated with a character of -1 (this is 

the character of the E irreducible representation under C3 rotations). In some way 

or other the x', y' set is -1 times the x, y. How? This problem is tackled by 

investigating the relationship between two axis sets (x, y) and (x', y') related by 

a rotation by an angle a (later a will be taken as equal to 120°, as appropriate to 

the C3v point group). If an object were to start at the origin of coordinates in 

Figure 6.4 and be displaced along the x' axis it is evident that this displacement 

could, alternatively, be represented as a sum of displacements along the original x 

Figure 6.4 In this figure the circle is taken to be of unit radius. It follows that the unit 
displacement AB is the sum of the displacements AC and CB which, respectively, have 
magnitudes of cos a and sin a. 
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and y axes. As shown in this figure, for an angle a relating the x and x' axes, 

a unit displacement along the x' axis is equivalent to a displacement of cos a 

along x combined with a displacement of sin a along y. The rotated x axis, x', is 
a mixture of the original x and y, as too is the rotated y, y’. 

When determining the contribution to a character made by the transform¬ 

ation of something such as an x axis, so far in this book we have asked the 

question is the x axis turned into itself, into minus itself or into something 

different’, and have associated the characters of 1, -1 and 0 with these three 

situations. We have now encountered a situation in which the x axis is rotated 

into an axis which may be described as in part containing the original x axis. 

Accordingly, our question must be modified to the simpler, but more general, 

form, ‘to what extent is the old axis contained in the new?’. As is evident from 

Figure 6.4, and the discussion above, the numerical answer to this question is 

cos a, where a is the angle of rotation. An axis which is left unchanged by a 

rotation corresponds to a = 0, so cos a = 1, the character that we have 

associated with this situation. Similarly, for a rotation of 180°, cos a = -1, 

again the character that the rotation of a coordinate axis by 180° gives. For 

a = 90° (when the x axis is rotated so that it becomes the y axis) cos a = 0, 
again the expected answer. The general rule is clear: 

When an axis is rotated by an angle a by a symmetry operation its 
contribution to the character for that operation is cos a. 

Comment: This statement holds for axes; for products of axes it has to be 
modified. Thus, because 

x contributes cos a 

x2 contributes cos2 a 

x3 contributes cos3 a 

it follows that 

and that 

and so on. 

Note that this rule applies to products of axes which are perpendicular to the 

axis of rotation. Thus, if the rotation axis is the z axis then the function xz will 

vary as cos a because only the x axis is perpendicular to the rotation axis—the 

z axis is left unchanged. However, the function xy will vary as cos2 a because 

both x and y separately vary as cos a. 

Problem 6.3 Show that the transformation of x2 under a rotation of a 

about the z axis is given by the factor cos2 a. 

Hint: it is sufficient to check that this relationship holds for particular 

values of a; a = 0°, 90°, 180°, 270° and 360° are particularly convenient. 

Problem 6.4 (a) In the C5v point group a pair of functions trans¬ 

forming as the doubly degenerate irreducible representation Ex have a 
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character of 2 cos 72° under a C5 rotation. Suggest a pair of functions 

which might form a basis for this irreducible representation. 

(b) Repeat this problem for the E2 irreducible representation, for 

which the character is 2 cos 144°. Solution of this problem requires a 

small extension of the argument developed above. (Solutions to both 

these problems will be found in the character table for the C5v group in 

Appendix 3.) 

Returning to the case of the C3v point group, it is concluded that the x and y 

axes each make a contribution of cos 120° = to the character under the C3, 

120°, rotation operations. The sum of these two, — 1, is, indeed, the character 

of the E irreducible representation under this operation. In Section 3.2 it was 

first mentioned that two quantities, such as axes or orbitals, can be mixed by 

the operations of a group. We are now able to understand just what this means. 

The effect of a C3 rotation on the original x and y axes is to rotate them to give 

new axes, each of which is a mixture of the original axes. In such cases the 

contribution that each axis makes to the character is always fractional. 

Everything that has been said about the x and y axes also holds for the 2pv and 

2py orbitals of the nitrogen atom in ammonia because the transformations of 

2pA.(N) is isomorphous to that of x, as is that of 2p>.(N) to y (Figure 6.3). This 

parallel has already been anticipated by taking the molecular x and y axes to 

pass through the nitrogen atom—although they could be chosen to pass 

through any point along the C3 axis—so that the above argument could be used 

as a basis for a discussion of the bonding in the ammonia molecule without 

need to redefine axes. 

6.2 THE BONDING IN THE AMMQNIA MOLECULE 

We now complete this chapter by a discussion of the bonding in the ammonia 

molecule. As is evident from the discussions above, the transformation 

properties of the nitrogen valence shell 2p orbitals follow those of the 

coordinate axes given in Table 6.1. The nitrogen 2p. has A, symmetry and 2pv 

and 2py, as a pair, have E symmetry; it is a trivial exercise to show that the 

nitrogen 2s orbital is totally symmetric (this orbital is spherical and lies on all 

symmetry elements; it therefore transforms as A,). The transformation of the 

three hydrogen Is orbitals under the operations of the group gives rise to the 

reducible representation 

E 2C3 3ctv 

3 0 1 

which is a linear sum of the irreducible representations A, and E. 
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Problem 6.5 Reduce the above reducible representation into its 
irreducible components. 

Hint: If this problem is found difficult, an explicit solution to a similar 
problem has been given in the previous chapter. 

Much of the discussion so far in this chapter has developed from the fact 

that the operation of rotation by 120° has the effect of mixing functions which 

provide a basis for the E irreducible representation. This same problem 

reappears again when we try to determine the symmetry adapted combinations 

of hydrogen Is orbitals in the ammonia molecule which transform as the E 

irreducible representation, a problem which will now be considered in detail. 

Labelling the hydrogen Is orbitals as indicated in Figure 6.5 and considering 

the transformation of the orbital labelled a, the six symmetry operations of the 

group are found to lead to the following transformations, where the av mirror 
planes are labelled as in Figure 6.1: 

E C3+ C3- av( 1) av(2) av( 3) 
a b c a c b 

Application of the projection operator technique described in Section 4.6 shows 
the A, function to be: 

4= (a + b + c) 
V3 

There is no difficulty in obtaining one of the E functions. The steps involved 

are shown in Table 6.2 and lead to the function 

4= (2a - b - c) 
V6 

Figure 6.5 The labels used in the text for the hydrogen Is orbitals of the ammonia 

molecule. 
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Table 6.2 

Operation E C3+ Cf nv( 1) n¥( 2) av(3) 

a is turned into a b c a c b 

Characters of the E irreducible representation 
2 -1 -1 0 0 0 

Multiply 2a -b -c 0 0 0 

Sum 2a - b - c 

Normalize 
-j= (2a - b - c) 
a/6 

A problem arises when we try to obtain the second E function. A similar 

problem was met in Section 5.5 when discussing the four orbitals of the 

coplanar fluorine atoms in BrF5. In that case the problem was relatively simple 

because the first E function contained contributions from only two of the o 

orbitals; the projection operator technique applied to one of the other o orbitals 

immediately gave the second E function. There is no such simple solution to 

the present problem; all three hydrogen Is orbitals appear in the E function that 

has been generated, although not all with the same weights. Following the 

procedure described in Chapter 5 the transformations of either the hydrogen Is 

orbital b or c could be used as a basis for the projection operation method—but 

which? If b is used then the combination 

-7= (2b - c - a) 
a/6 

is obtained while if c is used the function 

—~ (2c - a - b) 
a/6 

is obtained. 

Problem 6.6 Show, by constructing tables analogous to Table 6.2, that 

the transformation of the hydrogen Is orbitals b and c lead to the E 
functions 

(2b - c - a) and -j= (2c - a - b), respectively. 
a/6 
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We have, apparently, obtained three quite different functions transforming as 

E yet we know that, for a doubly degenerate irreducible representation, there 

can only be two. As indicated above, this problem is closely related to the three 

possible choices for the x axis that were discussed earlier and the solution of 

the problem is also similar. What we have done in using a, b and c separately to 

generate an E function is to generate functions appropriate to the x, x' and x" 

axes, respectively, of Figure 6.3 as indicated in Figure 6.6(a). The functions 

corresponding to the x' and x" axes, like these axes themselves, are mixtures 

of the functions appropriate to the original x and y axes. It is the latter pair that 

we are seeking. The first member of the pair we have is pure but the second 
only as part of a mixture. 

There are many ways of obtaining the second E function from the mixture. 

Perhaps the simplest is to exploit the fact that if the first function corresponds 

to the x axis then the second corresponds to the y axis. This vector (axis-like) 

x 

(b) 

Figure 6.6 (a) Alternative symmetry-adapted combinations of hydrogen Is orbitals in 
NH3 corresponding to the axes x, x' and x" of Figure 6.3. Just as one of these axes has 
to be selected so, too, does one of the three symmetry-adapted combinations. 
(b) The (vector) sum of displacements along -x" and x' is a displacement along y. 
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property of the functions is indicated by the arrows in Figure 6.6(a). If, as 

shown in Figure 6.6(b), the direction of the vector pointing in the direction x" 

is reversed and added to that pointing in the x' direction a vector pointing in the 

y direction is obtained. These steps now have to be repeated using functions 

rather than vectors. 

The negative of the function associated with x" is 

-4= (2c - a - b) 
a/6 

and adding it to the function associated with x' 

4=(2b-c-a) 
a/6 

gives 

1 

a/6 

( - 2c + a + b + 2b - c - a) = -j= (3b - 3c) 
V6 

That is, the second E function is of the form 

or, normalized, 

(b-c) 

a/2 

(b-c) 

Problem 6.7 The sum of vectors pointing along x' and x" of Figure 

6.6(a) is the negative of a vector pointing along x. Show that an 

analogous statement is true for the corresponding E functions. 

Problem 6.8 The fact that the two E functions which have just been 

obtained have quite different mathematical forms tends to be received 

with suspicion. Show that their forms are such that the orbitals a, b and c 

make equal total contributions to the E functions. 

Hint: Sum the squares of coefficients in the normalized E functions. 

The symmetry-adapted combinations of hydrogen Is orbitals which have just 

been generated are shown in Figure 6.7 together with the nitrogen orbitals of 

the same symmetry with which they interact. Note that in Figure 6.7 the 

unequal contribution of a, b and c to each of the two symmetry-adapted 

combinations of E symmetry is reflected in the diagrammatic representation of 

the orbitals. It will also be noted that in Figure 6.7 the approximate procedure 

of taking a combination of nitrogen 2s and 2pz orbitals as the nitrogen orbital 

which interacts with the combination of hydrogen Is orbitals has been 
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followed. The resulting schematic molecular energy level diagram of ammonia 

is shown in Figure 6.8. There are eight valence electrons which have to be 

allocated to these orbitals (five from the nitrogen and one from each of the 

three hydrogens) and they are accommodated in the lowest molecular orbitals 

of A, and E symmetry, all of which are M-H bonding and tfie second A, 

orbital, which is, essentially, the nitrogen lone-pair orbital. These qualitative 

conclusions are to be compared with the results of detailed calculations and 

with the results of photoelectron spectroscopy. 
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Figure 6.8 A schematic molecular orbital energy level diagram for NH3. 

Calculations1 show that the A, orbitals of the ammonia molecule have 

energies of ca -11.6 and ca -31.3 eV and that of E symmetry ca -17.1 eV. 

Of these, the more stable of the A, orbitals has, as experience leads us to 

expect, a major contribution from the nitrogen 2s atomic orbital. These data are 

in general agreement with the photoelectron spectroscopic results2 which give 

energies of about 10.2 eV, 27.0 and 15.0 eV for these levels, respectively. 

Again, the encouraging result that a symmetry-based model is in good 

qualitative agreement both with detailed calculations and with experiment. 

Ammonia is a molecule for which, like the water molecule, it is a simple 

matter to describe the angles at which the various contributions to the 

molecular bonding maximize. Using arguments entirely similar to those of 

Chapter 3 for the water molecule, it is concluded that the bonding interactions 

of A, symmetry involving the nitrogen 2pz orbital (Figure 6.9(a)) maximizes 

at small bond angles, whereas the interactions between orbitals of E 

symmetry maximize for the planar molecule (Figure 6.9(b)). These angular 

variations are conveniently summarized in a Walsh diagram, just as for the 

water molecule in Chapter 3. This diagram is given, qualitatively, in Figure 
6.10. 



Small HNH angle 

(overlap large) 

(a) 

Large HNH angle 
(overlap small) 

Small HNH angle 

(small overlap) 

(b) 

Large HNH angle 

(large overlap) 

Figure 6.9 (a) The overlap between the A, symmetry-adapted hydrogen Is 
combination and the nitrogen 2p, orbital decreases as the HNH bond angle increases 
(this decrease is related to the fact that the hydrogen combination and the 2p, orbitals 
have different symmetries in the planar molecule). 
(b) The overlap between an E symmetry-adapted hydrogen Is combination and a 
nitrogen 2p, orbital increases with the HNH bond angle. 

Figure 6.10 A Walsh diagram for NH3. 
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Problem 6.9 Check that Figure 6.10 does, indeed, summarize the 
discussion of the above paragraph. What can be concluded about the non¬ 
bonding nature of the highest A, orbital from this diagram? 

As indicated in Chapter 1, calculations show that the total bonding in the 
ammonia molecule is a maximum when the molecule is planar so it can be 
concluded that E interactions dominate. However, this argument neglects the 
effects of repulsive forces on the molecular geometry and, as stated in Chapter 
1, the same calculations show that it is these that—just—lead to the molecule 
adopting a pyramidal shape. At the observed bond angle there are both Ax and 
E contributions to the bonding. Were we to remove an electron from the 
highest A, molecular orbital, which contains a large nitrogen 2pT contribution, 
and which, despite our simplified discussion, makes a contribution to the 
molecular bonding, it would be reasonable to expect that a more nearly planar 
molecule would result. Experiment, indeed, indicates that in its ground state 
NH3 + is a planar molecule. 

Although the bonding in planar NH3 or NH3 + has not been discussed in this 
text, it is, none the less, of interest to consider a related planar species. This is 
the molecule trisilylamine, (SiH3)3N. In this molecule the Si3-N framework is 
planar (unlike the C3-N, skeleton in trimethylamine (CH3)3N, which is 
pyramidal like ammonia). The question of why trisilylamine should be planar 
has been widely discussed in the past and frequently associated with Si-N ji 
bonding involving the empty 3d orbitals of silicon accepting electrons from the 
lone pair on nitrogen (which in this geometry occupy a pure 2p orbital, Figure 
6.11). Our discussion has indicated that the planarity of this molecule could 
arise if the delicate balance between bonding and repulsive forces found for 
ammonia—and which appears to occur for many such molecules—is such as 
to favour the planar form of trisilylamine. This argument, of course, does not 

Figure 6.11 Postulated p,/d^ bonding in the planar molecule trisilylamine, N(SiH3)3. 
In fact, the silicon 3d 7 orbitals are much larger and diffuse than pictured here. 
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require the existence of any Si-N n bonding. It could be, of course, that the 

presence of a small amount of n bonding is decisive in tipping a delicate 

balance. Equally, such an interaction might be important not for any— 

small—jt bonding stabilization which results but because the resulting more 

diffuse electron distribution leads to a reduction in the destabilization resulting 

from electron repulsion. However, it is important to recognize that the 

observed planar geometry of trisilylamine does not of itself prove the existence 

of significant d-p n bonding in this molecule. Indeed, there are now (fairly 

complicated) organic species known which have a similar planar structure 

around a nitrogen atom and for which it would be difficult to advance a n 
bonding argument. 

6.3 SUMMARY 

In this chapter the problem of the transformation of functions has been 

discussed which form the basis for a degenerate reducible representation but 

which appear to be differently oriented with respect to the symmetry elements 

and may, indeed, have different mathematical forms (pp. 125, 127). Despite 

these superficial differences, the fact that they are mixed or interchanged by 

some operations of the group is sufficient to ensure their ultimate equivalence 

(p. 128). 
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7 

The Electronic Structures of some 
Cubic Molecules 

The methods developed so far in this book will be exploited to the full in this 

chapter, where the electronic structure of the octahedral molecule SF6 will be 

considered in detail. This is quite a large molecule but its symmetry is also 

considerable; enough to enable us to consider not only the bonding between sulfur 

and fluorine but also the non-bonding electrons on the fluorines. There are short¬ 

cuts which can be used in symmetry discussions and the present discussion will 

enable several of them to be introduced. Throughout this book new symmetry 

operations have been introduced in each chapter. This is also true for the present 

chapter, the operations complete the types encountered in point groups and so a 

general review of point group classification will be included. This will prepare the 

way for the following chapter, in which the relationships between point groups will 

be covered. Although the molecule SF6 is the major subject of this chapter the 

content also includes an important class—transition metal complexes of octahedral 

symmetry. Both tetrahedral and octahedral molecules have x, y and z axes 

equivalent to each other and the chapter also contains a discussion of both methane 

and of tetrahedral transition metal complexes. 

A cube is shown in Figure 7.1, together with an octahedron and a tetra¬ 

hedron. An octahedron is closely related to a cube. If the mid-points of faces of 

a cube are joined together the figure that is .generated is an octahedron. The 

octahedron has eight faces, but what is of more importance is the fact that it 

has six apices because when these apices are occupied by six atoms around an 

atom at the centre of the figure an octahedral molecule results (Figure 7.2). In 

Cube Octahedron Tetrahedron 

Figure 7.1 
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Figure 7.2 An octahedral molecule ML6. 

the majority of octahedral ML6 compounds the central atom is a metal ion, 

while the surrounding atoms or ions are usually those of an electronegative 

element and are called ligands. Such species are referred to as ‘octahedral 

complexes’. Although it is not convenient to start the discussion with such 

molecules they will be looked at in more detail later in the chapter. 

A tetrahedron (Figure 7.1) is also derived from a cube, as was recognized in 

Chapter 1 (see Figure 1.4 and the discussion in Section 1.2.4). The fact that 

both the octahedron and tetrahedron are related to the cube means that it is 

possible to give a common discussion of the electronic structure of octahedral 

and tetrahedral transition metal complexes. In this book we shall not embark on 

this discussion although the starting point will be indicated. First, however, we 

look at the symmetry of the octahedron in more detail. 

7.1 THE SYMMETRY OPERATIONS OF THE 
OCTAHEDRON 

Figure 7.3(a) shows those pure rotational symmetry operations which turn an 

octahedral ML6 molecule into itself. The octahedron contains three fourfold 

rotation axes and, of necessity, three coincident twofold rotation axes. There 

are also six twofold axes which are quite distinct from those that are coincident 

with the fourfold axes. Figure 7.3(a) shows a rather bewildering array of 

symmetry axes but there is a simple way of reducing the complexity. This is by 

associating symmetry elements with geometrical features. Thus, each C3 axis 

passes through the mid-points of a pair of equilateral triangular faces on 

opposite sides of the octahedron. There are eight faces and so four pairs of 

opposite faces. It follows that there are four different C3 axes. Similarly, the C4 

and coincident C2 axes pass through opposite pairs of apices; there are six 

apices and so just three C4’s and C2’s. The other, C'2, axes pass through the 

mid-points of pairs of opposite edges. Because the octahedron has twelve 

edges there are six C2 axes. The fact that the operations associated with each 



3C4and 

(coincident) 

3C2 

I 

Figure 7.3 (a) Rotational symmetry elements of an octahedron, divided between 
three diagrams for clarity. 
(b) The conventional choice of coordinate axes for an octahedron. 
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set of axes form separate classes is actually evident from the way that rotation 

axes are interchanged by other operations of the group (for instance, a C3 
operation interchanges the C4 axes). 

Problem 7.1 Use Figure 7.1 to obtain the rotational axes of an 

octahedron (i.e. work through the above argument). Your answers can be 

checked by reference to Figure 7.3. 

Problem 7.2 Use Figure 7.1 to obtain the rotational axes of a cube. 

Compare your answer with that found for an octahedron. 

For each of the C3 and C4 rotation axes there are two distinct symmetry 

operations—those of rotation clockwise and rotation anticlockwise. They have 

been met in the previous two chapters, although it was not always convenient 

there to refer to them as clockwise and anticlockwise rotations. It follows that 

the rotational symmetry operations which turn an ML6 molecule into itself are 

E, 8 C3, 6C4, 3C2 and 6 C'2 

where the identity operation has been included and the 6 C2 refer to those 

twofold axes which pass through pairs of opposite edges of the octahedron. 

This group of 24 operations comprise the point group O. The fact that it is a 

complete group may be shown by constructing the group multiplication table. 

Problem 7.3 Construct the multiplication table for the group O. 
Note: This means constructing a 24 x 24 table and so will take some time. 

A good model (perhaps made of cardboard) is almost essential. Follow 

the transformations of a general point (i.e. one not lying on a symmetry 

axis). 
Hint: As is invariably true, each operation appears once, and once only, 

in each row and each column of the multiplication table. The fact that this 

is so demonstrates that the set of 24 operations form a group. 

The character table for the group O may be derived using the theorems met 

in Chapter 5 (although the task is not a trivial one) and is given in Table 7.1.c 

Problem 7.4 Derive the character table for the group O using the 

theorems of Section 5.3. 
Hint: It may help to look again at the solution to Problem 6.2. 

There are several aspects of Table 7.1 which call for comment. For the first 

time triply degenerate irreducible representations are encountered; they are 

labelled T (with various suffixes). Their existence was implied earlier in this 

chapter when it was stated that ‘octahedral molecules have x, y and z axes 

equivalent to each other’. Either these axes provide the basis for a reducible or 
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Table 7.1 

0 E 8C3 6C4 3C2 6 C'2 
- 

A, 1 1 1 1 1 (x2 + y2 + z2) 
a2 1 1 -1 1 -1 
E 2 -1 0 2 0 [1/V3(2z2 - x2 - y2), (x2 - y2)] 
7, 3 0 1 -1 -1 lx, y, z) 
72 3 0 -1 -1 1 (xy, yz, zx) 

an irreducible representation. In the event, it is irreducible and, as indicated by 

the basis functions given at the right-hand side of Table 7.1, they actually form 

a basis for the 7, irreducible representation. 

Problem 7.5 Show that the x, y and z axes, as a set, form a basis for 

the 7, irreducible representation of the point group O. 

Hint: Take the Cartesian axes to coincide with the C4 axes (Figure 

7.3(b)). For each class of operation select that individual operation which 

makes the transformation simplest to follow. The answer to this problem 

will be detailed—in an equivalent form—at the beginning of Section 
7.2. 

On the right-hand side of Table 7.1 are shown more basis functions than 

have previously been met. The reason is that the discussion of transition metal 

complexes later in this chapter will require a knowledge of how the d orbitals 

of the transition metal at the centre of the octahedron transform. Table 7.1 

shows that the d orbitals dA>1, d>z and d2A are degenerate and transform as 72 

while dz2 (or, more accurately, d0l^H2z2-x2+y2)) and d(x*_y2) are degenerate and 
transform as E. The function x2 + y2+ z2—which, like an s orbital, has 
spherical symmetry, transforms as Ax. 

It is evident from Figures 7.1 and 7.2 that an octahedron—and a cube— 

contain symmetry elements in addition to the rotations that have so far been 

listed. It contains a centre of symmetry, i, ah and od mirror planes, and some 

rotation-reflection axes which are denoted Sn. The octahedron contains S4 and 

S6 rotation axes. This type of element is not an easy one to fully appreciate and 

they will be looked at in detail shortly. All are shown in Figure 7.4. Of these, 

the i and ah (a mirror plane horizontal with respect to an axis of highest 

symmetry, here C4) have been met in Chapter 4. The od mirror plane is 

something new. Mirror planes that bisect the angle between a pair of twofold 

axes are called od mirror planes, the suffix d being the first letter of the word 

dihedral (the same word which gives its initial letters to groups such as D2, D0h 

and ^3h. groups which have, respectively, two, two and three twofold axes 

perpendicular to the axis of highest symmetry). In the octahedron there are six 

ad mirror planes. Although they, indeed, bisect the angles between the C2 axes 
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One of three 

Figure 7.4 Some of the symmetry elements associated with improper rotation 
operations of an octahedron. 

it is easier to count them by nothing that each ad mirror plane cuts opposite 

edges of the octahedron, just like the C'2 axes. There are six such pairs of edges 

and so six aA mirror planes. 

Problem 7.6 Start with the definition of oA mirror planes as those that 

bisect the angle between pairs of C2 axes and thus show that there are six 

ad mirror planes. 

Hint: How many pairs of C2 axes are there? 

Note that the mirror planes which have been labelled crh bisect the angles 

between pairs of C2 axes. These mirror planes could have been labelled as od. 

However, convention dictates that the label crh takes precedence over od 

whenever both are applicable. 
Operations such as S6 and S4 are interesting because, as will be seen, they 

are two-part operations, conventionally taken as a rotation part and a 

reflection part. Hence they are called rotation-reflection operations. It has 

been seen that the cube and octahedron have the same rotational symmetry 

(Problem 7.2) and it will transpire that they also have the same additional 

operations also. If this is so, it follows that both have S6 and S4 axes. The S4 

axes are easier to see for the cube and are illustrated in Figure 7.5(a). As this 

figure shows, the operation consists of a rotation by 90° (clockwise and 
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S4 

Figure 7.5 (a) An S4 symmetry operation, (b) An S6 symmetry operation. 

anticlockwise rotations being associated with different S4 operations) 

followed by reflection in a mirror plane perpendicular to the axis about which 

the 90° rotation was made. It is clear that this operation interconnects comers 

of the cube, what is not so clear is that it is necessary—for the pairs of 

comers connected by the S4 operations in Figure 7.5(a) are also connected by 

C2 operations (the C2 axes emerging through mid-points of the cube faces on 

the right- and left-hand sides of Figure 7.5(a)). The difference between the S4 
and C2 operations is shown by the stars in Figure 7.5(a). The star labelled 1 

moves to the position occupied by star 2 under the S4 operation but these two 

points are not interconnected by a C2 rotation. The S6 operation (rotate by 60° 

and then reflect in a perpendicular mirror plane) is most readily seen for an 

octahedron standing on a face and is illustrated in detail in Figure 7.5(b). In 

the case of the S4 operations both the 90° rotation and reflection have an 

independent existence as C4 and ah operations, respectively. In the case of the 

S6 operations the rotation and reflection do not exist in their own right as 

symmetry operations of the octahedron and cube. 

The Sn operations seem rather strange because the operation involves two 

operations, Cn and ah which may or may not have an independent existence. 

This apparently paradoxical situation may be made more acceptable by returning 

for the moment to the C2v point group, discussed in Chapter 2. Figure 7.6 

shows the water molecule and the C2 operation which interrelates the two 
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C2 = i combined with crh 

Figure 7.6 The two water molecules at the right-hand side of this diagram are the 
same, showing that the C2 operation of the H20 molecule (shown at the top) is 
equivalent to an inversion at some point along this axis followed by reflection in a crh 
mirror plane containing this inversion centre (shown at the left and bottom). 

hydrogen atoms. As is seen from this figure, completely equivalent to this single 

C2 operation is the combined operation of inversion through any point along the 

C2 axis followed by reflection in a mirror plane perpendicular to the C2 axis 

followed by reflection in a mirror plane perpendicular to the C2 axis and 

containing the inversion centre. Neither the operations i or crh (or the infinity 

of counterparts which arise from the freedom of the pair to be located 

anywhere along the C2 axis) are operations of the C2v point group, yet their 

combination is. In the C2v point group the combination of i and ah is not used 

because there is a much simpler alternative, the C2. In the case of S4 and S6 
operations, no such simpler form exists and there is no alternative but to use a 

composite. It is perhaps helpful to comment that all improper rotation operations 

may be regarded as a (correctly chosen) proper rotation operation combined with 

inversion in a centre of symmetry. 

Problem 7.7 Determine what combinations of two independently non¬ 

existent operations are equivalent to the (real) ctv and a', operations of the 

C2v point group. 
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Hint: The three operations C2, o and i form a complementary trio. Any 

one can be represented in terms of the other two (provided that the other 

two are correctly oriented). 

Problem 7.8 Although the S2 operation exists it is seldom mentioned as 

such. This is because a simpler form—and different label—exists for it. 

What is its alternative name? 

It is necessary to count the S4 and S6 operations. The number of each follows 

from their correspondence with C4 and C3 operations; there are six S4 and eight 

S6. A deeper reason for this numerical connection will emerge shortly. 

Problem 7.9 Show that the operation S4 carried out twice is equivalent 

to C2 

sl = c2 
that S6 carried out twice is equivalent to C3 

sl = c, 
and that S6 carried out thrice is equivalent to i 

S3 = i 

It is concluded that the complete list of symmetry operations of the 
octahedron (or cube) is: 

E 8 C3 6C4 3C2 6 C'2 i 8 S6 6 S4 3ah 6a, 

The shorthand symbol for this set of operations is Oh (pronounced ‘ooh aiche’). 

The character table of the Oh group is given in Table 7.2. With some considerable 

effort a group multiplication table for the Oh jgroup may be constructed (it is a 

48 x 48 table); the character table may be derived using the methods of Section 

Table 7.2 

E 8C3 6 C4 3 C2 6 C'2 i 8S6 6Sa 3<jh 6(7d 

Ag 1 1 1 1 1 1 1 1 1 1 x2 + y2 + i2 
1 1 -1 1 -1 1 1 -1 1 -1 

Es 2 -1 0 2 -1 2 -1 0 2 -1 -L(2z--xJ-r).-T(x2-/) 

3 0 1 -1 -1 3 0 1 -1 -1 (R*. Rv> R-) 
3 0 -1 -1 1 3 0 -1 -1 1 (xy, yz, zx) 

4|U 1 1 1 1 1 -1 -1 -1 -1 -1 
■Au 1 1 -1 1 -1 -1 -1 1 -1 1 
Eu 2 -1 0 2 -1 -2 1 0 -2 1 
Tu 3 0 1 -1 -1 -3 0 -1 1 1 (T*> Ty, T.) (x, y, z) 
Tz u 3 0 -1 -1 1 -3 0 1 1 -1 
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5.3 but fortunately an easier method exists. This arises from the fact that the Oh 

group is the direct product of the groups O and C, (the group containing E and i). 

The concept of a group being the direct product of two other groups was met in 

Chapter 4, where the D2h character table was seen to be the direct product of 

those of C2v and Cr In the same way, the character table for Oh, Table 7.2, is the 

direct product of Table 7.1 (the character table for O) and Table 4.4 (the 

character table for C*). That this is so is evident from the way Table 7.2 is set out; 

it consists of four blocks containing the characters of Table 7.1 modulated by the 

signs of the four characters of Table 4.4 (which, for convenience, is repeated 
again as Table 7.3). 

Table 7.3 

E i 

1 1 

1 -1 

Problem 7.10 Show that the labels used for the irreducible representa¬ 

tions in Table 7.2 may be derived immediately from those of the 
character tables Table 7.1 and Table 7.3. 

Direct product relationships, of course, apply both to operations and to 

characters. To the operations listed at the head of a character table as well as to 

the characters within the table itself. Because of the relationship between the 

groups O and Oh it is often possible to pretend that the symmetry of an 

octahedral molecule is O and then determine the g or u nature of the irreducible 

representations obtained by simply considering the effect of the inversion 

operation, i. Thus, a p orbital is ungerade—undergoes a change of phase— 

under the i operation.This, together with the knowledge that a set of p orbitals 

transform as Tx in the group O (Table 7.1), is sufficient to establish that they 

transform as Tlu in Oh. Incidentally, but relevant to the set of p orbitals, when 

in this chapter the effects of a C3 rotation operation are illustrated the particular 

C3 operation shown in Figure 7.7 will always be the one chosen. The effect of 

this choice is that coordinate axes, and thus labels, always permute as follows: 

x <- z 

These permutations apply equally to produces of axes. So, when Figure 7.24 is 

reached it will be seen that this C3 operation turns dp_yi into dy2_p—which is 

just what the permutation gives. The relationship between the groups Oh, O and 

Cj means that those operations possessed by Oh which are not present in 0 may 

be written in such a way that each is equivalent to some operation of O together 

with the operation i. The operations of O are proper (or pure) rotation 
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z z 

Figure 7.7 The transformation of a set of p orbitals of a central atom of an octahedral 
molecule under a C3 rotation operation. 

operations, the additional operations are improper rotations. As was seen at the 

end of Chapter 4, this latter name is used to denote any point group operation 

which is not a pure rotation. The precise correspondence between proper and 

improper rotations in the Oh group is evident from the way that Table 7.2 is 

written and is 

E combined with i gives / 

C3 combined with i gives S6 

C4 combined with z gives S4 

C2 combined with i gives crh 

C'2 combined with i gives od 

The existence of these relationships immediately explains why there is the 

same number of S6 operations as C3 and the same number of S4 as C4—and so 

on—in Oh. 

Problem 7.11 The above discussion indicates a different definition of 

S„ operations from that used earlier in this chapter. They may be defined 

as ‘rotation-inversion’ operations and, indeed, this is the way that they 

are described by crystallographers. This definition is ‘Rotate by 

(180+ d)°, where 6= (360/n)° and follow by inversion in a centre of 

symmetry’. Cn (rotate by(360/n)°) and i may, or may not, exist in then- 

own right as operations in a group containing Sn. The two definitions of 



THE BONDING IN THE SF6 MOLECULE 149 

Sn operations, rotate—reflect and rotate—invert are entirely equivalent. A 

little thought will show that the duality exists because of the connection 

between i, C2 and o, detailed above for the C2v point group—but the 
connection is general.t 

Problem 7.12 Show that the operation S4 (defined as a rotation- 

reflection operation) is the same as the operation S4+ (defined as a 

rotation-inversion operation). Here, the superscripts denote the direction 

of 90° rotation (thus avoiding having to add on 180°). This equivalence is 
the one normally made. 

Hint: Use Figure 7.5(a). 

7.2 THE BONDING IN THE SF6 MOLECULE 

As is so often the case, the Oh point group is easier to use than to talk (or 

write!) about. To illustrate its use (or, more correctly, how its use may often be 

avoided), we now turn to a discussion of the bonding in the SF6 molecule. The 

valence shell atomic orbitals of the sulfur atom will be taken as 3s and 3p, 

ignoring the 3d. The behaviour of d orbitals in octahedral molecules is of major 

importance in transition metal chemistry and this is the context in which they 

will be discussed later in this chapter. Throughout our discussion of SF6 it will 

be convenient to work in the point group O rather than the correct group Oh. 

The reason for this lies in the structure of the Oh group. It is twice as large as O 

(48 operations compared with 24) and so is more cumbersome to handle. But, 

as has been seen, Oh is the direct product of O with C{ so that the only 

additional information that Oh has compared with O is that of behaviour under 

the additional operation introduced by the group C,—that is, behaviour under 

the operation i. It is easier to ask of a basis function ‘how does it transform 

under F and to add either g (gerade = symmetric with respect to inversion in a 

centre of symmetry) or u (ungerade = antisymmetric respect to inversion in a 

centre of symmetry) as a suffix to the irreducible representation of O than to 

plough through the whole set of 0h operations. 

It is easy to show that the sulfur 3s orbital, shown in Figure 7.3(b), 

transforms as the totally symmetric, A,, irreducible representation of the point 

group O. In Oh, of course, it has A,g symmetry. In Figure 7.3(b) is shown the 

axis system that will be used in die discussion, although in many of the 

following figures, the octahedron is drawn from a different viewpoint from that 

shown in Figure 7.3. Like the coordinate axes of Problem 7.5, the sulfur 3p 

orbitals transform together as the T, irreducible representation (Tlu in Oh). 

This particular problem will be looked at in some detail because it illustrates 

how to handle the sometimes bewildering task of working with several 

t So, the 180° in (180 + 6)° arises from the C2. 
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equivalent objects in a high symmetry environment. Our discussion is largely 

diagrammatic because good diagrams—perhaps more than a good model—are 

very important. It is therefore essential that each figure is studied carefully and 

the transformations that it shows followed in detail. Figures 7.7-7.10 illustrate 

the transformations of the set of 3p orbitals under a representative operation of 

each class of the O point group. For clarity of presentation the lobes of the p 

orbitals are shown more as ellipses than the circles used so far in this book; the 

different p orbitals are distinguished by the way they are outlined. As an aid to 

visualizing the interconversions these figures not only show the starting 

arrangement but also show them at some point while the operation is in 

progress as well as in the final arrangement. The actual transformations brought 

about by these operations are listed in the figures and the compilation of the 

corresponding characters detailed. Figures 7.7-7.10 should be very carefully 

studied; the characters to which they give rise are: 

E 8 C3 6C4 3C2 6 C'2 

3 0 1 -1-1 

Comparison with Table 7.1 confirms that this set of characters is the Tx 

irreducible representation. 

Problem 7.13 By a detailed study of Figures 7.7-7.10 derive the above 

set of characters. 

The s and p orbitals of the sulfur atom in SF6 bond with those fluorine 

orbitals that point towards the sulfur atoms; without defining their composition 

z z z 

px becomes py -► 0 

py becomes -px 0 

p becomes p 1 
* 1 T 

Figure 7.8 The transformation of a set of p orbitals of a central atom of an octahedral 
molecule under a C4 rotation operation. 
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Contribution to 
the character 

Px becomes-px -► -1 

py becomes-py -► -1 

pz becomes p -► _1_ 

-1 

Figure 7.9 The transformation of a set of p orbitals of a central atom of an octahedral 
molecule under a C2 rotation operation. 

z z z 

Contribution to 
the character 

px becomes py -► 0 

py becomes px -► 0 

p becomes -p -1 

Figure 7.10 The transformation of a set of p orbitals of a central atom of an 
octahedral molecule under a C'2 rotation operation. 

further they will simply be called the fluorine o orbitals. This set of orbitals is 

shown schematically in Figure 7.11 and, because all are symmetry-related, the 

transformations of the six must be considered as a set. This is not a difficult 

task but some mental gymnastics can be avoided by remembering a general 

principle; only if an object lies on a symmetry element can it give a non-zero 
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C4(1,2);C2(1) 

C4(5, . _ 

O' 

C4(3,4);Cfc(2) 

Figure 7.11 The six fluorine S-F a-bonding hybrid orbitals of SF5 together with the 
labels used for them in the text. Some of the axes used in obtaining Table 7.3 are 

indicated. 

contribution to the character associated with the corresponding operation. It 

follows, therefore, that because the fluorine atoms are located on the fourfold 

axes of the octahedron it is only under the fourfold and corresponding twofold 

rotation operations (and, of course, the identity operation) that any of the 

fluorine o orbitals can be left unchanged. Remembering that there are two 

fluorines on each C4 axis, it follows that the reducible representation generated 

by the transformation of the fluorine a orbitals is: 

E 8 C3 6C4 3C2 6 C'2 
6 0 2 2 0 

This is a sum (sums such as this are sometimes called a direct sum) of the 

A, + E + T, irreducible representations. 

Problem 7.14 Use Table 7.1 to show that the above reducible represen¬ 

tation has A,, E and T{ components. 

Hint: This is similar to, but more difficult than, Problems 5.14 and 6.5. 

This result was obtained in the group O. There are several ways in which we 

could proceed to obtain the g and u nature of the A,, E and T] combinations in 

Oh—the most obvious way is to repeat the above sequence again but using the 

full Oh group. However, we should still be without the explicit forms of the 

combination of a orbitals which transform as each irreducible representation, and 

this information is something that will be needed later. If these explicit forms 

were available at the present point in the text, a detailed study of them would 

show their g or u nature. It is therefore simplest next to use the projector operator 

method to obtain these combinations (working in the point group O) and 

subsequently to ask which are g and which are u in nature. To some extent the 
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result may be anticipated. The fluorine a orbitals used to generate the reducible 

representation were neither inherently symmetric nor antisymmetric with respect 

to inversion in the centre of symmetry—because they were not located at this 

centre they were always permuted by the inversion operation. In such a situation 

this indifference is reflected by an equal number of combinations of g and u 

symmetries being generated. That is, in the present case there must be three linear 

combinations of fluorine orbitals which are g and three which are u. There are, 

then, two possibilities. Either we have Alg + £g + 7lu in 0h or, alternatively, 

Alu + £u + r,g. Physically, only the first choice makes any sense, because the 

irreducible representations generated by the transformation of the sulfur valence 

shell s and p orbitals are included in this set whereas they are not in the second. 

That is, if the first set is correct then there can be interactions between the 

fluorine o orbitals and the sulfur orbitals—and so the existence of the molecule 

explained—whereas for the second set there would be no interactions and the 
molecule SF6 would not exist! 

As just mentioned, in order to obtain the fluorine a orbital combinations 

transforming as the A,, E and Tx irreducible representations the projection 

operator method will be used—a method that has been met several times 

before. Because the present case provides a particularly good example of the 

general method it will be given in detail, bringing together the techniques 

developed in previous chapters. 

First, each ligand a orbital is given a label, A —» F, as shown in Figure 7.11. 

The transformation of one of these orbitals under the operations of the group is 

then considered in detail. Table 7.4 lists the 24 operations of the group O, and 

beneath each is the ligand o orbital into which A is transformed by the 

particular operation. Within each set of operations, 8C3 for example, the order 

in which the operations are considered is unimportant; what matters is that all 

are included. 

Table 7.4 

E c4d) C4(2) C4(3) Q(4) C4 (5) 
A A A F E B 

C4(6) C2(l) C2(2) C2 (3) C3(l) C3 (2) 
D A C C D E 

C3(3) C3(4) C3 (5) C3 (6) C3 (7) C3(8) 
E B B F D F 

Ci(l) Ci(2) C2(3) C2(4) C2(5) C2(6) 
D B E F C C 

Problem 7.15 Use Figures 7.3(a) and 7.11 to obtain Table 7.4. 

Hint: Good diagrams are important—it may be necessary to sketch out 

parts of Figure 7.3(a) several times to retain clarity in distinguishing the 
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different effects of the various operations. Note that because the are only 

six fluorine a orbitals but 24 operations, each orbital label appears four 

times in Table 7.4. To help with this problem as many axes as is consist¬ 

ent with graphic clarity have been indicated in Figure 7.11. 

The orbitals in Table 7.4 are now multiplied by the characters appropriate to the 

listed operations. The products and then added together. The sum is either the 

required ligand group orbital or is simply related to it. For the Ax group orbital, 

multiplying each of the orbitals by 1 (the value of each of the A, characters) 

and adding the products together gives 

4A + 4B + 4C + 4D + 4E + 4F 

Normalizing, the orbital is obtained 

V>(a,) = -j=r (A + B + C + D + E + F) 
V6 

Turning to the E orbitals, the sum obtained after multiplication is 

4A + 4C - 2B - 2D - 2E - 2F 

which after normalizing is 

t/>e(l) = 
1 

a/12 
(2A + 2C - B - D - E - F) 

Problem 7.16 Derive ^e(l). 

Hint: This problem is quite similar to that solved in Table 6.2 and the 
associated discussion. 

Now a problem which is closely related to one met in Chapter 6—how to 

obtain the second E function. Using either B or E as the generating orbital in 

Table 7.4 the (un-normalized) combinations which would have been obtained 
are: 

fromB: 4B + 4D - 2A - 2E - 2C - 2F 

fromE: 4E + 4F-2A-2B-2C-2D 

Neither of these can be the second E function for they are different and the 

choice between them is arbitrary; they cannot both be correct and there cannot 

be three different E functions. The method described in Section 6.2 may be 

used to systematically obtain the second function. Study of the results obtained 

there suggests that the difference between the functions given above should be 
taken. This difference is 

6B + 6D - 6E - 6F 

which on normalizing gives the second function 

tM2) = i(B + D-E-F) 
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Problem 7.17 Show by squaring and adding the coefficients with which 

the fluorine a orbitals appear in ^>e(l) and tye(2) that each orbital makes 
an equal contribution to the E set. 

Hint: This problem resembles Problem 6.7. Note that the sum of squares 
of coefficients is equal to the ratio 

Number of E functions _ 2 

Total number of o orbitals 6 

In Section 6.2 the argument used leading to the generation of a second E 

function depended on the fact that the functions which we were seeking to 

generate had vector-like properties. Those that have just been obtained do not 

behave like axes (as the basis functions given at the right-hand side of Table 

7.1 show; they transform like sums of products of axes). The method deduced 

in Section 6.2 clearly has a wider generality than could have been anticipated. 

The 7j functions are readily obtained. The transformations of A in Table 7.4 

when multiplied by the 7j characters and added gives 4A-4C which, 
normalized, gives 

V'tiCl) = -j= (A - C) 
V2 

Similarly, the transformation of B (or D) and E (or F) give 

¥>t,(2) = 4= (B - D) 
V2 

and 

V>t1(3) = —7= (E-F) 
V2 

respectively. Because these three functions each involve different fluorine 

orbitals they are clearly independent of each other. 

Problem 7.18 Derive the three 7j functions listed above. 

The complete list of ligand group orbitalsf is given in Table 7.5. In order to 

determine their symmetries in Oh the behaviour of these functions under the 

operation of the inversion centre of symmetry has to be determined. Because 

this operation interchanges the fluorine o orbitals as follows; 

AhC 

BhD 

E<->F 

t This is the name commonly used in transition metal chemistry. 
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Table 7.5 

Symmetry 

In the group O In the group Oh 

A, lig 

T ,u 

Symmetry-adapted function 
(ligand group orbitals) 

4=(A + B+ C + D + E + F) 
V6 

-L (2A + 2C - B - D - E - F) 
s/l2 

— (B + D- E- F) 
2 

4=(a-q 
a/2 

-7= (B - D) 
a/2 

-7=(E-F) 

the effect of this operation is obtained by making these substitutions (A for C, 

C for A etc.) in the functions given in Table 7.5. When this is done, the A, and 

E’s are left unchanged but each Tx function changes sign. It is concluded that 

they transform in Oh as Alg, Eg and TXa, respectively. These labels have been 

included in Table 7.5. This means that symmetries of the sulfur 3s and 3p 

orbitals (A lg and 7lu respectively) are matched within the fluorine a orbital 

symmetries. The bonding molecular orbital of Alg symmetry is shown in Figure 

7.12(a), a representative Tlu bonding molecular orbital in Figure 7.12(b) and 

one of the two Eg functions in Figure 7.12(c). Because the two Eg functions 

have different mathematical forms, it should perhaps be commented that it is 

the second that was generated which is shown in Figure 7.12(c). 

Problem 7.19 Sketch a diagram of the interaction of the first-generated 

Eg function with the appropriate fluorine group orbital. 

Hint: If in doubt, first sketch the first-generated Eg orbital. 

There is no doubt that the bonding orbitals have bonding energy stabilities in 

the order 

A(g > Tlu > Eg 

This order of orbital energies is also the order in terms of the number of nodes. 

The Alg bonding molecular orbital is nodeless, the Tla has one nodal plane and 
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* 2 

1 1 

Figure 7.12 (a) The Alg bonding molecular orbital. 
(b) One of the T,u bonding molecular orbitals (that involving the sulfur p. orbital). 
(c) One of the fluorine a orbital symmetry-adapted combinations of Eg symmetry. 

the £g two. These nodal patterns are implicit in the expressions given in Table 
7.5 and are also evident in Figure 7.12. 

This discussion has assumed that only o bonding is involved in the 

interaction between the central sulfur atom and the surrounding fluorines. 

Although this is quite a good approximation for SF6 it is useful, none the less, 

to extend the discussion to include those pT orbitals on the fluorine atoms 

which so far have been ignored. This is because they are of relatively high 

energy and they will be seen in the photoelectron spectrum. These p„ orbitals 

transform as a degenerate pair of E symmetry under the local C4v symmetry of 

each fluorine atom. It follows from the discussion of this symmetry in Chapter 

5 that there is no unique specification of the direction of the local x and y axes 

but the choice and notation in Figure 7.13 prove to be convenient in practice. 

Figure 7.13 Fluorine pT orbitals in SF6. 
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Problem 7.20 Figure 7.13 appears rather complicated. Show that it has 

an internal consistency in that all p* orbitals are all oriented in the same x 
direction, the py in the same y and the pz in the same z direction. 

The next step is to determine the reducible representation generated by the 

transformation of these twelve p, orbitals. As for the case of the a orbitals it is 

only possible to obtain non-zero characters for the identity operation, for the 

C4 rotation operations and the corresponding C2 rotation operation (because 

the fluorine atoms lie on the fourfold axes of the octahedron). Of these, the 

character for the C4 rotation operation is zero (because, for those fluorine 

atoms left unshifted by the operation, the pA. and p>( orbitals are interchanged) 

so that only the identity and 3C2 classes contain non-zero characters. The 

reducible representation obtained is 

E 8 C3 6C4 3C2 6 C'2 
12 0 0 -4 0 

which has components 2Tx +2T2 (under Oh symmetry these become 

Tis + Tlu + T2 g +T2u). 

Table 7.6 Symmetry-adapted combinations 
of fluorine p* orbitals 

Tlg orbitals 
hg(l) — 2 tPx(A) ~ p*(C) + pz(E) — pz(F)] 

hg(2) = |[p,(A) -pv(C) -p2(B) + p,(D)] 

hg(3) = itpAB) - p* (D) + p^(E) - pv (F) ] 

Tlu orbitals 
hu (!) = ItPr (B) + Pz (D) + p2 (E) + pz (F) ] 

t,u(2) = 5[p,(A) + pv(C) + p,(E) + pv(F)] 

hu(3) = 5tP,(A) + PAB) + p,(C) + p,(D)] 

T2g orbitals 
Ml) = IflpAA) - pAQ - pz(E) + p.(F)] 

M2) = *2 [p v (A) - p,(C) + pz(B) - pz(D)] 

M3) = i[p,(B) - p,(D) - pv(E) + p/F)] 

Tlu orbitals 

MD = 5tPz(B) + p,(D) - pz(E) - p2(F)] 

M2) = 5[p,(A) + pv(C) - pv(E) - pv(F)] 

M3) = 2[p,(A) + pAB) - PAQ - PAD)] 

pv(A) means the pv orbital on atom A as indicated 
in Figure 7.13. 
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Problem 7.21 Show that the twelve fluorine p, orbitals of Figure 7.13 

generate the above reducible representation and that it has 27, and 2 T2 
components in the point group O. 

Appropriate linear combinations are obtained by the usual projection operator 

method but a difficulty arises because, in O symmetry, two quite independent 

sets of functions transform as T] and two other sets as T2. The problem of 

distinguishing between them is readily solved by working, instead, in Oh 
symmetry—where all sets are symmetry-distinguished—but this is a rather 

tedious task because this group has 48 symmetry operations, each of which has 

to be separately considered. In Appendix 4 an alternative, short-cut, method of 

obtaining these linear combinations is described. This method, depending on an 

ascent-in-symmetry, is a most useful one for high symmetry systems in which 
a large number of basis functions has to be handled. 

The appropriate linear combinations are given in Table 7.6 and one of 

each symmetry species shown in Figures 7.14-7.17. Our interest in these 

Figure 7.14 One of the Tlg fluorine p* combinations. 
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Figure 7.15 One of the Tlu fluorine p„ combinations. 
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Figure 7.16 One of the T2g fluorine p^combinations. 
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Figure 7.17 One of the T2u fluorine p„ combinations. 

combinations lies in the interactions between adjacent fluorine pT orbitals for 

we shall use these interactions to predict relative energies for comparison with 

the results of photoelectron spectroscopy* Figures 7.14-7.17 show an 

interesting situation. The interactions between the fluorine p, orbitals are of 

two types. For the riu (Figure 7.15) and T2u (Figure 7.17) sets the component 

p„ orbitals are arranged parallel to each other; their interactions are therefore of 

jr-type. For the 7lg (Figure 7.14) and 72g (Figure 7.16) orbitals the axes of 

adjacent atomic pT orbitals are at right angles to each other so that their 

interaction is a mixture of o and 7r-types (as shown in Figure 7.18 the p^ 

orbitals may be treated as vectors and the neighbouring interactions resolved 

into a and n components). Qualitatively, a-interactions are usually greater than 

7i and so it is reasonable to expect that the energy difference between the T2u 
and Tlg orbitals would be greater than that between T,u and7’2g, provided that 

the interactions are comparable in other respects. The other important factor is 

relative nodality. As is evident from Figures 7.14-7.17, the Tlu and Tlg orbitals 

are no-node combinations (apart from the nodes inherent in the pT orbitals 

themselves)—the positive lobe of a p orbital is adjacent to the positive lobe of 

an adjacent p orbital—whereas the Tlg and T2a orbitals each have two 
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Figure 7.18 The overlap of ‘coplanar’ p^ orbitals on adjacent fluorine atoms (shown 
solid) may be expressed as a sum of a ji overlap (between orbitals shown dashed) and a 
a overlap (between orbitals shown dotted). This diagram shows SF6 viewed down a C4 
axis. 

additional nodes—the positive lobe of one p orbital is adjacent to the negative 
lobe of its neighbour. We have: 

Tlg: 2 nodes, a and n interactions 
T2a: 2 nodes, ji interaction only 
riu: 0 nodes, n interaction only 
T2g: 0 nodes, a and ji interactions 

Our discussion leads us to expect that the stability of these orbitals varies in the 
order 

^2g > 7-iu > T2u > rlg 

In arriving at this order any possible bonding of the fluorine p, orbitals with 
the sulfur atom has been ignored. This defect is easily remedied. The only 
symmetry in common with the sulfur valence shell orbitals is Tlu. The latter are 
involved in S-F o bonding and so interactions between the p„-derived 7, set 
and the (more stable) S-F a-bonding 7lu set have to be considered (these are 
the only ones that will affect the photoelectron spectrum). Any interaction will 
lead to a further stabilization of the S-F o bonding set and a corresponding 
destabilization of the pT-derived Tu orbitals. This destabilization could change 
the p„ orbital energy sequence; although the stability order 

Tlg> ^2u > ^lg 

seems clear enough, the Tlu set could slot in between the and T2 u —as 
before—or between the T2a and Tlg (assuming that the destabilization is not 
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too great). In practice, the stability observed sequence for SF6 seems to bet 

^2g > ^2u > T'lu > ^lg 

or, including the orbitals associated with a-bonding (Alg > riu > £g): 

Alg > riu(l) > Tlg >Eg> T2u > T lu(2) > TXg 

This order is in good agreement with that given by the qualitative model 

developed above, although this was not able to predict that the o-interaction 

energy level sequence would overlap with the n levels. 

Problem 7.22 Draw an orbital energy level diagram for SF6 (cf. for 

instance, Figure 6.8). 

Sulfur hexafluoride is the last, and most complicated, molecule of which the 

electronic structure will be considered in detail in this book. The molecules that 

were selected were chosen more because they enabled particular aspects of 

group theory to be introduced, rather than for their own intrinsic interest. 

However, the methods developed are of general applicability and can be used 

to gain insight into the electronic structure of quite complicated molecules. It is 

particularly useful here to assume the highest reasonable symmetry for a 

molecule or molecular fragment and to consider the effects of a reduction in 

symmetry to the real-life level as a minor perturbation. Such reductions in 

symmetry will be covered in Chapter 8. First, however, the discussion of 

octahedral molecules will be extended to transition metal complexes of this 
symmetry. 

7.3 OCTAHEDRAL TRANSITION METAL COMPLEXES 

It is probably true that a majority of transition metal complexes have octahedral 

symmetry, at least approximately. Entire books have been written on this 

subject but only the more important features will be described here. At the 

simplest level an octahedral transition metal complex may be regarded as built 

up from a transition metal ion, M"+, surrounded by six atoms or ions arranged 

at the corners of a regular octahedron. The six surrounding atoms may indeed 

be single atoms or they may be an atom through which a molecule is attached 

to the transition metal ion. In the simplest picture the metal ion is bonded to the 

six surrounding ligands (a collective noun covering both bonded atoms and 

molecules) by pure electrostatic attraction. This simple model leads to crystal 

field theory and it is this which will now be discussed in outline. Although 

t W. von Niessen, W. P. Kraemer and G. H. F. Diercksend, Chemical Physics Letters, 63 (1979), 
65. The order given above is of calculated orbital energies; in the vertical ionization potentials 
(observed in the photoelectron spectrum) the T2u and T]u are identical. 
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simple, it provides the basis for all other, more detailed, models and so time is 
well spent studying it. 

Transition metals are characterized by the fact that they exhibit variable 

valencies in their salts. The corresponding transition metal cations have 

different numbers of d electrons, the number of d electrons varying with the 

valence state of the cation. Loosely speaking, if a transition metal ion is 

oxidized then it loses a d electron; if it is reduced it gains one. Attention is 

therefore focused on the d electrons and on the d orbitals. In an octahedral ML6 

molecule a set of d orbitals on the central metal atom divides into two sets. 

One, consisting of the dA:v, dyz and dZA. orbitals, has T2g symmetry, as indicated 

in Tables 7.1 and 7.2. Figures 7.19-7.22 illustrate the transformations of 

members of this set and their individual contributions to the characters detailed. 

Problem 7.23 Check the transformations of the dxy, dyz and dZA. orbitals 

shown in Figures 7.19-7.22 and thus show that these orbitals transform 

as T2 in O. Because they are centrosymmetric orbitals, it follows that 
they transform as Tlg in 0h. 

The second set of d orbitals,t dx*_y2 and dill^)(222-x2-y2) transform together 
as the Eg irreducible representation. Their transformations are illustrated in 

dzx becomes dyz 0 

Figure 7.19 Transformation of the T2g set of d orbitals of a central metal atom under 
a C4 rotation operation of the octahedron. 

t These orbitals are usually called d and dzh In the present context we have to recognize that 
the label z2 is a shorthand symbol for (1/V3)(2z2 - x2 - y2). 
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z z 

dz> becomes -dZI — -1 
~ 

Figure 7.20 Transformation of the T2g set of d orbitals of a central metal atom under 
a C2 rotation operation of the octahedron. 

Figures 7.23-7.26 where their individual contributions to the characters are 

also given. The only point of difficulty arises in connection with the C3 rotation 

operations and resembles that discussed in detail in Section 6.1. There, too, a 

doubly degenerate irreducible representation gave a character of -1 under a C3 

rotation. In the present case it is helpful to write the E& orbitals as d(v2_ v2) and 

d(i/V3)[(z2-*2)-(y2-r2)], because this helps to demonstrate that rotation of the pair 

z Z 

dzx becomes-dyz->- 0 
~■r 

Figure 7.21 Transformation of the Tlg set of d orbitals of a central metal atom under 
a C2 rotation operation of the octahedron. 



z z 

To simplify the diagram only one lobe of each of dxy ,dyz and dzx is shown 

Figure 7.22 Transformation of the Tlg set of d orbitals of a central metal atom under 
a C3 rotation operation of the octahedron. 

z 

Contribution to 
the character 

dz2 becomes dz2 1 

dx2_y2 becomes-d,2-y2-»~ -1 
0 

Figure 7.23 Transformation of the Eg set of d orbitals of a central metal atom under a 

C4 rotation operation of the octahedron. 
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z 

c Kc? 

y 

X 

z 

Contribution to 
the character 

becomes dz2 1 

y 

dx2_y2 becomes dx2-y2_^_l 

Figure 7.24 Transformation of the Eg set of d orbitals of a central metal atom under a 
C2 rotation operation of the octahedron. 

by 120° to give, for instance, d(y2_22) and dai^mx2_y2)_{z2_x2)] (i.e. 

x —> y —> z —> x) leads to functions which may be expressed in terms of the 

original. It is easy to show by expansion of the coefficients that, for instance, 

j _ J_ , a/3 , 
%2-22)~ 2 V->’2)~ 2 VlSm2-x2)-(y*-z2)] 

so that the coefficient with which d/.^, the ‘starting’ orbital, appears in this 

expression (-5) is its contribution to the character under the C3 rotation. The 

contribution of do/Vj)^2-*2-?2) to d(1/v3)(2^2_j,2_z2) is similarly shown to be so 

that the aggregate character is -1. 

Problem 7.24 Check the transformation of the dx2_y2 and dz2 orbitals 

given in Figures 7.23-7.26 and thus show that these orbitals transform as 



OCTAHEDRAL TRANSITION METAL COMPLEXES 167 

Figure 7.25 Transformation of the E% set of d orbitals of a central metal atom under a 
C'2 rotation operation of the octahedron. 

E in O. Because they are centrosymmetric orbitals it follows that they 

transform as Eg in Oh. 

Crystal field theory, being a purely electrostatic theory which does not admit of 

the existence of bonding and antibonding molecular orbitals, asserts that since 

the d electrons (like all other metal electrons) are non-bonding, they will 

occupy preferentially that arrangement in which electrostatic repulsion with the 

ligands (most simply represented as point negative charges) and with each 

other is a minimum. It is convenient to consider these two factors separately. 

Consider first the requirement of minimum electrostatic repulsion between the 

metal d electrons and the negatively charged ligands. Figure 7.27 shows a 

representative Eg orbital (the d^^) and a representative T2g (the dA>). 

Symmetry ensures that whatever we conclude about these also holds for the 

other member(s) of their respective sets. As Figure 7.27 suggests, it is in the Eg 

orbitals that an electron gets closest to the ligands and so experiences the 

greatest electrostatic repulsion. This conclusion, which is confirmed by detailed 
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z z 

the character 

dz2 becomes d„2 
1 
2 

dx2_y2 becomes dy2_z2 

Figure 7.26 Transformation of the £g set of d orbitals of a central metal atom under a 
C3 rotation operation of the octahedron. It will help to understand this diagram if it is 
recognized that the C3 operation shown has the effect of converting z -» x, a: —» y and 
y —» z. 

calculations, means that the T2g set of d orbitals has a lower energy than the £g 

set. The energy splitting between the two sets is usually denoted by either A or 

10 Dq. If d electron-ligand repulsion were the only factor to be considered 

then the d electrons in octahedral transition metal complex ions would occupy 

the lower, T2g, set of d orbitals until these were filled up. However, this 

preference is opposed by the effects of electron repulsion between the d 
electrons themselves. This electron repulsion is minimized if, as far as 

possible, the d electrons occupy different d orbitals with parallel spin. That is, 

occupation of the Eg orbitals will start as soon as the T2g set is half full. We 
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Figure 7.27 Representative (a) Eg and (b) T2? orbitals of a central metal atom in an 
octahedral metal complex. In this figure © indicates negative electrical charge; the d 
orbitals are envisaged as also containing electron density so that electron-electron 
repulsion occurs. 

have here a straight conflict between two opposing forces. When the d 
electron-ligand repulsion wins we have the so-called ‘strong field’ case’ when 

the d-d electron repulsion dominates we have the so-called ‘weak field’ case. 

Alternative, but not quite equivalent (see below), names are to talk of Tow 

spin’ and ‘high spin’ complexes, the names originating from the fact that some 

weak field complexes have more unpaired electrons—a higher resultant 

spin—than do the corresponding strong field complexes. 

In summary, in crystal field theory, the relative magnitudes of A (10 Dq) and 

the d electron-repulsion energies—the so-called ‘pairing energy’—determine 

the way that the set of d orbitals is occupied. This is illustrated in Figure 7.28, 

where the clear differences between high spin and low spin electron arrange¬ 

ments for ions with between four and seven d electrons is evident (the names 

‘high’ and ‘low’ spin really only apply to these electron configurations). Small 

orbital occupation differences also exist for ions with two, three and eight d 
electrons but these differences are rather subtle and are not manifest in obvious 

orbital occupancies. Consequent upon these differences between high and low 

spin cases is a variety of associated spectral, magnetic, structural, kinetic and 

thermodynamic differences. 
Inclusion of covalent bonding, along the lines discussed earlier in this 

chapter for sulfur hexafluoride, in the interaction between metal ion and 

ligands in a transition metal complex leads to ligand field theory. It differs from 

crystal field theory in that quantities which are well defined in crystal field 

theory become less well defined in ligand field theory (and are generally treated 

as parameters to be deduced from experiment). Qualitatively, Figure 7.28 

remains appropriate except that, as will be explained, the Eg set of d orbitals is 

now identified as the antibonding counterpart of the Eg set involved in 

metal-ligand o bonding. 
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The high spin (weak field) case 

e« 

~r~ 
A oMODq 

e8 

A or 10 Dq 

f2g 

The low 

Figure 7.28 Differences in arrangement of electrons in the d orbitals of a metal atom 
in an octahedral complex occur for the d4-d7 configurations (those within the box). 

ft— 

pin (strong field) case 

In contrast to the discussion of SF6 earlier in this chapter, the valence shell 

of the central atom in transition metal complexes consists of s, p and d atomic 

orbitals. This means that the nine available metal orbitals span the Alg, Tlu, Eg 

and T2g irreducible representations. It will be recalled that the o orbitals of the 

surrounding six atoms—be they fluorine in SF6 or ligands in a complex— 

span Alg + Tla + E%. In a transition metal complex these ligand orbitals are full. 

This is evident if the ligand is a closed shell anion such as F~, Cl" etc. and is 

equally true if it is a molecule such as H20 or NH3, where the ligand o orbital 

is identified as a lone pair of electrons on the electronegative atom. This means 

that the interaction with the metal orbitals can be regarded as stabilizing the 

ligand orbitals—lowering their energy. In this case the metal orbitals are to be 

regarded as being correspondingly destabilized by virtue of the same 

interactions and the eg orbitals, which in crystal-field theory are pure d orbitals, 

to be regarded as antibonding combinations of ligand a and metal d orbitals. 

Here the common practice of using lower case letters before the word ‘orbital’ 

is followed. To avoid possible disruption of the logistic sequence, this 

convention has not been applied earlier in this chapter but use of the labels eg 

and t2g is so common in transition metal chemistry that they have to be 

introduced at some point. Before concluding this section on transition metal 

ions it is of interest to note that in ligand field theory the d orbitals of T2g 

symmetry may also interact with ligand orbitals. It will be recalled that the 

fluorine p„ orbitals in SF6 transform as Tlu + Tlg + T2a + T2g. The p„ orbitals of 

any ligand, L, in an octahedral ML6 complex will have the same symmetries. 
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'Ligand'*2g 

'Ligand't2g t2g 

Figure 7.29 The effect of ligand n orbitals on the eg-t2g splitting (indicated by the 
double-headed arrows) depends on the relative energies of the metal and ligand t2g 
orbitals. 

Evidently, in transition metal complexes the metal d orbitals of T2g symmetry 

may interact with the r2g set of ligand n orbitals. If the relevant ligand n 
orbitals are empty—and therefore of high energy—then the effect of ligand 

metal T2g interactions will be to depress (stabilize) the lower T2g orbitals. These 

are those corresponding to the T2g d orbitals shown in Figure 7.28—and to 

raise the energy of the (empty) T2g ligand n orbitals. The effect on the 

molecular orbitals corresponding to the d orbitals of Figure 7.28 will be to 

increase the splitting A. If the ligand n orbitals are filled—and therefore of 

relatively low energy—the effect will be to decrease the eg-t2g splitting. These 

two cases are illustrated in Figure 7.29. The n bonding that has just been 

described seems to be of importance because it is found that it is ligands with 

available but empty ji orbitals that give large values of A, and thus strong field 

complexes, while those with filled n orbitals give small values of A and so 

weak field complexes. Examples of the former are the CN” and CO ligands 

(the empty n orbitals being C-N or C-O n antibonding) and of the latter, Br¬ 

and Cl”. For these halide anions the filled n orbitals are the atomic p„ orbitals. 

7.4 THE BONDING IN TETRAHEDRAL MOLECULES 

Early in this chapter it was mentioned that it is often possible to discuss 

octahedral and tetrahedral transition metal complexes together because their 

geometries are both derived from a cube. Tetrahedral complexes, of general 

formula ML4, are of widespread occurrence but are not as common as 

octahedral. Together, species with geometries which approximate to either 

octahedral or tetrahedral account for at least 80 per cent of all coordination 

compounds. In organic chemistry, of course, it is the tetrahedral geometry 
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which is important. Clearly, it is appropriate that at least an outline discussion 

of tetrahedral molecules should be included in this text. 

The Cartesian coordinate axes which were used for an octahedron (Figure 

7.3(b)) are those of the corresponding cube. Similarly, it is advantageous to use 

cube-derived axes for a tetrahedron, notwithstanding the fact that this choice is 

not in accord with taking the z axis as the axis of highest rotational symmetry 

(which would mean C3 for the tetrahedron). Because a tetrahedron is derived 

from a cube it is not surprising that the symmetry operations which turn a 

tetrahedron into itself are also symmetry operations of the cube (but the 

converse is not true). The corresponding symmetry operations are: 

Cube (and octahedron) E, 8C3, 6C4, 3C2, 6C'2, i, 8S6, 6S4, 3oh, 6ad 

Tetrahedron E, SC3, 3C2, 6S4 6ad 

The group of operations of the tetrahedron is given the shorthand label TA 

(pronounced ‘tee-dee’). 

Problem 7.25 Draw diagrams to show all of the symmetry operations 
of a tetrahedron. 

Hint: Figure 1.4 is helpful. The mid-point of each cube face in this figure 

corresponds to a comer of the octahedron shown in Figures 7.3 and 7.4. 

It will be noticed that, although there exists a group of the pure rotations of 

the tetrahedron (E, 8C3, 3C2, a group called T), the group T A is not a direct 

product group of T with any other group (if it were there would be three, not 

two, additional classes of TA compared with T and they would have 1, 8 and 3 
operations in them). 

Problem 7.26 Detail the arguments behind the assertion just made. 

The character table of the TA group is given in Table 7.7. 

Table 7.7 

Td E 00
 

c>
 

3C2 6S4 6 oA 

4, 1 1 1 1 1 
A2 1 1 1 -1 -1 
E 2 -1 2 0 0 
T, 3 0 -1 1 -1 

t2 3 0 -1 -1 1 

The bonding in tetrahedral molecules will not be discussed in detail but the 

essentials are given in Table 7.8, which summarizes the ways in which the 
various orbitals transform. 
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Table 7.8 

Symmetry 

Orbitals of an atom 
at the centre of the 
tetrahedron 

s 

(P*> Pyi P;) 

(^jr2->2> d(i/V3)(2z2-jr2-.y2) 

(djry. dyz< dzj) 

A, 

T2 

E 

T2 

Orbitals of the four 
atoms at the apices 
of the tetrahedron 

o A, +T2 

ji E + T t + T2 

Problem 7.27 Check that the transformations given above are correct. 

The generation of the correct reducible representation for the transform¬ 

ation of the apical atom ji orbitals is not a trivial task and the reader who 

gets the correct answer is to be congratulated. Success depends on 

choosing the orientation of the ji orbitals mindful of the symmetry 

operations under which they are to transform (this problem is best tackled 

by the techniques described in Appendix 4). 

Problem 7.28 Use the projection operator method to derive explicit 

forms for the o orbitals of four atoms arranged at the apices of a 

tetrahedron. 

Problem 7.29 Use the data in Table 7.8 to describe the bonding in 

methane, CH4. 

It will be noted that double and triple degeneracies exist in a tetrahedral 

environment and, rather important, that the p and three of the d orbitals of a 

central atom both transform as T2. This means that the t2 d orbitals in a 

tetrahedron will be mixed with some of p, and vice versa. In this lies, 

ultimately, the explanation of the fact that tetrahedral transition metal 

complexes tend to be more highly coloured than do octahedral. Because d and p 

orbitals mix, this mixing makes some electronic transitions more allowed in a 

tetrahedron than they are in an octahedron (pure d—d transitions are forbidden, 

but d-p are allowed). 
Just as for an octahedron, in a tetrahedral environment the d orbitals of a 

transition metal split into two sets; d*2.^ and d(1/v3)(2z2_Jl-2_>2) are of E symmetry 

and, as has been commented, dA>,, dvz, and dZA. of T2. If a diagram analogous to 
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Figure 7.2 is drawn for a tetrahedron then it is concluded that in this geometry 

splitting the T2 set is of higher energy than the E—the inverse of the splitting 

found for an octahedron. 

Problem 7.30 Draw diagrams analogous to Figure 7.2 for a tetrahedral 

transition metal complex and thus show that it is reasonable that the d^, 

dy2 and dzx orbitals are of higher energy than dx2_y2 and d(l/^H2z2-x2-yy 
Hint: The lobes of the dxorbital point towards the mid-points of the 

faces and of dx>, towards the mid-points of the edges of the cube 

corresponding to a tetrahedron. 

The splitting of the d orbitals in a tetrahedron is only about one half of that 

for the corresponding ligands arranged octahedrally (more accurately, £). This 

reduction in separation means that strong field tetrahedral complexes are 

virtually unknown; almost all are weak field. 

In both a tetrahedral and octahedral environment the d orbitals of a transition 

metal split into a set of two (E in Td, Eg in Oh) and a set of three (7\ in Td, 
T2g in Oh). It is the fact that the d orbitals of E symmetry in Td are the same as 

those of £g in Oh (and similarly for the T2 and orbitals) which enables a 

common discussion of the two symmetries in specialized texts. In this common 

discussion the orbital sets are referred to as E and T2 (one can think of the 

discussion of octahedral molecules taking place in the group O for there these 

are the correct symmetry labels). The two geometries are then distinguished by 

the fact that the E-T2 splittings are of opposite signs. One warning, however; a 

warning signalled in the discussion above. Although a set of three p orbitals of 

a central atom have Tlu symmetry in Oh, they have T2 symmetry, not Tx, in Td. 
The moral is clear—be careful not to extrapolate without checking. 

Problem 7.31 Show that the p orbitals ,pf an atom at the centre of a 
tetrahedron have T2 symmetry. 

7.5 THE DETERMINATION OF THE POINT GROUP OF 
A MOLECULE 

The stage has now been reached at which all of the different types of point 

group operations have finally been met. It is therefore a convenient time at 

which to briefly review the chemically important point groups, and the 

allocation of a molecule to the correct one. That is, we shall tackle the question 

‘How do I decide what the symmetry of a particular molecule is?’ Unless a 

correct answer can be guaranteed, it would be only too easy to end up trying to 
use the incorrect character table. 

When a molecule has a single rotational axis, Cn, this is usually quite 

evident (it seems to become easier as n increases). It may be that this Cn axis is 
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the only symmetry element, in which case the point group is Cn. Frequently, 

however, there will be other symmetry elements. If the only ones are mirror 

planes which contain the Cn axis (there must be n such crv planes because if 

there was only a single one, the existence of the Cn axis would create the other 

n- 1), then the point group is Cnv. Were there just a single mirror plane 

perpendicular to the C„ axis (a ah plane), it would be a Cnh point group. The 

simultaneous existence of n av mirror planes and a ah plane means that there 

must be further symmetry elements, in particular, n C2 axes perpendicular to 

the original Cn axis, equally spaced around it (and symmetrically related to the 

n ov mirror planes). Such pointgroups are Dnh (D for Dihedral). Can these 

additional n C2 axes exist without the n ov and crh? The answer is that they can; 

the point group produced is Dn. What of the simultaneous existence of the Cn, 
the n ctv’s and the n C2’s? These combinations also exist and lead to the point 

groups D nA. The n av axes now symmetrically interleave the n C2 axes and so 

are, more correctly, referred to as ad mirror planes. In similar fashion the ‘crv’ 

mirror planes in the Dnh point groups should be called ad. Unfortunately, most 

authors do not use this (correct) notation. In such groups with n even the 

vertical mirror plane reflection operations invariably fall into two classes. In 

most texts, one of these is usually—arbitrarily—denoted (n/2)av and the 

other (n/2)ad (in Appendix 3 the notation (n/2)crd and (n/2)a'd has been used). 

The combination of just Cn, ah and n C2 does not exist—the existence of these 

elements requires the co-existence of n av and we are back to Dnh. 
In the present chapter S„ operations were met for the first time. A set of such 

operations, together with the identity, can comprise a group, provided that n is 

even. Such groups are called Sn, although the case of n = 2, S2, is usually 

called C; because the operation S2 is precisely equivalent to inversion in a 

centre of symmetry (Figure 7.30). 

Figure 7.30 The operation / is equivalent to ‘rotate about an arbitrary C2 axis 
containing the i and reflect in a ah containing the F. That is, i = S2- 
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If it is clear that a molecule has non-coincident Cn and axes, where n 
and ri are both greater than two (n can be equal to n',) then the point group of 

the molecule is one of those for which the x, y and z axes are interchanged by 

some of the operations of the group. The Cartesian axes then transform 

together as a triply degenerate irreducible representation. If the molecule 

contains a C5 axis (it would actually have several) then the point group would 

be an icosahedral one—/, or/h (pronounced ‘eye aich’). An icosahedron—of 

7h symmetry—is shown in Figure 7.31. If the molecule contains a C4 axis 

(there would be three of them in all) then the point group would be cubic (or, 

equivalently, octahedral)—O or (9h. Finally, if its pure rotation axis of highest 

symmetry is a C3 axis (there would be a total of four of these) then its 

symmetry would be that of a tetrahedral group—T, TA or Th. The distinction 

between each of the two icosahedral, the two octahedral or three tetrahedral 

groups is quite simple. Groups with no suffix are groups with only pure rotation 

operations—they have no mirror planes and no centre of symmetry, for 

example. They are rare. Groups with suffixes contain improper rotation 

operations. The distinction between TA and Th is that the latter contains a centre 

of symmetry, whereas the former does not. The octahedral and tetrahedral 

groups, together, are often referred to as ‘cubic’ groups. 

Linear molecules all have an axis—the molecular axis—about which 

rotation by any angle, no matter how large or small, is a symmetry operation. 

The ‘fundamental’ rotation operation, from which all others may be built up, is 

therefore a rotation by an infinitesimally small angle. It takes an infinite 

number of these rotations to return the molecule to its original position (rather 

than an equivalent, rotated, one). This axis is therefore a C. axis. If they have 

a centre of symmetry they are of the D„„ point group; if they have not, they are 

C„v. Because they each have an order of infinity, the reduction of reducible 

Figure 7.31 An icosahedron. A fivefold rotational axis passes through each pair of 
opposite apices and a threefold through the mid-points of each pair of opposite faces. 
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representations in these groups has to be handled differently to the method 

developed in this text. The problem is one that is seldom encountered and is 
discussed in Appendix 5. 

One point group remains. It is that which, in addition to the identity element, 

contains only the operation of reflection in a single mirror plane. It is denoted 

Cs (‘cee ess’). 

The way that most experienced workers identify the point group of a 

molecule is by a spontaneous knee-jerk type of reflex (most common) or to list 

as many symmetry operations as they can immediately see (much less 

common). Such a list is usually mental but the beginner may prefer to use 

pencil and paper. Even if incomplete, this list may at once identify the point 

group; if not, it will certainly reduce the number of possibilities to two or three. 

A glance at the list of operations across the head of the character tables of the 

possible groups (Appendix 3) will reveal the operations in which the possible 

groups differ. These operations (or, rather, the corresponding elements) are 

then explicitly looked for and thus the correct group selected. This procedure 

of scanning likely character tables is strongly recommended to the beginner as 

the best way forward; it requires intelligent comparisons to be made of 

different point groups and this can be a very enlightening process. An 

alternative, the one recommended in most texts, is to mount a more systematic 
search for symmetry elements. Several schemes for such a search exist 

(although experienced workers never use them!) and one is given in Figure 

7.32. One starts at the top and traces a path by answering the questions on the 

way, which ends with the correct point group (provided that no mistakes have 

been made). 

Problem 7.32 Determine the point groups of the following molecules. 

The answers are given on page 179. 

C2H6 (eclipsed) 

C2H6 (staggered) 

c6h6 

PF5 (trigonal bipyramid) 

Hg22+ 
[PtCl4 ]2 (a planar molecule) 

TeCl4 (two pairs of equivalent chlorines) 

C1F3 (two equivalent fluorines) 
The environment of the Na+ ion in crystalline NaCl 

C02 

CO 

S042“ 

N03 _ (planar) 

N02- 
C3H6 (cyclopropane) 
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Fe(C5H5)2 (ferrocene, eclipsed) 

Fe(C5H5)2 (ferrocene, staggered) 

|-Yes- 

Does it have a 
centre of symmetry ? 

|—Yes—L—No—| 

Ocoh Cc 

Is the molecule Imeor ? 

J No- 

Does it have a Cn 
rotation axis (n > 1)? 

-Yes— -No 

Does it have a 
mirror plane 7 

No- -Yes- 

Doesithavea 
centre of symmetry ? 

Yes—1—No 

Does it have several rotation axes 

( not necessarily all the same n ) ? 

Yes- -No 

Is there more than one Cn axis with n ^.2 ? Does it have a mirror plane ? 

No- 

Does it have a 
mirror plane ? 

•Yes-! 

-Yes r ■Yes- -No- 

r 
Is there a mirror 
plane perpendicular 
to the Cn axis with 
largest n 7 

No- 

It is a cubic Does the Cn axis 
group. Is there lie in a mirror 
a Cc axis 7 plane 7 

M I I 
|—Yes « No—| Yes I f 

s there a centre of 
symmetry? 

Yes- 
T 

^nh 

•Yes No 

1 
^nd 

r 
4 

syr 

•Yes —i—No- 

-No 
t 
^nh Does it have a 

rotation-reflection 

rYes-l—No-i 

1 

axis 7 

Istherea C4axis? 

1 1 rYes- 

Oh 

■Yes- -No-^ Yes 

O 

-No- 

1 
Does it have a 
mirror plane ? 

t 
s2n 

“1 

Oh 

•Yes No 

Figure 7.32 A ‘yes’-‘no’ response table which is one of the many variants available 
which may be used to assign a molecule to the correct point group. 

7.6 SUMMARY 

In this chapter several cubic points have been met, along with the symmetry- 

enforced double and triple degeneracies associated with them (pp. 141, 172). 

This high level of symmetry can compensate for quite high molecular 

complexity and discussions of octahedral and tetrahedral transition metal 
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complexes are now invariably symmetry-based, the d orbitals of the central 

metal atom being split into a degenerate pair (E) and a degenerate trio (T2) 
(pp. 164, 173). Finally, the identification of the point of a molecule was 

discussed and a diagnostic scheme given in Figure 7.32 (p. 178). 

Answers to Problem 7.32 

^3h> f^3d> ^6h> ^3h» ^°°h> ^4h> C2y > C2v, ODCxy, Td, j,, C2y, D5h, 



8 

Groups and Subgroups 

8.1 INVARIANT AND NON-INVARIANT SUBGROUPS 

So far in this book we have been concerned with particular molecules and, 

more important, particular symmetries. It is the purpose of the present chapter 

to adopt a less selective viewpoint and to examine, first, the relationships 

which exist between similar symmetries and, second, some of the conse¬ 

quences of low symmetry. 

A molecule in which a central atom M is surrounded by six identical atoms 

or groups L, ML6, is usually of octahedral symmetry, 0h, as was seen in 

Chapter 7. Suppose one of the L is now replaced by a chemically similar, but 

different, atom or group X (for instance, both L and X could be halogen 

atoms). The molecule is then ML5X and has, at most, C4v symmetry (assuming 

that the change from L to X does not lead to a gross structural change in the 

molecule—no C5 axis is introduced, for example). Strictly, then, a discussion 

of the ML5X molecule should follow the general pattern developed in Chapter 

5, where the electronic structure of BrF5 was considered, due allowance being 

made for the presence of X. However, the difference between L and X could be 

negligible (if they are isotopic variants of the same element, for instance). In 

such a case the difference in conclusions between a discussion based on Oh 
symmetry and one based on C4v should also be negligible. There must be a 

continuity between the C4v and Oh cases because even if the difference between 

L and X is large, it could be broken down into a series of small, hypothetical, 

steps. Similar arguments will apply whenever there is a similar relationship 
between two groups. 

Just what is this relationship between groups? In the above example, it is 

clear that some of the symmetry elements (and, therefore, operations) of the 

Oh point group are not present in C4v. However, the existence of operations 

common to the two groups means that there will be some relationship between 

their group multiplication tables and, very important, between their character 

tables. The group which has the smaller number of operations is referred to as a 

subgroup of the other; there are many fascinating relationships which exist 

between a group and its subgroups, some of which will be met in this chapter. 

It is evident from group multiplication tables that the symmetry operation of 

a point group are not, in general, independent of one another—if one 

symmetry operation is removed then usually as a consequence others will be 

removed also. So, for example, if in the case of the C2v point group one mirror 
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plane reflection operation is to be deleted then this can only be done if a second 

operation is also deleted. This is shown in Table 8.1 where it is seen that 

deletion of the av column and row still leaves a av entry (as a product of C2 

and o'). We can only totally remove <7V entries from the table if we remove 

either ov and o[ or av and C2. Deletion of the former pair leaves the point 

Table 8.1 

C2y E c2 
1 

1 
1 
1 
1 

< 

E E c2 K 
1 
l < 

1 l 
l 

c2 c2 E K 1 °y 
--4- j. 

Ha Jill ////<K llldjll mu I (LJII 
-- --4- 

(j'v Oy <1 
l 
l E 

group C2 (operations E, C2) as a subgroup of C2v and deletion of the latter pair 

gives C% (operations E, a). Because there is only one possible way of 

producing the subgroup C2 from C2v, C2 is said to be an invariant subgroup of 

C2v. More rigorously, an invariant subgroup contains only complete classes of 

the parent group. It is thus understandable that the point group Cs is also an 

invariant subgroup of C2v, despite the fact that it could be derived from either 

av or o'v. Key is the fact that these two mirror plane reflection operations are 

not in the same class in C2v. The existence of an invariant subgroup can be of 

key importance. In Chapter 13, for instance, the problem of the enormous size 

of space groups will be encountered. If the faces of a crystal are ignored then it 

is, effectively, infinite because there is an infinity of translation operations in 

the group. Fortunately, it will not prove necessary to work with a group of this 

size. This is because the (infinite) group of all translations is an invariant 

subgroup of the space group. This sounds formidable when first encountered, 

but all that it really means is that the group of all translations can only be 

obtained from the space group in one way. As will be seen in Chapter 13, it 

makes good physical sense to ignore the group of all translations and to 

consider only operations of the point group variety, those that have been the 

subject of this book so far. Instead of being an infinite problem, it is reduced to 

the sort that have been met many times. It may make good physical sense but it 

also has to make mathematical sense. It does, and the reason is that the group 

of all translations is an invariant subgroup of the space group. All this will be 

explained in detail in Chapter 13. 
Not all subgroups are invariant. The C3v point group, which was the subject 

of Chapter 6, provides an example. The multiplication table for this group is 

given in Table 8.2; the operations are those indicated in Figure 6.1. A clockwise 
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Table 8.2 The first operation is listed along the top and the second 
down the left-hand side 

C^y E cf Cf ofl) of 2) of 3) 

E E cf Cf MU of2) of 3) 

cf Cf c3- E of 2) M3) ofl) 

Cf Cf E Cf of 3) ofl) of 2) 

of 1) MU of 3) of 2) E Cf Cf 
°v(2) of 2) MU of 3) Cf E Cf 
of 3) Oy (3) of 2) MU Cf Cf E 

rotation by 120° is denoted by Cf, an anticlockwise rotation by C3~; the mirror 

plane reflections are crv(l), av(2) and av(3). The multiplication table in Table 

8.2 differs from all the other multiplication tables that have been explicitly 

given in this book. It is not symmetric about the leading diagonal (top left to 

bottom right). Put another way, for some combinations of operations the result 

depends on the order in which the operations are applied. Thus, 

CJo,{\) = o,(2) 
but ofl)Cf = ctv(3) 

Care therefore has to be taken to specify that the operations at the head of the 

columns in the multiplication table are on the right in expressions such as those 

above. Equivalently, they are the first operation. This may seem strange but if 

so, it is only because we are accustomed to reading from left to right so that in 

the first example above we read C3+ before av(l). However, if the operations 
operate on some function, xp say, then we have 

Cfofl)xp - 

and, clearly, here av(l) must operate before C3 + . 

Problem 8.1 Using Figure 6.1 check that the C3v group multiplication 
table given in Table 8.2 is correct. 

In the multiplication table, Table 8.2, the complete deletion of a single ctv 

operation requires that the other two of s are also deleted, to give the group C3 

as an invariant subgroup, a subgroup that can only be obtained in one way. 

However, deletion of the two C3 operations causes the multiplication table to 

break up into three disconnected multiplication tables. This is because we can 

only remove the Cf and Cf entries from Table 8.2 by deleting the Cf and Cf 

columns and rows and then deleting one of the pairs [av(l) and av(2)] or 

[av(2) and M3)] or [av(3) and crv(l)]. For each of these three choices we 

arrive at Cs as a subgroup. That is, there are three different but equivalent ways 
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that Cs can be obtained as a subgroup, so it is not an invariant subgroup of 

C3v—i.e. one that can be obtained in only one way—(although, as has been 

seen, it is an invariant subgroup of C2v). 

Problem 8.2 Check the above assertions by deleting from Table 8.2. 

(a) all C3 operations. Is it possible to just delete C3+ but leave C3~? 

(b) one cjv operation. 

(c) one crv operation and the C3 operations. 

The distinction between invariant and non-invariant subgroups may seem 

rather academic. In fact, it has quite a variety of consequences, as two 

examples will show. The first example concerns molecular dynamics. Suppose 

that a molecule of C3v symmetry is momentarily distorted—by a molecular 

vibration, for instance—to give a molecule of Cs symmetry. Thus, in the 

ammonia molecule, one N-H bond might be momentarily longer (or shorter) 

than the other two. Because the symmetry of the molecule has been reduced to 

that of a non-invariant subgroup there exists other different but equivalent 

distortions (in the case of our ammonia molecule there are two such equivalent 

distortions, corresponding to distortion of one of the two other N-H bonds to 

give a different but equivalent arrangement of Cs symmetry). That is, because 

there are three different Cs subgroups of C3v there will be three equivalent 

distortions; the molecule would be of the same energy in each of the three 

equivalent configurations. In this situation, the distortion can ‘rotate’ from one 

bond to the next with no nett cost in energy. That is, the presence of non¬ 

invariant subgroups means that a molecule may indulge in some unexpected 

gymnastics. A full discussion of this is well beyond the scope of the present 

book, although there is more detail in Chapter 9. It is clear that special care has 

to be taken in a detailed analysis of the vibrational and rotational properties of 

molecules with symmetries which have non-invariant subgroups. 
The second example is concerned with the character tables of invariant 

subgroups. When the operations of a point group can be written as a product of 

the operations of two of its invariant subgroups, then its character table can 

also be derived from those of these subgroups. Consider the C2v point group. 

We have seen that it has two invariant subgroups, C2 and Cs. It follows that all 

of the operations of C2v can be derived from those of these two subgroups. 

Take each of the operations of one invariant subgroup and combine it, in turn, 

with all of the operations of the other invariant subgroup. Therefore, in our 

case, carry out the steps shown in Table 8.3. 
Table 8.3 shows that the operations of C2v are products of the operations of 

C2 and Cs. Using the language of Section 4.3, the group C2v is said to be the 

direct product of the groups C2 and Cs, a relationship usually written as 

U2v = C2 x Cs 

(more strictly, the symbol <8> should be used in place of the multiplication sign). 
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Table 8.3 The combination of operations 
of the invariant subgroups of C2v 

C2 combines with cs to give C2v 

E combines with E to give E 
E combines with o to give CTy 
c2 combines with E to give c2 

c2 combines with o to give o'v 

In Section 4.3 it was also seen that a similar property holds for the correspond¬ 

ing character tables. Thus, in the present case the character table for C2 is taken 

and the whole of it multiplied by the characters of the Cs table, to give a table 

four times the size of that of C2. This is shown in Table 8.4 where, for 

simplicity, the C2 character table has been written out four times on the left. 

Each one is then multiplied by the corresponding Cs character to give the C2v 

table. 
The C2v character table given in Table 8.4 is the same as that met in Chapter 

2 (Table 2.4), with the A2 and Bt irreducible representations interchanged in 

position. 

Problem 8.3 Check through the individual steps in Tables 8.3 and 8.4. 

Examples of this relationship between character tables have already been 

met. In Chapter 4 the fact that D2 and C{ are both invariant subgroups of D2h 
was exploited (Tables 4.3 and 4.4). In Chapter 7 the fact that Oh has invariant 

subgroups O and Cf was used in Table 7.2 and the preceding discussion. 

Problem 8.4 Show that the operations of the group C3v are the product 

of operations of the groups C3 (E, C3+, C{) and Cs (E, a). However, 

because Cs is not an invariant subgroup of C3v, the character table of C3v 

is not the direct product of the character tables of C3 and Cs. This is 

immediately seen when the character tables of C3v and C3 are compared 
(Appendix 3). 

Table 8.4 

C2 E c2 E c2 

A 1 1 1 1 

B 1 -1 1 -1 

A 1 1 1 1 

B 1 -1 1 -1 

A 1 1 

1 -1 

C2v E c2 (Tv o'y 

A, 1 1 1 1 
1 -1 1 -1 

a2 1 1 -1 -1 
b2 1 -1 -1 1 

x A" 
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At the beginning of this chapter it was recognized that C4v is a subgroup of 0h. It 

is not an invariant subgroup because there are eight C4 operations in Oh but only 

two in C4v. It is also evident that the character table of Oh is not a direct product 

of that of C4v with any other group because that of Oh contains triply degenerate 

irreducible representations whereas C4v does not. This is another illustration of 

the rule that the character table of a group is never the direct product of the 

character table of a non-invariant subgroup with that of another group. 

8.2 CORRELATION TABLES 

Having discussed how the character table of a group may be related to that of 

its subgroups we now consider the opposite problem: how is the character table 

of a subgroup related to that of the parent group? Again, the general form of 

the relationship is best seen by considering an example. The example which we 

choose corresponds to the physical situation described earlier in this chapter, 

that in which a molecule of C3v symmetry is distorted to give a structure with 

Cs symmetry (i.e. a distortion leading to the loss of the threefold axis). The 

character tables of the Cs and C3v point groups are given in Table 8.5. Note that 

in the Cs character table a single prime as a superscript indicates something 

which is symmetric with respect to a mirror plane reflection and a double prime 

indicates antisymmetry. This use (and meaning) of primes reappears in other 

point groups—see Appendix 3. In the C3v character table in Table 8.5 the loss 

of the C3 axis has been indicated by deleting the column associated with the 

corresponding operations. Since loss of this axis also leads to the loss of two 

crv mirror planes (those generated by C3 operations acting on the ‘first’ av) the 

figure 3 has also been deleted from the 3av entry. It is clear from Table 8.5 that 

the remaining characters of the Ax irreducible representation of the C3v point 

group are those of the A' irreducible representation of the Cs point group. One 

says that the ‘A, irreducible representation of C3v correlates with the A' 

irreducible representation of Cs’. This means that any function or object which 

transforms as A, in C3v must transform as A' in Cs when the molecular 

symmetry changes. Similarly, Table 8.5 shows that the A2 irreducible 

representation of C3v correlates with A" of Cs. 
The E irreducible representation of C3v is both interesting and important for 

it does not correlate uniquely with a single irreducible representation of Cs. 

Table 8.5 

C3v E 2 €3 b*
 

I 
Q

 
1 

< 
1 

cs E 0 

A, 1 1 1 A' 1 1 

A2 1 1 -1 A" 1 -1 

E 2 -1 1 
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Rather, it gives rise to a reducible representation, one which is readily seen to 
have A' + A" components. In summary, then, we have the correlations shown in 

Table 8.6. 

Table 8.6 

C3v Cs 

A, -» A' 
A2 —» A" 
E A' + A" 

This example illustrates the general theorem that each irreducible representa¬ 
tion of a group gives rise to a representation, which may be either reducible or 
irreducible, of each of its subgroups. Tables showing these correlations—so- 
called correlation tables are available, but it is very easy to work them out 
using the example given above as a model. Working-out sometimes has an 
advantage over the use of tables. The D2h group was described in Chapter 4 (its 
character table is given in Table 4.1). This group has C2v as a subgroup and 
correlation of the irreducible representations of the two groups seems very 
easy. 

Problem 8.5 Use either Tables 4.1 and 2.4 or Appendix 3 to correlate 
the irreducible representations of the D2h and C2v groups. 
Hint: If you find this problem more difficult than expected, read the next 
part of this section. 

As the reader may have discovered when tackling Problem 8.5, while the 
problem is not a difficult one, there is a catch in correlating from D2h to C2v. 
The D2h group has three different C2 axes. The precise correlation between the 
two groups depends on which of the three twofold axes is retained in going 
from D2h to C2v. This does not indicate any fundamental problem, rather that it 
may be necessary to relabel coordinate axes (and associated basis functions) in 
moving between the two groups. The twofold axis retained in C2v may not be 
that labelled z in D2h, although it would be called z in C2v. In compilations of 
correlation tables it is usual to indicate all three possible D2h -> C2v correlations 
but one still has to decide which correlation is appropriate before using the 
tables. In such cases even experienced workers may find that they are less 
likely to make a mistake by working out the correlation for themselves rather 
than by using the tables! 

There is another way of showing correlations, and that is by use of a 
diagram. That for the C3v-Cs correlation is given in Figure 8.1. 

Such diagrams emphasize another aspect of the consequences of a decrease 
in symmetry. Figure 8.1 shows, for example, that a function transforming as 
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U3v Cs 

Figure 8.1 The correlation between the groups C3v and Cs. 

A, in C3v and one of the two functions transforming as E have a common 

symmetry in Cs, that described by the A' irreducible representation. This means 

that in Cs symmetry these two functions can interact with each other, an 

interaction which is symmetry-forbidden in C3v symmetry. 

Another aspect of a reduction in symmetry, equally evident from either 

Table 8.6 or Figure 8.1, is that a decrease in symmetry may lead to a decrease 

in degeneracy. In the example above, the degeneracy of functions transforming 

as E in C3v is lost in Cs. A particularly important case is that of octahedral 

transition metal coordination compounds, discussed in Chapter 7. Although 

much of the basic theory of such compounds is conveniently developed 

assuming full octahedral symmetry (<9h), real-life examples usually show 

some minor distortion. The most important cases are those in which such a 

distortion is either along a fourfold or a threefold axis (either distortion 

therefore destroying all other fourfold and threefold rotation axes), as shown 

in Figure 8.2. The appropriate correlation table is given in Table 8.7. 

Problem 8.6 Use the character tables of the Oh, D4h and D3d point 

groups in Appendix 3 to check the correlations given in Table 8.7. 

It is seen from Table 8.7 that in D4h symmetry all degeneracies present in Oh 

symmetry are at least partially removed. One important consequence of this is 

Figure 8.2 A symmetrical distortion of an octahedron (Oh) along a threefold axis 
gives a figure with D3d symmetry while a symmetrical distortion along a fourfold axis 

gives a Z)4h figure. 
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Table 8.7 

trigonal tetragonal 

D3d -5- Oh ^D4h 
distortion distortion 
(along C3) (along C4) 

Alg A[g Aig 

^2g A2g 
*.. 

Es Aig +#lg 

A2g + Eg r.« 
A2g + £g 

^ig Eg fi2g + Eg 

Aiu Aiu 

A2u A2u Bu 
Eu Eu A]U +#lu 

A2u + Eu T iu A2a+Eu 

■Alu + E u t2u B2u + Eu 

that when a single spectral band is predicted in the electronic absorption 

spectrum of an octahedral transition metal complex this band would be 

expected to show a splitting if the real symmetry is D4h and a degeneracy is 

involved in the transition (for instance, the excited state might be triply 

degenerate). Such a splitting could take the form of the observation of a 

separate peak, a shoulder or an asymmetry on the band. The D3d case shows, 

however, that it is not always true that a reduction in symmetry causes all 

degeneracies to be relieved to (i.e. a splitting to occur); thus the E& and Eu 

irreducible representations of 0h persist in £>3d. There is, however, a trap for 

the unwary. In the point group Oh conventioa was followed in choosing a C4 

axis as the z axis; one would do the same in D4h. In D3d, the axis of highest 

symmetry is a C3 axis and this is the z axis. It follows that, although E& of Oh 

becomes £g of Z)3d it is NOT true that the basis functions for E% in Oh, x2- y2 

and (1/V3)(2z2 - x2 - y2), are basis functions for E% in D3d. A detailed analysis, 

using the methodology of Appendix 2, is needed to describe the correlations 

between basis functions in 0h and D3d. 

In practice, the correlations which exist between groups are quite important 

for two reasons. First, as indicated above, they enable the properties of low 

symmetry molecules to be related to those of high symmetry species. Another 

aspect of this occurs when a molecule is high symmetry but is trapped in a low 

symmetry environment—an octahedral molecule on a low symmetry lattice 

site in a crystal, for example. Second, some of the problems of degenerate 

representations—and some were met in the last chapter—can often be neatly 

side-stepped by pretending that a molecule has a lower symmetry than is in fact 

the case—so that the degeneracy is split (or ‘relieved’)—and, after working in 
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the low symmetry group, using a correlation relationship to apply the result to 

the high symmetry case.f 

Another interesting aspect of the relationship of a group to its subgroups is 

that the number of symmetry operations in a group (the order of the group) is a 

simple multiple of the number of symmetry operations of any of its subgroups. 

The multiplication factor—which is always an integer—is called the index of 

the subgroup (relative to the particular parent group). Thus, the C3 group (of 

order 3) is subgroup of index 2 of the point-group C3v (of order 6). However, 

the same C3 group (of order 3) is a subgroup of index 40 of the point group 7h 

(of order 120). 

Problem 8.7 Use Appendix 3 to determine the index of each of the 

following subgroups of Oh. 

^4h > ^-'4v > ^3d * C3v , 7?2h > ^2v 

An important application of the concept of index concerns rotational 

subgroups. A point group may only contain operations which are proper 

rotation operations (such as C2, C3 and so on) or it may contain some 

operations which are pure rotations and others which are improper rotations 

(such as av, i, S4). By deleting all of the improper rotations one can always 

obtain a subgroup of a group which itself contains both proper and improper 

rotations. What remains is the pure rotational subgroup of the parent group. 

This subgroup is always of index 2. The importance of rotational subgroups is 

their relationship to the (infinite) group consisting of all the pure rotation 

operations associated with a sphere. A rotation of any angle about any radial 

axis is a symmetry operation of a sphere. In particular, infinitesimally small 

rotations are symmetry operations. This property is closely associated with the 

importance of angular momentum in the theory of atomic structure. When 

there is an atom at the centre of mass of a molecule then all the pure rotational 

symmetry elements associated with the molecular point group pass through it. 

The corresponding rotation operations are all that remain of the infinity of 

rotation operations which would have turned this atom into itself if the rest of 

the molecule were not present. What remains of the consequences of the 

angular momentum in the free atom are therefore manifest in the molecule in 

its pure rotational sub-group. In particular, this group provides a method of 

determining how the degeneracies which may be associated with the free atom 

(and these degeneracies may be quite large) are split up when the atom is 

placed in the molecule. For the metal atom at the centre of a transition metal 

complex, in particular, this is quite invaluable information. As was mentioned 

in Chapter 7, these compounds often contain unpaired electrons. Besides 

t The particular attraction of a reduction in symmetry is that interactions can be caused to become 
1:1—ambiguities about just which functions interact no longer exist. 
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behaving like tiny bar magnets themselves (this is the physical meaning of 

their spin), the orbital motion of these (negatively charged) electrons can have 

a magnetic effect, just like an electrical current in a solenoid. This additional, 

orbital, magnetism is closely connected with any angular momentum possessed 

by the unpaired electrons (the angular momentum of the electrons is the 

electron density in circulation and so is akin to the current flowing round a 

solenoid). To understand this orbital magnetism it is necessary to know 

something about the residual angular momentum and this information is 

contained within the rotational subgroup. 

Problem 8.8 Use the symmetry operations listed at the top of the 

character tables in Appendix 3 to show that deletion of improper rotation 

operations in the following point groups in each case leads to a pure 

rotational subgroup of index 2. 

Ai> •f'h > ^5h> ^2h> ^3d 

Note: In several of these examples it is possible to obtain subgroups by 

deletion of all improper and some proper rotations. Such subgroups are 

not of index 2. The statements made in the text refer to the largest pure 

rotational subgroup of a given group. 

8.3 SUMMARY 

There are relationships between a group and its subgroups. The operations of a 

group can immediately be obtained from the operations of its subgroups 

(p. 184) as can its character table (p. 183) provided that the subgroups are 

invariant (p. 181). Correlations exist between the irreducible representations of 

a group with its subgroups and are useful_in discussions associated with 

molecules which approximate to high symmetry species (p. 185). Groups 

containing improper rotation operations always have a pure rotational subgroup 
of index 2 (p. 189). 



Molecular Vibrations 

So far in this book we have been largely concerned with the techniques of 

group theory and their application to the problem of the electronic structure of 

molecules. There are a few additional techniques which we have yet to meet 

but we are already in a position to discuss one important application of group 

theory to quite a different area, the analysis of molecular vibrations. Although a 

chemist may be interested in vibrational spectra in a qualitative way—some 

molecular fragments reveal their presence by characteristic ‘fingerprint’ peak 

patterns—the concern of the present chapter is with a more detailed analysis of 

the relationship between spectra and structure. Vibrational spectra provide a 

way of determining the geometrical arrangement of groups attached to an atom 

both quickly and with reasonable accuracy. Because such geometrical 

arrangements have often been a particular problem in inorganic chemistry, it is 

in inorganic chemistry that the methods of this chapter find the greatest 
application. This chapter, then, is concerned with the prediction of the number 

of infrared and Raman peaks (i.e. spectroscopic features resulting from the 

excitation of molecular vibrations) that is expected for a particular molecular 

geometry. The predictions generally vary with geometry and so provide a 

method of distinguishing between alternatives. However, the spectral activity 

of vibrations is a subject which must be deferred until Chapter 10 because this 

topic is one that requires a further development of basic ideas. The present 

chapter will be concerned solely with determining the symmetries of the 

normal modes of vibration of a molecule. Having determined these symme¬ 

tries, it will be found in Chapter 10 that the selection rules follow immediately. 

9.1 NORMAL MODES 

A normal mode is a ‘natural’ vibration of a molecule. Just as a tuning fork has 

a ‘natural’ frequency and motion (or mode), so too has a molecule, a difference 

being that all molecules (except diatomic molecules) have more than one 

natural frequency. More precisely, a normal mode is one which has the 

property that if each atom in a molecule is displaced from its equilibrium 

position by a displacement which corresponds to its maximum amplitude in the 

normal mode, then, when the atoms are simultaneously ‘let go’ the atoms will 

all undergo a motion at the same frequency. Further, once having been ‘let go’ 

they will all simultaneously pass through the equilibrium configuration and, 
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later, simultaneously again reach their positions of maximum amplitude.! It 

follows that the motions of symmetry-related atoms in the molecule will be 

simply related to each other, so that it is possible to place a symmetry label on 

each normal mode. Our concern, then, is with the determination of these 

symmetry labels. 
The description just given of the vibrations of molecules differs from that 

which seems intuitively more realistic. It seems reasonable to expect the motion 

of individual atoms in a molecule to be much more complicated than this. A 

motion in which atoms move in apparently random directions, amplitudes and 

phases seems more likely. However, provided the amplitudes are not too great, 

such a complicated motion can be regarded as a sum of normal motions 

occurring with different phases, just as the sound from a musical instrument 

can be regarded as a similar sum of different harmonic frequencies. Clearly, 

normal modes of vibration are of key importance in the description of 

molecular vibrations. These normal modes are quantized—just like the 

harmonics of a vibrating stretched string—and it is possible to add a further 

quantum of vibrational energy to any mode. For some of the modes this 

quantum can be added by infrared radiation and for some it can be added by a 

Raman mechanism. These excitation processes are the basis of infrared and 

Raman spectroscopies. In adding an additional quantum it is a good approxima¬ 

tion to ignore the other vibrations already occurring within a molecule. That is, 

we can pretend that the molecule is not vibrating at all! There is more than one 

justification for this step. One particular justification for this pretence is seldom 

met but it is not very difficult and—because it is both good fun and rather 

fundamental—it is included as an optional section at the end of the present 

chapter. 

There are two distinct methods which may be adopted in tackling the 

problem of determining the symmetries of the normal modes of vibration of a 

molecule. First, the molecule may be regarded as made up of convenient 

fragments and the vibrations of each fragment considered in turn. The normal 

vibrations cannot usually be obtained in this way because these vibrations will 

probably involve the movement of atoms outside the fragment under 

consideration. An additional step is needed to obtain the normal vibrations. 

Consider an example. For chloromethane, CH3C1, one would consider 

separately the C-H bond stretches, the C-Cl bond stretch, the H-C-H angle 

change and the H-C-Cl angle change vibrations. Such a breakdown is often a 

useful starting point for the study of molecular vibrations because each motion 

is often associated with a characteristic spectral region (which, correctly, 

suggests that, despite what was said above, the vibrations of fragments are 

often not too different from normal vibrations). This approach to molecular 

t This statement needs modification when the vibrational motion concerned has the symmetry 
species of an irreducible representation which has complex characters. The motion is then that of 
a travelling wave. Such irreducible representations will be dealt with in Chapter 11. 
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vibrations, which regards them as a superposition of the vibrations of 

fragments, requires care. The method depends on an ability to spot all of the 

dilferent vibrators (or ‘internal coordinates’ as they are usually called), and it is 

all too easy to miss some. The twists and turns of one part of a complicated 

molecule against another or the puckering motion of a ring are all too easy to 

miss, for example. It is here that the second method is useful since it provides a 

check on the first. In it one determines all of the symmetries of the normal 

modes together. It has no place for chemical experience or intuition about the 

motion of the atoms involved in each normal vibration. But, it has an 

advantage—nothing gets missed out! In this chapter both methods will be 

considered. That which divides the vibration of the molecule into several 

smaller problems, that of the vibration of fragments, is the simpler and will be 

considered first. 

9.2 SYMMETRY COORDINATES 

It is easiest to work with a particular example and so we shall consider the C-H 

stretching vibrations of chloromethane, CH3C1, using the C3v character table 

given in Table 9.1. Although the frequencies of the A-B stretching vibrations 

in an AB3 unit will be dependent on the masses of the atoms involved, the 

symmetries of the vibrations will not. Our discussion is therefore equally 

appropriate to other molecules of C3v symmetry, such as ammonia. The 

problem is easier to visualize if this generality is exploited. This is readily done 

by thinking about displacements (e.g. a bond stretch or a bond angle change) 

rather than the motion of a particular set of atoms. Displacements may be 

symbolically represented by arrows as shown in Figure 9.1. In chloromethane 

there are three C-H bond stretches to consider and, so, there are three arrows 

in Figure 9.1. 
It is easy to show that the three arrows of Figure 9.1 form the basis for a 

reducible representation, the components of which are the A, + E irreducible 

representations of the C3v point group. What does this mean? As has been 

mentioned, normal vibrations may be labelled by that irreducible representation 

of the point group which describes the phase relationship between the motions 

of symmetry-related internal coordinates (bond stretches in the present 

Table 9.1 The character table of the C3v 

point group 

C3v E 2C3 3av 

A, 1 1 1 i 
a2 1 1 -1 K 
E 2 -1 0 (x,y), (RV,RJ 
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Figure 9.1 Three independent C-H stretch internal 
coordinates in CH3C1. 

context). A diagram such as Figure 9.1 merely indicates the existence of some 

independent vibrators (of which there are three in the present case). The 

diagram could be redrawn with the direction of some of the arrows reversed if 

we chose and this would not change the fundamental problem. The projection 

operator technique automatically corrects for arbitrary choices of initial phase. 

Once it has been used to generate a symmetry-adapted combination of internal 

coordinates (a so-called ‘symmetry coordinate’) the relative phases are all 

fixed. There is nothing new in this—analogous situations have been met in 

previous chapters. However, a particular confusion arises here because, as will 

be seen in Figure 9.2(a), a diagram such as Figure 9.1 may be indistinguishable 

from one used to depict a symmetry coordinate. The moral is—read text and 

captions carefully! The application of the projection operator technique to the 

present problem will not be detailed because this application is indistinguish¬ 

able from that described in Chapter 6. In Figure 6.5 the Is orbitals of the 

hydrogen atoms in ammonia were labelled a, b, and c, and the A, and E 

combinations were derived. They were found to be: 

ip(A{) = (a + b + c) 
V3 

V't (E) = ^ (2a - b - c) 

xp2(E) = -p (b - c) 
V2 

where it has been assumed that a, b and c all have the same phase. The present, 

vibrational, problem is mathematically just the same provided that a, b and c 

are taken to represent the bond extensions shown in Figure 9.1. 

Problem 9.1 Repeat the derivation described in Chapter 6 but without 

choosing the same phase for a, b and c. Show that, although the 

mathematical form of the functions generated differ from those given 

above, the actual motions deduced are the same. 
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Figure 9.2 (a) The Ax combination of the C-H stretching internal coordinates in 

CH3C1. 
(b) The E combinations. 

The analogy just drawn between the group theoretical analysis of molecular 

bonding and molecular vibrations is quite general. When the members of two 

different basis sets—for instance, the atomic orbitals in a bonding problem and 

the internal coordinates in a vibrational problem—transform isomorphously (that 

is, there is a 1:1 correspondence between members of the two sets) then their 

transformations lead to symmetry-adapted combinations of identical symmetries 

and mathematical form. Corresponding to the symmetry-adapted group orbitals 

of bonding theory are the symmetry coordinates of vibrational theory. Similarly, 

corresponding to the molecular orbitals of bonding theory (which are combina¬ 

tions of symmetry-adapted group orbitals of the same symmetry species) are the 

normal coordinates in vibrational theory. These normal coordinates are linear 

combinations of symmetry coordinates of the same symmetry species. However, 

because neither is symmetry-determined, the coefficients with which symmetry 

coordinates appear in a normal coordinate have no relationship to the coefficients 

with which symmetry-adapted orbitals appeal* in molecular orbitals. 
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Problem 9.2 Use the results of the sections indicated to write down the 

symmetry species and symmetry coordinates of: 

(a) The C-H stretching vibrations of ethene (Section 4.5). 

(b) The Br-F (equatorial) stretching vibrations of BrF5 (Section 5.5). 

(c) The S-F stretching vibrations of SF6 (Section 7.2). 

Note: Angle change vibrations can be handled similarly. However, there 

is a hidden problem associated with them which is discussed towards the 

end of the present section. 

In Chapter 6, the molecular orbitals of the ammonia molecule were 

expressed as combinations of orbitals of the same symmetry species. Thus, the 

A, N-H bonding molecular orbital of ammonia was taken as an in-phase sum 

of the A, symmetry-adapted combination of hydrogen Is orbitals with a 

nitrogen 2s-2p combination of A, symmetry. As just mentioned, in just the 

same way a normal coordinate (of a particular symmetry species) is taken as a 

sum of contributions from symmetry coordinates of this symmetry species. 

Thus, if there is only one symmetry coordinate of a particular symmetry type 

then this symmetry coordinate is the normal coordinate. 

The Al and E symmetry coordinates derived from the C-H bond stretching 

coordinates shown in Figure 9.1 are drawn in Figure 9.2. Evidently, a crucial 

difference between A{ and E symmetry coordinates is that in the latter a C-H 

bond may contract as its neighbour stretches, whereas for the former all of the 

C-H vibrators stretch and contract together. Provided, then, that a C-H bond is 

sensitive to whether its neighbour is contracting or stretching the spectral bands 

associated with the A, and E modes will have different energies and will 

therefore appear at different frequencies. The greater the sensitivity (or, as it is 

usually put, the greater the coupling between) the C-H vibrators the greater the 

separation between the spectral peaks associated with the different vibrations. 

With strong coupling, two peaks would be .expected in the C-H stretching 

region of the spectrum subject to two provisos. These are that the normal 

modes are not too different from symmetry coordinates (otherwise, conclusions 

may not be transferable) and that both modes are spectrally active. In Chapter 

10 it will be shown that the A, and E modes are both infrared and Raman 

active. Further, it turns out that the normal modes are closely approximated by 

the symmetry coordinates above. It is the direct connection between the 

analysis and prediction for a particular spectral region which makes the 

molecular fragment approach so useful. However, it is not without its 

problems. Suppose we are considering the H-C-H bond angle change 

vibrations of chloromethane. This basis set is pictured in Figure 9.3, where 

each bond angle change is represented by a double-headed arrow. It is simple to 

show that this basis gives rise to a representation with A, + E components. 

What is the form of the A, vibration? In this vibration, all H-C-H bond angles 

must increase and decrease in phase. It is easy to see that the only way that they 

can do this is as shown in Figure 9.4. But, as this figure shows, this vibration 

seems to be more evidently associated with changes in the H-C-Cl bond 
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Figure 9.3 Three independent HCH bond angle change 
internal coordinates in CH3C1. 

Figure 9.4 The Aj combination of HCH (or HCC1) bond 
angle change internal coordinates in CH3C1. 

angles! Not surprisingly, the H-C—Cl bond-angle change set of internal 

coordinates also gives rise to an A, vibration, which is also that shown in 

Figure 9.4! This figure makes clear that when we fragment a molecule we may 

find ourselves inadvertently duplicating vibrations. This problem is not 

confined to angle change vibrations. In a cyclic system, for instance, vibrations 

in which some bond lengths increase while others decrease usually have a 

simultaneous change in at least one bond angle. In this situation there is not a 

‘right’ and a ‘wrong’ vibration—a vibration has been duplicated and such 

duplication is inseparable from the method. 
The above discussion of the vibrations of CH3C1 is summarized and 

completed in Table 9.2. In this table convention has been followed by denoting 

bond-stretching internal coordinates by the symbol v and bond angle change 

(deformation) coordinates by the symbol <3. The total number of symmetry 

coordinates given in this table is ten (the £”s are doubly degenerate) and this is 

to be compared to the number of normal vibrations predicted by the 3N — 6 

rule. In CH3C1, N, the number of atoms, is five and so the 3N-6 rule requires 

Table 9.2 

Symmetry coordinate 

Internal coordinate species 

v(C-H) Ax+ E 

v(C-Cl) A, 

d(H-C-H) Aj + E 
<5(H-C-C1) Ax+E 
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that this molecule has just nine normal vibrations. As has been seen, the 

disparity arises from the fact that an A, symmetry coordinate has been 

duplicated in the two deformation sets. We conclude that the normal vibrations 

of CH3C1 are of 3A, + 3E symmetries. 
Although this conclusion is correct, it is not entirely justified. That this is so 

would become evident if we were to consider a large and complicated 

molecule. In such cases it is easy to overlook some internal coordinates or to be 

uncertain whether or not they have already been included—as when one part 

of a molecule rocks or twists relative to another part, for instance. Equally, 

duplication of symmetry species such as that which occurred in CH3C1 could 

easily go undetected. Clearly, a more systematic and reliable method is needed 

and this is given in the next section. 
From what has just been said, the value of the fragment model might appear 

dubious. This is not so; in practice, the model is not used to predict the 

symmetries of the normal modes of a molecule. Rather, it is used to predict the 

number of bands expected in the spectral regions associated with individual 

internal coordinates such as those listed on the left hand side of Table 9.2. Even 

so, care has to be taken to spot duplication and here qualitative diagrams of 

symmetry coordinates such as those of Figures 9.2-9.4 are of great help. The 

generation of such diagrams is usually not difficult, the projection operator 

method being used. 

Problem 9.3 Associated with the equilateral triangular arrangement of 

three carbon atoms in cyclopropane, C3H6 are three v(C-C) stretching 

vibrations and three d(C-C-C) angle change vibrations. Derive the 

symmetry coordinates associated with these internal coordinates and 

suggest how they may be brought into conformity with the requirements 

of the 3N - 6 rule. 

Note: Although the symmetry of cyclopropane is Z)3h it is simplest work 

in the point group C3v—the results are equivalent. 

Problem 9.4 Draw diagrams akin to those of Figures 9.2-9.4 for the 

three v(C-C) stretching vibrations of cyclopropane. 

9.3 THE WHOLE-MOLECULE METHOD 

The alternative technique, that of considering the entire molecule and 

generating all of the vibrations, is particularly useful as a check on the results 

obtained from a fragment analysis such as that described above. Not only does 

it correctly give the symmetry species of the molecular vibrations but 

vibrations duplicated (or others inadvertently omitted!) in a fragment analysis 

can usually be detected. In the entire-molecule method one starts by consider¬ 

ing the total motional freedom within the molecule. That is, each atom is 
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allowed to move in any direction. Of course, with this amount of freedom we 

are, implicitly, allowing the molecule to translate and rotate as well as vibrate 

but it is a simple matter to select the vibrations from the totality of allowed 
molecular motions. 

The method is illustrated for the chloromethane case in Figure 9.5. Each atom 

is allowed to move in any direction by having as a basis set a set of translations. 

Each atom is allowed to move independently in three mutually perpendicular 

directions and therefore contributes three translational displacements to the basis 

set. The most obvious—and sometimes used—arrangement of displacement 

vectors (arrows) is that shown in Figure 9.5(a). In it, corresponding displace¬ 

ments of all atoms are parallel. However, the three displacements on each atom 

can be in any direction in space without in any way changing the final answer. A 

considerable simplification results if the arrows are chosen to point in symmetry 

directions (along rotational axes or in, or perpendicular to, mirror planes). The 

directions of the arrows shown in Figure 9.5(b) have been chosen with this in 

mind. Remembering that only arrows on atoms which are unshifted by a 

symmetry operation can contribute to the character, and bearing in mind the 

discussion of x and y axes in Section 6.1 (a discussion which applies equally to 

displacements along x and y) it is a simple matter to show that this set of arrows 

gives rise to the reducible representation 

E 2 C3 3<jv 

15 0 3 

and that this representation has 4A, + A2 + 5E components. 

Figure 9.5 (a) The three independent translational displacements of each atom in CH3C1. 
In this diagram the three rotational motions of the entire molecule are also indicated (these 
rotations must be some combination of the atomic translational displacements). 
(b) A more educated choice of atomic displacements than that shown in (a). It proves 
best to place the three independent translations (arrows) of each atom as far as possible 
along rotational axes or in, or perpendicular to, mirror planes. 
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Problem 9.5 Check the reducible representation given above using the 

choice of displacement vectors shown in Figure 9.5(b). The advantage of 

using this set of vectors over a set such as that shown in Figure 9.5 (a) can 

be seen if an attempt is made to generate the reducible representation 

using this latter set of vectors. Note that if the vectors of Figure 9.5(a) 

are modified by rotating the x and y displacements on each hydrogen 

atom about the local z axis so that the local av mirror plane bisects the 

angle between local x and y displacements then the reducible representa¬ 

tion may again be readily generated. 

The irreducible representations spanned by bodily translations and rotations 

of a molecule are usually to be found in the relevant character table, the 

symbols Tx, Ty and Tz (or just x, y, z) indicating the transformation of the 

translations and Rx, Ry and Rz the corresponding rotations. This has been done 

in Table 9.1 (the character table of the C3v point group); in the character tables 

in Appendix 3 both x, y, z and Tx, Ty, Tz are indicated. 

If one wishes to check on the symmetry species spanned by Tz, Tx and Ty 

this can be done by the usual method of investigating their transformational 

properties; this is conveniently done by representing them by the solid arrows 

drawn at the centre gravity of the three hydrogens of Figure 9.5(a). Rotations 

may be similarly treated, representing them by the curved arrows in Figure 

9.5(a). Usually this is found to be more difficult but, fortunately, there is an 
alternative—and simpler—way. There is a general rule that 

A rotation about an axis Ra (a = x, y or z) has the same character as the 

corresponding translation Ta for all proper rotation operations. To obtain 

the character for Ra under an improper rotation operation, however, one 

simply has to change the sign of the character of Ta—that is, multiply it 
by -1. 

Thus, it is easy to see from Figure 9.5(a) that Tz has A, symmetry in C3v. That 
is, it has the characters 

E 2 C3 3ctv 
Tz 11 1 

Application of the above rule shows that Rz has the characters 

E 2 C3 3av 

Rz 11 -1 

That is, it is of A2 symmetry. For the C3v group we thus find (Table 9.1) that 

the three translations transform as A, + E and the three rotations as A2 + E. 
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Problem 9.6 Check that the three rotations Rx, Ry and R2 transform as 

A2 + E in C3v by considering the behaviour of the three curved arrows in 

Figure 9.5(a) under the group operations. 

Problem 9.7 By inspecting the character tables in Appendix 3 check 

that the above rule is invariably true. Having done this, return to Figure 

9.5(a) and attempt to understand, pictorially, the origin of the rule. 

As is well known, and as has already been used, the number of normal 

vibrations of a non-linear molecule is 3N - 6, where N is the number of atoms 

in the molecule. The 3N is the total motional freedom of the atoms in the 

molecule and the 6 arises because the translations and rotations of the 

molecule as a rigid body are included in the 3N degrees of freedom. It has 

just been seen that these translations and rotations transform as A, + A2 + 2E 
for CH3C1. The symmetries of the normal vibrations can be obtained by 

subtracting these from those generated by the 3N degrees of freedom, 

4Aj + A2 + 5E. It follows that the vibrations transform as 3A, + 3E, a result 

which agrees with the conclusions reached by the fragment analysis of the 

previous section. 

9.4 THE VIBRATIONS OF ALREADY-VIBRATING 
MOLECULES (this section may be omitted at a first 
reading) 

There is one final question to which we address ourselves. It arises when it is 

recognized, as at the beginning of this chapter, that at room temperature any 

molecule with low frequency vibrations is likely to have some of these 

vibrations thermally excited. If at least one such vibration is not totally 

symmetric then it must reduce the molecular symmetry (only totally symmetric 

vibrations maintain—or, in some situations, increase, molecular symmetry). 

Problem 9.8 For each of the molecules of Problem 9.2 a totally 

symmetric vibration will have been obtained as part of the answer to 

that problem. Use the symmetry coordinates obtained to sketch out the 

form of the vibration and thus show that the vibration does not lead to a 

change in molecular symmetry. Similarly show that all other vibrations 

obtained in answer to Problem 9.2 lead to a reduction in molecular 

symmetry. 
Hint: Exaggerate the vibrational distortion and determine the symmetry 

of the distorted molecule, using Figure 7.32 if necessary. 

If there is a high probability that a molecule has a symmetry which is lower 

than that which has been assumed, how valid is an analysis based solely on the 
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high symmetry case? The answer is a rather unexpected one. The symmetry 

group which we have been using is not the one that we think that we have been 

using! Consider the case of the chloromethane molecule but now subject the 

molecule to an arbitrary distortion such as that shown in Figure 9.6. To this 

Figure 9.6 The distorted CH3C1 molecule to be used in 
Figure 9.7. Dotted circles show the original ‘atomic’ positions. 
It is assumed that the distortion gives the molecule neither 
linear nor angular momentum. 

distorted molecule we now apply the operations of the C3v point group. The 

result of this is shown in the top half of Figure 9.7. Finally, apply a permuta¬ 

tion operation to the labels on the hydrogen atoms, the permutation chosen 

being that which brings the hydrogens back to their original positions. Such a 

permutation is described by a symbol such as (123), a symbol which means 

‘replace the label 1 by label 2; replace the label 2 by the label 3 and replace the 

label 3 by the label 1’. Application of these permutation operations leads to the 

bottom half of Figure 9.7. The combined effect of point group and permutation 

operations has been that of giving us back the original molecule, but with the 

distortion differently related to the labels 1,2 and 3. If the hydrogen atoms 1, 2 

and 3 had been quite different atoms (e.g. if 1 were H, 2 were F and 3 were Br) 

then the six distorted molecules in the lower group of six would have been 

quite different. The fact that all three are hydrogen atoms, however, means that 

all these six distorted molecules have exactly the same energy. That is, they tell 

us something about the potential energy surfaces of the CH3C1 molecule. For 

any one distorted arrangement there are always five others with precisely the 

same energy. But molecular vibrations explore potential energy surfaces, so 

this sixfold repetition is information which is clearly relevant to a vibrational 

analysis. It is a straightforward, if somewhat tedious, task to show that the six 
operations 

£(l)(2)(3)t 
C3(132) 

C3(123) 

°v(l)(23) 

°v(2)(31) 
M3)(12) 

t A symbol such as (1) means ‘leave 1 alone’. 
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crv( 1) is that mirror plane 

multiply to form a group; further, these new operations are in a 1:1 correspon¬ 

dence with the operations of the C3v point group and also multiply in the same 

way as their C3v counterparts; the two groups are isomorphous. 

Problem 9.9 Show by deriving the group multiplication table that the 

set of operations given above form a group and that this table is isomor¬ 

phic to the C3v multiplication table (Table 8.2). 

Hint: Although diagrams such as Figure 9.7 or a model may be of help in 

tackling this problem it is perhaps easiest to treat it as algebraic, using 

Table 8.2 for the operations and treating the permutations separately. 

Note: As indicated in the footnote, the permutation (1)(23) means ‘2 and 

3 interchange while 1 remains unchanged’. It follows that, for example 

(1)(23) followed by (123) is equal to (3)(12), whereas (123) followed by 
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(1)(23) gives (2)(31). Such permutations are most easily worked out as 

follows, using (123) followed by (1)(23) as an example. 

Start (Identity) 1 2 3 

Application of (123) gives 2 3 1 

Followed by (1)(23) gives 3 2 1 

which, on comparison with the identity, is seen to be (2)(31). 

It cannot be too strongly stressed that the two groups that we have been 

discussing are isomorphous and give rise to the same character table (or, more 

strictly, they have isomorphic character tables). It is this close connection 

between the ‘correct’ group—that containing combined point group and 

permutation operations— and the more immediately accessible C3v point 

group which enabled us to use the latter in our discussion of the vibrations of 

the chloromethane molecule. 

9.5 SUMMARY 

In this chapter the problem of the determination of the symmetry species of the 

normal modes of vibration of a molecule has been studied. Such a 

classification is an essential prelude molecular to the prediction of vibrational 

spectra. A fragment analysis (p. 192) is of particular utility to the chemist but a 

complete treatment (p. 198) is useful as a check on errors that may have been 

introduced in a fragment analysis. For this, knowledge of the transformational 

properties of the bulk translations and rotations of the molecule is essential. 

Although point groups are invariably used in vibrational analyses, a more 

detailed study shows that they are actually used because they are isomorphic to 
the correct vibrational symmetry group (p. 201). 
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Direct Products 

10.1 THE SYMMETRY OF PRODUCT FUNCTIONS 

All of the previous chapters have been concerned with a discussion of the 

symmetries of individual objects, such as orbitals. Very commonly, however, 

the chemist is interested in products of such quantities. So, in a many-electron 

atom or molecule the electronic wavefunctions will be a product wavefunction 

which, at the simplest level, takes the form 

Xp = 0! 02 03, ... > 

where <p\,..., <j>„ are individual one-electron orbitals and xp is the single 
wavefunction which describes all n electrons. 

Even in a one-electron problems products of one-electron wavefunctions 

—products of orbitals—have to be discussed as soon as we become interested 

in overlap between orbitals. The overlap integral between two orbitals 0, and 

cp 2 is given by 

SI2 = J0, 02 5u 

where the integral is over all space. We know how to place symmetry labels on 

0,, 02,... , etc., but how do we place a symmetry label on a product function 

such as 0j 02? The present chapter is concerned with the answer to this 

question and with some important consequences which stem from it. 

It is easiest to progress by considering a specific example and we will take 

one from the C2v point group, the character table which is given in Table 10.1. 

Consider a product function 0, 02 and suppose that 0, has symmetry A2; we 

write this 0, (A2). Similarly, take 02 to be of B2 symmetry and write it 02(fl2). 

Table 10.1 

C2v E c2 Oy o[ 

A, 1 1 l 1 
a2 1 1 -l -1 

5, 1 -1 l -1 
b2 1 -1 -l 1 
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We have to determine the symmetry of their product ip; that is, we have to fill 

in the empty bracket in: 

0( )= 0i(A2).02(52) 

where a dot has been placed between the two functions on the right to facilitate 

separate consideration of these two functions. In principle, the method is 

simple—it is the one used many times before in this book. We subject ip to all 

of the operations of the group and obtain a set of characters by relating the 

transformed function to the original. The application of the C2 operation, for 

example to ip means that we are really applying it to 0,(A2) and to 02(B2), 

simultaneously. Now, from Table 10.1, under this operation 0,(A2)—» 0,A(2) 

because the A2 irreducible representation has a character of 1 for this operation. 

Similarly, 02(fi2)—> — 02(^2) and a character of -1. Putting these two results 

together, we have that under the C2 rotation operation 

0, (A2).02(52) -> 01 (-^2 )- 02 (^2) 

That is, ip( )—> -ip( ), so the character generated by the transformation of 

ip( ) under this operation is -1. It is clear that this -1 really occurs because 

the products of the characters of the A2 and B2 irreducible representations 

under the C2 operation is -1. Similarly, because the A2 and B2 characters under 

the av operation are -1 and -1, respectively, their product, 1, is the character 

of ip{ ) under this operation. Summarizing this, and extending it to include 
the other operations, we have: 

E c2 ov ol 

Characters generated by the transformation of 0,(A2), i.e. the 
A2 irreducible representation 

1 1 -1 -1 

Characters generated by the transformation of 02(R2), i.e. the 
B2 irreducible representation 

1 -1 -1 1 

Characters of the transformation of ip{ ; ), i.e. the products 
of the two rows of characters above 

1 -1 1 -1 

The representation generated is the B{ irreducible representation. That is, 
ip( ) can now be identified as ip(Bl). 



THE SYMMETRY OF PRODUCT FUNCTIONS 207 

Problem 10.1 Using the procedure described above, fill in the empty 
brackets in the product functions: 

VK )= 01 (-® 1 )- 02 (^2 ) 
VK ) = 01 (^1 )• 02 (-^2 ) 
V>( )= 01 (A2).02(A,) 

Your answers can be checked by reference to Table 10.2. 

In this example the general method of determining the symmetries of 

product functions was that used; multiply together the characters of the 

irreducible representations which describe the transformation of the individual 

functions. The act of multiplying two irreducible representations in this way is 

said to give rise to the direct product of the two individual representations; if 

we multiply three irreducible representations we form a triple direct product, 

and so on. The name ‘direct product’ is not new—it was first met in Section 4.3 

where the operations of the group D2h were described as the direct product of 

the operation of the groups D2 and C;. These two usages of ‘direct product’ are 

related; the connection may be seen in the discussion of Section 2.3 where the 

close relationship between the way that operations of a group multiply and the 

way that the corresponding irreducible representations multiply became 

evident. It is, then, not surprising that the same name, direct product, should be 

applicable to each type of multiplication. The connection between the two 

multiplications is described more fully in Appendix 2. 
As will be seen in the remainder of this chapter, direct products are very 

important in the application of symmetry to chemistry. For these applications, 

all that is needed is a list—a table—of two-function direct products. Triple 

and higher direct products can readily be deduced from such a table. The (two- 

function) direct product table for the C2v point group is given in Table 10.2. In 

this table an obvious, and conventional, symbolism has been used. The entry at 

a particular point in the table is the symmetry of the direct product of the 

species that label the column and row in which the entry falls. 

Table 10.2 Direct products of the irreducible 
representations of the C2v group 

C2v A, a2 B, b2 

A. A, a2 B 2 
a2 a2 A, b2 B i 

b2 A, a2 

b2 b2 5, ^2 A, 

Problem 10.2 Check that Table 10.2 is correct—this will provide 

useful additional practice in the formation of direct products. 
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Problem 10.3 Use Table 10.2 to obtain symmetry labels for the 

following product functions 

v>( ) = 01 0^1 ) 02 (^1 ) 03 (^2) 
0( ) = 0l(^2)02(^l)0(S2) 
0( ) = 01 (^2) 02 (^2) 0(^1 ) 
0( ) = 01 (-^2) 02 1 )0C^1 )0(^1 ) 
0( ) = 0,(A2)02(fl,)0(A2)0(fl,) 
0( ) = 0,(A2)02(A2)0(51)0(51) 

What do your results indicate about the importance of the order in which 

functions are listed on the right-hand side of these expressions? 

Note that Table 10.2 is symmetric about the leading diagonal (top left to 

bottom right). Thus, the result obtained for the example considered earlier in 

this chapter is 

A2 0 = 

where the symbol ®, which is that conventionally used to denote the direct 

product between two irreducible representations, has been used in preference to 

the x which might have been expected. 

It is equally true that: 

Z?2 ® A2 = 5] 

This equivalence follows because sets of numbers are being multiplied together 

and the result obtained is independent of the order in which they are 

multiplied—the origin of the diagonal symmetry of Table 10.2 is at once 

evident. 

This method of obtaining direct products is entirely general. However, 

another result in Table 10.2—that the product of two irreducible representa¬ 

tions is always another irreducible representation—is not general. Direct 

products involving two or more degenerate irreducible representations 

invariably give rise to a reducible representation as a product. Consider the C4v 

point group. The C4v character table is given in Table 10.3 (it was first met as 
Table 5.6). 

Table 10.3 

C4v E 2C4 C2 2 CTV 2a( 

A, 1 1 1 1 1 
a2 1 1 1 -1 -1 

1 -1 1 1 -1 
b2 1 -1 1 -1 1 
E 2 0 -2 0 0 



CONFIGURATIONS AND TERMS 209 

It is evident that the direct product E ® E must be reducible because the 

number that will appear in the identity column (4) is larger than any character 

in the table. The direct product E® E is: 

E 2 C4 C2 2crv 2 o'y 
E®E 4 0 4 0 0 

which is readily seen to be a representation with components 

Ax + A2 + Bx + B2 

Problem 10.4 Show that the direct product table for the C4v group is: 

C4v A, A2 B\ b2 E 

A, A, a2 Bx b2 E 
a2 a2 A, b2 B i E 

B\ b2 A, ^2 E 
b2 b2 B, a2 A, E 
E E E E E (A, + A-2 ■+* ~h ^2) 

10.2 CONFIGURATIONS AND TERMS 

It is instructive to consider the meaning of the E® E direct product in the C4v 

point group in more detail. Suppose that there are two electrons, one of which 

is to be placed in the degenerate pair of orbitals of E symmetry denoted 

individually c, and e2. The second electron is to be placed in a different 

degenerate pair of orbitals of E symmetry which we individually denote by £, 

and E2. The possible two-electron functions are 

elE] 

e\E2 
e2E\ 

e2E2 

That is, they are four in number (in agreement with the number 4 which 

appears in the identity column when the E ® E direct product is formed). Group 

theory tells us that it is possible to take linear combinations of these four 

functions such that one combination has A, symmetry, one has A2 symmetry, 

one has B{ symmetry and one has B2. These symmetry-adapted functions may 

be obtained by the projection operator method described in Chapter 4 and, 

more particularly—because it deals with a non-Abelian group—Chapter 5. We 

first simply choose one function—exEx for instance—and work out how it 

transforms under the operations of the group. For this, we need to know how 
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the individual functions ex and £j transform. This information is detailed in 

Table 5.7 (where it is necessary to replace pA. by ex or Ex and p^, by e2 or E2). In 

this way Table 10.4 is obtained. 

Table 10.4 

Operation 

E c; cv c2 av(l) o.(2) o'A 1) o'. (2) 

~e2 *2 e\ e2 ~e2 
Ex -e2 e2 ~EX ~EX Ex e2 E2 

exEx e2E2 e2E2 e\E\ exEx exEx e2E2 e2E2 

Multiplication by the A, characters and adding, in the usual projection 
operator method, leads to the conclusion that 

V(Ai) = ^(eiE\ + e2E2) 

Problem 10.5 Use Table 10.4 to show that 

V(B\)=^(elEl~e2E2) 

Problem 10.6 Derive a table similar to Table 10.4 but appropriate to the 
function exE2. Use it to show that 

'P(A2) = -j^(elE2~e2El) 

and 

'P(B2) = ^(elE2+e2E\) 

In the belief that a specific example would help the reader, the above 

discussion was concerned with electronic wavefunctions. The method, 

however, is not limited to such wavefunctions. Thus, the pairs (elte2) and 

(E\> E2) could equally have been vibrational wavefunctions, in which case the 

product wavefunctions would have been the ones relevant to a discussion of 

combination bands in a vibrational spectrum (vibrational excitations in which 

two different vibrations are excited by a single quantum of energy). Indeed, the 

discussion is of general applicability, with one exception. Note that the 

members of the two pairs of E functions are different—(elt e2) and (£,, E2), 
not (ex, e2) and (ex, e2). This is not to say that the case in which the members 
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of the pairs are identical is not important. In vibrational spectroscopy, for 
instance, overtone bands arise from double excitations—where (ex,e2) is 
combined with (el,e2). Such cases are not immediately covered by the 
discussion because when products are formed within the members of a doubly 
degenerate set only three product functions can be distinguished. Two quanta 
of vibrational energy can be excited in et or e2 or one quantum can be excited 
in each so that the distinguishable excited states are of the form: 

^e, 
e2e2 

c,c2 

The concept of a direct product can be developed further to deal with this 
problem but this development is not particularly simple. The interested reader 
will find the electronic case developed in B allhausen1 and the vibrational in 
Wilson, Decius and Cross.2 Not surprisingly, the two derivations are closely 
related. 

There is another simple application of direct products that it is important to 
consider. As has been seen, if, in C2v symmetry, we have a molecule with the 
electron configuration a\b\ [or, as it was previously expressed, the product 
wavefunction is 0, (A2)02(B2)], then it is said that this configuration gives rise 
to a term of 5, symmetry [or, in the form used earlier, there is a product 
wavefunction xp(Bx)], the direct product A2®B2 being Bx. Note that 
throughout the present discussion electron spin will be ignored, although the 
electron would normally be indicated by a pre-superscript; thus a triplet spin 
term would be 3£,, a singlet and so on. It is possible to extend group 
theoretical concepts to include electron spin but this is an advanced topic. This 
neglect of spin is formally expressed by saying that we are only concerned 
with orbital terms. Thus, in C2v the orbital configuration a\b\ gives rise to the 
orbital term Bx. Similarly, for the C4v example considered above, the electron 
configuration e'E' gives rise to the terms A,, A2, Bx and B2. More correctly, 
and following the notation used in earlier diagrams in this book, one says that 
the electron configuration le1 2e' gives rise to the terms Ax, A2, Bx and B2. 

When a singly degenerate orbital is occupied by two electrons the product 
wavefunction describing this situation is totally symmetric because the direct 
product is totally symmetric (see, for example, Table 10.2 and the table given 
in Problem 10.4). It is not so easy to see that the same result follows when a set 
of degenerate orbitals is completely occupied by electrons because simply 
forming direct products leads, apparently, to a large number of terms. 
However, the Pauli exclusion principle eliminates all but one of these terms. 
There is only one way of filling all orbitals of a degenerate set and that is by 
putting two electrons into each orbital. There is, then, only a single wavefunc¬ 
tion and so there must be a singly degenerate term. This simple argument does 
not tell us whether or not this term is totally symmetric. It seems intuitively 
likely that it will be, and this is confirmed by following the transformations of 
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the product wavefunction under the operations of the point group in the way 

that was done for ejEj above. This leads to a general and very valuable 

conclusion: 

Closed shells of electrons are invariably totally symmetric. 

Here, by ‘closed shell’ is meant configurations like a\, b]u, t\g and so on. 

This conclusion means that for a many-electron molecule the possible terms 

arising from a configuration can be obtained simply by considering those 

orbitals which are partially filled. Those that are totally filled are ignored— 

unless these are the only ones present, in which case the orbital term is totally 

symmetric. 

Problem 10.7 Show that in the C4v group the electron configuration <?4 

gives rise to a term of Ax symmetry. 
Hint: It may be helpful to write this configuration, using the notation 

adopted earlier in this chapter, as e\e\e\e\. The table constructed as part 

of Problem 10.6 can then be modified to be used in the present problem. 

It might be thought that, having determined that a totally symmetric term 

results from a closed shell—that is, that the many-electron wavefunction is 

totally symmetric—that this would be the end of the matter. This is not the 

case. Consider the situation shown in Figure 10.1, in which for a C2v molecule 

in addition to a filled A2 orbital there is an empty B2 orbital at higher energy. 

Both the configurations a\ and the configuration in which both electrons are 

promoted into the b2 orbital b\ have orbital symmetry A,. In general, it is 

found by detailed calculation that although the ground term wavefunction is 

well represented as one derived solely from.a configuration such as a\, this 

wavefunction is improved if there is mixed in with it a contribution from the 

excited term configuration b\, which also gives rise to a term of orbital 

symmetry Ax. Such configuration interaction is an important step in most 

detailed calculations of molecular properties, although more than one excited 

b2 44 1 

°2 4 
Ground stote 
of <4-) symmetry 

(A2xA2 = Afi 

Excited state 
of A] symmetry 

(02 x B2 = /4i) 

Excited state 
of Bf symmetry 

(A2 xB2 = B1) 

Figure 10.1 Ground and two excited configurations for a C2v molecule. 
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term is usually involved in mixing with the term arising from the ground term 

configuration. So, if, in the present example, the ground term configuration 

were one in which a doubly occupied orbital of A, symmetry had above it a 

doubly occupied orbital of A2 symmetry followed by empty orbitals of B2 and 

Bx symmetries (Figure 10.2), then configuration interaction would be expected 

between the A, terms a\a\, a\b\, a\b\, a\b\, a\b\, b\b\ and a\a\b\b\ and 

also configuration interaction between the excited Bx terms arising from the 
configurations a\a\b\, a\a\b\, a\b\b\ and a\b\b\. 

44 44 44 -4 
44 44 44 4— 

44 44 H -4 
44 44 44 4— 

(a) 

-k- -k- 44 
-4- -4- 
H- -4k- -4 
-4k- -4- -4- 

(b) 

Figure 10.2 (a) Ground and excited configurations all of Ax symmetry, 
(b) Excited configurations, all of Bx symmetry. 

Problem 10.8 Check that the (first) set of seven configurations given 

above all give rise to terms of A, symmetry and that the (second) set of 

four all give rise to Bx terms. 

As has just been mentioned, the inclusion of configuration interaction is 

usually an important step in accurate calculations on the electronic structure of 

molecules—for instance, in obtaining those results which have been used at 

several points in this book. Two points should be made. First, just as for orbital 

interactions, so too for configuration interactions; only terms of the same 

symmetry species interact (they also have to be of the same spin multiplicity). 

Second, it is evident that as the number of orbitals included in a molecular 

problem—and so the number of configurations that arise increases—so the 

number of terms of a given symmetry species which may interact under 

configuration interaction increases. In that the improvement that results in the 

description of the ground term (and, usually, the lowest excited terms) is often 

considerable, an upper limit on the improvement is usually set by the capacity 

of the computer available, its ability to handle the enormous number of 

integrals that has to be calculated. 
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10.3 

This is a very important section of this book. It contains the heart of the 

simplification provided by group theory to chemical problems—a reduction in 

the number of integrals that arise in quantum chemistry. This statement may 

not impress the student who hopes to avoid such integrals altogether— 

although it indicates how this avoidance may be achieved! In fact, group theory 

indicates integrals which are zero, without any need to evaluate them. Such 

zero integrals reappear as spectroscopic selection rules, for instance. A 

forbidden transition is one for which the predicted spectral intensity is zero. 

Let us look at this in more detail. 
It is all too easy for quantum mechanics to appear formidable because of the 

large number of rather unpleasant looking integrals which it seems to involve. 

In practice, these integrals are found to be rather less objectionable because if 

they cannot be evaluated algebraically they can be evaluated numerically, 

either by hand or by a digital computer. Even so, a great deal of work can be 

saved by the intelligent use of group theory. Let us first consider what is meant 

by an integration over all space (which is the integration which is usually 

involved in quantum mechanics). Integration may be pictorially regarded as the 

adding together of an infinite number of infinitesimally small fragments. As a 

consequence of this it is sometimes possible to see the result of an integration 

without actually carrying out the calculation. Consider the pz orbital shown in 

Figure 10.3. What is the value of the integral over all space of the pz orbital? 

That is, what is the value of Jpz 8u, where 8u is an infinitesimally small volume 

element? Treat this integral as Xpz 8u, where the summation is over an infinity 

of minute volume elements. In order to perform this summation—this 

integration—one has to collect into one box, as it were, all of the infinite¬ 

simally small fragments which comprise this jvavefunction. We must pay due 

Figure 10.3 There is an exact cancellation of the contributions of the two boxes (at 
equivalent positions in the lobes of the p: orbital shown) to an integral over all space of 
the p2 orbital. 
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regard to the signs of the fragments—some fragments are from that part of 

space in which the wavefunction has a positive amplitude and others from that 

part in which it has a negative amplitude. From the shape of the orbital it is 

evident that for every volume element that makes a positive contribution to the 

integral, there is a corresponding volume element which makes a negative 

contribution. A pair of such mutually cancelling volumes is shown in Figure 

10.3, the positive contribution from the top volume being cancelled by the 

negative contribution from the bottom. By adding together pairs of points in 

this way until the whole of space is included it is seen that the value of the 

integral Jp, 8v is zero—even though it has not been explicitly evaluated. It is 

the fact that arguments such as this can be cast, very simply, in the language of 

symmetry that makes group theory so valuable. Thus, an alternative way of 

stating the above argument is to recognize that the ‘top’ and ‘bottom’ of the pz 

orbital are (a) symmetry-related by reflection in the mirror plane shown in 

Figure 10.3 and (b) of opposite phase. These two facts, taken together, 

establish that the integral must be zero. Can this procedure be generalized? Is 

there a general rule to replace the two specific points made above, which are 

relevant only to the pz orbital (and any other functions that behave similarly). 

To establish the general rule it is helpful to qualitatively consider the 
corresponding integral involving an s orbital: 

Js 8v 

It is clear, from Figure 10.4, that reflection in the mirror plane now interrelates 

two volume elements which make identical contributions to the integral. The 

character of the s orbital under the mirror plane reflection operation is 1 and so 

the contribution to the integral coming from volume elements related by this 

operation do not cancel. This is in contrast to the pz orbital which has a 

character of -1 under reflection in the mirror plane. Clearly, the integral over 

all space of a function which transforms as an irreducible representation which 

has all its characters equal to +1 will not be equal to zero by symmetry. That is, 

integrals over all space of functions transforming under the totally symmetric 

irreducible representation of a point group may be non-zero. Does the contrary 

rule hold: can one say, in general, that the integral over all space of a function 

transforming as a non-totally symmetric irreducible representation must be 

Figure 10.4 Integration over all space of an s orbital-type quantity is non-zero. 
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zero? The answer is ‘yes’, as the following argument shows. In Chapter 5 a 

number of character table theorems were introduced. Of these, consider 

Theorem 3: 

Take any two different irreducible representations and multiply together 

the two characters associated with each class. Then, in each case, 

multiply the product by the number of operations in the class. Finally, 

add the answers together. The result is always zero. 

Consider the case in which one of the irreducible representations chosen is the 

totally symmetric. Multiplication by its characters is always multiplication by 

the number 1. The second irreducible representation cannot be a totally 

symmetric one because we are working with two different irreducible 

representations. The theorem tells us that for this second irreducible 

representation the sum of (the products of the character in a class multiplied 

by the number of operations in that class) is equal to zero. This means that an 
integral having the symmetry of this second irreducible representation will 

also have the value of zero—positive and negative contributions to the 

integral will cancel. We know the value of the integral without ever evaluating 

it. This is particularly easy to see for Abelian groups in which only the 

numbers 1 and -1 appear in the character table (C2v provides an example). 

For all but the totally symmetric irreducible representation there are equal 

numbers of l’s and -l’s; the number of positive contributions to an integral 

exactly match the number of negative contributions of the same magnitude. 

This example is simple because the magnitude of the contributions from all 

symmetry-related points in space is identical. The above rule also applies 

when the characters involved are other than 1 and — l.f As an example 

consider the T2u irreducible representation of- the Oh point group discussed in 

Chapter 7, and given in Table 7.2. The point group Oh is of order 48; that is, 

the operations of the point group relate a general point in space to 47 

equivalent points. For a non-totally symmetric singly degenerate irreducible 

representation such as Alu 24 of these points have a phase which is the 

opposite of the phase of the other 24. For a degenerate irreducible representa¬ 

tion, such as the triply degenerate T2u, the picture is more complicated 

because there are several basis functions simultaneously under study (three 

for T2u). In such a case it is the integral over all space of the several 

functions, together, which is zero. However, the symmetry-equivalence of the 

functions ensures that the zero value applies to each individual.^ For the T2u 

fThe development in the text assumes that no complex characters are involved. A small change, 
along the lines of Chapter 11, is needed to cover this case. 
f As explained in Chapter 9, if there is a particular interest in one of the three functions a useful 
trick is to work in a subgroup in which that function transforms as a singly degenerate irreducible 
representation. 



DIRECT PRODUCTS AND QUANTUM MECHANICAL INTEGRALS 217 

irreducible representation of the Oh point group we have: 

0h: E 8 C3 6C4 3C2 6 C\ i 3 S6 8S4 3crh 6ad 

TV 3 0 -1 -1 1 -3 0 1 1 -1 

Product of T2u characters with the number of operations in the class: 

3 0 -6 -3 6 -3 0 6 3 -6 

It is easy to see that the sum of the numbers in the final row is zero. This means 

that an integral over all space of a set of T2u functions is zero—the negative 

contributions exactly cancel the positive—and that the same is true of each 
individual 7’2u function. 

Problem 10.9 Select any of the character tables discussed in a previous 

chapter. Select a non-totally symmetric irreducible representation and 

show that the sum of all (character multiplied by the number of opera¬ 

tions in the corresponding class) products is zero. 

From this argument it follows that the earlier statement about non-zero 
integrals may be replaced by a stronger one: 

Only integrals of functions transforming under the totally symmetric 

irreducible representation of a point group may give rise to non-zero 

integrals over all space. 

It is this theorem which leads to the simplifications introduced by group theory; 

one knows immediately which integrals must be zero without ever having to 

actually evaluate them. Amongst other things, this is the basis of all spectroscopic 

selection rules. The reader may have noted that the word ‘may’ was used in the 

generalization above, rather than the stronger ‘will’. The reason for this will 

become clear from a comparison of Figures 10.3 and 10.5. The latter shows the 

pz orbital of Figure 10.3 but now in C2v symmetry. None of the operations 

corresponding to the symmetry elements of Figure 10.5 interrelate the bottom 

and top of the pz orbital—the mirror plane of Figure 10.3 is not a symmetry 

element of C2v. As a consequence, and as was seen in Chapter 2, the pz orbital is 

totally symmetric in C2v. This does not alter the fact that the integral 

Spz 5v 

remains equal to zero. We see, then, that integrals over all space of functions 

of A{ symmetry can be equal to zero, and so we must say ‘may’ rather than 

‘will’. In the literature one sometimes encounters use of the phrase ‘hidden 

symmetry’ to indicate that all of the nodal properties of a function are not 

explicitly revealed. In such cases, integrals are zero even though, like pz in C2v, 

the function is totally symmetric. 
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Figure 10.5 An integration over all space of p2 is zero, even when it transforms as the 

totally symmetric irreducible representation (here, in C2v). 

The discussion on non-zero integrals which has just been developed in the 

context of simple functions, like pz, can immediately be extended to product 

functions using the arguments developed earlier in this chapter. Just as for 

simple functions, only product functions which are totally symmetric may give 

non-zero integrals over all space. Already in this chapter we have seen how to 

obtain the symmetry species of such product functions from the symmetries of 

their component functions—one simply forms the appropriate direct product. 

If this direct product either is or contains the totally symmetric irreducible 

representation then the integral is non-zero, or, if the direct product is reducible 

and contains the totally symmetric symmetry species, the integer contains a 

non-zero component. In the latter case, the non-zero component can be 

investigated further by applying the projection operator method to obtain the 

explicit form of the totally symmetric product function. 

As an example of this application the assertion made in Section 3.5 when 

discussing the bonding in the water molecule that ‘interactions between orbitals 

of different symmetry species are always zero’ will now be justified. 

‘Interactions’ in this context means, specifically, that both the overlap integral 

and the energy integral 

jipaWipb8v 

where W is the so-called Hamiltonian operator for the system (fortunately, a 

detailed expression is not needed for Vt in the present context)—are only non¬ 

zero when and rpb are of the same symmetry species. Consider the overlap 

integral first. Direct products of the symmetry species of ipa and tpb have to be 

formed and those which give rise to the totally symmetric irreducible 
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representation (A, in C2v) selected. It is clear from Table 10.2 that A, only 

appears along the leading diagonal. That is, A, only results, in the C2v group, 

when xpa and rpb are of the same symmetry species. It follows that only overlap 

between orbitals of the same symmetry species may give rise to the non-zero 
overlap integral in the C2v group. 

What of the energy integrals 

The Hamiltonian operator *K expresses all of the energies—be they attractive, 

repulsive, kinetic or potential—present in the molecule. At a particular point in 

the molecule there will be a particular blend of the forces corresponding to 

each of these energy components. However, at all symmetry related points 

these blends must be equivalent. It follows that must have the symmetry of 

the molecule. That is, ^ is totally symmetric, Ax, and inclusion of it in a direct 

product will not change the final direct product. It follows that the answer to 

the question of whether the above energy integral is symmetry-required to be 

zero is determined by the direct product of the symmetry species of ipa and ipb. 

But this problem has already been dealt with when we discussed the overlap 

integral between these orbitals. The energy integral will also be zero unless xpa 

and tpb have the same symmetries. The validity of the statement made in 

Chapter 3 that ‘interactions between orbitals of different symmetry species are 

always zero’ at once follows. 
It is clear from the above discussion that the occurrence of the totally 

symmetric irreducible representation in tables of direct products is of particular 

interest. There is a relevant general conclusion which is implicit in that 

discussion. In Table 10.2 and also in the table given in Problem 10.4 it is seen 

that the totally symmetric irreducible representation occurs along the leading 

diagonals (top left to bottom right) and nowhere else. Further, it occurs in 

every entry along the leading diagonals. It is found that these two statements 

are true for all point groups: 

The totally symmetric irreducible representation always occurs when the 

direct product is formed between a particular irreducible representation 

and itself. It never appears when a direct product is formed between two 

different irreducible representations. 

If nothing else, this generalization will save work when determining whether 

or not an integral is zero by symmetry. If, for instance, we have an integral 

over three functions of different symmetries (different irreducible representa¬ 

tions) then we need only form the direct product of two of these irreducible 

representations and then compare the irreducible representation (s) contained in 

this direct product with that of the third function. If there is a matching, the 

integral may be non-zero. If there is no matching, then it certainly is zero. In 
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this argument there was a switch from the word ‘functions’ to irreducible 

representations’. This is because the general argument holds no matter what the 

form of the functions involved. Indeed, we have just met a case where an 

ordinary function was not involved; the case of the energy integrals, where the 

concern was with the operator M. However, we were able to put a symmetry 

label on this operator. This step is important because the general form of 

almost all the integrals of quantum mechanics is: 

J(wavefunction)2(operator)(wavefunction), 8u 

where the wavefunctions may be one-electron wavefunctions, many-electron 

wavefunctions, vibrational wavefunctions or many others. A wide range of 

operators occurs in quantum mechanics and the above discussion applies to all 

of them, although in the next section the discussion will be restricted to those 

associated with the spectroscopic properties of molecules. 

10.4 SPECTROSCOPIC SELECTION RULES 

It is a fundamental postulate of quantum mechanics that corresponding to 

every observable associated with a system there is a corresponding operator, a 

postulate justified by the fact that it has always been found to work! So, to 

apply quantum mechanics to the electronic spectrum of a molecule the 

appropriate ground and excited term electronic wavefunctions and the 

appropriate operator have to be inserted into the general expression given at the 

end of the previous section. If the transition represented by the integral is 

allowed, then the integral will be non-zero. The association of symmetry labels 

with the two wavefunctions should present no problems, given the discussion 

of the present chapter. If the symmetry species of the appropriate operator can 

be obtained then it will be a matter of simple group theory to determine the 

alio wedness of the transition. There are limits, however. If we wished to 

predict the actual intensity of a transition we would have to evaluate the 

integral properly. 
Fortunately, the task of working out the symmetry species of the operators 

appropriate to a particular form of spectroscopy is a very simple task compared 

with that of determining the detailed form of the operators themselves. In most 

forms of spectroscopy a beam of electromagnetic radiation is allowed to 

interact with the system under study (the term ‘electromagnetic radiation’ 

rather than the word Tight’ is used because the wavelength of the radiation may 

be far from the visible region of the spectrum). Integrals such as those above 

then describe the consequences of this interaction between radiation and matter. 

In the simplest (Maxwell) picture, electromagnetic, radiation is regarded as 

being composed of two mutually perpendicular oscillating fields, one an 

electric field and the other magnetic; both fields are perpendicular to the 

direction of propagation of the radiation. The most evident way, then, in which 
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such radiation can interact with matter is by virtue of either or both of the 

electric and magnetic fields associated with it, so that the most common 

spectroscopic observations are of transitions which are either ‘electric dipole’ 

allowed or ‘magnetic dipole’ allowed (for the two to occur simultaneously the 

molecule has to be optically active; indeed it is the simultaneous allowedness 

of electric and magnetic dipole mechanisms which produces optical activity). 

The electric field associated with the light wave induces an oscillating electric 

dipole (+ -) in atoms and molecules. When this oscillation matches a natural 

frequency of the atom or molecule, resonance occurs and energy is transferred 

from the light wave to the atom or molecule. Similarly, the magnetic field 

induces an oscillating magnetic dipole (N-S) which can also cause excitations. 

Magnetic dipole allowed transitions are of particular importance in nuclear 

magnetic resonance and electron paramagnetic resonance spectroscopies. To 

determine the symmetries of the corresponding operators, then, it is only 

necessary to determine the symmetry species associated with an electric dipole 

or a magnetic dipole. 
In order to obtain an electric dipole it is necessary to separate charges of 

opposite sign along an axis. In our three-dimensional world there are only three 

independent directions in which one may bring about such a charge separation 

and so there are just three electric dipole operators, one corresponding to the x, 

one to the y and one to the z axes. Further, because the Cartesian axes are dipolar 

—they have + and - regions—the transformations of the electric dipole operators 

mimic—are isomorphous to—those of the Cartesian axes of a molecule. 

Equally, they are isomorphous to the translations of the molecule along x, y or z 

axes. This isomorphism of x, y and z with Tx, Ty and Tz was noted in Section 

9.3 when they were discussed in connection with vibrational analyses. A second 

use for them has now been found—they give the transformational properties of 

the three electric dipole operators—and a second reason why one or other set 

(and sometimes both) are included at the right-hand side of character tables. 

Just as an electric dipole corresponds to a movement of electric charge along 

an axis, so a magnetic dipole corresponds to a rotation of charge about an axis 

(as in a solenoid carrying a current). There are three magnetic dipole operators, 

one for each of the three Cartesian axes. The symmetry species of the magnetic 

dipole operators will be the same as those of the rotations about these axes. 

These rotations (usually denoted Rx, Ry and Rz in a character table) were met 

and used in the discussion of molecular vibrations in Section 9.3. The entries 

Rx, Ry and Rz at the right-hand side of a character table tell us how the three 

magnetic dipole operators transform. 
We are now in a position to make some general statements about whether or 

not an integral related to the intensity of a transition is required to be zero. That 

is, to state general selection rules for electric dipole and magnetic dipole 

allowed processes. This rule is derived from the integral given towards the end 

of the previous section by replacing wavefunctions and operator with the 

appropriate symmetry species. 
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A transition is electric dipole allowed if the triple direct product of the 

symmetry species of the initial and final wavefunctions with that of the 

symmetry of a translation contains the totally symmetric irreducible 

representation. Similarly, a transition is magnetic dipole allowed if the 

triple direct product of a rotation with the symmetry species of the initial 

and final wavefunctions contains the totally symmetric irreducible 

representation. 

These rules are rather lengthy and triple direct products can be tedious to 

work out, so it is convenient to recast them into a simpler form by making use 

of the fact that the totally symmetric irreducible representation only arises in 

the direct product of an irreducible representation with itself. In compiling the 

triple direct product, first form the direct product of the symmetry species of 

the initial and final wavefunctions. The transition will only be allowed if this 

direct product contains within it the same symmetry species as that of the 

operator. This is a particularly useful way to state the selection rule because, as 

has been seen, there are commonly several alternative operators—dipole 

moment operators corresponding to Tx, Ty and Tz, for instance—and in this 

form a choice between the alternatives does not have to be made until the last 

step. One simply looks for a matching between the irreducible representa¬ 

tion^) arising from the direct product of wavefunction symmetries with those 

of the appropriate operators. If a matching exists, the transition is allowed. In 

summary, then, the general spectroscopic selection rule—of which all others 

are particular cases—is: 

A transition is allowed only if the direct product symmetry species of the 

initial and final wavefunctions contains the symmetry species of the 

operator appropriate to the transition process. 

All that is needed in order to make use of this rule is a list of those spectros¬ 

copic processes which normally arise as a result of electric dipole transitions 

and those which normally arise from magnetic dipole transitions. Such a list is 

given in Table 10.5 which also lists the simple functions usually contained in 

character tables which are of the same symmetry species as the operators 

relevant to Raman spectroscopy. The quadratic form of operator for the Raman 

process arises because in it one wavelength of light is incident on a molecule 

but a different wavelength is emitted. The symmetries of the operators relevant 

to Raman spectroscopy are therefore the same as those of products like TXT 

but these are never given in character tables and an equivalent form—such as 

xy—is listed instead. 
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Table 10.5 

Form of spectroscopy 
and spectral region Form of operator 

Symmetry properties 
of the operator are the 
same as those of: 

Electronic (visible and 
ultraviolet) 
Vibrational (infrared) J 

| Electric dipole 
T T T 
(or more simply x, y, z) 

Rotational (microwave) 1 
NMR (radiofrequency) 
EPR (microwave) J 

| Magnetic dipole Rx, Ry, Rz 

Raman (visible) Polarizability (this 
resembles ‘electric 
quadrupole’ but is 
a little wider) 

x2, y2, z2, xy, yz, zx 
(or combinations of these) 

Problem 10.10 
dipole allowed: 

Point group 

C2v 

C4v 
C4v 

Confirm that the following transitions are electric 

Ground term symmetry A, ' 
A2 
E 

Excited term symmetry 

B2 ' 

E 

E 

Confirm that the following transitions are electric dipole forbidden: 

Point group Ground term symmetry Excited term symmetry 

C2v B2 Bx 

C4v A, 5, 

C4v B, B2 
C4v A2 A, 

//mt: These problems anticipate the discussion of the next section of the 

text. 

This chapter is concluded by two illustrations of the application of the 

general selection rule to vibrational spectroscopy. The first is the example 

discussed in Chapter 9, that of the vibrational spectrum of CH3C1. The general 

principle will be sufficiently well illustrated if we confine our discussion to the 

C-H stretching vibrations, which, as has been seen in Section 9.4, have + E 

symmetry in the molecular point group, C3v. Molecular vibrational spectros¬ 

copy almost invariably admits of a further simplification to the selection rule 

problem. This is because the ground vibrational state can be assumed to be one 

in which no vibrations are excited. It is thus a totally symmetric state. The 
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excited state has the symmetry of the vibration excited. The general selection 

rule therefore reduces to a very simple one: 

A vibration will be spectroscopically active if the vibration has the same 

symmetry species as the relevant operator. 

Problem 10.11 Consider the water molecule; the normal modes have 

the symmetries A, and Bx. Suppose that the latter vibration is already 

excited in a water molecule, so that the symmetry of the vibrational 

wavefunction is Bx. Show that the above rule still applies. 

Note: This is a particular example. Although it is not difficult to see that it 

is relevant to all cases in which a singly degenerate mode is previously 

excited, it could not immediately be applied to molecules in which a 

degenerate vibrational mode is excited. 

The character table for C3v is repeated in Table 10.6. From this table it is 

seen that a vibration of A, symmetry is infrared allowed (because Tz—or 

equivalently z—has Ax symmetry). It is also a Raman allowed vibration 

because z2 (and the sum x2 + y2) transforms as A,. Similarly, because (Tx, Ty) 

or, equivalently, (x, y), transform as E, an E vibration is infrared allowed. It is 

also Raman allowed because products of coordinate axes also transform as E. 

We conclude that the CH3C1 molecule is expected to have two infrared peaks 

and two coincident Raman peaks in the carbon-hydrogen stretching region of 

the spectrum. Apart from additional complications caused by the low moment 

of inertia about the C3 axis, this is precisely what is seen. This spectral 

prediction is specific to C3v geometry. If, for instance, CH3C1 were a planar 

molecule with C2v symmetry then three infrared and Raman-coincident peaks 

would be expected in the C-H stretching region of the spectrum. 

Problem 10.12 If CH3C1 were a planar molecule it could have C2v 

symmetry provided that one hydrogen, the carbon and chlorine were co- 

linear. Use the C2v character table to derive the spectral predictions given 

above. 

Table 10.6 

c3v E 2C3 3 av 

A, 1 1 1 Tz, z, z2, x2 + y2 
a2 1 1 -1 
E 2 -1 0 (Tx, Tv) (x, y) (zx, yz) (x2 - y2, xy) 
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C2v E c2 ov o\ 

A, 1 1 1 1 z, Tz, X\ y2,12 
a2 1 1 -1 -I xy 

1 -1 1 1 y, Ty, yz 
b2 1 -1 -1 1 x, Tx, ix 

There is an important subtlety hidden in the above discussion of selection 

rules; it is convenient to discuss it in the context of the vibrations of CH3C1 but 

the ideas which will be introduced have a general validity. When talking of 

electric dipole selection rules the attention focused on the transformation 

properties of quantities like Tx, Ty, Tz. Effectively, an isolated molecule has 

been considered and its relationship with its environment ignored: Tx, Ty and Tz 

referred to molecular axes. In solution, the molecule will be tumbling and so 

these molecular axes will bear no fixed relationship to the axes within which 

we must, perforce, work—the laboratory-fixed axes. That is, even if plane 

polarized light is used (so that the electric and magnetic fields are in a fixed 
orientation) the molecular tumbling means that allowed transitions can involve 

the operators associated with Tx, Ty or Tz. However, if the molecular and 

laboratory axes can be brought into a fixed relationship with each other, then 

additional spectroscopic information can be obtained because transitions 

associated with Tx, Ty and Tz can be separately studied. First, the axes of all 

molecules must be brought into alignment and then held like this. Although 

there are several techniques for aligning axes—in some cases the application 

of a strong electric field produces an appreciable alignment; alternatively, 

molecules can be incorporated into a thin sheet of some transparent plastic 

which is then stretched—the simplest and most powerful is to crystallize the 

material. It sometimes happens that molecular axes persist within a crystal. For 

instance, it is possible that the threefold axis of a molecule such as CH3C1 

would lead to, and persist in, a crystal with a threefold axis. Such an axis can 

be identified by either microscopic or X-ray examination of the crystal. 

Suppose that such a crystal has been obtained and characterized. It is now used 

for an infrared experiment in which the infrared light is polarized (infrared 

polarizers are readily available). Call the direction of polarization of the 

light—that in which the electric vector lies—the direction p. This means that 

in laboratory axes, we are working with an operator which behaves like Tp. The 

crystal is now inserted into the beam of polarized infrared radiation so that, 

within the crystal—and so for molecular axes—p is coincident with the 

threefold axis (for the crystal previously discussed). This means that in terms 

of molecular axes the operator Tp is to be identified with the operator Tz, and 

only vibrations which are Tz allowed will be seen in the spectrum. That is, in a 

spectrum only A] bands would be seen (to return to the CH3C1 example, 
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ignoring all the obvious experimental difficulties). There would be no 

absorption at the frequencies of E bands. Conversely, rotating the crystal so 

that p is perpendicular to the crystal threefold axis, Tp, would, in the crystal, 

be Tx (or Ty—they transform as a pair so no distinction between them can be 

made). In this case only the E bands would be seen in the spectrum. 

This discussion has been somewhat idealized—molecular axes do not 

usually persist in a crystal. The discussion can be modified to cover this case 

unless vibrational coupling occurs between the individual molecules in the 

crystal, when a rather different method of analysis has to be used. Further 

discussion of these aspects is given in Chapters 12 and 13. Even when 

molecular axes persist, real crystals are not perfect, alignment is not perfect, 

polarization is not perfect and so bands which, according to the above 

arguments, should not appear, in fact, usually do. However, they do so with 

very much reduced intensity and so studies such as those described above 

would, almost certainly, enable the determination of the actual symmetry 

species of a molecular vibration. 

10.5 SUMMARY 

This is an important chapter, one in which the main reason for the importance 

of group theory in chemical problems has been developed. Group theory is 

important because it simply and reliably gives answers of zero (p. 215). 

Knowledge of which integrals are zero simplifies discussions of molecular 

bonding and spectra (p. 217). The development falls into two parts. First, 

direct products. Here it was important to discover that only the direct product 

of an irreducible representation with itself gives the totally symmetric 

representation (p. 219). Second, molecular integrals, where it was found that 

only integrals over all space of totally symmetric functions are non-zero 

(p. 217). These two parts come together in the recognition that all integrals of 

any importance in quantum mechanics are integrals involving product 

functions (p. 220). 
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7t -Electron Systems 

11.1 SQUARE CYCLOBUTADIENE AND THE C4 POINT 
GROUP 

One of the areas of chemistry in which relatively simple quantum mechanical 

ideas have had a very important impact has been in the field of unsaturated 

organic molecules. When a molecule contains alternate single and double 

carbon-carbon bonds then it is found that those electrons involved in jr-bonding 

can be considered on their own—that the o electrons can be ignored. It seems 

that these n electrons largely determine the chemistry of such molecules, a 

recognition which has given an understanding of the chemical stability and 

reactions of these molecules and also of their spectroscopic properties. The 

distinction between o and n orbitals was made in Section 4.4. It is important to 

recognize that when a molecule contains a series of atoms linked by alternate 

single and double bonds then on each atom in the series there is an orbital 

involved in the n bonding. It is usually the case that this orbital is a p orbital. The 

ready availability of detailed and accurate numerical calculations on simple 

organic molecules has shown that the idea of a-Ji separability rests on less 

secure foundations than was once held to be the case. The orbital symmetry 

distinctions persist but configuration interaction of the type outlined in the last 

chapter serves to mix different electron configurations. None the less, there is no 

doubt that the predictions made by the simple theory are rather good, even if a 

detailed and general justification for this is not available. It is when the results of 

the simple model are symmetry-determined that the most evident justification , 

occurs and it is such applications which will be the concern of this chapter. 

The symmetry aspects of Hiickel theory, the best known jr-electron model, 

are most readily seen from an example. A simple molecule, but one which 

serves to illustrate all of the main points of the theory, will be considered. The 

molecule is a very unstable and fugitive one, cyclobutadiene, C4H4, which will 

be taken to be a planar molecule with its four carbon atoms arranged at the 

comers of a square. The carbon atoms are known to have this arrangement 

when the molecule is stabilized by complexing with a transition metal atom, as 

in the molecule C4H4Fe(CO)3. Figure 11.1 shows square cyclobutadiene 

together with the four 2pn orbitals that will be of interest (we suppose that the 

carbon 2s and the other carbon 2p orbitals are involved in the bonding of the a 

framework). The molecular symmetry is D4h and so this is the obvious group in 

which to work. However, we shall not. Although it is not particularly obvious 
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from the way that the D4h character table is usually written (Appendix 3), the 

D4h group is the direct product of C4v x Cs. That is, add a oh mirror plane to 

C4v and other symmetry elements are at once generated so that the group 

becomes Z)4h. Now, the problem that we are considering immediately defines 

the effect of this ah mirror plane. We are only interested in the p„ orbitals 

shown in Figure 11.1 and these, and anything derived from them, are 

antisymmetric with respect to reflection in the ah mirror plane. So, it might 

well be simpler to work in the C4v point group and, at the end, move to D4h by 

recognizing this oh antisymmetry. It is probable that most workers would be 

content to stop here and work in C4v, but we shall press on! 

Problem 11.1 (a) Using Appendix 3 and Figure 11.1 show that square 

planar cyclobutadiene has Z)4h symmetry. 

(b) Using Appendix 4, show that the D4h group is the direct product of 

C4v and Cs. 

The C4v group possesses two sorts of ov miifor planes; 2av and 2o\. Either the 

av or al mirror planes (it does not matter which we choose) cut vertically through 

the carbon pn orbitals of cyclobutadiene. They therefore relate one side of each 

lobe of this orbital to the other side (Figure 11.2). But these sides must be of the 

same phase. So, the operation of reflection in these mirror planes gives no new 

information. The operations are superfluous and perhaps can be discarded. But, if 

they are discarded we must also discard the other mirror planes—point groups 

exist with both 2av and 2a' but there are no, and can be no, point groups with just 

one set. The most sensible thing to do would be to play safe and keep them 

all—after all, not much additional work is involved. We shall be more daring, 

however, and eliminate them because this will give us the opportunity to work in 

what seems a rather strange group—the C4 point group. It is unusual to discuss a 

group of pure rotations such as the C4 group in a text at the level of the present 

one and as a consequence these groups tend to be regarded as rather strange and 

difficult. However, the same problems that they present also occur in the theory of 
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Figure 11.2 A ctv (or a') plane in C4v cuts each carbon 2p„ orbital in half; the 
relationship between the two halves is determined by the orbital, not by the mirror 
plane. 

space groups and so familiarity with the C4 group is relevant to the theory of these 

groups. Space groups are the subject of the next two chapters and so we 

deliberately chose to work in the C4 group in the present. It must be admitted, 

however, that the discussion which results is a little more difficult than would have 

been the case had we worked in an ‘easier’ group. As the reader may check for 

him or herself (Problem 11.9), we shall ultimately obtain the same answers as 

would have been obtained in C4v (or Z)4h)! 
The C4 character table is given in Table 11.1. Note that it is an Abelian 

group—there is only one operation in each class. In particular, note that C4 and 

C\ (the C4 operation carried out three times in the same sense)—are in 

different classes. In Chapter 5 the importance of the definition of ‘class’ was 

mentioned and this definition is given in Appendix 1. The proof that C4 and C4 

are in different classes in the C4 group is explicitly given in this appendix. 

There are two apparently odd things about the C4 character table. The 

appearance of i (= Y^l) and the failure of the number 2 to appear against 

the E irreducible representation under the identity column. Note, that if the 
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Table 11.1 

C4 E c4 c2 Ct 

A 1 1 1 1 
B 1 -1 1 -1 
„ r 1 i -1 -i E{ 1 -i -1 i 

(i = V-l)t 

number 2 did appear Theorem 2 of Chapter 5 would not be obeyed. The sum of 

squares of characters in the identity column would not be equal to the order 

of the group (which is 4, the number of operations in the group). The main 

reason for working in the C4 point group is to give an opportunity to look at 

the E irreducible representation in some detail. In order to do this, it has to 

be remembered that the complex conjugate of (a + ib), a and b being 

ordinary numbers, is (a - ib). These complex conjugates have a special rela¬ 

tionship to each other because when they are multiplied together a real number 

results: 

(a + ib)(a - ib) = a(a - ib) + ib(a - ib) = a2 - iab + iab - (i)2b2 = a2 + b2 

because -(/)2 = -(-1) = 1. In contrast, neither (a + ib)2 nor (a -ib)2 are free 

from i. Note that where, in the E irreducible representation, one component 

contains i, the other contains -i. These are complex conjugates (as is easily 

shown if one sets a = 0, b = 1 in the expressions earlier in this paragraph). 

This hints at what is, in fact, correct. In the previous chapter, in particular, an 

irreducible representation was sometimes multiplied by itself (when forming 

direct products). The way that reducible representations were decomposed 

into their irreducible components earlier in this book is very similar. The same 

procedure is followed when working with the C4 point group for all 

irreducible representations except the E. For applications involving the E 

irreducible representation, it is complex conjugates that have to be multiplied. 

That is, one multiplies the first component of this doubly degenerate 

representation by the second and vice versa. In this way real, not complex, 

answers are obtained. 

The E irreducible representation of the C4 point group is said to be a 

separable degenerate representation. Some purists object to this name— 

holding that it is self-contradictory—but it is the name commonly used. The 

word ‘degenerate’ is used because functions transforming as this representation 

have the same energy—an example will be met shortly. ‘Separable’ because it 

t It may be helpful to note that the complex conjugate of i, denoted f, is -i (if = 1). In some 
books f is found where in this text has been used. 



OPTICAL ACTIVITY 231 

is possible to design an experiment on a molecule of C4 symmetry which 

shows that all functions transforming as the E irreducible representations are 

not necessarily quite equivalent. In order to illustrate this we shall digress to 
give a brief discussion of optical activity. 

11.2 OPTICAL ACTIVITY 

Classically, a molecule is optically active when in an electronic transition there 

is a helical movement of charge density. Just as a left-hand screw thread is not 

superimposable on a right-hand thread, so there is an optical rotation difference 

between molecules in which otherwise identical charge displacements follow 

right-hand and left-hand helical paths. A characteristic of a helix is that it 

corresponds to a simultaneous translation and rotation and so, as was outlined 

in the discussion of Section 10.4, optically active molecules are those in which 

a transition is simultaneously both electric dipole (charge translation) and 

magnetic dipole (charge rotation) allowed. That is, 

Moleculesf may be optically active when they have a symmetry such that 

Ta and Ra (a = x, y or i) transform as the same irreducible 

representation. 

Comparison of this rule with the data given on the right-hand side of the 

character tables in Appendix 3 confirms the applicability of the commonly 

stated criteria for optical activity; optically active molecules possess neither a 

centre of symmetry nor a mirror plane. They do not have any improper rotation 

operations. As an alternative general statement, one can say that optically 

active molecules do not have any Sn axis, where n can assume any value (n = 1 

corresponds to a mirror plane and n = 2 to a centre of symmetry). 

Problem 11.2 The separation of the cobalt complex ion [Co(en)3]3 + 

into optical isomers is a common undergraduate experiment. The complex 

is, essentially, octahedral and en is the bidentate ligand ethylenediamine, 

NH2.CH2.CH2.NH2, which is bonded to the cobalt through the nitrogen 

atoms on adjacent (cis) coordination sites. Determine the symmetry of 

this molecule and thus show that it has no S„ axis. 

Hint: The discussion of Section 7.5 should be helpful. 

In the particular case of the C4 point group, Tz and R, both transform as A 

and the complex combination Tx + iTy transforms in the same way as Rx + iRy. 

t Note the word ‘molecules’ in this statement. It does not apply to crystals which, under some 
circumstances, can contain mirror planes of symmetry and yet be optically active. 
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Similarly, Tx - iTy transforms isomorphically with Rx - iRy. The complex form 

of these latter combinations is a little off-putting, although it should be less so 

by the end of this chapter. Ignoring this, it is clear that Ta and Ra transform 

isomorphically in the C4 group so that a molecule of C4 symmetry is poten¬ 

tially optically active. A beam of polarized light incident on such a molecule 

down the fourfold axis might suffer a rotation. Clearly, this is not compatible 

with the isotropy which one normally associates with degeneracy in the x, y 

plane. The explanation lies, not surprisingly, in the appearance of complex 

coefficients in the character table. 

Problem 11.3 Despite the discussion of optical activity in the context 

of cyclobutadiene in the text, it is believed that cyclobutadiene is not 

optically active. Why? 

11.3 WORKING WITH COMPLEX CHARACTERSt 

All of the character tables met in earlier chapters in this book contained simple 

integers as characters. Most people approach complex characters with some 

apprehension, expecting some strange twists. This apprehension is justified! 

One example of the different pattern is seen in the statement made towards the 

end of Section 10.3 that ‘the totally symmetric irreducible representation 

always occurs when the direct product is formed between a particular 

irreducible representation and itself’. This statement is true for the C4 point 

group but needs some elaboration. Consider the direct product of the first of the 

E irreducible representations of Table 11.1 with itself: 

E C4 C2 Cl 

£( 1) 1 i ~ — 1 -i 
£(1)®£(1) 1-1 1-1 

this direct product is the B irreducible representation, not the A. To obtain the 

A, the direct product has to be formed of £(1) with its complex conjugate, 

E( 2): 

£( 1) 1 i -1 — i* 

£(2) 1 -i -1 i 

£(1)®£(2) 1111 

That is, when working with a separately degenerate representation, one has to 

elaborate on the statements made in Chapter 10 about direct products. The way 

t A short, readable, paper which deals with the problems covered in this section is R. L. Carter, 
‘Representations with Imaginary Characters’, J. Chem. Educ., 70 (1993), 17. 
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to proceed is reasonably straightforward. Thus, the general expression for an 
overlap integral given in texts on quantum mechanics is 

the asterisk on ip* indicating the complex conjugate of VV If 'V'a and V'b are 
not complex this reduces to the simple form considered in Section 10.1, 

Sab = JMb 

However, when rpa and ipb are both complex the more general form must be 

used. In such a case complex conjugate irreducible representations must be 

used when carrying out the associated group theory. An explicit example of this 

will be met in the next section. 

Problem 11.4 Modify the discussion of selection rules in Section 10.4 

so that it covers the case where the wavefunctions are complex. 

11.4 THE n ORBITALS OF CYCLOBUTADIENE 

We now return to the problem of the jr-electrons of cyclobutadiene. We know 

that these n electrons interact with each other—they form n bonds of some 

sort, and so the first problem is that of finding the ic molecular orbitals which 

they occupy. This will be tackled in two stages. First, the irreducible represen¬ 

tations generated by the transformations of the four carbon pT orbitals is 

determined and their symmetry-adapted combinations generated. Second, the 

approximate relative energies of these symmetry-adapted combinations will be 

determined. It is easy to show that the transformations of the four carbon p„ 

orbitals of cyclobutadiene in the C4 point group (Figure 11.1) generates the 

reducible representation 

E C4 C2 C\ 
4 0 0 0 

and that this gives rise to A + B + E irreducible components.! 
The determination of the symmetry adapted combinations is straightforward, 

and follows the projection operator procedure detailed in Chapter 4 very 

closely. Using the labels shown in Figure 11.1 for the four p„ orbitals and 

t Reducible representations like this one—in which the number which is the order of the group 
appears in the identity operation column with all other entries zero—are called ‘the regular 
representation’ (of the particular point group). They always span each and every irreducible 
representation, the number of times an irreducible representation is spanned being given by the 
number in the identity operation for that particular irreducible representation (i.e. the dimension 
of the irreducible representation). The regular representation plays a part in the proof of some 
theorems of group theory. 
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neglecting overlap between these orbitals, the two E components given in 

Table 11.1 are used separately to give the linear combinations: 

ip (A) = \{a + b+ c + d) 

xp{B) = \{a- b+ c- d) 

ipx (E) = \ (a - ib - c + id) 

ip2 (E) = \ (a + ib - c - id) 

Problem 11.5 Use the projection operator technique to obtain the above 

linear combinations. The normalization of the E functions will be 

discussed in the text below. 
Hint: The derivation is similar to that detailed in Section 4.6. 

As indicated in the above problem, the only difficult point in this derivation 

concerns the two E functions. First, a hidden catch. In using the projection 

operator technique to generate a function transforming as a component of a 

separably degenerate representation one has to use its complex conjugate in the 

derivation. Thus, using the characters of the second E component in Table 

11.1, the function listed above as ipx (E) is obtained by the projection operator 

technique in un-normalized form: a - ib - c + id. It is easy to show that this 

procedure has given the correct answer—that xpx (E) transforms as the first E 

component in Table 11.1. As Table 11.1 shows, the effect of a C4 rotation on a 

function transforming as the first E component is to multiply it by i. Now this 

rotation permutes the pn orbitals thus: 

a b 
t i 
d<r~ C 

so that it turns ip, (E) into 

b- ic- d+ ia 

which is i(a - ib - c+ id) = iipx (E), as expected for the first E component. The 

next step is to normalize ipx (E)\ that is multiply it by a coefficient such that: 

jxp*(p 6v = 1 

where 0* is the complex conjugate of (p (and (p is the normalized \px (E)). The 

complex conjugate of a function is obtained by replacing i by -i within it, so 
the complex conjugate of xpx (E) is: 

a + ib - c - id = ipx (E)* 

This function has been met before, it is ipz(E); ipx (E) and ip2(E) are complex 
conjugates of each other. 
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It follows that the overlap integral of rpl (E) with itself has the value 

jipi(E)ip*(E)rp 8v = j(a + ib- c- id){a- ib- c+ id)8v 

= jaa 8v + \bb 8v + jcc 8v + \dd 8v = 4 

where, as mentioned earlier, it has been assumed that the functions a, b, c and 

d do not overlap each other. The fact that a and b, for example, do not overlap 

each other means that the integral jab 8v is equal to zero. Because a and b are 

separately normalized jaa 8v = Jbb 8v = 1. From the value of the overlap inte¬ 

gral obtained above, 4, it follows that the normalization constant for ipl (E)— 

and, equally, rp2(E)—must be the value used in the linear combinations above. 

Problem 11.6 Show that jtp2(E)* rp2(E) 8v = 4. 

11.5 THE ENERGIES OF THE n ORBITALS OF 
CYCLOBUTADIENE IN THE HUCKEL 
APPROXIMATION 

The limit at which simple group theory can help the discussion has now been 

reached. To proceed, chemical knowledge has to be added or, failing that, 

chemical intuition! In practice, this means that the next step involves using 

some model which provides a recipe for obtaining relative orbital energies. 

Such a model was used in earlier chapters of this book when a nodal plane 

criterion was used to obtain orbital energies—the more nodes that an orbital 

contains the higher its energy is expected to be. This model was augmented by 

an overlap criterion—the greater the overlap between two orbitals, the larger 

the energetic consequences of the interaction between them. The latter part of 

the discussion of Section 7.2 provides a good example of the augmentation of 

symmetry arguments by these models. 

In the present section the nodal plane argumentf will be used in a more 

mathematical form. The mathematical form to be used is that contained in 

Hiickel theory; this is the simplest of all mathematical models of chemical 

bonding and one that is particularly appropriate to unsaturated organic 

molecules.^ It will be recalled that in Section 10.3 energy integrals were 

encountered: 

jxp^xpb8v 

and it is these that are important in Hiickel theory. In this application, the 

orbitals rpa and ipb are orbitals and so, in cyclobutadiene, they are the 

tWhen the functions obtained in the previous section were obtained it was assumed the overlap 
between pp orbitals on adjacent carbon atoms in cyclobutadiene is zero. It would therefore 
scarcely be convincing to use an overlap model at this point! 
$ It is now commonly extended, in a purely numerical form, to inorganic molecules too. 
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orbitals a, b, c and d of Figure 11.1. The energy of each of these orbitals, 
before each is involved in any interaction with its partners, is the same. This 
energy is conventionally designated a. For the orbital a we have, then 

\adiabv = a 

with similar expressions for b, c and d. The energy of interaction between 
adjacent pT orbitals is called /?. So, the interaction between a and b is 

\adtbbv = \bdtabv = p 

with similar expressions for the pairs b/c, c/d and d/a. Those pn orbitals 
which are not adjacent are assumed not to interact so that, for instance, 

iridic bv = jcdta bv = 0 

and similarly for b/d. 
To obtain the energy, within the Hiickel model, of the A combination 

t/>{A) = + b + c + d) 

we simply have to evaluate 

\xp(A)dtxp(A) bv = \j(a + b + c+ d)di(a +b+c + d)bv 

Expansion of the right-hand side of this expression and substitution of a, ft 
and 0 as appropriate for the resulting integrals gives the energy of rp(A) as 

%[ip(A)] = a + 2/3 

Problem 11.7 (i) Show that the energy of xp(A) is a + 2/3. (ii) Show 
that the energy of tp(B) is a - 2/5. 

As the above problem should have demonstrated it is a simple matter to show 
that the energy of the rp(B) orbital is 

%[xp{B)] = a- 2/3 

but that of ip\{E) is a little more difficult. This is because the form of the 
energy expression appropriate to complex functions has to be used. This is 

ixpldixp^bv 

In our case we take V>b to be rp\(E) then xp[ is its complex conjugate, that is, 
xp2 (E). It follows that we have to evaluate 

%[xpx{E)] =|J(a+ ib- c- id)dt(a- ib - c + id)bv 

On expansion of this expression all of the complex quantities disappear. 

Problem 11.8 Show that the energy of xp(E) is a. 
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The energy of xp2(E), which is given by 

%[xp2{E)] = \\(a -ib-c+ id)M(a +ib-c- id) 5v, 

will be the same as that for xpx(E) because the right-hand side of this 
expression on expansion is identical to that for ipx (E). We have, then, 

%[xp\(E)] = %[xp2{E)] = a 

Evidently, for the present problem at least, it is entirely reasonable that ip] (E) 

and xp2(E) should be called ‘degenerate’. Actually, this degeneracy between 
them is general—the algebraic expressions obtained for their energies were 
identical and so the degeneracy did not result from the Hiickel approximations, 
which came later. 

Because the interaction between two of the p„ orbitals is one that leads to a 
stabilization—it requires more energy to ionize an electron from a stabilized 
orbital than from an isolated pT orbital—the energy (5 is negative (as too is a, but 
as its contribution to all of the energy levels is the same its value does not affect 
the relative order of orbital energies). It is concluded that the relative energies of 
the it molecular orbitals of cyclobutadiene are those given in Figure 11.3. There 
are four pT electrons—one from each carbon atom— located in these orbitals 
and so we conclude that in the most stable arrangement they will be distributed as 
shown in Figure 11.3, the degenerate E orbitals containing one electron each; 
these two electrons will, in the ground state, have parallel spins (the maximum 
spin multiplicity principle). The total ji electron stabilization, compared to four 
carbon pT orbitals of energy a, is 4(5 (2(5 from each electron in the A orbital). 

*(B)-a-2/3 

t , , s *,(£).*2(£)—|-1—a 

HA)-H-a+2'9 

Figure 11.3 Relative energies of the it molecular orbitals of cyclobutadiene in the 
Hiickel approximation. 

Suppose that, instead of delocalized it system, we had two localized, non¬ 
interacting, it bonds—that is, suppose cyclobutadiene is rectangular, rather 
than square: 

rather than ( '< 

Each of the two isolated it bonds will have the form derived in Section 4.4 for 
ethene 

1 
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The energy of this function is given by 

\i(e + m(e+f)Zv - 

which, on expansion and substitution on the Hiickel values for the integrals, 

leads to an energy of 

a + 

There would be two such n bonding orbitals, each doubly occupied so that the 

total n electron stabilization would, again, be 4/3. As far as the n electrons are 

concerned, at this level of approximation, there is nothing to choose between 

rectangular and square cyclobutadiene. Cyclobutadiene is a very reactive 

compound—it readily dimerizes (a reaction that can be discussed by the 

methods of the next section)—but it has been prepared at 35 K in an argon 

matrix. In fact, in the spin singlet ground state the molecule is rectangular with 

somewhat localized double bonds; in its spin triplet ground state it is square. 

For a simple discussion of this point see E. Heilbronner, ‘Why Do Some 

Molecules Have Symmetry Different from that Expected?’, J. Chem. Educ., 66 

(1989), 471. 
Of the jr-electron wave functions obtained working in the C4 point group, 

two, xp{A) and rp(B) are identical in form to two that would have been 

obtained working in either C4v or D4h (the symmetry labels would have been 

different, of course). On the other hand, the tpi(E) and xp2(E) wavefunctions 

are different. The reason for this can be traced back to the existence of 

operations in C4v and D4h which have the effect of either mixing or interchang¬ 

ing the two degenerate functions. If the x and y axes, through the carbon atoms 

as shown in Figure 11.1 had been taken, then the 2crv mirror planes discarded 

in C4v would have had the effect of interchanging x and y (and so also any 

functions transforming like them). Hence, they would have transformed as a 

pair. In contrast, there is in C4 no operation which will interchange or mix 

xpx(E) and xp2(E)—they are separate functions, although degenerate. The only 

way that we can, in C4, obtain those E functions which would have been 

obtained in C4v is to mix ip{(E) and tp2(E) although, of course, this is not 

permissible in the C4 group itself. Taking the sum and difference of ipx (E) and 

xp2{E), the sum gives: 

Vi(E)+ xp2{E) = \{2a~2c) 

or, renormalizing 

W (£) = -j=(a-c) 
V2 

and the difference gives: 

V>i(E)~ tp2(E) = l2(2ib-2id) 
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or, renormalizing remembering that the complex conjugate of (ib-id) is 
(-ib + id) one obtains 

V*2 (£) = 4= (b-d) 
V2 

The functions ip\ (E) and xp'2 (E) are those E functions which would have been 
obtained working in C4v (or D4h). 

Problem 11.9 Work in either the point group Z)4h or C4v and 
(a) obtain the explicit forms of the four p„ molecular orbitals of 
cyclobutadiene, 

(b) check that the doubly degenerate functions obtained have an energy 
of a within the Hiickel approximation. 

Before we finally leave the C4 group there is one further point that should be 
made. In deriving the C2v character table in Chapter 2 it was asserted that there 
is no other set of characters other than those considered there which, when 
substituted for the operations of the C2v group in the group multiplication table 
would give a table which is arithmetically correct. The possibility of complex 
characters such as those which occur in the C4 character table was not 
explored, although a hint of their existence was given in Problem 2.6. 
However, it is clear that substitution of a set of characters such as 

1 i -1 —i 

in the C2v character table would not lead to a multiplication table which is 
arithmetically correct (because, for instance, when i multiples i it gives -1 on 
the leading diagonal rather than 1). It is evident from this discussion, and can 
be readily checked, that the multiplication tables of C4 and C2v are not 
isomorphous. Any operation in C2v carried out twice leads to E, whereas in C4 
the C4 and C\ operations have to be carried out four times to give E. This, 
incidentally, explains the appearance of i in the C4 character table. Because 

C2 x C2 = E 

only characters of either 1 or -1 for the C2 operation are possible for a singly 
degenerate irreducible representation (because 1 x 1 = -1 x -1 = 1). In the C4 
group we also have that 

C4 x C4 = C2 

In other words, the character for the C4 operation, squared, must give the 
character of the C2. This presents no problems when the character for C2 is 1, 
because that for the C4 can then be either +1 or -1 (leading to the A and B 

irreducible representations of C4). When the character for C2 is -1, however, 
the only possibilities are that the character for the C4 operation is either i or - i 
(either of these squared gives -1), leading to the two components of the E 

irreducible representation. 
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One example of the application of symmetry to the energy levels of n- 

electron systems has just been given. There are many others, but, having 
established the principles and procedures involved, the subject will not be 
pursued further in detail. Suffice to say that the concept of aromaticity in 
organic chemistry is closely related to the type of stabilization arguments used 
when comparing square and rectangular cyclobutadiene. Roughly speaking, 
aromatic systems are those for which the delocalized system is more stable 

than any corresponding localized one. 

11.6 SYMMETRY AND CHEMICAL REACTIONS 

There have been many attempts to apply symmetry concepts to molecular 
reactions. This is a difficult area; it is necessary to assume some geometry for 
the key step in the reaction and often the only reasonable symmetry is low and 
so of little help. Further, large molecular distortions are usually involved in 
chemical reactions; that is, the molecules involved are vibrationally very 
excited. This has two consequences. First, the analysis given of vibrations in 
Chapter 9 evidently needs modification for large amplitude vibrations—when 
there are several symmetry-related atoms in a molecule the evidence is that one 
bond breaks before the others, whereas the discussion of Chapter 9 would lead 
us to expect several bonds to break simultaneously. This is akin to the failure of 
simple molecular orbital theory at large intemuclear distances (it predicts a 
mixture of dissociation products), a failure which is also of relevance. Second, 
as was seen at the end of Chapter 9, the actual group which is applicable to the 
problem usually differs from the point group which, formally, is being used. 

By far the most fruitful of the applications of symmetry to molecular 
reactivity has been the symmetry correlation method introduced by Woodward 
and Hoffmann and which is applicable to many organic reactions. A simple 
example of the application of their approach will be given, although the 
formalism which will be used was introduced by other workers. Consider the 
possible reaction of two ethene molecules to give cyclobutane, a molecule 
which, for simplicity, will be assumed to be planar 

+ -► 

Written like this, it seems a perfectly feasible reaction, yet it is not one that 
readily occurs; the question then is ‘why does it not occur?’ The answer is not 
difficult to find. Pictorially, place two ethene molecules close together so that 
they are just about to react. The ‘before’ and ‘after’ reaction bonding arrange¬ 
ments are shown in Figure 11.4. The actual symmetry shown in Figure 11.4 is 
D2h, but it is common to work in C2v, so that the geometrical constraints on the 
molecular arrangement are not as rigid as required by D2h symmetry. 
If symmetry constraints arise in C2v (as they do) they are likely to be yet 
more severe in D2h. Working in C2v and choosing the C2 axis as shown in 
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Figure 11.4 (a) Each ^-bonding orbital of each C2H4 molecule transforms in C2v as 
A,, (b) The two new o-bonding orbitals in C4Hg transform together in C2v as A, + BX. 

Figure 11.4, it is easy to show that the symmetry species subtended by the two 
n bonding molecular orbitals in the two ethene molecules shown in that figure 
is 2A,. It is these two ji orbitals that are involved in the reaction and that are 
assumed to smoothly become the two new C-C o bonds as the reaction takes 
place. These two new C o bonds give rise to the symmetry species A, +5,. 
This is not the same as those generated by the n orbitals with which the 
problem started. There is a discontinuity; the n bonds cannot smoothly become 
the new a bonds and so a ready reaction is not to be expected. 

Let us look at this further by asking whether there exist any Bx orbitals in the 
two ethene molecules? The answer is ‘yes’. There are two of them and they are 
derived from the two n antibonding orbitals of the two ethene molecules 
(Figure 11.5). Correspondingly, the a antibonding orbitals corresponding to the 
two newly formed C-C a bonds in cyclobutane have symmetries A, + Bx 

(Figure 11.5). We are led to the orbital correlation diagram shown in Figure 
11.6 which shows the correspondences between the ‘before’ and ‘after’ 
reaction orbital patterns. In this figure the detailed pattern of o orbital energy 
levels in cyclobutane has been obtained using the nodal pattern method of 
determining relative related energy levels met in the early chapters of this 
book—the more nodal planes, the higher the energy. 

Problem 11.10 Use the nodal criterion (used, for example, in Section 
4.7) to show that it is reasonable to expect both a! levels in Figure 11.6 to 
be more stable than the corresponding bj levels. 
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Figure 11.5 (a) Each jr-antibonding orbital of each C2H4 molecule transforms in C2v 
as Bx. (b) The two new rr-anti bonding orbitals in C4Hg transform together in C2v as 
Ax + Bx. (The diagram shows two orbitals; if regarded, however, as a single symmetry- 
adapted orbital it is the Bx. The A, is obtained by changing the phases of all lobes of the 
o-antibonding orbital at the ‘front’ of the diagram.) 

Cyclobutane 

a antibonding 

a bonding 

Figure 11.6 Correlation between the 7r-bonding and antibonding orbitals of two 
ethene molecules and the a bonding and antibonding orbitals of cyclobutadiene. 
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It is clear from Figure 11.6 that there will be no strong bonding driving force 

to form cyclobutane from two ethene molecules. As the reaction proceeds the 

lowest energy orbitals would be expected to be filled. Up to the energy level 

crossing-over point in the middle of Figure 11.6 this means that the two A, 

orbitals will be filled. But while the stability of one increases with decreasing 

separation between the two ethenes (as a n bond becomes a o bond) that of the 

other will decrease rapidly (as a n bond becomes a a antibonding orbital) so 
that no reaction is to be expected. 

There is an alternative approach to this problem, an approach which is based 

on states rather than orbitals. The ground state electronic configuration of two 

ethene molecules is (a,)2(a,)2, a configuration which gives rise to a 'A, term 

(we shall be concerned with spin singlet terms throughout the following 

discussion). A configuration such as (a,)2(^i)2 is an excited state configuration 
but also gives rise to a 1 Aj term (as is readily seen since the quadruple direct 

product A, <s> Aj =A[). In cyclobutane the situation is reversed. The 

ground state configuration (considering only the newly formed o orbitals) is 

(la,)2(1£>i)2. In contrast, (la,)2(2a,)2 is an excited state configuration. The 

important thing is that both of these configurations give rise to 'A, terms. The 

appropriate term correlation diagram is shown in Figure 11.7, where the non¬ 

crossing rule has been invoked (terms of the same symmetry species only cross 

in very rare circumstances). Physically, this application of the non-crossing 

rule in the present example arises because electron repulsion favours electrons 

being as spatially separated as possible and the energy gained from this 

separation can contribute the energy apparently required to promote an electron 

to a higher orbital. Figure 11.7 demonstrates rather more clearly than does 

Figure 11.6 that ethene should not be expected to spontaneously dimerize to 

cyclobutane. Even here, our discussion is somewhat simplified but it does 

correctly indicate that one can sometimes be misled by a simple ‘filling of the 

la? 1b? 

Two ethene molecules Cyclobutane 

Figure 11.7 Correlation between 'A, terms in the dimerization of two ethene 
molecules to give cyclobutane. 
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lowest orbitals’ approach to chemical bonding. It might be appropriate to 

remind the reader that the complicating effects of repulsive forces on simple 

pictures of chemical bonding were also encountered in the first chapter of this 

book. 
The discussion which has been presented above can readily be extended to 

photochemically-induced reactions (that is, reactions involving electronically 

excited molecules). Many very readable accounts of the topic have been 

written but these tend to use symmetry arguments in a rather less formal 

manner than the present text. Commonly, particular symmetry operations are 

selected and orbital behaviour classified as either A (antisymmetric) or S 

(symmetric) under these operations; these labels are equivalent to the 

characters -1 and 1 used in this book. 
One final cautionary note. In this discussion the concern has been with a 

single reaction mechanism. Other mechanisms may exist which provide an 

alternative, and more accessible, route to a particular product. Thus, although 

ethene does not dimerize to cyclobutane, reaction between the ethene 

derivatives CH3(H)C=C(H)OC2H5 and (CN)2C=C(CN)2 proceeds smoothly 

at room temperature to give the corresponding cyclobutane derivatives. In this 

case there is evidence that a zwitterion intermediate, (CN)2C9-C(CN)2- 

CH(CH3 )-®CH(OC2H5) is formed. Symmetry arguments are powerful, but 

nature may be yet more cunning and have unexpected tricks! 

11.7 SUMMARY 

Discussion of the ji orbitals of cyclobutadiene has provided a relatively simple 

example of the use of a group containing complex quantities in its character 

table (p. 230). It is necessary in such cases to work with complex conjugate 

basis functions and an example was provided in deriving the Hiickel energies 

of cyclobutadiene (pp. 233, 235). The fact that the C4 group contains no S„ 

operations enabled a discussion of optical activity (p. 231). Molecules having 

symmetries without such axes are, in principle, optically active (p. 231). 

Finally, it was shown that symmetry correlations can give insight into some 

chemical reactions (p. 240). Correlations between molecular terms may be 

preferable to simple orbital correlations (p. 243). 
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Space Groups 

12.1 THE CRYSTAL SYSTEMS 

Crystals and crystal structure determinations are well known and important 

areas of chemistry and in this chapter it will be assumed that the reader has 

some familiarity with them. Although the solid state is becoming an increas¬ 

ingly important part of chemistry, solid state symmetry is a much neglected 

area, leading to conceptual gaps which make the subject much more difficult 

than need be the case. To meet this problem, in the present chapter some 

subject areas will be explored which are normally given a very brief treatment; 

the relationships between the seven crystal systems, the 14 Bravais lattices, the 

32 crystallographic point groups and the 230 crystallographic space groups. An 

attempt will be made to answer the fundamental question ‘why are there 230 

space groups and not some other number’? 

A convenient starting point for the discussion is the concept of an empty 

lattice. In talking about crystal structures one expects to be concerned with the 

arrangement of atoms in space and the way that they fill unit cells. Despite this 

very reasonable expectation, our starting point will be quite different; no atoms, 

no unit cells, just the fiction of an empty lattice. The reason for this approach is 

that it will enable the introduction of atoms into the lattice as a step which is 

quite distinct from anything to do with the lattice itself. As will be seen, the 

step of introducing atoms adds possibilities which do not exist for the bare 

lattices. What, then, is a ‘bare lattice’ (and why is it a fiction)? For our 

purposes it is convenient to regard a lattice as arising from a three-dimensional 

network of vectors, vectors that connect equivalent points in an empty space. 

Strictly, it is the points that form the lattice, although group theoretically the 

vector set is more important (the members of this set correspond to the 

operations of the group of translations which turns the lattice into itself). In 

empty space all points are equivalent, they form a continuum, each point being 

equivalent to all of the (infinite number) of neighbours as well as being 

equivalent to all more distant points—and this is why the concept with which 

we shall work is basically a fiction, for all our equivalent points are separated 

from each other by some finite distance. The vectors connecting these separated 

and equivalent points fill all of three-dimensional space in the manner indicated 

in Figure 12.1(a); they look rather like sets of parallel fishing nets, the comers 

of the mesh (and it is these comers that are the points of the lattice) in any one 

net being linked by additional pieces of string sideways to the corresponding 
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Figure 12.1 (a) A lattice typical of a crystal. Equivalent points in space are linked by 
sets of equally spaced parallel lines extending to infinity. For simplicity of construction, 
in this figure all lines are drawn as intersecting at right angles but this is not a general 
requirement. 
(b) A single segment of the lattice of (a). Each line in tal is really two superimposed 
vectors, one of the negative of the other, represented here b\ an arrow -head at either 
end of each line. 

adjacent comers of the nets on either side of it. It is as if them w ere a three- 

dimensional array of string-edged boxes tilling all space. It is tempting to call 

these boxes 'unit cells’, and, indeed, this is what they would normally be 

called. However, this temptation w ill be resisted—as has been said earlier, no 

atoms, no unit cells. Rather, an arrowhead will be attached at each end of even 

piece ot string to demonstrate that sets of tra/is>o:ion vectors are under 

consideration; this has been done in Figure' 12.1 (bi. Each vector has a negative, 

w'hich is why arrowheads are needed at each end of each segment of string, at 

each equivalent lattice point. Our concern is to enumerate all the possible 

different symmetries that can be spanned by such sets of lattice points, and of 

course the translation vectors. This will lead us to the seven crvstal svstems. 
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The argument that follows is directed at, and limited to, finding the symmetries 

of all those lattices conventionally called ‘primitive’, for there is one for each 
crystal system. 

Problem 12.1 The subject matter of the following paragraphs is 

unlikely to be new to the reader, although it is equally unlikely that it will 

have been well understood. Write down, briefly, that which you know 

about the seven crystal systems. This should help focus attention on any 
problem areas that exist. 

It is natural to start with a set of translation vectors in which the vectors are 

all of the same length and all mutually perpendicular; this is the most 

symmetrical arrangement possible. A cubic lattice results (Figure 12.2).t The 

Figure 12.2 A segment of a cubic lattice drawn in the 
manner of Figure 12.1(b). This segment has Oh sym¬ 
metry; this is the symmetry of the point at the centre of 
the cube shown (although this point is not itself indi¬ 
cated) and also the symmetry of each point at which the 
vectors meet. 

fact that there is an infinite set of vectors means that it is sensible to pause 

before passing from the statement that ‘it is a cubic lattice’ to the statement that 

‘the lattice has Oh symmetry’. It is true that in this lattice each lattice point has 

Oh symmetry. That is, the operations of this Oh point group turn a given vector 

either into itself or into an equivalent vector. However, if one were to choose 

another point in space other than a lattice point, the symmetry would usually be 

different, although the lattice would still be turned into itself by the relevant 

symmetry operations. For example, points ‘along’ the vectors have C4v 

symmetry, except the mid-points of such vectors, which have D4h symmetry. 

However, once these problems inherent in the statement have been recognized 

one can say that ‘the lattice has 0h symmetry’. At the end of the present 

chapter a particular choice of unit cell will be described which makes the lattice 

symmetry unambiguously clear. 
Having established the symmetry of the most symmetrical of lattices, it 

seems reasonable to hope to obtain all the other possible lattices by reducing 

the symmetry. Unlike their string counterparts, vectors can be continuously 

deformed—stretched, contracted and re-orientated. The most natural way of 

proceeding is to focus on the Oh symmetry of the cubic lattice and to lower that 

symmetry by considering all the subgroups of Oh. This is the path that will be 

followed but first a basic and important fact. In Figure 12.1 (b) each vector was 

t The reader can be forgiven for relating this arrangement to the properties of the primitive cubic 
unit cell; note, however, one danger in this association—it leaves unanswered the question of just 
how the body-centred and face-centred cubic unit cells arise. 
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drawn as two-headed because both a vector and its negative interrelate 

equivalent lattice points. Such a statement holds for each and every vector and 

so for each and every sum of vectors, no matter how twisted and convoluted 

the path traced in three-dimensional space by such a sum—the resultant vector 

and its negative interrelate equivalent lattice points. There is a much more 

succinct way of stating this. It is that the lattice is centrosymmetric. This 

statement is true of all the translation vector sets, no matter how low their 

symmetry otherwise. All lattices are centrosymmetric. It is certainly not true to 

say that all unit cells are centrosymmetric and so a good reason for excluding 

the phrase ‘unit cell’ from the discussion is evident. The fact that the packing 

of atoms within a lattice can destroy the inherent centrosymmetry of that lattice 

will arise naturally when atoms are added. This is the reason that consideration 

of atoms is temporarily excluded from the discussion. It also simplifies the 

problem of finding the lattices which can be obtained from the cubic by a 

reduction in symmetry. Each acceptable symmetry will be that of a point 

group, a subgroup of Oh. The inherent lattice centrosymmetry means that all 

subgroups of Oh which lack a centre of symmetry can immediately be 

excluded. Further, of the groups which remain, only those which are consistent 

with a lattice are possibilities. What does this mean? Suppose the lattice has a 

Cn rotation axis, n > 2 (C2 are special and necessitate a separate discussion). 

There cannot be just a single Cn axis, there must be an infinite set of them, 

regularly arranged in space—and all parallel. The regular arrangement arises 

because associated with each axis there will be a set of translation operations. 

Figure 12.3 Perpendicular to a set of Cn axes there will be sets of translation vectors, 
as shown in this figure. In a plane perpendicular to the Cn axes and bisecting the 
translation vectors shown, will be sets of C2 axes. For simplicity, and to emphasize the 
fact that translation vectors do not have to coincide with rotation axes, arrow-heads are 
only shown on the translation vectors, not on the rotation axes. 
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some along each Cn axis and others perpendicular to it—the double-headed 

arrows of the discussion above. The double-headed nature of these arrows 

along the C„ directions means that perpendicular to the Cn axes there will be 

C2 axes and that these C2 axes are interrelated by the Cn (Figure 12.3). This 

means that subgroups of 0h without such sets of axes must be excluded (whilst 

the Cn axes persist). Which groups are left? Relatively few. D4h is the highest 

containing a fourfold rotation; D3d is the highest with a threefold (we shall see 

that it is these highest that we need to concern ourselves with; others come in 

later). What of the n = 2 case, is it the same? The key difference between Cn, 

n > 2, and the n = 2 case is that for the latter, a perpendicular C2 axis is rotated 

onto itself by the ‘original’ C2, whereas for Cn, n>2, it is rotated into a 

different C2 axis. In the latter cases, therefore, the mutual compatibility of all 

the C2 axes is assured. This is not so for the case where n = 2. They can be 

compatible—and this is the situation for the D2h group, which conforms to the 

pattern we have so far required of acceptable subgroups, containing three 

mutually perpendicular twofold rotation axes. Alternatively, the perpendicular 

twofold axes can be mutually incompatible and thus destroy each other. This 

mutual destruction occurs whenever the angle between the two sets of 

additional ‘twofold’ axes is not 90°. The point is illustrated in Figure 12.4 

which shows a rectangular grid, a two-dimensional lattice. In it the ‘original’ 

C2 axes carry this simple label whereas those perpendicular to the first set, 

assumed to arise because of the double-headed arrow pattern (although which 

‘come first’ is, of course, entirely arbitrary) are labelled C2(perp). Now attempt 

to add a third set of twofold axes perpendicular to those labelled C2. If they are 

C2 (perp)r 

C2 (perp) 

C2 (perp) 

Figure 12.4 A layer of mutually perpendicular—and mutually compatible—twofold 
rotation axes, labelled C2 and C2(perp). To extend the structure into three dimensions, a 
third set of C2 axes is added, perpendicular to the ‘original’ C2 and through the points 
of intersection of C2 and C2(perp). Unless these ‘new’ axes are perpendicular to both 
C2 and C2(perp) then, although the ‘new’ are compatible with the ‘original’ C2, they 
are not compatible with the C2(perp) and mutual self-destruction occurs, leaving only 

the ‘original’ C2. 
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added through the points of intersection of the already-existing twofold axes 

and perpendicular to the plane of the paper then the D2h case is obtained. If 

they are not added perpendicular to the plane of the paper although perpendicu¬ 

lar to the ‘original’ C2, then their addition leads both to self-destruction and to 

the destruction of the C2(perp). The highest group that can be obtained in this 

situation is C2h, which is centrosymmetric and contains a single twofold 

rotation operation. Destruction of that twofold axis by relaxing the requirement 

that additional axes be perpendicular to the first (an inescapable requirement 

for Cn axes, n > 2) leads to the last subgroup of Oh that has to be considered, 

Q, which contains no operation except inversion in a centre of symmetry, the 

lowest symmetry that a lattice can have. Provided that all lattices can be 

obtained by reduction in symmetry from Oh, all have been generated. Alas, not 

all lattices can be obtained by such a reduction in symmetry; since Oh contains 

no sixfold rotation operation, a point group containing one can never be obtained 

starting with it. Yet there is a perfectly good lattice that is based on a point 

group that contains such operations. If this is so, it at once prompts the 

question ‘how many others have been missed?’. Really, this is a question about 

whether there are any other point groups with symmetry operations not present 

in Oh which can give rise to acceptable lattices. Clear candidates are groups with 

fivefold and sevenfold rotation operations. Can they be excluded (and any others 

that may well occur to the reader)? The answer is ‘yes’, as is now demonstrated. 

Consider Figure 12.5, which shows a two-dimensional lattice. Clearly, any 

constraints that apply to this lattice must apply to a three-dimensional lattice 

also, for any three-dimensional lattice may be regarded as linked networks of 

two-dimensional lattices, just as the fishing nets were linked at the beginning of 

this section (remember, the head-to-head linking of vectors in the manner of 

Figure 12.1 leads to straight line arrays, never to kinks or bends). As we are 

looking for all rotation axes that are compatible with translation symmetry, we 

simply require that the lattice points of Figure 12.5 be interrelated both by pure 

translations and by pure rotations and enquire into the compatibility of these 

two requirements. With no loss of generality for n > 2, assume that the Cn axes 

are perpendicular to the page and that one passes through each of the points 

indicated. The points A and B in the top row are separated, in general, by an 

ma 
f--\ 

a B 

Figure 12.5 A fragment of a two-dimensional lattice, used in deducing which C„ axes 
through the dots and perpendicular to the lattice are compatible with the lattice. In this 
diagram the case in = 2 is shown but in principle m can assume any integer value. 
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integral number, m, of translation steps, a, and so by a distance of ma (the 

points C and D are separated by a single translation step, a, and so m will be a 

small number. For simplicity, in the diagram the case with m = 2 is shown). For 

purposes of the argument, the row of points below the top may be regarded as 

free to slide around, subject only to the requirement that the surrounding points 

are interrelated by the Cn axes through the points of the second row. This is 

indicated by the arrowheads emanating from the points in the second row, the 
angle of rotation of the Cn axis being taken as 6 so that, from Figure 12.5: 

AB = A'B' = a+ 2a cos 6= ma 

so that 2a cos 6= (m- \)a 

and 2 cos 6= (m- 1) 

cosO=<'”-1> 
2 

Now, m is an integer and cos d can only have values from 1 to -1. The 

possible solutions are therefore rather limited and are detailed in Table 12.1 
below. 

Table 12.1 

Value of m 

Value of cos 9 

|this equals ^ j 
Comments 

4 1.5 no solution possible 
3 1 9 = 0 or 360° corresponding 

to a C, axis 
2 0.5 9 = 60° corresponding to a 

C6 axis 
1 0 9 = 90° corresponding to a 

C4 axis 
0 -0.5 9 = 120° corresponding to a 

C3 axis 
-1 -1 9 = 180° corresponding to a 

C2 axis 
-2 -1.5 no solution possible 

Problem 12.2 Work through the above argument but instead of 

choosing m = 2, as in Figure 12.5, take m = 3. 

Clearly, the only non-trivial rotation operations that are consistent with a 

lattice are C2, C3, C4 and C6. This means that the only case not covered by a 
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reduction in symmetry from Oh is that of the C6 rotations. The highest 

centrosymmetric point group containing a C6 axis which also satisfies the 

other requirements discussed above is required. This is D6h and it completes 

the list of acceptable lattices because there is no lattice that can be obtained 

from it which satisfies all the requirements and which has not already been 

generated.! 
The seven point groups that have been obtained, together with their 

associated lattices, characterize the seven crystal systems. For convenience, 

these are listed in Table 12.2. One point about this table is to be noted. This is 

that the characteristics of each lattice have been detailed. Such compilations of 

characteristics are found in many texts but frequently under a different 

heading, that of ‘unit cells’. In such texts the unit cell is chosen as the smallest 

parallelepiped defined by the translation vectors. There are two reasons that this 

precedent is not followed here, quite apart from the fact that the name ‘unit 

cell’ has been avoided. These are that, first, the translation vectors are the 

fundamental quantities and it is better to recognize them as such. Second, as 

will be seen, there is no unique choice of unit cell for any crystal structure— 

Table 12.2 

Crystal (lattice) system Characteristic point group Lattice vector characteristics 

Cubic oh a= b = c; a - ft = y = 90° 

Tetragonal a = b = ± c; a = ft = y= 90° 

Orthorhombic T*2h a* b± c; a = P~y = 90° 

Monoclinic Clh a* b± c; a = y= 90°, ft > 90° 

Triclinic C, a* b± c\ a =/= p * y 

Hexagonal £>6h a=b*c-, a = p = 90°, y=120° 

Trigonal dm a = b= c; a = /? = y * 90° 

The quantities a, b and c are the absolute magnitudes of the three primitive translation vectors 
that define the lattice. The angles complement the axes; thus a is the angle between the vectors 
associated with b and c, 0 that between the vectors associated with c and a (it helps avoid hidden 
problems if one is consistent in the order in which axes are listed by being cyclic: 
a —> b -> c —»a). Note that in the monoclinic system there is conventionally a departure from the 
system followed for point groups where the axis of highest symmetry is chosen as z (the choice 
of 0 as the unique angle means that the y axis is chosen as the C2 in monoclinic systems). The 
sixfold axis is not immediately evident in the vectors defining the hexagonal system but when 
they are used to define a lattice—and, so, an extended lattice generated—the sixfold axis pattern 
becomes evident (it is along the vector associated with c). However, the threefold axis is not 
along any of the vectors used to define the trigonal lattice-—the vectors associated with a, b and c 
are interrelated by the threefold axis. 

t Although it comes equally well from 0h, it is often convenient to think of £>,d as a subgroup of 
Dbh. 
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just some choices that are more convenient for some purposes than others (the 

choice that is convenient for X-ray crystallography may be inconvenient for 
other purposes). 

All of the seven three-dimensional lattices (or, rather, remembering the 

context in which they were sought, the seven crystal systems) which arise from 

translationally-related repeat units have now been obtained. The relevance to 

crystal structures is clear. However, we should not close our eyes to other 

possibilities. For instance, suppose the repeat layers were not related one to 

another by simple translation operations. What if they were arranged in a 

spherical layer fashion, much as the layers of an onion? Perhaps such crystals 

could be formed if a nucleating unit led to crystal growth by successive 

spherical shells being added. As the shape of the popular form of a soccer ball 

shows, such a crystal could have fivefold rotation axes (six of them, all passing 

through the point which was the original crystal nucleus, giving a crystal with 

icosahedral symmetry), in complete contrast to the discussion above, where it 

was found that C5 axes are not possible for a regular array of translationally- 
related units. 

12.2 THE BRAVAIS LATTICES 

In the preceding section the concept of a lattice was explored. It was found that 

all three-dimensional lattices have to conform to one of seven symmetry types, 

each characterized by a unique centrosymmetric point group, and that these are 

normally spoken of as ‘the seven crystal systems’. However, there is more to 

say on the topic of lattices, even the topic of empty lattices. The question is 

this: ‘is it possible, for any of the seven lattices, that a second, identical, lattice 

be taken and interpenetrated into the first to give an arrangement which retains 

the symmetry of the first lattice?’ The question may be phrased in a rather less 

accurate but more colourful way. Suppose the first lattice were made of red 

string. Is it possible to construct within it a displaced but otherwise identical 

lattice made of blue string which does not destroy the symmetry pattern of the 

red? Such questions are inadmissible because any given crystal structure can 

only have a single lattice t (and so talk about ‘interpenetrating lattices’, while 

sometimes useful for teaching purposes, cannot accurately describe reality). 

However, having recognized the error, let us continue to sin—for teaching 

purposes! The question is illustrated in Figure 12.6 for the cubic lattice. The 

lattice generated in Section 12.1 is shown in Figure 12.6(a); it is shown again 

together with an identical interpenetrating lattice (showed dotted rather than 

t This statement originates in the fact that there is a single translational subgroup of the space 
group. In discussions it is often very convenient to talk of the lattice composed of one set of 
atoms and to relate it to the lattice composed of another set. Such language is convenient rather 
than strictly accurate. 



254 SPACE GROUPS 

coloured) in Figures 12.6(b), (c) and (d). In Figure 12.6(b) the additional 

lattice is placed in an arbitrary position. Not surprisingly, the symmetry of the 

first lattice is destroyed as, too, simultaneously, is that of the second—the 

combined lattice is probably of no higher symmetry than C;—it is difficult to 

be sure without a more detailed specification of the positioning of the two 

lattices in Figure 12.6(b). In contrast, in Figure 12.6(c), were it not for the fact 

that one is shown dashed and the other with solid lines, one would not know 

which lattice is the ‘original’ and which the ‘added’. The two lattices are 

arranged in a mutually compatible manner but have no points in common. The 

combined arrangement is of 0h symmetry. Because of the relationship between 

the two sets of translation vectors, this new lattice is called ‘the body-centred 

cubic lattice’ (a diagonal of the ‘solid-line’ lattice is shown dotted; the ‘dashed’ 

lattice has a point lying at the mid-point of this diagonal). However, as has 

been indicated above, it is incorrect to think of the body-centred cubic as 

defined by two sets of translation vectors. It is a single lattice, defined by a 

single set of translation vectors. Clearly, this set is neither of those used in the 

construction above but, in some manner, contains both. Discussion of the set 

will be deferred until later. Note, however, that the basic vectors of this single 

set cannot be mutually perpendicular—if they were, the pattern of the 

original—primitive cubic—lattice would be regenerated. In Figure 12.6(d) is 

shown another example of sets of interpenetrating cubic lattices which are 

mutually compatible but this time involving four such lattice sets (a solution to 

the question originally set which goes beyond the assumption in that 

question—that only a single additional lattice need be considered). These 

sets, together, define the face-centred cubic lattice. It is possible to define this 

lattice by a single vector set, but, again, the vectors are not mutually 
perpendicular. 

All of the three possible variants of the cubic lattice, the primitive, the body- 

centred and the face-centred have now been generated. To see why there are no 

more, consider again the way the additional lattices were generated. In the 

body-centred lattice, the second set of lattice points were placed at what, for 

the ‘original’ lattice were positions of 0h symmetry. Clearly, the ‘second’ 

lattice was compatible with the ‘first’. The case of the face-centred cubic was 

different. The lattice points of the ‘first’ lattice that were occupied by the 

‘second’ were only of D4h symmetry. Had just a single ‘second’ lattice been 

interpenetrated with the ‘first’ then the symmetry of the ‘first’ would have been 

destroyed and lattice points that were originally of Oh symmetry would have 

been reduced to Z)4h. This problem was overcome by, effectively, adding a C3 

axis to this reduced D4h symmetry and thus bring it back to Oh. This was 

achieved by adding three points around each ‘original’ lattice point, a step 

which required that three additional lattices, not just one, be added. It is less 

immediately obvious that this same step serves to turn each of the ‘second’ 

lattice points, originally of D4h symmetry, into points of Oh symmetry. 

However, the fact that the combined lattice ‘looks the same’ whichever lattice 
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1 'Added' lattices 

(d) 

Figure 12.6 (a) The cubic lattice of Figure 12.2, shown without the arrow-heads of 
that figure. 
(b) The lattice of (a) with an identical lattice (shown dashed) displaced from the ‘first’ 
by arbitrary translations (which means that the vectors associated with the two vector 
sets remain parallel). Except in very special cases such a ‘second’ lattice will destroy 
much of the symmetry of the ‘first’. So, in this figure, the fourfold rotation axes of the 
‘first’ lattice are destroyed by the presence of the ‘second’ and vice versa. 
(c) One of the special cases of (b) occurs when the ‘corners’ of the ‘second’ lattice 
coincide with the centre of the cube defined by the first, because both have Oh 
symmetry. A diagonal of the ‘first’ lattice is shown dotted; the second lattice intersects 

the mid-point of this diagonal. 
(d) A second special case occurs when three ‘additional’ equivalent lattices are added to 
the ‘first’. In this figure the ‘additional’ lattices are shown small-dashed, large-dashed 

and dotted. 
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is called ‘first’ establishes the point. The question then arises as to whether the 

same sort of trick can be played a different way. Is it possible, for example, to 

add a ‘second’ lattice at points of Did symmetry of the ‘first’ and, by adding 

four of them in all, thus regenerate an Oh lattice? The answer is ‘no’; the 

reason is that although there are unique points of D4h symmetry in the 

‘original’ lattice there are none of Did. All of the possible cubic lattice patterns 

have been generated, t 
The type of argument developed in the preceding paragraphs can also be 

applied to the six other different possible lattice symmetries. When all of the 

lattice patterns consistent with each various lattice symmetry type have been 

obtained, there are 14 in all. They are known as the 14 Bravais lattices, named 

after the Frenchman who first recognized their existence. Note three things. First 

that our lattices are still empty. Second, that each of the 14 Bravais lattices is 

associated with a unique pattern of vectors—it is this vector pattern that 

distinguishes the various lattices. So, there are three qualitatively different vector 

sets that define cubic lattices. As has been mentioned above and will be seen later, 

the vectors defining a cubic lattice do not have to be mutually perpendicular. This 

point is an important one; despite it, all the Bravais lattices have the symmetry of 

the crystal system and so all three cubic Bravais lattices are cubic, and of Oh 

symmetry. However, unit cells constructed with the basic translation vectors of 

the Bravais lattice used to define their edges do not have the crystal symmetry 

unless the lattice is one of those conventionally labelled ‘primitive’. This point is 

actually the same as the final one, one that anticipates our discussion somewhat 

but is included here because it will be rare for there to be a reader who has not 

encountered the content of this chapter elsewhere, at least superficially. The final 

point is to emphasize that all the fourteen Bravais lattices are primitive (and so 

the unit cells just mentioned also primitive). It is necessary to make this point 

with some considerable strength because of the names conventionally given to 

the Bravais lattices, which could be rather misleading—only half of them are 

actually called ‘primitive’. For completeness it is convenient at this point to list 
all 14 Bravais lattices and this is done in Table 12.3. 

Problem 12.3 Unconventionally, the name ‘unit cell’ has been avoided 

so far in this text. Make a short(!) list of the arguments given so far in 

support of this avoidance (weightier arguments will be given later). 

One of the most evident things about Table 12.3 is its rather patchwork 

character—so, some crystal systems have body-centred lattices, others do not. 

t The way that these have been generated demonstrates a limitation in the way that the seven 
crystal systems were derived earlier in the text. All of the cubic lattices have Oh symmetry_this 
is why the derivation of the seven crystal systems had to be confined to ‘those lattices 
conventionally called primitive’. Strictly, the derivation of the seven crystal systems should have 
been concerned only with groups and subgroups but it was felt that a less abstract discussion 
would be more easily followed. 
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Table 12.3 

Crystal system 
(point group) Bravais lattice 

Number of ‘primitive’ lattices 
needed in the construction 

Cubic (0h) Primitive 1 
Body-centred 2 
(All) Face-centred 4 

Tetragonal (D4h) Primitive 1 
Body-centred 2 

Orthorhombic (D2h) Primitive 1 
Body-centred 2 
One-face-centred 2 
(All) face-centred 4 

Monoclinic (C2h)a Primitive 1 
(One) face-centred 2 

Triclinic (C,) Primitive 1 
Hexagonal (D6h)b Primitive 1 
Trigonal (Z>3d)f Primitive 1 

"In the monoclinic one face-centred lattice, the face which is centred is parallel to, not 
perpendicular to, the twofold axis. 
®The hexagonal lattice is sometimes drawn showing a unit cell with a hexagon as a face, this 
face being centred by a lattice point. This is not a primitive unit cell (it is actually three 
times the volume of the primitive). 
cOne variety of trigonal lattice is referred to as ‘rhombohedraT. This name arises from the 
shape of the corresponding unit cell as it is usually drawn. A rhombohedron contains eight 
edges, all of the same length and each face is diamond-shaped (essentially, the shape is that 
of a cube stretched or compressed symmetrically by pulling outwards or pushing inwards on 
a pair of opposite comers). 

Some have one-faced-centred lattices, others do not. It has already been seen 

why there cannot be a one-face-centred cubic—it would not be cubic (actually, 

it would be a primitive tetragonal lattice). The reason for the non-listing of the 

other apparently ‘missing’ lattices is similar—they are each equivalent to one 

already listed in Table 12.3. In Table 12.4 is given a list of the ‘missing’ lattices 

together with their equivalents—which are present. 

Earlier in this section the point was made that each and every one of the 14 

Bravais lattices is both single (not interpenetrating, notwithstanding our 

derivation) and primitive, despite the fact that only seven are actually labelled 

as primitive. Figure 12.7 shows the vector set that gives rise to each of these 

lattices, together with an indication of the way that this vector set is related to 

the unit cells commonly used to picture the seven ‘centred’ Bravais lattices. 

Because in such cases the primitive translation vectors relate a given lattice 

point to its nearest neighbours, for the ‘centred’ lattices the members of this 

vector set relate a point in the ‘first’ lattice (in our derivation) to points in the 

added, interpenetrating (in our derivative), lattice(s). 

This section has contained material which differs significantly in emphasis 
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Figure 12.7 (a) The seven Bravais lattices conventionally called ‘primitive’, together 
with the associated primitive translation vectors (shown bold). Notice that only in three 
cases are the translation vectors in directions parallel to the Cartesian axes of the 
crystal. A, cubic, B, hexagonal; C, tetragonal; D, trigonal (rhombohedral); E, 
orthorhombic; F, monoclinic; G, triclinic. Reproduced by permission of the Journal of 
Chemical Education from Kettle and Norby,/. Chem. Educ., 70 (1993) 959. 
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(b) 

(b)The seven Bravais lattices conventionally called ‘centred’, together with the 
associated primitive translation vectors (shown bold). Notice that the translation vectors 
are generally in directions rather different from those of the Cartesian axes of the 
crystal. A, body-centred cubic; B, face-centred cubic; C, body-centred tetragonal; 
D, body-centred orthorhombic; E, all-face-centred orthorhombic; F, one-face centred 
orthorhombic; G, face-centred monoclinic. Reproduced by permission of the Journal of 
Chemical Education from Kettle and Norby, J. Chem. Educ., 70 (1993) 959. 
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Table 12.4 

Crystal system ‘Missing’ lattice Equivalent lattice actually listed 

Cubic One-face-centred Primitive tetragonal 

Tetragonal One-face centred 
All-face-centred 

Primitive tetragonal 
Body-centred tetragonal 

Monoclinic Body-centred 
All-face-centred 

One-face-centred monoclinic 
One-face-centred monoclinic 

Triclinic Any centring Primitive triclinic 

Hexagonal Body-centred 
Unique-face-centred 
All-face-centred 

One-face-centred monoclinic 
Primitive orthorhombic 
One-face-centred monoclinic 

Trigonal Body-centred Primitive trigonal 

(rhombohedral) Unique-face-centred 
All-face-centred 

Triclinic 
Primitive trigonal 

from that contained in many introductory texts and a reiteration of those points 

which will be needed later would perhaps be helpful. Only for the Bravais 

lattices explicitly labelled as ‘primitive’ is the symmetry of the (primitive) 

vector sets shown in Figure 12.7 that shown in the ‘crystal system’ column of 

Table 12.2. All Bravais lattices (and the complete vector sets) show the 

symmetry of the corresponding crystal system (Table 12.2). It is the desire that 

all cubic lattices, for instance, have basis vector sets of Oh symmetry that 

leads crystallographers to prefer to work with centred unit cells. This is fine for 

crystallographers, for their work is not sensitive to the choice of translation 

vector set and so they are free to choose that which is the most convenient for 

their purposes. However, in most other work on crystalline materials— 

spectroscopic and theoretical work provide two important examples—it is vital 

that the vector set be correctly chosen (the reason for this will become evident 

in the next chapter) and this is the reason for the approach adopted in the 
present section. 

12.3 THE 32 CRYSTALLOGRAPHIC POINT GROUPS 

The point has now been reached at which atoms must be introduced into the 

lattices although it will continue to be convenient to adopt the fiction that a 

lattice exists before atoms are introduced into it. Some consequences of the 

introduction of atoms are quite evident. Thus, although up to this point all 

lattices have been centrosymmetric, the introduction of atoms means crystal 

structures, which may or may not retain this centrosymmetry. Clearly, the 

actual arrangement of atoms, molecules or ions in the lattice is of key 

importance. Equally clearly there are considerable limitations on the admissible 
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arrangements. For instance, to place atoms randomly in a cubic lattice would 

immediately destroy the multitude of rotation axes and other symmetry 

elements essential to a cubic lattice. The arrangement of atoms (the word 

‘atoms’ will be used for simplicity; ions and molecules are not excluded) in a 

lattice must be consistent with the symmetry of that lattice for the lattice 

symmetry to be evident in the space group. This prompts the question ‘what are 

the acceptable symmetries for a given crystal system?’ As the argument 

develops it will be seen that this question is correctly put—the different 

Bravais lattices falling into one crystal system do not have to be distinguished. 

Because the symmetry makes it particularly easy to visualize, the cubic case 

will be detailed. Rather than deal with the full Oh symmetry of the lattice it is 

easiest to focus on one aspect of this symmetry. This is that in cubic symmetry 

the x, y and z axes are all equivalent. All acceptable ways of introducing atoms 

into a cubic lattice must respect this equivalence. While, no doubt the number 

of acceptable ways of introducing atoms into a cubic lattice is infinite—it is 

this fact that serves to distinguish one cubic crystal structure from 

another—the number of different symmetries that these arrangements can have 

is rather limited. The symmetry of any acceptable arrangement has to be one in 

which x, y and z equivalence is retained. Relatively few point groups satisfy 

this condition, they are: 

/„, 7, Oh, O, rh, Ta and T 

Of these, the first two, of icosahedral symmetry, can be excluded because they 

require the existence of fivefold axes, and these are inconsistent with a cubic 

lattice. Were an atomic arrangement with 7h symmetry, for instance, be put into 

a cubic lattice then the lattice (i.e. the arrangement of other 7h groupings in 

space) would destroy the fivefold axes, the highest possible effective symmetry 

of the atomic arrangement would be T, this being the only subgroup of 7h (and 

7) in the above list. It is concluded, then, that the only symmetries of atomic 

arrangements consistent with a cubic lattice are: 

Oh, O, Th, Td and T 

Three things are to be noted. First, that only two of these groups {Oh and Th) 

contain inversion in a centre of symmetry as an operation. The absence of this 

operation in the other groups means that the corresponding atomic arrange¬ 

ments will be such as to destroy the centrosymmetry originating in the lattice 

(remember, the translation operations of the lattice will only move the atomic 

arrangements, not turn them round in the way needed if the lattice centrosym¬ 

metry were to be preserved). Second, groupings of atoms with these 

symmetries can only form cubic lattices if the symmetry axes of the atomic 

grouping coincide with the corresponding axes of the lattice. So, an alkali 

metal salt, K[MX6], say, has a spherical cation and, probably, an octahedral 

anion. Both cation and anion, separately, are consistent with a cubic lattice. 
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However, it does not automatically follow that the salt will crystallize in a 

cubic space group. Third, there has been nothing in the above discussion which 

confines it to the case of the primitive cubic lattice. It must therefore be 

concluded that it applies equally to all the cubic Bravais lattices. This is an 

important point, the relevance of which will become apparent when all possible 

space groups are counted. 

Problem 12.4 Sketch two possible crystal structures for the salt 

K[MX6], one of which is cubic and the other which is not. 

The pattern for the other crystal symmetries will follow that set by the discussion 

of the cubic case. Consider the tetragonal lattices, for instance. Suppose we have 

a molecule which, itself, is of a cubic symmetry—an octahedral molecule, ML6, 

for instance—but which crystallizes with the molecules so arranged that they 

form a tetragonal lattice. The crystal can be of no higher symmetry than 

tetragonal. Conversely, if a molecule is of low symmetry, for it to crystallize in a 

tetragonal lattice then the molecules have to be arranged in groups of four, 

symmetry related. For an array of atoms to have a symmetry consistent with a 

tetragonal lattice it must, at least, satisfy the basic requirement of having a 

fourfold axis of some sort or other. Point groups satisfying this condition (in 

addition to the cubic, which have been covered) are: 

D4, C4h, C4v, C4, S4 and D2d 

The last two of these may cause some surprise because they do not contain C4 

rotation operations— but they do have S4 rotation-reflection operations and so 

an essential tetragonality—and this is what is needed for compatibility with a 

tetragonal lattice. Having made this point, what is surprising is that the group 

D4a is missing—this, at first sight, seems to have the essential requirement of 

C4 rotation operations. Indeed it has, but it also has rotation-reflection 

operations and this is something that no lattice, cubic included, possesses. It 

follows that if a group of atoms of D^ symmetry were to be placed in a 

tetragonal lattice its symmetry would be reduced (D4 or C4v are the highest 

symmetries that could result). Finally, note that of the seven point groups just 

listed, only two, D4h and C4h, contain the operation of inversion in a centre of 

symmetry. It would not be difficult to apply similar arguments to all the other 

crystal systems, but no new principle would emerge. We therefore content 

ourselves with listing, in Table 12.5, the correspondences between the crystal 

systems and acceptable point groups spanned by the atomic arrangements that 

may be described by them. 

Problem 12.5 Explain in detail (use of Appendix 3 may be needed) 

why a molecule of D4d symmetry could, at best, give rise to an arrange¬ 

ment of either D4 and C4v crystal symmetry. 
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Table 12.5 

Crystal system Acceptable point groups 

Cubic 0 rh Td t 
Tetragonal O41, D, C4h c4v 04 D1A S4 

Orthorhombic o2h d2 C2v 
Monoclinic c2h 

C, 
c2 Cs 

Triclinic C, 
Hexagonal o6h D6 Ojh C6h C3h 
Trigonal (rhombohedral) o3d o3 C3v c3 S6 

Note the absence of DM in the hexagonal listing—it has S12 rotation- 
reflection operations, operations not possessed by D6h, the parent of the 
hexagonal system. In contrast, note the presence of D,h; this seems ‘wrong’ 
but is readily explained. The important point is that D6h, the parent group of 
the hexagonal system, has a ah mirror plane reflection operation whereas 
Dm, the parent of the trigonal system, has no such mirror plane reflection. 
D,h has this mirror plane and so cannot be associated with a trigonal lattice. 
The reason that S5, which looks as if it should be in the hexagonal system, 
but is in the trigonal, is given in the text. 

These point groups number 32 in total and are usually referred to as ‘the 32 

crystallographic point groups’. In the next two sections it will be seen that they 

play a key role in determining the number of distinct crystallographic space 

groups. 

Problem 12.6 The following symmetries, although acceptable as those 

of atomic arrangements, cannot persist in a crystal. In each case give the 

highest symmetry crystallographic point group arrangement that could 

result. 

Osh, 05d, 07h, ^7d> ^7v 

In retrospect, it is possible to see a very simple way of relating a crystal < 

system with the acceptable crystallographic point groups associated with it, a 

method that has been hinted at more than once in the above section. This 

relationship depends on the simultaneous satisfaction of two conditions. The 

first is that acceptable point groups are invariably subgroups of the symmetry 

of the crystal system. This condition is very important. For instance, it 

immediately shows that D3h is associated with the hexagonal system and not 

the trigonal because D3h is a subgroup of D6h but not of D3d. The second 

condition is that the subgroup is not also the subgroup of the parent group of a 

lower (i.e. fewer symmetry operations) crystal system. It is the crystal system 

of lowest symmetry that is relevant. So, D2 is a subgroup of Oh, D4h, Z)6h and 

D2h. Of these, D2h has the smallest number of symmetry operations and so D2 
is associated with the orthorhombic crystal system. It is also for this reason that 

S6 is a trigonal crystallographic point group and not a hexagonal. 
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12.4 THE SYMMORPHIC SPACE GROUPS 

The discussion so far is sufficient to enable the first space groups to be obtained 

but before doing so it is convenient first to review the present position. The 

seven crystal systems were first obtained as the seven different symmetries of 

translation vectors that can exist in three-dimensional space. We then found 

that in several cases there exist more than one distinct set of such vectors, all of 

the same symmetry—that of the parent crystal system. These subtend the 14 

Bravais lattices. It was at this point that atoms were introduced into the 

discussion. It was found that for each Bravais lattice there exist several 

symmetry-distinct ways of introducing atoms which are compatible with the 

symmetry of the Bravais lattice. Distinct space groups will differ either in their 

lattices or in the symmetry of their atom arrangement in space—or both. Space 

groups can be generated by combining each Bravais lattice with each of the 

corresponding crystallographic point groups. Each group that results will be 

unique in lattice, point group or both, as required. Effectively, from this point 

on the following approximate equation will be used to obtain space groups (the 

question of the points at which this equation is not quite correct will be at the 

heart of the following discussion): 

(A Bravais lattice) + (a corresponding point group) = (A space group) 

How many space groups can be obtained in this way? The answer to this 

question is detailed in Table 12.6, which the reader should now study. 

In the extreme right-hand column of Table 12.6 the actual number of space 

groups that exist of the sort that have been under discussion is given in 

parentheses. In some cases the correct number has been obtained, but not in all. 

Table 12.6 

Crystal system 

Number of 
Bravais 
lattices 

(B) 

Number of 
crystallographic 

point groups 
(A) 

The product 
(BN) 

Cubic 3 5 15 (15) 
Tetragonal 2 7 14 (16) 
Orthorhombic 4 3 12 (13) 
Monoclinic 2 3 6 (6) 
Triclinic 1 2 2 (2) 
Hexagonal 1 7 7 (8) 
Trigonal 1 5 5(13) 

Totals 14 32 61 (73) 
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So, although perhaps not much is missing, something has to be added to the 

approach. In particular, the answer to the trigonal case is seriously wrong—and 

this will necessitate a serious discussion! The other errors are readily dealt 

with. In Table 12.7, the cases are detailed for which they occur. In this table 

individual crystallographic point groups and Bravais lattices are given. The 

table shows the number of space groups that arise from each combination. The 

argument developed above leads to the expectation that the answer will be ‘ T 

in each and every case. It is where the number ‘2’ appears that there is a 
problem! 

The obvious thing about Table 12.7 is that most numbers are 1. Those that 

are 2 do not occur for the highest symmetry crystallographic point groups of a 

crystal system. This is a relevant point, as study of the C2v, one-face-centred 

orthorhombic, example shows. In this example, although the lattice is D2h, the 

crystallographic point group, the filling of the lattice with atoms, destroys all 

but a single set of parallel twofold axes (but the primitive translation vectors 

remain mutually perpendicular, which is why C2v is an orthorhombic and not a 

monoclinic crystallographic point group). Is the lattice face that is centred in 

the one-face-centred case parallel to or perpendicular to the twofold axes? The 

answer is that both are possible and so two space groups are obtained and not 

the expected one. The duality arises from a degree of freedom between the 

lattice and its relationship to the crystallographic point group that was ignored 

Table 12.7 

Crystallographic Bravais lattice and number 
System point group of symmorphic space groups 

p; b.c; o.f.c; a.f.c. 
Tetragonal ^4h 1 1 

1 1 

£4 h 1 1 
C4v 1 1 

* c4 1 1 
2 2 

S4 1 1 
Orthorhombic 1 1 1 1 

d2 1 1 1 1 

C2v 1 1 2 1 

Hexagonal 1 
D6 1 

2 

C(,h 1 
1 

c6 1 

Qh 1 

p = primitive, b.c. = body-centred, o.f.c. = one-face-centred, a.f.c. = all-face- 

centred. 
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in the analysis of the previous sections. Similarly, in the D3h, hexagonal, case, 

in the group defining the parent lattice, Z)6h, there are two distinct sets of mirror 

plane reflections perpendicular to the sixfold axis. In D3h, only one of the sets 

is retained. In the parent D6h lattice one of the associated sets of symmetry 

elements contains the translation vectors, the other bisects the angle between 

them. Which set is retained in Z)3h? The answer is that either is possible—but 

two different space groups are obtained as a result. 

Problem 12.7 By sketching a one face-centred orthorhombic lattice and 

placing atoms in it in two different ways, illustrate the two different space 

groups which were the subject of the above discussion. 

Having thus seen how the relatively small errors in Table 12.6 arise, what of 

the problem of the apparent gross error in prediction for the trigonal case? The 

extension of Table 12.7 to cover this crystal system is given below. 

Table 12.7 (continued) 

System 
Crystallographic 

point group 
Bravais lattice and number 

of symmorphic space groups 

P- 
Trigonal ^3d 3 

D3 3 

^3v 3 

c3 2 

S6 2 

This extension is most strange when compared with the earlier part of Table 

12.7 because again the number 1 is expected, if not everywhere, at least to be 

predominant. It does not appear! Matters would perhaps be improved if there 

were two primitive trigonal Bravais lattices, not just one, but even then there 

would be a problem—the ‘additional’ errors occur for the higher symmetry 

point groups, not the lower—which is where they were found in the first part 

of this table. To deal with the former problem first. In fact, there has been a 

long-standing argument about the number of trigonal Bravais lattices. There 

have been those who have argued that there are 15, not 14, Bravais lattices, and 

that two of them are trigonal. If, indeed, there are two trigonal lattices, then 

they would both have to be primitive—and this sounds like a contradiction in 

terms and not surprisingly, this is where the argument has arisen! 

The primitive trigonal lattice was introduced as one of those obtained when 

the symmetry of a primitive cubic lattice is reduced. The rhombohedral cell 

was pictured as obtained when opposite comers of a cube are either symmetri¬ 

cally compressed or stretched. Later, as something of an aside, it was 

commented that ‘although it comes equally well from Oh, it is often convenient 
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to think of D3h as a subgroup of D6h’. The question now arises of whether the 

primitive trigonal lattice and the rhombohedral lattice are the same or whether 

they are different. The answer is that they are different. The rhombohedral 

lattice has just been described as being a distorted primitive cubic; it is typified 

by three primitive translation vectors that are interrelated by threefold rotation 

operations. They are shown in Figure 12.8. The other trigonal lattice is most 

accurately regarded as originating in a hexagonal lattice. Suppose there is a 

genuinely hexagonal lattice but it is filled with atoms arranged in the point 

group symmetries characteristic of trigonal systems—D3d, D3 C3v C3 and S6. 
Of course, trigonal space groups are obtained. Now, should this pattern be 

regarded as resulting from a hexagonal lattice or a, separate, trigonal? The 

accepted convention is to work with the final result. So, suppose there were a 

crystal with a low-symmetry atomic filling but for which it happened that 

a= b= c; a = ft = y = 90°. This would be regarded as a lattice compatible with 

the atomic filling, and so not a cubic. It follows that there is no need to include 

the lattice vector characteristics given in Table 12.2 for the hexagonal lattice a 

second time under ‘trigonal’. The resulting space groups are called ‘primitive’ 

Cj rotation axis 

Figure 12.8 The three primitive translation vectors of the rhombohedral lattice are 
interrelated by threefold rotation operations. There are no restrictions on the angles 
between the vectors, although at certain angles special lattices are generated (90° gives 
the primitive cubic, for instance). 



268 SPACE GROUPS 

and so distinguished from the trigonals with a rhombohedral lattice (which are 

called ‘rhombohedral’). For simplicity, in some of the tables earlier in this 

chapter some licence was used in almost equating ‘trigonal’ with 

‘rhombohedral’. This was because a discussion such as that just developed 

would have been quite out of place associated with those tables. It is perhaps 

worthwhile to look more closely at the difference between rhombohedral and 

trigonal lattices. The primitive translation vectors of the latter, as has been said, 

are interrelated by threefold rotation operations. What happens when the angle 

between each of these vectors becomes 120°? They become coplanar and 

define a two-dimensional, not a three-dimensional, array. This two-dimensional 

array, when drawn, is immediately seen to look like a honeycomb; it is a net of 

hexagons such as is associated with the hexagonal lattice. To obtain a three- 

dimensional lattice one has to have a primitive translation vector perpendicular 

to the hexagon net and it is this lattice pattern that gives rise to the trigonal 

space groups. It is dependent on the fact that two coplanar vectors at 120° 

suffice to define a planar hexagonal array (the ‘missing’ vector can be written 

as a linear combination of the other two when the system is planar). All three 

trigonally-related vectors are needed—and are sufficient to define a 

lattice—when they are non-planar. So, there is a clear distinction between the 

two basic lattices of the trigonal crystal system. 

One problem has now been solved; each and every entry in Table 12.7 

(contd) should be ‘2’—but this still leaves unanswered the problem posed by 

the fact that three are ‘3’. Why? In fact, the answer has already been given. It 

was met when discussing the fact that in the hexagonal crystal system there 

were two different ways of introducing a D,h arrangement of atoms. Either the 

vertical mirror planes of this group were coincident with the directions of two 

of the primitive translation vectors defining the hexagonal lattice or the mirror 

planes interleaved the vector directions. It is essentially these two possibilities 

which give rise to the additional trigonal space groups, except that for the D, 

case there are no mirror planes and it "is the corresponding alternative 

orientations of the twofold axes which is relevant. For groups without these 

symmetry elements this ambiguity does not arise and so these have only the 

now-expected ‘2’ in Table 12.7 (contd). Of course, the axis orientation 

ambiguity only occurs for the hexagonal-axes derived trigonal space groups, 
not for the rhombohedral. 

Problem 12.8 Explain why the number 1 does not appear in Table 12.7 
{contd). 

The end of this section has almost been reached but before concluding it 

there are two questions demanding answers. First, the section was headed ‘The 

Symmorphic Space Groups’—yet the word ‘symmorphic’ has only been 

mentioned in a table heading. What is it all about? In this section our concern 

has been with those space groups that arise from the combination of translation 
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operations with point group operations. In making these combinations, life was 

made simple by the fact that these two types of operations were quite distinct. 

The space groups that result are called the symmorphic space groups. The name 

itself is of little significance until we work with the other space groups, the 

non-symmorphic space groups. These will be the concern of the next section. 

The final question arises because in Table 12.7 the number of space groups of a 

particular type that exists has been given. This implies that there is some source 

book containing all such information. Indeed there is, and much study in the 

field is impossible without a copy to hand. The book is called International 

Tables for Crystallography, the most recent edition appearing in 1983. Details 

are given in ‘Further Reading’ at the end of the book. An earlier edition, dated 

1952, is preferred by some—it is only half the size of the more recent. As its 

name makes clear, the book is written for crystallographers. For the present 

purposes this has one major disadvantage. It means that it is written using the 

nomenclature of crystallographers, a nomenclature that is rather different from 

that used so far in this book. However, given the unique position of the book, 

there is no alternative to working in the crystallographers’ notation. So, this 

section is concluded with a brief introduction to it. 

Whereas the concern of the group theoretician is with symmetry operations, 

the concern of the crystallographer is more with symmetry elements—the 

symmetry elements associated with a crystal structure influence both the pattern 

of diffracted beams in an X-ray structure determination and also which occur 

and which are ‘missing’ (systematic absences). The reader may have noticed 

that a few paragraphs above, symmetry elements, rather than operations, were 

mentioned—preparing the way for the change of emphasis that has to come. It 

is in the next section that we will be forced to use the crystallographers’ 

notation—because it will enable us to describe new types of operations—but 

it seems sensible to introduce this notation here, where the ground is familiar. 

Crystallographers use the Hermann—Mauguin notation (that used in the vast 

majority of applications of symmetry to chemistry is the Schonflies). As far as 

point groups are concerned, the Hermann-Mauguin notation is most simply 

thought of as offering an approximate answer to the question ‘ for a given point 

group which are the symmetry elements needed to define it uniquely?’ The idea 

here is that, as group multiplication tables show, combinations of symmetry 

operations generate other symmetry operations (and much the same can be said 

of symmetry elements). Thus, a group which contains a twofold axis and a 

centre of symmetry must also contain a mirror plane perpendicular to the 

twofold axis (it is C2h). So, what is the smallest list of elements which 

uniquely specifies a particular group? While the answer to this question is 

not provided by the Hermann-Mauguin notation, this notation certainly 

approximates it. Before illustrating this, a point of symbolism. In place of Cn, 

the notation uses n. So, C4 is replaced by 4, C3 by 3 and a group which 

contains distinct fourfold and threefold axes would be denoted 43 (remember, 

we are dealing with crystallographic point groups so there is no confusion with 
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a 43-fold axis, one can never exist). It so happens that these two axes serve to 

uniquely identify the point group. This group is the one that, in Schonflies 

notation, is called O. Actually, in Hermann-Maugin notation, this group is 

called 432, but this merely serves to illustrate the point that the notation 

sometimes only approximates to the minimal defining symmetry element set. 

Mirror planes containing a Cn axis are denoted m. So, C2v becomes 2mm (a 
minimal set would be 2m or mm). When the mirror plane is perpendicular to a 

Cn axis the notation is n/m. So, the point group +C2h is written 2/m, a minimal 

set (it is pronounced ‘two over m’). A centre of symmetry is never explicitly 

indicated unless it is the only non-trivial symmetry element (the group Cl), 

when it is written f; centres of symmetry are indicated by the bar—so, a 

threefold rotation/inversion axis is denoted 3. The short Hermann-Maugum 

symbols are most likely to be encountered but usually longer, more explicit, 

ones exist. Thus, the normal, short, notation which is equivalent to 0h is 432, 

the more explicit version of which is 4/m32/m (4/m means that perpendicular 

to each 4, C4, axis is a mirror plane). In most cases the long symbols describe 

the symmetry characteristics of the x, y and z coordinate axes in this sequence; 

the short symbols are a contraction in which this sequence may well not appear. 

For cubic space groups, where all three coordinate axes are equivalent, 

symmetry-distinct axes are detailed (for instance, a fourfold and a threefold). 

A complete set of Hermann-Mauguin and Schonflies equivalents for the 32 

crystallographic point groups is given in Appendix 6, an appendix which also 

contains more explanations of the notation. A few minutes spent with this 

appendix (perhaps by covering up the Schonflies and working out the 

Schonflies equivalents of the Hermann-Mauguin) would be a most helpful 

preparation for the next section, a section which demands some familiarity 

with the Hermann-Mauguin notation. 

12.5 THE NON-SYMMORPHIC SPACE GROUPS 

At the beginning of this chapter it was stated that there are 230 space groups 

but in the previous section only 73 symmorphic space groups were encoun¬ 

tered. It follows that there are 157 non-symmorphic space groups, whatever 

the name means. The vast majority of non-symmorphic space groups are 

distinguished by the fact that, while the lattices are the Bravais lattices 

already met, one or more of the point group symmetry elements that combine 

with them to give complete space groups contain a translation component. 

This combination of a point group operation with a non-primitive translation 

is a characteristic of non-symmorphic space groups.! So, a typical situation is 

t But it does not completely define them—as will be seen, it is possible to obtain the same effect 
by moving the position of a set of rotation axes in space and the complete definition has to take 
account of this. 
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one in which a twofold rotation operation has a translation component added 

to it. Any such translation component cannot be a primitive translation for all 

of these have already been included in the translation vector set. Double 

counting is not allowed! What resolves the problem is the group algebra. A 

theme of the present section will be the way that the algebra associated with 

point groups carries over into space groups. The same theme was equally 

relevant to the last section but its formal inclusion there would have given no 

new insights. In the present section it is a life-line! A C2 rotation carried out 

twice is equal to the identity, leave alone, operation. If a translation is to be 

included along with the C2 and the operation carried out twice gives the 

identity then the associated translation has to be of one half of a primitive 

translation in the direction of the twofold axis. Carrying out the operation 

twice would then give a single translation step. But as has already been said, 

this is in the translation group, not the point group. So, our identity is the 

identity (at least, from the point of view of the point group). The point 

generated is equivalent to the identity point group operation (together with a 

primitive translation). The way that operations originally associated with a 

point group can apparently be transferred to a translation group clearly merits 

detailed discussion. At the present point it is sufficient to recognize that only 

well-defined non-primitive translations can be associated with point group 

operations. The operation in which a non-primitive translation is associated 

with a rotation operation is called a screw rotation and the axis is a screw axis. 

In Hermann-Mauguin notation the screw axis just discussed is denoted a 2, 

axis (pronounced ‘two one axis’). Here, the 2 means just what it did at the 

end of the last section. The , means that associated with the 2 is a non¬ 

primitive translation of an amount equal to one of the two steps needed to 

give a pure translation. It therefore corresponds to one half of a primitive 

translation in the direction of the 2 axis. In a similar way, a 3, axis involves 

one third of a primitive translation in the direction of the threefold axis and 4[ 

one quarter of a primitive translation. These last two examples show more 

clearly than the first why the axes are called ‘screw’ axes. The act of putting a 

screw into a piece of wood involves a simultaneous rotation and translation of 

the screw. So here, we have a combination of a rotation with a translation. 

However, these last two examples also point to a problem. Most screws are 

right-hand but some are left-hand (many a would-be mechanic has ruined a 

mechanism because of an unexpected left-handed screw!). Which do we have 

here? The answer is met by a convention. 3j and 4, refer to right-handed 

screws but 32 and 43 refer to left-handed (these latter two might equally well 

be written as 3_, and 4_, but this is never done). Right-handed screws go into 

the wood when rotated clockwise, viewed from the screwdriver end. It is not 

just rotation operations that can be combined with non-primitive translations. 

So, too, can mirror plane reflection operations. The identity cannot and the 

operation of inversion in a centre of symmetry is not. For inversion in a 

centre of symmetry there is a choice. Either it could be combined with a non- 
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primitive translation (which would have to be one-half of a primitive) or, 

because inversion is an operation which operates about a unique point, the 

point can simply be moved to a new position which is displaced from the 

‘original’ by one quarter of the corresponding primitive translation the 

overall effect is the same (Figure 12.9). By adopting the latter choice the need 

to formally specify the translation involved is avoided and this makes life 

easier. So, the diagrams in International Tables, which show centres of 

symmetry as points, have this latter choice built-in. A similar (sideways) 

translation of rotation axes occurs when the non-primitive translation 

concerned is perpendicular to the rotation axis. Mirror plane reflections 

combined with non-primitive translations (and these are always halves of 

primitive translations) are called glide planes and denoted by the direction in 

which the translation associated with the glide occurs. So, in an ‘a glide’ the 

translation is one half of a primitive translation in the x direction, in a ‘b 

glide’ the translation is in the y direction, and so on. Unfortunately, as far as 

the Hermann—Mauguin notation is concerned, that is all. In this chapter it will 

be necessary to specify them in more detail. Because a mirror plane is alv/ays 

perpendicular to some axis or other, for economy of labels the mirror plane 

associated with a glide will be labelled by the perpendicular axis. So, c(x) and 

Figure 12.9 The action of inversion in a centre of symmetry followed by a translation 
of one half of a primitive translation (upper) is equivalent to inverting in a centre of 
symmetry which has been moved by one quarter of the primitive translation. 
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b(x) are glide planes, the mirror reflection component of which is perpendicu¬ 

lar to the crystallographic x axis (and for which the translation components 

are along z and y, respectively). It would perhaps be more natural for the x to 

be written as a suffix but this would introduce problems with the notation for 

screw axes. The requirement on the non-primitive translation associated with 

a glide plane is that it lies in a plane parallel to that of the mirror plane. It can, 

therefore, be composed of half primitive translations along more than one 

axis. Such glides involving two half primitive translations are denoted by the 

letter n (for ‘net’, because they span the diagonals of a two-dimensional net); 

those involving three by the letter d (for ‘diamond’, because they occur in the 

diamond lattice). 

Problem 12.9 Draw separate diagrams to illustrate 2,, 3t, 4,, 32 and 42 

screw axes and others to illustrate a, b, c, n and d glides. 

12.6 NON-SYMMORPHIC RELATIVES OF THE POINT 
GROUP D2 

Some considerable space has been spent above on notation. The time has come 

to put it to good use. There will be two stages in the development. First, non¬ 

primitive translations will be introduced into the crystallographic point groups. 

Second, the modified point groups will be combined with the Bravais lattices to 

give non-symmorphic space groups. Clearly, it will be impossible to consider 

every point group, every Bravais lattice and every space group that results from 

their combination. Examples will be given, hopefully chosen so that the reader 

becomes confident that the origin of each and every space group could be 

understood. As a first example consider the orthorhombic crystallographic point 

group D2. This group has several advantages. In Table 12.7 it appeared without 

complications. Having three symmetry-distinct C2 axes (and Cartesian axes), it 

will enable us to examine the interplay between different non-primitive 

translations. The group multiplication table of the D2 group is small and so 

easily manageable. Finally, the orthorhombic system has more Bravais lattices 

than any other crystal system, giving an opportunity to explore all likely 

problem areas. 
A diagram of axes and operations of the D2 point group is given in Figure 

12.10. The corresponding group multiplication table is given as Table 12.8a. A 

feeling for this table will be essential in the development that follows. In 

particular, its implications for the way that the point [x,y,z]f is converted by 

the symmetry operations to the four other coordinate sets—and the way that 

t A word of caution; the same symbols are being used to indicate an axis, as in 2(y), and a 
general point, as in x, y, z. This has been done because of the familiarity of this usage; with this 
word of caution no confusion should result. 
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222 
2(x) 

2 (y) 

E[x,y,z] 2(x) [x,-y,-. 
• o 

2(z) 

o 0 

2(y) [-x,y,-z] 2(z)[-x,-y,z] 

Figure 12.10 The symmetry axes of the point group D2 (Schonflies notation), 222 
(Hermann-Mauguin notation) using the symbolism appropriate to the particular 
notation. While a perspective view has been adopted for the Schonflies diagram 
(lower), that given for the Hermann-Mauguin is that which will be adapted in the 
following figures. Note the representation of twofold rotation axes, particularly that 
viewed ‘end-on’ (that along z). In this diagram, as in the following figures, a general 
point in space is denoted by a solid circle and those into which it is converted by empty 
circles. For each, the relevant operation and coordinates are given. In the following 
figures it will be important to follow these carefully; it will often be helpful to compare 
the entries in them with those given here. 

the operations of D2 convert these points into each other—need to be well 

understood. The reader would be well advised to stop at this stage and relate 

each entry in Table 12.8a to the corresponding coordinate transformations in 

Figure 12.10. To skip this step now may well be to invite problems later! 

Problem 12.10 Relate each entry in Table 12.8a to the corresponding 

coordinate transformations in Figure 12.10. 

Table 12.8a 

d2 E C2(x) C2(y) C2(z) 

E E C2(x) C2(y) C2(z) 
C2(x) C2(x) E C2(z) C2(y) 
c2(y) C2(y) C2(z) E C2(x) 
C2(z) C2(z) C2(y) CAx) E 
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To help in understanding the symbolism Table 12.8a is repeated as Table 

12.8b using the Hermann-Mauguin notation. This notation uses the symbol 1 

for the identity but to avoid any ambiguity E will continue to be used. 

Table 12.8b 

D2 E 2(x) 20) 2(z) 

E E 2 00 20) 2(z) 
20) 2(x) E 2(z) 20) 
2(y) 20) 2 (z) E 20) 
2(z) 2(z) 20) 20) E 

The table will now be repeated yet again but replacing some or all of the 2 

rotation axes (this should be read ‘twofold rotation axes’) by 2, screw axes 

(‘two-one screw axes’). One, two or all three of the 2 can be replaced by 

a 21—and, because no coordinate axis has any unique properties compared 

with any other, they can be replaced in any order. The choice to be adopted is 

given in Table 12.9.| 

Table 12.9 

d2 E 20) 20) 20) 

E 20) 20) 2(2) 
Choice 1 E 2,0) 20) 2(z) 
Choice 2 E 2,0) 2,0) 2(2) 
Choice 3 E 2,0) 2,0) 2,(2) 

The first row in Table 12.9 corresponds to the elements in the multiplication 

table. Table 12.8b. To obtain a multiplication table corresponding to ‘Choice 

1’, it seems sensible to substitute 2, O) for 2(x) in Table 12.8b and then to ask 

whether this is a correct step to take. This substitution has been made in Table 

12.10. 

Table 12.10 

Choice 1 E 2,0) 20) 20) 

E E 2,0) 20) 2(2) 
2,0) 2,0) E 20) 20) 
20) 20) 2 0) E 2,0) 
2(2) 2(2) 20) 2,0) E 

| Although the choices of substitutions that follows has an evident logic, it is not that used in 
International Tables—in Choice 1, for instance, the 2, is there taken to be along z, not x. 
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At first sight this table may appear fine, but in fact all of the entries in bold 

typeface present problems. All involve the 2i (x) operation in some way or 

other. The first is the identity element resulting from the combination of two 

2, (x) operations. Although the entry in Table 12.10 is E, the actual outcome of 

combining these two operations is a primitive translation along x. It will be 

necessary to return to this problem later. In the same row as this E are 2(z) and 

2(y) entries, resulting from the combination of 2{(x) with 2(y) and 2(z), 

respectively. Where has the non-primitive component of the 2X (x) operation 

gone? Two other entries in bold typeface are 2,(x) operations which, 

apparently, have to result from the combination of two operations which do not 

have any translation component! How can this be—if it can be? The answer is 

that it can, indeed, be. The reason is the existence of a flexibility noted earlier 

which must now be developed further. 

Consider a space group derived from the C2h point group in which the 2 is 

replaced by a 2,. The combination of reflection in the mirror plane with 

inversion in the centre of symmetry of C2h must now equal 2,, rather than 2. 

The translation component in the combination of operations arises because this 

is an example of the centre of symmetry being displaced by a quarter of a 

primitive lattice translation. In this particular case, not surprisingly, the 

displacement of the centre of symmetry is along the 2X axis. It is important to 

note that the displacement takes the centre of symmetry out of the mirror plane. 

As a result, there is no longer a point through which all of the symmetry 

elements pass. We are no longer talking about a point group. Indeed, it is by no 

means clear that we are talking about a group at all, and this, again, is 

something to which it will be necessary to return. Is it an inevitable con¬ 

sequence of having non-primitive translations associated with point group 

operations that some of the corresponding symmetry elements no longer 

passthrough a point? The answer is ‘yes’, so that the problems of the sort 

under discussion are common to all of the crystallographic point groups 

associated with non-symmorphic space groups. Can such non-coincidences 

resolve the problems associated with Table 12.10? Not surprisingly, the answer 

is ‘yes’. 

There are two ways in which the argument could be developed. Either the 

problem of the non-coincidence of symmetry elements could be treated as one 

requiring an answer to the question ‘what is the displacement required?’ or the 

answer to the question could simply be presented. In the latter case all would 

become clear in solving the problem of what is meant by ‘a group’ in the 

present context. In fact, the two approaches are linked as something of a 

circular argument is involved. Figure 12.11 gives the answer. 2(y) and 2(z) are 

displaced relative to each other along x, although each still cuts the 2, (x) axis. 

Also shown in Figure 12.11 are the effects of the three non-trivial symmetry 

operations on the point [x, y, z]. It was in preparation for diagrams like this 

that practice with Figure 12.10 was strongly recommended! In Figure 12.11 the 
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2,(x) 21(x)[(|+x),-y,-z] 

Figure 12.11 The relative arrangements of the symmetry elements of Choice 1 (those 
of the space group P222,; note that in this label, which in the text has been treated as 
P2,22, as in the following figures, some liberty has been taken with such things as 
conventions for the directions of axes, always in the interests of simplifying the 
discussion). Note the standard convention for showing a 2, axis in the plane of the 
paper—a half-headed arrow. 

origin has been taken as the intersection of 2, (x) and 2(y); a primitive 

displacement along the x axis, a, has been indicated and set symmetrically 

about the origin. The 2 (z) axis is displaced from the origin by a/4. This 

displacement could be either ‘up’ or ‘down’; the latter has been chosen. A table 

which is the equivalent of Table 12.10 will now be generated but, instead of 

giving symmetry operations, it gives the coordinates of the points generated. 

This is Table 12.11. If Figure 12.10 was thoroughly studied then the compila¬ 

tion of Table 12.11 should not prove unduly difficult—certainly, all the y and z 

entries are those appropriate for Figure 12.10; in any event, the reader should 

stop and check the entries in Table 12.11 (the use of Figure 12.11 is essential). 

There is an important point. In contrast to Table 12.10, which was obtained by 

simple substitution in Table 12.9, the entries in Table 12.11 depend on whether 

the operations in the left-hand column operate first and are followed by in the 

first row, or vice versa. Table 12.11 has been compiled with the left-hand 

Table 12.11 

Choice 1 E 2,W 2 (y) 2 (z) 

E x, y, z (a/2 + x), -y, -z -x, y, -z (-a/2 - x), -y, z 

2, (x) (a/2 + x), -y, -z (a + x),y, z (-a/2 - x), -y, z (-a-x), y, -z 

2(y) -x, y, -z (a/2 - x), -y, z x, y, z (-a/2 + x), -y, -z 

2(z) (-a/2 - x), -y, z -x, y, -z (a/2 + x), -y, -z x, y, z 
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column entries operating first (this makes the table easier to read). So, for 

instance, 

2,(x).2 {y)[x,y,z\ = 2 x{x).[-x,y,z] 

= | + (-*),-(y),-(z) 

Problem 12.11 Check Table 12.11. 

The only problem area of Table 12.11 should have been in the bottom right- 

hand comer, in a square of 3 x 3 entries. The way that these entries differ from 

the coordinates in Figure 12.11 appropriate to the corresponding individual 

operation (so, for example, comparing the effect of 2, (x) followed with 2, (x) 

with that of E, the operation which is expected from Table 12.10) is shown in 

the box below: 

a 0 a 

a 0 -a 

0 0 0 

All the differences are integer multiples of a. They are all members of the 

translation group. Because of their presence, the set of operations E, 2, (x), 

2(y) and 2(z) do not form a group—to form a group, a set of elements has to 

map onto itself when combined according to the rules of multiplication of that 

group—the ‘closure’ requirement, discussed in detail in Appendix 1. The 

problem is that members of another group, the translation group, have been 

obtained and their presence prevents closure. Can the rules of multiplication of 

the would-be-group be modified so that this problem is avoided and the would- 

be-group turned into a real group? The answer is ‘yes’. The multiplication is 

made ‘moduli primitive translations’. That is, it is made impossible to obtain 

primitive translations by the simple expedient of defining it to be so! More 

pictorially, all entries such as those in the box above are thrown away. More 

physically, and in the context of unit cells as usually defined, whatever ‘moves 

out’ of one face of the unit cell ‘comes back in again’ through the opposite 

face. This is perhaps the point for the author to confess that Figure 12.11 has 

been made more apparently difficult than need be the case. Had the point 

[x,y,z] been chosen to lie in the lower left-hand quadrant then all of the 

generated points would have been within the limits of the a displacement 
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indicated. To have made this choice would have temporarily concealed the fact 

that in compiling Table 12.11 points lying outside the boundaries of the a 

displacement could have been produced and might have made the problem 

appear of a less fundamental nature than is in fact the case. 

Significant progress has now been made and it is perhaps timely to review 

the position reached. It has been seen that when non-primitive translations are 

combined with point group operations the combination does not lead to a group 

unless an additional restriction is placed on the group multiplication rules. This 

restriction only makes any sense in the context of crystals and so it is only in 

this context that these groups have meaning. Further, it was seen that whereas 

there is only one D2h point group, it is possible to create three more groups by 

adding non-primitive translations (these are those listed in Table 12.9). So, it is 

reasonable to expect many more non-symmorphic space groups than symmor- 

phic. While this expectation is justified, an important restriction working in the 

opposite direction must be noted. This is that by invoking non-primitive 

translations in the definition of point group-derived operations, the correspond¬ 

ing primitive translation has automatically been defined. Yet, as has been seen 

in Figure 12.7, the definition of the non-primitive Bravais lattices of a 

particular crystal system requires a different choice of primitive translation 

vectors to that appropriate to the primitive lattice. This variation of choice is in 

potential conflict with the rigidity imposed by combining non-primitive 

translations with point group operations. In particular, for none of the so-called 

non-primitive Bravais lattices do the primitive translation vectors form an 

orthogonal (mutually perpendicular) set. For there to be an association of non¬ 

primitive translations with point group operations perpendicular axes tend to be 

required (more on this later). So, the majority of non-symmorphic space 

groups are associated with primitive lattices. Of the 157, 113 are primitive and 

only 44 non-primitive, notwithstanding that there are equal numbers of 

primitive and non-primitive Bravais lattices. 
As an example of the consequences of there being two point group 

operations associated with non-primitive translations consider Choice 2 of 

Table 12.9. Following the pattern set by the previous example, in Figure 12.12 

a diagram is shown which indicates how an original point is transformed when 

it is operated upon by the set of operations of Choice 2. The screw axes have 

been taken as along x and y and their intersection has been chosen as origin. 

Perhaps predictably, 2(z) is displaced from this origin by translations along 

two axes, by a/4 and b/A (in the previous example where there was just a 

single screw axis it was displaced by translation along a single axis). Again, as 

in the previous example, it could have been arranged that all transformed 

points fall within the bounds set by the primitive translation units shown in 

Figure 12.12, a and b. This could have been achieved by placing both the 

identity point, [x,y,z], and 2(z) in the lower left-hand quadrant. A less 

comfortable arrangement has, in fact, been chosen in which all generated 

points (indicated by empty circles) fall outside the a, b bounds, safe in the 
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Figure 12.12 Transformations of the point [x, y, z] produced by the operations 2,(*), 
2, (y) and 2(z) of Choice 2 (corresponding to the space group P22,2!). In this figure, as 
in Figure 12.11, the transformed points are indicated by empty circles. However, in 
addition, the corresponding points moduli primitive translations are shown (as stars). In 
each case they are labelled with the same operation as that containing the primitive 

translations. 

knowledge that the ‘moduli primitive translations’ requirement means that there 

are equivalent points within these bounds; the latter have been indicated by 

stars in Figure 12.12. The actual coordinate changes associated with Choice 2 

are shown in Table 12.12, which, like Table 12.11, is compiled with the 

operation in the left-hand column operating on the coordinates implied by the 

entry in the first row. 

Table 12.12 

Choice 2 E 2,0) 2,0) 2(z) 

E x* y> z O/2 + 0, -y, -z '-x, 0/2 + 0, -z -0/2 + 0, 0/2 - 0, z 
2,(0 (a/2 + x), -y, -z O + x), y, z (a/2 - x), -O/2 + >0, z (-x, -0/2-0. -z 
2,00 -x, (b/2 + y), -z -0/2 + 0, 0/2-0. z x, o + r), z 0/2 + 0, (b-y), -z 

2(2) -O/2 + O, (b/2-y),z -(a + x), (b/2 + y), -z -(a/2-x), -y, -z at, y, z 

Problem 12.12 Check Table 12.12. 

The entries in Table 12.12 may be compared with the coordinates of Figure 

12.12; again, it is only the nine entries in the bottom right-hand square that are 

of interest. The differences are shown below: 

a a- b -b 

0 b b 

-a -a 0 
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Again, all the differences are an integer number of primitive translations so 

that, again, if multiplication is made moduli primitive translations a group is 

obtained. This exercise could be repeated for Choice 3 of Table 12.11—but the 

general pattern is clear. Figure 12.13 gives a figure appropriate to Choice 3. No 

2i(x)[(§+x),-y,(f-z)] 

Figure 12.13 Transformations of the point [x, y, z] produced by the operations 2, (x), 
2,(y) and 2,(z) of Choice 3 (corresponding to the space group I^^,). Note the 
way that a 2, axis is conventionally shown when viewed end on [the 2,(z)]. In this 
figure, to emphasize that a primitive translation does not have to be chosen to be 
symmetrically placed with respect to symmetry elements, one has been chosen 
asymmetrically placed. 

screw axes intersect and, really, the diagram should have an indication of the 

out-of-paper translation distance, c. In a table of coordinate transformations 

and, derived from it, a box of differences akin to those earlier, entries in units 

of a, b and c would be found—the moduli primitive translation requirement to 

obtain a group would still hold. 

Problem 12.13 Carry out the above exercise for Choice 3 of Table 

12.9. 

The next step is to explore the compatibility relationships between the four 

choices of Table 12.9 and the orthorhombic Bravais lattices. Table 12.3 shows 

that there are four of these lattices, the primitive, the one-face-centred, the 

body-centred and the all-face-centred. Clearly, the primitive lattice presents no 

compatibility problem. In all of the three additional choices that have been 

considered, the axes chosen (in some cases there was no choice) were all 

mutually perpendicular. So, too, are the translation vectors which characterize 

the primitive orthorhombic lattice and so it is concluded that the following 

three space groups all exist: 

P222j P2! 2,21 P2,2,2 
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A word about notation is needed. The initial ‘P’ indicates a Primitive lattice. 

Following are three symbols which indicate, in order, the rotation axes 

associated with the x, y and z axes. The reason that the 2, comes last in the first 

symbol (and the 2 last in the second) is the convention that the z axis is unique, 

when a choice exists. For completeness, the corresponding symmorphic space 

group is P222 (it was not given earlier to avoid the simultaneous introduction 

of space group notation and Hermann-Mauguin). Although it is the 

Hermann-Mauguin notation which is almost invariably used to define space 

groups, there is a Schonflies alternative. The above three groups, for instance, 

are D\, D\ and D\ respectively (P222 is D\) where the superscript is simply a 

running number. 
Next, the one-face-centred Bravais lattice. Following the convention that z is 

unique, the face that is chosen to be centred is that perpendicular to this axis. It 

is denoted C, as opposed to A and B which would characterize the other 

possibilities. So, the question to be answered is ‘which of the following exist?’: 

C222 C222, C2X2X2 C2X2X2X 

Clearly, the first presents no problems—it was included when counting the 

symmorphic space groups (Table 12.7). What of the others? Here the guiding 

principle is that lattice and ‘point group’ (quotes are used to indicate that this is 

a convenient, but not quite correct, term) must be mutually compatible. They 

will be incompatible if, for example, one requires that the primitive translation 

vectors all be perpendicular when the other requires that one pair are not 

perpendicular. Now, as Figure 12.7 shows, the translation vectors that define 

the one-face-centred orthorhombic lattice are not all mutually perpendicular (p3 

is perpendicular to p, and p2 but this pair are not mutually perpendicular—if 

they were, a tetragonal lattice would result). So, while p3 could be associated 

with a 2, axis, the other two could not. That is, a space group C222! is 

expected but not C2X2X2 or C2l2l2l —these last two require that two and three, 

respectively, of the primitive translation vectors defining the lattice be oriented 

along twofold axes of the Bravais lattice, but, as has been seen, only one is. 

Similarly, as Figure 12.7 also shows, none of the primitive translation vectors 

defining the all-face-centred orthorhombic Bravais lattice (denoted F) is 

directed along twofold axes (these latter are in the directions of x, y and z in 

Figure 12.7). It follows that none can be associated with 2, screw axes and so 

the three following space groups have an incompatibility between the ‘point 

group’ and the Bravais lattice and do not exist: 

F222, F2,2,2 F212,2, 

Of course, the space group F222 exists for here there is no requirement that the 

twofold axes and primitive translation vectors coincide. Parallel arguments 

apply to the body centred-orthorhombic lattice, also shown in Figure 12.7. This 



THE SPACE GROUP P2,/c (C2sh) 283 

lattice is conventionally labelled I; it is concluded that the following space 
groups do not exist: 

1222, 12,2,2 12,2,2, 

As expected, the first two do not exist; unexpectedly however. International 

Tables list 12,2,2,! The reason is that this is the name conventionally given to 

one of the space groups mentioned earlier in a footnote (page 270).| It is a 

space group derived from D2 in which the three twofold axes are retained but 

the non-symmorphic nature of the group is manifest in that none of them 

intersect; the translational components are manifest in that the twofold axes are 

all displaced by \ translations perpendicular to the direction of the twofold axis. 

Each twofold axis is associated with a non-primitive translation but it is not 

such as to generate a screw axis (despite the label given to the group).$ There 

is only one other space group of this type—the cubic group conventionally 

labelled 12,3. 

In this section, it has been shown how to obtain all of the space groups that 

are derived from the combination of the elements of the point group D2 (and 

its derivatives) with the relevant Bravais lattices. The principles used are 

general and so the reader should be in a position to apply them to any such 

combination and thus to understand the origin of each and every space group. 

No doubt, there will be problems of detail which will be encountered but the 

broad principles are in place. The major omission is that none of the examples 

considered contains a glide plane. This omission is remedied in the next 

section, where the most commonly encountered space group, P2,/c, is studied. 

12.7 THE SPACE GROUP P2 Jc (C^h) 

The first and most obvious question when one encounters the symbol P2,/c 

(pronounced ‘pee two one over see’) is ‘what does it mean?’. The P and 2, 

should present no problems—a primitive lattice in some as yet uncertain 

crystal system but which certainly contains a twofold rotation axis which, in 

this space group, has become a 2, screw. This group is derived from the C2h 

point group, which means that there must be a 1:1 correspondence between the 

operations of C2h and the point-group derived operations of P2,/c, just as 

exemplified earlier for the case of the D2 point group. In P2,/c the C2 (2) of 

C2h is replaced by a 2, and the o mirror plane is replaced by a glide. At the end 

of Section 12.4 and in Appendix 6 it was seen that the C2h point group in the 

Hermann-Mauguin notation is represented as 2/m (the symbol /m indicating 

t It can be argued that the use of the label 12,2,2, is not ideal. 
J The diagram given in International Tables shows 2, screw axes but these arise from the 
doubling of the group (as indicated by the I symbol). 
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that the mirror plane is perpendicular to the 2 axis). At the beginning of Section 

12.5 it was recognized that a, b and c glides exist,,indicating half primitive 

translations in the direction of the x, y and z axes respectively. At that point 

there was no discussion of how the existence of these glides is incorporated 

into the symbolism. The answer is that the letters a, b or c replace the min 21m 

so that one talks of 2/a, 2/b and 2/c (all of which are groups provided the 

moduli primitive translation requirement is applied to the group multipli¬ 

cation). When combined with a primitive lattice these point groups give the 

space groups P2Ja, P2Jb and P2,/c, where, following convention, the 

symbol is written on a single line, and not in bold type. These three are not 

different space groups; the only way they differ is in the choice of axis 

labels—indeed, there is fourth equivalent choice which is quite often used in 

crystallography, it is P2Jn, where the ‘n’ indicates a translation involving half- 

translations along two coordinate axes. In this case it is more than a choice of 

axis labels which is involved, it is a change of axes (so that, for example, an 

axis is chosen which lies between the ‘original’ x and y). This may seem rather 

obtuse but, in fact, such a choice can be crystallographically convenient. Care 

has to be taken, however. In the symbol which corresponds to the crystallogra- 

pher’s ‘standard’ setting, P2,/c, the 2, axis is the y axis, not the z which would 

be conventional in C2h. One other point, in that the ‘parent’ point group is C2h, 

there must be a centre of symmetry somewhere, because C2h contains one. In 

the non-symmorphic space groups P2Ja, P2Jb and P2,/c this centre of 

symmetry is displaced out of the (former) mirror plane by one quarter of a 

primitive translation. This may seem rather complicated but Figure 12.14 

should clarify the situation; the space group shown there is P2,/c. The 

displacement of the centre of symmetry is related to, but a bit more convoluted 

than, that in the example discussed at the end of Section 12.5. 

In Figure 12.14 the coordinates generated by the symmetry operations of the 

2,/c group (moduli primitive translations, of course) are shown. The reader 

will find it very useful practice to work through the generation of these. In 

Figure 12.15 is shown the diagram that appears in International Tables for the 

P2,/c space group; its connection with Figure 12.14 should be evident. There 

may appear to be too many screw axes, glides and centres of symmetry in 

Figure 12.15—after all, the correspondence with C2h discussed above requires 

one of each. Any one of each sort of symmetry element may be selected from 

Figure 12.15—all of the others are then such that the corresponding operation 

is equivalent to the selected one plus a translation (always a primitive 

translation although possibly a sum of them). One final point; there is no space 

group C2,/c. The reason should be obvious from the earlier discussion and 
Figure 12.7. 

Problem 12.14 Make a copy of Figure 12.14 but excluding the 

coordinates of each point. Without reference to the original until the task 

is completed, add coordinates to your copy of Figure 12.14. 
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Figure 12.14 Pictorial perspective representation of the symmetry elements of the 
space group P2,/c. The centre of symmetry is here represented by the open six-point 
star; note its displacement from both the 2, and the glide plane. The glide operation is 
shown divided into two components; the act of reflection leads to the solid star; the end 
product of the complete operation is shown, as usual, by an empty circle. 

S f S 

Figure 12.15 The diagram given for the space group P2,/c in International Tables 
(viewed down the y axis). Note the way that the glide plane is b/4 above the plane 
containing the centre of symmetry is represented (top left-hand comer). Centres of 
symmetry are conventionally represented by circles, as here beware confusion with a 
different use for this symbol in Figures 12.10-12.14. In this diagram nine such centres 
of symmetry are shown but they differ only in the way that they add translations to the 
basic operation of inversion in any one of them. In this diagram the origin is taken as at 

the top left-hand comer. 
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12.8 UNIT CELLS 

In the early part of this chapter care was taken to avoid use of the term ‘unit 
cell’. Later, and particularly when space groups were discussed, it crept in, 
although its use was kept to a minimum. The name is so simple and useful that 
it cannot long be avoided. Why then should it be so assiduously avoided in the 
present text? The reason is that the concept of a unit cell is more complicated 
than one might suppose and it is preferable to avoid basing arguments on an 
unknowingly simplified concept. Where, then, lies the problem? The answer is 
that for no crystal structure is there a unique unit cell. Indeed, quite the 
opposite. For every crystal stmcture there is an infinite number of acceptable 
unit cells, all primitive (of course, crystallographers will prefer non-primitive 
unit cells for some structures). This infinite choice is important—it is the 
reason for including this section—but it should be contrasted with the common 
use of the expression ‘the unit cell is ’in research papers and textbooks when 
referring to individual crystal structures, a statement that by the use of the ‘the’ 
implies that only a single choice exists for a unit cell. Of course, the use is 
justified in that for one reason or another there is often a single convenient 
choice, but it is important not to overlook the possibility that for a different 
purpose a different choice might be preferable. 

In Figure 12.6 a two-dimensional grid is shown that might be one layer in an 
orthorhombic lattice. The figure shows several alternative choices of two- 
dimensional unit cells, all of the same area but differing in shape. Clearly, a 
similar set of constructions is possible in the third dimension of an 
orthorhombic (or any other) lattice. For each of these constructions an infinite 
number of variants exist, at least for an infinite lattice (and on the atomic 
length-scale the lattice of a real crystal is, effectively, infinite). It is easy to see 
that there is an infinity of choices of unit cell. But this discussion has been too 
restrictive! Yet more choice exists. First, it has unquestioningly been accepted 
that unit cells should be bounded by plane faces. Again, this is a choice of 
convention and convenience; it is not a requirement. The faces of a unit cell 
can be curved, dimpled, re-entrant, whatever. There is one requirement on a 

Figure 12.16 Six different equally acceptable (although not necessarily equally 
convenient) choices of two-dimensional unit cell for the two dimensional lattice shown. 
All of the choices have identical areas. Clearly, there is an infinite number of 
acceptable choices. Similar considerations apply to the three-dimensional case. 
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unit cell; that when repeatedly operated on by the primitive translation vectors 

it generates the entire crystal (or crystal lattice, depending on the context). One 

context where it might often be sensible to choose a curved unit cell is in the 

presentation of the results of a crystal structure determination. It is all too 

common to find in diagrams of a unit cell of a crystal structure that part of a 

molecule is in one unit cell and part in an adjacent one. In such cases a single 

molecule appears as two or more fragments, with no chemical bonds between 

the fragments shown—because they are parts of different molecules. In such a 

case, if unit cells are needed, it would be sensible to define their boundaries in 

such a way that they envelop a complete molecule; however, such boundaries 

would have to be curved and, at present, this is not computationally 
convenient. 

Problem 12.15 Draw a diagram similar to that in Figure 12.16 but with 

all unit cell edges curved. 

The second reason that our statement that there is an infinite variety of 

choice of unit cell was too restrictive lies in the fact that all the unit cells 

considered had one thing in common; they were each bounded by three pairs of 

parallel faces. Even if we restrict ourselves to plane faces, a unit cell can have 

many more than three sets of parallel plane faces. Indeed, if one were to select 

one choice of unit cell as being preferred to all others then it would generally 

be one with many facets, many faces. After all that has just been said about 

unit cells this is a strange message, that one choice of unit cell is to be 

preferred, made the more so by the fact that it so obviously is at variance with 

that which is familiar to chemists—the unit cells of crystallographers. 

Problem 12.16 Repeat Problem 12.3—the answer should be longer this 

time! 

12.9 WIGNER-SEITZ UNIT CELLS 

Wigner-Seitz unit cells are essential to a full understanding of the solid state. 

This is because Brillouin zones, which are at the heart of solid state physics, are a 

sort of Wigner-Seitz unit cell.f The construction of Wigner-Seitz unit cells is 

perhaps best explained in a somewhat unreal, anthropomorphic, way. Suppose 

the reader is reduced to the dimensions of an atom and is standing at a lattice site 

(alternatively, that the lattice is so enlarged that a person can stand inside it). 

From the chosen lattice site draw lines to all other (equivalent, of course) lattice 

sites. The chosen lattice site bristles with lines, rather like a curled up 

hedgehog/porcupine. Now, exactly halfway along each line, construct a plane 

i' xhe development of Brillouin zone theory is not given in the present text, the author has written 
about it elsewhere in a manner which is entirely compatible with the present discussion (see 
S. E A. Kettle, Coordination Compounds, Spektrum (Freeman), Oxford, 1995), Chapter 17. 
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Figure 12.17 (a) The Wigner-Seitz unit cells of three lattices that are conventionally 
denoted ‘primitive’. As shown by the upper two (tetragonal and orthorhombic), the 
Wigner-Seitz unit cells ‘look the same’ as the conventional unit cells, although they 
differ in that a lattice point occurs at the centre, not at the comers. For the hexagonal 
lattice (bottom) there is a different shape because the Wigner-Seitz unit cell has eight, 
not six, faces. The hexagonal lattice shown is primitive, despite first appearances; the 
conventional unit cell does not show the hexagonal symmetry in an immediately 
apparent way (although it has sides of equal length and angles of 120°). Reproduced by 
permission of the Journal of Chemical Education from Kettle and Norby, J. Chem. 
Educ., 71 (1994) 1003. 

perpendicular to the line; it is perhaps helpful to think of these planes as being 

rather solid. Standing at the chosen lattice site, and forgetting the lines used in 

their construction, the reader will be surrounded by the planes originating from 

the shortest lines, those running to the nearest lattice points. These planes will 

intersect and, although the planes themselves run to infinity, all that will be seen 

is the box formed by their intersection immediately around the chosen lattice 

point. On the real, atomic, scale, this box is the Wigner-Seitz unit cell of the 

lattice. In Figure 12.17 examples of Wigner-Seitz unit cells are given. Note 

several things. First, a Wigner-Seitz unit cell, by its very construction, contains 

only a single lattice point; all Wigner-Seitz unit cells are primitive. Third, the 

number of faces of a Wigner-Seitz unit cell is determined by the number of 

neighbours and their disposition in space. As we will see, it is not unusual for a 

Wigner-Seitz unit cell to have a dozen or so faces—and this is not unreasonable. 
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(b) 

Figure 12.17 (b) The Wigner-Seitz unit cells of some lattices that are conventionally 
denoted ‘centred’. The top two are both Wigner-Seitz unit cells of the body-centred 
tetragonal lattice and illustrate the way that the qualitative shape of the cell can depend 
on an axial ratio. The bottom two are (left) of the face-centred cubic and of the body- 
centred cubic (right). Note that all of the unit cells of (b) show the symmetry of the 
corresponding lattice (D4h or 0h). Reproduced by permission of the Journal of 
Chemical Education from Kettle and Norby, J. Chem. Educ., 71 (1994) 1003. 

After all, each sphere in an array of close-packed spheres has twelve nearest 

neighbours. Fourth, each Wigner-Seitz unit cell has the symmetry of its crystal 

system. That is, whereas the primitive unit cells of centred lattices shown in 

Figure 12.7 all had symmetries lower than those of their crystal systems—these 

are listed in Table 12.2—and is the reason that crystallographers prefer to work 

with centred unit cells, all of the cubic Wigner-Seitz unit cells are of Oh 

symmetry, for example. 
What makes the Wigner-Seitz unit cell unique? Two things. First, it is the 

only choice of primitive cell which invariably has the point group symmetry of 

its crystal system. Second, because it has a property shared by no other choice 

of unit cell, a property that is evident from its construction. This is that it 

contains all (general, not lattice) points in space that are closer to the chosen 

lattice point than to any other lattice point. This is an important property. 

Suppose, for instance, that some spectroscopic property of a crystal is studied; 

the particular form of spectroscopy is unimportant. It is possible that the 

spectrum obtained would show evidence of interaction between individual 

atoms/bonds/molecules (depending on the particular spectroscopy) and their 
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environment. In order better to understand the spectrum, one might attempt to 

calculate the interaction between a given atom/bond/molecule and every other 

in the crystal. Even with the fastest and most powerful of modem computers, 

this is a near-impossible task, one that would exhaust any research budget. As a 

compromise, it might be decided to carry out calculations of the interactions 

between the given atom/bond/molecule and all those others with which it + 

interacts more strongly than does any other equivalent atom/bond/molecule 

(because these are likely to be the most important interactions). Which, then, 

are the atoms that have to be considered? The answer is simple. All those 

contained within the Wigner-Seitz unit cell which has the atom/bond/ 

molecule at its centre. The only assumption contained within this statement is 

that the magnitude of the relevant individual interactions decreases with 

increase in separation between the interacting centres, as do all interactions of 

recognized chemical importance. There are more than 14 Wigner-Seitz unit 

cells because although in principle there is one for each different Bravais 

lattice, the actual shape of a Wigner-Seitz unit cell depends on an axial ratio. 

In a primitive tetragonal lattice, for instance, does the unique translational 

vector have a magnitude which is greater or less than the magnitude of the 

other two translational vectors? The symmetry of the Wigner-Seitz unit cell is 

D4h in both cases but the cells look qualitatively different. In total, there are 24 
different-looking Wigner-Seitz unit cells. 

12.10 SUMMARY! 

Although there are only seven crystal systems there are 14 associated Bravais 

lattices, all of which are centrosymmetric (pp. 248, 256). Corresponding to each 

crystal system there is a set of point groups which may describe the symmetry- 

distinct arrangements of molecules in space compatible with the crystal system 

(p. 261). The symmorphic space groups are obtained as the combination of all 

Bravais lattices and all crystallographic point groups of each crystal system, due 

allowance being made for alternative orientation arrangements (p. 264). The non- 

symmorphic space groups are similarly obtained but for each there is a non¬ 

primitive translation associated with one or more point group operations and/or 

with the relative disposition in space of the corresponding symmetry elements 

(such a movement of a symmetry element automatically changes the translation 

component contained in the associated operation) (p. 270). For any crystal there 

is only one choice of lattice but an infinite number of choices of unit cell. Of 

these, the Wigner-Seitz unit cell invariably shows the symmetry of the crystal 
system (287). 

t Two of the topics in this chapter are dealt with in more detail in ‘Really, your lattices are all 
primitive, Mr Bravais’, S. F. A. Kettle and L. J. Norby, J. Chem. Educ., 70 (1993) 959, and ‘The 
Wigner-Seitz unit cell’, S. F. A. Kettle and L. J. Norby, J. Chem. Educ., 71 (1994) 1003. 
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Spectroscopic Studies of Crystals 

13.1 TRANSLATIONAL INVARIANCE 

The discussion in Chapter 12 contained two contributory components—that 

coming from the lattice and that coming from the crystallographic point group. 

It was the admissible combinations of these components which are manifest in 

the 230 space groups. However, the discussion was rather different from that in 

other chapters of this book in that there was no mention of a character table, 

only of symmetry elements and operations. In progressing towards the 

introduction of character tables into the discussion there are, again, two distinct 

approaches which may be adopted, that through the lattice and that through the 

crystallographic point group. The former is appropriate to solid state physics, 

leading to the development of band theory; relevant to the electronic energy 

level patterns in solids. The latter is more appropriate to spectroscopic studies 

of solids and since spectroscopy has been a theme of earlier chapters it is the 

one which will be followed here.f A major distinction between the two 

approaches arises because there is, effectively, an infinite number of translation 

operations in the translation group of the lattice but the crystallographic point 

group is finite. The full space group contains, in some way, both the translation 

group and the point group. Whichever approach is followed, one should really 

be working with the full space group and its character table and so the 

relationship between this group and the group actually used becomes of 

importance. There are two aspects to this relationship—the mathematical and 

the physical. Although both are important it is arguable that the latter has the 

greater importance. Unless a mathematical relationship has some physical 

significance it remains nothing more than an elegant irrelevance. First then, it is 

necessary to look at spectroscopic measurements on crystals in the large, in 

order to discover those aspects which enable mathematical simplifications. 

The most general and relevant aspect of spectroscopic measurements on 

crystals is that of scale. A typical translation vector in a crystal relating adjacent 

equivalent points has a magnitude of a few Angstroms (this is a quantity which 

would normally be quoted as the length of a unit cell edge). In contrast, the 

wavelength of visible radiation is of the order of a few thousand Angstroms. In 

the infrared the wavelength is much longer and even in the vacuum ultraviolet 

fThe author has given an account of the translation group approach elsewhere, in Coordination 
Compounds (Spektrum (Freeman), Oxford, 1995), Chapter 17. 
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it is a few hundred Angstroms. Only for X-rays does the wavelength of the 

radiation become comparable to or smaller than the length of a typical 

primitive translation vector in a crystal. This is relevant to the classical 

explanation of the interaction of light with matter given in Section 10.4. There, 

typically, the electric vector of an incident light wave was seen as inducing a 

transient charge displacement in a molecule. This charge displacement changes 

sign with the oscillations of the electric vector; when these oscillations coincide 

with a natural frequency of the molecule then resonance occurs, typically with 

transfer of energy to the molecule. This picture carries over, unmodified, into 

the spectroscopy of crystals. However, it can be enlarged by recognition of the 

inequality between the wavelength of the incident radiation and the magnitude 

of a typical primitive translation vector. In a crystal, molecules which are close 

to each other and related by pure translation operations will experience 

essentially the same incident electric vector originating in the light wave. The 

fact that different molecules are related by a pure translation ensures that they 

have precisely identical orientations with respect to the incident light wave 

(ignoring any small imperfections in the crystal). To a first approximation, 

then, for all common spectroscopies the interaction of light with a crystal is a 

translation-independent process. Translation-related molecules behave in the 

same way; such translations can therefore be ignored. If a proper account can 

be given of the behaviour of a single molecule then that of all of its 

translation-related counterparts follows. The same cannot be said of molecules 

that are related by point group operations (or composite operations with a point 

group component). A 2 (C2) rotation, for example, ‘turns a molecule over’ so 

that two molecules interrelated by a 2 (C2) would experience precisely 

opposite transient dipoles induced by the electric vector of a light wave. For 

two molecules interrelated by a 2, screw operation, the 2 would ensure that the 

induced dipoles are out-of-phase; the non-primitive translation component of 

the operation would be irrelevant for the reasons given above. The conclusion 

is that ‘the only important aspect of solid state symmetry which is relevant to 

spectroscopy is that contained in the crystallographic point group’. Even if the 

actual ‘point’ group is a derivative of a real point group (if the actual ‘point’ 

group contains non-primitive translation operations, as discussed in Chapter 

12), then it still will be possible to work in one of the 32 crystallographic point 

groups. This, then, is the physical picture. Can it be given a more formal, 

mathematical, justification? The answer is ‘yes’; indeed, more than one such 

formal justification exists. The different justifications are those associated with 

different models—in particular the unit cell group model and the factor group 

model. Fortunately, these models invariably lead to identical predictions 

although the latter is perhaps the closer related to the detailed discussion above. 

The next section is devoted to these models. One final word about the physical 

picture. The content of the present chapter is based on the assumption that there 

is an interaction between the molecules in the crystal under study. If they 

behave as isolated individuals then there are no spectroscopic complications 
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arising from the fact that the solid state is involved. Indeed, quite the opposite. 

The molecules may behave as if they were in the gas phase (where there 

certainly would be no molecule-molecule interactions) but they are, however, 

fixed in a crystal and this means that, in contrast to the gas phase, they are fixed 

in their orientations. This is a topic discussed at the end of Chapter 10, where it 

was pointed out that this can mean a change in the spectral bands excited as the 

orientation of the crystal is changed (provided that oriented, polarized, 

radiation is used). This, so-called oriented gas model will not be discussed in 

detail although it should be emphasized that it can well happen that it is 

applicable to some spectral bands arising from a crystal—but that one of the 

models to be covered in the next section has to be used for others. This is 

because, for instance, some vibrational modes of a molecule may be well 

insulated from those of the surrounding molecules but other vibrational modes 

of the same molecule are not. A vibration which changes the dipole of a 

molecule is more likely to be coupled with the same vibrations of other 

molecules than is a vibration which is, say, quadrupole active because 

dipole-dipole coupling attenuates less rapidly with distance than does 

quadrupole-quadrupole. Another possibility is that a molecule is sensitive to its 

general environment but, none the less, is insulated from specific interactions 

with other molecules. It is sensitive only to the symmetry of the site in the 

crystal at which the molecule is situated. Almost always, this site is of lower 

symmetry than that of the isolated molecule and so the site symmetry model is 

characterized by the relief of degeneracies and by the increased strength (and, 

perhaps, the appearance) of transitions forbidden in the isolated molecule. The 

first task of any analysis is to determine which model is appropriate for each 

spectral feature. An example of the application of the oriented gas and site 

symmetry models will be given later in this chapter. 

13.2 THE FACTOR GROUP AND UNIT CELL GROUP 
MODELS 

In this section, as in the previous, it is convenient to talk in terms of 

‘molecules’, although in the appropriate context the discussion could equally 

well apply to atoms or to ions. The first approach to be considered is the factor 

group model. Clearly, the first task is to define what is meant by ‘factor group’. 

In principle any group could have one or more associated factor groups. The 

character tables of factor groups are invariably simpler than those of the parent 

group to which they relatet—an attractive feature; for the case of space 

groups, the character tables of the corresponding factor groups are enormously 

fThis statement is true whenever a factor group is non-trivial. A few groups have only factor 
groups which are trivial, being identical to the parent group itself. In such cases the parent group 
is itself very simple, having no non-trivial invariant subgroup. 
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simpler. The concept of a factor group is closely linked to that of an invariant 

subgroup, a topic mentioned in a footnote in Section 4.3 and dealt with more 

fully in Section 8.1. In the latter section it was shown that when a group is the 

direct product of two invariant subgroups then its character table is the direct 

product of the character tables of those of the two invariant subgroups. The 

particular case considered was a demonstration that the point group C2v is the 

direct product of the groups C2 and Cs. Let us consider this case again; Table 

8.3 is particularly relevant. We have that: 

C2 ® Cs = C2v 

(remember, the symbol ® is used to indicate a direct product). In full: 

{E C2}®{E o} = {E C2 av o'v) 

The left-hand side of this expression can be written differently: 

{E[E o] C2{E a}} 

Written in this form, one sees a generality; the ‘inner’ group {E a] could be 

varied without changing the general form of the expression. Alternatively, in 

this particular form of the expression, it can be regarded as a constant which 

multiplies both the E and the C2. As a constant, it is playing the role of an 

identity element. The group [E[E a] C2{E a}} is said to be the factor 

group of C2v with respect to the group [E o}, the group which plays the part 

of an identity element. It is most important that the character table of the factor 

group is that (really, is isomorphic to that) of C2. This is a simple, almost 

trivial, example of a factor group. Some meaning would be attached to it if it 

were possible to make some measurement on a molecule of C2v symmetry, the 

result of which was independent of the av and o\ operations (but the author, 

despite some effort, can only think of highly contrived examples!). The result 

would depend only on the E and the C2. In such a case, the factor group above, 

a group isomorphic to C2, contains all of the relevant information. One could 

work in the full group but to do so would be to add nothing new. 

The situation is quite different in the solid state. As discussed in the previous 

section, to a very good approximation, spectroscopic phenomena are indepen¬ 

dent of the translation operations. Effectively, all measurements concern 

transitions which transform as the totally symmetric irreducible representation 

of the translation group. A detailed study of the way that these phenomena 

transform under the translation operations is therefore not of any value. 

Further, the translation group is always an invariant subgroup of the full space 

group. It is therefore possible to form a factor group of the space group with 

respect to the relevant translation group (the detailed operations of which are 

therefore not of concern). So important are these factor groups that they are 

simply referred to as ‘the factor group’ (of a particular space group). Just as 

each and every space group is different so, too, are the corresponding factor 

groups. Sometimes, the difference will lie in the details of the translation group 
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and so not be evident. More evident will be the relationship between the group 

of the point group-derived operations and the corresponding crystallographic 

point group. These will adopt the form described in the previous chapter for the 

D2 group (Cases 1, 2 and 3) and for C2h (the space group P2,/c). In practice, 

one works with the character table of the relevant crystallographic point group. 

It is necessary to make the correct substitutions (of 2, for 2, for example) and 

it is here that International Tables of Crystallography prove invaluable,f 

although they do not contain the character tables themselves. A word of 

consolation. Those accustomed to working with point groups and not with 

factor groups may well find the prospect of handling screw rotations and glide 

planes somewhat daunting. In contrast, those accustomed to working with 

factor groups welcome the appearance of screws and glides! The reason is that, 

almost invariably, the character generated under such operations is zero, no 

matter the problem under discussion.! An example of the use of a factor group 

in a vibrational analysis of a solid is given in the next section. 

Apparently quite different from the factor group approach is the unit cell 

model. In this, the problem of the translation operations is dealt with by the 

simple expedient of ignoring them! The justification for this simplification is 

that given in the previous section—that the spectroscopic phenomena under 

consideration are translation-independent. The method consists of considering 

a unit cell of the crystal and the operations which interrelate the molecules that 

it contains. These operations are taken to be moduli primitive translation and so 

of the type considered in the last chapter for the D2 point group and the P2, /c 

space group. Any operation that takes an object out of the unit cell is held to 

bring it back again through the opposite face (so, if it disappears through the 

top face, it reappears through the bottom—where the operation is completed). 

The unit cell method ends by using the same mapping of crystallographic point 

group operations onto their space group derivatives as does the factor group 

and so the two methods lead to identical results. Of the two, possibly because 

of its more evident connection with the results of crystal structure determina¬ 

tions, the unit cell method is perhaps the more popular. It has to be recognized, 

however, that it suffers from two potential weaknesses. The first is that it gives 

undue prominence to a particular choice of unit cell. As has been emphasized, 

there is an infinite number of choices of acceptable unit cell for any crystal. A 

t But beware the problem of centred unit cells in International Tables. Because the size of the 
unit cell is increased so, too, is the number of point group-derived operations which interrelate 
points within the unit cell—a doubled unit cell means a doubling in the number of operations and 
so on. The ‘extras’ are really translation operations masquerading as point group-derived 
operations, appearing as glides and screws. In looking for the correct set of point group-derived 
operations (strictly, a set which multiply correctly, as described in Chapter 12) pure point group 
operations should always be retained in preference to derivatives containing a non-primitive 
translation component. 
% The exceptions to this statement are few. A long polymer chain, aligned along a screw axis, in 
which one monomer unit is related to the next by the screw operation, is one such exception. For 
instance, in such a molecule a vibration could map onto itself under the screw operation. 
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particular choice of cell invites statements such as ‘because in the unit cell they 

are well separated ...’, which are strictly unacceptable. Acceptable alternatives 

are along the lines ‘because in the crystal they are well separated Second, 

it is usual for the crystallographically determined unit cell to be used in the unit 

cell model. This poses a problem when the crystallographic unit cell is centred 

because it is a primitive unit cell which has to be used in the unit cell 

model—and the method lays down no rules for moving from the centred to the 

primitive. Errors have appeared in the literature as a result. Authors have been 

known to work with the centred cell rather than the primitive (and so predict 

too many spectral features). Others, aware of the problem, have worked with 

the centred cell and simply divided the predictions by the relevant factor (those 

at the right-hand side of Table 12.3). Unfortunately, this procedure does not 

guarantee the correct answer either. An example of the use of the unit cell 

method is given in the next section. 

13.3 EXAMPLES OF USE OF THE FACTOR AND UNIT 
CELL GROUP MODELS 

As indicated above, in practice the factor group and unit cell group models lead 

to identical predictions. Indeed, despite the fact that they were developed rather 

differently in the previous section, someone looking over the shoulder of a 

spectroscopist might well have some difficulty in deciding which of the two 

was being used. The reason is that the development of the factor group model 

given above concentrated on how the translation group could be factored out of 

the problem. This having been agreed, the next step is to turn to the character 

table of the relevant crystallographic pointgroup—and this is the first step in 

the unit cell model also. The two methods differ in subtle ways, which relate to 

the nuances of their different models. In the following account, these 

differences will be slightly exaggerated. Further, since it was presented as a 

problem area above, the unit cell model will be applied to a crystal structure 

which, crystallographically, is treated as having a centred unit cell. 

13.3.1 The v(CO) spectra of crystalline (C6H6)Cr(CO)3 

While the effects which are the subject of this chapter may be found in all 

forms of spectroscopic measurements on crystals, they are more important in 

some forms than in others. Roughly, the more local the phenomena observed, 

the less important are the effects. So, in Mossbauer spectroscopy, where the 

excited states of suitable nuclei are probed, the phenomena are so local that, 

essentially, only the atoms bonded to the atom under study have any influence. 

On the other hand, if in a particular form of spectroscopy the spectral bands 

are very broad, the effects can be masked within the bandwidth. Many 
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measurements made in the visible and ultraviolet regions of the spectrum, 

where electronic transitions are studied, fall in this category. The solid state 

effects can be measured and studied but rather special conditions are often 

needed—low temperatures, single crystals together with polarized radiation 

and, perhaps, doping of the crystal with an isomorphous diluent. One of the 

spectroscopic areas in which the phenomena are easily studied is that of 

vibrational spectroscopy, an area which has the advantage that the reader may 

well encounter the relevant phenomena in the laboratory. Particularly attractive 

for study are transition metal carbonyl species. For these, the v(CO) modes are 

the particular concern. They fall in a region of the spectrum which is almost 

free from other modes, making assignment easy. They are associated with 

strong spectral bands, making measurement easy. They couple together rather 

strongly giving symmetry-determined modes, making interpretation easy.t The 

species which is the subject of this section, (C6H6)Cr(CO)3, crystallizes in a 

space group which is rather simpler than the P2,/c of Section 12.7—the space 

2i 2, 2, 

6' 

Figure 13.1 The crystal structure of the species (C6H6)Cr(CO)3; only the Cr(CO)3 
groups are pictured, with their perspective being exaggerated. A primitive unit is shown 
and consists of two molecules. The space group is P2 Jm (Clh) and the molecular site 

symmetry is Cs. 

f Easy it may be for simple species but, inevitably, research exploits this to enable the study of 
species which are complicated and the spectral interpretation no longer easy! 
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group P2,/m. There are two molecules in the primitive unit (‘in the unit cell’ 
would be the usual terminology). As the m in the P2, jm indicates, the space 
group contains mirror planes and the (C6H6)Cr(CO)3 molecules lie on these, as 
shown in Figure 13.1. This means that the site symmetry is Cs, in contrast to 
the molecular symmetry which is C3v. The factor group is isomorphic to the 
crystallographic point group, which is C2h (in P2,/m the C2 of C2h is ‘replaced’ 
by the 2,). In Figure 13.1 and in the following discussion, only the C^O 
stretching modes will be considered. 

Because the molecular symmetry is C3v, the prediction of the symmetries of 
the v(C = 0) stretching modes follows the discussion of Section 9.2, Ax+E 

modes being obtained. Section 10.4 shows that these modes are both infrared 
and Raman active. This isolated molecule model is also that of the oriented 
gas, leading to identical predictions. The oriented gas model differs from that 
of the isolated molecule because the former would recognize that the molecular 
C3 axes are almost exactly aligned along the crystal c (z) axis. This means that 
if a single crystal were studied then if the incident infrared radiation were 
polarized along z then only the A, mode would appear with any great intensity 
in the infrared spectrum. When polarized perpendicular to this axis, only the E 

mode would be seen. With suitable experimental arrangements, a similar 
separation could also be achieved in the Raman. Without these experimental 
data, the isolated molecule and oriented gas models both simply predict two 
bands, coincident in infrared and Raman.f 

The site group model is based on the fact that the molecules of 
(C6H6)Cr(CO)3 are symmetrically arranged with respect to the mirror planes 
of P2i/m. The three v(C = 0) vibrators of each molecule are therefore, 
collectively, in an environment of Cs symmetry. The relationship between the 
groups C3v and Cs was dealt with in Section 8.2 (Tables 8.5 and 8.6), from 
which it follows that the major effect of site symmetry is to split the degener¬ 
acy of the E modes of C3v. Spectral activities remain unchanged so the 
predictions of the site group model is for three infrared bands (two of which, 
the components of the split E mode, will probably be close together) and three 
Raman bands, coincident with those in the infrared. 

The factor group model will be dealt with in some detail. At the heart of the 
model is the fact that the translation operations can be ignored. Only the point 
group-derived operations isomorphous to those of C2h need be considered. The 
fact that it is the C2h point group which is relevant is evident in the alternative 
name given to P2,/m in International Tables—C2h, a symbol which includes 
the crystallographic point group. As mentioned in the previous chapter, the 
superscript 2 has no particular importance, it simply indicates that this space 
group is the second of the C2|1s listed in the Tables. The relationship between 

t A further distinction between isolated and oriented gas models is that there is an environment- 
induced frequency shift of spectral features from the isolated molecule to the oriented gas model. 
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the operations of P2, \m and C2h are: 

C2h E C2 i oh 

P2 Jm E 2, i m 

where, as before, a somewhat mixed nomenclature has been adopted for the 

operations of the crystallographic point group.t This means that the character 

table for the C2h (P2,/m) factor group can be derived from that given for C2h 

in Appendix 3 and is (conventionally, there is no reference to the translation 

group which has been4factored out’): 

cl„ E 2, / m 

1 1 1 1 2 2 2 x\y ;z;xy 
1 -1 1 -1 /?, ; Ry yz\ ix 

Au 1 1 - 1 -1 Tz z 

Ba 1 -1 - 1 1 Tx\ Ty x\y 

The next task is to use the six v(C = 0) vibrators of two (C6H6)Cr(CO)3 

molecules (Z, the number of molecules in the primitive unit, is 2) as a basis to 

generate a reducible representation. In doing this it has to be remembered that, 

for example, both of the mirror planes in Figure 13.1 are effectively equiva¬ 

lent. The act of reflection of an object in two different mirror planes in this 

figure will lead to results which differ only in primitive translations—and these 

have been taken out of the problem by the use of the factor group. As far as the 

point group component is concerned, the final results are identical. So, the fact 

that the two molecules shown in Figure 13.1 lie on two apparently different 

mirror planes is no problem; the mirror planes are treated as one. Alternatively, 

each M(C = 0)3 unit is reflected in the mirror plane on which it lies. From 

Figure 13.1 the reducible representation generated by the transformation of the 

v(C s O) vibrators is easily shown to be: 

E 2, i m 
6 0 0 2 

which has components 2Ag + Be + Aa + 2Ba.$ As the character table above 

shows, all of the modes with a g suffix are Raman active and all of those with a 

u are infrared. The factor group predictions are therefore for three infrared 

■)■ As noted earlier, in the Hermann—Mauguin notation the identity element is denoted by 1, a 
centre of symmetry is I. However, these are symmetry elements and in group theory it is 
operations that are relevant. Further, characters such as 1 and — 1 will be generated in the 
application of these operations. To avoid possible confusion, the Schonflies symbols E and i are 
therefore used to denote the operations. 
$ Note, as mentioned earlier, the character of 0 under the operation which contains a non- 
primitive translation component. This arises because such operations almost invariably interrelate 

molecules. 
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bands and three Raman bands, non-coincident with the infrared. The observed 

spectra are shown in Figure 13.2 and are entirely in accord with these 

predictions. In both infrared and in Raman, two bands are close together and 

identified as derived from the split E mode discussed under the site symmetry 

model above. The sequence of increasing complexity: 

Oriented gas model —> site symmetry model —> factor group model 

should not be taken as meaning that the applicability of a more sophisticated 

model automatically invalidates all of the conclusions derived from a simpler 

model. So, as here, the site symmetry model can help in the application of the 

factor group. 

Figure 13.2 A comparison of the infrared and Raman spectra of crystalline 
(C6H6)Cr(CO)3 in the v(C = O) region. Either the infrared or Raman on its own could 
be interpreted as a originating in the Ax+E modes of the isolated molecule (the E 
mode of the C3v molecule being split by the lower site symmetry, Cs). However, 
comparison of the two indicates a general non-coincidence, explicable only in terms of 
the factor group model. 

13.3.2 The vibrational spectrum of a M(C = 0)3 species 
crystallizing in the C2/c (C62h) space group using the 
unit cell model 

One of the simplest of the centred space groups is C2/c and this simplicity is 

why it has been chosen as an example; it provides sufficient generality for more 

complicated cases subsequently to be treated with some confidence. The 
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diagram that appears in International Tables for this space group is given in 
Figure 13.3. The C in C2/c indicates that it is the face perpendicular to the 
c (z) axis which is centred, the unique (twofold) axis being b (y) (because, as 
was mentioned in the previous chapter, this is the convention formonoclinic 
systems). As the alternative name for the space group, C\h, shows, the relevant 
unit cell group is C2h. The first question that arises is that of the relationship 
between the operations of the two groups. Figure 13.3 shows an immediate 
problem, one that has been mentioned previously—but largely in a different 
context and with a different explanation. Figure 13.3 contains too many 
symmetry elements. For instance, not only are there twofold rotation axes 
(shown as the arrows pointing along y) but, interleaving them, 2, axes (shown 
as half-headed arrows pointing in the y direction). As befits C2h, the glide 
planes are perpendicular to the twofold axes but, again, there are two sorts. 
Those shown dotted are glides in which the translation component is along c 

(out of the plane of the paper), as required by the /c in the name of the space 
group. Glides in which the translation contains both c and a components (one 
half of a unit cell edge in each case) are shown dot-dashed. There is no 
mention of these latter glides in the name of the space group. Finally, although 
less obvious, there are twice as many centres of symmetry as are expected (as 
careful comparison with Figure 12.15, showing P2,/c, C2h, will confirm). 
These doublings result from the fact that Figure 13.3 contains two primitive 
units, units which are interrelated by a pure translation operation. If, as is 
convenient for crystallographers. Figure 13.3 is regarded as containing a single 

unit cell then this pure translation has to be combined with point group 
operations if the symmetry-relationship between all points is to be recognized. 
Hence the doubling. The ‘extras’ are indicated by the fact that they contain 
extra translation components compared with their genuine counterparts. So, the 

Figure 13.3 The diagram for the space group C2/c that appears in International 
Tables of Crystallography. The translation vectors multiples of which generate the 
entire crystal from this unit cell have been added (that out-of-the-plane has been shown 
in symbolic fashion; actually, it is not perpendicular to the other two—the lattice is 
monoclinic). The meaning of the two different types of dotted lines is given in the text. 
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2, and glide containing a and c translation components are discarded. It is the 

position in space of the ‘extra’ centres of symmetry which contains their 

translation component (this aspect was discussed in Chapter 12; the reason that 

the twofold rotation axes are at \c was also covered there). 

A unit cell model requires a unit cell. As has been emphasized many times, 

there is no unique choice. Two are given in Figures 13.4(a) and 13.4(b) 

(which should be thought of as cross-sections of three-dimensional unit 

cells). That in Figure 13.4(a) is perhaps the more obvious, being a rectangular 

block from the crystallographic unit cell of International Tables. That shown 

in Figure 13.4(b) is the Wigner-Seitz unit cell, which for some purposes has 

advantages (to show that it is a Wigner-Seitz unit cell it is drawn with a 

Figure 13.4 (a) A primitive unit cell obtained from that in Figure 13.3 by cutting it in 
half. The (genuine) primitive translation vectors, multiples of which generate the entire 
crystal from this unit cell have been added (that out-of-the-plane has been shown as in 
Figure 13.3). 

(b) The Wigner-Seitz unit cell corresponding to that in Figure 13.3. The (genuine) 
primitive translation vectors, multiples of which generate the entire crystal from this 
unit cell, have been added (that out-of-the-plane has been shown as in Figure 13.3). As 
required, these are the same as those shown in (a). So that the construction of this unit 
cell can be followed, equivalent points are shown as black balls and the scale has been 
reduced compared to that in (a).The origin of the translation vectors is not the same in 
Figures (a) and (b). 
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smaller scale so that adjacent equivalent points can be shown). In both parts 

of Figure 13.4 the primitive translation vectors in the plane of the paper are 

shown; they are identical, as they have to be, and are non-orthogonal (not at 

90°)—in contrast to the crystallographically preferred choice of axes (shown 
in Figure 13.3). 

In Figure 13.5 sets of M(C = 0)3 groups in the unit cell of Figure 13.4(a) are 

shown (there seems to be no actual species with data that enable the discussion 

to be of a real-life example). The four sets of M(C = 0)3 groups are inter¬ 

related by the operations of the unit cell group; the ability to carry out these 

conversions is at the heart of the method. The results are: 

C2/c E 2 i c 

a ft y d 

Of these, only the operation of the c glide presents any difficulty. The c axis is 

perpendicular to the plane of the paper, so that the c glide operation involves 

reflection in a mirror plane (the mirror plane of C2h) followed by a translation 

of c/2 perpendicular to the plane of the paper. The result of this c/2 translation 

depends on the choice of direction of translation, down or up. One of these 

will lead to the generation of a M(C = 0)3 group within the unit cell; the other 

to the generation of a M(C = 0)3 group in the adjacent unit cell. In the unit cell 

group, the closure requirement (Appendix 1) is achieved by the M(C = 0)3 

group which ‘goes out’ of the unit cell ‘coming back in’ through the opposite 

face (Figure 13.6). That is, the unit cell group is defined so that it does not 
matter whether the translation of c/2 in the c glide is ‘up’ or ‘down’, they lead 

to the same result. A similar situation holds for 2, screw axes; for 3, and 

similar screw axes the situation is a little more complicated.t The character 

Figure 13.5 The interconversion of four sets of M(C = 0)3 groups in the primitive 
unit cell of Figure 13.4(a). The relevant operations of Figure 13.3 are used (here, i is 
used to denote inversion in a centre of symmetry and c to indicate the c glide). 

t If a 3, operation ‘takes a point out’ of the unit cell, then its reappearance through the opposite 
face means that it is equivalent to (3_,)2. This is perhaps most readily seen by analogy with the 
point group relationship C3+ = (C3')2> contained in Table 8.2. 
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Figure 13.6 The c glide operation in the unit cell group. The ‘starting’ molecule 
(centre) is first reflected in a mirror plane (shown as a square around the molecule; this 
mirror plane is perpendicular to the 2 (C2) axis, as required in the point group C2h). 
This reflection is followed by a c/2 translation to complete the c glide operation. If the 
c/2 translation is upwards (to give the black molecule) then this molecule ‘reappears’ in 
the original unit cell (to give the molecule shown dotted). Had the c/2 translation 
component been taken in the downwards direction, the dotted molecule would have 
been that generated without the need to ‘come back into’ the unit cell. 

table for the C2h unit cell group is obtained from that for C2h using the 
correspondences: 

C2h E C2 i ah 
C2/c(C2h) E 2 i c 

and is: 

Cfh E 2 i c 

4 1 1 1 1 i 2 2 2 
x; y; n xy 

1 -1 1 -1 /?,; Ry yz; zx 
4U 1 1 - 1 -1 T, z 
Bu 1 -1 - 1 1 7V, Tv x;y 

The transformations of the four M(C^O)3 groups of Figure 13.5 (and so 

the corresponding v(C = O) vibrations) are straightforward and give rise to the 
reducible representation 

E 2 i c 

12 0 0 0 

which has 3Ag + 3B$ + 3AU + 3Bu components, leading to a prediction of six 

infrared active modes and six Raman active, with no coincidences. Several 

comments are relevant. Because all of the characters (except that for the 

identity operation) are 0 no error would have resulted had we, in error, worked 
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with the crystallographic (doubled) unit cell and divided the resulting reducible 

representation by two. However, if the problem had been one in which there 

were just M(C^O) groups in the primitive unit, each lying on a 2 (C2) axis, 

then these would have given a non-zero character under this operation. On the 

other hand, they would have given a zero character under the 2, operations 

which, apparently, exist in the (doubled) unit cell. The reducible representa¬ 

tions generated would have depended on just how this (unreal) dilemma was 

handled. It is scarcely likely that the correct prediction would have been 

obtained by dividing any of the possible answers by two! 

13.4 SUMMARY 

Most spectroscopic measurements on crystals involve phenomena which are 

translationally invariant (p. 291). As a consequence, great simplification results 

and knowledge of the crystallographic point group is sufficient to enable 

spectral predictions (and/or interpretations) to be made (p. 293). The factor and 

unit cell groups lead to identical predictions but are only relevant when there is 

coupling between corresponding transitions in different molecules (p. 296).f As 

the phenomena observed become increasingly localized, the site symmetry and 

oriented gas models become more applicable (p. 293). 

t Several alternative names exist which are used to describe the resulting splittings; different 
names tend to be the province of different areas of spectroscopy. While the names ‘factor group’ 
or ‘unit cell group’ splittings are readily understood because of the content of the present chapter, 
the alternative names ‘correlation field’ or ‘Davydov’ splitting may also be encountered. 



Appendix 1 

Groups and Classes: Definitions and 
Examples 

Al.l GROUPS 

In Chapter 2 a definition was given of a group which was adequate for the 

purposes at that point in the text but which was incomplete; all of the require¬ 

ments were not detailed. The first object of this appendix is to remedy this 

deficiency and to accurately define the word ‘group’. At some points in this 

appendix it will implicitly be assumed that the group under discussion does 

not contain an infinite number of elements. This excludes CMV and D„h—but 

all of the general statements made can be shown to apply to these two groups 
also. 

Suppose we have a collection of elements (some examples will be given* 

shortly which will help to indicate the breadth of the term ‘element’). The set 

of these elements, A, B, C,... form a group G, written as 

G={A,B, C,...} if: 

1 There is some law of combination which relates the elements one to 

another. No matter what the precise nature of the operation of combination, it 

is called multiplication. So, the fact that A combines with B to give C would 
be written: 

AB = C (Al.l) 

At the end of this section several different laws of multiplication will be given 
to illustrate equation (Al.l). 

Note: (a) Whenever a group is specified it is, formally, necessary to also 

specify the law of combination, (b) The order in which elements multiply is 

important. There is NO general requirement that, for instance, 

AB = BA 

so it must be assumed that, in general, 

AB±BA (A 1.2) 

More detailed consideration of this inequality will lead to the concept of class 
later in this appendix. 
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2 Multiplication is closed (the closure requirement). 

That is, the product of any two elements within a group is an element within 
the group. 

Note: ‘An element’ here means a single element. Multiplication is single 

valued; there can never be any ambiguity about the outcome of a multipli¬ 
cation. Thus, it can happen that AB = C and AB = D if and only if 

C=D 

3 Multiplication is associative. 

One might think that once the multiplication of two elements is defined there 

would be no problem about multiplying any number together. This is not the 
case. Consider the triple product 

ABC 

Because we only know how to multiply pairs of elements we have to select a 

pair from this trio and multiply them first. There is a choice between 

(.AB)C and A{BC) 

But suppose AB = C (as above) and BC = D. Then our products are 

CC and AD 

It is by no means evident that these are equal unless this equality is introduced 

as a requirement. This is just what the statement ‘multiplication is associative’ 

does. It means that it must be true that 

(AB)C - A(BC) 

for the elements to form a group. 
Note: This means that a string of elements can now be multiplied together. 

Thus, 

(AB)CD = A(BC)D = AB(CD) 

4 The group contains a unit element (often denoted E or I). This unit element 

plays a role which in some ways resembles that of the number 1 in ordinary 

arithmetic. Thus, when it multiplies any other element of the group, A, say, the 

product is A. 

i.e. EA = AE = A (A 1.3) 

5 For each element in the group there is a unique element which is its inverse. 

Loosely speaking, the inverse of an element ‘undoes’ the effect of that 

element. Thus, C3“ is the inverse of C3+ (Chapter 6). 

The inverse of the element A is usually written A-1 (in ordinary arithmetic 

think of multiplying by, say, the number 7. This multiplication can be 
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cancelled out by multiplying again, this time by the number 7 1 = 1/7). That is, 

AA~'=A-'A = E - (A 1.4) 

Note: The element which has here been called A-1 would normally have 

another label within the group; it could be B, for instance, or it could be A 

itself if A were self-inverse. The label A-1 is here used in preference to, say, 

B, because the latter label does not reveal the special relationship between A 

and A-1 given by the equation above. 

Problem Al.l Apply the relationships given above to the elements of 

the C2v group (E, C2, crv, a') and thus, formally, show that they comprise 

a group. 

A1.2 SOME EXAMPLES OF GROUPS 

1 Permutation groups were briefly encountered towards the end of Chapter 9. 

The groups formed by the operations permuting n objects form a fascinating 

subject for study. The character table for the so-called ‘symmetric group’ (the 

permutation group) with n = 2 is isomorphic to that of C2, that for n = 3 is 

isomorphic to C3v and that for n = 4 is isomorphic to TA. The groups with n 3= 5 

are not isomorphic to any point group. The symmetric groups are of potential 

importance when identical particles are of interest. In chemistry these particles 

could be identical nuclei but more frequently they are electrons. 

The symmetric group with n = 3 has six operations, the three particles being 

labelled a, b and c. If (a) indicates that a is not permuted, (ab) means 

‘interchange a and b’ and (abc) means cyclically permute a, b and c, then the 
six operations are: 

Ca)(b)(c) (abc) (acb) (ab)(e) (ac)(b) (a)(bc) 

E Px P2 Xx X2 X3 

Problem 9.4 gives an example of the combination of permutation operations of 

this type. Using the shorthand symbols indicated (P—cyclic Permutation; 

X = eXchange) the following group multiplication table is obtained. 

E 
First Operation 

Px P2 X, X2 x3 

E E P, Pi X, x2 x3 
P. P> Pi E x2 *3 X, 

Second Pi Pi E P, X3 X, x2 
Operation X, x, x3 x2 E Pi Pi 

X2 X2 X. x3 Pi E p, 

*3 *3 x2 xl P i Pi E 
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This multiplication table is isomorphic to that for C3v given in Table 8.2 

(substitute systematically C3+ for Pu C{ for P2, X, for av(l) etc.). 

Problem A1.2 Check that the above multiplication table is correct. 

2 Substitution groups are fun—and have played an important part in the 

development of group theory—but do not seem to have any general appli¬ 

cation. Consider the six functions (which, strictly, should be written E{x) etc.): 

E = x P= 1/(1-*) Q={x-\)/x 

R= l/x S = \ - x T = x/(x-\) 

These form a group when the law of combination is substitution as function of 
a function. Thus, 

SR = S(l/x)=\-(\/x)=(x- 1)/jk=Q 

and 

PT = P[xl(x - l)] =--- = l-x = S 

The multiplication table, given below, is also isomorphic to that of the C3v 

group (Table 8.2). The reader should check this. But he or she should be 

warned. The table isomorphic to C3v given in the previous example was set out 

in a way that should have made the isomorphism self-evident. This is not true 

for that given below, more work will be required to demonstrate the 

isomorphism. 

E 
First Operation 

P Q R S T 

E E P Q R S T 
P P Q E T R S 

Second Q Q E P S T R 
Operation R R S T E P Q 

S S T R Q E P 
T T R S P Q E 

Problem A1.3 Check that the above multiplication table is correct. 

3 An example of a two-colour group has been given in the discussion 

associated with Figure 2.5. There, the changing of a colour was introduced as a 

component of a symmetry operation. Colour groups are of some importance in 

chemistry in the context of space groups, although beyond that discussed in 

Chapters 12 and 13. Many of the operations of space groups have the effect of 
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relating one molecule in a crystal lattice to another. But what if the molecules 

are not quite identical? For instance, the molecules could be atomically 

identical but have opposite magnetic properties (because the electron spins are 

arranged in opposite ways, for example). In this case the operation—put 

colloquially—of ‘turn the magnet over’ is similar to the ‘change the colour’ 

operation; it forms a composite with another symmetry operation to relate not- 

quite identical objects. Two-colour space groups are also known as black and 

white groups or Shubnikov groups. Polychromatic groups also exist. 

4 With the exception of those groups indicated above, all of the point groups 

discussed in this book relate to our three-dimensional world. However, it is 

possible to add to this picture that of electron spin. It is not at all obvious why 

it should be the case, but this has the effect of doubling the number of 

operations in the group compared to the corresponding point group without 

spin. Hence, these are called double groups.f They have the rather unexpected 

property that the identity operation corresponds to a rotation of 720°. The 

double groups are of importance in some areas of chemistry, in particular, in 

the theory of transition metal ions and of the lanthanides and actinides. 

A1.3 THE CLASSES OF A GROUP 

When in the previous section the definition of a group was detailed it was 

found necessary to recognize that the multiplication of any two elements, A 

and B, of a group could not be assumed to be commutative. That is, it is not 
generally true that 

AB = BA 

[when either A or B is the identity, E, the equation is always true—it is 

equation (A1.3)]. This equation may hold for'some pairs of operations within a 

group but not others (for example, it is true for all pairs of ov operations in the 

C3v point group, but is untrue when a C3 is combined with a crv, see Table 8.2). 

Groups for which it is true for all pairs of elements are Abelian point groups. 

C2 (Chapters 2 and 3), D2h (Chapter 4) and C4 (Chapter 11) are examples of 

Abelian point groups. In Abelian point groups there are never two elements ‘in 

the same class’. Non-Abelian point groups may have more than one element in 

each class and so, in giving a more precise meaning to the word ‘class’, 

equation (A 1.2) is a good starting point since it applies to at least some of the 
operations of non-Abelian groups: 

AB ± BA 

t The author has given a non-mathematical account of them in another book, Coordination 
Compounds, Spektrum (Freeman), Oxford, 1995, Section 11.5. 
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Multiply each side of this equation, on the right, by the operation A"1. This 
gives: 

ABA'1 * BAA~' 

But AA~' = E [equation (A 1.4)] and so BAA"1 = BE =B [by equation (A 1.3)]. 
That is, 

ABA"1 * B 

The product ABA 1 must be equivalent to a single operation in the group. To be 
general, let us call this single operation D. That is, 

ABA ~1 = D (A1.5) 

There is a hidden symmetry in equation (A1.5). To see this, multiply on the left 

of each side of the equation by A"1 and on the right of each side by A. The 
result is: 

A“1(ABA"')A = A~‘(D)A 

Because multiplication is associative, this can be written: 

(A"1A)B(A-IA) = A"1DA 

Which, by equation (A 1.4), becomes 

B = A~'DA (A 1.6) 

which is to be compared with equation (A1.5). Because of this relationship 

between B and D they are said to be conjugate elements of the group. But A 

was picked at random in the above development—no restrictions were placed 

on it. Suppose a different element, C say, had been chosen in its place? There is 

no theorem which would require that because 

ABA"1 = D (A 1.5) 

then 

CBC "1 = D 

Rather, it must be assumed that CBC"1 gives yet another element (even if, 

sometimes, it does not). Consider the case where it does not give D but another 

element, F, say. So, 

CBC"1 = F (A 1.7) 

But the arguments leading up to (A 1.6) above can be paralleled with a similar 

development to show from (A 1.7) that 

B = C~'FC (A1.8) 

That is, B is conjugate with F as well as with D. Not surprisingly, this 
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sequence requires that F and D are also conjugate elements, as may be shown 

by combining (A1.6) and (A1.8). 

A~lDA = B = C'lFC 

Consider the two outer expressions and multiply each on the left by A and on 

the right by A-1. 

(AA-')D(AA-1) = (AC-')F(CA-1) 

That is, 

D = (AC~1)F(CA-') (A 1.9) 

Equation (A1.9) is of a form analogous to (A1.5), (A1.6), (A1.7) and (A1.8) 

provided that it can be shown that (AC'1) and (CA_1) are inverses of each 

other. If they are inverses then they satisfy (A 1.4) and so they should multiply 

together to give E. We have: 

(AC-’XCA'1) 

= AC-'CA'1 

= A(C'1C)A'1 

= A{E)A~X 

= AA'1 

= E 

That is, (AC-1) and (CA_1) are, indeed, inverses. Now AC'1 must be equal to 

a single element of the group; call it H. CA"1 must then be Z/'1 so that (A 1.9) 

becomes 

D = HFH"r (A1.10) 

which is of the form required. We conclude that B, D and F are all conjugate 

elements and comprise a subset of the set of all the group operations. Each set 

of conjugate elements in a group forms a class of the group. 

Formally, then, in order to find all members of a group which are of the 

same class as B each element of the group in turn (including B) is taken as A in 

the expression 

ASA'1 [see (A1.5)] 

and all of the products are collected together. They comprise all the elements 

which fall in the same class as B. 
As an example consider the substitution group given in the previous section 

and use its multiplication table (page 309). First, from the table the inverse of 
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each element is identified: 

Element Inverse 
E E 
P Q 

Q P 
R R 
S S 
T T 

To obtain all elements in the same class as P, work down this list forming the 

products of the form APA~\ where A and its inverse are obtained from the 
listing above. The results are given below 

EPE = P 
PPQ = P 
QPP = P 
RPR= Q 
SPS = Q 
TPT = Q 

It is concluded that P and Q are in the same class (a result which could have 

been anticipated because they are isomorphous with the C3+ and C{ operations 
of C3v). 

Problem A 1.4 Check the above argument. 

As a second example we consider the problem encountered in Chapter 11, that 

C4 and C\ are in dilferent classes in the C4 group. The group multiplication 

table for the C4 group is (note its diagonal symmetry): 

C4 E C4 C2 Cl 

E 

C4 

C2 

cl 

E 

C4 

C2 

Cl 

C4 

C2 
C4 
E 

C2 C4 

Cl E 
E C4 

C4 C2 

from which it is evident that the inverses are: 

Element Inverse 

E E 
C4 cl 
C2 C2 
Cl C4 
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In the class containing C4 there will be 

EC4E = C4 

C4C4C4 = C4 

C2C4C2 = c4 
C4C4C4 = c4 

That is, the operation C4 is in a class of its own. It is easy to similarly show 

that C\ is in a class of its own, as too is C2. This shows that C4 is an Abelian 

group. 

Problem A1.5 Demonstrate that C\ is in a class of its own. 

Problem A1.6 Show that the C2v group is an Abelian group. 

A1.4 CLASS ALGEBRA 

When the C3v character table was introduced in Chapter 6 it was done so in the 

form 

^3v E 2C3 3av 

A, 1 1 1 
A2 1 1 -1 
E 2 -1 0 

and this, and the character tables of all other non-Abelian groups are given in 

this form in Appendix 3. Why? Why put elements which fall in the same class, 

such as C3+ and C{, together as 2C3? Why not write this character table as: 

C3v E c; c3~ (Tv(l) <7v(2) <U(3) 

4, 1 1 1 1 1 1 
^2 1 1 1 -1 -1 -1 
E 2 -1 -1 0 0 0 

After all, this is the form in which, effectively, it was used in the projection 

operator method (see, for instance, page 129). First, we note that not all of the 

character table orthonormality relationships (Section 5.3) would remain true if 

this form of character table were used (some columns in the extended character 

table are identical). There is, however, another and fundamental reason. This is 
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that there exists a class algebra. Take the C3v group as an example. It contains 
three classes with elements 

Class 1 E 
Class 2 C3+ C3" 

Class 3 ctv(1) av(2) ov(3) 

Express this mathematically, thus: 

C, =£ 

Q = \ (c; + c3-) 
C3=ik(l)+av(l)+av(3)] 

These classes can be multiplied together. Thus, 

c2c2 = hc3+ + c3-)(c3+ + c3-) 
= 4 [C3+C3+ + C3+C3- + C{ C3+ + Cf C{ ] 

which, from Table 8.2, is equal to 

= \ [C3 + E + E + C3+ ] 

= i£ + i(C3+ + C3-) 

= 5(C,+C2) 

A class multiplication table can thus be compiled and which is easily shown to 
be: 

C3v c, C2 C3 

C, C, C3 
C2 C2 i(c,+c2) C3 

C3 C3 C3 i(C,+2C2) 

Problem A1.7 Check that the class multiplication table shown above is 

correct. 

Problem A1.8 Show that the above classes do not form a group under 

the operation of class multiplication. (Hint: Refer to the relationships 

used to define a group at the beginning of this appendix.) 

The classes of Abelian groups form groups under class multiplication but 

this is trivial because the classes are isomorphic to the elements of the Abelian 

group itself. 
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Problem A1.9 Check the truth of the above assertion by reference to 

the C2v point group. 

From the class multiplication table given above it is seen that, in general, the 

product of multiplying two classes together is of the form 

C/C, = 2>*0* 
k 

where the sum k is over all classes and ck is a coefficient. We now ask what 

may appear a rather strange question. Is it possible to obtain a linear sum of the 

classes of the form 

which has the property that when multiplied by any class, C, say, it satisfies an 

equation of the form 

C,-« = X% 

where A is a number (possibly complex)? 
Those with some knowledge of quantum mechanics will recognize this as an 

eigenvalue equation. The eigenvalues, A, when determined, lead directly to the 

characters in the character table (these characters are not the A’s but are related 

to them by simple, well defined, numerical coefficients). That is, the characters 

in a character table are intimately related to the classes. This is the reason that 

character tables are given in the way that they are. 

Clearly, the mathematics given above can be developed to provide a method 

for the calculation of character tables. This development will not be given here 

but the interested reader will find a very readable account in a book by G. G. 

Hall, Applied Group Theory (Longmans, 1967). 



Appendix 2 

The Mathematical Basis of Group 
Theory 

This book contains a non-mathematical treatment of what, in fact, is a 

mathematical subject. This appendix goes some way towards reinstating the 

mathematics. However, it cannot claim to be comprehensive—if it were, its 

length would be very much greater. 

A2.1 MATRIX ALGEBRA AND SYMMETRY OPERATIONS 

An array of quantities—often numbers—such as those given below is called a 

matrix 

’3 

4 

2 
-1 and 

’3 
4 

2 

-1 

-2 
0 

.0 2. .0 2 3. 

Clearly, matrices can be square—contain the same number of rows as they 

have columns—or they may be rectangular; the number of rows may be 

greater or less than the number of columns. Each number or other quantity 

appearing in a matrix is referred to as a matrix element. If represented by an 

algebraic symbol a matrix element is often given suffixes to indicate in which 

row and which column it lies in the matrix. 
Matrices of the same size may be added; this is done by adding together the 

corresponding entries (elements). We illustrate this by adding two matrices; as 

an aid to clarity the elements of one matrix are given as letters 

'3 2 -2 a b c '(3 +a) (2 + b) (-2 + c) 

4-10 + d e f = (4 + d) (-1+0 f 
0 2 3. .8 h i_ g (2 + h) (3 + i) J 

Problem A2.1 Fill in the missing quantities in the following matrix 

equation 

sin2 6 —7= 3 
V2 o' "l a/2 

+ 1 cos2 (p -1 = 1 0 -4 

3 1 -sin2 6_ .-15 cos 2 6, 
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The application of matrix algebra to the theory of groups is relatively limited 

and we shall have no occasion to add or subtract matrices. Key to our use of 

them, however, is the multiplication of matrices. Matrix multiplication does 

not parallel matrix addition, one does not simply multiply corresponding pairs 

of elements together. Although pairs of elements are, indeed, multiplied, each 

element in a complete row is multiplied by the corresponding element in a 

complete column—so that the row and column have to be of equal length, to 

contain the same number of elements—and the products are added together. It 

is this sum of products that is an element in the product matrix. To obtain the 

entry in the mth row and the nth column of the product matrix, the elements in 

the mth row of the first matrix are multiplied by those in the nth column of the 

second. 

Consider the two matrices which were added above. Now, let us multiply 

them. The entry at the top left-hand comer of the product matrix, the one in the 

first row (m = 1) and first column (n = 1) is given by: 

first row —» '3 2 -2 a . . (3a + 2 d - 2g) . . 
. X d . . 

.8 • •- 

— . . 

T 

first column 

and the reader who is unfamiliar with matrix multiplication should check 
several of the elements of this product. 

Problem A2.2 Fill in the blanks in the following matrix equation: 

3 
2 

-l" ' 0 
3 . .10 .. 

The multiplication of two matrices may be expressed algebraically. If the 

product of the matrices A and B (A being on the left) is denoted AB, then 

(AB)mn ^ ^intern (A2.1) 
t 

where m and n carry the meanings given above and t is simply a convenient 

running label which enables us to distinguish the individual matrix element 

products which have to be added together to give the element in the mth row 
and nth column of the product matrix AB. 

In the example above, the two matrices which were multiplied together were 

square but this is not a requirement; the sole restriction is the obvious one 

stated above—that the number of elements in each row of the matrix on the 

left of the multiplication sign equals the number of elements in each column of 
the matrix on the right. 
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The relevance of this to molecular symmetry can be seen by reference to 

Figure 3.1. This shows the transformation of the hydrogen Is orbitals, /z, and 

h2, under the symmetry operations of the C2v point group. It was discussed in 

Section 3.1. Figure 3.1 shows that under the identity operation, E, hx and h2 
remain unchanged. This can be expressed by the matrix product 

‘l o" V hx 
.0 1. h2 h2 

(A2.2) 

where, following convention, the multiplication sign between the two matrices 

multiplied together has been omitted. Writing them side by side in this way is 

taken as meaning that they are to be multiplied. The reader should check that, 

arithmetically, equation (A2.2) is correct. It may be correct, but what does it 

mean? On the left-hand side the hydrogen Is orbitals are written as the 

elements of a column matrix. The order in which they are written is, ultimately, 

unimportant but that used is clearly the more natural. When the matrix 

multiplication is carried out this column matrix is regenerated, unchanged. That 

is, multiplication of the matrix [q °] has a similar effect on hx and h2 as the 

identity operation. However, had a different matrix been used to multiply the 

hx, h2 column matrix a different result would have been obtained. 

Figure 3.1 shows that the C2 rotation interchanges hx and h2. The reader can 

readily show this is expressed by the matrix product 

'o f V V 
.1 0. _v .V 

Here, the matrix [? q] has a similar effect on [^] as the C2 operation has on the 

hx and h2,hx and h2 are interchanged. 
It is left as an exercise for the reader to show that effect of the av and a' 

operations on /t, and h2 are paralleled in the matrix products: 

o, V* 

'l o' V 'hx' 

.0 i. hi. hi. 

'o f V hi 

.1 0. h2 hx 

(A2.4) 

(A2.5) 

Problem A2.3 Show, by expansion and comparison with Chapter 3, 

that equations (A2.4) and (A2.5) correctly describe the action of av and 

a' on hx and h2. 

In Chapter 2 it was shown that sets of numbers such as 1,1, -1, -1 multiply 

in a manner which is isomorphic to the multiplication of the operations of the 

C2 point group (see Table 2.3, for example). The important thing about the 
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square matrices in equations (A2.2) —> (A2.5) is that when multiplied under the 

rules of matrix multiplication they, too, multiply isomorphically to the C2 

operations. The multiplication of these 2x2 matrices is given in Table A2.1. 

Table A2.1 

Left-hand 
matrix 
in the 
product 

E C2 Oy < 
Right-hand matrix in the product 

'l o' 'o f 'l o' '0 1 

.0 1. .1 0. .0 1. Li oj 

’l o' 'l o' 'o f 'l o' 'o l] 
.0 l. .0 1. .1 0. .0 1. .1 oj 

'o f 'o l" 'l o' 'o l" 'l °1 
.1 0. .1 0. .0 1. .1 0. .0 lj 

’l o' 'l o' 'o r 1 o' 'o l] 
Lo 1. t0 1. .1 0. Lo 1. .1 oj 

'o f 'o f ’l o' 'o l' 'l o' 
Li 0. .1 0. .0 1. .1 0. l0 1. 

Problem A2.4 Check that Table A2.1 is correct. 

Table A2.1 should be compared with Table 2.1. Each matrix in Table A2.1 

will be found to transform isomorphically to the operation associated with it. Is 

this property limited to 2 x 2 matrices? No, provided that they are square 

matrices, matrices of any order can be found which multiply isomorphically to 

the operations of the C2v point group. Indeed, the numbers which behaved like 

this in Chapter 2 may be regarded as 1 x 1 matrices! As an example of this, the 

following four matrices describe the transformations of the hydrogen atoms 

of Figure 2.16. 

"a 

Hc 

E: 

10 0 0 
0 10 0 
0 0 10 
0 0 0 1 
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C2: 

0 0 10 
0 0 0 1 
10 0 0 
0 10 0 

a, 
V* 

0 10 0 
10 0 0 
0 0 0 1 
0 0 10 

o\, 

0 0 0 1 
0 0 10 
0 10 0 
10 0 0 

Further, the multiplication of these matrices is isomorphic to that of the 

corresponding operations of the C2v point group. 

Problem A2.5 Show that the above matrices do, indeed, describe the 

transformations of the hydrogen atoms of Figure 2.16. 

Problem A2.6 Show that the multiplication of the above matrices is 

isomorphous to that of the operations of the C2v point group (it may be 

helpful to use Figure 2.17 as a check). 

Matrix multiplication, then, provides a method of describing in detail the 

transformation of several objects under the operations of a point group. But in 

the text—in Section 3.2—something similar has been described. It was in 

Section 3.2 that we first used the transformation of several objects under the 

operations of a point group to obtain reducible representations. Not sur¬ 

prisingly, the two methods, the transformations of several objects and the 

matrix, are connected. In Section 3.2 what was described was a method of 

obtaining the characters of reducible representations. The bridge between 

this and the matrix formalism appears when it is recognized that ‘character’ 

is the name given to the arithmetic sum of all of the elements on the leading 

diagonal (top left to bottom right) of a square matrix. So, application of this 

definition to the four matrices given immediately above gives their characters 

as: 

Matrix associated with 

E C2 (7V Oy 

Character of the matrix 4 0 0 0 

This set of characters is just that obtained for the reducible represent¬ 

ation generated by the transformations of the four hydrogen atoms in Figure 

2.16. 
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Problem A2.7 (cf. Problem 3.2) Check that the transformations of the 

hydrogen atoms of Figure 2.16 leads to the above representation. 

Note: The representation which has the number which is equal to the 

order of the group (here, 4) under the E operation and zeros elsewhere is 

called the regular representation. It is of importance because it is used in 

the proof of some group theoretical theorems (but none which are 

included in this book). It is generated by a basis set which is not 

associated with any symmetry element. Thus, here, the hydrogen atoms 

are in general positions—they do not lie on a mirror plane or symmetry 

axis and so the regular representation is generated. 

The rules for the generation of characters given in boxes in Section 3.2 are 

now seen as arising from the definition of the character of a matrix and the fact 

that it is only when its transformation is described by an entry on the leading 

diagonal that an object remains unmoved under a symmetry operation. (A word 

of caution; this last statement will need some modification shortly when 

fractions will appear on the diagonal.) 

Just as one distinguishes between reducible and irreducible representations, 

so one may distinguish reducible from irreducible matrix representations. 

Irreducible matrix representations will be met later in this section and the 

connection between reducible and irreducible is covered in Section A2.4. Both 

the 2 x 2 and 4x4 matrices given above are sets of reducible matrices. 

Those functions whose transformations are described by matrices in the way 

just described are called basis functions. Those basis functions given at the 

right-hand side of character tables (Appendix 3) are ultimately related to the 

transformation of the x, y and z coordinate axes. It is therefore important to 

consider the transformation of a set of coordinate axes under typical group 

symmetry operations. This is not a difficult problem. For example, the 
inversion operation, i, is described by 

-1 0 o' X -x 
0 -1 0 y = -y 
0 0 -1 _z_ . —z _ 

Reflection in a mirror plane (let us choose the yz plane as the mirror plane) is: 

'-1 o o' X -x 
a(yz): 0 1 0 

.001. 
y 
.z. 

= y 
z. 

The problem of the rotation of axes was discussed in Chapter 6 (see Figure 6.4 

and the related discussion). When the axes x, y are rotated by an angle a 
around the z axis and are then relabelled x', y', then as Figure 6.4 shows 

x = x cos a + y sin a 
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Similarly, 

We can add, trivially, 

/ = -x sin a + y cos a 

= z 

It follows that the matrix describing the effect of a rotation, Rz(a), of an angle 

a around the z axis is the 3 x 3 matrix in the middle of equation (A2.6). 

X cos a sin a o' X 
1 

X 

_
1 

— -sin a 
0 

cos a 
0 

0 

1. 
y 

_z. 

— 

-
1 

(A2.6) 

A study of the elements on the leading diagonal of this matrix—those that 

contribute to the character—will show the basis for the rule given at the end of 

Section 6.1: 

When an axis is rotated by an angle a its contribution to the character for 

that operation is cos a. 

This relationship enables a more detailed study of the rotation of x and y axes 

by 45° shown in Figures 4.5 and 5.5 as well as the rotation to give the more 

general set in Figure 5.6; the following discussion is based on these figures and 

the reader will have to refer back to them. 

It is evident that the character generated by the x and y axes under a C4 

operation is identical for either choice of x and y axes shown in Figures 5.4 and 

5.5 (the character is 0 because x and y directions are transposed by the 

operation). It should also be evident that the same character under this 

operation is obtained for the more general x and y axes of Figure 5.6 (if it is 

not evident, use equation (A2.6) suitably adapted to the problem). Less evident 

is the fact that the general axis set gives the same character as the other sets 

under improper rotations. Consider the operation of reflection in the crv(2) 

mirror plane of Figure 5.3, a mirror plane which is the xz plane in Figure 5.4. 

All three axis sets give a character of 1 for the z axis. For the (x, y) axis sets of 

Figure 5.4 and 5.5 characters of 0 are obtained for this reflection operation, but 

what of the axis set of Figure 5.6? If the angle between y’ and the adjacent 

Br-F bond axis contained in the av(2) mirror plane is denoted 0 then the 

relationship between x', y' and their images x", y" is found to be (Figure 

A2.1). 

x" = -x1 cos 20-/ sin 20 

y" = —x' sin 20 + / cos 20 
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Figure A2.1 The effect of a mirror plane reflection (av (2)) on x' and y' of Figure 5.6. 

That is, 

-cos 26 -sin 26 f 
X 

rr 
X 

. -sin 26 cos 20. r 

b J 
tt 

b J 

Clearly, the character of the 2 x 2 transformation matrix is 0, just as was the 
case for the axis choice of Figures 5.4 and 5.5. 

So far, in all of the axis transformations that have been considered the z axis 

has remained unmoved. If it, too varies then the problem becomes that of 

describing the relationship between two generally orientated sets of axes. It is 

easy to see that rotation by three independent angles about coordinate axes is 

necessary to describe the relationship between' two sets of arbitrarily orientated 

Cartesian axes. If the first rotation is about z, then x' and y' must remain in the 

original xy plane. If the second rotation is about x' then this axis will remain in 

the original xy plane; it does not assume a general position. Two rotations are not 

sufficient to place all three original axes in general positions, a third is needed. 

The general transformation is shown in Figure A2.2. A rotation by 0 about z 

is followed by one of 6 about x'. Under this latter rotation z becomes z' and y' 
becomes y". The final rotation is one of cp about z', whereupon x' becomes x" 

and y" becomes y"'. Mathematically, equation (A2.6) is applied to each of these 

transformations in succession. The final result is given in equation (A2.7). 

(cos xp cos cp - cos 0 sin 0 sin ip) (cos 0 sin 0 + cos 0 cos <p sin xp) (sin \p sin 0) 
t X x" 

(-sin xp cos (p - cos 0 sin <p sin xp) (-sin xp sin <p + cos 0 cos 0 cos xp) (cos xp sin 0) 1 
y — /" 

(sin 0 sin <p) (-sin 0 cos 0) cos 0 j J 

(A2.7) 
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Figure A2.2 The interconversion of two sets of axes, 
are in a general relationship the one set to the other. 

Because a set of p orbitals transforms in the same way as the coordinate axes, 

this relationship is needed to answer the problem left unresolved in Section 3.2, 

the transformation of a complete set of p orbitals referred to arbitrary axes 
under the operations of the C2v point group. 

Problem A2.8 Derive equation (A2.7). 

Problem A2.9 Consider the following conversion of an axis set x, y, z 
into the general positions occupied by the set x", y'" and z' (Figure A2.2). 

Take z and rotate it about a suitable axis such that it is coincident with z'. 
Now rotate the other two axes around z' so that they coincide with x" and 

ym (x" and y'" are in the plane perpendicular to z'). Does this sequence 

mean that it is possible to relate the two axis sets by just two angles rather 

than the three of equation (A2.7)? If not, why not? 

In the section above, the particular concern has been with sets of matrices 

which are usually reducible representations. However, similar considerations 

apply to irreducible representations. That is, there exist sets of irreducible 

matrices for each group. As will be seen in Section A2.4, it is always possible 

to manipulate a set of matrices which form a basis for a reducible representa¬ 

tion in such a way that they can be re-written as a sum of the irreducible 

matrices. 
As an example of the irreducible matrix representations of a group those for 

the C3v point group are given in Table A2.2. This table should be compared 

with the C3v character table given in Table 6.1 (and also in Appendix 3). 

Comparison of Table A2.2 with the C3v character table reveals two important 

things. First, whereas individual operations are listed separately in Table A2.2, 

in the character table they are grouped into classes. Second, for a given 

irreducible representation, the irreducible matrices of all operations in any one 

class have the same character and this is the character listed for the class in the 

character table. The rapprochement between the ‘individual operation’ and 

‘classes’ presentations is provided by the class algebra which was introduced in 
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Table A2.2 

Appendix 1.4. There are some applications of group theory where it is 

necessary to use the complete matrix representations of groups; for instance in 

some applications of the direct product which will be met in the next section, 

although these applications will not be included in that section. 

A2.2 DIRECT PRODUCTS 

In the main text three different uses of the phrase ‘direct product’ were met. 

First, the operations of some groups were said to be the direct product of the 

operations of two other groups. An example is the D2h group, discussed in 

Section 4.3. Each individual operation of the D2h point group may be regarded 

as a product of an individual operation of the D2 group with an individual 

operation of the C; group. For such cases the character table of the product 

group was also said to be the direct product of those of the other two groups. 

The phrase ‘direct product’ was also used to describe the multiplication 

together of two representations of a group, a topic which was discussed at 

some length in Chapter 10 (where the symbol ® was used to denote this 

particular application of the direct product). Clearly, the concept of a direct 

product is one of wide applicability in group theory; it also is an important 
one. 

At the end of the previous section it was noted that there exists a close 

connection between the characters in a character table and sets of irreducible 

matrices. Just like the case of the (reducible) matrix representations which 

were discussed in that section in some detail, the multiplication of irreducible 

matrices is isomorphic to the multiplication of the group operations. Because 

of this isomorphism and because direct products of group operations can be 

formed, we would expect there to be, correspondingly, a direct product of 

matrices. At the beginning of the previous section (A2.1) one way of 

multiplying two matrices was described; but this was such that the size of the 

product matrix is often the same as the size of the matrices from which it was 

formed (e.g. when square matrices are multiplied together). A characteristic of 

direct products is that an increase in size is the norm—the D2h group is larger 
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than D2 and C2. This suggests that the direct product of the matrices involves a 

second form of matrix multiplication. This is not a unique situation. For 

instance, there are two different ways of combining—multiplying—vectors 
together. 

The direct product of two matrices is obtained by individually and separately 

multiplying every element of each of the two matrices together. Thus, the 
direct product of the matrices 

2 

-1. 
and a b 

_d e 

3 a 3 b 2a 2b 

3 d 3c 2d 2c 
4 a 4 b -a -b 

Ad 4c -d -e 

If a general element of the matrix A is ait (i labelling the row and j the 

column in which ai2 occurs in A) and a typical element of B is bkm (£th row, 

mth column), then the general element of the matrix C which is the direct 

product of A and B is: 

au * bkm - clj km (A2.8) 

Of course, the general element cijkm could simply be labelled according to the 

row and column in which it occurs in C. To do this, however, would be to lose 

sight of its origins; the more explicit, although apparently more unwieldy, 

expression in (A2.8) is therefore preferred. An example of the reason for this 

follows. 

For the matrices themselves, 

A®5 = C (A2.9) ■ 

where ® again indicates that a direct product is being formed. 

There are several ways in which the matrix C may be written; a convenient 

one is 

anB a^B • • • 

Q2\B #22^ 

C = a3iB a32B . . . 

# • ... 

(A2.10) 

where auB means that each element of the matrix B is multiplied, in order, by 

an- 
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Problem A2.10 Fill in the blanks in the following matrix equation (it 

may be helpful to regard the 4x4 matrix as consisting of four 2 x 2’s, 

corresponding to B above). 

1 
0 

3 6 0 0 

.-300 

. . -4 -8 
(A2.10) 

The elements of the group D3d are formed as the direct product of the 

elements of the C3v group with the elements of the C, group. The relationship 

between the operations of D3d, C3v, and C; is indicated in the table below in the 

form 

Operations of C3v 

Operations of C, Operations of D3d 

E c; c3~ MD M2) (Tv (3) 

E E c; Cf MD M2) (Tv O) 
i i s6~ s; C,( 1) C2( 2) C2( 3) 

A precisely parallel relationship exists between the irreducible matrix 

representations of the D3d, C3v and C, groups, a relationship detailed below. 

First, however, note that the group D3d is also the direct product of Di with C;, 

and it is this latter product which is conventionally taken to determine the 

labels of the irreducible representations of D3d. 

Problem A2.ll Show that D3d = Z)3 <g> C{. 

The matrix representations of the C, group are: 

C, E i 

(1) (1) 
4U (1) (-1) 

so that the direct product with the C3v matrix representations given in Table 

A2.2 leads to the irreducible matrix representations for the D3d group given in 
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Table A2.3. It is entirely reasonable that this isomorphism should exist between 

multiplication of operations and multiplication of matrices in this application 

of the direct product. The isomorphism exists in each of the individual groups 

involved in the direct product. 

Problem A2.12 Show that Z)3d = C3v ® Cx (see above); then check Table 

A2.3. 

The definition of a direct product given by equations (A2.8) and (A2.9) and 

the convention given by (A2.10) is, of course, also applicable to the direct 

products formed between two representations of the same group. Thus the 

direct product matrices A2 ® E of the C3v point group are (from Table A2.2) 

E C3+ c3- crv(l) £Jy (2) Oy(3) 

l VT 1 VT 1 VT 1 VT 

'l o’ 2 2 2 2 'l o' 2 2 2 2 

.0 1. V3 1 V3 1 .0 -1. V3 1 V3 1 
2 2 2 2 2 2 2 2 

Examination of these matrices shows that the characters of the direct product 

matrices are the same as those obtained by the method described in the text— 

using a character table and multiplying the characters of the two irreducible 

representations together. The technique of multiplying characters to obtain 

direct product characters although simple, ignores the subtle changes that have 

taken place in the corresponding matrices, particularly in those representing the 

av operations (for which multiplying by the character 0 might well have 

appeared trivial). 

Problem A2.13 Using the C3v character table, form the direct product 

of the A2 and E irreducible representations; compare the answer with the 
matrix form given above. 

As a final example we consider the direct product E <g> E in C3v but confine 

the discussion to just two of the product matrices. The two direct products 

which will be evaluated are those direct product matrices corresponding to 

av(l) and C3+ which arise from the E® E direct product. For the first of these, 

expression in the form given by (A2.10) leads to 

-1 ■-1 o' 
o 1. 0 '-1 o' 

o 1. 

0 '-1 o' 
o 1. 1 

1
-

 1 
o

 

—
 o

 
i
_
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which, on expansion gives 

'l 0 0 o' 

0-1 0 0 
0 0-10 

.0 0 0 1. 

a matrix with a character of 0, the same character as obtained working with the 
C3v character table. 

The second direct product, that corresponding to C3+, involves more work. In 
the form of (A2.10) the product is: 

leading to 

1 S' 1 S' 
1 2 2 s 2 2 
2 S 1 2 S 1 

2 2 .2 2 . 

1 S' 1 S' 
S 2 2 1 2 2 
2 S 1 2 S 1 

, .2 2 . .2 2 . 

1 s S 3 
4 4 4 4 

s 1 3 s 
4 4 4 4 

s 3 1 s 
4 4 4 4 

3 s S 1 
4 4 4 4 

and the expected character of 1. 

Because these direct product matrices are 4x4 it is clear that they must 

describe the transformation of four quantities—basis functions—which must 

themselves be related to the basis functions for the E irreducible representa¬ 

tion. The exploration and exploitation of such relationships are an important 

aspect of advanced group theory but the full development of which is beyond 

the scope of the present text, although a start has been made in Section 10.2. 

Problem A2.14 Evaluate the direct product matrices of E <s> E in C3v for 

the operations C{ and av (2). 

A2.3 THE ORTHONORMALITY RELATIONSHIPS 

In Section 5.3 group orthogonality relationships were discussed in a general 

fashion. The object of the present section is to provide a firmer mathematical 
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basis for these relationships. Theorems 2—5 of Section 5.3 were all expressed 

in terms of the characters of irreducible representations. But it has been seen 

earlier in this appendix, in Section A2.1, that these characters are derived from 

irreducible matrices, such as those in Table A2.2. It is through the latter that the 

relationships of Section 5.3 are derived. The first step is to derive some 

orthogonality relationships which relate to the irreducible matrices and then to 

express them in a single comprehensive equation. The theorems of Section 5.3 

derive from these matrix element orthogonality relationships. Finally, a proof 

of the comprehensive equation mentioned above will be indicated. In this 

section the arguments and notation used by Eyring, Walter and Kimball in 

Chapter 10 of their book Quantum Chemistry (Wiley, 1944) will be used. In 

this book the argument is more general and rigorous than that given here. 

If Table A2.2 is carefully examined it will be found that if corresponding 

matrix elements in the same irreducible representation are squared and added 

together a rather simple result is obtained. Thus, if the 1,2 (top right-hand— 

first row, second column) elements of the E irreducible matrices are squared 

and added we obtain: 

0 + 3/4 + 3/4 + 0 + 3/4 + 3/4 + 0 = 3 

The answer, 3, is equal to 

The number of operations in the group (the order of the group) _ 6_ 

The dimension of the irreducible representation in the present example 2 

Problem A2.15 Check that 3 is the result when the above procedure is 

applied to the 1,1, to the 2,1 and to the 2,2 elements of the E irreducible 

matrices in Table A2.2. 

This result is perfectly general and may be written as 

(A2.ii) 
R 

where i labels the irreducible representation chosen, T,(/?)mn indicating the 

ranth element of the irreducible matrix corresponding to the operation R. The 

order of the group is denoted by h and /, is the dimension of the ith irreducible 

representation. The symbol T is that commonly used to indicate a matrix— 

which may be reducible or irreducible—which transforms isomorphically to a 

symmetry operation. 

If, on the other hand, instead of squaring matrix elements and then adding, 

two different elements from within the same matrix are multiplied and added 

then the result is 0. Thus, for the 1,1 and 1,2 elements of the E matrices in 

Table A2.1 we have 
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In general, 

(A2.12) 
R 

where either m ± m' and/or n ± n'. Similarly, for any pair of matrix elements 

of any two different irreducible representations i and j (as long as the matrices 
are associated with the same operation, R). 

= 0 (A2.13) 
R 

where / + j and where there is no restriction on mn and m'n' as long as they 

exist. Thus for the 1,1 (the only!) element of the A2 matrices and the 2,1 
element of the E matrices in Table A2.1 we have 

0 + ^-^+0-^ + ^=0 
2 2 2 2 

(A2.13) 

Equations (A2.ll), (A2.12) and (A2.13), and the restrictions on the 

quantities within them may be combined into the general—and therefore 

important—relationship (A2.14), a relationship often called the great 
orthogonality theorem: 

Xr to™r M 
8 8 ,8 , 

lJ mm nn 
(A2.14) 

where 8^ = 1 if i = j but 0 if i =/= j. Similarly 8mn’ = 1 if m = m! but 0 if m' 

and 8„„. = 1 if n = n' but 0 if n± ri. 
The appearance of a square root term in (A2.14) is deceptive. Because of the 

8jj term this term will only be of importance when i = j and then V7~/~ = /, = ljt 

so we could just as well have put one of these on the right-hand side of 

(A2.14). The square root is included so that (A2.14) is symmetric in i and j. 

In order to relate (A2.14) to the theorems of Section 5.3 it has to be adapted 

to refer to the characters (= sum of elements on the leading diagonal) of the 

irreducible matrices. Whereas T,(/?)mn is a general matrix element, diagonal 

matrix elements will have m = n and so be of the form T( (/?)mm. For these 

diagonal elements (A2.14) assumes the form 

y r (R)mn T:(R) , , = - 8::8 , (A2.15) 
/ > iv 'inn j ^ 'mm ] ‘J mm v ' 
R V 

Because, by definition, the ith irreducible representation is of dimension /,, 

there will be /, terms r,(/?)mm which have to be added to give the character of 

the /th irreducible matrix appropriate to the operation R. That is, m assumes 

values from 1 through to /, (if different from 1). Similarly, m' runs from 1 

to lj. 
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Writing, as is conventionally done, *,(/?) for the character (the sum ot 

elements along the leading diagonal) of the /th irreducible representation under 

the operation R we have 

X,(*) = Xri<R>~ (A2.16) 
m 

and 

«w-Zr/*)Lw (A217) 
m 

Summing each side of (A2.15) over m and m' and substituting (A2.16) and 

(A2.17) gives 

Eiiwijw-f* y. <A2 I8> 
R * m«lm-=i 

Problem A2.16 Derive equation (A2.18) from (A2.15), (A2.16) and 

(A2.17). 

Because of the term on the right-hand side of (A2.18) =0 if 

m + m! but 1 if m = m') there will only be a contribution from the two 

summations when m = m' and then the contribution will be 1. The right-hand 
side becomes 

The meaning of the summation in this expression is ‘every term in the 

summation from 1 through to /, contributes 1 to the total*—and so the value of 

the sum is The summation is not to be confused with X^.., m'. This means 
that (A2.18) can be rewritten 

X Xt(R)Xj(R) = >Aj (A2.19) 
R 

In this expression each operation appears separately. Because for a given 

irreducible representation the character of each matrix is the same for all 

operations in the same class their contributions to the left-hand side of (A2.19) 

can be added together. If there are gp operations in the class p: 

X Xi(R)Xj(R) = X Xi(Rp)Xj(.Rp)gp 
r P 

where Xi(Rf>) is the character of the ith irreducible representation under the 
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class Rp (i.e. the quantity given in the group character table). Of course, 

Xi(RP) is numerically equal to *,(/?). With this substitution (A2.19) becomes 

Z Xi(Rp)Xj(RP)gp = hd,j (A2.20) 
p 

All of the Theorems 2-5 given in Section 5.3 are contained within (A2.20). 

Problem A2.17 Show that Theorems 2—5 of Section 5.3 are contained 
within (A2.20). 

Because the above argument was built on Table A2.2—which contains only 

real quantities, equation (A2.20) contains the hidden assumption that all 

characters are real. As Appendix 3 (and Chapter 11) show, this assumption is 

not valid—some character tables contain complex quantities. Fortunately, the 

generalization of (A2.20) to include these cases is simple; the general 
expression is 

Z Xi(Rp)Xj(RP)gp = hdfj (A2.21) 
p 

where the * means that one uses not the quantity given in a character table as 

Xi(Rp) but, instead, its complex conjugate. An example of this usage is given 
in some detail in Chapter 11. 

Problem A2.18 Show that in the C2v point group there is an infinite 

number of functions of general form xmym which transform as the totally 

symmetric (A,) irreducible representation. 

The next task is the derivation of equation (A2.14). Again, the derivation to 

be given is closely related to that of Eyring, Walter and Kimball in their book 

Quantum Chemistry, in Appendix VI, and uses the same notation but is less 

rigorous and is structured rather differently. 

Consider a function F, which, for generality, is expressed as a sum 

/ 

F - Z M <A2'22> 

A = 1 

and which is invariant under all operations of the group—it transforms as the 

totally symmetric irreducible representation. That is, any operation, R, of the 

group operating on F gives F 

RF = F 

The variables X\, xk (there are usually no more than three members of the 

set) themselves form a basis for the representation Tx of the group, with 

matrices TX(R). Similarly, the yk form a basis for Ty with matrices Ty{R). It is 
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to be noted that the functions which here are called xkyk may be identified with 
the functions xnym of Problem A2.18—there is nothing in the following 
derivation which requires that n = m = 1 (be careful hot to confuse subscripts 

with superscripts). 
The explicit expression for RF is 

RF = R Z 
A=1 

= F 

Because R operates on each function individually, this is 

i 

RF=YJRxk»Ryk=F 
k= 1 

Now sum over all operations of the group; the result is 

/ 

Z RF-Z Z Rx* • Ry*=hF <A2-23> 
R R k= 1 

there being h operations in the group. 
Consider Rxk\ it is evident from equation (A2.6) that, for example, 

n 

Rxk = Y, <A2-24a> 

s = 1 

where Tx(R)sk is the s&th element of the matrix TX(R). Similarly, 

m 

%=Zr/Rto (A2.24b) 
/ = i 

It will later be shown that the invariance of F requires that 

T x(R)ik = ry(R)ik (A2.25) 

so the x, y, suffixes on the T’s will be dropped. Additionally, set m = n = l in 
equations (A2.24) and (A2.26). Substituting these two expressions into (A2.23) 
gives 

/ / / 

ZflF - Z Z Z Z rtfunsw, = hF (A2.26) 
R R k=\j-1f=l 

Problem A2.19 Derive equation (A2.26). 
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Because equation (A2.22) contains only terms xkyk so too must (A2.26), that 
is, s = t. So, in (A2.26), all terms with s F t must equal zero. Thus, 

X r(R\kT(R)tk =0 (s * 0 (A2.27) 
R 

Because ErRF in (A2.26) spans all the R in the group and because each R 
has a unique inverse, R 1 (Section Al.l), T,rR~'F also spans all operations of 
the group. It follows that 

Y,r~'f=y.rf 
R R 

i.e. the sums over R and R 1 merely give the same operations in a different 
order. 

In this appendix the relationship between the matrices associated with R and 

with R~' has not been investigated but it is a simple one—when all the 

elements of the matrices are real, the case to which the present discussion is 

limited, one simply interchanges columns and rows of R to obtain R ~1 and vice 
versa. 

Problem A2.20 Use the above technique to obtain the inverses of the 
matrices in Table A2.1. Check your answers by reference to Table 8.2. 

Thus, for example, the inverse of the matrix associated with Rz(a) in 
equation (A2.6) is simply 

Rz ‘(a) = 

cos a 

sin a 
0 

-sin a 0 

cos a 0 

0 1 

Problem A2.20 Show, using the above 3x3 matrix and the one given 

in equation (A2.6), that 

n?2(a)n?;'(a) = n?z-'(a)n?2(a) = TE 

Note that this relationship is obtained from equation (A 1.4) by the 

substitution of a matrix for the corresponding operation. 

Returning to equation (A2.26), it is clear from the above that on the left- 

hand side ZrRF can be replaced by Z,rR~1F. However, when this substitution is 

made, on the right-hand side those matrix elements associated with R must be 

replaced by those associated with R~l. This is done, as has been seen, by 

interchanging rows and columns—that is, by reversing the subscripts on the 

matrix elements (this causes no problems because we are dealing with square 

matrices). 
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It follows that 

2X'F = Z Z Z Z rW(K)a *,y, -hF <A2-28> 
R R k=\ s=\ r=l 

Problem A2.21 Check equation (A2.28). 

Therefore, for s ± t it follows that (using the discussion under equation 

(A2.26)): 

Z r(ft)fan«)i, = 0 s + t (A2.29) 

R 

Having exploited the s ± t situation to the full, now set s = t=j in (A2.26) 

and thus obtain 

i i 

ZflF = Z Z Z WOiFWrty, = hF (A2.30) 
R R k=lj=\ 

Comparing this with (A2.22) we deduce that 

/ 

= h i.e.j runs from 1 to / (A2.31) 
R k = 1 

Similarly, setting s= t = j in (A2.28) gives 

/ 

ZIr(%r(% = » 2=1,...,/ (A2.32) 
R k= 1 

Problem A2.22 Check the derivation- of equations (A2.31) and 
(A2.32). 

The right-hand sides of (A2.31) and (A2.32) are both independent of j and 

k, no matter the order in which these dummy suffixes appear in the left-hand 

side expressions. It follows that each term in the summation over k makes an 

equal contribution to the sum. The contribution of each term is therefore given 
by 

Zr(«),*r (K)* = 7 (A2.33) 
R 

Finally, combine equations (A2.27), (A2.29) and (A2.33). None of these 

expressions contain any suffixes on the T’s but we use (A2.24) to justify the 

requirement that the suffixes be identical, although, strictly, this should be 

formally proved. This combination gives, with minor changes in notation, the 
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expression 

339 

d,d ,6 , 
lJ mm nn 

which, as indicated, is identical to (A2.14). 

(A2.14) 

Problem A2.23 Detail the derivation of (A2.14) along the lines 
outlined in the text. 

The derivation of this equation was the object of the present section and 

many readers may wish to stop at this point. There is, however, one loose end 
in the derivation—equation (A2.25) was not proven 

rx(R)ik = ry(R)ik (A2.25) 

The validity of this equation was essential to the derivation of equation 
(A2.14). For completion, the somewhat lengthy, proof follows. 

Start by operating on each side of (A2.22) with an operation, R, of the 
group. That is, start with 

r 

RF = R J^Wk 
*=i 

where, for convenience the / of equation (A2.22) has been replaced by r. 

r 

=Z *(%) 
k= 1 

r 

=Y, R(xk)a R(yk) 
k = 1 

=F(see the discussion associated with equation (A2.22)). 

That is, F = Zrk=lR(xk).R(yk) for all R. It is now convenient to write (A2.22) in 
expanded form: 

r 

f=Yj Wk = *\y\ +x2 J2 + • • • + xryr (A2.34) 
k=\ 

Let R operate on just the xk in (A2.22); we have 

r 

F' = Y,R(xk)*yk 
k= 1 

or, in expanded form: 

F' = R(x} )yx + R(x2)y2 + ••• + R(xr)yr 

(A2.35) 
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Now, for an individual xk, 

Rxk=Yrx(R)stx, (A2.36) 
s = 1 

where Tn(R)sk is the .sMi element of r„(/?). So, (A2.35) becomes 

(ff)„ xs+y2Y, r, (*),2 +-ntr,msrx, (A2.37) 
1 s= 1 s = 1 

Note that within each summation term, each function xx, x2,..., xk may appear. 
Regroup the terms in (A2.37) according to these x’s; each x may be multiplied 
by any of the y’s. Note that in each Tx(R)sk term in (A2.37), the 5 goes with the 
x and the k with the y. The rearranged expression is 

r r r 

F'=X\Yj r*(*)l+X2 Z Tx(Rhkyk +■■■ +Xn Z rx(R)nk>’k 

k=1 *=1 k=1 

If we now operate on the y’s on the right-hand side of this expression with R 
then F' becomes equal to F and we have 

r r 

F=X\ X rAR)lkR}k +-"+Xn X rx(R)nkRyk 
*=1 *=1 

By comparison with (A2.34) we have 

r 

Zrx(R)tt«y*-J’/ (A2.38) 
*=1 

The inverse of the operation R is operating with it on both sides of 
(A2.38) gives 

r 

X Wufri =R~'y, 
k= 1 

Remembering that TA (/?),* is a number, this is 

r 

X =R-'y, 
k = 1 

that is, by equation (A1.4), 

r 

Z rx(R)ikyk=R~lyi (A2.39) 
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Now a general expression for Ryh analogous to (A2.25), is 

so that R~'yj is given by 

r 

Ry> = Z 
*=1 

=Z 
k= 1 

Comparison with equation (A2.39) requires that 

Z - Z r,(4 
*=i *=i 

We have thus found a relationship between the elements of TX(R) and Ty(R). 
But this relationship holds for all choice of R and all ik—we placed no 
restrictions on either. This generality only arises when corresponding individual 
terms in the two summations are themselves equal. That is, 

rx(R)ik = ^y(R)ik 

which is equation (A2.25). 

A2.4 THE REDUCTION OF REDUCIBLE 
REPRESENTATIONS 

An extremely important property of the matrices which multiply isomorphi- 
cally to group operations is the fact that ‘their characters are invariant to a 
similarity transformation’, a phrase which will be found in almost every book 
on the subject. What does the phrase in parentheses mean? This will be 
explained shortly but first, a digression. Consider a set of matrices A, B, C ... 
which form a representation of the group. From these, other matrices can be 
generated which also form a representation of the group, as will now be 
shown. The importance of this step is that the new matrices may be chosen so 
that they are more convenient to work with than the starting set. In particular, 
the new matrices can be cunningly engineered to be a sum of irreducible 
matrices. 

Suppose that the multiplication of the original matrices is such that 

AB = C 

it has to be shown that a similar relationship holds for the new matrices. If this 
can be done then they, indeed, multiply correctly. The engineering process 
consists of selecting another matrix, call it M, not a member of the set 
A,B, C..., but one which is of the same dimension—so, if A, B, C are all 
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6x6 matrices, so too must be M. For the moment M will not be specified 
further beyond requiring that it has inverse, M~‘. Form the products 

M~'AM = A' 

M~lBM = B' 

M-'CM=C' 

where the product matrices A',B', C' ... will be of the same dimension as 
A, B, C,.... The set of matrices A', B', C ... are a new set of representation 
matrices of the same group. This can be shown by considering the product 
A'B 

A' B' = M~lAMM~lBM = M~lABM = M~XCM = C' 

That is A'B' = C' whenever AB = C and so A', B', C' ... multiply in the same 
way as (isomorphically with) A, B,C .... 

The matrices A and A' are said to be ‘related by a similarity transformation’ 
as are B and B', C and C', etc. It is the property of matrices related in this way 
that they have the same characters—hence the phrase ‘their characters are 
invariant to a similarity transformation’. This relationship between the 
characters is not difficult to prove. The character of the matrix A, ^(A), is 
given by 

*(<>= X>» 
/ 

which, written in terms of the elements of product M~'AM is 

/ j k 

But each term on the right-hand side is a number and the same result is 
obtained no matter in which order they are multiplied together. It is therefore 
permissible to rewrite this expression as 

* J * 

j k 

But the final summation is that required for matrix multiplication (see equation 
(A2.1)), so 

j k 
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But MM = E, a unit matrix with 1 ’s on the diagonal and zeros elsewhere, so 

*W) = £ Iv# if j = k 
j k 

=!>« 
k 

= 0 if j * k 

We conclude that 

X(A') = X(A) 

which demonstrates the invariance of the character under a similarity 
transformation. 

The transformation of reducible matrix representations into sums of 

irreducible matrix representations is of vital importance. Although it is rarely 

necessary to go through the formal procedure it is implicitly involved, for 

example, in the formation of the symmetry-adapted linear combinations of 

orbitals used in the discussions of molecular bonding in this book. The 

procedure involved may be seen in the schematic equation given below; by an 

educated choice of M, the general matrix A is converted to the matrix A' which 

has irreducible matrices (cross-hatched) strung along its leading diagonal, all 
other elements being zero. 

Figure A2.3 

M"'[A]M (A2.40) 

The next step is to obtain matrices, M, which bring about this simplification. 

It is simplest to proceed by way of an example and this we do by returning to 

the two-hydrogen atoms in the water molecule problem (Section 3.2), for 

which Table A2.1 shows that there are two reducible matrices to consider, 

1 0 
0 1 

and 0 1 
1 0 

The first of these is diagonal (only zeros off the leading diagonal) so the 

similarity transformation has to lead to the retention of this characteristic. The 

second matrix is non-diagonal and has to be transformed to diagonal form. It 

will shortly be shown how the matrix, M, is obtained but, for the moment, it is 

simply given and shown that it leads to the desired result. 
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In the present example the matrix M is 

so that M 1 is 

1 l 

72 
1 

72 
1 1 

72 
1 

72 

V2 V2 

J__1_ 

V2 72 

i.e. M is self-inverse. Next, evaluate the two products of the form M 'AM, 
working from the left. For the first: 

1 1 i l 1 1 1 1 
V2 72 'l o' 72 72 72 72 72 72 'l o' 

1 
.72 

1 
72. 

.0 1. 1 
.75 

1 
72. 

1 
.72 

1 
72. 

1 
.72 

1 
72. 

.0 1. 

Since this case A was an identity matrix (l’s for all diagonal elements and 
zeros elsewhere) this product was really 

M~'EM = M~'M = E 

so it could have been anticipated that A would be left unchanged by the 
similarity transformation. The second case is less trivial. 

1 
72 

i 
72 r° ii 

1 
72 

1 
72 

J_ _1_" 
72 72 

’_1_ _]_■ 
72 72 r i oi 

1 
.72 

1 
72. 

LI oj 1 
.72 

1 
72. 

_1_ _1_ 
72. 72. 

J__1_ 
.72 72. 

Lo -iJ 

As required, this matrix has been transformed into a diagonal form. Both of the 

original 2x2 matrices have now been block-diagonalized into the form 

indicated on the right-hand side of equation (A2.40). The transformed matrices 
are (with the blocking indicated as sub-matrices): 

(1) 0 
L 0 (1)J and (1) 0 

LO (-l)J 
Remembering that, as (A2.2)-(A2.5) show, each of the original matrices has 

to be considered twice, write separately the sub-matrices (here lxl, i.e. 

numbers) that appear on the diagonals of the transformed matrices. We obtain: 

Operation 

First sub-matrix 
E 

(1) 

c2 

(1) 

av 

(1) 

a'v 

(1) >4, 
Second sub-matrix (1) (-1) (1) (-1) b2 
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The characters of these matrices are equal to the matrices themselves and so it 

is evident that the A, and fl, representations of Chapter 3 (Section 3.3) have 
been generated. 

Problem A2.24 Show that the four 4x4 matrices given on pages 320 

and 321 are simultaneously reduced to a diagonal form by a similarity 
transformation using for M: 

1 i i l 
2 2 2 2 

1 I _ 1 _I 
2 2 2 2 

1 _I 1 _I 
2 2 2 2 

1 _i _I I 
2 2 2 2 

Next, the key problem; how does one obtain the matrix which reduces a set 

of reducible matrices to block diagonal form? The answer is indicated by 

comparing the matrix used in the example detailed above with the two 

symmetry-adapted A, and 5, functions obtained in Chapter 3 (at the end of 
Section 3.4). These were: 

V(Al) = — (hl +fi2) 

^(5,)= 4= (A,-*2) 
v2 

If the coefficients which multiply hx and h2 in these expressions are written in 

matrix form we obtain: 

l l 
V2 72 

1 1 

72 72 

which is the matrix M used above. The result is general, the matrix which 

diagonalizes a reducible matrix is obtained by forming a matrix from the 

coefficients with which the basis functions appear in the symmetry-adapted 

functions. The method of obtaining these symmetry adapted functions has been 

described in Chapter 4 (Section 4.6) extended in Chapters 5 (Section 5.5) and 6 

(Section 6.2) and simplified for difficult problems in Appendix 4. There is one 

point at which care is needed. This is that it is important to make sure that 

the listing of the basis functions used in obtaining a reducible matrix (and in 

real-life problems this is the way such matrices are usually obtained) is 

identical to that implied in the matrix obtained from the coefficients in the 



346 MATRIX ALGEBRA AND SYMMETRY OPERATIONS 

symmetry-adapted functions. Thus, in the example above the functions rp{A{) 
and ip(B,) are obtained by multiplying out the product 

1 1 r 
V2 V2 h\ 

1 1 h. 
_V2 V2_ 

Z 

and here the listing of hx and h2 coincides with that of (A2.2)-(A2.5). It so 

happens that in this case we would have escaped penalty had hx and h2 have 

been listed in the incorrect order and thus obtained for M the matrix 

j_ j_‘ 

V2 V2 

V2 V2_ 

but, in general, one could not expect to be so fortunate. 

Problem A2.25 Show that the alternative form of M given above leads 

to the same results as that form used in the text. 

This appendix is concluded with the derivation of the algebraic expression 

that is the basis of the recipe frequently used in the main text to obtain the 

irreducible components of a reducible representation. As the discussion in this 

section has shown, a reducible matrix representation of a group can be reduced 

to a matrix which contains only irreducible matrices along its leading diagonal 

by a suitable similarity transformation. Further, the character of the original 

and transformed matrices are identical. If %(/?) is written for the character of a 
reducible matrix under the operation R then: 

k 

X(R) = X ajXjiR) (A2.41) 
j-1 

where Xj(R) is the character of the ;'th irreducible representation under the 
same operation (there are k irreducible representations in all) and a} is either 

zero or a positive integer, the number of times the y'th irreducible representation 

occurs in the reducible representation. It is these a/s that we seek to determine. 
Equation (A2.19) is 

X Xi(R)Xj(R) = hdy (A2.19) 
R 

where <5,y = 1 if i =j but 0 if / =/= j. Now multiply each side of (A2.19) by a; and 
sum over all j. We thus obtain, using (A2.41), 

k 

Z xW Z <%(*) = Z XiWxW = ha, 
R y'=l R 

(A2.42) 
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Only cij appears on the right-hand side of this expression because all other ay’s 

have been multiplied by 0 because of the <5,y. Rearranging (A2.42) equation 
(A2.43) is obtained 

(A2.43) 
n R 

the equation implicitly used in the text. 



Appendix 3 

Character Tables of the more 
Important Point Groups 

At the right of each character table in this compilation two columns of bases are 

given for irreducible representations, Rotations and Translations, given in the 

first column, are needed for vibrational analyses (see Chapter 9) and for some 

forms of spectroscopy (see Chapter 10). The second column is useful for other 

spectroscopies (Chapter 10) and for discussions of molecular bonding. 

Invariably, x2, y2 and z2 in some combination or independently transform as the 

totally symmetric irreducible representation. It follows that any linear combina¬ 

tion of the functions so transforming and, in particular, x2 + y2 + z2 = r2, 
transform under this irreducible representation. The function r2 is spherically 

symmetrical and so is associated with the s orbital of an atom. 

‘Note’ comments have usually either been repeated where relevant or cross 

references given. However, the reader encountering problems should scan the 

notes for related character tables, where he or she may well find helpful 

comments. 

Whenever possible the direct product nature of a character table has been 

indicated by divisions within the character table itself. It is often possible to 

simplify a problem by working in a subgroup instead of the full group and the 

divisions within the character table in this appendix are intended to facilitate 
this. 
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3 THE GROUPS Dnh 

A regular, planar polygon with n sides has Dnh symmetry. So, an equilateral 

triangle has D3h symmetry, a square has D4h symmetry. The label D arises 

because of the presence of twofold axes (Dihedral axes) perpendicular to a C„ 

axis. There are n of these twofold axes. The subscript h means that all of the 

groups have a unique mirror plane perpendicular to the C„ axis (if this axis is 

vertical then the mirror plane is horizontal). Although these groups all have od 
operations, the ah takes precedence in the labelling, hence Dnh. Also to avoid 

possible confusion with the Dnd groups many authors label as av some or all of 

the ad mirror planes. 
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4 THE GROUPS Dnd 

These groups do not have the ah mirror plane of the' Dnh groups. Objects with 

DnA symmetry typically have two similar halves, staggered with respect to each 

other. Thus solid objects of Dnd symmetry are called ‘antiprisms’, a term which 

indicates the staggering. 

When n is odd, the groups Dnd are direct products of the groups Dn and Cl 
(when n is even, the direct products Dn x Cj are Dnb groups). 
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5 THE GROUP Dn 

These are groups of proper (i.e. pure) rotations corresponding to bodies in 
which there are n C2 axes perpendicular to a principal Cn axis. To obtain solid 
figures of these geometries it is simplest to take a polyhedron shown for a Z)nh 
or Dni symmetry and to systematically introduce zigzag edges such as used to 
derive figures for the groups O and T. Molecules of Dnh or Dni symmetries 
drop to Dn symmetry when the ‘top’ and ‘bottom’ parts of the molecule are 
given small, arbitrary, twists in opposite directions about the z axis. 

Dnh and Dnd (n odd) group are direct products of D„ with either C, or Cs. 
For problems in these groups it is often simplest to work in Dn symmetry and 
move to the full group at a later stage. 
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6 THE GROUPS Cnv 

This set of character tables is of considerable importance since the groups 

involved are of common occurrence. One problem that frequently occurs with 

them is that of ambiguity about the choice of x and y (z presents no problems). 

Thus, for C2v, a change of choice can change the meaning of labels Bx and B2. 
Related problems arise for all Cnv groups with n even. Thus for C4v, as 5, and 

B2 change with choice, so too do the characters describing the functions x2-y2 
and xy (most evident when the choice of x and y lies between placing them in 

the 2av and 2a'). This has been discussed in more detail in the relevant chapters 

in the book. 
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7 THE GROUPS Cnh 

These groups have a derivation similar to that of the £)nh group—they are 
direct products of Cn with either Cx (n even) or Cs (n odd). The only one 
which has been found to be of real chemical importance is C2h; however, C3h is 
included to give an example of the n odd case. 
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8 THE GROUPS Cn 

379 

These are cyclic groups with character tables that look rather strange when 
compared with most of those encountered earlier in this appendix. They only 
look strange when compared with other point groups. For many other 
groups for instance, in the translation groups encountered in theories of 
crystal structure, but not discussed in Chapters 12 and 13—the appearance of 
complex numbers is the norm. 
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9 THE GROUPS Sn (n EVEN) (INCLUDES C,) 

Another set of cyclic groups is denoted Sn. These only exist for n even because 

odd values of n do not satisfy the requirement (£„)" = £. The S2 group is 

usually labelled C{ because the operations S2 and i are identical (this is 
demonstrated in Figure 7.29). 
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10 THE GROUP Cs AND THE TRIVIAL GROUP C, 

The group Cs, like the group Cx, often participates in a direct product group. In 

the case of Cs it is the post-superscript primes which carry over into the labels 
of the irreducible representations of the product group. 
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Cs E a 

A' 1 1 R-, 7V, Ty x\ y\z\ y2', x2-, xy 
A" 1 -1 Tz\ /?,; Ry z; yz; zx 

Note: The group C, is trivial because it is the symmetry of an object which has no symmetry! 

The only symmetry operation is the identity. 

c, E 

A 1 
In this group no bases are listed—all bases give rise to the A irreducible representation! 
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11 THE INFINITESIMAL ROTATION (LINEAR) GROUPS C 
AND D„h 

Molecules in which all atoms lie on a common axis demand special attention 
because a rotation of any magnitude about this axis is a symmetry operation. 
The attack which proves profitable on this problem is to regard all such 
rotations to be (very large) multiples of an infinitesimally small rotation. That 
is, there is a C„ axis and associated operations. The character table gives the 
character for the operation of rotation by an arbitrary angle 0 denoted Ct„• Not 
only is there an infinite number of operations based on C„ there is afso an 
infinite number of av mirror planes. Fortunately, they all fall into a single class. 
If the linear molecule has no centre of symmetry then the appropriate group is 
C„v. With a centre of symmetry the group is the direct product of C„v with C, 
and is denoted £>„h. Because the groups are infinite, the usual method of 
reducing a reducible representation will not work. However, reduction by 
inspection is usually possible. Appendix 5 discusses this problem in more 
detail. The alternative labels for irreducible representations for C„v and for D„h 
antedate the system used in this book. It is the E, II, A system which is the 
more commonly used. 

The D„h point group is the direct product of C«,v and Ct; it would therefore 
be expected that all terms in the irreducible representations carrying a g suffix 
would appear with the same coefficients as their counterparts in C„v. Similarly, 
the u-suffix representations should carry the coefficients with changed signs. 
Inspection of the character table of D„h reveals that these expectations do not 
appear to be obeyed. For instance, £, in C„v has the character 2 cos 0 under 
2Ct, whereas Elg in Dxh has a character of -2 cos 0 under 2£t,- The reason 
for this apparent anomaly lies in the nature of Sn operations. Consider C3. The 
combination i.C3 corresponds to an S6 operation, not to a S3—it is i.C6 which 
corresponds to an S3. (See, for instance, Figure 7.5(b); there is no C6 axis in an 
octahedron, only C3.) In general, corresponding to a pure rotation operation 
involving a rotation of 0 will be a rotation-inversion operation involving a 
rotation of -(180- 0). But 

cos{-(180- 0)} =-cos 0 

which explains the apparent anomalies in the Dxh character table. 
In previous character tables a prime (and double prime) notation has been 

used to indicate symmetry behaviour with respect to a mirror plane. These 
mirror planes were all of the ah type. In C„v and D„h a +, - notation has been 
used but this is because the mirror planes are of the av type. 





Appendix 4 
The Fluorine Group Orbitals of jz 

Symmetry in SF6 

It is inevitable that in the application of group theory to chemistry some short¬ 

cuts exist—and are exploited—which circumvent tedious or difficult 

mathematics. The experienced worker can often astonish the inexperienced by 
their ability to write down the correct linear combinations for a new 

problem—with no apparent work. In this appendix, an attempt is made to 

reveal some of the tricks. Thus, although at first sight it seems an advantage to 

have high symmetry this is sometimes not the case when carrying out a detailed 

calculation—for instance, there would be a considerable number of different 

interactions possible between two sets of triply degenerate orbitals in a bonding 

problem. In such a case it may help to pretend that the symmetry is lower than 

is in fact the case because the consequent reduced degeneracy forces a pairing 

between individual members of each set, thus reducing the number of 

interactions to be considered. Having paired the orbitals by this device, the low 
symmetry geometry can be forgotten and the correct point group used. 

It is a similar trick which provides an alternative to the projection operator 

method of obtaining linear combinations of orbitals (Sections 4.6, 5.5 and 6.2) 

and which proves to be easier to use in high symmetry cases. It uses knowledge 

of the correct combinations in a lower symmetry case to obtain those of a 

higher symmetry molecule, the lower symmetry group being a subgroup of the 

higher. There is no unique path in this approach—different workers might 

choose different low symmetry groups. For a given choice of subgroup there 

may be several equally valid ways of proceeding. Those experienced in the art 

develop a ‘nose’ which is based on a mixture of experience and the ability to 

anticipate problems that will be encountered along each alternative path. 

Something of this ‘nose’ will be evident in the next section where an attempt 

has been made to give the reasons for expecting a particular approach to be 

fruitful (or not, as the case may be). 

In tackling the problem of generating the fluorine group orbitals of n 
symmetry in SF6—of Oh symmetry—a choice of lower symmetry group must 

first be made. It is usually sensible to choose the subgroup of the highest 

symmetry for which detailed results are available. In the present case this 

suggests that the C4v subgroup of Oh be chosen because some ligand group 

orbitals for a molecule of this symmetry—BrF5—were obtained in Chapter 5. 

It is true that in that chapter only Br-F a-bonding interactions were considered 
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but perhaps they can be used as a base from which to obtain the n combina¬ 
tions. In Chapter 5 it was explicitly recognized that the fluorine o orbitals 
would be mixtures of s and p atomic orbitals; for simplicity they were there 
drawn as pure s orbitals. In Figure A4.1 they are drawn again, but this time as 
pure p orbitals; the C4v symmetry labels are included. Suppose the p orbitals are 
tilted out of the plane, as shown in Figure A4.2. The symmetry labels of Figure 
A4.1 remain appropriate as do the linear combinations. This is really an 
indication that in BrF5 there is no symmetry-dictated requirement that the Br-F 
a bonding orbitals have their maxima in the plane defined by the fluorine 
atoms. If the tilting processes is now completed Figure A4.3 is obtained, which 
shows that the n orbital combinations have been obtained—starting from the 
a! This method could be used because there is no operation in C4v which 
interchanges—and thus compares—the ‘top’ with the ‘bottom’ of each p 
orbital in Figure A4.3. The trick could not have been used in the D4h subgroup 
because the ah mirror plane in that group gives this comparison and so 
distinguishes between a and n orbitals. None the less, the combinations shown 
in Figure A4.3 remain correct in D4h because C4v is also a subgroup of 
D4h—but the symmetry labels would have to be changed. 

The next step is that of recognizing that the twelve pT orbitals of the fluorine 
atoms in SF6 can be obtained from those of the three planes of four atoms 
shown in Figure A4.4. Recall that the twelve it orbitals of Figure A4.4 

E 

Figure A4.1 The pure p orbital representation of coplanar fluorine a orbital 
symmetry-adapted combinations in BrF5. 
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Figure A4.2 The same p orbitals as in Figure A4.1 but with each tilted out of the 
plane in the direction of the apical fluorine in BrF5. 

Figure A4.3 The same p orbital combinations as in Figure A4.1 but reoriented so as to 
be perpendicular to the original set. 
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transform as Tlg + Tlu + 72g + T2u\ i.e. four different sets of triply degenerate 

orbitals. This triple degeneracy neatly matches the three planes and associated 

sets of orbitals shown in Figure A4.4. If this is exploited and the three orbitals, 

one from each plane, which correspond to the A, combination in Figure A4.3 
are collected together: 

itpz(B) + p,(D) + pz(E) + pz(F)] <- 

5 [p, (A) + Vy (C) + py (E) + py (F) ] 

itPv(A) + pA(B) + p,(C) + pv(D)] 

the Tlu set of ligand n orbitals in 0h is obtained, as may be checked by 

considering their transformations as a set. The combination shown in Figure 

7.15 is indicated by an arrow. Similarly, the three combinations corresponding 

to the 5, in Figure A4.3 are: 

5 [Pz (B) + pz (D) - pz (E) - pz (F) ] <- 

\ [py (A) + P;y (C) - Pj, (E) - P> (F) ] 

stPx(A) + p,(B)-px(C)-p,(D)] 

which is the T2u set of ligand n orbitals in Oh, the combination shown in 

Figure 7.17 being arrowed. 
It is at this point that anticipation cautions against continuing on and 

finishing the problem. There are two indicators that should cause us to pause. 

First, the next step would have involved three pairs of orbitals (the three 

sets, one from each plane, corresponding to the degenerate E set in Figure 

A4.3). It seems that six orbitals, apparently all degenerate, would be obtained. 

However, we are looking for two sets of three (Tig and T2g) and the two sets 

are not expected to be degenerate. Second, some arbitrariness has been 

exercised in the procedure that has been followed. In particular, when working 

with the planes shown in Figures A4.4 only p* orbitals which have their 

maximum amplitude perpendicular to this plane have been considered. Equally, 

the choice could have been made to work with the p„ orbitals which Tie in’ 

the plane, as shown in Figure A4.5, although it is not immediately clear how 

to proceed had this alternative choice been made. Experience suggests that 

when six apparently degenerate orbitals are obtained, as seems to be the case 

here, this is because symmetry-distinct combinations have been mixed 

together. After all, this is always mathematically possible even if it is a 

step which would not be made from choice. Further, experience is that 

because a choice exists between ‘perpendicular pn orbitals’ and ‘coplanar 

orbitals’ each alternative must be expected to appear to an equal extent in the 

answer. 
The way to extract symmetry-distinct combinations from sets in which they 

have been mixed together is to take suitable linear combinations of members of 
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Figure A4.5 A set of four fluorine p„ orbitals which lie in the plane of the fluorine 
atoms (cf. Figure A4.3 and the second part of Figure A4.4, where the sets of fluorine pT 
orbitals shown are all perpendicular to the plane of the four fluorine atoms). 

the mixed-up sets (a set of six orbitals in the present case). These six (un¬ 
normalized) are: 

V\ = tPz(E)-p2(F)] xp2 = [pz(B) - pz(D)] 

V>3 = [py(A) - p,(C)] t/>4 = [p> (E) - p>, (F) ] 

Vs = for (A) - p, (C) ] xp6 = [p, (B) - p, (D) ] 

Which orbitals should be combined together? It is here that the expectation of a 

‘coplanar’ set of p„ orbitals comes to our aid. Note that the set of ‘coplanar’ pT 
orbitals shown in Figure A4.5 contain contributions from 

P?(F), p, (B), p/E) and pA(D) 

i.e. those orbitals contained in xp4 and ip6 in the list above. Clearly, then, we 

have to combine these two. Because ip4 and ip6 are symmetry-equivalent (a C4 

rotation turns ip4 into xp6) they must be expected to contribute equally to the 

combinations. The only way for this to occur is to combine them first with the 

same and then with opposite signs. The result is (giving the final combinations 
in normalized form): 

V>6 + Va- itP,(B) - p,(D) + p,(E) - p,(F)] 

~ V*'- 5tPx(B) - Pa(D) - p,(E) + p,(F)] 

Having thus discovered a way forward with one pair, it makes sense to apply 
the same procedure to the pairs: 

xp, and xps 

xp2 and tp3 
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and thus obtain the complete sets: 

TV 5 [p* (A) - p* (C) + p2 (E) - p2 (F) ] <- 

2 tP>.(A) - P> (C) - p2(B) + p2(D)] 

Hp,(B)-p,(D) + p,(E)-p,(F)] 

TV Hp,(A)-p,(C)-p2(E) + p2(F)] <- 

f[p>-(A) - Py(C) + p2(B) - p2(D)] 

1 [p* (B) - p* (D) - P> (E) + py (F) ] 

The combinations illustrated in Figure 7.14 (7lg) and 7.16 (T2g) are indicated 
by arrows. 

The reader may well object that while a method has been given for 

obtaining combinations, it has not been shown that they are the ones that are 

Figure A4.6 (a) A Tlg function compared to a rotation (central arrow). Note the 
arrows drawn between lobes of adjacent p* orbitals. 
(b) Comparison with a typical T2g function (xy, dxy, etc.)—at the centre—with the 
nodal pattern of the corresponding T2g combination of p* orbitals. 
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required. Put it another way; how were the six combinations allocated 

correctly between the Tlg and T2g sets? Formally, of course, the answer is ‘by 

considering their transformations’, but, fortunately, experience relieves us of 

the tedium of this step. The character table for the Oh point group given in 

Appendix 3 shows that Tlg functions have the characteristic of a rotation 

while T2g functions behave like products of coordinate axes. Figure A4.6 

shows how these two observations may be used as a yardstick to discriminate 

between Tlg and T2g functions. 
This method of assignment of functions generated by a building-up 

procedure appears to break down when there is no basis function listed against 

an irreducible representation in a character table—for instance in Oh there is 

nothing listed against Alu. This does not mean that no basis functions 

exist—they always do. Instead, they tend to be rather complicated, containing 

many nodes (thus, in Problem 4.2 the orbital had to be invoked in order to 

find a function which spanned one particular irreducible representation). Such 

high nodality is usually enough to identify functions transforming under such 

an irreducible representation—it seldom happens that one is interested in more 

than one of this type at a time. 

In this appendix an attempt has been made to give some insight into the way 

that experienced practitioners tackle some group theoretical problems. The 

approach used is complementary to more formal short-cut treatments which 

can be given, one of which is described in the reprint of an article in the 

Journal of Chemical Education which follows. The case of the fluorine n 

orbitals in SF6 is not included in this article and the reader may find it of value 

to extend the treatment to include it. 

LIGAND GROUP ORBITALS OF COMPLEX IONSf 

Several articles which discuss ligand field theory reflect the growing interest in 

this refinement of simple crystal field theory.1-5 The reasons why covalency 

needs to be introduced into the latter theory are too well known to need 

elaboration here. Rather, we shall discuss a problem which arises in teaching 

the theory to undergraduate classes. As we have pointed out, the derivation of 

the ‘correct linear combinations of ligand orbitals’ in ligand field theory is a 

step almost invariably omitted in expositions of the subject suitable for 

undergraduates.5 The reason is simple: the derivation is difficult. The derivation 

in the most important case—that of an octahedral complex—using a group 

theoretical approach has been discussed.5 In the present article an alternative 

derivation is given of the form of ligand group orbitals (l.g.o.’s) which is more 

t Reprinted with minor alterations from an article by S. F. A. Kettle in the Journal of Chemical 
Education, 46 (1966), 652. Copyright (1966) by the Division of Chemical Education, American 
Chemical Society, and reprinted with permission. 
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suitable for undergraduate tuition. In particular, no use is made of detailed 
group theory. 

The method which we use may be termed the method of ‘ascent in 

symmetry . The l.g.o. s of a complicated molecule are derived from those of 

simpler molecules which are fragments of the complicated one, i.e. vectors 

appropriate to any point group are derived as linear combinations of the vectors 

of its subgroup, implicit use being made of the group correlation tables. The 

method is one of considerable power; e.g. one may obtain the l.g.o.’s for an 

icosahedral arrangement of equivalent a type orbitals in relatively simple form 

by this method. The standard group theoretical procedure is most unwieldy in 

this case, making it necessary to resort to a Schmidt orthogonalization 
procedure. 

The method may conveniently be based on three axioms: 

Axiom 1 The l.g.o.’s of a complicated molecule are related to those of its 

fragments by the condition that only sets with non-zero overlap may interact. 

Axiom 2 Two equivalent orbitals are properly considered in in-phase and out- 

of-phase combinations. So, the correct combination of two localized orbitals a, 
and o2 are, with neglect of overlap,! 

% = 4= (^l + °i) 

^=7?(CTl ~°2) 

Axiom 5 If a set of l.g.o.’s is d-fold degenerate and is formed from n 

equivalent orbitals then the sum of squares of coefficients with which each 

equivalent orbital appears in the set is d/n. This axiom may often be used in 

the simpler form that for every set of n equivalent orbitals (a,, o2,..., a„) 

there is always a totally symmetric combination: 

4= (?\ +cr2 + ••• +an) 
yjn 

We now illustrate the use of these axioms by deriving the l.g.o. ’s appropriate 

to five different stereochemistries. In all cases we include group theoretical 

labels although these are not essential to the argument. 

t For consistency, a positive phase is assigned to each localized orbital. 
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Example 1 The o l.g.o.’s of a planar AB3 molecule (Z)3h symmetry). Label 
the a orbitals ox, o2 and ct3. Consider a, and o2. From Axiom 2 the correct 
combinations, neglecting overlap, are: 

Ps = ^ (P\ + °2) 

P* = -j= ~ °2) 

By Axiom 1, of these only xpa can interact with ct3 (the nodal plane implicit in 
bisects ct3). We have, then: 

Pi = ~F=(P's+M) 
VI+A2 

and 

Pi =-j==ttVs-°3) 
Vl +A2 

where the constant A has to be determined. Now, from Axiom 3 the first of 
these combinations must be, in expanded form, 

Pi 
1 , 

= vfai+°2+a^ 
so, by comparison of coefficients, A = 1/V2 (we need only consider the positive 
root). It follows that 

Pi = ~j= (Pi + °2 ~ 2ol)- 

pi is of A\ symmetry and xpa and ip2 together transform as E'. 

Example 2 The a l.g.o.’s of a planar AB4 molecule (D4h symmetry). Label 
the a orbitals cyclically a,, a2, a3 and ct4. Consider the pairs a, and a3; o2 and 
ct4. By Axiom 2 we have the combinations: 

P\ = (^1 + °l) ^ (<*1 " 03) 

% = -j= (°2 + °a) Pa = (o2 - a4) 

The nodal plane implicit in xp2 contains atoms 2 and 4. Similarly, the xp4 nodal 
plane contains atoms 1 and 3. It follows, from Axiom 1, that only ipx and tp3 
interact. From Axiom 3, one combination is 

P5 = (a, +o2+a3+ a4) i.e. 
Vf(v>1 + ^ 



THE FLUORINE GROUP ORBITALS OF n SYMMETRY IN SF6 399 

so the other must be 

% = (ai - o2 + a3 - a4) i.e. -j= (^, - ^3), 
a/2 

xp5 is of Alg symmetry, xp2 and xp4 together transform under the Eu irreducible 
representation and xpe is of B2g symmetry. 

Example 3 The o l.g.o.’s of a tetrahedral AB4 molecule (Td symmetry). The 

derivation in this case is identical to that in Example 2. ip5 transforms as A, and 

xpi, ip4 and xp6 as T2. In this T2 set the Cartesian coordinates onto which ip2, ip4 

and y>6 have a one-to-one mapping are not equivalently orientated. Two, those 

which map onto ip2 and rp4, pass through the edges of the cube corresponding to 

the tetrahedron, but the third passes through the midpoint of faces. The T2 l.g.o. 

set which maps onto the usual choice of Cartesian axes for the tetrahedron is: 

and 

1 

V2 

V2 

(V>2 + %) = \ (<*1 + 02 - a3 - ff4) 

(V*2 ~%) = \ iP\ ~°2 ~°3 + a4> 

- o2 + a3 - o4) 

Example 4 The a l.g.o.’s of an octahedral AB6 molecule (Oh symmetry). We 

isolate four ligand a orbitals in a plane and label them cyclically ox, a2, a3, and o4. 

The correct combinations for this set are given in Example 2. Above and below this 

plane, respectively, he the orbitals a5 and a6. We consider the combinations: 

V>i =*(*, + a2 + a3 + o4) 

ft = (°\ ~ a3> % = ^ (°5 + 

'P3=^(<J2~04) V6=-^(°5-a6) 

V»4 = 2(^1 - o2 + o3 - o4) 

Axiom 1, applied by the ‘nodal plane’ criterion, shows that only xpx and rp5 are 

non-orthogonal. The combination 

* ■ - + Xip5) leads to (Axiom 3) 

Vl+A2 

ipj = -j= ^ + o2 + o3 + o4 + o5 + cr6) = 
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It follows, by comparison of coefficients, that 2 = (1/V2) so that the 
combination: 

is 

xp2 is of Alg symmetry, xp4 and xj)% transform as E% and xp2, ^3 and V>6 as Tlu. 

Example 5 The o l.g.o.’s of an AB8 Archimedean antiprismatic molecule 
(D4d symmetry). 

This example again uses the results of Example 2 by considering the allowed 
combinations between two square planar arrangements of ligand orbitals, 
rotated with respect to one another by 45°. In order to use Axiom 1 the nodal 
planes of the two sets must be brought into coincidence. This involves the 
rotation of coordinate axes as discussed in Example 3. Label the ligand orbitals 
cyclically ox,og, those of one plane being a,,a4 and those of the other 
a5,._, o8. a5 is positioned so that viewed down the fourfold rotation axis it 
appears to lie between a, and a2. 

Appropriate combinations are: 

*P\ = { 1 + o2 + a3 + a4) V5 = \ {o5 + a6 + cr7 + a8) 

% = \ (°\ - °2 + a3 - a4) % = { (^5 - ^6 + al - ^s) 

Application of Axiom 1 shows that we must consider further combinations 
between the pairs: 

xpx and xp5 

ip2 and xp2 

and xp2 

The first pair gives 
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while use of Axiom 3, in its more detailed form, shows that the correct 
combinations of xp2 and ip6 are 

V’i i = ~ (ffj - a3) + ~ (a5 - a6 - o1 + a8) 

Vn = a3> - -~j= (o5 - o6 - + o%) 

and of ip3 and ip7 

^13 = ^ (a2 - a4) + ((75 + a6 - a7 - a8) 

V'u = | (°2 ~ a4> ~ ((75 + a6 - a7 - a8) 

since it is evident that ipn and ipl3 must be degenerate as must also be ipn and 
ipH. The symmetries of these combinations are 

ipA and ip5: E2 

xp9:Ax 

V'io" B2 
ipn and ipn: Ex 

ipn and ipl4: E3 

Example 6 As an example of the application of the method to combinations 
of ligand orbitals of diatomic n symmetry we consider the l.g.o.’s of n 

symmetry in a tetrahedral complex. Although the standard technique can be 
used to obtain the correct combinations, in practice the calculation is rather 
difficult. 

We choose axes and orientations as shown in Figure A4.7. One set of ligand 
n orbitals (labelled a) is ‘coplanar’ with the z axis. The other set (labelled /3) 

lies in planes perpendicular to the z axis. If the x and y axes are chosen as 
shown some slight simplification results. Our basic combinations are 

V'l = -j= («1 + «2) V*2 = 4= («1 - «2) 

V>3 = («3 + «4) £
 II 'ft
 1 ft 

V5 = 0, + p2) % ~ ^ (Pi ~ P2) 

+ At) 

I II 



402 THE FLUORINE GROUP ORBITALS OF II SYMMETRY IN SF6 

Figure A4.7 Cartesian axes and orientation of ligand n orbitals in a tetrahedral 
complexion. 

Following the usual procedure it is readily seen that 

Ti 

*° = Ti 

(V'l + ^3) = \ («1 + 0-2 + a3 + «4) 

(V'i - %) = \ ia\ + a2 - a3 - a4) 

are orthogonal to all other combinations. It follows that they must be members 
of degenerate sets for they contain no /? component (cf. Axiom 3). Consider 
xp9. This obviously transforms like the z axis and so will be a member of a 
triply degenerate set of which the other components transform as x and y. It 
follows that d/n = 3/8. However, the coefficient of the a’s, squared, in ipg is 
\ so there must be an a component in the x and y transforming members. 
Evidently, these components are derived from ty2(y) and xp4(x), each of which 
must appear with a coefficient of \ (| - \ | = [|(1/V2)]2). Now, xp6 transforms 
like x and xpg like y so we are evidently seeking combinations of xp6 with xp4 
and of xp% with xp2. The correct combinations are 

Pi , 

V*i 1 = ~Y %~\% = [V3 - fi2) - a3 + aJ 

and 

J3 1 

Vnss~Y% " 2 ^2= (#3 ~ At) “ «i + 
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where we have been careful to make sure that the phases of ip6 and ip4 
mapping onto x and of xps and xp2 onto y are identical. 

Combinations of xp6 and rp4 and of xp% and ip2 orthogonal to ipu and ipl2 are 

^13 = {%+ y % = [fii ~ P2 + V3 (a3 “ «4)J 

and 

= = yy fe ~ A + V3 (at - a2)] 

We have only to deal with ip5 and ip-,, which are not orthogonal; the correct 
combinations are 

^P16 = l(/?l + Pi + /?3 + Pa) 

^P17 = 2(^1 + Pi ~ Pi ~ fit) 

The symmetries of these combinations are 

^9> Vhl> V;12: ^2 

V'n* V'm* V;I6: ^ 1 

V’lO* V;17: ^ 
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Appendix 5 

The Cxv and D„A Point Groups 

The method developed in the text for the reduction of reducible representations 
does not work for infinite groups. This is because in the usual reduction 
formula (equation (A2.43)) 

<*/=]■ 
n R 

the quantity h is infinity, and the set of R over which the summation has to be 
done is also infinite. Instead, it is simplest to work the equation from which this 
is derived (equation (A2.41)) and in which al appears on the right-hand-side. 

X(R) = YJaiXi(R) (A5.1) 
Z 

There have been several papers in the chemical education literature on the 
reduction of reducible representations of infinite point groups, most of them 
being based on equation (A5.1).1"7 Comparison of them makes interesting 
reading, the method given in this appendix differs—just a little—from all of 
them; the reader encountering difficulties has, then, several sources to which to 
turn for help. 

The Cxv character table is 

c„v E 2 Ct ~ OO (T . . . ^ V 

A, =£ + 1 1 1 
a2 = e~ 1 1 -1 
e, =n 2 2 cos 0 0 
E2 = A 2 2 cos 20 0 
£3=0 2 2 cos 30 0 

A general reducible representation (Tred) may have contributions from all 
irreducible representations, i.e. be of the form 

^red d\^> 4* a2I 4“ #3X1 4" A 4* -f- • • • 

so the problem is to determine the coefficients au a2, a3 , etc. Under the 
operation E the character of this reducible representation wili be: 

X\ = a{ + a2 + 2(a3 + a4 + a5 + a6 •••) (A5.2) 
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because Z+ and I each have characters of unity under this operation and all 
other irreducible representations a character of 2. Similarly, under the operation 
C the character of the reducible representation is 

Xi = ax + a2 + 2(a3 cos 0 + a4 cos 20 + a5 cos 30 + 06 cos 40 + •••). 

Finally, under the operation av the reducible representation has a character 

*3 = ax - a2 (A5.3) 

We have, then, a series of equations from which the unknown coefficients 
a\> a2> a3... can be determined, often by inspection. The fact that there are 
apparently only three equations but possibly more than three unknowns is no 
problem because there are really as many equations as needed. This is because 
it is possible to extract subsidiary equations by equating coefficients of, for 
example, cos 0, of cos 20, and so on. Thus, if Tred contains a term n cos 0 
under the C t operation this can only arise from the n irreducible 
representation and it can immediately be concluded that a3 = n/2. 

For some cases it may be simpler to allow 0 to assume specific values; in 
such cases Xi may be chosen to become selective of the terms within the 

parentheses. Thus, for 0 = 90°, cos 0 = cos 30 = cos 5 0 = • • • = 0, but 
cos 20= cos 60 = ••• = — 1 and cos 40 = cos 80 = • • • = 1 giving 

= +a2 + 2(- a4 + a6 ...) (A5.4) 

while for 0 = 180°, cos 0 = cos 30= cos 5 0 = ••• = -1 and 
cos 20 = cos 4 0 = • • • 1, giving 

X28°=al +a2 + 2(- a3 + a4-as + a6 "J (A5.5) 

In this way as many simultaneous equations in the unknowns, the a„’s, as are 
needed to solve the problem can be generated. The second example illustrates 
the use of this method. In practice, if there are more than a few terms the 
method becomes cumbersome. 

Example Problem: What are the symmetry species of the vibrations of a 
linear X-Y-Z molecule? 
Solution: Following the method developed in Chapter 9, consider the 
transformation of Cartesian displacement coordinates associated with each 
atom of the molecule: 

x(X) x(Y) x(Z) 

y(X) y(Y) y(Z) 

X-Y-z 

Figure A5.1 
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and obtain the reducible representation 

E 2 Ct °°<7V 

9 (3 + 6 cos 0) 3 

(Under the Ct, rotations each of the z displacement coordinates remains itself; 
each of the x and y are rotated by 0 and so the projection of the rotated 
displacement onto the original is cos 0—see either equation (A2.6) or Section 
6.1). 

As indicated above, the cos 0 factor can at once be separated out from this 
reducible representation; given a character of 6 cos 0 under 2Ct,, the 
characters under E and °°av follow 

E 2Ct °°av 
6 6 cos 0 0 

which is 3n (see the C«,v character table above). Subtracting these characters 
from the original reducible representation we are left with 

E Ct °°crv 
3 3 3 

which is 3X+. 
We conclude that the original reducible representation reduces into the 

components 

3I++3n 

The next step is to subtract the symmetry species of the translations and 
rotations. The character table for Coov given in Appendix 3 can be used to 
determine these. However, because the molecule is linear, the 3N-5 rule 
(N = the number of atoms) operates and Rz is not included in the rotations. 
From Appendix 3 we have 

Translations: £ + + n 
Rotations: n 

It is concluded that the vibrations of a linear X-Y-Z molecule transform as 

2£+ + n 

(The two I+ vibrations arise from the X-Y and Y-Z stretching motions; the n 
from the X-Y-Z angle deformation.) 

Comment: Had a term in cos 20 under 2Cl been obtained in this 
development, a A contribution would first have been extracted, a term in 
cos 3 0 would have led to a O contribution and so on. 
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Example 2 Problem: The central atom in a linear X-Y-Z molecule is a 
transition metal atom. Determine the symmetries of its d orbitals. 
Comment. Given the 0-angular dependence of the d orbitals—and this is 
explicit in their algebraic forms—the first method above could be used. 
However, many will prefer to use schematic diagrams of the angular 
dependence and the present method is well suited to this, more qualitative, 
description. 

Solution: Take the coordinate axes of the central atom to be those given in 
Problem 1. By drawing the individual d orbitals (and viewing them ‘down’ the 

characters can be derived . Take specific values of 0 of 90° and 
the characters 

E 2 Cr 2Ci80 oo(T 

1 1 1 1 
2 0 -2 0 

dj.2_.y2, djy 2 -2 2 0 
I"red 5 -1 1 1 

It is, of course, simplest not to work with Tred but to separately 
of the three representations of which it is the sum. However, for the purpose of 
the present example, the more difficult problem of working with Tred in a 
systematic manner will be tackled. This is done by the use of equation s(A5.2) 
through to (A5.4). In these equations a decision must be made about how many 
of the a,, a2, a3 _ to include on the right-hand side. A wrong choice will either 
lead to a set of equations which are not internally consistent or, the final check, 
an answer which does lead to the regeneration of the original reducible 
representation. In the present example only ax, a2, a3 and a4 on the right-hand 
side of these equations will be included (there are four characters in the 
reducible representation and so four unknowns can be determined; if we 
wished to include a5 on the right-hand side we would have had to include 
another rotation, Ci5, for instance, when generating the reducible 
representation). 

The substitutions give 

In (A5.2) (£): 

In (A5.4) (2C*): 

In (A5.5) (2Ci80): 

In (A5.3) (ooav): 

5 = ax + a2 + 2 a3 + 2 a4 

—1 — a i + ci 2 — 2 (7^ 

1 = a, + a2 - 2a} + 2a4 

1 = ax- a2 

By straightforward manipulation of these equations: 

ax = 1, a2 = 0, a3 = 1, a4 = 1 

i.e. T^ = X + + II + A. 
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Had we worked with the three simpler problems rather than the complicated 
one we would have identified dz2 as £ + , (dAZ, d^) as n and ('d*2-,2, dA:),) as A. 

Problem A5.1 Show that if an attempt is made to solve the above 
problem using only a,, a2 and a3 then the equations obtained are not 
internally consistent. 

Problem A5.2 Show that the set of p orbitals on an atom in a molecule 
of C„v symmetry transform as 

z+ + n 

Use this result to show that the configuration p'p1 (where two different 
sets of p orbitals are involved) on such an atom gives rise to terms which 
transform as 

2E+ + + 211 + A 

(Hint: Consider the direct product (L + + IT) ® (£ + + FI).) 

In this appendix C„v has been used as an illustrative infinite point 
group; the methods described may be immediately extended to D„h by 
including characters appropriate to Sn and C2 operations. 
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Appendix 6 

Hermann-Mauguin (H-M) and 
Schonflies (S) Equivalents 

Point group operations 

Hermann-Mauguin Schonflies Comments 

1 E 
I i A bar over a symbol in the H-M notation 

indicates inversion in a centre of symmetry. 
2 c2 
3 c3 Note that rotation is in the same sense in the two 
32 C32 notations. This is particularly important when 
4 C4 S4 or S6 axes are present. 
43 c3 
6 C6 
65 Cl 
m 0 Unlike 0, the m symbol never carries suffixes. 

It is very important to recognize that the common 
3 si practice is to use different definitions for these 
32 So operations in the two notations (H-M; rotation + 
4 si inversion: 5; rotation + reflection) leading to 
43 S4 apparently perverse correspondences. More 
6 S\ comfortable correspondences can be obtained by 

defining rotation to be in opposite senses in the 
65 S3 two notations (not done here). 

Point groups 

Although extension to other cases is straightforward, in practice, use of the 
Hermann-Mauguin notation is normally confined to the 32 crystallographic 
point groups. Only these are given here. 



410 HERMANN-MAUGUIN (H-M) AND SCHONFLIES (S) EQUIVALENTS 

Hermann-Mauguin Schonflies 

1 Ci 
I Cj 
2 C2 
m Cs 

2 
m C2h 

222 d2 
mm2 C2v 
222 

^2h mmm 
4 C4 
4 54 
4 
m C4h 

422 D4 
4 mm C4v 
42m ^2d 
444 

D4h mmm 
3 C3 
3 

32 D3 
3m c3v 
32 
m D3d 
m 
6 Cf, 
3 

C3h m 

6 
m Qh 

622 d6 
6 mm Cf,\ 

Dt, h 3m2 
m 

622 
D b\i mmm 

23 T 

23 
m Th 

432 0 
43 m 

— 3 — 
m' m 

Td 

0h 

Comments. 

In H-M sometimes called mm 

In H-M sometimes called mmm 

In H-M sometimes called - 
mmm 

Beware confusion with m3 

In H-M sometimes called 3m 

In H-M sometimes called 6m2 

In H-M sometimes called — ^ 

In H-M often called m3 
(beware confusion with 3m) 

In H-M often called m3m 



Further Reading 

The subjects of symmetry and group theory cover an enormous range. At one 
extreme are popular treatments of manifestations in art and science (recent 
articles in the chemical press have covered subjects as diverse as Hungarian 
needlework and motor-car hub covers). At the other extreme are mathematical 
discussions which appear to have no relationship with the content of the present 
book (which treats only a small and specialist part of the subject). For most 
readers the sensible way to progress would be to read a text covering the material 
contained in this book but in which the mathematics is fully integrated. Progress 
and understanding should both be rapid. There is a timelessness about the subject 
so that the fact that a book is relatively old should be regarded as no disadvan¬ 
tage. The following are listed in an approximate order of mathematical difficulty, 
although the subjectiveness of any assessment has to be recognized. The list is 
not comprehensive and a browse through the shelves of a library may well be 
productive. 

Symmetry Discovered by J. Rosen (Cambridge University Press, Cambridge, 
1975). Not mathematical at all, but beautiful. 

Symmetry in Chemistry by H. H. Jaffe and M. Orchin (Wiley, New York, 
1965). Little more mathematical than the present book but more 
‘conventional’ in that symmetry elements, operations and examples are the 
subject of the first three chapters. 

Symmetry and Stereochemistry by J. D. Donaldson and S. D. Ross (Intertext, 
London, 1972) has an emphasis on point group and space group symmetries. 

Molecular Symmetry and Group Theory by A. Vincent (Wiley, London, 1977). 
A programmed introduction which proceeds gently, each frame providing an 
answer to the problem set in the previous frame. 

Symmetry in Chemical Bonding and Structure by W. E. Hatfield and W. E. 
Parker (Merrill, Columbus, Ohio, 1974). Not very mathematical. 

Now come a series of books which have a full integration of the mathematics 
and discussion. The choice between them is very personal. 

Chemical Applications of Group Theory by F. A. Cotton (Wiley, New York, 
1990). Now in its third edition, this is the best known of the books in this 
category. The treatment of space groups is through the eyes of a crystallogra- 
pher and so has some differences with the presentation in the present text. 
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Symmetry, Orbitals and Spectra (S.O.S.) by M. Orchin and H. H. Jaffe 
(Wiley-Interscience, New York, 1971). The touch of humour in the title is 
significant. Rather more mathematical than the other book by the same 
authors (see above). 

Symmetry and its Applications in Science by A. D. Boardman, D. E. O’Connor 
and R A. Young (McGraw-Hill, London, 1973). 

Group Theory and Chemistry by D. M. Bishop (Clarendon, Oxford, 1973). 

Now a set that are more mathematical but in being so are more rigorous. Again, 
much the same material is covered and so the previous study of one of the texts 
above should make understanding both easier and more rapid. 

Introductory Group Theory by J. R. Ferraro and J. S. Ziomek (Plenum, New 
York, 1969). 

Symmetry by R. McWeeny (Pergamon, Oxford, 1963). Perhaps the easiest to 
follow of this group. 

Molecular Symmetry by D. S. Schonland (Van Nostrand, London, 1965). 
Molecular Symmetry and Spectroscopy by P. R. Bunker (Academic, New York, 

1979). 
Group Theory in Quantum Mechanics by V. Heine (Pergamon, London, 1960). 

This book goes well beyond the content of the present volume; it uses 
Hermann-Mauguin notation. 

Molecular Aspects of Symmetry by R. M. Hochstrasser (W. A. Benjamin, New 
York, 1966). A notable book; it includes accessible treatment of topics not 
commonly discussed. Unfortunately, it has its fair share of printer’s errors. 

Group Theory and its Physical Applications by L. M. Falicov (University of 
Chicago, Chicago, 1966). A small book that deserves to be better known. 
Rigorous but relatively easy to read. 

Turning to the topic of space groups, the approach followed in the present text 
is closer to that traditional in physics rather than that common in chemistry. 

Space Groups and their Representations by G. F. Koster (Academic, New 
York, 1957). This could be regarded as essential reading. Perhaps the most 
important part of this book for the reader of the present volume is the first 
half—and this is the easiest to read. It is a reprint of an article that appeared 
in Solid State Physics, 5 (1957), 13. 

Space Groups for Solid State Scientists by G. Bums and A. M. Glazer 
(Academic, Boston, 1990). Now in its second edition, this is a veiy easy to 
read book that covers the basics of group theory and then immediately 
applies them to space groups. 

International Tables for Crystallography T. Hahn (ed.) (Reidel, Boston, 1983). 
The earlier edition is International Tables for X-Ray Crystallography, Vol. 1, 

N. F. M. Henry and K. Lonsdale (eds) (Kynoch, Birmingham, 1952). One or 
other of these is essential for serious work. Both have been reprinted several 
times 
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