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Preface

One of the fundamental territories of chemistry is the chemical bond, the glue
from which an entire chemical universe is constructed [1]. The bond serves as a
bridge between the apparent magic of chemistry (the chemical transformation)
and the way this magic is conceived at present in terms of molecules changing
into one another by breaking old bonds and making new ones. For a while it
seemed that chemists have, by and large, abandoned their territory as if everything
about bonding is known and well understood; the frontier has moved to nano
and bio, leaving the original territory untended. This, however, was a wrong
impression, as the interest in bonding has quickly revived to be accompanied by
many interesting theoretical approaches to probe the origins of bonds, many novel
bonding motifs, and even experimental studies that describe imaging of bonds
being broken and remade using atomic force microscopy [2]. The bond is becoming
again a central intellectual arena, and one can even find allusions to the bond as an
elementary particle of chemistry, so-called ‘‘bondon’’ [3]. This ‘‘return of the bond’’
has prompted the two editors to edit these two volumes on bonding, and it is only
fitting that their publication date is close to the centenary of the Lewis seminal
paper on electron-pair bonding.

The idea of ‘‘bonding’’ may even have alchemical origins in the spiritual outlook
of matter, where the conjuctio or union of the opposites is the ultimate synthesis
necessary to drive the change of lower matter to gold [4]. In chemistry, the roots of
the bond concept date way back to the efforts of chemists to grapple with the magic
of chemistry, the formation substances and their transmutation [5]; these efforts
have led to the formulation of ‘‘chemical theories’’ in which ‘‘affinities’’ between
materials were considered to unite ‘‘more compounded’’ substances. Interestingly,
the ‘‘affinity’’ was not defined as a static property of substances but as a dynamic
one, in conformity with the ‘‘chemical magic’’ that a substance exists one time and
then disappears making place for a new one.

In 1675, Lemery published his book Course de Chymie [6, 7] and used ‘‘elective
affinities’’ as terminology that describes the selective replacement of one metal by
others in the chemistry of salts [7a]. In 1718, Etienne Francois Geoffroy systematized
this phenomenon in his table of rapports, namely, affinities. [7b] Historian Ursula
Klein [8] credits Geoffroy as the first scientist to generalize the basic concept of
modern chemistry – that of the ‘‘compound’’ with ‘‘chemical affinity’’ between the
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constituents. The tables of affinities became so important to chemists, because they
documented the chemical selectivity of the known chemical bodies of the day. We
learn of the importance of affinity tables from the story of Swedish chemist Torben
Bergman, who assembled thousands of affinity data [9], and presented his table as
a gift to the Duke of Parma. Building on Geoffroy’s ‘‘theory,’’ another Frenchman,
Peirre-Joseph Macquer, published in 1749–1751 his two-volume monographs:
‘‘Chimie Theorique’’ and ‘‘Chimie Practique,’’ [10] in which he gave rules of chemical
combination. As cited by the historian Siegfried, these rules sound very modern to
our contemporary ear (p. 144 in Ref. [5]).

However, a dramatic change had to occur to put the ‘‘elective affinity’’ into the
effective theoretical construct we now call ‘‘the chemical bond.’’ This change was
induced by three consecutive revolutions. The first revolution is the ‘‘compositional
revolution’’ that started with Lavoisier and culminated in the atomic hypothesis of
Dalton, which enabled him to identify the mythical term ‘‘elementary bodies’’ with
discrete atoms; matter with ‘‘quantized weights’’ (p. 237 in Ref.[5]). This hypothesis
has developed into quantitative compositional rules that have led eventually to
the notion of the molecule with the work of Cannizzaro who demonstrated the
importance of Avogadro’s hypothesis (pp. 260–262 in Ref. [5]). Now, the chemical
community had in its possession the elements that could bond with one another,
and bonding theories started to form gradually and replace the ‘‘affinities.’’ There
were the ‘‘dualistic’’ electrical theories of Davy and Berzelius (p. 75 in Ref. [9]) [11],
which sprung from electrochemistry. A similar theory was delineated soon after by
Thomson, the discoverer of the electron, in which bonding arose from the attraction
of oppositely charged ions after electron transfer between the atoms [11, 12].

Later, this theory was replaced by a more advanced one [13] where bonds were
formed by Faraday ‘‘tubes’’ (lines of force) from one atom to another and vice
versa. This has created a vogue of ionic or so-called ‘‘electromer’’ theory, especially
amongst American scientists [1]. However, from their onset, these ‘‘ionic’’ type
theories have been ‘‘falsified’’ by the fact that most organic compounds were
nonpolar (nonionic), and the emergence of the concept ‘valence’ that united the
structuralists [1], Kekulé, Couper, and Butlerov around it. This bonding dichotomy
and the urge to generalize chemistry and create an Allgemeine Chemie (a unified
chemistry) [14], has eventually led to the second revolution, ‘‘the electronic structure
revolution,’’ culminated in the Lewis hypothesis of the electron pair bond in 1916,
which gave the clue to the nature of the atomic combination [15]. At last, the meaning
of the mythical terms ‘‘elective affinity’’ and ‘‘elective forces’’ had an operational
and an effective definition that allowed to construct a chemical universe. Lewis did
not try to understand the ‘‘forces’’ between the atoms; instead, he let himself be
guided by his chemical overview to hypothesize the pairing as a quantized unit of
bonding, which gave the clue to the nature of the atomic combination [1, 16].

Starting in the late 1920s, the new quantum theory has entered chemistry and
ushered the third revolution through the works of Heitler and London [17], and
subsequently by Pauling [18], Slater [19], Mulliken and Hund [20], Hückel [21],
and so on. Here, we have to digress for a moment and remark about the current
tendency to classify chemistry as a service science and a sub-branch of physics [22],
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presumably so, because it falls under the sovereignty of quantum mechanics. We
disagree with the description of the situation in terms of a father science and a
submissive science, and have doubts it can be seriously considered by scientists
who are familiar with chemistry and its creative elements [23], or even by physicists
who wrote against reductionism in science [24]. A more balanced picture would be
to think in terms of cross-fertilization between two independent sciences. Thus,
despite the origins of quantum mechanics in physics, one must remember that
chemists have been the first to employ quantum notions in their science, starting
with the quantized weight of matter, going to the quantal building blocks of
structure, and the quantal magic numbers, such as octet and duet rules that control
the number of bonds an atom will possess. More so, the very first paper of the new
quantum chemistry that dealt with the nature of the chemical bond, the paper by
Heitler and London [17], was actually a dressing of the Lewis bond by the language
of quantum mechanics. Pauling recognized this link and Lewis’ priority in a paper
[25], and in the enthusiastic letter he wrote to Lewis to let him know that his
idea of a bond rests on a firm theoretical ground [26]. Chemistry was not really
a submissive passive science in the story of the chemical bond; it was a partner
science with a full share [1]!

During the early 1930s, Pauling has imported this emerging theory to chemistry
and was referring to it as valence bond (VB) theory and thereby paying homage to
the originators of the concept of valency and to his chemical heritage. In his hands,
VB theory was a superposition theory of Lewis structures, which was later to be
called resonance theory. Indeed, Pauling’s work was a theoretical construct that
cleverly and faithfully dressed the Lewis notion of a bond with a theoretical guise
that could be presented in the new language of the Schrödinger equation in terms
of a wave function and a Hamiltonian that extracts the energy of the molecule
from this wave function [27]. The Pauling–Lewis theory constituted the localized
representation of the chemical world, where the great majority of molecules would
be described by a single Lewis structure having a set of localized bonds and lone
pairs, whereas the minority of molecules required a few Lewis structures to be
represented properly (e.g., benzene). The obvious affinity of resonance theory to the
Lewis concept and to the ideas of the Ingold School of Physical Organic Chemistry
[28] further entrenched the localized representation of the molecular universe in
terms of local bonds and lone pairs. Most chemists still use this representation!

Quite at the same time, another theory [28], nascent from the spectroscopic
studies of Hund and Mulliken [20], called molecular orbital (MO) theory was
ushered into mainstream chemistry, initially by Mulliken and subsequently by
Hückel [21]. Hückel devised a simple topological theory that allowed him to treat
large molecules. Following Lennard-Jones’ treatment of the dioxygen molecule [29],
Hückel applied a clever idea of σ-π separation [21] and focused on the π-electronic
structure of conjugated molecules. One of his earliest treatments was benzene
and its description in terms of delocalized MOs was the archetypal example of
the delocalized paradigm [30]. Here, the π-system of benzene was delocalized, the
electrons were distributed all over the molecule in all the MOs, and there was no
need to move electrons to and fro as in the localized picture of two resonating
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Kekule structures. As discussed by Berson [23], the Hückel MO (HMO) theory was
received with suspicion by chemists, who where subscribers of the Lewis–Pauling
localized representation of molecular species, and who were not accustomed to the
new language of secular determinants and secular equations, nor to the MOs that
were spread all over the molecule. Where are my bonds? was the silent outcry of
the suspicious chemists…

While HMO was held back and awaiting its chance (that came in the 1950s),
Mulliken and Pauling who have been contemporaries and influential figures
were competing on charting the mental map of chemistry [28, 31]. Initially the
Pauling school had the upper hand and the localized representation dominated
chemical thinking. It must be recalled that, in those days, computationally both
MO and VB theories were not very practical tools for investigating molecules,
and with the qualitative advantages of Lewis bonding and resonance theory the
localized representation seemed a superior concept. Thus, the Lewis-Pauling theory
dominated chemical thought mainly because its localized representation was so
much reminiscent of the primal structural concepts of chemistry [5] dating from
the days of Kekulé (1829–1896), Couper (1831–1892), Frankland (1825–1899),
and others through the electron-pair notion and electron-dot structures of Lewis.
Pauling himself emphasized that his VB theory is a natural evolution of chemical
experience, and that it emerges directly from the chemical conception of the
chemical bond. This has made VB-resonance theory appear intuitive and chemically
meaningful in terms of structure and valence.

By contrast, MO theory seemed alien to everything chemists had thought about
the nature of the chemical bond. Even Mulliken admitted that MO theory departs
from the ‘‘chemical ideology’’ [28a]. And to top it all, back at that period, MO theory
offered no visual representation that could compete [28] with the resonance hybrid
representation of VB-resonance theory, and its direct lineage to the structure of
molecules, the heartland of chemistry. At the end of World War II, VB-resonance
theory dominated the epistemology of chemists. However, the tide has changed
in the 1950s up to the mid 1960s, when several chemical communities took on
to the new theory [28]. The conceptual advantage of HMO theory was brought to
light by the synthesis of new ‘‘aromatic’’ species, which obeyed the Hückel magic
number 4n+2, while other species with the magic number 4n were either unknown
or known to be very reactive compared with their 4n+2 congeners [23]. Books on
HMO theory and its application were written and demonstrated the insight of the
theory to practicing chemists [32]. The synthesis of molecules like ferrocene [33],
for which the MO picture due to Orgel and Dunitz [33b], was so much more elegant
than the resonating theoretical description of Pauling reinforced the notion that
the MO representation was superior.

At the same time, semiempirical MO methods started to appear which allowed to
treat large molecules and to consider σ-electrons as well [28]. Good communicators
of MO theory like Coulson [34] and Dewar [35] started to offer visual representations
of the delocalized picture and re-chart thereby the mental map of chemistry.
The Woodward–Hoffmann Rules [36], and in retrospect also the Frontier MO
(FMO) theory of Fukui [37], which patterned a great deal of data on pericyclic
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reactions and made many predictions that were successfully tested by chemists,
highlighted the role of orbital symmetry and hence underscored the eminence
of the delocalized representation. Hoffmann and his school have continued and
demonstrated the unifying power of the delocalized representation in almost every
area of chemistry. The connection of the delocalized MOs (canonical MOs) to
observables in spectroscopy (e.g., ionization energies and the work of the late Edgar
Heilbronner and Hans Bock [38] and others) has further established a credibility
nexus between MO theory and experiment.

This dominance of the MO representation has further intensified with the
development of ab-initio computational methods, starting some time in the 1960s
but was ripen in the early 1970s when Pople and his collaborators introduced
GAUSSIAN 70, which was based on MO theory and later when density functional
theory (DFT) was implemented into quantum chemistry software, which enabled
the calculation of molecular species and reactions, without any prior assumption
(other than the used basis set and functional). The delocalized picture became
the consensus and resonance and VB theories were slanted and considered to be
archaic, if not simply wrong theories [27, 31].

Despite this seemingly decisive crush, still chemists have been teaching the
localized picture in terms of Lewis structures, VSPER [39] (used for the 3D
representation of molecules) and resonance theory and using the latter to design
syntheses and/or think about reaction mechanisms. Thus, many parts of the
chemical community have been functioning with split consciousness between
the localized and delocalized worlds. The ‘‘conceptual war’’ has never really
subsided, and one of the later reverberations of the struggle between localized
and delocalized approaches is the classical–nonclassical controversy regarding the
structure of the 2-norbornyl cation [40]. However, this ‘‘doubled consciousness’’ and
the ‘‘conceptual wars’’ are arguably advantageous, because as with the Talmudic
tradition, these discussions created a new culture of thought in chemistry about
molecules and bonding.

The MO-based methods, augmented with electron correlation calculations, and
DFT-based methods have gradually improved their computational capabilities to
the point that one can now compute enzymes within their proteins and follow the
reactivity of their active species [41]. A recent paper on the electronic structure
and bonding of the Mn4O4Ca water splitting using density matrix renormalization
group (DMRG) [42], is a spectacular example of the current potential capability of
the MO-based computational methods.

While MO-based computational methods, including DFT, have dominated the
way chemists are computing their molecules or reactions, there has been an
ever-growing counter-tide of applications of the localized approach to a variety
of problems in chemistry. This counter-tide is perhaps a clear message that the
localized representation is more easily implemented in human thought process,
even if the delocalized representation is more easily implemented by computing
machines. Thus, VB theory, has continued to live very well in several communities;
those of chemical dynamics [43], photochemistry [44], electron transfer chemistry,
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and in solid-state chemistry (e.g., conductivity), where the localized representation
seemed indispensable [44].

Starting in the late 1970s, there has been an intense surge of concepts that rely on
localized representation, and some examples follow: the recent interest in multiple
bonding between transition metals [45] emphasized the great insight brought
about using the hybridization concepts [45c] to understand unusual structural
features of molecules, and the development of natural resonance theory (NRT),
which allows to discuss molecular structure and bonding in terms of resonance
theory [46]. The powerful ‘‘isolobal analogy’’ [47] uses a localized representation
of bonding and moves to and fro between the representations. The reactive-bond
orbital (RBO) approach finds the ‘‘identity’’ of the orbitals that are responsible for a
given interaction between molecules, and yields good localized orbitals rather than
the usual HOMO and LUMO delocalized oribitals [48]. The energy decomposition
analyses [49], and the block localized wave function (BLW) method [50] enable to
get VB-type information from delocalized wave functions. There is a VB approach
that treats chemical reactivity and reaction mechanisms with a localized and
semilocalized representations, going back and forth between the representations
[51]. VB methods and models allow to derive new ideas on chemical bonding [52].
VB ideas are prominently useful in analyzing enzymatic reactivity [41, 53]. There
are thriving theories of photochemical reactions based on conical intersections in
the localized representation [54]. All this activity has been accompanied by a steady
improvement in the computational capability of VB theory [55]. At present, a VB
software such as XMVB [56] is widely available and enables to compute molecules
up to the size of (OC)4Fe(C2H4) [55] and to explore bond breaking and bond making
in chemical reactions, even in solution. Moreover, the emerging VB methodology
has enabled to test many of the qualitative theories on bonding and reactivity [55].
As a result of these parallel developments, we are standing in an exciting crossroads
where electronic structure theory is standing on two robust feet. The books we
edited reflect this coming together of the two ‘cultures.’

The advent of DFT in chemistry and the electron-density-based approaches in
the 1970s contributed a powerfully effective method to compute molecules with
reasonable accuracy, and at the same time it added a dimension to the MO-VB world
of chemistry. On the one hand, DFT relies on the density (𝜌), which is a delocalized
molecular property and therefore the theory brings a measure of support to the
conception of a delocalized chemical universe. On the other hand, in the eyes of
many in our community, with DFT the entire simple orbital picture seemed to
have collapsed altogether because, as the argument goes: 𝜌 and the energy (E) are
‘‘the only real quantities that count.’’ It is true that the Kohn–Sham (KS) orbitals
look like MOs [57]; they are delocalized and follow the symmetry of the molecule.
However, as one can, in principle, solve the DFT problem without invoking any
orbitals at all, this leads to arguing that the density is self-sufficient with no need
for orbitals. This, of course, is changing dramatically as chemists increasingly use
the DFT method. Furthermore, as the bond concept is immensely useful, most
density-only proponents devise density probes for locating bonds such as in AIM
and in ELF [58]. In AIM theory, bonds are recognized by bond paths, while in
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ELF theory bonds are defined by molecular basins and their population, traced by
the Pauli exclusion principle. However, both these probes need to be computed
and cannot be foretold without performing the calculations. In some cases, the
emerging bond paths defy chemical understanding. What aggravates the situation
is that there is a growing school for which the computations itself is the theory
with no need for further conceptualization. If one accepts this verdict then, indeed,
all our concepts seem to dissolve in the computer. However, as these two volumes
show, there is ample room for bonding concepts. As the admonition attributed to
Wigner says: It is nice to know that the computer understands the problem. But I would
like to understand it too.

This two-volume project shows the immense vitality of the bond concept, and
it tries encompassing the richness of the bond concept by presenting different
perspectives on bonding. Volume 1 contains 11 chapters, which provide the
theoretical frameworks of the various perspectives on bonding. This volume lays
the foundations for the applications across the periodic table. This is done in Volume
2, which includes 18 chapters that describe applications to chemical bonding going
from main group elements, through transition metals, rather earths, clusters and
solids, and all the way to the weak interaction. The two volumes are not written
for specialists in theoretical chemistry and, therefore, mathematical and technical
details of the methods are kept to a minimum. Readers who want to learn about the
background of the theoretical procedures may find this in the original literature,
which is cited in the chapters.

The chapters are meant to attract the interest of the practicing chemist, teachers,
and advanced students who may want to learn about the present understanding of
chemical bonding. The authors were asked to present a didactic introduction into
their topic and to discuss the results in a lucid style with a teaching attitude, which
appeals to senior chemists and graduate students alike. We hope that the readers
share our view that this goal has been achieved in the 29 chapters of ‘‘The Chemical
Bond.’’

Jerusalem, Israel Sason Shaik
Marburg, Germany Gernot Frenking
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1
The Physical Origin of Covalent Bonding
Michael W. Schmidt, Joseph Ivanic, and Klaus Ruedenberg

‘‘I believe the chemical bond is not so simple as some people seem to think.’’
Robert S. Mulliken as quoted approvingly by Charles A. Coulson

Reviews Modern Physics 32 , 177 (1960)

1.1
The Quest for a Physical Model of Covalent Bonding

Up to about the seventeenth century atomists believed that there were mechanical
hookups between atoms. Toward the end of that century Isaac Newton surmised
that, analogous to the gravitational forces between masses, there are additional
forces between atoms that are attractive at large distances and repulsive at short
distances. Around 1810 Berzelius, involved in the development of electrolysis
using Volta’s recently discovered direct current, conjectured bonding to be due to
electrostatic forces by virtue of the same permanent positive or negative charge
being distributed on each atom of an element (e.g., H+, O−). However, in 1811
Avogadro proposed molecules like H2 and O2 to account for volume relationships
in gas reactions, a hypothesis that implied the existence of other kinds of bonding
forces between atoms. His view was confirmed by the mid-nineteenth century
through the development of organic chemistry, which established what is now
called covalent bonding [1]. In 1881 Helmholtz raised the question of how long-
range electrostatic interactions could give rise to short-range bonding forces [2].
After Thomson’s discovery of the electron in 1897, it was widely assumed that
electrons were involved in bonding. On the basis of chemical evidence, Abegg
[3] identified in 1904 what are now called positive and negative oxidation states
and deduced that their maximal positive and negative values add up to 8 for each
element in the second and third row of the periodic table. He inferred essentially
that a special stability must be associated with an electron octet around an atom.
Presuming this stability to be a driving force, in 1916 Kossel [4] rationalized ionic
bonding by electron transfer whereas, also in 1916, Lewis [5] posited that covalent
bonds are achieved by electron sharing.

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
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In 1927, Heitler and London [6] showed that wave mechanics yields the covalent
bond in the hydrogen molecule whereas Burreau [7] obtained covalent binding
for the hydrogen molecule ion. In the subsequent years, these two systems were
calculated with increasing accuracy, culminating in the work of James and Coolidge
[8] who, in 1933, obtained the binding energy of H2 within 0.6 kcal mol−1. Today
we know that wave mechanics does indeed yield chemical bonding in all molecules
for which sufficiently accurate calculations have been made.

However, while the connection between calculation and conceptual physical
reasoning is direct and immediate in classical mechanics, this is no longer
the case in quantum mechanics. The question arose, therefore, how conceptual
physical reasoning can be associated with the bond formation that is found in wave
mechanical computations. Several intuitive answers to this question were proposed
in the thirties. From a rather formalistic point of view, bonding was attributed
to postulated ‘‘exchange forces.’’ By analogy with the coupling of pendulums,
‘‘resonance’’ effects were posited. The recognition that bonding is associated with
an accumulation of charge in the bond region led to the conjecture that the
electrostatic attraction between this accumulated charge and the adjacent nuclei
generates the lowering of the energy. This suggestion by Slater [9] seemed moreover
to be in accordance with the virial theorem, which states that the potential energy
decreases and the kinetic energy increases upon bond formation. Hellmann [10],
on the other hand, advanced the view that bonding is caused by the lowering of the
kinetic energy that results from electrons being able to roam over a larger area in
a molecule than in an atom, similar to the effect of increasing the box length for
a particle in a box. (He could not reconcile, however, the apparent inconsistency
of this explanation with the virial theorem.) None of these conceptual conjectures
were rigorously pursued in quantitative detail.

The present approach follows the theoretical tradition that, when a rigorous
fundamental mathematical formulation with verified quantitative implications
exists, then the choice of explanatory physical concepts is limited by having to
reflect closely the relationships that are inherent in the theoretical framework. For
the present problem, the challenge is to cast the exact energy expression, generated
by accurate electronic wave functions, in a form that allows a rigorous resolution
into physically interpretable parts and to find a fundamental principle that guides
their interactions. The first coherent analysis of this kind was advanced and applied
in the 1960s by one of the present authors and his coworkers [11]. It was based on
an energy decomposition analysis of general ab initio wave functions of electrons
in molecules and it identified the physical interactions that establish the bonds in
H2 and H2

+. This line of reasoning was subsequently pursued by a number of
authors [12]. Recent work by two of the present authors [13] as well as by Bacskay
and Nordholm [14] has shed additional light on the problem.

In the present chapter, this approach is developed further. It is then used to
examine the covalent bonds of H2

+ and H2 in detail and extended to the many-
electron molecules B2, C2, N2, O2, and F2. These analyses show that covalent
bonding involves a synergism between several interactions with quite differ-
ent physical attributes and quantitative characteristics. On the one hand, the
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lowering of the energy that establishes the bond is the result of a variational
competition between the kinetic energy and potential energy. On the other hand,
there occurs an intricate interplay between various intra-atomic and interatomic
interactions. These basic agents have, moreover, to accommodate electron corre-
lation. It emerges that, in all cases, the driving force of covalent bond formation
is the lowering of the kinetic energy gained by the delocalization of electronic
waves over more than one atom. This observation is only superficially discor-
dant with the virial theorem which, as mentioned earlier, requires the molecule
to have a higher total kinetic energy than the separated atoms. The in-depth
accounting of all interconnections between the various interactions shows that
the information disclosed by the actual total kinetic and potential energies per
se is insufficient for drawing any inferences regarding the origin of covalent
bonding.

1.2
Rigorous Basis for Conceptual Reasoning

The aim of the present analysis is to understand bonding features of potential
energy surfaces (PESs), that is, the Born–Oppenheimer separation is assumed.
Although the study is limited to ground states, the reasoning also applies to excited
states when the consequences of the additional constraints of orthogonality to the
lower states are accounted for.

1.2.1
Physical Origin of the Ground State

Bonding on a PES is a consequence of the geometry dependence of the electronic
energy, specifically that this energy is lower for the molecular equilibrium geometry
than for the separated atoms. Therefore, the first objective must be to develop a
conceptual understanding of the physical factors that determine the ground state energy
of a system of electrons in the electrostatic field generated by fixed nuclei.

A rigorous quantum mechanical basis for such an understanding is provided by
the variation principle which states that, for all possible normalized electronic wave
functions Ψ, the energy integral

𝐄(Ψ) = ∫ d𝜏ΨℋΨ = ∫ d𝜏Ψ𝒯 Ψ + ∫ d𝜏Ψ𝒱 Ψ = 𝐓(Ψ) + 𝐕(Ψ) (1.1)

assumes the lowest possible value when Ψ is the ground state Ψg. Here, 𝒯 and 𝒱
are the kinetic and potential energy operators. Hence:

The shape of Ψg is determined by the adjustments needed to minimize
T(Ψ)+V(Ψ).

The conceptual physical interpretation of V is self-evident: Its terms represent elec-
tron nuclear attractions, electron–electron repulsions and internuclear repulsions,
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all of which are classical electrostatic concepts. In systems with bound electrons
the electron nuclear attractions dominate the potential energy integral V, which is
therefore negative. Manifestly,

The negative potential energy V is lowered by localizing Ψ in regions of low
𝒱 , in particular by contracting Ψ towards the nuclei.

It is with regard to the kinetic energy T that quantum mechanics differs fundamentally
from classical mechanics and that a new type of concept has to be added to the
physical reasoning. To this end, it is advantageous to transform the kinetic energy
integral T into the form:

𝐓 = ∫ d𝜏Ψ𝒯 Ψ = −1
2

∑
k
∫ d𝜏Ψ(∇k)2Ψ = +

1
2

∑
k
∫ d𝜏 (∇kΨ)2 (1.2)

where the sum
∑

k goes over all electrons k. (Atomic units are used.) If Ψ is
expressed in terms of its natural orbitals 𝜓n and occupation numbers Nn, then T
becomes

𝐓 = –
1
2

∑
n

Nn∫ d𝜏 (𝜓n∇2𝜓n) =
1
2

∑
n

Nn∫ d𝜏 (∇𝜓n)2 (1.3)

The general derivations and conclusions in the subsequent analyses do not depend
on whether the Laplacian or the gradient form of T is used because only the
invariant integrated expectation values are involved in the inferences. In the
equations, though, the gradient expression will be preferred for didactic reasons as
a positive kinetic energy term always appears with a positive sign in the formulas.
In some instances, the gradient expression will, moreover, prove elucidative for
understanding properties of certain kinetic energy integrals by relating them to
properties of the wave function. This is because, in the gradient expression of
Eq. (1.2), every electron k makes a positive contribution to every volume element
dτ, namely the square of the gradient of Ψ with respect to the individual electron
coordinates. Analogously, in the gradient expression of Eq. (1.3), every orbital
makes a positive contribution to every volume element. Most notably, the following
fundamental property of the kinetic energy is readily deduced from these attributes
of the gradient form.

Consider a single electron where Ψ=𝜓 and

𝐓 = 1
2∫ d𝜏 (∇𝜓)2 = 1

2∫ dx∫ dy∫ dz

[(
∂𝜓
∂x

)2

+
(
∂𝜓
∂y

)2

+
(
∂𝜓
∂z

)2
]

(1.4)

The following is manifest from this expression. When 𝜓 is squeezed into a smaller
space, then the normalization condition ∫ d𝜏 𝜓2 = 1 requires that the maximum
of 𝜓 increases and, consequently, that the average of the gradient of 𝜓 increases.
Hence, localizing 𝜓 will increase T. This inference is related to the uncertainty
relation, which is derived in quantum mechanics texts. By virtue of the additive
decomposition (Eq. (1.3)), this correlation is general and fundamental:
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Localizing an electronic wave function increases its positive kinetic energy.
In the context of the variation principle, electrons therefore possess an
innate drive towards delocalizing the wave function.

It is apparent that the kinetic energy and the potential energy place opposing
demands on the wave function with regard to the aim of minimizing the total
energy E=T+V: The kinetic energy would be minimized (viz→ 0) by ultimate
dilution ofΨ, and the potential energy would be minimized (viz→−∞) by complete
concentration onto the nuclear centers. Hence,

The variational energy minimum is reached by that wave function Ψg that
achieves the optimal compromise in the variational competition between
the electrostatic potential energy pull, which favors localizing contraction
towards the nuclei, and the kinetic energy pressure, which drives towards
delocalizing dilution.

The variational process can therefore be summarized as follows:

The ground state wave function is determined by the electrostatic attractions
pulling the electron cloud as close towards the nuclei as permitted by the
resistance of the kinetic energy.

An additional constraint exists in the case of many electrons in that the wave
function Ψ must then be antisymmetric with respect to the exchange of electrons,
which entails the restriction:

The simultaneous localization of several electrons in the same space is
curbed by the exclusion principle.

It should be appreciated that the quantum mechanical variation principle for the
energy, that is, (T+V), lends itself more easily to conceptual visualization than the
variation principle of least action, that is, ∫ dt(T−V), does in classical mechanics.
This vantage may be considered a compensation for the absence of the kind of direct
simple conceptual physical interpretation of calculations that classical mechanics
offers.

1.2.2
Physical Origin of Ground State Energy Differences

The prototype example for the described variational competition is the case of an
electron-like particle of mass m in the field of a nucleus of charge Z with the
Hamiltonian ℋ =− (1/2m)∇2 −Z/r. Consider the normalized trial wavefunction

𝜓 = 1s𝜁 =
(
𝜁3

π

) 1
2

exp(−𝜁𝑟) =
( 1
𝛼3π

) 1
2

exp
(−r
𝛼

)
(1.5)

Here, ℋ and 𝜓 are in atomic units. The parameter 𝛼 = 1/𝜁 is a measure of the
localization of the orbital in as much as the sphere with the radius R= 2𝛼 includes
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Figure 1.1 Variational competition between kinetic (blue)
and potential (green) energies, and the optimal compro-
mise for the total energy (red) that determines the ground
state of the hydrogen atom. Ordinate= energy in hartree.
Abscissa= orbital size as measured by the inverse orbital
exponent 𝛼 = 1/𝜁 in Eq. (1.5).

94% of the orbital density 𝜓2. The kinetic and potential energy integrals of 𝜓
become

𝐓 = 𝜁2

2m
= 1

2
m𝛼2 𝐕 = −𝜁𝑍 = −Z

𝛼
(1.6)

and they are plotted as functions of the localization parameter 𝛼 in Figure 1.1.
Indeed they exhibit the behavior discussed in the preceding section and the plot of
the total energy (T+V) exhibits the variational competition between T and V. The
minimum, that is, the optimal compromise between these two functions occurs
for

𝜁g = 𝑚𝑍, 𝐓g =
1
2

mZ2, 𝐕g = −mZ2, 𝐄g = −
1
2

mZ2 (1.7)

For the hydrogen atom, where m= 1 au and Z= 1 au, Eq. (1.7) yields the ionization
potential 0.5 hartree. The physical origin of the magnitude of this fundamental
quantum chemical quantity is thus the variational compromise between T and V
in hydrogen.

Atomic energy units will be used in this chapter. The relation to units often
used in experimental work is: 1 millihartree= 1 mh= 2.6255 kJ mol−1 = 0.62750
kcal mol−1.

Consider now cases with a different nuclear charge Z and a different particle
mass m (note, e.g., that the pi-muon has the same charge as the electron but is
180 times heavier) and let us examine why such systems can have lower ground
state energies than the hydrogen atom. From the expression for Eg in Eq. (1.7)
it is apparent that there can be two different reasons: (i) The nuclear charge Z is
larger than the proton charge or (ii) the mass m of the particle is heavier than the
electron mass.

This distinction exhibits an important aspect of the variational competition that
is relevant for the elucidation of energy differences between related systems. It is
illustrated in Figure 1.2, which shows the variational competition and the shift of
the optimal compromise for several systems of the kind described by Eq. (1.6). To
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Figure 1.2 Variational competition and opti-
mal compromise between kinetic and poten-
tial energies for hydrogen-like systems (see
Eq. (1.6)). The solid curves correspond to
the standard hydrogen atom, m= 1 for T
and Z= 1 for V. The dashed curves of T, V,
and E correspond to different choices of m

and Z, viz: Z= 2 for V in (a) and m= 4 for T
in (b). Abscissa= orbital exponent 𝜁 = 1/𝛼,
implying the inverse of the orbital size.
Ordinate= energy in hartree; note that −V/2
is plotted. Diamond markers indicate the
positions of the variational compromises.

display clearly the pertinent features, the energies E, T, and |V/2| are plotted and
the orbital exponent 𝜁 = 1/𝛼 is used as abscissa. Consequently, |V/2| is a straight
line and T is a quadratic. Note that, in Eq. (1.7), the minimum of the energy always
occurs at that value of 𝜁 where T = |V/2|, that is, where the straight line |V/2| intersects
the quadratic T . This is a general constraint whose rigorous origin will be discussed in
the next section.

Figure 1.2a shows the cases for {m= 1, Z= 1} and {m= 1, Z= 2}. Changing
the nuclear charge Z from 1 to 2 increases the slope of the line |V/2| so that
it intersects the quadratic T at a larger value of 𝜁 and a lower energy than in
hydrogen. The variational interpretation is as follows: Increasing Z strengthens
the nuclear electrostatic pull. In the presence of the same kinetic resistance as in
hydrogen, the orbital is pulled closer to the nucleus than in hydrogen and the energy
is thereby lowered.

Figure 1.2b shows the cases {m= 1, Z= 1} and {m= 4, Z= 1}. According to Eq.
(1.6), changing the mass m from 1 to 4 decreases the curvature of T so that the
intersection of |V/2| with T occurs again at a larger value of 𝜁 and a lower energy
than in hydrogen. The variational interpretation is now as follows: Increasing the
mass m weakens the kinetic resistance because the mass is in the denominator of the
expression for T. Because the nuclear pull is the same as in hydrogen, the orbital is
again pulled closer to the nucleus than in hydrogen and the energy is again lowered.
Thus:
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The difference between the ground state energies of two systems of bound
electrons can be due to a difference in the strength of the attraction towards
the regions of low potential energy or it can be due to a difference in the
strength of the kinetic resistance towards localization in the regions of low
potential energy.

It is of course possible that both factors are simultaneously operative.
Moreover, the discussed examples exhibit another important fact. According to

Eq. (1.7), the two systems {m= 1, Z= 2} and {m= 4, Z= 1} have the same values
of Eg =−2, Tg = 2 and Vg =−4 hartree. These equalities show that it is not possible
to tell why either of these systems has a lower energy than hydrogen when the only
information available are the values of Eg, Tg, and Vg. Thus,

An analysis of the physical origin of energy differences between systems
requires more information than is furnished by the values of Eg, Tg and Vg.

Indeed, the preceding variational analysis on the basis of Figure 1.2 made use
of the knowledge of comparison values for E, T, and V, in addition to those at the
variational minimum.

1.2.3
Relation between Kinetic and Potential Energies

As noted in the preceding section, the optimized kinetic and potential energies of
the ground states in these systems always stand in the constant ratio Vg/Tg =−2.
This relationship, which is known as the virial theorem, in fact, holds rigorously
for the many electron wave functions of any atom. It is a general theoretical
consequence of the fact that the kinetic energy scales as (inverse length)2 whereas
the potential energy scales as (inverse length). Furthermore, it is important that
this relationship is not only valid for the actual solution of the Schrödinger equation
(which is optimized with respect to all possible variations) but also for approximate
wave functions that are merely optimized with respect to a single scale parameter for
all electrons [15]. If a many-electron wave function is expressed as a superposition
of determinants of atomic orbitals (AOs), then individual scaling of the various
AO exponents will guarantee the virial relation a fortiori. When sufficiently large
basis sets with fixed exponents are employed in a calculation, then the exponential
optimization of AOs will be mimicked by the linear combination of atomic orbital
(LCAO) expansions of the molecular orbitals (MOs).

In a diatomic molecule, the virial relationship has the general distance-dependent
form [9]

2𝐓 + 𝐕 + R

(
d𝐄
𝑑𝑅

)
= 0 (1.8)

If an approximate molecular wave function is constructed from AOs, say
𝜒An[𝜁An(r −RA)], where 𝜒An denotes orbital n on atom A at the position RA with
orbital exponent 𝜁An, then the general virial theorem results from the following
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optimization [15]: Replace all orbital exponents by s𝜁An and optimize with respect to
the one global scale parameter s. Again, optimization with respect to all individual
orbital exponents, or a common scale parameter of groups of orbital exponents, will
guarantee the virial relation a fortiori. These kinds of scaling manifestly represent
simultaneous shrinking or swelling with respect to all atoms in the molecule. (Equation
(1.8) can be generalized to polyatomic systems.)

It follows from Eq. (1.8) that the relation found for atoms, viz

2𝐓 = −𝐕 = |𝐕| (1.9)

is in fact also valid at all points where the energy gradient vanishes, notably at
equilibrium geometries and transition states. A corollary is that the relation is also
valid for energy differences such as binding energies and activation energies. At these
critical points, the satisfaction of Eq. (1.9) is a simple indicator as to whether a
given wave function possesses the following property.

The virial theorem is evidence of the intrinsic balance between the intra-atomic
and the interatomic electronic density distributions that is required for the optimal
balance in the variational competition between the potential pull of the nuclei
and the kinetic resistance of the electron wave. It is a necessary attribute of
the actual wave function and thus represents a constraint that approximate wave
functions must satisfy if successive improvements are to lead to the exact solution.
Satisfaction of this constraint by an approximate wave function implies that the
optimal compromise between the potential pull and the kinetic resistance has been
achieved within the formal limitation of that wave function.

By virtue of the response of the kinetic and potential energies to orbital contrac-
tion, which was illustrated in Section 1.2.2, one readily infers that, at the critical
geometries, the following assessments of an approximate wave function Ψ can be
made:

If 2T(Ψ)< |V(Ψ)|, then the actual solution Ψg is in some way more localized
than Ψ.
If 2T(Ψ)> |V(Ψ)|, then the actual solution Ψg is in some way less localized
than Ψ.

These inequalities are helpful in understanding the changes induced by wave
function optimizations.

Because the energy increases quadratically near the variational minimum, certain
wave functions that do not satisfy the virial theorem can yield rough approximations
to the exact energy, as exemplified by the wave function of Heitler and London.
However, the flaws in the wave functions, as well as other expectation values, are
considerably more serious, as exemplified by the manifestly large error in the
expectation value of 1/r.

Notwithstanding its usefulness, it should be noted that – contrary to widespread
misconceptions – the virial theorem per se generates no clues whatsoever for answering
the question why one system is more stable than another. This inability is for instance
exhibited by the two isoenergetic systems {m= 1, Z= 2} and {m= 4, Z= 1}, which
were examined in Section 1.2.2. Both satisfy the virial theorem but, as discussed
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there, the two differ radically regarding their physical reasons for being more stable
than hydrogen, which also satisfies the virial theorem.

1.3
Atoms in Molecules

1.3.1
Quantitative Bonding Analyses Require Quasi-Atoms in a Molecule

The chemical notion that molecules consist of atoms held together by bonds implies
(i) that atoms occur not only as free entities but are also preserved in molecules,
albeit possibly deformed, and (ii) that there exist interactions between them that
establish the cohesion. To retrieve this model from accurate quantum mechanical
wave functions presents a nontrivial challenge because, in fact, chemical binding
results from electrons being shared between several atoms so that, for instance,
very compact wave functions are typically represented in terms of MOs that are
delocalized over many atoms, the simplest examples being canonical Hartree–Fock
determinants. To recover and identify ‘‘atoms’’ in an electronic wave function Ψ
requires therefore a transformation of its representation in such a way that Ψ becomes
constructed from subunits that exhibit atomic character. As in previous studies, we
denote such atom-like building blocks of Ψ in a molecule as quasi-atomic.

Important in the present context is that the expression of molecular electronic
wave functions in terms of quasi-atomic components not only gratifies the chemical
intuition but that it is in fact an indispensible prerequisite for developing a rigorous
quantitative analysis of the origin of covalent bonding. This is because the maxi-
mization of the interatomic energy lowering that creates bonding will be seen to entail
a deformation of atoms into quasi-atoms. Since, by virtue of the atomic variation
principle, such intra-atomic deformations are necessarily antibonding, there exists
a subtle competition between the intra-atomic and the bond-creating interatomic
energy changes, whose elucidation cannot be bypassed if one wishes to understand
the bonding mechanism.

1.3.2
Primary and Secondary Energy Contributions

For the interpretation of chemical bonding, it is helpful as well as physically justified
to take into account that the influences determining atomic and molecular electron
distributions can be attributed to two kinds of forces. The primary influence
is the effective one-electron potential that the nuclei and the average electron
distribution generate. The secondary influence is the many-electron potential that
is caused by the deviations of the individual interelectronic interactions from
the average, that is, the dynamic correlations. The primary potential creates a
primary orbital space in which the stock [16] of the ground state wave function
takes form. It can be a single-configuration (SCF) or, if several configurations
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compete energetically, a multi-configurational (MCSCF) function. The secondary
potential generates correlation refinements of the wave function that are grafted
onto the primary stock. Unfortunately, for historical formal reasons, the label
‘‘correlation,’’ albeit ‘‘non-dynamical,’’ ‘‘static’’ or ‘‘strong,’’ is often also used for
primary multi-configurational wave functions.

The primary orbital space of an atom is spanned by its optimized minimal basis set
orbitals. This intuitive insight by the pioneers of the 1930s, which provided the basis
for their remarkable qualitative successes, has been confirmed by the quantitative
ab initio work of the computer-age. In the many atoms with open valence shells,
that is, where the number of valence electrons is less than twice the number of
minimal basis valence orbitals, the primary stock of the ground state wave function
is frequently multi-configurational.

The analysis of chemical bonding is greatly clarified by separating the binding
effects involving the primary stocks of the atomic wave functions from those
involving the dynamic correlations. Bonds between atomic primary stocks form
when at least one atom has an open valence shell because, then, the innate
delocalization drive will cause at least some valence electrons to use available
minimal basis set orbitals on several atoms, that is, the kinetic energy will be
lowered by ‘‘electron sharing.’’ In covalent bonds, this bonding in the primary
orbital space typically dominates markedly over the correlation contributions. But
even when dynamic correlations play a greater or even an essential part in bonding,
separating the two types of contributions greatly clarifies the elucidation.

For these reasons, the bonding analyses of the present study focus primarily
on MCSCF wave functions in full valence spaces. As in our earlier work, [17] we
denote these very specific type of full space MCSCF wave functions as FORS (full
optimized reaction space) wave functions. The correlation contributions to covalent
bonds will then also be briefly examined.

1.3.3
Identification of Quasi-Atoms in a Molecule

In the present discussions, electronic wave functions are conceived of as being
constructed from orbitals. The identification of quasi-atoms in a molecule consists
then of two steps: (i) the identification of quasi-atomic orbitals, generically denoted
as QUAOs, in terms of which the molecular electronic wave function Ψ can
be expressed, and (ii) the construction of quasi-atomic configurations from these
orbitals in terms of which the wave functionΨ can be expanded. The determination
of such QUAOs and configurations requires a judicious choice of appropriate local-
ization criteria. We consider it desirable to determine QUAOs and configurations
in such a way that they differ as little as possible from the corresponding free-atom
quantities while still being capable of regenerating the molecular wave function.

For the determination of QUAOs, the following procedure is used in the present
analysis. Let 𝜓k be the orbitals from which the molecular wave function is con-
structed, ordered by importance, for example, through a natural orbital expansion.
Then the nonsymmetric, usually rectangular, overlap matrix is calculated between
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these MOs and the full set of orthogonalized atomic basis orbitals used on one
atom A (such as, e.g., a cc-pVXZ basis). The singular value decomposition (SVD)
of this overlap matrix determines a set of MOs, that is, linear combinations of the
𝜓k, and an equal number of orbitals in the AO basis space on atom A. They form
corresponding pairs with maximum possible overlap integrals, which are given by
the (always positive) singular values of the SVD. This procedure is done for every
atom in the molecule. Using the magnitudes of the singular values of the SVDs
for the various atoms as guides, a certain number of the SVD-generated MOs is
chosen from each atom as QUAOs for that atom, subject to the limitation that
the total number of the quasi-atomic orbitals selected for all atoms is equal to the
total number of the original MOs 𝜓k. This set 𝜒𝜈 of QUAOs has the following
properties:

• It spans the space of the MOs so that the original electronic wave function can be
expressed in terms of configurations formed from these quasi-atomic orbitals.

• If a sufficient number of MOs 𝜓k are used, then the QUAOs turn out to be
essentially localized on the various atoms.

• The QUAOs χ𝜈 on one atom are mutually orthogonal.
• The QUAOs χ𝜈 from different atoms are mutually non-orthogonal. If it is

expedient for some purpose, they can be symmetrically orthogonalized.

In the case of a full valence space FORS MCSCF wave function, the number
of MOs is equal to the total number of conceptual minimal basis set orbitals
in the molecule. For any one atom, the number of quasi-atomic orbitals is then
chosen to be equal to the number of minimal basis orbitals on that atom. The
quasi-atomic orbitals in fact are the deformed minimal basis set orbitals on that
atom. The abbreviation QUAFO will be used for these quasi-atomic FORS orbitals.
The corresponding linear combinations of the atomic basis orbitals on A represent
the optimal pure atomic approximate orbitals (PAAOs) to the QUAFOs. In the
molecules H2, B2, C2, N2, O2, F2 discussed in the following paragraphs, all overlap
integrals between the QUAFOs and the corresponding PAAOs are found to be
larger than 0.99, which exhibits the atomic character of the QUAFOs. Nonetheless,
the PAAOs do not generate the molecular wave function and a close examination
shows that the QUAFOs contain small admixtures from other atoms. (Molecular
wave functions formed by configuration interaction (CI) calculations using the
PAAOs yield energies a few millihartree higher than the FORS wave functions.)
Details of the SVD method will become apparent from the explicit applications
in the molecules discussed below in the following paragraphs. In the case of F2,
the method is also used for a wave function that includes orbitals providing some
dynamic correlation.

An in-depth elaboration and discussion of the SVD approach to generate quasi-
atomic orbitals in molecules will be given in a separate investigation [18]. It has
been found for instance that, under certain conditions, some correlating orbitals
beyond the FORS level are required to achieve satisfactory localization on atoms.
On the other hand, for some wave functions, the number of available occupied MOs
may be less than the total number of minimal basis set orbitals. There then exists
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some additional freedom that allows further atomic adaptation of the quasi-atomic
orbitals. A systematic approach to this problem has been formulated previously [19]
and is also discussed in Ref. [18]. In the case of polyatomic molecules, an unbiased
method has furthermore been developed for forming hybrid QUAFOs that clearly
exhibit directional bonding on each atom [20].

1.4
The One-Electron Basis of Covalent Binding: H2

+

The question to be answered is: Why does the optimal compromise between the
potential energy pull and the kinetic energy resistance occur for a lower total energy
in H2

+ than in H? In the end, it turns out that the kinetic energy plays the more
critical role and that no static model can account for the physical origin of binding
in H2

+ and H2. Furthermore, notwithstanding inner shells and other complicating
factors present in atoms beyond helium, covalent bond formation appears to be
generally driven by kinetic effects that are analogous to those exemplified in the
prototype H2

+ bond.
To place the analysis of this molecule on the firmest possible footing, it will

be deduced from near-exact wave functions [13]. They were obtained in terms of
uncontracted (14s, 6p, 3d, 2f, 1g) basis sets of 26 σ-type spherical Gaussian AOs
on the two atoms, in which all orbital exponents were optimized. For the hydrogen
atom, the energy found in this basis lies 0.1 μh (microhartree) above the exact value,
with a virial ratio of 2T/|V|= 0.99999985. The energy of the molecule is found to
lie 0.55 μh above the exact value at the equilibrium distance, which is found to be
R= 1.99720 Bohr. The virial ratio is 2T/|V|= 0.9999982 at this distance [21]. The
wave function can be expected to be of similar quality at intermediate distances.
The quantitative results on which the discussion of the present section is based
have been reported in detail in Ref. [13].

1.4.1
Molecular Wave Function as a Superposition of Quasi-Atomic Orbitals

There are two atomic minimal basis set orbitals in this system. According to
the discussion in Section 1.3.2, the molecular FORS space is, therefore, also
two-dimensional. However, only the bonding molecular FORS orbital is occupied
whereas the second molecular FORS orbital, the antibonding orbital, is unoccupied.
The latter can therefore be arbitrarily chosen in such a way that the quasi-atomic
orbitals become as atomic-like as possible.

By collecting the basis orbitals on each atom, the wave function Ψ is cast in the
form

Ψ =
(𝜓A + 𝜓B)√
(2 + 2S)

S = ⟨𝜓A|𝜓B⟩ = 0.588742 (1.10)

𝜓x = a𝐬x + b𝐩x , 𝐬 =
∑

(14s), 𝐩 =
∑

(6p, 3d, 2f , 1g) (1.11)
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Figure 1.3 Resolution of the quasi-atomic orbital (QUAFO) on the left atom in H2
+ as a

sum of contributions from the atomic 1s orbital, the spherical deformation and the angular
deformation at the equilibrium distance (see Section 1.4.1).

where 𝜓 , s, and p are normalized. The molecular FORS space is then formed
by this occupied bonding orbital Ψ and by choosing the unoccupied antibonding
orbital to be

Ψ∗ =
(𝜓A − 𝜓B)√

2 − 2S
(1.12)

Application of the SVD to the rectangular overlap matrix between these two
molecular FORS orbitals and the set of all atomic basis orbitals on atom A
manifestly yields the orbital 𝜓A as the quasi-atomic orbital on A: the QUAFO
orbital is in fact identical with the PAAO orbital. The same holds for atom B. Thus
𝜓A and 𝜓B are directly the quasi-atomic orbitals in this case.

Figure 1.3 exhibits the resolution (Eq. (1.11)) of the quasi-atomic orbital 𝜓A

on the left atom in terms of its components along the internuclear axis, for the
equilibrium distance. In this figure the spherical component s has been further
resolved in terms of the free-atom 1s orbital and the spherical deformation [s – (1s)].
The curves display the total respective contributions, including coefficients, so that
adding the spherical deformation (blue) and the angular deformation (purple) to
the free-atom 1s orbital (green) will yield the quasi-atomic orbital (red). At this
distance, the spherical deformation is manifestly a contraction and the angular
deformation represents a polarization.

The total relative contributions of the spherical and the angular deformations to
the quasi-atomic orbital, i.e., their integrated contributions to the normalization
integral, as well as their variations with the internuclear distance R are shown
in Figure 1.4. The polarization deformation contributes less than 2% over the
whole range, but its contribution extends to fairly large internuclear distances. The
spherical deformation effectively vanishes beyond 4 Bohr, but strongly increases
for shorter distance, being ∼4% at the equilibrium distance.

Regarding the normalized spherical component s in Eq. (1.11), the following
observation is important:



1.4 The One-Electron Basis of Covalent Binding: H2
+ 15

1

0%

2%

4%

6%

8%

2 3 4 5 6

R (Bohr)

Polarization deformation

Spherical deformation

Deformation contributions to the QUAFO in H2
+

7 8 9 10

Figure 1.4 Variation of the spherical and angular deformations of the quasi-atomic orbital
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+ with the internuclear distance. The gray vertical line indicates the equilibrium
distance.

The spherical component of the quasi-atomic orbital is near-identical with a
scaled hydrogen-like orbital 1s* of the type formulated in Eq. (1.5).

This agreement is demonstrated in Figure 1.5 where Figure 1.5b displays the
overlap integral ⟨s|1s*⟩ as a function of the internuclear distance R. Figure 1.5a
displays the orbital exponent value 𝜁* of the 1s* orbital that corresponds to the
quasi-atomic orbital at each internuclear distance. This exponent was obtained by
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+ at various internuclear distances. (a) Orbital exponent
of 1s*. (b) Overlap integral between the 1s* orbital and the QUAFO. The gray vertical line
indicates the equilibrium distance.
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maximizing, at each internuclear distance, the overlap integral ⟨s|1s*⟩ with respect
to the orbital exponent 𝜁* in the 1s* orbital. Whereas, in the region R>∼6 Bohr, the
1s* orbital is seen to be very slightly expanded (ζ* < 1) with respect to the hydrogen
1s orbital (𝜁 = 1),

the 1s* orbital becomes considerably contracted (𝜁* > 1) in the region for
R<∼4.5 Bohr. At the equilibrium its orbital exponent is 𝜁* = 1.264.

Combining the data of Figures 1.4 and 1.5, one sees that the projection of the
quasi-atomic orbital 𝜓x on the scaled 1sx* orbital, that is, [a × ⟨s|1s*⟩], is always
larger than 0.982.

1.4.2
Molecular Electron Density and Gradient Density as Sums of Intra-atomic and
Interatomic Contributions

The potential energy is determined by the electron density. The kinetic energy is
determined by the gradient density (see Eq. (1.4)). Therefore, both densities have
to be resolved in terms of intra-atomic and interatomic contributions.

1.4.2.1 Resolution of the Molecular Density
In classical electrostatics an approximate charge distribution covering the two
atoms would be a superposition of quasi-atomic densities, for example,

𝜌qa =
1
2
(𝜓2

A + 𝜓
2
B) (1.13)

In quantum mechanics, by contrast, the quasi-atomic wave amplitudes are super-
posed, as expressed in Eq. (1.10), so that the molecular density 𝜌=Ψ2 differs from
the quasi-atomic density 𝜌qa of Eq. (1.13) as follows:

Ψ2 = 𝜌 = 𝜌qa + 𝜌I, 𝜌I = 𝜌 − 𝜌qa =
ℐAB

(2 + 2S)
(1.14)

where

ℐAB = 2𝜓A𝜓B − S(𝜓2
A + 𝜓

2
B) (1.14a)

The bond order (2+ 2S)−1 has the value 0.314714 at the equilibrium distance. In 𝜌,
the two atomic amplitudes are summed before they are squared whereas, in 𝜌qa,
they are squared before they are summed. The difference 𝜌I represents therefore
the interference density, that is, the interference part of the total density 𝜌. The term
ℐAB represents the interference of the quasi-atomic orbitals.

The integrals over 𝜌 and 𝜌qa are both= 1. Hence, the integral over 𝜌I vanishes,
which implies that the interference density 𝜌I represents a charge shift in real space.
In fact, the interference density represents the quantification of the often qualitatively
invoked ‘‘accumulation of electronic charge in the bond.’’ This property is exhibited in
panels of Figure 1.6a–c, which display the contour plots of 𝜌I in a plane containing
the internuclear axis at the equilibrium distance. With a view to the subsequent
discussion, plots of 𝜌I are shown not only using the exact orbitals 𝜓A, 𝜓B but also
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(a) (d)

(b) (e)

(c) (f)

1s

1s∗

QUAFO

Interference density Kinetic interference

Figure 1.6 Interatomic interference in H2
+

at the equilibrium distance. Left column
of panels: interference densities 𝜌I = charge
accumulation in the bond of H2

+. Right
column of panels: kinetic interference den-
sities= gradient attenuation. First row of
panels: interference between the atomic 1s
ground state orbitals. Second row of panels:
interference between the scaled exponential

1s* approximations to the QUAFOs (see
Figure 1.5). Third row of panels: interference
between the quasi-atomic orbitals (QUAFOs)
of the actual wave function of H2

+. Contour
increments: left panels: 0.002 e Bohr−3; right
panels: 5 millihartree Bohr−3. Solid lines =
positive contours. Dashed lines = negative
contours. Dotted lines = zero contours.

using the hydrogen 1s orbitals as well as using the scaled 1s* orbitals discussed at
the end of the preceding Section 1.4.1. Note should be made of the fact that

for all quasi-atomic orbital choices, even when polarization is included, the
charge that is accumulated in the bond is taken away from regions near the
nuclei.

This aspect of the charge accumulation in the bond is often overlooked.

1.4.2.2 Resolution of the Molecular Gradient Density
The gradient density (∇𝜓)2 can be resolved in a similar way as the density 𝜓2,
that is, in terms of the average of the atomic gradient densities and the difference
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between this term and the molecular gradient density, that is,

(∇Ψ)2 =
[(∇𝜓A)2 + (∇𝜓B)2]

2
+
{
(∇Ψ)2 −

[(∇𝜓A)2 + (∇𝜓B)2]
2

}
(1.15)

In analogy to the interference density 𝜌I, the difference term in the curly brackets
on the right hand side can be considered as the gradient interference density. Panels
in Figure 1.6d–f exhibit contours of this gradient interference densities at the
equilibrium distance. All of them are negative, showing that the superposition of the
quasi-atomic orbitals attenuates the gradient of Ψ everywhere, when compared to
the average of the quasi-atomic gradient densities. Along the internuclear axis, this
attenuation is manifest by comparing the plots of Ψ2 and (𝜓A

2 +𝜓B
2)/2, as shown,

for example, in Figure 9 of Ref. [13a].
The interference density as well as the gradient interference density result

from the spread of the orbital amplitude from one atom to two atoms. Both
are thus consequences and exhibit different aspects of the orbital delocalization.
This inference will be confirmed by the energy analyses in Sections 1.4.5.2 (last
paragraph) and 1.4.5.4 (first paragraph).

A difference in interpretation between Eqs. (1.15) and (1.14) is the following.
Although both equations furnish resolutions in terms of intra-atomic contributions
and interference contributions, only the sum of the intra-atomic density contribu-
tions in Eq. (1.14) can be considered as ‘‘quasi-classical.’’ This cannot be claimed
for the intra-atomic gradient densities because, as discussed in Section 1.2.1, the
treatment of the kinetic energy in quantum mechanics is fundamentally different
from that in classical mechanics.

1.4.3
Dependence of Delocalization and Interference on the Size of the Quasi-Atomic
Orbitals

It turns out that a rather important role in the process of bonding is played by the
dependence of the magnitude of interference on the size of the quasi-atomic orbitals
relative to the distance R between the nuclei. This dependence is not trivially obvious.

From the definition in Eq. (1.14) one sees immediately that the interference
density vanishes for R= 0 as well as for R=∞. In between these two limiting cases,
it must therefore wax and wane. On the other hand, comparing the interference
contours on Figure 1.6a, obtained for the hydrogen 1s orbitals, with those on
Figure 1.6b, obtained using the contracted 1s* orbitals, one notes that, at the
equilibrium distance, the accumulation of charge in the bond is stronger for the
contracted 1s* orbitals than for the uncontracted 1s orbitals. Similarly, the kinetic
interference density of 1s* in panel e of that figure is stronger in the bond than that of 1s
in panel d. This correlation is, at first sight, surprizing since the overlap integral decreases
with contraction. The observations are put in perspective by the following explicit
analysis for the case that the quasi-atomic orbitals are approximated by the scaled
1s-type orbital 1s𝜁 defined in Eq. (1.5).
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1.4.3.1 Charge Accumulation at the Bond Midpoint
The contours in Figure 1.6a–c suggest that the maximum of the charge accumu-
lation in the bond, which occurs at the bond midpoint, offers a rough measure of
the magnitude of the interference 𝜌I. By virtue of the definition in Eq. (1.14), this
value is given by

𝜌I,mid(𝜓A) =
Ψ2 − (𝜓2

A + 𝜓
2
B)

2
= 𝜓2

A ×
(1 − S)
(1 + S)

, S = ⟨𝜓A|𝜓B⟩ (1.16)

where 𝜓A
2 is taken at the bond midpoint. If the scaled 1s𝜁 orbital of Eq. (1.5) is

used as an approximation to the quasi-atomic orbital 𝜓A, the Eq. (1.16) becomes

𝜌I,mid(1s𝜁 ) =
( 1
πR3

){[ (1 − S)
(1 + S)

]
𝜎3 exp(−𝜎)

}
(1.17)

where

S =
(

1 + 𝜎 + 𝜎2

3

)
× exp(−𝜎), 𝜎 = 𝜁𝑅 (1.18)

Relevant in the present context is the dependence of 𝜌I,mid on the orbital size
at any given internuclear distance. This dependence is given by the expression in
the curly brackets {} in Eq. (1.17), which is a function of 𝜎 = 𝜁R=R/𝛼 = the
inverse ratio of the orbital size to the internuclear distance. This dependence on 𝜎
is displayed in Figure 1.7a, which is a plot of 𝜌I,mid versus 𝜎, where the equilbrium
value has been arbitrarily chosen for the factor R−3 in front of the curly bracket. Since
the maximum of the curve occurs for 𝜎 = 𝜁R= 4.01, the criterion suggests that the
maximal charge accumulation in the bond is obtained for a value 𝜁m

′ > 1 when
R< 4.01 Bohr, but for a value 𝜁m

′ < 1 when R> 4.01 Bohr. With reference to the
hydrogen 1s orbital (i.e., 𝜁 = 1), maximal charge accumulation in the bond, according
to this criterion, is therefore obtained by orbital contraction when R<∼4 Bohr, and by
orbital expansion when R>∼4 Bohr.

1.4.3.2 Total Charge Accumulation in the Bond
Alternatively, an overall measure of the charge accumulation in the bond can be
obtained by calculating the amount of charge that interference in fact shifts from
the atomic regions into the bond region, that is, from the regions with negative
contours into the region with positive contours of 𝜌I in Figure 1.6. These three
regions are separated by the two-sheet hyperboloid on which 𝜌I vanishes. For the
quasi-atomic orbitals 1s𝜁 , it is given by

(RA –RB)
R

= ±a(𝜎)
𝜎

, a(𝜎) = arccosh

[
1

S (𝜎)

]
= ln

⎧⎪⎨⎪⎩
[
1 +

(
1 − S2

) 1
2

]
S

⎫⎪⎬⎪⎭ (1.19)

Integration of 𝜌I over the central region between the two hyperboloid sheets yields
the total charge Q I that is actually moved from the atomic regions into the bond
region. It is found to be

QI(1s𝜁 ) =
[(

2𝜎 + 𝜎2
) (

a–
(
1–S2

) 1
2

)
+ a2(1–S2)

1
2 –

a3

3

] [
exp (−𝜎)
2𝜎(1 + S)

]
(1.20)
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Figure 1.7 Variation of the strength
of the interference density 𝜌I between
scaled 1s𝜁 orbitals (of Eq. (1.5)) with the
orbital size 𝛼 = 1/𝜁 relative to the internu-
clear distance R. Abscissa: 𝜎 = 𝜁R=R/𝛼.

Ordinate of (a): value of 𝜌I at the bond
mid point (Eq. (1.17)). Ordinate of
(b): integrated charge accumulation
into the bond (Eq. (1.20)). For details, see
text.

where 𝜎, S(𝜎), and a(𝜎) are defined in Eqs. (1.18) and (1.19). Figure 1.7b dis-
plays the variation of the total charge accumulation Q I(𝜎) as a function of 𝜎.
Its maximal value occurs for 𝜎 = 2.90 Bohr. According to this criterion, interfer-
ence is enhanced by contraction when R<∼2.9 Bohr and by expansion when
R>∼2.9 Bohr.

1.4.3.3 Origin of the Relation between Interference and Quasi-Atomic Orbital
Contraction/Expansion
The foregoing assessments show that, at shorter internuclear distances, interfer-
ence is enhanced by contraction of the hydrogen AOs whereas, at larger internuclear
distances, it is enhanced by expansion of these orbitals. The switchover occurs
somewhere in the region around twice the equilibrium distance. A remarkable
implication is that, whereas interference increases with increasing quasi-atomic
orbital overlap at larger distances, interference increases with decreasing overlap by
contraction at shorter distances, as noted earlier.

This consequential attribute of interference can be traced back to the following
property of interfering AOs. Consider a scaled hydrogen orbital 𝜙(r, 𝜁 )= 1s𝜁 , as
defined in Eq. (1.5). Because normalization is preserved, the scaled orbital 1s𝜁 =𝜙
(r, ζ) and the unscaled orbital 1s=𝜙(r, 𝜁 = 1) cross over at some distance r* from the
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origin. Manifestly, when 𝜁 > 1, then 𝜙(r, 𝜁 ) is contracted relative to 1s and one has

𝜙(r, 𝜁) > 1s for r < r∗, 𝜙(r, 𝜁) < 1s for r > r∗ (1.21a)

whereas, when 𝜁 < 1, then 𝜙(r, 𝜁 ) is expanded relative to 1s and one has

𝜙(r, 𝜁) < 1s for r < r∗, 𝜙(r, 𝜁) > 1s for r > r∗ (1.21b)

Moreover, one deduces from the equality 𝜙(r*, 𝜁 )= 1s=𝜙(r*, 1) at the crossover
radius r* that the value of this radius depends on 𝜁 according to

r∗(𝜁) =

[(
log 𝜁

)
(𝜁 − 1)

]
× 1.5bohr (1.22a)

and, since r*(𝜁 ) is a monotonic function, there exists a scaled orbital 𝜙(r, 𝜁 ) with a
certain 𝜁 = 𝜁 (r*) for any chosen crossover point r*. It follows from Eq. (1.22a) that

r∗(𝜁) < 1.5 for 𝜁 > 1, r∗(𝜁) = 1.5 for 𝜁 = 1, r∗(𝜁) > 1.5 for 𝜁 < 1

(1.22b)

and, conversely, that

𝜁(r∗) > 1 when r∗ < 1.5, 𝜁(r∗) < 1 when r∗ > 1.5 (1.22c)

Consider now two scaled 1s orbitals placed at an internuclear distance 2R of less
than 3 Bohr so that the bond midpoint is at a distance R< 1.5 Bohr from each
nucleus. For each value of r* in the range R< r*< 1.5 Bohr, there then exists a
scaled orbital 𝜙(r, 𝜁 ) on each nucleus that (i) has 𝜁 = 𝜁 (r*)> 1, i.e., that is contracted
relative to the respective uncontracted 1s orbital (see Eq. (1.22c), left), and (ii) is
larger than the respective 1s orbital, that is 𝜙(r, 𝜁 )> 1s, for all distance r ≤R from
that nucleus (see Eq. (1.21a), left). This is so, in particular at the bond midpoint,
where r =R. Therefore, according to Eq. (1.16), the charge accumulation of the
superposition of the two contracted orbitals at the bond midpoint is larger than that of
the superposition of two uncontracted orbitals. (Note that the factor (1−S)/(1+S) in
Eq. (1.16) is also larger for the contracted orbitals, because the overlap integral
between them is smaller than that for the uncontracted orbitals.) Thus, when the
two orbital centers are closer than 3 Bohr, quasi-atomic orbital contraction enhances
charge accumulation in the bond and, hence, interference and delocalization between
these orbitals. It is also apparent that similar inferences can be drawn for any
suitably decaying quasi-atomic orbitals [14]. This aspect of interference has not
been previously noted.

As shown by an analogous analysis, the enhancement increasingly diminishes
as the internuclear distance becomes longer than 3 Bohr and, for sufficiently large
distances, charge accumulation in the bond is enhanced by orbital expansion rather
than contraction.
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1.4.4
Binding Energy as a Sum of Two Intra-atomic and Three Interatomic Contributions

The well-known general shapes of the kinetic and potential components of the
binding energy curve exhibit very different behaviors at larger and shorter internu-
clear distances. These shapes suggest that the binding energy is the result of several
contributions with different distance dependencies. In fact, five contributions with
distinct conceptual physical meanings can be identified. They are formulated in
the present section. In the next section their quantitative properties are discussed
and in the subsequent section their synergism is traced.

Substitution of the density decomposition (Eq. (1.14)) into the potential energy
integral of H2

+ yields the following resolution of the potential energy of H2
+ in

terms of three contributions:

𝐕(Ψ) = ∫ dx

(
− 1

rA
–

1
rB

)
𝜌 + 1

R
= 𝐕a + 𝐕qc + 𝐕I (1.23)

where the individual terms have the following definitions and physical meanings

𝐕a =

{
−∫ dx𝜓2

A∕rA –∫ dx𝜓2
B∕rB

}
2

= the 𝑖𝑛𝑡𝑟𝑎-𝑎𝑡𝑜𝑚𝑖𝑐 potential energy of the quasi-atomic orbitals (1.24)

𝐕qc =

{
−∫ dx𝜓2

A∕rB − ∫ dx𝜓2
B∕rA

}
2

+ 1
R

= the 𝑞𝑢𝑎𝑠𝑖-𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 potential energy (1.25)

𝐕I = ∫ dx

(
− 1

rA
− 1

rB

)
𝜌I

= [2(1 + S)]–1∫ dx

(
− 1

rA
− 1

rB

)
ℐAB

= the 𝑖𝑛𝑡𝑒𝑟-𝑎𝑡𝑜𝑚𝑖𝑐 potential energy due to the charge accumulation

in the bond

= the potential interference energy. [ℐABwas defined in Eq. (1.14a)] (1.26)

The potential part of the binding energy, that is,

𝐕binding = 𝐕(Ψ) − 𝐕H with 𝐕H = −∫ dx
(1sA)2

rA
= −1hartree (1.27)

is therefore the sum of an intra-atomic and an interatomic contribution:

𝐕binding = 𝐕intra + 𝐕inter (1.28)

where

𝐕intra = 𝐕a − 𝐕H, 𝐕inter = 𝐕qc + 𝐕I (1.29)
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The analogous resolution of the kinetic energy is simpler, viz,

𝐓(Ψ) = 1
2∫ dx (∇Ψ)2 = 𝐓a + 𝐓I (1.30)

where

𝐓a =

{
1
2∫ dx

(
∇𝜓A

)2 + 1
2∫ dx (∇𝜓B)2

}
2

= the 𝑖𝑛𝑡𝑟𝑎-𝑎𝑡𝑜𝑚𝑖𝑐 kinetic energies of the quasi-atomic orbitals (1.31)

𝐓I =
1
2∫ dx

{
(∇Ψ)2 −

[(∇𝜓A)2 + (∇𝜓B)2]
2

}
= 1

2∫ dx
{2(∇𝜓A) ⋅ (∇𝜓B) − [(∇𝜓A)2 + (∇𝜓B)2]}

2(1 + S)
= the 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 kinetic interference energy

= the 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 kinetic energy resulting from the orbital delocalization

(1.32)

The kinetic part of the binding energy, that is,

𝐓binding = 𝐓(Ψ) − 𝐓H with 𝐓H = 1
2∫ dx

(∇1sA)2

rA
= 0.5hartree (1.33)

is thus also the sum of an intra-atomic and an interatomic contribution:

𝐓binding = 𝐓intra + 𝐓inter (1.34)

with

𝐓intra = 𝐓a − 𝐓H, 𝐓inter = 𝐓I (1.35)

By virtue of Eq. (1.4) each kinetic term is a sum of an x, y, and z component, where
the z-direction is conventionally taken along the internuclear axis. It should again
be emphasized that the definitions Eqs. (1.30)–(1.33) of the kinetic terms could all
have been equally well written in terms of the Laplacian expression of the kinetic
energy. As mentioned earlier, the gradient form is preferred in order that positive
kinetic energy terms appear with positive signs in front of them.

Combining the preceding resolutions yields the following decomposition of the
binding energy in terms of intra-atomic and interatomic contributions:

𝐄Binding = 𝐄(Ψ) − 𝐄H = 𝐄intra + 𝐄inter (1.36)

𝐄intra = 𝐄a − 𝐄H = 𝐓intra + 𝐕intra (1.37a)

𝐓intra = (𝐓a –0.5 hartree), 𝐕intra = (𝐕a + 1.0 hartree) (1.37b)

𝐄inter = 𝐄I + 𝐕qc = 𝐓inter + 𝐕inter , 𝐄I = 𝐓I + 𝐕I (1.38a)
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𝐓inter = 𝐓I 𝐕inter = 𝐕I + 𝐕qc (1.38b)

The binding energy has thus the five basic conceptual physical components shaded
in yellow in Eqs. (1.37)–(1.38), viz: the intra-atomic energy changes Tintra and Vintra,
which are due to the deformation from the free atom to the quasi-atom in the
molecule, and the interatomic energy changes Vqc, VI, and TI, which embody the
quasi-classical interactions and the interference interactions that are generated by
delocalization between the quasi-atomic orbitals on the two centers.

1.4.5
Quantitative Characteristics of the Five Energy Contributions

By virtue of the physical meanings of the five energy contributions, certain
general features of their quantitative values can be identified that are relevant for
understanding the behavior of the kinetic, potential, and total energy curves.

1.4.5.1 Intra-atomic Deformation Energy: Eintra = Tintra + Vintra

The intra-atomic deformation energy Eintra of (Eq. (1.37)) is the energy deviation
from the free-atom minimum. By virtue of the atomic variation principle, it is
necessarily positive, that is, it has an antibonding effect. In particular, as discussed
in detail in Section 1.2.2, upon quasi-atomic orbital contraction, Tintra will become
more positive and Vintra will become more negative, with Tintra prevailing over Vintra.

1.4.5.2 Quasi-Classical Interaction between the Atoms: Vqc

By virtue of the molecular symmetry, the quasi-classical energy of Eq. (1.25) can
also be written as

𝐕qc = −∫ dx
𝜓2

A

rB
+ 1

R
(1.39)

It is thus the potential energy of a neutral hydrogen atom at A, with a fixed density
𝜓A

2, in the field of a proton B at a distance R from A.
If 𝜓A

2 is spherically symmetric then, as Newton first showed [22], the first term
on the right hand side of Eq. (1.39) equals {R−1[−∫ dx 𝜓A

2]} where the integration
goes over the sphere with radius R around A. Since this sphere encompasses
less than the whole of 𝜓A

2, the integral ∫ dx 𝜓A
2 is <1 and, hence, Vqc becomes

positive, that is, antibonding. If the spherical quasi-atomic orbital is contracted, then
the integral [−∫ dx 𝜓A

2] is closer to 1 and increases the shielding of nucleus A so
that Vqc will become less repulsive. Expansion of the quasi-atomic orbital will have
the opposite effect.

For Vqc to be attractive, the orbital 𝜓A has to become sufficiently polarized toward
nucleus B.

It may also be noted that the form of Eq. (1.39) for Vqc implies that the effect of
orbital delocalization on the potential energy is entirely contained in the interference
energy VI. The interference density is therefore an expression of delocalization in
agreement with the discussion at the end of Section 1.4.2.2.
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1.4.5.3 Potential Interference Energy: VI

According to the analysis in Section 1.4.2.1, the interference density 𝜌I shifts charge
from near the nuclei toward the bond center, where the potential (−1/rA − 1/rB)
is less negative than near the nuclei. Therefore, the potential interference energy of
Eq. (1.26) is always positive, that is, antibonding.

The rather popular hand waving conjecture that charge accumulation through
overlap in the bonds of H2 and H2

+ lowers the potential energy is patently wrong.

1.4.5.4 Kinetic Interference Energy: TI

By virtue of the molecular symmetry, the kinetic interference energy of Eq. (1.32)
can be written

𝐓I =
1
2∫ dx (∇Ψ)2 − 1

2∫ dx (∇𝜓A)2 (1.40)

where the wave function 𝛹 ∼ (𝜓A +𝜓B) is manifestly more delocalized than the
orbital 𝜓A. According to the basic insights of Section 1.2.1, the first term in
this equation is therefore expected to have a lower kinetic energy than the sec-
ond term so that the kinetic interference energy will be negative, that is, bonding.
This expectation is confirmed by the contours on panels of Figure 1.6d–f in
Section 1.4.2.2, which show that the integrand in Eq. (1.32) is negative everywhere.
The conjunction of Eq. (1.40) and Figure 1.6 also confirms the inference at the
end of Section 1.4.2.2 that the gradient interference density is an expression of
delocalization.

Since superposing the AOs attenuates the derivative along the bond axis most
strongly, the component in this direction is found to contribute 2/3 of the negative
value of TI at the equilibrium distance [13].

1.4.5.5 Interference Energies and Quasi-Atomic Orbital Contraction and Expansion
According to the discussions in Sections 1.4.2.2 and 1.4.5.2, charge accumulation in
the bond goes hand in hand with orbital delocalization. The analysis in Section 1.4.3
had shown that, for R< 3–4 Bohr, charge accumulation in the bond as well as
delocalization increase when the quasi-atomic orbitals contract (with respect to the
free-atom 1s orbitals) whereas, for R> 3–4 Bohr, charge accumulation in the bond
and delocalization increase when the quasi-atomic orbitals expand. These changes
with orbital shrinking and swelling lead to the following changes in the kinetic and
potential interference energies.

According to the discussion in Section 1.4.5.3, increasing the charge accumula-
tion in the bond will make VI more positive (antibonding). Therefore, quasi-atomic
orbital contraction of the free-atom 1s orbitals is expected to increase the antibonding
effect of the potential interference energy when R<∼4 Bohr whereas the opposite holds
when R>∼4 Bohr. This inference is confirmed by explicit calculation of VI for the
case that the quasi-atomic orbitals are chosen to be of the scaled 1s𝜁 type defined
in Eq. (1.5) with a variable exponent 𝜁 . The potential interference energy is then
found to be
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Figure 1.8 Variation of the strengths of the interference energies between scaled 1s𝜁
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Abscissa: 𝜎 = 𝜁R=R/𝛼. (a) Potential interference energy. (b) Kinetic interference energy. For
details, see text after Eq. (1.41) and (1.42).

𝐕I(1s𝜁 ) = R−1

⎧⎪⎨⎪⎩
[
S
(

1–e–2𝜎
)

–2𝜎e–𝜎
]
(1 + 𝜎)

(1 + S)

⎫⎪⎬⎪⎭ , 𝜎 = 𝜁𝑅 (1.41)

where S(𝜎) is the overlap integral given in Eq. (1.18). For fixed R, the dependence on
𝜁 is contained, through 𝜎 = 𝜁R, in the expression in the large curly brackets {}. The
dependence of this expression on 𝜎 is displayed in Figure 1.8a, which is a plot of
VI versus 𝜎 where the equilibrium value has been arbitrarily chosen for the factor
R−1 in front of the curly bracket. The antibonding of VI is seen to be maximal for
𝜁m ≈ 4.07/R. Hence, for R< 4.07 Bohr, contraction (i.e., increasing 𝜁m) will increase
the positive VI whereas, for R> 4.07, expansion will increase VI.

According to the discussion in Section 1.4.5.4, the negative value of TI is due to
delocalization, and therefore, increasing delocalization will make TI more negative
(bonding). Quasi-atomic orbital contraction is therefore expected to enhance the
negative kinetic interference energy for R<∼4 Bohr, whereas the opposite occurs
for R>∼4 Bohr. This effect on the kinetic interference energy is confirmed through
explicit calculation of TI by choosing as quasi-atomic orbitals the scaled 1s-type
orbitals defined in Eq. (1.5) with a variable exponent 𝜁 . The kinetic interference
energy at any given internuclear distance R is then readily found to be

𝐓I(1s𝜁 ) = R−2

{(
–𝜎4e−𝜎

)
3(1 + S)

}
(1.42)
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where 𝜎 and S are the same quantities as in Eq. (1.41). For fixed R, the depen-
dence on 𝜁 is contained, through 𝜎 = 𝜁R, in the expression in the large curly
brackets {}. The dependence of this expression on 𝜎 is displayed in Figure 1.8b,
which is a plot of TI versus 𝜎, where the equilibrium value has been arbitrarily
chosen for the factor R−2 in front of the curly bracket. Its minimum occurs at
𝜁m ≈ 4.38/R, which identifies the quasi-atomic orbital with maximal interference
energy lowering. For R< 4.38 Bohr, the value of 𝜁m is larger than 1, which implies
an enhancement of the kinetic interference effect by quasi-atomic orbital contraction
with respect to the free-atom orbital with 𝜁 = 1. For R> 4.38, the value of 𝜁m is
smaller than 1, which implies an enhancement of TI with quasi-atomic orbital expan-
sion. It is also seen that the enhancement decreases with increasing internuclear
distance as (1/R2).

Thus, the bonding character of the kinetic interference energy TI, the antibonding
character of the potential interference energy VI, as well as the response of these
quantities to quasi-atom orbital shrinking and swelling as a function of the
internuclear distances, are all consequences of the delocalization of the electron
from one nucleus to two nuclei.

1.4.6
Synergism of the Binding Energy Contributions along the Dissociation Curve

On the basis of the quantitative relations identified in the preceding section, the
changes in the total binding energy can be understood by variational reasoning.
The changes along the binding energy curve will be discussed with reference to the
graphs in Figure 1.9, which exhibit the resolution of the binding energy in terms of
the five components identified in Eqs. (1.36–1.38) as a function of the internuclear
distance.

The three columns of panels exhibit the analyses that result from three different
choices for the quasi-atomic orbitals 𝜓A in Eq. (1.10). The last column corresponds
to using the exact quasi-atomic orbitals discussed in Section 1.4.1. The second
column corresponds to choosing the approximation obtained by omitting the
polarization contributions in Eq. (1.10) and replacing the normalized spherically
symmetric term s by the corresponding scaled 1s* orbital discussed at the end of
Section 1.4.1. For the first column, the quasi-atomic orbitals are simply chosen to
be the undeformed 1s orbital of the hydrogen atom. The rows of colored panels
display from top to bottom: (i) the quasi-classical coulombic contributions, (ii) the
interference contributions, (iii) the interatomic contributions (= the sum of the top
two rows), (iv) the intra-atomic contributions, and (v) the total binding energy (=
the sum of the preceding two rows).

1.4.6.1 First Column: Zeroth Order Approximation to 𝝍A, 𝝍B by the 1sA, 1sB

Hydrogen Atom Orbitals
The signs of all contributions in this column correspond exactly to the general
quantitative predictions made in Section 1.4.5. The quasi-classical potential con-
tribution (see Section 1.4.5.2) as well as the potential interference contribution
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(see Section 1.4.5.3) is positive so that the total interatomic potential energy is
antibonding over the whole range. However, the negative (bonding) kinetic interference
energy, which prevails at all distances, is stronger (see Section 1.4.5.4). No intra-atomic
deformation energy exists, of course, in this approximation. The total molecular
binding energy is entirely due to the kinetic interference energy lowering that is a result of
the delocalization.

1.4.6.2 Second Column: Optimal Spherical Approximation to 𝝍A, 𝝍B by the Scaled
Orbitals 1sA*, 1sB*
As noted in the last paragraph of Section 1.4.1 (see also Figure 1.5), these
quasi-atomic orbitals are very slightly expanded with respect to the hydrogen
1s orbital when R>∼5 Bohr. The reason is that the expansion yields an energy
lowering beyond that of the first column because the (bonding) kinetic interference
energy is enhanced by expansion in this region of R (see Section 1.4.5.5) even
though the (antibonding) potential interference (Section 1.4.5.5) as well as the
(antibonding) quasi-classical energy (Section 1.4.5.2) is enhanced. The slight
deformation of the atom is also unfavorable (Section 1.4.5.1). However, all these
effects are small at large distances so that all energy contributions differ little from
those in the first column.

For R<∼4 Bohr on the other hand, the 1s* orbitals increasingly contract relative
to the hydrogen 1s orbital, as discussed in Section 1.4.1. The reason is that, in this
region, contraction yields a marked lowering of the total energy beyond that obtained
with the uncontracted orbitals shown in the first column of Figure 1.9, mainly
because of the bonding enhancement of the kinetic interference energy by increasing orbital
contraction (see discussion in Section 1.4.5.5). In addition, the quasi-classical energy
Vqc is less repulsive than that in the first column due to enhanced shielding of the
nuclei (see Section 1.4.5.2). These effects prevail over the following two changes that
oppose the contraction.

First, quasi-atomic orbital contraction enhances the antibonding potential inter-
ference energy VI beyond that of the first column (see Section 1.4.5.5). This
increased antibonding in fact largely offsets the decrease in the repulsive quasi-
classical energy Vqc noted in the preceding paragraph. Therefore, the total
interatomic potential energy contribution Vinter is about equally antibonding as
in the first column, that is, for the undeformed 1s orbitals.

Secondly, the intra-atomic energy Eintra increases as a result of the orbital
deformation by virtue of the atomic variation principle, as was discussed in
Section 1.4.5.1. It is noteworthy that this, not very large change in Eintra, is the
sum of a strong increase in the intra-atomic kinetic energy Tintra prevailing over an
only slightly less strong decrease in the intra-atomic potential energy Vintra. These
changes are in fact so strong that, in this region, the kinetic contribution Tbinding

and the potential contribution Vbinding to the total binding energy have signs that are
opposite to those that they have at larger distances. This feature will be commented
on further in Section 1.4.7.
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1.4.6.3 Third Column: Exact Quasi-Atomic Orbitals 𝝍A, 𝝍B

The exact quasi-atomic orbitals differ from the 1s* orbitals by the polarization
terms as shown in Eq. (1.11) and Figures 1.3 and 1.4. Because these are relatively
small, the energy curves in the third column of Figure 1.9 are similar to those in
the second column.

The energy lowering with respect to the second column is essentially caused
by the fact that the quasi-classical energy Vqc becomes attractive as a result of
the quasi-atomic orbital polarization as mentioned in Section 1.4.5.2. This energy
lowering outweighs a lesser energy increase in the interference energy and in the
intra-atomic energy.

The interference energy becomes slightly less bonding because polarization
slightly decreases the charge accumulation in the bond. The intra-atomic energy
increases because polarization is achieved by moving some of the intra-atomic
electron population from an s-type orbital to a p-type orbital of the same spatial size.

1.4.6.4 Conclusion
At all internuclear distances, it is the kinetic interference interaction between the two
atoms that drives the energy lowering that establishes bonding. The response of the
kinetic interference interaction to swelling and shrinking of the quasi-atomic
orbitals is, moreover, responsible for the peculiar variations of the kinetic energy
and the potential energy with the internuclear distance.

It should be noted that, at about half the equilibrium distance, the transition
to the united atom regime begins so that, for shorter internuclear distances, the
physical analysis requires modification.

1.4.7
Origin of Bonding at the Equilibrium Distance

The essential factors that emerge from the detailed preceding analysis of the
bond-creating quantum physical mechanism are epitomized in Table 1.1, which
lists the quantitative values of the binding energy contributions at the equilibrium
distance. The rows and columns of this table have exactly the same meanings as
those described in the second paragraph of Section 1.4.6 for Figure 1.9. In light of
the assessments of the preceding section, the data of Table 1.1 lead to the following
conclusions on the origin of the binding energy at the equilibrium distance.

1.4.7.1 Contributions to the Binding Energy
A full understanding of the energy lowering requires that intra-atomic as well as
interatomic energy changes are accounted for.

The intra-atomic energy changes represent deformations of the free-atom AOs
to the quasi-atomic orbitals in the molecule.

The interatomic interactions are of two kinds: (i) quasi-classical coulombic
potential energy changes due to the electrostatic interactions between the densities
of the two atoms and (ii) additional energy changes that result from the quantum
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Table 1.1 Binding energy analysis of H2
+ at Req (energies in mh).

Atomic orbitals used →
Interaction type ↓

Free
atoms

Contracted
free atoms

Quasi-atoms
in molecule

Quasi-classical V 27.6 11.3

Interference I T –113.7

–81.3

–187.2

–132.3 –108.4

–161.8

–36.2

V 32.4 54.9 53.4
E

Interatomic total T
V

E

Intra-atomic T 0

V 0
E 0

Total Binding T

V
E

–113.7

–53.6

60.1

–113.7 111.7

–53.6 –86.2
60.1 –197.8

102.632

–102.634
–205.266

–187.2

–122.0

–264.0 –222.4
34.8 42.0

66.2

298.8 264.4

–161.8

–144.6

17.2

mechanical delocalization of the electron orbital from one atom to both atoms
(‘‘electron sharing’’).

The effect of delocalization is embodied in constructive interference terms
between the wave amplitudes of the AOs from the two atoms (for the antibonding
orbital the interference is destructive). This constructive interference generates
a shift of charge into the bond region (‘‘charge accumulation’’) as well as an
attenuation of the gradient in the bond region.

In the interference energy as well as in the intra-atomic deformation energy,
the kinetic contribution and the potential contribution differ in their effects on
bonding.

1.4.7.2 Energy Lowering By Electron Sharing
The energy lowering that creates the bond is driven by the interatomic interactions.

This is most clearly seen when the quasi-atomic orbitals are approximated by
the undeformed orbitals of the hydrogen atom so that the intra-atomic energy
changes vanish, as shown in the first column of Table 1.1. In this case the energy
lowering at the equilibrium distance (−53.6 mh) is caused entirely by the kinetic
interference energy (−113.7 mh) as a result of orbital delocalization. The potential
interference energy and the potential quasi-classical energies are both positive, that
is, antibonding (+32.4 and +27.6 mh, respectively).

In fact, beyond thrice the equilibrium distance, the exact binding energy comes
about just in this way (albeit on a smaller scale), since the quasi-atomic orbitals do
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not deform at these distances. However, at less than twice the equilibrium distance
intra-atomic orbital deformations occur and lower the energy further.

1.4.7.3 Energy Lowering by Quasi-Atomic Orbital Deformation
The deformations of the hydrogen atom orbitals into the quasi-atomic orbitals
unavoidably increase the intra-atomic energy by virtue of the atomic variation
principle. However, the deformations decrease the interatomic energy contributions
even more, thus yielding a decrease of the molecular energy.

The deformations are of two kinds: spherical contraction and polarization. The
second column of Table 1.1 contains the binding energy resolution after contraction.
The third column shows the resolution after polarization is also added.

The spherical contraction of the hydrogen AO (second column) lowers the inter-
atomic energy in two ways. Most importantly, it increases the electron delocalization
between the quasi-atomic orbitals so that the negative kinetic interference energy
is lowered by an additional −73.5 mh. The contraction also diminishes the quasi-
classical electrostatic repulsion by −16.3 mh because of the increased shielding of
the proton. This potential energy lowering is however smaller than the increase in
the potential interference energy (+22.5 mh), which the aforementioned enhanced
delocalization entails, so that the antibonding of the total interatomic potential
energy contribution increases by 6.1 mh. The total interatomic energy lowering by
contraction is thus−67.4 mh and it is entirely due to the kinetic interference energy.
This interatomic energy lowering is still stronger than the antibonding intra-atomic
energy increase of 34.8 mh that occurs because AO contraction raises the intra-
atomic kinetic energy more (by+298.8 mh) than lowering the intra-atomic potential
energy (−264 mh), in agreement with the general discussion in Section 1.2.2. The
net energy lowering due to contraction is thus −32.6 mh.

The polarization of the quasi-atomic orbitals (third column), on the other hand,
lowers the interatomic quasi-classical electrostatic energy by −47.5 mh through
shifting the intra-atomic charge on each nucleus slightly toward the other nucleus.
However, polarization raises the negative interference energy by +23.9 mh so that
the total interatomic energy is only lowered by −23.6 mh. Moreover, polarization
increases the intra-atomic energy by +7.2 mh because it represents an intra-atomic
charge shift that involves moving some electron population from a spherical orbital
to higher angular momentum orbitals without orbital swelling. The net energy
lowering due to polarization is thus only −16.4 mh.

1.4.7.4 Variational Perspective
The preceding analysis shows that, for every choice of quasi-atomic orbitals, the
interatomic kinetic energy change because of interference is the driving interaction,
whereas the sum total of the interatomic potential interactions is always antibonding, as
are of course the total intra-atomic energy changes. Nonetheless, the largest individual
energy changes are the intra-atomic changes in the kinetic and potential energies
(+298.8 and−264 mh, respectively) and, although they nearly cancel each other, they
actually invert the signs of the total contributions of T and V to the binding energy.
This, somewhat puzzling, incidental result of the interplay between interatomic
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and intra-atomic energy changes can be understood by the following variational
analysis.

In the molecule, the interatomic kinetic energy lowering is included in the
variational competition between the total T and the total V and hence, the intra-
atomic kinetic energy can increase beyond that of the free atom before the optimal
compromise between T and V is reached. Hence, a contraction occurs that lowers
the intra-atomic potential energy in a way similar to what would happen in a free
atom when the kinetic energy resistance to localization is weakened by increasing
the electron mass from 1 to about 1.275 (see Section 1.2.2). Thus, the interatomic
kinetic energy lowering through delocalization can be said to open the possibility
for an adjustment of the ratio between the intra-atomic electrostatic pull and kinetic
resistance in the direction of a tighter attachment of the electron cloud to the nuclei
than exists in the free atom, which leads to a corresponding energy lowering. One
can also say that the weakening of the overall kinetic energy pressure resulting from
interatomic delocalization allows for an increased intra-atomic localization through
which the electron wave can exploit more effectively the attractive potential regions
near the nuclei.

1.4.7.5 General Implications
One may reasonably ask whether the described interplay between interatomic and
intra-atomic energy changes is a peculiar quirk of H2

+ or whether it also occurs
in other molecules. In this context, the virial theorem discussed in Section 1.2.3
is relevant. According to Eq. (1.9), the ratio |2T/V| must be equal to 1 at the
equilibrium geometry of any molecule. The following reasoning shows that this
requirement entails the coupling of electron sharing and intra-atomic deformations,
in particular, contraction.

From the first column of Table 1.1 it is seen that the kinetic energy lowering that
results from electron sharing without quasi-atomic deformation, in conjunction
with the concomitant potential energy increase, lowers the virial ratio |2T/V| from
the free-atom value 1 to the value 0.82 at the equilibrium distance. But it has to be 1
for the correct molecular wave function. According to the discussion in the second
but last paragraph of Section 1.2.3, the exact wave function must therefore be more
localized in regions of low potential energy. This localization is achieved by the
intra-atomic contraction of the quasi-atomic orbitals, which entails the necessary
large changes in the intra-atomic kinetic and potential energy (even though the total
intra-atomic energy increase is small) that are needed to establish the virial ratio of 1.

In this regard, it is helpful to note that the contracted quasi-atomic orbital 1s*
(second column of Table 1.1), which approximates the spherical component of the
exact quasi-atomic orbital, is in fact very close to that contracted orbital 1s# that
minimizes the energy of the approximate wave function (1sA

# + 1sB
#)/
√

(2+ 2S#).
[23] This orbital 1s# has the exponent 𝜁# = 1.240, as compared to the exponent
𝜁* = 1.264 of 1s*, which was given at the end of Section 1.4.1. The corresponding
molecular values of E#, T#, V# are therefore close to those for 1s*. Since energy
optimization with respect to 𝜁 guarantees the virial ratio |2T/V|= 1, this relation
is indeed fulfilled by T# and V#. It is therefore also justified to reason in terms
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of the variational competition between T and V with reference to the 1s* wave
function listed in column 2 of Table 1.1. On the other hand, it is apparent that
the proper compromise between electrostatic pull and kinetic resistance cannot be
accomplished by a polarization deformation.

Finally, it is to be noted that the following relationships are generally and
rigorously valid: (i) The virial ratio |2T/V| is equal 1 at all equilibrium geometries.
(ii) Orbital exponent optimization always establishes the virial ratio. (iii) Electron
delocalization always lowers the kinetic energy. In conjunction, these observations
lead to the inference that any covalent bond that is formed by electron sharing, that
is, delocalization, can be expected to involve orbital deformations that will attach
the electrons more firmly to the nuclei. This anticipation will be confirmed by the
analyses of the other molecules examined in Sections 1.5 and 1.6.

1.5
The Effect of Electronic Interaction in the Covalent Electron Pair Bond: H2

Since the two electrons in the ground state of H2 have opposite spins and, thus, are
allowed to occupy the same function space, they are shared in a similar manner
between the two atoms. The cumulative result of the bonding generated by each
electron produces the pair bond. The binding energy analysis of H2 is therefore
very similar to that of H2

+, showing that covalent bonding is also a one-electron
phenomenon within an electron pair bond. However, electron sharing enhances
the mutual interpenetration of the electrons, each of which originally resides on
one atom, and this enhanced penetration increases the interelectronic repulsion. For this
reason, the binding energy of H2 is only 85% of twice the binding energy of H2

+.
The elucidation of this interelectronic effect is the new element to be traced in the
analysis of H2.

Following the approach laid out in Section 1.3.2, the binding energy of the optimal
wave function in the FORS space will be analyzed first. This two-determinant wave
function recovers 87.3% of the binding energy. The remaining 12.7%, contributed
by the dynamic interelectronic correlation, will then be examined by means of a
full CI wave function of 3176 determinants.

All the wave functions to be discussed were calculated using an uncontracted (14s,
6p, 3d, 2f, 1g) basis of 26 σ-type spherical Gaussian AOs on each atom, which was
optimized for the present problem and differs slightly from that used for H2

+.1) It
yields the energy –0.4999993 hartree and the virial ratio |2T/V|= 1.0000197 for the
hydrogen atom. The quality of the present approach for the molecule was assessed
by means of a full CI calculation at the internuclear distance R= 1.4000 Bohr, for
which Kolos [24] as well as Nakatsuji [25], using the interelectronic distance in the
wave function, have produced benchmark calculations of highest accuracy. The full

1) The uncontracted basis set for H2 was optimized to minimize the FCI energy at R= 1.4 bohr
and contains GTOs with the following orbital exponents: s= 26110.0, 4078.0, 952.7, 243.8, 70.77,
23.75, 8.713, 3.628, 1.904, 1.243, 0.6419, 0.2978, 0.1382, 0.06620; p= 11.13, 3.858, 2.261, 1.079,
0.4752, 0.1952; d= 3.111, 1.232, 0.4749, f = 2.661, 0.9583, g = 2.271.
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CI energy obtained with the present basis was found to lie 0.1991 mh above the
value of –1.1744757 hartree determined by the two mentioned authors.

The FORS calculation yields the equilibrium distance 1.425859 Bohr, the energy
of 1.1522764 hartree and the virial ratio |2T/V|= 1.0000023. The full CI calculation
yields the equilibrium distance 1.4012 Bohr, the energy –1.1742769 hartree and
the virial ratio |2T/V|= 1.0000015. The best bond length known is 1.4011 Bohr [26].
The quantitative details on which the discussion in the present section is based will
be elaborated in a separate report [27].

1.5.1
Quasi-Atomic Orbitals of the FORS Wave Function

There are two atomic minimal basis set orbitals in this system. According to
the discussion of Section 1.3.2, the FORS MO space is therefore by definition
two-dimensional. It can be spanned by the bonding orbital σg and the antibonding
sigma orbital σu, both of which are partially occupied. At all internuclear distances,
this FORS wave function was obtained by MCSCF optimization of the expression

Ψ(1, 2) = cg𝜎g(1)𝜎g(2) + cu𝜎u(1)𝜎u(2) (1.43)

which determined the coefficients cg, cu as well as the orbitals 𝜎g, 𝜎u in terms
of the 52-dimensional AO basis mentioned above. At the equilibrium distance,
the coefficients are {cg, cu}= {0.99370277, –0.11204818}. The two quasi-atomic
orbitals 𝜓A, 𝜓B that span the same FORS orbital space, that is, the QUAFOs, were
then obtained as follows.

To determine 𝜓A, the (2× 26) overlap matrix between the MCSCF orbital set
(σg, σu) and the set of the 26 sigma basis AOs on atom A mentioned earlier
was calculated. Its SVD yielded two orbitals in the FORS orbital space. At all
internuclear distances, the largest SVD diagonal element is larger than 0.999780
(the value for 2.2 Bohr). The corresponding orbital in the FORS space is the QUAFO
(quasi-atomic FORS orbital) 𝜓A. The corresponding orbital that is spanned by the
26 basis AO’s on atom A is the PAAO (Pure Atomic Approximate Orbital) to the
QUAFO 𝜓A. In contrast to the PAAO, the QUAFO contains a slight admixture
from the basis AOs on atom B. In generalization of Eq. (1.11) for H2

+, the QUAFO
of H2 on atom A can therefore be expressed as

𝜓A = a𝐬A + b𝐩A + 𝜒B (1.44)

𝐬A =
∑

(14sA), 𝐩A =
∑

(6pA, 3dA, 2fA, 1gA), 𝜒B =
∑

(orbitals on atom B)
(1.44a)

where sA and pA are normalized. By expressing the spherical component sA as the
sum of a projection on the orbital hA = 1s(H) of the free hydrogen atom A and its
orthogonal complement, the Eq. (1.44) can be written

𝜓A = a⟨𝐬A|𝐡⟩𝐡 + a(𝐬A –⟨𝐬A|𝐡⟩𝐡 + b𝐩A + 𝜒B (1.44b)
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Figure 1.10 Resolution of the quasi-atomic
FORS orbital (QUAFO) on the left atom
in H2 as a sum of contributions from the
atomic 1s orbital, the spherical deformation,
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The four terms of this resolution of 𝜓A are displayed in Figure 1.10 for the
equilibrium distance. It is apparent that, as in H2

+, the second term represents a
contraction of the spherical part.

Also shown in Figure 1.10, as a dotted curve, is the PAAO corresponding to the
QUAFO 𝜓A. The plot shows that the PAAO approximates the QUAFO extremely
closely. The overlap integral between the two orbitals is 0.999865. A CI calculation
of H2 with the PAAOs yields an energy that is only 2 mh above that obtained with
the QUAFOs, that is, the actual energy for Ψ.

The fractional contributions of contraction, polarization (pA), and the contribution
from the other atom (𝛘B) to 𝜓A are exhibited in Figure 1.11 as functions of the
internuclear distance. The values plotted in this Figure were obtained as follows.
Since 𝛘B is non-orthogonal to sA and pA, the contribution from 𝛘B that is actually
different from the orbitals on A is given by [𝛘B – ⟨𝛘B|sA⟩sA – ⟨𝛘B|pA⟩pA] and this is
the contribution shown in Figure 1.11. Accordingly, the contraction contribution
shown is [(a+ ⟨𝛘B|sA⟩)(sA – ⟨sA|h⟩h)] and the polarization contribution shown
is [(b+ ⟨𝛘B|pA⟩) pA]. It is apparent that, in H2, the spherical contraction is of
considerably greater relative importance than in H2

+. The reasons will become
apparent further on.

As in H2
+, the spherical component sA is very similar to a contracted hydrogen-

like 1s orbital. Figure 1.12a shows the exponent 𝜁* of this 1s* orbital, determined
by maximizing the overlap of 1s* with sA of Eq. (1.44a), as a function of the
internuclear distance. The overlap between this 1s* orbital and the QUAFO 𝜓A is
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Figure 1.11 Variation with the internuclear distance for the spherical deformation, the
angular deformations and the contribution from the other atom to the quasi-atomic orbital
(QUAFO) in H2. The gray vertical line indicates the equilibrium distance.
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Figure 1.12 Characteristics of the scaled
exponential approximation 1s* to the spheri-
cal part of the quasi-atomic orbital (QUAFO)
in H2 at various internuclear distances. (a)
Orbital exponent of 1s*. (b) Overlap integral

between the 1s* orbital and the quasi-atomic
orbital (QUAFO) in red. Also shown: overlap
integral between the 1s* orbital and the pure
atomic orbital approximation (PAAO) to the
QUAFO in blue.
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shown in Figure 1.12b as a function of the distance. At the equilibrium distance
the exponent of 1s* is 𝜁* = 1.192.

The QUAFO on atom B, 𝜓B, was obtained in an entirely analogous way, using
the 26 basis AOs on B for the SVD. The QUAFOs 𝜓A and 𝜓B were then chosen
as the quasi-atomic basis to span the FORS space. They are related to the MCSCF
bonding /antibonding MOs of Eq. (1.43) by the transformation

𝜓A = 𝜎g cos 𝛼 + 𝜎u sin 𝛼 (1.45a)

𝜓B = 𝜎g cos 𝛼–𝜎u sin 𝛼 (1.45b)

At the equilibrium distance, the value of cos 𝛼 is 0.920259 and the overlap integral
between the non-orthogonal quasi-atomic orbitals is

S = ⟨𝜓A|𝜓B⟩ = cos 2𝛼 = 0.693754 (1.46)

With increasing internuclear distance, cos 𝛼 decreases to 1/
√

2 and S decreases
to zero.

1.5.2
FORS Wave Function and Density in Terms of Quasi-Atomic Orbitals

Using Eq. (1.45), the MCSCF optimized FORS wave function of Eq. (1.43) was then
expressed in terms of the quasi-atomic orbitals, which yielded the valence-bond
type expression

Ψ(1, 2) =
(N

2

) 1
2 {cos 𝛾[𝜓A(1)𝜓B(2) + 𝜓B(1)𝜓A(2)] + sin 𝛾[𝜓A(1)𝜓A(2) + 𝜓B(1)𝜓B(2)]}

(1.47)

N = 1
(1 + S2 + 2S sin 2𝛾)

(1.48)

The coefficients cos 𝛾 and sin 𝛾 are related to the coefficients cg, cu, cos 𝛼, sin 𝛼 of
Eqs. (1.43) and (1.45) by

sin 𝛾 =
C1√

(C2
1 + C2

2)
cos 𝛾 =

C2√
(C2

1 + C2
2)

(1.49a)

4C1 =
( cg

cos2 𝛼

)
+
(

cu

sin2 𝛼

)
, 4C2 =

( cg

cos2 𝛼

)
–

(
cu

sin2 𝛼

)
(1.49b)

At the equilibrium distance, the value of 𝛾 is 13.051068◦.
The first order density matrix obtained from this wave function can be resolved

into a quasi-atomic and an interference contribution between the quasi-atomic
orbitals in a way that is entirely analogous to the corresponding resolution in H2

+.
One finds

𝜌(1′, 1′′) = 2∫ dx2Ψ(1′, 2)Ψ(1′′, 2) = 𝜌qa(1′, 1′′) + 𝜌I(1′, 1′′) (1.50)
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where the quasi-atomic density matrix is the superposition of the atomic density
matrices, that is,

𝜌qa(1′, 1′′) = 𝜓A(1′)𝜓B(1′′) + 𝜓B(1′)𝜓A(1′′) (1.51)

and the interference density matrix is

𝜌I(1′, 1′′) = p × {[𝜓A(1′)𝜓B(1′′)+𝜓B(1′)𝜓A(1′′)] − S[(𝜓A(1′)𝜓A(1′′)+𝜓B(1′)𝜓B(1′′)]}
(1.52)

with the bond order

p = (S + sin 2𝛾)
(1 + S2 + 2S sin 2𝛾)

(1.53)

The diagonal terms, that is, the interference density, which is relevant for the
potential energy terms, becomes therefore

𝜌I(1, 1) = 𝜌I(1) = p ×ℐAB (1.54)

where

ℐAB = 2𝜓A𝜓B − S(𝜓2
A + 𝜓

2
B) (1.54a)

is the same orbital interference density as the one that occurred in Eq. (1.14a) for
H2

+. The bond order p depends on the mixing ratio between the covalent and the
ionic contribution to Ψ. For the Hartree–Fock wave function (i.e., 𝛾 = 45◦ in Eq.
(1.47)), it is p= 1/(1+S) so that the interference density expression of Eq. (1.54)
becomes exactly twice that of H2

+ given in Eq. (1.14). For the wave function of Eq.
(1.47), it has the value 0.541996.

An implication of Eq. (1.54a) is that the orbital product 𝜓A𝜓B can be resolved
into a coulombic and an interference component according to

2𝜓A𝜓B = S(𝜓2
A + 𝜓

2
B) +ℐAB (1.54b)

This interference resolution of the product 𝜓A𝜓B will be used to analyze the role of
the electron interaction terms in the binding energy analysis.

1.5.3
Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions

1.5.3.1 Overall Resolution
By inserting the discussed resolution of the density into the energy expression
resulting from ⟨Ψ|𝓗|Ψ⟩ with the Hamiltonian of the H2 molecule, and after
appropriately combining terms, one obtains the following resolution of the binding
energy in terms of contributions with physical meanings.

The total binding energy is again the sum of intra-atomic and interatomic energy
changes and both are again resolved into kinetic and potential contributions:

𝐄Binding = 𝐄(Ψ) − 2𝐄H = 𝐄intra + 𝐄inter (1.55)

𝐄intra = 𝐓intra + 𝐕intra (1.56)
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𝐄inter = 𝐓inter + 𝐕inter (1.57)

The intra-atomic contributions are entirely analogous to those of H2
+ in Eqs. (1.24),

(1.31), and (1.37), except that, now, a full electron resides on each of the two atoms:

𝐓intra =
1
2∫ dx(∇𝜓A)2 +

1
2∫ dx(∇𝜓B)2 –1.0Hartree (1.58)

𝐕intra = −∫ dx
𝜓2

A

rA
–∫ dx

𝜓2
B

rB
+ 2.0Hartree (1.59)

The interatomic kinetic energy change is again the result of the interference of the
quasi-atomic orbitals, that is,

𝐓inter = 𝐓I = p × ∫ dx
{

2
(
𝜓A

(
−1

2
∇2
)
𝜓B

)
−
[(
𝜓A

(
−1

2
∇2
)
𝜓A

)
+
(
𝜓B

(
−1

2
∇2
)
𝜓B

)]}
= p × 1

2∫ dx
{

2
(
∇𝜓A

)
⋅ (∇𝜓B) − [(∇𝜓A)2 + (∇𝜓B)2]

}
(1.60)

where p is the bond order given in Eq. (1.53). Equation (1.60) is entirely analogous
to Eq. (1.32) for H2

+.
The interatomic potential interactions contain two kinds of terms, as was the case

for H2
+, namely:

• coulombic terms, which are defined as electrostatic interactions between non-zero
charges,

• interference terms, that is, electrostatic interactions, which involve interference
charge distributions that have zero integrated charges and describe charge shifts
with respect to the coulombic terms.

Thus:

𝐕inter = 𝐕coulombic + 𝐕interference (1.61)

The contributions of the interelectronic repulsion terms to Vcoulombic and Vinterference

are obtained by substituting the interference Eq. (1.54b) for the orbital products 𝜓A𝜓B

in the energy expression of H2.

1.5.3.2 Interatomic Coulombic Contributions
By the just mentioned substitutions, the total coulombic part of the interelectronic
interaction is found to be

(1 − 2q)⟨⟨𝜓2
A|𝜓2

B⟩⟩ + q⟨⟨𝜓2
A|𝜓2

A⟩⟩ + q⟨⟨𝜓2
B|𝜓2

B⟩⟩ (1.62)

In this as well as the following equations of this section, light gray shading
identifies terms arising from interelectronic interactions and the electrostatic
integral between two charge distributions f (x, y, z) and g(x, y, z) is denoted by

⟨⟨f |g⟩⟩ = ∫ dx1∫ dx2

f (1)g(2)|r1 –r2| (1.63)
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The factors q and (1− 2q) in Eq. (1.62) have the following origin. Since each electron
is shared between both atoms, both electrons contribute to the average charge of 1e
on each atom and there exists a finite probability of finding both electrons on the
same atom, that is, occupying the same quasi-atomic orbital. The analysis of the
second-order density shows that (with N and 𝛾 being defined in Eqs. (1.47), (1.48)
and (1.49))

q = (1–N cos 2𝛾)
4

(1.64)

is the probability of finding both electrons on the same atom and, correspondingly,
that (1− 2q) is the probability of finding one electron on atom A and the other on
atom B. The value of q is maximal {viz 0.25} for the MO wave function (𝛾 = 45o)
and minimal, but not zero {viz (S2 / 4(1+S2)= 0.081299} for the valence bond
(VB) wave function (𝛾 = 0o). It is 0.142673 for the wave function of Eq. (1.47).

Combining the coulombic electron interaction terms of Eq. (1.62) with the
electron nuclear coulombic attractions and the internuclear repulsion, the total
coulombic interaction is expressed as follows

𝐕coulombic = 𝐕qc + 𝐕sc (1.65)

Where

𝐕qc = −∫ dx
𝜓2

A

rB
− ∫ dx

𝜓2
B

rA
+ ⟨⟨𝜓2

A|𝜓2
B⟩⟩ + 1

R
= the quasi-classical coulombic interactionbetween the two atoms,

each having one full electron (1.66)

𝐕sc = q ×
{ ⟨⟨

𝜓2
A|𝜓2

A

⟩⟩
+ ⟨⟨𝜓2

B|𝜓2
B⟩⟩ –2 ⟨⟨𝜓2

A|𝜓2
B⟩⟩ }

= a ‘‘correction’’ of the preceding term 𝐕qc so that the sum of the

interelectronic terms in 𝐕coulombic of Eq. (1.65) becomes in fact

identical with the actual terms given in Eq. (1.62) (1.67)

The quasi-classical coulombic term Vqc of Eq. (1.66) has been formulated so as to
balance attractions and repulsions between the atoms in a way analogous to the
quasi-classical interaction term in H2

+ given in Eq. (1.25). The term Vsc manifestly
replaces an appropriate amount of interatomic electron repulsion, included by
definition in Vqc, with the amount of intra-atomic electron repulsion required to
recover the actual contribution given in Eq. (1.62). Since the intra-atomic electron
repulsions are generated by electron sharing, the energy contribution Vsc is called
the coulombic sharing contribution. It is the energetic measure of the finite probability
of both electrons being on the same atom. Although rarely mentioned, it is quite
strong and antibonding.

1.5.3.3 Interatomic Interference Contributions
The potential interference energy is the sum of two contributions

𝐕interference = 𝐕I + 𝐕II (1.68)
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The first term is analogous to the potential interference energy of H2
+ given by

Eq. (1.26). Here, one obtains

𝐕I = ∫ dx

(
− 1

rA
− 1

rB

)
𝜌I +

1
2
⟨⟨𝜓2

A + 𝜓
2
B|𝜌I⟩⟩

= p ×
{
∫ dx

[(
− 1

rA
− 1

rB

)
ℐAB +

1
2
⟨⟨𝜓2

A + 𝜓
2
B|ℐAB⟩⟩ ]} (1.69)

where 𝜌I and ℐAB are the orbital interference terms of Eqs. (1.54) and (1.54a)
and p is the bond order of Eq. (1.53). The difference between this expression
for VI and that for H2

+ in Eq. (1.26) is the presence of the electron repulsion
terms ⟨⟨..|..⟩⟩, which have the following origin: The interference density of each
electron experiences the attractions of the two shielded nuclei. The shielding that
one electron experiences is caused by the coulombic repulsion of the other electron,
which is evenly distributed over both nuclei, so that each nucleus is shielded by half
an electron.

The second interference term in Eq. (1.68) is

𝐕II =
1
4

N ⟨⟨ℐAB|ℐAB⟩⟩ (1.70)

It represents the interaction between the interference energies of the two electrons.

1.5.3.4 Binding Energy as a Sum of Two Intra-atomic and Five Interatomic
Contributions
The total binding energy is then the sum of the following seven contributions with
physical interpretations discussed in Sections 1.5.3.1 to 1.5.3.3:

𝐄Binding = 𝐓intra + 𝐕intra + 𝐓I + 𝐕qc + 𝐕sc + 𝐕I + 𝐕II (1.71)

This decomposition has not been arbitrarily conceived or imposed. Rather, it is the
result of simply sorting out the terms in the rigorous energy expression ⟨Ψ|𝓗|Ψ⟩
after inserting the interference resolution of Eq. (1.54b) for 𝜓A𝜓B.

1.5.4
Quantitative Synergism of the Contributions to the Binding Energy

1.5.4.1 Quantitative Characteristics
From the discussion in the preceding section it is apparent that five of the seven
contributions to the binding energy Eq. (1.70), namely Tintra, Vintra, Vqc, TI, VI, have
the same physical meanings as the corresponding contributions in H2

+, which
were discussed in Section 1.4.4.

These contributions also exhibit the same general quantitative characteristics
as those discussed for H2

+ in Section 1.4.5. An exception is the quasi-classical
coulombic energy Vqc, which differs from twice that of H2

+ in that one internuclear
repulsion is replaced by the interelectronic repulsion, as is seen by comparing the
definition of Eq. (1.66) for H2 with that of Eq. (1.25) for H2

+. As a consequence and
in contrast to H2

+, the term Vqc is, therefore, always attractive in H2.
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More importantly, the binding energy of Eq. (1.71) also contains the coulombic
sharing contribution Vsc of Eq. (1.67), which does not exist in H2

+. It arises from
both electrons spending part of the time simultaneously on the same atom. As
explained after Eq. (1.67), it replaces an interatomic electron repulsion by intra-
atomic repulsions. Since the latter are significantly larger than the former, this
term is always positive, that is, antibonding. As a result the sum total coulombic
contribution Vcoulombic = Vqc +Vsc of Eq. (1.65) is in fact antibonding at all internuclear
distances, even when the quasi-atomic orbitals are polarized. It is a two-electron
price to be paid for the energy lowering gained by simultaneous one-electron
sharing of the two electrons in the same bond. The compromise between Vsc

and the interference energy TI determines what is sometimes called left–right
correlation.

Finally, the binding energy of Eq. (1.70) contains the second interference term
VII. It represents the self-energy of a distribution with zero total charge and is
therefore expected to have very small numerical values.

1.5.4.2 Synergism along the Dissociation Curve
The synergism of the various contributions to the binding energy is shown in
Figure 1.13 for H2, which corresponds to Figure 1.9 for H2

+. The rows and
columns of the 15 panels have exactly the same meaning as in Figure 1.9 and were
explained in detail in the second paragraph of Section 1.4.6. The comparison of
the two figures shows that, notwithstanding differences in quantitative details, all
binding energy contributions exhibit essentially the same bonding and antibonding
pattern over the full range of the interatomic distance.

The differences between H2 and H2
+, which are a result of the presence of the

interelectronic repulsions, appear mainly in the panels of the first row, that is,
for the coulombic contributions. Whereas only the quasi-classical coulombic term
Vqc is present in H2

+, the coulombic contribution of H2 contains in addition the
coulombic sharing contribution Vsc. In confirmation of the explanation elaborated
in the preceding Section 1.5.4.1, it is seen that, at all distances and on all three
panels, i.e., for all three quasi-atomic orbital choices, the quasi-classical term Vqc is
attractive, the sharing modification Vsc is repulsive and the total coulombic contribution
Vcoulombic is repulsive. Nonetheless, when the spherical 1s* quasi-atomic orbital
approximation (second column) is replaced by the polarized exact quasi-atomic
orbitals (third column), the coulombic contributions of H2 and H2

+ change in the
same direction: In H2

+, the contribution changes from repulsive to attractive; in H2,
it becomes less repulsive. Specifically, the quasi-classical term of H2 becomes more
attractive and the coulombic sharing contribution becomes less antibonding. Thus,
in both molecules, the polarization of the quasi-atomic orbitals, which results from
replacing the 1s* quasi-atomic orbital approximation (second column) by the exact
quasi-atomic orbitals (third column), lowers the binding energy because it lowers
the coulombic energy. This lowering outweighs the increases in the interference
energy and the intra-atomic energy caused by the polarization as discussed in
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Figure 1.13 Each column of panels exhibits
the contributions to the binding energy of
H2 as functions of the interatomic distance.
First column: when the molecular wave func-
tion is a superposition of atomic ground
state 1s orbitals. Second column: when the

molecular wave function is a superposition
of the scaled exponential 1s* approximations
to the QUAFOs (see Figure 1.12). Third col-
umn: when the molecular wave function is
a superposition of the QUAFOs, that is, for
the actual wave function.
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Section 1.4.6.3. Nonetheless, the total inter-atomic potential contribution to the
binding energy remains anti-bonding over the whole range.

As noted earlier, the second interference term is expected to have very small
values. In fact, these values are so small that they are indistinguishable from zero
on the scale of the panels in the second row in Figure 1.13 and are therefore not
displayed. The total potential interference energy shown in these panels is therefore
essentially equal to VI of Eq. (1.69).

The overall synergism of the binding energy contributions in H2 is thus the
same as that in H2

+ and the general conclusions deduced for H2
+ by the in-depth

discussions in Sections 1.4.5 and 1.4.6 apply therefore also to H2.

1.5.5
Origin of Bonding at the Equilibrium Distance

Detailed insights into the effect of the interelectronic interaction on the binding
energy are provided by the explicit quantitative values at the equilibrium distance,
which are listed in Table 1.2. The table is analogous to Table 1.1 for H2

+ and is
organized in the same manner. The rows and columns have the same meaning
in the two tables and they also correspond to those in Figure 1.13, which was
discussed in the preceding Section 1.5.4.2.

Table 1.2 Binding energy analysis of H2 at Req (energies in mh).

Atomic orbitals used →
Interaction type ↓

Free
atoms

Contracted
free atoms

Quasi-atoms
in molecule

Quasi-classical coulombic V
Sharing Coulombic V

Interference I T
V
E

Interference II V

Interatomic total T
V
E

Intra-atomic T 0
V 0
E 0

Total binding T
V
E

–4.7

–167.8 –275.7 –245.0

–167.8 –275.7 –245.0

420.9 397.3

–136.2 –221.0 –204.8

–109.1 –184.8 –193.8

–167.8 145.2 152.282

–109.1 –147.9 –152.276
–304.559

–384.0

–293.1

–355.8

31.6 54.7 40.2

58.7

58.7 90.9 51.2

36.9 41.5

–21.6 –41.0
30.8 56.2 50.4

1.0 1.6 1.6
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The overall quantitative energetic pattern is indeed analogous to that found
for H2

+. In particular the interatomic energy lowering is the driver for all three
quasi-atomic orbital choices (columns). There are however noteworthy differences.

1.5.5.1 The Primary Mechanism as Exhibited by Choosing the Free-Atom Orbitals as
Quasi-Atomic Orbitals
As in H2

+, the binding energy in the first column of Table 1.2 is again furnished
by the kinetic interference energy (−167.8 mh), that is, electron delocalization. It is
54.1 mh more bonding than that of H2

+ (−113.7 mh). But the former is less than
twice the latter, presumably because the bond order p of H2 [∼0.542 see after
Eq. (1.54a)] is less than twice that in H2

+ [∼0.315, see after Eq. (1.14a)].
On the other hand, the antibonding potential interference energy in H2

(+31.6+ 1.0=+32.6 mh) differs only by 0.2 mh from that of H2
+, even though

two electrons are involved. The reason is presumably that the potential acting on
the interference density 𝜌I of H2 in Eq. (1.69) is weaker than the corresponding
potential for H2

+ in Eq. (1.26) because, in H2, each nucleus is shielded by half an
electron as explained after Eq. (1.69).

Although the quasi-classical coulombic energy of H2 is attractive (−4.7 mh), as
explained in Section 1.5.4.1, and in fact 32.3 mh lower than the repulsive quasi-
classical energy in H2

+, the total coulombic energy of H2 is repulsive (+26.1 mh)
and only 1.5 mh lower than that of H2

+. This is because of the additional coulombic
repulsion that is a result of the finite probability of both electrons being on the
same atom, as explained in the third paragraph of Section 1.5.4.1. It gives rise to
the antibonding coulombic sharing energy Vsc, of +30.8 mh!

As a result the interatomic potential contributions add up to the antibonding
value of +58.7 mh against the bonding kinetic contribution of −167.8 mh, yielding
the binding energy of −109.1 mh.

1.5.5.2 Effect of Quasi-Atomic Orbital Contraction
As discussed in detail in Section 1.4.3, near the equilibrium distance the contraction
shown in the second column of Table 1.2 enhances interference, delocalization
and charge accumulation in the bond. As in H2

+, the kinetic interference energy is
thus enhanced to −275.7 mh, that is, by a factor 1.64, which is near identical to the
corresponding enhancement factor in H2

+. The antibonding potential interference
energy increases by a factor 1.73, which is also similar to that factor in H2

+.
The contraction lowers the quasi-classical coulombic energy by −16.9 mh (second

minus first column), that is, by almost the same amount as in H2
+ (−16.3 mh).

On the other hand however, it is manifest from the Eq. (1.67) and the subsequent
discussion that quasi-atomic orbital contraction will increase the sharing coulombic
energy Vsc. This increase is in fact 25.4 mh so that the antibonding of the total
coulombic energy increases by +8.5 mh. In H2

+ by contrast, where Vsc does not exist,
the coulombic energy decreases by −16.3 mh.

As a result, contraction increases the total antibonding interatomic potential
contributions by a factor 1.54 in H2 as compared to a factor of only 1.1 in H2

+.
Since contraction increases the bonding interatomic kinetic contributions in H2



1.5 The Effect of Electronic Interaction in the Covalent Electron Pair Bond: H2 47

and H2
+ by the same factor (about 1.7, see two paragraphs earlier), contraction

enhances the total interatomic bonding contribution of H2 (−184.8) only by a factor
1.69 whereas that factor is 2.26 in H2

+.
Contraction increases the intra-atomic energy by +36.9 mh, which is only 2.1 mh

more than that in H2
+ (the contraction is less than in H2

+, but two electrons
contribute).

As a result, the total binding energy of H2 (−147.9 mh) has been enhanced by a
factor of 1.36 through quasi-atomic orbital contraction. This factor is less than the
factor 1.61 in H2

+.

1.5.5.3 Effect of Polarization
The third column of Table 1.2 shows the effect of modifying the quasi-atomic
orbitals by polarization as well as by the admixture from the other atom. For
simplicity, both distortions of the exact quasi-atomic orbitals’ spherical symmetry
will be subsumed under the label ‘‘polarization’’ in the following paragraphs.

The effect of these distortions on the interference energy of H2 is very similar
to that in H2

+: The kinetic interference contribution becomes less bonding,
the potential interference contribution becomes less antibonding and the total
interference energy becomes less bonding, that is, more positive. The increase in
the value of the interference energy in H2 (16.2 mh) is less than the corresponding
increase in H2

+ (23.9 mh).
As in H2

+, polarization lowers the quasi-classical coulombic energy of H2, that
is, it makes it more bonding. But the energy lowering is less than half of that in
H2

+. It also lowers the antibonding sharing coulombic energy somewhat. The total
coulombic energy lowering through polarization in H2 (−25.2 mh) is considerably
less than that in H2

+ (−47.5 mh).
As a result the total interatomic bonding interactions in H2

+ are enhanced by
only −9.0 mh as compared to −23.6 mh in H2

+.
Polarization increases the intra-atomic antibonding 4.6 mh, that is, 2.6 mh less

than in H2
+.

As a result, the total binding energy of H2 is enhanced only by −4.4 mh through
polarization whereas the enhancement in H2

+ is −16.4 mh. The effect of the
distortion of the quasi-atomic orbitals from spherical symmetry is thus much
smaller in H2 than in H2

+.

1.5.5.4 Binding in the Electron Pair Bond of H2

As in H2
+, the driving element of binding in H2 is the interatomic kinetic energy

lowering through delocalization (‘‘electron sharing’’), which is embodied in the
kinetic interference energy. This effect is a part of the cumulative one-electron
energies of the two electrons. The two-electron bond is thus the cumulative result
of the one-electron bonding created by each electron. The essential conclusions
regarding the origin of the covalent bond in H2

+, which were summarized in
Section 1.4.7, remain therefore also valid for H2.

These one-electron bonding effects are however diminished by the presence of
the interelectronic repulsion because the bonding delocalization of both electrons
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also results in a finite probability of the two electrons being found at the same
atom, and this simultaneous presence at the same site generates a strong coulombic
repulsion that exists neither in the hydrogen atoms nor in the H2

+ molecule. In
consequence, the binding energy of H2 is less than twice that of H2

+.
In the energy analysis, the effects caused by the interelectronic repulsion appear

in three places:

1) The strong antibonding contribution generated by the finite probability of
finding both electrons near the same nucleus is embodied in the sharing
coulombic energy Vsc, which is absent in H2

+. Indeed, the value of Vsc at the
equilibrium distance, viz 50.4 mh (Table 1.2) is very close to the difference of
52.0 mh between the binding energy of the FORS wave function (Table 1.2)
and twice the binding energy of H2

+ (Table 1.1).
2) Because of the electron repulsion, the delocalization of the individual electrons

is moreover not as uninhibited as in H2
+, a fact often denoted as ‘‘left–right

correlation’’ As a result, the bond order, which weights the interference terms,
is smaller than twice that in H2

+.
3) The nuclear potentials that act on the interference density are shielded, which

reduces the antibonding potential energy increase associated with the charge
accumulation in the bond. But this enhancement of bonding is counteracted by
the bond order attenuation mentioned under (ii) which decreases the bonding
of the kinetic interference terms.

It should be noted that the large antibonding term Vsc is a coulombic interaction.
Although it is generally appreciated that the quasi-classical coulombic energy is
attractive in H2, it seems to be much less recognized that electron sharing also
generates the large repulsive coulombic term Vsc and that, in consequence, the total
coulombic contribution is in fact always antibonding – in contrast to H2

+, where it is
bonding. In fact, as in H2

+, the sum total of the inter-atomic potential contributions
is always anti-bonding.

1.5.6
Electron Correlation Contribution to Bonding in H2

As seen in the preceding parts of this section, the finite probability of both electrons
being on the same atom, which is inherent in the FORS wave function, entails
an electron repulsion that causes the FORS binding energy (−152.276 mh) to fall
52 mh short of twice the binding energy of H2

+ (−102 mh). Of this difference,
22 mh are recovered by the exact wave function, in which the probability of the two
electrons to find themselves in the same space element is reduced by adjustments
beyond the FORS level, that are termed dynamic correlations. Thus, 87% of the
actual binding energy (−174.476 mh) is accounted for at the FORS level and 13%
is recovered by dynamic correlation.

To examine the correlating adjustments, a full configuration interaction (FCI)
wave function was calculated in the configuration space spanned by the 3176
determinants that are generated by the 140 orbitals of the 14s, 6p, 3d, 2f, 1g basis
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mentioned in the third paragraph of Section 1.5. It yields the binding energy
−174.168 at the FORS equilibrium distance (1.425859 Bohr), and −174.277 mh at
the re-optimized equilibrium distance (1.4012 Bohr).

At the FORS equilibrium distance, where the FCI wave function recovers 99.8% of
the binding energy, the dominant FCI natural orbitals (NOs) and their occupations
are:

1σg 1σu 2σg 1πxu 1πyu 135 remaining NOs

1.96347 0.02067 0.00598 0.00428 0.00428 0.00132

The first two of these NOs closely resemble the bonding and antibonding FORS
orbitals and account for 1.98414 electrons. The next three natural orbitals provide
in–out and π angular correlation. The two configurations that form the FORS
wave function clearly represent the dominant part of the nearly exact FCI function.
According to the text after Eq. (1.43), the occupancies of the corresponding two
NOs in the FORS wave function are 1.974890, and 0.025110.

To assess the effect of dynamic correlation on the bonding interactions at
the equilibrium distance, the interference effects generated by the FCI wave
function are compared with those of the FORS wave function in Figure 1.14.
The interference densities, which show the charge accumulation in the bond, and
the kinetic interference densities, which exhibit the effect of delocalization on the
kinetic energy, were calculated as follows:

Interference density
N∑
i

ni𝜙
2
i − 𝜓

2
A − 𝜓

2
B

Kinetic interference density + 1
2

N∑
i

ni{∇𝜙i}2 − 1
2
{∇𝜓A}2 − 1

2
{∇𝜓B}2

where the 𝜙i are the respective NOs, the ni are their occupations and 𝜓A and 𝜓B

are the QUAFO orbitals determined in Section 1.5.1. The upper limit N is 2 and
140 for the FORS and the FCI case respectively. These contour plots are analogous
to those shown in Figure 1.6 for H2

+.
It is apparent from the first two rows of panels in Figure 1.14 that the two-

electron correlation effects modify the basic structure of the one-electron densities
so little that the changes are hardly perceptible on the scale of these plots. The
difference plots displayed in the third row have reduced contour increments: 4
times reduced on the left panel, 10 times reduced on the right panel. The result of
electron correlation is seen to enhance very slightly the charge accumulation in the
bond (lower left panel). As argued in Section 1.4.5.3 and shown by the subsequent
quantitative results (e.g., Figures 1.9, 1.13 and Tables 1.1, 1.2), this enhancement
is expected to slightly increase the (positive) potential energy. On the other hand,
the correlation modification of the wave function slightly increases the gradient
density in a very narrow region near the nuclei (lower right panel, in agreement
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Kinetic interference Interference density

FORS

FCI

FCI minus FORS FCI minus FORS

FCI

FORS

Figure 1.14 Comparison of the interference
for the full CI wave function with that for
the FORS wave function of H2. Left column
of panels: interference densities with con-
tour increments= 0.004 e Bohr−3 in the upper
two panels and 0.001 e Bohr−3 in the low-
est panel. Right column of panels: kinetic

interference densities with contour incre-
ments= 10 millihartree Bohr−3 in the upper
two panels and 1 millihartree Bohr−3 in the
lowest panel. Note that the increment in the
upper four panel’s is twice that used for the
one-electron system H2

+ in Figure 1.6.

with the lower left panel), which is expected to also increase the kinetic interference
density slightly.

These inferences are confirmed by the decomposition of the binding energy in
terms of its kinetic (T), nuclear-electronic attraction (Vne), and electron–electron
repulsion contributions (Vee), which is documented along the internuclear distance
in Figure 1.15. The two dissociation graphs at the top show that the relative roles
of these three components are very similar in the FCI and the FORS wave function
over the whole range.

The lower panel exhibits the modifications induced by the full CI calculations on
a scale that is magnified by a factor 20. At the equilibrium distance, the one-electron
energy changes are as predicted earlier from the interference plots in Figure 1.14.
The increases of the one-electron energies T and Vne are manifestly a side effect
of the much larger lowering of the electron repulsion energy Vee that is achieved
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Figure 1.15 Comparison of the kinetic, potential, and total energies of the full CI wave
function with those of the FORS wave function. Energy scale in millihartree.

by the correlating wave function adjustments. At large distances (>5 Bohr), on the
other hand, the one-electron FCI energies still differ by about 5 micro-hartree from
the corresponding FORS energies, even though the electronic interaction energy
differs by less than one micro-hartree. This surprizing result may be related to the
very long range of the (small) polarization effect that was noted in Figure 1.11.

The correlating wave function adjustments manifestly do not change the physical
interactions that lead to bond formation at the FORS level. These interactions
between the atomic minimal basis sets are left intact and remain dominant. The
correlating adjustments achieve however a reduction of about 40% in the amount
by which the bond energy of H2 falls short of twice the bond energy of H2

+.

1.6
Covalent Bonding in Molecules with More than Two Electrons: B2, C2, N2, O2, and F2

The essential conclusion of the preceding analysis has been that covalent bond
formation in H2

+ and H2 is the consequence of the attenuation of the kinetic
energy pressure experienced by each electron due to its interatomic delocalization
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(‘‘sharing’’). This attenuation is further enhanced by intra-atomic contractions,
which moreover allow the electronic wave to exploit more of the attractive potentials
near the nuclei. The shrinkage toward the nuclei is signaled by large contragredient
changes in the intra-atomic kinetic and potential energies. Although these changes
are large, they are not the cause of the binding process inasmuch as they nearly
cancel each other, leaving a small antibonding contribution. In the last paragraph
of Section 1.4, it was argued that this process of covalent bonding is general. In the
present section, it will be shown that, in the five diatomic molecules B2, C2, N2, O2,
and F2, covalent bonding involves, in fact, the same pattern of energy changes and
thus comes about in the same way.

All molecules are treated at the full valence space MCSCF level, that is, the
full FORS wave functions based on eight molecular valence orbitals is analyzed.
In addition a wave function containing some additional valence correlation is
considered for F2. All calculations are performed with Dunning’s quadruple-zeta
cc-pVQZ basis sets [28] using the GAMESS molecular program suite [29].

1.6.1
Basis of Binding Energy Analysis

The detailed interactions in these systems are manifestly quite complex and a
complete analysis is beyond the scope of this chapter. Only those aspects will be
exhibited that have a bearing on the essential basic mechanism summarized in
the first paragraph of this section. To this end, the following four energies are
calculated for each molecule.

Energy (i): The energy of the free atom is calculated at the full valence space
MCSCF level (FORS), the core being kept as a closed shell. This calculation
is performed assuming the configurational structure that will result for the
atom when the molecular calculation is done at large internuclear distances.
Accordingly, the atomic calculation is performed in C∞v symmetry, keeping the
orbitals px and py equivalent, but the pz orbital nonequivalent. The five minimal
basis set orbitals are optimized in the quadruple-zeta AO basis (55 orbitals) of
the atom.

Energy (ii): The energy of the molecule is calculated by a full valence space
MCSCF calculation, the cores being closed shells. However, in this calculation the
orbitals are not optimized in the quadruple-zeta AO bases. Rather, all 10 orbitals are
determined as optimal linear combinations of the 10 optimal (core and valence)
free-atom orbitals that were found in the preceding atomic calculations on the
two atoms. The resulting molecular wave function represents the analogue to
the wave function that was obtained for H2 with the 1s ground state orbital of the
hydrogen atom.

Energy (iii): The energy of the molecule is optimized by a full valence space
MCSCF calculation, the cores being closed shells. In this calculation the orbitals
are optimized in the full quadruple-zeta bases of both atoms. This is the FORS
energy of the molecule.
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Energy (iv): The energy of the quasi-atom in the molecule is determined, which
represents the analogue to the quasi-atomic energies obtained in H2

+ and H2

by using the (contracted + polarized) quasi-atomic orbitals. This objective is
accomplished as follows.

The first step is to determine a basis for quasi-atomic FORS orbitals (QUAFO’s)
that span the full FORS function space of the MCSCF MOs obtained in the
preceding calculation (iii). To this end, the overlap integral matrix is calculated
between, on the one hand, all 10 molecular FORS MCSCF orbitals (including
the core orbitals) and, on the other hand, all 55 orthogonal occupied and virtual
free-atom orbitals obtained earlier in calculating the energy (i) on one of the two
atoms. Then, the SVD of this matrix is performed and those five MOs that
correspond to the largest five SVD eigenvalues are taken as the optimal quasi-
atomic orbital basis on that atom. By an analogous procedure, five quasi-atomic
orbitals are determined for the other atom. The ten quasi-atomic orbitals obtained
in this manner span the same orbital space as the molecular FORS orbitals from
the molecular MCSCF calculation of step (iii). We consider these QUAFOs as
the quasi-atomic orbital basis that is intrinsically embedded in the FORS wave
function.

As typical examples, Figure 1.16 displays contours of the quasi-atomic MOs for
the molecules N2 and F2. For N2, all five QUAFOs on one atom are shown. The
figure for F2, on the other hand, omits the 1s and the equivalent py orbitals. It
displays the three quasi-atomic FORS orbitals 2s, 2pz and 2px and the two additional
correlating orbitals 3s and 3px, which were obtained from a wave function that
included some valence correlation (see Section 1.6.4). The correlating quasi-atomic
orbitals were obtained by an entirely analogous SVD algorithm involving 16 MCSCF
orbitals. In view of the manifest atomic localization of these orbitals, we emphasize
that all of them are MOs in terms of which the molecular wave functions can be
expressed.

The energy of each quasi-atom in the molecule is then obtained by a full valence
space MCSCF (FORS) atomic calculation with the same format as that used for
the atomic calculation of Energy (i). However, the orbitals are not optimized in the
quadruple-zeta AO basis. Rather, all five orbitals are determined as optimal linear
combinations of the five QUAFOs that were obtained for that atom as described in
the preceding paragraph.

1.6.2
Origin of Binding at the Equilibrium Geometry

The results obtained by these calculations for the five molecules at their theoretical
equilibrium distances are contained in Table 1.3. For comparison, the correspond-
ing values of H2 are also included. Because the quantities of interest are the binding
energies, all entries listed in this table are in fact energies with reference to twice
the free-atom energy, i.e., 2×Energy (i) of the preceding Section 1.6.1 has been
subtracted from all energies.
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2s 2px2pz  3px 3s 

2s 2px 2py2pz

Quasi-atomic orbitals on the left atom of N2: FORS calculation 

1s 

Quasi-atomic orbitals on the left atom of F2: correlated FORS calculation 

Figure 1.16 Upper panels: core and valence
quasi-atomic orbitals of the FORS wave func-
tion (QUAFOs) in the N2 molecule. Lower
panels: valence quasi-atomic orbitals and
two correlating quasi-atomic orbitals of a
full MCSCF calculation that includes the

correlating orbitals 3s, 3px, 3py in the fluo-
rine molecule (the py orbitals being equiva-
lent to px orbitals are not shown,). For both
molecules, only orbitals on one atom are
shown. Note that all orbitals are molecular
orbitals (see Section 1.3.3).

For each molecule, a panel of nine blocks of entries is displayed, each block consisting
of the values for T, V, and E. The four corner blocks correspond to the four energies
discussed in the preceding Section 1.6.1. The upper left corner corresponds to the
two separated atoms. Since 2×Energy (i) has been subtracted from all energies,
this entry is always zero. The lower left corner contains the binding energy
obtained using the unchanged optimal orbitals of the free atoms, i.e., it is (Energy
(ii) minus 2×Energy (i)). The upper right corner block lists the energy of the
quasi-atoms in the molecule relative to the free atoms, i.e., it is 2× (Energy (iv)
minus Energy (i)). The lower right hand corner, finally, lists the actual FORS
binding energy from the full MCSCF calculations, i.e., it is (Energy (iii) minus
2×Energy (i)).

The other five blocks represent the energy changes between the respective adjacent
blocks and their values were simply obtained by subtraction. Thus, the blocks in the
second column show the energy differences that result from replacing the optimal
free-atom orbitals by the deformed quasi-atomic orbitals of the molecule, and the
blocks in the second row of blocks exhibit the differences between the molecular
energies and the intra-atomic energies, i.e., the energy contributions due to the
interatomic interactions.
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Table 1.3 Energy changes from free-atom energies to molecular FORS energies, resolved in
terms of intra- and interatomic contributions and in terms of free atom and deformed atomic
orbitals.

Contributions to
energy change

Free-atom
orbitals

Orbital
deformation

Quasi-atomic
orbitals

Free-atom
orbitals

Orbital
deformation

Quasi-atomic
orbitals

H2 B2

C2 N2

O2 F2

Intra-atomic
contributions

T 0 397.3 0 564.6
V 0 –355.8 0 –507.4
E 0 41.5

397.3
–355.8

41.5 0 57.1

564.6
–507.4

57.1

Interatomic
contributions

T –167.8 –77.2 –245.0 –142.4 –325.1 –467.6
V 58.7 –7.5 51.2 81.7 231.1 312.7
E –109.1

–167.8
58.7

–109.1

–84.7 –193.8 –60.8

–142.4
81.7

–60.8

–94.0 –154.8

Total binding
energy

T 320.1 152.3 239.5 97.0
V –363.3 –304.6 –276.4 –194.7
E –43.2 –152.3 –36.9 –97.7

Intra-atomic
contributions

T 0 1407.2 0 2352 2352
V 0 –1301.8 0 –2127 –2127
E 0 105.4

1407.2
–1301.8

105.4 0 225 225

Interatomic
contributions

T –608.0 –573.6 –1181.6 –955 –1056 –2011
V 468.2 379.7 847.9 862 584 1446
E –139.8 –193.8 –333.6 –92 –472 –564

Total binding
energy

T –608.0 833.7 225.7 –955 1296 341
V 468.2 –922.1 –453.8 862 –1543 –680
E –139.8 –88.4 –228.2 –92 –247 –339

Intra-atomic
contributions

T 0 1264.9 0 590.7
V 0 –1119.3 0 –547.2
E 0 145.6

1264.9
–1119.3

145.6 0 43.5

590.7
–547.2

43.5

Interatomic
contributions

T –378.3 –734.8 –1113.1 –100.4 –464.1 –564.5
V 357.2 459.3 816.4 97.2 393.3 490.5
E –21.2

–378.3
357.2
–21.2

–275.5 –296.7 –3.2

–100.4
97.2
–3.2

–70.8 –74.0

Total binding
energy

T 530.1 151.8 126.7 26.3
V –660.0 –302.9 –153.9 –56.7
E –129.9 –151.1 –27.2 –30.4

Quadruple-zeta bases, energies in mh.
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The following conclusions are manifest from these data.

1) The first column exhibits the bonding that is achieved when the free-atom
orbitals are used in the molecular calculation. In all molecules, this bonding
is seen to be the result of the lowering of the interatomic kinetic energy
contributions that is stronger than a concomitant potential energy increase,
exactly as in H2

+ and H2. There is no question that this binding is due to
delocalization.

2) The center column in the first row of the blocks shows the intra-atomic energy
increase when the optimal free-atom orbitals are replaced by the deformed
quasi-atomic orbitals of the molecule. In all molecules, the intra-atomic potential
energy decreases considerably, but the intra-atomic kinetic energy increases even
more so that the total intra-atomic energy increases somewhat (as it must by
the intra-atomic variation principle). These changes in the intra-atomic kinetic
and potential energies show that the quasi-atomic orbital deformations are
dominated by an overall contraction in all molecules, as was the case in H2

+

and H2.
3) The third column in the second row of the blocks shows the interatomic

interactions that create the bond between the quasi-atoms calculated with the
deformed quasi-atomic orbitals. These interactions are always stronger than
the interactions between the undeformed atoms listed in the first column. This
enhancement is indicated by blue-green highlighting of the energies in the
second row of the blocks. In all molecules, as in H2

+ and H2, the enhance-
ment is due to the interatomic kinetic contributions, which are indicated by
yellow highlighting.

4) The values of the just mentioned enhancement of the interatomic interaction
by quasi-atomic orbital deformation, are given in the second column of
the second row of the blocks (i.e., the center block of the entire panel).
It is always the result of a considerable enhancement of the interatomic

kinetic contributions, which indicates that, the quasi-atomic orbital deforma-
tions increase the delocalization, as was discussed in detail for H2

+ and H2. On
the other hand, the quasi-atomic orbital deformations render the interatomic
potential contribution more antibonding in all molecules, except in H2 where
it becomes slightly less antibonding. In all systems (including H2), the total
interatomic potential energy contribution (last column, second row of the
blocks) is very antibonding.

5) The lowest block in the third column shows the kinetic and potential energy
decomposition of the FORS binding energy. These contributions are, respec-
tively, positive and negative (as they must be by the virial theorem). From the
data in the blocks in the first and second row of the last column, it is apparent
that these signs are a consequence of the intra-atomic orbital contraction men-
tioned above, which are a side effect of the enhanced binding of the interatomic
kinetic contributions due to orbital deformation, as has been discussed for H2

+

and H2.
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In summary, bonding is brought about by the kinetic energy lowering in the
interatomic interactions in all molecules. The kinetic energy lowering is further
enhanced by a deformation of the quasi-atomic orbitals, which is an overall
contraction. This enhancement prevails over the intra-atomic energy increase that
is unavoidably also generated by the deformation. The intra-atomic energy increase
is the result of large compensating intra-atomic kinetic and potential energy
changes that cause the kinetic binding energy to be positive and the potential
binding energy to be negative, but reveal no information about the origin of
binding.

1.6.3
Synergism along the Dissociation Curve

The overall consistency that has been found for the essential bonding contributions
at the equilibrium geometries extends to the entire dissociation curves. This
similarity is exhibited in Figures 1.17–1.19 for the molecules B2, C2, N2, O2, and
F2. Each molecule is represented by one row of panels. In each row, from left to
right:

• The first panel displays the kinetic, potential, and total energy curves for the
interatomic interactions obtained with the free-atom orbitals (corresponding to item
1) in the preceding Section 1.6.2).

• The second panel displays the curves for the interatomic interactions obtained
with the deformed quasi-atomic orbitals of the molecules, that is, the QUAFOs
(corresponding to item 3) in the preceding Section 1.6.2).

• The third panel displays the curves for the intra-atomic energy changes caused
by the deformations that change the free-atom orbitals into the QUAFOs (corre-
sponding to item 2) in the preceding Section 1.6.2).

• The fourth panel shows the binding curves obtained by optimizing the QUAFOs
at each internuclear distance (corresponding to item 5) in the preceding
Section 1.6.2). The values of this FORS binding energy curve, as well as its
kinetic and potential components in the fourth panel, are the sums of the
corresponding values in the second and third panels.

Between the equilibrium distance, which is indicated by a gray vertical line, and
infinite separation, the curves of all molecules exhibit the same overall pattern,
namely:

Binding is provided by the interatomic interactions (first and second panel),
specifically by the kinetic interatomic energy lowering, due to delocalization, pre-
vailing over an interatomic potential energy increase, presumably due to charge
accumulation in the bond and sharing coulombic effects. The interatomic interac-
tions for the deformed quasi-atomic orbitals (second panel) are qualitatively similar
to those for the undeformed free-atom orbitals (first panel). But the deformations
enhance these contributions.

The intra-atomic contribution is the result of a large increase in the kinetic
component prevailing slightly over a large decrease in the potential component,
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Figure 1.17 Contributions to kinetic, potential, and total binding energy curves of B2 (first row of panels) and C2 (second row of panels)
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changes that imply intra-atomic contraction. Although the intra-atomic changes
determine the signs of the kinetic and components of the binding energy, they
yield an overall antibonding contribution to this energy.

It is evident that, in all of these molecules, the basic synergism that leads to
covalent binding is entirely analogous to the one that was found for H2

+ and H2

and exhibited in Figures 1.9 and 1.13.
Parenthetically, it is noted that the kinks in the curves for C2 are due to the

avoided curve crossing that exists in this system. The curve shown is the lowest
1Σg

+ state obtained from a state-average MCSCF calculation over the three lowest
states X1Σg

+, B
′1Σg

+, B1Δg (even though the Δ-state is lower at large distances).
Appropriately corresponding state averaged calculations were performed for the
carbon atom to obtain the dissociation limit of the lowest 1Σg

+ state.

1.6.4
Effect of Dynamic Correlation on Covalent Binding

The effect of dynamic electron correlation on the bond in the H2 molecule was
discussed in Section 1.5.6. In that case, it accounted for about 13% of the binding
energy and it did not change the conclusions regarding the origin of covalent
binding. It was also noticed that the energy lowering achieved by the correlating
adjustments in the wave function are not able to compensate entirely for the adverse
effect that electron repulsion has on bond formation at the FORS level through the
sharing coulombic interaction.

The molecules treated in the present section differ from H2 in that dynamic
electron correlation already exists in the separate atoms. It is generally found that
dynamic correlation in a molecule is larger than the sum of the dynamic correlations
in the separate atoms, presumably because there is more space available for the
electrons to avoid each other in the molecule than in the separate atoms. The data
in the first three rows in Table 1.4 confirm this general trend for the molecules
treated in the present section by furnishing a comparison of the FORS binding
energies with the experimental binding energies (The experimental energy for
B2 is from Bytautas et al. [30] the others are from Feller and Sordo [31]). It can

Table 1.4 Dynamic correlation contributions to bond energies (mh).

H2 B2 C2 N2 O2 F2

De FORS –152.3 –97.7 –228.2 –339 –151.1 –30.4
De Experiment –174.5 −107.9a −230.1b −364.1b −191.6b −60.9b

% Dynamic correlation 13 9.5 0.8 7 21 50
De FORS+c –228.2 –360.5 –192.5 –63.9

aFrom Bytautas et al., Ref. [30]
bFrom Feller and Sordo, Ref. [31]
cSee second and third but last paragraphs of Section 1.6.4.
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be inferred that the bonds in B2, C2, N2, O2 are dominated by covalent bonding
of the FORS wave functions, that is, by the interactions in the orbital space of
the (optimized) minimal basis sets, which are the ones that were analyzed in the
preceding sections.

In F2, on the other hand, about half of the binding energy is due to a lowering of
the dynamic correlation energy upon molecule formation. This does not invalidate
the analysis of the FORS wave function in the preceding sections, which elucidates
that part of the binding that is the result of the interactions within the orbital space
of the minimal basis sets.

Remarkably, the binding energy is recovered within 3 mh when the dynamic
correlation is simply accounted for by an extended MCSCF calculation that provides
one correlating orbital for each of the six valence orbitals containing lone pairs.
These correlating orbitals were shown in the lower panel set in Figure 1.16. The
second row of Figure 1.19 exhibits the resolution of the dissociation curve obtained
with this wave function in terms of contributions that are analogous to those
formulated in Sections 1.6.3 and 1.6.4. It is apparent that even in this case, the
basic pattern of the interatomic and intra-atomic contributions is the same as that
obtained for the FORS wave function, which is shown in the first row of that
figure.

In fact, analogous MCSCF calculations, based on wave functions with N valence
electrons in N valence orbitals, yield good binding energies for N2 and O2 as well, as
shown in the last row of Table 1.4, where they are denoted as FORS+ calculations.2)

For the C2 molecule, the minimal basis set FORS wave function provides already
one orbital for each electron and this is presumably the reason why, here, the FORS
calculation recovers the binding energy within 3.5 mh. All of these energies were
calculated at the optimized equilibrium geometries.

A more extreme case is presented by the molecule Be2, which would not exist
without the help of the dynamic correlation interactions. However, as the detailed
analysis of this bond by the present authors [32] showed, even in this case the
contributions of the minimal basis set interference interactions are in fact essential
for the existence of the bond.

1.7
Conclusions

As Robert Mulliken noted in the remark quoted at the beginning of this chapter,
chemical bonding is more complicated than one would like it to be – a not
uncommon experience in the sciences. The following précis summarizes the
essential conclusions regarding covalent binding that emerge from the detailed
analyses of the seven molecules examined in the preceding sections.

2) For the O2 molecule, 14 orbitals are used, that is, the additional 3s, 3px, 3py (but not 3pz) orbitals
are added. This is because the separated atom calculation must be performed in cylindrical
symmetry, which is done by a state-averaged MCSCF calculation involving the px as well as the py

orbital.
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1) Electronic ground states in atoms and molecules are determined by the optimal
compromise in the variational competition between the electrostatic potential
pulling the electrons toward the nuclei and the intrinsic kinetic delocalization
drive of electron waves, which resists localization toward nuclei. Bonding
occurs when the molecule offers a variational compromise with an energy
lower than that available in the separated atoms.

2) The formation of a covalent bond is a consequence of the kinetic energy
lowering that results from valence electrons delocalizing over several atoms.
Such delocalization occurs between open-shell atoms, that is, atoms in which
the number of valence electrons is less than twice the number of valence-shell
minimal basis set orbitals, because some valence electrons can then exploit
valence orbitals on several atoms by partial occupation.

The delocalization is manifest when electronic wave functions are expressed
in terms of delocalized bonding orbitals. When the wave functions are equiv-
alently expressed in terms of quasi-atomic orbitals, then the kinetic energy
lowering through delocalization is quantified by the negative interference energy
between the quasi-atomic orbitals involved in the delocalization.3)

3) The kinetic energy lowering through delocalization prevails over a lesser
potential energy increase that is caused by the accumulation of charge in the
bond region, which is associated with delocalization.4)

4) At and near the equilibrium distance, delocalization has the special feature
that it is enhanced by shrinkage of the quasi-atomic wave function components
toward their respective nuclei.5) This additional interatomic delocalization
is therefore coupled with contractions of the quasi-atomic orbitals, whereby
electronic charge is moved from the outer regions into the interatomic region as
well as into the intra-atomic regions. The resulting energy lowering involves
the following subtle interplay between interatomic and intra-atomic energy
changes.

The charge shift into the bond region enhances the interatomic delocalization
and thereby lowers the kinetic energy further. Moreover, this interatomic kinetic
energy lowering weakens the overall kinetic resistance against localization and
thereby allows the nuclear attractions to pull more electronic charge toward
the nuclei. As a result, the intra-atomic potential energy strongly decreases and
the intra-atomic kinetic energy strongly increases until the virial ratio 2T= |V|
is reached, which characterizes the optimal compromise in the variational
competition between kinetic and potential energy at the equilibrium distance.6)

Even though the shift of charge into the intra-atomic region is thus instru-
mental in bringing about the compliance with the overall virial constraint, the
total intra-atomic energy nonetheless increases in accordance with the intra-atomic

3) Interference energies are conceptually related to the resonance energies of molecular orbital and
valence bond theories. However, the resolution of resonance energies into kinetic and potential
components was never examined.

4) Charge accumulation in the bond does not lower the potential energy! See Section 1.4.5.3.
5) Even though the atomic contractions decrease the overlap integral! See Sections 1.4.3 and 1.4.5.5.
6) In accordance with the fundamental analysis in Section 1.2.3.
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variation principle (the intra-atomic kinetic energy increase being stronger
than the intra-atomic potential energy decrease). This intra-atomic energy
increase is however less than the interatomic kinetic energy decrease through
the increased delocalization that drives the contractions.

5) At larger internuclear distances the contraction discussed under item 4) does
not occur and the delocalization discussed under items 2) and 3) is the only
contributor to covalent bonding.7)

6) The detailed changes in the potential interactions that occur when bonds
form are involved and complicated to sort out. It is found, however, that
the total contribution of all interatomic potential interactions is positive, that is,
antibonding in all molecules at all internuclear distances.

The negative sign of the potential contribution to the total binding energy
at the equilibrium geometry is the result of the intra-atomic adjustments
discussed in the second paragraph of item 4) above. Since these intra-atomic
adjustments are consequences of the interatomic kinetic energy attenuation,
the sign of this potential contribution does not indicate what drives bond
formation.8)

7) In as much as delocalization and kinetic energy changes are one-electron
attributes, covalent bonding is the cumulative result of the bonding effects of
the individual bonding electrons. The interelectronic interactions have an adverse
effect on covalent bonding for the following reason.

The delocalization of several electrons over several atoms increases the
interpenetration of the respective electron clouds and, hence, strengthens the
electrostatic repulsions between them, which diminishes the bond energy
compared to what it would be without electron–electron interaction. This
detrimental effect is mitigated, in so far as possible, by the inclusion
of dynamic correlation terms in the wave function. In some molecules,
dynamic correlation contributes a considerable part of the bonding energy.
Nonetheless, the kinetic effects of delocalization are always essential for
covalent bonding.

8) Finally, it should be noted that covalent bonding is not the only kind of chemical
bonding. As Schwarz and coworkers have pointed out [12w, 33], changes in
each of the terms in the electronic energy expression, viz in the kinetic terms, in
the nuclear–electronic interactions, and in the electron–electron interactions
can result in bonding. While covalent bonding is driven by changes in
the kinetic terms, ionic bonding and long-range multipole interactions are
driven by changes in the electron–nuclear interactions. Long-range dispersion
forces, on the other hand, are driven by changes in the electron–electron
interactions [34].

7) This is related to the less stringent form of the virial theorem in this region. See Section 1.2.3.
8) That the actual values of the kinetic and potential energies at the variational minimum generally

do not provide sufficient information to deduce the physical origin of energy differences between
systems was discussed in detail in the last paragraph of Section 1.2.2.
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2
Bridging Cultures
Philippe C. Hiberty and Sason Shaik

2.1
Introduction

The two general theories of chemistry, one called valence bond (VB) theory and the
other molecular orbital (MO) theory, were developed at about the same time, but
have quickly given rise to two different cultures that have competed, sometimes
fervently, on charting the mental map and epistemology of chemistry. VB theory is
close to the natural language of chemists. It views the electron pairs of a molecule
as being located in bonds or lone pairs. On the contrary, MO theory views the
electron pairs as completely delocalized over the entire molecule. Given these
two seemingly opposing points of views, it is no surprise that many teachers and
researchers have had the feeling that if one is right, the other must be wrong.

However, a deeper understanding of both theories shows that they are both
correct, and mutually transformable. More so, both are exact in their most elaborate
versions, and expressing the same chemical reality in different languages. This was
recognized as early as 1935 by van Vleck and Sherman [1], stating that it becomes
meaningless quibbling to argue which of the two methods is the better in refined forms
since they ultimately merge. It is unfortunate that this wise statement was not more
widely appreciated by the community of chemists and teachers. What could be
added nowadays is that not only do the two theories ultimately converge but a
number of good methods have been devised to extract some VB information from
MO methods, thus bridging the two cultures. Our aim in this chapter is to describe
these bridges. But before doing so, it is useful to briefly recall the history of the VB
and MO methods and the roots of the rivalry that has still not completely subsided
to these days.

2.2
A Short History of the MO/VB Rivalry

The roots of VB theory in chemistry can be traced back to the famous paper of
Lewis The Atom and The Molecule [2], which introduced the notions of electron-pair

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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bonding and octet rule (so-called initially the rule of eight) [3]. This paper that
predated the new quantum mechanics by 11 years constitutes the first effective
formulation of bonding in terms of the covalent-ionic classification, which is still
being taught, and which has formed the basis for the subsequent construction
and generalization of VB theory. From then on, the notion of electron pairing
as a mechanism of bonding became widespread and initiated the ‘‘electronic
structure revolution’’ in chemistry [4]. Meanwhile, despite this great step forward,
understanding the mechanism by which an electron pair could constitute a bond
remained a mystery until 1927 when Heitler and London published their seminal
paper, Interaction Between Neutral Atoms and Homopolar Binding [5], in which they
showed that the bonding in H2 originates in the quantum mechanical ‘‘resonance’’
interaction, which is contributed as the two electrons are allowed to exchange their
positions between the two atoms.

In modern terms, the bonding in H2 can be accounted for by the wave function,
referred to as Ψhlvb, written in Eq. (2.1) (dropping normalization constant):

ΨHLVB = |𝜒a𝜒b| − |𝜒a𝜒b| (2.1)

where 𝜒a and 𝜒b are the respective atomic spin orbitals of the two hydrogen atoms,
with a bar indicating a β spin and the absence of bar meaning an α spin. The wave
function in Eq. (2.1) is a superposition of two neutral situations with inverted spin
distributions. Thus, the bonding in H2 arises because of the quantum mechanical
‘‘resonance’’ interaction between the two patterns of spin arrangement that are
required in order to form a singlet electron pair. As this ‘‘resonance energy’’
accounted for a good deal of the experimental bond energy of the molecule, this
implied that the wave function in Eq. (2.1), which is referred to henceforth as the
HL-wave function, could describe the chemical bonding in a satisfactory manner.
This ‘‘resonance origin’’ of the bonding was a remarkable feat of the new quantum
theory, because until then it was not obvious how two neutral species could be at
all bonded.

The HL-wave function formed the basis for the version of VB theory that became
very popular later, and which was behind some of the ‘‘failings’’ that were to be
attributed to VB theory. In 1929, Slater presented his determinant-based method
[6] and in 1931 he generalized the HL model to n-electrons by expressing the total
wave function as a product of n/2 bond wave functions of the HL type [7]. In 1932,
Rumer [8] showed how to write down all the possible bond pairing schemes for
n-electrons and avoid linear dependencies between the forms, in order to obtain
canonical structures. We shall refer hereafter to the kind of theory that considers
only covalent structures as Heitler-London Valence Bond (HLVB).

The success of the HL model and its relation to Lewis’s model, posed a wonderful
opportunity for Pauling and Slater to construct a general quantum chemical theory
for polyatomic molecules. In the same year, 1931, they both published a few
seminal papers in which they developed the notion of hybridization, the covalent-
ionic superposition, and the resonating benzene picture [7, 9–12]. The electron
pair bond was described as a superposition of the covalent HL form and the two
possible ionic forms of the bond, as shown in Scheme 2.1 for an A–B bond.
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A B A

A B

B A B

Scheme 2.1 VB representation of an A–B bond. The first resonance structure is purely
covalent, while the two other ones are ionic.

The notion of orbital hybridization proved extremely useful and was used to
discuss molecular geometries and bond angles in a variety of molecules, ranging
from organic to transition metal compounds. These papers were followed by a
stream of five papers, published during 1931–1933, and entitled The Nature of the
Chemical Bond. This series of papers enabled the description of any bond in any
molecule, and culminated in the famous monograph in which all the structural
chemistry of the time was treated in terms of the covalent-ionic superposition
theory, and resonance and hybridization theories [13].

At the same time that Slater and Pauling were developing their VB theory [14],
Mulliken [15] and Hund [16] developed an alternative approach called molecular
orbital (MO) theory that has a spectroscopic origin. In MO theory, the electrons in
a molecule occupy delocalized orbitals made from linear combination of atomic
orbitals (AOs). Eventually, it would be the work of Hückel that ushered MO theory
into mainstream chemistry and gave it an impetus by forming a successful and
widely applicable tool. In 1930, Hückel suggested the σ-π separation [17] and turned
to solve the electronic structure of benzene using his new Hückel Molecular Orbital
(HMO) approach [18]. The π-MO picture allowed Hückel to understand the special
stability of benzene, owing to the closed-shell occupation of the 6-π electrons in
six delocalized MOs, as shown in Scheme 2.2. Furthermore, the HMO approach
enabled Hückel to make predictions on the stabilities/instabilities of C5H5

− and
C7H7

+ ions and C4H4 (CBD) and C8H8 (COT) molecules. Already in this paper

Scheme 2.2 The Hückel representation of benzene in terms of three occupied delocalized
π-MOs
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and in a subsequent one [19], Hückel formed the foundations for what was to
become later known as the Hückel rule, regarding the special stability of ‘‘aromatic’’
molecules with 4n+2 π-electrons [20].

On the HLVB front, Pauling and Wheland [21] described the benzene electronic
structure as a combination of the five Rumer structures in Scheme 2.3, and
approximated the matrix elements between the structures by retaining only close
neighbor resonance interactions. This approach has enabled them to extend the
treatment to naphthalene and to a variety of other species. Thus, in the HLVB
approach, benzene is described as a ‘‘resonance hybrid’’ of the two Kekulé structures
and the three Dewar structures. The pictorial representation of the wave function,
the link to Kekulé’s oscillation hypothesis and to Ingold’s mesomerism [20, 22],
which were known to chemists, made the HLVB representation very popular
among practicing chemists.

Kekulé structures Dewar structures

Scheme 2.3 The Pauling–Wheland representation of benzene in terms of two Kekulé struc-
tures and two Dewar structures

With these two seemingly different treatments of benzene, the chemical com-
munity was faced with two alternative descriptions of one of its molecular icons,
and this began the VB–MO rivalry that seems to accompany chemistry to the
twenty-first century [23].

By the end of World War II, Pauling’s resonance theory was widely accepted,
while most practicing chemists ignored HMO and MO theories, perhaps due to
Pauling’s skill as a communicator [20]. However, the most important reason for this
dominance was the direct lineage of VB resonance theory to the structural concepts
of chemistry dating from the days of Kekulé, Couper, and others through the
electron-pair notion and electron-dot structures of Lewis. Another very important
reason was the facile qualitative application of this theory to all known structural
chemistry of the time, in Pauling’s book [13], and to a variety of problems in organic
chemistry, in Wheland’s book [22]. The combination of an easily applicable general
theory, and its ability to fit experiment so well, created a rare credibility nexus. By
contrast, MO theory seemed alien to everything chemists had thought about the
nature of the chemical bond, and offered no visual representation to compete with
the resonance hybrid representation of VB resonance theory. At the end of World
War II, VB resonance theory dominated the epistemology of chemists.

By the mid 1950s, the tide has started shifting slowly in favor of MO theory,
gaining momentum through the mid-1960s. What had caused the shift is a com-
bination of factors, of which the following may be decisive. One is in organic
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chemistry, where pericyclic reactions (Diels–Alder, sigmatropic reactions, electro-
cyclic reactions, and cheletropic reactions) were the main field of synthetic research
at that time. Practicing chemists were desperate to understand pericyclic reactions
and there were already textbooks who dubbed them ‘‘reactions without mecha-
nism.’’ These mysterious reactions soon became lucid, with the publication of the
MO-based Woodward–Hoffmann rules [24] and the rediscovery of Fukui’s frontier
orbitals [25]. A second reason came from inorganic chemistry. Dewar suggested
in 1951 an MO model for the bonding in Zeise’s salt [26]. Chatt and Duncanson
picked it up and realized the power of the model [27]. They systematically extended
it to other transition metal complexes and in this way introduced MO theory
into experimental inorganic chemistry. Further, there were the construction of
intuitive MO theories and their wide applicability for rationalization of structures
(e.g., Walsh diagrams) and spectra (electronic and ESR), the highly successful
predictive application of MO theory in chemical reactivity, and the development of
widely applicable MO-based computational techniques (e.g., extended Hückel and
semiempirical programs). On the VB side, Pauling himself insisted that resonance
theory was sufficient to deal with most problems. This oversimplified version of the
HLVB theory, which simply enumerates structures without proper consideration
of their interaction matrix elements, led to a wrong prediction that the resonance
energy of CBD should be as large as or even larger than that of benzene. Thus, owing
to these failings of HLVB, a decisive victory was won by MO theory when organic
chemists were finally able to synthesize transient molecules and establish the sta-
bility patterns of C8H8

2−, C5H5
−,+, C3H3

+,−, and C7H7
+,− during the 1950s–1960s,

and C4H4 during the 1960s–1978 [12, 28, 29]. The results, which obeyed the Hückel
rules, as well as the success of Woodward–Hoffmann’s rules [24], convinced most
of the organic chemists that MO theory was right, while HLVB and resonance
theories were wrong. However, as would be made clear eventually, a proper VB the-
ory that includes the ionic structures demonstrates clearly the instabilities of CBD
and COT versus the stability of benzene [30]. Nevertheless, this has been ignored
by the community by and large.

Another alleged ‘‘failure’’ of VB is associated with the dioxygen molecule,
O2. Application of the simple Pauling–Lewis recipe of hybridization and bond
pairing to rationalize and predict the electronic structure of molecules fails to
predict the paramagnetic nature of O2. By contrast, using MO theory reveals this
paramagneticity instantaneously [31]. Even though VB theory does not actually fail
with O2, as at all levels, including qualitative HLVB, VB describes O2 as a triplet
diradical just like MO theory [32], this ‘‘failure’’ of Lewis’s recipe stuck to VB theory
and became a fixture of the common chemical wisdom.

VB theory continued to be associated with more ‘‘failures.’’ Thus, the develop-
ment of photoelectron spectroscopy and its application to molecules in the 1970s,
in the hands of Heilbronner, showed that the spectra could be easily interpreted as
reflecting the energies of canonical molecular orbitals (CMOs) [33, 34]. As such, it
was easy to explain the two different ionization peaks of methane, which correspond
to the a1 and t2 MOs. Unfortunately, this has served to dismiss VB theory, because
it describes electron pairs as belonging to four equivalent local bonds. Thus, on the
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basis of a loose reasoning, the idea spread that VB theory would predict a single
ionization peak for methane. The argument is of course unfounded, as is shown
later; however, with this and similar types of arguments, VB theory has eventually
fallen into a state of disrepute and become known, at least in the student times of
the present authors, either as a ‘‘wrong theory’’ or simply as a ‘‘naive theory.’’ Alas,
the warring camps seemed to enjoy the dispute more than facing the facts.

Nevertheless, despite the obituaries showered on VB theory in textbooks and in
the public chemical opinion, the theory has never really died. Owing to its close
affinity to classical chemistry and utmost clarity, it has remained an integral part
of the thought process of many chemists, even among proponents of MO theory.
Within the chemical dynamics community, the usage of the theory has never
been arrested, and it lives in terms of computational methods called LEPS, BEBO,
DIM, and so on, which were (and still are) used for generation of potential energy
surfaces. Moreover, around the 1970s, but especially 1980s and onward, VB theory
began to rise from its ashes, to dispel many myths about its ‘‘failures’’ and to
offer a sound and attractive alternative to MO theory [32], while at the same time
new algorithms gradually gave VB the status of a practical ab initio computational
method [35, 36].

In brief, until the mid-1950s, VB theory had dominated chemistry, and then MO
theory took over while VB theory fell into disrepute and was almost completely
abandoned. The more recent period from the 1980s onward marked a comeback
of VB theory, which has been ever since enjoying a renaissance both in the
qualitative application of the theory and in the development of new methods for
its computer implementation [37]. One of the great merits of VB theory is its
pictorially intuitive wave function that is expressed as a linear combination of
chemically meaningful structures. It is this feature that has made VB theory so
popular in the 1930s–1950s, and it is the same feature that underlies its temporary
demise and ultimate resurgence. In a complementary way, MO theory offers a
great deal of insight via the symmetry of the MOs and their bonding/antibonding
characters. Now that VB theory enjoys a comeback, we think it is timely to put
some emphasis on the many bridges that have been built between the two theories
throughout the past decades, and to encourage chemists and teachers to bury the
hatchet, which has so far undermined the intellectual heritage of chemistry by
eliminating one of its two thought cultures. We will thus show in the following
sections that VB and MO theories are not separate or contradictory approaches
to chemistry, but are the two facets of a unique description of molecular wave
functions.

2.3
Mapping MO-Based Wave Functions to VB Wave Functions

What is the difference between the MO and VB descriptions of an electronic
system, at the simplest level of both theories? As we shall see, in the cases of
one-electron, three-electron and four-electron interactions between two centers,
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there is no difference between the two theories, except for the representations that
look different. On the other hand, the two theories differ in their description of the
two-electron bond.

Let us take once again the example of H2, with its two AOs 𝜒a and 𝜒b, and
examine first the VB description, dropping normalization factors for simplicity. At
the HLVB level, only the covalent component of the two-electron bond is considered,
leading to the simple wave function ΨHLVB displayed earlier in Eq. (2.1).

As early recognized [14], at the equilibrium distance the bonding is not 100%
covalent, and it requires some ionic components, to be described accurately. On
the other hand, at long distances the HLVB wave function is the correct state, as
the ionic components necessarily drop to zero and each hydrogen atom carries
one electron away through the homolytic bond breaking. The HLVB wave function
dissociates correctly, but is quantitatively inaccurate at bonding distances. Therefore,
the way to improve the HLVB description is straightforward: by simply mixing
ΨHLVB with the ionic VB structures |𝜒a𝜒a| and |𝜒b𝜒b|, and variationally optimizing
the coefficients, by configuration interaction (CI). One then gets the wave function
ΨVB-full, in Eq. (2.2), which contains a major covalent component and a minor ionic
one.

ΨVB−full = 𝜆(|𝜒a𝜒b| − |𝜒a𝜒b|) + 𝜇(|𝜒a𝜒a| + |𝜒b𝜒b|); 𝜆 > 𝜇 (2.2)

Let us now turn to the MO description. Bringing together two hydrogen atoms
leads to the formation of two MOs, 𝜎 and 𝜎*, bonding and antibonding, respectively,
(Eq. (2.3), dropping normalization constants):

𝜎 = 𝜒a + 𝜒b; 𝜎∗ = 𝜒a − 𝜒b (2.3)

At the simple MO level, the ground state of H2 is described by the configuration
𝜎2, in which the bonding 𝜎 MO is doubly occupied. Expansion of this MO
determinant into its AO determinant constituents leads to Eq. (2.4) (again dropping
normalization constants):

𝜎2 = |𝜎𝜎| = |𝜒a𝜒b| − |𝜒a𝜒b| + |𝜒a𝜒a| + |𝜒b𝜒b| (2.4)

It is apparent from Eq. (2.4) that the first half of the expansion is nothing but
the HL function Ψhlvb (Eq. (2.1)), while the remaining part is ionic. It follows
that the MO description of the homonuclear 2-e bond will always be half-covalent
and half-ionic, irrespective of the bonding distance. Qualitatively, it is already
clear that in the MO wave function, the ionic weight is excessive at bonding
distances, and becomes strictly wrong at long distances, where the weight of the
ionic structures should drop to zero in accord with the homolytic cleavage. The
simple MO description does not dissociate correctly and this is the reason why it is
inappropriate for the description of stretched bonds, as, for example, those found
in transition states. The remedy for this poor description is CI, specifically the
mixing of the ground configuration, 𝜎2, with the diexcited one, 𝜎*2. The reason
why this mixing resizes the covalent versus ionic weights is the following: if one
expands the diexcited configuration, 𝜎*2, into its VB constituents, one finds the
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same covalent and ionic components as in Eq. (2.4), but coupled with a negative
sign as in Eq. (2.5):

𝜎∗2 = |𝜎∗𝜎∗| = –(|𝜒a𝜒b| − |𝜒a𝜒b|) + (|𝜒a𝜒a| + |𝜒b𝜒b|) (2.5)

It follows that mixing the two configurations 𝜎2 and 𝜎*2 with different coefficients
as in Eq. (2.6) will lead to a wave function ΨMOCI in which the covalent and ionic
components

ΨMOCI = c1|𝜎𝜎|–c2|𝜎∗𝜎∗|; c1, c2 > 0 (2.6)

have unequal weights, as shown by an expansion of ΨMOCI into AO determinants
in Eq. (2.7):

ΨMOCI = (c1 + c2)(|𝜒a𝜒b| − |𝜒a𝜒b|) + (c1 − c2)(|𝜒a𝜒a| + |𝜒b𝜒b|) (2.7a)

(c1 + c2) = 𝜆; c1 –c2 = 𝜇 (2.7b)

Because c1 and c2 are variationally optimized, expansion of ΨMOCI should lead
to exactly the same VB function as ΨVB-full in Eq. (2.2), leading to the equalities
expressed in Eq. (2.7b) and to the equivalence of ΨMOCI and ΨVB-full.

To summarize, the simple MO level describes the bond as being too ionic, while
the simple HLVB level defines it as being purely covalent. Both theories converge
to the right description when CI is introduced. It follows that the accurate description
of two-electron bonding is half-way in-between the simple MO and simple HLVB levels;
elaborated MO and VB levels become equivalent and converge to the same description,
in which the bond is mostly covalent but has a substantial contribution from ionic
structures. This equivalence clearly projects that the MO–VB rivalry is unfortunate
and senseless.

Up to this point, we restricted ourselves to the simple case of determinants
involving no more than two orbitals. However, the MO–VB correspondence is
general, and, in fact, any MO or MO–CI wave function can be exactly transformed
into a VB wave function, provided it is a spin-eigenfunction (i.e., not a spin-
unrestricted wave function). While this is a trivial matter for small determinants,
larger ones require a bit of algebra and a systematic method is discussed in a recent
book [32, 38]. The general procedure consists of projecting the MO wave function
onto a basis of VB structures, and involves the following steps: (i) determine a
complete and linearly independent basis set of VB structures for the electronic
system at hand; (ii) expand the MO determinants of the MO wave function as linear
combinations of AO-based determinants; at this stage, the MO wave function can
already be interpreted in terms of neutral or ionic structures [39]. Finally, to get the
final wave function, (iii) organize the expression obtained in step (ii) in terms of
the basis set of VB structures generated in step (i). The transformation is exact and
straightforward in minimal basis set. For wave functions calculated in large basis
sets, other procedures have been devised, which are described in Section 7.

Incidentally, it is interesting to apply the MO–VB projection to MO wave
functions before and after CI, to visualize the effect of CI on the VB weights.
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This has been done, among others, on the ozone molecule as calculated at the
Hartree–Fock (MO–HF) and MO–CI levels [38]. According to Rumer’s method, a
complete and linearly independent basis of VB structures involves structures 1–6
for ozone (see Scheme 2.4). A priori, one expects structures 4–6 to be marginal, as
in these cases one oxygen atom has a sextet structure. On the other hand, for 1, 2,
and 3 it is difficult to predict the relative weights on a qualitative basis.

1 2 3 4 5 6

Scheme 2.4 The six VB structures of ozone. Electrons of the π system are represented by
dots, while 𝜎 electrons are omitted.

The results of the MO–VB projection are displayed in Table 2.1. It can be seen
that, at the MO–HF level, structures 4–6 are minor but not negligible, having a
cumulative weight of 33.4%. On the other hand, the diradical structure 1 is more
important with a weight of 0.21, but less than each of the ionic structures 2 and
3. The picture changes drastically when CI is applied. At the MO–CI level (full CI
among the π space of orbitals), the diradical structure 1 becomes largely dominant
with a weight of 0.59, to the detriment of structures 4–6 which become completely
negligible. This shows that, as in the H2 case, the role of electron correlation is to
diminish the weight of the ionic structures, thus reducing the repulsion between
the valence electrons.

The same type of MO–VB projection has been carried out for other 1,3-dipoles,
benzene, pyridine, furane, and other aromatics [38, 40–42]. In all cases, it is seen
that CI greatly diminishes the ionic contributions to the benefit of the covalent ones.
Interestingly, in the benzene case [40], a comparison could be made between the
VB weights obtained by projection of an MO–CI wave function, including complete
CI in the π space, with those arising from a direct VB calculation by Tantardini
et al. [43]; the weights are exactly the same, showing that elaborated MO and VB
levels become equivalent and converge to the right description, yielding two wave
functions that show two different representations of reality but are transformable
and mathematically equivalent.

Table 2.1 Weights of VB structures 1–6 in the ground state of ozone, at the Hartree–Fock
and π-CI levels in the MO framework, in minimal basis set (Ref. [38]).

Level of theory 1 2 3 4 5 6

Hartree–Fock 0.213 0.226 0.226 0.107 0.107 0.120
π-CI 0.593 0.184 0.184 0.008 0.008 0.023
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2.4
Localized Bond Orbitals – A Pictorial Bridge between MO and VB Wave Functions

The standard MO wave function involves CMOs, which are permitted to delocalize
over the entire molecule. However, it is well known [44, 45] that an MO wave
function based on CMOs can be transformed to an MO wave function that
is based on localized MOs, known also as localized bond orbitals (LBOs) [34].
This transformation is called unitary transformation, and, as such, it changes the
representation of the orbitals without affecting the total energy or the wave function.
This equivalence is expressed in Eq. (2.8):

|…𝜑cmo
i ..𝜑cmo

j ..| = |…𝜑lbo
i ..𝜑lbo

j ..| (2.8)

where 𝜑cmo
i

corresponds to a CMO while 𝜑lbo
i

is an LBO.
A unitary transformation involves simple subtractions and additions of orbitals

within the complete set of the occupied CMOs. To illustrate such a transformation
we choose a simple molecule, BeH2, for which the procedure may be done in a
pictorial manner without resort to equations. Figure 2.1 shows the valence-occupied
CMOs of BeH2, the lowest of the two is made from the bonding combination of
the 2s AO of Be and the positive combination of the 1s AOs of the two hydrogen
atoms, while the higher one is the bonding orbital between the 2pz(Be) orbital
and the negative combination of the 1s(H) AOs. We can now make two linear
combinations of these orbitals, one negative and one positive, as in Eq. (2.9),
dropping normalization constants:

𝜎R = 𝜑cmo
1 + 𝜑cmo

2 ; 𝜎L = 𝜑cmo
1 − 𝜑cmo

2 (2.9)

These linear combinations, shown on the right-hand side of Figure 2.1, are seen
to generate two LBOs made from sp hybrids on the Be and the 1s AOs of the
hydrogens. One of these LBOs, 𝜎R, is a two-center bonding orbital localized on the
right-hand side of the molecule, while the other, 𝜎L, is equivalent to the former
but localized on the left-hand side. Of course, as the coefficients of the hydrogens
in 𝜑cmo

1 are not exactly equal in absolute value to those in 𝜑cmo
2 , the localization is

not perfect, and each LBO contains a small component out of the bonding region,
called delocalization tail, which is however very small. The wave function based
on these localized orbitals possesses two doubly occupied LBOs and is completely
equivalent to the starting wave function based on CMOs, as expressed in Eq. (2.10):

Ψ(BeH2) = |𝜑cmo
1 𝜑cmo

1 𝜑cmo
2 𝜑cmo

2 | = |𝜎R𝜎R 𝜎L𝜎L| (2.10)

H—Be—H

2
cmo

1
cmo

(a) (b)

σ R σL

Figure 2.1 MOs of BeH2 at the Hartree-Fock level. (a) canonical MOs; (b) localized MOs.



2.5 Block-Localized Wave Function Method 79

This LBO-based wave function is not a VB wave function. Nevertheless, it
represents a Lewis structure, and hence also a pictorial analog of a perfect-pairing
(PP) VB wave function. The difference between the LBO and VB wave functions is
that the latter involves electron correlation, whereas the former does not. As such,
in the LBOs of Eq. (2.10), each localized Be–H bond involves a 50 : 50 covalent-
ionic combination as in the Hartree–Fock wave function of any two-electron bond,
Eq. (2.4), and therefore exaggerates the bond ionicity.

For molecules involving many bonds, the localizing unitary transformations are
more complicated than in the BeH2 case, and are usually done by means of a
computer program, which is available in all current ab initio codes. As there is
an infinity of unitary transformations of orbitals that leave the Slater determinant
unchanged, the localizing transformations are determined so as to best satisfy
some specific criteria, for example, by requiring that the total spread of the
localized orbitals be minimal, as in the Foster–Boys method [45]. On the other
hand, it is impossible to find a set of well-localized orbitals for molecules whose
electronic system is intrinsically delocalized, such as benzene or, to a much lesser
extent, butadiene. Moving between localized and delocalized orbitals is extremely
useful as shown masterfully by R. Hoffmann [46] in his derivation of, for example,
the isolobal analogy for understanding bonding in organometallic complexes and
building bridges to organic molecules.

2.5
Block-Localized Wave Function Method

The block-localized wave function (BLW) method is another simple bridge between
MO and VB methods that provides VB-type information (e.g., resonance energies)
[47]. It is described in detail in Chapter 6 of this book. The basic principle of BLW
consists of partitioning the full basis set of orbitals into subsets, each centered on
a given fragment. The MOs are then optimized in a Hartree–Fock way, with the
restriction that each orbital is expanded only on its own fragment. The MOs of
a given fragment are orthogonal among themselves, but the orbitals of different
fragments have finite overlaps.

The applications of the BLW method are designed primarily to evaluate the
electronic delocalization and charge transfer effects between fragments/molecules.
Thus, the BLW represents a reference for evaluating delocalization energies relative
to the fully localized reference wave function.

A typical application of the BLW method is the energy calculation of a specific
resonance structure in the context of resonance theory. As a resonance structure is
composed, by definition, of local bonds plus core and lone pairs, a bond between
atoms A and B will be represented as a bonding MO strictly localized on the A and B
centers; a lone pair will be an AO localized on a single center, and so on. With these
restrictions on orbital extension, the final BLW is optimized at the constrained
Hartree–Fock level and is expressed by a single Slater determinant. Consequently,
the energy difference between the Hartree–Fock wave function, where all electrons
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are free to delocalize in the whole system, and the BLW function, where electrons
are confined to specific zones of the system, is defined as the electron delocalization
energy. Recently, the BLW method has been extended to density functional theory
(DFT) [48], by replacing the Hartree–Fock exchange potential by a DFT exchange-
correlation (XC) potential in the Roothaan SCF procedure. This improved BLW
method, referred to as BLW-DFT, has the advantages over the original method by
implicit inclusion of electron correlation to both the ground-state and the individual
structures.

2.6
Generalized Valence Bond Theory: a Simple Bridge from VB to MOs

A great step forward in the direction of accuracy and compactness of the VB wave
function was made by Coulson and Fischer [49], who proposed to describe the
two-electron bond as a formally covalent singlet coupling between two orbitals
𝜑a and 𝜑b, the latter being optimized with all freedom to delocalize over the two
centers, as exemplified in Eq. (2.11) for H2:

ΨCF = |𝜑a𝜑b| − |𝜑a𝜑b| (2.11a)

𝜑a = 𝜒a + 𝜀𝜒b (2.11b)

𝜑b = 𝜒b + 𝜀𝜒a (2.11c)

where 𝜒a and 𝜒b are purely localized AOs. In fact, experience shows that the
Coulson–Fischer orbitals 𝜑a and 𝜑b that result from the energy minimization are
generally not much delocalized (𝜀< 1), so that they can be viewed as ‘‘distorted’’
orbitals that remain atomic-like in nature. However, as minor as it may look, the
slight delocalization tail makes the Coulson–Fischer wave function equivalent to
the three-structure classical VB wave function Ψvb-full of Eq. (2.2), as evidenced in
Eq. (2.12) where the Coulson–Fischer wave function is expanded in classical AO
determinants.

ΨCF = (1 + 𝜀2)(|𝜒a𝜒b| − |𝜒a𝜒b|) + 2𝜀(|𝜒a𝜒a| + |𝜒b𝜒b|) (2.12)

Thus, the Coulson–Fischer representation has the advantage of keeping the PP
simple picture while adequately treating the electron correlation of the bonding
electrons, by implicitly including the effect of the ionic components of the bond in
a variational way.

The Coulson–Fischer proposal was later generalized to polyatomic molecules
and developed as the generalized valence bond (GVB) method [50] by Goddard,
and as the spin-coupled (SC) method [51] by Gerratt and his coworkers. In the
latter two methods, the valence electrons are described by a single configuration of
singly occupied orbitals, and the various spin-coupled structures are allowed to mix.
Thus, each bond in a polyatomic VB structure is viewed as a pair of singlet-coupled
orbitals, which are quasi-atomic and display a strong mutual overlap.
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The GVB method is generally used in the form referred to as GVB-PP, which
introduces two simplifications. The first one is the PP approximation, by which
only one VB structure is generated in the calculation. The wave function may then
be expressed as in Eq. (2.13), where each term in parentheses is a so-called geminal
two-electron function, which takes the form of a singlet-coupled GVB pair (𝜑ia, 𝜑ib)
and is associated to one particular bond or lone pair.

ΨGVB = |(𝜑1a𝜑1b − 𝜑1a𝜑1b)(𝜑2a𝜑2b − 𝜑2a𝜑2b)…(𝜑𝑛𝑎𝜑𝑛𝑏 − 𝜑𝑛𝑎𝜑𝑛𝑏)| (2.13)

The second simplification is the strong orthogonality constraint, by which all the
orbitals in Eq. (2.13) are required to be orthogonal to each other unless they are
singlet paired, that is,

⟨𝜑𝑖𝑎|𝜑𝑖𝑏⟩ ≠ 0 (a − bpaired) (2.14a)

⟨𝜑i|𝜑j⟩ = 0 otherwise. (2.14b)

This strong orthogonality constraint is not a drastic simplification, since it applies
to orbitals that are not expected to overlap significantly. On the other hand, the
orbitals that are coupled together in the same GVB pair display, of course, a strong
overlap.

The GVB-PP method forms a bridge to the MO–based multiconfigurational
self-consistent field (MCSCF) method (see Textbox 2.1). Indeed, each geminal in
Eq. (2.13) can be rewritten, by simple orbital transformation, as an expansion in
terms of natural orbitals (NOs), in a manner analogous to the transformation
displayed in Eqs. (2.6) and (7) for H2.

|𝜑ia𝜑ib − 𝜑ia𝜑ib| = |Ci𝜙i𝜙i + C∗
i 𝜙

∗
i 𝜙

∗
i | (2.15)

This alternative form of the geminal contains two terms of closed-shell form.
The NOs 𝜙i and 𝜙i*, in Eq. (2.15), have the shapes of localized MOs, respectively
bonding and antibonding, which are mutually orthogonal. They are connected to
the GVB pairs by the simple transformation here:

𝜑ia =
𝜙i + 𝜆𝜙∗i√

1 + 𝜆2
(2.16a)

𝜑ib =
𝜙i − 𝜆𝜙∗i√

1 + 𝜆2
(2.16b)

𝜆2 = −
C∗

i

Ci

(2.16c)

It follows that the GVB wave function of Eq. (2.13) can be readily rewritten in
MO terms as in Eq. (2.17):

ΨGVB = |(C1𝜙1𝜙1 + C∗
1𝜙

∗
1𝜙

∗
1)(C2𝜙2𝜙2 + C∗

2𝜙
∗
2𝜙

∗
2)…(Cn𝜙n𝜙n + C∗

n𝜙
∗
n𝜙

∗
n)| (2.17)

As can be seen, all the ‘‘bonds’’ are described now by bonding/antibonding
MOs, much like in Eq. (2.6) for H2. The transformation, which is very simple
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and can be done by hand, is exact and requires no approximation. It creates an
immediate bridge between the ‘‘two cultures’’: the VB culture in which a polyatomic
molecule is represented as a single configuration displaying 2 by 2 singlet-coupled
overlapping AOs, which can be hybridized, and the MO culture in which the same
wave function takes a multiconfigurational form involving delocalized bonding and
antibonding MOs.

Textbox 2.1

The MCSCF (multiconfigurational self-consistent field) method generates a
wave function involving several configurations, for the sake of improving
the Hartree–Fock single determinant by bringing electron correlation. This
method differs from the simple MO–CI method in that both the coefficients
of the configurations and the MOs are optimized simultaneously so as to
minimize the total energy. The configurations that are involved constitute the
‘‘active space.’’ When all possible configurations that can be formed from a
given set of occupied and virtual MOs are involved in the calculation, the
method is called complete active space self-consistent field (CASSCF). A CASSCF
calculation captures all correlation, nondynamical and dynamical, within the
active space and thus it is equivalent to full CI within this space. However,
the contribution of the dynamical correlation, which originates from the vacant
orbitals above the active space, is very important for a quantitative account
of the total correlation even in cases when the active space covers all valence
orbitals.

2.7
VB Reading of CASSCF Wave Functions

While the MO–CI to VB transformation is simple and exact in the minimal basis
set, it is less simple in basis sets bigger than minimal, because in such a case
the AOs that compose the various MOs are slightly different from one MO to the
other. Although the direct and exact transformation as described can, in principle,
still be performed, it may lead to a very large number of VB structures, some of
which are far from chemical intuition [52]. For these reasons, alternative bridging
methods have been developed, based on the fact that CASSCF wave functions
are invariant under unitary transformations of the orbitals within the active space
(see Textbox 2.1).

Thus, just as was done in Section 3 with the Hartree–Fock single determinant,
we can perform unitary transformations of the MOs to localize them as much as
possible. Now, however, unlike the Hartree–Fock case, the CASSCF wave function
does not have the constraint that the MOs must be doubly occupied. It follows that
a CASSCF wave function with localized orbitals resembles very much a VB wave
function, with pairs of singly occupied quasi-AOs that are singlet coupled into a
bond. To maximize this resemblance, two different procedures have been devised,
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both sharing the acronym ‘‘CASVB’’ [53, 54]. These methods are briefly described
in the Appendix.

2.8
Natural Bonding Orbitals and Natural Resonance Theory – a Direct Bridge
between MO and VB

Natural bond orbital (NBO) theory and natural resonance theory (NRT) are
described in another chapter of this book, and in two recently published mono-
graphs [55, 56]. Therefore, these theories are not described in detail in the present
chapter, in which we only want to show how they constitute a good bridge between
VB and MO methods.

2.8.1
Natural Bonding Orbitals

Natural orbitals (NOs) are obtained by diagonalizing the one-electron reduced
density matrix that is provided by any MO- or DFT-based computational methods.
In so doing, one obtains a set of NOs with maximum occupancies. These NOs
form a complete set of maximum occupancy orbitals that are strictly orthogonal,
unique, and intrinsic to the wave function.

By restricting the search for maximal occupancy orbitals to a set of diatomic A–B
bonding regions, one can obtain a set of NBOs with occupancies ni (0< ni < 2).
The NBOs divide naturally into a leading high-occupancy set and a residual low-
occupancy set, which can usually be neglected for chemical purposes. For an
N-electron system, the N/2 ‘‘Lewis type’’ NBOs of highest occupancies (ni close
to 2), can be directly associated with the localized electron pairs of a given Lewis
structure. This set of NBOs typically includes two-center bond orbitals, while NOs
restricted to a single atom are one-center core orbitals or one-center valence lone
pairs. Thus, one first result of an NBO analysis is the possibility of visualizing
the shapes of the lone pairs and bond orbitals, estimating the hybridization of
their atomic components, and in brief examining the bonding from a Lewis-like
perspective.

Of course, the NBOs bear resemblance to the Boys-localized orbitals presented
in the previous section, and arising from unitary transformations of the CMOs
after a Hartree–Fock calculation. However, an important difference between Boys-
localized orbitals and NBOs is that the former are necessarily obtained from a
single-determinant wave function (Hartree–Fock level), while NBOs are deduced
from a density matrix that can be calculated at any level of sophistication in the
MO–CI framework, or by means of DFT.

The localized wave function corresponding to a Lewis structure i is made of the
antisymmetrized product of the N/2 Lewis-type corresponding NBOs, which in
turn yields a localized density matrix Di

L.



84 2 Bridging Cultures

2.8.2
Natural Resonance Theory

The approximation of a single Lewis (‘‘resonance’’) structure is often inadequate
when the density matrix belongs to a delocalized species, such as benzene. In the
VB framework, this means that the electronic state in question is best represented
as a combination of Lewis structures rather than a single one. In such a case,
the true density matrix, Dtrue, can be approximated as a linear combination Dw of
localized density matrices, as in Eq. (2.18)

Dw =
∑

i

wiD
L
i (2.18)

where each Di
L is the localized density matrix associated with the Lewis structure

i, and wi is the corresponding weight, the value of which is, of course, of primary
interest.

Practically, the NRT method begins by calculating the idealized Di
L for each

candidate resonance structure i by a directed NBO search, then it optimizes the
weights of each localized density matrix in Eq. (2.18) so as to minimize the root-
mean square deviation of Dw from the true density matrix Dtrue. It is clear that the
respective optimized weights of the localized density matrices can be interpreted
as the weights of the Lewis structures that are implicitly contained in the electronic
state in question.

As such, NRT constitutes a direct bridge between VB and non-VB methods as it
allows one to interpret an electronic state of a molecule, calculated by any method,
in terms of Lewis structures that can be given a quantified weight. Note that NRT
can be used in a spin-unrestricted form, that is, just as UHF calculations gives
different orbitals and density matrices for different spins, α- and β-densities, which
can be analyzed separately and give different Lewis structures for different spins,
much as in Linnett’s version of the VB theory [57].

The agreement of NRT with direct VB calculations is generally good, as can
be seen from Table 2.2, where the weights of Lewis structures for the X3

− linear

Table 2.2 Weights of Lewis structures as extracted from an NRT analysis of a DFT
calculation (C. Landis, personal communication to PCH).

X—X :X– X– : X—X ∙X X:– X∙

X=F 0.43 (0.37) 0.43 (0.37) 0.13 (0.26)
X=Cl 0.44 (0.42) 0.44 (0.42) 0.12 (0.15)
X=Br 0.43 (0.41) 0.43 (0.41) 0.14 (0.15)
X= I 0.43 (0.41) 0.43 (0.41) 0.14 (0.15)

By comparison, weights arising from direct ab initio VB calculations (Ref. [58]) are indicated in
parentheses.
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trihalogen anion (X=F, Cl, Br, I), as calculated from an NRT analysis of DFT-
calculated densities, (C. Landis, personal communication to PCH) are compared
with weights arising from true VB calculations [58]. As can be seen, the agreement
is fair for F3

−, and excellent for Cl3
−, Br3

− and I3
−.

2.9
The Mythical Conflict of Hybrid Orbitals with Photoelectron Spectroscopy

A good feature of the Hartree–Fock model is that the energies of the CMOs are
good approximations of the ionization potentials (IPs) of the molecule, by virtue
of Koopmans’ theorem [59]. This is because the CMOs are eigenfunctions of an
effective monoelectronic Hamiltonian (the Fock operator), which represents the
energy of an electron in the average electric field of the others. Now it is well
known (see Section 2.4) that the CMOs can be transformed into localized orbitals
by unitary transformations without changing the polyelectronic wave function, a
single Slater determinant in the Hartree–Fock model. Doing this transformation
for methane, and choosing the transformation that minimizes the repulsions
between the localized electron pairs (e.g., by Boys method [45]), yields a set of four
equivalent Boys-localized MOs (𝜑a, 𝜑b, 𝜑c, 𝜑d in Scheme 2.5), which are each made
of a bonding combination of a 1s orbital of a hydrogen atom and an sp3 hybridized
atomic orbital (HAO) of the central carbon atom.

H

H

C

H

d

a

c

b

H

Scheme 2.5 A schematic representation of the four
valence LBOs of methane.

As the Slater determinant with localized MOs is exactly equivalent to the
original one with CMOs, both wave functions must give exactly the same densities,
total energies, net charges, and all measurable properties for a given molecule.
Therefore, its is clear that either CMOs or Boys-localized MOs with hybrid orbitals
are equivalent descriptions of the same reality, and that assertions such as ‘‘hybrid
orbitals do not exist and do not appropriately describe molecular bonding’’, or,
‘‘… are inappropriate models for the description of electronic energies and electron
density within a molecule’’ and so on [60], are unfounded. Unfortunately, such
dismissals of the concept of hybridization still appear here and there in some oral
chemistry courses, and even recently in the primary literature [60]. They all use a
popular and deceptively convincing argument based on the photoelectron spectrum
of methane, which displays two different ionization peaks, while, allegedly, the
HAO model with the four identical C–H bonds would display a single ionization
peak. Actually, this argument is not based on any proper theory or experiment but
arises from a misuse of Koopmans’ theorem. To examine the argument in detail,
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let us take the example of methane and its Hartree–Fock wave function in terms
of Boys-localized MOs (Eq. (2.19)):

Ψ(CH4) = |𝜑a𝜑a𝜑b𝜑b𝜑c𝜑c𝜑d𝜑d| (2.19)

where the core orbital of carbon is omitted and each 𝜑i is a hybridized localized
MO, as in Scheme 2.5.

The reasoning of those who dismiss the localized MO model goes as follows:
‘‘since the HAO model puts four electron pairs into four equivalent localized
orbitals, then extracting an electron from anyone of these four orbitals should always
cost the same energy, leading to a single unique IP.’’ The error in this reasoning is
straightforward: it completely ignores the quantum mechanical requirement that
any wave function must match the symmetry of the molecule. Indeed, starting from
Ψ(CH4) in Eq. (2.19) and simply extracting an electron from a localized orbital,
say 𝜑d, would lead to a single determinant, which is the first of the series of four
in Eq. (2.20). However, this determinant alone can in no way represent an ionized
state of CH4, because it lacks the Td symmetry. The electron can be ejected from
any one of the four localized orbitals and the chemically correct wave function of
CH4

+ will be precisely a symmetry-adapted combination of the four corresponding
determinants, as shown in Eq. (2.20).

Ψ(CH4)+ = |𝜑a𝜑a𝜑b𝜑b𝜑c𝜑c𝜑d|↔ |𝜑a𝜑a𝜑b𝜑b𝜑c𝜑d𝜑d|
↔ |𝜑a𝜑a𝜑b𝜑c𝜑c𝜑d𝜑d| ↔ |𝜑a𝜑b𝜑b𝜑c𝜑c𝜑d𝜑d| (2.20)

Using elementary group theory, we can find a triply degenerate 2T2 state and one
single 2A1 state as shown in Figure 2.2. Thus, the figure shows clearly two IPs in
conformity to experiment and to the CMO model. This is a simple textbook exercise
that can be found in Ref. [32] (pp. 104–106). An even simpler demonstration shows
that the HAO model for water, with the popular ‘‘rabbit-ear’’ shapes for the lone
pairs, also yields two distinct IPs upon ionization [32]. Thus, the mythical claim that
HAOs are in conflict with experimental IP measurements has no real foundation.
Both canonical and localized MOs match the photoelectron spectrum. The two
cultures MO and VB are brought together again.

CH4
+

CH4

22A1

IP1 IP2

2T2

11A1

Figure 2.2 The ionized states of CH4 within the HAO framework



2.10 Conclusion 87

2.10
Conclusion

The two cultures of chemical theory are just one culture in two disguises. Even if
the struggle between the two camps of the MO and VB theories may have been
important in the past, what was understandable in the fifties is now completely
obsolete and counterproductive. Currently, a wide majority of theoreticians and
experimental chemists agree that the MO and VB approaches are complementary,
rather than exclusive of each other. They tackle the chemical questions from
different angles but lead in the end to the same result, if applied at a sufficiently
high level.

Of course, each representation has its specific advantages. MO theory is more
portable in those problems where the delocalized description of electrons is essen-
tial, as in organometallic complexes, pericyclic reactions, photoelectron spectra,
and so on. Also, MO methods, including DFT, are still more computer efficient
than VB ones, although the latter are currently progressing at a fast pace [36, 61].
On the other hand, VB methods bring some complementary insight of a different
kind, with a compact description of an electronic state, involving static and dynamic
correlation, in terms of a few resonance structures that can be given a quantitative
weight or can be computed separately.

The simplest way to see the MO–VB equivalence in polyatomic molecules
is to start from the MO Hartree–Fock single determinant and to localize the
orbitals. This does not change the total wave function and gives a picture of
the molecule that is very close to the VB one, in terms of local bonds and lone
pairs. The equivalence carries over to the electron-correlated level, with the GVB
method that can be couched in VB or MO forms, by a simple back-of-an envelope
transformation. More generally, any MO-based wave function can be written as
a linear combination of VB structures and the reverse is, of course, true also.
Methods for mapping MO-based wave functions to VB wave functions exploit this
possibility, and so do the CASVB methods for VB-reading CASSCF MO wave
functions. Besides, the calculation of resonance energies and energies of diabatic
states can be done in the VB framework by means of the BLW method. Finally, the
NBO and NRT methods are able to extract VB information from electron densities
provided by any MO–CI or DFT methods, not even needing an explicit wave
function. Moreover, highly correlated methods based on coupled cluster theory
are known to converge more efficiently by usage of localized orbitals. The recent
CCSD method, which is based on pair natural orbitals (PNOs) [62] is virtually
as efficient as DFT, its formulation is akin to VB theory based on fragment
orbitals [32].

All these methods have been developed because many researchers felt that the
delocalized view of the electronic structure in the original MO theory needed to
be complemented by a local view, characteristic of VB theory, because in the end,
most chemical problems are local. One can only hope that this dual single-culture
will gain ground among theoreticians and experimentalists. Chemistry has much
to gain from this unification.
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Appendix

In the CASVB method of Thorsteinsson [53], one transforms the canonical
CASSCF orbitals so that the wave function involves a dominant component of VB
type, ΨVB, which is chosen in advance and may be single- or multiconfigurational,
as in Eq. (2.21):

ΨCAS = SVBΨVB + (1 − S2
VB)Ψ

⊥
VB (2.21)

Here, Ψ⊥ is the orthogonal complement of ΨVB to the CASSCF wave function,
and SVB is the overlap between ΨCAS and ΨVB. To ensure that the obtained VB
function is as close as possible to the starting CASSCF one, an obvious procedure
is to transform the orbitals so as to maximize the overlap SVB. An alternative is
to minimize the energy of the VB function ΨVB. This latter procedure is however
more expensive than the first one. As both methods generally yield similar sets of
orbitals, the method of SVB maximization tends to be preferred [53c].

The CASVB method of Hirao et al. [54] differs from the previous one in
the requirement that after the transformation of the CASSCF canonical orbitals,
the CASVB wave function remains strictly equivalent to the starting CASSCF
wave function. The price of this strict equivalence is that the orbitals that are
used to construct the VB structures remain more or less of the delocalized MO
type; however, these VB-type MOs are localized as much as possible following
Ruedenberg’s localization procedure [63] that yields quasi-atomic CASSCF MOs
that have maximum overlap with the AOs of the free atoms.
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3
The NBO View of Chemical Bonding
Clark R. Landis and Frank Weinhold

3.1
Introduction

‘‘The more accurate the computations become, the more the concepts tend
to vanish into thin air’’

R. S. Mulliken, J. Chem. Phys. 43, S2 (1965).

‘‘It is at least arguable that, from the point of view of quantum chemistry as
usually practiced, the supercomputer has dissolved the bond’’

B. T. Sutcliffe, Int. J. Quantum Chem. 58, 645 (1996).

Before the advent of quantum mechanics, empirical data drove development of
chemical structural theory and the subsequent Lewis model [1]. Qualitative con-
cepts such as the chemical bond, valency, and Lewis dot structures provided the
dominant framework for understanding the compositions and physical properties
of chemical substances. Even after the first applications of quantum mechanics to
chemical bonding, semiempirical concepts such as electronegativity, hybridization,
resonance, and bond order formed the basic vocabulary for describing inter-
atomic attractions, because accurate solution of the Schrödinger equation was
intractably difficult for all but the simplest cases. Thus, in the third edition of
the Nature of the Chemical Bond, Pauling noted that ‘‘only a few accurate nonem-
pirical quantum-mechanical calculations of the properties of substances in which
the chemist is interested have been made,’’ [2] thereby justifying the applica-
tion of more qualitative, semiempirical calculations based on valence bond (VB)
concepts.

Skip to the present day. Accurate ab initio wavefunctions and analysis schemes
now exist for many molecules and molecular properties of interest to chemists.
Most commonly, these wavefunctions are expressed in molecular orbital (MO)
approximation and retain the highly delocalized, symmetry-adapted forms of
canonical molecular orbitals (CMOs). As reflected by the introductory comments of
Mulliken and Sutcliffe, localized chemical structure concepts such as bonds, Lewis
structures, and hybridization simply disappear in such a basis. In the modern

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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quantum chemical era, we may well ask whether the classical chemical concepts of
valency and bonding are still meaningful, or merely quaint cultural relics.

An ultimate goal of natural bond orbital (NBO) theory1) is to connect the
numerical content of the modern wavefunction with easily understood concepts
of bonding theory. The starting point is a high-quality wavefunction, or at least a
wavefunction that is sufficient to capture the important physical properties of the
molecule. As described later, NBO algorithms serve to express the wavefunction
as accurately as possible in localized Lewis-like form (employing numerically
optimized hybrids and bonding pattern), with an associated measure of non-Lewis
(NL) ‘‘error.’’ NBO analyses of molecules spanning the periodic table demonstrate
the broad consistency of modern ab initio wavefunctions with classical Lewis-like
concepts (dot diagram of shared electron-pair bonds and lone pairs) and related
semiempirical constructs (hybridization, electronegativity, resonance, etc.). These
concepts constitute a model of chemical bonding that is robust, Lewis-like, and
understandable to all chemists, enhanced by the accuracy of modern wavefunction
technology.

Not all molecules are described well by simple localized bonding. The NBO
method identifies instances for which delocalization effects are strong, such as aro-
matic compounds, peptides, and hypervalent species. The nature and importance of
such resonance delocalizations are captured by a simple donor–acceptor paradigm,
of broad applicability to both older and newer forms of ‘‘unusual bonding.’’ [9]
Lewis-like concepts broadened with such resonance-type donor–acceptor correc-
tions constitute a robust bonding framework that enlightens our understanding
of chemical bonding phenomena while remaining fully consistent with computed
electron density distributions of the most accurate available modern wavefunctions.

In this chapter, we sketch some heuristic aspects of how NBO theory ‘‘works’’
to express a computed electron density in Lewis-like form, and how it ‘‘works
out’’ in illustrative molecular species chosen for pedagogical simplicity. Deeper
introductions to NBO theory [3] and practice [4], chemical applications across the
periodic table [5], and relationships to other analysis methods [6] are presented
elsewhere, including online tutorials and bibliography on the NBO website [10].

3.2
Natural Bond Orbital Methods

Bonding descriptions that emerge from MO and VB calculations differ because of
different initial assumptions about the form of the wavefunction. NBO analysis
makes no assumptions about the form of the N-electron wavefunction, but begins
instead with the reduced form of the wavefunction as given by the one-electron
density operator 𝜞 [11],

1) In addition to review and historical sources cited later (e.g., Refs [3–8]), see the tutorials
(e.g., ‘‘MO vs NBO Analysis: What’s the Difference?,’’ <http://nbo6.chem.wisc.edu/tut˙cmo.htm>)
and other introductory materials (e.g., ‘‘What are NBOs (and other ‘natural’-type orbitals)?’’,
<http://nbo6.chem.wisc.edu/webnbo˙css.htm>) on the NBO6 website Ref. [9].

http://nbo6.chem.wisc.edu/tut%CB%99cmo.htm%00%00
http://nbo6.chem.wisc.edu/webnbo%CB%99css.htm%00
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𝜞 = N ∫ |Ψ(1, 2, … ,N)|2dτ2dτ3 … dτN (3.1)

which can be obtained for variational, perturbative, or density functional theory
(DFT) descriptions of many types, up to and including the exact wavefunction2).
On the basis of this input, the NBO bonding picture is derived from (rather than
imposed upon) the chosen wavefunction.

A visual impression of the successive ‘‘natural’’ transformations of the density
matrix representation of 𝜞 from starting atomic orbital (AO) basis functions
to localized natural atomic orbitals (NAOs), NBOs, natural localized molecular
orbitals (NLMOs), and CMOs is depicted in the panels of Figure 3.1. The figure
visually depicts what happens to the density matrix in a simple MO-type calculation
for the HF molecule, starting in a 3-21G AO basis [12] (upper left corner) and
ending with the five final CMOs of double occupancy (diagonal black blocks, with
all other elements zero). The shadings of blocks in each panel suggest proximity
to the limiting value 2.00 of double occupancy, as achieved exactly in either CMO
or NLMO basis, and nearly so in NBO basis. Labels along the left edge identify
the AO, NAO, or NBO orbital type in the corresponding density matrix. We can
heuristically describe the NBO localization algorithms that lead to VB-like bonds
and lone pairs of the Lewis dot diagram by following the successive steps shown
in Figure 3.1 (with neglect of many technical details in the present pedagogical
context).

The molecular density matrix can be considered to derive from atomic block
contributions from individual atoms A, B,…

𝜞 = 𝜞 A + 𝜞 B + · · · (+off -diagonal interaction blocks) (3.2)

where the fluorine 𝜞 F block is 9× 9 and the hydrogen 𝜞H block is 2× 2 in the 3-21G
AO basis (panel 1 of Figure 3.1). The orbitals that diagonalize the atomic blocks of
each angular symmetry type are the NAOs [7] (NAOs, 𝜃(A)

k
, 𝜃(B)

k
,… ), satisfying the

local eigenvalue equation

𝜞 A𝜃
(A)
k
= n(A)

k
𝜃(A)

k
(3.3)

where n(A)
k

is the electronic occupancy (population) of orbital 𝜃(A)
k

.

Accordingly, the density matrix in the NAO basis (panel 2) has elements n(A)
k

along the diagonal that uniquely identify the natural electron configuration (NEC) of
each atom in the molecular environment,

NEC(A) =
[
𝜃(

A)
1

(
n(A)1

)] [
𝜃(

A)
2

(
n(A)2

)]
… (3.4)

The labels along the left edge (1s, 2s, 2p, etc.) identify the NAOs in the familiar
language of Bohr theory; for example, the effective atomic configurations in the
present case are found to be (to nearest 0.01e)

NEC(F) =
[
1s2.00

] [
2s1.92

] [
2p2.00

x

] [
2p2.00

y

] [
2p1.58

z

]
(3.5a)

2) Note that Eq. (2.1) somewhat simplifies the full mathematical notation for the kernel of the
integral operator (see Ref. [11]), but is adequate for present purposes in suggesting how the
density operator depends on the wavefunction.
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NEC(H) = 1s0.50 (3.5b)

Except for the missing ‘‘half-electron’’ of H that appears to have been ‘‘trans-
ferred’’ to the valence shell of F, the NEC assignments are remarkably similar to
expected Bohr-like configurations of constituent atoms. In contrast, the population
distributions of common AO basis functions bear no such relationship to basic
valency and bonding concepts. Recovery of these sharp Bohr-like properties in the
NAO basis allows the subsequent steps of NBO analysis to make easy contact with
traditional models of chemical bonding.

The NAOs and their occupancies also underlie the comprehensive natural pop-
ulation analysis [7] (NPA) of atomic properties that is provided in NBO output,
including the natural charge and effective 1e orbital energies of each atom. From
a mathematical viewpoint, the critical feature of the AO→NAO transformation is
attainment of strict orthogonality between NAOs, which ensures that these orbitals
(unlike nonorthogonal basis AOs) can satisfy Hermitian eigenvalue equations such
as Eq. (3) that give ‘‘orbital population’’ a well-defined physical meaning. Similar
to the NBOs and NLMOs, which are described subsequently, the NAOs form a
complete orthonormal set that can be used to exactly describe every detail of the
computed electron density, while avoiding the many overlap-type artifacts that
plague Mulliken population analysis and alternative charge or energy decomposi-
tion methods [13]. As can be seen in Figure 3.1, the transformation from basis
AOs to NAOs constitutes the most important single step in bringing the density
matrix to a simplified localized form. NAOs also provide a low-dimensional natural
minimal basis (NMB) subset of orbitals that contain the vast majority (commonly,
>99.9%) of electron density, consistent with the assumptions of empirical bond-
ing models. From the long-range separation limit to final equilibrium geometry,
the numerically determined NAOs (with their occupancies, energies, and other
properties) serve to define the effective ‘‘natural atoms’’ [14] that persist as iden-
tifiable building blocks of the electron density distribution throughout molecule
formation.

By searching similarly for the highest occupied eigenorbitals corresponding to
each diatomic block of the density matrix, one obtains the optimal NBOs, as shown
in the third panel of Figure 3.1. The labels along the left edge identify the chemical
nature of each NBO: CR = core orbital, LP = valence lone pair (nonbonding),
LV = lone vacancy (unoccupied borane-like valence orbital), RY = unoccupied
Rydberg orbital, BD = 2-center bonding orbital (σ, π, etc.), and BD* = 2-center
antibonding orbital (σ*, π*, etc.). The pattern of bonds and lone pairs constitutes
the natural Lewis structure (NLS) for the molecule, which commonly describes
the vast majority (>99%) of total electron density as assumed in elementary
bonding models. The NBOs can be considered to be the intrinsic ‘‘chemist’s
basis set’’ by which the wavefunction expresses itself in an optimally condensed
Lewis-like form.

Note that each Lewis-type (L-type) NBO of the NLS achieves near (but not exact)
double occupancy that reflects its exquisite adaptation to the molecular environ-
ment. The slight departures from exactly degenerate ‘‘electron pair’’ occupancy
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(shown as the almost imperceptibly shaded ‘‘non-Lewis’’ blocks in the NBO density
matrix) ensure the numerical uniqueness of NBOs in solving the diatomic eigenvalue
equations analogous to Eq. (3.3). The weak residual occupancies of NL-type NBOs
also constitute a rigorous measure of ‘‘error’’ of the NLS description, quantifying
the accuracy of a localized Lewis-structural model.

As depicted in the fourth panel of Figure 3.1, incorporation of the weak mixings
between Lewis and NL orbitals results in NLMOs [15], which achieve full double
occupancy while preserving maximum similarity to the original NBOs. Among
the infinite number of massively degenerate ‘‘MOs’’ of exact double occupancy
(including CMOs), all mathematically equivalent for forming a single-determinant
wavefunction, the NLMOs are singled out as ‘‘least delocalized’’ or ‘‘most NBO-
like’’ by their mathematical construction. The NLMOs also differ fundamentally
from alternative ‘‘localized molecular orbitals’’ (LMOs) of Edmiston–Ruedenberg,
Boys, or related type [16], in that they are computed much more efficiently by small-
matrix or weak-perturbation procedures that never require availability (or existence)
of CMOs. Indeed, NLMOs are just as easily calculated from wavefunctions of any
form, and they bear no intrinsic relationship to CMOs or other LMOs, except in
the single-determinant limit where all such ‘‘MOs’’ become unitarily equivalent.
NLMOs, unlike CMOs, are not symmetry adapted, nor are they delocalized over
the entire molecule. In all but exceptional cases, the NLMOs and parent NBOs
look similar, save for the addition of small ‘‘delocalization tails’’ that represent the
resonance-type interactions (as described later) of each localized Lewis-type NBO
with NL NBOs of the nearby molecular environment.

The final panel of Figure 3.1 depicts the NLMO→CMO transformation that
is optionally computed (serving the user-requested ‘‘CMO’’ keyword option) for
single-determinant MO or DFT wavefunctions. The matrix elements of this trans-
formation provide a direct ‘‘bridge’’ to conventional CMO representations of
molecular properties, allowing one to see the essential underlying VB-like simplic-
ity that is commonly obscured by the ‘‘unnecessary delocalizations’’ (terminology
of R. Hoffmann, private communication) of the CMO basis.

Figure 3.1 is somewhat limited in that it refers only to closed-shell systems
of ‘‘restricted’’ Hartree–Fock (RHF) character, with spatial orbitals of maximum
double occupancy. The unrestricted Hartree–Fock (UHF) formulation of MO theory
(or correlated post-HF levels) leads more generally to two distinct 1e density
matrices, one each for α- and β-spins. In such ‘‘different orbitals for different spins’’
(DODS) description [17], one employs spin orbitals of maximum single occupancy.
However, NBO theory easily generalizes to DODS levels, leading naturally to the
concept of ‘‘different Lewis structures for different spins’’ (DLDS) and associated
pictures of distinct Lewis-like spin-orbital distributions and resonance corrections
(as discussed subsequently). This generalization also provides a direct bridge to
higher level correlated wavefunction treatments (VBSCF, GVB, MPx, CASSCF,
MRCI, etc.) [12] that can be similarly analyzed by NBO analysis of the one-electron
density matrix.

We now illustrate application of NBO methods to atoms and to simple chemical
bonds.
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3.2.1
NBO Analysis of Free Atoms and Atoms in Molecular Environments

Central to the Bohr/Lewis paradigm is the assumption that atoms retain their
identifiability, even in the molecular environment. Let us begin with the ‘‘simple’’
atom, Be, in order to illustrate NBO analysis of restricted, unrestricted, and
correlated wavefunctions.

The nominal ground state of Be is a 1s22s2 configuration. MO or DFT calculations
of the Be ground state using either restricted or unrestricted calculations conform
to this description. In contrast, NBO analysis of the correlated UMP2 (unrestricted
second-order Møller–Plesset) wavefunction reveals the angular correlation of the
two valence electrons in both the electron configuration (1s22s1.942p0.06) and the
orbital shapes, as illustrated in Figure 3.2. Figure 3.2a shows the featureless 2s-type
valence NBOs (identical for α and β spin) at simple DFT level, whereas Figure 3.2b
shows the more interesting spin polarization arising from the sp-hybridized spin
NBOs of correlated UMP2 description, tending to keep α and β electrons on
opposite side of the nucleus. Despite such subtle electron correlation effects, the
NBOs of free atoms remain closely tied to simple Bohr-type single-configuration
concepts.

Although the NBO method leads to uniquely identifiable atoms within molecules,
one anticipates that the nature of the atom varies with the nature of the molecular

UB3LYP

UMP2

β spin: 1s12s1 α spin: 1s12s1

β spin: 1s12s0.972p0.03 α spin: 1s12s0.972p0.03

UB3LYP

UMP2

ββ αα

ββ αα

(a)

(b)

Figure 3.2 (a, b) Contour plots
of the NBOs for the Be valence
electrons in the atomic ground state
obtained from unrestricted DFT (UB3LYP)

and MP2 (UMP2) calculations illustrating
the effects of angular correlation on
the natural electron configurations
(NECs) and orbital shapes.
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H O
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NAO

H Be H H Be H

QH = −0.560

QH = +0.458

Figure 3.3 Contour plots of the PNAOs and NAOs and atomic charges (QH) for H atoms
in the BeH2 (a) and H2O (b) molecular environments.

environment. Consider BeH2 and H2O. One expects significantly different atomic
sizes and charges of the H atoms in the two environments, owing to the large
differences in the electronegativity of Be and O. As shown in Figure 3.3, these
expectations are borne out by the ‘‘preorthogonalized’’ natural atomic orbitals
(‘‘pre-NAOs’’ or PNAOs), NAOs and natural atomic charges (QH) of the H atoms
obtained by NBO analysis of the DFT results.3)

As shown in Figure 3.3, the 1sH PNAO on hydrogen is recognizably ‘‘1s-like’’
(spherical, nodeless) in both species, but with distinctly smaller radius in H2O
(where QH =+0.458) than in BeH2 (where QH = –0.560). The corresponding NAOs
show the nonspherical contractions and nodal features that reflect the increased
‘‘steric pressure’’ near the filled orbitals of the oxygen core and opposite hydride
bond (as could also be judged from overlap diagrams for the corresponding PNAOs).
NAOs therefore reflect exquisite adaptation to details of the H2O versus the BeH2

3) (PNAOs and NAOs are identical except for the neglect of a final interatomic orthogonalization
step in the former. PNAOs associated with a given atom are therefore orthogonal to one another
but not necessarily orthogonal to PNAOs on other atoms, enabling them to serve as ‘‘visualization
orbitals’’ for overlap-based estimates of interaction strength. In contrast, the fully orthogonal
NAOs include oscillations in the interatomic regions that represent the increased kinetic energy
of Pauli-type steric repulsions [18] as atomic electron distributions begin to interpenetrate. While the
PNAOs resemble common AO depictions in textbooks and are more effective in displaying ‘‘orbital
overlap’’ estimates of interaction strength, the absolute orthogonality of the NAOs is required for
satisfaction of the Pauli principle in the molecular environment and general consistency with the
Hermitian representation of physical properties, as discussed earlier.)
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molecular environment, but the essential continuity with free-atom NAOs is easily
established in both species.

Note that conventional AO-based analyses would require highly extended num-
bers of multi-zeta and polarized basis functions to describe the adaptive variations
of a single NAO. The effective dimensionality of NAO/NBO-based description
therefore remains close to minimal (NMB level, as assumed in elementary bonding
models), no matter how extended the numerical AO basis.

3.2.2
NBO Analysis of Simple Chemical Bonds: LiOH and H2O

Despite many advances in quantum theoretical methods, the concepts of chemical
bonds, Lewis dot structures, and valence orbital hybridization persist as the most
fundamental model by which chemists understand the nature of molecules. In
this section we demonstrate how the purely mathematical transformations of the
reduced density matrix that constitute NBO analysis reconstruct these qualitative
concepts as introduced by Lewis, Pauling, and others nearly a century ago [19].

When confronted with formulas such as H2O and LiOH, even the beginning
chemistry student would identify the molecules as intrinsically different, despite
the identical number of valence electrons; water comprises two (polar) shared
electron-pair bonds, whereas LiOH is ionic with a Li+ cation and diatomic OH−

anion. In this intuition, the student is informed by numerous rich empirical clues,
such as the positions of the elements in the periodic table, conductivity properties,
acid–base properties, and so forth. NBO analysis of the gas-phase molecules
successfully recovers these basic descriptions, despite the complete independence
of ab initio quantum mechanical models from any empirical data. Some key NBO
metrics of H2O and LiOH are summarized in Table 3.1.

Do Lewis dot representations of H2O and LiOH accurately depict the quantum
mechanical electron density distributions? The ‘‘% Lewis character’’ metric provides
a rigorous, quantitative answer: the NLS dot structures account for >99.5% of the
valence electron density (disregarding the core orbitals) in both molecules. Such
percentages are obtained by summing the diagonal elements (populations) of the
VB and lone pair contributions to the reduced density matrix in the NBO basis and
dividing by the total number of electrons. Commonly, one finds similarly high ‘‘%
Lewis character’’ values for any molecule in which atomic valencies can be satisfied
by just a single bonding pattern (e.g., NH3, F2, HF, CH4, etc.). Low values of this
critical metric indicate that a single Lewis configuration is insufficient to describe
the density distribution. Thus, we associate low values of the ‘‘% Lewis Character’’
metric with descriptors such as strong resonance, delocalization, hypervalency, and
so on.

Are the OH bonds of water and lithium hydroxide similar (i.e., ‘‘transferable’’
in some sense)? In NBO analysis, each electron-pair bond between atoms A and
B (σAB, πAB, etc.) is a linear combination of atom-centered hybrid orbitals (hA, hB).
NBO uses the concise and flexible MO-type (Lennard-Jones, Mulliken) formulation
of the electron-pair bond, rather than the inflexible VB-type (Heitler–London) or
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Table 3.1 Geometrical (d, 𝜃) and NBO-based metrics for gas-phase optimized geometries
of H2O and LiOH, computed at B3LYP/6-311++G** level.

H2O LiOH

NBO-based dot structure

H O

H

H O Li

Molecular geometry d(O–H)= 0.962Å d(Li–O)= 1.590Å
𝜃(H–O–H)= 105.1◦ d(O–H)= 0.951Å

𝜃(Li–O–H)= 180.0◦

Atomic charges QH = 0.458 QLi =+0.967
QO =−0.916 QO =−1.421

QH =+0.454
NEC H: 1s0.54 H: 1s0.54

O: 1s22s1.752p5.15 O: 1s22s2.002p5.58

Li: 1s22s0.012p0.02

% Lewis character 99.92% 99.51%
Bonds 2 O–H 1 O–H
Occupancies 1.999e 1.995e
Polarization (cO

2
,cH

2) 73.1% O, 26.9% H 72.9% O, 27.1% H
Hybridization at O sp3.30 sp2.56

Lone pairs 2 on O 3 on O
Occupancies 1.997, 1.997 1.991, 1.987, 1.987
Hybridization at O sp0.87, sp∞ sp0.39, sp∞, sp∞

most general (Coulson–Fischer) formulation in a given basis of atomic hybrids [20].
Thus, NBO descriptions of density are more similar to GVB functions rather than
alternatives such as the apolar Heitler–London bond plus purely ionic structures
of classical VB theory. Also, similar to GVB bond functions, NBOs are strictly
orthogonal. The general formulation of a sigma bond 𝜎AB is

𝜎AB = cAhA + cBhB (3.6)

where cA and cB are normalized polarization coefficients whose values reflect
the contribution of each hybrid to the bond. The squares of these normalized
coefficients define the bond polarizations (100%× cA

2, 100%× cB
2) and natural

ionicity (iAB) of the bond

iAB =
(
c2

A − c2
B

)(
c2

A + c2
B

) (3.7)

with values ranging from −1 (pure ionic hybrid on B), to 0 (pure covalent), to
+1 (pure ionic hybrid on A). According to a fixed NBO numerical threshold, an
extremely polarized ‘‘bond’’ function with less than 5% contribution from the
opposite center (|iAB|> 0.95) is instead identified as a ‘‘lone pair’’ (LP), corre-
sponding to the ionic limit of heterolytic dissociation. Therefore, the basic NBO
description of LiOH comprises a cationic Li fragment and a hydroxide anion (two
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distinct ‘‘molecular units’’), whereas that for H2O is a covalently bonded single
unit. Nevertheless, the O–H bond ionicities in H2O and LiOH are seen to be 0.461
and 0.424, respectively, indicating the expected strong transferability of hydroxide
bond character between different molecular environments.

The strong similarity of hydroxide bonds in the two species can be further
compared in terms of the contributing natural hybrid orbitals [8] (NHOs) hO, hH at
each atomic center. Each NHO is formed from a linear combination of s, p, d,…
NAOs for which the overall mixing ratios can be expressed in conventional sp𝜆d𝜇

notation; 𝜆 is the ratio of squared coefficients for the valence p-orbitals relative to
the s-orbital, 𝜇 is the ratio of squared coefficients for the valence d-orbitals relative
to the s-orbital, and so on. Thus, the angular composition of an sp4 hybrid orbital is
80% p-character and 20% s-character. The somewhat lower percentage p-character
of the O–H bond in LiOH (sp2.56) relative to that of H2O (sp3.30) reflects differences
in oxygen charge accumulation and molecular geometry (linear vs bent). One
should particularly note that the oxygen lone pairs arising from NBO analysis do
not have ‘‘rabbit ear’’ orientations, but instead retain the expected pure p-character
of MOs in the directions perpendicular to the molecular bonding plane of water,
or the linear bonding axis of LiOH.

Figure 3.4 displays the preorthogonalized NHO (PNHO) visualizations of the
oxygen bonding hybrids in water (hO = sp3.30, Figure 3.4a) and LiOH (hO = sp2.56,
Figure 3.4b), showing the high degree of transferability from one species to the
other. Such comparisons exemplify the way in which the qualitative concepts
of empirical structure theory are generally recovered with high fidelity in NBO
analysis of sufficiently accurate wavefunctions.

3.2.3
Lewis-Like Structures of the P- and D-Block Elements

Early in their experience of chemistry, students learn to apply the octet rule and
Lewis dot structures to molecules of the S- and P-block elements. Subsequent
introduction to the shell structure of electrons in atoms provides a deeper rationale

 PNHO PNHO

(a) (b)

H

H HOLiO

Figure 3.4 Contour plots of oxygen PNHOs involved in O–H bond formation for water (a)
and LiOH (b).
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Table 3.2 Graphical depiction of Lewis structure, % Lewis character, hybridization of the
central atom bonding hybrid (hA), and bond angle (𝜃X–A–X) of representative molecules from
the P- and D-block of the periodic table.

P-block examples

O X

X Me

MeMe

B

Me

MeMe
Me

C Me

Me

Me
N

X=H X=Me X=Cl

% Lewis 99.92 99.31 99.51 98.86 99.35 99.06
hA sp3.30d0.01 sp2.92 sp9.87d0.13 sp2.00 sp3.00 sp2.89

𝜃X–A–X 105.1 113.6 113.6 120.0 109.5 112.9

D-block examples X
X

Pt

Me

MeMe

Y

Me

Me

Me

Me
Os

Me

Me

Me
Ir

X=H X=Me X=Cl

% Lewis 99.41 99.31 99.05 99.51 98.98 99.13
hA sd1.23p0.01 sd1.28 sd1.14p0.01 sd2.29p0.01 sd3.00 sd2.19

𝜃X–A–X 85.1 103.2 110.7 110.1 109.5 106.7

for the octet rule and the orbital forces that underlie observed molecular shapes.
Do such concepts survive the scrutiny of modern ab initio computations? Can
Lewis structures form the basis for understanding molecular electronic structures
across the periodic table? We now address these questions with a small sampling
of simple molecules from the P- and D-block, as shown in Table 3.2.

As judged by the ‘‘% Lewis’’ character of the 12 structures summarized in
Table 3.2, simple Lewis (NLS) dot structures of bonds and lone pairs are
good descriptors for both P- and D-block central atoms. In all cases, the aver-
age gross hybridization corresponds to either sp(ve/2-1) or sd(ve/2-1) where ve is
the valence electron count at the central atom. Thus, the active valence orbitals
are the ns and np orbitals for the P-block and the ns and (n – 1)d orbitals for
the D-block. For example, YMe3 and CMe4, which use all valence electrons in
bond forming with no lone pairs, have approximate hybridizations of sd2 and
sp3, respectively. As expected, the octet (8e) rule distinguishes between normal-
valent (8e; OX2, CMe4, NMe3), hypovalent (<8e; BMe3), and hypervalent (>8e)
molecules in the P-block. Similarly for the D-block, Lewis-like structures con-
form to a duodectet (12e) rule [21], which enables the fundamental distinction
between normal valency (12e; PtX2, OsMe4, IrMe3), hypovalency (<12e; YMe3), and
hypervalency (>12e).

Consistent with the general theory of directional hybrid bonding, the com-
positions of valence hybrids lead to certain expectations about bond angles in
molecules. For the hybrid orbital representations sp𝜆 and sd𝜇, the values of 𝜆 and
𝜇 are determined by the %p and %d orbital compositions as follows.
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𝜆 =
(
%p
)

(%s)
(3.8a)

𝜇 =
(
%d
)

(%s)
(3.8b)

The corresponding hybrid orbitals can be written as

sp𝜆 = (1 + 𝜆)–
1
2

[
s + 𝜆

1
2 p
]

(3.9a)

sd𝜇 = (1 + 𝜇)−
1
2

[
s + 𝜇

1
2 d
]

(3.9b)

Application of orthonormalization constraints to a pair of hybrid orbitals hi and
hj leads to the Coulson directionality theorem [22] (and its analog for sd𝜇 hybrids
[23]), which dictates the intrinsic angle, 𝜔ij, between hybrids in terms of their
hybridization parameters, viz,

cos𝜔𝑖𝑗 = –
(
𝜆i𝜆j

)– 1
2 (

P block
)

(3.10a)

cos𝜔𝑖𝑗 = ±

⎧⎪⎪⎨⎪⎪⎩

[
1 − 2

(
𝜇i𝜇j

)− 1
2

]
3

⎫⎪⎪⎬⎪⎪⎭

1
2

for 𝜇 > 2, (3.10b)

= 0 for 𝜇 ≤ 2
(
D block

)
The data in Table 3.2 illustrate general trends in hybridization and molecular
shapes that are seen over much broader samples of molecules.

Because the hybridization preferences for lone pair orbitals and bond orbitals
are not identical, the actual hybridizations differ from the gross average values.
For example, the average hybridization of water is sp3, but the individual O–H
bond hybridizations (sp3.3) and the lone pair hybridizations (sp0.87 and sp∞) differ
substantially. In the D-block compounds, there is a distinct preference for lone
pairs to have pure d character, whereas in P-block compounds, especially those
below the second row of the periodic table, the preference of lone pairs is for
orbitals of high s character. Such preferences are anticipated by the generally lower
energies of atomic (n – 1)d orbitals versus ns orbitals in the transition series and
by the lower energies of ns versus np orbitals of the main group. Hybrid orbital
compositions vary with the electronegativity of the atoms bound to the central
atom. The large difference in composition of the oxygen bond-forming hybrids of
OH2 (sp3.3) versus OCl2 (sp9.87) well illustrate Bent’s rule [24], which, in its crudest
form for the P-block, stipulates that more electronegative ligands favor higher p-
character hybrids at the central atom. For PtH2 (sd1.23) and PtCl2 (sd1.14), the more
electronegative ligand favors less d-character (or alternatively, more s-character) in
the bonds. Lone pairs can be considered as bonded to the least electronegative entity
possible, the vacuum [25]. A consistent extension of Bent’s rule to both P-block
and D-block species can be formulated in terms of ionic resonance structures [26],
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Table 3.3 Intrinsic angles for idealized sp𝜆 and sd𝜇 hybridizations (cf. Eqs. (2.10a–c)).

Hybridization (sp𝝀) Intrinsic angle (𝝎) Hybridization (sd𝝁) Intrinsic angle (𝝎)

sp1 180◦ sd1 90◦

sp2 120◦ sd2 90◦

sp3 109.5◦ sd3 71◦, 109◦

sp4 104.5◦ sd4 66◦, 114◦

sp10 95.7◦ sd5 63◦, 117◦

providing more robust and accurate structural predictions than the VSEPR (valence
shell electron pair repulsions) theory.

To the extent that internuclear axes align with hybrid orbitals, one can directly
associate natural bond angles with hybridization parameters. Familiar pairings
include sp2 with 120◦ and sp3 with 109.5◦, but the association of bond angle with
hybridization extends far beyond these textbook examples to include nonintegral
hybridizations (e.g., sp3.3 for the O–H bonds of water) and hybrids that comprise
s and d AO combinations for molecules of the D-block (Table 3.3). Also, note that
‘‘bond bending’’ or the misalignment of hybrid orbital directions and internuclear
axes may indicate severe geometrical constraints, such as the 60◦ C–C–C angle of
cyclopropane, or the inability of a single Lewis configuration to describe the full
electronic structure (as discussed subsequently).

The striking parallels (Eqs. (3.8)–(3.10)) between P-block and D-block hybridiza-
tion and Lewis-like bonding were not foreseen by Lewis, Pauling, and other bonding
pioneers. However, their subsequent emergence from computational studies of
modern wavefunctions [27] bears eloquent testimony to the power and generality
of Lewis-like structural concepts and their broad applicability across the periodic
table.

3.2.4
Unrestricted Calculations and Different Lewis Structures for Different Spins (DLDS)

So far our discussion has concerned molecules in which pairs of electrons with
opposite spins occupy identical orbitals, that is, molecules that are described
adequately by restricted wavefunctions. Do Lewis-like structures apply to odd-
electron species and higher spin states? We consider a simple, classical problem:
the nature of CH2 (methylene) in its singlet and triplet states as seen through NBO
analysis of the Kohn–Sham orbitals.

The lowest energy singlet state of methylene is well described by a Lewis structure
comprising one lone pair and two equivalent C–H bonds. At the simplest level,
the overall hybridization corresponds to sp2 hybridization. However, application of
Bent’s rule suggests that the bonds will have greater p-character than the lone pair,
leading to approximately sp5 (83% p-character) hybridization of the C–H bond-
forming hybrids and leaving the lone pair significantly enriched in s-character
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1CH2

3CH2

1OH2
1BeH21OH2

%Non-Lewis = 0.06

%Non-Lewis = 0.07 %Non-Lewis = 0.07 %Non-Lewis = 2.67

Electronically 

similar to

Electronically 

similar to

%Non-Lewis = 0.07 %Non-Lewis = 0.17

sp4.10
sp2.01

sp0.87
sp3.30

sp1.00

sp1.99 sp1.10

H

H H

H

C

H

C
H

H

H

103°
135°

H

H

H

H

Be104°
180°

135°

α-Spins β-Spins

104°

sp0.65

sp0.87
sp3.30

Pure p (sp∞)

Pure p (sp∞)

Pure p (sp∞)

C

Figure 3.5 Schematic overview of NBO formulations for 1,3CH2, illustrating the conceptual
usefulness of ‘‘different Lewis structures for different spins’’ in the triplet case (see text).

(67% s or sp0.33). The computed bond angle of approximately 102◦ matches that
predicted by simple hybridization schemes.

The triplet state of CH2 lies about 9 kcal mol−1 lower in energy than the singlet
state. Within the unrestricted wavefunction formalism, the wavefunctions and
density matrices for the α spins and β spins of the triplet state are not identical.
Thus, the optimal Lewis structures and NBOs for the two spins differ, leading to a
DLDS paradigm. In the case of triplet CH2, one can represent the Lewis structures
as shown in Figure 3.5, keeping in mind that a ‘‘bond’’ line segment represents a
single electron shared between two centers.

The NBO Lewis-like structures obtained from unrestricted calculations of triplet
methylene suggest that the ideal hybridization of the β spin orbitals should be
approximately sp1, because there are just two active spin orbitals, each making a 1e
bond. A reasonable analog from restricted calculations is BeH2, with two 2e bonds.
In contrast, there are four active α spin orbitals for 3CH2 and H2O is the appropriate
analog from restricted calculations. (Although water has a fourth active lone pair
orbital, in NBO analysis this is a pure p-orbital perpendicular to the molecular
plane, leaving two p-type orbitals to hybridize with the s orbital for in-plane skeletal
bonding, as in triplet methylene.) The triplet state C–H bond hybridizations of the
α and β spin orbitals (sp1.99 and sp1.10, respectively) differ significantly, and neither
has the directionality expected for the 135◦ H–C–H bond angle. However, the
average C–H bond hybridization (sp𝜆(av)) can be simply calculated from the average
%p-characters of the α and β spin NBOs, as shown in Eqs. (3.11a,b):

%p (av) = 1
2

[
(66.3%)𝛼-spin + (55.0%)β-spin

]
= 60.7% (3.11a)

sp𝜆(av) = sp
(

60.7
39.3

)
= sp1.54 (3.11b)
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Application of Coulson’s directionality theorem (3.10a) to the average C–H bond
hybridization for 3CH2 then predicts a bond angle of 130.5◦, which lies close to
the value of 135◦ obtained by energy minimization. Therefore, molecular geometries
obtained from unrestricted wavefunctions can be considered to be the result of a
balance of forces arising between the geometrical preferences of the 𝛼 and 𝛽 spin-orbital
hybridizations.

Before leaving the topic of open-shell descriptions, consider dioxygen. No small
molecule has done more to fuel fires – both literally and conceptually – but the
analysis of O2 becomes straightforward when one considers the DLDS paradigm. As
shown diagrammatically here, O2 has seven α spins and five β spins. Remembering
that each NBO has just one electron in unrestricted calculations, the α-valence
space is filled with just one O–O σ bond and three lone ‘‘half-pairs’’ on each O
atom, whereas the β-valence space is completed by an O≡O triple bond. Thus, the
average bond order is two (= (3+1)/2).

O O O O

α-spins β-spins

Because two of the lone ‘‘half-pairs’’ on each oxygen of the α-Lewis structure lie in
p-orbitals that are spatially aligned with the p-orbitals that make the two π-bonds
of the β-Lewis structures, the DLDS model is completely consistent with the ‘‘one
sigma plus two 3e π-bonds’’ bonding description of O2. As in the methylene case,
the equilibrium O2 bond length can be approximated as the average of idealized
single (α-spin) and triple bond (β-spin) Lewis-structural values, consistent with
empirical bond order–bond length relationships.

3.3
Beyond Lewis-Like Bonding: The Donor–Acceptor Paradigm

As we have already seen, many molecules are not described well by a single Lewis
structure configuration. A special vocabulary has arisen to describe departure of
electronic structures from the ideal Lewis structure limit, including terms such as
resonance, aromaticity, hypervalence, 3c/2e bonds, 3c/4e bonds, metallic bonding, and
hydrogen bonding. The NBO analysis procedure naturally separates the molecular
wavefunction Ψ, density 𝜌, and NBO basis set {Ωi} into well-defined Lewis (L) and
NL components, namely,

Ψ = Ψ(L) + Ψ(NL) (3.12a)

ρ = ρ(L) + ρ(NL) (3.12b){
Ωi

}
=
{
Ω(L)

i

}
+
{
Ω(NL)

i

}
(3.12c)

As we have seen in the previous section, Lewis structures adequately describe
many molecules, as judged by the high percentage Lewis character (equivalently,
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high %-𝜌(L)). Thus, for these examples, the full wavefunction solution Ψ, on
average, must be well approximated by the NLS wavefunctionΨ(L), with only minor
corrections from NL components Ψ(NL). However, as resonance effects become
more important, the NLΨ(NL) contributions to the wavefunction will increase, even
to the extent of dominating the chemical description as in the case of aromatic or
metallic species.

We can think of Ψ(L) as representing the exact solution to the Schrödinger
equation in a world that is free of resonance effects. Accordingly, a model Hamilto-
nian operator H(L) for the idealized ‘‘resonance-free world’’ satisfies the Schrödinger
equation

H(L)Ψ(L) = E(L)Ψ(L) (3.13a)

where E(L) = <Ψ(L)|H|Ψ(L)> is the energy of the NLS wavefunction (determined by
deletion techniques to be described subsequently). The full Hamiltonian operator
in the real world, H, is composed of the Lewis model operator H(L) and its NL
component H(NL),

H = H(L) +H(NL) (3.13b)

and the total energy in the real world consists largely of the resonance-free energy
with small corrections due to delocalization effects,

E = E(L) + E(NL) (3.13c)

Thus, the NBO approach is fundamentally perturbative in spirit, with H(L) repre-
senting a resonance-free unperturbed operator (with eigenfunctions and energies
that are known from calculable NLS properties) and H(NL) representing the pertur-
bation due to the delocalization.

Densities obtained from single-determinant MO or DFT wavefunctions yield
Lewis {Ω(L)

i
} and NL {Ω(NL)

j
} NBOs that satisfy the one-electron eigenvalue

equations of the resonance-free operator h(0).

h(0)Ω(L)
i
= 𝜀(L)i Ω

(L)
i
, i = 1, 2, … ,N (3.14a)

h(0)Ω(NL)
j

= 𝜀(NL)
j

Ω(NL)
j

, j = N + 1,N + 2, … (3.14b)

In the resonance-free limit, the Lewis NBOs are filled and the NL NBOs are
vacant; thus, we can refer to the Lewis NBOs as ‘‘donors’’ and NL NBOs as
‘‘acceptors’’ of electronic occupancy. In the limit of a resonance-free world, these
donor and acceptor NBOs have zero interaction. However, application of the real-
world effective 1e-Hamiltonian operator F (Fock or Kohn–Sham operator) leads to
nonvanishing donor–acceptor matrix elements Fij:

F𝑖𝑗 = ∫ Ω(L)
i

FΩ(NL)
j

dτ ≠ 0 (3.15)

Such donor–acceptor mixings, or delocalizations, cause NL orbitals to become par-
tially populated, which is equivalent to saying that other resonance configurations
are involved. Thus, NBO analysis expresses all molecular environments as a single
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resonance structure (usually, but not necessarily, optimal in terms of describing
the total density) with delocalizations resulting from interactions between Lewis
and NL orbitals.

Because the accuracy (%-𝜌(L)) of Lewis-like structures for simple molecules often
exceeds 99%, it is appropriate to analyze donor–acceptor stabilization energies
using the following second-order perturbation treatment [28], where qi is the
occupancy of the Lewis NBO

ΔE(2)𝑖𝑗 =
qi
|||F𝑖𝑗|||2(

𝜀(
NL)

j
–𝜀(L)

i

) (3.16)

The ‘‘E(2) table’’ of such donor–acceptor stabilizations is often the first section of
output scanned by the accomplished NBO user.

The NBO program also provides a unique alternative facility for gauging the
impact of a donor–acceptor interaction on the molecular structure: using deletion
($DEL) keylists4) [29]. One can instruct the program to delete the Fock matrix element
Fij corresponding to a particular donor–acceptor interaction, then reoptimize the
geometry as though the interaction is physically absent. The variational energy
E($DEL) is thereby raised above the full energy E (corresponding to loss of the
stabilizing donor–acceptor interaction) by roughly the magnitude of the second-
order ΔEij

(2) estimate. Although numerically tedious, E($DEL) optimizations allow
one to accurately assess both structural and energetic consequences of a particular
donor–acceptor interaction, often allowing one to isolate the ‘‘smoking gun’’
interaction responsible for a particular structural anomaly.

The NBO program also provides a still more powerful option to quantitatively
assess resonance effects and fractional bond order changes: natural resonance theory
[30] (NRT). NRT extends the NBO search from looking for the best single Lewis-like
density to a search for the best weighted manifold of Lewis-like densities. Thus, the
total 1e-density matrix (𝜞 ) is approximated as the resonance-theoretic superposition
𝜞 NRT,

𝜞 NRT =
∑
𝛼

w𝛼𝜞 𝛼 (3.17)

where 𝜞 𝛼 is the 1e-density matrix for a given Lewis-like structure and the wαs
are corresponding positive weightings summing to unity. The NRT procedure
involves minimization of the rms difference between the full wavefunction density
and 𝜞 NRT. Because NRT analysis is performed on the densities, it fundamentally
differs from multiconfigurational VB methods in which the total wavefunction is
optimized as a linear combination of determinants in order to achieve the lowest
variational energy. In VB-RT applications, the configurational coefficients are of
varying signs and the question of how to handle nonvanishing cross-terms is an
issue, whereas such cross-terms are fundamentally absent in the density-based
NRT formulation of Eq. (3.17). As mentioned earlier, another important difference

4) See, for example, ‘‘Tutorial on Energetic Analysis with NBO Deletions ($DEL Keylist)’’
http://nbo6.chem.wisc.edu/tut˙del.htm on the NBO6 website (Ref. [10]).

http://nbo6.chem.wisc.edu/tut%CB%99del.htm
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is that the NBO Lewis configurations are based on polarizable MO-type two-
center bond functions, whereas multiconfigurational VB methods are commonly
restricted to Heitler–London-type ionic and covalent bond functions. Despite the
fundamentally different methods of computation, it is remarkable that weightings
from NRT and multiconfigurational VB [31] are often qualitatively similar.

Although ‘‘donor–acceptor interaction’’ and ‘‘resonance’’ might initially seem
to have little connection, there is in fact a one-to-one mapping of any particular
NBO donor–acceptor interaction onto a corresponding resonance structure. This
mapping can also be visually represented in mnemonic arrow-pushing terms as
a concerted pattern of charge-transfer shifts from the parent Lewis structure.
Figure 3.6 presents a ‘‘Rosetta stone’’ that relates various NBO donor–acceptor
motifs to the corresponding arrow-pushing and resonance diagrams of the organic
chemist. The almost magical power of resonance structure diagrams to visually
convey the structural and charge shifts associated with a particular delocal-
ization provides a powerful complement to the numerical ΔEij

(2) values. The
donor–acceptor paradigm is therefore found to fit ‘‘hand in glove’’ with familiar

NBO
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Figure 3.6 Generic arrow-pushing and resonance diagrams, comparing NBO
donor–acceptor description (left) with corresponding parent NLS (middle) and secondary
charge-transferred structures (right) for representative conjugative and hyperconjugative
motifs.
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resonance-type concepts of the organic chemist, confirming the close connection
of NBO-based descriptors to important empirical insights of the precomputer era.

In summary, important indicators of donor–acceptor delocalizations in a molec-
ular system include the following:

1) Lewis orbital occupancies< 2,
2) NL orbital occupancies> 0,
3) donor–acceptor stabilization energies ΔEij

(2) > 0,
4) significant E($DEL) effects of deleting particular Fij delocalizations, and
5) direct evaluation of the weights of other resonance configurations, as deter-

mined by NRT.

In the ensuing subsections, we briefly illustrate how such donor–acceptor inter-
actions provide weak hyperconjugative corrections to the idealized NLS properties
of simple molecules discussed in Section 3.2, as well as how such interactions
become increasingly dominant in cases of strong resonance mixing.

3.3.1
Hyperconjugative Effects in Bond Bending

Let us return to the OCl2 and PtCl2 species discussed in Section 3.2.3. Although
the respective sp9.87 and sd1.14 bond hybridizations of OCl2 and PtCl2 are consistent
with bent molecular geometries (Table 3.2), the optimized bond angles depart
significantly from the near-90◦ values expected from hybrid orbital orthogonality
constraints (Eq. (3.10a,b)). In this case, ‘‘bond bending’’ (the deviation of the bond
hybrid directions from the line of centers between the two nuclei) reveals significant
divergence from the ‘‘perfect’’ Lewis structure description. What is the origin of
bond bending and the larger-than-expected bond angles?

For both OCl2 and PtCl2, the dominant delocalization interaction is donation
from the two in-plane Cl lone pairs into the central atom-Cl antibonds, as shown
in Figure 3.7. As a result, each of the in-plane Cl lone pairs has occupancy 1.97e
(0.03e less than 2.00), with most of that density appearing as occupancy of the
O–Cl and Pt–Cl antibonds. For both molecules, the donor–acceptor interaction
energy can be estimated to be about 6.6 kcal mol−1. Because the energies needed
for substantial deformation of bond angles commonly are only a few kilocalories
per mole, NBO analysis suggests that forces beyond hybridization are giving rise
to the unexpectedly large Cl–O–Cl and Cl–Pt–Cl bond angles. Can this model be
tested?

The NBO deletion techniques (as described earlier) are helpful in this context.
Upon deleting the appropriate nCl → σ*OCl (for OCl2) or nCl → σ*PtCl (for PtCl2)
donor–acceptor interactions, we find that the reoptimized bond angles for OCl2
and PtCl2 are reduced by more than 10◦, to 104.2◦ and 95.9◦, respectively, with
minor increases in the bond lengths (0.03 Å). Thus, the donor–acceptor paradigm
provides a rational basis for discussing departures from the Lewis structure ideal,
and why the internuclear axes might not lie coincident with hybrid orbital direction.
As we can show with many similar examples, Lewis structures and donor–acceptor



3.3 Beyond Lewis-Like Bonding: The Donor–Acceptor Paradigm 111

PNBO

OCI2 PtCI2

CI

CI

CI CI

CI

PtO

PNBO
CI

CI O CI Pt

n → σ∗ E(2) = 6.6 kcal mol−1 n → σ∗ E(2) = 6.5 kcal mol−1

(a)

(A)

(B)

(b)

Figure 3.7 (A) Contour plots of pre-natural bond orbitals (PNBOs) of OCl2 (a) and PtCl2
(b), illustrating the bond bending and the apparently responsible nCl →σ*OCl or nCl→σ*PtCl
hyperconjugative donor–acceptor interactions (B).

interactions constitute a powerful method for rationalizing or predicting molecular
structures that are applicable across the periodic table, allowing one to identify the
effects of even the weak hyperconjugative delocalizations of saturated systems.

3.3.2
C3H3 Cation, Anion, and Radical: Aromaticity, Jahn–Teller Distortions, Resonance
Structures, and 3c/2e Bonding

The inability of simple resonance theory to treat cyclobutadiene correctly or to
distinguish between C3H3

+ and C3H3
− has led to the popular misconception that

simple VB theory is unable to describe these molecules. The fundamental problem
concerns the nature of the orbital interactions (stabilizing vs destabilizing) that
result in electron delocalizations, or departures from simple Lewis concepts. In this
section, our focus is on the application of simple NBO metrics to identify strong
delocalizations, the application of NRT to describe electronic structures in terms of
multiple resonance structures, and the prediction of molecular geometries based
on analysis of donor–acceptor interactions. We begin by considering the singlet
states of C3H3

+ and C3H3
− at D3h molecular geometries.

Any competent undergraduate chemistry student could devise Lewis configura-
tions for the anions and cations of C3H3

+, as shown in Figure 3.8. Our focus now
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π → LV n → π∗

E = 312 kcal mol−1
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E = 0 kcal mol−1
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−

Figure 3.8 NBOs and delocalization
energies for the donation of the π
electron pair into the empty p-orbital
(LV) of C3H3

+ (a) and donation of

the lone pair of electrons (n) into the
vacant π* orbital of C3H3

−++ (b). Both
molecular geometries correspond to the
optimized structure of the cation.

is to examine the donor–acceptor interactions in the NBOs of the singlet cation
that lead to strong resonance in the cation and preclude resonance in the anion.

As shown in Figure 3.8, strong delocalization of the C3H3
+ π-bond electron pair

into the empty (LV) carbon p-orbital is indicated by high overlap and substantial
perturbative estimates of the π→ LV donor–acceptor interaction. Further indica-
tions of strong delocalization come from other NBO metrics: low occupancy (1.33e)
of the C=C π bond, partial occupancy (0.67e) of the ‘‘empty’’ C p-orbital, and 3.9%
NL character in the overall density. Strong, stabilizing delocalizations involving all
three C p-π orbitals result in aromatic properties for the cation.

However, at the same fixed D3h geometry, the anion C3H3
− cannot achieve

similar resonance stabilization, because the donor lone pair (n) and the acceptor
π* orbitals are orthogonal. This results in ‘‘antiaromatic’’ properties and geometric
distortions of the anionic singlet, including pyramidalization at the carbanionic C
and lengthening of the two C–C single bonds to distances common for strained σ
bonding. (The antiaromaticity of C4H4 is similarly accounted for by the vanishing
π→π* stabilizations in D4h geometry.) Because the singlet ground state of C3H3

−

is doubly degenerate, this constitutes a Jahn–Teller distortion [32]. In contrast
to the symmetry-based Jahn–Teller rationalization of molecular distortion, the
NBO perspective is purely local and makes no reference to overall symmetry.
Instead, focus is directed to local donor–acceptor interactions and their geometrical
consequences.

As we have seen for triplet O2 and CH2 diradicals, the neutral C3H3 radical is
best described by an open-shell wavefunction with different orbitals for α and β
spins. This leads to a DLDS representation in the NBO framework. As illustrated
in Figure 3.9 for D3h symmetry, the Lewis structure for the two α electrons consists
of one ‘‘half-bond’’ and one ‘‘half-lone pair’’ – in other words, it is the half-filled
analog of the C3H3 anion. The single π-β electron makes one C–C π bond, leaving
one C p-π orbital empty – in other words, the β Lewis structure is the half-filled
analog of the C3H3 cation. The overall molecular geometry can be viewed as a
‘‘balance of forces’’ originating from the maximization of the bonding interactions
in the two spin sets. For the β spins, strong π→ LV delocalization is maximized
at the planar D3h geometry. But the orbital interactions in the α Lewis structures
give strong preference to a localized C=C double bond and pyramidalized carbon
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Figure 3.9 Optimized geometries of cyclopropenyl cation, radical, and anion (a) and
important resonance contributors (b). The electronic and geometrical structures of the
cylclopropenyl radical represent an ‘‘averaging’’ of the cation-like (α spin) and anion-like
(β spin) structures.

radical. Thus, the optimized structure is a compromise that lies roughly half-way
between the two limiting structures. The significance of this set of examples lies
in the simplicity with which the basic Lewis structure concept, combined with
quantitative estimates of donor–acceptor interaction energies, can provide insight
into both the direction and size of Jahn–Teller and related distortions.

Significant occupation of NL orbitals can be equivalently described as the
participation of other Lewis-like configurations. For the case of C3H3

+, the obvious
resonance configurations can be generated by ‘‘arrow pushing’’ the π electron pair
to the cationic center, thus shifting the charge and C=C double bond position. As
expected, NRT analysis of C3H3

+ results in the equal population (31.5%) of the
three resonance structures produced by permutation of the C=C and carbocationic
positions. As expected for a molecule with strong donor–acceptor delocalizations,
there is a dramatic improvement in the ‘‘fit’’ between the wavefunction density and
the model density when multiple configurations are included. Minor population
of resonance structures involving hyperconjugative interactions between C–C and
C–H bonds with neighboring C–H and C–C antibonds account for the remaining
density. The cumulative effect of populating these different configurations is
represented in the NRT resonance-averaged bond orders of 1.33 for the C–C bonds
and 0.99 for the C–H bonds.
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Figure 3.10 Contour diagram of the 3c/2e bonding NBO of C3H3
+, which is identical to

the corresponding CMO and NLMO in this special case.

The very strong donor–acceptor characteristics present in the π-system of C3H3
+

yield a symmetric geometry with short C–C bonds, even though there are just 2e
to share among the three C atoms. Thus, the π-bonding framework in C3H3

+ has
strong parallels with the hypovalent bonding in the σ framework of molecules such
as diborane (B2H6). From the NBO perspective, both of these apparent violations
of the octet rule originate from strong donor–acceptor interactions; in diborane,
the donors are the B–H bond pairs and the acceptors are the two unoccupied
boron 2p orbitals. In recognition of these very strong donor–acceptor interactions,
Lipscomb and others [33] adopted the three-center/two-electron (3c/2e) bond as
a fundamental unit of molecular structure in order to simplify the description
of boranes and related molecules. The current NBO 6.0 program [34] can search
for such strong ‘‘electron deficient’’ 3c/2e interactions automatically, without the
‘‘3CBOND’’ keyword that was required in earlier versions. Indeed, the default
NBO6-level description of C3H3

+ consists of six σ bonds and one 3c/2e bond in
the π-system. Inclusion of the 3c/2e bond as an extension to the Lewis description
provides a more compact and accurate NLS (the density ‘‘error’’ of C3H3

+ is 0.79e
for the conventional, single reference structure vs just 0.12e for the 3c/2e model).
As shown in Figure 3.10, the 3c/2e bond of C3H3

+ is identical to the bonding
orbital of MO or Kohn–Sham type.

3.3.3
3c/4e Hypervalency

Molecules for which the number of electrons around an atom exceeds the nominal
atomic valency are common. Such molecules are identified as ‘‘hypervalent’’
[35] and require consideration of bonding interactions beyond the simple Lewis
structure to understand their molecular geometries and properties.
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We begin our treatment of hypervalency with three molecular anions, each con-
taining two terminal fluorines but with central atoms from different regions of the
periodic table: FHF− (bifluoride), FBrF−, and FCuF−. From the NBO perspective,
all three AF2

– molecules share the characteristics expected of three-center/four-
electron (3c/4e) bonding. The Lewis configurations (I–III) shown below

F F A F F FAFA

(I) (II) (III)

n n n+1

each satisfy normal valency constraints for our three AF2
– molecular anions. The

primary difference among the three anions concerns the number of lone pairs
(n) on the central atom: H (n= 0), Br (n= 3), Cu (n= 5). Lewis configurations (I)
and (II) capture the H-bonding ‘‘arrow-pushing’’ motif of Figure 3.6, suggesting
strong delocalization of the nF → σAF* type. Lewis configuration (III) represents
a ‘‘long-bond’’ structure [9]. One should not consider the F–F interaction of the
long bond to be a normal bond but should focus on the charge-leveling effect of
decreasing charge on the termini by shifting some density to the central atom. For
molecules in which the terminal atoms are more electronegative than the central
atom, one expects a minor role for resonance structures such as (III).

Plots of the NBOs (Figure 3.11) for the FHF−, FBrF−, and FCuF− ions reveal
clear similarities in the nature and strength of the nF → σAF* delocalizations. Strong
delocalizations of this type characteristically yield linear geometry (to maximize
nF → σAF* overlap) and symmetric structures (the two A–F bond lengths become
identical, with equal weighting of the leading two resonance structures).

NRT analysis of the ions using the resonance structures (I–III) gives the following
fractional weightings (wI):

1) FHF− wI = 0.492, wII = 0.492, wIII = 0.016
2) FBrF− wI = 0.484, wII = 0.484, wIII = 0.032
3) FCuF− wI = 0.496, wII = 0.496, wIII = 0.008

As expected, the long-bond structure (III) plays a minor role and both (I) and (II)
are equally weighted. Thus, these ions represent strong examples of 3c/4e bonding

FHF− n ® σ∗ FBrF− n ® σ∗ FCuF− n ® σ∗

E(2) = 167 kcal mol−1 E(2) = 93 kcal mol−1 E(2) = 70 kcal mol−1

Figure 3.11 Plots of the n→ σ* donor–acceptor delocalizations and estimates of
donor–acceptor interaction energy for FHF−, FBrF−, and FCuF− ions. In each case, the
donor is an F lone pair and the acceptor is an A–F σ* orbital.
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interactions. Such interactions are so common in D- and P-block bonding that it
is convenient to assign a name – the hyperbond – and a one-character label – 𝜔 – to
distinguish the 3c/4e bond from various 2c/2e bonds (σ, π, δ) and the 3c/2e
bond (τ). The ω-bond represents strong intermolecular donation (nX → σAY*) of a
localized pair of electrons of ligand X into the antibonding orbital (σAY*) associated
with the central atom A and attached ligand Y, and vice versa (nY → σAX*), and
is automatically recognized in the ‘‘3C HYPERBOND’’ section of NBO output.
Its presence implies a preference for linear arrangements of the three atoms and,
relative to 2c/2e bonding, significant lengthening of the bond and increased electron
density on the ligands. Related 3c/4e delocalizations are pervasive in chemistry,
ranging from the powerful π→ π* delocalizations that enforce the planarity and
symmetric C–C bond lengths in the allyl anion, down to the even weaker forms of
H-bonding that result from replacing the F atoms of FHF– by less electronegative
ligands [36].

Before turning to more general application of 3c/4e bonding across the periodic
table, let us consider another ‘‘Jahn–Teller-like’’ phenomenon: the plasticity of Cu
complexes in the +2 oxidation state. Our models are organometallic CuMe2 cation
(+3 oxidation number), neutral (+2 oxidation number), and anion (+1 oxidation
number). We can readily conclude that CuMe2

– should adopt a linear structure,
similar to CuF2

– , in order to maximize ω-bonding. In contrast, the fictitious but
easily computed +3 oxidation number complex, CuMe2

+, should have a strongly
bent geometry, close to 90◦, because the Lewis-like structure of CuMe2

+ comprises
four lone pairs and two 2c/2e Cu–C bonds with approximate sd1 hybridization
and, hence, a 90◦ angle preference. Consistent with these expectations, the energy
surfaces for the angular bending of the Me–Cu–Me anion and cation (Figure 3.12)
exhibit deep wells with minima at 180◦ and 90◦, respectively. What about the surface
for the+2 oxidation state? Without resorting to a computation, the DLDS paradigm
suggests that α-spin bonding will be similar to CuMe2

− and β-spin bonding will
be similar to CuMe2

+. Accordingly, the energy surface for the bending coordinate
should be the average of those for the anion and cation. Indeed, the computed
surface for neutral CuMe2 is essentially that average, resulting in a very soft surface
with minimum close to 135◦, as shown in the dotted line of Figure 3.12.

The addition of ω-bonding to the more familiar Lewis structure elements of
2c/2e bonds and lone pairs enables a Lewis-like analysis of computed electron
densities to be consistently applied across the periodic table. For example, the
‘‘T-shapes’’ of ClF3 and PdH3

− have closely related origins. Each molecule is
hypervalent ‘‘by one pair,’’ and has one 2c/2e σ-bond, one 3c/4e ω-bond, and
hybrid orbital orthogonalities at 90◦ (due to high p-character in the Cl–F bonds
and sd1 hybridization for Pd–H bonds). Effectively, the MX3 ‘‘T-shape’’ is easily
seen as the trans addition of a third ligand to a bent, normal valent MX2 fragment,
so as to maximize n→ σ* delocalization and ω-bonding. Similar considerations
apply to many species with square planar (two ω-bonds; e.g., PtH4

2− and BrF4
−),

square pyramidal (one σ bond, two ω-bonds; e.g., BrF5 and IrH5
2−), and octahedral

(three ω-bonds; BrF6
− and OsH6

4−) molecular shapes. Even molecules as complex
as ferrocene, for which Pauling’s formulation with more than 500 resonance
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Figure 3.12 Computed energy sur-
faces for the Me–Cu–Me bending coor-
dinate of neutral, anionic, and cationic
CuMe2. These plots illustrate how the

neutral, radical surface is the result of
‘‘averaging’’ of the cation-like (α spin)
and anion-like (β spin) surfaces, in
accordance with the DLDS paradigm.

structures has been described as ‘‘repulsive’’ [37], simplify to compact Lewis-like
descriptions: three ω-bonds, sd2 hybridization, and three lone pairs at iron.

The simple Lewis-like and resonance concepts based on fundamental units of
2c/2e, 3c/4e, and 3c/2e bonding are found to be fully consistent with densities
computed by the most accurate current wavefunction methods. We can conclude
that the NBO-based Lewis-like conceptual framework serves to (i) highlight the
deep chemical kinships between P- and D-blocks of the periodic table, (ii) exhibit
the generality of the NBO donor–acceptor paradigm in describing ‘‘unusual’’
bonding motifs, and (iii) provide a powerful pedagogical tool for unifying the
description of chemical interaction phenomena, guided by the refinements of
modern wavefunction technology.

3.4
Conclusion

As Lewis and others brilliantly observed a century ago, atoms connect to one another
according to logical patterns. Even the largest molecules can be broken down to a
collection of atoms held together by local interactions involving a relatively small
number of bond types. The chemical bond is the ultimate divide-and-conquer
representation of matter.

For users of ab initio computations who share the bewildered skepticism
expressed in the introductory quotations, our advice is, ‘‘Get a better basis set!’’ By
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this we mean that one should analyze computational results with basis sets that
enable fundamental bonding interactions to emerge (we do not suggest simply
redoing the calculation with a larger basis set). Localized NAO/NBO basis sets – in
effect, selected by the wavefunction as optimal for its own self-description – offer
a fundamentally simplified (‘‘VB-like’’) view of molecular electronic structure
that averts the heavy, ‘‘unnecessary’’ delocalization and AO nonorthogonality
in conventional linear combination of atomic orbital (LCAO)–MO depictions.
The widespread availability of NBO analysis tools now makes such improved
wavefunction description readily accessible in many popular electronic structure
programs. As illustrated for a variety of simple molecules in this chapter, the results
show that traditional localized bonding and resonance concepts of Lewis, Pauling,
and other bonding pioneers are indeed alive and well in modern wavefunctions,
continually sharpened and strengthened as modern computational technology
advances.
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4
The EDA Perspective of Chemical Bonding
Gernot Frenking and F. Matthias Bickelhaupt

4.1
Introduction

The fundamental approach for understanding the nature of a chemical bond
A–B considers the kinetic energy of and electrostatic forces between the nuclei
and electrons within and across fragments A and B as elementary quantities of
chemical bonding, which are described with quantum mechanical equations. Two
types of chemical bonds may then be distinguished. Ionic bonds can be reasonably
discussed in terms of classical electrostatic interactions between point charges.
Purely ionic bonds exist only in the solid state where the overlap of the valence
orbitals between the neighboring atoms is negligible. When the orbital overlap
at the equilibrium distances A–B becomes significant, covalent bonding takes
place [1]. For example, the equilibrium distance of diatomic CsF in the gas phase
is 2.345 Å whereas the Cs–F distance in solid cesium fluoride is 3.005 Å. The
cesium–fluorine interactions in the solid state may be reasonably discussed in
terms of classical electrostatic forces between Cs+ and F− whereas the chemical
bond of diatomic CsF in the gas phase, although largely ionic, still has some
covalent character that is not negligible. It is only the latter type of bonding that is
considered in this work.

The understanding of covalent bonds in terms of basic laws of physics was long
an enigma. In 1927, Heitler and London [2] showed that the strongly attractive
forces between two hydrogen atoms may be explained when the electrons are
considered as waves rather than particles that lead to a consistent description of
the electronic structure of H2. They called it a ‘‘characteristic quantum mechanical
resonance phenomenon’’, which is crucial for the understanding of the interactions
between neutral atoms. We want to emphasize that covalent bonding and ionic
bonding are both the result of electrostatic forces but the mathematical description
of the former type of bonding is far more complicated than the latter. The reason
is that the motion and the spatial distribution of the electrons is dictated by
quantum mechanical laws that determine interatomic interactions in molecular
systems. A key quantity for understanding the occurrence of covalent bonds is the
kinetic energy of quantum mechanical particles, which decreases as the available
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volume increases, thus leading to a stabilization of the total system (cf. particle in
a one-dimensional box).

The different interactions between two electrons when they are described either
as point charges or as waves and where they possess the same or opposite spin are
shown in Figure 4.1. The dashed curve gives the repulsive interactions between two
point charges that is given by the classical equation 1/R. The dotted curve shows the
repulsion between two electrons that is described by 1s hydrogen functions rather
than by point charges q. The two curves become very similar at larger distances
where the overlap becomes negligible. When the two 1s functions start to overlap,
the repulsion becomes smaller and converges toward a finite value at R= 0. The
solid curve finally gives the interactions between the two electrons in 1s orbitals
that have the same spin. It becomes obvious that the latter curve is very sensitive to
the size of the overlap S and that it rises sharply as soon as S ≠ 0. Figure 4.1 makes
it clear that the description of electron–electron interactions using point charges
in the region of covalent bonding leads to grave errors. It becomes also clear that
the Pauli repulsion (or exchange repulsion) between two electrons that possess
the same spin may become more important than the electrostatic interactions. We
will show in this chapter that the Pauli repulsion is a very important factor for the
structure and the bond strength of molecules [3].

It must be emphasized that the ‘‘resonance phenomenon’’ of Heitler and London,
which is called orbital interactions in modern terminology, is not associated with
the pairing of two electrons that was believed by Lewis [4] to be the driving force
for a covalent bond. Resonance of the wave function takes place even when there
is only one electron such as in H2

+ [5]. It is the mixing of the wave functions
of the interacting fragments A and B that leads to the stabilizing resonance term
yielding covalent bonding. This is a quantum mechanical phenomenon that cannot
be explained by the classical laws of physics. The physics which is connected with
the quantum theory of the chemical bond is discussed by Ruedenberg, Schmidt,
and Ivanic in Chapter 1 of this book [6].

When the pioneering work by Heitler and London, which paved the way for a
true understanding of the chemical bond, was published in 1927, chemists had
already developed heuristic bonding models that were amazingly successful as
ordering schemes for experimental observations and as helpful guidelines in the
search for new compounds and novel reactions [7]. The simple approach and the
intuitive concepts in concert with empirical rules made them powerful tools for
synthetic chemistry. It is the reason that heuristically developed bonding models
are still very popular in the chemical community. This holds in particular for the
bonding model of Lewis [4] who suggested that the chemical bond is associated
with an electron pair. The pre-quantum chemical electron-pair model of Lewis was
underpinned by Pauling [8] with quantum theoretical arguments that were not
undisputed, however. Pauling’s dogmatic view in favor of valence bond theory and
his refusal to recognize molecular orbital (MO) theory as a valid theory of chemical
bonding made it deceptively easy for experimental chemists to continue using
classical ad-hoc bonding models. Nevertheless, his epochal work ‘‘The Nature of
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the Chemical Bond’’ showed that it is possible to build a bridge between the
heuristic bonding models of synthetic chemistry and quantum theory.

In this chapter, we describe a more recently developed method that connects
classical concepts of chemical bonding with a rigorous quantum chemical approach.
The method is based on theoretical work that was independently carried out by
Morokuma [9] and by Ziegler and Rauk [10]. In this work, it was suggested that
the energy lowering that is associated with the formation of a chemical bond may
be divided into three different terms, which can be interpreted in a physically
meaningful way. Although such division is arbitrary like all partitioning schemes
are, it is mathematically unambiguously defined and the three terms may be
identified with classical chemical concepts but also with quantum chemical terms.
The EDA (energy decomposition analysis) focuses on the intrinsic interactions
A–B in the molecules AB which must be distinguished from the bond dissociation
energy (BDE). The latter term involves the geometrical and electronic relaxation
of the fragments A and B from the molecule A–B to the free species A and B in
the equilibrium geometry of the electronic ground state. Thus, the EDA gives a
faithful representation of the actual bonding situation in the molecule. Since the
sum of the various energy terms of the EDA and the relaxation energy give the
BDE, they are connected to an observable. This makes the EDA a very attractive
and powerful tool for the interpretation and explanation of chemical phenomena
such as molecular structure and reactivity. In principle, the EDA can be used in
conjunction with any quantum chemical approach. Herein, it is combined with
the quantitative MO model contained in the Kohn–Sham approach to density
functional theory (DFT), which includes correlation energy. For ab initio methods,
the EDA has only been developed for Hartree–Fock calculations until today. This
is the reason that the EDA method is usually employed in conjunction with DFT
calculations.

We wish to emphasize that the breakdown of the interatomic interaction energy
into different terms does not have a physical meaning in the sense that the
calculated data refer to experimental observables. The EDA is an attempt to provide
quantitative expressions for terms that are associated with chemical bonding
models. The latter have been called chemical ‘‘unicorns,’’ because like the mystical
animal, everybody seems to know them although they have never been observed
[11]. This is not so much a weakness as a classical human approach to find
a perspective on nature that reveals patterns behind observable phenomena.
Therefore, ‘‘unicornig’’ bonding models play an important role as ordering schemes
for molecules and as a useful tool for designing new chemical reactions.

In the following we discuss representative examples of the application of the
EDA for the analysis of covalent bonds. We have chosen classical chemical bonds
which are typical for various types of molecules. For a more extended collection
of EDA results we refer to review articles that were published in recent years [12].
The application of the EDA for understanding particular classes of chemical bonds
has also been described in other chapters of this book [13]. We also introduce
a recent extension of the method where the EDA is combined with the NOCV
(Natural Orbital for Chemical Valence) method [14]. The EDA-NOCV [15] scheme
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has the advantage that the orbital interactions between two interacting species may
be divided into pairwise contributions of the most relevant MOs.

4.2
Basic Principles of the EDA Method

The focus of the bonding analysis in the EDA approach is the instantaneous
interaction energy ΔEint of a bond A–B between two fragments A and B in
the particular electronic reference state and in the frozen geometry of AB. In the
case of diatomic molecules E2, ΔEint is the energy difference between E2 and the
atoms E in the electronic reference state which may or may not be the electronic
ground state. It is very important to recognize the electronic reference states of the
fragments in order to provide a meaningful analysis of the interactions A–B. The
interaction energy is divided into three main components:

ΔEint = ΔEelstat + ΔEPauli + ΔEorb (4.1)

The term ΔEelstat corresponds to the quasi classical [16]1) electrostatic interaction
between the unperturbed charge distributions of the prepared atoms and is usually
attractive (vide infra). The Pauli repulsion ΔEPauli arises as the energy change asso-
ciated with the transformation from the superposition of the unperturbed electron
densities 𝜌E(α) + 𝜌E(β) of the isolated atoms to the wavefunction Ψ0 =N Â [ΨE(α)

ΨE(β)], that properly obeys the Pauli principle through explicit antisymmetriza-

tion (Â operator) and renormalization (N constant) of the product wavefunction
[12c]. It comprises the destabilizing interactions between electrons on either atom
of the same spin. The orbital interaction ΔEorb accounts for charge transfer (i.e.,
donor–acceptor interactions between occupied orbitals on one moiety with unoccu-
pied orbitals of the other, including the HOMO–LUMO interactions), polarization
(empty/occupied orbital mixing on one fragment due to the presence of another
fragment), and electron-pair bonding (the stabilization arising from the formation
of the electron-pair bonding configuration in which the bonding combination
between the SOMOs is formed and doubly occupied) [17]. Likewise, one-electron
bonding and three-electron bonding (or repulsion) can be defined and quantified
[18]. The ΔEorb term can be decomposed into contributions from each irreducible
representation of the point group of the interacting system. This makes it possible
to quantitatively estimate the intrinsic strength of orbital interactions from orbitals
having σ, π, δ, and so on symmetry.

For molecules where the fragments do not electronically or geometrically relax
after bond breaking, the interaction energy ΔEint gives directly (by definition with
opposite sign) the BDE De. If the two fragments of the chemical bond are in an
electronically excited state or if they have more than one atom which means that

1) The term ‘‘quasi-classical’’ indicates that the electron density 𝜌 is calculated quantum theoretically
but the interactions between the electrons and nuclei are calculated assuming classical electrostatic
interaction between these densities as they are kept frozen, i.e., no quantum interference takes
place.
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there is a relaxation of the fragments during bond rupture into the equilibrium
geometry, the preparation energy ΔEprep must be added to ΔEint in order to obtain
the BDE De which is by definition the negative value of the total bond energy ΔE:

ΔE(= −De) = ΔEint + ΔEprep (4.2)

Because the atomic fragments that were used in our calculations of the diatomic
molecules are in the electronic ground state, it follows that, for the E2 species,
ΔEprep is zero and ΔEint =−De. For bonds A–B between polyatomic fragments,
the term ΔEprep gives the difference between the intrinsic binding energy ΔEint of
the bond A–B in the molecule and the BDE De. Thus, the absolute value of ΔEint

is a faithful expression for the bond strength whereas the De values are affected
by the geometrical and possibly the electronic relaxation of the fragments. There
are molecules where the fragments A and B are lower in energy than A–B which
makes the De values useless for estimating the bond strength A–B. This holds
in particular for high-energy materials and explosives where bond breaking is a
highly exothermic process. It is thus advisable to use the interaction energy ΔEint

for comparing the bond strength of molecules.
The EDA involving open-shell fragments does, for technical reasons, neglect the

spin-polarization in the fragments yielding slightly too stable bonds (in the order
of a few kcal mol−1 per unpaired electron). The bond energies have been corrected
for the spin-polarization error ΔEcorr which is given in the tables. Further details
about the EDA can be found in the literature [12c, d].

4.3
The EDA-NOCV Method

The difference between the EDA and the EDA-NOCV methods lies in the expression
for the orbital interaction term ΔEorb, which is broken down in the EDA-NOCV
approach into pairwise contributions of interacting orbitals of the two fragments.
The starting point is the deformation densityΔ𝜌(r), which is the difference between
the densities of the fragments before and after bond formation. The deformation
density Δ𝜌(r) can be expressed in terms of pairs of complementary eigenfunctions
(𝜓k 𝜓−k) with the eigenvalues 𝜐k and 𝜐−k that possess the same absolute value but
opposite sign [14, 15].

𝛥𝜌(r) =
∑

k

υk[−𝜓2
−k(r) + 𝜓

2
k(r)] =

∑
k

Δ𝜌k(r) (4.3)

The NOCVs𝜓k and the associated eigenvalues 𝜐k are obtained through diagonaliza-
tion of the difference density matrix ΔPμν of the system [14]. Equation (4.3) makes
it possible to express the total charge deformation Δ𝜌(r) that goes along with the
bond formation in terms of pairwise charge contributions Δ𝜌k(r) that come from
particular pairs of (NOCV) orbitals. The total orbital interaction ΔEorb may likewise
be derived from pairwise orbital interaction energiesΔEk

orb that are associated with
Δ𝜌k(r):
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ΔEorb =
∑

k

ΔEk
orb =

∑
k

υk

[
−FTS

−k,−k
+ FTS

k,k

]
(4.4)

The terms FTS
−k,−k

and FTS
k,k

are diagonal transition-state (TS) Kohn–Sham matrix
elements corresponding to NOCVs with the eigenvalues –𝜐k and 𝜐k, respectively.
Here, the term ‘‘transition state’’ (TS) refers to the charge density, which is
intermediate between the density of the final molecule AB and the superimposed
fragment densities of A and B. The ΔEorb

k
term of a particular type of bond is

assigned by visual inspection of the shape of the deformation density, Δ𝜌k.
Experience has shown that the ΔEorb term of the EDA-NOCV has usually only

a very small number of significant contributions of ΔEk
orb that makes it possible

to identify specific interactions, which lead to a chemical bond. This is particularly
interesting for analyzing the TS of a chemical reaction. Two examples are presented
and discussed in Section 9. Moreover, the EDA-NOCV makes it possible to estimate
the charge donation Δ𝜌k, which is associated with the pairwise orbital interactions,
and to visualize its spatial extent. The change in the electron density distribution that
comes from bond formation between two fragments or intermolecular interactions
during a chemical reaction can be quantitatively expressed through the eigenvalues
of the NOCVs.

4.4
Chemical Bonding in H2 and N2

The chemical bond in dihydrogen is the classical example for covalent bonding. It
is often used in textbooks of chemistry and in introductory curricula at universities
for teaching the nature of the covalent bond. Scheme 4.1 schematically shows
the difference between the classical and the quantum theoretical approaches for
chemical bonding in H2.

The classical approach for chemical bonding takes the charge distribution 𝜌 of the
atoms as central physical quantity for calculating the interatomic interactions. This
yields the term Eelstat for the energy of the molecule E(H2), which exhibits only a
shallow energy minimum for the bond energy (Figure 4.2). The quantum theoretical
approach introduces the wave functionΨ as the representative expression for atoms
and molecules, which is related to the charge distribution 𝜌 by the square, for
example, 𝜌(H2)=Ψ(H2)2 (Scheme 4.1). The interatomic interactions are described
by the plus or minus combination of the atomic wave functions, which gives the
molecular wave function Ψ(H2) as a result that yields [Ψ(H2)]2 for the charge
distribution of the molecule 𝜌(H2). Scheme 4.1 shows that the expression for
[Ψ(H2)]2 contains a term ±Ψ(Ha)Ψ(Hb), which is absent in the classical expression
for 𝜌(H2). This quantum theoretical term is called resonance, because it comes
from the mixing (‘‘interference’’) of the atomic wave functions Ψ(H). The covalent
bond comes from the plus combination of Ψ(Ha)Ψ(Hb) where the two electrons
have opposite spin while the minus combination of Ψ(Ha)Ψ(Hb) describes the
situation when the two electrons have the same spin. The latter wave function
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Chemical bonding: Classical approach

ρ(H2) = ρ(Ha) + ρ(Hb)

E(H2) = E [ρ(H2)]

= Eelstat

Chemical bonding: Quantum chemical approach

Ψ
ρ(H2) = [Ψ]2

Ψ(H2) = c1Ψ(Ha) ± c2Ψ(Hb)

[Ψ(H2)]2 = [c1Ψ(Ha) ± c2Ψ(Hb)]2

= [c1Ψ(Ha)]2 + [c1Ψ(Ha)]2 ± 2[c1Ψ(Ha)c2Ψ(Hb)]

q(Ha) q(Hb) Resonance

E(H2)α, β = E [ρ(H2)] ± E [Ψ(Ha) Ψ(Hb)]

= Eelstat ± E [Ψ(Ha) Ψ(Hb)]

Scheme 4.1 Schematic representation of
the difference between the classical and the
quantum theoretical approaches for describ-
ing chemical bonding in H2. (a) The classi-
cal description uses the charge 𝜌 as central
physical quantity for the bond formation
which leads to Eelstat as the energy of the
molecule E(H2). (b) The quantum theoret-
ical approach uses the wave function Ψ as

central physical quantity where the bond
formation comes from the mixing of the
wave functions of the two hydrogen atoms
yielding Ψ(H2). This leads to a new term
in the expression for the energy of E(H2)
called resonance that is absent in the classi-
cal approach and which is the very origin of
covalent bonding.

yields a repulsive energy curve for H2. It becomes obvious that the covalent bond
formation can only be explained in terms of quantum chemical laws using the
wave function Ψ as a fundamental starting point which gives the resonance term
as the driving force for the chemical bond. We wish to point out that the origin of the
covalent bond is not the formation of an electron pair but the appearance of the resonance
term 𝛹(Ha)𝛹(Hb) which emerges already when there is only a one-electron bond such
as in H2

+.
It is reasonable to present the EDA results for H2 as a starting point of this

chapter. Table 4.1 shows the calculated data while Figure 4.2 displays the individual
contributions of the EDA to the interaction energy ΔEint as a function of the H–H
distance. TheΔEint values give directly the BDE De because there is no electronic or
geometric relaxation of the fragments. The calculated BDE Do = 106.3 kcal mol−1,
which considers zero-point energy (ZPE) contributions, is in good agreement with
the experimental value of 103.3 kcal mol−1.
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Figure 4.2 Trend of the energy terms terms of the EDA as a function of the interatomic
distance for H2 calculated at RPBE/TZP.

There is one important technical aspect that concerns the use of present DFT
functionals for EDA calculations, which are subject to the self-interaction error
(SIE). The SIE introduces small errors in the calculated energy terms of the EDA that
become obvious when the Pauli repulsion in H2 is considered that, by definition,
is zero. EDA calculations of H2 using common gradient-corrected functional give
small negative values for ΔEPauli. Since the calculated Pauli repulsion comes from
a physically unrealistic correction of the functionals, the ΔEPauli values have been
added to ΔEorb, which lead to the data that are shown in Table 4.1 and Figure 4.2.

The EDA results are in agreement with the present knowledge of the chemical
bond in H2. The covalent bond comes exclusively from the orbital term ΔEorb

whereas the electrostatic term ΔEelstat at equilibrium distance is even slightly
repulsive. The latter term becomes weakly attractive at longer distances (Figure 4.2)
where it has an energy minimum at a rather long distance of ∼1.1 Å and a
BDE of only ∼10 kcal mol−1. The latter result was already obtained in the original
work of Heitler and London [2]. There is no Pauli repulsion in H2 because
there are only two electrons that possess opposite spin. But this is not the only
anomaly that characterizes bonding in dihydrogen as atypical for a covalent bond.
A second anomaly is the unusually weak electrostatic attraction, which is because
the hydrogen atom has a nucleus with a rather small positive charge. The atypical
feature of the bonding in H2 comes to the fore when the EDA results are compared
with the data for N2. The latter molecule was chosen, because nitrogen atom in its
4S electronic ground state with the configuration (1s)2(2s)2(1px)1(1py)1(1pz)1 has
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Table 4.1 Energy decomposition analysis of the H–H and N–N bonds at RPBE/TZP.a

H2 N2

ΔEint −112.9 −232.2
ΔEPauli 0.0 791.7
ΔEelstat

b +5.8 −308.5 (30.1%)
ΔEorb

b −118.7 (100%) −715.4 (69.9%)
ΔEσ

c −118.7 (100%) −470.0 (65.7%)
ΔEπ

c 0.0 −245.4 (34.3%)
R 0.745 (0.741) 1.105 (1.098)
De 112.9 232.2
D0 106.3 (103.3) 228.8 (225.0)

Energy values in kcal/mol. Bond lengths R in Å. Experimental values are given in parentheses.
aData are taken from Ref. [19].
bThe values in parentheses give the percentage contribution to the total attractive interactions
ΔEelstat +ΔEorb.
cThe values in parentheses give the percentage contribution to the orbital interactions ΔEorb.

like hydrogen a spherically symmetrical electron density. The EDA results are thus
independent from the orientation of the occupied orbitals of the interacting atoms.

The EDA values for N2 (Table 4.1) suggest that the largest contribution to the
N–N interactions comes from the ΔEPauli term which amounts to 791.7 kcal mol−1.
This is striking evidence for the large role played by the Pauli repulsion in
molecules that have more than two electrons. The second qualitative difference
between H2 and N2 is the very large attractive contribution of the electrostatic
term ΔEelstat =−308.5 kcal mol−1 in dinitrogen that is even larger than the total
interaction energy ΔEint =−232.2 kcal mol−1. The latter result is not unusual for
diatomic molecules. Hirshfeld and Rzotkiewicz [20] reported as early as in 1974
that the quasi-classical [16] electrostatic attraction in the heavier first-row diatomic
molecules provides a large part of the total binding energy. In 1986, Spackman
and Maslen [21] investigated chemical bonding in 148 diatomic molecules and
found that electrostatic attraction between two neutral atoms in most homonuclear
diatomic molecules and many heteronuclear diatomic molecules is very strong
and may even be stronger than the total BDE. It becomes clear that a point-charge
approximation and the use of partial charges for estimating quasi-classical electrostatic
interactions in molecules completely fail. The results should be used as a warning against
the common tendency to use atomic partial charges as a measure for the ionic character
of a bond.

The EDA results suggest that the orbital (covalent) interactions in N2

are still stronger than the electrostatic attraction. The contribution of
ΔEorb =−715.4 kcal mol−1 accounts for 69.9% of the total N–N attraction. The
latter term comprises −470.0 kcal mol−1 (65.7%) of σ bonding and −245 kcal mol−1

(34.3%) of π bonding which agrees with chemical intuition that σ bonding
is stronger than π bonding. The strong total attraction of −1023.9 kcal mol−1
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and the large Pauli repulsion of 791.7 kcal mol−1 give a net attraction of ΔEint

(=−De)=−232.2 kcal mol−1 that is in excellent agreement with the experimental
BDE.

Pauli repulsion is not only a significant component of the bond strength, it is
also a crucial factor for the length of a chemical bond. The equilibrium distance of
a covalent bond is often explained in terms of maximum orbital overlap. Figure 4.3
shows schematically the feature of a σ and a π orbital of a diatomic molecule E2

as is introduced in most chemistry textbooks. The onset of the σ orbital overlap
S(σ) occurs at longer E–E distances than the π overlap S(π). The overlap S(σ)
has a maximum value at a certain distance R(E–E) whereas at shorter distances
S(σ) becomes smaller. The maximum value of S(σ) is then identified with the
equilibrium distance of an E–E single bond. By contrast, the maximum value S(π)
is reached when R(E–E)= 0. The additional contribution of the π interactions is
then suggested as the reason why multiple bonds are shorter than single bonds.

Figure 4.4a shows the orbital overlaps of the σ and π AOs of nitrogen in N2

as a function of the N–N distance. The figure displays the curves for the total σ
and π overlaps S(σ) and S(π) and the σ components ss, spσ, pσpσ as well as the π
components pπpπ. The calculated curves indicate that the maximum value of S(σ)
is found at shorter distance than the equilibrium bond length re. This is clear proof
that the bond length in N2 is not determined by the maximum orbital overlap
as usually assumed. If this were true, the N–N equilibrium bond length should
be ∼0.4 Å shorter than experimentally found. There is an interatomic force that
prevents a bond length where maximum bond overlap occurs.

Figure 4.4b shows the curves for the various energy terms of the EDA as a
function of the N–N distance. It becomes obvious that both attractive forces,
for example, the electrostatic term ΔEelstat and the orbital term ΔEorb, further
increase when the N–N distance becomes shorter than the equilibrium distance.
This holds not only for the π-orbital interactions ΔEπ but also for the σ bonding
ΔEσ, which still becomes stronger when the N–N bond is shortened by 0.4 Å.
The electrostatic attraction also increases at shorter bond length by up to ∼0.2 Å
where it reaches a maximum value. The crucial force which prevents further shortening
below the equilibrium distance and which determines the bond length in N2 is the Pauli
repulsion 𝛥EPauli, which sharply increases at a shorter distance (Figure 4.4b). This
conclusion is valid for nearly all covalent bonds! An investigation of the trend of
the orbital overlap and the EDA terms in diatomic molecules E2 of all atoms of the

EE

Figure 4.3 Schematic representation of bonding overlap between two spx hybrid orbitals
and two p(π) AOs.
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of the interatomic interaction. The overlap
integral of pσpσ refers to the bonding com-
bination of the orbitals which, therefore,

converges to a value of −1. (b) Calculated
EDA values at BP86/TZ2P for N2 as function
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value 0.0 is the calculated equilibrium bond
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first and second octal rows has shown that in all cases the rising of ΔEPauli which
overcompensates the increase of the attractive forces ΔEelstat and ΔEorb at shorter
distances determines the equilibrium bond length of the molecules [22].

4.5
Comparison of Bonding in Isoelectronic N2, CO and BF

The EDA results may be used to explain trends in the nature and in the bond
strength of related molecules. A challenging example is given by the isoelectronic
species N2, CO, and BF [19]. There is an increase in the polarity [23] of the bonds
N2 <CO<BF but the BDE has the order CO>N2 >BF. In the following, we give
an explanation for the latter trend using the EDA results of the molecules. At the
same time we discuss the problem of choosing the electronic state of the interacting
fragments for CO, which is not directly obvious as in cases like H2 and N2.

Figure 4.5 shows schematically the electron configurations of the atomic frag-
ments and the alignment of the orbitals as they were chosen for the EDA calculations
of the diatomics. The case of N2 is trivial because of the isotropic electron density of
nitrogen atom in the 4S ground state (Figure 4.5a). However, there are two different
ways of combining the carbon and oxygen atoms in their electronic ground states2)

with the electron configurations 1s22s22pα2pα2p0 (3P) carbon and 1s22s22p22pβ2pβ

(3P) oxygen yielding (1∑+) CO. Figure 4.5b displays the approach where the overall
symmetry of the atomic configurations is the same as the point group of the CO
molecule (C∞v). This is the symmetry adapted fragmentation procedure that leads
to a donor–acceptor σ bond and two degenerate electron-sharing π bonds. The
doubly occupied 2p2 orbital of oxygen and the empty 2p0 orbital of carbon have
σ symmetry. The second approach shown in Figure 4.5c has only C2v symmetry
for the atomic fragments. Here the doubly occupied 2p2 orbital of oxygen and
the empty 2p0 orbital of carbon have π symmetry. The latter approach has one
electron-sharing π bond, one donor–acceptor π bond and an electron-sharing σ
bond, as suggested by valence bond methods. The choice of the alignment of
boron and fluorine atoms in their 2P ground state for the EDA calculations is
straightforward (Figure 4.5d). Note that the Pauli repulsion ΔEPauli in all systems,
which are shown in Figure 4.5, comes from electrons in σ orbitals. There are no π
electrons in both fragments that have the same spin.

Table 4.2 gives the EDA results for N2, CO, and BF. The calculated BDEs of the
three molecules are in excellent agreement with experimental values. Since there
is no preparation energy ΔEprep of the interacting fragments, the trend of the BDEs
is directly related to the change in the strength of the interatomic interactions
ΔEint. The EDA data for the different energy terms of N2 and CO suggest that
the stronger bond in the latter molecule does not come from stronger interatomic

2) One may also use electronically excited states of C and O for the EDA calculation of CO. There are
indeed cases where the electronic reference states of the fragments in a molecule are excited states
rather than the ground state. Examples are discussed later in the chapter and in the literature [12].
Excited states of O and C are not relevant for the EDA of CO.
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C O(c)

B F(d)

N N(a)

C O(b)

Figure 4.5 Schematic representation show-
ing the different ways of combining the elec-
tron configurations of the atoms in some
diatomic molecules for the EDA calculations
and the associated orbital interactions. (a)
Two nitrogen atoms in the 4S ground state

yielding N2. (b) C∞v symmetry adapted con-
figurations of (3P) C and (3P) O for CO. (c)
C2v symmetry adopted configurations of (3P)
C and (3P) O for CO. (d) C∞v symmetry
adapted configurations of (2P) B and (2P)
F for BF.

attraction. Both attractive components, for example, electrostatic attraction ΔEelstat

and orbital interactions ΔEorb, are weaker in CO than in N2. This holds for both
fragmentation schemes of CO (Table 4.2). The calculated data indicate that the
stronger bond in CO compared with N2 comes from weaker Pauli repulsion, which
overcompensates the loss of electrostatic attraction and orbital interactions. The
data for ΔEPauli in CO are in both fragmentation schemes smaller than in N2.

Which of the two fragmentation schemes for CO shown in Figure 4.5b and c
gives a more faithful description of the interatomic interactions? The answer is
the absolute values of ΔEorb. The orbital interactions ΔEorb signify the change
of the electronic structure of the fragments, which is induced by the mixing of
the occupied and vacant orbitals within the molecule. A smaller value for ΔEorb

indicates that the fragment is better suited for the covalent bonding than other
electronic states. Thus, the symmetry adapted configuration shown in Figure 4.5b
should be used for EDA calculations of CO. The data suggest that the contribution
of π bonding to the total orbital interactions is larger (49.2% of ΔEorb) than in N2

(34.3%). CO is clearly a molecule with a triple bond that should be written with the
Lewis structure (−)|C≡O|(+).

The EDA results for BF show (Table 4.2) that all energy termsΔEelstat,ΔEPauli and
ΔEorb are smaller than in N2 and in CO, but now the weaker Pauli repulsion does not
compensate for the loss of electrostatic attraction and orbital interactions. It seems
that the EDA terms do not provide an explanation3) for the much weaker bond in BF

3) We want to point out that the term ‘‘explanation’’ is used here in the sense of correlation which
is typical for addressing chemical matter. A fundamental explanation would address the question
in terms of elementary forces of physics which is rarely meant in chemistry.
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Table 4.2 Energy partitioning analysis of the N–N, C–O, and B–F Bonds at RPBE/TZP.a

N2 CO CO BF

Symmetryb D∞h C∞v C2v C∞v
ΔEint −232.2 −258.4 −258.4 −180.8
ΔEPauli 791.7 575.8 725.9 476.1
ΔEelstat

c −308.5 (30.1%) −240.0 (28.8%) −291.1 (29.6%) −210.5 (32.0%)
ΔEorb

c −715.4 (69.9%) −594.2 (71.2%) −693.2 (70.4%) −446.4 (68.0%)
ΔEσ

d −470.0 (65.7%) −301.7 (50.8%) −464.7 (67.0%) −396.4 (88.8%)
ΔEπ

d −245.4 (34.3%) −292.5 (49.2%) −228.5 (33.0%) −50.0 (11.2%)
b1: −143.8e

b2: −84.7e

Overlap σ 1.58 1.51 1.51 1.26
Overlap π 0.74 0.70 0.70 0.55
bond length 1.105 [1.098] 1.144 [1.128] 1.144 [1.128] 1.285 [1.262]
De 232.2 258.4 258.4 180.8
Do 228.8 [225.0] 255.4 [255.7] 255.4 [255.7] 278.9 [179.9]

Energy values are given in kcal/mol. Bond lengths are given in Å. Experimental values are given in
brackets.
aData are taken from Ref. [19].
bThe symmetry is given by the electronic structure of the atoms with respect to the molecule, see
Figure 4.5.
cValues in parentheses give the percentage of the total attractive interactions ΔEelstat +ΔEorb.
dValues in parentheses give the percentage of the total orbital interactions ΔEorb.
eThe b1 value gives the electron-sharing contribution to the π bond and the b2 value gives the
donor–acceptor contribution to the π bond, see Figure 4.5c.

compared with N2 and CO. However, the breakdown ofΔEorb into contributions ofσ
and π orbitals reveals that there is a significant difference between BF and the other
two diatomics. The strength of ΔEπ in BF is only −79.0 kcal mol−1 which is 12.9%
ofΔEorb. In contrast, theΔEπ values for N2 (−245.4 kcal mol−1, 34.3% ofΔEorb) and
CO (−292.5 kcal mol−1, 49.2% of ΔEorb) indicate much stronger π bonding. Note
that the strength of the σ orbital interactions in BF (396.4 kcal mol−1) is even larger
than in CO (301.7 kcal mol−1). The EDA data thus suggest that the weaker bonding
in BF comes from the much weaker π orbital interactions compared with N2 and
CO. This is in agreement with chemical intuition and with the most important
Lewis structure that has a B–F single bond but not a triple bond (2−)|B≡F|(2+).
According to the EDA results, BF is a molecule with a single bond whereas N2 and
CO are species with triple bonds, which explains why there is a weaker bond in BF.

4.6
Bonding in the Diatomic Molecules E2 of the First Octal Row E = Li–F

A strong feature of the EDA is the ability to connect qualitative bonding models
with a quantitative analysis of the actual wave function. This shall be demonstrated
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p p

S S

2σg
+

2σu
+

3σg
+

3σu
+

1πu

1πg

Figure 4.6 Orbital correlation diagram for diatomic molecules of main group elements.

by analysing the chemical bond in a first octal-row sweep of diatomic molecules
E2. Figure 4.6 shows a correlation diagram for the valence s and p orbitals of
the main-group atoms E, which give the molecules E2 [24]. The s/p hybridization
lowers the energy of the bonding 2σg

+ and antibonding 2σu
+ MOs while it raises

the energy levels of the bonding 3σg
+ and antibonding 3σu

+ MOs. Thus, for the
lighter species Li2 –N2 the bonding 3σg

+ MO is slightly higher in energy than the
1πu orbital. As a result, B2 has a triplet (X3Σg

−) ground state whereas C2 has a
singlet (X1Σg

+) ground state [25].
Figure 4.7 schematically shows the electron configuration and the orientation of

the atoms with the chosen orbital populations that are in accord with the electronic
ground states of E2. Note that the atomic fragments, which are used in the EDA
calculations of the (3Σg

−) triplet state of O2, are two oxygen atoms in the 3P
ground state, which is the symmetry allowed dissociation product [26].4) Hence,
a spin change of one electron in a p(π) orbital must take place during the EDA
calculation because a triplet molecule is constructed from two triplet fragments.

4) The generation of O2 in the 3Σg
− ground state from two (3P) oxygen atoms can not be illustrated

in a simple picture as shown as in Figure 4.7f which is therefore not quite correct.



4.6 Bonding in the Diatomic Molecules E2 of the First Octal Row E = Li–F 137

LiLi
(a)

1Σg
+

Be Be
(b)

1Σg
+

N N
(e)

1Σg
+

BB
(c)

3Σg
−

O

FF

O
(f)

3Σg
−

CC
(d)

1Σg
+

(g)

1Σg
+

Figure 4.7 Schematic representation of the
electron configuration and the orientation of
the atoms with the chosen orbital popula-
tions for the EDA. Note that for the 3Σg

−

state of O2 a spin change of one electron in
a singly occupied p(π) orbital takes place in
the EDA calculation [26].

The two components of the π orbital interactions in the EDA have therefore slightly
different values, which is, however, not relevant for the present purpose.

The EDA results for the diatomic molecules Li2 –F2 are given in Table 4.3. The data
of Li2 suggest that the attractive lithium–lithium interactions have about one third
electrostatic character whereas about two thirds come from orbital interactions. The
ΔEPauli value is very small because there is only Pauli repulsion between core–core
and core–valence electrons but no valence–valence repulsion. The chemical bond in
Li2 is valence isoelectronic to H2 but it possesses unusual features. It was previously
suggested [27] that induction forces significantly contribute to the chemical bond
in Li2. This can be investigated through an EDA calculation of Li2 where the p
valence AOs and all polarization functions at Li are deleted, which inhibits the
polarization of the 2s valence orbital and thus, eliminates induction. Table 4.4
gives the EDA result of Li2 with the reduced orbital space. The ΔEorb term lowers
from −14.2 kcal mol−1 to −9.8 kcal mol−1. The remaining part comes from genuine
orbital interactions, whereas the difference of −4.3 kcal mol−1 is polarization and
enhanced orbital interaction through hybridization. The EDA calculation of Li2

where also the higher-order s functions are deleted gives ΔEorb =−8.1 kcal mol−1

(Table 4.4). The small difference of −1.7 kcal mol−1 to the ΔEorb value where the
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Table 4.4 Energy partitioning analysis of some first row dimers E2 and related species at
BP86/TZ2P using designated fragments.a

E2 Li2
e Li2

+ Be2
El. state 1𝚺g

+ 2𝚺g
+ 1𝚺g

+

Virtual only s orbitals no virtual full only s orbitals in no virtual only s orbitals in
space in virtual space orbitals virtual space orbitals virtual space

𝚫Eint −16.4 −14.6 −27.9 −14.9 −12.3 19.2

ΔEPauli 1.8 1.8 2.9 2.9 2.9 41.6
ΔEelstat −8.3 −8.3 +2.1 +2.1 +2.1 −17.9
ΔEorb −9.8 −8.1 −32.8 −19.9 −17.3 −4.6
ΔEa1 (σ) −9.8 −8.1 −32.8 −19.9 −17.3 −4.6
ΔEa2 (δ) 0.0 0.0 0.0 0.0 0.0 0.0
ΔEb1 (π) 0.0 0.0 0.0 0.0 0.0 0.0
ΔEb2 (π) 0.0 0.0 0.0 0.0 0.0 0.0
ΔEcorr

b 0.1
De

a 27.7(33.2)
r(E–E)a 3.111

Energies in kcal/mol, distances r(E-E) in Å
aData are taken from Ref. [22a].
bCorrection for the spin polarization.

valence p and polarization functions are deleted indicates the energetic effect of
mixing in the 3s (and higher) functions yielding a different radius for the Li valence
s function in Li2.

A peculiar feature of the two-electron bond in Li2 is the finding that removing
one electron from the doubly occupied 2σg

+ bonding orbital (Figure 4.6) strengthens
the binding interactions. The BDE of Li2

+ (De = 33.2 kcal mol−1) is clearly higher
than the BDE of Li2 (De = 24.6 kcal mol−1) [25, 28]. This is contrary to dihydrogen
where the bond in H2

+ is about half as strong as in H2 [25]. Table 4.4 gives the
EDA results of Li2

+ which indicate that the stronger bond comes solely from the
ΔEorb term. The Pauli repulsions in Li2 and Li2

+ have nearly identical values and
the electrostatic interaction in Li2

+ is even repulsive. Thus, Li2
+ is, besides H2,

one of the rare examples where the classical electrostatic interaction at equilibrium
distance is not attractive. What about induction forces in Li2

+? Table 4.4 gives also
the EDA results of Li2

+ where the p valence AOs and the polarization functions
are deleted. After deleting the latter orbitals the ΔEorb term increases significantly
from −32.8 to −19.9 kcal mol−1, which shows that the polarization of the valence
AO in Li2

+ is very large. It is much larger than in Li2 where deleting the p valence
AOs reduces ΔEorb from −14.2 to −9.8 kcal mol−1. However, the strength of the
orbital interactions where only s AOs remain in the valence space in Li2

+ is still
bigger (−19.9 kcal mol−1) than in Li2 (−9.8 kcal mol−1). It follows that the stronger
bond in Li2

+ comes from genuine orbital interactions due to the much lower lying
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2s AOs of the cation that is further enhanced by strong induction forces5). Table 4.4
shows also the ΔEorb value after deleting the higher order (n)s orbitals (n> 2)
of Li in Li2

+. The calculated data of −17.3 kcal mol−1 suggests that the change
of the 2s orbital radius through bond formation in Li2

+ yields a stabilization of
2.6 kcal mol−1. This is slightly more than in Li2 where the higher order (n)s orbitals
contribute 1.7 kcal mol−1 to the bond.

The qualitative MO diagram of Be2 suggests that the molecules have only a
very weak bond because the repulsive interactions of the antibonding 2σu

+ MO
should partly cancel the bonding contribution of the 2σg

+ MO (Figure 4.6). Indeed,
the calculation of Be2 (1Σg

+) gives a BDE of only 7.9 kcal mol−1 which is slightly
higher than in the experiment (Table 4.3). The EDA calculation gives a significantly
larger ΔEPauli value of 41.6 kcal mol−1 compared with Li2 (1.8 kcal mol−1). There
is Pauli repulsion between the valence electrons in Be2, which does not occur in
Li2. Somewhat surprisingly, the ΔEorb term contributes −31.6 kcal mol−1 to the
attractive interactions which is twice as high as in Li2 (−14.2 kcal mol−1). How is
it that the ΔEorb term gives such a large stabilizing value for Be2 whereas the
MO diagram suggests that the orbital interactions should be weakly repulsive?
The answer is, that the energy rise of the 2σg

+ MO comes from the symmetry
constraints that are imposed through the Pauli principle. The energy levels of
the valence MOs, which are shown in the correlation diagram in Figure 4.6,
consider the Pauli repulsion whereas theΔEorb term only gives the relaxation of the
previously antisymmetrized wave function toward the final SCF solution. The sum
of the destabilizing EPauli term (41.6 kcal mol−1) and ΔEorb (−31.6 kcal mol−1) gives
a net destabilization of 10.0 kcal mol−1, which agrees with the rise of the 2σg

+ MO.
The stabilizing contribution ofΔEorb in Be2 comes mainly from the mixing of the

2p(σ) AO of Be into the 2σg
+ and 2σg

− MOs which enhances the bonding character
of the former and weakens the antibonding character of the latter orbital. This
becomes evident through an EDA calculation of Be2 where the 2p valence orbitals
and the polarization functions are deleted. Table 4.4 shows that the value for the
ΔEorb term becomes dramatically smaller after deleting the empty orbitals. The
strength of the remaining orbital interactions is only −4.60 kcal mol−1 that comes
from the mixing of the 3s and higher order s functions with the valence orbitals.

Diatomic B2 has a triplet (X3Σg
−) ground state where two electrons occupy the

degenerate 1πu orbital (Figure 4.6). According to the MO correlation diagram,
the molecule is bonded solely through its π bond. The EDA results provide a
quantitative estimate for the latter interpretation of the boron–boron bond. The
strength of the π orbital interactions (−72.0 kcal mol−1) matches nearly exactly
the total attraction of ΔEint =−74.4 kcal mol−1. The stabilizing contributions of
ΔE(σ) (−104.5 kcal mol−1) and ΔEelstat (−33.1 kcal mol−1) are roughly cancelled
by the Pauli repulsion ΔEPauli = 135.0 kcal mol−1. Diboron B2 may therefore be
considered as a π-bonded molecule. Note that the EDA results for B2 depend on the
alignment of the occupied AOs of the boron atoms in the calculation (Figure 4.7c),

5) The difference of the chemical bonding between Li2 and Li2
+ has been discussed in reference [5].
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which are not invariant to coordinate transformation. The arrangement shown in
Figure 4.7c follows from the Aufbau principle (Figure 4.6).

The qualitative MO diagram for (X1Σg
+) C2 suggests that, like in (X3Σg

−)
B2, chemical bonding, which is enhanced because the degenerate 1πu orbital
is now fully occupied, comes solely from the π orbitals (Figure 4.6). The
EDA results are in nice agreement with the qualitative model. The attractive π
orbital interactions (−188 kcal mol−1) are even stronger than the total attraction
of ΔEint =−140.8 kcal mol−1, because the Pauli repulsion at the rather short C–C
distance of 1.253 Å overcompensates (ΔEPauli = 252.2 kcal mol−1) the contribution
of the σ interactions (ΔE(σ)=−201.7 kcal mol−1). A peculiar feature of (X1Σg

+) C2

is the unusually weak electrostatic attraction ofΔEelstat −3.22 kcal mol−1 (Table 4.3),
which can be explained with the occupation of the valence shell of carbon and
the orientation of the occupied orbitals for bonding interactions (Figure 4.7d).
There are two electrons in the 2s AO, 2 electrons in the p(π) AO but none in
the p(σ) AO. A detailed analysis of the electrostatic interactions between atoms,
which have occupied s, p(σ) and p(π) valence orbitals, showed that p(π) valence
electrons yield repulsion while p(σ) valence electrons yield strong attraction [22].
Valence electrons in s orbitals like in Li2, Be2 and B2 lead to weak electrostatic
attraction but the strength of the ΔEelstat term depends on the interatomic distance
and particularly on the radius of the valence orbital. Carbon has a more compact
2s orbital than boron there are two electrons in p(π) AOs at carbon which leads to
weaker electrostatic attraction in C2 although it has a shorter bond (1.253 Å) than
B2 (1.617 Å). Like B2, C2 is a π bonded molecule.

The EDA results for (X1Σg
+) N2 were already presented in the previous section

where the trend of the isoelectronic molecules N2, CO, and BF were discussed. A
comparison of the results for N2, given in Tables 4.2 and 4.3, shows numerical
differences that are due to the different computational levels (BP86/TZ2P and
PBE/TZP) that were used in respective theoretical studies. The differences between
the absolute values are rather small and the percentage contributions of the different
terms to the total interactions are nearly the same. This is an important finding
because the EDA results would not be very useful if they depended significantly on
the theoretical level of the calculations.

It is intriguing to discuss the EDA data for N2 in comparison with the
other diatomic molecules E2. Because the nitrogen atom in the 4S electronic
ground state has the electron configuration 1s22s22px

12py
12pz

1, the p(σ) AO
of nitrogen is occupied (Figure 4.7e). This leads to a very large electrostatic
attraction of ΔEelstat =−312.9 kcal mol−1 for N2, which is a striking difference
to the value of ΔEelstat =−3.2 kcal mol−1 for C2. One could argue that dinitro-
gen is solely bonded through electrostatic attraction, because the strong Pauli
repulsion of ΔEPauli = 802.4 kcal mol−1 overcompensates the total orbital inter-
actions of ΔEorb =−729.8 kcal mol−1. Although the argumentation is valid, it is
like all partitioning schemes based on an arbitrary summing up of different
terms. A different but equally valid summation would come to the conclusion
that N2 is bonded through its π bonds. The strength of the π orbital inter-
actions ΔE(π)=−251.0 kcal mol−1 comes close to the total interaction energy
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ΔEint =−240.2 kcal mol−1, which means that the other three terms ΔE(σ), ΔEelstat,
and ΔEPauli roughly cancel. The summing up of ΔE(σ) and ΔEPauli is reasonable,
because there is Pauli repulsion only between electrons in the σ orbitals, which
means that the σ bond in N2 is very weak if not repulsive! It has already been
suggested in previous analyses of the chemical bond in dinitrogen that the σ bond
is rather weak [5, 27].

The large value of ΔEelstat =−312.9 kcal mol−1 for N2 shall be used to examine
the EDA approach for estimating the strength of electrostatic interactions that uses
the frozen charge densities of the fragments for the calculation ofΔEelstat. This may
be criticized, because the mere superposition of charge densities does not consider
the Pauli principle and thus, violates a fundamental law of physics. This could
lead to values for ΔEelstat being too large, because the antisymmetry constraint
of the overlapping orbitals imposed by the Pauli principle leads to removal of
electronic charge from the interatomic region. This question has been addressed in
a theoretical study where the change in the charge density of N2 in the ΔEPauli step
(antisymmetrization and renormalization) and in the following ΔEorb step (orbital
relaxation) have been investigated [22a].

Figure 4.8a shows that the antisymmetrization and renormalization in theΔEPauli

step as expected lead to removal of electronic charge from the nitrogen–nitrogen
bonding region. However, the following relaxation in the ΔEorb step (Figure 4.8b)

(a) (b)

(c)

Figure 4.8 Changes in the electron density of N2 during the EDA. Solid lines indicate
charge accumulation, dashed lines indicate charge depletion. (a) Antisymmetrization and
renormalization. (b) Orbital relaxation. (c) Total changes during step a and b.
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restores electron density in the area of σ and π bonding. It becomes obvious that,
in the ΔEPauli step, electronic charge from the bonding region is withdrawn and
becomes accumulated in the backside σ regions of the atoms. In the ΔEorb step
electronic charge is removed from the atomic p(π) region into the bonding area of σ
and π bonding but the charge concentration in the backside σ regions is also further
enhanced. Figure 4.8c shows the total changes that occur in the previous two steps.
The net changes in the electron density during the ΔEPauli step and the ΔEorb

step lead to an enhanced accumulation along the internuclear axis in the σ and
π bonding interatomic region and in the backside area while electronic charge is
removed from the p(π) area of the atoms. This should further enhance the attractive
contribution of the electrons in s and p(σ) orbitals to the ΔEelstat term. From this it
can be concluded that the quasiclassical electrostatic bonding using the unpolarized
charges, which are employed in theΔEelstat of the EDA, underestimates rather than
overestimates the strength of the electrostatic contribution to the chemical bond.

The EDA results for (X3Σg
−) O2 indicate (Table 4.3) that all energy terms

have smaller absolute values compared with N2 and that the chemical bond in
dioxygen is clearly weaker than in dinitrogen, which concurs with experiment.
The MO correlation diagram (Figure 4.6) suggests that the weaker bond in O2

comes from the occupation of the antibonding 1πg orbital. This is supported by
the EDA values for ΔE(π) that suggest that π-bonding in O2 (−127.6 kcal mol−1)
is roughly half as strong as in N2 (−251.0 kcal mol−1). Like for N2, it could be
argued that O2 is a π-bonded molecule, because the strength ΔE(π) is nearly as
large as the total interaction energy ΔEint =−141.9 kcal mol−1. Note, however, that
O2 is the first molecule in the series where there is Pauli repulsion between π
electrons, because the oxygen atoms have a doubly occupied p(π) AO interacting
with a singly occupied p(π) orbital of the other atom (Figure 4.7f). The value
ΔEPauli = 464.9 kcal mol−1 may thus not be considered anymore as part of the
σ interactions alone although the contribution of the π electrons to the Pauli
repulsion will be much smaller than σ Pauli repulsion because the overlap of the
π electrons S(π) is much smaller than S(σ). Table 4.3 shows that the quasiclassical
electrostatic attraction ΔEelstat =−159.7 kcal mol−1 is slightly stronger as the total
interaction energy ΔEint =−141.9 kcal mol−1. The terms ΔEPauli (464.9 kcal mol−1)
and ΔEorb (−447.1 kcal mol−1) nearly cancel each other. Without conceptual biases,
it can be concluded that O2 would not be a stable molecule without the stabilizing
contribution of the quasiclassical attraction ΔEelstat.

The Lewis bonding model for F2 assigns a single bond to the molecule. This agrees
with the MO correlation diagram which suggests that there is no π-bonding in diflu-
orine, because the bonding and antibonding π orbitals 1πu and1πg are fully occupied
(Figure 4.6). This leaves only the σ orbitals as the source for the bonding orbital
interactions, because there are two bonding σ orbitals (2σg

+ and 3σg
+) but only one

antibonding σ orbital (2σu
+). The EDA results in Table 4.3 appear at first glance to

support the view that the F–F bonding comes from the σ orbital interactions. The
stabilizing contributions of ΔE(σ)=−151.5 kcal mol−1 andΔE(π)=−6.2 kcal mol−1

imply that the binding interactions come from the σ orbital that are much
stronger, however, than the calculated total attraction of ΔEint =−52.9 kcal mol−1.
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The picture changes when the Pauli repulsion is considered. The contribution
of ΔEPauli = 146.1 kcal mol−1 nearly cancels the value of ΔEorb =−157.8 kcal mol−1

that makes the electrostatic attraction ΔEelstat =−41.2 kcal mol−1 to become the
dominant term for the chemical attraction.

The comparison of the MO correlation diagram with the EDA results make it
clear that the trend of the bond strengths for the diatomic species E2 from E= Li–F
can be discussed in terms of σ and π orbital interactions only when the Pauli
repulsion and the electrostatic attraction are sometimes neglected but sometimes
considered in an arbitrary way. In Li2, ΔEPauli is very small and the Li–Li bond
can be identified as σ bond, which is enhanced by electrostatic attraction. In Be2,
Pauli repulsion is important, because it must compensate the σ orbital interactions
and most of the electrostatic attraction. The sole π bonds in B2 and C2 that are
suggested by the MO correlation diagram (Figure 4.6) are recovered from the EDA
results when the remaining terms ΔE(σ), ΔEPauli, and ΔEelstat are either ignored
or mutually compensating, which amounts the same. The classical triple-bond
model with σ and degenerate π bonding for N2 is only valid when the very strong
Pauli repulsion in the EDA is completely ignored, which yields, however, a bond
strength that is far too high. The same holds true for O2 where the classical double
bond, which consists of one σ bond and two semi π bonds, is only recovered when
ΔE(σ) and ΔE(π) are considered as exclusive terms for bonding which leads to a
bond strength that is too high, however. Finally, the attractive ΔE(σ) and ΔE(π)
values for F2 which suggest a single bond are nearly compensated by the Pauli
repulsion. The F–F net attraction is only recovered by electrostatic bonding. All
these findings highlight the importance of considering ΔEelstat, ΔEPauli, and ΔEorb

each individually as essential quantities that are needed all together for a true
understanding of the bonding mechanism.

4.7
Bonding in the Dihalogens F2 – I2

Covalent bonds A–B between valence isoelectronic atoms tend to become weaker for
heavier atoms A and B. This holds in particular [29] when chemical bonds between
atoms of the first octal row are compared with heavier homologues. A well known
exception is the dihalogen group of atoms, where the BDE of F2 is significantly
smaller than for Cl2. This is usually explained with the repulsion between the
lone-pair electrons of the halogens that is assumed to become exceptionally large
in difluorine because the F–F distance is rather short. This reasoning can be
questioned, because the radius of the very electronegative element fluorine is very
small, which means that the overlap of the p(π) orbitals in F2 might not be very
large. Also, the EDA calculations of N2 and O2 have shown that it is the σ orbitals
and not the π orbitals that yield strong Pauli repulsion. A comparison of the EDA
data for the dihalogens F2 – I2, which are given in Table 4.5, provides a plausible
basis to check whether unusually strong Pauli repulsion between the lone-pair
electrons is responsible for the weak bond in F2.
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Table 4.5 Energy decomposition analysis of the E–E bond for E= F− I at RPBE/TZP.a

F2 Cl2 Br2 I2

ΔEint −47.4 −59.1 −47.8 −34.1
ΔEPauli 140.8 123.2 76.7 45.4
ΔEelstat

b −38.2 (20.3%) −44.1 (24.2%) −31.9 (25.6%) −19.8 (24.9%)
ΔEorb

b −150.0 (79.7%) −138.1 (75.8%) −92.6 (74.4%) −59.7 (75.1%)
ΔEσ

c −144.6 (96.4%) −123.8 (89.6%) −85.9 (92.8%) −59.4 (99.5%)
ΔEπ

c −5.4 (3.6%) −14.3 (10.4%) −6.7 (7.2%) −0.3 (0.5%)
R(E–E) 1.424 (1.412) 2.037 (1.987) 2.381 (2.281) 2.860 (2.666)
De −47.4 −59.1 −47.8 −34.1
Do −46.0 (−36.9) −58.3 (−57.2) −47.4 (−45.4) −33.8 (−35.6)

Energy values in kcal mol−1. Bond lengths R in Å. Experimental values are given in parentheses.
aData are taken from Ref. [19].
bThe values in parentheses give the percentage contribution to the total attractive interactions
ΔEelstat +ΔEorb.
cThe values in parentheses give the percentage contribution to the orbital interactions ΔEorb.

The EDA results suggest that the orbital interactions ΔEorb increase
monotonously if one goes from the heavier to the lighter systems that have the
regular trend F2 >Cl2 >Br2 > I2. The value for the Pauli repulsion ΔEPauli exhibits
the same trend but there is not an unusually large increase from Cl2 to F2. This
becomes obvious by inspection of the graphical display for the trend of the energy
terms that is shown in Figure 4.9. The increase in ΔEorb and ΔEPauli exhibits a
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Figure 4.9 Trends of the various terms of the EDA for the dihalogens F2 − I2 calculated at
RPBE/TZP.
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straight line from I2 to Br2 and Cl2 but the further rise in the absolute values from
Cl2 to F2 is less steep than in the previous steps. There is no abnormally large
increase in Pauli repulsion for F2! The EDA results rather suggest that the trend of
the electrostatic attraction ΔEelstat shows a peculiar behavior when one goes from
Cl2 to F2. The electrostatic attraction becomes larger in the order I2 <Br2 <Cl2
but then it decreases for F2. Thus, the energy term which exhibits an abnormal
behavior when the chemical bonding in the dihalogens are compared is not the
Pauli repulsion but the electrostatic attraction. This can be explained with the very
small radius of the atomic valence orbitals of fluorine that yield less attraction
in F2 compared with Cl2. The question whether Pauli repulsion or electrostatic
attraction is the key factor for the weak bonding in F2 is thus a chicken-and-egg
problem. At shorter F–F distance, electrostatic attraction would become stronger
but bond shortening is prevented by Pauli repulsion. The weak F–F bond could
therefore equally be related to the long F–F bond caused by the increase of Pauli
repulsion and to the weak electrostatic attraction at the equilibrium distance.

4.8
Carbon–Element Bonding in CH3-X

The principles uncovered and discussed above for diatomics apply likewise for
archetypal bonds A–B in polyatomic molecules. The only fundamental difference
now is that the bond energy ΔE (=−De) is smaller than the instantaneous
interaction ΔEint because it also considers the preparation energy ΔEprep that is
associated with the deformation of the polyatomic fragments A and B through
bond formation in the molecule A–B (see Eq. (4.2)). The preparation energy ΔEprep

is often much smaller than ΔEint but sometimes it can be rather large. In the
latter case, the trend of the bond strength given by the interaction energy ΔEint

and the bond energy ΔE (=−De) may become very different. Here, we illustrate
both situations using the archetypal carbon–element bonds C-X in model systems
CH3X, in which X varies down group 18 (F, Cl, Br, I) [30] or along the second
period (F, OH, NH2, CH3) of the periodic table.

The former series of halomethanes is an example of the more common situation
in which ΔEprep is small but it does not change the trend of the bond strength
given by ΔEint. Again, a full understanding requires taking into account ΔEelstat,
ΔEPauli, and ΔEorb but the homolytic bond strength ΔE between a methyl radical
and a halogen atom follows the trend in polarity and becomes weaker from C–F
to C–Cl, to C–Br to C–I. This reflects the decrease in polarity as the halogen
becomes less electronegative. The latter shows up in a valence npσ SOMO that
rises in energy and, from below, approaches the sp3-type SOMO of the methyl
radical (see Figure 4.10). The raise in halogen SOMO energy directly translates into
less stabilization for the electron stemming from the higher-energy methyl SOMO
which leads to the computed (and observed) weakening of the C–X bond.

On the other hand, if X in CH3X varies along the first octal row, the deformation
associated withΔEprep at a certain point becomes decisive for the trend in C–E bond
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strength [31]. The C–E bond in CH3X weakens if one goes from C–F to C–O to
C–N (from ΔE=−114.4 to –93.8 to −85.4 kcal mol−1), following a similar pattern
as for the series in carbon–halogen bonds that become weaker as the bond polarity
decreases (cf. Figure 4.10). But then, from C–N to C–C, the C–E bond becomes
stronger again (from −85.4 to −89.9 kcal mol−1, Table 4.6). This variation in bond
strength ΔE along the different C–E bonds emerges from a similar behavior in
the instantaneous interaction ΔEint. Note, however, that the strengthening from
C–N to C–C bond is even more pronounced for ΔEint than for ΔE but that it is
counteracted, yet not dominated, by a striking increase in the deformation energy
ΔEprep from 9.4 to 18.4 kcal mol−1 (see Table 4.6).

This phenomenon is a consequence of the fact that the methyl group in
ethane adopts a pyramidal geometry. This pyramidalization is associated with
a relatively high deformation energy ΔEprep of 18.4 kcal mol−1 as compared to
6.3–9.4 kcal mol−1 for the other C–E bonds in the series. The overall effect of this
deformation is, however, favorable. In this way, Pauli repulsion between vicinal C–H
bonds is avoided and, therefore, the C–C bond can contract and the instantaneous
interaction ΔEint increases. If one artificially suppresses the pyramidalization
of one of the two methyl groups, the term ΔEprep drops to 8.5 kcal mol−1 (see
CH3 –[CH3] in Table 4.6). However, the small gain in avoided deformation energy
induces an enormous increase in Pauli repulsion at any C–C bond distance [31].
If the geometry of ethane is optimized with the constraint that one methyl group
remains planar (CH3 –[CH3]), the C–C bond becomes substantially longer (1.677 Å)
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Table 4.6 Energy decomposition of the C–E bond in CH3F, CH3OH, CH3NH2, and CH3CH3
at ZORA-BLYP/TZ2P.a

R(C–E) 𝚫E 𝚫Eprep 𝚫Eint

CH3 –F 1.413 −114.4 6.3 −120.7
CH3 –OH 1.443 −93.8 8.1 −101.9
CH3 –NH2 1.480 −85.4 9.4 −94.8
CH3 –CH3 1.540 −89.9 18.4 −108.4
CH3 –[CH3]b 1.677 −63.0 8.5 −71.4

Energy values in kcal/mol. Bond lengths R in Å.
aData are taken from Ref. [30].
bOptimized while keeping one methyl group fixed in a planar geometry.

and weaker (ΔE=−63.0 kcal mol−1) than in the equilibrium geometry of ethane
(1.540 Å; ΔE=−108.4 kcal mol−1).

In the other C–E bonds, there is also Pauli repulsion with E–H bond orbitals as
well as E lone pairs. But here, bending away the E–H bonds (which would be the
equivalent to methyl pyramidalization) does not yield a reduction in Pauli repulsion.
The reason is that the lone-pair orbitals at the central atom of NH2, OH and also F
do not involve any substituent atoms (such as the H atoms in the E–H bonds) that
could be bent away. Note that the artificial CH3 –[CH3] (with one planar methyl
group) resembles the other CH3X (with lone pairs that can notbend) more closely
than true ethane. Consequently, along CH3F, CH3OH, CH3NH2 and CH3[CH3],
we recover again the trend of a monotonic weakening in ΔE and ΔEint along the
entire series that stems (among others) from the reduction in the electronegativity
difference across the C–E bond as explained above for the carbon–halogen bonds
(see Figure 4.10).

This finding on the trends in carbon–element bonding highlights how bond
distance and bond strength are the result of an interplay of, on the one hand, the
instantaneous interaction ΔEint between molecular fragments that are connected
by that bond and, on the other hand, the geometrical deformation and strain energy
ΔEprep that results from this interaction. This interplay and the role of geometrical
strain becomes even more important and often dominates trends if one goes from
local energy minima (molecular structure and bond strength) to saddle points
(transition states and reaction barriers); [32] this is, however, beyond the scope of
this chapter.

4.9
EDA-NOCV Analysis of Chemical Bonding in the Transition State

At present, the most common approach for investigating the interactions between
two molecules that involve bond formation/bond breaking rests on the inspection
of the energetically highest lying occupied and lowest lying vacant orbitals of the
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species. The frontier molecular orbital (FMO) theory was introduced into chemistry
by Fukui [33] in the 1960s and it has become a cornerstone for understanding
and predicting chemical reactions that involve covalent bond formation. The FMO
model considers the energy levels and the spatial distribution of HOMO and LUMO
of the reacting species as key factors for the reaction course [34]. The success of
the FMO model is somewhat surprising considering the fact that the frontier
orbitals of the separated fragments at their equilibrium geometries are considered
whereas the critical step of the reaction is the TS which often invokes a substantial
distortion of the interacting species. This issue is solved in the activation strain
model of chemical reactivity in which the fragment approach is transported from
stable molecules (local minima) to TSs (saddle points) and entire reaction profiles
(non-stationary points) [32, 35]. Thus, the change in energy along the reaction
coordinate is analyzed in terms of the two separate reactants as they approach
from infinity and begin to interact and deform each other more and more on their
way to the products. In the simplest form of this model, the activation energy
ΔE‡ associated with the TS is decomposed into the strain energy ΔE‡strain and the
interaction energy ΔE‡int:

DE‡ = DE‡strain + DE‡int (4.5)

The activation strain ΔE‡strain in Eq. (4.5) is the energy associated with deforming
the reactants from their equilibrium geometry into the geometry they acquire in the
activated complex. It can be divided into a contribution stemming from each of
the reactants. The TS interaction ΔE‡int is the actual interaction energy between
the deformed reactants in the transition state, and can be further decomposed using
either the regular EDA or EDA-NOCV. The EDA-NOCV method makes it possible
to quantify the charge flow and the pairwise orbital interactions between two
species even in the absence of any symmetry. This is why a particular value of the
EDA-NOCV lies in the information that can be obtained about the bonding between
molecular fragments that are connected by multiple bonds or in species that loose
(some of) their symmetry elements along a geometrical deformation or reaction.

We present the results of EDA-NOCV calculations for two elementary steps of
addition reactions that demonstrate the power of the method for gaining insight to
the bond formation/bond breaking reaction, which goes far beyond the information
given by the FMO model. We wish to emphasize that the EDA-NOCV method is
not suggested as replacement for the FMO approach, but rather as a significant
progress in gaining more detailed insight into chemical reactions.

The two reactions concern the addition of H2 and CO2 to the amido-substituted
digermyne R2N-GeGe-NR2:

R2N −GeGe − NR2 +H2 → R2N −GeGe(H)2 − NR2 (4.6)

R2N −GeGe − NR2 + CO2 → R2N −Ge(CO)2Ge − NR2 (4.7)

We do not discuss the complete mechanisms of reactions 6 and 7 which involve
several steps. Here we are only concerned with the transition states of the first step
of the reactions. Details of the two reactions are given in the literature [36].
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Figure 4.11 shows the calculated reaction profiles at BP86/TZVPP of the first
steps of the addition reactions 6 and 7 of 1Ge where R=CH3. The transition state
for the hydrogenation reaction suggests that H2 approaches only one Ge but one
hydrogen atom is tilted toward the second Ge (Figure 4.11a). The reaction product
of the first step of the reaction 1Ge(H2) has one hydrogen atom that is bridging the
germanium atoms while the second H is bonded to one Ge. The first step of the
CO2 addition proceeds as insertion reaction yielding 1Ge(H2) where the Ge–Ge
bond is broken (Figure 4.11b).

The question addressed concerns the dominant orbital interactions in the
transition states TS1Ge(H2) and TS1Ge(CO2). The FMO model suggests that
the mixing of HOMO and LUMO of the reacting species should be the dominant
contribution to ΔEorb. Table 4.7 gives the numerical results of the EDA-NOCV
calculations of the transition states where 1Ge+H2 and 1Ge+CO2 are taken as
interacting fragments. It becomes obvious that, in the hydrogenation reaction,
there are two major components ΔEorb(1) and ΔEorb(2) which contribute with
−37.0 kcal mol−1 and −35.1 kcal mol−1 to the total orbital term ΔEorb. In contrast,
there is only one major componentΔEorb(1) which provides the major contribution
of −32.8 kcal mol−1 to the orbital interactions in the CO2 addition.

Figure 4.12 graphically displays the most important orbital interactions in the
transition state of the hydrogenation reaction 6. The left hand side (a) qualitatively
sketches the FMO picture of the reaction. The middle part (b) shows the HOMO of
H2 and the LUMO of 1Ge which refer to the H2→1Ge donation and the HOMO of
1Ge and the LUMO of H2 which are related to the H2←1Ge backdonation. Finally,
the right hand side (c) shows the deformation densities Δ𝜌(1) and Δ𝜌(2) which
are associated with the orbital components ΔEorb(1) and ΔEorb(2) which contribute

Table 4.7 EDA-NOCV calculations at BP86/TZVP+ of the transition states TS1Ge(H2) and
TS1Ge(CO2) for the addition of H2 and CO2 to the amido-substituted digermynes Me2N-
GeGe-NMe2 (see Figures 4.12–4.14).

TS1Ge(H2) TS1Ge(CO2)
Fragments Me2N-GeGe-NMe2 + H2 Me2N-GeGe-NMe2 +CO2

ΔEint −13.9 −11.2
ΔEPauli 131.1 69.1
ΔEelstat

a −60.0 (41.4%) −37.4 (46.6%)
ΔEorb

a −84.9 (58.6%) −42.9 (53.4%)
ΔE(1)A→LGeGeL

b −37.0 (43.5%)c −6.4 (14.9%)d

ΔE(2)A←LGeGeL
b −35.1 (41.3%)c −32.8 (76.5%)d

ΔERest −12.8 (15.2%) −3.7 (8.6%)

Energy values in kcal/mol.
aThe values in parentheses give the percentage contribution to the total attractive interactions
ΔEelstat +ΔEorb.
bThe values in parentheses give the percentage contribution to the orbital interactions ΔEorb.
cFragment A=H2
dFragment A=CO2
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Figure 4.12 (a) Qualitative sketch of the
orbital interactions for the addition reac-
tion of H2 to Me2N-GeGe-NMe2. (b) Fron-
tier orbitals of the reacting species H2 and
Me2N-GeGe-NMe2. (c) EDA-NOCV results of
the two most important pairs of interacting

orbitals in the transition state. The colour
coding for the orbitals indicates the sign
of the MOs while the colour coding of the
deformation densities Δ𝜌(1) and Δ𝜌(2) gives
the charge flow from the yellow to the green
areas.

with −37.0 kcal mol−1 and –35.1 kcal mol−1 to ΔEorb. Note that the colour coding
for the orbitals indicates the sign of the MOs whereas the colour coding of the
deformation densities gives the charge flow from the yellow space to the green
area. The shape of the charge flow suggested that the slightly larger component of
−37.0 kcal mol−1 can be assigned to the H2→1Ge donation (top) whereas the second
major contribution of −35.1 kcal mol−1 comes from the H2←1Ge backdonation.
But it also becomes obvious that the donation and the backdonation involve not
only the HOMO and LUMO of the reactants. Inspection of the NOCV pairsΨk/Ψ−k

(k= 1, 2), which are associated with the deformation densities Δ𝜌(1) and Δ𝜌(2)
(Eq. (4.3), shows that there are indeed further orbitals of the reactants that become
important for the orbital interaction in the transition state.

Figure 4.13a displays the NOCV pair Ψ1/Ψ−1 which is connected to the defor-
mation density Δ𝜌(1). The occupied NOCV Ψ1 has large contributions from the
HOMO of H2 but also from the HOMO-2 and HOMO-4 of 1Ge. Also, the vacant
NOCV Ψ−1 is a linear combination of the LUMO of H2 with large contributions of
the LUMO and LUMO+1 of 1Ge that leaves the p(π) AO of one germanium atom
and the 1s AO of only one hydrogen atom as dominant parts of the NOCV Ψ−1.
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The significant participation of occupied orbitals of 1Ge to the NOCV Ψ1 and of
vacant orbitals of 1Ge to the NOCV Ψ−1 comes from the large deformation of the
electronic charge due to the geometrical changes from the equilibrium structure
to the transition state. A similar situation is found for the NOCV pair Ψ2/Ψ−2

(Figure 4.13b) which is connected to the deformation density Δ𝜌(2). The occupied
NOCV Ψ2 has two large contributions from the HOMO and HOMO-3 of 1Ge
whereas the vacant NOCV Ψ−2 has three major components from the LUMO of
H2 and from the LUMO and LUMO+1 of 1Ge.

The breakdown of the orbital interactions in the transition state of the CO2

addition to 1Ge into contributions of the donor and acceptor orbitals is shown
in Figure 4.14. The EDA-NOCV results give a simpler interpretation of the MO
terms than for the hydrogenation reaction. The single dominant deformation den-
sity Δ𝜌(1) is easily associated with the CO2←1Ge backdonation which provides
−32.8 kcal mol−1 to the orbital interactions. The comparison of the spatial distri-
bution of Δ𝜌(1) with the HOMO of 1Ge and the LUMO of CO2 makes it easy to
identify the latter frontier orbitals as the most important MOs for the interactions
in the transition state TS1Ge(CO2). We do not analyze the orbital interactions

HOMO of CO2 to
LUMO of 1Ge

LUMO of CO2 to
HOMO of 1Ge

Δ𝜌(1)
(ΔEorb′ = −6.4 kcal mol−1l)

Δ𝜌(2)
(ΔEorb′′ = −32.8 kcal mol−1)

Donor orbital Acceptor orbital

HOMO of CO2 LUMO of 1Ge

HOMO of 1Ge LUMO of CO2

Ge

Ge
Ge

C

N
NC

C

Co

o

C

Ge

Ge Ge

O

O

O

O

C

C

Me2N

NMe2

NMe2

Figure 4.14 Frontier orbitals of the reacting
species for the reaction of CO2 to Me2N-
GeGe-NMe2 and EDA-NOCV results of the
two most important pairs of interacting
orbitals in the transition state. The color

coding for the orbitals indicates the sign
of the MOs while the colour coding of the
deformation densities Δ𝜌(1) and Δ𝜌(2) gives
the charge flow from the yellow to the green
areas.



4.10 Summary and Conclusion 155

that are associated with the next largest deformation density Δ𝜌(2) that is shown
in Figure 4.14. It comes from the CO2→1Ge donation, which is much weaker
(−6.4 kcal mol−1) than the CO2←1Ge backdonation. The numerical data agree with
the chemical intuition that CO2 is a better electron acceptor than donor.

In summary, the EDA-NOCV method has the advantage over the standard
EDA approach that the orbital term ΔEorb can be broken down into pairwise
contributions for the interactions between the reacting species even if the model
system has no symmetry (C1 point group symmetry). The associated energies give
the strength of the orbital interactions. In agreement with the FMO theory, there is
usually only a very small number of orbital pairs that make a large contribution to
ΔEorb. Unlike the FMO model, the EDA-NOCV method uses the actual orbitals of
the reacting species for the description of the transition state. Of course, the EDA-
NOCV can also be used for analyzing the chemical bond. Examples are discussed
in the chapter ‘‘Donor–Acceptor Complexes of Main-Group Elements’’ in Vol. 2 of
this book.

4.10
Summary and Conclusion

The results of the EDA calculations of archetypical types of chemical bonds which
are discussed in this chapter demonstrate that it is possible to address the question
about the nature of the chemical bond in terms of familiar concepts that can be
identified and quantitatively expressed using accurate quantum chemical methods.
The three energy termsΔEelstat,ΔEPauli, andΔEorb which are uniquely defined in the
EDA method can be interpreted in a plausible way that connects heuristic bonding
models with the physical mechanism of the chemical bonds. The EDA results show
that orbital interactions are not always the crucial terms for determining the trend
of the bond strength. The electrostatic attraction, which can be very large even in
nonpolar bonds, and the repulsive forces, which come from the Pauli exclusion
principle, can be very important for understanding the strength of the interatomic
interactions. The analysis of the bonding in the diatomic molecules Li2 – F2 shows
that the equilibrium distance of covalent bonds is determined by the increase of the
Pauli repulsion but not by the maximum overlap of the valence orbitals. Another
advantage of the EDA partitioning method is that the instantaneous interaction
energy of a chemical bond is considered. The ΔEint values can be very different
from the BDEs because the preparation energy of the interacting fragments may be
large. The advancement to the EDA-NOCV method makes it possible to estimate
the charge flow and the associated energy contribution of the pairwise orbital
interactions even in the absence of symmetry. This makes the EDA a very powerful
method for analyzing interatomic interactions at equilibrium structures and in
transition states. The EDA can be considered as a bridge between the classical
heuristic bonding models of chemistry and the physical mechanism of chemical
bond formation.
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5
The Valence Bond Perspective of the Chemical Bond
Sason Shaik, David Danovich, Wei Wu, and Philippe C. Hiberty

5.1
Introduction

One of the fundamental paradigms of chemistry is the chemical bond, the building
block from which an entire chemical universe can be constructed [1]. This theoretical
notion serves as the means of understanding the apparent magic of chemistry:
one molecule disappears and is replaced by a new one. The magic is accordingly
represented in terms of molecules changing into one another by breaking some
bonds and making new ones. As such, the bond is the basis of the grand scheme
of ‘‘Lego’’ by which practicing chemists devise and control the formation of new
molecules of ever-increasing complexity and beauty.

With the birth of quantum mechanics, the chemical bond was described by
both valence bond (VB) and molecular orbital (MO) theories. This was done in
a manner that seemed entirely different and at times with bitter rivalry, which
in the long run has caused more damage than good [2]. Our chapter on the
‘‘Bridging Cultures’’ (Chapter 2 in Vol. 1) shows that the VB and MO descriptions
are mutually transformable, and hence are not different. There are quite a few
other chapters in the monograph that describe the MO perspective of bonding.
This chapter recounts the VB perspective of the bond paradigm and focuses on the
most ubiquitous bonding form, the two-electron bond.

The electron-pair bond has been traditionally described in terms of two bond
families, the covalent (inclusive of polar covalent) and ionic bonds. We shall
describe these traditional classes, but as we shall show, the articulation of the bond
paradigm requires that alongside the covalent and ionic bonds, there should exist
a third and a distinct class of bonding, the so-called charge-shift (CS) bonding
[3], which has typical characteristics and some unique experimental signatures.
We shall describe these three classes in this chapter. Furthermore, we shall form
bridges to other theories by demonstrating that CS bonding can be articulated
also from theories based on electron density consideration, specifically the electron
localization function (ELF) [4] and atoms in molecules (AIM) [5] theories, which
are also reviewed in this book (Chapters 10 and 8). There are of course other bond
types, such as the odd-electron and hypervalent bonds, which also belong to the
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CS-bonding family. However, our choice is to focus here on electron-pair bonding,
while these other bond types are mentioned in passing.

This chapter introduces initially the Pauling application of VB theory to derive
the classical bond families, and discusses the major deficiency of his scheme. The
second part presents the modern VB theory [6] and derives the three bond families.
Because this is not a chapter on the techniques of VB theory, we have added a
short appendix, which outlines the key elements of the modern VB theory. More
details can be found in review sources [6, 7]. In the third part of the chapter, we
create bridges to ELF and AIM theories and show how CS bonding emerges also
from these theories. Then, we discuss the physical origins of CS bonding. And,
subsequently, we describe experimental manifestations of this new bond family.
Finally, we try to trace the potential territory of CS bonding. We hope that the
experimental community will find novel experimental articulation of the theory of
CS bonding.

5.2
A Brief Historical Recounting of the Development of the Chemical Bond Notion

The concept of the electron-pair bond was formulated in a stroke of genius by
Gilbert Newton Lewis (Figure 5.1) in his famous 1916 JACS article, ‘‘The Atom and
the Molecule’’ [8]. Lewis was seeking an understanding of the behavior of strong and
weak electrolytes in solution [9]. And as with the Biblical King, Saul, who meant to
seek for his father’s donkeys and instead found a kingdom, so did Lewis find the
concept of the electron-pair bond as an intrinsic property that stretches between
the covalent and ionic situations. This work has eventually had its greatest impact
in chemistry through the work of Langmuir [10], who very ably articulated the
Lewis concept, coining new and catchy terms [11]. Another important influence of

(a) (b)

A B C

Figure 5.1 The development of the electron-
pair bonding description by Lewis in his
seminal paper [8]. (a) A Lewis caricature with
his electron-pair bonding cartoon appearing
in the second half of the paper. (Repro-
duced with permission of W.B. Jensen.) (b)
The description of the electron-pair bond

in terms of atoms depicted as boxes with
octet (C). Note that the bond is a dynamic
entity, stretching between covalent (C) and
ionic forms (A). (Part (b) is reproduced with
permission from Ref. [8]. Copyright 2011
American Chemical Society.)
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Figure 5.2 (a) A pictorial representation of the Heitler–London wave function. (b) Photos
of Heitler and London.

the Lewis ideas was on the understanding of reaction mechanisms as established
by the English School of Lapworth, Robinson, Lowry, and Ingold [12]. This has
eventually led to the development of the science of physical organic chemistry [13],
which rules mechanistic thinking to this day.

The overwhelming chemical evidence that supported the Lewis model presented
an exciting agenda for research directed toward understanding the mechanism
whereby the electron pair could constitute a bond. This, however, remained
mysterious until 1927, when Walter Heitler and Fritz London went to Zürich to
work with Schrödinger. In the summer of the same year, they published their
seminal paper [14], which calculates the bonding energy in H2. Using modern
terminology, the bond energy in H2 was shown to arise from the resonance
interaction between the two spin arrangement patterns, H↑H↓ and H↓H↑, required
to generate a singlet electron pair (Figure 5.2). In the winter of 1928, London [15]
drew the basic principles of the nonionic bond, and his theory was, in essence, a
quantum mechanical articulation of Lewis’ covalent bond.

The Heitler–London papers mark the birth of the VB theory. Lewis is not
cited in these papers; this omission may simply reflect the rift between the two
communities. Nevertheless, Pauling was a chemist who was a resident in the two
communities, and he wrote to Lewis [16] in 1928 about the exciting verification of
his ideas by Heitler and London. This recognition propelled Pauling to develop a
quantum mechanical version of the Lewis model. This quantum mechanical artic-
ulation of Lewis’s shared-pair model has culminated in a generalizing intellectual
construct [17], which described the electron-pair bond A–X as a superposition of
covalent (Φcov) and ionic forms,ΦA+X− andΦA−X+ (Figure 5.3), and thereby enabled
a unified description of bonding in any molecule, in terms of the VB theory. Around
the same time, Slater and van Vleck [18] showed that an MO treatment followed by
a complete configuration interaction is equivalent to the VB-based covalent-ionic
scheme of Pauling. In Pauling’s work, the long sought for Allgemeine Chemie of
Ostwald [19], the father of physical chemistry, was finally achieved.

In retrospect, reading Lewis’ paper shows that he anticipated the ideas that
underlie the physical organic chemistry school [11, 12b, 16] of Ingold, and the
resonance concept [12b, 20] expounded by Pauling. Indeed, Pauling himself
dedicated his monograph [17] to Lewis, thereby expressing the link and influence
of Lewis’ work on his own. As noted by Hager [21], Pauling’s biographer, Pauling
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A X A+ X− A : − X+

(b)(a)

L. Pauling

Figure 5.3 (a) A schematic representation of Pauling’s covalent-ionic superposition
scheme. (b) Pauling’s photo.

discovered Lewis’ 1916 paper [8] by reading Langmuir’s [10] 1919 paper. Until
reading these two papers in 1920, Pauling had been teaching a chemistry course
at Oregon Agricultural College in which he used the image of a chemical bond as
consisting of hooks and eyes, for example, with the sodium atom having an eye
and chorine having a hook. Thus, the birth of the VB theory in chemistry was an
ingenious quantum chemical dressing of the Lewis seminal idea by Pauling, and
can be referred to as the Pauling–Lewis VB theory.

5.3
The Pauling–Lewis VB Perspective of the Electron-Pair Bond

Figure 5.4 describes the key elements of the Pauling–Lewis perspective of electron-
pair bonding in terms of VB mixing diagrams [3g]. Three structures, one covalent,
Φcov, and two ionic ones, ΦA+X− and ΦA−X+ , describe any A–X bond, which may
either be homo or heteronuclear.

The covalent structure (Figure 5.4a) is stabilized by spin pairing due to the
resonance of the A↑X↓ and A↓X↑ spin arrangement forms, and contributes the
covalent bond energy due to spin pairing, denoted as Dcov. For a dominantly
covalent bond, whereΦcov is the lowest VB structure (Figure 5.4b), this stabilization
energy Dcov is the covalent contribution to the total bonding energy. On the other
hand, ionic structures are stabilized by electrostatic interactions, relative to the
separated atoms by an amount Dion. When an ionic form, for example, ΦA+X− ,
is the lowest among the VB structures (Figure 5.4c), the bond is ionic and the
electrostatic stabilization energy is the ionic contribution to the bond energy. The
covalent-ionic mixing results in a resonance energy contribution that augments, in
principle, the bonding of either covalent or ionic bonds. In the original literature,
we referred to this quantity as the charge-shift resonance energy, RECS [3], because
the pair density inherent in the VB wave function shows that covalent-ionic mixing
is associated with fluctuation of the electron pair from the average electron population.
As we shall see later, the RECS quantity figures prominently in the CS-bonding
motif.
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Figure 5.4 VB mixing diagrams for an A–X
bond: (a) The stabilization of the covalent
structure by Dcov due to resonance between
the two spin arrangement patterns. (b) The
covalent-ionic mixing for a polar-covalent
A–X bond. (c) The covalent-ionic mixing for

an ionic A+ : X− bond. Dion is the net elec-
trostatic stabilization of the ionic structure
relative to the separate atoms. In both (b)
and (c), RECS is the covalent-ionic resonance
energy, so-called in this chapter, the charge-
shift resonance energy.

To use the scheme to calculate bond energies, Pauling assumed that for homonu-
clear bonds RECS = 0.1) This assumption enabled him to estimate Dcov as the average
of the bond energies of the two homonuclear bonds, A–A and X–X. For example,
the geometric average as in Eq. (5.1):

𝐷cov = (𝐷AA
•𝐷XX)1∕2 (5.1)

Using Eq. (5.1), the remaining contribution to the actual bond energy, De, was
considered to be the resonance energy due to covalent-ionic mixing, and this value
was used to gauge the electronegativity scale, as shown in Eq. (5.2),

𝐷e −𝐷cov(kcalmol−1) = 23(𝜒x − 𝜒A)2 (5.2)

where 𝜒 is the electronegativity. Furthermore, once the electronegativity is known,
the bond polarity (𝛿) can be quantified as in Eq. (5.3), thereby providing the extent

1) The use of RECS (A–A) ≈ 0 appears as a
working assumption, for example, on pages
73–100 (see also footnote 13 on page 73), in
Ref. [17] where it is estimated that the ionic
structures in, for example, Cl2 will contribute

<2% to the total bond energy. A stricter
assumption is used in Sanderson’s treatment
[22] later, which neglects the resonance energy
altogether.
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of ionic A+ X− character in the bond:

𝛿 = 1– exp[−0.25(𝜒x − 𝜒A)2] (5.3)

Despite the successful performance of the Pauling construct in Figure 5.4 and
Eqs. (5.1)–(5.3), this construct has a major problem that originates in the assump-
tion that RECS = 0 for the homonuclear bond. This assumption undermines the role
of RECS and overestimates the magnitude of Dcov. As shown later, this assumption
is incorrect, and its implementation leads to a loss of an entire bond family, the
so-called CS bonds.

As such, in practice, the Pauling covalent-ionic superposition scheme has tra-
ditionally become associated with two bond families, based on a criterion of
static charge distribution; these are the covalent bond and ionic bond families in
Scheme 5.1. In the first family, the major contribution to bonding comes from
spin pairing. And let us recall that in homopolar bonds the RECS contribution was
assumed – in Pauling’s original scheme1) and in subsequent treatments based
on it – to be very small and was set to zero. In heteropolar bonds, the primary
contribution to bonding is normally considered to be the Dcov quantity,1) while
the RECS is of secondary importance, except for very polar bonds involving the
very electronegative atoms. Furthermore, as shown by Eq. (5.2), the magnitude of
RECS is considered to vary in proportion to the electronegativity difference of the
fragments, A and X, much like the charge distribution that is, the ‘‘bond polarity’’
in Eq. (5.3).

Covalent (polar-covalent) Ionic

Dion – Major

RECS – Secondary

RECS varies  in proportion
to the deviation of charges 
from full ionicity

A traditional covalent-ionic
superposition scheme

·  RECS(A−A) = 0

·  RECS – secondary

RECS varies with |χx−χA|
(bond polarity)

·  DCOV (A−X) – major

Scheme 5.1 The traditional covalent and ionic bond families based on Pauling’s covalent-
ionic superposition scheme. (Reproduced from Ref. [3g] with permission of Wiley-VCH.)

In the second family, the major bonding contribution comes from the electrostatic
energy in the dominant ionic structure, while RECS is a minor factor; its magnitude
is supposed to vary in proportion to the deviation of the charge distribution from
full ionicity.

As such, in the traditional classification of both bonding types, it is assumed that
one can deduce the magnitude of the covalent-ionic resonance energy by simply
inspecting the static charge distribution of the molecule.
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Using MO theory, it is possible to transform the delocalized canonical MOs to
a set of localized molecular orbitals (LMOs) that describe two-center bonds [23]
(see also the chapter 3 on NBO). The LMOs retrieve the covalent-ionic superposition
scheme as follows: the electron-pair bond is the LMO itself, while the covalent-ionic
superposition can be quantified from the charge polarization of the LMO, namely,
the relative size of the coefficients of the hybrids, of the contributing fragments, to
the LMO determines the bond polarity. Accordingly, MO theory leads, in principle,
to the same electron-pair bonding picture as the classical covalent-ionic paradigm
of Pauling. In fact, both VB and MO descriptions support the Lewis formulation of
electron-pair bonding.

Thus, our bonding paradigm is now 98 years old [8], and yet even a cursory
search in the literature suggests that this is perhaps not the whole story. Just
consider the bonds of silicon to electronegative atoms. By the criterion of the
static charge distribution, these bonds are virtually as ionic as, for example, LiF
or NaCl (e.g., H3Si+0.85F−0.85 vs Li+0.94F−0.94, Na+0.91Cl−0.91, etc.) [24]. However,
while Li+F− and Na+Cl− behave as genuine ionic bonds, the Si+X− bonds behave
chemically as covalent bonds [25, 26]. The bonds look so similar, yet they are so very
different in their chemical behavior. Indeed, all Si–X bonds are more ionic than
the corresponding C–X bonds [25a], according to static charge distribution, and,
nevertheless, these are the C–X bonds that exhibit ionic chemistry in condensed
phases, whereas the ionic Si–X chemistry is extremely rare, with a handful of
exceptions [25, 26, 26a, 27]. For example, trityl perchlorate is an ionic solid,
Ph3C+ClO4

−, similar to NaCl [25c], while the silicon analog, is a covalent solid, with
a short Si–O bond [25d]. It is apparent, therefore, that the static charge distribution
is not a reliable indicator of the nature of bonding. There must be an additional
property of the bond that is missing in the traditional covalent-ionic superposition
scheme.

5.4
A Preamble to the Modern VB Perspective of the Electron-Pair Bond

These and many similar puzzles prompted us in 1990 to reexamine the clas-
sical covalent-ionic paradigm using the tools of modern VB theory [3]. The
reader interested in modern VB theory can consult Appendix 5.A and a recent
review [7].

Our first intriguing findings [3a,b] concerned the F–F bond, which has been
intensely debated, and which requires quite a high level of configuration interaction
to yield a quantitative bond energy [28].2) By any known measure, the F–F bond
would be defined as a ‘‘covalent bond.’’ First, it is a homonuclear bond, where

2) As seen from Table 10.2 of Ref. [2], CASSCF/6-31G* or GVB/6-31G* leads to BDE values of ∼16.0
kcal mol−1, compared with the experimental value of 38.3 kcal mol−1. Using here MRCI/cc-pVTZ
the value is 35.9 kcal mol−1.
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ionicity should not matter. Second, the weight of its covalent structure is as
large as that for the H–H bond [3a,b,g]. Is the F–F bond really covalent as the
H–H bond?

Figure 5.5 displays the dissociation energy curves of a few bonds showing the
dominant VB structure of the bond alongside the ‘‘exact’’ ground state, which
is a resonating combination of the covalent and ionic components, calculated by
means of the modern VB theory. Inspection of Figure 5.5a,b makes it apparent
that the bonding natures of the H–H and F–F bonds are very different. While in
H2 the covalent VB structure displays by itself a potential well, which is already
a good approximation of the exact curve (Figure 5.5a), the covalent component
of F2 is, on the contrary, purely repulsive (Figure 5.5b), and the bonding is in fact
sustained by the very large RECS due to the mixing of the ionic structures (not
shown in the figure) into the repulsive covalent structure. Thus, although F–F may
be formally a covalent bond according to its zero static charge distribution, this
definition cannot tag its true nature; the F–F bond is in fact a CS bond, because
the bonding exists as a result of the ionic-covalent fluctuation of the electron-pair density.
This F–F case shows that the assumption underlying the classical Pauling scheme
(Scheme 5.1) is incorrect; the covalent bonding by itself is not necessarily stabilizing
even for homopolar bonds, and even in cases where the covalent structure clearly
dominates the wave function, as in F–F. Importantly, homopolar bonds can have very
large RECS. Moreover, the result of a repulsive covalent structure shows that these
structures can be repulsive when the covalent spin-pairing energy is frustrated by
Pauli repulsion. We shall elaborate this point later when we discuss the physical
origins of CS bonding, and we shall see that once the assumption in the Pauling
scheme is removed this enables recharting of the mental map of the chemical
bond.

However, CS bonding is not restricted to F–F, as can be seen by comparing
Figure 5.5d to c. It is clear that the B–H bond is classically covalent, while the F–H
bond is not; its covalent structure is weakly bonded, while the majority of bonding
energy in the exact VB wave function arises from the RECS due to the mixing of
the ionic structures. Thus, the repulsion here weakens the covalent bonding very
much, but not to the extent found in Figure 5.5b for F–F.

Finally, Figure 5.5e,f shows the NaF and NaCl bonds. It is clear that for both
bonds, the dominant VB structure is ionic, and it is very close to the exact covalent-
ionic superposition curve, with a negligible RECS contribution. These two bonds
are classically ionic.

As such, Figure 5.5 reveals very clearly the two classical bond families, covalent
and ionic, but alongside them it reveals also the presence of another bond type
wherein the bonding does not arise from any one of the structures but rather from the
resonance interaction, RECS. This is the CS-bonding family. In recent years, a variety
of σ- and π-bonds, both homo and heteronuclear, were shown to share this property,
thereby forming a growing family of CS bonds [3], which we are going to focus on
in this chapter.
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5.5
Theoretical Characterization of Bond Types by VB and Other Methods

The emergence of the CS-bond family and its eventual acceptance would revise
the electron-pair bond concept in chemistry. One prerequisite for such a revision
is having alternative and independent theoretical derivations of the CS-bonding
phenomenon, and, most importantly, drawing links to experimental data. We shall
start by finding alternative theoretical probes for bonding and especially for the
signatures of CS bonding.

5.5.1
VB Characterization of Bond Types

As discussed, the emergence of three bonding families, covalent, ionic, and CS
bonds, was originally derived from modern VB calculations [3a,b]. Thus, the VB
wave function of an A–X bond is computed as a combination of the covalent form
Φcov (A∙–∙X), and the two ionic forms, Φion (A+X−) and Φ’ion (A−X+), shown in
Eq. (5.4):

Ψ(VB) = c1Φcov + c2Φion + c3Φ′ion (5.4)

Equation (5.4) is identical to the Pauling wave function (Figure 5.3), but all the
terms are now computed by means of the modern VB theory (Appendix 5.A).
The principal VB structure is the one having the lowest energy, and hence also the
largest coefficient among the three structures in Eq. (5.4). Its contribution to the
total bond dissociation energy (BDE, De) is referred to as Dcov or Dion, wherein
the subscript specifies the dominant VB structure. In all cases, the RECS is
determined by reference to the bonding energy of the principal VB structure, as
expressed by Eq. (5.5a) and (b):

𝐷e(polar-covalent) = 𝐷cov + RECS (5.5a)

𝐷e(ionic) = 𝐷ion + RECS (5.5b)

Note that Eq. (5.5a) covers both covalent and CS bonds, depending on the magnitude
of RECS vis-à-vis the total bond energy. These quantities characterize the bonding
type as could already be gleaned from Figure 5.5. Thus, in Figure 5.5a,c, the
principal VB structure for both H–H and B–H is Φcov, while the RECS quantity
is small and much less significant than the large Dcov. In accord, these bonds are
classical and polar-covalent types, respectively. By contrast, F–H in Figure 5.5d
displays a weakly bound principal structureΦcov, and the major contribution to the
bond comes from RECS. An extreme case is the F–F bond, in Figure 5.5b, in which
the principal structure Φcov is not even bonded, that is, Dcov is negative, while RECS

is even larger than the total bonding energy. In accord, F–H and F–F are both
CS bonds. Finally, in Na–F and Na–Cl (Figure 5.5e,f) the principal VB structure
is now Φion, and the RECS quantity is a minor contributor, making both classical
ionic bonds, where most of the bonding energy arises from the ionic structure.
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5.5.2
ELF and AIM Characterization of Bond Types

An alternative way to characterize bonding uses electron density theories, such as
ELF [4] and AIM [5]. Will ELF and AIM show these three families? What will be the
ELF and AIM signatures for CS bonds?

5.5.2.1 ELF Characterization of Bond Types
The ELF approach (described in detail in Chapter 10 in Vol. 1) uses a function
related to the Pauli repulsion to carry out a partition of the molecular space into
basins that correspond to the volumes occupied by core inner shells, bonds, and
lone pairs. As in the Lewis model, a valence basin may either belong to a single
atomic shell or be shared by several ones. In the first case, the basin is called
monosynaptic and corresponds to a lone pair region, and in the second case it is
polysynaptic, and specifically bisynaptic for a two-center bond that is of interest in
this chapter.

A given basin can be characterized by a statistical analysis of the density. Thus, it
is possible to calculate the basin population, 𝑁 , and its variance, 𝜎2, by integrating
the one-electron and the pair density over the volumes of the corresponding
basins. In the statistical theory of the basin populations, the variances measure the
electron fluctuation in a given basin, and the covariances [3g, 29] are thought to
gauge directly the covalent-ionic fluctuations in terms of weights of ionic structures.
However, as the covariance values exhibit trends similar to those of the variance
[3g], we shall focus only on the latter quantities.

For a classical covalent bond, the basin is disynaptic, its population is close to
2.0, and the variance (and covariance) is significantly smaller than the population,
while a classical ionic bond such as NaCl has only core and monosynaptic basins
[3g, 4, 30]. These characteristics are summarized in Scheme 5.2. Any bond with
very different values, of the population and the corresponding fluctuation index,

ELF properties of
two-centered bonds

Covalent  A—X bond Ionic A+ X− bond

Disynaptic basin, V(A,X)

N [V(A,X)]  2.0 (single bond) or

N [X(A,X)] > 2.0 (multiple bond)

σ2 < N [X(A,X)]

No disynaptic basin, V(A,X)

Monosynaptic basin, V(X)

N [V(A,X)]  2.0 (single lone pair) or

N [X(A,X)] > 2.0 (several lone pairs)

σ2 Small

Scheme 5.2 Expected ELF properties for the ideal covalent and ionic bonds. (Reproduced
from Ref. [3g] with permission of Wiley-VCH.)



170 5 The Valence Bond Perspective of the Chemical Bond

will not qualify as either covalent or ionic. As will be shown, the CS bonds have
typical and new ELF characteristics.

5.5.2.2 AIM Characterization of Bond Types
In AIM theory (see Chapter 8 in Vol. 1 for details), a bond is generally characterized
by a bond path, which defines a maximum density path connecting the bonded
atoms. The point of the path at which the density is at minimum is called the
bond critical point (BCP), and the values of the density, 𝜌(rc), and its Laplacian,
∇2𝜌(rc) at this point are characteristic of the interaction type in the bonding region.
According to AIM, a classical covalent bond is typified by a significant 𝜌(rc) value,
and a large negative ∇2𝜌(rc). By contrast, closed-shell interactions, suffering from
Pauli repulsions (also known as overlap repulsion or exchange repulsion), as in ionic
bonds, or the He–He interaction, have characteristically a small critical density and
a positive Laplacian.

The Laplacian is especially a telling quantity [5, 31], as it is connected to the
kinetic and potential energy densities at BCP, G(rc) and V(rc), respectively, by the
following local-virial theorem expression:

ℏ2

4𝑚
∇2𝜌(𝐫c) = 2𝐺(𝐫c) + 𝑉 (𝐫c) (5.6)

Thus, a negative Laplacian means that the bonding region is dominated by lowering
of the potential energy, while a positive Laplacian means that the interaction in
the bonding region is typified by excess kinetic energy, and is hence repulsive. All
the AIM parameters for bonds in a molecule can be either calculated or derived
from experimental density determination, and are used by experimental chemists
to characterize interactions within molecules (See Chapter 9 in Vol. 1) [32]. As
such, we might expect AIM to reveal the presence of CS bonds.

5.6
Trends of Bond Types Revealed by VB, AIM and ELF

5.6.1
VB and AIM Converge

In order to provide a global picture of the various categories of bonds, we collected
in Table 5.1 27 bonds [3] that are organized into three groups, labeled as (I–III).
The first group involves homonuclear bonds starting from H–H all the way to the
‘‘inverted’’ C–C bond in [1.1.1]propellane (Scheme 5.3) [3i]. Groups (II) and (III)
involve heteronuclear bonds, starting from C–H all the way to Si–F.

Each bond in the table is characterized by five VB properties; the weight of the
principal VB structure (𝜔cov or 𝜔ion), the bonding energy of that structure (Dcov

or Dion), the full BDE (De), the RECS, and the relative resonance energy (%RECS),
which is the percentage ratio of RECS to De. For some of the bonds, we show
AIM-derived quantities 𝜌 and ∇2𝜌 as well as the Laplacian components in the BCP



5.6 Trends of Bond Types Revealed by VB, AIM and ELF 171

Table 5.1 A collection of bonds with their VB and AIM properties: group (I) corresponds to
homonuclear covalent and CS bonds, (II) to heteronuclear covalent and CS bonds, and (III)
to ionic bonds.

I. A–A 𝝎cov Dcov De RECS %RECS 𝝆 𝛁2𝝆 𝛁2𝝆cov 𝛁2𝝆res

1 H–H 0.76 95.8 105.0 9.2 8.8 0.27 −1.39 −0.70 −0.31
2 Li–Li 0.96 18.2 21.0 2.8 13.1 0.01 −0.01 −0.01 0.00
3 Na–Na 0.96 13.0 13.0 0.0 0.2 0.01 0.00 0.00 0.00
4 H3C–CH3 0.55 63.9 91.6 27.7 30.2 0.25 −0.62 −0.26 −0.36
5 H2N–NH2 0.62 22.8 66.6 43.8 65.7 0.29 −0.54 −0.02 −0.68
6 HO–OH 0.64 −7.1 49.8 56.9 114.3 0.26 −0.02 +0.46 −0.75
7 F–F 0.69 −28.4 33.8 62.2 183.9 0.25 +0.58 +1.00 −0.83
8 Cl–Cl 0.64 −9.4 39.3 48.7 124.1 0.14 +0.01 +0.14 −0.26
9 Br–Bra 0.71 −15.3 44.1 59.4 143.8 — — — —
10 C–Ci(prop)b 0.62 −2.2 ∼70 72.2 >100 0.19c +0.43c — —
11 C–C(prop)b ∼0.55 — — — — 0.25c −0.51c — —

II. A–X 𝜔cov Dcov De RECS %RECS 𝜌 ∇2𝜌 ∇2𝜌cov ∇2𝜌res
12 H3C–Ha 0.69 90.2 105.7 15.1 14.3 — — — —
13 H3Si–Ha 0.65 82.5 93.6 11.1 11.9 — — — —
14 B–H 0.71 78.2 89.2 11.0 12.3 0.19 −0.61 −0.59 −0.04
15 Cl–H 0.70 57.1 92.0 34.9 37.9 0.26 −0.81 −0.33 −0.42
16 F–H 0.52 33.2 124.0 90.8 73.2 0.38 −2.52 −1.82 −0.52
17 H3C–Fa 0.45 28.3 99.2 70.9 71.5 — — — —
18 H3C–Cla 0.62 34.0 79.9 45.9 57.4 — — — —
19 H3Si–Cla 0.57 37.0 102.1 65.1 63.8 — — — —
20 H3Ge–Cla 0.59 33.9 88.6 54.7 61.7 — — — —
21 F–Cla 0.59 −39.7 47.9 87.6 182.9 — — — —
22 Cl–Bra 0.69 −9.2 40.0 49.2 123.0 — — — —

III. A+ X− 𝜔ion Dion De RECS %RECS 𝜌 ∇2𝜌 ∇2𝜌ion ∇2𝜌res
23 Li–F 0.76 93.3 104.5 11.2 10.7 0.07 +0.62 +0.51 −0.01
24 Na–F 0.72 77.0 86.0 9.0 10.4 0.05 +0.37 +0.27 +0.02
25 Li–Cl 0.56 76.8 88.5 11.7 13.3 0.04 +0.24 +0.16 0.00
26 Na–Cl 0.63 71.4 79.5 10.1 8.1 0.03 +0.18 +0.13 0.00
27 H3Si–Fa 0.36 103.8 140.4 36.6 26.1 — — — —

aFrom Refs [3g, j]. All other data are from Ref. [3h] unless noted otherwise. Energies in kcal mol−1,
𝜌 in au (e. 𝑎−3

𝑜 ), ∇2𝜌 in au (e. 𝑎−5
𝑜 ). The partial Laplacians are based on weights of the corresponding

VB structures (see Eqs. 9–16 in Ref. [3h]).
bC–Ci (prop) is the inverted bond in [1.1.1]propellane, the C–C(prop) is one of the wing bonds of the
same molecule. The VB data are from Ref. [3h,i].
cExperimental data [33] for a substituted [1.1.1]propellane derivative. The values for the wing bonds
are averaged. Energies in kcal mol−1, 𝜌 in au (e. 𝑎−3

𝑜 ), ∇2𝜌 in au (e. 𝑎−5
𝑜 ).

for bonding due to the principal structure of the bond (∇2𝜌cov or ∇2𝜌ion) and the
covalent-ionic resonance (∇2𝜌res) [3h].

Let us first inspect the homonuclear bonds in (I), which by all definitions could
not possess static bond ionicities. The bond energies in entries 1–4 are dominated
by the covalent component, with RECS being the minor bonding contribution
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C The inverted C–C bondThe wing C–C bond

Scheme 5.3 The molecule [1.1.1]propellane and its two C–C bond types.

(%RECS < 50%). By contrast, the bonds in entries 6–10 all have a bonding energy
dominated by RECS (%RECS > 100%), while the covalent structure is repulsive
(Dcov < 0). The N–N bond, entry 5, is a borderline case, with %RECS accounting for
66.6% of the total bonding energy. Leaving aside the weak Na–Na and Li–Li bonds
for which all AIM parameters are close to zero, there is an excellent correlation
between the RECS quantities and the AIM parameters, especially within the same
row of the periodic table. Thus, from C–C all the way to F–F (entries 4–7), the
resonance component of the Laplacian (∇2𝜌res) is more and more negative, in
line with the increase in RECS, while the covalent component (∇2𝜌cov) goes from
negative to positive values, in line with the repulsive nature of the covalent structure
in CS bonds. As a result, the total Laplacian ∇2𝜌 is large and negative for classically
covalent bonds and small or positive for CS bonds. Note that, according to the
computed RECS and the experimentally-derived ∇2𝜌 values [33], the [1.1.1]propel-
lane molecule embodies the two categories of bonds, classically covalent for the
wing bonds (entry 11) and CS bond for the ‘‘inverted’’ central bond (entry 10).

These relationships are illustrated more vividly in Figure 5.6, which plots
the covalent part of the Laplacian against the covalent bond energies, Dcov, for
homonuclear bonds [3h]. In the right lower quadrant, where Dcov > 0 and∇2𝜌cov < 0,
there are the bonds with stabilized covalent bonding. The second group, in the
upper left quadrant, involves electronegative and lone-pair-rich atoms and ‘‘inverted
carbons’’ that undergo CS bonding. It can be seen that this bonding type is associated
with weakened covalent spin pairing (Dcov < 0), owing to lone-pair repulsion, which
raises the kinetic energy as seen from the positive sign of ∇2𝜌cov. Clearly, the AIM
and VB theories converge; both revealing the presence of a CS-bonding family.

Turning to heteropolar bonds in (II) in Table 5.1, we note the following trends.
While the covalent VB structure is the principal one for all these bonds, the bonds
still fall into two distinct groups. Specifically, the bonds in entries 12–15 belong
to the classical polar-covalent bond family based on their %RECS that is well below
50%. By contrast, the bonds in entries 16–22 all have weakly bonded covalent
structures, and large %RECS exceeding 50% and in some cases >100%.

In part (III) of the table, the principal VB structure of all bonds is ionic.
The bonding energies in entries 23–26 are all dominated by the electrostatic
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contribution to bonding (Dion), with small RECS contributions. These are classical
ionic bonds. Finally, the Si–F bond in entry 27 is special; its principal VB structure
is ionic; its static ionicity is large, but its RECS is significant, much larger than
that in the classical ionic bonds in (III). VB theory predicts that this bond will
be very different from ionic bonds. As already alluded to earlier, the Si–X bonds
behave as though they were covalent despite their large ionic characters in terms of
charge distribution. Here, in (II) and (III), these bonds and their heavier analogs
are clearly marked either as CS bonds (Si–Cl, Ge–Cl) [3d] or as bonds with a large
CS character (Si–F) [3g].

The AIM analysis of the heteropolar bonds in (II) does not distinguish between
the covalent and CS bonds, but the Laplacian components in the BCP show that the
CS bonds have more pronounced ∇2𝜌res values [3h], compared with the classical
covalent bonds, in line with the dominant RECS quantity. Finally, the AIM analysis
of the classical ionic bonds in (III) [3h] shows the expected characteristics from
closed-shell interactions; all have positive Laplacians that are dominated by the
ionic component, ∇2𝜌ion.

5.6.2
VB and ELF Converge

Table 5.2 collects the ELF results for a group of single bonds, reported in the
original literature [3g]. For covalent and CS bonding, we show the population of the
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Table 5.2 Populations 𝑁(Ω) and population variance 𝜎2 of ELF basins [3g].

Entry Molecule Basin 𝑵(𝛀) 𝝈2 Bond type

1 H–H V(H,H) 2.0 0.0 cov.
2 Li–Li V(Li,Li) 2.0 0.17 cov.
3 CH4 V(C,H) 1.97 0.63 cov.
4 SiH4 V(Si,H) 2.0 0.46 cov.
5 C2H6 V(C,H) 2.0 0.63 cov.

V(C,C) 1.81 0.96 cov.
6 NaCl C(Na) 10.02 0.11 ion.
7 NaF C(Na) 10.01 0.12 ion.
8 F2

a V(F,F) 0.44 0.42 CS
9 Cl2

a V(Cl,Cl) 0.73 0.59 CS
10 Br2 V(Br,Br) 0.81 0.68 CS
11 FCl V(F,Cl) 0.39 0.35 CS
12 FBr V(F,Br) 0.28 0.26 CS
13 ClBr V(Cl,Br) 0.67 0.54 CS
14 H2O2 V(O,O) 0.49 0.41 CS
15 N2H4 V(N,N) 1.16 0.77 CS
16 HF V(H,F) 1.22 0.68 CS
17 CH3F V(C,F) 0.86 0.64 CS
19 SiH3F V(Si,F) 0.27 0.24 Ion-CS

aV(F,F) and V(Cl,Cl) are the unions of two monosynaptic basins.

disynaptic basin that corresponds to the A–X bond, 𝑁[𝑉 (A,X)] and its variance
𝜎2, which is a measure of the charge density fluctuation of the bonding electrons.
For ionic bonds (entries 6, 7), the core population of the most electropositive atom
A is reported instead of 𝑁[𝑉 (A,X)].

Table 5.2 exhibits three groups of bonds. In entries 1–5, we find bonds with
almost 2.0 electrons in the disynaptic basin, with weak-to-moderate fluctuation
compared to the total population. These are the classical covalent bonds.

In entries 6 and 7 of Table 5.2, we show two bonds, which do not exhibit any
disynaptic basin, but possess a basin for the bare core of sodium. The other basin,
which is not shown, resides on the electronegative atoms Cl and F. In both entries,
the population of the core basin of sodium is close to 10e−, and the variance is
rather small (0.11–0.12). These are classical ionic bonds.

The largest group in Table 5.2 corresponds to entries 8–17. In all of these
bonds, the population of the A–X basin is of the order of 1e− or less, and the
variances of these populations are large, almost of the same order as the population.
The small populations of the disynaptic basins indicate that these are not classical
covalent bonds, in which two spin-paired electrons are expected to provide the
bonding. In fact, at higher levels of calculations, in the cases of F–F and Cl–Cl,
the disynaptic basins are split into two monosynaptic ones that are 0.2 Å apart, and
the electrons in the bonding region behave as though the bonds were ‘‘dissociated,’’
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with significant Pauli repulsion between the electrons. This, together with the large
variance, signifies that the bonding in these molecules is dominated by fluctuation
of the charge density. This last group of bonds corresponds therefore to the same
CS-bonding type that emerges from the VB calculations.

The last entry in Table 5.2 corresponds to the Si–F bond. With the 6-31G* basis
set, this bond does not possess a disynaptic V(Si, F) basin. Adding diffuse functions
to the basis set (6-31+G*), leads to an emergence of a disynaptic Si–F basin, with a
weak population, and large variance, mostly due to the delocalization involving the
fluorine lone pairs. Thus, the improvement of the basis set increases the covalent
contribution at the expense of the static ionic one, and confirms that although this
bond has high static ionicity, it is a borderline case lying in between the groups of
ionic bonds and CS bonds.

Clearly, therefore, much like the VB picture, the ELF analysis predicts the same
distinction between the covalent and CS bond groups [3g]. Bonds such as H–H,
C–C, Li–Li possess disynaptic basins with a population close to 2.0 electrons
and small variances, whereas bonds like F–F, Cl–Cl, O–O, Br–Br, N–N, and the
inverted C–C bond of [1.1.1]propellane possess small basin populations (≤1.0) [34],
with variances as large as the population.

The match between the predictions of the two methods is made vivid by
inspecting the homonuclear bonds in Figure 5.7, which shows a plot of the
basin population bonds vis-à-vis the RECS. The correlation is apparent; the smaller
the basin population, the larger the RECS. Furthermore, the heavy red circles in
Figure 5.7 show how the population variance approaches the basin’s population as
the RECS quantity increases and vice versa. It is apparent that the variance is less
than half of the basin population for the covalent bond (C–C), but it gets gradually
closer to the population for the CS bonds (from Br–Br to F–F), thereby showing
again the connection between repulsive covalency, the fluctuating electron density
and the large RECS. Recalling (Table 5.1) that all the bonds in Figure 5.7 have very
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Figure 5.7 A correlation between the
population of the disynaptic basin, cal-
culated by ELF, and the charge-shift res-
onance energy, calculated by VB, for a
series of homonuclear bonds. The heavy

red circles show the change of the popu-
lation variances (𝜎2) of the bonds. (Repro-
duced from Ref. [3g] with permission of
Wiley-VCH.)
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similar weights of covalent and ionic contributions to bonding, it is clear that the
major feature of bonding that distinguishes this group is the RECS quantity that
arises from the covalent-ionic fluctuation of the pair density.

The correlation in Figure 5.7 indicates that both theories converge to the
same conclusion, thereby substantiating the classification of CS bonding as a
distinct bonding type that is supported by a dominant RECS quantity, owing to
covalent-ionic fluctuation. Furthermore, both theories show that this group of bonds
transcends considerations based on static charge distribution, and is more concerned with
the ‘‘dynamic bond ionicity’’ [35].

5.6.3
Convergence of VB, ELF and AIM

Figure 5.8 projects the distinction of the covalent and CS-bond families by the three
theoretical approaches. The figure depicts the ELF molecular basins for H3C–CH3,
F–F and the two C–C bond types in [1.1.1]propellane, alongside their VB and AIM
properties. It is seen that the C–C bond of ethane in Figure 5.8a and the wing
C–C bond in [1.1.1]propellane in Figure 5.8c have good cylindrical ELF basins
with populations close to 2.0, highly negative Laplacians, and a small or moderate
RECS. These are classical covalent bonds. By contrast, Figure 5.8b,c shows that the
disynaptic basins of F–F and the inverted C–C bond of [1.1.1]propellane are in
fact two monosynaptic basins, much like dissociated bonds. The corresponding
basin populations are tiny, with variances being as large as the populations;
the Laplacian is highly positive, indicating repulsive covalent structures; and
the RECS quantities are very large. Thus, the three methods diagnose the same
classification of homonuclear bonds into two families. ELF and AIM diagnose
the attractive/repulsive nature of the covalent ‘‘shared densities,’’ while VB brings
additional energetic insight that highlights the dominant role of the RECS energy
in the CS-bond group.

5.6.4
The Three Bonding Families

In summary, CS bonding emerges as a distinct class alongside the covalent and
ionic bonds. In VB theory [3], CS bonding is typified by large covalent-ionic
resonance energy, RECS. In ELF, it is typified by a depleted basin population
with large variance and covariance [3g]. In addition, homonuclear CS bonding
is characterized in AIM by a positive or small Laplacian of the electron density
[3i, 36]. It should be noted that the characterizations of CS bonding by AIM and
ELF electron density analyses are independent of the level of calculation used to
compute the wave function or electron density, for example, MO bonding theory
or density functionals [3g,i], showing that the non-VB-based methods effectively
account for CS bonding, even if not in the explicit way achieved by VB theory.

There is of course a relationship between the VB method and MO- or DFT-
based methods of energy decomposition analysis (EDA) [37], which is described in
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C–H bond Lone pair

C–C bond: F–F bond: Wing bond: Central bond:

RECS = 27.7 RECS = 62.2 RECS = 72.2
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σ2 = 0.96 σ2 = 0.42 σ2 = 0.12
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Figure 5.8 Some ELF representations of
electron density in a few typical cases: (a)
the ELF disynaptic basin[3g] for H3C–CH3;
(b) the monosynaptic basins for the F–F
bond; (c) disynaptic basins for the wing
bonds of [1.1.1]propellane, and two monosy-
naptic basins for the central inverted bond
[34]. The bond type is further characterized
by its covalent-ionic resonance energy RECS,

the ELF basin population 𝑁 and its vari-
ance 𝜎2, the density 𝜌 at the bond critical
point and the corresponding Laplacian ∇2𝜌

(energies are in kcal mol−1, densities in e

𝑎−3
𝑜 , Laplacians in e 𝑎−5

𝑜 ). For H3C–CH3 and
F–F, the ELF and AIM parameters are taken
from Refs [3g,i], respectively. For [1.1.1]pro-
pellane, the AIM parameters are experimen-
tal values [33] from the study of a substi-
tuted [1.1.1]propellane derivative. (The ELF
drawings in Figures 8a and 8b are repro-
duced with permission of Wiley-VCH from
Figures 3 and 4 in Ref. [3g]: Copyright Wiley-
VCH Verlag & Co. KGaA. The ELF drawing
in Figure 8c is reproduced with permission
from Figure 1a in Ref. [34]. Copyright Wiley-
Interscience.)

Chapter 4 in Vol. 1. While the EDA methods do not include as yet provisions to
characterize CS bonding, they share with the VB model a few essential features:
the major one is the Pauli repulsion. Recalling that large Pauli repulsions originate
the large covalent-ionic resonance energies, one may hope that energy partition
methods would eventually characterize the difference between bonds such as
H2 and F2.
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5.7
Physical Origins of CS Bonding

While the phenomenon of CS bonding is derived from three independent theoreti-
cal treatments, one would still like to base this bonding type on some fundamental
principles. All the methods show that the emergence of CS bonding coincides with
poor bonding by the shared-electron density of the electron pair: in VB calculations,
this manifests as a repulsive or weakly attractive covalent structure (Figure 5.5b);
in ELF, this is shown by the escape of the shared density from the disynaptic basin
(Figures 5.7 and 5.8); and in AIM one finds that the shared density has a positive
Laplacian (Figure 5.8) much as in cases that exhibit closed-shell repulsion, for
example, He–He. Coupling the AIM technique into VB shows that CS bonds have
large resonance Laplacians (entry 7 in Table 5.1). Furthermore, AIM shows also that
the positive Laplacian is associated with excess kinetic energy in the bonding region
and the same is implied by the ELF definition. As such, we would like to articulate
a mechanism that reveals the root causes of weakly bonded or repulsive covalent
structure, and that reveals the link of this repulsion to the increase in kinetic
energy of the electrons, and the role of RECS. The following discussion relates the
phenomenon to fundamental properties of atoms and bonding mechanisms.

5.7.1
The Role of Atomic Size

The large RECS quantity of CS bonds is an outcome of the mechanism necessary
to establish equilibrium and optimum bonding during bond formation. This
mechanism, based on the virial theorem, has been analyzed in the original
literature in detail [3b,g, 38], while here we present a simpler analysis.

By comparing the atomic and covalent radii in the periodic table, one finds that as
a rule ratom < rcov. This means that as atoms (fragments) bind they shrink, and for
reasons that are detailed in Appendix 5.B. The shrinkage causes a steep increase in
the fragments’ kinetic energy, which exceeds the lowering of the potential energy
due to the diminished size [39]. Thus, the shrinkage tips the virial ratio of the
kinetic (T) versus potential (V) energies off-equilibrium. At equilibrium, the ratio
has to be V/T = −2 (Appendix 5.B). All resonance energy terms are dominated by
kinetic energy lowering (Appendix 5.C), and therefore the covalent-ionic resonance
is the mean whereby the kinetic energy can be reduced to restore the virial ratio [3b,g,
38, 39], and this is true in all bonds. The kinetic energy rise due to shrinkage
is proportional to the compactness of bonding partners, and therefore, as the
fragments in bonding become more compact, the kinetic energy rise as a result of
the shrinkage will get steeper, and a larger RECS quantity will be required to restore
the equilibrium.

A simple demonstration of the atom compactness effect is Figure 5.9 [3b], which
models the effect of orbital compactness by calculating the CS-resonance energy of
an H2

′ molecule, where H′ is an atom with a variable orbital exponent, 𝜁 . It is seen
that as the orbital exponent increases, the CS-resonance energy increases, leading
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Figure 5.9 A natural logarithm plot of the VB computed [3b] CS-resonance energy against
the orbital exponent, 𝜁 , for a pseudo H2

′ molecule where the 1s orbitals of H′ have modi-
fied orbital exponent, 𝜁 . (Adapted with permission from Ref. [3b]. Copyright 1992 American
Chemical Society.)

to the following approximate relationship:

Ln(RECS) = 8.9Ln(𝜁) − 0.4 (5.7)

The result in Figure 5.9 and its expression Eq. (5.7) is easy to understand based on
this discussion. Thus, as 𝜁 increases, the orbital of H′ becomes more compact, leading
to an increase in the kinetic energy of the atoms, and hence, the CS-resonance energy
increases in order to restore equilibrium for the bond.

5.7.2
The Role of Pauli Repulsion Pressure

Real atoms (fragments) are not merely pseudo hydrogens. They bear also lone pairs
or other electron pairs, which can interact with the ‘‘test bond’’ by Pauli repulsion.
As we saw, in some bonds such as the F–F, Cl–Cl, and O–O, the spin pairing
leads to a covalent structure that is either destabilized or only weakly stabilized
relative to the dissociated atoms (Table 5.1). This failure of the covalent structure
to provide significant bonding was quantified in VB terms [3a,b,c,d,g,j], and found
to originate primarily in the Pauli repulsion between the bonding electrons and the lone
pairs that have the same symmetry as the bond. The repulsion between the lone pairs
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themselves contributes too, but to a lesser extent [3f]. Scheme 5.4 illustrates this
repulsive interaction that counteracts the spin-pairing stabilization in F–F [3g, 28],
using a cartoon.

F F

3e - repulsion

3e - repulsion

Scheme 5.4 The lone-pair bond repulsion in the covalent
structure of F–F. The spin pair is depicted as two elec-
trons (dots) connected by a line.

Thus, as described in Textbox 5.1, both the spin coupling energy as well as each
of the three-electron repulsion terms have the same expression but with opposite
signs [6, 40]. Hence, the two Pauli repulsive terms add up to a larger quantity than
the spin pairing energy, and the covalent structure of F–F is repulsive (Figure 5.5b)
with a negative Dcov quantity [3k]. The same considerations apply to other bonds,
which bear lone pairs. In any case, the Pauli repulsion pressure will weaken the
corresponding covalent bonding energy.

Textbox 5.1

Using the Hückel resonance integral 𝛽 and the overlap S between the two
hybrid atomic orbitals (HAOs), which participate in spin pairing, the covalent
bonding in the F–F bond leads to the following stabilization energy: [6, 40]

Δ𝐸cov = 2𝛽𝑆; 𝛽 < 0 (T.1)

Each of the Pauli repulsion terms in Scheme 5.4 has the same expression but
with a different sign:

Δ𝐸3e-Pauli = −2𝛽′𝑆′ (T.2)

Therefore, the net Dcov becomes:

𝐷cov = −[Δ𝐸cov + 2Δ𝐸3e-Pauli] = −2𝛽𝑆 + 4𝛽′𝑆′ < 0 (T.3)

Dcov is net destabilizing if 𝛽S and 𝛽′S′ have comparable magnitudes.

This Pauli repulsion was pointed out originally by Sanderson [22], who termed
this as the lone-pair bond-weakening effect (LPBWE). Because the Pauli repulsion has
the same expression as the bonding energy, but with a different sign (Eq. T.2 in
Textbox 5.1), its presence in a bond will raise the kinetic energy of the bond, and the
effect will become more severe as the number of lone pairs on the atom increases.
As the atoms (fragments) are brought together, the LPBWE augments the kinetic
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energy rise as all 𝛽S terms are dominated by the increase in the kinetic energy
(Appendix 5.C). This tips the virial ratio off-balance, and hence the only way for the
molecule to restore the virial ratio, and achieve equilibrium bonding, is to augment
the ionic component and increase thereby the CS-resonance energy [3b, 38].3)

Because electronegative fragments are compact and also lone-pair rich, we might
expect that in bonds of such fragments, the resonance energy that is required to
restore the virial ratio will become necessarily very large, generating thereby bonds
with weakened bonding in the covalent structures and large RECS quantities. Thus,
CS bonding is a fundamental mechanism that is necessary to adjust the kinetic and
potential energy to the virial ratio at equilibrium, in response to the Pauli repulsive
strain exerted on the bond and the shrinkage of the atoms (fragments) that occurs
during bonding.

5.8
Global Behavior of Electron-Pair Bonds

Understanding the roots of CS bonding allows us to outline some global correlations
for the CS-resonance energy and bonding in general. Recalling that electronegative
atoms have small valence orbitals and are lone-pair rich, we might expect that the
electronegativity of the atom or fragment (𝜒A) will be an organizing quantity for
RECS and, in the absence of LPBWE, also of De.

These global relationships are illustrated in Figure 5.10 for RECS. Figure 5.10a
shows the RECS quantities for homonuclear A–A bonds, plotted against the
electronegativity (𝜒A) of A. It is seen that in each period, RECS increases as the
electronegativity increases. Figure 5.10b shows a plot of RECS versus the sum of
electronegativities of the fragments using both homonuclear and heteronuclear
bonds [3g], while Figure 5.10c,d shows, respectively, the same trend for π-bonds of
doubly bonded and triply bonded molecules [3e, 41]. It is apparent that the RECS

quantity of the bond generally increases as the molecular electronegativity of the
bond partners increases. In this respect, we note that what determines the RECS

quantity is not the simple orbital overlap of the atoms making the bond. In fact,
the RECS is large for cases where the overlap is small [3b,g]. For example, the
orbital overlap in H2 is much larger than in F2, while the covalent-ionic resonance
energy behaves oppositely. This underscores the relationship of RECS to the kinetic
energy decrease in the bonding region rather than to the simple ‘‘sharing of density’’ as in
covalency.

3) As seen from footnote 2 here, the F-F bond
energy arising from CASSCF or from GVB
wave functions is rather poor, 16.0 kcal mol−1.
These methods treat the covalent and ionic
structures of the bond in a mean-field approx-
imation. Only further extensive CI of the GVB
and CASSCF wave functions the bond energy
gets closer to experiment. The modern BOVB

methods lead to the correct bond energy, about
36 kcal mol−1, by explicit treatment of the ionic
structures, which are allowed to take on their
particular set of orbitals. Thus bonding in F–F
originates from the response of the electronic struc-
ture to the fluctuation of the electron pair density
from the average density.
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Figure 5.10 Correlation of the charge-shift
resonance energy (RECS) of a bond with the
electronegativities (𝜒) of the bonded atoms
or fragments. (a) A plot of RECS(A–A) ver-
sus the electronegativity of A (𝜒A). Repro-
duced from Ref. [3g] with permission of
Wiley-VCH. (b) A plot of RECS for A–A
and A–X bonds versus the average elec-
tronegativity of the bond. (Reproduced from
Ref. [3g] with permission of Wiley-VCH.
(c) A plot of RECS for π-bonds (of doubly

bonded molecules, A=X) versus the average
electronegativity of the bond, reproduced
from Ref. [3g] with permission of Wiley-VCH.
(d) A plot of RECS for π-bonds (of triply
bonded A≡X molecules) versus the sum of
electronegativities of the bond constituents.
Permissions for (a)–(c) are by Copyright
Wiley-VCH Verlag & Co. KGaA. Part (d) is
reproduced with permission from Ref. [41].
Copyright 2011 American Chemical Society.)

We note that the scatter in the plots in Figure 5.10b–d reflects in part the effect of
the electronegativity difference, namely, the classical Pauling effect on the covalent-
ionic resonance energy (Eq. 5.2). Thus, for a given molecular electronegativity
(𝜒X + 𝜒A), the RECS quantity increases, to some extent, with increase in the
electronegativity difference (𝜒X − 𝜒A), thereby reflecting an incremental increase
of RECS due to the stabilization of the ionic structure, A+X−, and its stronger mixing
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into the covalent structure. However, the electronegativity difference constitutes
only a secondary influence. Indeed, in contrast to the behavior in Figure 5.10b–d,
where a global correlation with (𝜒X + 𝜒A) is apparent, no correlation whatsoever is
observed when the RECS data is plotted against (𝜒X − 𝜒A) alone. The fundamental
correlation is with the sum of electronegativities, which gauges both the effects of the
fragment compactness and the Pauli repulsion pressure on the shared density.

Because π-bonds do not suffer from LPBWE, even their Dcov quantity correlates
quite well with the sum of electronegativities of the fragments. This, along with
the dominance of bonding by the RECS, means that one may expect that the total
π-bond energy will also correlate with the sum of the fragment electronegativities
rather than with their difference. Figure 5.11 shows this global correlation for the
total π-bonding energy in triply bonded molecules, A≡X. Thus, the bonding gets
stronger as the molecular electron affinity increases.

5.9
Additional Factors of CS Bonding

The Pauli repulsion pressure associated with the lone pairs of electronegative
fragments is not the only factor that can promote CS bonding. A recently identified
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additional factor [3b,c,d,g] was expressed in bonds between metalloids of Group
14 and electronegative groups, similar to all the Si–F, Si–Cl and Ge–Cl bonds
in Table 5.1. The VB calculations for these bonds show that the corresponding
ionic curve for the Me3Si–Cl bond, for example, is much deeper than that for
the corresponding Me3C–Cl bond [42]. Moreover, the ionic curve Me3Si+Cl− has
a tighter minimum than Me3C+Cl in harmony with the fact that the charge is
completely localized on Si in Me3Si+, while highly delocalized in Me3C+. This
causes the ionic and covalent structures to be close in energy in Me3SiCl, thus
leading to a high RECS quantity, which is apparent from Table 5.1 for the Si–Cl bond.

5.10
Can a Covalent Bond Become CS Bonds by Substitution?

We have discussed the molecule [1.1.1]propellane and its curious inverted C–C
bond, which was identified as a CS bond, by contrast to the classical covalent wing
C–C bonds [3i, 33]. This is an interesting finding because it shows that bonds
having the same atomic constituents can be either covalent or CS bonds, depending
on their molecular environment. Understanding the origins of CS bonding in the
inverted C–C bond of [1.1.1]propellane is therefore important.

Figure 5.12 shows that the inverted bond in [1.1.1]propellane is embedded
inside a cage of six wing C–C bonds, labeled as 𝜎w. If we make symmetry-adapted
combinations of these six localized bonds, we shall find that two of the combinations
possess the same symmetry as the inverted C–C bond and their electron densities
are projected on the inverted bond. One of these is a cage orbital (𝜎cage), which
consists of three lobes pointing from the CH2 moieties of the propellane to the
center of the inverted bond, and the second one is the all-positive combination of
the wing orbitals that projects on the axis (𝜎axis). These two electron pairs repel the
covalent structure of the inverted bond, making it repulsive much like in F–F, and
eliciting thereby a large RECS, which makes the inverted bond a CS-bond.

Understanding this principle we can now set out to design a series of C–C
bonds, which exhibit an excursion from classical covalent bonds to CS bonds [3k].
The molecules are depicted in Scheme 5.5, and the target bond computed with VB
theory is shown in a bold line.

Inverted
bond σw

σcage σaxis

Φcov

C C C C C C CC

Figure 5.12 Covalent bond-weakening repulsion exerted by the wing C–C bonds on the
inverted central bond of [1.1.1]propellane [3k].
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Scheme 5.5 Target C–C bonds highlighted in bold in a series of molecules. The molecules
4–10 are labeled by the wing fragment X. (Adapted from Ref. [3k] with permission of
Wiley-VCH.)

For all these bonds we computed by means of VB theory the bond energy and the
RECS quantity. For propellanes one cannot really calculate a BDE, and therefore we
calculated for all the molecules the in situ bond energy, Din situ, which gauges the
bond energy of the molecule relative to a reference non-bonded structure, called
the quasi-classical (QC) state [43]. The QC state has a single VB determinant where
the spins are not allowed to exchange, and hence its energy does not include any
bonding term due to spin pairing (Textbox 5.2). To treat all the bonds in Scheme 5.5
on equal footing, all the bond energies, even for ethane, were calculated as Din situ.
Scheme 5.6 shows the QC state and the various bond quantities that can be
calculated by modern VB theory.

Textbox 5.2

The QC state is a single determinant, which includes localized up- and down-
spins that are not permitted to exchange. Hence, the entire bonding energy
that arises from spin pairing of the covalent structure is lost in the QC state
(see the energy diagram in Scheme 5.6). By allowing the spin pairing and ionic
structures in, we get the bonded state and the difference relative to the QC state
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Scheme 5.6 VB calculations of Din situ relative to the QC reference. (Adapted from Ref. [3k]
with permission of Wiley-VCH.)

is the in situ bond energy. In H2, the QC state is virtually flat when plotted
against the internuclear distance [43]. In other cases, where the atoms bear other
electron pairs, for example, in H3C–CH3, or F–F, the QC state is repulsive (due
to Pauli repulsions). In all cases, the QC state is devoid of any bonding and can
serve as a reference for calculating Din situ values. Generally, Din situ ≥ BDE.

Figure 5.13 shows a plot of the ratio of RECS/Din situ vis-à-vis the Laplacian (L) at
the BCP of the target bonds in Scheme 5.5. It is seen that the molecules fall into
two families: at the lower left quadrant of the plot we find the C–C bonds of ethane,
propane, and the large [2.2.2]propellane. All these bonds have a low RECS/Din situ

ratio and negative L. Thus, in this family most of the bond energy arises from
the covalent spin pairing, and in accord with that, the Laplacian is negative as
expected for classical covalent bonds. By contrast, in the upper right quadrant of
Figure 5.13, we find the inverted C–C bonds of the smaller propellanes and the
wing-substituted ones. All these bonds are typified by a high RECS/Din situ ratio,
which means that most of the bonding arises because of CS resonance and, in
accordance, the Laplacian is positive, indicating that these bonds suffer from Pauli
repulsion pressure. It is conceivable that such two families of the same homopolar
bond may exist for other atoms (fragments).
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5.11
Experimental Manifestations of CS Bonding

Having shown the emergence of CS bonding and its promoting factors, here we
follow with some evidence for the signature of this bond type in the chemical
behavior.

5.11.1
Marks of CS Bonding from Electron Density Measurements

The existence of the CS bond family will eventually be consolidated by experimental
determination of the Laplacian of various bonds, as already done for propellane
[33], N2O4 [44], (Mg–Mg)2+ cores [45], and so on [32]. Thus, as we already alluded
to, for [1.1.1]propellane derivatives [33], the experimental Laplacian clearly shows
the existence of a classical covalent C–C bond in the wing positions, vis-à-vis a
CS C–C bond in the inverted bond region. Such experimental characterization for
other bonds will further show the importance of this new bond family.

In the meantime, the existence of two distinct families has already emerged
from electron density difference maps (available experimentally), which plot the
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difference between the actual molecular density and the density of a reference state
made from spherical atoms (Δ𝜌 =𝜌Mol – 𝜌Ref), placed at the same geometry as the
molecule. These data [46] clearly show a group of bonds (e.g., Li–Li, C–C, Si–Si,
C–H) with Δ𝜌> 0, which coincides with the classical covalent bond, and a second
group (e.g., F–F, Cl–Cl, O–O, S–S, N–N, N–O, C–F, C–O, etc.) of ‘‘no-density
bonds’’ with Δ𝜌≤ 0, which coincides with the CS-bonding family outlined in this
chapter. While the deformation density depends on the definition of the reference
atomic state [47], the example of [1.1.1]propellanes [46] is virtually free of this
limitation as the Δ𝜌 quantity is determined by comparing two different bonds in
the same molecule, and using the same 𝜌Ref. The findings clearly show that the
C–C bonds in the wings possess Δ𝜌> 0, while the ‘‘inverted’’ (C–C) has Δ𝜌< 0.
Furthermore, these bond types were identified also by the experimental Laplacians,
which revealed a fundamental difference between the wing and inverted C–C
bonds [33].

5.11.2
Marks of CS Bonding in Atom Transfer Reactivity

We would expect to see manifestations of CS bonding on reactivity for cases
that involve cleavage of CS bonds. Our studies [48] showed that one of these
manifestations is the computational [49] and experimental [50] result that halogen
transfer reactions (and especially of fluorine), Eq. (5.8a), have much larger barriers
(by >20 kcal mol−1 for X=F) than the corresponding hydrogen transfer processes,
Eq. (5.8b).

H• + X −H′ → H − X + •H′ (5.8a)

X• +H − X′ → X −H + •X′ (5.8b)

Thus, as we demonstrated recently by means of VB calculations [48], the two
processes have almost identical barriers for the covalent structures, but they differ
in the status of the ionic VB structures in the vicinity of the transition state. In
reaction (8b), the key combination of ionic structures, H∙ X:− H+ and H+ X:− ∙H,
is destabilized by two repulsive 3-electron interactions [6, 40, 51] between H∙ and
the X− fragment (Scheme 5.7a). By contrast, the ionic combination X:− H+ ∙X and
X∙ H+ X:−, for Eq. (5.8a), is devoid of repulsive interactions (Scheme 5.7b vs 5.7a).
The destabilization of the ionic structures during X-transfer results in a loss of
RECS in the respective transition state. Becuse the H–X bonds, and especially so
H–F, have large RECS to begin with, the loss is significant and the barrier is higher
for the X transfer reaction. The largest destabilization occurs for X=F, as H–F has
the largest RECS quantity among the hydrogen halides.

Interestingly, the barrier difference between the two series was found [48] to
follow a very simple relationship, as 1/4 of the RECS quantity of the H–X bond that
undergoes cleavage during the two processes. Therefore, RECS is given as

RECS(H–X) = 4[Δ𝐸‡
H∕XH –Δ𝐸‡

X∕HX] (5.9)
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H+ X−: X−: X:

Scheme 5.7 Lone-pair bond-weakening effect (LPBWE) in the ionic structure for halogen
(X) transfer reactions and the lack of LPBWE in the ionic structure of H transfer reactions.
(Adapted from Ref. [3g] with permission of Wiley-VCH.)

As such, measurement of the barrier difference for the two series enables to
quantify the CS resonance energy from experimental barriers. This is exciting!

5.11.3
Marks of CS Bonding in the Ionic Chemistry of Silicon in Condensed Phases

A large CS-resonance energy typifies also bonds with a high static ionicity, similar
to H–F, C–F, Si–F, Si–Cl, Ge–Cl, and so on (Table 5.1). This arises because of a
combination of effects, one being the atomic shrinkage and LPBWE of the lone-
pair-bearing heteroatom, and the second is the strong covalent-ionic interaction
due to the decreased energy gap between the two structures [3d,j]. In the case
of Si–X bonds, the ionic VB structure undergoes a special stabilization that can
be appreciated from the calculated charge distribution of the ionic structures, in
Figure 5.14, for Si–Cl versus C–Cl [3c,d]. It is seen that the positive charge of H3Si+

is concentrated on silicon, while in the case of CH3
+ the charge is delocalized over

all the atoms, placing only a small charge on the carbon. This in turn causes much
stronger electrostatic interactions in the ionic structure H3Si+Cl− compared with
H3C+Cl−. The result is that the minimum of the ionic curve becomes very deep for
H3Si+Cl− and it coincides with the minimum of the covalent structure, leading thereby
to a strong covalent-ionic mixing and large RECS compared with the carbon analog
(Table 5.1). The same situation carries over to any R3Si–Cl versus R3C–Cl, R= alkyl,
and so on; in each case the R3Si+Cl− structure will have a minimum coincident
with the covalent structure and a large resultant RECS, some 21 kcal mol−1 larger
than that of the carbon analog [3d]. In a condensed phase, the ionic structure
is stabilized by the environment, but because the Si+Cl− minimum is tight, the
stabilization will be only moderate; hence, the ionic curve should remain close to
the covalent curve, thereby retaining the large RECS interaction of the bond. Thus,
in a condensed phase, the covalent-ionic mixing remains large, giving rise to Si–X
bonds that stay intact owing to the large CS-resonance energy.

Indeed, as discussed, our recent VB study showed [42] that the Me3Si+Cl−

structure in aqueous solution retains the tight ion-pair minimum, and thus mixes
strongly with the covalent structure and acquires large RECS. This large RECS is the
major reason why the bond will not undergo heterolysis in solution (but will prefer
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and H3Si+Cl−, calculated by VB theory. (Reproduced from Ref. [3g] with permission of
Wiley-VCH.)

associative processes), and why in the solid state even Ph3Si–OClO3 is a covalent
solid [25c] in contrast to the carbon analog, which has an Na+Cl−-type lattice with
Ph3C+ and ClO4

− ions [25d], and so on [25–27].

5.12
Scope and Territory of CS Bonding

The territory of CS bonding for electron pair bonding is in fact larger than we
describe in this chapter. In the area of electron-pair bonds, we should mention
the recent VB study [52] by Galbraith which showed that coordinate bonding such
as the one between tetravalent boron and amines, R3B–NR′3, is dominated by
CS-resonance energy. Similarly, Coote et al. [53] found that the dependence of the
relative bond strengths of R–X bonds (R = Me, Et, iso-Pr, tert-Bu; X = H, F, OH,
OCH3) follows the CS-resonance energy. Our recent study of M–H bonds, where
M is a first-row transition metal [54], showed that the CS-resonance energy is quite
significant despite the apparent ‘‘covalency’’ of most of the bonds. Furthermore,
RECS was found to increase from left to right in the period, and to be affected by the
presence of the 2s22p6 core electron pairs, which behave as lone pairs on an atom.
The analyzed propensity of atoms (fragments) to generate CS bonding suggests
that bonds of first-row transition metals will tend to be CS bonds, especially when
the bonding partner is an electronegative and/or lone-pair-rich atom. More such
CS bonds should be looked for among the bonds between the heavier elements of
the periodic table.

We have not discussed in this chapter the odd-electron bonds [55]. In odd-electron
bonds such as in F2

− or He2
+, H2

+ , the entire bonding arises from the RECS

because of the mixing of the odd-electron structures, as depicted in Scheme 5.8, for
an archetypical odd-electron bond. Thus, for example, the 3-electron structures of
F2

− are by themselves repulsive partly because of the 3-electron repulsion between
the two F moieties [56], and in part because of the Pauli repulsion from the 𝜎-lone
pairs. Nevertheless, F2

− is significantly bonded by about 29.5 kcal mol−1, which
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arises because of a large RECS quantity that overcomes the repulsive interaction in
the individual VB structures.

F FF F
− −

De = 30 kcal mol−1

Scheme 5.8 The resonance of the two 3-electron VB structures that constitute F2
− and its

bond dissociation energy [a CCSD(T)/aug-cc-pV5Z datum].

Another bond type that was not discussed in the chapter is hypercoordination,
which may well be invariably bonded by CS bonding. For example, the symmet-
rically hydrogen-bonded species (FHF)− has been computed by means of modern
VB theory [57], and was shown to be stabilized by RECS = 92 kcal mol−1, which
contributes to its stability, relative to the separated F− + HF. Large RECS values
might also be the root cause for the stabilities of other species such as PCl5, SFn (n=
4, 6), and bonded noble-gas-containing molecules, which form hypercoordination
species, for example, XeFn (n = 2, 4, 6), and all hypercoordinated species [58a]
could well be CS bonded. A most recent VB study [58b] shows that XeF2 is indeed
CS bonded.

Future directions for articulating this bonding form are many. A fruitful direc-
tion is hypercoordination and aggregation. Thus, for example, the small size of
R3Si+, and heavier analogs, means that they will tend to form hypercoordinated
compounds; in solution, in the solid state [59] and even in the gas phase, where
some unusual molecules have been reported [60], and bridged systems, (Si–X–Si)+,
which participate in catalytic bond exchange reactions [61, 62]. Metal–metal bonds
in some bimetallic complexes could well be CS bonds, as in M2(formamidinate)4

complexes (M=Nb, Mo, Tc, Ru, Rh, Pd) where large positive values of∇2𝜌(rc) have
been reported [63]. Other directions involve the generation of [1.1.1]propellane in
which the CH2 wings are substituted by heteroatoms that exert exchange repulsion
pressure on the inverted C–C bond, for example, HN, and so on [3k]. The in-plane
π-type bond in ortho-benzyne is another bond that suffers from exchange repulsion
pressure. Protonation or methylation (by Me+) of C–N bonds may convert them
into CS bonds [58a], a fact that may concern DNA bases, and may have mechanistic
effects, as in the protonated arginine in the mechanism of nitric oxide synthase
[64]. Bonds under immense external pressure [65] are likely to be CS bonds, and
encapsulated highly positive ions may well be CS bound [66, 67], and so on.
A growing territory lies ahead for exploration.

5.12.1
Concluding Remarks

CS bonding originates from the equilibrium condition of the bond, defined by the
virial ratio. It is promoted by two main factors:

1) By Pauli repulsion that weakens the covalency of the bond and induces large
covalent-ionic resonance energies (RECS). This excessive exchange repulsion
is typical to electronegative and lone-pair-rich atoms, or bonds weakened by
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exchange-repulsion pressure, as the bridgehead C–C bond in [1, 1, 1]propellane,
and other small ring propellanes.

2) Fragments that form extremely small cations, which resemble a proton, with all
the positive charge located at the central atom, much like in silicenium cation,
R3Si+ and so on, will promote CS bonding and hypercoordination, especially
with electronegative and lone-pair-rich atoms.

With these promoters, CS bonding forms a distinct group of bonding that
transcends consideration of static charge distribution, and that possesses unique
chemical signatures. Thus, CS bonding is not merely an academic abstraction. As
new examples or experimental manifestations of CS bonding start to accumulate
and become recognized, the concept of CS bonding will gradually find more
articulations [68] and ultimately be accepted by the chemical community.

Appendix

5.A
Modern VB Methods

The principles of modern VB theory have been recently reviewed [7]. The modern
methods differ on whether they use semilocalized orbitals, such as GVB (gener-
alized valence-bond) [69] and spin-coupled (SC) VB [70], or strictly local HAOs in
a multistructure VB scheme. The latter approach has been used successfully for
calculating bond energies with accuracy that matches the Gold standard method,
CCSD(T) [7].

In the localized HAO approach, a bond, A–X is described by the following wave
function:

ΨA−X = 𝑐COVΦCOV + 𝑐A+X−ΦA+X− + 𝑐A−X+ΦA−X+ (5.A1)

where the cs are structural coefficients and the Φs are the covalent and ionic VB
structures that distribute the electron pair between the orbitals of the two bonded
fragments; these orbitals are called the active orbitals. The remaining electrons
(inactive shell) in each VB structure are arranged in doubly occupied orbitals.
There are a few modern methods for handling the calculations, and we describe
briefly the main three methods.

1) The basic method is called the valence bond self-consistent field (VBSCF) method
[71]. It performs optimizations of both orbital and VB-structural coefficients.
If all the structures within the active shell are taken into account, the VBSCF
method is nearly equivalent to a CASSCF (complete active space self-consistent
field) method. Thus, VBSCF takes care of the static correlation but does not
include any dynamic correlation.

2) A VB method that incorporates dynamic correlation is the breathing orbital
valence bond (BOVB) method [72], which allows the structures in Eq. (5.A1)
to assume different orbitals, while performing optimizations of orbitals and
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structural coefficients. Most of the data in this chapter are computed with
BOVB [3g].

3) The valence bond configuration interaction (VBCI) method [73], initially per-
forms a VBSCF calculation. Subsequently, dynamic correlation is introduced
by singles and doubles configuration interaction (CI) from the optimized
orbitals of the fundamental structures into virtual orbitals. The virtual orbitals
are constrained to be localized on the same bonds as the occupied orbitals.
In this manner, the excited VB structures keep the same spin pairing and
charge characters as the fundamental structures, and it is therefore possible to
contract each fundamental structure and its excited ones into a single structure,
covalent or ionic, as in Eq. (5.A1). VBCI is used in some case in Table 5.1 [3g,j].

The weights of the VB structures are determined by use of the Coulson–Chirgwin
[7] formula, Eq. (5.A2), which is the equivalent of a Mulliken population analysis
in VB theory.

𝑊 CC
𝐾 = 𝐶2

𝐾 +
∑
𝐿≠𝐾

𝐶𝐾𝐶𝐿⟨Φ𝐾 |Φ𝐿⟩ (5.A2)

5.B
The Virial Theorem

The virial theorem expressed in Eq. (5.B1),

−𝑅d𝐸
d𝑅

= 2𝑇 + 𝑉 (5.B1)

where E is the total energy, V and T are respectively the potential and kinetic com-
ponents, and R is the interatomic distance between the two atoms (or fragments).

The term on the left of Eq. (5.B1) (the force acting on the molecule times the
respective length, R) is zero at equilibrium, that is, for R = Req. This means that
any properly optimized wave function at its own equilibrium distance Req must
obey the following virial ratio of the kinetic to the potential energy:

−2𝑇
𝑉

= 1 (5.B2)

Achieving this ratio results in energy lowering, namely, in bonding, which is
expressed in Eq. (5.B3):

ΔE = −ΔT = 0.5ΔV ; (ΔV < 0 ) (5.B3)

However, far from equilibrium, the virial ratio (−2T/V) will be off-balance: larger
than unity for R < Req, (i.e., the kinetic energy T being too large to satisfy Eq. 5.B2),
and smaller than unity for R > Req.

Let us now bring together two atoms (fragments): at infinite separation, the
atoms (fragments) obey individually the virial ratio (Eq. 5.B2). Simply shortening
the distance, without any other change, will cause a decrease in the kinetic energy,
and will thereby put the virial ratio of the species off-balance. The wave function will
then have to relax in some way in order to restore this ratio and decrease the total
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energy. At the purely covalent level, this is accomplished by orbital shrinkage, which
lowers the potential energy but raises the kinetic energy steeply. At the optimal
distance of the covalent structure, 𝑅cov

eq , the virial ratio will be obeyed. However, the
purely covalent wave function yields, as a rule, too small bonding energies and too
long bonding distances relative to accurately calculate spectroscopic parameters;
this wave function is insufficient. To optimize the bonding, the orbital shrinkage
mechanism has to be augmented by an additional mechanism. This mechanism allows
the wave function to include ionic structures, thereby resulting in an optimized
covalent-ionic wave function ΨA–X with shorter equilibrium distance 𝑅A−X

eq , where
the virial ratio is obeyed. At this distance, which is shorter than 𝑅cov

eq , the covalent
component of the wave function no longer obeys the virial ratio, which now exceeds
unity, and it is the mixing of the ionic structures that restores the ratio to unity.
Therefore, it is clear that the effect of ionic structures is to diminish the −2T/V
ratio, that is, to reduce the excess of kinetic energy relative to potential energy.

Thus, CS resonance due to the mixing of ionic structures into the covalent one is
expected to be responsible, along with orbital shrinkage, for the adjustment of the
kinetic and potential energy terms to the virial ratio. This effect of the CS resonance
energy was ascertained by us using BOVB calculations. The following trends were
found for H2 at equilibrium distance: (i) upon binding, the orbitals shrink, (ii) the
shrinkage of the orbitals in the covalent structure lowers the potential energy, but
excessively raises the kinetic energy, T , thereby tipping the virial ratio off-balance;
and (iii) adding the ionic structures lowers T without having much of an effect
on V , thus restoring the correct virial ratio [38]. Generalizing to typical classical
covalent bonds, such as H–H or C–C bonds, the mechanism by which the virial
ratio is obeyed during bond formation is primarily orbital shrinkage, and therefore
the RECS is only a small corrective effect.

Let us now consider a bond that bears adjacent electron pairs, as in F2, Cl2, and
so on. The presence of lone pairs creates additional Pauli repulsions (LPBWE),
which raise the kinetic energy. An extreme case is that of the F2 molecule, in which
the covalent component of the bond is repulsive, having excessive kinetic energy,
thus making the virial ratio greater than unity at any distance in the covalent wave
function. Therefore, by reference to H2, which lacks these repulsive interactions,
the additional increase of kinetic energy brought by LPBWE must be compensated
for by greater participation of covalent-ionic mixing. Moreover, the necessity of
large RECS is further reinforced by the fact that the atoms that bear lone pairs are
also compact, and shrinkage of a compact atom (fragment) raises its kinetic energy
more steeply than in the case of a diffuse atom (fragment)4). It follows therefore,
from this discussion, that the smaller the atom (fragment) and the more lone-pair
rich it is, the larger will be the excess kinetic energy, in the covalent structure, and
greater RECS would be required to restore the viral ratio. This is the reason why
the homonuclear bonds of F, O, N, Cl, and so on, are CS bonds, and why many
heteronuclear bonds containing F, Cl, O, S, N, P, will have a propensity for CS

4) For a valence orbital in a central field, the potential energy varies in proportion to 𝜁 (the orbital
exponent), while the kinetic energy changes as 𝜁2.
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bonding. This is also the reason why RECS peaks for F, which is the most compact
and lone-pair-rich atom in its period. This property comes inherently with the atom
(fragment). It follows therefore that CS bonding is the outcome of a fundamental
mechanism of bonding.

5.C
Resonance Interaction and Kinetic Energy

Kutzelnigg [39a] showed that the resonance integral 𝛽 is generally made of a
dominant negative kinetic component, 𝛽T, and a smaller and positive potential
component, 𝛽v. It follows, therefore, that the RECS, which results from the mixing
of ionic structures into the covalent structure, acts mainly to lower the kinetic
energy in the bonding region. Thus, the large RECS quantity that typifies CS
bonding is associated with the lowering of the kinetic energy in the bonding region.

Kutzelnigg has also given an approximate expression for 𝛽T as a function of 𝜁 ,
the orbital exponent, and the internuclear distance R:

𝛽T = −
1
3
[𝜁4𝑅2e−𝜁

𝑅] (5.C1)

Assuming a perturbation expression for the RECS, it would be proportional to the
square of 𝛽T, and will therefore be expected to vary with the eigth power of 𝜁 . This
expectation is well substantiated in Figure 5.9, where the slope of the log–log plot
of RECS versus 𝜁 is 8.89, thus showing indeed quite a great sensitivity of the RECS

to the compactness of the valence orbital.
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Pyykkö, P. (2009) J. Am. Chem. Soc.,
131, 238–243.

67. Rupar, P., Staroverov, V.N., and Baines,
K.M. (2008) Science, 322, 1360–1363.

68. Gershoni-Porrane, R. and Stanger,
A. (2012) Chem. Phys. Chem., 13,
2377–2381.

69. (a) Goddard, W.A. III,, Dunning, T.H.,
Hunt, W.J., and Hay, P.J. (1973) Acc.
Chem. Res., 6, 368–376; (b) Goodgame,
M.M. and Goddard, W.A. III, (1985)
Phys. Rev. Lett., 54, 661–664.

70. (a) Cooper, D.L., Gerratt, J., and
Raimondi, M. (1991) Chem. Rev., 91,
929–964; (b) Sironi, M., Raimondi,
M., Martinazzo, R., and Gianturco,
F.A. (2002) in Valence Bond Theory
(ed. D.L. Cooper), Elsevier, Amsterdam,
pp. 261–277.

71. For VBSCF, see: (a) Verbeek, J. and
van Lenthe, J.H. (1991) J. Mol. Struct.
(THEOCHEM), 229, 115–137; (b) van
Lenthe, J.H., Dijkstra, F., and Havenith,
W.A. (2002) in Valence Bond Theory
(ed. D.L. Cooper), Elsevier, Amsterdam,
pp. 79–116.

72. For the leading BOVB references, see:
(a) Hiberty, P.C., Flament, J.P., and
Noizet, E. (1992) Chem. Phys. Lett., 189,
259–265; (b) Hiberty, P.C. (1997) in
Modern Electronic Structure Theory and
Applications in Organic Chemistry (ed.
E.R. Davidson), World Scientific, River
Edge, NY, pp. 289–367; (c) Hiberty, P.C.
and Shaik, S. (2002) Theor. Chem. Acc.,
108, 255–275.

73. For leading VBCI references, see: (a)
Wu, W., Song, L., Cao, Z., Zhang, Q.,
and Shaik, S. (2002) J. Phys. Chem.
A, 106, 2721–2726; (b) Song, L., Wu,
W., Zhang, Q., and Shaik, S. (2004) J.
Comput. Chem., 25, 472–478.



199

6
The Block-Localized Wavefunction (BLW) Perspective
of Chemical Bonding
Yirong Mo

6.1
Introduction

Modern quantum chemistry, in which molecular orbital (MO) based methods
prevail, has allowed us to compute bonding energies within the chemical accuracy,
namely, a few kilojoules per mole. Yet, the desire to understand the bonding
nature in intuitive ways persists. While atoms are bound together by chemical
bonds [1], the definition and understanding of these bonds are critically related to
their theoretical formulation. Langmuir [2] first introduced the term covalent bond
into chemistry, and Lewis [3] provided more details to this term by envisioning
that ‘‘The chemical bond is at all times and in all molecules merely a pair of
electrons held jointly by two atoms.’’ Retrospectively, Pauling [4] interpreted the
covalent bond as involving ‘‘a pair of electrons shared between two atoms, and
occupying two stable orbitals, one of each atom.’’ When the two bonding atoms
differ considerably in their electronegativity, however, one atom would lose its
electron to the other, and subsequently the bond between these two atoms is
severely polarized and termed as ionic bond. Thus, conceptually covalent bonds
arise from shared-electron interactions while ionic bonds come from closed-shell
interactions between separated charged species. Contemporary chemical models
and theories are broadly dependent on this Lewis [5] concept of electron pair
bonding initially proposed nearly 100 years ago. A Lewis structure can be drawn for
a bonded molecule, and when a single Lewis structure is not enough to describe
the physical and chemical properties, for example, for a conjugated molecule,
more Lewis structures (i.e., resonance structures) can be introduced as profoundly
illustrated in the resonance theory [1, 6].

The theoretical description of chemical bond was rooted in the work by Heitler
and London [7] who conducted the first quantum mechanical calculation of the
hydrogen molecule H2 and presented a mathematical formula for a bonding orbital.
It was found that a covalent bond between two atoms originates from the overlap of
half-filled valence atomic orbitals of each atom containing one unpaired electron.
Since a Lewis structure or resonance structure consists of many covalent bonds
each of which is strictly localized between two bonding atoms, Slater and Pauling

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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generalized the Heitler-London equation for the H2 bond into the Heilter-London-
Slater-Pauling (HLSP) wavefunction which corresponds to a particular resonance
structure [8]. For example, for a closed system of N = 2n electrons, a HLSP can be
expressed as

Ψ𝐾 = 𝐴

[
𝜑1 (1)𝜑2(2) · · ·𝜑𝑁 (𝑁)

∏
(𝑖𝑗)

2−
1
2 [𝛼(𝑖)𝛽(𝑗) − 𝛽(𝑖)𝛼(𝑗)]

]
= 𝐴(𝜙1,2𝜙3,4 · · ·𝜙2𝑛−1,2𝑛) (6.1)

which corresponds to a resonance structure with a chemical bond between orbitals
𝜙2i−1 and 𝜙2i (or a lone pair if 𝜙2i−1 =𝜙2i). In the above equation, 𝐴 is the
antisymmetrizer and {𝜑} are bond functions. The proposal of the HLSP function
laid the foundation for ab initio valence bond (VB) theory, as the mathematical
translation of the resonance theory is that a wavefunction for a molecular state is a
linear combination of several HLSP functions.

Soon after the VB theory, an alternative theory called MO theory was devel-
oped with the introduction of the linear combination of atomic orbitals (LCAOs)
approximation for the MOs [9]. The adoption of a single Slater determinant at the
Hartree-Fock (HF) theoretical level and the constraint of orbital orthogonalization
dramatically reduce the computational cost, and MO-based methods have flour-
ished since the sixties and now overwhelmingly predominate in the computational
chemistry field. In contrast, the non-orthogonality of one-electron orbitals {𝜙}
in Eq. (6.1) which is essential for the fundamental notion that a chemical bond
results from the overlap of two bonding orbital, greatly complicates the computa-
tional efforts. Even more, Eq. (6.1) is composed of 2n Slater determinants. As a
consequence, the VB theory has been overshadowed by the MO theory for a long
time. Still, concepts such as Lewis structure, resonance, electronegativity, hybrid
orbital, covalent and ionic bonds are ubiquitous in textbooks and literature and
essentially the pillars for chemical models and theories, as they provide intuitive yet
qualitative pictures for the understanding of molecular structures and properties.
A continuing challenge in modern theoretical chemistry thus has been how to
accommodate the conventional theories and concepts into the ab initio MO com-
putations. The scrutiny and even quantification of these concepts at the modern
quantum mechanical level have far-reaching implications for the further devel-
opment of chemistry theory. The discovery and/or synthesis of novel molecules
and materials with peculiar properties also stimulate researches in elucidating the
chemical bonding, structures and stability of these species. However, MO-based
methods, which nowadays are readily available for molecules of a few hundred
atoms, are not ideal for this task due to the delocalization nature of MOs. Neverthe-
less, enormous efforts have been made to bridge MO computation results with VB
concepts [10], with the development of numerous post-(SCF) Self-Consistent Field
approaches such as localization schemes of canonical MOs [11], atoms in molecule
(AIM) [12], natural bond orbital (NBO) [13], adaptive natural density partitioning
[14], electron localization function (ELF) [15] and various intermolecular energy
decomposition schemes [16]. Notably, Dederichs et al. [17] proposed a general
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density functional theory (DFT) method with arbitrary constraints, for example, a
number of electrons constrained in a certain volume. This constrained DFT (CDFT)
can effectively define electron-localized states and probe the electron transfer (ET)
processes [18]. Similarly, Warshel and coworkers [19] developed the frozen DFT
(FDFT) algorithm to model a solute or a chemical reaction system in condensed
states.

As many of the chemical concepts have their roots in VB theory, the develop-
ment of ab initio VB methods can provide chemists innovative tools to examine
and justify these concepts and obtain unique and complementary information for
high-level MO calculations. During the past two decades, remarkable advances
in ab initio VB theory have been made with a few practical software available
[5b, 20], including the XMVB program [21]. Although these ab initio VB codes
are still limited in their applicability compared with popular MO methods, appli-
cations have generated interesting and unique information and provided novel
insights into the bonding features in molecules [22]. Further development of
ab initio VB approaches is challenging but they can noticeably complement
the MO methods and establish the essential chemical concepts on a solid
ground.

A promising strategy is to combine the advantages of both MO and VB theories.
We have proposed the block-localized wavefunction (BLW) method which is highly
efficient and can be run at the HF and DFT levels [16j, 23]. The fundamental
assumption in the BLW method is that the total electrons and primitive basis
functions can be partitioned into subgroups called blocks or fragments. Orbitals in
the same subspace (block) are subject to the orthogonality constraint, which retains
the computational efficiency of MO theory, but orbitals belonging to different
subspaces are nonorthogonal, which is a characteristic feature in VB theory. Thus,
the BLW method takes the advantages of both MO and VB theories, and can
uniquely obtain the wavefunctions for diabatic states self-consistently and express
the adiabatic states with a few (usually two or three) diabatic state wave functions.
Currently the BLW code has been ported to in-house version of GAMESS software
[24].

The BLW method was initially proposed for the study of intramolecular electron
delocalization such as the conjugation effect in unsaturated planar molecules
[23b]. Later it was extended to probe the intermolecular ET and a unique energy
decomposition scheme subsequently was developed [16j]. Considering the one-to-
one correspondence between BLWs and diabatic (electron-localized, or resonance)
states, we also formulated the whole reaction profiles with a few BLWs within
the framework of the combined quantum mechanical and molecular mechanical
(QM/MM) theory to simulate chemical processes in condensed states [25]. Similarly,
a BLW-based two state model was used for the computations of electronic coupling
energy and molecular reorganization energy, which are key quantities in the ET
theory [26]. In the following, we will introduce the essence of the BLW method,
followed by a few applications in the elucidation of molecular bonding natures
based on BLW computations. Finally, an outlook will be provided.
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6.2
Methodology Evolutions

6.2.1
Simplifying Ab Initio VB Theory to the BLW Method

In VB theory, the bond function in Eq. (6.1) is defined as

𝜙2𝑖−1,2𝑖 = 𝐴{𝜑2𝑖−1𝜑2𝑖[(𝛼(2𝑖 − 1)𝛽(2𝑖) − 𝛼(2𝑖)𝛽(2𝑖 − 1))]} (6.2)

which can be expanded to two Slater determinants. In MO theory, however, a bond
function is formally reduced to one Slater determinant (or HF wavefunction)

𝜙2𝑖−1,2𝑖 = 𝐴{𝜑′𝑖𝜑
′
𝑖[𝛼(2𝑖 − 1)𝛽(2𝑖)]} (6.3)

where {𝜑′𝑖} are delocalized and orthogonal, in contrast to {𝜙i} in Eq. (6.2) which are
localized and nonorthogonal. The hybrid use of Eqs. (6.2) and (6.3) inΨK (Eq. (6.1))
leads to Goddard’s generalized VB (GVB) method [27], which retains the VB form
for one or a few focused bonds (perfect-pairs) but accommodates the remaining
electrons with orthogonal and doubly occupied MO’s. The further introduction
of the strong orthogonality between bond orbitals and overlap-enhanced orbitals
(OEOs), which are essentially MO’s, greatly reduces the computational demand for
GVB calculations.

An alternative combination of VB and MO methods is to represent bond orbitals
with nonorthogonal doubly occupied localized orbitals [16l, 28]. Since 1996 (with
the first publication in 1998), we have been working on the proposal of a BLW for
each diabatic state [16j, 23]. The purpose of the BLW method is to get an efficient
and effective solution to electron-localized diabatic states which correspond to
classical resonance structures and can be used as references for the measure
of the intramolecular electron delocalization effect. In the BLW approach it is
assumed that the total electrons and primitive basis functions are partitioned into
k subgroups, in line with the conventional VB ideas. Each subspace consists of a
number of pre-determined basis functions and accommodates a preset number of
electrons. Obviously, for a Lewis resonance structure every two electrons form a
subspace. However, we can generalize the definition of resonance structures and
allow a subspace to have any number of electrons, as very often our focus is on the
electron movement in a particular region among particular molecular fragments,
rather than the overall electron delocalization within the whole molecular system.
By the use of block-localized MOs (BL-MOs) with doubly occupations (or singly
occupations in open-shell cases), we finally can reduce the original HLSP function
to a BLW of one Slater determinant form, where orbitals in the same subspace are
subject to the orthogonality constraint, but orbitals belonging to different subspaces
are nonorthogonal. Thus, the BLW method combines the advantages or features of
both MO and VB theories. Figure 6.1 shows how we construct BLWs for the Kekulé
structure of benzene and the three resonance structures used to describe the whole
chloride exchange SN2 reaction profile, where Φ(X) denotes all block-localized
orbitals in a block X.
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ΦBLW = A[𝜎𝜑C
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Example 1: Kekulé structure
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Example 2: Chloride exchange SN2 reaction

Φ
1

BLW
 = A[ψ(CI–)ψ(CH3CI)]

Φ
3

BLW
 = A[ψ(CI–)ψ(CH

3
+
)ψ(CI–)]

Φ
2

BLW
 = A[ψ(CICH3)ψ(CI–)]

Figure 6.1 Definition of blocks in the examples of Kekulé structure and SN2 reaction.

The optimization of orbitals in BLW can be accomplished using successive
Jacobi rotation [23b] or Gianinettia et al.’s algorithm [28j–l, 29]. The latter is
highly efficient as it generates coupled Roothann-like equations and each equation
corresponds to a block. Furthermore, as the first derivative of the energy with
respect to nuclear coordinates directly takes the form in conventional HF theory
[28j], the second-derivatives can be computed numerically. This would allow us to
derive the optimal geometry and vibrational frequencies and other properties for
a hypothetical electron-localized state, and compare the results with experimental
data for reference molecules without such electron delocalization effect. This kind
of comparison is critical to justify the BLW results and quantify not only the
energetic but also the geometrical impacts from the electron delocalization effect.

We have written an independent BLW code at the HF level with high efficiency,
and numerous applications have endorsed its usefulness, as electron correlation is
mostly self-cancelled when we take the energy difference between BLW and HF as
the stabilization energy due to electron delocalization (transfer). For instances, we
have studied the charge transfer in BH3NH3 [30], probed the nature of the ethane
rotation barrier [31] and the cation-π interactions in δ-opioid receptor binding
[32], proposed an energetic measure of aromaticity and antiaromaticity based on
the Pauling-Wheland resonance energies [22f], and analyzed the charge transfer
between solute and solvent with up to 1202 basis functions [33].

It should be noted that the BLW method, which is a quantum chemical model
after all, may not work well if basis functions lose atomic characteristics, for
example, when a complete basis on a single center for a molecular system is
used. This unphysical basis set artifact complicates not only the ab initio VB
methods, but also MO-based analyses on atomic properties in molecules. We have
extensively tested mid-size basis sets from 6-31G(d) to 6-311+G(d,p) and cc-pVTZ
and found the basis set dependence is generally trivial with this range of basis sets
[22f,g, 23b, 34]. In addition, the reliability of the BLW method is documented by
its computed structural parameters, vibrational frequencies, and NMR data [35].
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We also note that the Head-Gordon group has decomposed the total delocalization
energy into quasi-perturbative occupied-virtual orbital interaction components with
nonorthogonal orbitals called ‘‘absolutely localized molecular orbitals’’ (ALMOs)
[16l, 28m], which are actually identical to our BL-MOs.

6.2.2
BLW Method at the DFT Level

Due to the low computational cost and partial incorporation of electron correlation
[16f, 36], DFT methods provide a sound basis for the development of computational
strategies for studying potential energy surfaces, dynamics, various response
functions and spectroscopy, excited states, and more [36c, 37]. In DFT, the self-
consistent Kohn-Sham (KS) procedure is strictly analogous to the Hartree-Fock-
Roothaan SCF procedure, except that the HF exchange potential is replaced by a
DFT exchange-correlation (XC) potential. And the orbital equations of DFT have
the same forms as those in HF theory except with a different Fock matrix

F𝛼 = h + J + F𝑋𝐶𝛼 (6.4)

where h is the one-electron Hamiltonian matrix and J is the Coulomb matrix.
The elements of α exchange-correlation matrix FXC𝛼 can be evaluated by a one-
electron integral involving the local electron spin densities (LSD methods), or by
an integral involving electron densities and their gradients (generalized gradient
approximation, or GGA methods). Thus, it is fairly straightforward to implement
the BLW idea into DFT as long as we keep all the algorithm unchanged except that
the Fock matrix therein is replaced by a DFT one (FXC𝛼).

As the density matrix satisfies the symmetry, rank and idempotency conditions,
the electron density is given as follows [23c, 38]

𝜌(r) = 𝜌1(𝐫) + · · · + 𝜌𝑘(𝐫) (6.5)

where the integration of the fragmental density for block i satisfies the charge
constraint by construction of the non-orthogonal block-localized KS orbitals:

∫ 𝜌𝑖(𝐫)d𝐫 = 𝑛𝑖 (6.6)

Compared with the BLW-DFT method, the CDFT method involved a set of
constraints in KS-DFT calculations by the means of Lagrange multiplier to derive
charge-localized states [17, 18]. The CDFT method has been used in numerous
applications. For instances, Behler et al. [39] studied the important nonadiabatic
effects in the adsorption of triplet oxygen on aluminum surface and reactions
that are forbidden by the spin selection rule by confining electrons to subspaces
of the Hilbert space. Wu and van Voorhis [18, 40] developed an approach to
evaluate the coupling matrix element in long-range ET reactions and formulated
a configuration interaction (CI) method by using the Complete Active Space SCF
(CASSCF) inspired charge and spin constrained configurations. Our BLW-DFT
method, however, adopts a different strategy from CDFT. We block-localize the KS
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orbitals and hence the associated electron density is constrained by construction
(e.g., the Mulliken population constraint is inherently imposed). The electron
density for each diabatic state is derived from an antisymmetric wave function,
consisting of both orthogonal and nonorthogonal block-localized KS orbitals, a
feature distinct from the CDFT approach of Dederichs et al. [17], but of characteristic
to VB theory [10]. Importantly, the BLW method is applicable to both short-range
(or strong-coupling) and long-range (or weak-coupling) ET processes [26b].

6.2.3
Decomposing Intermolecular Interaction Energies with the BLW Method

Intermolecular interactions play a central role in chemistry as it is usually the
initial step for subsequent chemical reactions. A better understanding of the
nature of intermolecular interactions can help chemists tune and eventually
control chemical reactions. So far a large variety of theoretical approaches have
been proposed to probe the nature of intermolecular interactions by decomposing
the interaction energy into various physically meaningful components such as
electrostatic, exchange, dispersion, relaxation or polarization, charge transfer,
and so on [16]. Although certain arbitrariness is unavoidable in these energy
decomposition schemes as these energy terms are not experimentally measurable,
important consensus can be drawn from the analysis of a group of similar
complexes and significant insights into the origin of intermolecular interactions
can be garnered. This kind of studies is also illuminating for the development
of next generation force fields in the simulations of large systems. Among the
various energy decomposition schemes, the BLW energy decomposition (BLW-ED)
approach has the unique advantage of defining the hypothetical electron-localized
state self-consistently [16j, 23b, 32, 34a, 35b,c]. Moreover, the BLW has the geometry
optimization capability and recently been extended to the DFT level [23a,c]. Thus,
both the structural and energetic impacts by the charge transfer among interacting
species can be quantitatively evaluated.

The BLW-ED approach involves a number of successive steps as illustrated
in Figure 6.2. For the sake of simplicity, our discussion is limited to two-body
interactions though it can be easily extended to many-body cases [35c]. We start from
two monomers A and B at their isolated and optimal states. The optimal monomer
geometries are more or less different from their geometries in the supermolecule
AB due to the mutual interactions. Thus, we first need deform these monomers
from their optimal geometries to the geometries in the optimal supermolecule.
This part of energy cost (penalty) is usually denoted as the deformation energy
ΔEdef. Afterwards, we bring monomers together to form a supermolecule with
the monomer electron densities undisturbed. Obviously, the only contribution to
the interaction energy here is the electrostatic interaction ΔEele. The amount of
electrostatic energy can be derived by building a Hartree product of the monomer
wavefunctions, and comparing the expectant energy of this Hartree product with
the sum of monomer energies. Since the Hartree product is not well-behaved
wavefunction as it does not satisfy the antisymmetry requirement, we can impose



206 6 The Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding

Deformation

Electrostatic

Exchange

Polarization

Electron transfer

A

A

A

A

A

A

B

B

B

B

B

B

Figure 6.2 Flowchart for the definition of energy terms in the BLW energy decomposition
(BLW-ED) approach.

an antisymmetrizer on the Hartree product, but still retain the monomer orbitals,
or the monomer electron densities, unchanged as in their isolated states. This
actually results in the initial non-optimal BLW and the energy change from the
Hartree product to the antisymmetrized initial BLW corresponds to the Pauli
exchange repulsion energy ΔEex.

It should be noted here that both definitions of the electrostatic and exchange
energies in the BLW-ED approach are identical to those in many other approaches
[16b,f,i,p]. While the electrostatic forces can be well described by classical physics,
the Pauli exchange correlation interaction is a quantum mechanical effect. Often
we combine these two energies into a single term, called the Heitler-London
energy ΔEHL.

The approaching of two monomers will inevitably disturb each other’s electron
density due to the external field imposed by the other monomer. This phenomenon
is called polarization, which is an energy-lowering (stabilizing) process for the
complex. In this step, there is no mutual penetration of electron densities between
two monomers, and the BLW is self-consistently optimized. The corresponding
energy change from the initial to the optimal BLW is defined as the polarization
energy ΔEpol. By restricting the relaxation of BL-MOs in only one monomer, we can
further define individual polarization energies for monomers as well. However,
the sum of individual polarization energies will not be exactly equal to the total
polarization energy since polarization interactions are many-body effects. But our
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extensive computations show that the coupling effect is insignificant and secondary,
compared with individual polarization energies.

At the last step, we extend the electron distribution from block-localized orbitals
into the basis space of the whole supermolecule AB. This process can be charac-
terized as electronic delocalization or simply charge transfer, which further lowers
the total energy of the complex relative to the electron-localized state. As the initial
BL-MOs are now replaced by delocalized MOs which expand in the whole basis
space of the supermolecule, the basis set superposition error (BSSE) is introduced.
Consequently, we assign the BSSE correction to the charge transfer energy term:

Δ𝐸CT = 𝐸(Ψ) − E(ΨBLW) + BSSE (6.7)

So far the BLW-ED scheme is described at the HF or DFT levels, where electron
correlation (ΔEcorr) is either completely or partially ignored. This can be remedied
by performing high-level quantum mechanical calculations that include correlation
effects. In such a way, the overall intermolecular binding energy can be decomposed
into a set of physically meaningful contributions as

ΔEb = ΔEdef + ΔEele + ΔEex + ΔEpol + ΔECT + ΔEcorr

= ΔEdef + ΔEHL + ΔEpol + ΔECT + ΔEcorr (6.8)

6.2.4
Probing Electron Transfer with BLW-Based Two-State Models

Electron transfer (ET) effect is ubiquitous in chemical and biological processes
and plays a fundamental role in the understanding of enormous chemical and
biochemical reactions. According to the general Marcus-Hush model [41], the ET
process is often described with two electron-localized diabatic states (1 and 2 as
shown in Figure 6.3). One corresponds to the pre-ET state and the other refers to
the after-ET state. With the harmonic approximation, the potential energy for each
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Figure 6.3 Illustration of the general Marcus–Hush two-state model.
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diabatic state is represented by a parabolic curve and the adiabatic (ground) state,
which is a superposition of 1 and 2, is characterized by a double-well potential,
whose two minima correspond to ‘‘on’’ and ‘‘off’’ states in molecular electronics.
The most intriguing issue in this two-state model is the seam of the crossing
between the two energy profiles of diabatic states, where charge transfer occurs
in line with the Frank-Condon principle. Due to the electronic coupling which is
largely dictated by orbital overlap, the ground state energy will be lowered by V12,
or the electronic coupling energy, compared with the diabatic state energies. The
significance of V12 lies in its direct relevance to the ET rate [42], and the evaluation
of the electronic coupling term V12 and reorganization energy 𝜆 thus is the focus
of the ET theory.

So far there are a number of approaches toward the computations of the electronic
coupling energy [43], including the energy-splitting method based on Koopmans’
theorem [43c, 44] and the generalized Mulliken-Hush (GMH) formalism [43e,
45]. But a general feature in these approaches is that the electronic coupling
between the diabatic states stems from chosen adiabatic states. A direct evaluation
of V12 requires the proper definition of diabatic states with the transported
electron localized. While this remains a challenge within the MO theory due to
the delocalization nature of MOs, for certain systems whose wavefunction cannot
be properly described with one Slater determinant, it is possible to use one Slater
determinant to represent a charge-localized state at the unrestricted HF (UHF)
level [44c, 46]. Of course, the CDFT discussed in the pretext represents the most
recent advance in the derivation of the wavefunctions for diabatic states within the
framework of the MO theory [17, 18, 40].

Since the BLW method can well define the wavefunctions for electron-localized
diabatic states self-consistently and derive their energy profiles at the ab initio level,
we can easily derive the electronic coupling energy V12 [26a, 47]. Assuming the
adiabatic state wavefunction Ψ0 which is a superposition of two BLW’s as

Ψ0 = 𝑐1ΨBLW
1 + 𝑐2ΨBLW

2 (6.9)

we can obtain a 2× 2 secular equation by minimizing the energy of Ψ0. The
solution of the secular equation leads to two energy eigenvalues Eg (lower one) and
Ex. At the crossing point of energy curves of diabatic states when their energies are
identical, the electronic coupling strength V12 is defined as the difference between
the diabatic state energy and Eg.

Alternatively, we recognize that the energy of the adiabatic state Ψ0 can be easily
computed with any MO method, and the energies for the diabatic states can be
obtained with the BLW method. Based on this information, we can reversely derive
the configurational coefficients c1 and c2 [Eq. (6.9) and subsequently the electronic
coupling energy. Similar to empirical VB approaches, we assume that the overlap
integral between ΨBLW

1 and ΨBLW
2 is zero, and subsequently the electronic coupling

energy V12 is equal to the off-diagonal Hamiltonian matrix element between the two
diabatic states whose value is determined via the so-called Reverse CI (configuration
interaction) procedure as

𝑉12 =
√
(𝜀0 − 𝜀1)(𝜀0 − 𝜀2) (6.10)
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6.3
Exemplary Applications

6.3.1
Benzene: Evaluating the Geometrical and Energetic Impacts from 𝛑 Conjugation

Benzene is a stellar molecule in chemistry and a top example in the introduction
of the conjugation concept with the resonance theory [1, 6, 48]. The extraordinary
stability exhibited by benzene, later coined as aromaticity, can be well explained
with the rapid equilibrium or resonance between two equivalent Kekulé resonance
structures

I II

Experimentally, it was found that the hydrogenation heat of 1,3-cyclohexadiene
is about two times more than that of cyclohexene [49]. As benzene has three π
bonds, its hydrogenation heat was extrapolated to be about three times of that
of cyclohexene (see Figure 6.4). However, experimental data showed that the
hydrogenation heat of benzene is 36 kcal mol−1 lower than what expected, and this
energy gap has been used as the experimental estimation of the resonance energy
(RE) in benzene. In the matter of fact, Figure 6.4 can be condensed to the following
reaction

benzene + 2cyclohexane → 3cyclohexene + 36kcalmol−1(expt.) (6.11)

ΔER = 36 kcal mol–1

ΔH3 = 3ΔH1

ΔH4 = 49.8ΔH2 = 55.4

ΔH1 = 28.6

= 85.8

Figure 6.4 Definition of the empirical resonance energy (ΔER) of benzene based on hydro-
genation heats (kcal mol−1).
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However, assigning the reaction heat of Eq. (6.11) to the conjugation stabiliza-
tion in benzene is problematic, as considerable intramolecular hyperconjugative
interaction from the adjacent methylene groups to the π bond in cyclohexene
reduces the endothermicity of reaction. This effect can be clearly revealed by the
comparison of the hydrogenation heats of ethylene and cyclohexene, which are
32.58 and 28.59 kcal mol−1, respectively [49b, 50]. Thus, the historical resonance
stabilization energy of benzene (36 kcal mol−1) is remarkably underestimated [22f,
51]. Pople’s ‘‘bond separation energy (BSE)’’ evaluation overcomes this problem by
using the following isodesmic reaction [52].

3ethane + 3ethene → benzene + 6methane − 65.0kcalmol−1(expt.) (6.12)

Based on Eq. (6.12), the true empirical RE of benzene should be about 65 kcal mol−1.
We must note that when the VB theory and the resonance theory were proposed in

the first half of last century, ab initio computations were out of reach. Wheland once
summarized the empirical rules to identify the important resonance structures for a
conjugated molecule [6b], and stated that the RE can be derived ‘‘by subtracting the
actual energy of the molecule in question from that of the most stable contributing
structure.’’ [6a] The total number of independent resonance structures, however,
is determined by the Rumer spin coupling patterns [53]. For benzene, there would
be 175 resonance structures in total, of which 170 are ionic. Unexpectedly, using
minimal basis sets and all possible 175 resonance structures, Norbeck et al. [54]
and Tantardini et al. [55] demonstrated that the five covalent Kekulé and Dewar
structures make even less contribution to the ground state of benzene than the rest
170 ionic structures.

The key here lies in the understanding of the Kekulé structure, or the form
of one-electron orbitals {𝜑} in Eq. (6.1). In the computations by Norbeck et al.
[54] and Tantardini et al. [55], one-electron orbitals are pure atomic orbitals.
This echoes the classical notion that a real bond, polar or non-polar bond like
H–H, should be described with three VB structures, one covalent and two ionic
ones. The Kekulé structure thus was taken as a classical covalent structure in
early computations. But we would appreciate the reference Kekulé molecule, or
hypothetical 1,3,5-cyclohexatriene, with three ‘‘real’’ double bonds comparable to
ethylene and three single bonds comparable to ethane. Consequently, it should
be described with 33=27 VB structures. Norbeck and Gallup [54] first recognized
that the covalent functions cannot represent the benzene molecule in a satisfactory
way, and calculated the RE by taking into account all relevant VB structures, 27
for the reference Kekulé structure and 175 for the delocalized ground state. They
eventually got a RE of 61.4 kcal mol−1. Later, Hiberty [56] further showed that not
only the covalent-only description of benzene is very poor, but also delocalized
systems are, as a rule, more ionic than localized ones. This means that if only
covalent structures are retained, the description of benzene is even poorer than
that of the reference Kekulé structure.

Compared with the classical ab initio VB method where atomic orbitals are
used as one-electron orbitals, modern ab initio methods allow the expansion of
one-electron orbitals to the whole system like MOs with the expansion coefficients
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optimized self-consistently [20b, 27b, 57]. This kind of semi-delocalized orbitals
are called overlap-enhanced orbitals (OEOs) which are a direct extension of the
Coulson-Fischer orbitals for diatomic molecules [58]. The significant advantage
of this type of MO-like orbitals is that most of the correlation energy can be
recovered with only a small number of VB structures [20b]. Thus, OEOs play
a significant role in the construction of compact wavefunction independent of
the growing size of basis sets [20a]. But we need remind that the advantages
of OEOs are applicable to the delocalized state only. For a reference electron-
localized resonance state such as the hypothetical 1,3,5-cyclohexatriene in the case
of benzene, the use of OEOs will introduce additional VB structures other than the
27 VB structures. In other words, the supposedly localized state wavefunction is
actually something intermediate between the reference VB structure and the
ground state, and will result in unrealistically low resonance energies. That
is why we usually call OEOs as ‘‘semi-delocalized orbitals.’’ To remedy this
drawback, we proposed a kind of localized one-electron orbitals, namely, the
bond-distorted orbitals (BDOs), which are expanded with the basis functions
centered on two bonding atoms only [59]. Thus, whereas delocalized OEOs allow
us to derive a compact expression for the ground state with majority of electron
correlation considered, localized BDOs are essential to derive the electron-localized
reference state which refers to a Lewis structure whose bonds are comparable
to those in actual substances. Similar self-consistent localized orbitals have been
adopted by Hiberty and coworkers in the study of resonance effect using ab initio
VB method [22b,c].

The BLW method, which limits the expansion of block-localized orbitals within
a particular physical region of the system, obviously carries the same spirit
of the BDOs. The present BLW code even can provide us optimal geometries of
electron-localized structures such as the hypothetical 1,3,5-cyclohexatriene (Kekulé)
structure. Since in the IUPAC Gold Book, resonance energy is defined as ‘‘the
difference in potential energy between the actual molecular entity and the contribut-
ing structure of lowest potential energy. The RE cannot be measured, but only
estimated, since contributing structures are not observable molecular entities,’’
(Muller [60], 1994 #918) the adoption of different geometries for the reference res-
onance structure could lead to difference values of the RE. Wheland [6b], Mulliken
and Parr [28a] and Coulson and Altmann [61] pointed out that in order to compare
computational data with the empirical value, geometries of benzene and the hypo-
thetical 1,3,5-cyclohexatriene (Kekulé) should not be the same, and a ‘‘compression’’
energy of the bonds (ΔEC) would be involved if the calculations are performed at
the benzene geometry. Consequently, two types of RE have been defined, one is
the vertical resonance energy (VRE [22a, 28a], or quantum mechanical resonance
energy, QMRE [22i, 61, 62]) where the Kekulé structure retains the geometry of
benzene structure, and the other is the adiabatic resonance energy (ARE [22f, 28e],
or equivalently thermochemical resonance energy TRE [22a,h,i,k, 63]) where the
localized Kekulé structure takes an optimal bond-alternating geometry. Both kinds
of resonance energies are correlated as shown in Figure 6.5, and

VRE = ARE + ΔEC (6.13)
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Figure 6.5 Vertical resonance energy (VRE) and adiabatic resonance energy (ARE) in the
case of benzene (computed at the B3LYP/6-311+G(d,p) level in kcal mol−1).

It should be noted that the compression energy ΔEC in Eq. (6.13) can be
easily computed with molecular mechanical and quantum mechanical methods.
By assuming that the single and double carbon-carbon bond lengths in the optimal
Kekulé structure are around 1.54 Å and 1.34 Å, respectively, corresponding to the
bond lengths in ethane and ethylene, Wheland [6b] and Mulliken and Parr [28a]
estimated the compression energy in benzene about 30 kcal mol−1. By performing
quantum mechanical computations of the stretching or compressing of the carbon-
carbon bonds in ethane or ethylene, we derived the value 29.4 kcal mol−1 at
B3LYP/cc-pVTZ level or 27.5 kcal mol−1 at the MP2/cc-pVTZ level [34b].

We performed BLW computations of benzene at the B3LYP level with the
basis sets of 6-31G(d), 6-311+G(d,p), cc-pVTZ, and aug-cc-pVTZ, and Table 6.1
summarized the key structural parameters and resonance energies.

First of all, we examine the basis set dependency. VB theory and its concepts are
essentially based on chemical intuitions, particularly the view that any molecule
is composed of individual fragments. One persistent challenge is what kind of

Table 6.1 Optimal structural parameters (bond lengths in Å and bond angles in degree) of
benzene and 1,3,5-cyclohexatriene and resonance energies (kcal mol−1) at the DFT(B3LYP)
level.

Basis Set Structure R1 R2 VRE ARE 𝚫EC

6-31G(d) benzene 1.397 1.397 88.8 61.8 27.0
1,3,5-cyclohexatriene 1.329 1.528

6-311+G(d,p) benzene 1.325 1.395 92.2 63.2 29.0
1,3,5-cyclohexatriene 1.325 1.523

cc-pVTZ benzene 1.391 1.391 89.1 62.4 26.6
1,3,5-cyclohexatriene 1.322 1.523

aug-cc-pVTZ benzene 1.392 1.392 80.9 57.8 23.1
1,3,5-cyclohexatriene 1.324 1.513
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mathematical forms should be used for atomic orbitals. The Slater-type orbitals
(STOs) derived from the exact solution of Schrödinger equation to hydrogen atom
seems the best candidate. But the computational obstacle in the evaluations of
four-index integrals is yet to be overcome. Later, Boys introduced the Gaussian
functions where the radial decays of the original STOs change from e− r to 𝑒−𝑟

2

and approximated STOs as linear combinations of Gaussian-type orbitals (GTOs)
[64]. The use of GTOs as basis sets for atoms, which is artificial, revolutionized
the computational chemistry due to the high computational efficiency by 4–5
orders of magnitude compared to STOs. According to the variational principle, in
general the larger the basis sets are, the lower the molecular energy. Thus, with
the computational power grows, larger and larger basis sets have been developed.
However, when the basis sets get large enough, the atomic individuality would
gradually melt down, and ultimately the departure from the atomic concepts with
extremely large basis sets diminishes the advantages of VB theory versus MO
theory. The completeness of basis sets would diffuse the conventional picture
by chemists that molecules are composed of atoms, and bring difficulties in the
interpretation of computational results in a physically intuitive way. Mulliken
realized this dilemma in the very beginning of MO theory and insightfully pointed
out that ‘‘the more accurate the calculations become, the more the concepts tend
to vanish into thin air.’’ [65]

Table 6.1 shows that from 6-31G(d) to cc-pVTZ, both the structural and energetic
results are quite stable, but as expected, the use of aug-cc-pVTZ generates lower
resonance energies which theoretically would be zero in the use of infinite basis
sets. Optimizations of the fully delocalized benzene result in negligibly shorter
carbon-carbon bonds than given by experiment (1.399Å). For the optimal 1,3,5-
cyclohexatriene structure, the carbon-carbon double bond lengths are essentially
the same as in ethylene at the same theoretical level with the same basis sets, while
the single Csp2 –Csp2 bond lengths, which fluctuate from 1.513 to 1.528 Å, are only
slightly shorter than the Csp3 –Csp3 lengths in ethane. These structural parameters
are in good agreement with our chemical intuitions that the double bonds in the
hypothetical 1,3,5-cyclohexatriene should be like the ethylene bond and the single
Csp2 –Csp2 bonds should be comparable to or slightly shorter than the ethane
bond. In addition, similar BLW optimizations of linear alkenes consistently result
in double bond lengths about 1.32 Å and single bond lengths about 1.52 Å, which
are in accord with the results and findings on benzene [22f, 34b].

Apart from significant structural changes, π electron delocalization also remark-
ably stabilizes benzene more than many people initially expected. At the optimal
geometry of benzene, the VRE fluctuates slightly around 90 kcal mol−1. After cost-
ing about 27 kcal mol−1 to distort the σ-frame to a bond-alternating geometry which
is close to the classical estimation of 30 kcal mol−1 [6b, 28a, 61], benzene exhibits an
ARE of around 63 kcal mol−1, which is very much close to Pople’s BSE evaluation
(65 kcal mol−1, Eq. (31)).

We also note that the VREs from the HF and DFT are very close with the
same basis set, suggesting the light impact from the electron correlation, which
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contributes to both the Kekulé structure and benzene, thus plays a minor role in
RE estimates [34c].

While the structural and energetic data in the above are consistent with exper-
imental evidences and thus support the BLW method, it is desirable to obtain
NMR data for the Kekulé structure as proton NMR chemical shifts have long
been employed as primary experimental indicators of aromaticity in unsaturated
organic rings [66]. We have combined the BLW method with the Kutzelnigg’s IGLO
methodology [67] and introduce the BLW-IGLO method [35a, 68], which enables
the direct quantitative evaluation of π-electron delocalization effects on the NMR
chemical shifts of polycyclic conjugated and hyperconjugated systems generally.

6.3.2
Butadiene: The Rotation Barrier Versus the Conjugation Magnitude

Butadiene is another typical example of the conjugation effect, which can be
described by two resonance structures as III and IV.

III IV IVa IVb

The first primary one corresponds to a hypothetical state where the two double
bonds are not ‘‘conjugated,’’ while the second is essentially a biradical state. The
delocalized (Ψ) and strictly localized forms (ΨIII and ΨIV) of butadiene can be
expressed as

Ψ = 𝐴
[
𝜎𝑎2

𝑢𝑏
2
𝑔

]
(6.14a)

ΨIII = 𝐴
[
𝜎π2

12π
2
34

]
(6.14b)

ΨIV = 𝐴
[
𝜎π2

23π
2
14

]
(6.14c)

where 𝜎 represents all orbitals and electrons of 𝜎 symmetry. MOs au and bg in Eq.
(6.14a) are fully delocalized and expanded in the whole space, while πij is strictly
localized between atoms i and j. As resonance structure III is much more stable
than IV, we choose it as the reference state and performed geometry optimization
and RE computations.

Table 6.2 listed the computational results at the DFT(B3LYP) level with several
mid-sized basis sets including 6-31G(d), 6-311+G(d,p), cc-pVDZ and cc-pVTZ.
Like the case of benzene, structural data clearly showed that the carbon–carbon
double bond lengths in the optimal localized 1,3-butadiene structure III are
essentially of the same values as in ethylene at the same theoretical level, while the
single Csp2 –Csp2 bond lengths (1.518–1.526 Å) are only slightly shorter than the
Csp3 –Csp3 lengths in ethane. The correspondence between the single Csp2 –Csp2



6.3 Exemplary Applications 215

Table 6.2 Optimal structural parameters (bond lengths in Å) of planar 1,3-butadiene and
its primary resonance structure III with structural weight (Wgt, %) and resonance energies
(kcal mol−1) at the DFT(B3LYP) level.

Basis Set Structure R12 R23 VRE ARE 𝚫EC Wgt

6-31G(d) 1,3-butadiene 1.340 1.458 13.9 12.2 1.7 89.8
III 1.329 1.522

6-311+G(d,p) 1,3-butadiene 1.338 1.456 14.5 12.6 1.9 89.1
III 1.326 1.526

cc-pVDZ 1,3-butadiene 1.342 1.458 14.3 12.5 1.8 89.2
III 1.331 1.524

cc-pVTZ 1,3-butadiene 1.334 1.453 13.9 12.3 1.6 88.8
III 1.322 1.518

and Csp3 –Csp3 bond lengths implies that the hybridization mode of carbon atoms
only modestly influences bond lengths. The π conjugation stabilizes 1,3-butadiene
by 12.2–12.6 kcal mol−1, and lengthens the double bonds by only 0.011–0.012 Å,
but shortens the central single bond by 0.064–0.070 Å. The difference between
VRE and ARE (ΔEC=1.6–1.9 kcal mol−1), or 𝜎-compression energy, reflects the
energy required to distort the optimal geometry of butadiene with a localized
wavefunction. Similar to the benzene case [22f, 34b,c] the computed RE can be
justified by experimental data and other computational results.

Using the BLW-based two-state model [26, 47], we can also estimate the structural
weights of resonance structures III and IV to the ground state of 1,3-butadiene,
which are compiled in Table 6.2. It is clear that the primary structure dominates the
ground state wavefunction, while the biradical resonance structure IV contributes
about 10% to the ground state. We can further define the electron density difference
(EDD) between the ground (delocalized) state (Ψ) and the primary resonance
state (ΨIII) which can visually describe the electron movement due to the bond
delocalization. Figure 6.6 illustrates the electron flow due to conjugation at the
B3LYP/cc-pVDZ level, where the lighter color highlights the increasing of the
electron density, while the darker color denotes the decreasing of the electron
density. Figure 6.6a manifests that the bond delocalization in 1,3-butadiene shifts
the π electron density from the two double bonds to the central bond, though
this shift is lightly offset by the reverse movement of the 𝜎 electrons due to
the polarization effect. This picture fits our qualitative chemical intuition very
well.

One particularly interesting issue for butadiene is the insignificant variation of
the central carbon–carbon bond with a low rotation barrier (the CBS-Q calculated
value is 6.0 kcal mol−1 [69]) [28f]. At the DFT level with various basis sets, we
optimized the perpendicular conformation of butadiene where the π conjugation
is completely quenched. The optimal central carbon–carbon bond length is about
1.48 Å (see Table 6.3), which is very close to the value 1.45 Å (Table 6.2) in
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(a) (b)

Figure 6.6 Electron density difference (EDD) map showing the electron movement due
to the bond delocalization in 1,3-butadiene, (a) Planar and (b) Perpendicular, where grey
shows the density enhancement and dark the density reduction (isodensity 1.0× 10−3 a.u.).

Table 6.3 Optimal structural parameters (bond lengths in Å) of perpendicular 1,3-butadiene
and vertical resonance energy (kcal/mol) at the DFT(B3LYP) level.

Basis Set R12 R23 Barrier VHCE

6-31G(d) 1.334 1.487 7.5 10.3
6-311+G(d,p) 1.331 1.485 7.0 11.5
cc-pVDZ 1.336 1.486 7.5 11.7
cc-pVTZ 1.327 1.482 7.2 10.4

the planar butadiene. In the optimization of 1,3,5-cyclohexatriene (Table 6.1),
we already know that the optimal Csp2 –Csp2 should be about 1.52 Å. Thus, the
shortening of the central bond in the perpendicular butadiene indicates that there
is some effect other than the π conjugation. That effect is now recognized as
the hyperconjugative interactions between the CC π orbital and the antibonding
orbitals of the two central carbon–carbon bond and can be roughly labeled
as πCC→𝜎CC

*. Daudey et al. first probed the influence of π conjugation and
hyperconjugation in the shortening of the central carbon–carbon bond in butadiene
by substituting the delocalized πMOs in butadiene with the ethylenic πMO derived
from the calculation of ethylene with the same basis set [28f]. They found that
the hyperconjugation effect in the perpendicular structure is comparable to the
conjugation effect in the planar structure, thus well explained the origin of the
central bond shortening.

We derived the optimal BLW (Eq. (6.14b)) for the perpendicular structure
to estimate the vertical hyperconjugation energy (VHCE) at the DFT optimal
geometries. Table 6.3 listed the data. Our results confirmed the findings by
Daudey et al. [28f], showing that the hyperconjugation stabilization energy is
about 11 kcal mol−1, only 3 kcal mol−1 lower than the conjugation energy in the
planar structure. Since the rotaion barrier is about 7 kcal mol−1, the remaining
4 kcal mol−1 may come from the steric effect. Figure 6.6b further plots the electron
density change due to the hyperconjugation effect. Clearly, the carbon–carbon
double bonds lose π electron density to the central bond, and the interaction thus
can be defined as πCC→𝜎CC

*.
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6.3.3
Ethane: What Force(s) Governs the Conformational Preference?

So far, we have demonstrated the construction and optimization of electron-
localized state wavefunction by limiting the expansion of BL-MOs in terms of
atomic orbitals (or basis functions). In certain cases of molecular symmetries, it
is possible (and interesting) to partition the group basis functions with the BLW
method. Ethane is such a prominent example [70], as it maintains the D3 symmetry
in the rotation about the carbon-carbon bond and there have been significant
controversies over the origin of the corresponding rotational barrier [31, 71].

It has been well known that the staggered structure of ethane is about 3 kcal mol−1

more stable than the eclipsed structure [72]. Classically, it was envisioned that the
ethane rotation barrier originates from the Pauli exchange repulsion between the
two methyl groups [1]. This intuitive, steric repulsion explanation fits to our simple
stick-ball model for molecules very well, and was quantitatively confirmed by Sover
et al.’s analyses by means of bond-orbital model in the sixties [28b], and still remains
a popular and illuminating example in the description of steric effect in textbooks.
More recently, there have been a few quantum mechanical energy decomposition
analyses which further confirm that the repulsive interaction governs the staggered
conformation of ethane [72e, 73].

Apart from the classical repulsion model, however, there has been an alternative
explanation existing for the origin of ethane rotation barrier, namely, the hypercon-
jugation model [72f, 74]. The concept of hyperconjugation, introduced by Mulliken
in 1939 [75], is used in the description of the interaction between an occupied
bond orbital 𝜎ij and a vicinal unoccupied antibond orbital 𝜎kl

*, which results in an
occupied delocalized orbital σij

′ (𝜆≪1)

𝜎′ij = 𝜎ij + 𝜆𝜎∗kl (6.15)

and the stabilization of the system. Based on the approximation of MOs as linear
combinations of bond orbitals at the semi-empirical level, Brunck and Weinhold
first demonstrated that the vicinal hyperconjugative interaction between the 𝜎CH

occupied orbitals in one methyl group and the𝜎CH
* antibonding orbitals in the other

methyl group stabilizes the staggered conformation and thus is the dominant force
responsible for the rotational barrier in ethane [74c]. Later Weinhold et al. developed
the NBO approach at the ab initio level that verified their initial semi-empirical
results [13b, 76].

Thus, there are two major competing models to interpret the origin of the ethane
rotation barrier, one is the steric repulsion model, and the other is hyperconju-
gation model. This unsettled issue regained enormous attention in 2001. Based
on the NBO method, Pophristic and Goodman carried out a ‘‘flexing’’ analysis in
terms of energies associated with structural, steric, exchange and hyperconjugative
interactions during methyl rotation. By removing the 𝜎CH –𝜎CH

* hyperconjugative
interaction, they found that steric repulsion favors the eclipsed conformation,
thus repulsive forces have no effect on the preference for a staggered confor-
mation [71a]. Instantly, this unusual finding inspired more studies [31, 71c, 77].
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Bickelhaupt and Baerends first evaluated the Pauli and electrostatic interactions
explicitly using a wavefunction composed of fragmental MOs of methyl groups and
showed that although hyperconjugation does favor the staggered ethane conformer,
Pauli exchange repulsions are the dominant force responsible for the rotational
barrier in ethane [71c]. Differently, using ab initio VB method, we explicitly com-
puted the hyperconjugation energy in ethane and demonstrated that, in accord
with Bickelhaupt and Baerends’s finding, although the hyperconjugation effect
indeed favors the staggered conformation, its contribution to the barrier is only
secondary [31].

Quite interestingly, the best computational strategy for the solution to the nature
of the ethane rotation barrier within the MO theory was proposed by Mulliken
himself when he coined the hyperconjugation concept in 1939, though ab initio
calculations were not available at that time. Still, Mulliken insightfully cautioned
that ‘‘hyperconjugation in ethane should have little or no direct effect in restricting
free rotation’’ since it is ‘‘only of second order’’ [75].

Mulliken first recognized that ‘‘Hyperconjugation in ethane involves interaction
aming eight electrons which in the absence of any conjugation may be assigned to
two sets of ‘‘[πe]’’ C–H bonding MO’s, one set localized in each CH3 group’’ [75].
We consider the point group D3 which is unchanged in the ethane rotation. There
are two kinds of irreducible bases for D3, one is the fully symmetry ‘‘a’’ orbitals
which are irrelevant to the rotation and the other is twofold degenerate ‘‘e’’ orbitals
which are the ‘‘[πe]’’ orbitals in Mulliken’s paper. Thus, hyperconjugation in ethane
involves eight electrons which occupy the degenerate e-symmetric orbitals, as the
rest electrons occupy the fully symmetric orbitals and thus are unaffected by the
rotation. In the absence of any hyperconjugation, each set of e orbitals with four
electrons are localized on in each CH3 group. Figure 6.7 shows the e orbitals for
methyl groups, where 1π (differentiated with 1π′ and 1π′′ for two methyl groups)
are occupied with four electrons for each methyl group and 2π are unoccupied.
Based on the definition of hyperconjugation in MO theory [78], hyperconjugative
interaction results from the charge transfer from occupied group-localized orbitals
to vicinal unoccupied group-localized orbitals (i.e., 1𝜋′+2𝜋′′ and 1𝜋′′+2𝜋′, see
Figure 6.7a), which consequently stabilizes the system. The interaction between
neighboring occupied orbitals (1𝜋′ and 1𝜋′′), however, involves the quantum
mechanical Pauli exchange repulsion and thus unfavorable. We can term this part
of interaction as steric effect (Figure 6.7b).

Once we finish the transformation of atomic basis functions to irreducible basis
functions for each methyl group, we can construct the electron-localized reference
state by limiting the expansion of e-symmetric group orbitals to only one methyl
group, and express the corresponding BLW as [70]

Φ𝐿 = 𝐴(1𝑎2
12𝑎2

13𝑎2
14𝑎2

15𝑎2
11𝜋′41𝜋′′4) (6.16)

where 1𝜋′ and 2𝜋′′ are group-localized orbitals confined to only each of the
two methyl groups, respectively, as Mulliken initially suggested. In contract, the
conventional HF wavefunction for ethane

Ψ = 𝐴(1𝑎2
12𝑎2

13𝑎2
14𝑎2

15𝑎2
11𝑒42𝑒4) (6.17)
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Figure 6.7 The ‘‘e’’-symmetric group-
localized orbitals of methyl groups in ethane.
1πx and 1πy are degenerate and occupied,
whereas the degenerate 2πx and 2πy are
unoccupied. Orbital interactions in ethane:

(a) hyperconjugative interaction; (b) steric
interaction and (c) overall interactions.
(Reprinted with permission from Ref. [70].
Copyright 2007 American Chemical Society)

defines an electron-delocalized state. The energy difference between the delocalized
(Ψ) and localized states (ΦL) reflects the hyperconjugative stabilization (Ehc).

Apart from the estimation of the hyperconjugation energy, it is equally essential
to quantify the steric effect independently. For this purpose, we proposed a unique
solution, namely freezing the group-localized orbitals and monitoring the energy
variation in the process of rigid rotations where all structural parameters except
the torsional angle are fixed and ascribing this energy variation as the steric energy
change (ΔEs). The re-optimization of group-localized orbitals along the rotation
can be easily defined as the electronic relaxation energy (ΔEs), and the energy
change due to the structural change is labeled as the geometric relaxation energy
(ΔEg). In the way as shown in Figure 6.8, we decompose the rotation barrier into a
sum of contributions from the hyperconjugation, steric, electronic and geometric
relaxation terms

ΔEb = −Ehc(s) + ΔEs + ΔEe + ΔEg + Ehc(𝑒) = ΔEhc + ΔEs + ΔEe + ΔEg (6.18)

Obviously the energy decomposition scheme [Eq. (6.18)] relies on the starting
geometry. Figure 6.8 describes the rotation from the optimal staggered structure
to the optimal eclipsed structure. It would be interesting to examine the energy
terms in the rotation from the optimal eclipsed structure to the optimal staggered
structure. Tables 6.4 and 6.5 listed the energy contributions to the barriers of ethane,
disilane, digermane and methylsilane from different staring geometries with the
basis sets of 6-31G(d) and 6-311+G(d,p). Starting from different geometries do
have impacts on the energy values, but the changes are very limited and do not alter
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Figure 6.8 A decomposition scheme to explore the geometric impact on the rotational bar-
rier. (Reprinted with permission from Ref. [70]. Copyright 2007 American Chemical Society)

Table 6.4 Energy decomposition of the rotational barriers from staggered structures to
eclipsed structures for ethane congeners (kcal/mol).

Molecule Basis set 𝚫Ehc 𝚫Es 𝚫Ee 𝚫Eg 𝚫Eb

CH3CH3 6-31G(d) 0.76 2.73 −0.01 −0.50 2.98
6-311+G(d,p) 0.76 2.87 −0.03 −0.54 3.06

SiH3SiH3 6-31G(d) 0.30 0.71 0.00 −0.06 0.95
6-311+G(d,p) 0.26 0.77 −0.01 −0.04 0.98

GeH3GeH3 6-31G(d) 0.09 0.78 −0.01 −0.05 0.81
6-311+G(d,p) 0.14 0.67 0.00 −0.08 0.73

CH3SiH3 6-31G(d) 0.38 1.16 −0.01 −0.13 1.40
6-311+G(d,p) 0.37 1.27 −0.02 −0.16 1.46

the conclusion at all. The geometric relaxation is a combined structural response
to both the steric repulsion and hyperconjugative attraction. Compared with the
analysis from staggered to eclipsed structures, we observe a slight reduction of
both steric energy (ΔEs) and geometric relaxation energy (ΔEg), with their sum
unchanged, in rotations from eclipsed to staggered structures. In all cases, we found
that the electronic relaxation causes trivial energy changes in the rotation, while the
geometric relaxation which lengthens the central bonds from staggered to eclipsed
structures slightly stabilizes the systems, notably in ethane. This demonstrates
that a small change of the central bond in the rotation makes very modest energy
variation to the rotation barrier, and as a consequence, both rigid and relaxed
rotations have the same mechanism which is dominated by the steric effect, as
clearly shown in Tables 6.4 and 6.5.
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Table 6.5 Energy decomposition of the rotational barriers from eclipsed structures to stag-
gered structures for ethane congeners (kcal/mol).

Molecule Basis Set 𝚫Ehc 𝚫Es 𝚫Ee 𝚫Eg 𝚫Eb

CH3CH3 6-31G(d) −0.76 −2.45 −0.02 0.25 −2.98
6-311+G(d,p) −0.76 −2.55 −0.03 0.28 −3.06

SiH3SiH3 6-31G(d) −0.30 −0.66 0.00 0.01 −0.95
6-311+G(d,p) −0.26 −0.73 −0.01 0.02 −0.98

GeH3GeH3 6-31G(d) −0.09 −0.75 −0.01 0.04 −0.81
6-311+G(d,p) −0.14 −0.62 −0.03 0.06 −0.73

CH3SiH3 6-31G(d) −0.38 −1.08 −0.01 0.07 −1.40
6-311+G(d,p) −0.37 −1.16 −0.02 0.09 −1.46

It is of interest to note that the hyperconjugative interaction indeed favors stag-
gered structures, as suggested by the hyperconjugation model, but its magnitude is
no more than 30% of the total rotation barriers. In the matter of fact, the geometric
relaxation and hyperconjugative interaction partially cancel out, and consequently
the steric repulsion accounts for over 80% of rotation barriers in ethane and its
analogous.

6.3.4
H3B-NH3: Quantifying the Electron Transfer Effect in Donor-Acceptor Complexes

BH3NH3 is a textbook example for electron donor-acceptor (EDA) complexes whose
bond strengths range from about the average of strong covalent bond to weak van
der Waals bond. The boron–nitrogen dative bond, which is the classical example to
demonstrate the ET from the lone nitrogen pair to the vacant orbital on boron, has
important physiological activities [79]. The simplest system of the boron-nitrogen
dative bond is BH3NH3, which have been extensively studied experimentally [80]
and computationally [16h, 30, 81].

Although BH3NH3 is isoelectronic with ethane, its bond strength
(31.1 kcal mol−1) is only one third of the latter. Based on the resonance theory,
BH3NH3 can be well described by the following two resonance structures (or
diabatic states)

V VI

H3B NH3 H3B NH3

The contribution from the ionic state is highlighted by the high dipole moment
(5.216 Debye) [80a], suggesting that there is a significant amount of charge
transferred from NH3 to BH3. The consequence of the intermolecular ET is, the
hydrogen atoms in the NH3 moiety carry a fraction of positive charge whereas those
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in the BH3 moiety carry negative charges. The interaction between hydride atoms
and protons forms unconventional B-Hδ− • • • δ+H–N bonds [80c, 82], which may
play a primary role in crystal packing and supramolecular assembly in molecular
aggregations. Using the BLW-ED approach [16j, 35c], we can probe the nature of
the boron-nitrogen dative bond in BH3NH3.

We first explore the neutral resonance state V, where the lone nitrogen pair does
not delocalize to the BH3 moiety, and thus there are only nonbonded interactions
including the conventional van der Waals (dispersion and exchange) and electro-
static interactions. Here we used both B3LYP and PBE-D which is a nonempirical
density functional PBE plus Grimme’s empirical dispersion correction [83], to per-
form geometry optimizations and BLW-ED analysis. With the B3LYP functional,
the BLW optimization shows that the boron–nitrogen distance ranges from 2.151
to 2.528 Å and the binding energy (ΔEb

′) fluctuates from −3.5 to −4.6 kcal mol−1

after the BSSE correction using the counterpoise method [84] with the basis sets of
6-31G(d), 6-311+G(d,p) and cc-pVTZ. In a previous work, we obtained 2.33 Å and
−5.2 kcal mol−1 at the VBSCF/6-31G(d) level without BSSE correction [30]. With the
PBE-D functional, however, the boron-nitrogen distance reduces to 2.025–2.321 Å
and the binding energy increases from −5.3 to −7.8 kcal mol−1 with the same three
basis sets. The seemingly large variation implies two facts. One is the shallow and
flat energy profile for weak van der Waals attraction between NH3 and BH3 which
can be well fitted by many potential functions such as the Lennard-Jones form.
The other is the relative significance of the BSSE effect due to the low binding
energy, for example, at the BLW optimal geometries with B3LYP functional, the
BSSE amounts to 2.0, 0.7, and 1.5 kcal mol−1 with the 6-31G(d), 6-311+G(d,p) and
cc-pVTZ basis sets, suggesting that the geometry optimization need be done with
BSSE corrections.

The boron-nitrogen distance in the hypothetical van der Waals complex may
suggest the atomic van der Waals radius, which is not available for boron due to
the lack of experimental data [85]. For comparison, the covalent radii for nitrogen
and boron are 0.75 and 0.82 Å, respectively, and the van der Waals radius for
nitrogen is 1.55 Å. However, it seems certain that the equilibrium distance in the
neutral resonance structure V must be shorter than the sum of van der Waals
radii for nitrogen and boron due to the electrostatic interactions as nitrogen is an
electronegative atom and boron is an electropositive atom compare with hydrogen
atoms (Table 6.6).

We then conduct the energy decomposition analysis at the optimal BH3NH3

complex whose boron–nitrogen distance is 1.65–1.67 Å, compared with the
experimental value 1.657 Å [80a]. The B3LYP binding energy is close to the
QCISD/aug-cc-pVTZ data (−29.4 kcal mol−1 [81m]), but higher than the experi-
mental measure 23.9 kcal mol−1. With the PBE-D functional, however, the binding
energy is quite remarkably overestimated compared with the benchmark value.
From the optimal monomer geometries to the optimal complex, considerable struc-
tural changes occur for the BH3 moiety, which is planar in the isolated state but
pyramidal in the complex. Calculations show that the total deformation energy cost
is about 13 kcal mol−1, which dominantly comes from the BH3 moiety. The positive
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Table 6.6 Optimal nitrogen-boron distance (Å) and energy decomposition analysis
(kcal mol−1) for BH3NH3

Theoretical Level R(DFT) R(BLW) 𝚫Edef 𝚫EHL 𝚫Epol 𝚫Ect 𝚫Eb
′ 𝚫Eb

B3LYP/6-31G(d) 1.671 2.151 12.7 9.5 −20.9 −30.9 −4.6 −29.6
B3LYP/6-311+G(d,p) 1.668 2.528 13.0 26.0 −31.0 −35.7 −3.5 −27.7
B3LYP/cc-pVTZ 1.661 2.338 13.2 24.4 −36.0 −30.4 −3.7 −28.8
PBE-D/6-31G(d) 1.663 2.025 12.5 6.2 −22.3 −33.4 −7.8 −37.0
PBE-D/6-311+G(d,p) 1.660 2.321 12.6 24.1 −33.3 −38.4 −5.3 −35.0
PBE-D/cc-pVTZ 1.654 2.116 13.0 22.1 −38.7 −32.4 −6.4 −36.0

(a) (b)

Figure 6.9 Electron density difference (EDD) map showing (a) the polarization effect and
(b) electron transfer from NH3 (left) to BH3 (right) (isodensity 5.0× 10−3 a.u.).

Heitler–London energy indicates that the Pauli repulsion contributes more
than the attractive electrostatic interaction. However, there is large discrepancy
between the 6-31G(d) and the rest two larger basis sets for this energy term as well
as the polarization energy. But the charge transfer stabilization energy is reasonably
stable, and almost the same as the final total binding energy. Figure 6.9 exhibits
the electron density changes due to both the polarization and ET. It is interesting to
view that the electron density in NH3 moves to the nitrogen side, while the density
in BH3 moves away from the boron atom. These movements are a preparation for
the subsequent ET, which moves the electron density from the nitrogen atom to
the boron atom, as Figure 6.9b clearly shows.

6.4
Conclusion

Intramolecular electron delocalization, including conjugation and hyperconjuga-
tion, plays an important role in molecular structures, properties and reactivity.
Conventionally, resonance theory has been developed to elucidate the correlations
among the delocalization, structures, and properties at the qualitative level, though
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delocalization stabilization energy has been well defined as a measure of the
magnitude of contributions from resonance structures other than the principal
Lewis structure to the ground state of a delocalized molecule. Since the main-
stream methods in computational chemistry are MO theory-based and generally
unable to define individual electron-localized (resonance) structures, numerous
indirect approaches have been designed to estimate the relative delocalization
energy with other real reference molecules. But the arbitrariness in the choice of
references results in a large variation of the delocalization energy for the same
molecule, notably benzene [34b,c]. Thus, the development of ab initio VB meth-
ods, which explicitly define resonance structures with HLSP functions, is highly
expected.

The BLW method represents the simplest, most efficient ab initio VB method. It
partitions all electrons and basis function into several blocks (groups, or fragments),
and restricts the expansion of any block-localized MO to only one block. Apart
from the orthogonality constraint for BL-MOs within each block, it defines the
corresponding electron-state with one Slater determinant. As a consequence, the
BLW retains the characteristics of VB theory, but possesses the high efficiency of
the MO theory.

It should be noted that experimentally, electron-localized states are usually
inaccessible, and the lack of direct experimental proofs makes several significant
controversies such as the nature of ethane rotation barrier unsettled and no
computational method accepted universally. However, we stress that still there are
plenty of experimental evidences existing which can be used to justify computational
results. For instance, the geometry optimization of an electron-localized state for
a conjugated molecule should generate structural parameters as well as NMR,
vibrational frequencies etc comparable with the data for nonconjugated molecules.
We have extensively analyzed the resonance in benzene and the BLW computations
of the hypothetical Kekulé structure (namely the 1,3-cyclohexadiene) produce
results in accord with all experimental proofs. The comparison of the conjugation
in the planar structure and the hyperconjugation in the perpendicular structure
of butadiene confirms the early findings by Daudey et al. [28f] that both have
similar magnitudes. Thus, simply using the rotation barrier over a conjugated
bond, which disables the conjugation, to evaluate the conjugation effect is often
problematic.

The BLW method can also be used to partition irreducible basis function
instead of atomic basis functions. As an interesting example, we analyzed the
rotation barrier in ethane by partitioning the e-symmetric group orbitals in order
to estimate the hyperconjugation stabilization energy among the e group orbitals.
Our computations showed that there are notable hyperconjugative interactions.
However, the interactions change only slightly in the process of rotation. In other
words, the hyperconjugation effect does not have a decisive role for the barrier,
which largely originates from the steric effect, as the conventional wisdom holds.
The BLW method can be further applied to the study of intermolecular interactions,
and the ET processes.
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Figure 6.10 Definition of blocks for dimethoxymethane.

6.5
Outlook

The present version of the BLW method allows the assignment of a basis function
to only one sub-group of the system and there is no redundancy of members in
sub-groups. However, in the construction of electron-localized state for ET within a
molecule, such as the hyperconjugation effect, in general there is no way to clearly
allocate some basis functions to one block. For instances, in the exploration of
the hyperconjugative interactions from the lone pairs on oxygen atoms to adjacent
methyl or methylene groups such as in dimethoxymethane shown by Figure 6.10,
it is necessary to strictly localize the lone oxygen pairs (shown by the red cycle).
But the oxygen atomic orbitals also participate in the σ bonding with carbon
atoms (shown by the green cycles). Thus, some basis functions may appear in
several blocks. Currently we are developing the generalized BLW method which
will allow the definition of blocks more flexible by removing the limit that any
basis function belongs to only one block. As such, the applicability of the BLW
method will be substantially broadened. It should be noted that such kind of
general block-diagonalization approach was first adopted by Stoll et al. in a few
simple molecules [28c,d]. Lately, Sironi, and coworkers [86] demonstrated that
orbitals strictly localized on pre-defined molecular fragments are transferable and
thus provide an efficient and effective way to construct the electronic structure of
large molecules.

We have tested the generalized BLW idea with a few simple examples such as
the anomeric effect in dimethoxymethane and substituted tetrahydropyrans [87]
and the conformational preference of formic acid for the trans (Z) conformer over
the cis (E) conformer [87], and confirmed the applicability of the generalized BLW
method.
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7
The Conceptual Density Functional Theory Perspective
of Bonding
Frank De Proft, Paul W. Ayers, and Paul Geerlings

7.1
Introduction

In Pauling’s Nature of the Chemical Bond, for decades the reference for every chemist
interested in the intricacies of what a chemical bond really is, and which is commem-
orated in this volume, Pauling concentrates on two main types of chemical bonds:
the covalent bond and the ionic bond [1]. His chapter on the hydrogen bond is left
out of consideration in our text in view of its classification as a ‘‘weak interaction,’’
and the one on the metallic bond is also left out here owing to its fundamentally
different nature. In both types of bonds (electrostatic and covalent), electrons play
a fundamental role. In the ionic bond, a full electron transfer occurs between both
partners (at least formally), as the bond is formed by an electrostatic interaction
between a cation and an anion. In the covalent bond, one or more electron pairs are
shared between the two atoms. The main factors that describe the energetics of ionic
bonds are simpler: the atomic ionization energy and the electron affinity, the exper-
imental determination of the latter values at the time being in its infancy (here the
lattice energy is left out for simplicity). In the covalent bond, an orbital description is
adopted based on the valence bond approach, and bonding occurs by overlapping of
hybridized orbitals on the two partners, a concept worked out by Pauling himself in
the mid-thirties. The characteristics of these bonds are related to the charge distri-
bution resulting from a difference in electronegativity between the two partners, for
which Pauling himself constructed a scale, for a long time considered the scale. Note
that the Mulliken scale introduced during the same period uses the combination of
the abovementioned concepts, namely, ionization energy and electron affinity, as a
measure for electronegativity [2]. In this highly simplified description of some main
aspects and seminal concepts highlighted in Pauling’s magnum opus, the reader will
notice that the electron density is less prominent than it is in a modern perspective.

X-ray diffraction leading to experimental density plots of sufficient resolution
fully entered the chemical literature much later on as described by Coppens [3, 4],
enabling their systematic analysis using, for example, Bader’s Quantum Theory
of Atoms in Molecules (QTAIM) [5, 6]. However, note again that Pauling was a
pioneer in the use of X-ray diffraction for the structure determination of crystals.

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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From the purely theoretical point of view, the fundamental role of the electron
density as carrier of information in the quantum chemical description of atoms,
molecules, and the solid state was not fully recognized even at the time of the third
Edition of the Nature of the Chemical Bond in 1960 [1].

The rest of the development is known to the broader chemical community: in
1964, Hohenberg and Kohn proved that the electron density can indeed replace
the wave function as carrier of information through their energy as a functional of
the density existence theorem, putting the much simpler electron density at the
forefront for studying the electronic properties of atoms and molecules [7], thus
formally establishing the field of density functional theory (DFT) [8–12]. Bader’s
seminal contributions, highlighted by Popelier in this volume, insisted on electron
density as the central quantity in the study of bonding. However, the question how
to obtain these densities, thereby avoiding the cumbersome ab initio techniques
for wave functions, remained. It is at least in principle possible, because the
variational principle applied to the energy density functional, E=E[𝜌], leads to
the ground-state density in the same way as the analogous variational principle
for the wave function leads to the ground-state wave function. Direct optimization
of the electron density turned out to be hard to achieve. A practical ansatz, still by
far the most popular one, which reintroduces orbitals, was formulated by Kohn and
Sham [13]. Their equations contain, however, an unknown term in the Hamiltonian
of the resulting one-electron equations, which is the price to be paid for simplifying
the Schrödinger equation by going from a 4N-variable spin-resolved wave function
to a three-variable density.

This breakthrough entered the (quantum) chemical community in full force in
the early nineties when the Kohn–Sham equations were implemented in the wave
function package par excellence, John Pople’s Gaussian [14]. The DFT has flourished
since then as the computational workhorse of relatively accurate calculations
on medium- to large-sized systems with thousands of DFT-based papers being
published every year.

The following question can be asked: Did DFT contribute to new insights into
the chemical bond that wave function theory could not? We think that the answer
is a twofold ‘‘yes.’’

While discussing this point, we would like to make a distinction between
‘‘bond’’ and ‘‘bonding.’’ Bond refers to the final situation when both partners have
completed their association, whereas bonding refers to the initial phase of the
formation of a bond, that is, the bond-formation processes.

The first ‘‘yes’’ to the question above is an indirect one. From a practical point of
view, DFT offers faster methods to obtain the density, which can then be studied
in much more detail and for much larger systems, both in a chemical bond and
on bond formation (bonding). In our contribution, we briefly focus on Berlin’s
approach [15] that was cast in a conceptual DFT [8, 10, 11, 16–22] version (vide infra)
as an example of such a combined approach. The basic aspects of DFT highlighting
the role of electron density a carrier of information and the way to obtain it are
outlined in Section 7.2.
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On the other hand there is a second ‘‘yes’’, coming from the so-called conceptual
DFT where from the late seventies onward, Parr and coworkers developed a theory
based on a perturbational ansatz of interacting partners through the E=E[N,v]
functional and where the electron density itself and the electronic chemical potential
turn out to be the key ingredients [8, 10, 11, 16–22]. In this scheme, reactivity
descriptors were developed systematically as energy (functional) derivatives with
respect to N and/or v(r), representing the response of an atom or a molecule to
perturbations in the number of electrons and/or the potential that the electrons
move in. From this perspective, chemical bonding is a special type of perturbation.
We describe succinctly the main descriptors of this type in Section 7.3. These
descriptors enable us to disentangle the driving force for chemical bonding,
leading to insights into the characteristics of the bond formed:

• Electronegativities should be equalized (i) [23–27].
• Hard partners prefer to interact (globally and locally) with other hard partners.

Similarly, soft partners prefer soft partners (ii) [28–32].

Once the bond has been formed, its charge distribution may be derived through
an electronegativity equalization-based methodology derived from (i).

In principle (i), the electronegativity (difference) as put forward by Pauling is the
principal actor in defining the charge distribution after bond formation has been
realized, although modulated, however, by the hardness/softness of the interacting
partners. The hardness/softness of the partners is related to their polarizabilities,
to which Pauling attached lesser importance in the process of bond formation.

An example is given for each concept/principle, the final case being the nuclear
Fukui function [33–40] where the link with Berlin’s picture of the chemical bond
[15], directly concentrating on the density, is made.

7.2
Basics of DFT: The Density as a Fundamental Carrier of Information
and How to Obtain It

The accurate solution of the (nonrelativistic) time-independent Schrödinger
equation, yielding the energy of the system E and the wave function Ψ

ĤΨ = EΨ (7.1)

is considered to be the ultimate road to (get an insight into) the electronic structure
of atoms and molecules. In Eq. (7.1), Ĥ is the Hamiltonian for a system of M
nuclei and N electrons, in the absence of any external field, and given by (in a.u.)

Ĥ = −1
2

M∑
A=1

∇2
A −

1
2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA|𝐫i − 𝐑A|+
N∑

i=1

N∑
j>i

1|𝐫i − 𝐫j|+
M∑

A=1

M∑
B>A

ZAZB|𝐑A − 𝐑B|
(7.2)

In this expression, the first two terms are the kinetic energy of the nuclei and
electrons, respectively, the third term expresses the electron–nucleus attraction, the
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fourth term the electron–electron repulsion, and the fifth term the nucleus–nucleus
repulsion. The potential due to the nuclei, also called the external potential v(𝐫), can
thus be written as

v(𝐫) = −
M∑

A=1

ZA|𝐫 − 𝐑A| (7.3)

All properties of the chemical system can be obtained from this wave function. In
the 1920s, Thomas and Fermi developed a theory where the electron density 𝜌(𝐫) of
the system was used as the basic carrier of information instead of the wave function
[41, 42], which was extended to include exchange by Dirac [43]. In the 1950s, Slater
used this local Dirac expression to replace the nonlocal exchange operator in the
Hartree–Fock theory, yielding the so-called Xα method [44–46].

The electron density of the system, 𝜌(𝐫), gives the probability of finding any of
the N electrons in the system in an elementary volume d𝐫 around 𝐫, regardless of
the position and spin of the other N –1 electrons. It is readily obtained from the
wave function as

𝜌(𝐫1) = N∫ … ∫ |||Ψ (𝐱1, 𝐱2, … 𝐱N

)|||2ds1d𝐱2 … d𝐱N (7.4)

where 𝐱i denotes the combined position and spin coordinate of electron i, and s1

the spin coordinate of electron 1.
As can be seen, the electron density yields the total number of electrons of the

system on integration over all spaces

∫ 𝜌(𝐫)d𝐫 = N (7.5)

In 1964, Hohenberg and Kohn formally proved that the electron density can indeed
be used as the basic variable determining all atomic and molecular properties [7].
They showed that the electron density of the system, up to a trivial additive constant,
uniquely determines the external potential v(𝐫) of the system given in Eq. (7.3).

As the electron density integrates to the number of electrons of the system
[Eq. (7.5)] and 𝜌(𝐫) determines v(𝐫), the density fixes the Hamiltonian and the wave
function of the system, and consequently all properties of the system. The energy
of the system and the different parts of the (electronic) energy can thus be written
as a functional of the electron density1):

E[𝜌(𝐫)] = T[𝜌(𝐫)] + Vne[𝜌(𝐫)] + Vee[𝜌(𝐫)] (7.6)

where T[𝜌(𝐫)] is the kinetic energy functional, Vne[𝜌(𝐫)] the nucleus–electron
attraction functional, and Vee[𝜌(𝐫)] the electron–electron repulsion functional. For
Vne[𝜌(𝐫)], the exact expression is known:

Vne[𝜌] = ∫ 𝜌(𝐫)v(𝐫)d𝐫 (7.7)

1) A functional is a rule for going from a function to a number; it can be denoted as F[f ], where f (x)
is a function.
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The other two parts of the energy functional in Eq. (7.6) are largely unknown and
are often combined into the so-called Hohenberg–Kohn functional

FHK[𝜌(𝐫)] = T[𝜌(𝐫)] + Vee[𝜌(𝐫)] (7.8)

Now that the density has been recognized as a fundamental carrier of information,
the next problem is ‘‘how to get it’’.

In a second theorem, Hohenberg and Kohn established a variational principle: for

any trial density 𝜌̃(𝐫), such that ∫ 𝜌̃(𝐫)d𝐫 = N and 𝜌̃(𝐫) ≥ 0,∀𝐫, E[𝜌̃(𝐫)] ≥ E0[𝜌0(𝐫)],
where E0 is the ground-state energy with corresponding ground-state electron
density 𝜌0(𝐫). If 𝜌̃(𝐫) = 𝜌0(𝐫), then E[𝜌̃(𝐫)] = E0 [7].

One can now minimize the electronic energy E[𝜌(𝐫)], given in Eq. (7.6), with
respect to the electron density 𝜌(𝐫), subject to the constraint that during mini-
mization, the electron density should at all times integrate to the total number of
electrons N of the system. Attaching a Lagrange multiplier 𝜇 to the normalization
constraint yields the following equation:

𝛿

𝛿𝜌(𝐫)

[
E [𝜌 (𝐫)] − 𝜇

(
∫ 𝜌 (𝐫)d𝐫 − N

)]
= 0 (7.9)

or
𝛿𝐸

𝛿𝜌(𝐫)
− 𝜇 = 0 (7.10)

Using Eq. (7.6) and (7.7), Eq. (7.9) can be rewritten as

v(r) +
𝛿(T[𝜌(𝐫)] + Vee[𝜌(𝐫)])

𝛿𝜌(𝐫)
− 𝜇 = 0 (7.11)

which finally becomes

v(r) +
𝛿FHK

𝛿𝜌(𝐫)
= 𝜇 (7.12)

This expression is often called the DFT analogue of the Schrödinger equation. If
FHK were known exactly, this would give the exact solution for the ground-state
density and associated energy. Unfortunately, large parts of FHK are unknown and
have to be guessed. Vee can be written as an exactly known classical contribution to
the electron–electron repulsion J[𝜌(𝐫)] and a residual unknown nonclassical part
Encl:

Vee[𝜌] =
1
2∫ ∫

𝜌(𝐫)𝜌(𝐫′)|𝐫 − 𝐫′| d𝐫d𝐫′ + Encl[𝜌] = J[𝜌] + Encl[𝜌] (7.13)

However, a similar separation for the kinetic energy functional is not possible;
Kohn and Sham circumvented this problem by introducing orbitals again [13].
They considered a noninteracting model system with the same electron density as
the exact, fully interacting system. For the noninteracting reference system, the
kinetic energy Ts can be computed exactly as

Ts[𝜌] =
N∑

i=1

⟨
𝜙i

||||−1
2
∇2
||||𝜙i

⟩
(7.14)
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where 𝜙i are the so-called Kohn–Sham orbitals. The electron density is given
exactly as

𝜌(𝐫) =
N∑

i=1

|𝜙i(𝐫)|2 (7.15)

The final Kohn–Sham energy density functional can thus be expressed as

EKS[𝜌(𝐫)] = Ts[𝜌] + (T[𝜌] − Ts[𝜌]) + Vne[𝜌] + J[𝜌] + (Vee[𝜌] − J[𝜌]) (7.16)

One defines the exchange–correlation energy functional as

EXC[𝜌] = (T[𝜌] − Ts[𝜌]) + (Vee[𝜌] − J[𝜌]) (7.17)

so that the Kohn–Sham energy expression becomes

EKS[𝜌] = Ts[𝜌] + J[𝜌] + EXC[𝜌] + Vne[𝜌] (7.18)

This energy expression would lead to an exact method if the exact expression of
EXC[𝜌] were to be known. In the past 25 years, accurate approximations derived
from the first principle considerations, using parameterizations, or combinations of
both, for the exchange–correlation energy functional have become available; hence,
many atomic and molecular properties can now be computed very accurately. A
number of problems persist, including the accurate description of reaction barriers,
multiplet energies of transition metals, the accurate description of excited state
properties, and dispersion interactions. A recent review by Yang gives a detailed
account and perspective on the field of DFT and scrutinizes the many challenges
the theory still continues to face [47].

7.3
Conceptual DFT: A Perturbative Approach to Chemical Reactivity and the Process
of Bond Formation

7.3.1
Basics: Global and Local Response Functions

A central observation in DFT is that energy changes from one ground state to
another are associated with electron density changes between the states, E=E[𝜌],
or, equivalently, changes in the number of electrons N, the external potential v, or
both, E=E[N,v] [48]. As the electron density of the system uniquely determines
both the number of electrons through Eq. (7.5) and the external potential v, through
the first Hohenberg–Kohn theorem, changes of E[𝜌] from one ground state to
another, for example, in a chemical reaction are equivalent to changes in N and v,
that is, E=E[N,v].

This is the key ingredient in the so-called perturbative perspective on chemical
reactivity, which is the central point of discussion in this section [19]. Changes
between ground states could, for example, be associated with the initial stages of a
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chemical reaction when reagents approach each other or with the initial stages of
the formation of a chemical bond, that is, chemical bonding.

This approach can be considered as complementary to another DFT-based
approach to chemical bonding using the atomic and molecular Kohn–Sham
molecular orbitals. Using these orbitals to describe the chemical bonding can
indeed be considered to be highly relevant because these orbitals are directly
related to the exact electron density of the system through Eq. (7.15). In addition,
a framework can be introduced for the decomposition of the bond energy in Pauli
repulsion, electrostatic and orbital interactions, as outlined in detail in the chapter
by Frenking and Bickelhaupt. Electrostatic and orbital interaction contributions
can additionally be linked to hardness- and softness-related quantities as outlined
in this section. These models are complementary to other approaches, such as
valence bond theory (Chapter 7) or natural bond orbitals (NBOs, Chapter 7), that
use a so-called mechanistic picture of bonding, enabling the study of structure,
bonding, and reactivity from the properties of the isolated fragments or reactancts.

Consider a chemical system A and an approaching molecule B in the initial
stages of a chemical reaction or of a bond-formation process. The approach of
molecule B will result in a perturbation in the number of electrons of A, NA, and/or
the external potential vA(𝐫). The corresponding initial energy change of A, EA, can
be expressed using a Taylor series expansion around the initial number of electrons
N0

A and initial external potential v0
A(𝐫)

EA

[
N0

A + ΔNA, v
0
A (𝐫) + ΔvA(𝐫)

]
= EA

[
N0

A, v
0
A (𝐫)

]
+
( ∂EA

∂NA

)
NA = N0

A

vA(𝐫) = v0
A(𝐫)

ΔNA + ∫
[
𝛿EA

𝛿vA (𝐫)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

ΔvA(𝐫)d𝐫

+ 1
2

(
∂2EA

∂N2
A

)
NA = N0

A

vA(𝐫) = v0
A(𝐫)

ΔN2
A + ∫

[ ∂𝛿EA

∂NA𝛿vA (𝐫)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

ΔNAΔvA(𝐫)d𝐫

+ 1
2∫ ∫

[
𝛿2EA

𝛿vA (𝐫) 𝛿vA(𝐫′)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

ΔvA(𝐫)ΔvA(𝐫′)d𝐫d𝐫′

+ … (7.19)

An essential observation that was made was that many of the derivatives that
emerged in this Taylor series expansion (response functions) can be identified
with interesting chemical properties. Most of these properties were only known
qualitatively in chemistry, and the mathematical framework outlined provides
the first, accurate and sharp definitions of these quantities, allowing them to be
computed from the first principles. We now present a brief overview of the different
response functions that emerge from this Taylor series expansion and discuss how
they can be computed practically. It should be noted that other response functions of
reactivity indices have been introduced without considering this energy expansion.
Some of these will also be briefly mentioned in this section. This area of research
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within DFT gained considerable interest starting in the late 1970s and continues
to attract much attention.

7.3.1.1 Global Response Functions
In the first part, we treat the global (i.e., nonlocal, not depending on the position in
space) reactivity indices that emerge from Eq. (7.19). The first-order derivative of
EA with respect to NA is called the electronic chemical potential 𝜇; this quantity was
shown to correspond to the Lagrange multiplier introduced in Eq. (7.9) of the DFT
energy minimization problem

𝜇A =
( ∂EA

∂NA

)
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.20)

Parr et al. showed that this quantity could be identified with the negative of the
electronegativity of the system, 𝜒A [49], which is a well-known and very important
quantity in the description of the chemical bond [50]:

𝜇A = −𝜒A (7.21)

in line with the work of Ickowski and Margrave [51], and the earlier work of
Pritchard and Sumner [52]. It should be mentioned that a number of contributions
have suggested to treat electronegativity and chemical potential as two distinct
properties (for recent detailed accounts, see e.g., Refs. [53, 54] and references
therein).

Electronegativity was introduced by Pauling (cf. Section 7.1) as the power of an
atom in a molecule to attract electrons to itself . It thus constitutes a very important
quantity in describing the polarity of covalent chemical bonds between atoms of
different types [1].

As can be seen, the chemical potential (or minus the electronegativity) is defined
as a derivative with respect to the number of electrons, which basically requires
that the number of electrons of the system be treated as a continuous variable. In
DFT, the treatment of systems with fractional number of electrons is extremely
important and continues to be a topic of great interest; for a detailed analysis, we
refer the reader to Refs. [55–58]. The basic working equation for computation of
the electronegativity is given as

𝜒A =
IA + AA

2
(7.22)

where IA and AA are the vertical ionization energy and electron affinity of A,
respectively. This rationalizes the Mulliken electronegativity scale that was also
mentioned in Section 7.1 [2]. For an N –electron system, these quantities can be
computed as

IA = EA(N − 1) − EA(N) (7.23)

AA = EA(N) − EA(N + 1) (7.24)
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where EA(N + 1), EA(N), and EA(N − 1) are the energies of the N+1, N, and
N –1 electron systems, computed at the geometry of the N –electron system. In
many cases, a Koopmans’-type of approximation [59] is used to compute the
electronegativity, using the frontier molecular orbital energies (either computed at
Hartree–Fock and Kohn–Sham level) as

𝜒A = −
𝜀HOMO + 𝜀LUMO

2
(7.25)

that is, the average of the HOMO and LUMO orbital energy. It has been shown
that for exchange–correlation functionals averaging over the so-called integer
discontinuity, this constitutes a reasonable approximation for this global quantity
[60].

It should be mentioned that early approaches and the approach of Mulliken
refer to the energies of valence-state atoms and ions, whereas in the present
approach, use is made of ground-state energies. More recent approaches have also
successfully used valence-state quantities, as witnessed, for example, in Ref. [61].

The chemical hardness of the system is defined as the second derivative of the
energy with respect to the number of electrons:

𝜂A =

(
∂2EA

∂N2
A

)
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.26)

for which the following working equation can be derived:

𝜂A = IA − AA (7.27)

sometimes preceded by a factor of 1/2. Equation (7.24) was introduced in 1983 by
Parr and Pearson as the absolute hardness [62]. The inverse of the (global) chemical
hardness of the system is the (global) softness [63]:

SA =
1
𝜂A

(7.28)

This quantity has been shown to be related to the polarizability of the system
[64–68].

Hardness and softness had been introduced already during the 1960s by Pearson
in order to rationalize trends in complexation energies between Lewis acids and
Lewis bases [28–32]. This resulted in the so-called hard and soft acids and bases
(HSAB) principle, states that hard acids prefer to bind to hard bases and soft acids
prefer to bind to soft bases. As such, this principle plays a fundamental role in the
description of bond formation or bonding, and will be discussed in greater detail later
on. Also, the concept of hardness has also been invoked to investigate molecular
aromaticity [69–71] through the principle of maximum hardness [72–77]. This
principle, also formulated by Pearson, states that molecules arrange themselves
to be as hard as possible. Although not universally valid, this principle has been
applied in the study of molecular stability and chemical reactivity. (e.g., see Ref. [78]).
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Again, using a Koopmans’ type of approximation [59], the chemical hardness can
be expressed as

𝜂A = 𝜀LUMO − 𝜀HOMO (7.29)

that is, the HOMO–LUMO gap. This method of evaluating the hardness has been
shown to lead to a large underestimation, and a correction scheme was proposed
by Tozer and De Proft [79].

It should be noted that when the chemical potential, chemical hardness, and
softness are evaluated for gas-phase molecules, one often encounters the prob-
lem of anion metastability, resulting in negative values for the electron affinity.
Different approaches exist to circumvent this problem; we skip their details in
this contribution, and refer the reader to Refs. [79, 80]. It has also been recently
discussed whether or not to use the negative electron affinities in the evaluation of
the chemical potential and the chemical hardness [80].

Table 7.1, recently composed and compiled by us, provides the best (recent)
values (to our knowledge) for the ionization potential and electron affinity of atoms,
along with the associated values for chemical hardness and electronic chemical
potential [80]. These values might be of use for discussing the covalent bond
through the notion of electronic chemical potential, and (cf. Section 7.1) the ionic
bond whose energetics is governed by I and A of the interacting partners.

The derivative of the chemical hardness with respect to the number of electrons
is called hyperhardness; [81] this and higher order derivatives with respect to
the number of electrons are usually not taken into account when studying bond-
formation processes [21, 81–84]. For a detailed account on the third- and higher
order derivatives, the reader is referred to Ref. [21].

A global reactivity descriptor that combines the chemical potential and chemical
hardness is the so-called electrophilicity index 𝜔A, introduced by Parr et al. as
[85–87]

𝜔A =
𝜇2

A

2𝜂A
(7.30)

7.3.1.2 Local Response Functions
The first local response function emerging in expression (7.19) is the derivative of
the energy with respect to the external potential at constant number of electrons.
From the first-order perturbation theory, one can easily show that this quantity
corresponds to the electron density, which is the central quantity in DFT

𝜌A(𝐫) =
[
𝛿EA

𝛿vA (𝐫)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.31)

The first-order mixed derivative in Eq. (7.19) is the so-called Fukui function,
introduced by Parr and Yang [88, 89]

fA(𝐫) =
[ ∂𝛿EA

∂NA𝛿vA (𝐫)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.32)
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Table 7.1 Ionization energies, electron affinities, chemical hardnesses, and chemical poten-
tials of the atoms in the Periodic Table.

Atom I (eV) A (eV) 𝜼 (eV) 𝝁 (eV)

H 13.598 0.754 12.84 –7.18
He 24.587 Not stable 24.59 –
Li 5.392 0.618 4.77 –3.01
Be 9.323 Not stable 9.323 –4.66
B 8.298 0.280 8.02 –4.29
C 11.260 1.262 10.00 –6.26
N 14.534 –0.07 14.61 –7.23
N 14.534 –0.1809 14.71 –7.18
N 14.534 –1.0612 15.60 –6.74
O 13.6181 1.461 12.16 –7.54
F 17.423 3.401 14.02 –10.41
Ne 21.565 Not stable 21.57 –
Na 5.139 0.548 4.59 –2.84
Mg 7.646 Not stable 7.65 –3.82
Al 5.986 0.433 5.55 –3.21
Si 8.152 1.390 6.76 –4.77
P 10.487 0.747 9.74 –5.62
S 10.360 2.077 8.28 –6.22
Cl 12.968 3.613 9.36 –8.29
Ar 15.760 Not stable 15.76 –
K 4.341 0.501 3.84 –2.42
Ca 6.113 0.02455 6.09 –3.07
Sc 6.561 0.188 6.37 –3.37
Ti 6.828 0.079 6.75 –3.45
V 6.746 0.525 6.22 –3.64
Cr 6.767 0.666 6.10 –3.72
Mn 7.434 –0.498 7.93 –3.47
Fe 7.902 0.151 7.75 –4.03
Co 7.881 0.662 7.22 –4.27
Ni 7.640 1.156 6.48 –4.40
Cu 7.726 1.235 6.49 –4.48
Ga 5.999 0.43 5.57 –3.21
Ge 7.899 1.232712 6.67 –4.57
As 9.789 0.814 8.98 –5.30
Se 9.752 2.02067 7.73 –5.89
Br 11.814 3.363588 8.45 –7.59
Kr 14.000 Not stable 14.00 –
Rb 4.177 0.48592 3.69 –2.33
Sr 5.695 0.05206 5.64 –2.87
Y 6.217 0.307 5.91 –3.26
Zr 6.634 0.426 6.21 –3.53
Nb 6.759 0.893 5.87 –3.83
Mo 7.092 0.748 6.34 –3.92

(continued overleaf)
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Table 7.1 (continued)

Atom I (eV) A (eV) 𝜼 (eV) 𝝁 (eV)

Tc 7.280 0.55 6.73 –3.92
Tc 7.280 0.636 6.64 –3.96
Ru 7.361 1.05 6.31 –4.21
Rh 7.459 1.137 6.32 –4.30
Pd 8.337 0.562 7.78 –4.45
Ag 7.576 1.302 6.27 –4.44
In 5.786 0.3 5.49 –3.04
Sn 7.344 1.112 6.23 –4.23
Sb 8.608 1.046 7.56 –4.83
Te 9.010 1.971 7.04 –5.49
I 10.451 3.059 7.39 –6.76
Xe 12.130 Not stable 12.13 –
Cs 3.894 0.471 3.42 –2.18
Ba 5.211664 0.14462 5.07 –2.68
La 5.577 0.47 5.11 –3.02
Ce 5.539 0.955 4.58 –3.25
Ce 5.539 0.65 4.89 –3.09
Pr 5.473 0.962 4.51 –3.22
Eu 5.670 0.864 4.81 –3.27
Tm 6.184 1.029 5.16 –3.61
Yb 6.254 –0.02 6.27 –3.12
Lu 5.426 0.34 5.09 –2.88
Hf 6.825 Not stable 6.83 –
Ta 7.550 0.322 7.23 –3.94
W 7.864 0.815 7.05 –4.34
Re 7.834 0.15 7.68 –3.99
Os 8.438 1.10 7.34 –4.77
Ir 8.967 1.564 7.40 –5.27
Pt 8.959 2.128 6.83 –5.54
Au 9.226 2.309 6.92 –5.77
Hg 10.438 0.42 10.02 –5.43
Tl 6.108 0.20 5.91 –3.15
Pb 7.417 0.364 7.05 –3.89
Bi 7.286 0.942 6.34 –4.11
Po 8.414 1.90 6.51 –5.16
At 2.80 –2.80 –1.40
Rn 10.749 Not stable 10.75 –
Fr 4.0727 0.46 3.61 –2.27
Ac 5.17 0.35 4.82 –2.76
Uuo – 0.056 – –
Ubu – 0.57 – –

Compilation taken from Ref. [80]; for details, see references in this paper.
Reproduced by permission of the PCCP Owner Societies.
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This function that can be seen as an extension to frontier molecular orbital
reactivity theory is of utmost importance in describing the regioselectivity of
chemical reactions and covalent bond-formation processes.

Using a Maxwell relation, the Fukui function can also be expressed as

fA(𝐫) =
[
𝛿𝜇A

𝛿vA (𝐫)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

=
(∂𝜌A (𝐫)

∂N

)
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.33)

Owing to the discontinuity of the electron density with respect to the number of
electrons, the left and right side derivatives are different and describe the system’s
propensity toward an electrophilic or nucleophilic attack, respectively,

f −A (𝐫) =
(∂𝜌A (𝐫)

∂N

)−
NA = N0

A

vA(𝐫) = v0
A(𝐫)

= 𝜌A,N(𝐫) − 𝜌A,N−1(𝐫) (7.34)

f +A (𝐫) =
(∂𝜌A (𝐫)

∂N

)+
NA = N0

A

vA(𝐫) = v0
A(𝐫)

= 𝜌A,N+1(𝐫) − 𝜌A,N(𝐫) (7.35)

where 𝜌A,N+1(𝐫), 𝜌A,N(𝐫), and 𝜌A,N−1(𝐫) are the electron densities of the N+1, N, and
N−1 electron systems, respectively, all computed at the geometry of the N –electron
system.

The Fukui function for the attack of a neutral (radical) reagent, denoted by f 0
A (𝐫),

has been introduced as the average of f +A (𝐫) and f −A (𝐫)

f 0
A (𝐫) =

f +A (𝐫) + f −A (𝐫)
2

(7.36)

It should be pointed out that these expressions are exact if the exact electron
densities are used. As approximate electron densities are used to compute these
quantities in the majority of cases, the abovementioned finite difference expressions
become approximate. As can be seen, f −A (𝐫) quantifies the change of the electron
density when the total number of electrons of the system is reduced by one. Areas
with large values of f −A (𝐫) can thus be identified with regions where an electrophilic
attack is more likely to occur (consequently, these regions can be categorized as
nucleophilic). Analogously, f +A (𝐫) gives the change of the electron density when
the total number of electrons is increased; therefore, areas with large values of this
function are more prone to a nucleophilic attack (and can be called electrophilic
regions). As such, the electronic Fukui function is an important, often decisive,
player in deciphering the initial stage of covalent bonding.

It should be noted that evaluation of f +A (𝐫) for gas-phase molecules using
Eq. (7.35) might suffer from problems associated with metastable anions. For a
detailed discussion of these problems, we again refer the reader to Ref. [90].

Different contributions have been devoted to the analytic calculation of the Fukui
function through Eqs. (7.34) and (7.35). Recently, an approach has been published
affording the analytic evaluation of the Fukui function within the Kohn–Sham
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Figure 7.1 Plots of the Fukui functions f −A (𝐫) (Fukui−) and f +A (𝐫) (Fukui+) for H2CO both
in the molecular plane and perpendicular to this plane (Reprinted with permission from
Ref. [91]. Copyright 2012, AIP Publishing LLC).

approach, of course within the approximation adopted for the exchange–correlation
functional [91].

In Figure 7.1, contour plots of the Fukui functions f −A (𝐫) and f +A (𝐫), computed
analytically for a representative simple organic molecule, formaldehyde H2CO, are
given. As can be seen, the contours of f −A (𝐫) are the most extended contours around
the oxygen atom of the molecule, thus predicting that bonding with an electrophile
will predominantly occur on this atom. The contours of f +A (𝐫) on the other hand
are the most extended contours around the carbon atom, completely in line with
the fact that bonding with a nucleophile occurs on this atom.

Note that these exact expressions can be approximated by the corresponding
frontier molecular orbital density, that is,

f −A (𝐫) ≈ |𝜙A,HOMO|2 (7.37)

f +A (𝐫) ≈ |𝜙A,LUMO|2 (7.38)

where 𝜙A,HOMO and 𝜙A,LUMO are the HOMO and LUMO orbitals of the system. The
correction term to the frontier–molecular–orbital approximation, is precisely the
relaxation of the occupied orbitals on ionization, and was already put forward by
Yang et al. in the early 1980s [92].

Often, it is interesting to also consider values of these reactivity indices condensed
to atoms in molecules [93]. These estimates can be obtained using population
analysis method of one’s choice as

f −A,k = pA,k(N) − pA,k(N − 1) (7.39)

f +
A,k
= pA,k(N + 1) − pA,k(N) (7.40)
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where pA,k(N + 1), pA,k(N), and pA,k(N − 1) are the atomic population on atom
k in the N+1, N, and N –1 electron systems, respectively, all considered at the
geometry of the N –electron system. It should be mentioned that these equations
result from the so-called response of the molecular fragment approach; that is, the
electron densities of N, N+1, or N –1 systems are partitioned separately, and the
Fukui function is computed subsequently as the differences of atomic populations.
In another approach, denoted as the fragment-of-the-molecular response, the
Fukui function is computed first, then partitioned over atomic regions. The two
approaches usually yield the same conclusions about regioselectivity [94].

When using approximations (7.37) and (7.38), it is evident that the Fukui function
will be strictly positive in all regions of space. When using the finite difference
approximations (7.34) and (7.35), however, the Fukui function is also positive
in most regions of space, although this function can exhibit negative values, for
which theoretical arguments have been given [95–99]. When considering this
observation, the dilemma occurs that apparently no analogy of the orbital phase
in conceptual DFT is available, a property that plays a very important role in the
rationalization of the Woodward–Hoffmann rules governing bonding in pericyclic
reactions [100–103]. As no reactivity theory can be considered as complete without
explaining these seminal bonding rules, this aspect was scrutinized by the present
authors. An important step forward in this aspect was the use of the initial
hardness response, which is the response of the hardness along the initial stages of
the reaction coordinate of the pericyclic reaction [104]. A more intuitive approach
has used the so-called dual descriptor [105, 106], introduced as the derivative of the
Fukui function with respect to the number of electrons:

f (2)A (𝐫) =
[
𝛿𝜂A

𝛿vA (𝐫)

]
NA =N0

A

vA(𝐫) = v0
A(𝐫)

=
(∂fA (𝐫)
∂N

)
NA =N0

A

vA(𝐫) = v0
A(𝐫)

=
(∂2𝜌A (𝐫)

∂N2

)
NA =N0

A

vA(𝐫) = v0
A(𝐫)

(7.41)

Using a finite difference approximation, this quantity can be computed as the
difference between the Fukui functions for a nucleophilic and an electrophilic
attack

f (2)A (𝐫) ≈ f +A (𝐫) − f −A (𝐫) (7.42)

This quantity has been shown to provide a ‘‘one-shot’’ picture of the chemical
reactivity of the molecule; positive regions indicate areas where the nucleophilic
attack is more probable, whereas negative areas correspond to regions with a higher
probability for an electrophilic attack [105, 106].

When considering the Woodward–Hoffmann rules for pericyclic reactions, an
intuitive reactivity rule was adopted, stating that bonding, predicting an allowed
mode of the reaction, will occur when the nucleophilic regions of the molecules
(i.e., regions with f (2)A (𝐫) < 0) are aligned with electrophilic regions (f (2)A (𝐫) > 0).
The driving force for the formation of mostly nonpolar bonds is thus retrieved via
conceptual DFT [107].
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(a)

(b)

Figure 7.2 Dual descriptor plots of ethylene (a) and 1,3-butadiene (b). Red regions corre-
spond to areas where f (2)A (𝐫) > 0, whereas blue regions correspond to areas of f (2)A (𝐫) < 0.
(Reprinted with permission from Ref. [107]. Copyright 2007 John Wiley and Sons.)

(a) (b)

Figure 7.3 Interactions in (a) 1,3-
butadiene–ethylene, corresponding to
a Woodward–Hoffmann allowed mode
(green line) and (b) ethylene–ethylene,
corresponding to a Woodward–Hoffmann
forbidden mode. Pink regions correspond

to areas in which f (2)A (𝐫) > 0, whereas
blue regions correspond to areas
of f (2)A (𝐫) < 0. (Reprinted with permission
from Ref. [107]. Copyright 2007 John Wiley
and Sons.)

In Figure 7.2, the dual descriptors for 1,3-butadiene and ethylene have been
plotted. It can be seen from Figure 7.3a that a [4+2] suprafacial/suprafacial addition
of butadiene to ethane corresponds to a favorable matching of the two reagents (i.e.,
matching of positive regions of one reagent with the negative ones of the other and
vice versa); this indeed corresponds to a Woodward–Hoffmann allowed reaction.
The [2+2] addition (Figure 7.3b) reaction between two ethene molecules clearly
shows ‘‘repulsive’’ interactions (blue/blue and red/red interactions), confirming
the Woodward–Hoffmann forbidden character of this interaction mode.

Other pericyclic reactions were also treated within this framework [108–111].
In many studies, the Fukui function has been proven to be a very interesting

tool to study the intramolecular reactivity, predicting regioselectivity of an attacking
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molecule. In order to investigate intermolecular reactivity sequences (e.g., as is
done within the framework of the HSAB principle), one needs to consider the
so-called local softness s of the molecule, introduced as [112]

sA(𝐫) =
[∂𝜌A (𝐫)
∂𝜇A

]
NA =N0

A

vA(𝐫) = v0
A(𝐫)

=
(
∂N
∂𝜇A

)
NA =N0

A

vA(𝐫) = v0
A(𝐫)

(∂𝜌A (𝐫)
∂N

)
NA =N0

A

vA(𝐫) = v0
A(𝐫)

=SfA(𝐫)

(7.43)

This quantity can indeed be computed by multiplying the global softness with the
Fukui function; this quantity results from the distribution of the global softness
over the different regions of the molecule using the Fukui function. It identifies
regions of favorable orbital-controlled bond-formation processes (i.e., soft–soft
interactions) [113, 114].

It should be pointed out that this quantity naturally emerges when considering
the so-called open-system description of the chemical reactivity problem, which
will be discussed in greater detail in the later sections in this chapter.

The definition of a local counterpart of the global hardness has been less
straightforward and many, even very recent, contributions have been devoted to
this problem. For recent accounts on this matter, we refer to the references listed
in [115–119]. Often, the molecular electrostatic potential V(𝐫) [120, 121], given in
Eq. (7.44), is used as a measure of the local hardness of the molecule to probe
regions of favorable charge-controlled bond-formation processes (i.e., hard–hard
interactions) [122, 123]. This quantity gives the interaction energy of the molecule
with a unit positive charge in the absence of any polarization or geometry relaxation
effects:

V(𝐫) =
∑

A

ZA|𝐫 − 𝐑A| − ∫
𝜌(𝐫′)|𝐫 − 𝐫′|d𝐫′ (7.44)

7.3.1.3 Nonlocal Response Functions: the Linear Response Kernel
The linear response kernel (also called the linear response function or the polariz-
ability kernel) is introduced as the second derivative of the energy with respect to
the external potential [124]:

𝜔A(𝐫, 𝐫′) =
[

𝛿2EA

𝛿vA (𝐫) 𝛿vA(𝐫′)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

=
[
𝛿𝜌A (𝐫)
𝛿vA(𝐫′)

]
NA = N0

A

vA(𝐫) = v0
A(𝐫)

(7.45)

As can be seen, it expresses the response of the electron density to a perturbation
in the external potential of the system. This quantity is symmetric, that is

𝜔A(𝐫, 𝐫′) = 𝜔A(𝐫′, 𝐫) (7.46)

and the integral over space of this quantity is zero

∫ 𝜔A(𝐫, 𝐫′)d𝐫 = ∫ 𝜔A(𝐫, 𝐫′)d𝐫′ = 0 (7.47)
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Several papers have been devoted to the investigation of theoretical and formal
aspects associated to this quantity (e.g., refer to [125]), but it has been only recently
found that its chemical interpretation was addressed through explicit calculations
of the kernel. An important quantity in this aspect is the so-called atom condensed
linear response matrix that is composed of elements obtained by integration of the
position variables 𝐫 and 𝐫′ over the atomic volumes VA and VB of atoms A and B,
respectively [126–128],

𝜔AB = ∫VA
∫VB

𝜔(𝐫, 𝐫′)d𝐫d𝐫′ (7.48)

A limited number of approaches, including the analytical evaluation within the
framework of self-consistent perturbed Kohn–Sham theory, have been proposed
recently [91].

An approximate expression for the calculation of the linear response kernel can
be obtained from the first-order perturbation theory, which yields the following
form for methods involving a single Slater determinant wave function (typically
the HF or KS DFT approaches) [129]

𝜔s(𝐫, 𝐫′) = 2
∑
σ

Nσ∑
i=1

∞∑
a=Nσ

𝜙σ∗
i
(𝐫)𝜙σa(𝐫)𝜙σ∗a (𝐫′)𝜙σi (𝐫

′)
𝜀σ

i
− 𝜀σa

(7.49)

where the index i covers all the occupied molecular orbitals 𝜙σ
i
(𝐫) and a covers

all unoccupied molecular orbitals 𝜙σa(𝐫). 𝜀σi and 𝜀σa are the corresponding orbital
energies.

For a closed-shell system, this equation can be simplified to

𝜔s(𝐫, 𝐫′) = 4
N0∕2∑
i=1

∞∑
a=(N0∕2)+1

𝜙∗
i
(𝐫)𝜙a(𝐫)𝜙∗a(𝐫′)𝜙i(𝐫′)

𝜀i − 𝜀a

(7.50)

It was shown that the values of the condensed linear response function can be
used as a measure of electron delocalization; as such, this quantity can be linked
to the concept of aromaticity [130–132]. If the inductive effect is dominant, the
values of the atom-condensed linear response functions decay exponentially with
the increasing distance between the atoms. If mesomeric effects are present, high
values of the linear response functions remain present even at large distance;
an illustration of this can be seen in Figure 7.4, in which the difference in the
transmission of the inductive and mesomeric effects can be well appreciated. In
this figure, values of the condensed linear response function, which are essentially
elements of the matrix equation (7.48), are plotted [126–128].

In Figure 7.4, the linear response elements 𝜔OCi
are plotted; these are the

elements between O and the different C atoms in the saturated molecule 1-hexanol
versus the unsaturated molecule hexa-1,3,5-trien-1-ol. As can be seen, in the case
of the alkane derivative, the response of a carbon atom’s density on an external
potential perturbation at the oxygen decreases monotonically with the distance
of this carbon to O. The triene case, however, yields a totally different pattern:
values alternately go up and down. This pattern has been linked with the different
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mesomeric structures that can be written for this compound. It can thus be clearly
seen that the transmission of the external potential perturbation through saturated
and unsaturated systems is fundamentally different. In Figure 7.5, a similar plot
is presented, now for cyclohexane and benzene (and also for the similar case of a
substituted ring, i.e., cyclohexanol and phenol). Again, the linear response function
matrix elements between a reference carbon and the other ring carbons decrease
monotonically in the case of the saturated compound, whereas they have shown
an alternating pattern in the case of the unsaturated compound. The magnitude of
this effect in the latter compounds has been put forward as a measure of degree of
aromaticity of the ring.

Overall, the linear response function, nowadays available via different computa-
tional schemes, offers an unbiased approach to evaluate the response of atoms in
molecules to perturbations, or, to put it alternatively, to investigate the propagation
of a perturbation through bonds.

7.3.2
Combined use of DFT-Based Reactivity Indices and Principles in the Study
of Chemical Bonding

In the previous section, it was shown that a series of reactivity indices emerge that
can provide interesting information about the initial stages of bond formation. In
this section, we elaborate on this and present several examples combining these
reactivity indices with a series of reactivity and stability principles, in order to
describe the onset of bonding or the bonding process itself.

7.3.2.1 Principle of Electronegativity Equalization
During 1950s, Sanderson put forward the so-called stability ratio of an atom as a
measure of the electronegativity of the atom. The stability ratio of an atom A, 𝜒S,A,
is defined as [26, 27]

𝜒S,A =
𝜌A

𝜌0

(7.51)

where 𝜌A is the average electron density of A, computed as

𝜌A =
ZA

4
3
𝜋r3

A

(7.52)

with ZA the nuclear charge (i.e., the number of electrons of the system if it concerns
a neutral atom) and rA the radius of A.
𝜌0 is the average electron density of a hypothetical noble gas atom with the same

number of electrons as A.
The use of this quantity to probe the electronegativity of an atom can be under-

stood as follows. Atoms with a low stability ratio (and low average electron density)
are less able to bind their electrons and will have lesser tendency to bind additional
electrons on bond formation; as such, they have low electronegativities. On the
other hand, atoms with a high stability ratio strongly bind their electrons and can
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easily bind extra electrons on bond formation; this is suggestive of a high electroneg-
ativity. Sanderson also formulated the principle of electronegativity equalization,
which states that when two or more atoms form a molecule, their electronegativities
will equalize to an intermediate value; he postulated that this intermediate value
was the geometric mean of the atomic Sanderson electronegativities 𝜒S,i; for a
system containing n atoms, this equalized electronegativity becomes

𝜒S = (𝜒S,A𝜒S,B𝜒S,C…𝜒S,n)
1
n (7.53)

Using this principle, Sanderson also designed a method to obtain partial atomic
charges on the atoms after bond formation. Assuming that the molecule NaF has
a ionicity of 90% (subsequently this value was adjusted to 80%), it was empirically
derived that the change in Sanderson electronegativity on addition or subtraction
of an entire electron for a given atom type A was given by

ΔSA = 1.56S
1
2

A (7.54)

As a result, the partial charge 𝛿A on the atom A in the molecule on bond formation
can be expressed as

𝛿A =
S − SA

1.56ΔSA
(7.55)

Theoretical justification for the electronegativity equalization principle followed in
the subsequent years; a seminal paper in this context was contributed by Parr,
Donnelly, Levy, and Palke, identifying also the chemical potential, the Lagrange
multiplier introduced in the DFT energy minimization problem with the negative
of the electronegativity. Sanderson subsequently used the atomic charges obtained
through Eq. (7.55) to obtain and rationalize trends in bond energies.

Within DFT, a simple and elegant derivation directly links the bond energy
with difference in electronegativity [8]. Consider the bond formation between two
atoms A and B. Considering only a change in the number of electrons N on bond
formation (and neglecting a change in the external potential), the change in the
chemical potential of both atoms can be expressed to first order as

𝜇A = 𝜇0
A +

( ∂𝜇A

∂NA

)
vA

ΔNA = 𝜇0
A + 𝜂

0
AΔNA (7.56)

𝜇B = 𝜇0
B +

( ∂𝜇B

∂NB

)
vB

ΔNB = 𝜇0
B + 𝜂

0
BΔNB (7.57)

In these expressions, 𝜇0
A and 𝜇0

B denote the chemical potential of the isolated atoms
A and B, respectively; 𝜂0

A and 𝜂0
B are the isolated atom hardnesses. ΔNA and ΔNB

are the charge transfers to A and B, respectively. On formation of a bond between
A and B, their electronegativities (or chemical potentials) will equalize, that is,

𝜇A = 𝜇B (7.58)

Because, obviously

ΔNA = −ΔNB = Δ𝑁 (7.59)
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one finds that

Δ𝑁 =
𝜇0

B − 𝜇
0
A

𝜂0
A + 𝜂

0
B

(7.60)

or, because 𝜇 = −𝜒

Δ𝑁 =
𝜒0

A − 𝜒
0
B

𝜂0
A + 𝜂

0
B

(7.61)

As can be seen, the charge transfer on bond formation will be larger if the
electronegativity difference between the two atoms is larger; it can also be seen that
the hardness modulates charge transfer.

The corresponding energy changes to first order can be computed as

EA = E0
A +

( ∂EA

∂NA

)
vA

ΔNA = E0
A + 𝜇

0
AΔNA (7.62)

EB = E0
B +

( ∂EB

∂NB

)
vB

ΔNB = E0
B + 𝜇

0
BΔNB (7.63)

Using Eq. (7.62), the changes in energy of A and B on bond formation become

ΔEA = EA − E0
A = 𝜇

0
AΔ𝑁 (7.64)

ΔEB = EB − E0
B = −𝜇

0
BΔ𝑁 (7.65)

and, using Eq. (7.61), the total energy change can finally be obtained as

Δ𝐸 = ΔEA + ΔEB = −
(𝜇0

B − 𝜇
0
A)

2

𝜂0
A + 𝜂

0
B

= −
(𝜒0

A − 𝜒
0
B)

2

𝜂0
A + 𝜂

0
B

(7.66)

It can be seen that the energy change is always negative and is proportional to
the square of the difference in electronegativity between atoms A and B. Also, this
equation partially provides a proof for the HSAB principle; the combination of two
soft species on bond formation (i.e., to atoms with a small hardness) leads to the
largest stabilization.

Equation (7.66) can also be linked to Pauling’s extra ionic resonance energy Δ,
playing a fundamental role in the electronegativity scale; [1] this quantity is related
to the energy difference between a bond between different atoms A and B and the
energy of a covalent bond between A and A and B and B:

Δ = D(A − B) − 1
2
[D(A − A) + D(B − B)] (7.67)

where Δ corresponds to the bond energy. Assuming that

E0
A ≈

1
2

D(A − A) (7.68)

E0
B ≈

1
2

D(B − B) (7.69)

and

EA + EB ≈ D(A − B) (7.70)
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it can be seen that

Δ𝐸 ≈ Δ (7.71)

Pauling defined the quantity Δ′ as

Δ′ = D(A − B) − [D(A − A)D(B − B)]
1
2 (7.72)

which now considers the geometric mean of D(A–A) and D(B–B). This quantity
can then be related to the difference in Pauling electronegativities 𝜒P

A and 𝜒P
B of

atoms A and B

Δ′ = 30 (kcalmol−1)(𝜒P
A − 𝜒

P
B )

2 (7.73)

which can be compared with Eq. (7.66); as can be seen, in Eq. (7.66), the energy
change is also dependent on the sum of the hardnesses of the two atoms involved,
whereas in Eq. (7.73), only a constant factor is in front of the square of the
electronegativity difference.

Equations (7.64) and (7.65) only considered the energy change to first order in
the number of electrons of the bond-forming atoms.

Expressions (7.56) and (7.57) can also be rewritten to include the atomic charges
on the atoms; in terms of the electronegativities, these become

𝜒A = 𝜒0
A + 𝜂

0
AqA (7.74)

𝜒B = 𝜒0
B + 𝜂

0
BqB (7.75)

These expressions were also proposed by Huheey [133–137]. Using the principle of
electronegativity equalization and the fact that the sum of the atomic charges should
be equal to the total charge of the molecule, this provides a method to obtain atomic
charges in an economical way. However, using the equations in this form, leads to
atomic charges that do not depend on the connectivity between atoms because the
external potential change on molecule formation was neglected. A famous extension
was provided by Mortier et al. using the electronegativity equalization method
(EEM) that employs a simple electrostatic model to represent the dependence on
the external potential. The resulting expression for the electronegativity of an atom
in a molecule is [138–142]

𝜒A = 𝜒∗A + 𝜂
∗
AqA +

∑
B≠A

qB

RAB
(7.76)

which, combined with the condition that∑
A

qA = qtot (7.77)

where qtot is the total molecular charge, can be used to obtain a more refined
charge distribution. 𝜒∗A and 𝜂∗A are now effective electronegativities and hardnesses
that were obtained by calibration of the method against Mulliken atomic charges,
initially obtained at the Hartree–Fock STO-3G level of theory. Subsequently, a
large number of approaches have elaborated on the electronegativity equalization
principle (or chemical potential equalization principle), many of which aiming
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at the calculation of atomic charges at a very low computational cost, for use in
force-field calculations [143].

We finally return to the energy expression given in Eq. (7.66). More accurate
energy expression can be obtained by writing expression (7.19) including now Δv
perturbations for both A and B and considering again that ΔNA = −ΔNB = Δ𝑁
[8, 144]

Δ𝐸 = EA + EB − E0
A − E0

B = (𝜇A − 𝜇B)Δ𝑁 + (𝜂A + 𝜂B)ΔN2

+ ∫ 𝜌A(𝐫)ΔvA(𝐫)d𝐫 + ∫ 𝜌B(𝐫)ΔvB(𝐫)d𝐫

+Δ𝑁
[
∫ fA (𝐫) ΔvA(𝐫)d𝐫 − ∫ fB(𝐫)ΔvB(𝐫)d𝐫

]
+ 1

2∫ 𝜔A(𝐫, 𝐫′)ΔvA(𝐫)ΔvA(𝐫′)d𝐫d𝐫′

+ 1
2∫ 𝜔B(𝐫, 𝐫′)ΔvB(𝐫)ΔvB(𝐫′)d𝐫d𝐫′ (7.78)

Minimizing the energy change with respect to the charge transfer yields

Δ𝑁 =
−(𝜇A − 𝜇B) −

[
∫ fA (𝐫) ΔvA(𝐫)d𝐫 − ∫ fB(𝐫)ΔvB(𝐫)d𝐫

]
2(𝜂A + 𝜂B)

(7.79)

which can then be substituted back in Eq. (7.78) to give

Δ𝐸 = −

((
𝜇A − 𝜇B

)
+
[
∫ fA (𝐫) ΔvA(𝐫)d𝐫 − ∫ fB(𝐫)ΔvB(𝐫)d𝐫

])2

2(𝜂A + 𝜂B)

+ ∫ 𝜌A(𝐫)ΔvA(𝐫)d𝐫 + ∫ 𝜌B(𝐫)ΔvB(𝐫)d𝐫

+ 1
2∫ 𝜔A(𝐫, 𝐫′)ΔvA(𝐫)ΔvA(𝐫′)d𝐫d𝐫′

+ 1
2∫ 𝜔B(𝐫, 𝐫′)ΔvB(𝐫)ΔvB(𝐫′)d𝐫d𝐫′ (7.80)

As can be seen, the interaction energy on the initial stages of bond formation
naturally gives rise to three terms. The first term, corresponding to the charge-
transfer contribution to the bond formation, gives the covalent contribution to
bonding; it plays an important role in orbital-controlled interactions. The second
term (combined with the contribution for the nuclear–nuclear repulsion) is the
electrostatic contribution, which is important for charge-controlled interactions.
The third term finally includes the effect of polarization.

7.3.2.2 Hard and Soft Acids and Bases Principle
The HSAB principle was formulated by Pearson in the 1960s on the basis of a
large collection of experimental data; at that time, no sharp definition of hardness
and softness was available [28–31]. The mathematical definition of these concepts
within DFT afforded opportunities to prove this principle [145, 146]. Recent insights
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into the validity of the HSAB principle have been provided by Ayers by considering,
for example, exchange reactions of Lewis acids and bases [147–149].

In order to prove the principle, one turns to a so-called open-system picture to
describe the system, due to the fact that the number of electrons can fluctuate but
the chemical potential of the system is well defined (this is motivated by the open
nature of atoms, functional groups, or other subunits within a molecular system);
in this picture, one uses changes in the chemical potential, rather than changes in
the number of electrons, to control the change-state of a molecule, while keeping
the number of electrons fixed [48].

The state function of the open-system picture is the so-called grand potential
Ω[𝜇, v], which is readily obtained through the Legendre transform of the energy
[48]

Ω[𝜇, v] = E[N, v] −
(
∂E
∂N

)
v

N = E[N, v] − 𝜇𝑁 (7.81)

The change in the grand potential from one ground state to another, to first order,
can be expressed as

ΔΩ =
(
∂Ω
∂𝜇

)
v

Δ𝜇 + ∫
[
𝛿Ω
𝛿𝑣 (𝐫)

]
𝜇

Δ𝑣(𝐫)d𝐫 (7.82)

where(
∂Ω
∂𝜇

)
v

= −N (7.83)

and [
𝛿Ω
𝛿𝑣 (𝐫)

]
𝜇

= 𝜌(𝐫) (7.84)

Considering the change to first order in the number of electrons and electron
density on variation of 𝜇 and v yields

Δ𝑁 =
(
∂N
∂𝜇

)
v

Δ𝜇 + ∫
[
𝛿𝑁

𝛿𝑣 (𝐫)

]
𝜇

Δ𝑣(𝐫)d𝐫 (7.85)

In this expression, the first derivative with respect to 𝜇, a global quantity, is the
global softness of the system (cf. Eq. (7.43))(

∂N
∂𝜇

)
v

=
[(

∂𝜇
∂N

)
v

]−1

= 𝜂−1 = S = −
(
∂2Ω
∂𝜇2

)
v

(7.86)

The first derivative with respect to v, a local descriptor, is the aforementioned local
softness of the system,

−
[
𝛿𝑁

𝛿𝑣 (𝐫)

]
𝜇

=
(
∂𝜌 (𝐫)
∂𝜇

)
N

= s(𝐫) =
(

∂𝛿Ω
∂𝜇𝛿𝑣 (𝐫)

)
(7.87)

It is also interesting to consider the change in the electron density on changes in
the chemical and external potential

Δ𝜌(𝐫) =
(
∂𝜌 (𝐫)
∂𝜇

)
v

Δ𝜇 + ∫
[
𝛿𝜌 (𝐫)
𝛿𝑣(𝐫′)

]
𝜇

Δ𝑣(𝐫′)d𝐫′ (7.88)
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Again, the first response function in this equation is the local softness. The second
quantity is the so-called softness kernel s(𝐫, 𝐫′) [124]

s(𝐫, 𝐫′) ≡
[
𝛿𝜌 (𝐫)
𝛿𝑣(𝐫′)

]
𝜇

=
[

𝛿2Ω
𝛿𝑣 (𝐫) 𝛿𝑣(𝐫′)

]
𝜇

(7.89)

which is related to the linear response function by the Berkowitz–Parr relationship
[124]

𝜔(𝐫, 𝐫′) = −s(𝐫, 𝐫′) + s(𝐫)s(𝐫′)
S

(7.90)

The softness kernel integrates to the local softness of the molecule

∫ s(𝐫, 𝐫′)d𝐫′ = s(𝐫′) (7.91)

The inverse of the softness kernel

∫ s(𝐫, 𝐫′)𝜂(𝐫′, 𝐫′′)d𝐫′ = 𝛿(𝐫 − 𝐫′′) (7.92)

is the hardness kernel

𝜂(𝐫, 𝐫′) ≡
[
𝛿𝑣 (𝐫)
𝛿𝜌(𝐫′)

]
𝜇

=
𝛿2FHK

𝛿𝜌(𝐫)𝛿𝜌(𝐫′)
(7.93)

where FHK is the Hohenberg–Kohn functional.
As stated above, the open-picture description provides an ideal framework to

provide support for the HSAB principle [150–154]. Gazquez et al. [150, 151] derived
a working equation expressing the energy change on bond formation between
atoms A and B as a function of the change in the chemical and external potential

ΔEAB = ΔEAB,v + ΔEAB,𝜇 (7.94)

with

ΔEAB,v ≈ −
1
2

(𝜇A − 𝜇B)2

SA + SB
SASB

(
= −1

2

(
𝜇A − 𝜇B

)2

𝜂A + 𝜂B

)
(7.95)

and

ΔEAB,𝜇 ≈ −
1
2

λ
SA + SB

(7.96)

The first termΔEAB,v expresses the stabilization of the system due to the equalization
of the chemical potentials at constant external potential. The second term is a
rearrangement term at constant chemical potential, which involves a constant 𝜆,
that considers that effective number of valence electrons involved in the interaction
between A and B. These equations have also been extended to the local level as to
include the local softness of the interacting atoms in the bond-formation process
[150–154].

In the final part of this chapter, we briefly discuss two applications of the DFT-
based reactivity concepts to so-called dual reactivity behavior; that is, a molecule
with a hard and a soft center where a shift from orbital to charge control in the
onset of bonding can occur.
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(b)(a)

S C N

Figure 7.6 Reactivity indices for the
ambident thiocyanate ion SCN−: (a) iso-
surface plot of the Fukui function for an
electrophilic attack and (b) electrostatic
potential plotted on the van der Waals sur-
face. The blue color corresponds to a region

with a negative potential and the red color
with a (small) positive value of this quan-
tity (reproduced with kind permission from
Springer Science and Business Media from
Ref. [159]).

As a first example, we consider the thiocyanate ion SCN−, a so-called ambident
nucleophile [155], which has been the subject of many studies within conceptual
DFT [156–162].

As can be seen from Figure 7.6, the electrostatic potential turns out to be the most
negative around the nitrogen atom identifying this atom as the hard side of the
molecule, and thus predicting that this is the preferred site for the charge-controlled
addition of a generic hard electrophile. The Fukui function on the other hand is
the most extended function around the sulfur atom, thus predicting that this is the
soft side of the molecule and the preferred site for the orbital-controlled addition
of a generic soft electrophile.

Considering Eq. (7.19) to first order (including the nuclear repulsion terms),
Ayers et al. have derived a so-called all-purpose reactivity indicator Ξ that enables
to probe the dual reactivity behavior and to quantify the shift in the reactivity
(site-selectivity) depending on the nature of the electrophile (hard or soft), which
can be used for reactions that are neither charge- nor orbital-controlled [160, 161].
In the case of an electrophilic attack, that is, when Δ𝑁 ≤ 0 (transfer of electrons
from the nucleophile to the attacking electrophile), this index for the attack on a
site 𝛼 of the nucleophile can be expressed as

Ξ𝜅𝛼 = (𝜅 + 1)q0
𝛼 − Δ𝑁(𝜅 − 1)f −𝛼 (7.97)

where q0
𝛼 is the charge on atom 𝛼 in the nucleophile and f −𝛼 the value of the

condensed Fukui function for electrophilic attack on 𝛼; the parameter 𝜅 contains
information about the nature of the attacking electrophile and is proportional to
the sum of the charge on the interacting site of the electrophile q0

electrophile
and the

amount of charge that is transferred to this site Δ𝑁 multiplied with the value of
the Fukui function f +

electrophile
on this site

𝜅 ∼ q0
electrophile + Δ𝑁 f +

electrophile
(7.98)
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It turns out that the value of 𝜅 is between –1 and +1 in many cases. As can be
seen, the case of 𝜅 = −1 represents a reaction that is essentially electron-transfer
(or orbital) controlled (i.e., in the case of soft reagents), whereas the case of 𝜅 = +1
corresponds to a charge-controlled process (hard reagents). This reactivity index
thus has been computed for these ambident nucleophiles [158].

In Table 7.2, we present a so-called reactivity transition table of the electrophilic
attack on SCN−; for different choices of 𝜅 and Δ𝑁 , the value of Ξ𝜅𝛼 for the most
reactive atom is listed (most negative value), and this atom is identified by color-
coding the cell of the table. This table clearly illustrates that the orbital-controlled
process occurs preferentially on S, whereas the charge-controlled attack occurs on
N; it also well captures the change in the bonding interaction from N to S on
changing the nature of the electrophile.

As a second and final example, we briefly treat the dual reactivity of
2,6-dichloropyridine [162]. A plot of both the dual descriptor (to probe reactivity
toward soft reagents), and the electrostatic potential is given in Figure 7.7. As can
be seen, these reactivity indices predict that a soft electrophile will attach to C3
and C5 (because the dual descriptor is negative on these atoms), whereas a hard
electrophile will attach to the nitrogen atom. As the dual descriptor is positive
around C4, a nucleophilic attack is predicted on this site. All these predictions are
in agreement with experimental data [162].

7.3.2.3 Berlin’s Approach in a Conceptual DFT Context: the Nuclear Fukui Function
As stated in Section 7.1, the central quantity of DFT itself, the electron density,
has also been used numerous times in order to describe the properties of chemical
bonds, as in the quantum chemical topology approach [5, 6], reviewed by Popelier
in this volume, or in the electron localization function ELF [163, 164], as reviewed
by Savin, Silvi and Grin.

An interesting approach using the electrostatic picture of chemical bonding
using the electron density was initiated by Berlin [15, 165] which we now combine
here with the conceptual DFT in the nuclear Fukui function [33–40]. Using the
Hellmann–Feynman theorem [166, 167], the electrostatic force on an atom 𝛼 in a
molecule 𝐅𝛼 due to the electrons and the other electrons in the molecule can be
written as

𝐅𝛼 = −∇𝛼E = ∫
Z𝛼(𝐫 − 𝐑𝛼)𝜌(𝐫)|𝐫 − 𝐑𝛼|3 d𝐫 −

∑
𝛽≠𝛼

Z𝛽Z𝛼(𝐑𝛼 − 𝐑𝛽)|𝐑𝛽 − 𝐑𝛼|3 (7.99)

Now introducing the binding function FB as the virial of the electrostatic forces
that are necessary to hold all the nuclei in the molecule fixed

FB = −
∑
𝛼

𝐑𝛼 ⋅ 𝐅𝛼 = ∫ 𝜌(𝐫)
∑
𝛼

Z𝛼(𝐑𝛼 − 𝐫) ⋅ 𝐑𝛼|𝐫 − 𝐑𝛼|3 d𝐫 −
∑
𝛼

∑
𝛽≠𝛼

Z𝛽Z𝛼|𝐑𝛼 − 𝐑𝛽 | (7.100)

This function can be considered as measuring the binding effect in the molecule.
One usually puts the geometric center of the molecule at the origin of the Cartesian
coordinate system. Consequently, FB will be related to the work that must be done
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N CICI

NC6

C5

C4

C3

C2

Figure 7.7 Dual descriptor and electrostatic
potential of 2,6-dichloro-pyridine. The blue
isosurface corresponds to f (2)(r)= –0.004
a.u.; the orange isosurface corresponds
to f (2)(r)= 0.004 a.u. The red isosurface

corresponds to a value of –0.035 a.u. for the
electrostatic potential. (Reprinted (adapted)
with permission from Ref. [162]. Copyright
2009 American Chemical Society.)

to symmetrically scale the coordinates of the initial molecule, that is, all bonds in
the molecule will stretch or shrink to the same scale.

Using the approach of Berlin, the binding function can be rewritten as

FB = ∫ 𝜌(𝐫)fv(𝐫)d𝐫 −
∑
𝛼

∑
𝛽≠𝛼

Z𝛽Z𝛼|𝐑𝛼 − 𝐑𝛽 | (7.101)

where Berlin’s function, fv(𝐫), is defined as

fv(𝐫) =
∑
𝛼

Z𝛼(𝐑𝛼 − 𝐫) ⋅ 𝐑𝛼|𝐫 − 𝐑𝛼|3 (7.102)

This function can now be used to separate the molecular space into binding and
antibinding regions; the binding function can be rewritten as

FB = ∫fv>0
𝜌(𝐫)fv(𝐫)d𝐫 + ∫fv<0

𝜌(𝐫)fv(𝐫)d𝐫 −
∑
𝛼

∑
𝛽≠𝛼

Z𝛽Z𝛼|𝐑𝛼 − 𝐑𝛽 | (7.103)

As 𝜌(𝐫) ≥ 0, a pileup of electron density in regions with a positive fv(𝐫) has a positive
contribution to the binding function and tends to shrink the molecule; conversely,
accumulation of density in regions of negative fv(𝐫)will weaken the overall binding.

The force considered hitherto is the force on the nuclei and is often referred to
as Feynman force. It should be distinguished from the Ehrenfest force that has
also been used to investigate chemical bonding, which is directly related to the
electronic stress tensor and finds its place in QTAIM [5, 168–170].

Within the context of conceptual DFT, the following response function has been
defined [33]

𝚽𝛼 =
(∂𝐅𝛼
∂N

)
v

(7.104)

which is the change of the force acting on nucleus 𝛼 on changing the number of
electrons. This so-called ‘‘nuclear Fukui function’’ can be expressed as the force
due to the electronic Fukui function

𝚽𝛼 = ∫
Z𝛼(𝐫 − 𝐑𝛼)f (𝐫)|𝐫 − 𝐑𝛼|3 d𝐫 (7.105)

as can be seen when deriving the right side of Eq. (7.101) with respect to N.
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Note that this quantity is a second-order response function. Considering that

𝐅𝛼 = −
(
∂E
∂𝐑𝛼

)
N

, so that

𝚽𝛼 =
(

∂2E
∂𝐑𝛼∂N

)
v

(7.106)

where variations in 𝐑𝛼 are a particular choice of generating variations in v(𝐫).
The change in binding function dFB can then be written as

dFB =
(∂FB

∂N

)
v

dN (7.107)

with (∂FB

∂N

)
v

= ∫ f (𝐫)fv(𝐫)d𝐫 (7.108)

so that

dFB = ∫ f (𝐫)fv(𝐫)d𝐫dN = −
∑
𝛼

𝐑𝛼 ⋅𝚽𝛼dN (7.109)

As such, this quantity can be used to probe the changes in the forces on the atoms
induced by electron transfer to or from the molecule; it can thus be invoked to
study bond-formation or -breaking processes induced by changing the number
of electrons. We illustrate this in the following by considering the simple case
of the H2O molecule [38]. As an example, we consider the case of ionization of
H2O. In an orbital picture, the electron is taken away from the nonbonding orbital
perpendicular to the molecular plane. In Figure 7.8, the nuclear Fukui function
vectors 𝚽−

𝛼 (multiplied byΔN =−1) are given superposed on a f (𝐫)fv(𝐫) plot. Owing

Figure 7.8 f (𝐫)fv(𝐫) values (shaded parts
are the regions with negative value and the
binding/antibinding contour is hashed)
and values of the 𝚽−

𝛼 atomic vectors

multiplied by ΔN for the H2O molecule in
the molecular plane. (Reprinted with per-
mission from Ref. [38]. Copyright 2001,
AIP Publishing LLC.)
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to a delicate interplay of bonding and antibonding regions the resulting nuclear
Fukui function vectors tell us that, on ionization, the OH bond will stretch, and the
bond angle is enlarged as found experimentally.

7.4
Conclusions

The fundamental descriptor of DFT, the electron density, plays a central role in
many approaches to study bonding. Conceptual DFT augments the formal frame-
work and computational procedures of DFT with chemical quantities that describe
the initial stages of chemical reactions and, in particular, bond-formation processes.
The chemical quantities it introduces are response functions that express how the
system’s energy changes when the number of electrons (electron-transfer), the
external potential (electrostatic interactions, changes in molecular geometry), or
both change. These response functions, in turn, allow conceptual DFT to provide
a framework for rationalizing many chemical principles (such as Sanderson’s
electronegativity equalization principle and Pearson’s HSAB principle), and even
introducing new principles (most famously, the maximum hardness principle).
The electronegativity equalization principle and HSAB principle can be invoked
to study energy changes related to bond formation in a (semi)quantitative way.
The basic idea – the core of the perturbative perspective introduced by concep-
tual DFT – is that the reactivity is associated with perturbations in the molecular
fragments and that prospective reactions with favorable (energy-lowering or low-
barrier interactions) interactions are favored. It should be stressed that this basically
describes the reactivity at the onset of the reaction and that along the reaction path,
next to the interaction between the fragments, the geometrical perturbation can
become highly important, resulting in an energy penalty because the interact-
ing molecules become strained. This factor is important when considering the
chemical reactivity and is explicitly captured in the activation strain model of
Bickelhaupt et al. [171]

In this review, we have focused on conventional bonding. (an extension to weak
interactions can, for example, be found in [76, 172, 173]) Even though, we have
neglected many aspects, and readers are referred to other recent perspectives
[159, 174] and more comprehensive reviews [18–22] for more details.

Summarizing, conceptual DFT features a density-centered perspective on molec-
ular bonding and reactivity, providing a box of tools (response functions and
quantities derived from them) that elucidate both the nature of the chemical bond
and the chemical driving forces associated with bond formation and cleavage.
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(2007) J. Chem. Phys., 127, 034102.

95. Roy, R.K., Pal, S., and Hirao, K. (1999)
J. Chem. Phys., 110, 8236.

96. Roy, R.K., Pal, S., and Hirao, K. (2000)
J. Chem. Phys., 113, 1372.

97. Bultinck, P., Carbó-Dorca, R., and
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8
The QTAIM Perspective of Chemical Bonding
Paul Lode Albert Popelier

8.1
Introduction

In this chapter the ‘‘Quantum Theory of Atoms in Molecules (QTAIM)’’ is
discussed in the spirit of this book, which combines an educational style with
an awareness of current scientific boundaries, while avoiding too many equations
in the main text. Because QTAIM has been reviewed many times before it
has become harder to add value to what has already been written. Still, the
current text seeks to achieve added value, by an alternative angle of exposition
of QTAIM, by including both a historic narrative as well as a pointer to future
research.

Before starting to explain QTAIM we mention background texts that readers
may want to consult. An authoritative source on QTAIM is a book [1] written
by Richard Bader, who inspired and oversaw the development of QTAIM since
its inception. Apart from a didactic monograph [2] on QTAIM there are also a
number of accounts, reviews, and edited books on the subject. An early review [3]
on so-called molecular virial fragments was written in 1975. This account covered
only one aspect of QTAIM, namely that of the virial fragment. We will discuss
this concept in detail later in the text but for now it is best to think of a virial
fragment as ‘‘the atom’’ in QTAIM. Obviously this is an important cornerstone of
QTAIM, and was the early driving force for QTAIM’s development. It is important
to realize, already now, that the definition of an atom (within the framework of
QTAIM) is energetic in nature. It demands that not only should atomic energy
exist but it should also be well defined. This 1975 account did not introduce
bonds nor did it define them; in fact, it shied away from the general idea of
a bond, as implied by its title Molecular Fragments or Chemical Bonds?. Here
Bader suggested that, in the search to understand the properties of a total system
in terms of its parts, one can choose atoms rather than bonds as fundamental
parts. Later, in a more mature version of QTAIM, this ‘‘either or’’ view was not
sustained.

Ten years later, in 1985, a second account [4] was published in the same journal
by the same author. This account presented QTAIM in its entirety, including

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
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a treatment of bonding through the topology of the electron density. What we
mean by topology will become clear later in this chapter. In his 1985 account,
Bader was careful enough to write that It is the atom and its properties that are
defined by quantum mechanics. The bond paths (BPs) and the structure they define
just mirror and summarize in a convenient way what the atoms are doing. The 1985
account would effectively form the basis for Bader’s book on QTAIM, which
was published 5 years later. This book appeared more or less simultaneously
with a long review [5], presenting QTAIM as deduced from first principles.
Ten years later a more introductory and didactic book [2] appeared, followed
by two reports soon after [6, 7] listing the by then hundreds of applications
of QTAIM in fields ranging from mineralogy to biochemistry, together with
developments, both methodological and algorithmic. In a philosophical review [8]
of QTAIM as a quantum mechanical basis of conceptual chemistry, Bader listed
all atomic theorems [9] derived to date. Two years later, in 2007, an extensive
compilation of QTAIM contributions appeared in a book [10] edited by Matta and
Boyd. This book’s subtitle From Solid State to DNA and Drug Design reaffirmed
the enormous breadth of application that QTAIM had acquired by the mid
2000s. In another personal account entitled Everyman’s Derivation of the Theory
of Atoms in Molecules Bader presented QTAIM as an extension of quantum
mechanics to subspaces. Finally, in his swansong publication [11], posthumously
published in Foundations of Chemistry, Bader emphasized the bounded, space-
filling, and nonoverlapping feature of QTAIM atoms, a topic discussed [12] at
great length seven years earlier, and in the context of short-range intermolecular
interactions.

Three final remarks are in order. First, the references cited in this Introduc-
tion are not exhaustive but merely provide background material to make up
for the brevity of the QTAIM exposition in this chapter. These references were
ordered chronologically, in line with the historical character of the exposition
below. Second, another chapter in this book, written by Scherer et al. (Chapter 9),
assumes background knowledge of QTAIM in their account on chemical bond-
ing from the point of view of high-resolution crystallography. Third and finally,
the way QTAIM partitions the electron density, through the concept of the gra-
dient path (GP), has been adopted by other approaches such as the topological
analysis [13] of the electron Localization function (ELF) [14]. It makes sense to
bundle the topological analysis of the electron density, its Laplacian (which are
both part of QTAIM), ELF, and many other quantum mechanical functions into
one approach called Quantum Chemical Topology (QCT). This name has been
justified in detail over the last decade in various sources, such as footnote 19
in Ref. [15], Section 2 of Ref. [12], the Appendix of Ref. [16] and the Introduc-
tion of Ref. [17]. More details on QCT can be found in Box 8.1 of this chapter.
Box 8.1 lists the various quantum mechanical functions that have been investigated
via the language of topology and dynamical systems, and thereby outlines what
QCT is.



8.1 Introduction 273

Box 8.1 Quantum Chemical Topology (QCT)

There is a growing body of work that uses the language of topology to extract
chemical information from modern ab initio wave functions. The important point
is that such topological analyses use three-dimensional quantum mechanical
functions other than the electron density. A well-documented example of a
function that features as a chapter in this book is the ELF. In 1994, bonds were
for the first time classified [13] by introducing the topology of ELF. Central to that
work was again the concept of the GP. A GP is a trajectory of steepest ascent
through a given three-dimensional (3D) function. The full collection of GPs,
which draws itself in a molecule or cluster of molecules, is called the gradient
vector field. This field was first studied as it operated on the electron density.
This is how QTAIM started: the gradient vector field of the electron density
partitioned a molecule into atoms (that have a well-defined kinetic energy).
However, many 3D quantum mechanical functions, other than the electron
density, also have maxima that attract GPs. Therefore one can find basins
(i.e., subspaces containing GPs terminating at an attractor) in these other 3D
functions. The identity of the partitioned function will determine which type of
chemical information one recovers. It is important that all activity and results
that use the central idea of a gradient vector field partitioning are collectively
referred to under one single name. A sensible name has already been proposed
[15] in 2003, which is QCT.

A non-exhaustive list of 3D topologically partitioned quantum mechanical
functions includes:

• Electron density 𝜌(r) (started with Ref. [20]).
• The Laplacian of 𝜌, ∇2𝜌(r) (started with Refs [68, 69] and full topology first

explored in Refs [70–72]).
• (Bare) nuclear potential Vnuc(r) (early start with Ref. [73] but elaborate and

self-contained study [17]).
• ELF [14] (started with Ref. [13] and reviewed in Ref. [74]).
• Electrostatic potential [75] (started with thorough studies [76, 77] and continued

with Ref. [78], applied in the area of chemical reactions [79], Lewis acidity [80]
or electron diffraction study [81]).

• Virial field (or trace of the Schrödinger stress tensor) (topology explored in Ref.
[57].).

• Magnetically induced molecular current distributions (started with [82]).
• Intracule density (started with Ref. [83], which reveals correlation cages).
• Ehrenfest force field (topology first investigated [84] in 2012).
• Energy partitioning (beyond the kinetic energy and atom virial theorem)

(Coulomb potential energy partitioning started with [37] and culminated into
the theory of IQA [24], leading to energetic underpinning for the topological
expression of chemical bonding [85]).
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Alternative methods of interpretative quantum chemistry [86–92] do not share
the central concept of the gradient vector field. This crucial difference draws
together the topological analysis of the various functions under the heading of
QCT, which is thus distinct from non-QCT methods.

8.2
Birth of QTAIM: the Quantum Atom

The birth of QTAIM was marked by work that, with hindsight, could be called a
false start actually. Two publications appeared in 1971, one [18] in Chemical Physics
Letters and one [19] in Journal of the American Chemical Society, where Bader and
coworkers explained their ‘‘natural partitioning.’’ It is interesting to pause here
and highlight what these publications convey because this reveals the driving force
behind QTAIM and what it is essentially. The opening sentence of the JACS paper
states that ‘‘There is a history of attempts (…) to partition the total electronic charge
between the nuclei in the system. The prime reason for proposing any scheme which
assigns some number of electrons to each nucleus in a molecule is to provide a measure
of the charge transfer…’’ Let us make clear here, and keep in mind for later in this
chapter, that a population analysis indeed provides a measure of charge transfer,
nothing more and nothing less.

In the abstract of the 1971 JACS paper the authors term their method a ‘‘natural
partitioning’’, ‘‘… as it is suggested by the nature of the charge distribution itself; the
point along the internuclear axis at which the charge density attains its minimum value
between a pair of bonded nuclei defines the position of the partitioning surface.’’ They
immediately illustrated their partitioning recipe on the linear molecule FC≡N. In
this system a first partitioning plane was positioned at the point on the molecular
axis with the lowest electron density value between the F nucleus and the C nucleus.
The second partitioning plane was positioned in the same manner but now in
between the C nucleus and the N nucleus. Figure 8.1 of the 1971 JACS paper
shows two panels, which we do not reproduce here. In the top panel there is a one-
dimensional profile of the electron density along the molecular axis, partitioned in
the way described just earlier. The bottom panel shows these partitioning planes
again but now cutting through a two-dimensional representation consisting of
contour lines of constant electron density. Instead of reproducing their original
figure we show a partitioned mountain landscape in Figure 8.1. The reason for this
example from macroscopic reality is that it reminds us how the brain would separate
two (mountain) peaks that are mathematically similar to the peaks appearing in a
1D profile of the electron density.

Mountain landscapes also appear in the context of chemical reactivity where
saddle points or paths of steepest ascent need to be illustrated, often in connection
with a new configuration sampling algorithm. Here the metaphor of the mountain
landscape simply fulfills the role of emphasizing how ‘‘the human eye’’ naturally
partitions an object into two nonoverlapping parts. No one would readily think
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Figure 8.1 A system of two mountains partitioned into a left mountain (L) and a right
mountain (R) by a red line going through the point of lowest altitude between the two
peaks.

of mountain L as an object that overlaps with mountain R. There is a sharp
boundary between the two objects, and few would argue with this assertion. In
macroscopic reality there are many examples of sharp boundaries separating two
entities, ranging from borders between countries to cell walls. Yet, when it comes
to atoms in a molecule, a sharply delineated atom does not (yet) constitute the
mainstream view.

We now return to the question why the natural partitioning proposed in 1971 was
a false start. The concomitant 1971 Letter [18] applied the ‘‘natural partitioning’’
method to another linear molecule: carbon dioxide or O=C=O. An important
new concept was invoked, which is transferability. In the broadest sense, this
transferability gauges the extent to which a molecule can be constructed from
atoms or molecular fragments. The Letter first looked at transferability in terms
of ‘‘bond properties,’’ which were restricted to bonded and nonbonded electron
populations. It is easy to imagine that a different type of partitioning plane, this
time through a nucleus, can separate a bonded population from a nonbonded one.
The blue line in Figure 8.2 marks an example of such a plane, going through
O here. Left of this plane is situated the nonbonded electron density, which is
segregated from the bonded density appearing to the right of this blue plane.

Envisage that one wants to first obtain the total population of the left oxygen in
O=C=O. For that purpose the electron density is integrated from infinity (at the
left) up to the partitioning plane (red line in Figure 8.2) at the minimum point
between the left O nucleus and the C nucleus next to it. Both partitionings (red
and blue line) may appear cavalier in the light of the mature theory that QTAIM
later became. However, the 1971 Letter already gives the impression that, in the
long run, ‘‘not all is well’’ with such a red partitioning. Understanding the reason
for this is important to comprehend the essence of QTAIM and what it strives to
achieve.

Noting the relative insensitivity of populations to changes in bonding (e.g., going
from CO to CO2) the authors directed their attention to the transferability of a
fragment’s energy. They focused on the kinetic energy only, working with two
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O OC

Figure 8.2 Partitioning of the linear
molecule carbon dioxide (CO2) superim-
posed on a set of contours of constant elec-
tron density. The red line marks the ‘‘false
start’’ or ‘‘natural partitioning’’ between
O and C, while the green curve marks the

correct QTAIM boundary between C and O.
The blue line marks a way to separate non-
bonded (left) and bonded (right) electron
density, as suggested in the 1971 Letter (see
main text).

alternative kinetic energy densities, denoted K(r) and G(r) (see Box 8.2). They
showed that when K(r) and G(r) are integrated over a subspace bounded by the red
line then one obtains very different numerical values. In order for these two values
to be identical, the 1971 Letter correctly concluded that the subspace, denoted by
Ω, had to be such that the Laplacian of the electron density, ∇2𝜌, vanishes when
integrated over the subspace’s volume (see Box 8.2),

∫ΩdV∇2𝜌(𝐫) = 0 (8.1)

However, the 1971 Letter failed to see this fact through to its final conclusion and
thereby failed to draw the green boundary in Figure 8.2. This had to wait until
the next paper [20] appeared in 1972, containing a consistent treatment. This 1972
paper can be considered as actually heralding the birth of QTAIM. Here, for the
first time, the characteristic shape of a molecular fragment (i.e., atom) with a well-
defined kinetic energy was born. This paper illustrated this molecular fragment
by means of simple lithium-containing diatomics, both neutral and positively
charged. Figure 8.2 shows this characteristic shape by means of the green curve.
When reflected to the left side of the molecule, this green curve provides a complete
partitioning of CO2 into three atomic subspaces with a nonplanar shape. We could
call such a subspace a kinetic atom, because it has a well-defined kinetic energy.
However, one could give this subspace the more general name quantum atom,
which has been used elsewhere in the literature (e.g., Chapter 7 in Ref. [2]. and in
Refs [21–24].). This name is appropriate because much work of the Bader group
during the rest of the 1970s aimed at strengthening the link between this quantum
atom and quantum mechanics itself. The need for strengthening this link follows
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Box 8.2 A Molecular Fragment with a Well-defined Kinetic Energy

The purpose of this box is to show how to define a molecular fragment that
has a well-defined kinetic energy. The starting point is having a definition of
local kinetic energy, which is the kinetic energy at a particular point per unit
volume. This quantity is thus a kinetic energy density, which when integrated over
a volume, gives the kinetic energy of the electrons in that volume. If this volume
corresponds to that of a molecular fragment then one recovers the kinetic energy
of that fragment.

A potential problem immediately arises because there is a quantum mechanical
ambiguity [93] in defining this kinetic energy density. Although there are an infinite
number of expressions for the kinetic energy density it is sufficient to choose only
two possible expressions to develop the argument of this box. Two alternative
definitions, previously used [94] by Bader and coworkers in this argument, are
given by Eqs. (B2.1) and (B2.2),

K(𝐫) = −1
4

N∫ d𝜏′[𝜓∗∇2𝜓 + 𝜓∇2𝜓∗] (B2.1)

G(𝐫) = 1
2

N∫ d𝜏′∇𝜓∗ ⋅ ∇𝜓 (B2.2)

where N is the total number of electrons in the system, 𝜓 the system’s
N-electron wave function, and ∫ d𝜏′ the integration over all electrons except
one. This integration reduces the 3N dimensional character of the integrand to
a three-dimensional function. To simplify matters spin is not considered here.

In a way, G(r) resembles classical kinetic energy in that it is always positive. It is
easy to show that these two kinetic energy densities are linked via the Laplacian
of the electron density, ∇2𝜌,

K(𝐫) = G(𝐫) − 1
4
∇2𝜌(𝐫) (B2.3)

When integrated over whole space the Laplacian vanishes, or

∫whole space
dV∇2𝜌(𝐫) = 0 (B2.4)

As a result, integrating both sides of Eq. (B2.3) over whole space, yields

K(molecule) = G(molecule) = T(molecule) (B2.5)

where T expresses the kinetic energy regardless of whether it was calculated from
K(r) or G(r). Because a single molecule in the gas phase occupies the whole
space, one indeed recovers the kinetic energy of the molecule by integration over
the whole space. This energy is well-defined in that it is unique: both K(r) and
G(r) give the same answer.

The main question is now if this unique result can also be obtained for a
molecular fragment. Let us consider the subspace of an arbitrary molecular
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fragment, denoted by ⊗. For such an arbitrary subspace one finds that

∫⊗dV∇2𝜌(𝐫) ≠ 0 (B2.6)

Hence, one will not recover a unique kinetic energy for such a fragment, or

K(⊗) ≠ G(⊗) (B2.7)

However, there are special subspaces Ω for which

∫ΩdV∇2𝜌(𝐫) = 0 (B2.8)

such that it makes sense to speak of a unique and hence well-defined kinetic
energy T(Ω) associated with those subspaces,

K(Ω) = G(Ω) = T(Ω) (B2.9)

from a concern raised by Bader and Beddall themselves at the end of their 1972
‘‘QTAIM birth’’ paper [20]. They wrote that While the concept of the energy of a
fragment appears to be at variance with the quantum mechanical definition of the energy
as the expectation value of the Hamiltonian operator averaged over all space, we are
led to this concept by our observations. As is perhaps always the case with mature
and fruitful theories (such as QTAIM) they have their roots in observation and
practicality. As another example, one could quote Feynman path integrals, which
were used successfully long before it was shown they were mathematically allowed.
The Dirac delta function is another example.

Returning to QTAIM, Srebrenik joined the Bader group in the mid 1970s and
started the development of subspace quantum mechanics, a topic also pursued by
others at that time. When the expectation value of an operator is evaluated in full
space quantum mechanics, one obtains a real value when the operator is Hermitian.
However, the evaluation of an expectation value over a subspace generally yields a
complex number. This problem can be solved by taking the mean of the (non-real)
expectation value and its complex conjugate, thereby eliminating the purely imag-
inary part. More details can be found in Ref. [25], Chapter 7 of Ref. [2] and Ref. [1].

In the next section we introduce the language of dynamical systems to reinterpret
the quantum atom from a topological view.

8.3
The Topological Atom: is it also a Quantum Atom?

In order to make some new concepts concrete right away we work with a simple
molecule, HFC=O, which is still general enough. The fact that this molecule is
planar eliminates some unnecessary complexity at the outset. Figure 8.3 shows
how the electron density varies within HFC=O. The electron density determining
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O

C

F H

Figure 8.3 Electron density contour plot
of HFC=O in the plane of symmetry. The
molecule has been geometry optimized at
the MP2/cc-pVDZ level of theory. The carbon
is placed at the origin and the bold square
box marks the −5 au and +5 au horizontal

and vertical boundaries of the plot. The
electron density values of the contour lines
are 1× 10n, 2× 10n, 4× 10n, and 8× 10n au
where n starts at −3 and increases with
unity increments.

the contour lines (roughly) doubles its value in going from one contour line to the
next. From the (almost) linear spacing of the contour lines one deduces that the
electron density increases exponentially, reaching a local peak at each of the four
nuclei.

These peaks dominate the electron density landscape to such an extent that
one may have the impression that the positions of the nuclei are all that the
electron density indicates about the molecule. This information is what a routine
crystallographic study gathers and this may be all one needs to know if one is only
interested in the geometry of a newly synthesized molecule, for example. However,
the field of high-resolution crystallography [26] has pushed the interpretation
of the electron density further. A natural way of eliminating the dominance of
the molecular electron density near the nuclei is subtracting from it another
electron density with large peaks. The latter electron density corresponds to that
of a superposition of isolated atoms that have not been chemically hybridized
or polarized. The resulting difference density is called the deformation (electron)
density. In principle, it reveals the chemical features that the molecular electron
density contains but which are drowned by the peaks at the nuclei. Deformation
densities constitute a useful idea at first sight, and have indeed been used much
in the 1980s, but open issues surrounding the exact nature of the isolated atoms
(i.e., which quantum mechanical state or which part of their electron density,
valence or core) can spoil the interpretation of deformation densities. The current
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section will show that there is no need for a reference electron density (i.e., a
superposition of isolated atoms). Indeed, one can use the internal difference within
a single molecular electron density to extract chemical information from it. The
key concept to achieve this is the gradient vector, as explained later, but first we
focus on obtaining topological atoms in HFC=O.

Let us look again at the constant electron density contour lines of Figure 8.3, and
focus on the outer line, which corresponds to 𝜌= 0.001 au. Because this contour
can be considered as the practical edge of the molecule [27] it encompasses the
whole molecule. If the value of the constant electron density is now increased the
rather ‘‘blobby’’ and shapeless outer contour line becomes increasingly shaped.
Higher electron density contour lines start protruding toward the region between
the bonded nuclei. Like a corset, the contour lines start increasingly following the
shape of the individual atoms that form the molecule. Figure 8.4 zooms in on
the essential characteristics of the patterns emerging from the contour lines that
enclose individual atoms or groups of atoms. Starting with the lowest electron
density value, 𝜌= 0.25 au, the first contour line we encounter encloses the whole
molecule. In fact, this electron density value is the highest possible value yielding
a contour line that still encloses the whole molecule; any higher value of 𝜌 will
enclose parts of the molecule. More precisely, a contour line corresponding to
𝜌> 0.25 au will enclose the fluorine atom on its own. This atom now becomes a

ρ = 0.43 au

ρ = 0.29 au

ρ = 0.25 au

H

C

O

F

Figure 8.4 Diagram illustrating how HFC=O
falls apart into four atoms, by following three
disconnection events, at three different elec-
tron density contour values. First, when
𝜌= 0.25 au, F becomes disconnected from
HC=O. The blue zone marks contour lines
with 𝜌> 0.25 au but still <0.29 au, at which

point the H atom splits off from C=O, when
𝜌= 0.29 au. The yellow zone marks contour
lines with 𝜌> 0.29 au but still <0.43 au, at
which point the C and O atoms also become
disconnected. Finally, contour lines with
𝜌> 0.43 au enclose all atoms as completely
separated entities.
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separate object that is disconnected from the rest of the molecule. The full meaning
of the special point in Figure 8.4, marked by the little square where 𝜌= 0.25 au, will
be explained later.

A little black square in Figure 8.4 is reminiscent of the point of lowest altitude
between two mountains, where the red line in Figure 8.1 partitions the overall
landscape in two separate mountains. Of course, in the light of the discussion on
defining atomic kinetic energy it would be uninformed to still draw such a line
through each of the black squares in order to partition the molecule into atoms.
Instead, the equivalent of the green boundary in Figure 8.2 needs to be found,
which is shown in Figure 8.5. In this figure three bold black curves mark the
edges of the four topological atoms in HFC=O. The little black squares appear
in the center of each of these three bold curves marking the sharp boundaries of
the atoms. These curves are actually intersections between the plotting plane and
surfaces in three dimensions called interatomic surfaces.

There are five comments to make on Figure 8.5. First, one can prove again
that the Laplacian of the electron density, ∇2𝜌, vanishes when integrated over the
subspace’s volume of each of the four atoms. Therefore, the atoms displayed in
Figure 8.5 are quantum atoms. In the current section we establish why we can also
refer to the atoms in Figure 8.5 as topological atoms. It should be clear already that
all topological atoms are quantum atoms but not all possible quantum atoms are
topological atoms [21]. Second, the topological atoms in Figure 8.5 do not overlap.
This nonoverlapping picture may appear alien to many (quantum) chemists. A
prevailing picture appears to be one of fuzzy atoms that penetrate each other.
Although this image is possibly inspired by the cloudlike nature of an electron

O

C

HF

Figure 8.5 The molecule HFC=O is partitioned into four topological atoms: F (green), C
(gray), O (red), and H (white).
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density, one should keep in mind that topological atoms also emerge from that
same electron density. Third, topological atoms do not leave any gaps in between.
This space-filling feature of topological atoms is also at variance with a more
mainstream picture where some regions of space are not allocated to any atom.
This is especially common in molecular complexes held together by hydrogen
bonds and/or van der Waals interactions. For example, a ligand that docks into
an enzyme’s active site is typically thought of as a molecule of finite size, even
if it finds itself in a condensed matter situation, which is the case when inside
the active site. In this picture, therefore, there are regions of space, between the
ligand and the enzyme, that are unassigned to any molecule and thus any atom.
Similarly, water molecules in the liquid state do not leave gaps between them: all
of space belongs to one water molecule or another. This is a result of each water
molecule being completely bounded by interatomic surfaces. Fourth, the fluorine
atom distorts the carbon atom more than the hydrogen atom. QTAIM provides
a picture of atoms reminding us of the macroscopic world where objects can be
distorted to whichever degree of malleability they possess. Fifth and finally, there is
‘‘no direct contact’’ between the oxygen and the fluorine, that is, topologically they
do not touch. In fact, they are kept apart by a very thin wedge of space belonging
to the carbon atom, although it is not visible in this plot. Similarly, there is no
direct contact between the oxygen and the hydrogen, which are again separated by
a wedge of carbon that is now more clearly visible than in the previous case. The
same is true for fluorine and hydrogen. In any of these three ligand· · ·ligand pairs
(F· · ·H, O· · ·H, and O· · ·F), direct contact would mean that there is a little black
square at the center of the interatomic surface separating the atoms of interest. If
the nuclear configuration is sufficiently changed, such little black squares can be
created.

Figure 8.6 reveals the three-dimensional shape of the three interatomic surfaces,
in two different types of graphical representation and in a slightly different
orientation (Figure 8.6a,b). In order to obtain a deeper insight into the nature of a
topological atom we need to introduce the fundamental concept of the GP.

(a) (b)

Figure 8.6 Three-dimensional representation of the topological atoms in FHC=O, using
the same colors as in Figure 8.5. (a) Semitransparent solid surfaces and (b) wireframe sur-
faces. The small purple spheres correspond to the black squares in Figure 8.5.
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A GP is a path of steepest ascent through a multidimensional function, here
one depending on three spatial coordinates. In the part of QTAIM that we discuss
first, this function is the electron density 𝜌(r). In the second part of QTAIM, this
function will be the Laplacian of the electron density. In general, this function
can still be another quantum mechanical function of interest (see Box 8.1). The
GP is the cornerstone of QCT, which was briefly mentioned in the Introduction.
Returning to the GP, it ‘‘wastes no time’’ in reaching a local maximum. Indeed, the
GP pierces through surfaces of constant electron density such that it reaches a local
maximum in the quickest possible way. The direction a GP takes is orthogonal to
a very small (i.e., infinitesimal) plane, locally representing a surface of constant 𝜌
value. Because the gradient vector is also orthogonal to such a plane one deduces
that a GP is in fact a succession of gradient vectors. Imagine the gradient vector
of the electron density, denoted ∇𝜌, being evaluated at a given point. This vector
points in the direction of steepest ascent. Follow the gradient vector ∇𝜌 over a very
short (i.e., infinitesimal) stretch and reevaluate ∇𝜌 at its endpoint. Continue this
process iteratively. The resulting succession of very short gradient vectors can be
regarded as a smooth curve. This curve is the GP.

Earlier we stated that a deformation density introduces a reference electron
density. QTAIM eliminates the need for this reference density. Indeed, the gradient,
as a differential, operates on a single electron density. This differential does not
represent a difference between two densities but effectively constitutes an internal
difference, within the same density, which is the molecular electron density 𝜌.
This is an example of how QTAIM obeys Occam’s razor or the principle of
minimalism.

Figure 8.7 illustrates a multitude of GPs in HFC=O. The majority of the GPs
originate at infinity and travel through space until they reach a local maximum,
which practically coincides with a nuclear position. A collection of such types of
GPs forms a spider web-like pattern, marking the subspace of each topological
atom. Because the GPs ‘‘draw themselves,’’ the topological atom also draws itself.
The space it occupies is naturally carved out by the minimal prescription of tracing
GPs, wherever they lead us. The resulting atomic shapes can be complicated but the
prescription that generated them is minimal. By loose analogy, Newton’s second
law is also minimal but it also generates many complicated patterns of motion
(e.g., of celestial bodies in the solar system).

It is clear from Figure 8.7 that the web-like patterns of GPs forming the topological
atom are bounded by the interatomic surfaces. In other words, some GPs graze
along an interatomic surface, sometimes indiscernibly closely. These grazing GPs
move toward the center of an interatomic surface, marked by the little black square,
but then, as they approach this center, they suddenly bend and terminate at a
nucleus. This behavior suggests that the interatomic surface itself consists of GPs
that do not terminate at a nucleus but at a mysterious little black square. In that
sense, the trajectories of GPs constituting an interatomic surface can be considered
as a limiting case.

It is time to zoom in on what these little black squares are, and thereby reveal a
more complete picture of topological relationships.



284 8 The QTAIM Perspective of Chemical Bonding

O

C

HF

Figure 8.7 Gradient paths traversing the subspace of each topological atom in HFC=O.
The interatomic surfaces shown in Figure 8.5 are repeated here in bold.

8.4
The Bond Critical Point and the Bond Path

Let us start with the GP, which was the central concept of the last section. We know
that a GP is oriented: it has a beginning and an end. We also know that a great
many GPs can come together at one point, practically coinciding with a nuclear
position. We also know from Box 8.3 that, if at a given point ∇𝜌≠ 0, then there is
only one GP containing this point. Thus, by the logical construction modus tollens,
we can state that if a given point belongs to more than one GP then, at that point,
it is not true that ∇𝜌≠ 0. In other words, a point where more than one GP meets
has the property that ∇𝜌= 0. Such a special point is called a critical point (CP).

Box 8.3 The Gradient Path and Natural Coordinates

The gradient vector is all that is needed to map out the potentially complicated
internal structure of a molecule in terms of the topological atoms that make up
the molecule. A GP can be seen as succession of very short gradient vectors,
in the simplest possible description. Thus, the tangent to such a GP, in a given
point, is a gradient vector. This statement can be rewritten as a system of three
ordinary differential equations,

d𝐫
𝑑𝓁

= ∇𝜌|∇𝜌| (B8.1)

where r is a position vector describing the path and 𝓁 is the path length. The
simplest way to solve this system is to use the Euler method, which is essentially
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tracing the paths by following the gradient vector over a very short stretch
and reevaluating it at every new end point. Although this method may suffice
for visual purposes it is not that accurate. The Runge–Kutta method (and its
more modern variants such as the Cash–Karp method) is more appropriate and
so is a predictor-correct method. Unpublished research showed that the more
modern Bulirsch–Stoer method is not performing better than the Runge–Kutta
or Cash–Karp method. Analytical expressions for the solutions of Eq. (B2.1) have
been investigated before [95]. Note that one can trace only one GP through
a point where the gradient of the electron density does not vanish. Slightly
rephrased, if at a given point ∇𝜌≠ 0, then there is only one GP containing this
point, or in other words, going through this point.

Let us introduce a path coordinate s, which is related to the actual path length
𝓁 via the equation ds= d𝓁/|∇𝜌|. One can then rewrite Eq. (B8.1) in a slightly
simpler way,

d𝐫(s)
ds

= ∇𝜌 (B8.2)

For a given initial point r0(s= 0) (where ∇𝜌≠ 0), a unique GP follows from
solving Eq. (B8.2). At the origin of the GP s=−∞ while at its terminus s=+∞.
The parameter s can be regarded as a coordinate describing the path over its
full length. We know from the main text in Section 8.4 (Figure 8.8) that a GP
always originates at a CP and terminates at another CP. If the distance between
these two CPs is finite then the GP’s length will also be finite. This means that
a finite curve in Cartesian space is described by a path coordinate that spans
the full range of [−∞, +∞]. To complete the set of coordinates that describe the
topological atom to three coordinates we need two more coordinates. Imagine
a sphere of radius 𝛽, centered at the nucleus within a given topological atom.
The radius 𝛽 is such that the sphere lies completely within the volume of the
atom. Any point on the surface of the sphere can be uniquely described by 𝜃
and 𝜑, the familiar angular spherical coordinates. Equation (B8.3) makes clear

GP

CP

CP

Figure 8.8 Each gradient path (GP) has a direction, originates at a critical point (CP)
and terminates in a CP.



286 8 The QTAIM Perspective of Chemical Bonding

how an initial point r0 (x0, y0, z0) is described as the GP is traced in the forward
(ascending) and backward (descending) direction,

x0 = 𝛽 sin 𝜃 cos𝜑

y0 = 𝛽 sin 𝜃 sin𝜑

z0 = 𝛽 cos 𝜃 (B8.3)

Now we have three coordinates that each cover their full range, that is, s∈ [−∞,
+∞], 𝜃 ∈ [0, π] and𝜑∈ [0, 2π]. These are called natural coordinates. The interesting
point is that they describe the topological atom ‘‘from within,’’ as if it was a full
(and unbounded) space. This ‘‘complete world’’ is of course not complete in
Cartesian space, where its description in terms of the x, y, z coordinates clearly
shows areas where the atom is absent. The coordinate mapping (s, 𝜃, 𝜑) →
(x, y, z) could be interesting from the point of view of a mathematical branch
called differential geometry. Such an analysis has already been carried out [96] on
interatomic surfaces, which are described by their own two natural coordinates.

Because a gradient vector ceases to exist at a CP, this point is not associated
with a direction pointing at a higher electron density value. Thus, the CP can be
considered as the end point of a GP: as the path arrives at a CP there is no gradient
vector to guide it beyond this point. Now, one can ask if a CP can also serve as
the starting point of a GP. The answer is yes and again, this situation arises in
a straightforward manner. If a GP starts in a given point then there cannot be a
GP trajectory preceding it. This is exactly the case if ∇𝜌= 0 at that point, and that
confirms that the GP started at a CP. Figure 8.8 summarizes the explanation above,
introducing GP as a convenient acronym for gradient path and CP for critical point.

The most common type of GP is the one that originates at infinity and terminates
at a maximum in 𝜌, which for all practical purposes coincides with a nucleus.
There are many examples of this type of GP in Figure 8.7, which collectively
form the atomic basin, that is, the subspace carved out inside a larger quantum
system, forming the topological atom. From this picture one deduces that there is
an ocean of CPs at infinity. The maximum in 𝜌 at the nucleus is a maximum in
three dimensions. In other words, in whichever of the three mutually orthogonal
directions one approaches the maximum, 𝜌 will increase.

Each interatomic surface in Figure 8.7 also consists of a bundle of GPs, sharing
with the GPs forming the atomic basin, the fact that they originate at infinity.
However, the GPs of the interatomic surface terminate at a so-called bond critical
point (BCP), which is the proper name for the mysterious black squares in Figure 8.7
(and some earlier figures). Locally, the interatomic surface may be regarded as a
plane containing the BCP. GPs travel a very short stretch in this plane, on their
way to the BCP, which acts a local maximum in this plane. The BCP is thus a
maximum in two dimensions. In this case these two dimensions describe the
molecular plane. Is the BCP a maximum or a minimum in the third dimension,
which is characterized by the direction orthogonal to the plane?
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BCP

Figure 8.9 Examples of bond critical points
(BCP), which are the three black squares in
HFC=O, one of which is explicitly marked by
the acronym BCP, and lies in between C and
H. One gradient path originates at this BCP

and terminates at C, while another gradient
path originates at the same BCP but termi-
nates at H. Together they form the bond
path linking C and H.

Figure 8.9 answers this question by focusing on one BCP, lying in between
C and H. The behavior of the third dimension is marked by two arrows, which
show the direction of steepest ascent. It is clear that the BCP is a minimum in
this third dimension. The BCP is thus a saddle point, or a CP with mixed local
behavior in terms of the directions in which it is a minimum or a maximum. In
three-dimensional space there are four types of CPs in this sense: a maximum, a
BCP, a minimum and a second type of saddle point that we will discuss later. In
general, there are (n+ 1) types of CPs in an n-dimensional space. Box 8.4 provides
more details on CP classification and local curvature. This Box also explains the
various types of GPs, as determined by the type of CP they link.

Box 8.4 Classification of Critical Points

In two dimensions there can be only three types of CP: a maximum, a minimum
or a saddle point. A saddle point is a CP that acts both as a minimum and a
maximum depending on the direction one scans in. In three dimensions there
are four types of CP: a maximum, a minimum and two types of saddle point. Any
CP is typified by the local curvature of the function in which the CP appears. For
our purpose, this function is the electron density, denoted by 𝜌, and the CP is a
point where the gradient vanishes, or ∇𝜌= 0. The statements made here, about
the number of CPs in two or three dimensions, are only true if this curvature is
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not zero, that is, the function is not flat at the CP. This curvature is quantified by
the eigenvalues of the Hessian of the 3D function of interest. The Hessian is a
matrix of partial second derivatives, each matrix entry Hij being defined by

H𝑖𝑗 =
∂2f

∂qi∂qj
where i and j = 1, 2, or3 (B4.1)

where q1, q2, and q3 stands for x, y, and z, respectively, if the Hessian is con-
structed in three dimensions. A second derivative naturally measures curvature
but the individual Hessian matrix elements cannot be analyzed directly as gauges
of local curvature. The reason is that the numerical values of the entries in the
Hessian matrix themselves depend on the choice of the coordinate system with
respect to which the coordinates x, y, and z are expressed. However, the Hessian’s
eigenvalues are independent of this choice and thus solve this problem.

To each eigenvalue corresponds an eigenvector that points out the direction
in which this eigenvalue determines the curvature. In order to illustrate this
statement, let us take one type of CP, the BCP, because it is the most relevant
for this chapter. The figure given here shows the three eigenvectors u1, u2, and
u3, associated with a BCP. The latter eigenvector points in the direction in which
the CP is a minimum. Accordingly, the corresponding eigenvalue 𝜆3 is positive.
The figure shows how the electron density, starting at nucleus A, decreases along
the BP and reaches its lowest value at the BCP, to then increase again to reach a
local maximum value at the nucleus B.

B

A

BP

u1

u3

u2

ρ

BCP

The figure also shows how eigenvectors u1 and u2 mark the directions in which
the BCP is a maximum, as amplified by the density of points in the plane spanned
by these eigenvectors. As expected, the corresponding eigenvalues are negative,
or 𝜆1 < λ2 < 0.



8.4 The Bond Critical Point and the Bond Path 289

The other type of saddle point is called a ring critical point (RCP). It occurs in the
center of a benzene ring, for example. Clearly, the electron density is a minimum
at the RCP with respect to any displacement away from it in the molecular plane.
Hence, there are two positive Hessian eigenvalues. In the direction orthogonal
to the molecular plane the RCP acts as a maximum. Hence, the remaining
eigenvalue is negative.

A compact notation, denoted (r, s), is often used to refer to any of the four
types of CPs. The rank (r) of a CP refers to the number of nonzero eigenvalues
and the signature (s) to the sum of the signs of the eigenvalues. More precisely,
the latter means that a negative eigenvalue is associated with ‘‘minus one’’ (−1),
and a positive eigenvalue with ‘‘plus one’’ (+1). The minus/plus ones can then
be added. CPs of rank 3 are the most common, that is, those points with strictly
nonzero Hessian eigenvalues. In this notation, the BCP is written as (3, −1)
because it has three nonzero eigenvalues and because the ‘‘sum of eigenvalue
signs’’ is (−1)+ (−1)+ 1=−1. Another useful number is the so-called index,
which is the number of positive eigenvalues of the Hessian. In summary, the
four types of rank-3 CPs in three dimensions are denoted (3, −3), (3, −1), (3,
+1), and (3, +3) corresponding to the index values 0, 1, 2, and 3.

Figure 8.8 made clear that GPs always link two CPs. This fact can be used
to characterize all possible GPs. This was achieved [72], for the first time, in
2003. All details can be found in this paper but the final result is reproduced
here in Table B4.1, which lists all possible types of GP in the electron density.
This classification is universal, beyond the electron density, and is valid for
other 3D scalar fields, such as the Laplacian of the electron density. The key to
understanding how many GPs can originate or terminate at a CP is determined by
the eigenvalues and associated eigenvectors of the Hessian evaluated at the CP.
A negative eigenvalue corresponds to a direction in which the CP is a maximum
and hence acts as a sink (or terminus) for GPs. Conversely, a positive eigenvalue
corresponds to a direction in which the CP is a minimum. In this direction the
CP acts as a source (or origin) of GPs.

As an example, let us look at the second row in Table B4.1, which shows
the case of GPs in an interatomic surface (the name for this manifold if one
works with the electron density). The notation for such a manifold is a [3, 1],
or [Isource, Isink] in general, where the source and sink CPs are characterized by
their index. Here, the first CP at the origin acts a source in all three directions
and therefore does not restrict the dimensionality of the manifold that connects
this CP and the CP at the terminus (or sink). It is clear that the dimensionality
of the connecting manifold is determined by the CP at the terminus. Because
the terminal CP can receive GPs in two directions the dimensionality of the
connecting manifold is two. Obviously, the number of directions the terminal CP
can receive GPs from, determines the dimensionality of the first three GP types
in the Table, that is, [3, 2], [3, 1], and [3, 0]. In general, the dimensionality of a
manifold connecting two CPs is the dimensionality of the source CP or that of the
sink CP, whichever one is lowest. Formally, dimmanifold =min(dimsource, dimsink).



290 8 The QTAIM Perspective of Chemical Bonding

Table B4.1 Survey of all nine possible typesa of gradient path (GP) in the electron density
(or any 3D scalar field).

Dimensionalityb

GP typec (r, s)origin → (r, s)terminus Origin Terminus Manifoldd Example (name is
for 𝝆 only)

[3, 2] (3, +3)→ (3, +1) 3 1 1 Ring line
[3, 1] (3, +3)→ (3, −1) 3 2 2 Interatomic

surface
[3, 0] (3, +3)→ (3, −3) 3 3 3 Atomic basin
[2, 2] (3, +1)→ (3, +1) 2 1 1
[2, 1] (3, +1)→ (3, −1) 2 2 2
[2, 0] (3, +1)→ (3, −3) 2 3 2 Ring surface
[1,2] (3, −1)→ (3, +1) 1 1 1
[1, 1] (3, −1)→ (3, −1) 1 2 1 GP in 𝜌 in a

conflict structure
[1, 0] (3, −1)→ (3, −3) 1 3 1 Bond path

aOnly critical points (CPs) of rank 3 are considered.
bFor a CP at the origin this is the number of directions in which the CP can ‘‘send’’ GPs, while for a
CP at the terminus this is the number of directions in which the CP can ‘‘receive’’ GPs. For the
manifold this is the dimension of the connecting topological object, that is, curve, surface or basin,
corresponding to one, two or three dimensions, respectively.
cEach gradient path is characterized by two critical points, an origin and a terminus. The critical
points are denoted by their indices, Iorigin and Iterminus, respectively, and the gradient path as [Iorigin,
Iterminus].
dThis is the set of gradient paths that connect two given critical points.

Figure 8.9 shows a GP that originates at the one explicitly marked BCP and
that terminates at the carbon nucleus. The other GP, originating at the same BCP,
terminates at the hydrogen nucleus. Together they form the so-called BP linking C
and H. This name was first proposed [28] by the Bader group in 1977, many years
after the work on the topological atom was published. This 1977 article immediately
spotted the chemically intuitive character of the BP, when it is curved, for example,
as in the case of ring strain. Figure 8.10 shows the simple example of cyclopropane,
in which the CC BPs bulge outward. This deviation from a straight line connecting
the nuclei can be quantified by straightforward geometrical measures.

At this juncture, a moment of reflection serves to obtain a better understanding
of the overall philosophy and development of QTAIM. In his 1975 Accounts, Bader
wrote that While one cannot deny the important role played by the bond concept, we
propose, as an alternative, a return to what is essentially the ‘‘atoms in molecules’’
approach to chemistry. Specifically, one seeks to understand or predict the properties of a
total system in terms of the properties of its parts. Rather than bonds, we choose as our
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Figure 8.10 Contour plot of the electron
density in the plane of the carbon nuclei
in cyclopropane. The interatomic surfaces
are marked by dashed line and the bond

paths by solid lines. The little arrows mark
the direction of the gradient paths in the
vicinity of the bottom CC bond critical point.
(Reproduced from Ref. [28].)

fundamental parts mononuclear fragments of the system with boundaries defined in real
space.

About 2 years after this statement was published, an alternative view was
proposed by the Bader group, this time very much in line with the traditional
picture of a chemical bonding. The Bader group had observed that the topology of
the electron density offered an interpretation of a bond that associated it with the
BP, a topological object coexisting with topological atoms. So, whereas QTAIM
started off as an energy partitioning scheme and viewed bonding as a result of
atomic energies, the theory was now tempted to reinterpret bonding guided by the
presence of BCPs and BPs. This dual approach, both resulting from the full topology
of the electron density, should not be seen as a dilemma. Instead, both pictures
should ideally be complementary aspects of the same thing: a chemical bond. In
fact, in the last part of this chapter we spend time on exactly this complementarity.
A question of essence is the following: can we link the QTAIM energy partitioning
with BPs? We will show in Section 8.5 that this is indeed possible as demonstrated
by a seminal paper published [29] in 2007, entitled BPs as Privileged Exchange
Channels.

First, however, we look at how evaluating quantities at the BCP can offer an insight
into the type of bond that it is a signature of. Box 8.5 provides details on an important
function called the Laplacian of the electron density,∇2𝜌, which has received much
attention in QTAIM. The function L(r)=−∇2𝜌(r) often appears in the literature
when bonds are classified along the lines discussed in Box 8.5. This is because it is
more intuitive to think of a positive L(r) value as one associated with a concentration
of electron density, while depletion is naturally reminiscent of a negative value.
The sign of L(r) at the BCP can be used as an indicator to characterize a bond,
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Box 8.5 The Laplacian of the Electron Density

The Laplacian of the electron density, ∇2𝜌, is the second quantum mechanical
function ever to be analyzed topologically, after 𝜌 itself. However, the first paper
on the Laplacian (in a QTAIM context), which was finally published [97] in 1984,
did not (yet) explore its topology. Instead, this work plotted ∇2𝜌 its value for
a variety of systems including covalent diatomics, hydrogen-bonded complexes,
ionic systems, and van der Waals (noble gas) complexes. This work interpreted
the sign of ∇2𝜌 in order to make a connection with the energetics of atomic
interactions. A variant of Eq. (B2.3), listed below as Eq. (B5.1), made this
connection possible,

2G(𝐫) + V(𝐫) = 1
4
∇2𝜌(𝐫) (B5.1)

where G(r) is the kinetic energy density (defined in Eq. (B2.2)) and V(r) is the
electronic potential energy density. Note that this is a local relationship; when
integrated over the volume of a topological atom Eq. (B5.1) leads to the atomic
virial theorem, due to the fact that the Laplacian then vanishes (see Eq. (B2.8)).

In regions of a (molecular) system where ∇2𝜌 < 0, the electron density is
locally concentrated. This interpretation of concentration is a general property
of the Laplacian in a (3D) scalar field, disconnected from quantum mechanics.
This interpretation can be seen as an extension of the second derivative in
one dimension. Indeed, the Laplacian is basically a second derivative, and
it essentially quantifies a local curvature. It is well known that, in any one
dimension, a negative curvature corresponds to a local maximum. Therefore,
a negative Laplacian corresponds a local concentration, even if this does not
happen at a stationary point in the Laplacian (where ∇(∇2𝜌)= 0). From Eq.
(B5.1) one can deduce that the potential energy density then dominates if
∇2𝜌< 0, because G(r) is always positive and can therefore never contribute to
an overall negative sign. When ∇2𝜌< 0 is found in the internuclear region then
one classifies the interatomic interaction as shared. Covalent and polar bonds
fall in that class, and the interaction between atoms in such bonds is caused
by a contraction of the electron density toward the interaction line linking the
two nuclei. We imagine this situation at the BCP. This local state of affairs can
be understood semiquantitatively by invoking the fact that ∇2𝜌= 𝜆1 + 𝜆2 + 𝜆3,
where the three terms are eigenvalues of the Hessian, as discussed in Box 8.4.
The Laplacian can only be negative if the two manifestly negative eigenvalues, 𝜆1

and 𝜆2, dominate (in magnitude) the one positive eigenvalue, 𝜆3. This, in turn,
means that the electron density is concentrated toward the BCP.

The opposite situation arises when ∇2𝜌> 0, in which case the electron density
is locally depleted. If we imagine this situation to arise again at a BCP then
this time the positive eigenvalue 𝜆3 dominates. This means that the electron
density is rapidly increasing away from the BCP. This situation arises in so-called
closed-shell interactions such as ionic bonds, hydrogen bonds and van der Waals
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complexes. By virtue of Eq. (B5.1), the kinetic energy density is now in charge of
the mechanics of the interaction.

At the time the 1984 paper [97] appeared the local energy density H(r) was
proposed [98] to complete the description of bonding along the lines of the
earlier discussion. This function is defined in Eq. (B5.2),

H(𝐫) = G(𝐫) + V(𝐫) (B5.2)

The driver to introduce this function was the observation that for about 100
covalent bonds (including F–F in F2) H(rb) is always negative. The opposite is
true for ionic bonds, hydrogen bonds, and van der Waals bonds, thereby turning
H(rb) into a convenient discriminator between covalent and non-covalent bonds.

The second paper on the Laplacian [68] this type looked the topology of this
function, starting with its CPs. The numbers and locations of the bonded and
nonbonded concentrations of charge in the valence shell of a bonded atom, as
determined by the maxima (CPs) of L(r)=−∇2𝜌(r), were found to be in general
agreement with Gillespie’s valence shell electron pair repulsion (VSEPR) model
[99, 100]. It should be noted that this interpretation is based on observations
only, and actually at variance with the conclusions based on an analysis of the
Fermi hole [101] by Bader and Stephens in 1975. They found that regions that
maximize Fermi correlation to yield localized groupings of electrons correspond
to atomic cores, and not, in general, to localized pairs of bonded and nonbonded
electrons as anticipated on the basis of the Lewis model.

In 1985, the concept of an atomic graph was proposed [102] in the context of
reactivity. The idea of an atomic graph is loosely analogous to that of a molecular
graph. Both represent a connectivity scheme of CPs, completely determined by
their topological links, as embodied by GPs. Discussing this in detail is beyond
the scope of this chapter but it is worth mentioning though that atomic graphs
were introduced [103] in 1992, in the context of complementarity in chemistry and
molecular recognition. Later, more complete insight into the Laplacian’s topology
(in terms of CPs and their connectivity only) was published [70, 104] and how this
topology changes in response to a change in molecular geometry. A thorough
study on a multitude of atomic graphs covering most common functional groups
of organic chemistry revealed 16 highly transferable atomic graphs [105]. This
work offers a physicalization of chemical graph theory, introducing building
blocks rooted in quantum mechanics, through properties of the orbital-invariant
electron density. In 2003, Laplacian basins were shown for the first time [106]
thanks to the construction of a novel algorithm (based on the ‘‘octal tree’’) that
also enabled integration the electron density over their volume. This led to the
first ever study [71] using the full topology of the Laplacian, which scrutinized
it as a physical basis for the VSEPR model. This study confirmed, by computed
volume of Laplacian basins, that a nonbonding domain is indeed larger than
a bonding one, in full accord with the VSEPR model. Second, these volume
quantities for the first time being available also showed that a multiple-bond
domain is indeed larger than a single-bond one, again in agreement with VSEPR.
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However, the calculations did not corroborate the effect of the electronegativity of
the central atom or ligand on the volume of bonding domains. More worryingly,
this study yielded unexpectedly small electronic populations (by integration of 𝜌
over Laplacian basins), nearer to one than to two, for non-hydrogen cores and
bonding domains, while nonbonding domains could have populations much
larger than two.

although it is safer to use it in combination with other indicators, the simplest
being the value of 𝜌 at the BCP, denoted by 𝜌(rb). In a typical ionic bond, which
is a closed-shell interaction, 𝜌(rb) is typically of the order of 0.01 au whereas for a
shared interaction it is typically about an order of magnitude larger, that is, 0.1 au.
The need to characterize a bond by more than just L(rb) is clear from the existence
of bonds such as C≡O or F2, which are characterized as intermediate interactions.
This is because it has mixed features: a high 𝜌(rb) value (normally found when
L(rb)> 0) but L(rb)< 0. Box 8.5 introduces the measure H(rb), which circumvents
the appearance of intermediate interactions by always assigning a negative value to
H(rb) for any recognized covalent bond, including that in F2. When complemented
with the extra indicator G(rb), 𝜌(rb) atomic interaction can be classified in a way
more sophisticated than in the 1980s. One such proposal came in 1998 from the
world of experiment, in particular, high-resolution X-ray crystallography, where
bonds in a transition metal dimer were classified [30] by topological indicators.
Table 8.1 describes the main features of several types of interaction including
between light (L) elements (e.g., H, C, B) and heavy (H) elements (e.g., As, Co).
Note that this table takes into account the position of the BCP with respect to the
behavior of L(r) in terms of sign, sign change, or extrema. One of the conclusions
of this extensive crystallographic study on Co2(CO)6(AsPh3)2 is that there is a
covalent Co–Co bond, in spite of the lack of accumulation of the deformation

Table 8.1 Summary of topological indicators and features that characterize the atomic
interaction.

𝝆(rb) Position of rb wrt L(r)
along the BP

L(rb) G(rb)/𝝆(rb) H(rb)

Open-shell (covalent bonds) Large Close to a
minimum

>0 <1 <0

Intermediate interactions (polar
shared bonds, e.g., CO)

Large Close to a nodal
surface

Arbitrary ≥1 <0

Closed-shell Small Inside a flat
region

<0 ≥1 >0

Shared (e.g., Co–Co) Small Close to a
maximum

∼0 <1 <0

Donor–acceptor (e.g., Co–As) Small Close to a nodal
surface

<0 ∼1 <0
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density map. Note that all values in Table 8.1 were obtained experimentally but the
kinetic energy density was indirectly obtained via a semiempirical method [31] that
estimates G(rb) from a function of 𝜌 and its Laplacian.

An otherwise popular indicator that does not feature in Table 8.1 is the so-called
ellipticity 𝜀, which is defined as 𝜆1/𝜆2 − 1. Note that the ellipticity is not bounded
from above but, because 𝜆1 < λ2 < 0, its minimum value is zero. This corresponds
to a cylindrically symmetric electron density, which is perfectly reached at the
carbon–carbon BCP in ethyne. The BCP of the central CC bond in butane has
an ellipticity of 0.01, which is almost zero. The ellipticity reaches 0.3 at the C=C
BCP in ethene, and is interpreted as a measure of the π character. Any CC
BCP in benzene has the lower value of 𝜀= 0.18, which is in agreement with the
expected reduction in the π character compared to the ‘‘pure’’ double bond in
ethene. Remarkably, the substantial ellipticity of 0.4 at a CC BCP in cyclopropane
(Figure 8.10) is reminiscent of the widely recognized double bond character of
(strained) three-membered carbon rings, in terms of their reactive behavior (e.g.,
rates of solvolysis).

Finally, we point out that the topological descriptors were introduced [32] in the
area of molecular similarity through the concept of BCP space. In its original form,
BCP space represented BCPs as points in a 3D space, spanned by 𝜌(rb), −L(rb)
and 𝜀(rb). This compact description sufficed, compared to descriptions from whole
electron densities, in providing descriptors for linear free energy relationships such
as the one proposed by Hammett on acidity. Further research showed that the
BCP space proved a reliable source of compact quantum mechanical descriptors
for QSARs (quantitative structure–activity relationship) in a medicinal, ecological,
physical organic (pKa prediction), or toxicological context, culminating in a method
called Quantum Topological Molecular Similarity (QTMS) [33].

8.5
Energy Partitioning Revisited

An early important result in the development of QTAIM was the establishment
that an atom in a molecule has its own atomic virial theorem. This means that, for
a single atom, there is a relation between the kinetic energy of this (topological)
atom and its potential energy. This relationship can be obtained by integrating Eq.
(B5.1) over the volume of a topological atom Ω, or

∫Ωd𝐫[2G(𝐫) + V(𝐫)] = 1
4∫Ωd𝐫∇2𝜌(𝐫) = 0 = 2T(Ω) + V(Ω) (8.2)

where we emphasize again that topological atoms are remarkable subspaces in that
they have a well-defined kinetic energy, denoted T(Ω). Thanks to this relationship
there was no need to calculate V(Ω) in the early days of QTAIM. Calculating T(Ω)
was sufficient, which required a 3D volume integration [34] over the volume of Ω.
The literature on the integration algorithms over topological subspaces is fairly large
and has been briefly reviewed in a recent paper [35] on fully analytical integration
(over a spherical core inside a topological atom), a body of work to which one can
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add a most recent contribution [36]. In spite of the technical challenges of such 3D
integration over topological atoms, they are computationally less demanding than
the 6D integrations required to calculate V(Ω) (independently from the atomic
virial theorem). The existence of an atomic virial theorem enables one to calculate
only T(Ω) and then deduce V(Ω) from it as −2T(Ω). As a result, the total atomic
energy E(Ω)=T(Ω)+V(Ω)=−T(Ω). One can the sum the total atomic energies
in a molecule and obtain the total molecular energy. Although this is convenient,
the latter statement is true only if the forces on the nuclei all vanish, that is, at
a stationary energy point, typically an energy minimum. A calculation of V(Ω),
independent of the atomic virial theorem, would free QTAIM energy partitioning
from being confined to equilibrium geometries only.

The latter was achieved [37] for the first time in 2001, in a paper that calculated
the Coulomb interaction energy defined in Eq. (8.3),

EAB
Coul = ∫ΩA

d𝐫1∫ΩB

d𝐫2

𝜌tot(𝐫1)𝜌tot(𝐫2)
r12

(8.3)

where the total charge density, 𝜌tot(𝐫), is the sum of the electron density (i.e.,
electronic) 𝜌(r) and the nuclear charge density, and r12 is the distance between two
infinitesimal pieces of charge density. This work was further developed completing
the calculation of non-Coulomb interaction energies [38, 39]. However, in 2004, an
efficient algorithm [40] made possible a full and systematic analysis of molecular
energy in terms of intra-atomic and interatomic (pairwise) energy contributions,
dubbed Interacting Quantum Atoms (IQA) [24]. All electron–electron interactions
are determined by the diagonal of the second order reduced density matrix, 𝜌2(r1,r2).
The electron–electron interaction energy between two topological atoms ΩA and
ΩB can then be written as in Eq. (8.4),

VAB
ee = ∫ΩA

d𝐫1∫ΩB

d𝐫2

𝜌2(𝐫1, 𝐫2)
r12

(8.4)

Interestingly, the electron–electron interaction can always be split into a classical
(Coulombic), and a nonclassical (quantum mechanical) exchange-correlation (xc)
part, as follows,

𝜌2(𝐫1, 𝐫2) = 𝜌1(𝐫1)𝜌1(𝐫2) + 𝜌xc(𝐫1, 𝐫2) (8.5)

where the subscript ‘‘1’’ can be omitted if no emphasis is needed on the fact 𝜌(r) is
in fact the diagonal of the first-order reduced density matrix. Substituting Eq. (8.5)
into Eq. (8.4) leads to

VAB
ee = VAB

cl + VAB
xc (8.6)

where VAB
cl

is the purely electronic part of EAB
Coul

, that is, without any contributions
of nuclear charge. Stimulatingly, this part measures the ionic-like contributions,
while the second term VAB

xc measures the covalent-like contribution to a given
atom–atom interaction (no matter how far apart the atoms are). This term is then
of course defined as,

VAB
xc = ∫ΩA

d𝐫1∫ΩB

d𝐫2

𝜌xc(𝐫1, 𝐫2)
r12

(8.7)
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This genuine quantum mechanical index is key to enduring progress in the ‘‘holy
grail’’ question of how (if at all) to extract chemical bonds from wave functions. It
should be emphasized that this index is an energetic term, and therefore enables
one to analyse bonding directly in terms of energy, which is the ultimate arbiter
of chemical stability, even of chemical fragments. Second, the index VAB

xc does not
invoke a reference state, and hence any (risky) decision as to what that state might
be. An analysis based on VAB

xc benefits from the minimalism discussed earlier.
We now discuss an observation of paramount importance [29], made in 2007,

which revealed a remarkable link between the presence of a BCP and VAB
xc . The

importance of this observation lies in directly relating the existence of the topological
object that decides on a bond to atomically partitioned covalent energy. How this
works will be explained using the example of water. We consider the minimum-
energy dissociative adiabatic pathway (maintaining C2v symmetry) that leads to the
formation of an oxygen atom and a hydrogen molecule, H2O (1A1) → O (1D) +
H2 (1Σg

+). A sequence of gradient vector fields for relevant snapshots along this
pathway has already been published [41] in 1981, in the context of the QTAIM
theory of structural change, which invokes catastrophe theory. We are interested
in following this pathway in the reverse direction, that is, to form a water molecule
by H2 approaching an oxygen atom. This formation is controlled by a single
(reaction) parameter d, which is the distance between the oxygen nucleus and the
midpoint of H2. Figure 8.11 plots this parameter as the x-axis against a y-axis
of VAB

xc energies. Starting at the right-hand side of this plot, H2 is an essentially
unperturbed molecule. Here, H2 is a BCP expressing the fact that the two hydrogen
atoms are bonded. In this regime VHH

xc is markedly lower than VOH
xc and this is why

the BCP appears between H and H. As the control parameter d decreases, suddenly
the VOH

xc energy becomes lower than that of its competitor VHH
xc . This happens near

kJ mol−1
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Figure 8.11 Competition between VHH
xc and

VOH
xc in the formation of ground state water

(left) from H2 and an oxygen atom (right).
Moving from the right to the left, the con-
trol parameter d decreases, and an intersec-
tion is hit at d= 1.38 Å, beyond which VOH

xc

becomes lower than VHH
xc . Around this inter-

section, the O–H BCP is formed and the
H–H BCP point is destroyed (ignoring the
complication of a very short-lived ring critical
point near this transition point).
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d= 1.38 Å, at which point, the O–H BCP is formed and the H–H BCP is destroyed.
Matters are actually slightly more complicated because the evolution of the gradient
vector field passes through a very short-lived ring structure between d= 1.391 Å,
and d= 1.389 Å. Note that in the ring structure both O–H BCPs and H–H BCPs
coexist. The same energy-topology of the 𝜌 relationship has been established both
in the HCN to CNH isomerization and in a process in which a fluoride anion
moves around LiF in a circle, passing from FLiF to LiFF.

The general conclusion of the 2007 paper [29] was confirmed very recently, in
2013, by Tognetti and Joubert [42]. They thoroughly analyzed admittedly approxi-
mate values for VAB

xc (ignoring electron correlation and for the first time employing
density functional theory (DFT), all calculations being performed in the mono-
determinantal Kohn–Sham ansatz using B3LYP). They computed what they call
Ex

AB values for a large number of intramolecular O· · ·X interactions (where X is an
O, S, or halogen atom) occurring in a set of 36 molecules, which also contained
C=C bonds. The authors address many natural questions about the nature of the
BCPs, for example, if they would always appear between any two nuclei. This
misleading impression is often had when a one-dimensional interpretation of a
minimum lying between two maxima (see Figure 8.1 and the mountain landscape)
is wrongly extrapolated to three dimensions. One should not forget that for a
BCP to exist, all three components of the gradient of the electron density must
vanish, not just one component along a line connecting the two nuclei. A second
type of misconception arises when one presumes that a BCP is merely a reflection
of internuclear distance. Again, this is naı̈ve: a BCP is not a docile signature
of internuclear distance. There are surprizing cases where two O· · ·O distances,
identical up to three significant figures, appear in two different molecules where
one displays a BCP in between these two oxygens and the other molecule does not.
In fact, when surveying the many cases studied in this paper it becomes clear that
a BCP, by its presence or absence, is a highly informative yet compact signature of
the exchange energy between two given atoms. For the first time, numerical criteria
are proposed. The authors conclude that the existence of BCPs indeed depends on
the competition of what the 2007 paper calls ‘‘exchange channels.’’ The authors go
further and state that the controversies about the existence or not of BCPs (… ) are
not sufficient (… ) to undermine QTAIM’s foundations. Given these most interesting
and intriguing observations there is a need for more studies of this ilk.

A natural and important question is then: can QTAIM, through patterns in
VAB

xc values, extract a Lewis diagram from a given molecular wave function? A
very recent study, published [43] in 2013, set out to exactly answer this question,
and the answer is yes, so far. In that paper the interatomic exchange-correlation
energy VAB

xc was investigated exhaustively for all atom–atom interactions in 31
small covalent molecules (including ions) and three van der Waals complexes. For
the first time, clear clusters were revealed in the values of VAB

xc , clusters separated by
almost an order of magnitude (depending on the system at hand). This quantitative
information, justified by a precise and minimal physical picture of topological
energy partitioning, underpins the idea of a molecular graph. Such a full analysis
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Figure 8.12 A ball-and-stick diagram of diborane, B2H6, expanded with numerical values of
−VAB

xc in kJ mol−1.

of VAB
xc , for all atom–atom interactions in a system, reveals where to draw the lines

in a Lewis diagram.
A useful example illustrating this success is that of diborane, B2H6, which at

one time was controversial in terms of its Lewis structure. Figure 8.12 shows
a ball-and-stick diagram of B2H6, endowed with −VAB

xc values (in kJ mol−1 and
for HF/6-311G(d,p) wave functions). The two largest values (in terms of absolute
values) are 385 and 222 kJ mol−1, corresponding to the covalent bonds BHterm

and BHbridge, respectively. They provide the ‘‘sticks’’ of the full molecular graph
because it can be completely built from just these two types of B–H bonds. The
next strongest interaction is between the bridging hydrogens (117 kJ mol−1). This
relatively large value is compatible with diborane forming a H–H BCP upon
small geometrical distortions, rather than forming a B–B BCP (note that the B–B
interaction is more than three times weaker than the H–H interaction). Some one
versed in molecular theory may find this fact surprising.

In summary, VAB
xc displays a hierarchy of values, expressing both coarse-grained

and fine-grained information about the covalent electronic structure of a molecule,
without using molecular orbitals. The quantity VAB

xc is (still) expensive to compute
and numerical errors of a kilojoule per mole are common (due to the quadrature
of large energy values). However, the fundamental patterns that VAB

xc reveals are
beyond this numerical error. The quantity VAB

xc urgently needs to be computed
in larger molecules and in molecular complexes. The most important feature
of a VAB

xc analysis is that it does not impose a priori chemical views (e.g., steric
repulsion) onto the chemical bonding puzzle or controversy at hand, and that it
does not invoke a reference state or arbitrary parameters either. Unfortunately,
these two desirable features are absent in some recent studies [44–48] that propose
interpretations of chemical bonding without using VAB

xc . Many of these studies
were vigorously refuted by Bader himself [49] and we will not repeat the arguments
and his counterarguments here. However, we briefly discuss a case study that
fully represents this fundamentally important debate on whether a particular
atom–atom interaction is a bond or not, namely that of H· · ·H interactions in
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aromatic hydrocarbons. We chose this example for three reasons: this case study is
prototypical, it is the oldest controversy of this kind, and a preliminary VAB

xc analysis
of this type of interaction exists.

The full narrative, up to 2004, on the debate on the meaning of H· · ·H BCPs
(excluding the now widely accepted dihydrogen bond [50, 51]) is given in a book
chapter (Section 4.3 of Ref. [12])). Salient element of this story will be repeated
here. Between 1990 and 1992, a flurry of seven papers appeared on BPs between
unexpected atoms (H and H, O and O, N and O), ending with the last one
[52] on ortho-fluoro-substituted biphenyls. During the course of publishing this
flurry, the authors changed their mind about whether the BPs they observed
were indicative of bonds rather than ‘‘steric interactions.’’ The fourth paper in the
sequence [53] investigated kekulene, a highly symmetric polyaromatic consisting
of a hexagon of 12 fused benzene rings. Remarkable highly curved BPs linking
the six inner hydrogens were dismissed under the banner that they were unable to
attach any physical significance to these bonds. In the sixth paper [54], focusing on
‘‘hydrogen–hydrogen’’ nonbonding interactions, the authors, now more confident,
stated that the term BP should be reserved for the interaction lines describing ordinary
strong bonds. Here they varied the central torsion angle 𝜑 (C2C1C1′C2′ ) in biphenyl
to study its effect on the local topology of the interaction between the hydrogen
bonded to C2 and the hydrogen bonded to C2′ . The corresponding H–H distance
acts as a control variable determining if a BCP has appeared between these two
hydrogen atoms. A BCP appears in the planar transition state (𝜑= 0◦), but not in the
local energy minimum, when𝜑= 45◦. Eventually, in the seventh and last paper, the
authors settle their conundrum in favor of an interpretation that projects traditional
chemical intuition onto their set of topological observations. They propose that when
the distance between two atoms is smaller than their contact interatomic separation,
a (…) BCP appears, indicating a nonbonding repulsive interaction. The authors
claim this is a rigorous definition of sterically crowded molecules, superior to that
obtained from van der Waals radii. Then, in 1995, an eighth and final paper [55]
appeared on the matter, further elaborating steric crowding, now in perhalogenated
hydrocarbons.

In a single author paper [56] Bader completely rejected the notion of steric
repulsion as allegedly expressed by a BCP. He argued that the question is not how
the final geometry is attained in some mental process involving passage over a repulsive
barrier, a situation that is in fact common to most chemical changes, but rather how
the mechanics determines the final distribution of charge. In technical terms, Bader
based his rebuttal on the claim that the virial field and the electron density are
homeomorphic [57]. This homeomorphism is not mathematically proven and
only observed for only 15 molecules at that time. The second issue is that the
homeomorphism is not perfect because it has several exceptions. For example,
amongst others, the two fields behave differently in Li2 and also in B2H6, where the
virial graph shows a path linking the two borons, which is absent in the electron
density. Because of the imperfection of the homeomorphism, and because the
virial field is judged [56] to have the ultimate authority to decide on bonds, one may
wonder why the electron density is still consulted on matters of bonding, in the first
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place. Nevertheless, the Bader group used exactly this angle of attack of the virial
graph to present [58] a hydrogen–hydrogen BCP as a mark of stabilizing interaction
in molecules and crystals. This type of bonding accounts for the existence of solid
hydrogen, and as it falls in the class of ‘‘van der Waals’’ interactions, no different
in kind, for example, from the intermolecular Cl–Cl bonding in solid chlorine
[59]. The authors point out that these H–H interactions are ubiquitous and that
they should not be confused with dihydrogen bonds (see above). According to their
approach there is no steric repulsion between the ortho-hydrogens in biphenyl;
rather the resultant H–H bonding contributes a stabilizing effect to the molecule’s
energy.

The debate continued when, in 2006, a paper [47] appeared that literally stated
in its title that Hydrogen-Hydrogen Bonding in Planar Biphenyl, Predicted by Atoms-
in-Molecules Theory, Does Not Exist. Of course, one could not be clearer than that,
which is why Bader immediately wrote a rebuttal paper [60] in the same year, with
an equally clear title stating Pauli Repulsions Exist Only in the Eye of the Beholder. The
essence of Bader’s rebuttal is indeed that the arguments presented in the attacking
paper are based on an arbitrary partitioning of the energy into contributions from
physically unrealizable states of the system. Bader invokes a statement [61] from
Morokuma, one of the first architects of energy decomposition analyses, his own
ostentatiously referred to as Energy Decomposition Analysis (EDA). Morokuma
himself wrote that There is no unique choice for the intermediate wave functions, and
they do not correspond to reality (e.g., ‘‘not all’’ satisfy the Pauli principle!. In the
many EDA schemes that followed, several variants of such imagined reference
states appeared. The IQA method, which was explained above, is of course also an
energy decomposition analysis, triggered by the pioneering calculation [37] of the
Coulomb energy between two topological atoms (see Eq. (8.3)). However, following
the principle of minimalism, IQA does not invoke any reference state at all, let
alone one that does not exist in Nature.

The seminal 2007 paper [29] on BPs as Privileged Exchange Channels, also joined
the debate on controversial H–H BCPs, providing new data, unlike Bader in his
2006 paper. Five systems were investigated, R–H· · ·H–R (where R=H, Li, or CH3),
cis-butadiene and biphenyl itself, all at Hartree–Fock level, which has proven to be
sufficient for the debate at hand. The distance between the two hydrogen atoms was
taken as a control parameter d, generating a number of geometries, and against
which the VHH

xc energies could be plotted. The profiles of all five systems turned
out to be remarkably similar. Hence, this observed universality puts the H· · ·H
interaction in biphenyl on a par with the well-accepted attractive interaction that
H· · ·H embodies in the R–H· · ·H–R systems. In summary, the H· · ·H interactions
in biphenyl are not destabilizing (i.e., repulsive) but stabilizing.

One should note that the origin of the rotation barrier in biphenyl was not
determined in the 2007 paper because this would require a full IQA analysis,
which was lacking at the time. Indeed, many atomic self-energy and atom–atom
interaction energies change substantially between molecular configurations and
all have to be captured. The most important point to remember is that chemical
behavior emerges as a net result (i.e., sum) of many different large and often
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opposing energy terms. At no point does IQA ascribe any chemical behavior (i.e.,
rotation barrier) to the interaction between just two atoms. Such ascription (i.e.,
isolation of fragment behavior and projection onto the whole) often happens in
Chemistry (for a case study criticizing the secondary interaction hypothesis [62]).
We note that IQA does not fall into the trap of singling out highly local interactions
and then projecting the overall behavior onto them. In summary, we can say that
the overall repulsion barrier in biphenyl is not due to a H· · ·H BCP representing a
locally repulsive interaction.

Finally, a brief discussion of another attacking paper [44], written by a number of
German authors in 2009, is in order here. This case study on phenanthrene studied
experimentally (using Raman spectroscopy), gives the impression of settling the
matter on how to interpret a H· · ·H BCP (this time appearing in the ‘‘bay region’’
of the molecule). This paper was vigorously disputed [49] by Bader, again in
a single-author paper, and again immediately, in the same year. The core of
his counterattack amounts to a perfectly valid point on the interpretation of the
‘‘interaction constant’’ (better called the coupling force constant) k, but unfortunately
it takes up to only one column of text. This main and powerful argument might
better have displaced much of the philosophy and ‘‘back-to-physics’’ outbursts that
wrapped this argument in the rest of the paper.

Moreover, it should be emphasized that the German authors invoked the
‘‘architecture’’ of the MM3 force field in order to separate molecular potential
energy into ‘‘chemically meaningful parts.’’ Of course, this is the wrong way
around. Indeed, popular force fields such as AMBER (or MM3 for that matter) have
little authority, if any, when it comes to partitioning energy in a physically rigorous
manner [63, 64]. The right way around is to construct a rigorous force field from
an actual quantum mechanical energy partitioning scheme. Pivotally, however, the
German authors used the arbitrary energy partitioning that underpins MM3 to
support their main argument of the repulsive nature of H· · ·H interactions. There
is another and, quite frankly, better route however. If one is happy with the main
idea of topological partitioning, which is that of QCT, then one can trust IQA and
proceed with it. The minimal quantity VAB

xc that IQA offers provides a route to cut
the vicious circle of interpreting bonding with schemes that impose bonding. Is it
not safer to calculate a minimal and physically well-defined quantity and observe
the bonding pattern it reveals rather than perpetuate primitive chemical intuition,
by deciding a priori which interactions are bonds and which are not?

8.6
Conclusion

A relatively underexposed paper published in 1972 marked the birth of a completely
novel way of thinking about how to partition a quantum mechanical system such
as a molecule. This paved the way to what is often called the Quantum Theory of
Atoms in Molecule (QTAIM). After an incubation period, the key vision in this 1972
paper developed into a methodology that fully embraced the language of dynamical
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systems as a vehicle to extract chemical information from wave functions. The idea
of using a (gradient) vector field to partition full space into subspaces was initially
applied to the electron density, leading to the concept of topological atoms. Stating
that these are the atoms of chemistry is perhaps based on a leap of faith, but then
one guided by beauty and minimalism.

The idea of ‘‘vector field partitioning’’ remains curiously confined to the field
of Chemistry. Instead, one would expect this idea to be more generally applied in
completely different knowledge fields, such as sociology or meteorology, given its
universality. Still, within chemistry, this partitioning method has been applied to
quantum functions other than the electron density, leading to the more general
and accurate name ‘‘Quantum Chemical Topology (QCT).’’ Moreover, in the area
of high-resolution X-ray crystallography, QCT is now mainstream.

An area of future QCT research is that of intermolecular interactions. Under-
standing and quantifying these interactions is crucial for the future of Chemistry,
which increasingly develops as a science of molecular assembly. This is where
the concept of the chemical bond needs to be scrutinized, widened, or even
(re)introduced, beyond the limitation of hydrogen bonds or the corset of covalent
interactions. QCT provides an appealing potential to tackle the question of detec-
tion, classification, and quantification of intermolecular interactions. The reason
is that understanding and defining bonding patterns, in the widest sense, must
ultimately be based on the atomic partitioning of energy. Topological atoms offer
a successful route to guide and execute this partitioning; let us not forget that they
deliver well-defined atomic kinetic energies. Moreover, they offer a visual picture
that will appeal to those willing to open their mind, and see chemistry as a ballet of
open and malleable boxes, with fluctuating shapes of amazing variety.
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9
The Experimental Density Perspective of Chemical Bonding
Wolfgang Scherer, Andreas Fischer, and Georg Eickerling

9.1
Introduction

The experimental feasibility of measuring and exploring charge density distribu-
tions of molecules and solids was first proposed in 1921 by Bragg [1]. In the light
of the enormous experimental complexity and instrumental demands of charge
density studies, it is quite surprising that this proposal came up 8 years after the
pioneering X-ray diffraction experiments of Friedrich et al. [2]. At that time, the
occurrence of atomic regularity in solids was proved, but the mapping of electron
density distributions was clearly beyond the scope of imagination. However, during
this pioneering period Bragg ‘‘observed’’ the symmetry-forbidden (222) reflection
of diamond by an ambitious X-ray single-crystal study, which should be absent in
case of atoms displaying merely spherical-symmetric charge density distributions.
Accordingly, Bragg concluded that the charge density distribution of atoms in
solids and molecules is distorted as a consequence of chemical bond formation:
‘‘It is necessary, therefore, to suppose that the attachment of one atom to the next is due
to some directed property, and that the carbon atom has four such special directions: as
indeed the tetra-valency of the atom might suggest’’ [1]. In this respect, Bragg provided
the first experimental support for Debye’s prediction in 1915 that ‘‘it should be
possible to determine the arrangement of the electrons in atoms’’1) [3]. However, a few
years later, theoretical structure factor calculations by Ewald and Hönl [4] and the
discovery of Umweganregungen (multiple scattering) in diamond by Renninger [5]
questioned Bragg’s observation of a pronounced (222) reflection. Indeed, recent
charge density studies of diamond [6] using high-resolution powder diffraction data
of a third-generation synchrotron source [7] reveal that the intensity of the (222)
reflection in diamond was overestimated by Bragg by about one order of magni-
tude – most likely due to multiple scattering (Figure 9.1). Thus, the example of
diamond demonstrates the challenge to experimentally determine precise charge
density distributions. However, owing to the tremendous achievements in the

1) Translated from German: ‘‘[… ] auf diesem Wege sollte es dann gelingen, die besondere
Anordnung der Elektronen im Atom experimentell festzustellen.’’

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 9.1 High-resolution powder diffrac-
tion data of diamond determined at Spring-8
[7, 9] and fitted by simultaneous Rietveld
and extended Hansen–Coppens (EHC) multi-
polar refinements. Observed (black circles),
calculated (solid red line), and difference
pattern (solid black line, bottom). Inset (a)
shows the diamond crystal lattice and the
highlighted (110) plane containing a zigzag
chain of carbon atoms. This is our reference
plane in all subsequent contour plots of

diamond. Inset (b) shows the accuracy of
the fit of the (222) reflection which is ‘‘sym-
metry forbidden’’ in the case of the stan-
dard independent atoms model (IAM). The
nonzero Bragg intensity of the weakly pro-
nounced (222) reflection provides a direct
and model-free measure of the asphericity of
the charge density deformation at the carbon
atoms due to chemical bonding. (Adapted
from Ref. [6].)

recent developments of high-flux X-ray sources and in the design of highly efficient
and precise area detectors, charge density determinations of organic and inorganic
compounds can be routinely performed in many cases and can be considered an
analytical technique. Indeed, ‘‘charge densities come of age’’ as pointed out by
Coppens in 2005 [8].

In combination with Bader’s Quantum Theory of Atoms in Molecules (QTAIM)
[10], charge density analyses can be directly employed to retrieve physical properties
of molecules and solids to investigate chemical bonding scenarios in detail [11–13].
In contrast to the charge density – a physically observable property – the direct
observation of wave functions is prevented by their complex nature. However,
it remains to be seen whether ‘‘constrained wave functions’’ [14–18], which are
restrained by experimental structure factor amplitudes, might provide a more
direct linkage between theoretical and experimental electronic structure analyses
in future. In combination with spin-polarized neutron diffraction experiments [19]
or resonant X-ray scattering [20], spin density distributions are also experimentally
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accessible, which might provide complex electronic information, for example, on
relativistic effects, spin and electron correlation, and the admixture of excited
states. The most recent developments in this field were pioneered by Deutsch et al.
[21], who could demonstrate that spin-dependent electron density distributions
can be determined to very high precision by joint multipolar refinements of X-ray
and polarized neutron diffraction data. Hence, the precision of experimentally
derived spin, charge, and momentum density distributions might furnish suitable
reference maps for theoretical calculations and eventually inspire the development
of more advanced density functional theory (DFT) functionals for the study of highly
correlated electronic systems in extended solids. The present frontier of research
in experimental charge density studies also encloses experiments performed at
subatomic resolution, at short time scales and/or aiming at excited states [6, 22, 23].
The possibility of obtaining experimental charge density distributions of matter in
electronically excited states (e.g., in photochemically active systems) or to study the
electronic structure of molecular crystals or solids at a femtosecond timescale has
been demonstrated recently [24, 25].

9.2
Asphericity Shifts and the Breakdown of the Standard X-ray Model

As outlined in the subsequent section, a true deconvolution of thermal smearing and
chemical bonding effects is the prerequisite to retrieve reliable structural parameters
and thermal displacement parameters of molecules and solids at high precision.
This is illustrated in Figure 9.2, where the C–C bond distances of several molecules,
complexes, and solids 1–5 are depicted. These systems are compared with our
reference models for a C–C single bond (diamond), double bond (ethylene),
and triple bond (acetylene). Note that the distance parameters of our reference
systems are model independent, as they rely only on the precision of (i) the lattice
parameter determination (diamond) or (ii) the accuracy in the determination of
IR/Raman frequencies (ethylene, acetylene) [26, 27]. In the case of the more complex
systems 1–5, no model-free structural parameters are accessible. Furthermore, the
geometrical parameters of the molecular systems are affected by crystal packing
effects, which do not allow an unbiased geometrical comparison between the
molecules in condensed phase (experiment) and their theoretical models assuming
isolated noninteracting molecules. The effects of crystal packing on the geometrical
parameters [28], the electron density distribution [29–31] and physical properties
[32, 33] of molecules in the condensed phase have been very recently reviewed
by Spackman [34] and are therefore not further discussed in this contribution. In
the case of standard X-ray diffraction experiments, the situation becomes further
complicated by systematic errors owing to the so-called asphericity shifts [35–38].

The origin of these asphericity shifts can be illustrated by inspecting the C–C
bond distances in [Ag(η2-C2H2)]+[A′] 5, a model system for a silver acetylene
complex displaying a weakly coordinating anion (A′ = [Al(OC(CH3)(CF3)2)4]−)
[44, 45]. The analysis of X-ray diffraction data using the standard independent
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Figure 9.2 Comparison of C–C bond
distances obtained from the IAM model
(black values), the HC multipolar model (red
values) and DFT calculations (blue values)

for benchmarks 1 [13, 39], 2 [40], 3 [41, 42],
4 [43], and 5 [44, 45]. Model-free C–C bond
lengths are specified for diamond [6], ethy-
lene [27] and acetylene [26] (green values).

atom model (IAM) yields an unreasonably short C–C bond distance of 1.146(4) Å
for the coordinated acetylene moiety, which is significantly shorter than the value
of the free ligand (1.2033(2) Å)2) [26]. On the other hand, DFT calculations predict
the elongation of the C–C triple bond upon coordination of the acetylene moiety in
5 (1.213 Å). This artificial discrepancy between experimental and theoretical C–C
bond lengths represents an extreme case of an asphericity shift. In the case of our
benchmark 5, the underlying phenomenon can be explained by the pronounced
density accumulation in the bonding domain of covalent C–C triple bonds. This
interaction density cannot be accounted for by the standard X-ray model of indepen-
dent (pseudo) atoms (IAM) displaying spherically averaged density distributions.
Hence, the resulting residual density is (partially) compensated for in the least-
squares refinements by an artificial shortening of the C–C distance (and an
erroneous modeling of the thermal displacement parameters). This artificial short-
ing of the C–C bonds is, however, prevented by standard multipolar refinements
that fully account for the density accumulation between the carbon atoms and thus
yield a C–C bond length of 1.209(1) Å in fine agreement with the theoretical model
(1.213 Å) – if we assume that crystal packing plays a minor role in 5.

2) The corresponding value of acetylene (C–C= 1.193(6) Å) in the condensed phase (neutron
diffraction study at 15 K; Ref. [139]) has unfortunately not been precisely determined owing to the
low resolution of the experimental data (sin 𝜃/𝜆≤ 0.74 Å−1).
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The presence of asphericity shifts is a well-known phenomenon that was
first identified and explained in terms of a charge density model in the 1950s
[35, 36]. These studies were, however, based on a direct comparison of IAM
refinement results with those obtained from alternative structural determination
techniques (gas electron diffraction, neutron diffraction, microwave or IR/Raman
spectroscopy) – long before the advent of reliable computational methods [35–38].
Hence, asphericity shifts provided – besides the presence of the (222) reflection
in diamond (see preceding text) – another univocal experimental evidence for the
aspherical nature of atoms in molecules and solids. Apparently, more sophisticated
models that are capable of modeling aspherical density distributions of atoms due to
chemical bonding are needed. In the next section we outline that multipolar models
such as the standard Hansen–Coppens (HC) model are highly suitable to eliminate or
to minimize asphericity shifts. The performance of the experimental HC model in
deriving reliable structural parameters is already documented at this stage, and can
be seen in Figure 9.2. The multiple bond character of the C–C bonds increases sys-
tematically in 1–5 and the C–C bond distances are systematically larger in the HC
model with respect to the IAM model, owing to the proper description of aspherical
electron density. These examples clearly underpin the necessity to establish compar-
isons between theoretical and experimental structural data exclusively on the basis
of multipolar refinements when the experimental model relies only on X-ray diffrac-
tion data. Finally, we note that in the case of the transition metal carbide Sc3CoC4,
the differences between the IAM and the HC model become rather negligible
[41, 42]. This appears to be a general phenomenon and is caused by the
reduced thermal motion of the atoms in close-packed and rigid solid state com-
pounds, allowing a more reliable refinement of bond lengths unbiased by thermal
smearing.

9.3
Precision of Charge Density Distributions in Experimental and Theoretical Studies

In addition to spectroscopic measurements, the experimental charge density as a
physical observable property provides an ideal benchmark to probe the precision
of theoretical methods and experimental approaches in real space. Therefore, it
is not surprising that the comparison of topological features of charge density
distributions became a routine technique to identify systematic experimental
errors (e.g., extinction, absorption, crystal decay, and imperfections) or to trace
deficiencies in the level of approximation used in theory (e.g., frozen-core
approximation, treatment of electronic correlation, and relativistic effects).
Furthermore, the static charge density allows a direct comparison between theory
and experiment in solids, as it can be extracted from the experimental structure
factors, Fexp, via multipolar refinements using, for example, the standard HC
model (Boxes 9.1–9.3). The charge density is also readily available from model
wave functions (WFN) based on theoretical methods.
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Box 9.1 The Spherical Atom Kappa Formalism

Already in 1977, a multipolar formalism was suggested by Stewart [46] to model
the electron density distribution of crystalline matter. This approach relies on a
decomposition of the total charge density into pseudo atoms. Nowadays, most
experimental charge density studies are based on the related HC multipolar
model [47], which provides an efficient and robust frozen-core algorithm to
extract charge density distributions 𝜌(r) from experimental X-ray diffraction
data. In the following, the basic concept of this standard and popular multipolar
model is briefly introduced. We first focus on the spherical-atom kappa formalism
[48, 49], which provides perhaps the simplest Ansatz to overcome the severe
limitations of the IAM. This formalism accounts for the charge transfer between
atoms in solids or molecules in condensed phase by the following definition of
pseudo atoms:

𝜌at(r) = 𝜌core(r) + Pv𝜅
3𝜌valence(𝜅, r) (9.1)

While the spherical core density (first term of Eq. (9.1)) is kept frozen, the
spherical valence density (second term of Eq. (9.1)) is used to account for
the charge transfer between atoms by its occupation factor Pv. The radial
expansion/contraction of each pseudo atom as a consequence of the charge
transfer is modeled by the 𝜅-parameter in Eq. (9.1). The 𝜅-formalism therefore
simply relies on the original Slater concept [50]. Accordingly, the screening
parameter 𝜅 fine-tunes the 𝜁 -exponents of the radial part of the Slater-type
orbitals (STOs) of the individual pseudo atoms (Eq. (9.2)).

R(𝜅, 𝑟) = Nr(n−1)e−𝜅𝜉𝑟 (9.2)

A value of 𝜅 > 1 thus indicates a radial contraction, while a value of 𝜅 < 1 is
signaling a radial expansion of the atomic valence electron density distribution
with respect to the corresponding neutral atom in its ground state (N is a
normalization factor, while n represents the main quantum number in Eq. (9.2)).
In recent databank files of multipolar models, the unperturbed core density dis-
tribution (first term in Eq. (9.1)) is usually taken from atomic ground state wave
functions of the respective atoms. In the case of the popular Volkov–Macchi
(VM) bank file as implemented in the XD program [51], the core and valence
density terms are represented by the same quadruple-𝜁 STOs as implemented
in the Amsterdam density functional (ADF) program [52–54]; hence, compar-
isons between theoretical and experimental charge density distributions can be
performed using the same STO expansion in both cases [51].

The general suitability of the HC model to extract electron density distributions
from experimental data has been documented in numerous case studies; see, for
example, Refs. [13, 17, 55–62]. However, a more sophisticated evaluation of the
performance of the standard multipolar model can be obtained by comparing
density distributions obtained (i) directly from wave functions (e.g., 𝜌(r)LAPW based
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on the linearized augmented planewave (LAPW) method) and (ii) multipolar
refinements using the corresponding theoretical structure factors, FLAPW, (e.g.,
𝜌(r)F,LAPW). In the following examples, we used periodic full-potential LAPW DFT
calculations to compute the LAPW wave function and the corresponding theoretical
structure factors FLAPW for diamond.

Box 9.2 The Multipolar Expansion of the Electron Density

The 𝜅-model (as introduced in Box 9.1) still does not account for the deformation
of the valence density due to chemical bonding. This is, however, accomplished
by the more advanced HC-multipole model, which expands the total electron
density distribution also in terms of pseudo atoms, 𝜌at(r), but extends Eq. (9.1),
by a third term that models the aspherical contributions to the valence density
(deformation density):

𝜌at(r) = Pc𝜌core(r) + Pv𝜅
3𝜌valence(𝜅, r) +

lmax∑
l=0

(𝜅′l )
3Rl(𝜅′l , r)

l∑
m=0

Plm±dlm±(𝜃, 𝜙) (9.3)

The valence deformation density is expanded in density functions consisting of
a radial part Rl(𝜅 l

′, r) and the density-normalized spherical harmonic functions
dlm(𝜃,𝜙). In contrast to the core and spherical valence density, the radial functions
Rl(𝜅 l

′, r) are taken as nodeless single-𝜁 functions of the type

Rl(𝜅′l , r) =
ξnl+3

(nl + 2)!
(𝜅′l )

3(𝜅′l r)
nl e−𝜅

′
l
𝜉𝑟 (9.4)

by introducing a second, l-dependent radial scaling factor 𝜅 l
′ for the deformation

density and the coefficients nl that have to fulfill the condition nl ≥ l [46]. The
𝜁 -exponents of these functions are often simply based on the energy-optimized
single-𝜁 functions derived by Clementi and Raimondi, which need to be multiplied
by a factor of 2 in order to be used as exponents for the density functions Rl(𝜅 l

′, r)
[63].

The core and valence occupation factors, Pc and Pv in Eq. (9.3), account
for the electronic configuration of the individual pseudo atoms and the charge
transfer between them in the same manner as already defined in the 𝜅-formalism
(Box 9.1).

Finally, the renormalized real spherical harmonics in Eq. (9.3) are derived from
the associated Legendre functions Llm(cos 𝜃) as

dlm+ = NlmLlm(cos 𝜃) ⋅ cos𝑚𝜙 (9.5)

dlm− = NlmLlm(cos 𝜃) ⋅ sin𝑚𝜙 (9.6)

and renormalized according to

∫ |dlm|dΩ = 2 for l > 0 (9.7)
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∫ |dlm|𝑑Ω = 1 for l = 0 (9.8)

This approach adopts the spherical harmonics for the representation of the
deformation electron density distribution relative to the spherical valence den-
sity contribution 𝜌valence(r). The term d00 introduces a spherically symmetric
contribution to the deformation density term and might correlate strongly with
the spherical valence density (second term in Eq. (9.3)). Indeed, this term is
often omitted when modeling experimental diffraction data, but may be used to
introduce additional radial flexibility into the model.

The occupation parameters Plm± can be adopted to the experimental data
by least-squares refinements and represent a weighting of the individual
density-normalized spherical harmonic functions dlm(𝜃, 𝜙), which describe the
aspherical features of the valence deformation density as exemplified in Box
9.3. As outlined in Box 9.4, the standard HC model can be further expanded in
case of first row elements to include effects similar to the contraction/expansion
of the inner (i.e., nonvalence) shell by including an additional radial scaling
parameter 𝜅core and the core population Pc into the list of refinable parameters
(Eq. (9.9)). The latter model will be denoted as the extended Hansen–Coppens
(EHC) model [6] in the following.

𝜌at(r) = Pc𝜅
3
core𝜌core(𝜅core, r) + Pv𝜅

3𝜌valence(𝜅, r)

+
lmax∑
l=0

(𝜅′)3Rl(𝜅′, r)
l∑

m=0

Plm±dlm±(𝜃, 𝜙) (9.9)

These calculations were performed using the Elk program [64] and the
Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA)
functional [65]. A direct comparison of the 𝜌(r)LAPW and 𝜌(r)F,LAPW maps should
therefore reveal potential deficiencies of the multipolar model and of the data
resolution as the same theoretical methodology has been employed to compute the
LAPW wave function and the FLAPW structure factors.

Box 9.3 Modeling the Deformation Density – a Practical Example

In this example, the valence deformation density of a hypothetical carbon atom
displays an aspherical valence density, which has been polarized along the
z-axis by bond formation with a neighboring atom. Such polarization is mod-
eled in our simplistic example by populating the following density-normalized
spherical harmonic functions (denoted as ‘‘multipoles’’ in the following): d10

with P10 =+0.3 and d20 with P20 =+0.3 (Figure a). The linear combination of
the dipole (d10) and the quadrupole (d20) yields a composed density function
(0.3d10 + 0.3d20), which displays a pronounced (i) dipolar polarization along
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and (ii) a quadrupolar polarization parallel and perpendicular to the z-direction.
Adding these deformation terms to the spherical valence density (Figure b)
formed by the four valence electrons of our hypothetical carbon atom, a non-
spherical deformation of the electron density results. According to the definition
of the employed multipole model, a positive value of Plm± leads to a shift of the
electron density from the spatial regions of the negative lobes of the dlm± multi-
poles into the regions of the positive lobes and vice versa. Note that the spherical
valence electron density 𝜌valence(r) is positive per definition, as it is obtained by
the squared STOs employed. Adding the resulting deformation density to the
undistorted atomic density of the carbon 1s electrons (𝜌core(r)) yields the total,
nonspherical electron density of our hypothetical carbon pseudo atom 𝜌at(r).

(a)

(b)

(c)

P10d10 = 0.3d10

Pvρvalence = 4.0ρvalence

Pcρcore = 2.0ρcore

P20d20 = 0.3d20 0.3d10 + 0.3d20

0.3d10 + 0.3d20 4.0ρvalence + 0.3d10 + 0.3d20

4.0ρvalence + 0.3d10 + 0.3d20 ρat(r)

++++

+

+

+

+ + +

+++

−

−
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Figure a–c: Sequence of isosurface plots
demonstrating the reconstruction of the
aspherical charge density features of a
hypothetical carbon atom displaying a
polarized valence charge density along
the z-axis. (a) Linear combination of the
dipole d10 and the quadrupol d20 (blue
and red color coding relates to posi-
tive/negative signs of the lobes of the

individual multipoles, respectively, isosur-
face values ±0.01 Bohr−3); (b) deformation
of the spherical valence electron density
𝜌valence(r) (isosurface value 0.2 e Bohr−3) by
a superposition with the composite multi-
poles d10 and d20; and (c) reconstruction
of 𝜌at(r) by adding the resulting (positive)
deformation density to the undistorted
core density 𝜌core(r).
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Figure 9.3 (a) Comparison of the theo-
retical valence density distribution along
the C–C bond in diamond as derived (i)
directly from the LAPW DFT wave function
and by refinements of theoretical structure
factors (FLAPW) using (ii) the standard IAM
X-ray model, (iii) the standard HC multipolar
model, and (iv) the more flexible extended
HC (EHC) model [6]; (b) Residual density
maps, Δ𝜌(r) (FLAPW − FHC), in the (110)
lattice plane of diamond revealing the lim-
ited flexibility of the HC multipolar model

in fitting the theoretical structure factors of
diamond in the core region of the carbon
atoms; contour step widths 0.01 e Å−3; pos-
itive/negative contour values are marked by
solid/broken lines. 2D valence density dis-
tributions of diamond in the (110) lattice
plane based (c) on the LAPW wave func-
tion and (d) on the EHC model employing
experimental structure factors (Fexp); contour

step width 0.1 e Å−3. Both multipolar models
employ scattering factors of a carbon atom
in its prepared valence 5S state [66, 67].

This is illustrated in Figure 9.3a showing the valence density, 𝜌(r)val, in diamond
along one C–C single bond as derived (i) directly from the wave function (WFN
LAPW), and alternatively by refinements of theoretical structure factors, FLAPW,
using (ii) the standard IAM X-ray model, (iii) the standard HC multipolar model,
and (iv) a more flexible EHC model.

Figure 9.3a reveals the dramatic failure of the standard IAM in fitting the C–C
bonding density as it is based on noninteracting atoms and thus ignores chemical
bonding effects. Unfortunately, the IAM still represents the workhorse of structural
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determinations using X-ray diffraction techniques. Therefore, it has been employed
in more than 99.9% of all published X-ray diffraction studies despite its inherent
systematic deficiencies, which might cause significant errors in the determination
of atomic coordinates (e.g., because of asphericity shifts) [35–38] and atomic
displacement (thermal) parameters. Indeed, Figure 9.3a demonstrates the much
better performance of the HC model with respect to the IAM in describing the
valence density in the C–C bonding regime. We note, however, already at this stage
that the ‘‘frozen-core’’ approximation of the HC model prevents a similar successful
density description in the core and cusp regions of atoms. But this limitation can
be overcome using the more flexible EHC model, which also accounts for density
deformation in the core regions of atoms (Boxes 9.2 and 9.4). The increased
flexibility of this model is best demonstrated by inspection of the residual density
maps, Δ𝜌(r), in the (110) lattice plane of diamond (Figure 9.3b). These clearly
document the excellent performance of the EHC multipolar model to precisely
recover the density distribution also in the core and cusp regions of the carbon
atoms of diamond. Hence, the discrepancies between the theoretical structure
factors and the ones fitted by the EHC model (FLAPW − FEHC) become small
enough to yield rather featureless residual density maps with Δ𝜌(r)=±0.01 e Å−3

(at a resolution of sin 𝜃/𝜆≤ 2.0 Å−1). Furthermore, Figure 9.3c,d shows the excellent
agreement of the 2D valence density maps directly obtained from the LAPW wave
function and from the experimental Fexp structure factors by employing the EHC
model.

Another way to test the performance of the HC and the EHC model relies on the
comparison of experimental and theoretical charge density maps using the QTAIM
method. Such analysis is suitable to reveal even subtle differences by comparing
the electronic structures of different theoretical models and allows an identification
of potential deficiencies of experimental and/or theoretical approaches. Such a
case study is shown in Figure 9.4, where various experimental and theoretical
contour maps of the negative Laplacian of the electron density, L(r)=−∇2𝜌(r), in
the (110) lattice plane of diamond are depicted. In the following discussion, we
use the experimental EHC model (Figure 9.4g) and a theoretical model employing
a flexible LAPW wave function (Figure 9.4f) as our experimental and theoretical
references, respectively.

We first inspect the topology of the total electron density as obtained from
the experimental IAM, HC, and EHC models (Figure 9.4a,d,g) to quantify the
rudimental density distribution as obtained by the interaction-free IAM. Indeed,
the density at the bond critical point (BCP) of the covalent C–C bond in diamond
is dramatically underestimated in comparison with the HC model (𝜌(r)= 1.15
vs 1.68 e Å−3, respectively). The IAM also causes an artificial lack of charge
concentration (CC) in the C–C bonding domain, which is reflected by a positive
sign and small value of the Laplacian at the BCP: ∇2𝜌(r)= 1.92 versus −14.9 e Å−5,
for the IAM and HC model, respectively (Figure 9.4a,d). Further increasing the
flexibility of the standard HC model, that is, by employing the EHC model, lowers
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Figure 9.4 Experimental and theoreti-
cal L(r)=−∇2𝜌(r) maps, in the (110) lat-
tice plane of diamond; negative (blue,
dashed) and positive (red, solid) contour
lines were drawn at ±2.0× 10n, ±4.0× 10n,
±8.0× 10n e Å−5 with n=±3, ±2, ±1, 0.
The first column shows the systematic
improvement of salient experimental topo-
logical parameters at the C–C bond criti-
cal point (BCP) and of the bonded charge

concentration in the valence shell of the
carbon atom. The 𝜌(r) values are specified
in e Å−3, whereas ∇2𝜌(r), L(r), and 𝜆3 are
given in e Å−5; 𝜆3 reports the positive cur-
vature of the density at the C–C BCP. The
second and third columns show the Lapla-
cian maps based on periodic LCAO calcula-
tions using the Crystal06 code [68] and the
periodic full-potential (L)APW DFT method.
(Figure 9.4d,g were adapted from Ref. [6].)

𝜌(rBCP) only slightly to our experimental reference value3) of 1.67 e Å−3. Accordingly,
the differences between both models are mainly manifested in the core and cusp
density distribution, where the frozen-core approach of the HC model causes severe
residual densities, as outlined earlier (Figure 9.3b).

The electron density distributions in diamond obtained from different ab initio
approaches employing varying levels of approximation and different basis sets also
reveal a systematic trend if the influence of (i) the model Hamiltonian and that
of (ii) the basis-set flexibility on the topology of 𝜌(r) is analyzed independently. In
comparison with our experimental EHC reference system (Figure 9.4g) a periodic
Hartree–Fock (HF)/6-21G(d) calculation seems to overestimate 𝜌(rBCP) significantly
(1.76 e Å−3) (Figure 9.4b). Also, the topology of L(r) appears to be unreasonable, as at
this level of approximation no maximum of the valence shell charge concentration

3) We note that in the original publication [6] an even lower value of 1.63 eÅ−3 was found. This
value turned out to be underestimated by a programming error in the property module of the
JANA2006 program. This has been corrected by the authors of the program in the meantime.
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(VSCC) is found along the C–C bond. The presence of such a bonded charge
concentration (BCC) is a characteristic indicator of covalent bonding between
sp-block elements. This obvious deficiency of the HF/6-21G(d) model appears to
be a consequence of the rather limited basis-set size employed [69, 70]. Similar
conclusions were derived from a systematic study on the basis-set choice in
periodic HF calculations on molecular crystals by Spackman et al. [70]. Hence,
the L(r) topology does not improve significantly by taking electronic correlations
via DFT calculation (PBE/6-21G(d) into account. However, this approach clearly
reduces 𝜌(rBCP) to 1.66 e Å−3, which is already close to our experimental reference
value, 1.67 e Å−3, which naturally incorporates electronic correlation and relativistic
effects (especially for heavier elements). The reduction of 𝜌(rBCP) owing to the
inclusion of correlation effects is a well-known phenomenon and has been studied
in detail for a large variety of molecular benchmark systems by employing various
model Hamiltonians; see, for example, the pioneering work by Gatti, McDougall,
and Bader in 1988 and subsequent studies [71–74]. These studies document
that HF/DFT tend to overestimate/underestimate 𝜌(rBCP) with respect to MP2
and CCSD (coupled-cluster with singles and doubles) calculations, respectively.4)

Increasing the size of the basis set to, for example, 6-311G(3d) (Figure 9.4h),
PBE calculations further reduce 𝜌(rBCP) to 1.59 e Å−3, which again demonstrates
the underestimation of 𝜌(rBCP) by DFT for reasonable basis-set sizes with respect
to our experimental reference value. The latter observation also holds true for
(L)APW basis sets, as demonstrated in Figure 9.4c,f. Employing a standard APW
basis (lmax = 7/Rmtkmax = 7)5) 𝜌(rBCP) is found to be 1.64 e Å−3, which is close to our
experimental reference value but biased by limited basis-set flexibility.6) Hence,
increasing the flexibility of our model (LAPW with lmax = 14/Rmtkmax = 10) further
reduces 𝜌(rBCP) to 1.62 e Å−3.

We finally tested whether the EHC model is flexible enough to recover the highly
flexible PBE/LAPW model density (Figure 9.4f) from the respective theoretical
structure factors. Apparently, the reconstructed density employing the EHC model
(Figure 9.4i), does not differ significantly from the one of the original PBE/LAPW
wave function (Figure 9.4f). This proves the capability of the EHC multipolar
approach to model even highly flexible electron density distributions. Accordingly,
the development of post-HC models (such as the EHC model) represents a
vivid and fruitful research topic in the charge density community to date and

4) See also related studies of correlation effects on integrated properties derived from the electron
density distributions, for example, Refs. [140, 141].

5) Here, lmax specifies the maximum angular momentum used for the expansion of the core potential
and the density inside the muffin-tin spheres defined by the radius Rmt. The product Rmtkmax thus
represents a dimensionless value defining the size of the plane wave basis set employed outside
the spheres, where the value of kmax defines the largest reciprocal wave vector included.

6) We note that the discontinuities observed at the muffin-tin boundary in L(r) in Figure 9.4c are
due to the fact that within the (L)APW ansatz the magnitude (and slope) of the density, but
not its curvature, are matched at the sphere boundary. The effect of such discontinuities can
be significantly reduced by increasing lmax of the density expansion inside the MT spheres (see
Figure 9.4f).
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Table 9.1 Topological parameters at the C–C BCP of ethane obtained from calculations
employing various model Hamiltonians and basis sets, 𝜌(rBCP) and L(rBCP) are given in e Å−3

and e Å−5, respectively.

𝝆(rBCP) L(rBCP)

6-21G(d)
HF 1.76 21.9
DFT (PBE) 1.68 18.4
MP2 1.71 19.7
CISD 1.72 20.2
6-31G(d)
HF 1.71 16.0
DFT (PBE) 1.62 12.6
MP2 1.65 13.8
CISD 1.67 14.4
6-311G(3d)
HF 1.69 15.3
DFT (PBE) 1.58 11.6
MP2 1.61 12.6
CISD 1.63 13.4

parallels/supports the tremendous recent achievements in acquisition of high-
quality and high-resolution data (see, for example, Refs. [29, 75–86] and references
quoted therein).

Owing to the difficulties of systematically increasing the level of approximation
in periodic calculations on diamond, we may exemplify these results by studying
the molecular model benchmark system for a covalent C–C single bond: ethane.
Comparing 𝜌(rBCP) at the C–C BCP of ethane with the respective values obtained for
diamond at the same level of approximation, we observe the same trends (compare
topological values in Table 9.1 to Figure 9.4b,e,h): (i) increasing the basis-set size
reduces 𝜌(rBCP); (ii) HF overestimates 𝜌(rBCP); (iii) DFT underestimates 𝜌(rBCP) with
respect to the MP2 and CI/CC Hamiltonians; and (iv) MP2 and truncated CI/CC
results do not show a consistent trend even though in Table 9.1 CISD is consistently
giving larger values compared to MP2 [74]. Finally, we note that the CI/CC 𝜌(rBCP)
values in ethane are all centered (1.63–1.72 e Å−3) around the experimental values
𝜌(rBCP) of the HC and EHC model (1.68/1.67 e Å−3) in diamond.

9.4
Core Density Deformations Induced by Chemical Bonding

Usually, the electron density distribution of the energetically low-lying inner
shells, that is, the ‘‘core density’’ of an atom is considered to be rather inert
and unaffected by chemical bonding. Indeed, numerous computational charge
density studies employing effective core potentials (ECPs) or the frozen-core
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approximation still rely on the general validity of this simple assumption. However,
the high resolution and precision of modern diffraction experiments questions this
simple approximation. Indeed, we will demonstrate that the distortion of the core
density of the carbon atoms in diamond can be experimentally resolved and is
inherently connected with the formation of covalent C–C bonds. In the case of high-
resolution studies (d-spacings smaller than 0.35 Å) these core density deformations
can therefore no longer be ignored and need to be accounted for by the flexible
EHC model (see preceding text), which employs a 𝜅- and multipolar formalism
for each individual atomic shell [6]. We have already documented the necessity of
this approach in Figure 9.3b, where the theoretical residual density maps Δ𝜌(r) in
the (110) lattice plane of diamond clearly reveal the limited flexibility of the HC
multipolar model to describe the charge density of atoms in the core region. Indeed,
the standard HC model yields large positive and negative residual densities (−0.17
to 0.48 e Å−3 at a resolution of d≥ 0.25 Å) mainly in the core region of the carbon
atoms documenting the breakdown of the frozen-core approximation even in the
case of a light atom (Figure 9.3b). Smooth and featureless residual density maps
can therefore only be obtained by considering (i) a charge transfer between core
(core population: Pc = 1.986) and valence density (Pv = 4.014) and (ii) the inherently
connected core contraction due to the depletion of the core density (Figure 9.3b) [6].
In the EHC model of diamond (Figure 9.3b), the carbon’s core contraction is simply
described by a radial core contraction/expansion parameters (𝜅c = 1.007), which
scales the exponent (exp[−(𝜅c𝜁r]) of the Slater-type core orbitals (core-STOs) (see
Eq. (9.9), Boxes 9.2 and 9.4) [6]. Accordingly, the 𝜅c value larger of unity suggests a
contraction of the carbon’s core density in line with its decreased core population
[48, 49]. This results in a significant depletion of the density at the carbon’s cusp:
𝜌cusp,diamond,EHC = 857 e Å−3 (Figure 9.5 and Box 9.4) in comparison with the cusp

density of a carbon atom in its 3P ground state, 𝜌cusp,C(3P) = 865 e Å−3. Vice versa,
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Figure 9.5 The black/red solid lines are
obtained from atomic calculations [66, 67]
and depict the radial density distribution,
𝜌(r), of a reference carbon atom in its elec-
tronic ground state, C(3P), and prepared
valence state, C(5S), respectively. (a) The

tiny valence density contribution to the core
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carbon atom in the EHC diamond model
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respectively.
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the increase of the valence density population parameter causes an expansion of
the valence shell, which is accounted for by a radial valence contraction/expansion
parameter (𝜅v = 0.971) smaller than unity [6]. This scenario appears to be a natural
consequence of the involvement of carbon 2s states in the C–C bond formation
[6]. This contribution of the 2s atomic orbital (AO) to the core density is relevant
as witnessed by its local density maximum at the cusp (Figure 9.5a). Accumulation
of the bonding density in the C–C bond is thus inherently linked with a subtle
core depletion. It is interesting also to point out that an even lower cusp density
(compared with the situation in diamond) is found for a carbon atom in its
‘‘prepared valence state’’ (5S; sp3 hybridization; Figure 9.5). Hence, the ratio of
the chemically induced mixing of the ‘‘2s/2p’’ states appears to control the cusp
density in diamond [6].

Box 9.4 The Carbon’s Cusp Density in Diamond Derived by the EHC Model

The contribution of the valence 2s/2p AOs to the density at the cusp of a carbon
atom in diamond can be analytically expressed by the EHC model (see Eq. (9.9),
Box 9.2) via Eq. (9.10)

𝜌(r) = Pc𝜅
3
c 𝜌1s(𝜅c, r) + Pv𝜅

3
v [𝜌2s(𝜅v, r) + 𝜌2p(𝜅v, r)] (9.10)

where the Pc represents the population parameter of the core density, 𝜌1s, and
Pv is the population parameter of the valence density, 𝜌2s + 𝜌2p, while 𝜅c and 𝜅v

are the radial contraction/expansion parameters of the core and valence shell,
respectively.

Note that the core and valence density contribution are simply obtained from
the squared AOs based on atomic calculations of the carbon atom in its ground
state [66, 67]. Owing to their angular nodal structure, basis functions with l> 0
cannot contribute to the electron density at the cusp and therefore only the
radial part of multiple-𝜁 Slater-type atomic basis functions b(n, r) needs to be
considered, that is,

b(n, r) =
∑

i

ciNir
(n−1)e−𝜅ζi r

Furthermore, the term r(n-1) prevents contribution to the cusp density (r = 0)
from s-type basis functions with n> 1. Accordingly, Eq. (9.10) can be simply
written as

𝜌(0) = Pc𝜅
3
c

[∑
i

ciNi

]2

+ Pv𝜅
3
v

[∑
j

cjNj

]2

with Ni,j =

√
ζ3

i,j

π
(9.11)

where ci are the coefficients of the STO basis set employed containing i and j
basis functions with principle quantum number n equal to 1 for the core and
valence orbitals, while the Ni are the corresponding normalization factors.

In our EHC model (Figures 9.3d and 9.4g), we employed the Su–Coppens–
Macchi (SCM) [66, 67] wave function of the free carbon atom in its 5S prepared
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valence state, which contains two s-type basis functions with n= 1 for the 1s and
2s orbitals:

b1s(1, 0) = 0.363018

√
8.5681643

π
+ 0.442181

√
4.8853743

π

b2s(1, 0) = 0.075015

√
8.4934213

π
− 0.456424

√
4.8622983

π
From this, we obtain the following expression, which reveals the entanglement

of the core and valence density at the cusp

𝜌(0) = 61.3175 Pc𝜅
3
c + 2.93555

(
Pv

x
4

)
𝜅3

v (9.12)

where x depends on the selected valence configuration sxp4-x

In our case (EHC model of diamond using the FLAPW structure factors)
𝜌(0)= 127.05 au= 857 e Å−3; (Pc = 1.986, Pv = 4.014, x = 1, 𝜅c = 1.007 and
𝜅v = 0.971) in agreement with Figure 9.5.

At this stage of our analysis theoretical structure factors from the LAPW DFT
calculations were used to rule out any bias from experimental data artifacts. The
use of these multipolar EHC parameters to fit the experimental structure factors
is therefore also affecting the experimental valence density, as documented in
Figure 9.4g. In comparison with the ‘‘frozen-core’’ HC model (Figure 9.4d), the
density in the EHC model (Figure 9.4g) decreases slightly at the C–C BCP, while
the L(r) value is increased relative to the HC model at the BCCs in the carbon
valence shell (Figure 9.4g). In the subsequent section, we therefore outline that core
deformation phenomena need to be considered to achieve a complete deconvolution
of thermal motion and chemical bonding effects in experimental studies.

9.5
How Strongly Is the Static Electron Density Distribution Biased by Thermal Motion?

The correlation between thermal smearing and chemical deformation of the
electron density distribution usually hinders the determination of precise structural
and thermal displacement parameters using the standard IAM X-ray model. This
severe limitation can be systematically overcome by increasing the data resolution
and the flexibility of the multipolar model. The successful deconvolution of thermal
smearing and electron density deformation due to bonding effects is documented
in Figure 9.6 for our benchmark system diamond. Owing to the high point-
group symmetry of the carbon atoms, their time-averaged thermal motion can
be simply described with a single isotropic Debye–Waller factor, Biso, and is not
affected by significant anharmonic motion [87]. Furthermore, the large thermal
conductivity (2000 W.K−1.m−1 at 300 K) of diamond, which is connected with a
rather large Debye temperature of 1946(20) ◦C, warrants that the Biso value remains
rather constant over a wide temperature range [88, 89]. Accordingly, the phononic
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for the Spring-8 diamond powder diffraction
data [7] using the EHC model at 300 K [6]
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DFT calculations for diamond.7) (b) Exper-
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behavior of diamond provides an ideal benchmark to compare the performance
of experimental and theoretical methods by refining/computing the respective
Biso value at a certain temperature. We note that experimental and theoretical
phonon dispersion curves based on inelastic neutron scattering (INS) studies and
LAPW DFT calculations agree well, while only the optical modes appear to be
slightly underestimated by theory (Figure 9.6). Therefore, we also find a good
agreement for the B values (Biso,theor = 0.146 Å2; Biso,INS = 0.149 Å2), which can be
derived from the theoretical and observed phonon frequency spectrum [90–92]. We
note that the experimental value can be corrected for thermal diffuse scattering, as
proposed by Stewart [92], yielding Biso,INS,TDS = 0.139 Å2, which is basically the same
value as obtained from the EHC charge density refinements (Biso,EHC = 0.139(4) Å2;
Figure 9.6a). This clearly documents the successful deconvolution of thermally
and chemically smeared deformation densities by the EHC model. In this respect,
the EHC model outperforms the standard HC model, which underestimates the
B-values (Biso,HC = 0.127(4) Å2) by 9% [6].

9.6
Relativistic Effects on the Topology of Electron Density

The extension of the HC model into the inner electronic shells of atoms imposes
new requirements with respect to the theoretical models employed for comparative

7) The force calculations were done employing the PBE [65] functional within the VASP program
package [142–145]. Phonon dispersion relations were calculated employing PHONOPY [146].
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studies. If the above-mentioned density analyses are to be extended from light
elements such as carbon to compounds containing heavy main group or even
transition metal elements, a proper treatment of relativistic effects becomes impor-
tant. In general, this can be achieved by two different approaches, namely, (i) the
use of all-electron (AE) basis sets in combination with (approximate) relativistic
Hamiltonians or (ii) the use of ECPs that have been derived from fully relativistic
atomic calculations.

Even though the first approach is obviously the preferred ansatz, in case of large
systems containing many heavy elements, fully relativistic four-component ab initio
calculations employing reasonable basis-set sizes are not feasible in many cases.
However, with respect to a subsequent topological analysis of the electron density
within the QTAIM, the use of ECPs imposes further obstacles. Most importantly,
the overall qualitative topology of the electron density is changed by removing the
local density maxima, that is, the attractors from 𝜌(r) at the nuclear positions. As
demonstrated, for example, for the molecular model system MoOCl4, depending
on the number of atomic shells included into the ECP, these basis sets may result
in a failure to locate the correct number of BCPs [93–95]. If integrated atomic
properties such as atomic moments or charges are to be investigated, the ‘‘valence’’
electron densities obtained from ECP calculations have therefore to be augmented
by the missing core electron density distributions. Such an augmentation has been
used, for example, by Vyboishchikov et al., Cioslowski and Piskorz, and Tiana et al.
[95–97] or more recently by Keith and Frisch [98]. Figure 9.7 depicts a comparison
of the Laplacian of the electron density in the molecular plane of the model complex
[Ag(C2H2)]+ as obtained from (augmented) ECP, AE calculations as well as from
an experimental study on the silver complex [Ag(C2H2)A′] 5 (Figure 9.2) [45].
As seen from this comparison, the missing core shells in the ECP calculations
have direct consequences for the absolute values of the VSCCs. In the AE case
(DKH2 Hamiltonian with basis sets of triple-𝜁 quality [100]), the contributions
of the inner atomic shells lead to a dampening of the VSCC of the n= 4 shell
[101] so that the local maximum CC1 is, for example, found to be at 340 e Å−5

(Figure 9.7b) [45]. This dampening effect is missing in the ECP calculation, which
results in a larger radial extension of the VSCC and, more importantly, a significant
overestimation of its absolute value, that is, CC1 values at 1106 e Å−5 (Figure 9.7a).
The augmentation of the ECP density with the core density, as implemented in
GAUSSIAN09 [102], resolves this artifact incorrectly, as it causes a significant
overestimate of the dampening. This seems to be caused by an incorrect radial
scaling of the core–shells added to the ECP valence density (Figure 9.7c) so that
CC1 values at merely 48 e Å−5. Even more severe artifacts become evident in case
of the augmented ECP densities when the inner shells of the transition metal
atoms are inspected. Even though the n= 1 and the n= 2 shell can be resolved in
L(r) of the augmented densities, the third shell is still not present as a region with
L(r)> 0, in contrast to the findings from the AE calculations (Figure 9.7b,c). Taking
into account the good agreement between our experimental reference system 5
(Figure 9.7d) and the AE calculation (L(r)CC1 = 365/340 e Å−5, respectively), it is
obvious that the augmented ECP calculations are not providing sufficient accuracy
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Figure 9.7 Negative Laplacian,
L(r)=−∇2𝜌(r), maps in the molecular
plane of the model complex [Ag(C2H2)]+

as obtained from (a) ECP, (b) DKH2 all
electron, (c) ECP calculations with subse-
quent addition of the core density, and (d)
an experimental charge density study of the

complex [Ag(C2H2) Al(OC(CH3)(CF3)2)4]
(5). Contours are drawn at ±2, ±4,
±8× 10n e Å−5, n=−1, 0, 1, 2, 3, 4; positive
values in red, negative values in blue, extra
contours at (a) 1025 and 1100, (b) 300, 320,
67300 and 68000, (d) 285, 335, 54485 eÅ-5,
L(r) values for the CCs are specified in eÅ-5.

to meet the requirements needed for a direct comparison of the calculated and
experimental fine structure of L(r) in the VSCC.

Regardless of the accuracy of the augmented electron densities, in order to study
core contraction/expansion or even core polarization phenomena, an AE approach
and therefore the use of appropriate (quasi-)relativistic Hamiltonians is mandatory.
The indirect treatment of relativistic effects by the use of effective core potentials
derived from calculations on free atoms is insufficient to recover polarizations
of core–shells of the atoms induced by chemical bonding. The salient question,
which approximate relativistic model Hamiltonian is able to recover the relativistic
effects on the topology of the electron density, has been therefore addressed by
Eickerling et al. [103]. Within this study, four-component Dirac–Hartree–Fock
(DHF) calculations on the model compounds M(C2H2) (M=Ni, Pd, Pt) employing
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Figure 9.8 Isocontour represen-
tations of the difference densities
Δ𝜌(r)= 𝜌(r)4comp − 𝜌(r)nonrel as obtained from
four-component DHF and nonrelativistic
HF calculations on [M(C2H2)] with M=Ni,

Pd, and Pt. Contours are drawn at ±2, 4,
8× 10n (n=−2, −1, 0, 1, 2, 3) e Å−3, posi-
tive values in red, negative values in blue.
For details on the calculations and the basis
sets employed. (See Ref. [103].)

a basis set close to the HF limit were used as a reference to compare the
performance of several approximate relativistic model Hamiltonians. As shown
in Figure 9.8, the relativistic effects on the topology of the electron density are
not restricted to the core region where scalar-relativistic effects are expected to be
large, but especially for M=Pt they also extend into the bonding region between
the metal atom and the ligand and even into the C–C bonding region. At the
Pt–C BCP, for example, the density differs by 6% (1.00 vs 0.94 e Å−3 for the four-
component and the nonrelativistic calculation, respectively), while the Laplacian
L(r) at the same critical point (CP) differs even by 90% (−3.09 vs −5.88 e Å−5 for the
four-component and the nonrelativistic calculation, respectively) [103]. However,
these effects can be faithfully recovered by employing the zeroth-order regular
approximation (ZORA) (𝜌(rBCP)= 1.00 e Å−3, L(rBCP)=−3.29 e Å−5) or the DKH2
Hamiltonian (𝜌(rBCP)= 1.00 e Å−3, L(rBCP)=−3.19 e Å−5) so that the computational
demand of the according AE calculation on such systems can be kept within
reasonable limits.

This can also be demonstrated by comparison of the magnitude of the individual
CCs in the model complex [Ag(C2H2)]+. Neglecting relativistic effects, the value
of CC1 is overestimated in a HF calculation employing the basis set specified
in [45] by ∼3% compared to the four-component DHF result (354 vs 344 e Å−5),
while application of the DKH2 Hamiltonian reduces this deviation significantly
(345 e Å−5). We point out that another interesting trend can be observed for the
magnitude of the CCs: neglecting electron correlation effects by employing the HF
ansatz overestimates the value of L(r). In a previous study, CC1 in [Ag(C2H2)]+ was
found to be 322 and 323 e Å−5 for BP86 ZORA- and four-component calculations,
respectively [45]. This result is similar to the findings for C–C BCPs in diamond
(Figure 9.4) and ethane (Table 9.1), where the neglect of electronic correlation
overestimates the density at the BCP, while DFT causes an underestimation. We
may summarize this section by stating that relativistic effects on the topology of
the electron density can be observed in the core and valence region of transition
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metal atoms and that these can be accurately described by approximate relativistic
Hamiltonians. Even though these effects, together with correlation effects, seem to
reflect systematic trends within the calculated results, a comparison with reliable
experimental studies is needed. This warrants further exploration by ultrahigh-
resolution experimental studies and also stresses the necessity to increase the
flexibility of the multipolar model as discussed in the previous sections.

9.7
The Topology of the Laplacian and the MO Picture – Two Sides of the Same Coin?

In the previous section we illustrated that topological analysis of the negative
Laplacian, L(r)=−∇2𝜌(r), of the total electron density provides a powerful tool to
identify even subtle electronic features such as the fine structure of the VSCC
in metals (Figure 9.7). Already in the early 1950s, it became evident that ‘‘the
Laplacian of a scalar field is a very important property, for it determines where
the field is locally concentrated and depleted’’ [10]. Indeed, it has been demonstrated
by Bader et al. that the sign of L(r) indicates where the charge density is locally
concentrated (L(r)> 0) or locally depleted (L(r)< 0) [104, 105]. The L(r) function can,
in addition, be employed to resolve the shell structure of atoms [106, 107], even
though the fourth, fifth, and sixth shell for elements of periods 4–6, respectively, is
not revealed as positive maxima in L(r)8) [108–110]. Bader et al. therefore suggested
as a convention that the outermost shell of CC of an atom (i.e., the fourth shell
of CC of the silver atom in 5) represents its effective VSCC [94, 111]. Owing
to the presence of the acetylene and aluminate ligands in 5, the VSCC of the
silver atom displays, however, also a fine structure, the so-called atomic graph,
which is characterized by four zones of charge concentration (denoted ‘‘CC’’ in
Figure 9.7d) and charge depletion (CD). The depletion zones in the approximately
planar-coordinated Ag d10 complex 5 are situated between the four CCs and are due
to the depletion of the dyz orbital as a consequence of the subtle Ag(dyz)→ π*(C2H2)
back donation in the framework of the Dewar–Chatt–Duncanson (DCD) model
[45, 112, 113]. For a definition of the local coordinate system, see Figure 9.7a.
Hence, the presence of the four charge depletion zones in the VSCC and the presence
of the Ag(dyz)→ π*(C2H2) back donation in the molecular orbital (MO) picture
basically represent two sides of the same coin. The chemical consequences of the
ligand-induced polarization of the VSCC are, however, better demonstrated by the
β-agostic d8 species [DCpHNi(dt-bpe)]+[BF4]− (dt-bpe= t-Bu2PCH2CH2Pt-Bu2) (2)
[40] (Figures 9.2 and 9.9).

The alkyl backbone in the agostic species 2 is characterized by an acute
∠Ni–Cα–Cβ valence angle and one of the most activated C–Hβ bonds

(C–Hβ = 1.20(1) [1.205] Å) observed in a molecular species (in its electronic ground

8) Furthermore, four component calculations on spherical symmetric atoms (Au) by Kohout et al.
showed that the 5th and 6th shell of elements of period 6 might not be resolved in the second
derivative of the radial density (see Refs. [101, 147–149]).
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state). The formation of CD1–CD4 is a direct consequence of the Ni→ ligand
(L) π back-donation (highest occupied molecular orbital (HOMO)-4; Figure 9.9c)
causing a significant depopulation of the Ni(dx2−y2 ) orbital relative to the other
d-orbitals. This is in line with the relatively small P(dx2−y2 ) population of only
1.62(2) electrons obtained from HC multipolar refinements [114]. Note that the
local x, y coordinate axes (Figure 9.9b) are located in the molecular plane spanned
by the β-agostic moiety (Ni–Cα–Cβ–Hβ). As the four CD zones (denoted CD1-4
in Figure 9.9b) in the charge density picture are directly connected with the
depletion of the metal dx2−y2 orbital in the MO picture, the angle between these
CD zones is constrained and dictates the position of all ligand atoms in a key
and lock scenario. However, the electronic situation is more complex and the
agostic interaction is further established by additional Ni← L π (HOMO-6)9) and
σ-donation (HOMO-7; Figure 9.9d). Accordingly, the bonding in β-agostic late
transition metal complexes can be considered in terms of an extended DCD model
and is related to the scenario in the silver acetylene complex 5 (Figure 9.7) or
the [M(C2H2)] model systems with M=Ni, Pd, and Pt (Figure 9.8). Note that
the presence of the σ-donation component is also directly reflected in the charge
density picture as this interaction is directly responsible for the unusually large
density accumulation inside the cyclic β-agostic (Ni, Cα, Cβ, Hβ) moiety. The
competition of the σ-donation and π-back-donation component in the MO picture
therefore controls the amount of electron density accumulation inside the (Ni, Cα,
Cβ, Hβ) cycle. This competition of both DCD components is the electronic origin

9) The additional and weak Ni← L π donation (which complements the σ-donation and π-back-
donation component in the classical DCD model for olefine complexes) simply reflects the
increased functionality of β-agostic alkyl ligands by involving the β-H atom in the ligand to metal
bonding.
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of a M· · ·C–H bond catastrophe scenario, which causes the annihilation of the
β-agostic M· · ·C–H bond path [13, 39, 115, 116] when the density accumulation
at the (M, Cα, Cβ, Hβ) ring critical point (RCP) approaches the corresponding
value of the charge density at the M· · ·C–H BCP. Even in 2, representing a true
reference system for a predominantly covalent β-agostic M· · ·H–C interaction,
the M· · ·H bond path is topologically instable. Indeed, the density at the RCP
(0.533(7) [0.507] e Å−3; calculated value in brackets) and the Ni· · ·H BCP (0.553(4)
[0.569] e Å−3) of the agostic moiety are not significantly different. Hence, a DCD
scenario, where the σ-donation dominates the π back-donation component (e.g., in
case of agostic d0 complexes), is usually reflected within the charge density picture
by a merging of the M· · ·Hβ BCP and the RCP of the (M, Cα, Cβ, Hβ)-agostic
moiety, a topological scenario leading to the fission of the agostic M· · ·H bond
path. In general, it could therefore be shown that the weakening or lack of
a X–H· · ·M (M= transition metal; X=Si, C) bond path in β-agostic alkyls or
in σ-silane complexes [117, 118] is a natural consequence of these competing
interactions and highlights the delocalized nature of the bonding situation in
agostic species and σ-silane moieties.

A related DCD scenario has been identified for the change of bond path topology
(metallacyclopropane type vs T-shaped) in transition metal olefin or acetylene
model complexes. The electronic situation of these transition metal complexes
has been pioneered by Frenking and coworkers [119, 120] via combined MO and
theoretical charge density analyses. Also, in a subsequent experimental charge
density study of the Ni(COD)2 complex (COD = 1,5 cyclooctadiene) the various
bond path topologies were directly explained in the terminology of the DCD
model [121]. This linkage between the MO and charge density picture could then
be extended by establishing a direct connection between the fine structure of the
Laplacian in the VSCC at the metal and the d-orbitals involved in the individual
σ-donation and π-back-donation DCD components [43, 61]. The competition
between both DCD components has a strong impact on the bond path topology as
can be illustrated by a series of experimental charge density studies (Figure 9.10).
In this series of compounds, the Ni-olefin complex (C2H4)Ni(dt-bpe) 4 represents
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ing the bond path topologies in the MC2
moieties of 4, 5 and the transition metal
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and Sc–C BCPs are specified in e Å−3; exper-
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our benchmark characterized by pronounced covalent M–C interactions and
thus the predominance of the Ni→ π*(C2H4) back-donation component. This
electronic scenario is therefore reflected in the charge density picture by a
metalla-cylcopropane-type bond path topology for the M-C-C moiety. The other
extreme case is marked by the silver acetylene complex [Ag(C2H2)A′] 5 displaying a
predominant Ag(dyz)← σ (C2H2) donation yielding a T-shaped bond path scenario.
The transition metal carbides Sc3MC4 (M=Fe (6), M=Co (3), M=Ni (7)) thus
represent intermediate cases of the bond path scenarios displayed by 5 and 4 [122].

Hence, in our molecular benchmark systems 4, 5 and the solids 6, 3, and 7, a
direct linkage between the MO model and the L(r) topology emerges.

9.8
Elusive Charge Density Phenomena: Nonnuclear Attractors

The determination of charge density distributions of metals has always been a
challenge for experimentalists, even in the case of seemingly simple cases such
as beryllium metal. The delocalization of the itinerant electrons in the conduction
band led Larsen and Hansen in 1984 to conclude that ‘‘it is questionable whether
the scale factor of diffraction data from a light metallic substance can be determined
very reliably by high-order refinement even using data of very high sin𝜃/𝜆 cut-off values’’
[123]. However, as outlined in the previous sections, the determination of precise
charge density maps appears to be rather a matter of the flexibility of the multipolar
model employed and of a suitable resolution of the diffraction experiment. Indeed,
we outline in the case of the benchmark system beryllium that a simultaneous
core and valence density refinement recovers even elusive density features such as
nonnuclear attractors (NNAs), in excellent agreement with state-of-the-art theoret-
ical calculations. We note that the theoretical prediction of these elusive density
features in metals by Besnainou et al. has stimulated the perhaps most controver-
sial debate in the charge density community on the observability of these weakly
pronounced charge density features [124]. Indeed, an unequivocal experimental
proof of the existence of NNAs is difficult owing to the minute density accumula-
tion at these (3, −3) CPs. Thus, the pioneering work of Sakata [125] and Iversen
[126, 127], who first traced NNAs by means of experimental studies, is still a matter
of intense debate as outlined in the following.

Figure 9.11 illustrates the hexagonal close-packing scenario of beryllium and the
location of salient CPs. A QTAIM analysis based on the experimental and theoretical
charge densities (Table 9.2) spots an NNA inside the trigonal bipyramidal voids
and identifies a cage critical point (CCP) – as a local density minimum – in the
octahedral voids. The density values of the NNA and the CCP, which represent
(3, −3) and (3, +3) CP points, respectively, differ in theory and experiment by
Δ𝜌(rc)theor = 0.084 and Δ𝜌(rc)exp = 0.092 e Å−3. These significant but rather small
density differences stress the remarkable flatness of the charge density distribution
in this itinerant electronic system. The NNA itself is linked in a trigonal-bipyramidal
manner by five bond paths and five BCPs (3×BCP1; 2×BCP2) with its neighboring
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Figure 9.11 (a, b) Hexagonal close pack-
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denote bond, ring, and cage critical points.
The notation NNA represents a so-called

nonnuclear attractor which constitutes a
local maximum in the total charge density
distribution in interatomic regions. (Unit cell
constants from Ref. [123].)

beryllium atoms, which are acting as nuclear attractors. The RCP1 in the same
hexagonal (001) plane (z= 0.25) are located above and below the octahedral CCP
formed by six Be atoms. They are thus located in trigonal voids formed by three
neighboring beryllium atoms (Figures 9.11 and 9.12).

Figure 9.12b shows the valence density map formed by four neighboring
beryllium atoms in the (001) plane (z= 0.25) of beryllium (highlighted in red
in Figure 9.11a). This planar moiety thus comprises the NNA, three BCPs
(3×BCP1), RCP1, and the four Be atoms as nuclear attractors. Note the presence
of two chemically different voids, which are denoted (a) and (b) in Figure 9.11.
Accordingly, point (a) is located in a trigonal void marking the position of the
RCP1, while point (b) resides in a trigonal-bipyramidal void and defines the
position of the NNA. We first note the surprisingly shallow density region around
the NNA. The experimental density at the NNA and BCP1 differs only at the fifth
decimal place on a cubic angstrom scale, which is clearly outside the range of the
experimental precision of this study. Also, in the case of the LAPW density, the
discrimination of the NNA and BCP1 is at the limit of the numerical precision
and both density values (𝜌(r)BCP1 = 0.283 e Å−3) and (𝜌(r)NNA = 0.284 e Å−3) differ
by <0.4% (Table 9.2, Figure 9.12). Hence, it remains questionable whether the
theoretical and experimental studies can provide an unequivocal proof of the
presence of elusive phenomena such as NNAs.

It is therefore not surprising that the location of the NNA, BCP1, RCP1, and
CCP in the (001) plane (z= 0.25) of beryllium has always been a matter of contro-
versial debate in earlier experimental studies, which relied on maximum-entropy
analyses [126–128], the standard HC model [126], or the constrained wave function
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Table 9.2 Coordinates and topological parameters 𝜌(rc) (e Å−3), ∇2𝜌(rc) (e Å−5) at selected
critical points in beryllium metal.

Critical point LAPW wave functiona Coordinates EHC (FExp) Coordinates

𝝆(rc) 𝛁2𝝆(rc) 𝝆(rc) 𝛁2𝝆(rc)

Be 239.6 — 1/3, 2/3, 1∕4 240.2 — 1/3, 2/3, 1∕4
NNA 0.284 −0.16 2/3, 1/3, 1∕4 0.292b −0.16 2/3, 1/3, 1∕4
BCP1 0.283 −0.27 0.54981, 0.45019, 1∕4 0.292b −0.17 0.64978, 0.35022, 1∕4
BCP2 0.277 −0.12 2/3, 1/3, 0.07391 0.282 −0.21 2/3, 1/3, 0.0743
RCP1 0.213 0.41 0, 0, 1∕4 0.209 0.59 0, 0, 1∕4
RCP2 0.273 −0.20 1∕2, 1∕2, 1∕2 0.270 0.02 1∕2, 1∕2, 1∕2
CCP 0.200 0.57 0, 0, 0 0.200 0.49 0, 0, 0

aThe periodic full-potential LAPW DFT calculations employed the Elk program [64] and the PBE
GGA-functional [65]. The experimental results are based on structure factors measured by Larsen and
Hansen [123].
bThe experimental density at the NNA and BCP1 differs at the fifth decimal place (Å3 scale), which is
outside the range of the experimental precision. Also, in the case of the LAPW density, the
discrimination of the NNA and BCP1 is at the limit of the numerical precision.

method [129]. However, none of the previous approaches yielded a topology in full
agreement with the results obtained by state-of-the-art LAPW calculations, even
though all experimental models employed the same X-ray diffraction data of Larsen
and Hansen [123].

However, the topological features derived from the flexible EHC model and the
LAPW calculations (Table 9.2) provide at least a consistent topological scenario and
support the findings of Pendás et al. [130], who well demonstrated that the presence
of NNAs might just be a natural consequence in the bond formation step of
atoms at decreasing bond distances. This is especially true in cases where bonding
partners displaying at least one nonconvex region in the radial atomic density (e.g.,
atoms with Z= 3–6, 16–32, and 45–92) are involved. We exemplify this behavior
in Figure 9.13, in which the superposition of the radial atomic densities of two Be
atoms obtained by numerical calculations at varying distances is shown.

For the limiting cases of long (>1.9 Å) or short interatomic distances (<1.7 Å)
local minima are observed at the midpoint between the atoms in line with the
presence of a BCP. However, for the interatomic distances in the range from 1.7 to
1.9 Å, a local maximum at the midpoint between the atoms is formed, signaling the
presence of an NNA (red spheres in Figure 9.13). The NNA in these simple models
would thus result from the overlap of the convex density regions of the Be atoms at
∼1 Å distance from the nucleus (blue arrows in Figure 9.13a). These convex density
regions are clearly revealed as local maxima in the negative Laplacian, L(r) (green
arrows in Figure 9.13b). In case of beryllium, these extrema denote where the
VSCC is at a maximum and are thus a consequence of the atomic shell structure
of beryllium. It is therefore reasonable to use the L(r) distributions of paired
atoms to estimate the critical distance range where NNAs can occur (if chemical
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Figure 9.12 (a) Theoretical 𝜌(r) maps of
beryllium in the hexagonal (001) plane at
z= 0.25 based on the LAPW calculation as
specified in Table 9.2. Contour levels from
0.0 to 0.6 e Å−3 in steps of 0.01 e Å−3 and
one additional line at 0.283 e Å−3. (b) 𝜌val(r)
from 0.0 to 0.3 e Å−3 in steps of 0.005 e Å−3.
(c) L(r) map, negative (blue, solid) and pos-
itive (red, solid) contour lines were drawn at

±2.0× 10n, ±4.0× 10n, ±8.0× 10n e Å−5 with
n=±3, ±2, ±1, 0. One extra line was drawn
at +0.17 e Å−5. Bond paths are displayed as
black solid lines. Black stars mark nonnu-
clear attractors (NNAs), black dots mark
BCPs, and squares mark RCPs. (d) 1D pro-
files in the (001) plane at z= 0.25 along the
[110] direction.

bonding effects are not considered in the first approximation). In that case, the
NNA formation between atom pairs is a consequence of the superposition of the
two local VSCC maxima, which in between a critical distance range merge into
a single feature (Figure 9.13b). We note that the shortest Be–Be bond distances
in metallic Beryllium (2.23 Å for atoms in different hexagonal layers (i.e., z=0.25
and z= 0.75) and 2.29 Å inside one hexagonal close-packed layer) are outside the
above-mentioned stability range of NNAs. Hence, the presence of an NNA suggests
that density contributions from chemical bonding cannot be ignored. Furthermore,
in the case of metallic beryllium, the situation is more complex than in the diatomic
case, as five atoms are simultaneously involved in the formation of the NNA in
the trigonal bipyramidal voids (Be(eq)-NNA= 1.32 Å for the equatorial positions
in the (001) plane of the hexagonal layers; Be(ax)-NNA= 1.79 Å between axial Be
positions above and below the trigonal-bipyramidal voids; Figure 9.11). Indeed, the
superposition of atomic densities of beryllium atoms assuming the experimental
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Figure 9.13 One-dimensional profiles
obtained by the superposition of (a) the elec-
tron density (e Å−3) and (b) the Laplacian
of the electron density (e Å−5) of two non-
interacting Be atoms at varying distances
from d= 1.3–2.3 Å as obtained from fully
numerical four-component Dirac–Fock cal-
culations [131] (x-axis centered at the mid-
point between the atoms; distances in Å).

The formation of an NNA at the midpoint
between the atoms (red spheres) for dis-
tances between 1.5 and 1.9 Å is indicated
by a local maximum in both, the electron
density and its Laplacian. The position of
the convex density regions in (a) and of the
VSCC in (b) are indicated by blue and green
arrows, respectively.

geometry of metallic beryllium does not yield any NNA formation. The NNA
formation in the trigonal bipyramidal voids can also not be enforced by an artificial
shrinkage of the unit cell.10)

As outlined, the presence of NNAs in beryllium metal cannot be simply explained
by the presence of convex regions in the radial atomic density. Hence, an
electron–electron mediated coupling of the ground state to low-lying excited
states, as suggested by Bersuker et al. [132], might still be a prerequisite for the
formation of NNAs. Another proposal has been made by Madsen et al. [133]. These
authors suggested that NNAs might be caused by a relatively small extension of the
core–shell densities. This brings us to another controversial topic that has been
extensively addressed by theoretical and experimental charge density studies: do
the core–shells of atoms in metals expand as a consequence of metallic bonding
and the presence of itinerant electrons?

In the following, we therefore critically discuss the experimental evidence for
a potential core deformation of beryllium. We note that this controversial debate
has been initiated by Stewart in 1977 [134] and it also marks one of the first
attempts to experimentally determine the total charge density using a multipolar

10) NNA formation is, however, observed at different positions. Indeed, shrinkage of the Be–Be
distances between atoms of adjacent hexagonal layers below 2.00 Å triggers the NNA formation
in the interatomic region. Upon reduction of the Be–Be distances below 1.90 Å, these features
disappear but new ones in the tetrahedral voids show up when the Be–Be distance is further
lowered to 1.34 Å. Below that distance margin, NNA formation switches to the octahedral voids.
Below 1.11 Å all NNAs vanish.
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formalism. However, data deficiencies due to severe extinction effects prevented
a precise reconstruction of the static density of beryllium metal at that time.
However, for the first time the idea was born that the core density of a metal
might be distorted as a consequence of metallic bonding. This fundamental issue
gave rise to systematic experimental and theoretical studies providing pros and
cons for a potential core expansion or contraction in beryllium. Dovesi suggested
in 1982 [135, 136], on the basis of a Compton profile analysis based on periodic
LCAO calculations, that the kinetic energy of the core 1s electrons in beryllium
is lowered by about 1 eV relative to a free beryllium atom. Assuming a simple
particle in the box model, the lowering of the kinetic energy could be connected
with an enlarged box size – and thus with an enlargement of the core [137]. In
this simple model, the enlarged box size would coincide with a reduction of the
slope of the wave function and thus cause a lowering of the kinetic energy and
also of the total energy. This argument has been already employed by Ruedenberg
in 1962 [138] to account for the valence density deformations of bonded atoms
when he concluded: ‘‘By virtue of the uncertainty principle, it is to be expected that
this smoothening of the density, inherent in the interference effect, is associated with a
lowering of the kinetic energy. It is related in character to the lowering of the kinetic
energy of free electrons when the containing box is increased in size’’. However, this
model is too simplistic and cannot be applied in case of atomic cores as it ignores
the decrease of the absolute value of the potential energy during a hypothetical
core expansion. Indeed, this is due to the virial theorem which relates the kinetic
and the potential energy as V =−2T . Furthermore, the Hilbert-space partitioning
of core (1s) and valence (2s) states cannot be employed in real space to analyze
core contraction/expansion phenomena, because the 2s valence AO of beryllium
also contributes to the density at the cusp, as outlined in the case of the carbon
atom in diamond earlier. Hence, studies of this phenomenon should not be based
on energy partitioning schemes but rather on real space methods such as the
analysis of the topology of the electron density distribution. Indeed, inspection
of the radial density distributions of free beryllium atoms in the 1S ground state
and in Be metal show a minute charge depletion in the proximity of the cusp in
the latter case on the basis of periodic LAPW DFT calculations as well as in the
experimental EHC refinements: 𝜌cusp,Be(1S) = 242.8 e Å−3; 𝜌cusp,Be,LAPW = 239.6 e Å−3;

𝜌cusp,Be,EHC,theor = 239.0 e Å−3; 𝜌cusp,Be,EHC,exp = 240.2 e Å−3. Accordingly, the charge
transfer between the core and valence density in the EHC model is also minute (only
0.006 e when the theoretical LAPW structure factors were employed). Therefore,
the core and valence population parameters were fixed in our experimental EHC
model (Pc = 2.0 and Pv = 2.0), while the respective radial screening parameters
for core (𝜅c = 0.996(1)) and valence (𝜅v = 1.004(18)) were optimized.11) The value
of the core 𝜅-parameter based on the experimental structure factors is close to

11) VM bank [51], 𝜉2s=0.956 Bohr−1, Extinction Type II [150]: 𝜌iso = 0.12(7), U11 = 0.00629(3),
U33 = 0.00553(3), 𝜅v = 1.004(18), 𝜅′v = 1.04(18), 𝜅c = 0.996(1), P20 =−0.003(24), P33− =−0.048(22),
P40 = 0.031(25), P53− = 0.008(25), P60 = 0.054(38), P66+ =−0.018(36), R1 = 0.25%, wR1 = 0.46%,
weighting scheme 1/𝜎2(Fo), Δ𝜌=+0.03/−0.02 e Å−3, scale= 1.019(2), nl = (2,2,2,3,4,5,6) for
0≤ l≤ 6; local coordinate system: z= [0,0,1], y= [1,2,0].
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unity in the EHC multipolar model and therefore does not support any significant
core expansion. In contrast, the above results rather suggests a core depletion
in connection with a core contraction. Such a core contraction would mainly
originate from the contributions of the 2s states to the core region. As the 2s orbital
contributes via its inner radial node directly to the core–shell density, the core
depletion appears to be a natural consequence of the shifting of the 2s density
into the interatomic regions and the subsequent spx hybridization due to the s→ p
promotion of the valence electrons.

We therefore conclude that the core–shell in beryllium appears to be minutely
contracted as a consequence of the metallic bonding. Hence, the presence of NNAs
in beryllium can neither be explained by an extension of the core–shell densities as
suggested by Madsen et al. (see subsequent text), nor by a simple superposition of
atoms displaying nonconvex regions in their radial atomic density as proposed by
Pendás et al. [130]. Hence, the presence of NNAs as a highly elusive charge density
phenomenon appears to be triggered by chemical bonding effects in extended
solids.
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10
The ELF Perspective of chemical bonding
Yuri Grin, Andreas Savin, and Bernard Silvi

10.1
Introduction

10.1.1
Context

10.1.1.1 Chemical structure given by the electronic structure
In the drawings of molecular or crystal structures, atoms are connected by lines
symbolizing bonds. At the beginning of the twentieth century it was assumed
that the lines represent pairs of electrons [1]. The modern, quantum mechanical
picture of a molecule and – especially – of solids seems to be disconnected from
it, as pairs of electrons are not easily recognizable in the molecular Schrödinger
equation. In the latter, one only has the information that electrons and nuclei are
present, and interact via Coulomb forces. The electron pairs are hidden in the Pauli
principle that determines the structure of the wave function. The latter depends
on the coordinates of all the electrons, and their spins, and is too complicated to
be directly related to the classical, nineteenth century representation of molecular
structure. Much effort has been devoted to establish a connection between the
classical and the quantum perspectives, and this chapter reviews one of these
approaches.

10.1.1.2 Molecules and crystals are objects in three dimensions
Molecules are seen as objects in three-dimensional space: ball-and-stick mod-
els are omnipresent in chemistry. For crystals, such models are often more
difficult to perceive, but in such situations they are often replaced by other
spatial entities, such as polyhedra packings. It is commonly accepted that the
three-dimensional view, initiated by Van’t Hoff’s tetrahedra, relies on the elec-
tronic structure. We will thus need a tool that transforms the many-body
picture of quantum mechanics in Hilbert space to the three dimensions of real
space.

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
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10.1.2
Choices

10.1.2.1 Fix the nuclei
We consider fixed nuclear positions.1) This does not mean that we cannot treat
nuclear movement, but that we have to let the electronic structure evolve in time
with nuclear displacements.

10.1.2.2 Compute, then analyze
Electrons are moving, and quantum mechanics tells us that deciding about the
position gives infinite uncertainty to momentum. A simple electrostatic arrange-
ment of nuclei and electrons is thus doomed to fail. Models of different complexity
have been developed, such as Lewis’ cubic atom [1], Linnett’s double quartet [3], or
Gillespie’s VESPR [4]. Can such phenomenological chemical models be recovered
from quantum mechanics? Should they?

One can defend the viewpoint that with more and more sophisticated quantum
mechanical approximations, and with increasing computing power, we can ask
the computer to provide us with any observable data we want to know about.
Our viewpoint is, however, that simple models are useful for understanding and
thinking about molecules and crystals. Here again, a decision has to be taken. One
can decide to use simple models that do not need more than a back-of-an-envelope
derivation. An alternative view is to use computers to analyze the complicated data
produced by quantum mechanical calculations, and provide simple explanations
in terms of a model. Although the latter approach seems not to have predictive
power, accumulated experience with it does not exclude a later use for simple,
computer-independent explanations. We will pursue in this chapter an approach
that uses quantum mechanical computations, and extracts data from them in order
to provide explanations about the electronic structure of molecules and crystals.

10.1.2.3 Choose regions of space
A picture that would be compatible with the quantum mechanical picture is to
search for the most probable spatial arrangement of electrons [5, 6]. It turns out,
however, that this is quite sensitive to the quality of the wave function used. The
single Slater determinant (the most frequently used approximation for a wave
function) yields an arrangement qualitatively different from that provided by better
quality (correlated) wave functions (see, e.g., [7, 8]). While for Slater determinants
electrons get paired at the same point of space, the two electrons choose different
positions in space when better quality wave functions are used. One also notices
that electrons may do it in different ways, corresponding to different maxima of
the wave function squared [7]. Furthermore, it may happen that the probability of
a given electron arrangement is decreasing rapidly around the global maximum,
and a lower, local maximum is ‘‘broader.’’ In such a situation, one might find the
latter situation to represent better the electron arrangement in a molecule. Taking

1) For a recent discussion of extracting the nuclear structure from quantum mechanical calculations,
see, for example, Ref. [2].
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into account these remarks, it seems preferable to search for domains of space that
can be assigned to electron arrangements rather than to search for specific electron
locations. A view in real space was already promoted by Daudel [9] and by Bader [10].

10.2
Definitions

10.2.1
Definition of the Electron Localization Function (ELF)

As the electron pair takes a central place in chemistry (bond, lone pair,… ), we
will concentrate in this chapter on a method that, starting from a given wave
function, defines a region of space that can be associated with an electron pair. The
function we will deal with is called the electron localization function (ELF), and
was introduced by Becke and Edgecombe in 1990. Its definition, for a closed-shell
Slater determinant, is given in the box What is ELF?. This function is obtained in
each point of space, once the wave function is given.

Box 10.1 What is ELF?

For a system described by a closed-shell single-Slater determinant wave function,
the electron localization function (ELF) is calculated starting from the orbitals
building this determinant, φi that are functions of the position vector r. Thus,
ELF depends on r. The explicit formula for ELF is

χσ(r) =
Dσ(r)
D0
σ(r)

, 𝐸𝐿𝐹 = 𝜂(r⃗) = 1

1 + χ(r⃗)2
,

in which

Dσ(r) = tσ(r) −
1
4

|∇𝜌σ(r)|2
𝜌σ(r)

and

𝜌σ(r) =
∑N

i=1
|𝜑i|2; tσ(r) =

∑N

i=1
|∇𝜑i|2

is the difference of the actual definite positive kinetic energy density tσ(r) and the
von Weizsäcker kinetic energy density functional [72], whereas

D0
σ(r) =

3
5
(6𝜋2)

2
3 𝜌

5
3
σ (r)

In practice, the 𝜑i (and their derivatives) are computed on a grid of points, and
the given formula is used to obtain ELF on the same grid. Computer programs
drawing isosurfaces in 3D for functions given on a grid are commonly available.
Programs for locating the maxima and the basins for functions given on a grid
also exist.

For a generalization of ELF to time-dependent processes, see Refs [73, 74].
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Maybe the best way to approach ELF is to imagine a hypothetical system, in
which space is partitioned in a number of regions (localization regions) equal to
the number of pairs of electrons. Furthermore, in each of these regions, there is
one, and only one pair of electrons.2) If we choose such a region of space, we are
sure to find one and only one pair of electrons in it. (The probability of finding a
pair of electrons in a region of space is maximal, equal to 1, when we choose it to
be the localization region defined before.) For this hypothetical system, if the wave
function is described by a single Slater determinant, ELF is equal to 1 inside these
regions, and equal to 0 at their border [11]. For a realistic system, the probability of
finding a pair of electrons in it may not reach its maximal value, and ELF may not
reach these limiting values. However, by definition, the function ELF takes in every
point of space a value 𝜂 that lies between 0 and 1. We will identify regions where
𝜂 is large. These are the regions associated with electron pairs. Furthermore, the
regions where 𝜂 is low will be considered to belong to the border regions.

There are several alternative definitions for ELF, all coinciding for the closed-shell
single-determinant wave function.

10.2.2
Definition of auxiliary quantities

10.2.2.1 ELF maxima
Let us now discuss in more detail how to look at ELF that is a function of the
spatial coordinates, x, y, z. First, the maxima of the ELF can be identified. We see
in Figure 10.1 those present in the ethylene molecule. We find a maximum
corresponding to electron pairs: to the two C cores (𝜂 = 1.00), centered on the
C nuclei, to the four C–H bonds (𝜂 = 1.00), located close to the positions of the
protons, and two maxima of the C–C for the double bond, suggesting ‘‘banana
bonds’’ (𝜂 = 0.93).

We can connect the maxima of ELF in the ethylene molecule around a given C
nucleus. In this case we obtain tetrahedra, reminding us of those of van’t Hoff [12]
as can be seen in Figure 10.1.3)

(a) (b)

Figure 10.1 (a) Maxima of ELF in the ethylene molecule, marked by spheres, correspond-
ing to the C cores, C–H, and C–C bonds, colored magenta, gray and green, respectively.
(b) The maxima are connected to form tetrahedra.

2) In order to analyze open-shell systems, one can trivially extend this pictures, including spatial
domains where one single unpaired electron is present.

3) In more complex molecules, such a construction does not yield van’t Hoff pictures.
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10.2.2.2 Spatial regions: f -localization domains
We can use different approaches to define two types of regions around the maxima
of ELF [13]:

• f -localization domains,
• basins.

Let us first discuss the f -localization domains. For a given value f , the f -
localization domain contains all points where ELF takes values larger than f
(𝜂 > f ). They can be visualized by isosurfaces with 𝜂 = f . As ELF is defined
between 0 and 1, so must be f . For example, we see in Figure 10.2a, such an
isosurface corresponding to f = 0.8.

We start by choosing a value of f slightly lower than the largest value that
ELF can reach in the given molecule. The isosurface encloses the points in three-
dimensional space where this maximum (or maxima) is reached. As f is lowered,
other maxima start to be enclosed by the isosurface. In the case of the ethylene
molecule, Figure 10.2b, f = 0.99 produces a surface that encloses the maxima
corresponding to the C cores and C–H bonds. For f = 0.93, a domain also encloses
each of the maxima corresponding to the C–C double bond. As long as the value of
f is not too low, the isosurface encloses individual maxima. As the chosen value f is
lowered, regions enclosing several maxima are formed. In ethylene, this happens
for f = 0.92: the two domains of the double bond maxima merge. Around f = 0.66,
domains of the C–H bonds merge pairwise, and at a slightly lower value of f these
merge with the domain of the C–C double bond: all valence domains have merged.
For very low values of f , all domains have merged, and all maxima lie within the
f -localization domain.

(a)

(b)

Figure 10.2 (a) Isosurface of the elec-
tron localization function in the ethylene
molecule, corresponding to the value f = 0.8.
(b) ELF f -localization domains in the ethy-
lene molecule, from left to right: (i) f = 0.99,
red, around maxima of C–H bonds, and
the C nuclei (cores); (ii) f = 0.93, orange,

domains for the double C–C bond show up;
(iii) f = 0.92, yellow, the two domains corre-
sponding to the double bond have merged;
(iv) f = 0.65, green, the domains of the adja-
cent C–H bonds have merged; (v) f = 0.64,
cyan, all valence domains have merged; (vi)
f = 0.50, blue.
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As the isosurfaces are already in three dimensions, one could imagine visualizing
all of them in a movie by a continuous change of the chosen value for f . In such a
movie, time would be the fourth dimension corresponding to f . Alternatively, one
can take snapshots, as was done in Figure 10.2b.

10.2.2.3 Bifurcation diagrams
We have seen that when lowering the value f , the topology of the f -localization
domains can change: domains merge. Notice, however, that although the shape of
the valence domains looks different for f = 0.64 and f = 0.50, they are not different
in a topological sense, that is, one domain can be deformed into the other without
cutting or gluing. (Although the coffee mug and the doughnut look different, a
topologist does not distinguish them.) One can try to catch only the values of f
where the topology changes (domains merge or separate). This can be done by
using a bifurcation diagram that shows a line for each isolated spatial domain
versus the value of 𝜂. When two domains merge, the corresponding two lines
merge into a single one. We can see such a diagram in Figure 10.3, for ethylene.
We have chosen in this figure the vertical axis to show the change in f . We see

Cores CH bonds CC bonds

0.5

0.6

0.7

0.8

0.9

1.

0.5

0.6

0.7

0.8

0.9

1.

f

Figure 10.3 Bifurcation diagram for ELF in the ethylene molecule. Plots of f -localization
domains, as in Figure 10.2b, are added for guidance; dashed arrows connect the figures to
the corresponding bifurcation point in the diagram.
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that the maxima for the C cores and the C–H maxima show up first, then those
for the C–C double bond. For a slightly lower value of f , the latter merge, and so
do the lines. For an even lower value, domains of C–H bonds merge pairwise, as
do the corresponding curves. And at f = 0.64 all valence domains have merged.

10.2.2.4 Spatial regions: Basins
To define basins, we ‘‘climb’’ from each point of space on the steepest path to a
maximum. All points connected to the same maximum form a region of space
called basin.

The ELF basins corresponding to the two C–C bonds and the two C cores, found
in ethylene are shown in Figure 10.4. The C–H basins are not shown, as they
would cover the basins presented in the figure. Notice that the upper C–C basin
appears cut, owing to the finite box used in the calculation.

Basins are partitioning space. Thus, it is possible to visualize a single basin, but
when several basins are shown, one basin may hide another. An alternative is to
indicate the basins (or the types of basins) by coloring the f -localization domains:
each point on the isosurface gets a color according to the basin it belongs to. For
example, Figure 10.5 shows the same isosurface as Figure 10.2a. However, the
points of the surface are colored differently when they belong to core, C–H, or
C–C basins.

10.2.2.5 ELF terminology
With ELF, one essentially searches to recover the Lewis picture by associating
the basins to chemical concepts. One could thus use the classical terminology of

Figure 10.4 ELF basins in the C2H4 molecule. The core basins are colored in magenta, the
two C–C basins- in dark and light green, C–H basins are not shown for clarity.
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chemistry, and speak about bonds, lone pairs, and so on. However, for the sake of
rigor, one often uses a specific language that is explained in the box ELF terminology.

Box 10.2 ELF terminology

The ELF topological analysis of the bonding in molecules and crystalline solids
often uses a vocabulary that is not familiar for a great number of experimentally
working chemists. This vocabulary takes its origin, on the one hand, from the
mathematical theory, the theory of dynamical systems [75, 76], used to perform
the partition of the molecular space and, on the other hand, from our intention
to avoid any confusion between the concepts specific to the ELF approach and
other chemical concepts.

In the framework of the dynamical system theory, the points corresponding
to the local maxima of the investigated function (in our case, ELF) are called
attractors. The basin of an attractor is a region of space containing the points by
which a steepest ascent leads to the attractor, thus yielding a non-overlapping
partition of the space. This topological partition using ELF [13, 47] yields basins
of attractors that are considered as corresponding to atomic cores, bonds, and
lone pairs recovering the Lewis picture of bonding and the electronic domains
of the VSEPR approach. As the ELF is totally symmetrical, the attractors can be
single points (general case), circles (off axis attractors of linear molecules), or
spheres (off center attractors of atoms) according to their location and to the
molecular symmetry.

In a molecule, one can find two types of basins. On the one hand are core
basins surrounding nuclei with atomic number Z > 2 and labeled C(A), where
A is the atomic symbol of the element, and on the other hand are the valence
basins. For atoms heavier than neon, there are several core shells and therefore
several core basins that are, in practice, unified in the unique superbasin labeled
C(A). The valence basins are characterized by the number of atomic valence
shells to which they participate. This number is called the synaptic order. Thus,
there are monosynaptic, disynaptic, trisynaptic basins, and so on. Monosynaptic
basins, labeled V(A), correspond to the lone pairs of the Lewis model, and
polysynaptic basins to the shared pairs of the Lewis model. In particular,
disynaptic basins, labeled V(A, X), correspond to two-center bonds, trisynaptic
basins, labeled V(A, X, Y), to three-center bonds, and so on V(A, X, Y,… ) for
higher polysynaptic basins. The valence shell of a molecule is the union of its
valence basins. A polysynaptic basin encompassing a proton constitutes the
valence shell of a bonded hydrogen atom, and is often said to be protonated
polysysnaptic.

10.2.2.6 Quantities obtained for ELF basins
Graphically representing ELF gives a qualitative, general overview of atomic
interactions. Quantitative characterizations can be further obtained by a common
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Figure 10.5 f -localization domain in the ethylene molecule. Surfaces are colored according
to the basin they belong to: magenta for core basins, light blue for the C–H bonds, and
green for the C–C banana bonds.

analysis of ELF and other properties. For example, one can integrate the electron
density over a basin, and obtain the average number of electrons in a basin [14]. Or,
one can obtain unpaired-electron numbers, by integrating spin densities within the
basins [15].

Furthermore, one can give even more information by not only providing averages
but also variances and fluctuations [14]. For example, a C–H basin in ethylene and
core basin have populations of around 2.1 electrons. However, the C–H basin gives
a standard deviation of 0.8, while this is lower for the core basin (0.5): fluctuations
are more important between valence electrons than between core and valence
electrons.

One can even obtain a more detailed view by looking at the probability of having
ν electrons in a given basin (ν = 0, 1, 2, … ) [16]. For example, one finds that the
probability is maximal for finding two electrons both in the C–H and in one of
the C–C banana bond basins; see Figure 10.6. However, the probability is larger for
the C–H bond than for one of the double bonds, and the probability distribution is
broader for the latter.

10.2.2.7 ELF from experimental data
Although mainly obtained from quantum mechanical calculations, ELF can be
obtained from experimental data [17, 18].

It is, in principle, possible to extract the exact Kohn–Sham potential correspond-
ing to any density. This technique has been used since the eighties [19] with
accurate computed densities. The Kohn–Sham orbitals are generated as solutions
of the Kohn–Sham equations with this potential, enabling determinination of
ELF [20].
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Figure 10.6 Probability of finding ν and only ν electrons in one of the C–H bond basins
(red circles) or C–C banana bond basins (green squares) of ethylene molecule.

10.2.2.8 Simplified forms of ELF
In order to simplify the access to ELF from experimental data, alternative formulas
that use no other input than the electron density (see, e.g. [18, 21, 22],) were
presented.

10.2.3
Hints for interpretation

10.2.3.1 ELF and mesomery
Often, a single Lewis structure cannot properly describe the electronic structure
of a molecule (e.g., benzene) or crystal (e.g., metal). In such cases, ELF presents a
picture that corresponds to an averaging of the Lewis structures.

10.2.3.2 How important is a maximum?
It can happen that maxima of ELF exist, but that a small lowering of f merges
together domains that were surrounding different maxima. In the case of the
ethylene molecule, discussed earlier, this happened twice: once, when the domains
of the double bond have merged, and another time, when all the domains associated
with the valence electrons have merged. Such situations are typical for metals, such
as the sodium crystal. There, maxima are observed between the atoms, but a very
small lowering of f produces a domain that contains the whole crystal, except the
atomic cores. In such situations, we can ask what importance one should assign
to such shallow maxima. Is it not preferable to speak about a metal, than about
many bonds between sodium atoms? Is it not better to speak about a double bond
in C2H4, than about two banana bonds? Is it not more natural to speak about a
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valence shell than about two pairs of C–H bonds and a C–C double bond? At the
moment, there is no standardized way to treat such situations. Some suggestions
are given in the paragraphs on examples (10.3 and 10.4).

10.2.3.3 When several maxima merge into a single one
ELF is constructed to respect symmetry. As a result, when several symmetry-
equivalent situations are possible, ELF yields an average. In the Ne atom, the
classical picture of the valence would give four electron pairs at the corners of a
regular tetrahedron. Owing to spherical symmetry, however, their orientation is
arbitrary. Thus, with ELF, one finds only a spherical shell for the valence region:
the four valence domains are merged.

10.2.3.4 Hidden bonding
In case of complete transfer of the valence electrons from one species to another
within a molecule, a maximum between them does not appear (cf NaCl in the
Examples). One may ask, however, what happens in charge-shift bonds [23], as in
He+2 ; that is best described by the mesomery

He · · ·He+ ↔ He+ · · ·He

ELF will provide a picture that averages out the two situations, and there will be no
ELF maximum between the two nuclei (see Figure 10.7). The calculations indicate,
however, that the value of ELF between the two He nuclei in He+2 does not go below
0.4, while in He2, it goes down to ≈ 0.001. Low values are also encountered in ionic
pairs. These systems will be discussed later.

Figure 10.7 ELF isosurface (𝜂 = 0.8) in the He+2 molecular ion.
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10.2.3.5 Electron counting: oxidation numbers and formal charges

Electron counting (providing formal charges to atoms) is a useful tool in chemistry.
ELF provides a simple way to do it: if a valence basin has a common surface to
a single core (i.e., for a monosynaptic basin), the average number of electrons is
attributed to the nucleus to which the core belongs4) (for other basin properties,
see this box.). If a basin has a common surface with more than one core (i.e., a
multisynaptic basin), the electron count is attributed to the most electronegative
atom. The latter can be estimated either using the suitable electronegativity scale
or by analyzing the contributions of different atomic basins (QTAIM atoms) to the
given valence basin [24].

Box 10.3 Basin properties

This box provides the definitions of the different integrated basin properties
available in the ELF analysis. The following symbols have been used to define the
calculated properties:

• Ωi: basin labeled by i
• 𝜌(r): spinless electron density
• 𝜌𝛼(r): 𝛼-spin electron density
• 𝜌𝛽(r): 𝛽-spin electron density
• 𝜋(r, r′): spinless electron pair density
• 𝜋𝛼𝛽(r, r′): 𝛼𝛽 contribution to electron pair density
• 𝜋𝛼𝛼(r, r′): 𝛼𝛼 contribution to electron pair density
• 𝜋𝛽𝛽 (r, r′): 𝛽𝛽 contribution to electron pair density.

10.2.4
Sensitivity of ELF to technical details

By experience, the ELF images are not overly sensitive to technical details, such as
the quality of the basis set used. Table 10.1 shows the populations of typical ELF
basins obtained with different methods (Hartree–Fock, post Hartree–Fock with
a different treatment of correlation [25–28], Kohn–Sham with different density
functionals), and different basis sets. One can see that the numbers hardly change.
A noticeable change is observed when using an extremely poor basis set, STO-3G.
However, even in this case, the results are still qualitatively correct, although such a
basis set would be considered unreliable for almost any calculation. In cases when
the maxima of ELF are not pronounced, their position can be sensitive to technical
details, as can be seen for elemental metals (Section 10.4.3).

4) Bonds involving hydrogen provide a special case, as the hydrogen atom does not possess core
electrons. In such a case, the H nucleus plays the role of the core.
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10.3
Simple examples

10.3.1
Atoms and ions

10.3.1.1 Atomic shells and cores
It is not easy to find spatial functions that reproduce the atomic shell structure. The
textbook formula (the radial density defined by 4𝜋r2𝜌(r), where r is the distance of
the electron from the nucleus, and 𝜌 is the electron density, fails for heavier atoms).
Also, the Laplacian of the density fails for heavier atoms [29–31].

ELF was designed to find electron pairs, not atomic shells. However, ELF was
also designed to follow the symmetry properties of the nuclear framework. In
particular, it will have spherical symmetry in an atom. For Be, for example, this
does not pose a problem. For Ne, the K shell of the atom is well separated, and in
the corresponding region, ELF reaches values close to its maximal value, 1. In the
L shell, however, there are four electron pairs. Owing to the spherical symmetry
of the system, ELF yields an average picture with a single basin for all four pairs
together, reaching a value of approximately 0.8.

Figure 10.8 shows ELF for the Xe atom as a function of the distance from the
core. The innermost (K) shell is so narrow that it can be hardly noticed on the
scale of the plot. Increasing the resolution shows that ELF approaches 1 close to
the nucleus. For the other shells, one can see the lowering of the maxima of ELF
to values around 0.7–0.8.

The cores can be identified in ELF by nearly spherical regions around the nuclei
that mostly remain practically unaffected by the atomic environment.

0.0
0.0

0.5E
LF

1.0

1.0

Xe

r (a.u.)

2.0 3.0 4.0

Figure 10.8 ELF in the Xe atom, as a function of the distance from the nucleus.
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(a) (b)

Figure 10.9 ELF isosuface (𝜂 = 0.8) in TiH4 and CrH6. Cores are colored in magenta.

10.3.1.2 Structured cores: TiH4, CrH6

Although the penultimate shells are believed to be inert, one can notice with
ELF that they can be deformed according to VESPR rules [32]. Figure 10.9 shows
that the cores in TiH4 and CrH6 are split by the ligands. In TiH4 the splitting
produces maxima, tetrahedrally oriented, in directions avoiding the tetrahdrally
oriented valence basins. A similar effect is seen in CrH6, where there are six
ligands and six basins for the core. It may happen that the number of maxima
in the penultimate shell differs from the number of ligands, especially when
symmetry of the coordination sphere is lowered. In this case, one still notices that
the penultimate shell maxima of ELF avoid the ligands.

10.3.1.3 Ions
In ionic systems, for sufficiently large f , one typically obtains isosurfaces that
resemble those of a noble gas atom. However, for lower f values, as well as for
basins, some deformation of the atomic spheres shows up; it can be explained by
the Pauli repulsion between the ions. The fact that the ions get together in spite of
the repulsion is due to some attractive force, that is not visible in the picture for
LiH and LiF (Figure 10.10). We know that it is the electrostatic force that brings
together the ions. Notice that usually the cations are harder than the anions, and
that the deformation of the latter is more important.

10.3.1.4 Squeezing effects
In a molecule such as He2, there is no ELF maximum between the He nuclei (see
Figure 10.11). This is natural, as van der Waals binding is not a manifestation of
electron pairing. The deformation of the atomic shells is a manifestation of the
Pauli repulsion. In general, one may observe such deformations when two atoms
are held together by forces that are not covalent in nature, such as electrostatic
interaction (as had been also noticed in Figure 10.10), van der Waals interaction,
mediation of a third atom, or nonequilibrium structures.
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(a) (b)

Figure 10.10 ELF, 𝜂 = 0.5 for the LiH (a) and LiF (b) molecules.

Figure 10.11 ELF isosurface (𝜂 = 0.8) for the He2 molecule, calculated for the internuclear
distance of 5.62 Å, at the minimum of the potential energy curve [33].

10.3.2
Bonds and lone pairs

10.3.2.1 Bonds: C2H6, diamond
Typically covalent bonds, such as in C2H6 or in diamond crystal, show that ELF
achieves to describe regions of space that can be attributed to electron pairs. One
can see that the C–C bond in ethane and diamond look quite similar (Figure 10.12).
For further examples of solids, see subsequent text.
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(a) (b)

Figure 10.12 ELF isosuface (𝜂 = 0.8) in C2H6 (a), and in diamond (b); C–C bonds in
green.

10.3.2.2 Multiple bonds: Allene
For double bonds, ELF provides images reminding those of a banana bond, such
as in C2H4 (see Figure 10.2a). The different orientation of the double bonds in
allene can be seen when an f -localization domain is plotted (see Figure 10.13). The
formation of banana bonds is usually observed in simpler molecules, where the
local symmetry forces such distribution of ELF. For less symmetrical systems and
solids, the splitting of such bonding basins and definition of the bond multiplicity
may be more complex.

10.3.2.3 Lone pairs: NH3, H2O, ice
ELF basins for lone pairs are similar to those for bonds. One can see their tetrahedral
arrangement in NH3 (Figure 10.14) is similar to that in TiH4 (Figure 10.9a).

Note that the lone pairs tend to be less well separated than the bond pairs: in
H2O, the bifurcation of the lone pairs occurs at a higher value of f than for the OH
bonds. One could see it as a ‘‘memory’’ of the atomic shell structure.

Figure 10.13 ELF isosurface (𝜂 = 0.8) in the allene molecule, C3H4.



362 10 The ELF Perspective of chemical bonding

Figure 10.14 ELF isosurface (𝜂 = 0.8) in the ammonia molecule, NH3.

(a) (b)

Figure 10.15 ELF isosuface (𝜂 = 0.8) for an isolated water molecule (a), and in crystalline
modification of ice VIII (b). Lone-pair localization domains are shown in orange.

In the crystal structure of ice VIII, Figure 10.15, one can see the orientation of
the lone pairs toward the H atoms of the neighboring molecules.

10.3.2.4 Multicenter bonds: B2H6

ELF helps recognizing multicenter bonds (see Figure 10.16). A typical example
is given by B2H6. A less trivial example of a three-center bond is provided by
Al2H4(CH3)2, where two CH3 groups make the bridge between the two AlH2

fragments. Further examples of complex borane species can be found in Ref. [34].

10.3.2.5 Cylindrical symmetry effects: C2H2, HF
In molecules, as for atoms, symmetry is conserved. For example, there is a triple
bond between the two C atoms of the C2H2, but the molecule has cylindrical
symmetry. As a result, the image presented by ELF shows a torus, a cylindrically
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(a) (b)

Figure 10.16 ELF isosurface (𝜂 = 0.8) in B2H6 (a), and Al2H4(CH3)2 (b): core basins are
colored in magenta, three-center bonds (B–H–B or Al–C–Al) – in green, two-center bonds
(B–H, C–H, or Al–H) – in gray.

(a) (b)

Figure 10.17 ELF isosuface (𝜂 = 0.8) for C2H2 (a), and HF (b). The C–C bond in C2H2 is
colored green, the lone pair on the F atom in HF – in orange.

symmetric f -localization domain between the two C atoms (see Figure 10.17a). The
same type of ELF distribution occurs also for the three pairs of lone pairs in the HF
molecule (see Figure 10.17b).

10.3.2.6 Delocalization: Butadiene, benzene

The eye has more difficulty in recognizing immediately the delocalization effect.
In ethane or diamond, Figure 10.12, the f -localization domain was close to
cylindrically symmetric around the line joining the two C nuclei. In trans-butadiene,
Figure 10.18, the central C–C bond gets a deformation toward the shape of a double
bond. The effect gets more pronounced for benzene, where no distinction can be
made between successive C–C bonds.



364 10 The ELF Perspective of chemical bonding

(a) (b)

Figure 10.18 ELF isosufaces (𝜂 = 0.8) for trans-butadiene (a), and benzene (b).

10.3.3
Molecular reactions

Taking snapshots of the ELF localization domains along a reaction pathway enables
the study of molecular reactions and displacive pressure-induced phase transitions
from the ‘‘classical’’ point of view of bond reorganization. This is possible because
ELF depends on the electronic state and the nuclear geometry of the investigated
system. In practice, once the electronic transition state is located, the reaction
path is determined by the intrinsic reaction coordinate (IRC) method [35] and
the ELF analysis carried out for a selection of atomic arrangements along the
reaction path. The evolution of the basin populations provides an indication of
the electron density transfers, which can easily be represented by curly arrows in
the mechanism representation. This method has been initially presented within the
catastrophe theory framework [36]. In this context, the system visits the different
bonding structures represented by the ELF basins linking the reactants to the
products. The art is then to locate the turning points at which the number and/or
the type of the basins are changed. This method has been extensively applied to
reactions belonging to both organic [37, 38] and inorganic chemistry as well as to
pressure-induced phase transitions. Shown here are a few examples taken from
organic chemistry, which clearly illustrate the method.

10.3.3.1 Proton transfer in malonaldehyde
The intramolecular proton transfer in malonaldehyde is an example of tautomer-
ization, which has been studied by the ELF technique by Krokidis et al. [39]. The
conventional Lewis representation, represented subsequently, implies the break-
ing of an OH bond on the first oxygen atom followed by the formation of an OH
bond on the second oxygen and also a counterclockwise migration of the double
bonds.

The ELF analysis of the reaction summarized by Figure 10.19 shows that
the proton transfer implies two transformations of the bonding. The first one
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Figure 10.19 ELF localization domains (f = 0.8) and basin populations for reactant, transition state and product of the intramolec-
ular proton transfer in malonaldehyde. Color code: magenta for cores, gray for C–H and O–H bonds, green for the C–C bonds, and
orange for lone pairs and ‘‘dressed proton’’-configurations.
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corresponds to the covalent dissociation of the OH bond and the second to the
formation of another OH bond from a hydrogen atom and an oxygen lone pair.
The process involves an intermediate structure in which the hydrogen is detached
and within which a significant electron transfer from the hydrogen toward the
oxygen lone pairs brings its ionic character to the reaction. The presence of the
detached hydrogen, or ‘‘dressed proton,’’ in the intermediate state is a consequence
of the attractive Coulomb potential of the proton, which has no Pauli repulsion
counterpart. There is no bonding rearrangement in the skeleton but rather a
concerted charge transfer from one bond to another.

10.3.3.2 Aliphatic nucleophilic substitution SN2
The reaction mechanism of the backside attack in four nucleophilic substitu-
tions, XCH3 + X− → X− + CH3X has been investigated with ELF by Polo et al.
[40] who found three structural stability domains along the reaction path. In the
Cl− +H3CBr → ClCH3 + Br− reaction displayed in Figure 10.20, the three struc-
tural stability domains correspond successively to the chemical structures of the
reactant, the transition state, and the products. The transition structures are char-
acterized by ionic species without the presence of disynaptic basin connecting the
halogens and the carbon atom.

The population of the V(C,Br) basin is 1.25 e in the reactant. As bromine
dissociates, about 80% of the V(C,Br) population is transferred toward the
bromine lone pairs and the remaining toward the V(C,H) basins; on chlorine,
the formation of the V(C,Cl) basin implies transfers from both V(C,H) and V(Cl)
basins.

Cl BrCCC BrBr ClCl

Figure 10.20 Evolution of the ELF localization domains along the reaction path of the
Cl− +H3CBr → ClCH3 + Br− nucleophilic substitution. Color code: magenta for cores,
orange for lone pairs, light blue for C–H bonds, and green for the C-halogen bonds.
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10.3.3.3 Diels Alder addition

This class of reaction has been the topic of several analyses by the ELF technique
[41]. The addition of cyclopropene on cyclopentadiene yields two stereoisomers:

C6

C7
C5

C8 +

C4
C2

C3

C7
C5

C6

C8

C4 C2

C3

C1

C1C2

C8

C4

C3
C5

C6

C7

endo

exo

C1

For both routes, six bonding rearrangements take place along the reaction path
as shown for the exo reaction in Figure 10.21. The first part of the intrinsic
reaction pathway links the reactants to the activated complex: the reactants get
close together and adapt their internal geometries to satisfy the steepest ascent
energy requirement. In particular, the double bonds of the cyclopropene and of
the cyclopentadiene increase by about 0.025 Å which implies a density transfer
from the C = C double bonds toward the adjacent C–C single bonds. In the
ELF picture, the decrease in the double bond character is accounted for by the
merging of the relevant V(C,C) basins. This occurs first for the cyclopropene
moiety and a few steps after for the cyclopentadiene. After the transition step,
the system relaxes toward the product following a steepest descent path on the
Born–Oppenheimer energy hypersurface, in which angular deformations play
an important role. The pyramidalization of the bonds around, on the one hand,
the C(2), C(3) and, on the other hand, the C(4) and C(5) carbons yields the
appearance of monosynaptic basins on top of these atoms. Again, the topological
changes take place first on the cyclopropene side. As the C(2)–C(4) and C(3)–C(5)
distances shorten, the monosysnaptic basins on these atoms merge yielding the
V(C2,C4) and V(C3,C5) disynaptic basins, which materialize the formation of the
corresponding single bonds. Finally, the V(C6,C7) valence basin splits to give
a double bond.

The graphical properties of the ELF approach are exploited to make ani-
mations of chemical reactions such as those presented at the following URL:
http://www.lct.jussieu.fr/pagesperso/silvi/recherche˙en.html

http://www.lct.jussieu.fr/pagesperso/silvi/recherche%CB%99en.html
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Figure 10.21 C5H6 + C3H4 exo addition reaction. (a) snapshot of the ELF localization domains (f = 0.8) taken before the for-
mation of the C(2)–C(4) and C(3)–C(5) bonds and showing the presence of the four valence basins, V(C2), V(C3), V(C4) and
V(C5), involved in the cyclization. Color code: magenta for cores, gray for C–H and O–H bonds, green for the C–C bonds, and
red for lone pairs. (b) basin population along the reaction path; the vertical dashed lines correspond to the changes in the ELF
topology, accounting for the evolution of the bonding structures, the black vertical full line locates the transition state and the
red one corresponds to the geometry shown on the left part of the figure.
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Figure 10.22 ELF distribution in the solid NaCl: first and second shells are shown with
magenta isosurfaces, third shells are represented with red surfaces.

10.4
Solids

The importance of the ELF as a suitable tool for analysis of atomic interactions
not only in molecules [42] but also in solids was recognized by R. Nesper and H.
G. von Schnering, who initialized the first systematic investigations [43, 44]. The
definition of ELF within LDA DFT [43] opened the opportunity to perform the first
solid state calculations with the TB-LMTO-ASA technique [45].

10.4.1
Ionic compounds

In ionic solids, one typically obtains close to spherical distribution of ELF around
the nuclei that resembles that of a noble gas atom. Figure 10.22 shows an ELF
isosurface in NaCl. One easily identifies the small Na and large Cl species.
While chlorine shows three shells, the last (third) shell of sodium is not present,
suggesting the charge transfer from Na to Cl. Indeed, integration of the electron
density within the basins yields the effective charge transfer of 0.98 electrons
from Na and Cl [46]. The spherical character of the ELF distribution is more
pronounced for the harder Na cation than for the softer Cl anion. As previously
noticed for molecular systems (see paragraph 10.3.1.3), the fact that the ions get
together in spite of the repulsion is due to some attractive force that is not directly
visible in the ELF picture and we know that it is the electrostatic force that brings
together the ions.
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Figure 10.23 ELF in the crystalline iodine formed by I2 molecules: (a) isosurface 𝜂 ≈; (b)
ELF distribution in the (010) plane.

10.4.2
Molecular compounds

The I2 molecules form a molecular crystal. When high values for ELF are chosen,
one can identify the electron pair domains making the bond between I atoms, and
a torus, for the three lone pairs on each of the I atoms (Figure 10.23). For low
values, one can see how molecules are packed in a crystal. Note the distortion of the
f -localization domains by the packing in the crystal, reminding us of that observed
for single ions in NaCl, Figure 10.22.

10.4.3
Elemental metals

Topology of the ELF obtained by different calculation techniques [47–50]5) for
cubic metals differs in the location of ELF maxima (Figure 10.24), as the maxima
themselves are shallow, and not strongly pronounced. So, for the bcc (body-centered

5) For technical details, and differences between Hartree–Fock (HF), and the density functional
methods LMTO-ASA and FPLO, see [48, 49] .
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Figure 10.24 Isosurfaces of ELF in the cubic elemental metals, illustrating the position of
the ELF maxima (yellow or red) depending on the applied calculation technique. The con-
ventional cells are shown by red lines, the octahedral (ov) and tetrahedral voids (tv) by blue
ones.

cubic) modification of Li, the LMTO-ASA calculation yields ELF attractors in the
octahedral voids (ov), whereas the HF and FPLO calculations reveal ELF attractors
in the tetrahedral voids (tv). Such differences are observed independently of the
type of the structure and position of the elements in the periodic table. For the fcc
(face-centered cubic) modifications of Ca and Cu, the maxima of ELF are found
either in the octahedral or in the tetrahedral, or in both types of holes depending
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on the method of calculation. The most striking case of such differences represents
the fcc structure of aluminum. The LMTO-ASA and HF calculations reveal ELF
maxima on the bond lines between the nuclei; the FPLO calculation shows that
the positions of the maxima are shifted toward the centers of the tetrahedral
holes, being the trend found for other metals. This trend was further confirmed
by the analysis of the hcp modifications of metals with the electron localizability
indicator [51].

The general trend in the topology of ELF in elemental metals is the location
of its attractors in the tetrahedral or octahedral holes within the crystal structure.
The synapticity of such attractors is four and six, respectively. In this way, the
bonding picture is characterized by the multicenter interactions. So, the four- and
six-center bonds in elemental metals can be considered as the ELF representation
of metallic bonding, as it was recently suggested for the distribution of the electron
localizability indicator [52] in the intermetallic compound Al5Co2 [53].

10.4.4
Intermetallic compounds

Intermetallic compounds exist in the solid state only and do not follow the usual
valence rules. The complexity of the crystal structures and the bonding patterns
hinder the application of the traditional quantum chemical tools for analysis of the
atomic interactions in this group of inorganic substances.

10.4.4.1 Zintl–Klemm concept and ELF
A special group of materials within the field of intermetallic compounds is
called Zintl phases (Ref. [54], and references therein), that is, those intermetallic
compounds that can be understood by application of the Zintl–Klemm concept
[55]. This definition of Zintl phases requires – beside the charge transfer from
the cationic to the anionic part of the crystal structure – that the number of
homonuclear bonds per atom within the anionic part is defined by the general
Pearson rule [56, 57]6). Thus, it is no wonder that ELF was applied for bonding
analysis in a large group of Zintl phases [44].

The example of Ba2Mg3Si4 (Ref. [58], Figure 10.25) illustrates that the topology
of ELF in the Zintl phases has three main features. First, it shows that the last
shells of barium (the sixth one) and magnesium (the third one) are not present,
revealing the charge transfer and ionic interaction between the Ba and Mg cations
and anionic substructure build of two different silicon anions. The formation of
the covalent Si–Si bonds within the [Si2] and [Si6] anions is shown by the maxima
on the Si–Si contacts. And, finally, the ‘lone pairs’ on the Si atoms, instead of
avoiding the Mg cores, point toward them, thus visualizing the strongly polar
Mg–Si interactions being in agreement with the charge transfer in the crystal
structure. Further examples of the ELF in Zintl phases, especially illustrating the
role of the lone pairs may be found in Ref. [59].

6) According to the Pearson rule, the anions form as many bonds as necessary to achieve octet
configuration.
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Figure 10.25 ELF distribution in the (010) plane of Ba2Mg3Si4.

10.4.4.2 ELF for penultimate shells of transition metals
Additional features appear in the distribution of ELF, if – together with the
main group elements – the transition metals are constituents of an intermetallic
compound. So, the crystal structure of the filled skutterudite NaFe4Sb12 [60] consists
of three-dimensional framework built by vertices-condensed octahedrons [FeSb6]
with the sodium embedded into the framework voids (Figure 10.26). In the ELF

Fe

Sb

1.79 e−

1.74 e−

2.03 e−

(a) (b)

Fe

Sb

Na

Figure 10.26 (a) Crystal structure of the
filled skutterudite NaFe4Sb12 as a framework
built of the vertice-condensed octahedrons
[FeSb6] with the sodium atoms embed-
ded into the cavities of the framework; (b)

Isosurfaces of ELF (𝜂 = 0.56, green, 𝜂 = 0.53,
light green and 𝜂 = 0.72, orange) in visualiz-
ing the Sb–Sb and Fe–Sb bonds as well the
structuring of the penultimate shell of Fe,
respectively.
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AI–AI bond

AI–AI bond
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Cu—AI—Cu bond
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Figure 10.27 (a) ELF in Al2Cu: Isosur-
face of ELF (𝜂 = 0.55) reveals the location
of ELF maxima on the Al–Al contacts; (b)
Basins of three types of ELF maxima; (c)

Interpenetrating graphite-like aluminum
nets formed by the two-center Al–Al bonds
interacting with the copper by three-center
Cu–Al–Cu bonds.

distribution, the Sb–Sb bonds interconnecting the octahedrons as well as the
Fe–Sb bonds within the octahedrons are visualized by ELF maxima, suggesting
covalent interactions within the framework and ionic interaction of the sodium
cations with the framework. In addition, the structuring of the penultimate shell
of Fe is observed. This topological feature is shown to be the fingerprint of the
participation of the electrons of the penultimate shell in the interactions within the
valence region [61].

10.4.4.3 Case of Al2Cu
The distribution of ELF in the crystal structure of Al2Cu [62] reveals only three
types of maxima. Two of them visualize two-center Al–Al interactions (Figure
10.27a). Integration of the electron density within these basins yields counts of
ca. 1.7 electrons, that is, very close to the two-electron bonding (Figure 10.27b).
By these bonds, a spectacular three-dimensional framework of interpenetrating
graphite-like nets of aluminum is formed. In the framework channels, the copper
atoms are located. They interact with the framework by means of the three-center
Cu–Al–Cu bonds, as shown by the third type of ELF maxima (Figure 10.27b,c).
None of the previous crystallographic descriptions of this structural pattern was
able to reveal or – at least – to reflect all these three interactions.

10.4.4.4 Surprises
The most surprising example of atomic interactions revealed by ELF was found
in RhBi4 [64]. The cubic crystal structure of this intermetallic compound consists
of two interpenetrating frameworks built of edge-condensed tetragonal antiprisms
[RhBi8] (Figure 10.28c, labyrinth-like part of space within the orange surface). The
Rh–Bi interaction within the antiprism is covalent, whereby the structuring of the
penultimate shell of Rh reveals participation of these electrons in the interaction
in the valence region (Figure 10.28a). On the outer side of the prisms are located
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Figure 10.28 ELF in RhBi4: (a) isosurface of
ELF illustrating the structuring of the penul-
timate shell of Rh in relation to its coor-
dination polyhedron–tetragonal antiprism
[RhBi8]; (b) distribution of ELF around the
antiprism showing – beside the Rh–Bi inter-
action – formation of the Bi lone pairs
on the outer side of the antiprism; (c) a

periodic nodal surface (Ref. [63]) outlines
two different parts of the space in the crys-
tal structure: one (orange labyrinth, region
enclosed within the orange surface) con-
tains the Rh–Bi framework, the isosurface
of ELF (𝜂 = 0.7, yellow) visualizes the posi-
tions of the lone-pair ELF maxima in the
other labyrinth (blue).

ELF maxima (Figure 10.28b); each of them is only monosynaptic to one Bi nucleus.
So, the whole space between the interpenetrating frameworks is ‘‘filled’’ by the
lone pairs of the bismuth atoms visualizing a van der Waals interaction in this
part of the structure (visualized by the blue surface in Figure 10.28c). Note that the
ELF does not contain explicitly the information about this kind of chemical bonds!
Further examples of practical application of ELF can be found on the website
http://www.cpfs.mpf.de/ELI.

10.5
Perspectives

ELF is a tool to recover chemical ‘‘prejudices’’ from quantum chemical calculation.
At first sight, in particular, because of the strong expression of the graphical
representations, it looks like a computer game. In practice, however, it is a
powerful quantum chemical tool in real space and has not only served to guide the
chemist toward a correct explanation and understanding of atomic interactions in
different classes of chemical compounds but also to improve their experimental
design.

http://www.cpfs.mpf.de/ELI
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Appendix

10.A
Mathematical expressions of calculated basin properties

Assuming the Born–Oppenheimer separation, the electronic wave function is a
function of 4N variables: each electron, labeled by i, is described by the three
components of its position vectors ri and by its spin coordinates 𝝈i. In order to
simplify the notation, ri and 𝝈i are gathered in a four-component (space+spin)
vector 𝛏i. The probability of finding k electrons with the space and spin coordinates
specified by the list of variables 𝛏1, 𝛏2, … , 𝛏k, the remaining N − k being anywhere
is given by

Γ(k)(𝛏1, 𝛏2, … , 𝛏k) =
N!

(N − k)! ∫ Ψ(𝛏1, 𝛏2, … , 𝛏k, 𝛏k+1, … , 𝛏N)

Ψ∗(𝛏1, 𝛏2, … , 𝛏k, 𝛏k+1, … , 𝛏N)d𝛏k+1, … , d𝛏N

Particularly important are the first- and second-order distribution functions Γ(1)(𝛏)
and Γ(2)(𝛏, 𝛏′). Integration of Γ(1)(𝛏) over the spin coordinate 𝝈 yields the electron
density 𝜌(r); as the spin coordinate is discrete, this integration is actually the sum
of two contributions 𝜌𝛼(r) and 𝜌𝛽(r), which correspond to the two values ± 1/2 of
𝝈:

𝜌(r) = ∫ Γ(1)(𝛏)d𝝈 = Γ(1)(r, 1
2
) + Γ(1)(r,−1

2
) = 𝜌𝛼(r) + 𝜌𝛽(r)

The spin density is defined as

Qz(r) =
1
2
[𝜌𝛼(r) − 𝜌𝛽(r)]

Integrating the spin density over the entire space yields ⟨Sz⟩ = MS. The same
procedure is applied to Γ(2)(𝛏, 𝛏′) in order to obtain the pair function and its four
spin components:

𝜋(r, r′) = ∫ ∫ Γ(2)(𝛏, 𝛏′)d𝝈d𝝈′

= 𝜋𝛼𝛼(r, r′) + 𝜋𝛼𝛽(r, r′) + 𝜋𝛽𝛼(r, r′) + 𝜋𝛽𝛽 (r, r′)

10.A.1
Basin populations

The basin populations are obtained by integrating the density distribution functions
over the basins.

• 𝛼 basin population: N
𝛼
[ΩI] = ∫ ΩI

𝜌𝛼(r)dr.

• 𝛽 basin population: N
𝛽
[ΩI] = ∫ ΩI

𝜌𝛽(r)dr.

• total basin population: N[ΩI] = N
𝛼
[ΩI] + N

𝛽
[ΩI] = ∫ ΩI

𝜌(r)dr.

• basin spin density: ⟨Sz⟩ΩI
= 1

2
(N

𝛼
[ΩI] − N

𝛽
[ΩI])
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• 𝛼𝛽 pair population 𝛱
𝛼𝛽
[ΩI,ΩI] = ∫ ΩI

∫ ΩI
𝜋𝛼𝛽(r, r′)drdr′.

• 𝛼𝛼 pair population Π
𝛼𝛼
[ΩI,ΩI] = ∫ ΩI

∫ ΩI
𝜋𝛼𝛼(r, r′)drdr′.

• 𝛽𝛽 pair population Π
𝛽𝛽
[ΩI,ΩI] = ∫ ΩI

∫ ΩI
𝜋𝛽𝛽 (r, r′)drdr′.

• pair population Π[ΩI,ΩI] = ∫ ΩI
∫ ΩI

𝜋(r, r′)drdr′.

10.A.2
Variance and covariance of basin populations

The basin populations are averages; they can be expressed as expectation values of
basin population operators. The basin population operator enabling the calculation
of N[ΩI] has been introduced by Diner and Claverie [65] in the case of Bader’s
partition:

N̂𝛼[ΩI] =
∑N

i
ŷ(ri,𝝈i) with ŷ(ri,𝝈i)

{
ŷ(rii,𝝈i) = 1 ri ∈ ΩI and 𝝈i =

1
2

ŷ(ri) = 0 otherwise

N̂𝛽[ΩI] =
∑N

i
ŷ(ri,𝝈i) with ŷ(ri,𝝈i)

{
ŷ(rii,𝝈i) = 1 ri ∈ ΩI and 𝝈i = −

1
2

ŷ(ri) = 0 otherwise

and

N̂[ΩI] = N̂𝛼[ΩI] + N̂𝛽 [ΩI]

These expressions can be generalized to pair population spin components in a
straightforward manner; for example:

Π̂𝛼𝛼[ΩI,ΩI] = N̂𝛼[ΩI]N̂𝛼[ΩI] − N̂𝛼[ΩI]
Π̂𝛼𝛼[ΩI,ΩJ] = N̂𝛼[ΩI]N̂𝛼[ΩJ]

Π̂𝛼𝛽[ΩI,ΩI] = N̂𝛼[ΩI]N̂𝛽[ΩI]

and

Π̂[ΩI,ΩI] = Π̂𝛼𝛼[ΩI,ΩI] + Π̂𝛼𝛽[ΩI,ΩI] + Π̂𝛽𝛼[ΩI,ΩI]
+ Π̂𝛽𝛽[ΩI,ΩI] = N̂[ΩI]N̂[ΩI] − N̂[ΩI]

They are used to build the variance and covariance operators:

σ̂2(ΩI,ΩI) = N̂[ΩI]N̂[ΩI] − N[ΩI]
2 = Π̂[ΩI,ΩI] + N̂[ΩI] − N[ΩI]

2

𝑐𝑜𝑣(ΩI,ΩJ) = N̂[ΩI]N̂[ΩJ] − N[ΩI]N[ΩJ] = Π̂[ΩI,ΩJ] − N[ΩI]N[ΩJ]

which yield:

• variance ⟨σ2(ΩI)⟩ = ∫ ΩI
∫ ΩI

𝜋(r, r′)drdr′ + NΩI − N
2
(ΩI).

• covariance matrices ⟨𝑐𝑜𝑣(ΩI,ΩJ)⟩ = Π(ΩI,ΩJ) − N(ΩI)N(ΩJ)).
• standard deviation σ(ΩI) =

√
σ2(ΩI)

• correlation coefficient matrices: RΩI ,ΩJ
= ⟨𝑐𝑜𝑣(ΩI ,ΩJ)⟩√⟨σ2(ΩI)⟩√⟨σ2(ΩJ)⟩
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10.A.3
Probability distributions

• Probability of finding exactly n electrons within a given basin Ωi the remaining
N − n being located in the other basins [66]:

Pn(ΩI) =
(

N
n

)
∫ ΩI

d𝐱1 … d𝐱n∫ ℝ3−ΩI

Ψ∗Ψd𝐱n+1 … d𝐱N

• Electron number probability distribution functions, that is, probabilities
P(n1, n2,...,nm) of having exactly n1 electrons in Ω1, n2 electrons in Ω2, … , and
nm electrons (n1 + n2 + · · · + nm = N) in Ωn [67]:

P(n1, n2,...,nm) =
N!

n1!n2! … nm!∫ Ω1

d𝐱1 … d𝐱n1∫ Ω2

d𝐱n1+1 … d𝐱n1+n2
…

×∫ Ωm

Ψ∗Ψd𝐱N+1−nm
d𝐱N

10.A.4
Basin electrostatic moments

The basin electrostatic multipoles are defined as minus the integral over the
basin volume of the product of the electron density distribution times a multipole
operator [68], that is:

⟨Qm
l ⟩ΩI

= −∫ ΩI

Qm
l (r − rc)𝜌(r)dr

where Qm
l
(r − rc) is the multipole operator expressed on the basis of the spherical

harmonics:

Qm
l (r − rc) =

( 4𝜋
2l + 1

) 1
2 |r − rc|lYm

l (θ, 𝜑)

Except for the unipole (l = 0), the multipole operators are origin dependent. As a
general rule, the origin is taken as the attractor of the considered basin, except for
attractors degenerated on a circle in which case the center of the circle defines the
origin.

10.A.5
Combining ELF and AIM approaches

Combining the ELF and QTAIM approaches, Raub and Jansen [24] have introduced
a bond polarity index defined as

pxy =
N[V(X,Y)|X] − N[V(X,Y)|Y]
N[V(X,Y)|X] + N[V(X,Y)|Y]
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where N[V(X ,Y)|X]denotes the contribution of the X atomic basin to the population
of the V(X,Y) basin.

The orbital contributions to the valence basins is another piece of information
which, for example, enables to quantitatively estimate the σ-donation and 𝜋-back-
donation.

10.A.6
Potential energy contributions

The generalization to ELF basins of the interacting quantum atoms energy Decom-
position [69], can be achieved for only potential energy because the ELF basin
separatrix are not zero flux surfaces of the electron density gradient field. The
electron–nucleus contribution is given by

V𝑒𝑁 (Ωi) = −
∑

A∫ Ωi

ZA|r − RA|𝜌(r)dr

The decomposition of the interelectron repulsion into two-basin contributions:

V𝑒𝑒(Ω,Ω′) = ∫ Ω∫ Ω′

𝜋(r, r′)|r′ − r|drdr′

decomposes in a purely Coulomb energy

VC(Ω,Ω′) = ∫ Ω∫ Ω′

𝜌(r)𝜌(r′)|r′ − r| drdr′

and an exchange-correlation contribution

V𝑥𝑐(Ω,Ω′) = ∫ Ω∫ Ω′

Π𝑥𝑐(r, r′)|r′ − r| drdr′

is very interesting, being directly related to the VSEPR model [70].

10.A.7
Miscellaneous

• Basin volume: V(ΩI) = ∫ ΩI
dr, for 𝜌(r) ≥ 0.002 (the cutoff value is chosen in

accordance with Ref. [10])
• Basin population molecular orbital contributions: Nν[ΩI] = ∫ ΩI

𝜑ν(r)dr
• Condensed Fukui functions f +, f 0, f −:

⟨f −⟩ΩI
= ∫ ΩI

[𝜌N(r) − 𝜌N−1(r)]dr

⟨f +⟩ΩI
= ∫ ΩI

[𝜌N+1(r) − 𝜌N(r)]dr

⟨f 0⟩ΩI
= 1

2
(⟨f −⟩ + ⟨f +⟩)

The Fukui function, f (r), is a local reactivity descriptor defined in the framework
of the conceptual DFT as the derivative of the electron density with respect to the
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number of electrons, the external potential v(r) being kept constant [71],

f (r) =
(
∂𝜌(r)
∂N

)
v(r)

In fact, this equation yields three descriptors according to the direction of
variation of N, the electrophilic attack is governed by

f −(r) =
(
∂𝜌(r)
∂N

)−
v(r)
≈ 𝜌N0

(r) − 𝜌N0−1(r)

the nucleophilic attack by

f +(r) =
(
∂𝜌(r)
∂N

)+
v(r)
≈ 𝜌N0+1(r) − 𝜌N0

(r)

and the radicalar attack by

f 0(r) =
(
∂𝜌(r)
∂N

)0

v(r)
= 1

2
(f −(r) + f +(r))

where the subscripts N0 − 1,N0,N0 + 1 are the numbers of electrons of the
system.
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11
Relativity and Chemical Bonding
Peter Schwerdtfeger

11.1
Introduction

The concept of chemical bonding within a nonrelativistic quantum-chemical
framework is well understood [1–6], albeit heavily discussed and debated at times
for the many different chemical models and approximations applied. Questions
such as how many bonds are shared between atoms [7–10], what the oxidation
state is of a specific atom in a molecule or the solid state [11], or how covalent
or ionic a chemical bond is [12], can often lead to (very) different opinions
depending on the chemical bonding model favored [13]. In other words, although
the term chemical bond is, without any doubt, an important concept in chemistry
(and not one chemist will debate this), it is not a quantum-mechanical
observable, and there perhaps lie all its difficulties associated with many
misunderstandings and disputes [14–16]. The many bonding models used may
only be loosely connected to quantum-mechanical observables (if at all), the latter
being strictly represented in quantum theory by self-adjoint operators acting
on specific Hilbert (L2) spaces. Here we quote (for convenience) Charles Alfred
Coulson:

One is almost tempted to say … at last I can almost see a bond. But that will
never be, for a bond does not really exist at all: it is a most convenient fiction which,
as we have seen, is convenient both to experimental and theoretical chemists [17].1)

If Einstein’s relativity is introduced, the situation would become even more
complicated. From the principle of special relativity it follows that the velocity c of
light is constant (c = 299 792 458 m s−1) [18]. From this one can derive that the
velocity v of a massive particle is also bound by the velocity of light; that is, v < c,
which limits the accuracy in the measurement of a particle’s momentum according

1) A very similar quote by Coulson is ‘‘Sometimes it seems to me that a bond between two atoms
has become so real, so tangible, so friendly, that I can almost see it. Then I awake with a little
shock, for a chemical bond is not a real thing. It does not exist. No one has ever seen one. No one
ever can. It is a figment of our own imagination.’’

The Chemical Bond: Fundamental Aspects of Chemical Bonding, First Edition.
Edited by Gernot Frenking, Sason Shaik.
c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
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to the Heisenberg uncertainty principle (𝛥𝑝𝛥𝑡 ∼ ℏ∕c) [19]. A strict relativistic
(Lorentz-covariant) formalism implies that space and time have to be treated on
equal footing (e.g., same order in space and time derivatives have to be used in a
relativistic Hamiltonian), which for an electron of spin 1∕2 in an external field leads
to the famous Dirac–Coulomb equation [20]

HD

(
𝜙L

𝜙S

)
=

(
V c−→𝜎

(−→p + c−1−→A
)

c−→𝜎 (−→p + c−1−→A) V − 2mc2

)(
𝜙L

𝜙S

)
= E

(
𝜙L

𝜙S

)
(11.1)

Here −→𝜎 are the (2×2) Pauli spin matrices, −→p is the momentum of the electron,
−→
A is the magnetic vector potential introduced through the minimal coupling
scheme, and 𝜙L and 𝜙S are, respectively, the large and small Dirac components
of the electronic wave function 𝜓 = (𝜙L, 𝜙S). As Eq. (11.1) is a (4×4) matrix
differential equation, the Dirac operator HD acts on a four-component wave function
containing (in a way) the two spin directions and the particle/antiparticle symmetry
of the electron. Hence, the spin of an electron is naturally contained within the
Dirac equation. The potential V in Eq. (11.1) may contain corrections beyond
the instantaneous Coulomb interaction between the two electrons. This leads to
the so-called Dirac–Coulomb–Breit equation [21, 22] that covers most of the
physics in electronic structure theory and is sufficient for the discussion of
chemical bonding up to the heaviest elements in the periodic table [23].

The Dirac equation is plagued with many (albeit often technical) difficulties
[21–24]. While the nonrelativistic Hamiltonian of the Schrödinger equation is
bound in energy from below, ensuring that the Ritz–Rayleigh variational principle
works for the minimization of the total electronic energy, the Dirac operator
is not [25], and one has to deal with a continuum of negative energy states.
These negative energy states have been the reason for many misconceptions in
the relativistic quantum theory [26]. While a complete Lorentz-covariant picture
is given by quantum electrodynamics (QED), or more precisely by the so-called
standard model in physics, which is not yet fully accessible for the accurate treatment
of many-electron systems, we have learned only in the past few decades how to
handle the no-virtual-pair (i.e., without including electron–positron pair creation
by QED) many-electron Dirac–Coulomb equation for molecules within mean-field
theories such as the Hartree–Fock theory or the density functional theory (DFT),
or beyond [27].

The discussion of relativistic effects in chemical bonding requires the correct
nonrelativistic limit of the Dirac equation. Here we should note that, in prin-
ciple, relativistic effects in molecular properties – that is, the change from the
nonrelativistic (Schrödinger) picture to the relativistic (Dirac) picture (or vice
versa) – cannot be observed directly, because we are living in a ‘‘relativistic world’’
with a fixed velocity of light c (if we neglect the fact that the fundamental constants
in physics, such as the fine-structure constant, may vary in time and space [28]).
The nonrelativistic limit can be obtained by either a unitary transformation to a
two-component (spin–orbit-coupled) Schrödinger picture HS or by elimination of
the small Dirac component (𝜙S) [29], followed by taking the nonrelativistic limit,
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lim(c → ∞)HS. There are many such transformations one can perform to obtain
(regular) two-component relativistic Hamiltonians to a certain order in the expan-
sion (in 1/c2), and there are a number of different relativistic approximations in
use in standard quantum chemical program packages (Breit-Pauli, Douglas-Kroll,
Barysz-Sadlej-Snijders, zero-order regular approximation, and X2C to name a few;
see Refs [27, 29–34] for more details). Further, if we separate off spin-dependent
terms in the two-component formalism, we obtain a spin-averaged (one-component
or scalar-relativistic) formalism most widely used in quantum-chemistry program
packages. We mention that the use of different relativistic perturbation operators
to the nonrelativistic Schrödinger equation gives rise to different physical inter-
pretations of relativistic effects if not taken to infinite order in the two-component
expansion. Moreover, scalar-relativistic (spin-free) schemes differ in the way the
spin has been separated off [35]. Further, the nonrelativistic limit, lim(c →∞)HS,
has to be considered carefully, as properties connected to the electromagnetic field
may vanish. This is clearly seen from the Dirac–Coulomb equation (Eq. (11.1)),

as the vector potential
−→
A vanishes in the nonrelativistic limit, which implies that

all magnetic fields vanish as well. Moreover, some properties are intrinsically
relativistic. For example, parity violation effects that lift the degeneracy between
left- and right-handed chiral molecules are only nonzero if spin–orbit effects are
included [36]. Hence, one has to analyze carefully which relativistic perturbation
operators are selected and which are omitted for the nonrelativistic limit. In the
past, relativistic effects in molecular properties were mostly determined within the
pseudopotential approximation that is used in a nonrelativistic, scalar-relativistic,
or two-component (spin–orbit-coupled) forms [37, 38]. This valence-only approx-
imation leads to accurate results for valence properties compared to all-electron
calculations [39].

In what follows, we do not discuss all the difficulties and technical details associ-
ated with the picture as it changes from a relativistic to a quasi- or nonrelativistic
framework or vice versa (see Ref. [40] for details), and assume that for molecular
properties P (in general connected to observables) obtained correctly within the
Dirac picture, PR, and the Schrödinger picture, PNR, the relativistic effects in P are
simply defined as follows:

ΔRP = PR − PNR (11.2)

As relativistic effects in most (but not all) atomic molecular properties scale
approximately as Z2 (Z being the nuclear charge), it is convenient to introduce
the (dimensionless) relativistic enhancement factor fP for a specific property P as
[41, 42]

ΔRP

PR
= fP

(
Z
c

)2

+ … (11.3)

where the velocity of light is in a.u. as c ≅ 137.036. For example, we can analyze
relativistic effects in the one-electron density, which is important in the discussion
of chemical bonding by

𝜌R(
−→r ) = 𝜌NR(

−→r ) + ΔR𝜌(
−→r ) (11.4)
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An interesting consequence of the Dirac equation is that the large (𝜙L) and small
(𝜙S) component orbitals obtained in Dirac mean-field theories alternate in their
radial notes, and therefore the radial density 𝜌i(r) for a specific orbital i does not
become zero anymore in the range 0 < r < ∞ [43]. However, as the density of
the small Dirac component constitutes only little to the total density (≤1%), and
although much less in the important valence region, this fact is perhaps not so
important for the discussion of chemical bonding.

The development of relativistic program packages using either the
Dirac–Hamiltonian, or its transformed two-component (spin–orbit-coupled) or
scalar-relativistic (spin–orbit-averaged) versions, made it possible over the past 30
years to study relativistic effects in molecular properties and chemical bonding
in considerable detail. It leads to the correct interpretation of many anomalies
observed in the chemical and physical behavior of heavy elements [44, 45], and to
a deeper understanding of periodic trends down to the superheavy elements [46],
and to very accurate results for molecular properties compared to high precision
experiments for light molecules, such as H2 [47] or He2 [48]. As a prime example
for the discussion of chemical bonding, H2 is perhaps the most widely investigated
molecule [4]. Therefore, in Table 11.1 we list the different contributions to the
dissociation energy of H2 and D2 beyond a Born–Oppenheimer nonrelativistic
treatment [47]. The results clearly demonstrate how much relativistic quantum
chemistry advanced in the past few decades toward the accurate prediction of
molecular properties including relativistic effects and beyond. This is also the
case for molecules containing heavier atoms, albeit to a lesser extent as the
main bottleneck here is still the accurate determination of electron correlation in
many-electron systems.

Table 11.1 Dissociation energies D0 and corresponding corrections for H2 and D2 (in
cm−1) at various levels of theory compared to experimental data.

Term H2 D2

Born–Oppenheimer 36112.5927(1) 36746.1623(1)
Adiabatic 5.7711(1) 2.7725(1)
Nonadiabatic 0.4339(2) 0.1563(2)
Total nonrelativistic 36118.7978(2) 36749.0910(2)
One-electron relativistic −0.4809(2) −0.4748(2)
Two-electron relativistic −0.0510(1) −0.0528(1)
Total relativistic −0.5319(3) −0.5276(3)
Lowest-order QED −0.1948(2) −0.1983(2)
Higher-order QED −0.0016(8) −0.0016(8)
Total theory 36118.0695(10) 36748.3633(9)
Experimental (Refs [49, 50]) 36118.0696(4) 36748.343(10)

The theoretical value for D2 is probably more accurate compared to the most recent experimental
result.
(Data are taken from Ref. [47].)
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While relativistic effects do not alter our view of chemical bonding for molecules
containing light elements and are only required for high spectroscopy accuracy,
the situation changes completely when moving down the periodic table. It has
become clear over the past 30 years that relativistic effects can substantially
alter our understanding of chemical bonding in molecules (or the solid state)
containing heavy elements, and are required to achieve even qualitative correct
results [34, 44, 45]. For example, relativistic effects are responsible for AuCs to
crystallize in an ionic lattice instead of being an intermetallic compound (Here two
metals do not form a metallic bond!) [51]; mercury to be the only metallic liquid at
room temperature [44, 52] with a melting temperature of Tm= −38.83◦C (although
gallium is close with Tm= 29.8◦C); the yellow color of bulk gold due to a relativistic
decrease in the electronic 5d–6s band excitation energy [53, 54]; singlet–triplet
transitions being allowed through spin–orbit coupling, for example, the strong 254
nm line in a mercury–vapor lamp belongs to the spin-forbidden 3P0→

1S0 transition
[55]; the high stability of gold compounds in the oxidation state+3 (and+5 for AuF−6 )
[44, 56], with implications to homogeneous Au+3 catalysis [57]; catalytic methane
activation by Pt+ catalyst [58]; and finally the lead–acid battery that would not work
without relativistic effects [59]. In Section 11.2, we discuss the main relativistic
effects responsible for significantly changing our (nonrelativistic) view on chemical
bonding in heavy element chemistry; that is, we use the convenient terms of direct
and indirect relativistic effects and spin–orbit coupling. Some prime examples of
how relativistic effects significantly alter our understanding of chemical bonding
in heavy-element-containing molecules are presented in Section 11.3.

11.2
Direct and Indirect Relativistic Effects and Spin–Orbit Coupling

11.2.1
Scalar-Relativistic Effects

Special relativity predicts an increase in mass m of a particle with rest mass m0 ≠ 0
traveling at a certain velocity v relative to an outside observer at rest. This implies a
relativistic decrease of the Bohr radius in a hydrogenic atom

a = ℏ2

me2
= ℏ2

m0e2

√
1 − v2

c2
= a0

√
1 − v2

c2
⇒

ΔRa1s

a1s

≈ −1
2

(
Z
c

)2

(11.5)

The second part of the formula (in a.u.) follows from the fact that for a hydrogenic
atom we have for the average radial velocity of a 1s electron ⟨vr⟩ = Z. For the heavy
element Pb (Z= 82), this results in a velocity for a 1s electron of 60% of the velocity
of light. Equation (11.5) gives a rough estimate for the relativistic enhancement
factor fa = −1∕2 for a relativistic orbital contraction. The question is, whether this
simple picture holds for a many-electron quantum system.

Table 11.2 shows relativistic enhancement factors for the Group 11 series
of elements obtained from orbital radial <r> expectation values of relativistic
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Table 11.2 Relativistic enhancement factors f <r> for the Group 11 elements from Cu (Z
= 29) to Rg (Z = 111) in the nd10(n+1)s1 configuration, and for the elements No (Z = 102,
5f 147s2) and 118 (7s27p6).

Orbital Cu Ag Au Rg No 118

1s −0.333 −0.351 −0.410 −0.551 −0.497 −0.607
2s −0.351 −0.376 −0.438 −0.579 −0.525 −0.633
2p1/2 −0.395 −0.437 −0.528 −0.749 −0.660 −0.847

2p3/2 −0.040 −0.061 −0.076 −0.085 −0.083 −0.086

3s −0.313 −0.293 −0.335 −0.425 −0.391 −0.458
3p1/2 −0.340 −0.303 −0.354 −0.465 −0.422 −0.509

3p3/2 −0.037 −0.054 −0.078 −0.089 −0.086 −0.090

3d3/2 −0.006 −0.046 −0.085 −0.102 −0.098 −0.105

3d5/2 0.243 0.039 0.001 −0.009 −0.007 −0.011

4s −0.477 −0.269 −0.296 −0.346 −0.324 −0.368
4p1/2 −0.286 −0.305 −0.362 −0.335 −0.390

4p3/2 −0.032 −0.063 −0.069 −0.067 −0.070

4d3/2 0.006 −0.058 −0.069 −0.066 −0.070

4d5/2 0.159 0.014 −0.002 0.001 −0.004

5s −0.506 −0.310 −0.316 −0.306 −0.328
4f 5/2 0.050 0.003 0.009 0.000

4f 7/2 0.089 0.035 0.041 0.031

5p1/2 −0.331 −0.327 −0.317 −0.343

5p3/2 −0.049 −0.054 −0.056 −0.053

5d3/2 −0.014 −0.047 −0.050 −0.047

5d5/2 0.140 0.018 0.021 0.015

6s −0.629 −0.379 −0.410 −0.349
5f 5/2 0.053 0.108 0.037

5f 7/2 0.087 0.176 0.067

6p1/2 −0.410 −0.462 −0.368

6p3/2 −0.047 −0.050 −0.028

6d3/2 −0.008 0.108 0.000

6d5/2 0.133 0.176 0.074

7s −0.832 −0.374 −0.451
7p1/2 −0.517

7p3/2 −0.012

Dirac–Coulomb and nonrelativistic Hartree–Fock calculations, as well as for two
selected heavy elements, the actinide nobelium and the rare gas element with
nuclear charge 118. As the action of the relativistic perturbation operator is in the
near vicinity of the nucleus (or more precisely in the K- and L-shell region [60]),
s- and p1/2-orbitals that have considerable density in the inner core region are most
susceptible to such direct relativistic effects. These orbitals get ‘‘pulled-in’’ by their
inner density tails, and as a result, s- and p1/2-orbitals contract and energetically
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stabilize (e.g., by the direct action of the relativistic kinetic mass–velocity operator
in the Pauli picture [41]). This is clearly evident from the s- and p1/2-enhancement
factors that are listed in Table 11.2. What is perhaps surprising (or even paradoxical)
is that the valence s- and p1/2-electrons, which from a classical point of view have
velocities far smaller than the velocity of light (v≪ c), also undergo large relativistic
contractions. In fact, for the Group 11 elements the valence s-electrons all have f <r>

values that are significantly larger (!) compared to their deeper-lying (core) s-shells.
This rather unexpected result is perhaps the reason why this large valence–shell
relativistic contraction has been overlooked for such a long time [61], which led, for
example, Glashow in 1988 to conclude that

Relativity becomes important only when velocities become comparable to the speed
of light. Electrons in atoms move rather slowly, at a mere one percent of light speed.
Thus it is that a satisfactory description of the atom can be obtained without
Einstein’s revolutionary theory [62].

Owing to the large contraction of all s- and p1/2-shells, the nucleus becomes
more screened and the effective nuclear charge Zeff therefore decreases (relativistic
shielding). This leads to an energetic destabilization and expansion of all orbitals
(indirect relativistic effect). This indirect effect is especially important for the outer
and more diffuse high angular-momentum functions, that is, for the d- and f -
orbitals. The interplay between the direct and indirect effects can however be quite
subtle as the f <r>-values listed in Table 11.2 show. For example, for the Group
11 elements these direct and indirect relativistic effects almost cancel out for the
outer d3/2-orbitals, while the outer d5/2-orbitals undergo a sizeable expansion, and
therefore become valence-like and accessible to chemical bonding. Further, the
results for nobelium show that both 5f 5/2- and 5f 7/2-orbitals expand because of
the relativistically screened nucleus, and in contrast to the lanthanides, become
more valence-like and therefore contribute to chemical bonding in early actinide
compounds. The very large relativistic contraction of the valence p1/2-valence shell
for superheavy element 118 (but to a lesser extent compared to the deep core
2p1/2-orbital) is remarkable, indicating rather strong spin–orbit coupling effects,
which will be discussed further later in this chapter.

What is the reason behind this rather large and unexpected relativistic valence
s-shell contraction? In early days of relativistic quantum chemistry it was attributed
to the orthogonality constraints among the relativistically contracted atomic s-
orbitals [63, 64]; that is, if 1s-orbital contracts, then the other follows. While this
explanation is intuitive, it turned out that the orthogonality constraint of the valence
atomic orbitals on the relativistically contracted inner-core orbitals leads to a slight
expansion effect for valence s-orbitals [40]. The perturbation theory shows a more
subtle (and perhaps unexpected) effect that mixing in higher bound and continuum
orbitals by relativistic perturbation operators is responsible for the contraction. The
relativistic orbital contraction is thus mainly due to the direct action of relativistic
perturbation operator, which dominates for s-orbitals as discussed earlier. This is
the reason why for Eq. (11.5) we use the unscreened nuclear charge Z (and not Zeff).
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Figure 11.1 Valence relativistic s-shell con-
traction <r>R/<r>NR (4s for Cu, 5s for
Ag, 6s for Au, and 7s for Fr). The ns-shell
remains singly occupied and the x-axis
gives the total number of electrons N with

electrons filled in successively starting from
the innermost shells. For example, N= 5 for
Au describes the occupation 1s22s26s1 and
N= 11 the occupation 1s22s22p66s1. (The
data are taken from Ref. [66].)

Still we need to explain why for gold, for example, the relativistic 6s-contraction is
significantly larger compared to the 1s-contraction.

In 1962, Corbett [65] attributed the high first ionization potential of mercury
to the rather poor nuclear shielding by the lower-lying 5d and 4f electrons.
The lower-lying relativistically destabilized (expanded) d- and f -orbitals cause an
indirect stabilization by increasing Zeff (relativistic deshielding) for the other orbitals.
Figure 11.1 shows that much of the relativistic valence s-contraction (stabilization)
originates from the filling of the lower-lying d-shell for the Group 11 elements. This
effect is less pronounced for core p-shells as shown for francium in Figure 11.1.
Removing an electron from the 5d-shell in Au substantially reduces the relativistic
6s-contraction [66]. Hence, the relativistic valence s-shell contraction diminishes
for incompletely filled d-shells, thus explaining the rather large relativistic effects
in the Group 11 and 12 series of elements; the Group 11 showing the maximum
of relativistic effects [63, 67] compared to the other elements in the period. This
maximum shifts to the Group 12 elements if the s-level is doubly occupied [66] (for
more details the reader is referred to Refs [41, 42, 66]).

The relativistic enhancement factors listed in Table 11.2 confirm that the valence
s-shell values increase from Cu down to Rg (Z= 111). This is perhaps not surprising
as the nonrelativistic valence s-orbitals become more diffuse and more polarizable
going down the group for the s-block elements, thus it becomes easier for relativistic
perturbation operators to pull in these orbitals; in fact, the very strong relativistic 7s-
contraction for Rg results in a similar atomic radius compared to Cu(!). Table 11.3
lists ionization potentials and electron affinities for the Group 11 elements. Again,
we see very large relativistic enhancement factors (for Cu and Ag the coupled cluster
values have to be taken with some care as the published ionization potentials and
electron affinities [68] are not of sufficient accuracy to produce accurate relativistic
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Table 11.3 Nonrelativistic (NR) and relativistic (R) ionization potentials ΔEIP and electron
affinities ΔEEA (in eV), relativistic effects ΔR and relativistic enhancement factors f for the
Group 11 elements.

Method Cu Ag Au Rg

Ionization potential
Experimental 7.726 7.576 9.226 –
HF ΔEIP (R) 6.564 6.339 7.682 8.93
ΔEIP (NR) 6.408 5.909 5.915 5.395
ΔRΔEIP 0.156 0.431 1.766 3.535
f IP 0.531 0.577 0.692 0.603
CC ΔEIP (R) 7.733 7.495 9.197 10.6
ΔEIP (NR) 7.555 6.934 7.057 5.87
ΔRΔEIP 0.236 0.561 2.14 4.73
f IP 0.514 0.636 0.700 0.680
Electron affinity
Experimental 1.163 1.303 2.309 –
HF ΔEEA (R) 0.033 0.123 0.666 0.244
ΔEEA (NR) 0.011 0.043 0.099 0.069
ΔRΔEEA 0.022 0.08 0.567 0.175
f EA 14.89 5.529 2.562 1.093
CC ΔEEA (R) 1.253 1.254 2.295 1.565
ΔEEA (NR) 1.165 1.054 1.283 1.054
ΔRΔEEA 0.088 0.212 1.012 0.511
f EA 1.568 1.356 1.327 0.498

For Au and Rg the Fock-space coupled cluster (CC) results are taken from Kaldor and coworkers [70,
71], for Cu and Ag the Douglas–Kroll scalar-relativistic CCSD(T) results are used from Sadlej and
coworkers [68]. Experimental values are from Refs [72, 73]. For Rg the relativistic ground states are as
a reference, for example, the 2D5/2 state for neutral Rg.

enhancement factors). For superheavy element Rg the relativistic 7s-contraction
is so large that the electronic ground state becomes 2D5/2 (6d4

3∕2d5
5∕27s2

1∕2) instead

of the expected 2S1/2 (6d4
3∕2d6

5∕27s1
1∕2) state [69]. Therefore, the first ionization (or

uptake) of an electron is from (into) the 6d5∕2 shell and not from the 7s1∕2 shell,
which diminishes relativistic effects for both the ionization potential and electron
affinity. For element 118 the relativistic 8s1∕2-contraction becomes so large that it
becomes the first rare-gas element with a positive electron affinity (0.056 eV at the
coupled cluster level of theory) [71].

11.2.2
Spin–Orbit Effects

Atomic orbitals of angular momentum l > 0 separate into j = l ± 1/2 levels due
to spin–orbit interaction, which is a relativistic effect as it is correctly derived only
from the Dirac equation. This lifting of degeneracy in atomic levels becomes very
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large in heavy elements as clearly seen from the relativistic enhancement factors
that are listed in Table 11.2. This was already known from early days of atomic
spectroscopy [72], but its implication to chemical bonding was realized rather
late, except perhaps for electronic transitions in atoms and molecules to correctly
assign spectra, and where forbidden electronic transitions become allowed due
to spin–orbit coupling (such as in the case of the intense 3P0→

1S0 transition in
mercury vapor [55]). Spin–orbit coupling was included in early ligand and crystal
field theory as well [74], as also in Jahn–Teller or Renner–Teller symmetry-breaking
effects that are sensitive to spin–orbit effects [75]. Because spin–orbit effects can
break symmetry between degenerate energy levels, it is the most well known and
studied of all relativistic effects.

The relativistic enhancement factors listed in Table 11.2 show that p1/2-orbitals
contract strongly, while p3/2-orbitals remain mostly unaffected (or expand slightly
for valence shells); valence d5/2-, f 5/2-, and f 7/2-orbitals expand, while the d3/2-orbital
can contract or expand depending on subtle shell–structure effects. Because of the
strong relativistic stabilization of the p1/2-shell, spin–orbit splitting of the p1/2/p3/2

levels can reach the size of typical bond dissociation energies for the sixth and
seventh row p-block elements. For example, the 2P1/2/2P3/2 spin–orbit splitting in
thallium is 0.966 eV [72], and that for element 113 is 2.793 eV [76]. Spin–orbit
splitting becomes even larger moving to the right-side within the p-block elements
in the periodic table. For astatine, the 2P3/2/2P1/2 spin–orbit splitting is 1.969 eV
[72], while for element 117 it is 7.733 eV(!) at the Dirac–Fock level (including
Breit and the lowest-order QED effects). Moreover, the relativistic (nlj) orbitals for
l > 0 (p1/2, p3/2, d3/2, etc.) are quite different to the nonrelativistic (nl) orbitals,
the latter used extensively in Cartesian coordinates (e.g., pz and dz2 ) to discuss
chemical bonding in standard quantum chemistry [77, 78]. For example, a p1/2-
orbital consists of a (complex) admixture of all three Cartesian p-spin-orbitals.
The (positive) combination of two p1/2-orbitals along a molecular axis leads to
1/3 σ-bond and 2/3 π-antibonding. Hence, in order to form a pure 𝜎-bond in a
molecule one requires an admixture of p3/2- into p1/2-orbitals, which is not always
energetically favored if spin–orbit splitting becomes large. In other words, strong
spin–orbit coupling will destabilize a 𝜎-bond and will lead to a closed-shell system
if the p1/2-orbital becomes doubly occupied. As an example, we mention superheavy
element Fl (Z= 114) with a 7s27p2

1∕2 closed-shell configuration, which is assumed to
be chemically inert. Current one-atom-at-a-time experiments are designed around
this chemical property [79]. The relativistic stabilization of the p1/2-shell is already
seen in the trend down the periodic table for the Group 13 and 14 elements. An
important implication of the spin–orbit coupling is that the special stability of a
half-filled p-shell (p3) loses its significance for the heavy elements [41].

A further complication arises from the fact that spin-symmetry has to be included
allowing for half-integer angular momenta. Bethe [80] therefore introduced an
additional rotation R by 360

◦
into molecular point-groups (which for single point-

groups leads to the identity), resulting in the so-called double groups, as it
doubles the number of operations. Here either the Bethe (Γj-notation) or the
Mulliken–Herzberg notation (labeled according to their dimensionality) is used for
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labeling irreducible representations in double groups, except for linear molecules
where one uses conveniently the 𝜔–𝜔-coupling notation. For example, a 3Π state
of a diatomic molecule splits into four states of 0+, 0−, 1, and 2, originating from
products of spin and spatial symmetry. Double-group symmetry is extensively used
in ligand- or crystal-field theory when strong spin–orbit coupling is encountered
[81]. For example, a 4F atomic state (e.g., the ground state of Cr3+) splits into
four levels because of spin–orbit coupling (4F3/2, 4F5/2, 4F7/2, 4F9/2), and further
in a total of nine levels in a cubic ligand field, which are characterized by their
double-group irreducible representations. For further information the reader is
referred to standard textbooks in group theory [82], and to an excellent review by
Leszczynski and coworkers [83]. Double-group symmetry has been implemented
into two- and four-component molecular SCF codes to save computer time [84].

The discussion presented in Section 11.2 should be sufficient to understand the
subtle interplay of relativistic effects in atomic shells qualitatively, and to discuss
its implications to chemical bonding in heavy-element-containing compounds
further. We refer to the published work by Schwarz for a more detailed analysis of
relativistic effects on atomic shell structure [41, 42].

11.3
Chemical Bonding and Relativistic Effects

It has become clear over the past decades that the influence relativistic effects have
on valence orbitals will substantially alter our understanding of chemical bonding
in heavy elements. The field has been extensively reviewed [23, 34, 41, 44, 63],
and we restrict ourselves to the discussion of a few prime examples to discuss
the importance of direct, indirect, and spin–orbit relativistic effects on chemical
bonding.

The filling of the d-levels in the transition metal series results in an increase in
the contraction/stabilization of the valence s-orbital as Figure 11.1 shows, and to
the well-known maximum of relativistic effects at the Group 11 series of elements
in the periodic table. The strong relativistic stabilization of the 6s-orbital in Au
leads to the notion that bulk gold is chemically more inert compared to their
lighter congeners [44]. Table 11.4 shows relativistic and nonrelativistc solid-state
calculations for bulk gold by Takeuchi et al. [86]. The atomic volume increases by
14%, the cohesive energy by 52%, and the bulk modulus by 80% due to relativistic
effects. The relativistic effects lead to many anomalies in the properties of bulk
gold, for example, we have for the specific resistivity Cu 1.72, Ag 1.62, Au 2.4
[10−8 Wm]; the thermal conductivity Cu 3.85, Ag 4.18, Au 3.1 [J cm−1 s−1 K−1];
the electronic heat capacity Cu 6.926, Ag 6.411, Au 6.918 10−4 J K−1mol−1; the
melting point Cu 1083, Ag 961, Au 1064◦C; and the boiling point Cu 2567, Ag
2212, Au 3080◦C to name but a few [66]. Christensen and Seraphin determined the
interband edge in the optical spectrum as 2.38 eV in agreement with experiment,
which is much smaller compared to that of silver (3.7 eV) [53]. More recently,
the onset of the interband transition in gold has been calculated at 1.9 eV using
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Table 11.4 Lattice constants a and volume V, cohesive energy Ecoh and bulk modulus B for
fcc gold from nonrelativistic and relativistic pseudopotential density functional calculations
[86].

Au (fcc) a [Å] V [Å3] Ecoh [eV] B [Mbar]

Nonrelativistic 4.314 20.072 2.27 0.996
Relativistic 4.104 17.282 3.46 1.790
Experimental 4.079 16.967 3.81 1.732

Experimental values are from Refs. [87, 88].

scalar-relativistic time-dependent DFT, compared to 3.5 eV at the nonrelativistic
level [54]. The low-absorption edge calculated at the relativistic level is seen as the
primary reason for the yellow color of gold.

From the relativistic increase in both the ionization potential ΔEIP and the
electron affinity ΔEEA we can estimate the change in the electronegativity 𝜒 using
Mulliken’s empirical formula

𝜒 ≅ 0.187(ΔEIP + ΔEEA) + 0.17 (11.6)

where ΔEIP and ΔEEA are in units of eV. This leads to a relativistic change in
𝜒 of 0.07 for Cu, 0.14 for Ag, 0.58 for Au, and 1.14 for Rg [66]. For the heavier
metals, these changes are significant yielding rather large electronegativities of
2.37 for Au and 2.44 for Rg [89]. Hence, both Au and Rg may be considered as
pseudo-halides having the largest electronegativities of all metals in the periodic
table (for comparison, iodine has a Pauling electronegativity of 2.2). A direct
consequence of this shift to higher electronegativities is that the ionicity increases
in gold bonding with electropositive ligands such as Li or Cs, and decreases with
more electronegative ligands such as F or Cl. A Mulliken population analysis
supports this, for example, we obtain at the Hartree–Fock level a Mulliken charge
of −0.68 (nonrelativistic) and −0.74 (relativistic) for gold in AuCs, and +0.73
(nonrelativistic) and +0.59 (relativistic) in AuF. This relativistic change of the ionic
bonding character has direct consequences for bulk properties.

Self-consistent linear muffin-tin orbital (LMTO) band-structure calculations by
Christensen and Kollar in 1983 showed that nonrelativistic AuCs is a metal (as
one expects), whereas relativistic AuCs is a semiconductor in agreement with
experimental results [51]. The band gap has been determined to be of 2.6 eV [90].
The electronic band gap at the relativistic level originates from the scalar-relativistic
effects and not from the spin–orbit coupling [51]. Hence, two metals do not form
a metallic bond in this case.

Turning to electronegative ligands, the unusual zigzag chain-like structures as
shown in Figure 11.2, known for the bulk gold halides AuCl, AuBr, and AuI, have
puzzled inorganic chemists for a long time, as simple ionic models predict cubic-
like structures as found, for example, for NaCl or AgCl. Here the relativistically
reduced ionicity (increased covalency) in the gold–halide bonding leads to a
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(a) (b)

Figure 11.2 Cubic (rock-salt) solid-state structure of AgCl (a) in comparison to chain-like
zigzag structures for AuI (b).

stabilization of more than 100 kJ mol−1 for the chain-like structure of AuCl, AuBr,
and AuI compared to the cubic arrangement [91]. Similarly, the unusual cinnabar
structure of HgS and the montroydite structure of HgO, can both be attributed to
the relativistic 6s-stabilization and a reduced ionicity in mercury–ligand bonding
[92, 93].

Concerning the stability of gold–ligand bonding we can use Pauling’s empirical
formula for a diatomic gold molecule (which defines the Pauling electronegativity
scale), and divide relativistic effects into covalent and ionic contributions

De(AuL) = 1
2
{De(Au2) + De(L2)} + f {𝜒Au − 𝜒L}2

⇒ ΔRDe(AuL) = 1
2
ΔRDe(Au2) + f ΔR𝜒

2
Au − 2f 𝜒LΔR𝜒Au

≈ 280 − 80𝜒L [kJ • mol−1] (11.7)

where De(Au-L) is the dissociation energy of diatomic Au-L, 𝜒 the electronegativity
of a specific atom, and f an empirical factor to be determined. Here we neglect
relativistic effects in the ligand L. Using the relativistic coupled-cluster calculations
we obtain ΔRDe(Au2)=78 kJ mol−1 [94]. The empirical factor can be obtained from
calculations of relativistic effects in dissociation energies for series of diatomic gold
compounds, or directly through Eq. (11.7), which yields an f -value of about 80–100
kJ mol−1. Equation (11.7) correctly predicts that AuF is relativistically destabilized
with respect to dissociation into Au and F. The instability of AuF is the reason
behind its late discovery, which has been synthesized only in the gas phase [95].
This relativistic destabilization can also be explained by a depletion of 6s-density
from Au on bonding with electronegative ligands, leading to a reduced relativistic
6s-participation in all occupied bonding orbitals, and therefore to a reduced orbital
stabilization in such orbitals compared to the atomic level [44].

Electropositive ligands shift electron density into gold leading to an increase
in the relativistic 6s-stabilization at the molecular level. As a result, intermetallic
gold compounds undergo a rather large relativistic bond stabilization leading to
some unusually high dissociation energies [96]. This has implications for gold
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nanocatalysis where the 6s-density in gold clusters can be fine-tuned by doping
with appropriate electropositive metals [97]. An interesting consequence of the
large relativistic stabilization through bonding with electropositive ligands is that
the two closed-shell 6s2 atoms Au− and Ba give the strongest closed-shell interaction
predicted so far with a dissociation energy of 1.48 eV [98].

The linear relationship (Eq. (11.7)) also works reasonably well for estimating
relativistic bond contractions in diatomic gold compounds [66]

ΔRre(AuL) ≈ −0.26 + 0.02𝜒L[Å] (11.8)

As shown in Eq. (11.8) all Au-L bonds contract because of relativistic effects. The
largest relativistic bond contraction is obtained in bonding with electropositive
ligands (metals) leading to very short bond distances, which can become as small
as those in the equivalent compounds with the lightest Group 11 element, copper.
In contrast, for coordination compounds of gold in the oxidation state +3, the
6s-density is substantially reduced by the surrounding electronegative ligands,
and the relativistic bond contraction is therefore much smaller compared to the
corresponding coordination compounds of gold in the oxidation state+1. This leads
to an interesting anomaly for the crystal structure of Cs2[AuCl2][AuCl4], where the
shorter Au–Cl distance belongs for the [AuCl2]− unit, and the longer distance to
the [AuCl4]− unit, and not vice versa as one expects [99]. Even larger relativistic
bond contractions result for the compounds containing the superheavy element
Rg [100].

From the chemical hardness 𝜂 defined according to Parr and Pearson (HSAB
model) we get

𝜂 = 1
2
(ΔEIP − ΔEEA) ⇒ ΔR𝜂 =

1
2
(ΔRΔEIP − ΔRΔEEA) (11.9)

where ΔEIP and ΔEEA are in eV [101]. Equation (11.9) gives chemical hardness
values (in eV) of 6.28 for Cu+, 6.95 for Ag+, and 5.64 for Au+. For comparison, the
nonrelativistic hardness is 7.19 for Au+ [66]. Hancock et al. [102] investigated the
aqueous chemistry of the positively charged Group 11 metals. They found that both
Au+ and Rg+ are strong Lewis acids, and the softness (S∼1/𝜂) follows approximately
the trend Rg+ >Au+ >Ag+ >Cu+. Au+ therefore binds preferentially to soft ligands,
and it is well known that relativistic effects dominate the coordination chemistry of
Au+ [66].

Concluding this section on gold chemistry we note that the easy availability of
the d-electrons in chemical bonding due to relativistic effects leads to a stabilization
of the higher oxidation states +3 and +5 in gold, and even more so for Rg. At
the nonrelativistic level, AuF−6 , with gold in the oxidation state +5, would not be
known [100]. Many other properties, such as gold–ligand stretching force constants
or gold–nuclear quadrupole coupling constants, show extremely large relativistic
effects [66, 103]. Thus, the chemistry of gold cannot be understood without the
inclusion of relativistic effects.

Another consequence of the relativistic valence s-stabilization is that the
6s (and 7s) electrons become more inert and less active in chemical bonding for
the 6p (and 7p) main group elements. While the inert pair effect can be explained
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by a natural periodic trend down the p-block elements of the periodic table, the
relativistic effects substantially alter it for the heaviest group members [104]. It
leads to a destabilization of the higher oxidation state, that is, for Tl3+ or Pb4+, and
even more so for the superheavy elements 113 and 114 (Fl), where, in addition the
7p1/2-shell becomes chemically inert as well [105]. One interesting consequence of
this is that the voltage of the lead–acid battery changes from +0.39 V to +2.13
V; thus, cars only start because of relativity (as Pyykkö phrased it [59]). We also
note that relativistic effects contribute to the lanthanide, and even more so to the
actinide contraction [106].

The role of indirect relativistic effects to chemical bonding is less understood
and studied computationally. The close proximity of the 5d- and 6s-orbitals for
gold gives rise to higher oxidation states, but this is mostly due to the relativistic
6s-contraction, which brings the 6s-orbitals closer to the 5d, and only partly due to
the relativistic 5d-expansion. The most spectacular example here is HgF4 (Hg in the
oxidation state+4), which has been theoretically predicted by Kaupp and co-workers
[107, 108], and experimentally found by Wang et al. [109]. This molecule would not
exist at the nonrelativistic level. Participation of the 5d-orbitals [108] in the chemical
bonding is evident from the MO pictures shown in Figure 11.3. Going further
down the Group 12 elements of the periodic table, CpF4 is thermodynamically even
more stable compared to HgF4 [110].

The indirect relativistic expansion of the 5f -shell in the actinides makes
f -participation in chemical bonding more accessible, which implies that the
5f -electrons are not quite as core-like anymore compared to the lanthanides. How-
ever, the importance of 5f -participation in actinide bonding is often a matter of
debate [111]. For example, the addition of an extra 5f electron to UO2+

2 forming
UO+

2 causes a change in the bond length of 0.07 Å [112], but this is not because of
overlap of U 5f with oxygen 2p, but more likely due to the additional screening of
the nucleus. Figure 11.4 shows the two highest occupied valence orbitals for UO2+

2 ,
with large 5f -participation in the U–O bonding. Gagliardi and Roos have recently
proposed a quintuple bond for U2 clearly involving 5f -participation (beside 7s and

(a) (b) (c)

Figure 11.3 Bonding of F 2p-orbitals with Hg 5dxy (a), 5dz2 (b) and 6s (c) orbitals in

HgF4. Note that the Mulliken population analysis for Hg gives 5d9.756s0.816p0.56 at the DFT
level.
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(a) (b)

Figure 11.4 The two highest occupied orbitals of 𝜋u (a) and 𝜎u (b) symmetry of UO2+
2

showing large 5f -participation in the U–O bond (see Ref. [113] for details).

6d) in chemical bonding [9]. Spin–orbit coupling leads to a destabilization in this
dimer; that is, from 40.2 kcal mol−1 at the scalar-relativistic down to 30.5 kcal mol−1

for the dissociation energy [9]. Liu et al. [114] pointed out that the low stability of
the lighter actinocene anions M(C8H8)−2 is a relativistic effect as the 5f -orbitals are
relativistically destabilized, thus lowering the electron affinity in the actinocenes.

In ligand-field theory, spin–orbit coupling is treated as a perturbation in strong
ligand fields. This leads to the notation that spin–orbit coupling is quenched
in strong ligand fields, as different j-states of the same l quantum number mix
in a molecular field. This may be rationalized by considering the static dipole
polarizabilities for the different j-levels. It is evident that orbitals in the lower
j= l− 1/2 state are less polarizable than the ones in the corresponding high
angular momentum state of j= l+ 1/2. For example, for Tl the 2P1/2 ground
state has a polarizability of 51.6 a.u., whereas the excited 2P3/2 state of Tl has
larger polarizabilities of 105.0 a.u. (Mj = 3/2) and 55.7 a.u (Mj = 1/2). [115]. In
an increasing electrostatic field these atomic levels change in energy according to
the quadratic Stark shift. This allows for better mixing of p1/2- and p3/2-orbitals
to form 𝜎- or 𝜋-bonds. Moreover, spin–orbit-coupled valence levels can become
depleted in density because of electron-withdrawing ligands, as in the case of
TlF3. Large spin–orbit coupling effects are expected where strong ligand fields are
absent, for example, for the diatomic compounds TlH, Tl2, or Pb2. In molecules
of Tl and Pb, the spin–orbit destabilization can be estimated from spin–orbit
averaging of known atomic J-states [72], which results in an atomic spin–orbit
stabilization of 0.64 eV for the 2P1/2 state of Tl and 1.06 eV for the 3P0 state of Pb
compared to the scalar-relativistic level. As spin–orbit coupling at the molecular
level is much reduced in a strong ligand field compared to the atomic limit, these
estimates represent upper bounds. As a result, we obtain rather small dissociation
energies of 2.06 eV for TlH, 0.43 eV for Tl2, and 0.86 eV Pb2. For comparison,
without spin–orbit coupling at the scalar-relativistic level one obtains dissociation
energies of 2.52 eV for TlH, 1.03 eV for Tl2, and 1.83 eV Pb2 [113, 116]. As a
result of this net spin–orbit destabilization, the dimers Tl2 and Pb2 have the lowest
dissociation energies in the main group element series (except for the superheavy
elements). This translates into low cohesive energies for the bulk metals, where
we see a monotonic decreasing trend in the Group 14 series of elements down to
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superheavy element Fl. Bulk lead has a calculated cohesive energy of 1.98 eV, which
compares to 3.01 eV at the scalar-relativistic level and 3.22 eV at the nonrelativistic
level [117]. For comparison, bulk Fl (Z= 114) undergoes a very large spin–orbit
destabilization resulting in a cohesive energy of only 0.50 eV. Furthermore, because
of scalar-relativistic effects, bulk Pb changes from the diamond structure to fcc,
and because of spin–orbit coupling bulk Fl changes further from fcc to hcp [117].
Interestingly, low cohesive energies do not necessarily translate into a low melting
point TM as we have TM(Tl) = 303◦C > TM(In) = 156◦C, and TM(Pb) = 327◦C
> TM(Sn) = 232◦C, which clearly is a many-body effect and needs to be analyzed
further.

Jahn–Teller (JT) geometric distortions can be rather large even for small energy
differences between high (undistorted) symmetry state and the lower symmetry
distorted state, often resulting in a dynamic rather than a static JT effect [118]. It
is clear that for such systems relativistic effects can have substantial influence to
JT distortions. Spin–orbit effects can often quench a JT distortion. For example,
both the 1E′(e′2) and the 3E′(a′′12e′1) states in Pb3 (D3h) undergo first-order E ⊗ e
JT distortion to the corresponding 1A1/1B2 and 3A2/3B1 states, respectively, with
bonding angles away from the ideal angle of 𝛼 = 60

◦
. If, however, we assume

strong spin–orbit coupling and Pb in the J= 0 (6p2
1∕2) closed-shell state, we expect

restoration of the high symmetry D3h state. In fact, for the intermediate coupling
scheme the situation is far more complicated, with the spin–orbit-coupled energy
hypersurface showing multiple minima [119]. In the scalar-relativistic domain, the
3B2 (𝛼 = 60

◦
) and 1A1 (𝛼 = 86.5

◦
) states compete for the ground state, while in

the spin–orbit-coupled domain these states mix and they become separated with
A1 being the ground state at an angle of 𝛼 = 106.9

◦
[119]. A similar situation is

found for Pb6, where spin–orbit coupling suppresses completely the expected JT
distortion from the high symmetry Oh structure to the D4h symmetry [120]. For a
detailed discussion of relativistic effects in Jahn–Teller or Renner–Teller systems
the reader is referred to the work by Domcke and coworkers [121–123].

Finally, we mention a few more spectacular examples of spin–orbit effects in
superheavy-element-containing compounds. Mixing of a1

′
HOMO ⊗ e′LUMO orbitals

results in a second-order JT effect for the Group 17 trihalides EX3 (such as
IF3) yielding potential energy hypersurfaces with a Mexican hat topology. These
molecules distort from a high symmetry D3h geometry to a T-shaped C2v struc-
ture. Both scalar and spin–orbit effects have considerable influence in predicting
accurately such JT hypersurfaces [124, 125]. For (117)F3 the situation is quite
different [124, 126]. Here the 7p3/2 electrons are more loosely bound due to
relativistic effects, and the molecule can approximately be described by ionic bond-
ing, that is, 117+3 bonding to three negatively charged fluorine atoms. The ion
117+3 is spherically symmetrical because the 7p2

1∕2 configuration is of closed shell
due to strong spin–orbit coupling. This predicts a D3h high symmetry structure
rather than a JT distortion to a T-shaped structure [124, 125]. Another example
is (118)F4, which changes from a planar D4h structure predicted at the scalar-
relativistic level to a tetrahedral Td structure on inclusion of spin–orbit effects
[127].
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11.4
Conclusions

Relativistic quantum chemistry has advanced to such an extent that accurate pre-
dictions of molecular properties can now be made for heavy-element-containing
compounds. This allows for the discussion of relativistic effects comparing proper-
ties obtained from the Dirac–Coulomb–(Breit+QED) equation with those from a
nonrelativistic Schrödinger treatment. For a qualitative discussion it is convenient
to categorize relativistic effects into direct, indirect, and spin–orbit effects. Valence
orbitals important for chemical bonding are directly affected by the action of the
relativistic perturbation operator leading to a contraction/stabilization of all orbitals
(direct-relativistic effect). This leads to additional screening of the nucleus, and a
possible relativistic expansion/destabilization (indirect-relativistic effect) of diffuse
higher angular momentum orbitals. Spin–orbit coupling lifts the degeneracy in the
shells with l> 0, and the corresponding level splitting can reach the size of typical
bond dissociation energies in heavy-element-containing compounds. A delicate
interplay between relativistic effects in different shells and the resulting nuclear
screening is responsible for the large relativistic s-shell contraction observed for
the late transition elements such as the Group 11 or 12 elements of the periodic
table. The study of the chemistry and bonding of the sixth row elements requires
the inclusion of relativistic effects, and some unusual anomalies down the periodic
table can be attributed to such effects. Going even further down the periodic table,
the chemistry of superheavy elements cannot be understood without inclusion of
special relativity. In fact, the correct placement of the elements in the periodic table
beyond element 120 requires the inclusion of relativistic effects [23, 128]. Dirac had
laid the foundation of the relativistic quantum theory as early as in 1926, but only
in recent history has it made it into mainstream chemistry. Over the past 30 years
or so we have realized that relativistic effects in molecular properties and chemical
bonding of heavy-element-containing compounds play a much greater role than
anticipated originally [44].
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M., and Pyykkö, P. (1994) Phys. Rev. A,
53, 3926–3933.

77. White, H.E. (1931) Phys. Rev., 38,
513–520.

78. Szabo, A. (1969) J. Chem. Educ., 46,
678–680.
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