
Contents 

Permutation Groups, Symmetry and Chirality in Molecules 

C. A. Mead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Permutation Groups 
Symmetry and Chirality in Molecules 

Prof. C. Alden  Mead 

Chemist ry  Depar tment ,  Univers i ty  of Minnesota, Minneapolis, Minnesota,  USA 

Contents 

I. In t roduc t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

I I .  Mathematical  Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

A. Assumed Background;  Nota t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

]3. Group Algebra and Projection Opera tors  . . . . . . . . . . . . . . . . . . . . . .  8 

1. Group Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
2. Regular  Representa t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
3. Projection Opera tors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

I I I .  

IV. 

V. 

VI. 

VII. 

C. Induced and Subduced Representa t ions  . . . . . . . . . . . . . . . . . . . . . . .  15 

1. Subduced Representa t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
2. Induced  Representa t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

D. Symmetr ic  and Hyperoctahedra l  Groups . . . . . . . . . . . . . . . . . . . . . .  19 

1. Definitions and General Remarks  . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
2. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
3. Representa t ion Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

E. Regular  Induct ion  f rom ~ and ~ h  to ~ n  . . . . . . . . . . . . . . . . . . . . .  33 

F. The Transfer  Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

Chirality Funct ions ;  Quali tat ive Completeness . . . . . . . . . . . . . . . . . . . . .  43 

Simple Explicit  Forms  of Chirality Func t ions  . . . . . . . . . . . . . . . . . . . . .  51 

Active and Inact ive  Ligand Par t i t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

Class-Specific and Ligand-Specific Chirality Func t ions  . . . . . . . . . . . . . .  62 

Chirality Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

A. Achiral Ligauds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

13. Chiral Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 



C. A. Mead  

V I I I .  H o m o c h i r a l i t y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

IX .  Some E x p e r i m e n t a l  a nd  Theore t i ca l  Appl ica t ions  . . . . . . . . . . . . . . . . . .  72 

X. Unso lved  P rob l ems ;  Discuss ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

XI .  A p p e n d i x :  Resu l t s  for Some Specia l  Skele tons  . . . . . . . . . . . . . . . . . . . . .  78 

A. Skele tons  Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

B. Ch i ra l i ty  F u n c t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

C. Chiral  R e p r e s e n t a t i o n s  for 6-si te  Skele tons  . . . . . . . . . . . . . . . . . . . . .  83 

D. P roper t i e s  of Chiral  R e p r e s e n t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

E, P roper t i e s  of Skele tons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8S 

X I I .  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 



I. In troduct ion  

I t  has long been known that  a molecule which is not superimposable 
with its mirror image is capable of rotating the plane of polarized light, 
with mirror image molecules rotating the plane through the same angle 
in opposite directions. This optical rotation is one example of a "chiral" 
or "pseudoscalar" molecular property, i. e., of a numerical property which 
is unaffected by changes in orientation of the molecule but  which reverses 
its sign when the molecule is replaced by its mirror image. Molecules 
possessing such properties, which are therefore different from their 
mirror images, are called chiral; molecules superimposable with their 
mirror images are achiral. 

A molecule can always be pictured as a skeleton or frame providing 
sites to which ligands have been attached. If the skeleton itself is achiral, 
then chiral properties of molecules arise from differences between the 
ligands. It  is natural, therefore, to t ry  to account for such properties, 
either theoretically or empirically, in terms of differences in various prop- 
erties of the ligands. For example, in the case of the methane skeleton 
consisting of the carbon atom with its four tetrahedrally directed 
bonds, it is well known that a molecule is chiral only if all four ligands 
are different. Reasoning from this circumstance, Crum Brown 1) and 
Guye z) proposed as long ago as 1890 that  the optical rotatory power 
might be proportional to a "product  of asymmetry"  of the form 

o = ( a - b ) ( b - c ) ( ~ - a ) ( a - ~ ) ( a - a ) ( b - a ) .  (1) 

If any two of the quantities a, b, c, d in Eq. (1) are equal, then ® --0.  
If the values of any two of them are interchanged, 0 changes sign. If 
a, b, c, d are identified with some property of the ligands, therefore, then 
0 is a chiral property of the molecule, and is thus a candidate for an 
approximate representation of the rotatory power. Crum Brown and Guye 
identified the quantities a, b, c, d with the masses of the ligands. 

In 1934, Boys a) proposed a molecular model which, as he was able 
to show, possessed optical activity. His formula for the rotatory power 
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was considerably more complicated than (1), but  contained a factor of 
the same form as (1). In his case, however, the quantities a, b, c, d were 
identified with the radii of the ligands. One could cite other examples 
of models leading to formulae containing factors of this form. 

The function ® in (1) may or may not accurately describe an experi- 
mentally interesting chiral property; it does, however, possess the neces- 
sary symmetry properties for doing so, and therefore is an example of 
what is called a "chirality function" (to be defined precisely in Section 
III). Its form was arrived at basically through symmetry considerations, 
but  not in a way that  would systematically yield analogous formulas 
for other skeletons. The question arises of just how much can be said 
about chirality functions in a systematic way based on symmetry 
considerations alone. I t  is to be expected that  group theory should play 
a major role in any study of this question. 

The systematic group-theoretical study of chirality functions was 
taken up in 1967 by Ruch, SchSnhofer, and Ugi 4~, and further pursued 
by Ruch and SchSnhofer s} in 1968. While of considerable importance 
at the time, these efforts have now been largely superceded by the elegant, 
definitive form given the theory in 1970 by Ruch and SchSnhofer 6}. 
In this theory, a crucial role is played by the transformation properties 
of the chirality functions, not just under the point group of the skeleton, 
but  under the larger group of all permutations of the ligands among 
the n sites of a skeleton (symmetric group). This group generates not 
only all orientations of a molecule and its mirror image which leave the 
skeleton invariant, but  all isomers as well. More recently, in a piece of 
work in which the present author also participated, the theory has been 
further generalized to permit the ligands themselves to be chiral.7} 
In this case, the group which generates all the isomers is the "hyper- 
octahedral" group consisting of all combinations of permutations of 
ligands among the sites and conversion of individual ligands into their 
mirror images. 

The assimilation of this work on the part of the chemical community 
has been hindered somewhat by the fact that  the theory makes use of 
aspects of group theory which are not part of the stock-in-trade of the 
chemist, even of the chemist who regularly uses group theory for standard 
purposes such as classification of energy levels and of normal modes, 
selection rules, etc. In particular, the comprehension of this theory 
requires a knowledge of the representation theory of the symmetric 
and hyperoctahedral groups, andof the concept of induced representations 
and their properties. While excellent expositions of these topics are to 
be found in the mathematical literature, they are usually formulated in 
a manner foreign to the chemist's version of group theory, and thus 
relatively inaccessible to him. 
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The present article is an at tempt to bridge this mathematical gap, 
and also to present the theory as far as possible in a unified form, includ- 
ing together the cases of achiral and of chiral ligands. I t  is hoped that  it 
will help to make the theory more easily accessible to readers with only 
a normal chemist's knowledge of group theory. Up to now, the only 
exposition of this work addressed to such readers has been the short 
account by  Ruch 8~. While an excellent informal introduction to some of 
the ideas, however, Ruch's article makes no pretense of developing the full 
theory in a systematic way. Thus, it is believed that  the present article 
can serve a useful purpose. 

In Section II, the longest single section in the paper, the necessary 
group-theoretical background is developed, starting with group-theo- 
retical concepts and results which are reasonably well-known to chemists, 
or at least readily accessible to them. For the reader who is interested in 
results but  not in proofs, it is indicated at the beginning of Section II  
which parts of the section are essential for an understanding of the sequel 
and which may be skipped. The subsequent sections develop the theory 
up to its present stage, and also include discussion of some applications 
which have been made. An appendix contains a compilation of results 
which have been obtained for a number of specific skeletons. 

The formulation, while equivalent to that  of the original articles, is 
not in all places identical. Some of the changes made are intended to be in 
the interests of simplicity or clarity, while others have the intent of 
bringing the notation into conformity with that  used elsewhere in the 
literature. 

Equations are numbered anew in each (Roman numeraled) section. 
Within each section, equations from within that  section are referred to 
simply by their numbers, while equations from other sections are des- 
ignated by the equation number preceeded by  a Roman numeral for the 
section. Thus, Eq. (3) of Section II  would be referred to as (3) within 
Section II, but  in other Sections as (1I-3). 



II. Mathematical Background 

In this section, the group theoretical background needed for the compre- 
hension of the main body of the article will be developed. All the results 
derived here are also to be found in the mathematical literature 9,10~; 
however, the formulations usually used are somewhat forbidding to the 
chemist, being couched in language different from that  used in chemical 
group theory. We will assume that  the reader is familiar with the standard 
results of the chemist's group theory, as found, for example, in the books 
by Hamermesh 11~, and Wigner 12~, and will build from there. 

In Subsection A we review without proof some of the standard results 
which we shall use; this will also serve to fix some of the notation. Sub- 
section B deals with the group algebra, the regular representation, and 
projection operators, C with induction and subduction of representations, 
and D with the representation theory of the groups most important to 
us, the symmetric and hyperoctahedral groups. This is done in the Young 
diagram formulation, which is the one most suitable for our purposes. 
Subsection E deals with induction of representations between these 
groups, and F with certain relations between Young diagrams which we 
call the "transfer condition". 

For the reader who is not interested in working through the proofs, 
but is mainly interested in results, the following is a guide, subsection by  
subsection, to those results most important for an understanding of the 
later sections. 

A. Can be omitted, or just skimmed for definitions and notation. 

B. Ditto. 

C. Definitions of subduction, induction, and regular induction are im- 
portant, as is the main theorem on induction embodied in Eq. (34), 
but  not its proof. 

D. Definitions of Young diagrams, tableaux, and operators should be 
understood, as well as the property of the Young operator of pro- 
jecting onto an irreducible representation (Theorems 1 and 2). 
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E. The details of the induction prescription need not be mastered if the 
reader is willing to take some later results on faith; it is important to 
understand what the prescription accomplishes. 

F. The meaning of the T-condition should be understood. 

A. Assumed Background; Notation 

A group will be denoted by  a capital German letter (ff~), its order by  the 
corresponding lower-case Latin letter (g), and its elements by  lower-case 
Latin letters s, t, etc. The reader is assumed familiar with the concepts 
of subgroup and class, and with their elementary properties, e.g., that  
the order of a subgroup, or of a class, must be a divisor of g. A class will 
be denoted by a script ,, its order by c, sometimes with a subscript on 
both, 

Familiarity is also assumed with the concepts of representation and 
irreducible representation (IR). A representation P of dimension n 
associates to each group element s an n × n matrix D(s), with matrix 
elements D(s)ij, in such a way that  for every s, t, D(s)D(t) =D(st),  with 
the product formed by ordinary matrix multiplication. We will sometimes 
use the bra-ket notation 

<i  ID(s)] i >  

for the matrix elements. Each representation can be decomposed into 
irreducible parts. The number of inequivalent irreducible representations 
is equal to the number of classes in the group, the sum of the squares of 
their dimensions equals the order of the group. 

We shall make frequent use of the orthogonality relations: 
If F(~), l'(v) are two irreducible representations, then 

(1) 

If the representations are unitary, (1) becomes 

D(z)(s)ij D(~)(s)z~ = g-- ~ ~j~ ~,~. (2) 

by 
The character of an element in a particular representation is defined 

X{V)(s) = Tr  D(z}(s) .  
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It  is obvious that  the character is the same for all elements in a class, 
and that  it is invariant under similarity transformations of the repre- 
sentation. For the characters, the orthogonality relations (1) and (2) 
take the form 

~8 Z(u)*(s) X(')(s) = g ~u,, (3) 
or  

Z * X(u)*(*) Z(')(*) = g (~u," (4) 
¢ 

An orthogonality relation reciprocal to (4) also holds, namely 

Z ~  z(~)*(~) z(~)(*') = g ' 

where the sum goes over all inequivalent irreducible representations. 
This completes the summary of the assumed background. We now 

proceed to develop the special tools needed in this paper which are not 
part of the chemist's standard group theoretical repertoire. 

B. Group Algebra and Projection Operators 

1. Group Algebra 

It  is customary in mathematical treatments of group theory to develop 
the representation theory entirely in terms of the group algebra .o) Our 
procedure will be to use those aspects of representation theory which we 
already know by other means to help in developing the theory of the 
algebra. 

Given a group (fi, the group algebra 1I is defined as consisting of all 
possible symbolic sums of group elements multiplied by complex num- 
bers. Thus, an element a of the algebra is written 

a = Y .  ~(s) s ,  (6) 

where the a(s) are complex numbers. Addition and multiplication of 
elements of the algebra are defined as one would expect: for two elements 
a and b = ~ s  b(s) s, the sum is defined as 

a + b = X.[a(s )  + b(s)] s (7) 

and the product (in general not commutative) by 

ab = Z . . t  a(s) b(t) st 

= Z . [ Y ,  a(O b(t - l s ) ]  s .  (8) 
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Given a representation F of ~5, associating s with D(s), we can form 
a representation of the algebra byassociating to each element a the matrix 
D(a) = ~ ,  a(s) D(s). I t  is evident that  addition and multiplication of the 
matrices so defined will reproduce the rules (7) and (8). 

2. Regular Representation 

A particular representation which we shall need is the "regular" represen- 
tation of dimension g, which symbolically uses the group elements them- 
selves as basis vectors of a "permutation representation". 

Since multiplication by the element s transforms each element of 
into another element, with no two going into the same element, it can be 
thought of as effecting a permutation of the group elements. This can 
be represented in matrix form by defining 

D(m(s)tu = 1 if su = t 

= 0 otherwise. (9) 

The representation so defined is the regular representation F(R). I t  has 
dimension g, and each row and each column of any D(R)(s) has exactly 
one element ' T ' ,  with the rest being zero. Only the unit element, 1, has 
diagonal matrix elements. Thus, X(R)(1)=g, with the other characters 
being zero. 

3. Projection Operators 

The irreducible representations of ~ may be used to define a set of 
elements of the group algebra called "projection operators". The pro- 
jection operator e~ ) associated with the p'th irreducible representation 
is defined by  

e(~ ) ~ n/~ -[ ~* D(a)(s-1)1*s . (10) 

For each irreducible representation/ '(a) there are n~ different projection 
operators, so in all there are ~ n~ = g such operators. As we shall see 
presently, they are linearly independent, and thus form an alternative 
basis for the group algebra: any element of lI can be represented as a linear 
combination of the e(,~ ). 

9 
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The product  of two projection operators can be worked out as follows: 

e(u) (,) nun~ ~st  D(u)(s-1)j* D(v)(t-1)~ st (11) tt elc! - -  g2 

Now, if we define st -= r, t = s - l r ,  t -1 = r - i s ,  (11) becomes 

e(~) _(~) nun, Xr  { ~* D(u)(s-1)I* D(~)(r-ls)~t} r (12) 
v k l  - -  g2  

Because of the representation proper ty  of the D matrices we have 

which, when subst i tuted into (12), gives 

e~) _(v) _ nun~ Er  { Es,m D(u) (s-l)/, D(O (s)mk D(~) (r-1)~ra}r (13) 
~ k l  - -  g2  

Summing over s and using the or thogonal i ty  relation (1), we find 

e(a) (v) nu .(~) ,J ekt = - -  ~Su~ 01~ Xr  D(u) (r-1)u r = v,~ 0u~ ~l~ . (14) 
g 

_(u) 
To prove the linear independence of the v ~j, we set a linear combina- 

t ion of them equal to zero: 

= 0 

~(u) and on the left with e (u), and Multiply on the right by  one of the ~ ~ ,  j~ 
use (14). This gives 

a~' e~' = 0 .  

Since the projection operators themselves are obviously not  zero, it 
Au) the e~  ) are indeed linearly follows tha t  all the coeff icients ,  ,j are zero, so 

independent.  I t  follows tha t  they  can be used as a basis for the group 
algebra. I n  particular, any  group element s m a y  be represented as 

s = s ~  ) e ~ ' .  

10 
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Multiplying by -(a) . . . .  e(~ ) a and again using (14), we find a) 

s(,~ ) e T  -~ e(,a, ) se(j~ ) • (15) 

If we substitute the definitions of the e operators into (15), it takes the 
form 

s(a) ~(~) n~2 ~ t ,  r D(~) (t-1)~, tsr D(a) (r-1)Z. (16) 

By defining u =tsr ,  so that r -1 = u - i t s ,  we can transform (16) into 

S(~) -(/~) n~ 2 ,1 = - ~ -  ~ t .u  D(u) (t,1)** D(~) (u-lst)j~u . (17) 

Because the D matrices form a representation, we have 

D(v) (u - l s t ) z  = ~ ,  ~ D(~*) (U-1)./k D(~) (t)k~ D(a) (s)zl • 

Substitution of this into (17), summation over t, followed by k and l, 
leads, with the help of the orthogonality relations, the representation 
property of the D, and the definition (10), to the result 

s(a) = D(~) (s),l (18) IJ 

As remarked above (cf. Eq. (9)), a representation of the group leads 
to a representation of the algebra; in particular, each of the projection 
operators will be associated with a matrix. If the representation is the 
irreducible one F(v), we find, using (9) and (2), 

D(') (e(~))gt = n_~ ~ D(~)(s- l ) / ,  D(')(s)kl 
g 

= ~ ~,j 3a~. (19) 

(a) t Thus, the matrix for e ,j has only a single non-zero element, the i/' th, 
(4) which is equal to one. The matrix for e ,j vanishes for all irreducible 

representations except the p' th.  

a) Mul t ip ly ing  b y  x .  • .y m e a n s :  m u l t i p l y  on  t h e  left  b y  x and  on t h e  r igh t  b y  y.  

11 
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Now, suppose that  we have a representation decomposed into its 
irreducible parts, with basis vectors (in an obvious bra-ket notation) 
]/'(v) > .  From the above considerations, we conclude that  

&"]  li<"~ > = li("~ > ,  

with all other basis vectors being annihilated by the projection operator. 
In particular, 

e ~  ~ l a . )  > = la . )  > ,  

which justifies our use of the term "projection operators". In bra-ket 
notation, the e-operators may be written as 

&'J' = l i~" > < i ( ' 1  ; e~,'~ ~ = li<") > < i("~l • (20) 

The diagonal e-operators, -(~) a ,  are special cases of what are called 
"primitive idempotents", which we now proceed to define. An operator 
p ~ l[ is called "idempotent" if it satisfies 

p2 = p .  (21) 

If we imagine an idempotent p expressed in terms of the e-operators, we 
see immediately that  (21) must be satisfied separately for the parts 
belonging to each irreducible representation; hence, we can treat the parts 
independently in deducing consequences from (21). Consider, then, an 
idempotent p(~), belonging to the representation F(a). We define a 
"p-adapted basis" for F(a) as follows: 

l i  <') > = p<"~li('/) > ,  i = 1, 2, . . . ,  h;  

< i ( ~  Ip<.'l ~ >  = o ,  i = h + 1, h + 2 . . . . .  . .  all ~ .  (22) 

In words, the first h basis vectors are obtainable by applying peg) to 
other vectors, while the other (n--h) are orthogonal to all of these, h = 0 
correspond to p (a )=0 .  In this basis, we see from (21), (22), that  

P<") Ii<")> = Ii<">>, i < h; 

12 



o r  

p(a) = 

Pe rmuta t ion  Groups,  S y m m e t r y  and Chirality in Molecules 

h 

p(.) IkO~)> = X li (")> Pjk, k > h ,  
1=1 

h h nt~ 

X Ii (~') > < i<")1 + E X Ii (') > PJ* < k(")l 
1=1 J=l  o k=h+l  

h h n u 

X eT + X X pJ~ e~). 
1=1 I=1 k - h + l  

(2s) 

A general idempotent is a sum of operators of the form (23): 

P = ~tt P(u). (24) 

A primitive idempotent is now defined as an idempotent belonging 
to a single irreducible representation, and with h = 1. A primitive idem- 
potent p, in the p-adapted basis, has the form 

n 

p = e(~ + ~ e(l~ p~. (25) 
k=2 

Using (14) and (25), we find, for primitive idempotent p, 

Pe(~ ) P = ~u, ~tl (~81 + P,) P . 

Since any x ~ lI can be expressed in terms of the e's, it follows that,  for 
primitive idempotent p and arbitrary x ElI ,  

pxp =/(x)p, /(x) = a number, 1(1) = 1 . (26) 

We now consider the converse of (26). Suppose we have a non-zero 
operator q E lI, with the property 

qxq =/(x)q for all x ~ lI, and 

lO) ~ o .  

1 
I t  follows immediately that  ~ = ~]~ q is an idempotent, and, according 

13 
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to (23), (24), can be expressed as 

h~ h~ n~ 

q = 2 . {  Z e(3 ) + Z 2 ~JkAa) P(~}. (27) 
J=l J=l k=h/,+l 

Since ~ #  0, we must have h a > 0 for at least one/~. For such a/~, multiply 
e(/~ ) by # . . .  #. We find, using (14), (27): 

n /, 
- (a) e (a)zz .(a) ~(a) q e l l  # = + ~ (28) ~ l t a  "P' l k  • 

k=h/,+l 

The right-hand side of (28) is a primitive idempotent (cf. (25)), and can 
be a multiple of # only if # is itself a primitive idempotent. We have 
thus proved 

Theorem l :  If a non-zero element q of lI has the property that  
qxq =/(x)q for all x in lI, and/(1) # 0, then q is a number times a primi- 
tive idempotent, and conversely. 

Now suppose we have an operator q #  0 in lI with the property 
q2 =/q. We wish to find an expression for ] in terms of the coefficients 
in the expansion of q----~q(s)s. We do this by calculating TrD(lt)(q) in 
the regular representation in two different ways: 

(i) In the usual regular representation. Only D(R)(1) has diagonal 
elements, so TrD(R)(q)=gq(1). 

(it) Choose a q-adapted basis set in the space of/~(r). Let h again be 
the number of vectors expressible as q]m>. For f~<h, we have ql j>  
= / ] i > ;  for k >h, <k]q]k> = 0 .  In this basis, therefore, TrD(it)(q):]h. 

Equating the two values of the trace, we see that 

g / =~q(1), 

which is the desired result. This, together with Theorem 1, leads imme- 
diately to 

Theorem 2: If an element q of lI with q(1) # 0 has the property that  
qxq ----/(x)q for all x ~ li, then q is a number times a primitive idempotent, 
and conversely. 

Finally we establish a criterion for deciding whether two e-operators 
belong to the same irreducible representation. To do this, we simply 

(a) (~) (~) (a) n • (a) note that,  because of (14), ejk ekt e~m =eim; o the other hand, if et~ 
and et~ belong to two different irreducible representations, then, because 
of (14) and the fact that every x in lI can be expanded in the e's, 
Aa) (~) ~tkxelm = 0 for all x ~ lI. A special case of this, the only one we will 
need, is 
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Theorem 3: If  el and ez are two primitive idempotents, a necessary 
and sufficient condition for their belonging to the same I R  is the exist- 
ence of an x e 1I such that  elxe2# O. 

C. Induced and Subduced Representations 

1. Subduced Representations 

Let 9 be a subgroup of ff~, and consider a representation / '  of (]5: 
s--,-D(s). I t  is evident that  the D(u) for u ~ ~ provide a representation 
7 of 9 ,  which is called the representation of ~ subduced by / I .  We use the 
notation 

7(9)------ {r(O)}~ 

for the subduced representation. In  general, if F is irreducible, ~ need 
not be. 

2. Induced Representations 

In this subsection, the theory of the induced representation will be 
formulated in a manner similar to the t reatment  of Ruch and SchSn- 
hofer 18). For a more standard mathematical  treatment,  see Boerner 9). 

Again, suppose we have a group ffi with a subgroup 9.  Let 7(9):  
u-,-d(u) be a representation of 9,  of dimension [, operating in a space 
r with basis vectors I/ '>, j ---- 1, 2 , . . .  ,f. Suppose also that  r is a subspace 
of a larger space R, in which all the operations of ~ are defined. 

We form the left cosets of 9 :  

g 
t 1 9 = 9 "  t29" . . . .  " tq9 w i t h q = - - .  J I ' ~ h 

Since all operations of ~ are defined in R, we can generate the subspaces 

~'o~ = t~ r ,  

each one of which is spanned by  the basis vectors 

I i> = t 4 i > .  

These q subspaces may  or may  not be independent. I t  is easily seen that  
all vectors s ] j> ,  with s e ~,  are linear combinations of the la/ '> ; for, since 
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s must belong to one of the left cosets of ~,  we can write s = t,, u, u E ~ .  

I t  follows that  

sl/.> = t , , , , I / .> = t,,F-,I k >  <kl 'Z(") l / '> = E , l , , k >  <k ld ( , , ) l i> .  

I t  is also easy to see that  each r~ forms a basis space for the subgroup 
t ,~ ta 1. For, if u e 

t ~u t : l l x / '  > = t , ,u l i  > = t .  E,, Ik> <k la( , , ) l i>  = ~'.~lxk> <kld(-)l/.>. 

The space spanned by all the [/.>, Ix/'> forms the basis for a repre- 
sentation of ~5 which we call the representation induced by 7(~). To see 
the form of the matrices of this representation, consider an element 
s e (5 applied to an arbitrary basis vector Ix1"> : 

s i x / >  = st, l i > .  

The element sta, being in ~5, must be in one of the left cosets of ~ :  

s t ,  = t a u, u e ~ . 

We thus find 

s l x i >  = taul/> = ta E,Ik><kld(u)li> = E k l ~ k > < k l d ( ~ ' ) i > .  (29) 

If the subspaces ra are all independent, the induced representation 
has dimension F = ] q ,  and we speak of the induction as "regular"  13). 

In the mathematical literature, non-regular induction is normally not 
discussed, and the word "induction" is used for what we call regular 
induction 9). We will use the notation 

_r(c~) = [ r ( ~ ) ] *  

for the regularly induced representation. According to (29), the matrix 
elements for the regularly induced representation are given by 

< f l k [ D ( s ) ] x j >  = <k]d(t~ 1 st,)[/.> if t~ 1 st,, e ~ ; 

= 0 otherwise. 

In the case of non-regular induction, one would have to express each 
[x/.> in terms of a complete set for the induced representation space 
and then apply (29) to get the matrix elements. For general induction, 
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not necessarily regular, it is evident that  the dimension F of the induced 
representation satisfies 

t < F < q / .  

Before proving the key theorem on induced representations, it may 
help the reader to orient himself if we give a simple example of induction, 
both regular and non-regular. Consider a methane molecule, with 
symmetry Ta, and choose a coordinate system with z-axis in the direc- 
tion of the bond from the central carbon atom (C) to hydrogen atom 
number 1 (HI). The subgroup of Ta which leaves HI  invariant is C3v, 
of order 6, with q = 4 .  Under this subgroup, the Pz and Pv orbitals on 
C transform between themselves according to the two-dimensional 
representation E of Csv. When the other operations from Ta are applied 
to these two orbitals, one generates the space spanned by  all three 
p-orbitals of C. This gives a representation of Ta, the three-dimensional 
one normally called F2. In our language, we would say that  the represen- 
tation F2 of Ta has been induced by E of C3v. In this case, the induction 
is not regular. 

Now consider the bending vibrations (in the xy plane) of HI. They 
also transform among themselves according to E under Cs,. When the 
operations of Ta are applied to them, however, we generate the 8-dimen- 
sional space of all motions of the H-atoms perpendicular to the bonds 
(all bending vibrations, plus rotation of the molecule). The dimension 
of the representation of Ta so generated has dimension 8 =q/ ,  so this 
time the induction is regular. When broken into its irreducible compo- 
nents, this regularly induced representation contains the two-dimen- 
sional representation E of Ta, as well as the two three-dimensional 
ones F1 and F2. 

We now consider the representation F of ~i induced by the irreducible 
representation ? of ~. We pose the question: when F is broken up into 
its irreducible parts, how many times will each irreducible representation 
F<a> appear? To decide this, we first observe that  the independent 
[a] > which form a basis for F can all be generated from a single [i > 
of r by application of the elements of (~, including those of ~.  For the 
vectors of r, this follows from the irreducibility of 7, for the others from 
the nature of the induction process. Since the e-operators form a complete 
set in 1~, one can equally well say that  the basis vectors of F are generated 
by applying all the e-operators to a single [j > .  Now suppose that  y 
appears c times in the subduced representation {F<a>(~i)}~. Choose a 
basis for F<a> such that  the first c basis vectors transform like ]j" > under 
~. In this basis we have 

e(tS) *, l i >  - 0 ,  Z > c .  
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For l < c, e(~t l/" > may be zero, but  need not be. I t  follows that we can 
generate from ]/" > at most c vectors transforming like the k'th basis 
vector of/ '(v). When the operations of ~ are applied to these, each may 
separately generate the representation F(a), but  it cannot be generated 
more times than this. Thus, the representation/'(u) appears in P at most  

the same number of times that  ~ appears in the subduced representation 
Of Fcu) in 9 .  We express this result more formally as follows. If F((~) 
is induced by the irreducible 7(a)(9), and its decomposition into irre- 
ducible components is 

F = E, at., F ~ o ,  
then we have 

where 
a a <~ can,  (30) 

(31) 

We now show that  the equality in (30) applies in the case of regular 
induction. Expressed in terms of characters (and using ~ to denote char- 
acters for 9 ,  (31) reads 

z Ca~ (") = X, ,  ca,, ~("~(u).  

We now multiply by ~(*)*(u), sum over u ~ 9 ,  use (3), and take the com- 
plex conjugate of the result to obtain 

~(r)(u) gta)*(u) = h c u r .  (32) 

Next multiply (32) by n u = •(u) (1), sum over #, and use (5), plus the fact 
that  ~(r) (1) = n r .  This gives 

o r  

gn~ = h ~ car n a ,  

g 
2 c.~ n a = ~ n~ . (33) 

The right-hand side of (33) is just the dimension of the regularly induced 
representation [~(~)(9)]~, while the left-hand side is the dimension of 
the induced representation if the equality is satisfied in (29). This estab- 
lishes our result, which may be written as 

[rcr~(-~)] * = X c, ,  z'c,~ (34) 

with the cur defined by (31). The reader may wish to check this result 
for the case of the example given above. 
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D. Symmetric and Hyperoctahedral Groups 

1. Definitions and General Remarks 

In  this article, we shall always be concerned with permutations of ligands 
among sites belonging to a molecular skeleton. No real generality will 
be lost if we think of permutations in this way from the outset; indeed, 
this differs only in the mental  picture invoked from formulations com- 
monly used by mathematicians, as when Weyl 14) speaks of permuting 
"men"  among "fields" on a checkerboard. 

We consider, then, a skeleton with n numbered sites to which ligands 
may  be attached. If  the ligands themselves are structureless, all isomers 
of a given molecule are generated by  permuting the ligands among the 
sites. The group of all such permutations is the symmetric permutat ion 
group, ~n, of order n!. In our formulation, a permutat ion s belonging 
to ~n  will always be referred to sites: thus, s is defined by  associating to 
each site i another one sj (or s(j) if the notation for a site is too complicat- 
ed to be put in a subscript), in such a way that  no two different f 's have 
the same sj. The effect of s, therefore, is to take the ligand initially found 
at site j' and remove it to site sj, regardless of which ligand that  may  be. 
I t  does not mean that  one takes the i ' th  ligand and puts it where the 
st ' th formerly was. In  referring our permutat ions to sites rather than 
ligands, we are using the formulation of Weyl 14), which we feel is bet ter  
suited for our purposes. The other formulation is also possible, of course, 
and is used by  Boerner o) and others. 

If  the ligands are allowed to be chiral, but  are otherwise structure- 
less, we can generate isomers not only by  permutat ions but  also by  
"site reflections" z~, which means: "replace the ligand on site j by  its 
mirror image". The group of all combinations of permutat ions and site 
reflections is of order 2nn ! (n ! permutations, followed by  either reflecting 
or not on each site), and is called the hyperoctahedral group 10,15) 
~n.  A useful subgroup of ~n,  which itself contains ~ as a subgroup is 

where 
~ = ~ × (1, ~0), 

n 
3 0 =  H ~  

Jffil 

is the operation of simultaneous site reflection at all sites. ~ is thus a 
direct product group of order 2hi. 

Returning to ~n,  an element a of it can be expressed as a product ~s, 
where s is a permutat ion and z is some combination of reflections. More- 
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over, since z operators do not permute the ligands, the permutation part  
of a is independent of whether we write s to the left or the right: 

= s~ = ~'s (3S) 

with ~' -----svs - 1 .  Now, i f ,  =/-/Tj, the product going over some set of sites, 
then 

T'  = s l I T j s  - 1  . 

Consider the fate of the ligand initially at the site sl under the above 
operator. I t  is first carried by  s -1 to the site j, where it is reflected by  
zj, then carried back to sj. We conclude that  

~' = s I I z j s  - 1  = I I z ( s j )  = z(s) . (36) 

The group ~n  is a "semidirect product"  group 

where ~ is the group of the site reflections without permutation. ~: is an 
invariant subgroup since, according to (36), s z s  - 1  is in ~. an ,  however, 
is not invariant, since 

T--IsT = T--1T(S)S 

is not necessarily in an .  
We shall be applying permutations and reflections to molecules to 

give other molecules (isomers), but  also to functions of the properties of 
ligands on the sites. A simple example will suffice to show how per- 
mutations may  be interpreted in this way. 

Consider a skeleton with three sites. A molecule M is specified by  
specifying the ligand on each site. An example of a function for the class 
of molecules belonging to this skeleton is 

F ( M )  = [ (1 )g (2 )h (3 )  . 

Thus, to calculate the property described by  F ,  one takes the product 
of the function / for the ligand on site 1, g for the one on site 2, and h for 
the one on site 3. For example, if M0 is a molecule with ligand a on site 
1, b on 2, c on 3, the property F for M0 has the value 

F ( M o )  = [ (a)g(b)h(c )  . 

If we apply a permutat ion to M0, giving a new isomer, the property F 
for the isomer will in general be different. Thus, if sl  = 2 ,  s2 = 3 ,  s8 = 1, 
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then M1 = sMo will have ligand a on site 2, b on 3, and c on 1. For this 
isomer, the property F is 

F(sMo)  = F(M1) ](c)g(a)h(b) . 

Another viewpoint, however, is to consider a permutat ion as permuting, 
not the ligands, but  the roles played by  the sites in a function. From 
this point of view, the permutat ion s -1 (taking 1 to 3, 3 to 2, 2 to 1) 
defines a new function in which the role previously played by  site 1 has 
been transferred to site 3, etc. In  our example, this means 

F(M) = s - I F ( M )  =/(3)g(1)h(2) .  

For the molecule Mo, F has the value 

F(Mo)  = s - l F ( M o )  = ](c)g(a)h(b) = F(sMo)  . 

I t  is easy to convince oneself that  this result is general; a permutat ion 
can be thought of as giving a new molecule s M  by  permuting the ligands, 
with property-describing functions naturally having altered values, or 
alternatively as permuting functional roles to give a new property (func- 
tion) of the same molecule. The two are related by  

s - I F ( M )  = F ( s M )  . 

2. Classes 

We consider first the class structure of an .  To do this, we note tha t  
every permutat ion may  be written as the product of a number  of in- 
dependent cyclic permutations. Thus, the permutat ion s takes the ligand 
on site 1 to Sl, that  on Sl to s(sl), that  on S(Sl) to sEs(sl)l, etc. Following 
this chain, since n is finite, we must eventually reach a site whose ligand 
is taken to site 1 by  s. The closed chain evidently forms a cyclic per- 
mutation, which we will denote by  writing the sites concerned in order 
enclosed in parentheses. Thus, (123. . . t )  denotes a permutat ion s for 
which S l = 2 ,  s 2 = 3  . . . .  S I - l = / ,  s I =  1. If  this first cycle does not in- 
clude all the sites, we can do the same thing with the lowest-numbered 
site not appearing in the cycle, and continue until we have broken down 
the group element completely into a product of cycles, b) 

b) In  cases where  this  will cause no confusion, t h e  "one-cycles"  (cycles consis t ing 
of a single site, which is thus  left  undis turbed)  will somet imes  n o t  be expl ic i t ly  
wr i t t en  down. 
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Now consider a group element r written in cyclic form: 

r = ( 1 2 3 . . . / ) ( / +  1 , / +  2 . . . .  g) . . . .  

and conjugate it with another element s, forming srs -1. Under srs -1, 

the ligand on site Sl is first taken to 1 by  s -1, then to 2 by  r, then to s2 
by  s; the ligand on s2 is taken to 2 by  s -1, to 3 by  r, to sa by  s, etc. We 
see, then, that  

s r s  - 1  = ( S l S 2 S 3 . . . s f ) ( S f + l  s j - + 2 . . . s g ) . . .  

Since our r and s were essentially arbitrary, it follows that  two elements 
belong to the same class if and only if they have the same "cycle struc- 
ture",  that  is, if each consists of the same number of cycles of each length. 
We denote a class by  listing the lengths of the cycles, with exponents to 
indicate when there are two or more cycles of the same length. For 
example, the classes of ~5 in this notation are: 

(15); (13,2); (12,3); (1,22); (1,4); (2,3); (5), 

where, for example, the third class listed is that  consisting of all elements 
made up of two 1-cycles and one 3-cycle; in other words, each permu- 
tation of this class leaves two sites invariant and effects a cyclic per- 
mutat ion of the other three. Evidently, there is a class for every way of 
writing n as a sum of integers (including n = n ,  n =  1 + 1 + . . .  + 1). 

A transposi t ion is the interchange of ligands on two sites, leaving all 
other sites and ligands undisturbed. I t  iswell-known that  any permutation 
can be expressed as a product of transpositions. A product of an odd 
(even) number  of transpositions is called an odd (even) permutation. 
Although the expression of a given permutat ion as a product of transpo- 
sition is not always unique, the odd or even character is the same for all 
such decompositions. 

The classes of ~ are now easily worked out. Since it is a direct 
product group, its classes are also direct products. Obviously, each class 
, of a n  yields two classes of ~ln, c and z0*. 

We now take up the class structure of ~n,  first considering con- 
jugation of an arbi trary element a = z s  with a pure permutation, r. 
We find 

~,Gr-1 : rTsr-1 ~ T(r)rsr-1 . 
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We know from the t reatment  of ~ n  given above that ,  if s = ( 1 2 . . . [ )  
([ + 1 . . . .  g) . . . .  then 

rsr -1  = ( f i r 2 . . . " I ) ( ' 1 + l . . . r g ) . . .  

This, together with the definition of , ( r ) ,  tells us that  this conjugation 
just replaces every site y by  r v, a s  regards both permutat ion and re- 
flection properties. Thus, cycle structure is preserved, as well as the 
location of reflections in cycles. 

To consider conjugation of , with a reflection operator 3, we first 
r e a r r a n g e ,  somewhat. We write s in cyclic form, and then make use of 
the fact that  z is a product of several single site reflections T~. Each ,j, 
of course, commutes with the other reflections, and also with all per- 
mutat ions which do not affect site/ ' .  We can, therefore, move each zj 
to the right through the cyclic factors of s until it reaches the cycle 
containing site/ ' .  In  this way, ~ is written as a product of independent 
factors, each of which consists of a cyclic permutat ion followed by  a 
product of site reflections referring only to sites in the cycle. When we 
conjugate with 3, we can do the same thing with the ~ making up 

and 3-1 = f .  Each ~, on the left is moved to the right until it reaches 
the cycle containing k, and each one on the right is moved to the left 
until it reaches the same cycle. The conjugate element f , , - 1  =~zs~-l ,  
therefore, breaks up into a product of factors of the form 

/'/T/c TC/-/*/c, 
/¢ /¢ 

where c is a cyclic permutation, ~ contains reflections only on sites con- 
tained in c, and the k also refer exclusively to sites contained in c. Be- 
c a u s e / / z g  is a commutat ive product, we can consider the conjugation 

as conjugating consecutively in any order with the individual k. Also, 
since the numbering of the sites is arbitrary, we can assume c = (12...~). 
For a single k, we have 

zzzczz = w¢~(12...l)zg = *~z Z~+l(12...1) = ~/d~/¢+l~'C, 

where the addition of 1 is modulo f, i.e., b y  definition ! + 1-----1. Con- 
jugation with a single ,~, therefore, has the effect of reflecting on two 
sites which are nearest neighbors in the cycle. Subsequent conjugation 
with Z~+l, ~+~, etc., enables us to reflect on any two sites in the cycle 
b y  conjugation, and by  further conjugation we can reflect on two other 
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sites, then on two others, etc. Thus, by conjugating with reflection 
operators, we can bring about reflections on any e v e n  number of sites in 
the cycle. The conjugated element can differ from the original one in the 
distribution of reflections in any way so long as the difference in the 
total number of reflections is an even number. Thus, elements with an 
odd number of reflections in the cycle are all in the same class, those with 
an even number all in a separate class. Since any conjugation can be 
thought of as conjugating first with a permutation and then with a re- 
flection operator, we conclude that  a class of ~n  is specified by giving 
the lengths of all cycles containing an even number of reflected sites 
(denoted as in a n  by a number q giving the length of the cycle), as well 
as the lengths of all cycles containing an odd number of reflections 
(denoted by  ~). For example, the classes of ~a  are: 

(13); (1,2); (3); (12,i); (1,2); (2,i); (3); (1,i2); (i,2); (T3). 

The fifth class listed above contains a 1-cycle and a 2-cycle in its per- 
mutation part, with an odd number of reflections (in this case, one 
reflection) on sites involved in the two-cycle. The seventh class has a 
permutation part  consisting of a cyclic permutation of the three sites, 
with an odd number of reflections (either one or three). 

3. Representation Theory 

Our treatment of the representation theory of a ~  in this subsection 
will be taken mostly from the books by Boerner 9) and Weyl 14). The 
treatment of ~ will closely parallel that  of Ref ~. We first consider 
the case of an .  

The representation theory of a2  is, of course, trivial: There are 
two irreducible representations, the symmetric and the antisymmetric. 
For an ,  we also know that,  among the irreducible representations, 
there is a totally symmetric one and a totally antisymmetric one. I t  
is thus reasonable to assume, or at least to hope, that  the other irreduc- 
ible representations of a n  can be obtained by  some combination of 
symmetrizing and antisymmetrizing. We at tempt  to construct a com- 
bined symmetrizing-antisymmetrizing operator as follows: 

We express n as a sum of integers n -----/*1 +/*2 + . . . .  with/*1 >i/.9. ~> 
/*3 ~> . . . .  Such a "part i t ion" of n can be expressed, as illustrated in 
Fig. 1, by a "Young diagram of order n", in which n boxes are arranged 
in columns of length (from left to right) /*1,/.2, etc. Fig. l(a) shows a 
Young diagram for n = 6 ,  with/ '1 =3, /*2 ----2,/*a = 1. Fig. l(b) is a more 
complicated diagram, for a20, with /*1=5, / . 2 = / * a = 4 ,  / . 4 = / * s = 3 ,  
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/*6 = 1. I t  is evident that  a diagram may equally well be specified by the 
row lengths Vl, v2, etc. (For Fig. l(a), these are 3,2,1; for Fig. l(b), 
they are 6,5,5,3,1). Also, since a class of a n  is specified by a partition 
of n, it is clear that  the number of different Young diagrams of order n 
is equal to the number of classes, hence to the number of irreducible 
representations of an.  A Young diagram will be denoted by 7, sometimes 
with a superscript. Sometimes, instead of drawing a diagram, we will 
denote it by listing the lengths of its rows, with row lengths appearing 
more than once denoted by exponents. In this notation, the diagram of 
Fig. l(a) is (3,2,1); that  of Fig. l(b) is (6,52,3,1). An array of boxes in 
which any row is longer than the one above it is not a Young diagram. 

(a,) (b) 

Fig. 1 

From a given Young diagram we can, in n l different ways, form a 
"Young tableau" t by filling the boxes, in any order, with the site 
numbers 1,2, . . . ,n .  Fig. 2 shows examples of tableaux formed from the 
diagrams of Fig. 1. 

1 142C 5 4 9 
15 2 1311 8 
16 6 12 3 1C 
7 1718 

(a) (b) 

Fig. 2 

A tableau may be used to define certain subgroups of a n  which are 
themselves direct products of smaller permutation groups; the sym- 
metrizing and antisymmetrizing operators for these subgroups lead, 
as we shall see, to projection operators on irreducible representations 
of an.  

Given a tableau t, we first define the subgroup ~ ,  consisting of all 
permutations q among sites in the same column of t. Evidently, ~ is 
just the direct product of the permutation groups for the sites in the 
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various columns: 
for the subgroup is 

= ~  (ttl) X ~ (P2) X . . . . .  The antisymmetrizer 

Q --  ~q e~/, (37) 

where ,q = 4-1, according as q is an even or an odd permutation. Having 
antisymmetrized with respect to certain groups of sites, we are still 
free to symmetrize with respect to certain others. We cannot, however, 
symmetrize with respect to sites in the same column; this, together 
with the antisymmetrization already carried out, would simply give 
zero. We must, therefore, choose sites from different columns, and with- 
out loss of generality we can consider these to be in the same row. 
Accordingly, we define, analogously to ~ ,  another subgroup ~,  con- 
sisting of all permutations p among sites in the same row. The symme- 
trizer for this group is 

P ----- ~ p .  (38) 

Combining the operators P, Q, we obtain the ,,Young operator" 
associated with the tableau t: 

Y = PQ = ~ eq pq . (39) 

(It should be noted that, since P does not in general commute with 
Q, a function Yf  = P Q f  is not necessarily still totally antisymmetric 
under ~.)  

We will now proceed to prove 
Theorem I : The operator Y defined by  (39) is, apart from a multi- 

plicative constant, a primitive idempotent of ~n. Y operators belonging 
to the same Young diagram belong to the same irreducible representa- 
tion, while those belonging to different diagrams belong to different 
representations. 

The first part  of the theorem will be proved by  showing that the Y 
operators satisfy the conditions of Theorem 2, Subsection B. The second 
part will be obtained by applying the criterion of Theorem 3 of that  
subsection. The proof proceeds by way of several intermediate theorems, 
as follows: 

i) For arbitrary p, q, we have 

p P = P ,  Q q = e q Q ;  (40) 

pYq = ~qY. (41) 
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Also, for arbi trary x ~ 1I, p, q, 

p ( Y x Y ) q  = e q ( Y x Y )  . (42) 

The results (40) follow immediately from the definitions (37), (38); 
(41) follows from the definition (39) and application of (40); (42) is 
obtained by  twice applying (41). 

ii) Two ligands initially on sites in the same column of t are never 
moved into sites in the same row of t by  a permutat ion pq; and all per- 
mutations having this property can be written in the form pq. 

This can be seen essentially by  inspection: After a permutat ion q, 
ligands initially in the same column are still in the same column, hence in 
different rows; and the permutat ion p does not move a ligand from one 
row to another. On the other hand, to bring about a permutat ion in 
which ligands from the same column remain in different rows, we can 
first put each ligand into the row of its destination by  a q permutation,  
then reach the final arrangement by  means of a p. 

iii) Let t, t' be two tableaux belonging to the same diagram, and let 
s be the permutat ion with the property that  si has the same location in 
t' as j has in t. Let u(t) be an arbi trary permutation,  and u(t') be the 
permutat ion obtained from u by  replacing each site /" by  s l, the site 
playing the same role in t' as/" does in t. Then 

and in particular 

su(t)s-1 = u(r ) ,  

sY( t ) s -~  = Y ( t ' ) .  (43) 

Proo/ :  Under su(t)s -1, the ligand initially on the site sj is taken by  s -1 
to/ ' ,  then by  u(t) to uj, then by  s to s(uj), which was the result to be prov- 
ed. 

iv) If  a permutation r #  pq,  then there is a transposition p and a 
transposition q such that  prq = r. 

Proo/ :  Because of (ii) above, there must  be two sites/ ' ,k in the same 
column of t, such that  r~, rk are in the same row of t. Let q = (ik), p = (r f~) .  
Then 

prq = ( r f , ) r ( i k )  = r ( i k ) r - l r ( i k  ) = r( ik  ) (ik) = r. 

v) If  a e 1I has the property that  

paq = eqa for arbi trary p, q, then 
a = [ Y ,  where [ is a constant. 
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Proo]:  Writ ing a in the form 

we find tha t  the assumed p rope r ty  reads 

5 ,a(s)#s¢ = *qG~(s)s.  (44) 

The  pe rmuta t ion  pq itself appears  on the left side of (44) for s = 1, 
on the r ight  side for s = pq. This gives 

~q~(pq) = a O ) ,  

a(pq) = ~q¢(1). 
(45) 

Now, for r # pq, we choose the t ransposi t ions p and q such tha t  prq = r, 

whose existence was established ill (iv) above. Since this q is a t ransposi-  
tion, we have  eq = - -  1. Since prq = r, r appears  on bo th  the  left and  r ight  
sides of (44) for s = r, and we have  

a(r) = ,qa(r) = - -  a(r) , 

a(r) = O. 
(46) 

Because of (46), if a is to have  the  assumed p rope r ty  it  mus t  consist 
only of pe rmuta t ions  pq. Because of (45), the coefficients of these mus t  
be, apar t  f rom an overall  mul t ip l icat ive  constant ,  just  sq. This completes  
the proof. 

vi) Y is a pr imit ive  idempotent ,  up to a mult ipl icat ive constant .  
Proo]: We obviously have  Y ( 1 ) =  1 #  0. Because of (42), we see 

t h a t  ( Y x Y )  for a rb i t r a ry  x e R satisfies the  condit ion of (v) above,  so 
it  follows tha t  Y x Y = / Y ,  for a rb i t r a ry  xER.  Thus,  the  requirements  
of Theorem 2, Subsection B, are fully satisfied. 

vii) Y operators  belonging to the same d iagram y belong to the  same 
I R ;  those belonging to different d iagrams belong to different IR ' s .  

Proo]: If  Y = Y( t ) ,  Y ' =  Y( t ' )  arise f rom tab leaux  belonging to the 
same diagram, then, according to (Hi), we have  

Y '  = s Y s  -1 , and 

Y ' s Y  = s Y s - l s Y  = s Y  2 = s l Y  # 0 .  
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The last inequality follows from the fact that,  if s Y  = 0 ,  we would have 
s - l s y  = Y = 0 .  Thus, according to the criterion of Theorem 3, Subsec- 
tion B, Y and Y" belong to the same IR. 

Now suppose that  Y,  Y '  belong to different diagrams, 7 and 7' 
with the row lengths vj----v~ for the first m rows, ?'~<m, but  with the 
(m + 1)'st row being longer in ~' than in ~. I t  follows tha t  there must  
be at least two sites in the same row in 2' which are in the same column 
in t. For, if we t ry  to place the numbers from the first row of t' in the 
boxes of 7 with no two in the same column, we will have to put  one in 
each column of 7. Doing the same with those from the second row, we 
will have to put  one in each column which still has vacancies, etc. After 
transferring the first m rows in this way, by  hypothesis the number  of 
columns still having vacancies will be less than the number  of sites in 
the next row to be transferred, so at  least two sites from this row must  
go into the same column of 7- If i,k are two sites in the same row of t' 
and the same column of t, then, since P'  symmetrizes, and Q antisymme- 
trizes, with respect to the transposition (ik), we have 

QP' = 0 ,  Y Y '  = PQP'Q'  = O 

Also, from (43), sY ' s  -1 = Y"  for any permutat ion s, where Y" is a Y 
operator belonging to 7'. We thus have, for any s, 

Y s Y '  = Y Y X s  = 0 ,  

since Y Y '  = 0  by  the same reasoning as above. For arbi trary y e l l ,  we 
have 

Y y Y '  = ~ s y ( s ) Y s Y '  = O. 

Thus, according to the criterion of Theorem 2, Subsection B, Y ,  Y '  
belong to different IR 's .  This completes the proof of Theorem 1, stated 
above. By means of Theorem 1, we obtain a one-one correspondence (via 
the Young operators) between diagrams 7 and IR ' s  F:  eZF. We will 
sometimes refer to a representation and its diagram interchangeably. 

We will also make some use of the fact that  Y* = Q P i s  also a constant 
times a primitive idempotent on the same I R  as Y. That  Y* is a constant 
times a primitive idempotent can be proved analogously to Theorem 1. 
That  it belongs to the same I R  as Y follows from 

Y , Y  = QPPQ = / Q P q  ~ o .  

(If QPQ = o, it would follow that  PQPQ = y z  =0. )  
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A ,,standard tableau" is defined as one in which the numbers increase 
when one reads from left to right in each row and from top to bottom 
in each column. I t  can be shown 9,11) that  the dimension of a representa- 
tion is equal to the number of standard tableaux associated with the 
corresponding diagram. The reader is also referred to the literature 9,11) 
for methods of calculating characters of the representations from the 
diagrams. 

Since ~ is a direct product group, its irreducible representations are 
also direct products. We denote a representation of ~ by a Young dia- 
gram giving the representation of ~n,  together with a letter g or u 
according as the representation is even or odd with respect to z0. 

The representation theory of the groups ~n  has been considered by 
Young 10) and Frame 15). I t  can be developed in a diagrammatic manner 
quite analogous to that  of ~n, as follows: 

We define a "two-part diagram" ~ of order n as a pair of ordinary 
Young diagrams ~(+) (order n+, labelled with a (+)  sign), and 7(-) 
(order n_, labelled with a (--) sign), such that n+ + n - = n .  An example 
with n = 8 is shown in Fig. 3. I t  is easy to see that  the number of different 
two-part diagrams is equal to the number of classes, hence to the number 
of IR's of ~ :  For each class, one can construct a two-part diagram 
whose row lengths are those of the even cycles in the (+)  part, and of 
the odd cycles in the (--) part. Clearly, this correspondence is one-to- 
one. A two-part diagram may be denoted by listing the row lengths 
of its parts, e.g., (3,2 + ;  2,1--) for Fig. 3. 

C÷) C') 

Fig. 3 

By filling the boxes of a two-part diagram with the site numbers 
1, 2, . . . ,  n we arrive at a two-part tableau i of order n with parts t(+), 
t(-). Analogously to the case of ~n, we can use a tableau i to define a 
set of subgroups of ~n  and symmetrizing and antisymmetrizing opera- 
tors associated with them. Thus, for the (+)  part of the tableau we 
define the group of row permutations ~+ with members p+, and the 
group of column permutations ~+, with members q+, exactly as for an 
ordinary diagram, and in the same way we define ~_,  p_, ~_,  q_ asso- 
ciated with the minus part. We will also need the direct product groups 
~ = ~ + × ~ _  (members t5); ~ = ~ + × ~ _  (members #). We further 
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define two new subgroups: ~+(members r+) consisting of all reflection 
operators on sites in t(+), and %- (members r-) defined analogously for 
t(-). Analogously to (37), (38), we define a set of symmetrizing and anti- 
symmetrizing operators as follows: 

Q+ = E * (q+)q+ ; Q- = E e (q_)q. ; -Q -- Q+Q- = E e (~)~. (47) 

P+ --- E P+ ; P -  = E p -  ; p = P + P -  = E f i .  (48) 

T + = ~ 3 + =  H (1 + r j )  • T - = ~ e ( z - ) r - =  H ( l - - z , )  (49) 
J~t (+) ' /¢~t (-) ' 

where e(z_) = + 1 if the number of reflections in 3- is even, -- 1 if it is 
odd. Of the operators defined in Eqs. (47--49), the only noncommuting 
pairs are (P+,Q+), (P_,Q_) and the others obviously derivable from these 
such as (P,Q). 

The Young operator for the tableau is defined as 

= T+'~QT- = T + Y + Y - T - .  (so) 

Because of the commutativity, Y may be written in a number of different 
ways, such as T+T_P----Q, etc. Analogously to Theorem 1 for ordinary 
Young operators, we have 

Theorem 2: The operator Y defined by (50) is, apart from a multiplica- 
rive constant, a primitive idempotent for ~n. Y operators belonging 
to the same two-part diagram belong to the same irreducible representa- 
tion; those belonging to different diagrams belong to different representa- 
tions. 

The proof again proceeds in steps, which are quite analogous to those 
for Theorem 1. These are as follows: 

i') Eq. (40) holds for P+, P- ,  P; Q+, Q_, -Q. We also have 

3+T+ = T+ ; (51) 

T_T_ = e(r - )T- .  (52) 

Eqs. (41) and (42) generalize to 

and 
3+pYq T_ = e (q )e (3_ )~" ,  

3+§(?x?) ~ z _  = ~ ( ~ ) , ( 3 _ )  (?x?). 

(53) 

(54) 
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All of these assertions follow immediately from the definitions. 
ii') A permutat ion p-q does not move any ligand from a site in one 

par t  of ] to a site in the other; nor does it move two ligands initially 
in the same column of t<+> or t<-> into the same row. All permutations 
having this property are expressible in the form ~ .  

The proof of this is exactly analogous to that  for (ii) above. 
iii') The analogue of (43) is 

O"~(~G -1  = g ( ] ' )  , (55) 

where a-----3s, and ] '  is the tableau obtained from ] by  replacing each 
site /" by s 1. This follows from the reasoning used under (iii) above, 
plus the fact, easily provable from (52), (53), and the commutat ivi ty  
properties of the operators, that  3 commutes with ~.  

iv') There a re  now two parts to this intermediate theorem, viz: 
(a) If  Q----3r, where r is a permutation which does not mix the (q:) 

and (--) parts  of ] a n d  is not of the form p-q, then there exist 3+/5, 3_c], 
where e(3-) ---- + 1, and p, # are both transpositions, such that  

3+~e~3- = e .  (56) 

Proo/: Since r does not mix the parts of ] we can write Q as Q ----- v+rv-, 
where v+, v -  are reflection operations confined respectively to the (+)  
and (--) parts of i. We now choose/~ and # to be the transpositions 
(whose existence has been proved in (iv) above) with the property 
pr(7=r. Let 3+ = v+v+(p), 3_----v_(~)v_. By substitution into Eq. (56), 
one verifies immediately that  these operators have the asserted proper- 
ties. 

(b) If  e =3r ,  where r is a permutation which mixes the (+)  and (--) 
parts of ], then there exist a 3+ and a 3-, with e(3-) = - -  1, with the prop- 
erty that  3+~3- = Q. 

Proo]: For an r which mixes the two parts, there is at least one 
site/ '  in t<-> with rj in t<+>. Let z+ = 3(rs), 3 - ~  3t. One verifies immediately 
by  substitution that  these operators have the stated property. 

v') I f  an operator a e lI  has the property that  

3+fa¢3_ = ,(~)~(3_)a 

for all t5, ~, 3+, 3_, then a = [Y, where / is a number. 
Proo/: The proof is so completely analogous to that  of (v) above 

that  there is no need to give it in detail. One writes a-----~a(a)a. For a 
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whose permutation part is ~ ,  one shows, exactly as in (v), that  a(a) -~ 
e(~)e(v-)a(1). For other a, one uses the results of ( iv ' )exact ly as we 
previously used (iv) to show that a(a)~0. 

vi') ~ is a number times a primitive idempotent. 
Proo]: Exactly as in (vi), we simply note that  the conditions of 

Theorem 2, Subsection B, are satisfied. 
vii') ~ operators belonging to the same diagram belong to the same 

IR. Those belonging to different diagrams belong to different IR's. 
Proo]: If two Y operators belong to the same diagram, we use (55) 

to show that  ~ ' a Y #  O. If Y, Y' belong to different diagrams with, say, 
n+ > n~-, then there is at least one site j" which is in t<+> and in t'C->. The 
product Y'Y then contains a factor (1--zj) (1 + z j ) = 0 .  If n+=n~-, 
but the diagrams are nevertheless different, one shows as in the proof of 
(vii) that Y Y '  ~-0. The rest of the proof is exactly the same as that  of 
(vii). 

E.  Regular  Induct ion from ~n  and ~ to 

In later sections of this paper, it will be necessary to carry out regular 
induction from a subgroup ~ of ~ to ~n. In principle, the induction 
can be carried out in a straightforward way using the results of Section 
II-C, if character tables for ~ are available; moreover, such character 
tables are available at least in principle, as a formula exists for calculat- 
ing them from the readily available ones of ~n  ~>. Even for relatively 
small n, however, this procedure is extremely cumbersome. The induction 
is much more conveniently and elegantly carried out in two steps, 
inducing first from ~ to ~ and then from ~ to ~n. If the first step 
yields 

[r(~)] ®" = ~,c , r (~ (~ ' ) ,  (57) 

and the second step gives 

(ss) 

then we evidently have for the final result 

(59) 

The first step, induction from ~ to ~ ,  is easily carried out with 
the aid of the character tables. The second step can be effected without 
the use of character tables, by  means of a simple procedure which we 
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now describe. We omit the rather lengthy proof, which is found in RefT). 
We first describe the procedure for regular induction from ~n  to ~n,  
then indicate the simple modification needed for ~ .  The representation 
[F(r)]~n of ~n  regularly induced by  F(r) of ~n  is constructed as follows: 

We fill some of the n boxes of the diagram y(r) with ~1 symbols 1, 
x2 symbols 2 . . . .  m symbols t subject to the conditions Xl ~-- ~2 ~- • . .  ~t 

and, x l + X 2 +  . + x t ~  u . • . - in such a way that  
- - 2  

1) No two symbols of the same kind are in the same column. 

2) When all the boxes containing the symbol t are removed the remaining 
boxes constitute a diagram; this must  remain so when all boxes with 
t and t--1 are removed etc. 

3) Reading from right to left along the rows, beginning with the top row 
and working down, one must get a "lattice permutat ion"  of 111. . .  

2 2 . . .  That  is, at each point one must have read at least as many  l 's  
as 2's, as many  2's as 3's, etc. 

For each way of doing this, the induced representation contains an 
irreducible representation whose (+)  diagram is the diagram of empty  
boxes and whose (--) diagram has rows of lengths ~1, ~2 . . . . .  at. If  
the plus and minus diagram are of different order, the induced represen- 
tation also contains a second irreducible representation corresponding 
to a two-part  diagram in which the plus and minus diagrams are inter- 
changed, otherwise notC). 

The induction from ~ "  to ~n  is the same, except tha t  the only in- 
duced diagrams allowed are those with an even or odd number of boxes 
in the negative part  according as the inducing representation is g or u. 

In Fig. 4, we give an example of the induction from ~7 to ~7- 
For induction from ~ 6 to ~ 7, we must  distinguish between the indices 

g or u of the inducing representation and consequently ignore induced 
diagram pairs with an odd (for g) or even (for u) number  of boxes in the 
minus component• Thus, referring to Fig. 4, if the inducing representa- 
tion of ~ is (3,22)u, we obtain only the representations under column 
(u) in the figure; if it is (3,22)~ we get only those in column (g). 

e) If the two parts are of the same order, but  are not identical, there is always 
another allowed way of filling in the symbols which leads to the diagram pair 
with interchanged signs. The prescription as stated prevents this from being 
counted twice. 
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(g) 

( . )  

(+) (-)  

{+l (-) 

(+1 (-1 

(+1 {-) ~ m  
(+1 (-) 

(+) (-1 

(+) (-) 

(+) (-) 

(+) (-1 

(+) (-) 

(+) (-) 

(u) 

(-) 

(-) (+) 

(÷) (-) 

(+1 (-? 

(+3 (-) 

(+) (-) 

(+1 (-) 

(+) (-) 

(+) (-I 

(+) (-1 

ES~ 
(+1 ~-) 

(+) (-1 

Fig. 4 
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F. T h e  Transfer Condi t ion  

I t  will prove to be important  later on to be able to decide whether a 
certain relation is satisfied between two Young diagrams of the same 
order. We call this the transfer condition or "T-condition". For one- 
part  diagrams (an), this relation is defined as follows: 

Given two diagrams of the same order, ytr) and 7(v), we imagine the 
boxes of 7(v) to be filled with symbols 1 in the first row, 2 in the second, 
etc. We say that  the T-condition is satisfied for y(~) into y(r) if it is 
possible to transfer these symbols into the boxes of 7(r) in such a way 
that  no two like symbols are in the same column of 7tr) (Column condition 
of C-condition). 

To determine under what conditions the T-condition is satisfied, 
we note that,  in order to accomodate all the l 's,  the number of columns 
in y~r) must be at least as large as the length of the first row of 7~v), in 
other words we must have 

Vl (r) ~ ~1 (p) , 

where vj is the length of the i ' th  row of a diagram. If  the l ' s  can be 
accomodated, then the unused columns plus the ones of length >/2  must  
be enough to accomodate all the 2's, i.e., we must  have 

Vl (r) + v2(r) ~ vl (~) + v2 (~) . 

Continuing in this way, we see that  the transfer condition is satisfied if 
and only if 

oj~r~ >1 oily), all i ,  (60) 
where 

: 
o j =  ~ v k .  

If  (60) is satisfied, we say that  

7(r) D ~Cv) (61) 

(~Ar) is greater than 7(v)). 

I t  is also quite easy to see that  moving boxes downward in a dia- 
gram never increases any oj, and that  all diagrams smaller than the 
original one can be obtained in this way. Thus, we can also formulate 
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the " ~ "  relation thus: 7(r) D 7(2~) if and only if 7(~) is obtainable from 
7(r) by moving boxes downward (without at any point producing an 
array of boxes which is not a diagram). 

We note further that  moving boxes downward in this way also entails 
moving them from right to left. This leads to the analog of (60) in terms 
of the column lengths; 7(r) D 7(l~) if and only if 

where 

u~<~> < uj<~,), all ] ,  

l 

U i =  ic~=lt~I¢,= 

(62) 

a nd /~  is the length of the / " th  column. 
We thus conclude that the T-condition for 7(~) into 7(r) is satisfied 

if and only if 7(r) D 7(~). The " D "  relation is determined equivalently 
by (60), (62), or the condition of downward movement of boxes. 

One should note that  the " D "  relation gives only a partial ordering 
of the Young diagrams. There can exist pairs of diagrams 7, 7', such 
that  7 * 7' and also 7 ' *  7. Thus, for the diagram of Fig. 5 we have 
73 D 72, 73 D 71, but neither 71 ~ 72 nor 72 ~ 71. The " ~ "  relation is 
transitive: If 7a = 7b and 7b~ 7e, it follows that  7a~  7e. I t  can be 
shown 6) that  the " D "  relation defines a lattice. 

) (2) (3) 

Fig. 5 

The appropriate generalization of the T-condition for two-part 
diagrams is the following: 

Consider two two-part diagrams of order n, ~(r) and ~(~), the boxes 
of the latter being filled with symbols 1 in the first row, 2 in the second, 
etc., with the symbols in the minus part distinguished by  primes. The 
"generalized T-conditions" is said to be satisfied if all the symbols can 
be transferred into the boxes of ~(r) in such a way that  

1) No two like symbols appear in the same column of the same 
part  of ~(r) (primed and unprimed symbols being counted as different 
for this purpose); and 
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2) All the unprimed symbols are in the plus part of ~(r) (though primed 
symbols may be in either part). 

We now consider what properties the diagrams must have in order to 
satisfy this condition. 

First, the plus part of ~(r) must be able to accomodate all the 
unprimed symbols with no two like ones in the same column, though 
some boxes may be left unfilled. This means that the first row of y(r+) 
must be long enough to accomodate all the l's, the leftover boxes in the 
first row plus those in the second row enough for the 2's, etc. Continuing 
in this way, by reasoning exactly analogous to that used above for 
single diagrams, one conludes that, to fulfill this part of the T-condition, 
it is necessary and sufficient that  

Of(r+) > Of (p+) , a l l i .  

Second, there must be enough different kinds of primed symbols to 
fill the first column of y(r-), the unused ones plus those of which there 
are at least two must be enough to fill the second column, etc. Again, 
by reasoning analogous to the above, one concludes that  this part of the 
T-condition is satisfied if and only if 

uf(r-) < uf(P-) , all i .  

The above two conditions are necessary, though not sufficient, for 
the T-condition. By means of them, we can define a "greater" relation 
for two-part diagrams which is analogous to the known one for ordinary 
diagrams, as follows: 

We say that  ~(r) D ~(~) (~(r) greater than ~(P)) if 

and 
o~(r+) > of(v+), all i ,  

us(r-) < uf(P-),  all i i 

A second, equivalent, definition is: ~?(r) is greater than ~?(p) if and 
only if ~(P) can be obtained from ~(r) by moving boxes from the plus to 
the minus part, and/or downward within each part. 

I t  is shown in Ref. 7) that  this partial ordering defines a lattice. 
If ~<r) ~ ~(p), then the above considerations show that  we can transfer 

all the unprimed symbols into ~,(r+), with no two like ones in the same 
column and nrp = n {r+) -- n (p+) ---- n(P-) -- n(r-) boxes remaining empty. 
Also, we can fill 7(r-) with primed symbols, no two like ones in the same 
column, with nr~ symbols not being used. In general, this partial transfer 

38 



Permutation Groups, Symmetry and Chirality in Molecules 

can be done in several different ways. The T-condition now will be 
satisfied if we can transfer the nr~ remaining primed symbols into the 
nr~ empty boxes with no two like symbols going into the same column. 
We can express this condition as a T-condition for ordinary diagrams as 
follows: First, form a diagram ~(r~+) of order nr~ whose column lengths 
are the numbers of empty boxes in the columns of 7(r+). Form another 
diagram ~{r~-) of order nr2~ whose row lengths are equal to the numbers 
of unused primed symbols of each kind. These diagrams will be called 
remainder diagrams. In terms of them, the question of transferability of 
the unused symbols becomes: "Can all the symbols be transferred from 
y(r~-) to 7<r~+) in such a way that  no two symbols from the same row 
of 7(r~-) go into the same column of 7(r~+)?" This, however, is just the 
ordinary T-condition for 7(r~-) into ~,(r~+), and we know that it is satisfied 
if and only if ~(rp+) D ~(r~-). 

The remainder diagrams, however, are not uniquely determined, as 
the partial transfer of the symbols can in general be carried out in many 
ways. To satisfy the T-condition, we need only one way of doing the par- 
tial transfer which will make r(r~+) ~ ~,(rp-). Since the two parts of the 
partial transfer are independent of each other, we can transfer the un- 
primed symbols into v(r+) in such a way as to make ~(r~+) as "large" as 
possible, and similarly transfer the primed symbols so as to make 
~(rp-) as small as possible. The possibility of doing this depends on the 
existence of a unique "largest remainder" for the transfer of the un- 
primed symbols, and a "smallest remainder" for the transfer of the 
primed symbols. We prove below that  such unique largest and smallest 
remainders exist, and that  they are constructed in the following way: 
o(~)i) Largest Remainder: Given two diagrams ~,(a) and ~(b), with 

> o (b) for all i, the boxes in the first row of ~(b) being filled withl 's,  
the second row with 2's, etc. Transfer the symbols into the boxes of 
?(a) one at a time, in any order, placing each symbol as far down as 
possible subject to the condition that  it does not go into a column al- 
ready occupied by a symbol of its own kind. If there are two or more 
boxes satisfying this condition and equally low down, choose the one 
farthest to the right. When all the symbols have been transferred, the 
unfilled boxes will be in diagram form without further rearrangement, 
and this diagram will be the largest remainder ~'max(~(a), ~(b)). 

The question of the smallest remainder ~(r~-) takes a completely 
analogous form if we reformulate it somewhat. Instead of transferring 
the symbols from ~,(~-) into ~(r-), we imagine that  the boxes of ~,(r-) 
are transferred into ~(~-), with no two from the same column going into 
the same row of ~(~-). The symbols remaining uncovered by transferred 
boxes form the remainder. I t  is obvious that  this is equivalent (as far 
as forming the remainder is concerned) to the formulation in terms of 
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symbol transfer, and that  it differs from the situation of (1) above only 
in the interchange of the roles of rows and columns. The construction 
of the smallest remainder is therefore carried out as follows: 
u(~)ii) Smallest Remainder: Given two diagrams, 7(a) and 7(b), with 

___ u(~ ~ for all i, and with the first column of 7(b) filled with symbols 1, 
the second with 2's, etc. Transfer the symbols into the boxes of 7(a~ 
one at a time, in any order, placing each symbol as far the right as possible 
consistent with the condition that  it not go into a row already occupied 
by  a symbol of its own kind. If there are two or more allowed boxes 
equally far to the right, choose the one farthest down. When all the sym- 
bols have been transferred, the unfilled boxes will be in diagram form 
without further rearrangement, and this diagram will be the smallest 
remainder ~'min(~ ,(~), ~,(b)). 

Examples of largest and smallest remainder construction are shown 
in Fig. 6. 

.- - - ]  

¥ ~' 

4 3 3  
2 2 1  
1 1  

['"'I r I'I I 
L__J f F I I 

Tin., (T,~") 

211 
3 2 1 1  
2 1  : 
1 

~'mro (~', l") 

Fig. 6 

Proo/of the Prescription: In the beginning of this proof we consider 
the largest remainder prescription with the transfer being carried out in 
a particular order: First the l 's  then the 2's, etc. At the end, we will see 
that  the order is irrelevant. 

To prove the validity of the prescription, we start with some de- 
finitions and preliminary remarks. 

We call two allowed arrangements of the symbols among the boxes 
"equivalent" if they have the same remainder. Since the remainder, as 
well as the C-condition, depends only on the number of symbols in each 
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column, we can assume without loss of generality that  all symbols in a 
given column are piled up at the bottom of the column. Now, for fixed 
number of symbols in each column, we define a "standard" arrangement 
as one in which the l 's are placed as low down as is compatible with the 
C-condition and the fixed column distribution (number of symbols in 
each column), the 2's as low as is compatible with the C-condition, the 
column distribution, and the placement of the l's, etc. 

Now, starting with an arbitrary arrangement d ,  we can rearrange 
it into standard form as follows: 

We rearrange the symbols among the occupied boxes so that  the l 's 
are at the bottoms of the vl~b~ longest occupied columns (i.e., in the 
Vl<b~ lowest-lying occupied boxes with no two in the same column), 
the 2's are at the bottoms of the v2~b~ longest columns of the remainder 
which still have space available, etc. This standard arrangement d s  
is equivalent to d ,  as the same boxes are occupied as before, though not 
necessarily by the same symbols. Now, if we can move an entire pile of 
symbols from one column into a longer, previously unoccupied one, we 
obtain an arrangement with a larger remainder than ~s ,  since we have 
increased the length of a shorter column of the remainder at the expense 
of a longer one. Let us do this with all the "1-piles" (piles with l 's at the 
bottoms), i .e. ,  move the 1-piles into the vl longest columns of ~<a~, 
choosing the columns farthest to the fight in case of ties. (This will not 
displace any other piles, as the 1-piles already are in the longest occupied 
columns.) The resulting arrangement has the l 's  placed according to 
the prescription, and has a larger remainder than does ds .  I t  is standard 
as far as the placement of the l 's is concerned; if it is not also standard 
for the other symbols, we rearrange them as before to form a standard 
arrangement, d ~  whose remainder is larger than that  of ds .  Similarly, 
we now move the 2-piles (the 2's, plus whatever else may be on top of 
them) into longer columns (of ~<a~ minus the squares already occupied 
by l's) where possible and rearrange into a standard arrangement, 
~ ,  in which the l 's and 2's are arranged according to the prescription 
and whose remainder is larger than that  of d~ ,  hence also larger than that  
of ~ , .  Continuing this procedure for the 3's, 4's, etc., we end up with 
the prescribed arrangement. Its remainder is greater than that  of de ,  
hence also greater than that  of the equivalent arrangement d .  But  
was arbitrary, so the prescribed arrangement has a larger remainder 
than any other, and the validity of the prescription is proved. 

I t  is evident from the nature of the proof that  the prescription is, as 
claimed in Section III ,  independent of the order of placement of the 
symbols. To prove the prescription for another order of placement, one 
need only redefine "standard arrangement" in such a way that  first 
preference (i.e., the lowest available places) is given to the symbols 
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which are to go in first, then those which go in next ,  etc. The val idi ty of 
the prescription for the smallest remainder  now follows by  interchanging 
rows and columns. 

F rom the above discussion, we see immediate ly  the criterion for 
satisfying the T-condit ion for ~7(~) into ~(r). I t  is satisfied if and only if 

and 
1) ~(r) D ~(p) 

2) ~m~,,(~'('+), 7(P+)) ~ ~,m~(~(P-), 7(~-)). 

We note tha t  the T-condit ion in this case is not  transitive. For  
example, referring to Fig. 7, we see tha t  the T-condit ion is satisfied for 
~(c) into ~(b), and for ~(b) into ~(a), but  not  for ~(e) into ~(a). 

(+) (+) (-) (+) (-) 

~,(a) ~,(b) ~,(c) 

Fig. 7 
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III. Chirality Functions; Qualitative Completeness 

A molecule may be completely specified by  describing a skeleton, plus 
the nature (and perhaps the orientation) of the ligand at each site. Thus, 
a skeleton may be thought of as defining a class of molecules, with indi- 
vidual members of the class being determined by specification of the 
ligands on the various sites. A given molecule may belong to more than 
one such class, depending on which part of the molecule is taken to be 
the skeleton and which the ligands. For instance, ethane may be thought 
of as the six-site ethane skeleton with six H-atoms as ligands; or alter- 
natively as the four-site methane skeleton with one methyl and three 
H-atom ligands. 

In the present article, it will be assumed that  a molecule within a 
skeletal class is completely determined for our purposes by specifying 
the nature of the ligand on each site, though a ligand is permitted to 
have two enantiomeric (mirror image) forms. If more than one orien- 
tation of a ligand on a site is possible, this means that one of the follow- 
ing must hold: either 

(a) The ligand must possess sufficient symmetry to make all prop- 
erties of interest to us invariant under changes of orientation; or 

(b) Properties of interest refer to time- or ensemble-averages to which 
all orientations contribute equally; or 

(c) For given distribution of ligands, a single orientation is strongly 
preferred. 

The problem of how to relax this restriction will be alluded to in 
Section X. 

Within a given skeletal class, and subject to the above restriction, 
any quantitative molecular property will depend on the nature of the 
ligands on the various sites, and can thus be thought of as a function of 
the ligands, or of properties (parameters) thereof. A pseudoscalar, or 
chiral, property is one (such as rotation of the plane of polarized light) 
whose numerical value is invariant under rotations of the molecule, but  
which changes sign when the molecule is replaced by its mirror image. 
A function of the ligands, or of ligand parameters, which describes a 
pseudoscalar property of molecules within a skeletal class will be called 
a chirality ]unction. A chirality function may, in general, take many 
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forms. I t  could consist simply of a table of experimental data; or of an 
empirical function chosen to fit the data; or of the result of a theoretical 
calculation, etc. 

As an example, which will also lead us to the concept of qualitative 
completeness, consider the allene skeleton, as shown in Fig. 8, and for 
the moment consider only achiral ligands. Besides the unit element, the 
symmetry group of the skeleton, D2a, consists of the rotation operations 
(in permutation group notation) (12)(34), (13)(24), and (14)(23), plus 
the improper rotations (1)(2)(34), (12)(3)(4), (1324), and (1432). 

2 
1 

Fig. 8 

If ~ is some scalar parameter associated with a ligand, then it is 
readily verified that  the functions 

%1 = ( ~ 1 - ~ 2 ) ( ~ 3 - ~ 4 )  ; 

(I) 

are both chirality functions for this skeleton: both %1 and %2 are unchan- 
ged under the rotation operations, and change sign under the improper 
rotations. One could imagine attempting to find an empirical ligand 
parameter ~ so as to fit a given set of experimental data with a function 
of the form %1 or %2. 

As it turns out, however, neither of these functions can be used to 
describe a chiral property of a wide class of molecules without encounter- 
ing a fundamental difficulty. For example, consider an isomer mixture 
in which the molecules I, II, I I I  of Fig. 9 appear in equal concentrations. 
%1 for this mixture would be, apart from a multiplicative constant, simply 

%1(I) + 11(II) + %z(lll). 

44 



Permuta t ion  Groups, Symmetry  and Chirality in Molecules 

c b d 

d c b 
a a a 

I Tr Trr 

Fig. 9 

But  
xl (I )  = ( x a - x o ) ( ~ b - x . ) ;  

Zl(I I )  = (2a--).c)(2d--lb); 

Z l ( I I I )  = (2a--ab)(ae--2a),  

and it is readily seen t ha t  the sum vanishes identically, even though the  
mix ture  is not  racemic. One varifies easily t ha t  Z2 does not  vanish for 
this mixture .  On the other  hand,  for the chiral molecule of Fig. 10, as 
well as for an equal  mix tu re  of the two isomers I ' ,  I I '  of Fig. 11, one 
easily shows tha t  X~. vanishes identically while X1 does not.  

d 
a 

Fig. 10 

d 
a b 

Fig. 11 
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Either of these functions by itself, then, is incapable of giving a 
sufficiently general description of a chiral property, as each vanishes 
identically in situations where there is no reason of symmetry why it 
should, i.e., no reason inherent in the definition of a chirality function. 
The sum of the two, Z1 + Z2, appears to offer better prospects than either 
one by itself; but it is not clear at this point whether this function is 
sufficiently general, or in general, how one decides whether a chirality 
function will encounter difficulties of this kind or not. 

The answer to this problem was given by Ruch and SchSnhofer 6) 
in terms of the concept of "qualitative completeness", which is defined 
as follows: 

A chirality function is said to be qualitatively complete if there is 
no nonracemic isomer mixture for which it vanishes identically. 

To analyze the implications of qualitative completeness, we first 
make a few preliminary definitions and remarks. 

Given a molecule M0 belonging to a skeleton with n sites, the group 
which generates all the isomers will be called ~.  The group ~ includes 
all possible rearrangements of the ligands among the sites, as well as all 
permissable operations (e.g., inversion) which may be performed on a 
ligand. In this paper, ~ will always be either ~n or ~n. ~ possesses a 
subgroup ~5, consisting of those rearrangements which can be inter- 
preted as rotations and]or reflections of the molecule. ~5 in turn possesses 
a subgroup ~3, corresponding to pure rotations. ~5 is often, but not 
always, isomorphic with the point group of the skeleton. It  fails to be 
always isomorphic because sometimes two or more elements of the point 
group may correspond to the same permutation. Thus, an operation of 
~3 applied to M0 merely gives the same molecule in a different orien- 
tation, while a member of the coset of ~3 in ~5 gives the mirror image 
M0* in some orientation. A chirality function, by definition, must 
belong to the "chirality representation"/ ' (z)  of ~5, which has character 
+ 1 for members of ~3, --  1 for members of its coset in ~5. The index of 

in (5 is always 2. If the ligands are allowed to be chiral, it is to be noted 
that  the elements of ~3 do not contain v0, while those of its coset in (5 do. 

A mixture of isomers may be represented by an "ensemble operator", 
which is defined simply as a member a of the group algebra li  of ~.  

a = ~ a(s)s,  

with the coefficients a(s) being interpreted in terms of concentrations. 
Applied to a molecule M0, the operator a generates a set of isomers, 
sMo, each formally multiplied by a coefficient a(s). The a(s) are to be 
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interpreted in terms of concentrations, but, since a(s) need not be real 
and positive for a to be in H, this requires a little bit of care. There are 
two ways of interpreting real negative a(s), each equally valid for our 
purposes, viz: 

(i) If  a(s) is negative, it is interpreted as a positive concentration 
- -  a(s) of the mirror image (sMo)*. This will obviously produce consistent 
results for all chirality functions. (This is the interpretation used by 
Ruch and Schrnhofer.6)) 

(ii) We can start  with a mixture in which all isomers are present in 
equal concentration, and interpret the a(s) as concentration increments,  
in which case they can obviously be either positive or negative. 

Complex a(s) may be interpreted as representing two mixtures simul- 
taneously, one corresponding to the real, one to the imaginary part.  This 
will not cause any inconsistency with the operations we shall be perform- 
ing with the ensemble operators. Alternatively, we could simply restrict 
ourselves to real a(s), as the real numbers suffice for the full reduction 
of representations of a n  and ~n. 

Given a skeleton with n sites, and a set of ligands (in general all 
different) l l ,  l~ . . . .  , ln, we can form a molecule M0 by  distributing 
the ligands in an arbi trary way among the sites. A chirality function 
z(M) will have a particular value for this molecule. Alternatively, if we 
keep the ligands fixed on the same sites but allow parameters  character- 
izing the ligands to vary,  we can think of z(M0) as a function of the 
ligands. The corresponding chirality function for the mixture a M o  is 

z(aMo) = Y. a(s)z(sMo). (2) 

Qualitative completeness of • means that,  if a is not the operator for 
a racemic mixture, then z (aMo) ,  considered as a function of the ligands, 
does not vanish identically. 

To analyze the implications of this, we choose a basis for each irre- 
ducible representation F~ r) of ~ such that  the first Zr basis functions 
transform according to Fcz) under (fi, where Zr is the number  of times 
F~x) is subduced by  F~r) in (ft. (Of course, some of the Zr may  be zero.) 
Now, since a is a member  of ~, it can be expressed in terms of the e- 
operators as 

a = a c e  
r , ' i ,J  
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That  a is nonracemic means that  it does not identically annihilate 
(r) all chira!ity functions, i .e. ,  that at least one of the coefficients a , j ,  

with/" < Zr, is different from zero. Qualitative completeness for Z means, 
therefore, that it is not annihilated by any of the e~ ) with ] <~Zr, nor by  
any linear combination of them. This means that Z must possess zr 
components g(~) belonging to each p(r) of $ .  These components must 
not only be linearly independent, but  also all functions e~}) g(~ ) must be 
linearly independent. For example, if zr-----2, it will not do to have 
g(~) ~ e  (r) X(~ ), since in this case the chirality function Z=X(~)+X(~ ) 
would be annihilated by the chiral ensemble operator a =e(l~ +e(2r)2 - 
e(r) (r) 1 2 -  e~l. This independence can be achieved, for example, by having 
the different components belonging to the same IR depend on different 
ligand parameters. Because of this independence, it also follows, accord- 
ing to the reasoning of Section II-C, that  the induction from (5 to 
starting with g must be regular. 

An I R / ' ( r )  of ~ with z r #  0 will be called a chiral representation 
(with respect to a given skeleton). 

Our results may be summarized as 
Theorem 7 : I t  is necessary and sufficient for qualitative completeness 

of Z that  g contain Zr independent components transforming according 
to each IR F(r) of ~, where zr is the number of times F(x) is contained 
in {F(r)(6)},. I t  is also necessary and sufficient for qualitative com- 
pleteness that  the representation of 6 induced by g is just [/'(z)(ffi)] ~, 
i.e., that  the induction is regular. 

For readers unfamiliar with these techniques, it might be helpful at 
this point to work out an example in some detail. We choose that of the 
aUene skeleton, already discussed somewhat in this section, and at first 
we limit ourselves to achiral ligands, so that ~ ~ 64. The character 
table for ~4 is shown in Table 1. In this case, the subgroup @ is just 
D2a, and its rotational subgroup is D2. Table 2 shows the classes of D2a, 
the number of elements in each, the class of 64  and of 64  to which each 
belongs, and the character of each for the representation T'(x). 

Table 1. Characters of 64 

Rep. Young Dgm , (14) (12,2) (1,3) (22) (4) 
(r) c 1 6 8 3 6 

1 (4) 1 1 1 1 1 
2 (3,1) 3 1 0 --1 --1 
3 (2 2 ) 2 0 --I 2 0 
4 (2,1) 3 --1 0 --1 1 
5 (14 ) 1 - - 1  I 1 - -1  
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T a b l e  2. Some proper t ies  of D 2 a  

E C2 U2 a $4 
c 1 1 2 2 2 
.~(~4) (I 4 ) (2 2 ) ( 2  2 ) ( 1 2 , 2 )  (4) 
, e ( ~ )  (14 ) (2 2 ) (2 2 ) Z'0(l 2,2) "t'0 (4) 
X ( P ( z ) )  1 1 1 - -  1 - -  1 

To get the characters for the representation of (5 subduced by  a 
given representation of 6 ,  we just copy down the characters of tha t  
representation for t he  elements of ~ which are also in (5. This is done 
for the irreducible representations of 64  subduced onto D2a in Table 3. 
Comparing Tables 2 and 3, and using the standard formula for finding 
the irreducible parts of a representation by  means of the characters, 
we see that the representations subduced by F(8) and F(s) contain F(x) 

Table  3. Charac ters  of {F(r)(~4)} D2d 

r E C2 2U2 2o 2S4 
1 1 1 1 1 1 
2 3 - - I  --1 1 - -1  
3 2 2 2 0 0 
4 3 - -1  - -1  - -1  1 
5 1 1 1 - -1  - -1  

once each, the others not at all. In other words, in this case Zl-----z2 
z4 = 0 ,  zs =z5  = 1. This means that the regular introduction from F(z) 
of D2a to 64 gives a representation containing F(3) and F(5) once each, 
and the others not at all. I t  also means that  a qualitatively complete 
chirality function must have two independent components, one trans- 
forming according to F(s) under 64, the other under p(5). 

If we allow the ligands to be chiral, the isomer-generating group 
becomes 64. The induction from D2d to 64  is obtained via $~, according 
to the procedure outlined in Section II-E. The classes of ~ a re  those 
of 64, plus each of these multiplied by 30. Its characters are those of 64  
for each class c in ~4 ;  and the same ones multiplied by  + 1, according 
as the representation is g or u, for the classes ~o *. Otherwise, the pro- 
cedure is just as before. Fig. 12 shows, in diagramatic form, the repre- 
sentations of $ I  induced by F(x) of D2a, and the representations of 64  
induced by each of these. In the present case, no representation appears 
more than once in a single step of the induction. A qualitatively complete 
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chirality function for this case, therefore, must have eleven independent 
components, one for each two-part diagram appearing on the right- 
hand side of Fig. 12. Note that  this means there must be two components 
belonging to the two-part diagram (12 + ;  1 z --). 

1 1 1 1 1  ~ [ - l - l - I  Fl ~ F-I I - - ~  
u (+) ( - )  (+) ( - )  

• . (+) ( - )  , 

g (+) ' (+) ( - )  , ( - )  

u (+) (_) 

g (+) (-) 

Fig. 12 
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IV. Simple  Expl ic i t  Forms of Chirality Funct ions  

As shown in the previous section, a qualitatively complete chirality 
function contains ~rZr components, so the problem of the explicit con- 
struction of Z reduces to that  of the construction of its components. 

To construct a chirality function belonging to a particular representa- 
tion Per} of 6 ,  one proceeds, in principle, as follows: Starting with an 
arbi trary function ~(1 ,2 , . . . ,n ) ,  one applies one of the Young operators 
(arbitrarily chosen) which project onto/-(r~. If the result it not zero, it 
will be a function belonging to F{r), though not necessarily a chirality 
function. One then applies e{z}, the projection operator onto the chiral 
representation of (ft. If  the result is still not zero, it will be a chirality 
function having the desired properties. In  mathematical  form, 

zO'~ = eC~ yO'~ 9 .  (1) 

I f  at any point in this procedure one gets zero, of course, it is necessary 
to start  over. With experience, one learns to choose ~ and Y in such a 
way that  this will not happen. If zr > 1, one must  construct Zr different 
functions in this way, independent in the sense discussed in the previous 
section. 

In this process, of course, one is trying to obtain a single function, 
not a sum of functions for different molecules. This means that  the oper- 
ators s of ~ appearing in Eq. (1) must  be interpreted as giving new func- 
tions of the same molecule, not the same function of different molecules, 
as explained in Section II-D.  The dependence on the ligands is, of course, 
the same. In practice, this causes no problems, par t ly  because all the 
operators involved are sums in which s -1 is present along with each s, 
so one does not have to worry about which interpretation is being used. 

In  principle, the starting function ~ in Eq. (1) is arbitrary, and an 
unlimited variety of chirality functions belonging to the same represen- 
tation is possible. In this section, we wish to consider two particularly 
simple types of functions, which lend themselves to the fitting of ex- 
perimental data. We will work out the implications of these procedures 
for the cases ~ = ~n  and ~ = ~n.  
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First Procedure: Polynomial of lowest Possible Order. 
A particularly simple type of chirality function is a polynomial in 

one or more ligand parameters,  such as the two functions of Eq. (III-I). 
Maximum simplicity is obtained if one requires each component of Che 
qualitatively complete g to be a polynomial of lowest possible order in 
the parameter(s). We first consider the case ~ = ~n.  

If  the ligands are not allowed to be chiral, they can be characterized 
by  a single scalar parameter  4. The starting function ~ in Eq. (1) is chosen 
to be a homogeneous polynomial in the 4. Since each of the monomial 
terms in ~p separately yields either zero or a function with the desired 
property, we can consider ~o to be a monomial without loss of generality. 
We choose the monomial to be of the lowest order which will not be 
annihilated by  the operations of Eq. (1). 

The Young operator Y in (1) antisymmetrizes with respect to per- 
mutat ions of sites in the same column in its tableau, The monomial 9, 
therefore, cannot be symmetrical  with respect to any two sites in the 
same column, i.e., it cannot contain the same power of 4 for any two 
such sites. The powers of 4 for the sites in a given column, therefore, 
must  all be different. The lowest possible choice consistent with this is 
that  they be 0, 1, 2, . . . ,  /~ for a column of length/~. Thus ,  ~0 can be 
chosen to be independent of 4 for sites in the first row of the tableau, 
and to contain ,t for sites in the second row, 42 for those in the third, 
etc. The total order is therefore 

g = ~J( i - - I )  vj. (2) 

This is obviously necessary for the existence of a nonvanishing chirality 
function of the given order; in fact, it is also sufficient. For, if Y~ 
does not vanish, it belongs to the representation F(r), and it follows that  
a complete basis for F(r), including the Zr chirality functions, can be 
generated from it by  applying the operations of ~n,  which do not, of 
course, affect the order of the polynomial. There is, of course, no reason 
a priori why the different components must depend on the same param- 
eter. For different components belonging to the same r, different 
parameters must  be chosen in order for them to have the requisite in- 
dependence, as discussed in the preceeding section. 

I t  is easy to show that  chirality functions obtained according to this 
first procedure depend only on differences of the 4's. To show this, we 
make the change of variables 

y i  = 4i +,~2 + -. .  + ,~ , ;  

~2 = ~2 -- ~i; 

52 



P e r m u t a t i o n  Groups,  S y m m e t r y  a n d  Chi ra l i ty  in Molecules 

y3 = ks - -  42; 

yn - -  2n - -  2 n - i .  

Our polynomial can be expressed in terms of the y's as well as in the 
2's, and is of the same order in both. If  any term contains a power o fy l ,  
all the other terms will contain the same power of it, since Yl is totally 
symmetric. Also because of this total  symmetry,  the function obtained 
by  dividing out this power of y l  will have all the same transformation 
properties as the original one. The polynomial of lowest order with the 
given transformation properties, therefore, will not contain y l  but  will 
be expressible entirely in terms of the differences y2, Y3 . . . . .  yn, which 
is the result to be proved. 

As an example, we work this out for the allene skeleton considered 
in Section I I I .  According to the results obtained there, a qualitatively 
complete g must  contain two components, one belonging to F(3) of Table 
1, the other to F(5). For the representation F(3), Eq. (2) tells us that  g = 2 .  
We choose ~ = 2224 and the tableau of Fig. 13. The Young operator 
(taken to be QP instead of PQ for convenience) is 

Y = [1 - -  (12)Ill - -  (34)][1 + (13)][1 + (24)]. (3) 

Fig. 13 

Applying this to our ~, we find 

Y2z2a = 4 (22  - -  21)(24 - -  23) • (4) 

For e(z) we have a) 

e(X) = 1 -~ (12)(34) + (13)(24) + (14)(23) 

- -  [(34) + (12) + (1324)+  (1423)]. (s) 

d) The  pro jec t ion  opera to r  e(Z) of Eq.  (5) is n o t  normal ized .  Since no rma l i za t i on  
p l ays  no pa r t i cu la r  role in t h e  theory ,  we shal l  ignore  i t  in t he  r e m a i n d e r  of th i s  
sect ion,  w i th  t h e  resu l t  t h a t  some  equa t ions  a re  t rue  on ly  up  to  a mul t ip l i ca t ive  
cons t an t .  Such  a c o n s t a n t  does n o t  affect  t r a n s f o r m a t i o n  proper t ies ,  so t h e  
ch i ra l i ty  func t ions  ob ta ined  re ta in  the i r  va l id i ty .  
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I t  is readily verified that  e(z) applied to Y).224 merely multiplies it by  
a constant. Dropping a multiplicative constant, then, we can take our 
function to be 

z (3) = ().1 - ~2 ) ( ; t3  - ) . 4 ) ,  (6)  

which is identical with X1 of Eq. (III-1). Proceeding analogously, one 
finds that  the component belonging to F(5) by  this procedure is just X2 
of (111-1). 

If  the ligands are allowed to be chiral, we have ~ = ~n. In this case, 
a single scalar parameter  is not sufficient to characterize a ligand, since 
that  could not distinguish between the tigand and its mirror image. In  
addition to our scalar parameter  ~, therefore, we need a pseudoscalar 
one, ~. In this case, one must  use some care in defining what one means 
by  "lowest order", since it may  be possible to obtain a decrease in the 
order of one of the parameters at the expense of an increase in the other. 
To resolve this question, we note tha t  any even power of n is a scalar, 
in other words, a ").-like" parameter.  We can thus define our parameters 
in such a way that  no single n appears raised to a power higher than the 
first, by the simple expedient of considering any even power of n to be 
a function of L This leads us to formulate the problem as follows: The 
starting function ~v in Eq. (1) is to be chosen to be a monomial in the ). 
and n, with individual n's not raised to any power higher than the first. 
The number of factors n in ~o is chosen to be as low as possible; then, 
keeping the n-dependence unchanged, the order in the 2 is minimized. 

The Young operator Y antisymmetrizes with respect to reflections 
on all sites in the (--) part  of the tableaux. This will annihilate any 
function depending only on the scalar ~ for these sites, so there must  be 
a factor of n in ~o for each of these. The order of n in W is therefore 

g(n) = n _ .  (7) 

The lowest order in the ~ is then obtained exactly as in the case of achiral 
ligands. The result is 

g(t) = Y4(i - -  1) (v(~ -) + v(-)). ( s )  

Again, we give an example involving the allene skeleton, this t ime 
finding the two components belonging to the representation (I 2 + ;  12 _ )  
which are present according to Fig. 12. Although it is not necessary, it 
is convenient to choose these so that  they also belong to definite IR ' s  
of ~ ,  one to (22)g, the other to (14)g. This can be achieved by applying 
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a Young operator to project onto the desired representation of ~ ,  after 
having projected onto the representation of ~4, but before projecting 
onto F(z). 

To get the component belonging to (22)~ we use ~ = ~3z42224 and 
Young operators for the tableaux of Fig. 14. The Young operator for 
Fig. 14(a) is 

:~ = E1 -- (12)][1 -- (34)](1 + Vl)(1 + v2)(1 -- v3)(1 -- v4). 

C +) C- ) g 
Ca) (b) 

Fig. 14 

Applying this to our % we obtain, apart from a multiplicative constant, 

'Y~o = ;g3;g4(22 - -  21)(24 - -  2 3 ) .  (9) 

The Young operator for Fig. 14(b) is 

Y = [1 + (13)][1 + (24)][1 -- (12)][1 -- (34)](1 + ~0). 

Applied to the function (9), it gives (again apart from a multiplicative 
constant) 

- ( m ~ 4  + ~ 2 ~ 3 ) ( 2 1  - 24) (22  - 23) (lO) 

Eq. (10) gives us a function belonging to the desired representations of 
~4 and of ~ ,  but it is not yet a chirality function. To get a chirality 
function, we must apply etz). In this case, we have 

e(Z) = 1 + (12)(34) + (13)(24) + (14)(23) 

-- v0[(34) + (12) + (1324) + (1423)]. (11) 
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By applying the operator (11) to the function (10) and again dropping a 
multiplicative constant, we obtain the final result for this component: 

Za = 2 ( ~ 1 ~ 2  -{- ~3N4)(,~.1 - -  ,~2)(,~3 - -  '~4) 

- -  ( ~ 1 ~ 3  21- ~2~4)('~'3 - -  '~1)(~'2 - -  '~4) 

-- (XlX4 + X2X3)(~I -- ~4)(~2 -- 43). (12) 

Proceeding analogously, but using the tableaux of Figs. 14(a) and 
18, we obtain for the component belonging to (14)g of ~ :  

I I x l , . j  I I I 
x+ = (,~,',~+ + ,~3,~+j~,,t - ;t+)(~.3 - ~) 

I I I I ~, / , j I 
+ ( ~ 3  + ~++4j~,~s - ; L ; ) ( ~  - &) 

, ,  , , , , , ,  ~ ) ( ~  ~ ) .  (13) 

B g 

Fig. 15 

where the primes on the ~ and ~ indicate that different variables must be 
used in the two components in order for them to have the requisite 
independence. 

Second procedure: Function of as few ligands as possible. 
In the second procedure, the starting function W is not required to 

be a monomial, but is simply required to depend on as few ligands as 
possible, being otherwise allowed to be arbitrary. If ~0 depends on only 
h ligands, it must be totally symmetric under both permutations and 
reflections of the other ( n -  h). Hence, no two of these (n h) 
sites may be in the same column of the tableau of Y, and in the case of 
chiral ligands, the ( n -  h) sites must all be in the (+) part of the 
tableaux. ( n -  h), therefore, cannot be greater than the number of 
columns, which is the same as the length of the first row, of the Young 
diagram (in the case of achiral ligands), or of the (+) part of the Young 
diagram (in the case of chiral ligands). The lowest value of h is therefore 
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h = n v 1 (achiral ligands); (14) 

h = n -- v~ +) (chiral ligands). (15) 

A simple example is the component belonging to PC a) for the allene 
skeleton with achiral ligands. We choose ~v =/(2,4), where ] is an arbitrary 
function, and again apply the operators of Eqs. (3), (5). The result is 

Z(s) ' = / ( 2 , 4 )  + t(4,2) - - / ( 1 , 4 )  - -  1(4,1) - -  t(2,3) - - / ( 3 , 2 )  

+/(1 ,3)  + ](3,1) 

= g(2,4) --  g(1,4) -- g(2,3) + g(1,3), (16) 

where g(i,k) =/(i,k) +/(k,]) is a totally symmetric function. 
Another version of the second procedure for chiral ligands is to write 

je¢ (-) 

and then require ~ t o  depend on as few ligands as possible. By the same 
reasoning as before, we find for the lowest possible number of ligands 

h = n -- v~x +) --  v~ -) (17) 

I t  is evident that  the first procedure is a special case of the second. In 
the second procedure, the starting function ~ is chosen to depend on as 
few ligands as possible, but  is otherwise arbitrary, while in the first it is 
further required to be a monomial of lowest possible order in one or two 
parameters. 

The quanti ty h of the second procedure has a physical interpretation: 
One must consider interactions between at least h ligands in order to 
obtain a nonvanishing chiraiity function belonging to the given re- 
presentation. 

I t  should be emphasized that  these two procedures do not by  any 
means exhaust all possibilities for chirality functions, but  are just two 
particularly simple special cases. In particular, a chirality function 
obtained by one of these procedures multiplied by an arbitrary function 
which is totally symmetric under ~ will also be a chirality function hav- 
ing the same transformation properties as the original one, but  no longer 
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of lowest order in a parameter  or depending on a minimum number of 
ligands. In particular, if one chiral property is well described by  one of 
these two procedures, others simply related to it may  not be. For example, 
suppose that  the molecular rotation at some frequency is described to 
good approximation by  a function obtained by  one of these procedures. 
The specific rotation, which differs from the molecular rotation by a 
factor of m -1, where m is the mass of the molecule, will then not be a func- 
tion depending on a minimum number of ligands, containing as it does 
a factor depending on all the ligands. Only if the masses of all ligands 
of interest are nearly equal can both properties be expressed in terms of 
functions obtained by  one of these procedures. However, if the descrip- 
tion of the phenomenon is only approximate, and if the mass differences 
do not cause greater errors than are already present, it may  be that  both 
properties are describable with about equal accuracy (but with different 
parameter  values) by  one of the two procedures. 
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V. Active and Inactive Ligand Partitions 

In this section, we address ourselves to the following question: Suppose 
we are given a set of n ligands to be placed on our skeleton, some of which 
are required to be identical (and/or mirror images of one another). 
Which components, if any, of the qualitatively complete chirality func- 
tion will vanish identically because of the identi ty of the ligands ? We 
have already found the answer to this question for the case of the aUene 
skeleton with achiral ligands: If any two ligands are identical, the com- 
ponent Z(5) vanishes identically, but  X(3) can be made different from zero 
with two ligands identical and the other two different, or with two pairs 
of identical ligands. We now proceed to formulate the question more 
generally. 

An assortment of ligands, some of them identical, can be associated 
with a Young diagram in a very simple way. For the case of achiral 
ligands, we define a "ligand parti t ion" as the list of numbers *'1, *'2, etc. 
of identical ligands. Thus, a partition corresponds to a set of *'l identical 
ligands, v2 ligands different from the *'1 previously listed but  identical 
with each other, etc, The sum of the v's must,  of course, be n. The "part i -  
tion diagram", 7(~) is just the Young diagram whose row lengths are 
*'1, v2, etc. 

For the case where the ligands are allowed to be chiral, we proceed 
analogously. We call two chiral ligands "equivalent"  if they are identical 
up to an inversion, i.e., if they are either identical or mirror images. 
Now, given an assortment of ligands, some of which are required to be 
achiral, and some to be identical or equivalent, we define a partition as a 
list of the numbers Vl, Vl, etc., of identical achiral ligands, plus a list of 
the numbers ~I, ~2, etc., of equivalent chiral ligands. T h e  two-part  
partition diagram is a diagram ~(~) whose (+)  part  has row lengths 
vl, *'2, etc., and whose (--) part  has row lengths fl ,  f2, etc. 

Now, given a representation F~ r) of ~ with z r #  O, we say tha t  a 
partition p is "active with respect to F~r) '', or "r-act ive"  if there is some 
molecule belonging to p for which at  least one component Z(~ ) does 
not vanish identically. A partition is simply called "act ive"  if it is r-active 
for some r with z r #  O. The question posed at the beginning of this 
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section now takes the following form: Given p and r, how do we deter- 
mine whether p is r-active ? 

To answer this question, we consider the construction of a chirality 
function Z(r) by means of Eq. (IV--l), with the ligand partition p, 
considering first the case of achiral ligands. For any molecule belonging 
to p, the starting function ~ will be automatically totally symmetric 
with respect to permutations of identical ligands. But the Young opera- 
tor Y antisymmetrizes with respect to permutations of ligands located 
on sites in the same column of its tableaux. If ~ is not to be annihilated 
by Y, therefore, it must be possible to distribute the ligands among 
the sites in such a way that no two identical ligands are on sites in the 
same column of the tableau of Y. In terms of the partition diagram 
7(~) this can be rephrased as follows: It  must be possible to transfer 
symbols from 7(~) into 7(r) in such a way that no two symbols from the 
same row of 7(~) go into the same column of 7it). This, however, is just 
the transfer condition for 7(P) into 7(r), as discussed in Section II-F. 
A necessary condition for r-activity, therefore, is that  the transfer 
condition be satisfied, in other words, according to the results of Section 
II-F, 

7(r) ~ 7(~). (1) 

Eq. (1) is also sufficient for r-activity. For, if (1) is satisfied, for 
every Young operator ytr), one can find a molecule belonging to p such 
that  ~o is not annihilated by y(r). Since the set of all the Young operators 
projects onto the entire representation space of I'(r), including all the 
Z(~ ), it follows that  a molecule can be found for which Z(r)~ # 0. 

For the case of chiral ligands, the answer to the question of r-activity 
is analogous. For a given partition p, the starting function ~0 must be 
totally symmetric with respect to permutations of identical achiral 
ligands, and with respect to reflections on sites occupied by achiral 
ligands. For any pair of equivalent chiral ligands, it must be totally 
symmetric under transposition of the two (if they are identical), or under 
transposition followed by reflection of both (if they are mirror images). 
The Young operator antisymmetrizes with respect to reflections on sites 
located in the (--) part of its tableau; with respect to permutations among 
sites in the same column of the tableau; and with respect to transposi- 
tion between any two sites in the same column foliowed by reflection on 
both sites. To have r-activity, therefore, it must be possible to distribute 
the ligands among the sites in such a way that  no two identical or equi- 
valent ligands are put in the same column of the tableau, and that  no 
achiral ligand is on a site in the (--) part of the tableaux. In terms of the 
partition diagram, this means that  symbols must be transferrable from 
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p(~} to ~{r) with no two symbols from the same row of ~(~) going into the 
same column of ~(r), and no symbol from the (+)  part  of ~(~) going into 
the (--) part of ~(r). Again, this is just the generalized transfer condition, 
or  

~(~) ~ ~(~). (2) 
and 

7max(7  (r+) , 7 (~+)) = 7rain (7 (1~-), 7 (r-)) • (3) 

Exactly as in the case of achiral ligands, one shows that  (2) and (3) are 
sufficient as well as necessary for r-activity. 

For both situations, therefore, we conclude t h a t  a partition p is 
r-active if and only if the transfer condition is satisfied for the partition 
diagram of p into the Young diagram of r. 

One can also speak of a partition p being active or inactive with 
respect to an ensemble operator a. p is said to be "a-active" if there is 
some molecule M belonging to p such that  the mixture aM is chiral. 
Expressing a as before in terms of the e-operators, 

a = ~ a{~ ) e(~, 

we immediately conclude that  a necessary and sufficient condition for 
a-activity is that  there must be at least one a{~ ) # 0 for ]" <zr and for 
which p is r-active. 
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VI. Class-Specific and Ligand-Specific Chirality Functions 

For the case of chiral ligands (with which this section is exclusively 
concerned), it is easy to convince oneself that  the representation (n)u of 
~n ~, whose diagram is shown in Fig. 16, is chiral for every skeleton. For, 
the representation is totally symmetric under all pure permutations, in 
particular under those belonging to ~3, and antisymmetric under all 
group elements involving ~0, in particular under those in the coset of 
~3 in ~5. The representations of ~n induced by (n)u are 

(n)u-*- [ (n- -1)+;1- - ] ,  [ (n - -3)+ ;3- - ] ,  etc. (1) 

Fig. 16 

For every skeleton with n sites, therefore, there is at least one com- 
ponent of a qualitatively complete chirality function belonging to each 
of the representations of Eq. (1). Explicitly, both the first procedure and 
the alternative version of the second procedure of Section IV give the 
chirality functions 

[ ( n - 1 ) + ; 1 - ]  :z - -  ZJ *~ ; 

[(n--3)+;3--]  :X - -  x j  ~k ~ ,  etc. (2) 

Since these functions are present for every skeleton, they are char- 
acteristic of the ligands, and not of the skeleton or the molecular class 
determined by it. We call them ligand-specific or .W-chirality functions. 
All other components are characteristic of the skeleton, and we call 
them class-specific or ~-chirality functions. 
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Two remarks are worth making. First, one easily concludes from the 
rules derived in the last section that  any ligand partition containing at 
least one chiral ligand is active with respect to the representation 
[(n--1) + ;1--], any partition with at least three chiral ligands is active 
with respect to [(n--1) + ;1 - - ]  and [(n--3) + ;3--], etc. Thus, .W-chiraiity 
functions are always present for any skeleton if there are chiral ligands. 
Second, it should be noted that  the representations of ~ shown in Eq. 
(1) may, for particular skeletons, also correspond to ~-chirality functions. 
For example, if the representation (n--l,1)u of ~ is ciral, it will also 
induce [ (n- - I )+;1- - ]  of ~n, and the corresponding chirality function 
will be class-specific. In general, if zr = 1 for a representation r of ~n  
shown in Eq. (1), then the chirality function is ligand-specific. If Zr > 1, 
then there is one ligand-specific component, with the rest being class- 
specific. We can write 

zr = z ~  + z , ~ ,  

where z~-~= 1 for the representations of Eq. (1), and is zero for the others. 
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A. Achiral Ligands 

For a given skeleton, the set of chiral Young diagrams (representations) 
permits us to define a Set of numbers which are characteristic of the 
chiral properties of the skeleton. In this subsection, we consider the 
properties of these numbers for the case of achiral ligands, $ = $ n .  

For a given Young diagram, w e  define the numbers o and u as the 
lengths of the first row and the first column, respectively. For a given 
skeleton, we define the four "chirality numbers" 

Omax, Omin, Umax, Umln , 

with the maxima and minima being taken over ?Or) with Zr# O. 
From the condition 7{r)~ ~,¢~) for r-activity, it is easy to show that  
(a) Omax is the largest number of identical ligands which may be 

present in a chiral molecule. Ruch and SchSnhofer s) have named Omax 
the "chirality order", and abbreviated it simply with o. 

(b) The minimum number of different kinds of ligands in a chiral 
molecule is Umin. Umtn, or simply u for short, is called the "chirality 
index". 6) 

(C) Omln is the maximum number of identical ligands which can be 
present in a partition active with respect to all chiral representations 
of an.  

(d) Umax is the minimum number of different kinds of ligands which 
must be present in a partition active with respect to all chiral represen- 
tations of ~ .  

Ruch and SchSnhofer s~ define a "chiral class" of molecules as one 
whose skeleton permits of chiral molecules with exclusively achiral 
ligands. For such classes, they prove the following: 

n - - 3 ~ o ~ n ,  and 1 ~ u ~ 4 .  

We give a proof, which is in large part  a verbatim translation of that 
of Ruch and SchSnhofer. s} 
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For classes with fewer than four sites, the assertion is trivial. For 
chiral classes with four or more sites, there is at least one triple of sites 
which does not lie in a symmetry plane of the skeleton. For, if all sites 
lie in a common symmetry plane, molecules of the class with the ligands 
all different would possess planes of symmetry, i.e., the class would 
not be chiral. On the other hand, suppose that  the sites do not lie all in 
a common mirror plane, but  that  nevertheless every triple of sites lies 
in a symmetry plane. I t  follows that  every pair of sites lies on the inter- 
section of two different symmetry planes, therefore on an axis of symmetry 
of the skeleton. But if more than four sites all lie pairwise on an axis of 
symmetry of a finite figure, they must all lie on a common axis, and the 
class is again achiral. For chiral classes, then, there is at least one triple 
of sites which does not lie on a plane of symmetry of the skeleton. Now 
consider a molecule in which the sites of this triple are occupied by  ligands 
of three different kinds, the other sites by ligands different from these 
three, but  identical with each other. Such a molecule is chiral, since the 
only improper operation which leaves the three different ligands invariant 
is a reflection in the plane of the triple, and this changes the rest of the 
molecule. The assertion follows immediately. 

I t  is evident that  the case o = n corresponds to chiral skeletons, which 
lead to chiral molecules even if all ligands are identical. 

B. Chiral Ligands 

Also if the ligands are permitted to be chiral, we may easily use the 
T-condition to determine maximum numbers for identical or equivalent 
ligands and minimum numbers for types of nonequivalent ligands in 
molecules with r-active ligand partitions ~2(v). 

We need only the relation ~(r) ~ ~v) to derive the following relations 
for the lengths of first columns and rows. 

o(r+) >1 o(2~÷) , u(r-) <~ u(~-), o(r+) + o(r-) >/o(~-), 

max(u(r+), u<r-)) <~ u(v+) + u(V-) 

All these limiting numbers are attained in at least one r-active parti- 
tion; the first and the second inequalities become equalities for ~Cr~ = 
~l~ representing an r-active partition. The third and fourth inequalities 
become equalities for the diagram ~ whose plus part vanishes and 
whose minus part consists of the columns of ~r+~ and 7(r-~ properly 
ordered. I t  is active as it is smaller than ~r) and max(7(r+), 7~10+))---- 

65 



C. A. Mead 

~(rl ~ min()Ar-I, ~,(~-)). Therefore we may  conclude that  for r-active 
molecules 

o(r+) 

o(r+) + o(r-) 

u(r-) 

is the maximum number of identical achiral ligands 

is the maximum number of equivalent chiral ligands 

is the minimum number of inequivalent chiral ligands 

max(u(r+), u(r-)) is the minimum number of inequivalent ligands. 

Each of these numbers occur in at least one r-active ligand partition. 
By forming the maxima or minima respectively of these quantities, 

the extrema being taken over all r with z~ # 0, we get chirality numbers 
which are characteristic properties of the skeleton. I t  should be emphasi- 
zed that  the condition is z~ # 0 and not Zr # 0 because the latter would 
only lead to trivial numbers which express the fact that  a ligand parti- 
tion is active for any achiral frame if it contains at least one chiral ligand. 
The nontrivial numbers we want should present information about the 
pseudoscalar properties of the particular molecular class in question. We 
find these chirality numbers from the following maxima and minima: 

chirality order o + ---- max {o(r+)} 

= max {o< r+) + o{-)} 

chirality index u -  = min {u(r-)} 

= min {max(u(r+), u(r-))) 

maxima and min- 
ima are to be 
taken over all r 
with z~ # 0. 

We call a molecule Cd-chiral if it possesses a nonvanishing c6'-chirality 
function. Correspondingly we call a ligand partition ~-act ive if there are 
C~-chiral molecules belonging to this ligand partition. Now we may  for- 
mulate  the meaning of the chirality numbers as follows: 

o + is the maximum number  of identical achiral ligands which may  
be present in a ~-chiral  molecule. 

is the maximum number of equivalent ligands which may  be 
present in a Cd-chiral molecule. 
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u -  is the minimum number of inequivalent chiral ligands which 
must  be present in a ~-chiral  molecule. 

is the minimum number of inequivalent ligands which must  
be present in a ~-chiral molecule. 

In  a chiral class, which by  definition contains chiral molecules with 
exclusively achiral ligands, all these chiral molecules are ~-chiral. In 
an achiral class the chirality is only due to .L#-chirality. Therefore, we 
have for any class 

U-- ~ 0  

For chiral classes we showed above, under the restriction to achiral 
ligands, that  the chirality order has the lower limit n -  3 and the upper  
limit n which characterizes chiral skeletons. If  chiral ligands are admit ted 
we have the relation ~ >  o+ and therefore the same limits for ~. 
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In order to understand some of the applications of the next section, 
it is necessary to discuss a distinction between different skeletons, 
originally due to Ruch. 16~ In this section, ligands are assumed to be 
achiral. 

The question posed and answered by Ruch is the following: Given a 
molecular class determined by a skeleton,, when is it possible to divide 
all chiral molecules of the class unambiguously and self-consistently 
into two subclasses, which can be designated as right and left-handed ? 
Ruch is fond of comparing this distinction between skeletons with that  
between shoes and potatoes. Although different shoes may differ consider- 
ably in size, shape, color, etc., one has no difficulty in deciding whether 
a given shoe is a right or a left one, even if its mate is not available for 
comparison. For potatoes, however, no such distinction is possible 
without arbitrariness. The question, therefore, is: which skeletons are 
"shoe-like", in the sense of permitting a satisfactory division of chiral 
molecules into "right" and "left" ones, and which are "potato-like", 
permitting no such distinction ? 

To answer the question, we must first consider more precisely what 
is required of a "satisfactory" division of molecules of a class into right 
and left. We begin by noting that  it is always possible in principle to 
specify an achiral ligand completely by means of a single scalar parameter 
4. For example, one could simply list all the possible ligands in some 
order (e.g., alphabetical), and arbitrarily assign to them the values 

= 1, 2, 3, etc.e~ By means of this parametrization, we can think of a 
molecule as being determined by specifying the value of ~ at each of the 
n sites, i.e., as corresponding to a point in an n-dimensional k-space. 
By continuously varying the ~'s, we can (mentally) transform any mole- 
cule of the class continuously into any other one without leaving the 
class. 

e) The question of whether properties of interest are described by any simple 
functions of the ~, such as polynomials generated by the first procedure of 
Section IV, is, of course, a quite different one, but  irrelevant for the purposes of 
this section. 
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An acceptable division of chiral molecules into right and left means 
a division of the h-space into two regions (say R and L), such that  (i) 
every chiral molecule is in either R or L, and not on the boundary between 
them; (ii) if a given chiral molecule is in R, then its mirror image is in 
L, and vice versa; and (iii) achiral molecules are in neither R or L, 
but  on the boundary between them. f ) 

According to the above criteria, the boundary between the regions R 
and L must be just the subspace of the achiral molecules. On the other 
hand, the boundary between two regions of the 2-space must necessarily 
be (n--1)-dimensional. Thus, the requirements can only be satisfied if 
the subset of the achiral molecules is a (n--1)-dimensional hypersurface, 
or a set of such surfaces. 

By definition, a molecule is achiral if it is left invariant by some 
improper operation (reflection or rotary reflection) of the point group 
of the skeleton. Writing the permutation s corresponding to a given 
improper operation in cyclic form, 

s = (1,2 . . . .  ,]) ( ] + 1 , / + 2  . . . . .  ]+g) ( . . . )  . . . .  (1) 

one sees immediately that  a molecule will be left invariant by s if and 
only if sites in the same cycle are occupied by identical ligands, i.e., if 
and only if 

hi = he  = ,~3 . . . . .  hl ; 

~ts+l = hs+2 . . . . .  hs+ ~ ; etc. (2) 

If the permutation s consists of h cycles (including 1-cycles), the 
subspace in which Eq. (2) is satisfied is h-dimensional. The dimension 
h is equal to (n--l) if and only if s consists of a single 2-cycle and (n--2) 
1-cycles, i.e., if and only if s is a transposition. 

Now let ~ denote the set of all pairs (ii) of sites such that  the trans- 
position (ij) corresponds to an improper operation. The set of (n--1)- 
dimensional hypersurfaces determined by 

h = h~ (3) 

for each pair (ik) E~Yd, are subspaces corresponding to achiral molecules. 
If the hypersurfaces determined by (3) contain all achiral molecules, 
then the subset of the achiral molecules will indeed be a set of ( n - - l ) -  

I) I t  is clear  t ha t ,  /or  a chiral  class, t h e  s u b s e t  of t h e  X-space co r r e spond ing  to  
chiral  molecules  is n -d imens iona l ,  while  t h e  s u b s e t  of achira l  molecules,  w h i c h  
requi re  t he  equa l i t y  of two or more  ;t's, will be  of d imens ion  less t h a n  n.  

69 



C. A. Mead 

dimensional hypersurfaces. This will be true if and only if the subspaces 
determined by Eq. (2) are all subspaces of those determined by (3), 
i.e., if the following is satisfied: 

(A) Every cycle of every permutation s corresponding to an improper 
operation of the skeleton point group must contain at least two sites, 
i,k such that (] 'k)~t ~. 

An equivalent way of stating the criterion is 
(A') Every achiral molecule of the class must have at least one 

symmetry operation which in permutational form corresponds to a 
transposition. 

If (A) is satisfied, then we can choose the surfaces (3) as our boundary, 
designate one region between them arbitrarily as R, and then determine 
the rest of the space by requiring that  one always changes from R to L, 
or vice versa, when one crosses one of the surfaces (3). This evidently 
gives a division of the k-space into regions satisfying criteria (i) and (iii) 
above. However, it is easy to see that  (ii) is also satisfied. For, if (if) e ~ ,  
then mirror image molecules correspond to interchanged values of 21 
and ~ ,  and the corresponding points will always tie on opposite sides of 
the surface (3). 

According to our criterion, therefore, we can divide all skeletons into 
two categories, viz: 

(a) "Shoe-like" skeletons, for which condition (A) is satisfied, and 
an acceptable classification into R and L molecules is possible. 

(b) "Potato-like" skeletons, for which condition (A) fails to hold, 
and no satisfactory classification into R and L is possible. 

I t  should be emphasized that, for skeletons of category (a), the 
classification into R and L is not necessarily unique. By defining the 
parameter 2 differently, for example, one may arrive at different classifi- 
cations, all satisfying requirements (i--iii) above. 

For skeletons in category (a), with respect to a particular classifi- 
cation, molecules belonging to the same region (R or L) of the k-space 
are referred to as "homochiral", those belonging to different regions as 
"heterochiral". Thus, all right shoes are homochiral with one another. 

An example of a skeleton of category (a) is the allene skeletons of 
Fig. 7. For this skeleton, the surfaces determined by the improper oper- 
ations (12) and (34) are 

41 = ~2 and 

~.3 = ~ 4  • 

The operations (1324) and (2423) both determine the one-dimensional 
space 

4 1 = 2 2 = 2 3 = 2 4 ,  
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which is a subspace of the above. 
An example of category (b) is the four-site skeleton of Fig. 17, with 

symmetry C4v. Here the improper operations (24) and (13) determine 
the (n--l) = 3-dimensional hypersurfaces 

t l : h a  and t 2 = , ~ 4 .  

2 

Fig. 17 

The operations (12) (34) and (14) (23), on the other hand, determine 2- 
dimensional hypersurfaces 

~ 1 = ~ 2 ,  ~ 4 = ~ 3  and  

which are not subspaces of the above. 
For skeletons of category (b), certain chiral molecules may be trans- 

formed into their mirror images without passing through an achiral state. 
For, consider an achiral subspace l~ of dimension less than (n--l). By 
varying the ~'s slightly from their values in lI, we can create mirror- 
image molecules M and M* in the neighborhood of lI. Now, since li  
is less than (n--1)-dimensional, we can transform M into M* without 
passing through any point of lI, which is just the assertion to be proved. 
Since any chirality function must change sign in passing from M to M*, 
this means that it must pass through zero at some point on the path 
between the two. Since all points on the path represent chiral molecules, 
it follows that  the chirality function must vanish for some chiral molecule. 
For skeletons of category (b), therefore, all chirality functions possess 
"chiral zeroes", i.e., all vanish for some chiral molecules. 

I t  should be emphasized that the existence of chiral zeroes is different 
from the vanishing of a chirality function due to a lack of qualitative 
completeness. When a function is not qualitatively complete, it will 
vanish identically for a wide class of chiral molecules and/or mixtures. 
A chiral zero of the type mentioned here, however, depends on particular 
values of the parameters, and one can get away from the zero by varying 
the parameters slightly, without changing any symmetry property. 
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IX. Some Experimental and Theoretical Applications 

As the theory discussed in this article is still relatively new, the appli- 
cations made of it to date have been limited, and have thus far been 
confined to the case of achiral ligands. Haase and Ruch have given quan- 
tum mechanical treatments of the methane 17 and allene is skeletons. 
Experimental measurements involving the same two skeletons have 
been published by Richter, Richter, and Ruch 19), and by Ruch, Runge, 
and Kresze 20), respectively. 

For the methane skeleton (Fig. 18), there is just one chiral representa- 
tion of ~4, namely the totally antisymmetric representation (1 a), number 

2 

F i g .  18 

5 in Table 1. The chirality functions obtained by the first and second 
procedures, respectively, of Section IV, are: 

~ ( 5 )  : ( /~1 - -  ~ 2 ) ( ~ 1  - -  ~ 3 ) ( , / * 1  - -  /~4 ) ( /~2  - -  , /~3)(J /2  - -  / 1 4 ) ( ~ 3  - -  / 2 4 ) ;  (1 )  

Z(~ ) = ¢(1,2,3) --  ¢(2,3,4) + ¢(3,4,1) --  ¢(4, 1,2), (2) 

where / ,  is a scalar parameter specifying the hgands, and ¢(x,y,z) is a 
function of three ligands totally antisymmetric under permutations of 
its arguments. 

The allene skeleton has, as shown in Section III, two chiral repre- 
sentations: (14), the same one which is chiral for methane, and (22), 
number 3 in TaMe 1. The former of these leads to the same functions 
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(1) and (2) when the procedures of Section IV are applied (perhaps with 
different interpretation of the parameter ~ and/or of the function ¢); 
as already shown in Section IV, application of the two procedures for 
representation 3 yields: 

z(~ ~ = (~1 - ~ ) ( a 8  - 44);  (3) 

Z(~ ) = g(2,4) -- g(1,4) -- g(2,3) + g(1,3), (4) 

where ~ is a scalar parameter (in general # it), and g(a,b) = g(b,a). 
The functions defined by Eqs. (1) and (2), as well as linear combina- 

tions of them, satisfy the easily verifiable identity 

Z(a,b,c,d) + z(b,x,c,d) + Z(x,a,c,d) + z(a,x,b,d) + z(a,b,x,c) = O, (8) 

where (a,b,c,d) denotes a molecule with the sites 1,2,3,4 occupied by 
ligands a,b,c,d respectively. The identity (5) holds for the functions (1), 
(2) for any set of five different ligands a,b,c,d,x. Similarly, the functions 
(3) and (4) satisfy 

•(a,b,c,d) + z(a,c,d,b) + Z(a,d,b,c) = O, (6) 

as already remarked in Section III ,  as well as 

Z(a,b,c,d) = Z(x,b,y,d) + Z(x,b,c,y) + Z(a,x,y,d) + z(a,x,c,y).  (7) 

In their treatment of the methane derivatives, Haase and Ruch 1~) 
began by rearranging their Hamiltonian in such a way that  it could be 
expressed as a zero-order hamiltonian representing noninteracting 
ligands plus a perturbation corresponding to interaction between ligands. 
They obtained an expression for the optical rotation (for frequencies 
far from the anomolous dispersion region) using the Rosenfeld equa- 
tion and perturbation theory through the second order. The problem 
was set up in such a way that  the positions of the ligands were 
not required to be related to one another by operations of T,,  
i.e., it was not ruled out that  the skeleton might be distorted 
from Ta-symmetry. If Ta-symmetry does hold, the theory of Section 
IV tells us that  interaction between at least three different ligands is 
required to obtain a nonvanishing chirality function, i.e., that  one must 
go at least to the second order of perturbation theory. Thus, terms that  
appear in first order are to be interpreted as representing deviations 
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from Ta-symmetry. The second-order result could be readily expressed 
in the form (2), but  could be put into the form (1) only by making further, 
rather drastic, simplifications. One concludes, therefore, that,  if higher- 
order contributions are assumed small, the observed rotation should 
consist of two components: a "Ta-component" satisfying (5), and another 
component representing the deviation from Ta symmetry. 

The quanti ty measured in the experimental work on the methane 
derivatives was the rotation of the Na D-line in ethanol solution (some- 
times it was necessary to use another solvent, in which case a correction 
was applied). The sum (5), as well as its separate terms, was evaluated 
for 13 different choices of the set of ligands a,b,c,d,x. For eleven of these, 
the observed sum was less in absolute value than its statistical average 
calculated from the absolute values of the separate terms. For the other 
two (as well as for some of the eleven), the mixture contained molecules 
for which one would expect large deviations from Ta-symmetry, and/or 
dimefization. For those mixtures for which the sum (5) was small, a 
least-square fit was made to the data with a function of the form (2). 
This best fit was interpreted as the Ta-component, the remainder as the 
result of deviation from Ta-symmetry for each molecule. A fit was also 
made with functions of the form (1), with less quantitative success. 

In the case of the allene derivatives, one expects to obtain a function 
of the form (4) in first-order perturbation theory. Since other terms, 
including those of the form (2), are of higher order, one might expect 
this term to be dominant. The quantum-mechanical calculation 18) 
does indeed yield a term of form (4) in first order. Moreover, it is possible 
without further drastic approximation to put the first-order result in 
the form (3), with the parameter ,t being expressible in terms of the trans- 
verse and axial polarizabilities of the ligand, and various geometrical 
parameters of the skeleton. Accordingly, in the experimental work 2o), 
an at tempt was made to fit the data with a function of the form (3). The 
ligands used were H, C6H6, COOH, CH3, and C2H5. 2-values were 
measured empirically by measuring the D-line rotation for four isomers 
having at least two ligands equal, and for which therefore the (14) com- 
ponent of the qualitatively complete chirality function vanishes identi- 
cally. Since • depends only on differences in the ~'s, 2(H) was arbitrarily 
set = 0. These ~'s were then used to calculate the function (3) for four 
other isomers with these ligands (each with the ligands all different), 
and the results compared with experiment. For the molar rotation, the 
largest percent deviation observed was 9.1%, the next  largest 3.6%, 
with the other two being less than 1%. The same procedure was carried 
out for the specific rotation (leading, of course, to different values for 
the ~'s). In this case, the two largest deviations were 4.5% and 3.9%, 
with the others again less than 1%. Of course, the legitimacy of using 
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the form (3) as an approximation for both molar and specific rotation is 
limited by  the remark made at the end of Section IV. In any case, the 
agreement, though admittedly for only a limited class of compounds, is 
surprisingly good. 

Both the allene and the methane skeletons belong to category (a) 
of Section VI I I .  Hence, a chirality function can be used to divide the 
corresponding class of molecules into R and L species according to the 
sign of the chirality function, with the function vanishing for achiral 
molecules only. For the molecules experimentally studied in references 
19) and 9.0), the D-line rotation of the allene derivatives is dominated by  
a term of the form (3), while that  of the methane derivatives is at least 
roughly fitted by one of the form (1). Both of these functions have the 
property of vanishing only for achiral molecules of the given skeleton, 
so they are possible candidates for functions to be used for defining R 
and L species. Accordingly, the authors suggest that,  for the limited 
class of molecules considered, a rational division into R and L molecules 
is possible on the basis of the sign of the D-line rotation, as long as it is 
not too small. I t  should be noted, of course, that  the sign of the rotation 
at a particular frequency can never provide a classification into R and L 
for all possible molecules belonging to a given skeleton. Whatever  fre- 
quency one chooses, one can always imagine ahypothetical  chiral molecule 
for which the chosen frequency is in the anomMous dispersion region; by  
varying the parameters of such a molecule continuously, one can cause 
the rotation at the chosen frequency to pass through zero for a chiral 
molecule. 
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X. Unsolved Problems; Discussion 

In the case of ~ = ~n, where the ligands are allowed to be chiral, we 
defined a ligand partition in terms of the number of equivalent ligands, 
rather than the number of identical ones, so that conversion of one or 
more ligands into their mirror images does not change the partition. 
With this definition of partition, the question of r-activity could be ans- 
wered in terms of the T-condition. The question could, however, equally 
well be posed in terms of identical ligands, so that  a partition included 
the specification of which equivalent chiral ligands were identical and 
which mirror images. As of this writing, no general solution has been 
given to the problem of which partitions (in this sense) are active with 
respect to a given chiral representation, and which inactive. The most 
important special case is that in which the chiral ligands are required to 
be pairwise mirror images, so that  the ligand assortment is racemic. For 
such a racemic ligand assortment, it is easy to show 7~ that  the ~a_ 
chirality functions vanish identically. But it is not yet known in general 
which ~-chirality functions vanish identically for racemic ligand assort- 
ments, and which do not. 

I t  is evident that  methods analogous to the ones developed here could 
be applied to molecular properties which, instead of being pseudoscalar, 
belong to some other representation of the skeleton point group (vector, 
tensor, etc. properties). To treat such properties, one needs only to induce 
from a different representation of ~i than the chiral one. 

I t  has been assumed throughout in this article that  a molecule is 
completely specified when it is specified which ligand (and which enanti- 
omeric form of a chiral ligands) is located on each site. The theory cannot 
be applied directly, for example, if there are several possible orientations 
for a ligand on a given site. In this more general case, the group 
generating all the isomers must include not only permutations and 
reflections of ligands, but  also changes in their orientations leading to 
different conformations of the molecule. For at least some cases of this 
type. ~ is a group of a general type known as wreath product groups. 
21,2~ The representation theory of these groups has been studied, and 
can be formulated in terms of generalized Young diagrams. Thus, it may 
be possible to extend the theory to cases of this type, but  this program 
has not as yet been carried through. 
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XI. Appendix:  Results for Some Special Ske le tons  

A. Skeletons Considered 

3-Site skeleton: 
i) Fig. 19, symmetry Car. 

2 

Fig. 19 

4-Site skeletons: 
i) Fig. 20, triangular pyramid with three equivalent sites and the 

fourth inequivalent to these. This is an example of a skeleton with 
a ~Y-chirality function transforming according to (3 + ;  1--). 

4 /L3 
Fig. 20 

iii) Allene skeleton, Fig. 7, symmetry D2a. 
iv) Fig. 17, C4v symmetry. 
v) Fig. 18, Ta symmetry. 

6-site skeletons: 
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vi) Freely rotating ethane, Fig. 21. The symmetry group consists of 
products of elements from D,~ or D3a with internal rotations, and 
is of order 36. The chiral representation is the usual chiral one under 
D3h or D3a and has character + 1 for the internal rotations. One 
obtains the same homomorphic image (~ whether one uses D3h 
or Dsa. 

C 
1 % 

%. '% 

f t  

4o,' 

2 .0 3 
f1* 

"06 
5 

Fig. 21 

vii) Fig. 22, symmetry Oh. 

5 

6 

Fig. 22 

viii) Cyclopropane derivatives, symmetry D3h, Fig. 23. 

6 

1 4 / k ~ 3  

2 
Fig. 23 
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B.  C h i r a l i t y  F u n c t i o n s  

Table 4 lists, for skeletons i--v, the ~'-chirality functions obtained by  
the first procedure (;/1) and the alternative version of the second proce- 
dure (Z~) of Section IV, together with the representation of ~,~ and of 
~ n  to which each belongs. Zz is omit ted in cases where h = 0  or 1, since 
in this case it has the same form as ~1. If  the ligands are required to be 
achiral, only the functions belonging to representations with no (--) par t  
in their Young diagrams remain. The parameters 2 are scalar parameters,  
the ,~ are pseudoscalar. Different parameters may  be used for different 
representations. 

Table 4. Chirality functions 

Skeleton Rep. of ~-Chirality functions 

(0 

(ii) 

80 

(13), (13+ 

(3,1)u 

(2,12)g 

(1+ ;  13-)  

(3+; 1 - )  
(2,1+; 1--) 

(1+;3--) 

(1+ ;  2,1--) 

(2,13+) 

(2+ ;  1 3 -  ) 

(12+; 2 - ) 

(13+; 1 3 -  ) 

Xl = (21-22) (~2-~3) (23-21) 
X2 = co(1,2) + co(2,3) + o)(1,3) 

~ith co(/,k) = --co(k,/) 

Z1 = x1-2(2i--).2) + ~2-3(23--2a) 
+ x3xi(23--2i) 

Zi = xi + x2 + xa--3x4 

ZI = ~I(224--~2--23) + X2(224--21--23) 

+ ~8(2 24--21--22) 

-- 3 Xl)¢2~8 

+ ~2~3(224--~2--23) + ~¢iX3(224--2i--23)] 

Z1 = (21--22) (22--;t3) (;t3--21) 

Z2 = o)(1,2) + 09(2,3) + m(3,1) 
with ~(]',h) = --og(k,]) 

Zx = ~1~2(2x-22) + ,~2xs(22-23) 
+ ~3~x(23-~x) 

+ xsx4(21-22) 
Xl = ~1~2(21-~2)(~3-24) + x2~3(22-23) × 

× (~.x-2.~) + ,~3,~4(;ts-24J(2).-ltx) 
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Table  4 (continued) 

Skeleton Rep. of ~-Chirality functions 

(2 ,12 -  ) 

(14)g (14-3 - ) 

(ii) (14)g (14+) 

(12+ ;  1 2 -  ) 

Z2 = ~¢1~2[0(2,4) - -  0(1,4) - -  0(2,3) 
+ 0(1,3)] 
+ ~2~¢310(3,4) - -  0(2,4) - -  0(3,1) 
+ o(2,1)] 
+ ~3~¢1[@(1,4) - -  0(3,4) - -  0(1,2) 
+ 0(3,2)] 

+ ~1~410(4,2) - -  0(1,2) - -  0(4,3) 
+ 0(1,3)] 

+ x2~410(4,3) - -  0(2,3) - -  0(4,1) 
+ 19(2,1)] 

-4- x3~t410(4,1) - -  (9(31) - -  0(4,2) 
-4- 0(3,2)] 

wi th  O(Lk) = O(k,/) 

Xl  = x l ~ 2 ~ 3 ~ 4 ( 2 1 - 2 2 ) ( 2 2 - ~ a ) ( 2 3 - 2 1 )  

Z2 = xlx2.axa[e-o(1,2) + o9(2,3) -4- 09(3,1)] 

with eo(i,k ) = - - to (k , / )  

Zl  = (21--22) (21--23) (21--24) (22--23) 

(22--24)(23--24) 

Z2 = o9(1,2,3) - -  o9(1,2,4) + a~(1,3,4) 
- -  w(2,3,4) 

wi th  eo(/,k,l) to ta l ly  an t i symmetr ic  

~1 = ~1~2(21--22)(23--,~4) "4- ~42~43(22--2S) 

(~1--~4) -~ ~3~i(23--~I)(22--~4) 

mC ~4X~44(),1--24)(22--23) ~- X2~4(22--Jl.4) 

(J1.3--21) -~- ~43~4(23--24)(21--~,2) 
X2 = x1~210(2,4) - -  0(1,4) - -  0(2,3) 

+ 19(1,3)] 

-4- ~¢2~3[®(3,4) -- 0(2,4) -- 0(3,1) 
+ 0(2,1)] 
+ ~¢3~110(1,4) - -  0(3,4) - -  0(1,2) 
-}- 0(3,2)] 

- -  ~1~410(4,2) -- 0(1,2) -- 0(4,3) 
+ 0(1,3)] 

- -  x2~410(4,3) - -  0(2,3) - -  0(4,1) 
-5 0(2,1)] 
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Table  4 (cont inued) 

Skele ton Rep.  of ~ - C h i r a l i t y  funct ions  

- -  ~¢3~410(4,1) - -  0(3,1)  - -  0(4,2)  

+ 0(2,3)]  

w i th  O(/,k) = O(k,]) 

( 1 4 - )  Z1 = xlx2~3~4(,~l--~2)(~l--~3)(~l--,~4) × 

× (~2-~8)(~2-~4)(~3-~4) 
Z2 = xl~c2~c3~c4[a}(1,2,3) - -  (o(1,2,4) 

+ (o(1,3,4) - -  a)(2,3,4)] 

wi th  m(j,k,l) to ta l ly  an t i symmet r i c  

(iii) (22)g (22-{-) Z1 = (~1--22)(~3--~4) 
g2 = 0(1,3)  - -  0(1,4) - -  0(2,3)  + 0(2,4)  

wi th  O(],k) = O(k,j)  

(12"{'; 12--)  ZI = 2(XlX2 + $g3"4)(~1--~2)(~3--~4) 

- -  (~I~3 "{" ~2~4)(~3--~I)(~2--~4) 

- (~1~4 + x2~8)(A:-~4)(~2-~3) 

Z2 = 2(~1~2 + ~3~4)[0(1,3) - -  0(1,4) 
- -  0(2,3)  + 0(2,4)]  

- -  (~¢1~g3 "{" X2X4)[O(3,2) - -  0(3,4) 
- -  0 ( 1 , 4 )  + 0 ( 1 , 4 ) ]  

- -  (~:~4 + ~2x3)[0(1,2) - -  0(1,3)  

- -  0(4,2)  + 0(4,3)]  

wi th  O(],h) = O(h,]) 

(2-{-; 2 - - )  Zl  = (Xl--X2)(~¢3--~¢4) 

( 2 2 - )  Z1 = ~l~¢2~g3X4(~1--22)(~3--~4) 
Z2 = Xl~2X3X410(l,3) - -  0(1,4)  - -  0(2,3)  

+ 0(2,4)]  

wi th  O(],k) = O(k,]) 

(iii) (22)u (2,1.{.; 1--)  g l  = gl(2~t2--~t3--~4) + X2(2~1--~3 -~t4) 

+ za(2A4-2t--22) + ~4(223--2:-22 

( 1 + ;  2 ,1- - )  g l  = X:X2~3(2~3--~l--~2) "{" SglX2~g4X 

× (2 ~4-2:-~)  
-b Xlga:g4(2).l--)~3--)~4) "{" x2x"~4×  

X (2 9~2--~3--,~4) 

(14)g  (14"{ ' )  Xl = ( )~ I - - )~2 ) (~1 - -~ t3 ) (~ i - -~4 ) (~2  -~t-~) X 

x (~2-~)(~a-A~) 
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Tab le  4 (cont inued) 

Skele ton  Rep.  of (~-Chiral i ty func t ion  

(iv) (22),, 

(2,12)g 

(iv) (2,12)g 

( 1 2 + ;  1 2 -  ) 

( 1 4 -  ) 

( 2 , 1 + ;  1--)  

( 1 + ; 2 , 1 - - )  

(2,12+) 

(2+; 12_) 

(12+ ; 2--) 

(12+; 1 2 -  ) 

Z2 = ¢o(1,2,3) - -  o)(1,2,4) + o)(1,3,4) 

- -  (2,3,4) 

wi th  w(],k,1) t o t a l ly  a n t i s y m m e t r i c  

Zl = (-i~2 + u3-4)(2i-22)(23-24) 

+ (-1-3 + -2-4)(23-2i)(22-24) 
+ (-1-4 + -2us) (22-28) (21-24) 

X2 = ("1"2 + -3 -4) [0 (1 ,3 )  -- 0(1,4) 
-- 0(2,3)  + 0(2,4)]  

+ ( -1 -3  + . 2 .4 ) [0 (3 ,2 )  - -  O(3,4) 
--  0(1,2) + 0(1,4)] 
+ (~1"4 + -2-3)[O(2,1)  - -  0(2,4)  
- -  0(3,1)  + 0(3,4)]  

w i th  O(],k) = O(k,]) 

Zl = - i -2-sx4(2i -22)(~i-23)(21-24)  

× (22-2s) (22-24) (23-24) 
Z2 = .1 .2 .3 .4[eo(1 ,2 ,3)  - -  o)(1,2,4) 

+ 0~(1,3,4) - -  oJ(2,3,4)] 

w i th  o)(],k,l) t o t a l ly  a n t i s y m m e t r i c  

Xl = "1(223--~2--,~'4) + "2(224--'~1.1--~.3) 

+ "3(221--22--~4) + X4 (2~2--~I--~3) 

Xi = -iu2-s(2A2--AI--23) + -i-2u4 

× (2)~1--22--A4) 

+ X1"3.4(224--21--23) + .2--3,~g4 X 

× (2 23--22--~.4) 

~ i  = ,~122(.~tI--22) + 2223(22--~3) 

-}- 2324(23--24) + ~421(~.4--21) 
Z2 = o)(I,2) + ¢o(2,3) + o)(3,4) + o)(4,1) 

w i th  ¢o(j,k.) = - -o)(k . j . )  

Zl  = "1"2(~'1--22) + "2"3(,~'1--~3) + "3"4  × 

× (23-24) + -4-i(,~.4-21) 

~1 ~ "1"2(23--24) + "2"3(24--21) 

+ "3"4(21--~2) + "4"1(22--23) 

~1 ~ ("1"3 - -  "2"4)(23--21)(22--24) 

~2 = (~gl"3 - -  X2.4)[O(3,2) - -  0(3,4)  
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Table  4 (cont inued) 

Skele ton Rep.  of ~ - C h i r a l i t y  func t ion  

(v) (14)g 

- 0(1,2) + 0(1,4)] 
with Off.k) = O(k,i) 

( 2 , 1 ~ - )  g l  = ~l~2~3~4[~lA~(;tl--~2) + ~2)~3(g2--~3) 

+ )-3~,4()-3--,~.4) + ~4),1(.~.4--,~,1)] 
g2 = ~1~'~U~4[~(1,2) + 0J(2,3) + O)(3,4) 

+ m(4,1)] wi th  ~o(],k) = --o~(kj)  

( 14+)  g l  = (~1--~2)(~'t--~3)(~1--,~4)(~,2--),3) 

(~.2-~.4) (~.3-~,4) 
Z2 = oJ(1,2,3) - -  o~(1,2,4) + (o(1,3,4) 

- -  o~(2,3,4) 

wi th  eo(],h,l) to ta l ly  a n t i s y m m e t r i c  

( 1 2 +;  12--)  Zl  = (~1~¢2 + X394)()'tl--),3)(~t3--~t4) 

+ (~1~3 + z2u4)(~s-~tt) (~.~-~4) 

%2 = (glUS + uau4)[®(1,3) - -  O(1,4) 
- -  0(2,3)  + 0(2,4)]  

+ (xl~3 + x2x4)[O(3,2) - -  0(3,4)  

- -  0(1,2)  + 0(1,4)]  
+ (~t~¢4 + :~2~3)[0(1,2) - -  0(1,3)  

- -  0(4,2)  + 0(4,3)]  

w i th  O(i,k) = O(k,/) 

(14--)  Xl = ~gl'~g2X3~4('~'1--~t2)(~'t--'~3)(~l--'~4) X 

x (~2-~2) (~-~4) (Xs-X4) 
X2 = Xlg29394[m(1,2,3) - -  O(1,2,4) 

+ m(1,3,4) - -  m(2,3,4)] 

w i th  eo(~,k,/) t o t a l ly  a n t i s y m m e t r i c  

C. Chiral  R e p r e s e n t a t i o n s  for 6-s i te  S k e l e t o n s  

Table 5 lists the representations of ~ which are chiral for one or more 
of the skeletons (vi), (vii), and (viii), which skeleton(s) they are chiral 
with respect to (with a number ill parentheses indicating how many 
times, if more than once, the representation appears), and the repre- 
sentations of ~6 that  they induce. 
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Table 5. (E-Chiral representations of ~ and 66 for various skeletons 

~ Reps. Skeletons 66 Representations 

(4,2)g viii 

(4,2)u vi, vii, viii(2) 

(4,12)a vi, vii, viii 

(3,2,1)g viii 

(3,2,1)u viii 

(3,13)g vi, vii, viii(2) 

(3,13)** viii 

(28)a vii 

(23)u vi, vii, viii(2) 

(2,14)u vi, viii 

(4,2+), (22+;2--), (4+;2--), (3,1+;2--),(3,1 +;  12--), 
(12+;3,1-), (2+;3,1--), (2+;4--), (2+;22--), (4,2--). 

(3,2+;1--), (4,1+;1--), (2,1+;2,1--), (2,1+;3--), 
(3+;3--), (3+;2,1--), (I+;4,1--), (1+;3,2--). 

(4,12+), (2,1z+;2--), (4+;12--), (3,1+;2--), 
(3,1+;18--), (12+;3,1--), (2+;3,1--), (12+;4--), 
(2+ ;2,12--), (4,18--). 

(3,2,1+), (3,1+;18--), (3,1+;2--), (28+;2--), 
(22+;12), (2,12+;2--), (2,12+;12--), (lS+;2,1s--), 
(2+;2,12--), (13+;22--), (2+;23--), (2+;3,2--), 
(12+;3,1--), (3,2,1--). 

(3,2+;1--), (3,12+;1--), (28,1+;1--), (3+;2,1--), 
(2,1+;2,1--), (13+;2,1--), (2,1 +;13--), (2,1+;3--), 
(1+;22,1--), (1+;3,12--), (1+;3,2--). 

(3,13+), (14+;2--), (3,1+;13--), (2,12+;2--), 
(2,18+;18--), (13+ ;2,12--), (2+ ;2,13--), (13+ ;3,1--), 
(2+; 14--), (3,12--). 

(2,13+;1--), (3,13+;1--), (13+;3--), (13+;2,1--), 
(2,1+;2,1--), (2,1+;la--), (3+;13--), (1+;3,13--), 
(1+;2,13--). 

(23+), (22+;2--), (2,12+;13--), (13+;2,13--), 
(2+ ;23--), (23--). 

(23,1+;1--), (13+;13--), (2,1+;2,1---), (1+;23,1--). 

(15+;1--), (2,18+;1--), (2,1+;13--), (13+;13--), 
(13+;2,1--), (I+;2,13--), (1+;15--). 

D. Properties of Chiral Representations 

Table 6 lists, for the representations chiral with respect to skeleton (i), 
the order in 2 and ~ of the polynomial obtained by the first procedure of 
Section IV, and the number of ligands h in the function of the second 
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procedure (alternate version). Table 7 does the same for the represen- 
tations ~¢-chiral with respect to one or more of the skeletons (ii), (iii), 
(iv), and (v). As always, if the ligands are required to be achiral, only the 
representations without a (--) part in their diagram need be considered. 

Table 6. ~-Chi ra l  representat ions of ~ 8  
for Csv s y m m e t r y  

Representa t ion  g(2) g(z) h 

( l S + )  3 0 2 

( 1 + ; 1 2 -  ) I 2 0 

Table  7. ~'-Chiral representat ions of ~ 4  for var ious symmetr ies  

Representa t ion  Skeletons g(2) g(~) h 

(22+) iii 2 0 2 

(3 + ; 1--)  ii 0 1 0 

(2 ,1s+)  ii, iv  3 0 2 

(2,1 + ; 1--)  ii, iii, iv  1 1 1 

(14+) ii, iii, v 6 0 3 

( 2 + ; 2 - - )  iii 0 2 0 

(12+;2  - )  ii, iv  1 2 1 

( 2 + ; 1 2 - )  ii, iv  1 2 0 

( 1 2 + ; 1 2 - )  ii(2), iii(2), iv, v 2 2 1 

( 1 + ; 3 - - )  ii 0 3 0 

( 1 + ; 2 , 1 - - )  ii, iii, iv  1 3 0 

(2 2 -  ) iii 2 4 0 

(2, 1 2 - )  ii, iv  3 4 0 

( 1 4 - )  ii, iii, v 6 4 0 

E. Properties of Skeletons 

Table 8 lists, for the skeletons i--vii, the category ((a) or (b) of Section 
viii) to which each belongs, as well as the chirality numbers of Section 
VII. 
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Table 8. Propert ies  of skeletons 

Skeleton Category o u Omin Umax o + 6 

i a 1 3 1 3 1 2 2 
ii a 2 3 1 4 3 4 1 
iii a 2 2 1 4 2 4 4 
iv b 2 3 2 3 2 3 2 
v a 1 4 1 4 1 2 2 
vi b 4 3 3 4 4 6 1 
vii b 4 3 2 4 4 6 1 
viii b 4 3 3 4 4 6 1 
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