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On the Description of Molecules 

I. In troduct ion  

The idea of electrical charge in molecules is a very old one. Since it has always been 
connected with tile general theory of molecules and of chemical reactions, its 
history reflects the same changes in perspective. 

As a result of his discovery of electrolysis, Davy built a theory around the idea 
that chemical combination resulted from electrostatic attraction between electri- 
cally charged particles, the electrical charge appearing when the particles came 
together 1). Berzelius developed this idea in 1819 and proposed a general theory 
of reactions, according to which the charges were already present in atoms ~) and 
every atom had both electricities, positive and negative, more or less concentrated 
around the poles. This led him to classify the elements according to their prevail- 
ing electrical state, positive or negative: oxygen, chlorine, etc. were negative; 
hydrogen, the metals, etc. were positive. 

This theory was strongly contested by  Dumas and his school, who showed in 
1834 that  a chlorine atom, which should have been negative according to Berzelius, 
could replace a (positive) hydrogen atom in molecules as acetic acid or the hydrogen 
carbides 8). A great controversy followed, the chemists being divided into two 
camps: those interested in the so-called mineral molecules, partisans of the 
electrical theory of Berzelius, and those who studied the so-called organic molecules, 
for which Dumas theory of substitution seemed necessary. 

This unsatisfactory situation lasted till the end of the nineteenth century, 
when the electron was discovered 4) and the structure of atoms clarified. Now 
chemistry entered a new era. The old intuitive idea of affinity between atoms was 
replaced by  the idea of affinity of atoms for electrons. Each atom was character- 
ized by  its attractive or repulsive power for electrons 5). I t  followed that  in a 
molecule, if two atoms had a different attractive power, the binding between 
these two atoms was polar, even if the molecule was not completely ionized s). 
At the same time the idea was slowly forced upon chemists by  experience that  all 
reactions must be preceded by  ionic dissociation of molecules, the polar bonds 
dissociating of course more easily than the non-polar bonds 7). 

Finally, about 1920, Lewis explicitly at tr ibuted the formation of bonds to 
electron pairs, and thus completed the general description of molecules s); he 
introduced the distinction between homopolar or covalent and ionic bonds. 

This way of viewing molecular structure and chemical reactions bridged the 
two opposing theories of Berzelius and Dumas. Its success was extraordinary, as 
is well known 9). For instance, hydrolysis of methyliodide was explained by 
dissociation of water in ions H + and OH-,  followed by replacement of iodine 
(negative) by the OH-  ions: 

C~H~I- + H  +OH- ~C2H5OH + H I  

But  this theory proved useful mainly in the field of addition reactions: for 
example, for the carbonyl group, the sites of addition of asymmetric reactants 
could be predicted from the signs of the ions into which they dissociated and from 
the polarities, negative for oxygen and positive for carbon, which resulted from 



A. Ju lg  

their different power of attraction for electrons. The double bond of CO took the 
ionic form C+O-: 

CN 

C = O + HCN ~ + ~ /  \ 
O-  OH 

Experiments  showed on the other hand that  a hydracid molecule could be 
fixed by  an asymmetrical ly substi tuted C-----C double bond with a well defined 
orientation (Markovnikow's rule) 10). Hydrogen was directed to the more sub- 
sti tuted carbon atom. This fact was explained by the polarization 

R H 

\ c + -  c - /  
g / \H 

of the double bond. By analogy With the carbonyl group, it was possible to con- 
clude that the most substituted carbon atom was the one least rich in electrons. 

In the same way the orientation rules for the second substitution on the 
benzene ring ii) found a simple explanation if alternant polarity on the ring was 
assumed 12) to result from the electron-attracting or -repelling power of the first 
substituent. For example, 

C1 C1 CI 

+ C1 § CI- " and + 

C1 

+ C1- 

A fundamental  remark must  be made at this point. If  it is so tha t  charges 
direct an electrically charged reactant  towards certain points of a molecule when 
an ionic process takes place, the approach itself of a reactant  changes the initial 
charge distribution in the molecule because of the electrical field it creates. This 
is the polarization phenomenon. I t  follows, for instance, in the case of the carbonyl 
group mentioned above, tha t  if the negative charge situated in the neighborhood 
of the oxygen nucleus at tracts  the H + ion, and the positive charge of carbon 
at tracts  the CN- ion, without the effect of the field created by  this ion, the negative 
charge of oxygen will decrease to complete ionization (C+ - O-) when at  least 
one of the two ions H+/CN - is sufficiently close. If  the charges present in the 
isolated molecule are sufficiently large, their value will determine the point of 
a t tack;  this is produced for instance for the methylat ion of azulene by  ICH3. The 
CH + ion will come on carbon 1 (or 3) 13~ which is strongly negatively charged 141. 
Under the action of the field created by  CH + , a - 1  charge will appear at tha t  
point. On the other hand, in a molecule such as naphtalene, where the net charges 
are very weak 15~, the point of a t tack of a positive ion (SO3H + for instance) will 
be conditioned by  the ease with which a + 1 charge appears on the ~ position 10. 

Another example is provided by  pyrrole 17~. When an ionic process takes 
place, the charges are clearly not the only factor. In addition, it is well known 
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today that  several reactions exist which do not take place according to an ionic 
mechanism: the Kharash effect 187, i. e. the fixation of a molecule of hydracid on a 
double C = C bond in the opposite sense of that  predicted by  the Markovnikow 
rule, the substitution reactions by chlorine in saturated hydrocarbons, etc. 
Nevertheless, the notion of electrical charges present in the isolated molecules 
retains a great interest for the chemist in interpreting a large number of reactions. 

I t  is also interesting to note that,  parallel to the researches of chemists, 
physicists also have been interested in the problem of charges in molecules, but  
in a global form, and had in fact succeeded in obtaining important results. 

Considering a molecule as equivalent from the electrostatical point of view to 
a dipole, which could be polarized under the effect created by its neighbors, 
Mosotti and Clausius, and independently from each other Lorentz and Lorenz 191, 
obtained the general connection between the dielectric constant of a substance in 
the gas state and its dipole moment:  

4~2v 2 ( e - I  , , 2 - I ]  M 
-6TY # = \ ~ ,,2+21 

Later, Onsager generalized this equation by extending it to the case of liquids 
~0~. As a result of the work of Debye who in 1912 formulated the principle of 
experimental determination of electric dipole moments 211, several results were 
obtained. Nevertheless, the chemists had no way of extracting the values of the 
electrical charges whose association was suggested by the existence of a dipole 
moment. 

Parallel to these studies, the study of real gases had led to the introduction of 
interaction forces between molecules, responsible for the differences between real 
fluids and perfect gases. These forces could be attr ibuted to an electrostatic 
origin: dipole force, polarization and orientation effects 2~. 

Thus, the non-uniform repartition of positive and negative charges in a 
molecule was a well-established fact. The crucial problem remained of determining 
their exact distribution. Two important results were nevertheless obtained: one 
quantKative result, the value of the dipole moment, the other only a qualitative 
but  equally important  result, the signs and the relative order of charges situated 
in the neighborhoods of different nuclei. To go beyond that,  it was necessary to 
have recourse to a theory capable of successfully attacking the problem of mole- 
cular structure itself. This was the role of quantum mechanics. 

II. Description of Molecules According to Quantum Mechanics 

A. Quantum Theory 

Without entering into details, it is necessary to recall the general characteristic 
methods of Quantum Mechanics in order clearly to understand the problem to be 
solved 2z). 

The idea of trajectory in the classical sense of particles forming tile system is 
not introduced. All the information available on the motion of particles is reduced 
to knowledge of a function of the coordinates of the particles and of time--called 
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wave function associated to the system: ~(q,t). The square of the absolute value 
of this function, I~] 2, represents the probability of finding the particles in the 
points of coordinates q, at the time t. In an isolated system with a well defined 
energy, this probability does not depend on time, but  only on the coordinates q. 
The system is then declared to be in a stationary state. 

Our experiments refer necessarily to a large number of systems, atoms or 
molecules. As far as they can be considered as independent systems, i.e. as having 
the same characteristics, the result of a measurement made at the macroscopic 
scale will give the average of the results which would be obtained by carrying out 
a very large number of microscopic measurements after a single system. I t  follows 
that  in a molecule the square of the modulus of the wave function associated with 
the electrons will be interpreted as giving the density of a continuous repartition 
of negative charge. This is what we call the "electron cloud". The dynamic model 
is replaced by  a static model. 

The wave equation ~ is a solution of the partial differential equation of 
Schr6dinger ~4). The construction of this equation makes use of a mathematical 
formalism which we shall not t reat  here. 

In principle, owing to its generality, the Schr6dinger equation contains the 
solution of all problems of molecular structure. Unfortunately, it is only integrable 
in a few special cases, the hydrogen atom for instance. 

Thus, in general, one must be content with approximate solutions. 

B. Appl icat ion  to Molecu les  

The specific case of molecules lends itself to a first important  simplification. In 
fact, the very large difference between nuclei and electrons allows reduction of the 
problem to electrons only. More precisely, the wave function can be determined 
to describe the electrons for every geometrical configuration of the nuclei. This 
is the Born-Oppenheimer approximation 2~). The knowledge of the purely elec- 
tronic wave function allows calculation of the total molecular energy including the 
repulsion energy of the positive nuclei. In general this energy is at a minimum 
for a particular arrangement of the nuclei. This is the equilibrium geometry 
around which the molecule will vibrate. Neglecting vibrations, we shall assume 
in the following that  the nuclei are fixed in their equilibrium positions. 

The study of the H2 molecule ~6) showed that, in agreement with the prophet- 
ical ideas of Lewis s), the two electrons of that  molecule do in fact pair together 
and the resulting electron density is concentrated between the nuclei. Generaliz- 
ing this result, it is reasonable to t ry  to describe in general a molecule in terms of 
electron pairs. In the H2 molecule, with a good approximation, one can describe 
each of the two electrons by  the same spatial function, i.e. assign to each electron 
the same spatial distribution of the charge. The energy obtained under this as- 
sumption is actually httle different from the exact value 27). By  extrapolation, in 
a general molecule, each electron of every pair will be assigned a space function, 
the molecular orbital, the two electrons of a given pair being described by the same 
space function (they will differ only by  their spins). 

6 
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This simplifying assumption allows construction of a spatial wave function 
describing all the electrons of a molecule, having an even number of electrons, in 
the ground state, in the form of a determinant 28): 

9~1(1) x(1) 91 (1) fl(1) 92 ( I ) . ( 1 ) . . .  
1 

~0(1,2 . . . .  ,n)  = ~ .  91(2) a(2) 901 (2) fl(2) 92 ( 2 ) ~ ( 2 ) . . .  (1) 
. . . . . . . . . . .  o . . . . . . . . . . .  . . o 

Here, n is the number of electrons, the 91's are the space functions, and ~ and 
fl are the functions associated with the electron spin. (The choice of the structure 
of the determinant is imposed by  a general theorem of quantum mechanics, which 
says that  the wave function must change its sign when two electrons are inter- 
changed). We leave aside the case of molecules whose levels are not doubly oc- 
cupied, viz. radicals 29). 

The problem is thus reconducted to the determination of the various functions 
~,. A well-known procedure consists in expanding these functions in a basis of 
conveniently chosen functions a0) : 

= Y. (2) 
r 

The coefficients c,r thus introduced are determined by  a variational calculation 
so as to minimize the energy of the system. 

The choice of the basis functions Zr is rather arbitrary. Different types of 
functions have been proposed and discussed ~1}. We shall not consider this delicate 
problem. A current choice is to take the functions or atomic orbitals associated 
with electrons in the isolated atoms. For simplicity, we shall take the latter in 
their real forms. 

I t  is quite obvious that  the greater the number of Zr functions used, the better 
the representation (2) of molecular orbitals will be. However, in practice, only a 
relatively small number of functions • can be introduced. The experience of 
calculations shows that  in general a good approximation is obtained if the atomic 
orbitals used correspond to the energy levels populated by electrons in the atomic 
ground states a2) : 

l s  for H;  ls, 2s, 2px, 2pv, 2pz, for first-row atoms, etc. 

Once the basis functions have been chosen, explicit determination of the 9's 
is only a mat ter  of computation. The classical method is Roothaan's self-con- 
sistent-field (S. C.F.) as), which modern computers make easily applicable. 

C. Electron Densi ty  in a Molecule 

Knowledge of the wave function ~ permits calculation of the various quantities 
which characterize the molecule. In particular the total electron density appears 
in the form: 

i 

the factor 2 coming from the fact that each orbital ~ is associated with two 
electrons. 
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This expression shows that  the contribution to the total density of the pair 
described by the molecular orbital ~, is 2q~ 2. Knowledge of the total electron 
density in every point of space permits the calculation of the center of gravity of 
the electron cloud. As the position of the center of gravity of the positive charges 
of the nuclei is easily calculated, the electric dipole moment of the molecule can 
be immediately derived. On the other hand, the charges as postulated by  chemists 
do not follow directly, for it is not possible to identify a discrete set of charges 
with the continuous distribution given by calculations. 

Another difficulty arises from the quantum representation. Strictly speaking, 
the electronic cloud extends to infinity, so that  a reactant attacking the molecule 
is never situated outside the electron cloud, i.e. outside the molecule. However, 
owing to the rapid decrease of the electron density as the distance from the nuclei 
increases, it is justified in practice to assume that  the electron cloud is contained 
in a well-defined finite volume V having dimensions of the same order as the inter- 
nuclear distances. For instance, 99% of the electron cloud of the H2 molecule is 
located inside a revolution ellipsoid with axis 4.5 and radius 1.6 A. The picture of 
the molecule as a finite size object, as viewed in classical chemistry, is thus justi- 
fied even though it is only a very good approximation. The fact that  the electron 
cloud extends to infinity does not produce mathematical difficulties concerning the 
definition of the electrostatic potential created at any point of space. In fact, the 
potential created in its center by a charged sphere whose charge density is every- 
where finite (l~[ ~< ]~m[) and of the same sign, tends to zero with the radius a of 
the sphere : 

v = tet r2 dr < I ml 
.Jo r 

III. Equivalent  Mult ipoles  

As has been mentioned, the electrostatic potential created by the molecule plays 
an important  role in the ionic reactions as well as in molecular interaction phen- 
omena. As the problem has been presented and discussed in detail in an article 
recently published in this series 34), we shall not discuss it here. 

I t  is quite obvious that  the best representation of this potential consists in 
constructing contour lines maps (Figs. 1, 2). Such pictures are often very effective, 
but  have the limitation that  several sections are necessary to represent the poten- 
tial in space, and they do not lend themselves easily to further calculations. These 
diagrams, sometimes not easy to interpret, will be discarded by  the chemist in 
favor of a more tangible and familiar description, based on point charges and 
electric multipoles, especially dipoles. The problem is then to reproduce as well as 
possible the electrostatic field created by the molecules by means of these point 
charges and these dipoles. 

A. General Expression of the Electrostatic Potential Created by a Molecule 

The potential created by  a molecule is completely defined by the charge density 
values in every point of space. This density may  be written : 

e(M) = - -  0 e(M) + Z NK(i(M-- K) (4) 
K 



On the Description of Molecules 

where e e (M) is the electronic density at point M, defined by  the vector M, NK is 
the positive charge of the nucleus whose position vector K, and ~ is the Dirac 
distribution. 

In the following, we shall always assume tha t  the nuclei are fixed. I t  is well 
known that  the molecule is actually in a perpetual state of vibration, the nuclei 
oscillating around equilibrium positions corresponding to the minima of energy. 
We shall suppose that  the nuclei are fixed in these positions and we shaU define 
the coordinate system O~;vz with reference to them. 

0 

5 k i t "  

i -7.5 

-'71.8 
H H20 

Fig. 1. Electrostatic potential-energy map for H20 in the molecular plane 34). Values are 
expressed in kcal-mole 

2 01 -2 -5 

H20 

Fig. 2. Potential-energy map for H20 in the symmetry plane perpendicular to the molecular 
o n e  34) 
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The potential created at a point P situated at  a distance R from the origin 
(OP = R), in the direction specified by cosines ~, /3, y, may be expanded to the 
powers of R -1 according to the classical expression: 

~ zfoydv fozdv Vp(R;o~,fl.~,) = ---~ f Odv + -fi [o~ f oxdv + + y ] 

+ 2-~[~ f @ ~ -  y ~ -  z~)dv + . .. +6o~ f ~#v  + ...]+ ... 

(s) 

(the integrations being taken over the whole space). 
The term in R-~ n+l) of Eq. (5) corresponds to the potential created by  a 

multipole of order 2 n. 

M(x, y, z) 

// "" P(R; a,/3~ ~) 

ii l/ 

I l l  
. 

Y 

x 

Fig. 3. Notation for the expansion of the potential 

B. Study of Multipole Expressions 

The expansion Eq. (5), taken in its entirety, is evidently valid regardless of the 
origin or the orientation of the chosen axis. But  it is essential to keep in mind that  
the various integrals depend on the choice of the reference system. To see this we 
perform for instance the translation defined by: 

x ~ x ' = x - - X , y  ~ y ' = y -  Y, z ~ z ' = z - - Z .  

Then, Soxdv becomes Sex'dv = ~exdv- X~Qdv, and similar formulas hold 
for y and z. Thus, if the total charge ~odv does not vanish, the dipole components 
~oxdv,..., are not invariant upon translation. 

10 



On the  D e s c r i p t i o n  of Molecu les  

The same kind of conclusion holds for the quadrupole terms: 

~r -0- Sex'y'dv = SOxydv -- XSeydv  -- Y.roxdv + X Y ~ o d v  

j'Q(2x ~. _ y2 _ z2)dv . j'~ (2x2 _ y2 _ z2)dv _ 4X~Qxdv + 2Y~gydv  

+ 2ZSozd v + (2X 2 _ y 2  _ Z ~ ) ~ d v  

these quantities and their analogs are not invariant unless the total charge and the 
quadrupole components vanish. 

In general, only the components o[ the first non-vanishing multipole are invariant. 
This indicates that  it is always necessary to specify the choice of the reference 
system used in the calculations. 

This lack of invariance may seem at first to represent a serious difficulty if the 
exact expression of the potential must be replaced by a limited expansion. Actually, 
it can be taken advantage of by choosing the coordinate system so as to simplify 
the expansion as far as possible. We consider a few specific cases : 

1. Suppose the total charge is not zero, ~edv # O, as in the case of an ion. One 
can choose as the origin the center of gravity of the charge distribution. In any 
reference system with origin in that  point, the dipole term vanishes, hence: 

Soxdv = Seydv =SQzdv = 0 .  

Moreover, by convenient choice of the x, y ,  z directions, the rectangular con- 
tributions aft, fl~,, y~ appearing in the quadrupole term may be made to vanish. 
Hence the simplest expression that  can be obtained will be: 

with 

,f , (  ) VF(R;a ,  fl, y ) = - ~  e d v + ~ - ~  A ~ 2 + B f l 2 + C ?  2 + . . .  

A = Se(2x~ _ y 2  _ z2)dv . . . .  an d A  + B  + C  = 0  

(6) 

When the charge distribution is cylindrically symmetric around the z-axis 
(linear ions), A = B  = SO ( x2 -- z2) dr, and 

1 3 ~  2 - -  1 
(7) 

Any choice of the origin other than the center of gravity of the charges will 
give rise to a dipole term. 

2. Suppose the total charge is zero: ~edv = 0. This is the case in a neutral molec- 
ule. 

The center of gravity of the whole system can no longer be defined. But  a 
center of gravi ty G + of the positive charges and a center of gravity G-  of the nega- 
tive charges can be separately defined. Suppose these two points do not coincide. 
Choose as the z-axis the straight line joining G + and G-;  then: 

SQxdv = Seydv = 0 

11 
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for any  origin lying on this s traight  line and for any  choice of the x and y axes 
a round it. 

I t  is also easy to  verify tha t  in a t ranslat ion along the z axis - -  the direction of 
x and y remaining the same - -  the quanti t ies:  

~ozdv, ~qxydv, Soxzdv, Soyzdv, Sox2dv, I.Oy~dv 

are invariant .  The potent ial  thus takes the following form : 

" ; o z d v + 2 - ~ ( A ~ r  
(s) 

+ 2F7o 0 + l l w  

where D, E,  F are independent  of the origin, whereas A, 13, C are functions of it. 
The axes of the quadric Ax  2 + B y 2 + . . .  + 2 F z x =  1 which corresponds to the 
quadrupole  term are not  oriented in general in any  special way  with respect to the 
G+G - line. Therefore in general it will not  be possible to give a simple expression 
of Vp. 

An  interesting part icular  case is tha t  of a charge distr ibution belonging to  the 
C2v group (e.g. the HzO molecule). Such a sys tem has two perpendicular  sym- 
m e t r y  planes. The G+G - s traight  line necessarily coincides with the intersection 
of these two planes. For  s y m m e t r y  reasons it is best to take these planes as the 
x = 0 and the  y = 0 planes. The expression of the potent ial  then reduces to :  

I n  a t ranslat ion z--,-z' = z - Z ,  ~ox2dv and Sey2dv remain constant ,  Sez2dv 
becomes ~qzZdv- 2ZSezdv. The non-invariance of the coefficients A, B, C, allows 
us to impose an addit ional condition. 

For  instance, we can t ry  to  have (372 - 1) as a factor. This demands  A = B ,  
i. e. Sox2dv = Soy2dv. Now this is not  realized in general, except if the system is one 
of revolution around the z-axis. In  this case the potent ial  expansion is: 

' f  ) Vp(R;cr  ozdv + 2R3 ~ z2 - x2 dv + . . .  (9) 

In  a t ranslat ion z -~z' = z  -- Z, S~ ( z2 -- x2) dv becomes S0 ( z2 - x2) dv -- 2ZS~zdv, 
and thus the origin can be chosen so as to make  the quadrupole  term vanish. Bu t  
it is essential to  keep in mind tha t  in this case the center of the dipole (the origin) 
will not  coincide in general with the center of the G+G-  segment,  as one might  
have expected. I t  is easy to  verify this point  directly on the simple example of 
two -- 1 and one + 2 charge, arranged as in Fig. 4 : 

- I  - I  0 +2 

l I 1 1 I 1 1 ' 
B G -  A G C = G +  P z 

IACI - -  a, IBCI = b, ICGI ---- (a + b) /4 ,  lOCI = Z ,  IOPI = R .  
Fig.  4. E x a m p l e  of charge  d i s t r ibu t ion .  N o t a t i o n  

12 



On the Description of Molecules 

Taking the center of the G+G - as the origin, in a point P of the axis, we have: 

+ (R -4) 
R 2 2R 3 

whereas if the origin is such that  Z = (a 2 + b2)/2(a + b), we have simply: 

V~. - -  a + b  - -  R-my - + (R -4) 

In  the case when the charge distribution has no cylindrical symmetry,  and the 
A = B  equality cannot be satisfied, one can have B----C by  choosing the origin 
so that :  

Ioy2dv -~ Se(z - Z)2dv, i.e. : 2ZIozdv  -~ Ie(z  2 -- y~)dv 

The potential  is then: 

f zd + 
The formula introduces a te rm which corresponds to a quadrupole having the 

same center as the dipole and lying along the x-axis. 
Choosing the origin so as to make A = C, one obtains in the same way: 

) V p ( R ; : ~ , f l , 7 ) = - ~  ~zdv+  ~-~  e Y 2 - z 2  d v + . . .  (10b) 

Any other choice of the origin would give less simple expressions. In particular, 
to take the center of G+G - as the origin would not be very convenient. 

3. With high symmet ry  systems, such as MX6, the highest number  of vanish- 
ing terms is obtained by  choosing as the reference axes the symmet ry  axes of the 
system (here the MX strMght lines). The potential  expression reduces to : 

1 Vp(R; ~, p, ),) = -y f edv 

7 /~4 ~,4 __ __ 3 720~2) + T h - g - ( a  4 + + - 3~2fl2 3fl2~,2 (11) 

In conclusion, we see tha t  a proper choice of the reference system may  in- 
troduce considerable simplification of the potential  created by  a molecule. 

13 
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C. Representat ion of the Potential  by Means  of a Finite N u m b e r  of Mult ipoles  

The expansion of the electrostatic potential in terms of multipoles has the advan- 
tage of providing an analytic representation of equipotential surfaces, but, of 
course, it will be of practical interest only if the expansion converges rapidly enough 
for a small number of terms to be important. 

Direct comparison of the exact expression and a limited multipole expansion 
of the potential suggests that  hexadecapole terms (in R -5) give a negligible con- 
tribution with respect to lower order terms 357. 

If the distance is sufficiently large, the octupole terms can also be neglected 
without any serious error. At any rate, expansion limited to the quadrupole term 
always represents the shape of the potential in a satisfactory qualitative manner. 
In practice, inclusion of quadrupole terms is sufficient for problems related to 
chemical reactivity. 

I t  follows that  a reasonable choice of the reference system will make it possible 
to describe, from the electrostatic point of view: 

-- an ion by means of a point charge and a quadrupole; 

-- a neutral molecule of any kind by means of a dipole, possibly vanishing, and 
of a quadrupole with tile same center; 

-- a linear neutral molecule by  means of a dipole; etc. 

As concerns interactions between molecules, this type of approximation will 
be sufficient as long as gases are considered. It  may not be so for the condensed 
states, such as liquids or molecular crystals; in these cases it will be necessary to 
take into account higher order terms of the multipole expansion. 

IV.  D e f i n i t i o n  of  C h a r g e s  f r o m  M o m e n t s  

A. T h e  Principle  

The knowledge of the field created by a molecule in terms of multipoles makes 
possible the discussion of the problem of electrical charges and their meaning. In 
fact, by definition, tile charges must reproduce tile electrostatic field created by 
the molecule. The problem ttlus consists in determining the values Q, of the 
various point charges and the positions (x,, y~, z,) where they must be placed so as 
to obtain the same multipole contributions. We shall call these charges, positive 
or negative, net charges. 

A preliminary remark is in order. In a molecule, charges are of two types : the 
positive point charges of the nuclei and the diffuse charges of the electrons. 
However, nuclei other than the proton are surrounded by  internal spherical shells; 
therefore, according to Gauss's theorem, one can only consider the field created 
by  each spherical core (nucleus plus internal electron shells) as the field of a 
positive point charge. Clearly the total field resulting from the positive charges of 
the H nuclei and of the cores, and from the negative charges due to valence 
electrons is involved in interactions with an external point charge. The field of 
the H nuclei and of tile cores is the same in a real molecule as in the dicrete-charge 
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description; therefore, it will be enough to consider the potential created by the 
binding electrons in order to identify the total potential in the two cases. We 
shall note the electronic charges q. These charges are negative. (q will be positive 
in electronic unity). If the positions of the electronic charges (q) coincide with 
those of tile nuclei (positive charges N) : 

Q = N - q .  

B. Determination of the Values and Positions of the Charges 

The values qi of the various charges i and their positions (xf, y~, z,) must satisfy 
the following relationships: 

a) ~q, ---- n, with n the total number of the valence electrons; 

b) ~q,x~ = .fexdv and the corresponding equalities for y and z; 

c) ~q~(exi 2 - y ~ - z ~ )  = ; Q ( 2 x  2 - y 2 - z  2) dv 

5 q ,  (2y~ - x~ - z~) = f e  (2y2 _ x2 - z~) dv 

Y.q~x~y~ = Sexydv, ~qiytz~ ----- ~eyzdv, ~q~z~x~ = ~ozxdv 

(12) 

etc. for the higher orders (~ is here the electron density due to the valence elec- 
trons). 

We have thus: 

1 equation for the unipole term; 

3 equations for the dipole term; 

5 equations for the quadrupole term; 

In general, we have (2n + 1) relations for the term of order 2n. Now for the 
i--th charge we have four unknowns, its value q, and its three coordinates. If the 
number of cllarges to be considered is fixed a priori, it will always be possible to 
obtain a sufficient number of equations to determine the unknowns uniquely by 
introducing a sufficient number of multipole terms. But  evidently nothing will 
guarantee that  the values of the charges and the corresponding coordinates thus 
obtained will verify the equations for the multipole terms of higher order. 

In any case the problem of molecular charges includes many special con- 
straints, for in the mind of the chemist the charges are viewed as located near if 
not on the nuclei. Therefore, their number is limited and fixed in advance as 
being the same as the number of nuclei in the molecule. Of course, this restriction 
will have a great impact on the quality of the description, for it will be possible to 
equate only a small number of multipole terms. The increase in the number of 
point charges introduced will improve the description. For instance, for the 
molecule H~O, with 13 charges, one obtains a potential which practically coincides 
with the exact potential 36). 
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However, such a model does not interest the chemist. Therefore in the follow- 
ing, we shall always assume tha t  the number  of charges is the same as tha t  of the 
nuclei. 

Let  us examine first the case of a diatomie molecule AB. Let qA and qB be tile 
charges. For symmet ry  reasons we shall place them on the nuclear axis. Let ZA 
and ZB be their non-vanishing coordinates. Then: 

qA + q B = n  

qAZA + qBZB = SQzdv = 21 

q.~z~ + qBz~ = 2I~ (z2 - x~) dv = ~2 

The first two equations give: 

qA __ - - ~  - 1  nz~ and qB --  -21 + ~'/ZA (13) 
g A - -  z B Z A - - * B  

These values are invariant  in a translation z -~ z' = z - Z. 
In  accordance with the traditional chemical view, the negative point charges 

are located on the corresponding nuclei A and B, the q values are then perfectly 
determined. But, in general, the third relationship involving the quadrupole term 
will not be satisfied. The dipole and the quadrupole term can only be reproduced 
completely if the electronic charges are located at points other than the nuclear 
positions. Furthermore,  for determining ZA and zB it will be necessary to have 
recourse to the equation for the octupolar term, which will thus also be reproduced. 

When the molecule is formed by  a sufficient number  of nuclei, the dipole, 
quadrupole and even octupole terms can be made to coincide even assuming that  
the charges are located on the nuclei. For instance, with three nuclei on the same 
straight line, the following three equations are sufficient for determining uniquely 
the charges qA, qB, qc centered on the nuclei A, B, C with abscissas za, ZB, ze: 

{ q A + q n + q e = n  

qxza  + qBZB + qeze = ,~1 
2 2 

q A Z A  - t -  qBZB + q C z c  2 -~- ~.2 �9 

The quadrupole moment  is then reproduced. 
In  the case of systems with a high degree of symmetry,  the identification can 

be made with higher order multipoles. For instance, in molecules of the MX6 
type, where for symmet ry  reasons a charge q' will be located at the central nucleus 
M and six equal charges q will be located on the NX6 lines at equal distances from 
M, we shall have:  

Vp - -  q" + 6q 
R 

7qa4 f14 74 -- ..  (14) 
- -  -4- ~ ( tz4 + + -- 3(z2fl 2 -- 3fl2) '2 3y2~ 2) @. 
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Hence, by  identification with the potential created by  the continuous real 
distribution [Eq. (11)] : 

2qa 4 -~- ~0(x 4 -- 3x2y 2) d r .  

If  the charges q are required to be located at the X nuclei, the q value is 
obtained. Only by  using the subsequent multipole term, which gives the value of 
the qa 6 product, would it be possible to determine both q and a. However, in view 
of the order already reached in the expansion, such a calculation is not especially 
useful, and the charges q can be assumed to be located at the X nuclei. 

These few examples clearly show that  to require a p r i o r i  that  net charges in a 
molecule should be located at the nuclei is merely an approximation not acceptable 
in the case of diatomic molecules, but acceptable for the other molecules, so that  
the traditional chemical view appears to be justified. 

V, D e t e r m i n a t i o n  of C h a r g e s  f r o m  the  C o h e s i o n  E n e r g y  of a n  Ionic 
Crystal 

Bm- A very special but  interesting case is given by  symmetry  ions of tile A n type 
in an ionic crystal. The cohesion of the structure is explained in the classical 
theory 37) by  equilibrium between the electrostatic forces, whose resultant is 
attractive, and the short-range repulsive forces acting between ions. 

In  the case when all the ions are mononuclear, as in NaC1, the electron distribu- 
tion around each nucleus is isotropic, so that  one can assume that  the electrostatic 
energy results from the interaction of point charges centered on the nuclei. This is 
Madelung's classical calculation aa). 

If the ions are not single nuclei as we have seen, in the calculation of the 
electrostatic potential created by them, the continuous charge distributions can 
be replaced by point charges located on their nuclei. In the case of symmetric ions 
of the type A B e - ,  such as NO~, CO~-, SO~-, . . . .  the net charges carried by  the 
B nuclei can be expressed in terms of tile charge carried by  the central a tom: 

QB = m + QA 
$2 

Knowledge of the geometry of the ion and of the geometry of the crystal thus 
makes possible calculation of the electrostatic energy, and therefore the cohesion 
energy of the crystal as a function of the ctlarge QA. Comparison with experiment 
then gives QA und QB. For instance, in lithium nitrate one finds for the nitrate 
ion 39) : 

QI~ = 1.16 and Q0 = -  0.72. 

VI .  D i r ec t  D e f i n i t i o n  of E l e c t r o n i c  C h a r g e s  f r o m  the  Wave Function 

Instead of trying to derive the charges from the various equivalent multipoles, 
one can t ry  directly to use the wave functions describing the electrons in the 
molecule. The problem is neither simple nor easy. 
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A. Basic Convention 

We have given above the expression of the electron density in terms of molecular 
orbitals [Eq. (3) of Section III-C.]. The center of gravity of the electron cloud, 
G- will be given by the expression: 

nG- = ~ 2yT~ M dv -~ 2 ~ ~ ~ C,r c,, Y7,r M Z8 dv (15) 
r r $ 

where n is the total number of electrons and M is an arbitrary point of space. 
By definition, we call population of an orbital Xr any quanti ty qr such that  

nG- -= ~ qr Ir (16) 
T 

where Ir is the position vector of the center of gravity YXr M Zs dv of the cloud 
associated with the function Zr. "When the functions Zr are atomic orbitals, the Its 
coincide with the position vectors of the nuclei carrying the corresponding orbitals. 
But  in certain problems it is sometimes interesting to use not the atomic orbitals 
as such, but  linear combinations of orbitals carried by  the same nucleus (hybrid 
orbitals 4o)). The center of gravity lies then in a slightly excentric position with 
respect to the nucleus to which tile hybrid orbitals belongs 41). 

Even functions whose centers do not coincide with the nuclei (floating orbit- 
als 4~)) can be used. However, to remain within the chemist's picture, i. e. to obtain 
charges located on the nuclei or near them, it is more convenient to use either 
atomic orbitals centered on the nuclei, or hybrids constructed therewith. This 
we shall assume in the following. 

The populations qr which we shall define will thus give the charges carried by  
the various orbitals )& and will be located at the centers of gravity of the cor- 
responding distributions Zr ~. Thus stated, the problem of defining the charges is 
undetermined. In fact, an infinite number of different point-charge systems can 
have the same center G- as the overall cloud. In order to reduce the degree of 
arbitrariness, one can t ry  to express the various integrals SZr M X8 dv involving 
two centers as sums of one-center terms. However the identification does not 
call into play multipolar terms of order higher than two; therefore, the charges 
thus obtained will not necessarily have the properties implied in the chemist's 
model and will be subject to criticism. This is related to the fact that,  in the 
chemist's picture, charges do not belong to the category of those quantifies which 
quantum theory calls "observable" 437, i.e. defined more or less directly in terms 
of a physical measurement. 

B. Examples of Approximations 

The oldest approximation 4a) is perhaps the one introduced for ~r orbitals, i.e. 
orbitals with parallel axes, carried by  nuclei located in the same plane. This case 
is encountered with planar conjugated molecules. The center of gravity of the •rXs 
distribution is assumed to lie at the center of the segment joining the nuclei to 
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which the orbitals Zr and Zs belong. As these nuclei are the centers of gravity of 
the distributions Zr 2 and gs 2, one has: 

1 (It  + Is)  Srs S Zr M Zs dv ~- -~ (17) 

Srs being the overlap integral .~Zr Zs dv. 

I t  follows that  

whence 

t r t r s 

qr = 2 X (dr + Z c,, c,, s~) (is) 
i s , r  

A more sophisticated treatment consists in a better description of the position 
of the center of gravity of ;/r Xs by writing 45) : 

with 

I t  follows that :  

1 (~r, I, + a , ,  I,) s t ,  fXr M Z~ dv = 

]Lrs Jr- tZrs = 2 . 

(19) 

qr = 2 ~ (cir ~" + ~ Cir cis Srs 2rs) (20) 
s # r  

However, in the case of a-type orbitals, the parameters 2 and/z are close to 
unity. They are rigorously equal if the orbitals have the same nature, as the 2pz 
orbitals of carbon. Their values are 1,22 and 0,78, respectively, for the 2prt orbitals 
of carbon and oxygen in the carbonyl group (d = 1,21 2~). Therefore, Eqs. (18) and 
(20) give slightly different results: q0 = 1,13 from Eq. (18) vs. q0 = 1,17 from 
Eq. (20) (Calculation from the results Ref. 46)). 

The charges thus defined are centered on the nuclei. However the relationships 
of Eq. (17) and Eq. (19) are but approximate ones. To improve them, one might 
for instance replace the distribution Zr Zs by an expression of the type (axA2 + 
by,'B 2) Sr, where ZA and gB represent appropriate orbitals centered in points A and 
B different from the nuclei carrying the r-th and the s-th orbital. The position 
of these points as well as the explicit expression of the orbitals Z:t and Z~ is 
determined so as to obtain coincidence of quadrupole and octupole terms in 
addition to the center of gravity 47). Other decompositions are also possible 4s~. 
The decomposition of the orbital product Zr Zs is thus improved, but this has the 
inconvenience of introducing orbitals which are excentric with respect to their 
nuclei and are thus in disagreement with the chemist's picture. Therefore, these 
approximations are not used for defining the charges. 
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Although originally introduced for ;r orbitals, Eq. (20) also applies to a system 
formed solely by  s orbitals, or to a set of orbitals having a common axis of revolu- 
tion, as in a linear molecule. In the case of s or p orbitals, the charges are still 
located at the nuclei. In  the case of hybrids orbitals, they are excentrie with respect 
to the nuclei, but  they are situated on the line joining them. 

A limiting case which fits in the general frame of Eq. (19) is wtten the Xr Z8 
distribution is highly unsymmetric,  as happens in a strongly polar bond. Then 7rs 
is very close to 2 and #r.~ is very close to 0, or vice versa. 

One has, for instance: 

5Zr M Z8 dv = Ir Srs 

Such an approximation leads, in the instance of a wave function only consisting 
of the orbitals ;~r and Zs, to the charges 40): 

qr = 2c2r + 4Cr cs Srs 
qs = 2 c2~ . 

Eqs. (18) and (20) have been established in a very special case. They hold only 
if the centers of gravi ty  of all the distributions Zr Xs are situated on the straight 
lines joining the centers of gravi ty  of the distributions Xr 2 and ;~s 2. Usually this 
favorable circumstance does not take place, and it is difficult to obtain simple 
equations. Nevertheless, it has become customary 5o~ to define in all cases the 
charges carried by  the various orbitals by  means of Eq. (18). The lat ter  is ap- 
proximately valid, as has been shown, for certain types of molecules and orbitals, 
but leads in the other cases to values which are meaningless and therefore cannot 
but  generate confusion in the mind of the chemist. For instance, in benzene, the 
SCF method gives a net charge - 0 , 2 0  on the carbon a tom ~1), whereas one would 
have expected a value close to zero. This formula can even give negative electron 
populations, as is the case in Cu C1~4 - 52). 

Other definitions have been proposed to avoid such difficulties as). Their 
significance is less easy to grasp, and we shall not dicusss them here. 

C. Effect of Orthogonalization of Basis Orbitals 

Instead of atomic orbitals or hybrids, which have the disadvantage of not being 
orthogonal to one another, use is often made of linear combinations there of, made 
orthogonal to one another by  the procedure of Landshoff 54), generalized by  
Lhwdin 55), which can be symbolically written as: 

(•') = (1 + S) -1/2 (Z) (21a) 

S being the matr ix  whose general element is: S~q = S~q - -  ~pq. 
To the first order in S, Eq. (21a) becomes: 

�9 1 E Xr = Xr -- ~ Skr  X k .  (21b) 
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With this orthogonal basis, Eqs. (18) and (20), when applicable, take the simpler 
form 55) : 

qr ---~ 2 ~ (C~r) 2 (22) 

C~r being the new coefficients of the molecular functions ~i built on the orthogonal 
Z' basis. The charge thus obtained is evidently strictly positive, so that  the dif- 
ficulty encountered with Eq. (19) in connection with the sign of q does not appear. 
This may seem contradictory, for the charges qr are derived from the coefficients 
c~r which are related to the initial coefficients c,r. Actually, q~ represents the 
charge carried by the distribution 7~r 2. Now, according to Eq. (21a) and Eq. 
(21b), the corresponding cloud is delocalized on the whole set of the atomic 
orbitals Zr. Therefore, the center of gravity of (X~) 2 does not coincide with 
that of Xr, and the charges q~ and qr thus defined, although they give the same 
overall description, do not have the same meaning. A favorable case is when the 
charges come from ~z-type orbitals. The charges q are obtained from the charges q' 
by a mathematical process which consists in inverting the orthogonalization pro- 
cedure. To the second order in S, one obtains 56): 

qr = q'r + ~ (qr -- q;) Sr,  2 �9 (23) 

, # r  

The relationship shows that  the charges q and q' are not much different, for 
S 2 never exceeds 0.1 in this case, so that  at a first approximation one can give the 
charges the q' values and consider them as being located at the corresponding 
nuclei. For orbitals of a general type, also neglecting S 2, one obtains: qr = q r  57). 

Special mention must be made of semiempirical methods of the Htickel type: 
the Htickel method proper for ~-systems 30) and the so-called Extended Htickel 
method 58) for molecules in general. In these methods the atomic orbitals are 
assumed to be orthogonal, and the charges are given by  Eq. (22) 59). In these case 
of ~-systems, the equivalence of these methods with the more rigorous SCF 
method can be proven 60), by the precise use of the L6wdin orthogonalization 
procedure. In the other cases, the value of these methods is more dubious. 

D. A Defect  Characteristic of the Above  Definit ions  

Regardless of the special definition adopted, one difficulty makes the values ob- 
tained for the charges subject to criticism 43). Even when the center of gravity 
of the electron cloud associated with a given atomic orbital coincides with the 
corresponding nucleus, the charge is often concentrated in points rather far from 
the latter. For instance, in the case of a 2p orbital with effective charge Z, the 
maximum is located at 2ao /Z  (no being the Bohr radius, 0,5293/~). This pheno- 
menon is even more pronounced with hybrid orbitals presenting a density con- 
centrated in a given direction. I t  follows that  the density maximum of a given 
orbital may lie close to another nucleus. Therefore, a calculation which assigns the 
whole charge carried by a given orbital to the corresponding nucleus will tell us 
nothing about the fraction of electrons actually present in the neighborhood of the 
nucleus. The theoretical values will have little in common with the charges re- 
quired by chemists. 
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One solution consists in using the electron density maps to determine numerically 
the fraction of electrons contained in a given region around the nucleus. This 
procedure is difficult to realize because of the difficulty of finding a general de- 
finition of the region to be assigned to each nucleus. The difficulty could be over- 
come by  referring to some physical quanti ty whose observed values are concentrat- 
ed around the different nuclei, except for linear 61) or monocyclic molecules 62). 

E. Evaluation of Charges from the NMR Chemical Shift 

The study of chemical shifts in NMR provides an example of the sort of physical 
quantities to which one may refer. As is well known, the total  magnetic field to 
which a nucleus of a molecule is subject is the sum of the external field ~ e x t  and 
of the induced field created by  the electrons surrounding the nucleus under study. 
The h t t e r  field is proportional to the external field and of opposite sign. The 
effective field thus acting on the nucleus is: 

~Pe t f .  = ~%Pext (1 -- a) (24) 

a being the magnetic shielding constant. This constant depends essentially on the 
electron distribution in the immediate neighborhood of the given nucleus. The 
resonance condition for a nucleus of a given species is always obtained for the 
same value of the effective field; therefore, the external field required to obtain 
resonance must depend on a, i.e. on the environment of the nucleus. This is the 
essence of the chemical shift eBeet. 

In a series of similar compounds, the a constant may be related to the electric 
charge present around the nucleus, and indirectly to that  of the neighboring atoms. 
For instance, for a proton carried by  a carbon atom participating in a conjugated 
system, the chemical shift will depend on the net ~ charge of the carbon atom. If 
the  carbon atom is positively charged, its electronegativity is higher 63), and it 
attracts the electrons more than if it were neutral. Experiment provides the 
values of the chemical shifts for three molecules where the net charges Q are 
known beforehand for symmetry reasons: the cyclopentadienyl anion CsH~ 
(Q = - - 1 / 5 ) ,  benzene C6tt6 (Q=O), and the tropylium ion CTH + ( Q =  1/7). By 
interpolation one obtains an exponential law a ---- a ((2) ~4}. With this law, measure- 
ment of a in a hydrocarbon allows determination of the charge Q. Unfortunately, 
this procedure does not apply to all cases, and moreover the phenomenon is more 
complicated; the value of the chemical shift depends on other structural effects 
(ring currents, hybridization changes with number of carbon atoms in the ring, 
etc.), and also on interactions with the solvent. Nevertheless, the method has been 
successfully applied to azulene CloHs, whose net charges are important  and 
where the theoretical predictions have been confirmed 64-65). 

On the other hand, several at tempts have been made to connect chemical 
shifts with charge distributions given by  semiempirical methods whose parameters 
have been adjusted to other molecular properties. A linear condition of the type 
a = -  A Q c -  BQTr +C has been found to be quite satisfactory for the chemical 
shift of the proton in aminoacids 66). For 13C the results of similar at tempts have 
not been equally encouraging 67), the reason possibly being the charge definition 
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adopted. With an appropriate definition of the type Eq. (20), a good linear cor- 
relation between the chemical shift and the net charge of the 13C nucleus is 
obtained 68). Moreover, as could be expected, the shielding constant obtained is 
linearly correlated with Taft 's polar constants as). 

F. Relation to ESCA 

As will been seen later (vII-A), the internal shells of atoms are practically not 
involved in bond formation. Therefore, it is legitimate to speak of the works of 
extraction of the internal electrons of the various atoms forming a molecule: 
e.g., the ls electrons of the carbon atom. This energy depends on the quanti ty 
of electricity situated in the neighborhood of the atom under study. The comparison 
between the energy of extraction of an internal electron of an atom in a molecule 
and in the isolated atom can thus give us information concerning the electronic 
charge carried by  the atom under s tudy 63-7o). The procedure has also been 
applied to crystals ~1~. 

A linear relationship has also been suggested between the ionization energy 
of an alkane and the maximum sum of the net charges of two adjacents atoms 701. 

G. Importance of the Quality of the Wave Functions 

I t  is quite clear that  the problem of finding a proper definition of atomic charges 
in a molecule goes together with the problem of exactly determining wave func- 
tions. The latter problem has already been mentioned in connection with the 
calculation of the electrostatic potential created by  a molecule. 

We shall not repeat these remarks in particular concerning the comparative 
merits of the various methods. 

We should, however, like to call attention to the fact tha t  the various methods 
may lead to significant differences in the calculated atomic charges. The example 
of the charges of the alkanes is typical 72}. However, it seems that  use of a defini- 
tion of charges based on Eq. (20), with factors ,~ adapted to the basis, will sensibly 
lower the discrepancies 6s-4s). 

The case of the ~-methods is more clear cut, for, as has been seen, the definition 
of charge is not a source of ambiguities. I t  is well known that  the net charges 
obtained by  the Hfickel method (when they are not zero) are overestimated with 
respect to SCF values 737. In a large number of cases, the signs of the charges are 
the same; but  for certain molecules, the signs of the net charges obtained by the 
two methods are in significant disagreement, as with azulene 74-65). (see Tables 1 
and 9.). 

Clearly, systematic reduction of the electronic charges obtained by  the Htickel 
method would not suffice to give exact values. 

H. Examples 

In Tables 1 and 2 some numerical results have been collected. These examples 
have been chosen among the very large number of charge calculations available 
in the literature in order to show the great variety of the molecules treated and of 
the methods employed. 
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Table I. z~-Methods (electronic zt-charges) 

0.933 
Htickel 3o) : / 1 ~ . 9 7 0  

/ 1 1.042 ~ 0.943 

Butadiene Azulene (Berfftier Ref. t4)) 

SCF 33) : 
0.908 /o. 

/1.o~ o . . ~ ~ f o  ~ 

Butadiene 76) Azulene (Julg, Ref. 14)) 

Semiempirical methods: 
-Pariser, Parr-type (semiempirical electronic integrals 77)) 

0 1.050 

i~ ~ 0.970~j0.96~ 
H 1.021 

Pyrrole 78) Benzaldehyde 79) 

O O 1.94 

20.79 

0.95 

0.61 
Nitrobenzcne 7s) 

-LCAO-improved 50 : 
O O 1.310 

0.913 
~ 4 2  0.835 1.163 

.026 /~1.468 N ~ N ~  0.923 
~ ~0.948 1.149 ] 

o.o o~o ~ ~  o~. l . . ~ ~ 6 ~  

H 0.933 1.162 

Azulene 8~ Nitrobenzene 811 N(9)-purine 821 

-Variable electronegativity technique : 

O.954 ~ .011 

0.988 (, I } 0.969 

Azulene (Brown, Ref. 6s)) 
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For  the same molecule there are somet imes  very  s t r iking disagreements  be- 
tween different calculations:  this is not  necessari ly the fault  of the method ,  for it 
is quite possible t ha t  it m a y  ra ther  be due to the  definition adop ted  for the charges. 
In  fact,  we have  seen t ha t  the divergencies in the  alkanes can be reduced b y  adopt -  
ing a sui table definition. A general s t u d y  of a sufficient n u m b e r  of examples  is 
highly desirable in this context .  

The  examples  have  been classified by  me thod :  ~r methods  (Table 1), all- 
electron or valence-electron methods  (Table 2): semiempir ical  and non-empir ical  

Table 2. All-electrons and valence-electrons mcthods 

All-electrons method (SCF-ab-initio) 

-0.2 0.4 -0.2 f"  Ni : 0.46 
O - C - O  [Ni(CN)4] 2 Net charges s4) ~ C : -0.14 

N : -0.47 C02 s3) 
, .r  0.192 

0r-charges) -0.095 C ,~ -0.160 (o-charges) ( 'N : -0.408 

/ \ Net charges~ C C, : -0.105 
-0.075 C. C -0.030 "1" a, 

H ~  34"~1 N /  ~ H  0 204 [C~, C3 : -0.255 
�9 [ -0.749 " 

H 0.339 

Pyrrole ss) 

Semi-empirical methods : 
-Extended Htickel ss) 

H H 0.104 
[ I-0.097 

H ~ H  0.104 
~ 0 . 0 1 8  ~ 0 . 1 0 2  

H H 

Naphtalene s6) 
(net o-charges) 

-CNDO (net charges) ss) 

-0.044 

H \ 0 3 4 8 / U  0.127 

C' N -0.223 

0/-0.354 ~ 0.146 

Formarnide sg) 

IFT Net charges sT) / ~ I  +2.930 

txF : -0.419 

H tt +1 
\ / 
C N -15 

9 /  \ H +32 
: P - - P  0.369 

/-0 \ O -27 
C/ f l  2 H - .042 F 

/ \ 
H H -3 H2P_PF~, 90) 

Dimere: variation/monomere 
(in millielectron) 
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Table 2 (continued) 

0.107 H H 0.115 
~ . N J  

I -0.236 
1o.266 

~- -~ .  ~N -0.223 
-0.264 N" "~_0.039X,, 

- " H -0.018 
10.207 ~0u. ;97~0.170 

-0.021 H / ~ N  / ~'-N'-0.123 
-0.257 [ 

H 0.120 

Adenine 90 

-Del Re's method 92) : 

H H 0.219 

H CH3 ~ N.0-~.539 
! I I" " 0"~7 " ~ / , O  -0.126 

~ 
H H H -0.457 0.301 

0.039 0.038 0.046 

Valine 92) 

(n-charges) 
H,~ / H  0.031 

-0.050 C C'-0.022 (o-charges) 

/ \ 0 044 -0 0 ~.,.C. C. u'~ 
0.275~_0.379 H 0.037 

H 
0.200 

Pyrrole 93) 

Net charges 

-PCILO 9a) : 

~ N : -0.104 
C1, C4 -0.043 

~,C2, C3 -0.072 

H 0.05 H 0.06 CH3 

H------~ C ._0.06 C O " " N ~ C - - H  . /  [ ] [ 1 0.09 0 . 0 0 ~ H  
0.04 O -0.21 H 0.05 H 0.07 CH3 0.07 

Acetylcholine 9s) 

methods.  As in the rest of this article, only results obta ined by  the  MO-LCAO 
method  have been considered. 

I .  P r a c t i c a l  C o n c l u s i o n  

The above discussion shows tha t  the  problem of defining charges corresponding 
to the chemist 's  picture is far  from solved in the general case. Apar t  f rom the 
problem of obtMning correct wave functions, only  in the special case of ~z orbitals 
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can a valid definition be given, because the centers of gravity of the orbitals 
coincide with the nuclei, and no one nucleus lies in the region of maximum density 
of the others. 

Should one then conclude that  any a t tempt  to evaluate charges from wave 
functions is hopeless in the general case ? This is difficult to answer, but  it seems 
certain that  other directions should also be explored. At any rate, it appears that  
in spite of the difficulties encountered in at tempts to define charges, the descrip- 
tion obtained is more useful for the chemist than density maps directly drawn 
from wave functions: either maps of the densities as such or of the differential 
densities 971, or perspective views of three-dimensional maps 9s~. 

VII.  B o n d  M o m e n t s  

A. Localization of MolecuIar Orbitals 

At first sight, the description of a molecule as given by the method of molecular 
orbitals by  linear combinations of atomic orbitals seems to contradict the classical 
idea of electron pairs localized between pairs of nuclei. In fact, owing to the way 
in which the function 9, is constructed, the electron density which corresponds to 
each pair, 2 ~ ,  extends over the whole molecule. However, the various functions 
obtained by minimization of the energy have no absolute meaning. Without modi- 
fication of the total wave function [Eq. (1)], one can indeed replace the set of the 
functions corresponding to the doubly occupied levels by a set of functions ~0' 
which are orthonormal linear combinations of the 9 functions. This property 
results from the structure of the determinant used to describe the total wave 
function 99). Taking advantage of the arbitrariness in the choice of this mathe- 
matical operation, the new functions 9' are chosen so as to concentrate as far as 
possible the densities of the various pairs. Several mathematical criteria have been 
proposed, for example maximization of the sum of the repulsion energies of the 
two electrons (1 and 2) associated to the same spatial function 100h 

f fqJ (1) 2 ~ q~' (2) 2 dvl dr2 
r12 

Others criteria have been proposed 101-102). We shall not enter into the details 
of these methods, but  give only the most important  conclusions. 

The first remark is that  the inner shell electrons do not appear to differ from 
those of the corresponding free atoms. Bond formation only involves the outer 
shell electrons (valence electrons). 

In saturated molecules, such as the alkanes, it is possible to localize to more 
than 95 % in regions between pairs of nuclei the densities which correspond to 
the different electron pairs. If the number of electron pairs of an atom is larger 
than the number of neighboring atoms, as in an amine, one of the pairs is localized 
in  the vicinity of the corresponding nucleus but  in a slightly excentric position. 

In the case of unsaturated planar molecules, two types of localization are pos- 
sible. The molecular wave functions are of two types: a, symmetric with respect 
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to the plane of the molecule, and ~, antisymmetric with respect to that  plane. The 
a and a functions can be localized either separately or together. For instance, 
maximum localization for ethylene leads to the two schemes A and B of Fig. 5: 

7r 
/ "~x 

C C C C 

Fig. 5. The two types of localization of ethylene 

The first procedure (A) gives two equivalent bent bonds between the carbon 
nuclei. The second procedure (B) gives one a and one a bond. 

Tile same situation takes place with linear molecules such as N2 and C2H2. 
There are either three equivalent bent bonds or one a and two ~ bonds 102). 

The two schemes are obviously equivalent, but the second one is currently 
preferred, because it preserves the a--~ separation which is important for planar 
conjugated molecules such as aromatic hydrocarbons. In the latter molecules 
there are a a frame formed by localized bonds and a delocalized zr system which 
must be considered in its entirety. 

If the localization defect is neglected, the various molecular orbitals ~0' may be 
assumed to be constructed with pairs of linear combinations t of orbitals centered 
on the nuclei between which the 9'  are localized : ~o',B ~ atA + bti~. For a lone pair 
this will reduce to 9',-~ t. The combinations in question thus play the role of new 
basis orbirals, and are the so-called hybrid orbitals. They correspond to densities t 2 
excentric with respect to the nuclei. To the extent to which the maximum of the 
density 9 '2 is situated on the internuclear axis, if orthogonality between hybrids 
belonging to the same nucleus is imposed, and if a minimal atomic orbital basis has 
been chosen, the mathematical structure of the hybrid orbitals is determined by 
the molecular structure 40-103). Experimentally, the geometries of corresponding 
groups in related molecules are almost the same. This suggests that  the hybrids 
are practically the same, and - -  as long as the effect of the environment on the given 
bond is roughly the same - -  so are the corresponding localized molecular functions. 
This remark explains the quasi-invariant character of the properties of the localiz- 
ed bonds of saturated molecules. 

I t  is thus clear that  orbital localization permits justification of the classical 
concepts of localized binding and lone electron pairs, as opposed to delocalized 
;r systems, as well as the notion of directed valency, a foundation of stereo- 
chemistry. Nevertheless, it must be noted that even if localization were perfect, 
the notion of bond electron pairs would be conventional lo4). In fact, if tile de- 
scriptions in terms of the initial and the localized orbitals are fully equivalent in the 
sense that  the total wave function is the same, quantities associated with a single 
pair of electrons are not invariant under the transfonllation. I t  has no absolute 
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physical meaning. The same will hold for quantities associated with individual 
bonds. 

B. Bond Moments  

The bond moment  idea falls into the latter category of quantities. I t  was a very 
early idea of the chemist that  each bond should be assigned a characteristic dipole 
moment,  such tha t  the total  molecular electric dipole moment  would be obtained by 
simple vector addition 105-19). This idea is justified, as has been seen, in so far as 
perfect localization of molecular functions can be obtained. Now we have seen tha t  
the lat ter  cannot be realized. Therefore, the partitioning of the total moment  into 
partial bond moments  will be merely an approximation.  However, since the lack 
of localization is not particularly important,  tile error involved is not larger than 
the error tolerated on experimental  dipole moments,  say .1 to .2 Debyes. There- 
fore, in the following we shall neglect the lack of localization. 

The dipole moment  of a system can be defined if the system is electrically 
neutral, as has been seen in Section II-B.  In  order to define bond moments  it will 
be necessary to partition the charges of the nuclei or of the cores in order to asso- 
ciate to them the electrons of individual bonds. In the case of a lone pair, carrying 
a -  2 charge, it will be necessary to isolate a + 2  charge on the corresponding 
nucleus. 

Take for instance tlle methane molecule CH4. The carbon nucleus, having a 
charge + 6, is surrounded by its ls shell completely filled. I t  forms a core of charge 
+ 4  which, according to Gauss's theorem can be considered as a point charge. 
Let us divide this charge into four + 1 charges. 

By associating to each of these charges a proton of + 1 charges with the pair 
of electrons having a - 2 charge, localized between the carbon core and the proton 
under study, we have defined an electrically neutral system for which a dipole 
moment  can be defined. We shall call the latter "moment  of tile CH bond" (Fig. 6). 

Fig. 6. Schematic representation of the partitioning of charges in the methane molecule 

If  a molecule has lone pairs, a similar procedure will apply. For instance, in 
the case of the ammonia  molecule, the + 5 charge of the nitrogen core will be 
partit ioned into three + 1 charges, each of which will be associated with a pair 
of electrons and a proton, and one + 2 charge, to be associated with the lone pair 
(Fig. 7). 
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Fig. 7. Schematic representat ion of the par t i t ioning of charges in the ammonia  molecule 

The moment of the NH bond and the moment of the lone pair are thus defined. 
The same holds for a molecule with a double bond, as H~CO (Fig. 8) 

| 

| 
Fig. 8. Schematic representat ion of the par t i t ioning of charges in the  tI2CO molecule. The two 
electron pairs of the double bond are taken together  

C. Case of Conjugated Planar Molecules 

We have seen that  in molecules one can consider two families of wave functions: 
the localizable a family and the non-localizable ~r family. The dipole moment of 
the molecule is the sum of the dipole moments of the various r bonds (o moment) 
and of tile ~r moment. Of course, the ~r moment could also be partitioned into bond 
contributions. But  the values that  would be obtained would not have the quasi- 
invariant character of the ~ bonds. For instance, in azulene the various CC bonds 
would have highly different moments. On the other hand, the partitioning into 
bond moments is of interest only when the moments obtained have a sufficient 
degree of trans]erability. We are interested here only in the ~ moment. 

D. Principle of Construction of a Table  of Dipole Moments.  The  Problem of 
Lone  Pairs 

Knowing the dipole moments and the geometries of a sufficient number of mole- 
cules, and assuming that the bond moments are invariant, a trial and error procedure 
will permit construction of a table of standard bond moments. We shall not discuss 
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here the details of this computation. We only point out that  a difficulty of principle 
appears concerning lone pairs. They must be assigned dipole moments. This 
moment is easy to calculate with hybrid orbitals directed to the neighboring 
nuclei lo3~. For instance, in the ammonia molecule, the structure of the hybrids 
can be determined from the ~ angle. According to Ref. 106~ the dipole moment 
corresponding to the lone pair is around 3.6. D. As the total  moment of HN8 is 
1.5 D, one concludes that  the moment of the NH bonds is 1.9 D, in the sense 
N + -- H- .  Another way of looking at the problem consists in decomposing the total 
moment only along the three NH bonds. In this case, the bond moment obtained 
is 1.3 D, in the sense N - -  H +. Of course, both points of view are valid for both 
reproduce the total moment, which is the only one having a meaning. However, 
the partitioning which takes the lone pair into account is more satisfactory from 
the theoretical point of view, for it follows more closely the path of electron-pair 
locahzation, even if the N+H- polarity to which it leads may surprise the chemist. 
The problem of the halogens, which carry three lone pairs, is analogous. However, 
in practically all the halogen-containing molecules the halogen atom is linked to 
only one atom, and the presence of the lone pairs is permanent. Thus the moment 
corresponding to them is independent of the molecules but  depends only on the 
neighboring atom (which is not the case for the lone pair carried by  nitrogen, for 
its characteristics depend on the angles formed by the neighboring atoms with the 
nitrogen atom). 

There is no major objection to including the lone pair moment in the carbon- 
halogen bond, which will as a result lie along tile nuclear axis, with the halogen as 
the negative end. 

E. Moment  of the CH Bonds 

The moment of the CH bond is a special case deserving a separate discussion. The 
values to be assigned to the moments of all the other bonds in organic molecules 
depend on the choice made for it. For instance, the moment of the C--C1 bond will 
be derived from tile moment of CHIC1 and of CHsCH2C1; depending on the value 
chosen for the moment of the CH bond 1.56 107) is obtained for CCI if # ( C - -  H +) 
----0.3 D. The experimenters all agree on the fact that  the CH moment is small, 
indeed not larger than a few tenths of a Debye; but they do not all agree on the 
polarity on the bond. The s tudy of the chemical properties of hydrogen carbides 
suggests tha t  hydrogen is the positive end in acetylene derivatives (hydrogen is 
substituted by  metals, hydrogen bonds are formed with acetone 108-109), but  
forms the negative end in saturated hydrocarbons (carbocations are formed, 
hydrogen bonds are not). In ethylene derivatives, where hydrogen bonds are 
certainly very weak (ethylene is much less soluble in water and acetone than acet- 
ylene), and carbocations are not easily formed, the CH bond moment may  be 
assumed to vanish. This trend is consistent with the electronegativity changes in 
the hybrid orbitals of carbon with which the localized bonds are formed 110). With 
respect to the CH bond in ethylene, the CH bonds of acethylene and of ethane must 
have opposite polarities. 
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I t  seems reasonable to assign to the various CH bonds different polarities 
according to the types of compounds 111~ : 

+ 
Cs~3 - H -  : 0.3 D in saturated compounds; 

Cs~e -- H : 0 D in ethylene and benzene derivatives; 

C2~ -- H + : 0.2 D in acetylene derivatives. 

I t  would be interesting and even essential to define the dipole moments of 
these different types of bonds in a purely theoretical way. Unfortunately,  as has 
been seen above, several reasons make this task impossible. 

The different methods of calculation give, form Eq. (18), widely different but  
generally positive values for the net charges of the hydrogen atoms in the alkanes 
(see a more complete bibliography in Ref. 68). Nevertheless, it seems tha t  an 
Equation of the type Eq. (20) gives smaller differences and a weakly negative net 
charge 68). 

F. Induced  M o m e n t s  

Several arguments of a chemical 112) or of a theoretical nature 113) suggest tha t  
the presence of a strongly electronegative atom such as fluorine at one end of the 
chain of a linear hydrocarbon induces a general displacement of charges toward 
that  atom. This effect is called inductive effect. Non-vanishing net charges appear  
on the chain atoms. Their signs are the same and their absolute values decrease 
with distance from the inducing atom. The effect is monotonic and damped. 

This phenomenon is general. I t  appears in every bond between atoms sub- 
st i tuted by  atoms having different electronegativities. A modification of the bond 
moment  results, and the new bond moment  can be interpreted as the sum of the 
intrinsic bond moment  and a moment  induced by the neighboring atoms. 

The importance of the induced moment  depends on two factors: first, the 
electronegativity difference between the perturbing a tom and the atom which 
carries it, second the bond polarizability, i.e. the ease with which the bond can be 
modified under the influence of an electric field. Although not negligible, induced 
moments  are weak, so that  in most  cases they do not bring an important  contribu- 
tion to the total  moment.  However, for bonds whose intrinsic moment  is 
small, their importance becomes considerable, the very sense of the moment  
being subject to inversion. For instance, in HaCC1, even if the carbon a tom is 
saturated (sp 3 hybridization), the attraction of chlorine on the electrons of the 
CH bonds may  very well result in a C - - -  H + polarity. Here again, the situation 
is not clear because of the inability of theory to give a value for the net charge 
of hydrogen. 

G. N o t e  on Current T e r m i n o l o g y  

Consider a diatomic molecule or more generally a localized bond AB (for the general 
case, cf. Ref. 114)). Let  ~o-=cAZA+cBZ8 be the wave function describing the 
electron pair forming the bond. 
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Denote by  RA and Rn the coordinates of the nuclei, and by  RA and RB those 
of the centers of gravi ty  of the densities X~ and )~. 

The dipole moment  of the bond, as has been seen, may  be written in the form: 

[~ = - -  R A  - -  Rn + 2(c2 R'A + c~R'n) + 4cAcB ~Zxz 7,B dv 

Let us write: 

f ) XAZZBClV = ~ RA + RB + r SAn,  R'A --- R,t + ~4RA and RB = RB + ziRB 

Then" 

# : -- RA -- RB + 2(c~ + CACB SAB) RA + 2(c~ + CACB SAn) RE 

+ 2 (c~ + CACS SAB) zlRA + 2 (C~ + CACn SAD) dRB + 2CAcnr S~,n. 

If  Eq. (17) is used for defining the electric charge, it follows: 

# = (QARA + QnRB) + (qAARA + qB~RB) + 2c,~cnr SAD 

The total moment  is thus the sum of three contributions 1151 : 

- -  the first term (QARA + QBRB) is called the primary moment. I t  corresponds to 
opposite net charges QA and QB located on the nuclei A and B. 

--  the second term (qxdRA +qBARB) originates from the fact that  the centers of 
gravi ty  of the distributions 72A and 2 . . . .  X~ do not coincide with the nuclei A and B. 
This is the case when the orbitals ;~x and :~B are hybrids. This explains the name 
hybridization moment given to the terms qAdRA and qnZIRB. This name is not 
entirely correct if the term "momen t "  is limited to charge systems whose total 
charge is zero. 

- -  the third te rm 2 C A C B r S A B ,  is called overlap moment because it contains the 
overlap integral. I t  is not a true moment  in the sense specified above. 

Two remarks are important  in connection with the partitioning of the total 
moment.  First, hybridization is a uni tary transformation which does not change 
the total  electron density of the orbitals if the lat ter  are all equally occupied lo37. 
Therefore, the center of gravi ty  of the whole set of hybrids is the nucleus: ~AI:t~ = 0 
I t  results that  in a molecule, the sum of the hybridization moments  associated 
with a given nucleus is practically zero if the lat ter  does not carry any lone pair 
and if the q charges are not very different 116) (e.g. in the carbon atoms). Second, 
the overlap moment  depends on the definition chosen for the charges. If IXAzxBdv 
is parti t ioned according to Eq. (19) using Eq. (20) for the charge, that  term dis- 
appears. 

�9 The above considerations show tha t  not only is it not necessary, in general, to 
apply a partitioning of the bond moments, but  tha t  the danger exists of such a 
partitioning being wrongly interpreted so that  more confusion results. In our 
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opinion it is better  to avoid it, use of total bond or lone pair moments as defined 
above normally being sufficient. 

VIII. Conc lus ion  

From the discussion of the problems posed by  the representation of molecules in 
terms of point charges or electric moments, it appears that,  as in many other cases, 
rigor and simplicity are not easily reconciled. The chemical reactivity phenomena 
are extremely complicated and one cannot but  admire the ingenuity of the past 
generations of chemists, who succeeded in building a consistent as well as productive 
structure by  means of very simple concepts, such as bond pairs, electric charges, 
electron transfers, etc, The theories derived from quantum mechanics, on the 
other hand, give rise to complicated models which cannot be easily transcribed 
in familiar language without serious losses in rigor and are thus not easily used by 
the non-specialist. However, if some loss in rigor is accepted, the models corre- 
spond to a surprising extent with the models obtained by  the chemists employing 
entirely different lines of thought. The loss in rigor involved is not as serious as may  
be thought, for the chemist is quite content with an approximate model. To him, 
what is important  is to know that his model has a theoretical counterpart,  even 
though the exact structure of the latter may  be very complicated. 

Added in Proo]s. Combined X-ray and electron diffraction data can be used to 
analyze the electron density in a molecule. Identification of the square of the wave 
function with the electron density then gives the coefficients of the basis atomic 
orbitals in the various molecular orbitals, and therefore permits the evaluation of 
the electron populations. This method was used for instance with 1,3,5-trimethyl- 
benzene, and good agreement with theoretical data was obtained [B. H. O'Connor, 
E. N. Maslen, Acta Cryst. B 30, 383 (1974)]. Of course, the results depend on the 
basis atomic orbitals and on the definition of the population. 
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1. Introduction 

1.1. Sta tement  of the P rob l em  

A reaction system is a physical phenomenon whereby one or more reactants 
interact in any of several different modes over a period of time. The rate at which 
a reaction proceeds is a function of the concentrations of the reactants. Each 
reactant  in the system is represented by  a differential equation. If  equilibrium or 
steady state assumptions are assumed, algebraic equations may  be introduced, and 
the original equations may  be altered to reflect these assumptions. 

Thus, the reaction model is represented by  a system of differential and algebraic 
equations. Although they may  be linear, in the general case they are nonlinear. 
The parameters  of the model are of two different types:  constant and variable. A 
constant parameter  may  be either known or unknown, and may  appear as a rate 
or equilibrium constant or within a rate expression. A variable parameter  is the 
concentration of a reactant.  A variable parameter  is known if sufficient data  are 
given to describe its behavior over the period of t ime of the reaction. 

Typical questions concerning the parameters  of the model are: 

1. Given values for some of the parameters,  which other parameters  can be 
computed ? 

2. How can these other parameters  be computed? 

3. For what parameters  is information needed to compute values for other 
desired parameters  ? 

4. Given values for some of the parameters  and their associated experimental 
errors, what can be said concerning the mathematical  validity of the proposed 
reaction model ? 

Tl~s paper describes an operational system called CRAMS that  automatically 
answers such questions. 

The specific types of reactions discussed are chemical reactions in which the 
reactants may  be compounds, fragments of compounds, elements, or ions; the 
stoichiometric units are moles; and the concentrations of the reactants are given 
in terms of moles/liter. However, this does not exclude the use of the system by  
other scientific disciplines. For example, Garfinkel and Sack I) describe an applica- 
tion of reaction system models to ecological systems. The medium in which the 
reactions take place may  be a pond or a forest and the reactants may  be particular 
plant or animal species. In this case the reactions describe the growth and decay 
of species in the pond. The concentration of a reactant  is more conveniently 
thought of as the population of a particular plant or animal species. In  comparison 
with chemical reactions, both rate and equilibrium reactions occur in each type of 
model, but  the rate expressions are considerably different. As certain conventions 
apply to chemistry tha t  may  not apply to other areas, the model is usually discuss- 
ed in terms of chemical reactions. For example, the rate of a chemical reaction is 
usually proportional to the product of concentrations of reactants on the left hand 
side of the reaction. 

To illustrate the questions tha t  might be asked by  a chemist, consider the 
following simplified version of the mechanism of four-component condensation 
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for Peptide Synthesis (proposed in Schemes XVI and XVI a by  Ugi ag). I t  should 
be noted that  stereoisomeric intermediates have not been identified and that  a 
detailed study of both schemes will be offered in a future paper. 

A 
H ~b 

Kt  

Xs H § ~ Xs 
x ,  = ~ x~ ~ x~ x ,  

K2 K3 

Xs 
N ~ Z  ~ Y  

ks k6 

B ~ " H + + X s  
Ko 

14+ 

Here Ks and ks are equilibrium and rate constants respectively; and A x x X 1 
Kt 

means A + H + ~ X1. A, B, and C are the starting materials. X1, X2, X3, X4, 
Kx 

N and Z are complex stereoisomeric intermediates explicitly definedin Scheme XVI 
of 39). y is a mixture of the (S, S)- and (R, R)-valine derivatives. The starting 
materials are i s o b u t y r a l d e h y d e - ( S ) - a - p h e n y l e t h y l i m i n e  (A); benzoic acid (B), 
and t-butylisocyanide (C). X5 is the benzoate ion, C6H3C00-.  I t  should be noted 
that  none of the rate steps occur until t-butyl isocyanide (C) is added and that,  at 
a constant temperature, special conditions are obtained by varying the initial 
concentration of A, B, C, H + or Xa. Parameters are equilibrium constants, rate 
constants, and concentration-time data for all the chemical compounds or inter- 
mediates that  are involved. 

Questions that  might be asked are: 

(i) For what combinations of parameters must values be given so that  the 
CRAMS system can compute values for all unknown parameters ? 

(it) What  information is needed by CRAMS so that  it can compute concentra- 
tion-time values for Z and kl ? 

(iii) If k5 and ks are very large (i. e. the reactions are fast) and data  for H +, 
X5 and C are given, what parameters can be computed? 

1 . 2 .  P r e v i o u s  R e l a t e d  S t u d i e s  

Most of the previous work on reaction systems has been directed specifically to 
biochemical systems. A comprehensive review of the subieet is given by Garfinkel 
et al. 2). Most of the methods discussed were either simulation systems or curve 
fitting systems. 

Simulation may be defined as the generation of concentration data  given 
initial concentrations and values for all of the constant parameters. Concentration 
data is generated by simultaneously solving the differential equations associated 
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with each of the reactants. The disadvantage of this restricted approach is that  
all constant parameters must be given, even if some cannot be measured. Also, in 
mock simulation systems there is generally no method for directly using measured 
concentration data. Several major systems exist which translate a description of 
a reaction model into differential equations and solve the resulting equations. 
DeTar  3) describes a computer program which allows both rate and equilibrium 
equations to be specified. Gaxfinkel 4~ has written a simulation program for large 
complex biochemical systems. The program of Chance and Shepaxd 5) allows 
representation of the system in terms of both differential rate equations and 
algebraic rate laws. Rate law methods allow the simplification of the equations 
which represent the reaction system through certain assumptions about the 
behavior of intermediate reactants. Other workers have also used rate law methods 
to increase the speed of simulation 6, 7). Groner et al. s) have written a program 
which translates the description of a reaction model into CSMP (Continuous 
System Modeling Program) statements, and CSMP subsequently carries out the 
simulation. Curtis and Chance 9) and Chandler et al. lO~ have developed techniques 
whereby rate constants are automatically readjusted as repeated simulations are 
performed. In addition to the general disadvantages of this "simulation only" 
approach, none of these systems has any facility for automatically reducing the 
number of differential equations that  must be solved to evaluate the reaction 
system. 

The curve fitting approach is in contrast to the simulation approach. Curve 
fitting systems solve for the constant parameters if values for all of the variable 
parameters are given and the time scales for the different variable parameters is 
the same. The disadvantage of this restricted approach is that  it is unlikely that  
all of the variable parameters can be measured experimentally. Moreover, in those 
few cases for which such data  exist, the time scales axe not exactly the same and 
certain simplifying assumptions have to be made. Several researchers have written 
general programs to calculate rate constants directly, deMaine 11) uses non- 
statistical curve fitting techniques to calculate the rate constants if concentration 
data  for all reactants are given. The SAAM program by Berman et al. 12) uses 
statistical methods to choose from a variety of models that  one which fits the 
experimental data best. Cleland 13, 14) has also used statistical methods in process- 
ing experimental data to elucidate several enzyme mechanisms. Pring 15-17~ 
describes a system which uses nonlinear regression techiques to analyze reaction 
systems. Swarm 18) surveys nonlinear optimization techniques used by biochemists. 
Kowalik and Morrison 19), Arihood and Trowbridge 2o) and Atkins 21) have also 
written programs using nonlinear regression to analyze reaction models. 

Several programs have been written specifically for a very restricted class of 
"equilibrium only" problems. The Pit Method of Sillen and Warnquist 22) has 
been widely used to solve for equilibrium constants in inorganic systems that  have 
one or more simultaneous reversible reactions. DeLand  23~ uses goal-seeking 
routines to facilitate the matching of data, but  free energy data  for all reactants 
is required. Bos and Meershoek 24} have written a PL/1 program which uses the 
Newton-Raphson iteration to compute equilibrium constants in complex systems. 

In summary, none of these systems, or combinations of any of the systems 
that  have been described in the literature, solve the general problems presented 
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in Section 1.1. There appears to exist no general method which can determine 
which parameters are necessary to solve for the other unknown parameters in 
other than very elementary cases. In addition, none of the methods appears to 
consider the problem of mathematical model validation, i .e . ,  no analytical 
check is made to insure that  the equations are valid algebraic descriptions of the 
data that  is used to test the model. 

The new system, CRAMS, that  is described in the remainder of this paper 
automatically solves the general problems presented in Section 1.1. Details of its 
implementation 25 a) and operation 25 b) will be found elsewhere. 

2. Overa l l  D e s i g n  of the  C R A M S  Sys t em 

2.1. Overview 

The Chemical Reaction Analysis and Modeling System, CRAMS, described in this 
paper, is a computer program that  can automatically solve many of the problems 
presented in Section 1.1. The two major problems that  are solved by CRAMS may 
be identified as the computing problem and the predictor problem. 

The computing problem is concerned with calculating the maximum number 
of unknown parameters of a proposed reaction system from available experimental 
data. This data  can be any combination of values for constant parameters (rate 
and equilibrium constants) and variable parameters (concentration versus time 
data). Moreover, data for different variable parameters need not have the same 
time scale. When the unknown parameters are calculated, it is important  that  the 
mathematical validity of the proposed model be determined in terms of the ex- 
perimental accuracy of the data. Also, if it is impossible to solve for all unknown 
parameters, then the model must be automatically reduced to a form that  contains 
only solvable parameters. Thus, the input to CRAMS consists of: 1) a description 
of a proposed reaction system model and, 2) experimental data for those para- 
meters that  were measured or previously determined. The output of CRAMS is: 
1) information concerning the mathematical validity of the model and 2) values 
for the maximum number of computable unknown parameters and, if possible, 
the associated reliabilities. The system checks for model validity only in those 
reactions with unknown rate constants. Thus a simulation-only problem does not 
invoke any model validation procedures. 

The predictor problem is concerned with determining which additional data 
are needed to compute any subset or all of the remaining unknown parameters. 
In a predictor type problem, the input to the CRAMS consists of: (1) a description 
of a proposed reaction system model, (2) a list of parameters that  have been 
experimentally measured or previously determined, and (3) a list of parameters 
which have not been previously determined and which cannot be measured 
experimentally. The output  of CRAMS consists of a list of various minimal combi- 
nations of additional parameters needed to calculate some or all of the remaining 
unknown parameters. I t  should be noted that  the predictor problem is not discuss- 
ed in the literature, presumably because of the general trend towards simulation 
only, or curve fitting only, systems. Except in the simulation only or curve 
fitting only cases, the only known existing system capable of solving the comput- 
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ing type problems associated with predictor output  from CRAMS is CRAMS 
itself. 

I t  must  be emphasized that  it is not possible for the system to choose from a 
selection of models. In both  the computing and predictor type problems, CRAMS 
is capable of working only with one preselected reaction system model at a time. 
However, the user can test a number  of different models in search of one which 
best describes his experimental data. 

2.2. Input to the System 

In  this section the permit ted types of reaction system models are precisely defined. 
The simple, free format  input language tha t  has been developed to describe the 
model and its associated experimental data  to the computer program is defined 
elsewhere 25b). As this section is concerned with models tha t  can be handled by  
CRAMS, some definitions differ slightly from those given in Section 1.1., where 
a more general model is discussed. 

A reaction system consists of N R C T  reactants. Four vectors, all of length 
NRCT,  are associated with these reactants. X(i) is the label of the i t h  reactant.  
IC(i) is the initial concentration of the i t h  reactant.  The system assumes tha t  the 
initial concentrations for all reactants  are known, and unless specified by  the user, 
the initial concentration for a reactant  defaults to zero. C(i) is the current value of 
the concentration of the i t h  reactant  and CP(i) is the current value of the der- 
ivative with respect to t ime of the concentration of the i t h  reactant.  

The N R C T  reactants react in any of N R X N  reactions of two types:  N R K  rate 
reactions and N E K  equilibrium reactions. For 1 < ~' < N R K ,  the i t h  reaction 
(a rate reaction) is given by  

M(1,j)*X(1) + . . .  + M ( N R C T ,  i ) * X ( N R C T  ) 

W (1,i)*X(1) + . . .  + Y (NRCT,] )*X(NRCT)  

This reaction means that  M(i ,f)  units of X(i)  for all 1 < i < N R C T  react 
to form N(k, i )  units of X(k)  for all 1 < k < NRCT.  The M(i, i ) ' s  and N(i , f ) ' s  
are stoichiometric coefficients and may  be any real numbers. For N R K  < ] < 
N R X N  the ] th  reaction (an equilibrium reaction) is given by:  

M(1,])*X(1) + + M ( N R C T ,  i )*X(NRCT)  / �9 , . �9 

N (1,])*X(1) + . . .  + N (NRCT, j )*X(NRCT)  . 

The meaning of this reaction is the same as that  of a rate reaction, except tha t  
here the reverse reaction also occurs. 

The F L U X  matr ix  is a two dimensional N R C T  by N R X N  matr ix  such that  
F L U X  (i,?') ----N(i,i) - M(i , f )  with 1 < i < N R C T  and I < f < N R X N .  
Notice that  the F L U X  matrix is a convenient representation of tile stoichio- 
metric coefficients of the total  reaction system. Each row of the matr ix  represents 
one of the N R C T  reactants  and each column of the matr ix  represents one of the 
N R X N  reactions. 
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Two vectors, each of length N R X N ,  are associated with each reaction. K(i) is 
the actual numerical value of the rate or equilibrium constant associated with the 
i t h  reaction. If  i <--NRK,  then K(]) is a rate constant. Otherwise, K(/) is an 
equilibrium constant. R (~') is the current value of the rate or equilibrium expres- 
sion associated with t h e / t h  reaction. If i <-- N R K ,  then R (i) is a rate expression. 
Otherwise, R (/) is an equilibrium expression. 

In  the case where reaction i is a rate reaction, R (j) is restricted to being a 
continuous function of the current values of the concentrations of reactants. This 
restriction is made because it simplifies the formulation of a solvable set of equa- 
tions. The default rate expression for the ] th  reaction is given by:  

NI~CT 

R(/ )  = = C ( i ) * * M ( i , i ) .  

However, other rate expressions may  be specified to allow for such special 
cases as catalyzed or inhibited reactions. This also permits rate expressions 
derived b y  rate law methods to be specified explicitly, even though there is no 
facility in CRAMS for using rate laws automatically. The rate of t h e / t h  reaction 
is given by K (])*R (/). 

In the case where reaction / is an equilibrium reaction, 

NRCT 

= C(i)**N(i,i) 
i = 1  

K (i) = R (]) = NaCT 

= C(i)**M(i,i)  

Thus, in the equilibrium case, the user may  not specify the equilibrium 
expression. 

The allowable types of unknown parameters  are: (1) concentrations of react- 
ants, (2) rate constants, and (3) equilibrium constants. A vector K P  of length 
N P A R  -~ N R C T  + N R X N  contains the current status of each of these para-  
meters. The vector K P  is initialized as follows: 

K P ( i )  = 1 if the i t h  parameter  is known, K P ( i )  = 0 if the i t h  parameter  is 
unknown, and K P  (i) = -- 1 if the i t h  parameter  cannot be measured or estimated. 
This last item, K P  (i) ~ -- 1, is used in predictor problems to greatly decrease the 
number  of combinations tha t  must  be examined. 

2.3. Implementation 

CRAMS is a FOR TR AN program with a modular design. The relationship among 
the major  modules of CRAMS is shown in Fig. 1. Details of the implementation of 
CRAMS have been given elsewhere ~sa). 

The purpose of the I N P U T  module is to translate the input s t ream into an 
internal representation of the reaction system and its associated experimental  
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[. Input '] 

l 
[ Selector I 

I Solver "1 

I " - - .  
Nonlin ] [Simulator,.] [ CSlrvefit ] 

Fig. 1. Flowchart of CRAMS 

data. The actual internal representation of the input stream consists of arrays 
that roughly correspond to the vectors and matrices defined in Section 2.2. 

The SELECTOR module performs two different functions, depending on 
whether the problem is of the computing or predictor type. The default type of 
problem is the computing type. An input flag, set by the user, selects the predictor 
type problem. If the problem is of the computing type, SELECTOR manipulates 
the equations into a set of equations to be solved by the SOLVER module. Also, 
if there are uncomputable parameters, SELECTOR will eliminate those equa- 
tions that  contain them. In the present implementation of the SELECTOR 
module, only manipulations with the F L U X  matrix are used to form the solvable 
set of equations. Manipulations with the rate expressions are not performed 
because no symbol manipulation capability presently exists in the system. If the 
problem is of the predictor type, parts of the SELECTOR module are called 
repeatedly, testing a great number of parameter combinations to determine what 
parameters become solvable. The design of the SELECTOR module is described 
in greater detail in Part 3. 

The SOLVER module is the communications link between the three numerical 
analysis service modules: NONLIN, SIMULATOR, and CURVEFIT. SOLVER 
solves tile equations that  were chosen by SELECTOR by using (1) NONLIN -- to 
initially bring the system to equilibrium, (2) SIMULATOR -- to generate con- 
centration data for certain unknown variable parameters and (8) CURVEFIT 
to solve for unknown constant parameters and to test the mathematical validity 
of the proposed reaction model. The SOLVER module has been designed so that  
the three numerical analysis service modules are easily replacable as more ad- 
vanced techniques are developed. The design of the SOLVER module is described 
in detail in Part  4. The modules NONLIN, SIMULATOR, and CURVEFIT are 
discussed in 4.2, 4.3., and 4.4., respectively. 

The design of the INPUT module has been greatly influenced by a study of 
the systems mentioned in Section 1.2. The principal new contribution in this 
paper is the design of the SELECTOR and SOLVER modules. The numerical 
analysis modules are based on existing subroutines (in the case of the SIMULATOR 
and CURVEFIT modules) or on well known methods (in the case of the NONLIN 
module). 

47 



R. S. But ler  and P. A. D. deMaine 

2.4. Illustration of New Concepts 

The purpose of this section is to give a general description of the new concepts 
tha t  are used in CRAMS. For illustrative purposes suppose the proposed reaction 
system model is given as: 

K l  K 3  

A + B  \ " C �9 A + D  
K2 

The coefficients of any  reactant  can be any real number, and any type of rate 
expression may  be specified explicitly. However, in this illustration it is supposed 
that  only single molecules of A, B, C, and D react. The input language for CRAMS 
2sb) is used to enter information about the model and its associated data  thusly: 

$ RATE REACTIONS 

A + B  : C, K1, K2; 

C = A  + D, K3; 

$ CONSTANTS 

K3 = 3.0; 

$ I N I T I A L  CONCENTRATIONS 

A = l ,  

t3=2; 

$ DEHNE 

4~ A = . 0 1 * A ;  

$ DATA 

(TIME, A) 

0.00 1.00 

0.05 1.54 

0.45 2.85 

$ STOP 

The card tha t  follows the $ RATE REACTIONS card describes a reversible 
reaction. The forward reaction is one unit of reactant  A combining with one unit 
of reactant  B to form one unit of reactant  C. The backward reaction is one unit 
of C forming one unit of A and one unit of B. The forward and backward rate 
constants are K 1 and K 2  respectively. 

The forward and backward rate expressions are (by default) [A]*[B] and [C] 
respectively. The next card describes the reaction of one unit of C reacts to form 
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one unit of A and one unit of D. The rate constant is K 3  and the rate expression 
is [C]. The card after the $ CONSTANTS card sets a rate constant, K3,  to the 
value 3.0. The cards following the $ I N I T I A L  CONCENTRATION card set the 
values for the initial concentrations of A and B. By default, the initial concentra- 
tions of C and D are set to zero. Following the $ D E F I N E  card is a card which sets 
the max imum tolerance of A to one percent. The cards following the $ DATA card 
give concentration versus t ime da ta  for A. Thus, for example, at T IME = .05, the 
observed concentration of A is 1.54. 

With  X(1) = A ,  X ( 2 ) = B ,  X ( 3 ) = C ,  and X ( 4 ) = D ,  where X(i) is the label 
of the i t h  reactant,  the differential equations representing the system are: 

CP(1) = - K I * C ( 1 ) * C ( 2 )  + K 2 " C ( 3 )  + K 3 " C ( 3 )  . . . A  

CP(2) ---- -- KI*C(1)*C(2)  + K 2 " C ( 3 )  . . .  B 

CP(3) = K I * C ( 1 ) * C ( 2 ) -  K 2 * C ( 3 ) - - K 3 * C ( 3 )  . . .  C 

CP(4) = K 3 " C ( 3 )  . . .  D 

Here CP(i) is the rate of change in the concentration of the i t h  reactant,  and 
C(i) is the concentration of the i t h  reactant.  The I N P U T  module creates the 
F L U X  matr ix  for the proposed reaction system, thus: 

FL UX = 

A 

B 

C 

D 

K 1  K 2  K 3  

- - 1  1 1 

- - 1  1 0 

1 - - 1  - - 1  

0 0 1 

The F L U X  matr ix  is a convenient way to concisely represent systems of 
equations and representations of reaction systems. However, the rules for mani- 
pulating the F L U X  matr ix  to formulate a solvable set of equations are complex, 
and they are the subject of much of the research presented in this paper. In  the 
SELECTOR module, the F L U X  matr ix  is manipulated in such a way as to: (1) 
reduce the number  of differential equations representing the system and (2) allow 
for both  variable and constant parameters  to be used in the computation,  and (3) 
make the calculation on the equilibrium portion of the model considerably more 
efficient. The first two concepts are illustrated next  with the reaction model given 
above. The algorithm that  is used to automatically accomplish these objectives is 
discussed in Section 3.2. 

SELECTOR first observes tha t  rows three and four of the F L U X  matr ix  are 
linearly dependent on rows one and two. Thus: 

row (3) = -- row (1) 

row(4) = row(l)  -- row(2) 
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SELECTOR then performs the trivial integration of these two equations. Thus: 

C(3)---- IC(3) - C(1) + IC(1) 

C(4) -- 1C(4) + C(1) - IC(1) - C(2) + 1C(2) 

Here IC (i) is the initial concentration of the i th  reactant. C (]') is the concentra- 
tion of the ]th reactant. Thus, for this reaction model, only two differential equa- 
tions must be solved instead of the original four. By substituting the first differen- 
tim equation [ the equation for CP(1)] into the second differential equation [the 
equation for CP (2)], SELECTOR obtains: 

c p ( 2 )  = c P ( 1 )  - K 3 * c ( ~ )  

This new differential equation for CP(2) is solved by the SIMULATOR 
module for the parameters C (2), C (3), and C (4), at default or specified points in 
time. During the course of this simulation phase, required values for C (1) and 
CP(1) are calculated using numerical interpolation and differentiation. The 
CURVEFIT module then solves the equation for CP(1) for K1 and K2. This 
curve fitting part also involves a test for mathematical validity, using as its basis 
the user's estimate of the reliability of the data. 

To illustrate the use of the NONLIN module consider the following example: 

E K  K 3  
A + B ~  ~ C ~ A + D  

The input cards describing this model are: 

$ RATE REACTIONS 

C = A + D ,  K3; 

$ EQUILIBRIUM REACTIONS 

A + B  = C, EK; 

$ CONSTANTS 

K3 =3.0; 

EK---- 2.0; 

$ INITIAL CONCENTRATIONS 

A = I ;  

B = 2 ;  

$ STOP 
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This problem requires that  concentration versus time data  for A, B, C, and D 
be generated. The original F L U X  matrix is essentially the same as tha t  of the 
previous problem, but  SELECTOR would manipulate the F L U X  matrix in such a 
way as to eliminate the rate constants associated with the equilibrium reaction. 
In the SOLVER module, NONLIN first brings the system to equilibrium, then 
SIMULATOR generates concentration versus time data for A, B, C, and D. 

Examples illustrating the predictor and partial solution capabilities of the 
system are given in Sections 3.4. and 3.3., respectively. 

3. D e s i g n  of the Selector M o d u l e  

3.1. General Discussion 

The SELECTOR module is responsible for transforming the internal representa- 
tion of the reaction system into a form which can readily be solved by the SOLVER 
module. The equations that  are represented by the original F L U X  matrix, 
generated in the INPUT module, may  be in an unsolvable form. For example, 
unknown constant parameters may appear in the same equation witli as yet  un- 
solved variable parameters. Also, if tilere are equilibrium assumptions made about 
certain reactions, the associated rate constants must be eliminated. Finally, if 
there are unsolvable parameters, they must be identified, and the associated 
equations must be eliminated. This process involves a rearrangement of the 
equations that  represent the reaction system, using the F L U X  matrix. Other 
rearrangements may be possible by examining the rate expressions, but  the sym- 
bol manipulative capability that  is needed to accomplish tlfis is not yet  available 
in CRAMS. 

A secondary benefit from the manipulations that are performed to yield solvable 
equations is that  the resulting equations may allow a more efficient calculation by  
the SOLVER module. For example, in the reaction system given in Section 2.4,  
a system of four differential equations was transformed into a system of two first 
order ordinary differential equations and two linear algebraic equations. 

SELECTOR is also capable of predicting what parameters must be given in 
order to solve for some or all of the remaining unknown parameters. This involves 
the trial and error enumeration of a number of different possible solutions. The 
number of trial solutions depends on the results of previous trim solutions (see ~a). 

3.2. Transformation of the FLUX Matrix 

An important  part of SELECTOR, which is used to transform the F L U X  matrix, 
is a modified version of the IBM subroutine D M F G R  26). Utilizing Gaussian 
elimination, D M F G R  (A, m, n, r) is capable of determining the rank, r, and linearly 
independent rows of a given m by n matrix, A. Furthermore, nonbasic rows are 
expressed in terms of basic ones. This subroutine has been modified by  us to favor 
column interchanges, and row interchanges are made only as a last resort. This 
modification was made because in certain cases it is desirable to favor certain rows 
as basic rows. For example, if the concentrations of certain reactants are known, 
forcing them to the top of the matrix may  allow for the concentrations of other 
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reactants to be directly computed using dependency information. For an m by n 
matrix A,  D M F G R  rearranges tile rows such that  the first r rows of A are linearly 
independent. The last m-r rows are replaced by  dependency information such that  
for 1 ~ i ~ m - r ,  

r 

row(r + i) = ~ A (r + i,]) *row(i) .  
~=1 

The algorithm that  is used by  the SELECTOR module to manipulate the 
original F L U X  matrix is given next. 

Algorithm T (Transformation of F L U X  matrix). This algorithm transforms 
the F L U X  matrix into a form suitable for SOLVER, if a sufficient number of 
parameters are given. The notation and definitions used in this algorithm are 
those discussed in Section 2.2. I t  uses only the F L U X  matrix to rearrange the 
equations representing the reaction system into a set of solvable equations that  
can be solved by tile SOLVER module. The objective is to arrange the equations 
into two sets: (1) those equations that  will be used to solve for the unknown 
variable parameters by  the NONLIN and SIMULATOR modules, and (2) those 
equations that  will be used by  the CURVEFIT module to solve for the unknown 
constant parameters. The first group of equations must not contain unknown con- 
stant  parameters, and they must be completely solved before the second set of 
equations can be solved. Throughout  the algorithm, when a change is made in the 
ordering of tile rows or columns of the F L U X  matrix, appropriate changes are also 
made in some of the other data structures. Any data  structures that are not used 
in this algorithm can be rearranged later. For example, tile K P  vector, which 
contains a representation of the status of each parameter, must be immediately 
rearranged because it is used in subsequent steps of the algorithm. Thus, if the 
first two rows of F L U X  are interchanged, the first two entries in K P  are inter- 
changed also. 

T 1. [Initialize.] 

N K R K  = number of known rate constants 

N U R K  = number of unknown rate constants 

N K E K  = number of known equilibrium constants 

N U E K  = number of unknown equilibrium constants 

I U R K  = N K R K  

I K E K  = I U R K  + N U R K  

I U E K  = I K E K  + N K E K  

N B A D  = 0 (number of unsolvable parameters) 

[Order reactions.] Order the columns of F L U X  such that  the rate reactions 
precede tile equilibrium reactions, the rate reactions with known rate con- 
stants precede the rate reactions with unknown rate constants, and the equi- 
librium reactions with known equilibrium constants precede the equilibrium 

T 2 .  

52 



CRAMS --  An Automat ic  Chemical Reaction Analysis and Modeling Sys tem 

T 3 .  

T 4 .  

reactions with unknown equilibrium constants. At this point: (1) the first 
N K R K  columns of FLUX represent rate reactions with known rate con- 
stants, (2) the next NURK columns of F L U X  represent rate reactions with 
unknown rate constants, (3) the next N K E K  columns of F L U X  represent 
equilibrium reactions with known equilibrium constants, and (4) the last 
N U E K  columns of F L U X  represent equilibrium reactions with unknown 
equilibrium constants. This step prepares for operations that  must be 
performed on parts of the matrix associated only with certain types of 
reactions, which are defined at the end of this algorithm. 

[Eliminate Ex t ra  Known Equilibrium Constants.] Let  TFLUX be the 
transpose of FLUX. Call DMFGR [TFLUX (IKEK + 1,1), NKEK,  
NRCT, IRANK]. For I R A N K  < i < N K E K ,  set KP(NRCT + I K E K  +i) 
= 0. Set N K E K  = I R A N K  and adjust other pointers and counters to reflect 
this change. Set T F L U X = F L U X .  Order the rows of F L U X  such that  
unknown reactants precede known reactants. CALL DMFGR [TFLUX 
(1, I K E K  + 1), NRCT, NKEK,  IRANK]. Set NEQV---NKEK. This step 
is necessary to insure that  in SOLVER, there are the same numbers of 
variables and equations that  represent the equilibrium portion of the model. 
If a least squares technique were used to solve for the unknown equilibirum 
constants, this step would not be necessary. However, mathematical valid- 
ation of the model would not then be possible. 

[Find Normal Dependencies.] For row numbers greater than NEQV, order 
the rows of F L U X  such that  known reactants precede unknown reactants. 
Call DMFGR [FLUX(I,1), NRCT, NRXN,  RANK]. Set NNDP = N R C T  
- R A N K .  For 1 ~ i < NNDP, set KP (RANK + i) = 0. This step deter- 
mines which reactants may be expressed as a linear combination of the other 
reactants. Known reactants were favored as basic rows in order tha t  the 
concentrations for the greatest number of unknown reactants could be 
calculated. 

T 5. [Find Equilibrium Dependencies.] CALL DMFGR [FLUX(1 , IKEK+ 1), 
RANK,  NEK, CRANK]. Set N E D P = R A N K - - E R A N K  and NKEC 
---- ERA N K  -- NKEK.  For 1 ~ i < NKEC, if KC (NEQ V + i) = 0, then set 
NBAD = NBAD + I and KC (NEQV + i) = -- 1. For 1 ~ i ~ NEDP and 1 < 
i <-- NRK,  set FLUX (ERA N K  + i, i) = FLUX (ERA N K  + i, i) -- 
E R A N K  

Z FLUX (ERA N K +  i, I K E K  + k) * FLUX (k,i). 
/~=1 

This step effectively eliminates rate constants from those reactions that  are 
in equilibrium. 

l" 6. [Find Special Dependencies] CALL DMFGR [FLUX ( E R A N K +  1, IURK 
+1) ,  NEDP, NURK, URANK]. Set N S D P = N E D P - - U R A N K  and 
ISDP = C R A N K  + URANK. For 1 < i  <_ URANK, if KP (ERANK +i) 
-~0, then set N B A D = N B A D + I  and K P ( E R A N K + i ) = - I .  For 
I < i < N S D P ,  set K P ( I S D P + i ) = O .  For I < i < N S D P  and [ 1 < ~ ' <  
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N K R K  or I K E K < j < N R X N )  set FLUX(ISDP+i,])-----FLUX(ISDP 
+i,i] - 
URANK 

F L U X  (ISDP +i,  I U R K  + k) * F L U X  (ERANK + k,i). 
k = l  

This step eliminates unknown rate constants from equations that  must be 
used to generate concentration data. 

T 7. [End of Algorithm.] At this point, the F L U X  matrix represents a set of 
equations that  may be solved in two stages. The first stage generates con- 
centration versus time data for unknown reactants and the second stage 
solves for the unknown constant parameters. 

If there are no unsolvable parameters (NBA D = 0), then the first three types of 
equations must all be solved simultaneously for the unknown variable parameters. 

Type (1) 

The NEQ V equations of this type have the form: R (IKEK + i) = K  (IKEK 
+i ) ,  with 1 < i < N E Q V .  The derivative form is: R' ( IKEK +]) = 0 .  

Type (2) 

There are NSDP equations of the form : 
N K R K  

CP(ISDP+i)  = 5 FLUX(ISDP+i ,] )*K(])*R( i )  + 
j=l  

URANK 
F L U X  (ISDP + i, IURK +/) * CP (ERANK + ]) + 

j = I  

E R A N K  

F L U X  (ISDP + i, I K E K  + ]) * CP (]), 
j = l  

with 1 < i < NSDP. 

Type (3) 

The NNDP equations have the form: 
RANK 

C ( R A N K + i ) =  Z FLUX(RANK+i,])*[C(])-- IC(i )] ,  
j=l 

with 1 ~ i < NNDP. The derivative form is : 
RANK 

C P ( R A N K + i ) =  ~. FLUX(RANK+i , •*CP( i )  
j = l  

Type (4) 

The family of URANK simultaneous equations of this type are solved for 
the unknown rate constants only after the variable parameters have been 
calculated. The general form is: 

N K R K  
C P ( E R A N K + i )  = E FLUX(ERANK+i , i ) *K( i )*R( i )  + 

j = l  
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ERANK 
~. FLUX(ERANK +i, I K E K  +j)*CP(j) + 

j = l  
N URK 

FLUX (ERANK + i, IURK +]) * 
j= l  

with 1 < i <  URANK. 

Type (8) 

K(IURK+]) *R (IURK +]), 

Unknown equilibrium constants are computed from data  for the variable 
parameters by solving the NUEK equations of the form: 

R(IUEK + i ) : K ( I U E K  +i), with 1 < i ~ N U E K .  

I t  should be noted that  NBAD = 0  is a necessary but  not a sufficient condition 
to guarantee solution. The existence of a solution is determined in SOLVER 
because there is presently no capability in the system to examine individual rate 
expressions. For  example, with a single reversible reaction, if data for one reactant 
is given, it is usually possible to calculate the two rate constants. SELECTOR will 
always say that  it is possible. However, if the rate expressions for the forward 
and backward reactions are identical, then the calculation cannot be done, but  
this can not be determined until the CURVEFIT module at tempts the calculation. 

3.3. Partial Solut ion 

In the event that  NBAD> 0 (there are some unsolvable parameters), the FLUX 
matrix must be reduced to eliminate the unsolvable parameters. Initially, the 
first three types of equations are repeatedly subiected to the following test, until no 
further changes are made. If an unsolvable parameter appears in an equation 
(other than in a term with a zero coefficient) all other unknown parameters in tha t  
equation are marked as unsolvable. Then, the equations with no unsolvable para- 
meters may be used to solve for the remaining solvable variable parameters. With 
the equations of Types (3) and (4), a similar algorithm is used, except tha t  no 
variable parameters are marked as unsolvable. 

This point is illustrated by  the following model. 

K1 K 3  
A + B  \K2 x C 

Kr 
X , Y .  

A + D  

Using the input language described in the Operations Manual 2Sb~, the cards 
describing this model are: 

$ RATE REACTIONS 

A + B =C, K1, K2; 

C = A + D ,  K 3 ;  

X = Y, K4; 
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$ STOP 

In this case, if data for A is given, then only concentration versus time data 
for C may be generated. The equations for the other reactions are effectively 
removed from the system. Similarly, if data for A and K3  is given, then the reaction 
involving X and Y is eliminated and only the parameters B, C, D, K 1, and K2  
are computed. 

The next example shows the kind of model for which SELECTOR may give 
misleading information about a partial solution because of its inability to examine 
the rate expressions. 

B 

A ~- C 
K1 

The cards describing this model are: 

$ RATE REACTIONS 

A = C ,  K1;  

A = B, K2;  

B = C, K3;  

$ STOP 

Assuming default rate expressions [that is, R (1) = [A], R (2) = [A], and R (3) 
= [B], if data for A and B is given, SELECTOR correctly concludes that  it is 
possible to solve for the remaining unknown parameters. However, if only data 
for A is given, and since the first two reactions have the same rate expression, 
SELECTOR incorrectly assumes that  K 1 and K2 can be computed. If the rate 
expressions were different, then the calculation would have been possible. This 
example emphasizes that  SELECTOR only identifies those reactants that  are 
needed to compute the remaining parameters. Thus when the system reduces to an 
overspecified reaction system, misleading information may be given. 

3.4. Predictor Capabilities 

At the user's request, CRAMS is capable of enumerating possible solutions by 
calling parts of SELECTOR repeatedly. 
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The input  vector KP,  which is constructed from the input data, contains the 
status of each parameter as follows : 

(i) -- 1 means the parameter cannot be meaningfully computed or measured 
and it should never be considered by SELECTOR to be 'known'. The concentra- 
tions oI reaction intermediates produced by very fast reactions is a typical ex- 
ample of this kind of parameter. 

(ii) 0 means the parameter can be computed or measured but  that  its value is 
not known. 

(iii) 1 means that  value(s) for the parameter are known. With each call SELEC- 
TOR alters K P  so that eventually all combinations of 0 entries are changed to 1. 

If the trial K P  is a superset of a complete solution, SELECTOR is not called. 
Tiffs capability permits an experimental scientist to determine what additional 

data is needed by  the system to complete the calculation of unknown parameters. 
By informing the system of parameters that  have already been determined, or 
those parameters which can not be measured, tile number of choices is considerably 
reduced. The following example illustrates this point. 

K1 K8 
A + B  " C '  ' �9 A + D .  

NK2 

The input cards describing this model are: 

$ SYSTEM PARAMETERS 

M O D E  = 1 ; 

$ RATE REACTIONS 

A + B = C ,  K1 ,  K 2 ;  

C = A + D ,  K3;  

$ STOP 

If no data is given, SELECTOR prints, among several partial solutions, the 
following minimal combinations that  are needed to compute the remaining un- 
known parameters. 

(1) A, B (2) B, C 

(3) A, D (4) B, D 

(5) C, D (6) A, K1,  K 2  

(7) C, K1,  K2  (8) D, K1,  K 2  

(9) A, K 3  (10) B, K 3  

(11) C, K 3  (12) K1, K2, K 3  
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Suppose K 3  had been given a positive value in the input s t ream as follows: 

$ CONSTANTS 

K 3  = 1; 

These cards indicate tha t  K 3  can be easily measured or is known from previous 
experiments. In this case only those combinations listed above tha t  contain K 3  
would be printed. Now suppose K 3  had been set to a negative value as follows: 

$ CONSTANTS 

K 3  = -- 1; 

These cards indicate tha t  K 3  is difficult or impossible to measure experiment-  
ally. In  this case, only the combinations listed above tha t  do not contain K 3  
would be listed. This facility offers a significant savings of computer t ime by  sub- 
stantially reducing the number  of different combinations of the KP vector tha t  
have to be generated by SELECTOR. For the above example, two additional 
combinations of parameters  are sufficient to calculate all the remaining unknown 
parameters,  bu t  are not recognized by  the current version of CRAMS because they 
depend on the rate expressions. These are: 

(13) B, K1, K2  (14) D, K 3  

I t  is known tha t  these two cases m a y  be solved by  using ad hoc methods tha t  
involve a detailed examination of the rate expressions. However, the current 
version of CRAMS cannot recognize, and, therefore, cannot solve these two cases. 
This problem is discussed in Section 6.2. 

I f  N Z is the number  of zero entries in K P  then there are 2**NZ possible con- 
figurations of KP. Each one of these possible configurations may  be represented 
by  a different integer number. The i ' th  configuration of KP is obtained by  re- 
placing the zero entries in KP by the reverse of the binary representation of the 
integer number  i. A list of integer numbers representing total  solutions is main- 
tained to eliminate testing for supersets. Before KP is tested by  the other modules 
of SELECTOR, values tha t  were set to -- 1 by  the I N P U T  module are changed to 
zeros. 

For example, if K P  = ( -  1,0,1, -- 1,0,1), there are the 2 " ' 2  or 4 possible unique 
configurations: 

configuration 0 : (-- 1,0,1 -- 1,0,1) 

configuration 1 : (-- 1,1,1, -- 1,0,1) 

configuration 2 : (-- 1,0,1, -- 1,1,1) 

configuration 3 : (-- 1,1,1, -- 1,1,1) 

If  it were found tha t  configuration number  1 was a total  solution, for example, 
then configuration number  3 would not have been tested. 
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4. D e s i g n  of t he  Solver  M o d u l e  

4.1. General D i s c u s s i o n  

The SOLVER module is responsible for solving the equations represented by the 
final form of the F L U X  matrix created by the SELECTOR module, as described 
in Section 3. SELECTOR determines the kind of equation that  is to be solved, then 
SOLVER coordinates the execution of the three numerical analysis service 
modules: NONLIN, SIMULATOR and CURVEFIT,  which are always executed 
in that  order. The five different types of equations handled by SOLVER have been 
given in Section 3.2. 

4.2. T h e  N O N L I N  Module  

The NONLIN module is responsible for intializing the concentration vector, 
C(i), for 1 < i < N R C T .  Here NRCT is the number of reactants. If there are no 
equilibrium reactions, then C (i) is set to IC (i), the initial concentration vector, 
for 1 < i < NRCT. If equilibrium reactions do exist, then the type (2) equations 
(with derivatives set to zero) and the Type (1) and Type (3) equations are all 
solved simultaneously for the equilibrium concentrations of all reactants. Because 
the equilibrium equations are generally nonlinear, tile Newton-Raphson iteration 
method 27) is used to solve these equations. Also, since there is no symbol manipula- 
tion capability in the current version of CRAMS, numerical differentiation is 
used to calculate the required partial derivatives. That  is, the rate expressions 
cannot at this time be automatically differentiated by analytical methods. A three 
point differentiation formula is used ~7) : 

t (~ + h) - / ( ~  - h) 
]' (x) = 2 h 

The Newton-Raphson iteration method is terminated when either the absolute 
values of the residuals and tile differences between successive iterates are less than 
a specified tolerance, or when the specified maximum number of iterations is 
exceeded. 

4.3. T h e  S I M U L A T O R  M o d u l e  

In the SIMULATOR module, concentration data for solvable unknown variable 
parameters is generated by numerically solving the equations of Types (1), (2) and 
(3) simultaneously. The derivative forms of the Type (1) equations are used; thus, 
there are N S I M  = N E Q V  + N S D P  differential equations and NNDP algebraic 
equations to be solved. NEQV, NSDP and NNDP are the numbers of Type (1), 
Type (2) and Type (3) equations respectively (see end of Section 3.2.). The IBM 
subroutine DHPCG 28) is used for this purpose. 

The initial step size is computed from the initial time, the final time and the 
number of points for which output  is requested. An error message is printed if the 
step size is less than a prespecified amount. 
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Each function evaluation by DHPCG requires a solution to the following 
problem: Given the value of TIME and the NSIM values of C (i), calculate the 
NSIM values of CP(i) for all 1 < i < N E Q V  and I S D P  < i ~ N S D P .  Each func- 
tion evaluation follows a four step procedure that  involves: (1) calculating the 
concentrations of the known reactants and their associated maximum tolerances, 
(2) calculating the derivatives of the known reactants and their associated maxi- 
mum tolerances, (3) calculating the concentrations of dependent reactants, and (4) 
calculating the derivatives of the NSIM reactants being simulated. 

The concentrations and edrivatives of the concentrations of known reactants are 
calculated for a normalized time scale by using Lagrangian interpolation 27). The 
normalized time scale is assigned by  the user 2sb) or it defaults to that  for the first 
reactant for which data was entered 25a). First, the NDEG and NDEG - 1 nearest 
points are found, where NDEG is the prespecified degree of the interpolating 
polynomial. In the next  step, if data for the i th  reactant is unknown, its concen- 
tration is calculated from 

N D E G  

c(i ,O = Z I.(i,t)*c[i,t(i)]. 
j=l 

In this equation, C (i, t) is the concentration of the i th reactant at TIME----t. 
The L (j,t)'s are the Lagrange coefficient polynomials. The C [i, t (j)]'s are given 
as the input data and are the concentrations of the ith reactant measured at 
T I M E  = t (/'). In the next  step a similar formula is used to calculate C (i, t) from 
NDEG -- 1 nearest neighbors and then DC (i, t), the maximum tolerance of C (i, t), 
is calculated by  interpolation from the input values for DC, DC [i, t (J')]. A check is 
made to insure that  the difference between the calculated C (i,t)'s for the NDEG 
and the NDEG - -1  points (the truncation error) is less than one percent of 
DC (i, t), the maximum tolerance for the observed variable. Because DC [i, t (i)] is 
normally specified by  the user and DC (i,t) is computed from it, this check guaran- 
tees that  truncation and roundoff errors are insignificant when compared with the 
user supplied experimental errors and assures that  the model validation can be 
safely postponed until the CURVEFIT module is executed. 

The derivatives and their associated maximum tolerances for the known 
reactants are calculated by  using numerical differentiation formulas. 

These formulas can be derived by  differentiating the interpolation formulas 
used for calculating C (i, t). The formula for calculating CP (i, t) is: 

N D E G  

cP(i,O = Z L'(j,O*c[i,t(i)] 
j=l 

The truncation error is calculated by comparing this result with a calculation 
using one less point. The derivative of the maximum tolerance, DCP(i,t), is 
calculated from: 

N D E G  

D C P ( i , t ) =  ~ L'(j,t)*DC[i,t(])l 
j=l 
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A check is again made to insure tllat the truncation error is less than one 
percent of the calculated maximum tolerance. 

The third step in the function evaluation by DHPCG involves the calcu- 
lation of dependent concentrations. This is done by  evaluating the non-deriv- 
ative form of the Type (3) equations. 

In the final step DHPCG calculates the NSIM derivatives for the reactants 
that  are being simulated. Since the derivative forms of Type (1), (2) and (3) 
equations are all linear with respect to the CP (i)'s, they are solved simultaneously 
for the CP (i)'s by the Gaussian elimination method. The partial derivatives used 
in the evaluation of tile derivative form of the Type (1) equation are calculated 
with the same numerical differentiation formula that  is used in the NONLIN 
module. 

Upon completion of the execution of the SIMULATOR module, all variable 
parameters have been calculated; i.e., data for the concentrations for all known 
reactants has been generated to the normalized time scale. 

The interface between DHPCG and the rest of the SIMULATOR module has 
been designed os that  DHPCG can be easily replaced by  bet ter  subroutines when 
they become available. Several methods, such as those by Gear 28) and Liniger 
and Odeh 29) that  have been written especially for stiff differential equations, 
would appear to be likely candidates for replacing DHPCG. This is true because 
the differential equations that are obtained from chemical reactions are frequently 
very stiff. 

4.4. The CURVEFIT Module 

Unknown rate and equilibrium constants in Type (4) and Type (5) equations are 
computed by  the curve-fitting module CURVEFIT.  In the current version of 
CRAMS there is a choice of two curve-fitting methods, DLLSQ 2o or CURFIT 80~. 
However, new modules can be easily incorporated ~sa). DLLSQ uses the simple 
least-squares method to compute the unknown constants and it suffers from the 
unreliabilities and ambiguities common to all such methods a0a). CURFIT per- 
forms a complete analysis of the experimental data (which includes user-supplied 
maximum tolerances) and tests the mathematical validity of the proposed reac- 
tion model, then computes the unknown constants and their associated maximum 
errors a0a). Since the second choice is a superset of the calculations performed by  
DLLSQ, in the following discussion it is assumed that  CURFIT is used. 

Interpretation of physical data  is a two step process involving: (1) the formula- 
tion of a model and (2) the formulation of equations describing the model. Certain 
physical restrictions, like the conservation of mass etc., are an intrinsic part of the 
formulation of a proposed model. The meanings attached to the formulation of the 
model itself must be taken into consideration when formulating the equations that  
describe the model. 

The verification of the proposed model is also a two step process involving: (1) 
mathematical validation (the process of verifying that  the equations are valid 
algebraic descriptions of the data that  is used to test the model) and (2) physical 
validation (the process of verifying that  the mathematically validate equations 
also meet the physical conditions imposed by  the model). I t  is not generally realized 
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that  the validity of a model is estaMished only if both the mathematical and 
physical validities are established. The deplorable and common technique of using 
physical validity alone to establish a model's validity has frequently yielded 
erroneous conclusions 80a). 

In the CURFIT module the mathematical validity of those equations that  
represent those parts of the model tha t  contain unknown constant parameters is 
tested in terms of the user's estimate of the reliability of his data. However, it 
should be noted that  mathematical validity does not, by itself, establish the worth 
of the model and tha t  CURFIT does not test for physical validity of the model. 
This can, in general, only be performed by one who is an expert in the physical 
meaning of the model. 

The solution of all the Type (4) equations for a model is accomphshed by a 
single use for the CURFIT module. Each Type (4) equation is multiplied by its 
left hand side; then they are all added together. Data at each required time may be 
generated from this summed equation and the maximum tolerances for the de- 
pendent variable are calculated with a similar equation. 

Because the left hand side of Type (4) equations are simply derivatives of 
concentrations of reactants, the maximum tolerances of the dependent variable of 
the equation that  is used to solve for the rate constants is simply the sum of 
squares of the maximum tolerances of the derivatives. Thus, even if terms on the 
right hand side are known, their errors are considered to be zero. In other words, 
the maximum tolerance associated with a dependent variable of an individual 
equation is always calculated in the same way, regardless of how many of the rate 
constants are known. This method of calculation effectively assumes that  any data 
generated by  the SIMULATOR module is considered to be exact. I t  should be 
noted that  this assumption leads to a more restricted solution than that  which 
would be obtained if maximum errors in all the known terms (that is, those with 
constant parameters) had been considered. 

Each Type (S) equation is solved by one separate use of the CURFIT module. 
In the present version of CRAMS, the maximum tolerance for each dependent 
variable is arbitrarily set to one percent of its value. This is done because some of 
the variable parameters in the rate expressions, which are the dependent variables, 
may have been generated by  one of the other modules and at this time such cases 
cannot be identified. However, it is planned to implement a symbol manipulating 
capability that  can identify such cases. When this capability is implemented alI 
the options allowed for specifying maximum tolerances 301)) will be allowed. 

The goodness of fit criteria that  are used in CURFIT are as follows: (1) If the 
data are not described by selected equation, CURFIT returns the conclusion that  
the data is described by  two or more equations (of the selected form) with over- 
lapping domains. In this case the domains, parameters, and the associated maxi- 
mum errors for each equation are given. (2) If the data are described by  the 
selected equation, CURFIT computes its parameters and their associated maxi- 
mum errors. Bad data  points are automatically rejected. Thus the number of 
equations returned by  CURFIT determines whether or not the data is described 
by the proposed reaction model. In those cases where the model is not described 
by  all the data, the information returned by CURFIT can be used to specify 
what subset(s) of the data fits the reaction model. 
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5. I l l u s t r a t i o n  o f  t h e  Use  of C R A M S  

5.1. Desc r ip t i on  of the Problem 

Recent  work has been directed toward  exploring the behavior  of the  enzyme 
aconitase 31-33). Presently,  CRAMS is being used to obtain an insight into the 
mechanisms of reactions involving this enzyme 34). I n  this part ,  the problem is 
first s ta ted  in general terms, then a step by  step description of the use of CRAMS 
is given. 

I t  is known t h a t  the enzyme aconitase catalyzes:  (1) the dehydra t ion  of bo th  
citrate and isocitrate to form cis-aconitate, (2) the  reverse reactions, and  (3) the 
interconversion of citrate and isocitrate thus ly :  

cis-Aconitate 

Citrate ~ Isocitrate 

Exper iments  indicate tha t  there m a y  be two forms of the enzyme. Two pos- 
sible mechanisms could explain this theory.  The problem is to :  (1) determine 
which, if any, of the two proposed mechanisms explains the theory,  and  (2) 
determine the ratio of the two forms of the enzyme. 

The following abreviat ions are used th roughout  the remainder  of the discus- 
sion: 

E -- enzyme (aconitase) 

X -- al ternate form of aconitase 

H -- hydrogen  ion (proton) 

C -- citrate 

I -- isocitrate 

A - cis-aconitate 

Combinations of these abreviafions, such as EC, are intermediate  complexes 
involving the reactants  associated with the individual symbols. 

The two proposed reaction mechanisms are: 

and:  

Model I = 

Model II= 

X + H  ~ XH+A 

XHA 
/ \  

E + C  ~ ~ E C - ~ E I  ~ E + I  

X + A  ~" -- XA 

I I' / 
E + C  ~ EC 

EI = ~ E + I  
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5.2. Solution of the Problem 

First, both models were run with CRAMS with MODE ----- 1 (predictor problem), 
assuming all reactions in equilibrium. Then, both models were again run with 
MODE = 1, but  with both rate and equilibrium reactions representing the actual 
time course behavior of the models. 

(1) Model 1, all equilibrium 

$ SYSTEM PARAMETERS 

MODE ---- 1 ; 

$ EQUILIBRIUM REACTIONS 

XHA = E I ,  K1 ;  

EI  = EC, K2 ;  

EC = XHA, K3;  

EI  ---- E + I, K I ;  

XHA = X H  + A, K H A  ; 

EC = E + C, KC; 

XH = X + H ,  K H ;  

E = X,  K E ;  

$ CONSTANTS 

K1 = 1; K2  : 1; K 3 :  1; 

K I  = 1; K H A  = 1; K C =  1; 

X H A = - I ;  EI  -------1; EC = - - l ;  

XH = - 1 ;  E = - - l ;  X --= - - l ;  

$ STOP 

The card after the $ SYSTEM PARAMETERS card indicates that  the pro- 
blem is a predictor type problem. The cards following the $ EQUILIBRIUM 
REACTIONS card describe the proposed model to the system. The cards succeed- 
ing the $ CONSTANTS card describe which parameters are known and which 
parameters can not be determined. K 1, K2, K3,  KI ,  K H A ,  and KC are aU known 
from other experiments. XHA, EI, EC, and XH  are intermediate complexes and 
their concentrations are difficult or impossible to measure. Since it is conjectured 
that  there are two forms of the enzyme data for E and X cannot be given either. 

Given the model and the parameter specifications, CRAMS prints the follow- 
ing combinations that,  in addition to K1,  K2,  K3 ,  K I ,  K H A ,  and KC, will be 
needed to solve for aU of the remaining unknown parameters: 

(1) I, H (2) A, H 

(~) C, H (4) I, K H  
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(5) A, KH (6) C, KH 

(7) H, K H  (8) I, KE 

(9) A, KE (10) C, KE 

(11) H, KE (12) KH, KE 

Since the concentration of C, A, I, and H are all relatively easy to measure, 
any of the first three combinations appears a reasonably candidate for computing 
information needed in next step [see (3) below]. A check on tile data  can be made 
by running all three combinations and comparing the results. 

(2) Model n ,  all equilibrium 

$ SYSTEM PARAMETERS 

MODE = 1 

$ E Q U I L I B R I U M  REACTIONS 

XA = EA, K 1 ;  

E I  = EC, K 2 ;  

EC = XA, K 3 ;  

EI  = E  + I, 141; 

XA = X  + A, KA; 

EC = E  + C, KC; 

E = X, KE; 

$ CONSTANTS 

K1 ----- 1; K 2  ----- 1; 

K !  = 1 ; K A  = 1 ; 

XA = - 1 ;  E I  = - -1;  

E = - 1 ;  X = - - I ;  

$ STOP 

K 3  = 1; 

KC = 1; 

EC = - 1 ;  

The cards for this model have similar meaning, to those for Model I. In addition 
to the given parameters  (that is K1, K2, K3, KI,  KA,  and KC), the following 

needed to solve for all of the remaining 

(2) C 

(4) KA 

combinations of parameters  will be 
unknown parameters:  

(1) A 

(3) I 

Since the concentrations of C, A, and I are all relatively easy to measure, any 
of the first three combinations appears reasonable to compute information needed 
in the next  step [see (4) below]. A check on the data can be made by  running all 
three possibilities. 
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(3) Model I,  t ime  course behav io r  

$ S Y S T E M  P A R A M E T E R S  

M O D E  = I ; 

$ R A T E  R E A C T I O N S  

X H A  

E1 

EC 

X H  

E 

$ E Q U I L I B R I U M  R E A C T I O N S  

E1 = E + I, K I ;  

X H A  ---- X H + A ,  K H A ;  

EC = E + C, K C ;  

$ C O N S T A N T S  

$ 

The fol lowing combina t ions  
r ema in ing  unknown  p a r a m e t e r s :  

= E I ,  K 1 F ,  K 1 B ;  

----- EC, K 2 F ,  K 2 B ;  

= X H A ,  K 3 F ,  K 3 B ;  

= X + H,  K H F ,  K H B ;  

X ,  KE]; ,  K E B ;  

K 1 F  - -  1; K 1 B  = 1; 

K 2 B  ---- 1; K 3 F  = 1; 

K I  = 1 ; K H A  = 1 ; 

X H A  = - 1 ;  E I  = - 1 ;  

X H  = - 1 ;  E = - 1 ;  

STOP 

of p a r a m e t e r s  are  

K 2 F  = 1; 

K 3 B  : 1 ; 

K C  ---- 1 ; 

EC = - - 1 ;  

X = - 1 ;  

sufficient to solve for the  

(1) I-I, K E F ,  K E B  (2) KH.F,  .KHB,  K E F ,  K E B  

Unfor tuna te ly ,  ne i the r  of these  two combina t ions  ocnta ins  onIy p a r a m e t e r s  
t h a t  are eas i ly  measu red  or well  known.  However ,  wi th  the  first combina t ion ,  H 
is easi ly  measu red  and  the  equi l ib r ium cons tan t ,  K E F  and  K E B  can be ca lcu la ted  
f rom run  (1). E s t i m a t e s  mus t  be m a d e  for one of the  r a t e  cons tan ts ,  and  the  model  
m u s t  be run  severa l  t imes.  

(4) Model I I ,  t ime  course behav io r  

$ S Y S T E M  P A R A M E T E R S  

M O D E  = 1 ; 

$ R A T E  R E A C T I O N S  

X A  = E I ,  K 1 F ,  K I B ;  
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$ 

E I  = EC, K 2 F ,  K 2 B ;  

EC = XA, K 3 F ,  K 3 B ;  

E = X,  K E F ,  K E B ;  

E Q U I L I B R I U M  REACTIONS 

EI  = E  + I ,  K I ;  

XA ----X + A ,  KA;  

EC ----E + C ,  KC; 

CONSTANTS 

K 1 F  -~ 1; 

K 2 B  = 1; 

K I  = 1; 

E I  = - -1;  

E -~ - 1 ;  

$ STOP 

K 1 B  = 1; K 2 F  1; 

K 3 F  = 1; K 3 B  : 1; 

K A  = 1; KC = 1 ; 

EC = - -1 ;  XA = --1;  

X = - -1 ;  

In  this case, only one combination of parameters  is possible: 

(1) K E F ,  K E B  

As previously shown, the equilibrium constant can be computed from run (2), 
leaving only one unknown rate constant. The single unknown constant can be 
varied to see if the mathematical  validity is established. 

All of the cases listed by  CRAMS in each of the four runs have been tested 
using simulated data. CRAMS is currently being used to compare the two proposed 
mechanisms by  using actual experimental data  as suggested by  the above results. 

The Benkovie group has utilized CRAMS to generate the concentration of 
enzyme-ligand species as a function of e n z y m e a n d  ligand concentrations. The 
enzymes in question are multi-subunit enzymes that  bind more than one ligand. 
For example, in the case of hexose diphosphatase, the enzyme contains four 
subunits, each capable of binding a sugar phosphate and a metal  ion. In the total  
solution, then, the concentrations of approximately twenty-eight species are 
involved. The unique ability of CRAMS to solve a problem of these dimensions has 
proven invaluable. Readers further interested in these applications are directed 
to recently published papers 36, ~7~. 

6. Conclusions 

6.1. I m p o r t a n c e  of the Study 

In this paper  it has been demonstrated that  the CRAMS system can directly aid 
the physical scientist to design experiments for testing any  proposed reaction 
mechanism. In  CRAMS two kinds of parameters,  variable (concentration-time 
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data) and constant (rate/equilibrium constants), are recognized. CRAMS can be 
used to determine what parameters must be measured to compute any subset of 
the unknown parameters (Predictor Problem) or, given any subset of parameters 
it will compute the.maximum number of unknown parameters possible (Comput- 
ing Problem). In other words CRAMS may be used to study any  fragment or 
combination of fragments of a proposed reaction system. Moreover, the following 
are unique features of CRAMS: 

(i) No assumptions are made concerning the relative sizes of any variable (e. g., 
concentration) or constant (e.g., specific rate or equilibrium constant) parameters. 
The accuracy of the computations is determined solely by  the computational 
reliability of the service modules: NONLIN, CURVEFIT and SIMULATOR, and 
they are easily replaced by routines that  use superior methods, when they are 
available. 

(ii) Data for variable parameters can be collected in entirely seperate, uncon- 
nected experiments without any prior consideration of a fixed time scale. This 
means that  data  for different reactants from different sources can be combined 
without any change in computational accuracy. However, it is necessary that  the 
initial conditions in each separate experiment are the same. 

(iii) There are no restrictions on the molecularity of any reaction or the con- 
centrations for any reactant or the value of any constant variable (i. e. specific 
rate/equilibrium constant). Moreover, because each individual reaction is separ- 
ately entered, the user can, in effect, specify specific rate constants that are any 
continuous function of any variable parameter (like concentrations, light intensity, 
gravitational field strength, etc.). 

(iv) There is no restriction on the combinations of rate and equilibrium 
reactions that  can be used to describe a reaction model. CRAMS will automatically 
solve equilibrium reactions only, or rate reactions only or any combination 
systems. 

(v) There are no restrictions on the kind of functions that  may be used for 
"specific rate constants". This means that  a "specific rate constant" can in fact be 
a variable parameter whose values are determined by the concentration(s) of 
reactants and such variables as light intensity, strengths of magnetic or gravita- 
tional fields, etc. 

(vi) There are no restrictions on the homogeneity of the reactions in a reaction 
system. This means that  the most general form of the classic diaphragm problem, 
in which two or more separate homogeneous reaction systems themselves interact 
at interfacial boundaries (like a diaphragm or a gas/liquid surface) are easily 
handled by CRAMS. This kind of problem will be explicitly discussed in a subse- 
quent paper. 

The approach to modeling and the computer techniques used in CRAMS 
should be of value in designing automatic, general systems that  solve classes of 
problems. In fact, the FRANS system, which is now being designed/implemented 
in our laboratories, will use much of the same philosophy and many of the same 
techniques. FRANS is being designed to automatically solve for unknown para- 
meters in systems of mathematical equations of any type. Like CRAMS, the 
FRANS system is to have both Predicting and Computing Problem solving 
capabilities. 
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6.2. Implication for Future Research 

Two general areas for future research exist: (1) possible improvements to the 
actual implementation of CRAMS and (2) possible extensions to the types of 
calculations that  are possible with the system. 

Changes in the actual implementation of the system should be directed toward 
making computations more efficient or increasing the amount of storage available 
to data structures. As was emphasized throughout the paper, the numerical ana- 
lysis service modules associated with the SOLVER module can be easily replaced 
as more efficient techniques are developed. A possible savings in space can be 
obtained by using sparse matrix techniques 85} on the F L U X  matrix. These 
techniques are especially attractive when it is realized that  columns of the F L U X  
matrix usually have at most four or five non-zero entries. A feature whereby the 
size of the main storage array is automatically set, depending only on the size of 
the region into which the program was loaded is also desirable. In this regard the 
recent development of the compilerless, machine and configuration independent 
Portable FORTRAN, PFORTRAN 8s~ is of paramount significance. I t  is planned 
to re-implement CRAMS in PFORTRAN. 

Extensions to the system in terms of the types of calculations allowed are also 
possible. The allowable characteristics of the rate expressions could be extended 
to allow unknown nonlinear constants, discontinuities, and integral and differential 
expressions, thereby increasing the number of models that  could be analyzed by 
the system. Also, the system could be extended to generate equations directly 
from statements specifically referring to rate law assumptions. 

The model validation procedures in the system could also be extended. For 
example, in some cases it would be desirable to have a feature which automatically 
compares measured data  with computer generated data, serving as an additional 
check on the mathematical validity of the proposed model. The system could also 
be extended to s tudy the effects of inherent errors in the constant parameters, 
possibly by executing parts of SIMULATOR several times for extreme values of 
each constant parameter. 

Another possible area of research involves exploring the feasibility of in- 
corporating symbol manipulation techniques into the system. By symbolically 
differentiating certain rate expressions only once, the SIMULATOR module 
would become more efficient because numerical differentiation at each step would 
be avoided. Also, the solutions recognized by  SELECTOR could be analyzed to 
insure that  a sufficient number of parameters have been given before the execution 
of the CURVEFIT module. Finally, symbol manipulation techniques would allow 
a greater number of solutions to be recognized by the SELECTOR module. For 
example, recall the following model from Section 3.4. : 

K1 K2 
A + B  " C  ~ A + D  

\KS 

There  are two possible total solutions that  the present implementation of 
CRAMS does not recognize. Here the ad hoc method of solution is given for one of 
these cases, that  is, when data for K 3  and D is given. With X (1) = A, X (2) = B, 
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X(3) = C, and X(4) = D, where X(i) is the label of the ith reactant, the dif- 
ferential equations representing the system are: 

CP(1) = - K I * C ( 1 ) * C ( 2 )  + K 2 " C ( 3 )  + K 3 " C ( 3 )  

CP(2)  = - K I * C ( 1 ) * C ( 2 )  + K 2 " C ( 3 )  

CP(3)  = K I * C ( 1 ) * C ( 2 )  - K 2 " C ( 3 )  -- K 3 " C ( 3 )  

c P  (4) = K 3 *  C (3) 

CP (i) is the rate of change in the concentration of the ith reactant, and C (i) 
is the concentration of the i th reactant. I t  is seen that  the equations for CP(1) 
and CP (2) are linearly dependent on the equations for CP (3) and CP (4). Thus: 

c P  (1) = - c P  (3) 

c P  (2) = - c P  (3) + c P  (4) 

Integration yields: 

c ( 1 )  = z c ( 1 )  - c ( 3 )  + z c ( 3 )  

c (2) = i c  (2) - c (3) + i c  (3) q- c (4) - I C  (4) 

IC (i) is the initial concentration of the ith reactant. Since data for C (4) is 
given, data for CP (4) can be generated using numerical differentiation. The fol- 
lowing three equations could be solved simultaneously for C (1), C (2), and C (3) 
for any point in time: 

c ( U  = I c 0 )  - c ( 3 )  + ~c (3 )  

c (2) = IC (2) - c (3) + IC (3) + c (4) - IC (4) 

c P  (4) = K 3 *  C (3) 

After concentration versus time data for A, B, and C have been generated, the 
CURVEFIT module may be used to solve the equation for CP(3) for the rate 
constants K 1 and K2. 

Although the solution to this particular problem is fairly straightforward, at 
this time, the extension of this method to the general model appears to be very 
difficult. 

Acknowledgements. The authors wish to acknowledge Professors S. J. Benkovic and J. J. 
Villafranca and the members of their research groups for their participation in the testing of 
the computer program. The authors are especially indebted to John A. Lucas, II  for his help 
in preparing this paper for publication. 

70 



CRAMS -- An Automatic  Chemical Reaction Analysis and Modeling System 

7. References 

1) Garfinkel, D., Sack, R. : Digital Computer Simulation of an Ecological System, Based on 
a Modifed Mass Action Law. ]Ecology 45, 502 (1964). 

2) Garfinkel, D., Garfinkel, L., Pring, M., Green, S. B., Chance, B.: Computer Applications 
to Biochemical Kinetics. Ann. Rev. Bioehem. 39, 473 (1970). 

a) Detar, D. F., Detar, C. E. : In :  Computer Programs for Chemistry, 2 (Detar, D. F., Streit- 
weiser, A., Weiberg, K. B., Eds.). New York: W. A. Beniamin 1967. 

4) Garfinkel, D. : A Machine-Independent  Language for the Simulation of Complex Chemical 
and Biochemical Systems. Computers Biomed. Res. 2, 31 {1968). 

5) Chance, B. M., Shepard, E. P. : Automatic  Techniques in Enzyme Simulation. Computers 
Biomed. Res. 2 321 (1969). 

6) Rhoads, D. G., Achs, M. J., Peterson, L., Garfinkel, D.: A Method of Calculating Time- 
Course Behavior of Mult i-Enzyme Systems from the  Enzymat ic  Rate  Equation.  Comput- 
ers Biomed. Res. 2, 45 (1968). 

7) Green, S. B., Garfnkel ,  D.: Simulation of Enzyme Systems Using a Matrix Representa- 
tion. Computers Biomed. Res. 3, 166 (1970). 

s) Groner, G. F., Clark, R. L., Berman, R. A., Deland, E. C.: BIOMOD -- An Interact ive 
Computer  Graphics System for Modeling. AFIPS Conf. Proc. (1971 FJCC) 39, 369 (1971). 

9) Curtis, A. R., Chance, B. M. : Numerical Methods for Simulation and Optimization. FEBS 
V I I t h  Meeting Proc. 25, 39 (1972). 

10) Chandler, J. P., Hill, D. E., Spivcy, H. O.: A Program for Efficient In tegra t ion of Rate  
Equat ions and Least  Sqares Fi t t ing  of Chemical Reaction Data.  Computers Biomed. Res. 
5, 515 (1972). 

11) deMaine, P. A. D., Seawright, R. D. : Digital Computer  Programs for Physical Chemistry, 
Vol. II.  New York: MacMillan Co. 1965. 

12) Berman, M., Shahn, E., Weiss, M. F.:  The Routine Fi t t ing  of Kinetic Data  to Models: 
A Mathematical  Formalism for Digital Computers. Biophys. J. 2, 275 (1962). 

13) Cleland, W. W.:  Computer  Programmes for Processing Enzyme Kinetic Data.  Nature  
798, 463 (1963). 

14) Cleland, W. W. : The Statist ical  Analysis of Enzyme Kinetic Data.  Advan. Enzymol.  29, 
1 (1967). 

15) Pring, M. : The Simulation and Analysis by  Digital Computer  of Biochemical Systems in 
Terms of Kinetic Models I. The Choice of In tegra t ion  Method. J. Theoret. Biol. /7, 421 
(1967). 

16) Pring, M. : The Simulation and Analysis by  Digital Computer  of Biochemical Systems in 
Terms of Kinetic Models II .  Curve-Fit t ing Procedures. J. Theoret. Biol. 17, 430 (1967). 

17) Pring, M. : The Simulation and Analysis by  Digital Computer of Biochemical Systems in 
Terms of Kinetic Models III .  Generator  Programming. J. Thcoret. Biol. 17, 436 (1967). 

18) Swann, W. H.:  A Survey of Nonlinear Optimizat ion Techniques. FEBS Letters  2, $39 
(1969). 

la) Kowalik, J.. Morrison, J. F. : Analysis of Kinetic Da ta  for Allosteric Enzyme Reactions 
as a Nonlinear Regression Problem. Mathemat .  Biosci. 2, 57 (1968). 

20) Arihood, S. A., Trowbridge, C. G.: Model Selection and Parameter  Evaluat ion  by  Non- 
l inear Regression, with  an Application to Chymotrypsin Rate  Data.  Arch. Biochem. Bio- 
phys. 141, 131 (1970). 

21) Atkins, G. L. : Some Applications of a Digital Computer  to Es t imate  Biological Parameters  
by  Nonlinear  Regression Analysis. Biochcm. Biophys. Acts  252, 421 {1971). 

22) Sillen, L. G., Warnqvis t ,  B. : Equil ibr ium Constants  and Model Testing from Spectro- 
photometr ic  Data,  Using LETAGROP.  Acta Chem. Scand. 22, 3032 (1968). 

2a) DeLand, E. C.: Chemist - -  The Rand Chemical Equi l ibr ium Program. Memo RM-5404-PR 
(Rand Corp. Santa  Monica, California, 1967). 

24) Bos, M., Meershoek, H. Q. J . :  Computer Program for the  Calculation of Equil ibr ium 
Constants  in Complex Systems. Anal. Chim. Acts  61, 185 (1972). 

25) a) Butler,  R. S. : The Design and Implementa t ion  of a Chemical Reaction Analysis and 
Modeling System. P h . D .  Thesis, The Pennsylvania  State University,  March, 1974; 

71 



R. S. Butler and P. A. D. deMaine 

b) Butler, R. S.: Operations Manual for CRAMS. Report  Number 13, Computer Science 
Department.  The Pennsylvania State University, March, 1974. 

26) IBM Corporation: System/360 Scientific Subroutine Package. GH20-0205-4 (1968). 
27) Morsund, D. G., Duris, C. S.: Elementary Theory and Application of Numerical Analysis. 

New York: McGraw-Hill 1967. 
as) Gear, C. ~V.: The Automatic Integration of Ordinary Differential Equations. Comm. 

A.C.M. 1at, 176 (1971). 
29) Liniger, "vV., Odeh, F.:  A-Stable Accurate Averaging Multi-step Methods for Stiff Dif- 

ferential Equations. IBM J. Res. Develop. 16, 335 (1972). 
30) a) deMaine, P. A. D., Springer, G. I(.: A Non-Statistical Program for Automatic Curve- 

Fi t t ing to Linear and Non-Linear Equations. Management Informatics 3, 233 (1974). 
b) Springer, G. K., deMaine, P. A. D.: Operations Manual for the CURFIT Program. 
Report  No. 1, Computer Science Department,  The Pennsylvania State University (1973). 

31) Villafranca, J. J., Mildvan, A. S,: The Mechanism of Aconitase Action, I. Preparation, 
Physical Properties of the Enzyme, and Activation by Iron (II). J. Biol. Chem. 246, 772 
(1971). 

a2) Villafranca, J. J., Mildvan, A. S.: The Mechanism of Aconitase Action, II. Magnetic 
Resonance Studies of the Complexes of Enzyme, Manganese (II), Iron (II) and Substrates. 
J. Biol. Chem. 246, 5791 (1971). 

a3) Villafranca, J, J.. Mildvan, A. S. : The Mechanism of Aconitase Action ,III. Detection and 
Properties of Enzyme --  Metal --  Substate and Enzyme --  Metal - -  Inhibitor Bridge 
Complexes with Manganese (II) and Iron (II). J. Biol. Chem. 247, 3454 (1972). 

a4) Villafranca, J. J.:  The Mechanism of Aconitase Action, IV. Inhibition of Aconitase Ey 
Tricarboxylic Acids (in preparation). 

35) Curtis, A. R., Reed, J. K. : The Solution oI Large Sparse Unsymmetric Systems oI Linear 
Equations. J. Inst. Math. Appl. 8, 344 (1971). 

36) Fishbein, R., Benkovic, P. A., Schray, K. J., Siewers, I. J., Steffens, J. J., Benkovie, S. J. : 
The Anomeric Specificity of Phosphofructokinase from Rabbit  Muscle. J. Biol. Chem. 249, 
6047 (1974). 

aT) Libby, C. : The Mechanism of Action of Hexosediphosphatase. Ph .D .  Thesis, The Pennsyl- 
vania State University, 1974. 

3s) a) Whitten, D. E,, deMaine, P. A. D.: A Machine and Configuration Independent  FORT- 
RAN: Portable FORTRAN (PFORTRAN). I E E E  Trans. Software Eng. 1, I I I  (1975). 
b) Whitten, D. E., deMaine, P. A. D. : Operations and Logic Manual for Portable FORT- 
RAN (PFORTRAN). Report  No. 1 of a Series: Global Management Systems (1974), Com- 
puter Science Department,  The Pennsylvania State University, University Park, Pennsyl- 
vania. 16802. 

~9) Ugi, I. : The Potential of Four Component Condensations for Peptide Syntheses -- A Study 
in Isonitrile and Ferrocene Chemistry as well as Stereochemistry and Logic5 of Syntheses. 
Intra-Sci. Chem. Rep. 5, 9.29 (1971). 

Received December 4, 1975 

72 



IR Fourier Transform Spectroscopy 

Prof. Dr. Reinhart Geick 

Physikalisches Institut der Universit~it, 'Wt~rzburg 

Contents 

1. I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

2. F u n d a m e n t a l s  of Spec t roscopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

2.1 Sepa ra t ion  into  Spec t ra l  E lemen t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

2.2 Four i e r  Trans fo rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

2.3 Resolu t ion  and  I n s t r u m e n t  L ine -Shape  F u n c t i o n  . . . . . . . . . . . . . . . . . . .  82 

3. Spec t roscopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

3.1 Convent iona l  Spec t roscopy  (Grating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

3.2 Fou r i e r  Trans fo rm Spec t roscopy  (Continuous Spect ra ,  Resolu t ion  and  
Apodiza t ion ,  Sampl ing  and  Aliasing,  Fi l te r ing)  . . . . . . . . . . . . . . . . . . . .  90 

4. P rac t i ce  of Fou r i e r  T rans fo rm Spec t roscopy  . . . . . . . . . . . . . . . . . . . . . . .  98 

4.1 T w o - B e a m  In te r fe romete r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

4.2 Analogue  Four i e r  T rans fo rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

4.3 Dig i t a l  Four i e r  T rans fo rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106 

4.4 Rea l -T ime  Four i e r  Ana lys i s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

4.5 Phase  Modula t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 

4.6 E x a m p l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

4.7 A s y m m e t r i c  Four i e r  Spec t roscopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 

5. A d v a n t a g e s  and  D i sadvan t ages  of Four i e r  T rans fo rm Spec t roscopy  . .  131 

5.1 Pr inc ipa l  A d v a n t a g e s  and  D i sadvan t ages  ( Jacqu ino t  and  Fe l lge t t  
Advan tages )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

5 .2  Precision,  Al ignment ,  F i l t e r ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 

5.3 Possible  Er ro r s  and  the i r  Correct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

73 



R. G-cick 

5.4 Noise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

6. Commerc ia l  I n s t r u m e n t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

6.1. S u r v e y  of t h e  I n s t r u m e n t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

6.2. The  Opt ica l  L a y o u t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 

6.3. I n t e r f e rome te r  D a t a  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 

6.4. D a t a  Abou t  the  Computers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

6.5 F ina l  Remarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 

7. Append ix  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 

8. Append ix  2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 

9. Append ix  3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182 

10. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

74 



IR Fourier Transform Spectroscopy 

1. Introduction 

In the last two decades a "new" method of spectroscopy, namely Fourier trans- 
form spectroscopy, has been applied, not only by  physicists but  also inreasingly 
by  chemists, for optical investigations, especially in the far-infrared 1-12). 

Spectroscopy is in general terms the science that  deals with the interaction of 
electromagnetic radiation with mat ter ;  in particular, it can be said to be the in- 
vestigation of the optical properties, i.e. the transmission or reflection, of a sample 
within a certain spectral range. These properties are studied as a function of the 
wavelength or frequency of the incident electromagnetic radiation. The spectral 
range mainly under consideration here is the infrared. 

Usually, it is divided into the middle- and near-infrared and into the far- 
infrared. The limits of these ranges m a y  be defined as follows 13,i4~: 

middle- and near-infrared 

wavelength ~1: 700 nm -- 25 ~zm 
frequency v: 1.2 �9 1013 Hz -- 4.3 �9 1014Hz 
wave number  ~: 400 cm -1 - 14300 cm -1 

quantum energy hv: 49.7 m e V -  1.77 eV 

far-infrared 

25 t z m -  1 m m  
3 �9 1 0 1 1 H z -  1.2 �9 101SHz 

10 cm -1 -- 400 cm -1 

1.24 meV - 49.7 meV 

With some optional extensions, commercial Fourier spectrometers generally 
operate in the range 1 0 -  10000 cm -1. 

In  spectroscopic investigations, the intensity t ransmit ted or reflected by  the 
sample is compared with the intensity of the incident light at a given wavelength 
or frequency; thus, with a spectrometer, intensities and wavelengths are measured 
simultaneously. Intensities are determined by  means of an infrared detector. 
Clearly, the performance of the detector is just as important  to the spectroscopist, 
as tha t  of the source, but  these and other problems of infrared technique are 
beyond the scope of this introduction and the reader is referred to the li terature 2,3). 

In  comparing spectroscopic methods and explaining their principles, we are 
concerned mainly with the problem of how to separate electromagnetic radiation 
into its spectral elements and how to determine the wavelength or frequency. 
Various methods are available. With a grating spectrometer,  for example, the 
separation into spectral elements is effected by  the diffraction of the grating. If  
the grating is turned round, the intensity is scanned as a function of frequency. 
A prism spectrometer or a Fabry-Perot  works in a similar way. The problem of 
separation into spectral elements becomes trivial if a tunable source emit t ing 
monochromatic radiation is used. Grating or prism spectrometers are typically 
used for spectroscopy in the visible and near-infrared and monochromatic sources 
for microwave spectroscopy 291. 

With the method of Fourier transform spectroscopy, the light is not separated 
into spectral elements. The scientist uses a two-beam interferometer and studies 
the interference or correlation properties of the light as a function of pa th  differ- 
ence; the results of this s tudy are then converted mathematical ly  to the spectrum 
on a computer. This conversion is a Fourier transform, which is why the method 
is called Fourier transform spectroscopy. All this is explained in much more detail 
below. The point being made here is that  this method employs mathematics,  
computers, and electronic data  processing, all perhaps strange, new tools for the 
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spectroscopist, especially if he is a chemist. I t  is important  to realize tha t  the 
mathemat ica l  formalism of Fourier transforms is not only a necessary tool in 
Fourier t ransform spectroscopy, it also plays an important  role in all fields of 
optics as well as in electrotechnics and in acoustics 15). This involvement with 
Fourier transforms will possibly reveal some new aspects of conventional spec- 
troscopy and optics. 

I t  is admit ted  that  spectroscopy in the far-infrared suffers from the lack of 
more powerful sources and more sensitive detectors 29). Here Fourier t ransform 
spectroscopy has some advantages over conventional spectroscopy, e.g. with a 
grating instrument, and will probably be the most used method until coherent 
tunable laser sources take over. 

For this reason, the reviewer proposes to introduce the reader to Fourier 
transform spectroscopy in the hope that  he will make use of it. The basic physical 
principles of spectroscopy and the theory and practice of Fourier t ransform 
spectroscopy are described. I ts  advantages and disadvantages are discussed 
relative to spectroscopic problems and always with reference to the grating 
spectrometer as representing conventional spectroscopy. 

Perhaps it is worth mentioning that  the "new" method of Fourier t ransform 
spectroscopy is nearly a century old and tha t  Michelson and Rubens already 
applied it in principle 16-19). The method depends on a computer to perform the 
Fourier t ransformation and so has come into more frequent use with the advent  
of electronic computers 2o-28). The operation of a modern commercial Fourier 
spectrometer is no more complicated than that  of any other spectrometer 30,31). 
The spectroscopist needs no highly specialized training in programming and using 
the computer  for the Fourier transformation. The programming has usually been 
done by  the manufacturer  so tha t  the instrument works more or less automatically.  
Thus, the Fourier transformation is very much like a simple "push-but ton"  
operation. Nevertheless, it is useful to understand the fundamentals and to be 
able to choose the correct values for the input parameters,  for even a well-pro- 
g rammed computer  has to be fed with data  and given some orders. 

Obviously, the subject of Fourier transform spectroscopy cannot be t reated 
rigorously without mentioning the mathematical  aspects. Some mathematical  
formulae are therefore unavoidable in this introduction, but  the meaning of the 
mathematical  "shorthand notat ion" is always explained in the text  or by  means 
of a figure. 

2. Fundamentals of Spectroscopy 

I t  is proposed to recapitulate the basic physical and optical principles of 
spectroscopy in this review. For the comparison of different methods, we con- 
centrate on the determination of wavelength as an essential par t  of spectroscopy. 
We also comment  on the power of resolution of the various instruments and the 
instrument line-shape function. 

2.1 Separation into Spectral Elements 

Let us s tar t  with the determination of wavelength by means of a spectrometer. 
To keep the argument  as simple as possible, let the source be a laser emitting 
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monochromat ic  radiat ion of negligible linewidth, e,g. an HCN laser (20 =337/~m 
or ~0 = 29,67 cm-1). Wi th  a diffraction grating, several orders of diffraction are 
observed in the focal plane of mirror M3 (Fig. 1). I f  the gra t ing constant  g and  the 

M3 M2 

Exi 
Slit 

urce 

4 :  

b :  

M1 

Fig. 1. Illustration of the basic formula for the diffraction grating n2 = g  (sin ~0a --sin q01) 

angle of incidence ~0i are known, the wavelength 20 of the laser radiat ion can be 
determined from the diffraction angle 9d of the n- th  order, according to the condi- 
tion for construct ive interference 32,33): 

n2o ---- g (sin ~a -- sin ~oi) n = 0 ,  q- 1, -4-2 . . . .  (2.1) 

If  the light emit ted  by  the source consists of two or more narrow lines, two or 
more in terpenet ra t ing sets of diffraction pat terns  will be obtained. F rom these, 
the wavelengths  or frequencies of the lines can be deduced. 

We can also determine wavelength with a Michelson interferometer  (Fig. 2), 
where par t  of the light is reflected to the fixed mirror by  the beam split ter and par t  
is t ransmi t ted  to the movable  mirror. At  the detector  these two par ts  interfere 
with each other, and the interferences are governed by  the position of the movable  
mirror or, in other  words, b y  the difference in the optical pa ths  of the two part ial  
beams. Here too we consider a laser source emit t ing a single narrow line of wave-  
length 2o: there will again be construct ive interference if the pa th  difference is an 
integral multiple of the wavelength  321 

s ----- n2o n = O, -4- 1, 4- 2 . . . .  (2.2) 
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II 

Jfs)  

0 2~12 ~, 22,, s 
1 J(s) ~ ,,-_ ~ 

Fig. 2. Upper  pa r t :  Miehelson in ter ferometer  (L = source, t3S = beamspli t ter ,  FM ~ fixed 
mirror,  MM = movable  mirror,  S = sample  focus, and D = detector). Lower  par t :  Spectra  
1 (~) and in ter ferograms I (s) for one, two and three  na r row laser lines 

In practice, the intensity I at the detector will be measured as a function of the 
path difference s, i.e. the interferogram I (s) (see Fig. 2). The curve I (s) exhibits 

maxima for s=n2o [see Eq. (2.2)] and minima fors=(n +~) 2o, which is the 

condition for destructive interference. 
Now, the mathematical form of the interferogram I (s) is to be derived. The 

partial beams in the two arms of the Michelson interierometer (see Fig. 2) are 
described as plane waves. The amplitude or the electric field of the wave reflected 
at the fixed mirror is 

E 1  = E 0  e I (o~t-ffj'l), (2.3a) 
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and the electrical field or the amplitude of the wave reflected at the movable 
mirror is 

E2 = Eo 0 (o)t-~,~'2). (2.3b) 

The two waves are assumed to have equal intensity 

t0 ---- 2 ~ o  ~ o .  (2.4) 

Here, intensity means the time average of the power flux per unit area, as 

follows from the theory of electrodynamics a2, ( I  = S = ]E •  -'V ~~ 2.65 
% 

�9 10_a __'4" if the units of E are - -  and those of H are . Superposition of the two 
V In 

waves yields the total intensity 

1 V~o ]E I+E2]2 

--2-- I V~-O~o [E~ + E2e-lff' (~'i-~'2) + E20 e+lff, (el-t'~) + E20] 
(2.5) 

1 V-~o E2o and 2 ~  __ 2u~o (2o and ~o are again the Now we i n s e r t t o = ~  ~o q-- 20 

wavelength and the wave number of the laser line, respectively) and take the 

path difference s = 1_ q, (fl -~z).  The result is 
q 

f ( s )  = 2 t o [ 1  + cos  (2.6) 

for the interferogram of a single laser line. I t  should be noted that  I (s) is not 
identical with the signal at the detector but  only proportional to it. In the follow- 
ing, however, this factor is suppressed in the interest of simplicity. Obviously, 
the function I(s) given by Eq. (2.6) has maxima for s=n2o (/max = 4 I o )  and 

minima for s = (n + ~ ) 2o ([mln =O), as expected from the interference conditions. 

The wavelength 2o of the laser radiation can easily be determined from the path 
difference A s between two maxima or two minima of I (s). 

Next, we consider the case of two narrow lines at wave numbers ~1 and ~2. 
Tile interferogram obtained in this case (see Fig. 2) is the superposition (sum) 
of the two interferograms of the lines. I t  exhibits the typical beat pattern usually 
encountered in connection with acoustical or electrotechnical problems�9 Mathe- 
maticaUy, the interferogram is 

I(s) = 21111 + cos (2~1s)] + 21211 + cos (2~2s)] (2.7a) 

or, under the assumption I1 = 1 2  = I and after some rearrangement (with the use 
of the addition theorem of the angular functions), 
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(2.7b) 

The second cos factor describes the oscillation at the average wave number  

v = ~ ( v l  + ~ )  and the first cos factor is responsible for the beat pat tern with 

1 
A ~ =-ff (~1 -- ~2). Thus, the sum of the two wave numbers, or of the two frequencies, 

is obtained from the pa th  difference A s between two maxima of the oscillation. 
The difference is obtained from the path  difference between two maxima or two 
minima of the beat  pattern.  These two values are sufficient to determine ~1 and ~ .  

However, this method of direct inspection of the interferogram does not work 
for more than two lines. For three lines of different intensities the interferogram 
is again the superposition of the interferograms of the single lines (see Fig. 2) : 

3 

I (s)  = 2 ~ In[1 + cos (2~,~s)l ,  (2.8) 
~t=l 

but  there is no simple way of extracting the frequencies and intensities of the three 
lines, i.e. the spectrmn I (~), from this interferogram. Here we are at a crucial point 
for Fourier transform spectroscopy. How can we obtain the spectrum I (~) from 
the interferogram I (s )?  The quant i ty  we would like to obtain in a spectroscopic 
investigation is tile spectrum I(P) and not the interferogram I (s), and even in the 
simple case of three narrow lines there is no simple solution to this problem. 

2.2 Fourier  T r a n s f o r m  

The problem is how to convert the interferogram I (s) obtained with a Michelson 
interferometer into the spectrum I (~). Problems of this kind are met  with in many  
areas of physics and technology 15), for example, the problem of determining the 
spectrum of harmonics for a musical instrument (flute or violin). At audiofre- 
quencies the problem is easily solved with an appropriate set of electronic circuits 
that  performs a so-called Fourier analysis. In Fourier transform spectroscopy the 
solution is obtained by  mathematical  t rea tment  of the interferogram I(s) .  In 
order to illustrate the principle of this t rea tment  in a simple way, let us go back 
to the case of a single narrow laser line, i.e. monochromatic radiation. 

From the interferogram I (s) [see Eq. (2.6)] we take the oscillatory part  after 
subtracting the average 210: 

I (s )  = I (s)  - 21o = 2 Io  cos (2z%s) (2.9) 

and mult iply by  cos (2~s) ,  where ~ may  have any value between 0 and oo (0 < 
oo). The curves so obtained are shown in Fig. 3 versus pa th  difference s for 

some selected values of ~ (~ =0,5~o; ~ ~--0.8~0; ~----~0; ~ = 1.25~0; and P = 1.5~0). 
Generally, the area under these curves vanishes, as the positive and negative 
contributions are equal. Only in the case ~-----~o are there exclusively positive 
contributions so that  the area under the curve does not vanish (see Fig. 3). Mathe- 
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IVVVVVVVVi ~ 
S(s) = 2J  o cos(Z~r~s) 

i,t F=O 

AAA 
"1  ~ ~VV " Qv 

F = O  

O 

~':~o 

" I ~ F~O 

l ~176 ~  ~ - '~  ~=o 

Fig. 3. In te r fe rogram i(s) of a single nar row line versus p a t h  difference s, and  the  funct ions  
i ( s )  .cos (2.~gs) f o r 6 =  .5~o., ~ =  .8fro, v = v 0 ,  v =  1.25~0, and i f =  1.5~0. The  area F under  t h e  
curves which correspond to these  funct ions  is shaded  

matically, this area is denoted by an integral, which is a function of the wave 
number ~ and is written I(~):  

+co +~o .z = O i f ~  # '~o (2.10) 
I(~) =-oo f I(s) cos (2z~,s)ds = 210_co f cos (2n~,os) cos (2~s )ds  ",4 # Oif~ =~o" 

This integral is a Fourier transform. I (~) is the Fourier transform of I (s) and can 
be shown to represent the spectral distribution of the intensity 82,34). The mathe- 
matical procedure according to Eq. (2.10) can be performed for all possible values 
of ~, and we may conclude that  the wave number ~ for which the integral does not 
vanish is identical with the wave number % of the laser radiation. In other words, 

81 



R. Geick 

this  ma thema t i ca l  procedure  is a tool to obta in  the  value ~0 or 2o as ob ta ined  al- 
r e ady  f rom the interference condit ion Eq.  (2.2) for a single laser line. 

In  the  case of three  nar row lines, however ,  I (~) can only be ob ta ined  b y  the 
m a t h e m a t i c a l  procedure.  The  oscil latory p a r t  of the in te r fe rogram is now [see 
Eq.  (2.8)] 

3 

I (s) = 2 ~. In cos ( 2 ~ n s )  (2.11) 

According to Eq.  (2.10), I(~) is calculated as follows: 

+oo ~ ~ 0, ~-- I1  if ~ = ~1 

I(~) = SI (s )  cos (2~s )ds  # O, ,-~I2 i f o  = ~2 
-~o ~ # 0, - -~Ia  i f~  = ~ 3  

= 0 for all o ther  values of ~. 

(2.12) 

The  calculat ion shows t h a t  I(~) is only  nonzero if ~ is equal  to the  wave  
n u m b e r  of one of the three  lines (~1, ~2 or ~a) and  t h a t  i t  is p ropor t iona l  to the 
in tens i ty  of this line. Thus  we see t h a t  I (~), the Fourier  t r ans fo rm of I (s), is the 
spec t rum of the  l ight emi t t ed  b y  the source and is more  or less identical  wi th  tile 
spec t rum obta ined  with a gra t ing  spect rometer .  

I f  I (~) is o ther  t han  a few discrete na r row lines, the  tool to  eva lua te  I (~) 
f rom I(s) is the Four ier  t ransform,  where  I (s) is the  in te r fe rogram measured  wi th  
a two-beam (Michelson) in terferometer .  This  is the fundamen ta l  idea of Four ier  
t r ans fo rm spectroscopy.  We  have  left aside the quest ion of whe ther  the  Fourier  
in tegral  Eq.  (2.12) exists and whe the r  it  is meaningful  or not.  For  the  ma thema t i ca l  
requi rements  on I (s), the reader  is referred to the l i tera ture  a4). I t  is sufficient to 
say  here tha t ,  for all physical ly  and  exper imenta l ly  reasonable  in te r ferograms 
I (s), these requi rements  are usual ly  met .  

2.3 Resolut ion and Instrument Line-Shape Function 

H a v i n g  c o m m e n t e d  on the  fundamenta ls ,  we now have  to emphas ize  cer tain 
proper t ies  in more  detail.  We nex t  discuss resolution, i.e. the  m i n i m u m  difference 
in the  wave  number s  of two nar row lines t h a t  can still be seen as separa te  lines b y  
the spect rometer .  This  leads on to the  ins t rumen t  l ine-shape funct ion of a spectro-  
meter .  

We  again s t a r t  wi th  the  diffraction grating.  Le t  us assume t h a t  the source 
emits  a single nar row line of negligible l ine-width, and t h a t  the  in tens i ty  in the  
focal plane is s tudied wi th  a sufficiently sensit ive detector .  W e  obta in  a curve of 
in tens i ty  versus sin q~a, as shown in Fig. 4. There  are ma in  m a x i m a  at  s inga  -- s ingi  

----- n2--2~ in accordance wi th  Eq.  (2.1). Be tween  two main  max ima ,  (N -- 1) zeros are 
g 

found a t  

k \ 20 with  n = 0, -4- 1, :]: 2 . . . .  (2.13) sin 9~a -- sin ~01 = n + ~ - )  g k = 1 , 2 , 3 , . . .  
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Fig. 4. I n s t r u m e n t  l ine-shape funct ion  for a diffraction gra t ing  (N = 8) and the  smal les t  
difference A • be tween  two na r row lines which is clcarly resolved by  the  gra t ing  

and also (N--2) secondary maxima 32,33L Here N is the number of lines in the 
grating. The mathematical formula for this intensity curve is usually derived by 
applying Huygens' principle 32). The amplitude E of the diffracted wave is the 
sum of the contributions generated at each periodicity interval of the grating by  
the incident wave: 

N 
E : C �9 ~. e 2~l~ng (slnr (2.14) 

n=l 

where C is proportional to the amplitude of the incident wave and depends on the 
shape of the lines. The intensity of the diffracted wave is thus proportional to 

I -~  sin2[~N~Yg(sin 9cl - -  sin 9i)] 

sin~[z~g (sin qOd --  sin ~vi)] 
(2.15) 

This factor represents the familiar line-shape function of a diffraction grating, 
some properties of which have been discussed above [see Eqs. (2.1) and (2.13) and 
Fig. 4]. The dependence of the factor C on sin~0o has been suppressed and conse- 
quently so has that  of the intensity at the main peaks on 9d. This depends strongly 
on the particular type of grating and may cause only a few diffraction orders to 
have a considerable intensity (e.g. echelette grating) 33L 

The source is assumed to emit two narrow lines of nearly equal wave numbers 

~1 and '~2, i.e. (~1 - ~ )  < 2 (~1 + ~2). Each line yields an intensity curve, as discussed 

in the last section (see Fig. 4). The smaller the difference A ~ =~1 --~2, the more 
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the main peaks of the intensity curves will penetrate each other until at A~ ~ 0  
they match. Thus, two neighboring spectral lines are usually said to be resolved, 
i.e. to give rise to clearly separated main peaks, if the main peak of one line 
coincides with the first zero of the other a~'k According to Eq. (2.13), the first zero, 
i.e. the zero next  to a main maximum, occurs at 

1 ~,o 
sin~0d --sin~01 = n + ~ - / g .  (2.16) 

From this relation and Eq. (2.1), it is apparent that  the width of the main 
peak decreases as the number N of lines increases. On the other hand, the ratio 
of the intensity of the main maximum to the intensitY of the first secondary 
maximum does not depend on N (for N>> 1) 

I (main rnaximum) ( ~ ) 2  
~ 22.  

I (1st secondary maximum) 
(2.17) 

The first secondary maximum at sin~od --sinai  (n 3 \ to occurs ~ + ~-~)~- I ] 

After these explanations, we can express the condition for the resolution of two 
spectral lines as follows: 

or A 2 = ) , 1 - 2 ~ = - -  ~ - -  
nN nN 

(2.1s) 

1 (Zl + ~2) is the average of ~1 and 22. where ~ = ~- 

Conversion to wave numbers (~ =1/~, A ~ = A 2/X 2) yields 

A~ = = (2.19) 
,,N~" 

This is the well-known formula tha t  states tha t  the resolution of a diffraction 
grating increases (and A ~ decreases) with increasing order n of diffraction and 
number N of lines in the grating 3a). For the case of three lines, or for any other 
spectrum, the intensity is measured with a grating spectrometer as function of ~va 
(for several orders of diffraction) (see Fig. 5). The data obtained in this way are 
then easily converted to I (2) or I (~) and the problem of determining the spectral 
distribution I(~) is solved. I t  should be noted that  the linewidth obtained (see 
Fig. 5) is influenced by  the limited resolution of the instrument and that  the line- 
widths of the three laser lines are assumed to be actually much smaller. In other 
words, we have been discussing the properties of the instrument line-shape func- 
tion of a diffraction grating. 

After this discussion of the resolution of a grating spectrometer, we proceed 
to the question of the resolution obtained with a Michelson interferometer. For 
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a 

I st order 

AAjl 
2 nd order 3rdorder (sin ~d-sin ~1 

b 

: g(sin ~d -sinwi ) 
O 

F = A -  

Fig. S. Recording of the three narrow lines of different intensities by means of a diffraction 
grating, (The secondary maxima of the line-shape functions have been omitted here.) a) in- 
tensity versus (sin9a--singj); b) intensity versus wavelength ~; c) intensity versus wave 
number 

two narrow lines [see Fig. 1 and Eq. (2.7)], the difference A ~ in the wave numbers  
of the two lines governs the spacing of the beat  pat tern .  We have to scan at least 
such m a x i m u m  pa th  difference Smax to ensure tha t  the first beat  min imum is in- 
cluded in our scan. This is (see Fig. I) 

2 2 1 
S m a x -  or A ~ -  (2.20) 

g l - - ~ 2  Ag 2Smax " 

We can conclude from this tha t  the resolution of a Michelson interferometer  is 
proport ional  to the m a x i m u m  pa th  difference up to which the interferogram has 
been measured. W h e n  we now consider the case of three narrow lines, we mus t  
remember  tha t  we have to calculate I (~) f rom I (s) by  means of a Fourier  t rans-  
form [see Eqs. (2.10) and (2.12)]. However,  the Fourier  integral  cannot  be executed 
over s f rom - ~  to + ~ ,  since the interferogram I(s)  can be determined ex- 
perimentally only over a finite range ( -Smax  G s < +Smax). Therefore, the in- 
tegrat ion too can be performed only over a finite range. 

For  the simplest case of a single laser line we obtain  the observed intensi ty 
(Fig. 6) 

+8max 
Iobs(~) = 210 1 cos (2n~0s) cos (2~,s)ds 

- '~a~ (2.21) 
= 2/oSmax sin[2 ~ (~ - -  ~o) Smax] 

2~(~ - -  v0) Smax 
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Fig.  6. F in i te  in te r fe rogram and  resolution.  (Example :  Three  nar row lines of different  in ten-  
sities) ; upper :  infinite in te r fe rogram I (~) and  corresponding  spec t rum;  middle  : f inite interfero-  

g ram and  corresponding  spec t rum of t he  l ine-shape func t ion  ( ~ )  ; lower : finite in terfero-  
/ s in  x \  2 

g ram wi th  t r iangular  apodiza t ion  and  corresponding  spec t rum of t he  l ine-shape funct ion  | - ~ |  
\ x /  

where a similar term with (~ +~0) has been neglected 35). This function has a 
1 a) 

central main peak at ~=~o with a half-width of approximately A ~ = -  
2 Sma x 

These properties again express the fact that the resolution of a Michelson inter- 
ferometer is proportional to the maximum path difference. Obviously, Iobs (~) 
is the analogue of the grating line-shape function [see Eq. (2.15) and Fig. 4]. 
Yet, Iobs (~) exhibits relatively large secondary extrema, positive and negative 
in sign, and the ratio between the intensity of the central maximum and that of the 
first secondary extremum (minimum) is much larger than in the case of the diffrac- 
tion grating: 

I (central  max imum)  3~z 

] I ( l s t  secondary  ex t remum)l  2 
(2.22) 

The secondary extrema are disadvantageous for actual spectroscopic applica- 
tions of the Michelson interferometer. They have their origin in the truncation, the 

a) The  first  zeros n e x t  to  t he  ma in  peak  are  located  at  V --  v0 = -4- - -  
1 

2 Sma x " 
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sharp and discontinuous cutoff of the interferogram. Therefore, the disadvantages 
will be diminished if the interferogram is forced to approach zero continuously for 
s ----- -b Smax. This can be achieved, for example, by multiplying I (s) by a triangular 
function (see Fig. 6). Then we obtain 

"]'Sflla X 

Iobs(P) = 2 / 0  f sin&x--Is] COS (2~z~0S) COS (2~Ps) ds  = Iosmax sin2[z~{v--v~ 

-Sm~x (2.23) 

where again a similar term for (~ + ~0) has been suppressed. The function given 
by Eq. (2.23) also has a central main peak at ~ =~0 with a half-width of approx- 

1 
imately A ~ = b) 35}. In this case, the secondary maxima are relatively small 

Srfla1~ 

in height. Actually, the intensity ratio is the same as for the diffraction grating 
[cf. Eq. (2.17)] 

, (central maximum) ( ? ) 2  
l ( l s t  secondary maximum) = - -  ~. 22 (2,24) 

Multiplying the interferogram I ( s )  by a function, e.g.  a triangular function, 
in order to make the product continuous at s = 4- Smax is called apodization 1-12,327. 
The functions derived here are the line-shape functions of a Fourier spectrometer. 
If we compare the line-shape functions with apodization [see Eq. (2.21)] and 
without apodization [see Eq. (2.23)], we see that  the apodization reduces the 
resolution by a factor of 2 but  that  many of the disadvantages due to the secondary 
extrema have been overcome. Here again, the clearly resolved difference in wave 
numbers A ~ is equal to that  from the main peak to the first zero next  to it in the 
line-shape function. Summarizing the results of this section, we refer to the effects 
of resolution and instrumental line-shape as shown in Fig. 6 for the case in which a 
spectrum of three narrow lines is analyzed by means of a Michelson interferometer. 
I t  should be noted that  the choice of a triangular function for apodization is not 
the only possible one and that  other functions could be selected, e.g. a cos function 
or the Genzel-Happ apodization (modified cos function) 2s,36). 

The resolving power of a spectrometer is usually defined as a dimensionless 
quanti ty 

R - -  A~ " (2.25) 

For the diffraction grating, we obtain [see Eq. (2.19)] 

R = n N  -~ VSmax (2.26) 

b) The first zeros next to the main peak are located at ~--  vo = -~- 1 

$1nax 
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where Smax = nN2 is the maximum path difference between the elementary waves 
generated at the lines of the grating (see Fig. 1). For the Michelson interferometer, 
the resolution is 

R = ~Smax (2.27) 

when apodization is used. Eqs. (2.26) and (2.27) again express the similarity of the 
instrumental line-shape functions of diffraction grating and lX{ichelson interfero- 
meter. 

3. Spectroscopy 

In the foregoing sections, the physical and optical fundamentals of spectroscopy 
have been considered, especially those of Fourier transform spectroscopy. In 
order to have simple interpretations, the source always was assumed to be a laser 
emitting one or more very narrow spectral lines. The sources used for practical spec- 
troscopic applications, however, emit a continuous spectrum in the far-infrared 
spectral region (e.g. a high-pressure mercury lamp). In this section, therefore, the 
considerations of spectroscopy are extended to the case of continuous spectra, 
again starting with conventional (grating) spectroscopy and continuing with 
Fourier transform spectroscopy. 

3.1 Conventional  Spectroscopy 

In this context, we are interested in an example of conventional spectroscopy 
only for comparison with Fourier transform spectroscopy; it is not intended to 
give a complete review of this field 3a). In order to be more specific, let us consider 
a grating spectrometer with a Czerny-Turner monochromator 3v,as) as often used 
in far-infrared spectroscopy (see Fig. 7). The (continuous) spectrum emitted by the 
source is separated into its spectral elements by the diffraction grating. Each 
element can be characterized by a wave number ~ (or wavelength 1) and a width 
A ~ (or A 2), the radiation belonging to one of these elements being transmitted 
through the exit slit to the detector. This means that  only a small portion of the 
intensity from the source reaches the detector. Turning the grating allows the in- 
tensity of the spectral elements I(~) to be recorded as a function of ~ or ~ (see 
Fig. 8). Careful filtering is necessary to prevent overlap of neighboring orders of 
diffraction. However, filtering not only removes the unwanted radiation but  also 
considerably diminished the wanted portion of the spectrum. 

For sufficiently small widths of entrance and exit slits, the instrument line- 
shape function would be that  of the diffraction grating (see Fig. 8). In the case of a 
continuous spectrum, the effect of the line-shape function and of the finite resolu- 
tion is tha t  each spectral element of infinitesimally small width produces such a 
line-shape function, and the recorded spectrum lobs (~) is the superposition of all 
these. This means in practice that  the ideal spectrum I (~) is scanned with this 
function or "spectral window" and that  lobs (~) contains contributions from the 
range 7 4- A ~ (see Fig. 8). Therefore, it is often called scanning function or window 
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Fig. 7. Diagram of a grating spectrometer with the optical components  (Czerny-Turner moun t  
and the  electronics with  the  usual lock-in technique 

function 1-12). Under  the idealized conditions assumed here, the resolution would 
be d ~ = 0 . 0 5  cm -1 at  ~ = 5 0  cm -1 (or R =  1000) for a diffraction grat ing with 
g = 0 . 3  m m  and N = I000. 

In  practice, however, the slits have to be opened far enough to ensure tha t  the 
energy reaching the detector  is sufficient for a tolerable signal-to-noise ratio, i.e. 
for a meaningful  measurement .  The lack of more powerful sources and  more 
sensitive detectors in the far-infrared has already been pointed out.  Thus,  the 
resolution of a grat ing spectrometer  is not  usually tha t  resulting from the diffrac- 
tion grat ing bu t  b y  tha t  f rom the slit width. Wi thou t  entering into the details of 
the calculation here (see Section 5.1), we quote some typical  figures for a grat ing 
spectrometer  a 9) : 

A~ ~ 0,2 cm -1 at ~ = 50 cm -1 or R = 250 .  (3.1) 
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F ig .  8. C o n t i n u o u s  s p e c t r u m  I v e r s u s  w a v e l e n g t h  ~. as  r e c o r d e d  w i t h  a g r a t i n g  s p e c t r o m e t e r  
( ) a n d  t h e  l i n e - s h a p e  f u n c t i o n  ( spec t r a l  w i n d o w )  for  t w o  o rde r s  of  d i f f r ac t ion .  F o r  c o m -  
p a r i s o n ,  a s p e c t r u m  w i t h  i n s u f f i c i e n t  f i l t e r ing  is s h o w n  ( . . . .  ) 

In spectroscopic investigations, the quantities of interest are the transmission 
or reflection of the sample. In order to obtain these, the background spectrum 
(without sample in the spectrometer) and the sample spectrum have to be measured 
(Fig. 9), and their ratio calculated. In commercial double-beam instruments, this 
ratio is obtained automatically. 

3.2 Fourier Transform Spectroscopy 

Turning back to the Michelson interferometer and Fourier transform spectroscopy, 
le t  us first consider the interferogram of a continuous spectrum. Each spectral 
element of infinitesimal width d~ and intensity I (~) gives rise to the same inter- 
ferogram pattern as a narrow line [see Eq. (2.6)], and the actual interferogram 
is the superposition of all these 

c o  

I (s) = 2 j" I (~)[1 +cos (2u~s)] dp. (3.2) 
o 

This interferogram (see Fig. 10 and Appdx 1) has some general properties: 

a) I(s) is symmetric about s = 0 if the optical properties of the two arms of the 
Michelson are equal (which is assumed here). 

b) Outside a certain path difference Se (s >Se) the interferogram is constant 
I(s) =I(oo) and independent of s. In this range, s is greater than the coherence 
length of the light. There is no correlation between the two beams, and I (s) is 
the sum of their intensities 

o o  o o  

/(ao) = I/(~)d~ + I / (~)d~.  (3.3) 
o o 
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Fig. 9a  and b. Spectra recorded by  means of a grating spectrometer:  a) background intensi ty 
(upper curve) and intensi ty  with sample (lower curvc) versus wavelength ~. b) rat io of the 
sample and background spectrum, in this example the reflectance of CsBr. The rcflectance 
shown here was dcduced not  only from the experimental  da ta  in a) bu t  also from other  data.  
(Fig!ares t aken  from Ref. 4o)) 

c) The main central peak of the interferogram occurs at s = 0  where the light of 
all wavelengths is constructively interfering (white light position), and the 
following relation holds 

I (0) = 2 1 ( o o )  (3.4) 

[which follows from Eqs. (3.2) and (3.3)]. 
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Fig. 10. In t e r fe rogram I (s) of a cont inuous  spec t rum versus p a t h  difference s (upper part) ,  t he  
cor responding  spec t rum I(~) versus wave  n u m b e r  ~, and  the  i n s t r u m e n t  l ine-shape func t ion  
(for t r iangular  apodizat ion) 

In  pract ical  appl icat ions of Fourier  t rans form spectroscopy,  such an inter-  
fe rogram [Eq. (3.2) and  Fig. 10] is recorded b y  means  of a t w o - b e a m  interfero-  
meter .  As in the case of a discrete spec t rum with  nar row lines, the spec t rum I (0) is 
calculated f rom I (s) b y  execut ing the  Fourier  t ransform.  For  this purpose,  again 
only the  oscil latory p a r t  of I (s) is needed 

1 I ( o )  = z (s )  - r ( o o )  I (s) = I (s) - ~- 

(a.s) 
= 2 | I (~) cos ( 2 ~ s ) d ~ .  

e J  

0 

I f  we were able to de termine  I (s )  exper imenta l ly  for all values of s in the 
infinite range - oo _< s ~ + co, the result  of the  Fourier  t r ans fo rm would be (see 
Appdx.  1) 

+oo 
I ff,) = I I (s) cos (2=~s)ds. (a.6) 

- - 0 0  
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On comparing Eqs. (3.5) and (3.6), we realize that  they are complementary 
to each other and that  Eq. (3.5) represents a Fourier transform inverse to that  in 
Eq. (3.6). 

In practice, however, I (s) is known only for a limited range: -- Smax _~ s _~ Smax. 
For the reasons discussed already in Section 2.3, the interferogram I(s) is 

multiplied by a scanning or apodization function S(s), e.g. S(s)---Sma"--ls] for 
Snlax 

- - S m a x < S m ~ - - ~ S m a  x and zero otherwise. We recall that  the Fourier transform 
yields in the case of a narrow line at v' the corresponding line-shape function 
S (~ - ~') + S (~ + ~') where for our example [see Eq. (2.23)] 

sin s (7~Smax) 
S (~) --- smax 

(mTSmax) 2 

In the case of a continuous spectrum, each spectral element at ~' with intensity 
I if') gives rise to a term I f f ' ) [S  if, - V) + S ff + ~')]. Accordingly, the observed 
spectrum is (I (~) ---- I ( -- ~) i) 

~o 

Iob~ if) --- 5 1 if') [S (~ - V) + S ff + ~')] d~' 
0 
| (a .7 )  

= y I (~') S (~ - ~') d~ ' .  
- - 0 0  

The physical meaning of Eq. (3.7) is that  the true spectrum I if') is scanned 
with a line-shape function or spectral window S (~ - V) as in the case of the diffrac- 
tion grating (see Fig. 10). As mentioned already, in contrast to the grating spectro- 
meter, the spectral window can be varied according to the choice of the apodiza- 
tion function. The advantage of apodization is easily seen for a narrow laser line 
(cf. Fig. 6). 

But  what does apodization mean for a continuous spectrum ? In a computer- 
simulated example (see Appdx) and where the ideal spectrum is known, the effect 
of the apodization is shown for two different values of smax (Fig. 11). Without 
apodization, the secondary extrema of the spectral window [see Fig. 6 and Eq. 
(2.21)] produce undulations in the observed spectrum. With triangular apodiza- 
tion [see Fig. 6 and Eq. (2.23)], the undulations are absent. However, the resolu- 
tion of the spectrum is considerably worse, as expected. 

Although the spectrum lobs if) is the required quanti ty from which the optical 
properties of the sample are to be deduced, it may be useful to know something 
about the "information" stored in the interferogram. This is demonstrated in Fig. 
12 which shows separately the contributions to the interferogram that  originate 
from a broad background spectrum and from an absorption line of smaller width 
(see Appdx). Near s = 0, the total interferogram is dominated by the interference 
patterns from the broad background, which decay rather rapidly with increasing 
path difference s. The interferogram is then governed by the influence of the ab- 
sorption line. In this example, the background spectrum as well as the absorption 
line are of "Lorentz ian"  type, and the interferograms (the Fourier transform) 
are damped cosine waves. As the curves in Fig. 12 show, the broader the spectrum, 
the greater the damping of the cosine wave in the interferogram. This statement 
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Fig. 11. Compar i son  of spec t r a  ob ta ined  b y  m e a n s  of Four ie r  t r a n s f o r m  spec t ro scopy  w i th  
(right) a n d  w i t h o u t  (left) apod iza t ion  for low ( - - ), m e d i u m  ( ) a n d  h igh  ( - -  --)  resolu t ion .  
The  " t r u e "  s p e c t r u m  for inf ini te  reso lu t ion  ( . . . . .  ) is also shown  in th i s  c o m p u t e r - s i m u l a t e d  
d e m o n s t r a t i o n  

is not restricted to the example given here but  applies quite generally to most of 
the Fourier transform pairs of functions. For "reading" and interpreting certain 
details of experimentally recorded interferograms, the reader is recommended to 
familiarize himself with a number of standard Fourier transform pairs quoted here 
or elsewhere 15), then it is not too difficult to deduce some details of the spectrum 
from the interferogram. 

We now arrive at the conclusion that  in spite of all the differences there are 
many similarities between Fourier transform and conventional spectroscopy. For 
example, the instrument line-shape functions are very similar for triangular 
apodization and for a diffraction grating, but  one difference between them is tha t  
the line-shape function in Fourier spectroscopy has only one central main peak 
while there are many orders of diffraction in case of the grating. However, this 
difference exists only if the Fourier transform is executed in an analogous way. 
If the Fourier transform is performed by means of a digital computer, the effective 
line-shape function also has an infinite number of main peaks. The reason for this 
is that  the use of a digital computer requires a digitizing of the interferogram. 
This is usually done by  recording the interferogram at equal increments As of 
optical path difference. Instead of the continuous function I (s) a finite series of 
equally spaced interferogram points I (nz]s) is obtained (Fig. 13). 

Now, the procedure of the Fourier transform is no longer an integral but  a sum 

+oo 

Iobs(+)= ~ i(nAs) cos (2z~nAs) As.  (3.8) 
n = - - 0 0  
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Fig. 12. I l l u s t r a t i o n  of t h e  i n f o r m a t i o n  in a n  i n t e r f e r o g r a m :  b r o a d  b a c k g r o u n d  s p e c t r u m  a n d  
its i n t e r f e r o g r a m  ( - - - ) ; n a r r o w  a b s o r p t i o n  l ine a n d  i ts  i n t e r f e r o g r a m  ( . . . .  ). T h e  s u m  of t h e  
two  c o n t r i b u t i o n s  yields  t h e  t o t a l  i n t e r f e r o g r a m  ( ) 

I t  can be p roved  ma thema t i ca l l y  t ha t  Iobs (~) is identical  wi th  the  t rue  spec t rum 

I (~) if this is nonzero only in 0 _~ ~ < ~max < ~ and i f  ~is res t r ic ted to this range. 

Fur thermore ,  it is assumed t h a t  the in ter ferogram is known for - oo K n < + co 
1 

4, 15). When,  ins tead of ~ (in the range 0 ~ ~ ~ ~max), t h e w a v e  n u m b e r  ~ + m----  
- -  - -  A S  

outside the  above range is inserted in Eq.  (3.8), i t  is easily seen t h a t  

( l) 
Iobs ~ + m ~  ----Iob~(~) m = O, + 1, 4 - 2  . . . . .  (3.9) 

due to the  per iodici ty  of the  cosine function. Physical ly,  this means  t ha t  the t rue  
spec t rum I (~) is redupl ica ted  a grea t  number  of t imes equal ly  spaced b y  d~ = 

1 
m ~ss on the  ~ scale (see Fig. 13), like the diffraction orders of a grat ing.  This  can be 

expressed as follows: 
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Fig. 13. Sampling of an  interferogram at  equal increments  As of the pa th  difference (upper 
part)  and the spectrum with ins t rument  line-shape function (lower part)  

or, if the effects of finite interferogram and apodization are included [see Eq. (3.7)] : 

+ o ~  ao 

m = - - o O  0 

(3.11) 

Now we can redefine the line-shape function 
+oo 

and finally write 

/obs (@) = I I (@') [~ (~ -- 9') + g (~ + ~')] d~' .  
0 

(3.12) 

The new line-shape function $ (~) incorporates the influence of apodization etc. 
on the spectrum as well as tha t  of the digitizing. Instead of one central peak it 
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exhibits a number of main peaks (see Fig. 13), and it is this fact tha t  introduces the 
problem of filtering in Fourier transform spectroscopy, a problem already en- 
countered in grating spectroscopy. 

In order to make Iobs(~) unique, it follows from Eq. (3.10) or (3.12) and from I[. 
I ( - ~) --- I (~) that  I (~) must  be nonzero only in the range 0 < ~ < ~ s  or in a range 

,~ , .  + 1] 
2A~ < p < 2As J" Thus, we have to use a filter such that  I(~) = 0 for p ~ Vmax, 

1 
and then we have to choose the sampling interval A s < . I t  should be noted 

- -  2Vmax 

that  these filter requirements are not nearly as severe as in the case of grating 
spectroscopy. If we are using the first order of the grating, the usable region has 
to be restricted to one octave. From 50 cm -1 to 400 cm -1, i.e. over three octaves, 
we have to change gratings and filters several times. In  Fourier transform spectro- 
scopy, this range may  be scanned in one run with one filter removing unwanted 

1 
radiation from above 400 cm -1. The sampling interval has to be As = 80~ cm = 

12.5/zm. These figures also indicate the precision with which the position of the 
movable mirror has to be measured. In the far-infrared, this is usually done by  
means of a Moir6 system; in the middle- and near-infrared, the position of the 
mirror m a y  be controlled more accurately with a laser system 41}. 

With a Moir6 system, sampling intervals as small as As = 5/~m are achieved 
with sufficient precision. For this value, the maximum wave number is ~max = 
1000 cm -1, which is not far from those of the emission lines of a CO2 laser (~ ~ 943, 
970, 1040, and 1075 cm-1). In  order to suppress the exciting laser line in laser 
Raman experiments, edge filters have been developed with high transmission in 
the region below 900 cm -1. After that,  there is a rather  sharp decrease in trans- 
mission, and between 930 and 970 cm -1 they become opaque. Filters of this kind 
are very useful in Fourier spectroscopy, too, when ~max = 1000 cm -1. Fig. 14 
shows an example of a spectrum obtained with satisfactory filtering together with 
a similar spectrum where the filters are inadequate. The original spectrum I (~) is 
in the region 0 to 1000 cm -1 ; for the range 1000 to 2000 cm -1, the digital Fourier 

1 
transform yields the spectrum I ( - ~ )  shifted by  ~ = 2000 cm -1. For clarity, 

I (-~) = I (~) has also been drawn in Fig. 14. If  the original spectrum I (~) extends 

beyond 1000 era-1 (inadequate filters), there is an overlap of I(~) and I (  - ~  + ~s ) ,  

and from the results of the Fourier transform at 950 cm -1, for example, it is 
impossible to decide whether the intensity obtained originates from radiation at  
950 cm -1 or from radiation at 1050 cm-X. To make this demonstration of aliasing 
in Fourier t ransform spectroscopy complete, the center section of the interfero- 
gram for the satisfactorily filtered spectrum is also given in Fig. 14. The sampling 
interval has been indicated. The maximum path difference s = 0.2 mm as shown 
there would yield a rather  poor resolution of A~ ----- 50 cm -1. In  fact, the spectra 
were computed from longer interferograms with bet ter  resolution. 

For most of the Fourier spectrometers, the max imum feasible path  difference 
is about  Smax = 20 cm - I .  The equivalent value of the resolved difference in wave 
numbers is A~ = 0.05 cm -1. This means tha t  the resolving power had the value 
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Fig. 14. Demonstrat ion of sufficient (center part) and insufficient (lower part)  filtering in 
Fourier t ransform spectroscopy. In  addit ion to the  spectra I07 ), the  interferogram I(s) is 
shown for the spectrum with sufficient filtering (upper part) .  These da ta  were obtained with 
a Polytec F I R  30 Fourier spectrometer  

R = 1000 at ~ = 50 cm -1. In practice, a good resolution can be achieved in 
Fourier transform spectroscopy without too much effort. I t  is easily increased by 
increasing the max imum path  difference rather  than by  narrowing the slits and 
decreasing the luminous flux in the instrument;  anyway, this flux is larger in a 
Michelson interferometer than in a grating instrument.  A principal difference 
between the two methods is tha t  in Fourier transform spectroscopy A~ is constant 
for a measurement with given Smax and a certain apodization. With a diffraction 
grating in n-th order, R = ~//l~ is constant for an investigation, provided suffi- 
ciently narrow silts can be used. 

4. Fractice of Fourier Transform Spectroscopy 

So far, the theory of Fourier transform spectroscopy has been developed. This 
section is devoted more to the experimental  and practical aspects. Naturally, 
comments on the practical realization start  with the various kinds of two-beam 
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interferometers which have been used for this purpose. Further,  a thorough 
discussion seems necessary on the different methods of executing the Fourier 
transform in analogue or digital way. However, we shall not enter into tile details 
of the computer program needed for the Fourier transform and shall consider 
mainly the principal ideas of the method. On the one hand, the computer  program 
is provided b y  the manufacturer  for commercial instruments;  on the other hand, 
it is not too difficult to obtain programs from other people working in the field or 
from the literature 47. However, in many  cases these programs have to be adapted 
or modified for the computer to be used. 

4.1 T w o - B e a m  Interferometers 

Of the two-beam interferometers employed for Fourier transform spectroscopy, 
the Michelson interferometer has already been mentioned several times (see. Fig. 
2 and Section 2). Perhaps it is worth recalling here the fact tha t  in most far- 
infrared spectrometers (conventional or Fourier) all optical elements are mirrors 
due to the lack of materials for lenses suitable for a wide range in the far infrared. 
In order to keep the optical setup compact, off-axis parabolic and elliptic mirrors 
are often employed in commercial instruments. However, the most important  
part  of the Michelson interferometer is tile beam splitter. Therefore, let us consider 
it in more detail. In the visible, near- and middle-infrared spectral regions the beam 
splitter usually is a dielectric film (or coating) on a transparent  substrate. Materials 
like Ge and Feg.O8 are frequently used for the dielectric film, while CaFg., KBr  
and quartz play a dominant  roll as substrate materials, especially in commercially 
available instruments (see Section 6.2). A rather  unusual beam divider is a reflec- 
tion grating as employed in an all-reflecting-/dichelson-interferometer 407 for the 
visible and near-infrared. In the far-infrared region on the other hand, no trans- 
parent substrate is available but, for the long waves, the dielectric film can be 
made much thicker. Thus self-supporting dielectric film beam splitters are more 
convenient in this region. Appropriate materials are sheets of organic polymers 
(Mylar, P E T  etc.) 

The thickness of these beam dividers is comparable to the wavelength of the 
radiation, and they exhibit the interference phenomena typical for a thin film or 
a Fabry-Perot  etalon. The reflectivity R and transmission T of the film are 
periodic functions of d .  ~, where d is its thickness and ~ the wave number  of the 
radiation (Fig. 15). Obviously, this periodicity is caused by  the interferences 
within the film (channel spectra). The relative efficiency of the beam splitter is 
given by  4 RT; this quant i ty  is uni ty for the ideal values R = 0.5 or 50~ and T 
= 0.5 or 50% ; it is less than unity otherwise. Whether  the opt imum value 4 RT 
= 1 is achieved in practice, depends on whether T and R reach their ideal value 
or not (see Fig. 15), and this in turn depends on the refractive index n of the film, 
on the angle of incidence, and the direction of polarization. Absorption can 
generally be neglected. The zeros of 4 RT  always occur when the optical path  
difference for an additional zigzag reflection in the film is an integral multiple of 
the wave length. From these arguments, it follows tha t  for practical applications 
the most  favorable thickness of the beam splitter has to be selected. Since the 
first zero of 4 R T  occurs at a certain value of d .  ~, a thin beam splitter is suitable 
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Fig. 15. Reflectance R and transmittance T (a,b) and beam splitter efficiency 4 R T (c,d) 
versus d~7 (thickness d and wave number ~7) for thin films with refractive indices n = 1.5 and 
n = 2.0. The angle of incidence was assumed to be 9 = 45~ The curves were evaluated for 
light polarized parallel to (a, c,[J) and perpendicular to the plane of incidence (b, d, _L) 

for a wide range  up  to r e l a t ive ly  high wave  number s  and  a t h i ck  b e a m  sp l i t t e r  for 
the  v e r y  fa r - in f ra red  (Fig. 16). Due  to  the  l imi ted  range of efficiency of the  b e a m  
dividers ,  all  commerc ia l  Fou r i e r  spec t romete r s  p rov ide  a set  of t h e m :  var ious  
coa t ings  on different  subs t r a t e s  in t he  near -  and  middle - in f ra red ,  and  m y l a r  
films wi th  severa l  th icknesses  in the  far - infrared,  respec t ive ly  (see Sect ion 6.2). 
I n  some models  for the  far - inf rared ,  the  set  of beamsp l i t t e r s  is m o u n t e d  on a 
ro t a t i ng  wheel,  and  the  change can be m a d e  a u t o m a t i c a l l y  w i thou t  b reak ing  the  
v a c u u m  of the  in s t rumen t .  I t  should  also be po in t ed  ou t  in more  de ta i l  t h a t  the  
angle  of incidence of the  r ad ia t ion  onto  the  beam d iv ide r  is close to  the  Brews te r  
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Fig. 16. Re la t ive  efficiency of th in- f i lm m y l a r  b e a m  spl i t te rs  wi th  severa l  t h i cknesses  (experi-  
m e n t a l l y  de te rmined)  as a f u n c t i o n  of w a v e  n u m b e r .  T a k e n  f rom Ref.  42) 

angle in some far-infrared instruments. For an angle of 45 ~ and n = I.S as an 
example, light polarized parallel to the plane of incidence, i.e. the plane of the 
optical diagram of the Michelson interferometer, is nearly 100% transmitted 
(cf. Fig. 15), and the beam splitter efficiency is rather poor in this case. In fact, 
the efficiency 4RT is about 7 times larger for the other polarization, i.e. per- 
pendicular to the plane of incidence (cf. Fig. 15). This has to be taken into 
account Ior investigations of anisotropic samples with polarized light. In most of 
these cases, it is more advisable to turn not the polarizer by 90 ~ but  the sample in 
such a highly polarizing instrument when a measurement is to be performed for 
the other polarization. For the dielectric films on a substrate used as beam dividers 
in the middle- and near-infrared, similar relations hold as those plotted for self- 
supporting films in Fig. 15. However, the thickness of the dielectric coating is 
rather small, and the range of usability of these beamsplitters is wider (cf. Fig. 47 
in Section 6.2). Also polarization problems are not so stringent in this case. Mostly, 
compensation plates are inserted in the radiation path in such a way that  the 
asymmetry due to the substrate is compensated. 

All thin-film beam splitters have the property that their efficiency tends to 
zero as ~2 if ~ tends to zero. This is a great disadvantage for the extreme far- 
infrared. For the region at about 1 mm wavelength, therefore, another two-beam 
interferometer is employed with better success: the lamellar grating interferometer 
(Fig. 17). For the purpose of Fourier transform spectroscopy, the grating consists 
of two interpenetrating sets of facets or strip mirrors, one of which is movable and 
the other fixed. There is a path or phase difference between the rays reflected at 
the fixed set and those reflected at the movable set, and the interference of all 
these rays results in the pattern that would have been obtained with a Michelson 
interferometer. The path difference is dependent on the depth of the grating, i.e. 
the position of the movable strip mirror, and by varying its position, an inter- 
ferogram I (s) may be scanned as a function of path difference s. 
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Fig. 18. Two-beam interferometer efficiencies of a Michelson interferometer with a thin-film 
mylar beam splitter (--),  with a metal screen as beam splitter (- -), and with a lamellar grating 
( ). Thcsc data were taken from Ref. 44) 

F r o m  t h e  p o i n t  of v i ew  of d i f f rac t ion ,  t he  r a d i a t i o n  in  z e r o t h  o r d e r  is t r a n s -  
m i t t e d  b y  t h e  ex i t  s l i t  to  t he  d e t e c t o r .  T h e  e f f ic iency  of th i s  i n t e r f e r o m e t e r  is 
r a t h e r  t l igh for  l ong  w a v e s  (Fig.  18). T h e r e  is a h igh  f requency ,  cu tof f  due  t o  cance l -  
l a t i o n  of t h e  i n t e r f e r e n ce s  w h e n  t h e  f i rs t  o r d e r  of d i f f r ac t ion  a lso  en t e r s  t h e  ex i t  
s l i t .  Th i s  cu tof f  can  e a s i l y  b e  c a l c u l a t e d  f r o m  the  g r a t i n g  f o r m u l a  Eq .  (2.1) 
[ n e a r l y  n o r m a l  inc idence ,  ~a ~ ~l ~ 0, 1st o rder ]  : 

ZO 

~. = g (sin 9a - -  s in  9i) ~ g (Fa - -  9i) ~ g27  
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where w is the exit slit width and / the focal length of the system [g is again the 
grating constant]. There is also a low frequency cutoff for the lamellar grating 
interferometer when the wavelength becomes comparable to the grating constant. 
For large path differences, i.e. large resolutions, problems may arise from shadow- 
ing. 

In  order to achieve better  performance for the Michelson interferometer, metal 
meshes and wire grids have also been used as beam dividers. An especially inter- 
esting solution of this problem is the polarizing interferometer as developed by 
D. H. Martin 4~), where good efficiency is obtained over a wide spectral range. In 
addition, the recorded signal is 1 (s), i.e. only the oscillatory part  of the interfero- 
gram. This method avoids the difficulty that  spurious features are produced in 
Iobs (0) because of a shift of the mean level I (~)  due to instrumental instabilities. 

The mean level also drops out when, in addition to the transmitted inter- 
ferogram, the interferogram reflected back to the source is recorded and the 
difference of the two interferograms is formed. For such a procedure, two detectors 
have been used in the double output  interferometer by  W. J. Burrough et al. 47). 
In order to understand the underlying basic idea, it is necessary to recall that  the 
total intensity of electromagnetic radiation sent by the source into the Michelson- 
interferometer is [see Eqs. (2.3-2.6) and Eq. (3.2)] 

oo 

4 f z(o) a o .  
0 

When the path difference s is large, the portion transmitted by an ideal Michel- 
son interferometer is [see Eq. (3.3)] 

~o 

i (oo)  = 2 f d0 
0 

and the same amount of radiation energy is reflected back to the source. For 
smaller path differences s where interferences between the two partial beams are 
observed, the intensity reflected back to the source is 

oo 

IRen (s) ----- 2 f I(0)[1 -- cos (2~0s)] d0 .  (4.1) 
0 

Eq. (4.1) can be derived in the same way as Eq. (3.2) for the transmitted intensity 
was derived. Since we assumed an ideal instrument with no losses and no sample 
in the radiation path, we need not enter into mathematical details. From the 
requirement of energy conservation it follows immediately that  the sum of trans- 
mit ted power and the reflected power is equal to the total power sent into the ideal 
system. The reflected interferogram IRen. [see Eq. (4.1)] is complementary to the 
transmitted one. At s = 0 e.g., all energy is transmitted to the detector and nothing 
reflected (II~en. = 0). In general, a maximum of II~etl. corresponds to a minimum of 
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the t ransmit ted interferogram and vice versa. I f  now the difference of the two 
interferograms [Eq. (4.1) and Eq. (3.2)] is taken, the mean value I(oo) drops out 
and only the oscillatory par t  is left 

o o  

I (s)  --  I~en(s )  = 2 I(s) = 4 f I(~) cos (2 r~s)  d~. 
0 

But  the experimental realization of this concept clearly suffers from the fact that  
one has to deal with two detectors which generally do not have equal responsivity 
etc. However, using also the interferogram reflected back to the source offers 
the possibility of comparing the spectra of two samples or two sources, i.e. the 
possibility of a double beam operation in Fourier spectroscopy (cf. the double 
beam interferometer by  R. Hanel  et al. a3) and Section 6.2). 

In  addition to the beam splitter and the other optical elements, the drive of 
the movable mirror and the system to measure the pa th  difference with high 
accuracy are essential parts  of a Michelson interferometer. Modern instruments 
for the near- and middle-infrared (see Section 6) usually provide a rapid scan mech- 
anism where the movable mirror is driven at a speed of round about 1 cm/sec. 
That  means tha t  it takes less then a second to scan an interferogram for an inter- 
mediate resolution, e.g. T = 0 . 5  sec for v = l  cm/sec and S m a x ~ l  am. In  this 
region, the movement  of the mirror is generally monitored by  interference 
fringes of a He-Ne-laser. In some instruments for the far infrared spectral region, 
the movable mirror is driven by  a synchronous motor  at a speed of round about 
1 �9 10 -a cm/sec so tha t  1 0 - 2 0  min are needed to scan an interferogram. I t  should 
be noted tha t  the signal-to-noise ratio is very poor in the far-infrared and relatively 
large integration times are needed. Therefore, step-motors are sometimes used for 
the mirror drive in this region. For these longer wavelengths, it is sufficient to use 
a Moirr-system to measure the path-difference instead of a He-Ne-laser (cf. 
Section 6). 

4.2 A n a l o g u e  Fourier  Trans form 

The Fourier t ransform necessary to convert I (s) into I (~) may  be executed either 
in an analogue or in a digital way. In this section, we shall concentrate on the first 
possibility. One potential  way is illustrated in Fig. 19: the movable mirror of the 
Michelson interferometer is moved according to a triangular wave function 
(Fig. 19 upper left). This can be done by  means of an appropiate mechanical cam 
system. Problems arise only at the points of reversal, but  usually these difficulties 
are bypassed by  the apodization. During half a period the mirror moves with 
constant velocity, say v0. Hence s----2vot and, for monochromatic radiation, 
there is an a.c. component in the signal recorded by  the detector: 

i (t) = 210 cos (2z~0s) = 210 cos (2~[2~0v0] t) (4.2) 

with a frequency of/o = 2~0v0. During a longer time, the interferogram is repeated 
periodically as the mirror moves back and forth (Fig. 19 lower left). The amplitude 
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Phase-sensitive Low- pass s{t)tt'~'~'t rectification fi Iters [Multiplication {Integration) 
by cos {2,~'Fs)] 

/ Recorder / ~A\~jH-CZ~ ~ <SpectrurnJ(,)) 

Fig. 19. Illustration of Fourier transform spectroscopy by means of an analogue computer 

of the mirror motion is one half of the max imum path  difference and therefore 
governs the resolution of this system. For a continuous spectrum, each spectral 
element of wave number  ~ is modulated with a frequency 

/ = 2~Vo. (4.3) 

Because of this modulation effect, the system has been called "interference 
modulat ion" 2 2, ~6) 

If  we consider the periodically scanned interferogram as a function of time, 
i .e.  as an a.c. signal, it is a superposition of all the components of frequency 
/ = 2 ~ v 0  according to the spectral distribution I (~). Fourier transform means in 
this case that  the recorded signal must  be analyzed with respect to its frequency 
components. Because of noise problems, the signal is first amplified in a broad- 
band amplifier, then the signal is transferred to a number  of phase-sensitive syn- 
chronous rectifiers. In each of these the signal is multiplied by  a sinusoidal refer- 
ence signal of f r equency / r  and, by  means of the following low-pass filter, the 
strength of the component of frequency / = ]r is obtained from the amplified signal. 
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All the phase-sensitive rectifiers are tuned to different frequencies and their 
number should equal the number of spectral elements to be analyzed simul- 
taneously. Now, each frequency ]r is connected to a wave number ~ in a unique 
way [see Eq. (4.3)] and the voltage at the low-pass filters is proportional to I (~). 
Consequently, a record of these voltages yields the spectrum I(~) (Fig. 19). The 
"computer"  performing the Fourier transform 

I ff,) = S i (s) cos (2~,s)ds 

consists of the phase-sensitive rectifier and the low-pass filter in this case. The 
multiplication by  cos (2~s)  is done by the phase-sensitive rectifier and the inte- 
gration by  the low-pass filter. 

In practice, a system like that  shown in Fig. 19 has been brought into operation 
with only one electronic channel and with a lamellar grating interferometer instead 
of the Michelson 26}. There have been other proposals for the analogue method; 
one is the coherent optical Fourier transform 461. Here the difficulty is that  a mask 
has to be cut in the shape of the interferogram, which is then illuminated with 
coherent laser light. Finally, it should be mentioned that  hybrid forms have also 
been produced where the interferogram is scanned once and digitized, and the 
information is stored in the memory of a digital computer, after which, by means 
of an electronic control unit, it is passed through an analogue wave analyzer 4s}. 

4.3 Digital Fourier Transform 

The method most frequently and widely used is the digital Fourier transform. 
A Fourier spectrometer employing this method is outlined schematically in Fig. 20. 
One of the mirrors is moved at constant speed v. The light in the interferometer 
is chopped at frequency ]0. In rapid-scan instruments, the chopper is missing. 
There, the signal is only modulated by  the interference effects (Interference 
modulation, see Section 4.2). The signal at the detector is amplified and passed to 
the phase-sensitive rectifier. At the low-pass filter, the analogue signal proportional 
to the interferogram I (s) is obtained. This is converted to the digital form, and the 
data are transferred to the computer where the Fourier transform is executed. 
The result, the spectrum I (~), may then be recorded or displayed on a screen after 
being converted back to an analogue signal (see Fig. 20). 

Let  us now consider some of the computational aspects. I t  has already been 
pointed out that for the digital way the Fourier transform integral is converted 
to a sum [see Eq. (3.8)]. The problem of aliasing in the spectrum [see Eq. (3.9) or 
(3.10) was also discussed. In the foregoing it was mostly assumed that  the inter- 
ferogram was measured as a double-sided one, i.e. from --Smax to +Smax. Theo- 
retically, the interferogram is symmetric about s = 0. In practice, there may be 
small asymmetries due to misalignment of the interferometer. Nevertheless, often 
only a single-sided interferogram is recorded and subjected to a cos transform: 

N 

Iobs(~) = 2 ~. ! ( n / i s )  �9 cos (2z~n~s) (4.4) 
n = 0  
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Fig. 20. Illustration of Fourier transform spectroscopy by means of a digital computer 

where 

and 

I ( n A s )  = S ( n A s )  �9 i ( n A s )  �9 A s  

1 
I (0)  = ~ S ( O )  . i ( 0 )  �9 A s  

for n > 1 (4.5) 

for n = 0 

is the oscillatory par t  of the interferogram already multiplied by  the apodization 
function S and the sampling interval A s. The summation [see Eq. (4.4)] requires 
that  the first point (n = 0) coincides exactly with the great max imum of I (s) at 
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zero pa th  difference, otherwise phase errors will occur. These, and also errors due 
to misalignment of the interferometer, their effects on the computed spectrum, 
and their removal are considered in Section 8.3. Here, we concentrate first on the 
main concepts. We assume ideal conditions and disregard possible errors for the 
present. 

The sum in Eq. (4.4) can be executed by  a digital computer  for a finite number  
of frequencies ~ = m A ~ (0 _-< m =< M) only. A reasonable choice of ~ ~ is to make 

1 
it equal to the resolved difference in wave numbers / I  ~ = _ _  [without apodiza- 

2 Sraax 

tion, see Eq. (2.21)]. For the digitized interferogram, we have Smax =N/Is  and 
consequently 

1 
/1~. / Is  ---- - - .  (4.6) 

2 N  

On the other hand, the problem of aliasing requires As - -  

~max = M-/1 ~ in this case. From these relations 

1 
2~max ' where 

1 
A ~. A s - -  (4.7) 

2 ~/f 

is obtained, and from Eqs. (4.6) and (4.7) it follows t h a t M = N ,  i.e. the number  
of frequency points is equal to the number  of interferogram points for our choice 

1 
of A P. As apodization is normally used, it m a y  be sufficient to make /1 ~ -  

Slna,x 

and, accordingly, the number  of frequency points M will be only one half of that  
of the interferogram data  N. 

Now let us assume the interferogram is already completely measured and is fed 
directly to the computer  or on to it via paper  tape or via cards. A diagram of the 
computat ion of the spectrum is shown in Fig. 21. The interferogram data  are 
stored in the computer  memory,  and the Fourier transform [substituting Eq. (4.6} 
into Eq. (4.4)] 

N 
Iobs(mA~) = 2  : I(n/Is)cos (az~--n I (4.8) 

n = 0  

is performed successively for all the frequencies m/lO wanted. Tiffs method can 
also be applied to double-sided interferograms and for performing sin and 
cos transforms (see Section 5.3) and not only the cos transform, as in our 
example. The computer  t ime needed in this case is proportional to N 2, since there 

are N 2 operations consisting of one multiplication by  a phase factor cos (n ~ )  

(see Fig. 21) and one addition. Much computer  t ime can be saved if the Cooley- 
Tukey algorithm is used instead of the conventional integration. 

The Cooley-Tukey algorithm is a rather  involved mathematical  formalism 49, 
50) and cannot be explained here in full de ta i l  A short derivation with an illustra- 
tion of the method for N = 4 is given in Appdx 2. Here we use only the result 
developed there, tha t  the required computer t ime is proportional to N'21og 2 N  
because this is the number  of operations to be executed in the course of a compu- 
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Determined completely: I(s) = l(n.  As) 

To be evaluated: I (~) = I (m . d~) 

O < n < N  

, u < m ~ M  ,u" A~ =t~mta 

M'A~'=f,  ta,~: N ' A s ~ s m a x  A s ~  1 
2 ~maz 

A ~  1 A P . A $ 1  
2$msx 2N 

' I(nAs), from spectrometer ' I 

m = / ~ + 1  

I I(nAs} strait. 1 [=), ax, om2., I(nAs) [ 

J ~  
Stored iu the memory of the computer 

/ / / 1  \ \  

1 
\ 

+ . . .  +.r(SrA s) cos (n~,) --z0a0 

+ . . . + / ' O a O  cos (~,~N-~ "" ) 

1 
('~') m =m'  l(o) +/(As)cos  =~- 

1 
+ . . .  + _r(~,~s) eo~ (=m') = l (m' ,~O 

I 
+ . . +  ICY'As) cos (,2/) = I(MA~) 

1 
] Data output I(~')=I(mAP) I 

(.2,) m = M  I(o) q~/(~s) cos ~- 

F ig .  21.  C o m p u t a t i o n  of t h e  s p e c t r u m  I(~)  in  t h e  u s u a l  d ig i t a l  way ,  w h e n  t h e  i n t e r f e r o g r a m  
I (s) h a s  b e e n  d e t e r m i n e d  c o m p l e t e l y  
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tation. In  this method, however, the calculation is done with complex numbers, 
and the time necessary for one operation will therefore greater than that  for one 
operation in the conventional method. The extra  t ime is more than compensated 
for by  having the factor 21og 2N instead of N for large N. Consequently, for the 
processing of a large amount  of data  (large N), the Cooley-Tukey algorithm is 
more economical than the conventional method in use of computer time. 

The method described so far is now in common use in a number  of Fourier 
spectrometers most  of which have a small computer at tached to it (see Section 
6.4). The main disadvantage of this method is tha t  it is necessary to determine 
the complete interferogram first and have the spectrum after that  evaluated. 
If  the interferogram is recorded by  means of a slow-scan F I R  instrument and if 
electronic da ta  processing is available only from a computation center, the 
experimeter will to have to wait some time, eventually a day, until he can tell the 
success of his experiment. We recall tha t  he can judge the quality of his measure- 
ment  only from the interferogram before the Fourier transform is performed and 
that  it is difficult to gather all details from the interferogram. And even if an on- 
line computer  or time-sharing facility are used in connection with a slow-scan 
interferometer, the experimenter has to wait for the spectrum until the scan of the 
interferogram is finished. The t ime needed by  tile computer  for the Fourier- 
t ransform of the da ta  is much less, especially, as most ly  the C o o l e y - T u k e y  
algorithm or fast Fourier-transform (FFT) is employed instead of the direct 
integration method discussed here in more detail for merely tutorial purposes. 
For rapid-scan instruments on the other hand, tile disadvantage mentioned above 
does not count so much because the spectra are available within seconds after the 
experiment was started. And here, the F F T  (and also the more time consuming 
direct integration method) offers some advantages. Especially in the middle- and 
near-infrared spectral region, it is difficult to avoid phase errors (cf. Section 5.3) 
originating from misaiignment of the interferometer and from errors in determin- 
ing accurately zero path-difference. In rapid-scan instruments, distortions of the 
interferogram m a y  also arise from the limited bandwith of the amplifier system. 
As will be discribed later (Section 5.3) the computational method discussed here 
is suitable for correcting errors as it can handle single-sided as well as double- 
sided interferograms. And the most economical way is to take a rather  short 
double-sided interferogram in order to evaluate the errors and to scan the inter- 
ferogram only single-sided up to full resolution which then will be corrected for 
the errors already determined. For all these reasons, commercial instruments 
(see Section 6.4) employ this method of computation, especially the FFT. For 
some special applications, e.g. asymmetric  Fourier spectroscopy (see Section 
4.7), the interferogram is no longer symmetr ic  about  s = 0 and has to be recorded 
double-sided. 

4.4 Real-Time Fourier Analysis 

The arguments in the last section have shown tha t  there is a need for a different 
computat ional  method for slow-scan F I R  instruments. There it would be a great 
advantage to have the spectrum computed at the same time as the interferogram 
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is being recorded. This advantage is provided by  the so-called real-time Fourier 
analysis Sl-S3), a method which is explained below. I t  can be applied in a reason- 
able way only to one-sided interferograms (0 ~<s ~<Smax). For the application 
of this method therefore, a special effort should be made to obtain a symmetric 
interferogram and to obtain the first sample point exactly at s = 0. There is only 
a limited possibility of correcting linear phase errors in this case (see Section 5.3). 
Here again, let us assume the ideal case where I(nz] s) has been determined for 
N sample points s = N A s (0 ~ n <~ N),  starting at s --  0 (n = 0). As in the previous 

1 1 
section, our choice for A ~ is tile ideal value A~ -- 2Sma, 2 N A s '  Then, I(~) is to 

be evaluated for M = N values of ~ ---- m A ~ (0 ~< ~ ~< ~max or 0 ~< m ~< M). As 
1 

mentioned already, for practical cases A ~ = may be chosen when apodization 
SnlaX 

is used. In practice, the number of frequency points is often further reduced by 
starting at the low-frequency end ~rnin = JZ .4 ~ instead of at ~ ----- 0 (m = 0) ; then the 

actual number of frequency points is M-- /*  = 1 N - -  2 /x. For our considerations, 

however, we again assume the maximum number M = N ,  and Eqs. (4.4) to (4.8) 
hold for the computation of I(~). In other words, we have the same conditions, 
the same assumptions and therefore the same mathematical problem to compute 
I (m A ~) from I (n A s) as in Section 4.3. The only difference is in the method or the 
way used for the actual execution of the computation. 

This method, real-time Fourier analysis, is demonstrated schematically in 
Fig. 22. The principle is that  the computer processes the interferogram data as 
soon as they have been measured with the interferometer. The procedure starts 
with the main maximum of the interferogram at s = 0. In the first step, the value 
I (0)  is transferred from the spectrometer to the computer. There the mean value 
I (oo) is subtracted and multiplied by the apodization function to give the value 
I(0). This is the final form of the inferferogram data as needed for the computa- 
tion [see Eq. (4.8)]. Now, not the interferogram data  but  the frequency data are 
stored in the memory of the computer in this method. Therefore, the locations 
of the memory are assigned to the numbers m of the frequency points and not to 
the numbers n of the interferogram points, as is the case when the computation 
is performed after the interferogram has been completely recorded. To continue 
the first step of the real-time method, the prepared interferogram value I(0) is 

multiplied by the phase factors cos ( ~ r ~ )  and then stored in the memory at loca- 
% / 

tion no. m. In the second step, I(1 As) is obtained from the inter/erometer and 
is converted to f ( 1 A s ) .  Then, this value is multiplied by  the phase factors 

c o s ( ~ r ~ )  and the results are added to the contents of the computer memory 
% ~ 

at location no. m. Whenever an interferogram point I ( n A s )  is measured, it  is 
converted immediately to [ ( n A s ) .  After multiplication of the phase factors 

cos (zcm--N n )  the products are added to the contents in number m. The last step in 
x / 

this Sequence is the (N + 1)th with s = N A  s. When it is finished, the contents of the 
computer memory are the values I ( m  A ~,) for the different frequencies ~ = m A ~,, 
and the Fourier transform is completed. 
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To be evaluated: I(~) = I ( m .  A~) tz ~ m ~ M 

Being determined: I(s) = I (n. A s) 0 -< n < N 

1 
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1 
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Fig. 22. C o m p u t a t i o n  of t h e  s p e c t r u m  I (~) in t h e  r ea l - t ime  m e t h o d ,  w h e n  t h e  i n t e r f e rog ram 

l ( s )  is be ing  d e t e r m i n e d  
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As mentioned above, the major advantage of this method is that the ex- 
perimentalist is able to watch the spectrum I (~) while the experiment is under way. 
This is achieved by means of a fast electronic reading of the contents of the com- 
puter memory after each step and by displaying it on the screen of an oscilloscope. 
It  is obvious that this method is feasible only if a small Fourier transform com- 
puter is attached to the Fourier spectrometer or a large central computer can 
be used "on line". I t  should be noted that the computation time for each step 
is usually small in comparison to the time needed to obtain one intcrferogram 
point, due to the large time constants necessary in far-infrared spectroscopy. The 
spectrum displayed on the screen is dependent on the path difference reached so far 
in the interferogram. Sections 2 and 3 outlined the way in which the resolution 
is inversely proportional to the maximum path difference and the interferogram 
pattern close to s = 0  is due to the gross features of the spectrum and those for 
larger s are due to the finer details (see Figs. 11 and 12). With the real-time method, 
it is possible to see and study directly what was derived theoretically in the 
previous sections. An example is shown in Fig. 23. A number of curves I(9) show 
the spectrum on the screen at various path differences, as indicated in the inter- 
ferogram. At small path differences, only a coarse outline of the spectrum is seen. 
With increasing path difference, more and more details of tile spectrum appear. 
In our example, this is first the region of high reflection due to lattice vibrations 
in NaC1 (reststrahlen band), then the secondary maxima in the reflectivity, and 
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Fig. 23. An example of the real-time method: spectrum (50 to 400 cm -1) with one reflection 
at an NaC1 single crystal. The curves I(P) show the spectra displayed on the oscilloscope 
screen for the different paths travelled by the movable mirror indicated in the interferogram. 
These data were obtained with a Polytec FIR 30 Fourier spectrometer 
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finally the channel spectra, due to interference from zigzag reflections in a plane- 
parallel window. This evolution of the spectrum on the oscilloscope screen during 
the experiment is the useful tool for checking the success of the experiment in the 
case of slow-scan long-time far infrared measurements. 

4.5 Phase Modulat ion 

For many applications, there may  be some advantage in employing phase modula- 
tion 5a,55) instead of the usual amplitude modulation. In the latter technique the 
path of the radiation from the source to the detector is blocked and opened period- 
ically by a chopper (cf. Fig. 20 and Section 4.3). For phase modulation, the chopper 
is removed from the spectrometer and the fixed mirror of the Michelson interfero- 
meter is moved back and forth about its mean position with a certain frequency. 
In contrast to the interference modulation (see Section 4.2), the amplitude of the 
mirror motion is small, being a quarter of the wavelength of the light. For the 
analogue Fourier transform or interference modulation, the amplitude of the 
mirror has to have many wavelengths in order to achieve a reasonable resolution 

R =~'Sm~x-- smx [see Eqs. (2.23)and (2.27)]. Here, we are still dealing with the 

case where the interferogram is scanned once as a function of path difference s 
or of the position of the movable mirror, which is driven at constant speed. The 
Fourier transform is executed in a digital way. The motion, or rather oscillation of 
the fixed mirror is to ensure that  the signal at the detector is modulated to permit 
the use of the usual lock-in technique with narrow-band amplifier and phase-sen- 
sitive rectifier (Fig. 24). 

Though a sinusoidal motion of the mirror is easier to carry out and is most 
often used, let us assume for simplicity tha t  it moves according to a square-wave 
function. Then the intensity at the detector, the interferogram, is a function of the 
path difference s and of the time t [for the case of a continuous spectrum, see 
Eq. (3.2)] : 

oo 

I , ( s , t )  = 2 j" I(~){1 + cos (27~[s + a(t)])}d~, (4.9) 
0 

where s is path difference resulting from the position of the movable mirror and 
a (t) that  resulting from the oscillation of the fixed mirror. The index 9 indicates 
the phase modulation. For the assumed square-wave motion (see Fig. 24) : 

~ ( t )  = \ _ ,~o 

1 
0 < t  < ~ - T 0  

T0 < < To t 
and a(t + To) = a(t) . (4.10) 

In Eq. (4.9), s is not expressed as a function of time since the motion of the 
movable mirror and hence the variation of s in time must be slow in comparison 
to the modulation a (t). From Eq. 4.9 we gather further that  2zr~a (t) in the argu- 
ment of the cosine function is an oscillating phase, so this procedure is called phase 
modulation. In the narrow-band amplifier, only the a.c. component of I , ( s , t )  
with frequency/0 = 1]To is amplified to which frequency the amplifier is tuned. All 
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Fig. 24. I l lustrat ion of Fourier t ransform spectroscopy when phase modulat ion is employed 
instcad of the  usual ampli tude modulat ion 

other a.c. components with frequencies n/0 and also the d.c. component are 
suppressed. I t  should be noted that  suppression of the d.c. component means we 
get rid of I ( ~ ) ,  which had to be subtracted from I(s). This helps to avoid errors 
introduced by an erroneous determination of I(ao). The details of the Fourier 
analysis of I~ (s,t) are given in Appdx 3. For the output signM of tile amplifier, 
the result is 

oo 

l~  (s,t) ,'~ {2 S I (~) sin (2~s) sin (2~ao)d~} sin (2~/ot) . (4.11) 
0 
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Accordingly, the analogue signal obtained at the low-pass filter is proportional 
to 

oo 

i~  (s) = -- 2 ] I (~) sin (2z~ao) sin (2~z~s) d ; .  (4.12) 
0 

Here the negative sign has been included for theoretical reasons (see Appdx. 3). 
The interferogram i r  (s) is closely related to the derivative of the interferogram 
_7(s) obtained with amplitude modulation (see Fig. 24 and Appdx 3). For the 
computation of the spectrum with the computer, the interferogram has to be 
digitized in the usual way. 

If the Fourier transform were performed as in all the previous cases according 
to Eqs. (3.6), (4.4) or (4.8), the result would be zero. For amplitude modulation, 
the interferogram [see Eq. (3.2)] is a so-called cosine transform of the spectrum 
I(~). I t  is symmetrical about s-----0. For phase modulation [(see Eq. (4.12) and 
Fig. 24)], the interferogram is an odd function of s, i.e. i ~ ( - s )  ---- --I~ (s). This 
is the so-called sine transform of the spectrum I(~) multiplied by sin (2~a0).  
For these reasons, we obtain the spectrum by a sine transform. In order to de- 
monstrate the effects of the phase modulation in a simple way, let us neglect all 
effects of a finite interferogram, of apodization, and digitization for a moment, 
and consider the ideal case of an infinite interferogram. Then we obtain 

oo 

I ,  (~) = - I i ,  (s) sin (2~s)  ds ---- I (~) sin ( 2 ~ 0 )  �9 
--o0 

(4.13) 

From Eqs. (4.12) and (4.13) and also from Fig. 24, we see the main effects of 
phase modulation. The interferogram is asymmetric and is similar to the observed 
signal in conventional spectroscopy when the magnetic field is modulated for 
Zeeman effect investigations. The effect can be understood if we consider that  in 
our case, because of the oscillating mirror, we obtain not the usual interferogram 
but something related to its derivative. The Fourier transform yields the true 
spectrum multiplied by sin (2n~a0). The suitable choice of ao provides the pos- 
sibility to shift the maximum of I (~) to higher and lower frequencies. In other 
words, this factor can be used as a kind of filter (see Fig. 25). For ao = 10, 25, or 
100 ~zm, the first maximum of s in(2~ao)  would be at ~=250,  100, or 25 Cm -1 
respectively. All the effects of finite interferogram etc. are the same as discussed 
earher and need not be repeated in this context. 

In practice, a sinusoidal motion of the oscillating mirror is to be preferred to 
the square-wave motion, and in most applications, the sinusoidal motion is used. 
The effects of phase modulation are the same in this case, the only difference being 
that  the modulation factor in Eqs. (4.11) to (4.13) will be the first Bessel function 
J l ( 2 ~ a 0 )  instead of s in(2~a0) .  The first maximum of the Bessel function is at 

_-- 0.29 instead of ~ = o_.2s for the sine function. An example in Fig. 25 demon- 
O" 0 O" 0 

strates how sinusoidal phase modulation is a very useful tool and filter for spectro- 
scopy in the extreme far-infrared 56). 
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Fig. 25. Interferograms recorded using (a) amplitude modulat ion; (b) sinusoidal phase modula- 
tion, vibration amplitude 30 t~m; and (c) sinusoidal phase modulation, vibration amplitude 
100 #m. The corresponding spectra are shown for comparison. All data were to taken from 
Ref. ~e) 

4.6 Examples  

Summarizing the results of our discussion of the practice of Fourier transform 
spectroscopy, we start with the presumption that the equipment for most routine 
spectroscopic investigations consists of a Fourier spectrometer with a Michelson 
interferometer and a digital computer. In other words, the advantages of the lamel- 
lar grating used as a two-beam interferometer, and of phase modulation, for ex- 
ample, have been utilized only for certain special applications in the extreme far- 
infrared. All commercial Fourier spectrometers are available with a computer 
attached, which in most cases not only performs the Fourier transform but is also 
programmed to control the instrument. Commercial instruments have a remote 
switch for the selection of the different spectral ranges, and the filters and beams 
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splitters are changed automatically. Wha t  then is left for the spectroscopist to do 
and to think about  ? 

Obviously, the experimentalist  has to decide on the basis of the problem to be 
studied whether he can extract  more useful information by  reflection or by  trans- 
mission measurements.  Another question to which he has to find an answer is 
whether the investigation should be performed at  room temperature,  at  low or 
even at elevated temperature.  But  apar t  from these questions, which are closely 
related to the physical or chemical or biological problem under investigation, there 
are still a few problems connected with Fourier transform spectroscopy: 

1. First, the spectroscopist has to decide whether to record a one-sided or a two- 
sided interferogram. The lat ter  will be advantageous in bypassing phase errors 
and noise problems. As already mentioned, a good compromise with respect to 
phase errors is to start  scanning the interferogram somewhere before zero pa th  
difference and to extend it single-sided to Smax (cf. Section 5.3). When real-time 
Fourier analysis is applied, however, only a one-sided interferogram can be re- 
corded. In many  of the commercial instruments, the decision about one- ore two- 
sided interferogram has already been made by  the manufacturer  (see Section 6). 

2. The spectrocopist has to decide on the most  suitable spectral range for his 
investigation : 

~ m i n  ~ v < ~ m a x  . 

On the one hand, the filters have to be selected according to the value of Vmax, 
and on the other hand, the values of Vmin and ~max have to be fed into the 
computer  in order to define the range for which the Fourier t ransform is to be 
executed. 

3. For optical investigations, a certain resolution is required. In  the case of 
Fourier spectroscopy, this is expressed as the smallest clearly resolved differ- 
ence in wave numbers:  

1 z l ~ =  
$max 

From the required value of A ~, the maximum path  difference S m a x  up to which 
the interferogram must  be recorded is obtained (cf. Table 1). 

4. When decisions have been made about  the values of Vmtn, Vmax, and A r or Smax, 
then the sampling interval A s has to be chosen such tha t  

1 
A s <  - -  

- -  2 ~Tmax 

While for ~min, ~max and Smax any value can be selected within certain limits 
continuously, there is most ly  only a set of discrete values available for A s. This 
originates from the Moir6 or laser system for determining the pa th  difference. 
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5. The spectroscopist should also pay  attention to the question whether the 
sampling interval As, the speed v of tke movable mirror and the time constant 

of the electronic data recording system are in a proper relation with each 
other. I t  is well known (see also Section 5.4) that  a low pass filter with t ime 
constant z has the complex transfer function (amplitude and phase l) 

[1 + i(2:~/z)] -1 

and only signMs with frequencies for which ]z < 1 are passed by  it without 
considerable attenuation. Now, the max imum wave number  Vmaxin the spectrum 
corresponds to a max imum frequency in the interferogram 

/ m a x  = 2 V Vmax �9 

An acceptable choice for z is the following (cf. Section 5.4) 

o r  

/ m a x  " z ~ 0,3 

0,3 o,3 - -  0,3 A_~s 
/max 2V~max v 

That  means that  the time constant ,- has to be chosen less than one third of the 
time needed to scan just one sampling intervall. Otherwise the interferogram 
will be distorted by  the electronic system in an untolerable way. 

All these are the parameters  for a measurement with a Fourier spectrometer. 
I t  should be mentioned tha t  in some cases the input data  for the computer are 

not ~max and Smax but M '  - -  ~max -- ~min and N = s . . . .  the number  of frequency A~ -A-~s '~'e" 
and interferogram points, respectively (cf. Table 1). Sometimes it is advisable to 
evaluate I(~) for more than one frequency point per resolution with A ~. Then, 
the number  of spectrum points is a multiple of M'. These numbers have to be kept  
within the limits of the accessible capacity of the computer memory.  For conven- 
tional integration, as already mentioned, the interferogram is stored in the memo- 
ry;  therefore, the capacity of a small computer  limits the number  N, i.e. Smax, and 
the resolution. For reM-time Fourier analysis, we recall that  the frequency points 
are assigned to the locations of the memory.  The computer capacity limits the num- 
ber of frequency points in this case. If  M" exceeds the available capacity, it is bet ter  
to decrease M' ,  not by  increasing A ~, but  by  dividing ~max --Vmtn into two or 
more parts  for each of which the calculation has to be performed separately. 
Before start ing the actual measurement,  it is advisable to check the alignment of 
the interferometer by  inspecting the symmet ry  of the interferogram at s = 0 .  
Especially for real-time Fourier analysis, it is also advisable to see that  one digital 
point is close to s ----0. 

A great var ie ty  of problems can be studied in the far-infrared by  means of 
Fourier transform spectroscopy: vibrations of molecules and crystal lattices, 
rotation of molecules, electronic transitions in paramagnetic  ions and semicon- 
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Tab le  1: E x a m p l e s  of p rope r ly  chosen  p a r a m e t e r s  in Four ie r  spec t ro scopy  

Spec t ra l  r ange  S a m p l i n g  Reso lu t ion  M a x i m u m  N u m b e r  of 
?~min--Vmax in te rva l  A s  1) d ~  p a t h  differ- i n t e r f e rog ram 

ence Smax 2) po in t s  
(cm -1) ([Lm) (cm -1) (mm) N = Smax]AS 

N u m b e r  of 
s p e c t r u m  po in t s  
M =  

2 Vmax--{;min 3) 

2~ 

8 0 0 - - 1 0 0 0 0  0.31644 ) 0.06 167 528000 307000 
8 0 0 - - 1 0 0 0 0  0.3164 O.IO 100 316000 184000 
8 0 0 - - 1 0 0 0 0  0.3164 0.25 40 126000 74000 
8 0 0 - - 1 0 0 0 0  0.3164 0.5 20 63000 37000 

4 0 0 - -  4000  1.26564 ) 0.06 167 132000 120000 
4 0 0 - -  4000  1.2656 0.10 100 79000 72000 
4 0 0 - -  4000  1,2656 0.25 40 32000 28800 
4 0 0 - -  4000  1.2656 0.5 20 16000 14400 
400--4000 1.2656 2.0 5 4000 3600 

I 0 0 - -  I000  5.0 0.I  I00 20000 18000 
I 0 0 - -  I000  5.0 0.5 20 4000  3600  
1 0 0 - -  I000  5.0 2.0 5 i 000  900 

5 0 - -  400 10.0 0.1 100 10000 7000  
5 0 - -  400  10.0 0.5 20 2000  1400 
5 0 - -  400 10.0 2.0 5 500 350 

1 0 - -  100 40.0 0.1 100 2500  1800 
1 0 - -  100 40.0 0.5 20 500 360 
1 0 - -  100 40.0 2.0 5 125 90 

1) Theore t i ca l ly :  A s  = - - .  
2 ~max 

1 
larger  than .  

2 Prnax 
1 

2) Smax = ~ (for apod ized  in te r fe rogram) .  

3) Two s p e c t r u m  po in t s  per  resolu t ion  wid th  3 ~ ;  theore t ica l ly  M = N,  if A s -  
~Tmin = 0. 

4) 0.5 • 0. 6328 /~m (He-Ne- laser  wave leng th )  a n d  2 • 0 .6328/~m,  resp.  

1 
, in prac t ice :  t he  i n s t r u m e n t a l l y  ava i lab le  va lue  close to  b u t  n o t  

2 Vmax 
--  - -  a n d  if 

ductors, and magnetic excitations in antiferromagnetics. No at tempt  is made here 
to complete this list or to explain all the problems in detail c). The essential point 
is that  useful information is obtained by  an optical investigation, i.e. by  measuring 
the reflection or transmission of a sample. With a conventional commercial 
double-beam instrument, reflectance or transmittance is obtained directly. In 
Fourier transform spectroscopy, where more radiative energy reaches the de- 
tector and a bet ter  signal-to-noise ratio is obtained, generally two measurements 
are carried out to obtain first the background spectrum Io (3) (without sample) and 

e) Fo r  f u r t h e r  i n fo rma t ion ,  see Refs.  1-3). 
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secondly the sample spectrum I8 (~) (with sample). The ratio of both spectra is then 
the reflectance R or the transmittance T: 

R(~) -- Is(v) or T(~) -- I~(#) (4.14) 
Io (~) Io (~) 

One example of a reflectivity measurement is shown in Fig. 26. The sample is 
CdCr2Se4 and the reflection spectra exhibit the typical reststrahlen bands caused 
by  the lattice vibrations. Another example (Fig. 27) is a transmission measurement 
of an absorption line due to antiferromagnetic resonance. This also shows how, 
with spectroscopy in the extreme far-infrared, the signal-to-noise ratio is rather 

~o 

J5 

a 
l i I l I l 

S 
b 

I 

U 
I 1 r r ,I 

200 

Wave number ~ [cm -~] 

I 
I00 300 400 

Fig. 26. Transmission and reflection study with a Fourier spectrometer, a) background spec- 
t rum and interferogram; b) sample spectrum and interferogram; c) ratio of both spectra 
(reflectivity of CdCr2Se4 in this example). --  These data were obtained with a Beckman-RIIC 
Fourier spectrometer FS 720 with a Fourier transform computer FTC 300 attached to it 
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Fig. 27. Spectrum in the extreme far-infrared with an absorption line due to antiferromagnefic 
resonance (NiO, doped with 2% Co s+) obtained by two single scans ( • and .) and the average 
of several scans ( ). These data were obtained with a Polytec FIR 30 Fourier spectrometer. 
The average was worked out by a Hewlett Packard HP 2100 A computer 

limited. Here it is necessary to repeat  a measurement  several times and take the 
average of all the experimental data. With the rapid scan instruments in the 
middle-infrared, very often multiple scanning of the interferogram, e.g. 128 
times, is used to improve the signal-to-noise ratio and the accuracy of the experi- 
mental  data. The examples presented so far are taken from the field of solid state 
physics where the infrared spectroscopy plays an important  role in determining 
the energies of various excitations. But  it is also very well known tha t  infrared 
spectroscopy is an valuable tool in chemical analysis, especially in the socalled 
"finger pr in t"  region. Here, modern rapid-scan Fourier spectrometers offer the 
possibility of an on-line analysis combining gas chromatography or liquid chroma- 
tography with infrared spectroscopy. And often an analysis does not mean to 
measure only an absorption spectrum and to indentify an certain substance via 
its absorption lines. In  many  cases, spectra have to be compared with each other. 
In the case of many  biological systems for example, water  is the only interesting 
solvent. But  then, the spectra are obscured by the strong, broad infrared absorb- 
ance of water. Even under these extreme conditions, the infrared spectrum of the 
solved material  can be determined by  subtracting the absorbance spectrum of 
I-I20 as long as no total  absorbance due to water  occurs. Fig. 28 shows the aqueous 
solution infrared spectrum of hemoglobin obtained with a Fourier t ransform 
spectrometer (spectrum No. 2). The absorbance spectrum of the solvent is shown 
at  the bo t tom of Fig. 28 (spectrum No. 1). An inspection of spectra No. 1 and 
No. 2 yields no detailed and useful information about  hemoglobin. But  when the 
difference of the two spectra is formed, the absorption lines characteristic for 
hemoglobin are clearly observed (spectrum No. 3 in Fig. 28: absorbance spectrum 
of hemoglobin in aqueous solution). I t  is evident tha t  one of the absorption lines 
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1800 1400 1000 600 CM "1 
I I I I 

Fig. 28. Infrared spectrum of hemoglobin in aqueous solution --  spectrum no 1 : ~bsorbance 
spectrum of H20, spectrum no. 2: absorbance spectrum of aqueous hemoglobin solution, and 
spectrum no. 3: absorbance spectrum of hemoglobin (difference of spectra no. 2 and no. 1). 
These spectra were obtained with a Digilab FTS 14 Fourierspectrometer (Data taken from 
Ref. 57c)) 

due to the classical amide I and II  modes (1657 and 1547 cm -1) was hidden under 
the strong water absorption near 1600 cm -1. Of course, such an analysis requires 
a rather high photometric accuracy. The possibility of multiple scanning has 
already been mentioned. And for the necessary electronic data  processing, many 
manufacturers provide a software package with their instrument, in addition to 
the Fourier transform program. Among the additional programs, the following 
are useful for the analysis under consideration: double precision option, coadding 
and averaging several interferograms, conversion of transmittance into absorb- 
ance, and subtracting two (absorbance) spectra. In this context, it may be consider- 
ed an advantage of Fourier spectroscopy that  a computer is a necessary part  of 
the spectrometer since a digital computer can be used for all calculations to which 
the spectra are subjected. And if the core of the computer is extended for this 
purpose by  8 K, for example, this is inexpensive in comparison to the cost of a 
complete Fourier spectrometer. At this point, it is perhaps worth mentioning 
t h a t 8  K means 8000 words. In the computer language, 1 word with 12 or 16 bits 
means that  a number between 0 and 4095 (21~' - 1) or 65535 (216 -- 1), respectively, 
can be stored at this place of the computer memory. For certain applications, 
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double precision may  be required. Double  precision means  t ha t  the word length 
is doubled to 24 or 32 bits, respectively [numbers  from 0 to (224 -- 1) or (2 a2 --  1), 
resp.]. At  the end of these considerat ions about  chemical analysis and  infrared 
spectroscopy, it  remains  to point  out  tha t  the range 4 0 0 - 4 0 0 0  cm -1 is very  
impor t an t  in this respect bu t  tha t  chemical invest igat ions  are no t  restr icted to 
this range. For  example,  normal  v ibra t ions  of macromolecules,  molecules with 
heavy  atoms, certain bend ing  modes and  torsional modes usual ly  have frequencies 
below 500 cm -1 in the far-infrared region 9s). 
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Fig. 29. Transmission spectrum of nitrous oxide (N20, upper half) and of nitric oxide (NO, 
lower half). Both spectra represent an average of three runs and were obtained at a pressure 
of 200 torr and a path length of 203 ram. The data were taken from Ref. 57a), The instrument 
used was a somewhat modified Grubb Parsons Cube interferometer. 
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All the examples used here to illustrate Fourier t ransform spectroscopy in 
the infrared are more or less routine investigations, taken from the everyday work 
of spectroscopist. By contrast, the next samples will demonstrate some of the limits 
of capabil i ty of Fourier transform spectroscopy. J. W. Fleming and J. Chamber- 
lain 57a~ have studied the transmission of nitrous oxide (N20) and nitric oxide 
(NO) in the extreme far infrared spectral range 10--40 cm -1 (see Fig. 29). The 
absorption lines in the transmission spectra are due to rotational transitions. 
These spectra are rather  impressive examples of extremely high resolution 
(A ~ ~0 .05  cm -1, R m500 at 9.5 cm -1) which can be obtained only by  means of 
Fourier spectroscopy in this range. I t  is not possible to obtain it by  means of con- 
ventional grating spectroscopy with the same, or at least comparable, signal- 
to-noise ratio. I t  should be noted that  in these experiments the resolution has been 
pushed tha t  far tha t  the limitations imposed on the resolution by  the finite 
dimensions of the source and the finite aperture have to be taken into account 
(cf. Section 5.1). In many  applications of spectroscopy to chemistry, very useful 
information about reactions may  be gathered if the variation of spectral features 
in t ime can be observed. In this respect, R. E. Murphy et al. ~Tb~ have studied the 
spectral evolution of a N2/O2 gas mixture subjected to high-energy-electron 
irradiation. In  this case, the electron gun was pulsed with a repetition frequency 
of about  80 Hz. For each pulse, the interferogram data  were taken for a certain, 
fixed pa th  difference. By repetition, the whole interferogram was scanned succes- 
sively. The transformed emission spectra are presented in Fig. 30, which show 
clearly the change in t ime of the NO vibrational band at 1876 cm -1 and of the 
vibrat ion-rotat ion bands of N20 and NO~. at 2200 and 1618 cm-~, respectively. 
The time resolution is 50/,sec in these spectra. Our final example is taken from the 
pioneering work of P. and J. Connes, who applied Fourier transform spectroscopy 
to astrophysical investigations. They obtained spectra of the C02 rotation-vibra- 
tion band (~ ~6500  cm -1 or 2 ~ 1.54 #m) of Venus; these spectra are believed to 
demonstrate  in a very excellent way the advantages of Fourier transform spectro- 
scopy (Fig. 31). The data  are compared to spectra of the COs band obtained with 
a grating spectrometer in a laboratory and to one obtained with a conventional 
spectrometer from Venus. 

4.7 Asymmetric Fourier Transform Spectroscopy 

As everyone knows, the optical properties of a material  axe expressed in two 
optical constants, the refractive index n and the absorption coefficient n. I t  is the 
purpose of spectroscopy to determine experimentally one or both of these optical 
constants as a function of frequency. This can be done by  measuring reflection or 
transmission. If we were able to measure amplitudes or electrical fields (magnitude 
and phase) in an optical investigation, it would generally be possible to deduce 
both optical constants from one measurement of either reflection or transmission. 
However, we are only able to measure intensities where the magnitude of the 
field is  determined and the phase information is lost. Thus, in general, from one 
i tem of information only one optical constant is obtained, and two measurements 
are necessary to determine both. There are a few exceptions to this rule, e.g. the 
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Fig.  30. T i m e  reso lved  spec t roscopy .  T h e  resu l t s  a re  p r e s e n t e d  in a " t h r e e - d i m e n s i o n a l "  p lo t :  
i n t e n s i t y  v e r s u s  w a v e  n u m b e r  (1400--2500 cm -1) and  t ime .  a) t i m e  scale f r om f ron t  to  rear  
(0--10 msec ,  A t = 5 0 0  /~see), b) t i m e  scale f r om rear  to  f ron t  ( l l - - 1  msec,  A t = 5 0 0  /~sec), 
c) a sec t ion  of b) w i t h  en la rged  t i m e  scale (4.1--3.1 msec,  At = 50 ~usee). The  i n s t r u m e n t  u sed  
for  th i s  i n v e s t i g a t i o n  was  a n  Idea l ab  IF -3  Four i e r  s p e c t r o m e t e r  w i t h  a PbSe  (77 I{) de tec tor .  
T h e  d a t a  were  t a k e n  f rom Ref.  sTb) 
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Fig.  31. Two s u p e r i m p o s e d  spec t r a  of t he  ro t a t i on -v ib r a t i on  b a n d  of CO2 a t  a b o u t  6500 c m  -1  
o b t a i n e d  f rom Ve nus  b y  m e a n s  of Four ie r  t r a n s f o r m  spec t ro scopy  (left) a n d  co r r e spond ing  
por t ion  of t h e  s p e c t r u m  ob t a i ned  b y  m e a n s  of conven t i ona l  spec t ro scopy  (right).  For  com-  
par ison,  a s p e c t r u m  is s h o w n  which  was  ob ta ined  b y  conven t iona l  spec t roscopy  in a labora-  
tory .  D a t a  t a k e n  f rom Ref.  5s) 

transmission spectrum from a plane-parallel plate where the absorption coefficient 
is determined by the intensity or energy loss in the sample (magnitude) and the 
refractive index by channeled spectra (phase). These statements are true for 
conventional spectroscopy as well as for Fourier spectroscopy when the sample is 
placed at the sample focus outside the arms of the Michelson interferometer. In 
contrast to conventional spectroscopy, however, Fourier transform spectroscopy 
offers the possibility of retaining the information about magnitude and phase and 
determining both optical constants from one measurement. This is achieved when 
the sample is placed in one arm of the Michelson interferometer. In this section, the 
principle is stated and some practical examples of this application of Fourier 
transform spectroscopy are given. 

For transmission measurements where the sample is placed in one arm of the 
Michelson interferometer, a special optical arrangement is useful where the waves 
transmitted or reflected from the beam splitter to the mirrors and reflected by  the 
mirrors travel at different heights. Fig. 32 is a schematic diagram of the arrange- 
ment developed by E. E. Bell 59 a,b), one of the pioneers in this field. The major 
advantage is that  a sample is passed only once by the radiation. First, however, 
the sample is removed and a background interferogram is scanned and converted 
by  the computer into the background spectrum, Io (~). 

When the sample is put  into one of the partial beams, the magnitude of the 
wave in  this beam is reduced according to the transmission coefficient of the 
sample. In addition, a phase shift is introduced by  the change in optical path 
length due to the sample. For monochromatic radiation, we have to write for the 
wave in the arm of the fixed mirror, instead of Eq. (2.3a) : 

El = V T (~) Eo e i (2z~t -2z~r l -~(~) )  �9 ( 4 . 1 5 )  
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~ - - - -  -4 Transmission 

r "-Beam divider 
Fig. 32. Optical arrangement (principle) for asymmetric Fourier transform spectroscopy. For 
further details see Ref. 60) 

Here T(~) is the power or intensity t ransmit tance of the sample and 9 (~) is 
the phase shift introduced by  it. The wave reflected at the movable mirror can 
still be written in the form of Eq. (2.3b). The interferogram with the sample in one 
arm of the Michelson interferometer is then for monochromatic radiation 

1 Veo Is  (s) ---- -~ ~oo [ E l + E 2 [  ~ 

= Io(~)[1 + T(~) + 2VT(~ ) cos (2~s  - ~(~))], 

(4.16) 

1 Veto E2 and s --~ r2 -- r l .  For a continuous spectrum, we have where Io(~) = 

to add up all the contributions from spectral elements of wave number  ~ and 
obtain for the oscillatory par t  of the sample interferogram 

oo 

Is(S) = 2 I VTff ') loft,) cos (2ups - ~(~))d~. (4.17) 
0 

The grand max imum of the sample interferogram is shifted to higher wave 
numbers than the background interferogram (Fig. 33). If the reflectivity R of the 
sample is small and if the absorption coefficient ~ is small compared to the refrac- 
tive index n, the magnitude and the phase of the transmission coefficient m a y  be 
approximated by  

T (~) = (1 - -  R)  2 e - 4 . ~ a ~  ~ (~) ---- 2 ~  (n - -  1) d~ 

(1 
w i t h R  ~ \ I  + n ]  (4.18) 
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Fig. 53. Transmission (a) and reflection measurements (b) by  means of asymmetr ic  Fourier 
t ransform spectroscopy. The samples are polyethylene (PET) and mylar  (transmission), and 
Kl3r (reflection). The different curves show background and  sample interferograms as well as 
power t ransmi t tance  (reflectance) and phase angle spectra. Data  taken from Ref. 59) 
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From these relations, it is clear that  the sample interferogram is shifted by the 
path difference corresponding to the optical path nd~, in the sample minus the 
path in air dp replaced by the sample. For the case of nearly constant n (see Fig. 
33, PET sample), the interferogram is simply shifted by this amount and is still 
symmetric. In general, however, n and x depend on the wave number ~. The phase 
shifts are then different for different wave numbers, and the resulting interfero- 
gram is asymmetrically distorted (see Fig. 33, mylar sample). In this kind of 
Fourier transform spectroscopy the interferogram is usually asymmetric because 
the optical properties of the two arms of the Michelson interferometer are asym- 
metric and not equal. This special application is called "asymmetric Fourier 
transform spectroscopy". The properties of the sample are deduced by means of 
a cosine and a sine Fourier transform from the sample interferogram 

I i~ (s) cos (2:~s) ds ~ ]/~(~) Io (~) cos ~o (~) 

I is (s) sin (2z~Os) ds m ]/~(~) Io (~) sin 9 (?). 
(4.19) 

Eq. (4.19) simply shows the basic relationship and the influence of finite 
interferogram, apodization, and digitizing is not considered in detail. We recall 
that  Io(~) is the background intensity already determined, and the essential 
results of the Fourier transform are T (~) and ~ (~), from which both optical con- 
stants can be evaluated. In other words, the complex amplitude transmission 
coefficient 

]/T~(9) e-~r 

is determined in this kind of Fourier spectroscopy. Therefore, it is often called 
" a m p l i t u d e  F o u r i e r  s p e c t r o s c o p y " .  

In the case of reflection measurements, the sample replaces one of the mirrors 
in the Michelson interferometer (see Fig. 32). The reference mirror is assumed to 
be 100% reflecting in the far-infrared, and in the sample interferogram the power 
reflectance R of the sample and the phase shift ~ at the reflection (usually 7~ for 
nonabsorbing media with n > 1) take over the role of T and ~ in transmission 
measurements. The interferogram obtained in this case is also somewhat shifted 
and asymmetric (see Fig. 33, KBr sample). By means of the cosine and sine 
Fourier transforms, R and ~v, and finally n and ~, are evaluated from the experi- 
mental data. 

Recently, first experimental results were published which have been obtained 
with a Michelson interferometer especially designed by J. Gast and L. GenzeV ~ b) 
for reflection studies on small solid samples by means of asymmetric or amplitude 
Fourier spectroscopy. The main advantage of the optical layout is that  sample 
and reference mirror are located at focal points which do not take part in the motion 
to produce the path difference in the interferometer. Therefore, these foci can be 
placed inside a cryostat that  allows the sample to be cooled. Another recent 
development in this field is concerned with the difficulty that,  when studying the 
reflectivity of solids, the determination of the phase depends strongly on the 
exact positioning of the sample mirror instead of the background mirror. This is 
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overcome when the sample is partly aluminised and used by itself as a background 
mirror. Sample and background interferogram are obtained with the same setup by 
dividing the field of view 61). 

But  the amplitude or asymmetric Fourier spectroscopy has not been applied 
only to solids but  also to liquid samples and gases. Here too, it has been proved an 
important help to obtain the two optical constants n and n simultaneously 62a,b). 
In gases, for example, the anomalous dispersion of the refractive index in the 
neighbourhood of rotational absorption lines was determined experimentally by  
this method. 

5. Advantages and Disadvantages 

In this section we comment on tile advantages and disadvantages of Fourier 
transform spectroscopy as compared with conventional spectrocsopy. The most 
important  of the principal advantages of Fourier spectroscopy are the Jacquinot 
and the Fellgett advantages, often cited in the literature, and called after the 
pioneers in this field who first pointed them out. Even for practical spectroscopy, 
it is good to know what these advantages really mean. Retrospectively, we also 
discuss whether the Fourier transform, the use of a computer etc., is a great 
disadvantage of the method or a tolerable one. Next, it is important  to have some 
idea of the requirements in Fourier transform spectroscopy with respect to the 
necessary mechanical precision and alignment of the optical system, also filtering 
and sensitivity. Then some hints will be given about possible errors and their 
suppression. In many cases, if we know about a certain error, it can be suppressed 
by introducing a special factor in the mathematical treatment,  i.e. the Fourier 
transform. Finally, we discuss the average noise level in the spectrum with a 
given signal-to-noise ratio in the interferogram. For  the spectroscopist, the answer 
to this question is helpful in determining the optimum length of an interferogram, 
i.e. the optimum resolution for a measurement. 

5.1 Principal Advantages and Disadvantages 

In the discussion of the basic principles of Fourier transform spectroscopy a 
number of advantages and disadvantages have already been mentioned. For 
example, a much greater portion of the radiant power emitted by the source 
reaches the detector in a Michelson interferometer than is the case in a grating 
spectrometer. In a naive and qualitative way, this is due to the separation of the 
radiation into spectral elements in the grating spectrometer, but  a quantitat ive 
comparison shows that,  in addition to this, there is another principal advantage of 
the Michelson interferometer, the so-called Jacquinot advantage. On the other 
hand, a better  signal-to-noise ratio is required in Fourier transform spectroscopy 
before the finer details of the spectrum can be extracted from the interferogram. 

Let  us consider now all these aspects in more detail and in a quantitative way. 
Generally, the radiant power utilized from the source in a Michelson interfero- 

131 



R. Geick 

Cotlimator Image of Image of 
mirror fixed mirror movabte mirro 

/ / \ .  \ \  . . . .  ~ = ~  . . . . . .  j -  
L . -  -~- -~- - -v~- - -  - -  / ~ -~  I 

% ~ 1 ~ _  ~ " ~  ~ . ." , \ '~ \  ~, I I 

~ f  : ~ " ~ ' E  t d d P t \ "./~ ; o ? c g  ~ o ,  ~!,fe?~ce: . 

~ ~ As =~,r 2 "~E-~-s. tg O's lnO=sc~ 

Fig. 34. Ex tended  source problem in a Michelson in terferometer  

meter  is proportional to the brightness B and the area As of the source and the 
solid angle ~2c subtended by  the collimator mirror (Fig. 34) 3~) : 

P = B ' A s ' Q o  = B  As-At  /2 (5.1) 

The solid angle may  be expressed by  the area Ae of the collimator mirror and 
its focal length ]. Thus we arrive at the more symmetr ic  form of Eq. (5.1). In  the 
literature, the quotient As//~ is often expressed as the solid angle ~95 which the 
source subtends from the collimator mirror. In  a lossfree and ideal optical system, 
the product A �9 ~2 is constant throughout the system according to the rules of 
geometrical optics a~.). Therefore, it is a suitable quant i ty  to describe the flux 
throughput of an optical system. Originally, P. Jacquinot  focused attention on this 
fact. I-Ie called this quant i ty  "6tendu" or throughput  2o, 63). I t  is 

E ~  = A e ' D s  - -  A~-As (5.2) /2 

for the Michelson interferometer. If  we want  to evaluate the "6tendu" for a 
grating spectrometer, we have to replace the area As of the source by  the effective 
source area, i.e. the area of the slits w. h, where w and h are the width and the 
height of the slit. Then we obtain 

,o. h (5.3) EG = A e  �9 T "  
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Next ,  let us consider t ha t  the finite dimensions of the source impose  a l imit  
to  the  resolving power  of the  Michelson in ter ferometer  in the  same w a y  as the  
finite slit width  does for the gra t ing  spectrometer .  The  finite size of the  source 
means  t h a t  also rays  enter  the  in ter ferometer  which are inclined b y  an angle 0 
to the optical  axis (see Fig. 34); hence, a d isp lacement  s]2 of the  movab le  mirror  
produces the pa th  difference s . cos  0 ins tead of s. The  to ta l  in te r fe rogram is the  
sum of the  contr ibut ions f rom all points  of the  (circular!) source 2,4): 

co ~max 
I(s) = 4~ ~ j" I(P)[1 + cos (2~r~s cos 6)] sin 0 d0 dP 

0 0 

= 27r-fi I(~,) 1 + -(:r~sr2--- ~ 
k 2/2] 

d~ (5.4) 

where  r is the radius of the  source and ] is again the  focal length of the colli- 
mator .  The  Fourier  t r ans form of this in terferogram,  neglecting here all effects of 
finite in terferogram,  apodizat ion and digitizing, gives 

/ 2~-] 

(5.5) 

Eq. (5.5) tells us t ha t  the effect of the  finite size of the  source is twofold:  

1) T h e " t r u e "  wave  n u m b e r  ~ is observed a t  a lower wave  n u m b e r  ~(1 -- v ~ ) .  
x 

2) At  this wave  number ,  we find contr ibut ions f rom the range 

~ 1 --< ~' < ~ 1 -I- This  means  a finite resolution A ~ = ' - -  
- -  _ _  = . v 2 / 2  �9 

Thus,  the resolving power  f rom tile finite area of the  source in the Michelson 
in ter ferometer  is 

- ( 5 . 6 )  R ~  - -  A~7 r 2 " 

For  a diffraction grat ing,  on the other  hand,  the  basic fo rmula  [Eq. (2.1)] wi th  
~ v d = e + 0  and q~i-----e--0 (Fig. 35) reads 

n .  2 = 2g cos e sin 0 ( 5 . 7 )  
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Fig. 35. Limitation of the resolution of a grating spectrometer by the finite width of the slits 

From Eq. (5.7) we obtain the resolution of a grating spectrometer as limited 
by  the slit width (see also Section 3.1) ~) 

(5.s) A~ = --  d-- A O = ~ c t g O  
dO 2] 

where the slit width w is equal to 2]-A 0 from simple geometric considerations. 
Thus, the energy-limited resolving power of the grating spectrometer becomes 

2] t g 0 .  (5.9) 
R G  = A ~  w 

The throughput  E and the resolving power R are quantities characteristic for 
a given instrument.  When comparing scanning times and signal-to-noise ratios, 
however, it is advisable to include the brightness of the source and to consider the 
actual power flux through the instrument see [Eq. (5.1)]. For simplicity, let us 
assume that  the brightness of the source m a y  be approximated by  tha t  of a 
black-body source at a certain temperature  T. Then, for the far-infrared spectral 
range, the relation hc~ ~ k T  is assumed to hold and we can use the Rayleigh-Jeans 
law ~2~ 

I (~) d~ = 2ckT~2 de,. (5.10) 
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F o r  the  Michelson in te r fe rometer ,  the  r ad i a t i on  is a b r o a d  b a n d  f rom 0 to  a 
m a x i m u m  wave  n u m b e r  Vmax: 

and  

~max 

f 2 ckT~,3max 

0 

2 .3 Ac "As 
P~t = B~t " E ~  = ~ c k T v m ~ x  lZ 

(5.11) 

F o r  the  g ra t ing  spec t rometer ,  on the  o ther  hand ,  the  r ad i a t i on  is l imi ted  to  the  
b a n d w i d t h  A ~ as g iven b y  the  resolut ion of the  i n s t r u m e n t :  

BG ---- I(~) �9 A~ = 2ckT~2A~,  

and  wi th  A ~ = ~ c tg  0 w 
21 

w2h 
PG = BG �9 EG = 2 ckTr,3Ae ~ ctg 0 .  

(5.12) 

F r o m  Eqs.  (5.11) and  (5.12), we see t h a t  B is l a rger  for the  Michelson t h a n  for  
the  g ra t ing  ins t rument .  I t  wiU be shown below tha t ,  as the  t h r o u g h p u t  E (Jac-  
qu inot  advan tage )  is la rger  for the  Michelson, P is much  larger.  

In  order  to  d e m o n s t r a t e  the  significance and  mean ing  of these  formulae ,  le t  
us inser t  some t yp i ca l  figures for fa r - inf rared  in s t rumen t s  and  compare  the  results .  
F o r  a Michelson in te r fe romete r ,  t he  following va lues  are t a k e n  as t yp i ca l :  

Col l imator  a rea  

Foca l  l eng th  

Source (radius) 

M a x i m u m  feasible p a t h  difference 

M a x i m u m  wave  n u m b e r  

Ae = 176.7 cm 2 (R = 7.5 cm) 

/ = 30 cm 

r = 0.5 cm 

Smax = 25 cm 

Vmax = 130 c m  - 1  

a n d  for a g ra t i ng  spec t rome te r :  

Col l imator  a rea  

Foca l  l eng th  

Gra t ing  cons t an t  

N u m b e r  of grooves 

Sli t  w id th  

Sl i t  he igh t  

F o r  ~ ---- 50 cm -1 in 1st o rder  

Ac = 706.9 cm ~ (R = 15 cm) 

] = 92 cm 

g = 0.0300 cm 

N = 1000 

w - -  0.20 cm 

h = 1.50 cm 

0 = 19.9 ~ 

135 



R.  G e i c k  

For both instruments T = 3000 K has been assumed to be the average tem- 
perature of the source ~1). From the values listed above, the interesting quantities 
E, R and P were computed. Tile results for the Michelson interferometer and the 
grating spectrometer are listed below for comparison: 

M i c h e l s o n  G r a t i n g  

i n t e r f e r o m e t e r  s p e c t r o m e t e r  

T h r o u g h p u t  Ev~ = 0 .154 c m  2 . s t e r  E G  = 0 .025 c m  2 "s te r  

P o w e r  f lux  PI~  = 2 . 8 0 . 1 0  - 4  W P G  = 2 . 3 3 . 1 0  - 8  W 

R e s o l v i n g  p o w e r  f r o m  f in i te  d i m e n s i o n s  R ~  ~ 7200 R ~  = 333.3  

of  s o u r c e  o r  s l i ts  A F  = 0 .007 c m  - 1  1) A ~  = 0.15 c m  - 1  1) 

R e s o l v i n g  p o w e r  f r o m  n u m b e r  of  g r o o v e s  R ~  = 1250 1) RG = 1000 
o r  m a x i m u m  p a t h  d i f f e r e n c e  zIff = 0 .04  c m  - 1  ffZJ = 0.05 c m  -1  1) 

1) a t  ~ = 50 c m  -1 .  

The resolving power from interference effects (maximum path  difference or 
number  of grooves) is nearly equal, in both cases for the typical figures chosen 
here, but  the resolving power derived from the finite dimensions of the source or 
of the slits is very different for the two instruments. The value of the Michelson 
interferometer is about  20 times larger than  tha t  of the grating spectrometer. 
These results substantiate  the s tatements  in Sections 3.1 and 3.2 tha t  resolution 
in Fourier transform spectroscopy is limited by  interference effects [R = ~Smax, 
see Eq. (2.27)], while tha t  of the grating spectrometer is energy-limited [slit width, 
Eq. (5.9)]. However, there have been examples of high resolution Fourrier  
spectroscopy where the finite aperture and the finite dimensions of the source 
have a perceptable influence on the results. The transmission spectra of N~O 
and NO which were obtained by  J.  W. Fleming and J. Chamberlain 57a) are 
already presented in Section 4.6 (see Fig. 29). Their nominal resolution has been 
A ~ = 0.05 cm -1 as calculated from the max imum path  difference [cf. Eq. (2.20)]. 
The solid angle [28 which the source subtends from the collimator mirror was in 
their experiment [cf. Eq. (5.2)] 

~ r  2 

/2 0.0035 ~ 3 �9 10 -4 �9 4 ~ sterad. 

be 
According to Eq. (5.5), the resolution due to the finite size of the source would 

r2 /2s 
= - -  ~ ~ (0.0006) (5.5a) 

in this case. At 40 cm -1, its value is A~ =0.025 cm -1 which is still somewhat 
smaller than the resolution due to the max imum pa th  difference. But  it is of the 
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same order of magnitude. Moreover, the authors were able to determine the peak 
positions of the absorption lines with an accuracy of about 0.003 cm -1. And 
their experimental values of the frequencies of the rotational transitions in N20 
and NO differed systematically from the true values by a factor 

~true = %bs " (1.00035) 

[see Eq. (5) in Ref. sTa)]. This wave number shift is to be regarded the shift result- 
ing from the finite size of the source [see Eq. (5.5) and its discussion] 

~ o b s m - ~ t r u e ( 1 - - ~ 2 ) - ~  ~true (1 - 4 ~  ) . (5.5b) 

Inserting the value of t2s, we obtain from this relation (~2s/4r~ 1) 

~true = Jobs 1 + ~ m Jobs (1.0003) 

This estimate of the wave number shift agrees reasonably with the experimental 
value. 

The throughput of the Michelson interferometer is about 6 times larger than 
that  of the grating spectrometer. I t  would be larger by another factor of 20 if one 
could assume equal energy-limited resolution for both instruments. The values of 
the throughput,  quoted here are typical for spectrometers designed and built 
in a laboratory for the very far-infrared. A grating instrument with collimator 
mirrors of 30 cm diameter and with a focal length of 92 cm is a rather huge instru- 
ment. The values of the throughput of commercially available interferometers 
range from 0.03 to 0.2 cm 2 �9 ster (cf. Section 6.3). Especially instruments for the 
near- and middle-infrared have a somewhat lower throughput in order to mini- 
mize aberrations and to obtain a small and handy instrument. And a grating 
spectrometer with the dimensions of such a Michelson interferometer would have 
a throughput much smaller than the value quoted in the comparison. 

I t  should be noted further that an increase in resolution is easily achieved in 
this case by increasing the maximum path difference and the scanning time. The 
power flux is not influenced by an increase of Smax. However, there will be an in- 
crease in noise, as we shall see later. An increase in resolution means for a grating 
instrument a reduction of slit width and hence, a reduction of the power flux, 
which is proportional to the square of the slit width [see Eq. (5.12)]. I t  also seems 
worth mentioning that  the Jacquinot or throughput advantage exists not only in 
the Michelson interferometer but  also in other instruments, e.g. a Fabry-Perot  
interferometer. 

The other principal advantage which applies to Fourier transform spectro- 
scopy is the "multiplex" or "Fellgett" advantage 21,G4~. It  was P. Fellgett who 
first pointed out that  there is an advantage when the data in all elements of a 
spectrum are obtained simultaneously instead of being measured for each element 
successively. In Fourier transform spectroscopy, the radiation in the Michelson 
interferometer is not separated into spectral elements. The interferogram contains 
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the information about all these elements and, in the Fourier transform with a 
digital computer, this information is extracted from the experimental data  for all 
spectral elements simultaneously. The multiplex advantage does not always 
apply to Fourier transform spectroscopy. If the Fourier transform is performed 
in the analogoue way according to the principle of interference modulation (see 
Section 4.2) and if only one phase-sensitive rectifier and low-pass filter are used 
(see Fig. 19), we obtain only the information of a single spectral element and we 
cannot profit from the multiplex advantage. This is also true for a conventional 
grating instrument when the radiation of one spectral element is transmitted to the 
detector, but  when a photographic plate is used in the plane of the exit slit, the 
multiplex advantage is also effective in this case of conventional spectroscopy. 

In order to derive a more quantitative formulation of the Fellgett advantage, 
let us consider the analogue Fourier transform spectrometer, as described in 
Section 4.2. There, it is possible to compare experiments with and without multi- 
plexing for the same instrument. For different instruments, the comparison may be 
obscured by  other advantages or disadvantages, e.g. the Jacquinot advantage. 
Let  us assume that  we have to measure in a certain time T the intensity of M 
spectral elements at wave number ~ = m A ~ of width A ~ in the range 0 -< ~ -< M 3 
or 0--< m <--M. If the instrument is equipped with M phase-sensitive rectifiers 
(see Fig. 19), we can measure the intensity for all wave numbers mA ~ simul- 
taneously, the measuring time for each spectral element being the total time T. 
The M phase-sensitive rectifiers are tuned to the modulation frequencies 2 yore A r, 
[see Eq. (4.3)] corresponding to the wave number mA~. If the instrument is 
equipped with only one phase-sensitive rectifier, the intensity of only one spectral 
element can be measured at a time: successively, the one phase-sensitive rectifier 
is tuned to the different modulation frequencies 2 v0m A ~, and the intensity I (m/1 ~) 
is obtained. In this case, we require the measuring time TIM for each single spectral 
element. 

�9 Now, the quantitat ive aspect of the multiplex advantage is that  a better  
signal-to-noise ratio is achieved for the long time T in comparison to the short 
time TIM. In far-infrared spectroscopy, the noise is mostly detector noise, in- 
dependent of the signal. Under optimum conditions, the time constant ~-~RC 

1 T of the low-pass filters will be chosen proportional to T ur T/M, in partice v,-~ -~ 

1 T (cf. no. 5 in Section 4.6). Now, the root mean square value V ~  (RMS or , - - - $ ~ .  
"t / ~ - -  

value) of the noise voltage is proportional to V~-~= ] / {  from both technical and 

statistical arguments. For the multiplex case, we have 

(s.m) 

where S is the signal and (S /V~)  the signal-to-noise ratio. For the non-multiplex 
case, we obtain 

S ,-.-, 
( V ~ ) N ~ - - V  M and ( ~ - ) ~ M  V T" (5.14) 
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Fig. 36. Optical layout of a 2047-slot Hadamard transform spectrometer (taken from 1Ref.?7)) 

The results mean that  a factor of ~/M- is gained in the signal-to-noise ratio for 
the multiplex case. In this context, it should be noted that  a long wave number 
range can be scanned with a Fourier spectrometer in quite a short time, especially 
with a rapid scan Fourier spectrometer. The multiplex advantage is considered so 
important  that  at tempts have been made to realize it also for conventional grating 
spectroscopy in the infrared region where the photographic plate cannot be used 
as a detector. A method was developed which is known as Hadamard transform 
spectroscopy~2-~). Its principle can be described as follows: In a grating spectro- 
meter, the intensity of all the spectral elements is distributed in the focal plane 
of the exit slit. Instead of a single slit, a multislit mask consisting of transparent 
and opaque slots is used through which the dispersed light is passed to obtain an 
encoded signal with all the information from a broad spectral range (cf. Fig. 36). 
The signal at the detector is the sum of all the light transmitted by the transparent 
slots. Now it is obvious that  a decoding for N spectral elements is only possible if 
N independent measurements have been performed. Please note, that  in Fourier 
spectroscopy these N independent measurements are the interferogram values 
I(n A s) at N different values of path difference. In Hadamard spectroscopy the 
independent informations are obtained by using a mask with 2N--1 slots but  
illuminating only N of them at a time. Then the mask can be shifted N times by  
one slot and each time a different portion of N slots is illuminated (see Fig, 37). 
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In this case, the code is a cyclic N -  N matr ix  the elements of which are "1" (trans- 
parent) or "0"  (opaque). In  Fourier transform spectroscopy, the corresponding 
encoding system are the phase factors 

1 
for ~=mAL s=nAs,  and Av. As= 2/v (see Sections 2.2 and 4.3). To extract  

the spectral data  from the interferogram, the encoded information, we have to 
use the Fourier transform. This transform is the inverse of the encoding system. 

( r a n )  [see Eq. (4.8)and Figs. 21 and22 I t  consists of the same phase factors cos ~ ~ -  

in Sections 4.3 and 4.4]. In Hadamard  spectroscopy, too, a mathematical  treat-  
ment  of the recorded data  is necessary for decoding and for extracting the spectral 
data. Here, this procedure is the application of a matr ix  inverse to the encoding 
matr ix  in Fig. 37. The lat ter  usually is chosen in such a way, that  on the average, 
one half of the slots is t ransparent  and the other half opaque. From these con- 
siderations, it is evident, tha t  Hadamard  transform spectroscopy can profit from 
the multiplex or "Fellget t"  advantage. But  also the throughput  can be enlarged 
in this case if a second slot mask is used in the entrance focal plane instead of a 
single slit 7s) (Note, that  this case has not been illustrated in Fig. 36). In  prin- 
ciple, the advantages stated for Fourier spectroscopy are applicable also for 
Hadamard  transform spectroscopy which employs a conventional grating spectro- 
meter.  As our consideration are mainly devoted to Fourier spectroscopy, there is 
not sufficient space to present and discuss here all the details about realisation of 
Hadamard  spectroscopy, i.e. experimental difficulties, limits of the method 
(diffraction at the slots [) etc. Clearly, a Hadamard  spectrometer is superior to a 
conventional scanning grating spectrometer. In principle, the performance of a 
Hadamard  spectrometer is similar to that  of a Fourier spectrometer 79). The result 
of a comparison of actual instruments of the two kinds will depend on the technical 
details of spectrometer design. In  practice, it can be of some advantage to employ 
a Hadamard  spectrometer and not a Fourier spectrometer when only a narrow 
spectral range is of interest. A Hadamard  spectrometer contains still a grating 
monochromator ,  and a narrow spectral range can easily be selected for which the 
N Hadamard  signals are then recorded. For Fourier spectroscopy, narrowing of 
the spectral range means decreasing the signal at the detector but  not reducing 
the work necessary to scan an interferogram. Another point worth mentioning is 
tha t  mechanical precision and tolerances are less for Hadamard  spectrometers in 
comparison to Michelson interferometers. These apsects will be discussed in more 
detail in the next  section. As well as Fourier spectroscopy, Hadamard  spectro-. 
scopy has been employed for special applications in space and in astronomy s0,Sl) 

The critical comparison with other methods has already led us to some 
disadvantages of Fourier spectroscopy which we have to consider in a systematic 
way now, after commenting extensively on the advantages. Many people well 
acquainted with the practice of spectroscopy have regarded it as a major  dis- 
advantage of this method that  a computer  is necessary for the execution of the 
Fourier transform. In  fact, it was troublesome to scan the interferogram, to 
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Fig. 37. Hadamard mask with a total of 13 slots for demonstration of the principle. Only 7 
slots (within the section marked by the heavy line) are exposed to the radiation. 7 independent 
measurements are obtained by shifting the mask stepwise, each step corresponding to the 
width of 1 slot on the mask. The resulting Hadamard encoding matrix is a 7 • 7 cyclic matrix 

take the da ta  to the computer  facility, and to have to wait  for the final results. 
And  not  every spectroscopist  had easily access to a computer  in these early days  of 
Fourier  spectroscopy.  Wi th  tile development  of relatively cheap, small digital 
computers ,  these handicaps have been eliminated from Fourier  t ransform spectro- 
scopy. All commercial  ins t ruments  are provided witll computers ,  and their oper- 
at ion is not  more  difficult than  tha t  of a conventional  two-beam spectrometer.  
Another  objection is t ha t  the recorded interferogram contains all the information 
bu t  is not  intelligible to the spectrocopist.  Bu t  this handicap  also has been 
overcome by  modern  technique with the rapid scan method  in the near-  and 
middle-infrared where the spectral  da ta  are available ve ry  soon. For  the  slow- 
scan spectroscopy in the far infrared, as was already mentioned,  the real-time 
Fourier  t ransform is a mean  to visualize all informat ion in the familiar form of a 
spec t rum while the interferogram is still being recorded. Of course, tile disadvan- 
tage of the real-time me thod  is t ha t  only single-sided interferograms can be used 
where the spectra are ve ry  sensitive to  phase errors (cf. Section 5.3). And  if the 

141 



R. Geick 

normal integration method (see Section 4.3) is applied in case of a slow-scan 
instrument, the coarse contours of the spectrum can be read from the inter- 
ferogram with some experience. To be fair, let us note that  the necessity of Fourier 
transform and of using a computer brings also advantages. For example, the 
spectral window function can be taylored as desired by  the choice of an 
appropiate apodization. Secondly, amplitude Fourier transform spectroscopy 
offers the possibility of measuring the magnitude and the phase of a reflection or 
transrr~ssion coefficient. And finally, the computer can be used for all data  pro- 
cessing necessary to obtain the final results in every kind of investigation, as 
already mentioned. 

When considering the advantages and disadvantages of spectroscopic methods, 
it is regarded an advantage of Fourier spectroscopy to cover a wide spectral 
range without difficulty. In the far infrared range, this is a true advantage without 
any seamy side. In the middle- and near-infrared however, problems can arise. 
One of the essential properties of Fourier spectroscopy is that  the signal at the 
detector is increased as the spectral range is widened. This increase in signal 
improves the signal-to-noise ratio as long as the noise is independent of the signal. 
If the signal becomes too large, the detector may show saturation effects and 
nonlinearities. Generally these effects cause a more or less drastic flattening of the 
grand maximum of the interferogram. Now, all our considerations depend on the 
assumption that  the electrical signal obtained in scanning the interferogram is 
proportional to the intensity of light. If this linearity is destroyed by saturation 
effects of the detector, aggravating errors will arise in the Fourier transformed 
spectral data. Thus, the strength of the signal must not exceed the limits of the 
dynamical range of the detector and of the electronic system. There are more 
problems that  may  originate from the fact that  a Michelson interferometer is not 
a monochromator and that  it transmits the total intensity of radiation. If, for 
example, samples cooled to rather low temperatures are investigated, the total 
radiation from a wide spectral range could cause considerable heating of the 
sample by absorption processes. Again, this will be more a handicap in the middle- 
and near-infrared and not so much in the far infrared. In the case of such a handi- 
cap, it can be necessary to waive part ly the multiplex gain and reduce the light 
intensity on the sample and, as a consequence, the absorption of light and the 
beating. 

In the visible, Fourier spectroscopy is rather trickly and not so advantageous. 
A high mechanical precision and a very good alignment of the instrument are 
required for these short waves. Moreover, the multiplex gain part ly breakes down 
due to the fact tha t  the dominating noise is no longer detector noise but  photon 
noise which varies with the strength of the signal (cf. Section 5.4). On the whole, 
the domain of Fourier spectroscopy is the infrared spectral range where the ad- 
vantages can be fully realized and where the disadvantages mentioned can be 
limited to a tolerable magnitude. 

5.2 Precision, Alignment, Filtering 

The required mechanical precision, the perfection of the alignment, and the ac- 
curacy needed in the interferogram are not basic principles but  rather technical 
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aspects of Fourier transform spectroscopy. However, their importance must not be 
underestimated in the everyday life of a spectroscopist. One essential difference 
between the Michelson interferometer and the grating spectrometer is that  in the 
latter case the required mechanical precision is more or less concentrated in the 
grating. The relatively high cost of the grating is due to this precision. The basic, 
optical equipment is much cheaper for the Michelson interferometer, but  the 
alignment has to be more precise in the actual interferometer otherwise the oscilla- 
tory part of the interferogram will be reduced considerably and the interference 
spoilt. The two mirrors or their images have to be kept parallel to within a tenth 
of the smallest wavelength in the spectrum, i.e. 1 am for the range 10 to 1000 
cm -1. This involves the adjustment of the mirrors and of the beam divider as well 
as the mechanics of the carriage on which the movable mirror is mounted. In the 
case of a conventional spectrometer, the absolute measurement of a wavelength 
and its accuracy depend on the grating constant and therefore on the precision 
of the grating. For a Michelson interferometer, they depend on the Moir6 or laser 
system by means of which the path of the movable mirror and thus the path 
difference is controlled. Typical figures for the sampling interval A s have been 
quoted in Section 3.2, e.g. d s = 5 ~m for the range 10 to 1000 cm -1. The error for 
the determination of the path travelled by the movable mirror should be smaller 
than 1/10 A s. From these figures, it is clear that  these requirements are met most 
easily in the far-infrared spectral region with wavelengths of about 100/*m. On 
the other hand, this is the region where the energy limitations are most severe. 
These are the two essential reasons why Fourier transform spectroscopy is the 
preferred method in the far infrared. But as already mentioned, the precision 
requirements can be met also in the near- and middle-infrared region. Especially 
with respect to this region, the arguments concerning mechanical precision and 
costs of the basic equipment can be extended to Hadamard spectroscopy. Here 
again, the precision is bought for a relatively high price with the grating. And for 
a realistic comparison, also these arguments have to taken into account, in ad- 
dition to the advantages and disadvantages discussed in the preceding section. 
Moreover, the spacing of the grooves of a grating may change with temperature 
while the wavelength precision of a laser controlled interferometer is independent 
of such influences. For special applications, for example spectroscopic investi- 
gations in space and astronomy s2-85~, fourier spectroscopy was preferred for 
reasons of the lower cost, of the smaller size and of the lower weight of the inter- 
ferometer. Even under the extreme conditions during space vehicle reentry into 
the earth atmosphere, interferograms were recorded by  a Fourier spectro- 
meter s6) Moreover, the interferogram data can be taken with a small inter- 
ferometer, and the Fourier transform may be executed elsewhere. 

As regards the throughput advantage (see Section 5.1), the power flux through 
a grating spectrometer and a Miehelson interferometer have been compared. A more 
realistic approach would have to include the reflection and absorption losses in 
the filters for the supression of unwanted radiation. In grating spectrometers, the 
bandwidth of the radiation has to be reduced to one octave or less. The losses due 
to filters generally amount to more than 50 ~o of the wanted radiation. As the filter 
problems are greatly reduced in Fourier spectroscopy, losses due to filters are much 
less. Adding this advantage to the other two already discussed (" throughput"  
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and "multiplex"),  we see tha t  the signal-to-noise ratio will be bet ter  by  several 
orders of magnitude than in a grating spectrometer. However, this does not neces 
sarily mean tha t  the errors and the noise in tile spectrum are reduced by  the same 
factor. In  other words, the excellent overall signal-to-noise ratio of the inter- 
ferogram may  conceal the fact tha t  the signal-to-noise ratio is less than uni ty for 
some finer details in the spectrum. 

In order to understand this important  property of Fourier transform spectro- 
scopy, let us consider a broad spectrum over a wide wave number  range with one 
narrow absorption line in it (cf. Fig. 12). Then, according to the rules of Fourier 
transformation, the broad spectrum produces an intefferogram with highly damp- 
ed oscillation. The max imum amplitude of the oscillation and also the mean value 
of the interferogram are equal to the total  intensity or to the area under the 
spectral distribution [see Appdx 1 and Eqs. (A 1.1) and (A 1.2)]: 

co 

5/Broad (~) d~ ~/Broad " yBroad, (S.15) 
o 

where /Broaa and yBroad are the maximum value and the width of the broad 
spectrum, respectively. Tile narrow line causes a less damped oscillation in the 
interferogram (see Fig. 12) and its max imum amplitude is equal to the area covered 
by  the narrow line [see Eqs. (A 1.1) and (A 1.2)]: 

dO 

S/Narrow (~) d~ ~/Barrow �9 7Narrow, (5.16) 
O 

where /Barrow and 7Barrow are the max imum value and the width of the narrow 
line, respectively. If the Fourier transform effected by  the computer  is to yield the 
narrow line without distortion in the spectrum, the corresponding oscillation in the 
interferogram must  not be obscured by  noise. The least required for this purpose 
is tha t  the RMS value of the noise be equal to the ampli tude of the narrow line 
[see Eq. (5.16)]. Then the signal-to-noise ratio is equal to uni ty for this line while 
it is much greater for the broad spectrum or for the interferogram as a whole. On 
these grounds, a quality factor Q is defined 6s) : 

/~oaa �9 ~Bro~a (5.17) 
Q = /Narrow" ~Narrow'  

where /Broad'~Broad is a measure of the total  intensity (area under the spectral 
distribution), and /Barrow" ~'l~arrow a measure of that  of the finest detail ill the 
spectrum. The signal-to-noise ratio of the interferogram must  be bet ter  than or at  
least equal to the quaIity factor Q. Conversely, the effective quality factor Q by  
which the finest measurable details in the spectrum are defined must  be less than  or 
equal to the signal-to-noise ratio. 

5.3 Possible  Errors  and  their  Correction 

In  this section, at tention is focused on possible errors and how to avoid or correct 
them. There are a number  of possibilities of obtaining erroneous spectra in Fourier 
t ransform spectroscopy ss), and it is useful to be aware of them since often slight 
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errors in the interferogram will have a strong effect on the computed spectrum 
because it is not the error itself but  its Fourier transform that  affects the 
spectrum. This is a typical situation in Fourier transform spectroscopy and we 
have to take it into account. Generally the effect of errors is less serious when a 
double-sided interferogram rather than a single-sided interferogram is used to 
compute the spectrum. Fig. 38 demonstrates the increase in uncertainty for the 
single-sided interferogram in comparison to the double-sided interferogram, 
especially at the ends of the spectral range where the signal-to-noise ratio is rather 
low. In the ideal case without any errors, we would subject a single-sided inter- 
ferogram to a cosine transform, and in most practical cases, the Fourier transform 
is executed this way. But, as the examples show, we have to be especially careful 
about errors in this case of a single-sided interferogram. In the case of a double- 
sided interferogram, we have to pay for better accuracy by processing twice as 
many data and taking more computer time. Without any errors we would need 
only the cosine transform for the double-sided interferogram. But in practice, 
the sine transform is also performed to eliminate some of the errors and their 
effects. 
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Fig. 38. Reflectance of Mg2 Ge computed from single-sided (+) and double-sided (*) inter- 
ferograms, according to Eq. (5.20) in the latter case (taken from Ref. 42)) 

In a systematic way, we distinguish intensity errors and phase errors in the 
interferogram. For example, intensity errors arise when an incorrect mean value 
has been subtracted from the interferogram, or when the mean value is changing 
due to possible temperature-dependent change in the gain of an amplifier. Also 
the errors due to nonlinearities in the detector or the electronic system are 
intensity errors. A last sort of intensity error will result in the computed spectrum 
if an erroneous electrical puls is recorded together with the interferogram. A phase 
error arises when the position s = 0 has not been determined with sufficient ac- 
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Fig. 89 a-d. I n t e n s i t y  errors:  a) S p e c t r u m  wrong  b y  a c o n s t a n t  fac tor ;  b) S p e c t r u m  I (if) and  in-  
t e r f e rog ram I (s) w h e n  I(oo)  is d e t e r m i n e d  incor rec t ly ;  c) I n t e r f e r o g r a m  I (s) w i th  l inear  dr i f t  
of t he  m e a n  va lue  I(oo) a n d  t he  spec t r a  ob ta ined  f rom t h e  s ingle-s ided ( - - )  and  t h e  double -s ided  
in t e r f e rog ram ( . . . .  cos t r a n s f o r m ,  - - -  - -  = s ine t r ans fo rm) .  The  do t t ed  line ( . . . )  ind ica tes  
t h e  u n d i s t o r t e d  s p e c t r u m .  T he  s p e c t r u m  ob ta ined  b y  cos t r a n s f o r m  (- - -) shows  no dev ia t ion  
f rom t h e  u n d i s t o r t e d  s p e c t r u m ;  d) I n t e r f e r o g r a m  I (s) (- - -) w i th  an  e r roneous  impu l se  ( ) 
a n d  co r r e spond ing  s p e c t r u m  ( ) as well as t he  u n d i s t o r t e d  s p e c t r u m  (- - -) 
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curacy. This can easily occur, for example, when the Fourier t ransform is 
performed in the digital way. Then, there may  be no sample point taken exactly 
at s = 0 .  Misaiignment of the Michelson interferometer may  cause an asym- 
metrically distorted interferogram 87,88~. As will be explained later, this case 
corresponds to a nonlinear phase error. The compilation and discussion of errors 
serves mainly the purpose to introduce the reader to the errors and their effect 
on the computed spectrum. I t  is certainly advisable to know about the possibilities 
of errors and their signature in the interferogram. Those who are aware of the 
errors from the interferogram will interpret the spectra with sufficient caution and 
will t ry  to eliminate them. The other purpose of this section is to show the prin- 
ciples of the methods used for the correction of phase errors in commercially 
available instruments. I t  seems advisable to concentrate on the systematic errors 
in this section and their possible correction. The statistic errors in an interfero- 
gram will be discussed in the next section in context with the noise problems. 

Let  us now turn to the intensity errors and discuss the most frequent ones in 
detail: Figs. 39a)--d) demonstrate some of them in the interferogram and the 
effect in the spectrum. A minor intensity error is tha t  sometimes the computed 
spectrum happens to be wrong by  a constant factor due to some change in the 
amplifier gain between background and sample measurement (Fig. 39a). This 
does not affect the structures in the spectrum but  is important  when refractive 
index or absorption coefficient are evaluated from the reflectance or transmittance, 
respectively. 

In  computing the spectrum, the mean value has to be subtracted from the 
recorded interferogram, except for some special cases like phase-modulation 
Fourier transform spectroscopy. Here errors can arise when the mean value I (co) 
is not accurately determined (see Fig. 39b) or changes during the scan due to a 
drift of the mean value (Fig. 39c). In both cases, the effect on the spectrum 
is obtained by  a Fourier transform of the mathematical  form of these errors, 
which are slowly varying functions of the pa th  difference s as against the inter- 
ference patterns of the interferogram. According to the elementary rules of Fourier 
transforms, these error functions produce erroneous structures of the spectrum 
in the neighborhood of ~ = 0. For the offset of I (oo), no difference is encountered, 
whether a single-sided or double-sided interferogram is used to evaluate the 
spectrum. For the drift of I(oo),  however, a difference is exhibited. In all these 
cases, the erroneous structures are important  only in a wave number  range ex- 

tending to a few multiples of A ~ ~ 1. from ~ = 0. Consequently, this spectral 
Sm~x 

range should be rejected if strange and unexpected structures appear  here in the 
spectrum. Another intensity error occurs when an extra  impulse is produced in 
the interferogram (Fig. 39 d), perhaps due to switching some apparatus  off or on. 
If  the impulse is sufficiently short in t ime (proportional to path  difference s), 
the Fourier transform yields a nearly undamped cosine wave superimposed on the 
spectrum. The remedy recommended in this case is to replace the short impulse 
in the interferogram by  a smooth function and in this way to remove the cause of 
the cosine wave in the spectrum. As already mentioned, distortions in the spectra 
due to nonlinearities and saturation effects are also intensity errors. The experi- 
menter  may  recognize them from a flattening of tile grand max imum of the 
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interferogram. In most practical cases, these errors can only be suppressed by 
narrowing the spectral range and thus reducing the signal (cf. discussion in Section 
5.1). And even for the spectroscopy in the middle- and far-infrared spectral region, 
it may  prove v e r y  useful to check the linearity of the system in order to avoid 
uncontrolable distortions in the Fourier transformed spectra. 

Now, let us consider phase errors. As already pointed out, an error arises when 
the true origin of the interferogram is missed by a small path difference e < A s 
(Fig. 40a) where A s is the sampling interval. This error is called a linear phase 
error because 2 ~ e  means an erroneous phase shift in the interferogram function, 
which is linear with respect to the wave number ~. Including the effects of trunca- 
tion and apodization, we obtain for the cosine transform of the double-sided inter- 
ferogram with a phase error e approximately 6s,69,70): 

+Smax 
-rsbs(v) = I i ( s  + e )S(s )  cos (2=~,s)ds ~ cos (2~e) �9 -rob~(~) (s. 18) 

where S (s) is the apodization function and -robs (~) the spectrum we would obtain 
for ~ = 0 [cf. Eqs. (3.6) and (3.7)]. For the sine transform, we obtain for the 
double-sided interferogram approximately 

+Smax 
-roAbs (~) = -- S i (s + e) S (s) sin ( 2 ~ s )  ds ~ sin (2~e) "Iobs(~) �9 (5.19) 

--Smlix 

For e ---- 0 , / A s  (~) would be zero. From Eqs. (5.18) and (5.19), a good approxi- 
mation for Iobs (~) (without phase error) is obtained by  means of the following 
relation 

-ro , Y[-rs + [Cob, (5.20) 

The accuracy and the validity of the approximation used in Eqs. (5.18--5.20) 
depends on two presumptions: At first e has to be small, and in practice, e will 

1 
not exceed -~ As.  Secondly, the width of the central maximum of the spectral 

window function has to be sufficiently small tha t  the variation of cos(2a~e) 
and s i n ( 2 ~ e )  can be neglected within this width. 

For the case of a single-sided interferogram, the effect of the phase error on the 
computed spectrum is more clamaging. As Fig. 40a shows, the phase error 
causes asymmetric distortions in the spectrum, and there is no simple way of 
removing the effect of the error from the spectrum. Thus, we have to correct the 
single-sided interferogram for the phase error. For reasons of economy, we would 
like to scan a single-sided interferogram only. And it was already mentioned that  
scanning a single-sided interferogram is the only possibility for real-time Fourier 
analysis. In practice, there are several methods for the correction of phase errors. 
The methods which are suitable for both, linear and nonlinear phase errors, will 
be discussed later. Here we will concentrate on linear phase errors. One way 
often employed to eliminate this phase error is the so-called parabola fit. For 
this, we consider the three digital points of the interferogram closest to the 
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Fig. 40. Phase  errors:  a) linear phase error;  b) nonl inear  phase  error. - -  In te r fe rograms  I (s) 
and spectra  I(~) obtained f rom a single-sided in ter ferogram (--)  and f rom a double sided one 
( . . . .  cos t ransform,  - - . - -  = sine t ransform).  - -  The dot ted  line ( . . . )  indicates the  undis- 
to r ted  spec t rum which would have  been obtained w i thou t  any  errors 

true origin s -~ 0. On the basis of these three points, a parabola is constructed as 
an approximation to the interferogram function. The max imum of the parabola 
is usually sufficiently close to s----0 to exclude phase error effects, and this 
max imum is used for s = 0 in order to avoid or correct the phase error in the 
interferogram. 

When the Michelson interferometer with finite aperture is not properly ad- 
justed nonlinear phase errors arise 87). These phase errors are no longer linearly 
dependent on the wave number  ~, and they cause an asymmetric  distortion of the 
interferogram (Figs. 40b and 41). I t  should be noted tha t  all illustrations in 
connection with errors (Figs. 39, 40 and 41) have been produced by  computer  
simulation (cf. Appendix 1). In order to make the essential features as clear as 
possible the effects of finite resolution etc. are left out where they have not 
necessarily to be included. In these cases, the resolution width A~ is given in the 
figure (Figs. 39a--c). In  Fig. 41, the error correction is demonstrated with finite 
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Fig. 41. Phase error correction: 
a) distorted interferogram Iaist(S), with phase errors. 
b) spectrum I(P) (--) calculated by means of cos-transform from tile half of Idist(S) with 
s > 0 (single-sided distorted interferogram). 
c), d) spectra Is(p) and IX(J) (--) calculated by means of cos- and sin-transform, resp., from 
Icust(s) (double-sided distorted interferogram). 
c) corrected spectrum I ( ~ ) =  V(iS) s + (IA)2 (__) as obtained from the double-sided distorted 
interferogram using the results c) and d). 
f) spectra I(P) calculated by means of cos-transform (--) and sin-transform (-----) from a 
small double-sided portion of/dist(S) and phase error •(P) evaluated from these two spectra. 
g) symmetric interferogram Icorr(S) corrected for phase errors, evaluated from Idist(s) by 
means of 9(P) (see part  f)). 
h) corrected spectrum cos-transform from the half of Icorr(S) for s > 0 (slngle-sided corrected 
interferogram). 
For  comparison, the true spectrum (- - -) is given in b), c), d), and h) and the true phase error 
(- - -) in f) where "'true" means as would have been obtained with infinite resolution 

r e so lu t i on  a n d  with a p o d i z a t i o n .  L e t  us  r e t u r n  to  t h e  p r o b l e m  of a g e n e r a l  p h a s e  
e r ro r s  9 (~)- I n  t h e  i n t e r f e r o g r a m ,  9 (~) m e a n s  a w a v e  n u m b e r  d e p e n d e n t  p h a s e  
sh i f t  of t h e  c o n t r i b u t i o n s  I (~ )  a t  w a v e  n u m b e r  

Id is t  (s) = 2 f I (~)  [1 + COS(2 ~ s  + 9(P))] d P .  (5.21) 
0 

I l l  f ac t ,  i t  is t h i s  p h a s e  sh i f t  9 (~) w t d c h  causes  t h e  a s y m m e t r i c  d i s t o r t i o n  of t h e  
i n t e r f e r o g r a m .  F o r  9 (~), l i n e a r  or  n o n l i n e a r  f u n c t i o n  of w a v e  n u m b e r  ~, t he  as-  
s u m p t i o n  g e n e r a l l y  h o l d s  t h a t  i t  is a s m o o t h  a n d  s lowly  v a r y i n g  f u n c t i o n  of ~. 
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With almost the same approximation as used for deriving of Eqs. (5.18) and 
(5. I9), the cosine and sine transforms yield for a double-sided interferogram 

IoSb, (~) = cosy  (~)- Zob~(~) 

IoAbs (~) ~ sin 9 (~)" Iob~ (P). (5.22) 

Again, the root of the sum of the squares of IobSs (~) and Ions (v) is a good 
approximation for lobs (~) unless the interferogram is too badly distorted (cf. 
Fig. 41). Also for the nonlinear phase error, the cosine transform of a single- 
sided interferogram yields untolerable distortions of the spectrum (cf. Figs. 40a 
and 41). An error correction is necessary to obtain a reliable spectrum. This can 
be done only with the knowledge of 9 (~). As 9 (~) is a smooth and slowly varying 
function of ~, only a low resolution and, correspondingly, only a small double- 
sided portion of the interferogram is needed for the determination of 9 (~) (cf. 
Fig. 41). 

. loAb~(~) (~) ----- arc tg ~ (5.23) 
ob~(v) 

In other words, the correction of a phase error 9 requires a short double-sided 
interferogram around s =- 0 regardless whether the whole interferogram is recorded 
single-sided or double-sided. The mostly used correction method was first proposed 
by M. Forman 68,7o). After determining ~ (~), the next step of this method is to 
calculate what can be called the Fourier transform of e~*<~) 

oo 

F (s) = 2 f [cos ~ (~) cos (2~s )  + sin 9 (~) sin (2~s) ]  d~ (5.24) 
o 

With the help of this function F(s), the signatures of the error are 
removed from the distorted interferogram I0tst (s) and a symmetric interferogram 
Icorr (s) is obtained (cf. Fig. 41) by means of the following integration: 

- S '  leo,r (s) = f Iatst( ) " F (s--s ' )  ds" (s.2s) 

where leorr(S) and idist(s) are only the oscillatory parts of the corrected and 
distorted interferogram, respectively. I t  can be verified that  /eorr(S) is the 
interferogram that  would have been recorded without any phase error. We insert 
the Fourier transforms of Iaist(S') [cf. Eq. (5.21)] and of F(s) [see Eq. (5.24)] 
into Eq. (5.25). Then we arrive at the approximate result 

oo 

loot ,  (s) ~ 2 f I(~)  cos (2=~s)  d~ (s.26) 
0 

which is just the oscillatory part of the interferogram I(s) without phase error 
[cf. Eqs. (3.2) and (3.5)]. Finally, the Fourier transform of Ieorr(S) yields the 
desired spectrum I(~) (cf. Fig. 41). 
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This method of error correction can be used for single-sided as well as for 
double-sided interferograms. In case of a single-sided one, it is the only mean to 
deduce the spectrum I (~) from the experimental  data  Iol.,t (s). And in case of a 
double-sided one, it can be more economic to determine 9~ (~) by  means of cosine 
and sine transform for a small portion, to correct the whole interferogram and to 
calculate I (~) only be means of the cosine transform. For most routine spectro- 
scopic investigations, the simplest and most economic way is to scan a small 
double-sided interferogram and to extend it single-sided to max imum path- 
difference. Then, the phase errors which are nearly unavoidable in the near- and 
middle-infrared can be corrected. And the computer program for most commercial 
instruments in tha t  range has a subprogram to correct the usually single-sided 
interferogram for the phase errors by  means of the method due to M. Forman 
68,70) which was described in detail here. Of course, this error correction is not 
exact in a mathemat ical  sense but  a good approximation since the integrals in 
Eqs. (5.24) and (5.25) cannot be extended to infinity and have to be truncated. 
However, an other method proposed by  L. Mertz G9) for phase error correction 
was shown to be less efficient 70) though improvementswereconsidered recently so). 

At last it remains to point out that  phase errors are not only unwanted and 
under certain conditions unavoidable phenomena in Fourier spectroscopy the 
elimination of which is a necessary but  rather  involved and elaborate procedure. 
In  contrast, there are special applications of Fourier spectroscopy where phase 
errors have been introduced deliberately. In  this method which is known as 
" c h i r p i n g "  86,90-9z), a plane parallel plate called chirping plate is placed in 
one arm of the Michelson interferometer or two different plates are placed one in 
each arm. These plates introduce a wave number  dependent phase shift 

(5.27) 

as we learnt in Section 4.7 about  amplitude Fourier spectroscopy [cf. Eq. (4.18)]. 
For two plates, the resultant phase shift is the difference of two expressions like 
the one given in Eq. (5.27). If  the spectrum under investigation consists for 
example of two clearly separated emission bands, the effect of chirping on the 
interferogram is tha t  the central fringes corresponding to the two emission bands 
are shifted away from s = 0  to different pa th  differences Sl = [n (~1) -  1] d and 
s2----[n(~2) - 1] d according to the variat ion of the refractive index n (~) of the 
chirping plate between the two bands centered at wave numbers ~1 and ~2 (cf. 
Fig. 42). That  means tha t  the large central max imum of the interferogram dis- 
appears. I t s  intensity is shifted away from s = 0 and is distributed over a certain 
pa th  difference range. As it is relatively easy to correct the spectra for the phase 
error in this case ("dechirping"), this method offers some advantages with respect 
to the "dynamic range problem".  At first, there is no extremely high peak inten- 
sity at s = 0. Secondly, there is a possibility to correct for intensity errors due to 
nonlinearities in this case 91). For these reasons, the spectra obtained so far by  
the use of chirping in Fourier spectroscopy are in the near-infrared range (2000-- 
6500 cm-1). The interferograms for the presented data  were recorded on rocket- 
borne instruments s6,92). 
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Fig. 42. Interferogram I(s) obtained with and without chirping and corresponding spectrum 
I(~) with two bands centered at ~71 and v2. In the case of chirping, the intensity of the grand 
maximum of the interferogram is shifted away from s = 0 to different path differences sl = 
[n(~71)- l id and s2 = [n(~7~)- 1]d as indicated 

5.4 N o i s e  P r o b l e m s  

I n  consider ing noise p rob lems  in Four i e r  t r ans fo rm spec t roscopy,  we realize t h a t  
w h a t  was found  to  be a p r o p e r t y  of Fou r i e r  t r ans fo rm spec t roscopy  wi th  respect  
to  sy s t ema t i c  errors  is also t rue  for the  s t a t i s t i ca l  errors  or  noise. The  errors  arise 
in the  in te r fe rogram,  b u t  we wan t  to  know the i r  effect on the  spec t rum.  Mathe-  
mat ica l ly ,  the  connect ion  is given b y  the  Four i e r  t r ans fo rm.  Before t r ea t ing  the  
noise p rob lems  in deta i l ,  we have  to  d i s t inguish  severa l  k inds  of s t a t i s t i ca l  errors 
in Four i e r  spect roscopy.  A t  first there  are  f luc tua t ions  N (s) in the  in te r fe rogram 
(Fig. 43). These f luc tua t ions  can be  due to  de t ec to r  noise and  noise in the  elec- 
t ron ic  sys tem.  Then  t h e y  are i ndependen t  of the  s ignal  I(s). A n d  they  can be 
f luc tua t ions  of the  s ignal  itself.  A m o n g  these,  source f luc tua t ions  of a me rc u ry  
arc  have  been shown to a d d  p e r c e p t a b l y  to  the  noise in the  fa r - inf ra red  when the  
in te r fe rogram is recorded  wi th  a r a the r  low speed 92). In  the  vis ible  region,  pho ton  
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J (s )  , 

I1 i pt N (s) 
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PQth d i f f e r e n c e  s 
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% 

Wave number 

Fig. 43. Noise a m p l i t u d e  N (s) in  t he  in te r fe rogram (a) and  noise amp l i t ude  N (~) in  t he  spec- 
t r u m  (b) 

noise has to be taken into account. In this case, the profit from the advantages of 
Fourier spectroscopy is reduced 94,95). In infrared spectroscopy, detector noise 
usually dominates. For the following considerations therefore, let us assume 
that  N (s) is of this kind and is independent of the signal I (s). In addition, statis- 
tical errors can arise when the interferogram is sampled for the digital Fourier 
transform. Such sampling errors will be discussed ht the end of the section. 

Now let us concentrate on the properties of the noise amplitude N (s) under the 
assumptions made above. The aim of these considerations is to derive some realis- 
tic expressions for the signal-to-noise ratio in infrared spectroscopy and its 
dependence on experimental parameters like scanning time, resolution etc. Since 
N ( s )  is a statistical function, its average N ( s )  will be zero. With the com- 
putation of the spectrum, the noise N (s) is also subjected to multiplication by  the 
scanning function S(s )  and to the Fourier transform. The result is the noise 
amplitude in the spectrum (Fig. 43) 
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For N (~) also, the average N (~) will be zero. We recall that  for noise problems 
the essential and reproducible quanti ty is the root mean square (RMS) value. For 
the interferogram and for the spectrum, the RMS values of the noise may be 
defined as follows: 

1 / 1 +Smax 

V v ~ a x  ~Tmax 
o 

(5.29) 

This definition takes into account that  the interferogram with its noise is 
multiplied by S(s) before the Fourier transform is carried out, and that  the 
effective noise amplitude is N (s) �9 S (s) instead of N (s). Furthermore, it is presumed 
that  the bandwidth A[ of the electronics is selected to be appropiate for the 
maximum wave number ~m~x. We recall from our considerations in Section 4.6 
that  the time constant T limiting the bandwidth of the electronic system should 
have a value close to (cf. Section 4.6) 

1 As  1 
T - -  

3 v 6v~m~ 

where As, v, ~ma,, are the sampling interval, the speed of the movable mirror, 
and the maximum wave number in the spectrum, respectively. We recall further 
that  each wave number ~ corresponds to a signal frequency / = 2 v ~  [cf. Eq. 
(4.3)] and that  the maximum frequency to be transmitted by the electronic system 

is /max~2V~max. For a proper choice of v therefore, the bandwidth A/ ,~ 1 

of the electronics is proportional to ~max 

A / - ~  2 v fmax. (5.30) 

Now, the spectrum of noise frequencies is not necessarily limited to the range 
0 ~ f _<- /max. But  the frequency components for / > / m a x  will be considerably 
attenuated. As each frequency in the electrical signal corresponds to a wave 
number ( /=2v~! ) ,  the Fourier transform N(s)~N(~,)  yields essentially the 
spectrum of noise frequencies. And from our considerations, N (~) will be rather 
small for ~ > ~max corresponding to / > fmax. On these grounds, we can neglect 
N(~) ~ 0  above ~ :~max  and limit the integration over p to the range 
0 _~ ~ _--< ~max in Eqs. (5.29) and (5.31). 

The basic question for all practical considerations is tha t  of the relation be- 
tween Ns and N~. If we know this relation, we can predict N~ from the experimental 
quanti ty Ns. In order to derive such a relation, we use Parseval's theorem 15) in 
the theory of Fourier transforms; this reads in our context 

+Smax Vmax 
.[ N2(s) S2(s) ds = 2 S N2(~') d~'. (5.31) 

~3ma x O 
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With the help of Eq. (5.31), the required relation is easily established 

2 (5.32) 2Smax N s  2 = 2Pmax N~ 

In practice, the RMS value Ns of noise in the interferogram has to be considered 
a property of the detector and the electronic system. And generally the assumption 
holds that  the RMS-value of the noise produced by  such a system is proportional 
to the square root of the bandwidth of the system 

N~ ~ V ~  or N2 .~ d /  (5.33) 

That  means that  the noise N(s) in the interferogram can be reduced by reducing 
A/. But  if we do this, we have to reduce also the speed v and to increase the time 
T for scanning the interferogram. The maximum wave number ~max is usually a 
fixed quant i ty  depending only on the spectroscopic problem under investigation. 
And the relation between /max and A/ must not be changed according to our 
above arguments. Therefore, a reduction of A/requires the same reduction of ]max 
and, consequently, that  of v (/max =2v~max l). Otherwise, the signatures of radia- 
tion with wavenumbers close to ~max would be at tenuated to an untolerable extent 
in recording the interferogram with the system of reduced bandwidth A/. Now, 
we can relate the constant speed v of the movable mirror to the maximum path 
difference Smax and the scanning time T. I t  is 

Smax 
Smax = 2 v T  o r  v - -  

2T  

in the case of a single-sided interferogram. Combining this result with Eqs. (5.30) 
~ 

and (5.33), we obtain A]. sma~x'Vm~x and 
T 

Ns ,'-~ V sma"'~-~o'~x. (5.34) 

With Eq. (5.34), a connection is established between the parameters Smax, Vmax, 
and T of an actual experiment and the RMS-value of the noise in the interfero- 
gram. According to Eq. (5.32), the corresponding RMS-value N~ of the noise in 
the spectrum is 

'r "~ V s~axT (5.35) 

Eqs. (5.34) and (5.35) show that  we have to pay for better resolution with a 
decreased signal-to-noise ratio in Fourier spectroscopy, too. Eq. (5.34) tells us 
tha t  Ns, the noise in the interferogram, is kept constant if with the resolution 
(Smax) the scanning time T is linearly increased, i.e. the scanning speed is kept 
constant. But  for N~, the noise in the spectrum, another factor Sm~x enters Eq. 
(5.35), originating essentially from the Fourier transform. This means that  N~ 
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increases in proportion to Vs~ax for constant speed v when the resolution is 
increased. The signal is not affected by  increased resolution in Fourier transform 
spectroscopy. Therefore, we can write for the signal-to-noise ratio of the Michelson 
interferometer: 

(S/N) M s VT (5.36) 
N~ Smax 

If  we want to keep the signal-to-noise ratio constant when we increase the 
resolution by  a factor of two, we have to increase T by  a factor of 4. 

For comparison, in grating spectroscopy the signal is decreased with increased 
resolution. In  order to double the resolution, we have to reduce the slit width by  
a factor of two. Then the signal is decreased by  a factor of 4 according to Eq. 
(5.12). For the grating spectrometer also, the noise is assumed to be produced by  
the detector and the electronics; it is not affected by  the decrease in the signal. 
And again we assume tha t  the RMS-value of the noise N (in the recorded spec- 
t rum!) is proportional to the bandwidth A] of the electronics. For Fourier spec- 
troscopy, a suitable choice of the time constant v is one third of t ime necessary 
to scan one sampling interval As (cf. Section 4.6). For grating spectroscopy, the 
t ime constant z should be equal to one third of the scanning time t for one resolu- 
tion width A~. If  the spectral range Vmin <: ~<: Vmax is scanned with constant 
speed in a total  t ime T, we have 

l ] A~ -~ T](~max-~min) �9 

1 1 
And with ~---- -~ t and A/ , - ,  -~ we obtain 

t T . A ~  

The spectral range (Vmax- Vlnin) is a fixed quant i ty  for a given spectroscopic 
investigation. Therefore, we can drop this factor. The resolution width A; is 
proportional to the slit width w [cf. Eq. (5.8)]. Thus our final result is 

1 
A / , - ,  T . w  (5.36) 

Eq. (5.36) means that  the product T .  w must  not be changed without changing 
A]. When the slit width w is decreased and the resolution increased, finer details 
in the spectrum have to be t ransmit ted by  the electronics. If  the scanning speed 
is not slowed down and the t ime T enlarged, the finer details mean more rapid 
variations in the signal. These can only be t ransmit ted when the bandwidth A/ 
is increased. In  other words, the finer details of the spectrum have to be resolved 
with respect to time, and the bandwidth A / o r  the scanning T has to be increased. 
On these grounds, we can write for the RMS-value of the noise 

1 
N ~]/A-7 ~ (5.37) �9 
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As already mentioned, the signal S is proportional to w 2 [cf. Eq. (5.12)]. Therefore 
the signal-to-noise ratio for the grating spectrometer depends on w and T in the 
following way: 

(S/N)G ,~  w 2 Vw--T = Vw~T . (5.38) 

To keep this ratio constant for a resolution increased by a factor of two, we 
have to increase the scanning time T by a factor of 32. This comparison again 
demonstrates the superiority of Fourier transform spectroscopy. 

When an interferogram is sampled at equal increments As of path difference, 
the accuracy of the procedure depends on the laser or M oird system for measuring 
the path difference. And in reality, the sample values of the interferogram are 
not taken exactly at s = n A  s but at the positions 

s = n A s  + en (5.39) 

where en is the statistical error in the determination of path difference. From this 
error, a random phase modulation originates in the interferogram 

I ( n A s  + *n) = 2 f I(r) cos (2 x r n d s  + 2 ~PSn) dP. (5.40) 
o 

Since en is a small quantity, the regular and the random part of the interferogram 
Eq. (5.40) can be separated 

i ( n A s  +~,~) = i ( n A s )  + - - - - -  
dI(nAs) 

ds 
�9 e n -  ( 5 . 4 1 )  

In contrast to tile detector noise N(s)  as discussed before, tile sampling errors En 
introduce a signal dependent noise in the interferogram. The average of these 
errors is zero (en --'-- 0). They can be assumed to be independent of each other 
and not correlated: 

em"  en = / /  a2 i /  m = n  (RMS-value) 

0 i / m  # n (no correlation) 

Here again, the RMS-value a is the interesting quantity. Bell and Sanderson 9r 
have shown the RMS-value of the corresponding noise in the spectrum to be 

/ +~max 
1 f (2 ~)2[I(~)]2d~. 

N~ =- a 1/ 2~m~,,.3 
(5.42) 

Eq. (5.42) demonstrates that, in this case, N~ is not independent of the signal 
but  proportional to a quanti ty which can be called the RMS-value of ~. I(~) of 
the spectrum under investigation. At last, the question arises what the experimen- 
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ter can do to keep the noise in the recovered spectrum with RMS-value N~ as 
small as possible. For statistical errors of course, no error correction is possible 
as in the case of phase errors. But  from our considerations, we may  extract  some 
guide lines along which one can t ry  to minimize the influence of noise 

a) The detector noise is proportional to Smax. Therefore, it is not advisable to 
increase Smax and the resolution to an unnecessary extent. If  once all details 
of the spectrum have been resolved any further increase of the resolution will 
not improve the spectrum but  increase the noise. 

b) With respect to sample errors, the user of a commercial instrument depends 
on the system for measuring the path difference. And with a He-Ne-laser 
controlling the pa th  difference, a frequency precision better  than 0.01 cm -1 is 
achieved according to tbe data provided by  the manufacturer.  Under these 
circumstances, the statistical errors in sampling the interferogram and their 
RMS value a are probably too small to contribute considerably to the nosie 
in the spectrum, i.e. to N~. 

c) In the very far-infrared, the experimenter should be aware of the possibility 
tha t  source fluctuations may  contribute to the noise at rather  slow scanning 
speeds. If  this is the case or if this is suspected, it is advisable to scan the 
interferogram with a higher speed, to repeat this several times and to average 
the data. 

6. C o m m e r c i a l  I n s t r u m e n t s  

6.1 Survey of the Instruments 

This Section compiles information on a number  of commercially available Fourier 
transform spectrometers. Though this compilation is not complete, the interested 
reader will find here descriptions and technical da ta  of altogether thirteen in- 
s truments from six manufacturers. Especially those instruments have been in- 
cluded here which were recently developed or improved. Therefore, this introduc- 
tion to commercial instruments in the field of Fourier t ransfrom spectroscopy is 
believed to be a useful completion of a similar one published about 4 years ago 
in Ref. 47. 

Before entering into the details of instrumentat ion the Fourier spectrometers 
are listed together with the manufacturers and their addresses. In some cases, 
also the company is given which sells the instruments in the Federal Republic 
of Germany:  

1) Far  Infrared Spectrometer System Model IR-720 
Manufacturer:  Beckman-RIIC Ltd. 

Eastfield Industrial  Estate,  Glenrothes KY7 4NG, Scotland 

Address in the Federal Republic of Germany:  
Beckman Instruments,  Technisches Bfiro Mtinchen 
D-8000 Mtinchen 60, Otto-Engl-Platz 5 
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2 a) Far Infrared Fourier spectrometer IFS 114 

2b) Infrared Fourier spectrometer IFS 115 
Manufacturer: Bruker-Physik AG 

D 7501 Karlsruhe-Forchheim, Silberstreifen 

3) FS 4000 Far Infrared Fourier Transform Spectrometer 
Manufacturer: Coderg 

15 Impasse Barbier, F-92110 Clichy 
Authorised dealer in the Federal Republic of Germany: 

Amko GmbH & Co, KG, 
D-2082 Tornesch, Lindenweg 53 

4) Digilab Fourier Spectrometers 
(FTS 10, FTS 14, FTS 15, FTS 20, FTS 16) 

Manufacturer: 1)igilab Inc. 
237 Putnam Avenue, Cambridge/Mass 02139, USA 

Authorised dealer in the Federal Republic of Germany: 
Cambridge Instrument Company GmbH, 
1)-4600 Dortmund, I-Iarnackstral3e 35--43 

5 a) Fourier Spectrometer MIR 20 

5b) Fourier Spectrometer MIR 160 

5c) Far Infrared Fourier Spectrometer FIR 30 
Manufacturer: Polytec GmbH 

D-7517 Waldbronn-Karlsruhe (Reichenbach), Siemens-StraBe 

6) Model ST-10 GC-IR automated System 
Manufacturer: Spectrotherm Corporation 

3040 Olcott Street, Santa Clara, California 95051, USA 
Authorised dealer in the Federal Republic of Germany: 

Amko GmbH & Co, KG, 
D-2082 Tornesch, Lindenweg 53 

The basic properties of these commercial instruments and their prices have 
been collected in Table 2. From the spectral range covered in the standard version 
(without extensions), we may distinguish two categories of instruments: 
a) instruments for the far-infrared (No. 1, 2a, 3, 4e, 5c) 
b) instruments for the middle- and near-infrared (No. 2b, 4a---4d, 5a, 5b, 6). 

Among the five far-infrared Fourier spectrometers, three are slow-scan in- 
struments with a Golay detector and a Moird-system controlling the path differ- 
ence. Their design is more or less taylormade for the far-infrared where the 
radiation energy is small and where relatively large scanning times are needed 
to obtain an agreeable signal-to-noise ratio. In this range, we have relatively 
large sampling intervals z~s (cf. Table 1 in Section 4.6), and the accuracy of a 
Moir6-system is sufficient in measuring path differences. The other two far- 
infrared instruments are rapid-scan instruments. Their design is essentially the 
same as that of the instruments in the near- and middle-infrared, except that the 
source is a mercury arc and not a glower. They employ a fast pyroelectric detector 
and a He-Ne-laser as the reference system. And it is well known that this basic 
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Model 295 Interferometer 

Sample Compartment 
r I 

�9 ~ l l  d r l l \  N 

~ ~ ~;'~ O •alr%Pelre Cell Mirror B 
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/)r 
Mirror A Collimated Lamp 

for Visual Alignment 

Fig. 44. Optical diagram of the Digilab FTS 14 Fourier spectrometer (No. 4b in Tables 2, 3, 4) 

concept for the near- and middle-infrared instruments has been proved a success. 
And especially for the "fingerprint" region of the chemists (400-4000 cm-1), 
a great variety of instruments is available on the market. Their prices range from 
about DM 100,000.- to DM 300,000.--. The factor of three between the cheapest 
and the most expensive instrument is mainly due to the different maximum resolu- 
tion achievable with the instrument and to the different equipment with respect 
to computer memory etc. Most of these instruments may be used in connection 
with gas chromatography. The instrument No. 6 (Spectrotherm ST 10) is especial- 
ly designed for this purpose. The price differences between the far-infrared in- 
struments can Mso be related to different maximum resolution, computer outfit 
etc. 

6.2 The Optical Layout 

The optical layouts of the instruments are very similar, especially those of the 
instruments for the middle- and near-infrared. For comparison, the optical dia- 
grams of three such instruments are reproduced in Figs. 44 (No. 4b, Digilab 
FTS 14), 45 (No. 2b, Bruker IFS 115), and 46 (No. 5b, Polytec MIR 160). Clearly, 
the essential part  of the optical layout is the Michelson interferometer with the 
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Fig. 45. Optical diagram of the  Bruker IFS 115 Fourier spectrometer  (No. 2b in Tables 2, B, 4) 
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Fig. 46. Optical diagram of the  Polytec MI R 160 Fourier spectrometer  (No. 5 b in Tables 2, 3, 4). 
M 1, M 2, M 5, M 6, M 7: plane mirrors;  M 3, M 4: paraboloid mirrors;  MS: spherical mirror;  
MT: toroid mirrors;  G: Globar source; S: high pressure Hg-lamp; L:  He-Ne-laser; IS: In ter -  
ferometer scanner;  ]3S: beampsl i t ter ;  PC: photo-cell;  D:  pyroelectric detector;  WL:  white 
l ight source 

beamsplit ter,  with the movable  and the fixed mirror. I n  the spectral  range above 
500--1000 cm -1, the beam splitters are dielectric films on a susbstrate  (cf. the 
principal considerations in Section 4.1). The materials  employed as beamspli t ters  
in commercial  ins t ruments  are compiled in Fig. 47. I t  should be no ted  tha t  for each 
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Fig. 47. Several  b e a m s p l i t t e r s  for Four ie r  spec t rome te r s  and  t he  spec t ra l  r ange  for wh ich  
t h e y  are used  p r e d o m i n a n t l y ,  especial ly in commerc ia l  i n s t r u m e n t s  

beamsplitter tile spectral range is indicated in the figure in which it is used in the 
instruments and in which range it probably is the most suitable. But  that does not 
necessarily mean that  the beam splitter efficiency is more or less zero outside the 
quoted range. In Figs. 45 and 46 the plate is clearly indicated that  compensates 
the optical effects of the substrate of tile beam splitter. The effective thin film 
is between the two relatively thick plates. 

As a special feature, the optical diagram of the Bruker IFS 115 (cf. Fig. 45) 
shows a variable source diaphragm at an extra focus. The instrument is equipped 
with a helpful alignment laser the radiation of which can be used to align the inter- 
ferometer as well as the sample optics. The laser radiation is sent into the inter- 
ferometer or into the sample optics or is kept outside the radiation path by simply 
turning a plane mirror. The spectrometers of the Digilab FTS-series have a con- 
ventional collimated light source for alignment purposes (cf. Fig. 44). 

A common property of most instruments is that  they are built up by modular 
units: source and interferometer compartment,  sample chamber and detector 
housing (cf. Figs. 45, 46). In the sample compartment, there are generally two 
foci. One of the foci is used for the sample spectrum, and the other for the reference 
or background spectrum. Either tile sample focus or the other one is incorporated 
in the radiation path by turning two plane mirrors (of. Figs. 44--46). This opera- 
tion is usually automatized and controlled by the computer system of the spectro- 
meter. The size of the sample focus varies from 3 mm to 13 mm diameter, somewhat 
differing between different instruments and also depending on the diameter of the 
diaphragm used at the source (cf. Table 3). The sample chamber of all instruments 
is large enough to position there a variety of accessories as cryostats, gas cells, 
superconducting magnets, etc. In addition to transmission measurements, also 
reflection measurements (by using a reflection attachment) and emission measure- 
ments can be performed. Such a reflection at tachment is shown in Fig. 50 with 
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two spherical and four plane mirrors providing a focus for the reflection sample 
and two other foci, at one of which a diaphragm may be placed to limit the size 
of the radiation spot on the sample. 

The optical diagram of the Polytec MIR 160 (cf. Fig. 46) shows very instruc- 
tively the He-Ne-laser reference system. The laser radiation enters through a hole 
in the center of mirror 2vi3 the Michelson interferometer. The interference fringes 
monitoring the travel path of the movable mirror M2 are recorded by tile photo 
cell PC (close to turnable mirror M7). As we have seen in Section 2.1 at the be- 
ginning of our considerations, the interferogram of monochromatic radiation is a 
cos2-curve (see Fig. 2). I t  has no particular signature at s = 0  equivalent to the 
the grand maximum of an interferogram corresponding to a broad continuous 
spectrum (cf. Fig. 10 in Section 3.2). In order to provide the information about 
zero path difference, most instruments use a white light reference source (WL 
in Fig. 46) in addition to the He-Ne-laser. Its interferogram is recorded by a 
second photo cell (between BS and M3 in Fig. 46). The grand maximum of this 
interferogram indicates the position s = 0  the knowledge of which is essential 
for a correct evaluation of the Fourier transformed spectrum as it was pointed 
out in connection with phase errors in Section 5.3. 

A very peculiar optical layout is found in the Spectrotherm ST 10 interfero- 
meter (see Fig. 48). The radiation emittted by the source is collimated by mirror 
T 1 and reflected by mirror 1~'I 1. At the beam splitter, part of the radiation is 
reflected back to the other half of l~I 1 and the other part transmitted to tile 
movable mirror M2. Both parts are reflected by mirrors M 1 add M2, resp., to tile 
beamsplitter which again partly transmits and partly reflects the two beams. 
From each beam, nearly one half is refocussed by mirror T2 into the reference 
cell and the other half by mirror T2'  into the sample cell. In this way, radiation 
is passed simultaneously through the reference cell and through the sample cell. 
In both beams, the radiation shows interference fringes according to the path 
difference, and an interferogram can be recorded. The interferogram of the radi- 
ation through the sample cell is that  usually obtained while the interferogram of 
the radiation through the reference cell is the complementary one which is usually 
reflected back to the source [see Eq. (4.1) in Section 4.1]. Now, the radiation 
through the sample cell and through the reference cell are both focussed on tile 
same detector. In Section 4.1 was pointed out that  the mean level drops out when 
the difference is formed of the interferogram transmitted by the Michelson 
[Eq. (3.3)] and of the reflected [cf. Eq. (4.1)]. Now, when the stun is formed of 
these two by using one detector, the oscillatory parts of the interferograms drop 
out. The sum of the mean levels is a constant signal independent of path difference 
to which the detector does not respond. But if there is absorption in one of the cells, 
the two oscillatory parts of tile interferograms do no longer completely com- 
pensate, and, as a result of this, the detector records an interferogram signal. 
In this way, the Spectrotherm ST 10 can be called a "real" double-beam Fourier 
spectrometer (cf. Ref. 48~) though some mathematical corrections may be necessary 
(cf. Ref. 99~). At last it remains to be mentioned that  a great number of the com- 
mercial instruments for the middle- and near-infrared can be flushed with nitrogen 
or dry air to prevent atmospheric absorption and that  only some of them can be 
evacuated. 
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Fig. 48. Optical diagram of the  Spectrotherm SP 10 Fourier spectrometer  (No. 6 in Tables 
2, 3, 4). M 1, M 3, M 3' :  plane mirrors; T 1, T 2, T 2 ' :  toroid mirrors;  M 2: moving mirror 

Most of the preceding considerations with respect to the optical layout of 
Fourier spectrometers apply equally well to the far-infrared instruments. One 
essential difference is that  in this range self-supporting thin films are used as 
bearnsplitters (cf. discussion in Section 4.1 and see Fig. 47). As there is an extreme- 
ly strong water vapor absorption in the 100 cm -1 region, most of the far- 
infrared instruments are vacuum instruments and can be evacuated to remove 
even small traces of water vapor. And the thin film beamsplitters are suitable 
only for a limited range (cf. Fig. 47) and have to be changed frequently. In this 
situation, it is helpful for the experimenter to have various beam splitters mounted 
on a wheel which can be rotated by  means of a remote control thus changing beam- 
splitters automatically, without breaking the vacuum. Such a rotating beam- 
splitter wheel is provided in the Coderg FS 4000 and in the Polytec F IR  30 (cf. 
optical diagram in Fig. 49) Fourier spectrometers. Fig. 49 shows also the chopper 
which is used for modulating the radiation at a certain frequency in all slow- 
scan instruments and which is not found in the rapid-scan instruments. In the 
sample chamber of the Polytec F IR  30, there is only one focus. Now, the reflection 
at tachment  is included regularly in this spectrometer.And by  means of the mirrors 
MS (cf. Fig. 49), the optical arrangement in the sample chamber can be used for 
reflection and transmission measurements in the same way as if there were two 
foci. This is indicated in the upper part of Fig. 49. The two mirrors M5 can be 
turned automatically by operating a switch on the control board. 
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Fig. 49. The Polytec FII~ 30 Fourier spectrometer (No. 5c in Tables 2, 3, 4) Optical diagram 
(lower part) and the possibilities of using the sample chamber (upper half). M 2, IV[ 3, M S, 
M 6: plane mirrors; M 1, M 4 : paraboloid mirrors; M 7 ; spherical mirror; M 8: elliptical mirror; 
C: Chopper; S : high pressure Hg-lamp ; BS : beamsplitter; D : mirror drive ; IS : Molt6 system; 
G: Golay detector; S: sample 

Another  example of an  far-infrared Fourier  spectrometer  is the  Bruker  I F S  
114 (cf. Fig. 50). In  contras t  to  the Polytec  F I R  30, the  Coderg FS 4000 and  the 
Beckman FS 720, this spectrometer  is a rapid-scan ins t rument .  Bu t  the  conse- 
quences of rapid and slow scanning will be discussed later. Here we shall concen- 
t ra te  on the optical layout .  F r o m  Figs. 49 and  50, it is evident,  t ha t  the  inter- 
ferometers are const ructed as a modular  sys tem and that ,  b y  inserting some 
windows, the compar tments  of the several modules can be evacua ted  separately.  
This is of par t icular  interest for the sample chamber.  There, i t  is an advantage  to 
be able to  exchange samples wi thout  breaking the  v a c u u m  of the whole ins t rument  
and to have to reevacuate  only the sample c l i m b e r .  The different modules of the 
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Fig. 50. Optical diagram of the Bruker IFS 114 Fourier spectrometer (No. 2a in Tables 2, 3, 4), 
M 1, M 3, M 4, BI 7, M 9, M 11: concave mirrors; M 2, M 5, M 6, M 8, M 10: plane mirrors; 
S: Source. BS: beamsplitter; D: detectors 

Bruker  IFS  114 are marked  in Fig. 50. For  the sample compar tmen t  (A 3), the 
reflection a t t achment  (A 3a) is shown in Fig. 50 which can be inserted at one of 
the two loci. Characteristic and outs tanding  is the design of the Michelson inter- 
ferometer  in this ins t rument  (A 2 in Fig. 50). The radiat ion emit ted  by  the source 
is not  collimated at first bu t  focussed on the beam-split ter.  The angle of incidence 
on the beam-spl i t ter  is ra ther  small (nearly normal  incidence). This is advan t -  
tageous wi th  respect to the polarization properties of the beam-split ter.  We 
recall f rom Section 4.1 and Fig. 15 tha t  the efficiency (4 RT) of thin film beam- 
splitters depends on its thickness, on its refractive index, on the wave number  
of the radiation, and, last bu t  not  least, on the polarization of the light. The lat ter  
dependence is ra ther  drastic for angles of incidence near 45 ~ which are close to 
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the Brewster angle for many  organic films. In Section 4.1, it was pointed out that  
the intensity of radiation polarized perpendicular to the plane of incidence is 
about seven times larger than that  of radiation polarized parallel to the plane of 
incidence (cf. Fig. 15, angle of incidence 45 ~ and n = 1.5). For nearly normal 
incidence, the intensity is equal for the two directions of polarization. Thus, the 
recorded interferogram does not depend on the polarization in this case. Moreover, 
metal  screen beam-splitters (cf. Fig. 16) which can be used successful in the very 
far-infrared have rather  complex polarization properties except they are used at 
nearly normal incidence 100). And beam-splitters with comparat ively small areas 
can be employed in this instrument since they are placed at a focus. The radiation 
reflected and transmit ted by the beam divider (BS in Fig. 50) is then collimated by  
the mirrors M 4 and M 4', respectively, and sent to the movable mirror M 5 which 
has two reflecting, parallel surfaces. Each of the partial beams is reflected back to 
the collimator mirrors (M 4 and M 4') and is focussed on the beam-split ter (BS). 
There, they are par t ly  t ransmit ted and reflected as usual. In this interferometer, 
the optical path  difference between the two partial beams is fourtimes the distance 
travelled by  mirror M 5 away from the position s = 0  (white light position). In 
usual Michelson interferometers, the pa th  difference s is only twice tlle pa th  
travelled by the movable mirror as was pointed out in Section 4.2. Here, the factor 
4 can be understood as follows: If mirror M 5 is moved a distance d,% the optical 
pa th  of the one partial beam is increased by  2 d x while that  of the beam 
reflected at the other side of M 5 is decreased by 2 d x. And the resulting change 
in pa th  difference between the two partial  beams is s = 4 �9 d x. Finally, it seems 
worth noticing that  there is sufficient space in the detector compar tment  (A 4 in 
Fig. 50) for the pyroelectric detector and for a second detector, e.g. a cooled one 
for the very far-infrared. 

6.3 Interferometer Data 

A number of data  has been collected in Table 3 which are to be discussed in this 
section. These data concern the optics, the aperture and the throughput  of the 
interferometer in various Fourier spectrometers. In  addition, it seems to be of 
interest to comment on the mode of propulsion, the speed and the max imum 
travel  pa th  of the movable mirror. 

For all Fourier spectrometers discussed here, the aperture or t h e / - n u m b e r  is 
listed in Table 3. As usual in optical instruments, t he / -number  is the ratio of the 
diameter  of a lens or a concave mirror and its focal length. For example , / /4  means 
that  the focal length of the lens or mirror is larger by  a factor of 4 than tile dia- 
meter. In case of a Michelson, interferometer, let us refer the / -number to the 
collimator mirror, i.e. its diameter and its focal length. Obviously, the ratio of 
these two quantities is a measure of the solid angle ~c subtended by  the collimator 
mirror as was pointed out in Section 5.1 in context with the throughput  of the 
interferometer. We recall that  

~c Ac ~R 2 
/2 /2 (6.1) 
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where R and / are the radius and the focal length of the collimator mirror, re- 
spectively. Now, if we have a n / - n u m b e r / ] ~  for an interferometer the radius is 

/ , and we obtain for the solid angle R = ~ n  

( / ) 2 f / s =  z (6.2) 

In the far-infrared region, energy is so badly needed that  the slow-scan spectro- 
meters especially designed for this range have a / -number  f/2 (instruments No. 1, 
3, and 5c in Table 3). The/-numbers  of the other interferometers range from/[3.7 
to/]5.  These interferometers have been designed for the middle- und near-infrared 
(instruments No. 2b, 4a--d, 5a, 5b, and 6 in Table 3) or are rapid-scan spectro- 
meters for the far-infrared (No. 2b and 4e in Table 3). The diameters of the 
collimator mirrors are usually about 5 cm. I t  should be noted that  optionally a 
]/2 optics with collimator mirrors of 10 cm diameter can be provided for the Bruker 
IFS 115 Fourier spectrometer (No. 2b in Table 3). In order to evaluate the through- 
put  of all these instruments, we need the characteristic area As [cf. Eq. (5.2) in 
Section 5.1], in addition to the solid angle ~2,. In most interferometers, this char- 
acteristic area is that  of the variable diaphragm between source and collimator 
mirror. Usually, its diameter ranges from 3 mm t o  1 cm. From these data, the 
throughput E~  = A s "  ~2, can be evaluated. For the more luminous far-infrared 
spectrometers, the values of E range from 1--15 s terad,  mm~, and for the other 
instruments, from .05--5 sterad �9 2 (cf. Table 3). In this comparison, we realize 
that  the values quoted to be typical in section 5.1 are typical values for the far- 
infrared (/-number//2,  source diameter 10 mm). And it should be noted that  the 
values for the Fourier spectrometer and the grating spectrometer apply more to 
home-made instruments for the very far-infrared than to commercial instruments 
in the middle- and near-infrared. As already mentioned in other context, the 
optical path difference is controlled and measured by means of a He--Ne-laser 
in a number of instruments (No. 2a, b, 4a--e, 5a, b, and 6 in Table 3, cf. also Table 
2). For these instruments, a frequency precision better  than .01 cm -1 can be 
guaranteed. This is due to the high stability of such a laser and also due to the fact 
that  the laser frequency is independent of temperature and other influences. For 
a Moird system on the other hand, the precision usually is given by that  of a ruled 
glass rod which has a rather small but  still finite thermal expansion. And the same 
argument holds for the grating in a grating spectrometer. 

Now, let us concentrate on the mode of propulsion of the movable mirror in 
various Fourier spectrometers. Among the discussed 13 instruments, there are 
three spectrometers (for the far-infrared!) where the movable mirror is driven 
by  a synchronous motor (No. 1, 3, and 5c in Table 3) and where the speed of 
the mirror can be varied from 1 to 25/~m/sec. These are the socalled "slow-scan" 
instruments. They employ a slow Golay-detector (cf. Table 2), and the radiation 
of the source is chopped at a certain frequency as was pointed out already in 
context with the optical diagram (cf. Fig. 49). In the other ten instruments listed 
in Table 3 (No. 2a, b, 4a--e, 5a, b, and 6), the movable mirror is driven by an 
electromagnetic device like a linear motor and where the speed can be varied 
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from 1 to 25 mm/sec. In a rapid-scan instrument therefore, the movable mirror 
is faster by  about a factor of thousand in comparison to slow-scan spectrometers. 
The friction problems arising for the high speeds are overcome by  "air bearing" 
and similar constructions. With respect to the different speeds, we recall that  
radiation of wavenumber  ~ is modulated at a frequency [of Eq. (4.3) in Section 
4.2]. 

] = 2v~ 

when the mirror is driven at constant speed v. At a speed of 1/~m/sec, the modu- 
lation frequencies are .004, .06 and .2 Hz for ~ = 2 0 ,  300, and 1000 cm -1, 
respectively. At a speed of 1 mm/sec on the other hand, the modulation fre- 
quencies are 10, 160, and 800 Hz for ~ =50 ,  800, and 4000 cm -1, respectitely. 
From this comparison, it is obvious that  we do not need a fast detector in a slow- 
scan instrument.  The modulation frequencies from the interference fringes are 
almost d.c. electric signals. But  for reasons of thermal drift and other stabil i ty 
problems, usual a.c. amplifiers are preferred to d.c. amplifiers for the amplication 
of small signals it is the case for far-infrared spectrometers. Therefore it is ad- 
visable to chop the radiation at a frequency which is sufficiently low for the 
Golay detector and not too low for an a.c. amplifier, i.e. a frequency between 10 
and 15 Hz. A tuned amplifier can be used, and a bandwidth of about .5 Hz will 
be required to record an interferogram (with frequencies .004--.2 Hz) without 
distortion or at tenuation of the high frequency components (cf. the considerations 
with respect to the electronic bandwidth in Sections 4.6 and 5.4). For a rapid- 
scan instrmnent on the other hand, a bandwidth of one or two kilohertz is nec- 
essary for the electronic system, and a fast pyroelectric detector has to be used 
(cf. Table 2). The modulation frequencies from the interferogram itself (10--800 
Hz) are sufficiently high that  usual a. c.-amplifiers can be used without employing 
a chopper. If  the radiation were to be chopped in this case, a rather  high frequency 
of about 10 kHz had to be applied where other problems could arise. 

In this context, it is perhaps worth to mention that  both, tile Golay detector 
and the pyroelectric one, are thermal detectors. Both can be used without cooling 
at room temperature.  The difference in speed between these two can be explained 
in terms of their effective time constants. In the Golay detector the radiation is 
absorbed in a thin film which is positioned inside a small gas chamber. Via the 
absorbing film, the radiation energy heats the gas, and the thermal expansion of 
the gas is finally transferred to an electrical signal. The time constant of the Golay 
detector is dependent on the thermal capacity and on the thermal conductivity 
of the system. A typical value of the time constant is ~ : 15 m sec 39). The pyro- 
electric detector consists of a thin slice of a pyroelectric crystal like TGS (tri- 
glycine sulfate), SbSI or BaTiOa.  This slice is sandwiched between two elec- 
trodes one of them exposed to the radiation and absorbing the radiation if not a 
special coating is used for this purpose. These crystals exhibit a dielectric polar- 
ization which is temperature  dependent, especially if the mean temperature  is 
close to their ferroelectric Curie temperature.  The absorption of radiation causes 
a temperature change, and this, via a change in the polarization, requires a change 
of the charges on the electrodes. The corresponding current is the electrical signal. 
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The t ime constant of this system depends on its electrical impedance. A typical 
value is r = 4 0  #sec 39) for a TGS-detector which is smaller by a factor of about 
400 than that  of the Golay cell. 

The last quant i ty  to be discussed in this section is max imum patti  of the 
movable mirrors. In the slow-scan instruments, usually a lead-screw is employed 
to drive the mirror with the synchronous motor. And a max imum scan length of 
the movable mirror of 5--10 cm is achieved without any problems. In the case of 
rapid-scan instruments however, tlle customer has to pay  for a larger maximum 
scan length. From a comparison of this quant i ty  for various instruments in Table 3 
(e.g. No. 4a--d and No. 5a, b) with the prices of the instruments in TaMe 2, we 
learn tha t  with increasing prices also the max imum mirror pa th  is increased which 
determines maximum resolution of the instruments as limited by  the mechanics 
of the interferometer. We recall from our considerations in Sections 2.3, 3.2, 4.6 
and 5.1 that,  in Fourier spectroscopy, the resolution width is 

1 
A ~ - -  (6.3) 

Smax 

[cf. Eq. (2.23) in Section 2.3] where Smax is the max imum optical pa th  difference. 
By means of Eq. (6.3), the maximum resolution has been calculated and also 
listed in Table 3 for the various instruments. The least resolution is A v ----2.0 cm - I  
(instruments No. 4a and 6), the best value is A v = . 0 6  cm -1 (instruments No. 
2b and 5b). From the viewpoint of practical applications, a resolution of about 
1 cm -1 is required for broad bands in solids (cf. Figs. 26 and 27) while a much 
better  resolution is necessary for narrow lines as they happen to occur in gases for 
example (cf. Fig. 29). 

6.4 Data about the Computers 

This part  of the comments on commercial instruments is devoted to the character- 
istic problem of Fourier spectroscopy, i .e.  the necessity to subject the experi- 
mental ly determined interferogram to the Fourier transform and to employ an 
electronic computer for this purpose. At first we shall concentrate on the more 
theoretical aspects of this problem. Among the slow-scan far-infrared instruments, 
two (No. 3 and 5c in Table 4) use the real t ime method (for explanation see 
Section 4.4) for evaluating the spectrum from the interferogram and one (No. 1 
in Table 4) employs a wave analyzer, an analogue computer. But  it should be 
noted, that  the whole data processing system of the instrument No. 1 (Beckman 
I R  720) is a hybr id  system. The interferogram is sampled, digitized and stored in 
a memory.  From there, the data are transferred to the wave analyzer which 
operates in an analogue way. The method of Fourier transform in all the rapid- 
scan instruments (No. 2a, b, 4a--e, 5a, b, 6) is the fast Fourier transform (FFT or 
Cooley-Tukey algorithm). And it was pointed out in Sections 4.3 and 4.4 and in 
Appdx. 3 that  this method is the most appropiate for these Fourier spectrometers. 
Except  for the Beckman I R  720 with the wave-analyzer, for all instruments a 
mathematical  phase error correction is included automatically in the Fourier 
transform program. As already mentioned in Section 4.4, the possibilities of a 
phase error correction are limited in the case of the real-time Fourier-transform. 

173 



g~
 

T
ab

le
 4

, 
F

ou
ri

er
 t

ra
n

sf
o

rm
 a

nd
 c

o
m

p
u

te
rs

 i
n 

co
m

m
er

ci
al

 i
n

st
ru

m
en

ts
 

N
o

 
In

st
ru

m
en

t 
M

et
ho

d 
ot

 
P

ha
se

 e
rr

or
 c

o
rr

ec
ti

o
n

 
C

o
m

p
u

te
r 

m
em

o
ry

l)
 M

ax
im

u
m

 n
u

m
b

er
 

S
am

pl
in

g 
in

te
rv

al
 

M
ax

im
u

m
 

F
ou

ri
er

 t
ra

n
sf

o
rm

 "
 

co
re

 
di

sk
 

of
 d

at
a 

p
o

in
ts

 ~
) 

A
s 

(#
m

) 
~

es
ol

ut
io

n a
) 

(c
m

-1
) 

I 
B

ec
k

m
an

 I
R

-7
2

0
 

W
av

e 
an

ly
ze

r 4
) 

N
on

e 
1.

6 
K

 
--

 
2 

• 
0

.8
 K

 s
) 

4,
 

8.
 

16
, 

32
, 

64
 

1.
56

 

2 
a 

B
ru

k
er

 I
F

S
 1

14
 

~ 
C

oo
le

y-
T

uk
ey

 
M

at
h

em
at

ic
al

 p
h

as
e 

16
 I

((
8

0
K

) 
(1

.2
M

) 
2 

• 
4 

K
 

2n
 X

 0
.6

32
8 

0.
50

 
2

b
 

B
ru

k
er

 I
F

S
 

11
5 

J 
(F

F
T

) 
er

ro
r 

co
rr

ec
ti

o
n

 
(-

-l
~

n
~

 
+

4
) 

1.
98

 

3 
C

od
er

g 
F

S
 4

00
0 

R
ea

l 
ti

m
e 

S
pe

ci
al

 e
le

ct
ro

ni
c 

p
h

as
e 

4 
K

 
--

 
2 

x 
1.

5 
K

 
5,

 1
0,

 2
0,

 4
0,

 8
0 

0.
45

 
er

ro
r 

co
rr

ec
ti

on
 

4
a 

D
ig

il
ab

 F
T

S
 

10
 

4
b

 
D

ig
il

ab
 F

T
S

 
14

 
4

c 
D

ib
il

ab
 F

T
S

 
15

 
4 

d 
D

ig
il

ab
 

F
T

S
 

20
 

4
e 

D
ig

il
ab

 
F

T
S

 
16

 

C
oo

le
y-

T
uk

ey
 

M
at

h
em

at
ic

al
 p

ha
se

 
(F

F
T

) 
er

ro
r 

co
rr

ec
ti

on
 

16
K

 (
32

K
) 

--
 

2 
• 

ca
. 

4
K

 
8

K
 

12
8K

 
2 

• 
ca

. 
4

0
K

 
8

K
 

1.
21

~I
 

2 
• 

ca
. 

5
0

0
K

 
8

K
 

1.
2M

 
2 

• 
ca

. 
5

0
0

K
 

16
K

 
--

 
2 

• 
ca

. 
4

K
 

2n
 •

 
0.

63
28

 

1.
98

 
(0

.2
0)

 6
 ) 

(o
.o

2)
 6

) 
(0

.0
2)

6)
 

1.
98

 

5
a 

P
o

ly
te

c 
M

IR
 2

0 
/ 

C
oo

le
y-

T
uk

ey
 

M
at

h
em

at
ic

al
 

p
h

as
e 

16
K

 (
32

K
) 

1.
2M

 
2

• 
5

0
0

K
 

2n
 •

 
0.

63
28

 
[ 

(0
.0

2)
6)

 
5 

b 
P

o
ly

te
c 

M
IR

 
16

0 
/ 

(F
F

T
) 

er
ro

r 
co

rr
ec

ti
on

 
(-

-3
 ~

< 
n_

<
 +

 4
) 

~ 
(0

.0
2)

 6
) 

5
c 

P
o

ly
te

c 
F

IR
 

30
 

R
ea

l 
ti

m
e 

P
ar

ab
o

la
 f

it
 

4
K

 (
16

K
) 

2 
• 

1.
S

K
 

5,
 1

0,
 2

0 
0.

60
 

6 
S

p
ec

tr
o

th
er

m
 S

T
 

10
 

C
oo

le
y-

T
uk

ey
 

16
K

 (
32

K
) 

12
8K

 
2 

• 
ca

. 
50

 K
 

1.
26

56
 

(0
.1

6)
 6

) 
(F

F
T

) 

1)
 C

ap
ac

it
y

 o
f 

w
or

ds
, 

w
o

rd
 l

en
g

th
 m

o
st

ly
 

16
 b

it
; 

in
 b

ra
ck

et
s:

 
op

ti
on

al
. 

~)
 W

h
ic

h
 c

an
 b

e 
st

o
re

d
 w

it
h

 t
h

e 
st

an
d

ar
d

 v
er

si
on

 o
f 

th
e 

in
st

ru
m

en
t.

 
3)

 A
s 

li
m

it
ed

 b
y

 t
h

e 
m

ax
im

u
m

 
n

u
m

b
er

 o
f 

d
at

a 
po

in
ts

 (
si

ng
le

 s
ca

n,
 s

am
p

le
 a

nd
 b

ac
kg

ro
un

d,
 

w
id

es
t 

sp
ec

tr
al

 r
an

ge
, 

si
ng

le
-s

id
ed

 i
nt

er
fe

ro
gr

ar
n)

. 
4)

 A
na

lo
gu

e 
co

m
p

u
te

r.
 

5)
 2

 •
 

.8
K

 m
ea

n
s 

80
0 

d
at

a 
po

in
ts

 f
or

 s
am

p
le

 i
nt

er
fe

ro
gr

am
, 

an
d

 8
00

 f
or

 b
ac

kg
ro

un
d.

 
6)

 R
es

o
lu

ti
o

n
 l

im
it

ed
 a

t 
an

 l
ar

ge
r 

va
lu

e 
of

 A
~

 b
y

 t
h

e 
m

ax
im

u
m

 p
at

h
 o

f 
th

e 
m

o
v

ab
le

 m
ir

ro
r 

(c
f.

 T
ab

le
 3

).
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The Polytec F IR  30 provides the "parabola fit" and the Coderg FS 4000 a special 
electronic phase error correction. All instruments with the fast Fourier transform 
(FFT) correct phase errors in the interferogram mathematically according to 
a method first proposed by  M. Forman 68,7~ This correction procedure was out- 
lined in detail in Section 5.3 (cf. Fig. 41). In addition to Fourier transform and 
phase error correction, it is advisable to use apodization in Fourier spectroscopy 
(cf. Sections 2.3 and 3.2). In all commercial instruments, the operator has the 
choice among a number of different apodization functions. 

From Sections 4.3 and 4.4, we recall that  either the interferogram sampling 
points l (n A s) (FFT, Cooley-Tukey-algorithm) or the spectrum points I (m A ~) 
(Real time) have to be stored in the computer memory. The number of data 
points to be stored is moderate in the far-infrared and considerably higher in the 
middle-infrared where it will be of the order of 10,000 to I00,000 for tfigil resolution 
work. Now, the capacity of the computer core memory ranges from 4K to 16K. 
That  means, 4,000--16,000 data (words in computer language) can be stored 
there. From this capacity, about one half is needed for the program and the data 
handling organization. Thus, about 2,000--8,000 data points can be stored in the 
core memory (cf. Table 4). For high resolution, this is not sufficient. Moreover, 
one should be able to use multiple scanning and averaging in order to improve the 
signal-to-noise ratio. And one would like to employ the computer to perform 
additional calculations with the spectral data, e.g. absorbance spectrum evaluated 
from transmittance. On these grounds, a rather large capacity for storing data  is 
required for the electronic data processing system of a Fourier spectrometer, 
especially for the middle- and near-infrared. Therefore, most manufactures provide 
regularly with their instrument a magnetic disk which offers the possibility of 
storing simultaneously 128,000 to 1,200,000 additional data points. Such a capacity 
is sufficient even for the highest resolution. And the disk is easily inter- 
changeable. Thus, a multiple of the above numbers is yielded for the limits of 
this memory. Of course, all manufactures offer optionally further extensions of 
the data system which may be very helpful when a great number of spectra has to 
be handled and to be compared with other spectra as will be the case in routine 
chemical analysis. For the Bruker IFS 115 Fourier spectrometer (No. 2b in Table 
4) however, it is advisable to purchase such an optionally extended data  system 
in order to be able to use the full capabihty of the instrument, even if no extreme 
data processing is required. For the standard version of all the instruments, an 
estimate of the maximum number of data  points is listed in Table 4. From the 
total memory, a portion has to be substracted for the programs stored in the 
computer. As usually half of the available memory is needed for the sample 
interferogram or spectrum and the other half for the background; the number has 
been divided by  two, e.g. 2 • 4 K means 4000 sample points and 4000 background 
points. For the evaluation of the maximum resolution as limited by  the electronic 
data system, we recompile the relations discussed in Section 4.6 and demonstrated 
in Table 1 ; 

number of interferogram points N --  Smax 
As 

number of spectrum points M = 2 v-max -- emm A~ 
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1 
where A s ~_ - -  depending on the potential sampling intervals available at 

2~ma~ 
1 

the particular instruments, where A ~ -- (with apodization f), and where 
$1~&X 

it was assumed ttmt two spectrum points are evaluated per resolution width A 
(cf. Table 1). In case of a He--Ne-laser reference system, the potential sampling 
intervals are related to the laser wavelength (2-----0.6238 /~m) in a simple way 
(cf. Table 4). Except  for one already mentioned instrument (Bruker IFS 115), 
the maximum resolution all Fourier spectrometers for the middle- and near- 
infrared is not limited in the standard version by the memory but by the maximum 
path of the movable mirror (cf. Tables 2--4). For all far-infrared instruments 
however, the resolution is limited by  the data  system and not by the mechanics 
of the interferometer. 

I t  has already been mentioned several times that the electronic computer in 
a Fourier spectrometer is an unquestionable necessity for performing the Fourier 
transform of the interferogram in order to obtain the spectrum. But, once there, 
the computer can be used also for every calculation which is to be executed with 
interferogram data or spectra. And most manufactures provide for instruments 
with a sufficiently large core memory (not less than 8 K) a socalled software pack- 
age which is a collection of helpful additional computer programs. Among these, 
mostly the following programs are found 

a) double precision, i.e. doubling the word length from 16 (20) bit to 32 (40) bit. 
Double precision is necessary for example when the difference of two spectra 
is required and when a large number of spectra has to be added to obtain a 
reliable average. 

b) arithmetic. This program offers the opportunity to add, substract, multiply or 
divide any two spectra, e.g. to evaluate the %-transmission, the ratio of the 
sample and of the background spectrum. 

c) co-adding of interferograms and averaging of spectra. Theoretically, the Fou- 
rier transform is a linear operation. On these grounds, no difference is expected 
if, for an improvement of the signal-to-noise ratio, the average of a number of 
interferograms is formed (co-adding) or if this is performed for the spectra. 

d) usually the spectra can be converted from percent transmission to absorbance 
and log-absorbance. 

e) for plotting or displaying the spectra, expansions are available for the x- an 
for the y-scale. One manufacturer (Digilab) also includes a subprogram for 
three-dimensional plotting. 

f) peak finding, integral absorption. This program helps to extract some charac- 
teristic data from a spectrum. 

g) BASIC and FORTRAN compilers (the FORTRAN compiler only for computers 
with a core memory not smaller than 16 K). In this case, the customer can 
write and use programs of his own choice written in BASIC or FORTRAN. 

In addition to all these possibilities, the computer is usually employed in 
controlling and steering the whole instrument. 
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6.~ Final Remarks 

In this introduction to Fourier transform spectroscopy, the theory of this spectro- 
scopic method has been set out. Its advantages and diasdvantages have been 
compared with those of conventional spectroscopy with a diffraction grating. 
Many practical aspects have been discussed, and it has become clear that  Fourier 
transform spectroscopy is a useful and very powerful tool, especially for energy- 
limited spectroscopy in the very far-infrared spectral region. Here, its performance 
cannot be equalled by  conventional spectroscopy though it may be reached and 
exceeded by  laser spectroscopy with tunable sources; but  this field is beyond the 
scope of this introduction. Taking Fourier spectroscopy and conventional spectro- 
scopy only, there are cases where comparable final results can be obtained by both 
methods or where the same results can be obtained without any difficulty by 
conventional methods s-10). Therefore, our view on these methods should not 
be just "black or white" but  more differentiated. In other words, if in a large 
laboratory a conventional double-beam instrument and a Fourier spectrometer 
are both available, the spectroscopist should decide on the basis of the problem 
which instrument to use for an investigation. This introduction is intended to 
help him in such decisions. 

7. A p p e n d i x  1 

For the illustration of the principles of Fourier transform spectroscopy, a spectrum 
I (~) has been chosen for which the interferogram I(s) and also the observed 
spectra for the truncated interferogram can be presented in analytical mathe- 
matical form. The spectrum I (~) is the sum of three "Lorentzian" terms: 

3 3 

where ~n, 7n and ]n are the characteristic frequency, the width and an intensity 
factor of the Lorentzian terms, respectively. The interferogram corresponding to 
I (.~) is the sum of three damped cosine waves 

o r  

where 

8 

I(s) =n~l azTn/n[ +~n'c~ 
8 

i (s) = ~ 7 - 1 -  = cos 
Yn 

�9 V 9 n = a r e s i n 2 ~ n  and ~n =- ~n cos g,* = - ~ y n  

(A 1.2) 
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For s = 0 and for s -~ 0% the interferogram given by Eq. (A 1.2) exhibits the 
properties quoted in Section 3.2. The functions I (~) and i (s) are a Fourier trans- 
form pair well known from tile theory of forced vibrations and resonance of 
damped oscillators. One reason why they are very useful to demonstrate problems 
of Fourier transform spectroscopy is that  the different contributions to I(~) and 
to i (s) can be studied separately (cf. Fig. 12). 

The Fourier transform of a finite interferogram without apodization is 
represented by  the following expression: 

3 

Io~,~ (r,) = I , ,  (~) 1 - F i n  cos (27ZPSm~x) + F2n 

with (A 1.a) 

Fin  --  

F 2 n  - -  

-2 -2 
- ~" sin (2n~.Sm~x) e-=~',~'~,, - 1 - 2 -  I . ( ~ x )  + _ ,  

~ n / n  Yn vn 

- -  vn - -  Vn f n  (Sm~x) -- 77, sin (27~nSmax) e -~vnsmax . 
~2"n/n V n 

The function Iobs (~) can easily be evaluated for any value of ~. Further, the 
analytical properties may  be considered. Obviously, the asymptotic value of 
Iobs (~) for Smax "~ oo is the true spectrum I (~). On the other hand, if the widths 
of the Lorentzian terms are reduced drastically, we obtain 

3 

Y [ ] l i m  --1 In(~')  1 - - F i n  cos (2~Smax) + F 2 n : - s m  (2~Z~Smax) 
~'n~O 7 n Vn 

~=~ (A 1.4) ;3 
- 2 1 ~ / n [  sin[2~(~-~n)smax][~ -- ~n] + ~ s i n  [2~ (~ + ~7n) Smax] 1 +  ~n] 

n=l 

This result is what we expect for three narrow lines [cf. Eq. (2.21)]. The analytic 
expression for the observed spectrum Iobs (r in the case of triangular apodization 
was also derived, but  it is too lengthy to be reproduced here. I t  has, however, 
been applied to derive the corresponding graphs in Fig. 11. 

8. Appendix 2 

This short derivation of the Cooley-Tukey algorithm is given to demonstrate the 
principle; it cannot illuminate all the details and aspects of an actual computation. 
In that  respect, the reader is referred to the literature 49,5o,97). 

The conventional computation of the Fourier transform with a digital com- 
puter is done according to Eq. (4.8) in Section 4. For  our purpose, it is convenient 
to proceed to a complex notation 

hr-1 

Iob~(ma~) = I (n~s)  e l ~ -  (A2.1) 
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with 0 < m g N - 1 and where I ( n  A s) = S (n A s ) . i  (n A s)- A s for all n ~ 0 and 
[ ( - n A s )  = I ( n A s )  for all n < 0 .  In  order to restrict the sum to 2 N  terms, the 
term with n = N was omitted.  This can be done wi thout  change of lobs since the 
apodizat ion funct ion has the proper ty  S (NA s)= S (Smax) ----- 0. Now, it is useful 
to get rid of the negative values of n in Eq. (A 2,1). We subst i tute  n + 2 N  for 
n < 0  and  put,  consequently,  

I([~, + 2N] Js)  = I(- ,3s) .  

m 2 N  

This yields from Eq. (A 2.1) remembering tha t  ei:~---N-- = e 2:~lm =- 1 

2 N - 1  r a n  

Iobs(mA~,) = ~ _r(nAs) ei~-W - . (A 2.2) 

The derivat ion of the Cooley-Tukey algori thm now requires t ha t  all integers 
m, n, N be conver ted to b inary  numbers  to take  advan tage  of the periodicity of 
the funct lon elr �9 Let  us assume 

N = - 2  k or 2 N - - - - 2  ~+1. (A2.3)  

If  Eq.  (A 2.3) is not  fulfilled for an interferogram determined experimental ly  
with a certain number  of data,  it is advisable to  add the required number  of ctata 
points with i (nAs) = 0. For  m and n, the conversion to b inary  numbers  is 

k k 

m =  ~ ma2~ t and n-=- ~ na2;', (A2.4)  
a=o  4=0 

where all the ma and n~ m a y  have only the values zero or one. Since m is restricted to  
the range 0 _~ m _~ N -- 1 ----- 2~ -- 1, the coefficient m~ of 2 ~ is zero in all cases. 
An  example of conversion to  b inary  numbers  is 

107=-  1 - 1 0 2 + 0 . 1 0 1  + 7 - 1 0 0  

-~ 1 . 6 4  + 1 . 3 2  + 0 . 1 6 +  1"8  + 0 - 4  + 1 - 2  + 1 . 1  

= 1 "26 + 1 .25  + 0 . 2  a + 1 "28 + 0 . 1 2  + 1 -21  + 1 "20. 

The conversion to  b inary  numbers  means  in effect t ha t  a number  is not  
cxpressed in terms of powers of ten, as in the decimal system, bu t  in terms of 
powers of two. 

Wi th  the relation (A 2.4) we obtain 

k k-~. 

~=o /~=o 
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In Eq. (A 2.5), all integral multiples of 2~ in the exponent have been removed. 
The spectrum and the interferogram data are redefined in terms of the binary bits 
mv and n~: 

Iob~ (ma~,) = I (m~, m k - i  . . . . .  m l ,  too) 
(A 2.6) 

l (nAs) ---- i (n~, nit-1 . . . . .  h i ,  n o ) .  

The Fourier transform [see Eq. (A 2.2)] then reads 

1 

I ( m k  . . . . .  too) ~ - - ~  e x p  { 

n0=0 
1 

nk_l=0 
1  oxp{ 

k 1 k-1 

- - 2 n i n o ~ m v  2 ~-~-1} �9 ~ e x p  { -  2~nl~mz2~*-k} 
/~=0 nl~0 /~=0 

~n0. rol l  

- 2~in~ -m~} " l (nk . . . . .  n o ) .  (A 2.7) 

This is the basic formula for the Cooley-Tukey algorithm. But in order to 
reach some understanding of its advantages, we have to consider the procedure of 
computing I (ink . . . . .  m0) in separate steps. 

At the beginning, the memory of the computer contains the interferogram 
(see Fig. 51). Before starting the computation it is convenient to invert the order 
of the binary bits of these data: 

l ( n~ ,  n ~ - i  . . . .  , n l ,  no) --)-i(no, n l  . . . .  , n~- l ,  n~) (A 2.S) 

The first step of the Fourier transform in this algorithm is the summation over 
nk [see Eq. (A 2.7) and Fig. 51] : 

1 

nk=0 

= ? ( n  0 . . . .  , he -1  , O) + ? ( n o , . . . , n k - 1 ,  1)e -~im0 . 

(A 2.9) 

Since n~ has been replaced by too, the quantities S1 need the same space in the 
memory of the computer as i (no . . . .  n~) did (see Fig. 51). In the following steps, 
the summation is carried out successively over nk-L nk-2, and so on according to 

1 

S2 ,no  . . . .  , n~-2[ml ,  m o , =  ~ exp { - 2 n i n ~ - i  ( 4  + 2 ) }  S l (n , , . . . ,n~- l lm0,  
nk_x=0 

(A 2.10) 
= s l ( n o  . . . . .  nk-2, Olmo) + S~(no . . . . .  nk-2, 1]mo)e-~' ('~1 + -~q) 
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and similar expressions for $3, $4, etc. From Eq. (A 2.7) it is obvious that  there 
are (k + 1) steps until the computation arrives at the final result (see Fig. 51) : 

I (m~, m ~ - l , . . . ,  too) = S~+ 1 (ink, ink-1 . . . .  , too) (A 2.11) 

The main advantage of this method is that the required computer time is 
proportional to (k + 1) N ~-- N (21ogN + 1) : N21og2N. In each of the (k + 1) 
steps N operations are performed, where one operation means one (complex) 
multiplication by a phase factor and two (complex) additions. For conventional 
integration, the required computer time is proportional to N 2 as there are N 2 
operations consisting of one (real) multiplication by a phase factor and one (real) 
addition. Although the computation time is smaller for one operation of the con- 
ventional method, the factor 21og2N ---- k + 1 will be so much smaller than N 
for large N that  a considerable amount of time is saved by employing the Cooley- 
Tukey algorithm. 

9. A p p e n d i x  3 

For phase modulation, the interferogram is a function of path difference s and the 
modulation ~ (t) [cf. Eq. (4.9)]: 

oo 

I,(s,t) = 2 j" I(~) {1 + cos (2~[s + a(t)])} d~ (A 3.1) 
0 

where, for square-wave modulation, 

Z + r  
,~ (t) ",, 

- -  O" 0 

f o r 0 < t < - - I  2 To 

for 1 T 0 < t  < T 0  
and r + To) ---- a(t) . 

According to the addition theorem of the cosine function, the interferogram 
may be separated into two parts 

oo 

I ,(s , t)  7 2 S I(~) {1 + cos (2~s) cos (2~Pa[t])} d~ 
0 

~o 

-- 2 j" I(~) sin (2~s) sin (2n~(~[t]) d~. 
0 

(A 3.2) 

Inserting (~ (t), we learn that  the first part is independent of time since cos (2~ao) 
= cos ( -  2~a0).  Thus, the first part is the d.c. component of the interferogram 
signal 

o o  

d.c. component = 2 I I(~) {1 + cos (2,~ys) cos (2z~ao)} d~ (A 3.3) 
0 
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The sine function, on the other hand, is an odd function so that the second 
part is time-dependent and contains the a.c. components. For these, it is useful to 

1 
introduce the Fourier series with the basic frequency/0 = - -  and the harmonics 

To 
n/0. In this way, we obtain 

co 

a.c. components = -- 2 I I (~) sin (2n~s) [ +  sin (2:z~o)] d'P 
0 

~ (A 3.4) 
4 { _ 2  f sin (2, ,s)sin (2uY(ro)d~} ~ sin (2n[2,u + lJ/ot) 

[2,u + 1] 
0 /*~0 

Only the component with /0 [~" sin (2~r]0t)] is transmitted by the narrow- 
band amplifier and the phase-sensitive rectifier [see Eq. (4.11)] and all the higher 
harmonics are rejected. Thus, the interferogram signal obtained at the low-pass 
filter is proportional to the factor of this frequency component (curly brackets). 

Omitting the factor 4/z, which is not important in our context, we can write 
the interferogram signal as in Eq. (4.12). 
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