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1 I n t r o d u c t i o n  

The Isometric Group of Nonrigid Molecules 

At the present time the conventional concept of molecular structure is appropriately 
based on the Born-Oppenheimer approximation l). Molecular structure is commonly 
understood as relative nuclear configuration, which may be considered as stable in 
the sense of one criterion or another. Many such structures may be characterized by 
a continuous set of nuclear configurations, which deviate only infinitesimally from 
each other (quasirigid molecules, sometimes called rigid molecules). Experimental 
research has revealed a large number of molecular structures which have to be de- 
scribed by a continuous set of nuclear configurations defined by structural param- 
eters (bond length, bond angles, dihedral angles, etc.), some of which vary over 
finite domains. Molecules of this type will be called nonrigid molecules. 

For quasirigid molecules a symmetry concept has been used very early in some 
branches of molecular research, e.g. stereochemistry z' 3). This symmetry concept was 
based on the concept of isometric mappings 4) and formed the basis of extended 
applications to molecular dynamics since 1930, developed first by Wigner s). 

Attempts to construct symmetries of nonrigid molecules have first been made 
by Hougen 6), Longuet-Higgins 7), and Altmann s' 9). All these procedures were based 
on the symmetries of the molecular Born-Oppenheimer operator, i.e. on the Schr6- 
clinger operator for a system of nuclei and electrons. In particular the Longuet- 
Higgins concept uses the intuitive concept of feasibility, which says that a permuta- 
tion of nuclei corresponds to a feasible operation, if the permutation corresponds to 
a path on the Born-Oppenheimer surface involving only points of low potential 
energy. Hence, the elements of the Longuet-Higgins group are permutations and 
formal combinations of permutations and inversion. The whole concept lacks well 
defined mathematical tools for determination of transformation properties of energy 
operators, multipole operators and functions of the dynamical coordinates. Never- 
theless, the concept has been applied to a number of specific examples, typical cases 
have been discussed by Hougen l~ but since its publication, the Longuet-Higgins 
concept has not been cast into a rigorous tool. Already before the Longuet-Higgins 
approach the symmetry of the rotation-internal motion problem of nonrigid mole- 
cules has been studied by direct investigation of the symmetry group of the rotation- 
internal motion hamiltonian. Typical examples of this direct approach have been 
given by Howard I l), Wilsonl2), Wilson et al. la). 

The method presented here has been motivated by the desire to find a method 
which starts from the geometrical description of nuclear configurations and replaces 
the feasibility concept by rigorous mathematical definitions. Furthermore, it allows 
the determination of transformation properties of operators and functions by the 
methods used generally in applications of group theory to quantum mechanical 
problems in strict analogy to the treatment of quasirigid molecules within the frame- 
work of the covering symmetry group (molecular point symmetry group). 

The approach presented in this contribution is a review of a method published in 
papers by Bander et al. 14) and Frei et al.ls, 16). It is based on the concept of the iso- 
metry of nuclear configurations and therefore may be considered as a natural general- 
ization of the concept of covering symmetry of rigid point sets to nonrigid point sets. 
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In Chap. 2 the construction of the isometric group of semirigid nuclear configura- 
tions is presented, starting from the geometrical definitions of a semirigid model. 
Furthermore, the relation between isometric groups and the permutation-inversion 
group will be discussed. A number of applications of isometric groups, in particular 
to the dynamics of the rotationqarge amplitude internal motion problem in classical 
and quantum mechanical formulation, to transformation properties of irreducible 
tensor operators and selection rules for irreducible tensor operators up to rank 2 
(Wigner-Eckart theorem) are discussed in Chap. 3. Use of the isometric group to 
stereochemical problems of nonrigid molecules is presented, in particular for ques- 
tions of chirality and classification of stereoisomers. In Chap. 4 relations of the iso- 
metric groups of semirigid models to the familiar symmetry approach for quasirigid 
molecules and to the symmetry groups of the associated nonrigid molecules are 
discussed. 

For Chaps. 2 and 3 a number of examples will be given. Furthermore, techniques 
used for practical calculation of isometric groups and their application to problems 
of molecular geometry and dynamics will be collected in a series of appendices. 

2 Cons t ruc t ion  of  Isometr ic  Groups  

2.1 Definitions 

By a nuclear configuration (NC) we understand the set of informations 
NC {Xk, Zk, Mk } consisting of the coordinates Xk, the masses Mk and charge num- 
bers Zk of the nuclei 1, 2 . . . . .  K of a molecular system. The coordinate vectors will 
be referred to a coordinate system, which will be defined when required. Important 
coordinate systems will be the laboratory system (LS, basis ~1) and the frame system 
(FS, basise'f). The latter is attached to the nuclear configuration by a prescription to 
be defined in each case. The relation between ~'l and e'f may be expressed by 

~ f x f ) =  ( e lO} ' [  D(e)O Xf]l (2.1) 

where D(e) = R(e) is a rotation matrix parametrized by the eulerian angles a/3-r 
(abbreviated by e), as defined in Appendix 1. X f stands for the origin of the FS with 
respect to the LS. For the dynamical problem X f will be chosen as center-of-mass co- 
ordinate of the NC. 

The relative nuclear configuration RNC {Xk(~), Zk, Mk) is defined as the set of 
informations determining a NC up to translations and rotations in ,~2~a, i.e. invariant 
with respect to transformations of the inhomogeneous three-dimensional rotation 
group IO(3). Conveniently the RNC is determined by internal structural parameters 
~1, ~2 . . . . .  ~a K-6 which are invariant with respect to (w.r.t.) IO(3). 

A molecule will be called rigid (quasirigid) if its internal structural parameters 
are constant (may vary only infinitesimally). The term semirigid model (SRM) will 
be used for a molecular model, whose nuclear configurations are defined by 
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1, 2 , . . ,  f~< 3I(-6 internal coordinates which vary over finite domains, whereas the 
remaining 3K-6-f coordinates remain constant. The introduction of the SRM 
is motivated by the fact that its isometric group is isomorphic to the symmetry 
group of the associated nonrigid molecule (NRM), i.e. to the molecule with the same 
f finite and 3K-6-f infinitesimal internal coordinates (cf. Chap. 4). In practical cases 
the number of finite internal coordinates does not exceed 3 or 4 and remains always 
small in comparison to 3K-6. 

If a NC of a SRM is considered from a suitably defined FS the coordinate vectors 
may be expressed as functions of  the internal coordinates ~l, ~2 . . . . .  ~f. The 
RNC {Xk(~), Zk, Mk} is then completely defined by the values of ~1 . . . . .  ~f and the 
constant structural parameters. Further classification of SRMs may be based on the 
2, 3 . . . .  rigid parts, whose relative positions are determined by the finite coordinates 
~l, ~2 . . . . .  Such parts are often denoted as frame (F), top (T), invertor (I), etc. 
Moreover each part may have its own local covering symmetry and the complete 
NC{Xk(~), Zk, Mk} may have a proper covering symmetry group ~ (~) for arbitrary 
values of the internal coordinates. Typical SRMs are listed in Tables 1,2 and 3. 

To each NC we associate a graph ~ {P(rrk(Zk, Mk)), K(dkk')}, consisting of the 
set P of vertices n k valued by charge and mass number of the nucleus k and the set K 
of edges (rrk, ~rk'), valued by the internuclear distance dkk'(~) 

dkk' (~) = I Xk(~) -- X k' (~)l (2.2) 

.-/Y" is a complete (universal) valued graph. In many cases it is sufficient to consider 
the graph J (P(nk(Zk)), K(dkk')} in which the vertices n k are valued by the nuclear 
charge only. This is appropriate in all cases in which isotope effects within the Born- 
Oppenheimer approximation may be neglected. 

2.2 Isometric Group of a SRM 

The isometric group of a SRM will be constructed from two subgroups: 
(i) internal isometric group Y ( ~ )  
(ii) covering group ~ (~) 

Since most of the nonrigid molecules treated so far may be described by a SRM 
whose covering group is the improper group C t, the internal isometric group is treated 
first. 

2.2.1 Internal Isometric Group J - (~ )  

From the definition (2.2) it is seen that the distances dkk' are functions of the internal 
coordinates. The set of transformations 

~' = F (~) (2.3)  

which map the graph ~ onto itself, conserving incidence, forms a group ~-'(~), the 
group law being the usual composition of functions. Mappings of the graph J onto 
itself are defined as 
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,A 

F ' P - + P , K ~ K  

~0rk(Zk, Mk)) = ~r~- (Z~, M~) ~ P, k , k ~ [ 1 , K ]  

where Z~- = Zk, M~ = Mk 
A 

F(dkk' (~)) = d~' (~) E K(dkk'), V dkk' (~) 

(2.4) 

(2.5) 

The transformations ~' = F(~) will be called internal isometric transformations. They 
transform any NC to a NC with the same set of distances. In many cases they may 
be expressed as linear inhomogeneous transformations 

,A 

To the isometric transformation (2.3) we will associate the operator PF, defined by 

PF h(~) = h(F-  1 (~)) (2.7) 

where h(~) is any admissible function of ~. Application of Pv to the substrate 
{dkk' (~)}, i.e. to the set of distances dkk' ordered in a row yields 

PF ~ }  = {'~kk' (F- '  (~))} = { ~  r ( ~f '~" )(F) (2.8) 

The last equation expresses the fact that the set of distances is mapped by ~F onto 
itself, therefore the matrix P( Jr ~ ) (F) is a permutation matrix of dimension 

( 2 ) ,  i.g. intransitive. The matrix group 

17( ~ ~ ) { S }  := (17( s ' e  )(F) [ E, F2, F3,.  �9 .} (2.9) 

is a representation of the isometric substitutions ~' = F ( 0  by permutation matrices. 
The symbol 3--(~) will henceforward be used as the abstract group J - ( ~ )  := 
{E, F 2 . . . .  ) represented either by 

I ~/~.~.~--) := { (A(oF) a(IF) ) VFG.7"(.~)I 
o r b y r  ( ~ ) { ~ }  := {r( ~ )(F) I V F E ~ ( O }  

(2.10) 

If the distances dkk' (~) E K(dkk') possess a common primitive period p w.r.t, the 
internal coordinates 

dkk, (~ + p) = dkk, (~), V k, k' E [ 1, K], (2.11) 

the coordinates involved in the transformations (2.6) have to be taken modulo their 
respective primitive periods. The implication of the existence of primitive periods 
will be discussed in Sect. 2.2.2. 

The operators PF, F E ~,~-(~) will next be applied to the basis {Xk(~)), i.e. to 
the (transposed) coordinate vectors referred to the frame system e'f ordered in a row: 
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PF {Xk(~)} = {Xk( F- 1(~))} = {'~k(~)) H(F) - P(a)(F) 
= (Xk(~)}" F(NCf)(F) (2.12) 

Thereby the matrix H(F) denotes a K-dimensional permutation matrix and P(3)(F) 
a 3 by 3 orthogonal matrix. The form of this representation follows from the fact 
that each isometric transformation maps the NC {Xk, Zk, Mk } onto a NC which by 
definition has the same set of distances, i.e. is isometric to NC (Xk, Zk, Mk}. Expressed 
alternatively, the nuclear configurations NC {Xk(~), Zk, Mk } and NO {Xk(F- 1 (~)), 
Zk, M R } are properly or improperly congruent up to permutations of nuclei with 
equal charge and mass for any F @ ~ ( ~ ) .  The set of matrices Eq. (2.12) forms a 
representation of ~-(~)  by linear transformations and will furtheron be denoted by 

p(NCf) (..~-} := {rl(F), P(a)(F) Iv F e,;~-(~)} (2.13) 

the index f indicating reference to the frame system. In general p(NCO ( . f }  decom- 
poses into transitive systems, since each subset of identical nuclei, which is mapped 
by all elements of . ~  onto itself gives rise to such a system. The group theoretical 
relation between SJ ( J ' }  and p(ncf) {~--) is an isomorphism 

~4{,~"} _is F(NCf) {j~.-} (2.14) 

The isomorphism strictly holds for SRMs without primitive period isometric 
transformations only (cf. Sect. 2.2.2). However, as will be shown in Sect. 2.2.2, the 
group theoretical relations derived in this section also apply for SRMs with primitive 
period transformations if Y is replaced by an appropriately extended group J - .  
The sets 

II{J"} := { I I ( F ) I V F ~ j ( ~ ) }  

and r (3) {,yf} := {P(a)(F) I VF E,_~(~j)} 

(2.15) 

(2.16) 

form each a representation of ~,~(~j). The first set consisting of all permutation 
factors of F (Ncf) ( ~ }  is isomorphic to the permutation group V( Jr ~r ) ( j - } ;  this 
follows from a theorem given by Harary 17), relating vertex and edge group of a 
complete graph. 

The group p(3) { ~ }  (abstract group ~ ) ,  consisting of all different rotational 
parts of V(Ncf) is a finite group of orthogonal matrices in .~  3 and must be a sub- 
group of 0(3). It therefore must be one of the point symmetry groups Cn, Sn, Dn, 
Car, Cnh, Dnh, Dnd, T, Td, Th, O, Oh. P (a) ( ~ )  will play an important role in most 
applications of isometric groups. It pictures the set of all orthogonal matrices, which 
map a reference NC on to all possible isometric NCs. 

In general the group theoretical relation between p(NCf) {j~} and F (3) ( Y }  
is a homomorphism 9: 

: F (Ncf) { ~  > r (3) {3U} (2.17) 

whose kernel is given by 

10 



ker ~ := { r l ( F ) .  1 (3) I F C j~-(~)} 

r (Ncf) (j~"} is r(3) ( ~ )  

ker 
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(2.17') 

(2.17") 

W.r.t. the structure of V (3) (~-l) the following two cases will prove important: 

Case a 

r (3) ( . ~ }  is properly orthogonal, I P(a)(K)I = 1, V K E f f f  (2.18) 

Case b 

r (3) (.~e') is improperly orthogonal, then one may write 

r (3) (~gf} = p (3) (9/~+ ) u P(3)(T) r (3) (.~e -+ } 

where r (3) ( N  +) := (P(3)(K) I K • ~" ,  I P(a)(K)I = +1} 

and I I'(3)(T)l = - 1  

Therefore I p(3)(ff/,} no ~'2 

(2.19) 
(2.20) 

(2.21) 

These group theoretical relations will find numerous applications in Chap. 3 and 
in fact are important in all applications of isometric groups. 

In the study of the dynamical problem of SRMs the transformations of eulerian 
angles induced by isometric transformations of the frame system will be required. 
This leads in a natural way from the group r(a) (97-) to the group A (3) (if-f), defined 
as follows: 

Case a 

(2.22a) A(3) (Jz") - r (3) ( ~ )  

Case b 

We have to distinguish between the following possibilities 

(2.22bl) 

1) p(a) {~r )  = p(3) (~7. +) O Z .  F (3) (~'~-) 

where Z = - 1 ( 3 ) ,  

then A (3) { J )  - r(3) {~ .+  ) 

2) r (3) ( ~ )  -- r TM ( y + )  u rO)(T)r  (3) ( ~ + )  

but Z ~ r(3)(T)r (3) ( J +  

then any element of the coset may be written as a product of Z with a properly 
orthogonal matrix. P(a)(T) may then be written as 

1 ~2 denotes the two-group. 

11 



H. Frei, A. Bauder, and H, Giinthard 

ro)(T) = z -  R, R E SO(3), R ~ r (3) } 

Hence 

p(3) {~gf} = p(3) { ~ +  } U Z-  R" r (a) { ~ +  } 

and 

A(3) { ~ )  = r (a) {.W*} u R .  r (3) { .~+} is p(3) {~K} (2.22b2) 

A (3) { ~ }  is always identical with a finite subgroup of S0(3). 
In Fig. 1 the groups ~/{.a~}, P ('~ ' : )  (~r-}, F(Ncf) (.~"}, r(3){.~,') and 

A (3) {.:Y:} are shown together with their group theoretical relations. 

2. 2.1.1 Transformation Group of  the Dynamical Variables. The transformation 
groups p(NCO {j~-}, p(3) {if:} and A (3) { N }  all refer to the frame system'e "f. By 
means of the relation between the frame and laboratory system Eq. (2.1) they may 
be used to define the transformations of the eulerian angles as follows: 

1) with each transformation F(3)(F) C p(a) { j : }  we may associate a basis trans- 
formation 

l ~ Ff~I / ,s Jl~s o \ ~- F '[ZI 

P{]) ,s .4FJ7 '{~" 

\ \ r w /  .o,/ 

Fig. 1. Group theoretical interrelations between representations of the isometric group. 
Key: For SRMs with primitive period isometric transformations the isomorphisms hold strictly 

for the representations of ~ ,  w ,  ~: and ~-, but .d { j }  is homomorphic onto 
r ( ~ -  ){~) i_Sr (J~e  ) { : }  

12 
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"r =~f ' r  (3)(F), F E ~ (2.23) 

and the contragredient coordinate transformation 

(X') = PO)(F)(X) (2.24) 

2) accordingly one may associate the transformation 

"~f' ='~'l D(e) P(a)(F) =~ID(e')  I P(3)(F)I (2.25) 

which implies 

D(e') = D@)r(a)(F) t P(3)(F)I 

or 

D(e') = D(e)P'(a)(F) if I P(X)(F)I = +1 (2.26) 

D(e') = D@)R(F) if I F(3)(F)I = - 1  (2.26') 

where R(F)=  P(3)(F)Z 

The Eqs. (2.26) define transformations of the eulerian angles 

e' = e'(e, F) (2.27) 

which in most practical cases are linear inhomogeneous 

The proper set ~ ( ~  

(~,~} := ( ~ ' (F ) IV F E ~ )  (2.29) 

forms a group, which is isomorphic to A (3) {~W'} 

{._~.} i=s A(a){Jz"} (2.30) 

From the Eqs. (2.17), (2.22) and (2.30) we obtain 

p(NCf) {~-} ho ~ ( ~ }  (2.31) 

Next we consider the direct sum of the two transformation groups Sa/{j~'} and 
(3 - ) .  In the case where both these groups may be represented by linear inhomo- 

geneous transformations according to Eqs. (2.6), (2.28) this leads to the matrix group 

13 
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0 b(F) 1 

A(F)0 a(1F)JI VF ~ Y  

It follows directly from Eqs. (2.14) and (2.31) that 

d { . f }  _ho ~ {._f.} 

Therefore, 

( ~ (F) �9 J (F) I V F ~ ~ "  (~)} = r (~-~} ~ ~ [  { f }  

and by Eq. (2.14) 

r{.,~.~. J=S I~NCr) {,..::~ } 

A very important relation is 

rL~-} ho to)  (~--} 

and, therefore, for ease b SRMs 

r { ~ }  ~o~  

These relations are symbolically represented in Fig. 1. 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

14 

2 1 denotes a unit matrix of dimension ( 2 ) " 

with dkk' (~ + p) = dkk'(~), Vk, k' E [1, K] (2.11) 

but {,Xk (~ + P)] :/: (Xk (~)}. Thereby p denotes the primitive period of  the distances. 
Isometric transformations of  this type will hereafter be called primitive period iso- 
metric transformations. Equation (2.11) expresses that Fp maps the graph .A ~ 
identically onto itselt q 

2.2.2 Primitive Period Isometric Transformations 

The investigation of the set of distances {dkk' (~)} w.r.t, isometric transformations 
in many cases leads to transformations of the type 
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(K) 
P(~C)(Fp) = 1 2 (2.40) 

However, NC (Xk(~), Zk, Mk} and NC {Xk(~ -- p), Zk, Mk} are not identical, 
but may be mapped onto each other by a nontrivial element of 0(3). Associating 
operators PFp with primitive period transformations of type (2.39) allows to express 
this relation by 

PFp {Xk(~)} = (Xk(~- P)} = (Xk(~)} 1 (K) | r(3)(Fp) 
= {Xk(~)} p(NCf)(Fp) 

where F(3)(Fp) ~: 1 (3), lP(3)(Fp) E 0(3) 

(2.41) 

Therefore, 

o 
F(Fp) = I (f) ~ I (f+4) (2.41') 

Whereas the group ~-  and its representations are relevant and sufficient for 
problems which are completely defined by relative nuclear configurations (RNCs) 
of a SRM, primitive period isometric transformations have to be considered as non- 
trivial symmetry operations in all those applications where the orientation of the NC 
w.r.t, the frame and laboratory coordinate system is relevant, e.g. the rotation-internal 
motion energy eigenvalue problem of a SRM. Inclusion of such primitive period 
operations leads to the internal isometric group Y ( ~ )  represented faithfully by 

~r ( y }  := { ( A ~ F ) a ( ? ) )  IVF E y ( ~ )  } (2.42) 

For SRMs with nontrivial primitive period transformations one has thus to 
distinguish between two types of internal isometric groups: :~" (~) and ..3~(~). The 
former group is defined as the abstract group of the representation P(~:~ ) ( J -}  
on the distance set [Eq. (2.9)] and does not include primitive period transformations 
by virtue of Eq. (2.40). ~- is  alternatively defined as the substitution group ~/{,:~") 
[Eq. (2.10)] in which the internal coordinates are taken modulo p (cf. Sect. 2.2.1 ). 
For SRMs with primitive period transformations neither F (Ncf) nor F necessarily 
contain subgroups which are isomorphic to ~ ( ~ ) .  However, the isomorphisms be- 
tween ~ :  and p ~ c 0  and d P ( 3 - }  [Eqs. (2.14) and (2.35), Sect. 2.2.1 ] hold 
always for J - (~ )  

5/{~,~) is F(NCf) ( y }  (2.14') 

5~ [ ;~ )  is F ( ,~} (2.35') 

The group J { y }  generates the whole set of representations p(NCf) (..~), 
F (a) ( S )  etc. according to the innermost circle of Fig. 1. 

15 
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At the present time the following two cases concerning the group theoretical 
relation between S a n d  ~ have been observed 
(1) J -  is a cover group of Y ,  i.e. 

~_ho .~- 

(2) .Y-is at "the same time a subgroup of 5 - ,  i.e. 3 

S c  .7 ,  S end 5= 

(2.43) 

(2.43') 

It should be pointed out that the occurrence of primitive period transformations 
is closely connected to the choice of the internal coordinates or equivalently to the 
choice of the frame system. Expectation values of all observable quantities whether 
dependent only on the RNC or dependent on the NC of a SRM must be independent 
of the choice of internal coordinates (frame system). If introduction of a certain 
internal coordinate (frame system) gives rise to a primitive period transformation and 
as a consequence to an extension of ~,~to S ,  then still observable quantities should 
be classifyable according to the symmetry group J - ' .  

2.2.3 Covering Group ~ (~) 

SRMs often exhibit nontrivial covering symmetries (in the sense of covering sym- 
metries of a rigid point set) for arbitrarily chosen but fixed values of the internal co- 
ordinates ~. It is evident that such covering operations are isometric mappings of a 
point set onto itself and therefore have to be included in the full group of isometric 
transformations. The groupof  covering operations will be denoted by ~ (~). For the 
definition of  the operators Pc,  G E ~ (~), acting on the coordinate vectors we con- 
sider a subset of equivalent nuclei in general site w.r.t. ~ (~) whose coordinate vectors 
are generated from a representative nucleus by the mappings 

(XGR) = F(3)(Gk)(XE), Gk E ~ (~)  (2.44) 

the nuclei being labeled here by the group elements Gk- The covering group ~ (~) 
is defined by the set of coordinate transformations 

(X') = P(a)(G)(X) (2.45) 

that means the abstract group c_j (~) = {E, G2 . . . . .  GI~I} 4 is defined by the matrix 
group 

{I-'(3)(G)I(X ') = p(3)(G)(X)} (2.45') 

end 3 = Denotes endomorphic. 
4 I'r I Denotes the order of the group fr (//). 

16 
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The basis transformations associated to the coordinate transformations (2.45) are 

~'f' =~'fP (3)(G) (2.46) 

To the coordinate transformations (2.45) there are associated operators ~a,  defined 
by I 8) 

PGf(X) = f(r(a)(G) - ' ( x ) )  (2.47) 

Using this definition we get for one vector 

~G ~ = ( ~ ) )  = ,X P(a)(G) (2.47') 

and, if Pc is applied to the set of coordinate vectors (2.44) arranged in a row 

{XGk(~)} = {XE(~), XE(~) " F(a)(G2) . . . .  } (2.44') 

we get 

Pc {xok(~)} = {,xck(O �9 r(a)(G)} = {Xck(~)} I'~' | P(a)(G) (2.48) 

The set of matrices 

{1 t~', | p(a)(G) i VG E ~(~)} ~ '.4 (~) (2.49) 

forms a faithful repre~ntation of the covering group cff (~). Because Xck " P(a)(G) 
represents the vector XGk G according to Eq. (2.44), the transformation (2.48) may 
equally well be expressed by a permutation 

~G {XGk(~)} = {XGk(~)} I I ~l | p(3)(G) = {XGk(~)} A(G) ~ 1 (3) (2.48') 

where A(G) denotes ale,ill dimensional permutation matrix. However, the matrix 
group 

{A(G) ~ 1 (3) IV G E ~--g(~)} (2.50) 

is antiisomorphic 19) to cg (~) defined by the matrix group (2.45'), i.e. 

A(G2) A(GI) = A(G1G2) (2.5 I) 

as may easily be proved by calculating PG PG1 (-XG (~)}20) On the other hand the 
2 k " 

group of matrices 

{II (G) ~ l(a) IV G E cfl (~)} is @ (~) 

with II(G) = A(G-1), V G e ~ ( ~ )  

(2.49') 

(2.52) 

17 



H. Frei, A. Bauder, and H. Giinthard 

forms a faithful representation of cff (~) by permutations, as follows directly from 
Eq. (2.51) 

A(G~- 1 ) A(G]- 1 ) = A((G2 G 1 )-  1 ) 

therefore II(G2) II(Gt) = H(G2G1) 

(2.51') 

For a set of equivalent nuclei in general site the matrices II(G) are identical with 
the right regular representation matrices 21).if the nuclear position vectors of all K 
nuclei of a SRM are included in the basis (Xk(~)}, YI(G) denotes a K by K permuta- 
tion matrix. In addition to the matrix groups (2.49) and (2.49') the set 

r (NcO (~'} := (II(G) ~ rO)(G) Iv G E cff (~)} is (if(G) (2.49") 

forms a faithful representation of the covering group cj (/j) since both factors of the 
direct product form groups isomorphic to ~ (~). Thereby, all elements of F (Ncf) ( ~  } 
map each coordinate vector identically onto itself, of. Eq. (2.48') 

~6~G t (Xk(~)} = (Xk(~)} = (Xk(~)} A(G -1) ~ r(3)(c) 
= (Xk(~)} II(G) | P(3)(G), VG e ~ (~)  

(2.53) 

The group (2.49") will prove important for the construction of the full isometric 
group, of. Sect. 2.2.4. 

From the definition of covering symmetry which basically rests on the concept 
of the isometric mapping of a point set onto itself, it is evident that the operators 
Pc map the distance set (dkk'(~)} onto itself by intransitive permutations: 

PG ( ~ }  = (dkk'(~)} r ( . '  ~)(G) 

The set F ( ~  ~) (eft} := ( r (~ ) (G)  IVG e ~(~)} 
(2.54) 
(2.55) 

forms an intransitive representation of ~ (~) by permutations. In analogy to the rela- 
tion between r (~r~) {~ '}  and II (j,~-} one has by the same argument (cf. Sect. 2.2.1 ) 

(2.56) 

where the group II(c:g} is defined by the set of matrices II(G) Eq. (2.49'). 
Starting with the representation P(NCf) (c~,} one may now construct representa- 

tions of ~ (~) on the various svbstrates in strict analogy to the procedure applied for 
the internal isometric group 5-(~). The various steps of the construction are sym- 
bolized on the outermost circle of Fig. 1. This leads successively 

(i) from r (Ncf) {c_~) to r (3) ( ~ ): 

]-,(3) {~j} := (F(3)(G) IVG ~ ~ (~)) (2.57) 

(ii) from p(a) (rff} to A(3) (cff}, where one has to distinguish between 

18 
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Case a: 

V (3) {~} properly orthogonal, hence 

F (3) { ~}  -- A(3) { ~ )  (2.58) 

Case b: 

P (3) { ~ )  improperly orthogonal, hence 

p(a) ( ~ }  = l-,(a) {~+) U I~(a)(T)P (a) (~+)  where I l-'(a)(T)l = -1 .  In this ease 
r(3) } _ho (2.59) 

There exists an analogous differentiation of subcases b 1 and b2, as has been discussed 
in Sect. 2.2.1, Eqs. (2.22b). 

(iii) from A (3) ( ~ )  to ~ ( ~ )  (in analogy to the transition from A (3) {~,~) to 
(.J ')): 

(c_H > := { ( ; ' ) =  (B~G) b(iG)) ( ; ) ' V G E  cg(~)} (2.60) 

where the transformation of the eulerian angles e are induced by the basis transfor- 
mation Eq. (2.46) defining the covering operation and the relation 

~# =~ID(e)~(a)(G ) --~ID(e'))rO)(G)l (2.61) 

(iv) from ~ ( ~ )  ands~(cg) to l-'(cff}: 

= . 1(0 . ~ [VG E '~(~) I (2.62) 

since by definition 

vC qr (2.63) 

in agreement with the conventions proposed above w.r.t. ~ (~). Again the group 
P{~} will prove important in the consideration of the rotation-internal motion 
problem of SRMs. 

Typical examples for SRMs with proper covering group are listed in Table 3. 

2 2 3 . 1  Fixed Points o f  Isometric Transformationz In many SRMs special values 
of the internal coordinates ~ occur, which define NC {Xk, Zk, Mk ) of higher covering 
symmetry than ~ (~); if gF is such a point in the parameter space, then 

cg (~) Ccg (~v) (2.64) 

19 
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The relation of such special points to internal isometric transformations may be 
derived as follows. 

Assume the internal isometric transformation 

to have a fixed point, i.e. the equation 

(~i)= (A~ F) a(iF)) (~i) 

or 

(A(F) - 1 (r)) ~ + a(F) = 0 (2.65) 

has a solution ~F. As a consequence 

PF (Xk(~F)) -- (Xk(~r)} = (Xk(~F)) II(F) | F(3)(F), 
(Xk(~F)) II(F-l) | 1(3) = {Xk(/JF)) I(K) ~" r(3)(F) (2.66) 

The last Eq. (2.66) implies that the mapping on the right hand side generates merely 
a permutation of  the coordinate vectors, i.e. r(3)(F) must be a covering operation of 
the NC (Xk(~F), Zk, Mk }. One therefore may state that every fixed point is connected 
to a covering symmetry operation not contained in ~ (~). If F E . f ( ~ )  is an isometric 
transformation with fixed point, then also the period of F 

. ~  (F) := (F k, k = 1, 2 . . . .  } (2.67) 

has the fixed point ~F. Furthermore, if two different isometric transformations have 
a common fixed point, then the whole group ~" {Fi, Fk) generated by the two trans- 
formations has the same fixed point. Any such group ~ must be a subgroup of 5-'(~): 

~ ( F i ,  Fk} C ..~(~) (2.68) 

It should be pointed out that the fixed points play an important role in geometrical 
application of isometric groups, e.g. stereochemistry, of. Sects. 3.4 and 3.5. 

2.2.4 Full Isometric Group ~,,~(~) 

The two groups t~~(~) and cff (~) generate an abstract group X ( ~ ) ,  whose representa- 
tions ~ -  ~e) (oq~}, p(NCf) {oq~}, F(3) {_~} . . . .  are generated by the pairs of cor- 
responding representations of ~-'and ~ indicated on the innermost and outermost 
circles of the group diagram Fig. 1. The diagram shows the relationship of the various 
representations of ~ ' (~ ) .  

20 
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In Sect. 2.2.2 we have shown that if a SRM admits pri__mitive period isometric 
transformations, representations of two groups ~-" and ~ - m a y  be derived. Extension 
of a representation of .~- by ~ leads to the c__oorresponding representation of r 
whereas extension of the representations of ~J- by ~ gives those of ~ The use of  

or ~ d e p e n d s  on the problem to which the isometric group is to be applied, as 
has been pointed out in Section 2.2.2. In order to simplify the notation we shall for 
general discussions not distinguish between the representations of ,~/and ~'~. 

The structure of the group ~ ( ~ )  may be derived by considering the solutions 
of Eq. (2.12). This equation admits Iqfll solutions for each F E &~-(~) which by aid 
of Eq. (2.53) may be written as 

~v {Xk (~)) = PoP~,' PF (Xk(~)) = {Xk(~))A(G-') H (F) ~ F (3)(G) F(a)(F) 

= {,Xk(8))II(G)H(F) v ['(3)(G)p(a)(F) 

VG E ~ (~5) (2.69) 

Therefore, the internal isometric group J~-'(~) generates on the position vectors of the 
nuclei a set of I~_g I- 15-1 matrices 

{H(G) n(F) | P(3)(G)F(3)(F) I VG E ~ (~), VF E ~"(~))  (2.70) 

For E E ,2"~(~) we have 

A 

PE (Xk(~)} = PGP~,' (Xk(~)} = (Xk(O} = (Xk(~)) II(G) * F(3)(G), 

VG e c g  (~), cf. Eq. (2.53) 

The set of  matrices II(G) v V(a)(G), i.e. the group p(NCf) ( ~ }  Eq. (2.49") forms an 
invariant subgroup of the group generated by the set (2.70). This follows directly 
from the definition 

~ A A A 

PFPG~GIPF 1 = PE (2.71) 

and is verified explicitely by the equation 

A A A A " ~  

PFPGP~,IPf I (Xk(~)) = (Xk(~)]-  I-I(F) | P(3)(F)II(G) | P(3)(G) " II(F -1)  ~ F(a)(F - l )  
"~  ~"  ~ l = PFPGPc, {Xk(~)} H (F-  1 ) ~ [,(3)(F- t) 

= ~v {Xk(/~)} II (F-  l) ~ P O)(F- 1) 

= (Xk(~)) (2.71') 

Thus 

n ( F ) n ( G ) n ( F - ' )  ~ r(3)(F)r(3)(G)r(3)(F-') = 

= II(G') * F(3)(G') E F(NCf) { ~  ) 

n (F )n (G)n (F - ' )  = n(G') e n { ~ )  

F(3)(F) F(3)(G) r(3)(F- 1) = F(3)(G,) r 1-,(3) (cff) 

(2.72) 

(2.72') 

(2.72") 
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The set of solutions (2.70) defines the representation r(NCf) { ~ )  of the full isometric 
group ~,'~(~) on the nuclear position vectors referred to the frame system 

F(NCf) flU} := (If(H) | P(a)(H) I VH 6~(~)} is ~ , (~ )  (2.73) 

The decomposition of r (NCf) (c~ ,r modulo the invariant subgroup p(NCf) (~}  defines 
a factor group isomorphic to the internal isometric groupo~" (~) 

p(NC0 (~,~} I ~ l  
- u r (Ncf) { ~ }  P(NCO(Fk) is ~ ( ~ )  

r (Ncf) ( ~ }  k: l  
(2.74) 

As will be shown below [Eq. (2.80)] there exists always a subgroup p(NCf) {~-} 
in p(NCf) { N }  isomorphic to this factor group. Therefore, Eq. (2.74) suggests the 
following important theorem: 
The representation p(NCf) (~,~) (abstract group ~-~) is a semidirect product of  
p(NCf) {c_g} (abstract group eft) and r(Ncf) (-5-} (abstract group J, ~ )  

p(NCf) ( ~ }  p(NC0 {J -}  = r(NCO { ~ }  p(NC0 {eft } = p(NCf) {fl~} 

(~) "Sff)=~,~-(~)-  ~ (~) = ~ ( ~ )  (2.75) 

The proof of  this theorem rests on the homomorphism 

: p(NCf) (~~ } > r(3) ( s }  

ker ~ := {II(H) * 1 (3) IH E ~t~(~)} 

(2.76) 

where p(a){ .~}  (abstract group . ~ )  denotes the set of all different rotational parts 
P(3)(H) of p(NCr) (,,,~} 

r (3) ( y }  := {l"(a)(H)l VH E ~ ( ~ ) }  (2.77) 

The homomorphism (2.76) maps the invariant subgroup r (rico (cg } onto r (a) (c5 }, 
which by virtue of Eq. (2.72") and homomorphy theorems must be a normal sub- 
group of r (a) { _9 ~} 

r (3) {~d} ~ r (3) ( -~}  (2.78) 

Since r (3) { 5 '~} is a point symmetry group (subgroup of  0(3)),  it has the property 
to be generated as a semidirect product of two subgroups 

r (3) {_~} = r(3) {~, } r(3) { ~ }  

r (3) { ~ }  is r(3) { ~ )  c r (a) ( ~ }  
r (a) (~d} 

(2.79) 

i.e. 1 -'(a) {fit"} is an endomorphism of 1"! 3) {_~}. The inverse homomorphism (2.76) 
defines the representation F(Ncf) (J~-} ~ 5- (~)  
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~ -  l (r(3) {~,-}) = r(NCf) {~-]  c p (NcO ( ~ }  (2.80) 

On the other hand, by the first isomorphy theorem 22) 

~- 1 (r(3) ( ~ }) _ r (NCf)  { ~ }. ke r  (2.80 

Eqs. (2.76)-(2.81) imply that 

r (NCf) ( ~ }" r (NCf) {~-} = r (NCf) {c~f } 

F(NCf) (~,e} is F(Ncf ) ( ~ }  Q.E.D. 
r(Ncf) { ~  } 

(2.82) 

From Eq. (2.82) the semidirect product structure of any other of the representa- 
tions o f ~  ~' listed in Fig. 1 may be derived by the first isomorphy theorem 22). For 
example for the representation 

r ( ~ )  := [i:] } = A(H) a(H) IVH E ~,~(~) 
1 

(2.83) 

i.e. the transformation group of the eulerian angles and the internal coordinates we 
have 

r { ~ } .  r ( j r }  = r ( ~ ) -  r ( ~ }  = r ( ~ }  (2.84) 

The group F{~, a} will be found important for the symmetry of the hamiltonian 
of the rotation-internal nuclear motion problem associated with SRMs (Sect. 3.2). 
In particular its homomorphism to I "(3) {.~} 

(2.85) 

will be relevant for a general formulation of Wigner-Eckart type theorems for irreduc- 
ible tensor operators connected with SRMs, cf. Sect. 3.3. For p(3) {.~} we may 
distinguish again SRMs of case a, bl and b2 in strict analogy to r(3) { ~ }  Eqs. (2.18)- 
(2.22). Therefore, for case b S1LMs 

V{.~} - 2 (2.86) 

2.3 Relation Between the Isometric Group and the Permutation-Inversion Group 
(Longuet-Higgins Group) of Nonrigid Molecules 

In this section a relation of the isometric group approach to the permutation-inversion 
group of nonrigid molecules, introduced by Longuet-Higgins 7), will be established. 
Such an interrelation is obtained in a natural way, if the isometric transformations 
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are applied to the substrate consisting of  the coordinate vectors Xk (e, ~) referred to 
the LS -~l. According to Eq. (2,1) 

x~ (e, ~) = ~(e)xk(~)  (2.87) 

2.3.1 SRMs with cff(~j) =C~ 

Using the general transformation formula for rotation group coefficients derived in 
Appendix 2 

P~,R(e) = R,(F) R(e) (2.88) 

we find for any F E ~ -  

PF (Xl(e, ~j)} = PF (Xk (~j)) 1 (K) | R(e) 

= (Xk(O) ( r i f t )  | F(S)(F))(1 (K) * R(F)R(e)) 

= (~k(e, ~)) (1 (K) | R(e))(n(F) | rO)(F)) (1 (K) | R(F)R(e)) 
= ( ~ ( e ,  ~)}n(F)  | R(e)r~3)(F)R(F)R(E) 
= (X~,(e, ~)} n(F)  | l(s) l r(3)(F)I = (X~,(e, ~)} r(NCO(F) (2.89) 

since F(a)(F)R(F) = I P(a)(F)I 1 (3) 

The index I indicates that this representation refers to the position vectors expressed 
in the laboratory coordinate system. The last equation may be commented upon as 
follows: 

(a) (i) if F (F) is properly orthogonal, the isometric transformation F E S ( ~ )  
induces on the substrate (X~} merely a permutation of the coordinate vectors of a 
set of equivalent nuclei. 

(ii) i f  F (3)(F) is improperly orthogonal, i.e. if I P(a)(F)I = -1 ,  F E ~- induces  a 
permutation and an inversion of the coordinate vectors of a set of equivalent nuclei. 
Hence, the representation 

r (Nco ( ~ - }  := (H(F)  ~ I E(a)(F)I 1(3) 1VF EJ-(~)) (2.90) 

is an analogue of the permutation-inversion group _~ ~ (Longuet-Higgins group). 
More explicitely we have the mapping expressed in Table 4. 

2.3.2 SRMs with Proper Covering Group if,5 ( 0  

Application of the operators P~ to {X~(e, ~)) gives 

PG (X[(e,/5)} = (Xk(~)} r(Ncf)(G) I(K) e R(G) R(e) (2.91) 

Use of the Eq. (2.49") for p(NCO(G) leads, in strict analogy to Eq. (2.89) to the set 
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Table 4. Relation between the isometric group and 
the permutation-inversion group 

I p(a)(F)I  r(NCO(F) ~,,~ 

1 1 (K) | i (3) E 
1 n(F) | 1 (3) P 

-1 1 (K) | (3)) E* 
-1 H(F) | (-1 (3)) P* 

P (Ncl) {~ } := {II(G) | I P(a)(G)I l(S) l VG ~ ~ (~)) (2.92) 

It is of the same form as F (Ncj) (~v'} and forms the analogue of the Longuet-Higgins 
permutation-inversion operations associated with covering symmetry operations of a 
SRM. 

The semidirect product of the two groups (2.90) and (2.92) may be considered as 
the analogue of the permutation-inversion group_~a~ f for molecules with non-trivial 
covering group ~ (~) 

p(NCl) {(~) F(NCJ) (~-} = F(NCI) {aq~, } ~ _~,~, 

F(NCl) {~5~} := {II(H) ~ I F(3)(H)[ 1 (3) IVH E ~ ( ~ ) }  (2.93) 

2.3.3 Primitive Period Isometric Transformations and the Longuet-Higgins Group 

It is of interest to point out the role of primitive period isometric transformations 
(cf. Sect. 2.2.2.) in both the isometric and the Longuet-Higgins grouE. According to 
Eq. (2.41) this type of transformations is represented on the basis {Xk(/J)} by 

I'(NCf)(Fp) = 1 (K) | l-'(3)(Fp) (2.94) 

Considering now the action of primitive period isometric operators on the basis 
(,XIk(e, ~)}, we will distinguish between the following cases 

(i) if P(3)(Fp) E SO(3), then it follows from Eqs. (2.89) and (2.94) that 

Pvp {Xk(e, ~)} = {xL(e, ~)} 1 (K) | t p(a)(Fp)I 1 (3) 

= {Xlk(e, ~)} 1 (K) | 1 (3) (2.95) 

This shows that the representation of the group .Z'(~) on the nuclear position vectors 
referred to the laboratory fixed coordinate system is not a faithful representation of 
the isometric group J~(~) ~s F(NCf ) ( j~}  

~,~(~) tto F(NCl) {._~} is 3-(~)  (2.96) 

Therefore, SRMs with ~" (~) = C1, for which the permutation-inversion group is 
always is__omorphic to P (Ncl) { Y )  the relation between -~'~,/s and the isometric 
group f f ( ~ )  is only a homomorphism 
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Sp ~i__s F(NO ) { y }  _ho y (~) (2.97) 

The kernel of the homomorphism (2.97) is the subgroup of .~ (~)  consisting of the 
set of all primitive period transformations. This explains why in some applications to 
the nuclear motion problem of nonrigid molecules a "double group" of the Longuet- 
Higgins group had to be used 23' 24) 

(ii) If PO)(Fp) is an element of the coset Z" SO(3) of the decomposition 
0(3) = SO(3) t.) Z- SO(3) one has 

p(l~O)(Fp) = 1 (x) z, (-1 (a)) (2.98) 

Hence, 

if 1 (K) ~ (-I (3)) E P (NcD {j~'} 
(2.99) 

and 

_~ ~ i=~ r(NO) { 7 )  i~ .7(~) 
if I (K) :< (-1 (3)) (~ F (NCl) (,-~") 

(2.99') 

although no example of type (2.99') is known. 
Analogously for SRMs with proper covering group ~ (~) and primitive period 

transformations, the full isometric group -~(~)  =J-" (/j)" ~ (~) is homomorphic to 
the permutation-inversion group 

..~ a~ff, i=s F(NCl){,~) ho ~(~) (2.1 oo) 

Again it has been shown that in these cases introduction of a "double group" cor- 
responds to extension of the isometric group ~ ' ( ~ )  to oq~(~) 2s), the latter being a 
symmetry of the rotation-internal nuclear motion hamiltonian. 

2.4 Examples for Isometric Groups of SRMs 

A considerable number of groups of nonrigid molecules has been discussed in the 
literature 26-2s). An attempt for a systematic classification of isometric groups has 
been reported for the first time by Frei et alJ s). In order to illustrate the construc- 
tion principles given in Sect. 2.2. a few examples will now be discussed. The examples 
are listed in Table S and chosen such that specific aspects both of the construction 
process and the group structure may be emphasized. In the table a symbol for the 
SRM defining frame, tops, etc. and the respective local symmetries, the number of 
finite internal coordinates, the covering symmetry group ~ (~) and one representative 
molecule are given. 
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Table 5. Examples for isometric groups of SRMs 

SRM f cff (~) Typical molecule 

Do~hF(CI TR) (C 1"IS) 1 C 1 (I-R,2-S)-CHFCI-CHFCI 
C2(~')F(CsT) 2 3 C 1 CH2OH-CH2OH 
DoohF( C 1 TR) (C 1 TS) 3 C 1 CHFCI-(C6H4) 2 -CHFC! 
D*ohF( C 1TR)2 
Do.hF(C2vT) 2 1 D2 (C6H5)2 

2.4.1 D**hF(CITR)(CtTS) System 

As a first example we consider a very simple SRM without covering symmetry 
( ~ ( ~ )  = C 1 ) which allows to show in detail all steps o f  the construction o f  the inter- 
nal isometric group J a n d  to demonstrate the effect of  primitive period isometric 
transformations. Figure 2 shows Newman projections of  ( l - R ,  2 -S ) -CHFCI-CHFC1,  
a molecule with a rigid C - C  frame of  symmetry D**h to which two equivalent CHFC1 
tops of  local symmetry C t with opposite configuration are attached. The molecule 

J 
el Ctl~Cto 

FO~ HI 

F I HO 

[ T'.T§ 

.f 
el 

T~-g 

. f  
el 

Cto -T~CII 

g 0 HI 
NNN~' = /r-T 

Ct 1 Ct0 

6 

Fig. 2. Newman projection of D~h F (CtTR)(CITS) system 
Key: All internal isometric transformations, including primitive period transformation are shown 
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Table 6. Coordinate vectors of equivalent nuclei of D**hF(CITR)(C ITS) system 

Set Vector a X 

Frame 1 1 1  l .rool xfx ~ r - 1 
h= 0,1 -1..] 1.11 

Xt~ " -1 1 r + sr er -1 
 :o,1 -1 t2 klJ o o 

]  x bl 1 ] 

a Coordinates refer to the frame coordinate system e f  indicated in Fig. 2; the structural parameter 
r denotes the C-C bond length. 

b Coordinate vector of representative nucleus w.r.t, local top coordinate system ~t whose origin 
lies in the nucleus C O and whose axis e t coincides with el3 . 

fixed coordinate system and the internal coordinate r are defined in the figure. The 
axis era coincides with the C - C  bond, whereas the axis e~ bisects the dihedral angle 
2 ~'. The origin of  the frame coordinate system lies in the center o f  the CC bond. 
Table 6 shows the coordinate vectors of  equivalent frame and top nuclei referred to 
the frame coordinate system. From these coordinate vectors, the following formula 
for the distances between e.g. CI and H nuclei of opposite tops may be obtained 
(c : cos, s: sin) 

2 dclx, HX+ l (r) - I Xcix(r) -- XHX + 1 (7)12 
~t t ~t t 

= r 2 + 2 rX~t03 + 2 rXto3 + Xc10Xn0 + XHoXH0 

--2(X~lo, 0 X~lo3 ) L-s2 T --C2T (--1) h+l Xto2 
0 - Xto3  

X=0,1  

This formula shows that the primitive period p of  r is equal to ~r. I f  we take the 
domain -~r/2 < T ~< + rU2, the only nontrivial internal isometric transformation of  
this SRM is F2 : r '  = - r  and therefore, since F 2 = E 

S ~ ( ~  ) := {S~,(E),~C(F2) ) is r(~e-~) ( ~ - }  is .a~-(~ ) i=s~2 2 

cf. Table 7. The internal isometric transformation F2 is visualized in Fig. 2. 
Application of  the primitive period r '  = r + rr to the coordinate vectors of  a set 

of  equivalent top nuclei gives 
( - 1  

~Fp {Xtk(1")) = {Xth( ~" - 7/')} = {Xtk0")} 1(2) r - 1  

I ' ( : ~ ( F p )  = 1 (2) 

1)  ~ (-~th('r)) 
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Table 7.. Isometric group of the D~,hF(CITR)(CITS) system c-~(r) = CI, . ~ r )  is ~4, 

Operator 

[!~] [:1] [:ll.[', ] ["i! i 

I, l I,:l ~=~p ~ -1 ] i ; ; i  

1[, -1 1-1 

a Representation of ~ by substitutions of the internal coordinate: 

[ ; ' ]=[A(0F) a ( F ) ] . [ i ] , _ n < r < + r r ,  r m o d 2 p "  

b Representation by the set of distances dClo, Hl(r), dCll, Ho(r ) originating from the two equi- 
valent tops (see Fig. 2). 

c Representation generated by the.vectors Xto(r), Xt 1 (r) of a set of equivalent nuclei originat- 
ing from the two eq~valent tops (see Fig. 2). 

d Representation of.o~- by substitutions of the eulerian angles and internal coordinates: 

I :IE I;1 = A(F) 

m 

cf. Fig. 2. Therefore, to get the symmetry  group o ~"  of  the rotation-internal mot ion 
problem, d,~-'(r) has to be extended by F 0 (7:44 denotes the four group) 

d ( Y }  i~ Y(r )  := {E, F2, Fp, F2 �9 Fp} ~ '~ 
ye=nd y-  

The representation of  ~ on the nuclear coordinate vectors is obtained by solving 
Eq. (2.12) for all F E.~-" 
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^ ~ ~ ))~ 
PF {Xto(7-)Xtt(r)} = {Xto(F- I ( r  u ( F - l ( r ) ) }  = 

= {Xto(r)Xu(r)} n (F )  ~ P(a)(F) 

or (for one position vector) 

PFXth(r) = Xth(F-  1 (7.)) = -Xt;q(7.) 1-' (3)(F) (2.12') 

~ , (3) e.g. for F 2 : Xtx( - r )  = Xt}, ( r )P  (F2). 

Explicitely 

, 1, [ ][o 1 c r  - - s r  0 
l r ( o o  + ~  ( - 1 )  ~ - 1  

I 1 0 - 1  

{1 tea = r(0 0 1) + X'o ( - 1 )  x' - c r  0 - 1  �9 P(a)(F2) 
1 0 1 - 1  

X t is an arbitrary vector, therefore, solution of  this equation gives the 3 by 3 matrix 

pta)(F2) = 

f~ 
2 r + (_ l )X+X'+  I . s2r 

_ l )h+  1 . Sr.oC r + (_l)X'+ 1 . ST CT 

(-1)':-~--cr+(-,r o 1 
(_l)X+x'+l . sZr + cZr 0 J 

0 (_1)  ~'§ 

Since F(3)(F2) must be independent o f r  and X and ~,' (all nuclear coordinate vectors 
experience the same rotation P(3)(F)), the unique solution is ~' = ~, + 1. Therefore, 

[1 11 ] 
A more direct method to get the representation P(NCf)(F) uses the fact that the rota- 
tive parts F(a)(F) are orthogonal transformations which map the reference NC on all 
isometric NCs. As may be seen from Fig. 2, these are 

F2 : sf2,  F3 : C2(ef),  F4 : Z 

The permutation matrices II(F) are then obtained by solving the Eqs. (2.12'). 
For very simple SRMs F(NCf)(F) may be constructed by means of  a drawing or 

a molecular model, because to any linear operator ~F there is associated a mapping 
(in the fixed frame system) which can be determined by geometrical reasoning. 

The representation I ~(NCf) { ~ }  together with representations of  Y o n  other 
substrates is collected in Table 7. From P (NcO ( J~}  one gets 
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.:>::{(I ~). (~ I))',, 
(111),(1,1),( -1  1)( -1 

-1  
= C2h(ef ) is 

Z explicitely occurs in p(a) (.~:}, therefore the set of matrices R(F) = I F(a)(F)I �9 
�9 F(a)(F) form the group 

A(3) {...~) --z I"(3) (,.~" ]- := { ( 1 

(case bl, ef. Sect. 2.2.1.). 

, ) ( , i t )  c,,,, 
By solving the Eqs. (2.26) for all R(F) E A (3) ( ~ + ) s  

D(e') = D(e)" R(F) 

one obtains the group of the transformations of the eulerian angles 

( : - )  :_- 

and the substitution group 

r ( Y )  := ( ~  (F) * J ( F ) I V F  ~ )  ~44 

cf. Table 7. 
It should be remarked that the subgroup (E, F4} arid its representations form 

the internal isometric group J for the choice [0, zr] of the domain of r. The fixed 
points of the isometric transformations will be discussed in Sect. 3.4.2. 

The permutation-inversion group of this SRM is only homomorphic to J - ' ( r ) ,  
since p(NCI)(Fp)= 1 (2) | 1 (3) 

. . ~  i=s F(NCI) { ~  } := (1(2) | 1(3) ' 1(2) | (_1(3))) i_s~2 

_~ ~ ho ~ ( T )  

2.4.2 C2(OF(CsT)2 System 

As a second example without covering symmetry ( ~  (~) = C1) but several finite 
internal coordinates the isometric group of a semirigid model describing ethylene 

5 The matrix D(e) is explicitely given in Appendix 1. 
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Table 8. Coordinate vectors of  equivalent nuclei of the C2(r)F(CsT) 2 system 

Set Vector a X 

v,/~ = 0,1 -1  

top h Xth K [1 -1  ] k 

k, K = 0,1 - 1  

/ [!] i] I ], r 1 + cr �9 (--1) # Af0 0 [ 
0 1 

1 / 0 / + i s  T c~- t o ~r  I 
L 1 J  L O  0 - 0 c~ 

�9 r2 / 0 / + / s . ~  c . ~  �9 ( - 1 )  ~ X l o o  b 
L 1 J  L 0 0 1 

a Coordinates refer to the coordinate system "ef indicated in Fig. 3; similarly the structural 
parameters r l ,  r 2 and ~ are defined in Fig. 3. 

b Coordinate vector of representative nucleus w.r.t, local coordinate system e f  resp. ~t. 

@, 

8 

) 

. f  
- e 2 

OH 

H H 

H 
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Fig. 3. Semirigid system 
C2(r) F (CsT)2. 
(a) Schematics of molecular 
structural parameters and 
coordinate systems�9 (b) New- 
man projections for definition 
of internal rotational degrees 
of freedom 
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glycol, CH2OH-CH2OH, will be discussed. This SRM is characterized by a semirigid 
OCH2-CH20 frame with local symmetry C2, and two equivalent OH tops with local 
symmetry Cs. The manifold of  NCs of this SRM may be described by the dihedral 
angle 2 r of  the internal rotation around the C - C  bond (r  --- 0 for cis conformation) 
and by the two dihedral angles oo, ol of the two OH groups (Oo, el = 0 for cis confor- 
mation). The position vectors of a set of  equivalent frame and top nuclei in general 
site 6 given in Table 8 refer to a frame fixed coordinate system whose era axis coin- 
cides with the C-C bond and whose e f axis bisects the C-C  bond and the dihedral 
angle O - C - C - O ,  cf. Fig. 3. 

The trigonometric functions in the distance formula for the 4 distances between 
the 4 equivalent top nuclei 

{dtoo, tie(r, Oo, Ol) dtoo, tl 1( T, 130, e l )  dt01, tl0( r, ~ ~ dt01, tl l(r ,  Oo, Ol)} 

dt2or, t l~- (r, Oo, o I ) = (Xto~ - -~ t i ~  ) (XtoK - Xtl R') 

depend on Oo, o1 and 2 r. Therefore, the primitive period p o f t  is equal to rr. 
Table 9a and Fig. 4 show the four isometric transformations s J ( F )  

T 
o,0 --d(F) Oo 
Ol 1 
1 

for the domains -~r/2 < r  ~< +ir/2; -rr  < o o ,  ot ~<+rr, 
They form a group isomorphic to the four group 

~f(r, Oo, o,)  is ~ {d~"} is F (  r~)  {~-} i__s~ 

Application of the substitution r '  = r + p to the position vectors of  the top nuclei 

(XthK(~', oh)} : (Xtoo(~', Oo).~to,(7 , Oo).~tlo(7, u, )-~tl 1( ~', Ol)} 

gives 

~Fp {Xtht~( T, Oh)} = {XthK( T -- 71", D~.)} -- {Xt2kK(T, Oh) } 1 (4) | i ; 

F (J~c)(Fp) = 10) 

Therefore, this SRM possesses a nontrivial primitive__period isometric transformation 
by which ~ has to be extended to get the group J - .  Since 

Although the H nuclei of the OH groups of glycol lay in the symmetry plane of the Cs tops, 
it is convenient to introduce nuclei in general site in a SRM associated to a particular molecule 
to be sure that a faithful representation of ~- on the distances of that set is generated. 
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"~(FP) = 1; 

commutes with all J ( F )  E J ' ( ~ " )  

- -  = is ,_~'(r, 00, O1) is .5~r ~ } =6~r (2, 2, 2) 
y=end ~ -  

where ~r 2, 2) denotes the abelian group of type 2, 2, 2 isomorphic to D2h. The 
matrices S~r ~ ~r are contained in the direct sums P(F) listed in Table 9b. 
Application of the operators PF associated with all elements F E . 7  to the position 
vectors of the top nuclei generates the representation I "(Ncf) { Y )  given in Table 9b 

Table 9a. Isometric group of the C2(r)F(CsT) 2 system 
:-g(r o0, v l) = C l, J-(r ,  o o, ol) = ~ , 4 , ~ ,  o0, Vl) =2J(2, 2, 2) 

Operator ~ {Jr )a i,(~r" "~) { :-)b 

E [ 1 -  ] [ 1 .  1 I . [ 1 . 

1 . 1 

1 i 

[ 1 1 1 1 ] [1 " i ] l  .1 

I ] I" :1 -1 . 1 

- 1  1 

1 1 . 

F2 

F3 

F4 

a Representation of . :  by substitutions of the internal coordinates: 

o 0 = F) a ) . o 0 -Tr/2<r~+~r/2,rmodp 
/l ' - ,r<v0, v I ~+n 

b Representation of ~r by permutations generated by the set of 
distances dtoo,t 10(r , vo, Vl) , dt00,tl l(r, oO, Ol) , 
dtol ,tlO( z, vo, Vl), dtol ,tl 1( r vo, Vl), originating from the two 
equivalent tops of local symmetry C s (see Fig. 3). 
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IF2 "~ 
Fig. 4. C2(r)F(CsT) 2 system. 
Pictorial views showing isometric 
NCs generated from the reference 
NC on the upper lefthand side by 
all substitutions F ~ y (T, vO, Ol). 
Key: F 2 : v  b = v l , v '  1 =v0; 

F3: z' = - r ,  v~3 = -vO, 
O'l = - o r ;  F4: r '  -- - r ,  
ob -- - o i ,  o'1 : - ~ o  

Ta__ble 9b. Isometric group of C2(r)F(CsT) 2 system :-~(~, u O, Vl) = C l, ~ ( 7 ,  vO, u l) = ~/~, 
..~-(*, vo, Ul) =.5~/(2 2, 2) 

Operator 
F E Y F(NCO ( .~ }a F ( -~  }b 

1 | 1 
1 1 

1 

F2 

F3 

I 11lIE 1 

E I!] ii 

l i l i i i i  
1 . . . .  

1 

I 
1 . . . . .  n 1 

11 ~ , �9 

-1  
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Table 9b (continued) 

Operator 

I" IJEI I ,  1 
FsF [1 ll]E 11 

F6F2Fp [ lIE 1 1 1  11 

F 7 = F3F p 

F 8 = F4F p 

['" il t - i .  �9 1 

,!]L -1 
�9 1 | 
1 

ill [ 

-1 - 1 ]  I 

1~iiiii 1 
1 _ i ' ' ~  

- - 1  . ~ 1~iiiii] 
1 . ~ o 

1 �9 o 

1 . 
1 

1 - 1 ~ .  

1 

1 . . . . . .  ] 
1 ~ . . . . 

1 . . . .  

� 9 1 7 6  

- - 1  . . 

1 

b 
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Representation of ~ generated by the vectors .Xtoo(r uo), Xtol(r uo) , Xt 10(r, ul), Xtl 1(% 01) 
of a set of equivalent nuclei in general site originating from the two equivalent tops of local 
symmetry C s (see Fig. 3) 
Re ~resentation of Y by subsitutions of eulerian angles and internal coordinates: 

= . A(F) a ) -u < r <+u 'rm~  
�9 . , J . ,  ' - l t < v O ,  v 1 < + ~  



The Isometric Group of Nonrigid Molecules 

r~Nco { j }  ~ d ( 2 ,  2, 2) 

The rotative parts r(a)(F) form the point group 

r (3) { ~ }  = r(3) { Y  + } u z-  r (a) (~:7 + } = D2. 

The proper rotative parts R(F) of the matrices p(3)(F) form the group 

A(3){Y}----P(3){-57~+}:={(ll 1 ) , ( 1 - 1 _ 1 ) ,  ( - 1 1 _ 1 ) ,  (--1-1 1 ) } = D 2  

From this representation the substitution group of the eulerian angles 

IE ]I  lIlll I 1 i]I 
and the representation 

r{Y} is 5ar 2, 2) 

is obtained along the procedure outlinedin Sect. 2.2.1.1, eL Table 9b. 
Solution of ER. (2.65) for all F E 3 -  gives the following fixed points: 

F2: vo = Ol, r arbitrary : NC with coveting symmetry C2(e [) 

F3: Oo = 0, n', 7" = 0 : NC with covering symmetry S f 3 

o I =0, /r  

F4: Oo = - o l ,  r = 0 : NC with covering symmetry S{2 

If a NC is a fixed point NC of F2, F3 and F4 simultaneously, e.g. with o o = ol = r = 0 
or o o = ol = rt, r = 0, it possesses covering symmetry C2v. 

F s and F 6 do not have fixed points, but 

F7: Oo = 0, n, r = rt/2 : NC with covering symmetry sfa  

o I =0,~" 

F8: Oo = - o l ,  r = rt[2 : NC with covering symmetry Z 

Fixed point NCs ofF=, F7 and F8 (oo = ol = 0, r = rr[2 or o o = ol = 7r, r = rr/2) have 
covering symmetry C2h. 

This example shows how conformations with specially high covering symmetry 
may systematically be derived by means of the isometric group. 

The Longu___et-Higgins group . 9 ~  of ethylene glycol type molecules is endo- 
morphic to .~ ' ( r ,  o o, 01 ) because 
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p(NCD(Fp) = I(4)| I p(a)(Fp)l �9 1 (a) = i(4)| I0), 

p(NCI) (_y)  := (1(4) | 1(3), H(F2) | 1 (a), H(F3) | (-1(3)), 

II(F4) | (_] (3)).} 
_ ~ X  ~ r (Nc~) { 7 }  is ~ ho Y ( r ,  Vo, v, ) 

From the isometric group of the C2(r)F(CsT)2 system the symmetry groups of a 
considerable number of further SRMs may be obtained, e.g.: 
(i) freezing 7- at 0 gives a C2vF(CsT)2 system like 1,2-dihydroxy benzene; 
(ii) freezing r at 7r leads to a C2hF(CsT)2 system, e.g. trans-l,4-dichlorobutene-2; 
(iii) if both r and Oo are kept constant at 0 or rt, we have a CsF CsT system like 

acrolein; 
(iv) if both Vo and vt are frozen either at 0 or at ~r, we have a system with two 

equivalent Cs tops, D.~hF(CsT) 2 , for which glyoxal or 1,2-difluoroethane are 
examples. 

2.4.3 D2(r) F (C l TR)(C 1TS) and D2(r) F (C 1 TR)2 Systems 

Molecules consisting of a semirigid frame with covering symmetry D2, to which two 
rigid tops of local symmetry C 1 with opposite or equal configuration are attached 
(D2(r) F (C 1TR) (C iTS) and D 2 (r) F ((21TR)2, respectively) are interesting examples 
w.r.t, the chirality problem of nonrigid molecules (see Sect. 3.4). A molecule of type 
D2(r ) F(C ITR)(C tTS) is scetched in Fig. 5 a. Figure 5 b shows the definition of the 
frame system and the internal coordinates. Table 10 gives the coordinate vectors of 
sets of equivalent frame and top nuclei. 

(i) D2(7-)F(C 1 TR](C2 TS) System 

The following formula holds for distances between top nuclei with local coordinates 
X~o = (X~ol 0 X~o 3) of the representative, e.g. the C1 nuclei, and frame nuclei denoted 
by Z in Fig. 5 

dt2~, fX~(r, oh) = I Xtx('r, vx) - Xfx~ (r)l 2 

1 rZ+r.X~o 3+~t yt ~ Y ---- -~ ~tO'~tO + XfooX~o 0 + 

+ (_l)X+-X+lr �9 Xffoo3 + 2(--1) x+X + 1X~o3XTfoo3 + 

+ (-1)u+ lXffoolX~ol [cox(1 + c2~') - soxs2z I + 

+ ( -1)  ~'§247247 'X~oolX~o I [cox(1 - c27-) + soxs2r] 

(X, ~,/a = n (mod 2)) 

Thus the primitive period of 7- is lr, that of Vo and v 1 is 2 rr. The internal isometric 
transformations J ( F )  for the domains -n /2  < r ~< +1r/2 (r mod p), - ,r  < re, 
v I ~ +zr are listed in Table 11 a and may be obtained either from the distance func- 
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. f  
e 1 

1~4111 I " "  

a 

I T / / i  

" J  / ~ - T k ' ,  " ~  
Fig. 5. D2(r)F(CiTR)(C1TS) system. 
(a) Pictorial view, (b) Newman projection 
(symbolic). 
Key: The origin of the local top coordinate 

system ~t is situated in the nucleus 
CO: the origin of the local coordinate 
system'S-i" coincides with the origin 
of the frame system'~ f 

tion above or by inspection of a molecular model for distance preserving transforma- 
tions of r, o o and ol. The representation F(s~e) { y-} of<7" by permutations refers 
to the set of  four distances between two equivalent top nuclei and frame nuclei Z 
in ortho-position of  the opposite phenyl ring (cf. Fig. 5 a). The abstract group ~ of 
both representations is isomorphic to the dihedral group of order 8 

w i t h ~ - =  {F~} U F  s k k {F2}, F2Fs = FsF2 k 

r '  = r + n is a nontrivial primitive period operation: application of this substitution 
to the coordinate vectors of two equivalent top and four equivalent frame nuclei 
~ives 

[IFp {Xt;k('l', o~.)Xf~p('/')) = (Xth(T -- 7r, o~.),~f~p('r -- i f)} [_i] 
= (X tx ( r ,  o ~ ) X ~ . ( r ) }  1 (6) ~ - 1  

1 
X , ~ , p = O ,  1 

i.e. P(3)(Fp):/:: 1 (3), F ( s ~ ) ( F p ) =  1 (4) 
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Taking z modulo 2 p = 2 n, i.e. admitting 

d ( F P ) =  i , i,1 : ~ t ( F p ) .  1 

as a nontdvial isometric transformation leads to a group 5J{ "J-} of order 16 

i s - -  vqff'[,_~) =,.~'~(T, O0, Ol) l=S "~16 

This substitution group is contained in the direct sum F (5 -}  listed in Table 11 b. 
cJ16 is identical with the fuU isometric group ~ :  of this SRM since ~ (T, Oo, 01) = C1, 

i.e. a NC with arbitrary values of the internal coordinates has no covering symmetry. 
The group ~'t6 has the following structure: 

(a) generators: 

C and U, 

C 4 = U 2 = E, C2U= UC 2 

T = (CU) 2 commutes with both C and U; 

(b) subgroups o f  index 2 [k = n (rood 4)]: 

{ck, Tck} i___s C4h, 

(E, T, CU, CUT} x {E, C 2} is C4 h 

{E, C2, C2T, C2U} x {E,T) ~ ~ x ~i--s 5](2,  2,2); 

(c) center o f  cg16 

{E, T, C 2, TC 2 ) i_s 

(d} commutator group: 

[Cffl6] = {E, TC2}; 

(e) important homomorphisms: 

~ I 6 / { E ,  T) is 

16/(E, C 2) is ~4 

cffl6/{E, TC2} is C4 h is ~4 | ~2 
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Since c-Jl 6 is homomorphic to 04 but does not c o n t a i n ~  as a subgroup, we have 

y h o  f ,  j ~ - r  

As a ne__zt step the representation F (Ncf) { Y }  induced by the substitutions ~' = F(~), 
F E f on the basis 

{Xto(Oo, T)Xtl (u l, 1") Xfoo(T) Xfol (T) X-fl O(T) Xfl 1 (T)} 

has to be calculated. Two sets of  equivalent nuclei have to be considered since the 
coordinate vectors of the equivalent top nuclei do not generate a faithful representa- 
Won off(T, 00, O 1), Apphcatto___n of  the operators PF associated with the substitu- 
t i o n s J  (F) generates F(NCO ( . f }  listed in Table 11 b 

r(NCf) ( y )  is ~ 16 

The rotational parts F(3)(F) of  F (NCf) { ~ }  form the group 

p(3) {~7} = C4h 

A (3) { , ~ )  = C 4 

From the last representation we get 

( y }  is c4 

and F ( Y )  is ~16, cf. Table 11 b. 

As may be derived from Table 11, the isometric substitution group ~ has fixed 
points: 

U: o o = -Vl ,  T = 0 TC2U: o o = • -  v l ,  ~" = 7r/2, 

NCs with covering symmetry sf2;  

C2U: u o = 7r - vl ,  ~" = 0 TU: Vo = - v t ,  * = n/2, 

NCs with covering symmetry Z. 
The Longuet-Higgins group _ ~  is homomorphic to J~(p(NCI)(Fp) = 

= i(6) ~ I(3)) 

ho 
_ ~ ' ~ v  ' =  7(T, Uo, uj) 
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(ii) D2(7-)F(C l TR)e System 

This case follows closely the treatment given for the D2(7-)F(CITR)(C 1TS) system. 
The relevant groups are listed in Table 12 

~(r,  o0, ol) = Cl 
s$r } i__s l.,(r e ) (j~_} i__s 04 
F(NCO ( ~ }  is c~16 

The abstract group ~l 6 is identical with the group ~16 of the D2(r)F(C 1TR)(C iTS) 
model. In contrast to the (R, S) system 

p(a) {y}  = .  D4 

(casea, cf. Sect. 2.2.1). Therefore, all fixed point NCs (only Fs and F7 possess fixed 
points) must have properly orthogonal covering operations (C2(efl) and C2(ef), 
respectively). 

2.4.4 D**hF(C2vT)2 System 

Molecules with a frame of  local symmetry D..h and two equivalent tops with local 
symmetry C2v, e.g. ~ ((C6Hs)2) , ethylene (CH2=CH2) or the bicyclic organo- 
boron compound (CH2CH2B)2, are examples for a SRM with proper covering sym- 
metry ~ (~). A model of ( ~ ) 2  is illustrated in Fig. 6 together with the frame 

48 

_f 
el 

| | 

\ 
\6 

_f 
e 2 

Fig. 6. Newman projection of 
D~,hF(C2vT) 2 system (CH2CH2B) 2 
Key: Only B and H nuclei are shown. 

The origin of the frame system 
~'f is situated in the center of the 
B-B bond, the origin of the local 
top coordinate system'~t lies in 
the nucleus B 0 
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coordinate system and the choice of the internal coordinate r. Coordinate vectors of 
a set of eight equivalent top nuclei in general site are (w.r.t. ~f) 

{ 2 (eel) + ( - 1 )  u §  - c r  " - 1  

1 0 1 - 1  

where r denotes the B-B bond length and X~)oo - t t t - (XooolXooo2Xooo3) is the co- 
ordinate vector of the representative nucleus w.r.t, the local top coordinate system 

indicated in Fig. 6. As mentioned earlier it is important to take a set of nuclei in 
general site, otherwise the permutation groups II {~-) ( I I  {.-J~)) and r ('~''e) { ~ }  
(1 - ' (~v)  {~ '})  will not be faithful representations of ~-( r ) (~e"(r ) ) .  

From the distance formula 

d~v, 1~" (r) = I Xouv(r) - X l~ -  (r)12 
~t v t  = r 2 + 4 rXtoo3 + 2 Aooo-',ooo + 

~ r ( -1)u+U+'c2r  (-l)ff+~+z' s2r i ]  
+ 2 X~oo I(-l)ff+u+~-s2r (_l)U +v +u+Z, c2 r 

k 0 0 
Xtoo 

/.t, v,/a, u =0,1 

we conclude that the primitive period p o f t  is equal to rr. For the domain 
-rr/2 < r ~< +7r/2 we have the isometric substitution group 

t r = r + ~ is a nontrivial primitive period transformation since the coordinate vectors 
Xxuv(r) are periodic in r with period 2 p = 2 It. J{J ,~ - )  has therefore to be extended 
to ~ r  by taking r modulo 2 7r 

-rr < r  ~ + n  

~ ( r )  is j { ~ }  is 04 , of. Table 13a 

A NC with arbitrary r has covering symmetry D2, hence 

cf. Fig. 6. 
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The representation o f  the full isometric group ~ ' ( r )  on the nuclear position 
vectors, 1 "(Ncf) {~-7), may then be calculated by solving Eq. (2.69), Sect. 2.2.4. for 
all 

m 

F E .2~(r). 

Pv{Xxuv(r)} = (Xxuv(F- t ( r  = {XxuAr))n(F) | r (3)(F)  

or for one vector 

(2.69') 

Each o f  these equations admits I ~ l  = 4 solutions. An example for the solution o f  
this equation is given in Appendix 3. In particular, the invariant subgroup r (NCf) {qj } 
of  I'(Ncr) { , ~ )  is obtained by solving the equation 

Xxuv(r)  = Xh'u'v' (z)I"(3)(G), VG E ~-g 

Table 13b. Covering group of the D**hF(C2vT) 2 system 
C-~(T ) = D 2 

Operator a 
G E-r r(NCf) ( ~ }c I" ( ~r }d 

E1 I 
G2(W) (nX'X+ 1 8 ~ ' / . t 8  v ' V )  | -1 

-1 

[ ][ G3(TW) (SX'h+ tS/~'t~+ 1By'v) | I 
- I  

G4(T) [' ] (6h, Afi~z,~+ 15v, v) | -1 
1 

1 . . . .  

1 
1 . 

1 . 
1 

1 Ir 
- - 1  . ~r 

-1 
1 

1 

1 n 

- - 1  . 7r 

--1 lr 
1 

1 

1 . . . .  

1 . 

1 . zr 

1 . 

1 

a, c, d See caption of Table 13a. 
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Table 13c. Generators of the full isometric group a~ (r) of the SRM D~hF(C2vT) 2 

Generator a r(NCf) { ~ }  e v{~T) d 

1 
C 

W 

T=WCWC 3 

1 
(Sh'h6u'ta6dv+ I) | -'1 i] 

( 6 h ' ~ .  + l~ , t t ' / i 6 t , 'V)  ~ - - I  

I - 1  -1 
(6h'h~ta'#+ l%'v) ~ 1] 

. . . .  

1 1 3n/2 
1 -rr/2 

1 

-1  
1 

- - I  �9 

1 
1 

1 . . . .  1 1 1 ~'1 ] 

a, c, d See caption of Table 13a. 

with the result 

p(NCf) {c~} is q~ (~.) i__s D2 is 02 

(D2 denoting the point symmetry group, 02 the abstract group). This representation 
is listed in Table 13b. The easiest way to get p(NCf) { ~ )  is to calculate first p(NCf) {~} 
and one solution F(NCf)(Fk) of Eq. (2.69') for each F E ~ .  The set of all I~r solu- 
tions for each F is then equal to the coset 

I~(NCf)(Fk) �9 F(NCf) {c-H} 

and ~(NCf) {o~} ---- U 
k=l 

F,(NCf)(Fk) p(,NCf) (<~} 

The full isometric group ~ ( r )  in our example is isomorphic to a group of  order 
[d~-] I~1 = 32 

~ ( 7 " )  is p(NCf) {~,~} is ~-~32 
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The abstract group ~ 32 has generators C, S and W with the relations 

C 4 = S 2 = W 2 = E 

SC k = c - k s ,  k = n (mod 4) 

WS = SW 

The element T = WCWC 3 commutes with C, S and W and 

WC k = Tkckw, T 2 = E 

The generators of  the representation F (NCf) { ~ }  together with the element F~cf ) (T)  
are given in Table 13c. C, S and T are generators of  a subgroup of ~'32 of  index 2 
isomorphic to D4h 

O4[E, T] = [(ck] " k,I S ( c k ) ]  [E, T] 

C.C~32 =" 0 4 " [E, T] U W- d4 �9 [E, T] 

The representation I "(NCf) ~ Y }  of the internal isometric group ~ ( r )  is not 
uniquely determined since several groups V (3) { .~} and, therefore, several inverse 
homomorphisms r J(F (3) { ~ ) )  = F(NCf) { . ~ )  [Eq. (2.80)] may be defined, or in 
other words, several sets of representatives of the cosets of the__invariant subgroup 
v(NCO ( ~ }  in p(NcO (~,~) form a subgroup isomorphic to . ~ ( r ) .  One such represen- 
tation is shown in Table 13 a 

F(NCf) ( y )  is Y ( r )  is 04 

I ts  semidi rec t  product with  r (NCf) { ~ )  gives F (NCf) { ~ )  

p(NCf) ,[.c.~.} . v(NCf) , [ y )  = t92 . t94 = .c~32 

Various representations of ~r.T(r) may be derived from F (NcO ( ~ } .  
(i) the set of all rotational parts F(3)(H) of 1 -'(Ncf) (~,~} forms the point group 

D4h (of. Table 13) 

p(3) (_~)  = i.~(3) .[:_~) i..,(3) "[3T} = D4h 

I ( ) (  1 ) (  w i t h r  (3){eft}:=. 1 1 ' - 1 _ 1  ' 

)(1 
1 , - - I  

- - I  1 
}:~ 

1 )} 
�9 , �9 = C2v 

�9 --1 

and I -`(3) .[:-~') A I .`(3) {.~-~) = 1 (3) 
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H. Frei, A. Bauder, and H. Giinthard 

The Longuet-Higgins group 2~ ~ is easily derived from F (NCf) ( ~ }  

V (Nct) ( ~ )  := {II(H) | I V(a)(H)I . l(a) IVH ~ ~ ( r ) }  ~ Dan 

Thus, -~  ~ is only homomorphic to ~ ' ( r )  

_~ ~e~ i__s r,(NCi ) {~,~} _no ~ (r) i__s ~ 32 

because one of the elements of the coset F(NCf)(Fp) " F (Ncf) { ~ }  associated with (1) 
the primitive period substitution r '  = r + n is equal to 1 (s) e - 1  , therefore 

1 
this matrix is mapped__onto the unit matrix 1 (8) | 1 (3) by transition to the laboratory 
system. The group ~L~'(r) is identical with the "double group" of the Longuet-Higgins 
group of this SRM given in a recent paper by Merer et 3.1.23). 

3 Applications of  Isometric Groups 

In this chapter applications of isometric groups will be presented in the sequence: 
3.1. Isometric group and Born-Oppenheimer Approximation. 
3.2. Rotation-large amplitude internal motion problem of SRMs and isometric groups. 
3.3. Irreducible tensors and selection roles of SRMs. 
3.4. Chirality of nonrigid molecules. 
3.5. Enumeration and classification of conformational isomers of nonrigid molecules. 

3.1 Isometric Group and Born-Oppenheimer Approximation 

In this section some aspects of the symmetry of the molecular Schr6dinger operator 7 

I~ = ~'n + rio (3.1) 

^0 N / p2 K e2Zk [ 
H (pj, Xj; Xk(~) ) = • / 

j=l 2mo k=l Ixj -- Xk(~j) l J 

j< j '  e2 k < k '  e2ZkZk  , 

j,j' [ xj -- xj, I k,k' I Xk(~) -- X k' (~) I 
(3.2) 

^ K p~ 
Tn = 2; (3.3) 

k=l 2Mk 

will be considered. The original Born-Oppenheimer approximation consists in the solu- 
tion of the eigenvalue problem 

7 In this section the symbol l~l is used for the molecular Schr6dinger operator. 
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^0 H (pj, xj; Xk(~) ) ~t(Xi, Sj3; Xk(~) ) = e~ sj3; Xk(~)) (3.2') 

for a continuous set of nuclear configurations, whereby the nuclear coordinates are 
considered as parameters (not operators). The symmetry group of the operator (3.1) 
is the direct product of the inhomogeneous 3-dimensional orthogonal group IO(3) 
(whose operators are to be applied cogrediently to electron and nuclear dynamical 
variables), the symmetric group 7N of the permutation of the indices of the electrons, 
the direct product of the symmetric groups Tgs of the indices of the nuclei of the 
sets of identical nuclei, i.e. s ~ 7Ks, and the time reversal group 29). For applications 
to molecular physics and chemistry the symmetry of the operator (3.2) is more 
relevant, at least as far as chemical reactions are excluded, therefore, this symmetry 
will exclusively be discussed here. The following statements may immediately be 
made concerning the symmetry group of ~I~ I~ ~ is symmetric w.r.t. 

(i) the symmetric group of the permutation of the indices of the electrons 
(ii) the covering group f~(~) of the NC {Xk(~j), Zk, Mk}, more precisely, the 

covering group of the NC (Xk(~), Zk}, since the nuclear masses do not show up in 
the operator ~I ~ The group ~ (~) is isomorphic to a permutation group II ( ~  } of the 
nuclei of a set of equivalent nuclei, which is a subgroup of the symmetric group of 
the set. 

The group ~ (~) implies, that the operator I~ ~ is symmetric w.r.t, to the trans- 
formations of the dynamical variables of the electrons under a group c_ff (el) 

c~,(el) i__s cff(~) (3.4) 

(iii) the group IO(3), applied cogrediently to the electron dynamical variables 
and the nuclear coordinate vectors. However, application of the operators of this 
group to either the nuclear coordinates alone or to the electron dynamical variables 
alone does not in general leave the operator ~I ~ symmetric. 

From the statements (ii) and (iii) one obtains 

PceO(xk(~)) = e~ (3.5) 

As a next step we consider the transformation properties of ~I ~ w.r.t. J - (~ ) ,  provided 
the operators PI~ are applied to the nuclear and electron coordinates according to the 
following propositions, V F E Y(~):  

PF (Xk(/J)) = {Xk(~)} " I"(NCO(F) : {Xk(~)}H(F) * F(~)(F) 

= (3.6) 

Obviously according to (ii) and (iii) 

P~-H"P~ = rio (3.7) 
A 

It should be pointed out that the operators PF which by definition act only on internal 
coordinates, are not symmetries of H~ 
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PF~I~ l = H~ xj; P(a)(F)XFk(~)) 

= 2P]mo -- ~ e2Zk I XJ -- g ( 3 ) ( F ) X F k ( ~ ) l - l k  +~<~,' "' Ixj -- xi'l 

+ ~ e2ZkZk, [ ~(3)(F)MFk(~) _ ~(3)(F)MFk,(~)[ -1 ~ ~0 
kk' 

Next we state the important theorem: V F E J - (~)  

~F(~0(Xk(~)) = 6O(Xk(F- 1 (~))) = eo(Xk(~)) 

(3.8) 

(3.9) 

Again this relation follows from the symmetries (ii) and (iii); it expresses that the 
electronic energy function assumes the same value for all isometric NCs. Equations 
(3.5) and (3.9) show that eO(Xk(~)) is symmetric w.r.t, to the full isometric group. 
Whereas the symmetry of e~ w.r.t, c-5 (~) merely expresses that e~ is 
a function of the internal coordinates only, its symmetry w.r.t. ~ ' ( ~ )  is a genuine 
symmetry. 

3.2 Rotation-Large Amplitude Internal Motion Problem of SRMs 

The classical energy function of a SRM may be written in the form 

T + V =  -~(c~ (gmn(/5)) +V(~) (3.10) 

In this equation the angular velocity vector co is referred to the center of  mass frame 
coordinate system and the ~s are the time derivatives of the internal coordinates. More- 
over, the kinetic energy matrix coefficients may be expressed as 

gpq = Ipq = ]~ Mk[Xk(OXk(~)6pq -- Xko(~)Xkq(~)] 
k 

p , q =  1 ,2 ,3  

0Xk( )] 
gpr = ~k Mk Xk(~)' ~-"-~--r Jp' r = 1, 2 . . . . .  f 

k k ~ t  ' ~ s  - / '  r , s = l , 2  . . . . .  f (3.11) 

The potential V(~) may now be identified with the electronic energy function 

V(~) = e ~ (~)) (3.12) 

provided the interaction of nuclear and electronic motion may be neglected, i.e. the 
adiabatic approximation is adequate. 
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If in place of the nonholonomic coordinates 6o the eulerian angular velocities are 
introduced by 3~ 

[ ' - s in l3cos7  sin7 i ]  I ! ]  
6o=1 sin/3sin7 cos'y =E(e)~ 8 (3.13) 

L cos ~ 0 

Equation (3.10) goes over into the lagrangian form 

T= 1(~'?) [E0(~)1(0,] (gmn(~))[E0(e) 10)] [~] (3.10') 
and the corresponding hamiltonian form 

T = l ( 'pep '~ '~)[Eol(C)l(O)](gmn(~))[E 'o  l(e) l O ) ] [ p P : ]  (3.10") 

The total angular momentum referred to the frame system is given by 

=p~ E- l (e )  (3.14) 

and if this is used, the kinetic energy becomes 

T = �89 (~'~)(gmn(~)) 
(3.10'") 

3.2.1 Symmetry Group of the Hamiltonian 

The foregoing discussion allows to state the theorem: The full isometric group 
~ ( ~ )  is a proper or improper sub~__ oup o f  the symmetry group ~'{I21} of the rota- 
tion internal motion hamiltonian H =  T+ V 

PHHPfi I = H, V H E Jr (3.15) 

Since the dynamical problem (3.10) refers to the LS, the primitive period isometric 
transformations are to be included in o~r A proof of  this important theorem has 
been given earlier 14) 9. ~{I~} represents symmetry of H w.r.t, to operations of the 

8 For the sake of brevity the set ~#7 will often be abbreviated by e and the velocity vector 

9 In the Eqs. (5.19) and (5.22) of this paper the matrix F(3)(F) should be replaced by 
R(F) = I r(3)(F)t �9 r(3)(F). 
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frame system. On the other hand lq is symmetric w.r.t, arbitrary orthogonal trans- 
formations of the LS 

~RI~I ~-Rl' = fi (3.16) 

The set of properly orthogonal transformations R 1 forms the group SO(3) l, the reflexion 
Z 1 at the origin of the LS likewise leaves I4 symmetric, since the eulerian angles re- 
main unaffected by Z I. Therefore, H is symmetric w.r.t, the full rotation group 
0(3) I. However, in agreement with the usual conventions we will omit the elements 
ZIR I E 0(3) I. As a consequence we will consider hence-forward the group 

SO(3) I | ~ {fi} (3.17) 

as the symmetry group ~ {I~) of the rotation internal motion problem. 
For a number of SRMs ~e'(~) C ~ {H}, i.e. ~,~(~) isa proper subgroup of (.--~{FI}. 

This fact has been established by determining the group ~ '  {H} directly. In the case 
where a principle axis coincides with an internal rotation axis for all values of the 
internal rotation angle, but not being a covering symmetry axis, we have 

~ ( ~ )  C c~ (H) (3.18) 

~{H} now contains an element with the structure 

"B(R) 0 b(R)q 
r(R)= l(') el j 

not contained in P {~-~'). A typical case is the SRM C2vF CarT, which might serve 
as a model for the rotation-internal rotation problem of nitromethane type mole- 
cules. A further case is given by SRMs whose group ~ (~) contains an element of 
order 1> 3. For this case ~ {fl } is an infinite group since it contains now an infinite- 
simal rotation represented by (8 E [0,2 lr] being an arbitrary angle) 

[1] 
B(R) = 1 , b(R) = 

1 

(3.19) 

3.2.2 Solution of the Energy Eigenvalue Problem 

The energy eigenvalue problem associated with the classical energy function (3.10) is 

Iq r = E ~b (3.20) 

where the energy operator is obtained from Eq. (3.10"') by the usual procedure 31' 32) 
leading to 
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1]  + ~'(~1 (3.21) 

The eigenvalue problem Eq. (3.20) has to be solved in the Hilbert space IH(H} defined 
by 

A 

lH{H} := {f(e, ~)1 (f, f) = f f * f  sin 13 d0~d~ d-rdf~ < oo 

(f, g) = ff*g sin ~ d~dfl dTdf~} 

2X 

and the function space (domain of H) 

(3.22) 

A{H} := {u(e, ~ ) l u ( e , ~ ) E r  ~r, 0 ~ # < ~ r ,  0 < ' r  < 2  7r,~ID(~)] 

(u, v) = fu*v sin fl do~ d~ d7 df~ 

flu E IH{H}} (3.23) 

The energy eigenfunctions may be classified according to the irreducible representa- 
tions of the group SO(3) t ~ ~" {H). For the sake of simplicity we will assume 
~ {I~ } ~ ~:(~);  in cases, where Eq. (3.18) is valid, an appropriate extension of 
~ : (~ )  has to be used. Denoting the irreducible representations of the group (3.17) by 

D (J) | 1 '(j) (3.24) 

the eigenvalue problem (3.20) may be specified as 

H~JMr(i)uN(e, ~) -- Ejr,(j)N CjMpO)uN (e, ~) (3 .20' )  

where M and/a denote row indices of D O) and P (i), respectively33). For solution of 
Eq. (3.20) one usually uses a matrix representation of i2I in a suitable chosen zeroth 
order basis. A practical choice is the direct product of the set of rotation group coef- 
ficients 34) 

{D~M(e)} := {D(~),M(~fl'y)l J @N; M', M E [-J ,  +J]} (3.25) 

and suitably chosen complete orthonormal bases 

:= I e D k ] ,  m 

(r ~(m k)) = ftp(~)*r 

II ~5 ) II 2 = f l  r < ,~) 

e.g. Fourier functions for angular internal coordinates or Laguerre or Hermite func- 
tions for distances. 
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In practical applications one may first solve the "internal problem" defined by 
the operator 

f l in t  = I ---- (gm ) , + (3.21') 

which defines all states with J = 0, i.e. vanishing overall angular momentum as). Typical 
examples have been given in the literature 36-aa, 2s). It should be pointed out that the 
eigenstates of the internal problem may, according to the definition of the isometric 
group, already uniquely be classified according to the irreducible representations of 
the group y (~). The extension o f f ( ~ )  to ~ (~) by the covering group ~ (~) leads 
to a refinement of the group theoretical classification of the internal eigenstates 
u r (i)u N (~). Since all such states have to be symmetric w.r.t, the operators PG, the 
UrO)UN(~ ) belong exclusively to those irreducible representations of ~'~(~), which 
belong to the normal subgroup cj  (~) of ~'~(~). Typical examples where this situation 
is realized are SRMs of the types C2vF-C2v laT) (N-C-NH2, CH2CH21qH), D2h/D4h 
ring puckering 3a) (cyclobutane) and D~hF(CsT)22s) (glyoxal, H202). 

3. 2.2.1 Symmetrization of  the Zeroth Order Basis. By subjecting the elements of 
the direct product basis 

{D(MJ),M(e) II 9(mk)(~k)) 
k 

^ 
to the transformations of P ( ~ } ,  i.e. to the operators PH associated with the trans- 
formations Eq. (2.83), one may construct by well known procedure 39) zeroth order 
basis functions belonging to the irreducible representation D (J) | P(J) .  The use of 
symmetrized basis functions leads to considerable simplifications in practical solutions 
of the energy eigenvalue problem. 

In the symmetrization process the primitive period isometric transformations Fp 
play an outstanding role. For all SRMs with P(a)(Fo) E SO(3) these operators are 
represented in the representation 1 -'(NED ( ~ }  by the unit matrix (cf. Sect. 2.3.3). 
This implies for such SRMs the important relation 

A 
PFp~//jMr(j)/~N(e, ~)= ~JMF,(j) / jN(e,  ~), VFp EJ~-(~) 

V ~/JMI~(J)#N E O ( f i )  (3.26) 

A 
i.e. the energy eigenfunctions are symmetric w.r.t, the operators PF~. The latter 
therefore on one hand imply periodicity conditions for the energy eigenfunctions 
and symmetrized (zeroth order) basis functions and on the other hand cause the 
energy eigenfunctions to belong uniquely to the irreducible representations F (j) (~,z~) 
of the group ~ (~). 

For all SRMs wi th .~ (~)  e_nd~ (~) the interrelation of the representations 
F (j) ( ~ )  and p(J) ( ~ }  may be investigated by means of the Frobenius theorem on 
induced representations4O). If in addition ~,~ (~) is a normal subgroup o f ~  -~ (~), as 
it has actually been the case in most examples studied up to now, the irreducible 
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representations P(J) { ~ ,  which occur as symmetries of the energy eigenfunctions 
follow uniquely from 1 "(j) {J r  ~} by means of the representations of the factor group 
~(})/~,~?~(}). The group theoretical relations arising from the primitive period iso- 
metric substitutions form the mathematical background fo~ the introduction of 
"double groups" by several authors 23' 24, 27) as has already been pointed out in 
Sect. 2.3.3. We shall not distinguish between ~ a n d ' ~  7 till further notice, but as 
shown in the discussion above primitive period isometric transformations have to 
be included when considering the symmetry group of the operator (3.2 I). 

3.3 Irreducible Tensors and Selection Rules for SRMs 

In this section we first present a set of general transformation formulae for tensor 
operators associated with SRMs. These then serve as a mathematical tool for the 
formulation of  Wigner-Eckart theorems and selection rules for irreducible tensor 
operators associated with multipole transitions of  SRMs. The concept of isometric 
groups will allow a formulation of selection rules in strict analogy to the group 
theoretical treatment of  quasirigid molecules first presented by Wigner s). 

3.3.1 Transformation Properties ofTensors w.r.t. Isometric Transformations 

The following treatment is based on the assumptions 
(i) transformation formula for a polar vector (operator) expressed in cartesian 

coordinates w.r.t. ~'H E ~ ( } )  

PH(Vf(}))P~ ' = (V~(H-I(}))) = F(3)(H)(V~(})), VH E~U(}) (3.27) 

Typical examples for vectors of thi~ type are the electrical dipole moment M(e)f([) 
Z f or any vector of the type xf(}) = k ZkXk(~), where the sum is to be extended over a 

set of  nuclei equivalent w.r.t. ~'~(~). Equation (3.27) follows immediately from the 
properties of [,(NCf) { ~ }  and has been proved earlier for the expectation value of 
the electric dipole operator 

~(~)f : - c o  . ~ j  + eo ~: ZkXk(}) 
.I k 

for molecules in a given electronic state 40. 
(ii) Transformation formula for an axial vector (vector operator): 

Pu(Vf(}))Pfi ' -- (V~(H-'(}))) = R(H)(Vfk(})), VH E o~U(}) (3.28) 

typical examples being the magnetic dipole operator [~(m)f(~), the angular momentum 
w.r.t.'~f, etc. 

(iii) The coupling operator for a tensor T f of rank n for a SRM in a multipole 
electric or magnetic field E l~n (| denotes the nth Kronecker power) 
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fi' = -E'l*nR*n(e) Tf(O (3.29) 

where the tensor Tf(O transforms according to 

PHTf(~)P~ I = Tf(H-I(~)) = F'(3)*n(H)" Tf(~) (3.30) 

t)HTf(~)~H ~ = R~'"(H) �9 Tf(~) (3.30') 

PH Tf(~)~)H l = ~ ,n ,  (H) | ~'(3) ~n 2 (H) Tf(~), VH E ~'~($) 

nl + n2 = n (3.30") 

whether or not Tf($) transforms w.r.t, t)H as M (e)f~n, M (m)f~n or M (m)f~nl | M (e)f~ . 
The coupling operator of an irreducible operator (~.f(~)) of  rank s for a semirigid 

model in a multipole field (E~o) may be taken in the form 

fi' = -(E~a) t D(S+)(e) t (/~fa($)) (3.31 ) 

where D(S+)(e) f (-~fo(o) = (,~o(e, ~)), (3.32) 

expresses the tensor ~, in the laboratory system. 
Further important mathematical tools are the two fundamental formulae from 

rotation group theory (s EIN) 

PRiD(S)(e) = D(S)(e) D(S)(Rt), VR l E SO(3) t (3.33) 

PR f D(S)(e) = D(S)(Rf) t D(S)(e), V R f E SO (3) f (3.33') 1 o 

Eqs. (3.33) and (3.33') express the transformation behavior of the rotation group 
matrices w.r.t, rotations of the laboratory system~ q and the frame system'~ "f, re- 
spectively. The second Eq. (3.33') assumes for the case H E o ~  ( 0  the special form 

PH D(S+)(e) = D(s+)(H) f"  D(S+)(e) (3.33") 

A proof of this equation is given in Appendix 2. 
Basing on Eqs. (3.27), (3.28) and (3.30) 

A A A 
PH(Afa(O)PH ~ = (-~fo(H-I(O)) = D(SP)(H)t(~fa(o) (3.34) 

where p denotes the parity of the tensor operator ~,f. 
Furthermore, from Eqs. (3.33) and (3.34) we find the following important trans- 

formation formula for the coupling operator (,VR l E SO(3) I, VH E < ~ ( 0 )  

PRIPH H PH PR! 

__- _(E~a)i'n(s+)(Rt)fn(s+)(e)f D(s+)(H) n(sp)(H)t (~.sfo(~2)) 

= I-(E~a)tD(S+)(Rl)tD(S+)(e)t(~sf(r(~))' if p = +i (even) 

-(E~o)fD(S+)(Rl)fD(S+)(e)f I F(S)(H)I (~fo(~)), if p = -1  (odd) 

10 The formula (3.13) given in Ref. 1 S) should be corrected according to Eq. (3.33'). 
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For electric and magnetic dipole moment and the electric and magnetic quadrupole 
operator the last equation yields 

~Rt~H~I'l~t~l' = -(E~)tD(' +)(RI)+DO +)(e)+ I p(3)(H)I (~(e)r(/D) 

= - ( E ~ ) t D  O+) R l tDO+) e iT) p(3) H I IVl (e)f ( ) ( )  ( ) ( k (~)) (3.36) 

PRIPrtI~'P~IP~ = -(E~)tD 0 +)(Rl)tDO+)(e)tT(1~l(km)f(~)) (3.36') 

~R 1 ~H ~'~)H I PR: = -(El a)1 D(2 +)(Rl)f D(2 +)(e)'t (~" f a (~)) (3.36") 

where T = 

1 i 

0 0 

1 i 

0] 
1 

0 

^f The relation between the spherical components A20(~ ) of a general tensor ,~f of 
rank 2 and the cartesian components "~frnn(~) are given in Appendix 4. Equations 
(3.36) will form the basis for derivation of selection rules for rotation-internal motion 
transitions of SRMs presented in the next section. They also may serve for derivation 
of the transformation properties of the electric and magnetic dipole moment operators 
referred to the laboratory system ( v H E  :'~,:(~)): 

" " 3 ^ PH(M(ke)1(e, ~j))~l = [F( )(H)I (M(e)l(e,/j)) (3.37) 

(3.37') 

Analogously for a tensor operator of rank 2 with even parity 

(3.37") 

The simplicity of these transformation formulae is to be traced back to the 
general formulae (3.33), (3.34) and the fact that the operators PH act on both the 
eulefian angles and the internal coordinates simultaneously, as expressed by the 
representation F{~:'}. The analogy of the Eqs. (3.37) to the representation p(NCD {~:,} 
should be noted. 

3.3.2 Wigner-Eckart Theorem and Selection Rules 

1 Electric Dipole Transitions 

Derivation of the Wigner-Eckart theorem (WET) will be based on the transformation 
properties of the energy eigenfunctions expressed by 

A A 

PRIPH~JMr'(i)uN (e,/J) = ~ ~ ~JM'r (J)z'N D(M/IM(RI) " lp~(i)z(H) (3.38) 
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Formulation of the matrix elements of the coupling operator (3.31) yields 

(g~s~r(7)~iq (e,/j), H ~lMr(J)uN(e,/j)) 

= (~a IPH ~bT~ r(T)~g ' PRI~HH'PH ~ PR l~ PRIPH ~bJMr (J)u~ (e, ~j)) (3.39) 

Since the matrix elements of ft' may be obtained from those of (I~(e)l(e, ~)) by 
linear combination, the latter will be calculated first: 

(~]-fl i - (T)~ ,  (M(e)I)~jM r(j)g N ) 

= ~ ~ ~ ~]D~!~ (RI)*D!~.)_ (RI) F(T, ) (H)*r o) (H) I r(3)(H) I 

X D(l)(Rl)t(q~r~,rO)5,~ (e, ~), (I~)~(e, ~))r , N (e, ~)) 

Integration over SO(3) 1 and summation ove r~  '~ (~) yields the vector of matrix ele- 
ments (h = I~'~'(~)1) 

^ (e) l 
(@7~r( i ) ;~,  (Mo)~jMp(j)#N ) 

- - 1  t t 

i~t'M' 

x -~,~,(~i~'r(T)~'~ "'~)~ . . . . .  , I.lVJcr /~JM,V(j)/.t,N ) /a/.t 

x h - l ~  p(T,~ (H)*I',!~u) (H) I r(a)(H)l (3.40) 

The righthand side contains the Wigner coefficient SjMI~ lo, a = --1, 0, + 1, which 
expresses the usual rotation group selection rules 

AJ = O, +1, J = O < l > J = O  

AM = 0 for z-polarization (o = 13) 

AJ = O, +1, J = O ~ t ) J = O  

AM = -+1 for x, y-polarization (o = +1) 

(3.41) 

(3.41 ') 

and the quantity 

~iJ)~ = h-'~., r(5,L~ ~ (H)*rq)(H)l r(3)(H) I (3.42) 

which expresses the selection rules w.r.t, the isometric group ~ (~). 
The two Eqs. (3.40) and (3.42) may be discussed as follows: 
(i) the selection rules w.r.t. ~ ' ( ~ )  are the same for all components (cartesian or 

spherical). 
(ii) the quantity O9 ~j) may be specified further for the case a, bl ,  b2 defined in 

Sect. 2.2: 
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Case a: 

I F(3)(H)I = 1, V H E ~ ' ( ~ )  

| = l]-~Sij (3.42a) ~ ,  5ff ,,,Sfl u 

where the symbol 8K, d does not express a selection rule. since ~",/a' are subject to 
the summation in Eq. (3.40). 1 i denotes the dimension of F 0). Hence the electric 
dipole selection rule reads 

r(i) +-+ rO) 

/~ +->/a 

Case b: 

The group p(3) (_~:} is improperly orthogonal and according to Eq. (2.86) the group 
r(o~c :} (abstract group ~ : )  has a normal subgroup ~ ' +  of index 2 

= ~ : +  U S .~ ~ (3.43) 

Hence, 

| = h-~ ~rO~)_ (H)*rq! (H)r(~ 

= h - '  (~§ . , , -  . P~)(SH)*P~,)(SH)} (3.42b) 

In the case where 

S 2 = E , S H = H S  V H E ~  + 

the irreducible representations of :~occu r  in pairs P (i+), p(i-) of associated represen- 
tations for which 

F(JP)(H) = FO)(H), H ~ff:'+ 
F(JP) (SH) = (p). r(J)(H), H E ~ :  '+ 

Consequently 

O(5 j) = (2 1]')-~[1 - (p--)(p)l~jSff','~ff, # ,  

hence, in this case a parity selection rule exists 

~ 44-* p, ~ = p  

~ .--, p; ~#=p 

(3.44) 

(3.42 b') 
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For a number of typical SRMs the selection rules are given in Tables 14 and 15. 
The irreducible representations of  frequently occurring isometric groups are tabulated 
in Appendix 5. 

2 Magnetic Dipole Transitions 

Both WET and selection rules may be derived in a strictly analogous manner by the 
aid of  the transformation formulae (3.36') and (3.38). One finds 

(i) SO(3) I selection rules: AJ  = 0, -+1, J = 0< [ ; J = 0 

AM = 0 z.polarization 

AM = +1 x,y-polarization; 

(ii) the selection rules w.r.t. ~%~'(~) are given the quantity 

~ (n )  = 1 ZrL])_(H),rqu) (n)  lj ~ j 6 ~  ~ , ,  (3.45) 

i.e. for all SRMs, whether belonging to case a or b the magnetic dipole selection rules 
are 

F0)  ~ 1,0) 

Table 14. Selection rules of dipole transitions of SRMs 

f = l  

System/ ~ ' (~ )  Dipole selection rules 

ex~ample Electric Magnetic 

CsF-C3vT 0 3 r (~ ~-. r(O-) r(J) ~_~ r(J) 
CH3CHO r (l) ~-, r( l)  

CsF_C2vT 02 is ~44 rO) ~-* r(2) rO) ~-* rO) 
CH2:CHNO 2 r(3) ~ F(4) 

CsF-CsT ~22 r(~ ~-~ r (~  r(J) ~-* ro) 
CH 2: CHCHO 

CsF-C2vl ~22 r (~ ~ r (o-)  r0) ~-~ r0) 
I I 

CH2CR2NH 

C2vF-C2vl ~44 r(1) *-* r(2) tO) ~-~ r0) 
I I 

CH2CH2NH r (3) ~-, r(4) 

D~hF(CsT)2 ~4 r(l) ~_~ p(2) p0) ~_~ r(j) 
CHOCHO r(a) +--~ r (4) 

C2vF-C2v T ~r 2, 2) r0+) .-~ r ( i - )  FOP) ~ r0p) 
C6H5NO2 
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Table 15. Selection rules of dipole transitions of SRMs 
c~,(~) = CI, f ;a 2 

f System/ ~ ( ~ )  Dipole selection rules 

example Electric Magnetic 

2 CsF(C3vT) (C3vT)' ~18 r(~176 ~-* r ( ~ 1 7 6  r 0) . - ,  r0)  
CH3CH: NCH 3 i -(MN) ~ p(MN) 

2 CsF(C3vT)(C2vT) o6 r(~ (~  
CH3CH2NO 2 r(3+)~__~r(3-) 

rO) ~-~rO)  
r(2) ~.~r(2) 

2 C2vF(C3vT)(C2v I) 0 6 r(~ (~  
CH3NH2 r(3+),__.r(3-)  

r ( t )  ~-~r(1) 
r(2) ~-~r(2) 

2 CsF(C2vT) (C2vT)' S~r r 0+) ~ r 0 - )  
NO2CH: CFNO 2 

2 C2vF(C2vT)2 0 4 (E, T} r (~ ~ r (~ 
CH2(NO2) 2 p(O-+) ~ i?(o---) 

r(2+ +) ~_~ r(2 +- )  
r (2-+)  ~_~ r ( 2 - - )  
r ( l  +) . - - ,  r ( i - )  

2 C2vF(CsT)2 ~4 rO) ~ r (2) 
O(CHO)2 r (3) , -*  rO)  

2 CsF(CsT)(CsT)' ~ r (~ ~-- r (~  
CH2FCH2CHO 

3 C2(r)F(CsT) 2 
CH2OHCH2OH 

r0) . - ,  r 0) 

r0)  ~-~ r0)  

r(Jp) ~-~ r(ip) 

r0) ~-~ r0)  

r(J) ~ r0)  

r0)  ~-.  r0)  

r ( l )  ~ r (2 )  r 0 )  , - ~  r (i) 
r(3) ,__, r(4) 

Again the magnetic dipole selection rules for a number  of  frequently used SRMs are 

collected in Tables 14 and 15. 

3 Electric Quadrupole Transitions 

Starting f rom Eqs. (3.36") and (3.38) one obtains for the WET by straightforward 

calculation 

rx'ol+.-<i, 
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= ~ ~_Z]~(2J + 1) - 1  [ ~J'J~I~'M'~M 0 

M'M'u'U' L (SJM'TI~'2a" SJMTI~ 2~ 

(, r sol '" , - " ,  ~ b - ' X F  (]-, (H)*P'i!(H) (3.46) 

The matrix (SjM,T~,2~ SjMT~2~ ) expresses the electric quadrupole selection rules 
w.r.t, the group SO(3)1: 

A~~ AJ=0,_+l,+2;J=0~cq-->J = 0, J = 0 ,  i,  J = 1 

M = ~1+ o, o = - 2 , - 1 ,  0, +1, +2 
,x 1 Aoo: AJ = 0, AM = 0. 

The quantity 

~-(/i) = h -I vF(J) (H)*FO) (H) 
-~u  ~ ff'ff - u ' u  " (3.47) 

again expresses the quadrupole selection rules w.r.t. ~ which explicitely read 

r(J) ~ p(J) 

It should be pointed out that the polarizability tensor of a SRM may exhibit a more 
complicated transformation behavior than expressed by Eq. (3.47). This goes back 
to the fact, that the polarizability tensor involves all electronic states and the latter 
do not necessarily all have the same isometric group. 

3.4 Chirality of Nonrigid Molecules 

The isometric group allows treatment of a number of geometrical problems inherent 
to SRMs in strict analogy to the group theoretical methods involving the covering 
symmetry group used for such problems connected with quasirigid molecules. As an 
important example, the chirality problem of quasirigid molecules should be men- 
tioned, which has been solved most precisely by Kelvin's theorem 42). According to 
this theorem, a quasirigid molecule is chiral, if its re-structure is improperly congruent 
with its mirror image. Obviously, it is not possible to apply Kelvin's theorem to non- 
rigid molecules in a straightforward manner. Nevertheless, it has been applied exten- 
sively to nonrigid molecules by considering the covering symmetry of particular NCs 
of nonrigid molecules, i.e. fixed point configurations in the terminology of this work 
(cf. Sect. 2.2.3.1). If such NCs with covering operations of the second kind 
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(I P(3)(G)I = - 1 )  tl exist, the nonrigid molecule has commonly been considered as 
achira143). Although this criterion leads to correct results in many cases, Mislow has 
shown that there exist cases where the method contradicts experimental findings, e.g. 
for molecules of the type 

\ " z 

B ~ / B 
x x 

For sufficiently bulky substituents X hindering the internal rotation around the C-C 
bond between the two phenyl rings and implying a perpendicular conformation of the 
biphenyl system, there exist no values of the internal rotation angles of the two end- 
groups CABC leading to a NC with nontrivial covering symmetry. According to the 
fixed point criterion this molecule should be chiral. This contradicts the experimental 
finding of Mislow, who found the system to be achiral 44-47). 

Basing on the isometric group concept Frei et al. 48) have given a generalization of 
Kelvins theorem to SRMs and nonrigid molecules (NRM). It may serve as an example 
for the analogy between the role played by the covering symmetry groups of  the r e- 
structures of quasirigid molecules and the isometric group of the SRM associated to 
a NRM, cf. Sect. 4.2. 

3.4.1 Theorem for the Chirality of Nonrigid Molecules 

First we define: a nonrigid molecule approximated by a SRM with finite internal 
coordinates will be called chiral, if both conditions (i), (ii) are fullf'dled: 

(i) no NC in the continuous set of all NC (Xk(~), Zk, Mk) may be mapped onto 
its mirror image by rotations and translations. 

(ii) No NC of this set may be transformed into its mirror image by isometric 
transformations ~' = F(~), F ~ ~0(~). 

This definition is consistent with the definition of the chirality of rigid mole- 
cules and forms a sufficient and necessary condition for the optical activity of NRMs. 
The generalization of Kelvin's theorem for NRMs may be stated as: 
a NRM is chiral, if the group I '(3) { . ~ )  is properly orthogonal. 
The following corollaries hold: 

(i) if p(3) ( ~  } is improperly orthogonal, then every NC (Xk (~), Zk, Mk} is 
properly congruent with its mirror image and therefore achiral. 

(ii) If the group r (3) (~g') is improperly orthogonal and if an isometric trans- 
formation F with improperly orthogonal F(3)(F) has a fixed point, then the 
NC {Xk(~F), Zk, Mk) has covering symmetry of  the second kind and therefore is 
achiral. 

11 I.e., reflections, inversions and rotation-reflections. 
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The theorem may be supplemented by a few comments: 
(i) the theorem shows explicitely the analogy of the roles of the covering sym- 

metry group and the group F(a) ( S  a} for rigid and nonrigid molecules, respectively. 
(ii) The first corollary is a strict analogy for rigid molecules. 
(iii) The corollary (ii) is the basis of the conventional procedure for determina- 

tion of the chirality of NRMs by fixed point nuclear configurations. 
(iv) if F (3) {Jr} is improperly orthogonal and if it contains improperly ortho- 

gonal elements without fixed points the conventional procedure fails. Mislow's mole- 
cules are typical examples of this case, as will be demonstrated in the next section. 

It should be pointed out that the chirality problem is based entirely on the con- 
cept of RNCs. This immediately implies that for its treatment the isometric group 
Y ( ~ ) ( ~ P  (~)) is sufficient and the primitive period isometrics may be omitted. 

3.4.2 Examples 

From the examples for construction of isometric groups given in Sect. 2.4, the three 
SRMs 
(i) D| 
(ii) D2dF(C1TR)(CITS) 
(iii) D2oF(C x TR)2 
will be used for illustration of the theorem given above. 

(i) SRMs of type D| F (C 1TR)(C 1TS): the isometric group has been given in 
Table 7. The group F(3) ( ~ ' }  may be taken as [1] 
F (3) {,~} = (1 (3), F(3)(Sfl2)  = 1 , " -  n- < r  ~<+ n- 

-1  2 2 

or F (a) ( Y )  = (1 (a), -l(a);  0 ~< r < rr} 

i .e.  F (3) ( , ~ f }  = C s or F (3) {~,~Y) = Ci 

Hence F (3) {,_~) contains an operation of the second kind (center of symmetry or 
plane of symmetry, respectively), therefore, according to the theorem molecules of 
this type are achiral. The isometric transformation F has a fixed point 

2 

7[ 
rF = -~ (0~<r<rr)  

According to theorem 2.2.3.1 there belong NCs with Cs or  c i covering symmetry to 
these fixed points. They are shown schematically in Fig. 7. The role of the primitive 
period isometric transformation F3 has been discussed in Sect. 2.4 and is illustrated 
in a suggestive manner by Fig. 2. 

(ii) SRMs of the type D2dF(C ITR)(C 1TS): the isometric group of the more 
general SRM D2(r ) F(CITR)(C ITS) has been discussed in Sect. 2.4. The isometric 
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.6f2 01 

F 0 H I 
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Pig. 7. Fixed point NCs of DoohF(CITR)(CITS) system 

~f2 

Table 16. Isometric group of the D2dF(CITR)(CITS ) system 
~(oo, ol) is ~ ,  S~oo, o,) i~ 

Operator < / { _  }a r(NCf){ jr}b 

F3 
�9 , - 1 .  - 1  

" 1 �9 1 

1 . 

a Representation of Y by substitutions of the internal coordinates: 

b Representation generated by the vectors Xto(uo), Xtl(Ul) of a set of 
equivalent nuclei originating from the two equivalent tops (see Fig. 5a). 

group of the SRM D2dF(CITR)(CI TS) may be obtained from the group listed in 
Table 11 by freezing the internal rotation angle r to the fixed value r = 7r/4. Physically 
the freezing process may be achieved by introduction of bulky substituents in the o, o '  
positions of  the biphenyl system 44, 4s). The resulting isometric group is given in 
Table 16. From the representation F (NcO {.Y'} we conclude 
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k 

- 1  
~{{j~--) is c~ 4 := . 

1,2,3 / 

,k=o, 1,2,31 
~(u0,  Uz) = C1 

hence, since $4 is improperly orthogonal, the SRM D2d F (C ITR)(C ITS) is achiral. 
However, none of the isometric transformations ofsJ '  ( S )  has a fixed point, hence 
there exists no NC with second kind covering symmetry. The application of  the 
conventional procedure (search for symmetric NCs) however would predict this SRM 
to be chiral in contradiction to experimental findings and the chirality theorem 3.4.1. 

(iii) SRMs of type D2dF(C ITR)2 : from Table 12 of  Sect. 2.4. it follows imme- 
diately that 

r (3) (3Z') = D2 

hence, SRMs of this type are chiral. 
The foregoing discussion shows that the criterion of symmetric NCs does not 

allow a general decision about the chirality of NRMs. This is the consequence of the 
fact that isometric transformations do not have fLxed points in general. However, the 
group 1 "(3) (o~zQ allows a decision about the chirality of SRMs in a simple way, which 
moreover is strictly analogous to Kelvin's symmetry criterion for quasirigid molecules. 
One may take this analogy as a further illustration for the fact that the isometric 
group is a generalization of the conventional symmetry concept of rigid molecules. 

3.5 Enumeration and Classification of Conformational Isomers 

The isometric group of SRMs has been used for enumeration of the conformational 
isomers of NRMs 49). From the point of view of permutational symmetry, this prob- 
lem has been treated by Mislow et al. s~ The problem of enumeration of permuta- 
tional isomers of rigid molecules has been studied by Polya s 1) and more generally by 
Ruch et al. s2). The determination of classes and number of permutational isomers of 
molecules with a nonrigid skeleton has been attacked by Leonard s3, s4) 

Before presenting an enumeration method based on the isometric group of SRMs 
the more important assumptions underlying the method should be mentioned: 

(i) the method is first formulated for isotopic substitutions. Within the frame- 
work of the Born-Oppenheimer approximation all isotopic modifications of a SRM 
(NRM) have identical sets of NC (Xk(~), Zk }12 and the same electronic energy func- 
tion e~ 

12 The nuclei valued by the charge number Z only. 
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(ii) For the sake of enumeration of conformational isomers any conceivable, not 
necessarily isotopic substitution of a nucleus of a SRM is assumed to leave the energy 
function essentially unchanged, i.e. all conceivable substitution products are assumed 
to be describable by the same type of  SRM. This amounts to an approximate treat- 
ment of all conceivable substitution products of a NRM as isotopic modifications. 
Within the framework of assumption (i) the number of isotopic isomers may be 
derived. Therefrom a survey over the set of different rotational or vibrational spectra 
of the isotopic modifications of a SRM with localized re-structures may be produced. 

3.5.1 Enumeration Theorem for Conformational Isomers 

We first consider the internal isometric group ~(~) of a SRM defined by the set of 
nuclear configurations NC {Xk(~j), Zk }. The isometric group of an isotopic modifica- 
tion of this SRM defined by the set NC (Xk(~), Zk, Mk) is ~q'-(~), 

~'(~j) C ~' (~j) (3.48) 13 

The maximum number of isometric re-structures NC {Xk(~e), Zk} equals I~(~)1. 
This set of re-structures decomposes for each particular isotopic modification 
NC (Xk(~), Zk, Mk) into subsets of isomers (nonisometric NCs). Each isomer is 
associated with a coset of the decomposition of ~ (~) modulo J - ( ~ )  (e = I ~(~)l, 
f=  1.7(~)1) 

e/f 
g~(~) = U f ( ~ ) -  Ek (3.49) 

k = l  

the elements of  a coset J - ( ~ )  �9 E k representing isometric NC {Xk(~e), Zk, Mk). 
The number of isometric re-structures NC (Xk(~e), Zk) may be a submultiple 

of I~'(01, namely if the set of internal coordinates of the r e-structure of 
NC (Xk(~), Zk) is a fixed point ~z of ~' = El (~), ~' = E2(~) . . . . .  In this case the 
number of isometric re-structures NC (X(~E), Zk) is I ~e(~)l/I~ (~)1 where I ~  (~)1 is 
the order of the group ~ generated by the periods of ~' = ~EI (~), ~' = E2(~) . . . . .  

The set 

~1 :={ NC{Xk(~'e), Zk,Mk}l(~) =~(Fk)",~r e) ,Fk E~-(~),Ci ~ ~ ( ~ ) /  

(3.50) 

is a set of isometric re-structures, since by definition 

13 Since the problem of conformationai isomerism is entirely a question of relative nuclear con- 
figuration, primitive period isometric transformations have to be omitted. 
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i.e. all elements of the complex J~-(~) "cC (~) produce the set ~/[1- -~(~) " c~(~) 
is in general not a group. To each double coset of the decomposition of ~(~) mod 
(~-(~), ~((~)) 

n 

~(~) = U ~ ( ~ )  EiCg(~) (3.51) 
i= 1 

represented by the element Ei E ~(~) there corresponds the set of NCs 

I ( 19 N i  := NC{Xk(~e), Zk, Uk}l ---A (Fk)"Y(F- i )"J(C0 

(3.52) 

which all are isometric among themselves and isomeric to the Nr e llVlj, j ~ i. There- 
fore the number of different isomeric sets ~VI i of NC {Xk(~e), Zk, Mk} equals the 
number of double cosets of the decomposition (3.51). Ruch et al.52) have given for 
tllis number the formula 

I~1 ~ IJ,~,~,~,~,~,~,~,~,~n ~0-~%11~n~'~rl 
n - - -  (3.53) 

I ~ 1 . 1 ~ 1  r=l I~rl  

where Wr is the rth class of conjugate elements of ~ and the sum is over all classes 
of ~ .  Since the NC {Xk(F- 1 (~)), Zk, Mk), V F E d~-(~) are either properly or im- 
properly congruent n is the number of diastereomers. If we consider the subgroup 
J + ( ~ )  C S ( ~ ) ,  

J * ( ~ )  := (FI F e J ( ~ ) ,  I P(3)(F)I = +1) (3.54) 

the NC {Xk(F-l(~)), Zk, Mk}, V F E J -+(~)  are all properly congruent and the 
number n § of double cosets in the decomposition 

n + 

~ =  0 5 -  + "Ek " ~ (3.51') 
k = l  

is the number of stereoisomeric NCs. Therefore, for SRMs with improperly ortho- 
gonal group p(3) {J~r") n + - n is equal to the number of  enantiometric pairs of  NCs 
and 2n - n § equals the number of achiral isomers. 

3.5.2 Example 

The enumeration method outlined above will be illustrated by determining the num- 
ber of isomers of various isotopic modifications of diphenylmethane CH 2(C 6H s)2, 
assuming various equilibrium values for the internal coordinates. The normal iso- 
topic modification of this nonrigid molecule, and at the same time NC {Xk(rO, rl),  Zk}, 
may be approximated by the SRM C 2 vF (C2 vT)2; another molecule of this type is dim- 
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H~ H 

H 
~'-~6H5 
J "C~H 

C6 

l 
 c\H 

H 

b 

Fig. 8. C2vF(C2vT)2SRM 
(a) definition of the internal coordinates 
-*r < r0, r I < +It. (b) definition of the 
molecule fixed coordinate system 

tromethane, CH2(N02) 2. Figure 8 depicts the choice of the internal coordinates and 
. . I S  the frame fixed coordinate system. The internal ~sometnc group J - ( r o ,  r l  ) = J (3 r'} 

with 

:J(F) ,F Y 

possesses three generators 

f f  - 1  lr ] 
T: . - !  lr 

1 

with the relations 

C 4 = 5 2 = T 2 = E, SC k = c -kS ,  TS-~ ST, TC =CT 

Thus, J - ( t o ,  ~'1) of the normal isotope and therefore the group ~ (%, r l ) is iso- 
morphic to the point group D4h 

V(z0, r t )  is ( ( ck )  U S {ck}) �9 (E, '1") i=s 04" (E, T) 

A NC with arbitrary 7"o and ri  does not possess covering symmetry, therefore 

~(ro,  r l )  = Cl 

The representation F (a) { N } which immediately gives the covering symmetries of the 
fixed point NCs NC {Xk(r0F, r~ F), Zk } is the point group C2v 
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.)(11 .)(11 .)(111)l:c2v 
The SRMs of isotopic modifications of diphenylmethane, e.g. C2vF(CzvT)(CsT), 
C2vF(CsT)2, CzvF(CsT)(CsT) ', CsF(C2vT)(CsT) are all descendents of the 
SRM C2vF(C2vT)z of the normal isotope featuring the highest symmetry, and their 
internal isometric group S ( T  o, ~'1) is a subgroup of ~ (To, r 1). The number of isomers 
of each isotope depends not only on J (to, r l )  but also on the re-ValUeS roe, t ie of the 
internal coordinates, i.e. on the covering group cff (roe , Zle ) of the unsubstituted 
re-structure NC (Xk(roe, rle), Zk}. Table 17 shows this dependence of the number 
of diasteromers (n) and stereoisomers (n +) for various isotopic modifications. 

4 Discussion 

In this chapter a few remarks will be stated and relations and extensions of the iso- 
metric group concept of semirigid models will be discussed in the following sequence 

(i) relation of the isometric group concept to the familiar symmetry concept of 
quasirigid molecules 

(ii) relation of the isometric group of  a semirigid model to the isometric group 
of the associated nonrigid molecule 

A 

(iii) remarks concerning the definition of operators Pc for semirigid, quasirigid 
and nonrigid molecules 

(iv) remarks concerning the relation of the isometric group to other approaches 
to the symmetry of nonrigid molecules. 

4.1 Isometric Transformations Associated with Quasirigid Molecules 

In this section we will show that our group theoretical treatment for nonrigid mole- 
cules, approximated by a SRM is strictly analogous to the familiar symmetry treat- 
ment of quasirigid molecules (QRM) 5s-sT). A QRM may be characterized by the 
nuclear configurations 

NC (Xke + Xk, Zk, Mk } (4.1) 

where the vectors Xk denote infinitesimal displacements of the nuclei from their 
equilibrium positions Xke. "Infinitesimal" means 

}dkk' -- dkk'e I '< dkk'e (4.2) 

Assume the equilibrium nuclear configuration 

NC e (Xke ' Zk ' Mk } (4.3) 
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to have coveting symmetry Cffe; then, for arbitrary values of  the displacements 
Xk(kE [ 1, K], K > 4), NC (4.1) does v.ot possess covering symmetry 

cff (x )=  CI (4.4) 

whereas 

(o) = ~o, 

i.e. the NC with xl  = x2 = . �9 = XK = 0 defines a fixed point NC with covering 
symmetry ~e  in the sense as defined for SRMs, cf. Sect. 2.2.3.1. Though Eq. (4.4) 
shows that w.r.t. NC (4.1) we are exclusively concerned with internal isometric 
transformations they will nevertheless be denoted by G since they are a direct conse- 
quence of  ~ ~ 

To the coordinate transformations 

(x') = r (3) (G)(x) (4 f' =e ' f -  "P(a)(G)) (4.5) 

A 

expressing the covering symmetry of  Nee are associated operators PG acting in the 
function space 

]L { f ( x ) ;  f ( x )  = f ( x l  . . . .  , XaK)  
2X 

PG f(x) = f (F (NCf) (G) -  t (x)) (4.6) 

In particular, for the set of  all displacements Xk arranged in a row 

A 

PG{Xk) = (~dk"  Pt3)(G)) = (X'k} II(G) ~ F(3)(G) 

= {X'k) " r ( s c f ) ( G )  (4.7) 

where II(G) denotes a K by K permutation matrix. This matrix may be specified by 
requiting that the distance ~Gdkk,f~(X) is identical with one of  the distances o f  the set 
K(dkk,(X)), say d~ , (x ) .  

^ 2 "" 
P G d k k  , (X) = P G ( ( X k e  + X k - -  Xk ,  e --  Xk, ) (Xke  + X k --  Xk,  e - -  Xk,))  

= P G ( ( X k e  --  Xk,e)  (Xke  - -  Xk,e)  + 2 (x  k --  Xk, ) ( X k e  --  Xk,e)  + 

+ ( ~ )  (Xk -- Xk')) 

-- ~ k o  FXk~)(Xko - Xk,o) + 2 (• -• r ~3)(G)(xko - Xk'o) 

+ (~-& ~ )  rO) (G) ? r (X~k - X~,k') 
2 

= d~-~, (x) = (Xke -- X~'e)(XI~e - X~'e) + 2 (x~ - x~0(X~e - X~-',.)+ 

+ ( x - " - ~ -  x~,) (x~ - xl~,) (4.8) 

Therefore, since all x k are arbitrary, the equation 

p(3) (G) (Xke  - -  Xk,e)  = ( X ~ e  - X~,e)  (4.9) 
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determines the permutation matrix II(G) in Eq. (4.7). 
The matrix group 

II{~e)  := {II(G)IV G E  ~e) i=s cff e (4.10) 

is in general an intransitive permutation group isomorphic to cffe, each set of equiv- 
alent nuclei contributing a transitive component. Thereby the transitive components 
generated by sets in general site w.r.t. He are identical with the regular representation 
ofqCe generated by right translation 16, 21) 

The representation 

F(NCr)(cffe) := {II(G) | P(3)(G)IVGE ~e) (4.11) 

is isomorphic to c*ffe, since both the permutational factor I-I {~)  and the rotational 
factor F(3) ( ~ )  are isomorLphic to qJe. Application of the transformation group 
p ~ c 0  {~ ) to the basis (Xke) yields, according to the construction principle fixed 
by Eqs. (4.7)-(4.9) 

(4.12) 

This equation again shows that the re-structure NCe is a fixed point NC for all iso- 
metric transformations (4.7) and is the analogue of Eq. (2.53) for SRMs. However, 
for difference concerning the definition of operators ~G for SRMs and QRMs see 
Sect. 4.3. 

Application of the operators Pc to the nuclear coordinate vectors expressed 
w.r.t, the LS, X~(e, x) = xle(e) + xk (e), leads to an analogue of the permutation- 
inversion group [cf. Eq. (2.89)] 

A ~ A 

PG {xk(e)) = PG (Xk) I(K) | R(e) = (x~k(e)) rI(G) ~ I F(a)(G)I 1 (s) 

= { ~ ( e ) )  r(NC0(G), VG ~ ~ (4.13) 

This transformation formula formed the starting point for the study of the symmetry 
of nonrigid molecules by Hougen 6) and later more generally by Longuet.Higgins7), cf. 
Sect. 4.4.1. 

From the fact that F (Nc0 (~}  is the isometric group of the NC (4.1) it follows 
by the same reasoning as for SRMs that ~e is the symmetry group of the rotation- 
vibration hamiltonian. Though the representation (4.11) is commonly used in vibra- 
tional spectroscopy as-sT) it only seldom has been characterized as a group of iso- 
metric transformations sT). 

A further point of interest is the transformation law for vector (tensor) operators 
w.r.t, the laboratory system. For the electric dipole moment one may show by the 
same arguments as used for the case of SRMs 4D that 

PG (l~l(ke)f(X)) ~ a  = 1-' (3) (G)(M~e)f(x)) (4.14) 
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Hence, 

= ~(e)R(G)~ O) (G)(I~I~ e)f) 

--  (e)l r (G) I (fi  e)t) 

= I r 3)(G)l(fi  ~  (4.15) 

Equation (4.15) is strictly analogous to Eq. (3.37) for SRMs. It plays therefore the 
same role in formulation of Wigner-Eckart theorems and selection rules for rotating- 
vibrating molecules as does Eq. (3.37) for SRMs. 

4.2 Relation Between the Isometric Groups of  a Nonrigid Molecule and Its 
Associated Semirigid Model 

A NRM may be characterized by the NCs 

NC{Xk(~) + Xk, Zk, Mk}, k E  [1,K] (4.16) 

Thereby, each coordinate vector is assumed to be the sum of a vector Xk(~, depend- 
ing on the finite internal coordinates gt . . . . .  gf and an infinitesimal displacement 
Xk. The fact that a redundant set of coordinates, i.e. f finite coordinates ~ and 3 K 
displacements x are associated with NC (4.16) does not affect our discussion of the 
isometries of the NRM. To the NRM (4.16) there is associated a SRM defined by 

NC{Xk(~2) , Zk, i k )  (4.17) 

denoting the same set of finite internal coordinates as for NC (4.16). The SRM 
(4.17) possesses the internal isometric group J~-(~), the covering group ~ (~) and 
the full isometric group ~,'~(~) = ~'~(~) �9 ~ (~). One immediately may state that the 
NRM (4.16) does not possess nontrivial covering symmetry ~j (~, x) if K 1> 4 

~ ( ~ , x ) = C  1 (4.18) 

and 

o) = 

i.e. the NC (4.17) (x 1 = x2 = . . .  = XK = 0) is a fixed point NC with covering sym- 
metry ~ (~). Equation (4.18) is strictly analogous to Eq. (4.4) for QRMs and illus- 
trates the similarity of the roles which the re-structure and the SRM play for the 
symmetry of QRMs and NRMs, respectively. The last statement suggests a construc- 
tion of the isometric group of  the NRM, whose elements are of type 
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o 717 a ,~ 
II | F (3) = 0 �9 x 

L I . I  L 1 1 
(4.19) 

by aid of the isometries of the associated SRM: 
(0~A NC (4.16) with arbitrary but fixed values of the internal coordinates 

possesses the isometric transformations 

o ] [ ] o  , 
= II(G) | P(3)(G) 0 �9 x 

1 1 
( 4 . 2 0 )  

with G E (ff (~), corresponding to Eq. (4.7) for QRMs. Therefore, the set 

0 �9 x ~ ( ~ )  (4.21) i = . n(G) | P ( S ) ( G )  I V G  ~ ~ (~)  i__s 

1 1 

forms a subgroup of the isometric group of NC (4.16) isomorphic to ~ (~). The 
matrices II(G) | P(3)(G) are identical with those given by Eq. (2.53) for SRMs, cf. 
Eq. (4.29). 

(ii) Next we consider the group of isometric transformations 

= I I ( F ) |  " 1 I V F ~ f ( ~ )  (4 .22 )  

Eqs. (2.13), (2.80) for SRNs. It is easily shown that all transformations of the set 
(4.22) are isometries of NC (4.16) 

d~k, (~, x)  = I Xk(~_) § Xk --  Xk ' (~ )  - -  Xk' 12 

= ( X k l D  -- X k ' ( D )  ( X k ( ~ )  - -  Xk ' (~ ) )  

+ 2 (xk - Xk " - - - ' - ~ , )  (Xk(~) -- Xk, (~)) + ( ~ )  (Xk -- Xk') 

= D~k,(~ ) + 2 (xk - - ~ , )  (Xk(}) -- Xk,(})) + (Xk --~'S~k,) (Xk -- Xk, ) 

Application of the operators PF associated with transformations of type (4.22) to 
d2k , (~, X) gives 

PF d2k ' (~, x) = D2k-, (~) 

+ 2 ( ~ , )  F (3) (F)P (3) (F) (X~ (~) - Xs (~)) 

+ ( ~ )  P (3) (F)P(3)(F) (x~ - x~,) 

= d~ (~, x) 
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Hence, the set (4.22) forms a group of isometric transformations of the NRM iso- 
morphic to ~ '( / j ) .  

(ii) The semidirect product of the two matrix groups (4.21) and (4.22) generates 
a group ~ ( ~ ,  x) of isometric transformations of NC (4.16) isomorphic to ~ ' ( / j )  of 
NC (4.17). There cannot exist an isometric transformation of the NRM with non- 
trivial~ r (H) not contained in ~ ' ( ~ ,  x), because for any isometry (4.19) not con- 
tained in ffU(~j, x), 

a 1]I,] ,428, 
would be an isometry of the associated SRM, in contradiction to the assumption. 
Therefore, we have the important theorem: 
The isometric group ~F'([j, x) of a nonrigid molecule is isomorphic to the isometric 
group ~ ( ~ )  of the associated SRM. 

Representations of ~('(~, x) on various substrates may be generated along the 
procedures outlined in Chap. 2. The representation of~U(/j, x) on the nuclear posi- 
tion vectors 

r (NCf) {,~f]" := {II(H) | P(a)(H)I VH E ~"(~, x)} (4.26) 

is identical with the representation F (Ncr) {~'~} Eq. (2.73) of the associated SRM, 
i.e. with the set of solutions (2.70) of Eq. (2.69) 

F (Ncf) { , ~  (~, x)) = F (acf) {,~'(~)) (4.27) 

This follows from the isomorphism between ~,P(~, x) and 5~'a(~) and the fact that 
Xk(/j ) and Xk in the sum Xk(~) + Xk must experience the same permutation and rota- 
tion under an isometric transformation 

P~ {Xk(~)-~-~Xk} : { X k ~  Xk}II(H) | r(3)(rt) 
= (Xk(~j)irl(H) | + (Xk}ll(H) | 1-'(3)([-i) 

VH E ~ ' ( ~ ,  x) (4.28) 

In particular, for any H E <ff (g) 

~ (xk(~) + Xk-----~} : (Xk(~)}n(C) ~ r(3)(C) + {~k} n(C) ~ r(3)(c) 

= {xk(~)} + {~k}n(G) ~r(3)(C) (4.29) 

cf. Eq. (2.53) for SRMs and Eq. (4.7) for QRMs. Equation (4.29) expresses that any 
NC of a SRM is a fixed point NC w.r.t, all isometric transformations of type (4.21) 
of the associated NRM. For difference in definition of the operators ~c for SRMs 
and NRMs, cf. Sect. 4.3. Because the representation r (Ncf) of associated NRMs and 
SRMs are identical [Eq. (4.27)], the representation P (Ncl) of NRM and SRM must be 
identical too. Therefore, the relation between isometric group and permutation-inversion 
group S'+Se ~ of NRMs is the same as for the associated SRMs 
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P (Ncl) ( ~ ( ~ ,  x)) is . .~,~,  i__s ~F, (~, x) (4.30) 

if no primitive period isometric transformation occurs in ~ ( ~ ,  x), and 

V (N~ ( ~ ( ~ ,  x)) is _~ a%d ho ~ (~, x) (4.30') 

if ~ ( ~ ,  x) contains primitive period transformations, cf. Sect. 2.3.3. It may be 
shown by the same technique as used for SRMs 14) that ~g'~(~, x) is a symmetry 
group of the rotation-finite internal motion-vibration hamiltonian. 

To complete the discussion on the symmetry of QRMs and NRMs it is interesting 
to point out the analogy between the covering group ~e of the re-structure of a 
QRM and the isometric group ~,'~(~) of the SRM associated with a NRM 

QRM: ~ (x) is ~e  

NRM: ~,a (~, x) is ~ (~) 
(4.31) 

These relations show that the isometric group of a SRM plays the same role for a 
NRM as the covering symmetry group of the re-structure plays for a QRM. 

/ ,  

4.3 Remarks Concerning the Definition of Operators PO 

A remark should be made concerning the definition of operators ~G for semirigid, 
quasirigid and nonrigid molecules. These operators are associated with coordinate 
transformations 

(X') = r(3)(G)(X) (4.32) 

the covering group being defined by the set 

(r(3)(G)) 9 ~  (~) (4.33) 
,A 

The actual definition of the operators PG for SRMs differs from that for QRMs and 
NRMs. This originates from the fact that these operators are defined by their action 
in function spaces which are different for S RMs on one hand and QRMs and NRMs 

A 

on the other hand. For SRMs the basis is (Xk(~)}, on which PG induces a rotation 
or a permutation 2~ 

PG (Xk(~)) = (Xk(~)) I(K) | F(3)(G) = (Xk(~)}A(G) | 1 (3) 
A 

or PG (Xk(~)} = (Xk(~J)} II(G) ~ 1 (3) 

Therefore ~c~5 ~ (Xk(f)) = (Xk(~)) -- (Xk(~)) A(G -~) ~ r(3)(G) 
A(G- t) = II (G) 

(4.34) 

(4.36) 

For QRMs and NRMs, the operators PG are defined by their action on the dynamical 
variables Xk (infinitesimal displacements) 
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PG {xk) : (X'k} H(G) ~ F(3)(G) 

with the consequence that 

QRM: PG {Xke} = {Xke) = {Xke}l-l(G) r P(3)(G) 

NRM: PG {Xk(~)) = {Xk(~)) = {Xk(~)) rl(G) @ r~3)(G) 

The Isometric Group of Nonrigid Molecules 

(4.37) 

(4.38) 

(4.39) 

cf. Eqs. (4.12) and (4.29). Equations (4.36) and (4.39) clearly show the difference 
in the definition of I~G for SRMs and NMRs, respectively. 

4.4 Relation of the Isometric Group to Other Approaches 

4.4.1 Hougen's Approach and the Longuet-Higgins Permutation-Inversion Group 

As mentioned in the introduction, a first attempt to create a symmetry concept for 
nonrigid molecules has been given by Hougen 6, s8), though the approach strictly 
speaking applies only to quasirigid molecules or more precisely to molecules with 
one re-structure only. The most important result achieved by this approach is, in our 
view, the demonstration of the fact, that the rotation-vibration-nuclear spin states 
may be exhaustively classified in terms of the covering symmetry group of the 
re-structure. By consideration of the transformatkon properties of the displacement 
vectors xk expressed w.r.t, the laboratory system, an~qua~tion of the form (4.13) 
has been obtained. It forms a group which may properly be called the permutation- 
inversion group of QRMs. Hougen's work formed the starting point of the permuta- 
tion-inversion approach introduced by Longuet-Higgins 7). 

The Longuet-Higgins approach has already been discussed in the introduction 
and a direct relation between the l~ongtmt-Higgins approach'and the isometric group 
concept has been established by the representation P (Ncl) ( ~  derived in Sects. 2.3 
and 4.2. The discussion presented there made it clear that the two groups (Longuet- 
Higgins group and isometric group) in general are homomorphic. However, a recon- 
struction of transformation properties of eulerian angles and internal coordinates 
expressed in the frame system is not uniquely possible from F (~cl) {~-"} alone. By 
the isometric group concept, such reconstructions are rigorously provided through 
the representations F(. ,-,e ~ {~,} and p(NCf) {~,~-}. 

4.4.2 Relation to Altmann's Approach 

A constructive relation of the isometric group concept to Altmann's approach s' 9) 
in the manner given to Longuet-Higgins' approach would be desirable but appears 
difficult to be established for the following reasons: 

(i) Altmann's Schrrdinger group corresponds apparently to the covering group 
~r (~) (covering group of a "random structure"), the "Schrrdinger Supergroup" may 
be considered as the analogue of the full isometric group ~,~'(~). The group extension 
from the Schrrdinger group to the supergroup involves isodynamic operations. Though 

87 



H. Frei, A. Baudet, and H. Giinthard 

the latter should correspond to the internal isometric transformations, mathematical 
formulation of the correspondence is not possible, since no definition of the iso- 
dynamic operations beyond symbolic operations has to our knowledge been given. 

(ii) In certain cases Altmann has proposed for a given SRM several isomorphic 
supergroups. It has earlier been shown that this phenomenon finds a natural explana- 
tion as being automorphisms of the isometric group, induced by transformations of 
the internal coordinates, which interrelate isometric fixed point NCs. The latter 
correspond to Altmann's "ordered structures". 

(iii) Altmann forwarded the theorem, that the supergroup is always a semidirect 
product, in which the isodynamic group I plays the role of a normal subgroup. The 
theorem has been questioned by Watson by presentation of a counter example s9). 
Whereas the isometric group has been shown to be decomposable as a semidirect 
product with the covering group c~ (~) playing the role of the normal subgroup, 
Altmann's statement would require to prove the invariance of the group ~,~(~). 
This, however, cannot be proved and there exist examples which would contradict 
a theorem of this kind, e.g. the ethylene type molecules discussed in Sect. 2.4.4. 

4.4.3 Relation to the Direct Method 

As has been mentioned in the introduction the first studies of the symmetry of the 
rotation-large amplitude motion problem of nonrigid molecules were motivated by 
spectroscopic investigations of molecules with symmetric internal rotors I l-13). In 
this approach the symmetry group of a model hamiltonian for the rotation-internal 
motion problem is directly investigated for the group of substitutions of the dynami- 
cal variables leaving the hamiltonian H Eq. (3.10) symmetric 6~ The relation of this 
direct approach to the isometric group concept springs from the general theorem, that 
every isometric transformation is a symmetry of the rotation-intemal motion hamil- 
tonian 14). Hence, the isometric group ~':(~) is a (proper or improper) subgroup of 
~-{I~I}. In Sect. 3.2.1. special cases have been mentioned, where ~-~'(~) is a proper 
subgroup of ~-(~l}.:__At the present time it appears difficult to derive general condi- 
tions for ~Z:'(~) C ~ (f-I}. Application of the direct method to many SRMs with two 
symmetric internal rotors have recently been discussed by Dreizler 26, 61). 

Appendix  1 

Rotation Matrix Pammetrized by Eulerian Angles 

The rotation matrix D(t~/37) describing the relation of the laboratory coordinate 
system'e I and the frame system~ 'f Eq. (2.1 .) is defined as follows (0 <~ o~ < 2 ~r, 
0 ~< ~ < n, 0 ~< 7 < 2 rr). The rotation D(a00) transformse "t to a new systeme" by 
rotatinge 1 around the e~ axis through a (s: sin, c: cos) 

~' =~' O(aO0), D(c~O0) = c~ 
0 

(A1.1) 
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Coordinate transformation: X '= R(a00)X 1, R(a00) = D(a00) (AI. 1 ') 

D(0fl0) transforms~" to a system~" by rotating'~' around the axis e~ through fl 

e =e D(0~0),D(0~0) = 1 0 (A1.2) 
k-s~ o C~ 

Coordinate transformation: X"= R(0130)X', R(0fl0)= D(0fl0) (A1.2') 

D(007) transforms~" to the system e"f by rotating ~'" around the axis e'~ through 7 

~'f=~'" D(007), D(007) = c7 (A1.3) 
0 

X f = R(003,) X", R(007) = D(00~,) (A1.3') 

Therefore, 

e'f =eq D(a00) D(0/30) D(007) =eq D(o437) (A1.4) 

X f = R(a~7) X I, R(a~7) = D(a~7) (A1.4') 

D(a~/3') = | sacflc~ +cast -sac/3s7 +cac7 sas/3 | (AI.5) 
k-sflc'r sl3s~, cfl J 

Appendix  2 

Transformation Formula for Rotation Group Coefficients 

To prove Eqs. (2.88) and (2.91) 

PH R(e) = R(H)" R(e), H E ~ ( ~ )  (A2.1) 

and the more general formula (3.33") 

PH D(S+)(e) = D(s+)(H) I"" D(S+)(e) (A2.1') 

we start again from the relation between laboratory and frame coordinate system 

~'f =~q �9 D(e) (A2.2) 

According to Eqs. (2.25) and (2.61) isometric transformations induce transformations 
of the frame system as follows (D(H) = ~ (a)(l-I) = D(eH)ID(H)I) 
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"~f' =~'i D(e) D(H) =~'1 D(e)D(eH)I D(H) I 

=~'l D(e'(e, ell)))D(H)I 

(A2.3) 

where D(H) E O(3), D(e) E SO(3) 

To this equation which defines transformations of the eulerian angles 

e' = e'(e, ell) (A2.4) 

is associated the coordinate transformation of a vector X E , ~  3(R(e) = D(e)) 

f f  

( x )  e = I r (3) (H) l  �9 R(eH)R(e)(X) ~1 

= I F ( 3 ) ( H ) I  �9 R(e'(e, eH))(X) ~l (A2.5) 

Since X is an arbitrary vector 

R(e'(e, ell)) : R(eH)R(e) (A2.6) 

Denoting the rotation parameters of the product R(eH) " R(e) by p(en, e) this trans- 
formation may be written as 

e '=  p(eH, e) (A2.4') 

with R(p(e H, e)) = R(eH) �9 R(e). 
A 

To this transformation we associate the operator PH acting on the linear space 
IL(u(e)} by the usual convention la) 

P~-u(p(e~, e)) = u(e), 

~ F u ( e )  = u ( p - ' ( e r ,  e)), 

(A2.7) 

where p- l (eF,  e) denotes the inverse of p(eF, e) w.r.t, e, i.e. the rotation parameters 
of the matrix R-  l (eF) R(e). 

Application of this general formalism to the rotation matrix R(e) E SO(3) yields 

A 

FR(p(R(eF)R(e))} = PF R(eF)R(e) 
A 

= R(eF) PFR(e) = R(e), i.e. 
A 

PF R(e) = R(eF)- l R(e) (A2.8) 

or for the irreducible representation D (1 +)(e) = TR(e)T t of SO (3) (the matrix T is 
given explicitely in Sect. 3.3.1) 

A A 

PH DO +)(e) = PHTR(e)T f = TR(eH)- 1 R(e)T f 

Thus Pn DO +)(e) = D O +)(ell)t D O +)(e) (A2.8') 
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More generally for any representation of SO(3) we have the fundamental formula 

Ptt D(S+)(e) = n(s+)(H) t DCS+)(e) (A2.8") 

Append ix  3 

Determination of p(NCO(F) for SRMs with Proper Covering Group cff (~) 

In this appendix determination of the representation p(NCf) { ~ )  by solving 
Eq. (2.69) 

PF (Xk(~)} = {Xk(F- l(~))} = {.~k(~)}ll (F) | F(3)(F) 

will explicitely be demonstrated for the isometric transformation F2 of the SRM 
Do.nF(C2vT)2 (Sect. 2.4.4,.) 

PF2Xxuv(r) = Xhuv(-f) = X~,'u'v'(r) F(3)(F2) 

Explicitely 

{r c"> '"> i] } [1 ]' ~oo,,+ Xooo L ( - ' " "  dE-"o-" ~ -1 --1 = 

]["!]l[  l o o  - c r  - 1  �9 P ( 3 ) ( F 2 )  = (O01)+Xooo ( - I )  u'+"' sr 
1 

Since Xtoo is arbitrary, one may conclude 

[' -r[- 
cr 0 ( -1 )  u'+'' ( - l y  '+" 
0 1 1 I 

x cr -1  = /a21 a22 a23 / 
0 --1 [.a31 a32 a33J 

ali = ( -1 )  u'+" c2r + ( -1 )  u'+u+v'+v+ I s2r 

=(  1)u'+u +~'+1 ( l ) U ' + u + v ' + v + X + l s r c r  a12 - s'/" cT + - 

al3 = 0 

a21 = ( - I )  u'+u+A' sr c7 + ( - I  ) t2 + tz+ v' + v+ x" c~" sT 
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a22 = (--1) ta'+"+x'+x+l s2r + ( - 1 )  u'+"~'"'+v+x'+x c2r 

a23=a31 =a32=0 
a33 = ( - 1 )  x+x' 

This matrix must be independent of  r implying u' = v + 1. Therefore, 

F(3)(F2) = (_l)U'+tJ+h'+h+l 00 
0 (--1) x'+x 

Furthermore, it must be independent of  ~,, ~',/a,/a'. This requirement leads to the 
following 4 solutions: 

v' = v + 1, X' = ~., #' =/a : (GX, hGu,u/iv',+ 1) | - 1  
1 

E -I ] v v + l ,  ~,, / a + l  : (6x 'x6u'~+lGu'v+l) |  1 
1 

, E 1 ] v u+ 1, ~+  1, /a:(Gx'x+lG~'u~iu'u+l)@ 1 
-1  [1 ] 

v ' = v +  1, k ' = k +  1 , g ' = # +  1 : (6x'x+ 18K~+ 16v'v+ t) | -1  
- 1  

The first factor of  the direct products denotes a 8 by 8 permutation matrix. If the 
position vectors are arranged in the order 

{X~.gb'} =" {XoooXool XoloXol iXlooXlol Xl lO-~111 ]% 

it reads, e.g. 

(~X,X+ 1~u,~v,v+ i) = 

. . . . .  1 ~ 

. . . .  

. . . . . . .  1 

. . . . . .  

. . . . . .  

~ �9 �9 ~ �9 ~ ~ 

. . . .  

l . . . . .  
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Relation Between Irreducible Spherical and Cartesian Components of a Symmetric 
Tensor of Rank 2 

The symmetric part of the Kronecker square R .2, R E 0(3) may be calculated by 
direct reduction of R .2 

where R s~ is a 6 by 6 matrix given by 

R s| = 

R 2, R~2 R~3 V~R,,R,2 

R 2, R222 R~3 V~-R2,R22 

R~, R~2 R23 x/~R3,R32 

V~-RI1R2t V~RI2R22 V~-RI3R23 RlIR22 +R12R2I 

V~'R21Ral v~'R22R32 v~-R23R33 R21R32 + R22R31 

V~-RttR31 X/~-RI2Ra2 X/~'Rt3R33 RIIR32 + Rl2Ral 

X/~'RI2RI3 

%/~'R22R23 

v~'Ra2R3a 

R12R23 + RI3R22 

R22R33 + R23R32 

RI2R33 + RIaR32 

vC2"RllRl3 

v~R21R23 

x/2-R31R33 

RttR23 + RI3R21 

R21R33 + R23R3t 

RIIR33+RI3R31 
(A5.2) 

and R a| is the antisymmetric Kronecker square (3 by 3) matrix. Thereby the matrix 

"1 

Z= 

V / ~  -N/T~ �84 

-4r7  

1 (a5.3) 
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^f transforms the cartesian components of a general tensor (Amn(~)) of rank 2 

~f  f f f f f f f f f 
Amn(~ ) = (~11~12~13~21~22~23~31~32~33)  

into symmetric (s) and antisymmetric (a) components 

[ ~ ]  = Z(.~,fn(~>) (A5.4> 

^f /,f f f ^f ~f ~f(~) = (SI iS22~33.~12S23S31) 
~f _ f -.f ^f 
a (~) - (fl12a23a31) 

The symmetric tensor (~f(~)) is then transformed to irreducible spherical coordinates by 

.~f a(~)j = T(2 s)(gf(~)) (AS.S) 

with 

T(2S) = 

1 1 1 

4Y 
1 1 i 

1 1 

4g 

1 1 i 

i 1 

i 1 

(A5.6) 

Appe nd ix  5 

Irreducible Representations of Frequently Occuring Isometric Groups 

In this work the irreducible representations of the isometric groups occuring in 
Tables 1, 2, 3, 14, 15 are denoted as follows: 

E V2 

I "(0+ ) 1 1 
r (~ I -1 
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0 2 = 9~" 4 E V 2 V 3 V 4 

r (~ r(1) I 1 I I 
r (~ r (2) 1 1 -I -I 
r(l+) r(3) I - 1 I - I 
r (I-) r (4) I -I -I 1 

0n, n =  2 1 2 ] ,  ~>4 (n even),M = 1 , 2 , . . [ 2  ] -1 ,k - - -  0 ( 1 ) n - l ,  ~ =  27r/n 

d n C k SC k 

r (~ 1 I 
r (~ 1 -1 
r (M) (cos sa kM - sin ~a kM ~ /' COS q kM - sin ~ kM 

~sin 9 kM cos 9 kM/ ~-sin ~o kM cos ~ kM/ 

r ~ (-I) k -(-I) k 

0n, n = 2 1 2 ]  + 1 (n odd), M = 1, 2 . . . .  [ 2 ] ,  k = 0 (1)n  - l , ~  = 2 ~r/n 

o n C k s c  k 

r (~ I I 
r (~ I -I 

r(M) /cos 9 kM -sin r kM / ( cos 9 kM -sin 9 kM 
ksin 9 kM cos ~ kM ] t,-sin ~ kM -cos 9 kM] 

O n (E, T] Groups 

If  T commutes with all G E 0 n then the representations o f  0n(E, T) are obtained of  
those of  On by means of  the factor group representations 

rOP) r (On] r {TOn) 

r 0+) r(J) (an) r0) (an) 
r(J-) rO) {a~) - r  0)~ (on) 
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Structure of Molecules with Large Amplitude Motion 

1 I n t r o d u c t i o n  

During the last fifty years, since the famous experiment of Davisson and Germer 1), 
electron-diffraction methods have been widely in use for the study of structure of 
matter on a molecular scale. The use of electron diffraction in the gas phase provided 
an excellent method for the study of the structure of the free molecule. In the earlier 
years of  gas electron diffraction the concept "molecular structure" was in practice 
synonymous with molecular geometry. The internal motion of the molecule was 
almost considered by electron diffractionists as an unavoidable evil, a defect of 
nature interfering unfortunately with the endeavor to determine molecular geo- 
metry. In order to minimize the role of this "defect" it was found unseful to apply 
spectroscopically obtained data on the internal motion of the molecule. The idea was 
to correct for the effect of  intramolecular motion, and thus try do develop a proce- 
dure for obtaining the best geometric data for an idealized rigid molecular model. 
However, the development of the electron-diffraction method for studies in the gas 
phase soon changed the ambitions of the researchers using the method. The potenti- 
ality of the method proved considerably greater than generally expected in the 
earlier days of electron diffraction. The development of the method led to consider- 
able improvement in the precision of intensity data measurements. Further dramati- 
cally improved computing procedures made it possible to deduce the molecular data 
latent in the measurements faster and with considerably greater reliability. Thus it 
was soon evident that data characterizing intramolecular motion could also be 
quantitatively obtained from electron-diffraction measurements. The concept "molec- 
ular structure" in the modern practice of gas electron diffraction is accordingly no 
longer restricted to geometry alone, but includes parameters describing internal 
motion as well. 

The internal motion of a polyatomic molecule is rather complex. In order to 
understand its principles, it is convenient and customary to refer to the vibration of a 
diatomic molecule. The internal motion in molecules has above all been studied 
experimentally and theoretically by spectroscopists. The approach towards the study 
of polyatomic molecules through diatomic molecules has been excellently demon- 
strated by the two classical books of  G. Herzberg, the first one dealing with diatomic 
molecules2), the second one with polyatomic molecules 3). Although these two 
books should by now be hopelessly out of date, and in spite of the fact that they 
have been succeeded by a series of up to date works, they can still be recommended 
to to-day's students. 

The two key quantities in quantum mechanics are the eigenfunction and the 
eigenvalue. While the eigenvalue, through energy difference, is the quantity that in 
principle is attainable by spectroscopic studies, electron-diffraction studies in the gas 
phase give information about the eigenfunction, or rather the square of the eigen- 
function of  the atom distribution. Let us take as an example a diatomic molecule. 
The radial distribution curve as determined by gas electron diffraction, if properly 
modified, is a description of the temperature average of the distance distribution in 
the diatomic molecule (Fig. 1). 

The position of the peak on a distance scale gives information of  the internuclear 
distance, and the shape of the peak itself is a representation of the weighted sum of 
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a diatomic molecule (H2; R = 74, 
u = 8,7 (pm)) 

the ~k*~k for the interatomic distance at the temperature of  the experiment. The 
radial distribution curve obtained by electron diffraction for a diatomic molecule 
should in principle contain the data necessary for describing the molecular vibration, 
including both the harmonic and the anharmonic contribution. However, the pre- 
cision by which spectroscopic methods produce such data usually exceeds what may 
be attained by electron diffraction, at least for small molecules. 

In the case of  polyatomic molecules the radial distribution curve as deduced 
from electron-diffraction gas experiments may also be considered as a kind of a 
weighted sum of ~b*CJ curves for the internal motion in the molecule, but here all 
internuclear distances are inseparably mixed together in a one-dimensional represen- 
tation. For a "rigid" molecule, such as carbon tetrachioride or benzene, electron 
diffraction may produce quite accurate information as to the geometry of the mole- 
cule. As to the internal motion of the molecule, vibrational amplitudes may be de- 
duced and compared with the corresponding data, differently but usually consid- 
erably more accurately, obtained by spectroscopic methods. How this is actually 
done in practice is perhaps most elegantly described by S. Cyvin 4). 

The concept "rigid" molecule is of  course, like many other useful terms in 
science, not well defined. The distinction between a "rigid" and a "non-rigid" mole- 
cule is in practice based upon and left to the intuition of the chemists. The same is 
the case with the key concept of  the present article, namely the term "large ampli- 
tude motion". It would hardly be practicable to define the difference between 
"small" and "large" amplitude motion quantitatively by a certain value for the 
amplitude dividing intramolecular motion into two categories. The term "large 
amplitude motion" has to be applied to certain kinds of  internal molecular motion, 
the description of which is the aim of the present article. The "small" amplitudes 
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would in practice be of the order of approximately 4 pm up to values ranging from 
10 to 20 pm. The lower value of a "large" amplitude may well overlap with the 
upper limit of a "small" amplitude, but this slight blemish would hardly lead to 
confusion. 

In the electron-diffraction jargon it is often referred to "the framework vibra- 
tion" in contrast to the large amplitude motion. The idea is to try to separate the 
large amplitude motion, as for example a torsional motion, from the small amplitude 
vibration also taking place in "rigid" molecules. This practical approach does not 
lead to semantic difficulties, but the approach, of course, meets with the well known 
difficulty in any theoretical treatment of  this kind, namely the problem of separa- 
bility of the energy and consequently of the Hamiltonian operator. 

1.1 Intramolecular Motion and Conformational Analysis 

The electron-diffraction method presented the first demonstration of the existence 
of conformational equilibrium in the gas phase 5). Later a series of examples of con. 
formational equilibrium changes as function of temperature have been de- 
scribed 6-8). The transformation from one conformer to another is considered to 
take place without breaking of bonds and is thus a typical example of large ampli- 
tude motion within the molecule. But in spite of the fact that gas electron dif- 
fraction has been a key method for proving the existence of this kind of large ampli- 
tude motion, it unfortunately fails to give accurate description of the mechanism of 
the motion. The gas electron-diffraction intensity data are composed of contri- 
butions from all interatomic distances existing in the molecular species studied, and 
in such a way that the contribution from each individual distance value is proportio- 
nal to the probability of observing the said value. The contribution of the equi- 
librium conformers (usually simply referred to as the conformers) to the electron. 
diffraction intensity data is often overwhelmingly higher than that of the inter- 
mediate geometrical species of  the molecule. As an example may serve the classical 
case of a dihalocyclohexane (see Fig. 17) or a 1,2.dihaloethane. The main indicator 
for the two coexisting conformers is the halogen-halogen distance. This distance 
shows up in the radial distribution curve with two peaks, one corresponding to each 
of the two conformers. Even the most refined modern electron-diffraction method 
applied on such molecules would only give very limited, if any, measurable contri- 
bution from intermediate molecular species deviating appreciably from the two con- 
formers. The electron-diffraction method needs a rather high probability value for a 
geometric species in order to recognize it. The intramolecular motion between con. 
formers can thus in general not be studied directly by electron diffraction alone 
except for the motion near by or at the equilibria. Only in cases with small barriers 
between the conformers, i. e. about or smaller than RT, appreciable amounts of 
intermediates may be recognizable. 

The internal motion of a molecule would be satisfactorily and adequately de- 
scribed if the potential energy of the molecule as function of a complete set of  inde. 
pendent geometrical variables had been given. For the intramolecular motion leading 
from one conformer to another, the lowest energy pass would be of particular inter- 
est. The electron-diffraction method may in principle help finding 
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1) the position of the minima on such an energy curve, 
2) the energy difference between the minima, and 
3) the shape of  the curve in the minimum areas. 
In practice some of  these data may be hard to obtain from electron diffraction 

alone with a meaningful accuracy. And in any case, a full description of the energy 
curve leading from one conformer to another can only be obtained in combination 
with other methods. 

The lowest energy pass leading from one conformer to another may be described 
by a small number of  geometrical parameters. In an ethane derivative, as for example 
1,2-dihaloethane, this pass may be described to the first approximation by one para- 
meter, namely the torsional angle, though the actual lowest energy pass probably 
involves bendings of  valency angles and even stretching of bonds. For cyclohexane 
derivatives the lowest energy pass must be described by at least two parameters, the 
torsional angle and the C-C-C valency angle. Other parameters would probably also 
change during a ring conversion. For cyclohexanes the lowest energy pass is assumed 
to go through a geometric form of a cyclohexene-like half chair. 

The kind of reasoning used concerning the transformation from one conformer 
to another may of course be used more generally than for the examples mentioned 
exhibiting only two conformers. It may of course also be used in cases such as ethane 
or cyclohexane itself or in any of their derivatives where large internal motion of the 
same kind is described. The reasoning may also easily be carried out for more com- 
plex molecules involving several torsional parameters and exhibiting more than two 
conformers. 

2 T h e  E l e c t r o n - D i f f r a c t i o n  M e t h o d  

Both the experimental technique 9) and theory ~~ behind structure determination 
using the gas electron-diffraction method have been reviewed in detail by several 
authors. Since the experiments for the study of large amplitude motion are the same 
as for other electron-diffraction investigations, it was not felt necessary to describe 
the experimental equipment and procedure. There is only one experimental point 
that deserves a comment. For quantitative studies of  large amplitude motion the 
temperature should be known. In particular for conformational analysis temperature 
studies are important since the relative amount of coexisting conformers is tempera- 
ture dependent. In extreme cases an existing conformer may even get lost in a con- 
ventional low temperature experiment, while it clearly shows up at high tempera- 
tures. This was most clearly demonstrated in the case of  2-chloroethanol where only 
the gauche conformer showed up in the original electron-diffraction study based 
upon optimal temperature exposures I O, while the anti conformer dearly showed up 
at higher temperatures 7' a) (Fig. 6). 

There are several difficulties assosiated with electron-diffraction temperature 
experiments. Firstly, there is no direct way to measure the temperature of  the gas at 
the moment of  diffraction. Secondly, the concept of  temperature is an ill-defined 
parameter in the diffraction point. The gas to be studied is let out of a nozzle into 
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the vacuum system and immediately hit by the electron beam. The gas is accordingly 
in the moment of  diffraction expanding into the low pressure area. One could there- 
fore hardly characterize the situation as a thermodynamic equilibrium. The only 
experimental temperature to be referred to is the one of the nozzle tip which tempe- 
rature is measured by a thermocouple. However, experience, particularly in connec- 
tion with the measurements of conformational equilibria, seems to indicate that the 
cooling of the gas caused by the expansion primarily concern the translational 
motion of the molecules, to a lesser degree the overall rotation, and only to a minor 
degree the internal motion which is the main interest in present context. Accor- 
dingly, in most electron.diffraction work the temperature of the nozzle tip is taken 
as the temperature of internal motion, though attempts to correct for the cooling of 
the gas have also been made 12). 

As to the theoretical part of  electron.diffraction studies it was felt appropriate, 
in order to ease the presentation of  the problem of large amplitude molecular 
motion, to include some basic equations and to discuss some of the approximations 
made. 

The intensity function used in structure analyses may be expressed as follows: 

M M sin rs dr 
I (s) = const. Z ~; gij/kl(S).l'Pij(r ) (1) 

i : t : j  r 

where 

_lfi (s) I" If~ (s)l 
gij/kl(S) Ifk (S)I'I fl(s)l COS (~7i (S) --  77j (S)) ( 2 )  

The independent variable s = 5~. sind 0, where ~ is the electron wavelength and 20 
the scattering angle. The summation indices i and j refer to each of the M atoms in 
the molecule. The index pair k and I refers to a representative atom pair of the mole- 
cule studied, chosen to obtain a convenient form for I(s) and its Fourier transformed 
partner, fi(s) is the complex scattering amplitude of the i-th atom in the molecule 
and r/i(s ) is the argument of  fi(s), i. e. 

f(s) = If(s) I exp(in (s)) 

The electron distribution of the atoms are assumed to be spherically symmetric. 
Pij(r) dr is the probability of  finding the atom pair i and j at an internuclear distance 
interval between r and r+dr. The integral over r, although for convenience written 
without specified limits of integration, should be considered as a definite integral. 
Pij(r) is always limited to a rather narrow r-interval beyond which it is negligible in 
value. 

Calculations of  f- and r/.values from atomic potentials are continuously being 
made more comprehensive and accurate 13) and tabulated values are available ~4). 

l(s) as given in Eq. (1) is in principal of  experimental origin though it is not the 
directly obtained intensity value. It represents a properly modified difference curve 
between the total observed intensity curve and a background intensity curve. The 
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shape of the latter curve is independent of the molecular structure and is only re- 
fleeting the scattering properties of the atoms in the molecule. 

For a homonuclear diatomic molecule Eq. ( I )  gets the simple form: 

I(s) = const. ~o P(r) sin rs dr 
o r 

Here integration limits are included. 

By Fourier transformation P(r) may be expressed as 
r 

(3) 

P,r,=(~ const. ~of I(s) sin rs ds (4) 
r o 

In the general polyatomic case a function is defined in analogy to Eq. (4) as follows: 

O" ( r )  Srnax 
- f I(s) exp(-ks  2) sin rs ds (5) 

r Smin 

This function is called the radial distribution (RD) function. The integration limits 
are set by experimental insufficiency. In routine gas electron diffraction 
stain > 0.01 pm- i  and Smax < 0.6 pm - i ,  though in especially designed experi- 
ments these limits may be exceeded. The lack of experimental information on the 
lower side of the s range may be remedied by introduction of  theoretical intensity 
values. The effect of the outer limit is reduced by the factor exp(-ks 2) where k is 
chosen from experience. 

For interatomic distances undergoing small vibrational motion, a Gaussian 
distance distribution represents a good approximation for Pij (r): 

Pij(r) = ~ i i j e x p  [ -  2u~ ~ (6) 

w h e r e  uij is the root-mean-square amplitude of vibration and rij the mean distance 
between the two atoms involved. For an atom pair where the two atoms undergo a 
mutually large amplitude motion, a situation in focus of the present article, Pij ( r )  is 
more complex. 

In order to perform the integration in Eq. (1) or (3), r is set equal t o  ri j+Y , y 
being of  a small value compared to rii. We then have: 

1 1 
- (1---~-Y + . . . )  ( 7 )  

r rii rii 

Using only the first term of Eq. (7) and the approximation set by Eq. (6) the integral 
may be written as 

f Pij(r) sin rs dr = sin rij s exp ( -  2 uij2 s2) 
r rij 
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The approximations needed for carrying out the integration are for all purposes 
sufficiently good. 

Equation ( i )  may thus be written 

M M sin rii s 1 2 _2 
I(s) = const. Z E gii/kl(S) r-----~j exp (_ ~uij s ) (9) 

i:l: i 

To the approximation applied so far and after correction for the lack of infor- 
mation beyond the experimental s-range, the RD-curve should consist of Gaussian 
shaped curves for distances between the kind of atoms described by the indices k and 
1. The maximum of each Gaussian peak corresponds to the mean of the interatomic 
distance in question. For other pairs of atoms the corresponding peak is slightly 
modified due to the difference in f(s) and r/(s) for the various atoms. But at this level 
of approximation a series of effects have been neglected. These are: 
(1) further terms in Eq. (7), 
(2) anharmonicity, 
(3) shrinkage effect, and 
(4) large amplitude motion. 

1) Inclusion of one more term in the series Eq. (7) leads to a change in Eq. (8). 

Instead of  sin (rl, s) one gets to a good approximation sin (r  i, - u i J 2 / s .  T h e  distance 

most directly related to the electron-diffraction study is denoted'ra '~  is). The 
average interatomic distance is 

rg = r a + - ~  (10) 

The correction t e r m - ~  is usually small compared to rg, ranging from 0.1 to 0.5 pro. 

2) Anharmonicity is conveniently treated using the Morse-potential approxima- 
tion. The sine term of Eq. (8) is then to a first approximation replaced by 

sin (rij Hit2 KiiS2)S where Kij, the asymmetry constant, is related to the constant 
rij 

a in the Morse-potential 16) through the approximation K = au4/6. A more accurate 
expression for diatomic molecules is 

au 4 
K = - K -  [1 + 8• + x~)] (1 l )  

where X = hv/kT. 
3) The shrinkage effect 17) is treated in more detail elsewhere in the present 

article. Due to molecular vibrations interatomic distances observed by electron dif- 
fraction do not correspond to a set of distances calculated from a rigid geometrical 
model. Usually the shrinkage effect is routinely included in electron-diffraction least- 
squares refinement. In order to do so, it has been found appropriate to introduce a 
third distance type ra defined as the distance between mean positions of atoms at a 
particular temperature. If the harmonic force field is known, r a may be calculated 
from r a according to Eq. (12): 
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,12 
r,~ =r~ + r - K  (12) 

< Ax 2 )+ <~y2 ), 
where K = 

2r 

( Ax 2 ), and ( Ay 2 ) are the mean square perpendicular vibrational amplitudes. 
Equation (12) demonstrates two features: a) even for negligible perpendicular ampli- 
tudes shrinkage will be observed in the ra-value , b) shrinkage also occurs in the har- 
monic approximation for P(r). 

4) For large amplitude motion the distance distribution P(r) may be rather com- 
plex. For most molecules studied by electron diffraction, the large amplitude motion 
may be described by a few geometrical parameters, and in many important cases 
only by one single parameter. In addition to the large amplitude motion the mole- 
cule will of  course carry out the same kind of small amplitude vibration as any other 
molecule. This vibration, which is referred to as the framework vibration, is assumed 
to be separable from the large amplitude motion 18' 19). If the large amplitude 
motion may be described by one parameter, q, the probability distribution of an 
individual distance carrying out such a motion, may be expressed as 18' 20-22) 

P(r) = f Pfr (r,q) V(q)dq (13) 

Pfr(r,q) is related to the framework vibration and represents the probability distribu- 
tion of the individual distance of a hypothetical molecule with a fixed value for q. 
P(q) is the large amplitude probability distribution, which in a classical approxima- 
tion may be expressed as 

P(q) = N exp(-V(q)/RT) (14) 

The actual treatment of the large amplitude motion will thus depend upon the 
nature of V(q), which is to be discussed in the next section. 

3 Large A m p l i t u d e  Po ten t i a l  F u n c t i o n s  

In most cases no exact mathematical expression is known for the potential function, 
V(q), which is therefore usually approximated by a conveniently chosen series ex- 
pansion. 

In some cases, as for example for large amplitude bending motion, a power series 
is often used, 

V(q) = E ak qk (15) 
k 

where the ak-s are the potential coefficients. Negative values for k sometimes are 
included. For periodic potentials, as for example for torsional motion, a Fourier 
expansion may be convenient, 
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1 
V($) = ~ ~. [Vk (1 + cos kS) + V~ (1 + sin k$)] (16) 

k 

where ~ is the torsional angle. V k and Vk' are constants and the k-s are positive 
integers. 

In practice, the potential is approximated only by one or a few terms. This is 
due to lack of pertinent experimental information, and the quality of the thus ob- 
tained potential functions depends upon the convergency of the series. In addition to 
the two typical potential functions of Eqs. (15) and (16), other mathematical ex- 
pressions have been used, depending on the problem at hand and the amount and 
quality of  the available experimental data to which the potential must comply. 

The choice of  series is not only dependent on the type of  molecular motion. For 
example the power series may be convenient for an accurate description of the 
potential function close to the minima, while a Fourier series is convenient for de- 
scribing potential barriers to torsional motion. 

The electron-diffraction method is not well suited for suggesting what kind of 
series or what kind of mathematical function should be chosen for a given molecular 
problem22, 2a). In the case o fC30  212c, 24, 25), for example, the electron-diffraction 
method is able to exclude the possibility of a pure quadratic term, but is not able to 
distinguish between the two potential functions which have been suggested: 

V(a) = V 2 a 2 + V 4 a 4 (17) 

and 

B (18) V(a) = Aa 2 -r C+a2 

where a is half the bending angle and V2, V4, A, B, and C are constants. Although 
apparently quite different, V(a) from Eqs. (17) and (18) may be parameterized to 
have similar shapes for moderate values of a. The great difference between the two 
functions then obtained at large a-values cannot be recognized by electron-diffrac- 
tion, since the probability of  finding large a-values is vanishingly small. 

In open chain molecules the torsional angles are the obvious independent vari- 
ables for the potential function. But even in the simplest case, that is ethane, the 
origin of  the torsional barrier is not fully understood, though ab initio calculations 
represent the experimental barrier fairly well 26). For larger molecules theoretical 
predictions for the potential functions are often based upon semiempirical molecular 
mechanics calculations 27' 28). 

The description of  the potentials in open chain molecules is almost always ap- 
proximated by Eq. (16), often simplified due to molecular symmetry. V(O) is in 
many interesting cases symmetrical about ~ = ;r, in which cases Eq. (16) gets the form 

1 
V(~) = x 2; V k (1 + cos k~) g k 

(19) 

For ethane itself and for other molecules with three-fold symmetry k-values other 
than 3, 6, 9, etc., will vanish. 
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Open chain molecules have been widely studied using the electron-diffraction 
method and with considerable success. But quantitive barrier calculations meet with 
substantial difficulties. In cases with torsional barriers higher than, say 4 kJ/mol, the 
electron-diffraction method provides information mainly on the regions of the 
potential function near the minima. For lower barriers the method is usually not 
sufficiently sensitive to changes in the assumptions on V(r If the barrier is, say 
2 kJ/mol or less, the electron-diffraction results may in many cases be indistinguish. 
ably like free rotation. Accordingly in order to use the electron-diffraction method 
successfully for the study of  torsional motion, support as to the choice of potential 
functions may favorably be obtained from other methods, as for example from 
microwave spectroscopy. 

Ring puckering motion in cyclic compounds involves both valency-angle bending 
and torsion about single bonds. In a conformer of  a cyclic compound the equilibrium 
may be considered as a result of compromise between bond-angle strain, repulsion 
(perhaps also attraction) between non-bonded atoms or groups, and degree of bond 
eclipsing. Usually non-planar conformations are preferred, and often the potential 
barrier is at least 4 kJ/mol. This implies that a "rigid" model approach, assuming 
small harmonic puckering amplitudes, sufficiently accurately reproduces the elec- 
tron diffraction data. In four-membered, saturated rings the puckering may be 
treated as a one parameter bending motion, usually assuming the quadratic and 
quatric terms of  the power series to be the dominating ones 29). The degree of non- 
planarity is then described by a ring-puckering coordinate being zero in the planar 
form. 

For larger cyclic compounds the ring-puckering has to be described by at least 
two parameters. In five-membered rings the barriers separating the minima in the 
potential may be so small that a so-called pseudo-rotation takes place. The ring- 
puckering has been described by a perpendicular displacement coordinate depending 
on two parameters 3~ 31) 

For six-membered rings the barriers separating the minima in the potential are as 
a rule so high 28) that the electron-diffraction data may be satisfactorily interpreted 
by the assumption of mixtures of "rigid" conformers. 

For rings larger than the six-membered rings the problem is more complex, since 
it may be difficult to distinguish between large amplitude motion like the situation 
in many five-membered rings and a mixture of two or more conformers as in cyclo- 
hexane derivatives. 

For optimal use of the electron-diffraction method in large amplitude-motion 
studies, it is important to take advantage of the knowledge concerning potential 
functions as obtained by spectroscopical methods. Some features of the spectro- 
scopically obtained findings are given in the next section. 

4 Some  Selected  Barrier  De te rmina t ions  

Spectroscopic methods are now so refined that rather accurate determinations of 
barrier heights and shapes have been made in many cases. Since electron diffraction 
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generally cannot compete with the best quantitative spectroscopic barrier deter- 
minations, it was felt appropriate to assess some selected spectroscopic works in 
order to learn more about the nature of  barriers. 

Spectroscopists also generally fit their data to potential functions of  the general 
form of  Eqs. (15) and (16) or some other convenient mathematical expression, and 
the potential coefficients (the ak--S or Vk--S) are thereby determined. Not all of  
these coefficients need to be of  importance. Some may even vanish for reasons of 
symmetry. Naturally, it would be desirable to be able to determine those coefficients 
on which the potential function primarily depends. Particularly for the methyl 
groups, accurate barriers are now available. The situation is not this fortunate in 
other cases. Often, rather limited experimental data are accessible. The quality of 
some of this material may be poor or even ambiguous, and rather arbitrary assump- 
tions are now and then made. As a result, only the first few potential coeffwients, 
often of  low precision, are obtained. In fact, even today cases where more than four 
potential coefficients have been deduced are exceptional. 

Equations with only one variable, for example a dihedral angle, are often used. 
However, it is a well known fact that further structural parameters may and often do 
change with this selected variable. This phenomenon is generally termed structure 
relaxation. Little is known about relaxation, but it is believed to be of importance in 
molecules where steric repulsion, conjugation, change of  hybridization, lone pair 
interactions, intramolecular hydrogen bonding, etc., come into play for certain 
values of the variable. Relaxation is probably often large in the barrier maxima 
regions, where repulsion, loss of conjugation, etc., may prevail. The molecular popu- 
lation near barrier peaks is low in most cases, making it difficult to determine experi- 
mentally the structure of  the relaxed molecule by any available method. Therefore, 
in cases where structure relaxation predominates, a one-variable approach may lead 
to erroneous results, and it is presumed that barriers derived this way are particularly 
dubious. 

In barrier determinations of  open-chain molecules, Eq. (16) is generally used. 
Most barriers so far determined have two-fold or higher symmetries and many of  the 
Vk--S of Eq. (16) will consequently vanish for symmetry reasons. Generally, this 
simplifies the problem and makes it easier to obtain more reliable determinations of 
the individual potential coefficients. If  is also presumed that the role of  the elusive 
relaxation effect would be easier to assess with symmetrical barriers than in the more 
complicated cases. 

4.1 Barriers with Two-Fold Symmetry 

For these molecules only V2, V4, �9 �9 �9 etc., of Eq. (16) apply. There are not many 
molecules with this kind of barrier that have hitherto been investigated, and practi- 
caUy all of  them are either ethylene or benzene derivatives. Conjugation along the 
bond connecting the rotating group with the ethylene or benzene parts is present in 
their equilibrium conformations. There is normally no such conjugation at the 
barrier maxima, which for symmetry reasons occur with the rotating groups perpen- 
dicular to the ethylene part or, respectively, the benzene ring. Structure relaxation is 
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therefore likely to occur in these molecules and may be suspected to be of  consider- 
able importance. 

Nitroethylene has been thoroughly investigated 32) by the far-IR technique. V 2 
= -19.650 + 0.047 kJ/mol and V4 = 1.05 +-0.02 kJ/mol were determined for a model 
with no relaxation of the nitro group. By relaxing the nitro group in a manner that 
closely reproduces microwave observations on vibrationally excited states a3), V 2 = 
-20.223 +- 0.050 kJ/mol and V4 = 1.09 + 0.02 kJ/mol were found. The authors 32) 
conclude that the potential is well reproduced 50 ~ about its planar equilibrium 
position, but that the data are still insufficient for an accurate determination of the 
barrier height. 

It is interesting to note that the V4 term is positive. This means that the poten- 
tial bottom becomes broader and the peak sharper than what would have been found 
using only the V 2 coefficient. 

In another ethylene derivative, CH2---CHBF2 34), V2 was determined as - 17.5 
kJ/mol from IR measurements of the torsional frequency. 

A deuterated species of  phenol, C6H5OD as), has been investigated by far-IR 
and microwave spectroscopy and the first two Fourier coefficients determined as 
V 2 = -16 .19+  1.19 kJ/mol, V4 = 0.24+0.24 kJ/mol. In the parent species of  
phenol a6) a determination assuming only a V2 term yielded V2 = -14.439 kJ/mol. 

V2 terms of several other compounds have been determined as low as - ( 2 - 4 )  kJ/ 
mol in p-fluorostyrene 37), -20 .6  kJ/mol in C6HsCHO 38), -18 .7  + 1.9 kJ/mol in 
C6HsCFO ag), - 16.3 +- 0.4 kJ/mol in C6H s NO 4~ - 12 -+ 6 kJ/mol in C6Hs NO241), 
and -13.33 kJ/mol in C6HsBF2 42). In none of these have higher order terms or 
relaxation been assessed quantitatively. 

4.2 Barriers with Three-Fold Symmetry 

For these molecules only Va, V6, �9 �9 �9 etc., are retained. Methyl group barriers are 
by far the most extensively studied ones of  this type and several hundred deter- 
minations of  Va have now been made. Although groups with three-fold axes of 
symmetry are abundant, limited data exist for other than methyl groups. 

Most methyl group barriers have been determined by the microwave frequency 
splitting method. Generally, only V3 is fitted and determined with high precision. 
This method is reviewed in several places 43). Up-to-date compilations of barriers are 
made by Starck 44). Recently, infrared interferometers and laser Raman spectro- 
meters have been made to operate routinely in the far-IR region and successfully 
applied to the study of torsional vibrations of gaseous molecules. In fortunate cases 
overtones, hot bands, etc., may be observed by these two methods and important 
information regarding V 6 obtained. These two techniques will presumably become 
increasingly important in the future. 

Ethane and its halogenated derivatives have played an important part both in 
electron diffraction and spectroscopy. In Table 1 we have collected 23 of these com- 
pounds having a three-fold barrier. The barriers of the series CH 3 CH2 X, X = H, F, CI, 
Br, and I are seen to increase with the size of the substituent. The V 6 terms are re- 
markably small for these compounds, even for ethyl iodide. This coefficient is also 
found to be small for CHaCHC12, CH3CCI 3, CH3CHBr2, and CH3CBr 3. 
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Table 1. Potential coefficients of ethane and several of its halogenated derivatives a 

Molecule V 3 (kJ/mol) V 6 Method Ref. 

CH3CH3 
CH3CH2F 
CH 3CHF2 
CH3CF 3 
CH2FCF 3 
CHF2CF 3 
CF3CF 3 

CH3CH2C1 
CH3CHC! 2 
CH3CCI 3 
CH2CICCI 3 
CHCI2CCI 3 
CCI3CC13 

CH3CH2Br 
CH3CHBr 2 
CH3CBr 3 

CH3CH21 

CH 3CHFCI 
CH3CF2CI 

CH3CF2Br d 
CH3CCIBr 2 

CF3CF2CI 
CF3CF2Br 

12.25 +- 0.10 Negligibly small IR 45) 
14.05 88 J/mol IR 46) 
13.31 -* 0.09 b MW 47) 
I3.3 • 0.8 b Raman 48) 
17.6 b IR 49) 
14.69 -+ 0.40 b MW so) 
16.3 b IR sl) 

15.42 • 0.05 16 J/mol MW and IR 46, S2) 
17.3 IV61 < 120 J/mol Raman 53) 
22.6 IV61 < 120 J/mol Raman 53) 
41.8 IR c 54) 
59.4 b IRc S4) 
73.2 b IR c 54) 

14.92 • 0.12 V6/V 3 < 0.005 MW and Raman 55,56) 
18.1 IV61 < 120 J/mol Raman 53) 
24.2 IV61 < 120 J/mol Raman 53) 

15.4 • 0.4 V6/V 3 < 0.005 Raman s6) 

18.0 • 1.2 b MW ST) 
18.4 • 0.4 b MW 58) 

23.4 IV61 < 120 J/mol Raman 53) 
23.8 IV61 < 120 J/mol Raman 53) 

21.3 b IR 59) 
23.1 b IR 59) 

a Gas phase values unless specified. 
b Contribution from V 6 term neglected in barrier calculation. 
c Solution. 
d Upper barrier height. 

Calculations using plausible bond lengths and angles indicate that at the eclipsed 
position, which is also the barrier maximum, non-bonded distances which are steri. 
caUy unfavorable probably exist within the chlorine, bromine, and iodine derivatives. 
Assuming no structure relaxation in the eclipsed form, the non-bonded H . . .  C1 and 
H . . .  Br distances are found to be roughly 50 pm shorter than the sums of the van 
der Waals radii of  hydrogen and chlorine or, respectively, bromine atoms 6~ The 
H . . .  I distance is correspondingly about 70 pm shorter than the sum of  the van der 

Waals radii of  hydrogen and iodine atoms. In the derivations of the small V6 terms of  
the chlorine 46), bromine s6) and iodine 56) derivatives, neither V9 nor relaxation was 

taken into account. 
Similar computations indicate that non-bonded H . . .  H, H . . .  F, or F . . .  F 

distances for eclipsed forms of the ethane series are not seriously in conflict with 
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steric requirements. Typically, these distances were less than 20 pm shorter than the 
sum of  the van der Waals radii of  the atoms in question. 

The effect o f  steric repulsion is not only seen in the mono-halogen series of  
ethane, but is evident from the hexahalogen derivatives as well. In CFaCF3 the barrier 
height is 16.3 kJ/mol s l), somewhat higher than in ethane, 12.25 --+ 0.10 kJ/mol 4s). 
There is probably small steric repulsion in either molecule in their eclipsed 
forms. In solution a V3 of  73.2 kJ/mol has been determined s4) for CC13CC13, 
about six times higher than in ethane. In this molecule, it is very likely that large 
non-bonded repulsions between the chlorine atoms will exist in the eclipsed form. 
The V3 term of 73.2 kJ/mol of  hexachloroethane should not  be confused with the 
real barrier height, as this value has been derived employing only the V3 term for 
barrier determination. In this molecule where steric repulsion apparently plays an 
important role, the application of  only one term and neglecting relaxation is prob- 
ably a gross oversimplification, although it is often the only thing that can be done. 
The barrier of  hexachloroethane is, however, undoubtedly large, and may, fortu- 
itously, be about 73.2 kJ/mol. Only future work can decide the shape and size of  
this barrier. A similar situation presumambly exists in CH2CICCla and CHC12 CC13. 

Determination o f  V 3 and V 6 Fourier coefficients have been made for several 
other molecules possessing methyl groups. Selected examples are displayed in 
Table 2. In all but  the notable case o f  m-fluorotoluene 6s), the V6 term comes out 
comparatively small, usually less than 5% of  Vs. Mostly, it is found to be positive. 
Determination o f  structure relaxation has been attempted in CH3OH 66), 
CH3CHO 62), CH3CH=CH246), and CHaCF=CH246), but invariably found to be 
small, if not  neglible, and difficult to determine unambiguously 62). 

m-Fluorotoluene 6s) represents a special case. In toluene 67), which for sym- 
metry reasons has a six-fold barrier, V 6 was found to be as small as - 58 .37  +- 0.08 J/mol. 
In o-fluorotoluene V3 was determined as 2717 J/mo168). while two sets o f  data 
fit the microwave spectrum of  m-fluorotoluene as shown in Table 2. This is pre- 
sumably the only known case for methyl barriers where the V 3 and V 6 terms are o f  
similar magnitude. 

Table 2. V 3 and V 6 terms of rational barriers of methyl groups of some selected molecules 

Molecule V 3 (J/mob V 6 (J/mol) Ref. 

CHaOH 4439 t 36 8 a 
4464.3 -* 0.8 6.3 • 1.7 a 61) 

CH3CHO 4786 t 25 130 • 4 62) 
CH3CH=CH 2 8289 185 46) 
CH3CF=CH 2 9627 - 13 46) 
CH3NH 2 8201 31 63) 
CH3SiH 3 6837 • 71 331 -+ 75 64) 
m-Fluorotoluene 190 • 13 -95.4 -+ 3 b 

203 *- 13 63.2 • 2.1 b 65) 

a Depending on approximation made. 
b Both sets of potential coefficients fit 
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There are few examples where barriers of the CX3-type where X = F, C1, Br, and I, 
have been accurately determined. Besides those listed in Table 1, V3 of CF3CHO has 
been determined as 3.807 kJ/mo169), somewhat less than 4.786 -+ 0.025 kJ]mol found 
for CH3CHO 62). The barrier of  CF3NO of 3.222 kJ/mol 7~ is also slightly less than 
4.7568 + 0.0046 kJ/mol determined for CH3NO 70. 

Very few, if any, accurate determinations of Vg-terms have been made. This 
coefficient is very important in the vicinity of  the three-fold barrier maximum, but 
nearly negligible near the bottom of the potential well. Since most barrier deter. 
minations have been made near the potential minimum and extrapolated to the 
barrier top, it is not unreasonable that the omission of V 9 may be serious at least in 
some cases. 

4.3 Barriers with Six-Fold Symmetry 

There are comparatively few molecules possessing four-fold and five-fold symmetri- 
cal rotational barriers. Six-fold barriers are more common and for them only V6, 
V l 2 , . . . ,  etc, apply. 

Most V6-barriers determined involve methyl groups, and V6 is invariably found 
to be small in corroborations with the findings above. Typical values are: V 6 = 
-24 .400 +- 0.024 J/mol for CHaNO272~, V6 = -57.61 J/mol for CH3BF273), and 
V6 = -58 .37  -+ 0.08 J/mol for CH3C6H 567). For other p-toluene derivatives V6 is 
typically about - 6 0  J/mo144). 

N-methyl pyrrole 77) represents an exception. Here, a potential function using 
V6 = -549.3  J/mol and VI2 = - 2 0 0  J/mol fits the microwave data just as well as a 
set employing V6 = -558.6  J/mol and Vl2 = 167 J/tool. The lesson to be learnt from 
this is that even in cases where the Fourier expansion starts with a high a term as V6, 
rapid convergence is not always ensured. 

V6 terms have been determined for some compounds not possessing methyl 
groups. In CF3NO2 V6 = -311 J/mol 7s). Although this is a small barrier, it is more 
than ten times the value found for CH3NO272). In CF3C6H s a value of -42 .7  J/moi 
was found 76), which is fairly similar to the toluene value 67). In SiH3C6H 5 V 6 = 
--74.39 +- 0.08 J/mo[ 77) which is also near the toluene barrier height 67). A very 
small barrier of  V6 = - 7 . 9  -+ 3.3 J/mol was found for SiF3BF27s). 

At least one twelve-fold barrier has been determined to date. In the "cage". 
molecule CH3BsH 8 V i 2 was found to be less than - 1 2  J/tool 79). 

4.4 Barriers with Low Symmetry 

Barriers with low symmetry are usually much more complicated than other types. 
Several Fourier coefficients are normally necessary. Sufficient high-quality experi- 
mental data to derive the necessary Fourier terms are often very difficult to obtain. 
Despite these severe obstacles, several such barriers have been determined in recent 
years44 ). Some few of these potentials are presumably of high quality and re- 
present, indeed, great experimental and intellectual achievements. 
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Due to the complexity of the problem of low symmetry barriers, influence from 
relaxation and convergence properties of  the Fourier expansion are difficult to ex- 
tract from the present material. However, in the case of  3-fluoropropene 8~ which 
has one of  the best known rotational barriers of  this complicated kind, the Fourier 
series do not converge rapidly. It was possible to determine the first six potential 
coefficients as V1 = -2 .95 +-0.36 kJ/mol, V 2 = -2.21 + 0.30 kJ/mol, V3 = 10.25 -+ 0.17 
kJ/mol, V4 = -2 .25  +- 0.30 kJ/mol, V s = 0.08 -+ 0.06 kJ/mol, and V6 = - 1.11 + O. 12 
kJ/mol. V6 is thus seen to be of the same order of magnitude as V l , V2, and V 4. 
It remains to be seen whether slow convergence should generally be expected. 

4.5 Conclusion 

The overwhelming part of  accurate barrier determination performed to date re- 
presents methyl group barriers. Except for notable cases like m-fluorotoluene 6s) and 
N-methyl pyrrole 74) the first Vk of Eq. (16) alone seems to give a remarkably good 
representation of both the potential shape and barrier height for this group. Relax- 
ation appears to be a rather small effect. The same seems to be true for the CF 3 
group, and Sill 3 and GeH3 groups can presumably be expected to behave likewise. 
Barriers o f  methyl and CF 3 groups are usually fairly similar in identical environ- 
ments. 

The simple situation encountered for methyl groups should not lead us into 
believing that this is generally the case. Relaxation may be of great importance as 
was seen for nitroethylene 32), and there is no a priori reason why expressions such 
as Eq. (16) should indeed converge rapidly. Barrier determination of more complex 
groups than methyl will presumably remain a challenge in the years to come. This 
task should be approached with a maximum of caution and a minimum of prejudice. 

5 The  Shr inkage  E f f e c t  

The term shrinkage was introduced to describe and explain a phenomenon first ob- 
served for the linear molecule dimethyldiacetylene 17a), allene 17b), carbon sub- 
oxideal, 82), butatrienea3), and carbon disulphide 84). For these molecules the long 
internuclear distances, as studied by electron diffraction, are observed shorter than 
corresponding to the value obtained by adding the observed individual bond dis- 
tances. If a static molecular model is used, the molecule seems bent. The effect was 
qualitatively explained as a result of  molecular vibration, particularly out-of-linearity 
vibration. The shrinkage effect is of  course not restricted to linear molecules. The 
shrinkage of  a distance is defined as the difference between the distance as calculated 
from a rigid geometric model with the observed bond distances and valence angles, 
and the distance as observed directly by electron diffraction. Usually the shrinkage 
effect is small and does not reveal large amplitude motion. However, the effect is 
large enough to cause significant errors in structure parameter determination by 
electron diffraction if not properly allowed for. For example the shrinkage of the 
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longest C . . .  C distance in allene 17b) and butatriene a3) was observed to be 0.6 pm 
and 1.3 pm respectively. For carbon suboxide, however, the shrinkage was observed 
to be of  an order of magnitude larger al' a2/. For the O . . .  O distance the shrinkage 
was observed to be 15 pm. This molecule has, therefore, attracted great interest by 
electron diffractionists, spectroscopists, and theoreticians. 

The shrinkage effect is now quantitatively well understood for small amplitude 
vibrationslTC), as). The phenomenon is thoroughly studied by Cyvin in a series of 
articles. The result of  his own work and that of others is described in detail in 
Cyvin's book 41. 

Large amplitude shrinkage is of course the main interest in the present context, 
but again the question about the dividing line between small and large amplitude 
motion arises. Even in the simplest kind of molecules where shrinkage is to be ex- 
pected, namely the linear triatomic molecules, cases are known with very large 
angular bending motions, of  course particularly at high temperatures. For molecules 
like MnCI2, FeCI2, COC12, NiC12, and NiBr 2 measurements at about 800 ~ lead to 
shrinkage values of  approximately 10 pm which corresponds to an angular shrinkage 
of about 25 ~ a61. For CaI2 and Srlz the shrinkage effect was observed as large as 
22 pm and 29 pm, respectively aTI. The temperatures were 1300 ~ for CaI 2 and 
1250 ~ for SrI2. This corresponds to a shrinkage in angle of  32 o and 36 o, respecti- 
vely. In such cases it is obvious that the question of  the relation between the temper- 
ature dependent "average structure" of a molecule, as determined by electron dif- 
fraction, and the "equilibrium" or "zero-point average" structure is difficult to deal 
with. This problem has in particular been studied by Kuchitsu 88) based upon the 
fundamental work of Bartel189). 

For triatomic molecules with large shrinkage it may be difficult to decide 
whether the molecule is actually a linear molecule or bent. Semantically the dif- 
ference between a linear and bent molecule ought to be clear and defined by the 
minimum in the potential function of  the molecule. But on the other hand electron. 
diffraction studies cannot easily distinguish between a symmetrical double minima 
potential near 180 ~ and a potential with one single minimum at 180 ~ correspond- 
ing to a genuine linear molecule. The question of linearity has in many cases to be 
left to other methods as for example measurement of electric polarity in high tem- 
perature vapor by electrical deflection of molecular beams with mass spectrometric 
detectiong~ 

Though the shrinkage effect obscures the structure determination of a molecule, 
it may contribute with information as to the flexibility of the molecule. For a mole- 
cule of the type MX2 with linear equilibrium configuration it is possible to estimate 
the bending vibrational frequency, v~, from measured shrinkage values 86). For a 
triatornic molecule with a shrinkage of approximately 10 pm the us-value is esti- 
mated to be about 1 kJ/mol, in good agreement with matrix-isolation infrared spec- 
troscopic studies 93). 

As earlier indicated carbon suboxide has attracted considerable interest as to the 
study of  shrinkage effect and large molecular motion. The molecule has been sub- 
mitted to four independent electron-diffraction studies at this laboratory 8~' 82, t2r 
The large shrinkage effect of  carbon suboxide could not be explained from the 
known vibrational frequency at the time when the shrinkage effect was first ob- 
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served. An unobserved bending frequency (vT) was predicted and was later observed 
to be about 750 J/mo194' 9s). 

The last electron-diffraction study of  carbon suboxide included measurements at 
three temperatures (237 K, 290 K, and 508 K). The measured shrinkage data 
matched the theoretically calculated values based on the measured u 7 value 96), both 
as to the value for the shrinkage itself and as to the temperature dependence. (It 
should be remembered that temperature is rather ill-defined in an electron-dif- 
fraction gas experiment.) It was demonstrated that the C=C=C-bending vibration, 
which is the main contributor to the large shrinkage effect, could not be harmonic. 
Doubts about the actual linearity of  the molecule were revived and the possibility of  
a double minimum potential function for the u 7 bending with a barrier from about 
0.5 kJ/mol to 3 kJ/mol seemed likely. The minima were estimated to be at about 
12 o to 16 o, described by the angle ~ in Fig. 2. This corresponds to a C=C=C angle 
of  156 ~ to 148 o. Two further studies based upon electron-diffraction and spectro- 
scopy2a, 97) support these assumptions, indicating a barrier of  about 0.6 kJ/mol, 
though a non-barrier potential could not be ruled out I . 

Several rather conflicting ab initio calculations have been reported, one sup- 
porting a linear equilibrium conformation with a nearly harmonic potential 98), an 
other one producing a barrier of  8 k J/tool and minima at the ~ value of  27.5 ~ 
Neither of  these results is in accordance with electron-diffraction findings. A more 
recent ab initio calculation failed to produce a double minimum potential curve 1~176 
but verified the high degree of anharmonicity i n the C=C=C-bending potential. 
Several spectroscopic studies have been carried out with results in good agreement 
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Fig. 2. Potential curves for C302, estimated from electron diffraction (A), spectroscopical data 
(B) and ab initio calculations (C) 

1 See Note Added in Proof. 
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with electron-diffraction data l~176 producing ct values ranging from 11 ~ to 13 ~ 
and barrier hights ranging from 170 to 700 kJ/mol. 

The situation as it looks at present is summarized in Fig. 2 where the latest elec- 
tron-diffraction barrier is compared with the latest ab initio calculation and one of 
several spectroscopically based calculations 1~ The two dimentional presentation 
of the potential curve may of course be considered as a cross section of a three 
dimensional potential surface with a circular valley. 

The contrasting results demonstrated in Fig. 2 calls for further endeavor and 
combination of various methods. Particularly ab initio calculations including larger 
bases as already suggested l~176 may be profitable. 

A series of molecules containing the group Si-N=C=O or Si-N=C=S presents 
problems similar to C302. Electron-diffraction data for H3Si-N=C=O and 
HaSi-N----C=S, conventionally interpreted in a rigid molecule analysis, leads to a 
Si-N=C angle of 152 ~ for the former and 164 ~ for the latter of the two mole- 
cules 1~ The electron-diffraction study further shows that the SiNC bending mode 
had an unusual large amplitude even at a temperature of 0 ~ For the Si-N=C=O 
chain a small potential hump of approximately 240 J/mol at the linear configura- 
tion is suggested, while a harmonic potential is suggested for the Si-N----C=S chain. 
A detailed microwave study of HaSi-N=C=O l~ confirms this finding producing a 
value for the a-angle of 11 ~ and a barrier of 272 J/mol. The ground vibrational state 
is found almost exactly on the maximum of the barrier. 

An X-ray study of crystalline H3Si-N=C=O at 140 K is not consistent with any 
large amplitude bending motion to6). Apparently the packing forces in the crystal 
constrain the low frequency bending vibration of the free molecule. The Si-N=C 
angle is found to be 158.2 ~ corresponding to an a value of  10.9 ~ Since the energy 
required to bend the molecule is so small, it is not surprising that lattice energy may 
interfere with the intramolecular motion. 

6 In terna l  R o t a t i o n  in Open  Chain Molecules  

6.1 Ethane Like Molecules 

The factors influencing the conformational stability in open chain molecules have 
previously been treated extensively in review articles (see for example Ref. 6) and 
1o7)). The aim of  the present section is to study torsional potential functions of a 
series of molecules of principal importance, in particular related to the results of 
electron-diffraction investigations. The bulk contents of information obtainable from 
an electron-diffraction intensity curve of a molecule carrying out torsional motion, 
are not concerned with the torsional motion at all. The part of the intensity curve 
giving information about the torsion, is distributed over the same range of the inten- 
sity curve as where the torsional independent information may be obtained. In the 
RD-curve the contribution from the torsional dependent part is more clearly separat- 
ed. To illustrate this and the general influence of torsional motion, three simple 
molecules with three-fold torsional barriers have been selected (Figs. 3 -5)  
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E 

D 

C 

B 
t 

C - C  C-CI  C CI CI Cl 9 CI CIQ 
I , I ~ CI (~{ , I , I 

100 '200 300, 400. 500 

"~(pm) 

Fig. 3. Radial distribution curves for hexachloroethane. The vertical lines give the CI. �9 C[ posi- 
tions ingauche (g) and anti (a). Curve A is experimental, the dashed line combined with the other 
part, indicates the torsional dependent contribution, obtained by subtracting the theoretical 
torsional insensitive part from the experimental curve. Curves B-E are theoretical torsional de- 
pendent distribution curves. (B) based on a rigid, staggered model with Ug = 14.3, Ua = 6.7 (pm). 
(C-E) calculated for large amplitude models, using framework vibrations and a torsional poten- 
tial 21-- V 3 (1 + cos 3~) with V3 equal to 12.5,4.2, and 0 (kJ/mol), respectively. The scaling between 
A and the other curves is somewhat arbitrary, and the damping factors and modification func- 
tions slightly different 

The molecules chosen are hexachloroethane 108, 1o9), hexachlorodisilane 1 o9), 
and hexafluorobutyne-211o). Curve A in each of  the three figures is the experimental 
RD-curve. The outer part o f  the curve, in combination with the dashed line, defines 
the only torsional dependent contribution, namely the long halogen-halogen dis- 
tance. Curves B - E  are theoretical curves for the same torsional sensitive distances, 
calculated under different assumptions. Curve B is calculated for a rigid, staggered 
model using spectroscopically obtained u-values and harmonic torsional vibration. 
Curves C - E  are calculated differently using Eqs. (13) and (14), assuming barrier 
heights 12.5, 4.2, and 0 kJ/mol, respectively. The individual curve is thus composed 
o f  a weighted sum over molecular species for all values o f  ~b, each species undergoing 
small, harmonic framework vibrations, spectroscopically estimated 19, 111). The 
different species are weighted according to the normalized classical Boltzmann co- 
efficients which depend directly on the hindering potential V(~b). For symmetry 

reasons V(~) = 1 V3 (1 + cos 3~b), higher terms (V6, V9 etc.) being neglected. For 

each o f  the three figures gauche and anti positions are indicated. 
Comparing the curves visually, it is seen that the hexachloroethane molecule is 

satisfactorily described by a rigid, staggered model. Hexafluorobutyne-2 may be 
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J 

A 

Si -C l  i i -Si  Cl--Cl Cl ' - 'Clg C l  CI a 
I i i I Si ~-CI I i I , I 

100. 0 0  300 400  500  6 0 0  

' ~ ( p m  ) 

Fig, 4. Radial dis t r ibut ion curves for hexachlorodisilane.  See capt ion for Fig. 3. ug = 19.0, 
u a = 9.9 (pm) 

j 
C•C C-C F...F C." C C-- F C...C C...F F...Fg F...F a 

a I C - F ,  I C ' " F ,  I , | , I , I 

100 200 300. L, O0. 500 600 

R ( p r o )  

Fig. 5. Radial dis t r ibut ion curves for hexaf luorobutyne-2 .  See capt ion for Fig. 3. Ug = 21.1, 
u a = 11.6 (pm) 

121 



T
ab

le
 3

. 
S

om
e 

to
rs

io
na

l 
de

pe
nd

en
t 

ob
se

rv
ed

 q
ua

nt
it

ie
s 

fo
r 

m
ol

ec
ul

es
 w

it
h 

sy
m

m
et

ri
c 

en
d-

gr
ou

ps
. 

C
en

tr
al

 d
is

ta
nc

e 
(R

) 
an

d 
u-

va
lu

es
 i

n 
pm

, 
to

rs
io

na
l 

am
pl

it
ud

e 
(o

~)
 i

n 
o,

 F
ou

ri
er

 t
er

m
 (

V
n)

 i
n 

kJ
m

ol
 -

t 
.o

 
t~

 

E
D

 
O

th
er

 m
et

ho
ds

 

M
ol

ec
ul

e 
R

 
o$

 
U

g 
U

g fr
 

u 
a 

V
 n 

R
em

ar
ks

 a 
R

ef
. 

V
 n 

R
ef

. 
,-

t 

C
H

3
-C

H
 3

 
15

3.
2 

C
F

3
-C

F
 3

 
15

4.
5 

C
F

3
-C

F
2

I 
15

2.
3 

C
C

I3
-C

C
I 3

 
15

6.
2 

C
B

r3
-C

B
r 3

 
15

4.
 

C
(C

H
a)

3-
C

(C
H

3)
 3

 
15

8.
2 

5.
0 

B
C

I2
-B

C
I 2

 
17

0.
2 

2
0

-3
0

 

C
C

i 3
-S

O
2C

1 
18

6.
5 

9.
6 

C
H

3-
S

iH
 3

 
18

6.
7 

C
C

I3
-S

iC
I 3

 
19

3.
2 

C
C

I3
-G

eC
I 3

 
19

8.
 

S
iH

3-
S

iH
 3

 
23

3.
1 

S
iF

3
-S

iF
 3

 
23

1.
7 

25
.4

 

7.
3 

12
.2

 
13
.0
 b
 

A
ss

um
ed

 s
ta

gg
er

ed
 

1
1

2
-1

1
4

) 
12

.2
 (

IR
) 

4S
) 

6.
9 

18
.0

 
U

g,
 u

 a 
~-

 u
 fr

 
20

) 
16

.3
 (

1R
) 

51
) 

6.
7 

28
.4

 
~a

 
11

5)
 

9.
0 

16
.3

 
U

g,
 U

fg
 r 

11
5)

 
9.

4 
b 

6.
3 

b 
15

.1
 

W
ei

gh
te

d 
su

m
 

11
5,

 1
9)

 
A

ss
um

ed
 s

ta
gg

er
ed

 
11

6)
 

13
.6

 
10

.9
 

45
.1

 
U

g,
 U

g f
r 

18
) 

73
.2

 (
IR

(s
ol

))
 

54
) 

8.
0 

53
.5

 
U

g,
 u

 a 
~.

 u
 f

r 
20

) 
62

.7
 (

IR
(g

))
 

11
7)

 
10

.1
 

6.
5 

61
.5

 
U

g,
 u

 a 
-~

 u
~ f

r 
20

, 
tO

8)
 

14
.3

 b
 

11
.6

 b
 

6.
7 

a 
19

) 
19

.0
 

11
.0

 
11

8)
 

13
.6

 b 
11

.9
 b

 
6.

6a
 

19
) 

13
.8

 
7.

7 
8a

 
11

9)
 

22
.3

 
8.

0 
7.

7 
W

ei
gh

te
d 

su
m

 
12

d)
 

7.
1 

(I
R

(g
))

 
12

0)
 

6.
1 

W
ei

gh
te

d,
 V

(r
 

= 
1 

fr
 

12
d)

 
19

.0
 

8.
8 

8.
2 

16
.3

-2
3.

4 
U

g,
 u

 a 
~ 

U
g f

r 
2 

12
1)

 
12
1)
 

18
.0

-2
2.

3 
U

g,
 U

g f
r 

14
.6

-1
7.

6 
8a

 
12

1)
 

6.
8(

V
 6 

= 
0.

3)
(M

W
) 

64
) 

19
.0

 
10

.0
 

15
.1

 
9.

4 
17

.3
/2

0.
7 

14
.4

 

16
.7

 
W

ei
gh

te
d 

su
m

 
18

) 
18

.0
 

U
g,

 U
g f

r 
18

) 
-~

 u
 f

r 
20

) 
16

.3
 

U
g,

 u
 a 

~ 
ug

fr
 

12
2)

 
13

.0
 

U
g,

 u
 a 

A
ss

um
ed

 s
ta

gg
er

ed
 

12
3)

 
2.

2 
W

ei
gh

te
d 

su
m

 
12

5)
 

A
ss

um
ed

 s
ta

gg
er

ed
 

12
6)

 

5.
1 

(e
le

ct
ro

st
at

ic
) 

12
4)

 

o t:
g 

"o
 



S
iC

13
-S

iC
I 3

 
22

6A
 

17
. 

11
. 

4.
2 

W
ei

gh
te

d 
su

m
 

iS
) 

4.
6 

U
g,

 u
 a 

-~
 U

g f
r 

20
) 

23
2.

6 
29

.5
 

14
.4

 
A

ss
um

ed
 s

ta
gg

er
ed

 
12

7)
 

S
i(

C
H

3)
3-

S
i(

C
H

3)
 3

 
23

4.
0 

10
. 

20
. 

$a
 

12
8)

 
C

sH
 5

 -
F

e-
C

sH
 5

 
41

2.
8 

0.
 

9.
7/

15
.0

 
11

.9
 

-4
.6

 
A

ss
um

ed
 e

cl
ip

se
d 

12
9)

 
U

g,
 t

hr
ee

 ~
-s

 
11

.7
/1

9.
3 

10
.1

 
-3

.8
 

W
ei

gh
te

d 
su

m
 

22
) 

C
H

 3
-~

-C
H

 
3 

41
4.

9 
0.

 
W

ei
gh

te
d 

su
m

 
13

1)
 

C
F

3-
C

-=
C

-C
F

3 
41

6.
0 

21
.2

 b 
20

.7
 b 

11
.5

 b
 

0.
4 

W
ei

gh
te

d 
su

m
 

11
0,

 1
32

, 
I 

1 l
) 

7.
5 

(N
M

R
(s

))
 

13
o)

 

T
he

 g
iv

en
 r

em
ar

ks
 i

m
pl

y 
th

e 
fo

ll
ow

in
g:

 
A

ss
um

ed
 s

ta
gg

er
ed

: 
a 

ri
gi

d 
st

ag
ge

re
d 

m
od

el
 w

it
h 

re
as

on
ab

le
 u

-v
al

ue
s 

ha
s 

be
en

 a
pp

li
ed

, 
bu

t 
no

 b
ar

ri
er

 e
st

im
at

e 
ha

s 
be

en
 g

iv
en

. 
ug

, u
gf

r:
 T

he
 b

ar
ri

er
 h

as
 b

ee
n 

es
ti

m
at

ed
 f

ro
m

 t
he

 t
or

si
on

al
 c

on
tr

ib
ut

io
n 

to
 U

g,
 o

bt
ai

ne
d 

by
 c

or
re

ct
in

g 
U

g 
fo

r 
fr

am
ew

or
k 

vi
br

at
io

n 
(U

g f
r)

 c
al

cu
la

te
d 

fr
om

 
sp

ec
tr

os
co

pi
c 

da
ta

. 
U

g,
 u

 a 
~ 

ug
fr

: 
T

he
 b

ar
ri

er
 h

as
 b

ee
n 

es
ti

m
at

ed
 f

ro
m

 t
he

 t
or

si
on

al
 c

on
tr

ib
ut

io
n 

to
 u

g 
an

d 
it

 h
as

 b
ee

n 
as

su
m

ed
 t

ha
t 

u f
r 

is
 in

de
pe

nd
en

t 
o

f~
, 

w
hi

ch
 l

ea
ds

 t
o 

th
e 

ap
pr

ox
im

at
io

n 
u a

 ~
 U

g f
r,

 
6 

a:
 T

he
 b

ar
ri

er
 h

as
 b

ee
n 

ob
ta

in
ed

 f
ro

m
 t

he
 e

st
im

at
ed

 s
hr

in
ka

ge
 e

ff
ec

t 
in

 a
nt

i, 
6 

a,
 o

ft
en

 e
xp

re
ss

ed
 a

s 
an

 a
pp

ar
en

t 
to

rs
io

na
l 

an
gl

e,
 a

pp
ro

xi
m

at
el

y 
eq

ua
l t

o 
o O

. 
W

ei
gh

te
d 

su
m

: 
a 

la
rg

e 
am

pl
it

ud
e 

m
od

el
 h

as
 b

ee
n 

in
tr

od
uc

ed
 a

cc
or

di
ng

 t
o 

E
qs

. 
(1

3)
 a

nd
 (

14
).

 
C

al
cu

la
te

d 
fr

om
 s

pe
ct

ro
sc

op
ic

 d
at

a.
 

o o O
 

t~
 

~
r > o 



O. Bastiansen, K. Kveseth, and H. Mr 

approximated by a freely rotating model.Hexachlorodisilane represents something in 
between the two extremes, the barrier, i. e. V 3 when described by the single term 
cosine potential, is close to 4 kJ/mol and definitely smaller than 12 kJ/mol. The 
reported estimate is 4.5 kJ/mol 2~ t s) 

It should be emphasized that the theoretically calculated curves (B-E)  all are 
somewhat dependent on spectroscopic data. Furthermore the results obtained using 
the staggered model approach, may be indistinguishably like the results obtained 
using a cosine-term potential, if the barrier is high enough. For high barrier cases the 
contribution to the electron-diffraction data is predominated by molecular species 
corresponding to the minimum regions of the potential curve. The information thus 
obtained from electron diffraction to the potential curve near maxima is therefore 
practically nil in high barrier cases. 

The primary aim of the staggered model approach is to describe the curvature of 
the potential function at the minima. Therefore, in order to use this approach for 
barrier determination, one has to choose a potential function with a curvature at the 
minima equal to that derived for the staggered model. The most obvious choice of 
potential function is again the one-term cosine function. It is therefore no surprise 
that the two approaches, the staggered model approach and the approach using Eqs. 
(13) and (14), lead to the same results if they use the same potential function. 

Also in the staggered model approach the u-values for the halogen-halogen dis- 
tances are composed of  contribution both from framework vibration and torsional 
motion. The torsional motion part may be expressed by o~,, the root-mean-square 
deviation from the minimum position. For the molecules so far described, the value 
of a,, is to a good approximation equal for the gauche and trans peaks. (This is of  
course not the case for molecules like 1,2-dihaloethanes). 

Since the anti-distance varies so little with $, the u-value of the anti-distance is 
primarily due to framework vibration, particularly in high barrier cases 1~ The 
anti.peak is accordingly not suited for direct determination of  or On the other 
hand, the torsional motion leads to an asymmetry in the anti-peak due to the func- 
tional relation between r and $. For a low barrier case this asymmetry may be ap- 
preciable, while in a high barrier case it may be observed only as a shrinkage effect 
for the anti-distance. The asymmetry or the shrinkage may be used to derive a value 
for 0r 

Whether a staggered model will reproduce the torsion sensitive distance distribu- 
tion with sufficient accuracy for intermediate barriers, or a weighted sum over 
Gaussian peaks has to be applied, will also depend on the total change in the torsion 
dependent distance compared to the u-values of  the said distance. 

In Table 3 are listed some experimental values related to the torsional motion 
for a series of  symmetric rotor molecules. The given examples are chosen to illustrate 
the points discussed in this section. 

Inspection of the table reveals the general consistency between results obtained 
from either o f  the two above mentioned approaches for intermediate barriers. The 
staggered model approach leads to gauche vibrational amplitudes (ug) in satisfacto- 
ry aggreement with values obtained from other methods. The determination of 
barriers from ug-values requires that the appropriate u-framework values (u~ r) are 
known. These parameters may be obtained from spectroscopy, but if not available, 

124 



Structure of Molecules with Large Amplitude Motion 

u fr may also be estimated from electron-diffraction data using a rough approxima- 
tion. In order to do so, one has to assume that the framework vibration is constant 
during the internal rotation. Since the torsional contribution to the u-value in the 
anti position (Ua) is negligible, the u fr may then be approximated by Ua 2~ lo9) 

The low barriers must be determined from Eqs. (13) and (14) in order to obtain 
acceptable shape of the distance distribution. Since this procedure requires that 
u-framework is known in the whole $-interval, accurate barrier estimates depend on 
the quality of  the applied u-framework values 110). 

Generally, the results given in Table 3 are reasonable judging from the effects to 
be expected from steric hindrance, both taking the size of  the substituents in the 
rotating groups and the bond length separating the groups into consideration. 

A similar analysis of data obtained from molecules with asymmetric end groups 
is more complicated. Apart from the problems connected with the separability of  the 
torsional motion from the framework vibration, experience shows that several more 
terms have to be included in the Fourier series to describe the torsional potentials 
properly. On the other hand, the electron.diffraction data from asymmetric mole- 
cules usually contain more information about the potential function than data from 
the higher symmetric cases. In conformity with the results obtained for symmetric 
ethanes the asymmetric substituted ethanes, as a rule, exist as mixtures of  two or 
more conformers in the gas phase. Some physical data for asymmetric molecules are 
given in Table 4. The electron-diffraction conformational analysis gives rather accu- 
rate information about the positions of  the minima in the potential curve. Moreover, 
the relative abundance of  the coexisting conformers may also be derived. If the ratio 
between the concentrations of  two conformers is equal to K, one may write 

AG = -RTlnK = AH -- TAS (20) 

where AG, AH, and AS are the free energy, enthalpy, and entropy differences re- 
spectively for the two conformers. Thus, by studying the conformational mixtures at 
different temperatures, AH and AS may be derived. To a sufficiently good approxi- 
mation AH represents the energy difference between the two minima corresponding 
to the conformers involved. Information about the curvature in the minima of the 
potential curve may also be obtained in a way analogous to that of  the symmetric 
rotor molecules. 

A series of molecules of great interest in principle and also well suited for electron 
diffraction studies are the 1,2-disubstituted ethanes. Gauche- and anti-conformers 
coexist in the gas phase in all known cases, sometimes with the anti-conformer as the 
prevaili,~g conformer as in 1,2-dichloroethane 136), sometimes with gauche preva- 
lence as in 2-chloroethanol 7' 8). 

The 2-chloroetbanol may serve as an example of  the effect of temperature on 
conformational equilibrium 7, 8). The molecule has been studied at five different 
temperatures. In Fig. 6 the lower curve corresponds to the lowest temperature 

studied (T = 310 K) and the upper curve to the highest temperature (T = 523 K). 
The main difference between the two curves is the barely observable anti 0 . . .  C1- 
peak in the low temperature curve in contrast to the well developed anti-peak in the 
high temperature curve. The gauche-peak is correspondingly reduced in the high 
temperature curve compared to the low temperature curve. In Fig. 7 the observed 
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O. Bastiansen, K. Kveseth, and H. M~llendal 

I t 1 , I , I , I , I , 
0 100 200. 300 400 500 -ff'~ prn ) 

Fig. 6. Experimental radial distrubution curves for 2-chloroethanol. (k = 20 pm 2) at 523 K 
(upper) and 310 K. The vertical lines indicate the C1.. �9 O positions in gauche and anti 

RInK is plotted against 1/T using Eq. (20). The various points represent results from 
different ways o f  deducing K from the electron-diffraction data. From the slope of  
the best straight line through the observed points AH may be obtained, while AS is 
determined by the point o f  intersection with the ordinate. The values thus obtained 
for &H and &S are - 1 0 . 0  kJmol -  I and 11.7 J m o l -  I K -  * respectively. 

For a qualitative description o f  the potential curve corresponding to anti preva- 
lence, two terms in the Fourier series [Eq. (19)] seem sufficient, namely the V 1 - and 
V3-term. In a case withgauche prevalence the terms V 2 and V 3 seem sufficient. As 
an example o f  these two possibilities may serve 1,2-dichloroethane* 36) and 1,2-di- 
fluoroethanei33, 134). Plausible potential curves of  these two molecules are pre- 
sented in Fig. 8. Electron-diffraction studies alone are able to demonstrate in both 
these cases that a two term potential is insufficient to give a quantitative description, 
i. e. incapable o f  reproducing the experimental values for ~ H  and the torsional angle 
q~g. In fact a series o f  Vk-terms is needed. An extensive analysis 16s) based upon 
electron diffraction indicates that as many as 8 - 1 2  terms may have to be included to 
reproduce the experimental findings with sufficient accuracy. This is to a great 
extent caused by the rather large deviation o f  the experimental 4~g from the idealized 
60 o gauche torsional angle. From Table 4 it may be seen that ~g ranges from about 
70 to 75 ~ in the 1,2-disubstituted ethanes. In order to produce such a minimum 
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Fig. 7. R In K for 2-chloroethanol as a function o f  1/T, estimated from least squares refined 
values (o), and from area ratios o f  peaks in the RD-curves; gauche area/anti area (~), anti area/ 
total area ( . ) ,  gauche area/total area (o) 

position, several terms are needed. Due to the limited number of terms usually in- 
cluded, the results in Table 4 should be taken rather as indications of  trends than as 
quantitative findings. 

The examples in Table 4 again demonstrate the effect o f  increasing size of  sub- 
stituents, reflected both by the deviation of  q~g from 60 ~ and by the AH-values. (A 
negative AH means that gauche is the more stable conformer.) 

V(~) 

7 ,  ~ b~ ~HJ 

60" 120" 180" 240" 300" q) 

v(~) 

60" 120" 180" 240" 300" --~ ~p 
Fig. 8. Plausible torsional potential  curve for 1,2-dichloroethane (left) and 1,2-difluoroethane 
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O. Bastiansen, K. Kve~th, and H. Mcillendal 

The experimental potential function, though not known accurately, together 
with the results of  conformational analysis, may be used to draw conclusions about 
interatomic interactions within molecules. In 1,2-difluoroethane, for example, an 
attractive force between the fluorine atoms stabilizing the gauche has been estimated 
to be in the order of  4 kJ/mo1166' 167) In the propanes cited in Table 4 similar 
attraction is observed between halogen and the methyl group. This is also the case if 
one of the hydrogen atoms in the methyl group has been substituted by another 
halogen. But under these circumstances one of the halogens turns away from the 
approaching group in order to avoid steric hindrance 168). In disilane derivatives with 
halogen and methyl substitution the situation is different since the Si-Si-bond dis- 
tance is considerably longer than the C-C-bond distance. For example, in the case of 
tetramethyl-1,2-dichloro-disilane I sg) a gauche preference is observed, in spite of the 
fact that the anti conformation has fourgauche halogen-methyl distances while the 
gauche has only two such distances. The gauche preference may be caused by a 
chlorine-chlorine attraction. It should, however, be emphasized that the confor- 
mational results in this molecule are somewhat uncertain because of the similarity of 
the gauche chlorine-chlorine distance and the corresponding chlorine-methyl dis- 
tance. The barrier is probably less than 4 kJ/mol, though a freely rotating model was 
definitely ruled out. 

The last two examples, namely CH2X-C=C-CH2X(X = C1 and Br) in Table 4, 
demonstrate that the increased separation of the rotating end groups leads to a con- 
siderable reduction in the barrier. As is to be expected, the RD-curves of these mole- 
cules are quite similar to that of  hexafluorobutyne-2 (Fig. 5). The RD-curves demon- 
strate that a considerable proportion of  the gas molecules must assume a form corre- 
sponding to the maximum areas of  the potential curve which is indicative of a high 
degree of torsional freedom. Due to the relative small distance variation during a 
complete torsional revolution and also due to the relative small contribution of the 
torsion sensitive part of  the RD-curve to the total, the noice level precludes decisive, 
quantitative statements. Essentially free rotation is compatible with the experimental 
data, as the estimated Fourier coefficients are not conclusively different from zero, 
though the actual estimates indicate a torsional potential with a minimum rather at 
anti than near syn. 

6.2 1,3-Butadiene and Analogs 

i ,3-butadiene has been the subject of  several conformational studies, by electron 
diffraction 169, 179) as well as by other methods 17o- 174) The planar anti-form 
predominates, and to date no conclusive evidence of a second conformer has been 
given, though both syn and distorted gauche have been suggested for a possible addi- 
tional conformer. 

A rather large barrier (20 kJ/mol) 174) has been estimated between anti and a 
possible second conformer. A recent theoretical study 17s) leads to an additonal, but 
much lower barrier of  2 k J/tool at the syn position, thus separating the two gauche 
minima, estimated to be at about 40 ~ from syn. This potential would lead to a high 
degree of flexibility in the syn region. A qualitative representation of the total poten- 
tial based upon the theoretical values 17s' 176), is given in Fig. 9. 
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Fig. 9. Radical distribution curve and torsional potential for 1,3-butadiene 

R (pro) 

In the search for a presumed, but not conclusively detected conformer, the 
natural approach is to use a high a temperature as possible in the electron-diffraction 
experiment. Several such attempts have been made, so far in vain 169d' e). The nega- 
tive results in the case of 1,3-butadiene are not in contrast with the theroretical find- 
ings, since no rigid second conformer is to be expected. 

Another approach has also been tried for 1,3.butadiene based upon study of the 
area under the anti-peak in the RD-curve compared to the rest of  the RD-curve area. 
This is complicated by the uncertainty of  the position of the zero-line in the RD- 
curve. The zero-line level is determined by the very inner and unobservable part of 
the intensity curve. 

The thermal asymmetry of the Ci . . . .  C4 anti-peak gives information about the 
torsional motion near anti and demonstrates that the potential well is wider in buta- 
diene than for torsional motion about sp3-sp 3 linkages. 

In butadiene analogs containing C=O177-182) or N=C 183) bonds, two con- 
formers coexist (Table 5). CH 2 =N-N=CH 2 t 8a) and O=CX-CX=O t do, t s t), 
(X - CI, Br), represent the rather few cases of intermediate size asymmetric barriers 
where the torsional potential has been determined from electron-diffraction data. In 
these investigations the mixture of  two conformers has been determined at different 
temperatures. The gauche conformer is described as a rigid, staggered model. 

Because of  the observed asymmetry in the ant/-peak, Eqs. (13) and (14) were 
applied over a region corresponding to - 2 o ,  in order to describe the large, although 
still assumed harmonic, torsional amplitude. From the determined values of  6 H ,  Sg, 
and the curvature of the potential about the anti position, the torsional potential was 
estimated including V r,  V 2-, V3-terms in the Fourier series expansion. The resulting 

131 



T
ab

le
 5

. 
S

om
e 

to
rs

io
na

l 
d

ep
en

d
en

t 
ob

se
rv

ed
 q

ua
nt

it
ie

s 
fo

r 
b

u
ta

d
ie

n
e 

an
d 

an
al

og
s.

 C
en

tr
al

 d
is

ta
nc

e 
(R

) 
an

d 
u-

va
lu

es
 i

n 
pr

o,
 t

or
si

on
al

 a
ng

le
 (

4g
) 

an
d 

am
pl

it
ud

e 
(0

4)
 i

n 
~

 E
nt

ha
lp

y 
di

ff
er

en
ce

 (A
H

) 
an

d 
F

ou
ri

er
 t

er
m

s 
(V

 n)
 i

n 
k

J/
m

o
l 

.o
 

E
D

 

R
 

4g
 (

o 4
) 

U
g 

u a
 

A
H

 
(V

 n)
 

S
ta

bl
e 

co
n

fo
rm

er
 

: 
ra

ti
o 

C
H

2
=

N
-N

=
C

H
 2

 
14

1.
8 

49
.8

 (
20

.3
) 

14
.0

 a
 

6.
0 

5.
0 

V
 1 

=
 

4.
60

 
an

ti
/g

au
ch

e:
 7

8.
5/

21
.5

 

R
ef

. 

18
3)

 
,r 

C
H

(C
H

3)
=

N
-N

=
C

H
(C

H
3)

 
14

3.
7 

60
(2

0)
 

tr
an

 s/
tr

an
 s

 

C
H

2=
C

H
-C

H
=

C
H

 2
 

14
6.

5 
(1

6.
9)

 
C

H
2=

C
H

-C
(C

H
3)

=
C

H
2 

14
7.

0 
(4

0.
 9.

 ) 
C

H
2=

C
(C

H
3)

-C
(C

H
3)

=
C

H
2 

15
0.

4 
C

H
(C

H
 3

)=
C

(C
H

3)
-C

(C
H

3)
=

C
H

(C
H

3)
 

ei
s/

ci
s 

15
2.

1 
(2

6.
6)

 
ei

s/
tr

an
s 

15
2.

8 
65

.7
 

tr
an

s/
tr

an
s 

15
2.

1 
66

.7
 

C
F

2
=

C
F

-C
F

=
C

F
 2

 
14

8.
8 

47
.4

 

C
C

I2
=

C
C

1-
C

C
I=

C
C

I 2
 

14
8.

3 
78

.1
 

C
H

2
=

C
H

-C
H

=
O

 
14

8 
A

 
C

H
2=

C
H

-C
C

I=
O

 
32

. 
C

H
2=

C
B

r-
C

H
=

O
 

0
-2

0
. 

C
H

2=
C

C
1-

C
C

I=
O

 
0

-3
0

. 
O

=
C

H
-C

H
=

O
 

15
2.

6 
O

=
C

C
I-

C
C

I=
O

 
15

3.
4 

55
. 

(2
2.

1)
 

O
=

C
B

r-
C

B
r=

O
 

15
4.

6 
65

.9
 (

30
.7

) 

V
 2 

=
 -

2
.0

9
 

V
 3

 =
 

3.
05

 

9.
3 

6.
2 

an
ti~

ga
uc

he
: 

80
/2

0 

6.
0 

an
ti

 
10

. 
8.

 
an

ti
 

an
ti

 

7.
4 

an
ti

 
9.

8 
ga

uc
he

 
9.

8 
ga

uc
he

 
11

.0
 a

 
ga

uc
he

 
7.

 
8.

 a 

15
. 

6.
5 

6.
0 

6.
0 

18
.0

 
7.

2 
5.

8 

29
.0

 
6.

9 
2.

6 

V
 1 

=
 

4.
18

 
V

 2 
=

 -
3

.7
6

 
V

 3 
=

 
4.

18
 

V
 1

 =
 

2.
51

 
V

 2
 =

 -
0

.8
4

 
V

 3
 =

 
1.

67
 

ga
uc

he
 

an
ti

 
an

ti
/g

au
ch

e:
 5

8/
42

 
an

ti
/s

yn
: 

58
/4

2 
an

ti
/s

yn
 :

 6
7.

5/
32

.5
 

an
ti

 
an

ti~
ga

uc
he

: 
67

.6
/3

2.
4 

an
ti/

ga
uc

he
: 

48
.0

/5
2.

0 

4
1

4
) 

1
6

9
) 

18
4)

 
18

s)
 

18
6)

 
18

6)
 

18
6)

 
18

7)
 

1
8

8
) 

1
7

9
) 

17
7)

 
t7

7)
 

17
8)

 
17

9)
 

18
o)

 

18
1)

 

~L
 

.=
: 

~r
 



O
=

C
(C

H
3)

-C
(C

H
3)

=
O

 
N

C
2H

s-
N

C
2H

 5
 

C
3

H
s-

C
3

H
 5

 
C

3H
4B

r-
C

3H
4B

r 
a-

tr
an

s,
 t

ra
ns

 
a-

ci
s,

 e
is

 
C

2
H

3
0

-C
2

H
3

0
 

C
3H

 5
-C

H
=

C
H

 2 
C

3H
 5

-C
H

=
O

 
C

3H
s-

C
C

I=
O

 
C

3H
 5

-C
(C

H
3)

=
O

 

a 
u

(C
--

C
)g

. 
b 

A
ve

ra
ge

 C
-C

 d
is

ta
nc

e.
 

e 
0g

 i
s 

de
fi

ne
d 

as
 

15
0.

7 
14

7.
6 

14
9.

9 

14
9.

 
14

7.
 

15
2.

1 
14

7.
5 

15
0.

7 
b 

15
1.

 b
 

15
0.

6 

(2
4.

0)
 

48
.7

 (
80

) c
 

58
.8

 (
20

.)
 

(1
8.

8)
 

6
0

-7
0

 
O

. 
O

. 
O

. 

an
ti

 
18

2)
 

an
ti

 
18

9)
 

an
ti~

ga
uc

he
: 

47
.5

/5
2.

5 
19

0)
 

an
ti~

ga
uc

he
: 

33
/6

7 
19

1)
 

an
ti

 
19

2)
 

an
ti

 
19

3)
 

an
ti~

ga
uc

he
: 

75
/2

5 
19

4)
 

an
ti

/s
yn

: 
45

/5
5 

19
5)

 
an

ti
/s

yn
: 

15
/8

5 
19

6)
 

an
ti

/s
yn

: 
20

/8
0 

19
6)

 

o o~
 

=_
_ 

>.
 

o 



O. Bastiansen, K. Kveseth, and H. Mr 

potential function gives gauche to anti barriers in the range of 0.5 - 2 kJ/mol, and 
the observed high ug is consistent with such a low barrier. But, as the authors also 
indicate 181), even a 2 kJ/mol barrier is a very low barrier if the concept of a well 
defined gauche conformer is to be retained. 

The inclusion of only three terms may be insufficient, since in the related mole- 
cule butadiene four terms in the Fourier series are found to be necessary to describe 
appropriately the observed frequencies172). 

A reasonable check of the reliability of the three-term Fourier potential for the 
butadiene analogs, would have been to calculate a RD-curve by introducing a large 
amplitude model using the obtained potential to determine P(~b) for the whole 
~-interval. 

In Table 5 cyclopropyl derivatives have been included for comparison. The 
analogy is based upon the bent bond model 60) for the double bond. Anti pre- 
dominance is found both in cyclopropylethylene 194) and in bicyclopropy119~ The 
torsional amplitudes are dramatically increased compared to butadiene. In bicyclo- 
propyl of  = 80 o, which implies a nearly free torsional motion over a large angle 
region about anti. Figures 9 and 10 give the estimated torsional potentials together 
with the RD-curves for butadiene and bicyclopropyl, respectively. 

For bicyclopropyl each geometric species contains two torsion dependent 
C . . .  C.distances. The positions of  these distances are given in Fig. 10 both for anti 
and gauche. The effect of  the large torsional amplitude in bicyclopropyl is demon- 
strated by the broad torsional dependent area in the RD-curve without well defined 
peaks. This is in contrast to the well defined anti-peak in the corresponding part of  
the RD-curve for 1,3-butadiene. 

I ! 
1oo 

251 125 

,~ /1,~ 

/ \  o" 6cr ~20" ~80" 2~  300"300" / ' x  

CCg C C a C Ca 
C,..Cg 

l I I 
200 300 400 500 

~ ( p m )  

Fig. 10. Radial distribution curve and torsional potential for bicyclopropyl 
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The anti-form thus seems generally to predominate for the molecules in Table 5 
if no extra strain caused by substituents has been introduced. If  substituents are 
introduced, for example in butadiene, the gauche-conformer may prevail. In other 
cases anti/gauche-equilibria may occur. 

6.3 Molecules with Several Torsional Degrees of Freedom 

When the number of torsional degrees of freedom is increased, the intramolecular 
motion in gaseous molecules is increased as well. At the same time the theoretical 
treatment of  the motion becomes more complex, and the problems that the electron- 
diffraction method has to face are more difficult to handle. The molecules of this 
category that have been subject to quantitative conformational analysis by electron 
diffraction so far, are limited to cases with two or a few degrees of  freedom, though 
qualitative observations about large amplitude motion have been made also for con. 
siderably larger molecules. 

Among the vast number of molecules with more than one axis of internal rota- 
tion, the open chain hydrocarbons represent a group of molecules expected to be 
rather flexible, since the hydrogen atom causes a minimum steric hindrance to the 
internal motion. However, hydrocarbons are not well suited for electron-diffraction 
study because of the low scattering power of the hydrogen atom. H . . .  H-distances 
are reliably observed only in few cases, and information about large amplitude 
motion in hydrocarbons is mainly obtained through C . . .  C- and C . . .  H-distance 
contribution. For lack of  knowledge of the hydrogen position, methyl groups are 
usually placed in a staggered position in accordance with the situation in ethane itself 
where the H . . .  H-distances have been located 112). 

Parameters describing the hydrogen position are sometimes included in the least 
squares calculations. But both methyl twist angles and related vibrational amplitudes 
thus obtained are particularly sensitive to the assumptions made concerning the 
methyl torsional potential because of the low scattering power of  hydrogen. 

Bartell and co-workers have studied n-hydrocarbons up to 16 carbon 
atoms 119, 141, 197, 198). The results give information about structural and confor- 
mational properties, and also demonstrate the existence of  large amplitude motion. 
Due to this motion, distances beyond 500 pm are not considered reliable enough to 
be included in the analysis of the large amplitude motion 19a). 

In a conformational study of di-n-propyl ether appreciable contribution beyond 
500 pm is included in the study 199). A conclusive determination of the confor- 
mational mixture was impossible, but the fact that the molecule exhibits a high 
degree of flexibility was demonstrated. 

In order to obtain molecular systems in which the internal motion is easier to 
study, it is customary to introduce halogen atoms in the molecules because of the 
enhanced scattering power of  these atoms. On the other hand, the larger halogen 
atoms restrict the internal motion more than is the case in unsubstituted molecules. 
Halogen substitution thus leads to systems with less torsional freedom than the 
parent hydrocarbons. 
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As examples of halogenated hydrocarbons of this type studied by electron 
diffraction, 1,2,3,4-tetrabromobutanes 169a) and a series of  propanes 149, l s l -  ls4, 
200-204) may be mentioned. The main object of such studies is to describe which 
conformers are present, their molecular structure, and, if possible, the relative 
abundance of the conformers. 

In particular Str conformational study of  a series of  halogenated propanes 
has contributed to our understanding of the flexibility of  molecules with two axes of 
internal rotation. The coexistence of as many as three conformers has been found in 
several instances. For these halopropanes the structures of  the coexisting conformers 
have been determined as well as their mole fractions. The molecules are quite rigid, 
and from the study of the u-values the conclusion has been drawn that the torsional 
potentials are harmonic in the minimum regions. 

A few examples of  propane and butane derivatives are included in Table 4. The 
results obtained for such molecules are, as a whole, in accordance with what should 
be expected from the study of ethane derivatives. 

In crowded molecules the torsional motion may be severely hampered. For a 
molecule like (CF3)aCH 2~ the electron-diffraction study may either be based 
upon a staggered model carrying out torsional oscillations, or a model of large geared 
motion described with appropriate coupling terms characterizing the interaction 
between the rotating groups. The results obtained for both models indicate rather 
large librations of  the CFa-groups. The staggered model approach leads to a twist of 
the CFa-group of 15 o away from the staggered position. The geared motion model 
calculations result in a % of 17 ~ 

This result is in general agreement with an extensive analysis of the electron 
scattering of multiple rotor molecules by J. Karle 2~ who studied the effect on the 
intensity and the RD-curve in cases with low barrier and geared motion. 

In order to study the geared motion quantitatively, the potential function to be 
used must contain the involved angle parameters and terms describing the coupling. 
As an example one of the suggested potential functions for propane is given in Eq. 
(21)2o7) 

V 3 ' +cos (r162 (21) 
1 V (r r = V3 (2+cos 3r +cos 3r - [1 3 

From microwave studies V 3' was found to be 1.2 kJ/mol, i. e. about 1/10 of the V 3 
term, in agreement with results obtained theoretically 2~ This indicates that the 
interaction of  the two rotors must be small in the propane case, though it is difficult 
to draw any general conclusion from this example. 

7 B ipheny l  a n d  Re la t ed  C o m p o u n d s  

The torsional motion about the central C - C  bond of biphenyl and related com- 
pounds has been extensively studied by gas electron diffraction and by several other 
experimental and theoretical methods. The fact that biphenyl itself undergoes 
conformational changes by phase transition 169a, 2o8), indicates that the barrier to 

136 



Structure of Molecules with Large Amplitude Motion 

internal rotation must be small. Not only biphenyl itself but also a series of its deri- 
vatives without ortho substituents are reported to be planar in the solid 
state 2~ while the angle, r between the rings in the gas phase is found to be 
about 45 o 2~s, 210. The best value reported for biphenyl itself is 42 ~ Recent 
studies have thrown doubt on the exact planarity of the biphenyl molecule in the 
solid state. From studies of  the temperature dependence of the Raman spectrum 
from 15 to 75 K 217) and from electron paramagnetic resonance and electron nuclear 
double resonance studies at 1.9 K 21s) the conclusion has been drawn that the mole- 
cule does not have the ideal planar symmetry. In a recent X-ray study at 110 K the 
old question has been revived about the possibility that the X-ray crystallography 
claim of  a planar biphenyl molecule may have been obscured by statistical 
effects 2~9). But in any case the inter ring angle of  biphenyl in the solid state should 
be considerably smaller than in the gas phase. 

The non-planar conformation in the gas phase is described as a result of  a com- 
promise between conjugation favoring planarity and steric repulsion between hydro- 
gen atoms in 2-positions. These two effects seem to be balanced at an angle of twist 
of  about 45 ~ The increase in free energy that the molecule has to suffer rotating to 
the planar form, or near to it, is apparently overcome in the solid phase by favorable 
lattice free energy. It should be pointed out that cases are known where a large devia- 
tion from coplanarity is observed in the crystalline phase also for biphenyl deriva. 
tives without ortho substituents. For example 4,4'-dimethylbiphenyl is found to 
have an inter ring angle of  40 ~ in the solid 22~ 

In a recent X-ray study of 4,4'-dichlorobipheny122 l) a twist angle of 42 ~ has 
been reported, in exact agreement with the electron-diffraction result of gaseous 
biphenyl. The 4,4'-dichlorobiphenyl crystal is isostructural with several other 4,4'- 
derivatives of  biphenyl, however, with slightly smaller values for the twist angle. 

Conformational changes also take place at phase transition between the crystal- 
line and the gas phase for molecules such as 1,3,5.triphenylbenzene 222, 223) and 
hexaphenylbenzene224, 22s), though these molecules are for obvious steric reasons 
far from planar in the solid state. Hexaphenylbenzene is of particular interest. In the 
vapor phase the peripheral rings are found to be orthogonal to the central ring with a 
torsional amplitude of  at least 10 o to either side. This molecular arrangement is 
probably due to an entropy effect and is not the result of  an energetically favorable 
conformation. From general experience a propeller shaped conformation ought to be 
energetically the most stable one, a conformation in fact found in the solid. On the 
other hand this conformation must be statistically unfavorable since, if only one of 
the six phenyl rings is brought out of order, the propeller form cannot be realized. 

An approximation approach to study the torsonial amplitudes in biphenyls with- 
out ortho substituents using electron-diffraction data leads to rather large ampli- 
tudes 2 x 6). The two molecules chosen were 3 y-dibromobiphenyl and 3,5,3'5'-tetra- 
bromobiphenyl. The u.value for the Br 3 . . .  Br 3,.distance was calculated from the 
electron-diffraction data. Only the larger of  the two Br3 �9 �9 Br 3,-distances appeared 
suited for the study. Since the total u-value is composed of contributions both from 
the framework vibration and from the torsional motion, an estimate of the frame- 
work vibration amplitude is needed in order to obtain the rotational amplitude, o~. 
In order to estimate the framework vibration, 3,5,4'-tribromobiphenyl was studied. 
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The Br 3 ...Br4.-distance in 3,5,4'-tribromobiphenyl is nearly of the same length as 
the larger Br a . . .Bry-distance of the two other molecules. But as the Br4,-atom lies 
on the axis of rotation, the Br 3 ...Br4,-distance is independent of the angle of 
torsion. Consequently the corresponding u-value is due to framework vibration only. 
As a rough approximation the latter u-value was used as an estimate for the u-frame- 
work of the longer Br a . . . B r  a,-distance both in 3,3'-dibromobiphenyl and in 
3,5,3',5'-tetrabromobiphenyl. This led to a value of the o h of 19 ~ and 17 o for the 
two compounds, respectively. This difference may be insignificant, but is at least in 
accordance with the expectation that the molecule with the larger moment of inertia 
around the central bond ought to have the smaller torsional amplitude. The torsional 
motion must be expected to be anharmonic. This is indicated by the fact that the 
larger Br 3 . . .Br  a,-peak in the radial distribution curve of the two studied molecules 
in slightly asymmetric, while this is not the case for the Br 3 . . .Br4,-peak of the 
tribromo compound. 

It should be emphasized that the o 4 values obtained as described could not be used 
to draw real quantitative conclusions. However, the qualitative conclusion may be 
made that the torsional amplitude is probably so large that even the planar form may 
be expected to exist in the gaseous phase with a finite probability. 

For biphenyl itself the energy dependence of the torsional angle has been 
studied by quantum mechanical methods. Studies based upon n-electron calcula- 
tions, taking explicit account of steric effects 226-228) led to an energy minimum at 
a twist angle of 35 ~  o from planarity compared to the best electron-diffraction 
value of 42 o for unsubstituted biphenyl 2Is). Two different hydrogen-hydrogen 
potentials were used in these calculations, one leading to a twist angle of 35 o, the 
other one to a twist angle of  40 ~ The barriers towards torsional motion are some- 
what different in the two cases, but if the latter calculation is chosen from electron- 
diffraction criteria, the barrier at the planar form is higher (approximately 20 
kJ/mol) than the barrier at the 90 ~ form (approximately 8.4 kJ/mol). A more recent 
ab initio calculation 229) led to a smaller twist angle (32 o). In this calculation the 
positions of  the four hydrogen atoms adjacent to the C-C-bridge bond as well as the 
bridge bond length were optimized for various values of  the twist angle. The rotatio- 
nal barriers were found to be 5.0 kJ/mol and 18.8 kJ/mol at the planar and the per- 
pendicular form, respectively, L e. in this calculation the barrier to planarity is found 
to be the lower one. Both the theoretical calculations suggest a potential function 
for the torsional motion with a flat minimum leaving a large torsional amplitude in 
agreement with the electron-diffraction results. 

In order to summarize our present knowledge as to the parameters of impor- 
tance for understanding the torsional motion of biphenyls without ortho sub- 
stituents, the following points may be made: 

1. The electron-diffraction measurements reproduce the twist angle to 42 ~ with 
an error estimate of about _+ 5 o. This value corresponds to the angle of maximum pro- 
bability. An exact location of  the minimum of  the potential function is not easy to 
derive with present knowledge, but the discrepancy between the electron-diffraction 
value and the one obtained by ab initio calculation is too large to be accepted. 

2. The contribution of the ortho-hydrogen atoms to the deviation from planarity 
is clearly indicated both by the ab initio calculation and by X-ray study. Both 
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methods demonstrate a slight deformation of the ortho-hydrogen atoms to ease the 
steric strain. 

3. The central C-C-bond, the axis of  rotation, is both by X-ray and electron 
diffraction repeatedly found to be about 150 pro, while the ab initio calculation 
suggests a value of 153 pro. This discrepancy suggests that further quantum mechani- 
cal calculation would be of great interest. 

4. Both ab initio calculations and electron-diffraction studies indicate a large 
torsional amplitude. An amplitude value of 15 ~ to 20 ~ seems at present to describe 
the torsional motion, but further studies are certainly desirable. 

In order to obtain further information of  the torsional motion about the bridge 
bond of  biphenyls and related compounds it is natural to study the effect ofortho 
substitution. Such substitution should introduce more steric hindrance, increase the 
angle of  twist, and reduce the torsional amplitude. The non-bonded interaction may, 
on the other hand, be eased by replacing CH groups in the 2-position by single atoms 
such as nitrogen or sulphur. For molecules like 2,2'-bipyridyl or 2,2'-bipyrimidyl 
where two or four ortho42H groups have been replaced by nitrogen, one might 
expect planar conformation, arguing that the conjugation effect might overcome the 
milder steric strain. However, neither of  these molecules exhibits a planar conforma- 
tion in the gas phase. 2,2'-Bipyridyl was studied with 4,4'-bipyridyl as a reference 
substance 2~s). 4,4'-Bipyridyl behaves like biphenyl, but with a sligthly smaller angle 
of  twist (37 o). 2,2'-Bipyridyl seems to have a potential curve with a smaller barrier 
at the planar form than biphenyl itself. The study of this molecule is obscured by the 
fact that a non-planar arrangement calls for the possibility of  two different confor- 
mations, one near anti and one near syn. A more recent study of 2,2'-bipyrimi- 
dy123~ both by electron diffraction and by X-ray seems to indicate a behavior 
closer to biphenyl, namely a planar conformation in the crystal and an approxi- 
mately 45 ~ angle of twist in the gas phase. At the present state of the investigation 
no information is obtained about the flexibility of the molecule. The comparison of 
the hydrogen-hydrogen, hydrogen-lone pair, and lone pair-lone pair interaction is 
thus not free of  controversies. Since the mentioned compounds and others related to 
them offer an excellent possibility of  comparing these interactions, further combined 
electron diffraction and X-ray study ought to be carried out. Work along this line is 
already in progress in this laboratory. 

In the present context two other molecules may also be compared, namely 
3,3'-bithieny1231) and 2,2'-bithieny1232). For the 3,3'-compound the angle of  twist 
is about 30 ~ and two conformers are found, the near anti conformer being slightly 
favored (about 60%). For the 2,2'-compound electron-diffraction study suggests 
nearly free rotation over a large angle interval. Here as in many cases when the elec- 
tron-diffraction method is used, it is impossible at room temperature or above to 
distinguish between unhindered motion or a motion through a barrier of say 2.5 kJ/mol 
or smaller. Molecular orbital studies of the barrier to internal rotation 233) led to a two 
minima potential curve for 3,3'-bithienyl. The barrier between the minima was found 
to be about 4 kJ/mol, and the near anti conformer was also in this study found to be 
the energetically more preferable one. For the 2,2'-bithienyl the molecular orbital 
calculations indicate free rotation 233). 
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Table 6. Angle of twist (~) and halogen-halogen distances in a series of biphenyl derivatives. 
Pauling's van der Waals distances are included as well as the differences between these data and 
the experimental ones 

Angle of Van der 
twist, O, X- X Waals Diff. 
E. D. gas (pm) distances (pm) 
study (pm) 60) 

Biphenyl215) 42 ~ 
2-Fluorobipheny1234) 49 ~ 
2,2,.Difluorobiphe nyl 235 ) 60 ~ 
2,2,.Dichlorobipheny1235,236) 74 o 
2,2'-Dibromobipheny1235) 75 o 
2,2'-Diiodobipheny1235) 79 ~ 
Perfluorobiphenyl 21 ) 70 o 

285 270 -15 
346 360 +14 
362 390 +28 
382 430 +48 
312 270 -42 

A systematic comparative study of  the genuine ortho.substituted biphenyls helps 
to throw light on the torsional flexibility o f  the biphenyl molecule. In Table 6 bi- 
phenyl and a series o f  2-substituted derivatives are listed with their best estimated 
angles o f  twist 234-z36' 2t). Most of  these studies date back to about 1950, and 
taking the dramatic development o f  the electron-diffraction method during the last 
years into consideration, the data should be treated with caution. The perfluoro- 
biphenyl was studied only 10 years ago, and the 2,2'-dichloro-biphenyl was reinvesti- 
gated only a few years ago, essentially confirming the earlier findings 236). 

It is interesting that the prevailing conformer in all the 2,2'-dihalobiphenyls is 
found to be one with the two halogen atoms on the same side (i. e. closer to the syn 
than to the anti position). In the recent work on 2,2'-dichlorobiphenyl already re- 
ferred to,  this finding is confirmed. Both in the gas phase, as studied by electron 
diffraction, and in the crystal, as studied by X-ray diffraction, the near syn form is 
the only conformer observed. The twist angle refined in the gas phase varies from 
75 o to 70 o, depending on various assumptions attached to the refinements. The 
average o f  the results o f  the four different refinements gives a twist angle of  72.6 o 
The twist angle found in the solid is 3 - 7  ~ smaller than the one found in the gas 
phase. The gas study was carried out at a temperature nearly 300 ~ higher than that 
o f  the crystal study, and the oscillation is probably rather anharmonic due to the 
steric difficulties encountered at smaller twist angles. The packing of  molecules in the 
crystal may also hamper torsional motion. (The reason for carrying out the electron 
diffraction study at such high temperature, was the search for a possible second 
conformer which presumably ought to have a b-value about 135 ~ This search was 
negative). 

Comparison of  the four molecules biphenyl, 2-fluorobiphenyl, 2,2'-difluoro- 
biphenyl and perfluorobiphenyl shows that the angle o f  twist increases in a reason- 
able way introducing more fluorine atoms in the 2-position (Table 6). A twist angle 
recently reported for crystalline 2-H-nonafluorobipheny1237) of  59.5 o also fits 
nicely into the picture. 
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In the case of  the four 2,2'-dihalobiphenyls, the angles of  twist increases with 
the atomic weight of the halogen. The observed halogen-halogen distances are also 
listed and compared with Pauling's van der Waals distances 6~ 

Rough calculations of  the potential function for torsion about the bridge bond 
have been carried out for some halobiphenyls by combining conjugation energy and 
van der Waals energy 21). These calculation do not reproduce the experimental 
findings, on the contrary they suggest the more stable conformer for the 2,2'-dihalo- 
biphenyls is closer to the anti than to the syn form. The result of these theoretical 
calculations was as a matter of fact the main reason for repeating the gas studies of 
2,2'-dichlorobiphenyl. 

The results of  the 2,2'-dihalobiphenyls clearly demonstrate that not only re- 
pulsion but also non-bonding attraction may be decisive for conformational choice 
and for internal motion. The halogen-halogen attraction is strong enough to make 
the near syn conformation prevail to the extent that no other conformer is obser- 
vable even at the highest temperature applied in the electron-diffraction experiment. 
The apparent systematic, and in some cases rather large, deviation from the London- 
force distance, as demonstrated by the last column of Table 6, remains to be ex- 
plained. It is to be hoped that the experimental findings for the 2,2'-dihalobiphenyls 
will animate further theoretical studies. 

Of course conformational decisive non-bonded attraction is not limited to halo- 
gen-halogen interaction. For example 2,2'-diaminobiphenyl, as studied by X-rays in 
the crystal, also prefers the near syn conformation with an angle of twist equal to 
52 o 238) 

The torsional motion of perfhiorobiphenyl was studied using more advanced 
electron-diffraction technique, and both the torsional amplitude and the torsional 
barrier through the 90 o position was refined 21). The torsional amplitude (a~) was 
found to be 10 ~ - 3 ~ It is considerably smaller than the value of 15 ~ to 20 ~ esti- 
mated for biphenyl derivatives without ortho substituents, which is a reasonable 
result. The barrier through the 90 ~ position was found to be somewhere between 
1.7 and 8.4 kJ/mol, while the barrier through the planar position was too high to be 
estimated by the electron-diffraction technique. 

The torsional motion of biphenyl and related compounds is a typical large ampli- 
tude motion. The accumulated knowledge from a series of molecules in this group 
has led to a fairly good qualitative description of  the motion. Unfortunately the 
quantitative description leaves much to be desired. Taking advantage of the improve- 
ments in the electron-diffraction method and applying suitable combinations with 
other methods, there are reasons to believe that this deficiency should be remedied. 

8 Cyclic C o m p o u n d s  

8.1 Four-Membered Rings 

The ring-puckering problem of four-membered rings has for many years attracted 
considerable interest from electron diffractionists and spectroscopists. A large body 
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of information on this phenomenon has been gathered. A comprehensive and pro- 
found review on the dynamics and barrier-height determination of ring-puckering 
and pseudorotation potentials has recently been presented by Gwinn and Gay- 
1ord239). 

The early diffraction work of  Dunitz and Schomaker 24~ in 1952 on the proto- 
type molecule cyclobutane revealed that the carbon ring was either planar with large 
amplitude out-of-plane motions or, alternatively, permanently bent. Eight years later 
it was found that cyclobutane was static non-planar with a ring-puckering angle of 
about 35 o 241). The same value was later found by spectroscopy 242). A microwave 
study of cyclobutyl bromide 243) also led to a non-planar carbon ring but with a 
slightly smaller angle (29.4 o). It was then established that cyclobutane exists with 
distinguishable axial and equatorial hydrogens similar to cydohexane. It  was also 
established by electron diffraction 244) and by microwave studies 243) that the 
equatorial positions were energetically favored as in cyclohexane derivatives. The 
electron-diffration study 244) of four 1,3-dihalocyclobutanes, viz. trans-1,3<li- 
bromo-, trans-1,3-chlorobromo-, cis-1,3-dibromo-, and cis-1 ~3-chlorobromo-cyclo- 
butane led to an tx angle of  33 -+ 2 ~ The puckering-angle values obtained from elec- 
tron diffraction were determined both for cyclobutane itself and for its derivatives 
neglecting the shrinkage effect. When this is included, as shown in a recent 
work 24s), a smaller angle is obtained (about 26 -+ 3 o). 

The study of  the 1,3-dihalocyclobutanes shows that the barrier of  the puckering 
potential in the planar form must be at least 4 kJ/mol. The halogen-halogen peaks in 
the radial distribution curve are well defined and well resolved as shown in the case 
of cis.1 ~3-dibromocyclobutane, Fig. 11. The figure also clearly demonstrates the 
preference of the equatorial position. 

For the trans-1,3-chlorobromocydobutane there is a conformational mixture 
since the two positions a and e may be occupied either by the bromine or by the 

A Cis l~r- Br 

~ a-Q 
~ c 

I i I i I I I i J I 

1 2 3 4 s r ( k )  

Fig. l I. Radial distribution curves for cis-l,3-dibromocyclobutane. Experimental RD curve (a). 
Theoretical RD curve for a model with the two bromine atoms in equatorial positions (b). 
Theoretical RD curve for a model with the bromine atoms in axial positions (c) 
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chlorine atom. A mixture with about 60% of the conformer with bromine in an 
a-position gives the best agreement with the electron-diffraction data. 

Two further halogenated cyclobutanes have in recent years been studied by 
electron diffraction. Invariably, the rings are found to be non-planar. In octafluoro- 
cyclobutane 2a6). c~ was found to be 17.4 ~ in one study and 24 +- 3 ~ in another 
one 2a7). In 1 ,l-dichlorohexafluorocyclobutane 247) the puckering angle is 
23.2 -+ 2.5 o 

Molecules with fused carbon-ring systems are considerably less puckered than 
cyclobutane itself. 

7Yq 
(1) (2) (3) 

Bicyclo[2.1.0]pentane (I)  seems to be planar248): in bicyclo~2.2.0 hexane] (2) a is 
11.5 -+ 1.8 o 249), and in the syn and anti isomers of  tricyclo[4.2.0.0] 2,5 octane (3) 
is 8 - 9  o 2so) 

Four-membered rings with one or more hetero atoms offer the opportunity of  
investigating the influence of electro-negativity, hybridization, atomic size, etc., on 
the puckering problem. Several such molecules have thus been investigated by elec- 
tron diffraction and spectroscopy. 

In 1 -silacyclobutane (4) 2s ~) a is 33.6 _+ 2.1 ~ in 1,1 -dichloro-l-silacydo. 
butane2S lb) (5) t~ is 30 +- 5 ~ in I ,I ,3,34etrachloro-1,3-disilacydobutane (6) ~s it,) 

~ i H '  [---~iCl, v'-S.iCI, C S i ~  

CIaSI i----J 
(4) (5) (6) (7) 

(8) (9) U0) (11) 

is reduced to 14 -+ 3 o and in 4-sila-3,3-spiroheptane (7) a is 30.1 -+ 2.2 o 2slb). In 
azetidine (8) Mastryukov et al? s2) found that the puckering angle is 33.1 +-- 2.4 ~ 
Interestingly, oxetane (9) is nearly planar with a very low barrier 2s3) (See Table 7). 

In a combined electron diffraction and spectroscopy analysis 254) the puckering 
angle of  thietane (1(9) was determined as 26 -+ 2 o. Moreover, setenetane ( / lpSS) is 
non-planar with ot = 29.5 ~ 

Two molecules with two heteroatoms in the ring have recently been studied. 
Both tetrafluoro.1,3-dithiane (12) 2s6) and tetrafluoro-1,3-diselenetane (13) 251) are 
planar. 

F2C--S[ l F2~--~ e 

S---CF2 Se--CF2 
(12) (13) 
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Table 7. Puckering angle (a) and barrier to inversion of some selected four-membered rings 

Compound Me~hod Ref. Barrier (kJ/mol) 

H2C--CH 2 
I I 35 ~ ED 241) 

H2C-CH 2 
26 • 3 ~ ED 245) 

6.018 • 0.022 

H2C-SiH 2 
I [ 33.6 • 2.1 o ED 2sin) 5.26 

H2C-CH2 

H2C-NH 
I [ 33.1 -+ 2.4 ~ ED 252) 5.27 

H2C-CH 2 

H2C-O 
] I 0 o a ~ w  2~3) 

H2C-CH 2 
0.1856 • 0.0006 

H2C-S 
] I 26 • 2 ~ ED 254) 3.28 • 0.02 

H2C-CH 2 

H2C- Se 
I I 29.5 • 1 ~ MW 255) 4.58 • 0.04 

H2C-CH 2 

a See text. 

So far, electron diffraction has not  been used for a real quantitative deter- 
minat ion o f  barrier heights o f  four-membered rings. For  reference, some barriers 
determined by  spectroscopic methods  are collected in Table 7. They have been ab- 
stracted f rom the compilat ion o f  Gwinn and Gaylord 239). Typical ly,  the barriers to 
puckering are fairly small. Most o f  them are less than 6 kJ/mol.  

8.2 Five-Membered Rings 

In contrast  to the findings for the cyclobutanes where the large ampli tude mot ions  
mainly consist of  conversion between rather rigid forms, the cyclopentanes exhibit  
more complex conformat ional  and dynamic properties.  Pseudorotat ion is a pro- 
minent  large ampli tude mot ion  prevailing not  only in cyclopentane but  also in other 
five-membered rings. I f  the barrier to pseudorotat ion is high, distinct conformat ions  
may exist.  In this case, the envelope conformat ion which has maximum Cs symmetry  
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Fig. 12. Envelope (left) and half-chair conformations of five-membered rings 

or the half-chair (maximum C2 symmetry) are usually preferred. Moreover, some 
five-membered rings are found to be planar. 

Barriers to pseudorotation have been determined mainly by various spectro- 
scopic methods 239), while electron diffraction has provided important conformatio- 
hal and structural data. 

Cyclopentane was studied as early as in 1931 by Wier1258) who found that the 
molecule was planar. In 1946 Hassel and Viervol1259) found that the carbon ring 
deviates slightly from planarity. This has later been confirmed by repeated investiga- 
tions241, 260). Spectroscopic studies 239) have shown that this molecule undergoes 
nearly free pseudorotation. 

In the related molecule cyclopentasilane, (SiH2)s, rapid pseudorotation has been 
found in a spectroscopic investigation 261). Both the C2 and the Cs model fit the 
electron-diffraction data well, but it could not be decided whether pseudorotation 
was static or dynamic in this study 262). 

Several five-membered rings with one or more heteroatoms have been studied by 
electron diffraction. Tetrahydrofuran 263) (14) was found to have a non-planar ring. 

H2C---CH2 H~C----CHBr H2C--CH2 
(14) (15) (16) 

0 
II 

.,,Se x 
\ 

H 2C""'CH 2 H2C--CH2 H2C--~H2 
(17) (18) (19) 

C1 
~ J 

H2C-----CH2 O---O H2C--'CHz 
(20) (21) (22) 

C1 [ O~ /O S~ ./C] 

, 
H2C-'r-CH ~ H2C~CH~ H~C--CH2 

(23) (24) (2.5) 
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0 
II 

o / S \ o  
\ / 

H2C---CH2 
(26) 

C1 
I /P 

CHa--N X"N---CH a \ / 
H~C"--CH2 

(29) 

C1 
I 

/B 
CHj--N NN'-'CHs \ / 

H2C-----CH 2 
(32) 

0 Cl 
II I 

o/Se'-o o/PX, N__CH~ 
\ I \ I 

H2C-----CH 2 H2C--CH2 
(27) (28) 

CH a~B/Sx'/B~CHa CI--I~/S'~/B~I 
S--S S h S  
(30) (31) 

Evidence for essentially free pseudorotation was encountered in keeping with 
spectroscopic results 239). As expected, almost free pseudorotation exists in 
3-bromotetrahydrofuran (15) 264). 

Tetrahydrothiophene (16) prefers the C2 conformation 26s). It was impossible 
in this case to obtain a good fit between the experimental and the theoretical elec- 
tron-diffraction data by assuming C s symmetry. The same thing was found for tetra- 
hydroselenophene (1 7) by electron diffraction 266) and by microwave spectro- 
scopy 267). The pseudorotational barriers of tetrahydrothiophene and tetrahydro- 
selenophene must thus be considerable larger than in tetrahydrofuran since the two 
first-mentioned molecules exist in well-defined conformations. This is reminiscent of 
the puckering potential found for four-membered rings where a very low barrier was 
determined for oxetane while thietane and selenetane have more "normal" potentials 
(see Table 7). 

The C 2 conformation has been found for cyclopentanone (18) 268), while 
succinic anhydride (19) is planar 269). However, in tetramethylsuccinic an- 
hydride 27~ and tetrafluorosuccinic anhydride 270 conformations with non-planar 
rings were observed. 

Both the Cs and C~ models fit well for tetramethylene sulfone (20) 272). I ,2,4- 
trioxacyclopentane (21) has been studied by electron-diffraction 273) and microwave 
spectroscopy and found to exist in the C2 conformation 274). 

Ethylene chlorophosphite 27s) (22) and 2-chloro-1,3-dithia-2-phospholane 
(23) 2-/6) both seem to prefer the Cs conformation with axial P-CI bonds. On the 
other hand, ethylene chlorophosphate (24) and ethylene chlorotrithiophosphate (25) 
have their rings in the half-chair conformation 277). Ethylene sulfite (26) and 
ethylene selenite (27) have planar or almost planar rings 278). However, in 1,2-di- 
methylethylene sulfite a non-planar ring best fits the data 279). N-methyl-2-chloro- 
1,3,2-oxapholane (28) has an envelope conformation with valence angles of nitrogen 
almost coplanar 2s~ For N,N-dimethyl-2-chloro-1 ~3,2-diazaphospholane (29) the Cs 
conformation with equatorial methyl groups and axial P-El bond fits the data 
well zat), The C2 model did not yield better agreement 28t). 

146 



Structure of Molecules with Large Amplitude Motion 

Dimethyl-1,2,44rithia-3,5-diborolane (30) 282) and dichloro-1,2,4-trithia-3,5- 
diborolane (31) zs3) are at least approximately planar as is 1,3-dimethyl-2-chloro. 
1,3-diaza-2-boracyclopentane (32) 284). 

As shown above, five-membered rings with only single bonds within the ring 
indeed exhibit a varied dynamical and conformational behavior. Seip and co- 
workers 28s) have carried out molecular mechanics computations for several of these 
systems and generally obtained good agreement with the experimental results. It 
seems that this kind of calculation may become a very helpful tool for the study of 
large amplitude vibrations of rings in general. 

Five-membered rings with one double bond are normally found to be in an enve- 
lope conformation, or they are planar. For the non-planar molecules a puckering 
potential will exist. The barrier to puckering is generally quite low. For example, in 
cyclopentene a barrier of about 2.4 k J/tool has been determined 239). 

Electron-diffraction studies have been made for several of these compounds. The 
puckering angle c~ of cyclopentene (33) was determined as 29.0 -+ 2.5 ~ 286); this 
angle is about 8 ~ smaller in perfluorocyclopentane (34) 287), viz. 21.9 -+ 0.5 ~ In 

CH2 
H2C / / C H 2  

F2~/\ICF2 SiH2 H 2 ( ' x ' ]  CH2 CF, 

HC~--~---C H FC~CF H ~ C H  
(33) (34) (35) 

H 
SiCI~ /B  I 

H2C / \CH2 O==c/O"C-~O HaC--N "~N'-'CH 3 

HC==CH N~N 
(36) (37) (38) 

%/CI 
H2 ./P,,,/CH2 CH2 H 2~ / \~H2 C H2 

H 2 ~  "x/CH2 
H C ~ H  HC wCH N--N \ /  / \ 

O H~C\ ./CH2 
CH2 

(39) (40) (41) 

1-silacyclopent-3-ene (35) 288) a is 15.7 -+ 7.7 o. 1,1-Dichloro-l-silacyclopent-3- 
ene 289) (36) is also non-planar with ct = 16.8 -+ 3.1 o. Maleic anhydride (37) 290) and 
dimethylcyclotetrazenoborane (38) 290 are planar or very nearly so. 1-Oxo-l-chloro- 
phosphacyclopent-3-ene (39) 292) prefers the envelope conformation with the P=O 
bond cis to the C=C double bond. 

Cyclopentene oxide (40) 293) and 1,5-diazabicyclo[3.3.0]octane (41) 294) are 
similar to the cyclopentene derivatives in that rotation about one bond is very much 
restricted. (40) takes a boat conformation 293), while the rings are twisted in 
(41)294). 
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8.3 Six-Membered Rings. Cyclohexane and Its Derivatives 

The studies of cyclohexane and its derivatives by Hassel and co-workers in the late 
thirties and early forties using mainly the electron diffraction method laid the 
foundation of conformational analysis. In 1943 Hasse129s) summarized that cyclo- 
hexane exists mainly in the chair conformation as distinct from any other possible 
conformation. The chair conformation will have distinguishable axial, a, and 
equatorial, e, substituents. (See Fig. 13). The equatorial position is the energetically 
favored one. Furthermore, Hassel stated that there is a rapid inversion of the ring 
with an associated low barrier. This motion interchanges the a and e positions with 
the result that a and e conformers cannot be isolated. 

The structure of  cyclohexane itself 296) as well as the barrier and the dynamks 
of the ring inversion have been the objects of several studies in the sixties and 
seventies. Anet and Bourn 297) in a N MR-study of  C6D 11H found the following 
thermodynamic activation parameters: AH* = 45.6 kJ/mol, and AS * = 12.1 J/mol K. 
The activation enthalpy of 45.6 kJ/mol is probably fairly close to the barrier height. 
This value is in good agreement with very recent molecular mechanics calcu- 
lations 298). The exact inversion path is unknown, and is quite likely rather com- 
plicated. This is indicated by the molecular mechanics calculations in which it was 
found that several conformations have rather similar energies. E. g., the D2 twist and 
the C2 twist conformation were both computed to be 22 kJ/mol less stable than the 
chair, while the C2v boat and the C2 boat conformations were calculated to have 
slightly higher energies, namely 28 kJ/mol as compared to the stable chair. All these 
four geometrical forms considered by Allinger et al. 298) may be local minima on the 
inversion potential surface. Further minima may also exist. There is experimental 
evidence obtained from substituted cyclohexanes that twisted conformations or boat 
forms are about 20-25  kJ/mol less stable than the chair 299), in good agreement 
with the molecular mechanics calculations 298). 

Ab initio calculations are not very convincing as the boat conformation was 
computed to be 61 kJ/mol and the half-chair 68 kJ/mol less stable than the 
chair 3~176 This is about three times the expected values (20-25  kJ/mol). 

Mono- and 1,1.disubstituted cyclohexanes. There are several electron diffraction 
investigations of  mono-substituted cyclohexanes. Cyclohexylfluoride 3~ exists as 
57% e and 43% a which means that the equatorial position is favored by about 710 
J/mol. A microwave study 3~ yielded 1.6 -+ 1.2 kJ/mol for this energy difference. 
Cyclohexylchloride 3~ is very similar to the fluorine derivative in that the gas phase 
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is composed of 45% axial and 55% equatorial conformers. Methylcyclohexane 3~ 
was found to have the methyl group only in the equatorial position. I f  this group 
were placed axially, the distance between it and the axial hydrogen in the 3 position 
would be rather short and presumably repulsive. This 1,3-interaction, which is 
usually repulsive, is important for conformational preferences, a fact pointed out by 
Hasse1295). 

In 1,1-dimethylcyclohexane one of the methyl groups must of  course be in the 
axial position and thus experience repulsion from the hydrogens in the 3-position. In 
this case, a flattening of the ring was observed 3~ 

2,2,6-Trimethylcyclohexanone 3~ has a carbonyl group instead of one axial 
and one equatorial hydrogen atom. This molecule too takes a chair conformation. 

1,2-disubstituted cyclohexanes. One consequence of  cyclohexane ring con- 
version is that trans-1,2-disubstituted cyclohexanes with identical substituents can 
exist as ee or aa conformers as shown in Fig. 14 while the corresponding cis ae con- 
formers only can exist as rapidly interconverting optical antipodes. Indeed, 
trans-1,2-dibrornocyclohexane was the first molecule for which the coexistence in 
the gas phase of  two conformations was proved experimentally s). The electron- 
diffraction study indicated that the molar ratio of ee to aa was about 1.5, suggesting 
that ee is more stable by 0.8-1.2 kJ/mol 6). 

Trans and cis-decalin 3~ take the conformations shown in Fig. 15. Inversion 
cannot take place in trans-decalin, while cis~lecalin inverts into its optical antipode if 
both rings invert simultaneously. 

Several further molecules which may be regarded as 1,2-disubstituted cyclo- 
hexanes have been studied by electron diffraction. Principal conformational findings 
for several of  these compounds are summarized in Table 8. 

<....._ 

e e  

i rons  -1,2 

eQ e a  

cis -  1.2 

Fig. 14. Conformational possibilities 
for trans-and cis-l,2-disubstituted 
cyclohexanes 

a b Fig. 15. Trans-(a) and cis-(b) dcca[in 
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Table 8. Selected six-membered rings studied by electron diffraction 

Compound Conformation Remarks Ref. 

Bicyclo[4.1.0]heptane (42) Half chair 308) 

7,7-Dichlorobicyclo|4.1.0]- Half chair 309) 
heptane (43) 

Cyelohexene epoxide (44) Half chair 31 O) 

cis- and trans-Tricyclo- Distorted chair Two con- 31 I) 
[5.1.0.02,4loctane (45) formers for trans 

8,8-Dichloro-1,4,4-trimethyl- Presumably planar 312) 
tricyclol5.1.0.03'S]octane (46) central ring 

cis- and trans-Bicyclo[4.2.0 l- Distorted chair 313) 
octane (47) 

trans-2-Decalone (48) Indications that both 314) 
rings are distorted chairs 

lO-Methyl-trans-2-decalone (49) Both rings chair 315) 

l,l-Dimethyl-trans-2-deca- Distorted chair 316) 
lone (50) 

Perhydroantracenes (51) Chair 317) 

(42) (43) (44) (45) 

C H ~ c I  

(46) (47) (48) 

v ~ "X2H3 

(49) (50) (51) 

1,3-disubstituted cyctohexanes. Very few 1,3-disubstituted cyclohexanes have 
been studied by  electron diffraction,  fl-Pinene (Fig. 16) may be regarded as a 1.3- 
disubsti tuted cyclohexane.  This molecule contains two fused six-membered rings and 
one of  them must  be in a boat-like conformation.  Naumov and Bezzubov 318) found 
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CH3~ H3 C H ~  H3 

CH 2 CH 2 
o b 

Fig. 16. Boat (a) and chair (b) conformations 
of fl-pinene 

that this molecule exists as 65% in the "chair" and 35% in the "boat"  conformation 
of Fig. 16. 

1,4-clisubstituted r Both the cis and the trans 1,4-disubstituted 
cyclohexanes will exist as meso compounds if the two substituents are identical. The 
cis-isomer can only have the ae substituent configuration, while the aa and ee con- 
formers are possible for the trans-isomer. Trans-1,4-dichloro 319) and trans-1,4-di- 
bromocyclohexane 319) have been studied by electron diffraction, and the amounts 
of the aa and ee conformations were found to be practically equal for both mole- 
cules. Hence, the energy differences were estimated to be less than 0.7 kJ/mol. 

It has been pointed out 6) that trans.1,4-dihalocyclohexanes are ideally suited for 
determination of  changes in free energy, enthalpy, and entropy by electron diffrac- 
tion, since the ratio between the conformers may be found quite accurately by com- 
paring areas of the appropriate peaks in the experimental RE) curve (see Fig. 17). 
Accurate thermodynamic parameters of gas phase conformational equilibria are 
rather scarce and these molecules may perhaps be able to provide some much-wanted 
high-quality data with the aid of  the modern electron-diffraction technique. 

~ Theor curves 

ee form 

. . . . . . . . .  oo form 

.... ' - , , A  

IO0. 200. 300. zOO 500. 600. "~(pm) 

Fig. 17. Theoretical and ex- 
perimental RD curves of 
trans- 1,4-dichlorocyclohe- 
x a n e  

~ Br < �9 Ct 

CI Br 
Fig. 18. Conformational equilibrium of 
cis-1, 4-chlorobromocy clohexane 
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Cis-1 A-chlorobromocydohexane 32~ is representative for a molecule with non- 
identical substituents. In this case, conformations with a a-chloro- and e-bromo sub- 
stituents, or vice versa are possible. It  was found that this compound exists almost 
completely in e-chloro4-bromo conformation. This contrasts with the results of  the 
corresponding cyclobutane derivatives earlier referred to (p. 142). 

cis-1,4-Ditertiary butylcyclohexane 321) will have one tertiary butyl group in the 
a position. This will be sterically very unfavorable because of the size of the tertiary 
butyl group. The electron diffraction data strongly indicates that the ring is distor- 
ted 32x a). A composition of  1 [3 chair and 2/3 non-chair ring coil formation yielded 
the best fit to the data. 

In both c/s-and trans-4-tertiary butyl-1-chlorocydohexane 3~ the bulky 
tertiary butyl group will be equatorial. In these two molecules only a small deviation 
from the ideal cyclohexane geometry was found for their rings. 

Polysubstituted cyclohexanes. If  there is only one type of substituent, the con- 
formation with a maximum number in the equatorial positions is generally favored. 
If  several different substituents are attached to the cyclohexane ring, it is not always 
obvious which position is the more stable. 

Some polysubstituted, mainly halogenated cyclohexanes have been studied by 
electron diffraction. Two conformers are possible for 1,2-dichloro-4,5-dibromocyclo- 
hexane 322) (Fig. 19). The aa-chloro-ee.bromo conformer predominates in the gas 
phase. Deviation from idealized geometry was seen in this case. The a-C-CI bonds are 
bent away from the principal axis of the ring by approximately 8 ~ The e-C-Br 
bonds are also bent away from each other by about 3 o. A similar finding was made 
for dodecafluorocyclohexane, C6F 12 ,a2a) where the axial fluorine atoms are bent 
away 6.2 ~ from the principal axis of  the ring. This kind of deviation from cyclo- 
hexane geometry is quite common and was also found for 1,2,4,5-tetrachlorocyclo- 
hexane in the crystalline state 324). 

Five of  the eight theoretically possible 1,2,3,4,5,6-hexachlorocyclohexanes have 
been studied and their preferred gas phase conformations determined 32s). 

Cyclohexene and derivatives. The stable conformation of cyclohexene is the 
half-chair 326) (Fig. 20). 

Et 

C[ Br 

Fig. 19. Conformational equilibrium 
of 1,2-dichloro-4,5-dibromocyclo- 
hexane 
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If  substituents are placed in the 3 and 4 positions, axial and equatorial conforma- 

tions may arise. In 3-chlorocyclohexene (52) 3z7) 80% is axial and 20% equatorial, 

C1 

(52) (53) (54) (55) (56) 

Table 9. Selected six-membered rings with hetero-atoms studied by electron diffraction 

Compound Conformation Remarks Re(. 

1,3-Dioxane (57) Chair 

1,4-Dioxane (58) Chair 

1,3,5-Trioxane (59) Chair 

2,4,6-Trimct hyltrioxane Chair 
(paraldehyde) (60) 

1,3-Dithiane (61) Chair 

1,4-Thioxane (62) Chair 

4-Thiacyc/ohexanone (63) Chair 

Piperazine (64) Chair 

N,N-Dimet hylpiperazine (65) Chair 

2,2,6,6-Tetramet hyl-4-piperidinone- 
1-oxyl free radical {66) 

2,2,6,6-Tetramethyl-hydroxyl-4- 
piperidinone (67) 

Trimethylene sulfite (68) 

trans-4,6-Dimethyl trimethylene 
sulfite (69) 

Trimethylene selenite (70) 

Trimethylene chlorophosphite (71) 

1,3-Dimethyl-2-chloro-diazbora- 
cyclohexane (72) 

Thiantien (73) 

Chair 

C s suggested 

Chair 

Probably chair 

Chair 

Chair 

Cs 

Methyl groups 
equatorial 

Methyl groups 
equatorial 

332) 

333) 

334) 

335) 

336) 

337) 

338) 

333, 339) 

333) 

340) 

Considerably 34 l) 
distorted chair 

S=O axial 342) 

343) 

S = O axial 344) 

Axial P-CI 345) 
predominates 

C 5 out of plane 346) 
formed by the 
other atoms 

Dihedral angle 347) 
128-130 ~ . In- 
version barrier larger 
than 4 kcal/mole 
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H2C~ /CH2 H2Cx,.o/CH ~ 
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(60) (61) (62) 

O H CH 3 
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I ~Hs H 
(63) (64) (65) 

o o 9, 
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I r i I 

(CH s)aC.,,.N.,..C(CH 3) 2 '(C H3) 2C~N..,-C(C H3) a H2C~./CH2 
~' I CH2 
o ? 

H 
(66) (67) (68) 

(CH~)HC~c.~CH(CH3) 

C1 
I 

o f  P~o 
I I 

H2C~./CH2 
CHa 

(69) (70) (71) 

CH2 

CHa--N,.~BJN-'-CHa 
I C1 

(72) 
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while 40% takes the axial and 60% the equatorial position in 4~:hlorocyclohexane 
(53) 327) . Five isomers of  3,4,5,6-tetrachlorocyclohexene- 1 have been studied 32a) 
and their conformational preferences determined. In the/~-isomer, evidence for the 
presence of two conformers was found. 1,3-Cyclohexadiene (54) is twisted 18.1 +- 
1.0 ~ about the single bond connecting the two double bonds 329). 1,4-Cyclo- 
hexadiene (55) is planar at equilibrium 33~ In bicyclo[4.1.0]-2-heptene (56) a 30% 
to 70% mixture of  two twisted conformations was taken as the best model at room 
temperature 331). 

Cyclohexane derivatives with hetero atoms. Electron diffraction studies have 
been made for many molecules with hetero atoms. These molecules are analogous 
to cyclohexane derivatives. Principal findings pertaining to large amplitude vibration 
are summarized in Table 9. 
It is seen from this table that the chair conformation is preferred when one or more 
ring methylene groups are substituted by nitrogen, oxygen, sulphur, selenium, or 
phosphorus. When the electron deficient atom boron is substituted into the ring and 
attached to two nitrogens with lone electron pairs, flattening of the ring results as 
seen in the case of  1,3-dimethyl-2-chloro-diazboracyclohexane 346). This is probably 
caused by electron delocalization 346). 

Miscellaneous six-membered rings. Electron diffraction studies have been made 
for several molecules which have no carbon atoms in their six-membered rings. Hexa- 
methylcyclotrisiloxane (74) 348) is essentially planar with Dan symmetry, while 

oAJ~(CHa)2 /S~CHa)2 
HN NH 

I I I 
.,,,~i(CH3)2 

NH 

(74) (75) 

AI(CHa)2 
CHaQ / ~'QCHa 

I I 
(CHa)2AI~./AI(CHa)2 

OCH3 
(76) 

hexamethylcyclotrisilasane (75) 439) is puckered but the deviation from planarity is 
relatively small. The ring of  methyl aluminium methoxy trimer (76) 3s~ is definitely 
non-planar. C3v symmetry was assumed for this molecule, but lower symmetries 
could not be ruled out. 

o.. :o.. : 
W W 

o I 1 "o o/I /'Xo O\M(~ O-.w/O 
/ \  / \  

0 0 0 0 

(77) (78) 

155 



O. Bastiansen, K. Kveseth, and H. Mollendal 

A chair conformation 3s l )  is suggested for Se 6 studied at 450 ~ (MOO3) 3 (77) 
best fits a planar D3h model 3s2), and (WO3) 3 (78) is perhaps puckered with C3v 
symmetry 3s3). The former of  these two molecules was studied at about 1000 ~ 
and the latter at 1400 ~ and shrinkage is thus probably quite important 2. 

8.4 Rings with More than Six Atoms 

The study of  large rings by electron diffractions is generally complicated because of 
the large number of  parameters to be determined. Often these rings have little 
symmetry or they may be quite flexible so that several conformations coexist. This, 
of  course, adds to the already difficult problem. Quite often the only conclusion that 
can be made is that no one simple conformation can explain the experiment satis- 
factorily. Despite these obstacles, considerable progress has been made toward~ an 
understanding of structure and dynamics of  several large rings by the means of elec- 
tron diffraction. Molecular mechanics calculations have been made for many 
rings27, 28, 285, 354) with results which are often in good agreement with the ex- 
perimental ones. Interconversion mechnisms of small, medium and large rings have 
been reviewed by Dale 3ss). Dunitz 356) has reviewed recent X-ray work on medium 
size rings. 

Seven-membered rings. Relatively few seven.membered rings have been studied 
in the free state. 1,3-cycloheptadiene (79) 357) is planar except for C6 which is bent 

/ ~ 6  . . . . . .  o1 

,7 7 . . . . . .  

(80) I 

63.9 + 4.0 ~ out of the plane formed by C7, C1, Ca, C4, and C s . 1,3,5-Cyclohepta- 
triene (80) is non-planar with a = 40.5 + 2.0 o and 3 = 36.5 + 2.0 o. 2,4,6-Cyclo- 
heptatrien-l-one, tropone 3s9), is assumed to be planar. 

Eight-membered and larger rings. Cyclooctane 36~ was best accounted for by 
assuming a mixture of  several conformations, since the ring is very flexible. Trans- 
cydooctene 361) , cyclooctyne 362), as well as 3,3,6,6-tet ramethyl- 1 -thiacyclohep- 
tyne 363) all prefer twisted conformations. 1,3-Cyclooctadiene (81) 364) has Ci 
symmetry with a 37.8 ~ angle between the two planar ethyelene groups. Cycloocta- 
tetraene (82) 36s) has a tub form with a = 43.1 + 1.0 o. Cis, cisq:yclodeca-1,6-diene 

�9 �9 <C> 
(81) (82) (83) 

2 See Note Added in Proof. 

156 



Structure of Molecules with Large Amplitude Motion 

(83) 3~6) has a predominant C2h chair conformation. The situation encountered for 
cyclodecane 367) is quite similar to that found for cyclooctane 36~ in that the ring is 
very flexible. A mixture of four different conformations yielded a good fit to the 
experimental data 367). Cyclotretadeca-1,8-diyne is also a very flexible mole- 
cule360). 

Cope rearrangement is known to take place in semibuUvalene (84) 368) and bull- 
valene (85) 369). This process is quite slow compared to the electron-diffraction 
process, and the bond distances of (84) and (8.5) are therefore found to be similar to 
normal single and double bonds. 

Miscellaneous medium-size rings. A few electron diffraction investigations have 
been made for medium size rings not containing carbon atoms in the ring. The eight- 
membered ring prosiloxane tetramer, (H2SiO)4370), is best accounted for by 
assuming a puckered structure with $4 symmetry. Cyclic tetrameric structures of  
lower symmetry cannot be ruled out. The situation in octamethylcyclotetrasilo. 
xane 349), [(CH 3)2 SiO ]4, is similar. No well-defined conformation was found in the 
ten-membered ring decamethylcyclopentasiloxane 349), [(CH3) 2 SiO]s, as well as in 
the twelve-membered ring dodecamethylcyclohexasiloxane349), [(CH3)2 SiO ]6, as a 
result of large amplitude vibrations. 

Selenium trioxide 370 was studied at 120 ~ About 30% is monomeric SeO 3 
and the rest is a tetrameric eight-membered ring presumably with $4 symmetry. In 
dimethyl aluminium fluoride tetramer 372), [A1F(CH 3)2 ] 4 the eight-memb ered ring 
consists of  alternating aluminium and fluorine atoms. The molecule is probably 
non-rigid. A chair-boat model with C s symmetry and two aluminium atoms in the 
mirror plane best fits experimental data. Further models with low symmetry are also 
possible. 

(84) (85) 

9 Miscel laneous Large A m p l i t u d e  Problems  

Organometallic chemistry has in recent years been a rapidly expanding branch of 
chemistry. A large number of  interesting and "unusual" or unexpected molecules 
have been synthesized. Electron-diffraction has been used to study many organo- 
metallic compounds. Several of  these are quite flexible and exhibit challenging large 
amplitude problems. Recently, Haaland 373) has reviewed the electron-diffraction 
work on these molecules. 

Bicyclopentadienylmetal and related compounds. Electron-diffraction has now 
been employed to study about ten bicyclopentadienylmetal compounds 373), 
(C s Hs)2 M. With the notable exception of  beryllium, the metal atom is always placed 
in the middle between the rings on the five-fold axis of  symmetry. The structure 
obtained for (CsHs) 2 Be is shown in Fig. 21. 
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Fig. 21. Molecular structure of 

Q: C O= H ~= Be (CsHs)2Be 
In this case, the metal atom is closer to one ring than to the other. It has been sug- 
gested 374) that the beryllium atom oscillates in a double minimum potential which 
has its minima on the five-fold axis of symmetry 22 pm on either side of the mid. 
point between the rings. However, theoretical calculations 37s) have failed to re- 
produce the experimental findings. A new electron-diffraction study of this molecule 
is now being made 376). Preliminary results show that the model of Fig. 21 is in 
agreement with the new data 376). Other models are also being studied 3. 

The barriers restricting the torsional motion of the rings are definitely fairly low 
in all (CsHs)2M compounds which have hitherto been investigated 373). In one case, 
e. g. ferrocene, (CsHs)2Fe a barrier of 3.8 -+ 1 _3 kJ/mol has been determined by 
electron diffraction 22). Unfortunately, there are no other gas phase quantitative 
barrier determinations for the ring torsional motion of  these "sandwich" com- 
pounds. 

In a related compound, benzenechromium tricarbonyl, C6H6Cr(CO)3377), 
internal rotation was seen to be nearly unhindered. 

Molecules with several XF3 groups. Some molecules of this type have been 
studied by electron-diffraction in recent years. In nickel tetrakistrifluorophosphine, 
Ni(PF3)4 378), the PF 3 groups rotate nearly freely. The same was found for 
platinum tetrakisfluorophosphine, Pt(PF 3)4 379). 

Two molecules presenting the same kind of torsional problems, are C(CF3)4 and 
Ge(CF3)4 38~ The C-F distance is found to be nearly the same for the two com- 
pounds, but of course the distance from the central atom to the CF 3 carbon is con- 
siderably larger for the latter molecule. The C-C distance is found to be 156.2 pm, 
and the Ge-C distance is found to be 198.9 pm. This leads to a noticeable difference 
in the torsional motion of the two molecules. In C(CF3) 4 the torsional barrier is 
estimated to be about 10 kJ/mol from the electron-diffraction study, while a 
CNDO/2 calculation estimated a barrier of about 3 kJ/mol. For Ge(CF3)4 the elec- 
tron-diffraction data suggest free rotation. For these molecules the geared motion 
has not been considered as was the case for (CF3)3CH , previously discussed (p. 136). 

3 See Note Added in Proof. 
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Fig. 22. Experimental and difference RD-curves (right) of various molecular models (left) 
of TINO 3 

High temperature studies of  salts. Ionic compounds have in recent years been 
studied at elevated temperatures, especially in the Soviet Union. These distinguished 
studies have, in combination with other methods, demonstrated that polyatomic 
molecular species are rather the rule than the exception in the gaseous state at high 
temperatures. Moreover, large amplitude motions reflecting rather peculiar dynamics 
have been found to be of considerable importance in several of these investigations. 
In one such study, the one on thallium nitrate, TINO3 38 O, performed at 
300-350  0(7, the three models shown in Fig. 22 were considered. The root- 
mean-square amplitudes of  vibration of  the T1-O distance was found to be in 
the 16-25 pm range for the various models A, B, or C. This is a very high value 
for two atoms linked to each other. None of the three models A, B or C was satis- 
factory. A composite model with a mole fraction of 0.7 IB, 0.18C, and 0.11A 
yielded a much better fit to the data as shown in Fig. 22. The exact nature of the 
unusual large amplitude motion observed in this case will need further investigation. 
There is also some evidence from other nitrates, e. g. Cu(NO3) 2 382), LiNO 3 383), 
and NaNO3383) for a similar large amplitude behavior. 

TIReO4 also exhibits large amplitude motion 384). It was suggested 384) that the 
thallium atom "orbits" around the near-spherical surface of the ReO-tetrahedron. 

Ti2SO4, Cs2WO4, Cs2SO4 and Cs2MoO 4 alt 38s) possess a structure which is 
presumably close to the D2d structure (86). The extraordinary large root-mean- 
square amplitudes of  vibration observed for these four compounds have been inter- 

(86) 

preted in a similar manner as for TIReO4, namely as great displacements of the metal 
ions on the surface of an imaginary sphere formed by the acid residues. It is not 

388) 389) 390) unlikely that TI2MoO4 386), KA1CI 4 387), NaAIF4 , KYCI4 , TUnCI 4 , 
K2CrOa 391), ]n2MoO4 392), and K2SO4 391) behave similarly. 
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A theoretical discussion of the chemical bonding in molecules of this kind has 
recently been given 393). 

Several alkali halides have been studied at elevated temperatures 394) and 
dimeric species forming four-membered rings have been found to predominate. There 
are indications of  rather large amplitude vibrations in these dimers. It should be 
pointed out that monomeric species are also present in addition to the predomi- 
nating dimers and several of these have been indentified by microwave spectroscopy 44) 

Penta-, hexa-, and heptahalogenated compounds. Many compounds of the 
general type XYn where Y is a halogen, mainly fluorine, and fl = 5,6, or 7 have been 
investigated by electron diffraction in recent years. These substances exhibit a varied 
dynamical behavior. While WF 6 395, 396), MoP6 395,397), TeF6 397,398) 
UF 6 396, 397, 399), ReF6 4oo), OsF6 396), IrF6 396), NpF6 396), and PuF 6 396) are 
all rather "rigid" regular octahedrons of  point group Oh, this is not the case for other 
similar molecules. PF s 4ol), for example, is a trigonal bipyramide with axial PF bond 
length of 153.0 -+ 0.4 pm and an equatorial PF bond length of  157.7 + 0.5 pm. The 
NMR spectrum of this compound shows only one peak 4~ which is indicative of a 
rather low barrier to pseudorotation whereby equatorial fluorine atoms are trans- 
formed into axial ones and vice versa. The AsF s 402) and PC1 s 403) molecules behave 
in a similar manner. In CH3PF44~ and (CH)2PF34~ conformations with equato- 
rial methyl groups are preferred. Very recently, NbCIs 4os) and TaCI 54os) have been 
studied and found to have D3h symmetries. Barriers to pseudototation were also 
determined as 6.0 -+ 2.8 kJ/mol for NbCls and 4.8 + 2.4 kJ/mol for TaCls, respectively. 
In XeF64~ effects of  large amplitude vibrations are again manifest. No resolution 
of axial and equatorial XeF bond distances was possible. The molecular geometry is 
in the broad vicinity of  C3v. IF7407) and ReF 7408) both show considerable distor- 
tion from a pentagonal bipyramid of Dsh symmetry. In IF7407) the average dis- 
placement of  the equatorial fluorine atoms by ring puckering is 7.5 ~ and the axial 
fluorine atoms are displaced by an average of 4.5 o. In ReF74~ the corresponding 
distortions are 8.7 o and 7.5 o, respectively. 

Torsional motion of nitromethanes. The nitro group of CH3N02 undergoes 
nearly free rotation as shown by microwave spectroscopy 72). Large amplitude tor- 
sional oscillation about the C-N bond also takes place in several other nitromethanes. 
In C(N02)44~ for example, the rotatory oscillations have an amplitude of 20 ~ 
The mean amplitude of  vibration for the interatomic distances depending on the 
torsion are as large as 13-17 pm at 45 ~ Similar results have been found for 
CH(N02)341~ and CH2CINO24t 1). Interestingly, CCI3NO 3 has a comparatively 
high barrier of  about 12 kJ/mo1412). Rather high barriers were also indicated for 
CBr3N02413) and CF3N02413). This result is in disagreement with the microwave 
findings for the latter molecule, which was found to have nearly free rotation 7s). 

10 Conc lud ing  Remarks  

The large amplitude motion that sometimes takes place within the molecule, should 
above all be studied in the gas phase. In a condensed phase intermolecular forces may 
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in a systematic way hamper the internal motion. A large number of studies, taking 
advantage of  a series of  experimental techniques and theoretical methods, have for 
several decades been used to collect information in this field. In general a good 
qualitative picture of  the large amplitude intramolecular motion has been formed, 
and sound theoretical systems have been developed for a quantitative approach to 
the problem. But in spite of  this, a real quantitative description of the large ampli- 
tude motion has been given only for a few molecules. 

The information collected so far is based upon findings of  several methods. Un- 
less a new thus far unknown method is developed, further success in this field de- 
pends on combination of  various procedures among which gas electron diffraction is 
a prominent and useful one. Probably more systematically coordinated use of dif- 
ferent experimental methods, in joint efforts to solve one and the same problem, is 
required to obtain more accurate and more detailed information. 

Since the electron-diffraction method has been focused on in the present article, 
a question which naturally suggests itself is the following: Is there any special devel- 
opment in the field of  electron diffraction that in particular may advance the study 
of large amplitude intramolecular motion? Since temperature enhances internal 
motion, the inclusion of high temperature study seems to be of  increasing impor- 
tance. In this field the Soviet electron-diffraction groups did the pioneering work, 
and they still lead the field. Combining high temperature studies with experiments 
done at the lowest possible temperatures would no doubt contribute favorably to 
our understanding of molecular flexibility. 

We wish to conclude our essay with a final question: What is so important about 
the large amplitude motion to justify all the endeavor in describing it? A rationalist 
would base his answer on the general human wish to be useful and point to the appli- 
cations that other fields of  research may make of  our findings. This can indeed be 
done with appreciable success. Generally, the flexibility of  a molecule is described 
through its large amplitude potential, the determination of  which is the main goal of  
our study. The interaction that takes place between molecules when they approach 
each other, must no doubt be dependent to a certain extent at least on the flexibility 
of  the molecules involved. Accordingly the physical properties of  a compound and 
its specific reactivity may also depend upon the molecular flexibility. It seems for 
example established beyond doubt that the existence of conformational option in a 
biologically active compound may be decisive for the specific properties of the com. 
pound. 

But the question may also be answered differently. It is perhaps legitimate to 
claim that the fact that so many researchers are attracted and fascinated by the field 
and find it intellectually challenging, is a good enough justification in itself. For 
those who want to put their experimental or theoretical method to a critical test, 
large amplitude motion studies are to be recommended. Like many other fields of  
science, the study of  intramolecular mobility is primarily carried out on its own 
merits, leaving possible application to future research. 
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Note Added in Proof 

1. An impor tant  article writ ten in Russian 4Is) on a similar subject as the present one, 
was unfortunately overlooked during the preparat ion o f  our manuscript.  The article 
has since been published in English416). The main emphasis o f  the Russian article is 
on dynamic effects of  inorganic molecules. 
2. Since this manuscript  was prepared a new value for the w-frequency in C30 2 has 
been published 417). 
3. Concerning the molecule (WO3) 3 shrinkage has been calculated 41 s). The inclusion 
of  the shrinkage effect does not change the conclusion that the ring has a puckered 
conformation.  
4. A slip sandwich model  derived from the Csv shown in Fig. 21 by moving the ring 
that is at the greatest distance from Be, sideways, while the two rings remain essen- 
tially parallel, is found to be in even better  agreement with the electrondiffract ion 

data than the Csv model.  It is l ikely that the far ring undergoes large amplitude 
mot ion in this direction, but it remains undecided whether the equilibrium structure 

is Csv or  not. 
Molecular models o f  Dsh or DSd symmetry  or models containing one n-bonded 

and one a-bonded ring are no t  in agreement with the ED data 419). 
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