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The Isometric Group of Nonrigid Molecules

1 Introduction

At the present time the conventional concept of molecular structure is appropriately
based on the Born-Oppenheimer approximation). Molecular structure is commonly
understood as relative nuclear configuration, which may be considered as stable in
the sense of one criterion or another. Many such structures may be characterized by
a continuous set of nuclear configurations, which deviate only infinitesimally from
each other (quasirigid molecules, sometimes called rigid molecules). Experimental
research has revealed a large number of molecular structures which have to be de-
scribed by a continuous set of nuclear configurations defined by structural param-
eters (bond length, bond angles, dihedral angles, etc.), some of which vary over
finite domains. Molecules of this type will be called nonrigid molecules.

For quasirigid molecules a symmetry concept has been used very early in some
branches of molecular research, e.g. stereochemistry?> . This symmetry concept was
based on the concept of isometric mappings® and formed the basis of extended
applications to molecular dynamics since 1930, developed first by Wigner®).

Attempts to construct symmetries of nonrigid molecules have first been made
by Hougen®, Longuet-Higgins”, and Altmann® %. All these procedures were based
on the symmetries of the molecular Born-Oppenheimer operator, i.e. on the Schré-
dinger operator for a system of nuclei and electrons. In particular the Longuet-
Higgins concept uses the intuitive concept of feasibility, which says that a permuta-
tion of nuclei corresponds to a feasible operation, if the permutation corresponds to
a path on the Born-Oppenheimer surface involving only points of low potential
energy. Hence, the elements of the Longuet-Higgins group are permutations and
formal combinations of permutations and inversion. The whole concept lacks well
defined mathematical tools for determination of transformation properties of energy
operators, multipole operators and functions of the dynamical coordinates, Never-
theless, the concept has been applied to a number of specific examples, typical cases
have been discussed by Hougenm), but since its publicatidn, the Longuet-Higgins
concept has not been cast into a rigorous tool. Already before the Longuet-Higgins
approach the symmetry of the rotation-internal motion problem of nonrigid mole-
cules has been studied by direct investigation of the symmetry group of the rotation-
internal motion hamiltonian. Typical examples of this direct approach have been
given by Howard' ", Wilson'?), Wilson et al.'?.

The method presented here has been motivated by the desire to find a method
which starts from the geometrical description of nuclear configurations and replaces
the feasibility concept by rigorous mathematical definitions. Furthermore, it allows
the determination of transformation properties of operators and functions by the
methods used generally in applications of group theory to quantum mechanical
problems in strict analogy to the treatment of quasirigid molecules within the frame-
work of the covering symmetry group (molecular point symmetry group).

The approach presented in this contribution is a review of a method published in
papers by Bauder et al.'® and Frei et al.' '), It is based on the concept of the iso-
metry of nuclear configurations and therefore may be considered as a natural general-
ization of the concept of covering symmetry of rigid point sets to nonrigid point sets.
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In Chap. 2 the construction of the isometric group of semirigid nuclear configura-
tions is presented, starting from the geometrical definitions of a semirigid model.
Furthermore, the relation between isometric groups and the permutation-inversion
group will be discussed. A number of applications of isometric groups, in particular
to the dynamics of the rotation-large amplitude internal motion problem in classical
and quantum mechanical formulation, to transformation properties of irreducible
tensor operators and selection rules for irreducible tensor operators up to rank 2
(Wigner-Eckart theorem) are discussed in Chap. 3. Use of the isometric group to
stereochemical problems of nonrigid molecules is presented, in particular for ques-
tions of chirality and classification of stereoisomers. In Chap. 4 relations of the iso-
metric groups of semirigid models to the familiar symmetry approach for quasirigid
molecules and to the symmetry groups of the associated nonrigid molecules are
discussed. :

For Chaps. 2 and 3 a number of examples will be given. Furthermore, techniques
used for practical calculation of isometric groups and their application to problems
of molecular geometry and dynamics will be collected in a series of appendices.

2 Construction of Isometric Groups
2.1 Definitions

By a nuclear configuration (NC) we understand the set of informations

NC {Xy, Zy, My } consisting of the coordinates Xy, the masses My and charge num-
bers Zy of the nuclei 1, 2, . . . , K of a molecular system. The coordinate vectors will
be referred to a coordinate system, which will be defined when required. Important
coordinate systems will be the laboratory system (LS, basis €") and the frame system
(FS, basis e ). The latter is attached to the nuclear configuration by a prescription to
be defined in each case. The relation between ' and ¢ may be expressed by

- [p@ X
X"} = {¢'0} [0 ) ] (2.1)

where D(¢) = R(¢) is a rotation matrix parametrized by the eulerian angles afy
(abbreviated by €), as defined in Appendix 1. X' stands for the origin of the FS with
respect to the LS. For the dynamical problem X' will be chosen as center-of-mass co-
ordinate of the NC.

The relative nuclear configuration RNC {Xy (), Zy , My} is defined as the set of
informations determining a NC up to translations and rotations in &7 3, i.e. invariant
with respect to transformations of the inhomogeneous three-dimensional rotation
group 10(3). Conveniently the RNC is determined by internal structural parameters
£1,82,..., 3.6 which are invariant with respect to (w.r.t.) I0(3).

A molecule will be called rigid (quasirigid) if its internal structural parameters
are constant (may vary only infinitesimally). The term semirigid model (SRM) will
be used for a molecular model, whose nuclear configurations are defined by

4



The Isometric Group of Nonrigid Molecules

1,2, .., f<3K-6 internal coordinates which vary over finite domains, whereas the
remaining 3K-6-f coordinates remain constant. The introduction of the SRM

is motivated by the fact that its isometric group is isomorphic to the symmetry
group of the associated nonrigid molecule (NRM), i.e. to the molecule with the same
f finite and 3K-6-f infinitesimal internal coordinates (cf. Chap. 4). In practical cases
the number of finite internal coordinates does not exceed 3 or 4 and remains always

small in comparison to 3K-6.

If a NC of a SRM is considered from a suitably defined FS the coordinate vectors
may be expressed as functions of the internal coordinates &, &5, ..., &. The
RNC {Xy(£), Zy, My } is then completely defined by the values of £,, ..., £r and the
constant structural parameters. Further classification of SRMs may be based on the
2,3, ...rigid parts, whose relative positions are determined by the finite coordinates
£,, &5, ... . Such parts are often denoted as frame (F), top (T), invertor (1), etc.
Moreover each part may have its own local covering symmetry and the complete
NC{Xy (%), Z, My } may have a proper covering symmetry group < (£) for arbitrary
values of the internal coordinates. Typical SRMs are listed in Tables 1, 2 and 3.

To each NC we associate a graph 4~ {P(m.(Zy, My)), K(dyy')}, consisting of the
set P of vertices my valued by charge and mass number of the nucleus k and the set K
of edges (7, my’), valued by the internuclear distance dy'(£)

dy () = 1 X (&) — X (9)] (22)

A" is a complete (universal) valued graph. In many cases it is sufficient to consider
the graph A4~ {P(mx(Zy)), K(dgk')} in which the vertices @y are valued by the nuclear
charge only. This is appropriate in all cases in which isotope effects within the Born-
Oppenheimer approximation may be neglected.

2.2 Isometric Group of a SRM

The isometric group of a SRM will be constructed from two subgroups:
(i) intemnal isometric group .F (£)
(ii) covering group 7 (£)

Since most of the nonrigid molecules treated so far may be described by a SRM
whose covering group is the improper group C, the internal isometric group is treated
first.

2.2.1 Internal Isometric Group % (§)

From the definition (2.2) it is seen that the distances dyy’ are functions of the internal
coordinates. The set of transformations

£ =F() (2.3)

which map the graph _#~ onto itself, conserving incidence, forms a group F (¥), the
group law being the usual composition of functions. Mappings of the graph .4~ onto
itself are defined as
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The Isometric Group of Nonrigid Molecules

f:P>PK~K

F (e (Zie, M) = 1 (Zg, Mg) €P, kK €[1,K] (2.4)
where Zy = Zy, Mg = My

F(di (8) = dg (8) €K (diae), ¥ die (8) 2.5)

The transformations £ = F(%) will be called internal isometric transformations. They
transform any NC to a NC with the same set of distances. In many cases they may
be expressed as linear inhomogeneous transformations

(-0 )4

Al
To the isometric transformation (2.3) we will associate the operator P, defined by

A

Peh(¥) = h(F~1(¥)) (2.7)
ME } is any admissible function of £. Application of 131.— to the substrate

{dgi’ ()}, i.e. to the set of distances dy* ordered in a row yields

T ——

T T —— .
£ (e (B = (e B~} = {due B} TCr 2 ) (F) (2.8)

o>

The last equation expresses the fact that the set of distances is mapped by ﬁp onto
itself, therefore the matrix I'+*"¢ )(F) is a permutation matrix of dimension

KY . . " .
( 2) , i.g. intransitive. The matrix group
rre) (F):= (Do) F)IE, F,, F3, ...} (2.9)

is a representation of the isometric substitutions ' = F(£) by permutation matrices.
The symbol # (&) will henceforward be used as the abstract group # (£) =
{E, F,, ...} represented either by

st =] (AP a(lF)),VF e |

orby (¥ ¥ ) { g} .= (P4 )(F) IVF € 7 (¥)}

If the distances dy;’ (£) € K(dyy') possess a common primitive period p w.r.t. the
internal coordinates

(2.10)

d (8 + p) = d (8), Yk, k' €[1,K], (2.11)

the coordinates involved in the transformations (2.6) have to be taken modulo their
respective primitive periods. The implication of the existence of primitive periods
will be discussed in Sect. 2.2.2. -

The operators l’?‘\F, F € #(¥) will next be applied to the basis {X,(£)},i.e. to
the (transposed) coordinate vectors referred to the frame system €' ordered in a row:

9
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Be (Xu(®)} = (i (F1()} = {Xu(®)} II(F) @ TO(F) 2.12)
= (Xu(®)} - TNOO(R) '
Thereby the matrix I1(F) denotes a K-dimensional permutation matrix and I'C)(F)
a 3 by 3 orthogonal matrix. The form of this representation follows from the fact
that each isometric transformation maps the NC {Xy, Z; , M } onto a NC which by
definition has the same set of distances, i.e. is isometric to NC {X, Zy, M, }. Expressed
alternatively, the nuclear configurations NC {Xy (£), Zi, My } and NC (X (F~1(¥)),
Zy, My } are properly or imnproperly congruent up to permutations of nuclei with
equal charge and mass for any F € % (§). The set of matrices Eq. (2.12) forms a
representation of % (£) by linear transformations and will furtheron be denoted by

I'NCD ( o7} == (I(F)  TO(F) IVF € 7 (£)} (2.13)

the index f indicating reference to the frame system. In general I'™NC0 { %7} decom-
poses into transitive systems, since each subset of identical nuclei, which is mapped
by all elements of .5 onto itself gives rise to such a system. The group theoretical
relation between o/ {F } and I'NCD { %7} is an isomorphism

S FYE pNeD oy (2.14)

The isomorphism strictly holds for SRMs without primitive period isometric
transformations only (cf. Sect. 2.2.2). However, as will be shown in Sect. 2.2.2, the
group theoretical relations derived in this section also apply for SRMs with primitive
period transformations if . is replaced by an appropriately extended group .7 .
The sets

{7} := {I(F) IVF € .+ (§)} (2.15)
and I'® {7} := {PONF) | VF € 5 (§)} (2.16)

form each a representation of % (£). The first set consisting of all permutation
factors of I'NCP { 77} is isomorphic to the permutation group I'(~* ¥ ) [ 77} this
follows from a theorem given by Harary!'”), relating vertex and edge group of a
complete graph.

The group {9} (abstract group %), consisting of all different rotational
parts of ['NCf) s a finite group of orthogonal matrices in &7 5 and must be a sub-
group of O(3). It therefore must be one of the point symmetry groups Cy, Si, D,
Cav> Con> Dans Dnds Ty Tas T, O, O T { 977} will play an important role in most
applications of isometric groups. It pictures the set of all orthogonal matrices, which
map a reference NC on to all possible isometric NCs.

In general the group theoretical relation between P™C0 { 57} and @ { %7}
is 2 homomorphism 7:

7: WD (o} — 1) o) .17

whose kernel is given by

10
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ker 7 := {TI(F) # 1® |F € # (%)} (2.17)
(NCf) ,
E_ﬂ .I:S F(3) {'%/'} (2.17")
ker

W.r.t. the structure of I'® { 97} the following two cases will prove important:

Case a

I'® {9} is properly orthogonal,| I'®(K)I=1,VK € % (2.18)

Case b

® { %} is improperly orthogonal, then one may write

Mo =T® {7 1urdmre (g} (2.19)
where '@ {9} := ([ONK) IKE 97, ITO(K)|=+1} (2.20)
and [ TC(T)I= -1

Therefore! T® {7} X 77, @.21)

These group theoretical relations will find numerous applications in Chap. 3 and
in fact are important in all applications of isometric groups.

In the study of the dynamical problem of SRMs the transformations of eulerian
angles induced by isometric transformations of the frame system will be required.
This leads in a natural way from the group I'® { %"} to the group A® { 9}, defined
as follows:

Case a

sy =1 {9} (2.22a)
Case b

We have to distinguish between the following possibilities

DI {gt=r®r*yuz - r® )

where Z = -1

then A® {7} =P (%} (2.22b1)

TP (%) =@ (F*1uremre {g+}
but Zg¢ MM (o *}

then any element of the coset may be written as a product of Z with a properly
orthogonal matrix. ['®(T) may then be written as

1 7, denotes the two-group.
11
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' T)=Z-R,RESO3),RE P (7 *}

Hence

F(SJ{%} = p(3){52/r+} UZ-R- r®{g+}

and

A (7} =T }UR-TO (5"} ETO (o7} (2.22b2)
AP { 9} is always identical with a finite subgroup of SO(3).

In Fig. 1 the groups of {F }, D' ) (7}, TNCD { 77} PG { 9} and
A { %} are shown together with their group theoretical relations.

2.2.1.1 Transformation Group of the Dynamical Variables. The transformatlon
groups rNCD ¢ ) 1@ {%¥"} and AB®) { 97} all refer to the frame system'e ef . By
means of the relation between the frame and laboratory system Eq. (2.1) they may
be used to define the transformations of the eulerian angles as follows:

1) with each transformation [‘(3)(1:) € '@ { %} we may associate a basis trans-
formation

/"(ch){g}
7 } N
ho is
e
o t ho
(NLF),
rg VAN rog
7 5 e ° g
r# s am rer
lhis
Wb
o  rueygy
v's BF g A"”éf}
F
z{w A‘”{ﬂ
, ~_ 5
ﬂrg} A%

Fig. 1. Group theoretical interrelations between representations of the isometric group.
Key: For SRMs with primitive period is isometric transformations the isomorphisms hold strictly

for the representations of ¥ , » , % and &, but o { # } is homomorphic onto
(4 I {F}E ¢ )}

12



The Isometric Group of Nonrigid Molecules
B =3ITONR), Fe 7 (2.23)
and the contragredient coordinate transformation
(X)=TIE(X) (2.24)
2) accordingly one may associate the transformation
eF =T Do) TOF) =T'D() I TOF) (2.25)
which implies

D(¢) = D(e) TO(F) | PO(R)i

or
D(¢") = D(e) T(F) if | TO(F)) = +1 (2.26)
D(¢") = D(e) R(F) if I TO(F)l = —1 (2.26)

where R(F) = '®XF)z
The Egs. (2.26) define transformations of the eulerian angles
€=¢€(eF) (2.27)

which in most practical cases are linear inhomogeneous

(£)-C0 ) )-=on(y

The proper set & {5}

F{F7 ) ={HFF)IVFEF} (2.29)
forms a group, which is isomorphic to A { %}

@ (518 a9 (o) (230)
From the Egs. (2.17), (2.22) and (2.30) we obtain

rNed ¢ 5 B0 o 1 o (2.31)

Next we consider the direct sum of the two transformation groups s/ {.%} and
98 {F}. In the case where both these groups may be represented by linear inhomo-
geneous transformations according to Egs. (2.6), (2.28) this leads to the matrix group

13
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] B(F) 0 b(F)
ri7} :=II‘(F)= 0 A(F) a(F) |IvFes (2.32)
0 0 1

€ €
g |=T(F)| ¢ (2.33)
1 i

It follows directly from Eqs. (2.14) and (2.31) that

A @ (7 (2.34)
Therefore,
(F(F)eof (F) INFE# (£)} =T{#} 2 of (7} (2.35)

and by Eq. (2.14)

M5} 2 r0en (5} (2.36)
A very important relation is

r{s1¥ro (2.37)
and, therefore, for case b SRMs

ris1%s (238)

These relations are symbolically represented in Fig. 1.

2.2.2 Primitive Period Isometric Transformations

P
The investigation of the set of distances {dyy'(£)} w.r.t. isometric transformations
in many cases leads to transformations of the type

(-5 (-

with dige (¢ + p) = di (), Vk, k' €[1,K] (2.11)

but {Xy (£ + p)} # {Xx (£)}. Thereby p denotes the primitive period of the distances.
Isometric transformations of this type will hereafter be called primitive period iso-
metric transformations. Equation (2.11) expresses that F,, maps the graph _#~
identically onto itself?

K
( 2 ) . . . . K
2 1 denotes a unit matrix of dimension (2 ) .

14
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K
p(/W)(pp) =1 (2 ) (2.40)

However, NC {X (§), Zy, M} and NC {X (¢ — p), Z, My} are not identical,
but may bf mapped onto each other by a nontrivial element of O(3). Associating
operators PFp with primitive period transformations of type (2.39) allows to express

this relation by

Pp (X (®)} = Xt — p)} = (X (8)} 100 @ POYE))

2.41
= Xy (5)) TNCD(R,) @40
where TO)(F ) # 103), POY(E ) €0(3)
Therefore,
B(Fp) 0  b(Fp)
I(F,) = 10 p # 19 (2.41)
) Lo

Whereas the group % and its representations are relevant and sufficient for
problems which are completely defined by relative nuclear configurations (RNCs)
of a SRM, primitive period isometric transformations have to be considered as non-
trivial symmetry operations in all those applications where the orientation of the NC
w.r.t. the frame and laboratory coordinate system is relevant, e.g. the rotation-internal
motion energy eigenvalue problem of a SRM. Inclusion of such primitive period
operations leads to the internal isometric group F () represented faithfully by

SH{F )= { (AgF) a(lF))lVF ef(g)} (2.42)

For SRMs with nontrivial primitive period transformations one has thus to
distinguish between two types of internal isometric groups: % (%) and 5 (). The
former group is defined as the abstract group of the representation I'(-¥'¢) { &}
on the distance set [Eq. (2.9)] and does not include primitive period transformations
by virtue of Eq. (2.40). .# is alternatively defined as the substitution group &/ { &}
[Eq. (2.10)} in which the internal coordinates are taken modulo p (cf. Sect. 2.2.1}.
For SRMs with primitive period transformations neither '™ nor I" necessarily
contain subgroups which are isomorphic to 5 (£). However, the isomorphisms be-
tween o/ and I'NCD and o/ T { 5} [Eqs. (2.14) and (2.35), Sect. 2.2.17hold
always for .7 (&)

S {FHETND (57 (2.14)
oA 1A ErF (2.35"
The group of {7} generates the whole set of representations P(NCP) { &7},

r® (7} etc. according to the innermost circle of Fig. 1.

15
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At the present time the following two cases concerning the group theoretical
relation between . % -and .# have been observed
(1) # is acover group of .7, i.e.

F g (243)
(2) F is at the same time a subgroup of .7, i.e.3
FcF, g™MF (2.43"

It should be pointed out that the occurrence of primitive period transformations
is closely connected to the choice of the internal coordinates or equivalently to the
choice of the frame system. Expectation values of all observable quantities whether
dependent only on the RNC or dependent on the NC of a SRM must be independent
of the choice of internal coordinates (frame system). If introduction of a certain
internal coordinate (frame system) gives rise to a primitive period transformation and
as a consequence to an extension of % to ¥, then still observable quantities should
be classifyable according to the symmetry group .

2.2.3 Covering Group % (§)

SRMs often exhibit nontrivial covering symmetries (in the sense of covering sym-
metries of arigid point set) for arbitrarily chosen but fixed values of the internal co-
ordinates &. It is evident that such covering operations are isometric mappings of a
point set onto itself and therefore have to be included in the full group of isometric
transformations. The group of covering operations will be denoted by & (£). For the
definition of the operators Pg, G € @ (¥), acting on the coordinate vectors we con-
sider a subset of equivalent nuclei in general site w.r.t. 7 (§) whose coordinate vectors
are generated from a representative nucleus by the mappings

(Xep) = TP(G)(Xp), Gy € % () (2.44)

the nuclei being labeled here by the group elements Gy. The covering group & (£)
is defined by the set of coordinate transformations

X)=T3G)X) (2.45)

that means the abstract group & (E) = {E, G, ..., Gz} is defined by the matrix
group

{reeG)I(x"y = r®G)(X)} (245"

3 gnd Denotes endomorphic.
4 |+4) Denotes the order of the group ¢ (£).

16
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The basis transformations associated to the coordinate transformations (2.45) are
=T eG) (2.46)

To the coordinate transformations (2.45) there are associated operators ﬁg, defined
byl 8)

Paf(X) = f(F(G)~ (X)) (2.47)
Using this definition we get for one vector
BoX = (TG (X)) = XIOG) (247"

and, if 13(; is applied to the set of coordinate vectors (2.44) arranged in a row

Ke, (©)) = Ke(®), Xe® - TO(G,), ...} (2.44)
we get
P (X (8} = X, () TG} = (Xg, (91" e 1(G) (2.48)

The set of matrices
(1'¢ erdG)Ivee %@ L v (2.49)

forms a faithful representation of the covering group & (£). Because ’)ZGR -I'®(G)
tepresents the vector Xg, g according to Eq. (2.44), the transformation (2.48) may
equally well be expressed by a permutation

B Xy () = Ko, (911" 2 T(G) = (Xg, (9} AG) 21 (2.48")

where A(G) denotes al# | dimensional permutation matrix. However, the matrix
group

{AG) e1P1vGE Z(®) (2.50)
is antiisomorphic*® to @ (¥) defined by the matrix group (2.45"), i.e.
A(G2)A(Gy) = A(G1G2) (2.51)

as may easily be proved by calculating I’;sz’cl {igk(f)}zo). On the other hand the
group of matrices

(G219 Iveeg @ 2 9@ (2.49")
with I(G) = A(G™ 1), VGEZ (8) (2.52)
17
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forms a faithful representation of & (£) by permutations, as follows directly from
Eq. (2.51)

AGTHAGTY) = A(G,G) ™) (2.51)
therefore I[1(G;)II(G,) = [I{G,G,)

For a set of equivalent nuclei in general site the matrices IT(G) are identical with
the right regular representation matrices“)‘.vlf the nuclear position vectors of all K
nuclei of a SRM are included in the basis {Xg(¥)}, [1(G) denotes a K by K permuta-
tion matrix. In addition to the matrix groups (2.49) and (2.49') the set

rie (g} := (1(G) e TOG) IVGeZ (1)} & w(¥) (249"

forms a faithful representation of the covering group < (£) since both factors of the
direct product form groups isomorphic to & (£). Thereby, all elements of I NCD (&}
map each coordinate vector identically onto itself, cf. Eq. (2.48")

BaPs! (X(®) = (Xi(®) = Xi(®)} AG™1) #TO(G) 253
= (X(®)} (G) #I'(G), VG EZ (¥) '
The group (2.49") will prove important for the construction of the full isometric
group, cf. Sect. 2.2.4.
From the definition of covering symmetry which basically rests on the concept
of the isometric mapping of a point set onto itself, it is evident that the operators
PG map the distance set {dy;'(£)} onto itself by intransitive permutations:

Bo (dw®) = {de(®I T #)(G) (2.54)
The set ' ) (@} .= (M ¥)G) IVG € (&)} (2.55)

forms an intransitive representation of % (£) by permutations. In analogy to the rela-
tion between ' ¥){ %} and I1{.%} one has by the same argument (cf. Sect. 2.2.1)

) g} nig) (2.56)

where the group I1{%} is defined by the set of matrices I1(G) Eq. (2.49").

Starting with the representation I‘(ch) {#'} one may now construct representa-
tions of < (£) on the various svbstrates in strict analogy to the procedure applied for
the internal isometric group % (£). The various steps of the construction are sym-
bolized on the outermost circle of Fig. 1. This leads successively

(i) from TN (Z} 1o TP {F }:

ré{z}:= {rée)lvé ez ) (2.57)

(ii) from I'® (@} to A® (%}, where one has to distinguish between

18
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Case a:

'® (&} properly orthogonal, hence
rP{g}=a{g} (2.58)

Case b:
'® (&} improperly orthogonal, hence

r®{g}=r®{z"1 uremr® {z*} where ITC(T)| = —1. In this case
ro gy (2.59)

There exists an analogous differentiation of subcases bl and b2, as has been discussed
in Sect. 2.2.1, Eqgs. (2.22b).

(iii) from A®) {’} to & { <} (in analogy to the transition from A® { %'} to
F L7

@ (g} = { (j')=(BgG’ "(IG)) (f)lvceg(z)} (2.60)

where the transformation of the eulerian angles € are induced by the basis transfor-
mation Eq. (2.46) defining the covering operation and the relation

¥ =T'D(e)T(G) =3'D(e) TO(G)! (2.61)

(iv) from & {&} and of {Z} to T {Z}:

‘ €] BG) 0 bG)]Te [
Me)y=1el=) . 1 o ||¢ lvceg(s)l (2.62)

|Li 1 L

since by definition

19 9

0 1), VG EZ(E) (2.63)

SA(G) =(

in agreement with the conventions proposed above w.r.t. & (£). Again the group
I'{#} will prove important in the consideration of the rotation-internal motion
problem of SRMs.

Typical examples for SRMs with proper covering group are listed in Table 3.

2.2.3.1 Fixed Points of Isometric Transformations. In many SRMs special values
of the internal coordinates £ occur, which define NC {Xy, Zy , My } of higher covering
symmetry than & (£); if &g is such a point in the parameter space, then

@ (§) C @ (¢F) (2.64)
19
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The relation of such special points to internal isometric transformations may be
derived as follows.
Assume the internal isometric transformation

(-0 ) ()

to have a fixed point, i.e. the equation

(-t )
1 o 1 /U

or

(A(F)— 1)t +a(F)=0 (2.65)
has a solution £. As a consequence

Br (Xu(tp) = KuEp)} = Xi(Ep)} T(F) @ TOXF),

Kelgp)} NEF") @1 = Xy (gp)) 100 = TO(F) (2.66)
The last Eq. (2.66) implies that the mapping on the right hand side generates merely

a permutation of the coordinate vectors, i.e. I"®(F) must be a covering operation of
the NC{Xy (¢F), Zi, My }. One therefore may state that every fixed point is connected
to a covering symmetry operation not contained in < (£). If F € % (§) is an isometric
transformation with fixed point, then also the period of F

F{F}:={F*k=1,2,..} (2.67)

has the fixed point &£y. Furthermore, if two different isometric transformations have
a common fixed point, then the whole group % {F;, Fi} generated by the two trans-
formations has the same fixed point. Any such group % must be a subgroup of ¥ (£):

Z{F, F} CF (®) (2.68)

It should be pointed out that the fixed points play an important role in geometrical
application of isometric groups, e.g. stereochemistry, cf. Sects. 3.4 and 3.5.

2.2.4 Full Isometric Group g#(£)

The two groups .# (£) and & (¥) generate an abstract group 5(¥), whose representa-
tions T+ ) { 5¢7}, P(NCh) {5¢}, r® {&}, ... are generated by the pairs of cor-
responding representations of % and < indicated on the innermost and outermost
circles of the group diagram Fig. 1. The diagram shows the relationship of the various
representations of 57 ().
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In Sect. 2.2.2 we have shown that if a SRM admits primitive period isometric
transformations, representations of two groups % and % may be derived. Extension
of a representation of # by < leads to the corresponding representation of 7,
whereas extension of the representations of .%# by < gives those of 5. The use of
S or ¥ depends on the problem to which the isometric group is to be applied, as
has been pointed out in Section 2.2.2. In order to simplify the notation we shall for
general discussions not distinguish between the representations of 5% and 7.

The structure of the group 5°(¥) may be derived by considering the solutions
of Eq. (2.12). This equation admits || solutions for each F € # () which by aid
of Eq. (2.53) may be written as

Br (Xu(8)) = BP3' Pr (Xi(9)) = (Xi(®)IAG)II(F) & TNG)PA(F)
= X (§)} TI(G)I(F) ® TO(G) T O(F)
VGE % (%) (2.69)

Therefore, the internal isometric group .# (&) generates on the position vectors of the
nuclei a set of | |- |.# | matrices

{IG)I(F) e PG)FO(F) VG € @ (£), VF € 7 (§)} (2.70)
For E € % (&) we have

Pe (X (9} = B B5! (X (®)) = (X (®)} = (X (B}ITI(G) » TONG),
VG Ew (§), cf. Eq. (2.53)

The set of matrices I1(G) ® I'¥(G), i.e. the group PNCD [} Eq. (2.49") forms an
invariant subgroup of the group generated by the set (2.70). This follows directly
from the definition

f’pﬁcl?'a‘f’i‘ =f’E 2.71)
and is verified explicitely by the equation

PebPoPa'Pr! (Ka(®) = Ru(®)}T(F) @ PTO(F)I(G)  TO(G) - I(F~!) @ TO(F-1)
= BpBe B! (KN M(E™Y) »TOEY
=B Xu(®IN(E 1) « TOE-1)
= X (®)} (271
Thus

N(F)II(G)IFY) = PFE) PG reF-YH =

=1(G) e r'®(G)erMNH & (2.72)
NFHNG)NFH =G el {x} (2.72"
rAEreeG reFE-Y=roGHer®(w) (2.72"
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The set of solutions (2.70) defines the representation I'(NCH [ 7} of the full isometric
group S (£) on the nuclear position vectors referred to the frame system

NGO () .= (1(H) © MO(H) | VH e 2 ©)} £ 2 () 273)

The decomposition of 'N¢P) { 5} modulo the invariant subgroup r'(NCH 2} defines
a factor group isomorphic to the internal isometric group # (£)

NCY) {57} _lyi . . is
ey T2, TEH@rTRE S 7@ (2.74)

As will be shown below [Eq. (2.80)] there exists always a subgroup I'™CD {77}
in I'NED { 27} isomorphic to this factor group. Therefore, Eq. (2.74) suggests the
following important theorem:

The representation "N { 57} (abstract group 5°) is a semidirect product of
'™NCH {7} (abstract group <) and M'NC) {5} (abstract group.#")
F(NCf) {g} F(NCf) {‘_g'} = F(NCf) {ﬁ'}l“(NCf) {‘Cg} = I-\(NCf) {#)

g E FE=FE GEO=52E) (2.75)
The proof of this theorem rests on the homomorphism

7: TN (7} — 1O 2} (2.76)
ker 7 := {II(H) 1V |H € 57 (¢)}

where I3 { &} (abstract group ) denotes the set of all different rotational parts
I3 (H) of TNH { )

r'® ()= rOm)lvH € o5} (2.77)
The homomorphism (2.76) maps the invariant subgroup I'NC0 (&} onto I'® (&},
which by virtue of Eq. (2.72") and homomorphy theorems must be a normal sub-
group of I'® { &}

re® g} cr®(z} (2.78)

Since 'Y { ¥} isa point symmetry group (subgroup of O(3)), it has the property
to be generated as a semidirect product of two subgroups
r® (£} = r® (@11 (97}

|‘(3) {y} is ) 3
-
o [ erd#)

(2.79)

i.e. ['®{ %7 is an endomorphism of I‘(f) {#}. The inverse homomorphism (2.76)
defines the representation T(NCP) {571 & o7(x)
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a1 {xy =N (57} T () (2.80)
On the other hand, by the first isomorphy theorem??)
T TP {gh=rND (G} kerd (2.:81)
Egs. (2.76)—(2.81) imply that

p(NCD . p(NC) - p(NC)
{#z} {51 {1} (282)

F(NCf) {%} l—?

f
O rNCH [ 1 Q.ED.

From Eq. (2.82) the semidirect product structure of any other of the representa-
tions of S listed in Fig. 1 may be derived by the first isomorphy theorem?®?). For
example for the representation

¢ MBH) 0 b)) [e
T} = “}}[ . AM) a(H)][z] IVH € 57(8) (2.83)
1 . 1 1

i.e. the transformation group of the eulerian angles and the internal coordinates we
have

M@l r{F1=r{F} MNgl=T{x} (2.849)

The group I'{ 5} will be found important for the symmetry of the hamiltonian
of the rotation-internal nuclear motion problem associated with SRMs (Sect. 3.2).
In particular its homomorphism to r®(z}

Mo o (w1 2 a9 (71 P 1) (2.85)

will be relevant for a general formulation of Wigner-Eckart type theorems for irreduc-
ible tensor operators connected with SRMs, cf. Sect. 3.3. For I'® { %} we may
distinguish again SRMs of case a, bl and b2 in strict analogy to I'® {9} Egs. (2.18)—
(2.22). Therefore, for case b SRMs

riw) Xy (2.86)

2.3 Relation Between the Isometric Group and the Permutation-Inversion Group
(Longuet-Higgins Group) of Nonrigid Molecules

In this section a relation of the isometric group approach to the permutation-inversion
group of nonrigid molecules, introduced by Longuet-Higgins”, will be established.
Such an interrelation is obtained in a natural way, if the isometric transformations
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are applied to the substrate consisting of the coordinate vectors XL {€, &) referred to
the LS ¢’ According to Eq. (2.1)

X, (e, ) = R(e)Xi(®) (2.87)

2.3.1 SRMs with & () =C,

Using the general transformation formula for rotation group coefficients derived in
Appendix 2

PeR(e) = R(F)R() (2.88)
we find for any FE€ %

PeXl (e, ) = Br Xi (0} 10 2 R(e)
= Xu(®) (I(F) e TOE)(1X © REFIR(E))
= (Xk(e, £)Y 1% & R(e))TI(F) @ TO(F)) (1K) @ R(F)R(e))
= ke, DIN(F) & R(OT OFR(F)R(e)
= (Xi(e, O}(F) 2 1OITOEF) = Ki(e, HITNDE)  (289)

since F(3)(F)I~{(F) = IrOF)113

The index 1 indicates that this representation refers to the position vectors expressed
in the laboratory coordinate system. The last equation may be commented upon as
follows:

(i) if '®)(F) is properly orthogonal, the isometric transformation F € # ()
induces on the substrate {')v(}(} merely a permutation of the coordinate vectors of a
set of equivalent nuclei.

(i) if "' ®(F) is improperly orthogonal, i.e. if | I®(F)I= -1, F € 5 induces a
permutation and an inversion of the coordinate vectors of a set of equivalent nuclei.
Hence, the representation

TN (77} = (TI(F) = I TOE)N 1D VF €57 (8)} (2.90)

is an analogue of the permutation-inversion group & % (Longuet-Higgins group).
More explicitely we have the mapping expressed in Table 4.

2.3.2 SRMs with Proper Covering Group & (£)
Application of the operators Pg to {XL (e, £)} gives
B Xi(e, )} = Ki®ITNO(G) 190 = RG)R () (2:91)

Use of the Eq. (2.49") for TNCO(G) leads, in strict analogy to Eq. (2.89) to the set
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Table 4. Relation between the isometric group and
the permutation-inversion group

1 )(E) r{NCD(p) v
1 1K) ;(3) E
1 n(F) & 13 P
-1 1€K) 5 (-10) E*
-1 1(F) ® (—1(3)) p*
N (7} = {IIG) & ITG) NP IVG e @ (8) (2.92)

It is of the same form as T™CD { %7} and forms the analogue of the Longuet-Higgins
permutation-inversion operations associated with covering symmetry operations of a
SRM. v
The semidirect product of the two groups (2.90) and (2.92) may be considered as
the analogue of the permutation-inversion group % for molecules with non-trivial
covering group % (£)

TNCD 1} PN ( o = [NCD [ o is G

PO g} o= ((H) & | PO 1O 1VHE 2 (2) (293)

2.3.3 Primitive Period Isometric Transformations and the Longuet-Higgins Group

It is of interest to point out the role of primitive period isometric transformations
(cf. Sect. 2,2.2.) in both the isometric and the Longuet-Higgins group. According to
Eq. (2.41) this type of transformations is represented on the basis {Xy(¥)} by

F(NCf)(Fp) = 1K g p(3)(pp) (2.94)

Considering now the action of primitive period isometric operators on the basis
{XL(G, £)}, we will distinguish between the following cases

() if F(s)(Fp) € S0(3), then it follows from Egs. (2.89) and (2.94) that

Br, (Xi(e, £ = {Xi(e, £} 190 8 ITOF )N
= {Xi(e, 1 1001 (2.95)
This shows that the representation of the group 7 (£) on the nuclear position vectors

referred to the laboratory fixed coordinate system is not a faithful representation of
the isometric group 7 (£) £ TNCH [ 57}

F() X rNen (51 B gy (2.96)

Therefore, SRMs with & (£) = C,, for which the permutation-inversion group is
always isomorphic to 'NCD £ 571 the relation between Z°5%° and the isometric
group ¥ (£) is only a homomorphism
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RO (7 ) (297)

The kernel of the homomorphism (2.97) is the subgroup of % (£) consisting of the
set of all primitive period transformations. This explains why in some applications to
the nuclear motion problem of nonrigid molecules a “double group” of the Longuet-
Higgins group had to be used?> 29,

(i) If TGXF,) is an element of the coset Z - SO(3) of the decomposition
0(3)=S50(3) U Z- SO(3) one has

P(NCI)(FP) =18, (_1(3)) (2.98)
Hence,

ol pioy ( Fy o g

if 10 5 (1)) e pNC [ o7} (2.99)
and
wlpeo (FyE 7

o © (2.99"

if 10 (~1®) g rNCh (57}

although no example of type (2.99") is known.

Analogously for SRMs with proper covering group & (£) and primitive period
transformations, the full isometric group F (§) =% (§) - @ (¥) is homomorphic to
the permutation-inversion group

@ 978 pmon 2! o %) (2.100)

Again it has been shown that in these cases introduction of a “double group” cor-
responds to extension of the isometric group 5 (£) to F° (£)?9, the latter being a
symmetry of the rotation-internal nuclear motion hamiltonian.

2.4 Examples for Isometric Groups of SRMs

A considerable number of groups of nonrigid molecules has been discussed in the
literature2—2%), An attempt for a systematic classification of isometric groups has
been reported for the first time by Frei et al.'®. In order to illustrate the construc-
tion principles given in Sect. 2.2. a few examples will now be discussed. The examples
are listed in Table 5 and chosen such that specific aspects both of the construction
process and the group structure may be emphasized. In the table a symbol for the
SRM defining frame, tops, etc. and the respective local symmetries, the number of
finite internal coordinates, the covering symmetry group <z (£) and one representative
molecule are given.
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Table 5. Examples for isometric groups of SRMs

SRM f G (£) Typical molecule
DohF(C{ TR)(C,TS) 1 C, (1-R,2-5)-CHFCI~CHFCI
Co(IF(CT), 3 C, CH,OH—-CH,OH
PoohF(C; TR)(C{ TS) 3 Cy CHFCI—(CgH,),~CHFCI
DohF(C; TR),

DoopF(CayT)2 i D, (CeHs)2

2.4.1 DuwpF(C;TR)(C,TS) System

As a first example we consider a very simple SRM without covering symmetry

(& (§¥) = C,) which allows to show in detail all steps of the construction of the inter-
nal isometric group % and to demonstrate the effect of primitive period isometric
transformations. Figure 2 shows Newman projections of (1—-R, 2—S)—-CHFCI-CHFC],
a molecule with a rigid C—C frame of symmetry D, to which two equivalent CHFCI
tops of local symmetry C, with opposite configuration are attached. The molecule

J d

3] €
. T
U
Y Clg Clg &4
Ta-T
Fo Hy A Ho
o g
e? 2
Fg H
TaT+i \ =n-T
&f f
1 %
Ho | A M| Fo
LEY
of f
Gy ) &
Clg CYy Cly Clo
T+¥

Fig. 2. Newman projection of Do, F (CyTR)(C; TS) system
Key: All internal isometric transformations, including primitive period transformation are shown
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Table 6. Coordinate vectors of equivalent nuclei of D, F(C{TR)(CTS) system

Set Vector? X
Frame 1 ATo
XeA ‘ r -1 1o
A=0,1 -1 1
Top A 1 A ] 0 cr —st 0|1 Ay l
Xea -1 —rlo| +|ss e O -1 Xb
A=0,1 -1 2 1 0 01 1 ]

Coordinates refer to the frame coordinate system f indicated in Fig. 2; the structural parameter
1 denotes the C—C bond length.

Coordinate vector of representative nucleus w.r.t. local top coordinate system e ' whose origin
lies in the nucleus Cg and whose axis eg coincides with eg.

[N

fixed coordinate system and the internal coordinate 7 are defined in the figure. The
axis e§ coincides with the C—C bond, whereas the axis ¢! bisects the dihedral angle
2 7. The origin of the frame coordinate system lies in the center of the CC bond.
Table 6 shows the coordinate vectors of equivalent frame and top nuclei referred to
the frame coordinate system. From these coordinate vectors, the following formula
for the distances between e.g. Cl and H nuclei of opposite tops may be obtained
(c:cos, s:sin)

A2y, Hpe 1 (D = 1 Xen (@) = Xup + 1)
=1% + 21Xbyo3 + 2 1X}103 + X1 Xbio + XtoXho

t c2r —s27 O XYoo
—2(Xtw1 0 X&wos) |—s2r —c27r 0|} (=DM Xk
0 0 -1 Xho3

A=0,1

This formula shows that the primitive period p of 7 is equal to 7. If we take the
domain —n/2 <7 <+ m/2, the only nontrivial internal isometric transformation of
this SRM is F, : 7’ = —r and therefore, since F% =E

STV = (AB), A B} E T (7} 2 7 () 27

cf. Table 7. The internal isometric transformation F is visualized in Fig. 2.
Application of the primitive period 7’ = 7 + 7 to the coordinate vectors of a set
of equivalent top nuclei gives
-1
Pe, (Ka() = Kot - m} = Ka@Pe| -1 )+ Xa@)}
1
p(f‘ﬁ/)(pp) =1®
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Table 7. Isometric group of the DwpF(C, TR)(C,TS) system F(r) =Cy, Fn) ¥ %,
Fin s V2

Operator

Fes {FP r( #¥){ 50 rNCDH{F)° r{z
; M [H) [.‘1]8[‘11] -‘;.1 -
B
F, [_11] [11] [11]8-11 ] 11
L -1 1. =n
S
SUCR ] I S R R Y T L
) ) Y
g 1:
S ST CE I N O | O
T

2 Representation of 5 by substitutions of the internal coordinate:

LT ) e eonmene

b Representation by the set of distances dcig, H(7)s deiy, Hy(7) originating from the two equi-
valent tops (see Fig. 2). - -

¢ Representation generated by the vectors X0(7), Xt1(7) of a set of equivalent nuclei originat-
ing from the two equivalent tops (see Fig. 2).

d Representation of 5~ by substitutions of the eulerian angles and internal coordinates:

3 BF) 0 WP
= . A(F) a(F)
. . 1

N Ty R
-2 TR

cf. Fig. 2. Therefore, to get the symmetry groupﬁ? of the rotation-internal motion
problem, .5 (7) has to be extended by F, (7 denotes the four group)

91{3?;} £ 7 (r):= {E,F,, Fp, F, - Fp} 575
F ¢

The representation of LZ_; on the nuclear coordinate vectors is obtained by solving
Eq. (2.12) forall F € %
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Pr KoM X (1)} = {Zcm(Fj(r))iu(F-‘(r))} =
= Xo(1) X1 (D}I(F) @ TO(F)

or (for one position vector)
PeXoa() = Xa(F 1 (1)) = X (N TO(F) (2.12)
e.g. for F3 : Xpn(=7) = Xen (1) TON(E,).

Explicitely

ll 1 ¢t —s7 O l

r(OOl)-l-X' (=D S'r cr o

|2 1 |
1 Tt , cr sT7 0 I 1 A

= _r(001)+x5[ (- —sT T o] [ -1 J.r(”(pz)
2 dloo 1] 1

Xp is an arbitrary vector, therefore, solution of this equation gives the 3 by 3 matrix

PO(F,) =
Ar+ (ML 2, (— l)}‘ ST - cr+( 1)}‘ ster 0
(DM srocr+ (1A vsrer (1ML L2040 02 0

0 (_1)2\4-7\'

Since I‘(3)(F2) must be independent of 7 and A and X (all nuclear coordinate vectors
experience the same rotation I'®(F)), the unique solution is A" = A + 1. Therefore,

1
I(Fy) = (5, m)=('1 1), F‘”(Fz)=[ 1 ]
’ -1

A more direct method to get the representation PNCD(F) uses the fact that the rota-
tive parts I"3(F) are orthogonal transformations which map the reference NC on all
isometric NCs. As may be seen from Fig. 2, these are

F,: S8, F3:Cy(ef),Fq: Z

The permutation matrices I1(F) are then obtained by solving the Eqs. (2.12').

For very simple SRMs 'NCH(F) may be constructed by means of a drawing or
a molecular model, because to any linear operator Pg there is associated a mapping
(in the fixed frame system) which can be determined by geometrical reasoning.

The representation riNeh 127y together with representations of F on other
substrates is collected in Table 7. From I™C0 {57} one gets
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= 1 . . N i

(YY) s

Z explicitely occurs in I'® { %"}, therefore the set of matrices R(F)= IT®)(F)!-
- TG)X(F) form the group

1 -1
AT =T (F} :=l< 1 )( -1 )LCz(eQ)
1 1

(case bl, cf. Sect. 2.2.1.). _
By solving the Egs. (2.26) for all R(F) € A® {F7+}5

D(¢') = D(e) - R(F)

one obtains the group of the transformations of the eulerian angles

1.. 1.
‘@{}}'= 1.. 1.. l!__%
; 1.§°] 1= 2
1 1

and the substitution group
r7}:= (% (Fed (F)VFe.7) 87
cf. Table 7.

It should be remarked that the subgroup {E, F4} and its representations form
the internal isometric group % for the choice [0, 7] of the domain of 7. The fixed
points of the isometric transformations will be discussed in Sect. 3.4.2, _

The permutation-inversion group of this SRM is only homomorphic to % (7),
since [‘(NCI)(F )= 1?5 13

P
FF BN (F) = (1D g 1D 1D g (13} By

7 70

2.4.2 Co(7)F(C,T), System

As a second example without covering symmetry (& (£) = C;) but several finite
internal coordinates the isometric group of a semirigid model describing ethylene

5 The matrix D(e) is explicitely given in Appendix 1.
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Table 8. Coordinate vectors of equivalent nuclei of the Co(7)F(CT), system

Set Vector? X
Frame  Xg,, 1 v 07 [¢7 57 0 1 -

-1 ] {%1’1 0]+ ST cr 0] [ (—1)“ ] Xgoob}
v, =01 ~1 L1 L 0 01 1

top A Xt 1 A 1 F0] [er —sr O ca 0 s
-1 {5” O+ st cr O 0 10 }-
A, k=0,1 -1 Lid LO 0 1 ~sa 0 ca

[0 (cv,\ —suy 0 1
a0+ Sux cup 0! (—I)K Xgoob }
il Lo o 1 |

Coordinates refer to the coordinate system efindicated in Fig. 3; similarly the structural
parameters ry, r5 and « are defined in Fig. 3. —
Coordinate vector of representative nucleus w.r.t. local coordinate system ef

a

resp. ot.

OH CHoOH

H Fig. 3. Semirigid system

Ca(r)F(C4T),.

(a) Schematics of molecular

H H H H structural parameters and
coordinate systems. (b) New-
H man projections for definition
of internal rotational degrees
b of freedom
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glycol, CH,OH—CH,0H, will be discussed. This SRM is characterized by a semirigid
OCH,~CH,0 frame with local symmetry C,, and two equivalent OH tops with local
symmetry C,. The manifold of NCs of this SRM may be described by the dihedral
angle 2 7 of the internal rotation around the C—C bond (7 = 0 for cis conformation)
and by the two dihedral angles vq, vy of the two OH groups (v, v, = 0 for cis confor-
mation). The position vectors of a set of equivalent frame and top nuclei in general
site® given in Table 8 refer to a frame fixed coordinate system whose eg axis coin-
cides with the C—C bond and whose eﬁ axis bisects the C—C bond and the dihedral
angle 0—C~C-0, cf. Fig. 3.

The trigonometric functions in the distance formula for the 4 distances between
the 4 equivalent top nuclei

{dto0, t10(7, Vo, V1) digo, t11(T, Vo, V1) dio1, t10(T, Vo, V1) dior, t11(7, Vo, v1)}
2 - "\_/
dt0x, 11 (7, V0, V1) = (Xiox — Xoie )Xok — Xuiw)

depend on vg, v, and 2 7. Therefore, the primitive period p of 7 is equal to 7.
Table 9a and Fig. 4 show the four isometric transformations .o/ (F)

T T
'

Ug = Up

0'1 S () Vi

1 1

for the domains —7/2 <7 <+7/2; -7 <vg, vy <+,
They form a group isomorphic to the four group

F(r,v0,0) B/ (7} BT 0 (7 g
Application of the substitution 7’ = 7 + p to the position vectors of the top nuclei
{Xea(7, v2)} = {Xt0o(7, v0) Xt01 (7, o) Xt10(7, 1) X111 (7, 1)}

gives

—1..
PFp {Xene(™, 00} = Xee(m — 7,00} = Ko (7, 0211 P 0 [ -1 . ]
1
¢ ‘%)(Fp) =19

Therefore, this SRM possesses a nontrivial primitive period isometric transformation
by which .5 has to be extended to get the group # . Since

6 Although the H nuclei of the OH groups of glycol lay in the symmetry plane of the C; tops,
it is convenient to introduce nuclei in general site in a SRM associated to a particular molecule
to be sure that a faithful representation of # on the distances of that set is generated.
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1..n

sE)=| 1

1
commutes with all &/ (F) € of {F}

Fr, vo,vl) S of (7} - £9/(2,2,2)

Fad g

where 97(2, 2, 2) denotes the abelian group of type 2, 2, 2 isomorphic to D,y,. The
matrices 5/ (F) € &7 (F} are contained in the direct sums I'(F) listed in Table 9b.

Application of the operators P associated with all elements F € 7 to the position
vectors of the top nuclei generates the representation (N {7 } given in Table 9b

Table 9a. Isometric group of the Co(7)F(CT); system
@t v, v1) = Cy, Fr,v9,v1) = V4, F(r,v0,v1) = 4(2,2,2)

Operator {5 ™ ) {5P
Fes
E For . .. 1 -1 .. w
1. . |
1 . 1
| 1] ] 1]
1Y [ 1 . ] (1 h
1 1
1 . 1
I 1] ! 1]
F, (1 . 1 [ 1]
-1 1
-1 J 1
| 1 L 1 J
Fg4 (1. L L] [ 1]
-1 1
-1 . 1
L 1] | 1 ]

3 Representation of .# by substitutions of the internal coordinates:

’

T

vi

1

vo | _ [A(F) a(F)]. v

T

1 vy

1

~nf2 <7 <+n/2,7mod p
— <vg, Uy <+

34

Representation of ¥ by permutations generated by the set of
distances dtg0,t10(7> v0, ¥1), 4t00,t11(7, v0, ¥1);

dto1,t10(7, vo» ¥1)s 3401,111(7, v, v1), originating from the two
equivalent tops of local symmetry Cg (see Fig. 3).
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L5

R
X
Fig. 4. C3(r)F(CsT); system.

Pictorial views showing isometric
NCs generated from the reference
NC on the upper lefthand side by
all substitutions F € # (7, vg, vy).
Key: Fy 1 vg = vy, v) = vg;

F3:7' = —71,vg = —vy,

vi=—vy;Fair' = -1,

u'o = —vy, u'l =—yg

Table 9b. Isometric group of Ca(r)F(CsT); system (7, vg, vy) = Cy, F(r,vp,v) = 4,
Flr,vg,v1) =4 (2 2,2)

Operator _
FeF r(NCh (72 r{#pP
E 1 [1 ] [ 1 )
1 1 1
@
1 1 1
1 1.
) I
|
| 1
F, 1 [1 ] 1 n ]
1 -1 -1 11
1 ® -1 -1
1 1 .
1 .
1 .
F3 e - 1 J
1 [l ] 1 )
1 -1 -1 n
1 ® 1 -1 . n
1 -1 .
-1 .
-1 .
L 1l

s
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Table 9b (continued)
Operator
Fes r(NCDH {518 r{Fp
Fg4 [, . . 1] i R
PR T ® 1 1. . . ..
A S -1 1. . . =
1 . J -1 .o
a -1
-1
Fs=Fp 1. . .7 [ C 1. . T
1. . -1 1 . . . ..
1. ® 1 1. . . =
1 ) 1 . w
- b 1 .
1.
L 1
1:.6"=F2'Fp T [—1 ] 1. . . . . o7
P | 1 -1 . . . . =
1. .. @ -1 -1 . . . =n
L 1. i 1 .ow
.1
1 .
h— 1-
F7=F3F, L1 [—1 ] B
1. .. 1 -1 . . . . ®m
DY bt 1 ...
1 -1 . T
-1 .
-1 .
b 1 -
F8=F4Fp .. .1 -1 1 . . . . . 0T
S -1 1 .. . ..
1. . |® -1 |
1 -1 .oow
R
-1 . . J
L 1
a

Representation of # generated by the vectors )A{mo(r, vg), )~(t01(1, vg), itm(r, vy), 5{“ 1(r,v1)
of a set of equivalent nuclei in general site originating from the two equivalent tops of local
symmetry Cg (see Fig. 3)

b Representation of 7 by subsitutions of eulerian angles and internal coordinates:
a «
', S]f
Z, - [B.(F) A?F) ;)((]l:))] Z , —n <7< +m, rmod 2p
l/o . 1 vo —"<"0v"1 <+
vy v1
1 1
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rNen (5738 5/(2,2,2)
The rotative parts I'® (F) form the point group
IO (F =T F*1UZ - TP {F *} =D,y

The proper rotative parts R(F) of the matrices I'® (F) form the group

1 1 -1 ~1
AT =1 () :J 1 )l -1 ), 1 ), -1 | ¢=D2
[ 1 -1 -1 1

From this representation the substitution group of the eulerian angles

Il... 1..n) |1, .= 1]
7 I i I |7
1 1 1 1
and the representation
r )18 v2,2,2)

is obtained along the procedure outlined in Sect. 2.2.1.1, cf. Table 9b.
Solution of Eq. (2.65) for all F € % gives the following fixed points:

F,: vg = vy, 7 arbitrary : NC with covering symmetry C,(ef)

F3:vo=0,m,7=0 : NC with covering symmetry Sf.3
v; =0, 7
Faivg=—vy,7=0 : NC with covering symmetry S,

If a NC is a fixed point NC of F,, F3 and F4 simultaneously, e.g. withvg =v; =7=0
or vg =v; =7, 7 =0, it possesses covering symmetry C,,,.
F5 and F4 do not have fixed points, but

Fq:v0=0,n, 1 =n/2: NC with covering symmetry S%;
v =0,7
Fg: vg = —vy, 7=7/2 : NC with covering symmetry Z

Fixed point NCs of F,, F; and Fg (vg =v; =0, 7 =7/2 orvg = v, =7, 7= n/2) have
covering symmetry C,y,.

This example shows how conformations with specially high covering symmetry
may systematically be derived by means of the isometric group.

The Longuet-Higgins group &° 7 of ethylene glycol type molecules is endo-
morphic to #(r, vy, v ) because
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F(NCD(FP) =1@ e |F(3)(Fp)|' 13 =1@® ¢ 10),

rNED 157} .= (1@ e 13 [I(F,) @ 1), [I(F,) ® (1),
T(Fs) @ (~1®)}

P H = b F(NCI){.?T}lSV ?(T Vo, U1)

From the isometric group of the C2(1)F(CsT), system the symmetry groups of a

considerable number of further SRMs may be obtained, e.g.

(i) freezing 7 at 0 gives a C,,F(CsT), system like 1,2-dihydroxy benzene;

(i) freezing 7 at m leads to a C, F(CsT), system, e.g. trans-1,4-dichlorobutene-2;

(iii) if both 7 and v, are kept constant at 0 or , we have a C;F C,T system like
acrolein;

(iv) if both vy and v, are frozen either at 0 or at #, we have a system with two
equivalent C tops, Doy F(C,T),, for which glyoxal or 1,2-difluoroethane arc
examples.

2.4.3 Dy(7)F(C, TR)(C,TS) and D,(7)F(C, TR), Systems

Molecules consisting of a semirigid frame with covering symmetry D5, to which two
rigid tops of local symmetry C; with opposite or equal configuration are attached
(D,(7)F(C,TR)(C,TS) and D, (7)F(C,TR),, respectively) are interesting examples
w.1.t. the chirality problem of nonrigid molecules (see Sect. 3.4). A molecule of type
D, (1) F(C, TR)(C,TS) is scetched in Fig. 5a. Figure 5b shows the definition of the
frame system and the internal coordinates. Table 10 gives the coordinate vectors of
sets of equivalent frame and top nuclei.

(i) Do(7)F(C; TR)(C; TS) System

The followmg formula holds for distances between top nuclei with local coordinates
=(Xlo; 0X}y3) of the representative, e.g. the Cl nuclei, and frame nuclei denoted
by Z in Fig. 5

4 5, (7, 00) = 1 X (7, 02) — X (D)1
‘i 2 tr- X§03+X "'Xfoo —oo+

+( 1)h+h+]r Xf003+2( 1)A+A+1Xt03 f003+
+ (-1 le001X§on [eoa(1 + c27) — svps27] +
+ (- I)MHMHXfom)QO, [cup(l — c27) + sups27]
(A, X, u=n(mod 2))
Thus the primitive period of 7 is 7, that of vy and v, is 2 7. The internal isometric

transformations of (F) for the domains —7/2 <7 < +7/2 (7 mod p), -7 <vy,
v; <+ are listed in Table 11a and may be obtained either from the distance func-
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Fig. 5. D3(r)F(C,TR)(C, TS) system.

(a) Pictorial view, (b) Newman projection

(symbolic).

Key: The origin of the local top coordinate
system @' is situated in the nucleus
Cg: the origin of the local coordinate
system SF coincides with the origin

b of the frame system &f

tion above or by inspection of a molecular model for distance preserving transforma-
tions of 7, vy and v, . The representation ' #) { #7} of & by permutations refers
to the set of four distances between two equivalent top nuclei and frame nuclei Z

in ortho-position of the opposite phenyl ring (cf. Fig. 5a). The abstract group % of
both representations is isomorphic to the dihedral group of order 8

Fvo,v) EAFIErC O g,
with # = {F§} UFs {F%}, F§F; = FsF7¥

"= 7+ m is a nontrivial primitive period operation: application of this substitution
to the coordinate vectors of two equivalent top and four equivalent frame nuclei
gives
P, {(Xin(m, v2) Xxu(1)} = {Xea(m — 7, 02) Xeu(r — m)}

-1
= {Xa(r, 1) Xxu()} 1@ ® -1

1
NN u=0,1

ie. PO(F,) #1®, 1 ¥)F;) =19
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Taking 7 modulo 2 p = 2 7, i.e. admitting

i... U;) 7}

1.. v} v

‘M(FD)= inl’ T’l =-9[(Fp) !
1 1 1

as a nontrivial isometric transformation leads to a group .o/ {F } of order 16
AFYEF(1,00,01) % Ge

This substitution group is contained in the direct sum I" {5 } listed in Table 11b.

%) ¢ is identical with the full isometric group S of this SRM since & (r,vy,v,)=C{,

i.e. a NC with arbitrary values of the internal coordinates has no covering symmetry.
The group <4 has the following structure:

(a) generators:

Cand U,

Cc*=U%=E, C*U=UC?

T = (CU)? commutes with both C and U;
(b) subgroups of index 2 [k = n(mod 4)):

{C*, TC*} ¥ Cy,,
{E, T, CU, CUT} x {E, C?} ¥ Cyy,
{E,C%,C2T,C%U} x {E,T}2 % x %% o/(2,2,2);

(c) center of @4

{E,T,C},TC}}E 9

(d) commutator group:

[(%16] = {E, TC?};

(e} important homomorphisms:

416/ {E, T}g A
16/ {ECYE 7
@16/ {E.TCHECan & %4 © 75
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Since & ¢ is homomorphic to ¥4 but does not contain % as a subgroup, we have

Fs s¢7

As a next step the representation r(NeH {f } induced by the substitutions £’ = F(£),
FE % on the basis

Xio(vo» V) Xe1 01, 7) Xs00(7) Xeo1 (1) Xe10(7) Xe1 1 (1)}

has to be calculated. Two sets of equivalent nuclei have to be considered since the
coordinate vectors of the equivalent top nuclei do not generate a faithful representa-
tion of 7 (r, vg, U1). Application of the operators PF associated with the substitu-
tions o (F) generates T(NCD [ 771 Jisted in Table 11b

F(Ncn{y} = %16
The rotational parts I'®(F) of TNCH { & } form the group

{7} =Cyp
AT} =C,

From the last representation we get

% (7} isc4
and I‘{ﬁ'} = e, cf. Table 11b.

As may be derived from Table 11, the isometric substitution group .% has fixed
points:

Uivg=—vg,7=0 TC?U: vo =1 — vy, 7=7/2,
NCs with covering symmetry Sfl;,;
CW:vg=n—v,,7=0 TU: vg = —vy, 7=17/2,

NCs with covering symmetry Z.
The Longuet-Higgins group %” 5 is homomorphic to .~ (I‘(NCI)(F )=

=10 g 1(3))

For Bpoen (57 By
ho —

Fx = F(7,v0,0y)
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(i) Dof7)F{C; TR}, System

This case follows closely the treatment given for the D,(7) F(C,TR){(C;TS) system.
The relevant groups are listed in Table 12

G(1,00,01)=Cy _
HFIEr 7R g,
e (571 2 4,

The abstract group ¢ is identical with the group %4 of the D,(1)F(C,TR}C,TS)
model. In contrast to the (R, S) system

r® {(F}= D,

(case a, cf. Sect. 2.2.1). Therefore, all fixed point NCs (only F5 and F, possess fixed
points) must have properly orthogonal covering operations (Cz(ef) and C,(ef),
respectively).

24.4 D.x,h F(szT)2 System

Molecules with a frame of local symmetry D..;, and two equivalent tops with local
symmetry C,y, e.g. biphenyl ((C4Hs),), ethylene (CH,=CH,) or the bicyclic organo-
boron compound (CH,CH,B),, are examples for a SRM with proper covering sym-
metry & (£). A model of (CH,CH,BY), is illustrated in Fig. 6 together with the frame

Fig. 6. Newman projection of
| —— |
DeophF(CyyT)7 system (CH5CH3B)o
Key: Only B and H nuclei are shown.
The origin of the frame system
%% is situated in the center of the
B-B bond, the origin of the local
top coordinate system %t lies in
the nucleus By
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coordinate system and the choice of the internal coordinate 7. Coordinate vectors of
a set of eight equivalent top nuclei in general site are (w.r.t. )

3 ~ (D¢ ct s7 O l 1 A
Xaurl7) = %(001)‘*)(500 (= —sT ¢T 0] l[ -1
1 0 0 1 -1

where r denotes the B~B bond length and Xboo = (Xho01 Xb002 Xbooa) is the co-
ordinate vector of the representative nucleus w.r.t. the local top coordinate system
@ indicated in Fig. 6. As mentioned earlier it is important to take a set of nuclei in
general site, otherwise the permutation groups I1 {# }(I1 {%°}) and I'*"*) {7}
(T (5}) will not be faithful representations of # (1)(%()).

From the distance formula

d(2)yu, 1uv mn=1 xOyv(T) - xlﬁﬁ' (T)lz
=1 +41X0003 *+ 2 Xo00Xb00 *
o |CDETETI2r (—pETETr 20 0
+2 Xboo [ (1#TETPs27 (1Y TEPe2r 0 | Xboo
0 0 1
My |,V =0,1

we conclude that the primitive period p of 7 is equal to 7. For the domain
—7{2 <t <+7/2 we have the isometric substitution group

(ML
(f)ao/(F) (Q)

7’ = 7 + 7 is a nontrivial primitive period transformation since the coordinate vectors
Xup(7) are periodic in 7 with period 2 p =2 7. 54 {7} has therefore to be extended
to ¥ {# } by taking 7 modulo 2 7

- <TK+7
F ()8 A {57} E 9, cf. Table 13a

A NC with arbitrary 7 has covering symmetry D,, hence

()" I“l'-”{%} :={(1 1 1>,(l -1 —1) ,<_] 1_1\) ,(—1 -1 1) }=Dz

cf. Fig. 6.
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The representation of the full isometric group Z7 (1) on the nuclear position
vectors, '(NCf) {27} may then be calculated by solving Eq. (2.69), Sect. 2.2.4. for
all

Fe #(r).

Br (Xnu (M) = Ko F1 (1)} = Ko (DHIE) © TO(E)

or for one vector

.Y _v ~1 s 3) '
PFXMw(T) = X}\yv(F ()= X?L'u'v'r (F) (2.69)
Each of these equations admits || = 4 solutions. An example for the solution of
this equation is given in Appendix 3. In particular, the invariant subgroup TNCP {7}

of 'NCD {5} is obtained by solving the equation

X up (1) = Xa (VTG), VG E @

Table 13b. Covering group of the Do, F(C4,T)5 system

Yy =D,
Operator?
Gey r(NCH) {4 )¢ r{z}
1. . 1. . 1
E BAAS ' uby'y) @ 1. 1.
1 1. .
1.
1
. . -1 P 1
G2 (W) Gaa+ 15/ u800) ® -1 . _1 -
-1 -1l
1 .
1
-1 . . 1. . . =
G3(TW) G+ 18 u+ 180 @ 1. -1 . . =
-1 -1 . =
1.
1
1. . 1. ]
Gg(T) BN pu+150) © -1 1. :
1 1 n
1.
L]

a, ¢, d See caption of Table 13a.
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Table 13c. Generators of the full isometric group 2 (7) of the SRM D, F(C3,T),

Generator® r(NCh) [ #)° r{¥ }d
R [, . ]
¢ Guasp/u+a+ 18y e | 1 . . 1 .
. . 1 1 3a/2
1-n/2
1
S . 1. . . =
§ BNy ubve1) @ -1 . -1 . . =x
1 -1 . =
-1 .
- 1 .
| BT T
w (87\'7\+ lau'psv'v) ® [ -1 . -1 . . =
-1 -1 . .
- 1.
1
-1 7 C1 L]
T = wewe? Gaady'u+ 1500) @ -1 1.
1] 1 . =
1.
1

3, ¢, d gee caption of Table 13a.

with the result
rcN gy B g Ep, by,
(D, denoting the point symmetry group, ¥, the abstract group). This representation
is listed in Table 13b. The easiest way to get ™D {5} is to calculate first T NCD ()
and one solution T™CO(F, ) of Eq. (2.69") for each F € .7 The set of all 1% | solu-
tions for each F is then equal to the coset
r®NeO(E,) - TN {7}

IS
and r\(NCf) {%} = u F(NCf)(Fk) F(NCf) {ﬁg}

k=1

The full isometric group () in our example is isomorphic to a group of order

[F 1 Zl=32

(N ErNen (P g,
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The abstract group & 3, has generators C, S and W with the relations

Ct=8’=wW2=E
SCk = C*8, k =n (mod 4)
WS = SW

The element T = WCWC? commutes with C, S and W and
wck = Tkckw, T2 =E

The generators of the representation ™D {7} together with the element ' ™NCO(T)
are given in Table 13c. C, S and T are generators of a subgroup of @ 3, of index 2
isomorphic to Dy,

04[E, T] = [{C*} US{C*}][E, T]
G3p =04 [E, TIUW- 34 [E, T]

The representation I'™CP { %7} of the internal isometric group .7 (r) is not
uniquely determined since several groups '® {2} and, therefore, several inverse
homomorphisms A~ (D® {%7}) = 'NCH { &7} [Eq. (2.80)] may be defined, or in
other words, several sets of representatives of the cosets of the invariant subgroup
rNED (&} in PNCO (32} form a subgroup isomorphic to # (7). One such represen-
tation is shown in Table 13a

rONeD (57 B 5 B g,
Its semidirect product with rNCH (zy gives r(NCH ( 52y
rONCO (g} . PONCOLF ) = 9, - 9, = @
Various representations of 5# (7) may be derived from I NP (57},
(i) the set of all rotational parts ['®(H) of T®™C {22} forms the point group
Dy, (cf. Table 13)

r® (&} =z} re (%} = Dap,

(4 (=) () () o
e () () (T e

and M ()} NrA(Fx}=1®
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(ii) the group of matrices R(H) = | P®(H)!- I'®)(H) is given by
A® (F}= a0 {F1 AP () =D, (case b 1)
with

Az} =r® (g} =D,

()] 676
snsn |1

(iii) from the representations A® one gets the transformation groups of the
culerian angles

1 1 . 1 . 1
1 —1 T -1 T 1 is
= =9
@{g}' 1 3 _1 . ) -1“ 11r 2
e l_J -3 l 1 e * 1
] 1 T
I 1l Fl.l 1 i 7 -1 an
7} = - . 3n| =9
-@{y}‘l I s 177 3 _1 Tf/z > _1T 2
! 1]l 1 L 1

@ (F =gz} (70,

1 ! 1=

1 1 l
@ {@in @iFmy=] | ! L.
1 1 l

(iv) and the substitution groups of the eulerian angles and internal coordinates

M@} = {FG)e 1PIvee g(n) Ly,
M{F) = {2 (F) e S(F)IVFe Fn} o,
I {&} = r{g}- T{F1=0, da=z3
rMglnr{sF}=1

cf. Table 13.
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The Longuet-Higgins group & % is easily derived from I"NC {577}
'NCY (52} .= ((H) @ ITOMH)|- 1P| VH € Z(r)} £ Dy,
Thus, & % is only homomorphic to 57 (7)
FHErN P P F @ g,

because one of the elements of the coset FNCO(F,) - TNCD {2} associated with
-1
the primitive period substitution 7' = 7 + 7 is equal to 1® e —1 |}, therefore
1
this matrix is mapped onto the unit matrix 1® & 1® by transition to the laboratory
system. The group 5#°(7) is identical with the “double group” of the Longuet-Higgins
group of this SRM given in a recent paper by Merer et al.?.

3 Applications of Isometric Groups

In this chapter applications of isometric groups will be presented in the sequence:

3.1. Isometric group and Born-Oppenheimer Approximation.

3.2. Rotation-large amplitude internal motion problem of SRMs and isometric groups.
3.3. Irreducible tensors and selection rules of SRMs.

3.4. Chirality of nonrigid molecules.

3.5. Enumeration and classification of conformational isomers of nonrigid molecules.

3.1 Isometric Group and Born-Oppenheimer Approximation
In this section some aspects of the symmetry of the molecular Schrodinger operator’

=%, +A° (3.1)

p; X ebZy |

2my k=1 lxj—Xk(E)l[

o N
HOp;, x5 Xk (®)) = =2:

j<j’ 2 k<k’ 2
¥ JEJ €o + eOZka'

WOl —xpl kK X () — X (©) 1

(3.2)

(3.3)

will be considered. The original Born-Oppenheimer approximation consists in the solu-
tion of the eigenvalue problem

7 In this section the symbol fl is used for the molecular Schrodinger operator.
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ﬁo(Pj, X5 Xe() ¥ (x;, 835 X(8) = X)) ¥ (x;, 835 Xiel£)) (3.2"

for a continuous set of nuclear configurations, whereby the nuclear coordinates are
considered as parameters (not operators). The symmetry group of the operator (3.1)
is the direct product of the inhomogeneous 3-dimensional orthogonal group 10(3)
(whose operators are to be applied cogrediently to electron and nuclear dynamical
variables), the symmetric group yy of the permutation of the indices of the electrons,
the direct product of the symmetric groups vk of the indices of the nuclei of the
sets of identical nuclei, i.e. 8 vk, and the time reversal group??). For applications
to molecular physics and chemlstry the symmetry of the operator (3.2) is more
relevant, at least as far as chemical reactions are excluded, therefore, this symmetry
will exclusively be discussed here. The following statements may immediately be
made concerning the symmetry group of H®: AC js symmetric w.r.t.

(i) the symmetric group of the permutation of the indices of the electrons

(ii) the covering group Z(£) of the NC {Xy (£), Zy, M}, more precisely, the
covering group of the NC {Xy (%), Zi}, since the nuclear masses do not show up in
the operator H°. The group @ (£) is isomorphic to a permutation group I1{% } of the
nuclei of a set of equivalent nuclei, which is a subgroup of the symmetric group of
the set.

The group @ (¢) implies, that the operator A% is symmetric w.r.t. to the trans-
formations of the dynamical variables of the electrons under a group @ (e

@ E ) (3.4)

(iii) the group 10(3), applied cogrediently to the electron dynamical variables
and the nuclear coordinate vectors. However, application of the operators of this
group to either the nuclear coordinates alone or to the electron dynamical variables
alone does not in general leave the operator fio symmetric.

From the statements (ii) and (iii) one obtains

Pge%(Xy(£)) = €°(X (%)) (3.5)

As a next step we consider the transformation properties of HO w.rt. F(£), provided
the operators PF are applied to the nuclear and electron coordinates according to the
following propositions, VF € F (§):

Pe (Re®) = Ku®) - TNOF) = Ki(@HIE)  TOF)
Pe) B! = TOF)®y)

JOE T A (3.6)
Pe(dpPr' =TOFE) ()

Obviously according to (ii) and (iii)

Bofi%;! = 3.7)

It should be pointed out that the operators PF which by definition act only on internal
coordinates, are not symmetries of .
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PeAOPE! = HO(p;, x;; TO(F) X (8)

2 ~ 2
_ z{.E:_ _ 3 32,1 %; — TOE)Xpr(®)l ! } +3 %0
j 2m0 k j<j' lXj—-Xj'l

+ 22627, 7, | TOF) X (®) - TOF) X))~ # A° (3.8)
kk'

Next we state the important theorem: VF € F (£)
Pre®(Xu(®) = (X (F1(9)) = (X () (3.9)

Again this relation follows from the symmetries (ii) and (iii); it expresses that the
electronic energy function assumes the same value for all isometric NCs. Equations
(3.5) and (3.9) show that €®(Xy(£)) is symmetric w.r.t. to the full isometric group.
Whereas the symmetry of €?(Xy(£)) w.r.t. & (¢£) merely expresses that €®(Xy(£)) is
a function of the internal coordinates only, its symmetry w.r.t. % () is a genuine
symmetry.

3.2 Rotation-Large Amplitude Internal Motion Problem of SRMs
The classical energy function of a SRM may be written in the form

T+v= 1@E )(gm(z»(‘g)+ V) (3.10)

In this equation the angular velocity vector w is referred to the center of mass frame
coordinate system and the £s are the time derivatives of the internal coordinates. More-
over, the kinetic energy matrix coefficients may be expressed as

8 = Ipg = Z My [ X () Xic () pq — Xicp()Xiq(®)]

P.q=1,2,3
_ Xk (%) _
gpr—EMk[Xk(E)’ T]p’ r=1,2,...,f
- Xy () 0Xi(®) -
8 EMR( g, o ),r,s 1,2,...,f G.11)

The potential V(£) may now be identified with the electronic energy function

V(§) = °(Xi (£)) (3.12)

provided the interaction of nuclear and electronic motion may be neglected, i.e. the
adiabatic approximation is adequate.
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If in place of the nonholonomic coordinates w the eulerian angular velocities are

introduced by39
—sinfcosy siny O
w=] sinBsiny cosy 0 =FE(e)é 8 (3.13)
cos 0 1 ';'
Equation (3.10) goes over into the lagrangian form
=L@t E(E) 9 [ @ma®» E(e) % (3.10)
2 1 1 E
and the corresponding hamiltonian form
1 E™! E- 0 "
T= 1 G s)[ © 1«,]@"‘"(5)) [ @ lm] [;] (3.10")

The total angular momentum referred to the frame system is given by

P=P.E (e) (3.14)
and if this is used, the kinetic energy becomes

1 e mn
T= 2 PP (s))[ ] (310"

3.2.1 Symmetry Group of the Hamiltonian

The foregoing discussion allows to state the theorem: The full isometric group
S#°(£) is a proper or improper su groui? of the symmetry group & & {8} of the rota-
tion internal motion hamiltonian

A AN o~
PyHPR! =H, VHE #(¥) 3.15)

Since the dynamical problem (3.10) refers to the LS, the primitive period isometric
transformations are to be mcluded in S#°(£). A proof of this important theorem has
been given earlier'® °. 7 {H} represents symmetry of H w.r.t. to operations of the

8 For the sake of brevity the set agy will often be abbreviated by e and the velocity vector

a
{3 by e.
¥

9 In the Eqgs. (5.19) and (5.22) of this paper the matrix I'(3)(F) should be replaced by
R(F) = 1 13 E)1- TCNE).
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frame system. On the other hand H is symmetric w.r.t. arbitrary orthogonal trans-
formations of the LS

Ple'\l ﬁE]l =ﬁ (3.16)

The set of properly orthogonal transformatlons R! forms the group SO(3)!, the reflexion
Z! at the origin of the LS likewise leaves A symmetric, since the eulerian angles re-
main unaffected by Z'. Therefore, fi is symmetric w.r.t. the full rotation group

0(3)". However, in agreement with the usual conventions we will omit the elements
Z'R' € 0(3)". As a consequence we will consider hence-forward the group

s0(3)' e 7 (A} (3.17)

as the symmetry group & {fi} of the rotation internal motion problem.

For a number of SRMs #(§) C @ {H}, ie. # (§) i is a proper subgroup of ‘(’{H}.
This fact has been established by determining the group < {f) directly. In the case
where a principle axis coincides with an internal rotation axis for all values of the
internal rotation angle, but not being a covering symmetry axis, we have

—_— N\
HE) C¥ {H} (3.18)
@{ﬁ} now contains an element with the structure

B(R) 0 b(R)
I'(R) =[ .1 ]
. . 1
not contained in I'{ 5}. A typical case is the SRM C,,F C3, T, which might serve
as a model for the rotation-internal rotation problem of nitromethane type mole-
cules. A further case is given by SRMs whose group & (£) contains an element of

order > 3. For this case & {H} is an infinite group since it contains now an infinite-
simal rotation represented by (8 € [0,2 7] being an arbitrary angle)

1 0
B(R)=[ 1 ] b(R)=[0] (3.19)
1 &

3.2.2 Solution of the Energy Eigenvalue Problem
The energy eigenvalue problem associated with the classical energy function (3.10) is

Ay=Evy (3.20)

where the energy operator is obtained from Eq. (3.10"") by the usual procedure®!: 32

leading to
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A

-1

1 P
®.g *B:g*) @) [ 1 _1] + V(%) (3.21)
g pg *

)

A=

N [ =

The eigenvalue problem Eq. (3.20) has to be solved in the Hilbert space IH{H} defined
by

H{A} = {f(e, ) (£, ©) = [£*f sin § deedf dydlE < oo
(f, g) = [f*gsin § dadB dyde} (3.22)

and the function space (domain of ﬁ)

A{H) = {u(e, Hlule, ) ECPO<a<27,0<F<7,0<y<2 7§ EDQ)]
(u, v) = fu*v sin § do df dy dft
fiu € H{A} (3.23)

The energy eigenfunctions may be classified according to the irreducible representa-
tions of the group SO(3)' e & {H}. For the sake of simplicity we will assume

Z ()2 %(5) in cases, where Eq. (3.18) is valid, an appropriate extension of
(&) has to be used. Denoting the irreducible representations of the group (3.17) by

DWW e r® (3.24)

the eigenvalue problem (3.20) may be specified as

A 0 (€ 8) = By Vanr w6 9 (3.20")

where M and u denote row indices of DY) and ', respectively®. For solution of
Eq. (3.20) one usually uses a matrix representation of H in a suitable chosen zeroth
order basis. A practical choice is the direct product of the set of rotation group coef-
ficients>

D)} = {DPy (e T EN; M, ME[-J, 41T} (3.25)
and suitably chosen complete orthonormal bases

{e®ED} = R0 e (8) €[5 €Dy ), mEN
(éj:) (k)) f&p(k)*&p(k)dgk

o 12 = [1o% 128, < oo}

e.g. Fourier functions for angular internal coordinates or Laguerre or Hermite func-
tions for distances.
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In practical applications one may first solve the “internal problem” defined by
the operator

1 1 1 1
A 1 - — - A ,
H™ = 5(g ‘Beg’ )(g::::‘) (g“ﬁgg “>+V(z) (321

which defines all states with J = 0, i.e. vanishing overall angular momentum3). Typical
examples have been given in the literature36—3%: 25)_ It should be pointed out that the
eigenstates of the internal problem may, according to the definition of the isometric
group, already uniquely be classified according to the irreducible representations of
the group 5 (£). The extension of #(£) to 5 (£) by the covering group % (§) leads
to a refinement of the group theoretical classification of the internal eigenstates

L) N(E) Since all such states have to be symmetric w.r.t. the operators Pg, the

Ung), N(g) belong exclusively to those irreducible representations of S#°(£), which
belong to the normal subgroup & (&) of #°(£). Typical examples where this situation
is realized are SRMs of the types C5,F—C,,137) (N=C—NH,, CH,CH,NH), D,p,/Dap
ring puckering>® (cyclobutane) and Do, F(CsT); 25 (glyoxal, H,0,).

3.2.2.1 Symmetrization of the Zeroth Order Basis. By subjecting the elements of
the direct product basis

{DPn(e) I eE(E)}

to the transformations of I' {7}, i.e. to the operators 131-1 associated with the trans-
formations Eq. (2.83), one may construct by well known procedure39) zeroth order
basis functions belonging to the irreducible representation DY @ '), The use of
symmetrized basis functions leads to considerable simplifications in practical solutions
of the energy eigenvalue problem.

In the symmetrization process the primitive period isometric transformations Fp
play an outstanding role. For all SRMs with I‘(3)(F ) € SO(3) these operators are
represented in the representation e {5¥} by the unit matrix (cf. Sect. 2.3.3).

This implies for such SRMs the important relation

ll;prjMp(j)“N(es £)= \DJMp(j)“N(ey £), VF, E._?(E)
Y Vi@, €0 6} (3.26)

i.e. the energy eigenfunctions are symmetric w.r.t. the operators f’F o The latter
therefore on one hand imply periodicity conditions for the energy eigenfunctions
and symmetrized (zeroth order) basis functions and on the other hand cause the
energy eigenfunctions to belong uniquely to the irreducible representations 'V {57}
of the group 5 (£).

For all SRMs with - F (%) gnd g (§) the interrelation of the representations
r% (5} and TW ('} may be investigated by means of the Frobenius theorem on
induced representations®, If in addition 5 (£) is a normal subgroup of # (£), as
it has actually been the case in most examples studied up to now, the irreducible

62



The Isometric Group of Nonrigid Molecules

representations r {5’_?7}, which occur as symmetries of the energy eigenfunctions
follow uniquely from I'? {5} by means of the representations of the factor group
H(£)/F (£). The group theoretical relations arising from the primitive period iso-
metric substitutions form the mathematical background fdr the introduction of
“double groups™ by several authors?> 24 27} a5 has already been pointed out in
Sect. 2.3.3. We shall not distinguish between 5 and % till further notice, but as
shown in the discussion above primitive period isometric transformations have to
be included when considering the symmetry group of the operator (3.21).

3.3 Irreducible Tensors and Selection Rules for SRMs

In this section we first present a set of general transformation formulae for tensor
operators associated with SRMs. These then serve as a mathematical tool for the
formulation of Wigner-Eckart theorems and selection rules for irreducible tensor
operators associated with multipole transitions of SRMs. The concept of isometric
groups will allow a formulation of selection rules in strict analogy to the group
theoretical treatment of quasirigid molecules first presented by Wigner®).

3.3.1 Transformation Properties of Tensors w.r.t. Isometric Transformations

The following treatment is based on the assumptions
(i) transformation formula for a polar vector (operator) expressed in cartesian
coordinates w.r.t. Py € S#°(%)

Pa(VE@)PR' = (VEH'(9)) = TOMH)(VE(), VHESF (%) (3.27)

Typical examples for vectors of this type are the electrical dipole moment M®f(¢)

or any vector of the type X'(¢) = % ZkX,f((.E), where the sum is to be extended over a
set of nuclei equivalent w.r.t. & (£). Equation (3.27) follows immediately from the
properties of '™ {9} and has been proved earlier for the expectation value of
the electric dipole operator

O = _eg T+ e E Zy Xy (%)
3

for molecules in a given electronic state").

(ii) Transformation formula for an axial vector (vector operator):
Pu(VE@)PR! = (VEE'(®) = RE(VI(®), vHE (%) (3.28)

typical examples being the magnetic dipole operator lﬁ(m)f(z), the angular momentum
w.r.t.zf, ete.

(i) The coupling operator for a tensor T of rank n fora SRM in a multipole
electric or magnetic field E'®® (en denotes the nth Kronecker power)

63



H. Frei, A. Bauder, and H. Giinthard
At - Flenpen f
H' = _E'*"R*™(¢) T(&) (3.29)

where the tensor T(§) transforms according to

BuTi(5)Py" = THH (%) = TO°n () - T'(H) (3.30)
PuTi®BR! =R*"(H) - T'(®) (3.30')
B T(5)Py ! = RoM(H) o TO°2(H) TH(®), VH € #(5)

n,+n,=n (3.30"

whether or not T(£) transforms w.r.t. %H as M(©®fen, Iv!\(m)f”" or M™feny g p(@feny
The coupling operator of an irreducible operator (AL, (£)) of rank s for a semirigid
model in a multipole field (E.,) may be taken in the form

' = —(EL,)T DC(e) (AL, (&) (3.31)
where D6V (e)t (AL, (£)) = (Al (e, £)), (332)

expresses the tensor A in the laboratory system.
Further important mathematical tools are the two fundamental formulae from

rotation group theory (s €N)

B,1D®(e) = DP(e) DORY), VR €50(3)! (3.33)
P.tD®)(e) = DORNHTDE)(e), VR €50(3)f (3.33)!°
Egs. (3.33) and (3.33") express the transformation behavior of the rotation group

matrices w.r.t. rotations of the laboratory system €' and the frame system'Ef, re-
spectively. The second Eq. (3.33") assumes for the case H € 5 (§) the special form

Py DSY(e) = DEDM)T - DE(e) (3.33")

A proof of this equation is given in Appendix 2.
Basing on Egs. (3.27), (3.28) and (3.30)

Pu(AL(6) Py = (AL (H™' (¥) = DPH) (AL, (&) (3.34)

where p denotes the parity of the tensor operator Af
Furthermore, from Eqgs. (3.33) and (3.34) we find the following important trans-
formation formula for the coupling operator (VR' € SO(3 ), VH € 52(§))

BBy By Bt
= —(EL,) DD (RYTDEY ()T DED(H)DEP(H) T (AL, ()

—(EL) DEDRYTDEN ()T (AL, (), if p = +1 (even)
{ —(EL)TDEIRY DEV ()t I T (AL, (), if p = —1 (0dd) (3.35)

10 The formula (3.13) given in Ref.!5) should be corrected according to Eq. (3.33").
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For electric and magnetic dipole moment and the electric and magnetic quadrupole
operator the last equation yields

P ibufIP P = —(EDTDUIRY D) rO ) MP ()

= —(E5) ' DUNRY DI (T TI TP 1) MO (1)) (3.36)
Poabuf Py P = —(EL)TDUORY DO () TR () (336")
PPl Py o = —(ELo)TDEIRYIDEN )AL, (£) (3:36")
LT S
Iz
where T = 0 0 1
_
V2 V2

The relation between the spherical components Aga(i) of a general tensor Ag of

rank 2 and the cartesian components Kfnn(f) are given in Appendix 4. Equations
(3.36) will form the basis for derivation of selection rules for rotation-internal motion
transitions of SRMs presented in the next section. They also may serve for derivation
of the transformation properties of the electric and magnetic dipole moment operators
referred to the laboratory system (vVH € Z#°(£)):

PuMPY(e, £)P5" = ITOM) MO (e, £) (3.37)
PuM™(e, £)B5" = MI™Ye, &) (3.37)

Analogously for a tensor operator of rank 2 with even parity

Pu(AL, (e, £)Ph! = (AL (e, &) (337"

The simplicity of these transformation formulae is to be traced back to the
general formulae (3.33), (3.34) and the fact that the operators Py act on both the
eulerian angles and the internal coordinates simultaneously, as expressed by the
representation I'{:#°}. The analogy of the Eqs. (3.37) to the representation I'™NCD {5}
should be noted.

3.3.2 Wigner-Eckart Theorem and Selection Rules

1 Electric Dipole Transitions

Derivation of the Wigner-Eckart theorem (WET) will be based on the transformation
properties of the energy eigenfunctions expressed by

PatPribyyniy,n (6 ) = 5- ?UIJM:r(j)“:NDﬁ)M(R') T 1) (3.38)
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Formulation of the matrix elements of the coupling operator (3.31) yields

(G S 90 SO RN X 5)
= P Yy (Mg PPl B PRl BB vy 6 (6 6) (3.39)

Since the matrix elements of i’ may be obtained from those of (I\"\I(e) e, £)) by
linear combination, the latter will be calculated first:

(wJMl'(J )# N’ (M(e)l)‘l/JM[‘(j)#N)

=2 »>2pdL (R)*DY, (RY r(” HTd @IrO@E)!
M'Mu'y

x DORY g p @ (& 8 BN )Wy (6 )

Integration over SO(3)! and summation over 5 (£) yields the vector of matrix ele-
ments (h = |F#(£)])

A e)1 .
(wTM['(_DEﬁ’ (Mt(Ie) )lpJMp(.l)“N)
- %'Z, 23+ 1)—1(SJM'TM'1ESJMW1¢7)
M
X E,z,(‘pTM TN (Mg)l)‘pJM'rU)p’N)

x h™' 2rd rd) (H)*F’(":‘)l(H)I ré®ml (3.40)

The righthand side contains the Wigner coefficient SymT# 10, ¢ = —1, 0, +1, which
expresses the usual rotation group selection rules

Al =0, %1, J=0<>J=0

AM = 0 for z-polarization (o = 0) (341)
AJ =0, 1, J=0«J=0
AM = =1 for X, y-polarization (¢ = *1) 3.41)
and the quantity

G =p-'xra) ) €
@— =h ; o (H)*I‘F.“(H)l rem)l (3.42)

which expresses the selection rules w.r.t. the isometric group & (£).

The two Eqs. (3.40) and (3.42) may be discussed as follows:

(i) the selection rules w.r.t. S#°(£) are the same for all components (cartesian or
spherical).

(ii) the quantity 9(’ 1 may be specified further for the case a, b1, b2 defined in
Sect. 2.2:
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Case a:

IT®MH)I=1, VHEH#(§)
OLY = 1716535 407, (3.422)
where the symbol 65, does not express a selection rule. since u', u' are subject to

the summation in Eq (3 40). ]j denotes the dimension of I'®. Hence the electric
dipole selection rule reads

ré .,
L o

Case b:

The group I'® { &} is improperly orthogonal and according to Eq. (2.86) the group
{5} (abstract group 5#) has a normal subgroup S#* of index 2

F=x"usxF* (3.43)
Hence,

an =4~ yrad) a) (0-) 13y =
o =11 Zrdk () )

=h~' (Z, F(’l(H)*[‘(’) () - 2, 10 (SH* %) (SH)} (3.42b)

In the case where
=E,SH=HS VHe# "

the irreducible representations of 5% occur in pairs '), Di=) of associated represen-
tations for which

rén (H) = r9H),Hewt

. . 3.44
rin(sH) = (p) - r9YH), He H#* (3:44)
Consequently
6db = (21)7'[1 ~ @) ()17 5w Sim (3.420)

hence, in this case a parity selection rule exists
[Rud 3 E P
pp; #p
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For a number of typical SRMs the selection rules are given in Tables 14 and 15.
The irreducible representations of frequently occurring isometric groups are tabulated
in Appendix 5.

2 Magnetic Dipole Transitions

Both WET and selection rules may be derived in a strictly analogous manner by the
aid of the transformation formulae (3.36') and (3.38). One finds
(i) SO(3)' selection rules: AJ=0,%1,J =0+ J=0

AM=0  z-polarization
AM =11 x,y-polarization;

(ii) the selection rules w.r.t. 5 (£) are given the quantity

D= = ZTULH) T M) = 7 6765, 55, (3.45)

=

i.e. for all SRMs, whether belonging to case a or b the magnetic dipole selection rules
are

rd«— r®

B U

Table 14. Selection rules of dipole transitions of SRMs

f=1

System/ H(E) Dipole selection rules

example Electric Magnetic
CSF—C3VT :93 [‘(0+) r— [‘(0"') PU) — PU)
CH3CHO [‘(l) g P(l)

C,F—Cy, T N 5 ) @ r® )
CH,:CHNO, i3 e p®

Cgb-CT % [‘(0+) e [‘(0") [‘(j) > [‘G)
CH,:CHCHO

CF—Ca\l 7 (01} (s y(0-) rd) «—r®
|

CH,CR,NH

Ca F=Cy, 1 % r(1) s p(2) rd) — p@
| mp—

CH2CH2NH [‘(3) e r(4)

DoonF(CT), % (1) p(z) r(j) s D
CHOCHO 3 s p®

CayF-Ca, T £4(2,2,2) rd*) s pl-7 rie) . plp)
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Table 15. Selection rules of dipole transitions of SRMs

GE)=C,f22
System/ Dipole selection rules
£ HFE)
example Electric Magnetic
2 CF(C3yTH(C3y T &G ploo+) _, (00~) . .
c;13cflvz NCH33V 0 rMN) _, {(MN) r® —r®
2 CsF(C3,THCoyT) g F§§+; — I‘EZ_;
CH3CH;NO r(3+) — p(3~ . .
3 2 2 [‘(l) (——-)I‘(l) I‘(l)(—-)[‘(])
2 s ()
2 CyyF(C3yTH(Cay D) 9 (o) —, p(0-)
CH3;NH r(34)  p(3-) . .
32 rad F) — )
r? . p@
2 CoF(CoyT) (CayTY 54(2,2,2) ri+) — pG-) rée) ., rlp)
NO,CH:CFNO,
2 CZVF(CZVT)2 04 {E, T} [‘(°++) — [‘(0‘*‘—)
CH,(NO,), r{o—+) —, plo—=)
r2++) ., p(2+-) r) — pl
(=)  p(2~-)
(1) — p(1=)
2 CyF(CT), 7 (1) p@ D ol
O(EHO)SZ ! r® s @ 10 s 0
2 C F(C,T)(CSTY 7y rlo*) s plo-) ) s ptd)
CH,FCH,CHO
3 Co(IF(CsT)2 7 1) s p(2) G) s o)
CH,OHCH,O0H r3) — @ P e

Again the magnetic dipole selection rules for a number of frequently used SRMs are
collected in Tables 14 and 15.

3 Electric Quadrupole Transitions

Starting from Egs. (3.36") and (3.38) one obtains for the WET by straightforward
calculation

Al

P Aoo .
rmrMan » Al VimrGun)

20
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57 365'm'S 1
-3 §(2J+1)_[JJMM MM 0 ]

M'M ey — —
Mu'u (Ssm'TM'25 SsMT Mi20)

Abo e :
x(wT—Tm;.N ,[3.2 ] wm.rm,,'N)h Zril @) @) (3.46)

The matrix (Sym'Ti# 25 SiMTH20) €Xpresses the electric quadrupole selection rules
w.r.t. the group SO(3)":

AL AT=0,1,22,J=01=0,J=0«T=1
M=M+o0,0=~2,-1,0,+1,42
Ayy: AT=0,aM=0.

The quantity
(Ji
e (3.47)

again expresses the quadrupole selection rules w.r.t. 5% which explicitely read

) «s p)
H —n

It should be pointed out that the polarizability tensor of a SRM may exhibit a more
complicated transformation behavior than expressed by Eq. (3.47). This goes back
to the fact, that the polarizability tensor involves all electronic states and the latter
do not necessarily all have the same isometric group.

3.4 Chirality of Nonrigid Molecules

The isometric group allows treatment of a number of geometrical problems inherent
to SRMs in strict analogy to the group theoretical methods involving the covering
symmetry group used for such problems connected with quasirigid molecules. As an
important example, the chirality problem of quasirigid molecules should be men-
tioned, which has been solved most precisely by Kelvin’s theorem*?), According to
this theorem, a quasirigid molecule is chiral, if its re-structure is improperly congruent
with its mirror image. Obviously, it is not possible to apply Kelvin’s theorem to non-
rigid molecules in a straightforward manner. Nevertheless, it has been applied exten-
sively to nonrigid molecules by considering the covering symmetry of particular NCs
of nonrigid molecules, i.e. fixed point configurations in the terminology of this work
(cf. Sect. 2.2.3.1). If such NCs with covering operations of the second kind
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TGyl = 1)1 exist, the nonrigid molecule has commonly been considered as
achiral*?). Although this criterion leads to correct results in many cases, Mislow has
shown that there exist cases where the method contradicts experimental findings, e.g.
for molecules of the type

NS A

F~< SO

C.\ C

/

B B
X X

For sufficiently bulky substituents X hindering the internal rotation around the C—C
bond between the two phenyl rings and implying a perpendicular conformation of the
biphenyl system, there exist no values of the internal rotation angles of the two end-
groups CABC leading to a NC with nontrivial covering symmetry. According to the
fixed point criterion this molecule should be chiral. This contradicts the experimental
finding of Mislow, who found the system to be achiral**—47),

Basing on the isometric group concept Frei et al.*® have given a generalization of
Kelvins theorem to SRMs and nonrigid molecules (NRM). It may serve as an example
for the analogy between the role played by the covering symmetry groups of the re-
structures of quasirigid molecules and the isometric group of the SRM associated to
a NRM, cf. Sect. 4.2.

3.4.1 Theorem for the Chirality of Nonrigid Molecules

First we define: a nonrigid molecule approximated by a SRM with finite internal
coordinates will be called chiral, if both conditions (i), (ii) are fullfilled:

(i) no NC in the continuous set of all NC {X(¥), Zy, My} may be mapped onto
its mirror image by rotations and translations.

(ii) No NC of this set may be transformed into its mirror image by isometric
transformations ¢’ = F(§), F€ # (§).

This definition is consistent with the definition of the chirality of rigid mole-
cules and forms a sufficient and necessary condition for the optical activity of NRMs.
The generalization of Kelvin's theorem for NRMs may be stated as:

a NRM is chiral, if the group ['® { &} is properly orthogonal.
The following corollaries hold:

@) if '® {@ } is improperly orthogonal, then every NC {X (£), Zi, My} is
properly congruent with its mirror image and therefore achiral.

(ii) If the group I'® {%"} is improperly orthogonal and if an isometric trans-
formation F with improperly orthogonal I'®)(F) has a fixed point, then the
NC {Xk(tr), Zy, My} has covering symmetry of the second kind and therefore is
achiral.

11 Le., reflections, inversions and rotation-reflections,
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The theorem may be suppiemented by a few comments:

(i) the theorem shows explicitely the analogy of the roles of the covering sym-
metry group and the group I'®) { &’} for rigid and nonrigid molecules, respectively.

(ii) The first corollary is a strict analogy for rigid molecules.

(iii) The corollary (ii) is the basis of the conventional procedure for determina-
tion of the chirality of NRMs by fixed point nuclear configurations.

i) if '® {7} is improperly orthogonal and if it contains improperly ortho-
gonal elements without fixed points the conventional procedure fails. Mislow’s mole-
cules are typical examples of this case, as will be demonstrated in the next section.

It should be pointed out that the chirality problem is based entirely on the con-
cept of RNCs. This immediately implies that for its treatment the isometric group
F (£)(F (¥)) is sufficient and the primitive period isometries may be omitted.

3.4.2 Examples

From the examples for construction of isometric groups given in Sect. 2.4, the three
SRMs
(i) DoyF(C,TR)}C,TS)
(i) D,gF(C1TR)(C,TS)
(iii) D,4F (C, TR),
will be used for illustration of the theorem given above.
(i) SRMs of type Do, F(C;TR)(C,TS): the isometric group has been given in
Table 7. The group I'® { %"} may be taken as

<7<+

N
S|

1
ro oy = a9, r‘”(S§z)=[ ! ];—
-1

or PO {#}= 1@ 13 0< 7 <7}
ie. TP {x}=Cor I'® {7} =C;

Hence I'® { %} contains an operation of the second kind (center of symmetry or
plane of symmetry, respectively), therefore, according to the theorem molecules of
this type are achiral. The isometric transformation F has a fixed point

According to theorem 2.2.3.1 there belong NCs with C, or C; covering symmetry to
these fixed points. They are shown schematically in Fig. 7. The role of the primitive
period isometric transformation F3 has been discussed in Sect. 2.4 and is illustrated
in a suggestive manner by Fig. 2.

(ii) SRMs of the type D3 F(C,TR)(C,TS): the isometric group of the more
general SRM D, (7) F(C; TR)(CTS) has been discussed in Sect. 2.4. The isometric
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f f

e1 €y

Fo Hy

=0 T=

Fig. 7. Fixed point NCs of Do, F(C;TR)(C,TS) system

Table 16. Isometric group of the D4F(C; TR)(C TS) system
Gvg,v1) £ F, Flvg, o2 B

Operator AN E p(NCH { 10
E 1. . M1 ] ’- 1 .
.1 1 1.
.. 1 . e R |
F, Lol T - T -t
-1 . x l )
Co1 L cd L 0
F3 1. o] M1 ] -1 -
A 1 i St
R - = L. .1
Fa D1 ] - 1.
-1 . . I B e
.. 1 - 4 L. .-1

% Representation of # by substitutions of the internal coordinates:

vo] [am am] [vo
0 B S I I

b Representation generated by the vectors ito(uo), ;(tl(l’l) of a set of
equivalent nuclei originating from the two equivalent tops (see Fig. 5a).

group of the SRM D,4F(C, TR}(C; TS) may be obtained from the group listed in
Table 11 by freezing the internal rotation angle 7 to the fixed value 7 = n/4. Physically
the freezing process may be achieved by introduction of bulky substituents in the o, o’
positions of the biphenyl system#4 45), The resulting isometric group is given in

Table 16. From the representation rNeh {% } we conclude
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-1 .
r(3){‘9zf}=s4:={1 . .) 1k=0,1,2,3
|

k
diFrs e, :=l 1 _.1~1} lk=0,1,2,3
o |

G (vg,v1)=C,;

hence, since S; is improperly orthogonal, the SRM D, 4F(C;TR)(C,TS) is achiral.
However, none of the isometric transformations of &/ {.% } has a fixed point, hence
there exists no NC with second kind covering symmetry. The application of the
conventional procedure (search for symmetric NCs) however would predict this SRM
to be chiral in contradiction to experimental findings and the chirality theorem 3.4.1.

(iii) SRMs of type D,4F(C,TR),: from Table 12 of Sect. 2.4. it follows imme-
diately that

r'®(%}=D,

hence, SRMs of this type are chiral.

The foregoing discussion shows that the criterion of symmetric NCs does not
allow a general decision about the chirality of NRMs. This is the consequence of the
fact that isometric transformations do not have fixed points in general. However, the
group I'® (%"} allows a decision about the chirality of SRMs in a simple way, which
moreover is strictly analogous to Kelvin’s symmetry criterion for quasirigid molecules.
One may take this analogy as a further illustration for the fact that the isometric
group is a generalization of the conventional symmetry concept of rigid molecules.

3.5 Enumeration and Classification of Conformational Isomers

The isometric group of SRMs has been used for enumeration of the conformational
isomers of NRMs*9), From the point of view of permutational symmetry, this prob-
lem has been treated by Mislow et al.5?. The problem of enumeration of permuta-
tional isomers of rigid molecules has been studied by Polya®!) and more generally by
Ruch et al.52). The determination of classes and number of permutational isomers of
molecules with a nonrigid skeleton has been attacked by Leonard’? 59,

Before presenting an enumeration method based on the isometric group of SRMs
the more important assumptions underlying the method should be mentioned:

(i) the method is first formulated for isotopic substitutions. Within the frame-
work of the Bom-Oppenheimer approximation all isotopic modifications of a SRM
(NRM3 have identical sets of NC {Xi (%), Z, }'? and the same electronic energy func-
tion €”(£).

12 The nuclei valued by the charge number Z only.
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(ii) For the sake of enumeration of conformational isomers any conceivable, not
necessarily isotopic substitution of a nucleus of a SRM is assumed to leave the energy
function essentially unchanged, i.e. all conceivable substitution products are assumed
to be describable by the same type of SRM. This amounts to an approximate treat-
ment of all conceivable substitution products of a NRM as isotopic modifications.
Within the framework of assumption (i} the number of isotopic isomers may be
derived. Therefrom a survey over the set of different rotational or vibrational spectra
of the isotopic modifications of a SRM with localized r,-structures may be produced.

3.5.1 Enumeration Theorem for Conformational Isomers

We first consider the internal isometric group £ (£) of a SRM defined by the set of
nuclear configurations NC {Xj (§), Z }. The isometric group of an isotopic modifica-
tion of this SRM defined by the set NC {Xy (¥), Zy, My } is 7 (§),

FECZE) (3.48)13

The maximum number of isometric re-structures NC {Xy (£¢), Zi } equals 1Z(%)!.
This set of re-structures decomposes for each particular isotopic modification
NC {Xg(£), Zix, M} into subsets of isomers (nonisometric NCs). Each isomer is
associated with a coset of the decomposition of & (£) modulo 7 (£) (e = 1Z($)I,
f= 17D

e/f
FE)= U7 @) E (349)

the elements of a coset F (£) - Ey representing isometric NC {Xy(%e), Zix, Mg}
The number of isometric ro-structures NC {Xy(£e), Zy} may be a submultiple
of 1&(£)!, namely if the set of internal coordinates of the r-structure of
NC {Xg (), Zy} is a fixed point §g of &' = E(§), £ =E,(£), . .. . In this case the
number of isometric ro-structures NC {X(£g), Z,} is |E(E)I/I1€ (£) | where |Z (§)is
the order of the group % generated by the periods of &' =E,(¥), £ = E,(8), ... .
The set

M = { NC{Xy(£e), Zx, My} (Ele) =5/ (Fg) ‘VQ/(Ci)(gle) JFEF(§),CE %(E)}
(3.50)

is a set of isometric r.-structures, since by definition
A(C) (Ele) = (Ele)

13 Since the problem of conformational isomerism is entirely a question of relative nuclear con-
figuration, primitive period isometric transformations have to be omitted.
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i.e. all elements of the complex ¥ () - & (£) produce the set M, . F(£) - 4(§)
is in general not a group. To each double coset of the decomposition of # (¥) mod

(5. ©)
#)= U5 OEFE) (351)

represented by the element E; € #(£) there corresponds the set of NCs

M= N O, 2, Mk}l(%) =54 (Fy) -/ (B) - o/ (C) (ﬁ)

Fr €7 (5),CEZ(§) } (3.52)

which all are isometric among themselves and isomeric to the NC € 1M, j #i. There
fore the number of different isomeric sets IM; of NC {Xy (£,), Zy, M} equals the
number of double cosets of the decomposition (3.51). Ruch et al.52) have given for
this number the formula

0= 13 I FNENNENE | (3.53)
LF 1 1€ =1 |Z

where &, is the rth class of conjugate elements of & and the sum is over all classes
of Z. Since the NC {Xy(F~}(£)), Zx, My}, VF € F (£) are either properly or im-
properly congruent n is the number of diastereomers. If we consider the subgroup

FrE CF ),
FHE) := (FIFE 7 (), ITCF)=+1} (3.54)

the NC (X (F~1(£)), Zi, My}, VF €.F * () are all properly congruent and the

number n* of double cosets in the decomposition

l'l+

F=UF " E-F (3.51"
k=1

is the number of stereoisomeric NCs. Therefore, for SRMs with improperly ortho-
gonal group ' {#"} n* —n is equal to the number of enantiometric pairs of NCs
and 2n — n" equals the number of achiral isomers.

3.5.2 Example

The enumeration method outlined above will be illustrated by determining the num-
ber of isomers of various isotopic modifications of diphenylmethane CH,(C¢Hjs),,
assuming various equilibrium values for the internal coordinates. The normal iso-

topic modification of this nonrigid molecule, and at the same time NC {X (79, 71), Zx },
may be approximated by the SRM C, ,F(C,,T),; another molecule of this type is dini-
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53 (a) definition of the internal coordinates
—n <719, 71 < +7. (b) definition of the
b molecule fixed coordinate system

tromethane, CH;(NO5),. Figure 8 depicts the choice of the internal coordinates and
the frame fixed coordinate system. The internal isometric group % (14, 7;) = {F}
with

7o To
T'l =‘9/ (F) 71l » F eﬁ-’
1 1

possesses three generators

.1 .o -1 . =
Cl1 . n,S8]1 . =|, T: e N §
R | N | |

with the relations
C*'=52=T%2=E,SCk=C%§, TS =ST, TC=CT

Thus, # (1, 71) of the normal isotope and therefore the group & (rq, 7,) is iso-
morphic to the point group Dgyy,

% (ro, 70) TUCK USIC) - (E D ¥ 9, (B, T)
A NC with arbitrary 74 and 7, does not possess covering symmetry, therefore
%(19,7,)=Cy

The representation '3 { %'} which immediately gives the covering symmetries of the
fixed point NCs NC{Xy{(7or, 71£)» Zk } is the point group C,,
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) ;={(11 1)’ (_1 - 1)’(1 - 1)’ (_1 ! 1) }=C2V

The SRMs of isotopic modifications of diphenylmethane. e.g. C;,F(C,,T)(C,T),
CoyF(CT),, CoyF(C,TH(CT)', CsF(CoyTHCsT) are all descendents of the

SRM C,,F(C,,T), of the normal isotope featuring the highest symmetry, and their
internal isometric group % (7, 7,) is a subgroup of # (74, 71). The number of isomers
of each isotope depends not only on ¥ (7¢, 7, ) but also on the re-values 74, 7;¢ of the
internal coordinates, i.e. on the covering group & (7ge, T1¢) Of the unsubstituted
re-structure NC {Xy (Tge, Tye), Zi }. Table 17 shows this dependence of the number

of diasteromers (n) and stereoisomers (n*) for various isotopic modifications.

4 Discussion

In this chapter a few remarks will be stated and relations and extensions of the iso-
metric group concept of semirigid models will be discussed in the following sequence

(i) relation of the isometric group concept to the familiar symmetry concept of
quasirigid molecules

(ii) relation of the isometric group of a semirigid model to the isometric group
of the associated nonrigid molecule R

(iii) remarks concerning the definition of operators Pg for semirigid, quasirigid
and nonrigid molecules

(iv) remarks concerning the relation of the isometric group to other approaches
to the symmetry of nonrigid molecules.

4.1 Isometric Transformations Associated with Quasirigid Molecules

In this section we will show that our group theoretical treatment for nonrigid mole-
cules, approximated by a SRM is strictly analogous to the familiar symmetry treat-
ment of quasirigid molecules (QRM)*5~57), A QRM may be characterized by the
nuclear configurations

NC{Xge + X1, Zy, My } “.1)

where the vectors xi denote infinitesimal displacements of the nuclei from their
equilibrium positions Xy.. “Infinitesimal” means

Pk — dygre| < digere (4.2)
Assume the equilibrium nuclear configuration

NCC {xkey Zk, Mk} (43)
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to have covering symmetry ¥,; then, for arbitrary values of the displacements
x,(k€[1,K], K >4), NC(4.1) does rot possess covering symmetry

G (x)=Cy (4.4)
whereas
%G (0)= %,

i.e. the NC with x; =X, =...=xg =0 defines a fixed point NC with covering
symmetry <, in the sense as defined for SRMs, cf. Sect. 2.2.3.1. Though Eq. (4.4)
shows that w.r.t. NC (4.1) we are exclusively concerned with internal isometric
transformations they will nevertheless be denoted by G since they are a direct conse-
quence of 4.

To the coordinate transformations

(x) =T G)(x) B =¢F - T®(G)) (4.5)

Pa
expressing the covering symmetry of NC, are associated operators Pg acting in the
function space

L{f(x); f(x)=f(xy,...,X3K)
Pof(x) = £(MND(G)~1(x)) (4.6)

In particular, for the set of all displacements x arranged in a row

Po{Xi}= Ko - TP(G)) = (K} 1(G) e TO(G)
= (%} - TNO(G) 4.7
where [1(G) denotes a K by K permutation matrix. This matrix may be specified by
requiring that the distance f’Gdkkl(x) is identical with one of the distances of the set
K(dy(x)), say dgg(x).
Podii (x) = ﬁ G((m) (Xke + xx — Xye — X))
= P (ke — Xice) ke = Xice) +2 (5 — X0) (Ko — Xice) +
o + (= %) Ok — X))
= (Xye — Xioe) Kk — Xice) + 2 (X6x — %81 T (G) (Ko — Xire)
+(Xak — x60) T (G T®(G) (xgk — xéx)
= die (%) = Ko — Xia) (Xe — Xo) + 2 (5 T MK - X +
+(x —x0) (k- xg)  (48)

Therefore, since all x are arbitrary, the equation

I®(G) (Xe — Xie) = (Xie — Xrve) (4.9)
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determines the permutation matrix I(G) in Eq. (4.7).
The matrix group

{ %} = {G)IV GE %} ¥ @ (4.10)

is in general an intransitive permutation group isomorphic to <, each set of equiv-
alent nuclei contributing a transitive component. Thereby the transitive components
generated by sets in general site w.r.t. &, are identical with the regular representation
of %, generated by right translation'® 2",

The representation

M0 { %} = (G) e IV(G)IvGE %} @.11)

is isomorphic to &, since both the permutational factor I1{,} and the rotational
factor I'®) {4 } are isomorphic to . Application of the transformation group
I'NCD {41 to the basis {X} yields, according to the construction principle fixed
by Egs. (4.7)—(4.9)

Kke) = Kyel T(G) e T(G), VG € &, 4.12)

This equation again shows that the r-structure NC, is a fixed point NC for all iso-
metric transformations (4.7} and is the analogue of Eq. (2.53) for SRMs. However,
for difference concerning the definition of operators B for SRMs and QRMs see
Sect. 4.3. o

Application of the operators Pg to the nuclear coordinate vectors expressed
w.r.t. the LS, Xk(e x) = Xle(e) + xk (€), leads to an analogue of the permutation-
inversion group [cf. Eq. (2.89)]

B Xk ()} = Po (i} 190 @ R(e) = (Rh(e)} 1(G) @ I TONG)I 1@
= Zk(e)} TNV G), vG € %, (4.13)

This transformation formula formed the starting point for the study of the symmetry
of nonrigid molecules by Hougen® and later more generally by Longuet-Higgins?), cf.
Sect. 4.4.1.

From the fact that T®NCD () s the isometric group of the NC (4.1) it follows
by the same reasoning as for SRMs that %, is the symmetry group of the rotation-
vibration hamiltonian. Though the representation (4.11) is commonly used in vibra-
tional spectroscopy >~ 57 it only seldom has been characterized as a group of iso-
metric transformations®”,

A further point of interest is the transformation law for vector (tensor) operators
w.r.t. the laboratory system. For the electric dipole moment one may show by the
same arguments as used for the case of SRMs*") that

Po(MP(x)) P5! = T O (G)MP*(x) (4.14)
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Hence,

Po(MMPMPG! = BoR (e (MEHPG!
=R(©OREG)TO GO
=R(e) T®(G)! (M1
= | PONG (MY (4.15)

Equation (4.15) is strictly analogous to Eq. (3.37) for SRMs. It plays therefore the
same role in formulation of Wigner-Eckart theorems and selection rules for rotating-
vibrating molecules as does Eq. (3.37) for SRMs.

4.2 Relation Between the Isometric Groups of a Nonrigid Molecule and Its
Associated Semirigid Model

A NRM may be characterized by the NCs
NC{XK(E)+XK’ Zka Mk}ske[lsK] (4.16)

Thereby, each coordinate vector is assumed to be the sum of a vector Xy (¥) depend-
ing on the finite internal coordinates £,, . . ., & and an infinitesimal displacement
xy. The fact that a redundant set of coordinates, i.e. f finite coordinates ¥ and 3K
displacements x are associated with NC (4.16) does not affect our discussion of the
isometries of the NRM. To the NRM (4.16) there is associated a SRM defined by

NC{XR(E)’ Zk, Mk} (417)

£ denoting the same set of finite internal coordinates as for NC (4.16). The SRM
(4.17) possesses the internal isometric group ¥ (£), the covering group @ (&) and
the full isometric group & (£) = F (£) - < (¥). One immediately may state that the
NRM (4.16) does not possess nontrivial covering symmetry & (¢, x)if K >4

@(23 X)=C1 (418)
and
@ (£, 0)= 4(3)

i.e. the NC (4.17) (x; =x, =...=xg =0) is a fixed point NC with covering sym-
metry & (£). Equation (4.18) is strictly analogous to Eq. (4.4) for QRMs and illus-
trates the similarity of the roles which the r.-structure and the SRM play for the
symmetry of QRMs and NRMs, respectively. The last statement suggests a construc-
tion of the isometric group of the NRM, whose elements are of type

83



H. Frei, A. Bauder, and H, Giinthard

£ A 0 a £
x']= .Mer® O:I' [x] 4.19)
1 1 1

by aid of the isometries of the associated SRM:
(ixA 'NC (4.16) with arbitrary but fixed values of the internal coordinates &
possesses the isometric transformations

g 10 0 0][¢
x'|= G ereG) o |-l x (4.20)
1 1d L1

with G €4 (&), corresponding to Eq. (4.7) for QRMs. Therefore, the set

l 4 10 0 07t n
] X{=]. MG er®Gyo [x] VG EeG(E) (= E(&) (4.21)
1 : 1J L1

forms a subgroup of the isometric group of NC (4.16) isomorphic to & (£). The
matrices I[1(G) @ '®)(G) are identical with those given by Eq. (2.53) for SRMs, cf.

Eq. (4.29).

(it) Next we consider the group of isometric transformations

] [a® o a(Fy] [& ]
x'|= NE)erPF) 0 || x IVFEF (®) 4.22)

l 1 1 1 I
Thereby, (AéF) a(lF)) € s/{ 7} Eq. (2.10) and I1I(F) e T®)(F) e T NED { 57}

Egs. (2.13), (2.80) for SRMs. It is easily shown that all transformations of the set
(4.22) are isometries of NC (4.16) -

AR (&, x) = X (8) + xg — Xyer(®) — % 2
= (RielB) = Ko (8) (Xeel®) — Xye(8)
+ 2. (g — %10) (Xac(8) — X (8)) + (R — Xi) (X = Xie)
= Do () + 2 (xx — Xie) (Xie(®) — Xie(8)) + (X — X (Xic — Xie)

Application of the operators ﬁF associated with transformations of type (4.22) to
diy (8, x) gives

Pr dj (5, %) = D2 (5)
+2(5g —xg) IO ETO(F) (Xg (¢) — X' (1)
+(kg —x) PO BT OF) (x5 - xx)
= dfp (£, %)
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Hence, the set (4.22) forms a group of isometric transformations of the NRM iso-
morphic to F ().

(i) The semidirect product of the two matrix groups (4.21) and (4.22) generates
a group ¥ (£, x) of isometric transformations of NC (4.16) isomorphic to S#(§) of
NC (4.17). There cannot exist an isometric transformation of the NRM with non-
trivial &/ (H) not contained in & (£, x), because for any isometry (4.19) not con-
tained in (¢, x),

g _[Aa] s
HERH 429
would be an isometry of the associated SRM, in contradiction to the assumption.
Therefore, we have the important theorem:
The isometric group S (£, x) of a nonrigid molecule is isomorphic to the isometric
group & (£) of the associated SRM.
Representations of 5#°(£, x) on various substrates may be generated along the

procedures outlined in Chap. 2. The representation of 5 (£, x) on the nuclear posi-
tion vectors

r®NCH (o) = (I(H) s TAH)| VH € F(£, x)} (4.26)

is identical with the representation P'™N¢P {2} Eq. (2.73) of the associated SRM,
i.e. with the set of solutions (2.70) of Eq. (2.69)

e {5 (¢, ) = TN (¢ (9)} (4.27)

This follows from the isomorphism between 5 (£, x) and 57 (£) and the fact that
Xk (¥) and xj, in the sum X (£) + x; must experience the same permutation and rota-
tion under an isometric transformation

Py (X ® F 3) = (Xu(®) * 1 1) 9 POH)
= (X (©)I(H) e T H) + (%, }(H) @ TO(H)
VHE S (£, %) (4.28)

In particular, for any H € % (£)

Pg (X (® * %} = ZKi(®HIG) 8 TG + {FHI(G) 8T O(G)
= {Xg(H)} + {X,HI(G) o TP(G) (4.29)

cf. Eq. (2.53) for SRMs and Eq. (4.7) for QRMs. Equation (4.29) expresses that any
NC of a SRM is a fixed point NC w.r.t. all isometric transformations of type (4.21)

of the associated NRM. For difference in definition of the operators ﬁG for SRMs

and NRMs, cf. Sect. 4.3. Because the representation I'™NCP of associated NRMs and
SRM:s are identical [Eq. (4.27)}, the representation I'NCD of NRM and SRM must be
identical too. Therefore, the relation between isometric group and permutation-inversion
group & of NRMs is the same as for the associated SRMs
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rNe (e, 0} E 7 o Bow (g, x) (4.30)
if no primitive period isometric transformation occurs in 5 (£, x), and
PN (g, 0} 2 7 9 2 5 (6,00 (4301

if 5 (¢, x) contains primitive period transformations, cf. Sect. 2.3.3. It may be
shown by the same technique as used for SRMs'¥ that S (&, x) is a symmetry
group of the rotation-finite internal motion-vibration hamiltonian.

To complete the discussion on the symmetry of QRMs and NRM:s it is interesting
to point out the analogy between the covering group &, of the r-structure of a
QRM and the isometric group S#°(£) of the SRM associated with a NRM

QRM: % (x) & A

is (4.31)
NRM: 57 (£, x) = #(§)

These relations show that the isometric group of a SRM plays the same role for a
NRM as the covering symmetry group of the re-structure plays for a QRM.

4.3 Remarks Concerning the Definition of Operators i’G

A remark should be made concerning the definition of operators f’G for semirigid,
quasirigid and nonrigid molecules. These operators are associated with coordinate
transformations

(X') = I'(G)(X) (4.32)
the covering group being defined by the set

roe) e @ (4.33)

The actual definition of the operators ﬁG for SRMs differs from that for QRMs and
NRMs. This originates from the fact that these operators are defined by their action
in function spaces which are different for SRMs on one hand and QRMs and NRMs
on the other hand. For SRMs the basis is {Xk(E)} , on which PG induces a rotation
ora permutatlonzo)

Po Xe(®) = Ki®} 1 @ 1O(G) = (Xi(5)}A(G) 1@

or B¢ (X(®)} = Ki(®)}I(G) 19

Therefore Bofg! (X, (§)} = Xu(®)} = Xi(BIAG™") eI (G)
AGH=1I(G)

(4.34)
(4.36)

For QRMs and NRMs, the operators ﬁG are defined by their action on the dynamical
variables xy (infinitesimal displacements)
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Bg (%} = (FJ(G) e TO(G) (4.37)
with the consequence that

QRM: g (Xice} = (Kiee) = (Kie} 11(G) e TO(Q) (438)
NRM: Bg {Xi (5} = {Xi(®)} = X(®)}TI(G) e T(G) (4.39)

cf. Eqs. (4.12) and (4.29). Equations (4.36) and (4.39) clearly show the difference
in the definition of Pg for SRMs and NMRs, respectively.

4.4 Relation of the Isometric Group to Other Approaches
4.4.1 Hougen’s Approach and the Longuet-Higgins Permutation-Inversion Group

As mentioned in the introduction, a first attempt to create a symmetry concept for
nonrigid molecules has been given by Hougen® 58), though the approach strictly
speaking applies only to quasirigid molecules or more precisely to molecules with
one rg-structure only. The most important result achieved by this approach is, in our
view, the demonstration of the fact, that the rotation-vibration-nuclear spin states
may be exhaustively classified in terms of the covering symmetry group of the
re-structure. By consideration of the transformatipn properties of the displacement
vectors x; expressed w.r.t. the laboratory system, anequation of the form 4.13)
has been obtained. It forms a group which may properly be called the permutation-
inversion group of QRMs. Hougen’s work formed the starting point of the permuta-
tion-inversion approach introduced by Longuet-Higgins ™.

The Longuet-Higgins approach has already been discussed in the introduction
and a direct relation between the konguet-Higgins approach’and the isometric group
concept has been established by the representation INCD { 5} derived in Sects. 2.3
and 4.2. The discussion presented there made it clear that the two groups (Longuet-
Higgins group and isometric group) in general are homomorphic. However, a recon-
struction of transformation properties of eulerian angles and internal coordinates
expressed in the frame system is not uniquely possible from r®Neh {&#} alone. By
the isometric group concept, such reconstructions are rigorously provided through
the representations I'(- "% ) {5¢°} and TNCD (5},

4.4.2 Relation to Altmann’s Approach

A constructive relation of the isometric group concept to Altmann’s approach® %
in the manner given to Longuet-Higgins’ approach would be desirable but appears
difficult to be established for the following reasons:

(i) Altmann’s Schrodinger group corresponds apparently to the covering group
& (§) (covering group of a “random structure™), the “Schrodinger Supergroup” may
be considered as the analogue of the full isometric group S#°(£). The group extension
from the Schrodinger group to the supergroup involves isodynamic operations. Though
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the latter should correspond to the internal isometric transformations, mathematical
formulation of the correspondence is not possible, since no definition of the iso-
dynamic operations beyond symbolic operations has to our knowledge been given.

(ii) In certain cases Altmann has proposed for a given SRM several isomorphic
supergroups. It has earlier been shown that this phenomenon finds a natural explana-
tion as being automorphisms of the isometric group, induced by transformations of
the internal coordinates, which interrelate isometric fixed point NCs. The latter
correspond to Altmann’s “ordered structures”.

(iii) Altmann forwarded the theorem, that the supergroup is always a semidirect
product, in which the isodynamic group I plays the role of a normal subgroup. The
theorem has been questioned by Watson by presentation of a counter example59).
Whereas the isometric group has been shown to be decomposable as a semidirect
product with the covering group & (£) playing the role of the normal subgroup,
Altmann’s statement would require to prove the invariance of the group .7 (§).
This, however, cannot be proved and there exist examples which would contradict
a theorem of this kind, e.g. the ethylene type molecules discussed in Sect. 2.4.4.

4.4.3 Relation to the Direct Method

As has been mentioned in the introduction the first studies of the symmetry of the
rotation-large amplitude motion problem of nonrigid molecules were motivated by
spectroscopic investigations of molecules with symmetric internal rotors! '~ In
this approach the symmetry group of a model hamiltonian for the rotation-internal
motion problem is directly 1nvest1gated for the group of substitutions of the dynami-
cal variables leaving the hamiltonian H Eq. (3.10) symmetric®®. The relation of this
direct approach to the isometric group concept springs from the general theorem, that
every isometric transformation is a symmetry of the rotation-internal motion hamil-
tonlan”) Hence, the isometric group #° () is a (proper or improper) subgroup of

{H} In Sect. 3.2.1. special cases have been mentioned, where 5 (£) is a proper
subgroup of 2 {F1}. At the present time it appears difficult to derive general condi-
tions for () C ¥ {H}. Application of the direct method to many SRMs with two
symmetric internal rotors have recently been discussed by Dreizler26; 61),

Appendix 1

Rotation Matrix Parametrized by Eulerian Angles

The rotation matrix D(af+y) describing the relation of the laboratory coordinate
system'e and the frame system e Eq. (2.1.) is defined as follows (0 <a <27,
0<g<m, 0<v<2n). The rotation D(a00) transformse' to a new system'e’ by
rotating ¢! around the e'3 axis through « (s: sin, c: cos)

a —sa 0
'=¢! D(a00), D(a00)= |sa ca O (Al1.1)
0 01
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Coordinate transformation: X’ = R(200)X', R (@00) = D(:00) (Al1.1)

D(0B0) transforms ¢’ to a system'e" by rotating e around the axis e, through 8

cf 0 s8

'e" =¢" D(0B0), D(00) = [ 01 o] (A1.2)
—sf O cf

Coordinate transformation: X" = R(080)X', R(060) = D(080) (A1.2)

D(007) transforms €" to the system € by rotating €” around the axis e} through y

cy —sy O
eT=2" D(00y), D(00Y)= | sy ¢y O (A1.3)
4] 01
X = R(007) X", R(007) = D(00) (A1.3)
Therefore,
et =T D(«00) D(0F0) D(00y) ='¢' D(aBy) (A14)
X' = R(aBy) X', R(aBY) = D(afy) (A14)
cacfcy—sasy —cacfsy—sacy casB
D(afv) =| sacBcytcasy —sacBsy +cacy sasp (A1.5)
—sficy s@sy cff
Appendix 2
Transformation Formula for Rotation Group Coefficients
To prove Eqgs. (2.88) and (2.91)
B, R(e)=R(H) - R(e), HE (%) (A2.1)
and the more general formula (3.33")
Py DEI(e) = DEVH)T - DE(e) (A2.1)

we start again from the relation between laboratory and frame coordinate system
&' =% D(e) (A2.2)

According to Egs. (2.25) and (2.61) isorEetﬁc transformations induce transformations
of the frame system as follows (D(H) = ' ®(H) = D(ey)ID(H)!)
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" =%'D(e) D(H) = &' D(e)D(eyy) D(H)! (A23)
="¢! D(€'(e, ) D)
where D(H) € O(3), D(¢) €S0(3)
To this equation which defines transformations of the eulerian angles
€ =€'(e, ey) (A24)

is associated the coordinate transformation of a vector X € &7 3(R(e) = B(G))

X = ITOMH)- R(en)REXF
= ITO(H)|- R(€'(e, e )) (X (A2.5)

Since X is an arbitrary vector
R(€'(e, en)) = R(en)R(e) (A2.6)

Denoting the rotation parameters of the product R(ey) - R(¢) by p(ey, €) this trans-
formation may be written as

€ = p(ey, €) (A24)

with R(p(en, €)) = R(en) - R(¢).

A
To this transformation we associate the operator Py acting on the linear space
IL{u(¢)} by the usual convention'®

A

Pru(p(er, €)) = u(e), (A2.7)
Pru(e) = u@ (e, ©),

where p~!(eF, €) denotes the inverse of p(ef, €) W.I.t. €, i.e. the rotation parameters

of the matrix R™!(eg)R(e).
Application of this general formalism to the rotation matrix R(¢) € SO(3) yields

PeR{p(R(er)R(e)} = P R(ep)R(e)
= R(ef) f’FR(e) =R(e),i.e.
Pr R(e) = R(ep) 'R(e) (A2.8)

or for the irreducible representation D! Y)(e) = TR(€) T of SO(3) (the matrix T is
given explicitely in Sect. 3.3.1)

Py DUM(e) = PyTR(e) TT = TR(eyy)'R(e) TT
Thus Py D *(e) = D))t DU H(e) (A2.8")
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More generally for any representation of SO(3) we have the fundamental formula

Py DED(e) = DEI(H)T DEH(e) (A2.8")

Appendix 3

Determination of "NCO)(F) for SRMs with Proper Covering Group % (£)

In this appendix determination of the representation I"™CP {5} by solving
Eq. (2.69)

e (X®) = Ku(F 1)) = KB HI(F) 0 TO(F)

will explicitely be demonstrated for the isometric transformation F, of the SRM
thF(szT)z (SeCt. 244’.)

P Xaun(1) = Xoguu(=7) = Xpvr' ' (1) TO(E,)

Explicitely

_ [ T o= s(=r) 0 l 1 A
%(001)+x:,00 D)t —s(=1) c(=1) 0 -1 =
1 0 0 1 ] -1
T ~ [ . cr st 0 l 1 A
=17 (001) + Xbgo (—1F*» ~7 cr 0 -1 - TOF,)
1iJLo o 1 ] -1

Since X} is arbitrary, one may conclude

1 X[er ~sr 0[(=1)¥ (—1)*
1*3)(1:2):[ -1 ] [sr er 0][ (-1)#'*"’] [ (—1)m*? ]
-1J Lo o1 ! I
cr —s7 0 1 A ay;; a1z a3
X [sr cT 0][ -1 ] = [321 azy 82-3]
0 0 1 -1 a3y a3z dass

a;; = (“1)F*E e+ (—LE Rt 2

Ay = (“DE AT gp op b (LRI L o o0
a;3=0

a5y = (~DF TN 5 er 4 (=1 HPPPAN o
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25 = (—=1)H UENAARL 20 (_l)u’+u+u'+v+)\ A2,

ay3=az; =a3; =0
- +A'
azz = (~1M*

This matrix must be independent of 7, implying v’ = v + 1. Therefore,

(1w o 0 0
F(3)(F2) - 0 (—1)" +utA+A+1 0
0 0 (_1))\ +A

Furthermore, it must be independent of A, X, 4, &'. This requirement leads to the
following 4 solutions:

1
v'=v+l,x'=x,u'=u:(maumsvw)@[ B ]
1

VEr+ LN = =pt 1 i (Gnadypue18upi1) @ 1

[1 ]
V'=V+1:)\'=)\+1:“'=#:(6?\'A+16u'p6v'v+l)® 1

-1
V’=V+1,>\’=>\+1,#’=M+l3(5A’>\+15u‘p+1‘sv'u+l)®[ -1 ]
-1

The first factor of the direct products denotes a 8 by 8 permutation matrix. If the
position vectors are arranged in the order

{Xawr} = {Xo00Xo001Xo010X011X100X101 X110X111 1

it reads, e.g.

(87\'7\+15u'u50'u+ )=
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Relation Between Irreducible Spherical and Cartesian Components of a Symmetric
Tensor of Rank 2

The symmetric part of the Kronecker square R®2, R € O(3) may be calculated by
direct reduction of R®?2

ZR®*Z

Rs®2 .
= . Ra®2

where R*®? is a 6 by 6 matrix given by

RSQZ =

[ RL R,
R3, R%,
R}, R3,
VZR Ry, V2Ry3Ry;
V2R;Ry  VZRyR3,
_\/2—R11R31 V2 R2R3;

(A5.1)

Ri; V2R, R,
RI;  V2RuRy
R3:; VZRy Ry,
V2Ri3Rz;  RyRyp +RpRy,
V2Ra3R33 Ry iRy + RypRyy
VZRy3R33  RyRj; + RyzRy,
V2R3Ry; V2R 1Ry;
V2 Ry3Ry; V2 Ry1Ry;s
V2 R3;R35 V2 Rj3iRy3

Ri2R23 +Ry3R;
R22R33 + Ry3R3
Ri2R33 +R13Ry;

Ry(Ra3 + Ry3Ry;

R21R33 + Ry3R3

R;1R33 + Ry3Ry,
(AS.Z)J

and R*®? is the antisymmetric Kronecker square (3 by 3) matrix. Thereby the matrix

-

1

172

Vi

VT3 Wiv

VIR Vi3
1/2

.1 (AS5.3)

VI
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transforms the cartesian components of a general tensor (Af,,(£)) of rank 2
7\' _ N » A A e ” Py o~

Alo®) = (AL, AT, AT,A8, A5, A5;48,A%,A%;)

into symmetric (s) and antisymmetric (a) components

O

Moy = (of af af af of of
5 =6 1522853812833851)
Afrer — af af af

a'(t) = (412482385

The symmetric tensor (8(£)) is then transformed to irreducible spherical coordinates by

[ﬁf)o(é)
AL,(®)

with

]= T2 s)(gf(z)) (A5.9)

8-

o9 =] ' ' oV V2 (A5.6)

Wi

1 i
ik = —-= . - \/_—— . . ]
Appendix 5

Irreducible Representations of Frequently Occuring Isometric Groups

In this work the irreducible representations of the isometric groups occuring in
Tables 1, 2, 3, 14, 15 are denoted as follows:

73 E v,
o) 1
rlo-) 1 -1




The Isometric Group of Nonrigid Molecules

9y = 3 E Vs Vi Va
r+) () 1 1 1
(o) r(?) 1 1 -1 -1
) r(3 1 -1 1 -1
r(l-) r(4) 1 —1 -1
n _ n _

Oy, N = 2[—2—], =4 (neven),M=1,2,.. 3 ~1,k=0(1)n-1,p=27/n
O ck sck
riet) 1 1
r{o-) 1 -1
riM) cos ¢ kM - sin ¢ kM cos p kM — sin p kM

sing kM cos ¢ kM —sin g kM — cos ¢ kM

1‘([%] +) (~1)K -k
p([g] _) -1 —(~1)k

19n,n=2[—r21-]+1(nodd),M=1,2,...[%], k=0(1)n—1,p=2a/n

S ck sck

(o) 1 1

r{o-) 1 -1

(M) cos ¢ kM —sin ¢ kM cos ¢ kM —sin ¢ kM
sinp kM cos ¢ kM —sin ¢ kM —cos ¢ kM

Sy, (E, T) Groups

If T commutes with all G € §,, then the representations of ¢,(E, T) are obtained of
those of 9, by means of the factor group representations

rde) r{on} r{Te,}
Gi+) M {9,} @ {s,}

T T 9 r 4

rG-) ) {50} _[*(jg (5,)
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Structure of Molecules with Large Amplitude Motion
1 Introduction

During the last fifty years, since the famous experiment of Davisson and Germer!),

electron-diffraction methods have been widely in use for the study of structure of
matter on a molecular scale. The use of electron diffraction in the gas phase provided
an excellent method for the study of the structure of the free molecule. In the earlier
years of gas electron diffraction the concept “molecular structure” was in practice
synonymous with molecular geometry. The internal motion of the molecule was
almost considered by electron diffractionists as an unavoidable evil, a defect of
nature interfering unfortunately with the endeavor to determine molecular geo-
metry. In order to minimize the role of this “defect” it was found unseful to apply
spectroscopically obtained data on the internal motion of the molecule. The idea was
to correct for the effect of intramolecular motion, and thus try do develop a proce-
dure for obtaining the best geometric data for an idealized rigid molecular model.
However, the development of the electron-diffraction method for studies in the gas
phase soon changed the ambitions of the researchers using the method. The potenti-
ality of the method proved considerably greater than generally expected in the
earlier days of electron diffraction. The development of the method led to consider-
able improvement in the precision of intensity data measurements. Further dramati-
cally improved computing procedures made it possible to deduce the molecular data
latent in the measurements faster and with considerably greater reliability. Thus it
was soon evident that data characterizing intramolecular motion could also be
quantitatively obtained from electron-diffraction measurements. The concept “molec-
ular structure” in the modern practice of gas electron diffraction is accordingly no
longer restricted to geometry alone, but includes parameters describing internal
motion as well.

The internal motion of a polyatomic molecule is rather complex. In order to
understand its principles, it is convenient and customary to refer to the vibration of a
diatomic molecule. The internal motion in molecules has above all been studied
experimentally and theoretically by spectroscopists. The approach towards the study
of polyatomic molecules through diatomic molecules has been excellently demon-
strated by the two classical books of G. Herzberg, the first one dealing with diatomic
molecules?), the second one with polyatomic molecules®. Although these two
books should by now be hopelessly out of date, and in spite of the fact that they
have been succeeded by a series of up to date works, they can still be recommended
to to-day’s students.

The two key quantities in quantum mechanics are the eigenfunction and the
eigenvalue. While the eigenvalue, through energy difference, is the quantity that in
principle is attainable by spectroscopic studies, electron-diffraction studies in the gas
phase give information about the eigenfunction, or rather the square of the eigen-
function of the atom distribution. Let us take as an example a diatomic molecule.
The radial distribution curve as determined by gas electron diffraction, if properly
modified, is a description of the temperature average of the distance distribution in
the diatomic molecule (Fig. 1).

The position of the peak on a distance scale gives information of the internuclear
distance, and the shape of the peak itself is a representation of the weighted sum of
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12
(BIn2) u

0 50 100

R(pm) Fig. 1. Radial distribution curve for
H H a diatomic molecule (H,; R = 74,
u= 38,7 (pm))

the Y *y for the interatomic distance at the temperature of the experiment. The
radial distribution curve obtained by electron diffraction for a diatomic molecule
should in principle contain the data necessary for describing the molecular vibration,
including both the harmonic and the anharmonic contribution. However, the pre-
cision by which spectroscopic methods produce such data usunally exceeds what may
be attained by electron diffraction, at least for small molecules.

In the case of polyatomic molecules the radial distribution curve as deduced
from electron-diffraction gas experiments may also be considered as a kind of a
weighted sum of Y* curves for the internal motion in the molecule, but here all
internuclear distances are inseparably mixed together in a one-dimensional represen-
tation. For a “rigid’” molecule, such as carbon tetrachloride or benzene, electron
diffraction may produce quite accurate information as to the geometry of the mole-
cule. As to the internal motion of the molecule, vibrational amplitudes may be de-
duced and compared with the corresponding data, differently but usually consid-
erably more accurately, obtained by spectroscopic methods. How this is actually
done in practice is perhaps most elegantly described by S. Cyvin¥.

The concept “rigid”” molecule is of course, like many other useful terms in
science, not well defined. The distinction between a “rigid”’ and a *““non-rigid” mole-
cule is in practice based upon and left to the intuition of the chemists. The same is
the case with the key concept of the present article, namely the term “large ampli-
tude motion”. It would hardly be practicable to define the difference between
“small” and “large”” amplitude motion quantitatively by a certain value for the
amplitude dividing intramolecular motion into two categories. The term “large
amplitude motion™ has to be applied to certain kinds of internal molecular motion,
the description of which is the aim of the present article. The “small” amplitudes
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would in practice be of the order of approximately 4 pm up to values ranging from
10 to 20 pm. The lower value of a “large” amplitude may well overlap with the
upper limit of a “small” amplitude, but this slight blemish would hardly lead to
confusion.

In the electron-diffraction jargon it is often referred to ‘‘the framework vibra-
tion” in contrast to the large amplitude motion. The idea is to try to separate the
large amplitude motion, as for example a torsional motion, from the small amplitude
vibration also taking place in ““rigid’” molecules. This practical approach does not
lead to semantic difficulties, but the approach, of course, meets with the well known
difficulty in any theoretical treatment of this kind, namely the problem of separa-
bility of the energy and consequently of the Hamiltonian operator,

1.1 Intramolecular Motion and Conformational Analysis

The electron-diffraction method presented the first demonstration of the existence
of conformational equilibrium in the gas phase®. Later a series of examples of con-
formational equilibrium changes as function of temperature have been de-
scribed®=® . The transformation from one conformer to another is considered to
take place without breaking of bonds and is thus a typical example of large ampli-
tude motion within the molecule. But in spite of the fact that gas electron dif-
fraction has been a key method for proving the existence of this kind of large ampli-
tude motion, it unfortunately fails to give accurate description of the mechanism of
the motion. The gas electron-diffraction intensity data are composed of contri-
butions from all interatomic distances existing in the molecular species studied, and
in such a way that the contribution from each individual distance value is proportio-
nal to the probability of observing the said value. The contribution of the equi-
librium conformers (usually simply referred to as the conformers) to the electron-
diffraction intensity data is often overwhelmingly higher than that of the inter-
mediate geometrical species of the moiecule, As an example may serve the classical
case of a dihalocyclohexane (see Fig. 17) or a 1,2-dihaloethane. The main indicator
for the two coexisting conformers is the halogen-halogen distance. This distance
shows up in the radial distribution curve with two peaks, one corresponding to each
of the two conformers. Even the most refined modern electron-diffraction method
applied on such molecules would only give very limited, if any, measurable contri-
bution from intermediate molecular species deviating appreciably from the two con-
formers. The electron-diffraction method needs a rather high probability value for a
geometric species in order to recognize it. The intramolecular motion between con-
formers can thus in general not be studied directly by electron diffraction alone
except for the motion near by or at the equilibria. Only in cases with small barriers
between the conformers, i. . about or smaller than RT, appreciable amounts of
intermediates may be recognizable.

The internal motion of a molecule would be satisfactorily and adequately de-
scribed if the potential energy of the molecule as function of a complete set of inde-
pendent geometrical variables had been given. For the intramolecular motion leading
from one conformer to another, the lowest energy pass would be of particular inter-
est. The electron-diffraction method may in principle help finding
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1) the position of the minima on such an energy curve,

2) the energy difference between the minima, and

3) the shape of the curve in the minimum areas.

In practice some of these data may be hard to obtain from electron diffraction
alone with a meaningful accuracy. And in any case, a full description of the energy
curve leading from one conformer to another can only be obtained in combination
with other methods.

The lowest energy pass leading from one conformer to another may be described
by a small number of geometrical parameters. In an ethane derivative, as for example
1,2-dihaloethane, this pass may be described to the first approximation by one para-
meter, namely the torsional angle, though the actual lowest energy pass probably
involves bendings of valency angles and even stretching of bonds. For cyclohexane
derivatives the lowest energy pass must be described by at least two parameters, the
torsional angle and the C-C-C valency angle. Other parameters would probably also
change during a ring conversion. For cyclohexanes the lowest energy pass is assumed
to go through a geometric form of a cyclohexene-like half chair.

The kind of reasoning used concerning the transformation from one conformer
to another may of course be used more generally than for the examples mentioned
exhibiting only two conformers. It may of course also be used in cases such as ethane
or cyclohexane itself or in any of their derivatives where large internal motion of the
same kind is described. The reasoning may also easily be carried out for more com-
plex molecules involving several torsional parameters and exhibiting more than two
conformers.

2 The Electron-Diffraction Method

Both the experimental technique® and theory'® behind structure determination
using the gas electron-diffraction method have been reviewed in detail by several
authors. Since the experiments for the study of large amplitude motion are the same
as for other electron-diffraction investigations, it was not felt necessary to describe
the experimental equipment and procedure. There is only one experimental point
that deserves a comment. For quantitative studies of large amplitude motion the
temperature should be known. In particular for conformational analysis temperature
studies are important since the relative amount of coexisting conformers is tempera-
ture dependent. In extreme cases an existing conformer may even get lost in a con-
ventional low temperature experiment, while it clearly shows up at high tempera-
tures. This was most clearly demonstrated in the case of 2-chloroethanol where only
the gauche conformer showed up in the original electron-diffraction study based
upon optimal temperature exposures' ", while the anti conformer clearly showed up
at higher temperatures”*® (Fig. 6).

There are several difficulties assosiated with electron-diffraction temperature
experiments. Firstly, there is no direct way to measure the temperature of the gas at
the moment of diffraction. Secondly, the concept of temperature is an ill-defined
parameter in the diffraction point. The gas to be studied is let out of a nozzle into
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the vacuum system and immediately hit by the electron beam. The gas is accordingly
in the moment of diffraction expanding into the low pressure area. One could there-
fore hardly characterize the situation as a thermodynamic equilibrium. The only
experimental temperature to be referred to is the one of the nozzle tip which tempe-
rature is measured by a thermocouple. However, experience, particularly in connec-
tion with the measurements of conformational equilibria, seems to indicate that the
cooling of the gas caused by the expansion primarily concern the translational
motion of the molecules, to a lesser degree the overall rotation, and only to a minor
degree the intemal motion which is the main interest in present context. Accor-
dingly, in most electron-diffraction work the temperature of the nozzle tip is taken
as the temperature of internal motion, though attempts to correct for the cooling of
the gas have also been made!?,

As to the theoretical part of electron-diffraction studies it was felt appropriate,
in order to ease the presentation of the problem of large amplitude molecular
motion, to include some basic equations and to discuss some of the approximations
made.

The intensity function used in structure analyses may be expressed as follows:

M .
1 (s) = const. g 2 g5/1(8)/Pi(1) ﬁ;ﬁdr o
i$j
where
8ij/ki(s) i () 16| cos (m; (s)—n; (s) (2)
ﬂ_l’.

The independent variable s = ~-sind 6, where X is the electron wavelength and 26
the scattering angle. The summation indices i and j refer to each of the M atoms in
the molecule. The index pair k and | refers to a representative atom pair of the mole-
cule studied, chosen to obtain a convenient form for I(s) and its Fourier transformed
partner. fi(s) is the complex scattering amplitude of the i-th atom in the molecule
and 7;(s) is the argument of fi(s), /. e.

f(s) = £(s) [exp(in(s))

The electron distribution of the atoms are assumed to be spherically symmetric.
Pjj(r) dr is the probability of finding the atom pair i and j at an internuclear distance
interval between r and r+dr. The integral over r, although for convenience written
without specified limits of integration, should be considered as a definite integral.
P;;(1) is always limited to a rather narrow r-interval beyond which it is negligible in
value.

Calculations of f- and n-values from atomic potentials are continuously being
made more comprehensive and accurate'® and tabulated values are available'®.

I(s) as given in Eq. (1) is in principal of experimental origin though it is not the
directly obtained intensity value. It represents a properly modified difference curve
between the total observed intensity curve and a background intensity curve. The
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shape of the latter curve is independent of the molecular structure and is only re-
flecting the scattering properties of the atoms in the molecule.
For a homonuclear diatomic molecule Eq. (1) gets the simple form:

()

I(s) = const. sin rs dr (3)

0

Here integration limits are included.

()

By Fourier transformation ——= may be expressed as

@ = const. f I(s) sin rs ds “®
0

In the general polyatomic case a function is defined in analogy to Eq. (4) as follows:

a(m_ Tax 1(s) exp(—ks?) sin rs ds )

Smin

This function is called the radial distribution (RD) function. The integration limits
are set by experimental insufficiency. In routine gas electron diffraction
Smin >> 0.01 pm~1 and s, <0.6 pm~!, though in especially designed experi-
ments these limits may be exceeded. The lack of experimental information on the
lower side of the s range may be remedied by introduction of theoretical intensity
values. The effect of the outer limit is reduced by the factor exp(—ks?) where k is
chosen from experience.

For interatomic distances undergoing small vibrational motion, a Gaussian
distance distribution represents a good approximation for P;;(r):

P;(n) = \/2—ln o exp [ (rz—:;—] ()
where u;; is the root-mean-square amplitude of vibration and 1;; the mean distance
between the two atoms involved. For an atom pair where the two atoms undergo a
mutually large amplitude motion, a situation in focus of the present article, Py;(r) is
more complex.

In order to perform the integration in Eq. (1) or (3), r is set equal to r;;+y,y
being of a small value compared to r;;. We then have:

1_1 y
-lj—rj (1—: L) (7)

Using only the first term of Eq. (7) and the approximation set by Eq. (6) the integral
may be written as

sin IS 4 _ sin 1y

JPy(1)
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The approximations needed for carrying out the integration are for all purposes
sufficiently good.
Equation (1) may thus be written

M M
I(s)=const. £ Z gu,k;(s)
i*j

T exp (- 2y )

To the approximation applied so far and after correction for the lack of infor-
mation beyond the experimental s-range, the RD-curve should consist of Gaussian
shaped curves for distances between the kind of atoms described by the indices k and
1. The maximum of each Gaussian peak corresponds to the mean of the interatomic
distance in question. For other pairs of atoms the corresponding peak is slightly
modified due to the difference in f(s) and n(s) for the various atoms. But at this level
of approximation a series of effects have been neglected. These are:

(1) further terms in Eq. (7),
(2) anharmonicity,
(3) shrinkage effect, and
(4) large amplitude motion.
1) Inclusion of one more term in the series Eq. (7) leads to a change in Eq. (8).

2
Instead of sin (r;;s) one gets to a good approximation sin ('u _L)s The distance
ij
most directly related to the electron-diffraction study is denoted 1,'% *>) The
average interatomic distance is

u?
Ip =1, +—r- (10)

2
The correction term Er— is usvally small compared to rg, ranging from 0.1 to 0.5 pm.

2) Anharmonicity is conveniently treated using the Morse-potential approxima-
tion. The sine term of Eq. (8) is then to a first approximation replaced by
2

: Ujj .
sin (ry; — r_u - Kij82 )s where kj;, the asymmetry constant, is related to the constant
i '

a in the Morse-potential! %) through the approximation k = au?/6. A more accurate
expression for diatomic molecules is

=2 14 8(1 +32)] )

where x = hy/kT.

3) The shrinkage effect'? is treated in more detail elsewhere in the present
article. Due to molecular vibrations interatomic distances observed by electron dif-
fraction do not correspond to a set of distances calculated from a rigid geometrical
model. Usually the shrinkage effect is routinely included in electron-diffraction least-
squares refinement. In order to do so, it has been found appropriate to introduce a
third distance type 1, defined as the distance between mean positions of atoms at a
particular temperature. If the harmonic force field is known, 1, may be calculated
from r, according to Eq. (12):
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2
ra=ra+1;——K (12)

(Ax? Y+ (Ay?),

here K =
where on

( Ax? ), and ( Ay? ) are the mean square perpendicular vibrational amplitudes.
Equation (12) demonstrates two features: a) even for negligible perpendicular ampli-
tudes shrinkage will be observed in the r,-value, b) shrinkage also occurs in the har-
monic approximation for P(r).

4) For large amplitude motion the distance distribution P(r) may be rather com-
plex. For most molecules studied by electron diffraction, the large amplitude motion
may be described by a few geometrical parameters, and in many important cases
only by one single parameter. In addition to the Jarge amplitude motion the mole-
cule will of course carry out the same kind of small amplitude vibration as any other
molecule. This vibration, which is referred to as the framework vibration, is assumed
to be separable from the large amplitude motion'® '%). If the large amplitude
motion may be described by one parameter, q, the probability distribution of an
individual distance carrying out such a motion, may be expressed as'® 20~22

P(1) = [ P (r,9) P(q)dq (13)

P (r,q) is related to the framework vibration and represents the probability distribu-
tion of the individual distance of a hypothetical molecule with a fixed value for q.
P(q) is the large amplitude probability distribution, which in a classical approxima-
tion may be expressed as

P(q) = N exp(—V(q)/RT) (14)

The actual treatment of the large amplitude motion will thus depend upon the
nature of V(q), which is to be discussed in the next section.

3 Large Amplitude Potential Functions

In most cases no exact mathematical expression is known for the potential function,
V{(q), which is therefore usually approximated by a conveniently chosen series ex-
pansion,

In some cases, as for example for large amplitude bending motion, a power series
is often used,

V(q) = E a q* (15)

where the ag-s are the potential coefficients. Negative values for k sometimes are
included. For periodic potentials, as for example for torsional motion, a Fourier
expansion may be convenient,
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V(g)= 5 Z[Vk(1+coskg)+ Vi (1 +sinke)] (16)
k

1
2
where ¢ is the torsional angle. V and V|’ are constants and the k-s are positive
integers.

In practice, the potential is approximated only by one or a few terms. This is
due to lack of pertinent experimental information, and the quality of the thus ob-
tained potential functions depends upon the convergency of the series. In addition to
the two typical potential functions of Egs. (15) and (16), other mathematical ex-
pressions have been used, depending on the problem at hand and the amount and
quality of the available experimental data to which the potential must comply.

The choice of series is not only dependent on the type of molecular motion. For
example the power series may be convenient for an accurate description of the
potential function close to the minima, while a Fourier series is convenient for de-
scribing potential barriers to torsional motion,

The electron-diffraction method is not well suited for suggesting what kind of
series or what kind of mathematical function should be chosen for a given molecular
problem?? 29, In the case of C30, 2% 2% 25) for example, the electron-diffraction
method is able to exclude the possibility of a pure quadratic term, but is not able to
distinguish between the two potential functions which have been suggested:

V@)=V, a2 +V,a? an
and
V(@)= Ad? + 51 (18)

where o is half the bending angle and V,, V4, A, B, and C are constants. Although

apparently quite different, V(o) from Eqgs. (17) and (18) may be parameterized to

have similar shapes for moderate values of «. The great difference between the two
functions then obtained at large a-values cannot be recognized by electron-diffrac-
tion, since the probability of finding large a-values is vanishingly small.

In open chain molecules the torsional angles are the obvious independent vari-
ables for the potential function. But even in the simplest case, that is ethane, the
origin.of the torsional barrier is not fully understood, though ab initio calculations
represent the experimental barrier fairly well®®, For larger molecules theoretical
predictions for the potential functions are often based upon semiempirical molecular
mechanics calculations?”» 28),

The description of the potentials in open chain molecules is almost always ap-
proximated by Eq. (16), often simplified due to molecular symmetry. V(@) is in
many interesting cases symmetrical about ¢ = 7, in which cases Eq. (16) gets the form

L5V, (1 + coske) (19)

V(¢) = 3

For ethane itself and for other molecules with three-fold symmetry k-values other
than 3, 6, 9, etc., will vanish.
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Open chain molecules have been widely studied using the electron-diffraction
method and with considerable success. But quantitive barrier calculations meet with
substantial difficulties. In cases with torsional barriers higher than, say 4 kJ/mol, the
electron-diffraction method provides information mainly on the regions of the
potential function near the minima. For lower barriers the method is usually not
sufficiently sensitive to changes in the assumptions on V(¢). If the barrier is, say
2 kJ/mol or less, the electron-diffraction results may in many cases be indistinguish-
ably like free rotation. Accordingly in order to use the electron-diffraction method
successfully for the study of torsional motion, support as to the choice of potential
functions may favorably be obtained from other methods, as for example from
microwave spectroscopy.

Ring puckering motion in cyclic compounds involves both valency-angle bending
and torsion about single bonds. In a conformer of a cyclic compound the equilibrium
may be considered as a result of compromise between bond-angle strain, repulsion
(perhaps also attraction) between non-bonded atoms or groups, and degree of bond
eclipsing. Usually non-planar conformations are preferred, and often the potential
barrier is at least 4 kJ/mol. This implies that a “rigid”” model approach, assuming
small harmonic puckering amplitudes, sufficiently accurately reproduces the elec-
tron diffraction data. In four-membered, saturated rings the puckering may be
treated as a one parameter bending motion, usually assuming the quadratic and
quatric terms of the power series to be the dominating ones®?. The degree of non-
planarity is then described by a ring-puckering coordinate being zero in the planar
form.

For larger cyclic compounds the ring-puckering has to be described by at least
two parameters. In five-membered rings the barriers separating the minima in the
potential may be so small that a so-called pseudo-rotation takes place. The ring-
puckering has been described by a perpendicular displacement coordinate depending
on two parameters3% 31),

For six-membered rings the barriers separating the minima in the potential are as
a rule so high®® that the electron-diffraction data may be satisfactorily interpreted
by the assumption of mixtures of “rigid” conformers.

For rings larger than the six-membered rings the problem is more complex, since
it may be difficult to distinguish between large amplitude motion like the situation
in many five-membered rings and a mixture of two or more conformers as in cyclo-
hexane derivatives.

For optimal use of the electron-diffraction method in large amplitude-motion
studies, it is important to take advantage of the knowledge concerning potential
functions as obtained by spectroscopical methods. Some features of the spectro-
scopically obtained findings are given in the next section.

4 Some Selected Barrier Determinations
Spectroscopic methods are now so refined that rather accurate determinations of

barrier heights and shapes have been made in many cases. Since electron diffraction
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generally cannot compete with the best quantitative spectroscopic barrier deter-
minations, it was felt appropriate to assess some selected spectroscopic works in
order to learn more about the nature of barriers.

Spectroscopists also generally fit their data to potential functions of the general
form of Egs. (15) and (16) or some other convenient mathematical expression, and
the potential coefficients (the ay—s or Vi —s) are thereby determined. Not all of
these coefficients need to be of importance. Some may even vanish for reasons of
symmetry. Naturally, it would be desirable to be able to determine those coefficients
on which the potential function primarily depends. Particularly for the methy!
groups, accurate barriers are now available. The situation is not this fortunate in
other cases. Often, rather limited experimental data are accessible. The quality of
some of this material may be poor or even ambiguous, and rather arbitrary assump-
tions are now and then made. As a result, only the first few potential coefficients,
often of low precision, are obtained. In fact, even today cases where more than four
potential coefficients have been deduced are exceptional.

Equations with only one variable, for example a dihedral angle, are often used.
However, it is a well known fact that further structural parameters may and often do
change with this selected variable. This phenomenon is generally termed structure
relaxation. Little is known about relaxation, but it is believed to be of importance in
molecules where steric repulsion, conjugation, change of hybridization, lone pair
interactions, intramolecular hydrogen bonding, etc., come into play for certain
values of the variable. Relaxation is probably often large in the barrier maxima
regions, where repulsion, loss of conjugation, etc., may prevail. The molecular popu-
lation near barrier peaks is low in most cases, making it difficult to determine experi-
mentally the structure of the relaxed molecule by any available method. Therefore,
in cases where structure relaxation predominates, a one-variable approach may lead
to erroneous results, and it is presumed that barriers derived this way are particularly
dubious.

In barrier determinations of open-chain molecules, Eq. (16) is generally used.
Most barriers so far determined have two-fold or higher symmetries and many of the
Vi—s of Eq. (16) will consequently vanish for symmetry reasons. Generally, this
simplifies the problem and makes it easier to obtain more reliable determinations of
the individual potential coefficients. If is also presumed that the role of the elusive
relaxation effect would be easier to assess with symmetrical barriers than in the more
complicated cases.

4.1 Barriers with Two-Fold Symmetry

For these molecules only V,, Vg, . . ., etc., of Eq. (16) apply. There are not many
molecules with this kind of barrier that have hitherto been investigated, and practi-
cally all of them are either ethylene or benzene derivatives. Conjugation along the
bond connecting the rotating group with the ethylene or benzene parts is present in
their equilibrium conformations. There is normally no such conjugation at the
barrier maxima, which for symmetry reasons occur with the rotating groups perpen-
dicular to the ethylene part or, respectively, the benzene ring. Structure relaxation is
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therefore likely to occur in these molecules and may be suspected to be of consider-
able importance.

Nitroethylene has been thoroughly investigated 32) by the far-IR technique. V,
=—-19.650+0.047 kJ/mol and V4 = 1.05 +0.02 kJ/mol were determined for a model
with no relaxation of the nitro group. By relaxing the nitro group in a manner that
closely reproduces microwave observations on vibrationally excited states3? , Vo =
—20.223+£0.050 kJ/mol and V4 = 1.09 £0.02 kJ/mol were found. The authors”)
conclude that the potential is well reproduced 50° about its planar equilibrium
position, but that the data are still insufficient for an accurate determination of the
barrier height.

It is interesting to note that the V4 term is positive. This means that the poten-
tial bottom becomes broader and the peak sharper than what would have been found
using only the V; coefficient.

In another ethylene derivative, CH,=CHBF, 349, V, was determined as —17.5
kJ/mol from IR measurements of the torsional frequency.

A deuterated species of phenol, C6H50D35), has been investigated by far-IR
and microwave spectroscopy and the first two Fourier coefficients determined as
V, = —-16.19+1.19 kJ/mol, V4 = 0.24 £0.24 kJ/mol. In the parent species of
phenolab) a determination assuming only a V, term yielded V, = —14.439 kJ/mol.

V, terms of several other compounds have been determined as low as —(2—4) kJ/
mol in p-flucrostyrene®”), —20.6 kJ/mol in C¢HsCHO®®, —18.7+ 1.9 kJ/mol in
C¢HsCFO®?, —16.3 0.4 kJ/mol in C¢HsNO*®), —12+6 kJ/mol in CgHsNO, 4V,
and —13.33 kJ/mol in C¢HsBF, *?. In none of these have higher order terms or
relaxation been assessed quantitatively.

4.2 Barriers with Three-Fold Symmetry

For these molecules only V3, Vg, . . ., etc., are retained. Methyl group barriers are
by far the most extensively studied ones of this type and several hundred deter-
minations of V3 have now been made. Although groups with three-fold axes of
symmetry are abundant, limited data exist for other than methyl groups.

Most methyl group barriers have been determined by the microwave frequency
splitting method. Generally, only V; is fitted and determined with high precision.
This method is reviewed in several places*®. Up-to-date compilations of barriers are
made by Starck*¥, Recently, infrared interferometers and laser Raman spectro-
meters have been made to operate routinely in the far-IR region and successfully
applied to the study of torsional vibrations of gaseous molecules. In fortunate cases
overtones, hot bands, etc., may be observed by these two methods and important
information regarding V, obtained. These two techniques will presumably become
increasingly important in the future,

Ethane and its halogenated derivatives have played an important part both in
electron diffraction and spectroscopy. In Table 1 we have collected 23 of these com-
pounds having a three-fold barrier. The barriers of the series CH;CH, X, X=H,F,Cl,
Br, and I are seen to increase with the size of the substituent. The V, terms are re-
markably small for these compounds, even for ethyl iodide. This coefficient is also
found to be small for CH3CHCl,, CH;CCl;, CH3CHBr,, and CH;CBr3.
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Table 1. Potential coefficients of ethane and several of its halogenated derivatives®

Molecule V3 (kJ/mol) Ve Method Ref.
CH;CH; 12.25 £ 0.10 Negligibly small IR 45)
CH3CH,F 14.05 88 J/mol IR 46)
CH;CHF, 13.31 £ 0.09 b MW 47)
CH;CF; 13.3 +0.8 b Raman 48)
CH,FCF; 17.6 b IR 49)
CHF,CF, 14.69 + 0.40 b MW 50)
CF;3CF5 16.3 b IR s
CH;CH,Cl 15.42 + 0.05 16 J/mol MW and IR 46, 52)
CH3CHCl, 17.3 IVg! < 120 J/mol Raman 53)
CH3CCly 22.6 IVl < 120 J/mol Raman 53)
CH,CICCl3 418 b IRC 54)
CHCL,CCl3 59.4 b IR® 54)
CCl13CCly 73.2 b IR® 54
CH 3CH,Br 14.92+0.12 Ve/V3 <0.005 MW and Raman ~ >5:56)
CH;CHBr, 18.1 Vgl < 120 J/mol Raman 53)
CH;CBry 24.2 1Vg! <120 J/mol Raman 53)
CH3CH,! 15.4 + 0.4 Vg/V3 < 0.005 Raman 56)
CH3CHFCI 18.0+ 1.2 b MW 57
CH;3CF,Cl 184+ 04 b MW 58)
(4] 53)
CH;CF3Br 234 1Vg! <120 J/mol Raman
CH3CCIBr, 23.8 IVgl < 120 J/mol Raman 53)
CF3CF4Cl 21.3 b IR 59)
CF;CF,Br 23.1 b IR 59)

2 Gas phase values unless specified.

Contribution from V¢ term neglected in barrier calculation.
¢ Solution.
d Upper barrier height.

Calculations using plausible bond lengths and angles indicate that at the eclipsed
position, which is also the barrier maximum, non-bonded distances which are steri-
cally unfavorable probably exist within the chlorine, bromine, and iodine derivatives.
Assuming no structure relaxation in the eclipsed form, the non-bonded H . . . Cl and
H... Br distances are found to be roughly 50 pm shorter than the sums of the van
der Waals radii of hydrogen and chlorine or, respectively, bromine atoms®®. The
H ... Idistance is correspondingly about 70 pm shorter than the sum of the van der
Waals radii of hydrogen and iodine atoms. In the derivations of the small Vg terms of
the chlorine?®, bromine®® and iodine®® derivatives, neither Vg nor relaxation was
taken into account.

Similar computations indicate that non-bonded H.. . H,H...F,orF...F
distances for eclipsed forms of the ethane series are not seriously in conflict with
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steric requirements. Typically, these distances were less than 20 pm shorter than the
sum of the van der Waals radii of the atoms in question.

The effect of steric repulsion is not only seen in the mono-halogen series of
ethane, but isevident from the hexahalogen derivatives as well. In CF3CF 3 the barrier
height is 16.3 kJ/molV), somewhat higher than in ethane, 12.25 +0.10 kJ/mol45).
There is probably small steric repulsion in either molecule in their eclipsed
forms. In solution a V3 of 73.2 kJ/mol has been determined’® for CCl15CCls,
about six times higher than in ethane. In this molecule, it is very likely that large
non-bonded repulsions between the chlorine atoms will exist in the eclipsed form.
The V3 term of 73.2 kJ/mol of hexachloroethane should not be confused with the
real barrier height, as this value has been derived employing only the V3 term for
barrier determination. In this molecule where steric repulsion apparently plays an
important role, the application of only one term and neglecting relaxation is prob-
ably a gross oversimplification, although it is often the only thing that can be done.
The barrier of hexachloroethane is, however, undoubtedly large, and may, fortu-
itously, be about 73.2 kJ/mol. Only future work can decide the shape and size of
this barrier. A similar situation presumambly exists in CH,CICCl3 and CHCl, CCl3.

Determination of V5 and V4 Fourier coefficients have been made for several
other molecules possessing methyl groups. Selected examples are displayed in
Table 2. In all but the notable case of m-fluorotoluene®®, the Vi term comes out
comparatively small, usually less than 5% of V3. Mostly, it is found to be positive.
Determination of structure relaxation has been attempted in CH;OH®®,
CH;3CHO®%?), CH;CH=CH,*®, and CH3CF=CH,*%, but invariably found to be
small, if not neglible, and difficult to determine unambiguously®?.

m-Fluorotoluene®®) represents a special case. In toluene®”, which for sym-
metry reasons has a six-fold barrier, V¢ was found to be as small as —58.37 £+ 0.08 J/mol.
In o-fluorotoluene V3 was determined as 2717 J/mol®®), while two sets of data
fit the microwave spectrum of m-fluorotoluene as shown in Table 2. This is pre-
sumably the only known case for methyl barriers where the V5 and Vg terms are of
similar magnitude.

Table 2. V3 and Vi terms of rational barriers of methyl groups of some selected molecules

Molecule V3 (J/molb) Vg (J/mol) Ref.
CH30H 4439+ 36 ga
44643+ 0.8 6.3 +1.72 61)
CH;CHO 4786 +25 130+ 4 62)
CH3CH=CH, 8289 185 46)
CH3CF=CH, 9627 -13 46)
CH3NH, 8201 31 63)
CH3SiH, 6837 71 33175 64)
m-Fluorotoluene 190 13 -95.4 +3b
203 +13 . 63.2:2.1b 65)

Depending on approximation made.
Both sets of potential coefficients fit experimental data.
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There are few examples where barriers of the CX;-type where X=F,Cl, Br,and I,
have been accurately determined. Besides those listed in Table 1, V3 of CF3CHO has
been determined as 3.807 kJ/mol®®, somewhat less than 4.786 + 0.025 kJ/mol found
for CH3CHO®?. The barrier of CF3NO of 3.222 kJ/mol’? is also slightly less than
4.7568 + 0.0046 kJ/mol determined for CH;NO7Y,

Very few, if any, accurate determinations of Vg-terms have been made. This
coefficient is very important in the vicinity of the three-fold barrier maximum, but
nearly negligible near the bottom of the potential well. Since most barrier deter-
minations have been made near the potential minimum and extrapolated to the
barrier top, it is not unreasonable that the omission of Vg may be serious at least in
some cases.

4.3 Barriers with Six-Fold Symmetry

There are comparatively few molecules possessing four-fold and five-fold symmetri-
cal rotational barriers. Six-fold barriers are more common and for them only Vg,
Via,...,etc, apply.

Most Vg -barriers determined involve methyl groups, and Vj, is invariably found
to be small in corroborations with the findings above. Typical values are: Vg =
—24.400+0.024 J/mol for CH3NO, ", V¢ = —57.61 J/mol for CH3BF, ", and
Vg = —58.37 £0.08 J/mol for CH3C¢Hs %7). For other p-toluene derivatives Vg is
typically about —60 J/mol*%.

N-methyl pyrrole77) represents an exception. Here, a potential function using
Ve =—549.3 J/mol and V|, = —-200 J/mol fits the microwave data just as well as a
set employing V¢ = —558.6 J/mol and V), = 167 J/mol. The lesson to be learnt from
this is that even in cases where the Fourier expansion starts with a high a term as Vg,
rapid convergence is not always ensured.

V, terms have been determined for some compounds not possessing methyl
groups. In CF3NQ, Vg = =311 J/mol’5’, Although this is a small barrier, it is more
than ten times the value found for CH3NO, 7). In CF3C¢Hs a value of —42.7 J/mol
was found’”®, which is fairly similar to the toluene value®?). In SiH3CgHs Vi =
--74.39£0.08 J/mol’”? which is also near the toluene barrier height®?). A very
small barrier of Vg = —7.9 £ 3.3 J/mol was found for SiF3BF2?8).

At least one twelve-fold barrier has been determined to date. In the ““cage’-
molecule CH3BsHg V5 was found to be less than —12J {mol”®,

4.4 Barriers with Low Symmetry

Barriers with low symmetry are usually much more complicated than other types.
Several Fourier coefficients are normally necessary. Sufficient high-quality experi-
mental data to derive the necessary Fourier terms are often very difficult to obtain.
Despite these severe obstacles, several such barriers have been determined in recent
years*®. Some few of these potentials are presumably of high quality and re-
present, indeed, great experimental and intellectual achievements.
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Due to the complexity of the problem of low symmetry barriers, influence from
relaxation and convergence properties of the Fourier expansion are difficult to ex-
tract from the present material. However, in the case of 3-flucroprapene®® which
has one of the best known rotational barriers of this complicated kind, the Fourier
series do not converge rapidly. It was possible to determine the first six potential
coefficients as Vi = —2.95+0.36kJ/mol, V, = —2.21+0.30 kJ/mol, V3 =10.25+0.17
kJ/mol, V4 =-2.25%0.30kJ/mol, V5 =0.08 £ 0.06 kJ/mol,and Vg = —1.11+£0.12
kI/mol. Vi is thus seen to be of the same order of magnitude as Vy, V;, and Vj,.

It remains to be seen whether slow convergence should generally be expected.

4.5 Conclusion

The overwhelming part of accurate barrier determination performed to date re-
presents methyl group barriers. Except for notable cases like m-fluorotoluene®®) and
N-methyl pyrrole74) the first Vi of Eq. (16) alone seems to give a remarkably good
representation of both the potential shape and barrier height for this group. Relax-
ation appears to be a rather small effect. The same seems to be true for the CF;
group, and SiH3 and GeHj; groups can presumably be expected to behave likewise.
Barriers of methyl and CF 3 groups are usually fairly similar in identical environ-
ments.

The simple situation encountered for methyl groups should not lead us into
believing that this is generally the case. Relaxation may be of great importance as
was seen for nitroethylene3?), and there is no a priori reason why expressions such
as Eq. (16) should indeed converge rapidly. Barrier determination of more complex
groups than methyl will presumably remain a challenge in the years to come. This
task should be approached with a maximum of caution and a minimum of prejudice.

5 The Shrinkage Effect

The term shrinkage was introduced to describe and explain a phenomenon first ob-
served for the linear molecule dimethyldiacetylene!”, allene!”, carbon sub-
oxide8! 82, butatriene®®, and carbon disulphide84). For these molecules the long
internuclear distances, as studied by electron diffraction, are observed shorter than
corresponding to the value obtained by adding the observed individual bond dis-
tances. If a static molecular model is used, the molecule seems bent. The effect was
qualitatively explained as a result of molecular vibration, particularly out-of-linearity
vibration. The shrinkage effect is of course not restricted to linear molecules. The
shrinkage of a distance is defined as the difference between the distance as calculated
from a rigid geometric model with the observed bond distances and valence angles,
and the distance as observed directly by electron diffraction. Usually the shrinkage
effect is smail and does not reveal large amplitude motion. However, the effect is
large enough to cause significant errors in structure parameter determination by
electron diffraction if not properly allowed for. For example the shrinkage of the
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17b) 83)

longest C .. . C distance in allene and butatriene®* was observed to be 0.6 pm
and 1.3 pm respectively. For cartbon suboxide, however, the shrinkage was observed
to be of an order of magnitude larger3" 32 For the O . . . O distance the shrinkage
was observed to be 15 pm. This molecule has, therefore, attracted great interest by
electron diffractionists, spectroscopists, and theoreticians.

The shrinkage effect is now quantitatively well understood for small amplitude
vibrations' 79> 85)_ The phenomenon is thoroughly studied by Cyvin in a series of
articles. The result of his own work and that of others is described in detail in
Cyvin’s book™®.

Large amplitude shrinkage is of course the main interest in the present context,
but again the question about the dividing line between small and large amplitude
motion arises. Even in the simplest kind of molecules where shrinkage is to be ex-
pected, namely the linear triatomic molecules, cases are known with very large
angular bending motions, of course particularly at high temperatures. For molecules
like MnCl,, FeCl,, CoCl,, NiCl,, and NiBr, measurements at about 800 °C lead to
shrinkage values of approximately 10 pm which corresponds to an angular shrinkage
of about 25° ¥%). For Cal, and Srl, the shrinkage effect was observed as large as
22 pm and 29 pm, respectively®”). The temperatures were 1300 °C for Cal, and
1250 °C for Srl,. This corresponds to a shrinkage in angle of 32 ° and 36 °, respecti-
vely. In such cases it is obvious that the question of the relation between the temper-
ature dependent “‘average structure” of a molecule, as determined by electron dif-
fraction, and the “equilibrium’ or “zero-point average’’ structure is difficult to deal
with. This problem has in particular been studied by Kuchitsu®®) based upon the
fundamental work of Bartell®%).

For triatomic molecules with large shrinkage it may be difficult to decide
whether the molecule is actually a linear molecule or bent. Semantically the dif-
ference between a linear and bent molecule ought to be clear and defined by the
minimum in the potential function of the molecule. But on the other hand electron-
diffraction studies cannot easily distinguish between a symmetrical double minima
potential near 180 ° and a potential with one single minimum at 180 °, correspond-
ing to a genuine linear molecule. The question of linearity has in many cases to be
left to other methods as for example measurement of electric polarity in high tem-
perature vapor by electrical deflection of molecular beams with mass spectrometric
detection®0~%%),

Though the shrinkage effect obscures the structure determination of a molecule,
it may contribute with information as to the flexibility of the molecule. For a mole-
cule of the type MX, with linear equilibrium configuration it is possible to estimate
the bending vibrational frequency, v, from measured shrinkage values®®), For a
triatomic molecule with a shrinkage of approximately 10 pm the »,-value is esti-
mated to be about 1 kJ/mol, in good agreement with matrix-isolation infrared spec-
troscopic studies®?).

As earlier indicated carbon suboxide has attracted considerable interest as to the
study of shrinkage effect and large molecular motion. The molecule has been sub-
mitted to four independent electron-diffraction studies at this laboratory®!> 82, 129),
The large shrinkage effect of carbon suboxide could not be explained from the
known vibrational frequency at the time when the shrinkage effect was first ob-

117



O. Bastiansen, K. Kveseth, and H. Mpllcndal

served. An unobserved bending frequency (v) was predicted and was later observed
to be about 750 J/mol®* %,

The last electron-diffraction study of carbon suboxide included measurements at
three temperatures (237 K, 290 K, and 508 K). The measured shrinkage data
matched the theoretically calculated values based on the measured v, value®®, both
as to the value for the shrinkage itself and as to the temperature dependence. (It
should be remembered that temperature is rather ill-defined in an electron-dif-
fraction gas experiment.) It was demonstrated that the C=C=C-bending vibration,
which is the main contributor to the large shrinkage effect, could not be harmonic.
Doubts about the actual linearity of the molecule were revived and the possibility of
a double minimum potential function for the v, bending with a barrier from about
0.5 kJ/mol to 3 kJ/mol seemed likely. The minima were estimated to be at about
12 ° to 16 °, described by the angle « in Fig. 2. This corresponds to a C=C=C angle
of 156 ° to 148 °. Two further studies based upon electron-diffraction and spectro-
scopy?# 97 support these assumptions, indicating a barrier of about 0.6 kJ/mol,
though a non-barrier potential could not be ruled out'.

Several rather conflicting ab initio calculations have been reported, one sup-
porting a linear equilibrium conformation with a nearly harmonic potential®®, an
other one producing a barrier of 8 kJ/mol and minima at the a value of 27.5°%%,
Neither of these results is in accordance with electron-diffraction findings. A more
recent ab initio calculation failed to produce a double minimum potential curve %9,
but verified the high degree of anharmonicity in the C=C=C-bending potential.
Several spectroscopic studies have been carried out with results in good agreement

kJ /mol

Fig. 2. Potential curves for C30,, estimated from electron diffraction (A), spectroscopical data
(B) and ab initio calculations (C)

1 See Note Added in Proof.
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with electron-diffraction data'® =193 producing a values ranging from 11° to 13°

and barrier hights ranging from 170 to 700 kJ/mol.

The situation as it Jooks at present is summarized in Fig. 2 where the latest elec-
trondiffraction barrier is compared with the latest ab initio calculation and one of
several spectroscopically based calculations'®?, The two dimentional presentation
of the potential curve may of course be considered as a cross section of a three
dimensional potential surface with a circular valley.

The contrasting results demonstrated in Fig. 2 calls for further endeavor and
combination of various methods. Particularly ab initio calculations including larger
bases as already suggested'®?), may be profitable.

A series of molecules containing the group Si—N=C=0 or Si—N=C=S presents
problems similar to C50,. Electron-diffraction data for H3Si--N=C=0 and
H3Si—N=C=8, conventionally interpreted in a rigid molecule analysis, leads to a
Si—N=C angle of 152° for the former and 164° for the latter of the two mole-
cules!®®_ The electron-diffraction study further shows that the SINC bending mode
had an unusual large amplitude even at a temperature of 0 °C. For the Si—-N=C=0
chain a small potential hump of approximately 240 J/mol at the linear configura-
tion is suggested, while a harmonic potential is suggested for the Si—N=C=S chain.
A detailed microwave study of H3Si—N=C=0'%% confirms this finding producing a
value for the a-angle of 11° and a barrier of 272 J/mol. The ground vibrational state
is found almost exactly on the maximum of the barrier.

An X-ray study of crystalline H3Si—N=C=0 at 140 X is not consistent with any
large amplitude bending motion'®®). Apparently the packing forces in the crystal
constrain the low frequency bending vibration of the free molecule. The Si—N=C
angle is found to be 158.2 °, corresponding to an « value of 10.9 °. Since the energy
required to bend the molecule is so small, it is not surprising that lattice energy may
interfere with the intramolecular motion.

6 Internal Rotation in Open Chain Molecules

6.1 Ethane Like Molecules

The factors influencing the conformational stability in open chain molecules have
previously been treated extensively in review articles (see for example Ref.® and
107)), The aim of the present section is to study torsional potential functions of a
series of molecules of principal importance, in particular related to the results of
electron-diffraction investigations. The bulk contents of information obtainable from
an electron-diffraction intensity curve of a molecule carrying out torsional motion,
are not concerned with the torsional motion at all. The part of the intensity curve
giving information about the torsion, is distributed over the same range of the inten-
sity curve as where the torsional independent information may be obtained. In the
RD-curve the contribution from the torsional dependent part is more clearly separat-
ed. To illustrate this and the general influence of torsional motion, three simple
molecules with three-fold torsional barriers have been selected (Figs. 3-5)
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wv ?
_ c-C Cl-Cl Cu-Cl
c-C C--ClI X 9 1 ‘u 1

100. 200 300 400. 500.
T?’(pm)

Fig. 3. Radial distribution curves for hexachloroethane. The vertical lines give the Cl - - Cl posi-
tions in gauche (g) and anti (2). Curve A is experimental, the dashed line combined with the other
part, indicates the torsional dependent contribution, obtained by subtracting the theoretical
torsional insensitive part from the experimental curve. Curves B—E are theoretical torsional de-
pendent distribution curves. (B) based on a rigid, staggered model with g = 14.3, ua = 6.7 (pm).
(C—E) calculated for large amplitude models, using framework vibrations and a torsional poten-
tial %—V3 (1 +cos 3¢) with Vzequal to 12.5, 4.2, and 0 (kJ/mol), respectively. The scaling between
A and the other curves is somewhat arbitrary, and the damping factors and modification func-
tions slightly different

The molecules chosen are hexachloroethane!8: 199 hexachlorodisilane!°9,
and hexaﬂuorobutyne-2“°). Curve A in each of the three figures is the experimental
RD-curve. The outer part of the curve, in combination with the dashed line, defines
the only torsional dependent contribution, namely the long halogen-halogen dis-
tance. Curves B—E are theoretical curves for the same torsional sensitive distances,
calculated under different assumptions. Curve B is calculated for a rigid, staggered
model using spectroscopically obtained u-values and harmonic torsional vibration.
Curves C—E are calculated differently using Eqs. (13) and (14), assuming barrier
heights 12.5, 4.2, and 0 kJ/mol, respectively. The individual curve is thus composed
of a weighted sum over molecular species for all values of ¢, each species undergoing
small, harmonic framework vibrations, spectroscopically estimated ' '), The
different species are weighted according to the normalized classical Boltzmann co-
efficients which depend directly on the hindering potential V(¢). For symmetry
reasons V(¢) = % V3 (1 + cos 3¢), higher terms (Vg, Vs etc.) being neglected. For
each of the three figures gauche and anti positions are indicated.

Comparing the curves visually, it is seen that the hexachloroethane molecule is
satisfactorily described by a rigid, staggered model. Hexafluorobutyne-2 may be
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Si-Cl Si-Si Ct-Cl Cl-Clg Cl--Cly
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Fig. 4. Radial distribution curves for hexachlorodisilane. See caption for Fig. 3. ug =19.0,
u, = 9.9 (pm)

D
C
B
Py A

c=C C-C FF c-C C-F C-C C-F F~~f-; FFy

L. y C-F) y CoF, ! N 1 . 1 a A
100 200 300 400. 500 600.
—
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Fig, 5. Radial distribution curves for hexafluorobutyne-2. See caption for Fig. 3. ug =21.1,
u; = 11.6 (pm)
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approximated by a freely rotating model.Hexachlorodisilane represents something in
between the two extremes, the barrier, i. e. V3 when described by the single term
cosine potential, is close to 4 kJ/mol and definitely smaller than 12 kJ/mol. The
reported estimate is 4.5 kJ/mol29-18),

1t should be emphasized that the theoretically calculated curves (B—E) all are
somewhat dependent on spectroscopic data. Furthermore the results obtained using
the staggered model approach, may be indistinguishably like the results obtained
using a cosine-term potential, if the barrier is high enough. For high barrier cases the
contribution to the electron-diffraction data is predominated by molecular species
corresponding to the minimum regions of the potential curve. The information thus
obtained from electron diffraction to the potential curve near maxima is therefore
practically nil in high barrier cases.

The primary aim of the staggered model approach is to describe the curvature of
the potential function at the minima. Therefore, in order to use this approach for
barrier determination, one has to choose a potential function with a curvature at the
minima equal to that derived for the staggered model. The most obvious choice of
potential function is again the one-term cosine function, It is therefore no surprise
that the two approaches, the staggered model approach and the approach using Eqgs.
(13) and (14), lead to the same results if they use the same potential function.

Also in the staggered model approach the u-values for the halogen-halogen dis-
tances are composed of contribution both from framework vibration and torsional
motion. The torsional motion part may be expressed by g, the root-mean-square
deviation from the minimum position. For the molecules so far described, the value
of oy, is to a good approximation equal for the gauche and frans peaks. (This is of
course not the case for molecules like 1,2-dihaloethanes).

Since the anti-distance varies so little with ¢, the u-value of the anti-distance is
primarily due to framework vibration, particularly in high barrier cases' %9 The
anti-peak is accordingly not suited for direct determination of g4. On the other
hand, the torsional motion leads to an asymmetry in the anti-peak due to the func-
tional relation between r and ¢. For a low barrier case this asymmetry may be ap-
preciable, while in a high barrier case it may be observed only as a shrinkage effect
for the anti-distance. The asymmetry or the shrinkage may be used to derive a value
for a,. )

Whether a staggered model will reproduce the torsion sensitive distance distribu-
tion with sufficient accuracy for intermediate barriers, or a weighted sum over
Gaussian peaks has to be applied, will also depend on the total change in the torsion
dependent distance compared to the u-values of the said distance.

In Table 3 are listed some experimental values related to the torsional motion
for a series of symmetric rotor molecules. The given examples are chosen to illustrate

the points discussed in this section.

Inspection of the table reveals the general consistency between results obtained
from either of the two above mentioned approaches for intermediate barriers. The
staggered model approach leads to gauche vibrational amplitudes (u,) in satisfacto-
ry aggreement with values obtained from other methods. The determination of
barriers from ug-values requires that the appropriate u-framework values (ugf) are
known. These parameters may be obtained from spectroscopy, but if not available,
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u;’ may also be estimated from electron-diffraction data using a rough approxima-
tion. In order to do so, one has to assume that the framework vibration is constant
during the internal rotation. Since the torsional contribution to the u-value in the
anti position (u, ) is negligible, the ufr may then be approximated by u, % 199,

The low barriers must be determined from Eqs. (13) and (14) in order to obtain
acceptable shape of the distance distribution. Since this procedure requires that
u-framework is known in the whole ¢-interval, accurate barrier estimates depend on
the quality of the applied u-framework vafues!!®,

Generally, the results given in Table 3 are reasonable judging from the effects to
be expected from steric hindrance, both taking the size of the substituents in the
rotating groups and the bond length separating the groups into consideration.

A similar analysis of data obtained from molecules with asymmetric end groups
is more complicated. Apart from the problems connected with the separability of the
torsional motion from the framework vibration, experience shows that several more
terms have to be included in the Fourier series to describe the torsional potentials
properly. On the other hand, the electron-diffraction data from asymmetric mole-
cules usually contain more information about the potential function than data from
the higher symmetric cases. In conformity with the results obtained for symmetric
ethanes the asymmetric substituted ethanes, as a rule, exist as mixtures of two or
more conformers in the gas phase. Some physical data for asymmetric molecules are
given in Table 4. The electron-diffraction conformational analysis gives rather accu-
rate information about the positions of the minima in the potential curve. Moreover,
the relative abundance of the coexisting conformers may also be derived. If the ratio
between the concentrations of two conformers is equal to K, one may write

AG = —RTInK = AH — TAS (20)

where AG, AH, and AS are the free energy, enthalpy, and entropy differences re-
spectively for the two conformers. Thus, by studying the conformational mixtures at
different temperatures, AH and AS may be derived. To a sufficiently good approxi-
mation AH represents the energy difference between the two minima corresponding
to the conformers involved. Information about the curvature in the minima of the
potential curve may also be obtained in a way analogous to that of the symmetric
rotor molecules.

A scries of molecules of great interest in principle and also well suited for electron
diffraction studies are the 1,2-disubstituted ethanes. Gauche- and anti-conformers
coexist in the gas phase in all known cases, sometimes with the anti-conformer as the
prevailing conformer as in 1,2-dichloroethane 3%, sometimes with gauche preva-
lence as in 2-chloroethanol” &),

The 2-chloroethanol may serve as an example of the effect of temperature on
conformational equilibrium? 8. The molecule has been studied at five different
temperatures. In Fig. 6 the lower curve corresponds to the lowest temperature
studied (T = 310 K) and the upper curve to the highest temperature (T = 523 K).
The main difference between the two curves is the barely observable anti O . . . Cl-
peak in the low temperature curve in contrast to the well developed anti-peak in the
high temperature curve. The gauche-peak is correspondingly reduced in the high
temperature curve compared to the low temperature curve. In Fig. 7 the observed
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Fig. 6. Experimental radial distrubution curves for 2-chloroethanol. (k = 20 prnz) at 523K
(upper) and 310 K. The vertical lines indicate the Cl - + - O positions in gauche and anti

RinK is plotted against 1/T using Eq. (20). The various points represent results from
different ways of deducing K from the electron-diffraction data. From the slope of
the best straight line through the observed points AH may be obtained, while AS is
determined by the point of intersection with the ordinate. The values thus obtained
for AH and AS are —10.0 kJmol™ ! and 11.7 J mol~ 'K~ ! respectively.

For a qualitative description of the potential curve corresponding to anti preva-
lence, two terms in the Fourier series [Eq. (19)] seem sufficient, namely the V- and
V3-term. In a case with gauche prevalence the terms V, and V3 seem sufficient. As
an example of these two possibilities may serve 1,2-dichloroethane!3® and 1,2-di-
fluoroethane! 33 134 Plausible potential curves of these two molecules are pre-
sented in Fig. 8. Electron-diffraction studies alone are able to demonstrate in both
these cases that a two term potential is insufficient to give a quantitative description,
i. e. incapable of reproducing the experimental values for AH and the torsional angle
¢g- In fact a series of Vy-terms is needed. An extensive analysis'®5) based upon
electron diffraction indicates that as many as 8—12 terms may have to be included to
reproduce the experimental findings with sufficient accuracy. This is to a great
extent caused by the rather large deviation of the experimental ¢, from the idealized
60 ° gauche torsional angle. From Table 4 it may be seen that ¢g ranges from about
70 to 75 ° in the 1,2 disubstituted ethanes. In order to produce such a minimum
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Fig. 7. RInK for 2-chloroethanol as a function of 1/T, estimated from least squares refined
values (o), and from area ratios of peaks in the RD-curves; gauche area/anti area (2), anti area/
total area (e), gauche area/total area ()

position, several terms are needed. Due to the limited number of terms usually in-
cluded, the results in Table 4 should be taken rather as indications of trends than as
quantitative findings.

The examples in Table 4 again demonstrate the effect of increasing size of sub-
stituents, reflected both by the deviation of ¢, from 60 ° and by the AH-values. (A
negative AH means that gauche is the more stable conformer.)

V(¥) V()
gauche/anti gauche/anti
barrier barrier
v
AH -OH
L 1 1 LY 1 7 -
60° 1200 180" 240 300° s 60° 1200 180" 2407 300° <

Fig. 8. Plausible torsional potential curve for 1,2-dichlorocthane (left) and 1,2-difluoroethane
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The experimental potential function, though not known accurately, together
with the results of conformational analysis, may be used to draw conclusions about
interatomic interactions within molecules. In 1,2-difluoroethane, for example, an
attractive force between the fluorine atoms stabilizing the gauche has been estimated
to be in the order of 4 kJ/mol!%% 6™, In the propanes cited in Table 4 similar
attraction is observed between halogen and the methyl group. This is also the case if
one of the hydrogen atoms in the methyl group has been substituted by another
halogen. But under these circumstances one of the halogens turns away from the
approaching group in order to avoid steric hindrance'¢®). In disilane derivatives with
halogen and methyl substitution the situation is different since the Si-Si-bond dis-
tance is considerably longer than the C-C-bond distance. For example, in the case of
tetramethyl-1 2dichloro-disilane'5%) a gauche preference is observed, in spite of the
fact that the anti conformation has four gauche halogen-methyl distances while the
gauche has only two such distances. The gauche preference may be caused by a
chlorine-chlorine attraction. It should, however, be emphasized that the confor-
mational results in this molecule are somewhat uncertain because of the similarity of
the gauche chlorine-chlorine distance and the corresponding chlorine-methyl dis-
tance. The barrier is probably less than 4 kJ/mol, though a freely rotating model was
definitely ruled out.

The last two examples, namely CH, X—C=C—CH, X(X = Cl and Br) in Table 4,
demonstrate that the increased separation of the rotating end groups leads to a con-
siderable reduction in the barrier. As is to be expected, the RD-curves of these mole-
cules are quite similar to that of hexafluorobutyne-2 (Fig. 5). The RD-curves demon-
strate that a considerable proportion of the gas molecules must assume a form corre-
sponding to the maximum areas of the potential curve which is indicative of a high
degree of torsional freedom. Due to the relative small distance variation during a
complete torsional revolution and also due to the relative small contribution of the
torsion sensitive part of the RD-curve to the total, the noice level precludes decisive,
quantitative statements. Essentially free rotation is compatible with the experimental
data, as the estimated Fourier coefficients are not conclusively different from zero,
though the actual estimates indicate a torsional potential with a minimum rather at
anti than near syn.

6.2 1,3-Butadiene and Analogs

1,3-butadiene has been the subject of several conformational studies, by electron
diffraction'% 7% as well as by other methods' °~!7%, The planar anti-form
predominates, and to date no conclusive evidence of a second conformer has been
given, though both syn and distorted gauche have been suggested for a possible addi-
tional conformer.

A rather large barrier (20 kJ/mol)!”® has been estimated between anti and a
possible second conformer. A recent theoretical study”s) leads to an additonal, but
much lower barrier of 2 kJ/mol at the syn position, thus separating the two gauche
minima, estimated to be at about 40 ° from syn. This potential would lead to a high
degree of flexibility in the syn region. A qualitative representation of the total poten-
tial based upon the theoretical values!”% '7®) is given in Fig. 9.
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Fig. 9. Radical distribution curve and torsional potential for 1,3-butadiene

In the search for a presumed, but not conclusively detected conformer, the
natural approach is to use a high a temperature as possible in the electron4iffraction
experiment. Several such attempts have been made, so far in vain!%°% . The nega-
tive results in the case of 1,3-butadiene are not in contrast with the theroretical find-
ings, since no rigid second conformer is to be expected.

Another approach has also been tried for 1,3-butadiene based upon study of the
area under the anti-peak in the RD-curve compared to the rest of the RD<urve area.
This is complicated by the uncertainty of the position of the zero-ine in the RD-
curve. The zero-line level is determined by the very inner and unobservable part of
the intensity curve.

The thermal asymmetry of the C, . . . . C,4 anti-peak gives information about the
torsional motion near an#i and demonstrates that the potential well is wider in buta-
diene than for torsional motion about sp3-sp3 linkages.

In butadiene analogs containing C=0!77~132 or N=C'#% bonds, two con-
formers coexist (Table 5). CH,=N-N=CH, 83 and 0=CX-CX=0'8% 181},

(X =Cl, Br), represent the rather few cases of intermediate size asymmetric barriers
where the torsional potential has been determined from electron-diffraction data. In
these investigations the mixture of two conformers has been determined at different
temperatures. The gauche conformer is described as a rigid, staggered model.

Because of the observed asymmetry in the anti-peak, Eqs. (13) and (14) were
applied over a region corresponding to + 204, in order to describe the large, although
still assumed harmonic, torsional amplitude. From the determined values of AH, ¢g,
and the curvature of the potential about the anti position, the torsional potential was
estimated including Vj-, V;-, V3-terms in the Fourier series expansion. The resulting
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potential function gives gauche to anti barriers in the range of 0.5 — 2 kJ/mol, and
the observed high u, is consistent with such a low barrier. But, as the authors also
indicate!®D, even a 2 kJ/mol barrier is a very low barrier if the concept of a well
defined gauche conformer is to be retained.

The inclusion of only three terms may be insufficient, since in the related mole-
cule butadiene four terms in the Fourier series are found to be necessary to describe
appropriately the observed frequencies”z).

A reasonable check of the reliability of the three-term Fourier potential for the
butadiene analogs, would have been to calculate a RD-curve by introducing a large
amplitude model using the obtained potential to determine P(¢) for the whole
¢-interval.

In Table 5 cyclopropyl derivatives have been included for comparison. The
analogy is based upon the bent bond model®® for the double bond. Anti pre-
dominance is found both in cyclopropylethylene'®® and in bicyclopropyl'®®. The
torsional amplitudes are dramatically increased compared to butadiene. In bicyclo-
propyl 0, = 80 °, which implies a nearly free torsional motion over a large angle
region about anti. Figures 9 and 10 give the estimated torsional potentials together
with the RD-curves for butadiene and bicyclopropyl, respectively.

For bicyclopropyl each geometric species contains two torsion dependent
C ... C-distances. The positions of these distances are given in Fig. 10 both for enti
and gauche. The effect of the large torsional amplitude in bicyclopropy! is demon-
strated by the broad torsional dependent area in the RD-curve without well defined
peaks. This is in contrast to the well defined anti-peak in the corresponding part of
the RD-curve for 1,3-butadiene.

3
20 20 _E,
15 15 =

S
10 0 <
5 5

0" 60 120" 180° 240° 300" 360°
gauche anti gauche

100 200 300 400 500.

Fig. 10. Radial distribution curve and torsional potential for bicyclopropyl
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The anti-form thus seems generally to predominate for the molecules in Table 5
if no extra strain caused by substituents has been introduced. If substituents are
introduced, for example in butadiene, the gauche-conformer may prevail. In other
cases anti/gauche-equilibria may occur.

6.3 Molecules with Several Torsional Degrees of Freedom

When the number of torsional degrees of freedom is increased, the intramolecular
motion in gaseous molecules is increased as well. At the same time the theoretical
treatment of the motion becomes more complex, and the problems that the electron-
diffraction method has to face are more difficult to handle. The molecules of this
category that have been subject to quantitative conformational analysis by electron
diffraction so far, are limited to cases with two or a few degrees of freedom, though
qualitative observations about large amplitude motion have been made also for con-
siderably larger molecules.

Among the vast number of molecules with more than one axis of internal rota-
tion, the open chain hydrocarbons represent a group of molecules expected to be
rather flexible, since the hydrogen atom causes a minimum steric hindrance to the
internal motion. However, hydrocarbons are not well suited for electron-diffraction
study because of the low scattering power of the hydrogen atom. H . . . H-distances
are reliably observed only in few cases, and information about large amplitude
mation in hydrocarbons is mainly obtained through C ... C-and C ... H-distance
contribution. For lack of knowledge of the hydrogen position, methyl groups are
usually placed in a staggered position in accordance with the situation in ethane itself
where the H . . . H-distances have been located!!?,

Parameters describing the hydrogen position are sometimes included in the least
squares calculations. But both methyl twist angles and related vibrational amplitudes
thus obtained are particularly sensitive to the assumptions made concerning the
methyl torsional potential because of the low scattering power of hydrogen.

Bartell and co-workers have studied n-hydrocarbons up to 16 carbon
atoms! 1% 141, 197, 198) The results give information about structural and confor-
mational properties, and also demonstrate the existence of large amplitude motion.
Due to this motion, distances beyond 500 pm are not considered reliable enough to
be included in the analysis of the large amplitude motion!%®),

In a conformational study of di-n-propyl ether appreciable contribution beyond
500 pm is included in the study!®?. A conclusive determination of the confor-
mational mixture was impossible, but the fact that the molecule exhibits a high
degree of flexibility was demonstrated.

In order to obtain molecular systems in which the internal motion is easier to
study, it is customary to introduce halogen atoms in the molecules because of the
enhanced scattering power of these atoms. On the other hand, the larger halogen
atoms restrict the internal motion more than is the case in unsubstituted molecules.
Halogen substitution thus leads to systems with less torsional freedom than the
parent hydrocarbons.
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As examples of halogenated hydrocarbons of this type studied by electron
diffraction, 1,2,3,4-tetrabromobutanes!®®® and a series of propanes!49: 151~ 154,
200~-204) may be mentioned. The main object of such studies is to describe which
conformers are present, their molecular structure, and, if possible, the relative
abundance of the conformers.

In particular Stglevik’s conformational study of a series of halogenated propanes
has contributed to our understanding of the flexibility of molecules with two axes of
internal rotation. The coexistence of as many as three conformers has been found in
several instances. For these halopropanes the structures of the coexisting conformers
have been determined as well as their mole fractions. The molecules are quite rigid,
and from the study of the u-values the conclusion has been drawn that the torsional
potentials are harmonic in the minimum regions.

A few examples of propane and butane derivatives are included in Table 4. The
results obtained for such molecules are, as a whole, in accordance with what should
be expected from the study of ethane derivatives.

In crowded molecules the torsional motion may be severely hampered. For a
molecule like (CF3)3CH?%% the electron-diffraction study may either be based
upon a staggered model carrying out torsional oscillations, or a model of large geared
motion described with appropriate coupling terms characterizing the interaction
between the rotating groups. The results obtained for both models indicate rather
large librations of the CF ;-groups. The staggered model approach leads to a twist of
the CF3-group of 15 ° away from the staggered position. The geared motion model
calculations result in a 65 of 17 °.

This result is in general agreement with an extensive analysis of the electron
scattering of multiple rotor molecules by J. Karle2°®) who studied the effect on the
intensity and the RD-<urve in cases with low barrier and geared motion.

In order to study the geared motion quantitatively, the potential function to be
used must contain the involved angle parameters and terms describing the coupling.
Asan e))cample one of the suggested potential functions for propane is given in Eq.
(21)207 -

V (61, 62) = % V, (2+¢0s 3¢, +cos 3¢,) — % Vs [14c0s 3 (¢, +6,)] 1)

From microwave studies V5’ was found to be 1.2 kJ/mol, i. e. about 1/10 of the V;
term, in agreement with results obtained theoretically°”. This indicates that the
interaction of the two rotors must be small in the propane case, though it is difficult
to draw any general conclusion from this example.

7 Biphenyl and Related Compounds

The torsional motion about the central C—C bond of biphenyl and related com-
pounds has been extensively studied by gas electron diffraction and by several other
experimental and theoretical methods. The fact that biphenyl itself undergoes
conformational changes by phase transition!69% 20%) jndicates that the barrier to
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internal rotation must be small. Not only biphenyl itself but also a series of its deri-
vatives without ortho substituents are reported to be planar in the solid

state 209214 while the angle, ¢, between the rings in the gas phase is found to be
about 45 ° 215 216)_The best value reported for biphenyl itself is 42 °. Recent
studies have thrown doubt on the exact planarity of the biphenyl molecule in the
solid state. From studies of the temperature dependence of the Raman spectrum
from 15 to 75 K*'7 and from electron paramagnetic resonance and electron nuclear
double resonance studies at 1.9 K2'® the conclusion has been drawn that the mole-
cule does not have the ideal planar symmetry. In a recent X-ray study at 110 K the
old question has been revived about the possibility that the X-ray crystallography
claim of a planar biphenyl molecule may have been obscured by statistical
effects?!?. But in any case the inter ring angle of biphenyl in the solid state should
be considerably smaller than in the gas phase.

The non-planar conformation in the gas phase is described as a result of a com-
promise between conjugation favoring planarity and steric repulsion between hydro-
gen atoms in 2-positions. These two effects seem to be balanced at an angle of twist
of about 45 °. The increase in free energy that the molecule has to suffer rotating to
the planar form, or near to it, is apparently overcome in the solid phase by favorable
lattice free energy. It should be pointed out that cases are known where a large devia-
tion from coplanarity is observed in the crystalline phase also for biphenyl deriva-
tives without ortho substituents. For example 4 4’-dimethylbiphenyl is found to
have an inter ring angle of 40 ° in the solid22%.

In a recent X-ray study of 4 4’-dichlorobipheny1??" a twist angle of 42 © has
been reported, in exact agreement with the electron-diffraction result of gaseous
biphenyl. The 4 4’-dichiorobiphenyl crystal is isostructural with several other 4,4°-
derivatives of biphenyl, however, with slightly smaller values for the twist angle.

Conformational changes also take place at phase transition between the crystal-
line and the gas phase for molecules such as 1,3 5-triphenylbenzene???: 223 and
hexaphenylbenzene?24: 225), though these molecules are for obvious steric reasons
far from planar in the solid state. Hexaphenylbenzene is of particular interest. In the
vapor phase the peripheral rings are found to be orthogonal to the central ring with a
torsional amplitude of at least 10 © to either side. This molecular arrangement is
probably due to an entropy effect and is not the result of an energetically favorable
conformation. From general experience a propeller shaped conformation ought to be
energetically the most stable one, a conformation in fact found in the solid. On the
other hand this conformation must be statistically unfavorable since, if only one of
the six phenyl rings is brought out of order, the propeller form cannot be realized.

An approximation approach to study the torsonial amplitudes in biphenyls with-
out ortho substituents using electron-diffraction data leads to rather large ampli-
tudes?!®, The two molecules chosen were 3 ,3’-dibromobiphenyl and 3,5,3’5 -tetra-
bromobiphenyl. The u-value for the Brj . . . Bry:-distance was calculated from the
electron-diffraction data. Only the larger of the two Brj . . . Bry--distances appeared
suited for the study. Since the total u-value is composed of contributions both from
the framework vibration and from the torsional motion, an estimate of the frame-
work vibration amplitude is needed in order to obtain the rotational amplitude, 0.
In order to estimate the framework vibration, 3,5 4 -tribromobiphenyl was studied.
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The Brj . . .Brs--distance in 3,5,4"-tribromobiphenyl is nearly of the same length as
the larger Brj . . .Brj.-distance of the two other molecules. But as the Bry--atom lies
on the axis of rotation, the Brj . . .Brs:-distance is independent of the angle of
torsion. Consequently the corresponding u-value is due to framework vibration only.
As a rough approximation the latter u-value was used as an estimate for the u-frame-
work of the longer Brj . . .Bry:-distance both in 3,3’-dibromobiphenyl and in

3,5,3,5 -tetrabromobiphenyl. This led to a value of the g4 of 19 ° and 17 ° for the
two compounds, respectively. This difference may be insignificant, but is at least in
accordance with the expectation that the molecule with the larger moment of inertia
around the central bond ought to have the smaller torsional amplitude. The torsional
motion must be expected to be anharmonic. This is indicated by the fact that the
larger Brs . . .Bry-peak in the radial distribution curve of the two studied molecules
in slightly asymmetric, while this is not the case for the Brj . . .Bry»peak of the
tribromo compound.

It should be emphasized that the g, values obtained as described could not be used
to draw real quantitative conclusions. However, the qualitative conclusion may be
made that the torsional amplitude is probably so large that even the planar form may
be expected to exist in the gaseous phase with a finite probability.

For biphenyl itself the energy dependence of the torsional angle has been
studied by quantum mechanical methods. Studies based upon n-electron calcula-
tions, taking explicit account of steric effects?26=228) led to an energy minimum at
a twist angle of 35 °—40 ° from planarity compared to the best electron-diffraction
value of 42 ° for unsubstituted biphenyl“s). Two different hydrogen-hydrogen
potentials were used in these calculations, one leading to a twist angle of 35 °, the
other one to a twist angle of 40 °. The barriers towards torsional motion are some-
what different in the two cases, but if the latter calculation is chosen from electron-
diffraction criteria, the barrier at the planar form is higher (approximately 20
kJ/mol) than the barrier at the 90 ° form (approximately 8 4 kJ/mol). A more recent
ab initio calculation®??) led to a smaller twist angle (32 °). In this calculation the
positions of the four hydrogen atoms adjacent to the C-C-bridge bond as well as the
bridge bond length were optimized for various values of the twist angle. The rotatio-
nal barriers were found to be 5.0 kJ/mol and 18.8 kJ/mol at the planar and the per-
pendicular form, respectively, i e. in this calculation the barrier to planarity is found
to be the lower one. Both the theoretical calculations suggest a potential function
for the torsional motion with a flat minimum leaving a large torsional amplitude in
agreement with the electron-diffraction results.

In order to summarize our present knowledge as to the parameters of impor-
tance for understanding the torsional motion of biphenyls without ortho sub-
stituents, the following points may be made:

1. The electron-diffraction measurements reproduce the twist angle to 42° with
an error estimate of about £ 5 °, This value corresponds to the angle of maximum pro-
bability . An exact location of the minimum of the potential function is not easy to
derive with present knowledge, but the discrepancy between the electron-diffraction
value and the one obtained by ab initio calculation is too large to be accepted.

2. The contribution of the ortho-hydrogen atoms to the deviation from planarity
is clearly indicated both by the ab initio calculation and by X-ray study. Both
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methods demonstrate a slight deformation of the ortho-hydrogen atoms to ease the
steric strain.

3. The central C-C-bond, the axis of rotation, is both by X-ray and electron
diffraction repeatedly found to be about 150 pm, while the ab initio calculation
suggests a value of 153 pm. This discrepancy suggests that further quantum mechani-
cal calculation would be of great interest.

4. Both ab initio calculations and electron-diffraction studies indicate a large
torsional amplitude. An amplitude value of 15 ° to 20 ° seems at present to describe
the torsional motion, but further studies are certainly desirable.

In order to obtain further information of the torsional motion about the bridge
bond of biphenyls and related compounds it is natural to study the effect of ortho
substitution. Such substitution should introduce more steric hindrance, increase the
angle of twist, and reduce the torsional amplitude. The non-bonded interaction may,
on the other hand, be eased by replacing CH groups in the 2-position by single atoms
such as nitrogen or sulphur. For molecules like 2,2°-bipyridyl or 2,2’-bipyrimidy]
where two or four ortho-CH groups have been replaced by nitrogen, one might
expect planar conformation, arguing that the conjugation effect might overcome the
milder steric strain. However, neither of these molecules exhibits a planar conforma-
tion in the gas phase. 2,2’-Bipyridyl was studied with 4 4’-bipyridy] as a reference
substance?!®), 4 4°-Bipyridyl behaves like biphenyl, but with a sligthly smaller angle
of twist (37 °). 2,2’-Bipyridy] seems to have a potential curve with a smaller barrier
at the planar form than biphenyl itself. The study of this molecule is obscured by the
fact that a non-planar arrangement calls for the possibility of two different confor-
mations, one near anti and one near syn. A more recent study of 2,2’-bipyrimi-
dy1239 both by electron diffraction and by X-ray seems to indicate a behavior
closer to biphenyl, namely a planar conformation in the crystal and an approxi-
mately 45 ° angle of twist in the gas phase. At the present state of the investigation
no information is obtained about the flexibility of the molecule. The comparison of
the hydrogen-hydrogen, hydrogen-lone pair, and lone pair-lone pair interaction is
thus not free of controversies. Since the mentioned compounds and others related to
them offer an excellent possibility of comparing these interactions, further combined
electron diffraction and X-ray study ought to be carried out. Work along this line is
already in progress in this laboratory.

In the present context two other molecules may also be compared, namely
3,3"bithienyl*" and 2,2 bithienyl>3?), For the 3,3’compound the angle of twist
is about 30° and two conformers are found, the near anti conformer being slightly
favored (about 60%). For the 2,2°-compound electron-diffraction study suggests
nearly free rotation over a large angle interval. Here as in many cases when the elec-
tron-diffraction method is used, it is impossible at room temperature or above to
distinguish between unhindered motion or a motion through a barrier of say 2.5 kJ/mol
or smaller. Molecular orbital studies of the barrier to internal rotation®3 led to a two
minima potential curve for 3,3’-bithienyl. The barrier between the minima was found
to be about 4 kJ/moli, and the near anti conformer was also in this study found to be
the energetically more preferable one. For the 2,2 -bithieny] the molecular orbital
calculations indicate free rotation?3?,
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Table 6. Angle of twist (¢) and halogen-halogen distances in a series of biphenyl derivatives,
Pauling’s van der Waals distances are included as well as the differences between these data and
the experimental ones

Angle of Van der
twist, ¢, X-X Waals Diff.
E. D. gas (pm) distances (pm)
study (pm)°0)
Bipheny1215) 42°
2.Fluorobiphenyi234) 49°
2,2"-Difluorobiphenyl235) 60° 285 270 -15
2,2-Dichlorobiphenyl235,236) 74° 346 360 +14
2,2’-Dibromobipheny1235) 75° 362 390 +28
2,2"-Diiodobiphenyi235) 79° 382 430 +48
Perfluorobiphenyl2 ) 70° 312 270 —42

A systematic comparative study of the genuine ortho-substituted biphenyls helps
to throw light on the torsional flexibility of the biphenyl molecule. In Table 6 bi-
phenyl and a series of 2-substituted derivatives are listed with their best estimated
angles of twist?347236 21)_Most of these studies date back to about 1950, and
taking the dramatic development of the electron-diffraction method during the last
years into consideration, the data should be treated with caution. The perfluoro-
biphenyl was studied only 10 years ago, and the 2,2 -dichloro-biphenyl was reinvesti-
gated only a few years ago, essentially confirming the earlier ﬁnding5236).

[t is interesting that the prevailing conformer in all the 2,2 -dihalobiphenyls is
found to be one with the two halogen atoms on the same side (i. e. closer to the syn
than to the anti position). In the recent work on 2,2 -dichlorobiphenyl already re-
ferred to, this finding is confirmed. Both in the gas phase, as studied by electron
diffraction, and in the crystal, as studied by X-ray diffraction, the near syx form is
the only conformer observed. The twist angle refined in the gas phase varies from
75 ° to 70 °, depending on various assumptions attached to the refinements. The
average of the results of the four different refinements gives a twist angle of 72.6 °.
The twist angle found in the solid is 3—7 ° smaller than the one found in the gas
phase. The gas study was carried out at a temperature nearly 300 °C higher than that
of the crystal study, and the oscillation is probably rather anharmonic due to the
steric difficulties encountered at smaller twist angles. The packing of molecules in the
crystal may also hamper torsional motion. (The reason for carrying out the electron
diffraction study at such high temperature, was the search for a possible second
conformer which presumably ought to have a ¢-value about 135°. This search was
negative).

Comparison of the four molecules biphenyl, 2-fluorobiphenyl, 2,2°ifluoro-
biphenyl and perfluorobiphenyl shows that the angle of twist increases in a reason-
able way introducing more fluorine atoms in the 2-position (Table 6). A twist angle
recently reported for crystalline 2-H-nonafluorobiphenyl?*? of 59.5 ° also fits
nicely into the picture.
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In the case of the four 2,2°-dihalobiphenyls, the angles of twist increases with
the atomic weight of the halogen. The observed halogen-halogen distances are also
listed and compared with Pauling’s van der Waals distances®®.

Rough calculations of the potential function for torsion about the bridge bond
have been carried out for some halobiphenyls by combining conjugation energy and
van der Waals energy?!). These calculation do not reproduce the experimental
findings, on the contrary they suggest the more stable conformer for the 2,2’-dihalo-
biphenyls is closer to the anti than to the syn form. The result of these theoretical
calculations was as a matter of fact the main reason for repeating the gas studies of
2,2’-dichlorobiphenyl.

The results of the 2,2’-dihalobiphenyls clearly demonstrate that not only re-
pulsion but also non-bonding attraction may be decisive for conformational choice
and for internal motion. The halogen-halogen attraction is strong enough to make
the near syn conformation prevail to the extent that no other conformer is obser-
vable even at the highest temperature applied in the electron<diffraction experiment.
The apparent systematic, and in some cases rather large, deviation from the London-
force distance, as demonstrated by the last column of Table 6, remains to be ex-
plained. It is to be hoped that the experimental findings for the 2,2 dihalobiphenyls
will animate further theoretical studies.

Of course conformational decisive non-bonded attraction is not limited to halo-
gen-halogen interaction. For example 2,2’-diaminobiphenyl, as studied by X-rays in
the c;;;gt)al, also prefers the near syn conformation with an angle of twist equal to
52° .

The torsional motion of perfluorobiphenyl was studied using more advanced
electron-diffraction technique, and both the torsional amplitude and the torsional
barrier through the 90 ° position was refined>"). The torsional amplitude (g,) was
found to be 10° £ 3°. It is considerably smaller than the value of 15° to 20° esti-
mated for biphenyl derivatives without ortho substituents, which is a reasonable
result. The barrier through the 90 ° position was found to be somewhere between
1.7 and 8.4 kJ/mol, while the barrier through the planar position was too high to be
estimated by the electron-diffraction technique.

The torsional motion of biphenyl and related compounds is a typical large ampli-
tude motion. The accumulated knowledge from a series of molecules in this group
has led to a fairly good qualitative description of the motion. Unfortunately the
quantitative description leaves much to be desired. Taking advantage of the improve-
ments in the electron-diffraction method and applying suitable combinations with
other methods, there are reasons to believe that this deficiency should be remedied.

8 Cyclic Compounds

8.1 Four-Membered Rings

The ring-puckering problem of four-membered rings has for many years attracted
considerable interest from electron diffractionists and spectroscopists. A large body
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of information on this phenomenon has been gathered. A comprehensive and pro-
found review on the dynamics and barrier-height determination of ring-puckering
and pse;.ldorotation potentials has recently been presented by Gwinn and Gay-
lord?3%,

The early diffraction work of Dunitz and Schomaker?*® in 1952 on the proto-
type molecule cyclobutane revealed that the carbon ring was either planar with large
amplitude out-of-plane motions or, alternatively, permanently bent. Eight years later
it was found that cyclobutane was static non-planar with a ring-puckering angle of
about 35 ° 241, The same value was later found by spectroscopy242). A microwave
study of cyclobutyl bromide?4® also led to a non-planar carbon ring but with a
slightly smaller angle (29 4 °). It was then established that cyclobutane exists with
distinguishable axial and equatorial hydrogens similar to cyclohexane. It was also
established by electron diffraction®*® and by microwave studies?*> that the
equatorial positions were energetically favored as in cyclohexane derivatives. The
electron-diffration study244) of four 1,3-dihalocyclobutanes, viz. trans-1 3-di-
bromo-, trans-1,3-chlorobromo-, cis-1 3-dibromo-, and cis-1,3-chlorobromo-cyclo-
butane led to an « angle of 33 + 2 °. The puckering-angle values obtained from elec-
tron diffraction were determined both for cyclobutane itself and for its derivatives
neglecting the shrinkage effect. When this is included, as shown in a recent
work?45), a smaller angle is obtained (about 26 + 3 °).

The study of the 1,3-dihalocyclobutanes shows that the barrier of the puckering
potential in the planar form must be at least 4 kJ/mol. The halogen-halogen peaks in
the radial distribution curve are well defined and well resolved as shown in the case
of cis-1 3-dibromocyclobutane, Fig. 11. The figure also clearly demonstrates the
preference of the equatorial position.

For the trans-1 3-chlorobromocyclobutane there is a conformational mixture
since the two positions a and e may be occupied either by the bromine or by the

Cis Br-Br

1 N 1 It 1 . " L

1 2 3 4 5 (k)

Fig. 11. Radial distribution curves for cis-1,3-dibromocyclobutane. Experimental RD curve (a).
Theoretical RD curve for a model with the two bromine atoms in equatorial positions (b).
Theoretical RD curve for 2 model with the bromine atoms in axial positions (c)
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chlorine atom. A mixture with about 60% of the conformer with bromine in an
a-position gives the best agreement with the electron-diffraction data,

Two further halogenated cyclobutanes have in recent years been studied by
electron diffraction. Invariably, the rings are found to be non-planar. In octafluoro-
cyclobutane?*®) ¢ was found to be 17.4° in one study and 24 *+ 3° in another
one?*”. In 1,1dichlorohexafluorocyclobutane®4” the puckering angle is
23.2+25°

Molecules with fused carbon-ring systems are considerably less puckered than
cyclobutane itself.

< [

a) (2) &)

Bicyclo[2.1 O]pentane (7) seems to be planar®*®): in bicyclof2.2.0 hexane] (2) o is
11.5 £ 1.8 ° 299, and in the syn and anti isomers of tricyclo[4.2.0.0]>% octane (3) «
is 8—9 ° 250),

Four-membered rings with one or more hetero atoms offer the opportunity of
investigating the influence of electro-negativity, hybridization, atomic size, etc., on
the puckering problem. Several such molecules have thus been investigated by elec-
tron diffraction and spectroscopy.

In 1silacyclobutane (4)*5") ais 33.6 2.1 °, in 1,1dichloro-1-silacyclo-
butane2%1® (5)ais30%5°,in1,1,3 3-tetrachloro-1 Jdisitacyclobutane (6)25"’) «

SiH, Sicl, SiCl, .
o O 00 SO
«@) )

6) (7

N (R N O
8 9 o (1)

is reduced to 14 + 3 °, and in 4-sila-3 3-spiroheptane (7) & is 30.1 £ 2.2 ° 2519 p
azetidine (8) Mastryukov et al.25% found that the puckering angle is 33.1 £ 2.4 °,
Interestingly , oxetane (9) is nearly planar with a very low barrier?5 (See Table 7).

In a combined electron diffraction and spectroscopy analysis25¥ the puckering
angle of thietane (10) was determined as 26 * 2 °. Moreover, selenetane (219 is
non-planar with o = 29.5 °.

Two molecules with two heteroatoms in the ring have recently been studied.
Both tetrafluoro-1,3dithiane (72)25® and tetrafluoro-13-diselenetane (13)*51) are
planar.

F,C—S F,C—Se

S—CFz Se—CF,
2 3
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Table 7. Puckering angle («) and barrier to inversion of some selected four-membered rings

Compound Method Ref. Barricr (kJ/mol)
H,C--CH,
35° ED 241) 6.018 + 0.022

H,C—CH,

26+3° ED 245)
H,C-SiH4

33.6+2.1° ED 251 5.26
H,C-CH,
H,C-NH
33.1+24° ED 252) 5.27
H,C-CH,
H,C-0
| 0° @ MW 253) 0.1856 + 0.0006

H,C-CH,
H,C-S

26+2° ED 254) 3.28 + 0.02
H,C-CH,
HyC-Se

29.5+1° MW 255) 4.58 + 0.04
HyC-CH,
3 gQee text.

So far, electron diffraction has not been used for a real quantitative deter-
minatjon of barrier heights of four-membered rings. For reference, some barriers
determined by spectroscopic methods are collected in Table 7. They have been ab-
stracted from the compilation of Gwinn and Gaylord23%. Typically, the barriers to
puckering are fairly small. Most of them are less than 6 kJ/mol.

8.2 Five-Membered Rings

In contrast to the findings for the cyclobutanes where the large amplitude motions
mainly consist of conversion between rather rigid forms, the cyclopentanes exhibit
more complex conformational and dynamic properties. Pseudorotation is a pro-
minent large amplitude motion prevailing not only in cyclopentane but also in other
five-membered rings. If the barrier to pseudorotation is high, distinct conformations
may exist. In this case, the envelope conformation which has maximum C, symmetry
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Fig. 12, Envelope (left) and half-chair conformations of five-membered rings

Structure of Molecules with Large Amplitude Motion

or the half-chair (maximum C, symmetry) are usually preferred. Moreover, some
five-membered rings are found to be planar.

Barriers to pseudorotation have been determined mainly by various spectro-

scopic methods®”*’, while electron diffraction has provided important conformatio-

nal and structural data.
Cyclopentane was studied as early as in 1931 by Wierl>3® who found that the

molecule was planar. In 1946 Hassel and Viervoll>3®) found that the carbon ring

deviates slightly from planarity. This has later been confirmed by repeated investiga-

tions?4!> 269) Spectroscopic studies?>* have shown that this molecule undergoes

nearly free pseudorotation.
In the related molecule cyclopentasilane, (SiH, )5, rapid pseudorotation has been

found in a spectroscopic investigation?®V), Both the C, and the C, model fit the

electron-diffraction data well, but it could not be decided whether pseudorotation

was static or dynamic in this study

Several five-membered rings with one or more heteroatoms have been studied by
electron diffraction. Tetrahydrofuran?%® (74) was found to have a non-planar ring.

o
H,¢” CH,

H,C—CH,
4

Se
SN
H,C CH,

H,C—CH,
a7

H,\C,—CH,
23)

H,¢” O\CH2

H,C—CHBr
s)

0
I

o
1 CH,
Ht—CH,

us)

H, C\/S\/CH,

H,C—CH,
16)

N

0=c\/ c=0

Hzc—éﬂ,
9

Cl
|

P
o” o
v
H,0—CH,
(22)

S\P /Cl
SN

/
H,C—CH,
(25}
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0 i T
Se_ P
({/S\/o 0\/ o o \/N—CH3
H,C—CH, H,C—CH, H,C—CH,
(26) 27 (28)
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P s
CH,—h{/ \/N—-—CH3 CH3—13\/ \/B~CH3 Cl—B\/ v
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a
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H—CH,
32)

Evidence for essentially free pseudorotation was encountered in keeping with
spectroscopic results?>?, As expected, almost free pseudorotation exists in
3bromotetrahydrofuran (15)*¢9,

Tetrahydrothiophene (16) prefers the C, conformation?%%), It was impossible
in this case to obtain a good fit between the experimental and the theoretical elec-
tron-diffraction data by assuming C; symmetry. The same thing was found for tetra-
hydroselenophene (I 7) by electron diffraction?*®) and by microwave spectro-
scopy“’”. The pseudorotational barriers of tetrahydrothiophene and tetrahydro-
selenophene must thus be considerable larger than in tetrahydrofuran since the two
first-mentioned molecules exist in well-defined conformations, This is reminiscent of
the puckering potential found for four-membered rings where a very low barrier was
determined for oxetane while thietane and selenetane have more *“‘normal” potentials
(see Table 7).

The C; conformation has been found for cyclopentanone (18)?¢®, while
succinic anhydride (19) is planar“”. However, in tetramethylsuccinic an-
hydride®?? and tetrafluorosuccinic anhydride?”") conformations with non-planar
rings were observed.

Both the C; and C, models fit well for tetramethylene sulfone (20)%7%. 1 2,4-
trioxacy clopentane (27) has been studied by electron-diffraction??’® and microwave
spectroscopy and found to exist in the C, conformation®?®.

Ethylene chlorophosphite”) (22) and 2-chioro-1 3-dithia-2-phospholane
(25’)276) both seem to prefer the C; conformation with axial P-Cl bonds. On the
other hand, ethylene chlorophosphate (24) and ethylene chlorotrithiophosphate (25)
have their rings in the half-chair conformation??”. Ethylene sulfite (26) and
ethylene selenite (27) have planar or almost planar rings”s). However, in 1,2-di-
methylethylene sulfite a non-planar ring best fits the data?”® . N-methyl-2-chloro-
1,3,2-0xapholane (28) has an envelope conformation with valence angles of nitrogen
almost coplanar?%?. For N,N-dimethyl-2-chloro-1,3 2-diazaphospholane (29) the C,
conformation with equatorial methyl groups and axial P-C] bond fits the data
well?®), The C, model did not yield better agreement8%).
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Dimethyl-1,2 4-trithia-3,5-diborolane (30)2%% and dichloro-1,2 4-trithia-3,5-
diborolane (31)?®% are at least approximately planar as is 1,3-dimethyl-2-chloro-
1,3-diaza-2-boracyclopentane (32)%%4.

As shown above, five-membered rings with only single bonds within the ring
indeed exhibit a varied dynamical and conformational behavior. Seip and co-
workers?®%) have carried out molecular mechanics computations for several of these
systems and generally obtained good agreement with the experimental results. It
seems that this kind of calculation may become a very helpful tool for the study of
large amplitude vibrations of rings in general.

Five-membered rings with one double bond are normally found to be in an enve-
lope conformation, or they are planar. For the non-planar molecules a puckering
potential will exist. The barrier to puckering is generally quite low. For example, in
cyclopentene a barrier of about 2.4 kJ/mol has been determined 3%,

Electron-diffraction studies have been made for several of these compounds. The
puckering angle « of cyclopentene (33) was determined as 29.0 + 2.5 ° 289); this
angle is about 8 ° smaller in perfluorocyclopentane (34)287), viz. 21.9£0.5°. In

cH, _SEs Sitt,
H,c\/ cH, F.C~ CF, H,C” CH,
HC=CH FC=CF HE==CH
(33) 30 (35)
i
SiCl, B
H,¢” “CH, o=c\/ O\/c=o H,c—b{/ \}q—cns
HO=CH HC—CH =N
(36) a7 (38)
ci
¢ su, st
HG” eH, HCT CH, HCT CH,
HC=CH HC—CH N—N
\/ [\
HC._ CH,
i,
(39) (40) (40

I-silacyclopent-3-ene (35)*%® «is 15.7 £ 7.7 °. 1,1-Dichloro-1-silacyclopent-3-
ene?®®) (36) is also non-planar with a = 16.8 £ 3.1 °. Maleic anhydride (37)%°® and
dimethylcyclotetrazenoborane (38)2°" are planar or very nearly so. 1-Oxo-1-<hloro-
phosphacyclopent-3-ene (39)27?) prefers the envelope conformation with the P=0
bond cis to the C=C double bond.

Cyclopentene oxide (40)2°%) and 1,5-diazabicyclo[3.3.0]octane (41)*°* are
similar to the cyclopentene derivatives in that rotation about one bond is very much
restricted. (40) takes a boat conformation®®3, while the rings are twisted in
(41)294)'
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8.3 Six-Membered Rings. Cyclohexane and Its Derivatives

The studies of cyclohexane and its derivatives by Hassel and co-workers in the late
thirties and early forties using mainly the electron diffraction method laid the
foundation of conformational analysis. In 1943 Hassel?>®> summarized that cyclo-
hexane exists mainly in the chair conformation as distinct from any other possible
conformation. The chair conformation will have distinguishable axial, , and
equatorial, e, substituents. (See Fig. 13). The equatorial position is the energetically
favored one. Furthermore, Hassel stated that there is a rapid inversion of the ring
with an associated low barrier. This motion interchanges the @ and e positions with
the result that a and e conformers cannot be isolated.

The structure of cyclohexane itself2?®) as well as the barrier and the dynamics
of the ring inversion have been the objects of several studies in the sixties and
seventies. Anet and Bourn?®? in a NMR-study of C¢D,, H found the following
thermodynamic activation parameters: AH* = 45.6 kJ/mol, and AS* = 12.1 J/mol K.
The activation enthalpy of 45.6 kJ/mol is probably fairly close to the barrier height.
This value is in good agreement with very recent molecular mechanics calcu-
lations?°®. The exact inversion path is unknown, and is quite likely rather com-
plicated. This is indicated by the molecular mechanics calculations in which it was
found that several conformations have rather similar energies. E. g., the D, twist and
the C, twist conformation were both computed to be 22 kJ/mol less stable than the
chair, while the C,, boat and the C; boat conformations were calculated to have
slightly higher energies, namely 28 kJ/mol as compared to the stable chair. All these
four geometrical forms considered by Allinger et al.2*® may be local minima on the
inversion potential surface. Further minima may also exist. There is experimental
evidence obtained from substituted cyclohexanes that twisted conformations or boat
forms are about 20—25 kJ/mol less stable than the chair*®®, in good agreement
with the molecular mechanics calculations?°®),

Ab initio calculations are not very convincing as the boat conformation was
computed to be 61 kJ/mol and the half-chair 68 kJ/mol less stable than the
chair3°9, This is about three times the expected values (2025 kJ/mol).

Mono- and 1,1-disubstituted cyclohexanes. There are several electron diffraction
investigations of mono-substituted cyclohexanes. Cyclohexylfluoride3°") exists as
57% e and 43% a which means that the equatorial position is favored by about 710
J/mol. A microwave study3°? yielded 1.6 + 1.2 kJ/mol for this energy difference.
Cyclohexylchloride30? is very similar to the fluorine derivative in that the gas phase

Fig. 13. Chair conformation of cyclohexane with
a equational (e) and axial (a) positions indicated
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is composed of 45% axial and 55% equatorial conformers. Methylcyclohexane309

was found to have the methyl group only in the equatorial position. If this group
were placed axially, the distance between it and the axial hydrogen in the 3 position
would be rather short and presumably repulsive. This 1,3-interaction, which is
usually repulsive, is important for conformational preferences, a fact pointed out by
Hassel2%,

In 1,1dimethylcyclohexane one of the methyl groups must of course be in the
axial position and thus experience repulsion from the hydrogens in the 3-position. In
this case, a flattening of the ring was observed 3053,

2,2,6-Trimethylcyclohexanone3°®) has a carbonyl group instead of one axial
and one equatorial hydrogen atom. This molecule too takes a chair conformation.

1,2-disubstituted cyclohexanes. One consequence of cyclohexane ring con-
version is that frans-1 2-disubstituted cyclohexanes with identical substituents can
exist as ee or aa conformers as shown in Fig. 14 while the corresponding cis ae con-
formers only can exist as rapidly interconverting optical antipodes. Indeed,
trans-1,2-dibromocyclohexane was the first molecule for which the coexistence in
the gas phase of two conformations was proved experimentally®?. The electron-
diffraction study indicated that the molar ratio of ee to aa was about 1.5, suggesting
that ee is more stable by 0.8—1.2 kJ/mol®.

Trans and cis-decalin3®? take the conformations shown in Fig. 15. Inversion
cannot take place in trans-decalin, while cis-decalin inverts into its optical antipode if
both rings invert simultaneously.

Several further molecules which may be regarded as 1,2-disubstituted cyclo-
hexanes have been studied by electron diffraction. Principal conformational findings
for several of these compounds are summarized in Table 8.

—_—
«—
ee aa

trans-1,2
—>
M = %
ea Fig. 14, Conformational possibilities
ea for trans-and cis-1,2-disubstituted
cis~1,2 cyclohexanes
a b Fig. 15. Trans-(a) and cis-(b) decalin
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Table 8. Selected six-membered rings studied by electron diffraction

Compound Conformation Remarks Ref.
Bicyclo[4.1.0]heptane (42) Half chair 308)
7,7-Dichlorobicyclof4.1.0)- Half chair 309)
heptane (4.3)
Cyclohexene epoxide (44) Half chair 310)
cis- and trans-Tricyclo- Distorted chair Two con- 31n
[5.1.0.02:%joctane (45) formers for trans
8,8-Dichloro-1,4,4-trimethyl- Presumably planar 312)
tricyclo[5.1.0.03:3 Joctane (46) central ring
cis- and trans-Bicyclo[4.2.0]- Distorted chair 313)
octane {(47)
trans-2-Decalone (48) Indications that both 314)
rings are distorted chairs
10-Methyl-trans-2-decalone (49) Both rings chair 315)
1,1-Dimethyl-trans-2-deca- Distorted chair 316)
lone (50)
Perhydroantracenes (57) Chair 317)
. 0]
1
(42) 43) 44 (45)
CH,
CH)><C§<EI O] m
1
(46) “7) (48)
m o C : :
H,
“9) (&1} n

1,3-disubstituted cyclohexanes. Very few 1,3-disubstituted cyclohexanes have
been studied by electron diffraction. f-Pinene (Fig. 16) may be regarded as a 1 3-
disubstituted cyclohexane. This molecule contains two fused six-membered rings and
one of them must be in a boat-like conformation. Naumov and Bezzubov>'®) found

150



Structure of Molecules with Large Amplitude Motion

cH, S

CHZ CHZ Fig. 16. Boat (a) and chair (b) conformations
a b of g-pinene

that this molecule exists as 65% in the *‘chair” and 35% in the “boat” conformation
of Fig. 16.

1,4-disubstituted cyclohexanes. Both the cis and the trans 1,4-disubstituted
cyclohexanes will exist as meso compounds if the two substituents are identical. The
cis-isomer can only have the ae substituent configuration, while the az and ee con-
formers are possible for the trans-isomer. Trans-1 4-dichloro? 19} and trans-1 Adi-
bromocyclohexane3'? have been studied by electron diffraction, and the amounts
of the aa and ee conformations were found to be practically equal for both mole-
cules. Hence, the energy differences were estimated to be less than 0.7 kJ/mol.

It has been pointed out® that zrans-1 4-dihalocyclohexanes are ideally suited for
determination of changes in free energy, enthalpy, and entropy by electron diffrac-
tion, since the ratio between the conformers may be found quite accurately by com-
paring areas of the appropriate peaks in the experimental RD curve (see Fig. 17).
Accurate thermodynamic parameters of gas phase conformational equilibria are
rather scarce and these molecules may perhaps be able to provide some much-wanted
high-quality data with the aid of the modern electron-diffraction technique.

Theor turves

ee form

......... aa form

—— Experimental

......... Theor curve with equal
amount of ee and aa form

Fig. 17. Theoretical and ex-

j\J ’ perimental RD curves of
- 1 —1 ? ,1 f

trans-1,4-dichlorocyclohe-
100. 200. 200. 400. $00. 600.
R{pm) xane

‘ l Fig. 18. Conformational equilibrium of

Br  ¢is-1,4-chlorobromocyclohexane
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Cis-1 ,4-chlorobromocyclohexane32°) is representative for a molecule with non-

identical substituents. In this case, conformations with a a-chloro- and e-bromo sub-
stituents, or vice versa are possible. It was found that this compound exists almost
completely in e-chloro-a-bromo conformation. This contrasts with the results of the
corresponding cyclobutane derivatives earlier referred to (p. 142).

cis-1 4-Ditertiary butylcyclohexane®?!) will have one tertiary butyl group in the
a position. This will be sterically very unfavorable because of the size of the tertiary
butyl group. The electron diffraction data strongly indicates that the ring is distor-
ted32!®_ A composition of 1/3 chair and 2/3 non-chair ring conformation yielded
the best fit to the data.

In both cis-and trans-4-tertiary butyl-l-chlorocyclohexane3°5b) the bulky
tertiary butyl group will be equatorial. In these two molecules only a small deviation
from the ideal cyclohexane geometry was found for their rings.

Polysubstituted cyclohexanes. 1f there is only one type of substituent, the con-
formation with a maximum number in the equatorial positions is generally favored.
If several different substituents are attached to the cyclohexane ring, it is not always
obvious which position is the more stable.

Some polysubstituted, mainly halogenated cyclohexanes have been studied by
electron diffraction. Two conformers are possible for 1,2-dichloro-4,5-dibromocyclo-
hexane3?? (Fig. 19). The az-chloro-ee-bromo conformer predominates in the gas
phase. Deviation from idealized geometry was seen in this case. The a-C-Cl bonds are
bent away from the principal axis of the ring by approximately 8 °. The e-C-Br
bonds are also bent away from each other by about 3 °. A similar finding was made
for dodecafluorocyclohexane, C¢F5,32® where the axial fluorine atoms are bent
away 6.2 ° from the principal axis of the ring. This kind of deviation from cyclo-
hexane geometry is quite common and was also found for 1,2 4,5-tetrachlorocyclo-
hexane in the crystalline state3?%,

Five of the eight theoretically possible 1,2,3,4,5,6-hexachlorocyclohexanes have
been studied and their preferred gas phase conformations determined 329,

Cyclohexene and derivatives. The stable conformation of cyclohexene is the
half-chair*?® (Fig. 20).

Ct
Cl Br
Br 5 Cl
Br ) Fig. 19. Conformational equilibrium
of 1,2-dichloro-4,5-dibromocyclo-
clt Br hexane
Ve
/s
7
y 7 Fig- 20. The half-chair conformation of cyclo-
hexane
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If substituents are placed in the 3 and 4 positions, axial and equatorial conforma-
tions may arise. In 3-chlorocyclohexene (52)3%7) 80% is axial and 20% equatorial,

sHelsleRe

(52) (GK)) 54)

(55)

(56)

Table 9. Selected six-membered rings with hetero-atoms studied by electron diffraction

Compound Conformation Remarks Ref.
1,3-Dioxane (57) Chair 332)
1,4-Dioxane (58) Chair 333)
1,3,5-Trioxane (59) Chair 334)
2,4,6-Trimcthyltrioxane Chair Methyl groups 335)
(paraldehyde) (60) equatorial
1,3-Dithiane (67) Chair 336)
1,4-Thioxane (62) Chair 337)
4-Thiacyclohexanone (63) Chair 338)
Piperazine (64) Chair 333, 339}
N,N-Dimethylpiperazine (65) Chair Methy! groups 333)

equatorial
2,2,6,6-Tetramethyl-4-piperidinone- Chair 340)
1-oxy) free radical (66)
2,2,6,6-Tetramethyl-hydroxyl-4- Cy suggested Cansiderably 341
piperidinone (67) distorted chair
Trimethylene sulfite (68) Chair $=0 axial 342)
trans-4,6-Dimethyl trimethylene Probably chair 343)
sulfite (69)
Trimethylene selenite (76) Chair S=0 axial 344)
Trimethylene chiorophosphite (77) Chair Axial P—Cl 345)

predominates
1,3-Dimethyl-2-chloro-diazbora- Cq Cs out of plane 346)
cyclohexane (72) formed by the

other atoms

347)

Thiantien (73)

Dihedral angle
128-130°. In-
version barrier larger
than 4 kcal/mole
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while 40% takes the axial and 60% the equatorial position in 4chlorocyclohexane
(53)%7. Five isomers of 34,5 6-tetrachlorocyclohexene-1 have been studied32®
and their conformational preferences determined. In the S-isomer, evidence for the
presence of two conformers was found. 1,3-Cyclohexadiene (54) is twisted 18.1 %
1.0 © about the single bond connecting the two double bonds3??. 1,4-Cyclo-
hexadiene (55) is planar at equilibrium?33®. In bicyclo[4.1.0]-2-heptene (56) a 30%
to 70% mixture of two twisted conformations was taken as the best model at room
temperature33%),

Cyclohexane derivatives with hetero atoms. Electron diffraction studies have
been made for many molecules with hetero atoms. These molecules are analogous
to cyclohexane derivatives. Principal findings pertaining to large amplitude vibration
are summarized in Table 9.

It is seen from this table that the chair conformation is preferred when one or more
ring methylene groups are substituted by nitrogen, oxygen, sulphur, selenium, or
phosphorus. When the electron deficient atom boron is substituted into the ring and
attached to two nitrogens with lone electron pairs, flattening of the ring results as
seen in the case of 1,3-dimethyl-2-chloro-diazboracyclohexane>*9). This is probably
caused by electron delocalization34¢),

Miscellaneous six-membered rings. Electron diffraction studies have been made
for several molecules which have no carbon atoms in their six-membered rings. Hexa-
methylcyclotrisiloxane (74)>*®) is essentially planar with D3, symmetry, while

Si(CHj), i(CHj),
(|)/ \cl) HN/S\TH
(CHy),Si_ O/Si(CHa)z (CH,)Ai\ _Si(CHy),
NH
¢ 75
AI(CH,),
cH 0~ OCH,
(CH,Al___AICH)),
OCH,
(76)

hexamethyleyclotrisilasane (75)*3%) is puckered but the deviation from planarity is
relatively small. The ring of methyl aluminium methoxy trimer ( 76)350) is definitely
non-planar. C3, symmetry was assumed for this molecule, but lower symmetries
could not be ruled out.

0
o 1o o | (B\o
\Mo/ \w/
/ N\ /\
0O 0 0O o0
(77) (78)
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A chair conformation33 ! is suggested for Se¢ studied at 450 °C. (Mo03)3 (77)
best fits a planar Dy, model352), and (WO 3)3 (78) is perhaps puckered with Cs,
symmetry>>¥. The former of these two molecules was studied at about 1000 °C
and the latter at 1400 °C and shrinkage is thus probably quite important?.

8.4 Rings with More than Six Atoms

The study of large rings by electron diffractions is generally complicated because of
the large number of parameters to be determined. Often these rings have little
symmetry or they may be quite flexible so that several conformations coexist. This,
of course, adds to the already difficult problem. Quite often the only conclusion that
can be made is that no one simple conformation can explain the experiment satis-
factorily. Despite these obstacles, considerable progress has been made toward- an
understanding of structure and dynamics of several large rings by the means of elec-
tron diffraction. Molecular mechanics calculations have been made for many
rings27» 28, 285, 359) with results which are often in good agreement with the ex-
perimental ones. Interconversion mechnisms of small, medium and large rings have
been reviewed by Dale35%). Dunitz3%®) has reviewed recent X-ray work on medium
size rings.

Seven-membered rings. Relatively few seven-membered rings have been studied
in the free state. 1,3-cycloheptadiene (79)357) is planar except for C¢ which is bent

« g
//6“:::: €ISIIE
/ N
i 4 24----3 -
N o LA by
(79) 80)

63.9 £ 4.0 ° out of the plane formed by C;, C;, C3, Cs, and Cs. 1,3,5-Cyclohepta-
triene (80) is non-planar with « =40.5 £ 2.0 °,and § = 36.5 £ 2.0 °. 2.4,6-Cyclo-
heptatrien-1-one, tropone””, is assumed to be planar.

Eight-membered and larger rings. Cyclooctane3®®) was best accounted for by
assuming a mixture of several conformations, since the ring is very flexible. Trans-
cyclooctene®®!), cyclooctyne3®?), as well as 3,3 ,6,6-tetramethyl-1-thiacyclohep-
tyne3® all prefer twisted conformations. 1,3-Cyclooctadiene (81)3%% has C;
symmetry with a 37.8 ° angle between the two planar ethyelene groups. Cycloocta-
tetraene (82)3¢5) has a tub form with a =43.1 % 1.0 °, Cis,cis-cyclodeca-1 6-diene

o0 <>

(73] 82) 83

2 Sce Note Added in Proof.
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(83)%% has a predominant Cyy, chair conformation. The situation encountered for
cyclodecane®” is quite similar to that found for cyclooctane®%? in that the ring is
very flexible. A mixture of four different conformations yielded a good fit to the
experimental data®®”. Cyclotretadeca-1,8-diyne is also a very flexible mole-
cule3®0),

Cope rearrangement is known to take place in semibullvalene (84)3%8) and bull-
valene (85)%%). This process is quite slow compared to the electron-diffraction
process, and the bond distances of (84) and (85) are therefore found to be similar to
normal single and double bonds.

Miscellaneous mediume-size rings. A few electron diffraction investigations have
been made for medium size rings not containing carbon atoms in the ring. The eight-
membered ring prosiloxane tetramer, (H,Si0),437?, is best accounted for by
assuming a puckered structure with S4 symmetry. Cyclic tetrameric structures of
lower symmetry cannot be ruled out. The situation in octamethylcyclotetrasilo-
xane349) [(CH;);SiOls, is similar. No well-defined conformation was found in the
ten-membered ring decamethylcyclopentasiloxane34®), [(CH;), SiOls, as well as in
the twelve-membered ring dodecamethylcyclohexasiloxane3*?, [(CH;),SiOl¢, as a
result of large amplitude vibrations.

Selenium trioxide3”*) was studied at 120 °C. About 30% is monomeric Se054
and the rest is a tetrameric eight-membered ring presumably with S4 symmetry. In
dimethyl aluminium fluoride tetramer37?, [AIF(CH3); 14 the eight-membered ring
consists of alternating aluminium and fluorine atoms. The molecule is probably
non-rigid. A chair-boat model with C; symmetry and two aluminium atoms in the
mirror plane best fits experimental data. Further models with fow symmetry are also
possible.

o O

(84) &5

9 Miscellaneous Large Amplitude Problems

Organometallic chemistry has in recent years been a rapidly expanding branch of
chemistry. A large number of interesting and “‘unusual® or unexpected molecules
have been synthesized. Electron-diffraction has been used to study many organo-
metallic compounds. Several of these are quite flexible and exhibit chalienging large
amplitude problems. Recently, Haaland37% has reviewed the electron-diffraction
work on these molecules.

Bicyclopentadienylmetal and related compounds. Electron-diffraction has now
been employed to study about ten bicyclopentadienylmetal compounds’3,
(CsHs), M. With the notable exception of beryllium, the metal atom is always placed
in the middle between the rings on the five-fold axis of symmetry. The structure
obtained for (C5Hs ), Be is shown in Fig. 21.
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) T2:1.903(8)A
T 0
I =1.472(6) A
\ o
1.425(2) A

Fig. 21. Molecular structure of

O: C O=H ‘: Be (CsHs)2Be

In this case, the metal atom is closer to one ring than to the other. It has been sug-
gested374) that the beryllium atom oscillates in a double minimum potential which
has its minima on the five-fold axis of symmetry 22 pm on either side of the mid-
point between the rings. However, theoretical calculations®”) have failed to re-
produce the experimental findings. A new electron-diffraction study of this molecule
is now being made3”® . Preliminary results show that the model of Fig. 21 is in
agreement with the new data37), Other models are also being studied?.

The barriers restricting the torsional motion of the rings are definitely fairly low
in all (CsHs),M compounds which have hitherto been investigated 3”7, In one case,
e. g. ferrocene, (C5Hs ), Fe a barrier of 3.8 £ 1.3 kJ/mol has been determined by
electron diffraction??). Unfortunately, there are no other gas phase quantitative
barrier determinations for the ring torsional motion of these “sandwich” com-
pounds.

In a related compound, benzenechromium tricarbonyl, C¢HCr(CO);377,
internal rotation was seen to be nearly unhindered.

Molecules with several XF 3 groups. Some molecules of this type have been
studied by electron-diffraction in recent years. In nickel tetrakistrifluorophosphine,
Ni(PF3)4°7®, the PF 3 groups rotate nearly freely. The same was found for
platinum tetrakisfluorophosphine, Pt(PF3)437%.

Two molecules presenting the same kind of torsional problems, are C(CF3),4 and
Ge(CF3),3%9. The C-F distance is found to be nearly the same for the two com-
pounds, but of course the distance from the central atom to the CF 5 carbon is con-
siderably larger for the latter molecule. The C-C distance is found to be 156.2 pm,
and the Ge-C distance is found to be 198.9 pm. This leads to a noticeable difference
in the torsional motion of the two molecules. In C(CF )4 the torsional barrier is
estimated to be about 10 kJ/mol from the electron<diffraction study, while a
CNDO/2 calculation estimated a barrier of about 3 kJ/mol. For Ge(CF3)4 the elec-
tron-diffraction data suggest free rotation. For these molecules the geared motion
has not been considered as was the case for (CF3)3;CH, previously discussed (p. 136).

3 See Note Added in Proof.
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Fig. 22. Experimental and difference RD-curves (right) of various molecular models (left)
of TINO;

High temperature studies of salts. Ionic compounds have in recent years been
studied at elevated temperatures, especially in the Soviet Union. These distinguished
studies have, in combination with other methods, demonstrated that polyatomic
molecular species are rather the rule than the exception in the gaseous state at high
temperatures. Moreover, large amplitude motions reflecting rather peculiar dynamics
have been found to be of considerable importance in several of these investigations.
In one such study, the one on thallium nitrate, TINO3 38V, performed at
300—350°C, the three models shown in Fig. 22 were considered. The root-
mean-square amplitudes of vibration of the T1-O distance was found to be in
the 16—25 pm range for the various models A, B, or C. This is a very high value
for two atoms linked to each other. None of the three models A, B or C was satis-
factory. A composite mode] with a mole fraction of 0.71B,0.18C,and 0.11A
yielded a much better fit to the data as shown in Fig. 22. The exact nature of the
unusual large amplitude motion observed in this case will need further investigation.
There is also some evidence from other nitrates, . g. Cu(NO3), 382) 1iNO 3 383)
and NaNO; 38 for a similar large amplitude behavior.

TIReO, also exhibits large amplitude motion3%%. It was suggested3®® that the
thallium atom “orbits” around the near-spherical surface of the ReO-tetrahedron.

Ti;S04, Cs, WO, Cs, S0, and Cs;MoO, all>® possess a structure which is
presumably close to the D, 4 structure (86). The extraordinary large root-mean-
square amplitudes of vibration observed for these four compounds have been inter-

v \
M2 s

(86)

preted in a similar manner as for TIReO,4, namely as great displacements of the metal
ions on the surface of an imaginary sphere formed by the acid residues. It is not
unlikely that TI,M00,4389), KAIC1,387), NaAIF, 388 KYCl, %9, TiInCl, 399,
K,Cr043%Y, InzMoO4392) and K 80439‘) behave sxmxlar]y
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A theoretical discussion of the chemical bonding in molecules of this kind has
recently been given3®¥,

Several alkali halides have been studied at elevated temperatures and
dimeric species forming four-membered rings have been found to predominate. There
are indications of rather large amplitude vibrations in these dimers. It should be
pointed out that monomeric species are also present in addition to the predomi-
nating dimers and several of these have been indentified by microwave spectroscopy**

Penta-, hexa-, and heptahaiogenated compounds. Many compounds of the
general type XY, where Y is a halogen, mainly fluorine, and n = 5,6, or 7 have been
investigated by electron diffraction in recent years. These substances exhibit a varied
dynamical behavior. While WFg 3%% 396, MoF, 3% 397, TeF¢ 397> 399),

UF 396, 397, 399) ReF 400) OSF6 396) IrF6 396) NpF6 396) and PUF 396) are

all rather “rigid” regular octahedrons of point group Oy, th1s is not the case for other
similar molecules. PF5*°Y, for example, is a trigonal bipyramide with axial PF bond
length of 153.0 + 0.4 pm and an equatorial PF bond length of 157.7 £ 0.5 pm. The
NMR spectrum of this compound shows only one peak*®") which is indicative of a
rather low barrier to pseudorotation whereby equatorial fluorine atoms are trans-
formed into axial ones and vice versa. The AsFs*°® and PCls*°® molecules behave
in a similar manner. In CH;PF,**® and (CH),PF;*® conformations with equato-
rial methyl groups are preferred. Very recently, NbCls *®%) and TaCls *°5) have been
studied and found to have D3, symmetries. Barriers to pseudototation were also
determined as 6.0 £ 2.8 kJ/mol for NbCls and 4.8 + 2.4 kJ/mol for TaCls, respectively.
In XeF¢ 409 effects of large amplitude vibrations are again manifest. No resolution
of axial and equatorial XeF bond distances was possible. The molecular geometry is
in the broad vicinity of Csy. IF;4°7 and ReF,*%®) both show considerable distor-
tion from a pentagonal bipyramid of Dy, symmetry. In IF;4°7 the average dis-
placement of the equatorial fluorine atoms by ring puckering is 7.5 ° and the axial
fluorine atoms are displaced by an average of 4.5 °. In ReF,;*%®) the corresponding
distortions are 8.7 ° and 7.5 °, respectively.

Torsional motion of nitromethanes. The nitro group of CH3NO, undergoes
nearly free rotation as shown by microwave spectroscopy”’. Large amplitude tor-
sional oscillation about the C-N bond also takes place in several other nitromethanes.
In C(N02)44°9), for example, the rotatory oscillations have an amplitude of 20 °.
The mean amplitude of vibration for the interatomic distances depending on the
torsion are as large as 13—17 pm at 45 °C. Similar results have been found for
CH(NO;)3*!'%, and CH,CINO, *!V). Interestingly, CC13NO; has a comparatively
high barrier of about 12 kJ/mol412) Rather high barriers were also indicated for
CBr3NO,*'? and CF3NO,*'). This result is in disagreement with the microwave
findings for the latter molecule, which was found to have nearly free rotation’>.

394)

10 Concluding Remarks

The large amplitude motion that sometimes takes place within the molecule, should
above all be studied in the gas phase. In a condensed phase intermolecular forces may
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in a systematic way hamper the internal motion. A large number of studies, taking
advantage of a series of experimental techniques and theoretical methods, have for
several decades been used to collect information in this field. In general a good
qualitative picture of the large amplitude intramolecular motion has been formed,
and sound theoretical systems have been developed for a quantitative approach to
the problem. But in spite of this, a real quantitative description of the large ampli-
tude motion has been given only for a few molecules.

The information collected so far is based upon findings of several methods. Un-
less a new thus far unknown method is developed, further success in this field de-
pends on combination of various procedures among which gas electron diffraction is
a prominent and useful one. Probably more systematically coordinated use of dif-
ferent experimental methods, in joint efforts to solve one and the same problem, is
required to obtain more accurate and more detailed information.

Since the electron-diffraction method has been focused on in the present article,
a question which naturally suggests itself is the following: Is there any special devel-
opment in the field of electron diffraction that in particular may advance the study
of large amplitude intramolecular motion? Since temperature enhances internal
motion, the inclusion of high temperature study seems to be of increasing impor-
tance. In this field the Soviet electron-diffraction groups did the pioneering work,
and they still lead the field. Combining high temperature studies with experiments
done at the lowest possible temperatures would no doubt contribute favorably to
our understanding of molecular flexibility.

We wish to conclude our essay with a final question: What is so important about
the large amplitude motion to justify all the endeavor in describing it? A rationalist
would base his answer on the general human wish to be useful and point to the appli-
cations that other fields of research may make of our findings. This can indeed be
done with appreciable success. Generally, the flexibility of a molecule is described
through its large amplitude potential, the determination of which is the main goal of
our study. The interaction that takes place between molecules when they approach
each other, must no doubt be dependent to a certain extent at least on the flexibility
of the molecules involved. Accordingly the physical properties of a compound and
its specific reactivity may also depend upon the molecular flexibility. It seems for
example established beyond doubt that the existence of conformational option in a
biologically active compound may be decisive for the specific properties of the com-
pound.

But the question may also be answered differently. It is perhaps legitimate to
claim that the fact that so many researchers are attracted and fascinated by the field
and find it intellectually challenging, is a good enough justification in itself. For
those who want to put their experimental or theoretical method to a critical test,
large amplitude motion studies are to be recommended. Like many other fields of
science, the study of intramolecular mobility is primarily carried out on its own
merits, leaving possible application to future research.
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Note Added in Proof

1. An important article written in Russian*!® on a similar subject as the present one,

was unfortunately overlooked during the preparation of our manuscript. The article
has since been published in English#16). The main emphasis of the Russian article is
on dynamic effects of inorganic molecules.
2. Since this manuscript was prepared a new value for the v4-frequency in C30, has
been published*!?.
3. Concerning the molecule (WO 3); shrinkage has been calculated®'® . The inclusion
of the shrinkage effect does not change the conclusion that the ring has a puckered
conformation.
4. A slip sandwich model derived from the Cs, shown in Fig. 21 by moving the ring
that is at the greatest distance from Be, sideways, while the two rings remain essen-
tially parallel, is found to be in even better agreement with the electrondiffraction
data than the Cs, model. It is likely that the far ring undergoes large amplitude
motion in this direction, but it remains undecided whether the equilibrium structure
is Cs, or not.

Molecular models of Dg), or Dgq symmetry or models containing one n-bonded
and one g-bonded ring are not in agreement with the ED data*!?),
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