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I. Introduction

The concept of molecular orbitals being constructed from atomic orbitals
was suggested as early as 1929 by Lennard-Jones 1 and subsequently
referred to by Mulliken 2 as the “linear combination of atomic orbitals”
(L.C.A.0.-M.O.) approach. It met its first success when Hiickel 3, in
1931, took the idea as the basis of his molecular orbital theory for conju-
gated hydrocarbons. In these compounds, usually planar, each carbon
atom is surrounded by only three neighbors. Such a conformation can
best be explained by allowing the carbon atomic orbitals to hybridize
into three sp2? coplanar orbitals at 120° from each other and one $,
orbital perpendicular to this plane. Hiickel noticed, that in such an
arrangement, the $, orbitals of the various carbon atoms overlap only
between themselves and not with the sp2 orbitals. Hence sigma-pi
separation was achieved and a good description of the x systems could
be obtained by a linear combination of the $» atomic orbitals, providing
however that electron repulsions with the ¢ framework are neglected
(or averaged).

The success of such a description, however, rests upon the assumption
that the chemical behavior of conjugated hydrocarbons is solely deter-
mined by its x electrons. Its advantage is that only one orbital per
carbon atom is involved in the L.C.A.O. calculation, and the hydrogen
Is orbitals can-be neglected altogether.

The remaining difficulties in solving the L.C.A.O. problem were left by
rather trivial assumptions such as the neglect of electron repulsion (one-
electron theory), of overlap and of long-range (non-bonding) interactions.

In spite of these gross approximations, the method proved to be
extremely useful and was extensively used to correlate the chemical
properties of conjugated systems. Several attempts were subsequently
made to introduce the repulsions between the 7 electrons in the calcula-
tions. These include the work of Goeppert-Mayer and Sklar 4 on benzene
and that of Wheland and Mann 9 and of Streitwieser ® with the o
technique. But the first general methods of wide application were develop-
ed only in 1953 by Pariser and Parr 7 (interaction of configuration) and
by Pople 8 (SCF) following the publication by Roothaan 9 of his self-
consistent field formalism for solving the Hartree-Fock equation for
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Introduction

molecules. All these methods, however, still make use of the ¢ #-separability
and only the one p orbital per carbon atom is included specifically in the
calculations.

The all-valence orbital methods, on the other hand, are methods using
as a basis set all atomic orbitals having the same quantum number as the
highest occupied orbital. Such methods represent a comparatively recent
development, and have their origin in the one-electron theories applied
to calculations on paraffins 19, The rather slow development in this
field (the first methods were suggested only in the 50’s) may be attributed,
firstly, to the overshadowing success of the & calculations; secondly, and
perhaps more important, to the fact that in saturated hydrocarbons a
number of properties are given fairly accurately by simply adding the
properties of the isolated bonds, and those that are not were either not
then known, e.g. spectra, or very small, e.g. dipole moments. The one
exception is tonization potential, which is not a regular function of each
bond. For these reasons the early theories were concerned in the main
with specific properties of saturated hydrocarbons. Thus we have
Brown'’s 19 linear combination of bond orbitals (L.C.B.0O.) theory and the
perturbation work of Dewar and Pettit 12) concerned with bond energies
and heats of formation, while the equivalent orbital theory of Lennard-
Jones and Hall 13 and the united atom theory of Franklin 14 were
concerned with ionization potentials.

In 1954 Sandorfy and Daudel 1% published their “C”* approximation,
a one-electron approximation which employs a linear combination of
sp3 orbitals and borrows most of its simplifying features from the Hiickel
theory. The originality of this method lies essentially in the introduction
of a resonance integral mg between sp3 orbitals of the same carbon atom.
Sandorfy 18 showed that the inductive effect due to a heteroatom can
be reproduced by such a calculation.

Yoshimuzi 17, using this method with different values for m, calcu-
lated the electronic distribution produced by substituting a heteroatom
for hydrogen. He found that a value of the m parameter such that
m2=0.12 was necessary in order to reproduce the dipole moments of a
set of linear paraffins. Fukui ¢f al. 18, using the positive square root of
0.12, i.e. m=+0.35, were able to correlate the ionization potentials,
heats of formation, and bond energies in linear as well as cyclic hydro-
carbons and their derivatives. It was also shown that the method permits
a coherent interpretation of inductive effects to be made so that a relation
exists between some calculated values and the reactivity.

There was, however, one serious shortcoming. The method did not
work well for branched hydrocarbons. To overcome this, Fukui introduced
further parameters in order to give different « values (diagonal matrix
element) to primary, secondary, tertiary, and quaternary carbon centers.
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Introduction

Klopman 19 pointed out that the method might be placed on a more
theoretically satisfying basis by replacing the interaction between
orbitals of the same atom by the interaction between non-bonded orbitals.
This was amplified by the fact that if the hydrogen atoms are specifically
included, the method yields simple additivity of bond properties, thus
losing its usefulness. He next demonstrated that by taking m as the
negative square root of 0.12, i.e, m = —0.35, one could produce results
equivalent in accuracy to Fukui’s without the necessity of special para-
metrization for the branched-chain case.

Side by side with these developments in the organic field, Wolfsberg
and Helmholz 20 published in 1952 one of the earliest one-electron all-
valence orbital calculations on the electronic structure and spectra of the
inorganic oxyanions MnOj, CrO3~ and ClO7. Their method requires the
evaluation of two integrals, the diagonal matrix element Hy and the
off-diagonal element Hyy. They assumed, first, that non-valence electrons
were unaffected by bonding and could thus be considered as constituting
undisturbed cores; secondly, the value of Hy could be equated, to a first
approximation, to the valence state ionization potential; third, that
Hyj could be evaluated by means of the expression

KSy(H H
Hy= 131, t2c+ 1) (1)

originally due to Mulliken 21,

The result of these efforts, in both the organic and inorganic fields,
was the gradual build-up of a set of rules to be used for the approxima-
tions in a one-electron all-valence orbital treatment of molecules. This
culminated in Hoffmann's “‘extended Hiickel theory” where these and a few
new rules were brought together in a very rational manner leading finally
to a coherent one-electron method of wide application 22,

Within the last five years the development of large-capacity computers
has been paralleled by the development of methods for performing all-
valence electron calculations including electron interaction for large
molecules. In 1964 two papers published independently by Pohl 2% and
by Klopman 24 laid out the procedure for such calculations; however,
they were restricted to small molecules. The self-consistent field (S.C.F.)
formalism which is used in these methods was found to be particularly
versatile and appropriate for computer use.

Because of the electron interaction terms, the matrix elements in this
approximation are themselves a function of the coefficients of the atomic
orbitals. Initially, therefore, a reasonable guess is made as to the elec-
tronic distribution in the molecule and the calculation carried out until
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Introduction

a new charge distribution is obtained. This new set is then used as a
starting point and the procedure repeated until self-consistency is
attained. Hence, the final charge distribution is independent of the initial
choice and the total energy obtained for this self-consistent charge distri-
bution is the energy of the molecule. An excellent discussion of the various
means by which a coherent S.C.F. theory for all valence electrons could
be attained was published by Pople, Santry and Segal 29 in 1965. In this
article, the principles of several methods of increasing levels of sophistica-~
tion were outlined. Among these, the CNDO, complete neglect of differen-
tial overlap, was the first to be developed, and applied to the calculation
of charge densities in large organic molecules 26), This was followed in
1967 by Pople’s intermediate neglect of differential overlap (INDO) 27
and by Dewar and Klopman’s partial neglect of differential overlap
(PNDO) 28 approach. Since then, a number of variants, usually differing
from the preceding ones only by the choice of parameters or the method
or parametrization have been published 29, and were first reviewed by
Jaffe 2904) in 1969. These methods, as well as the first ones, are discussed
in the following pages. Their objective is usually to permit a more accurate
calculation of a specific property and are parametrized accordingly. No
program based on the NDDO method (neglect of diatomic differential
overlap), which is the most sophisticated method yet suggested, has been
reported so fara,

8) While this review was in press, such a method was published by Sustmann,
Williams, Dewar, Allen and Von Schleyer 53,
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. The L.C.A.O0.M.O. Procedure, Hartree-Fock and
S.C.F. Formalism

The Hartree-Fock method is a procedure for finding the best *‘many-
electron’” wave function ¥ as an antisymmetrized product of one-electron

orbitals ¢y (u)
Y’=71—1;; g (—1)PP[$1(1) (1) $2(2) B(2) - . .$m(w) o(2) . . .$a(n) o(n)]  (2)

In the case of molecules, the functions ¢, (x) are molecular orbitals
formed usually from a linear combination of atomic orbitals x; (L.C.A.O.M.
O. approximation)

$m (1) = %“ml 2 (1) (3)

The set of initial atomic funciions x4 is called the basis sef. Although
the complete solution of the Hartree-Fock problem requires an infinite
basis set, good approximations can be achieved with a limited number
of atomic orbitals. The minimum number of such functions corresponding
approximately to the number of electrons involved in the molecule
is the “minimal” basis set. The coefficients 4,,; which measure the import-
ance of each atomic orbital in the respective molecular orbitals are para-
meters determined by a variational procedure, i.e. chosen so as to mini-
mize the expression

JWYHY at
E=“tgwa “)

where E represents the expectation value of the electronic energy associat-
ed with the Hamiltonian H of the given molecule. This Hamiltonian is

espressed as
1 o Za 1
H=D (-3vi-> )+ 2 > ®
u A n >0

451




The L.C.A.0.M.O. Procedure, Hartree-Fock and S.C.F. Formalism
where —1/2V5 represents the kinetic energy operators of the indi-
vidual electrons g,

_z—rZ_A' are the potential energy operators
An
where Z4 is the charge on nucleus A, and
ray is the distance between this nucleus and
electron

1/ru»  are the mutual repulsion operator between any two
electrons u and ».

Representing the parenthesized one-electron part of the Hamiltonian
by H(u), we may rewrite the above equation as

H=D W42 D 5,

un>r

(6)

The variation theorem requires, for each molecular orbital #, that the
coefficients an; satisfy the following sets of simultaneous equations:

Sami (Fyy— EmSy) =0 forj=1,2,...,N (7)
i

where N is the number of basis sef functions used,

and > 2 @mi @mg Syy=1 (the normalization conditions) 8
L)

where Sy is the overlap, equal to (yix; dt.
The solution of the secular equation

|Fiyy—ESy|=0 ©)
are the values E, which satisfy the first set of simultaneous equations

(Eq. 7).
Roothaan has shown that for a closed shell system, Fy; is given by

Fy=Hjy+33 Pu (5| 4) — 4 %] 0] (10)
k1
where Hj is given by

Hig={ s () H (1) s () At (11)
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The L.C.A.O0.M.O. Procedure, Hartree-Fock and S.C.F. Formalism

Py is the total elecironic population in the overlap region between
atomic orbitals % and /:

oee

Py=2 3 amkam (12)
and
618 = [ [0 236) 7= ) 20 sty (13)

The solution of the secular equation |Fy—ESy|=0 requires the
evaluation of the constituent matrix terms Fy. The Fy's are, however,
themselves functions of the coefficients of the atomic orbitals g, through
Py and therefore can only be evaluated by solving the secular equation.
The Hartree-Fock procedure thus requires that a preliminary guess be
made as to the values of the molecular population distribution terms
Pp;; these values are then used to calculate the matrix elements Fyg; and
thence solve the secular determinant. This, in turn, provides a better
approximation to the wave function and an ,,improved” set of values
of Pi;. The above procedure is repeated with this first improved set and
a second improved set evaluated. The process is repeated until no differ-
ence is found between successive improved wave functions. Finally, it
may be shown that when such a calculation has been iterated to self-
consistency the total electronic energy E of a closed shell molecule is given by

E=%§P¢, [Hf,+%§sz; (<ij|Rl> — % <ik|f1>)] (14)
]

The main obstacles to the solution of this problem lie in the formidable
number of multicentered integrals <<4j |4/ > which arise even with the
use of a minimal basis set, and the difficulty involved in their evaluation.
This is illustrated in Table 1, where the number of electron interaction
integrals is computed for a minimal basis set calculation of various
compounds. The total number of such bielectronic integrals can be
computed by the following equation.

T+ [5 0+1+1] (15)
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The L.C.A.0.M.O. Procedure, Hartree-Fock and S.C.F. Formalism

where # is the number of functions of the minimal basis sets. In the case
of the hydrogen molecule, the number of such electron interaction integrals
amounts to six. If, however, the basis set is extended to include the L
shell as well, then 1540 electron-electron interaction integrals must be
evaluated. An even more dramatic increase would be observed for the
other compounds even if the basis set was only slightly extended.

Table 1. Total number of bielecironic integrals vesulting
from a minimal basis set. (These numbers have not been
correcied to take into account the fact that some integrals
are identical due to the symmeiry of the molecules.)

Compounds
Integrals Hy CHy CoHg CgHg
Basis set 2 9 16 23
1-center 2 124 246 368
2-center 4 464 2680 6652
3- and 4-center — 447 6390 31,206
Total 6 1035 9316 38,226

Even when the Hartree-Fock solution can be attained, we are still
nowhere near the solution of the Schridinger equation since, due to the
original choice of the wave function as being a product of one-electron
orbitals, a far more fundamental difficulty arises. In the “product of
one-electron orbitals” approximation, the probability of finding an
electron at a certain point in space is not affected by the fact that another
electron might already occupy that position. An immediate consequence
of the neglect of “electron correlation” is that the calculated electron
repulsion energies will be found to be larger than would be the case if
the tendency for the electrons to avoid each other were properly taken
into account. Unfortunately this difficulty is implicit in the Hartree-
Fock procedure and cannot be overcome unless correction terms in-
volving the coordinate of more than one electron simultaneously are
incorporated.

Despite these shortcomings, the Roothaan equation has been used
extensively and the Hartree-Fock energies of various small molecules
have been calculated. However, the difficulties encountered in calculating
the energy of large molecules are such that simplified methods are desirable
in these cases. Several such methods will be discussed in the next section;
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The L.C.A.O0.M.O. Procedure, Hartree-Fock and S.C.F. Formalism

their objective is to reduce the size of the problem without losing too
much of the significance of the results. This is done by neglecting the
largest possible number of ‘“hopefully” less important integrals and
evaluating those remaining either by simple semi-empirical methods
or even by direct comparison with experimental data. This allows most
of the correlation energy and part of the error introduced by neglecting
numerous integrals to be averaged and usually accounted for,
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III. The All-Valence Electrons, Neglect of Diatomic
Differential Overlap Method

A. General Approximations

Among the numerous approximations which could be used to simplify
the Hartree-Fock problem, the all-valence electrons, N.D.D.O. method is
particularly appropriate, due to the simplicity and adequacy of its
approximations., These are:

1. Only valence electrons are accounted for specifically.

2. Only atomic orbitals of the same principal quantum number as
that of the highest occupied orbital in the isolated atom are included in
the basis set.

3. Diatomic differential overlap is neglected, i.e. ¥ (1) x5 (u) =0 if
the orbitals y; and y; are not on the same atoms. Hence the overlap is
neglected,

Sy=Jx @)y @=0 (16)

and

1

Yuy

f e () 2 () —— 25 () 2 (v) diy dty = (i | A1) =0 (17)

unless y; and x; are atomic orbitals belonging to the same atom A and
y& and y are atomic orbitals belonging to the same atom A, or B.

The first of these approximations allows us fo neglect the inner electrons
of the atom by treating them as part of a core whose charge will be
approximately equal to that of the nucleus minus one per core electron.
The second approximation considerably reduces the initial number of
integrals. At first sight, it might be thought that the inclusion of more
orbitals in the basis set would automatically improve the results. The
benefit gained by adopting such a plan is, however, made negligible by
the overriding effects of the neglect of correlation energy and of the
other approximations. The third approximation removes all three- and
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The Invariance Requirements

Sfour-center integrals and some two-center integrals. With these approxi-
mations, the matrix elements in the secular equation become:

F(j=H:j +>>BPy; (if | ki) —%ZAPM (¢2]7%) (¢,  both on atom A)
Bkl £
Fy=Hy~3>ASBPy; (ik|jl) (i on atom A, j on atom B)
£ T

Table 2 illustrates the overall effect of both these approximations,
and other ones to be dealt with subsequently, on the number of one-,
two-, three- and four-center integrals involved in a calculation on propane.

Table 2. Number of bielectronic integrals involved in the calculation of propane by
various approximations

Integrals H-F NDDO  PNDO (M)INDO CNDO
Minimal
basis set
1-center 368 173 14 26 11
2-center 6652 568 307 55 55
3—4 center 31,206 0 0 0 0
Total 38,226 741 321 81 66

Even with the simplifications we have outlined, there still remains
the problem of too many integrals. Further simplification, however,
becomes critical to the method itself due to invariance requirements.

B. The Invariance Requirements

Pople ¢t al. 29 pointed out that while the results obtained for two-
center integral evaluation in a full Roothaan S.C.F.M.O. treatment are
independent of the choice of axis, the same is not true in simplified ver-
sions. Such integrals are sensitive to the choice of coordinate system
and the hybridization of the orbitals.

Accordingly, the results of the simplified versions are required to be
invariant to two types of transformation:

1. A unitary transformation between the various orbitals of an indivi-
dual atom; we shall refer to this as space invariance.
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The All-Valence Electrons, Neglect of Diatomic Differential Overlap Method

2. A unitary transformation between the s and p orbitals of an
individual atom; we shall refer to this as hybridization invariance.

A simple physical picture will serve to illustrate the significance of
invariance.

1. Space Invariance

It is well known that # degenerate solutions of the Schrédinger equation
belonging to a particular energy level can be made to span an #-dimen-
sional function space. Thus every solution of the equation with this energy
can be expressed in terms of # linearly independent wave functions
%£1%2- - . xn- The level being referred to is #-fold degenerate. Although an
s state is non-degenerate, a p state is three-fold degenerate and the
resulting function space is conveniently spanned by the three mutually
orthogonal p,, $, and p, orbitals. Thus although a specific $ orbital may
be defined as one of the basis functions, p; say, it can equally well be
expressed as a linear combination of p, and py-, 1/}2 (P2 + py’) say,
where the atomic orbital basis set has undergone a simple initary
transformation (a rotation about ,) and the basis functions p, and py-
happen to be now at 45° to p. Consider the valence s atomic orbital of
an atom A and a valence  atomic orbital of an atom B in the molecular
entity:

The two-center two-electron repulsion integral (4i]j7) can be expressed as

i) =(sslas) for p=ts 18)

or
(i) 7) = g {(ss19'%) + 2(s5)25) + (s5ly'y)} for p=7z (Pwr+v)
(19)

Since the energy of the electron repulsion integral must in each case
be the same, then

(ss|wx) =% {(ss|#'%") +2 (ss|#"y") + (ss|5'y")} (20)

There are two ways of achieving the above equality. We may assume
that the electron repulsion is completely independent of the orientation
of the orbitals, hence,

(ss}wx) = (ss|2'%") = (ss]y'y’) (21)
and set (ss|x’y’) =0 in order to maintain the equivalence between the
two schemes. This amounts to treating the valence orbitals on B as

spherically symmetrical.
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Alternatively we can say that the electron repulsion term does
depend on orbital orientation, i.e.,

(ss]|xx) # (ss|%'%") = (ss]y'y') (22)

and therefore (ss|x’y") must be different from zero in order to maintain
the above equality (Eq. 20).

The above argument must also apply to the two-center one-electron
integrals Hy. However, here the problem can be corrected easily by
setting these integrals proportional ot the overlap integral.

2. Hybridization Invariance

Except for the fact that we are now dealing with hybrid s and p orbitals
on atom B, the problem is completely analogous to that of space invari-
ance. Hybridization invariance is of less importance than space invariance
providing a rigorous selection of standards is made.

C. The Methods

The requirements of space invariance restrict further simplification of
the Hartree-Fock problem to one of two distinct routes.

1. CNDO and (M)INDO
The assumption

(ss|x%) = (ss|x'x") = (ss|¥'y") and (ss|x'y") =0 (23)

requires that all two-center integrals involving the differential overlap
between two orbitals on the same atom be neglected. Pople et al., as well
as adopting this in their first all-valence electrons complete neglect of
differential overlap (CNDO) method, went one step further in neglecting
one-center electron interactions involving differential overlap 26). With
these approximations the Hartree-Fock matrix elements become:

Fu=uy+ (Paa—% Py) Psa+ 35 (PpB T'ap—vas)
BzA

(24)
Fy=Hy—%3PyTas (i #])
where the atomic orbital y; is centered on atom A and y; on atom B.
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In deriving these equations Pople separated the core matrix element
H i thus:

Hu=(’ii[-—-%V2—vAli) —BEA(’ilvBIi) (25)
= —1y— 2 UAB (26)
B#A

Here w4 is that part of the diagonal matrix element involving the
one-electron Hamiltonian containing only the core of its own atom and
vaB gives the interaction of an electron in 1 on atom A with the cores of
other atoms B.

The electron interaction integrals (ii]jj) are written I'ap and are
assumed to depend only on the atoms A or B to which yp; and y; belong
and not on the type of orbital. Py are the components of the charge
density and bond order matrix

oce

Py=23 amt ams (27)
m
Pay is the total charge density on atom a
A
Pya= 3 Py (28)
i

Finally it may be shown that under the CNDO approximation, the
total energy of a molecule can be expressed as a sum of one- and two-
atom terms

Etotax= 2, Ea+2 Easn (29)
A A<B
where
A 1 AA 1 9
Ea=2Puyuy+322 (PuPjj—3z Py) laa (30)
n 17
and
AB . »
Esp=733 (2 Py Hy—% Pjj I'sp) + (ZaZsRaB
i 7 (31)
—PsavaB—PBB UBA+ Paa PBB I'aB)

where R, p is the distance between atoms A and B.
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The Methods

The neglect of the one-center electron interactions involving differ-
ential overlap between two orbitals results in certain one-center exchange
integrals such as (2s 2p4 |25 24,) being omitted. This renders the method
incapable of introducing quantitatively Hund’s rule effects, i.e. that two
electrons on different atomic orbitals on the same atom have a lower
repulsion energy if their spins are parallel. Although this makes the
scheme too restricted for molecular spectroscopy (it cannot resolve
degeneracy), the omission is not too serious provided calculation is
restricted to the ground states of closed-shell molecules.

The scheme does have the advantages of simplicity and can be
carried over even for large molecules since there is only one one-center
and one two-center bielectronic integrals per pair of atoms, irrespective
of the number of functions used for each of them.

Several schemes based on the CNDO approximation have been pro-
posed 80-32), Some differ only in the choice of approximation used to
calculate semiempirically the various remaining integrals. Others
introduce additional features which make this method particularly
suitable for certain purposes. Thus Jaffe and Del Bene 31 developed a
modified version of the CNDO procedure which includes some configura-
tion interaction and makes it extremely useful for calculating spectro-
scopic terms. The exchange modified zero dlfferentlal overlap (EMZDO)
method proposed by Dixon 1 33) and the almost identical intermediate
neglect of differential overlap (INDO) method introduced by Pople
et al. 2 and the modified intermediate neglect of differential overlap
(MINDO) method ‘introduced by Dewar ef al 34:35) all retain only the
main requirement of rofational invariance, i.e. that only the two-center
two-electron interaction involving differential overlap between orbitals
on the same atom need be neglected. This means that certain exchange
integrals of the form (25 25|25 2p,) are retained and thus the qualita-
tive effects of Hund's rule may be introduced, making the method
particularly appropriate for open-shell systems. INDO was developed
with special emphasis on the calculation of free radical properties such as
E.S.R. spectra. Pople pointed out that for an open-shell system a re-
stricted wave function (i.e. each orbital y; is doubly occupied, thus
restricting the « and § electrons to identical spatial orbitals) prevents a
realistic description of the unpaired spin distribution in a system. He
therefore developed INDO in terms of an unrestricted molecular wave
function (i.e. one in which different spatial orbitals describe the motion
of electrons with different spins).

The unrestricted L.C.A.0.—S.C.F. method reduces to the restricted
method when « and 8 electrons are assigned to spatially identical mole-
cular orbitals. Thus under the INDO method the Hartree-Fock matrix
elements for an open-shell system become
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A
Fé=uy + 3 {Pu (ii|F) — P (ik]i})}
kl

+B§A(PBB I'sp—v4B) (i on atom A) @)

A

Fy=uy +3 {Py (f|H) — Py (ik|fl)} (6 #7 both on atom A)
Kkl

F%:H{j—ng PAB

Here the notation is as used in CNDO, The Ff elements for electrons
of opposite spin have the same form.

The results of INDO are apparently very similar to those of CNDO
when the same set of approximations are used to calculate common
integrals. Indeed, the choice of approximations to be used in the (M)INDO
method are, as in the other schemes, dictated by the objectives of the
method (or the authors’ preference). The MINDO method is especially
parameterized to calculate keats of formation and MINDO/2 38, which
has been specially reparameterized, claims both keats of formation and
bond distances. Both of these methods are also suitable for the calculation
of open shell systems. An additional approximation, however, was made
in order to achieve this, namely that an electron can be treated as half
an electron pair (i.e. two halves of one electron).

2. PNDO

The partial neglect of differential overlap (PNDO) method, originally
referred to as the partial neglect of diatomic differential overlap (PNDDO)
introduced by Dewar and Klopma.n 28), is to date the only method to
adopt

(ss]#x) # (ss|#'x) = (ss|y'y) and
(ss]a'y’) # 0

the alternative route dictated by rotational invariance considerations.
The PNDO method retains only those integrals necessary for the mainte-
nance of rotational invariance. Thus since the two-center (7 |£l) integrals
involving s orbitals are not required by this criterion, they are neglected.
Although this neglect does render the method hybridization variant, it
does not affect the results to any great extent since the basis set is well
defined for each atom.

As far as the one-center electron interactions are concerned, PNDO
assumes all J integrals (#4|77) in the atom to be equal (irrespective of the
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azimuthal quantum number of ¢ and j) and, although it specifically
evaluates all % integrals (77 ]4/), it uses a constant value for these. In the
PNDO method, the F matrix is given, as in the NDDQ method for closed
shell systems, by

B
Fu=H4+ 335 P (i |K) — %3 Pr (Gk|j}) (4,7 both on atom A)
B K

(33)

AB
Fy=Hy—3%33 Py (ik|jl) (¢ on atom A, j on atom B)
E 2

The method allows the calculation of the energy and distribution of
o and f electrons separately and is thus suitable for the calculation of
open-shell systems.

D. Semi-Empirical Evaluation of Atomic and
Molecular Integrals

The three methods outlined in the last section, CNDO, (M)INDO, and
PNDO, are being used as a basis for an ever-increasing number of variants,
usually differing from one another by some minor change in the choice
of approximation for evaluating the various integrals.

Although we give (Tables in Section E) a synopsis of the various
specific approximations which have been used in the apparently most
successful procedures, it might be useful at this point to discuss the most
usual approximations which have or can be used in the methods. It is,
however, our hope that the reader will not be tempted to combine these
in yet another way and produce a further variant to the already long list
of methods, but that rather it will assist him in determining which route
has been used to achieve the objective of these methods, namely to
reproduce the main physical properties of molecules,

1. The Cortelation Problem

It is well known that if the coulomb integrals were to be evaluated
directly from the expression

il = [ [ w0 0 v ) = v () w3 ) ety 34
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using Slater orbitals for y; and yy, the values obtained would be too high
to account satisfactorily for the experimentally observed properties. This
discrepancy arises from the fact that the Hartree-Fock method is based
on the premise that the motion and position of an electron occupying a
given spin-orbital is independent of the motions and positions of all
other electrons in the system. In reality, however, the motions and
positions of electrons are interdependent (correlated). Consequently,
the coulomb integrals, as calculated by Eq. (34), are too large.

This problem of electron correlation applies not only to the Hartree-
Fock method, but is present in any orbital approximation.

The correlation energy, Ecorr, is defined as the difference between
Eexact, the experimentally determined ground state energy of a system,
and Egy, the expectation value of the Hartree-Fock operator.

E corr — E exact — E HF (35)

Thus E¢orr not only includes the interdependence of electron position
but all other contributions that have been omitted from the Hartree-Fock
Hamiltonian, e.g. relativistic effects.

Clementi 36) has shown that for a pair of electrons in a (2)2 configura-
tion, the correlation energy amounts to between 1 and 2 e.v.

In most semi-empirical methods, the correlation energy is partially
offset by replacing the actual coulomb integrals by some empirical ex-
pressions, These are designed in such a way as to reproduce experimental
data in limiting cases and can hopefully be interpolated. The general
framework of the methods, however, remains essentially similar to the ab
initio Hartree-Fock procedures.

Thus one-center integrals can be estimated by comparing calculated
and experimental energies for a sufficiently large number of appropriate
states of the isolated atom.

In evaluating the two-center two-electron integrals it is assumed that
the coulombic repulsion is a smooth function of internuclear distance as
shown in the diagram below (Fig. 1). Hence at Ry =0 we have the value
of the corresponding one-center two-electron integral, and at large values
of Ry; the integrals will correspond to ¢2/Ry;, the classical expression for
the coulombic repulsion between two point-charges.

Although in the course of parameterizing the Pariser-Parr-Pople
type of calculations, various methods have been developed to reproduce
such a curve, not all of these have been employed in the parameterization
of all valence electrons calculations. We shall now discuss the most
common of these methods.
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Fig. 1. Plot of the two-center two-electron coulomb integral as a function of inter-
nuclear distance. - - - - Interpolated value of <C4i|jj >

2, One-Center Integrals
At the CNDO level the one-center two-electron integrals

(##]7) = (#]48) = Taa (36)

are approximated by the analytical value of the electrostatic repulsion
energy of two electrons in a Slater s orbital, and this irrespective of the
fact that 4 or  may also be p orbitals.

Pople e al. 28 pointed out in their initial (CNDOJ1) scheme that
since the overlap between any pair of orbitals y; and y; on the same atom
A is set to zero, all electronic states resulting from a given configuration
(25)m (2p)» say, of an atom or ion of a first-row element will have the
same energy.

E (4,25 2" =mUasap+nUspop-+3 (m-n) n-+n—1) Faa (37)

where Uy is the one-center core electron attraction integral.
This energy is thus evaluated as the weighted mean of the experi-
mental energies of all states arising from the particular configuration,
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Thus, in order to evaluate the parameter Uggz,, say, one utilizes the
ionization process represented in the equation:

Iss (A, 26m 2pm) =E (A*, 25m=12pn) —E (A4, 25m 24m)
=—U2523_(m+n— 1) Tap

(38)

Hence in general terms
Ujp=—Is—(Za—1) Ty (39)

Subsequently (CNDO/2) Pople suggested that since Uy is essentially
an atomic term it would be better approximated by the average of the
ionization potential (f) and the electron affinity (4) given by

—Au=Ux-+ZsTara (40)
thus
Uy=—% (TIa+Aa)—(Zo—1%) Tan (41)

Pople argued that this would better account for the tendency of an
atomic orbital to both lose and gain electrons and hence “wowuld beiter
represent the departure of an atom from neutrality in a molecular environ-
ment”. The value of the orbital electronegativity 3 (I -+ A) is determined,
as described above, from appropriate spectroscopic data.

Yonezawa ef al. 32%) in a CNDO level method have approximated the
one-center coulomb integrals as

2]y =T34 — Ay 42)
and Uy as
Uu=—ILi—(N¢—1) (it]4) —g‘Nf (#]77) (43)
where
(58 137) =% {(é8]49) + (471 77)} (44)

Here N and N; denote the number of electrons occupying the valence

atomic orbitals y; and gy centered on the same atom and 3 denotes
124
summation over all-valence atomic orbitals except yy, so that

Ni+3 Ny=2Z, (45)
J#4
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At the INDO level Pople et al 27 have expressed the one-center
repulsion integrals in terms of Slater-Condon F®* and G* parameters.
Thus

(ss|ss)=(ss|ax) =F0=1I}ya

(sx]sx)=1/3 G1

(29 |%y) = 3/25 F? (46)
(xx |xx) =F04-4/25 F2

(xx}yy) =F0—2/25 F2

Similar expressions are used for (ss|zz), etc. Except for the integral
F9, evaluated from Slater orbitals, semi-empirical values are used for
G1 and F? chosen to give the best fit with atomic spectra. At this level
Pople thus expresses the energy of the average state associated with the
configuration (2s)™ (2$)7 as

Em, n) =mUss+nUpp+} (m-+n) (m+n—1) FO

S )
—emnGl —z5n (n—1) F2

He then deduces the following relationships between (I 4 4), the orbital
electronegativity, and Uy:

Hydrogen
~3 (I +4)e =Uss+ FO
Lithium
~} (I +4)y=Ups+} FO
—3{I+A)p=Upp+13 FO—75 G!
Beryllium
—3 (I +4)s=Us+3 FO—}G!
—3% (I+A)p=Upp+% Fo—% Gl
Boron to Fluorine
—3 (T +A4)s =Use+ (Za—3) FO—%5 (Za—1) G
—3 I+ A)p=Upp+(Za—3%) FO—3 Gl —F5 (Zo— %) F?
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Yonezawa et al. 32b), in an INDO level method, by introducing one-
center exchange integrals have approximated Uy as

Uy=—I—(Ny—1) (i]i5) — 3 Ny {(i5]7) — % (&7 14)} (48)
#
They approximate the one-center exchange integrals as

(splsp)a=0.045 Z, (ss|pp)a
(49)

(291 15p)a=0.011 Z, (pp[$151)a

where p and ! are two different p orbitals situated on atom 4.

Dewar et al. 89 in their MINDO method follow Pople’s approach
and express the one-center electron repulsion integrals as in Eq. {46).
Although they use the values quoted by Pople for G1 and F2, however,
they evaluate Uy and FO for each atom having the ground state config-
uration s#p™, from transition energies among the high-spin states of the
configurations sapmtl, snpm, snpm—1 and sn—1 pm+l,

At the PNDO level Dewar and Klopman have assumed that the
repulsion between two valence shell electrons of an atom is the same and is
independent of the orbitals occupied. This repulsion has one of two values,
At and A-, depending upon whether the electron spins are paired or
opposed. The repulsion integrals can then be expressed in terms of these
quantities as

(@) =4~ (i=7 or i 57)
(50)
lif)=A-—A+  (i#])

The atomic terms U and A are determined from the atomic spectra
of the corresponding isolated atom by selecting only those states which
are of importance for bonding in molecules. Klopman 24 has achieved
this by using barycenters of states correlated by means of a simplified
Slater-Condon type equation of the form

E=§U5+%22A3}6v+%22 Ay (1—8y) (51)

i i §#i

where the superscript / indicates U’s dependence on the orbital quantum
numbers and dy; is a Kroneker delta equal to 1 when the spins of the
electrons occupying orbitals y; and y; are paired, and 0 otherwise.
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3. Two-Center Two-Electron Integrals

The most difficult problem encountered in the design of semi-empirical
quantumn mechanical methods is the determination of a satisfactory way
of calculating the two-center two-electron integrals.

The general guidelines are, as stated above, that the expression re-
duces to that for one-center two-electron integrals at zero distance, and
tends toward 2R at large distances (see Fig. 1).

Many such expressions have been suggested, most of them in the
context of the Pariser-Parr-Pople calculations for » conjugated species.
We describe below most of the approximations which were found suitable
even though some of them have not been used in the methods designed for
¢ bonded molecules.

a) The Uniformly Charged Sphere Method

In this approach, due to Parr 39, each p atomic orbital containing a pair
of electrons is replaced by two tangentially touching, non-conducting
charged spheres of diameter R4 given by

4.597
Ray= (—Z'A—) X 10~8 cm (52)

where Z, is the Slater effective nuclear charge of atom 4. In effect this
model places a point charge /2 at a distance 4.34 a¢/Z s above and below
the position of a 2p, Slater atomic orbital and 9.1 4of/Z4 above and
below the position of a 3, Slater atomic orbital, where ¢ is the electronic
charge. The (i7]7) integral is then equated to the repulsion, evaluated
by classical electrostatics, between these spheres, This is shown to be:

ey ae e? 1 1 ‘
(“I”)_7[V1+(1/2r)2(RA—RB)2+V1+(1/2r)2(RA+RB>2]w 59)

where 7 is the internuclear distance. At distances of less than 2.80 A the
charged sphere model breaks down, since overlap would now occur. In
this case Pariser and Parr joined the values of (¢[77) extrapolated to
744=0 with those of the charged sphere model at 7> 2.80 A. For this
they used the equation

ar +br? =7 [(ii|41) + (471 7)) — (61 4)) (54)
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where the parameters @ and & are determined from the charged sphere
model at the fixed internuclear distances of 2.80 A and 3.70 A respectively.
Thus the two-center integrals are given by

(8] 77) = % [(56]49) +- (47| 7)1 — ar — br? (55)

This method has been extensively used in Pariser-Parr-Pople calcula-
tions on conjugated systems. It has also been employed by Jaffe 31 in
his parameterization of CNDO/2.

b) The Split $ Orbital Method

Dewar ¢f al., in a series of papers 39 developed the split # orbital method
as a means of taking into account “‘vertical correlation,” i.e. the tendency
of the position of one of a pair of electrons in a p or & type orbital to
predetermine the position of the second electron by keeping their mutual
distance as large as possible. The $ or m-orbital is split into two parts
along its nodal plane and each half is treated as a separate orbital. Thus
Dewar has expressed the two-center two-electron integral as

2

-3
Vrigf4R? (56)

(¢l 37) =

i.e. the interaction between two electrons occupying lobes on opposite
sides of the nodal plane (R being the radius of one of the tangentially
touching spheres used to simulate a p orbital).

Dewar’s method has received considerable criticism, and has not
been used in all-valence electrons calculations.

¢) Mataga-Nishimoto Method
In this method 39 the two-center repulsion integrals are calculated from

the corresponding one-center repulsion integrals by means of the empir-
ical relationship

(i2]j7) = €*R (57)

where R= (a4 745) and 7ap is the internuclear distance between atoms
A and B.

The parameter a is evaluated from valence state ionization potentials
I; and electron affinity A¢ in the same valence state. Two distinct cases
may arise:
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a) Homonuclear case
e2

a= (L1 —4y)

(58)

b) Heteronuclear case
2
12 [(I;— Ag) + (Ij — 4y)]

a= (59)

d) Ohno Method
Ohno 49 has suggested the following empirical relationship which he
applied to Pariser-Parr-Pople calculations

(#]7y) = 2R (60)

where R=(a?+#5p)1/2 and a is given as in the Mataga Nishimoto
method, by

a=e?|(I —A) (61)

Yonezawa et al. 32 in their CNDO and INDO level methods have
adopted such an approximation for their evaluation of the two-center
two-electron integrals.

¢) Klopman Method

Klopman 24, in an all-valence electron treatment of small molecules,
suggested the following relationship

2

e
Vriot @aten? &
rap+(0a+o8)

(| f7) = (62)

where ga=¢/2 A7 and gs=¢/2 A7. In both their MINDO/1 and /2
methods Dewar ¢ al. 34,35 have used the Ohno-Klopman expression.

Table 3. Calculation of coulomb inieractions between electrons in
caybon s orbitals (e. V.)

Method Distance, A

0 1.397 2.420 2.794
Slater 16.93 9.027 5.668 4,968
Pariser-Parr 10.53~—11.1 7.30 546 4.90
Dewar 10.02 7.61 — —_
Klopman 11.144 7.56 5.25 4.68
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) Dewar and Klopman Method

Dewar and Klopman 29 in their PNDO method have assumed different
values for the integral <Cif|jj > depending on the nature of the orbitals
involved and their mode of overlap. The two-center two-electron integrals
arising in their method fall into three groups according to the correlation
energy involved

a) large correlation (so|sc) (pn|pn) (so|pm)
b) medium correlation (so|po) (po|pn)
¢} small correlation (po|po)

This same grouping also applied to the integrals when they were
estimated theoretically using Slater-Zener orbitals. They therefore
developed expressions for the integrals that would duplicate this grouping,
subject to the condition that the integral (¢7]77) between orbitals of two

identical atoms should converge to the corresponding one-center integral
(#4]#) at zero internuclear separation.

Group 1 .
(i2]77) = e2{riy + (s + 1) 2}1/2

Group II (63)
(@] 77) = e2{ris + (@Ty + o) 2}~ 1/2

where y; is a po atomic orbital

Group 111 \ .
(3] 47) = e2{ri; + (o1 + @) 2T 45} ~1/2

where both 14 and y; are po orbitals.
All orbitals are s or p = unless otherwise stated and

Ty=exp [—ry4/2 (g1 05)] (64)

The values calculated in this manner for carbon atoms at internuclear
distance of 1.55 A are compared in Table 4 to those calculated from
Slater orbitals.

g) Pople Method

Pople et al. 26,27 in their CNDO and INDO methods evaluate the two-~
center two-electron integrals

(@] j)="Tan (65)
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Table 4. Values for carbon-carbon two-center repulsion integrals

Value of integral, ev

Group  Type Calcd. using Caled. from
Slater-Zener Dewar-Klopman
AQ’s expressions
1 5g:sg 9.28
soipm 9.12 7.13
pnipn 8.98
o (%):pm (y) 8.98
2 scipo 9.61 7.81
pm:po 9.41
3 poipo 9.99 8.45

which represent the interaction between electrons in any valence atomic
orbitals on atoms A and B, as the two-center coulomb integral

I'xp=(sasa|sBsn)

66
=f si (1) 1)rus 3% (v) dty dty (66)

involving exclusively Slater s orbitals,

4. Coulomb Penetration Integrals

In the CNDO/1 method the penetration terms (ZpI'sp—vap) were
evaluated by approximating all coulomb penetration integrals vap as

z
VAB = fsi (%) ,; dry (67)

where Zg is the core charge on atom B and r,p the distance of the electron
4 from B. s, is the Slater 2s orbital of atom A. A major failure of CNDO/1
was, however, its inability to give reasonable values for bond lengths
(these were too short) and bond energies (these were too large) for diatomic
molecules.

Pople et al. attempted to correct this in their CNDO/2 method by
neglecting altogether the penetration terms, i.e. by setting vap=275 Ias.
They argued that this was a legitimate modification since neglect of
overlap distribution introduces errors, similar to but opposite in sign to
neglect of penetration. Although bond distances were improved, the
bond dissociation energies remained too large.
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Yonezawa et al. in their CNDO level method approximate the pene-
tration integral vap = (B]|4f) be setting them equal to the negative of the
corresponding repulsion integral, thus

However, in their INDO level method they use the expression
B
(Bli) = — SNy (kk|id) (69)
k

The policy of neglecting penetration terms has been continued by
Pople ¢t al. in their INDO method and by Dewar et al. in their MINDO
method.

Dewar and Klopman (PNDO) approximate the penefration integral
UB S

vB=TIipas+ (ZB—1) lipmp (70)

where Zp is the charge on the core of atom B. The Ipq)g term denotes
the interaction between an electron in a given orbital y; on atom A and a
positive hole located in the po orbital of the core of atom B, and lipn)g
the interaction between an electron in y; and a positive hole located in
the s or p-n orbital on the core of atom B. For cores other than hydrogen
(Zs>1) the core-electron interaction is set equal to the average inter-
action of the electron in orbital y; and a positive hole located in every
orbital of atom B. For hydrogen (Zp= 1) the core-electron interaction is
set equal to, but opposite in sign to, the interaction with an electron
situated in the hydrogen atom orbital.

5. The Two-Center One-Electron “Resonance” Integral

The one-electron resonance integral Hy can be interpreted physically
as the energy of an electron occupying the overlap cloud between the atomic
orbitals y; and y; and moving in the field of the core and remaining
electrons.

In the CNDO and INDO methods Pople ef al. set the resonance inte-
gral directly proportional to the overlap integral Sy between the orbitals
y; and gy centered on atoms A and B

Hy=p5Sy (71)
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where Slater atomic orbitals are used to calculate Sy. In order that the
calculations should be rotational invariant the parameter BB should be
characteristic of g and y; but independent of their positions in space. To
this end Pople suggested using the average of the § parameter for each
atom.

pie=3 (BL+B3) (72)

Here 3 and g3 are adjustable, empirically determined parameters,
chosen so that the calculation gives the best fit between CNDO and ab
initio L.C.A.O. S.C.F. calculated charges in selected diatomic molecules.

Dewar and Klopman pointed out that Hy; may be expected to be
proportional to the magnitude of the overlap cloud, i.e. to the overlap
integral Sy, and to some mean of the attraction energy experienced by
an electron in the overlap region.

Hy=Ban St (Li+1I)) {Ris+ (e + 05) 2}~/ (73)

Here I; and I; are the valence-state ionization potentials of the atomic
orbitals y; and vy, calculated for the appropriate barycenters. Rap is
the internuclear distance between the atoms of which y; and y; are
atomic orbitals. Sy is calculated using Slater orbitals. The quantity
[REB+ (01 + 0)]-1/2 is essentially equal to I'y (Eq. 62).

In order to reduce the number of parameters in the PNDO treatment,
they assumed the empirically determined parameter fap had a common
value for orbitals of two atoms A and B, regardless of the type of
orbitals (s or p) or the mode of overlap (o or z) and that

Ba= VﬂAA fBB (74)

Although the Dewar-Klopman expression is more complicated than
the resonance expressions so far discussed, they point out that attempts
to use simpler expressions resulted in less success. Thus, the omission
of the terms I; and I; gave results for unsaturated molecules such as
ethylene in which the orbital energies appeared in the wrong orders,
while the omission of the term in R resulted in incorrect heats of forma-
tion.

Dewar et al. in their MINDO/1 method found it more convenient to
approximate Hy for two atoms A and B at an internuclear distance
R AB by

Hy=Sy v+ 1) (4an + 252 79
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where I; and I, the neutral-atom valence-state ionization potentials, are
approximated by

I =Uf +(Za—1) (FA—36G))

(76)
Ip=Upp+3(Za—1) (3 FA—% GA—028 F})

The parameters Axp and Bag are estimated by fitting the observed
heats of formation of suitable reference compounds. In their most recent
(MINDO/2) method, Dewar et al. have expressed the resonance integral
in the form

Hij=BoSey 11+ 1)) (77)

Here the parameter fo is determined by a least squares fit to the
heats of formation of selected bonds in a group of standard molecules
chosen to include all types of hydrocarbons. As in the Pople methods,
Sy is determined from Slater orbitals.

Yonezawa et al., in their INDO level method, adopted the following
expression for the resonance integral

Hy= _52’1 [—(Za+ ZB)|Rag— (Blit) — (A)jj) + Hu+Hy)  (78)

6. Core-Core Repulsions

Pople ¢t al. in their CNDO and INDO methods and Yonezawa ef al. in
their INDO level approximation set Cag, the core-core repulsion, equal
to a point charge potential, thus:

Cap=ZsZpRaB (79)

where Z 4 and Zg are the respective core charges.

Such an approximation, however, results in calculated binding
energies which are too small. The reason for this may lie in the fact that
the potential field in which the electrons move in a molecule is greater
than that in the isolated atom; consequently, the atomic orbitals in the
molecule will be more compact. In the semi-empirical treatments discussed
above, however, “atomic’’ parameters are determined from spectroscopic
data for isolated atoms. Such approaches therefore assume that the
effective nuclear charge is the same whether the atom be isolated or
bound in a molecule. It may thus be that in order to get realistic binding
energies, either we abandon this assumption or make some allowance
for it. The latter can conveniently be achieved by modifying the form of
the core-core repulsion equation. Its advantage is that it does not affect
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the calculations of the electron distribution or orbital energies. Klopman
and Dewar in their PNDO method thus calculated the core-core repulsion
by meens of a parametric function. The function is chosen to satisfy two
boundary conditions. For large Ry it must approach the corresponding
interelectronic repulsion between neutral atoms in order that the net
potential due to a neutral atom should vanish at large distances, while
for small Ry it must have a value between this, and that calculated
for point charges. After trying a large number of one-parameter func-
tions they found the most successful one to be

Ca=Esn + [ZAZBeleAB hand EAB]e_dAB BAB (80)

Cap is the core repulsion between atoms A and B;
E 435 is the corresponding electronic repulsion between neutral atoms A
and B (i.e., (#|j7) summed over all occupied valence orbitals);

Za and Zp are the formal core charges in units of ¢ (i.e. the number of
valence electrons) of the two atoms;

eeaB is a parameter.

In order to reduce the number of parameters in the treatment, they
assumed that the value of «ap for two dissimilar atoms A and B is given
in terms of the parameters ¢ss and app for pairs of similar atoms by

aan= } @ances (81)

Dewar et al. adopted a similar function in the MINDO/2 method.

E. Tables

We give here a synopsis of the various methods of approximation together
with their objectives, areas where they have found their most successful
application, e.g. dipole moments, their field of application, i.e. types of
compounds to which they have been applied, and their limitations. In
cases where two methods have been published, e.g. CNDO/1 and CNDO/2,
we give the second improved method. Where a program for the method
is available from “Quantum Chemistry Program Exchange (QCPE}),
Chemistry Department, Room 204, Indiana University, Bloomington,
Indiana 47401,” we list as a source the QCPE program number.
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Method 1

CNDOj2

Authors

a} Scope of method
Objectives

Compounds

Successes

Failures

Source

b) Approximations used

One-center one-electron
One-center two-electron

Penetration

478

J. A. Pople and G. A. Segal 26

Charge densities

Hydrocarbons, molecules of the form 4Bz and
ABjg, organic compounds containing hetroatoms
(N, O, F), nitrogen and oxygen hetrocycles, flurinat-
ed benzenes and nitrobenzenes

Bond angles, dipole moments, bending force con-
stants, bond length, n.m.r. correlation

Heats of formation, ionization potentials, and elec-
tron affinities (both too large by several electron
volts,) spectral transitions (too high an energy),
total energy and energies of occupied orbitals are
uniformly too negative. Virtual orbitals lie too high
in energy

QCPE No. 91, 141, 142, 144

Uu=—1/2 {Ii+ 4} — {Za—1/2} T'aa
Taa={f s3 (W) rur s3 () dru d2y

Vap=ZgI'an



)

Tables
Resonance Hy=p%% Sy
Fla=1% (B +5Y)
Two-center two-electron  Iap= [[ 52 () 1/7ruy s3 (v) dra dry

Core-core repulsion Cap=ZaZsR3}

Matrix elements
Fyu=—1/2 (l4+ 4} + {(Paa— Za) — 1/2 (Py— 1)} T'aa +B§A(PBB—ZB) I'xn

Fy=1/2 {3+ p%} Sy—1/2 Py I'sn

Total electronic energy

E=3Ear+2 7 EaB
A A<B
where

4 A4
Ex=3 Pu Uu= 1/2;; (P Pyy—1/2 P}) T'aa

and

A B
Ean=221{2Py B5 Sy~—1/2 P} T'ap}+{ZaZoR3E— Paa Vas— Pus Vas

+ Paa Prp I'a}
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Method 1T

CNDO/2 Level

Authors

a) Scope of method

Objectives
Compounds
Successes
Failures

Source

b) Approximations used

One-center one-electron
One-center two-electron
Penetration

Resonance

Two-center two-electron

Core-core repulsion

480

G. Del Bene and H. H, Jaffe 3D

Spectra
Aromatic derivatives and heterocycles
Spectra of conjugated systems

Heats of formation, molecular geometries

Upy=—3 L1+ 40— (Za—P Taa
Laa=Ii— 4
Vap=2ZsI'aB

Hy=% K (8% + %) Sy
K=1.0 for ¢ bonds
= 0.585 for z bonds

I'ap=charged sphere approximation

Can=Za Za B3}



Tables

¢) Mairix elements
Fy=—% i+ 49+ [(Paa—Za) — % (Pu—1)] Taa +B§A(PBB —Zg) I'an

Fy=3 K[+ %) Sy—% PyTan

d) Total electronic energy
E=3 Ex+3 J Ean
A Az
where

A A4
Epx= ‘2 Py U= l/2¥; (Py Pyy—1/2 P‘zj) I'aa

and
AB
Exp=73 > {2 Py fp Sy—1/2 P} 'ap}+ {Za Zp Ry — Paa Var— Ppp
¢ 7
Vaa-+ Paa Ppp Ian}
Additional feature: A limited configuration interaction calculation is

performed
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Method IIT

INDO

Authors

a) Scope of method

Objectives

Compounds

Successes
Failures

Source

b) Approximation used

One-center one-electron

482

J. A. Pople, D. L. Beveridge and P. A. Dobosh 29

Spin densities

Hydrocarbons, molecules of the form ABg and 4Bg,
organic compounds containing hetroatoms (N, O, F),
free radicals

Spin densities, hyperfine coupling constants, mole-
cular geometries

Heats of formation, ionization potentials, electron
affinities, spectral transitions

QCPE No. 141, 142, 144

Hydrogen

—1/2(I+A)g=Us+1/2TgR
Lithium

—1/2(I+A)e=U,+12 F0

—1/2(I+A)p=Up+1/2F0—1/12 G
Berylium

—1/2(I+A)s=U,+3/2 F0—1/2 G1
—1/2(I4+A)p=Up+3/2F0—1/4 G1

Boron to Fluorine
—1/2(I+d)s=Us+(Za—1/2) FO
—1/6 (Z5o—3/2) G1

—1y2 (I 4 A)p=Up+(Za—1/2) FO
—1/3 G1 —2/25 (Z5— 5/2) F2



4)

Tables

One-center two-electron
(ss] ss) = (ss|#x) =FO="Taa

(sx|sx)=1/3 G1

(29)y) = 3/25 F?
(vx|xx) = FO 4 4/25 F2
(v#|yy) = FO—2/25 F2

Penetration Vap=2ZpIas

Resonance Hy=B% Sy Blg=%B+5Y
Two-center two-electron I'an==(sa sA|sBSB)
={f -‘i (1) Uruy 3125 (v) de, diy

Core-core repulsion Cap=2ZaZp R3}

Hartree-Fock malrix elements

A
Fg=Uu+ 32 {Py (i) ) — Py (i714)} +B§A(PBB —Zgp) I'xn
(¢ on atom A)
F,"‘k= (2 Pie— P} (GR}ik) — Py, (ii|kE)
(4 # & both on atom A)

Total electronic energy

E=3Exr+2 3 Ean
ry AR
where
4 4 4 2
EA=?P“ Uﬁ:llzgg (P“ Pﬂ— [/Z P“) PA.A
and
4B . .
Epp= ?? {zp‘jﬁousu—1/2P'JPAB}+{ZAZBRIB_‘PAAVAB—PBBVBA

~+ Paa Pgp I'pB}

483



The All-Valence Electrons, Neglect of Diatomic Differential Overlap Method

Method IV

MINDO)/2

Authors

a) Scope of method
Objectives

Compounds
Successes
Failures

Source

b) Approximations used

One-center one-electron

One-center two-electron

484

M. J. S. Dewar and E. Haselbach 35

Reproduce approximately a Morse curve for a
molecule in the gaseous state

Hydrocarbons
Heats of formation, molecular geometries
Spectra

MINDO/1, QCPE No. 137

IA=UA 4 (Za—1) (F§ —1/6G})

IA=UA +1/3(Zy—1) (3 F4—1/6 G} —0.28 F})

(sslss) = (ss]pp) = FO
(splsp)=1/3 G

(pplpp) = FO+4/25 F2
(pplp1pY) = FO—2/25 F3

(21| pp?) =3/25 F?



¢)

a)

Tables
Penetration Vap=ZpI'an
Resonance Hy=p%y (I1-+ 1))

Two-center two-clectron  I'ap=e¢2/ (+3; 4 (oA ¢5)2)~1/2
oa=¢/2 A~ and pp=¢[2 AT

Core-core repulsion Cap=ERjp- (PRap— ERsp) ¢ ¢EAB

Hartree-Fock matrix elements

A o o] o
FiA=Uu+12q (i) + 3 g5 {6ilif) — 1/2 (i} + 3 (Qs—Zz) Tam
H1S B#4
Fit =Py {3/2 (i) — 1/2 (il if}
Fz‘,a-——-'-Hu— 1/2 Py I'pn
Here g refers to electron densities on the atomic orbitals, Q is the total valence-

shell electron density for an atom, and P represents the bond order matrix.

Total electronic energy

E=1/23 3 Py(Hy+Fy)+ 3 3 ZaZalan
i A<B
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Method V INDO level
Authors H. Kato, H. Konishi, H. Yamabe and T. Yonezawa
3zb)

a) Scope of method

Objectives Electronic structure

Compounds Hydrocarbons, organic compounds containing het-
eroatoms (O, N)

Successes Not enough data to assess
Failures Not enough data to assess
Source

b) Approximations used
One-center one-electron Uy = — Iy — (Ny— 1) (4] 48) — Ny {(3]47) — 1/2 (5if)}

One-center two-electron  (sp|sp)a =0.045 Z, (ss|pp)a
(91| ppY)a=0.011 Za (pp|p1pY)a
(iifi)=(I;—4y)

onB
Penetration Vap= 2 N (kk|ii)
k
Sy
Resonance Hy= -2 {—(Za+ ZB) (C/RaB) —

— (Bfii) — (A/j) + Hu + Hys}
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d)

Two-center two-electron

Core-core repulsion

(#i]if) = 1/ (a3 + REH1/2
where
1ja= (iilii) =Ii— Ay

Cap=2a ZBRKIB

Hartree-Fock mairix elements

Frg=Hys+ 3 Piy [<rs|tu>— % <rt|su>] [Roothaan’s equation]
iu

Total electronic energy

E=E,+3 2 ZaZp[Rss
a8

where

o= 1/25 Py (Hy+Fy)

Tables
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Method VI

PNDO

Authors

a) Scope of method

b)

Ojectives
Compounds
Successes
Failures
Source

Approximations used

One-center one-clectron

One-center two-electron

Penetration

Resonance

Two-center two-electron

488

M. J. S. Dewar and G. Klopman 28

Heats of formation
Hydrocarbons
Heats of formation and ionization potentials

Bond distances and spectra

M
Uy=w@ 4P} = (P A+ Ff Ag)

(i) =A- (=7 or i£])
(@lif) =A-—4*  (#])

Vie=Tipon+ (Z—1) I'ipmin

Hy=(By) Sy (Li+1Ij) {RE+ (e + o)} V/3
By = (Bus By)*1?

Group I
yax = (ii|jf) = e® {rd + (01 +09)?}~1/2

Group II
yor = (ii|jf) = e2{rd + (s T+ 0s) 2} 12



Tables

Group III
poo = (ii| i) =2 {rf+ (o1 -+ 01)? THY V2
where:
Ty= e—rijf2(eetey)
Core-core repulsion Cap=FEAp+[Za Zp ¢2/Rap — Eap) e ®ABRAB

xan = Joas ¢BB

¢) Hariree-Fock matrix elements
Fue=WE0 4 3 5 Vix+ B+ 475 il +4; 4x

+ 5 G At AR+ S S (68t 2E,) (B )
m#k in
FiM’) 2 [kzmzvkn+(kymﬂ+kzmz)y €N} — Pm AM"‘ 2 Z (b7n +Pm) (4m, n)

FM® —p. 1, 8% Ry by + Rz 1 "—(M)(N) km, b
= zzﬂm'l‘(yu'l‘ zz)ﬁkl %%Pmn(”’: )

d) Total electronic energy

E=°2”((q,‘: +9) W
+ 12’. {N ZM[kz Mz Vin+ (hy my+ ke ms) Vinl (b +2Em)
+ % [gf 95, — (Pfm) 2+ 45 q,,. — (Pkm)“’] A
+ % (g5 9o+ 95 97) A3) + Z Z {2 b5+ 280k 12 B
+ (hy by + ke 1) BRI} + % g (P P+ D 2l 2 2
Pl P — Pon bl — Pion Pl [z bz mz nz 3] + (hy by my my

+ ke Iz mz nz) ?’ﬁ‘ + R mg by ny -+ 1z ng) ?gz + (ky my ke mz) I ne 7:{

+ (by my b np+ B ma Iy my) V57 "1}
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IV. Applications

A. Ionization Potentials

One of the most accessible molecular properties available for testing the
results of theoretical calculations are the molecular ionization potentials

A — At+4e —AH,=I

The first ionization potential refers to the most weakly bound electron
of the neutral molecule in the dilute gaseous phase, i.e. the energy liber-
ated by removing an electron from the highest occupied orbital. Several
experimental methods are available for measuring these for molecules
and theoretical models can be set up so as to correlate them. Other
ionization potentials may similarly be observed if, instead, an electron
from an inner orbital is removed from the neutral molecule. Thus a
molecule will have as many ionization potentials as occupied orbitals.

In contrast to the above process, the molecule, after losing its first
electron, may lose a second electron and additional ones in successive
steps. In such a case, however, the successive ionizations no longer refer
to the neutral molecule. Very little is known about this latter process
because the energy required to detach an electron from an already
positively charged species is very high. In addition, the removal of more
than one electron from a molecule often results in fragmentation.

The former ionizations are much better understood, and can now be
measured experimentally by the recently developed technique of photo-
electron spectroscopy 41). A comparison between the experimental
ionization potentials and the calculated orbital energies can then be
made.

Unfortunately, the results are not as good as might have been expect-
ed. Whether the discrepancies originate from some inadequacy of the
SCF calculation or from the invalidity of Koopman's theorem is, however,
an open question. It is probably, to a first approximation only, that the
removal of an electron from a molecular system can be considered as a
“vertical” process which leaves the distribution and energies of the
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Ionization Potentials

remaining electrons unaffected. Indeed, even the molecular geometry
may be strongly affected by the process (Table 5).

Even though the differences are probably smaller in large molecules,
they may still be large enough to explain why the calculated values of
the ionization potentials are systematically higher than the observed
ones. Such a behavior is compatible with a mechanism in which a redistri-
bution of electronic densities accompanies the process of ionization, thus
increasing the stability of the ion and lowering the ionization potential.

Table 5. Variations in bond distances
produced by the ionization of diatomic
molecules 42

xy rzy (A) 74y (A)
HH 0.74 1.06
ClC1 1.99 1.89
BH 1.23 1.21
CaH 2.00 1.73
CH 1.12 1.13
HCl 1.27 1.32
NN . 1.09 1.12
OH 0.97 1.03

A possible check of the importance of this reorganization energy in the
ions can be made by calculating their energy independently and estimat-
ing the ionization potential by the difference in heat of formation between
the original compound and the ion. Although this procedure is certainly
better than that based on Koopman’s theorem, it is also costlier and
still does not guarantee a complete agreement with experiment unless
the geometry of the ionized species is known. Furthermore, only methods
capable of handling open shells are suitable for such a purpose. Most
attempts to correlate the ionization potentials have thus been made on
the basis of Koopman'’s theorem.

In this respect, the CNDO and INDO methods have met with very
little success, the values usually being too high by 3.5 eV to 5 eV. The
error here seems too large even if provision is made for the possible
reorganization of electrons in the molecule.
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The best estimates have been obtained to date by using the MINDO
and PNDO methods. In Tables 6 to 8 we show the ionization potential
values obtained by each of these methods for alkanes and cycloalkanes,
alkenes, acetylenes and aromatic compounds. Dewar and Klopman
(PNDO) and Dewar ef al. (MINDO/2) also compared their calculated
inner orbital energies with experimental ionization potentials obtained
from photoionization spectra. The ionization potentials of methane and
ethane have also been calculated by the PNDO method along the more
sophisticated procedure of minimizing separately the energy of the ion
and that of the molecule. In these cases, the experimental value of the
first ionization potential was reproduced accurately 43).

In Fig. 2 we compare, where possible, the values obtained by each
method for a given compound. In general, it may be seen that the first
ionization potential is better reproduced by the MINDO/2 method®.

7/
_uk l 7
> /
2 V4
B Ve
E 13 e
- 2 s o
2 . ,/ 1
S : ? e
2 5 ¢ g
= P4 9.7
= ﬁ,
E ue Z /',9°
K=l osd o 2
g 8]0 ,l 5 3
e} oy 4 g
o 101 0 A4
§°/§
ol- /7
e
~L []

1 1 1 1
9 10 i1 12 3 %
Experimental ionization potential (eV)

Fig. 2. Comparison between calculated and experimental ionization potentials.
~——— Perfect correlation, @ Highest occupied orbital energies from PNDO;
O Highest occupied orbital energies from MINDO/2. The numbers refer to the
compounds in Tables 6 to 8

b Additional data on cyclic hydrocarbons has been published recently by Bodor,
Dewar and Worley 59,
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Table 6. Comparisons of experimental ionization potentials with calculated orbital
energies of alkanes and cycloalkanes

Compound Ionization Orbital Orbital
potential(ev) energy(ev) energy(ev)
PNDO MINDO/2
Methane 12.99 13.88 12.69
2 Ethane 11.49 12.51 10.87
13.04
14.74 14.98
19.18 20.80
3 Propane 11.07 12.01 10.56
12.49
12.85
13.17 13.73
13.90
15.17 14.68
15.70 15.46
18.57 19.67
Cyclopropane 10.06 — 10.27
4 n-Butane 10.50 11.63 10.13
12.39
12.36 12.78
13.07
13.21
14.13
14.13 14.36
14.47
15.69 15.79
5 i-Butane 10.78 11.88 10.63
12.54
12.54 13.48
13.79
14.51 14.59
15.40
18.63 18.68
Cyclobutane — 9.80
Cyclopentane 10.49 — 9.76
6 Cyclohexane 9.79 11.51 9.65
11.33 12.23
12.59
12.22 12.69
13.48
14.37 15.10
15.51
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Table 7. Comparison of experimental ionization potentials with calculated orbital
energies of alkenes (dienes)

Compound Tonization Orbital Orbital
Potential(ev) energy(ev) energy(ev)
PNDO MINDO/2
7 Ethylene 10.48 10.86 10.60
12.76
12.50 12.94
14.39 15.25
15.63
19.13 19.18
1-Butene 9.59 — 9.74
cis-2-Butene 9.12 — 9.32
trans-2-Butene 9.12 9.34
iso-Butene 917 9.36
8 trans-1.3-Butadiene 9.08 10.16 9.40
11.25 11.70
11.83
12.14 12.58
13.09
12,23 14.39
14.71
18.78 17.99
19.24
Allene 9.83 9.74

Table 8. Comparison of experimental ionization potentials with calculated orbital
energies of acetylenes and aromatic compounds

Compound Ionization Orbital Orbital
potential(ev) energies(ev) energies
PNDO MINDO/2
9 Acetylene 11.36 11.06 11.02
16.27 13.63
18.33 18.08
Diacetylene 10.17 9.80
70 Benzene 9.25 10.15 9.01
11.49 11.54
12.19 12.72
12.86
13.67 13.45
14.44 15.67
16.73 16.07
18.75 18.98
Toluene 8.82 — 9.18
Azulene 7.43 - 7.95
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Heats of Formation

B. Heats of Formation

Although the CNDO and INDO methods in their original form do not
give anything close to the experimental heats of formation, there have
been attempts to reparametrize them so as to allow some correlation to
be found. Apparently, however, the best that could be achieved so far
in this respect was Wiberg’s 39 modified CNDO/2, which led to heats of
formation proportional to the experimentally observed ones.

Dewar and Klopman (PNDQO) and Dewar ef al. (MINDO/1} have
calculated the heats of formation of a large number of kydrocarbons with
good accuracy. These calculations all require the use of an artificially
lowered nuclear-nuclear repulsion term. Such an approximation usually
results also in unrealistically short values for the bond distances. The
reason why such a correction has to be introduced in order to obtain
good heats of formation is still unknown and is under investigation. The
net result is the painful dilemma of having to choose between a method
that gives good heats of formation and poor bond distances, or poor heats
of formation and good bond distances. This problem, which is also present
in ab initio calculations, may be related to the neglect of the changes in
correlation energy when a molecule is formed. Its solution, if it can be
found, would probably be the most important contribution in the field
of semi-empirical calculation of large molecules.

Both PNDO and MINDO/1 thus use standard values of bond dis-
tances (Table 9). In the MINDO/2 program however, Dewar and Hasel-
bach 25} seem to have solved the problem outlined above. Their calcula-
tion provide both good heats of formation and bond distance for Hydro-
carbons and Nitrogen and Oxygen heferomolecules, thus opening a new
dimension for application of their method.

Table 9. Standard bond distances for C—C
and C—H bonds in PNDO and MINDO

methods
Bond Hybridization Bond Length
c—C sp3—sp3 1.534 A
spi3—sp2 1.520
sp3—sp 1.459
sp2—sp? 1.483
C=C (Aromhitic) 1.397
C=C 1.337
C=C 1.205
C—H spd 1.093
sp2 1.083
(Aromatic) 1.084
sp 1.059
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Heats of Formation

In Tables 10 to 12 we show the heats of formation calculated by the
various methods, together with their deviation from the experimentally
observed values for alkanes and cycloalkanes, alkenes and cycloalkenes,
and acetylenes and aromatic compounds. Table 13 shows a comparison
of heats of formation of hydrocarbon radicals calculated by the MINDO
methods. Finally, in Tables 14 and 15 we show the results of MINDO/1
calculations on a selection of oxygen- and nitrogen-containing compounds.

Table 13. Heats of formation of hydrocarbon radicals calculated by MINDO/[1 and

MINDO[2
Radical AHj obs. MINDO/1 MINDO/2
AH}C&L lSAHf Achal. (SAHf

CH;- + 34.0 4335 —0.5 30.2

CH3CHjy - + 257 -+28.6 +2.9

CH3CH3CHjy - + 21.0 +4-23.9 +2.9

(CH3)sCH- + 17.6 +4-19.7 +2.1

CH3CH2CHCHg - + 17.0 +19.3 +2.3

CHCH.CH-CH3z + 124 +15.2 +2.8

(CHg)sC- + 68 + 7.4 +0.6

Allyl + 37.0 +46.0 +9.0 35.2

CeHs - 71.0 71.7
80.0

CgHsCHjy - 45.0 486

CHY 282.6 272.4

CgHE 233.3 243.9

Table 14. Heats of formation of oxygen containing com-

pounds
Compound AHy obs. MINDO/1
A Hygcal. d4H r

Ethylene oxide —12.19 — 0.49 —12
Furan — 8.29 — 7.27 -1
Phenol —23.05 —26.54 + 3
Anisol —19.00 —25.86 + 7
Benzyl alcohol  —22.39 —25.27 + 3
o0-Cresol —30.74 —36.87 + 6
m-Cresol —31.63 —36.64 + 5
$-Cresol —29.97 —36.61 + 7
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Table 15. Heats of formation of nitrogen containing com-

pounds
Compound A Hyobs, MINDO/1
4H I cal. dA4H !

Ammonia —11.04 —11.03 0
Methylamine — 8.70 — 8.70 0
Dimethylamine — 6.60 — 3.67 — 3
Trimethylamine —10.55 - 1.78 — 9
Ethylamine —11.60 — 7.05 — 5
#n-Butylamine —22.50 —22.63 0
s-Butylamine —25.20 —25.58 0
t-Butylamine —28.65 —25.85 — 3
Aniline +20.80 -+14.85 + 6
Hydrazine +22.75 +22.73 0
Methylhydrazine --23.35 4-20.60 + 3
Pyrrole +24.61 -+19.48 4+ 5
Pyridine +-33.61 +4-33.65 0
2-Methylpyridine 4-23.65 +22.91 + 1
Pyrazine +4-46.86 +-48.11 — 1
Pyrimidine +46.99 +32.32 +15

In recent months, increasing interest has been shown in the theoretical
calculation of the stability of carbonium ions®, Table 16 shows the results
of such calculations performed by the PNDO method 44.

Table 16. Heats of formation of carbonium ions from gaseous
carbon and hydyogen atoms

Compound AHg (eV)
Observed  Calculated

CHY — 3.04 — 2.80
CHE (trigonal bipyramid) — 9.10
CH} (sp? hybrids) — 9.46
CoHY —16.5 —16.2

CoHE —22.03
CsHi, —57.89
Norbornane cation (classical) —66.22
Face protonated nortricyclene —66.34
Edge protonated nortricyclene —68.16
Corner protonated nortricyclene —68.02

©) Additional papers dealing with this subject have appeared in the literature after
completion of this work 58,60),
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The interest in this area stems from attempts to assess the relative
stability of various possible structures of carbonium ions. Therefore
absolute values for the heats of formation are not necessarily required.
CNDO calculations can thus be used equally well to determine the relative
stability of isomers. Such calculations have been performed by Wiberg 4%
and are illustrated in Table 17.

Table 17. Energies of formation of
some cations 48 RH-»R+-H+ }- ¢~

R+ A4 Eev (cale.)
CH} 25.00
CHCHE 22.39
CH4CHCH3 20.57
t-C4H} 19.06
i-C4HY 21.89
>—cn,* 22.25

<>—CH2"' 21.81
O ¥ 20.82

C. Dipole Moments

The dipole moment of a compound is a function of the distribution of
charge within the molecule, and appears to be a sensitive test for the
accuracy of the compound’s molecular wave functions. The dipole
moment of a molecule can be approximated for a given direction as the
sum of two components, uq, the contribution from net charge densities
on the atoms, and for each atom A, usp (A), an atomic polarization
moment produced by the distortion of the electronic cloud around the
atom. The atomic polarization moment results essentially from the
mixture of 5 and # orbitals and, for a heteroatom, includes u;p, the lone
pair moment.

Thus, the x component of the dipole moment for a given molecule is

Miotar = pg + % pip (4') (82)
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where the summation is over all non-hydrogen atoms (i.e. the Is atomic
orbital only is used in the basis set of hydrogen, and hence no sp mixing

can be taken into account, and

allatoms

Ma=25416 3 (Za—Pa)7a -
and
P
12 (A) = — 14.674 (___‘_Zl;_‘:ﬁ) -

Here Z is the core charge on A (e.g. the nuclear charge less the num-
ber of inner core electrons), P44 is the total charge on atom A, %, is the
cartesian coordinate of atom A, and Z, is the Slater orbital exponent for
2 s and 2 p orbitals of atom A.

Pople and Segal 48 (CNDO/1) have calculated the dipole moments
for a number of diatomic molecules with limited success. Improved
results have, however, been cbtained by the CNDQ/2 approximation.
Thus Pople and Segal 26 (CNDOQ/2), working with a large number of
AB3 and A B3 molecules, and Pople and Gordon 47 (CNDO/2), working
with a large number of organic compounds containing nitrogen, oxygen,
and fluorine, have obtained good agreement.

Segal and Klein 48 (CNDO/2), working with some small molecules,
have shown in cases where no ambiguity can arise due to the cancellation
of large terms, that both the magnitude and sign of derivatives are quite
well reproduced. Bloor e al. 49 (CNDO/2), working with a selection of
nitrogen- and oxygen-containing heterocycles and some fluorine-contain-
ing compounds, and Davies 39 (CNDO/2), working with fluorinated
benzenes and nitrobenzenes and the radical anions of nitrobenzene have
reproduced dipole moments well. The dipole moments of a few small
compounds calculated by Yonezawa ef al. 328 (CNDO/2 level) give
values in excess of the experimental figure by about 1 Debye.

At the INDO level Pople, Beveridge and Dobosh 27 have compared
the dipole moments calculated for a selection of ABg and 4 Bs molecules
with CNDQ/2 results. In general the values are not too dissimilar,

Yonezawa ¢t al. 32D have calculated the dipole moment of cis-1,3-
butadiene together with three oxygen-containing compounds. In only
one case, trans-acrolein, is it possible to make a comparison with an
experimental value, and here the calculated value is 0.45 debyes greater
than the observed one.

Dewar ¢t al. 3% (MINDO/2) have calculated the dipole moment of an
AB3 and an ABj type molecule. In both cases the values are larger than
those of CNDO/2 or INDO. This trend is also apparent when MINDO/1
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is applied to a selection of oxygen- and nitrogen-containing compounds.
As yet no extensive dipole moment calculations have been reported using
the MINDO/2 method.

Finally, PNDO has been used to calculate the dipole moments of
some saturated hydrocarbons with reasonable agreement with experiment.
In Table 18 we show the values obtained by each method for small
molecules of the general form AB, ABj> and ABgs. In Tables 19 to 23 we
show the values obtained by each method for hydrocarbons, fluorine-
containing compounds, oxygen-containing compounds, nitrogen-contain-
ing compounds and other miscellaneous compounds. In Fig. 3 and 4 we
compare, where possible, these values, to the experimentally observed
ones.

Table 18. Caleulated and experimental dipole moments for AB, ABs, and AB3 mole-
cules

Molecule Obs. Dipole moments®) (debyes)
Cal. Cal. Cal.
CNDO/2 INDO MINDO/1
{(4B)
NO 0.16 —0.16
co 0.11 —1.00
HF —0.13¢) —1.03¢)
1.82 1.854)
(452)
BeH, - 0 0
BH; (24,) — 0.51 0.32
CHj (14;,) - 2.26 2.17
CHg (3B;) — 0.75 0.53
NHjy (2B;) — 2.16 2.12
NHo (217 24,) - 0.87 0.79
OHg 1.8 2.08 2.14 2.79°)
FHy — 0 0
BOg — 0 0
COg — 0 0
BeFa — 0 0
NOg +0.4 —0.75 —0.79
BF;, e 0.05 —0.29
O3 4+0.58 —1.26 —1.09
CFg - 0.53 0.26
NFy - —0.12 —0.38
OFg +0.297 —0.21 —0.40
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Table 18 (continued)

Molecule Obs. Dipole momentsa) (debyes)
Cal. Cal. Cal.
CNDO/2 INDO MINDO/1
(4B3)
BHj3 — 0 0
CHg - 0 0
NHj 1.47 —2.08 1.90 2.13¢)
H30 — 0 (1]
BFg — 0 0
CFg - —0.17 ~0.68
NFg +0.23 0.05 —0.48
HCN 2.42 2.4849)
2.95¢) 4.34¢)

%)

®)

a

~

®)

The convention of a positive sign meaning: the atom furthest to the right in the
formula is at the negative end of the dipole, is employed. Unless otherwise
stated, values are taken from Pople, J. A., Beveridge, D. L., Dobosh, P. A,,
reference 27).

Values taken from Segal, G. A., Klein, M. L., reference 48),

Values taken from Baird, N. C., Dewar, M. J. S., Sustmann, R.: J. Chem. Phys.
50, 1275 (1969).

Values taken from Bloor, J. E., Gilson, B. R., Billingsley 11, F. P.: Theoret.
Chim. Acta (Berl.) 72, 360 (1968).

Yonezawa, T., Yamaguchi, K., Kato, H., reference 325,
—_ ’
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£l S/
] 67 P4
[=] 5 90 /
£ o V4
S /

Q 3_ ’ »

£ 34 R

[<] 02 2 7

£ o 7 2

o 4 S 6

3 °

.9-2_ . .'/ 5

o 4 21

—_ /2

B 273

g He /’

£ /

5 |

> 7 1 L ! !
Yo 1 2 3 4

Caleulated dipole moments{Debyes)

Fig. 3. Comparison between calculated and observed dipole moments, ———— Perfect
correlation. @ Calculated dipole movements CNDO/2. O Calculated dipole move-
ments MINDO/I. The numbers refer to compounds in Table 21
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Table 19. Dipole moments (debyes) of hydrocarbons®)

Compound Obs. Cal. Cal. Cal.
CNDO/2 INDO PNDO
level
Hydrocarbons
Propane 0.083 0.00 0.03%)
0.034)
Propene 0.364 0.36
0.3504) 0.504)
Propyne 0.75 0.43 0.24Y)
0.5649)
2-Methylpropane 0.132 0.00
2-Methylpropene 0.503 0.65
2-Methyl-1,3-butadiene  0.292 0.25
Isobutane 0.13 0 05b)
cis-2-Butene — 0.089)
¢is-1,3-Butadiene - 0.31¢) 0.04P)
Butenyne - 0.379)
0.179)
Toluene 0.43 0.21
0.319) 0.229)

8) Unless otherwise stated, values are taken from Pople, J. A.,Gordon, M., reference4?.

b) Dewar, M. J. S., Klopman, G., reference 28),

¢) Bloor, J. E., Breen, D. L.: J. Phys. Chem. 72, 716 (1968).

d) Fischer, H., Kollmar, H.: Theoret. Chim. Acta (Berl.) 73, 213 (1969).

€) Kato, H., Konishi, H., Yamabe, H., Yonezawa, T.: Bull. Chem. Soc. Jap. 40,
2761 (1967).

— N (%] £~

T T 7 T
N,

N,

Experimental dipole moments(Debyes)

o
-

1 ] . 1
2 3 4
Calculated dipole moments{Debyes)

Fig. 4. Comparison between calculated and experimental dipole moments. ~-~ Per-
fect correlation. @ Calculated dipole movements CNDO/2. O Calculated dipole
movements MINDO/1. The numbers refer to compounds in Table 22
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Table 20. Dipole moments (debyes) of fluorine compounds

Compound Obs. Cal.
CNDO/2

Hydrogen fluoride 1.8195 1.85
Methyl fluoride 1.855 1.66
Methylene fluoride 1.96 1.90
Fluoroform 1.645 1.66
Ethyl fluoride 1.96 1.83
1,1-Difluoroethane 2.30 2.23
1,1,1-Trifluoroethane 2,32 2.18
Fluoroethylene 1.427 1.51
1,1-Difiuoroethylene 1.87 1.02
cis-1,2-Difluoroethylene 2.42 2.83
Fluoroacetylene 0.75 1.04
n-Propyl fluoride (trans) 2.05 1.84
trans-1-Fluoropropene 1.85 1.67
¢is-1-Fluoropropene 1.46 1.59
2-Fluoropropene 1.60 1.69
3-Fluoropropene (s-cis) 1.765 1.83
38,3,3-Trifluoropropene 2.45 2.34
3,3,3-Trifluoropropyne 2.36 2.48
2-Fluoro-1,3-butadiene 1.417 1.65
Fluorobenzene 1.66 1.66
Trifluoromethylbenzene 2,86 2.789)
o-Diflucrobenzene 2.40 2.888)
m-Difluorobenzene 1.58 1.654)
p-Difluorobenzene 0.0 0.08)
1,2,3-trifluorobenzene — 3.338)
1,2,4-trifluorobenzene —_ 1.668)
1,2,3,4,5-pentafluorobenzene — 1.703)
Hexafluorobenzene 0.0 0.08)
Formy! fluoride 2,02 1.98%b)

8) Davies, D. W., reference 59,

b) Dewar, M. J. S., Klopman, G., reference 28),

¢) Bloor, J. E., Breen, D. L.: J. Phys. Chem. 72, 716
(1968).
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Table 21. Dipole momenis of oxygen-containing compounds

Compound Obs. Cal. Cal. Cal.
CNDO/2 INDO MINDO/14
level

7. Water 1.846 2.10 2.79

2.14¢)
2.92¢)

2 Methanol 1.69 1.94 2.48
Ethanol 1,70 2.35
Propanol 1.64 2.21
Allyl alcohol 1.63 2.27

3 Phenol 1.55 1.73 2,72

1.76¢)
Benzyl alcohol 1.71 2,18

4 Dimethyl ether 1.30 1.83 2.17
Diethyl ether 1.18 2.03
Ethylene oxide 1.88 3.19
Furan 0.664) 1.42

0.72Y) 0.80%)
Anisole 1.35 2.38

5 Formaldehyde 2.339 1.98 3,35

2.17¢) 1.92¢)
2.30¢) 3.05¢)

6 Acetaldehyde 2.68 2.53 3.64
Propionaldehyde 2.52 2.46 -
Acetylacetylene 2.40 2.85 -

7 Acetone 2.90 2.90 3.63
Acroline (s-trans) an 2.63
Methyl vinyl ketone 3.16 2.92
Ketene 1.414 1.30
Methyl Ketene 1.79 1.35
Formic acid 1.415 0.87

1.348)
Benzaldehyde 2.72 2.50¢)
trans-Acrolein 3.115) 3.561)
cts-Acrolein — 3.661)
cis-Glyoxal — 5.101)

8) Bloor, J. E., Gilson, B. R., Billingsley II, F. P., Theoret. Chim. Acta (Berl.)
72, 360 (1968).

b) Bloor, J. E., Breen, D. L., reference 49,

¢) Bloor, J. E., Breen, D. L.: J. Phys. Chem. 72, 716 (1968).

d) Baird, N. C., Dewar, M. J. S., Sustmann, R.: J. Chem. Phys. 50, 1275 (1969).

€) Yonezawa, T., Yamaguchi, K., Kato, H., reference 323),

f) Kato, H., Konishi, H., Yamabe, H., Yonezawa, T.: Bull. Chem. Soc. Jap. 40,
2761 (1967).
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Table 22. Dipole moments (debyes) of nitrogen-containing

compounds
Compound Obs. Cal. Cal.
CNDO/2 MINDO/14)
7 Ammonia 1.468  1.97 2.13
2.09%)
3.11¢)

2 Methylamine 1.326 1.86 1.88
Dimethylamine 1.03 1.76 1.63

4 Trimethylamine 0.612  1.68 1.39
Ethylamine 1.22 — 1.87
n-Butylamine 1.00 1.82
Aniline 1.484) 1.97

1.53¢) 1.53¢)
Methylhydrazine 1.68 0.36
Pyrrole 1.844) 1.28
220 —2.00Y)

5 Pyridine 2.20 2.19%) 1.54
Pyridazine 3.97 3.761)

6 Pyrimidine 2.42 2.46Y) 2.27
Quinoline 2.31 2.34b)
Isoquinoline 2.75 2.20b)

Indole 2.00 1.861)
Imidazole 4.02 —4.09Y)
Pyrazole 2.21 2.711)
1,2,3-Triazole 4.30

1.79
1,2,5-Triazole
1,2,3,5-Tetrazole

5.15
1,2,3,4-Tetrazole
Cyanobenzene 3.93

S

0.20
2,35

5.23
3.23¢)

8) Bloor, J. E., Gilson, B. R., Billingsley II, F. P.:
Theoret. Chim. Acta (Berl) 72, 360 (1968).

b) Bloor, J. E., Breen, D. L., reference 49),

¢} Bloor, J. E., Breen, D. L.: J. Phys. Chem. 72, 716

(1968) .

4) Baird, N. C., Dewar, M. J. S., Sustmann, R.: J.
Chem. Phys. 50, 1275 (1969).
¢) Yonezawa, T., Yymaguchi, K., Kato, H., reference

32a),
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Table 23. Dipole moments of miscellaneous com-

pounds
Compound Obs. Cal.
CNDO/2
Nitrogen trifluoride 0.235 0.43
Difluoramine 1.93 2.13
Nitrous acid 1.85 2,27
Nitric acid 2.16 2.24
Cyano fluoride 1.68 1.55
Formyl fluoride 2.02 2.16
Carbonyl fluoride 0.951 1.42
Acetyl fluoride 2.96 2.84
Acetyl cyanide 3.45 2.80
Isocyanic acid 1.59 1.88
Methyl isocyanate 2.81 1.80
Formamide 3.71 3.79
Nitromethane 3.46 4,38
Nitrobenzene 4.28 5.33
4.40¢) 4.959)
Isoxazole 3.01 3.17¢)
Oxazole 1.40 1.34°)
1,2,5-Oxadiazole 3.36 —3.52¢)
1,3,4-Oxadiazole 3.0 2.89¢)
Sydnone 7.31 6.82Y)
o-Fluoronitrobenzene - 6.28%)
m-Fluoronitrobenzene - 4.66%)
p-Fluoronitrobenzene 2.87 3.718)

8) Davies, D. W., reference 50,

b) Bloor, J. E., Gilson, B. R., Billingsley II, F. P.:
Theoret. Chim. Acta (Berl) 72, 360 (1968),

¢) Bloor, J. E., Breen, D. L., reference 49,

4) Bloor, J. E., Breen, D. L.: J. Phys. Chem. 72,
716 (1968).
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D. Molecular Geometries and Force Constants

With the exception of the PNDO and MINDO/1 methods, molecular
geometries and force constants have been calculated by all the available
semi-empirical methods. Pople and Segal found that CNDO/1 was able
to reproduce bending force constants but not bond lengths. This was
corrected by additional approximations leading to CNDO/2. This latter
method satisfactorily reproduced bond angles (Table 24), bond lengths
(Table 25) and bending force constants (Table 26) for a large number
of molecules. However, the CNDO/2 calculated stretching force con-
stants remain too large.

Kroto and Santy 51} have used the CNDO/2 method to calculate
bond angles of a few molecules in their excited states., Again their results
seem good. Subsequently %2, they performed a far more laborious open-
shell calculation which resulted in only slightly improved bond angles.

Wyberg, in his modified CNDO/2 method 39, calculated bond angles
which are in good agreement with experiment. Del Bene and Jaffe 31
in their modified CNDO/2 method, however, were unable to reproduce
satisfactory bond angles.

At the INDO level, the same excellent agreement with experiment
has been obtained by Pople ef al. (INDO) and by Dixon 23} in his EMDZO
method as in the original CNDO/2 (Table 24).

The recently reparametrized MINDO method (MINDO/2) 3%, seems
to provide equally good values for bond distances and force constants.

Tables 24 to 26 show comparisons of experimental and calculated
data for the various methods.

E. Ultraviolet Spectra

One of the traditional tests, and the main success, of the quantum
mechanical calculations on conjugated molecules was the prediction of
UV transitions. Attempts have also been made to use all-valence electron
calculations for this purpose. Early attempts, however, met with relative
failure. Thus the UV spectra of methyl-substituted borazines and ben-
zenes were calculated by Kuznetsof and Shriver 53) but did not correlate
very well with the experimentally observed ones. Clark et al 29 using
virtual orbitals obtained by the CNDO/2 method, encountered similar
difficulties.

The calculation of the geometries of species in their excited states
seems, however, to be more successful. Thus satisfactory bond angles
in a few selected molecules were calculated by Santry and Kroto 81,
More recently Del Bene and Jaffe reparametrized the CNDO method
and calibrated it to reproduce the spectra of benzene and pyridine. Their
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Table 24. Comparison of calculaied and expevimental equilibrium bond angles

Compound Angle Exptl. Cal Cal. Cal. Cal.
(BAB) Bond CNDO/2 INDO EMZDO CNDO/2
Angle (Wyberg)
BeHjy — - 180.0 180.0
BH, (24,) - 1366  130.0
BH; (211 —2B,) — 180.0 180.0
CHj (14,) 103.2 108.6 107.2 1058
CHj3 (3By) 180 141.4 1324 1310
NH; (2B1) 103.3 107.3 107.2  106.0
NH, (211 —24,) 144 145.1 1403 141.2
OH} (2By) - 118.7 123.4
OHg 104.45 107.1 1086 106.6
FHy — 180.0 180.0
BOz 180 180.0 180.0
Cco% 180 180.0 180.0
COg 180 180.0 180.0
BeFg 180 180.0 180.0
NO% 180 180.0 180.0
CO3 134 142.3 140.8
NOg 132 137.7 138.5
BFy - 124.6 122.9
NO3z 1154 1183 118.6
O2 1168 114.0 115.4
CFy (100 or 104.6 103.6
108°)
NFq 1042  102.5 101.7
OFg 103.8 99.2 99.0
BHj - 120.0 120.0
CHjs (12.0) 120.0 120.0
OH} 117 113.9 120.0
NH, 106.6  106.7 109.7  108.1
Hy0 — 120.0 120.0
CO3 120 120.0 120.0
BF3 120 120.0 120.0
NO3 120 120.0 120.0
CF3a 111.1 113.5 111.6
NFyg 102.5 104.0 101.0
Ethane {(H—C—C) 1105 111.5
Propane (C—C—C) 1124 113.3
(H—C—H) 106.1 105.6
Ethylene (C—C—H) 1223 123.3
Allene (C—C—H) 120.2 122.8
121.5
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Table 25. Comparison of experimental and calculated bond lengths

Compound Bond Experimental cald) cal€)
Bond Length CNDO/2  MINDO/2

Hydrogen (molecular) 0.742 A 0.746 A

Hydrogen fluoride 0.917 1.004

OH 0.971 1.026

NH 1.038 1.062

Nitrogen (molecular) 1.094 1.140

N% 1.118 1.113

CH 1.120 1.109

0% 1.123 1.095

Carbon monoxide 1.128 1.190

NO 1.151 1.152

Oxygen (molecular) 1.207 1.132

BH 1.233 1.193

BeH 1.343 1.324

Lithium hydride 1.595 1.568

Methane C—H 1.091%) 1.196

Ethane 1.0918) 1.117 1.103

Ethane (ecl) — - 1.103

Ethylene 1.0863) 1.110 1.093

Acetylene 1.058%) 1.093 1.069

Diacetylene 1.0461) — 1.069

Allene (1.06,1.081)b)  — 1.093

Cyclopropane 1.089b) — 1.103

Cyclobutane 1.0921) —_ 1.103

Hydrogen cyanide 1.0658) 1.093 —

Formaldehyde 1.1028) 1.116 —

Ethane c—C 1.5363) 1.476 1.524

Ethane (ecl) —_ - 1.524

Propane 1.507) — 1.534

#-Butane 1,511b) —_ 1.540

i-Butane 1.5400) —_ 1.534

Cyclopropane (1.51,1.524)%) — 1.519

Cyclobutane (1.548,1.567)%) — 1.550

Cyclopentane 1.527)

Cyclohexane (chair) (1.53,1.540)%) — 1.549

Cyclohexane (boat) — - 1.551

Benzene 1.393b) — 1.407

s-trans-Butadiene 1.467¢) 1.473
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Table 25 (continued)

Compound Bond Experimental cald) cale)
Bond length CNDO/2 MINDO/2

Toluene C—Me 1.52b) — 1.509
Diacetylene 1.376%) 1.386
i-Butene 1.54D) 1.51
trans-2-butene 1.52b) 1.50
cis-2-Butene — 1.50
Ethylene C=C 1.3381) 1.320 1.337
s-trans-Butadiene 1.343¢) - 1.347
iso-Butene 1.347) — 1.347
trans-2-Butene 1.339Y) - 1.347
cis-2-Butene — 1.347
Allene (1.308,1.311)b) — 1.309
Formaldehyde C=0 1.2108) 1.251 -
Acetylene 1.206D) 1.198 1.206
Diacetylene 1.205V) - 1.205
Hydrogen cyanide C=N 1.1563) 1.180 —

8) Hertzberg, G., Ref. 42),

b) Sutton, L. E.: Tables of Interatomic Distances. London: The Chemical Society
1958 and 1965.

¢) Haugen, W., Traetteberg, M.: Acta Chim. Scand. 20, 1726 (1966).

d) Segal, G. E.: J. Chem. Phys. 47, 1876 (1967).

¢) Dewar, M. J. S., Haselbach, E., Ref. 89,

method, although still using the virtual orbital approximation, provides
excellent agreement between the calculated and observed UV transitions
in substituted conjugated hydrocarbons and heterocycles (Table 27).
Their inprovement seems to arise from two essential modifications. One
is the introduction of a limited configuration interaction and the other
is the use of larger values of § for ¢ than for z bonds. This latter approxi-
mation has the effect of lowering the ¢ occupied orbitals and raising the o
unoccupied orbitals, thus shifting the transitions involving ¢ orbitals to
larger values. In this way the intermingling of ¢ and = orbitals, observed
in previous calculations, is avoided.

The calculation of the spectra of sigma bonded molecules was not as
thoroughly studied and so far does not seem to be very successful. In
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Table 26. Comparison of experimental and calculated force constants

Compound Bond Experimental3) Cal. CNDO/2¢) Cal. MINDO/24d)
Force Constant Force constant Force Constant
(dynes/ (dynes/ {dynes/
cm X 105) cm X 10%) cm X 108)
Methane C—H 5.0 - 5.7
Ethane 4.8 12.7 5.6
Ethylene 5.1 12.8 5.8
Acetylene 5.9 12.3 6.3
Hydrogen cyanide 5.8 13.2 —
Formaldehyde 5.3 11.7 —_
Ethane C—C 45 33.9 5.4
Ethane (ecl) — — 5.5
Ethylene 9.6 23.9 10.1
Acetylene 15.8 35.5 15.9
Propane — 5.6
n-Butane — 5.5
{-Butadiene - 5.6
Cyclopropane — 5.6
Cyclopentane — 6.3
Cyclohexane (chair) — 6.2
Benzene 7.6b) - 9.4
Toluene C—Me — — 5.3
Formaldehyde C=0 12.1 34.1
Hydrogen cyanide C=N 179 44.0

8} Herzberg, G., Ref. 49,

b) Crawford, Jr., B. L., Miller, F. A.: J. Chem. Phys. 77, 249 (1949).
¢) Table 25, ref. 4).

d) Dewar, M. J. S., Haselbach, E., Ref. 38,

these cases, however, the transitions occur in the far UV and the experi-
mental data have not been as firmly established as those involving =
electrons. Nevertheless, for some selected molecules they are available
and correlations have been attempted. Thus Sandorfy and Katagiri 59,
who developed one of the earlier modified Pariser-Parr-Pople methods
including all-valence electrons, have been able to roughly reproduce the
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trends of the experimental transition energies for a few paraffinic mole-
cules.

No attempts (unsuccessful?) have been reported by Del Bene and
Jaffe’s method in this area. INDO methods and the related EMDZO
developed by Dixon have been used only casually, but seem to have led to
“reasonable” values for the lowest excitation energies in a few small
molecules.

Table 27. Selected examples of correlation between observed and calculated UV transi-
tions (Del Bene and [affe). (Other studied compounds include benzene, pyridine,
1,2-diazine, 1,3-diazine, 1,4-diazine, cyclopentadienide ion, pyrazole, imidazole,
2-pyrrole-carboxaldehyde, furfural, benzonitrile, nitrosobenzene, phenol, phenoxide
ion, pyridinium ion, I-hydroxy-pyridinium ion, 2-cyano-pyridine, 3-cyano-pyridine,
4-cyano-pyridine, 2-amino-pyridine, 3-amino-pyridine, 4-amino-pyridine.)

Compound Sym- Energy above Type
metry the ground
state (eV)
Obs Calc
Cyclopentadiene 1Bg 4.8 4.8 n->*
144 6.2 6.3 1
1B, 7.5 7.4 o—a*
14y 7.9 7.9 >T*
Pyrrole 184 5.7 5.0 n>n*
14, 6.5 54 >t
1B3 7.1 7.0 n->n*
14, 7.0 a--n*
Furan 1B, 59 5.2 n—>n*
14y 6.5 5.8 >r*
14, 7.4 7.3 >t
1By 7.3 >
Toluene 147 4.6 4.6 A->n*
14’ 6.0 5.1 n—>n*
14’ 6.8 >t
14" 6.8 >t
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Table 27 (continued)

Compound Sym- Energy above Type
metry the ground
state (eV)
Obs Cale
Aniline 1By 4.4 4.4 ¥
144 5.4 4.7 A A
14y 6.4 6.5 >t
1B, 6.9 6.6 n—~>n*
Anilinium ion 14”7 4.9 4.6 ¥
14’ 6.1 5.0 n—>n*
14” 6.8 > *
14’ 6.8 >
Pyridine N-oxide 145 ~3.8 3.2 n—->mn*
14, 4.4 3.9 >t
1Ba 4.0 ¥
1B, 4.9 5.8 >
14, 6.0 6.0 ->*

F. Nuclear Magnetic Resonance Spectra

It has been found that a good estimate of o413, the 13C chemical shift
(the displacement of the resonance of a carbon nucleus from a reference
position when in the presence of an applied magnetic field) is a function
of the electronic environment of the atom and can be correlated with its
charge density.

Karplus and Pople %, using one-electron theory, have shown that,
to a first approximation, the 13C chemical shift at a carbon atom A may
be calculated by the following expression:

o138 Couo= 0 + op (85)

Here, o7 is a diamagnetic term proportional to the electron density
of carbon atom A and expressed as

o4 =57.85~8.23 AgA (86)
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where AgA, the excess charge density, is given by

orbitals
onatomA

dgh=4— Z P“ (87)

Ph being the charge density or occupancy of orbital ¢ of atom A
in the molecule. The second term, o3, a paramagnetic term representing
a local correction for the molecular environment, involves the mixing
of ground and excited electronic states. This term is extremely difficuit
to calculate and no exact expression has been found using many-electron
theory. Karplus and Pople have represented op as

op = — (103.57 + 33.46 4g4)S Qpa (88)
AB

where

AZB QBA=% (Pzpza+ Pysya+ Peaza) —3 (Pysya Peaza + Popza+ Prasa
—% (P TAYB p 1IA$B) + %‘ (P TAVA p yAzA)

~BZA% (Pyays Peazp + Pesen Prpon + Prpzs Pyavs)
#

and Pg,yy is the bond order between a 2 px atomic orbital an atom A
and a 2 py atomic orbltal on atom B.

As the variation in ¢ can be shown not to total more than 20 parts
per million, the paramagnetic term a,‘} must make the dominant contri-
bution to the chemical shift. (This was also the conclusion reached for
19F shifts 56).

Both terms, however, are dependent on the total charge density of
the atom. It is not surprising, therefore, that 13C shifts of atoms in
conjugated molecules vary approximately linearly with the m-electron
density at the atoms (§13C=160 4g7). Of the available all-valence
electron methods, chemical shifts have been calculated only by the
CNDO approximation.

Bloor and Breen 49 calculations ( CNDO/2) of the 13C shifts fo mono-
substituted benzenes and oxygen and nitrogen heterocycles, show that
the correlation between the theoretical and experimental shifts (Eq. 85)
is not s:gmﬁcantly better than a simpler correlation of the experimental
shifts with 45"®), the total electron density. The calculated and experi-
mental 13C shlfts are given in Tables 28 to 30.
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Table 28. Calculated and observed 13C chemical shifts®) for heievocyclic compounds
with one ving®)

Compound Atom No. & (13C) exp d (13C) cal CNDO/2
(ppm) (ppm)
Benzene 0 0

5/4 s 2 —21.85 —11.7
@ 3 +4.29 + 3.85
8NN3 4 — 7.63 — 6.11
N.
‘f N 2 —17.4 — 7.52
o' 3
s 3 —23.9 — 847
slg s 4 4 1.08 + 0.24
4
b
NZN 1 —33.4 —13.97
Nﬁ’N
5 ,N\, 3 —30.48 —21.9
BL{\I 1 —28.87 —15.0
1 6 + 6.1 + 7.56
N
e ? 2 —39.0 ~25.89
Ng N
'
4Il Il3 2 —14.4 — 5.12
s o 2 3 4 1.6 + 9.79

4 3
£ D, 2 + 94 — 1.86
3 +19.6 + 7.30

8) Parts per million relative to benzene.
b) Bloor, J. E., Breen, D. L., reference 49%),
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Table 29. Calculated and observec 13 chemical skifis3) for quinoline and isogquinolineb)

Compound Atom No. & (13C) exp 4 (13C) cal CNDO/2
(ppm) (ppm)
2 —230 —11.86
3 + 8.0 + 4.38
4 — 75 — 2.47
5 oA s 5 + 20 + 0.45
7()l\/j2 6 + 25 + 78
s O N 7 — 1.0 +10.0
8 — 15 + 1.52
9 ~21.5 —30.92
10 + 1.0 —18.08
1 —24.5 —11.32
3 —15.0 —10.54
4 — 7.0 +455.25
o 5 + 2.2 + 5.92
‘C@; 6 — 20 —~ 0.68
Y 7 + 1.2 + 0.75
8 + 1.0 +18.25
9 + 0.03 —17.78
10 — 74 —22.78

8) Parts per million relative to benzene.
b Bloor, J. E., Breen, D. L., Ref. 498),

Some 19F chemical shifts have been reproduced for a number of
substituted fluorobenzenes by Davies 50 (CNDO/2) using the following
Prosser-Goodman expression for o(X), the chemical shift of a compound
X relative to fluorobenzene:

o (X) — 0 (CeHsF) = — = (A Agy+ Bdprc+ C 4gc) (89)

Here Agy=gp {X) — gr (Ce¢HsF) is the n-electron charge density on
the fluorine atom in X relative to fluorobenzene; Agpc is the correspond-
ing difference in n-electron bond order for the FC bond; Agcis the corre-

519



Applications
sponding difference in & charge density on the neighboring carbon-atom,

A, B and C are parameters and 4w is the average energy (parameter).
The results of this work are shown in Table 31.

Table 30. Calculated and observed 13C chemical shifis®) for monosubstituted benzenesd)

Substituent Atom No. 8 ]13C) exp 8 (13C) cal CNDO/2
(ppm) (ppm)
H 1 Q 0
CHg 1 — 9.1 —18.2
2 — 03 + 1.0
4 + 2.8 + 08
¥ 1 —35.1 —34.5
2 +14.3 -+ 6.4
3 — 09 + 238
4 + 44 + 14
OH (planar) 1 —26.9 —32.0
2 +12.3 + 67
3 — 17 — 88
4 + 7.3 + 2.1
NH, (pyrimidal) 1 —19.2 —26.0
2 4124 4 5.3
3 — 1.3 — 24
4 + 9.5 + 23
CHO 1 — 9.0 —135
2 — 12 — 19
3 — 1.2 0
4 — 1.3
NOg 1 —19.6 —15.3
2 + 53 + 07
3 — 0.8 — 15
4 — 6.0 — 1.5

8) Parts per million relative to benzene.
by Bloor, J. E., Breen, D. L., Ref. 490),
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Table 31. Calculated and observed 19F chemical shifts®b)

Compounds Atom No.  § (1%F) exp 6 (19F) cal CNDO/2
(ppm) (ppm)
0-CgH4Fa — 22.5 22.2
m-CgH Fa — — 3.1 — 43
p-CeH Fg — 6.8 (6.8)
1,2,3-CgHzF3 1 19.3 17.5
2 46.1 46.0
1.2.4-CgHgF3 1 27.5 30.7
2 17.6 17.4
4 2.8 1.7
1,2,3,4,5-ColiF 1 23.4 19.8
2 46 48.9
3 37.6 36.0
CeFe — 46.4 44.3
0-CgH 4 FNOg — 5.6 6.4
m-CgH4FNOg - — 34 2.1
$-CH4FNO, - — 93 — 086

3) Davies, D. W., Ref. 51,
b) Relative to C¢HsF

G. Electron Spin Resonance Spectra

The electron spin resonance (E.S.R.) spectra of a paramagnetic organic
molecule, e.g. free radical, radical cation or radical anjon, is directly
related to its unpaired electron distribution (spin density). In the region
of a magnetic nucleus the hyperfine interaction between the magnetic
moments of the nucleus and the electron is a function of the spin density.
It has been shown that, for an atom N, a direct correlation exists between
an, its observed hyperfine coupling constant, and (p%—25), the unpaired
electron population of its atomic orbitalsd).

At the CNDO/2 level Davies 39) has calculated spin densities for
some fluorinated nitrobenzenes and shown that they follow the general
pattern of hyperfine coupling constants.

d) The isotropic part of the hyperfine coupling constant is related to the unpaired
s electron; the anisotropic part of it is related to the unpaired electronic popula-
tion of p orbitals.
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Pople ¢t al 27) developed the INDO method specifically to account for
hyperfine coupling constants in terms of spin densities. Pople, Beveridge
and Dobosh have calculated the spin densities of a large number of
compounds and found a good agreement with the experimental isotropic
hyperfine coupling constants of 1H, 13C, 14N, 170, and 19F (Tables
32 to 35).

Beveridge and Miller 51 jn an INDO study, have calculated the
vibronic effects in substituted methyl redicals and have satisfactorily
reproduced the trends of isotope effects on isotropic coupling constants
(Table 87).

Table 32. Selectedd) examples of correlation between experimental and
calculated isotropic hyperfine coupling constanis for 1H

Radical Atom or an, G
group Calcd Exptl
Methyl —22.4 (—)23.04
Fluoromethyl — 7.8 (—)21.10
Difluoromethyl 21.9 (+)22.20
Ethyl CH3 —20.4 {(—)22.38
CH3 27.6 (-+)26.87
Vinyl « 17.1 (+)13.40
B 55.1 (+)65.00
Be 21.2 (-+)37.00
Formy! 749  (+)137.00
Ethynyl 32,7 (+)16.10
Allyl 1 —14.6 (—)13.93
1 —14.9 (—)14.83
2 6.9 (-+) 4.06
Phenyl 2 18.7 (+)19.50
3 6.1 (-+) 6.50
4 39
Cyclopentadienyl — 4.8 (—) 5.60
Tropyl — 32 (—) 3.95
Benzyl —-CHz —17.0 (—)16.35
2 — 64 (—) 5.14
3 3.6 (+) 1.75
4 — 5.6 (—) 6.14
Phenoxy 2 — 4.1 (+) 6.60
3 2.2 (+) 1.96
4 — 34 (—)10.40
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Table 32 (continued)

Radicat Atomor an, G
group Caled Exptl.
Cyclohexadienyl CHa 97.6 (+)47.71
2 —11.1 (+) 899
3 5.1 (+) 2.65
4 — 938 (—)13.04
Perinaphthenyl 1 — 75 (~) 7.30
2 4.3 (+) 2.80
Benzene~ — 3.6 (—) 3.75
Cyclooctatetraene™ — 2.6 (—) 3.21
trans-Butadiene~ 1 — 98 (—) 7.62
1 —10.3 (~) 7.62
2 — 08 (—) 279
Naphthalene— 1 — 5.3 (—) 4.90
2 — 09 (—) 1.83
Anthracene— 1 - 2.7 (—) 2.74
2 -~ 06  (—) 151
9 — 6.8 (~) 5.34
Anthracenet 1 — 29 (~) 3.00
2 — 0.8 (~) 138
9 — 6.6 (—) 6.49
Phenathrene— 1 — 4.6 (~) 3.60
2 1.2 {-+) 0.72
3 — 3.8 (—) 2.88
4 0.6 (+) 0.32
9 — 5.0 (—) 4.32
Pyrene~ 1 — 55 (—) 4.75
2 2.5 (+) 1.09
4 — 1.9 (—) 2.08
Stilbene~ 1 — 3.7 (—) 190
2 2.0 (+) 0.86
3 — 39 (—) 3.80
4 1.9 (+) 0.32
5 — 84 (—) 2.95
7 — 5.2 (—) 4.36
Biphenylene— 1 0.2 (+) 0.21
2 — 21 (—) 2.86
Azulene~ 1 0 - (4) 027
2 — 3.0 (~) 3.95
4 — 7.0 (—) 6.22
5 3.9 (-+) 1.34
6 — 94 (—) 8.82
Fluoranthene~ 1 — 44 (—) 3.90
2 2.2 (+) 1.30
3 — 6.4 (—) 5.20
7 0.2
8 — 09
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Table 32 (continued)

Radical Atomor aw, G
group Calcd Exptl
Benzonitrile~ 2 3.3 (—) 8.63
3 1.1 {+) 0.30
4 8.0 (—) 8.42
Phthalonitrile~ 3 1.5 (+) 0.33
4 4.0 (—) 4.24
Isophthalonitrile— 2 1.5 (+) 0.08
4 7.6 (—) 8.29
5 2.6 (+) 1.44
Terephthalonitrile= 1.0 (—) 1.59
1,2,4,5-Tetracyanobenzene— 2.2 (+) 1.11
p-Nitrobenzonitrile= 2 1.8 (+) 0.76
3 3.5 (—) 8.12
Nitrobenzene— 2 3.6 (—) 3.39
3 1.9 (+) 1.09
4 3.8 (—) 8.97
m-Dinitrobenzene— 2 0.4 (+) 3.11
4 7.8 (—) 4.19
5 32 (+) 1.08
p-Dinitrobenzene— 1.0 (—) 112
m-Fluoronitrobenzene™ 2 3.7 {(—) 3.30
4 3.7 (—) 3.30
5 1.8 (4) 110
6 3.4 (—) 3.00
p-Fluoronitrobenzene™ 2 3.8 (—) 3.56
3 2.2 (+) 1.16
3,5-Difluoronitrobenzene~ 2 3.5 (—) 3.26
4 3.6 (—) 3.98
o-Benzosemiquinone— 3 1.9 (—) 3.65
4 0.2 (+) 0.95
#$-Benzosemiquinone— 0.9 (—) 2.37
2,5-Dioxo-1,4-semiquinone2- 2.4 (+) 0.79
1,4-Naphthosemiquinone— 2 1.0 (—) 3.23
5 0.6 (+) 0.65
6 0.1 (—) 0.51

8) Other compounds whose hyperfine coupling constants have been
correlated include 9,10-anthrasemiquinone~, pyrazine-, 1,5-diazo-
naphthalene~, pyridazine~, 5-tetrazine—, N, N-dihydropyrazine,
phthalazine, quinoxaline—,
1,4,5,8-tetraazoanthracene—, p-nitrobenzaldehyde—, p-cyanobenz-

dihydroquinoxalinet,

aldehyde—, and 4-cyanopyridine—,

phenazine~,



Table 33, Selectedd) examples of correlation between experimental and
calculated isotropic hyperfine coupling constanis for 13C
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Radical

Atom or an, G

group Caled

Exptl

Methyl
Fluoromethyl
Difluoromethyl
Trifluoromethyl
Ethyl

Vinyl

Ethynyl

Allyl

Phenyl

Cyclopentadienyl
Tropyl
Benzyl

Phenoxy

Cyclohexadienyl

Perinaphthenyl

Benzene~
Cyclooctatetraene—
trans-Butadiene™

Naphthalene™

Anthracene™

45.0
92.7
145.1
184.6
— 124
39.9
178.0
— 145
— 25
342.8
23.0
— 166
151.3
— 48
10.7
— 26
4.1
3.5

— 123
11.7
— 85
10.5
Ha 32.6
— 107

7.0

— 55

6.3

17.9

— 137

17.8
17.6
13.9
10.3

00
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(+) 38.34
(+) 54.80
(+)148.80
(+)271.60
(—) 13.57
(+) 39.07
(4-)107.57
(=) 855

(+) 2.80
(+) 128

(+) 7.10
(—) 1.20
3.57

8.70
— 4.59
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Table 33 (continued)

Radical Atom or an, G

group Calcd Exptl

02 (+) 037

11.8 8.48
33 (=) 4.50
8.2

Anthracenet

...
I

Phenanthrene—

WM == N

[
Lo
[,

Pyrene™

Stilbene~

O O b G0 B0 = b BD e e e 8D o
-]
©

Biphenylene~

Azulene~

Fluoranthene~

00 S O DY = @ Tt b (O BD e e DY N
[
-t
Lo

Benzonitrile- 1 8.4

2
I
bl
o

(=) 6.12
Phthalonitrile~

O 00 = b G
1
=3
Pt

Z
|

[+>]
>
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Radical

Atom or

ks
[]
=
i

ax, G

Calcd

Exptl

Isophthalonitrile=

Terephthalonitrile—

1,2,4,5-Tetracyanobenzene~

p-Nitrobenzonitrile—

Nitrobenzene~

m-Dinitrobenzene~

p-Dinitrobenzene~

o-Benzosemiquinone—

p-Benzosemiquinone™

2,5-Dioxo-1,4-benzosemiquinone—

1,4-Naphthosemiquinone~

QW N =) RN BN =
Z Z

Z

4

BO =t b U3 =t DD e U DO = 0D B e O W -

[

OO - W

4.9

— 58
12.3

— 941
— 43
— 6.7
9.7

- 07
7.2

- 73
~ 53
7.5

— 52
5.5

- 23
— 45
— 5.2
6.1

— 52
7.1

0.3

- 24
13.2

— 94
6.1

0.1

— 686
3.2

- 11
— 69
1.0

31

— 7.9
— 83
1.3

— 15
0.2

1.4

(—) 7.83
8.81
(—) 1.98

(=) 0.59
(+) 0.40

8) Other compounds whose hyperfine coupling constants have been
correlated include 9,10-anthrasemiquinone—, pyrazine=, 1,5-diazo-
naphthalene~, pyridazine=, 5-tetrazine—, N,N-dihydropyrazinet,
phthalazine, quinoxaline—,
1,4,5,8-tetraazoanthracene™, p-nitrobenzaldehyde~, p-cyanobenz-

dihydroquinoxalinet,

aldehyde~, and 4-cyanopyridine~.

phenazine-,
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Table 34, Observed and calculated isotropic hyperfine coupling constants

for 14N
Radical Group an, G
Caled Exptl

Benzonitrile~ 2.4 (+) 2.15
Phthalonitrile™ 1.9 (+) 1.80
Isophthalonitrile~ 1.3 (+) 1.02
Terephthalonitrile~ 2.0 {-+) 1.81
1,2,4,5-Tetracyanobenzene— 1.4 (+) 1.15
p-Nitrobenzonitrile~ CN 1.1 (+) 0.78

NOg 4.7 (+) 7.15
Nitrobenzene™ 7.1 (-+)10.32
m-Dinitrobenzene~ 0.5 (-+) 4.68
p-Dinitrobenzene— —0.0 (—) 1.74
m-Fluoronitrobenzene™ 6.6 (+)12.60
p-Fluoronitrobenzene™ 71 (-+) 9.95
3.5-Difluoronitrobenzene~ 6.1 (+) 8.09
Pyrazine~ 8.3 (+) 7.21
N,N-Dihydropyrazinet 7.8 (+) 7.60
Pyridazine~ 7.7 (-+) 5.90
s-Tetrazine~ 5.8 (+) 5.28
1,5-Diazanaphthalene™ 5.9 (+) 8.37
Phthalazine~ 0.3 {+) 0.88
Quinoxaline— 7.3 (+) 5.64
Dihydroquinoxalinet 7.7 {(+) 6.65
Phenazine— 7.2 (+) §.14
1,4,5,8-Tetraazaanthracene™ 3.3 (+) 2.41
p-Dicyanotetrazine~ Ring 5.9 (+) 5.88

CN —0.9 {—) 0.16
p-Nitrobenzaldehyde~ —0.5 (+) 5.83
p-Cyanobenzaldehyde™ 1.0 (+) 1.40
4-Cyanopyridine™ Ring 8.3 (+) 5.67

CN 2.7 (-+) 2.33
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Table 35. Observed and calculated isotropic hyperfine coupling constants
fo' 170

Radical an, G
Calcd Exptl

p-Benzosemiquinone™ —8.7 (—)9.53
1,4-Naphthosemiquinone™ —~9.3 (—)8.58
9,10-Anthrasemiquinone™ —9.9 {(—}7.53
2,5-Dioxo-1,4-semiquinoned- -3.6 (—)4.57
Nitrobenzene™ —4.3 (—)8.84

Table 36. Observed and calculated isotropic hyperfine coupling constants
for 12F

Radical Atom ay, G
Caled Exptl

Fluoromethyl 71.3 (+) 64.30
Difluoromethyl 87.1 (+) 84.20
Trifluoromethyl 159.5 (--)142.40
Monofluoroacetamide 344 54.60
Difiuoroacetamide 1 31.5 75.00

1 39.0 75.00
m-Fluoronitrobenzene~ —4.0 (—) 370
p-Fluoronitrobenzene~ 6.3 (+) 341
3,5-Difluoronitrobenzene— —38 (—) 273
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Y. Final Rematks

In the preceding pages, we have reviewed some of the most important
all-valence electron methods proposed for the S.C.F. calculation of
properties of large organic molecules.

The last five years have seen the birth of such methods and an
incredibly fast development of a number of more efficient variants
designed to give better agreement with specific properties. So far, how-
ever, no method seems to be general enough to overshadow all the others,
although some of the newly developed ones seem to come closer to this
ultimate goal. Below we give what we consider to be, at the present time,
the most useful methods for various specific purposes.

Ionization potentials MINDO/2

Heats of formation MINDO/2, PNDO

Dipole moments CNDO/2

Bond distances CNDO/2, MINDO/2

Bond angles CNDO/2

Force constants CNDO/2, MINDO/2
Ultraviolet CNDO/2 (Del Bene and Jaffe)

Nuclear Magnetic Resonance CNDO/2
Electron Spin Resonance INDO

The MINDO/2 method seems to be particularly attractive but, as
yet, very little information is available on its applicability to some
properties such as spectra. ,

The trend is undoubtedly in favor of the development of an “all-
purpose”” method, but the means by which this can be achieved are still
debatable. Some authors believe that the direction to follow involves
the development of an NDDO method. Such a procedure, however, would
require the calculation of a much larger number of integrals and therefore
would jeopardize the possibility of application to large organic molecules
of ,,chemical interest.”

It is the opinion of the present authors that such calculation would
not improve the agreement with experimental properties because it
would not introduce any fundamentally new feature which might
correct for the inadequacies of the present ones. As a matter of fact, the
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Final Remarks

neglect of two-center integrals involving one-center differential overlap
seems to be a reasonable hypothesis as shown by the success of the
M(INDO) methods.

On the other hand, researchers have usually confined themselves to
trying to find the best approximation for molecular integrals but generally
overlooked the possibility that atomic orbitals in molecules might differ
widely from those in the isolated atoms.

It is thus one of the common features of all methods described so far
(see however Wiberg’'s CNDQ 30} to) determine atomic parameters from
the atomic spectra. A close analysis of the shortcomings of the existing
methods shows, however, that this might not be very appropriate and a
better assessment of atomic parameters in molecules might offer a
successful new route.
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