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Foreword 

Theoretical Chemical Dynamics 

Obtaining the rate of a chemical reaction from the knowledge of the collisional ele- 
mentary processes governing it, defines approximately the field of Chemical Dyna- 
mics. In most cases the investigation is restricted to molecular systems including a 
few atoms for the following reasons: 

(i) the experiments for analyzing a flux of molecules in various intramolecular 
states are limited for technical reasons; 

(ii) it is only in the case of small systems that "ab initio" potential energy sur- 
faces can be computed over a wide range of coordinates where the dynamic can be 
studied rigorously. 

The present article is a contribution for extending the scope of Chemical Dyna- 
mics in Organic Chemistry. In the first Chapter (A), previous trajectory studies in 
Chemical Dynamics are reviewed. The second Chapter (B) presents a general but ele- 
mentary method for undertaking the dynamical study of any chemical reaction. This 
method seems to be applicable in a straightforward way to rather large molecular 
systems in Organic Chemistry. An application of this method is presented in the 
third Chapter (C): the optical and geometrical isomerizations of cyclopropane are 
treated dynamically a). It makes use of an ab initio potential energy surface 2-4). The 
results are, as far as possible, compared with experimental results b). 

It should be emphasized that classical trajectories methods at present can be con- 
sidered as fairly standard techniques for studying the dynamical behaviour of small 
molecular systems (either triatomic or tetraatomic). As a consequence many techni- 
cal points have already been discussed in great detail in the literature 7-9) and they 
will not be discussed here. Such technical questions are, for instance: 

(i) should a parameter defining an initial state be either scanned or sampled in a 
random way (Monte-Carlo methods)? ; 

(ii) should the sampled points have uniform density or be distributed according 
to some weighting function?; 

(iii) should quantized values of the initially observable quantities be exclusively 
selected? e t c . . .  

Other important topics related to the technology of trajectories will not be dis- 
cussed either, for instance: 

(iv) which integrator should be used to obtain the best compromise between 
stability and efficiency? 10-12); 

(v) what are suitable tests to stop a trajectory integration according to the type 
of outcome produced? 7) 

(vi) what type of semi-empirical potential should be preferentially used for a 
given reaction? 8) e t c . . .  

We will restrict this article to developing in detail our original contribution to 
the study of Chemical Dynamics in the field of Organic Chemistry. Consequently we 
will not say much about the connection between our work and semi-empirical statis- 

a) This study was previously published in the Journal of the American Chemical Society 1' 2). 
b) More details on the subject can be found in our two "Theses de Doctorat d'Etat": Yves Jean, 

Orsay (1973) s) and Xavier Chapuisat, Orsay (1975) 6). 
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tical methods of chemical reactivity, such as the transition state method or the Rice- 
Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular reactions ta-ls). The two 
points of view, dynamical and semi-empirical, differ greatly. Once again, the compari- 
son is only meaningful in the case of small molecular systems for which complete and 
rigorous results have been obtained within both methodologies. 

Finally, in view of all the restrictions above, the title of this article could as well 
be: "What can we do with trajectories in Organic Chemical Dynamics and under what 
kind of restrictions (drastic or not) is it possible?" 

A. Trajectory Studies in Chemical Dynamics 

1. Introduction 

In this chapter we define the scope of this article, mention some studies relevant to 
it and give references where these studies are dealt with. 

It is quite simple to say that this article deals with Chemical Dynamics. Unfortu- 
nately, the simplicity ends here. Indeed, although everybody feels that Chemical 
Dynamics lies somewhere between Chemical Kinetics and Molecular Dynamics, de- 
fining the boundaries between these different fields is generally based more on sur- 
misal than on knowledge. The main difference between Chemical Kinetics and Chem- 
ical Dynamics is that the former is more empirical and the latter essentially mechani- 
cal. For this reason, in the present article we do not deal with the details of kinetic 
theories. These are reviewed excellently elsewhere 16-2 l). The only basic idea which 
we retain is the reaction rate. Thus the purpose of Chemical Dynamics is to go be- 
yond the definition of the reaction rate of Arrhenius (activation energy and frequency 
factor) for interpreting it in purely mechanical terms. 

This field of research is subject to rapid expansion at present because the improve- 
ment of sophisticated experimental methods coincides with an increase of the com- 
putational possibilities for the theoretical investigation of both the mechanical study 
of the nuclear motion and the quantum mechanical study of the electron potential 
governing this motion. 

The experimental situation has been the subject of several recent review papers, 
either general 22-24) or more specialized (molecular beams 2s-32), infrared chemi- 
luminescence 33), reactions of small molecules in excited states 34), e t c . . . ) .  The quan- 
tum mechanical theoretical approaches of Chemical Dynamics were also reviewed 
recentlyS, 35, 36) 

Since the scope of this article is purely theoretical, we just outline below the state 
of the experimental situation. The ideal experiment in Chemical Dynamics would be 
that in which starting with reactants in definite intramolecular quantum-states and 
running towards each other in a definite way (relative velocity and orbital angular 
momentum) the distribution of the products over the various intramolecular quan- 
tum-states and the state of the relative motion (direction and velocity) would be 
measured. Such an experiment would show whether there is a preferential molecular 
orientation at the heart of the collision, what the lifetime of the intermediate com- 
plex is, how the excess energy is distributed over the various degrees of freedom of 
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this complex, e t c . . .  Unfortunately, this eyperiment has not been carried out yet, 
but there are experiments which fulfill one part or the other of the ideal experiment. 
In crossed-molecular-beams experiments, the reactants are prepared in perfectly de- 
fined states 37-53). For instance a laser can select a given rotation-vibration intra- 
molecular state 54' 55). The products are analyzed by means of one of the following 
techniques: 

(i) the laser-induced fluorescence56-s8); 
(ii) the infrared chemiluminescence 33' 59 -63 ) ;  

(iii) the electric resonance spectroscopy 64-- 67) and 
(iv) the chemical laser sg' 68-74) 

We do not insist on stating details of these experiments. Let us just mention the 
recent work of Herschbach and collaborators which is a very impressive achieve- 
men t T S ,  76). These authors have studied, by means of molecular beams, the very de- 
tails of  "termolecular" reactions involving van der Wall's bonds among halogen mole. 
cules, such as: 

CI 2 �9 �9 �9 C12 + Br2 ~ (1) C12 + 2 BrCI; 

(2) BrCI . . .  C12 + BrCI and 

(3) Br2 �9 �9 C12 + C12. 

In particular, to channel (1) and (2) mechanisms involving formations of the same 
cyclic six-center intermediate complex can be attributed whereas channel (3) only 
requires Br2 to interact with the nearer C12 molecule of the dimer within a noncyclic 
molecular conformation. Thus channel (3) dominates at low collision energies (<  9 
kcal/mol), but declines rapidly at higher collision energies and becomes much less 
probable than collision-induced dissociation to form Br 2 + 2 C12, this applies also to 
both channels (1) and (2). 

In Chemical Dynamics the direct comparison between experiments (more precise 
than simple kinetic measurements of reaction rates) and theoretical results is in gen- 
eral rather subtle. As far as we know, it has been restricted to reactions in which a 
halide is produced. The most studied reaction, both theoretically 77' 8o) and experi- 
mentally47, 48, 69, 81), is 

F + D2 ----~ DF + D , 

or its isotopic variants 

F + H 2 ~ HF + H and 

F + H D  > H F + D .  

Thus the activation energy for the formation of DF is minimal when F and D2 collide 
colinearly. At low collision energy most molecules DF are observed backwards, in 
vibrational states v = 2, 3 and 4, at weak total angular momentum, e t c . . .  All the 
theoretical studies of  this reaction, but one 8~ use classical trajectories. 

5 
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2. Trajectory Studies of Small Molecular Systems 

Since theoretical Chemical Dynamics resort practically to classical trajectories, we 
briefly review below some previous works in this field c). 

The first chemical ieaction studied by means of classical trajectories was H 2 + 
H ~ H + H2 within the collinear collision model 84-87). This pioneering work states 
the following: For  any system driven by a bent potential valley, the reaction proceeds 
through a gradual transformation of the collision energy into vibrational energy of 
the product molecule. The first 3-dimensional trajectories were for the same reac- 
tion 8a). Since then, much important work has been undertaken. For instance, the 
way in which an empirical modification of the potential modifies th e reaction-proba- 
bility, the intramolecular states of the products, the deflection angle, e t c . . ,  all these 
were the subject of  many studies 89-95) and also of a review article 96). 

The first "a priori" study (by Karplus, Porter and Sharma) of a chemical reaction 
undertaken on a large scale was again for H2 + H, described by a London-Eyring- 
Polanyi-Sato (LEPS)-type potential 97-1~176 All the standard concepts and techniques 
were introduced for this investigationt~ 3.dimensional model, restricting the intra- 
molecular states of the reactants to quantized states, obtaining the reaction total 
cross-section a) as a function of the collision energy and of the intramolecular states 
of the reactants by averaging over the impact parameter (pseudo-random Monte-Carlo 
method), integrating these cross-sections with the collision energy to obtain the rate 
constant of the reaction, e t c . . .  

The main results of  this study arel~ 
(i) the total reaction cross section is an increasing function of the collision energy 

that rises smoothly from a threshold to an asymptotic value; 
(ii) the zero-point vibrational energy of the molecule contributes to the energy 

required for reaction, but the rotational energy does not; 
(iii) the reaction probability is a smoothly decreasing function of the impact 

parameter; 
(iv) for temperatures between 300 ~ and 3000 ~ the theoretical rate constant 

can be expressed by the form K (T) = A T ~ exp (-E*/kT} where A, E* and a (= 1.18) 
are constants; 

(v) there is no evidence of a long-lived intermediate complex. 
The model was extended to the general atom-diatom exchange reaction A + BC 
AB + C 1~ lO3), for which Polanyi and Wong studied in 3 dimensions the relative 

influence of both initial translational energy and vibrational energy. This depends 
largely on the location of the top of the potential barrier, either along the approach 
coordinate (case I) or along the retreat coordinate (case II). In case I translation is 
more effective than vibration in promoting reaction. Moreover, at low collision ener- 
gy, a major part of  the available energy transforms into vibration of the product mole- 
cule (at higher collision energy this fraction decreases). In case II the opposite situa- 
tion is observed: vibration is more effective than translation. Moreover, for low vibra- 

c) There are several more detailed review articles on the subject 7-9, 82, 83). 
d) The cross section of an elementary collision process is roughly a measure of the reaction ef- 

ficiency of this process. 
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tional energy of the reactants only a small part of the available energy appears as 
vibration in the product (at higher vibrational energy this fraction increases). This 
confirms the conclusion obtained within the collinear collision model. In both cases 
I and II most product molecules are scattered backwards at low collision energy (the 
peak of the distribution shifts forward at increased reactant energy, even in case II 
for an increase of  reactant vibration). 

Then the Karplus et al. model was extended to more complex reactions 1~ lOS), 
such as 

K + CHaI ~ KI + CH392' 93, 99, 100, 106) 

and finally to the general thermal bimolecular reaction in the gas-phase: A + B ~- 
C + D 1~ 114). For the latter it is possible to obtain the forms for the theoretical rate 
constantslg, s2.101, llS--120)_(or the forw,_ard (K) and the backward (K) reactions 
[def'med bye): - d  (A )/dt = K (A ) (B ) - K ( C) (D)] as functions of the temperature. 
I f  the gas phase is homogeneous the temperature is introduced through maxwellian 
distribution functions. The result is: 

= z FA(•215 
XA, XB, XC, XD 

v o (• • • • EcoO 

g = Z FC(Xc) FD(• o) ffd-vhd-vn Fc(Xc; vc)FD(xO;vD) 
XA, • • • 

v o (XA, XB, XC, Xo ; Ecot) 

where Xt (I = A, B, C, D) denotes the set of all the quantum numbers defining the 
intramolecular state of molecule I (rotations and vibrations) F1 (Xi) is the distribution 
function of the intramolecular quantum states of  molecule I, ~ is the velocity of 
molecule I, Fl (Xl ; ~ )  is the normalized distribution function of the velocity of mole- 
cule I in the state Xa, v is the initial relative velocity and Eco I the collision energy: 

v = I~A - 7B I= (2Ecol/U) 112 

where tz is the reduced mass of A and B. 

o (XA, XB, • XD ; Eco0 

is the reaction cross section of the elementary collision process [A (XA) + B (Xa) 
C (Xc) + D (Xo)] at collision energy Eco I. It is this quantity which is obtained by 
means of trajectories. 

e) This definition is for low concentrations and implies that the rate constants depend neither 
on the concentrations nor on the time. 
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This result is purely statistical. Replacing the distribution function by particular 
expressions, depending on the temperature, is the last operation f). When a dynamical 
process occurs the equilibrium distribution function (maxwellian) should be modified, 
and the greater the reaction rate compared to the relaxation rates of both the veloci- 
ties and the intramolecular states, the greater the modification 121-12a). Thus it is 
only for low reaction rates that equilibrium distribution functions can be inserted in 
the formulas above, and that the reaction rate depends on the temperature, but 
neither on the time nor on the concentrations. 

Now a question must be raised: which connection is there between classical tra- 
jectories results and results obtained through Quantum Mechanical calculations? 

The Quantum Mechanical study of molecular collisions and of the chemical reac- 
tion is itself an important t o p i c  124). T h e r e  are several review papers as' a6, 125-129) 
and textbooks t3~ 139) on the subject. Unfortunately, there are no exact quantum 
results within a realistic model of a chemical reaction yet, not even for the simplest 
3-atoms exchange. Thus the comparison is limited to particular cases. 

For instance, H + H2 ~ H2 + H was studied in 3-dimensions within a model 
where the vibrational states were reduced to a single one for each of the three pos- 
sible product molecules 14~ At low collision energy (less than the classical energy 
threshold) the reaction cross section is non zero because of tunnelling. For the same 
reaction studied colinearly the following conclusions emerge 14t- 143): 

(i) for great values of  the collision energies the quantum mechanical reaction 
probability slightly oscillates around the classical probability, because of the gradual 
"opening of excited vibrational states" in the products; 

(ii) the reaction probability extends below the threshold by tunnelling. Thus, at 
low temperature and for the phenomenon of a pronounced quantum nature (such 
as the exchange of a light atom between two heavy groups), the classical trajectory 
reaction rate may be an underestimated approximation of the true reaction rate. 

On the basis of  such results and, more convincingly, on the strength of semi- 
classical investigations (classical S-matrix of  Miller and Marcus 144-1so)) it can be as- 
serted that the classical description of the nuclear motion in the course of a molecu- 
lar collision (either reactive or not) is not in itself a severe restriction. Thus, McCul- 
lough and Wyatt ls1-ls2) have shown that for collinear H + H 2 ~ H 2 + H the agree- 
ment is quite good between the classical and the time-dependent quantum-mechanical 
descriptions during the greatest part of the reaction. A slight discrepancy appears only 
near the end of the reaction; the classical reaction is completed somewhat faster than 
the quantum-mechanical one. Nevertheless, all the dynamical effects such as the 
centrifugal force pushing the representative point of the reaction towards the outer 
part of  the bent reaction valley and the whirlpool turbulence effects close to the 
saddle point, are surprisingly well described classically. 

f) In the case of  a complete equilibrium distribution, the result is: 
o o  

K(T ) = ( 8/7r la kT)  1/2/k T f dEco I a' (Eco 1) Eco I exp ( -Ecol/k  T), 
0 

where: o ' (Eco I) = ~ FA(X A) FB(X B) o (X A, X B, X C, XD; Eeol). 
x A , X B , X c , X D 
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To wind up this chapter, we enumerate below the various fields of application 
of classical trajectories in Chemical Dynamics. 

Many trajectories were integrated to obtain either total reaction cross sections 
for comparison with molecular beams experiments 79' los, 1s a-171), or rotational and 
vibrational relaxation times of the products of chemical reactions, or intermolecular 
energy transfers 1~ 107-111,172-185) e t c . . .  

As seen previously, the chemical reactions studied most often are the exchange 
ones. Those requiring several potential energy surfaces of excited states (diabatic 
reactions) are worth special mention, since they most certainly define a domain of 
application with a future for classical trajectories. An electron jump from one surface 
to another requires either to be given a statistical probability of occurence by the 
Landau Zener formula 186' 187)(or one of its improved versions 188-192)) or to be 
described by means of complex-valued classical trajectories as a direct and gradual 
passage in the complex-valued extension of the potential surfaces (generalization of 
the classical S-matrixlg3-197)). 

Some atomic recombinations catalized by a rare gas atom 198-2~ and some re- 
actions involving a long-lived intermediate complex i i 2, i i 3, 206-208) were also studied 
classically. Unimolecular reactions are quite advantageous for trajectory studies since 
the potential is generally easy to express and the total energy is sufficiently great for 
reasonably neglecting the discreteness of vibrational levels of the reactant 7). Until 
recently only triatomic decomposition has been studied extensively: ABC ) AB + 
C209-211). The main concern is for the distribution of molecular lifetimes (the time 
elapsed before decomposition occurs) and for the variation of this distribution when 
varying the total energy and the particle mass. This can be compared directly with 
semiempirical predictions. Thus, it is well established for triatomic systems that the 
RRKM rate coefficients 13) satisfactorily agree with trajectory results. Another im. 
portant advantage of trajectory methods is to provide the final energy partitioning 
between AB and C. 

More recently, the unimolecular isomerization CH3NC > CH3CN gave rise to 
elaborated studies by Bunker and collaborators T M  1 s). The pressure dependence 
of the thermal reaction rate constant is well explained by the RRKM theory, apply- 
ing the simple concept of the geometry and vibrations of the activated molecule 216). 
However, the fact that the hot-atom displacement reactions 

T* + CHaNC > CH2TNC + H 

and 

T* + CH3CN > CH2TCN + H 

both result at the very end in CH2TCN (observed by trajectories) is indicative of a 
failure of the RRKM theory for the unimolecular isomerization of nascent mole- 
cules 217). In particular, CHaNC is not a good RRKM molecule under non-thermal 
conditions, because the vibrational modes of CHaNC are too far from being equally 
coupled to one another and also to the mode of isomerization. For unimolecular 
reactions it should be kept in mind that, since many vibrations (and not only the 
single translation) may play important roles, trajectory studies are always delicate 
and require much caution. 

9 
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There have been a number of interesting trajectory studies of organic reactions 
that have used empirical potential energy surfaces. CH3NC ~ CH3CN is the first 
example. The second example is 

K + C2HsI , [ ]  + C2H s (studied by Raff) 2Is) 

where the ethyl group is treated as a two-body system. The main results are: 
(i) the total reaction cross section for this reaction is less than that for K + CH3I 
KI + CH3, due to the increased steric hindrance; 
(ii) KI is predominantly scattered backwards; 
(iii) the C-C stretch of the ethyl absorbs an important part (15%) of the heat of 

reaction; 
(iv) the reaction can occur by two mechanisms, either directly or through forma- 

tion of a collision complex. 
In the first mechanism most of the reaction energy transforms into rotation- 

vibration energy of KI, while in the second mechanism the energy distribution be- 
tween the products is more random. A third example of organic reaction studied 
dynamically is that of  a "hot"  tritium atom on a methane molecule (studied by 
Polanyi and collaborators 2 t 9) on the one hand and by Bunker and collaborators 22~ 
221) on the other hand). The main findings of several studies (using various potential 
energy surfaces) are: 

(i) both abstraction of H by T (T* + CH 4 ~ TH + CH3) and T-for-H substitu- 
tion (T* + CH 6 ~ H + CH3T ) are direct (non complex) and concerted (non sequen- 
tial) reactions; 

(ii) substitution is favoured at intermediate collision energy (90-160  kcal/mol 
collision energy); 

(iii) substitution with Walden inversion is an important fraction of overall substi- 
tution at low collision energy (40-100  kcal/mol); 

(iv) the greatest part of the collision energy transforms into translational energy 
of the products; 

(v) at 45 -90  kcal/mol the product molecule is scattered sideways, following 
abstraction and backwards following substitution; 

(vi) for abstraction, replacing T by D, the abstracted H by D, or CH 3 by a heavier 
radical results in a decrease of the reaction cross section; 

(vii) for substitution, replacing T by D or the abstracted H by D results in a de- 
crease of  the reaction cross section while the latter increases when replacing CH 3 by 
a heavier radical. 

We have kept the dynamical study of organic reactions by means of classical tra- 
jectories and based on semi-empirical and ab initio potential energy surfaces for the 
end. These studies are rare and constitute most likely a research subject with a future. 
The difficulty is to obtain forces acting on a large numbers of atoms. Constructing a 
potential whose partial derivatives provide reasonable forces is more and more diffi- 
cult when the number of  atoms and the directionality of valence forces increase 7' 9). 
Except for the reaction study presented in the 3rd chapter of the present article, (in 
which an ab initio potential energy surface is interpolated and differentiated to give 
the forces) and as far as we know, these studies are reduced to a single one by Wang 
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and Karplus 222). It  deals with the insertion of singlet methylene into the hydrogen 
molecule: 

CH 2 + H 2 ~ CH 4. 

Here the forces are derived directly from matrices associated with SCF-MO calcula. 
tions (at the semi-empirical CNDO2 level). The results for the heat of  reaction are ac- 
curate. The methylene is shown to be inserted into the hydrogen molecule for a wide 
range of initial conditions. But the most significant conclusion is that the analysis of 
the reaction in terms of the static reaction-path alone is largely insufficient, com- 
pared with the more realistic dynamical conclusions about the mechanism which is 
very complicated. 

B. A General Framework for Chemical Dynamics in Organic Chemistry 

The theoretical investigation of a chemical reaction is essentially a two-step study. 
The first step is static. It consists of computing the potential energy of the reaction 
system as a function of the different geometrical parameters. Hence, some informa- 
tion on the reaction mechanism can be obtained, such as 

(i) the minimum-energy path to go from reactants to products and consequently 
the shape of the reaction coordinate; 

(ii) the difference between the calculated energies for the reactants and for the 
system at the transition state, which is compared to the activation energy of the reac- 
tion as a first approximation. In recent years, the growth of scientific computers, as 
well as the realization of fast programs for quantum mechanical calculations has made 
the extensive investigation of potential-energy surfaces possible for many organic 
reactions involving rather complex molecules. 

The second step is of a dynamical nature. It consists of obtaining dynamical tra- 
jectories on the potential surface. Classical Mechanics are supposed to describe cor- 
rectly the atomic motion. In certain cases such a study, at the end, allows one to 
obtain the rate constant of the reaction 1~ In other respects the dynamical study 
brings new information on the mechanism of the reaction 1~176 which cannot be 
derived only from the study of the static potential surface. Moreover, the dynamical 
study is sometimes clearly indispensable for the elucidation of the reaction mecha- 
nism. Thus, the reaction H2 + I2 ~ 2 I-I/was considered for a long time to be a 
simple bimolecular reaction. Semi-empirical calculations of the potential-barrier height 
for a bimolecular process gave a result of  42 kcal/mol t79' 223), an excellent agree- 
ment with the experimental value of the activation energy (41 kcal/mol). However, 
dynamical trajectories calculations have shown that the mechanism is much more 
complicated than previously thought. In particular the conflict between two possible 
channels (H 2 + 12 ~ H 2 + 2 I ~ I + H2I (collinear) ~ 2 HI on the one hand 7' 
224-226), and direct H 2 + 12 ~ 2 HI on the other hand 227)) has not yet been re- 
solved. Nevertheless, the dynamical study of the first channel gave reaction rates of 
recombination of H 2 + 2 1 in good agreement with the experiment 22a). 
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Complete dynamical studies, including the calculation of macroscopic reaction 
rates, have been restricted, until now, to small molecular systems 7' 9). They require 
a preliminary knowledge of all the regions of the potential surface that are accessible 
for a given total energy. In addition, very many dynamical trajectories must be com- 
puted for suitably selected sets of  initial conditions. For larger systems - even the 
smallest systems of interest in organic chemistry - it is impossible to obtain reaction 
rates by meansof  a complete dynamical study. Too many degrees of  freedom have 
to be taken into account to obtain the full potential surface. Simplified assumptions 
are required to scan the surface. In general, only those geometrical parameters which 
contribute notably to the reaction path are varied. The secondary parameters are 
either held constant or varied in a conventional way. There is no choice but to carry 
these constraints over into the dynamical calculation. Then the system is said to be 
constrained. Consequently, the vibrational excitation of purely nonreactive modes 
is ignored. From a static point of view, this is not a severe restriction, if the important 
parameters have been carefully selected. On the contrary, from a dynamic point of 
view, the a priori neglect of any energy transfer between reactive and nonreactive 
modes (as well as the possible dissipation of a part of the energy over various non- 
reactive modes) can play a crucial role, in particular near the middle of the reaction 
where the final outcome of the reaction is decided. 

Nevertheless, the dynamical study of the elementary processes occuring in the 
course of  a reaction remains useful and complementary to the static study of the 
potential surface, even though it is incomplete and does not lead to the reaction rate. 
In particular, the comparison of dynamical trajectories with the static minimum- 
energy path is very instructive. As we mentioned in Chap. A for CH 2 + H 2 ----+ CH4222), 
the initial conditions seem to play a crucial part in the shape of dynamical trajecto- 
ries; only certain specific initial conditions lead to trajectories close to the minimum 
energy path; most dynamical trajectories are much more complex than this path: 
Furthermore, deviations may result from the fact that for a given potential surface 
in several dimensions the optimum path is most often drawn approximately under 
the assumption that the evolution of the system can be represented by the sliding 
of a mass point on the potential surface. This model is generally unsuitable for con- 
strained systems 6' 19) 

I. The Cubic Splines for Expression of the Potential Energy Functions 

1. Introduction 

Quantum chemical calculations provide the values of  a multi-dimensional potential 
at the mesh points of a grid. Several coordinates are varied step by step and to each 
set of all these coordinates there is a corresponding number. However, we need a 
potential energy function which is analytic if possible, continuous and differentiable 
in any order. At the mesh points of the grid the values of this function are to be as 
close as possible to the computed ones. In addition, the values of the derivatives of 
this function with respect to any coordinate must be physically possible on the limit- 
ing contour surrounding the region of the potential surface studied. This is very im- 
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portant in order to avoid starting the numerical propagation of a trajectory the wrong 
way in a limiting region; after the propagation this would lead to an incorrect result 
in the opposite limiting region. 

Different procedures can be envisaged. Most commonly used for small systems 
is a simple analytical formula which is derived from a physical basis 7-9). Each para- 
meter in such a formula has a specific physical meaning and can be optimized (for 
instance by a least squares fit). The main advantage of this procedure is that the para- 
meters may be varied independently (this is the origin of many physical studies, see 
for instance Ref.2ts)). But there are two drawbacks in doing this. Firstly, varying a 
parameter modifies the whole surface (for instance, modifying the height of a gaus- 
sian barrier at a constant parameter of  steepness, implies a change in the width of 
the barrier). Secondly, in a strict sense, such a formula is hardly exact anywhere, 
since it is not an interpolation formula. However, this procedure is to be used as 
often as possible because of the high speed in computing the numerical values of 
simple expressions. We are not discussing here which analytical formula is the most 
suitable for a given molecular system. The treatment of  these topics can be found in 
the literature 7' 9). 

Many problems can be found in large systems in which most of the degrees of 
freedom are artificially frozen. Then the potential energy, as a function of the co- 
ordinates over a wide range, can become very complex. An alternative procedure is 
to use interpolation techniques. By the common polynomial techniques all the values 
of either the potential or its derivatives can be exactly fitted whenever it is necessary; 
but this leads to polynomials of a very high degree (hundreds of mesh points may 
have to be considered). Consequently, instabilities can appear, especially on the sides 
of the region studied (see Fig. 1 for a one dimensional case). 

- -  Interpotat ion potynomiat  of a high degree 

~ ,  ~ Exact  curve 

/ "  "".. ... 

:" I"-': I ' "  

, , I 1 1 1 x I 1 I 
X 0 X 1 X 2 X 1 X/~ X 5 

Fig. 1. An example of  a possible behavior of an interpolat ion polynomial  of  high degree, as com- 
pared with the exact function.  This is what  we call an instabili ty on the sides of  the range of  
interpolat ion 

Therefore, we must search for an analytical expression or the potential energy 
which exactly fits the calculated values at each mesh point of the grid, which avoids 
divergence on the sides of the physically interesting region and which has, neverthe- 
less, a rather simple form. The aim of the present section is to use a procedure which 
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provides an expression fulfilling all these requirements by  means of cubic spline func- 
tions g). 

In order to avoid any mathematical  sophistication, we restrict ourselves to the 
construction of  only those functions that  are of  interest in the application. Many 
more details can be found in the pioneering work of Ahlberg, Nilson and Walsh 233' 234) 
and in various textbooks on the subject 23s' 236). Some authors already applied spline 
techniques to various problems in Chemical Physics, either to interpolate ab initio 
potential surfaces 114' 237, 2a8) or experimental data 239) or to analytically expand 
atomic orbital functions 24~ or to solve bound state Schr6dinger equations 243). 

2. One Dimensional Cubic Splines 

On an interval [xi_ 1, x/] o f  a variable x, there exists one cubic function S i ( x  ) and 
only one such that: 

(1) S i ( x i _ l )  = Y j - l  and [dSj (x) /dx]x j_  1 = m / - l ;  (1) 

(2) $i(11) =Yi and[dS j (x ) /dx]x j  = m  i. 

A convenient expression for this function is for instance: 

S i ( x )  = ~ i  - hiMi/8) + (3 r i - h iml )  XI./2 + hIMIXT/2  + 2 (h/fit i - Y i ) X  3 (2) 

where: X] = (x - -Ei ) /h  i lies within [ - 1 / 2 ,  +1/2] 

and: 2i = (x l + x i_  1 )/2, Yi = (Yi + Y i -  1 )/2, ~ i  = (mi + rni-  1 )/2, 

hi = xi - x i -  I , YI = YI - Y i - 1  , Mi = mi - m i -  l" 

Now we consider an interval [a, b] of  the variable x, which is subdivided by a 
mesh of  points: 

A =  {a =x0  < x 1  < . . . . .  X N - l  < X N  = b}. 

We associate a set of  ordinates with this set of  abcissas; 

Y =  {Yo ,Y l  . . . .  Y N - I , Y N }  

and with the extremal abcissas we associate two slopes: mo and m N. We look for a 
function S/ , (x) ,  which is continuous on [Xo, XN] (as are its first and second deriva- 
tives), which coincides with a cubic in each [x i_  1, xl] and satisfies: 

S " ( x i )  = Yi (/" = 0, 1 . . .  N) (3) 

S~(x i )  = m i q = O, iV) 

g) An alternative analytical and stable interpolation technology has recently been extensively 
used: the continued fraction 194, 195,229-232). 
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We call this function a cubic spline on A. The definition of  such a function requires 
a knowledge o f  the intermediate slopes: 

m] = [dSa (x ) ldx ]x  i (] = 1, 2 . . .  N - 1) 

From the continuity requirement imposed on S'~(x) at x / ( ]  = I, 2 . . .  N - 1) the set 
of  linear equations results 234): 

3`irnj_l + 2 m l  +l, jmj+l  = c  i ( j =  1 , 2 . . . N -  1) (4) 

where: 3.] = h]+x/(h] + hi+l)  

ui = hi[(hi + hi+ t ) = 1 -3`] 

c i = 3 ;k](y i - Y i - 1 ) / h i  + 3 la] Cvi+t - y ] ) / h i + l  

In matrix notation: 

-2  /z~ 
3`2 2 

. o 

0 0 
0 0 

I 

! ~ 

) 'N- 2 

3'N- L 

0 . . . 0  0 0 
tt2 �9 �9 �9 0 0 0 

0 . . . ;kN_2 2 /aN_ 2 
0 . . . 0  3`N--l 2 

-m, 1 
ms [ 

X . 

mN--2 ] 
m u -  lA 

-cl - 3`1 mo 
C2 

ON-2 

CN-  I -- ldN-- l mN 

(5) 

Standard algorithms exist to solve such a band system in an efficient and stable 
way. The solution spline function S A ( x )  exists and is unique. Moreover, it is an excel- 
lent interpolation function which converges to f ( x )  when N ~ 0% if limN - , . ( h i )  = 0. 

1 
An important special case is that of  equal intervals. Then, ~,] =/z] = ~ (/' = 1, 

2 . . .  N - 1) and the matrix in Eq. (5) - which we then call B - is easily inverted�9 
The result is (see Table 1): 

[B-I]/,/=(--1)i+iBi_IBN_i_I/(~-iBN_I) (1 < . i < ] < . N -  1) (6) 

where: 

Bn = [(1 + Vr312) n + I _ (1 - Vr3[2) n + 1 ]/V~ 

B is symmetric with respect to its two diagonals. The same remains true for B -  1 : 

B - I  [#-1 ]j,i = [~ ]i,] 
- 1  B - t  [B ] N _ i _ I , N _ ] _ I  =[~ ]i,] 

15 



T
ab

le
 1

. B
 -

1
 m

at
ri

ce
s 

in
 t

he
 c

as
e 

of
 e

qu
al

 i
nt

er
va

ls
 f

or
 N

 =
 4

, 
7,

 1
0 

an
d

 N
--

, 
oo

. A
ll

 o
f 

th
es

e 
m

at
ri

ce
s 

ar
e 

sy
m

m
et

ri
c 

w
it

h 
re

sp
ec

t 
to

 t
he

ir
 t

w
o 

di
ag

on
al

s 
so

 t
h

at
 o

nl
y 

th
e 

up
pe

r 
qu

ar
te

r 
is

 r
ep

ro
du

ce
d 

he
re

. 
In

 t
he

 c
as

e 
N

 ~
 

~*
 (

C
),

 t
he

 u
pp

er
 h

al
f 

is
 r

ep
ro

du
ce

d.
 T

he
 i

nf
in

it
e 

m
at

ri
x 

is
 c

ut
 w

h
en

 t
he

 e
le

m
en

ts
 o

n 
ea

ch
 l

in
e 

pa
ra

ll
el

 t
o 

th
e 

m
ai

n 
di

ag
on

al
 h

av
e 

re
ac

he
d 

a 
co

n
st

an
t 

va
lu

e.
 

A
ll

 t
h

e 
n

u
m

b
er

s 
in

 t
hi

s 
ta

bl
e 

ar
e 

gi
ve

n 
w

it
h 

a 
pr

ec
is

io
n 

of
 1

0 
-6

 

N
 =

 4
 

.5
3

5
7

1
4

 
-.

1
4

2
8

5
7

 
.0

35
71

4 
.5

71
42

9 

N
=

 
7 

.5
35

89
8 

-.
1

4
3

5
9

3
 

.0
38

47
5 

-.
0

1
0

3
0

6
 

.0
0

2
7

4
8

 
-.

0
0

0
6

8
7

 
.5

74
37

3 
-.

1
5

3
8

9
9

 
.0

41
22

3 
-.

0
1

0
9

9
3

 
.5

77
12

1 
-.

1
5

4
5

8
6

 

N
 =

 1
0 

.5
35

89
8 

-.
1

4
3

5
9

4
 

.0
38

47
6 

-.
0

1
0

3
1

0
 

.0
02

76
2 

-.
0

0
0

7
4

0
 

.0
00

19
8 

-.
0

0
0

0
5

3
 

.0
00

01
3 

�9
 5
7

4
3

7
4

 
-.

1
5

3
9

0
3

 
.0

41
23

8 
-.

0
1

1
0

5
0

 
.0

02
96

1 
-.

0
0

0
7

9
3

 
.0

00
21

1 
�9

 57
71

37
 

-.
1

5
4

6
4

3
 

.0
41

43
6 

-.
0

1
1

1
0

3
 

.0
02

97
4 

�9
 57

73
35

 
-.

1
5

4
6

9
6

 
.0

4
1

4
5

0
 

.5
77

34
8 

N
--

~
 

oo
 

.5
35

89
8 

-.
1

4
3

5
9

4
 

�9
 03

84
76

 
-.

0
1

0
3

1
0

 
.0

02
76

2 
-.

0
0

0
7

4
0

 
.0

00
19

8 
-.

0
0

0
0

5
3

 

�9
 5
7

4
3

7
4

 
-.

1
5

3
9

0
3

 
.0

41
23

8 
-.

0
1

1
0

5
0

 
.0

02
96

1 
-.

0
0

0
7

9
3

 
.0

00
21

3 
-.

0
0

0
0

5
7

 

�9
 57

71
37

 
-.

1
5

4
6

4
3

 
.0

41
43

7 
-.

0
1

1
1

0
3

 
.0

02
97

5 
-.

0
0

0
7

9
7

 
.0

00
21

4 

�9
 57

73
35

 
-.

1
5

4
6

9
6

 
.0

41
45

1 
-.

0
1

1
1

0
7

 
.0

0
2

9
7

6
]-

.0
0

0
7

9
7

 

�9
 57

73
49

 
-.

1
5

4
7

0
1

 
.0

41
45

2 

.5
7

7
3

5
0

[-
.1

5
4

7
0

1
 

.0
0

0
0

1
4

 
-.

0
0

0
0

0
4

 
.0

0
0

0
0

1
] 

- 
- 

.0
0

0
0

1
5

[-
.0

0
0

0
0

4
 

.0
00

00
1 

- 

-.
0

0
0

0
5

7
 

.0
00

01
5 

-.
0

0
0

0
0

4
 

.0
00

00
1 

- 

�9
 00

02
14

 
-.

0
0

0
0

5
7

 
.0

00
01

5 
-.

0
0

0
0

0
4

 
.0

00
00

1 
] 

"-
 

-.
0

1
1

1
0

7
 

.0
02

97
6 

-.
0

0
0

7
9

7
 

.0
00

21
4 

-.
0

0
0

0
5

7
 

.0
00

01
5 

-.
0

0
0

0
0

4
 

x
" 

.0
41

45
2 

-.
0

1
1

1
0

7
 

.0
02

97
6 

-.
0

0
0

7
9

7
 

.0
00

21
4 

-.
0

0
0

0
5

7
 

.0
00

01
5 

~ 

�9
 5
7

7
3

5
0

 
-.

1
5

4
7

0
1

 
.0

41
45

2 
-.

0
1

1
1

0
7

 
.0

02
97

6 
-.

0
0

0
7

9
7

 
.0

00
21

4 
-.

0
0

0
0

5
7

 



Theoretical Chemical Dynamics 

Let us define a new quantity: o =x/~--- 2 = - 0 . 2 6 7 9 4 9  . . .  Then: 

a .  = (1 + , , /Y /2)"  (1 - o2" ) / . , , /T  

and: 

- 1  [B ] i , j=[(oJ- i - -oJ+i) /X/~](1--o2(N-13) / (1--ozN ) (l <<.i<~j<~N-1) (7) 

We can now write down an explicit expression for the slope mi at the ith mesh point 
of the grid (i = 1, 2 . . .  N - 1): 

N - 1  
mi = (3/2 h) Z [B-l]i, j  (yi+l - Y i - l ) -  ( [B- l ] / , l  mo + [B- l ] i ,N-z  mN)]2 (8) 

j= l  

It should be emphasized that the quantities [ B - t  ]i,j decrease rapidly as j departs 
from i. Only a few terms centered around xi are to be kept in the sum, in Eq. (8). 

We now study the equal intervals cubic spline function for N ~ oo. This limiting 
case is of  general interest, since it affords a considerable simplification in the applica- 
tions of  the spline theory. I o I being less than 1, we have: 

Ci,i = limN - l ' "  "1 __,=[B ]i . i=(o q - '  -oJ+i)/x/~- (l < ~ i a n d j < ~ N -  1) (9) 

This is the current element of the infinite symmetric matrix C (see Table 1), the ele- 
ments of which decay rapidly apart from the diagonal and tend to be constant values 
on each line parallel to the diagonal. If this line is marked by k such that I i - j I = k, the 
limiting value for large i and j is: 

limi ~ Ci, i+-k = ok/x/~'- (10) 

Thus, for sufficiently large i, the slope mi can be expressed as: 

+l 
m i = ( V ~ 7 2 h )  Y-, o l k l ( y i+k+l - -Y i+k_ l )  (11) 

k=--I 

The integer constant l is defined according to the precision required. 

3. Cardinal Splines 

Let us introduce the cardinal splines. They are a set o f N  + 3 independent one-dimen- 
sional cubic splines {A~ ) (x), k = 0, 1 . . .  N; B(~ ) (x), k = 0, N )  forming a complete 
basis on which to expand any cubic spline on A. We define them as follows: 

A S) (xi) = 6ik (i = O, 1 . . .  N )  and [dA~ ) (x)/dx]x i = 0 

B(~ ) (xi) = 0 (i = O, 1 . N)  and [dB~ ) (x)/dx]x i = 6ik 

8ik is the Kronecker delta. 

( i = 0 ,  N ) ( k = 0 , 1 . . . N ) ;  

(i = 0, N )  (k = 0, N).(12)  
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It is readily verified that the spline function defined by the set of conditions (3) 
can be expanded in the form: 

N 
Sa(x )  = ~" y /A~) (X)  + moB(A~ + mN B(N)(X) (13) 

]=0 

This expansion will be of great interest in the following. 
In the case of equal intervals the slopes of the cardinal splines at the mesh points 

have a simple form; from Eq. (8) (i = 1, 2 . . . N  - 1): 

mi ( A ~ ) ( x ) }  = ( 3 / 2  h)  - t ([B ] i , k _ ] - - [ B - l ] i , k + l )  ( k = 2 , 3  . . . N -  2) (14) 

For k = 0, 1, N - 1 or N this relationship is still valid under the condition that the 
B-1 [~ ]i,-1,[_B-l]i,o, [B-t]i, s and [ B - l ] i , s + l )  are [~ ]z',i that do not exist (i.e. B -1 

regarded as being equal to zero. In addition: 

mi (B(~)(x)) = - [B  - l  1,',,/2 and mi (B(N)(x)) = --[B~-']i,N- 112 (15) 

From the expressions (1), (7), (14) and (15) one deduces the following properties of 
the cardinal splines: (1) the cardinal splines A(~)(x) and A ~ - k ) ( x )  are mutually sym- 
metric with respect to the center of the range A; (2) the cardinal splines B(~)(x) and 
B(nN)(x) are antisymmetric; (3) The A-type cardinal splines are oscillating functions 
with a peak just a bit greater than 1 for a value of x very close to xk (or rigorously 
equal to 1 at x = xk for the case of symmetric function) which rapidly damp out for 
the values o fx  apart from xk ; (4) the B-type cardinal splines are oscillating functions 
with a peak close to the middle of the end interval and which rapidly damp out away 
from that interval; (5) The absolute values of the cardinal splines 

do not depend on h ; (6)The  absolute values of the cardinalsplinesB(A k) ( h ) ( k = 0 ,  
N) are proportional to h. 

In the case N ~ oo, the B-type cardinal splines can be considered to vanish un- 
less x is close to Xo" Xo however, can always be removed far from the range of x, 
which is of interest. In other words, whenever h is reduced (tends to zero), the two 
terminal terms in the r.h.s, of Eq. (13) become negligible compared with the first 
one, because of the properties (5) and (6) above. Moreover, the complete set of the 
A-type cardinal splines reduces to a unique symmetric function called A~ (X); this 
function is to be translated (hX = x - xk) ,  in such a way that it possesses the maxi- 
mum of unit height at x = Xk in order that it may represent Atk)(x). The intermediate 
slopes characterizing this unique function are evaluated using Eq. (11): 

(A (k) ~ "--A~((x xk)/h)} mi_ k = m i ~ N ~ i , x )  

= (X/~/2 h) (o I i--k+ I I - -  OI i - k - -  11) _- Oti_k/h 
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The Cs are given in Table 2. The function A~o is drawn in Fig. 2. Consequently, the 
spline expression of  any function defined by a sufficiently large set of  values (yi) 
regularly spaced, is now very simple: 

S,,v--,=(x) = X y /  Aoo(Ix - x / I / h )  (17) 
i 

The sum is to be limited to a few terms, depending on the precision desired. This 
only presupposes that one knows the accurate values o f y  i that are sufficiently far 
away from the x considered. From Fig. 2 one sees that four steps further away suffice 
since Aoo(X) is negligible, for I XI  > 4, within 0.25% (for IX I > 5, within 0.09%). 

1.00 

0.75 

0,50 

0,25 

0.00 

x=lX-.,I 
h 

- 0,25 - -  _ _ t _  ~ 
O. ~. 5. 

A = ( X )  = A(,~(x} 

I I I 

1. 2. 3. 

Fig. 2. The Ao=(X) function. 

Aoo ( ~ )  is the same as 

A (~) (x) 

Generalizing the one dimensional spline theory in relation to the two dimen- 
sional case is very straightforward. The explicit expressions of  the multidimensional 
splines are beyond the scope of  the present article. They can be found in the litera- 
ture 234) and have been used by one of us previously l '  s, 6, 244) 

4. Supplementary Indications for Practical Uses 

a) Reduct ion to the Case o f  Equal Intervals. We know a function y (x) by the data 
set: (E i and Yi (i = 0, 1 . . .  N) ;  rni (i = 0, N)},  where the Ei's are irregularly distributed. 
We define A, the mesh of  regularly spaced abscissas: (xi = Xo + i (XN -- Xo) /N (i = O, 
1 . . .  N)}. We reorder the expression of the spline - which is unique on [x o, X~v] - 
in the following way: 

N - 1  
yi A~ (x) = S (x) - [YoA ~ (x) + y u A ~  (~) + ,%B(~ o~ (~) + ,~NB~ x) (x)] 

i=1 
08)  

20 



Theoretical Chemical Dynamics 

Here the yi ' s  are (N - 1) unknowns, which are obtainable by imposing the N - 1 
conditions that S (-~i) =.~i (i = 1, 2 . . .  N - 1) and then resolving a linear system of 
equations. The above reduction is of importance because of the high stability and 
simplicity of the cardinal splines on a mesh of regularly spaced abscissas. 

b)  Di f ferent ia t ion 234). The flexibility of spline functions is very useful in the field 
of differentiation. Noting r~j the average slope over the jth interval: Fn i = (Yi - Y J -  1)/hi 
and W the matrix in Eq. (5), after reordering the current derivative mi is expressed as: 

N - 1  
rni=~,l[W-1li, t (3nql - t o o ) + 3  Z ~ j ( X i [ W - l ] t , i + l a i _ l  [W-1] i , j_ t )  

1=2 

+IJN_t[W-I]i,N_I(31~IN--mN) (i= 1 , 2 . . . N -  1) (19) 

The structure of this formula is interesting. The ;k's and/ /s  lying by definition be- 
tween 0 and 1, W is a band matrix with a dominant diagonal (Wi, i = 2). The same is 
approximately true for W- l ( [w- l ] i , i  close to 0.5). This shows that the mi's  are re- 
finements of the n~ i's. 

Now, from Eq. (2) we have (x j_  1 <<- x <<- xi): 

dS ( x ) l dx  = (3 ~ j  - ffzj)12 + M i X  I + 6 (ffzj - ~ I )  X ~  (20) 

(remember that: mi = (mi + m i -  l )/2 and M i = m 1 - m i_  1 ). Near to the center of 
the interval {S'(~i) = (3 n~ i - ~j)/2}, it is noticeable that the derivative depends 
three times as much on the given quantity n~ i (directly related to the data) than on 
the computed one ~i" 

c) The  Cubic Spl ine  Func t ions  in Classical Dynamica l  Studies. Consider a molecular 
system as a mechanical system to which no limitation to the free motion is imposed 
(symmetries excepted), i.e. no bond and no angle are frozen. Then the hamiltonian 
is expressed as: 

n -- Y(e) + V(Q) (2 l) 

where Q and P are two sets of suitable dynamical variables (respectively, coordinates 
and conjugate momenta) and the kinetic energy is: 

r(P) -- ( z  P~/uk)/2 (22) 
k 

/~k is the mass associated with the coordinate Qk. The first type hamiltonian equa- 
tions of motion are simple: 

Q.l = aH/aP1 = aT /aP  t = Pl/la I (23) 

The second type equations: 

P, = - a H / a Q j  = - a  V/aQi (24) 
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are generally more difficult to obtain, because the potential energy is a function of 
natural coordinates x, y . . .  u . . . :  

V ( Q )  = V ( x ,  y . . . u . . .) ( 2 5 )  

wherex : x ( Q ) , y  : y ( Q ) , . . . u  = u ( Q ) . . .  
Thus the chain rule is used: 

Pl = - ( a  Wax) ( a x / a Q i )  - (aWay) ( a y / a Q O  . . . . .  - (aV/au)  ( a u / a Q O  . . . . .  (26) 

Suppose now, that the potential V is spline fitted h). We consider the general poly- 
dimensional case and that the number of mesh points in all directions are equivalent 
to infinity (N ~ oo). This situation is always attainable from a polydimensional grid 
of computed values in a sufficient quantity by subdivision of the step in each direc- 
tion and preliminary interpolation of purely numerical supplementary values to be 
used in the spline expression, which therefore is: 

U ( x , y . . . u . . . ) :  z 
i , ]  . . . .  n . . .  

A |  [ ( u  - u , , ) l h , ,  ] . . . . .  

V i , i . . .  n ... A o. [(x - x i ) / h x  ] A o .  [ ( y  - y i ) / h y ]  . . . . .  

(27) 

The partial derivatives required by Eq. (26) then are very simply expressed for in- 
stance: 

a u/au = ~ v ia  . . . .  , , . . .  A~, [ ( x  - xi)/hx] Aoo [ 0 '  - Yi)/hy] . . . . .  
i , ]  . . . .  n . . .  

dA~ [(u - U n ) / h u  ] /du  . . . . .  (28) 

where, i f  Uq _ 1 ~ u ~ Uq ] 

2 1 / 4 ) + , Y q _ n V q ] / h u  ~ = [ ( u  - u . , ) / h u ] / d u  = [3 6~_ .  (1/2 - 2 Uq:) + Oq _. (3 Uq - 

(29) 

1 i f k = O  
and: ~k = a k + a k - - l ,  7 k  = O t k - - O t k - - I  and ~i~ = ~-1 f f k =  1 

| 0 otherwise 

1 1 
The local variable Uq - u - Kq lies within the limits - ~ and + - Values of ~'s and 

h u 2 "  

7's are given in Table 2. 
The algorithm is readily programmed. It allows for dynamical studies with non 

empirical potentials whatever the dimensionality of the problem under consideration. 

h) In the two-dimensional case, McLaughlin and Thompson 114) recently used an elegant and 
convenient matrical method given by Jordan and de Boor 24s). 
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5. Conclusion 

The advantages of the spline functions as an interpolation technique are essentially 
threefold: 

(1) they are general and directly related to the results of quantum chemistry 
calculations as they are produced by the specialists (grids of numerical values); 

(2) the obtained potential energy surface can be modified locally without notice- 
ably changing the rest of the surface. This allows for a great flexibility in the course 
of  studies on the influence of local potential properties on whatever phenomenon is 
dependent on them; 

(3) their flexibility makes them a tool with a future in the field of dynamical 
studies in theoretical chemistry. 

The drawback of the method is that one does not obtain parameters that are of  
significance to the whole surface. To wind up this section, let us assert that the first 
application has shown the spline technique to be useful and advantageous 1' 2,114, 244) 

II. A Formulation of Classical Mechanics for Constrained Molecular Systems in 
Chemical Dynamics 

1. Introduction 

On generally restricts a Chemical Dynamics study to the framework of Classical 
Mechanics 7, 9, 82, 83, 246). This is quite justified as long as no trajectory passes close 
to a crossing point or to a symmetry-avoided-crossing point i) 247, 248) (the range of 
validity of  classical trajectory studies can be extended to this last case by specific 
devices186, 193-197,246)). At the present time all the Classical Chemical Dynamics 
studies using adiabatic surfaces have been restricted to small molecular systems (in- 
cluding no more than six atoms) 7' 9,104, 112, 222). Indeed, a realistic dynamical study 
of a greater system is not a straightforward matter. In particular, the usual formula- 
tion of  Classical Mechanics is relevant to mass points interacting through forces. For 
nuclear motion this formulation is well adapted to systems in which all the intra- 
molecular degrees of freedom (plus the degrees of relative motion in the case of bi- 
molecular encounters) are explicitly taken into account and therefore may change 
in the course of the motion. Such a system is called a free system. The inclusion of 
overall rotation, i.e three supplementary degrees of freedom, is optional. Unfortu- 
nately, most studies in Chemistry concern systems in which the atoms are too nume- 
rous to allow a complete investigation of the entire potential energy surface. Thus 
many degrees of  freedom must be held constant. For instance, some bond lengths 
which are not sensibly modified in the course of the reaction are fixed a priori. 

Classical Mechanics is known to hold for the description of nuclear motions on a static po- 
tential surface from various semiclassieal investigations 144, 148-150) and from direct com- 
parison with quantum-mechanical results for small systems 140, 141, 143). 
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Similarly, when the atoms in a substituent group (an alkyl group for instance) do not 
participate in a reaction as individuals but only as a group, the geometry of the group 
is frozen. Such systems will be referred to as constrained systems, and we search for 
a suitable formulation of Classical Mechanics for them. 

Indeed, the mechanical counterpart to a constrained system is a set of solids 
(frozen groups) articulated with each other through idealized hinges. The motion of 
the solids is driven by forces which derive from a potential depending on the remain- 
ing degrees of freedom. Below we present a method which executes the required job 
by introducing a matrix called the constraint matrix. This constraint matrix is built 
up with the mass like-coefficients appearing in the non-diagonal kinetic energy. It 
depends on generalized coordinates only, i.e not on conjugate momenta. The equa- 
tions of motion are simply obtained by inverting the matrix and by differentiating 
its elements with respect to generalized coordinates. 

2. Classical Mechanics of Constrained Systems within Lagrangian and Hamiltonian 
Formalisms 

We consider an N-particle mechanical system. A set of K constraints applied to it is 
holonomic 2s~ whenever all the relationships connecting the natural coordinates 
(Qi, i = 1, 2 . . .  3 N) of the particles in the system plus the time t - and which are 
a mathematical counterpart to the existence of constraints inside the system - are 
of the form: 

gl (Ql ,O2. . .QaN,  t)=O (1= 1 , 2 . . . K )  (30) 

The elimination of K dependent coordinates results in the introduction of a set of 
generalized coordinates (qj, j = 1, 2 . . .  n) where n = 3 N -  K, in terms of which the 
natural coordinates are expressed parametrically i): 

Q i = Q i ( q l , q 2 . . . q n ,  t )=Qi(q, t )  (i= 1 , 2 . . . 3 N )  (31) 

Any conservative mechanical system which is either free or subject to holonomic 
constraints and whose potential does not depend on the generalized velocities is 
described by standard equations of motion (either Lagrangian or Hamiltonian). 

The kinetic energy of the N-particle system is: 

N 
1 ~ mi(y:2+~2+i2) 

T= 2 i=1 (32) 

where x, y and z are cartesian coordinates. The introduction of 3 N "natural" co- 
ordinates: 

J) 

24 

On the scale of molecules, all the constraints to be taken into account are mathematically 
idealized and of the holonomic type. Moreover, the defining transformation Eq. (31) do not 
depend on time explicitly. 



QI = m [ / 2 x t ,  Q 2 = m l l 2 Y l  . . . . . . . .  

results in a simplified expression for T: 

3 N  
T = 1  ~ 0 ~  

2 i=1  

Theoretical Chemical Dynamics 

Q3N = rn~: 12 ZN (33) 

(34) 

Then the natural coordinates Qi (i = 1, 2 . . .  3 N)  are expressed as functions of the 
independent generalized coordinates qi (/= 1, 2 . . .  n). As an immediate consequence 
the analytical expression of the potential V is modified: 

V (Q) = 1i (q) 

The natural velocity 0i (the total differential of Qi with respect to time) is: 

(35) 

Qi = ~ OQi(q) c~ i ( i = 1 , 2 . . . 3 N )  ( 3 6 )  
i=1 Oq i 

Insertion of (36) into (34) provides the expression of the kinetic energy in terms of 
generalized coordinates: 

T(q, q) = -~ ],k=X Alk(q)il] ilk (37) 

where: 

3N OQl(q) OQi(q) 
,4jk (q) -- z (38) 

i= l 0q i 0qk 

Aik (q) is the current element of a matrix A (q) called the constraint-matrix. A (q) is 
a real symmetric matrix whose diagonal elements are positive; it depends on the 
generalized coordinates as variables and parametrically on the constraints. This 
matrix possesses an inverse since det A (q) = 0 is not possible; it would correspond 
to a supplementary relationship between the coordinates only, L ~ a supplementary 
holonomic constraint. 

The expressions of the generalized momenta in terms of the generalized velocities 
are: 

/,/ 

Pi = Z Aik (q) Ok (i = 1, 2 . . .  n) (39) 
k = l  

The inversion of the matrix A (q) results in: 

rl 
0i = "z AT*~ (q) Pk (i= l, 2 . . . n )  

k = l  

(40) 
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which is a convenient form of the Hamilton equations of the first type for constrained 
systems. 

Insertion of Eq. (40) into Eq. (37) leads to the expression of the kinetic energy 
in terms of generalized coordinates and momenta: 

n 

1 ~ A~  1 (q) PiPj 
T(q, p) = -~ i;]=1 (41) 

-1 A (q) exists; moreover, it is real and symmetric. It is important to note that ob- 
taining T(q, p) is no more difficult than an inversion ofA (q). The Hamilton equa- 
tions of motion of the second type then are: 

n aA)k I (q) a ),.[ (q) 
1 ~ PIPk (i = 1, 2 . . .  n) (42) 

[~i - 2 ],k= 1 ~qi ~qi 

since H(q, p) = T(q, p) + !1 (q). 
On the basis of Eqs. (40) and (42), one may state that - once the constraint 

matrix A (q) is known - using the hamiltonian formalism to study the dynamics of 
a constrained system amounts to 

(i) inverting A (q) and 
(ii) obtaining the partial derivatives of all the elements of A-1 (q) with respect 

to all generalized coordinates. 
The Lagrange equations of motion are: 

Aii(q)#i = ~ r 1 3Akt(q) OAik(q)l. qt" 81[ (q) (43) 
j=l k,l= 1 L2 ~qi ~ ]qk 3qi 

(i = 1, 2 . . .  n) 

since L (q, q) = T(q, ?!) - U (q). 
In order to solve numerically this set of coupled second order differential equa- 

tions, it is generally the practice to use numerical integrators adapted to coupled first 
order differential equations only and, consequently, Eq. (43) must be transformed 
into: 

qi =n/ 

/=l k.t = 1 8qt 

(44) 

aAk,(q) (q)] (45) 
/ -I 

(i= 1, 2 . . .  n) 

It should be noticed that the bracket in Eq. (45) is independent of i and depends 
on / only. Using the Lagrangian formalism to study the dynamics of  a constrained 
system amounts to 

(i) inverting A (q) and 
(ii) obtaining the partial derivatives of all the elements ofA (q) with respect to 

all generalized coordinates. 
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At this stage, we must stress one point: the more constrained the system, the smaller 
the dimension o f  the reduced problem and the more involved the matrix elements 
Ai! (q). In other words, the reduction of a great number of natural degrees of free- 
dom to a small number of privileged ones by imposing constraints to the system - 
which results in a shortening of quantum chemical calculations and a simplification 
of the potential energy surface - happens to introduce supplementary intricacies 
when dealing with dynamical problems. However, the requirement that a system 
retains the same symmetry along a reaction path does not appear as a constraint, 
although it is a restriction to free motion. In fact, a symmetry-constrained system 
can always be viewed as a free system with a smaller number of dimensions. 

Now a qualitative distinction between two classes of constrained systems is dis- 
cussed. The first class corresponds to a highly constrained system, that is to say a 
molecule in which at least two frozen groups of atoms are related by means of a 
hinge located at the atom in common with the two groups. Nothing more than what 
is in strict conformity with the general treatment presented above can be said for 
such a system. A preliminary difficulty is generally to express the constraints in a 
convenient way. A simple solution is to take as generalized coordinates those degrees 
of freedom that are of  physical interest on the basis of either experimental or theo- 
retical information. Expressing the cartesian and natural coordinates as functions of 
the generalized coordinates results in trigonometrical calculations. An important 
point is then to ascertain the fixity of the center of mass and, if necessary, the zero 
value of the total angular momentum. The last operation consists in applying the 
standard procedure exposed in paragraph 2. The whole work can be very long but is 
always feasible l '  2) 

The second class includes the minimally constrained systems,/, e molecular 
systems in which certain groups are still frozen but are individually treated as solids 
interacting only through a position dependent potential. A quite simple example in 
this category is a rigid diatomic rotor moving in an external static field. For such 
systems, mechanical developments that are not possible in the general treatment 
can often be achieved 170). 

Finally, the advantages of  respectively, the Lagrangian and Hamiltonian methods, 
are compared below. Two points should be emphasized: 

(i) the Hamiltonian equations are more balanced that the Lagrangian equations. 
Indeed, there appears a simple summation in Eq. (40) and a double one in Eq. (42) 
whereas, in Eq. (45) the summation in the expression of ki is a triple one. Consequent- 
ly, the numerical integration (by means of usual integrators) of Hamiltonian equa- 
tions is somewhat faster and more stable than the integration of Lagrangian equations; 

(ii) obtaining Hamiltonian equations requires differentiation of the matrix 
A-1  (q) whereas, for Lagrangian equations, it is A (q) which is differentiated. Since 
the matrix elementsAi/(q) are often rather complicated, the matrix-elements 
A/] l (q) are even more complicated and their differentiation can result in very large 
and intricate expressions. Consequently, for highly constrained system, the Lag- 
rangian integration often appears more suitable. The definitive choice for either one 
method or the other depends in fact on the particular system treated. 
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4. Conclusion 

The present method is applicable to large constrained molecular systems in a streight- 
forward way. Its main advantage is to allow the direct resolution of dynamical prob- 
lems in those generalized coordinates in terms of which the potential energy func- 
tions are expressed, obtained through quantum-chemical calculations. Its main draw- 
back is that the derivation of the analytical constraint-matrix can be quite tedious 
in some intricate cases of highly constrained systems. The illustration of such a case 
is presented in the next chapter. To wind this formal section up, let us mention that 
an alternative technique to resolve mechanical problems involving constrained sys- 
tems is that of the Lagrange multipliers k). 

I I I .  Some Remarks on How to Select Initial Condit ions 

1. Int roduct ion 

To start the mathematical integration of the equations of  motion for one particular 
trajectory, a set of initial values of coordinates and either velocities or momenta 
must be specified. These, however, are dependent on the experimental conditions 
which need be reproduced, such as collision energy, intramolecular vibrational ener- 
gies e t c . . .  In addition, some other variables, for instance intramolecular instanta- 
neous elongations, molecular orientations, impact parameter, ere . . . .  are necessarily 
specified in classical mechanics but are not observable microscopically because of 
the Uncertainty Principle. The ensemble of these result in a set of trajectories asso- 
ciated with a given set of  observable initial conditions. 

Many trajectories are necessary to describe all the different events that are sum- 
med up to form a unique wave describing the global chemical reaction under observ. 
able conditions in quantum mechanics. In this respect, a set of classical trajectories 
which spread around a mean trajectory in classical mechanics corresponds roughly 
to the quantum mechanical spreading (through space or time) of the density proba- 
bility function around its center. 

Since the number of trajectories is necessarily limited (in particular when com- 
puting the forces requires a great amount of computer time), good criteria for selecting 
the initial conditions are of prime interest. The problem is so important that it was 
discussed at length several times before 7' lot). In this section we just consider what 
can be done in the case of constrained systems. The approximation of the "con- 
straints" is so rough as to eliminate the need for any of the refined corrections that 
allowed to get very accurate results for small free molecular systems (cf. Chapter A). 

Several domains of application need to be distinguished. In the thermal chemistry 
of unimolecular reactions, a complex process, which is not known to us, leads to the 

k) By the Lagrange multipliers technique 2s~ the differential equations are integrated in the 
natural coordinates and the Lagrange multipliers are used to keep constant the constraints 
at each step of integration. 
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initial energy of the reacting molecule (activated molecule). All the possible sets of 
initial conditions should therefore be studied in order to determine which sets of 
those initial conditions favour the reaction. To have a statistic weight for each set of 
initial conditions is desirable but not always possible to obtain. In photochemistry 
the intramolecular activation energy originates through a photon impact, L e. a well- 
defined and instantaneous process. From a knowledge of the Franck-Condon principle, 
it is possible to ascribe to each individual trajectory a statistical weigh tlag' 191)from 
which average values of different quantities can be derived. 

In the thermal chemistry of bimolecular reactions studied within the framework 
of trajectories calculations, it is normally possible to obtain the rate constant of the 
reaction as a function of temperature 116) (cf. Chapter A). However, this can require 
rather tedious calculations, because of the necessity of averaging the results over a 
large distribution of individual trajectories. We do not discuss further the problem 
of bi~nolecular reactions. 

2. Physical Observables and Phase Variables 

At the beginning of any trajectory one must specify either the coordinates and the 
velocities [qo, qo] or the coordinates and the momenta [qo, P0 ]. It is physically 
desirable that the initial conditions describe an observable situation of the reactants. 
We denote by G the set of all the experimentally observable quantities (called physi- 
cal observables) which must be reproduced. Such quantities are, for instance, the 
collision energy, the quantum numbers defining the intramolecular state (vibrations 
and the principal quantum number of rotation), the total angular momentum e tc . . .  
However, there are other dynamical variables which have a clear meaning in Classical 
Mechanics but correspond to no physical observable because of the Uncertainty 
Principle. We call them phase variables and denote them globally by g. The phase 
variables must be given particular values to obtain, at given G, a particular trajectory. 
Such variables are, for instance, the various intramolecular normal vibrational phases, 
the intermolecular orientation, the secondary rotation quantum numbers, the impact 
parameter, e t c . . .  Thus we look for relationships of the type qo = qo (G, g) and either 
tto = qo (G, g) or Po = Po (G, g) 

To reproduce the results of a given experiment whose theoretical specification 
is G we must obtain a set of trajectories for various g. Then the theoretical results 
(the energy transfer, the reaction probability, e t c . . . )  are obtained as averages over g. 
Thus an observable quantity F, observable at the end of the reaction, is calculated 
for given G as 

N 
F(G) = Z Fi (G)/N 

i = l  

where: 

F i (G) = F(G, gi) = F(qo (G, gi), (to (G, gi)) (i = 1, 2 . . .  N). 

N is the total number of trajectories. Here gi is implicitly selected pseudo random- 
ly2Sl, 252) 
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Sometimes an additional average over G is required to obtain the theoretical 
value of a macroscopic experimental quantity. Then one uses a normalized distribu- 
tion function P(G) of all the components of G, so that in application of the basic 
principles of  Statistical Mechanics: F = fv P (G)F(G)dG where F denotes the sub- 
space of all the possible values of G under the given experimental conditions. 

The integral is most often transformed into a finite sum. I f  the selected values 
Gj of G are regularly distributed over F, then: 

M M 
: J:,x P(C/) F(Gj)/Z.: e(c/) 

where M is the total number of  the Gfs. If  they are selected pseudorandomly over F 
according to P(G) as weighting function, then 

M 
F= ~ F(Gi)/M. 

i=1 

These expressions represent the most general theoretical results for whatever macro- 
scopic experimental quantity F. 

3. Unimolecular Reactions 

In an unimolecular thermal reaction, i.e. a reaction whose mechanism is a pure intra- 
molecular rearrangement (either isomerization or dissociation), the initial energy 
distribution among the various degrees of freedom of the system is unknown. In- 
deed, in a preliminary step the molecule acquires activation energy through a com- 
plex process (a collision or, rather, a sequence of collisions) which is in general badly 
elucidated experimentally. In addition the energy exchange between distortion modes 
of the activated molecule is very fast ~ 4, i s) 

Whenever the reaction involves a few atoms only, both the activation phase of 
the reaction and the subsequent unimolecular rearrangement can be studied dynami- 
cally 21~ Then it is possible to ascribe a statistical weight to a given trajectory. 
As soon as the reactant molecule includes numerous atoms (as is often the case in 
Organic Chemistry) one just cannot study the overall dynamics of the reaction. In 
particular, if one must renounce the investigation of the activation phase of the reac- 
tion, one must also renounce the attribution of statistical weights to individual tra- 
jectories. Then one must postulate, on the basis of either experimental information 
or physical intuition, initial activated states of the reactant system and study only 
its subsequent dynamical evolution. Thus the work is restricted to sample in a ran- 
dom way all the possible initial conditions with no attempt to obtain at the end theo- 
retical values of experimental quantities. Nevertheless, this context is not too restric- 
tive. The trajectory study of thermal unimolecular reactions allows one 

(i) to discover which initial energy distributions favour completion of the reac- 
tion, which others disfavour or prevent it, and to relate these "a posteriori" observa- 
tions to experimental facts; 
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(ii) to observe qualitatively the microscopic dynamical paths of the reactions; 
(iii) to obtain the statistical distribution of the molecular lifetimes and thus to 

have a feeling for the reaction times at various total energies. Such a dynamical study 
of a unimolecular thermal reaction (isomerization of cyclopropane) is the subject of 
the next Chapter (C). 

The situation just described is not inherent in all unimolecular reactions. In cer- 
tain cases (for instance unimolecular photochemical reactions, L e. non photosensi- 
tized) an equilibrium energetic distribution (that of the fundamental state in the case 
of photochemical reaction) is warranted. Then a statistical weight can be attributed 
to each trajectory, either classically or semi-quantally. 

In the classical approach 253), the probability to find the ith normal coordinate 
of the system within [q, q + dq] is proportional to the time elapsed in it: 

Pi (E; q) = 2/(T i (E - kiq2]2) 112 } 

where k i and T~- are respectively the force constant and the period of the ith normal 
mode; E is the total energy in the mode (physical observable) and q is the phase 
variable. Thus the classical probability is minimal at equilibrium and infinite at the 
turning points of the vibration. Finally, the statistical weight of a set of initial condi- 
tions {G = El ,  E2 �9 �9 .; g = q l ,  q2 �9 �9 .) is the product of the partial probabilities for 
the various modes: 

?(c;g)= n ?i(ei;qi) 
i = 1 , 2  ... 

In the semiquantal approach (theory of Wigner functions) 2 s 3- :s  s), Statistical 
Mechanics is corrected according to quantum mechanical criteria. The statistical 
probability of finding the coordinate of the ith normal mode within [q, q + dq] and 
its conjugate momentum within [p, p + dp] is proportional to exp {-[p2/m t + 
kiq2]/2 kT}, where m i and ki and respectively the reduced mass and force constant 
of the ith mode, k is the Boltzmann constant and T is the temperature. There is no 
counterpart to this probability in Quantum Mechanics because of the Uncertainty 
Principle. However, since the normalized wave function qsv (t9) of the ith normal 
mode in its vth fib'rational state is known, the separate probabilities for q and p are 
entirely defined: n~'(q) = I q, y (q)12 and fly(p) = I ~ (p )1 2  where ~ ( p )  is the Fourier 
transform of ~v (q). The meaning of these probabilities is the following: although it 
is impossible to predict the results of the simultaneous measurements of both q and 
p, it is nevertheless possible to predict the average results of measurements on a nume- 
rous set of identical systems if all of them are in the same quantum state. Thus it is 
quantum mechanically sound to look for a pseudo-distribution function Pi(v; q, p) 
which would result in rlp(q) when integrated over p and in H~(p) when integrated 
over q. Among all the mathematical functions fulfilling these two requirements, 
Wigner 254) has selected the very simple one: 

+oo 

Pi (v, q, p) = (nh)- ~ f ~V(q + Q) ~ (q _ Q) exp (2 ipa/h)da 
_ o o  

= ei (v; ~2) = (~'h)- l (_  1)v exp (_/j2) L v (2 ~2)/(Trhv!) 
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where: ~2i = a~ q2 + p2](a~ h2), ai is a constant and L v denotes a Laguerre polyno- 
mial. Here v is a physical observable and ~2 a phase variable. This function is real 
but not everywhere positive. For this reason it cannot be viewed as a true probabili- 
ty distribution function. Nevertheless, it can be used qua a distribution function 
since it fulfils all the requirements which would characterize this function if it ex- 
isted. When v = 0, and only then, 

Pi(v  = O;q, p) = II~ (q) x rio(p) 

as it would be the case i fp  and q where simultaneously measurable 2s3). When v =/: 0 
the probability of a given p depends on q, and vice versa. In the classical limit (great 
values of v) this situation is consistent with the Correspondence Principle; indeed, 
in Classical Mechanics, the values of q and p are related to each other. 

Finally, for a reactant system including several vibrational modes, the Wigner 
function is simply a product of one dimensional functions: 

P(G =Vl, V2 . . . .  g=  ~12,~2...) = II e i ( v i , ~ )  
i = 1 , 2 . . .  

One of us has personally applied the theory of Wigner functions to obtain statis- 
tical weights for individual trajectories in the study of the photochemical dissociation 
of the water molecule in its second singlet excited state 244' 2s6). 

H20 (B IA 1)'--> H(2S) ~+ OH(2~+) 

to account for the abnormally excited rotation of the OH fragment which is observed 
experimentally2S7, 258) 

C. Application: Optical and Geometrical Isomerizations of Cyclopropane 

I. Experiments and Previous Theoretical Investigations 

The pyrolysis of substituted cyclopropane leads to three types of unimolecular iso- 
merizations (see Fig. 3). The first kinetic study of the conversion of cyclopropane 
into propylene (reaction a) was undertaken by Trautz and Winkler in 19220 2s9). 
The geometrical isomerization (reaction b) was discovered by Rabinovitch, Schlag, 
and Wiberg in 1958 m) 261); r e a c t i o n  b is faster than structural isomerization in pro- 
pylene (a). Finally, the optical isomerization was observed, independently by Craw- 
ford and Lynch 268), by Berson and Balquist 269), by Bergmann and Carter 27~ 270, 
and by Willcott and Cargle272); their common conclusion states that geometrical (b) 
and optical (c) isomerizations are competitive reaction processes. If only the sub- 

I) For  a more recent experimental  work on the mechanism of  this reaction, see Ref. 260). 

m) For later studies on cis-trans isomerization in substituted eyclopropanes, see Refs. 262-267) .  
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stituted bond breaks, this result implies that the single-rotational process, required 
for geometrical isomerization, and the double-rotational process, required for optical 
isomerization, are competitive rotational processes. This was confirmed by Doering 
and Sachdev 273). However, Berson, Pedersen and Carpenter have recently shown that 
in substituted cyclopropanes in which the three C-C bonds can break equally (/. p : 
1-phenylcyclopropane-2-d), the major pathway is a synchronous rotation of both 
terminal groups 274' 275). Most mechanisms for the geometrical and optical isomeriza- 
tions invoke a trimethylene diradical species (for a complete review, see Ref.276)). 

These reactions have aroused a great deal of interest among theoretical chemists. 
Indeed, they lie within the simplest reactions in organic chemistry; formally, they 
require only a rotation of 180 ~ in one or both methylene groups. Hoffmann, in his 

(0) F F (or) I b)E F (a) (c) EE (a) 

Fig. 4. Definition of the geometries of the three diradicals face-to-face [FF (a)], edge-to-face 
[EF (a) l and edge-to-edge lEE (a)l 

pioneering search of the potential energy surface for isomerization of cyclopropane, 
found that synchronous (conrotatory) motion of the terminal groups, through an 
edge-to-edge (EE) diradical (Fig. 4-c) is the easiest path on the surface 277). This ~e- 
diction was recently confirmed by the kinetic analysis of the isomerization of trans. 
cyclopropane-1,2-d2 by Berson and Pedersen 27s). Afterwards, several groups under- 
took nonempirical quantum-mechanical calculations on 

(i) the ring opening of the cyclopropane and 
(ii) the rotations of the terminal groups in the face-to-face (FF) diradical (Fig. 4-a) 

thus obtained a' 4, 278-28o). The results of these calculations confirm the competition 
experimentally observed between the two isomerization reactions: the diradical EE 
is slightly more stable than the edge-to-face (EF, Fig. 4-b) diradical (~E = 1-2 kcal/ 
tool). Moreover, no potential energy barrier is found in the ring closure of the di- 
radical toward the cyclopropane. This result, inconsistent with thermodynamic pre- 
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dictions 281), is in agreement with the results of recent ESR study of 1,3-cyclopenta- 
diyl diradica1282). Finally, the geometry of the transition state for geometrical iso- 
merization has been resolved in 21-dimensional space, and that for optical isomeriza- 
tion obtained approximately. Static reaction paths were proposed for both reactions 
b and c 3' 4) 

II. Potential Energy Surface 

The static study requir~ consideration of three main geometrical parameters: the 
angle of ring opening CCC (= 2 a) and the rotation angles for both terminal methyl- 
ene groups (01 and 02). The other (secondary) parameters are either held constant 
or varied in a conventional way. 

The potential energy function V (a, 01,02)  can be re-written as a sum of two 
terms: 

r/(a, o~, 02) = v (~ ,  o, o) + [ v(,~, o~, 02) - v(,~, o, 0)] (46) 

The first term corresponds to the potent~l energy of a cyclopropane molecule 
in the FF configuration with the ring angle CCC = 2 a (Fig. 4-a). The calculated 
energy curve is pictured in Fig. 5: there appears no barrier to the reclosure motion 
of the diradical FF (0t). This curve will be analytically approximated by means of 
one-dimensional cubic spline functions. 

The second term denotes the amount of energy required for rotations of the 
terminal groups, with angular amplitude of 01 and 02, at constant a. For each value 
of a, the potential energy of the diradical as a function of the two rotation angles is 

Vo(a l ,  

70 

60 

50 

40 

30 

20 

1o 

o 

, , , , , , , , , .  

60 ~ 70 ~ 80 ~ 90* 100 ~ 1100 1200 130 ~ 140 ~ 2 

F ig .  5. Po ten t i a l  energy curve f o r  the r ing  o p e n J n g f r o m c y c l o p r o p a n e  to  the face- to- face d i r adF  

cal. The energies are in kcal/mol 
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described by an analytical expression, which is simple but yet retains the essential 
features of the surface ~). There are four main features of the rotational surfaces that 
the analytic formula must reproduce accurately: the energies of the half-way points 
EF(t~) and EE(t~); the potential-barrier heights, hc (t~) and ho (t~) for conrotatory 
and disrotatory motions (Fig. 6). The following analytic formula is somewhat arbit- 
rary; it is selected because it abides by the law of symmetry and takes into account 
the four parameters independently: 

V(ot ,  01,02) - V(ot ,  o ,  O) = a (or) s i n 2 ( O l  + 02) sin2(01 - 02) 

+ b (oe) sin2(01 - 02) c0s2(01 + 02) 

+ c(a) sin2(01 + 02) cos2(01 - 02) 

+ d(c 0 sin201 sin202 (47) 

a (ct) denotes the potential energy of the molecule in the configuration EF (or) 
(01 = 90 ~ 02 = 0 ~ minus the potential energy of EF (~) (01 = 02 = 0~ Similarly, 
d (a) is the potential energy of the molecule in the configuration EE (a) (01 --- 02 --- 
90~ b (a) and c (a) are simple functions of the potential energy barriers to the 
synchronous disrotatory motion [hD (or)] and the synchronous conratatory motion 
[hc (a)] respectively (see Fig. 6) 

b (a) = [ho (~) + ( h l  (a) - ho ( a ) a  (a))t/2 ]/2 

c (~) = [he (~) + (h~ (t~) - hc ( ~ ) d  (a)) t/2 ]/2 

( 4 8 )  

(49) 

CONR. �9 

F F (o:) EE ((z) 

�9 DI5R. 

FF(a) EE(~) Fig. 6 

Calculations of the energies were performed with a 3 x 3 CI version of Gaussian 
70, at the STO-3G level 283). For sixteen values of 2 t~, regularly spaced form 50.1 ~ = 
0.875 rd to 136.1 ~ = 2.375 rd, the potential energy curves which drive 

(i) the synchronous conrotatory motion of both terminal methylene groups, 
(ii) the synchronous disrotatory motion and 
(iii) the rotation of a single methylene group (the other being held fixed) were 

computed. The computed values of a (a), b (ct), c (c 0 and d (c~) are interpolated by 
means of one-dimensional cubic spline functions. 

The detailed results of these calculations have been given elsewhere 2). Then we 
shall only recall the main features of the three-dimensional potential energy surface, 
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7~ 

60* 
,/ 

2~ 

13os 70 ~?o 70~1s0. 
65 ~ ~65 ~ ~ _  651 

12 ~ _..-.-. ~6o ~ 9 . j . 1 2 o *  
TS 1 EE = " r ~ - - ' ' - ' ~ ' - = ' ' ~  I 

110' ~ ;60 ~ ~ .110" 

lOO 

.80* 

LII 1 l / ~  60* 
, , ~.%~% 

0 30* 60* 90 ~ 120" 150" 180 ~ CONROTATORY 
Fig. 7. Two-dimensional potential energy surface and static reaction path for the synchronous 
conrotatory motion of the terminal methylene groups. 2 a represents the value of the carbon 
ring angle. The abcissa gives the common value of both rotational angles: 0 = 01 = 02. TS denotes 
the position of a transition state. The energies are in kcal/mol 

0 30* 60* 90* 1200 150 ~ 180' DISROTATORY 

Fig. 8. Two-dimensional potential energy surface and static reaction path for the synchronous 
disrotatory motion of the terminal methylene groups. 2 e represents the value of the carbon ring 
angle. The abcissa gives the common absolute value of both rotational angles: 0 = 01 = -02. TS 
denotes the position of a transition state. The energies are in kcal/mol 
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0 3 0  ~ 6 0  ~ 9 0  ~ 120  ~ 150 ~ 180 ~ 1 ROTATION 

Fig. 9. Two-dimensional potential energy surface and static reaction path for the rotational 
motion of a single terminal methylene group. 2 a represents the value of the carbon ring angle. 
The abcissa gives the value of the rotational angle: # = 01 along with 02 = 0. "IS denotes the posb 
tion of a transition state. The energies are in kcal/mol 

by means of  two-dimensional cuts obtained in the following three limiting cases: 
(i) synchronous conrotatory motion (01 = 02 = 0;cf .  Fig. 7); 
(ii) synchronous disrotatory motion (0t = -02  = 0; cf. Fig. 8); 
(iii) rotation of  a single methylene group (01 = O, 02 = 0; cf. Fig. 9). The mini- 

mum energy paths are drawn approximately and the positions of  the transition states 
(TS) are specified. 

The main features o f  the overall surface appears clearly in these two-dimensional 
cuts: in a first step, the reaction coordinate is almost identical with a pure r ing-o~n- 
ing motion; the rotation of  the terminal groups occurs at almost constant angle CCC, 
and finally the ring recloses and the isomer molecule is formed. The optical isomer 
is most easily formed via a purely conrotatory process (see Fig. 7). The transition 
state is close to EE (a) with 2 a = 113 ~ and is energetically located at 59.8 kcal/mol 
above cyclopropane. In Fig. 8, the diradical EE (ix) with 2 (~ = 113 ~ appears to be a 
secondary minimum along the synchronous disrotatory reaction path. In fact, it is 
not a true minimum, since a conrotatory distortion (here, the hidden third coordi- 
nate) requires practically no activation energy. The optical isomerization via a syn- 
chronous disrotatory process requires an activation energy of  61.9 kcal/mol. At 
last, the transition state for geometrical isomerization (cf. Fig. 9) is the diradical 
EF (a) with 2 t~ -- 113 ~ whose potential energy is 61.6 kcal/mol above that o f  cyclo- 
propane. 
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III. Dynamical Study 

1. Equations of Motion and Initial Conditions 

The equations of motion are established within the following simplification: the 
kinetic energy of the system is written for a model in which the terminal methylene 
groups remain trigonal throughout the reaction (see Fig. 10). Then, the A matrix, 
defined in a previous section, is diagonal and the expression of the kinetic energy 
is a diagonal quadratic form of the angular velocities: 

where: 

and: 

1 1 I (0~ + 0~) T = -~ A ~  6t 2 + 

A,~c, = S sin=a + C eos2a + I (sin20, + sin202) 

2 { l [L(M+gml)+2ml~,]2+MgmlX 2 } 
S= M+2ml  

C = 2 [ML 2 + 2 ml (L + X) 2] 

I =2  mit t  2 

M+2ml  p -  
M + 2 m 2  

X = lcos  7_ ~ = l s i n  7_7_ 
2 '  2 

(50) 

(51) 

L is the CC length, l the CH length and 3' the HCH angle in the terminal groups, M 
the mass of a carbon atom, rn 1 and m2 the masses of the  substituents on C1 (C2) and 
C3 respectively. In the present study ml = m2 = 1 and P = 1;I is  the moment of 
inertia of the rotor which is formed of the two hydrogen atoms in a terminal methy- 
lene group. Eq. (51) leads to the partial derivatives: 

OAaa = (S - C) sin 2 a (52) 
0a 

aAaa _ 1 sin (20i) (i = 1, 2) (53) 

Finally, the three Lagrangian equations of motion are: 

Oi=~ _1112 bAa~o0~ 7-" &2 - ~0---~. ] (i= 1,2) (55) 
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where: 

a V _ d V  o + da 
~a da da 

+ dc 
dct 

a v  
- 2 sin (2 8i) 

+ c(tx) sin(01 + 02) cos(01 - 02) + 1 d(o~) sin20i , 

(i = 1, 2 and : :/: i) 

sin2(Ot + 02) sin2(Ol -- 02) + db sin2(01 - 02) cos2(Ol + 02) 

dd 
sin2(Ot + 02) c0s2(01 - 02) + ~ sin20z sin202 (56) 

+ a (ct) sin (81 + 02) sin (01 - 02) + b (or) sin (01 - 82) cos (81 + 02) 

(57) 

The + alternative should be used for i = 1 and the - alternative for i = 2 respectively. 
The numerical integration of  the three coupled second order differential Eq. 

(54), (55) requires six initial conditions. These are (i, ii, iii) the three values 2 ~o, 
0~ and 0~, which determine the molecular geometry at the starting point (all the tra- 
jectories in the present study start with the cyclopropane molecule in its equilibrium 
geometry, i.e. 2 ao = 60 o, 01 = 0~ = 0); (iv) the total internal energy in the molecule, 
Eto t; (v) the fraction E~ of  initial energy attributed to the "rota t ion"  (at starting 
point, this is actually vibration energy); (vi) the manner in which/~ot is distributed 
among the two "rotors".  This is defined by an angle (/i ~ such that: 

" o ' o  
tg8 ~ = 01/02 (58) 

where 0~ and 0~ are the initial rotational velocities of  the two groups. Then the re- 
lationship: 

0~ = cos5 ~ [2 1 - l  Er~ ] 1/2 (59) 

is used. It is not restrictive to have 0~ > 0 since 0~ can be either positive or negative. 
A third relationship: 

d ~ = -+ (2 [Eto t --ErotO _ V(o~~ 01 ,o O~)]]Aozol(Olo, 01 ,o 0~)}1/2, (60)  

is necessary to define the initial CCC angular velocity. The present study has been 
arbitrarily limited to &o > 0,/ .~ to initial extensions of  the CC bond. 

Five different values of  Etot have been studied, namely 61, 62, 63, 64 and 65 
kcai/mol. For E t o  t = 61 kcal/mol, the only available channel is the synchronous 
conrotatory motion (transition state at 59.8 kcal/mol). For Etot/> 62 kcai/mol, 
the rotation of  a single group (transition state at 61.6 kcal/mol) and the concerted 
disrotatory motion (transition state at 61.9 kcal/mol) both become feasible mo- 
tions, at least in principle. For each value ofEtot ,  E~rot has been varied stepwise from 
2 to 50 kcal/mol, with a step of  2 kcal/mol. In addition, for given values o fEto  t 
and Erot, 6 ~ has been varied from 45 ~ (conrotatory motion, i.e. antisymmetric vibra- 
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tion of the methylene groups) to - 4 5  ~ (disrotatory motion, L ~ symmetric vibration), 
with a step of 10 ~ All things considered, about 1500 trajectories have been run. 

In our model, no fraction of the total energy in the molecule can be transferred 
to nonreactive intramolecular modes; nor can any fraction be exchanged with the 
medium. Under this assumption the computed trajectories are endless: a given set of  
initial conditions leads to an infinite sequence of ring openings, rotations and ring 
closures. The integration of a trajectory is stopped the first time the representative 
point of  the molecule moving on the surface enters a prescribed narrow region around 
the absolute minimum, i. e the representative point of cyclopropane in its equilibrium 
geometry. This is consistent with the analysis of the reaction given by Doering and 
Sachdev 27a) within the RRK-model la). Their conclusion was that "the best trap for 
a diradical is its own reclosure to a covalent bond", because there the energy "is 
rapidly dissipated by distribution among other, non-reactive modes. The larger the 
number of  a t o m s . . ,  in the molecule, the more nearly true this statement is". 

2. Dynamical Results 

We first treat separately the trajectories corresponding to the particular values/i ~ = 
45 ~ and --45 ~ . Indeed, the total symmetry of the problem is such that, whenever the 
motion of both rotors at the starting point is either purely conrotatory or purely dis- 
rotatory, it keeps this particularity throughout the trajectory. Then the trajectory 
can be drawn on a two-dimensional potential energy surface such as that pictured in 
Fig. 7 and 8. 

a) Synchronous Conrotatory Motion (5 ~ = 45~ For a very weak amount of 
excess energy (1.2 kcal/mol) with respect to the conrotatory transition state (59.8 
kcal/mol), a rather striking phenomenon occurs: reactive trajectories are observed 

1 o" !70 

i zo* 4__ ~ 160 

110" 
100" 
90* 
80* 
70* 
60* 

65 70 I 
65 

60 60 I I 

�9 130" 

�9 120 o 

~ ~ ,  60 ~ ~ ~  110~ 
\ Z ,oo" 

~ / f  70 90* 
80" 

70* 
60* 

-30 ~ 0 30 o 50" 90* 120 ~ 150 ~ 180 ~ 210 ~ Conrotatory 

E TOT = 61 Kcal / tool, ERO T = 31, 6 Kcel / tool 

Fig. 11. A low total energy (61 kcal/mol) reactive trajectory leading from cyclopropane to the 
optical isomer via a purely conrotatory process (6 ~ = 45 ~ ) 
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only when Ero t - initial "rotational" energy here exclusively in the antisymmetric 
twisting vibration of the methylene groups - lies between 30.4 and 32.4 kcal/mol 
(see Fig. 11). Thus, in order to observe the optical isomer formed in a purely conro- 
tatory fashion, one half of the total molecular internal energy must be placed in the 
methylene groups. The other half of the total energy (28.6 to 30.6 kcal/mol) re- 
mains in the stretching vibrational mode of the carbon-carbon bond. At first sight, 
this would seem insufficient to bring about the opening of the carbon ring. However, 
during the first part of the reaction (from point A to point B in Fig. 11), the ring 
opening motion and a complete oscillation of both terminal groups (with an ampli- 
tude of 20 ~ ) go on simultaneously. Hence, an important energy transfer occurs from 
the methylene groups to the carbon-carbon bond. Then only, the carbon ring can 
open. Afterwards, the methylene groups rotate by 180 ~ (from B to C in Fig. 11); 
in the meantime the value of the CCC angle oscillates weakly around the optimum 
value 113 ~ The reaction ends with a motion of ring closure (from C to D in Fig. 11). 

When the total intramolecular energy increases (Eto t/> 62 kcal/mol), the reac- 
tive trajectories are more numerous. Below we analyze in detail the set of trajectories 
for Eto t = 62 kcal/mol (see Fig. 12). Depending on the value of Erot, several dis- 
tinguishable motions are observed: 

Ero t ~ 10 kcal/mol." the trajectories are non reactive. As shown in Fig. 12a, the 
carbon ring opens and recloses without reaching the transition state. This is simply 
due to a lack of twisting energy in the methylene groups at the starting point. 

12 kcal/mol <E~ot <<- 20 kcal/mol: within these limits the trajectories are reac- 
tive (see Fig. 12b, c and d). They are quite different from the trajectories in Fig. 11 : 
only one half of an oscillation of the methylene groups occurs during the ring-open- 
ing phase. In Fig. 12b the first reactive trajectory of this type is pictured: during the 
rotation of the methylene groups the carbon ring angle oscillates many times around 
the optimum value 113 ~ and, consequently, the duration of the phase of rotation is 
long (3.3 x 10-13 second). This means, that the way in which the representative 
point reaches the upper valley is far from being ideal. The ideal situation occurs when 
E~ = 16 kcal/mol (see Fig. 12c); then, the methylene groups rotate very easily in 
2.2 x 10-13 second. Finally, for Ero t = 20 kcal/mol (see Fig. 12d) the rotational 
process is again difficult and lengthy (4.4 x I 0-13 second). It is quite important to 
note that all these trajectories include only a single rotation of 180 ~ by each terminal 
group. This result is all the more surprising since the energy in the rotational motion 
can only be transferred, in our model, to the vibration of the carbon-carbon bond, 
and not to a non reactive mode. 

22 kcal/mol <~E~ <~ 32 kcal/mol: the trajectories are non-reactive, as pic- 
tured in Fig. 12e and 12f. When the ring opens the energy is badly distributed among 
the different possible modes and the transition state cannot be reached. In Fig. 12e, 
the representative point, after a half oscillation of the methylene groups, bounces 
off the edge of the lower potential energy bump towards the upper part of the figure. 
In Fig. 12f, the same thing occurs, but after a complete oscillation. 

32. 4 kcal/mol <~ E~ ~ 35.2 kcal/mol: within these limits the trajectories are 
again reactive (see Fig. 12g) and of the same type as that pictured in Fig. 11. As pre- 
viously, each terminal group rotates by only 180 ~ It should be emphasized that this 
second "reactive band" of initial rotational energies is much more narrow than the 
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Fig. 12. Typical conrotatory trajectories at Eto t = 62 kcal/moi for different initial "rotational" 
(vibrational) energies 

first one. This can be explained as follows: the rotations occur after a complete 
oscillation of the methylene groups. As a consequence, this first part of the reaction 
(ring opening) lasts longer in the trajectories of the second band (32.4 to 35.2 kcal/ 
mol) than in the trajectories of the first "reactive band" (12 to 20 kcal/mol). Then 
the reactive trajectories are much more "focused" around the ideal trajectory: a 
slight modification can lead to large deviations and rapidly to non reactive trajecto- 
ries. 

Ero t /> 36 kcal/mol: these trajectories are non reactive (see Fig. 12h). The energy 
initially concentrated in the stretching mode of the carbon-carbon bond is too small 
(~< 26 kcal/mol) to allow a sufficient opening of the carbon ring. 
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For total intramolecular energies greater than 62 kcal/m01, (Et~ = 63, 64, 65 
kcal/mol), the two "reactive bands" of initial E~ values still exist (see Fig. 13a) 
and even become larger and larger with increasing Etot  n) 285). This is due to the fact 
that, the greater the excess energy, the easier it is for the representative point of the 
molecule to step over the transition state, even if the approach coordinate is not 
favourable. Moreover, the second reactive band shifts slightly towards higher values 
of Ero t, so that the first phase of the reaction (ring opening along with a complete 
oscillation of the methylene groups) always results in a face-to-face diradical with a 
CCC angle close to 105 ~ 

ETOT l 
65 

6/. 

63 

62 

51 

60 

59 

!_s_tS_S~ . . . . . . . . . . . . . . . . . . . . . . . . .  

~ ~o ~o ~ ~ 

(o) 
ETOT 

65 

6/. 

63 

62 

61 

T.S(61.9) 

(b) 

Fig. 13. Evolution of the "reactive bands" 
versus Eto t and Erot for (a) a cortrotatory 
motion of the terminal groups and (b) a 
disrotatory motion 

n) A long time ago, Wall and Porter 90) have mentioned the existence of upper energy bounds 
for H + H2 collinear reactions. More recently, Wright et al. 284) have observed quite similar 
reactive and unreactive "bands" for exchange reactions resulting from collinear atom-mole- 
cule collisions. 
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The results presented in this section all depend strongly on the assumption which 
allowed us to terminate the trajectories. For instance, certain "reactive" trajectories, 
if they were free to go on, could come back to the starting point of the reaction. Con- 
versely, certain "non-reactive" trajectories, after the first process of ring opening 
and closure, could yield a cyclopropane molecule possessing a more suitable amount 
of CH2 vibration energy and the isomerization reaction could now be possible 
(Fig. 12a). Furthermore, the treatment of the dynamical problem in its full dimen- 
sionality might well make the unreactive region between the two reactive bands dis- 
appear. 

b) Synchronous Disrotatory Motion (6 ~ = -45~ The main results of the pre- 
vious section for conrotatory trajectories remain true in the case of disrotatory tra- 
jectories. According to the value ofE~o t (here the initial CH 2 symmetric vibration 
energy), two reactive bands are still observed and exhibit the same characteristics as 
above; the first band corresponds to values ofE~o t of the order of  20 kcal/mol and 
the second band to values ofE~o t of the order of 40 kcal/mol. Most of the reactive 
trajectories involve a single concerted rotation of the terminal groups. 

The only noticeable difference concerns the nature of the reactive trajectories 
when the total energy is only weakly in excess of that of the transition state. For the 
lowest total intramolecular energy studied (Eto t = 63 kcal/mol, i. e gtot - ET.S. = 
1.1 kcal/mol), we observed reactive trajectories in the first band only,/, a for Er~ 
lying between 16 and 26 kcal/mol. This is exactly opposite to what happens in the 
case of  a synchronous conrotatory motion at Eto t = 61 kcal/mol (Eto t - ET.S. = 
1.2 kcal/mol) where reactive trajectories are observed in the second band only. The 
difference is probably due to the disrotatory transition state lying closer to the en- 
trance valley than the conrotatory transition state (the top of the rotational barrier 
is at 01 = -02 = 50 ~ presently, instead of 01 = 02 = 58 ~ before). Moreover, the en- 
trance valley which drives the ring opening is wider in the disrotatory case than in 
the conrotatory case because disrotatory distortions require a smaller amount of 
energy than conrotatory distortion, as long as 2 a < 95 ~ 

More precise calculations indicate that the first reactive band appears at Eto t = 
62.1 kcal/mol and the second reactive band at Eto t = 63.1 kcal/mol. The evolution 
of the reactive band widths versus the total energy is represented in Fig. 13b. 

The small secondary minimum (well depth: 2.3 kcal/mol) at the edge-to-edge 
half-way point does not affect the trajectories very much even for the lowest total 
energy. However, there are some rare exceptions where the representative point of 
the molecule spends rather a long time in this region of the potential energy surface 
(for certain trajectories, the integration was stopped after 1.5 10-12 second and the 
molecule was still trapped into the well). Then, the final outcome of the reaction is 
quite a random phenomenon. 

c} GeneralMotion (General 5~ When 8 ~ differs from -+ 45 ~ the coupling be- 
tween the rotations of both methylene groups results, at anytime, in an energy trans- 
fer from one to the other. Then the first question arises: for a given value of/i ~ charac- 
terizing the distribution of the initial methylene "rotation" (vibration) energy, what 
is the actual value of ~ = tg-1 (01/02) after the ring-opening phase of the reaction is 
terminated? 
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In Ref. 1), we noted that the process of ring-opening is much faster than the rota- 
tions of  the terminal groups whatever the type of cyclopropane molecules, either 
substituted or not. Consequently, energy transfer between the two oscillating termi- 
nal groups does not have time to operate significantly while the carbon ring opens. 
The opened molecule is rather similar to a FF-type diracial whose CH2 rotational 
energy - which is possibly very different from ~'rot - is nevertheless distributed 
among both rotors in almost the same way as that defined by 6 ~ at starting point. 
A careful study of the relative variations with time of 01 and 02 leads to the follow- 
ing conclusion. Whatever, the value of 6 ~ the corresponding trajectory, when reac- 
tive, closely resembles the reactive trajectory obtained for the same value of 6 ~ on 
the rotational potential energy surface at constant CCC angle (see Ref. 1), Fig. 7). 
Thus, if 6 ~  0, the rotation of the terminal groups most frequently leads, v/a a con- 
rotatory process, to a molecular conformation close to that of an edge-to-edge di- 
radical (EEc). If  6 ~  0, we observe either the rotation of a single terminal group 
(EF), or within a narrow range close to - 4 5  ~ the formation via a disrotatory process 
of an edge-to-edge diradical (EED). It should be emphasized that, whatever the value 
of 6 ~ both reactive bands (corresponding to values of Erot of  the order of 20 and 
40 kcal/mol respectively) are still observed, At low total energy (62 kcal/mol), all 
the reactive trajectories lead to the formation of the diradical EE c via a synchronous 
conrotatory motion of both terminal methylene groups (cf. Table 3). The amount 
of  excess energy above the potential energy of the transition state is weak (2.2 kcal/ 
mol), so that it is only within the range 6 ~ ~> 25 ~ that the reaction is possible. The 
ring reclosure occurs after only a single concerted 180 ~ rotation of the terminal 
groups. For Eto t ~> 63 kcal/mol, the three distinct rotational processes within the 
diradical species are now possible (cf. Table 4). When 6 ~ varies from 45 ~ to - 4 5  ~ we 
observe successively the concerted conrotatory process, the rotation of a single group 
and, last, the concerted disrotatory process. Reactive trajectories involving several 
rotations in the diradical appear. They correspond, most frequently, either to limits 
(on the reactive side) between "reactive" and "non reactive" bands, or within a reac- 
tive band, to limiting values of 6 ~ and Ero t beyond which there is a change in the 
nature of the isomer formed. 

3. Conclusion 

The dynamical study of the coupling between the modes of ring opening (and clo- 
sure) and the modes of rotation of the methylene groups of a cyclopropane molecule 
in the course of isomerization reactions confirms essentially the two main conclusions 
of the static study: 

(i) an isomerization involves, at leas t approximately, three sequential steps: ring 
opening, methylene rotation(s)and ring closure; 

(ii) the concerted conrotatory motion of the terminal groups is the easiest reac- 
tion path. 

This study also brings new information which could not be derived from the 
only study of the potential surface: 
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(i) the amount o f  methylene "rotat ion" (vibration) energy required for the reac- 
tion to be possible is much larger than was previously estimated; 

(ii) in general, a single rotation of  180 ~ o f  one or both terminal groups occurs 
within the diradical species. 

General Conclusion 

The dynamical study of  mechanistic details in organic reactions is complementary 
to the static study of  the potential energy surface. It furnishes a supplement of  in- 
formation which cannot be obtained from the static surface alone. 

The question which must be raised now is: "Is this type of  study called for and 
will it be of  common use in the future?" A first limitation is of  a technical nature: 
the dynamical study may be of  interest only when the potential energy surface driv- 
ing the reaction is known with sufficient accuracy. Thus the range of  application is 
restricted to reaction systems involving rather simple molecules. A second limitation 
is that such a dynamical study is almost necessarily incomplete; for instance, in most 
cases this precludes the obtaining of  the reaction rates of  organic reactions. 

The purpose o f  such dynamical studies is mainlythe development of  a dynamical 
intuition among chemists. Once the potential energy surface of  reaction is known, 
this intuition could allow qualitative predictions of  

(i) possible deviations of  the actual trajectories compared to the static minimum 
energy path; 

(ii) those energy distributions in reagents which favour completion of  the reac- 
tion, e t c . . .  

In this respect, dynamical studies of  a limited number of  typical reactions are 
highly desirable. The rapid improvement of  both the means of  calculation and the 
experimental techniques which result in having access to more and more tiny details 
o f  reaction mechanisms, should stimulate research work in this direction. 
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1. I n t r o d u c t i o n  

Although molecular inversion is a phenomenon which theoretically can occur in any 
nonplanar molecule, from the point of  view of vibration-rotation spectroscopy 
inversion is of  significance for relatively few molecules. Nevertheless, molecular in- 
version is an interesting and important large-amplitude molecular motion. Inversion 
has pronounced effects on the spectra of  certain molecules; experimental as well as 
theoretical studies of these effects became an important part of  the history of molec- 
ular spectroscopy. The results of  these studies found also important applications, the 
best-known example being the celebrated NH 3 molecular beam maser. 

The nature of  molecular inversion can be understood if we consider an operation 
E* whose effect on the position vectors r l of all the particles of  a molecule (atomic 
nuclei and electrons) in the space-fixed system of coordinates is defined as 

E* r i = - r i .  (1.1) 

The operation E* is the element of  the Longuet-Higgins' molecular symmetry 
group of permutation inversion operations O. I rE* is applied to a molecule with a 
nonplanar equilibrium configuration of  its atomic nuclei, it is the so-called non- 
completely feasible symmetry operation 1). In this case, E* transforms an equilibrium 
configuration A into a symmetrically equivalent equilibrium configuration B which 
cannot be obtained from A by a rigid rotation in space. Configurations A and B are 
then separated by a non-zero energy barrier. 

The height of  this barrier depends on the way we contort the molecule to reach 
its inversion, i.e., on the path in the configuration space over which we move during 
inversion. Physical properties of  the molecule are determined by the lowest energy 
barrier which unavoidably must be surmounted if we want to arrive from configura- 
tion A to configuration B. We denote this energy difference as the inversion barrier. 

�9 If  the inversion barrier which separates symmetrically equivalent equilibrium 
configurations A and B is high enough, all the vibrational wave functions (corre- 
sponding to inversion levels below the inversion barrier) have appreciable amplitude 
only in the neighborhood of the equilibrium configurations A and B. The time 
period during which a molecule undergoes the inversion is so long that the splitting 
of energy levels due to the tunneling effect between configurations A and B is very 
small and cannot be resolved by the spectroscopic techniques which are now available. 
Such a molecule can be considered as rigid with respect to inversion. 

This is the case of  most molecules. There are, however, certain molecules in 
which the inversion barrier is so low that the vibrational wave functions cannot be 
considered as localized 2) . Frequencies of the transitions between symmetrically 
equivalent configurations A and B are then high enough for the splitting of energy 
levels due to the tunneling to be detected experimentally. 

The simpliest and most important molecule with a low barrier to inversion is 
ammonia, NH3. In its ground electronic state, NH3 has a pyramidal equilibrium 
configuration with the geometrical symmetry described by the point group C3v 
(Fig. 1). Configuration B which is obtained from A by the symmetry operation E* 
is separated from A by an inversion barrier of  about 2000 cm - l  . A large amplitude 
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Fig. 1. The effect of inversion, E*, on the 
equilibrium configuration of ammonia NH 3. 
FuU lines: positions of the H nuclei above 
the plane of the figure, dotted lines: posi- 
tions below the plane 

N 

H Fig. 2. The v 2 bending mode of NH 3 
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Fig. 3. The double-minimum poten- 
tial function for NH a with the in- 
dication of the inversion splittings 
of the v 2 energy levels. Full line: 
effective potential function, dashed 
line: "true" potential function 
(Sec. 5.3). ni: inversion splitting; 
n : labels of the inversion levels 
according to Bunker 34), v[: 
quantum numbers of the energy 
levels of a rigid C3v molecule. 
Inversion coordinate p is defined 
in Fig. 4 

vibrational motion during which this barrier is overcome is the v2 bending vibration 
(Fig. 2). The potential function which describes this motion is a double-minimum 
function with the minima separated by the inversion barrier (Fig. 3). 

Molecular inversion is significant for molecules which can be obtained from NH3 
if we formally substitute the hydrogen nuclei by  one or two atoms, as for example 
NH2D, ND2H, NH2C1. If  we substitute one hydrogen nucleus in NH3 by a polyatomic 
group, the new molecule can execute several large-amplitude motions. For example, 
in methylamine CHaNH2, we must consider the wagging vibration which "inverts" 
the CNH2 atomic group and in addition the internal rotation of  the CH3 group with 

61 



D. Papou~ek and V. Spirko 

respect to the NHz group. In hydrazine, H2N" NH2, there are two large-amplitude 
wagging-inversions and one internal rotation. Such molecules possess several sym- 
metrically equivalent equilibrium configurations which are separated by non-zero 
energy barriers (Section 6.2). In general, we cannot transform one equilibrium con- 
figuration of such molecules into another one simply by the operation of inversion, 
E*, but by certain well-defined non-completely feasible permutation-inversion opera- 
tions of the full symmetry group of the molecule ~). In analogy to the inversion in 
ammonia, the large-amplitude motions which invert certain non-planar atomic groups 
in such molecules are also called inversions. 

An interesting group of molecules which show an inversion effect related to 
that observed in ammonia are small ring molecules. Cyclobutane has a four-mem- 
bered ring with a small potential hump at the planar configuration. A similar situation 
occurs in trimethylenoxid. Symmetric systems of five-membered rings, such as 
cyclopentane, have two out-of-plane deformation vibrations (puckering vibrations) 
which are degenerate. The resulting motion can be considered to rotate around the 
ring and this type of motion has been called pseudorotation. 

Theoretical description of the internal motions in such molecules is a rather 
complicated problem which still requires further work. Even in the simplest case of 
ammonia, until recently the theory of the vibration-inversion-rotation states of  
this molecule had not been worked out in a form which would allow for a systematic 
analysis of  the spectra of this molecule leading to a determination of a reliable po- 
tential function. 

In Sections 2 - 5  of the present paper we describe an approach to the ammonia 
problem which is based on a new vibration-inversion-rotation Hamiltonian devel- 
oped recently for NH3 and its isotopic substituents in our lab 3-6). We concentrate 
in this paper on the ammonia molecule but the results could be immediately applied 
to molecules such as NHzX and NHXz or they might be used in extensions of  this 
approach to more complicated molecules with inversion-like motions (Sections 6.1 
and 6.2). 

2. Molecular Inversion in Ammonia 

Ammonia was the first molecule for which the effect of  the molecular inversion was 
studied experimentally and theoretically. Inversion in ammonia was subsequently 
found to be so important that this molecule played an important role in the history 
of molecular spectroscopy. Let us recall, for example that microwave spectroscopy 
started its era with the measurements 7-9) of the frequencies of transitions between 
the energy levels in the ground vibronic state of  NH3 split by the inversion effect. 
Furthermore, the first proposal x~ and realization 11, 12) of a molecular beam maser 
in 1955 was based on the inversion splittings of  the energy levels in NH3. The Nobel 
Prize which Townes, Basov and Prochorov were awarded in 1964 clearly shows how 
important this discovery was. Another example of the role which the inversion of 
ammonia played in the extension of  human knowledge is the discovery of NH3 in 
the interstellar space by Cheung and his co-workers 13) in 1968, by measuring the 
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inversion frequencies emitted by the ammonia cloud in Saggitarius B. Ammonia was 
therefore the first polyatomic molecule found in the interstellar space. 

Ammonia has also attracted the attention of theoreticians since the beginning 
of the application of quantum mechanics to molecular problems. The fact that the 
tunneling effect does not have any analog in classical mechanics certainly contributed 
to this interest. 

Dennison, Hardy, and Uhlenbeck 14' is) presented the first quantum mechanical 
interpretation of the inversion phenomena in ammonia in the early thirties. Fermi 16) 
was among the first theoreticians to study this problem; his paper on the effect of 
the centrifugal distortion on the inversion splitting in NH3 was written in 1932 and 
after 45 years it is still interesting. 

These early papers, as well as most of the theoretical work on the inversion of 
ammonia that has been done later, have considered the problem of the solution of 
the Schr6dinger equation for a double-minimum potential function in one dimension 
and the determination of the parameters of such a potential function from the in- 
version splittings associated with the v2 bending mode of ammonia 17). Such an ap- 
proach describes the main features of the ammonia spectrum pertaining to the v2 
bending mode but it cannot be used for the interpretation of the effects of  inversion 
on the energy levels involving other vibrational modes or vibration-rotation inter- 
actions. 

Until recently, few attempts have been made to extend the theory of the am- 
monia inversion to account for the dependence of the inversion splittings on the 
vibrational and rotational quantum numbers [e.g. 18)]. These attempts differed not 
only from the standard approach to the vibration-rotation problem of rigid mole- 
cules but also from the approach to the problem of nonrigid molecules with internal 
rotation [ for example 19) ]. 

In the following sections of this paper, we describe a new model Hamiltonian to 
study the vibration-inversion-rotation energy levels of ammonia. In this model the 
inversion motion is removed from the vibrational problem and considered with the 
rotational problem by allowing the molecular reference configuration to be a function 
of  the large amplitude motion coordinate. The resulting Hamiltonian then takes a 
form which is very close to the standard Hamiltonian used in the study of rigid mole- 
cules 19) and allows for a treatment of  the inversion motion in a way which is very 
similar to the formalism developed for the study of molecules with internal rotation 
[see for example 17) ]. 

3. Vibration-Inversion-Rotation Hamiltonian for Ammonia 

In the standard treatment of  rigid molecules, we define a rigid reference configuration 
of the atomic nuclei of  the molecule with respect to which we measure the vibrational 
displacements of  the atomic nuclei 19' 20). It is of course necessary to introduce a set 
of constraints on these displacements so that external large-amplitude motions (such 

�9 as translation and overall rotation) are not accounted for as vibrational motions. 
Using the procedure described in detail e.g. in Chapter 11 of Ref. 2~ we arrive 

at a quantum mechanical Hamiltonian ~ which includes the components of the total 
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angular momentum operator of  the molecule, the components of  the vibrational 
angular momentum operator and the potential energy operator V as a function of 
the normal coordinates of  vibration Q. Because the Schr6dinger equation for this 
operator does not lend itself to exact solution, we expand the coefficients a)/la# 
(a, ~ = x, y, z) and the potential energy V in a power series in Q. We then treat the 
Schr6dinger equation in different approximations depending upon the accuracy we 
wish to reach in the theoretical interpretation of the experimental data. 

The vibration-rotation H a m i l t o n i a n ~ i s  valid irrespective of  the magnitude 
of the amplitudes of  vibrations, Le. it could be used in principle to non-rigid mole- 
cules as well. There are, however, two main sources of difficulty which arise if we 
wish to a p p l y ~  "~ to non-rigid molecules. 

The first problem concerns the expansion of V in the power series in Q. In 
non-rigid molecules, vibrational wave functions have appreciable amplitude over a 
wide range of the values of the coordinates describing the large-amplitude motions 
and we must use very high powers in the polynomial expansion to arrive at a satis- 
factory description of the potential function of a non-rigid molecule. For example, 
to describe the double-minimum function of ammonia (Fig. 3), we must use a poly- 
nomial expansion of the 10th degree to arrive at about 1% agreement between the 
calculated and experimental inversion barrier. 

The second problem concerns the convergence of the expansion of the coeffi- 
cients t~, ~. Until recently this problem has not been studied to the same extent as 
the effect of the anharmonicity of the large-amplitude vibrations in the expansion 
of V. However, the role of  the large-amplitude motions in the expansion of/a~a may 
be equally important, especially in the ab initio approach to the calculation of the 
rotational energy levels of a non-rigid molecule [cf.21)]. 

In the treatment of  non-rigid molecules, we can avoid the above-mentioned 
difficulties if we define a non-rigid reference configuration of the atomic nuclei 
which essentially follows the large-amplitude motions. Vibrational displacements 
measured with respect to the non-rigid reference configuration remain therefore 
small; the large-amplitude problem is removed from the vibrational part of  the 
Hamiltonian. 

This approach has been frequently used in the' treatment of  molecules with 
internal rotation. In these molecules, the " top"  and "frame" parts of the non-rigid 
reference configuration follow essentially the internal rotation; internal rotation is 
not considered as a vibrational motion but rather as a part of the rotational motion 
described by a new dynamical variable - the angle of  internal rotation. 

In the following section, we introduce an analogous formalism into the descrip- 
tion of the vibration-inversion-rotation states of ammonia. We define a non-rigid 
reference configuration of the atomic nuclei of the ammonia molecule which follows 
closely the large amplitude inversion motions of the atomic nuclei. In this way the 
major part of  the anharmonicity due to the inversion motions will be removed from 
the vibrational problem and accounted for by the large amplitude inversion coordi- 
nate p. 

a) The coefficients/~a# are the elements of the 3x3 matrix which is the inverse to the matrix 
of the inertia tensor elements defined e.g. by Eq. (10) in 20). 
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3.1. Molecular Reference Configuration and the Molecule.Fixed System of Axes 

The reference configuration of  the atomic nuclei of  the NXa molecule (X = H, D, T) 
is def'med by (i) three equal and fixed bond lengths ( -  ro), (ii) the angle p subtended 
by the NH bond of  the reference configuration and the Ca axis (Fig. 4). We shall 
require that the molecule-fixed system of  axes xyz  has its origin at the center o f  
mass, i.e. 

m~ai(p ) = 0 (3.1) 
i 

where ai(p ) is the position vector of  the ith atomic nucleus o f  mass rn i. We shall 
further specify the molecule-fixed system of  axes by the requirement that the angular 
momentum of  the reference configuration vanishes in this molecule-fixed axis sys- 
tem, L e. 

x dai(P) ] = O. 
Zi mi[ai(P) d p J (3.2) 

The components of  the position vectors ai(p) are then given by 

a l x  = r 0 s i n / ) ,  

_ 1 ro sin p ,  a2x  

a ax = - l ro sin p, 

aNx = O, 

(3.3. a) 

aly = 0, 

a2y = 3~/2/2 - r  o sin p, 

a3y= -31/2/2 �9 r o sin p, 

aNy= O, 

(3.3b) 

alz = (mNro cos p)/m, 

a2z = (mNr 0 cos p) /m ,  

a.~z = (mN ro cos p)/m, 

aNz = --(3 mxrocos  p)/m, 

(3.3c) 

�9 where mx and mN are the masses of  the corresponding atomic nuclei and m = 3 mx + 
mN. The molecule-fixed system of  axes xyz  is located in the reference configuration 
as shown in Fig. 4. 
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Fig. 4. The numbering of atoms and location of the molecule-fixed axis system in NH 3 

We have the following well-known relation between the space-fixed coordinates 
and the molecule-fixed coordinates of  the atomic nuclei for an instantaneous mole- 
cular configuration: 

r i = R + S -  ' (0 ep• [a i (p)  + di] ' i = 1,2 . . . . .  N (3.4) 

where r i is a column matrix of the three coordinates of the ith atomic nucleus in 
the space-fixed axis system X Y Z ,  R is a column matrix of the three space-fixed co- 
ordinates of  the origin of  the molecule-fixed axis system. The quantity [ai(p) + di] 
is a column matrix of  the three instantaneous coordinates of the ith nucleus in the 
molecule-fixed axis system, the di's are the vibrational displacement vectors mea- 
sured with respect to the reference configuration. The 3 x 3 matrix S -1 (0qbX) of the 
transformation from the molecule-fixed axis system x y z  to the space-fixed axis 
system X Y Z  is given explicitly in Appendix I in Ref. 2~ 

There are 3N + 7 coordinates on file right sides of  Eq. (3.4), i.e., the 3N vibra- 
tional displacements d i s ,  the three coordinates of the center of  mass, the three Euler 
angles 0, ~b, • and the angle p. Since there are 3 N c o o r d i n a t e s r i a  (i = 1, 2 . . . . .  N;  
a = x, y, z) on the left sides of  Eq. (3.4), the 3N vibrational displacements dis  are 
subject to seven constraint equations which further specify the molecule-fLxed axis 
system. We shall use the following set of Eckart and Sayvetz conditions for these 
constraint equations: 

m f l  i = 0, (3.5 a) 
i 

Y. rn i [ai(p)xdi] = 0, (3.5b) i 

N mi[ dai(p) . d i ] =  0. 
i dp 

(3.5c) 

66 



A New Theoretical  Look at the Inversion Problem in Molecules 

If  Eqs. (3.5) are combined with Eq. (3.4), we obtain the following set of  equations: 

mi  (r i - R) = 0, (3.6a) 
i 

~ m i a i C o ) x  IS (0 ~ x )  " (ri - R)] = 0, (3.6b) 
i 

Z. mi(daf fdp ) �9 IS(0 d)X) . (r i - R )  - a l ]  = O. 
l 

(3.6c) 

If  the instantaneous molecular configuration is given by a set of  N position 
vectors r i (i = 1,2 . . . .  ,N), then the values of the seven coordinates R, 0, ~ ,  • and 
p can be obtained by solving the seven equations (3.6). Consider for example tile 
dependence of the angle p-, defined as the angle subtended by the z axis and the NH 
bond of the instantaneous molecular configuration, on the angle p for a motion of 
the atomic nuclei during which all the instantaneous bond lengths rNH and the 
instantaneous valence angles remain equal. The following simple relation can be 
found (between p and p- ) by solving Eqs. (3.6) 

COS p = (rNH/rO) COS p-. (3.7) 

Eq. (3.7) shows that for a bending motion during which rr~rt = ro, the reference 
configuration follows exactly the motion of the instantaneous configuration of the 
atomic nuclei for all values o f p  in the interval from 0 to 7r (mod 7r). Eq. (3.7) implies 
also that the vibrational displacement vectors d i in Eq. (3.4) remain small although 
the molecule exhibits a large-amplitude motion. 

3.2. Classical and Quantum-Mechanical Vibration-Inversion-Rotation Hamiltonian 

The classical kinetic energy T is defined as 

2 T  = ~ m i r  2 
i 

(3.8) 

where f i = drf fd t .  

If  we substitute from Eq. (3.4) for/'i and use the various restrictions on the d i 
given in Eqs. (3.6), we obtain the following expression for the classical vibration- 
inversion-rotation energy 

2 T  = F, I~co~co~ + 2 Y, co~ ~ m ~ ( d i x d i )  ~ + Y, rnid 2 . (3.9) 
~ , ~ = x , y , z , p  a = x , y , z  i i 

In Eq. (3.9), ~oa (o~ = x, y, z) are the molecule-fixed components of the angular 
velocity vector of  the molecule-fixed axis system in the laboratory-fixed axis system, 
cop = P, di = (d/dt)di .  The quantities Ia# (a, fl = x, y, z, p) are the elements of  the 
4x4 matrix of the inertia tensor, 
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-1xx Ix, 

I y x  l y y  l y z  
1 = 

Gx 

where for a,/3 = x , y , z  

(3.10) 

Ic~z = Z. mt [Sa~(ai +di )"  (ai + di) - (ai + di)a (ai + di)#], 
I 

dai 
I~,p = - 2  Zmii [--~P x ddc,, 

and 

( d a ' 1 2  Z i m i ( d 2 a i )  Ipp = ~ m  i -- 2 "di. 
i \ d p ]  \ ~ p 2  

(3.11) 

(3.12) 

(3.13) 

Let us introduce normal coordinates of vibrations Qk (k = 1,2 . . . . .  3N) by an 
orthonormal transformation 

(3.14) 

where d is column matrix of  the 3N mass-weighted vibrational displacements 
m)/Zdia (i = 1 , 2 , . . . ,  N; a = x, y, z); Q is a column matrix of the genuine normal 
coordinates Q1, Qz . . . .  Q 3 N - 7  ; Q is a column matrix of the seven nongenuine 
coordinates Q3N-6 . . . . .  Q3N; I is a (3N-7)x3N submatrix of  the transformation 
coefficients li,~ ' k (k = 1, 2 . . . . .  3N-7 ) , l  is a 7 x 3 N  submatrix of  the transformation 
coefficients li~ " s (s = 3 N - 6  . . . . .  3N), which are chosen to be proportional to the 
coefficients associated with the quantities dia in the Eckart and Sayvetz conditions 
(3.5). Thus, Q3N-6, Q3N-5 . . . . .  Q3N = 0 correspond to the three coordinates of  
translation, the tree coordinates of rotation, and the coordinate p. The requirement 
which specifies that the Qk are the normal coordinates of vibration is that the 
potential energy expansion in Q is diagonal up to the quadratic terms [cf. Eq. (3.23)] 

The coefficients lio ~ s (s = 3 N - 6 , . . . ,  3N) are in general functions o fp  [see Eqs. 
(3.5)]. The orthogonality of  the genuine normal coordinates Qk (k = 1,2 . . . . .  3N-7)  
to the nongenuine normal coordinates Qs (s = 3N-6  . . . . .  3N) then implies that in 
general the coefficients lie, , k (k = 1,2 . . . . .  3 N - 7 )  are also functions o fp .  

If  we substitute for d i and d i from the transformation which is the inverse of  Eq. 
(3.14), Eq. (3.9)becomes 

3 N - 7  
2T = Z I'c~Wc~ w[3 + Z ((~k + Y-" COc,~k Qt) 2 (3.15) 

~,#= x, y, z, p k=l  l, ~=x ,y ,  z, p 
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where 

I ~  =I~# _ ~ ~ffm~mQkQt; or, ~ = x, y, z, o. (3.16) 
k , l , m  

In Eq. (3.16), the Coriolis constants ~'~m (a = x, y, z) are defined as 

~atct = _ ~attr = ~. (litj,k li'r,l -- lt~t, k to,  t); ct, [J, 7 = x, Y, Z 
l 

(3.17) 

and the Coriolis constant s'~t is given by 

dlia, t 
~ t  = - ~otg = Z lic ~, k (3.18) 

i,a= x,y,z \ do ]" 

We can derive the quantum mechanical kinetic energy operator by following, 
almost exactly, the arguments of Sections 2, 3, and 4 of Chapter 11 in 2o). If we 
choose the volume element of the Hilbert space to be 

3 N - 7  
d 'r=dpsinOdOdcbd•  ~ dQg, (3.19) 

k=l 

the kinetic energy operator assumes the form 

2T = If114 Z (Ja - Pa)lacOP- l12(j# _ po)pll4 + pl14 ~k P k p - l l 2 p k p l / 4 "  
~,t~ = x,y,z ,o (3.20) 

In Eq. (3.20), Ja (a = x, y ,  z)  are the components of the total angular momentum 
operator with respect to the molecule-fixed axes. The quantity Jo is classically Jo = 
( aT /awp)  and quantum mechanically 

Jp = - ih (a/ap). (3.2 I) 

The components of  the so-called vibrational angular momentum Pa (a = x, y, z) and 
the momentum pp are defined as 

P~ = Y' ~'~tQx/' l;  a = x ,  y ,  z ,  p .  
k,1 

(3.22) 

The quantities ~aaO (ct, ~3 = x, y, z, p) are the elements of the matrix which is the 
inverse of the 4x4 matrix [I'a~]; p is the determinant of the matrix [P~t~]" 

We have so far considered only the kinetic energy expression. We must also 
consider the potential energy expression V, which can be expanded for each value 
ofp  as a Taylor series in the normal coordinates Qk: 

V= Vo(P)+ ZkKk(p)Q ~ + 1 ~k ~k(P)Q~ + higher order terms. (3.23) 
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In Eq. (3.23), 1Io(0) is the double-minimum inversion potential function of the 
reference configuration (Q1 = Q2 = �9 �9 �9 Q3N-7 = 0 ) .  The linear force constants 
rk (O) = (a V[aQk)p are not in general zero for all values of  p, since the reference 
configuration is not the equilibrium configuration for all values of  O. The linear as 
well as the quadratic and higher order force constants must be, of  course, considered 
as the functions of/9 (cf. Section 4.2). 

It must be mentioned that our treatment 3' s, 6) is an extension of the formalism 
that was originally developed by Hougen, Bunker, and Johns 22) [see also 21' 23)] for 
the treatment of  the large-amplitude bending vibration of triatomic molecules. Moule 
and Rao 24) have simultaneously with, but independently of us, applied a simplified 
version of this formalism to an excited electronic state of  H2 CO. Sarka, Papou~ek, 
Boh~i~ek and Spirko 25-27) [see also 28)] have extended this formalism to tetratomic 
quasilinear molecules. The Hamiltonian T + F [cf. Eqs. (3.20) and (3.23)] can there- 
fore be applied to any molecule with one large-amplitude bending vibration. We 
shall discuss the use of  this approach to other types of  molecules later in Sections 
6.1 and 6.2. 

3.3. Extension to NH2D and ND2H 

Discussion in Sections 3.1 and 3.2 is valid for ammonia NX3 (X = H, D, T). This 
discussion can be easily extended s) to asymmetrically substituted ammonia mole- 
cules NH2D or ND2H. 

The reference configuration of the atomic nuclei of  NH2D is defined by (i) three 
equal and fixed bond lengths (= ro), (ii) the angle P subtended by the ND bond of 
the reference configuration and the axis p which passes through the atomic nucleus 
N and the center of the equilateral triangle formed by the atomic nuclei H l , H2, and 
D (Fig. 5). All the valence angles a of  the reference configuration are defined to be 
equal, thus 

(31/2/2) I sin P I = I sin (c~/2) I. (3.24) 

The molecule-fixed system of axes has its origin at the center of  mass of  the reference 
configuration and the z-axis subtends an angle e with the p-axis (Fig. 5). The compo- 

z ~P 

H 1 
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Fig. 5. The numbering of atoms and location of the mole- 
cule-fixed axis system for NH2D. The hydrogen nuclei H 1 

and H 2 should be replaced by D 1 a n d  D 2,  and D should 
be replaced by H for NH2D 
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nen t s  o f  the posi t ion vectors ai(p ) of  the i th  a tomic nucleus  in this molecule-f ixed 

axis system are given by  

a l x  =a2x = [(3 mD + rnN)]2m] ro sin p cos e + (mN/m)r  o c o s p  sin e, 

aDx = -- [(3rnH + mN)[m]ro sin p cos e + (mN/ m)r  o cos p sin e, (3.25 a) 

aNx = -- [ ( m n  -- mo)/m]ro  sin p cos e -- [(2mH + mD)/m]ro c o s p  sin e, 

aly = -- (3112/2)ro sin p,  

a2y = (31/2/2)ro sin p, (3 .25b)  

aDy= 0, 

any = O, 

alz = a2z = -- [ ( 3 mn  + mN)/2m]ro sin p sin e + (mN/m)r  0 cos p cos e, 

aoz = [(3mH + mN)/m]ro sin a sin e + (mN/m)]r  o cos p cos e, (3.25 c) 

aNz = [(mH -- mD)/m]ro sin p sin e - [ ( 2 m n  + m o / m ) ] r  o cos 19 cos e, 

where mH,  mN,  and mD are the masses of  the atomic nuclei  H, N, and D, respectively, 

and m = 2mH + mD + raN. Equat ion  (3.2) can be used to calculate the relat ionship 

be tween  the angle p and e; we ob ta in  

deJdp =ux[(u2 + u3 sin 2 0), (3 .26)  

where 

u i =mN (too -- rnrl), 

u2 = m N ( 2 m n  + roD), (3.27) 

= 3 m H ( 3 m D  -- mN).  U3 

Equat ion  (3.26) can be integrated to give 

e(p) = aretan tan 0 § const ,  (3 .28)  
[U2(/'/2 + t /3 ) ]  1/2 L ~' U2 ! 

where the integrat ion cons tan t  may be arbitrarily chosen so that e = 0 for the value 

of  the parameter  0 = 0 (i.e., const  = 0). Note that  for NH3 Eq. (3 .28)  gives the 

iden t i ty  e = 0 for all values of  p (cf. Sect ion 3.1). 
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The vibration-inversion-rotation Hamiltonian then assumes the same form as 
in Eq. (3.20); #~a,/a and V are of course different functions o fo  and Q. 

3.4. Expansion of the Vibration-Inversion-Rotation Hamiltonian 

The exact vibration-inversion-rotation Hamiltonian ~ =  T + V [Eqs. (3.20) and 
(3.23)] is, of  course, too complicated to work with directly. Analogously as in the 
standard treatment of the vibration-rotation states of rigid molecules 29' 3o), we can 
expand ~ ' i n  terms of the normal coordinates of vibration. This makes it possible 
to use various approximations to Y'g'which are manageable numerically. 

Let us first rearrange ~ into the following form: 

1 Y'OaO ( J a - P a ) ( J ~ - P # )  2 o.O=x,y,z,p o~= 2 c~,O=x,y,z,o 

,~' =~r p 

[p,~ ~ ~ u -  ~ /2 (p au v4 ) ] _ 

- ~ [p, ,~pu-v2(Jpu~/4)]  - ~ [Jpup~u-v~@~uv4)]+ 
o t = x , y , z , p  t , = x , y , z , p  

+ [jplapp#-,12(jols,14)]}+ 1 ~k/~k+l8#- '  ~k (P~ #) - -~'2/a-2 ~ (Pk/a)2 + 

+ V(p, Q). (3.29) 

In rearranging the Hamiltonian we used the fact that the operatorsJa (a = x, y, z) 
commute with all other operators in Eq. (3.29). In Eq. (3.29), the operators p~,, Jo, 
Pk operate only within the brackets in expressions like (Pa/aatJ), (Jp/a0~), (Pt~/a) etc. 

We expand the inverse moment of the inertia matrix as a power series in the 
vibrational normal coordinates 30 

Isa# =11013 + ~X~aQk + y' Y ~ Q k Q t  +. . .;a,~ =x,y ,  z, p .  
k,l 

(3.30) 

Let us consider the case of NX3 (X = H, D, T). From our choice of the reference 
configuration [Eqs. (3.11)-(3.13)] we have b)/~oat ~ o = ~at31Ja(3,  and the expressions 
for X~ t~ and F~kg take a simple form: 

x~[J[-(ata~a/Qk)pl = a$a o o - p~al.tfj[~, (3.31 a) 

yffff [ = _ 1  (~21zaf~/OQk~Q,)p]= 3 ~ (a~Ea~e + aC{,a~e) o o o 
Idc~aIJ[3(31dee , 

,=x ,y ,z ,p (3.31 b) 

b) Tensor #0/3 is diagonal because the reference configuration of the NH 3 molecule defined in 
Section 3.2 is a symmetric top not only for the equilibrium configuration (point group C3v) 
but also for every value of the angle p in the interval from 0 to n (with mod ~r). 
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where 

a~ O = ( OL~a/OQx )p (3.32) 

are the derivatives of the instantaneous inertia tensor laa, evaluated at the reference 
configuration. 

Expansion (3.31) can be substituted into the right side of Eq. (3.29) and main- 
raining only terms of order of magnitude K 2 T v [at J = 10 for v 1 = v3 = v4 = 0, cf. 
Ref. 21) for determining the orders of magnitude it{ Eq. (3.29)] we have for the kinetic 
energy operator 

T = T o + T o + Teem + Tcor + Tv~, (3.33) 

where 

o 1 o 2 1 0"~114 Ti=7 uoo.G+l(:pu~ ~(u, { :~,~0 (u~176 +Uo(o), 
(3.34) 

# z z J z ,  (3.35) 

_ 1 Z [~k Xff#Qlr + Z Yf f~QkQt]  JaJcJ + Tcent 2 o~d3=x.y,z,o k,I 

+I Z [Z(JoX~-~)Qk + Y~[~)QkQtlJa 
a=x,y , z ,p  k : 1  (Jp ' 

(3.36) 

1 Z l a ~ 1 7 6  p, Tcor-  2 ,~=x,.v,z,p (3.37) 

ot=x,y,z,p 

In Eqs. (3.36) and (3.38), k and l take on the values 1,. 3 a, 3b, 4a, 4b [see Eq. (4.2)]. 
The term U0(p) in Eq. (3.34) consists of that part of-~ #1/4 ~ [Pk#-l/Z(Pkg:/4)] 

having order of magnitude ~2 Tv. The explicit expression for Uo(p ) is 

h ~ l a~,XaZ, z. ~ .o  x pp o o 1 aZZapP,,o ,,o 
Uo(p) = -~"  [ 1 1 Pxxt~zz + a~l al  t-ltxxldPP "t" ~ 1 1 t~zzl~'PP - -  

I (~z)2 OaOz)2 _ I (a~p)~ (/a~p)2 _ 2 X [(atff)x 21axxlappO o + 
4 4 t=3,4 

z 2  0 0 } + (~d) u~m~ + (~)2 (uo)21 . (3.39) 

We have included certain terms from the expansion of/~pa in the third term on the 
right side of Eq. (3.29) in Eqs. (3.36) and (3.38) although their contribution is 
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probably below the order of  our approximation. It can be verified that this must 
be done if we want to preserve the Hermitian properties of the centrifugal distortion 
operator Tcent and of the Coriolis operator Tcor [Eqs. (3.36) and (3.37)]. For ex- 
ample, operators X~ ~ QkJaJp in Eq. (3.36) are not Hermitian. 

We shall discuss briefly the physical meaning of various terms which occur in 
the expansion of our Hamiltonian and the corresponding approximations. The sim- 
pliest approximation t o ~  is obtained when all the small-amplitude vibrational 
coordinates Qk (k = 1, 3a, 3b, 4a, 4b) are put equal to zero. We shall call this 
Hamiltonian the zeroth-order inversion-rotation Hamiltonian, or the rigid bender 
Hamiltonian. I t  follows from Eqs. (3.23) and (3.33)-(3.38) that it can be written 
in the following form: 

~ior __j~,~o + T ~ (3.40) 

where~'P i ~ = [ TO - U~ (P)] + Fo (0). In the expression for T o and T O [Eqs. (3.34) 
and (3.35)],/1 ~ = 1 / l ~  = x, y, z, p); the explicit expression for I~ are as fol- 
lows: 

I~ -- Iyy~ [-_ ~mi(a~y, +a~z)] = 3mHr~) [(mN/m)cos2p + 1 sin2p] (3.41) 

Iz ~ 1~ s + a~x)]  = 3rnHr~) sin2p, (3.42) 
l 

l~ Z. rni(aai/~p) 2 ] = 3mHr20 [COS2p + (mN/m) sin 2 p]. 
l 

(3.43) 

Consider briefly now the Schrrdinger equation for the zeroth-order inversion 
Hamiltonian~'~~ 

 o O(p) = e % , o . ( p ) .  (3.44a) 

This equation does not have a simple analytical solution but it can be solved by the 
numerical integration technique which will be discussed in Section 5.2. After solving 
this equation we can obtain the eigenvalues and eigenvectors of the inversion states 
of  ammonia in the ground "vibrational" state, and, hence, we can obtain the required 
inversion splittings in the v 2 states of  ammonia. The important difference between 
this treatment and all other previous treatments of  the one-dimensional Schr6dinger 
equation for the NH 3 molecule lies in the fact that in this treatment the large- 
amplitude motion is considered in the kinetic part as well as in the potential energy 
part of the Hamiltonian. 

From Eqs. (3.40) and (3.35) it is obvious that the inversion-rotation wave func- 
tions if~ r (0, q~, X,/9) of NH3 which are the eigenfunctions of the opera torJ~ ~ can 
be written as a product of the rigid-rotor symmetric top wave functions depending 
on the Euler angles 0, qb, X and the inversion wave functions, depending on the 
variable p. Integration of the Schrrdinger equation 

(Jd~~ - E/~ ~~ r (0, ~ ,  X, P) = 0 (3.44b) 
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over 0, q~ and • then leads to the following equation: 

{ ~q~o + (h2/2) l~x[j( J + 1) - k 2 ] + (h2/2) la~ 2 } ffYk(P) = E~tr ff~ �9 (3.45) 

The wave functions O~(p)  in Eq. (3.45) depend on/9 (as the dynamic variable) and 
on the rotational quantum numbers J and k (as parameters). 

After solving Eq. (3.45) we can obtain the eigenvalues and eigenvectors of the 
inversion-rotation states of ammonia in the ground "vibrational" state; i.e. we can 
calculate - in the rigid bender approximation - the rotational dependence of  the 
inversion splittings in the v2 states of ammonia. Note that the J and k dependent 
terms in the Schrtidinger equation [Eq. (3.45)] represent a modification of the 
double-minimum potential function Vo(p) for each rotational state J, k (see further 
Sections 5.1 and 5.2). 

Up to the second order of approximation, we can obtain the vibration-inver- 
sion-rotation energy levels and the corresponding wave functions by solving the 
Schr6dinger equation 

(T + II) eve (Q;/9, 0, q~, x) = 0. (3.46) 

The solutions of Eq. (3.46) are therefore the inversion-rotation states of ammonia 
in the ground as well as in the excited vibrational states, calculated in the so-called 
non-rigid bender approximation. 

The operator Tcent which appears in the kinetic energy operator T [Eq. (3.36)] 
involves certain terms which are formally the same as the centrifugal-distortion 
operators in a rigid molecule of a C3v symmetry 3~ 32). In our case, however, the 
coefficients X~ ~ and Y ~  must be considered as functions of p. Furthermore, in 
the centrifugal distortion operator Tcent in Eq. (3.36) there are severalJp containing 
terms which do not appear in the theory of Centrifugal distortion in a rigid C3v mole- 
cule. In the theory of a rigid molecule, these terms would account for certain effects 
of the higher order than K2Tv. In our case they become lower order terms because 
of the anharmonicity of the large amplitude inversion motion. Tcent also contains 
certain terms which describe the vibration-inversion-rotation interaction between 
the v 2 inversion states and the doubly degenerate va vibrational states (see Section 
5.4 for details). 

In Eq. (3.37), Tcor is the Coriolis operator for the interaction between the 
vibrational states Vl, v3 and v4 in NH3 [the first term on the right side of Eq. (3.37)]; 
the operator (Jpta~ has the meaning of a quartic potential constant. Tvi b in Eq. 
(3.38) is the operator of the vibrational kinetic energy where o /a~a are of course con- 
sidered as functions of p. 

The application of~c~vir to the analysis of the vibrational-inversion-rotation 
spectra of  ammonia will be discussed in detail in Sections 5.1-5.4. Here we mention 
only that if the interaction between the inversion, vibration and rotation states is 
neglected, the overall wave function @vir can be written as a product of the harmonic 
oscillator wave functions if~ k, the inversion wave function @i(P), and the symmetric 
rotor wave function S]kM(O, ~) exp (ik• 

~vir = [~v~ ~b~ 3 ~~ [~i(P)] [SJkM( t9, ~) exp (ik• (3.47) 
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We have so far considered the expansion of  the vibration-inversion-rotation 
Hamiltonian ~'~for the symmetrically substituted molecules NXa (X = H, D, T). 
For NH2D or ND2H, the treatment must be modified in an obvious way s). Because 
of the lower symmetry of  the reference configuration of NH2D with respect to that 
of NH3, the matrix [/riO] is not diagonal for NH2D but contains the off-diagonal 
element #o z . For example, in the rigid bender approximation, T O remains formally 
the same but  T O becomes 

taxxJx . 1 i.tOz (3.48) 

Note that T o in Eq. (3.48) is not diagonal in the rotational quantum number k, and 
we cannot use Eq. (3.45) for the calculation of the inversion-rotation energy levels 
of NH2D in the rigid-bender approximation (Section 5.2). 

4. Symmetry Classification of the States and the G F Matrix Problem 
in Ammonia 

Before we apply the formalism developed in Section 3 to the vibration-inversion- 
rotation spectra of ammonia, we shall discuss in this section certain group theoretical 
problems concerning the classification of  the states of  ammonia, the construction 
of the symmetry coordinates, the symmetry properties of the molecular parameters, 
and the G F  matrix problem for the ammonia molecule. 

4.1. Symmetry Classification of the States 

Ammonia is an interesting molecule also from the group-theoretical point of view. 
It has been recognized since the beginnings of the applications of group theory to 
molecular spectra that the Car point group which characterizes the geometrical sym- 
metry of NH 3 does not give full information on the symmetry properties of its 
quantum states. Instead of the Car group, the D3h group has been used for the clas- 
sification of the states of NH3. However, the general theoretical principles pertaining 
to the use of the Dan group of ammonia have been presented much later in the 
fundamental paper of Longuet-Higgins 1) on the symmetry groups of nonrigid mole- 
cules. 

Following Longuet-Higgins t), the full symmetry group of NHa is the group of 
the permutations c) and permutation inversion of the identical atomic nuclei: 

E, ((123), (132)}, ((12)*, (13)*, (23)*} (I) 

E*,((123)*,(132)*}, ff12), (13), (23)} (II) 

where for example (123) is the cyclic permutation of the hydrogen nuclei numbered 
according to Fig. 1, E* is the operation of inversion defined by Eq. (1.1), and for 

c) We permute the positions and spins of the identical atomic nuclei. 
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example (123)* is the permutation (123) followed by inversion E*. This group is 
isomorphic to the D3h point group on the basis of  the following one-to-one corre- 
spondence between the permutat ion-invers ion group (PI group) operations and the 
point group operations: E ~ E, (123) ~, C3, (12)* ~ tyv, E* ~, oh, (123)* ',* S3, 
(12) ~-C2. Note that the elements in the row (I) are the completely feasible elements 
of  the Longuet-Higgins group O because only rigid rotations of  the equilibrium con- 
figuration are connected with their application; they form a subgroup of  the D3h 
group which is isomorphic with the C3v group. On the other hand, all the elements 
in the row (II) are non-completely feasible because they transform the equilibrium 
configuration into a symmetrically equivalent configuration which is separated from 
the original one by the inversion barrier. 

The PI group operations are defined by their effect on the space-fixed coordinates 
of  the atomic nuclei and electrons. Since our molecular wavefunctions are written 
in terms o f  the vibrational coordinates, the Euler angles and the angle p, we must 
first determine the effect o f  the PI group operations on these variables. In the case 
of  inversion this carl lead to certain problems bo th  in the understanding o f  the 
concepts of  molecular symmetry and in the proper use of  group theoretical methods 
in the classification of the states of  ammonia. 

We shall use Eqs. (3.6) first to find the effect of  the PI group operations on the 
Euler angles 0, cb, X and on the angle p. This will make it possible to find the effect 
of  the PI group operations on the small vibrational displacements d i. The effect of  
E* on the space-fixed coordinates r i is defined by Eq. (1.1). It can easily be verified 3) 
that if  a set o f  values 0, ~ ,  • p is a solution of  Eqs. (3.6) for a molecular configura- 
tion defined by  a set of  position vectors r i (i = 1 , 2 , . . . ,  N),  then for a molecular 
configuration defined by a set o f  position vectors - r i (i = 1,2 . . . . .  N),  the solution 
of  Eqs. (3.6) is 0, qb, X-rr, r r -p .  

The functions ~b~ are of  two types [cf. Fig. 72 in Ref.a3)]: either frO(p) = 
+ ~0~ or fro(/9) = _ ffO(Tr.p) where 0 ~</9 <Tr. Let us denote the first type of  
inversion function as ~b~(p), the second type as ~T (/9). 

By considering the effect of  the E* operation it is obvious that 

E *  ~,+'(P) = + ~ i ( P ) ,  E *  r  = - ~ - ( p ) .  (4.1) 

The effects of  all the PI group operations on the Euler angles 0, q~, X and the angle 
p are summarized in Table 1. Fig. 6 is the illustration of  the symmetry classifica- 
tion of  the rotational levels in the ground state of  the NH 3 molecule. 

Let us consider now the effect of  the PI group operations on the small vibrational 
coordinates. Instead of  the Cartesian coordinates di  it is convenient to introduce the 
three stretch!ng coordinates r14, r24 , r34 and the three bending coordinates a l ,  a2,  
a3 (Fig. 4), ~ind a set o f  vibrational symmetry coordinates constructed from these 
stretch and bend coordinates 

S 1 = 3-1/2 . (r14 + r24 + r34) ' 

S 3 a  = 6-112 . (2ri 4 _ r24 _ r34) ' 

$3~ = 2-1/2 . ( r 24  _ r 3 4 )  ' 

S4a = 6 -1/2 (20t I - -  Ot 2 - -  0 ~ 3 )  , 

S4b = 2 - 1 / 2  (Or2 __ O~3)" 
(4.2) 
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Table 1. Transformation of 0, 4,, x, P and of the stretch and bend coordinates of NH 3 by the 
symmetry operations of the permutation-inversion group D3h. 

Variables E C3 Ov Oh $3 C2 
E (123) (23)* E* (123)* (23) 

0 0 0 ~ - 0  0 0 n - 0  

x x x - ( 2 ~ / 3 )  ~ - x  x - ~  x + ( ~ / 3 )  - x  
P P P P ~-p ~--p ~--p 

r14 r14 r34 r14 r14 r34 r14 
r24 r24 r14 r34 r24 r14 r34 
r34 r34 r24  r24 r34 r24 r24 

~1 a l  ~3 ~2 ~1 ~3 ~2 
~2 ~2 ~1 r =2 =1 =1 
~3 ~3 ~2 ~3 ~3 ~2 ~3 

J 
4 - ~ A ~ 2 ~ 4 )  

,+ - . . . . . . . . .  A'I(0) 

. . . . . . . . . . .  A'I(O~ 
3 , - -  K:z(4) 

2 -  A'~> 
�9 " . . . . . . . .  A'~O) 

. . . . . . . .  A',co) 
- -  A'=~) 

A~4) 
0 + . . . . . . . . . .  A,l<O) 

J _ _  Et2) 

a. -f--~ 

2*_T 

1 . - f  - j -  

J ! 

- E'(2) : + .~rT~ A'~O)+Kz(4) 
4 * ~ E ' ( 2 '  - " - - ~ A ' I ( 0 ) §  A2(4) 

E'(2) a:, _,_,_L~E~2) 3+_ ~A',(O)-A'/4) 
- -  E12) " - L ~ E ' ( 2 )  ' ' Alt0)+A~4) 

I I  
_ _ E ~ 2 )  2.~ TUF - - - - -  E"(2I 

E'('21 E'(2) 
E '(2 ) 
E't2) 

K=0  K = I  K = 2  K=3  
Fig. 6. Symmetry classification of the rotational levels in the ground state of NH 3. Arrows: in- 
version and inversion-rotation transitions allowed by selection rules discussed in Section 4.3. 
Numbers in parenthesis behind the species symbols: spin statistical weights 

The stretch and bend coordinates transform by the symmetry operations as given in 
Table 1, thus the symmetry coordinates S i form the basis of a reducible representa- 
tion 

P(Si) = A'I + 2 E' (4.3) 

(see Table 2). 
In Fig. 6 and in the following discussion, the + label attached to an energy level 

denotes the parity of the overall wave function with respect to inversion, E*, By 
symmetric (s) and antisymmetric (a) we always mean the parity of  the inversion 
wave function ~i(P) with respect to E*. We shall denote the inversion states by the 
quantum number v~ which corresponds to the vibrational quantum number of  the v 2 bend- 
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ing mode in a rigid Ca,, molecule. The symbol v~ denotes always the lower component, 
v~- the upper component of the inversion doublet (Fig. 3). 

Bunker 34) has recently introduced a different labeling of the inversion states 
according to the number of  nodes Vin v of the inversion function ffi (P)- Thus, the 0 + 
label corresponds to Vin v = 0 ,  0 -  to 1, 1 + to 2 etc. (Fig. 3). The notation of Bunker 
allows one to label the energy levels by their symmetry and to determine the vibra- 
tion and rotation selection rules in a very straightforward way 34). We feel, however, 
that for high inversion barriers and especially for the inversion states below the in- 
version barrier it is more natural to use the old labeling (but we may be too conser- 
vative in this respect). 

The symmetry group of  NH2D (ND2H) is the C2v group of file permutations 
and permutation-inversions of  the elements E, (12), E*, and (12)*. By the same argu- 
ments as described above for NH3 we find that the symmetry coordinates for NH2D 
form the basis of  a reducible representation s) 

F(Si) = 3A1 + 2B2. (4.4) 

4.2. GF Matrix Problem for Ammonia 

The potential energy V can be expanded for each value of p as a Taylor series in the 
symmetry coordinates $1, Sa, $4 (for NH3) 

v=  vo(o)+ + Fm.(o)S,.S. + . . .  
n 

(4.5) 

The linear ~) and quadratic force constants F n and Finn are written as a Fourier ex- 
pansion 

o o  

F n ( p )  = IS rk <t) cos(tp) + t.(t) sin (tp)], 
t=O t c ,n  "~s,n (4.6) 

oo 

Fmn(P ) = Z ~IK <t)c,mn cos (tO) + K (t)s, mn sin (to)l, (4.7) 
t = 0  

where t is an integer. The species of  the symmetry coordinates is either A'I or E'  
(Table 2) and the species of  sin ( to)  and cos (tO) are A'I and A~ for t odd and A~ 
and A'I for t even. Since the potential energy V must be invariant with respect to 
all the symmetry operations it holds that 

k (t) = K(0 = 0 for t odd, (4.8)  C,t/ l  C, rt/rJ 

d) Because of the high symmetry of the reference configuration in ammonia NX 3 (X = H, D, T), 
the only non-vanishing linear force constant is F 1 (p). 
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Tabel 2. The symmetry species of the operators and of the wave functions 
in the D3h group of NH 3 

Quantity Species Quantity Species 

sin o A'l S1 A'1 
cos p A~ (S3a, S3b) E' 
sin 2p A~ (S4a , S4b) E' 
cos 20 A'1 ~'~ 30 A~ 
,,-*(o) A'1 
qJi- (p) A~ ~3a, 3b A'I 
(Jx, Jy) E" ~'Z4a, 4b A'1 
(Px, Py) g" ~a, 4b A'I 

J o a '~ ~3a, 4a Aft 
Pz A'2 #7. A ~ 
pp A ~ (Ux, uy) E' 

m A~ 

k(t) = K(t) = 0 for t even. (4.9) 

The elements o f  the kinematic  matr ix  G in the representation o f  the symmetry  co- 

ordinates [Eqs. (4.2)] are as follows: 

G l l  =/a H +(1  + 2 cos c~)/JN, 

G33 =/an + (1 - cos a)/aN, (4.10) 

G34 =/~N (1 -- COS a) 2/(ro sin r 

G44 = (1 - cos a) [(1 - cos a)2/aN + (2 + cOS a)taH]/(r20 sin 2 r 

where a is the instantaneous value of  the bond angle; it holds that 

31/2 �9 I sin p I /2  = [sin a/2[  and gH = 1/m, ISN = 1/mN. 

The standard GF matrix problem 2~ can be writ ten as 22) 

GFL = L A, (4.11) 

where A is a diagonal matr ix of  Xg(p) from Eq. (3.23) and L is the square matrix o f  
the eigenvectors which transform the five symmetry  coordinates S [(Eqs. (4.2)] into 
the five normal coordinates Q1, Q3a, Qab, Q4a, Q4b 

S =LQ. (4.12) 
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The elements of  the eigenvectors L in Eq. (4.12) are totally symmetric 3) . However, 
the elements o f  the eigenvectors in Eq. (3.14) are o f  the speciesA't for//x,k and liy, k ,  
while that o f l i z ,  k isA~ [see3)]. 

For NH3, the non-vanishing Coriolis parameters defined by Eqs. (3,17) and 
(3.18) are then the following: 

�9 x ~ , 3 b  - ~ t ' ,3o ,  ~ , 4 b  Y = = - - ~ l , 4 a , ~ * b  x = F  y . z . z . 
= -- ~4a,3b 3a,4a = -- ~3b,4b,  ~3a,3b,  ~ffla,4b, 

~'L,4b ~ " -- -- ~ 3b,4a, ~P3a,4a = ~/~b, 4b" 

Note that the Coriolis constants ~.x, ~.y, and ~'P are not totally symmetric (Table 2); 
this is illustrated also by Figs. 7 a und 7b. 

This discussion can be easily extended to NH2D or ND2H [see partly Ref.S)]. 

0.06 

0.04 

0.02 

- 0.02 

- 0.04 

- 0.06 

0.8 

0.6 

0.4 

0.2 

0 . . . . . .  

" Z  

-0 .2  

-0 .4  

-0.6 

-0.8 

0 40 80 120 160 0 40 80 120 160 
(a) ~ (in degrees) (b) 9 (in degrees) 

Fig. 7a, b. (a) The dependence of the Coriolis constants ~'~,3b, x z ~" 1,4b, and ~'3a, 3 b~ the inver- 
sion coordinate p for NH 3. Calculated from the force field in Table 3 

z # (b) The dependence of the Coriolis constants ~'3a, 4b,  ~'3a,4a, ~3a,4a, and ~Z4a,4 b on the inversion 
coordinate p for NH 3. Calculated from the force field in Table 3 

4.3. Selection Rules 

Let us denote by #z  the component  of  the electric dipole moment vector with 
respect to the space-fixed axis Z. A transition between vibrat ion-inversion-rotat ion 
energy levels o f  ammonia is allowed by selection rules if 
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<~'vir I/~zl ~ i r >  =/= 0. (4.13) 

The component /a  z belongs to the species A'~ in the Dah group because/1 z is not  
changed by  pure permutations and it changes sign by  permutat ion- invers ion opera- 
tions (Section 4.1). The overall symmetry  selection rule therefore allows transitions 
only between v ibra t ion- invers ion-ro ta t ion  states with opposite parity with respect 
to the operation of  inversion (cf. Fig. 6). 

To derive the selection rules for the allowed transitions between vibration, in- 
version and rotation states, we must express t~z in terms of  the c o m p o n e n t s / ~  
(a = x, y, z) o f  the dipole moment  vector with respect to the molecule-fLxed axes 
x y z ,  i.e. 

<f~-~ luzi r  > :~ . . . . . .  ' = <~i(p)~kv(Q) I ~ 1  t~i(p)r 
o~=x,y,g 

�9 <$',(0 ~,• I~,z~ I ~ ( 0  r215 >. (4.14) 

In Eq. (4.14), Va (0~ =x, y,  z)  must be considered as functions of  the normal co- 
ordinates Q and the inversion coordinate p; ~-za are the direction cosines between 
the molecule and space-fixed system of  axes which are functions of  the Euler angles 
0, cb, X only. 

By standard treatment 32-34) we find the following selection rules for NHa" 
Pure inversion transitions: 

+ ' ~ - ,  A J =  0, A k = O ; A v = O .  

Invers ion-rota t ion transitions: 

+ . ~ . - , A J = +  1 , A k = O ; A v = O .  

Vibra t ion- invers ion-ro ta t ion  transitions: 

Parallel band: + ~ _ ,  A j  = 0, + 1; Ak = 0; AV:/: 0. 
Perpendicular band: + ~ - ,  AJ  = 0, + 1; Ak = + 1; Av:~ 0. 

Because tt z is antisymmetric and (/ax,/ly) are symmetric with respect to inversion, 
E*, (Table 2), selection rules for allowed transitions in the parallel band are s ~ a 
while they are s ,-, s, a +~ a in the perpendicular band (Fig. 8). 

From these selection rules, only the + '-' - rule is strictly valid. In addition to 
these rules, perturbation allowed transitions are possible in ammonia. For example, 
the ground vibrational-inversion state of  NH3 is mixed by a higher-order v ibra t ional -  
rotational interaction 3s) with the doubly degenerate v4 level (Fig. 8). As a result of  
these mixings, there are the following transitions allowed by  these interactions (see 
Fig. 8) 

A J =  + 1, Ak = + 3 ,s  ~ s , a ' o ' a ,  Av= O. 
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a v- Ii 
V ~ s  4L 

a 

(J~k) V ~ 
S 

// • 

,J,k, V'fli! 

_I ~ !J ' , ' l , k * l )  

i [ "~\  

I I x ~  

�9 ~ ~V-R MIXING 
I I ~ x  
I ~ \  I V'R ~ 
I MIXING ~,~ 

I T zL,: x " 
J ( J~ l , k )  .',:k a 

-/"~".. Jr (J§247 
taL." 

J , k )  

Fig. 8. Allowed transitions for the parallel (8) and perpendicular (.L) v ib ra t ion- invers ion- ro ta t ion  
bands in NH 3. System of  levels on the right side o f  the figure illustrates a v ibra t ion- ro ta t ion  
mixing o f  the ground vibrational state with the v 4 degenerate state 

For ammonia 14NHa, we have predicted (of. Section 5.2) the frequency of the 
a(2, + 2) <-- a(1, 7 1) transition to be 867.7 GHz, that of a (8,8) <-- a(7,5) to be 
554.8 GHz, i.e. they should appear in the submillimeter wave region. Although their 
intensity should be very small (7 ~ 10 -7 cm- l ) ,  the submillimeter spectrometer 
built by Krupnov et  al. 36) using the acoustic detector might have been able to detect 
these transitions. In a search for the weak transitions, the fact could be used that 
the frequency separation of  the a ( J  + 1, k +_ 3) <-- a(J, k )  and s ( J  + I, k + 3) +- (J, k) 
transitions can be determined with microwave accuracy from the known inversion 
frequencies in the ground vibrational state of ammonia (see Fig. 8). 

The measurements of these "forbidden" transitions would provide important 
information on rotational constants for ammonia; these transitions are also of 
astrophysical interest 3s). Equally important and interesting would be a study of the 
"forbidden" vibration-inversion-rotation transitions in the infrared region [similar 
to that described recently by Maki et  al. as) for phosphine PH3 ]. 

Discussion of selection rules must be modified for NH2D (ND:H) because they 
are asymmetric top molecules 3a). The convention for inertia moments in asymmetric 
tops i s I  a <1~ < I  e. We shall use the symbol JK_IK1 to label the rotational energy 
levels of NH2D (ND2H); x _ l  is the quantum number in the limit of the prolate sym- 
metric top (I~ --> Ic);  K1 is the quantum number of the oblate symmetric top 
(I~ -~ la) .  

The inversion wave functions 4 + (0) of NH2D (ND2H) belong s) to the A t species 
f f ~ ( p )  t o  B 1 . The species of the rotational wave functions can be found by standard 
methods ~9); they are given for the lowest inversion-rotation levels of NH2D (NDuH) 
in Fig. 9. 

The species of the component of the electric dipole moment/a z along a space 
fixed Z axis isA 2 in the C2v group, thus the overall selection rule for the allowed 
Vibration-inversion-rotation transitions can be written as 

F' x F" e A 2 . 
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According to this rule, transitions between the energy levels o f  the same inversion 
doublets  are not  allowed in NH2D and ND2H (cf. Fig. 9),  that  is, there is no pure 
inversion spectrum in these molecules. 

101 
~ B  1 

O O O ~ A  1 

221 ~ A :  

~ A  1 
211 ~ B 1 

~ A  2 
A 2 110 ~ B  2 212 ~ B 2 

~ A 1  ~ B  1 
111 ~ B  1 202 ~ A 1  

B 2 
A 2 

Fig. 9. Symmetry classification of the 
rotational levels of NH2D (ND2H) in 
theA 1 vibrational state. Species for 
the B 2 vibrational state can be ob- 
tained from the direct product of the 
species in this figure with the species 
B2 

The symmetry  o f  the components  #a, #b,  Pc determines the selection rules for 
the a, b, c type o f  transitions. Since #a and #~ are invariant with respect to E*, 
selection rules for the a- and b- type transitions are s ~ s, a ~ a (Fig. I0). The com- 
ponent  #c is ant isymmetric  wi th  respect to E*, thus we have the selection rule s *~ a 

for c- type transitions (Fig. 10). 

J ' '  ' J ' '  ' JK'  K' J ' '  ' K-1K1 K-1K1 "'-1"'1 K-1K1 

/~! ~, l a t l ai~,-~-~-a .as 
JK-1K1 

a,b a,b c c 
Fig. 10. Allowed a, b, and c-type transitions between the inversion doublets of NH2D (ND2H) 

In the limit case of  a prolate symmetric top It, = I c and the dipole moment  
changes along the symmetry  axis. Thus, the a- type transitions give rise to parallel 
bands with the following selection rules: 

A J = O ,  + - l ; A K _ l  =O, AK1 = + 1 .  

84 



A New Theoretical Look at the Inversion Problem in Molecules 

The b-type transitions give rise to perpendicular bands in both limiting cases and 
the selection rules are 

A J = 0 ,  +-I ;AK_ 1 =-+I, AK 1 =+1 .  

The c-type transitions give rise to perpendicular bands in the prolate symmetric top 
limit and to parallel bands in the oblate symmetric top limit. Selection rules are then 

A J = 0 ,  +-I ;AK_ 1 =-+I, AK 1 =0. 

The electric dipole moment vector/l subtends an angle of approximately 10 ~ 
with the symmetry axis z ( ~" c) in NH2D (ND2H); in the equilibrium configuration 
there is a nonzero component/a x. Most prominent in vibration-inversion-rotation 
spectra of NH2D and ND2H are therefore the c-type transitions; in NH2D there are 
also a-type transitions (x ~ a), in ND2H the b-type transitions (x ~ b). 

5. Potential Function of Ammonia and the Calculation of the 
Vibration-Inversion-Rotation Energy Levels 

As was already mentioned in Section 3.4, we can calculate the vibration-inversion- 
rotation energy levels of ammonia by solving the Schr6dinger equation [Eq. (3.46)]. 
We are of course primarily interested in the determination of the potential function 
of ammonia from the experimental frequencies of transitions between these levels 
(Fig. 11),/.e. we must solve the "inverse" eigenvalue problem [Eq. (3.46)1. 

Our second order Hamiltonian in Eq. (3.46) describes the effects of the large- 
amplitude inversion motion in the potential as well as in the kinetic energy part of 
the operator, and the effects of the centrifugal distortion and Coriolis interactions. 
The SchrOdinger equation [Eq. (3.46)], however, is not yet amenable to a direct 
numerical treatment and we have to develop an effective vibration-inversion- 
rotation Hamiltonian which would allow for a numerical treatment of this problem. 

We shall proceed as follows. We shall first diagonalize the SchrOdinger problem 
[Eq. (3.46)] with respect to the vibrational and rotational quantum numbers (Section 
5.1). We arrive in this way at a Schr6dinger equation in the variable p with an effective 
potential function for each vibration-rotation state. A least squares procedure that 
includes the numerical integration of the Schr6dinger equation for this effective 
Hamiltonian will be used to determine the harmonic force field and the double- 
minimum inversion potential function for (14NH3, 15NH3), (14ND3, 14NT3) and 
NH2D, ND2H (Section 5.2). 

Because there is a close coincidence between certain inversion levels in NH3 and 
the excited vibrational levels pertaining to the doubly degenerate v 4 vibrational 
modes (Fig. 11), and these levels interact by a Coriolis coupling effect, a special 
numerical treatment is required in this case (Section 5.4). 
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Fig. 11. The lowest vibration and 
inversion energy levels in NH a. 
[From Ref. 6), courtesy of Academic 
Pressl 

5.1. Theory of the Centrifugal Distortion in Ammonia 

Let us consider the diagonalization of the centrifugal distortion operator Tcent 
[Eq. (3.36)] with respect to the vibrational and rotational states using second order 
perturbation theory. If the interaction between the inversion, vibration and rotation 
states is neglected, the overall wave function ~vir can be written as described by 
Eq. (3.47). Up to the second order of approximation we have to consider all the 
matrix elements of the operators containing X~ ~ which are off-diagonal in the vibra- 
tional states and the diagonal elements of the operators containing Ygk" 

--" Using second-order perturbation theory and evaluating the matrix elements of 
the vibrational and rotational operators occuring in our simplified Hamiltonian 
~,~:= T + V, we obtain the following effective vibration-inversion-rotation Hamil-, 
tonian e) for NH3 : 

r 

~ ( N )  + r (5.1) ~d~vir =u~ vlr 

where 

~(r , j . )= { 1 o 
vtr -~(/App + A I ) J : +  l(jp/dOpp)Jp l+ { ~k~.k (7) k + d j 2 )  + 

+ 1(~o)~/4 [j, uoA~o)-~/~ (]A~o)v4)] + Vo(p) + Go(p) + f(p) + 
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+-~-Uaxx+A2+A3)[J(J+I) -K2]+ /Zz~ + A4 + As)K 2 -  

-D]J2(J + 1) 2 -DjKJ(J  + 1)K 2 - D K K  4 } (5.2) 

and 

~ r  = ~ l J p  "1- ~2,[2 ~ d~3J;. (5.3) 

The coefficients kk(k = 1, 3, 4) are defined by Eq. (3.23); and Dy, D,,K, and 
DK have the same formal dependence on the derivatives of the moments of inertia 
with respect to the normal coordinates (a] #) as that of a rigid C3v symmetric top 32), 
only now the a~ ~ are functions ofp.  Similarly, terms At(i = l, 2 . . . . .  5) represent a 
p-dependent modification of/~op and of the rotational constants; A 2 and A 4 involve 
the same functions ofX~ '~s and Y~'ff (0t, 3 =x, y, z) as the corresponding corrections 
to the rotational constantsA, B and C in a rigid C3v molecule32);f(p), Ax, A3 and 
As involve some additional terms 6) which come from the operators in Eq. (3.36) 
containingJp (A1 is a p-dependent function of the vibrational and rotational 
quantum numbers6)). Care must be taken in this treatment of the fact that Jp operates 
not only on the inversion functions @i(P) but also on Xff ts. Terms coming from the 
latter effect appear in alp1, (I, 2 and 4) 3 but we have found 6) that their contribution 
is practically negligible and o~"vir will not be considered in further discussion. 

We have used the Numerov-Cooley method of numerical integration 4) to solve 
the Schr6dinger equation 

(N) N) (N) ~ .  (N) 1]/vif (P) = E(v/ir ~/vir (P)- (5.4) 

The term containing J^ in the first composite brackets on the right side of Eq. (5.2) 
can be removed 6' 22) I~y changing the volume element dp to l~ dp. The terms in the 
second composite brackets represent the effective potential function for each 
vibrational-rotational state. 

5.2. Force Field in 14NH3, 15NH3, 14ND3, I4NT3, 14NH2D, and 14ND2H 

In Section 4.2. we have mentioned that we can write 

V=Vo(p)+~,Fn(P)Sn+ 1 ~,Fmn(P) Smsn+ l Z Fmns(P) SmSnSs+ (5.5) 
n " 2  " ' "  m,n m,n,s 

where the symmetry coordinates S m, S n etc., are geometrically defined curvilinear 
internal displacement coordinates [see Eqs. (4.2)] and the p-dependent force con- 
stants are the 1st, 2nd, and 3rd etc. derivatives of Vwith respect to the coordinates 
taken at equilibrium for a given value of p. The double-minimum potential function 
Yo(P) is supposed (in agreement with physical experience) to be of the form 
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F0 (p) = 1 - ~  (p _ ~.12)2 + a exp [ - b (p - 7r12) 2 ] [ 1 + h 2 (p - ~r]2) 2 ] -  l + 

+ c(p - 7r/2) 4 (5.6) 

where k ,  a, b ,  h and c are adjustable parameters. 
We can see from Eqs. (3.5) [see also Appendix in Ref. 21) ] that the force con- 

stants F,,, Finn etc., are generally mass dependent quantities. To arrive at the iso- 
topically invariant potential function we must therefore express these quantities in 
terms involving mass independent valence force constants and to fit these to ex- 
perimental spectra [cf.21)]. For ammonia,  this would represent a really formidable 
numerical problem. Taking into account the proposed limits o f  our model, the fact 
that we are mainly interested in the inversion-rotat ion structure of  the spectra, we 
have overcome the above mentioned difficulties in the following way [see 6) for 
details]: (i) all the anharmonic force constants in Eq. (5 .5)were  neglected (ii) the 
p-dependent contributions to the harmonic force constants Finn [see Eq. (4.7)] 
were neglected (iii) the least squares fit o f  the double-minimum potential function 
parameters and the p-independent harmonic force constants F~ were performed for 
"l ight" isotopes (14NH3, ISNHa) and "heavy"  isotopes (14NDa, 14NT3) separately. 

Although these approximations of  the real potential function (significantly 
reducing the amount  of  numerical calculations) are rather rough, we were still able, 
as we shall see, to explain all features of  the invers ion-rotat ion spectra of  all low- 
lying vibrational and inversion states and to arrive at an only slightly mass dependent 
double-minimum potential function (Section 5.3). 

We have done basically two kinds of  determination of  the potential function of  
ammonia.  In the rigid bender approximation,  we solved the "inverse" eigenvalue 

Table 3. Potential function of ammonia 

Parameter 1) (14NH3, 15NH3) 2) (14ND3, 14NT3) 2) NH2 D3) ND2H a) 

F~l 1 (N.m -1 ) 704.82 695.23 
F~aa(N.m- 1) 703.52 703.59 
F~34(N.m -1)  - 26.71 - 19.92 
F~44(N.m -1)  65.85 65.39 
~-.1018(j) 1.82724) 1.84754) 
a'1018(j) 0.4542 0.4614 
b - 3.1887 - 3.1708 
h2.103 _ 3.454 ) - 1.374 ) 
c-1020(j) - 1.554 ) 0.0004 ) 

1.775 1.87 
0.4444 0.4799 

-3.2835 -3.1228 
04 ) 04 ) 
0 4 ) 0 4 ) 

1) Conversion factors: N.m -1 = 10 -2 mdyn. A-1 , J  = 107 erg. 
2) Calculated in the non-rigid bender approximation with the constrained value r o = 1.0116 A 

for the N-H internuclear distance6). 
3) Calculated in the rigid bender approximation with the constrained value r 0 = 1.0156 A for 

the N-H and N-D internuclear distances 5). 
4) Constrained value. 
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problem described by Eq. (3.44a), i.e. we determined the double-minimum potential 
function parameters from the experimental inversion energy levels 0 +-1 , 1 +-, 2 • . . . . .  
With these parameters, we have calculated the inversion-rotation energy levels by 
the numerical integration of Eq. (3.45). 

In the non-rigid bender approximation, we solved the "inverse" eigenvalue 
problem described by Eq. (5.4), i.e. we determined the potential function parameters 
given in Table3 for NX 3 (X = H, D, T). We have used the experimental infrared 
frequencies of  transitions from the ground state to the v2,2v2,3v2,  and 4v2 inversion 
states and the "zero-order" frequencies of vibrations (Table 4). The "zero-order" 
frequencies have been obtained from the observed fundamental frequencies of  14NH3 
[Ref.39)], 14ND 3 [Ref.4o)], 14NT a [Refs.41, 42)] and ISNH3 [Ref. 43)] corrected for 
anharmonicity in a semiempirical way 6) . 

We could of  course attempt to adjust a potential function of ammonia using 
Eq. (5.4) in a least squares fit to the data extended to a set of energy levels with 
J #= 0, k ~ 0. However, it seems better to adjust a minimum number of  potential 
function parameters using the vibration and inversion data alone and to check the 
validity of  our model by comparing the calculated vibration-inversion-rotation 
transition frequencies with the observed data 6). 

Agreement between the calculated and experimental data can be seen in Table 4 
and is illustrated by Figs. 12-15.  As could be expected, the non-rigid bender approxi- 
mation gives better results than the rigid bender approximation. For example, the 
near coincidence is very well reproduced of the R-branch transition frequencies for 
a given J ,  which is a typical feature of  the 1- "-- 0 + transition in the v 2 infrared 
band of NHa (Fig. 14). The absence of this effect in the 1 § ~- 0 -  transition (Fig. 
15) shows the importance of a theoretical model which considers separately the 
symmetric and antisymmetric components of  inversion levels. 

For NH2D and ND2H, only the rigid bender approximation has been used so 
far in the determination of the double-minimum potential function parameters s) 
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Fig. 12. The dependence of the ground- 
state inversion splitting A i on the rota- 
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in the 1- ,-- 0 + transitions of 14NH3 at 
J = 6. RB: rigid bender approximation; 
NRB: non-rigid bender approximation; 
EXP: experimental data 39, 57). 
[From Ref. 6), courtesy of Academic 
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(Table 3). A better adjustment of the parameters would be possible only after high- 
resolution measurements on the n v 2 inversion states as well as on the excited 

vibrational states in NH2D and ND2H molecules become available. 
In calculating the invers ion-rota t ion energy of NH2D (ND2H), we must first 

integrate the Schr6dinger equation 

[r ~ 2/2) o 2 o o lazzk ] ff~k(P) (5.7) = Ei, k~ ,k (P )  
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Fig. 15. Frequencies of the R (J, K) lines in 
the 1 + ~ 0 -  transitions of 14NH3 a t J  = 6. 
RB: rigid bender approximation; NRB: non- 
rigid bender approximation; EXP: experimen- 
tal data 3a, 57). 
[From Ref. 6), courtesy of Academic Press] 

by using the Numerov-Cooley technique, with the Vo(P ) potential function deter- 
mined by a fit to the nu 2 inversion energy levels s) f o r J  = k = 0. The product wave 
functions ~~ k �9 S.rkm (0, cb) are then used as functions generating the basis in which 
the matrix elements of the remaining rotational operators are formed. The inversion- 
rotation energy levels of the asymmetric tops NH2D (ND2H) are then obtained by 
the diagonalization of  the suitably truncated energy matrix s' 22, 23) 

5.3. Discussion of the Potential Function of Ammonia 

There is one important point concerning the height of  the inversion barrier in am- 
monia which has not been discussed explicitly in our paper 6). We have an effective 
mass-dependent potential energy function in the SchrSdinger equation [Eq. (5.2)] 
for each vibrational and rotational state. F o r J  = k = 0, this potential contribution 
~-, Xk (vk + dk[2), and a pseudopotential term in Eq. (5.2). The main mass dependent 
contribution to this effective potential function is given by the vibrational term 
(see Table 5). We can also see from the Table 5 that Vo(p ) is only slightly mass 
dependent. It must be emphasized that the barrier height which is calculated from 
V0(P ) in the non-rigid bender approach should be considered as the "true" barrier 
to inversion in ammonia. The value of this barrier (Table 5) is considerably lower 
than that obtained in the rigid bender approximation. 

We have so far not discussed explicitly the path over which the atomic nuclei 
move during the inversion of a real molecule. Our reference configuration was defined 
in Section 3.2 with the assumption that the bond lengths do not change during the 
inversion motion. I f  we were to choose a different path, the fit to experimental data 
would lead in general to a different double-minimum potential function Vo(p). 
Obviously physical intuition which is involved in considerations of the inversion path 
should be supported in further developments by quantum chemical calculations. 
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Table 5. "True" and effective inversion barriers in different isotopic species of ammonia (in era- 1) 

Parameter 14NH3 ISNH3 14ND3 14NT3 14NH2D 14ND2H 

A~'/(see z)) 2023.0 _ 2) 1978.6 _ 2) 2003.7 1976.0 
AV t (see 3)) 1806.2 1806.2 1814.5 �9 1814.5 _ 2) _ 2) 
Ev(p = O) - Ev(p e) (see 4)) 219.0 217.2 171.9 151.2 _ 2) _ 2) 
Pseudopotential 1.9 2.0 0.4 -0.1 _ 2) _ 2) 
AV~ ff (see s)) 2027.1 2025.4 1986.8 1965.6 _ 2) _ 2) 
Pe 111.89 ~ 111.89 ~ 111.81 ~ 111.81 ~ _2 )  _ 2 )  
P0 112-43~ 112-42~ 112-23~ 112.18~ 112.30~ 112-27~ 

1) Rigid bender approximation. 
2) Has not been calculated. 
3) Non-rigid bender approximation (cf. Table 3). 
4) Contribution to the effective inversion barrier from the vibrational terms. 
5) Effective inversion barrier. 

5.4. Cor io l is  In teract ions  Between v2, v4, 2v2, v2 + P4, 3v2 Level of NH 3 

Coriolis in teract ions  be tween  the v2, p4, 2 v2, v2 + v4, 3 v2, etc. sequence of  energy 
levels in NH3 (Figs. 11 and 16) represent an interes t ing example o f  v i b r a t i o n - r o t a t i o n  
in terac t ions  in a non-rigid molecule.  Certain effects o f  this in terac t ion  have been  
observed in the microwave 49' s 0) and high resolut ion infrared spectra 39' s l - s  3) and 
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analyzed using the standard theory for a Car rigid molecule 39' 49, 50). An effect of  
rids interaction which has not been mentioned in previous papers ag' 49-53) is the 
anomalous rotational dependence of  the inversion splittings in the (-+/) components 
of the doubly degenerate v 4 vibrational level 6) (Fig. 17). 
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Fig. 17. The dependence of the observed inversion splittings on the rotational quantum number 
K in the • l components of the doubly degenerate u 4 vibration state in 14NH3. 
[From Ref. 6), courtesy of Academic Press] 

In our theoretical description of the vibration-inversion-rotation states of  
ammonia, the operator which is responsible for these interactions in ammonia ap- 
pears formally in the centrifugal distortion operator defined in Eq. (3.36)~ It can be 
written as 

~ z , 4  = - (i/2) [XY4gJp + 1 (JpXJ~a~ (Q~J+ - Q~J_)  (5.8) 
2 

where Q~ = Q4a +- iQ4b,J• = "Ix + iJy. Because of the coincidence between the 2v2 
and v4 levels (Figs. 11 and 16), this operator causes a strong coupling between the 
inversion motion and the doubly degenerate Q4 vibrational mode. 

Because the approximation described by Eq. (3.47) fails if  the inversion and 
vibrational wave functions are strongly mixed, the Coriolis operator defined by Eq. 
(5.8) cannot be treated by the numerical methods described in Sections 5.1 and 5.2. 
Instead of the perturbation treatment described in Section 5.1, we must use a 
variational approach in which the energy levels are calculated as eigenvalues of  an 
energy matrix; the off-diagonal elements of  this matrix are the matrix elements of  
the Coriolis operator6)~ "~ 2,4- 
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The energy matrix of  this interaction is an infinite matrix but  we have found 
that  for the calculation of  the 2v 2 and v4 energy levels it is sufficient to work with 
a 7x7 matrix for each value o f  the rotational quantum number J .  In the notat ion 
Ivy,  vt44;J, k), the off-diagonal matrix elements of~,'~2,4 connect the following 
states (see Fig. 16): 

I 3 +, 0~  k ), I 1 ~, 1+* ;Y, k + 1 ), I 1 ~, 1 - 1 ; J ,  k - 1 ), I 0 ~, 1 +1 ; ] ,  k + 1 >, 

12 -+,0~ k ) ,  I 0 ~, 1 -~ ; J ,  k -  1), I l * , 0 ~  ", k ) .  

Thus, for each value of  J we have two 7x7 matrices, one connecting symmetric nv2 
states with the antisymmetric states (nv 2 + v4) and vice versa (Fig. 16). For special 
values of  the rotational quantum numbers J, k, instead of  a 7x7 matrix we have 
smaller blocks 6). This factorization is the analog of  the factorization of  the matrices 
describing Coriolis interactions in a C3v rigid molecule 54' 55) and can be used for a 
qualitative interpretation of  the anomaly in Fig. 17. For example, the J '  = K '  levels 
in the - I  component  of  the v 4 level have basically the ground.state character o f  the 
rotational dependence of  the inversion-splitting (Fig. 17) because they are obtained 
from the l x l  block and therefore are unperturbed. 

Inversion splittings in the (+-/) components  o f  the v4 level calculated by the 
diagonalization of  the energy matrices 6) are shown in Fig. 18. The calculated in- 
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11 .e ,'i \ 
9 9 ,  -~  
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4 J ' 6  

3 ~ ' -~ . , . ~J -4 -  - 
�9 1 

. . . . . .  

0 1 2 3 4 5 6 7 8  0 1  2 3 4 5 6 7 8  

K K 

Fig. 18. Calculated dependence of the inversion frequencies on the rotational qunatum number 
K in the -+ l componentes of the v 4 vibrational state in 14NH3. For/(  ~ 1, the inversion frequencies 

are equal to the inversion splitti~gs. Full dots: K = 1 iK'the + I level indicate the calculated 
"reversal" of the inversion doublets by the "giant"/-type doubling effect 6). 
[From Ref. 6), courtesy of Academic Press] 
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version splittings are larger than the experimental values, especially in the - l  com- 
ponent, but the peculiarity of  this effect is well described. We found that the cal- 
culated values of  the splitting are not sensitive to the physically acceptable variation 
of our potential function 6). It seems that effects higher than those considered in 
this paper should be introduced to improve the agreement. 

6. Molecular Inversion in Other Molecules 

We shall discuss in this section large-amplitude motions which are either inversion as 
in ammonia, or are related to this type of motion. We shall concentrate on the so- 
called pyramidal inversion which occurs in molecules with tricoordinate atom whose 
stable position is not in the plane defmed by the three atoms directly bounded to 
it. 

We shall divide these molecules into two categories: (i) molecules with one large 
amplitude motion (inversion) which will be dealt with in Section 6.1 (ii) molecules 
with inversion and internal rotation (Section 6.2). Only such molecules will be 
considered, where the inversion barrier is low enough that inversion splittings can be 
resolved by microwave or infrared spectroscopy. As for the pyramidal inversion with 
higher barriers, description of the methods for determination of the barrier heights 
and the chemical consequences of the existence of the so-called invertomers, the 
reader is referred to review papers ss' s9) 

Molecules where inversion could occur by a regrouping of the atomic nuclei by 
a mechanism different from that for pyramidal inversion and could be detected by 
spectroscopical methods now available, will not be dealt with in this paper. At the 
present time, experimental detection of the inversion splittings in these molecules 
is a challenge to experimentalists and we have to wait some time before convincing 
results are presented. For example, Ozier et  al. 60) reported the resolution of the 
splitting between the two inversion levels of  methane CH4 by a molecular-beam 
magnetic resonance radiofrequency method. Hougen 61), however, in a group- 
theoretical discussion of this problem has shown that no information on the in- 
version splitting was obtained from experiments of  this type. A theoretical dis- 
cussion of some other molecules which are candidates for experimental studies of 
the inversion splittings can be found e.g. in Ref. 62). 

We shall also not deal in our paper with the large amplitude ring puckering and 
pseudorotation in small ring molecules. Molecular dynamics of  these motions and 
the determination of the barriers of pseudorotation from microwave and infrared 
spectra have been the subject of a great number of  papers; this problem has been 
recently reviewed in the monography 63) . 

6.1. Molecules With Pyramidal Inversion 

Phosphine, PH3, is the simpliest molecule next to ammonia, NH3, with pyramidal 
inversion. An inversion doubling has long been suspected in PH3. Costain and 
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Sutherland 64) predicted an observable (140 kHz) tunneling inversion in the ground 
vibrational state ofPHa,  on the basis of  their calculated inversion barrier of 
6000 cm- 1. However, subsequent quantum chemical calculations have predicted 
[see sa)] a much higher barrier (between 10 000 and 14 000 cm -1 ). A molecular. 
beam electric resonance spectrometer has been used 6s) to measure the ground state 
inversion splitting in PH3. It was found that the inversion splitting must be lower 
than the resolution of the spectrometer (1 kHz). Similarly, in a high-resolution in- 
frared study of the 4v2 band of PHa, Maki et  al. 37) found that the splitting of this 
level must be less than 0.02 cm- 1. 

We are now working on a prediction of the inversion splittings of the highly 
excited nv2 energy levels in PH3, using an inversion barrier calculated quantum 
mechanically and the theoretical model for molecular inversion described in Sections 
2 -5 .  A high-resolution laser spectroscopy investigation of these levels may lead to a 
resolution of their splittings. 

The amino group in simple amides normally takes a nonplanar configuration at 
equilibrium, and thus executes an inversion-type motion with a double-minimum 
potential function. The barrier height is in most cases low enough to allow a resolution 
of the splittings of inversion energy levels by microwave or high-resolution infrared 
spectroscopy (Table 6). Formamide, H2 NCOH and thioformamide, H2 NCSH might 

Table 6. Inversion barriers (in cm- I) 

Molecule Inversion barrier Refs. 

14NH3, 15NH3 1806 6) 
14ND 3, 14NT3 1814 6) 
PH 3 10 000-14 000 58) 
H2CO [seel)l 360 24) 
NH2C1 < 4000 66) 
H2NCN 710 67) 
H2NCOH ~- 0 68) 
H2NCSH -~ 0 69) 
CHaNH 2 1688 70) 
CH3NHCI 2520 71) 
(CH3)2NH 1540 72) 
C2HsNCH 3 1820 "13) 
HaN - NH2 2620 74) 
H2N �9 NO 2 < 2000 75) 

1) Formaldehyde in the .,~IA 2 excited electronic state 24). 

be exceptional cases of  nearly zero potential barrier to the amino inversion 6a' 69). 
Theoretical treatment of molecular inversion described in Sections 2 - 5  could 

be immediately applied to monochloramine, NH2 CI, or easily extended to cyanamide, 
H2NCN. However, further experimental work is required for these molecules, 
especially in the infrared region, before such a treatment could be really successful 
(cf. Section 5.2 for a similar situation in NH2 D and ND2H). 
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6.2. Molecules With Inversion and Internal Rotation 

In the methylamine molecule, CHaNH2, there are two large-amplitude internal 
motions: (i) internal rotation of the CH 3 group about its own symmetry axis with 
respect to the NH2 group (ii) wagging vibration of the NH2 group which is called 
inversion in analogy to the inversion in ammonia (Fig. 19). As a result of this, the 
methylamine molecule has a two-dimensional six-minimum potential. The six 
conformations of methylamine CHaNH2 corresponding to the six potential minima 
are symmetrically equivalent. Each energy level of methylamine therefore splits into 

H H 

~'- - -~-J H 

a b 

Fig. 19a, b. Internal rotation (a) and the 
wagging-inversion (b) motion in methyl- 
amine, CH3NH 2 

a doublet due to internal rotation; the components of this doublet are designated by 
A (non-degenerate) and E (doubly degenerate). This component further splits into a 
doublet due to inversion. 

The infrared and especially microwave spectra of methylamine and its deuterated 
species have been studied in considerable detail [see paper 76) for further references]. 
The potential barriers to internal rotation and inversion are both relatively high 
[Table 6; internal rotation barrier is 684 cm- 1 in the ground state 77) of CH3NH2 ] 
but the splittings of the energy levels are measurable. 

It would be possible to develop a vibration-inversion-internal rotation-overaU 
rotation Hamiltonian for methylamine by starting from a vibration-rotation Hamil- 
tonian in which the dependence of the ~ta~ elements and V on both the internal 
rotation and inversion is put in explicitly (cf. Sections 2-5) .  The diagonalization of 
this Hamiltonian would require the numerical integration of a two-dimensional 
Schr6dinger equation which is certainly a very difficult problem. We have done some 
preliminary investigations of the possibility of the extension of the Numerov-Cooley 
technique of numerical integrations of differential equations to two-dimensional 
Schr6dinger equation 7a). Although it is possible to find an efficient algorithm 7a) for 
the solutionof this problem, numerical instability of the procedure seems to remain 
the basic difficulty. Nevertheless, we believe that with the availability of fast com- 
puters with high arithmetic precision, the solution of this important problem will 
be possible in the near future. 

Another interesting example of a molecule with amino inversion and internal 
rotation is hydrazine, H2N �9 NH2 (Fig. 20). In hydrazine, there are three large 
amplitude motions: (i) two wagging vibrations of the NH2 groups which may be 
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Fig. 20. The structure of the hydrazine molecule 

called symmetric and antisymmetric wagging-inversions (ii) internal rotation of one 
of the NH2 group with respect to the other NH2 group. 

The equilibrium angle of internal rotation of one of the amino groups in the 
hydrazine molecule with respect to the other is almost exactly 90 ~ (Fig. 20). This 
means that inversion of an amino group leads almost exactly to a symmetrically 
equivalent equilibrium configuration. In methylamine, on the contrary, an internal 
rotation is required, after the inversion of the amino group takes place, to reach an 
equilibrium configuration [see paper TM for a nice physical discussion of this problem 
and for further references]. 

Therefore, the coupling between the inversion and internal rotation may be 
neglected in a good approximation in the hydrazine molecule, while this is not the 
case in the methylamine molecule. In this approximation, the potential function of  
the two wagging-inversion motions in hydrazine is a two-dimensional four-minimum 
potential. Due to tunneling between the four equivalent equilibrium conformations, 
of  the four inversion sublevels in each vibrational state, one is symmetric (A), another 
antisymmetric (B), and the other two degenerate (E) with respect to the C4 sym- 
metry axis. 

We have already reported TM our attempt to extend the theoretical treatment 
described in Sections 2 - 5  to the hydrazine molecule. As for the application of the 
treatment to experimental data, the situation is analogous to that described above 
for methylamine. 

7. Conclusions 

In this section, we shall compare briefly the approach to molecular spectra using 
the Hamiltonian described in this paper with the standard approach 19' 20). Such a 
comparison is useful because it shows future trends and problems in the theoretical 
interpretation of vibration-rotation spectra of  molecule s. 

In the standard treatment, we can develop an effective Hamiltonian which can 
be used in the precise parametrization of the energy levels [see, e.g., Refs. 8~ 81)]. 
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However, molecular parameters obtained in this way are often only effective quanti- 
ties without physical significance. Furthermore, if the molecule executes large- 
amplitude vibrations, the number of  these parameters becomes unmanageably large. 

On the other hand, the Hamihonian described in this paper does not lend itself 
to a parametrization of the experimental data with a precision approaching the 
requirements of  the high-resolution spectroscopy. However, if one wants to use these 
data as fully as possible to obtain physically reliable information on the potential 
function, then an approach such as described in this paper is required. Determination 
of the value of the inversion barrier in ammonia which is approximately by 200 cm -1 
lower than the value determined previously (Section 5.3) shows on the importance 
of such approach. 
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Note Added in Proof: 

During the preparation of this manuscript for print, two interesting papers appeared 
which have a close relation to certain problems discussed in this review. M.S. Child 
[Mol. Phys. 31, 1031 (1976)] has shown that it is possible to construct a classical 
integral representation for the wavefunction such that the barrier penetration can 
be described in terms of an analytical continuation of classical mechanics into the 
complex time plane [W.H. Miller, Adv. Chem. Phys. 25, 69 (1974)] (cf. Section 2 of  
the present review). 

D. Laughton, S~ M. Freund, and T. Oka (private communication) detected for 
the first time two Ak = + 3 "forbidden" vibration-rotation transitions in the v 2 band 
of  14NH3 using infrared microwave two-photon spectroscopy and laser Stark spectros- 
copy (of. Section 4.3). This has made it possible to obtain the C o rotational constant 
of  6.2280 _+0.0008 cm -1 . 
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Ion Solvation in Mixed Solvents 

I. Introduction 

The behavior of electrolyte solutions is determined by three factors: ion-ion inter- 
action, ion-solvent interaction or ion solvation, and solvent-solvent interaction. The 
energetic contributions are decreasing in the sequence cited. Each factor is by itself 
composed of several contributions, the more differentiated the representation is. 

In dilute electrolyte solutions ion-ion interaction as function of electrolyte con- 
centration is fully explained by the Debye-Hiickel-Onsager theory and its further de- 
,velopment. The contribution of ion solvation is noticed, if, for instance, the mobili- 
ties at inf'mite dilution of an ion in different solvent media or as function of ionic 
radii as considered. Up till now the calculation of that dependence has been only 
rather approximate 1). An improvement is quite probable, though, theoretically very 
involved if the solvent is not regarded as a continuum, but the number and arrange. 
ment of solvent molecules in the primary solvation shell of an ion is taken into con- 
sideration. Also the lifetime of molecules in the solvation shell must be known. Be- 
yond this region a continuum model of ion-solvent interaction may be sufficient to 
account for the contributions of solvent molecules in the second or third sphere. 

In aqueous electrolyte solutions ion hydration has been studied extensively. 
With the exception of studies using NMR technique 2) or Taube's isotopic dilution 
method 3) or also X-ray diffraction technique 4) of concentrated electrolyte solutions, 
the hydration numbers are not always integral numbers which quite often represent 
deviations of experimental data from results of a theoretical description of an equi- 
librium property. Therefore, these hydration numbers depend on the solution proper- 
ty studied. 

Much more direct evidence of ion solvation has been deduced from studies on 
electrolytes in mixed solvents. Originally used as an easy way to change the dielectric 
constant of a solvent medium, the employment of mixed solvents enables us today to 
study not only preferential solvation of ions by one or the other solvent component, 
but experimental results point to integer solvation numbers or coordination numbers, 
also of  univalent ions. Under favorable conditions it is possible to observe in a mixed 
solvent medium the stepwise replacement of one solvent component in the ion solva- 
tion shell by molecules of the more strongly interacting component. In addition, 
there are a large number of effects specific for electrolytes in mixed solvents which 
can be less directly attached to single ion properties. For example, in binary solvent 
systems with an upper critical solution temperature, as in mixtures of water and 
acetonitrile s), this temperature is changed by adding a small amount of electrolyte. 
If cation and anion are preferentially solvated by the same solvent component (homo- 
selective solvation) the phase separation temperature of the solvent mixture is shifted 
to higher temperatures. On the other hand, with heteroselective solvation of an 
electrolyte, when one ion is preferentially solvated by one solvent component and 
the counterion by the second component, the upper critical solution temperature 
decreases by adding that electrolyte. 

The treatment of all those properties of electrolyte solutions, where selective 
solvation of ions in mixed solvents may play a major role, would result in an accumu- 

i lation of data hard to follow up. Therefore, only those theoretical treatments of ion 
solvation have been mentioned in the following whose results have been used to : 
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analyse experimental data, that is mainly the Born equation and its modifications. 
Theories which apply only to ions in mixed solvents are the electrostatic theory Of 
solvent sorting by ions deduced by Debye and McAuley 6) and adopted to salting in, 
salting out experiments. Furthermore, the thermodynamic treatment of mixed fluids 
in an electrostatic field applied to the calculation of preferential solvation in mixed~ 
solvents by Padova 7), and Hall's 8) explanation of the primary medium effect for 
individual ionic species using the Kirkwood-Buff theory of solutions, enable a more 
detailed interpretation of ion-solvent interactions. Yet, these treatments can be ap- 
plied to specific systems successfully only when composition and extent of the solva- 
tion shell of individual ions in mixed solvents is elucidated in detail. 

Therefore, three subjects have been treated: the free energy of transfer of indi- 
vidual ions between two solvent media, solvation numbers and the composition of 
the solvation shell, and the transport of a solvent component in a mixed solvent 
electrolyte solution. 

II. The Free Energy of Transfer of Single Ions 

The free energy of solvation of an uncharged species as well as the related enthalpy 
and entropy quantities are experimentally accessible. The evaluation of the corre- 
sponding properties for single ions is only possible with the help of an extra-ther- 
modynamic assumption. This also holds for the free energy of transfer of neutral 
combinations of ions and the related thermodynamic quantities. 

The standard free energies of solvation G O of ions i are in the range of - 4 0 0  to 
-4000  k J/mole. But the difference in free energies of solvation of individual ions in 
two solvents (' and "), the free energy of transfer AG~ 

AGt~ = --iG~ - -  G O' (1) 

is always much smaller. The reason for a procedure which adopts non-thermody- 
namic models to obtain "thermodynamic" quantities, is the assurance that the use 
of a multiplicity of assumptions as different as possible, will converge towards single 
ion properties which enable the comparison of the behavior of single ions in different 
media. 

A well known example is the establishment of solvent-independent ion activity 
scales (e.g. pH). Furthermore, in electroanalytical chemistry and preparative chemistry 
it would be favorable not only to be able to predict the behavior of certain systems 
in a new solvent from the knowledge in some other solvent (most often water), but 
in advance also to use single ion properties to prepare mixed solvent media in which 
each ion interacts with the medium in a manner aspired. 

Besides the standard free energy of transfer AGt~ also the medium activity co- 
efficient or transfer activity coefficient 7* is used quite often to relate the ion activi- 
ties a~ and a~' of an ion referred to the standard states in the two solvents ('and "): 

al = miT~, a~' = miT~' (2) 
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')'i is the familiar activity coefficient which is unity at zero molality, 71 in solvent (') 
and 7~' in solvent ("). Now, the activity of ion i in the second solvent (") is related 
to the standard state in the primary solvent (') through the medium activity coeffi- 
cient 7": 

P I f  I I  

ai = ai ?* = mi?i  7i  (3)  

The relationship between medium activity coefficient and the free energy of transfer 
in the standard state is: 

AG~i = RT In 7" (4) 

Several excellent articles 9' Is) have recently been published in which the thermody- 
namic properties of single ions in aqueous and non-aqueous solvents have been treated 
thoroughly. Therefore, only a short survey over a) the experimental methods and b) 
the assumptions for the determination of the free energy of transfer of single ions 
shall be presented. 

a) Experimental Evaluation of Free Energies of Transfer 

There are three experimental methods which are used most often to determIne the 
free energy of transfer of electrolytes and neutral combinations of  ions. 

1. From the solubilities (a'~sat and a~sat) of a strong electrolyte in two media 
(' and ") follow its free energy of transfer AG O using Eqs. (3) and (4). 

t 

AG O = 2 RT In a'+sat,, (5) 
a_+sat 

This relation holds only if both saturated solutions are in equilibrium with the same 
solid phase. Solvate formation in one and/or the other medium necessitates a correc- 
tion~~ 

2. The primary medium effect of an electrolyte can also be calculated from the 
standard potentials of a galvanic cell. The difference of the standard electromotive 
forces E ~ and E ~ of the galvanic cells 

MX MX 
M X M 

S' S" 
(A) 

with solvent media S' and S" is proportional to the free energy of transfer: 

AG o : F(E o" _ E o') (6) 

3. The total vapour pressure of a binary solvent mixture and the composition of 
the vapour change on addition of electrolytes. Grunwald et  al. 16)deduced the fol- 
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lowing relation for the derivation of the standard molal free energy of transfer AGo 
of an electrolyte (molality m) 

E ] E J #1 d(AGt~ 1000 a lnalla2. - 2  a ln T+_ 
RT dxl M12 ~m xl axt m 

+ 2 m (7) 
M12 x 1 

with the solvent components 1 and 2, the mole fraction xl = 1 - x2, the molecular 
weights MI and M2, and MI2 --- xlM1 + x2M2. ~1 is the ratio of the fugacity of com- 
ponent 1 in the presence of solute to the fugacity in the absence of solute, both at. 
Composition xl .  If a (AGt~ is known as function of mole fraction, the free energy 
of transfer AG o may be evaluated by integration with one pure component as 
Refs.17, Is). 

b) Estimation of the Single Ion Free Energy of Transfer 

The free energy of transfer of an electrolyte is an additive function for cation and an, 
ion. The separation of the experimental quantities into single ion terms even in an ap- 
proximate manner will be of practical importance as mentioned before. Several models 
are in use and lately a great number of single ion free energies of transfer have been~ 
determined 9, lo). Yet, on principle, the free energy of transfer for only one charged 
species between two solvent media S' and S" need to be established, whereupon the 
free energies for transferring other ions from S' to S" become calculable from free 
energies of transfer for uncharged combinations of ions obtainable with e.m.f, mea- 
surements or solubility determinations. The various models, used to estimate single 
ions' free energy of transfer, are presented in a short version, because several detailed 
articles have been published about each method. 

1. Treatments Based on the Born Model 

The electrostatic contribution to the free energy of transfer of a charged species i be- 
tween two solvents of different dielectric constant (e) is the electrostatic interaction 
of a charged sphere i (charge z, radius ri) with the dielectric continua of the two sol- 
vents. Born produced the following equation: 

AGt~ el =RTln  .3'i, el - Nz2e2 ( 1 , 2  ri el-)- (8) 

with Avogadro number N, electron charge e. This equation is of great importance, 
for it enables the estimation of the behavior of ions in different media, though the 
"macroscopic" dielectric constant is used for calculation. Dielectric saturation or 
other types of interactions contributing to AGt~ are neglected and wrong predictions 
are known. 
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As the non-electrostatic part of AG O i cannot be calculated in as simple a manner 
as AG e, i, el, several extrapolation procedures using the Born equation in a modified 
form have been used. 

Izmailov et al. 19) and Feakins eta/ .  2~ plotted the free energies of transfer be- 
tween water and another solvent medium for halogen acids (HX) and alkali-metal 
chlorides (MC1) as function of the reciprocal radius of the counterions. Extrapolation 
to r -1 = 0 leads to the free energy of transfer of the common ion of a series: 
AG0(H +) or AG~ Later on, Alfenaar and de Ligny 21) determined the non- 
electrostatic contribution to AG o from the solubilities of analogous uncharged species 
of the same radius (as e.g. noble gases) and extrapolated the free energy of transfer 
of an electrolyte corrected by the non-electrostatic contribution of the variable coun- 
terion as function of the reciprocal radius to r -1 = 0. The authors attempted, further. 
more, to improve the method by adding to the electrostatic and non-electrostatic 
terms of AG o further terms proportional to r -2 and r -a,  which account for ion-dlpolr 
:and ion-quadrupole interactions 22). 

Plots of the diverse AG o functions versus r - t  often fail to be linear, complicaJti~, g 
:the long range extrapolation, and if the plot is linear 12) the slope differs from the' 
theoretical slope deduced from the Born equation. This discrepancy was eliminated: 
by adding constant increments/;+ and 5_ to the crystal radii, as was shown by 
iLatimer et  al. 23) and Strehlow et  al. 24). 

But in general, the Born equation in its original form is used quite often to esti- 
mate the electrostatic contribution to the free energy of transfer of large ions 2s) ~ind 
entities which consist of an ion with several solvent molecules 26). 

2. Reference Solutes 

Rubidium scale: Pleskov 27) proposed to use the standard electrode potential of Rb/Rb + 
in different solvents as a medium independent reference. Due to the large radius and 
low polarizability of the rubidium ion the solvation energies should be low. The ap- 
proximation AGt~ +) = 0 was improved by Strehlow 24) , who took into considera- 
tion the contribution calculated by the Born equation in its form modified with the 
additive radius increment. Strehlow et  al. 25) studied several redox systems and fifially 
selected ferrocene-ferricinium + (foc/fic +) and cobaltocene-cobalticinium (coo/tic +) as 
!being suitable. Ferrocene and cobaltocene are complexes of two cyclopentadieny~ 
anions with Fe 2+ and Co 2+, respectively. The assumption on which the application 
is based, is the solvent independence of [AG0(foc ) - AG o(fic+)] or of the respective 
icombination for coc/cic +. This assumption works all the better the larger the species 
and the lower the charge, which is centered in the middle of the species. The same 
condition applies to bisbiphenylchromium (0, I), a redox system first studied by 
Schroer and Vl~ek 28) and adopted by Gutmann et  al. 29). Other redox reference sys- 
tems have also been proposed but applied only sporadically 3~ 31) 

Recently reference electrolytes have been used to estimate medium effects. The 
assumption is based on a simple picture, te., the ionic free energies of transfer of 
an uni-univalent electrolyte which is composed of large ions of equal size and similax 
surface, are the same for cation and anion. A reference electrolyte was used for the 
first time by Grunwald et a t  16, 32), namely, tetraphenylphosphonium-tetraphenyl- 
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borate (Ph4PBPh4). Later on Popovych et aL a3) proposed triisoamylbutylammonium. 
tetraphenylborate (TABBPh4) and Alexander and Parker ~4) employed tetraphenyl- 
arsonium-tetraphenylborate (Ph~AsBPh4) extensively. The medium effects are deter- 
mined by solubility measurements 9' 10) 

3. Real Free Energy of Solvation 

While AG~ is the difference of the free energies of  solvation of charged species i in 
two different solvent media, the direct transport of  i from one solvent across the sur- 
faces into the other solvent is described by the difference of real free energies ofsolva- 
tion, i.e., the real free energy of transfer A0t ~ which is directly measurable. 

, ~ i  0 = AGO + ziFx (9) 

where z i is the ionic charge. X is the difference of the surface potentials of the solvents. 
The real free energy of transfer of chloride ion has been determined by Parsons 
et aL as) in several water - non-aqueous solvent mixtures. In some mixtures X remains 
nearly constant over a large range of mole fraction up to the pure non-aqueous compo- 
nents as deduced from the surface composition. In this range the variation of Aa~ 
reflects the variation of AGt~ - ) .  

4. The Assumption of Negligible Liquid Junction Potential 

Parker and Alexander 36) treated the galvanic cell (B) with liquid junction 

Ag AgCI04 I TEA PIC~ AgC104 
(0.01 m) I I (0.1 m) 'l (0.01 m) 

S' I Sb I S" 

Ag (B) 

to determine free energies of transfer of Ag + between different solvents S' and S". 
The bridge solvent Sb may be either S' or S" or any other solvent which supports the 
intention to reduce the voltage contribution of the liquid junctions between the 
electrode compartments. Tetraethylammonium picrate (TEA PIC) was chosen because 
the ions are bulky and preferential solvation may be neglected. The mobilities of 
TEA + and PIC- are very similar in a variety of solvents 37). The electromotive force 
of cell (B) is given, following Scatchard 3s) 

E+ = R_T In aAg+ 1 dln/.t+ + Z - 
F aAg+ F a z_ 

- ' 1  

+ k ~ r(m) d ln/lk / 
J 

d In/a_ 

(to) 

In this formula the mass of the solvent is used as a reference. The activities, a, of all 
ions are referred to the same standard state, r(k m) is the reduced transference number 
of component k. The sum of the three terms within the brackets is extended over all 
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cationic and anionic constituents and over all solvent components (k) in cell (B). 
As the concentration of TEA PIC is much larger than that of AgCIO4, t(+m) may be 
replaced by tTEA and t(__ m) by tpic. The integrals over the cationic and anionic contri- 
butions to the liquid junction potential may be replaced by 

(--~ A#TEA -- -~ A"PIC) 
because approximately tTE A = tp] c holds. At~rEA and A#PIC are the differences in 
chemical potential of TEA + and PIC- between S" and S'. These differences should be 
independent of the bridge solvent used. The solvent-transport term was shown to be 
small, with the exception of the combinations: S' = acetonitrile, S" = dimethylsulph- 
oxide, Sb = formamide and arrangements using S" = water, methanol or formamide 
and various bridge solvents. Otherwise, the agreement within measurements with dif- 
ferent bridge solutions was remarkably good (-+ 15 mV and better37)). As the first 
t erm in Eq. (10) is proportional to RT/F In 7~, the medium activity coefficients eva- 
luated with other methods were used to obtain the liquid junction potential. The 
authors found it to be negligible, except in the special cases mentioned before. Cells 
similar to (B) have been used also with other electrodes. 

5. Spectroscopic Methods 

While in the methods treated before ion solvation represents the sum of various terms 
of ion-solvent interaction, spectroscopic methods are mainly, if at all, sensitive to the 
immediate environment of an ion. Due to this the coordination model, representing 
the primary solvation shell, is not only used for highly charged ions z' 3) but also for 
univalent ions. The precise results of the direct ion-solvent interactions made it pos- 
sible to evaluate equilibrium constants describing the composition in the solvation 
shell of an ion in mixed solvents. Therefore, the estimation of single ion free energies 
of transfer from spectroscopic measurements is the subject of several recent efforts 
and is theme of Part III. 

6. Thermodynamic Properties of Transfer for Single Ions in Mixed Solvents 

Alot of  information about the free energies of transfer of single ions between 
pure solvents has been accumulated. Less numerous are determinations in mixed sol- 
vents, and the ionic enthalpies of transfer and entropies of transfer as function of mole 
fraction are known as an exception only. In Table 1 ions and solvent mixtures are 
listed for which free energies of transfer and some other thermodynamic quantities 
have been determined. 

Results based on different assumptions have been compared critically several 
times, especially comprehensively for mixed solvent systems by Parker et al. 9, 34), 
Parsons et  al. as) and Popovych l~ As an example, the free energy of transfer of C1- 
in aqueous acetone is plotted versus mole fraction in Fig. 1. The curve with BPC(OJI) 
as reference was calculated from C1- (foc/fic+) 14) and a comparison of BPC (O/I) 
with COC/CiC + 39). As has been shown elsewhere 2s), AG ~ values are independent of 
the reference, irrespective of whether foc/fic + or coc/cic § is chosen. 
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Table 1. Free energies of transfer and some other thermodynamic properties of transfer for single 
ions in mixed solvents 

Ions Thermo- Method Foot- 
dynamic notes 
quantity 

Methanol-water 

Na +, K +, CI-, Br-, I -  AH~ - 1) 
H +, Li + , Na +, K +, Ci- ,  Br- ,  I -  AG[' Extr. 2, 3) 
H + , Li + , Na + , K + , Rb +, Cs + , Me4 N+ , Et4 N+ , AG~ Extr. 4, S) 
Pr4 N+, Bu4 N+, tic +, CI-, Br- ,  I - ,  CIO~" 
H +, Li +, Na +, K +, Rb +, Cs +, CI-, Br-, I -  Aa~ -- 6) 

H + , Li + , Na + , K + , Rb + , Cs + , Ag + , Me4N +, Pr4N + , 
BuaN +, tic +, Ba 2+, Sr 2+, Cd 2+, Zn 2+, OH-,  CI-, aGt 0 AGt(H110~) 7, 8) 
Br- ,  I - ,  CIO~ 
H +, Na +, OH-,  Ci-  AG O PIMAs + = BPh~ 23) 

Ethanol-water 

Na +, K +, CI-,  Br- ,  I -  AH~ - 1) 
H +, K +, CI-, (picrate)- &G~, TAB + = BPh~" 9, lo) 
H + AG~' foc/fie + 11 ) 
Ag +, Cl-,  Br- ,  I - ,  SCN- AG~ foc/fie + 12) 
H + AG t _ 13) 

Iso-propanol- water 

~+, cJ-  ,,G o ,,G~ ~ o~)  8) 

t-Butylalcohol - water 

H +, CI-,  Br-,  I -  AG O Extr. 14) 

Ethylene glycol-water 

H+, Li +, Na +, K +, CI-, Br- ,  I -  AG~ 3 Extr. 15) 
H +, CI-, Br- ,  I -  AG~,0 AH t0 Extr. 16) 
C I -  _ 17) /,a~' 

AG~), AHt o AGO(HI 10~) 18) H +, Li +, Na +, K +, OH-,  CI-, Br- ,  I -  

Glycerol-water 

H § CI-, Br- ,  I -  AG~ Extr. 19) 
H +, CI-, Br- ,  I -  AG~ AG0(HI 10~) 8) 

A cetic acid-water 

H +, CI-, Br- ,  I -  AG o Extr. 20) 

Dioxan-water 

H +, Li +, Na + , K + , Rb +, Cs + , Me4N +, PIMP + , d(AG~ ) ) 
OH-,  CI-, Br- ,  I - ,  NO~', C10~, BPh 4, ~ SO~ dXH20 

Li +, Na +, Me4 N+, OH-,  CI-, Br-  AG O 

C1- Aa 0 

H +, Li +, Na +, K +, Rb +, Cs +, OH-,  CI-, Br-,  I -  AG O 
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Ph4 P+ = BPh~ 

PtMAs + = BPh~" 
AGt0(Me4 N+) = 0 

Extr. 

21) 

22, 23) 

17) 

24)' 



Table 1 (continued) 

Ion Solvation in Mixed Solvents 

Ions Thermo- 
dynamic 
quantity 

Method Foot- 
notes 

Formamide-water 

C 1- Aat0 

Urea.water 

H +, CI- ,  Br- ,  I -  AG O 

A cetonitn'le.water 

Ag + AG~ 
H +, Ag +, CI- ,  Br- ,  I - ,  SCN- AGg 
H +, OH-  AG 
Na + , Ag +, Cu + , Cu 2+ , Fe 2+ , Fe 3+ , C1- AGt ~ 

Dimethylsulphoxide-water 

H +, C l - ,  B r - ,  I -  AG~ 
H +, T1 +, Ag +, CI-,  I - ,  N~', (acetate)-,  AG~" 
(benzoate)-,  SO24 - 
CI-  Aa~ 
H +, Me4 N+, OH-  AG~ 

H +, Li +, Na +, K +, Rb +, Cs +, OH- ,  CI-,  Br- ,  I -  AG~ 
Ag +, Cu 2+ AG 

N,N.dimethylformamide - water 

Ag +, CI- ,  Br- ,  I - ,  SCN- 

17) 

Extr. 25) 

foe/tic + 26) 
foe/fie + 11, 12) 
AGD(Me4 N+) = 0 23) 
n.l.j.p. 27) 

Extr. 28) 
foe/fie+ 29, 30) 

_ tT) 

PhAs + = BPh~" 23) 
AG~ ) (Me4 N+) = 0 
Extr. 31 ) 
n.Lj.p. 27) 

AGt 0 foc/fic + 12) 

A cetone-wa ter 

Ag +, CI- ,  Br- ,  I - ,  SCN- AG~ 
H + AG g 
H +, CI-,  Br- ,  I-- AG 
C1- Aa~ 
H + , K + , Rb +, Cs + , Ag + , Me4N + , Pr4 N+ , AG O 
Bu4N +, fic +, CI- ,  Br- ,  I -  

foe/fie + 12) 
foe/fie + 11 ) 
Extr. 32) 
_ 17) 

AGt0(H 110"~) 8) 

AG O foe/fie + 33 ) 
Propylene carbonate-water 

H + , Li + , Na + , K + , Rb +, Cs + , Ag + , T1 + 

Ethylene carbonate-water 

Ag +, CI- ,  Br- ,  I - ,  I~" AG O foe/fie + 34) 

foc/fic + 
Tetrahydrofurane-water 

Ag +, CI- ,  Br - ,  I - ,  SCN- AG o 
Li +, Na +, Ag +, NH~, Me4N +, Pr4 N+, Bu4 N+, 
Hex4 N'~, Hept4 N+, Ph4As +, F - ,  CI- ,  Br- ,  I - ,  NO~, d(AG 0) 
ClO~, CIO~-, aPh~ dxH20 
Na +, C1- AG~' 

12) 

35) 

35) 
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Table I (continued) 

Ions Thermo- Method Foot- 
dynamic notes 
qunatity 

DimethylsulphoxMe-methanol 
H +, Ag +, c i - ,  I - ,  (acetate)-,  AgCI~', SO~- AG O foe/fie + a6, aT) 

A cetonitrile-methanol 
Ag + AG O n.l.j.p~ 27) 

AG 0 coc/cic + 3a) 
Dimethylsulphoxide-propylene carbonate 
TI +, Cd 2+, pb 2+ 

Dimethylsulphoxide-acetonitrile 
Na + AG o n.l.j.p. 27 ) 

&Gt 0 n.Lj.p. 27) 
propylene carbonate-acetonitrile 
Ag +, CM +, Cu 2+ 

A cetone-acetonitrile 
Ag + AG o n.Lj.p. 27)i 

Abbreviations: extr. = extrapolation (methods); n.Lj.p. = negligible liquid junction potential 

1) Krestov, G. A., Klopov, V. J.: Zh. Struk. Khim. 5, 829 (1964). 
2) Feakins, D., Watson, P.: J. Chem. Soc. 4735 (1963). 
3) Feakins, D., in: "Physico-chemical processes in mixed aqueous solvents", F. Franks (ed.), 

p. 71. London: Heinemann Educational Books Ltd. 1967. 
4) Alfenaar, M., de Ligny, C. L.: Rec. Tray. Chim. 86, 929 (1967). 
S) Bax, D., de Ligny, C. L., Remijnse, A. G.: Rec. Tray. Chim. 91, 452, 965 (1972). 
6) Case, B., Parsons, R.: Trans. Faraday Soc. 63, 1224 (1967). 
7) Wells, C. F.: J. C. S., Faraday I 69, 984 (1973). 
8)Wells, C. F.: J. C. S., Faraday I 70, 694 (1974). 
9) Popovych, O., DilL A. J.: Anal  Chem. 41, 456 (1969). 

1o) Popovych, O.: Crit. Rev. Anal. Chem. 7, 73 (1970). 
l l )  Vedel, J.: Ann. Chim. 2, 335 (1967). 
12) Barraqu6, C., Vedel, J., Tr6millon, B.: BulL Soc. Chim. France, 3421 (1968). 
13) Gutbezahl, B., Grunwald, E.: J. Amer. Chem. Soc. 75, 559,565 (1953). 
14) Bose, K., Das, A. K., Kundu, K. K.: J. C. S., Faraday 1, 71, 1838 (1975). 
15) Kundu, K. K., Rakshit, A. K., Das, M. N.: Electrochim. Acta 17, 1921 (1972). 
16) Kundu, K. K., Jana, D., Das, M. N.: Electrochim. Acta 18, 95 (1973). 
17) Parsons, R., Rubin, B. I.: J. C. S., Faraday I, 70, 1636 (1974). 
18) Wells, C. F.: J. C. S., Faraday I, 71, 1868 (1975). 
19) Khoo, K. H.: J, C. S., Faraday I, 68, 554 (1972). 
20) Bennetto, H. P., Feakins, D., Turner, D. J.: J. C. S. A, 1211 (1966). 
21) Grunwald, E., Baughman, G., Kohnstam, G.: J. Amer. Chem. Soc. 82, 5801 (1960). 
22) Villermaux, S., Baudot, V., Delpuech, J. J.: Bull. Soc. Chim. France, 1781 (1972); 815 (1974). 
23) Villermaux, S., Delpuech, J. J.: BulL Soc. Chim. France, 2534 (1974). 
24) Bennetto, H. P., Feakins, D., in: "Hydrogen-bonded solvent systems", (A. K. Covington and 

P. Jones, eds.) London: Taylor & Francis Ltd. 1968. 
25) Kundu, K. K., Mazumdar, K.: J. C. S., Faraday I, 71, 1422 (1975). 
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Footnotes to Table 1 (continued) 

26) Koepp, H. M., Wendt, H., Strehlow, H.: Z. Elektrochem., Bet. Bunsenges. physik. Chem. 64, 
483 (1960); 
Strehlow, H.: "Electrode potentials in non-aqueous solvents", in: The chemistry of non- 
aqueous sotvents (J. J. Lagowski, ed.). New York: Academic Press 1966. 

27) Cox, B. G., Parker, A. J., Waghorne, W. E.: J. Phys. Chem. 78, 1731 (1974). 
2s) Khoo, K. H.: J. Chem. Soc.,A, 2932 (1971). 
29) Courtot-Coupez, J., Le D6m6zet, M., Laouenan, A., Madec, C.: J. Electroanal. Chem. 29, 21 

(1971). 
no) EI-Harakany, A. A., Schneider, H.: J. Electroanal. Chem. 46, 255 (1973). 
31) Das; A. K., Kundu, K. K.: J. C. S., Faraday I, 70, 1452 (1974). 
32) Bax, D., de Ligny, C. L., Remijnse, A. G.: Ree. Trav. Chim. 91, 1225 (1972). 
33) L'Her, M., Morin-Bozec, D., Courtot-Coupez, J.: J. Electroanal. Chem. 55, 133 (1974); 61, 

99 (1975). 
34.) Cabon, J. Y., L'Her, M., Conrtot-Coupez, J.: J. Electroanal. Chem. 64, 219 (1975). 
35) Treiner, C., Bocquet, J. F., Chemla, M.: J. Chim. Phys. 70, 472 (1973); 

Treiner, C.: J. Chim. Phys. 70, 1183 (1973); 
Treiner, C., Finas, P.: J. Chim. Phys. 71, 67 (1974). 

36) Madee, C., Couttot-Coupez, J.: J. Electroanal. Chem. 54, 123 (1974). 
37) Rodehiiser, L., Schneider, H.: Z. Physik. Chem., N. F., 100, 119 (1976). 
38) Massaux, J., Duyekaerts, G.: J. Electroanal. Chem. 59, 311 (1975). 
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Fig. 1. Free energies of transfer of CI- in acetone-water mixtures at 25 ~ 
o Wells26); x Barraqueetal.47);---AG0(C1 ") -{AG~ z~Gt0(foc/fic+))39); 
. . . . .  Parsons et aL 35) 

The agreement between BPC(O/I), foc/fic +, and Parson's data is not remarkably 
good. For example a deviation of AGt~ - )  referred to foc/fic + reference couple in 
highly aqueous acetone solutions was already mentioned previously in the case of other 
highly aqueous solvent mixtures as, 40). This has been claimed to be due to specific 
interactions between ferrocinium + 41,42) and for ferrocene 43) with water. 
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The variation of the free energy of transfer of single ions with mole fraction is 
sometimes indicative of the thermodynamic properties of the solvent mixtures 44' 42). 
For instance, in mixtures of methanol and of dioxan with water the solvent molecules 
are more basic than in water 12' 20) 

Sometimes the Born equation (8) has been used to eliminate the effect of chang- 
ing dielectric constant with solvent composition 4s). Due to the uncertainties connected 
with the application of the Born equation to special problems, this treatment wilt 
only rarely give results which may be more easily interpreted in terms of the structure 
of the solvent mixture. 

Generally, in mixtures of protic solvents with aprotic solvents and especially in 
mixtures of two aprotic solvents the dependence of AGt~ on composition is fixed 
by the transfer free energy of ion i between both pure solvent components. For cat- 
ions quite often the sign" of d2(AGt~ is opposite to that of AGt~ = 1) 25, ~9, 
46-49), if AGt~ +(x2 =1) < 0. That means, AGt~ + decreases on addition of component 
2, because the cation is preferentially solvated by solvent component 2. If, on the 
other hand, AG ~ + (x2 = 1) > 0, the solvent 2 changes AG~ only drastically when 
the mixture is 2 0 composed mainly out of solvent component 2; that men as, d (AG, +)/ 
dx 2 ~> 025, 39, 46-49). In the case of anions, these relations only hold sometimes46). 
This is due to the higher sensitivity of anion solvation to solvent structure, e.g. to 
hydrogen bonding. Nevertheless, the combination of d 2 (AG ~ 2 < 0 and 
AG ~ _ (x2 = 1) > 0 is also observed quite often 47-49). 

An outstanding exception is the solvation of ions in dimethylsulphoxide (DMS0)- 
water mixtures. While in dimethylsulphoxide AGt~ +) related to water is negative, 
in highly aqueous DMSO mixtures Ag + is preferentially hydrated 46, so-s2). The 
change of preferential solvation of an ion with solvent composition has also been 
noticed for other ions s3, s4). This behavior can be attributed to the "stabilization" 
of the hydrogen-bonded water structure by DMSO ss). 

The enthalpy of transfer AHt ~ of electrolytes and single ions i will be much more 
sensitive to the solvent structure than AG O . As an example the thermodynamic prop- 
erties for transfer of alkalimetal chlorides between water and 20% dioxan-water 12) 
should be mentioned. In the determination of AGt~ and AHt~ the increase in the 
number of experiments is not the only problem (mole fraction and temperature 
must be varied). But a large experimental accuracy is necessary for the evaluation of 
AG~ and AHt~ whereas, less precise data may give a valuable indication to AG~ 
being positive or negative. 

III. Complex Formation of Solvent Molecules with Ions 

On treating ion solvation it is useful to differentiate between primary and secondary 
solvation shell or between chemical and physical solvation, respectively s6). The elec- 
trostatic calculation of ion solvation is quite often less accurate because specific ion- 
solvent interactions have to be considered. In the primary solvation shell specific ion- 
solvent interactions are of much more importance than those with solvent molecules 
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in the secondary solvation shell. The energetic contribution of these regions can b e  
taken into account satisfactorily by the coulombic interactions of an ion with the 
solvent represented as a continuous dielectric medium. Fortunately, there are experi- 
mental  results which show that the specific ion-solvent interactions for different tons 
and various solvents are similar, and semiquantitative predictions are reliable. An 
example is the donicity which was introduced by Gutmann sT) for the reaction en- 
thalpy (/XH) of 1 : 1 complex formation of a polar solvent molecule (electron-pair 
donor) with antimony(V) chloride (electron-pair acceptor) in 1,2-dichloroethane. 
The donicity scale is a very useful means for estimating the strength of ion-solvent 
interaction in different solvents. 

Solvation equilibria have often been used to explain acid-base equilibria in mixed 
solvents 11, 5s) and solvent extraction experiments sg' 60). Recently, the change in the 
behavior of cations in a solvent of  low donicity on addition of a stronger donor solvent 
was studied with different methods. Corresponding experiments have been performed 
with anions. Already in 1960 Grunwald et  al. 61) deduced a relation between the free 
energy of solvation of a solute in a mixed solvent on the one hand, and the free ener- 
gy contributions of the various forms of solvated species on the other hand. Grunwald 
applied this formula to alkali-metal ions in aqueous dioxan solutions. Later on, 
Covington et  al. 62) and Cox et  al. 46) treated the free energy of transfer of an ion be- 
tween a mixed solvent and its pure compounds, using a coordination model for the 
contribution of the primary solvation shell. 

a) Coordination Model of Ion Solvation and the Ionic Free Energy of Transfer 

A solution of n x moles of an ionic species I in a mixture of two solvents A and B 
with nA moles of A and na moles of B shall be considered. In dilute solutions ion- 
pair formation can be neglected. The free energy G of the solution is given by: 

G = n I GI + nA GA + nB GB (I1)  

Following Gmnwald's 61) treatment to derive a formula for the free energy of trans- 
fer of ion I in terms of  the contribution of solvated ions and of solvent composition, 
we start with the equilibrium 

Ioo + (n - i) A + i B -~ I A n _  i Bi (12) 

loo represents those ions which are unsolvated, n is the coordination number whigh 
is most often equal to the number of  solvent molecules in the primary solvation shell. 
Free energy terms are marked with a prime, if they refer to actual ionic and molec- 
ular species. Equilibrium (12) is described by 

G~)0 + (n - i) G~ + i G~ = G n - i , i  (13) 

With ~ o ,  the fraction of solute in the unsolvated form Ioo, and with ~ n - i ,  i, the 
fraction of nx as I An_ i Bi, one obtains: 
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n 
F 

(:I:)00 + ~ ~ n - - i , i  -- 1 ( 1 4 )  
i=O 

The ions in the unsolvated form Ioo are used in the following as a reference to com- 
pare the free energies of  solvation of I in various media and to derive free energies of  
transfer. The contribution of Ioo is eliminated in the following and cI,' is later on re- 
placed by  cb, which refers only to solvated ionic species. 

Multiplication of Eq. (13) by qbn_ L i and summation over i gives 

n n 
t 

( n - - i )@n_ i , i+G~B ~ i ~ n _ i , i  
i=O i=O 

11 
t m l  

= ~ ~ n _ i , i G n _ i , i  (15) 
i=o 

With 

[I A n - i  Bi] (16) 
q%-i , i  = [ioo ] + [ I A n ] + [ I A  n _1  B ] + . . .  + [I Bn] 

we can show that the mean solvation numbers ~.A and X8 are dependent on qb n_ i, i, 
a new, more evident fraction scale 

[I An_ i Bi] (17) 
C n - i ' i =  [IAn] + [ I  A n _ l  B ] + . . . + [ I B n ]  

in the following way: 

n 

(n - i) �9 n_ i, i n 
~,A = X; (n -- i) r  i = i=0 (18a)  

i = o  ' 1 - ~ o  

and 

n 

i d i ) n _  i ,  i 
n i = 0  

)-B = X i * n - i , i  - ( 1 8 b )  
i=o 1 - r 

Additionally, it is 

n 
r 

(:I:)n -- i, i G n - i , i  n --, i=O 
qgn-i,i Gn - i , i  = , (18~) 

i'-o 1 - 'I%o 

Applying Eqs. (18), the following equation results from Eq. (15) 
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n 
G~)0 + ~k*Gk + )kBGB = ]~ ~n-- i , i  G n - i , i  (19)  

i=O 

The free energy G of the solution may now be written in terms of actual ionic species: 

n 
G = (n A - ni~kA) GA + (rib -- nI•B) GB + nl Z Cn--i,i Gn-i,i 

i=0 
(20) 

With Eq. (19) the last equation reduces to 

- - I  - - I  --I 
G = niGoo + nAGA + nBGB (21) 

Comparison of Eqs. (11) and (21) gives 

G;o = GI, GA = GA, GB = GB (22) 

Grunwald e t  al. 61, 63) showed that the partial molar free energy of the solute I is the 
same as that of the fraction of unsolvated I. Also, the partial molar free energy of the 
solvent components treated as formal quantity or as solvated species is independent 
of  the solute. The following relations 

C'oo = GI = Go + RT In ni = G~~ + RT In (nt r  
~0 Gn-i , i  = Gn-i , i  + TT In (n I qbn_i,i) 

(23 a) 

(23b) 

are used, and with n I approaching zero (superscript o) one obtains with (19): 

n n 

Go ~ qbo . .  ,o r ~ . .  In r176 X ~  X~ = n--i,i Gn-i, i  + RT Z n-l,1 
i=o i=o 

(24) 

This equation is equal to Eq. (53) of  Grunwald's 61) paper and corresponds to Eq. (4) 
in Covington's 62) treatment (part 2). 

G ,  and GB depend on the mole fraction xh = 1 -- x B and on the activity coef- 
ficients f ,  and fB which are given the value one in the following: 

~A = Go + RT In XAf A 

~B = Go + RT In XBfB 

(25) 

It follows from Eq. (24): 

XA = 1: G~ : l )  = - nG,  

x .  = 0: G ~  = 0) = % % -  nG ~ 

(26) 

(27) 

The free energy to transfer I from A to B is the difference of Eq. (27) minus Eq. (26): 

4 , G ~ 1 7 6  - G~ = l ) =  G~~ - Gn,o'~ _ n(~O _ T o )  (28) 
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The free energy of transfer between the solvent mixture (XA) and pure solvent A is 
calculated using Eqs. (24) to (26): 

AG o = C0(XA) - GI0(XA = 1) 

n 
= y. r . .1"C'.'0 . . _ G ~  0 + i G  O _ i G  O) 

i=0  

n n 
0 + R T  N �9 ~ �9 . l n q ~ n _ i , i  RT I~ ( n - i )  o - ePn- i,i In XA n- - l~ l  

i=0  i=o  

n 

- RT I~ iqPn-i, i In XB 
i=O 

(29) 

Following Covington et  al. 62), a simplification of Eqs. (28) and (29) is possible, if: 
'O Gn_i, i lS assumed to consist of three terms: 

G n O i , i  = ( G n O i ,  ~ in t  + g O , 0  ~coord  f C , 0  ~elec 
iJ ~ n - i ,  iJ + ~ v n - i , i ]  (30) 

The first term on the right hand side refers to the bare ion and disappears because 
we are engaged in differences of free energies. The second term refers to the coordina- 
tion model of ion-solvent interaction in the primary solvation shell and the third term 
takes into account long range interactions. The last contribution may be approximated 
by the electrostatic interaction of a charged species with the solvent. The radius of 
the charged species is equal to that of the solvated ion (e.g., ionic radius + diameter 
of the solvent molecules in the primary solvation shell). 

The constant fli of  the equilibrium 

I A n + i B  -~ I A n _ i B i + i A  (31) 

~i [I An_ i Bi] [A]  i 
[I An ] [B] i (32) 

is related to the coordination term of  the free energy: 

. . . .  ,~,o ~eoord ,~ '0 aeoora iG O iGOB --RT Ill Pi - ~ , ~ n - i , i )  - -  k~n,o, ~ + - -  (33) 

Now Eqs. (29), (30) and (33) lead to the equation: 

n i] AG o = G~ -- G~ = 1) = - R T  Z O~ in - 
0 n - - i , i  [ A ]  

n 
- n RT In XA + N q)0 . . ( C J 0  - , e l e c  /t-,r0 -,elec 

n - - l , I  ~ . ~ n - i , i y  - -  ~,'an,0) 
0 

(34) 

The first term in the last equation can be simplified with the help of the consecutive 
equilibria of stepwise replacement of solvent component A by component B: 
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K l  
I A n + B  ~ I A n _ I B + A  

I I 
I I 
I K i  I 

t A n _ i + l B i _ l + B  ~ I A n _ i B i + A  
I t 
I I 
I K n I 

I A I B n _ t + B  ~- I B n + A  

(35) 

Now it is 

[B1 [B] i 
[I An- i  Bi] = Ki [I An_i+ l Bi- l ] Ial~ =/3i ~ [IAn] (36) 

with 

[gi = KIK2 �9 �9 �9 Ki 

With Eq. (32) one obtains from Eq. (34) 

AG ~  + ~ fli - n R T l n x A  
~=1 [A]' _i 

n 
~r~O zr~tO ",, elec [t-,_r 0 "~ elec 

+ ~ " i ' n _ i , i ! , ~ n _ i . i /  - -  K,,.Jn,O/ 
0 

(37) 

The last equation is identical with Eq. (16) found by Cox e t  al. 46), if the electrostatic 
contribution is neglected and xA, XB are volume fractions. 

A relation for the free energy of transfer between x A = 1 and x a = 0 follows 
from Eq. (28) with Eqs. (30) and (33): 

�9 ,, + ,'GrO ~elec i't-,ro ae lee  AG~ = - R T  m P n [  o,nJ - ~'-'n,0J (38) 

Cox et al46) and Manahan et  al. 7o) performed potentiometric titrations and calculated 
the equilibrium constants for the complexes formed between Ag + or Cu + and some 
ligand molecules (solvent B). Several solvents (A) were used as reaction medium. 
Table 2 contains the cumulative equilibrium constants/3i. The free energy of transfer 
AG~ was calculated with Eq. (38), whereby the electrostatic contribution was 
neglected. AG~ has been compared with AG O values, estimated from the assump- 
tion of negligible liquid junction potential in a galvanic cell similar to cell (B). As ~ne 
can see in Table 2, the agreement between the two sets of values is excellent. Simiiar- 
ly, the free energies of transfer in mixtures of the solvents A and B (mentioned in Table 
2), once calculated from Eq. (37) and once estimated from the assumption ofn.l.j.p., 
are also in convincing agreement. 

That means, it is possible to calculate reliable AG o values from equilibrium con- 
~tants for ion-solvent complex formation. If, in case of  cations, the ligand (solvent~B} 
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is a much stronger Lewis base (high donicity) than solvent A, the equilibrium con- 
stants can be determined in very dilute solutions of the cation and of component B. 
Then, Eq. (37) enables one to calculate the free energy of transfer of an ion from . 
solvent A to solvent mixtures of  A and B, and even to the pure solvent B. The results 
in Table 2 show that the influence of the solvent outside the coordination sphere i s 
~nall. 

b) Experimental Evaluation of Coordination Numbers and of Formation Constancs 
of Ion-Solvent Complexes 

In general, the complex of an ion with a charged ligand is much stronger than the 
complex of an ion with a solvent molecule as ligand. Therefore, much less informa- 
tion about ion-solvent complex equilibria exists, though the experimental methods 
and the theoretical discussion adopted for this problem are the same as those used 
for complexes with charged ligands. To increase the strength of interactions between 
an ion and the molecules of  a special solvent one always intends to perform the ex- 
periments in media which interact to a lesser degree with the given ion. An extremua'n 
of this intention is the determination of complex formation between ions and solvent 
molecules in the gas phase by mass spectroscopy 64). The stepwise growth of ion- 
solvent clusters in the gas phase supported the attempt to explain the solvation, also 
of  univalent ions in liquids, to some extent by the arrangement of  an integer number 
(coordination number) of  solvent molecules around an ion. However even before 
gas phase experiments were conducted, the formation of ion solvent complexes had 
been studied. In a series of  fundamental experiments Bjerrum et  al. 65) used poten- 
tiometric and spectroscopic methods to determine formation constants of  ion sol- 
vent complexes. Later on other procedures were used with success by other workers. 
The study of ion solvent interaction was especially stimulated by the fact that nu- 
clear magnetic resonance (NMR) became a common tool in chemistry and physical 
chemistry. 

The most comprehensive information about ion-solvent complex formation fol- 
lows from potentiometric titrations and some NMR measurements. This applies to 
NMR studies with solutions of ions like aluminum(III), gallium(III), beryllium(II) or 
magnesium(II) which interact so strongly with the molecules of several dipolar sol- 
vents that the lifetime of the molecules in the solvation shell is very long. Then the 
solvent exchange kinetics is slow enough to observe in the NMR spectrum of the sol- 
vent separate lines for coordinated solvent molecules and for free solvent. 

More often, only the first or second equilibrium constant follows from electro- 
chemical and spectroscopic measurements. NMR studies of solutions with monova- 
lent ions in mixtures of two solvent components which interact rather differently 
with the ion sometimes show a break in the chemical shift plotted versus concentra- 
tion. The slope of the curve changes near a solvent to ion ratio which obviously re- 
presents a coordination number. 

In the following only some rather instructive examples of ion-solvent coordina- 
tion shall be presented. Solvation of the proton in terms of complex formation has 
been studied extensively I 1, ss, 66) and very detailed information has been accumu- 
lated67, 68). But this special subject has not been taken into consideration. 
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H. Schneider 

1. Potentiometric Titration 

Larson and Iwamoto 69) determined the interaction of small amounts of water in nitro: 
methane with Cu 2+ by voltammetric studies. The dependence of the half-wave poten- 
tial for the CuZ+]Cu + wave on water concentration was analysed to deduce the step- 
wise formation constants Ki of the complex species [Cu(n20)i] 2+. The constants hre 
in good agreement with those evaluated from spectroscopic measurements. 

But in principle, the change of potential with water concentration should be re- 
ferred to a reference redox couple being independent on solvent composition. Thus, 
from potentiometric titrations of an aqueous AgNO 3 solution with acetonitrile (AN) 
Koepp, Wendt and Strehlow 2s) deduced the first and second overall formation con- 
stant of [Ag(CH3CN)] + and [Ag(CHaCN)2] +, respectively. In this study the potential 
of the silver electrode was referred to the ferrocene-ferricinium + redox system. By 
this method any liquid junction potential effects are eliminated. Manahan and 
Iwamoto 7~ polarographically determined the overall formation constants/3i of ace- 
tonitrile with Ag + and with Cu + in various solvents. Some of the data have been taken 
by Cox e t  aI. 46) to calculate ,',(;~ in Table 2. Luehrs et  al. 71-73) obtained in the 
same way the formation constants of Ag + with N,N-dimethylformamide (DMF), 
with dimethylsulphoxide (DMSO) and with hexamethylphosphoramide (HMPA) in 
various solvents. In Table 3 some of the results have been arranged in such a way 
that the interaction of Ag + with the various ligands can be compared in the same sol- 
vent. The complexes of AN with Ag + are much stronger than those with the other 
ligands and are due to the specific interaction between nitriles and the silver ion. But 
excepting AN the strength of the complexes increases with increasing donor strength sT) 
from DMF over DMSO to HMPA. With HMPA steric hindrance must be taken into 
account. The formation constants in methanol are in the mean smaller than those in 
2-butanol, which solvates Ag + less strongly. Also here water plays a special role. Com- 
plexes of DMF, DMSO, and HMPA with Ag + could not be detected in water. But in 
aqueous dioxan solution the formation of DMSO-complexes with Ag § were observed. 
This is in agreement with free energy of transfer data and NMR chemical shift ex- 
periments in aqueous DMSO solutions s2). At low concentrations, DMSO strengthens 
the water structure ss) and Ag + is preferentially hydrated. 

Izutsu e t  al. 74) studied the complexing of Na + in acetonitrile solution with vari- 
ous protic and aprotic solvents using an ion-sensitive glass electrode. Parker's assump- 
tion of negligible liquid junction potential with an tetraethylammonium picrate salt 
bridge was adopted and found to be valid, even when water was added. The forma- 
tion constants increased in the order: methanol < H20 < DMF < N,N-dimethylace- 
tamide ~ DMSO < HMPA. 

2. Electrolytic Conductance 

The electrical conductivities of electrolyte solutions and the ion-pair association con- 
stant are both very sensitive to ion solvation and permit the calculation of solvation 
constants. 

D'Aprano and Fuoss 75) found that in dilute solution of Me4NBr and (n-Bu)4NBr 
in acetonitrile the conductance changes if p-nitroaniline is added. The change could 
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H. Schneider 

not be rationalized by taking into account the change in concentration and in dielec- 
tric constant. The effect may be explained in a simple way, if ion-dipole association 
between Br-  and p-nitroaniline (dipole moment 6.32 D) increases the dissociation 
of ion pairs. The effects are larger when nitrophenols (meta and para) are added to 
dilute solutions of quarternary ammonium salts 76). 

In case of ionophores the formation of ion pairs is dependent on the electrical 
charge e, the dielectric constant e and the center-to-center distance a. The association 
constant KA was calculated for rigid charged spheres with diameter a in a dielectric 
continuum 77) 

KA = Ko exp (e2/a e kT) (39) 

Many examples of systems have been studied which are in agreement with Eq. (39)  
and where a plot of  In K A versus 1/e is linear. But, again and again, salt-solvent s~s- 
:tems were found with a non-linear dependence of In KA on 1/e and even with slopes 
o f  the wrong sign. Fuoss et al. 7s) selected several special systems where the sphere- 
in-continuum model fails. The association constant of tetrabutylammonium picrate 
in acetonitrile-dioxan mixtures is much larger than KA in mixtures of p-nitroaniline~ 
dioxan. The difference is attributed to the formation of a dipole solvate between :~lie 
picrate ion and p-nitroaniline. 

More quantitative information about solvation equilibria resulted when the as- 
sociation of picric acid was studied in mixtures of acetonitrile (AN) with several 
hydroxylic solvents (water, MeOH, EtOH) and in water-EtOH mixtures. The depen- 
dence of In K A on l i e  is in no case linear and with two binary solvent systems 
(AN-MeOH, AN-EtOH)  In K A even increases with e. Fuoss et  al. 78) introduced a 
conductance association constant KA as a factor. The strange behavior of the systems 
studied were attributed to specific solvation of HPi by the hydroxylic solvents (base B). 
The following reaction scheme was assumed to hold. 

Ks 
HPi +nB ~ BH + "Bn- 1 Pi-  

KA 
BH + 'Bn-  1 Pi-  ~ BH + + Bn-  1 Pi-  

The association constant K A determined by experiment is related to K A and to the 
concentration of base B in the following way: 

KA = KA[1 + (1/KsBn)] (40,) 

The analysis of the experimental data with Eq. (40) gave n = 4, and Ks = 4.0 x 10 -7  
(MeOH and EtOH), Ks = 2.5 x 10 - s  (H20). 

The competition between ion-pair formation and ion-ligand association was uti- 
lized to determine the hydration constant of NOa in acetonitrile 79). The relative as- 
sociation constant K~ of AgNOs in solutions of acetonitrile with small amounts 
of water was found to depend linearly .on the water concentration. K ~ is the associa- 
tion constant of AgNO 3 in anhydrous acetonitrile. As Ag + is preferentially solvated 
by acetonitrile even in highly aqueous solvents 2s' 7o), the hydration of NO~ 
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K I -  
NO~ + H20 -~ NO~ "H20 

effects a decrease of the ion-pair concentration. The experimental association con- 
stants were analysed using the relation between KA and K I -  

K~ = 1 + KI_[HzO] (41) 

with the result: K 1_ = 1.7 M -1 . 
The addition of polar molecules to electrolyte solutions effects a much larger 

change in conductance if low dielectric solvents are employed s~ In a series of papers 
Gilkerson e t  al. 81) studied the ion-molecule interaction of tertiary and quarternary 
ammonium cations with Lewis bases in low dielectric solvents, like o-dichlorobenzene, 
chlorobenzene or 1,2-dichloroethane. The change of the ion-pair association constant 
with concentration of an additive L was attributed to the formation of 1 : 1 cation- 
molecule complexes: 

M + + L ~- ML +, KI+ = [ML+]/[M+I[L] 

The ions are highly associated into ion pairs and due to this the Shedlovsky condnc, 
tance equation s2) is applicable. Thus, the experiments are easily analysed. An eqUa- 
tion analogous to Eq. (41) 

K~ - 1 + Kl+[L] (42) 
KA 

was fitted to the experimental data. Only in some instances the existence of [ML~] 
.had to be considered. The temperature dependence of KA permitted the calculation 
o f  AH and AS al h, 81 k). In the same way the association of  alkali-metal cations with 
triphenylphosphine oxide in tetrahydrofurane was studied alj). In general, the experi- 
ments show that the dipole moments of the ligands, in addition to their b asicities, are 
important in determining the extent of ion-ligand association. Furthermore, the as- 
sociation of tri-n-butylammonium cation with a group of ligand molecules in o-di. 
chlorobenzene leads to a simple functional dependence between KI+ and free ene,rgy 
of  transfer values s li). 

3. The Solubility of Electrolytes in Mixed Solvents 

Chantooni and Kolthoff aa' a4) derived equations which permit the calculation of 
hydration constants of cations and anions from the solubility products of slightly 
soluble salts in solutions of acetonitrile with various concentrations of water. The 

�9 ionic solubility of a salt was determined by measuring the conductance. The water 
concentration of the acetonitrile solution was always less than 1 M. The total ionic 
solubility product was expanded in powers of the water concentration. The coef- 
ficients are related to the individual ionic hydration constants and were evaluated by 
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curve fitting procedures. Li +, Na § CI-, NO~ and several organic anions were found 
to form mono- and dihydrates. This elegant method has been applied only rarely 8s'1~ 

4. Optical Spectroscopy 

Spectroscopic studies, intended to obtain a better understanding of the state of solva- 
tion of  ions in mixed solvents, have been carried out for a long time. Bjerrum and 
JCrgensena6, sT) interpreted the change in spectral intensity in terms of ion hydration 
when the concentration of water in non-aqueous solutions of transition metal ions 
was changed gradually. Larson and Iwamoto 69) were able to determine all six hydra- 
tion constants of aquo-copper(II) complexes in nitromethane from the absorption 
band of water as). The absorption spectrum of Cu 2+, which changes with decreasing 
amount of water in acetone and ethanol, was interpreted as being due to the succes- 
sive replacement of two water molecules of the Cu 2§ hydration shell by two molecules 
of either acetone or ethanol sg). In a comprehensive publication Kuntz and Cheng 9~ 
used infrared spectroscopy to study the solvation of univalent ions by water and 
methanol in a number of polar aprotic solvents. The evaluation of ionic solvation 
constants from spectral absorption experiments are not always straightforward. 

5. Nuclear Magnetic Resonance 

Since NMR has been introduced as a new method to study electrolyte solutions the 
knowledge of ion solvent interaction has advanced remarkably. 

As we are engaged in solvation equilibria, only chemical shift data shall be dis- 
cussed and the relaxation times T~ and T2 will not be taken into consideration. 
Furthermore, to clarify the process, the chemical shift experiments are separated in- 
to two classes which differ in the magnitude of solvent exchange kinetics. In solutions 
of a few ions, e.g., A13+, Ga 3+, Be 2+ and Mg 2+, in a number of donor solvents, the 
lifetime, r, of the solvent protons in the solvation shell is sufficiently long (r > ca.i 
10-4sec), for two signals to be observed. With respect to resonance measurements of 
the ion nucleus the long lifetime of solvating molecules sometimes has the effect 
that several lines for an ion in a mixed solvent system may be observed at the same 
time. In the other class of experiments the exchange kinetic is fast (r < ca. 10 - 4  sec) 
and only one signal can be observed. 

If the lifetime of solvent molecules in the solvation shell of a cation is longer 
than 0.I msec, the solvation number n of the cation follows directly from the area 
of the NMR line for the coordinated molecules. In pure solvents, n is equal to 6 for 
A1 a+, Ga 3+, Mg 2+ and equal to 4 for Be 2+ 2, 91, 92). In mixed solvents the mean num- 
ber ff of  molecules of a solvent component coordinating a cation depends on the com~ 
position of the mixture. In mixtures of water and polar aprotic solvents A1 a+ is pref- 
erentially hydrated 92). In water-dimethylsulphoxide the line of DMSO molecules in 
the primary solvation shell of Al a+ is clearly separated from the line of free DMSO ~a) 
and the mean coordination number ff is accessible, ff depends on the mole fraction 
xH2o = 1 -- XDMSO in an unexpected manner: A13+ is preferentially solvated by 
water at XH2o > 0.8 and by DMSO at xH20 < 0.8. This special behavior of DMSO- 
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water mixtures has akeady been discussed in previous sections. 
Olander e t  al. 94)determined the solvation constants of the equilibria 

Ki 
AI(DMSO)6_(i_ I)(H20)~_+l + H20 ~ AI(DMSO)6_i(H20)i + DMSO 

from the mean coordination number ~ by a procedure introduced by Bjerrum 6s). 
Delpuech e t  al. 9s) adopted the same method to calculate solvation equilibrium con- 
stants for AI 3+ and Be 2+ in aqueous mixtures of organophosphorus solvents. Gener- 
ally, the accuracy o f f  and, therefore, of Ki is limited by the overlap of the lines for 
bound and free molecules. Under favorable conditions all ionic species which are dif- 
fering in the composition of the coordination shell can be observed separately, and 
all Ki values result from the integration of the various lines of coordinated molecules. 
The IH-NMR spectra of solutions with a behavior like this have been observed for 
Al(ClOa)a.water.acetonitrile97), Mg(ClO4)2.water.acetoneg8, 99) and AI(CIO4)3- 
DMSO-DMF-nitromethane. In the last example nitromethane acts merely as an inert 
diluent. In the 31P-NMR spectra of the system BeCI2 -hexamethylphosphoramide- 
water 9s) and in the 27A1-NMR spectra of the systems AI(CIOa)a-DMF-DMSO-nitro- 
methane lot) and A1 (Cl04)3-trimethylphosphate-DMSO-nitromethane 1o 1) all different 
solvates could be observed as separate lines. 

If the exchange of solvent molecules is fast (r < 10-4sec) the dependence of the 
chemical shift 8 on electrolyte concentration, solvent composition and temperature 
is interpreted in terms of ion solvation. The chemical shift difference ~ of the solvent 
protons in the presence and absence of an electrolyte is, generally, assumed to be the 
sum of three contributions: 

= p+~i + + p - / i -  + pO~O (43) 

p+, p -  and p0 are the fractions of solvent molecules in the cationic solvation shell, 
in the anionic solvation shell and of those in the bulk solvent. ~+, ~i- and 5 ~ are the 
chemical shifts of molecules surrounding the cation, the anion and in the bulk solvent. 
In dilute electrolyte solutions/i ~ is the chemical shift of the molecules in solution 
with zero concentration of electrolyte. Different methods have been applied to esti- 
mate either p+~i + or p - f -  in mixed solvents which permits the calculation of solva- 
tion numbers over the total range of mole fraction 46' 102). If the solvents differ re- 
markably in their strength to solvate an ion, the coordination number results directly 
out of the graph of 6 versus the ratio of moles coordinating solvent to moles electro- 
lyte. The slope of the curve changes appreciably when the mole ratio is roughly 
equal to the coordination number. Some results are collected in Table 4. The influence 
of counterions can be neglected when they are large and interact much weaker with 
the coordinating solvent. Thus, no break could be observed for (n-Bu)4NCl04 with 
DMSO in PC 10s), though LiCI04 as well as (n-Bu)aBr effect a change in the slope of 
the chemical shift graph near a 4 : 1 ratio. 

Cogly, Butler and Grunwald 1~ were the first who determined solvation equi- 
librium constants from chemical shift measurements. The chemical shifts of water 
in propylene carbonate containing various salts were extrapolated to zero water con- 
centration. The dependence of the chemical shift of water at infinite dilution in PC 
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Fig. 2. 27AI-NMR spectra of A1(C104)3 solutions in mixtures of DMSO and DMF in nitromethane 
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Table 4. Coordination numbers from mole ratio studies 

Mole ratios Electrolyte Solvent Method Ref. 

Acetone : Li + -~ 4.4 : 1 LiCl04, LiI Nitromethane IH-NMR, IR 104d) 
Acetone : Li + ~ 4 : 1 LiC104, Lil Nitromethane 23Na-NMR 106) 
PC : Li + ~- 4.2 : 1 LiCIO 4 Nitromethane 1H-NMR 105) 
DMSO : Li + - 2 : 1 LiCI04, LiI 1-Pentanol IH-NMR 104a) 
1M2PY : Li + - 2 : 1 and LiCIO 4 Dioxan fir 104b) 

4 : 1  
1M2PY : Li + ~ 4.5 : 1 LiCI04, Lil Dioxan 1H.NM R 104b) 
DMSO : Na + ~ 1 : 1 NaI 1-Pentanol 1H-NMR 104a) 
DMSO : Na + ~ 6 : 1 NaA1Bu 4 Dioxan IH.NM R 104b) 
1M2PY : Na + - 4 : 1 NaAIBu4 Dioxan IH.NM R 104b) 
THF : Na + ~ 1 : 1 NaA1Bu 4 Cyelohexane IH-NMR 103) 
DE : Na + ~ 1 : 1 NaAIBu 4 Cyelohexane IH-NMR 103) 
DMSO : NH~ ~ 2 : 1 NH4SCN 1-Pentanol IH-NMR 104a) 
DMSO : Ag + ~ 4 : 1 AgCl04 PC IH.NM R 52) 
DMSO : Ag + ~ 4.0 : 1 AgCIO 4 Nitromethane IH-NMR lOS) 
PC : Br -  --- 4 : 1 Bu4NBr Nitromethane IH-NMR 105) 
PC : I -  ~ 3.6 : 1 Bu4NI Nitromethane 1H-NMR lOS) 

DE = diethylether 
1M2PY = 1-methyt-2-pyrrolidone 
PC = propylene carbonate 
rHF = tetrahydrofurane 

on  salt concen t ra t ion  was analysed and under  mild  ex t r a - the rmodynamic  assumpt ions  

the molal  associat ion constants  for  several univalent  ions wi th  water  were evaluated.  

T h e y  are in good agreement  wi th  the solvat ion cons tants  f rom solubi l i ty  measure- 

ments .  The fo rma t ion  constants  for mono- ,  di- and t r ihydrates  o f  Li + could be de- 
rived. This publ ica t ion  has s t imulated a lo t  o f  fur ther  investigations 1~  116). 

In order  to  s implify the de t e rmina t ion  o f  free energies o f  transfer,  Covington  

eta/. 62) deduced  a relat ion be tween  AG o and the chemical  shifts o f  ions. It  is well  

k n o w n  that  the chemical  shift  o f  alkali meta l  and halide ions in mixed  solvents (e.g. 
A and B) is no t  at all l inearly dependen t  on  the mole  f ract ion xB = 1 - XA 117). I f  

the  chemical  shift, 8, at infini te  di lut ion is assumed to be an addi t ive  func t ion  o f  the  

con t r ibu t ion  8i o f  all ionic species, which  differ  in the compos i t ion  o f  A and B in the 

p r imary  solvat ion shell, Eq.  (44) is a re la t ion be tween  the chemical  and wi th  the 

d is t r ibut ion  o f  the  d i f ferent  ionic solvates I A n - i  Bi [Eqs.  (12)  and (17)]  

n 
= ~ DO-- i, i ~ i (44)  

i=O 

As the chemical  shifts 8 i are main ly  sensitive to the immedia te  env i ronment  o f  the 

ion,  i t  is obvious  that  the intrinsic shifts ~i o f  the various solvated species depend on 

the f ract ion o f  B in the solvation shell, 

i (45)  ~i = --~- ~B 
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6B is the chemical shift difference of the ion at infinite dilution in pure B and in pure 
A. o On_ i, i depends on the stepwise formation constants K i [Eq. (35)] and the activi- 
ty ratio y = [B]/[A]. As the solvent exchange is fast in all systems studied and only 
one mean resonance line can be observed, the n equilibrium constants Ki are un- 
known. Therefore, it is reasonable to suppose that the individual equilibrium con- 
stants are related entirely to statistical requirements. Thus, the n equilibrium con- 
stants are replaced by one constant/3 n = Kx " K2 �9 �9 �9 Kn [Eq. (32)] 

Ki =/3n l/n n + 1 - i i (46) 

If one considers Eqs. (17), (36), (44), and (45), 

8B 1 +/3nl/ny 
(47) 

A simple rearrangement of Eq. (47) leads to 

fin = L 8 [B] (48 )  

Eq. (47) has been used to determine/3 n from a plot of 1/8 versus 1/y 62' 117) 
One obtains a relation between AG O and the infinite dilution shift 6, if the first 

term on the fight hand side of Eq. (37) is simplified under the assumption that the 
relative concentrations of all individual ionic species correspond to the statistical 
distribution, 

1+ ~ 13i [B]i - (  [B]~ n (49) 
i=, [ - ~ -  1+fin l/n [ A l l  

Combining Eqs. (37), (48) and (49), 

AG o =--n RTln fib 6 B -- 6 n RT in XA 

+ ~ d~O . . s  . .'lelee tr~'O "~elec 
- - n - I ,  l X . ~ n - l , l . , ,  - -  ~ . ' J n , O )  

i=O 

(50) 

This equation corresponds to Eq. (28) of Covington et  al. 62) (Part 2), who found 
that AG o values from electrochemical and spectroscopic experiments agree satisfac- 
torily in mixtures of isodielectric solvents. Relations between AG O and 8 have also 
been treated which involve change of solvation number and nonstatictical distribution 
of the solvated species 62) . 
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IV. Transference Numbers 

Ion Solvation in Mixed Solvents 

In electrolyte solutions the transference or transport number of  an ion is often de- 
fined as the fraction of the current which it transports. But ion-pair formation or step- 
wise dissociation is the normal behavior and the effects observed, a moving boundary, 
or the change in concentration in an electrode compartment during a Hittorf experi- 
ment is the only information available; therefore one has to use the term ion constit- 
uent instead of the term ion as shown by Noyes and Falk ~ 18) and also by Spiro 119). The 
ion constituents of  an electrolyte are the ion-forming portions of the electrolyte mole- 
cule. In the following we are interested in ion-solvent interactions in mixed solvents. 
With few exceptions the dielectric constant ofnonaqueous solvents is smaller than that 
of water and full dissociation of electrolytes is the exception. However, the influence 
of ion association on the solvent transport is neglected, for the contribution of ion 
pairs is, in general, small and taking it into consideration, the experimental accuracy 
has to be muchbetter than to.days methods offer. While the ionic association con- 
stant is a well known quantity only at low electrolyte concentrations, the solvent 
transport numbers are obtainable by experiment only at higher electrolyte concentra- 
tions. 

Transference numbers are quantities which are treated in the thermodynamics of  
irreversible processes. In a continuous system, the average velocity vi of a species i 
related to a reference velocity 60, describes the diffusional motion of the species i. 
The diffusion current density Ji represents in moles/cm 2 sec the flow of species i in 
unit time perpendicular to a surface of unit area which by itself is moving with velo- 
city co 120). 

Ji  = ci (vi - r (51 ) 

where ci is the concentration of species i in moles per liter. Treating transference 
numbers, the fixation of the reference velocity co is quite important. In text books 
of thermodynamics of  irreversible processes 12~ 121), it is shown that the reference 
velocity ~o may be chosen such that the following relations 

= Y~ wl vi (52) 

r i = 1 (53) 

hold. The summation comprises all species i which one wants to consider. r are 
normalized weight factors. 

The transference number t i is the fraction of the total electric current density I 
carried by the i-th ion relative to the reference system chosen: 

z i F J i  _ z i F c  i (v  i - c o )  
t i -  ~ I (54) 

where F is the Faraday constant. The total electric current density is 

I = Z z i F Ji (55) 
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where the summation is over all charged species. Now, from (54) and (55) follows: 

~3 ti = 1 (56) 

With Eqs. (51) and (55) one obtains 

I = ~ z i F ci vi ( 5 7 )  

because of the condition for electric neutrality Z zi ci = O. As it is obvious from Eq. 
(57), the total electric current is independent of the reference velocity chosen. 

In electrolyte solutions with neutral solutes or with two or more solvent com- 
ponents, the flow of uncharged molecules in electrical transport experiments had to 
be taken into consideration. It is useful to introduce a reduced transference number ri. 
For one Faraday, ri moles of species i, charged (ion constituent) or uncharged, are 
transferred in the direction of positive current. The reduced transference numbers 
ri are defined as 

F Ji (58) 
r i -  I 

The relation between ri of a charged species i and its transference number t i is 

ti = zi 7"i (59) 

In the literature, several different notations for ti and ri have been used. Today, the 
terms transport number and transference number are used for ti side by side 122). 
Staverman 123) introduced the terms "reduced electrical transport number" for ri 
and "electrical transport number" for ti. Scatchard aa) called 7i a transference number 
and ti a transport number, while Agar 124) introduced the notation Washburn number 
if ~'i is referred to one of the uncharged components. The solvent transference num- 
ber A, which was introduced by C. Wagner ~2s), is a reduced transference number with 
the reference system fixed to the sum of moles of all solvent components. "Elektrische 
L6sungsmitteliiberf'tihrung", L(*), (electrolytic solvent transport) 12~ 126) originates 
in the proposal of  Nernst 127) to discriminate between solvent molecules in the solva- 
tion shell of the ions and the "free" solvent. L(*) is a reduced transference number 
referred to the motion of the free solvent. Inspection of Eqs. (54) and (57) shows 
that 7" i depends on the reference system used. This will be shown in the following 
section in more detail. 

a) A Binary Electrolyte in a Single Solvent 

Following Haase's treatment 12~ the transference numbers t i of the ions (i = +, - )  
of a binary electrolyte in a single solvent 1 (e.g. water) shall be discussed with respect 
to the Hittorf reference system and the Washburn reference system. 
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1. The Hittorf Reference System 

In this system the reference velocity chosen is the velocity vl of the solvent. With 
co = vl [Eq. (52)] and e l  = 1 [Eq. (53)] the diffusion current density of  the solvent 
Jtnis zero and 

j } l )  = z i F  (vi  _ Vl ) (i = +, - )  (60) 

The index 1 for the sole solvent has been used to facilitate the comparison with 
mixed solvents. The transference number 

tp ) - ziFJi (61) 
I 

is the well known Hittorf transference number. 

2. The Washburn Reference System 

The interaction of ions with solvent molecules suggests a more detailed picture in 
which during electrolysis the cations are transporting nl+ solvent molecules into the 
cathode compartment and the anions n l_  solvent molecules out of that region into 
the opposite direction. The residual molecules of the solvent, which remain unaffect- 
ed by the ion movement, are regarded as "free". nil = nl+, nl_ are total solvation 
numbers of the ions which differ from those in Chapter III. The transference numbers 
t~ *) referred to the free solvent (index *) are called "true" transference numbers 12~ 
The diffusion current density J}*) referred to the velocity v~ *) of the free solvent re- 
sults from Eq. (51): 

J}*) = ci (vi - v~ *)) (i = +, - )  (62) 

The "true" transference number t} *) follows from (54) and (62) 

t~,. ) = z|_F J~*) = z| F cl ( v | -  v~ *)) (63) 
I I 

The velocity vl of the total solvent is related to the velocity v~ *) of the free solvent 
by 12o) 

�9 (* )P(*)  + Z C i V i VlCl = "1 "~1 n l i  (64) 

The summation is over all ionic species i (i = +, - ) .  With 

c 1 = c ~ * ) + ~ n l i c i  (65) 

one obtains from (64) 
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CI(Vl -- V~ *)) = ~ nli  ci (vi -- v~ *)) (66) 

Now, the reduced transference number r l  [Eq. (58)] of  the solvent 

r~ , )_  F J[*)_  F c, (V'- v~ *)) 
I I (67) 

can be expressed as a function of  the solvation numbers. With (63) and (66) one 
obtains 

t~*) t(+ *) t(*) L~,) = - -  + n t _  - -  = (68) r~*) ~ nti  - ~ i  = nl+ z+ z_ 

The reduced transference number of  the solvent is equal to the electrolytic solvent 
transport L~ *) and may be calculated numerically only if t! *) or nl i  are known frcma 
other experiments. With Eqs. (60), (61), (63) and (66) a relation between t~ 1) and 
t! *) may be calculated: 

t}O - v i - v l  - 1 Vl -v~*)  

t~ *) V i --V~*) V i - -  V~ *)  

Zi Ci ~ nil  ci(vi -- v~ *)) 
- 1  

cl t~ *) I/F 

(69) 

From Eqs. (63) and (68) now results 

t (*) L~, ) i _ t( ,)  zi ci ti.(l) _t(.)_ -i - ziclci X nli  - ~ - - -  i - Cl (70) 

b) An Electrolyte in a Binary Solvent Mixture 

As before, the binary electrolyte is assumed to be fully dissociated. The subscripts 
used are i = +, - for the ions and k = 1, 2 for the solvent components, ni l  and n2i 
are the (four) solvation numbers. 

1. The Velocity of One Solvent Component as Reference Velocity 

Reference velocity r = v k 

With k --- 1, the transference number t! O follows directly from Eq. (54) on sub- 
stituting w = Vl : 

tO ) = z i F C i ( V  i - -  V I )  (71) i I 
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The reduced transference number r(21) of solvent component 2 is 

T ( I ) _  F C2(V 2-vl) 
I = w2 (72) 

With k = 2, the reference velocity is equal to the velocity of solvent component 2, 
co = v2, and one obtains analogously 

t(2) = Z i F c i ( v  i - v 2 )  
i I 

and 

7 ~ )  _ F e l  (v l  - v2 )  
1 I 

(73) 

w 1 (74) 

The reduced transference numbers 7(21) and r~ 2) are the Washburn numbers w2 and. 
wl introduced by Agar 124). In his discussion the movement of a neutral solute is 
treated with respect to the solvent. Later on, Feakins ~28) used Washburn numbers 
to explain the solvent transport in mixtures of two solvent components when the 
solvent mole fraction is varied between 0 and 1. 

Since the total electric current density I is independent of the reference velocity 

I = Z z i F ci(vi - v2) = Z zi F Ci(V i -- Vl)  (75) 

one may easily derive relations between the transference numbers and the Washburn 
numbers in the two reference systems: 

WI _ W2 

Cl C2 
(76) 

and 

t! I) t! 2) - ci 
W 2 = C i  Wl 

z i z i c 2 c I 

Eq. (76) is a relation first deduced by Feakins 128). 

(77) 

2. The Barycentric Velocity v m of the Solvent Mixture as Reference Velocity 

If  after termination of a Hittorf transference experiment the changes in concentration 
in the electrode compartments are referred to a fixed weight of solvent, the reference 
velocity 6o = Vm is equal to 

ClVlM 1 + c2v2M2 
Vm = ( 7 8 )  

c~M1 + e2M2 
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with MI, M2 the molecular weights of the solvent components. Eq. (78) follows from 
Eq. (52) with the weight factors Wk = CkMk/(ClMl + c2M2). From Eqs. (54) and 
(58) follows 

t(m ) = Z i F C i (V i -- V M ) (i +, (79) i I 

and 

r(km ) = F Ck (Vk -- VM) (k = 1, 2) (80) 
I 

As one can see immediately it is 

r(m)M, = -r(m)M2 (81) 

and from Eqs. (74) and (80) follows, e.g. 

c2M2 (82) 
7~ m) =w I clMi +c2M2 

and a similar combination adopting Eqs. (76) and (81). Only two out of several rela- 
tions between t~ m) and t~ k) are 

t~ rn)_ 1 clMlt~O+c2M2t! 2) (83) 

zi zi ClM1 + c2M2 

- t~O ciM2w2 (84) 
zi ClMI + caM2 

This relation was first deduced by Feakins 12a). 

3. The Veloci ty of "F ree"  Solvent as Reference Veloci ty  

With 

CkV k = C(*),,(*) + ~ nk icivi k *k 

and 

Ck = C(k *) + ~ nki Ci 

where the summation is over the ions (i = +, - ) ,  one obtains 

Ck (Vk -- V (*)) = • nkiCi (Vi -- v (*)) 
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a relation which was used previously to introduce the solvent transport number L(k *) 
in an electrolyte solution with only one solvent component .  A consequence of the 
assumption that one can differentiate between solvent molecules which are solvating 
the charged species, and "free"  solvent molecules, which remain unaffected by the 
passage of  the current, is the equality 

= v(:) (88) 

This identity means that the reference velocity co is equal to the " f ree"  solvent veloc. 
ities o f  both  components.  

co = v~ *) = v (*) = v (*) (89) 

The transference numbers t~ *) 

t(.) Z i F ci (vi - v (*)) (i = +, - )  (90) 
i = I 

and the reduced transference numbers r (*) of  the solvent components  k, where r(k *) 
is equal to the "electrolytic solvent transport" I ~  *) of  the solvent components  [com- 
pare Eq. (68)] 

r( . )  = F Ck (Vk -- V (*)) = L~.) (k = 1 ,2)  (91) 
I 

may be used to deduce several relations with corresponding quantities of  other refer- 
ence systems. As an example, only the following connection shall be cited 

C2 L (*) = ~ (L~ *) - w l )  (92) 

4. The Mean Molar Velocity ~ of the Solvent Mixture as Reference Velocity 

I f  after the termination of a I-Iittorf experiment the concentration changes are re- 
ferred to a fixed number of  total moles of  solvent molecules, the reference velocity 
is given by 

co = ~- - c lv l  + %v2 (93) 
C 1 +C2 

All quantities referred to V are labelled with a horizontal bar. The relation between 

t i  = zi F ci (vi - v-) (i = +, - )  (94) 
I 

and t~ m) shows that the difference is negligible, if  M 1 ~ M2 : 
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"ti = t~ m) -- Zi ci c2 (M2 - M I ) ri2) (95) 

The reduced transference number ~-1 of solvent component k = 1 

F el (vx - V) (96) 
T I -  I 

is easily brought into connection with the electrolytic solvent transport r [  *), if vl *) 
and v(2*) are added to or substracted from (v 1 -V) .  With the Eqs. (93) and (91) it 
follows 

rl  = x2 L~ *) - xl L(2 *) = -r2 = --A (97) 

This solvent transference number A was first introduced by Strehlow and Koepp 129). 
With Eq. (68) one obtains 

t!*) t!*) (i = +, -)  (9s)  A = x  1 Z n 2 i  z--~. - x z Z n l i  z--~- 

For a uni-univalent electrolyte A depends on the four solvation numbers nl+, nl_,  
n2+, and n2_ in the following way 

A = (xln2+ x2nl+) t(+ *) -- (xln2_ - x 2 n l - )  tr *) (99) 

In the solvation shell of the cation, eg. the excess of solvent component 2 over the 
respective concentration of 2, if the composition of the solvation shell is like that of 
the bulk, is given by 129) 

n~+ =x2 ( n2+ x2 Xl h i+)  (100) 

Similarly, the excess concentration of component 1 in the solvation shell of the an- 
ions is 

n~_ = x I x2 

xl ,  x2 are the mole fractions of the solvents. With Eqs. (99), (lO0) and (lOl) one 
finds 129) 

nVn~+ n~_ t (__, ~ (102) A = x~x2 t(+ *) + 
LX2 X1 

A is the concentration change of species 2 in the cathode compartment during a 
Hittorf experiment in the mean molar velocity reference system. As can be shown 
using Eqs. (82), (92) and (97), the following relations also hold 
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which was found by Spiro 13~ and 

A = xlr(TM) - x2r~ m) 
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(103) 

(104) 

A relation between Washburn number w I , e.g. and solvation numbers follows from 
Eqs. (91), (92) and (68) 

t(+ ) c, t (*) 
wl  =-~-+ (nl+ - ~2 n2+) - -~ -_  (nl_ - c2 c-L n2-)  (105) 

For a uni-univalent electrolyte one obtains with Eqs. (100) and (101) 

w 1 = t (*) n~+ -- t(_ *) n~_ (106) 

when n~+ and n~_ are the number of  moles of component 1, transported from cat- 
ion and anion, relative to component 2 per Faraday. 

c) Experimental Determination of Solvent Transport in Mixed Solvent Electrolyte 
Solutions 

Two methods have been used to obtain Washburn numbers w2, wl or solvent trans- 
ference numbers A. 

1. The Hittorf Transference Method 

During a Hittorf transference experiment in a mixed solvent electrolyte solution, the 
concentration of the electrolyte as well as the composition of the solvent changes in 
the electrode compartments. The determination of the solvent transport requires de- 
tailed analysis of the electrode compartment. This has been done using refractive 
index or density measurements 129' 131--133). As the time of electrolysis is limited, the 
variation in solvent composition is at most 1%. The solvent transference number is 
largest in the case ofheteroselective solvation when the cation is preferentially solvated 
by one component, the anionby the other. A is a function of four solvation numbers as 
shown by Eq. (99). With the assumption of a monotonic dependence of the solvation 
numbers on solvent composition and with reasonable maximum solvation numbers, 
all solvation numbers can be estimated semiquantitatively under favorable conditions. 
This has been done by Strehlow and Koepp 129) for AgNO 3 in H20-CHaCN mixtures. 
In agreement with numerous experiments with this system is4) Ag § is more strongly 
solvated by CHaCN, and NO~ more strongly by water. 

Heteroselective solvation was also found in the system ZnC12-N2H4-H20132). 
�9 The values of A remain much smaller in the case of insignificant selective solvation 
or of  homoselective solvation. Further experiments have been performed in mixtures 
of water with methanol lal, 133) and acetonitrile 132). 
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2. The Electromotive Force Method 

The solvent transport may also be obtained using emf measurements. As shown by 
Scatehard 38), the electromotive force of a concentration cell with transport may be 
expressed as 

a Eo F EF _ E~F , . . . . .  " 
RT RT ~ Pi In ai - f ~ Ti d In ai - ]~ Pi In ai (107) 

a' i i RT 

t# ' and " denote the region of the two half-cells. E~ and E o are the standard potentials 
of  the two electrodes, ai is the activity of species i and ri its reduced transference 
number, v[ and vi' moles of species i are formed on passing one Faraday. 

Feakins et at 128, tas) used concentration ceils with transference to get Washburn 
numbers. As water is nearly always the one component of the solvent mixtures used, 
in the following the abbreviation W and S for water and the non-aqueous solvent, 
respectively, shall be used. The emf of the cell (C) 

MCl(a ')  I MCI (a~) [ 
Ag-AgCI  W(a~v) ] W - S ( a ~ , , a ~ )  1 AgC1- Ag (c) 

follows from Eq. (107), whereby E~ = E~ and v~ = -1 ,  v~ = +1. Solvent S is assumed 
to be stationary and used as reference. 

F 
E_ ~ = In a'_ - In a" 

-ai"{ t(+S) d l n a + + z +  - d l n a _ + w w d l n a w  (108) 
Z_ 

With 
a tt 

in a'_ - In a"_ = - f ,  d in a_ 
a 

(lO9) 

one obtains 

a" RT a~v 
- - t  a•  -if-- a~v 

E_ 2R T  ,f, (+S)dln + f w w d l n a w  (110) 
F a +  t 

where aw is the activity of water in one half cell (a~v) or the other (a~,). A corre- 
sponding equation holds if water is used as reference. Since a• is referred to the stan- 
dard state in one special solvent (e.g. water), the free energy of transfer of MX must 
be known from independent measurements (r from the emf of a cell without trans- 
ference) to calculate the Washburn number. Furthermore, t(+ s) is set equal to the Hit- 
torf transference number which is reasonable within experimental accuracy. 

a': was adjusted to be approximately equal to a'• and the first term of Eq. (110) 
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could be neglected if the variation of the transference number t (s) was small. Otherwise 
a change of t+ over the region of the liquid junction was taken into consideration 128, 13s) 
In dilute solutions, aw is practically independent of the electrolyte concentration and 
Ww could be calculated from the second integral in Eq. (110). 

Washburn numbers of hydrochloric acid and of alkali-metal halides have been 
determined in mixtures of water with methanol 12a' 13s, 137, 139, 140), ethanoll4O), 
glycerol141, 142), dimethylsulphoxideiaS, 143) and dioxan 13s' 136). Ww depends on the 
"excess" hydration numbers of cation and anion and the transference number [Eq. 
(106)]. Therefore, in several systems the dependence of w w on mole fraction shows 
maxima and minima. Only in the case of marked heteroselective solvation a simple 
dependence on solvent composition is obvious. 

Another way of determining the solvent transport by emf measurements has been 
proposed by C. Wagner 12s). The two half cells contain two solvent mixtures of simi- 
lar composition which are both saturated with a sparingly soluble salt, e.g. a silver 
salt AgX. Though the chemical potential of AgX is the same throughout the galvanic 
cell with transport, the emf is different from zero since the chemical potential of the 
solvent is different in the two half cells and A moles of the non-aqueous solvent com- 
ponent are transported into the cathode compartment per Faraday. 

With the mean molar velocity V of the solvent mixture as reference velocity the 
reduced transference number of the non-aqueous component is equal to A, as shown 
in Eq. (97). 

The emf E+ of the cell 

Ag AgX(sat), , ] AgX (sat) I Ag 
W - S(aw, as) ] W - S(a~,, a~) 

I 

follows from Eq. (107) with" E o' = E o" and v+' = +1, v+" = -1 , 

(O) 

f 
r ~  

E+ RT - - l n a ~  - , f {  t + d l n a + - T _  d l n a _  + T w d l n a  w 
I1 

+T s d In a s } + l n  a~ (111) 

and 

E+-  

- aft  

a+ RT f { TW d in aw +Ts d in  as} 2RT f-~-_ d In a+- ---ff-- 
F a~- 

(1 12) 

With saturated solutions the first term is zero and only the second term has to be 
treated. 

With Ts = A = --~-w and the Gibbs-Duhem equation 

xwdtzw + xsd~ts = 0 (11:3) 

Where Xw, Xs are the mole fractions of water and the non-aqueous component S, it '  
follows from Eq. (112) 
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E+- RTF a f ~ l - x s  dlna s (114) 

Using the activity coefficient fs of the non-aqueous component, 

d In a s = d In x s + d in fs (115) 

for small differences between x~ and x~ the integral in Eq. (114) may be replaced by 
its average value: 

E+~ RT (x~--x~)A ( 1 +  O l n f s )  x s = l ( x ~ + x ~ )  (116) 
F ( 1 - X s )  X s 01nx s 

0ell (D) has been used several times to determine the solvent transference number & 
of the sparingly soluble salt Ag2SO 4 in the binary solvent mixtures: acetonitrile- 
water 144), dimethylsulphoxide-water s~ and dimethylsulphoxide-methano114s). In 
Fig. 3 the solvent transference number of Ag2SO 4 is plotted versus XDMSO = 
1 -- XMeOH. Additionally, the Washburn number WDMSO has been calculated using 
Eq. (97) and is also plotted versus XDMSO. With XDMSO ~ 1 the Washburn number 
wDmSO tends versus 4 and, though WOMSO is quite different from the coordination 
number of Ag + from nmr chemical shift measurements ag), the agreement of the 
results indicates that the contribution of the sulphate ion is of minor importance. 

 .o-t 

1.5 

1.0 

I WDMSO 4- 
x 

• 

3 

p 2 

0.5~ / / A ~ F-1 

0 r I I I I ' t 1 i I t [ 0  
o o 8  

• DMSO -- I - • M~OH 

Fig. 3. Solvent transport number, &, and Washburn number, WDMSO , for Ag2SO 4 in methanol- 
DMSO mixtures at 25 ~ 
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