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~ Electron Theories and the o'--~z Separation 

1. O r i g i n  a n d  I m p o r t a n c e  of the  ~ - x  Sepa ra t i on  

1.1. ~ Electron Theories and the a--z  Separation 

In the development of quantum chemistry, few concepts have proved 
to be as significant as the distinction between a and x electrons in organic 
compounds. This distinction suggested the approximation known as 
a - x  separation which has made it possible to calculate many important 
physical and chemical properties of unsaturated compounds within the 
frame of a 'pure x-electron theory'.  This type of theory, which goes back 
essentially to E. Hiickel 1}, has the advantage of great conceptual and 
practical simplicity and has been successful in solving many problems. 
Nowadays, the advent of computers has made it feasible to t reat  poly- 
atomic molecules of small and medium size taking into account all the 
electrons. Nevertheless, scientific economy suggests that,  if certain physical' 
or chemical facts can be understood in terms of x electrons only, one 
should t ry  to do so; therefore, 'x-electron theories' still deserve analysis 
and applications. 

The justification of x-electron theories has been repeatedly questioned 
during recent years; indeed, it has become almost fashionable to empha- 
size the shortcomings of the a - x  separation and the non-validity of the 
theories based upon it. These are, in fact, approximations and cannot be 
expected to lead to unconditionally reliable conclusions. However, the 
numerical results that  have provoked the criticisms in question are not 
a necessary consequence of the a - x  separation and the related approxi- 
mations. Therefore, we shall begin by  restating and clarifying the basic 
concepts on which the whole question of the a - ~  separation rests. We 
shall consider the conditions under which the electrons of a molecule can 
be classified into a and x electrons and indicate what should be under- 
stood be ' a - x  separation' and what are the limitations of this approxima- 
tion. We shall show that  themost  important  part of the ' a - ~  interaction' 
is usually taken into accound within the a - ~  separation scheme and, finally, 
discuss whether the a - ~  interaction has a significant effect on the theoret- 
ical predictions made for the physical properties of unsaturated molecules 
(ionization potentials, electronic spectra, charge densities and dipole 
moments etc.). 
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Origin and Importance of the a--~ Separation References see p. 8 

To preserve the rigor of certain arguments, a number  of quantum- 
mechanical formulas are useful; they will be introduced, when required, 
with the necessary explanations of notations. 

1.2. Historical Background 

The terms 'o  and ~ electrons' come from quantum mechanics, but  the 
idea tha t  two different types of bonds between, say, carbon atoms should 
be distinguished occurred in organic chemistry long before the advent  of 
quantum chemistry. A detailed historical review of the entire question is 
outside the scope of this article (see e.g. 2~), and we shall remind the 
reader only of the milestones in the theories of unsaturated,  conjugated, 
and aromatic compounds. 

The most basic notion of organic chemistry is probably the quadri- 
valency of carbon, which was very clearly formulated by  K6kul~ in 1858 3). 
Olefinic compounds like ethylene suggested that  the carbon a tom could 
exhibit the valence three, but  these molecules were finally formulated 
with a double bond, according to Erlenmeyer 's  proposition 4~. Kdkuld's 
benzene formula 5) completed this classic period of valence theory. About 
1875, Le Bel 6) and Van t 'Hoff  ~) introduced the theory of steric valency, 
where the double bonds between carbon atoms were looked at from a new 
point of view: Van t 'Hoff  proposed his famous model, where the tetra-  
hedra of doubly-bonded carbon atoms were supposed to have an edge in 
common and those of triply-bonded carbon atoms a face in common. 
This picture was quite satisfactory for isolated double bonds, but  the 
peculiar properties of conjugated and aromatic systems could be under- 
stood only by  imagining that  different double bonds in a molecule can 
interact in a way not possible for single bonds. 

�9 Around 1900, two new theories were developed: Thiele s) suggested 
that  in a double bond the valencies of the atoms could not be incompletely 
used and tha t  the residual valencies could interact with each other, as 
shown in formulas (I) (2) (3) 

H~ /H 
H~ //H 

H ~  / H  H~  ~C=C~ H - - c / C "  C~'C--H 
' 

H/i NH ' 

~ ~ ~ 

Nef 91 presented arguments against the universal quadrivalency of carbon 
and suggested tha t  there are two forms of ethylene in thermal  equili- 
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Historical Background 

brium, ordinary ethylene (4) and an active form (5) in which two valenc- 
ies are unused or 'free'. 

H H '~C ~ /  ~ H~C ~C/H 
H// =~'~H ' H / ~ -  ~'H 

4 5 

These two theories can be regarded as the first realizations that  a 
conjugated system is to be described in terms of two different kinds of 
bonds, those of the first kind being localized between two neighbouring 
atoms, those of the second kind extending over several atoms, and that  
the latter cannot always be represented by  a single structural formula. 

I t  is not worthwhile recalling in detail all the facts which were used 
to support and improve the classical theories of organic chemistry till the 
development of the quantum theory of the chemical bond; but  it is 
useful to outline the reasons why experimentalists have come to speak of 
single and double bonds. The story goes back to the discovery first of 
the peculiar properties of unsaturated compounds and later of conjugated 
compounds. Having accepted the quadrivalency of carbon, the chemists 
found that,  whenever a hydrocarbon contained a carbon atom forming 
several bonds with a single partner, the properties of the molecule were 
radically different from those of hydrocarbons with four partners per 
carbon; this is why they were led to consider a double bond as a super- 
position of two non-equivalent bonds, one of them being quite different 
from the typical C - C  bond of a saturated compound. For instance, 
ethylene, easily adds a number of molecules, whereas ethane and propane 
are unreactive; at first sight, it looks as if one of the two bonds linking 
the carbons together is easily broken, while the other remains in place 
and behaves as an 'ordinary' bond, i.e. as the C - C  bond of paraffins. 
In the case of conjugated systems, like butadiene, the situation is even 
more surprising; not only is there a difference between, so to speak, the 
'first' and the 'second' bond of a double bond, but  the various 'second' 
bonds behave as an entity, thus suggesting that  they interact strongly 
with one another, at variance with the 'ordinary' bond. 

In short, the notion that  a double bond consists of one bond having 
properties very similar to those of the corresponding bond in a saturated 
compound, while the other has very peculiar properties, is suggested, so 
to speak, by  experimental evidence: the 'second' bond seems to be 
responsible for the high reactivity of olefins, the chemical behaviour of 
conjugated compounds, the aromaticity of benzene and related molecules, 
the physical properties characteristic of unsaturated and aromatic corn- 
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pounds e t c . . .  As a mat te r  of fact, the experimental  evidence such as we 
have just recalled is not really so conclusive as it m a y  seem, especially as 
far  as isolated double bonds are concerned. I t  is possible to interpret the 
behaviour of a double bond by  saying that  such a bond is formed by  two 
'curved' bonds that ,  because of the 's train '  to which they are subiected, 
are relatively weak and hence highly reactive. As soon as one of the 'bent '  
bonds is broken, the remaining bond becomes straight and hence normal. 
For isolated double bonds, this picture is as good as the other, and there 
might even be properties which would be bet ter  interpreted in this way;  
for conjugated double bonds, it does not provide a simple interpretation 
of their interaction. A more consistent picture, involving a clear distinc- 
tion between the two types of bonds, was given by  quantum mechanics, 
and the starting point was the s tudy of diatomic molecules by  Hund  10) 
and Mullikenll} within the frame of the molecular orbital method. 

In  diatomic molecules (as well as in other linear molecules), the inter- 
nuclear axis is a symmetry axis of infinite order, and the molecular orbitals 
can be classified according to the number  of nodal planes (all containing 
the symmet ry  axis).. Physically, this corresponds to an ordering according 
to the values of the component  of the angular momentum along the 
symmet ry  axis. For this classification, Hund 10~ proposed the notation 
a, ~,. ~ etc. ; the a orbitals have angular momentum zero and no nodal 
plane, the ~ orbitals have angular momentum one along the nuclear axis 
and (if chosen real ra ther  than complex) one nodal plane, and so o n . . .  
I t  can also be stated (see 11)) tha t  molecules with multiply bonded atoms 
usually have electrons occupying both a and ~ binding orbitals, i.e. 
have one a bond and one or two ~ bonds. The few exceptions (like 
molecules B~ or C~), which have no a bond, but  two lone pairs and one 
or two ~ bonds respectively) are generally unusual compounds from the 
chemical point of vie~v. I t  should be added tha t  ~ bonds ~vithout any 
underlying a skeleton are occasionally considered in polyatomic mole- 
cules: structures of that  sort have been suggested for nitrogen tetroxide 12) 
and thio-thiophten I~); a formula with a pure ~ bond between the two 
nitrogen atoms of N~04 has been shown to be theoretically incompatible 
with the observed diamagnetism of this compound 14,15,16~. 

The success of the preceding scheme for diatomic molecules 17,1s,19, 
~0,21~ led Hund  ~'2~ and Mulliken ~)  to apply the same theory to 1holy - 
atomic molecules. In  the beginning, there seemed to be no direct relation 
between molecular orbitals (MO's) and the bonds in a chemical formula, 
because MO's normally extend over the whole molecule and are not restrict- 
ed to the region between two atoms. The difficulty was overcome by  using 
equivalent localized MO's instead of the delocalized ones ~4,~.s~. The 
mathemat ica l  definition of equivalent MO's was given only in 1949 by  
Lennard-Jones and his coworkers ~6,~7~, but  the concept of localization 
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is older 22,28,29). I t  is not always possible to find a linear transformation 
tha t  localizes all the electrons properly in bonds, inner shells and lone 
pairs; only when such is the case can a molecule be described in terms of 
localized bonds. The condition given by  Hund  22) for a localized descrip- 
tion was that  the number  of valence electrons of any a tom should be 
equal to the number  of atomic valence orbitals involved in the bonding 
and to the number  of neighbours to which the a tom was bound. We shall 
come back to the localization problem in Section 3.3. 

The terminology for the case of diatomic molecules was generalized 
by  considering a polyatomic molecule as a collection of localized bonds. 
For instance, in ethylene one can speak of a ~ bond and a ~ bond for the 
double bond between the two carbon atoms. The t rea tment  of benzene 
presented by  Hiickel 1} in 1931 followed the same lines: There are 
4 • 6 + 6 ~  30 valence electrons, 24 of which are assumed to participate 
in six localized CC and CH bonds forming the C8H6 frame of the molecule; 
the remaining six electrons were assigned to MO's constructed from 2pa 
atomic orbitals (AO's) whose nodal plane coincides with the molecular 
plane, and treated independently of the ~ electrons. This intuitive in- 
troduction of the a - ~  separation is not free from criticism. However, by  
limiting his t rea tment  to the z electrons, Htickel was able to explain the 
peculiar properties of benzene and other conjugated and aromatic 
moIecules. The notation 'o  and ~r orbitals '  came from the theory of linear 
molecules, where such words have a definite meaning. In order to carry 
them over to non-linear molecules, one has to assume tha t  the bond orbitals 
are (that is to say, can be) localized between two atoms, because then these 
orbitals can be classified with respect to linear 'pseudo-symmetry ' .  This 
holds both for saturated and unsaturated non-conjugated molecules. 
On the other hand, in conjugated molecules, the z bonds are delocalized 
and, strictly speaking, can no longer be classified as zr orbitals unless the 
molecule is completely linear. Nevertheless, unsaturated systems are 
usually planar, so that  the orbitals can be classified according to their 
symmet ry  with respect to the molecular plane (or, if the molecule is not 
wholly unsaturated,  according to the plane of the unsaturated system). 
In  this way, a redefinition of a and ~r orbitals is possible (see section 2.1), 
but  it does not have exactly the same physical meaning as in linear 
molecules. As a ma t t e r  of fact, it became customary to speak of ~ and ~ 
electrons in unsaturated molecules only after 1940 30}: Htickel 1} used 
the terms 'Elek~ronen erster Art' and "Elektronen zwefter Art'; Schmidt 81~, 
another pioneer of the z electron theory, called them A and B electrons. 

In  many  cases, a local planari ty in a part  of the molecule is sufficient 
to preserve the concept of ~ and z orbitals, provided tha t  the z orbitals 
can be restricted to the planar part .  For  instance, the classification of 
free radicals in a and ~ radicals according to the nature of the unpaired 
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electron ~9.,~z) implies only that  the molecule has a local symmetry plane 
with respect to which the singly occupied MO is symmetric or anti- 
symmetric. As we shall see, 'quasi z~ orbitals' having many properties 
in common with genuine z~ orbitals, except for the 'nodal plane' can be 
defined even for non-planar systems, e.g. for the benzene molecule during 
out-of-plane vibrations, or certain reaction intermediates (non-classical 
carbonium ions). 
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General Quantum-Mechanical Formulation 

2. D i f f e r e n c e s  b e t w e e n  ~ a n d  zt E l e c t r o n s  

2.1 General Quantum-Mechanical Formulation 

The quantum-mechanical equations for a many-particle system (for 
more details, see e.g. 1,2}) are deduced from the equations of classical 
mechanics by  replacing the physical quantities appearing in them 
(position, momentum e tc . . . )  by appropriate operators; the latter operate 
on certain functions, called wave functions, which describe the possible 
states of the system. The values of physical observables are 'the expecta- 
tion values' of the corresponding operators. For instance, the expression 

< ~ >  -- < ~ 1 ~ 1 ~ ' >  -= ( e , 9 ~ )  ~ ;~"*(a~") dr (2.1) 

is the expectation value of the operator ~9, the three formulas on the left 
being just different symbolic ways of writing the integral on the right. This 
expression means that  one has to apply the prescription corresponding 
to the operator ~ (multiplication by  a coordinate, derivation e t c . . . )  to 
the wave function ku, multiply by  ~*,  the complex conjugate of k~, and 
integrate over the whole space of definition for T. 

If, as we shall always assume in the following, the variables on which 
the wave function depends are the 3n  position coordinates xl, Yl, zl, 
. . . .  x~, Yn, z~ of the n particles of the given system, the volume element 
for integrating is dr -~ dx l ' dy l "  dzl" . . . "dx~" dyn. dz~ (In principle, one 
should also consider the so-called 'spin coordinates'; they will be ex- 
plicitly introduced as the need arises). 

The fundamental Hamiltonian operator H, whose expectation values 
give the energies of the possible states of an atom or a molecule, is the 
sum of the operator T corresponding to the total kinetic energy and 
the operator V corresponding to the mutual  potential energy of electrons 
and nuclei and, if an external field is present, the potential energy of the 
system in that  field. Because of their larger mass, the nuclei move much 
more slowly than the electrons; therefore, the Born-Oppenheimer 
approximation can be introduced, that  is to say, the nuclear coordinates 
can be treated asfixed parameters. Then, for a given configuration (usually, 
the equilibrium one) the nuclei appear in the equation of motion only 



Differences  be tween  <r a n d  zt E l ec t rons  l~eferences see p. 24 

as the sources of an external electrostatic field acting on the electrons, 
and their mutual  potential  energy can be added to the electronic energy 
as a constant term to compute the total  molecular energy. In brief, for 
an isolated molecule, the Hamiltonian operator giving the electronic and 
nuclear energies has the form 

H = T + V  

+ + o-V,  
~'~1 

K=X ~=i ~1 ~=i K=X ~1 

(2.2) 

the indices/~ and v refer to electrons, 
the indices K and L to nuclei; 
rK~, for instance,, is the distance of the v th electron from the Kth nucleus. 
N and n are the numbers of nuclei and electrons, respectively, 
ZK denotes the positive charge of the K th nucleus. 

In Eq. (2.2), all the operators are expressed in atomic units, so that  the 
physical constants (mass and charge of electron e t c . . . )  are omitted. 

T h e  s y s t e m  of a t omi c  u n i t s  is def ined b y  t h e  r e s t  m a s s  of e lec t ron  m (uni t  of  
mass) ,  t h e  m a g n i t u d e  of t he  cha rge  on e lec t ron  e (uni t  of e lec t ron  charge) ,  t h e  
r ad iu s  of t h e  f irst  B o h r  orb i t  of  h y d r o g e n  a t o m  a0 (uni t  of  l e n g t h  a n d  t h e  modi f ied  
P l a n c k  c o n s t a n t  ls = h]9~ (uni t  of a n g u l a r  m o m e n t u m ) .  The  co r r e spond ing  u n i t  
of ene rgy  e2]ao is twice  t h e  ion iza t ion  po t en t i a l  of  hydroge~x. T h e  m o s t  r e cen t  va lue s  
of  phys i ca l  c o n s t a n t s  s) give for t h e  u n i t  of  l eng t h  (called also B o h r :  13) a n d  for t h e  
u n i t  of ene rgy  (called also H a r t r e e :  H) t h e  1ollowing co r respondence  in  t h e  CGS 
s y s t e m :  

a0 = 0.529167 10-Scm, e ~] a0 = ~19474 c m  - t  (27.9.107 e u  or 627 kca l .mol-1) .  

The lowest energy state or 'ground' state of a system is the one for which 
the expectation value of H reaches its absolute minium. More generally, 
the allowed energies of a conservative system correspond to wave func- 
tions W making the energy expectation value stationary. These functions 
are then given by  the solutions of the "time-independent Schr6dinger 
equation' 

H ~  = E T  (2.3) 

subject to normalization and other appropriate boundary  conditions. 
Such conditions can be satisfied only if the constant E in Eq. (9..3) takes 
special values, namely the eigenvalues E~ of H, which give the allowed 
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One-Electron Molecules and Orbitals 

energies of the system. The corresponding solutions of Eq. (2.3) are the 
normalized eigenfunctions T,  of H. 

The normalization condition of the wave function ~ is 

S ~ * ~ d v  = 1 (2.4) 

where the integral is taken over the whole space of definition of ~. An 
interpretation of it can be given by  considering the quanti ty T * T d ~  
(where the product ~v*T is a function of the position coordinates of all 
the electrons, as is Titself) as the probability of finding at a given time the 
first electron with coordinates falling between Xl and Xl + dxl,  Y l  and 
y l  + dyl ,  Zl and Zl + dZl, the second electron with coordinates falling be- 
tween x2 andx2 + dx2,y~ andy2 + dy2, z2 and z2 + dz2, etc. So, the integral 
appearing in Eq. (2.4) represents the probability of finding the n electrons 
anywhere in space and must be equal to unity. The product ~ * ~ i s  called 
the 'probability density' for finding the electrons at the position specified 
by  the values of the coordinates for which T*~v is calculated. As we are 
interested only in the electrons of a molecule, we take Eq. (2.3) with H 
given by  (2.2) as the equation for the (electronic) states of the molecule. 

If a molecule has certain symmetry  properties, important  predictions 
about the solutions of the electronic Schr6dinger equation can be made 
without having to solve the equation itself. Consider the case of a plana~ 
molecule, i.e. of a molecule whose nuclei lie in a plane. This plane is a 
symmetry plane for the molecule, and it can be shown that  any eigen- 
function is either symmetric or antisymmetric with respect to this plane. 
If one chooses the plane of the nuclei as the (y, z) plane of a Cartesian 
coordinate system, this means that  

~ ( x l , y l ,  zl ," " ", x,,,y,~,zn) = + ~V ( - - x l , y l ,  zl ," " ", --x~,y~,z,~) (2.5) 

If there is more than one symmetry element (symmetry plane, axis 
etc.), relations similar to Eq. (2.5) hold for every element, and the wave 
functions can be classified according to group-theoretical symbols (see 
e.g. 4)). 

2.2 One-Electron Molecules and Orbitals 

Let  us consider more specifically wave functions depending on the 
coordinates (and possibly on the spin) of a single electron. Such functions 
are called 'orbitals' (or, if spin is explicitly included, 'spin orbitals'). 
According to their behaviour under a reflection with respect to the nuclear 
plane of a planar molecule, they are classified as a or :~ orbitals; one has 

~ (Xl, y l ,  Zl) = 9) (--X~, y~, Z~) for a orbitals 
(2.6) 

~ (x~, y~, Zl)  = - -  ~ ( - - X l ,  y~, z~) for n orbitals 
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The eigenfunctions of the Schr6dinger equation for planar one- 
electron systems, e.g. those of the H~ + ion in a non-linear configuration, 
must  be either a or n orbitals; the former are symmetr ic  about  the 
molecular plane, the lat ter  antisymmetric.  The a orbitals have in general 
max imum values close to the nuclei, whereas the ~ orbitals have a nodal 
surface on the nuclear plane and different signs on the two sides of this 
plane, as can be seen from Eq. (2.6) by  letting Xl -~ 0. 

Orbitals can also be defined for many-electron systems, and the 
molecular orbital theory mentioned in the previous section is indeed 
based on this possibility. In  order to assess the significance and limitations 
of the molecular orbital scheme and the meaning of a and ~ orbitals, we 
have to discuss the definition and the determination of orbitals in a 
many-electron system at some length. 

2.3. Electron Densities and Orbitals in Many-Electron Systems 

In  order to define orbitals in a many-electron system, two approaches 
are possible, which we m a y  refer to as 'constructive'  and 'analytic ' .  The 
first approach is more common: one makes the ad hoc postulate that  
every electron can be associated with one orbital and the total  wave 
function can be constructed from these orbitals. Then, one is led to an 

. 

'effective' one-electron Schr6dinger equation from one electron in the 
field of the other electrons. The underlying model is the 'independent 
particle model' (IPM). When following the constructive way, one does 
not know a priori whether the model is a good approximation to the 
actual physical situation; one only knows that  it cannot be rigorously 
correct. The merit  of this approach is its relative simplicity from both 
the mathemat ical  and physical points of view. 

In  the analytic approach one assumes tha t  the state under consideration 
is described by  a sufficiently good wave function and tries to interpret 
tha t  wave function in terms of orbitals. The first step in this approach 
is to construct the electron density, which is obtained by  integrating the 
probabil i ty density 5v*~g over the coordinates of all particles but  the 
first: 

0 (x~, y l ,  z~) = n [. ~ t  t* dye . . ,  dv~..,  dv~ ds (~.7) 

Here, dv~ is the volume element dx~ dy~ dz~ of the v-th electron and 
ds stands for integration over all spin coordinates, so that  q is by  definition 
independent of spin. In this way, one obtains the probabil i ty density 
for finding the first electron at the point xl,  Yl, zl, i.e. the electron 
density at tha t  point. 

With some linguistic precautions connected with the wave-particle 
dualism of quantum mechanics, the electron density ~ can be interpreted 
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as giving the electronic distribution in the molecule. As shown in Fig. 1 
for homonuclear diatomic molecules, this function can easily be visu- 
alized in ordinary space and possibly compared with experimental distri- 
butions resulting from the analysis of X-rays or electron diffraction 
measurements. 

Therefore, it is tempting to formulate the properties of molecules in 
terms of the 0 function rather than to refer to a highly abstract many- 
electron wave function. Unfortunately, just because ~ is a quasi-classical 
quantity, it is impossible to base on it a whole exact or approximate 
treatment of atoms or molecules; its role remains that of a description 
of the results obtained through the calculation of the wave function ~/J 
itself a}. 

In the case of a one-electron system described by an orbital ~, the 
density ~ is simply 

0 (Xl ,y l ,  2:1) = ~ (X l ,y l ,  Zl) r (xl,y~, z~) (2.8) 

In the case of a many-electron system whose electrons are treated as 
independent particles having individual wave functions ~,, the electron 
density takes the form 

~(Xl,yl,Zl) = ~v~ q)~(xl,yl, Zl) c~(xl ,yl ,Zl)  (2.9) 

where ~, is the occupation number of the orbital ~0~, which in the present 
case can be equal to zero, one or two. According to the Pauli principle, 
an orbital is at most doubly occupied. 

The electron density is closely related to a more general function, 
the so-called 'spin-free one-particle density matrix' 6,7.8k Whereas the 
electron density is a function of the three coordinates xl, yl ,  Zl, the 
density matrix is a function of six coordinates, which are conventionally 
noted xl,  ya, zl, X'l, y l ,  Z'l. In the case of a one-electron system, the 
density matrix is given by 

) ' ( x l , y l , z l ; x l , y l , z l )  = q~(xl,Yl, Zl) cfl*(xl,yl, z']_) (2.10) 

a) A complete discussion of this  question cannot  be given here; we colfflne our- 
selves to reminding the reader t ha t  serious mathemat ica l  difficulties appear  in 
a t t empts  to calculate many-particle density matrices directly. This is known 
as ' the  N-representabil i ty problem'  5). 
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Electron Densities and Orbikals in Many-Electron Systems 

I t  differs from the density ~ in the fact that  9 and 9" in the product 
above are written as functions of different variables. For  those values 
of arguments, where xl----x'~, yl=Y'~,  zl=z'~, the density matr ix  7 
reduces to ~: 

~' (xl ,yl ,  Zl ; x~,y~, z~) = O (x~,y~,z~) (2.11) 

If the wave function of a n-electron system is constructed from indi- 
vidual orbitals in the sense of the independent-particle model, 7 will have 
the form. 

~, (1,1') = ~ 7,9t (1)~o; (1) (2.12) 

completely analogous to Eq. (2.9). In the preceding expression, (1) deno- 
tes in short the arguments x, ,  y l ,  Zl. The general definition of the spin- 
free one-particle density matrix corresponding to an arbitrary wave 
function }/' is the following: 

r(1,1 ')  = n ~ ~v(1,2,3 . . . . .  n) ~*  (1',2,3 . . . . .  n) dvzdvz . . ,  dvnds (2.13) 

Note the different notations for a density matr ix or an expectation 
value: the integrand is starred on the right or on the left respectively 8)). 
I t  is possible to associate a discrete matr ix to the continuous matr ix 
(2.13) by using the fact that  any one-electron function, 9, (1), for instance, 
can be expanded as a linear combination of a given 'comlhleie' sei ~ of one- 
electron functions Z: 

~, (1) = ~ c,~ Z~ (1) (2.14) 

If the functions Z form a complete set in one-electron space, i.e. in the 
space of three coordinates, then the products Z~ (1) Z~(I') form a complete 
set in the space of six coordinates. Consequently, 7 can be expanded 
as follows 

7(1,1') = ~. • d~gz~, (1)Za(1 ) (2.1/5) 
P q 

b) Complete sets are generally infinite; hence, the  expansion (2.14) contains  an  infi- 
nite n u m b e r  of t e rms  and  D is an  infinite matr ix .  However ,  if the  basis set  is 
well chosen, the  error  made  b y  using a finite n u m b e r  of t e rms  cart be made  
very  small  - -  and this is w h a t  one has  to do in practice. 
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The coefficients dpq form a matr ix  in the conventional sense, and ~, is 
completely determined if one indicates the basis functions Zv and the 
matr ix  elements dvq. In  practice, ~, is most ly  given in this way, tha t  is 
to say, as a matr ix  sensu stricto. In many  applications, the atomic orbital 
basis can be supposed to be orthonormal and the matr ix  D with elements 
dvq can be identified with the charge and bond order matr ix  ~. s). 

An expansion of the form (2.18) is possible for any chosen (complete) 
basis set. I t  can be stated tha t  there always exists a set of orthonormal 
functions u,, i.e. a set of functions satisfying the conditions 

j" u~(1) u,(1) dvl = r~r (2.16) 

in terms of which a given one-particle density matr ix  ~, is written as 

r(1,1') = E v, u,(1) u~(1) (2.17) 
t 

In  other words, for every y there is a set of orbitals u, for which the density 
matrix D is diagonal, i.e. contains no off-diagonal elements different 
from zero. These particular orbitals ui are called the 'natural orbitals' 
(NO's) for the state described by  the wave function ~ ~). In the most  
general case, the number  of functions u, is not finite, but  it can be proved 
tha t  the occupation number  v, of any  natural  orbital lies between 0 and 2 : 

0 ~ v, ~ 2 (2.18) 

Numerical calculations show tha t  in usual molecules the occupation 
numbers v, are not exactly integral, but  very close to either 0, 1 or 2, 
so tha t  one can say, at least in first approximation,  that  a natural orbital 
is doubly, singly or not occupied. This is the main reason why the inde- 
pendent-particle model, defined by  putt ing for convenience the vt's 
equal to 0, 1 or 2, is often a rather  good approximation. The occu- 
pation numbers of the NO's  in a very simple molecule, H~, are given 
in Table 1. 

Another general theorem 9,10) states tha t  the set of NO's  associated 
with every eigenfunction of the Schr6dinger equation has definite sym- 
met ry  properties. In particular, for a planar molecule the natural  orbitals 
are either a or zt orbitals. Therefore, a and ~ orbitals have a physical 
meaning independent of any model assumption or approximation.  By 
adding the occupation numbers of each species of orbitals, one defines 
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Table 1. Occupation numbers of the natural orbitals of 
the molecule-ion in its equilateral form 

1'4 0 Symmetry species 1) nf 

I la~ (a) 

2,3 le" (a) 

4 la~ (~) 

5 2at (a) 

6,7 2C (a) 

8,9 le* (g) 

lO aai (~) 

0.9825 

0.0147 

0.0014 

0.0011 

0.0002 

0.0001 

0.0000 

1) o', zt with respect to the molecular plane 

occupat ion numbers  n ,  and nn. The sum of all the occupat ion numbers  
mus t  be equal to  the  tota l  number  n of electrons; it follows tha t  

n = n ,  + n~ (2.19) 

Therefore, one can regard 
na  as the  number  of a electrons and 
nn as the number  of zr electrons of the molecule 

in a given electronic state. I n  general, these figures will not  be integers 
nor  identical  with the number  of a and ~r electrons corresponding to the 
chemical formula. A simple il lustration is given by  the  molecule H~, 
where one could conclude from the chemical formula  tha t  there are two 
a electrons and  no 7r electron, whereas quan tum-mechan ica l  calcula- 
t ions 11) lead to  n ,  = 1.9971, n~ = 0.009~9. For  typical  organic molecules, 
no accurate  values have ye t  been calculated;  in ethylene, n= will be 
close to  2, bu t  no t  exact ly  equal to 2. 

The s ta tement  tha t  there is a certain integral  number  of rr electrons 
in an unsa tu ra ted  molecule, is a somewhat  rough bu t  convenient  w a y  
of saying t h a t  a certain number  of ~z orbitals are ' s t rongly '  occupied, i.e. 
have  occupat ion numbers  close to 9,. Unlike orbitals, electrons are 
indistinguishable;  therefore, s t r ict ly speaking, one should refer to only 
~ or zr orbitals, bu t  never  a or ~r electrons. 
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2.4. The Har t ree-Fock Model 

Current quantum-mechanical  calculations are based on the indepen- 
dent-particle model, where one assumes that  the molecular orbitals are 
either empty  or occupied by  at most  two electrons. This model cannot 
give a completely correct description of a many-electron system mainly 
because it t reats  each of the particles as if it ' saw'  the others smeared 
out in a charge cloud. However, it accounts surprisingly well for m a n y  
properties, especially those connected with the one-electron density. 
Consequently, it is worthwhile discussing it in detail. 

From now on, we shall explicitly use spin orbitals, which are derived 
from orbitals b y  multiplying each of them by  one of the two possible 
spin functions: 

~2m-1(1) = q~m(1) o~(1) 
(2.20) 

~2m (2) ---- 9m (2) fl (2) 

All the general considerations made so far hold also for spin orbitals, 
except for the fact that  two spin orbitals m a y  be associated wich one 
given orbital, and hence a spin orbital can be occupied at most  be one 
electron. All the integrals over spin orbitals involve integration over spin 
coordinates, and (with limitations which are outside the scope of the 
present discussion) this amounts  to multiplying the ordinary integral 
over the corresponding orbitals by  1 or 0, according to whether or not 
the spins are the same o. 

In  the frame of the independent particle model, the total  wave func- 
tion can be written as an antisymmetrized product of spin orbitals: 

1 
# ( 1 , 2  . . . . .  n) = ~ 

~1(1) ~1(2) . . .  ~(n) 
~ 0) ~(2)  . . .  ~ (n )  

~ (1 )  ~ (2 )  . . .  ~(n) 

(2.21) 

The function q} is known as a 'Slater determinant'. If  one looks for the 
energy minimum for such a function, one finds that  the orbitals have to 
verify the so-called 'Hartree-Fock equations' la,14,15) : 

F ~  = e~ 9~ (2.22) 

c) In many cases, the conventional spin formulation of quantum chemistry could 
be replaced by a spin-free formulation using the permutat ion symmetry  properties 
of a n-electron system (see 12)). However, it  is then necessary to have recourse 
to the complete theory of permutat ion groups. 
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with 

F = T + Vnue + Vet (2.23) 

where T is the kinetic energy of one electron, 
Vnu, its potential energy in the field of the bare nuclei, and 

Vet its potential energy in the averaged field of the other electrons, i.e. 
for a closed-shell system (inert gases, usual molecules in the ground state 
etc.) 

Vel (1) -- ~ [2 J ,  (1) -- K~ (1)] (2.24) 
[ 

J ,  and K,  being the Coulomb and exchange operators corresponding to 
each doubly occupied orbital 9~. The Hartree-Fock equation is an integro- 
differential equation which, at variance with a true one-electron SchrS- 
dinger equation, involves an operator F depending on the unknown 
functions ~t through the electronic potential Vet. Nevertheless, the 
operator F can be interpreted as the 'effective' Hamiltonian operator 
for one electron in the given molecule. Mathematically, even self-consist- 
ency is achieved as regards the potential Vet, there is an infinity of different 
functions ~, verifying Eq. (2.22), but only the orbitals ~0, from which 
the effective Hamiltonian F is constructed are occupied in the deter- 
minant 4. The other possible solutions are sometimes called 'virtual 
orbitals'; they can be used in first approximation for describing states 
of higher energy (see Sect. 5.3). 

Eq. (2.22) is much simpler than the original many-electron SchrS- 
dinger equation; yet  it cannot be solved in closed form and approx- 
imation methods must be used. I t  is customary to choose a finite set of 
one-electron basis functions ;~ and approximate the Hartree-Fock 
orbitals ~ by an expression similar to Eq. (2.14). If one looks for the 
minimum of the total energy given by a wave function constructed from 
orbitals of this form, one gets a homogeneous set .of linear equations: 

whose coefficients 

~ F~q c~q = ~ e, S~q ctu (2.25) 
q q 

S ~  = I X~ Z. d ,  

F ~  = I x~ (F X~) d~ 
(2.26) 

are the overlap integrals of the basis functions )~ and the matrix elements 
of the Hartree-Fock operator F,  and eigenvalues the orbital energies e,. 
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Atomic orbitals are chosen as basis functions in the so-called 
LCAO-MO method 16,17). However, other choices are possible, for 
instance, Gaussian functions, which are particularly popular nowadays 
(see e.g. 1)). In  planar systems, it is convenient to use basis functions 
tha t  are either symmetr ic  or ant isymmetr ic  with respect to the nuclear 
plane, i.e. are of a or rt species. If  Z~ and Zq are basis atomic orbitals 
with different symmet ry  properties, then the matr ix  element F~a vanishes 
so that  the matr ix  F is 'factorized' into one a and one st blocka~ : 

F ~ 
Faa 0 

0 Fu~ 
(9..~7) 

This factorization amounts to the s tatement  tha t  Eq. (2.25) breaks down 
into two separate linear systems, one for the determination of a orbitals, 
and the other for ~ orbitals. In  the Hart ree-Fock scheme, a and n orbitals 
are thus ' separated '  simply because the self-consistent field equations 
(SCF equations 2.25) have as solutions 9, symmetry-adap ted  functions 
(i.e. in the case of planar unsaturated molecules s3m]metric or anti- 
symmetric  functions with respect ot the molecular plane), at least for 
closed-shell ground states lS,18,20,21). 

The effective operator for the a electrons represented b y  the matr ix  
Faa includes the potential  energy of a a electron in the field of the x 
electrons, and vice versa the effective operator for the ~ electrons (matrix 
F ~ )  includes the potential  energy of a ~ electron in the field of the 
a electrons. Even after separation according to Eq. (9..57), Eq. (5.25) 
is to be solved by  an iteration procedure: one guesses the probabil i ty 
distribution of the a electrons, constructs the matr ix  Faa, calculates the 
~ orbitals, constructs the matr ix  F ~ ,  calculates new a orbitals, and so 
on until the results become stable. Of course, a SCF scheme has to be 
applied a2so within each electron group (a or ~). 

After these remarks, it m a y  seem that  the a - s t  separation in a many-  
electron system is no more than a formal factorization of the equations 
governing the independent-particle-model approximation. Actually, the 
preceding results are of much practical importance, because they imply 

a) In  fact, s y m m e t r y  requi rements  on molecular  orbitals introduce in a var iat ional  
calculation certain constraints ,  which raise the  tota l  energy is). This  problem,  
called the  'symmetry dilemma', has  been studied for some ~z electron sys tems  
19). I t  is no t  impor ta l l t  for the  presertt  discussion because for a sys tem of closed- 
shell t ype  the  NO ' s  associated wi th  a total  wave  funct ion of corrcct  s y m m e t r y  
are automat ica l ly  symmet ry -adap ted .  
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tha t  there is a class of molecular orbitals, say the n orbitals, which can 
be built up from a special type of atomic orbitals (or other basis functions) 
and t reated without detailed information concerning the other class, 
the role of the lat ter  being just that  of creating an effective field. Of 
course, the effective field can be calculated only if the generating electron 
distribution is known; however, one m a y  expect tha t  a sufficiently good 
approximation to it can be found in a rather  simple way (as it is an 
average field) and the results will not depend very much on the precise 
form assumed for the potential  of the a electrons. This is why one can go 
even one step beyond the a-n separation and consider the n electrons only. 
If  one supposes tha t  the field created b y  the ~ electrons has the same gen- 
eral features in a number  of unsaturated molecules, one c a n  at t r ibute  
certain properties to the n orbitals, that  is to say to the n electrons, and 
thus explain the behaviour of molecules just by  reference to the n 
electrons. 

Table 2. Hierarchie of approximate quantum-mechanical theories of unsaturated 
molecules 

l~igorous non-adiabatic t rea tment  with relativistic corrections 

Rigorous solution of the non-relativistic Schr6dinger equation in the Born-Oppen- 
heimer approximatior~ 

e-~ separation (neglect of intergroup correlation effects) 

~'~ = ~'{2:, (1,n~)/7t (n~ + 1 . . . . . .  ~ + ~)} 

(i refers to different spectroscopi~ st0,tes) 

Rigid a core approximation 

~, = ~r (2:0 (1 . . . .  n~) H, (n~ + 1 . . . . .  n~ + ~ ) )  

Treatment  of ~ electrons in the effective field of the 'core'. Explicit electron inter- 
action within the ~ group. 

Hilckel type theories. No explicit interaction within the 0$ group. 

In  order to understand the question properly, one has to realize tha t  
the way from rigorous quantum mechanics to a theory treating only a 
electrons includes several steps. One step, outlined in Sect. 2.3, is rigor- 
ously possible for planar systems and approximately  so for locally planar 
systems; it consists in defining a and ~ orbitals and stating what  should 
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b e  u n d e r s t o o d  b y  "a a n d  ~ e l e c t r o n s ' .  A n o t h e r  s t e p  is t h e  a - ~  s e p a r a t i o n  

in the sense just explained, namely the factorization of the Hartree-Fock 
matrix and its consequences. The a - ~  separation can be formulated in a 
more general way (not based on the independent-particle model), and 
we shall consider such a formulation in the next section. Whereas the 
distinction into a and ~ electrons is rigorous, the a-z~ separation is an 
approximation which is not always a very good one, as will be shown in 
Sect. 3.2. 

In order to formulate a theory of ~ electrons only, additional approxi- 
mations are necessary: one of them is the assumption of the 'rigid a core', 
another is the Goeppert-Mayer and Sklar potential, which will be discussed 
in Sect. 5.1 
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a - - ~  Separa t ion  and  Group Func t i on  Formal i sm 

3. T h e  a - g  Sepa ra t i on  a n d  the  R o l e  of E l e c t r o n  Co r r e l a t i o n  

3.1. a-z~ Separation and Group Function Formalism 

In the preceding section, the ~-z~ separation occurs as a direct result of 
the independent-particle model. The derivation is straightforward, but  
not entirely satisfactory, because the independent-particle model is 
a simplification of the actual quantum-mechanical situation. In fact, the 
a-z~ separation can be introduced in the frame of more general treat- 
ments, e.g. the 'separated-group fi~nction' formalism 1,~,8). 

A quantum-mechanical n-electron system is said to consist of M 
separated groups (A, B, etc.) containing hA, riB, etc. electrons, respect- 
ively, if it can be described by  a wave function of the form 

5 v(1,2 . . . . .  n)  = ~ 4 {  ~ A  ( 1 , 2  . . . . .  hA) ~ B  (hA+l ,  hA+2 . . . . .  nA + riB) �9 �9 �9 } 

(3.1) 

where ~4 is an antisymmetrization operator whose purpose is to make ~ 
independent of the order of the electrons, and where ~A, ~ ,  etc. are 
wave functions of the groups A, B e tc . . .  I t  is customary to impose the 
so-called ' strong-orthogonality condition' 

)" ~ ( 1 , 2  . . . .  ) ~ ( 1 , 2  . . . .  ) a~,1 = 0 (3.2)  

This condition implies that  the natural orbitals of the different groups 
are mutually orthogonal and exclusive, i.e. no two groups have any 
(occupied) NO in common, and the NO's of different groups are orthogonal 
to each other a). 

Physical systems cannot be rigorously described by  a separated-group 
wave function, but  that  description may  often be a rather good approxi- 
mation. If this is the case, an important  simplification of the quantum- 

a) This  condi t ion  is much  s t ronger  t h a n  convent iona l  or thogonal i ty ,  because  the  
integraI  (3.2) should a l ready van ish  ~vhen t a k e n  over  t he  coordinates  of one 
part icle,  whereas  convent iona l  o r thogona l i ty  means  i t  vanishes  af ter  in tegra t ion  
over  t he  coordinates  of all part icles.  
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mechanical equations is achieved. First, one finds that  the total energy 
can be written in the form 

E -- ~ E~ + ~ E~s (3.3) 
/r 1~<8 

where ER is the energy associated with the R th group and E~a the inter- 
action energy between the R th and S t~ groups. I t  is impo~ant  that  in 
such a theory the 'interaction energies' E~s are expressed in terms of the 
electron densities (or rather the one-particle density matrices) of the respec- 
tive groups. The interaction between the groups is essentially electrostatic, 
but  the electron interaction may take a v e ~  complicated form within 
each group. The total electron density is just the sum of the group 
densities. 

'Effective' SchrSdinger equations c ~  be derived for the different 
groups. The presence of group B is reflected in the effective SchrSdinger 
equation for group A only through an effective field (a one-particle 
potential) due to the charge distribution oI group B. 

A p~t icu laf ly  simple case of a wave function describing separated 
groups is the single Slater determinant of the independent particle model 
(see Sect. 2.4). There, each group consists of a single electron described 
by  a single orbital. The effective SchrSdinger equation for one particle 
is, of course, the Hartree-Fock equation discussed in Sect. 2.4. Within 
t ~ s  model the true Coulombic interaction of the electrons is replaced by  
the interactions of the charge distributions of the orbitals corresponding 
to the different electrons. That  part of the interaction ~vhich is ignored 
in this model, and which comes from the fact that  the electrons are not 
simply 'smeared-out' charge distributions, is cMled 'electron correlation'. 
By definition, electron correlation is completely neglected in the 
independent-particle model, whereas a wave function of the type (3.1) 
can account for electron co ,e la t ion  within each group, but  neglects 
electron correlation between electrons in different groups. 

If two ~oups  of electrons are well separated in space (i. e. far from 
each other), then it is a very good approximation to identify the real 
interaction by that  of the corresponding charge distributions. Therefore, 
one can assume that  neglect of ' intergroup co ,e la t ion '  is justified if the 
two groups describe, for instance, two localized bonds far from each 
other. One can take electron correlation into account by  p e r f o ~ i n g  a 
configuration interaction (CI) calculation. This is done ~ follows: one 
chooses a (more or less a r b i t r a l )  set of m spin orbitals and constructs all 
the (~) n-electron Slater determinants ~, that  can be obtained from the 
given spin orbitals. Then, a trial function is written as a linear combina- 
tion of these determinants 

~ = ~ ~ ~ (3.~) 
i 
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and the coefficients a, are taken as variational parameters.  In practice, 
this procedure is limited by  the fact that  the number  of possible deter- 
minants is very large for systems with many  electrons. However, in the 
separated-group method, it is only necessary to perform a configuration 
interaction for each group independently, which is much easier, provided 
tha t  the groups are sufficiently small. 

The separability condition (3.2) is automatically fulfilled if the orbitals 
used for the different groups belong to different symmetry species. For a 
planar molecule, the natural  way of constructing t~vo separate groups 
consists in making one group from a orbitals and another group from a 
orbitals; the corresponding wave function is 

7 ~ = ~ {27(1,2 . . . . .  ha) l I (na-l-  1,na+z . . . . .  naq-nn)}  (3.5) 

According to Lykos and Parr  3~, an unsaturated molecule can be describ- 
ed in this manner  by  taking for 27 a (in principle complete) linear combina- 
tion of Slater determinants  built from a orbitals only and for z~ a similar 
combination built from z~ orbitals only. Such a description is more general 
than the independent-particle model, as it includes the latter as a special 
case (namely where both 27 a n d / 7  are single Slater determinants). 

Of course, the correct wave function cannot be written exactly in 
the simple form (3.5); whether tha t  expression is a good approximation. 
can hardly be decided a priori. Such a wave function is obviously able 
to account in par t  for the so-called 'horizontal' electron correlation, 
namely for tha t  par t  of the correlation of the z~ group is which accounted 
for by  CI with ~ orbitals only, and vice versa for that  par t  of the correla- 
tion in the a group which is accounted for by  CI with a orbitals. Cases 
where residual contributions t o  correlation ( 'vertical '  correlation) m a y  
play a role will be discussed in Sect. 3.2 b}, in connection with the problem 
of spin densities. 

However, such cases are exceptional, because they are found in 
highly sophisticated experimental  techniques. This is fortunate since 
practically all the calculations carried out so far, including simultaneous 
t reatments  of a and z~ electrons, have been based on the a-z ,  separation, 
most  of them on the much more restrictive independent-particle model. 

If  we assume the a-z~ separation, the total  occupation numbers na 
and n~ of a and ~ orbitals respectively come out as integers. The total  
energy is of the form 

E = E,~ + E~  + Ea~ (3.6) 

b) The names  'horizontal  and vertical  correlation'  9) derive f rom the  idea t h a t  
horizontal  correlat ion allows the  electrons to avoid each o ther  on the  same side 
of the  molecular  plane and vertical  correlation has  a similar effect perpendicular  
to the  plane. 
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I t  is customary to define the ~ electron energy/~n as En + Ea~; then, 

E = Ea + / ~ n  (3.7) 

In this parti t ion (which is closely related to what Mulliken called 'cumu- 
lative partition' 4~) E ,  is the energy of the r electrons in the field of the 
bare nuclei and/~n is the energy of the ~ electrons in the field of the bare 
nuclei and the ~ electrons. Following Lykos and Parr  3~, one may  regard 
the a electrons as the 'core'  and the ~ electrons as the 'peel '  and consider 
the a - ~  separation as a case of a 'core-peel' separation. Effective SchrS- 
dinger equations where the a (or ~) electrons are represented only through 
the potential  created by  their charge distributions can be derived from 
the expression (3.5) for the ~ (or a) system. Therefore, an iterative proce- 
dure has to be used. This is the so-called ~ - ~  separation with an 'adjust-  
able' ~ core 3}. We shall come back in Sect. 5.1 to the more restrictive 
assumption of the a--~ separation with a rigid a core. 

Alternative partitions of the whole system into groups according 
to Eq. (3.5) are possible. One of them is into K shell groups and a valence 
shell group, which one m a y  call the K - V  separation. I t  is in some respects 
bet ter  justified than the a - z  separation and has been checked b y  ab 
initio calculations of small molecules s,s}. One drawback of the K - V  
separation is tha t  the strong orthogonality condition is not automatically 
satisfied for symmet ry  reasons, as in the , - z  separation. However, this 
does not lead to serious difficulties. 

The essential feature of the a - ~  separation is tha t  an effective Hamil-  
tonian can be defined for the ~ electrons in the field of the nuclei and the 
a core. As was pointed out by  Sinano~lu 7~, this separation can be derived 
under conditions more general than  the Lykos-Parr  assumption. A 
slightly different formulation of the , - ~  separation can be obtained by  
the methods of second quantization 8}. 

3.2. Limits of the ~ - n  Separation 

Most organic molecules contain an even number  of electrons and have 
zero spin in the ground state. On the other hand, radicals are systems 
with an odd number  of electrons, and have at least one unpaired electron. 
The highest energy level (in the sense of the simplest IPM) is supposed 
to be occupied b y  the unpaired electron, and in most unsaturated planar 
radicals the corresponding orbital is a z orbital. 

The spin density, i.e. the probabil i ty density for finding an unpaired 
electron spin close to a given nucleus, is responsible for the hyperfine 
coupling observed in ESR spectra. Now, experimental  data  show tha t  the 
magnetic moments  of the protons interact  with those of the unpaired 
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electron. Consequently, the spin density in the molecular plane (where 
the H atoms are located) is non-zero. Let  us consider a wave function 
of the form (3.5): 

~ = ,~r {iX (1,2 . . . . .  ha) 2//(ha+l, ha+2 . . . . .  na + n~)} 

It  consists of a singlet 2: function (i. e. all a electrons are paired) and of a 
d o u b l e t / / f u n c t i o n  (with an odd number of electrons). Therefore, the a 
spin density should be zero and only the ~ spin density should be non- 
zero. However, the ~ spin density vanishes in the molecular plane for 
symmetry reasons, so that  there should be a zero total spin density in the 
plane --  and at the position of the nuclei. This is obviously in contradic- 
tion with the experimental results and only means that  one has to go 
beyond the approximation of the function (3.5) if one wishes to explain 
the non-zero spin densities at the position of the protons. 

This has been done successfully by  several authors (see 10-16)). The 
essential idea is to replace the simple Lykos-Parr wave function by  the 
following linear combination: 

~ = a l ~ '  {12: 2/ /}  + a2 ~'0 ~ '  {a2:~/7} (3.s) 

where aE is a triplet function (i. e. a function with two unpaired spins) 
for the a core and where 20 is an operator ensuring that  aZ and 2 / / a r e  
coupled to give a doublet state (with one unpaired electron). I t  turns 
out that the coefficient a2 is only a few percent (in absolute value) of al, 
but  the configuration (32:~//) has unpaired electrons on a orbitals, which 
are responsible for the hyperfine structure of the ESR spectra. An im- 
portant  result of the theory is tha t  the spin density at the position of a 
proton is roughly proportional to the probability with which the unpaired 
~ orbital occupies the 9~p~ orbital of the adjacent carbon atom (the so- 
called Mc Conndl relation). 

For further details, the reader is referred to the original papers. We 
have made this point to emphasize that  a completely correct description 
of unsaturated molecules is given only by  a linear combination of different 
Lykos-Parr  type wave functions. However, one term in this linear 
combination may have a coefficient far larger than all the others; then, 
the latter can be neglected unless the contribution of the leading term 
to a given physical property vanishes or is very small, as is the case for 
the ESR spectra of unsaturated radicals. In the standard spin polariza- 
tion interpretation of ESR spectra, these terms are included through 
singly excited configurations with three unpaired electrons: the unpaired 
~ electron of the primitive ground state configuration, and two uncoupled 
a electrons, the one on a bonding a orbital, the other on a a* antibonding 
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orbital. The spin polarization mechanism does not change the integral 
occupation numbers na and n~ of the chemical formula; for that,  one 
ought to include doubly-excited configurations. 

I t  should be added that  the so-called negative spin density suggested 
by  experimental evidence is explained through excited configurations 
with three unpaired ~ electrons, which may be understood as a horizontal 
spin polarization. 

Similar conclusions can be drawn from the s tudy of NMR spectra 
given by  unsaturated closed-shell molecules (see lS-21~). However, the 
theoretical analysis of the hyperfine structure is more involved for NMR 
spectra than for ESR spectra, because the nuclear spin-spin coupling 
constants are second-order phenomena as compared with the electron- 
nucleus coupling constants. 

3.3. Correlation Effects in ~ Electron Systems 

If a n-electron wave function is limited to a Slater determinant of 
n spin orbitals, one stays ~vithin the frame of the independent-particle 
model, and the best model of that  sort (for a discussion, see 22~) for a 
given problem is that  in which the orbitals used to construct the wave 
function are solutions of the Hartree-Fock equations. This model is only 
anapproximat ion  of the correct wave function. As mentioned in Sect. 
3.1, the wave function should be written as a linear combination of 
Slater determinants, as in Eq. (3.4). To illustrate this, let us consider a 
two-electron system where the spin can be separated off, so that  it is 
sufficient to consider a function ~ (1,2) depending only on the space 
coordinates of the two particles 1 and 2. For a singlet state v~ (1,2) is 
symmetric with respect to space coordinates: 

~(1,2) = ~(2,1) (3.9) 

In the frame of the independent particle model, ~ will be a simple 
product of orbitals 

~ (1,2) = [9 (1) 9 (2)] (3.10) 

whereas in a configuration interaction expansion ~ has the form 

~(1,2) = [~a~jg~(1)9~(2)] (a~ 1 = a1~ ) (3.11) 
4,t 

An example of a planar system with two electrons is given by  the Hz + 
ion. The space function 9 of Eq. (3.10) is a a orbital and ~ is symmetric 
with respect to a reflection at the molecular plane. The first ~ orbital is 
not used to construct the independent-particle model oI the ground 
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state, because it has a much higher energy. However, ~? would be also 
symmetric if 9 were a ~ orbital, because in a reflection at the molecular 
plane both 9 (1) and 9 (9~) would change signs, so that  there is no overall 
change. Therefore, the space functions ~0, of the more general expression 
(3.11) m a y  be a or ~ orbitals, but  the coefficients a~l are different from 
zero only if 9, and 9~ belong to the same symmet ry  species (a or ~). The 
energy given by  the function (3.10) for the ground state of H~ is - -  1.2971 
a.u. and the energy lowering obtained by  using eight functions 9~, in 
(3.11) is equal to 0.0388 a.u. 2a~; in this figure, 0.0340 a.u. originates 
from a configuration interaction among a orbitals and only 0.0048 a.u. 
from the interaction with the first two ~ orbitals. The corresponding 
occupation numbers are na---- 1.9971 and n~ = 0.0029. By extrapolation, 
one finds for the total  energy of H~ E----- --1.336 a.u. if a- type orbitals 
only are used in Eq. (3.11) (the so-called 'a limit') or E = - - 1 . 3 4 2  a.u. 
if ~ orbitals are included. 

Now, if one analyzes the correlation of the positions of the two 
electrons brought  about by  the configuration interaction t rea tment  of 
H~, an important  result becomes apparent  (see e.g. 24)). In  the inde- 
pendent particle model, the position coordinates Xl, Yl, Zl of one electron 
and those x2, y2, z2 of the other electron are completely independent of 
each other: there is no correlation. From the configuration interaction 
function constructed from a orbitals only, one finds that  the two ~ 
coordinates, ~vhich are perpendicular to the molecular plane, are still 
independent, whereas the probabil i ty for Yl to be close to y2 and Zl to be 
close to z2 is considerably reduced; this result can be considered as an 
effect of 'horizontal '  correlation (the electrons t ry  to avoid each other 
horizontally). A CI function constructed from the lowest SCF a orbital 
and from additional ~ orbitals leads to a picture where the y and z co- 
ordinates are independent, but  where there is little probabil i ty of close 
values of Xl and x~; in other words, such a function accounts for 'vert ical '  
correlation (the electrons tend to be on opposite sides of the plane). A 
correct wave function would allow for both  horizontal and vertical 
correlation. I t  is easy to understand why the independent-particle model 
is unsatisfactory. Because of their identical charges the electrons repel 
each other;  their average interaction, i.e. the interaction of the corre- 
sponding charge clouds, is taken into account even in the IPM, but  the 
IPlVi ignores the fact that ,  owing to this repulsion, the electrons tend to 
occupy different places. A CI function allows them to do so; this is why 
the energy of a CI expansion is lower than tha t  of a single Slater determi- 
nant. However, the 'correlation energy' is a small correction to the interac- 
tion energy. The situation is illustrated in Table 3, where some properties of 
diatomic molecules as calculated from the molecular Hart ree-Fock equa- 
tions are compared with the exact values. Except  for F~, correlation 
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has no t  m u c h  effect on equi l ibr ium distances and  force constants ,  b u t  
b ind ing  energies calculated from Har t ree -Fock  theory  are very  poor. 
Similarly,  the results for spectral  t rans i t ion  energies are no t  in  good 
agreement  with experiment .  

Table 3. SCF and multi-configuration SCF calculations of observables in diatomic 
molecules 

Ha Li2 Nz F~ LiH HI: 
I~efercnces ~) ~) b) 8) c) e) 

Binding SCF 3.64 0.17 5.27 -1.37 1 .49  4.38 
energies -D e MC-SCF 2) 4.63 0.99 0.95 
in eV Exp 4.75 1 .05  9.90 1 .68  2.52 6.12 

Equilibrium SCF 0.73 2.78 1 .06  1 .32  1 .60  0.90 
distaaces R e MC-SCF 0.74 2.69 1.43 
iI1 ~_ Exp. 0.74 2.67 1 .10  1 .42  1 .60  0.92 

Vibration " SCF 4561 326 2729 1257 1433 4469 
frequencies eo e MC-SCF 4398 345 750 
ia cm -x Exp 4400 351 2358 892 1405 4139 

1) SCF calculations with large optimized basis of SIater orbitals. 
2) SCF culculations with multi-determinant wave functions including double excita- 

tions from valence molecular orbitals. 
a) Das, G., Wahl, A. C.: J. Chem. Phys. 47, 2934 (1967). 
b) Cade, P. E., Sales, K. D., Wahl, A.. C.: J. Chem. Phys. 44, 1973 (1966). 
e) Cade, P. E., Huo, W. M.: J. Chem. Phys. 47, 614 (1967). 

Elec t ron  correlat ion p robab ly  also plays an i m p o r t a n t  role in  the 
theory  of u n s a t u r a t e d  or conjugated organic molecules. Unfor tuna te ly ,  
accurate  numer ica l  da t a  are so far lacking, and  we mus t  discuss simplified 
models in  order to u n d e r s t a n d  the electron correlat ion in  ~ electron 
systems. Al though different con t r ibu t ions  to electron correlat ion should 
be considered, name ly  the horizontal  and  tlie vert ical  correlat ion of the  
a and  ~ systems and  the in tergroup correlation, so far tile correlat ion of 
the ~ system alone has been  most  studied.  As has been  ment ioned ,  the  
horizontal  correlat ion of the ~ sys tem can be t aken  into account  wi th in  
the framework of the a-z~ separation.  

If one confines the s tudy  of a molecule to i ts  ~ electrons, the  most  
general  func t ion  for its ~ system is given b y  Eq. (3.5). To c a l c u l a t e / / ,  
i t  is necessary first to make  plausible assumpt ions  abou t  the po ten t ia l  
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created by  the charge distribution of the ~r system (see Sect. 5.1) and then 
to choose a basis set of ~ orbitals and perform a configuration interaction 
for the z~ system. The simplest basis is that  of the atomic 2pz~ orbitals 
of the constituent atoms. If one expresses / / a s  a linear combination 
of all the Slater determinants that  can be constructed from those atomic 
orbitals, this t reatment  may  be referred to as 'full' configuration inter- 
action 25,2s,~v~ the terln 'complete' being reserved for the case where 
the orbital basis is complete e}. 

I t  is well known that,  in order to obtain reasonable predictions for 
spectra, a CI t reatment  is preferable to the simple one-particle excitation 
model (see Sect. 5.3). However, allowing for horizontal correlation 
through CI with ~ orbitals is not sufficient to restore agreement with 
experiment (for a discussion, see ~8~). We come back to this point at the 
end of this section. 

Full CI is rather complicated, particularly for large molecules. There- 
fore, many approaches have been suggested with the aim of getting the 
same (or almost the same) result as from ,,full CI", but  in an easier way. 
Among these works, one has to mention especially the 'alternant molecular 
orbital method' (AMO) (see e.g. 29~), the 'non-paired spin orbital method' 
(NPSO) 30~, various electron pair treatments 31~ and, finally, rather 
sophisticated schemes borrowed from solid state or quantum field theory 
~2,~.  All these approaches are concerned less with the actual physical 
problem of the horizontal correlation of the z~ electron system than with 
the general correlation problem. The ~ systems just furnish well-defined 
models, for which by  definition a full CI calculation gives the exact 
solution, to be compared with various simplified treatments.  For this 
reason, we shall not discuss these approaches in detail here. Suffice it to 
mention the following result concerning the horizontal correlation of ~ 
electrons: in systems like the polyenes, where the alternation of bonds 
suggests a description in terms of localized z~ bonds (see Sect. 4.5), almost 
the entire horizontal correlation energy is due to the 'intrapair '  correla- 
tion energy of the electron pairs localized on the double bonds ~1~. This 
means that  the function for the n group can be written to a good approx- 
imation as a product of pair functions 

/ / ( 1 , 2  . . . . .  n~) = kVa(1,2)~B(3,4). . .  ~(n~-~,n~) (3.12) 

The situation is more complicated for systems with typically delocalized 
orbitals like benzene 33,a4,ss), where the total horizontal correlation 
energy cannot be broken down into contributions from different electron 
pairs. 

e) The t e rm 'full CI' w~s introduced by de Heer in connection with the  problem 
of benzelxe ~s). 
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Vertical correlation is more difficult to t reat  than horizontal correla- 
tion because it goes beyond the a--~ separation. Actually, the ~ wave 
function should be completed by  Slater determinants  partially construct- 
ed from ~r orbitals, which should be orthogonal to the whole set of 
occupied ~ orbitals. Calculations of this sort are rather  complicated and 
Mmost nothing has been done on these lines, apart  from some calculation 
of valence states of carbon to be discussed below. Most approaches to the 
vertical correlation of ~ electron systems have been of a semi-empirical 
nature. An example of such an approach is the method 'Atoms in Mole- 
cules' 36) which has been applied to a number  of ~ electron systems. I t  
was recognized that  the atomic correlation errors have to be corrected 
in order to get reliable results for molecules 37,~s) (see Sect. 5.3). 

Pariser and Parr  3~,~0) proposed an amendment  to the ~ electron 
theory which was justified on somewhat similar lines. Here, we are con- 
cerned only with one aspect of the Pariser-Parr theory, namely the 
reduction of the Coulomb repulsion energies of electrons. In order to 
reproduce the spectra of ~ electron systems, one is forced (among other 
factors) to reduce the 'one-center electron repulsion integrals'  of the 
carbon atom 

~'1~ 

to about 10 eV, whereas the theoretical value calculated by  taking for 
the orbital ~ a Slater ~p~ orbital is 17 eV. Such a reduction is usually 
justified by  the following argument:  consider the 'dis~roportionation 
reaction' 

C + C  , C + + C -  (3.14) 

where each of these carbon atoms is in its trigonal valence state. The 
energy change in this reaction is given experimentally b y  the difference 
I -A of the ionization potential  I and the electron affinity A of carbon 
in its valence state and amounts  to about 10 eV. The theoretical energy 
difference is given b y  the integral (3.13), provided that  one assumes 
there is no change in either the ~r core or the 2p~ orbitals when passing 
from the neutral a tom to its ions. Since these two assumptions are not 
realistic, the argument  is not fully convincing, but  it is probable tha t  the 
theoretical value for the integral (3.13) overestimates the actual repulsion 
energy of two 2p~ electrons at  the same atom. The current explanation 
is tha t  one has to use a smaller value in order to account for correlation 
effects. In  fact, if one wants to account for electron correlation while 
keeping the formalism of the independent particle model, i.e. if one 
wants to avoid a CI t reatment ,  one can note tha t  correlation does not 
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much change the expectation values of typical one-particle operators, 
like the kinetic energy or the potential energy in the field of the core. I t  
does however, change appreciably the electron repulsion energy. So, if 
one disregards the question whether a theory allowing for correlation 
within an independent particle scheme can be formulated in a consistent 
way (see e.g. 41)) and agrees to treat  an effect going beyond the a-r~ 
separation within the formalism of this separation, it is plausible that  one 
should take smaller values for the two-electron integrals. 

There are in the literature several at tempts to introduce correlation 
into ~ electron theories in a systematic way, e.g. the correlation factor 
methods of Kotos 4~) and Julg 43), and the split p-orbital method (SPO) 
of Dewar 44,45). When applied to the integral (3.13), all these methods 
give about the same value, and this is the main reason why they work 
for the calculation of spectra. The SPO method has been strongly 
criticized on mathematical grounds 46,47,48); however, it has the merit 
of having clarified the fact that  the type of correlation to be introduced 
through a reduction of the electron repulsion integrals is vertical correla- 
tion, whereas horizontal correlation should be accounted for through 
full CI in the rt AO's basis. Since this vertical correlation is also present 
in atoms (e.g. in C-), it is not astonishing that  it can be estimated from 
atomic term values (e.g. based on the reaction (3.14)). 

The argument based on correlation is perhaps convincing from a 
qualitative point of view, but  it is very difficult to interpret a difference 
of 7 eV as the correlation energy of a pair of 2p~ electrons. Ab initio 
calculations of simple systems 49,50,51~ lead to estimates of at most 1 eV 
for the correlation energy of one pair of 2p~ electrons. Approximate 
calculations of the vertical correlation energy in the C- valence state 
5~,53) lead to similar values. The argument that  the electron repulsion 
energy should be reduced by  twice the correlation energy, because the 
kinetic energy is increased by  the amount of the correlation energy 41,54) 
can hardly explain a lowering of 7 eV. In conclusion, the greater part of 
the difference between the 'theoretical'  and 'semi-empirical' values of 
the one-center electron repulsion integral is not due to correlation and 
has to be explained in an alternative way. 

.Actually, the integral (3.13) is somewhat reduced by  using for the 
atomic orbital 2p~ of carbon more elaborate forms than a simple Slater 
function, for instance Hartree-Fock orbitals ~4~. Table 4 gives some 
values obtained in this way 5~). 

The electron repulsion integral between two charge distributions 
~t ~ 

Z~(1) Z~(1) and ~q(2)~q(2) located on two different atoms is still more 
reduced than the one-center integral; at the same time, the corresponding 
overlap integral S~q increases from 0.25 for two Slater functions at 1.4 A 
apart to 0.33 for two Hartree-Fock functions a~). This shows the im- 
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portance of an appropriate choice for the basis set of atomic orbitals used 
in ~ calculations, especially for electronic transitions which depend on 
the difference between repulsion integrals rather than their absolute 
values 57). 

Table 4. Electron repulsion integrals (in eV) the 2p~r orbltals of carbon 

One-center Two-center 
integrals integrals a t  the  
(in eV) distance 

R = 3 . ~ 5  A 
(in eV) 

Slater function (Z~---- 3.18) 16.93 
Double-zeta function 1) 15.74 
Har t ree-Fock functions 2) 15.25 
Exper imenta l  value3) 11.13 

4.42 
1.02 

1) Calculated from Clementi 's tables:  Clementi, E. : II3M J. Res. Dev. 9, 2 (Suppl.) 
(1965). 

2) Calculated from analyt ical  SCF orbitals:  ArM, T., Lykos, P. : J. Chem. Phys. 38, 
1447 (1963). 

3) Calculated using ionization potent ia l  and electroaffinity of carbon in the  valence 
s ta te  V4, tr~r Hinze, J., JafIg, H. H. :  J. Am. Chem. Soc. 24, 540 (1962). 

I t  has been noted by  several authors 54,58,59,60) that  the hypothetical 
charge transfer reaction (3.14) has to be treated in a more complicated 
way; among other things, the effective nuclear charge of the carbon atom 
in its neutral valence state should be rather different from the charge 
of its positive or negative ion. In fact, if one uses AO's minimizing the 
energy of appropriate valence states 61~, the discrepancy between the 
theoretical and empirical energy of the hypothetical reaction (3.14) is 
very  much reduced. The one-center electron repulsion integral (3.13) for 
carbon turns out to be about 12.4 eV. I t  may  be that  the remaining 
difference with respect to the 10 eV of Pariser and Parr  is due to vertical 
correlation energy. 

I t  is outside the scope of the present review to discuss further electron 
correlation in the case of ~ electrons. As regards correlation effects in 
a systems, they should be more easily understandable, at least if the 
~ system consists of localized bonds; however, very little is actually 
known about them. An example where intergroup correlation effects 
are important  has been discussed in Sect. 3.2. 
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4. S p e c i f i c  p r o p e r t i e s  o f  a a n d  rr E l e c t r o n s  

4.1. Some Current  Sta tements  Concerning a and n Electrons 

In  Chapt. 9. we have recalled how a and ~ orbitals can be defined in 
terms of a rigorous theory  and wha t  the notions of a and ~ e l e c t r o n s  
actual ly  mean. In  Chapt.  3 we have introduced the a - n  separation and 
discussed its justification and limitations. If  the a - n  separation is valid, 
then an effective Hamil tonian  for the  ~ electrons can be constructed 
into which the a electrons enter only via the effective potent ial  created 
by  their charge distribution. 

Of course, the basic question is: why  stress the dist inction between 
a and ~ orbitals and the a--~ separation ? Is this point  of view really 
useful, or is it just a trivial by -p roduc t  of the quan tum-mechanica l  
t r ea tment  ? A part ial  answer has a l ready been given in Chapt.  1 : to  some. 
extent,  the not ion tha t  there are two classes of electrons associated with 
quite different molecular properties is suggested by  experimental  evidence 
These two classes have been identified with the a and ~ electrons defined 
in the preceding sections, and this has resulted in a number  of con- 
clusions regarding both  the ' theoretical '  and 'exper imental '  differences 
between a and ~ electrons. These conclusions can be summarized in the 
following ra ther  familiar s ta tements :  

a) a and ~ electrons are localized in different regions of space, the  a 
electrons more on the plane, the ~ electrons above and beneath  the plane;  

b) z~ electrons are more loosely bound  and more easily polarizable than  
a electrons; 

c) a electrons form localized bonds, r~ electrons are delocalized; 

d) ~ electrons are chemically more reactive than  a electrons. 

None of these s ta tements  is rigorously true, bu t  all hold grosso mode. 
In  the following sections, we shall comment  on them in more detail. 

4.9,. Spatial  Distr ibutions 

S ta tement  (a) is based on the fact  t ha t  ~ orbitals have a nodal  plane 
in the plane of the molecule (or the unsa tura ted  or conjugated par t  of it) 
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Fig .  2 a - - c  



Fig. 2d  and e 

Fig. 2a--h .  Orbital densities in the ethylene molecule. (For lb lu  in a plane per- 
pendicular to the ~nolecular plane through the C--C axis for the other MO's in 
the molecular plane). After H. Preuss, private communication.  



Fig. 2 f  and  g 



Spatial Distributions 

Fig. 2h. Orbital lblu (~) 

and that the probability of finding a ~ electron in the molecular plane 
vanishes. On the other hand, the a electron density has its maximum 
in the molecular plane. The situation is best illustrated by the orbital 
density maps of Fig. 2. 

If the ~ electrons were strictly outside the ~ electron cloud, the 
potential created by the ~ charge distribution at the position of the 
~ electrons would practically vanish, at least in non-polar molecules. 
This results from the fact that the repulsive electrostatic potential due 
to one lobe of the ~ charge distribution is nearly cancelled by the potential 
of the other lobe, except at the end of the molecule. Then the effective 
Hamiltonian governing the motion of the ~ electrons (in the frame of the 
a - ~  separation) would be practically the same as that of the ion in which 
all the ~ electrons are ionized away. The presence of the ~ electrons 
would be felt very little by the (~ electrons, except in systems with highly 
polar ~ bonds. Then, an iterative procedure adjusting successively the 
(~ charges to the ~ charges and vice versa would not be necessary, and one 

43 



Spec i f i c  P r o p e r t i e s  of  cr a n d  ,'z E l e c t r o n s  R e f e r e l l c e s  see  p.  55 

and the same ~ core could be used for different a states of the molecule. 
In this idealized description, the potential created by the e electrons 
would be very close to that of point charges at the nuclear positions, the 
effect of the a electrons on the ~ electrons being essentially to 'shield' 
the real nuclear charges. 

Actually, the assumption of non-interacting a and a charges is much 
too crude a simplification. As a matter of fact, an approximate treatment 
of benzene suggested that there is appreciable interpenetration of ~ and ~ 
densities 1), and recent SCF calculations on simple molecules support 
this idea 2). I t  is known from Slater's rules ~ that 2s and 22# electrons, 
say in tile carbon atom, shield the nuclear charge from the other electrons 
in the same shell to about the same extent, namely by about 0.35 units. 
Now, if 2s and 2p electrons were localized in different regions of space, 
the 2s charge being closer to the nucleus, a much stronger shielding due 
to the 2s electrons should be expected. On the other hand, the situation 
in a molecule may be different from that in the isolated atoms; for in- 
stance, the best effective charges found in the ground state of acetylene a), 
hydrogen cyanide or formaldehyde 5) are about 3.5 for a 2s AO, 4.0 for 
a 22#~ AO and 3.0 fo~ a 2p~ AO of carbon ; in other words, the a electrons 
see a somewhat more shielded nuclear charge than the ~ electrons do. 
It  should be noted that interpenetrating r and a densities are also found 
in Htickel-type calculations of molecules with all valence electrons 
(see Sect. 6.2); therefore, this result is not basically a ~ - a  interaction 
effect, since the extended Hiickel method completely ignores tile Coulomb 
repulsion of electrons. 

Briefly, it may be stated that there is a large overla2# between r and 
~ densities, but the a cloud is closer to the molecular plane than the a 
cloud and that the influence of the ~ electrons on the ~ electrons is more 
pronounced than the reverse effect. 

4.3. Bonding Properties 

Statement (b) is based on the remark that the 22# orbitals of atoms 
are more loosely bound than 2s orbitals as is reflected by the correspond- 
ing ionization potentials. Now, in the LCAO approximation, ,~ orbitals 
are constructed from atomic 2pz orbitals only, whereas ~ bonds involve 
2s, 2pv and 2p, orbitals to roughly the same extent. In these considera- 
tions it is convenient to assume that  the atoms are in appropriate valence 
states 6,77 and to take the corresponding ionization potentials s,9}. In 
the case of carbon, for example, one should consider the ionization 
potential of a trigonal hybrid and a 2p~ electron in the (V4, traa) valence 
state (Table 5). The ionization potential of a hydrogen ls orbital is also 
indicated, because this orbital is involved in e binding. 
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Table 5. Ionization potentials of atoms in valenae states 

Bonding Properties 

Atomic states Promotion energies 
(in eV) 

Ionization potentials (b) 
(in eV) of 
Valence electrons or lone pairs 

SCF I) Exp. ~) s p s ~ or p~ 

Carbon 
C 3p s2p2 0 0 19.5 10.7 
C V2sp2p 10.72 9.83 21.42 11.68 
C V 4 s p p p  8.76 8.48 21.01 11.27 

Nitrogen 
N 4S s2p 3 0 0 25.6 12.9 
N V s  s2p p p 1 . 9 0  1 . 0 8  - -  13.94 
N V3 s p~p p 15.92 14.29 26.92 14.42 

Oxygen 

0 ~P s~p 4 0 0 32.4 15.9 

0 V~ s2p2p p 0.54 0.54 - -  17.28 

Hydrogen 
H 1S s 13.60 - -  

p~' 9.92 
- -  

s 2 25.58 
p~ 12.37 

s 32.30 
p2 14.61 

t) Hartree-Fock calculations of atomic valence states: Kochanski, E., Berthier, G.: 
In :  Structure hyperiine magndtique des atomes et des moldcules, 177, Paris:  
C.N.R.S.  1967. 

2) Experimental  data  for L-shell ionization potentials:  Slater, J. C. : In:  Quantum 
Theory of Atomic Structure, Vol. I, p. 206. New York: McGraw 1960, and valence 
state ionization potentials:  Hinze, J., Jaffd, H. H.:  J. Am. Chem. Soc. 8d, 540 
(1962). 

Of course, the energy levels of the molecular orbitals are not identical 
with those of the AO's from which they  are constructed. To a first 
approximation,  one may  say tha t  the AO levels are split into bonding and 
antibomling (and possibly non-bonding) levels. Since a bonding is stronger 
the splitting of the a levels is supposed to be larger and the bonding and 
antibonding ~z levels should be closer to the zero-level than  the corre- 
sponding ~ levels. Actually, a number  of bonding ~ levels lie lower than 
bonding ~r levels, but  there is no reason why all of them should lie below 
the bonding ~ levels. The actual situation is schematized in Fig. 3. 

In reality, all-electron calculations of the benzene molecule give the 
result tha t  (at least) one occupied a orbital has a higher orbital energy 
than the lowest ~r level (see Table 14.) If  one analyzes cases of this sort, 
one finds tha t  the high-lying a levels belong to C - H  rather  than C--C 
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Fig. 3. Bonding, non-bonding, arid antibonding molecular orbitals 

bonds. In  graphite, where there are no C- -H  but  only C--C bonds, there 
is evidence tha t  the a levels form a completely filled 'valence band'  
while the ~r electrons are in a half-filled 'conduction band' .  I t  was believed 
for a while tha t  the orbital levels of smaller hydrocarbons could also be 
grouped into two 'bands '  in a similar way. This is obviously not the case. 
In  addition to the electrons of the C - H  bonds, the electrons of nitrogen 
lone pairs in aza-compo~tnds or oxygen lone pairs of carbonyl compounds 
also have relatively small ionization energies; they  are essentially non- 
bonding electrons occupying molecular orbitals whose energies are close 
to those of bonding ~ electrons, a fact tha t  is related to the spectral 
behaviour of molecules containing atoms with lone pairs (see Sect. 5.3). 

Contrary to formerly accepted opinion, the lack of any  separation 
of the a and ~ levels into two bands with a gap between them has nothing 
to do with the question of the a - ~  separation as discussed in Sect. 3.1. 
In  fact, all the calculations mentioned in this context were made in the 
framework of the independent-particle model and a fortiori in the frame 
of a - ~  separation. 

Finally, we remark that  unlike a orbitals, ~ orbitals are much less 
important  as regards the stability of a molecule. For instance, one can 
remove one or two electrons from condensed aromatic systems and ob- 
tain very stable ions. Similarly, electrons may  be added to antibonding 
~ orbitals without much affecting the stabili ty of the compound. Wha t  
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Polarlzabilities 

is true for ionization holds also for excitation: as a rule, excitation of a ~ 
electron does not much affect the stabili ty of the molecule (although it 
m a y  lead to a change of geometry);  a excitation often leads to dissocia- 
tion. 

4.4. Polarizabilities 

If  a molecule is placed in a homogeneous electric field, its energy changes 
as a result of orientation and polarization. The new energy E can be 
expressed as a power series of the field strength 6~: 

E = E o - - m ~ - - { a ~ 2  (4.1) 

where m is. the component of the permanent  electric dipole moment  r~ 
of the given molecule along the direction of the field, and a is a quant i ty  
associated with the induced electric moment  and called the 'polarizability' 
of the molecule. In  general, the induced moment  is not parallel to the 
inducing field and the polarizability is not the same in different directions; 
therefore, Eq. (4.1) should be written in terms of a symmetric  tensor a: 

e = J) (4.2) 

where the second-order term is a doubly contracted product. For a 
highly symmetric  molecule like methane,  the components along its 
principal axes are equal, and Eq. (4.2) reduces to Eq. (4.1). For planar 
molecules, two of the principal axes of a lie in the molecular plane, the 
third axis being perpendicular to it, and the 'horizontal '  and 'vert ical '  
polarizabilities are in general very different. From the point of view of 
quantum chemistry, polarizabilities can be expressed as sums of contribu- 
tions of individual orbitals. Consequently, in planar molecules a and ~ 
contributions aa and an can be defined; both  types have in general 
horizontal and vertical components. 

I t  has been found empirically tha t  the polarizability of a non-con- 
jugated molecule can be decomposed into contributions of different bonds. 
From Denbigh's 10) analysis of experimental  data,  one can conclude tha t  
the mean polarizability (i. e. the average over the three directions) for 
a C- -H  bond is about  6.10 -25 cm 3, tha t  of C--C a bond 5.10 -2s cma and 
tha t  of a localized r~ bond 8.10 -25 cm ~. 

Values for the various polarizability components have been computed 
theoretically only in simple molecules, like H2 11,12), H F  or CO l~,14,1s) 
and the experimental  bond polarizabilities presented for hydrocarbons 
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(see e.g. zs)) have to be used with caution, because they  are usually 
derived b y  assuming tha t  the a contributions are the same in unsaturated 
and saturated molecules and the C - C  bond distances play no role. 
Actually, the mean values of polarizabilities are reliable to about  20% 
for usual bonds, but  the separate values all and a~. assigned to the polari- 
zability in the direction of the bond and the two directions perpendicular 
to it are more doubtful. In  general, parallel polarizabilities are larger 
than  perpendicular ones. 

The theoretical expression of a involves an infinite sum over excited 
states. However, the polarizability of an electron in an orbital T can be 
writ ten in the following approximate  from 

~x~(9) i**-~a* 
I(9) (4.3) 

(and similar expression for ~vv; o*zz) 

where 1(9 ) is the ionization potential  of the electron under considera- 
tion 17). I t  follows tha t  the contributions of inner-shell electrons to the 
polarizability should be negligible, because the numerator  is much smaller 
and the denominator much larger than for valence electrons. This formula 
also suggests tha t  ~t electrons should be more easily polarized than 
a electrons (especially in the direction perpendicular to the molecular 
plane), because their ionization potentials are smaller than those of a 
electrons and the mean value associated to the square of the n coordinate 
is larger. 

The effects of delocalization on the n electron contribution to the 
polarizabilities of conjugated molecules has been studied by  the Hiickel 
method is,19). The horizontal polarizability, say, in the direction of the z 
axis, is related to the Coulson Longuet-Higgins a tom-a tom polarizabili- 
ties ~tr,8 b y  an expression of the form 

o~zz = e ~" ~ zr  z s ~ r ,  (4.4) 
~',$ 

where zr and z, are the z coordinates of the rth and sth atoms and the 
summation is taken over all the pairs of conjugated atoms. The polari- 
zability zer,8 is the derivative of the zt charge on the r t~ a tom with respect 
to the st~ diagonal element of the effective Hamiltonian,  or alternatively, 
the second cross-derivative of the total  energy with respect to the r t~ 
diagonal elements 207. In  this theory, the perpendicular polarizabilities 
vanish. The contribution taken into account by  Eq. (4.4) comes only 
from the ~t charge displacements induced by  the electric field and not 
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from the deformation of the atomic orbitals. In  order to compare with 
experiment,  one has to add the ~ polarizabilities obtained for each bond 
to the contribution of a bonds~). 

Similar expressions are obtained by  perturbation calculations with- 
in the frame of the SCF theory of ~ electron systems (see Sect. ~.1): in 
aromatic hydrocarbons, the ~ electrons seem to be responsible for about  
one-half of the in-plane electric polarizabilities, and their contribution 
increases with the size of the molecule 21). The same kind of developments 
can be made for magnetic susceptibilities ~2,23). 

On the whole, the analysis of various polarizabilities suggests tha t  
the ~ electrons are more strongly affected by external ~herturbations .than the 
a electrons. Nevertheless, the most  important  point is perhaps the low 
polarizability of a electrons rather  the high polarizability of ~ electrons, 
which permits us to regard the a distribution as a comparat ively rigid one. 

4.5. Localization in a and ~ Bond Systems. 

Sta tement  (c) refers to the most  significant difference between a and ~ 
bonds; however, it is not correct to say tha t  a bonds are always localized 
and ~ bonds always delocalized. In  order to assess the difference clearly, 
we have to discuss at some length what  the terms 'localized' and ' de lo -  
calized' really mean. 

The molecular orbitals which are solutions of the s tandard Hartree-  
Fock equations are delocalized, i.e. they extend over the whole molecule. 
For closed shell systems, the SCF functions can be writ ten in determinant  
form (Slater determinant).  An important  theorem states tha t  certain 
linear transformations among the orbitals of the determinant  can be 
carried out without changing the value of any  physical observable. For 
the sake of simplicity, let us consider a four-electron system whose orbitals 
are labelled a and b and the spin orbitals ao~, aft, b~, bfl 

1 

a~(1) aft(l) b~(1) bft(i) 
a~(2) aft(2) b~(2) bft(2) 
a~(3) a~(3) b~(~) bft(3) 
aa(4) aft(4) ha(4) 3fl(4) 

(4.s) 

s) T h e  Hi~ckel m e t h o d  pred ic t s  t h a t  in t h e  case  of a long polyene chain t h e  long i tu -  
d ina l  polar izabi l i ty  of ~z e lec t rons  var ies  as t h e  cube  of t h e  molecu la r  l eng th ,  while  
t h e  a po lar izab i l i ty  shou l d  increase  on ly  l inear ly  ls). l~efined molecu la r  orbi ta l  
ca lcu la t ions  ( t ak ing  in to  a c c o u n t  bolxd a l t e rna t i on  etc.) do n o t  exh ib i t  t h i s  
a b n o r m a l  a s y m p t o t i c  behav iou r .  
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One can convince oneself by  calculating this determinant  tha t  the 
following function 

with 

1 

Ae(1) Aft(l) Be(l) Bft(1) 
Ae(2) Aft(2) Ba(2) Bft(2) 
Ae(3) Aft(a) Be(3) Bft(a) 
Ae(4) Aft(4) Be(4) Bft(4) 

(4.6) 

A = a c o s 0 + b s i n 0  
(4.7) 

B = a s i n 0 - - b c o s 0  

(0 arbitrary) 

is exactly identical with the first one. A Slater determinant  is thus said to 
be ' invariant  with respect to a uni tary  transformation among the occu- 
pied orbitals'. 

Such a transformation can be used for relocalizing a given set of 
delocalized molecular orbitals in conformity with the chemical formula. 
For instance, the occupied orbitals of methane can be transformed into 
orbitals very close to simple two-center MO's constructed from tetrahedral  
sp a .hybrid orbitals and l s hydrogen orbitals 24,25,26L A uni tary trans- 
formation can hardly modify the wave function, except for an immaterial  
phase factor; therefore, it leads to a description which is as valid as that  
in terms of the 'canonical'  delocalized Hartree-Fock orbitals. Of course, 
the localization obtained in this way is not perfect, but  it is usually much 
bet ter  than is often believed. In the case of methane, the best 'localized' 
orbitals are uniquely determined by  symmet ry  ~.7~; for less symmetric  
molecules one needs a criterion for best localization 2s,29~, a problem on 
which we shall not insist here. A careful inspection reveals that  there are 
three classes of compounds: 

i) Typical non-conjugated molecules, like ethylene or many  other com- 
pounds, which everyone would write intuitively with localized bonds. 

ii) Molecules usually classified by  the chemists as conjugated but  for 
which only one canonical valence formula (with the max imum number  
of double bonds) can be written, like the linear polyenes. 

iii) Conjugated molecules with two or more equivalent canonical valence 
formulas, like benzene. In addition to their poor localizability, it can be 
shown tha t  t ransformation to best localized orbitals is not unique a0L 

One m a y  now wonder what are the conditions for the occurrence of 
localized and delocalized bonds and what  are the practical consequences 
of this more or less large localizability. The condition looked for was 
given a long t ime ago by  Hund al~ (see also 327). 
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The molecular orbitals can be transformed to localized ones i f  the number 
of valence electrons involved in binding per atom is equal to the number of 
directly bound neighbors and the number of atomic orbitals available. 

In  the case of carbon, there are four atomic orbitals, 9. s, 9. Pz, 9. Pv, 9. ~hz, 
and four valence electrons. Therefore, carbon will form localized bonds 
if it is bound to four neighbors, each doubly-bonded neighbor being 
counted twice. In  benzene, each carbon is bound to three of its neighbors 
by  ~r bonds and to two of them by  an additional ~ bond; the number  of 
neighbors is five and a description in terms of localized bonds is not 
possible b). In butadiene, on the other hand, the bond distances al ternate 
in such a way tha t  any C atom has only one neighbor close enough for a 
~ bond, but  three neighbors close enough for a ~r bond; the number  of 
neighbors is four and the MO's can be really well localized 33~. 

If a t ransformation to localized orbitals is possible, then the prop- 
erties of the molecule can be described in terms of localized bonds, with 
some small correction for localization defects and interaction between 
the bonds (see Sect. 6.1). If  no such transformation is possible, a descrip- 
tion in terms of localized bonds does not lead to agreement with experi- 
ment,  and auxiliary concepts like resonance or mesomerism have to be 
introduced in order to reconcile theory and experiment, unless one uses 
from the outset a description in terms of many-center  bonds. From a 
practical point of view, the question why the ~ bonds are delocalized in 
benzene and localized in butadiene is reduced to the question why the 
bond lengths are equal in benzene, but not so in butadiene. Much work 
has been done on this question, but  the situation is still being debated 
(see e.g. ~4~). 

Hund 's  criterion for localized bonds is well illustrated by  the example 
of the Bell2 molecule. The Be a tom contributes two AO's, namely 2 s 
a n d  ~2 p , ,  and has two neighbors and two valence electrons; each hydro- 
gen has one neighbor and one electron. Hence, the bonds of Bell2 can be 
localized. If  one or two electrons are removed, the condition for localizab- 
ility is no longer fulfilled, and the molecule can only be described by  
many-center  bonds. The localized description also breaks down if no 
9~ Pa orbital is available, i.e. if we go from Bell2 to Hell2.  

In  triangular H~ each hydrogen a tom furnishes one AO and 9.]3 of 
an electron, the number  of neighbors being two for any hydrogen; so, 
the simplest delocalized bond is a ~ bond. Actually, e bonds in polyatomic 
molecules are only localized if they involve e.g. sp ~ hybrids (n = 1,2, 3), 
i.e. if the AO basis functions can be transformed ~s ,~s ,~  in such a way 
that  any of the resulting hybrid  AO's can overlap in only one direction. 

b) Equ iva l en t  orbi tals  can be cons t ruc ted  even for benzene,  b u t  their  definition is 
no t  unique  30) because different sets of equivalent  orbitals are possible. 
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Pure s orbitals as well as rr atomic orbitals can easily form many-center  
bonds, because they have the same binding power in different directions. 

Having pointed out that  a single Slater determinant  is invariant  
with respect to a uni tary transformation among the occupied orbitals, 
we can come to the idea of bent (or r) bonds (see e.g. as}). The double 
bond in ethylene is normally described by  a ~ and a az bond, both  of them 
localized between the C atoms. Now, a completely equivalent description 
can be used where the bonding a and rr orbitals are replaced by  their 
normalized sum and difference 

1 
~1 : ~ (a q- ~) 

1 
~ r 2 : ~  (a--Tr) 

(4.8) 

These new orbitals look like bent bonds and are rather close to Van ' t  
Hoff 's  ag~ original description of a double bond. The density diagrams 
of the various types of orbitals in diatomic molecules can be seen in 
1 and 4, namely  delocalized (canonical) MO's on Fig. 1 and localized 
(equivalent) MO's on Fig. 4. 

Since in the framework of the independent particle model the double 
bond may  equally well be described as a a - r r  or Zl-Z~. bond, the choice 
is mainly a mat te r  of personal taste. However, there are two arguments 
in favour of the a - ~  picture. One argument  is  based on theoretical treat-  
merits going beyond the independent-particle model: if one leaves the 
IPM, the two descriptions are no longer equivalent; explicit calcula- 
tions 407 show that  the intrapair  correlation energy is larger in the a - n  
picture, so tha t  the lat ter  is quantum-mechanical ly more satisfactory. 
The second argument  is that  a transformation to z orbitals is only 
straightforward in systems with localized a and ;r bonds, e.g. in mole- 
cules with isolated double bonds. In  aromatic molecules like benzene 
the definition of z bonds is not unique. 

There is one interesting but  much debated physical criterion for 
delocalized bonds in organic rings, namely the occurrence of the so- 
called 'ring currents', said to explain the high anisotropy of diamagnetic 
susceptibilities and isome particular shielding effects in NMR spectra of 
aromatic molecules. The idea of the ring currents was developed by  
London 41) in an approximate  t rea tment  of the diamagnetic suscep- 
tibility of aromatic hydrocarbons. There has been some . a rgumen t  
recently as to whether the ring currents are genuine physical effects or 
just an artefact of London's  calculation 4~,4a,4aL 
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4.6. Differences in React ivi ty 

I t  is well known tha t  saturated molecules are rather  unreactive and 
the reactivity in unsaturated and conjugated systems can be interpreted 
in terms of ~ electrons (see e.g. 45,46)). Nevertheless, the higher react ivi ty 
of ~ electron systems is not so much due to the different properties of 
a and ~ electrons as to the fact tha t  an unsaturated C a tom has only 
three neighbors and can easily form a bond with a fourth a tom in a 
transition state. In reactions characteristic of ~ systems, the a core 
seems to play no role during the whole process, except for reactions 
involving a change of conformation. Quite often, to form a reaction 
intermediate from an unsaturated or conjugated molecule, it is not even 
necessary to break a ~ bond, so that  the reaction intermediates as 
postulated, for instance, in aromatic substitution reactions have rela- 
t ively low energy. The 'localization' energies 47~ for the different possible 
intermediates allow us to discriminate between their energies and to 
find out which one will actually be preferred. Chemical reactions are, 
indeed, very complicated processes and it is fortunate tha t  one can make 
a ra ther  good classification in terms of quantities referring to the ~ 
electron system only. 

To close this chapter  on the differences between a and ~ electrons, 
we emphasize tha t  it is very useful to make the distinction between the 
two types of electrons, keeping in mind tha t  'electron' stands for 'oc- 
cupied orbital ' .  From the point of view of quantum chemistry, this 
distinction is quite straightforward, but  experiment does not provide 
really unambiguous ways of distinguishing between a and ~ electrons and 
separating contributions due to the two sets. As a mat te r  of fact, the ~ 
electrons seem to have the most  important  role for certain properties, 
which will be discussed in detail in the next  chapter. However, the a 
bonds in molecules with and without ~ electrons are not necessarily the 
same. In saturated hydrocarbons the a bonds can be regarded as being 
formed by  sp~ hybrids, in unsaturated hydrocarbons by  sp~ hybrids. 
Some differences between the two classes of compounds are just due to 
differences in a bonding (see e.g. 4s~). 
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5. ~ E l e c t r o n  C a l c u l a t i o n s  a n d  the  A n a l y s i s  of  E x p e r i m e n t a l  D a t a  

5.1. Trea tment  of Unsaturated Molecules in Pure n-Electron Theories 

If  one considers only hydrocarbons, and more especially the  so-called 
'a l ternant '  hydrocarbons, i.e. first of all the conjugated polyenes and the 
aromatic hydrocarbons of the benzene series, the greater par t  of their  
physical properties, ionization potentials, lower electronic transitions 
etc., can be interpreted qualitatively and often quanti tat ively in terms 
of the electronic structure of the n system alone. As the number  of n 
electrons is small with respect to the total  number  of electrons of the 
molecule, a considerable simplification of the quantum-mechanical  
problem is obtained. However, it must  be noted immediately tha t  the 
assumptions of a complete a - ~  separation and of a rigid a frame are not 
sufficient to eliminate the a electrons completely from the theory; 
because the ~ electrons of an unsaturated molecule are not a t t rac ted  b y  
bare nuclei, but  are subject to an effective potential  containing Coulomb 
and exchange contributions from the a electrons. 

With the exception of semi-empirical methods based on the treat-  
ment  of benzene given by  Hiickel in 1931 1), all the ~ electron theories 
use more or less the procedure devised by  Goeppert-Mayer and Sklar ~) 
(henceforth abbreviated GMS) to determine the potential  in which the 
six ~ electrons of benzene move. As a rule, only the a electrons belonging 
to the valence shell of the various atoms are taken into account;  the 
electrons of the inner shells are assumed to shield the nuclei completely, 
i.e. to reduce, say, the nuclear charge + 6 of carbon to + 4. This simpli- 
fication is not absolutely necessary (see e.g. 3)), but  avoids some diffi- 
culties due to the orthogonality conditions between inner and outer 
orbitals. These conditions are automatically verified for the 2p~ orbitals 
of the first-row atoms, which are orthogonal by  symmet ry  to any  ls, 2s 
and 2pa orbitals; they are not in other cases, e.g. for the 3p~ orbitals 
of sulphur and phosphorus, because in those cases there are ~ orbitals 
in the inner shells. Similar difficulties occur if one wants to calculate 
Rydberg  transitions involving a a- type excited orbital. 

The basic GMS assumption lies in the form of the Hamil tonian H of 
the a electron system: 
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H = h core (v) + (5.1) 
~'/,v 

$, /*<~, 

where the summations are taken only over the ~ electrons; the core 
Hamiltonian h(v) is a one-electron operator containing, in addition to 
the customary kinetic and potential  terms, an effective ~ - ~  interaction 
potential assigned to the various atoms P of the molecule: 

h c~ (v) = T (v) + ~ U~ (~) (5.2) 
P 

In order to give an expl!cit form to the potentials Up, Goeppert- 
Mayer and Sklar assumed tha t  the a electron distribution around each 
a tom is the same as in a molecule with infinitely large internuclear 
distances; the potential Up is then given by  the Hartree-Fock potential  
for the a tom P in the appropriate valence state a); for instance, in the 
case of the carbon a tom in the valence state (V4, s PzPyPz) 

V c  ( p , )  = - - -  

~ . ~  _ _  _ _ _  
_ _  

6 1 
re + 2J18--Ki8 + J8 + Jv + J~ - ~ (K8 + Kv + K~) 

4 , (5.s)  

,, ~- J ,  + Jv + J ,  - ~ (K, + Kv + K,) 

where J,(v) and K,(v) are the Coulomb and exchange operator corre- 
sponding to each a atomic orbital. Therefore, use of a GMS type potential  
amounts  to neglecting the effect of a bond formation on the electron 
structure of the ~ system, in particular, that  of the intramolecular 
charge shifts in the a system. I t  is possible to write the potentials Up 
under much less severe conditions, provided tha t  one knows the charges 
to be assigned to the a electrons 5, 6, 7).The results of complete calculations 
carried out recently by  the MO method with Gaussian orbital basis sets 
suggest that  the distribution of the gross atomic populations in aromatic  
molecules is not much different from the one which would be found by  
considering the ordinary valence states s,9). On the other hand, the 
picture of intramolecular charge transfers in heterocycles can be entirely 
modified; for instance, in aza-compounds the main par t  of calculated 
dipole moments  seems to come from a electrons s.10) (see Sect. 6.4). 

As has been mentioned in Chapter 3, the total  wave function of the 
~-electron system is constructed from atomic orbitals tha t  are anti- 
symmetr ic  with respect to the principal plane of the molecule. We shall 
confine ourselves to bases formed by  the r~ valence orbitals of the un- 
saturated atoms of a molecule, e.g. the 2pz orbitals of doubly linked 
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carbon atoms. However,  it is possible to generalize the t rea tment  pre- 
sented below to less familiar kinds of ~ orbitals, for instance the pseudo- 
atomic orbital ( l sn- - l sn , ) ,  used account for the hyperconjugation of a 
saturated CHz group with a double bond i l l  Excited orbitals of the 
same symmet ry  as the ~ valence orbitals, like the 3pz~ lZ,lZ and 3dr~ 14) 
orbitals, could probably be included in a GMS treatment ,  but  the 
theoretical meaning of these orbitals in the frame of a strict ~-electron 
theory is not yet clear, even though they account for some experimental  
facts. For instance, Scheibe's rule a) can be understood by  incorporating 
3pz~ orbitals in the ~ orbitals basis set x3,1~,lS,17), but  this does not 
preclude other explanations 18). 

The matr ix  elements of the total  Hamiltonian H of the ~-electron 
system include, first of all, the elements of the one-electron Hamiltonian 
h e~ with respect to the valence orbitals ~ of the ~ type centered on 
the different atoms P of the molecule. If there is only one orbital ~r per 
unsaturated atom, one usually writes 

[T(v) + Up(v)] X~(V) = W2aZ~(V) (5.4)  

grouping together the kinetic operator of electron v and the potential  
operator associated to the a tom P itself in the GMS approximation., 
Strictly speaking, the preceding equation means tha t  the basis orbitals 
7r are eigenfunctions of a Hartree-Fock operator having the form 
(T + Up) and that  W~ is the corresponding eigenvalue, i.e. the energy 
the electron v would have if it interacted only with the core of a tom P in 
the valence state defined by  the potential  U~,. In practice, one represents 
the orbitals ~ by  simple algebraic expressions which are not really 
solutions of this equation; therefore, one should rather  consider Eq. 4.1 
as a symbolic relationship equivalent to the expression 

.fx~, (,')IT (,,) + V~, (,,)] Z~, (,~) ,/~, = W~, (s.s) 

and expand W~ in terms of atomic integrals over the basis functions Z~. 
A simpler extension of the GMS t rea tment  was suggested by  Moffitt 19) 

in connection with the calculation of the lower excited states of the 
oxygen molecule. This procedure only involves the valence state energies 
of the a tom P and its positive and negative ions and ~ electronic integrals; 
it can easily be generalized to various kinds of unsaturated atoms~0, ~1, 
~9.,2~). If  the valence states of the ions P+ and P -  obtained from atom 

~) Sche ibe ' s  rule  s t a t e s  t h a t  t he  elxergy difference be tween  t he  lowest  exc i ted  s t a t e  
a n d  t h e  lowest  ionized s t a t e  in  a r o m a t i c  h y d r o c a r b o n s  is a p p r o x i m a t e l y  equa l  
to  t h e  s a m e  difference in t h e  h y d r o g e n  a t om.  
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P by  extracting or fixing a ~ electron are constructed with the same 
orbital basis as those of P itself, the difference between the appropriate 
valence state energies can be expressed in terms of W~; for an a tom 
sharing two electrons with the n system (e.g. nitrogen in the - - N H 2  
group), or one electron (case of an ethylenic carbon), or having an empty  
2pr~ orbital (boron in borazoles), W~ is respectively 

W~ ----- E (P, V,) - - E  (P+, V,+I) = --I~ --(PzPx; PxPx) 

W~ ----- E(P,V,)  - -E (p+ ,  V,-1) ---- --I1,  

W ~  = E (P-,V,+~) - - E  (P,V,) = - -A I, 

(s.6) 

where I1, and E~, are the ionization potential  and the electron affinity 
of a tom P for the 2p2 orbital in the valence state V. ,  and 

(P~P~; P~P.) I z~, 0,) z~ (~) ~ = , ,~ z~ (v) z~ (v) d,~  d , ,  (s.7) 

is the Coulomb repulsion integral for two n electrons described by  an 
atomic orbital Z~ 22~. If  all the a toms P are of the same kind (for instance, 
if all of them are carbon atoms), it is not necessary to give W~ a numerical 
value in order to calculate the wave function of the n-electron system, 
because Wp is the same in all the diagonal matr ix  elements and can be 
taken as the origin of the energy scale. In  the case of substi tuted mole- 
cules, one only needs to know the values of the different Wp's in com- 
parison to the Wp of the carbon atom. The required numerical values 
are usually taken from the experimental  valence state energy tables 24, 
~5~. Such a procedure amounts  to applying the approximation known as 
Koopmans '  theorem (see Sect. 5.2) for the valence states of the a tom P 21~ 
An alternative procedure for evaluating the W~'s of atoms with lone 
pairs resorts to doubly excited valence states of P ~s~. but  Koopmans '  
theorem cannot be extended to double excitations. Of course, the 
evaluation of the parameter  W~ of boron (V3,s2b 2) should be less precise, 
because there is no counterpart  to Koopmans '  theorem for electro- 
affinities ~1,~ .  

Note that  the procedure described here can be extended without 
difficulty to a toms P which contribute several orbitals and several p 
electrons of different symmetries:  carbon atoms in the sp hybridization 
state of acetylene and allene-type compounds asI, heteroatoms with one 
n electron and a lone pair, like oxygen in the carbonyl group or nitrogen 
in pyridine ~0,~11. 
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The non-diagonal elements of the Hamiltonian h core contain integrals 
involving two functions g~ and ~ centered on two different atoms P and 
Q, and are usually written in the form 

~Zq(v) IT(v) + U~(v)] Z~(v)dv~----- W~Sq~ (s.s) 

where the equality sign is obtained by  assuming that  ~r is an eigen- 
function of the Hartree-Fock operator for atom P. If Z~ is not an eigen- 
function, the relation (5.8) can still be retained (with a somewhat different 
meaning for W1,) provided all the matrix elements in the brackets are 
proportional to the overlap integrals S~oa. However, this does not hold 
exactly for the basis functions that  are used in practice: the most im- 
portant  deviation arises from the kinetic operator T, because the matr ix 
elements T~q between ~ orbitals are proportional to the square of the 
overlap S~or ~). An undesirable feature of the above relationship is 
that  one obtains different values for the matr ix elements with indices 
pq and qp, whenever the atoms P and Q are of a different nature, as in 
the case of carbon and oxygen in the carbonyl group: W~(C,V4) # 
Wq(O,V~). This difficulty does not arise if the Hamiltonian h e~ is 
written in a symmetric form with respect to the potentials U1, and U~. 
i.e. if (supposing the overlap matrix S is real) one writes ~0~: 

f + 2 X~ (~) d ~  = �89 • 

fx~(v) IT(v) + U~(v)] X~(v) + Xa(v) [T(v) + UQ(V)] 

z ,  (v) d,~ = �89 (W~ + WQ) S~q 

(s.9) 

A possible explanation of the inequality of the matrix elements with 
indices pq and qp can be given in terms of the a electron distribution in 
the molecule: the polarity of the a bond between the atoms P and Q 
affects the potentials UI, and UQ in such a way that  the symmetry  of 
the core matr ix is restored as a consequence of the a - ~  interaction so). 

Given a specific atomic orbital basis, it is always possible to calculate 
all the matr ix elements by  integration, and to introduce the theoretical 
values found in that  way as corrections to the terms W~ S~q of the ordi- 
nary GMS potential al). Unfortunately, these corrections are very 
sensitive to the choice of the basis, and it is difficult to give them a 
definite meaning. 

61 



~ E l e c t r o n  C a l c u l a t i o n s  R e I e r e n c e s  s e e  p .  7 7  

Assuming that  orbitals of the usual form (Slater orbitals e tc . . . )  are 
good approximations of the Hartree-Fock orbitals, the total matrix 
elements of the Hamiltonian h core are 

~,~ _- w~ + ; z~( ~ u~  + ~ u~) z~ ar -= ~ 
R;~P N 

hvq = ~ (Wp + Wq) Spq + �89 ~ zp(Up + UQ) Zq d* 

(5.10) 

+ I z ~ (  7 ur~+Y~v~v) zq,~*=#,~ (S.ll) 
I%#P,Q N 

where the subscript R denotes an atom with ~r orbitals, and the subscript 
N any other atoms, for instance, the hydrogen atoms of an unsaturated 
carbon atom. I t  is convenient to replace the potential UI~ produced by 
the nucleus and the a electrons of the atom R by the potential UI~ of the 
atom R with all its electrons: 

U ~ ~ = u ~  + n~  (J~ - �89 K~) (5.12) 

n~ being the number of ~r electrons on the 2 px orbital in the valence 
state V,. Then, the following relation for the diagonal elements follows: 

~t.~ 0 _ _  _ _  _ _  ~ =  W~-- 2 (l~;PP) ng[(pp;rr) �89 ~(UON;Pp) (5.13) 
~#P N 

where 

(u~;pp)=--~z~U~g2~d~ (U~v;pp)=--~g~U2v:~)~dz (5.14) 

1 
(/.q;~.s) = I x~(~.)z~(~) ~ Zr(") Zs(~) a~,  a~. (S.lS) 

and a similar expression for the non-diagonal elements tim- The quantities 
(u~;pp) are the familiar penetration integrals introduced by  GMS in 
the ~r electron theories. They are of the short-range type, as opposed to 
the long-range forces of the Coulomb type (pp;rr) 29); hence the approxi- 
mate expression of semi-empirical methods: 

~2~ ~- W~ -- ~ ni~ (pp; rr) (5.16) 
I ~ P  
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In the particular case of hydrocarbons, it does not make much differ- 
ence whether one neglects all the penetration integrals or retains only the 
penetration integrals (u~;pp) associated with the carbon atom neigh- 
boring the atom P and the ~ntegrals (U~ ;p/9) assocmted with the hydrogen 
atoms bound to P. Since an sp2 carbon atom has necessarily three neigh- 
bors, the latter approximation is practically equivalent to a shift of the 
origin of the energy scale, because (U~ and (uOH;pp) are not much 
different ~z). This circumstance is particularly favorable, because the 
numerical values of the penetration integrals differ whether the electric 
density of carbon is approximated by spherically charge distribution of 
the form 

(2s 2+2px 2+2pu 2+2pz ~) 2), 

or if each of the integrals arising from U~ is evaluated separately. 
The calculation of the off-diagonal elements flvq follows exactly the 

same line as that of the a~s, provided the Hamiltonian h c~ is expanded 
symmetrically with respect to the potentials UI~ and U~. If one assumes 
that all the one-electron and two-electron multi-center integrals contained 
in f l~  are expressed in terms of the corresponding Coulomb integrals 
appearing in a~ and ar by means of the Mulliken approximation, one 
finds fl~q = �89 ( ~  + c~q) S~q. Actually, the preceding expression must be 
completed by  a correction term s~a: 

/ ~  = �89 (~,, + ~ )  S ,~  + e~q (~.17) 

where e~q is the sum of the errors made by  approximating each integral 
by Mullikens's formula. I t  may  be noted that  the important  parameter 
of the ~-electron theories is not so much the quanti ty fl~q itself as the 
correction term e~q, because one obtains no ~ binding at all by putting 
~ = 0. In fact, if one replaces the basis orbitals ~o by  a set of orthog- 
onalized L6wdin orbitals ~ as), one finds that  the first term of the series 
expansion of this integral in powers of the overlap matrix ~,aa) is 

fl(x) heore(v) ~q = ~ ,~  (v) ~,~ (v) dr, = ~ (S.18) 

Now, it is just this term which determines to a large extent the impor- 
tance of the interaction of the n electrons between the atoms P and Q. The 
integral v~a(~) may  be identified with the parameter fl~a of the semi- 
empirical theories based on the zero-differential-overlap approximation 
35,~6). In our opinion, there is no general calculation method leading to 
values for the fl~q's which are in good numerical agreement with the 
fl~q parameters fitted on experimental data  (electronic spectra, dipole 
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moments etc.). Of course, opposite points of views on this controversial 
problem may be found in the literature 3~). 

We shall not discuss at length further simplifications, known as 
next-neighbors interactions (for core integrals), zero-differential-overlap 
(for two-electron repulsion integrals) etc., which were introduced into 
the formalism of the vr molecular orbital theory after the basic work of 
Goeppert-Mayer and Sklar. Detailed reviews on these topics have been 
published ~8,39,40,41,42). Let  us just show why zero-differential-overlap 
can be justified in terms of orthogonalized orbitals 4~,22,~4). 

The L6wdin orthonormalized basis of atomic orbitals 2 is obtained 
by the matr ix transformation 

~ = S-Xle g (5.19) 

where ;~ is a basis of 2fl~ atomic orbitals localized on the various atoms 
of the molecule and S corresponding overlap matrix. The electron inter- 
action integrals (2~2r ~r2s) with respect to the 2 basis can be expressed 
as matr ix functions of the overlap and two-electron integrals in the ;~ 
basis. If the latter are calculated by  Mulliken's approximation: 

(z~,z~;. .) = �89 s ~  [(z~z~;..) + (z~z~;. .)] (s.20) 

except of course the Coulomb integrals (Z~Z~; Zr162 one finds 

(2~2~;..) = 0 f o r p  r q (5.22) 

i.e. the properties postulated for the integrals in the zero-differential- 
overlap approximation. In fact, the preceding relationship is correct to 
the first order in the overlap integrals, and it can be shown to be rigor- 
ously correct, if the calculation is restricted to the term in S of the ex- 
pansion in a series of the matrix S-l/z, as a result of the use of Mulliken's 
formula for the non-Coulomb integrals. Now, Mulliken's approximation 
itself can be considered as the term in S for the expansion of such intcgrals 
45). So, the transformation of localized atomic orbitals into LSwdin 
delocalized orbitals gives to a first order in S a non-empirical formalism 
identical with the methods based on the zero-differential-overlap approx- 
imation suggested by  Pariser, Parr  and Pople. 

Many interesting problems in physical organic chemistry have been 
clarified by  numerical calculations based on next-neighbor interaction 
and zero-differential-overlap approximations, especially in the field of 
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aromatic hydrocarbons. An important  theorem of the Htickel theory for 
hydrocarbons holds also in theories of the Pariser-Parr-Pople type:  
alternant hydrocarbons do not exhibit ~ charge transfer from one unsatu- 
rated center to another 4s,47}. This statement is valid not only for the 
ground state, but  also for some excited states, in particular the lower 
singly excited state. Therefore the ~ distribution cannot induce any 
polarization in the a system, and this means that  the GMS potential is 
indeed a good approximation for such compounds. Actually, the special 
properties of conjugated hydrocarbons are determined by the topology 
of the molecule, and any method using the same diagonal matr ix elements 
for atoms and arbitrary off-diagonal elements for chemically linked 
atoms is able to reproduce them 48}. 

A more physical interpretation of the potential to which the electrons 
of a conjugated molecule are subjected, was obtained by  Del Re and 
Parr  49}. By transforming the expressions of the configuration interaction 
matr ix elements over a molecular orbital basis, it is possible to show that  
the one-electron terms can be derived from an effective one-electron 
operator, where the potential is of the GMS type, but  corresponds to a 
core including all the electrons but  one, and equal fractions (per orbital) 
of the electrons are assigned to the various atoms. An important  con- 
clusion is that  in large conjugated molecules with few heteroatoms, a ~ 
electron tends to see all the atoms as neutral, except for those hetero- 
atoms that  contribute two electrons to the z systems, which are seen 
as singly charged centers. Among other things, this suggests that the 
results concerning alternant hydrocarbons could be extended to a wider 
class of large conjugated molecules (with the exception of compounds with 
a highly polarized a core), and thus may explain the success of the Htickel 
method even for heterocycles 50}. 

In the next two sections, we shall s tudy the problem of the ionization 
potentials and electronic spectra of simple molecules, as examples of the 
virtues and shortcomings of n-electron theories for analyzing the char- 
actelistic properties of unsaturated molecules. 

5.2. Ionization Potentials 

Usually, theoretical studies on ionization processes of atoms and mole- 
cules are performed using the so-called approximation of Koopmans' 
theorem. This theorem says that  the ionization potential P,  of an electron 
located on the i th level of a closed-shell state is equal to the opposite 
sign to the Hartree-Fock orbital energy ev One obtains this result by  
assuming that  the single determinant wave function of the ion is con- 
structed from the same molecular orbitals as the ground-state function, 
except .for the spin orbital of the missing electron. 
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The ionization energy E,, defined as the difference between the energy 
E 0 of the ground state and the energy E + of the positive ion, reduces 
then to the orbital energy e,: 

_ ~ o ,  = E ,  = E o - -  E +  = e ,  (5.22) 

The evaluation of ionization potentials from orbital energies of the ground 
state is usually justified, not because ionization does not very much alter 
the form of orbitals, but  because the values of e, are in better  agreement 
with experimental data than the difference of true SCF total energies, 
both for the positive ion and the neutral molecule. This statement is 
empirically verified for many atoms, but  has to be theoretically explained 
by  a fortunate cancellation of errors sl,a~}. 

If one lets 

p~ = E +  - -  E o + ----- ( E s o ~ ' -  Ego:~) + (Ec + - - E o  ~ (5.23) 

where E~ + and E ,  ~ are the (negative) values of the correlation energies 
in the two systems, and 

+ E + + E s O F  : 2 n - 1  + AE, (5.24) 

where AE~ is the additional (negative) error coming from the approxi- 
mate calculation method used for the ion instead of a true SCF treatment,  
one can write 

P, = - e, + z~Ei ~ + (E~ + - E~ ~ (5.25) 

The correlation energy of a 2n electron system is in general larger 
in absolute value than that  of the system with one less electron. Therefore, 

E + E 0 the quant i ty  ( e -  e) is positive and tends to compensate the error 
AE~'. On the other hand, the same argument, applied to the calculation 
of electron affinities (the change in energy produced by  the capture of an 
electron in an empty orbital r suggests that  the errors --AE~ and 
(E, ~ --E~) should cumulate rather than cancel  

The preceding discussion is relevant for vertical ionization potentials 
only, i.e. for ionization processes without a change in the shape of the 
molecule. The effect of molecular distortions due to ionization has to be 

IE+ ~.0x estimated separately and added to AE~ and ~ ~--,~cj.  Recently, the 
validity of Koopmans' theorem has been questioned within the SCF 
approximation itself. I t  should be noted that  the orbitals of a Slater 
determinant are defined except for a uni tary transformation, and the 
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canonical Har t ree-Fock orbital energies give an upper  bound to the 
difference between SCF total  energies of both  states only for the lowest 
energy level of each symmet ry  species ss). Thus, the first ~ ionization 
potential  of planar unsaturated molecules might safely be predicted. 
On the other hand, numerical SCF calculations have been performed for 
some ionized states of atoms s4,ss) and molecules 56,~,5s) and the 
cancellation of errors put  forward to justify the use of Koopmans '  
theorem does not seem to be quite general. Furthermore,  in the case of 
molecules, Table 6 shows tha t  the basis set used for expanding the mole- 
cular orbitals plays an important  role - -  indeed one, not yet  well under- 
stood - -  as regards agreement with experiment. 

Table  6. First ionization potentials in simple molecules 

Basis set - - e l  (in eV) Pexp 

STOD GT O l) OCO a) 

L i m i t e d  E x t e n d e d  

W a t e r  (11.79) 14.56 14.55 13.72 13.0 

A m m o n i a  9.96 11.15 11.60 11.28 10.5 

M e t h a n e  14.74 14.02 13.73 13.48 12.06 

E t h a n e  (stag.) 13.09 14.97 13.78 - -  11.6 

E t h y l e n e  10.10 9.96 - -  - -  10.5 

Ace ty l ene  11.04 . 10.94 - -  - -  11.4 

1) S l a t e r - t ype  orb i ta l s  w i t h  Z] t  = 1.2: Palke,  W.  E.,  L ipscomb ,  W.  N. : J .  A m .  Chem.  
Soc. 88, 2384 (1966). - - Z H  = 1 for H 2 0 :  Ellison, F.  O., Shull ,  H.  : J .  Chem.  P h y s .  
23, 2348 (1955). 

2) G a u s s i a n - t y p e  orb i ta l s  - - H 2 0 ,  NH3,  C Ha :  Ri tchie ,  C. D.,  K ing ,  H .  F.  : J .  Chem.  
P h y s .  ,47, 564 (1967). - -  C2H6: Clement i ,  E.,  Davis ,  D. R . :  J .  Chem.  P h y s .  45, 
2593 (1966). - - C 2 H 4 ;  C2H2: Moskowitz ,  J .  : J .  Chem.  P h y s .  43, 60 (1965). 

3) One-cen te r  o rb i ta l s :  Moccia, R . :  J.  Chem.  P h y s .  ~0, 2164, 2176, 2186 (1964). 

In  the lowest ionized state of ethylene and acetylene, a ~ election 
belonging to the double or triple C-C bond is removed. I t  is interesting 
to compare the calculations reported in Table 6 where all electrons were 
included in the SCF t rea tment  and the results of non-empirical calcu- 
lations limited to the a electron system. Approximating the interaction 
of the a electrons with the a core by  a rigid GMS potential  (see Sect. S. 1) 
and taking an effective nuclear charge equal to 3.18 ior all the atomic 
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integrals over 2 n orbitals of carbon, the following ionization energies are 
found ~,60) : 

for the C=C bond: e, = W~r~ + 0.46 eV = - -  10.70 eV 

for the C--C bond: e, = Wa~o - -  1.46 eV = - -  12.65 eV 

where W~r~ and W ~  denote respectively the energy of a n electron 
belonging to a carbon a tom in the sp ~ or sp hybridization: 

W~r~ = -  l l . 16eV  W ~  = -  11.19 eV 24, 

From a Comparison with Table 6, one sees tha t  the results of all-electron 
calculations are lower by  about  one eV than the ionization potentials 
predicted by  pure n-electron theories, In addition, the meaning of the 
numerical value to be at t r ibuted to the additive constants W~v, is 
somewhat obscure. This explains why these quantities may  be regarded 
to a certain extent as adjustable molecular parameters,  when ionization 
processes are the main object of a n-electron calculation 61,6~). 

Pure n-electron theories by  definition neglect the change in the distri- 
bution of a charges in the molecule. The possible role of sflch a change 
can be studied by  simply performing SCF all-electron calculations for 
both  states, because the average electronic repulsion given by  the SCF 
method (see Chapt. 2.4.) is then different in the ground and ionized con- 
figurations. By solving separately the LCAO MO SCF equations of the 
neutral  benzene and its 2Elg and 2A 2u cations (i.e. benzene minus one 
electron in the first and second n energy levels), one finds tha t  the polari ty 
of the extracyclic a bond is increased in the direction C - H  +, so tha t  the 
loss of a n electron belonging to the carbon atoms is balanced by  a back 
donation of a charges from hydrogens ~6). The same trend is shown when 
passing from pyridine to its ~A z cation (pyridine minus one n electron) s6). 
Similarly, the charge transfer of the C - H  bond increases from the cation 
CH~ to the methyl  radical and the anion CH~, in proportion as the 
population of the 2:bn orbital of carbon changes from zero to one and 
two ss). On the other hand, the lowering of !ionization potentials AE~ 
obtained by  minimizing the total  energy of the ion is ra ther  weak, as 
shown in Table 7. 

For molecules with closed-shell ground states, the vertical ionization 
potentials --ei  predicted by  the LCAO MO method are generally too 
high relative to experiment. When the SCF energy of the ion is calculated, 
the correction AE~ decreases the theoretical value of Pi, but  the agree- 
ment  with experiment is lost if the change in correlation energy (E~ - -  E~ ~ 
is taken into account in an approximate  way (see Table 7). 
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Table 7. Ionization potentials in benzene, pyridine and methyl 

Molecular ion Ionization potentials in eV 

- - e l  E~" Pl Pcxp 
1) 2) 3) 

Benzene cation 2EI~ I0.15 ~ . 4 1  11.74 9.25 
Benzene cation 2A2 u 14.56 --0.44 16.12 12.1 
Pyridine cation 2A2 12.17 ~0.71 13.46 9.24 
Methyl cation IA~ (I0.18) --1.32 8.84 9.84 

1) Gaussian-type orbiLa~s --Cell6: Schulman, 21- M., Moskowitz, I. Vr J. Chem. 
Phys. 47, 3491 (1967) C6H5: Clementi, ]E.: J. Chem. Phys. 47, 4485 (1967) CH:~ 
(el orbital energy o5 the open-shell Hamiltonian. matrix) : Millid, Ph., Berthier, G. : 
Int. I. Quant. Chem. 25, 67 (1968). 

3) Correlation correction (Er ~ taken as equal to 2 eV for decoupling a pair of 
2p electrons and neglected for methyl. 

a) C6H s: Turner, D. W. : Tetrahedron Letters 35, 3419 (1967) 
Lindholm, E., Jonsson, B. O.: Chem. Phys. Letters 1, 501 (1967). 
Momigny, J., Lorquet, J. C. : Chem. Phys. Letters 1, 805 (1967). 
Call 5 N: Momigny, J., Goffart, C., Natalis, P.: Bull. Soc. Chim. Belg. 77, 533 
(1968). 
CHs: Lossing, F. P., Ingold; K. U.: Henderson, I. H. S.: J. Chem. Phys. 22, 621 
(1954). 

On the contrary ,  for radicals, the same type  of correlat ion correction 
improves  the agreement  with exper iment ,  because the difference be tween 
SCF to ta l  energies is too low. By opt imiz ing the LCAO basis set and  
geometry  used in the SCF calculat ion for the ion, there is hope t ha t  
ionizat ion potent ia ls  could be reproduced in a more sat isfactory m a n -  
ner  ST) b). 

5.3. Exc i t a t ion  Energies 

As a general  rule, sa tu ra ted  hydrocarbons  do not  absorb in the visible 
region or in the  near  and  v a c u u m  ul traviolet .  The  spectra of paraffins 
show absorpt ion bands  only  in the  far u l t raviole t  below 1500 A. Two 
t rans i t ions  are seen: the first, very  weak, is appa ren t ly  electronically 
forbidden:  the second, more energetic and  intense,  is p robab ly  allowed 

b) Calculations of that sort, including a study of changes in correlation energies 
have been recently performed for water by Vr Meyer and for methane by 
B. Levy, F. Janzat and J. Ridard (to be published). The results are very 
encouraging. 
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63,64). Therefore, the gap between the highest occupied energy level and 
the lowest empty  level corresponding to the C - C  and C - H  bond system, 
in the frame of the simplest independent particle model, is at  least nine 
eV. If  the energy levels of a bonds in saturated and unsaturated com- 
pounds are assumed to be of the same order of magnitude, the r~ electrons 
and the lone pairs of conjugated molecules must  necessarily be assigned 
to transitions of lower energy observed from 1800--2000 ~ to the near 
infrared. 

In  a one-electron scheme, there are three kinds of transitions involving 
~ electrons: 

the n -~z*  transitions between the two ~ levels, one occupied and the 
other empty  in the ground state  of the molecule; 
the ~-~a*  and a-~n* transitions between an occupied ~ level and an 
empty  a* level, and vice versa; 
the n - ~ *  transitions between a nonbonding n level occupied by  the 
lone pair 2pa of a heteroatom, as nitrogen of pyridine and oxygen of 
ketones, and an empty  r~* level. 

As the lone pairs are almost entirely localized on heteroatoms, the 
energy of the n level is almost the same as for an electron in the valence 
shell of the corresponding atom, so tha t  the n - ~ *  and n-~ a* transitions 
have rather  low energies and are often located in the same absorption 
region as pure n transitions. For instance, the absorption spectra of non- 
conjugated aldehydes and ketones include n-r~* bands of very weak 
intensity around 3000 A, more intense n - a *  bands around 2000 ~ and 
strong ~ - ~ *  bands below 1800 _~ ss). 

In compounds without lone-pair electrons, like pure hydrocarbons, 
the two or three highest occupied ~ levels and the two or three lowest 
empty  ~* levels are respectively of higher and lower energy than the 
first a and a* levels. Keeping in mind also that  the empty  levels form a 
more diffuse energy band than the occupied levels (a fact which is not 
predicted by  the usual description using a basis set of atomic orbitals 
limited to valence orbitals of the various atoms), it is reasonable to 
assign the transitions in the visible and near ultraviolet to ~-~n* excita- 
tions; the ~-~ a* and a - ~ *  transitions should be found only in the vacu- 
um ultraviolet, the a-~ a* transitions in the far ultraviolet. The sequence 
of occupied and empty  levels for the valence electrons of the C----C, C=C 
and C--O groups in the ground state is shown in Fig. 5, according to 
non-empirical SCF calculations carried out by  a minimal Slater basis set 
for acetylene, ethylene 6s) and formaldehyde 67). 

The excitations considered so far are called valence shell transitions 
or sub-Rydberg transitions, as opposed to another type of excitations, 
found also in unsaturated compounds, namely the Rydberg transitions ~ s). 
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Fig. 5. Monoeleceronic energy levels in acetylene, ethylene and formaldehyde 

The ultraviolet spectrum of these compounds contains a series of bands, 
often very intense, which can be described by expressions of the form 

b 
h~ = a (~_~) ~. (5.26) 

where n is an integer and a, b, ~ are constants, as in the case of the atomic 
Rydberg series. The first terms of these series can reach the near ultra- 
violet; the next terms are in the fax ultraviolet and converge towards a 
limit, which can be identified with a molecular ionization potential. The 
Rydberg series observed in unsaturated compounds are assigned to 
transitions between one of the last ~ levels of the ground state and a higher 
level where the excited electron takes a large probability density only 
very far from the molecular core. Roughly, the excited electron can be 
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described by  a hydrogen-like wave function of high quantum number  n 
( n = 3 ,  4, 5, etc.) perturbed by  the positive charge distribution of the 
residual molecular ion 69). 

The Rydberg transitions are very close in energy to the :~-~:~* transi- 
tions lying in the vacuum ultraviolet;  they must  be distinguished from 
the latter by  a careful analysis. Thus, the spectrum of ethylene below 
1750/~ contains sharp Rydberg  bands mixed with a continuum going 
up to 1620 A; this continuum is the end of a system of diffuse bands 
going down to 2100/~ in gas phase and 2600 A in liquid phase and is due 
to a ~ : ~ *  excitation with change in geometry 70~. From the theoretical 
point of view, there is not always a clear-cut distinction between valence 
shell transitions and Rydberg transitions, for instance, when the states 
in question belong to the same irreducible representations of the symmet ry  
group of the molecule. This is the case for n-~ a* transitions of ketones, 
which can also be interpreted as n-~ 3 s Rydberg transitions 71). 

Another example is the puzzling problem of the 'mystery bands' in 
mono-olefins: the absorption spectrum of ethy1~nic compounds shows 
on the left side of the r ~ : ~ *  band system weak bands or even simple 
shoulders of a different nature. These bands have been assigned to a 
transition involving ~z and a levels simultaneously, and for some t ime a 
conflict raged amongst  the supporters of a a-~r~* transition analogous 
to the well-known n-~=* band system of carbonyl compohnds 72~, those 
of a ~ - ~ *  transition 73~ and those emphasizing the absence of any  
mys te ry  band in ethylene itself 74,~). The dispute has been provisionally 
settled by  assigning the mys te ry  band of mono-olefins to the jump of a :z 
electron towards a a* level strongly mixed with the term 3s of a Rydberg 
series ~ , ~ ) .  Furthermore,  a third low-lying excited state, located at 
7.45 eV above the ground state in ethylene and electric-quadrupole- 
allowed rr, rs), has been identied as a a transition towards a ~ 3/5 Ryd-  
berg level. I t  can be added that,  in the united a tom model, all the transi- 
tions are interpreted as Rydberg  transitions: for instance, the ~z-~:~* 
excitation of the C=C double bond electrons becomes a 2 p z ~ 3 d  w 
transition of the united atom. Nevertheless, the usual classification retains 
a great utility, owing to the fact that  the excitations usually interpreted 
as valence shell transitions are related more cIosely to the electronic 
structure of the molecule under consideration and cover a much larger 
spectral region, from the far ultraviolet to the near infrared. 

In the preceding descriptions, the electrons have been assigned to 
individual energy levels. In  fact, it is only possible to observe changes 
concerning the state of the whole molecule, and the energy of a transition 
is the difference between the final energy and the initial energy of the 
whole electron system. Even if one assumes tha t  the excitation does not 
modify the position of the one-electron energy levels a t t r ibuted to the 
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ground state by  the IPM model, the energy of a transition is not simply 
given by  the energy difference between the final and  initial levels, 
because the Coulomb repulsion and the spin coupling of the electrons 
involved in the transition are not the same in the two states. In molecules 
the most common case is a closed-shell ground state, and an excited 
state with two unpaired electrons, one on a molecular orbital ~ ,  which 
was originally doubly occupied, the other on a molecular orbital 9t, 
which was empty. The energy of the excited state depends on the total 
spin of the two unpaired electrons, whence the possibility of singlet- 
singlet transitions without any change in spin and of singlet-triplet 
transitions with change in spin. If the occupied orbitals ~, and the empty 
orbitals ~0/are chosen from amongst the solutions of the Hartree-Fock 
equations of the ground state, the excitation energy i~j  can be written 
79) : 

I ' aE- -Eo  = (et--e~) --  (Jo--K~I) • Ktl (5.27) 

with the plus sign for the singlet and the minus sign for the triplet; the 
quantities e, and ej are the energies of the orbitals ~0, and 9t involved in 
the transition, J , / i s  the Coulomb repulsion integral between the charge 
distributions ~ ~, and 9~ 9t, and K 0 is the corresponding exchange 
integral. The quanti ty 2K,I represents the singlet-triplet separation, the 
triplet state being below the singlet excited state, in agreement with 
Hund's  rule (0<K,I  <J , j ) .  

Although the singlet-triplet transition is spin-forbidden, the singlet- 
triplet separation has a considerable theoretical and practical interest : 
the value of K, f differs very much according to the probability of finding 
the unpaired electrons in the same region of the three-dimensional space. 
In general, the transitions involving molecular orbitals of the same type 
( e - ~ *  and a-~a*) are characterized by  relatively large singlet-triplet 
separations. The same rule holds for the intensities, unless the transition 
is forbidden for reasons due to the molecular geometry (as is the case 
with some transitions for compounds of high symmetry such as acetyl- 
ene and benzene) or to the spin (case of singlet-triplet transitions). For 
instance, the excitation of the ~ electrons o f  the C=C double bond in 
ethylene gives rise to a triplet and a singlet ~-~* located respectively at 
7.6 eV and 4.6 eV with respect to the ground state s0); the intensity of 
the singlet-singlet transition, measured by  its oscillator strength e), is 
equal to 0.3 Sl). 

e) The  osci l la tor  s t r e n g t h  f is defined as  t he  ra t io  of  t he  p robab i l i t y  of a g iven  
t r a n s i t i o n  to t h a t  of  a h a r m o n i c  osci l lator  able  to  abso rb  t h e  s a m e  e l ec t romagne t i c  
ene rgy  b e t w e e n  i ts  g r o u n d  s t a t e  a n d  i t s  first  exc i ted  s t a te .  Q u a n t u m - m e c h a n i -  
cally,  t h e  t r a n s i t i o n  p robab i l i t y  is p ropor t iona l  to t h e  squa re  of t he  so-cal led 
' t r an s i t i on  m o m e n t ' .  
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The transitions n-~a* or a-*n* have much lower singlet-triplet separa- 
tions and intensities. The extreme limit is shown by  the orbitals of a 
lone pair, which are a orbitals almost completely localized on an atom. 
In the case of the carbonyl group, the orbital usually assigned to the lone 
pair n of oxygen is a 2Pv orbital perpendicular to the orbitals of the 
double bond C = O ;  the triplet and the singlet states n-n* are extremly 
close to each other, and the n-n* transition is locally forbidden, therefore 
very weak (f-~0.01 for singlet-singlet transitions)20}. 

As shown in Table 8, it is not possible to account for the transitions 
involving the n electrons of the simplest organic molecules by  non- 
empirical calculations based on an independent particle model. Both 
the singlet-triplet separation and the oscillator strength of the ~ *  
transition are overestimated. 

Table 8. Transition energies of acetylene, ethylene and formaldehyde 

Excited states in eV ~ electrons ~) All electrons ~) Exp.3) 

SCF Full CI SCF CI 

Acetylene 
a~+ 
~A u 

~ --~ ~1:* ~ 
12:~ 
1Au 
1~+ 

Ethylene 

~'~ --~-~* / 3B3u 
! 1B3u 

:Formaldehyde 

n - - ~ *  / 3A2 
/ 1A 2 

~ .-~- ~*  I 3A1 
! 1A 1 

3.73 5.06 
4.77 6.46 
5.81 7.78 
5.81 7.78 
6.43 8.60 

17.80 15.81 

5.2 

7.9 

1.8 3.1 3.36 3.19 4.6 
10.2 11.5 11.98 10.17 7.6 

4.83 4.84 2.88 2.33 3.1 
6 01 5.26 4.03 3.60 3.5 
3.90 5.24 3.99 3.88 

14.60 15.44 14.89 12.03 7.9 

1) Non-empirical calculations with 2p~t Slater orbitals. 
C2H~: Serre, J. : J. Chimie phys. 50, 447 (1953) and Thesis, Paris (1955). 
C2H4: Parr, R. G., Crawford, B. L.: J. Chem. Phys. 16, 526 (1948). 
H2CO: Sender, M., Berthier, G.: J. Chimie phys. 56, 946 (1959). 

2) Complete calculations with a Slater minimal basis set CI limited to singly excited 
configurations (Tamm-Dankoff Approximation). 
C2H4: Dunning, T. H., McKoy, V.: J. Chem. Phys. ~tT, 1735 (1967). 
H2CO-" Dunning, T. H., McKoy, V.: J. Chem. Phys. 48, 5263 (1968). 

~) Peak of absorption maximum. 

74 



Excitation Energies 

No improvement is obtained by  replacing pure ~ electron calculations 
by an all-electron SCF treatment;  thus, the assumption of a GMS poten- 
tial can hardly be responsible for the failure of the theory. Furthermore, 
the theoretical predictions are not significantly altered by a configuration 
interaction limited to the 2p~z orbital basis 59,83,84,85); only by  combin- 
ing the ~r-~a* excitations and ~ - ~ *  excitations with the same symmetry 
properties can one succeed in reducing the ~-~z* transition energy 
56,57,56). Therefore, a satisfactory ab initio theory of spectra will probably 
need to go beyond the ~--~ separation (see Sect. 6.4). 

There are other possible reasons for the discordance between simple 
theories and experimental facts. First of all, much caution is needed in 
comparing theoretical and experimental excitation energies: the values 
calculated are usually vertical transition energies in the sense of the 
Franck-Condon principle, i.e. transitions without a change in geometry 
between the ground and excited states. They should not  be compared 
with the energies of the experimental zero-zero transitions, but  rather 
with the absorption maxima 2m~x- It  may  happen that  the equilibrium 
geometry of the molecule is completely different in the ground and excited 
states; this is the case for the first excited singlet of acetylene (which is 
bent  59)), ethylene (which is twisted and perhaps pyramidal 7o)) and 
formaldehyde (which is pyramidal 90)). Changes in geometry are not 
always so drastic, especially in cyclic molecules like benzene (which 
is only slightly distorted in its first singlet excited state 91,9~.)); never- 
theless, they cannot be accounted for by  simply modifying the lengths 
of the unsaturated bonds in a pure ~ calculation. To take into account, 
say, changes in shape of acetylene 93) or ethylene 94) in their excited 
states, it is necessary to include at least the ~ electrons of single bonds 
adjacent to the ~ bond system. 

Various procedures have been suggested for improving the calculation 
of ~ - ~ *  transitions without modifying the general interpretation of 
spectra. One of them consists in taking the effective charges of the 
orbitals as additional variational parameters, whose values could be 
different for the 2p~ and core orbitals. Several procedures based on that  
idea have been developed: variation of the 2p~ orbital exponents 
according to the nature of the spectroscopic state under s tudy 95), the 
ionic or covalent character of the valence bond structures of the mole- 
cule 95); the bonding or antibonding character of the molecular orbitals 
occupied by the two unpaired electrons 97). The last treatment,  first 
suggested for the ~ - ~ *  transition of hydrogen molecule 98), has inter- 
esting connections with the form of orbitals in excited states. I t  is found 
that  the effective charges of the 2p~ carbon orbitals in ethylene are much 
smaller for the excited level ~* than for the ground level ~. This means 
that  the antibonding molecular orbital of a double bond is more spread 
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out in space than the bonding one, a fact which is not recognized by  any 
LCAO MO theory using minimal orbital basis sets, e.g. one 2p~z orbital 
per carbon a tom and ~z electron. As a mat te r  of fact, the calculation of 
r~-~* transitions can be improved in a more conventional way by  taking 
expansion bases with a large number  of orbitals of ~ symmet ry  99,10o). 

At indefinitely large internuclear distances, any molecular wave 
function coming from a full configuration interaction t rea tment  can be 
expressed in terms of atomic valence state wave functions. According to 
Moffitt lol), the formation of chemical bonds can be regarded as a pertur- 
bation acting on isolated atoms, and the failure of ~z theories is apparent ly  
due to the fact tha t  the energy spectrum of the dissociation products of 
the molecule is poorly represented by  the usual methods of quantum 
chemistry.  The excitations predicted for the molecule at equilibrium 
distances are much more satisfactory if the Hamiltonian matr ix  elements 
at infinity are replaced by  spectroscopic valence state energies 102,1o3). 
Later  considerations 104,105,10e) showed that  Moffitt 's method of 'a toms 
in molecules' could not be developed in a rigorous way, except for systems 
with very few electrons. When the interpretation of experimental  da ta  
is the main object of theoretical calculations, it is more economical and 
fruitful to incorporate the da ta  of atomic spectroscopy into a purely 
empirical scheme~ This approach is the basis of the well-known method 
of Pariser and Parr  35) and Pople 3e): by  fitting a number  of basic core 
integrals fl~a and bielectronic repulsion integrals (pp; pp) and (pp; qq), 
it is possible to reproduce molecular spectra much bet ter  than by  any 
theoretical method. Thus, the sequence of transitions in a given com- 
pound, say the benzene molecule (see Table 9), or the variation of a 
transition in a set of related molecules (see x07,10~)) can be succesfully 
predicted. Such calculations have certainly a great heuristic value; 
however, they include the effects of the atomic basis set, the average 
Coulomb a-~ interaction and the ~-z and ~z-~ electron correlation in a 
way not susceptible of theoretical analysis. 

To summarize, ionization and excitation energies support  the familiar 
picture of unsaturated molecules in terms of ~z electrons. Nevertheless, 
we wish to stress the point tha t  agreement or disagreement with ex- 
periment by  no means proves or disproves an approximate  theory. There 
is often an alternative explanation for the characteristics of unsaturated 
compounds:  in Chapt. 4.5, we hayed noted tha t  the properties related 
to the delocalization of z electrons (ring currents e t c . . . )  could be inter- 
preted in a different way, even for benzene. Curiously enough, the 
electronic transition of benzene can be reproduced by  a GMS t rea tment  
involving the a electrons of C - C  and C- -H  bonds instead of the r~ 
electrons of the ring 10~). 
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Table 9. Lower transition energies of benzene 

References 

Exci ted states  ~ electrons I) All electrons 2) Exp. 3) 
in eV 

SCF CI Moffitt P P P  SCF CI 
a) ~) b) c) 

Triplets 

3Blu 3.07 2.56 5,2 3.59 4.54 3.98 3.66 

3Elu 4,32 3.82 5.6 4.15 5.73 5.39 4.69 

3Bsu 5.56 7.95 6.1 4.71 6.92 8.61 5.76 

Singlets 

1B2u 5.80 3,58 5.8 4.71 7.15 5,26 4 . 8 9  

l:Blu 7.10 8.77 4.8 5.96 8.38 9.48 6.14 

1Elu 9.76 9.69 8.3 6.55 10.93 10.61 6.75 

1) 2 p z  Slater orbitals - -  a) Non-empirical claculations: Moskowitz, J. W., Barnet t ,  
M. P. :  J. Chem. Phys. 39, 1557 (1963). b ) A t o m s  in Molecules: Moffitt, W., Scan- 
lan, J. : Proc. ]Roy. Soc. (London) : A 220, 530 (1953) c) Semi-empirical claculations 
with CI l imited to singly excited configurations: Pariser, R.:  J. Chem. Phys. 
24, 250 (1956). 
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5.4. References 

1) Htlckel, E. :  Z. Physik 70, 204 (1931). 
2) Goeppert-Mayer, M., Sklax, A. L. : J. Chem. Phys. 6, 645 (1938). 
3) Suard-Sender, M.: J. Chim. Phys. 64, 79 (1965). 
4) Moffitt, W.:  Proc. Roy. Soc. (London) ,4 202, 534 (1950). 
5) Julg,  A.: J.  Chim. Phys. 55, 413 (1958). 
s) Jungcn,  M., Labhar t ,  H.:  Theorct. Chim. Acta 9, 345, 366 (1968). 
7) Denis, A., Gilbert, M.: Theoret. Chim. Acta  11, 31 (1968). 
s) Clementi, E. :  J. Chem. Phys. 46, 4725, 4731, 4737 (1967). 
9) Praud,  L., Millid, Ph., Berthier,  G.: Theoret. Chim. Acta 11, 169 (1968). 

10) Berthier,  G. : Chimia 22, 385 (.1968). 
11) Levy, B., Berthier,  G.: J. Chim. Phys. 63, 1375 (1966). 
12) Jacobs, J . :  Proc. Phys. Soc. (London) 68, 72 (1955). 
19) Har tmann ,  H.:  Z. Naturforsch. ISa, 993 (1960). 
14) Sowers, O., Kauzmann,  W.:  J.  Chem. Phys. 38, 813 (1963). 
is) Preuss, H.:  Z. Naturforsch. 16a, 800 (1961): 
16) Ruch, E. :  Z. Naturforsch. 16a, 808 (1961). 
17) Bingel, W., Preuss, H., Schmidtke, H. H. :  Z. Naturforsch. 16a, 1328. 
18) Kollaard, U. K., Colpa, J.  P. :  Mol. Phys. 8, 295 (1964). 
19) Moffitt, W.:  Proc. Roy. Soc. ,4 210, 224 (1951). 
20) Sender, M., Berthier,  G.: J. Chim. Phys. 55, 384 (1958). 
2D Anno, T.:  J. Chem. Phys. 29, 1161 (1958). 

77 



~ Electro~ Calculations 

2~) ]3erthier, G., Suard, M., ]3audet, J . :  Tctrahedron 19, Suppl. 2, 1 (1963). 
2~) Leroy, G. : Bull. Soc. Chin]. Belg. 73, 166 (1964). 
~~ Hinze, H., Jaf~e, H. H. : J. Am. Chem. Soc. 84, 540 (1962). 
25) Pilcher, G., Skinner, H. :  J. Inorg. Nucl. Chem. 2~t, 937 (1962). 
~)  Paoloni, L. : Nuovo Cimento X, 4, 410 (1956). 
~7) Lesk, A. M.: Phys. l~ev. 177, 7 (1968). 
~s) Serre, J . :  J. Chim. Phys. 51, 568 (1954); 53, 284 (1956). 
~9) Ruedenberg, K.:  J. Chem. Phys. 3d, 1861 (1961). 
30) Julg, A., Bonnet, M.: Theoret. Chim. Acta, I, 1 (1962). 
31) Stewart, T. L.: Proc. Phys. Soc. (London) A 65, 220 (1960). 
3~) Julg, A., Pullman, B.: ~. Chim. Phys. 52, 481 (1955). 
33) L6wdi~, P. O.: J. Chem. Phys. 18, 365 (1950). 
34) Peradejordi, F.:  Compt. Rend. 243, 276 (1956). 
ss) Pariser, R., Parr, R. G.: J. Chem. Phys. 21,466, 767 (1953). 
s6) Pople, J. A.: Trans. Faraday Soc. 49, 1375 (1953). 
sT) Ohno, K. :  Theoret. Chim. Acta 2, 219 (1964). 
~s) Lykos, P. G.: Advan. Quant. Chem. ;, 171 (1964). 
30) I 'Haya,  u  Advan. Quan. Chem. 1, 203 (1964). 
40) Fischer-H)almars, I . :  Advan. Quan. Chem. 2, 25 (1965). 
41) Ohno, K. :  Advan. Quan. Chem. 3, 240 (1967). 
4z) Jug, K. :  Theoret. Chim. Acta 74, 91 (1969). 
43) Fumi, F. G., Parr, R. G,: J. Chem. Phys. 21, 1864 (195~). 
44) Fischer-Hjalm~/rs, I . :  J. Chem. Phys. 42, 1962 (1965). 
45) Ruedenberg, K.:  J. Chem. Phys. 79, 1433 (1951). 
46) Coulson, C. A., Rushbrooke, G. S.: Proc. Cambr. Phil. Sor 36, 193 (1940). 
4?) McLachlan, A. D. : Mol. Phys. 2, 361 (1959). 
4s) Ruedenberg, K.:  J. Chem. Phys. 34, 1884 (1961). 
40) Del Re, G., Parr, R. G.: Rev. Mod. Phys. 35, 604 (1963). 
fi0) Carpentieri, M., Porto, L., Del Re, G.: Int. J. Quant. Chem. 2, 807 (1968). 
~1) Mulliken, R. S,: J.  Chim. Phys. 46, 497 (1949). 
~)  Moffitt, %V.: Proc. Roy. Soc. (London) A 202, ~34 (19~0). 
5s) Newton, M. D.: J.  Chem. Phys. 48, 282~ (1968), 
54) Sureau, A., Berthier, G.: J, Physique 2~, 672 (1963). 
55) Bagus, P. S.: Phys. Rev. ~39, A 619 (1965). 
5~) Schulman, J. M., Moskowitz, J.  w . :  J. Chem. Phys. ~7, 3491 (1967). 
57) Clementi, E. : J. Chem. Phys. 47, 4485 (1967). 
5S) Milli4, Ph., Berthier, G.: Int. J. Quant. Chem. 23, 67 (1968). 
59) Serre, J.,  Pullman, A.: J. Chim. Phys. 50, 447 (1953). 
50) Serre, J . :  Th~se, Paris (19~5). 
Sl) Sidman, J.  W.: J. Chem. Phys. 27, 429 (1957). 
~') Pullman, A., Rossi, M.: Biochim. Biophys. Acta 88, 211 (1964). 
as) Lombos, B. A., Sauvageau, P., Sandorfy, C. : Chem. Phys. Letters 1, 42, (1967). 
64) Raimonda, J.  W., Simpson, W. T. : J. Chem. Phys. 47, 430 (1967). 
~5) McMurry, H., Mulliken, R. S. : Proc. Natl. Acad. Sci. 2~, 312 (1940). 
~ )  Palke, W. E., Lipscomb, W. N.: J. Am. Chem. Soc. 88, 2384 (1966). 
~7) Newton, M. D., Palke, W. E,:  J. Chem. Phys. 45, 2329 (1966). 
ss) Mulliken, R. S., Rieke, C. A.: Rep. Prog. Phys. 8, 2~I (1941). 
~9) Liehr, A. D.: Z. Naturforsch. ; ; a ,  752 (1956). 
70) Wilkinson, P. G., Mulliker~, R. S.: J.  Chem. Phys. 23, 189~ (1955), 
71) Mulliken, R. S.: quoted by H. Tsubomura in Bull. Chem. Soc. Japan 37, 417 

(1964). 
~)  Berry, R. S.: J. Chem. Phys. 38, 1934 (1963). 

78 



References 

78) Robin, M. B., Hart, R. R., Kuebler, N. A.: J. Chem. Phys. 44, 1803 (1966). 
74) Evans, D. F.:  J. Chem. Soc. 1735 (1960). 
75) Lubezky, A., Kopelman, R.:  J. Chem. Phys. 45, 2526 (1966). 
76) Robin, M. A., Basch, M., Kuebler, N. A., Kaplan, ]3. E., Meinwald, J . :  J. Chem. 

Phys. 48, 5037 (1968). 
77) Yaris, 1V[., Moscowitz, A., Berry, R. S.: J. Chem. Phys. 49, 3150 (1968). 
78) Ross, K. J., Lassettre, E. N.: J. Chem. Phys. d4, 4633 (1966). 
79) Roothaan, C. C. J . :  Rev. Mod. Phys. 23, 69 (1951). 
8o) Mulliken, R. S.: J. Chem. Phys. 33, 1596 (1960). 
81) Zelikoff, M., Watanabe, K.: J. Opt. Soc. Am. 43, 756 (1953). 
82) Berthier, G., Serre, J . :  In:  The Chemistry of the Carbonyl Group; edited by 

S. Patai, Intcrscience (1966). 
88) Parr, R. G., Crawford, B. L.:  J. Chem. Phys. 16, 526 (1948). 
84) Sender, M., Berthier, G. : J. Chim. Phys. 56, 946 (1959). 
85) Kaldor, U., Shavitt,  I . :  J. Chem. Phys. d8, 191 (1968). 
80) Dunning, T. H., McKoy, V.: J. Chem. Phys. 47, 1735 (1967). 
87) __ McKoy, V. : J. Chem. Phys. 48, 5263 (1968). 
ss) Denis, A., Malrieu, J. P.:  J.  Chem. Phys. 52, 4762, 4769 (1970). 
89) King, G. W., Ingold, C. K.:  J. Chem. Soc. 2740 (1953). 
90) Brand, J. C. D.: J. Chem. Soc. 852 (1956). 
91) Garforth, F. M., Ingold, C. V., Poole, H. G.: J. Chem. Soc 508 (1948). 
92) Craig, D. P.:  J. Chem. Soc. 2146 (1960). 
92) Howard, H., King, G. Vr Can. J. Chem. 37, 700 (1959). 
94) Burnelle, L., Lift, C.: Mol. Phys. 9, 433 (1965). 
95) Murai, T.: Prog. Theoret. Phys. 7, 345, (1952). 
os) Ohno, K., Itoh, T.: J. Chem. Phys. 23, 1468 (1955). 
97) Huzinaga, S.: J. Chem. Phys. 36, 453 (1962). 
98) Phillipson, P. E., Mulliken, R. S.: J. Chem. Phys. 28, 1248 (1958). 
99) McKoy, V. : (unpublished results). 

lo0) Denis, A., Malrieu, J. P.: J. Chem. Phys. 52, 6076 (1970). 
101) Moffitt, W.:  Proc. Roy. Soc. (London) A 218, 486 (1953). 
102) Moffitt, W., Scalan, J . :  Proc. Roy. Soc. (London) A 218, 464 (1953), A 220, 

530, (1953). 
lo3) Serre, J . :  Compt, Rend. 242, 1469 (1956). 
104) Pauncz, R.: Acta Phys. Hung. 4, 237 (1954). 
lO5) Hurley, A. C.: Proc. Phys. Soc. (London) .4 68, 149 (1955). 
106) Arai, T.: J. Chem. Phys. 26, 435, 451, (1957); 38, 32 (1958). 
lo7) Koutecky, J., Paldus, J., Zahradnik, R.:  J.  Chem. Phys. 36, 3129, (1962). 
lO8) Zahradnik, R.: Fortschr. Chem. Forschg. 10, 1 (1968). 
10o) Paoloni, L., De Giambiagi, M. S., Giambiagi, M. : Atti  Soc. Nat. Mat. Modena 

100, 89 (1969). 

79 



6. I n c l u s i o n  o f  ~ E l e c t r o n s  i n  M o l e c u l a r  C a l c u l a t i o n s  

6.1. a E lec t ron  Theories  

Unt i l  a b o u t  1960 theore t ic ians  devo t ed  much  less a t t en t i on  to  a e lec t ron 
sys tems  t h a n  to  ~z e lec t ron sys tems.  The reason was m a i n l y  t h a t  the  
n u m b e r  of a e lect rons  in a n y  molecule  is v e r y  large c o m p a r e d  wi th  the  
n u m b e r  of z e lect rons  in con juga t ed  sys tems.  Ac tua l ly ,  i t  is no more  
diff icult  to  e l abora t e  s implif ied ca lcula t ion  me thods  for a e lect rons  t h a n  
for ~z e lec t rons :  indeed,  such t r e a t m e n t s  h a d  been  sugges ted  m a n y  yea r s  
before  (see l} for a review of the  ea r ly  pe r iod  and  2} for more  recent  
deve lopments ) .  

The  progress  of d ig i t a l  compute r s  in the  l as t  ten  yea r s  has  m a d e  i t  
possible  to  ca lcula te  a p p r o x i m a t e  wave  funct ions  for r a the r  large e lect ron 
sys tems ;  for ins tance,  ~r and  ~z e lec t rons  of b iological  molecules,  such as 
the  ~undamenta l  bases  of nucleic  acids,  have  been t r e a t e d  no t  on ly  b y  
semi-empir ica l  methods ,  b u t  also b y  ab in i t io  methods  inc luding  all  
e lect rons  a} 8,4}. Never theless ,  one should  no t  ove res t ima te  the  accu racy  
of the  ca lcula t ions  t h a t  have  been car r ied  ou t  so far. As regards  energy  
and  r e l a t ed  observab les  (binding and  exc i t a t ion  energies,  force cons tan ts ,  
e t c . . . ) ,  one possible,  if no t  en t i r e ly  sa t i s fac tory ,  classif icat ion of quan-  
t u m - m e c h a n i c a l  t r e a t m e n t s  m a y  be  given according  to  the  order  of 
m a g n i t u d e  of the  error  A E  in the, t o t a l  ene rgy :  

i) spec t roscopica l ly  accura te  ca lcula t ions :  A E  ~ 1  cm -1 (3.10 -3 kca l  - tool -1) 

ii) chemica l ly  accura te  ca lcu la t ions :  A E  ~ 1 kca l .  mol  - I  

iii) m o d e r a t e l y  accura te  ca lcula t ions :  A E  ~ 1 eV (23 kcal-  mol-~)  

iv) c rude  ca lcu la t ions :  AE ~ 100 kcal-  tool -1. 

a) Ab initio calculations are quantum-mechanical treatments performed from first 
principles. In the case of molecules, the only input data are the number and 
nature of nuclei and the number of electrons, in other words the gross chemical 
formnla. No other experimental data should be used, but the calculations are 
often limited to experimental geometries. I t  should also be stated that  so-called 
ab initio calculations are usually approximate and often have a highly empirical 
character; for instance, the form and size of the atomic basis set in a LCAO-type 
development is scarcely ever determined from first principles. 
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Spectroscopically accurate solutions of the Schr6dinger equations 
have been computed only for the H2 molecule in the ground state 5} and 
several excited states 6}. Chemically accurate results are now available 
for very simple molecules, like LiH ~). For most diatomic molecules and 
hydrides of the first row, there are only moderately accurate calculations 
8,9}; it should be noted that  extensive computational work is needed to 
obtain even such accuracy, because electron correlation has explicitly to 
be taken into account. A b  ini t io  calculations performed on molecules 
of small or medium size by  the LCAO SCF method fall into the cate- 
gory of crude calculations. In the case of diatomic molecules 10} and 
linear polyatomic molecules 11}, the energies obtained by  the LCAO 
method are very close to the so-called 'Hartree-Fock l imit ' ;  i .e .  to the 
best energy given b y  an independent particle model, but  are hardly of 
moderate accuracy as compared to the experimental values. In the case 
of a medium-sized molecule, like benzene, the total energy given by  the 
best LCAO SCF calculation available at the present time is equal to 
--230.46 a.u .  12); the Hartree-Fock limit can be estimated to about 
--231 a .u .  and the experimental value to --232 a.u .  Thus, the best 
theoretical energy differs from the experimental one by about 1000 
kcal.mo1-1, and in this respect the 'Quest of the t tar tree-Fock limit' is 
somewhat vain. 

A b  ini t io  calculations have two serious shortcomings: they reqdire 
a high programming effort and are time-consuming, even with fast 
computers; they have too poor a precision with respect to experiment if 
limited to the independent-particle scheme. Semi-empirical approaches 
have been developed for overcoming these difficulties: some simplifica- 
tions are introduced into the mathematical formalism of quantum- 
chemical methods, particularly when computing the matr ix elements of 
the Hamiltonian; experimental data are used to calibrate certain quan- 
tum-mechanical parameters in order to ensure agreement between theory 
and experiment. The calculation methods generally used for a electrons 
in polyatomic molecules are related to the molecular orbital theory;  
they are bond orbital or delocalized molecular orbital methods. The 
former are applied mainly to saturated molecules, because completely 
localized orbitals seem to offer a good starting assumption for studying 
additivity rules and their deviation in such compounds. The latter are 
used in various forms (semi-empirical and non-empirical) for more general 
electron systems; they are described in Sect. 6.2. 

The analysis of observed binding energies 13,14,15) and other prop- 
erties (molecular refractivities, magnetic susceptibilities, e t c . . . )  of 
saturated hydrocarbons shows that  it is possible to reproduce the ex- 
perimental da ta  to a high degree of accuracy, by  adding up a number 
of the C--C and C--H bonds. A simple additivity scheme giving bond 
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energies to a few kcal'mo1-1 is unable to distinguish between the various 
isomers of a molecule, bu t  is significantly improved if different empirical 
values are at t r ibuted to bonds start ing from a primary,  secondary or 
ter t iary carbon a tom 16,17,18), or if interaction parameters  between 
bonded or non-bonded atoms are taken into account 19,2o,21,22). Addi- 
t iv i ty  rules and quasi-constancy of bond lengths, force constants and 
other properties in saturated molecules are difficult to understand 
within an ab initio framework: they are interpreted by  postulating tha t  
the a bonds can be described in terms of electron pairs 9.a). 

I f  the molecular wave function is approximated by  a separated-palr  
function of the form 

W(1,2 . . . . .  2m) = ~ r  k~K(2k - -1 ,2k ) . . .  W~t (2m- -1 ,2m) ]  

(6.1) 

where ~K is either an electron pair localized on a bond or a lone pair 
(see Sect. 4.1), the constants of addit ivi ty rules can be identified with 
certain properties of the separated pairs, provided the bond-interaction 
terms are small. However, these assumptions do not lead in a straight- 
forward way to addit ivi ty rules nor does the existence of addit ivi ty rules 
iustify the form (6.1) postulated for the total  wave function. Addit ivi ty  
rules could be constructed anyway if the interaction terms were large, 
but  connected with each other by  some relations 24). In an actual ab initio 
calculation on methane 25) it was found that,  in spite of a good localiza- 
tion of electrons, the total  interpair correlation energy was about  60 
kcal'mo1-1. A relationship between addit ivi ty and localizability can be 
simply accepted as a reasonable assumption, since these addi t ivi ty  rules 
break down in systems with a strong delocalization. 

I f  the Coulomb interaction between electrons of different pairs is 
ignored, each localized bond and lone pair contribute independently to 
the total  energy, which implies a perfect addit ivi ty of bond energies. 
In  the independent-particle model, the localized bond function can be 
visualized as a two-center molecular orbital occupied by  two electrons. 
Nevertheless, it is possible to reproduce deviations from addit ivi ty  rules 
within this scheme, for instance, b y  taking into account overlap (for a 
review, see e.g. 2)). 

Chemical evidence shows tha t  in a chain of localized C--C bonds an 
a tom with a different electronegativity induces intramolecular charge 
transfers which are t ransmit ted along the chain (Schliissel-Atoms of 
classical organic chemistry 26)). The propagation of inductive effects 
along a set of two-center molecular orbitals can be introduced in a simple 
MO-LCAO scheme as follows uT~. Each individual bond is described as 
the antisymmetrized product  of two spin orbitals corresponding to one 
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bond orbital, which is approximated as a linear combination of two atomic 
orbitals, one for each of the two atoms X and Y participating in the a 
bond. The coefficients of the linear combination are the elements of the 
eigenvector corresponding to the lower eigenvalue of a 2 • 2 Hamiltonian 
matrix, whose elements are three empirical parameters: the two diagonal 
elements ~x and ~y and the off-diagonal elements flxY = flYx. They play 
the same role as the a's and fl 's of the Htickel method. The interaction 
of one bond with the others is introduced by assuming that  each of the 
s  depends on all the neighboring atoms according to the equation 

0 (6.2)  ~x = ~x + ~ rxz ~z 
Z 

where Z denotes any neighbor of X, including Y. For instance, the carbon 
atom of methane has 

a c  : a + 0.137~ 

whereas the carbons of the methyl and methylene groups of ethylamine 
have 

o~ 1 = 0~ ~ -  0.133fl 

~ z = ~ + O . 1 5 4 f l  

respectively, as compared to 

0 
~ c =  ~ + 0 . 0 7 f l  

for a carbon in the absence of neighbors. (The fixed parameters ~ and fl 
are the zero point and the unit of energy, respectively; fl is close to - -5  
eV 9.8), which gives values of the order of 0.1 eV for the energy changes 
brought about in a bond by  the environment), 

The structure of Eq. (6.2) clearly shows that  the effect of the next- 
nearest neighbors on the ~ value of a given atom is proportional to the 
corresponding ~ through a quant i ty  of the second order in the ~,'s, as 
should be expected of inductive effects according to the chemical defini- 
tion. 

For halogenated paraffins 27) and aminoacids 2s) this simple method 
gives a charge distribution which is useful for interpreting molecular 
properties related to atomic electron densities: dipole moments, quadru -  
pole coupling constants, chemical shifts, e t c . . .  I t  can be also applied to 
the a framework of heteroaromatic molecules in connection with n- 
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electron calculations 29,3o~ and yields in an inexpensive way a total  
(~ + z) charge distribution analogous to tha t  of more complicated ~ - ~  
calculations (see Sect. 6.4). 

There is one proper ty  of saturated compounds, which cannot be 
predicted by  addit ivi ty rules, namely ionization potentials. As has been 
shown by  Lennard-Jones and Hall  31,~2}, this fact is not inconsistent 
with the description of saturated molecules in terms of localized bonds 
and can easily find a place in such a picture. 

Consider, for instance, the ionization of methane.  Start ing from a 
localized description of the neutral molecule, one can assume tha t  the 
lowest state of the positive ion is obtained by  removing one electron to 
one of the C- -H bond functions, and construct in this way four possible 
functions of the form 

T+ = ~ [TA (1,2) TB (3,4) T c  (5,6) TD (7)] (6.3) 

~D (7) denoting the bond function occupied by  one electron. The four 
functions ~+ correspond to the same physical situation and form a set 
of four degenerate functions with the same energy. Consequently, a 
bet ter  description of the ionized states of methane should be obtained 
by  taking a linear combination of the four functions T+b}. The same 
formalism applies if one bond is excited instead of being ionized: the 
four possible excited functions Texc give rise to two distinct states, a 
triply degenerate one (the lowest excited state of CH4) and a singly 
degenerate one. The important  result is tha t  the excitation is no longer 
localized on a particular bond, but  distributed on all the bonds. From a 
theoretical point of view, the preceding t rea tment  is nothing but  a con- 
figuration interaction limited to four equivalent functions, and it should 
be made even if the various bonds are not geometrically equivalent, for 
instance, in long paraffins, because their energies are still very close. In  
conclusion, the picture of a neutral  molecule in terms of localized bonds 
for the ground state is consistent with extensive delocalization in the 
upper  states. 

A semi-empirical calculation method for ionization potentials has been 
developed, using the fact that  a Slater determinant  is defined only up to 
a unitary transformation (see Sect. 4.4) : the canonical molecular orbitals 
~,, eigenvectors of the Hart ree-Fock operator F for a closed-shell system, 
can be replaced b y  equivalent orbitals ~o,, almost completely localized, 

b) In the frame of the separated-group function formalism, it is fourtd that the 
four possible functions kP'+ are unable to combine together and the ground state 
of the ion CH~ keeps its fourfold degeneracy ~z). 
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and vice-versa. Whereas the operator F is diagonal with respect to the 
9 functions: 

I ~ F  ~, dz = e, ~1, (6.4) 

(see Eq. 2.16), it has diagonal and off-diagonal elements with respect to 
the ~o functions: 

~* = I M F ~o, dr N* = I ~ F o~ dr (6.s) 

(note that F is invariant in a unitary transformation). Now, if one 
identifies, the equivalent orbitals with two-center localized molecular 
orbitals, i.e. one neglects the 'tails' in the equivalent orbitals, one can 
assume in first and good approximation that  the ~'s and ~'s depend only 
on the nature of the bonds directly involved. Furthermore, the ~'s 
corresponding to two bonds without a common atom can be considered 
as exceedingly small. From this, a semi-empirical method may be 
developed in which the ~'s and ~'s are regarded as adjustable parameters. 
Then, by diagonalizing the ~ and ~, it is possible to estimate the values 
e, of the delocalized molecular orbitals T,, which are related to ionization 
potentials via the Koopmans theorem (see Sect. 5.2). For instance, the 
study of paraffins involves two diagonal elements ~cc' and ~c~r and thl/ee 
off-diagonal e lements / /cc ' ,cc"  //cc' ,c~ and //cI-I, CI~'; these parameters 
are fitted (with some simplifications) on the ionization potentials of the 
first members of the paraffin series and carried over into the whole set of 
compounds ~2~. The equivalent orbital method has been extended to 
saturated and unsaturated compounds with functional groups (ketones, 
acids, etc.) and gives surprisingly good agreement with experimental 
ionization potentials sa). This agreement is not an indication that  the 
method of equivalent groups is theoretically very sound, but  that  it is a 
good interpolation scheme for experimental data. In fact it is not a true 
theoretical t reatment of ionization phenomena, because of the large 
number of approximations it involves. 

Finally, the molecular orbitals 9, themselves can be expressed as 
linear combinations of the bond orbitals ~ol (LCBO method) : 

~ = X c ~  o j ,  (6.6) 
t 

the coefficients c~j being the components of the eigenvector associated 
to the eigenvalue e~. The square of the coefficients in the molecular orbital 
occupied by  a single electron in the positive ion also gives the distribution 
of the positive charge due to the missing electron in the neutral molecule. 
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The fraction of positive charge c~j on the jth bond is expected to be 
correlated ~vith the fragmentation of the ion in mass spectroscopy ex- 
periments 8~,36). Other LCBO methods following the same lines have 
occasionally been used (see e.g. 21)). 

6.2. Joint Treatment  of ~ and ~ Electrons in Unsaturated Molecules 

Two problems arise right from the beginning when one wishes to compute 
molecular wave functions: 

the number of electrons to be explicitly included in the total wave 
function: 

the choice of an expansion basis set. 

In large molecules, it is tempting to limit the calculations to valence- 
shell electrons, i.e. the ls electron ior hydrogens, the 2s and 2p electrons 
for atoms of the first row and so on, because only those electrons are 
involved in the usual theories of the chemical bond. Indeed, the semi- 
empirical extensions of the molecular orbital method suggested for the 
a electrons of unsaturated compounds are essentially valence-shell 
treatments. Some difficulties in the molecular-orbital method originate 
from that  restriction, for instance, the orthogonalit~, problem with 
respect to the inner shells (see Sect. 3.1) and the definition of core in- 
tegrals taking into account the attraction of nuclei and repulsion of inner 
electrons. Moreover, the analysis of important physical properties, for 
which the inner electrons are largely responsible, has to be done in an 
indirect way; this is the case for the relationship between K-shell ioniza- 
tion potentials and intramolecular charge transfers 37), or the variation 
of nuclear spin-spin constants, like J13c-H, which depend among other 
things on a high power of the effective nuclear change of inner orbitals 
as). In principle, all the difficulties should disappear if all the electrons 
are taken explicitly into account. 

In an ab initio calculation, the expansion basis set is completely 
defined by  its mathematical form, size and location in space, the orbitals 
being either centered on the nuclei or floating in more general theories 
(see e.g. 39)). I t  does not mat ter  whether pure or hybridized orbitals are 
used, because nothing is altered by  a linear transformation among the 
members of a basis set, neither the value of the various observables, nor 
the difficulty of the calculations. On the other hand, in semi-empirical 
calculations, the atomic orbital basis is chosen with a view to the approx- 
imations to be introduced later, and linear transformations of the 
hybridization type may be useful for transferring some experimental 
properties into the theory. Obviously, semi-empirical methods can 
hardly be invariant against such transformations. In the following, the 
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methods available for treating a and ~ electrons simultaneously have 
been classified according to 

i) the type of basis (i.e. use of pure or hybridized orbitals) 

ii) the contents of the one-electron effective Hamiltonian (i. e. either 
the electronic repulsion is completely neglected, or the matr ix giving 
the molecular orbitals contains interaction terms between the electrons 
explicitly considered in the calculation) 

iii) the approximations concerning the integrals themselves (i. e. overlap 
and differential overlap are neglected or taken into account by  some 
means or other). 

All-valence electron methods recently suggested for organic molecules 
are derived from semi-empirical approaches developed earlier in another 
context, namely the Wolfsberg-Helmholz t reatment  of coordination 
compounds 40~, the Sandorfy treatment of paraffins 41) and the Parr- 
Pariser-Pople t reatment  of ~ electrons 4a,4a~. 

The present discussion has been limited to the most widely used 
methods, but  many variants have been suggested; Table 10 gives a brief 
survey of them. A more complete report  can be found elsewhere 40 % 

For some purposes, a basis set consisting of hybridized atomic orbitals 
is particularly suitable in LCAO-MO calculations. By taking hybrids 
directed along the chemical bonds instead of pure atomic orbitals 
defined in terms of arbitrary axes, one simultaneously retains the essential 
features of the bond orbital picture and the standard delocalized method. 
This method has been developed in a parametric form similar to the 
standard Hiickel method including or not including overlap integrals a l l  

In the case of hydrocarbons, the calculation still comprises five para- 
meters, namely two Coulomb integrals xc and ell, tWO bonds, resonance 
integrMs flee' and /~c~ and one resonance integral for two orbitals 
centered on the same carbon /~cc. As usual, the interaction terms be- 
tween non-bonded atoms are neglected. The parameters e and ~ are the 
matr ix elements of a non-specified effective Hamiltonian with respect 
to the sp a or sp 2 hybrid orbitals of carbon and the ls orbitals of hydro- 
gens. For the ~ bonds of conjugated hydrocarbons 4~, the following set 
of values has been used 

~c = ~  ~ = ~--0.2f10 

f l c c ' = / ~  ~c~r = 0.94~ /~cc = 0.38/~ 

c) Digital computer programs are needed Ior most of the a-~ electron methods; 
many of them can be obtained through the Quantum Chemistry Program Ex- 
change (Chemistry Departme~xt, Indiana University). 

87 



Inclusion of a Electrons in Molecular Calculations 

Table 10. Classification of  current a--z~ electron methods 

References see p. 1 15 

Basis set No explicit Simulated Approximate 
electron electron electron 
interaction interaction interaction 

Full electron 
interaction 

Localized Equivalent 
orbitals molecular 

orbital 
method31,a~) 
Group orbital 
method34) 
Two-center 
molecular 
orbital method 27) 

Hybridized Hybridized 
orbitals orbital Hfickel 

theory41,45) 
Independent  
electron 
molecular 
orbital theory 48) 

P u r e  atomic Extended 
orbitals Hfickel theory 

40,50) 

Iterative 
extended 
Hfickel 
theories60 61 82) 58) 

Second-order 
perturbation 
methodiC4) 

Zero-differential 
overlap 
approximation 4s) 
Orthogonalized 
SCF method 71) 

Quasi SCF Zero-differential 
diagonal overlap 
element approximation 
method65) 51,69) 
Kinetic-energy 
Hiickcl theory 

Standard SCF 
method73,74,75, 
76,77,78) 

SCF group 
function method 
B3) 

Random-phase 
approximation 
i~o) 

Second-order 
perturbation 
methodlm 7) 

This purely parametric method can easily be converted into a Parr- 
Pariser scheme, as done for paraffins 4~), by selecting appropriate values 
for the penetration integrals (U~; pp) and electron repulsion integrals 
(/5/~; qq) between hybrid orbitals. 

I t  is possible to derive instructive information concerning the general 
features of the electronic structure of a bond systems by  making drastic 
assumptions on the value of the parameters a and ft. First, one obtains 
a bond orbital scheme if all resonance integrals between hybrids not 
involved in a chemical bond are set equal to zero; consequently, the 
delocalization effects can be treated by the standard perturbation theory 
of the molecular-orbital method; second, if all the Coulomb integrals are 
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assumed to have the same value and the resonance integrals rico for 
orbitals centered on the same atom are neglected (which means that  the 
same value is assigned to the diagonal elements of the 2s and 2p orbitals 
of carbon), certain results well known in the Hiickel theory of alternant 
hydrocarbons (pairing of the occupied and virtual molecular orbitals, 
uniformity of charge distribution, sign alternation of mutual polarizabi- 
lities etc. 47)) will apply also to all-valence electron treatments 4s). In 
addition to the value assigned to the parameter of the ls orbital of hydro- 
gens, the energy difference between 2s and 2p orbitals of carbon plays 
an important  role in the polarity found in the C--H bonds and induces 
delocalization effects which combine with those produced by  long-range 
resonance integrals. The resulting bond orders were expected to be 
related to long-range nuclear spin-spin coupling constants, but  the general 
properties of independent particle models suggest rather that  the latter 
are for the most part genuine correlation effects 49). 

Nowadays, the success of the methods proposed by Hoffmann 50) 
and by  Pople and Segal 51) among the chemists tends to promote the 
use of pure atomic orbital bases for all-valence treatments. The first 
method is a straightforward application of the Wolfsberg-Helmholz 
treatment of complexes to organic compounds and is ca[led the 'Ex- 
tended Hi~ckel Theory' (EHT), because its matr ix elements are para-. 
metrized in the same way as the Htickel method with overlap for ~ 
electrons. The other method, known under the abbreviation 'Complete 
Neglect of Differential Overlap' (CNDO), includes electron repulsion terms 
by extending to a orbitais the successful approximation of zero-differen- 
tial overlap postulated for ~ electrons. 

In Extended Htickel Theory, the diagonal matrix elements a~ of the 
effective Hamiltonian are identified with the corresponding valence-state 
ionization energies, i.e. for carbon and hydrogen atoms: 

c c ~ a~.s ~ --21.4 eV a2~, = --  11.4 eV als = --  13.6 eV 

and the off-diagonal elements are calculated by one of the following 
formulas a0,50,a2,s3) : 

tim : --  K Spq 

fl~q = K S~q ~z~, + ~q 
2 

fl~q = K S~q ~ (a~ X gq) 

(overlap proportionality rule, K = 21 eV) (6.7) 

(arithmetic mean rule, K = 1.75) (6.8) 

(geometric mean rule, K = 2.00) (6.9) 
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where the K parameters  are simple proportionality factors and the 
overlap integrals are calculated from Slater orbitals with the usual 
screening constants. The molecular orbitals are obtained by  solving a 
set of Hiickel-type equations in which all overlap and resonance integrals 
are in general retained. Irrespective of their physical meaning, the above 
formulas include a rather  imprecise empirical parameter  (plausible values 
of K for the arithmetic or geometric mean rule range from 1 to 4.5) and 
have several inconsistencies: 

i) They are not invariant  with respect to linear combinations of basis 
orbitals and to shifts in the zero-point of the energy scale, except for 
very particular transformations 54). 

ii) The arithmetic mean rule gives the same resonance integrals ~ a ,  
regardless of whether the energies ~ and ~a associated to the orbitals 
%~ and %~ are close to each other or differ from the mean value by  an 
arbi trary quanti ty.  For two orbitals involved in a chemical bond, the 
geometric mean rule overestimates the covalent bond energy, and in 
addition has to be taken as an absolute value in order to avoid imaginary 
resonance integrals #~a due to a possible opposite sign of the integrals 
x~ and ~a. In this respect the reciprocal mean rule 55) 

**" ~ (6.10) fl~a = K S~,a (~. + ~q)/2 

should work better,  since it predicts a bonding power in agreement with 
the best empirical measure of the covalent bond s6}. 

iii) All the rules imply tha t  the kinetic T , a  contained in each fl, a is 
proportional to the overlap integral S~q, although the numerical values 
of the kinetic terms are known to vary  as the square of the overlap, at  
least for certain choices of the AO basis. If  the right dependence is intro- 
duced into the arithmetic mean rule, one obtains the formula 

# ~  ---- S.~ (2 --IS,,,,I) o,,, § ~a (6.11) 2 

where the absolute value ]S~a I is required by  the angular factor of the 
2 p orbitals 5~}. This question is settled once for all in the 'Kinetic-energy- 
included Extended Hi~ckd Theory' ss,sm, where the matr ix  elements of 
the kinetic operator T are computed theoretically and only the potential  
par t  V of the effective Hamiltonian is evaluated by  an arithmetic mean 
rule: 

#~ = T ~  + V ~  
(6.12) 

V~a = K S ~  V~ + vaq 
2 
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However, bet ter  results are obtained if specific values K~q are taken, 
i.e. different proportionMity factors for different pairs of atoms and 
orbitats, and a special formula is used for one-center off-diagonal elements 
(for details, see ss)). The K factors are not fitted on empirical data  but  
obtained by  trim and error after ab initio SCF calculations on model 
compounds (for ethylene, Kcc  = 1.0 for valence-shell orbitals, K I ~  = 
1.18, K~ , ,x  = 1.05, K~o,~ ~ 0.98). 

In fact, none of these points is really so important  in a semi-empirical 
method, because such methods are not designed for performing absolute 
calculations on single molecules, but  rather for studying the trends of 
physical properties in a series of related compounds. Computational 
experience shows that  the general picture of the electronic structure is 
not significantly altered whatever method may be chosen, as long as the 
parameters or the coordinate axes of orbitals are varied within reasonable 
limits. 

More serious problems arise with the energy parameters a~. In principle, 
the valence-state ionization potentials approximating the diagonal ele- 
ments of the effective Hamiltonian should be selected in accordance with 
the formal atomic charges; one is necessarily led to an iterative calcula- 
tion resembling the well-known o)-technique for r~ electrons, i.e. one 
guesses a charge distribution, corrects the a's for their charge dependence, 
calculates a new charge distribution from the molecular orbitals found" 
by  solving the secular equation and so forth (see e.g. sg)). Several extended 
Htickel schemes of this type including damped iterative procedures 60,61, 
62,68) have been proposed, but  the problem is not so simple as in g- 
electron theories, because the a's depend on the formal atomic charges 
via the separated electronic populations of the orbitals located on each 
atom. It  should be remembered that,  for instance, the ionization energies 
of the neutral nitrogen atom are not the same for the valence states 

s~P~PvP~ ~ and Slh~lhvpz. An additional difficulty comes from the fact that  
the orbital populations are not integral numbers (0, 1 or 2) but fractions 
of an electron, so that  one has to define differential ionization energies ~ 4). 
From a strictly theoretical point of view, the problem can be settled 
only if the matrix elements of semi-empirical methods are considered 
as an approximation for the matrix elements of the SCF one-electron 
Hamiltonian 

F = H e~ + ~. [n,J~(1) - t i e  n,K,(1)J 
f 

(6.13) 

where n, is the occupation number of the molecular orbital 9, (see 
Sect. 9~.4). This can be done by  using in a systematic way the Mulliken- 
Ruedenberg approximation for the two-electron integrals (pq;rs) con- 
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rained in the matr ix elements 'of the Coulomb and exchange effective 
operators J ,  and K, ~). The following expression is then found for the 
diagonal elements a~ of the orbital ~ belonging to the atom P: 

.F~p = Wp + ~, q~r (J~r - -1 /2  Kpr) 
r~R 

+ ~ [-- (Ug; pp) -- ~ (n~ -- q~) (J~t - 1/~ K~)]  
L#P ~ 

(6.14) a) 

in which qr ~ or q~ denote the gross atomic populations of the orbitals 
Zr or Zt respectively centered on the atom P or L, i.e. expressions of the 
following form (see Sect. 6.3): 

q~r = ~ ~ n~ C~r c~s Srs (sum over any s), (6.15) 
tt s 

and n~ is the number of electrons occupying the orbital Zt in the appro- 
priate valence state configuration of the atom L. Assuming that  the 
population of the orbital Zt is not too much altered from the atom to the 
molecule (i.e. n~ q ~ )  and neglecting penetration integrals (U~;pp), 
one finds 

o~ = W~ + Z q~r (Jpr - 1/2 K~r) (6.16) 
rGP 

which is the basic formula for a SCF-like extended Hfickel theory. 
The core parameters W~ and one-center two-electron integrals Jpr and 
K~r can be evaluated from the spectroscopic data available for the atom 
P and its ions; typical values are given in Table 11. 

Clearly, the simplified form of ** is only valid for almost neutral 
molecules. In the case of strongly polar molecules and ions, the last term 
of Eq. (6.14) has to be taken into account, at least through its long-range 
components J ~ .  I t  may be remarked that  if one introduces the two- 
center Coulomb integrals in their asymptotic form 

1 
J~t = (PP; ll) ~_ (in a.u.) (6.17) /~/'L 

one obtains the correction term to be added in a molecular orbital model 
to account according to Jorgensen for the Madelung energy between the 
different groups of a molecule 67,~s). 

a) Actually, Eq. (6.14) is only correct for closed-shell systems, where nl is equal to 
2 for occupied orbitals and 0 for virtual orbitals. I t  is extended to open-shell 
systems with n~ = 1 for singly occupied orbitals in the Longuet-Higgins and 
Pople approximation of the Roothaan SCF equations 66). 
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Table 11. Atomi~ parameters for iteratlve extended-Hackel theories 1) 

Slater-Condon H C N O 
parameters  (eV} 

W s --13.59 --51.25 --76.23 --100.71 

Wp --41.83 --61.81 --84.10 

Js~ 12.85 11.73 13.97 15.11 

] sp  11.48 13.65 15.14 

J~o~, 11.51 13.71 15.87 

J~xvv 10.22 12.05 13.77 

Ks~ 2.59 3.05 3.66 

K ~ v  0.64 0.83 1.05 

1) Calculated from valence s ta te  ionization potentials  and electroaffinities: G. Pil- 
chef and H. A. Skinner, J. Inorg. NucL Chem. 24, 937 (1962). 

A further step in the way of improvements is to consider all the 
parameters, the s  as well as the fl's, as approximate expressions of the 
SCF effective Hamiltonian. This was done using various zero-differential- 
overlap approximations 51,697e). The diagonal elements F~0a0 of the CNDO 
method are given by  an expression completely equivalent to Eq. (6.14) 
and the off-diagonal elements are of the form 

~,,core ~ ni 
F~q = ~ S ~  - -  -~- c~  c~  (pp ;qq) (6.18) 

l 

. 

In order to preserve the invafiance of charge distributions under 
rotation of the locM coordinate axes of each atom, the integrals K ~ r e S ~  
and (pp;qq) are ~sumed  to be independent of the azimuthal quantum 
number of atomic orbitals, i.e. the same value is used for ~ y  2 s and 2 p 
orbitals. FinMly, it should be noted that  in the case of ~ electrons the 
zero-differential-overlap approximation c ~ n o t  be justified as completely 
as for ~ electrons by  a r ~ i n g  about orthogonaHzed L6wdin orbitals, 
because the expression of the S -~/, matrix cannot be limited to first- 
order t e ~ s  70,71,72). 

Requiring more and more rigor in the computational method inevit- 
ably results in the c a ~ n g  out of ab initio cMculations by  the molecular- 

e) A short  description of the  various forms of Zero-Differential-Overlap approxima- 
t ions (ZDO approximation) : CNDO 1, CNDO 2, NDDO, INDO, PNDO, EBIZDO, 
M I N D O . . .  requires a t  least  a family tree. See also G. Klopman and ]3. O 'Lea ry :  
Fortschr .  Chem. Forschg. 15, 445 (1970), ,,All-Valence Electrons S.C.F. Calcu- 
lat ions".  
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orbital method. At the present time, such calculations are currently 
made on organic molecules of medium size (i.e. containing one ring), 
using LCAO expansions in atomic orbitals of Gaussian form 7.%~4,7~,76} 
and also on simple polyatomic molecules with Slater-type atomic 
orbitals 77,7s}. Programs running on large digital computers are neces- 
sary for rigorous computation of all the integrals from their mathematical 
definition and performance of the SCF iterative cycles. A comparison 
between molecular orbital energies obtained by various semi-empirical 
and ab initlo methods for ethylene, formaldehyde and benzene is given 
in Tables 12, 13, 14. 

I t  may be asked: do these methods have any lhractical use and, if so, 
what are the merits of the more sophisticated treatments with respect 
to the simpler ones, for instance, the primitive Extended Htickel Theory ? 
First, quantum-chemical calculations are concerned with the electronic 
structure and related physical properties. I t  has been verified that  the 
general picture of the charge distlibution is the same in the various 
calculation methods, especially in the case of heterocyclic compounds 79}. 
The fine details of the electronic structure have been successfully corre- 
lated with certain physical properties: dipole moments, quadrupole 
coupling constants, chemical shifts, nuclear spin-spin coupling constants, 
hyperfine coupling constants in free radicals . . .  (see e.g. so}). I t  is not 
easy to define the physical meaning of such correlations in the case of 
highly parametrized methods, but  it is gratifying to see that  a more 
satisfactory agreement with experiment may  be found by  iterative 
methods (see e.g. sl,s2} for nuclear magnetic resonance phenomena). 
Ab initio calculations are needed for an analysis in terms of quantum- 
mechanical observables: in principle, the mean value of a one-electron 
operator (i. e. the position vector ~ of an electron for dipole moments) is 
more easily calculated than energy by SCF independent particle models, 
because the first-order correlation correction vanishes by  virtue of the 
Brillouin theorem 8~}. 

Most 15roblems of chemical interest (relative stability of conformers, 
rotation barriers, equilibrium constants, etc.) involve variations of the 
total energy rather than one-electron operator mean values. Approximate 
methods are by  definition unable to give any value for the total energy, 
because they do not explicitly take into account the electron repulsion 
terms, except for CNDO-type methods. Of course, the molecular orbital 
energies e~ can be correlated to ionization potentials (see Sect. 5.2), but  
a sum of ionization energies cannot be identified with the total energy 
of a SCF scheme. The orbital energies e, of a closed-shell system are given 
by  

e~ ----- I~ + G~ (6.19) 
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Inc lus ion  of a E l ec t rons  in  Molecular  Ca lcu la t ions  Refe rences  see p. 115 

where Is and G~ are the matrix elements of the core Hamiltonian and the 
effective electronic potential contained in the Fock operator (Eq. 2.16). 
Starting with this expression, several forms can be written for the total 
energy; for instance 

Esc~- = ~. (I~ -t- e~) q- N (6.20) 
t 

EscF ---- ~ (2 e~ --  G~) q- N (6.21) 
t 

where the sum is to be taken over the doubly occupied molecular orbitals. 
Therefore, by  simply adding the energies of electrons e~ one ignores the 
fixed-nuclei repulsion N and counts the electronic interaction energy 
twice s4). However, it has been suggested as) that  the binding energy A, 

Escy and that  i.e. the difference between the total energy of a molecule m 
-~SCF, of the component atoms a could be predicted by  means of molecular 

and atomic orbital energies e~ n and e~ alone, because the quanti ty 

A = ~ (I~ ~- I~) ~- N (6.22) 

is usually a small part  of A (in ethylene, AscF ---- 0.734 a.u., A-~0.102 
a . u . ) .  

Then, one is iustified in putting 

= Y.  - ( 6 . 2 3 )  

/~scF ---- ~ e~ n q- C (6.24) 

the quanti ty C, of purely atomic origin, being constant for a series of 
isomers. In the case of free radicals, the expression (6.23) should be 
supplemented by  an extra term equal to 1/4 .]rrr (the self-interaction 
of the unpaired electron in the molecular orbital ~r); this term, derived 
from the form of the effective Hamiltonian in the SCF theory of Longuet- 
Higgins and Pople for open-shell sytems, does not seem to be important  
in discussions of the relative energies of free radicals 81,85). The binding 
energies predicted by  the preceding formulas are comparatively correct; 
however, it should be recalled that  the binding energies calculated from 
SCF non-empirical calculations, using the same orbital basis for the 
molecule and its components, are much smaller than the experimental 
values (about 40% for aromatic molecules s~)). One-electron theories are 
considered to be fully reliable only for the study of angular deformations 
and break down completely in the case of very polar molecules sT), because 
they only take into account the forces associated with the overlap of 
orbitals, but  not the long-range forces coming from the Coulomb inter- 
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action of electrons ss). At the same time, a theoretical justification is 
found for the empirical correlation diagrams of Mulliken-Walsh which 
relate the molecular shape to the angular energy variation of the orbitals 
available for the electrons sg). The calculation of equilibrium bond 
lengths and energy derivatives (force constants) is not so successful, even in 
approximate SCF methods including electron repulsion terms. In addition 
to the attractive term usually ascribed to overlap, the length of a bond is 
determined by  other factors 88), and its evaluation requires a well- 
balanced mixture of all the contributions from electrons and nuclei. The 
approximate methods of CNDO-type have been parametrized to give 
acceptable values for heats of formation 90) or electronic transition 
energies 91) for molecules in their actual geometries; since the latter may  
not correspond to the minimum of the approximate theoretical energy, 
there is not much hope of obtaining good results for non-equilibrium 
quantities 90). On the other hand, recent ab initio calculations suggest 
that  the full SCF method is able to reproduce the geometry of poly- 
atomic molecules in good detail, for instance, the preferential conforma- 
tion of two rotating methyl groups 9~ and the bond length and force 
constant of the C--H bond in paraffins 9~, or the inversion of the N--H 
bond in heterocyclic compounds 94h In any case, the real reason why 
electron correlation seems to play no role in phenomena of that  sort 
should be investigated. 

6.3. Analysis of Charge Distributions and the Meaning of Formal 
Atomic Charges. 

Density contour maps, like those of Fig. 1 (Sect. 2.3) for the nitrogen 
molecule or Fig. 2 (Sect. 4.2) for ethylene give a complete picture of the 
electronic distribution in a molecule. However, it is more convenient, 
especially for comparative studies, to describe the electronic structure 
by  a set of single numbers rather than by  maps, even if this involves 
the loss of much information. This is why indices summarizing the form 
of the electron distribution in the neighborhood of an atom or a bond 
have been defined by  quantum chemists. Following Mulliken, the assign- 
ment of a set of such indices to a molecule may  be called its population 
analysis. 

There are two principal sorts of population analysis: that  of Coulson 
and Longuet-Higgins, expressed in terms of charges (often called 'charge 
densities') and bond orders 9a), and that  of Mulliken in terms of atomic 
and overlap populations 96~. Both are strictly defined within the frame 
of the LCAO--MO method. 

In the primitive definition of charges and bond orders it was assumed 
that  the atomic basis orbitals are orthonormal. Then, the charge associ- 
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ated ~vith the r th atomic orbital Zr and the bond order associated with 
the pair of atomic orbitals Zr and Zs are 

u (6.25) qr = ~ n~ C,r 
, 

Prs = ~ n, C,r cis (6.26) 

where n~ is the occupation number  ol the molecular orbitM ~l in the state 
under consideration and the c~r's are the expansion coefficients of ~ .  
Since severM atomic orbitals m a y  be centered on an atom, the charge 
density of an a tom P and the bond order between two atoms P and Q 
~ e  obtained by  summing the cont~butions coming from the v a f o u s  
orbitals belonging to them: 

qe : Z q~ (6.27) 
~ 

p ~  = Z Z ~ P  (~.~s) 
r ~  s r Q  

In  ~dependent-part ic le  models, the charge and bond orders are the 
representation of the first-order density matr ix  r (1,1') in the basis of the 
g functions (see Sect. 2.3). Clearly, the sum of the d iagon~ elements 
qr or q~ is equal to the number  of electrons n: 

~ qr ---- ~ qP = n (6.29) 
r P 

and the charge density can be interpreted as the probabil i ty of finding 
an electron close to the a tom P. 

For extending the preceding definitions to the case of non-orthogonal 
basis set, two procedures have been devised, which can be reconciled 
on the basis of a more physical definition of charge.s based on dipole 
moments  (vide infra) : 

i) The overlap integrals are the components of a metric tensor in an 
m-dimensional space, where the contravariant  coefficients associated to 
the molecular orbitals 9* are defined b y  

dir = ~, Srs c~s (6.30) 
$ 

the corresponding covariant coefficients being the coefficients c,r of the 
primitive basis tunctions gr 97). Then, the charge and bond orders are 
given b y  

qr ---- ~, n~ C,r d,r (6.31) 

Pr, = �89 ~, n, (C,r d,8 + c~8 d,r) (6.32) 
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ii) The set of basis functions Z is replaced by the equivalent set of L6wdin 
orthogonalized orbitals 2: 

2 = S �89 z (6,33) 

and the coefficients of the molecular orbitals with respect to the new 
basis functions 2r: 

b,r = X S ~  c,r (6.34) 
$ 

are put in Eqs. (6. 25) and (6.26), giving charge and bond orders without 
overlap 5s,99). 

The population analysis of a LCAO-MO wave function requires three 
kinds of indiccs: the atomic populations 

= 5 5 
r~P ~ 

the overlap populations 

~pQ ~ ~ ~ 2 n, c,r cu St, (6.36). 
r~l" ~Q 

and the gross atomic populktions 

qr = 0P + ~. �89 el, Q (6.37) 
q#l" 

The gross atomic populations are identical with the charge densities 
including overlap given by Eq. (6.31), but  different from the charge 
densities calculated from orthogonalized atomic orbitals. The expression 
(6.37) shows that  the charge density of an atom P includes contributions 
coming from non-bonded atoms; at the moment, it is just a formal, but  
convenient way of distributing the electrons between atoms (see e.g. 96)). 
By subtracting the charge ql, from the number of electrons hi, contributed 
by the atom P, one obtains the net electric charge of P (or formal atomic 
charge) with its conventional sign: 

Jl~ ---- hi, -- ql" (6.38) 

The distribution of net charges in molecules is often visualized in the 
form of 'charge diagrams' (Fig. 6 and 7). In planar molecules, the charges 
qr can be separated in a a component q~,o and a ~ component qr~; hence 
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a and ~ net charges can be defined if one is able to say how m a n y  a and ~ 
electrons the atom P has contributed to the molecule: 

~p~ ~ ~p~ - -  qp~ 

(6.39) 
(~p~ ~ ~i~ -- qp~ 

This is generally possible for neutral molecules in their ground states: 
for an unsaturated carbon, one has nc ,  = 1 ; for doubly-bonded nitrogen 
as in pyridine nN~ = 6, nN, ---- 1, and for a simply-bonded one as in p ~ r o l e  
or aniline n~ ,  = 5, n ~  = 2. In  ionized or excited states, there m a y  be 
some a m b i ~ i t y  concerning the origin of electrons, especially in the case 
of excited states where the total  number  of a and a electrons is not the 
same as in the ground state (for example, the n- -~* excited states of 
carbonyl compounds). 

The values of charge densities and the net charges cMculated from 
them must  be accepted with discretion. The atomic orbitals chosen for 
expanding the molecular orbitals have a considerable effect upon their 
magnitude. Not only do charge densities depend on the orbital exponents 
of the atomic orbitals, but  they are not invafiant  with respect to a linear 
t r a n s f o ~ a t i o n  of the orbital basis set, so tha t  their phys ic~  meaning 
m a y  be disputed r). Recent calculations made for methane 33,93) and 
ethane ,~,~00) clearly show what  diffic~ties arise in their interpretation. 
If  one chooses a Slater minimal basis set using for the exponents of 
hydrogen ls orbitAs the vAue corresponding to the free a tom ~H = 1,0, 
or tha t  of the hydrogen molecule r ~ 1.2, the charge on the hydrogens 
of methane does not v a ~  very much: 6E = ~ 0.131 or ~ 0.113. However, 
if the exponents of aH the orbitAs, those of carbon as well as those of 
hydrogen, are d e t e ~ i n e d  by  minimizing the to tA energy of methane 
itself, the charge t r y s t e r  from hydrogens to carbon is almost annihilated: 
6 ~  ~0.019.  However, the charge of hydrogens is Aso reduced by  
simply o r thogon~z ing  the basis set and cAculating charges corresponding 
to the new orbitals: with ~ H ~  1.0, it is found from Eq. (6.25) 6 E ~  
~0 .085  instead of ~ E ~  ~0 .131  aa). 

In Table 15, the net charges obtAned by  different methods for the 
hydrogen atoms of various hydrocarbons are compared. All the calcula- 
tions, except the semi-empirical ones involving a special parametrization, 
~ v e  a positive charge on the hydrogens and a negative charge on carbon, 
~vhether the hydrogens are linked to a simply-bonded a tom (paraffins) 
or a doubly or tr iply-bonded a tom (ethylene or acetylene). 

r) Populatior~ indices are invar ian t  wi th  respect  to a un i t a ry  t r ans fo rmat ion  among  
doubly  occupied molecular  orbi tals  96) (for instance, wi th  respect  to a localization 
process). 
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Actually, such a charge distribution is by  no means related to the 
usual polarity of the C--H bonds in physical organic chemistry for in- 
stance, the C+--H - polarity in methane as opposed to the C---H + polarity 
in acetylene. The meaning of theoretical charge distributions has recently 
been clarified by  calculating bond moments of equivalent molecular 
orbitals almost localized on the C--H bonds lOi,102). The C--H bond 
moments turn out to be of the same order of magnitude (1.8 D for 
acetylene, 1.9 D for ethylene, 2.0 D for ethane) with the negative end of 
the electric dipole on the hydrogen atom. This result can be understood 
by  considering a localized bond function constructed from an s/L sp 2 or 
sp 3 hybrid orbital of carbon and the Is orbital of hydrogen. The center 
of the negative charge distribution corresponding to a carbon hybrid 
directed towards the hydrogen atom, does not coincide with the carbon 
nucleus, but  lies almost in the middle of the C--H bond. Even if the coeffi- 
cients of the carbon and hydrogen orbitals are equal, the bond functions 
C--H will have a dipole moment in the sense C + - H  -. The analysis of mole- 
cular wave functions in terms of localized orbitals shows that  the moments 
resulting from the preceding mechanism always prevail for the C--H 
bonds, in spite of a total charge distribution in the opposite sense. Using 
the terminology of dipole moment theour it can be said that  'homopolar 
dipole moments '  of 'hybridization dipole moments '  are responsible for 
the larger part  of the C--H bond moment. However, if one wants to cal- 
culate the total dipole moment, it may  happen that  the various hybridiza- 
tion moments cancel more or less and can be ignored in first approxima- 
tion. 

Predicting experimental quantities by  means of purely theoretical 
indices, like charges and bond orders, instead of calculating the expecta- 
tion values of approximate operators could be criticized on the grounds 
that  .population analysis opens the door to a 'plague of non-observ- 
ables' lO3). Nevertheless, this procedure is to some extent justified by  
several reasons, in addition to its convenience. First, it is found that  
many observables other than dipole moments can be expressed in terms 
of charge densities, bond orders and related quantities, if the matr ix 
elements of the corresponding operator with respect to the basis functions 
are approximated in terms of overlap integrals by a Mulliken-type for- 
mula. Such is the case with quadrupole coupling constants 104,86), spin- 
orbit coupling constants 105) and nuclear spin-spin coupling constants 
x0s~. As regards dipole moments, it amounts mainly to neglecting the 
contributions coming from hybridization moments, provided the orbitals 
centered on a given atom are chosen to be orthogonal (see below). 

A comparison between the values deduced from charge densities and 
those obtained with the vector position operator, using ab initio SCF 
wave functions of unsaturated heterocycles 107,3), shows that  the dipole 
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moments calculated from total net charges (Sa+ ~n) are underestimated: 
in pyrrole, point charges give 1.22 D, whereas an exact calculation gives 
2.10 D, and experiment gives 1.74 D); in pyridine, the corresponding 
values are 1.89, 3.11, and 2.20 D. Likewise, quadrupole coupling constants 
deduced from 2p charge densities are underestimated: in pyrrole, 3.94 
MHz from point charges, 5.26 MHz from the exact calculation, 2.06 MHz 
from experiment; in pyridine, the corresponding values are 5.30, 6.31 
and 4.58 MHz respectively 108,109). In these calculations, the discrepancy 
bet~veen point charge and exact computations might be due in part to 
the fact that  the basis functions centered on the same atom are orthogo- 
hal only in the case of orbitals with different symmetries. However, it 
should be possible to eliminate the corresponding intra-atomic 9verlap 
integrals by appropriate linear transformations and obtain better results, 
for instance, by adding point charge and hybridization dipole moments. 

The definition of the point charges to be used for molecular diagrams 
should be based on the expression of a well-specified physical observable, 
rather than on an arbitrary albeit intuitively satisfactory partition of 
MO-LCAO wave function, as is the case with the above definitions. An 
analysis of this question, with reference to the electric dipole moment, 
has been recently presented 110,111): instead of calculating the dipole 
moment from the point charges previously defined, the expression for the 
net charges is deduced from the quantum-mechanical expression of that  
observable. The main point is that  the electric dipole moment of a mole- 
cule can be divided in a unique way into three contributions: hybridiza- 
tion or atomic contribution, overlap contribution, and charge-transfer 
contribution (which provides a definition of net atomic charges), each 
being uniquely defined within the MO-LCAO scheme. 

The MO-LCAO expression of the dipole moment of a molecule in the 
chemical convention and in atomic units is 

~ P q  " "~ :~s d r  (6.40) Y. P.  l z ,  
P O r~P ~.O 

where prP~ Q is defined by an expression similar to Eq. (6.26), namely 

= Z n,  c,r 
f 

where n, is the occupation number of the molecular orbital ~0,, c,r and c,s 
the coefficients of the orbitals gr and Xs belonging to the atoms P and Q, 
respectively, in the LCAO expansion of 9~. The general position vector 
of an electron and the position vector of atom P (all measured with 
respect to the same arbitrary origin in a.u.) are denoted by ~ and ~ p, 
and n r  is written for the number of electrons with which atom P partici- 
pates in the formation of the molecule. 
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One Can now carry out the following substitutions 

~rp'~- in those terms where P ---- Q; 

in those terms where P # Q. 

(6.41) 

Evidently, ~ is the radius vector taken from the position of atom P, 
~ is the radius vector from the center of the line PQ. Taking into account 
the orthogonality of the two orbitals ;~r, Zr" belonging to the same atom 
P, calling S~, Q the overlap integral of orbitals centered on different 
atoms P and Q and letting 

~r ~, = ~ Z; ~ Z, a~ ~ 2  __ ~ Z; ~ Z, ~ S~,~ (6.42) 

the dipole moment (6.40) becomes 

/~ = E ~1~ "-~ ~hybr id  -{- overlap (6.43) 
P 

where ~p is the net charge of atom P: 

~PQ c~'Q~ 
~P= Z ( ~ +  2 2 ~r, o . , - . p  

r~P Q#P *~e 
(6.44) 

Since the hybridization moment defined by 

7uI~'bri0 = X 2 P ~  "~r' (6.45) 
P r,r'~P 

can be set equal to zero if each atom contributes only orbitals of the same 
symmetry and the overlap moment 

7~ovo,,,p = X Y. X X ~ 2  s~2 ~2 
P rC:P Q ~'~q 

(6.46) 

vanishes if the centroids of the various pairs of orbitals coincide with 
the centers of the corresponding P-Q lines (i. e. ~ Q  is zero) and]or if their 
differential overlap is negligible, it follows that  Eq. (6.44) gives the charges 
we were looking for. I t  is evident that  the definition (6.44) is perfectly 
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consistent with formula (6.38). Comments on the transformation of this 
formula upon orthogonalization of the atomic orbital basis are given 
in Ref. 111). 

6.4. Interact ion of ~ and ~ Charge Distributions 

The interaction of ~ and ~ electrons can be described in various forms, 
according to the method used to construct the molecular wave function. 
The most easily visualizable one is the electrostatic interaction of a and ~ 
charge distributions in an independent particle model. That  sort of 
interaction is included in all-electron SCF calculations through the 
effective Fock Hamiltonian (2.23). If we confine ourselves to the linear 
or plane molecules, it is possible to divide the total  electron density into 
a and ~ parts,  coming respectively from a and ~ occupied orbitals and 
giving rise to ql,~ and ql,~ populations of Eq. (6.39). Starting from the 
~ and ~ components of the electron density, it is also possible to define 
~ and ~ dipole moments  under the same conditions as net charges ~p, 
and ~1~ (see Sect. 6.3). For symmet ry  reasons, both  components of the 
total  dipole moment  are directed along the internuclear axis or lie in 
the molecular plane, but  there is no reason why they should have the 
same sense. Actually, recent calculations suggest than  ~ and ~ charge 
transfers in heteropolar molecules may  be opposite, as a result of the 
a - ~  electrostatic interaction 112, liar. 

Consider, for instance, hydrogen cyanide HCN: the a charge is 
preferentially a t t racted by  the nitrogen atom, which is more electro- 
negative than carbon; consequently, the ~ electrons are subjected to 
the effect of differently charge d atoms and t ry  to balance the ~ charge 
distribution. The actual charge distribution in HCN can be considered 
as a result of a ' two-way charge t rans fe r ' l l~ ,  nitrogen being the most 
negative center for the ~ system, as is predicted from electronegativity 
considerations, and carbon the most a t t ract ive a tom for the = system, 
in contradiction to the assumption of the s tandard = theory. Of course, 
the overall charge distribution yields a dipole moment  with its negative 
end towards the nitrogen a tom (Fig. 6). 

Such opposite polarities of ~ and ~ systems resulting in a small total  
polari ty are well known in transition metal  complexes and are expressed 
by  the electroneutrality principle of the ligand-field theory 114}. Roughly 
speaking, similar things are to be expected in organic molecules having 
a doubly-bonded heteroatom, as nitrogen in pyridine lla}. However,  
ab initio calculations on aromatic aza-compounds lO7~ rather  suggest 
tha t  the = polari ty of carbon and nitrogen atoms is not reversed, as in 
the HCN molecule, but  simply compensated by  the effect of the a charge 
distribution (Fig. 7). 
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Fig. 6. Charge diagrams of hydrogen cyanide 
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Clearly, the ~ electron cloud of pyridine looks much more like that  
of benzene than is usually postulated in the Hfickel theory. As a mat te r  
of fact, the dipole moment  of 3.11 D (exp 2.20 D), calculated from the 
SCF wave function of ref. i07) using the dipole length operator, includes 
a very small ~ component  (0.325 D) oriented in the same direction as a 
large a component (2.785 D) ii~)g). 

The a - ~  interaction taken into account by  independent particle 
models of the SCF type  arises also in pure hydrocarbons. A striking 
example is given b y  the methyl  radical and its ions: the charge transfer 
from hydrogen to carbon in C - H  bonds decreases from the positive ion, 
CH~ to the neutral  radical CH~ and the negative ion CH~, as the 
number  of ~ electrons on the carbon a tom passes from 0 to 1 and 2; in 
other words, increasing the n-electron density on carbon produces a lower- 
ing of its actual electronegativity with respect to the a electrons il6). 

Charge diagrams obtained from different calculation methods are 
generally in good agreement with each other, except for the magnitude 
of the charge transfer within certain bonds, such as C- -H or N - - H  bonds. 
However, the net charges of atoms in those bonds have a rather  limited 
sense, andin  the diagrams of pyridine given in Fig. 7 only the sum of the 
atomic net charges in each C- -H  bonds is indicated. As a general rule 
in heterocycles, the main features of the electronic structure obtained 
by  complete all-electron t reatments  and rough a - ~  calculations are very .  
similar, and the direction and magnitude of total  dipole moments  
predicted from them are almost identical liT). Furthermore,  the total  
charge of nitrogen in pyridine-like molecules agrees in an astonishing 
way with the charges computed by  the simple Hfickel method;  the reason 
why a calculation limited to ~ electrons simulates to some extent  the 
results of a a ~ z  calculation is probably tha t  the total  energy is not very 
much affected b y  a small change in parti t ion of total  charges into a and ~ 
components ii8). 

In  most molecules, it is possible to describe the a - ~  interaction by  
simple electrostatic considerations and to explain in this way physical 
properties depending on them like dipole moments.  Electron correla- 
tion seems to play no role, except for molecules with a very  small 
polarity, like carbon monoxide fig). The mat te r  is more complicated 
for excitation phenomena, because it is necessary to take into account 
possible changes in the charge distribution, even if the electronic structure 

g) The dipole moment of molecules with simply-bonded heteroatoms, such as 
pyrrole nitrogeR or furaR oxygen, may include large a and ~ components, resulting 
from the fact that these heteroatoms bear a net negative a charge, because of 
their larger electronegativity, and a net positive z~ charge, because of the de- 
localization of their 2pa: lone pair 8~). 
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of the initial and final states could be understood within the frame of an 
independent-particle model. In  fact, the a charge distribution in most 
unsaturated molecules is different from that  in isolated atoms, and pure 
~r-electron calculations based on unperturbed valence-state potentials 
of the GMS type (see Sect. 5.3) can hardly include a effects involving 
both the ground state and the excited state. The use of a fixed GMS 
potential  could be completely justified only for al ternant aromatic mole- 
cules, where there is no extensive a charge transfer in the ground and 
~r-n* excited states. This gives an explanation of the fact tha t  semi- 
empirical ~r-electron theories give a very satisfactory description for the 
spectra of aromatic hydrocarbons. The same sort of t rea tment  is far 
from being so succes ful in the case of ~ - ~ *  transitions in highly polar 
molecules, such as carbon dioxide 120) or the pyridinium ion 121~. How- 
ever, it can be much improved simply by  modifying the potential  felt 
by  the r~ electrons according to the ground-state a charge distribution 
obtained in a separate approximate  calculation 120,121}. The a-n charge 
interaction has a more marked effect on n-~n* transitions, and the 
occupied molecular orbitals by  the a electrons have to be explicitly 
considered for electronic transitions between a and n levels, for instance, 
the n - ~ *  transitions of oxygen compounds like acrolein and furan lls~. 

Until quite recently the role of a - n  correlation effects was ignored 
in the.theoretical  t rea tment  of electronic transitions. Even now, nearly 
all ab initio calculations of excitation phenomena are based on in- 
dependent-particle models using a minimal basis set of atomic orbitals, 
or involve a configuration interaction limited to the n-electron system. 
In order to go far enough beyond the a - n  separation, two improvements  
have to be simultaneously considered: 

i) a configuration interaction involving both a* and n* virtual molecular 
orbitals; 

ii) a more flexible basis set containing a larger number  of atomic orbitals 
than the s tandard minimal basis set. 

Numerical computat ions on the lowest singlet-singlet and singlet- 
triplet transition of ethylene (Table 16) suggest tha t  either type of im- 
provement  could produce a bet ter  agreement with experiment. Consider 
the lowest N-~V transition of ethylene: using the SCF molecular orbitals 
built for s tandard Slater atomic orbitals (Is, 2s, 2p~, 2py, 2pz), the transi- 
tion energy is found to be equal to 11.98 eV 12~.,l~.a}, tha t  is to say, 4.4 eV 
above the experimental  value. This much too high value is further  
increased b y  one eV by  a configuration interaction within the ~ molecular- 
orbital system (see Sect. 5.3); on the other hand, it is reduced to 10.17 eV 
and 9.44 eV by  performing a a - n  configuration interaction which in- 
cludes all the single and double excitations with respect to the ground- 
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state configuration 122). However, if the configurations tha t  are singly 
and doubly excited with respect to the basic excited configuration are 
taken into account when calculating the energy of the excited state 
itself the lat ter  values are brought back to 10.78 eV 124). Now, with an 
extended basis set including several 2 / ~  atomic orbitals per carbon, the 
primitive SCF result is much lower: 9.31 eV instead of 11.98 eV, and 
configuration interaction reduces this value to 8.19 eV or 7.71 eV, if 
singly or doubly excited configurations with respect to the ground con- 
figuration are included 125). Nevertheless, the last value is probably not 
the end of the story, since the configurations doubly excited with respect 
to the basic excited configuration have not been included. 

An approximate  t rea tment  for taking into account a - ~  interaction 
has been developed in the case of long polyenes 126), and non-empirical 
calculations have been carried out for the various transitions of formal- 
dehyde along the same lines as for ethylene 127,1~.s,129)~). In  view of the 
intricacies of theoretical considerations concerning excited states, it is 
rather  fortunate that  calculations limited to the ~-electron systems can 
be forced to agree with experiment by  introducing semi-empirical cor- 
rections on well-chosen matr ix  elements. 

6.5. Quasi-~ and Quasi-a Orbitals 

The distinction between a and ~ orbitals is rigorously justified only in 
planar molecules, where the former are symmetr ic  and the lat ter  are 
ant isymmetr ic  with respect to the molecular plane. This distinction is 
also meaningful for locally planar systems if the orbitals can be localized 
in such a way tha t  they are confined to a planar region: a classification 
with respect to the local symmet ry  is then possible. An example is a 
saturated chain with a phenyl group at either end: the two phenyl 
groups are practically independent of each other, so tha t  there are two 
independent ~ systems. 

Obviously, the distinction between a and ~ orbitals cannot break 
down completely if there is a slight deviation from planarity,  e.g. for a 
planar molecule in the course of an out-of-plane vibration. Thus, it can 
be useful to distinguish quasi-a and quasi-~ orbitals. In  an LCAO-MO 
description the quasi-~ orbitals are linear combinations of 2p atomic 

h) The transition energies quoted from refs. 122,127)have been calculated using 
the techniques of theoretical physics known as t~e Tamm-Danhoff,4pproximation 
(TDA) and Random-Phase Approximation (RPA). These approximations can be 
considered equivaleat to a CI treatment limited to sii~gly excited configurations 
{TDA) or doubly excited configurations {RPA) with respect to the ground config- 
uration. (For a critical study of the RDA approximation in the case of imaginary 
energy transitions, see 130 131)). 
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orbitals, the axes of which are not strictly parallel. Well-known examples 
of molecules with quasi-n systems are biphenyl and other biaryls. 

In (hygothetical) planar biphenyl the molecular plane is clearly the 
symmet ry  plane ~vith respect to which the a orbitals are symmetric and 
the ~ orbitals are antisymmetric.  When the two rings form a small 
dihedral angle, one can still define a quas~-z~ system, provided that  the 
orbitals of the twisted system can be considered as slight modifications 
of those of the planar biphenyl system.  The quasi-n orbitals in question 
have prop6rties close to those of z~ orbitals proper, in particular as 
regards delocalization. 

For a dihedral angle of 90 o we have to deal with two independent 
quasi-n systems perpendicular to each other:. A priori there is no reason 
why a quasi-~ system should not extend into the region of the other ring 
and be 'conjugated'  with the MO's of the other ring that  have the same 
symmet ry  (with respect to the. symmet ry  group D2n), in particular, 
with the appropriate linear combinations of the a orbitals of the nearest 
a toms on the other ring. Certain observed features of perpendicular 
biphenyl seem to suggest that  some ring-ring conjugation does in fact 
exist: the well-known red shift of sterically hindered biphenyls with 
respect to benzene is the most important  piece of evidence in this connec- 
tion. However, a careful analysis shows that  the red shift is not con- 
clusive evidence of conjugation, because it may  explained by  different 
mechanism ~3~,i33,1za~ involving exciton-type or other long-range inter- 
actions. A detailed account of this problem and its bearing on the defini- 
tion of quasi-,~ electrons can be obtained by  consulting Refs. t35,t36, 
1~7,t~8~. Other examples of molecules with possible 'conjugation' be- 
tween perpendicular planar subunits are unsaturated spiro-compounds 
139,140). 

This type of conjugation, the quanti tat ive importance of which is 
difficult to assess, is closely related to tile problem of hyperconjugation. 
A discussion of hyperconjugation is beyond the scope of the present 
review (see e.g. 141,142). I ts  importance for the a--~ separation problem 
lies in the fact that,  whenever hyperconjugation plays a major role, the 
usual rule according to which z systems are associated with double bonds 
and planar molecules breaks down. Other examples of systems where 
delocalization extends beyond a conjugated doubly-bonded system are 
given by  cyclopropyl derivatives, where quasi-n orbitals of the cyclo- 
propyl group have often been introduced, at least in qualitative argu- 
ments  (see e.g. 143)). 

The notion of quasi-~ orbitals is probably quite useful for the de- 
scription of reaction intermediates or of molecular systems in the course 
of a chemical reaction. In fact, certain reactions can be described by  the 
transformation of a ~ orbital into a a orbital or vice versa, the other 
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Fig. 8a--c.  R e a r r a n g e m e n t  of Orbi ta l s  in t he  Reac t ion  C y c l o p r o p y l ~ _ A l l y l  Ca t ions  
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o rb i t a l s  b e i n g  r e l a t i v e l y  u n a f f e c t e d  144,145,148~. A s imple  e x a m p l e  is t h e  

i s o m e r i z a t i o n  of t h e  c y c l o p r o p y l  ca t i on  t o  t h e  a l ly l  c a t i o n  147}. T h e  t r a n s -  

f o r m a t i o n  of t h e  z~ o r b i t a l  of t h e  f o r m e r  in to  a a o r b i t a l  of t h e  l a t t e r  is 

shown  in a c r u d e  p i c t o r i a l  w a y  in F ig .  8. T h e  m o l e c u l e  w i t h  a quas i -~  

sys t em,  r o u g h l y  on  t h e  m i d d l e  of t h e  r e a c t i o n  p a t h ,  is n o r m a l l y  n o t  a 

s t ab le  species  b u t  j u s t  one  p o i n t  of t h e  p o t e n t i a l  e n e r g y  h y p e r s u r f a c e .  
H o w e v e r ,  t h e r e  is e v i d e n c e  t h a t  in s o m e  cases,  e.g. in b icyc l ic  s y s t e m s  
148), a s t ab l e  i n t e r m e d i a t e  w i t h  a quas i -~  s y s t e m  l ike  t h a t  of F ig .  8 is 

f o r m e d  as a r e su l t  of p a r t i c u l a r  s te r ic  cond i t ions .  
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7. C o n c l u s i o n s  

I t  is difficult to review the question of a--~ separation without discussing 
more or less all the aspects of theoretical chemistry; hence the present 
review may appear too extensive to some and too restricted to others. 
Among the subiects which we have either barely mentioned or completely 
ignored, and which yet  belong to our topic, are, for instance, aromaticity, 
antiaromaticity, homo-aromaticity, spiroconjugation, the Woodward- 
Hoffmann rules, etc. ; for these concepts are meaningless unless the a--~ 
separation is accepted and, indeed, extended to non-planar systems. 
The popularity among pure chemists of, for example, the Woodward- 
Hoffmann rules, shows how well rooted the belief in ~-electron systems 
is in present-day chemistry. Our task has been to t ry  to place new 
emphasis on the way in which this notion is defined and on its limitations 
and shortcomings in the context of the quantum-mechanical t reatment  
of molecules. This task is especially difficult because, on the other han d , 
quantum chemists are now drifting away from r~-electron theories, 
whether pure or with allowance for changes in the a core; and many 
prefer to carry out all-electron or all-valence electron calculations at 
different degrees of accuracy. We hope that  the present work will help 
to prevent any confusion arising from the existence of such opposing 
tendencies. 

As far as we can see, any a t tempt  to explain the properties of a mole- 
cnle by  considering explicitly only electrons belonging to a particular 
class should be encouraged, because idealizations and simplifications are 
~vell known to be necessary for an understanding of the physical world. 
In particular, a full understanding of the properties of organic molecules 
is greatly facilitated by  dividing their electrons into classes, e.g. into a 
and ~ electrons of the entire molecules or of parts of them. This usually 
amounts to distinguishing the 'mobile' or delocalized electrons from the 
localized ones, the latter being mainly responsible for the properties of 
individual bonds, and hence not so relevant when effects involving 
several bonds, like conjugation, are under study. Therefore, the prop- 
erties characteristic of unsaturated compounds can (and to some extent  
should) be described in terms of ~ electrons in the field of a a core; indeed 
one can often apply what is called a 'pure ~ electron theory' ,  by  treating 
the a core as if it did not depend on the distribution of the ~ electrons. 

119 



Conclusions 

Of course, there must be rules and limitations enabling one to decide 
when and how such a simplified t reatment  can be used; and there must 
be a possibility of comparison with more complete treatments, so that  
the origin of disagreements may be found and specified. When this is 
done, there remains the danger of explaining disagreements by introduc- 
ing terms which serve only to give a name to an otherwise undefined set 
of neglected effects. 

This applies in particular to the so-called a--r~ interaction, which is 
often introduced generically to explain away the fact that pure z-electron 
theories sometimes fail to explain facts or give serious quantitat ive dis- 
agreement with experiment. 

In fact, the concept of a--~ interaction has been used in several 
different and ambiguous ways. Therefore, we close the present review 
by listing some of the points discussed here which are especially im- 
portant  for clarifying the matter.  

1. In planar unsaturated molecules (to which the majority of con- 
jugated systems belong) it is always possible and justifiable to distin- 
guish between a and = electrons. This distinction can be considered as a 
'separation' in the strict sense of the word if it is introduced within the 
frame of the independent-particle model, because it then becomes 
possible to define one effective Hamiltonian operator for the a electrons 
and one for the = electrons, thus splitting the eigenvalue equation into 
a system of two equations coupled only through the potentials appearing 
in the effective Hamiltonians. I t  is possible to justify the a - =  separation 
also in a slightly more general context than that  of independent-particle 
model, but  the failure of this separation to explain certain facts must 
normally be at tr ibuted to electron correlation. 

2. Some phenomena, like the existence of a hyperfine structure of the 
ESR spectra of free radicals, which is due to coupling with the proton 
spins, are completely outside the frame of naive ~ considerations and 
should be explained in temps of more general theories. However, most 
physicM properties of molecules are not  seriously sensitive to correlation 
effects; they can be understood in terms of the MO theory, and, in the 
particular case when the given molecule is planar, within the frame of 
the a-r~ separation. 

For  instance, the equilibrium geometries of molecules appear to be 
determined by  the combined action of a and ~ electrons. True enough, 
a pure ~ electron theory cannot give either equilibrium distances or 
equilibrium angles. Nevertheless, on the basis of simple ~ electron 
calculations and appropriate assumptions regarding the potential of the 
a core, several conclusions can be drawn, for instance, regarding the 
alternation of bond lengths in conjugated polyenes. Furthermore, the 
fact that  benzene is planar, while cyclo-octatetraene is not, can be ex- 
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plained in terms of the competit ion between the ~ and ~z contributions 
to the binding energy. The ~ electrons try,  so to speak, to force a planar 
arrangement,  the ~ electrons create opposing sterical forces. 

3. Even in the frame of an independent-particle model, interaction 
between the ~ and ~ electrons is taken into account; the potential  energy 
terms appearing in the effective Hamil tonian for ~z electrons do include 
terms representing the field created b y  the a electrons, and vice versa. 

The additional assumption is often made tha t  changes in the distribution 
of the ~ electrons affect the ~ electrons so slightly that  the potential  
created b y  the lat ter  on the former is always the same; sometimes, 
however, such a pure ~ electron t rea tment  fails, ra ther  because of this 
assumption than because of the neglect of the electron correlation. 

4. The ionization and excitation phenomena in unsaturated com- 
pounds can also be understood, at  least qualitatively, in the frame of the 
~ - ~  separation. In  fact, the most  important  absorption bands of organic 
molecules in the visible and near UV spectral region can be interpreted 
as arising from ~ - ~ *  transitions in the one-electron picture, and hence 
they can be understood even within a pure ~-electron theory involving 
a rigid ~ core. However, especially in compounds containing hetero-atoms, 
there are transitions which must  be interpreted as ~ - ~ *  and ~-~z* 
transitions; in particular, the excitation of the lone pair leads in general 
to low-intensity n - ~ *  transitions, which also lie in the visible or near 
UV region. Likewise, the Rydberg series of unsaturated molecules which 
belong to the ~-~ ~* type starts  in the near UV. In  these cases, it is 
obvious tha t  the differences in the ~ cores associated with the different 
states involved in the transitions under s tudy must  be taken into account. 

5. Strictly speaking, in the interpretation of spectra, the hypothesis 
of a rigid ~ core is satisfactory only in al ternant hydrocarbons because 
of the negligible horizontal charge shift. In  compounds containing hetero- 
atoms, and also in non-alternant hydrocarbons, even the prediction of 
~z-~*  transitions can be unreliable if no allowance is made for the 
polarization of the ~ core. An even stronger limitation than the assump- 
tion of a rigid ~r core applies when the potential  of the ~ core is approx-  
imated through the GMS potential. Recent ab ini~io calculations support  
the reasonable opinion tha t  the GMS potential  is an acceptable approx- 
imation only in al teruant hydrocarbons. 

6. In  connection with the question of the ~ core, two points are im- 
portant .  First, the ~ core of unsaturated compounds is not of the same 
type as in saturated compounds, as is clearly indicated by  the difference 
in hybridization usuaIly a t t r ibuted to the two classes of compounds. 
Second, the occupied ~ orbitals are often associated with orbital energies. 
lower than those of the ~ orbitals, and it is true that  the highest occupied 
orbital of an unsaturated hydrocarbon is a ~ orbital. However, this does 
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n o t  m e a n  t h a t  al l  t h e  a o r b i t a l  energ ies  l ie  b e l o w  t h e  n o r b i t a l  energies ,  

a n d  t h e  r e m a r k  j u s t  m a d e  ho ld s  o n l y  as  a s imp le  poss ib i l i ty .  I n  o t h e r  

words ,  t h e  f a c t  t h a t  t h e  o r b i t a l  ene rg ies  of t h e  a a n d  n o rb i t a l s  a re  n o t  

s e p a r a t e d  i n t o  t w o  b a n d s  is n o t  an  i n d i c a t i o n  t h a t  t h e  a - n  s e p a r a t i o n  
is n o t  va l id .  
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