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7t Electron Theories and the o—n Separation

1. Origin and Importance of the ¢—z Separation

1.1. = Electron Theories and the o—x Separation

In the development of quantum chemistry, few concepts have proved
to be as significant as the distinction between ¢ and z electrons in organic
compounds. This distinction suggested the approximation known as
o—n separation which has made it possible to calculate many important
physical and chemical properties of unsaturated compounds within the
frame of a ‘pure z-electron theory’. This type of theory, which goes back
essentially to E. Hiickel D, has the advantage of great conceptual and
practical simplicity and has been successful in solving many problems.
Nowadays, the advent of computers has made it feasible to treat poly-
atomic molecules of small and medium size taking into account all the
electrons. Nevertheless, scientific economy suggests that, if certain physical
or chemical facts can be understood in terms of @ electrons only, one
should try to do so; therefore, ‘m-electron theories’ still deserve analysis
and applications.

The justification of #-electron theories has been repeatedly questioned
during recent years; indeed, it has become almost fashionable to empha-
size the shortcomings of the o—= separation and the non-validity of the
theories based upon it. These are, in fact, approximations and cannot be
expected to lead to unconditionally reliable conclusions. However, the
numerical results that have provoked the criticisms in question are not
a necessary consequence of the o—=n separation and the related approxi-
mations. Therefore, we shall begin by restating and clarifying the basic
concepts on which the whole question of the o—=x separation rests. We
shall consider the conditions under which the electrons of a molecule can
be classified into ¢ and @ electrons and indicate what should be under-
stood be ‘o—x separation’ and what are the limitations of this approxima-
tion. We shall show that the most important part of the ‘c—x interaction’
isusually taken into accound within the o—n separation schemeand, finally,
discuss whether the o—s interaction has a significant effect on the theoret-
ical predictions made for the physical properties of unsaturated molecules
(ionization potentials, electronic spectra, charge densities and dipole
moments etc.).
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To preserve the rigor of certain arguments, a number of quantum-
mechanical formulas are useful; they will be introduced, when required,
with the necessary explanations of notations.

1.2. Historical Background

The terms ‘c and = electrons’ come from quantum mechanics, but the
idea that two different types of bonds between, say, carbon atoms should
be distinguished occurred in organic chemistry long before the advent of
quantum chemistry. A detailed historical review of the entire question is
outside the scope of this article (see e.g. ), and we shall remind the
reader only of the milestones in the theories of unsaturated, conjugated,
and aromatic compounds.

The most basic notion of organic chemistry is probably the guadri-
valency of carbon, which was very clearly formulated by Kékulé in 1858 3.
Olefinic compounds like ethylene suggested that the carbon atom could
exhibit the valence three, but these molecules were finally formulated
with a double bond, according to Erlenmeyer’s proposition 9. Kékulé's
benzene formula 9 completed this classic period of valence theory. About
1875, Le Bel © and Van t'"Hoff ? introduced the theory of steric valency,
where the double bonds between carbon atoms were looked at from a new
point of view: Van t'Hoff proposed his famous model, where the tetra-
hedra of doubly-bonded carbon atoms were supposed to have an edge in
common and those of triply-bonded carbon atoms a face in common.
This picture was quite satisfactory for isolated double bonds, but the
peculiar properties of conjugated and aromatic systems could be under-
stood only by imagining that different double bonds in a molecule can
interact in a way not possible for single bonds.

- Around 1900, two new theories were developed: Thiele 8 suggested
that in a double bond the valencies of the atoms could not be incompletely
used and that the residual valencies could interact with each other, as
shown in formulas (7) (2) (3)

H H H Ne=e " H—cf © C\C—H
Newe” Newed” N\g Mol
H C\H v N u’ C\H
7 2 3

Nef 9 presented arguments against the universal quadrivalency of carbon
and suggested that there are two forms of ethylene in thermal equili-

4



Historical Background

brium, ordinary ethylene (4) and an active form (§) in which two valenc-
ies are unused or ‘free’.

These two theories can be regarded as the first realizations that a
conjugated system is to be described in terms of two different kinds of
bonds, those of the first kind being localized between two neighbouring
atoms, those of the second kind extending over several atoms, and that
the latter cannot always be represented by a single structural formula.

It is not worthwhile recalling in detail all the facts which were used
to support and improve the classical theories of organic chemistry till the
development of the quantum theory of the chemical bond; but it is
useful to outline the reasons why experimentalists have come to speak of
single and double bonds. The story goes back to the discovery first of
the peculiar properties of unsaturated compounds and later of conjugated
compounds. Having accepted the quadrivalency of carbon, the chemists
found that, whenever a hydrocarbon contained a carbon atom forming
several bonds with a single partner, the properties of the molecule were
radically different from those of hydrocarbons with four partners per
carbon; this is why they were led to consider a double bond as a super-
position of two non-equivalent bonds, one of them being quite different
from the typical C—C bond of a saturated compound. For instance,
ethylene, easily adds a number of molecules, whereas ethane and propane
are unreactive; at first sight, it looks as if one of the two bonds linking
the carbons together is easily broken, while the other remains in place
and behaves as an ‘ordinary’ bond, i.e. as the C—C bond of paraffins.
In the case of conjugated systems, like butadiene, the situation is even
more surprising; not only is there a difference between, so to speak, the
‘first’ and the ‘second’ bond of a double bond, but the various ‘second’
bonds behave as an entity, thus suggesting that they interact strongly
with one another, at variance with the ‘ordinary’ bond.

In short, the notion that a double bond consists of one bond having
properties very similar to those of the corresponding bond in a saturated
compound, while the other has very peculiar properties, is suggested, so
to speak, by experimental evidence: the ‘second’ bond seems to be
responsible for the high reactivity of olefins, the chemical behaviour of
conjugated compounds, the aromaticity of benzene and related molecules,
the physical properties characteristic of unsaturated and aromatic com-
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pounds etc. . . As a matter of fact, the experimental evidence such as we
have just recalled is not really so conclusive as it may seem, especially as
far as isolated double bonds are concerned. It is possible to interpret the
behaviour of a double bond by saying that such a bond is formed by two
‘curved’ bonds that, because of the ‘strain’ to which they are subjected,
are relatively weak and hence highly reactive. As soon as one of the ‘bent’
bonds is broken, the remaining bond becomes straight and hence normal.
For isolated double bonds, this picture is as good as the other, and there
might even be properties which would be better interpreted in this way;
for conjugated double bonds, it does not provide a simple interpretation
of their interaction. A more consistent picture, involving a clear distinc-
tion between the two types of bonds, was given by quantum mechanics,
and the starting point was the study of diatomic molecules by Hund 1
and Mulliken1D within the frame of the molecular orbital method.

In diatomic molecules (as well as in other linear molecules), the inter-
nuclear axis is a symmetry axis of infinite order, and the molecular orbitals
can be classified according to the number of nodal planes (all containing
the symmetry axis). Physically, this corresponds to an ordering according
to the values of the component of the angular momentum along the
symmetry axis. For this classification, Hund 19 proposed the notation
6, m, 8 etc.; the ¢ orbitals have angular momentum zero and no nodal
plane, the z orbitals have angular momentum one along the nuclear axis
and (if chosen real rather than complex) one nodal plane, and so on. . .
It can also be stated (see 11)) that molecules with multiply bonded atoms
usually have electrons occupying both ¢ and = binding orbitals, 7.e.
have one ¢ bond and one or two = bonds. The few exceptions (like
molecules Bg or Cg), which have no ¢ bond, but two lone pairs and one
or two & bonds respectively) are generally unusual compounds from the
chemical point of view. It should be added that # bonds without any
underlying ¢ skeleton are occasionally considered in polyatomic mole-
cules: structures of that sort have been suggested for nitrogen tetroxidel2
and thio-thiophten 13); a formula with a pure # bond between the two
nitrogen atoms of N3O4 has been shown to be theoretically incompatible
with the observed diamagnetism of this compound 14,15,16),

The success of the preceding scheme for diatomic molecules 17,18,19,
20,21) Jed Hund 22 and Mulliken 2% to apply the same theory to poly-
atomic molecules. In the beginning, there seemed to be no direct relation
between molecular orbitals (MO’s) and the bonds in a chemical formula,
because MO’s normally extend over the whole molecule and are not restrict-
ed to the region between two atoms. The difficulty was overcome by using
equivalent localized MO’s instead of the delocalized ones 24:2%), The
mathematical definition of equivalent MO’s was given only in 1949 by
Lennard- Jones and his coworkers 26,27, but the concept of localization
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is older 22.28,29) It is not always possible to find a linear transformation
that localizes all the electrons properly in bonds, inner shells and lone
pairs; only when such is the case can a molecule be described in terms of
localized bonds. The condition given by Hund 22 for a localized descrip-
tion was that the number of valence electrons of any atom should be
equal to the number of atomic valence orbitals involved in the bonding
and to the number of neighbours to which the atom was bound. We shall
come back to the localization problem in Section 3.3.

The terminology for the case of diatomic molecules was generalized
by considering a polyatomic molecule as a collection of localized bonds.
For instance, in ethylene one can speak of a o bond and a # bond for the
double bond between the two carbon atoms. The treatment of benzene
presented by Hiickel I} in 1931 followed the same lines: There are
4 X 6+ 6= 230 valence electrons, 24 of which are assumed to participate
in six localized CC and CH bonds forming the C¢Hg frame of the molecule;
the remaining six electrons were assigned to MO’s constructed from 2pz
atomic orbitals (AO’s) whose nodal plane coincides with the molecular
plane, and treated independently of the ¢ electrons. This intuitive in-
troduction of the o—smseparation is not free from criticism. However, by
limiting his treatment to the = electrons, Hiickel was able to explain the
peculiar properties of benzene and other conjugated and aromatic
molecules. The notation ‘¢ and & orbitals’ came from the theory of linear
molecules, where such words have a definite meaning. In order to carry
them over to non-linear molecules, one has to assume that the bond orbitals
are (that is to say, can be) localized between two atoms, because then these
orbitals can be classified with respect to linear ‘pseudo-symmetry’. This
holds both for saturated and unsaturated non-conjugated molecules.
On the other hand, in conjugated molecules, the = bonds are delocalized
and, strictly speaking, can no longer be classified as = orbitals unless the
molecule is completely linear. Nevertheless, unsaturated systems are
usually planar, so that the orbitals can be classified according to their
symmetry with respect to the molecular plane (or, if the molecule is not
wholly unsaturated, according to the plane of the unsaturated system).
In this way, a redefinition of ¢ and = orbitals is possible (see section 2.1),
but it does not have exactly the same physical meaning as in linear
molecules. As a matter of fact, it became customary to speak of ¢ and =
electrons in unsaturated molecules only after 1940 30): Hiickel D used
the terms ‘Elektronen erster Art’ and ‘Elekironen zweiter Arvt’; Schmidt 31,
another pioneer of the x electron theory, called them A and B electrons.

In many cases, a local planarity in a part of the molecule is sufficient
to preserve the concept of o and = orbitals, provided that the = orbitals
can be restricted to the planar part. For instance, the classification of
free radicals in ¢ and = radicals according to the nature of the unpaired
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electron 32,33 implies only that the molecule has a local symmetry plane
with respect to which the singly occupied MO is symmetric or anti-
symmetric. As we shall see, ‘quasi = orbitals’ having many properties
in common with genuine = orbitals, except for the ‘nodal plane’ can be
defined even for non-planar systems, e.g. for the benzene molecule during
out-of-plane vibrations, or certain reaction intermediates (non-classical
carbonium ions).

1.3. References

1) Hiickel, E.: Z. Physik 60, 423 (1930); 70, 204 (1931); 72, 310 (1931); 76, 628
(1932); 83, 623 (1933); Z. Elektrochem .43, 752 (1937).
2) Miiller, E.: Neuere Anschauungen der organischen Chemie, Berlin—-Gottingen—
Heidelberg: Springer 1957.
® Keékulé, A.: Liebigs Ana. Chem. 706, 129 (1858).
4 Erlenmeyer sen. E.: Z. Chem. u. Pharm. 27 (1862).
5) Kékulé, A.: Bull. Soc. Chim. 3, 98 (1865); Liebigs Ann. Chem. 737, 129 (1866).
6 Le Bel, A.: Bull. Soc. Chim. 22, 337 (1874).
? Van t'Hofi, J.: Bull. Soc. Chim. 23, (1875); Ber. 70, 1620 (1877).
8) Thiele, J.: Liebigs Ann. Chem. 306, 87 (1899); 308, 333 (1899).
9 Nef, J. U.: Liebigs Ann. Chem. 270, 267 (1892); J. Am. Chem. Soc. 26, 1337
(1904) ; 30, 645 (1908).
10) Hund, F.: Z. Physik 40, 742 (1927); 57, 759 (1928).
1) Mulliken, R. S.: Phys. Rev. 32, 186, 761 (1928); 33, 730 (1929); Z. Elektroch.
36, 603 (1930).
12) Coulson, C. A., Duchesne, J.: Bull. Acad. Roy Belg. Cl. Sci. 43, 522 (1957).
13) Giacometti, G., Rigatti, G.: J. Chem. Phys. 30, 1633 (1959).
14) Green, M., Linnett, J. W.: Trans. Faraday Soc. 57, 1 (1961).
15 Brown, R. D., Harcourt, R. D.: Proc. Chem. Soc. page 216 (1961).
16) Le Goff, R., Serre, J.: Theoret. Chim. Acta 7, 66 (1962).
17 Herzberg, G.: Z. Physik 57, 601 (1929).
18) Lennard-Jones, J. E.: Trans. Faraday Soc. 25, 668 (1929).
19) Wigner, E., Witmer, E. E.: Z. Physik 57, 859 (1928).
20) Heitler, W., Herzberg, G.: Z. Physik 53, 52 (1929).
21) Slater, J. C.: Phys. Rev. 35, 509 (1930).
22) Hund, F.: Z. Physik 73, 1, 565 (1932); 74, 1 (1932).
23) Mulliken, R. S.: Phys. Rev. 40, 55 (1932); 47, 49, 751 (1932); 43, 279 (1933).
24) Coulson, C. A.: J. Chim. Phys. 46, 198 (1949).
25) Lennard-Jones, J. E.: Proc. Roy. Soc. 4 798, 1, 14 (1949).
26) Lennard-Jones, J. A., Pople, J. A.: Proc. Roy. Soc. 4 202, 166 (1950).
27 Hall, G. G.: Proc. Ray. Soc. 4 202, 336 (1950).
28) Pauling, L.: J. Amer. Chem. Soc. 53, 1367, 3225 (1931); 54, 988, 3570 (1932).
29) Slater, J. C.: Phys. Rev. 37, 481 (1931).
30) Mulliken, R. S., Ricke, C. A., Brown, W. G.: J. Am. Chem. Soc. 63, 41 (1941).
3D Schmidt, O.: Z. Elektrochem. 40, 211 (1934); 42, 175 (1936); 43, 238 (1937);
Z. Phys. Chem. 39, 78 (1938); 42, 83, 98 (1939); 44, 191 (1939); 47, 1 (1940);
Naturwissenschaften 26, 444 (1938); 29, 146 (1941).
32) Berthier, G., Lemaire, H., Rassat, A., Veillard, A.: Theoret. Chim. Acta 3, 213
(1965).
33 Symons, M. C. R.: J. Chem, Soc. 2276 (1965).

8



General Quantum-Mechanical Formulation

2. Differences between ¢ and =z Electrons

2.1 General Quantum-Mechanical Formulation

The quantum-mechanical equations for a many-particle system (for
more details, see e.g. 1.?) are deduced from the equations of classical
mechanics by replacing the physical quantities appearing in them
(position, momentum etc. . .) by appropriate operators; the latter operate
on certain functions, called wave functions, which describe the possible
states of the system. The values of physical observables are ‘the expecta-
tion values’ of the corresponding operators. For instance, the expression

<Q> = <P|Q¥> = (V,QF) = [WPHOQVP) dv @.1)

is the expectation value of the operator £, the three formulas on the left
being just different symbolic ways of writing the integral on the right. This
expression means that one has to apply the prescription corresponding
to the operator £ (multiplication by a coordinate, derivation etc. . .) to
the wave function ¥, multiply by ¥*, the complex conjugate of ¥, and
integrate over the whole space of definition for .

If, as we shall always assume in the following, the variables on which
the wave function depends are the 3x position coordinates %1, y1, 21,
- <y Xn, Y, 2n of the » particles of the given system, the volume element
for integrating is dv = dx1-dyy1-dz1- . .. dxp-dyn-dz, (In principle, one
should also consider the so-called ‘spin coordinates’; they will be ex-
plicitly introduced as the need arises). -

The fundamental Hamiltonian operator H, whose expectation values
give the energies of the possible states of an atom or a molecule, is the
sum of the operator T corresponding to the total kinetic energy and
the operator ¥ corresponding to the mutual potential energy of electrons
and nuclei and, if an external field is present, the potential energy of the
system in that field. Because of their larger mass, the nuclei move much
more slowly than the electrons; therefore, the Born-Oppenheimer
approximation can be introduced, that is to say, the nuclear coordinates
can be treated as fixed parameters. Then, for a given configuration (usually,
the equilibrium one) the nuclei appear in the equation of motion only
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as the sources of an external electrostatic field acting on the electrons,
and their mutual potential energy can be added to the electronic energy
as a constant term to compute the total molecular energy. In brief, for
an isolated molecule, the Hamiltonian operator giving the electronic and
nuclear energies has the form

H=T+4+7V
N 02 02 02
1
T =5 (5 + 5+ a) (22)
r=1
N n n u—1 N K-1
. ZK 1 ZKZL
V=D Dt D Dt 2, 2
K=1 p=1 p=1 p=1 K=1 L=1

the indices # and » refer to electrons,

the indices K and L to nuclei;

7 &y, for instance,.is the distance of the vt electron from the Kth nucleus.
N and » are the numbers of nuclei and electrons, respectively,

Zg denotes the positive charge of the K nucleus.

In Eq. (2.2), all the operators are expressed in atomic units, so that the
physical constants (mass and charge of electron etc...) are omitted.

The system of atomic units is defined by the rest mass of electron m (unit of
mass), the magnitude of the charge on electron e (unit of electron charge), the
radius of the first Bohr orbit of hydrogen atom ag (unit of length and the modified
Planck constant %4 = &/2r (unit of angular momentum). The corresponding unit
of energy e2/ag is twice the ionization potential of hydrogen. The most recent values
of physical constants 3) give for the unit of length (called also Bohr: B) and for the
unit of energy (called also Hartree: H) the following correspondence in the CGS
system:

ap = 0.529167 10-8cm, €2/ ap = 219474 cm~1 (27.2107 ¢V or 627 kcal.mol~1).

The lowest energy state or ‘ground’ state of a systemis the one for which
the expectation value of H reaches its absolute minium. More generally,
the allowed energies of a conservative system correspond to wave func-
tions ¥ making the energy expectation value stationary. These functions
are then given by the solutions of the ‘time-independent Schridinger
equation’

HY = EV¥Y 2.3)

subject to normalization and other appropriate boundary conditions.
Such conditions can be satisfied only if the constant E in Eq. (2.3) takes

special values, namely the eigenvalues E; of H, which give the allowed
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energies of the system. The corresponding solutions of Eq. (2.3) are the
normalized eigenfunctions ¥; of H.
The normalization condition of the wave function ¥ is

§P*War = 1 (2.4)

where the integral is taken over the whole space of definition of ¥. An
interpretation of it can be given by considering the quantity ¥Y*¥ dr
(where the product ¥*¥ is a function of the position coordinates of all
the electrons, asis ¥itself) as the probability of finding at a given time the
first electron with coordinates falling between x; and x1 + dxg, y1 and
¥1-+ dy1, z1and 21 + dz1, the second electron with coordinates falling be-
tween xzand xg +dxa, y2and y2 -+ dys, 22 and z + dzs, etc. So, the integral
appearing in Eq. (2.4) represents the probability of finding the » electrons
anywhere in space and must be equal to unity. The product ¥*¥ is called
the ‘probability density’ for finding the electrons at the position specified
by the values of the coordinates for which P*¥ is calculated. As we are
interested only in the electrons of a molecule, we take Eq. (2.3) with H
given by (2.2) as the equation for the (electronic) states of the molecule.

If a molecule has certain symmetry properiies, important predictions
about the solutions of the electronic Schrédinger equation can be made
without having to solve the equation itself. Consider the case of a planar
molecule, 7.e. of a molecule whose nuclei lie in a plane. This plane is a
symmetry plane for the molecule, and it can be shown that any eigen-
function is either symmetric or antisymmetric with respect to this plane.
If one chooses the plane of the nuclei as the (y, z) plane of a Cartesian
coordinate system, this means that

Y(xL,y1,21,° *, 0 Y Zn) = £ Y (—x0,¥1,21,° ), —%n,Yn.2a) (2.5)

If there is more than one symmetry element (symmetry plane, axis
etc.), relations similar to Eq. (2.5) hold for every element, and the wave
functions can be classified according to group-theoretical symbols (see

e.g. ).

2.2 One-Electron Molecules and Orbitals

Let us consider more specifically wave functions depending on the
coordinates (and possibly on the spin) of a single electron. Such functions
are called ‘orbitals’ (or, if spin is explicitly included, ‘spin orbitals’).
According to their behaviour under a reflection with respect to the nuclear
plane of a planar molecule, they are classified as ¢ or & orbitals; one has

@ (%1, Y1, 21) = @ (—%1, ¥1, 21) for ¢ orbitals 06
@ (%1, ¥1, 21) = — ¢ (—%1,¥1, z1) for m orbitals (2.:6)

11
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The eigenfunctions of the Schrodinger equation for planar one-
electron systems, e.g. those of the H3" ion in a non-linear configuration,
must be either ¢ or = orbitals; the former are symmetric about the
molecular plane, the latter antisymmetric. The ¢ orbitals have in general
maximum values close to the nuclei, whereas the w orbitals have a nodal
surface on the nuclear plane and different signs on the two sides of this
plane, as can be seen from Eq. {2.6) by letting x; -~ 0.

Orbitals can also be defined for many-electron systems, and the
molecular orbital theory mentioned in the previous section is indeed
based on this possibility. In order to assess the significance and limitations
of the molecular orbital scheme and the meaning of ¢ and = orbitals, we
have to discuss the definition and the determination of orbitals in a
many-eléctron system at some length.

2.3. Electron Densities and Orbitals in Many-Electron Systems

In order to define orbitals in a many-electron system, two approaches
are possible, which we may refer to as ‘constructive’ and ‘analytic’. The
first approach is more common: one makes the ad hoc postulate that
every electron can be associated with one orbital and the total wave
function can be constructed from these orbitals. Then, one is led to an
‘effective’ one-electron Schrédinger equation from one electron in the
field of the other electrons. The underlying model is the ‘independent
particle model’ (IPM). When following the constructive way, one does
not know a priori whether the model is a good approximation to the
actual physical situation; one only knows that it cannot be rigorously
correct. The merit of this approach is its relative simplicity from both
the mathematical and physical points of view.

In the analytic approach one assumes that the state under consideration
is described by a sufficiently good wave function and tries to interpret
that wave function in terms of orbitals. The first step in this approach
is to construct the electron density, which is obtained by integrating the
probability density ¥*¥ over the coordinates of all particles but the
first:

e(xL, vy, z1) = n [ P¥*dve. .. duy... dvg ds 2.7

Here, dv, is the volume element dx, dy, dz, of the »-th electron and
ds stands for integration over all spin coordinates, so that g is by definition
independent of spin. In this way, one obtains the probability density
for finding the first electron at the point %1, yi1, 21, 7.e. the electron
density at that point.

With some linguistic precautions connected with the wave-particle
dualism of quantum mechanics, the electron density g can be interpreted

12
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as giving the electronic distribution in the molecule. As shown in Fig. 1
for homonuclear diatomic molecules, this function can easily be visu-
alized in ordinary space and possibly compared with experimental distri-
butions resulting from the analysis of X-rays or electron diffraction
measurements.

Therefore, it is tempting to formulate the properties of molecules in
terms of the p function rather than to refer to a highly abstract many-
electron wave function. Unfortunately, just because g is a quasi-classical
quantity, it is impossible to base on it a whole exact or approximate
treatment of atoms or molecules; its role remains that of a description
of the results obtained through the calculation of the wave function ¥
itselfa), '

In the case of a one-electron system described by an orbital ¢, the
density p is simply

e(*1,51,21) = @(*¥1,51,21) ¢* (¥1,51,21) (2.8)

In the case of a many-electron system whose electrons are treated as
independent particles having individual wave functions ¢;, the électron
density takes the form

e(¥L,y1,21) = 2vi @i (%171, 21) 91 (%1,Y1,21) (2.9)

1

where »; is the occupation number of the orbital ¢;, which in the present
case can be equal to zero, one or two. According to the Pauli principle,
an orbital is at most doubly occupied.

The electron density is closely related to a more general function,
the so-called ‘spin-free one-particle density matrix’ 6.7.8. Whereas the
electron density is a function of the three coordinates x1, y1, 21, the
density matrix is a function of six coordinates, which are conventionally
noted x3, v1, 21, xll,y'l, z1. In the case of a one-electron system, the
density matrix is given by

P(*1,Y1,21;41,51,21) = @ (*1,¥1,21) ¢* (¥1,¥1,71) (2.10)

a) A complete discussion of this question cannot be given here; we confine our-
selves to reminding the reader that serious mathematical difficulties appear in
attempts to calculate many-particle density matrices directly. This is known
as ‘the N-representability problem’ 9,

13
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Electron Densities and Orbitals in Many-Electron Systems

It differs from the density g in the fact that ¢ and ¢* in the product
above are written as functions of different variables. For those values
of arguments, where X1=x1, yi= y'l, z1=2z1, the density matrix
reduces to ¢:

p{%1,51,21; %1,91,21) = ¢(%¥1,¥1,%1) (2.11)

If the wave function of a n-electron system is constructed from indi-
vidual orbitals in the sense of the independent-particle model, ¢ will have
the form.

y(1, Z yipe (1) @1 (1) (2.12)

completely analogous to Eq. (2.9). In the preceding expression, (1) deno-
tes in short the arguments xi, y1, 21. The general definition of the spin-
free one-particle density matrix corresponding to an arbitrary wave
function ¥ is the following:

p(LT) = n[¥(1,2,3,...,n) T*(',2,3,...,%) dvadvs. .. dvads  (2.13)

Note the different notations for a density matrix or an expectation
value: the integrand is starred on the right or on the left respectively ®).
It is possible to associate a discrete matrix to the continuous matrix
{2.13) by using the fact that any one-electron function, ¢;(1), for instance,
can be expanded as a linear combination of a given ‘complete’ setP) of one-
electron functions y:

pi(l) = g"m%p(l) (2.14)

If the functions y form a complete set in one-electron space, ¢.¢. in the
space of three coordinates, then the products y, (1) x¢(1’) form a complete
set in the space of six coordinates. Consequently, y can be expanded
as follows

*

r(L,1) = %Zq dpgxp(1) xa (1) (2.15)

b) Complete sets are generally infinite; hence, the expansion (2.74) contains an infi-
nite number of terms and D is an infinite matrix. However, if the basis set is
well chosen, the error made by using a finite number of terms can be made
very small — and this is what one has to do in practice.

17



Differences between ¢ and s Electrons References see p. 24

The coefficients 4y, form a matrix in the conventional sense, and y is
completely determined if one indicates the basis functions y, and the
matrix elements dp,. In practice, y is mostly given in this way, that is
to say, as a matrix sensu stricfo. In many applications, the atomic orbital
basis can be supposed to be orthonormal and the matrix D with elements
dpq can be identified with the charge and bond order matrix 7.8),

An expansion of the form (2.15) is possible for any chosen (complete)
basis set. It can be stated that there always exists a set of orthonormal
functions #,, ¢.e. a set of functions satisfying the conditions

§ oy (1) (1) dvy = 65 (2.16)
in terms of which a given one-particle density matrix y is written as

(1,1 = ‘Zvi wy (1) w1 (1) (2.17)

In other words, for every y there is a set of orbitals ug for which the density
matrix D s diagonal, i.e. contains no off-diagonal elements different
from zero. These particular orbitals #; are called the ‘natural orbitals’
(NO’s) for the state described by the wave function ¥ 7. In the most
general case, the number of functions #; is not finite, but it can be proved
that the occupation number »; of any natural orbital lies between 0 and 2:

0< » <2 (2.18)

Numerical calculations show that in usual molecules the occupation
numbers »; are not exactly integral, but very close to either 0, 1 or 2,
so that one can say, at least in first approximation, that a natural orbital
is doubly, singly or not occupied. This is the main reason why the inde-
pendent-particle model, defined by putting for convenience the #;’s
equal to 0, 1 or 2, is often a rather good approximation. The occu-
pation numbers of the NO’s in a very simple molecule, HE, are given
in Table 1.

Another general theorem %10 states that the set of NO's associated
with every eigenfunction of the Schrodinger equation has definite sym-
metry properties. In particular, for a planar molecule the natural orbitals
are either ¢ or  orbitals. Therefore, ¢ and = orbitals have a physical
meaning independent of any model assumption or approximation. By
adding the occupation numbers of each species of orbitals, one defines

18



Electron Densities and Orbitals in Many-Electron Systems

Table 1. Occupation numbers of the natural orbitals of
the molecule-ion in its equilateral form

No Symmetry speciesl) i,
1 laj {o) 0.9825
2,3 le! (o) 0.0147
4 1a] () 0.0014
5 2ay (o) 0.0011
6,7 2’ () 0.0002
8,9 le” (o) 0.0001

10 3a} (o) 0.0000

1y g, ; with respect to the molecular plane

occupation numbers #4 and #,. The sum of all the occupation numbers
must be equal to the total number # of electrons; it follows that

N=Ng+ Ny (2.19)

Therefore, one can regard
#ns as the number of o electrons and
7y as the number of z electrons of the molecule

in a given electronic state. In general, these figures will not be integers
nor identical with the number of ¢ and = electrons corresponding to the
chemical formula. A simple illustration is given by the molecule HE,
where one could conclude from the chemical formula that there are two
g electrons and no & electron, whereas quantum-mechanical calcula-
tions 11 lead to #4 = 1.9971, n, = 0.0029. For typical organic molecules,
no accurate values have yet been calculated; in ethylene, n, will be
close to 2, but not exactly equal to 2.

The statement that there is a certain integral number of z electrons
in an unsaturated molecule, is a somewhat rough but convenient way
of saying that a certain number of z orbitals are ‘strongly’ occupied, <.e.
have occupation numbers close to 2. Unlike orbitals, electrons are
indistinguishable; therefore, strictly speaking, one should refer to only
o or x orbitals, but never ¢ or z electrons.

19



Differences between ¢ and z Electrons References see p. 24

2.4. The Hartree-Fock Model

Current quantum-mechanical calculations are based on the indepen-
dent-particle model, where one assumes that the molecular orbitals are
either empty or occupied by at most two electrons. This model cannot
give a completely correct description of a many-electron system mainly
because it treats each of the particles as if it ‘saw’ the others smeared
out in a charge cloud. However, it accounts surprisingly well for many
properties, especially those connected with the one-electron density.
Consequently, it is worthwhile discussing it in detail.

From now on, we shall explicitly use spin orbitals, which are derived
from orbitals by multiplying each of them by one of the two possible
spin functions:

Eam-1(1) = @m (1) x(1)
(2.20)

f2m(2) = om(2)B(2)

All the general considerations made so far hold also for spin orbitals,
except for the fact that two spin orbitals may be associated wich one
given orbital, and hence a spin orbital can be occupied at most be one
electron. All the integrals over spin orbitals involve integration over spin
coordinates, and (with limitations which are outside the scope of the
present discussion) this amounts to multiplying the ordinary integral
over the corresponding orbitals by 1 or 0, according to whether or not
the spins are the same®.

In the frame of the independent particle model, the total wave func-
tion can be written as an antisymmetrized product of spin orbitals:

£1(1) £1(2) ... &1(n
oz, =L | B0 &) .. L

o I

(2.21)
En(1) £(2) ... En(n)
The function @ is known as a ‘Slater determinant’. If one looks for the

energy minimum for such a function, one finds that the orbitals have to
verify the so-called ‘Haréree-Fock equations’ 13:14,15);

For=eiqq (2.22)
© In many cases, the conventional spin formulation of quantum chemistry could
be replaced by a spin-free formulation using the permutation symmetry properties

of a n-electron system (see 12)), However, it is then necessary to have recourse
to the complete theory of permutation groups.
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The Hartree-Fock Model

with
F = T+ Vnuc—l‘ Vgl (2.23)

where T is the kinetic energy of one electron,
V nue its potential energy in the field of the bare nuclei, and

Ve its potential energy in the averaged field of the other electrons, ¢.e.
for a closed-shell system (inert gases, usual molecules in the ground state
etc.)

Va(l) =212 Ji(1) — K:(1)] (2.24)

Ji: and K; being the Coulomb and exchange operators corresponding to
each doubly occupied orbital ¢;. The Hartree-Fock equation is an integro-
differential equation which, at variance with a true one-electron Schro-
dinger equation, involves an operator F depending on the unknown
functions ¢; through the electronic potential V. Nevertheless, the
operator F can be interpreted as the ‘effective’ Hamiltonian operator
for one electron in the given molecule. Mathematically, even self-consist-
encyis achieved asregards the potential V, there is an infinity of different
functions ¢; verifying Eq. (2.22), but only the orbitals ¢; from which
the effective Hamiltonian F is constructed are occupied in the deter-
minant @. The other possible solutions are sometimes called ‘virtual
orbitals’; they can be used in first approximation for describing states
of higher energy (see Sect. 5.3).

Eq. (2.22) is much simpler than the original many-electron Schré-
dinger equation; yet it cannot be solved in closed form and approx-
imation methods must be used. It is customary to choose a finite set of
one-electron basis functions y and approximate the Hartree-Fock
orbitals ¢ by an expression similar to Eq. (2.14). If one looks for the
minimum of the total energy given by a wave function constructed from
orbitals of this form, one gets a homogeneous set .of linear equations:

2 Fpgcig =2 €1 Spq tiq (2.25)
q q
whose coefficients

Spa =.f%;a %q dv

. (2.26)
Fpg={ 7 (F 2q) dv

are the overlap integrals of the basis functions y, and the matrix elements
of the Hartree-Fock operator F, and eigenvalues the orbital energies ¢;.
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Atomic orbitals are chosen as basis functions in the so-called
LCAO-MO method 16,17, However, other choices are possible, for
instance, Gaussian functions, which are particularly popular nowadays
(see e.g. D). In planar systems, it is convenient to use basis functions
that are either symmetric or antisymmetric with respect to the nuclear
plane, 7.¢. are of ¢ or @ species. If y» and x4 are basis atomic orbitals
with different symmetry properties, then the matrix element F,, vanishes
so that the matrix I is ‘factorized’ into one ¢ and one & blockd:

(2.27)

This factorization amounts to the statement that Eq. (2.25) breaksdown
into two separate linear systems, one for the determination of ¢ orbitals,
and the other for & orbitals. In the Hartree-Fock scheme, ¢ and & orbitals
are thus ‘separated’ simply because the self-counsistent field equations
(SCF equations 2.25) have as solutions ¢; symmetry-adapted functions
(¢.e. in the case of planar unsaturated molecules symmetric or anti-
symmetric functions with respect ot the molecular plane), at least for
closed-shell ground states 16,18,20,21),

The effective operator for the ¢ electrons represented by the matrix
Fgq includes the potential energy of a o electron in the field of the =
electrons, and vice versa the effective operator for the x electrons (matrix
Fgy) includes the potential energy of a m electron in the field of the
¢ electrons. Even after separation according to Eq. (2.27), Eq. (2.25)
is to be solved by an iteration procedure: one guesses the probability
distribution of the ¢ electrons, constructs the matrix Fg44, calculates the
7 orbitals, constructs the matrix F,y, calculates new ¢ orbitals, and so
on until the results become stable. Of course, a SCF scheme has to be
applied also within each electron group (o or =).

After these remarks, it may seem that the o—x separation in a many-
electron system is no more than a formal factorization of the equations
governing the independent-particle-model approximation. Actually, the
preceding results are of much practical importance, because they imply

4) In fact, symmetry requirements on molecular orbitals introduce in a variational
calculation certain constraints, which raise the total energy 1®. This problem,
called the ‘symmetry dilemma’, has been studied for some 5 clectron systems
19). It is not important for the present discussion because for a system of closed-
shell type the NO’s associated with a total wavc function of corrcct symmetry
are automatically symmetry-adapted.
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The Hartree-Fock Model

that there is a class of molecular orbitals, say the = orbitals, which can
be built up from a special type of atomic orbitals (or other basis functions)
and treated without detailed information concerning the other class,
the role of the latter being just that of creating an effective field. Of
course, the effective field can be calculated only if the generating electron
distribution is known; however, one may expect that a sufficiently good
approximation to it can be found in a rather simple way (as it is an
average field) and the results will not depend very much on the precise
form assumed for the potential of the ¢ electrons. This is why one can go
even one step beyond the g-7 separation and consider the  electrons only.
If one supposes that the field created by the o electrons has the same gen-
eral features in a number of unsaturated molecules, one can attribute
certain properties to the z orbitals, that is to say to the = electrons, and
thus explain the behaviour of molecules just by reference to the =
electrons.

Table 2. Hierarchie of approximate quantum-mechanical theories of unsaturated
molecules

Rigorous non-adiabatic treatment with relativistic corrections

Rigorous solution of the non-relativistic Schrédinger equation in the Born-Oppen-
heimer approximation

o-m separation (neglect of intergroup correlation effects)
Vi=A{Zi(Img) Iy (ne + 1, ... ., ng + na)}

(¢ refers to different spectroscopic states)

Rigid o core approximation

Y=ol {Zo(1,...00) IT; (ne + 1, . . ., o + nz)}

Treatment of 7 electrons in the effective field of the ‘core’. Explicit electron inter-
action within the zz group.

Hiickel type theories. No explicit interaction within the = group.

In order to understand the question properly, one has to realize that
the way from rigorous quantum mechanics to a theory treating only =
electrons includes several steps. One step, outlined in Sect. 2.3, is rigor-
ously possible for planar systems and approximately so for locally planar
systems; it consists in defining o and z orbitals and stating what should
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be understood by ‘o and = electrons’. Another step is the o—n separation
in the sense just explained, namely the factorization of the Hartree-Fock
matrix and its consequences. The 6—= separation can be formulated in a
more general way (not based on the independent-particle model), and
we shall consider such a formulation in the next section. Whereas the
distinction into ¢ and =z electrons is rigorous, the o—= separation is an
approximation which is not always a very good one, as will be shown in
Sect. 3.2.

In order to formulate a theory of m electrons only, additional approxi-
mations are necessary: one of them is the assumption of the ‘#igid o core’,
another is the Goeppert-Mayer and Sklar potential, which will be discussed
in Sect. 5.1
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o—n Separation and Group Function Formalism

3. The o—= Separation and the Role of Electron Correlation

3.1. o—a= Separation and Group Function Formalism

In the preceding section, the ¢—= separation occurs as a direct result of
the independent-particle model. The derivation is straightforward, but
not entirely satisfactory, because the independent-particle model is
a simplification of the actual quantum-mechanical situation. In fact, the
og—n separation can be introduced in the frame of more general treat-
ments, e.g. the ‘separated-group function’ formalism 1,2:3),

A quantum-mechanical #-electron system is said to consist of M
separated groups (A, B, etc.) containing #a, s, etc. electrons, respect-
ively, if it can be described by a wave function of the form

Y(1,2,...,n) = Z{¥a(1,2,...,#4) ¥B(RA+1,PA+2, ..., 24+ 1B)...}
{8.1)

where &7 is an antisymmetrization operator whose purpose is to make ¥
independent of the order of the electrons, and where ¥u, ¥s, etc. are
wave functions of the groups A, B etc... It is customary to impose the
so-called ‘strong-orthogonality condition’

fPa,2,..)¥s(1,2,...)dvy =0 (3.2)

This condition implies that the natural orbitals of the different groups
are mutually orthogonal and exclusive, 7.e. no two groups have any
{occupied) NO in common, and the NO's of different groups are orthogonal
to each otherad,

Physical systems cannot be rigorously described by a separated-group
wave function, but that description may often be a rather good approxi-
mation. If this is the case, an important simplification of the quantum-

®) This condition is much stronger than conventional orthogonality, because the
integral (3.2) should already vanish when taken over the coordinates of one
particle, whereas conventional orthogonality means it vanishes after integration
over the coordinates of all particles.
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mechanical equations is achieved. First, one finds that the fotal encrgy
can be written in the form

E=ZER+ZERS (3.3)
R R<S

where Eg is the energy associated with the Rt group and Egg the inter-
action energy between the Rt and StB groups. It is important that in
such a theory the “interaction energies’ E ps are expressed in terms of the
electron densities (or rather the one-particle density matrices) of the respec-
tive groups. The interaction between the groups is essentially electrostatic,
but the electron interaction may take a very complicated form within
each group. The total electron density is just the sum of the group
densities.

‘Effective’ Schrodinger equations can be derived for the different
groups. The presence of group B is reflected in the effective Schrodinger
equation for group A only through an effective field (a one-particle
potential) due to the charge distribution of group B.

A particularly simple case of a wave function describing separated
groups is the single Slater determinant of the independent particle model
{see Sect. 2.4). There, each group consists of a single electron described
by a single orbital. The effective Schrédinger equation for one particle
is, of course, the Hartree-Fock equation discussed in Sect. 2.4. Within
this model the true Coulombic interaction of the electrons is replaced by
the interactions of the charge distributions of the orbitals corresponding
to the different electrons. That part of the interaction which is ignored
in this model, and which comes from the fact that the electrons are not
simply ‘smeared-out’ charge distributions, is called ‘electron correlation’.
By definition, electron correlation is completely neglected in the
independent-particle model, whereas a wave function of the type (3.1)
can account for electron correlation within each group, but neglects
electron correlation between electrons in different groups.

If two groups of electrons are well separated in space (7.e. far from
each other}, then it is a very good approximation to identify the real
interaction by that of the corresponding charge distributions. Therefore,
one can assume that neglect of ‘intergroup correlation’ is justified if the
two groups describe, for instance, two localized bonds far from each
other. One can take electron correlation into account by performing a
configuration interaction (CI) calculation. This is done as follows: one
chooses a (more or less arbitrary) set of » spin orbitals and constructs all
the (Z’) n-electron Slater determinants @; that can be obtained from the
given spin orbitals. Then, a trial function is written as a linear combina-
tion of these determinants

W = 2 a; Dy (34)
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and the coefficients a; are taken as variational parameters. In practice,
this procedure is limited by the fact that the number of possible deter-
minants is very large for systems with many electrons. However, in the
separated-group method, it is only necessary to perform a configuration
interaction for each group independently, which is much easier, provided
that the groups are sufficiently small.

The separability condition (3.2) is automatically fulfilled if the orbitals
used for the different groups belong to different symmetry species. For a
planar molecule, the natural way of constructing two separate groups
consists in making one group from ¢ orbitals and another group from =
orbitals; the corresponding wave function is

¥ =uf {Z(1,2,...,0n6) Hns+1,n542, ..., 06+ nz)} (3.5)

According to Lykos and Parr 3, an unsaturated molecule can be describ-
ed in this manner by taking for X'a (in principle complete) linear combina-
tion of Slater determinants built from ¢ orbitals only and for x a similar
combination built from s orbitals only. Such a description is more general
than the independent-particle model, as it includes the latter as a special
case (namely where both Z and IT are single Slater determinants).

Of course, the correct wave function cannot be written exactly in
the simple form (3.5); whether that expression is a good approximation
can hardly be decided a priori. Such a wave function is obviously able
to account in part for the so-called ‘Zorizontal’ electron correlation,
namely for that part of the correlation of the = group is which accounted
for by CI with 7 orbitals only, and vice versa for that part of the correla-
tion in the o group which is accounted for by CI with ¢ orbitals. Cases
where residual contributions to correlation (‘vertical’ correlation) may
play a role will be discussed in Sect. 3.2, in connection with the problem
of spin densities.

However, such cases are exceptional, because they are found in
highly sophisticated experimental techniques. This is fortunate since
practically all the calculations carried out so far, including simultaneous
treatments of ¢ and = electrons, have been based on the o—m separation,
most of them on the much more restrictive independent-particle model.

If we assume the o—n separation, the total occupation numbers #4
and #; of ¢ and = orbitals respectively come out as integers. The total
energy is of the form

E=Eg+ Ex+ Eqz (3.6)

b) The names ‘horizontal and vertical correlation’ 9 derive from the idea that
horizontal correlation allows the electrons to avoid each other on the same side
of the molecular plane and vertical correlation has a similar effect perpendicular
to the plane.
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It is customary to define the = electron energy E, as Ex+ Egy: then,

In this partition (which is closely related to what Mulliken called ‘cuma-
lative partition’ ¥) E; is the energy of the ¢ electrons in the field of the
bare nuclei and £, is the energy of the = electrons in the field of the bare
nuclei and the o electrons. Following Lykos and Parr 3, one may regard
the o electrons as the ‘core’ and the = electrons as the ‘peel’ and consider
the o—n separation as a case of a ‘core-peel’ separation. Effective Schré-
dinger equations where the o (or #) electrons are represented only through
the potential created by their charge distributions can be derived from
the expression (3.5) for the z (or ¢) system. Therefore, an iterative proce-
dure has to be used. This isthe so-called ¢— separation with an ‘adjust-
able’ o core 3. We shall come back in Sect. 5.1 to the more restrictive
assumption of the o—n separation with a rigid o core.

Alternative partitions of the whole system into groups according
to Eq. (8.5) are possible. One of them is into K shell groups and a valence
shell group, which one may call the K-V separation. It is in some respects
better justified than the ¢—= separation and has been checked by ab
initio calculations of small molecules 5.8, One drawback of the K-V
separation is that the strong orthogonality condition is not automatically
satisfied for symmetry reasons, as in the g—n separation. However, this
does not lead to serious difficulties.

The essential feature of the o= separation is that an effective Hamil-
tonian can be defined for the z electrons in the field of the nuclei and the
o core. As was pointed out by Sinanoglu 9, this separation can be derived
under conditions more general than the Lykos-Parr assumption. A
slightly different formulation of the o—sm separation can be obtained by
the methods of second quantization 8.

3.2. Limits of the o—x Separation

Most organic molecules contain an even number of electrons and have
zero spin in the ground state. On the other hand, radicals are systems
with an odd number of electrons, and have at least one unpaired electron.
The highest energy level (in the sense of the simplest IPM) is supposed
to be occupied by the unpaired electron, and in most unsaturated planar
radicals the corresponding orbital is a « orbital.

The spin density, 7.e. the probability density for finding an unpaired
electron spin close to a given nucleus, is responsible for the Ayperfine
coupling observed in ESR spectra. Now, experimental data show that the
magnetic moments of the protons interact with those of the unpaired
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electron. Consequently, the spin density in the molecular plane (where
the H atoms are located) is non-zero. Let us consider a wave function
of the form (3.5):

Y=g {12 (1,2, . .,ng) 2H(na+1,no’+2, ‘e .,ng+nn)}

It consists of a singlet Z'function (i.e. all ¢ electrons are paired) and of a
doublet 7 function (with an odd number of electrons). Therefore, the o
spin density should be zero and only the = spin density should be non-
zero. However, the = spin density vanishes in the molecular plane for
symmetry reasons, so that there should be a zero total spin density in the
plane — and at the position of the nuclei. This is obviously in contradic-
tion with the experimental results and only means that one has to go
beyond the approximation of the function (3.5) if one wishes to explain
the non-zero spin densities at the position of the protons.

This has been done successfully by several authors (see 10-18)). The
essential idea is to replace the simple Lykos-Parr wave function by the
following linear combination:

Y = a1/ {15 T} + az? o {35201} (3.8)

where 3X is a triplet function (i.e. a function with two unpaired spins)
for the ¢ core and where 20 is an operator ensuring that 3% and 27 are
coupled to give a doublet state (with one unpaired electron). It turns
out that the coefficient ag is only a few percent (in absolute value) of ay,
but the configuration (3X2/I) has unpaired electrons on o orbitals, which
are responsible for the hyperfine structure of the ESR spectra. An im-
portant result of the theory is that the spin density at the position of a
proton is roughly proportional to the probability with which the unpaired
7 orbital occupies the 2pz orbital of the adjacent carbon atom (the so-
called Mc¢Connell relation).

For further details, the reader is referred to the original papers. We
have made this point to emphasize that a completely correct description
of unsaturated molecules is given only by a linear combination of different
Lykos-Parr type wave functions. However, one term in this linear
combination may have a coefficient far larger than all the others; then,
the latter can be neglected unless the contribution of the leading term
to a given physical property vanishes or is very small, as is the case for
the ESR spectra of unsaturated radicals. In the standard spin polariza-
tion interpretation of ESR spectra, these terms are included through
singly excited configurations with three unpaired electrons: the unpaired
7 electron of the primitive ground state configuration, and two uncoupled
o electrons, the one on a bonding o orbital, the other on a ¢* antibonding
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orbital. The spin polarization mechanism does not change the integral
occupation numbers #4 and #n; of the chemical formula; for that, one
ought to include doubly-excited configurations.

It should be added that the so-called negative spin density suggested
by experimental evidence is explained through excited configurations
with three unpaired = electrons, which may be understood as a horizontal
spin polarization.

Similar conclusions can be drawn from the study of NMR spectra
given by unsaturated closed-shell molecules (see 18-21)). However, the
theoretical analysis of the hyperfine structure is more involved for NMR
spectra than for ESR spectra, because the nuclear spin-spin coupling
constants are second-order phenomena as compared with the electron-
nucleus coupling constants.

3.3. Correlation Effects in = Electron Systems

If a m-electron wave function is limited to a Slater determinant of
n spin orbitals, one stays within the frame of the independent-particle
model, and the best model of that sort (for a discussion, see 22) for a
given problem is that in which the orbitals used to construct the wave
function are solutions of the Hartree-Fock equations. This model is only
an approximation of the correct wave function. As mentioned in Sect.
3.1, the wave function should be written as a linear combination of
Slater determinants, as in Eq. (3.4). To illustrate this, let us consider a
two-electron system where the spin can be separated off, so that it is
sufficient to consider a function # (1,2) depending only on the space
coordinates of the two particles 1 and 2. For a singlet state % (1,2) is
symmetric with respect to space coordinates:

§(L2) = $(21) (3-9)

In the frame of the independent particle model, % will be a simple
product of orbitals
§(1.2) = [p(De2)] (3.10)

whereas in a configuration interaction expansion # has the form

$(1,2) = [iZjauw(l)w@)J (ay = az) (3.11)

An example of a planar system with two electrons is given by the H3
ion. The space function ¢ of Eq. (3.10) is a o orbital and ¥ is symmetric
with respect to a reflection at the molecular plane. The first s orbital is
not used to construct the independent-particle model of the ground
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state, because it has a much higher energy. However, § would be also
symmetric if ¢ were a z orbital, because in a reflection at the molecular
plane both ¢ (1) and ¢ (2) would change signs, so that there is no overall
change. Therefore, the space functions ¢; of the more general expression
(8.11) may be o or & orbitals, but the coefficients ay are different from
zero only if ¢; and ¢y belong to the same symmetry species (¢ or =). The
energy given by the function (3.10) for the ground state of Hj is —1.2971
a.u. and the energy lowering obtained by using eight functions ¢; in
(8.11) is equal to 0.0388 a.u. 23); in this figure, 0.0340 a.u. originates
from a configuration interaction among o orbitals and only 0.0048 a.u.
from the interaction with the first two @ orbitals. The corresponding
occupation numbers are #;=1.9971 and #,; = 0.0029. By extrapolation,
one finds for the total energy of H§ E = —1.336 a.u. if o-type orbitals
only are used in Eq. (3.11) (the so-called ‘o limit’) or E=—1.342 a.u.
if z orbitals are included.

Now, if one analyzes the correlation of the positions of the two
electrons brought about by the configuration interaction treatment of
H$, an important result becomes apparent (see e.g. 29). In the inde-
pendent particle model, the position coordinates x1, ¥1, z1 of one electron
and those %3, y2, 22 of the other electron are completely independent of
each other: there is no correlation. From the configuration interaction
function constructed from ¢ orbitals only, one finds that the two «
coordinates, which are perpendicular to the molecular plane, are still
independent, whereas the probability for y; to be close to y2 and z; to be
close to zy is considerably reduced; this result can be considered as an
effect of ‘horizontal’ correlation (the electrons try to avoid each other
horizontally). A CI function constructed from the lowest SCF ¢ orbital
and from additional = orbitals leads to a picture where the ¥ and z co-
ordinates are independent, but where there is little probability of close
values of x1 and x3; in other words, such a function accounts for ‘vertical’
correlation (the electrons tend to be on opposite sides of the plane). A
correct wave function would allow for both horizontal and vertical
correlation. It is easy to understand why the independent-particle model
is unsatisfactory. Because of their identical charges the electrons repel
each other; their average interaction, 7.e. the interaction of the corre-
sponding charge clouds, is taken into account even in the IPM, but the
IPM ignores the fact that, owing to this repulsion, the electrons tend to
occupy different places. A CI function allows them to do so; this is why
the energy of a CI expansion is lower than that of a single Slater determi-
nant. However, the ‘correlation energy’ is a small correction to the interac-
tion energy. The situationisillustrated in Table 3, where some properties of
diatomic molecules as calculated from the molecular Hartree-Fock equa-
tions are compared with the exact values. Except for Fp, correlation
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has not much effect on equilibrium distances and force constants, but
binding energies calculated from Hartree-Fock theory are very poor.
Similarly, the results for spectral transition energies are not in good
agreement with experiment.

Table 3. SCF and multi-configuration SCF calculations of observables in diatomic
molecules

Ho Ligs Ng Fg LiH HF

References a) a) b) a) c) )
Binding SCF 3.64 0.17 527 -1.37 149 438
energies -D, MC-SCF?) 463 0.99 0.95

in eV Exp 475 1.05 990 168 252 6.12
Equilibrium SCF 073 2.78 1.06 132 160 090
distances R, MC-SCF 0.74 2.69 1.43

inA Exp. 0.74 267 110 142 1.60 0.92
Vibration 'SCF 4561 326 2729 1257 1433 4469
frequencies w, MC-SCF 4398 345 750

in cm-1 Exp 4400 351 2358 892 1405 4139

1) SCF calculations with large optimized basis of Slater orbitals.

2) SCF culculations with multi-determinant wave functions including double excita-
tions from valence molecular orbitals.

a) Das, G., Wahl, A. C.: J. Chem. Phys. 47, 2934 (1967).

b) Cade, P. E., Sales, K. D., Wahl, A. C.: J. Chem. Phys. 44, 1973 (1966).

® Cade, P. E., Huo, W. M.: J. Chem. Phys. 47, 614 (1967).

Electron correlation probably also plays an important role in the
theory of unsaturated or cowjugated organic molecules. Unfortunately,
accurate numerical data are so far lacking, and we must discuss simplified
models in order to understand the electron correlation in # electron
systems. Although different contributions to electron correlation should
be considered, namely the horizontal and the vertical correlation of the
¢ and 7z systems and the intergroup correlation, so far the correlation of
the = system alone has been most studied. As has been mentioned, the
horizontal correlation of the z system can be taken into account within
the framework of the ¢—x separation.

If one confines the study of a molecule to its = electrons, the most
general function for its z system is given by Eq. (3.5). To calculate I7,
it is necessary first to make plausible assumptions about the potential
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created by the charge distribution of the ¢ system (see Sect. 5.1) and then
to choose a basis set of # orbitals and perform a configuration interaction
for the = system. The simplest basis is that of the atomic 2pz orbitals
of the constituent atoms. If one expresses /7 as a linear combination
of all the Slater determinants that can be constructed from those atomic
orbitals, this treatment may be referred to as ‘full’ configuration inter-
action 29:26,27 the term ‘complete’ being reserved for the case where
the orbital basis is complete©.

It is well known that, in order to obtain reasonable predictions for
spectra, a CI treatment is preferable to the simple one-particle excitation
model (see Sect. 5.3). However, allowing for horizontal correlation
through CI with & orbitals is not sufficient to restore agreement with
experiment (for a discussion, see 28)). We come back to this point at the
end of this section.

Full CI is rather complicated, particularly for large molecules. There-
fore, many approaches have been suggested with the aim of getting the
same (or almost the same) result as from ,,full CI*, but in an easier way.
Among these works, one has to mention especially the ‘alfernant molecular
orbital method’ (AMO) (see e.g. 29), the ‘non-paired spin orbital method’
(NPSO) 30, various electron pair treatments 3D and, finally, rather
sophisticated schemes borrowed from solid state or quantum field theory
32,33), All these approaches are concerned less with the actual physical
problem of the horizontal correlation of the x electron system than with
the general correlation problem. The = systems just furnish well-defined
models, for which by definition a full CI calculation gives the exact
solution, to be compared with various simplified treatments. For this
reason, we shall not discuss these approaches in detail here. Suffice it to
mention the following result concerning the horizontal correlation of =
electrons; in systems like the polyenes, where the alternation of bonds
suggests a description in terms of localized = bonds (see Sect. 4.5), almost
the entire horizontal correlation energy is due to the ‘intrapair’ correla-
tion energy of the electron pairs localized on the double bonds 3V, This
means that the function for the @ group can be written to a good approx-
imation as a product of pair functions

I(12..., %) =¥a(L,2)PsEA) ... T 1,n) (3.12)

The situation is more complicated for systems with typically delocalized
orbitals like benzene 33,84,35), where the total horizontal correlation
energy cannot be broken down into contributions from different electron
pairs.

©) The term ‘full CI’ was introduced by de Heer in connection with the problem
of benzene 25,
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Vertical correlation is more difficult to treat than horizontal correla-
tion because it goes beyond the o—= separation. Actually, the = wave
function should be completed by Slater determinants partially construct-
ed from o orbitals, which should be orthogonal to the whole set of
occupied o orbitals. Calculations of this sort are rather complicated and
almost nothing has been done on these lines, apart from some calculation
of valence states of carbon to be discussed below. Most approaches to the
vertical correlation of @ electron systems have been of a semi-empirical
nature. An example of such an approach is the method ‘Atoms in Mole-
cules’ 36) which has been applied to a number of 7z electron systems. It
was recognized that the atomic correlation errors have to be corrected
in order to get reliable results for molecules 37.38) (see Sect. 5.3).

Pariser and Parr 39:40 proposed an amendment to the n electron
theory which was justified on somewhat similar lines. Here, we are con-
cerned only with one aspect of the Pariser-Parr theory, namely the
reduction of the Coulomb repulsion energies of electrons. In order to
reproduce the spectra of z electron systems, one is forced (among other
factors) to reduce the ‘one-center electron repulsion integrals’ of the
carbon atom

§2508) 7008 5 450) 22() dn oy (3.13)

to about 10 eV, whereas the theoretical value calculated by taking for
the orbital y, a Slater 2p= orbital is 17 V. Such a reduction is usually
justified by the following argument: consider the ‘disproportionation
reaction’

C+C —» C+icC- (3.14)

where each of these carbon atoms is in its trigonal valence state. The
energy change in this reaction is given experimentally by the difference
I-A of the ionization potential I and the electron affinity 4 of carbon
in its valence state and amounts to about 10 eV/. The theoretical energy
difference is given by the integral (3.13), provided that one assumes
there is no change in either the ¢ core or the 2px orbitals when passing
from the neutral atom to its ions. Since these two assumptions are not
realistic, the argument is not fully convincing, but it is probable that the
theoretical value for the integral (3.13) overestimates the actual repulsion
energy of two 2pn electrons at the same atom. The current explanation
is that one has to use a smaller value in order to account for correlation
effects. In fact, if one wants to account for electron correlation while
keeping the formalism of the independent particle model, ¢.e. if one
wants to avoid a CI treatment, one can note that correlation does not
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much change the expectation values of typical one-particle operators,
like the kinetic energy or the potential energy in the field of the core. It
does however, change appreciably the electron repulsion energy. So, if
one disregards the question whether a theory allowing for correlation
within an independent particle scheme can be formulated in a consistent
way (see e.g. 4D} and agrees to treat an effect going beyond the ¢—=n
separation within the formalism of this separation, it is plausible that one
should take smaller values for the two-electron integrals.

There are in the literature several attempts to introduce correlation
into m electron theories in a systematic way, e.g. the correlation factor
methods of Kolos 42 and Julg 4%, and the split p-orbital method (SPO)
of Dewar 44.45), When applied to the integral (3.13), all these methods
give about the same value, and this is the main reason why they work
for the calculation of spectra. The SPO method has been strongly
criticized on mathematical grounds 46,47.48); however, it has the merit
of having clarified the fact that the type of correlation to be introduced
through a reduction of the electron repulsion integrals is vertical correla-
tion, whereas horizontal correlation should be accounted for through
full CI in the = AO’s basis. Since this vertical correlation is also present
in atoms (e.g. in C-), it is not astonishing that it can be estimated from
atomic term values (e.g. based on the reaction (3.14)). )

The argument based on correlation is perhaps convincing from a
qualitative point of view, but it is very difficult to interpret a difference
of 7 eV as the correlation energy of a pair of 2px electrons. Ab initio
calculations of simple systems 49.50,51) Jead to estimates of at most 1 eV
for the correlation energy of one pair of 2pz electrons. Approximate
calculations of the vertical correlation energy in the C- valence state
52,53) lead to similar values. The argument that the electron repulsion
energy should be reduced by twice the correlation energy, because the
kinetic energy is increased by the amount of the correlation energy 41,54
can hardly explain a lowering of 7 eV. In conclusion, the greater part of
the difference between the ‘theoretical’ and ‘semi-empirical’ values of
the one-center electron repulsion integral is not due to correlation and
has to be explained in an alternative way.

Actually, the integral (3.13) is somewhat reduced by using for the
atomic orbital 2pz of carbon more elaborate forms than a simple Slater
function, for instance Hartree-Fock orbitals 59, Table 4 gives some
values obtained in this way 55).

The electron repulsion integral between two charge distributions
x;,(l) p(l) and x; (2) x¢(2) located on two different atoms is still more
reduced than the one-center integral; at the same time, the corresponding
overlap integral Sy, increases from 0.25 for two Slater functions at 1.4 A
apart to 0.33 for two Hartree-Fock functions 58). This shows the im-
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portance of an appropriate choice for the basis set of atomic orbitals used
in 7z calculations, especially for electronic transitions which depend on
the difference between repulsion integrals rather than their absolute
values 57,

Table 4. Electron repulsion integrals (in eV) the 2pm ovbitals of carbon

One-center Two-center
integrals  integrals at the

(in eV) distance
R=325A
(in eV)
Slater function (Zs =3.18) 16.93 4.42
Double-zeta functionl) 15.74 1.02
Hartree-Fock functions? 15.25
Experimental value® 11.13

1 Calculated from Clementi’s tables: Clementi, E.: IBM J. Res. Dev. 9, 2 (Suppl.)
(1965).

2) Calculated from analytical SCF orbitals: Arai, T., Lykos, P.: J. Chem. Phys. 38,
1447 (1963).

3 Calculated using ionization potential and electroaffinity of carbon in the valence
state Vg, tr3z: Hinze, J., Jafié, H. H.: J. Am. Chem. Soc. 24, 540 (1962).

It has been noted by several authors 54.58,59,60) that the hypothetical
charge transfer reaction (3.14) has to be treated in a more complicated
way ; among other things, the effective nuclear charge of the carbon atom
in its neutral valence state should be rather different from the charge
of its positive or negative ion. In fact, if one uses AO’s minimizing the
energy of appropriate valence states 1), the discrepancy between the
theoretical and empirical energy of the hypothetical reaction (3.14) is
very much reduced. The one-center electron repulsion integral (3.18) for
carbon turns out to be about 12.4 ¢V. It may be that the remaining
difference with respect to the 10 eV of Pariser and Parr is due to vertical
correlation energy.

It is outside the scope of the present review to discuss further electron
correlation in the case of n electrons. As regards correlation effects in
o systems, they should be more easily understandable, at least if the
o system consists of localized bonds; however, very little is actually
known about them. An example where intergroup correlation effects
are important has been discussed in Sect. 3.2,
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4. Specific properties of ¢ and » Electrons

4.1. Some Current Statements Concerning ¢ and z Electrons

In Chapt. 2 we have recalled how ¢ and =z orbitals can be defined in
terms of a rigorous theory and what the notions of o and =z electrons
actually mean. In Chapt. 3 we have introduced the o—= separation and
discussed its justification and limitations. If the o—a separation is valid,
then an effective Hamiltonian for the = electrons can be constructed
into which the o electrons enter only via the effective potential created
by their charge distribution.

Of course, the basic question is: why stress the distinction between
o and =z orbitals and the o—n separation? Is this point of view really
useful, or is it just a trivial by-product of the quantum-mechanical
treatment? A partial answer has already been given in Chapt. 1: to some
extent, the notion that there are two classes of electrons associated with
quite different molecular properties is suggested by experimental evidence
These two classes have been identified with the ¢ and =z electrons defined
in the preceding sections, and this has resulted in a number of con-
clusions regarding both the ‘theoretical’ and ‘experimental’ differences
between ¢ and x electrons. These conclusions can be summarized in the
following rather familiar statements:

a) o and =z electrons are localized in different regions of space, the ¢
electrons more on the plane, the & electrons above and beneath the plane;

b) = electrons are more loosely bound and more easily polarizable than
o electrons;

¢) o electrons form localized bonds, n electrons are delocalized ;
d) = electrons are chemically more reactive than ¢ electrons.

None of these statements is rigorously true, but all hold grosso modo.
In the following sections, we shall comment on them in more detail.

4.2. Spatial Distributions

Statement (a) is based on the fact that = orbitals have a nodal plane
in the plane of the molecule (or the unsaturated or conjugated part of it)
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and that the probability of finding a @ electron in the molecular plane
vanishes. On the other hand, the o electron density has its maximum
in the molecular plane. The situation is best illustrated by the orbital
density maps of Fig. 2.

If the = electrons were strictly outside the o electron cloud, the
potential created by the = charge distribution at the position of the
o electrons would practically vanish, at least in non-polar molecules.
This results from the fact that the repulsive electrostatic potential due
to one lobe of the z charge distribution is nearly cancelled by the potential
of the other lobe, except at the end of the molecule. Then the effective
Hamiltonian governing the motion of the o electrons (in the frame of the
o—x separation) would be practically the same as that of the ion in which
all the = electrons are ionized away. The presence of the = electrons
would be felt very little by the o electrons, except in systems with highly
polar ¢ bonds. Then, an iterative procedure adjusting successively the
o charges to the z charges and vice versa would not be necessary, and one
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and the same o core could be used for different # states of the molecule.
In this idealized description, the potential created by the ¢ electrons
would be very close to that of point charges at the nuclear positions, the
effect of the ¢ electrons on the m electrons being essentially to ‘shield’
the real nuclear charges.

Actually, the assumption of non-interacting ¢ and z charges is much
too crude a simplification. As a matter of fact, an approximate treatment
of benzene suggested that there is appreciable interpenetration of ¢ and =
densities 1, and recent SCF calculations on simple molecules support
this idea 2. It is known from Slater’s rules 3 that 2s and 2p electrons,
say in the carbon atom, shield the nuclear charge from the other electrons
in the same shell to about the same extent, namely by about 0.35 units.
Now, if 2s and 2p electrons were localized in different regions of space,
the 2s charge being closer to the nucleus, a much stronger shielding due
to the 2s electrons should be expected. On the other hand, the sitnation
in a molecule may be different from that in the isolated atoms; for in-
stance, the best effective charges found in the ground state of acetylene 4,
hydrogen cyanide or formaldehyde % are about 3.5 for a 2s AQ, 4.0 for
a 2po AO and 3.0 for a 2pz AO of carbon; in other words, the z electrons
see a somewhat more shielded nuclear charge than the ¢ electrons do.
I't should be noted that interpenetrating ¢ and x densities are also found
in Hiickel-type calculations of molecules with all valence electrons
(see Sect. 6.2); therefore, this result is not basically a o—x interaction
effect, since the extended Hiickel method completely ignores the Coulomb
repulsion of electrons.

Briefly, it may be stated that there is a large overlap between o and
n densities, but the o cloud is closer to the molecular plane than the
cloud and that the influence of the o electrons on the = electrons is more
pronounced than the reverse effect.

4.3. Bonding Properties

Statement (b) is based on the remark that the 2p orbitals of atoms
are more loosely bound than 2s orbitals as is reflected by the correspond-
ing ionization potentials. Now, in the LCAO approximation, z orbitals
are constructed from atomic 2p, orbitals only, whereas ¢ bonds involve
2s, 2py and 2p, orbitals to roughly the same extent. In these considera-
tions it is convenient to assume that the atoms are in appropriate valence
states 8.7 and to take the corresponding ionization potentials 8:9. In
the case of carbon, for example, one should consider the ionization
potential of a trigonal hybrid and a 2pz electron in the (V4,#732) valence
state (Table 5). The ionization potential of a hydrogen 1s orbital is also
indicated, because this orbital is involved in ¢ binding.
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Table 5. Ionization potentials of atoms in valence states

Atomic states Promotion energies  Ionization potentials (b)
(in eV) (in eV) of
Valence electrons or lone pairs
SCFD Exp.2 s 4 s2or p2
Carbon
C 3P s2p2 (o} 0 19.5 10.7 —
C Vasp2p 10.72 9.83 21.42 11.68 p2 992
C Vasppp 8.76 8.48 21.01 11.27 —
Nitrogen
N 48 s2p3 0 0 25.6 12.9 —
N VasZppp 1.90 1.08 —_ 13.94 s2 25.58
N Vgsp2pp 15.92 14.29 26.92 14.42 p2 12.37
Oxygen
O 3P s2pd 0 0 32.4 15.9 —_
2,2 _ s2 32.30
O Vasp2pp 0.54 0.54 17.28 { Py
Hydrogen
H1Ss 13.60 — —_

1) Hartree-Fock calculations of atomic valence states: Kochanski, E., Berthier, G.:
In: Structure hyperfine magnétique des atomes et des molécules, 177, Paris:
C.N.R.S. 1967.

2) Experimental data for L-shell ionization potentials: Slater, J. C.: In: Quantum
Theory of Atomic Structure, Vol. I, p. 206. New York: McGraw 1960, and valence
state ionization potentials: Hinze, J., Jafi¢, H. H.: J. Am. Chem. Soc. 84, 540
(1962).

Of course, the energy levels of the molecular orbitals are not identical
with those of the AO’s from which they are constructed. To a first
approximation, one may say that the AO levels are split into bonding and
antibonding (and possibly non-bonding) levels. Since ¢ bonding is stronger
the splitting of the o levels is supposed to be larger and the bonding and
antibonding z levels should be closer to the zero-level than the corre-
sponding ¢ levels. Actually, a number of bonding ¢ levels lie lower than
bonding = levels, but there is no reason why all of them should lie below
the bonding = levels. The actual situation is schematized in Fig. 3.

In reality, all-electron calculations of the benzene molecule give the
result that (at least) one occupied o orbital has a higher orbital energy
than the lowest x level (see Table 14.) If one analyzes cases of this sort,
one finds that the high-lying ¢ levels belong to C—H rather than C—C
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Fig. 3. Bonding, non-bonding, and antibonding molecular orbitals

bonds. In graphite, where there are no C—H but only C—C bonds, there
is evidence that the ¢ levels form a completely filled ‘valence band’
while the n electrons are in a half-filled ‘conduction band’. It was believed
for a while that the orbital levels of smaller hydrocarbons could also be
grouped into two ‘bands’ in a similar way. This is obviously not the case.
In addition to the electrons of the C—H bonds, the electrons of nitrogen
lone pairs in aza-compounds or oxygen lone pairs of carbonyl compounds
also have relatively small ionization energies; they are essentially non-
bonding electrons occupying molecular orbitals whose energies are close
to those of bonding 7 electrons, a fact that is related to the spectral
behaviour of molecules containing atoms with lone pairs (see Sect. 5.3).

Contrary to formerly accepted opinion, the lack of any separation
of the ¢ and = levelsinto two bands with a gap between them has nothing
to do with the question of the c—n separation as discussed in Sect. 3.1.
In fact, all the calculations mentioned in this context were made in the
framework of the independent-particle model and a jfortior? in the frame
of o—x separation.

Finally, we remark that unlike ¢ orbitals, = orbitals are much less
important as regards the stability of a molecule. For instance, one can
remove one or two electrons from condensed aromatic systems and ob-
tain very stable ions. Similarly, electrons may be added to antibonding
7 orbitals without much affecting the stability of the compound. What
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is true for ionization holds also for excitation: as a rule, excitation of a =
electron does not much affect the stability of the molecule (although it
may lead to a change of geometry); o excitation often leads to dissocia-
tion.

4.4, Polarizabilities

If a molecule is placed in a homogeneous electric field, its energy changes
as a result of orientation and polarization. The new energy E can be
expressed as a power series of the field strength &:

E=FEy—mé& —}ad? 4.1)

where m is-the component of the permanent electric dipole moment
of the given molecule along the direction of the field, and « is a quantity
associated with the induced electric moment and called the ‘polarizability’
of the molecule. In general, the induced moment is not parallel to the
inducing field and the polarizability is not the same in different directions;
therefore, Eq. (4.1) should be written in terms of a symmetric tensor a:

- =

E=Eo— (m-6) —}(fad) 4.2)

where the second-order term is a doubly contracted product. For a
highly symmetric molecule like methane, the components along its
principal axes are equal, and Eq. (4.2) reduces to Eq. (4.1). For planar
molecules, two of the principal axes of @ lie in the molecular plane, the
third axis being perpendicular to it, and the ‘horizontal’ and ‘vertical’
polarizabilities are in general very different. From the point of view of
quantum chemistry, polarizabilities can be expressed as sums of contribu-
tions of individual orbitals. Consequently, in planar molecules ¢ and »
contributions «s and an can be defined; both types have in general
horizontal and vertical components.

It has been found empirically that the polarizability of a non-con-
jugated molecule can be decomposed into contributions of different bonds.
From Denbigh’s 19 analysis of experimental data, one can conclude that
the mean polarizability (i.e. the average over the three directions) for
a C—H bond is about 6.10~25 cm3, that of C—C ¢ bond 5.10-25 cm3 and
that of a localized = bond 8.10-2% cm3.

Values for the various polarizability components have been computed
theoretically only in simple molecules, like Hg 1112 HF or CO 13.14,15)
and the experimental bond polarizabilities presented for hydrocarbons
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(see e.g. 1®) have to be used with caution, because they are usually
derived by assuming that the o contributions are the same in unsaturated
and saturated molecules and the C—C bond distances play no role.
Actually, the mean values of polarizabilities are reliable to about 209,
for usual bonds, but the separate values o, and «, assigned to the polari-
zability in the direction of the bond and the two directions perpendicular
to it are more doubtful. In general, parallel polarizabilities are larger
than perpendicular ones.

The theoretical expression of « involves an infinite sum over excited
states. However, the polarizability of an electron in an orbital ¢ can be
written in the following approximate from

* 204
azz(p) ~ wl——i;j‘ (4.3)

(and similar expression for oyy; az.)

where I{g) is the ionization potential of the electron under considera-
tion 19, It follows that the contributions of inner-shell electrons to the
polarizability should be negligible, because the numerator is much smaller
and the denominator much larger than for valence electrons. This formula
also suggests that z electrons should be more easily polarized than
o electrons (especially in the direction perpendicular to the molecular
plane), because their ionization potentials are smaller than those of ¢
electrons and the mean value associated to the square of the » coordinate
is larger.

The effects of delocalization on the z electron contribution to the
polarizabilities of conjugated molecules has been studied by the Hiickel
method 18.19). The horizontal polarizability, say, in the direction of the z
axis, is related to the Coulson Longuet-Higgins atom-atom polarizabili-
ties my s by an expression of the form

Ozz = €2 Z Zy Z5Trs (4.4)
1.8

where z, and z; are the z coordinates of the 7t® and stt atoms and the
summation is taken over all the pairs of conjugated atoms. The polari-
zability 7y is the derivative of the = charge on the #th atom with respect
to the st diagonal element of the effective Hamiltonian, or alternatively,
the second cross-derivative of the total energy with respect to the 7t
diagonal elements 20, In this theory, the perpendicular polarizabilities
vanish. The contribution taken into account by Eq. (4.4) comes only
from the n charge displacements induced by the electric field and not
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from the deformation of the atomic orbitals. In order to compare with
experiment, one has to add the # polarizabilities obtained for each bond
to the contribution of o bonds®,

Similar expressions are obtained by perturbation calculations with-
in the frame of the SCF theory of = electron systems (see Sect. 5.1): in
aromatic hydrocarbons, the w electrons seem to be responsible for about
one-half of the in-plane electric polarizabilities, and their contribution
increases with the size of the molecule 2D, The same kind of developments
can be made for magnetic susceptibilities 22.23),

On the whole, the analysis of various polarizabilities suggests that
the = electrons are movre strongly affected by external perturbations than the
o electrons. Nevertheless, the most important point is perhaps the low
polarizability of o electrons rather the high polarizability of n electrons,
which permits us to regard the ¢ distribution as a comparatively rigid one.

4.5. Localization in ¢ and = Bond Systems.

Statement (c) refers to the most significant difference between ¢ and =
bonds; however, it is not correct to say that ¢ bonds are always localized
and # bonds always delocalized. In order to assess the difference clearly,
we have to discuss at some length what the terms ‘localized’ and ‘delo-"
calized’ really mean.

The molecular orbitals which are solutions of the standard Hartree-
Fock equations are delocalized, ¢.e. they extend over the whole molecule.
For closed shell systems, the SCF functions can be written in determinant
form (Slater determinant). An important theorem states that certain
linear transformations among the orbitals of the determinant can be
carried out without changing the value of any physical observable. For
the sake of simplicity, let us consider a four-electron system whose orbitals
are labelled a4 and 4 and the spin orbitals a«, a8, ba, 58

=y

1 ao a o2

P=Ya | asl®) ap(®) ba(3) bA(3) (9)
ax(4) af(4) ba(4) bB4)

8) The Hiickel method predicts that in the case of a long polyene chain the longitu-
dinal polarizability of @ electrons varies as the cube of the molecular length, while
the ¢ polarizability should increase only linearly 18). Refined molecular orbital
calculations (taking into account bond alternation etc.) do not exhibit this
abnormal asymptotic behaviour.
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One can convince oneself by calculating this determinant that the
following function

Aa(1) AB(1) Ba(l) BS(1)
o L | 4@ 45@) Ba(2) BA(E) w8
Jar | A«(3) AB(3) B«(3) BA(3) ’
Ax(4) AB4) Bx(4) BA(4)
with
A=acosf + bsinf
. 4.7)
B=asin@ — bcosl
(0 arbitrary)

is exactly identical with the first one. A Slater determinant is thus said to
be ‘invariant with respect to a unitary transformation among the occu-
pied orbitals’.

Such a transformation can be used for relocalizing a given set of
delocalized molecular orbitals in conformity with the chemical formula.
For instance, the occupied orbitals of methane can be transformed into
orbitals very close to simple two-center MO’s constructed from tetrahedral
sp3 hybrid orbitals and 1s hydrogen orbitals 24,25,26), A unitary trans-
formation can hardly modify the wave function, except for an immaterial
phase factor; therefore, it leads to a description which is as valid as that
in terms of the ‘canonical’ delocalized Hartree-Fock orbitals. Of course,
the localization obtained in this way is not perfect, but it is usually much
better than is often believed. In the case of methane, the best ‘localized’
orbitals are uniquely determined by symmetry 29; for less symmetric
molecules one needs a criterion for best localization 28.2%9, a problem on
which we shall not insist here. A careful inspection reveals that there are
three classes of compounds:

i) Typical non-conjugated molecules, like ethylene or many other com-
pounds, which everyone would write intuitively with localized bonds.

ii) Molecules usually classified by the chemists as conjugated but for
which only one canonical valence formula (with the maximum number
of double bonds) can be written, like the linear polyenes.

iii) Conjugated molecules with two or more equivalent canonical valence
Sformulas, like benzene. In addition to their poor localizability, it can be
shown that transformation to best localized orbitals is not unique 39).

One may now wonder what are the conditions for the occurrence of
localized and delocalized bonds and what are the practical consequences
of this more or less large localizability. The condition looked for was
given a long time ago by Hund 3D (see also 32),
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The molecular orbitals can be transformed to localized ones if the number
of valence electrons involved in binding per atom is equal to the number of
directly bound neighbors and the number of atomic orbitals available.

In the case of carbon, there are four atomic orbitals, 2s, 2 p4, 2 p,, 24,
and four valence electrons. Therefore, carbon will form localized bonds
if it is bound to four neighbors, each doubly-bonded neighbor being
counted twice. In benzene, each carbon is bound to three of its neighbors
by ¢ bonds and to two of them by an additional = bond; the number of
neighbors is five and a description in terms of localized bonds is not
possible?). In butadiene, on the other hand, the bond distances alternate
in such a way that any C atom has only one neighbor close enough for a
7 bond, but three neighbors close enough for a ¢ bond; the number of
neighbors is four and the MO’s can be really well localized 33),

If a transformation to localized orbitals is possible, then the prop-
erties of the molecule can be described in terms of localized bonds, with
some small correction for localization defects and interaction between
the bonds (see Sect. 6.1). If no such transformation is possible, a descrip-
tion in terms of localized bonds does not lead to agreement with experi-
ment, and auxiliary concepts like resonance or mesomerism have to be
introduced in order to reconcile theory and experiment, unless one uses
from the outset a description in terms of many-center bonds. From a
practical point of view, the question why the z bonds are delocalized in
benzene and localized in butadiene is reduced to the question why the
bond lengths are equal in benzene, but not so in butadiene. Much work
has been done on this question, but the situation is still being debated
(see e.g. 39). :

Hund’s criterion for localized bonds is well illustrated by the example
of the BeHz molecule. The Be atom contributes two AQ’s, namely 2 s
and 2 pg, and has two neighbors and two valence electrons; each hydro-
gen has one neighbor and one electron. Hence, the bonds of BeHg can be
localized. If one or two electrons are removed, the condition for localizab-
ility is no longer fulfilled, and the molecule can only be described by
many-center bonds. The localized description also breaks down if no
2 po orbital is available, 7. e. if we go from BeHj to HeH .

In triangular Hj each hydrogen atom furnishes one AQO and 2/3 of
an clectron, the number of neighbors being two for any hydrogen; so,
the simplest delocalized bond is a ¢ bond. Actually, ¢ bonds in polyatomic
molecules are only localized if they involve e.g. sp® hybrids (n=1,2,3),
t.e. if the AO basis functions can be transformed 35:38,37 in such a way
that any of the resulting hybrid AO’s can overlap in only one direction.

b} Equivalent orbitals can be constructed even for benzene, but their definition is
not unique 30 because different sets of equivalent orbitals are possible.
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Pure s orbitals as well as =z atomic orbitals can easily form many-center
bonds, because they have the same binding power in different directions.

Having pointed out that a single Slater determinant is invariant
with respect to a unitary transformation among the occupied orbitals,
we can come to the idea of bent (or z) bonds (see e.g. 38)). The double
bond in ethylene is normally described by a ¢ and a = bond, both of them
localized between the C atoms. Now, a completely equivalent description
can be used where the bonding ¢ and = orbitals are replaced by their
normalized sum and difference

1

V? (0 + =)

T1 =

Ta a— )

1
ZV—?(

These new orbitals look like bent bonds and are rather close to Van’t
Hoff’s 3% original description of a double bond. The density diagrams
of the various types of orbitals in diatomic molecules can be seen in
1 and 4, namely delocalized (canonical) MO’s on Fig. 1 and localized
(equivalent) MO’s on Fig. 4.

Since in the framework of the independent particle model the double
bond may equally well be described as a o—= or 71—72 bond, the choice
is mainly a matter of personal taste. However, there are two arguments
in favour of the o—a picture. One argument is based on theoretical treat-
ments going beyond the independent-particle model: if one leaves the
IPM, the two descriptions are no longer equivalent; explicit calcula-
tions 49 show that the intrapair correlation energy is larger in the o—=
picture, so that the latter is quantum-mechanically more satisfactory.
The second argument is that a transformation to z orbitals is only
straightforward in systems with localized ¢ and z bonds, e.g. in mole-
cules with isolated double bonds. In aromatic molecules like benzene
the definition of = bonds is not unique.

There is one interesting but much debated physical criterion for
delocalized bonds in organic rings, namely the occurrence of the so-
called ‘ring currents’, said to explain the high anisotropy of diamagnetic
susceptibilities and some particular shielding effects in NMR spectra of
aromatic molecules. The idea of the ring currents was developed by
London 41 in an approximate treatment of the diamagnetic suscep-
tibility of aromatic hydrocarbons, There has been some -argument
recently as to whether the ring currents are genuine physical effects or
just an artefact of London’s calculation 42.43,44),
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4.6. Differences in Reactivity

It is well known that saturated molecules are rather unreactive and
the reactivity in unsaturated and conjugated systems can be interpreted
in terms of x electrons (see e.g. 45,48)). Nevertheless, the higher reactivity
of 7 electron systems is not so much due to the different properties of
a and = electrons as to the fact that an unsaturated C atom has only
three neighbors and can easily form a bond with a fourth atom in a
transition state. In reactions characteristic of zx systems, the o core
seems to play no role during the whole process, except for reactions
involving a change of conformation. Quite often, to form a reaction
intermediate from an unsaturated or conjugated molecule, it is not even
necessary to break a z bond, so that the reaction intermediates as
postulated, for instance, in aromatic substitution reactions have rela-
tively low energy. The ‘localization’ energies 47 for the different possible
intermediates allow us to discriminate between their energies and to
find out which one will actually be preferred. Chemical reactions are,
indeed, very complicated processes and it is fortunate that one can make
a rather good classification in terms of quantities referring to the =
electron system only. :

To close this chapter on the differences between ¢ and = electrons,
we emphasize that it is very useful to make the distinction between the
two types of electrons, keeping in mind that ‘electron’ stands for ‘oc-
cupied orbital’. From the point of view of quantum chemistry, this
distinction is quite straightforward, but experiment does not provide
really unambiguous ways of distinguishing between ¢ and = electrons and
separating contributions due to the two sets. As a matter of fact, the =
electrons seem to have the most important role for certain properties,
which will be discussed in detail in the next chapter. However, the o
bonds in molecules with and without z electrons are not necessarily the
same. In saturated hydrocarbons the ¢ bonds can be regarded as being
formed by sp3 hybrids, in unsaturated hydrocarbons by sp2 hybrids.
Some differences between the two classes of compounds are just due to
differences in o bonding (see e.g. 48)).
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5. z Electron Calculations and the Analysis of Experimental Data

5.1. Treatment of Unsaturated Molecules in Pure n-Electron Theories

If one considers only hydrocarbons, and more especially the so-called
‘alternant’ hydrocarbons, i.e. first of all the conjugated polyenes and the
aromatic hydrocarbons of the benzene series, the greater part of their
physical properties, ionization potentials, lower electronic transitions
etc., can be interpreted qualitatively and often quantitatively in terms
of the electronic structure of the = system alone. As the number of =
electrons is small with respect to the total number of electrons of the
molecule, a considerable simplification of the quantum-mechanical
problem is obtained. However, it must be noted immediately that the
assumptions of a complete o—z separation and of a rigid ¢ frame are not
sufficient to eliminate the ¢ electrons completely from the theory,
because the =z electrons of an unsaturated molecule are not attracted by
bare nuclei, but are subject to an effective potential containing Coulomb
and exchange contributions from the ¢ electrons.

With the exception of semi-empirical methods based on the treat-
ment of benzene given by Hiickel in 1931 D, all the n electron theories
use more or less the procedure devised by Goeppert-Mayer and Sklar 2
(henceforth abbreviated GMS) to determine the potential in which the
six 7 electrons of benzene move. As a rule, only the o electrons belonging
to the valence shell of the various atoms are taken into account; the
electrons of the inner shells are assumed to shield the nuclei completely,
i.e. to reduce, say, the nuclear charge +- 6 of carbon to +4. This simpli-
fication is not absolutely necessary (see e.g. ), but avoids some diffi-
culties due to the orthogonality conditions between inner and outer
orbitals. These conditions are automatically verified for the 2=z orbitals
of the first-row atoms, which are orthogonal by symmetry to any ls, 2s
and 2po orbitals; they are not in other cases, ¢.g. for the 3pn orbitals
of sulphur and phosphorus, because in those cases there are = orbitals
in the inner shells. Similar difficulties occur if one wants to calculate
Rydberg transitions involving a ¢-type excited orbital.

The basic GMS assumption lies in the form of the Hamiltonian H of
the = electron system:
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£2
H= E heore () |- E - (5.1)
4 ny w

where the summations are taken only over the m electrons; the core
Hamiltonian %(v) is a one-electron operator containing, in addition to
the customary kinetic and potential terms, an effective o—n interaction
potential assigned to the various atoms P of the molecule:

heore (p) = T (y) + %Up (v (5.2)

In order to give an explicit form to the potentials Up, Goeppert-
Mayer and Sklar assumed that the ¢ electron distribution around each
atom is the same as in a molecule with infinitely large internuclear
distances; the potential Up is then given by the Hartree-Fock potential
for the atom P in the appropriate valence state 9; for instance, in the
case of the carbon atom in the valence state (V4, s pz Py 2)

Ue(po) = — Ti +2J15—Kis+ Js + Jy + T2 —% (Ks + Ky+ K5)

s (5.3)

1
3——8+]s+]y+Jz*"2‘(Ks+Ky+Kz)

7,

where J;(») and K;i(») are the Coulomb and exchange operator corre-
sponding to each ¢ atomic orbital. Therefore, use of a GMS type potential
amounts to neglecting the effect of ¢ bond formation on the electron
structure of the = system, in particular, that of the intramolecular
charge shifts in the o system. It is possible to write the potentials Up
under much less severe conditions, provided that one knows the charges
to be assigned to the o electrons 5:6:7 The results of complete calculations
carried out recently by the MO method with Gaussian orbital basis sets
suggest that the distribution of the gross atomic populations in aromatic
molecules is not much different from the one which would be found by
considering the ordinary valence states 8:9. On the other hand, the
picture of intramolecular charge transfers in heterocycles can be entirely
modified; for instance, in aza-compounds the main part of calculated
dipole moments seems to come from ¢ electrons 810 (see Sect. 6.4).

As has been mentioned in Chapter 3, the total wave function of the
n-electron system is constructed from atomic orbitals that are anti-
symmetric with respect to the principal plane of the molecule. We shall
confine ourselves to bases formed by the = valence orbitals of the un-
saturated atoms of a molecule, e.g. the 2p; orbitals of doubly linked
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carbon atoms. However, it is possible to generalize the treatment pre-
sented below to less familiar kinds of & orbitals, for instance the pseudo-
atomic orbital (1sg —1sp-), used account for the hyperconjugation of a
saturated CHz group with a double bond 11). Excited orbitals of the
same symmetry as the z valence orbitals, like the 3pz 12,13 and 3dr 14
orbitals, could probably be included in a GMS treatment, but the
theoretical meaning of these orbitals in the frame of a strict n-electron
theory is not yet clear, even though they account for some experimental
facts. For instance, Scheibe’s rule® can be understood by incorporating
3pn orbitals in the = orbitals basis set 13,15,16,1%) but this does not
preclude other explanations 18).

The matrix elements of the total Hamiltonian H of the n-electron
system include, first of all, the elements of the one-electron Hamiltonian
heore with respect to the valence orbitals y, of the = type centered on
the different atoms P of the molecule. If there is only one orbital y, per
unsaturated atom, one usually writes

(T0) 4+ Ue()] 200) = Wpip () (5.4)

grouping together the kinetic operator of electron » and the potential
operator associated to the atom P itself in the GMS approximation.
Strictly speaking, the preceding equation means that the basis orbitals
ip are eigenfunctions of a Hartree-Fock operator having the form
(T 4 Up) and that Wy is the corresponding eigenvalue, ¢.e. the energy
the electron v would have if it interacted only with the core of atom P in
the valence state defined by the potential Uyp. In practice, one represents
the orbitals g, by simple algebraic expressions which are not really
solutions of this equation; therefore, one should rather consider Eq. 4.1
as a symbolic relationship equivalent to the expression

Sxo WL () + Up ()] 22 () dv = W (5.5)

and expand W in terms of atomic integrals over the basis functions yp.

A simpler extension of the GMS treatment was suggested by Moffitt19
in connection with the calculation of the lower excited states of the
oxygen molecule. This procedure only involves the valence state energies
of the atom P and its positive and negative ions and z electronic integrals;
it can easily be generalized to various kinds of unsaturated atoms29.2%,
22,28)_ If the valence states of the ions P+ and P- obtained from atom

a) Scheibe’s rule states that the energy difference between the lowest excited state
and the lowest ionized state in aromatic hydrocarbons is approximately equal
to the same difference in the hydrogen atom.
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P by extracting or fixing a = electron are constructed with the same
orbital basis as those of P itself, the difference between the appropriate
valence state energies can be expressed in terms of Wy; for an atom
sharing two electrons with the = system (e.g. nitrogen in the —NH,
group), or one electron (case of an ethylenic carbon), or having an empty
2pn orbital (boron in borazoles), W, is respectively

Wy = E(P,V;) —E(P*, Viy1) = —Ip —(papz; Papo)
Wp=E@PV;) —E(Pt, Viq) = —1Ip (5.8)
Wp— E(P-Vis1) —E(P,Vy) = — Ao

where Ip and Ep are the ionization potential and the electron affinity
of atom P for the 2p, orbital in the valence state ¥V, and

(batos pabe) = [ 1000) 10(8) 5= 1o () 10 0) ey (5.7)

Yu

is the Coulomb repulsion integral for two = electrons described by an
atomic orbital g, 22. If all the atoms P are of the same kind (for instance,
if all of them are carbon atoms), it is not necessary to give Wy a numerical
value in order to calculate the wave function of the s-electron system,
because Wp is the same in all the diagonal matrix elements and can be
taken as the origin of the energy scale. In the case of substituted mole-
cules, one only needs to know the values of the different Wp’s in com-
parison to the Wp of the carbon atom. The required numerical values
are usually taken from the experimental valence state energy tables 24,
23), Such a procedure amounts to applying the approximation known as
Koopmans’ theorem (see Sect. 5.2) for the valence states of the atom P 2D
An alternative procedure for evaluating the Wp’s of atoms with lone
pairs resorts to doubly excited valence states of P 26), but Koopmans’
theorem cannot be extended to double excitations. Of course, the
evaluation of the parameter W of boron (¥ 3,5p2) should be less precise,
because there is no counterpart to Koopmans' theorem for electro-
affinities 21,29,

Note that the procedure described here can be extended without
difficulty to atoms P which contribute several orbitals and several p
electrons of different symmetries: carbon atoms in the sp hybridization
state of acetylene and allene-type compounds 28, heteroatoms with one
@ electron and a lone pair, like oxygen in the carbonyl group or nitrogen
in pyridine 20,21),
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The non-diagonal elements of the Hamiltonian A¢ore contain integrals
involving two functions y, and y4 centered on two different atoms P and
Q, and are usually written in the form

[0 T 6) + Up ()] 29 () dvy = W Sup (5-8)

where the equality sign is obtained by assuming that y, is an eigen-
function of the Hartree-Fock operator for atom P. If 4, is not an eigen-
function, the relation (5.8) can still be retained (with a somewhat different
meaning for Wp) provided all the matrix elements in the brackets are
proportional to the overlap integrals Sy, However, this does not hold
exactly for the basis functions that are used in practice: the most im-
portant deviation arises from the kinetic operator 7, because the matrix
elements T4 between = orbitals are proportional to the square of the
overlap Spq 29. An undesirable feature of the above relationship is
that one obtains different values for the matrix elements with indices
pq and g¢p, whenever the atoms P and Q are of a different nature, as in
the case of carbon and oxygen in the carbonyl group: Wp(C,V4) #
We(0,V ). This difficulty does not arise if the Hamiltonian kcore is
written in a symmetric form with respect to the potentials Up and Uq.
t.¢. if (supposing the overlap matrix S is real) one writes 20:

U U,
[1o6) [10) + TZEE80 ] 6y ar, = 4 x

[250) (T6) + U0)] 220) + 26) [T6) + Uatl]  (59)

xp () dvy = 3 (Wp + Wq) Spq

A possible explanation of the inequality of the matrix elements with
indices pg and gp can be given in terms of the o electron distribution in
the molecule: the polarity of the o bond between the atoms P and Q
affects the potentials Up and Ug in such a way that the symmetry of
the core matrix is restored as a consequence of the ¢—s interaction 39,

Given a specific atomic orbital basis, it is always possible to calculate
all the matrix elements by integration, and to introduce the theoretical
values found in that way as corrections to the terms Wj Spq of the ordi-
nary GMS potential 31), Unfortunately, these corrections are very
sensitive to the choice of the basis, and it is difficult to give them a
definite meaning.

61



7t Electron Calculations References see p. 77

Assuming that orbitals of the usual form (Slater orbitals etc...) are
good approximations of the Hartree-Fock orbitals, the total matrix
elements of the Hamiltonian Acore are

hpp~ Wp+ [ ap( 2 UR+ZUN Ip 4T = ap
R#P (5.10)
hpg = 3 (Wp+ Wo) Spg + 3§ 40(Up + Uq) g dr

+ § 2 ( Z UR+ZUN ) %a 4v = fpq (5.11)

R#£P,Q

where the subscript R denotes an atom with & orbitals, and the subscript
N any other atoms, for instance, the hydrogen atoms of an unsaturated
carbon atom. It is convenient to replace the potential Uy produced by
the nucleus and the o electrons of the atom R by the potential UR of the
atom R with all its electrons:

Ug = Ug + nr (J2 — + Ky) (5.12)

#g being the number of = electrons on the 2 p, orbital in the valence
state V;. Then, the following relation for the diagonal elements follows:

ap=Wp— 3 (Uk:pp) — nrl(pp:rr) — 3 (pr;7p)] —g(U?v;;bp) (5.13)

RAP

where
(UR:pp) = — [ 2p Uk zpde  (US;pp) = — [ 4p Un 1p gp dr (5.14)
(ba75) = § 29(8) 20 ) 7= 2e0) 760) s s (5.15)

and a similar expression for the non-diagonal elements £,4. The quantltles
(UR, pp) are the familiar penetration integrals introduced by GMS in
the z electron theories. They are of the short-range type, as opposed to
the long-range forces of the Coulomb type (pp;##) 29; hence the approxi-
mate expression of semi-empirical methods:

ap = Wy — 5 nm (pps) (5.16)

R#P
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In the particular case of hydrocarbons, it does not make much differ-
ence whether one neglects all the penetration integrals or retains only the
penetration integrals (Ug ;PP) associated with the carbon atom neigh-
boring the atom P and the integrals (U H; pp) associated with the hydrogen
atoms bound to P. Since an sp2 carbon atom has necessarily three neigh-
bors, the latter approximation is practically equivalent to a shift of the
origin of the energy scale, because (U g;;bp) and (U & ;pP) are not much
different 32, This circumstance is particularly favorable, because the
numerical values of the penetration integrals differ whether the electric
density of carbon is approximated by spherically charge distribution of
the form

252+ 2p5 4205 +2p2) 2,

or if each of the integrals arising from U¢ is evaluated separately.

The calculation of the off-diagonal elements fpq follows exactly the
same line as that of the ajs, provided the Hamiltonian 4¢ore is expanded
symmetrically with respect to the potentials Up and Ug. If one assumes
that all the one-electron and two-electron multi-center integrals contained
in fpq are expressed in terms of the corresponding Coulomb integrals
appearing in «p and «g4 by means of the Mulliken approximation, one
finds Bpg=1%(ap+ og) Spg. Actually, the preceding expression must be
completed by a correction term gp4:

Bra = % (@p + %g) Spq + €pq (5.17)

where g,4 is the sum of the errors made by approximating each integral
by Mullikens’s formula. It may be noted that the important parameter
of the n-electron theories is not so much the quantity B, itself as the
correction term &,q, because one obtains no » binding at all by putting
epg=0. In fact, if one replaces the basis orbitals y, by a set of orthog-
onalized Lowdin orbitals 1, 3%, one finds that the first term of the series
expansion of this integral in powers of the overlap matrix 22,34 is

oy = [ Ap(¥) heore(v) Ay (v) dry = £pg (5.18)

Now, it is just this term which determines to a large extent the impor-
tance of the interaction of the n electrons between the atoms Pand Q. The
integral f%) may be identified with the parameter fp, of the semi-
empirical theories based on the zero-differential-overlap approximation
35,36), In our opinion, there is no general calculation method leading to
values for the fp,'s which are in good numerical agreement with the
Bpq parameters fitted on experimental data (electronic spectra, dipole
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moments etc.). Of course, opposite points of views on this controversial
problem may be found in the literature 37,

We shall not discuss at length further simplifications, known as
next-neighbors interactions (for core integrals), zero-differential-overlap
(for two-electron repulsion integrals) etc., which were introduced into
the formalism of the # molecular orbital theory after the basic work of
Goeppert-Mayer and Sklar. Detailed reviews on these topics have been
published 38,39,40,41,42) Tet us just show why zero-differential-overlap
can be justified in terms of orthogonalized orbitals 43.22,44),

The Léwdin orthonormalized basis of atomic orbitals A is obtained
by the matrix transformation

A=S-12y (5.19)

where y is a basis of 2px atomic orbitals localized on the various atoms
of the molecule and S corresponding overlap matrix. The electron inter-
action integrals (1pd4; Ar4s) with respect to the 1 basis can be expressed
as matrix functions of the overlap and two-electron integrals in the %
basis. If the latter are calculated by Mulliken’s approximation:

(xp2a;- ) = % Spa [(xp2p;- ) + (Xaxas- )] (5.20)

except of course the Coulomb integrals (xpxp; xaxq), one finds

(Aphg;..) =0forp # ¢ (5.21)

i.e. the properties postulated for the integrals in the zero-differential-
overlap approximation. In fact, the preceding relationship is correct to
the first order in the overlap integrals, and it can be shown to be rigor-
ously correct, if the calculation is restricted to the term in S of the ex-
pansion in a series of the matrix S-1/2, as a result of the use of Mulliken’s
formula for the non-Coulomb integrals. Now, Mulliken’s approximation
itself can be considered as the term in S for the expansion of such integrals
45) So, the transformation of localized atomic orbitals into Loéwdin
delocalized orbitals gives to a first order in S a non-empirical formalism
identical with the methods based on the zero-differential-overlap approx-
imation suggested by Pariser, Parr and Pople.

Many interesting problems in physical organic chemistry have been
clarified by numerical calculations based on next-neighbor interaction
and zero-differential-overlap approximations, especially in the field of
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aromatic hydrocarbons. An important theorem of the Hiickel theory for
kydrocarbons holds also in theories of the Pariser-Parr-Pople type:
alternant hydrocarbons do not exhibit z charge transfer from one unsatu-
rated center to another 48,47, This statement is valid not only for the
ground state, but also for some excited states, in particular the lower
singly excited state. Therefore the a distribution cannot induce any
polarization in the ¢ system, and this means that the GMS potential is
indeed a good approximation for such compounds. Actually, the special
properties of conjugated hydrocarbons are determined by the topology
of the molecule, and any method using the same diagonal matrix elements
for atoms and arbitrary off-diagonal elements for chemically linked
atoms is able to reproduce them 48). '

A more physical interpretation of the potential to which the electrons
of a conjugated molecule are subjected, was obtained by Del Re and
Parr 49, By transforming the expressions of the configuration interaction
matrix elements over a molecular orbital basis, it is possible to show that
the one-electron terms can be derived from an effective one-electron
operator, where the potential is of the GMS type, but corresponds to a
core including all the electrons but one, and equal fractions (per orbital)
of the electrons are assigned to the various atoms. An important con-
clusion is that in large conjugated molecules with few heferoatoms, a n
electron tends to see all the atoms as neutral, except for those hetero-
atoms that contribute two electrons to the & systems, which are seen
as singly charged centers. Among other things, this suggests that the
results concerning alternant hydrocarbons could be extended to a wider
class of large conjugated molecules (with the exception of compounds with
a highly polarized o core), and thus may explain the success of the Hiickel
method even for heterocycles 59).

In the next two sections, we shall study the problem of the ionization
potentials and electronic spectra of simple molecules, as examples of the
virtues and shortcomings of zn-electron theories for analyzing the char-
actetistic properties of unsaturated molecules.

5.2. Ionization Potentials

Usually, theoretical studies on ionization processes of atoms and mole-
cules are performed using the so-called approximation of Koopmans’
theorem. This theorem says that the ionization potential P; of an electron
located on the 7t level of a closed-shell state is equal to the opposite
sign to the Hartree-Fock orbital energy e;. One obtains this result by
assuming that the single determinant wave function of the ion is con-
structed from the same molecular orbitals as the ground-state function,
except for the spin orbital of the missing electron.
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The ionization energy E;, defined as the difference between the energy
E9 of the ground state and the energy E+ of the positive ion, reduces
then to the orbital energy e¢;:

— Pi=FE;=E°—Et=¢g (5.22)

The evaluation of ionization potentials from orbital energies of the ground
state is usually justified, not because ionization does not very much alter
the form of orbitals, but because the values of ¢; are in better agreement
with experimental data than the difference of true SCF total energies,
both for the positive ion and the neutral molecule. This statement is
empirically verified for many atoms, but has to be theoretically explained
by a fortunate cancellation of errors 31.52),
If one lets

P, = E+ — E0 = (E¥cr — Escr) + (Ef — ED) (5.23)

where E} and EJ are the (negative) values of the correlation energies
in the two systems, and

Efcy = Ebp-1 + AE{ (5.24)

where AE{ is the additional (negative) error coming from the approxi-
mate calculation method used for the ion instead of a true SCF treatment,
one can write

Py = — ¢, + AE} + (Ef — EJ) (5.25)

The correlation energy of a 2n electron system is in general larger
in absclute value than that of the system with one less electron. Therefore,
the quantity (Ef — EJ) is positive and tends to compensate the error
AEY. On the other hand, the same argument, applied to the calculation
of electron affinities (the change in energy produced by the capture of an
electron in an empty orbital ¢;), suggests that the errors —AEj; and
(E? — E7) should cumulate rather than cancel.

The preceding discussion is relevant for vertical ionization potentials
only, ¢.e. for ionization processes without a change in the shape of the
molecule. The effect of molecular distortions due to ionization has to be
estimated separately and added to AE} and (Ef — EJ). Recently, the
validity of Koopmans’ theorem has been questioned within the SCF
approximation itself. It should be noted that the orbitals of a Slater
determinant are defined except for a umitary transformation, and the
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canonical Hartree-Fock orbital energies give an upper bound to the
difference between SCF total energies of both states only for the lowest
energy level of each symmetry species 33). Thus, the first # ionization
potential of planar unsaturated molecules might safely be predicted.
On the other hand, numerical SCF calculations have been performed for
some ionized states of atoms 54.5% and molecules 56:57,58) and the
cancellation of errors put forward to justify the use of Koopmans’
theorem does not seem to be quite general. Furthermore, in the case of
molecules, Table 6 shows that the basis set used for expanding the mole-
cular orbitals plays an important role — indeed one, not yet well under-
stood — as regards agreement with experiment.

Table 6. First jonization potentials in simple molecules

Basis set —e1 (in ¢V) Pexp

STOD GTO2 oco®

Limited Extended

Water (11.79) 14.56 14.55 13.72 13.0
Ammonia 9.96 11.15 11.60 11.28 10.5
Methane 14.74 14.02 13.73 13.48 12.06
Ethane (stag.) 13.09 14.97 13.78 — 11.6
Ethylene 10.10 9.96 — — 10.5
Acetylene 11.04 . 10.94 — — 11.4

1 Slater-type orbitals with Zg = 1.2: Palke, W. E., Lipscomb, W. N.; J. Am. Chem,
Soc. 88, 2384 (1966). — Zg = 1 for HeO: Ellison, F. O., Shull, H.: J.Chem. Phys.
23, 2348 (1955).

2} Gaussian-type orbitals — HpO, NHjg, CHg: Ritchie, C. D., King, H. F.: J. Chem.
Phys. 47, 564 (1967). — CaHg: Clementi, E., Davis, D. R.: J. Chem. Phys. 45,
2593 (1966). — CaHy; CoHga: Moskowitz, J.: J. Chem. Phys. 43, 60 (1965).

3 Onmne-center orbitals: Moccia, R.: J. Chem. Phys. 40, 2164, 2176, 2186 (1964).

In the lowest ionized state of ethylene and acetylene, a n electron
belonging to the double or triple C—C bond is removed. It is interesting
to compare the calculations reported in Table 6 where all electrons were
included in the SCF treatment and the results of non-empirical calcu-
lations limited to the = electron system. Approximating the interaction
of the & electrons with the ¢ core by a rigid GMS potential (see Sect. 5.1)
and taking an effective nuclear charge equal to 3.18 for all the atomic
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integrals over 2 x orbitals of carbon, the following ionization energies are
found 59,60):

for the C=C bond: ¢; = W4, + 0.46eV = — 10.70 eV
for the C=C bond: ¢; = W, — 1466V = — 12.65eV

where W4, and W%, denote respectively the energy of a = electron
belonging to a carbon atom in the sp2 or sp hybridization:

Wi, = — 11166V Wi = — 11.19€V 24

From a comparison with Table 6, one sees that the results of all-electron
calculations are lower by about one eV than the ionization potentials
predicted by pure m-electron theories. In addition, the meaning of the
numerical value to be attributed to the additive constants Wa,, is
somewhat obscure. This explains why these quantities may be regarded
to a certain extent as adjustable molecular parameters, when ionization
processes are the main object of a m-electron calculation 61,62,

Pure n-electron theories by definition neglect the change in the distri-
bution of ¢ charges in the molecule. The possible role of such a change
can be studied by simply performing SCF all-electron calculations for
both states, because the average electronic repulsion given by the SCF
method (see Chapt. 2.4.) is then different in the ground and ionized con-
figurations. By solving separately the LCAO MO SCF equations of the
neutral benzene and its 2E4, and 242, cations (¢.e. benzene minus one
electron in the first and second = energy levels), one finds that the polarity
of the extracyclic o bond is increased in the direction C-H+, so that the
loss of a o electron belonging to the carbon atoms is balanced by a back
donation of ¢ charges from hydrogens 56). The same trend is shown when
passing from pyridine to its 24 3 cation (pyridine minus one z electron) 88,
Similarly, the charge transfer of the C—H bond increases from the cation
CH3 to the methyl radical and the anion CHj, in proportion as the
population of the 2pz orbital of carbon changes from zero to one and
two 58, On the other hand, the lowering of |ionization potentials AE}
obtained by minimizing the total energy of the ion is rather weak, as
shown in Table 7.

For molecules with closed-shell ground states, the vertical ionization
potentials —e; predicted by the LCAO MO method are generally too
high relative to experiment. When the SCF energy of the ion is calculated,
the correction AE{ decreases the theoretical value of Py, but the agree-
ment with experiment is lost if the change in correlation energy (Et — E)
is taken into account in an approximate way (see Table 7).
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Table 7. Ionization potentials in benzene, pyridine and methyl

Molecular ion Ionization potentials in eV
—e E"" Py Pexp
1 2) 3 :
Benzene cation 2Ej, 10.15 —0.41 11.74 9.25
Benzene cation 2Ag, 14.56 —0.44 16,12 12.1
Pyridine cation 2A, 12.17 —0.71 13.46 9.24
Methyl cation 1A} (10.18) —1.32 8.84 9.84

1) Gaussian-type orbitals — CgHg: Schulman, J. M., Moskowitz, I. W.: J. Chem.
Phys. 47, 3491 (1967) C¢Hy: Clementi, E.: J. Chem. Phys. 47, 4485 (1967) CHj
(¢4 orbital cnergy of the open-shell Hamiltonian matrix); Millié, Ph., Berthier, G.:
Int. I. Quant. Chem. 25, 67 (1968).

Correlation correction (E c—Eg) taken as equal to 2 eV for decoupling a pair of
2p electrons and neglected for methyl.

CeHg: Turner, D. W.: Tetrahedron Letters 35, 3419 (1967)

Lindholm, E., Jonsson, B. O.: Chem. Phys. Letters 7, 501 (1967).

Momigny, J., Lorquet, J. C.: Chem. Phys. Letters 7, 505 (1967).

CgHy N: Momigny, J., Goffart, C., Natalis, P.: Bull. Soc. Chim. Belg. 77, 533
(1968).

CHgj: Lossing, F. P., Ingold, K. U.: Henderson, 1. H. S.: J. Chem. Phys. 22, 621
(1954). : :

2

~

3

~

On the contrary, for radicals, the same type of correlation correction
improves the agreement with experiment, because the difference between
SCF total energies is too low. By optimizing the LCAO basis set and
geometry used in the SCF calculation for the ion, there is hope that

ionization potentials could be reproduced in a more satisfactory man-

5.3. Excitation Energies

As a general rule, saturated hydrocarbons do not absorb in the visible
region or in the near and vacuum ultraviolet. The spectra of paraffins
show absorption bands only in the far ultraviolet below 1500 A. Two
transitions are seen: the first, very weak, is apparently electronically
forbidden: the second, more energetic and intense, is probably allowed

b) Calculations of that sort, including a study of changes in correlation energies
have been recently performed for water by W. Meyer and for methane by
B. Levy, F. Janzat and J. Ridard (to be published). The results are very
encouraging.
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63,64), Therefore, the gap between the highest occupied energy level and
the lowest empty level corresponding to the C—C and C—H bond system,
in the frame of the simplest independent particle model, is at least nine
eV. If the energy levels of ¢ bonds in saturated and unsaturated com-
pounds are assumed to be of the same order of magnitude, the = electrons
and the lone pairs of conjugated molecules must necessarily be assigned
to transitions of lower energy observed from 1800—2000 A to the near
infrared.

In a one-electron scheme, there are three kinds of transitions involving
7 electrons:

the m—=n* transitions between the two =z levels, one occupied and the
other empty in the ground state of the molecule;

the %—¢* and o—=* transitions between an occupied = level and an
empty o* level, and vice versa;

the #—+=z* transitions between a nonbonding # level occupied by the
lone pair 2po of a heteroatom, as nitrogen of pyridine and oxygen of
ketones, and an empty a* level.

As the lone pairs are almost entirely localized on heteroatoms, the
energy of the » level is almost the same as for an electron in the valence
shell of the corresponding atom, so that the #+=* and » - ¢* transitions
have rather low energies and are often located in the same absorption
region as pure 7 transitions. Ior instance, the absorption spectra of non-
conjugated aldehydes and ketones include #-z* bands of very weak
intensity around 3000 &, more intense #—o* bands around 2000 A and
strong z—n* bands below 1800 A 65,

In compounds without lone-pair electrons, like pure hydrocarbons,
the two or three highest occupied = levels and the two or three lowest
empty =* levels are respectively of higher and lower energy than the
first o and ¢* levels. Keeping in mind also that the empty levels form a
more diffuse energy band than the occupied levels (a fact which is not
predicted by the usual description using a basis set of atomic orbitals
limited to valence orbitals of the various atoms), it is reasonable to
assign the transitions in the visible and near ultraviolet to = »~z* excita-
tions; the #—+¢* and o —+=* transitions should be found only in the vacu-
um ultraviolet, the ¢ o* transitions in the far ultraviolet. The sequence
of occupied and empty levels for the valence electrons of the C=C, C=C
and C=0 groups in the ground state is shown in Fig. 5, according to
non-empirical SCF calculations carried out by a minimal Slater basis set
for acetylene, ethylene 86 and formaldehyde 9.

The excitations considered so far are called valence shell transitions
or sub-Rydberg transitions, as opposed to another type of excitations,
found also in unsaturated compounds, namely the Rydberg transitions 8,
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Fig. 5. Monoelectronic energy levels in acetylene, ethylene and formaldehyde

The ultraviolet spectrum of these compounds contains a series of bands,
often very intense, which can be described by expressions of the form

b

by =a— (n——a)_2_ (5.26)
where # is an integer and «, b, « are constants, as in the case of the atomic
Rydberg series. The first terms of these series can reach the near ultra-
violet; the next terms are in the far ultraviolet and converge towards a
limit, which can be identified with a molecular ionization potential. The
Rydberg series observed in unsaturated compounds are assigned to
transitions between one of the last zz levels of the ground state and a higher
level where the excited electron takes a large probability density only
very far from the molecular core. Roughly, the excited electron can be
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described by a hydrogen-like wave function of high quantum number #
(n=3, 4, 5, etc.) perturbed by the positive charge distribution of the
residual molecular ion 9,

The Rydberg transitions are very close in energy to the #—+=* transi-
tions lying in the vacuum ultraviolet; they must be distinguished from
the latter by a careful analysis, Thus, the spectrum of ethylene below
1750 A contains sharp Rydberg bands mixed with a continuum going
up to 1620 A; this continuum is the end of a system of diffuse bands
going down to 2100 A in gas phase and 2600 A in liquid phase and is due
to a w—+=* excitation with change in geometry 79). From the theoretical
point of view, there is not always a clear-cut distinction between valence
shell transitions and Rydberg transitions, for instance, when the states
in question belong to the same irreducible representations of the symmetry
group of the molecule. This is the case for #—+¢* transitions of ketones,
which can also be interpreted as # +~3s Rydberg transitions "D,

Another example is the puzzling problem of the ‘mystery bands’ in
mono-olefins: the absorption spectrum of ethylenic compounds shows
on the left side of the m—>x* band system weak bands or even simple
shoulders of a different nature. These bands have been assigned to a
transition involving = and ¢ levels simultaneously, and for some time a
conflict raged amongst the supporters of a ¢—a* transition analogous
to the well-known #-—>=* band system of carbonyl compounds 72, those
of a w—o¢* transition 7® and those emphasizing the absence of any
mystery band in ethylene itself 74:79). The dispute has been provisionally
settled by assigning the mystery band of mono-olefins to the jump of a =
electron towards a o* level strongly mixed with the term 3s of a Rydberg
series 76,77, Furthermore, a third low-lying excited state, located at
7.45 eV above the ground state in ethylene and electric-quadrupole-
allowed 77.78), has been identied as a x transition towards a o 3¢ Ryd-
berg level. It can be added that, in the united atom model, all the transi-
tions are interpreted as Rydberg transitions: for instance, the z—z*
excitation of the C=C double bond electrons becomes a 2pz;— 3dy;
transition of the united atom. Nevertheless, the usual classification retains
a great utility, owing to the fact that the excitations usually interpreted
as valence shell transitions are related more closely to the electronic
structure of the molecule under consideration and cover a much larger
spectral region, from the far ultraviolet to the near infrared.

In the preceding descriptions, the electrons have been assigned to
individual energy levels. In fact, it is only possible to observe changes
concerning the state of the whole molecule, and the energy of a transition
is the difference between the final energy and the initial energy of the
whole electron system. Even if one assumes that the excitation does not
modify the position of the one-electron energy levels attributed to the
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ground state by the IPM model, the energy of a transition is not simply
given by the energy difference between the final and initial levels,
because the Coulomb repulsion and the spin coupling of the electrons
involved in the transition are not the same in the two states. In molecules
the most common case is a closed-shell ground state, and an excited
state with two unpaired electrons, one on a molecular orbital ¢;, which
was originally doubly occupied, the other on a molecular orbital ¢y,
which was empty. The energy of the excited state depends on the total
spin of the two unpaired electrons, whence the possibility of singlet-
singlet transitions without any change in spin and of singlet-triplet
transitions with change in spin. If the occupied orbitals ¢; and the empty
orbitals ¢; are chosen from amongst the solutions of the Hartree-Fock
equations of the ground state, the excitation energy i—~j can be written
79);

L3E—E¢ = (gy—e)) — (Ju—Ky) £ Ky (5.27)

with the plus sign for the singlet and the minus sign for the triplet; the
quantities ¢; and ¢; are the energies of the orbitals ¢; and ¢; involved in
the transition, Jis is the Coulomb repulsion integral between the charge
distributions ¢; ¢; and ¢; ¢, and Ky is the corresponding exchange
integral. The quantity 2Ky represents the singlet-triplet separation, the
triplet state being below the singlet excited state, in agreement with
Hund’s rule (0<<Ky; <Jyy).

Although the singlet-triplet transition is spin-forbidden, the singlet-
triplet separation has a considerable theoretical and practical interest:
the value of K; differs very much according to the probability of finding
the unpaired electrons in the same region of the three-dimensional space.
In general, the transitions involving molecular orbitals of the same type
(z>=* and ¢-o*) are characterized by relatively large singlet-triplet
separations. The same rule holds for the intensities, unless the transition
is forbidden for reasons due to the molecular geometry (as is the case
with some transitions for compounds of high symmetry such as acetyl-
ene and benzene) or to the spin (case of singlet-triplet transitions). For
instance, the excitation of the = electrons of the C=C double bond in
ethylene gives rise to a triplet and a singlet z-n* located respectively at
7.6 eV and 4.6 eV with respect to the ground state 80; the intensity of
the singlet-singlet transition, measured by its oscillator strength, is
equal to 0.3 81,

¢ The oscillator strength f is defined as the ratio of the probability of a given
transition to that of a harmonic oscillator able to absorb the same electromagnetic
energy between its ground state and its first excited state. Quantum-mechani-
cally, the transition probability is proportional to the square of the so-called
‘transition moment’.
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The transitions z-o* or o—-n* have much lower singlet-triplet separa-
tions and intensities. The extreme limit is shown by the orbitals of a
lone pair, which are o orbitals almost completely localized on an atom.
In the case of the carbonyl group, the orbital usually assigned to the lone
pair » of oxygen is a 2p, orbital perpendicular to the orbitals of the
double bond C=0; the triplet and the singlet states #-n* are extremly
close to each other, and the n-a* transition is locally forbidden, therefore
very weak (f~0.01 for singlet-singlet transitions)20.

As shown in Table 8, it is not possible to account for the transitions
involving the = electrons of the simplest organic molecules by non-
empirical calculations based on an independent particle model. Both
the singlet-triplet separation and the oscillator strength of the z—»n*
transition are overestimated.

Table 8. Transition energies of acetylene, ethylene and formaldehyde

Excited states in eV electrons) All electrons?® Exp.®
SCF Full CI SCF CI
Acetylene
axr 3.73 5.06
34, 4.77 6.46
- 3y 5.81 7.78
1xy 5.81 7.78 5.2
14, 6.43 8.60
10k 17.80 15.81 7.9
Ethylene
g B3y 1.8 3.1 3.36 3.19 4.6
1Bg, 10.2 11.5 11.98 10.17 7.6
Formaldehyde
R 3Ag 4.83 4.84 2.88 2.33 3.1
1A, 601 5.26 4.03 3.60 3.5
. 3A, 3.90 5.24 3.99 3.88
>
1A, 14.60 15.44 14.89 12.03 7.9

1) Non-empirical calculations with 2pn Slater orbitals.
CoHg: Serre, J.: J. Chimie phys. 50, 447 (1953) and Thesis, Paris (1955).
CgoHy: Parr, R. G,, Crawford, B. L.: J. Chem. Phys. 76, 526 (1948).
HoCO: Sender, M., Berthier, G.: J. Chimie phys. 56, 946 (1959).
2) Complete calculations with a Slater minimal basis set CI limited to singly excited
configurations (Tamm-Dankoff Approximation).
CgoHy: Dunning, T. H., McKoy, V.: J. Chem. Phys. 47, 1735 (1967).
H,CO: Dunning, T. H., McKoy, V.: J. Chem. Phys. 48, 5263 (1968).
3 Peak of absorption maximum.
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No improvement is obtained by replacing pure = electron calculations
by an all-electron SCF treatment; thus, the assumption of a GMS poten-
tial can hardly be responsible for the failure of the theory. Furthermore,
the theoretical predictions are not significantly altered by a configuration
interaction limited to the 2pn orbital basis 39,83,84,85; only by combin-
ing the —>0* excitations and n—=* excitations with the same symmetry
properties can one succeed in reducing the m—sz* transition energy
86,87,88), Therefore, a satisfactory ab ¢nitio theory of spectra will probably
need to go beyond the o—m= separation (see Sect. 6.4).

There are other possible reasons for the discordance between simple
theories and experimental facts. First of all, much caution is needed in
comparing theoretical and experimental excitation energies: the values
calculated are usually vertical transition energies in the sense of the
Franck-Condon principle, 3.e. transitions without a change in geometry
between the ground and excited states. They should not be compared
with the energies of the experimental zero-zero transitions, but rather
with the absorption maxima Amax. It may happen that the eguilibrium
geometry of the molecule is completely different in the ground and excited
states; this is the case for the first excited singlet of acetylene (which is
bent 89), ethylene (which is twisted and perhaps pyramidal 79) and
formaldehyde (which is pyramidal 89), Changes in geometry are not
always so drastic, especially in cyclic molecules like benzene (which
is only slightly distorted in its first singlet excited state 91,92); never-
theless, they cannot be accounted for by simply modifying the lengths
of the unsaturated bonds in a pure =z calculation. To take into account,
say, changes in shape of acetylene 93) or ethylene 94) in their excited
states, it is necessary to include at least the o electrons of single bonds
adjacent to the z bond system.

Various procedures have been suggested for improving the calculation
of n>n* transitions without modifying the general interpretation of
spectra. One of them consists in taking the effective charges of the
orbitals as additional variational parameters, whose values could be
different for the 2px and core orbitals. Several procedures based on that
idea have been developed: variation of the 2pz orbital exponents
according to the nature of the spectroscopic state under study 95, the
ionic or covalent character of the valence bond structures of the mole-
cule 98 ; the bonding or antibonding character of the molecular orbitals
occupied by the two unpaired electrons 7. The last treatment, first
suggested for the o-o* transition of hydrogen molecule 98, has inter-
esting connections with the form of orbitals in excited states. It is found
that the effective charges of the 2px carbon orbitals in ethylene are much
smaller for the excited level =* than for the ground level n. This means
that the antibonding molecular orbital of a double bond is more spread
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out in space than the bonding one, a fact which is not recognized by any
LCAO MO theory using minimal orbital basis sets, e.g. one 2p= orbital
per carbon atom and = electron. As a matter of fact, the calculation of
m—~nr* transitions can be improved in a more conventional way by taking
expansion bases with a large number of orbitals of & symmetry 99,100),

At indefinitely large internuclear distances, any molecular wave
function coming from a full configuration interaction treatment can be
expressed in terms of atomic valence state wave functions. According to
Moffitt 101), the formation of chemical bonds can be regarded as a pertur-
bation acting on isolated atoms, and the failure of z theories is apparently
due to the fact that the energy spectrum of the dissociation products of
the molecule is poorly represented by the usual methods of quantum
chemistry.. The excitations predicted for the molecule at equilibrium
distances are much more satisfactory if the Hamiltonian matrix elements
at infinity are replaced by spectroscopic valence state energies 102,103),
Later considerations 104,105,106} showed that Moffitt’s method of ‘atoms
in molecules’ could not be developed in a rigorous way, except for systems
with very few electrons. When the interpretation of experimental data
is the main object of theoretical calculations, it is more economical and
fruitful to incorporate the data of atomic spectroscopy into a purely
empirical scheme. This approach is the basis of the well-known method
of Pariser and Parr 3% and Pople 36): by fitting a number of basic core
integrals fp, and bielectronic repulsion integrals (pp; pp) and (pp; q9),
it is possible to reproduce molecular spectra much better than by any
theoretical method. Thus, the sequence of transitions in a given com-
pound, say the benzene molecule (see Table 9), or the variation of a
transition in a set of related molecules (see 197.108) can be succesfully
predicted. Such calculations have certainly a great heuristic value;
however, they include the effects of the atomic basis set, the average
Coulomb ¢-z interaction and the ¢-n and z-m electron correlation in a
way not susceptible of theoretical analysis.

To summarize, ionization and excitation energies support the familiar
picture of unsaturated molecules in terms of = electrons. Nevertheless,
we wish to stress the point that agreement or disagreement with ex-
periment by no means proves or disproves an approximate theory. There
is often an alternative explanation for the characteristics of unsaturated
compounds: in Chapt. 4.5, we haved noted that the properties related
to the delocalization of # electrons (ring currents etc. . .) could be inter-
preted in a different way, even for benzene. Curiously enough, the
electronic transition of benzene can be reproduced by a GMS treatment
involving the ¢ electrons of C—C and C—H bonds instead of the =
electrons of the ring 109,
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Table 9. Lower transition energies of benzene

Excited states 7 electrons 1 All electrons 2  Exp. 3
in eV

SCF CI Moffitt PPP SCF CI

a) a) b) c)
Triplets
3B1u 3.07 2.56 5.2 3.59 4.54 3.98 3.66
3K, 432 382 56 415 573 539  4.69
3Bay 5.56 7.95 6.1 4.71 6.92 8.61 5.76
Singlets
1Bon 5.80 3.58 5.8 4.71 7.15 5.26 4.89
1By 7.10 8.77 4.8 5.96 8.38 9.48 6.14
1E3q, 9.76 9.69 83 6.55 10.93 10.61 6.75

1) 2px Slater orbitals — a) Non-empirical claculations: Moskowitz, J. W., Barnett,
M. P.: J. Chem. Phys. 39, 1557 (1963). b) Atoms in Molecules: Moffitt, W., Scan-
lan, J.: Proc. Roy. Soc. (London): 4 220, 530 (1953) c) Semi-empirical claculations
with CI limited to singly excited configurations: Pariser, R.: J. Chem. Phys.
24, 250 (1956). .

2) Gaussian orbitals: full CI limited to the m electron system. Buenker, R. J.,
‘Whitten, J. L., Petke, J. D.: J. Chem. Phys. 49, 2261 (1968).

3 Kearns, D. R.: J. Chem. Phys. 34, 1608 (1962).
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6. Inclusion of ¢ Electrons in Molecular Calculations

6.1. o Electron Theories

Until about 1960 theoreticians devoted much less attention to o electron
systems than to =z electron systems. The reason was mainly that the
number of ¢ electrons in any molecule is very large compared with the
number of x electrons in conjugated systems. Actually, it is no more
difficult to elaborate simplified calculation methods for o electrons than
for # electrons: indeed, such treatments had been suggested many years
before (see 1) for a review of the early period and 2 for more recent
developments).

The progress of digital computers in the last ten years has made it
possible to calculate approximate wave functions for rather large electron
systems; for instance, ¢ and z electrons of biclogical molecules, such as
the fundamental bases of nucleic acids, have been treated not only by
semi-empirical methods, but also by ab imitio methods including all
electrons® 3,9, Nevertheless, one should not overestimate the accuracy
of the calculations that have been carried out so far. As regards energy
and related observables (binding and excitation energies, force constants,
etc. . .), one possible, if not entirely satisfactory, classification of quan-
tum-mechanical treatments may be given according to the order of
magnitude of the error AFE in the total energy:

i) spectroscopically accurate calculations: 4AE ~1cm~1(3:10-3kcal -mol-1)
ii) chemically accurate calculations: AE ~1 kcal-mol-1

iii) moderately accurate calculations: 4E~1 eV (23 kcal-mol~1)

iv) crude calculations: AE ~100 kcal -mol-1.

8) Ab initio calculations are quantum-mechanical treatments performed from first
principles. In the case of molecules, the only input data are the number and
nature of nuclei and the number of electrons, in other words the gross chemical
formula. No other experimental data should be used, but the calculations are
often limited to experimental geometries. It should also be stated that so-called
ab initio calculations are usually approximate and often have a highly empirical
character; for instance, the form and size of the atomic basis set in a LCAO-type
development is scarcely ever determined from first principles.
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Spectroscopically accurate solutions of the Schrédinger equations
have been computed only for the Hz molecule in the ground state 5 and
several excited states 8. Chemically accurate results are now available
for very simple molecules, like LiH 7. For most diatomic molecules and
hydrides of the first row, there are only moderately accurate calculations
8,9); it should be noted that extensive computational work is needed to
obtain even such accuracy, because electron correlation has explicitly to
be taken into account. A& initio calculations performed on molecules
of small or medium size by the LCAO SCF method fall into the cate-
gory of crude calculations. In the case of diatomic molecules 19 and
linear polyatomic molecules 11, the energies obtained by the LCAO
method are very close to the so-called ‘Hartree-Fock limit’; i.e. to the
best energy given by an independent particle model, but are hardly of
moderate accuracy as compared to the experimental values. In the case
of a medium-sized molecule, like benzene, the total energy given by the
best LCAO SCF calculation available at the present time is equal to
—230.46 a.u. 19; the Hartree-Fock limit can be estimated to about
—231 a.u. and the experimental value to ——232 &.%. Thus, the best
theoretical energy differs from the experimental one by about 1000
kcal-mol-1, and in this respect the ‘Quest of the Hartree-Fock limit’ is
somewhat vain.

Ab initio calculations have two serious shortcomings: they require
a high programming effort and are time-consuming, even with fast
computers; they have too poor a precision with respect to experiment if
limited to the independent-particle scheme. Semi-empirical approaches
have been developed for overcoming these difficulties: some simplifica-
tions are introduced into the mathematical formalism of quantum-
chemical methods, particularly when computing the matrix elements of
the Hamiltonian; experimental data are used to calibrate certain quan-
tum-mechanical parameters in order to ensure agreement between theory
and experiment. The calculation methods generally used for ¢ electrons
in polyatomic molecules are related to the molecular orbital theory;
they are bond orbital or delocalized molecular orbital methods. The
former are applied mainly to saturated molecules, because completely
localized orbitals seem to offer a good starting assumption for studying
additivity rules and their deviation in such compounds. The latter are
used in various forms (semi-empirical and non-empirical) for more general
electron systems; they are described in Sect. 6.2.

The analysis of observed binding energies 13,14,15 and other prop-
erties (molecular refractivities, magnetic susceptibilities, etc...) of
saturated hydrocarbons shows that it is possible to reproduce the ex-
perimental data to a high degree of accuracy, by adding up a number
of the C—C and C—H bonds. A simple additivity scheme giving bond
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energies to a few kcal-mol-1 is unable to distinguish between the various
isomers of a molecule, but is significantly improved if different empirical
values are attributed to bonds starting from a primary, secondary or
tertiary carbon atom 16,17,18) or if interaction parameters between
bonded or non-bonded atoms are taken into account 19,20,21,22)  Addi-
tivity rules and quasi-constancy of bond lengths, force constants and
other properties in saturated molecules are difficult to understand
within an ab ¢nitio framework: they are interpreted by postulating that
the ¢ bonds can be described in terms of electron pairs 23,

If the molecular wave function is approximated by a separated-pair
function of the form

W(1,2,...,2m) =L [Pa(l,2)... Pk (2k—1,2%) ... Py(@m—1,2m)]
(6.1)

where ¥k is either an electron pair localized on a bond or a lone pair
(see Sect. 4.1}, the constants of additivity rules can be identified with
certain properties of the separated pairs, provided the bond-interaction
terms are small. However, these assumptions do not lead in a straight-
forward way to additivity rules nor does the existence of additivity rules
justify the form (6.1) postulated for the total wave function. Additivity
rules could be constructed anyway if the interaction terms were large,
but connected with each other by some relations 24. In an actual ab initio
calculation on methane 29 it was found that, in spite of a good localiza-
tion of electrons, the total interpair correlation energy was about 60
kcal-mol-1. A relationship between additivity and localizability can be
simply accepted as a reasonable assumption, since these additivity rules
break down in systems with a strong delocalization.

If the Coulomb interaction between electrons of different pairs is
ignored, each localized bond and lone pair contribute independently to
the total energy, which implies a perfect additivity of bond energies.
In the independent-particle model, the localized bond function can be
visualized as a two-center molecular orbital occupied by two electrons.
Nevertheless, it is possible to reproduce deviations from additivity rules
within this scheme, for instance, by taking into account overlap (for a
review, see e.g. 2).

Chemical evidence shows that in a chain of localized C—C bonds an
atom with a different electronegativity induces intramolecular charge
transfers which are transmitted along the chain (Schliissel-Atoms of
classical organic chemistry 28). The propagation of inductive effects
along a set of two-center molecular orbitals can be introduced in a simple
MO-LCAO scheme as follows 29. Each individual bond is described as
the antisymmetrized product of two spin orbitals corresponding to one
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bond orbital, which is approximated as a linear combination of two atomic
orbitals, one for each of the two atoms X and Y participating in the ¢
bond. The coefficients of the linear combination are the elements of the
eigenvector corresponding to the lower eigenvalue of a 2 X 2 Hamiltonian
matrix, whose elements are three empirical parameters: the two diagonal
clements ax and «y and the off-diagonal elements fxy= fyx. They play
the same role as the «'s and f’s of the Hiickel method. The interaction
of one bond with the others is introduced by assuming that each of the
o’s depends on all the neighboring atoms according to the equation

&x = ax + 2 ¥x2% ’ (6.2)
Z

where Z denotes any neighbor of X, including Y. For instance, the carbon
atom of methane has

ac = o+ 0.1378

whereas the carbons of the methyl and methylene groups of ethylamine
have

21 = o+ 0.1338
og = a + 0.154 8

respectively, as compared to
tx% = o+ 0.078

for a carbon in the absence of neighbors. (The fixed parameters « and §
are the zero point and the unit of energy, respectively; § is close to —5
eV 28 which gives values of the order of 0.1 eV for the energy changes
brought about in a bond by the environment).

The structure of Eq. (6.2) clearly shows that the effect of the next-
nearest neighbors on the « value of a given atom is proportional to the
corresponding « through a quantity of the second order in the y’s, as
should be expected of inductive effects according to the chemical defini-
tion.

For halogenated paraffins 2” and aminoacids 28 this simple method
gives a charge distribution which is useful for interpreting molecular
properties related to atomic electron densities: dipole moments, quadru-
pole coupling constants, chemical shifts, etc. . . It can be also applied to
the o framework of heteroaromatic molecules in connection with z-
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electron calculations 29,30 and yields in an inexpensive way a total
(0 + ) charge distribution analogous to that of more complicated o—x
calculations (see Sect, 6.4).

There is one property of saturated compounds, which cannot be
predicted by additivity rules, namely Zonization potentials. As has been
shown by Lennard-Jones and Hall 31,32), this fact is not inconsistent
with the description of saturated molecules in terms of localized bonds
and can easily find a place in such a picture.

Consider, for instance, the ionization of methane. Starting from a
localized description of the neutral molecule, one can assume that the
lowest state of the positive ion is obtained by removing one electron to
one of the C—H bond functions, and construct in this way four possible
functions of the form

¥, = o [Ps(1,2) Tn(34) ¥c(5,6) ¥p(7)] (6.3)

Yp(7) denoting the bond function occupied by one electron. The four
functions ¥, correspond to the same physical situation and form a set
of four degenerate functions with the same energy. Consequently, a
better description of the ionized states of methane should be obtained
by taking a linear combination of the four functions ¥,?. The same
formalism applies if one bond is excited instead of being ionized: the
four possible excited functions Wexe give rise to two distinct states, a
triply degenerate one (the lowest excited state of CHy4) and a singly
degenerate one. The important result is that the excitation is no longer
localized on a particular bond, but distributed on all the bonds. From a
theoretical point of view, the preceding treatment is nothing but a con-
figuration interaction limited to four equivalent functions, and it should
be made even if the various bonds are not geometrically equivalent, for
instance, in long paraffins, because their energies are still very close. In
conclusion, the picture of a neutral molecule in terms of localized bonds
for the ground state is consistent with extensive delocalization in the
upper states.

A semi-emprrical calculation method for ionization potentials has been
developed, using the fact that a Slater determinant is defined only up to
a unitary transformation (see Sect. 4.4): the canonical molecular orbitals
s, eigenvectors of the Hartree-Fock operator F for a closed-shell system,
can be replaced by equivalent orbitals w;, almost completely localized,

b) In the frame of the separated-group function formalism, it is found that the
four possible functions ¥ are unable to combine together and the ground state
of the ion CHY, keeps its fourfold degeneracy 33).
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and vice-versa. Whereas the operator F is diagonal with respect to the
¢ functions:

§ oiF gidv = e Oy (6.4)

(see Eq. 2.16), it has diagonal and off-diagonal elements with respect to
the w functions:

=] wi F wy dr Bi=1§ cu; F wyde (6.5)

(note that F is invariant in a unitary transformation). Now, if one
identifies, the equivalent orbitals with two-center localized molecular
orbitals, 7.e. one neglects the ‘tails’ in the equivalent orbitals, one can
assume in first and good approximation that the «’s and f’s depend only
on the nature of the bonds directly involved. Furthermore, the §’s
corresponding to two bonds without a common atom can be considered
as exceedingly small. From this, a semi-empirical method may be
developed in which the «’s and §’s are regarded as adjustable parameters.
Then, by diagonalizing the « and 8, it is possible to estimate the values
¢; of the delocalized molecular orbitals ¢;, which are related to ionization
potentials via the Koopmans theorem (see Sect. 5.2). For instance, the
study of paraffins involves two diagonal elements «¢er and acm and three
off-diagonal elements fce’,cer Bec,cr and fcm,cn’; these parameters
are fitted (with some simplifications) on the ionization potentials of the
first members of the paraffin series and carried over into the whole set of
compounds 32. The equivalent orbital method has been extended to
saturated and unsaturated compounds with functional groups (ketones,
acids, etc.) and gives surprisingly good agreement with experimental
ionization potentials 34), This agreement is not an indication that the
method of equivalent groups is theoretically very sound, but that itis a
good interpolation scheme for experimental data. In fact it is not a true
theoretical treatment of ionization phenomena, because of the large
number of approximations it involves.

Finally, the molecular orbitals p; themselves can be expressed as
linear combinations of the bond orbitals w; (LCBO method):

i = 2cij wy, (6.6)
J

the coefficients ¢;; being the components of the eigenvector associated
to the eigenvalue ¢;. The square of the coefficients in the molecular orbital
occupied by a single electron in the positive ion also gives the distribution
of the positive charge due to the missing electron in the neutral molecule.
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The fraction of positive charge C?j on the jt8 bond is expected to be
correlated with the fragmentation of the ion in mass spectroscopy ex-
periments 35.36), Other LCBO methods following the same lines have
occasionally been used (see e.g. 21)),

6.2. Joint Treatment of ¢ and = Electrons in Unsaturated Molecules

Two problems arise right from the beginning when one wishes to compute
molecular wave functions:

the number of electrons to be explicitly included in the total wave
function:

the choice of an expansion basis set.

In large molecules, it is tempting to limit the calculations to valence-
shell electrons, ¢.e, the 1s electron for hydrogens, the 2s and 2p electrons
for atoms of the first row and so on, because only those electrons are
involved in the usual theories of the chemical bond. Indeed, the semi-
empirical extensions of the molecular orbital method suggested for the
o electrons of unsaturated compounds are essentially valence-shell
treatments. Some difficulties in the molecular-orbital method originate
from that restriction, for instance, the orthogonality problem with
respect to the inner shells (see Sect. 3.1) and the definition of core in-
tegrals taking into account the attraction of nuclei and repulsion of inner
electrons. Moreover, the analysis of important physical properties, for
which the inner electrons are largely responsible, has to be done in an
indirect way; this is the case for the relationship between K-shell ioniza-
tion potentials and intramolecular charge transfers 37, or the variation
of nuclear spin-spin constants, like J135_ 4, which depend among other
things on a high power of the effective nuclear change of inner orbitals
38), In principle, all the difficulties should disappear if all the electrons
are taken explicitly into account.

In an ab imitio calculation, the expansion basis set is completely
defined by its mathematical form, size and location in space, the orbitals
being either centered on the nuclei or floating in more general theories
{see e.g. 39). It does not matter whether pure or hybridized orbitals are
used, because nothing is altered by a linear transformation among the
members of a basis set, neither the value of the various observables, nor
the difficulty of the calculations. On the other hand, in semi-empirical
calculations, the atomic orbital basis is chosen with a view to the approx-
imations to be introduced later, and linear transformations of the
hybridization type may be useful for transferring some experimental
properties into the theory. Obviously, semi-empirical methods can
hardly be invariant against such transformations. In the following, the
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methods available for treating ¢ and = electrons simultaneously have
been classified according to

i) the type of basis (i.e. use of pure or hybridized orbitals)

ii) the contents of the one-electron effective Hamiltonian (i.e. either
the electronic repulsion is completely neglected, or the matrix giving
the molecular orbitals contains interaction terms between the electrons
explicitly considered in the calculation)

iii) the approximations concerning the integrals themselves (i.e. overlap
and differential overlap are neglected or taken into account by some
means or other).

All-valence electron methods recently suggested for organic molecules
are derived from semi-empirical approaches developed earlier in another
context, namely the Wolfsberg-Helmholz treatment of coordination
compounds 49, the Sandorfy treatment of paraffins 41 and the Parr-
Pariser-Pople treatment of n electrons 42,43),

The present discussion has been limited to the most widely used
methods, but many variants have been suggested; Table 10 gives a brief
survey of them. A more complete report can be found elsewhere 4490,

For some purposes, a basis set consisting of hybridized atomic orbitals
is particularly suitable in LCAO—MO calculations. By taking hybrids
directed along the chemical bonds instead of pure atomic orbitals
defined in terms of arbitrary axes, one simultaneously retains the essential
features of the bond orbital picture and the standard delocalized method.
This method has been developed in a parametric form similar to the
standard Hiickel method including or not including overlap integrals 41).

In the case of Aydrocarbons, the calculation still comprises five para-
meters, namely two Coulomb integrals «¢ and «m, two bonds, resonance
integrals Bccr and Bem and one resonance integral for two orbitals
centered on the same carbon fe¢c¢. As usual, the interaction terms be-
tween non-bonded atoms are neglected. The parameters « and § are the
matrix elements of a non-specified effective Hamiltonian with respect
to the sp3 or sp2 hybrid orbitals of carbon and the 1s orbitals of hydro-
gens, For the ¢ bonds of conjugated hydrocarbons 48, the following set
of values has been used

ag =o og = a —0.28,

Becr =B for = 0.945 Bee = 0.388

©) Digital computer programs are needed for most of the g-7 electron methods;
many of them can be obtained through the Quantum Chemistry Program Ex-
change (Chemistry Department, Indiana University).
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Table 10. Classification of current c—m electvon methods

Basis set No explicit Simulated Approximate Full electron
electron electron electron interaction
interaction interaction interaction

Localized Equivalent Second-order

orbitals molecular perturbation
orbital method124)

method31,82)
Group orbital
method34)
Two-center
molecular

orbital method?2?

Hybridized Hybridized

Zero-differential

References see p. 115

orbitals orbital Hiickel overlap
theory41,45) approximation46)
Independent Orthogonalized
electron SCF method?l)
molecular

orbital theory48)

Pure atomic Extended Quasi SCF Zero-differential Standard SCF
orbitals Hiickel theory diagonal overlap method?3,74,75,
40,50) element approximation 76,77,78)
Tterative method %) 51,69) SCF group
extended Kinetic-energy function method
Hiickel Hiickel theory 33)
theories80 61 62) 58) Random-phase
approximation
120)
Second-order
perturbation
method12?)

This purely parametric method can easily be converted into a Parr-
Pariser scheme, as done for paraffins 46), by selecting appropriate values
for the penetration integrals (U%; #p) and electron repulsion integrals
(pp; qq) between hybrid orbitals.

It is possible to derive instructive information concerning the general
features of the electronic structure of ¢ bond systems by making drastic
assumptions on the value of the parameters « and g. First, one obtains
a bond orbital scheme if all resonance integrals between hybrids not
involved in a chemical bond are set equal to zero; consequently, the
delocalization effects can be treated by the standard perturbation theory
of the molecular-orbital method ; second, if all the Coulomb integrals are
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assumed to have the same value and the resonance integrals fec for
orbitals centered on the same atom are neglected (which means that the
same value is assigned to the diagonal elements of the 25 and 2 orbitals
of carbon), certain results well known in the Hiickel theory of alternant
hydrocarbons (pairing of the occupied and virtual molecular orbitals,
uniformity of charge distribution, sign alternation of mutual polarizabi-
lities etc. 47) will apply also to all-valence electron treatments 48, In
addition to the value assigned to the parameter of the 1s orbital of hydro-
gens, the energy difference between 2s and 2p orbitals of carbon plays
an important role in the polarity found in the C—H bonds and induces
delocalization effects which combine with those produced by long-range
resonance integrals. The resulting bond orders were expected to be
related to long-range nuclear spin-spin coupling constants, but the general
properties of independent particle models suggest rather that the latter
are for the most part genuine correlation effects 49).

Nowadays, the success of the methods proposed by Hoffmann 50
and by Pople and Segal 51 among the chemists tends to promote the
use of pure atomic orbital bases for all-valence treatments. The first
method is a straightforward application of the Wolfsberg-Helmholz
treatment of complexes to organic compounds and is called the ‘Ex-
tended Hickel Theory’ (EHT), because its matrix elements are para-
metrized in the same way as the Hiickel method with overlap for
electrons. The other method, known under the abbreviation ‘Complete
Neglect of Differential Overlap’ (CNDO), includes electron repulsion terms
by extending to ¢ orbitals the successful approximation of zero-differen-
tial overlap postulated for = electrons.

In Extended Hiickel Theory, the diagonal matrix elements oy of the
effective Hamiltonian are identified with the corresponding valence-state
ionization energies, ¢.¢. for carbon and hydrogen atoms:

afs = —214eV  afp=—11l4eV  ais=—136eV

and the off-diagonal elements are calculated by one of the following
formulas 49,50,52,53) ;

fog = — K Spq (overlap proportionality rule, K = 21 eV) (6.7)
Bpg = K Spq 1";2'— %2 (arithmetic mean rule, K = 1.75) (6.8)
Bpg = K Spq l/(ap X og) (geometric mean rule, K = 2.00) (6.9)
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where the K parameters are simple proportionality factors and the
overlap integrals are calculated from Slater orbitals with the usual
screening constants. The molecular orbitals are obtained by solving a
set of Hiickel-type equations in which all overlap and resonance integrals
are in general retained. Irrespective of their physical meaning, the above
formulas include a rather imprecise empirical parameter (plausible values
of K for the arithmetic or geometric mean rule range from 1 to 4.5) and
have several inconsistencies:

i) They are not invariant with respect to linear combinations of basis
orbitals and to shifts in the zero-point of the energy scale, except for
very particular transformations 54,

ii) The arithmetic mean rule gives the same resonance integrals fj,,
regardless of whether the energies «, and «g associated to the orbitals
xp and yxq are close to each other or differ from the mean value by an
arbitrary quantity. For two orbitals involved in a chemical bond, the
geometric mean rule overestimates the covalent bond energy, and in
addition has to be taken as an absolute value in order to avoid imaginary
resonance integrals f,, due to a possible opposite sign of the integrals
ap and og. In this respect the reciprocal mean rule 55
%p %q

Boe =K Sp¢ (0 (6.10)

should work better, since it predicts a bonding power in agreement with
the best empirical measure of the covalent bond 56,

iii} All the rules imply that the kinetic T4 contained in each B4 is
proportional to the overlap integral Spq, although the numerical values
of the kinetic terms are known to vary as the square of the overlap, at
least for certain choices of the AO basis. If the right dependence is intro-
duced into the arithmetic mean rule, one obtains the formula

oy +

Boe = Spa (2 —|Spdl) —ﬂTi (6.11)

where the absolute value |S;,| is required by the angular factor of the

2 p orbitals 57). This question is settled once for all in the ‘Kinetic-energy-

included Extended Hiickel Theory' 58,59, where the matrix elements of

the kinetic operator T" are computed theoretically and only the potential

part V of the effective Hamiltonian is evaluated by an arithmetic mean
rule:

Bre = Tpq + Ve
(6.12)

v,
VM=K5MLM’%£
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However, better results are obtained if specific values Kpq are taken,
i.e. different proportionality factors for different pairs of atoms and
orbitals, and a special formula is nsed for one-center off-diagonal elements
(for details, see 58). The K factors are not fitted on empirical data but
obtained by trial and error after ab ¢nitio SCF calculations on model
compounds (for ethylene, K¢c ~ 1.0 for valence-shell orbitals, Kyg=
1.18, K251 = 1.05, Kgp, 5 = 0.98).

In fact, none of these points is really so important in a semi-empirical
method, because such methods are not designed for performing absolute
calculations on single molecules, but rather for studying the trends of
physical properties in a series of related compounds. Computational
experience shows that the general picture of the electronic structure is
not significantly altered whatever method may be chosen, as long as the
parameters or the coordinate axes of orbitals are varied within reasonable
limits.

More serious problems arise with the energy parameters ap. In principle,
the valence-state ionization potentials approximating the diagonal ele-
ments of the effective Hamiltonian should be selected in accordance with
the formal atomic charges; one is necessarily led to an iterative calcula-
tion resembling the well-known w-technique for = electrons, 7.e. one
guesses a charge distribution, corrects the s for their charge dependence,
calculates a new charge distribution from the molecular orbitals found
by solving the secular equation and so forth (see e.g. 59). Several extended
Hiickel schemes of this type including damped iterative procedures 80,61,
62,63) have been proposed, but the problem is not so simple as in z-
electron theories, because the «’s depend on the formal atomic charges
via the separated electronic populations of the orbitals located on each
atom. It should be remembered that, for instance, the ionization energies
of the neutral nitrogen atom are not the same for the valence states
s2pypypz and spapyp;. An additional difficulty comes from the fact that
the orbital populations are not integral numbers (0, 1 or 2) but fractions
of an electron, so that one has to define differential ionization energies ¢4,
From a strictly theoretical point of view, the problem can be settled
only if the matrix elements of semi-empirical methods are considered
as an approximation for the matrix elements of the SCF one-electron
Hamiltonian

F = oo 4 3 [ Ja(1) =42 mEi(1)] (6.13)

where #; is the occupation number of the molecular orbital ¢; (see
Sect. 2.4). This can be done by using in a systematic way the Mulliken-
Ruedenberg approximation for the two-electron integrals (pg;rs) con-
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tained in the matrix elements ‘of the Coulomb and exchange effective
operators J; and K; 9. The following expression is then found for the
diagonal elements o of the orbital y;, belonging to the atom P:

Fpp = Wp + 2 95? (]pr —'1/2 Kopr)
rep (6.14) 9
+ 3 [— (UL; pp) — zL (' — gt) (Jpt — Y2 Kpi)]

L#P

in which q,l-) or q%‘ denote the gross atomic populations of the orbitals
#r OT 1 respectively centered on the atom P or L, i.e. expressions of the
following form (see Sect. 6.3):

q¥ = 3 3 nicir cis Sys  (sum over any s), (6.15)
i s

and #] is the number of electrons occupying the orbital y; in the appro-
priate valence state configuration of the atom L. Assuming that the
population of the orbital y; is not too much altered from the atom to the
molecule (z.e. n ~ q;L) and neglecting penetration integrals (U 2 ),
one finds

ap=Wp +gPQ? (Jor — Y2 Kpr) (6.16)

which is the basic formula for a SCF-like extended Hiickel theory.
The core parameters W, and one-center two-electron integrals J,r and
K pr can be evaluated from the spectroscopic data available for the atom
P and its ions; typical values are given in Table 11.

Clearly, the simplified form of « is only valid for almost neutral
molecules. In the case of strongly polar molecules and ions, the last term
of Eq. (6.14) has to be taken into account, at least through its long-range
components ]p; It may be remarked that if one introduces the two-
center Coulomb integrals in their asymptotic form

TE = (ppill) ~ R—LL (in a.x.) (6.17)

one obtains the correction term to be added in a molecular orbital model
to account according to Jgrgensen for the Madelung energy between the
different groups of a molecule 67,68),

) Actually, Eq. (6.14) is only correct for closed-shell systems, where #; is equal to
2 for occupied orbitals and 0 for virtual orbitals. It is extended to open-shell
systems with #; = 1 for singly occupied orbitals in the Longuet-Higgins and
Pople approximation of the Roothaan SCF equations 86),

92



Joint Treatment of ¢ and = Electrons in Unsaturated Molecules

Table 11. Atowmic parameters for iterative extended-Hilckel theoriesl)

Slater-Condon H C N O
parameters (eV)

W, —13.59 —51.25 —76.23 —100.71
Wy —41.83 —61.81 —84.10
Jos 12.85 11.73 13.97 15.11
Jso 11.48 13.65 15.14
Jop 11.51 13.71 15.87
Toapy 10.22 12.05 13.77
Kep 2.59 3.05 3.66
Kpapy 0.64 0.83 1.05

1) Calculated from valence state ionization potentials and electroaffinities: G. Pil-
cher and H. A. Skinner, J. Inorg. Nucl. Chem. 24, 937 (1962).

A further step in the way of improvements is to consider all the
parameters, the «’s as well as the §’s, as approximate expressions of the
SCF effective Hamiltonian. This was done using various zero-differential-
overlap approximations 51,69)¢), The diagonal elements Fpy of the CNDO
method are given by an expression completely equivalent to Eq. {6.14)
and the off-diagonal elements are of the form

Fpq=Kpg® Spq "Z % Cop Cip (PP 399) (6.18)
i

In order to preserve the invariance of charge distributions under
rotation of the local coordinate axes of each atom, the integrals K57 °Spq
and (pp;qq) are assumed to be independent of the azimuthal quantum
number of atomic orbitals, 7.e. the same value is used for any 2 s and 2 p
orbitals. Finally, it should be noted that in the case of ¢ electrons the
zero-differential-overlap approximation cannot be justified as completely
as for @ electrons by arguing about orthogonalized Lowdin orbitals,
because the expression of the S—'» matrix cannot be limited to first-

order terms 70,71,72),
Requiring more and more rigor in the computational method inevit-
ably results in the carrying out of ab snifio calculations by the molecular-

®) A short description of the various forms of Zero-Differential-Overlap approxima-
tions (ZDO approximation): CNDO 1, CNDO 2, NDDO, INDO, PNDO, ENZDO,
MINDO... requires at least a family tree. See also G. Klopman and B. O’Leary:
Fortschr. Chem. Forschg. 75, 445 (1970), ,,All-Valence Electrons S.C.F, Calcu-
lations*.
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orbital method. At the present time, such calculations are currently
made on organic molecules of medium size (z.e. containing one ring),
using LCAQ expansions in atomic orbitals of Gaussian form 73,74,75,76)
and also on simple polyatomic molecules with Slater-type atomic
orbitals 77:78), Programs running on large digital computers are neces-
sary for rigorous computation of all the integrals from their mathematical
definition and performance of the SCF iterative cycles. A comparison
between molecular orbital energies obtained by various semi-empirical
and ab initio methods for ethylene, formaldehyde and benzene is given
in Tables 12, 13, 14.

It may be asked: do these methods have any practical use and, if so,
what are the merits of the more sophisticated treatments with respect
to the simpler ones, for instance, the primitive Extended Hiickel Theory?
First, quantum-chemical calculations are concerned with the electronic
structure and related physical properties. It has been verified that the
general picture of the charge distribution is the same in the various
calculation methods, especially in the case of heterocyclic compounds 79.
The fine details of the electronic structure have been successfully corre-
lated with certain physical properties: dipole moments, quadrupole
coupling constants, chemical shifts, nuclear spin-spin coupling constants,
hyperfine coupling constants in free radicals... (see e.g. 8®). It is not
easy to define the physical meaning of such correlations in the case of
highly parametrized methods, but it is gratifying to see that a more
satisfactory agreement with experiment may be found by iterative
methods (see e.g. 81.82 for nuclear magnetic resonance phenomena).
Ab initio calculations are needed for an analysis in terms of quantum-
mechanical observables: in principle, the mean value of a one-electron
operator (i.e. the position vector 7 of an electron for dipole moments) is
more easily calculated than energy by SCF independent particle models,
because the first-order correlation correction vanishes by virtue of the
Brillouin theorem 83,

Most problems of chemical inferest (relative stability of conformers,
rotation barriers, equilibrium constants, etc.) involve variations of the
total energy rather than one-electron operator mean values. Approximate
methods are by definition unable to give any value for the total energy,
because they do not explicitly take into account the electron repulsion
terms, except for CNDO-type methods. Of course, the molecular orbital
energies ¢; can be correlated to ionization potentials (see Sect. 5.2}, but
a sum of ionization energies cannot be identified with the total energy
of a SCF scheme. The orbital energies ¢; of a closed-shell system are given

by
e =1+ Gy (6.19)
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where I; and G; are the matrix elements of the core Hamiltonian and the
effective electronic potential contained in the Fock operator (Eq. 2.16).
Starting with this expression, several forms can be written for the total
energy; for instance

ESCF = Z (I{ + e.g) —|—- N (620)

i

Egor = Z 2e—Gi)+ N (6.21)
where the sum is to be taken over the doubly occupied molecular orbitals.
Therefore, by simply adding the energies of electrons ¢; one ignores the
fixed-nuclei repulsion N and counts the electronic interaction energy
twice 84, However, it has been suggested %% that the binding energy 4,
i.e. the difference between the total energy of a molecule EZtp and that
of the component atoms E§cr, could be predicted by means of molecular
and atomic orbital energies ¢;° and ef alone, because the quantity

A=3S @+ I +N (6.22)
1
is usually a small part of 4 (in ethylene, Ascr = 0.734 a.u4., 4 =0.102

a.u.).
Then, one is justified in putting

A4=3 (" — e (6.23)
i
Escr = ; e +C (6.24)

the quantity C, of purely atomic origin, being constant for a series of
isomers. In the case of free radicals, the expression (6.23) should be
supplemented by an extra termm equal to 1/4 [ (the self-interaction
of the unpaired electron in the molecular orbital ¢,); this term, derived
from the form of the effective Hamiltonian in the SCF theory of Longuet-
Higgins and Pople for open-shell sytems, does not seem to be important
in discussions of the relative energies of free radicals 81,85, The binding
energies predicted by the preceding formulas are comparatively correct;
however, it should be recalled that the binding energies calculated from
SCF non-empirical calculations, using the same orbital basis for the
molecule and its components, are much smaller than the experimental
values (about 409, for aromatic molecules 88)). One-electron theories are
considered to be fully reliable only for the study of angular deformations
and break down completely in the case of very polar molecules 87, because
they only take into account the forces associated with the overlap of
orbitals, but not the long-range forces coming from the Coulomb inter-
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action of electrons 88), At the same time, a theoretical justification is
found for the empirical correlation diagrams of Mulliken-Walsh which
relate the molecular shape to the angular energy variation of the orbitals
available for the electrons 89. The calculation of equilibrium bond
lengths and energy derivatives (force constants) is not so successful, even in
approximate SCF methods including electron repulsion terms. In addition
to the attractive term usually ascribed to overlap, the length of a bond is
determined by other factors 88), and its evaluation requires a well-
balanced mixture of all the contributions from electrons and nuclei. The
approximate methods of CNDO-type have been parametrized to give
acceptable values for heats of formation ®® or electronic transition
energies 81 for molecules in their actual geometries; since the latter may
not correspond to the minimum of the approximate theoretical energy,
there is not much hope of obtaining good results for non-equilibrium
quantities #®, On the other hand, recent ab initio calculations suggest
that the full SCF method is able to reproduce the geometry of poly-
atomic molecules in good detail, for instance, the preferential conforma-
tion of two rotating methyl groups #2 and the bond length and force
constant of the C—H bond in paraffins 93, or the inversion of the N—H
bond in heterocyclic compounds ?4. In any case, the real reason why
electron correlation seems to play no role in phenomena of that sort
should be investigated. :

6.3. Analysis of Charge Distributions and the Meaning of Formal
Atomic Charges.

Density contour maps, like those of Fig. 1 (Sect. 2.8) for the nitrogen
molecule or Fig. 2 (Sect. 4.2) for ethylene give a complete picture of the
electronic distribution in a molecule. However, it is more convenient,
especially for comparative studies, to describe the electronic structure
by a set of single numbers rather than by maps, even if this involves
the loss of much information. This is why indices summarizing the form
of the electron distribution in the neighborhood of an atom or a bond
have been defined by quantum chemists. Following Mulliken, the assign-
ment of a set of such indices to a molecule may be called its population
analysts.

There are two principal sorts of population analysis: that of Coulson
and Longuet-Higgins, expressed in terms of charges (often called ‘charge
densities’) and bond orders 95, and that of Mulliken in terms of atomic
and overlap populations 96}, Both are strictly defined within the frame
of the LCAO—MO method.

In the primitive definition of charges and bond orders it was assumed
that the atomic basis orbitals are orthonormal. Then, the charge associ-
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ated with the 7th atomic orbital g, and the bond order associated with
the pair of atomic orbitals x» and y; are

gr=3m Cir (6.25)
Prs = ; #4 Cir Ots (6.26)

where #; is the occupation number of the molecular orbital ¢; in the state
under consideration and the ci’s are the expansion coefficients of ¢;.
Since several atomic orbitals may be centered on an atom, the charge
density of an atom P and the bond order between two atoms P and Q
are obtained by summing the contributions coming from the various
orbitals belonging to them:

ge= 3 g¢r (6.27)
rcP
pra=3 3 Pi (6.28)
rEP  5€Q

In independent-particle models, the charge and bond orders are the
representation of the first-order density matrix y(1,1’) in the basis of the
x functions (see Sect. 2.3). Clearly, the sum of the diagonal elements
gr or ¢p is equal to the number of electrons #:

2 qr= ng = (6.29)

and the charge density can be interpreted as the probability of finding
an electron close to the atom P.

For extending the preceding definitions to the case of non-orthogonal
basis set, two procedures have been devised, which can be reconciled
on the basis of a more physical definition of charges based on dipole
moments (vide infra):

i) The overlap integrals are the components of a metric tensor in an
m-dimensional space, where the contravariant coefficients associated to
the molecular orbitals ¢; are defined by

dir = 2 Sps Cis (6.30)

the corresponding covariant coefficients being the coefficients cg of the
primitive basis functions yr 29. Then, the charge and bond orders are
given by

gy = ; 4 Cir Gir (6.31)

Prs = 3 2‘: #g (Cor dis + Cis Aiy) (6.32)
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ii) The set of basis functions y is replaced by the equivalent set of Lowdin
orthogonalized orbitals 4:

A=Sty (6.33)

and the coefficients of the molecular orbitals with respect to the new
basis functions 1,:

bir = Sra cor (6.34)
&

are put in Egs. (6. 25) and (6.26), giving charge and bond orders without
overlap 58,99,

The population analysis of a LCAO—MO wave function requires three
kinds of indices: the atomic populations

or =3 S miciy (6.35)
reEP 1§
the overlap populations
gpe = 2 2 2 Cir Cis Srs (6.36)
r€P 50

and the gross atomic populations

ge=g¢r+ > torq (6.37)
v dzp

The gross atomic populations are identical with the charge densities
including overlap given by Eq. (6.31), but different from the charge
densities calculated from orthogonalized atomic orbitals. The expression
(6.37) shows that the charge density of an atom P includes contributions
coming from non-bonded atoms; at the moment, it is just a formal, but
convenient way of distributing the electrons between atoms (see e.g. 99),
By subtracting the charge ¢p from the number of electrons # p contributed
by the atom P, one obtains the net electric charge of P (or formal atomic
charge) with its conventional sign:

(51) =np —4gp (638)
The distribution of net charges in molecules is often visualized in the
form of ‘charge diagrams’ (Fig. 6 and 7). In planar molecules, the charges

gp can be separated in a o component gy, and a # component ¢p,; hence
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o and z net charges can be defined if one is able to say how many ¢ and »
electrons the atom P has contributed to the molecule:

Op, = np, — 9p,
(6.39)
6Pn = HPz — P

This is generally possible for neutral molecules in their ground states:
for an unsaturated carbon, one has »n¢, =1; for doubly-bonded nitrogen
asin pyridine nyx, =6, #x, =1, and for a simply-bonded one as in pyrrole
or aniline ny,=25, ny,=2. In ionized or excited states, there may be
some ambiguity concerning the origin of electrons, especially in the case
of excited states where the total number of ¢ and = electrons is not the
same as in the ground state (for example, the n—z* excited states of
carbonyl compounds).

The values of charge densities and the net charges calculated from
them must be accepted with discretion. The atomic orbitals chosen for
expanding the molecular orbitals have a considerable effect upon their
magnitude. Not only do charge densities depend on the orbital exponents
of the atomic orbitals, but they are not invariant with respect to a linear
transformation of the orbital basis set, so that their physical meaning
may be disputed?. Recent calculations made for methane 33.93) and
ethane 92,100 clearly show what difficulties arise in their interpretation.
If one chooses a Slater minimal basis set using for the exponents of
hydrogen 1s orbitals the value corresponding to the free atom (g = 1,0,
or that of the hydrogen molecule {m = 1.2, the charge on the hydrogens
of methane does not vary very much: ég= -+ 0.131 or 4 0.113. However,
if the exponents of all the orbitals, those of carbon as well as those of
hydrogen, are determined by minimizing the total energy of methane
itself, the charge transfer from hydrogens to carbon is alimost annihilated:
op=-+0.019. However, the charge of hydrogens is also reduced by
simply orthogonalizing the basis set and calculating charges corresponding
to the new orbitals: with {g=1.0, it is found from Eq. (6.25) dp=
-+ 0.085 instead of dg=—+0.131 33).

In Table 15, the net charges obtained by different methods for the
hydrogen atoms of various Aydrocarbons are compared. All the calcula-
tions, except the semi-empirical ones involving a special parametrization,
give a positive charge on the hydrogens and a negative charge on carbon,
whether the hydrogens are linked to a simply-bonded atom (paraffins)
or a doubly or triply-bonded atom (ethylene or acetylene).

) Population indices are invariant with respect to a unitary transformation among
doubly occupied molecular orbitals 98) (for instance, with respect to a localization
process).
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Actually, such a charge distribution is by no means related to the
usual polarity of the C—H bonds in physical organic chemistry for in-
stance, the C*—H~— polarity in methane as opposed to the C-——H+ polarity
in acetylene. The meaning of theoretical charge distributions has recently
been clarified by calculating bond moments of equivalent molecular
orbitals almost localized on the C—H bonds 101,102), The C—H bond
moments turn out to be of the same order of magnitude (1.8 D for
acetylene, 1.9 D for ethylene, 2.0 D for ethane) with the negative end of
the electric dipole on the hydrogen atom. This result can be understood
by considering a localized bond function constructed from an sp, sp2 or
s$3 hybrid orbital of carbon and the 1s orbital of hydrogen. The center
of the negative charge distribution corresponding to a carbon hybrid
directed towards the hydrogen atom, does not coincide with the carbon
nucleus, but lies almost in the middle of the C—H bond. Even if the coeffi-
cients of the carbon and hydrogen orbitals are equal, the bond functions
C—H will have a dipole moment in the sense C+—H~. The analysis of mole-
cular wave functions in terms of localized orbitals shows that the moments
resulting from the preceding mechanism always prevail for the C—H
bonds, in spite of a total charge distribution in the opposite sense. Using
the terminology of dipole moment theory, it can be said that ‘homopolar
dipole moments’ of ‘hybridization dipole moments’ are responsible for
the larger part of the C—H bond moment. However, if one wants to cal-
culate the total dipole moment, it may happen that the various hybridiza-
tion moments cancel more or less and can be ignored in first approxima-
tion. :
Predicting experimental quantities by means of purely theoretical
indices, like charges and bond orders, instead of calculating the expecta-
tion values of approximate operators could be criticized on the grounds
that population analysis opens the door to a ‘plague of non-observ-
ables’ 103), Nevertheless, this procedure is to some extent justified by
several reasons, in addition to its convenience. First, it is found that
many observables other than dipole moments can be expressed in terms
of charge densities, bond orders and related quantities, if the martix
elements of the corresponding operator with respect to the basis functions
are approximated in terms of overlap integrals by a Mulliken-type for-
mula. Such is the case with quadrupole coupling constants 104.86), spin-
orbit coupling constants 105 and nuclear spin-spin coupling constants
108), As regards dipole moments, it amounts mainly to neglecting the
contributions coming from hybridization moments, provided the orbitals
centered on a given atom are chosen to be orthogonal (see below).

A comparison between the values deduced from charge densities and
those obtained with the vector position operator, using ab initio SCF
wave functions of unsaturated heterocycles 107.3), shows that the dipole
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moments calculated from total net charges (854 84) are underestimated:
in pyrrole, point charges give 1.22 D, whereas an exact calculation gives
2.10 D, and experiment gives 1.74 D}; in pyridine, the corresponding
values are 1.89, 3.11, and 2.20 D. Likewise, guadrupole coupling constants
deduced from 2p charge densities are underestimated: in pyrrole, 3.94
MHz from point charges, 5.26 MHz from the exact calculation, 2.06 MHz
from experiment; in pyridine, the corresponding values are 5.30, 6.31
and 4.58 MHz respectively 108:109) In these calculations, the discrepancy
between point charge and exact computations might be due in part to
the fact that the basis functions centered on the same atom are orthogo-
nal only in the case of orbitals with different symmetries. However, it
should be possible to eliminate the corresponding intra-atomic overlap
integrals by appropriate linear transformations and obtain better results,
for instance, by adding point charge and hybridization dipole moments.

The definition of the point charges to be used for molecular diagrams
should be based on the expression of a well-specified physical observable,
rather than on an arbitrary albeit intuitively satisfactory partition of
MO-LCAQ wave function, as is the case with the above definitions. An
analysis of this question, with reference to the eleciric dipole moment,
has been recently presented 110,111): instead of calculating the dipole
moment from the point charges previously defined, the expression for the
net charges is deduced from the quantum-mechanical expression of that .
observable. The main point is that the electric dipole moment of a mole-
cule can be divided in a unique way into three contributions: hybridiza-
tion or atomic contribution, overlap contribution, and charge-transfer
contribution (which provides a definition of net atomic charges), each
being uniquely defined within the MO-LCAO scheme.

The MO-LCAO expression of the dipole moment of a molecule in the
chemical convention and in atomic units is

p=3 333 PRI 7 wadr (6.40)

P Q s€P s€Q

whereV;stQ is defined by an expression similar to Eq. (6.26), namely
i =3 my o Cus
2

where #; is the occupation number of the molecular orbital ¢4, ¢ and ¢4
the coefficients of the orbitals y, and y, belonging to the atoms P and Q,
respectively, in the LCAO expansion of ¢;. The general position vector
of an electron and the position vector of atom P (all measured with
respect to the same arbitrary origin in @.#.) are denoted by 7 and 7p,
and »p is written for the number of electrons with which atom P partici-
pates in the formation of the molecule.
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One can now carry out the following substitutions

r= ;p + & in those terms where P = Q;
(6.41)

-

;—_: e +;Q) -+ n  in those terms where P 3 Q.

Evidently, & is the radius vector taken from the position of atom P,
7 is the radius vector from the center of the line PQ. Taking into account
the orthogonality of the two orbitals yr, - belonging to the same atom
P, calling Si2 the overlap integral of orbitals centered on different
atoms P and Q) and letting

&= fpbpd M= Ji%;%’—ﬁ (6.42)
the dipole moment (6.40) becomes
/: = % dp ;P + !;hybrld + l-;overlap (6.43)
where dp is the net charge of atom P:
bp=3 (b + 3 3 pra Sra) — e (6.44)
EP Q=P s€Q
Since the hybridization moment defined by
Jinybria = >3 P & (6.45)

P rr'cP

can be set equal to zero if each atom contributes only orbitals of the same
symmetry and the overlap moment

Hoverlap = 2 2 Z 2 P})SQ SSSQ 7711"3 (6'46)
P reP Q s€Q

vanishes if the centroids of the various pairs of orbitals coincide with
the centers of the corresponding P-Q lines (z.e. 'i]fsQ is zero) and/or if their
differential overlap is negligible, it follows that Eq. (6.44) gives the charges
we were looking for. It is evident that the definition (6.44) is perfectly
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consistent with formula (6.38). Comments on the transformation of this
formula upon orthogonalization of the atomic orbital basis are given
in Ref. 111},

6.4. Interaction of ¢ and = Charge Distributions

The interaction of o and # electrons can be described in various forms,
according to the method used to construct the molecular wave function.
The most easily visualizable one is the electrostatic interaction of ¢ and =
charge distributions in an independent particle model. That sort of
interaction is included in all-electron SCF calculations through the
effective Fock Hamiltonian (2.23). If we confine ourselves to the linear
or plane molecules, it is possible to divide the total electron density into
¢ and z parts, coming respectively from ¢ and z occupied orbitals and
giving rise to ¢p, and gp, populations of Eq. (6.39). Starting from the
o and = components of the electron density, it is also possible to define
¢ and = dipole moments under the same conditions as net charges dp,
and dp, (see Sect. 6.3). For symmetry reasons, both components of the
total dipole moment are directed along the internuclear axis or lie in
the molecular plane, but there is no reason why they should have the
same sense. Actually, recent calculations suggest than ¢ and = charge
transfers in heteropolar molecules may be opposite, as a result of the
o—x electrostatic interaction 112,113),

Comnsider, for instance, hydrogen cyanide HCN: the ¢ charge is
preferentially attracted by the nitrogen atom, which is more electro-
negative than carbon; consequently, the = electrons are subjected to
the effect of differently charged atoms and try to balance the o charge
distribution. The actual charge distribution in HCN can be considered
as a result of a ‘two-way charge transfer’112), nitrogen being the most
negative center for the o system, as is predicted from electronegativity
considerations, and carbon the most attractive atom for the z system,
in contradiction to the assumption of the standard = theory. Of course,
the overall charge distribution yields a dipole moment with its negative
end towards the nitrogen atom (Fig. 6).

Such opposite polarities of ¢ and # systems resulting in a small total
polarity are well known in transition metal complexes and are expressed
by the electroneutrality principle of the ligand-field theory 114. Roughly
speaking, similar things are to be expected in organic molecules having
a doubly-bonded heteroatom, as nitrogen in pyridine 113, However,
ab initio calculations on aromatic aza-compounds 197 rather suggest
that the @ polarity of carbon and nitrogen atoms is not reversed, as in
the HCN molecule, but simply compensated by the effect of the ¢ charge
distribution (Fig. 7).
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Fig. 6. Charge diagrams of hydrogen cyanide
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Fig. 7. Charge diagrams of pyridine from various calculations
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Clearly, the & electron cloud of pyridine looks much more like that
of benzene than is usually postulated in the Hiickel theory. As a matter
of fact, the dipole moment of 3.11 D (exp 2.20 D), calculated from the
SCF wave function of ref. 197 using the dipole length operator, includes
a very small = component (0.325 D) oriented in the same direction as a
large ¢ component (2.785 D) 118 g), '

The o~ interaction taken into account by independent particle
models of the SCF type arises also in pure hydrocarbons. A striking
example is given by the methyl radical and its ions: the charge transfer
from hydrogen to carbon in C—H bonds decreases from the positive ion,
CH3% to the neutral radical CHjz and the negative ion CHg, as the
number of n electrons on the carbon atom passes from 0 to 1 and 2; in
other words, increasing the z-electron density on carbon produces a lower-
ing of its actual electronegativity with respect to the ¢ electrons 116,

Charge diagrams obtained from different calculation methods are
generally in good agreement with each other, except for the magnitude
of the charge transfer within certain bonds, such as C—H or N—H bonds.
However, the net charges of atoms in those bonds have a rather limited
sense, and in the diagrams of pyridine given in Fig. 7 only the sum of the
atomic net charges in each C—H bonds is indicated. As a general rule
in heterocycles, the main features of the electronic structure obtained
by complete all-electron treatments and rough o— calculations are very .
similar, and the direction and magnitude of total dipole moments
predicted from them are almost identical 117, Furthermore, the total
charge of nitrogen in pyridine-like molecules agrees in an astonishing
way with the charges computed by the simple Hiickel method; the reason
why a calculation limited to @ electrons simulates to some extent the
results of a ¢—n calculation is probably that the total energy is not very
much affected by a small change in partition of total charges into ¢ and =
components 118),

In most molecules, it is possible to describe the o— interaction by
simple electrostatic considerations and to explain in this way physical
properties depending on them like dipole moments. Electron correla-
tion seems to play no role, except for molecules with a very small
polarity, like carbon monoxide 119, The matter is more complicated
for excitation phenomena, because it is necessary to take into account
possible changes in the charge distribution, even if the electronic structure

8 The dipole moment of molecules with simply-bonded heteroatoms, such as
pyrrole nitrogen or furan oxygen, may include large ¢ and ;7 components, resulting
from the fact that these heteroatoms bear a net negative ¢ charge, because of
their larger electronegativity, and a net positive x charge, because of the de-
localization of their 2pz lone pair 86),
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of the initial and final states could be understood within the frame of an
independent-particle model. In fact, the ¢ charge distribution in most
unsaturated molecules is different from that in isolated atoms, and pure
a-electron calculations based on unperturbed valence-state potentials
of the GMS type (see Sect. 5.3) can hardly include ¢ effects involving
both the ground state and the excited state. The use of a fixed GMS
potential could be completely justified only for alternant aromatic mole-
cules, where there is no extensive ¢ charge transfer in the ground and
n—n* excited states. This gives an explanation of the fact that semi-
empirical m-electron theories give a very satisfactory description for the
spectra of aromatic hydrocarbons. The same sort of treatment is far
from being so succes ful in the case of #—s* transitions in highly polar
molecules, such as carbon dioxide 129 or the pyridinium ion 121, How-
ever, it can be much improved simply by modifying the potential felt
by the & electrons according to the ground-state ¢ charge distribution
obtained in a separate approximate calculation 120,121}, The ¢-x charge
interaction has a more marked effect on n—-a* transitions, and the
occupied molecular orbitals by the ¢ electrons have to be explicitly
considered for electronic transitions between o and x levels, for instance,
the #—+ax* transitions of oxygen compounds like acrolein and furan 118).

Until quite recently the role of o—= correlation effects was ignored
in the theoretical treatment of electronic transitions. Even now, nearly
all ab imitio calculations of excitation phenomena are based on in-
dependent-particle models using a minimal basis set of atomic orbitals,
or involve a configuration interaction limited to the n-electron system.
In order to go far enough beyond the o—n separation, two improvements
have to be simultaneously considered:

i) a configuration interaction involving both ¢* and #»* virtual molecular
orbitals;

ii) a more flexible basis set containing a larger number of atomic orbitals
than the standard minimal basis set.

Numerical computations on the lowest singlet-singlet and singlet-
triplet transition of ethylene (Table 16) suggest that either type of im-
provement could produce a better agreement with experiment. Consider
the lowest N >V transition of ethylene: using the SCF molecular orbitals
built for standard Slater atomic orbitals (1s, 2s, 2p4, 2py, 2p;), the transi-
tion energy is found tobe equal to 11,98 eV 122,123) that is to say, 4.4 eV
above the experimental value. This much too high value is further
increased by one eV by a configuration interaction within the z molecular-
orbital system (see Sect. 5.3); on the other hand, it is reduced to 10.17 eV
and 9.44 eV by performing a o—n configuration interaction which in-
cludes all the single and double excitations with respect to the ground-
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state configuration 122, However, if the configurations that are singly
and doubly excited with respect to the basic excited configuration are
taken into account when calculating the energy of the excited state
itself the latter values are brought back to 10.78 eV 124, Now, with an
extended basis set including several 2px atomic orbitals per carbon, the
primitive SCF result is much lower: 9.31 eV instead of 11.98 eV, and
configuration interaction reduces this value to 8.19 eV or 7.71 eV, if
singly or doubly excited configurations with respect to the ground con-
figuration are included 125). Nevertheless, the last value is probably not
the end of the story, since the configurations doubly excited with respect
to the basic excited configuration have not been included.

An approximate treatment for taking into account o—r interaction
has been developed in the case of long polyenes 126), and non-empirical
calculations have been carried out for the various transitions of formal-
dehyde along the same lines as for ethylene 127,128,129)b) In view of the
intricacies of theoretical considerations concerning excited states, it is
rather fortunate that calculations limited to the s-electron systems can
be forced to agree with experiment by introducing semi-empirical cor-
rections on well-chosen matrix elements.

6.5. Quasi-zz and Quasi-o Orbitals

The distinction between o and x orbitals is rigorously justified only in
planar molecules, where the former are symmetric and the latter are
antisymmetric with respect to the molecular plane. This distinction is
also meaningful for locally planar systems if the orbitals can be localized
in such a way that they are confined to a planar region: a classification
with respect to the local symmetry is then possible. An example is a
saturated chain with a phenyl group at either end: the two phenyl
groups are practically independent of each other, so that there are two
independent & systems.

Obviously, the distinction between o and = orbitals cannot break
down completely if there is a slight deviation from planarity, e.g. for a
planar molecule in the course of an out-of-plane vibration. Thus, it can
be useful to distinguish quasi-o and quasi-w orbitals. In an LCAO-MO
description the quasi-z orbitals are linear combinations of 2p atomic

b) The transition energies quoted from refs. 122.127) have been calculated using
the techniques of theoretical physics known as the Tamm-Dankoff Approximation
(TDA) and Random-Phase Approximation (RPA). These approximations can be
considered equivalent to a CI treatment limited to singly excited configurations
{TDA) or doubly excited configurations (RPA) with respect to the ground config-
uration. (For a critical study of the RDA approximation in the case of imaginary
energy transitions, see 130 131)),
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orbitals, the axes of which are not strictly parallel. Well-known examples
of molecules with quasi-z systems are biphenyl and other biaryls.

In (hypoethetical) planar biphenyl the molecular plane is clearly the
symmetry plane with respect to which the o orbitals are symmetric and
the @ orbitals are antisymmetric. When the two rings form a small
dihedral angle, one can still define a quasi-n system, provided that the
orbitals of the twisted system can be considered as slight modifications
of those of the planar biphenyl system.. The quasi-z orbitals in question
have properties close to those of n orbitals proper, in particular as
regards delocalization. R

For a dihedral angle of 90° we have to deal with two independent
quasi-z systems perpendicular to each other: 4 priori there is no reason
why a quasi-z system should not extend into the region of the other ring
and be ‘conjugated’ with the MO's of the other ring that have the same
symmetry (with respect to the symmetry group Dgp), in particular,
with the appropriate linear combinations of the ¢ orbitals of the nearest
atoms on the other ring. Certain observed features of perpendicular
biphenyl seem to suggest that some ring-ring conjugation does in fact
exist: the well-known red shift of sterically hindered biphenyls with
respect to benzene is the most important piece of evidence in this connec-
tion. However, a careful analysis shows that the red shift is not con-
clusive evidence of conjugation, because it may explained by different
mechanism 132,133,134 involving exciton-type or other long-range inter-
actions. A detailed account of this problem and its bearing on the defini-
tion of quasi-w electrons can be obtained by consulting Refs. 135,136,
137,138) Other examples of molecules with possible ‘conjugation’ be-
tween perpendicular planar subunits are unsaturated spiro-compounds
139,140)

This type of conjugation, the quantitative importance of which is
difficult to assess, is closely related to the problem of Ayperconjugation.
A discussion of hyperconjugation is beyond the scope of the present
review (sece.g. 141,142) Tts importance for the o—n separation problem
lies in the fact that, whenever hyperconjugation plays a major role, the
usual rule according to which & systems are associated with double bonds
and planar molecules breaks down. Other examples of systems where
delocalization extends beyond a conjugated doubly-bonded system are
given by cyclopropyl derivatives, where quasi-z orbitals of the cyclo-
propyl group have often been introduced, at least in qualitative argu-
ments (see e.g. 149),

The notion of quasi-w orbitals is probably quite useful for the de-
scription of reaction intermediates or of molecular systems in the course
of a chemical reaction. In fact, certain reactions can be described by the
transformation of a = orbital into a ¢ orbital or vice versa, the other
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Fig. 8a—c. Rearrangement of Orbitals in the Reaction Cyclopropyl= Allyl Cations
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orbitals being relatively unaffected 144.145,146), A simple example is the
isomerization of the cyclopropyl cation to the allyl cation 147, The trans-
formation of the = orbital of the former into a o orbital of the latter is
shown in a crude pictorial way in Fig. 8. The molecule with a quasi-z
system, roughly on the middle of the reaction path, is normally not a
stable species but just one point of the potential energy hypersurface.
However, there is evidence that in some cases, e.g. in bicyclic systems
148) 3 stable intermediate with a quasi-z system like that of Fig. 8 is
formed as a result of particular steric conditions.
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7. Conclusions

It is difficult to review the question of o—a separation without discussing
more or less all the aspects of theoretical chemistry; hence the present
Teview may appear too extensive to some and too restricted to others.
Among the subjects which we have either barely mentioned or completely
ignored, and which yet belong to our topic, are, for instance, aromaticity,
antiaromaticity, homo-aromaticity, spiroconjugation, the Woodward-
Hoffmann rules, etc.; for these concepts are meaningless unless the o—n
separation is accepted and, indeed, extended to non-planar systems.
The popularity among pure chemists of, for example, the Woodward-
Hoffmann rules, shows how well rooted the belief in n-electron systems
is in present-day chemistry. Our task has been to try to place new
emphasis on the way in which this notion is defined and on its limitations
and shortcomings in the context of the quantum-mechanical treatment
of molecules. This task is especially difficult because, on the other hand,
quantum chemists are now drifting away from s-electron theories,
whether pure or with allowance for changes in the ¢ core; and many
prefer to carry out all-electron or all-valence electron calculations at
different degrees of accuracy. We hope that the present work will help
to prevent any confusion arising from the existence of such opposing
tendencies. '

As far as we can see, any attempt to explain the properties of a mole-
cule by considering explicitly only electrons belonging to a particular
class should be encouraged, because idealizations and simplifications are
well known to be necessary for an understanding of the physical world.
In particular, a full understanding of the properties of organic molecules
is greatly facilitated by dividing their electrons into classes, e.g. into ¢
and = electrons of the entire molecules or of parts of them. This usually
amounts to distinguishing the ‘mobile’ or delocalized electrons from the
localized ones, the latter being mainly responsible for the properties of
individual bonds, and hence not so relevant when effects involving
several bonds, like conjugation, are under study. Therefore, the prop-
erties characteristic of unsaturated compounds can (and to some extent
should) be described in terms of = electrons in the field of a ¢ core; indeed
one can often apply what is called a ‘pure z electron theory’, by treating
the ¢ core as if it did not depend on the distribution of the z electrons.
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Of course, there must be rules and limitations enabling one to decide
when and how such a simplified treatment can be used; and there must
be a possibility of comparison with more complete treatments, so that
the origin of disagreements may be found and specified. When this is
done, there remains the danger of explaining disagreements by introduc-
ing terms which serve only to give a name to an otherwise undefined set
of neglected effects.

This applies in particular to the so-called o—= interaction, which is
often introduced generically to explain away the fact that pure z-electron
theories sometimes fail to explain facts or give serious quantitative dis-
agreement with experiment.

In fact, the concept of o—a interaction has been used in several
different and ambiguous ways. Therefore, we close the present review
by listing some of the points discussed here which are especially im-
portant for clarifying the matter.

1. In planar unsaturated molecules (to which the majority of con-
jugated systems belong) it is always possible and justifiable to distin-
guish between ¢ and z electrons. This distinction can be considered as a
‘separation’ in the strict sense of the word if it is introduced within the
frame of the independent-particle model, because it then becomes
possible to define one effective Hamiltonian operator for the o electrons
and one for the & electrons, thus splitting the eigenvalue equation into
a system of two equations coupled only through the potentials appearing
in the effective Hamiltonians. It is possible to justify the o—z separation
also in a slightly more general context than that of independent-particle
model, but the failure of this separation to explain certain facts must
normally be attributed to electron correlation.

2. Some phenomena, like the existence of a hyperfine structure of the
ESR spectra of free radicals, which is due to coupling with the proton
spins, are completely outside the frame of naive = considerations and
should be explained in terms of more general theories. However, most
physical properties of molecules are not seriously sensitive to correlation
effects; they can be understood in terms of the MO theory, and, in the
particular case when the given molecule is planar, within the frame of
the o—n separation.

For instance, the equilibrium geometries of molecules appear to be
determined by the combined action of ¢ and = electrons. True enough,
a pure = electron theory cannot give either equilibrium distances or
equilibrium angles. Nevertheless, on the basis of simple n electron
calculations and appropriate assumptions regarding the potential of the
o core, several conclusions can be drawn, for instance, regarding the
alternation of bond lengths in conjugated polyenes. Furthermore, the
fact that benzene is planar, while cyclo-octatetraene is not, can be ex-
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plained in terms of the competition between the ¢ and # contributions
to the binding energy. The x electrons try, so to speak, to force a planar
arrangement, the o electrons create opposing sterical forces.

3. Even in the frame of an independent-particle model, interaction
between the o and = electrons is taken into account; the potential energy
terms appearing in the effective Hamiltonian for z electrons do include
terms representing the field created by the o electrons, and vice versa.
The additional assumption is often made that changes in the distribution
of the z electrons affect the ¢ electrons so slightly that the potential
created by the latter on the former is always the same; sometimes,
however, such a pure & electron treatment fails, rather because of this
assumption than because of the neglect of the electron correlation.

4, The ionization and excitation phenomena in unsaturated com-
pounds can also be understood, at least qualitatively, in the frame of the
o separation. In fact, the most important absorption bands of organic
molecules in the visible and near UV spectral region can be interpreted
as arising from s—=* transitions in the one-electron picture, and hence
they can be understood even within a pure m-electron theory involving
arigid ¢ core. However, especially in compounds containing hetero-atoms,
there are transitions which must be interpreted as z—o¢* and o->a*
transitions; in particular, the excitation of the lone pair leads in general
to low-intensity #-»z* transitions, which also lie in the visible or near
UV region. Likewise, the Rydberg series of unsaturated molecules which
belong to the m—o¥ type starts in the near UV. In these cases, it is
obvious that the differences in the o cores associated with the different
states involved in the transitions under study must be taken into account.

5. Strictly speaking, in the interpretation of spectra, the hypothesis
of a rigid ¢ core is satisfactory only in alternant hydrocarbons because
of the negligible horizontal charge shift. In compounds containing hetero-
atoms, and also in non-alternant hydrocarbons, even the prediction of
sm—»n* transitions can be unreliable if no allowance is made for the
polarization of the o core. An even stronger limitation than the assump-
tion of a rigid o core applies when the potential of the ¢ core is approx-
imated through the GMS potential. Recent ab initio calculations support
the reasonable opinion that the GMS potential is an acceptable approx-
imation only in alternant hydrocarbons.

6. In connection with the question of the o core, two points are im-
portant. First, the o core of unsaturated compounds is not of the same
type as in saturated compounds, as is clearly indicated by the difference
in hybridization usually attributed to the two classes of compounds.
Second, the occupied o orbitals are often associated with orbital energies.
lower than those of the = orbitals, and it is true that the highest occupied
orbital of an unsaturated hydrocarbon is a = orbital. However, this does
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not mean that all the o orbital energies lie below the xn orbital energies,
and the remark just made holds only as a simple possibility. In other
words, the fact that the orbital energies of the ¢ and = orbitals are not
separated into two bands is not an indication that the ¢—= separation
is not wvalid.
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