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Low-Frequency Vibrations in Small Ring Molecules

1 Introduction

It is well known that the mean-square amplitude of a molecular vibration in a given
quantum state is inversely proportional to the product of the reduced mass and the
frequency of the vibration. If it has both a small reduced mass and a frequency that
is low because of small force constants, the resultant amplitude of vibration will be
large. Among the modes of vibration that have small force constants are the inversion
of pyramidal molecules, torsion about single bonds, bending of quasi-linear mole-
cules, and the vibrations of ring molecules parallel to the axis of the ring. All but
the last are discussed in other chapters of this volume; here we will be concerned
with small ring molecules composed of light atoms, whose ring puckering vibrations
have large amplitudes and hence cannot be treated by the addition of small terms
of higher order to a quadratic potential system.

Transitions between the vibrational states of low-frequency vibrations are di-
rectly observable in the far infrared absorption spectrum or as low-frequency Raman
shifts. The Boltzmann factors of these states are relatively large at room tempera-
tures, even for fairly high values of the vibrational quantum number v. In addition
the transition moments are substantially larger than those of a harmonic oscillator
for the same v’s, and thus it is often possible to observe a long progression of tran-
sitions either in infrared absorption or the Raman effect or both. When such ob-
servations extend to levels above a barrier to inversion, the potential-energy curve
or surface can be mapped with accuracy to points higher than the barrier and the
barrier determined with an accuracy corresponding to that of the spectroscopic
measurements.

Since the potential-energy function for low-frequency vibrations involves weak
force constants, the function is sensitive to intermolecular forces, which can reach
comparable magnitudes to the intramolecular ones at short intermolecular distances.
Thus in the liquid states the intramolecular levels are so seriously broadened as to
make them difficult to observe, while in crystals the inversion barriers are drasti-
cally altered. Thus the most meaningful spectra are necessarily observed in the gas
phase, and this delayed the development of the subject until suitable far infrared,
laser Raman and microwave techniques were developed, as summarized below.

The experimental observation of ring-puckering motions was preceded by some
insightful theoretical suggestions. Bell") recognized that the ring-puckering vibration
in cyclobutane should have a large quartic term in its potential function, and Rathjens
et al.?) proposed a double-minimum potential for this molecule which predicted a
highly anharmonic set of levels for the ring puckering. Pitzer and co-workers* also
were led by studies of the heat capacity and entropy of cyclopentane to postulate
an unusual relationship between the two components of the approximately degen-
erate ring-puckering vibrations in that molecule. This relationship they termed
“pseudo-rotation” because the successive displacements in the vibration give the
appearance of a rotation of the distorted molecule.

The first direct spectroscopic observation of the highly anharmonic nature of
ring puckering in a small ring molecule was made by Danti®, who found part of
the progression for oxetane at 90140 cm~! in far infrared absorption. This work
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was confirmed by the spectrum of oxetane-dg ), and the nature of the isotopic
shifts as well as the absolute values of the frequencies made it clear that the poten-
tial function is nearly a pure quartic. Pseudorotation was not observed first in cyclo-
pentane but in the analog oxolane (tetrahydrofuran)®, In the latter molecule there
is a small barrier to pseudorotation, as is discussed in Section IV. B., below. Quan-
titative measurement of the pseudorotational energy levels in cyclopentane, which
confirmed the postulates of Pitzer et al.3), was first made by means of combination
bands in the mid-infrared by Durig and Wertz?).

Since this early work the theoretical and experimental aspects of low-frequency
ring vibrations have grown rapidly. In the sections below we sketch briefly the ex-
perimental methods developed to investigate ring molecules (Section II), review the
theoretical basis for the interpretation of the spectroscopic data (Section 111), and
give an illustrative survey of the applications of the theory to the special cases of
individual molecules (Section IV).

II Experimental Methods
A. Far and Mid Infrared Spectroscopy

Since the early far infrared work on ring molecules® $) there has been a considerable
improvement in instrumentation, first in conventional grating spectrometers®) and

Absorption
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Fig. 2.1. Far infrared spectrum of oxetanone-3. The Q-branch transitions are shown on the
background of overlapped P and R transitions. P = 22 torr, pathlength = 30 cm. Absorption
is plotted upward in this spectrum.

{Reproduced from Carreira, L. A,, Lord, R. C.: J. Chem. Phys. 51, 3225 (1969).]
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Fig. 2.2. Far infrared spectrum of oxetanone determined interferometrically. P = 48 torr,
pathlength = 1 m. Absorption is plotted downward in this spectrum.
[Reproduced from Jokisaari, J., Kauppinen, J.: J. Chem. Phys. 59, 2260 (1973)]

later in Fourier-transform interferometers® . Figure 2.1 shows the spectrum of oxet-
anone-3 recorded with a grating spectrometer!® and Fig. 2.2 depicts the spectrum
of oxetane as computed from the scans of an interferometer®). Both these spectra
represent great improvements over those obtained in earlier studies®) and the quan-
titative interpretation of the spectra is correspondingly improved. For the details of
far-infrared instrumentation and techniques, the reader is referred to the monograph
of Moeller and Rothschild!?,

In the mid infrared region, ring-puckering vibrations may be seen as combination
and difference bands with another normal mode of vibration, as was first shown by
Ueda and Shimanouchi'®, The combination and difference bands for cyclobutane
between the ring-puckering mode and the B, deformation frequency near 1450 cm™
are illustrated in Fig. 2.3, taken from Miller and Capwell'®. All of the combination
and difference transitions (except the first difference line) involve ring-puckering
energy levels in both the excited state and the ground state of the mid infrared nor-
mal mode. Since the ring-puckering energy levels in the excited state of the mid
infrared normal mode may be different from those in the ground state, appropriate
differences between the combination bands and difference bands must be taken to

1

100

CYCLOBUTANE

brptrme A

PR SR Y 1 4 1 ! 1 ) 1l 1 1 1
1540 1500 1460 1420 1380 1340 1300
YR

1

PR PSS SR N S W S
1660 1620 1580

Fig. 2.3. Combination and difference band progressions involving the ring puckering vibration
and a CHj scissoring mode in the mid-infrared spectrum of cyclobutane.
[Reproduced from Miller, F. A., Capwell, R. J.: Spectrochim. Acta 274, 947 (1971).]
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obtain ring-puckering energy level differences between levels of the same parity in
the ground state of the mid infrared mode. The symmetry of the mid infrared mode
should be such that the combination and difference bands yield type-c band contours.
For most C,, molecules the B, ring-puckering mode will yield type-c sum and dif-
ference bands when the mid infrared reference band has symmetry A,. The reference
band is usually seen as a polarized fundamental in the Raman spectrum. Combination
and difference bands with fundamentals of other symmetries are usually too weak or
diffuse to be seen. Interpretation of the sum and difference bands can often be com-
plicated by many other weak bands in the same region. For this reason the combi-
nation-difference band technique is usually used when no other technique is available
to obtain the values of the ring puckering energy levels.

B. Raman Spectroscopy

With recent advances in laser technology, Raman spectroscopy has become a powerful
tool for the direct observation of ring-puckering vibrational frequencies. Since the
Raman signal in gases is extremely weak with respect to the exciting line, the use of
high powered lasers, monochromators with low stray light, and efficient detection
systems is necessary. The ring-puckering transitions with Av = 1 are usually not totally
symmetric and do not give rise to sharp Q branches in the Raman spectrum; on the
contrary, the Raman lines of these non-totally symmetric vibrations tend to have broad
contours with no discernible fine structure. However, the Raman spectra of small ring
compounds show unexpected selection rules due to the very large amplitude of the

INTENSITY —

EES NSN  URNG VSN SRR N [ N NN N S N
250 230 210 190 170 150 130 110 90

RAMAN SHIFT ACM™

Fig. 2.4. Raman spectrum of cyclopentene.
[Reproduced from Chao, T. H., Laane, J.: Chem. Phys. Lett. 14, 595 (1972).]
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ring-puckering vibrations. Both mechanical anharmonicity and electrical anharmoni-
city allow overtones of the ring-puckering vibration (Av=2) to be observed even when
the transitions with Av = 1 are too weak or diffuse to be observed. The overtone tran-
sitions are always totally symmetric (or have a totally symmetric component) and are
Raman allowed. Since the isotropic polarizability terms are nonzero and usually larger
than the anisotropic, a sharp Q branch structure will be observed for the overtones
and this allows the individual hot bands to be assigned. The overtone vibrations are
farther removed from the exciting line so that interference from the Rayleigh line

and the pure rotational envelope is minimized.

Figure 2.4 shows the Raman spectrum of cyclopentene vaporm) in which all the
Q branches correspond to transitions with Av = 2. Many transitions with Av = 1 fall
in this same spectral range but are too weak or diffuse to be identified.

Since C-H stretching vibrations are very strong in the Raman spectra of compounds
containing C-H groups, the combination-difference band technique for determining the
ring-puckering energy levels may be of use when the laser power is not sufficient for
direct observation of the overtone transitions. Here the direct product of the symmetry
of the C-H fundamental and the ring-puckering fundamental must belong to the totally
symmetric representation. For the most common C,, case the symmetry of the ring-
puckering vibration is B, and therefore the ring-puckering sum and difference bands
will have sharp Q branches when the reference C-H stretching mode has symmetry B,.
The reference band will show a sharp Q branch in the infrared spectrum but will usu-
ally be very weak or missing in the Raman spectrum. The use of sum and difference
combinations allows one to obtain ground state separations between the ring-puckering
levels of the same parity!?- 13-

C. Microwave Spectroscopy
The analysis of the microwave rotational spectra of small ring compounds can provide
valuable information about the nature of large-amplitude ring-puckering potential

functions. The type of information obtained may vary, depending on the potential
function. :

49801

B 4970

T

4960

Fig. 2.5. Variation of the B rotational constant (in MHz) with ring-puckering vibrational state
for oxetanone-3. Similar variations are found for the A and C rotational constants.
[Reproduced from Gibson, J. S., Harris, D. O.: J. Chem. Phys. 57, 2318 (1972).]
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Due to the large amplitude of vibration, a significant contribution to the effective
rotational constants may be made by the ring-puckering vibration. For the simplest
case, that of a molecule with a single-minimum potential function, the rotational
spectra for low J transitions may be fitted with a rigid-rotor Hamiltonian. Since the
vibrational frequency is low, rotational transitions in a number of excited states of
the ring-puckering vibration may be observed. As opposed to the linear dependence
on vibrational state expected for a small amplitude vibration, the dependence for a
large-amplitude mode may exhibit curvature. This is shown in Fig. 2.5 for oxet-
anone-3'%), The curvature yields information on the aharmonicity of a single-mini-
mum potential function.

The variation of rotational constants with ring-puckering vibrational state is very
sensitive to the presence of a barrier at the planar conformation. This is shown for
cyclobutanone'® and methylenecyclobutane”) in Fig. 2.6. The presence of a very
small barrier, ca. 7.6 cm™! in the case of cyclobutanone, causes deviation from a
smooth variation for the lower levels. In the case of methylenecyclobutane, a very
pronounced zig-zag of the rotational constants is observed due to the presence of
a 140 cm™! barrier. The dependence of the rotational constants on vibrational state
may be used quantitatively to determine the shape of the potential function as
discussed in subsequent sections.

In addition, for molecules with double-minimum potential functions where vi-
braticnal levels coalesce to form inversion doublets, the microwave data may yield
very accurate values for these small vibrational spacings. The microwave rotational
spectrum in these states may deviate significantly from that expected for a rigid-
rotor model. Since the vibrational energy spacing for this pair of levels is no longer
much greater than rotational energy spacings, it is not always possible to separate
the vibrational and rotational Hamiltonians. An energy level diagram for the inver-
sion doublet in trimethylene sulfide'®) is shown in Fig. 2.7. The vibrational spacing,

v \
0 5
O,O.r —r— ?a +100. e e S
0.
N
x
=2 | -
E
b
- -100}t
- L L
250 e Z

Fig. 2.6. Variation of the A rotational constants (in MHz) with ring-puckering vibrational state
for cyclobutanone and methylene-cyclobutane.

[Reproduced from (A) Scharpen, L. H., Laurie, V. W.: J. Chem. Phys. 49, 221 (1968);

(B) J. Chem. Phys. 49, 3041 (1968).]
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2.0

Ooo
AE = 8232.5 Mc /sec

Ooo

Fig. 2.7. Interactions between rotational levels in the v = 0 and v = 1 states of trimethylene
sulfide.

[Reproduced from Harris, D. O., Harrington, H. W., Luntz, A. C., Gwinn, W. D.: J. Chem.
Phys. 44, 3467 (1966).1

8232.5 MHz (ca. 0.27 cm™!) is quite small, in the microwave region. The interactions
between rotational levels which are allowed by symmetry are shown by dashed lines.

A recent review of ring-puckering vibrations with emphasis on the theory and
applications of microwave spectroscopy has appeared. The reader is referred to this
work for further details!®,

III Theoretical Basis for Interpretation of the Spectra -
A. Introduction

In this section, we outline a procedure for obtaining a Hamiltonian for the treatment
of low-frequency vibrations in molecules. We do this, in particular, to point out the
justification for some of the Hamiltonians used in the past and to make clear the na-
ture of the approximations involved in arriving at a specific Hamiltonian. Since there
is danger of overinterpreting the results obtained from approximate Hamiltonians,
we indicate some of the pitfalls in doing so.

The empbhasis in this section is on the form of the kinetic energy operator. The
choice of potential energy functions is considered in Section IV dealing with specif-
ic molecules. Emphasis is also placed on treatment of the vibrational data since a
review emphasizing treatment of microwave data for ring puckering has appeared
recently'®.

We start by writing the classical kinetic energy expression for a non-linear
molecule in a center-of-mass coordinate system. No distinction is made between
small and large vibrational coordinates at this stage. We then rewrite the expres-
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sion in a form suitable for obtaining the quantum mechanical kinetic energy oper-
ator. At that point, approximations are made to simplify the Hamiltonian and then
we proceed to the treatment of the large-amplitude ring vibrations in molecules.

B. The General Hamiltonian

The kinetic energy for a molecule in a center-of-mass coordinate system may be written
as

I X, ,0
2T=(w',(1')( )( ) 3.1
X' Y/ \q

where t denotes transpose. In this equation, for a nonlinear molecule of N atoms,

@ is a 3-dimensional column vector of the angular-velocity components of the molecule-
fixed coordinate system relative to a system whose orientation is fixed in the laboratory.
The time derivatives of the vibrational coordinates form the 3N-6 dimensional column
vector 4. Lis the 3 x 3 dimensional instantaneous inertial tensor,

Ixx _Ixy _Ixz
o=l L, I, 1, (3.2)
_sz Izy Izz
N .
k= Z mu(rg 1y —12); k=x,yorz (3.3a)
a=1
N
= Z mglalek’s k#K' (3.3b)
a=1
where

m, =mass of the o’th atom
r,  is the coordinate vector of the a’th atom in the center-of-mass system
Tk denotes the k’th component of the &’th vector.

Y in Eq. (3.1) is (3N-6) x (3N-6) with elements defined by

_ XN o\ [ org

X is 3 x (3N-6) with elements defined by

X= 2 mg | rax (:;)]k 3.5

a=1

10
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where k denotes the k’th component of the cross product. Expanding Eq. (3.1) we
obtain

2T = E Ikkwﬁ - E lkk'wkwk'
k ke (3.6)
+2 X Yij(.-li(.lj +22 X Xikwk C]i
i k i

where k.,k' = x, y, or z; and i, j run over the vibrational coordinates.

The first two terms are pure rotational terms, the third a pure vibrational term,
and the last a Coriolis term. The partitioning of the energy between the pure rota-
tional terms and the Coriolis term depends on the choice of the rotating axis system
used to describe the problem”‘_”).

In order to obtain a quantum mechanical kinetic energy operator, a momentum
representation of the kinetic energy is required. If coordinates are chosen having con-
jugate momenta

- ()
and
p= (%) (3.8)

where P is a 3-dimensional vector of angular momentum components and p is a 3N-6-
dimensional vector of the momenta conjugate to q, the momentum representation

of the kinetic energy is obtained simply by inverting the 3 N-3 x 3 N-3 matrix
appearing in Eq. (3.1):

I X\'/P
2T=(P',p‘)( ) ( ) (3.9
Xy p

The 3 N-3 x 3 N-3 matrix in Eq. (3.9) is hereafter referred to as the rotation-vibra-
tion G matrix. Transformation to the correct quantum mechanical from according to
Kemble?? yields

2T=g"* T 2 Pg g Prrg"*
k k'
+g4 T3 pig'lﬂgijpjgl/“ (3.10)
ij

+g'/ EE (Pkg—llzgkipi+Pig_1/28ikpk) g/t
1

11



L. A. Carreira, R. C. Lord, and T. B. Malloy

where k,k' = x, y or z and i, j run over the vibrational coordinates. In this equation,
gmn denotes the appropriate element of the rotation-vibration G matrix [Eq. (3.9)]
and g is the value of its determinant. The Py are the components of the quantum me-

chanical angular momenta and the p; the vibrational momentum operators 1;1 a?l
1

In general, g and the g, may be functions of the coordinates and thus may not
commute with the momenta. The three terms are identified, as before [Eq. (3.6)],
as the kinetic energy of pure rotation, pure vibration and vibration-rotation inter-
action, respectively.

In principle, it is possible to choose a rotating axis system and evaluate numeri-
cally the coordinates and coordinate derivatives required to compute the elements
of I, X and Y [Eq. (3.1)] for a given dynamical model. By doing this for a grid of
values of the 3N-6 vibrational coordinates and obtaining the vibration-rotation G
matrix by inversion of the G™! matrix at each grid point, we may obtain a rather
complete description of the vibration-rotation kinetic energy [Eq. (3.9)]. By express-
ing the gy, g'/* and g~'/? in multidimensional Taylor series or mixed Taylor-
Fourier series, an accurate quantum mechanical kinetic energy operator could be
written for the dynamical model used and for the particular choice of rotating axes.
As pointed out by Gwinu and Gaylord'®?, the solutions of the eigenvalue problems
associated with a vibration-rotation problem do not and must not depend on the
choice of the rotating axis system as long as an adequate Hamiltonian is used. What
do depend on the axis system used are the numerical values of elements of the inertial
tensor or vibration-rotation interaction constants determined from analysing the data.

For all but the smallest molecules, the procedure outlined in the previous para-
graph is impractical. If we can locate or approximate the vibrational band origins from
the experimental data, simplifications result. We then treat the J = 0 states in which
case all terms in Eq. (3.1) involving rotational angular momenta vanish. Rewriting the
pure vibrational term we obtain the vibrational kinetic energy T, :

= Z 2 pigiipi + 2V'(q) (3.11)
ij

The term V'(q) has been referred to as a “pseudopotential” term because it lends
itself to expansion in a Taylor (or Fourier) series in the vibrational coordinates and
may be absorbed into the effective potential. V'(q) is given by

2

Vi = 2 (5 2 g, (5:2))

8 i 0g; an
(3.12)
dlng) /olng
+— 3 Z 2
162 ( (qu)(aq,))

The total vibrational Hamiltonian is then given by
B, =- LI B 50— + V(@) + V(@) (3.13)

2 5 a(h aqj
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where V (q) is an appropriate potential energy function in the 3N-6 vibrational coor-
dinates.

At this point we introduce approximations to obtain a Hamiltonian appropriate
for treating the large amplitude modes. We first consider the high-frequency small-
amplitude vibrations. Several simplifications occur as a direct result of the small vibra-
tional amplitude. First, the potential energy expansion may be truncated after the
harmonic terms without serious error. Secondly, the G matrix elements corresponding
to the small-amplitude modes may be taken to be constant and thus commute with the
momenta. Thirdly, the pseudopotential terms corresponding to these coordinates may
be neglected or simply considered as making a very small contribution to the effective
force constants.

There are several possible approaches to simplifying the vibrational Hamiltonian
given by Eq. (3.13). Some of these will be outlined here. The first approach consists
of removing the harmonic potential energy cross terms and the kinetic energy terms
by the equivalent of a normal coordinate transformation. We define a new set of coor-
dinates Q

q=LQ (3.14)
such that the resulting vibrational Hamiltonian is given by

-6 a2
W + Vet (Q) (3.15)

Vet (Q) is the effective potential function including contributions from the pseudo-
potential [V'(q) in Eq. (3.13)] as well as contributions from the kinetic energy due to
the fact that the transformation (3.14) is nonlinear. The effective potential has no
cross terms of degree less than cubic by the definition of the transformation L. In
general, the elements of L are functions of the 3N-6 vibrational coordinates because
the g;; [Eq. (3.13)] are functions of the coordinates. However, in some cases, the g;;
are rigorously constant, while for other small amplitude coordinates they are effective-
ly constant over the range of values accessible to the coordinate. Consequently, the
elements of L are generally functions of the large-amplitude coordinates only.

Once Eq. (3.15) has been reached, it is generally possible to separate the small-
amplitude (harmonic) modes from the large-amplitude modes and treat any remaining
anharmonic coupling terms by perturbation methods. The resulting small-amplitude
vibrational Hamiltonian is given by:

3N-M-6 2
Hg a. % z 9

2 2
. ]

where ) = 4n® vf and M is the number of large-amplitude modes. The A;’s contain con-
tributions from anharmonic interactions with the large-amplitude modes and diagonal
terms higher than harmonic have been neglected.

13
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The large-amplitude Hamiltonian is then given by:

2 M 2
Hoa=-1 3 o + Vegr (Qm) (3.17)
+ A 2 m=1 a 311

The effective potential contains contributions from anharmonic coupling terms with
the small-amplitude coordinates which may be absorbed into the effective potential
constants for the large-amplitude vibrational coordiantes. Equation (3.17) or some
variation thereof has commonly been used to treat the data for large-amplitude modes.
It has the distinct advantage that precise a priori knowledge of the dynamical path of
the large-amplitude modes is not required to treat the spectral data. It has the disad-
vantage that the physical meaning of the coordinates is somewhat obscured by the
procedure which has been used to derive them.

A number of Hamiltonians related to Eq. (3.17) by linear transformations have
been used. For example, coordinates which are not mass weighted so that an effective
mass appears explicitly have been used, as have a number of reduced or dimension-
less coordinates. The relationships among various coordinates have been discussed
by Laane?* and by Gibson and Harris '),

Another approach to separation of the large- and small-amplitude modes is appli-
cable when the kinetic and potential energy coupling terms between these modes are
small. In such cases, a Van Vleck transformation may be used?®, The effective kinetic
energy operator for the large-amplitude modes then becomes

a ’
, <n; IS—; lni>2

VU i B A 2
=L 2 +26 D Y SR
ef f 2 = T g &mi m Bm; ny E,, — Eq, aq
(3.18)

where some small pseudopotential terms have been neglected. In this equation, m and
I run over the large-amplitude coordinates and i over the small-amplitude coordinates.
8 m¢ is the Kronecker delta and n; is a quantum number for the i’th small-amplitude
mode. It should be noted that the g, and g, may be functions of the large-ampli-
tude coordinates. ,

Similarly, the potential energy cross terms may be removed. If we write the total
vibrational potential energy

V(q) = Vi(qs) + VL(qL) + CESS fs(qq) fr (qr) (3.19)

terms
where g, denotes the manifold of small-amplitude coordinates and q; the large-ampli-
tude coordinates, then a second order Van Vleck transformation yields an effective
large-amplitude potential given by

¢ <n.lf Ine>2
Ver(a) = Vi) + = {<nslfs(qs)lns> L (q)+ T slfs@)iny>7 fi(qL)}
cross ng’ Ens - Ens’
terms (3.20)
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Normally, the {;(q;) need not be carried past harmonic terms due to the small ampli-
tudes of vibration. It is seen that the small-amplitude coordinates contribute to the
effective potential constants in the large-amplitude coordinates.

The effective kinetic and potential energy functions, Eq. (3.18) and (3.20), may
still have cross terms between two or more large-amplitude modes. The Kinetic energy
and harmonic potential energy cross terms may be removed by the equivalent of the
nonlinear transformation given in Eq. (3.14) over only the large-amplitude modes
leading to the same large-amplitude Hamiltonian as in Eq. (3.17). Alternatively, if
the cross terms are small enough, the Van Vieck perturbation formulas may be used
to remove cross terms between large-amplitude coordinates. Appropriate choices of
large-amplitude coordinates, e. g., polar coordinates for pseudorotation, may facili-
tate this separation of variables.

These procedures are rather cambersome, but yield a mechanism by which the
dependence of potential functions of large-amplitude modes on the vibrational quan-
tum numbers of small-amplitude modes may be rationalized. They also furnish a
procedure by which the potential functions may be extrapolated to a “vibrationless”
state if sufficient data on the vibrational dependence of the potential functions are
obtained.

The last procedure to be considered is the simplest. This is analogous to the sepa-
ration of high and low frequencies given by Wilson, Decius and Cross?5) for small-
amplitude vibrations. In this procedure, cross terms in the potential energy between
modes of large and small amplitudes are simply neglected. In order to obtain a kinetic
energy operator for the large-amplitude modes, only these modes are included in cal-
culating the vibration-rotation inverse G matrix, Eq. (3.1). If we wish to use the Hamil-
tonian given by Eq. (3.13) in that form, it is then necessary to determine the g;; and
pseudopotential as functions of the large-amplitude coordinates. What is required is
to calculate the coordinate vectors and their derivatives for each atom in a center-of-
mass system for a grid of values of the large-amplitude coordinates. At each grid point,
Egs. (3.2) to (3.5) are used to calculate the G~ matrix, and the G matrix Eq. (3.9)
is obtained by inverting the G~' matrix. The determinant of G as well as the appro-
priate G matrix elements may be expressed as Taylor or mixed Fourier/Taylor series
and used to form the Hamiltonian Eq. (3.13).

The above calculations require assumption of a dynamical model for the large-
amplitude modes. A much simpler model is to use a constant-reduced-mass Hamil-
tonian similar to that given by Eq. (3.17). This is by far the most common procedure.
It may be justified by considering a molecule with a single large-amplitude mode such
as a ring puckering. If x is the ring-puckering coordinate, we may define Q, by a non-
linear transformation

Qx = f[axx(x)]"?dx (3.21)

where g,,(x) is the ring-puckering G matrix element expressed as a function of the
coordinate'® . This leads directly to the Hamiltonian of Eq. (3.17) for a single large-
amplitude mode. While this procedure is the most straight-forward, there is no direct
mechanism by which the coupling of large- and small-amplitude vibrational modes
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may be taken into account. The existence of such coupling is observable in com-
bination bands in the mid infrared or Raman spectrum that involve both high-fre-
quency and large-amplitude modes; excitation of one or more quanta of the former
leads to slightly different effective potential functions for the latter. This will be
discussed later in more detail.

C. One-Dimensional Hamiltonians
1 Symmetrical Potential Functions

Four-membered ring molecules have one out-of-plane ring vibration, usually referred to
as the ring-puckering vibration. In saturated four-membered rings this mode usually has
the lowest frequency. It may have a large amplitude and be quite anharmonic. A one-
dimensional Hamiltonian may be used if the coupling with the small-amplitude modes
may be neglected or absorbed into the effective Hamiltonian. The most common one-
dimensional Hamiltonian used to interpret the spectral data for one-dimensional ring
puckering with symmetrical potential functions has been

H= - — — +ax*+bx? 4 (3.22)

where X is a ring-puckering coordinate, the bar indicating that the reduced mass is
assumed to be constant, and u is the associated reduced mass evaluated for a infini-
tesimal displacement from the planar conformation. Figure 3.1 indicates one possible
definition of the ring-puckering coordinate X, for cyclobutane, as half the perpendic-
ular distance between ring diagonals. Implicit in the use of Eq. (3.22) is the nonlinear
transformation that removes the coordinate dependence of the reduced mass and ab-
sorbs the pseudopotential terms into the effective potential constants, as well as any
zero-point vibrational averaging over the other modes of the molecule.

The potential function in Eq. (3.22) is remarkably simple. Nevertheless, it is appli-
cable to the description of a variety of molecular systems. For a =0, b > 0 it represents
a harmonic oscillator; for a > 0, b = 0 a quartic oscillator; for a > 0, b > 0 a single mini-

Fig. 3.1. One possible definition of a ring-puckering coordinate for four-membered ring mole-
cules as half the perpendicular distance between the ring diagonals.
|Reproduced from Malloy, T. B., Jr., Lafferty, W. I.: J. Mol. Spectroscopy 54, 20 (1975).]
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mum quartic-quadratic oscillator; for a> 0, b <0 a double minimum oscillator with a
barrier height given by b?/da.

Except for the obvious case of the one-dimensional harmonic oscillator (a = 0), the
solutions to the Schradinger equation corresponding to the Hamiltonian of Eq. (3.22)
cannot be given in closed form. Several numerical techniques have been used, including
application of the linear variation method with a truncated harmonic oscillator basis
set and various numerical integration techniques“’). There are advantages and disad-
vantages for each of the techniques used. While the numerical solution of the Schrodin-
ger equation for ring-puckering problems was not a routine matter fifteen to twenty
years ago, with today’s digital computers it has become so. The relative speeds of the
various techniques now result in differences of a few seconds or fractions of seconds
of computer time in the treatment of one-dimensional Hamiltonians.

Historically, the most common technique used has been the linear variation method.
In this procedure, the wave functions are expressed as linear combinations of harmonic-
oscillator basis functions

It M=

Ym = 2 tim¢; (3.23)
i=0

where ¥, is the wave function corresponding to E,, the m’th level. The ¢; are appro-

priate Hermite functions and n represents the highest quantum number attained before

truncation. Since this is an orthonormal basis, application of the linear variation method

corresponds to finding the eigenvalues of the Hamiltonian matrix, with elements defined

by
ij = f¢]H¢k dx (3 24)

where H is the operator given in Eq. (3.22). Formally, the variation approximation to
the energy eigenvalues is given by

Az =THT (3.25)

where the elements of T appear in Eq. (3.23). Considerable reduction in the computer
time may be achieved by factoring the matrix into even and odd blocks which reduces
the computer time by approximately a factor of four. The basis set may then be repre-
sented by

n even
even = _EO tim G5VE" (3.26a)
i=
ad n odd dd
st =" et (3260

=1

In addition, the number of basis functions required to obtain a satisfactory represen-
tation depends on the choice of the harmonic frequency for the basis. Stated in an-
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other way, the harmonic oscillator basis functions used should have appreciable ampli-
tude over a range of values of the coordinate corresponding to that for which the de-
sired wave functions Y, have appreciable amplitude?”,

It is obvious that if the harmonic frequency chosen is too high, so that the classical
turning points for the highest functions used are inside the classical turning points of
the highest level desired accurately, it will not be possible to synthesize a satisfactory
wave function for this level. Correspondingly, if the harmonic frequency is too low, a
larger number of basis functions will be required to eliminate unwanted amplitude at
values of the coordinate outside the classical turning points. Reid?® pointed out that
problems of this nature had caused truncation errors in the treatment?®) of the quartic
oscillator some years earlier. The discrepancies were not serious in the eigenvalues, but,
as might be expected, were more noticeable in the values of the matrix elements of the
operators x> and x*. As pointed out by Reid, the convergence of the expansions,

Eqgs. (3.26a, b) is a slowly varying function of the harmonic scale factor and it is prob-
ably not worth treating this as a variation parameter. Carreira, Mills and Person3® have
given a rule of thumb by which they choose the harmonic frequency so that the clas-
sical turning points of the basis set for the highest level used correspond to the classi-
cal turning points at approximately twice the energy of the last level for which an
accurate eigenvalue is desired.

Typically, the above considerations are less compelling for one-dimensional prob-
lems since the choice of a less than optimum scale factor can be compensated by
simply using more functions. The number of basis functions required depends on the
number of levels for which accurate eigenvalues and eigenvectors are desired and on
the nature of the potential function. Usually the number of eigenvalues required lies
between about 10 and 20. If the potential function is a single-minimum function and
a judicious choice of scale factor is made, 40 basis functions (20/symmetry block) are
more than sufficient. On the other hand, the number required for a double-minimum
potential function depends on the barrier height, a larger number being required for
a higher barrier. For barriers up to 2—3 kcal/mole in ring-puckering problems, between
50 and 70 basis functions (25—35/block) have proved to be sufficient. One exception
to this arises when the spacing between the levels of an inversion doublet below the
barrier is required to a high degree of accuracy.

Most of the variation calculations done up to about 1965 used the Jacobi diago-
nalization method3") for finding the eigenvalues and eigenvectors. In this method, if
70 basis functions were used, all 70 eigenvalues and eigenvectors were found and then
arranged in order of increasing energy. More recently, in numerous applications, the
Givens-Householder method3!) has been used. Since it is possible to generate the eigen-
values in increasing order, only those eigenvalues which are desired are found, their
eigenvectors generated and the process terminated. Since 10—20 eigenvalues, rather
than 60—70 are typically generated, a significant reduction in computer time is realized.
This is over and above the fact that the time required for the Givens-Householder diago-
nalization is generally less than that of the Jacobi technique even when all the eigen-
values and eigenvectors are generated by both methods. The efficiency of this method
of calculation, while perhaps less than that of the Numerov-Cooley numerical integra-
tion, is quite good?2®). Typically, fitting vibrational data up to the 15’th excited state,
performing three cycles of a least squares iteration and calculating intensities etc.,
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Fig. 3.2. Variation of the eigenvalues for the potential function V(Z) = z*+BZ? vs. B.
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 47, 4941 (1967).}

with 70 basis functions required ca. 8 seconds of computer time on a Univac 1108 com-
puter.
One set of reduced coordinates used leads to a Schrédinger equation

d’y a 2y
~A Y AE® +BZ)Y = ANy (3.27)

where x = (i {2uT)"Z and E = AX. Figure 3.2 shows the variation of the eigenvalues

A with B for B < 0. The limit as B becomes large and positive would be a harmonic oscil-
lator. As B becomes more negative, the levels below the reduced barrier (given by B2/4)
coalesce into pairs of inversion doublets as shown in Fig. 3.2. Laane?¥ has published
tables of eigenvalues for a grid of values of B. These have been very useful for making
assignments and obtaining initial estimates of the potential constants from ring-
puckering vibrational data.
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2 Reduced-Mass Calculations

In the interpretation of the spectral data it is usually the constants A and B in Eq. (3.27)
or some other set of reduced potential constants that are evaluated. The barrier height,
AB?/4 for B <0, is thus determined directly. However, if one wanis to relate the value
of the dimensionless parameter !Z | at the minimum of a double-minimum potential func-
tion to the absolute geometry of the puckered ring, the reduced mass must be known in
order to find X from |Z |. One is then required to introduce assumptions about the dy-
namical model of the ring-puckering motion.

For cyclobutane, the motion of the four carbon atoms is relatively unambiguous.
We first assume we can neglect bond stretching as the molecule puckers. Secondly, we
require that the non-bonded C:--C distances change symmetrically. For a molecule like
trimethylene oxide, the choice is not so clear. Gwinn and co-workers>? have defined
a parameter w, which expresses the relative amount of bending about the C---0 diagonal
and the C---C diagonal. First a parameter p is defined

p = A(C+0)2/A(C-C)? (3.28)

where A(C---0)% and A(C--C)? are the respective changes in the squares of the non-
bonded C---0 distance and the non-bonded C---C distance. Then w is defined as

w=(1-p)/(1+p) (3.29)

and varies between +1 and —1. The value w = +1 corresponds to the ring bending about
the C---0 diagonal along while the value w = —1 corresponds to bending about the C---C
diagonal. The value w =0 corresponds to symmetrical bending about each diagonal, as
in cyclobutane,

Model calculations to reproduce the variation of rotational constants with vibration-
al state are sensitive to the value of w. Thus an approximate value may be determined
from them that yields experimental information about the dynamics of the vibration.
If the Hamiltonian with variable reduced mass is used, the dependence of the reduced
mass on coordinate will be a function of w. On the other hand, if the constant effective
mass model is used, the reduced mass can be evaluated from Eqgs. (3.1) to (3.10) for
an infinitesimal displacement from the planar conformation. The constant effective
reduced mass derived in this fashion is independent of w, and thus, no knowledge of
w is needed to use the Hamiltonian Eq. (3.22); conversely, no information about the
value of w can be determined from the vibrational data and Eq. (3.22).

Probably the most serious source of uncertainty in calculating a reduced mass con-
cerns the details of the motion of CH, groups during the puckering vibration. Usually,
there will be one or more CH, rocking modes, only a factor of three or so higher in
frequency than, and of the same symmetry species as, the ring puckering. This means
that quadratic kinetic energy and potential energy interaction terms will enter into the
Hamiltonian. These terms, more than any others, lead to different forms for the ring-
puckering coordinate for isotopic species. The details of the motion of CH, groups
during the ring-puckering vibration can have a large effect on the reduced mass for this
motion. A bisector model, i. e., one in which the H-C-H angle remains constant and
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shares a common bisector with the adjacent ring angle seems to work reasonably well
for trimethylene oxide. The quartic terms in the potential are quite reasonably pre-
dicted for various isotopic species by this model as discussed below for trimethylene
oxide. On the other hand, Stone and Mills®?) found that the reduced-mass ratio cal-
culated for cyclobutane-d g and cyclobutane for a bisector model, 1.549, underesti-
mated the isotopic shift. They empirically adjusted this ratio to 1.641 to obtain better
agreement with the experimental results. Malloy and Lafferty have discussed this point
in some detail?”

To summarize, uncertainties in the form of the puckering coordinate can cause
uncertainties in the calculated reduced masses which may lead to errors of several
degrees in determination of the puckering angle corresponding to the minimum. The
use of a variable-reduced-mass Hamiltonian [Eq. (3.14)] rather than the constant-
reduced-mass Hamiltonian [Eq. (3.15)] has a minor effect. If the same dynamical model
is used, differences in the calculated angles are generally less than a degree. Malloy and
Lafferty>” also considered the effect of errors in the structural parameters and found
them to be quite negligible, assuming the errors were not more than ~ 5° in a bond
angle or 0.03—0.04 A in a bond distance.

3 Asymmetric One-Dimensional Hamiltonians

In the previous sections, we have been considering ring molecules for which the odd-
power terms in the ring-puckering potential functions must vanish by symmetry. For
molecules like mono-substituted cyclobutane derivatives, symmetry no longer dictates
that these terms are zero. Consequently, through fourth degree, the constant-effective-
mass Hamiltonian analogous to Eq. (3.25) is given by

g2
Y 2

- — +ax® +bx® +cx® + dx (3.30)
24 dx

where [l is the reduced mass evaluated for infinitesimal displacement from the coor-
dinate zero, taken as the planar ring conformation. However, a Hamiltonian which
represents the same system and has fewer adjustable parameters is obtained by trans-
lating the origin by an amount §to correspond to an extremum of the potential func-
tion, that is, by the transformation X =X + 6 :

Y _
H=-— — +3x% + bx? +¢x’ (3.31)
24 dx

The dimensionless analog of this equation [see Eq. (3.27)] is
a2

H=A - — +Z%+BZ2?+(CZ3 (3.32)
dz?

In fitting vibrational energy separations, Eq. (3.32) or an equivalent reduced equation
is used.
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The calculation of the equilibrium value of the dihedral angle for a puckered
unsymmetrical ring from the potential function is not straight forward, as it is in the
symmetrical case. Because of the lack of symmetry there is no way a priori of deter-
mining the conformation at the point of minimum energy (Z = 0), or the value of
Z for the planar ring. Thus in the treatment of asymmetric ring molecules, the roles
played by vibrational spectroscopy and microwave spectroscopy are truly comple-
mentary. Since the unscaled potential function in Eq. (3.32) has two adjustable
parameters and since odd power terms are no longer excluded from the microwave
rotational constant expansions, there are too many parameters to be specified by
microwave data alone. Consequently, determination of the potential energy func-
tion in reduced coordinates has customarily been done by fitting transitions observed
in the far-infrared or Raman spectra or both. On the other hand, the microwave data
must be used to characterize the conformation or conformations corresponding to
the minimum or minima in the potential function. The structure of the lowest energy
conformer, if determined, may then be used as the reference point in the calculation
of the reduced mass.

For purposes of comparison, it is possible to classify the various types of poten-
tial functions which may be represented by the functional form used in Eq. (3.32)
with a few simple considerations. The restrictions we shall make are always to locate
the origin in the minimum, or if more than one, in the deepest minimum; second
minima or inflection points are restricted to negative values of the coordinate Z;
and the positive values of Z always represent the most rapidly rising portion of the
function. These restrictions do not eliminate any unique shape of potential function.
Any other functions described by Eq. (3.32) are related to those already included
by a simple translation of the origin or by rotation about the vertical axis. These
‘operations, at most, change the eigenvalues by an additive constant. The different
types of potential functions are summarized in Table 3.1.

It is a simple matter to restrict the potential functions as mentioned above.
First, the parameter A [Eq. (3.32)] is simply a scale factor and need not be considered
further. If both B and C, the respective coefficients of Z% and Z3, are restricted to
positive values, the origin will be a minimum and second minima or inflection points,
if present, will occur for negative values of Z. If we make the further restriction that
9C2< 36B, the origin will be in the deepest minimum. The case 9C? = 36B repre-
sents a symmetric double minimum potential function with the origin in the right
well.

With the above in mind, all asymmetric double-minimum potential functions
represented by Eq. (3.32) may be described with parameters in the range
36B >9C? > 32B. The maximum occurs at

Z=(-3C++/9C? —32B)/8

and the second minimum at

Z =(-3C —+/9C? — 32B)/8.

For 9C? nearer the limit of 36B, the second minimum is well below the barrier
separating the two minima. The squared wave functions of the states below the
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Table 3.1. Classification of asymmetric potential functions. (Z* + BZ% + Cz2%);36B > 9¢C% > 0

L L 82

9¢? = 36B
Symmetric double minimum potential with the origin in the right well

36B>9C% > 328

Asymmetric double minimum potential function with the origin in
the deeper minimum on the right. The maximum occurs at
Z=(-3C+ \/9(‘.2 — 32B)/8 and the shallower second minimum at

Z=(-3C-/9CT -32B)/8

9c? =328

Asymmetric single minimum potential function with an inflection

point with a horizontal slope. This inflection point occurs at
=-3C/8

328 >9C% > 24B
Asymmetric single minimum potential function with two inflection

points. These inflection points occurat Z = (-3 C £/9C2-24B)/12.

9c? = 24B
Asymmetric single minimum potential function with one inflection
point at Z = —C/4

248>9C2 >0
Asymmetric single minimum potential function with no inflection
points

9c%=0
Symmetric single minimum quartic-quadratic potential function

23



L. A. Carreira, R. C. Lord, and T. B. Malloy

barrier show a definite “left well” or “‘right well” character for the states. For any
state above the barrier, the probability density has maxima across the full range of

Z accessible to that state. Vibrational transitions below the barrier follow left well
well «— left well or right well «— right well selection rules for both far-infrared and
Raman transitions. Above the barrier, these identifications are more difficult to make.
Even very slight asymmetry drastically reduces the probability of tunneling com-
pared to the case of the symmetric double-minimum function.

As 9C? - 32 B, the second minimum becomes less pronounced. At 9C* = 32 B,
instead of a maximum and a second minimum, there is an inflection point with a
horizontal slope at Z = —3C/8. For 32B > 9C? > 24B, there is a single minimum
with inflection points in the potential function at

Z=(—3C*+/9C2-24B)/12.

The vibrational spectra for potential functions of this type are characterized by
negative anharmonicity for the first few transitions, with the frequency eventually
reaching a minimum, and positive anharmonicity for the higher transitions. The
quadratic term in the potential is primarily responsible for the value of the 0—1
frequency. For smail amplitudes, i.e. for the lower transitions, the cubic term is
dominant in determining the anharmonicity which in this case is negative. At larger
amplitudes, i. e. higher energy, the quartic term balances the effect of the cubic
term, causing the transitions to reach a minimum frequency. The positive anharmoni-
city due to the quartic term then dominates for the higher transitions. These charac-
teristics may be observed for potential functions of this type unless the Boltzmann
factor intervenes to depopulate levels above the inflection points.

The last general category of asymmetric potential functions is that for which
24B>9C% > 0. For 24B =9C?, there is a single inflection point at Z = —C/4.
For functions in the range described, there are no inflection points. For functions
with 9C? near 24 B, the characteristics mentioned in the previous paragraph are
applicable, with the transition of minimum frequency being reached more rapidly,
followed by positive anharmonicity due to the quartic term. Eventually, the effect
of the cubic term becomes such that the anharmonicity is immediately positive.
The limit as 9C? - 0 is, of course, the symmetric single-minimum quartic-quadratic
oscillator considered eailier.

The above classification of asymmetric potential functions is convenient for
comparison of different molecules or as a systematic basis for making an initial fit
to experimental data. However, when the Schrodinger equation is being solved by
the linear variation method with harmonic-oscillator basis functions, it may not
provide the best choice of origin for the basis function. For example, a better choice
in the case of an asymmetric double-minimum oscillator, where accurate solutions
are required in both wells, would be somewhere between the two wells. Systematic
variation of the parameters may still be made as outlined above, but the origin should
be translated before the Hamiltonian matrix is set up. The equations given earlier
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(3.23) to (3.26) that describe the Hamiltonian matrix in the harmonic basis are
valid, with the exception that the matrix does not factor into odd and even blocks.
The Z* matrix elements connect these two blocks.

For potential functions with a single minimum (or a very shallow second mini-
mum), location of the origin in the minimum is probably the best choice to obtain
most rapid convergence of the variation functions. Again, as for the symmetric cases,
some care should be exercised in choosing the harmonic scale factor for the basis,
to insure that the truncated basis has sufficient flexibility to produce amplitude in
the classically allowed regions and to cancel amplitude in the unallowed regions.

D. Two-Dimensional Hamiltonians

Saturated five-membered-ring molecules have two low-frequency out-of-plane ring
vibrations and these modes may couple. Equation (3.33) is an appropriate two-

dimensional Hamiltonian with a constant effective mass for molecules where terms
of odd powers are excluded by symmetry

0
H=- "+ — — — — _4+ "2+ _4+ "2+ x2v2 (333)
2 %2 2my 37 a1X " by X tay T by tcpXy

where X is a ring-bending coordiate and y is a ring-twisting coordinate. i, and

My are the associated reduced masses. It is sometimes possible to separate the vari-
ables in Eq. (3.33) approximately and thereby to obtain an effective one-dimensional
Hamiltonian for the ring-bending vibration. This is possible primarily when one of
the modes is of large amplitude while the other is of small amplitude.

1 Pure Pseudorotation

In 1947, Kilpatrick, Pitzer and Spitzer3) introduced the notion of pure pseudoro-
tation to explain the thermodynamic data on cyclopentane. In this case, the ampli-
tudes of the ring-bending and ring-twisting coordinates are comparable and Eq. (3.33)
as it stands is not even approximately separable. However, transformation to poiar
coordinates yields a small-amplitude (radial) and a large-amplitude (angular) coor-
dinate. The resulting Schrédinger equation is separable, or approximately so, when
pseudorotational barriers are small compared to the barrier to planarity.

Gwinn and co-workers3® have given an excellent exposition of the theory appro-
priate to treating hindered pseudorotation, with particular attention to the use of
an angular Hamiltonian for small-barrier cases. For the special case of pure pseudo-
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rotation, the potential energy is independent of the angular coordinate. The con-
stant-reduced-mass Hamiltonian [Eq. (3.33)] with restrictions appropriate to pseudo-
rotation, u, = y,, 24, =22, =a;2,b; = by, gives the following Schrodinger equation:

d? 2
(—ﬁ ~3a 2) Y+ (ZT+Z3) Y+ BZE +Z3) Y =Ny (3.349)
1 2
where

Z, = (K 2uz) Vex
Z, = (1 /2u7)~ Moy
A =E/A

Figure 3.3 gives a potential energy contour diagram appropriate for pure pseudo-
rotation.
In polar coordinates p and 8 with

Z,=pcosh

Z,=psing

the Schrodinger equation is
19 @ 9’

1o 0,1 0 44 Be?) Y = 5
( Pt a92)w+(p +Bp?) Y =2y (3.35)

3
T

Fig. 3.3. Potential energy contour diagram appropriate to pseudorotation. An energy maximum
occurs at the planar conformation, Z = Z5 = 0. The minimum energy track is denoted as V = 0.
[Reproduced from Harris, D. O., Engerholm, G. G., Tolman, C. A., Luntz, A. C,, Keller, R. A,
Kim, H., Gwinn, W. D.: J. Chem. Phys. 50, 2438 (1969).]
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For cyclopentane, the case considered by Pitzer et al.>)| B is large in magnitude
and negative. This corresponds to a high barrier to planarity, given by AB%/4, and
approximate solutions may be found. For a high barrier to planarity, the value of

1/p? may be replaced by its average value and the energy eigenvalues approximated
from

di’e _
—B53 =E® (3.36)
where
B=<1/p*>

The solutions of Eq. (3.49) are

@=(1/2mY2ei,1=0,+1,22,. .. (3.37)
The transition frequencies, I =1 + 1, are given by

v=AB(21+1) (3.38)

which are equally spaced transitions separated by 2Ag.

v=3 1122 v=q
VI YT =0
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EIGENVALUES (DIMENSIONLESS)vs B

Fig. 3.4. Some of the eigenvalues for the reduced potential (Z% + Z%)2 + B(Z% + Z%) asa
function of B [Eq. (3.34)]). The dashed line indicates the top of the barrier. The case of pseudo-
rotation is the limit, on the right, for large negative values of B. Large positive values of B, on
the left, correspond, in the limit, to a two-dimensional isotropic harmonic oscillator.
[Reproduced from Ikeda, T., Lord, R. C., Malloy, T. B., Ueda, T.: J. Chem. Phys. 56, 1434
(1972).1

27



L. A. Carreira, R. C. Lord, and T. B. Malloy

40071 T T T
30 ]
2.0F -1
1.0
- B =-|6.0T
——— B=220
0.0+ 7
]

! 1 |
0] 4 8 12 16
EIGENVALUE SEPARATION vs QUANTUM NUMBER

Fig. 3.5. Pseudorotational transitions, I - [+ 1 vs. 1, for the numerical solutions of Egs. (3.34)
and (3.35). The lower the barrier (smaller magnitude of B), the more pronounced the curvature
[See Eq. (3.39)].

[Reproduced from Ikeda, T., Lord, R. C., Malloy, T. B., Ueda, T.: J. Chem. Phys. 56, 1434
(1972).]

Ikeda et al.>®) considered solutions of Egs. (3.34) and (3.35) by the variation
method with two-dimensional harmonic oscillator functions in Cartesian and polar
coordinates, respectively, as basis functions. Some of the eigenvalues are plotted
in Fig. 3.4 as a function of the parameter B. The case of pure pseudorotation cor-
responds to large negative values of B on the right hand side of the figure.

It was found from numerical solution of Egs. (3.34) and (3.35) that the cal-
culated pseudorotational frequencies exhibited curvature rather than a strict linear
dependence on quantum number as in Eq. (3.38). This is shown in Fig. 3.5. Such
curvature had been experimentally observed for 1,3-dioxolane and tetrahydrofuran?
and was also noted by Davis and Warsop>”)| who used it to estimate the barrier to
planarity.

Consideration of approximate solutions to Eq. (3.35) by obtaining an effective
Hamiltonian by a 2nd order Van Vleck transformation led to an expression®®) for
I =1+ 1 transitions given by

6)

v=ABQRI+1)— AD@P+61*+41+1) (3.39)

with § exhibiting a dependence on the radial quantum number v, given by

B=-2/B [1 - [12/(_2 33)‘/2] (vpt1 /2)] (3.40)
and
D =4/B* (341)
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The pseudocentrifugal distortion constant, D, accounts for the curvature of the
frequencies (Fig. 3.5) and Eq. (3.40) gives the variation of pseudorotational con-
stants with vibrational state.

2 Hindered Pseudorotation

If there is an angular dependence of the potential function, it is still possible to
separate the Schrodinger equation approximately in polar coordinates if the angular
barriers are much lower than the barrier to planarity. As mentioned earlier, Gwinn
et al.3¥ have given an excellent treatment of this case. This has been applied to the
interpretation of the microwave and far infrared spectra of tetrahydrofuran and
1,3-dioxolane3: 38 Equation (3.33) may be transformed to mass weighted polar
coordinates

x = uir cos ¢ (3.42a)
y =i rsin ¢ (3.42b)

and expressed as

2
=_ (%airg’d%%) +Ar® + Br?
roor 1 99 (3.43)

+Cr? cos 2¢ + Dr* cos 2¢ + Er* cos 4¢

If the conditions mentioned above are met, the Hamiltonian may be averaged over
the radial coordinate, yielding the following Schrédinger equation

2 2
Y. s Yan g cosong)y=Ey (3.44)
d¢* n=1 2 |
where
B 1Ly s (3.45a)
3 Vr-r—z—lvl- 404
V, =2(C<v 112 1y, >+ D <v It lv, >) (3.45b)
Vg =2E<vIr?lv, > (3.45¢)

The energy origin has been translated so that E > 0. Equation (3.44) is of the same
form as the Schrodinger equation for a two-fold internal rotor. Higher order terms
than four-fold may arise from

(2) higher-degree terms than quartic in the polynomial representation of the poten-
tial surface;
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(b) a higher degree of approximation than first order in the approximate separation
of variables.
The latter will also introduce pseudocentrifugal distortion terms.

The solution of Eq. (3.44) may be accomplished by the variation method, using
the free-rotor functions given in Eq. (3.37) as a basis set, and factoring the matrices
into even, odd blocks according to |/1. On the other hand, additional symmetry fac-
toring is possible by choosing a sine-cosine basis related to the free-rotor basis by
a variation of the Wang transformation. Lewis et al.3®) have described a computer
program based on this approach.

In some molecules even an approximate separation of variables is not possible.
Cyclopentanone is a good example of such a molecule; it is discussed as a special
case in Section IV. B.

IV Summary of Results with Examples

A considerable number of large-amplitude vibrations in ring molecules have been
treated by the theoretical methods discussed in Section III. Reviews of these studies
have been given by Laane*®, Blackwell and Lord*Y, Gwinn and Gaylord'®, and
Wurrey, Durig and Carreira®?.

We have chosen to illustrate the applications of the theory to specific molecules
in the same framework as that of Section III. While our list of applications is not
exhaustive, we believe that all of the various aspects of the theoretical treatment
are illustrated by at least one example and no important molecules are omitted from
the discussion.

A. Molecules Treated by One-Dimensional Hamiltonians
1 Symmetric Systems
a) Four-Membered Ring Molecules

(i) Oxetanone-3 and Thietanone-3. Figure 2.1 shows the far-infrared spectrum
of oxetanone-3 obtained with the Jarrell Ash 78--900 vacuum grating spectrophoto-
meter at MIT!?, The ring puckering in this molecule is nearly harmonic, with slight
positive anharmonicity due to the quartic term. This term is of such magnitude that
second-order perturbation theory is quite adequate to reproduce the energy-level
pattern. The frequencies are given by

by ve1 = 2ABY2 + (v + 1)A/B — BA(V? +4v + 4)/4B%? CRY

Table 4.1 compares the observed frequencies with those calculated by a least squares
adjustment of the potential constants using the linear variation method as incorpo-
rated in a computer program written by Ueda and Shimanouchi'?. The potential
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Table 4.1. Observed and calculated far infrared transition frequencies
for oxetanone-3

Transition Obs. freq. Calc. freq. Obs.~ calc.
0-1 140.0 140.13 -0.13
1-2 141.5 141.51 -0.01
2-3 143.0 142.87 0.13
3-4 144.3 144.17 0.12
4-5 145.5 145.46 0.03
5-6 146.6 146.71 -0.11
6-7 147.5 147.93 -0.43

function indicates that the planar ring skeleton of oxetanone-3 corresponds to an
energy minimum (Fig. 4.1).

The microwave spectrum of oxetanone-3 has been studied by Gibson and
Harris'. In the case of small-amplitude harmonic vibrations, the rotational con-
stants should vary linearly with vibrational quantum number. For a single-minimum
anharmonic potential representing a large-amplitude coordinate, deviation from this
linear dependence is expected on two accounts. If we express the dependence on
the large-amplitude coordinate in a power series, it may be necessary to carry the
series past the quadratic term. Also, the contribution of the quartic term in the
potential energy may cause deviations from linearity.

- | !
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Fig. 4.1. Potential function for the ring-puckering vibration of oxetanone-3. The abscissa is in
A for a coordinate defined as in Fig. 3.1 with the carbony! moving rigidly with the ring.

A reduced mass ¢ = 151 amu was used.

[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 57, 3225 (1969).]
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The rotational constants, expressed by power series through quartic terms, are
averaged over the ring-puckering vibrational states:

B, =p°+ 8D <ylZ Iv>+ 8@ <v|Z4v> (4.2)

where §, represents the A, B, or C rotational constant in the v’th ring-puckering state.
In principle the (°, 6(2) and 6(4) are multidimensional Taylor or mixed Fourier/
Taylor expansions in the remaining 3N — 7 vibrational modes, averaged over the
ground vibrational states of these modes'? . In practice, the 82, 3@ and 8™ coef-
ficients are treated as empirical parameters. The rotational constants as a function

of vibrational state then depend on these parameters and on the expectation values
of the operators Z* and Z?2. If Zizj and ZE} represent these operators in the harmonic
oscillator basis, then 8, is given by

B, =8°+ 6P T Dyt zf + 9 T Tyt Z§ 4.3)
i 1]

The expectation values represented by the double sums in Eq. (4.3) depend on
the potential function in Eq. (3.27). For a given harmonic frequency in the basis set,
the matrix elements Zizj and Z{} are fixed but the t;, and t;, depend on the value of
B in the dimensionless potential of Eq. (3.27(). For a single-minimum potential there
is a high degree of correlation between the § 4) values and the value of B, each of
which leads to curvature in the rotational-constant variation with vibrational state
Since there are ten adjustable parameters, namely, three coefficients for each of the
rotational constants plus one potential constant, B, in the reduced potential, it is
necessary to determine the rotational constants in a large number of vibrational
states if microwave data alone are used.

In the case of oxetanone-3, the coefficients in the rotational constant expansions
[Eq. (4.2)] were treated as empirical parameters and the potential function was taken
from a previous vibrational study'?. Figure 2.5 shows the smooth variation, with a
definite curvature, of the B rotational constant with ring-puckering vibrational state.
Table 4.2 lists the observed and calculated values of the rotational constants. The
smooth variation indicates a single-minimum potential with a definite curvature due
to the quartic potential term and the quartic terms in the expansion {Eq. (4.3)].

15)

Table 4.2. Comparison of rotational constants in MHz observed and calculated from empirical
fit to vibrational potential function for oxetanone-3'5)

A B C

V Calc Obs Diff Calc Obs Diff Calc Obs Diff

0 12129.34 12129.22 0.12 4956.28 4956.29 —0.01 3686.78  3686.77 0.01
1 12082.76 1208293 -0.17 4960.37 4960.34 0.03 3696.47 3696.45 0.02
2 12035.87 12035.89 -0.02 4964.83 4964.85 -0.02 3706.08 3706.14 -0.06
3 11988.66 11988.76 -0.10 4969.64 4969.64 0.00 3715.62 3715.61 0.01
4 11941.14 11940.79 0.35 4974.77 4974.77 0.00 3725.09 3725.05 0.04
S 11893.31 11893.39 -0.08 4980.22 4980.22 0.00 3734.49 3734.51 -0.02
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Fig. 4.2. Far-infrared spectrum of thietanone-3. The Q-branch transitions, showing considerable
rotational degradation, are observed on the unresolved, overlapped P and R branch transitions.
P ~ 1 torr; pathlength = 20 m.

[Reproduced from Blackwell, C. S., Lord, R. C.: J. Mol Spectroscopy 535, 460 (1975).1

Figure 4.2 shows the far infrared spectrum of the related molecule thietanone-3
reported by Blackwell and Lord*®. The Q-branches of the c-type transitions, super-
imposed on the overlapped P and R branches, show considerable rotational degra-
dation. The reported frequencies are not the Q-branch maxima but have been approx-
imately corrected for vibration-rotation interaction. The single-minimum potential
determined by fitting the far infrared frequencies (Fig. 4.3) shows that the frequen-
cies are considerably lower and the amplitudes of vibration considerably greater than
in oxetanone-3. Correspondingly, the quartic anharmonicity is greater.

The microwave spectrum of thietanone-3 was studied by Avirah et al.*®. In this
case, enough microwave data were obtained to determine the dimensionless poten-
tial function as well as the expansion coefficients for the rotational constants. Addi-
tional data are necessary to determine the energy scale factor, A, in Eq. (3.27). In
principle, this may be done by measuring the relative intensities of the microwave
lines in different vibrational states, but since the vibrational energy spacings were
more accurately obtainable from the far infrared spectra, the latter data were used.
The simultaneous fit to 30 rotational constants and the far-infrared transition fre-
quencies is given in Table 4.3. The far-infrared data are reproduced with an rms
deviation of 0.24 cm™!. The reduced potential function determined by Blackwell
and Lord*? by fitting the far infrared frequencies alone is

V(em™1)=9.90(Z* + 6.17Z%) (4.42)

compared to that determined from both far infrared and microwave data

V(em™')=9.81(Z* + 6.412%) (4.4b)
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Fig. 4.3. Potential function for the ring-puckering vibration of thietanone-3 determined from

fitting the far infrared transitions.
[Reproduced from Blackwell, C. 8., Lord, R. C.: J. Mol. Spectroscopy 55, 460 (1975).}

The two major factors contributing to the ring-puckering potential are angle
strain and torsional interactions. In four-membered rings, the valence angles within
the ring are generally quite a bit smaller than their values in open chain molecules.
Since the ring angles are, on the average, at their maximum possible values for a
planar ring, ring strain favors this conformation. On the other hand, torsional inter-
actions generally favor non-planar ring conformation.

For both oxetanone-3 and thietanone-3, angle strain dictates the planar ring
conformation. Since there are no adjacent methylene groups, the torsional inter-
actions are not as important for these molecules. On the other hand, the ring-
puckering potential for oxetanone yields a higher frequency compared to thietanone
than can be accounted for simply on the basis of the difference in the reduced
masses. This can be attributed to the fact that there is a considerable difference in
the angle strain in the two molecules. A CSC angle in an open chain molecule is
generally smaller than the corresponding COC angle. In addition, the force constant
for COC bending is considerably greater than for CSC bending. Consequently, the
larger amplitude and lower frequency of the ring puckering in thietanone-3 must
result from the smaller angle strain than in oxetanone-3.
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Table 4.3. Comparison of rotational constants (in MHz) observed and calculated from empirical
fit to vibrational potential function V(Z) = 9.81 (Z% + 6.41 Z2) thietanone-34%

A B C
v Obs Obs—cal Obs Qbs--cal Obs Obs—cal
0 10205.06 —0.33 3266.63 +0.06 2559.70 0.00
1 10117.74 -0.05 3277.54 -0.02 2574.95 +0.04
2 10041.06 +0.58 3287.38 -0.06 2588.56 -0.02
3 9970.36 +0.09 3296.49 -0.08 2601.17 -0.04
4 9905.80 +0.42 3305.13 -0.02 2613.03 -0.03
5 9844.70 +0.01 3313.33 +0.04 2624.32 +0.01
6 9786.86 -0.59 3321.16 +0.07 2635.11 +0.03
7 973227 -0.84 3328.67 +0.07 2645.48 +0.05
8 9681.29 +0.03 3335.89 +0.03 2655.47 +0.02
9 9632.24 +0.66 3342.80 -0.10 2665.11 -0.05

Ay=10252.29 - 258.12 < 7% >, +2.89 < Z% >,
By= 3260.74 + 31.75<Z%>,+0.24<2%>,
Cy= 2551.63 + 43.98<Z%>,+030<Z%>,

(ii) Trimethylene Oxide. That there can be a delicate balance between angle
strain and torsional interactions is indicated by the nature of the potential function
for trimethylene oxide. This molecule has a double-minimum potential function but
with a very small barrier. There are three adjacent methylene groups and torsional
interactions play a much greater role than for the two examples given above.

Historically, trimethylene oxide was the first ring molecule for which a ring-
puckering potential was determined from spectroscopic data. It has been the most
extensively studied ring molecule, having been investigated by far infrared, micro-
wave, Raman and mid infrared techniques®* ®> 45=5% Several isotopic species have
been synthesized and studied.

During the late 1950°s and early 1960’s when the initial work on the ring puck-
ering in trimethylene oxide was done, data were much harder to obtain. High-reso-
lution far infrared spectroscopy was in its infancy and Raman spectra of puckering
vibrations had not yet been obtained. Today there is a wealth of data available on
trimethylene oxide that strikingly demonstrates the success of the simple one-
dimensional quartic-quadratic Hamiltonian [Eqs. (3.22), (3.27)]. At the same time,
since the data are so extensive, the limitations of the simple one-dimensional poten-
tial function can be examined.

The far infrared spectrum of trimethylene oxide is shown in Fig. 2.2, The pattern
of transitions is rather regular with the exception of the 0—! transition which is
quite low in both frequency and intensity. The lower intensity is primarily due to
the effect of stimulated emission, as shown by the approximate expression for the
relative intensities of the various transitions:

Irel = ( e‘Ev/kT _e—Ev+ l/kT) Vyov + 1 <v+1 |Zlv>2 (4.5)
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Fig. 4.4. Raman spectrum of trimethylene oxide.
{Reproduced from Kiefer, W., Bernstein, H. J., Danyluk, M., Wieser, H.: Chem. Phys. Letters 12,
605 (1972).}

Figure 4.4 gives the Raman spectrum of trimethylene oxide®>). Although the
Av =1 transitions are allowed, the prominent features are the Av = 2 transitions.
Since these overtones are totally symmetric, the sharpness of the Q-branches of
such Raman transitions accounts for their prominence in the spectrum.

The irregularity of the position of the 0—1 transition in the far-infrared spectrum
or the 0—2 transition in the Raman spectrum compared to the other transitions in
the series is indicative of a small barrier in the potential function at the coordinate
zero. A small barrier, less than the zero point energy, affects the positions of the
levels and the wave functions for the even levels much more than the odd levels'®.
The effect is largest for the zero level and correspondingly less for higher levels.
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Fig. 4.5. Variation of the rotational constants (in MHz) with ring-puckering vibrational state
for trimethylene oxide. The effect of the small barrier is quite dramatic when compared to the
smooth variation in Fig. 2.5 for oxetanone-3.

[Reproduced from Chan, S. J., Zinn, J., Fernandez, J., Gwinn, W. D.: J. Chem. Phys. 33, 1643
(1960).1

Since even functions are more affected than odd functions, the variation of rota-
tional constants with ring-puckering quantum states is expected to deviate from
the regular dependence shown by planar molecules (e. g. Fig. 2.5 for oxetanone-3).
From Eq. (4.2) we see that alteration of the wave functions of the even levels will
affect the expectation values of Z2 and Z* in this equation, primarily Z2  and lead
to an irregular pattern for the lowest few levels.

This was found to be the case for the microwave data for trimethylene oxide
Figure 4.5 indicates the variation of the rotational constants for trimethylene oxide
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Fig. 4.6. Ring-puckering potential function for trimethylene oxide. The height of the barrier
(~15 cm~1) is less than the zero-point energy.
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in the ground state and four excited states of the ring-puckering vibration, while in
Fig. 4.6 the ring-puckering potential function with a barrier less than the zero point
energy is shown, Comparison of the data on oxetanone-3, thietanone-3 and trimeth-
ylene oxide indicates that both the pattern of ring-puckering transitions in far in-
frared or Raman spectra as well as the rotational-constant variation with ring-puck-
ering vibrational state are very sensitive tests of the presence or absence of even
very small barriers to planarity.

Extensive studies of the effects of centrifugal distortion in trimethylene oxide
and deuterated analogs have been carried out57- 58). The distortion constants show
a zig-zag dependence on the ring-puckering quantum number similar to that observed
for the rotational constants. The results were interpreted according to a simple
modification of the standard theory of centrifugal distortion6%—62) in terms of the
potential function for the large-amplitude ring-puckering coordinate®”.

A high-resolution far-infrared study (~0.25 cm™!) pointed out another effect
on the determination of the ring-puckering potential function®) . Calculations of
the vibration-rotation band contour for a symmetric rotor from the microwave rota-
tional constants allowed determination of the positions of the band origins. These
differed from the positions of the Q-branch maxima by 0.1 to 0.25 cm™! to higher
frequency. Since the vibrational energy separations were determined more accu-
rately, they were fitted to more significant figures by including a sixth-power poten-
tial term in the Hamiltonian

h2 d2
H=- 2—u&—i+ai4+bi2+ci5 (4.6)

The barrier® was reported as 15.52 + 0.05 cm~! compared to 15.3 £ 0.5%7 and
151£0.5cm™! 5% reported previously.

The stated barrier uncertainty of £0.05 cm™" is somewhat misleading in that
effects which can account for several cm~! in the barrier have been neglected. Use
of the coordinate x with the assumption of a constant effective mass can change
the barrier by 2—5 cm™! and certainly has at least as large an effect as the inclusion
of a sixth power term in the potential. Another thing that should be kept in mind
is that the ring-puckering potential is an effective potential containing contributions
from averaging anharmonic interaction terms over the zero-point vibrations of the
other 3N—7 vibrational modes [see Egs. (3.18) to (3.20)]. In the case of ring mole-
cules, these contributions may be of the order of a few cm™' . This latter effect is
analogous to the zero-point vibrational contribution to the determination of effec-
tive rotational constants. With the above in mind, it is seen that there is dubious
physical significance to the value of the coefficient of the sixth power term in the
potential function [Eq. (4.6)] determined from fitting the data.

The effect of the zero-point averaging over the other modes manifests itself in
two ways. A number of progressions of combination and difference bands have been
observed in the mid-infrared and Raman spectra of trimethylene oxide. These have
been studied extensively by Wieser and co-workers’°~59 who found small changes
in the ring-puckering intervals on excitation of quanta of higher frequency vibrational
modes. They also studied the spectra of a number of deuterated analogues of trimeth-

1
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ylene oxide and found an isotopic dependence of the ring-puckering potential func-
tions.

This dependence may be interpreted as due to several different effects. If the
ratio of the reduced masses of the isotopic species remains constant or nearly so
as the vibrational amplitude changes, neglect of the dependence of the reduced mass
on coordinate will not introduce differences between the ring-pucksring potential
functions determined for isotopic species [Eq. (3.21)]). However, cross terms in the
kinetic energy and harmonic cross terms in the potential energy between the ring-
puckering vibration and higher frequency modes of the same symmetry can lead to
different potential functions for isotopic species. If we consider removing the har-
monic cross terms in the kinetic and potential energy by a “normal coordinate
transformation”, the form of the lowest-frequency coordinate may differ for iso-
topic species [Egs. (3.14) to (3.17)]. Consequently, we would not expect the same’
potential function for the different species.

Probably of more importance are the contributions of anharmonic interaction
terms [Eq. (3.19)]. Since the zero-point contribution of these terms will be different
for the various isotopic species, a difference in the effective potential is expected.

If we consider only the effect of the anharmonic interaction terms up to fourth
degree through first order, the following result is obtained

3IN-7 .
Verr (X) zaf4+(b+.2 T <vi|qi2|vi>>)T2 “.7)

i=1

where a and b are (approximately) invariant to isotopic substitution and the expec-
tation values of the squares of the 3N-—7 high frequency coordinates are not. That
these types of interaction terms are probably the most important may be seen from
examining Table 4.4 from the work of Wieser and co-workers’%~52)_ It is seen that
the quartic terms in the dimensioned potential are essentially constant for the iso-
topic species while the variation in the quadratic coefficient b is more pronounced.
This is the result expected from the considerations leading to Eq. (4.7).

In principle, it should be possible to obtain enough data to correct the effective
potential function for trimethylene oxide to a “vibrationless™ state. This potential
function should then be isotopically invariant. This may require determination of
the ring-puckering intervals in the excited states of the other 3N —7 modes and

Table 4.4. Comparison of the potential functions for isotopic species of trimethylene oxide®2)

TMO-d a-dy p-ds e dg
Afem™1)? 28.12 25.46 26.10 22.85 21.54
B ap  Cl46S ~1.445 ~1.465 ~1.445 ~1.445
a(10 cm“lA‘ ) 7.16 7.07 7.19 7.07 7.07
b(103ecm™'4"%) —6.58 ~6.13 —6.34 ~5.81 ~5.64
u (amu) 95.7 110.4 107.3 129.8 141.8
2 Equation (3.27). b Equation (3.22).
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treatment of perturbations of particular levels (e. g. Fermi resonance) to remove
these effects from the determination of the effective potentials. Despite the volu-
minous data on trimethylene oxide, this point has not yet been reached.

The failure to remove all of the vibrational averaging effects is not too upsetting.
The ability to determine a potential function with a barrier accurate to within a
few cm™! is rather remarkable. The fact that the data can reveal even a very small
barrier — in the case of trimethylene oxide, smaller than the zero point energy —
shows that they are a very sensitive probe of the molecular dynamics.

(iii) Trimethylene Sulfide and Methylenecyclobutane. Shortly after the original
work on trimethylene oxide, the results of a microwave study on trimethylene sul-
fide were published!®. In this case, the potential function has a much higher barrier,
274 cm™?!, and the effects on the spectra are quite dramatic. The potential function,
with some of the calculated vibrational spacingsls), is shown in Fig. 4.7. In contrast
to the regular pattern of transitions converging to higher frequency observed for
planar molecules, the frequency pattern is more complicated, until levels well above
the barrier are reached. Transitions with Av = 1 and Av = 3 are observed in the far-
infrared spectrum®? ¥ while the prominent transitions in the Raman spectrum
are the Q-branches for the totally symmetric Av =2 transitions®™).

The effect of the ring-puckering vibration, particularly in the v=0and v=1
states, on the rotational spectrum of trimethylene sulfide is striking'®). In Eq.

(3.10) the terms involving the ring-puckering momentum operator and com-
ponents of the rotational angular momentum operators are no longer smail
when vibrational energy spacings become of the same order as the rotational energy
spacings of interest. Thus non-rigid rotor spectra result and a more complete Hamil-
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Fig. 4.7. Ring-puckering potential function for trimethylene sulfide. The barrier at the planar

conformation is 274 cm™.
[Reproduced from Harris, D. O., Harrington, H. W., Luntz, A. C., Gwinn, W. D.: J. Chem.
Phys. 44, 3467 (1966).]
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tonian including vibration-rotation cross terms is required. There are two physically
equivalent types of vibration-rotation interaction terms which arise. Their relative
magnitudes depend on the choice of the rotating axis system used to set up the
Hamiltonian 18, 20),

If we restrict the Hamiltonian given by Eq. (3.10) to one vibrational coordinate
a ring-puckering coordinate with a constant effective mass, the following vibration-
rotation Hamiltonian results

Hl

1 — — — —
H= 5 ()P + B (RO + 8 (IPZ + 8ac(F) (BaPe + PePy)

5 (4.8)
+ [2gbx(§)px + % ( gbx)] Pb + gxxPi } + a¥4 + biz

ox

The two types of vibration-rotation interaction terms are the P,P, + P.P, term and
the Py, term (the b axis is perpendicular to the symmetry plane which is maintained
throughout the ring-puckering.). Their coefficients are functions of the vibrational
coordinate or the vibrational momentum or both. It is possibls to choose the coor-
dinate system so that the P,P, + P.P, term is zero and all of the coupling between
rotational angular momentum and vibrational momentum is manifested by the Py,
term. The matrix elements for the Hamiltonian in the basis of the solutions to the
pure vibrational (J = 0) problem, are

H,, =E, + A,P? + B,P} + C,P? (4.9a)
and
Hy,' = Fy' Py (4.9b)

E, is the appropriate vibrational eigenvalue. Ay, By and C,, are given by

1 -
By = 5‘<Vlggﬂ(x)| v>
(4.10a)
f=A,B,orC

Fo' = <vligpx (X)pylv> (4.10b)

where the contribution of % ( ag::x ) has been neglected.
The off-diagonal coupling terms, Eqs. (4.9b) and (4.10b), may be treated as
perturbations making a small contribution to the effective rotational constants in
the various vibrational states for all cases except those where the vibrational energy
spacing is comparable to typical rotational energy spacings. In the case of trimeth-
ylene sulfide, the 0—1 vibrational spacing is comparable to low-J rotational spacings
and only for this pair of levels is the Hamiltonian described by Egs. (4.9a, b) treated
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explicitly. The parameters determined from the microwave data include the three
effective rotational constants for each of the two vibrational states, the 0—1 vibra-
tional interval and the vibration-rotation interaction constant, Fo; '®, The rotational
spectra in the higher ring-puckering states were rigid rotor spectra and were so
treated. Figure 2.7 indicates vibration-rotation levels for the v =0 and v = 1 states
which are affected by the cross term, Eq. (4.9b).

As was pointed out by Butcher and Costain in their work on cyclopentene®®

the effective rotational constants for the 0 and 1 states contain contributions from
the cross term Eq. (4.9b) different from those to the effective rotational constants
in the higher states. Using second order perturbation theory, Scharpen derived these
corrections to the rotational constants2®. Pickett?!) considered a different choice
of rotation axes, for which all of the vibration-rotation interaction was expressed

in the coordinate dependence of the off-diagonal term g,. [Eq. (4.8)]. The resulting
diagonal Hamiltonian matrix element is the same as in Eq. (4.9a), while the off-
diagonal term is given by

Hy, = F'y (P,P, + PP,) (4.11a)
where
By = % <vl e (X)IV'> (4.11b)

With this Hémiltonian, Pickett?! derived the same 0—1 vibrational splitting as that
found earlier by Harris et al.!® and the same effective rotational constants as those
obtained by Scharpen using perturbation theory??.

The simple constant-effective-mass, quartic-quadratic Hamiltonian, Egs. (3.22),
(3.27), was found quite adequate to reproduce the observed far infrared transitions,
account for the rotational constant variation [via Eq. (4.2)] and faithfully reproduce
the 0—1 inversion splitting derived from the vibration-rotation interaction analysis.
As with trimethylene oxide, Wieser et al. have studied a number of deuterated deriv-
atives of trimethylene sulfide®7—%%) . The barriers derived vary over a range of
~ 8 cm™ . This variation is probably due to the factors mentioned above for trimeth-
ylene oxide and gives an indication of the precision to which barriers may be deter-
mined using a simple effective one-dimensional Hamiltonian.

Another molecule with a similar double-minimum potential function is meth-
ylenecyclobutane. Again, the 0—1 inversion splitting is of the order of typical rota-
tional energy spacings and non-rigid rotor spectra result!”). The Hamiltonian given
by Eqgs. (4.9a, b) was used to fit the data for the v=0 and v = | states. After suitable
correction of the rotational constants for these states, they were used along with
the rigid-rotor constants for v'= 2—6 to determine the potential function. The 0—1
splitting was used to scale the function and a barrier of 160 + 40 cm™! was reported.
Figure 2.6 shows the variation of the A rotational constant for methylenecyclobutane
and for comparison, cyclobutanone'®. The zig-zag pattern is quite evident for methy-
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Table 4.5. Assigned rotational transition frequenciesa) for the v = 0 and v = lring-puckering
states of methylenecyclobutane 17)

v=0 v=1

Transition v(Obs) pert.® v(Obs) Pert.?

000 — 101 8066.56(-0.01) ~11.37 8072.57(-0.15) +17.26
o1 = 202 15979.45(-0.04) ~18.61 15992.70(~0.16) +32.17
11— 212 14989.22(~0.05) ~8.48 15017.02(~0.19) +35.78
110~ 211 17270.27(+0.04) ~43.70 17295.12(-0.35) +55.19
202 - 303 23602.37(—0.17) ~18.79 23625.70(~0.05) +43.19
230~ 321 24772.49(+0.24) ~73.81 25053.92(-0.76) +304.68
251322 24160.30(+0.32) ~73.14 24541.66(~0.76) +375.43
213~ 312 22393.03(+0.02) ~10.73 22444.99(-0.19) +61.44
21312 25799.33(-0.04) ~65.42 25839.36(~0.26) +80.54
303~ 404 30870.65(—0.27) ~12.78 30910.21(+0.37) +53.28
331~ 43, 33506.17(-0.03) ~109.77 33714.43(+0.63) +249.10
399 =423 32064.71(+0.37) ~123.29 33599.42(+0.73) +496.66
313414 29705.05(+0.07) ~11.27 29803.94(~0.05) +107.61
331432 32092.58(—0.50) ~498.54 32407.05(+0.07) ~79.33
312—412 34179.86(-0.21) -88.88 34243.14(+0.33) +104.71
330—431 32445.01(+0.48) ~226.69 32482.60(+0.38) ~78.04
494 - 505 37846,63(—0.14) ~5.58 37920.11(+0.93) +77.44
430 - 523 42420.05(-0.77) ~150.00 42564.68( +2.40) +198.74
440 541 40858.29(+1.12) +111.96 40577.72(+0.37) ~37.32
413514 42324.34(~0.44) ~122.63 42433.65(+1.48) +129.23
431 53, 40909.99(~1.77) ~170.74 40827.63(~0.26) ~99.73
433524 39792.83(+0.39) ~246.23 40654.28(+2.71) +713.90
441 - 542 40844.02(+0.92) +105.18 40571.01(~0.09) ~37.56
414515 36919.56(+0.15) ~10.41 37141.00(+0.26) +227.21
435533 40086.12(—2.08) ~720.43 40572.65(~0.23) ~100.28

Frequencies are in megahertz with an estimated uncertainty of + 0.05 MHz”). The quantity
in parentheses after each frequency is the calculated frequency minus the observed frequency.
Calculated frequency minus the calculated rigid-rotor frequency.

lenecyclobutane. Cyclobutanone has a small barrier, ~ 1/2 the barrier in trimeth-
ylene oxide, and shows a distinct irregularity in the dependence of the rotational
constants on vibrational state. This figure illustrates the extreme sensitivity of the
microwave data to a very small barrier to planarity. Similarly, the irregularity of
the frequency pattern in the far-infrared and Raman spectra provides a test of the
planarity or non-planarity of the ring. Table 4.5 lists the observed and calculated
microwave frequencies for the v =0 and v = 1 states of methylenecyclobutane. The
vibration-rotation contribution to the frequencies is seen to be substantial.

Figure 4.8 shows the ring-puckering transitions with v = 2 observed in the Raman
spectrum of methylenecyclobutane®S). The fit to the Raman data yields a poten-
tial function with a barrier of 140 + 5 cm~'. The Raman lines and their assignments
were used to account for combination bands involving the ring-puckering vibration
observed in the mid infrared spectrum’®.
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Fig. 4.8. Raman spectrum of methylenecyclo-
butane. The observed maxima are Q branch

1 1 2 1 transitions of the totally symmetric av =2
140 100 ring puckering transition {Reproduced from
Durig, J. R., Shing, A. C., Carreira, L. A.,
WAVENUMBER CM-! Li, Y. S.: J. Chem. Phys. 57,4398 (1972).]

(iv) Silacyclobutane. Silacyclobutane exhibits an extensive ring-puckering spec-
trum in the far-infrared (Fig. 4.9). This spectrum, reported by Laane and Lord?!),
has transitions assigned as Av = 1, Av = 2, Av = 3 and one tentative assignment of
a Av = 4 transition. These data were fitted with the two-parameter quartic-quadratic
Hamiltonian given by Eq. (3.27). The observed and calculated transition frequencies
along with their intensities are given in Table 4.6. That such extensive data are fitted
so well with the two-parameter Hamiltonian is a remarkable success for the simple

100 T T T T

8ol

40}~

20—

9 100 200 260
WAVENUMBER IN CM*"!

Fig. 4.9. Far infrared spectrum of silacyclobutane. P = 60 torr, pathlength, 8 m
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 48, 1508 (1968).]
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Table 4.6. Observed and calculated far-infrared transitions for silacyclobutane”)

Low-Frequency Vibrations in Small Ring Molecules

Frequency (em™)

Relative Absorbance®

Transition Calculated Observed A Calculated Observed
0- 1 (0.003)° - 107 -
1- 2 159.48 2.50
0- 3 159.74 2.50 2.3
157.78 1.70
0- 2 159.48 0.32
1- 3 159.75 b 0._342
2— 3 0.264 (0.26) 0.00 10 -
3- 4 133.38 1.31 0.5
133.45 -0.07
2— 4 133.64 17
2- 5 142.26 i.96 0.8
141.80 0.46
3-5 142.00 0.19
4— 5 8.63 - ~ 0.05
5- 6 84.90 85.37 ~-0.47 1.15 0.8
6— 7 50.46 49.85 0.61 0.57 0.3
7- 8 74.67 74.70 ~0.03 (1.0) (1.0)
8- 9 78.99 79.22 ~0.23 0.88 0.6
9-10 86.29 86.20 0.09 0.76 ~0.3
10-11 91.97 92.10 ~0.13 0.59 0.6
11-12 97.22 98.50 ~1.28 0.44 0.3
12-13 102.02 101.02 1.00 0.32 0.2
13-14 106.47 106.36 0.11 0.22 0.2
14-15 110.78 110.46 0.32 0.14 0.1
15--16 114.69 113.23 1.46 0.10 0.01
16-17 118.50 117.08 1.42 0.06 0.02
4— 6 93.53 94.41 ~0.88 0.06 0.2
5- 1 135.36 135.79 ~0.43 0.14 0.2
6— 8 125.14 124.17 0.97 0.08 0.1
7- 9 153.66 153.81 -0.15 0.10 0.3
8-10 165.28 164.68 0.60 0.09 0.3
9-11 178.26 177.11 1.15 0.08 0.15
10-12 189.19 190.21 -1.02 0.06 0.09
11-13 199.24 199.21 0.03 0.05 0.07
12-14 208.49 207.24 1.25 0.03 0.05
1- 4 293.12 291.7 1.4 0.12 vw
3- 6 226.90 ~227 - 0.36 ~.05
4- 17 144.00 144.56 -0.56 0.96 0.4
5- 8 210.04 210.68 -0.64 0.48 0.20
6— 9 204.12 - - - -
7-10 239.94 239.64 -~ 0.06
241.64 0.04
8-11 257.24 256.7 0.5 - 0.01
4- 87 220.66 218.83 1.83 - 0.11

Relative absorbances calculated with au,/9Q = 0.1, azuc/aQ2 =0.2.

Approximate value from microwave work74).
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Fig. 4.10. Ring-puckering potential function for silacyclobutane.
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 48, 1508 (1968).]

one-dimensional model. The potential function derived from the data is shown in
Fig. 4.10, yielding a barrier to planarity of 440 cm™!.

The Raman spectrum of gaseous silacyclobutane’?) confirms the far infrared
results. The prominent transitions are those for which A v = 2. Combination and dif-
ference band progressions involving the ring-puckering vibration and a SiH, stretching
mode were observed in the mid infrared spectrum’>, A small change was found in
the effective ring-puckering potential in the first excited state of this mode.

The microwave spectrum of silacyclobutane was studied by Pringle’®. In this
case, the O—1 vibrational spacing is smaller (ca. 75 MHz) than typical rotational
energy spacings and rigid-rotor spectra with identical rotational constants result for
these two states. However, due to the near degeneracy of the vibrational states, the
Stark effect of certain lines, particularly those involving J4; or J;; rotational sub-
levels, is affected drastically. Analysis of the Stark-effect data yielded the 0—1 in-
version splitting and the transition moment matrix element 1<0lu {1 >} Ro-
vibrational transitions with Av = 1 were then observed within 1 MHz of the predicted
position. This led to an accurate determination of the 0—1 splitting, 75.75 + 0.03 MHz.

The 2—3 splitting is of the order of a typical low-J rotational spacing and non-
rigid-rotor spectra result. The rovibrational levels were therefore computed from
the Hamiltonian of Eqs. (4.9a, b) with the help of a second-order perturbation cor-
rection used by Butcher and Costain®® for cyclopentene rather than by direct matrix
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diagonalization. This allowed determination of the 2—3 vibrational spacing as

7793 +7 MHz. In principle, the determination of the 0—1 and 2—3 vibrational inter-
vals is sufficient to evaluate the two parameters in the potential function given in
Eq. (3.27) and thus also the barrier to planarity. In fact, if this is done, the potential
function computed has a barrier of 229 cm™!, in error by almost 50%!

On the other hand, the far infrared data determine a potential function which
predicts the 0—1 and 2--3 splittings to within 4% and 3% respectively. Table 4.7 lists
a series of calculations due to Pringle. He reports the frequencies calculated by fitting
far infrared data alone and the microwave data alone. He also has fitted both micro-
wave and far infrared data together, using a four-parameter potential function suc-
cessfully employed earlier to fit simultaneously the far-infrared and microwave data
for cyclobutanone’

2 2
=B 4 R R? e (4.12)
2p dx
In contrast to the case of cyclobutanone, the addition of two more adjustable

parameters does not seem warranted in the case of silacyclobutane in that only a
small improvement in the fit results. The barrier determined is 442 cm ™', within

2 cm™! of the barrier determined from the simpler quartic-quadratic potential func-
tion. As pointed out by Pringle, the tendency is to weight the microwave data heavily
because of the precision of the rotational data compared to that of the measurement
of the vibrational intervals in the far-infrared or Raman spectrum. However, in doing

s0, one fails to recognize the limitations of the Hamiltonian. If the potential func-

Table 4.7. Ring-puckering frequencies for silacyclobutane 74)

Cualc frequency 5
Az*+B2Y A@z*+Bz? + ce™ D%
Vibrational Obs FIR Microwave Combined
transition frequency data® data data®
1<~ 0 75.75 MHz 72.0 MHz 73.75 MHz 75.68 MHz
3« 2 7793.0 Mle 8033.0 MHz 7800.0 MHz 7955.0 MHz
2« 1 157.8 cm™ 157.9 86.7 157.3
5« 2 141.8 142.0 71.6 141.5
4+« 3 133.5 1336 70.0 132.8
6+ 5 85.4 85.0 44.0 85.4
7« 6 49.9 50.7 31.7 49.4
8« 7 74.7 74.9 i 74.3
9+ 8 79.3 79.3 Aok 78.2
10 9 86.0 86.6 *kk 85.6
14 <13 106.3 106.9 *okk 107.9
:; Least squares fit to ir data. Barrier height is 440 cm ™. .

Least squares fit to microwave data alone. Barrier height is 229 cm ™",
Gaussian term added to potential, and both sets of data used in least squares fit. Barrier
height is 442 cm ™1,

47



L. A. Carreira, R. C. Lord, and T. B. Malloy

tion obtained by fitting very precise rotational data over a limited energy range to
an approximate Hamiltonian is inconsistent with a large amount of less precise vibra-
tional data extending over a wide energy range, one may conclude that the Hamil-
tonian has been pushed beyond its limitations in such a fitting.

It had been suggested that determination of an inversion splitting for a double-
minimum potential function, along with the variation of rotational constants, was
sufficient to determine the barrier accurately. This looked particularly promising
in light of the success of this procedure in the case of trimethylene sulfide'®) How-
ever, subsequent studies showed mixed results. In the microwave study of trimeth-
ylene selenide”, the 2—3 inversion splitting was evaluated by analyzing the vibration-
rotation interaction for these two states. The rotational constant variation was used
to compute a dimensionless potential function. The far-infrared transition frequencies
published earlier by Harvey et al.”®) were then employed to evaluate the scale factor
for this reduced potential function. Scaled in such a fashion, the barrier for the poten-
tial function calculated from the rotational constant variation was 383 +4 cm~1!,
compared to a barrier of 378 4 cm™! determined previously by Harvey et al.”®
by fitting the far-infrared data alone. If the derived 2—3 inversion splitting had been
used to scale the microwave potential function, a barrier of 297 cm™!, in error by
more than 20%, would have been derived. Perhaps this would be improved by using
the four-parameter potential function with the Gaussian barrier [Eq. (4.12)]. How-
ever, a similar procedure was not of much help in the case of silacyclobutane.

At any rate, this failure of the simple two-parameter quartic-quadratic Hamil-
tonian with a constant reduced mass to reproduce simultaneously and precisely the
inversion splittings and far-infrared or Raman data should not be considered a serious
drawback. Attempts to use this as an indication of a real difference in the shape of
the potential function fail to take into account other effects which have been ne-
glected, among them the dependence of the reduced mass on the coordinate.

{v) Cyclobutane. Cyclobutane is the parent hydrocarbon for saturated four-
membered ring molecules. Due to the fact that it has no permanent dipole moment,
no microwave study is possible. Direct observation of the ring-puckering transitions
in the far infrared is also precluded by the fact that this mode is infrared inactive.
The first estimate of the barrier to planarity from spectroscopic data was made from
the observation of a progression of ring-puckering difference bands from a CH, -stretch-
ing fundamental by Ueda and Shimanouchi””. Stone and Mills*¥ and, indepen-
dently, Miller and Capwell'® observed both combination and difference band pro-
gressions of a B, CH; scissoring mode in the mid infrared spectrum. From these
data, by means of combination differences, it was possible to derive the ring-puck-
ering vibrational spacings in both the v =0 and v = 1 states of the CH, -scissoring
mode. Similar data were obtained for cyclobutane-dg. In addition, Av = 2 transitions
were directly observed in the Raman spectra of both light and heavy cyclobutane'?.

The low-frequency Raman spectra of gaseous cyclobutane and cyclobutane-dy
are shown in Fig. 4.11, and the mid infrared spectrum in the region of the CH,
scissoring mode, with the ring-puckering fine structure, is given in Fig. 2.3. Due to
minor discrepancies between the assignments of Stone and Mills and those of Miller
and Capwell, as well as slightly different methods of deriving and fitting the data,
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Fig. 4.11. Raman spectra of gaseous cyclobutane and cyclobutane-dg. The observed Q-branch
transitions are the Av = 2 ring-puckering transitions.
{Reproduced from Miller, F. A., Capwell, R. J.: Spectrochim. Acta 274, 947 (1971).]

slightly different barriers were determined. Stone and Mills derived the same poten-
tial function for cyclobutane and cyclobutane-dg by adjusting the reduced-mass
ratio, but allowed the effective potential functions to depend on the quantum state
of the CH, (CD,) scissoring mode. They found that the reduced-mass ratio calculated
for a coordinate for which the CH, (CD;) groups move rigidly with the ring con-
siderably underestimated the isotopic shift for the ring puckering. They fixed the
reduced mass for cyclobutane at the value for this semirigid model, and empirically
adjusted the value for cyclobutane-dg. On the other hand, Miller and Capwell allowed
for an isotopic dependence of the effective potential but not for the dependence of
the ring-puckering eigenvalues on the quantum state of the scissoring mode.

Later, Malloy and Lafferty?” made minor reassignments of one of Stone and
Mills’s and two of Miller and Capwell’s bands to reconcile the two sets of data. They
fitted the infrared and Raman data for cyclobutane, allowing different effective poten-
tial functions in the ground and excited states and using only lines which were free
from overlap with other lines. The resulting calculated mid infrared puckering struc-
ture is compared to the observed in Table 4.8. The data for cyclobutane-dg were
fitted in the same way with the results given in Table 4.9. Table 4.10 summarizes
the potential constants derived [Eq. (3.27)], the barrier heights and the band origins
for the CH; (CD; ) modes. It is seen that the effective barriers for the ground states
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Table 4.8. Puckering structure on v} 4 band of C4H827)

Transition vobs(em ™) Veale(em - "obs—Vcalc(Cm_l)
12-13 1318.9 1319.59 —-0.69
11-12 13247 - 1325.23 -0.53
10-11 1331.8 1331.34 +0.46
9-10 1338.2 1337.98 +0.22
8— 9 1346.1 1345.77 +0.33
7- 8 1352.5b 1352.61b -0.11b
5- 6 1352.2b 1351.63b +1.57b
6— 7 1373.2 1372.48 +0.72
4— 5 1430.0 1429.55 +0.45
2- 3 1451.3 1451.76 —0.46
1- 2 l 11455.70 -
0-1 1453.3b 1454.60 -

1- 0 I | 1454.62 -

5- 4 1470.5 1470.22 +0.28
7- 6 1527.7 1527.93 -0.23
6— 5 1547.8 1548.51 +0.29
8- 7 1550.3 1550.50 -0.20
9- 8 1558.5 1558.53 +0.03
10- 9 1567.8 1567.56 +0.24
11-10 1574.9 1575.21 -0.31
12-11 1582.4 1582.24 +0.16
13-12 1589.2 1588.72 +0.48
5- 2 1605.8 1606.71 —-0.91
3- 4 1299.9¢ 1294.70°¢ -

7- 4 l 1646.527 -

2- 1 1649.9 { 1651.432 -
3-0 1652.351 -

Data taken from Ref.33). ® Blended or overlapped lines not used in fit.

Suspect assignment; not included in fit.

of cyclobutane and cyclobutane-dg differ by ~15 cm~!, As shown by Malloy and
Lafferty?”, this difference cannot be ascribed to the neglect of the variation of re-
duced mass with coordinate but reflects
1) a difference in the form of the normal coordinate for the two species and
2) a difference of zero-point averaging of the anharmonic interactions with the
higher-frequency modes for the two species.

Again, this latter effect is of some importance. Referring to Table 4.10 and
Eq. (4.7), we see that the vibrational dependence of the quartic term in the effective
potential function is quite small, indeed within the quoted uncertainty. For cyclo-
butane, the reduced quartic potential constant is 26.15 £ 0.07 cm~! for the ground
state and 26.12 £ 0.07 cm™" for the first excited state of the v;4 mode. On the other
hand, the effect on the quadratic term is more noticeable, as expected from Eq. (4.7).
For the ground state of v, 4, it is — 8.87 £ 0.03 cm™' compared to — 8.76 + 0.04 cm™!
for the excited state. From these data, we may conclude that the sign of the coef-
ficient of the interaction term Q3,72 is positive.
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Table 4.9. Puckering structure on vy 4 band of C4D827)

Transition vips em ™) Yeale (em™ Yobs—Vcalc (em™)
-0 1083.6° 1084.73 -0.13b
2- 1 1239.3% 1240.12 -0.84b
3- 2 1083.6Y 1082.99 +0.61
4- 3 1221.1 1220.82 +0.28
5- 4 1082,2° 1082.68 -0.48%
6- 5 - 1180.33 -

7- 6 1103.1 1104.04 -0.94

8- 7 1148.5 1148.51 -0.01
9- 8 1143.5 1143.86 -0.36
10- 9 1155.3 1155.52 -0.22
11-10 1161.6 1161.30 +0.30
12-11 1167.5 1167.12 +0.38
13-12 1172.8 1172.23 +0.57
14-13 1177.0 1176.94 +0.06
0- 1 1082.2b 1181.30 +0.90b
1- 2 - 927.50 -

2- 3 1082.2b 1082.91 -0.71
3- 4 943.8 942.61 1.19

4-5 1079.2 1078.76 -0.84
5- 6 976.9 977.17 ~0.27
6~ 7 - 1052.25 -

7- 8 1010.4 1010.03 +0.37
8— 9 1016.0 1015.38 +0.62
9-10 1005.6 1005.92 -0.32

10-11 1001.3 1001.31 -0.01
11-12 996.6 996.60 0.00
12-13 992.3 992.43 —-0.13
13-14 988.3 988.57 -0.27
14-15 984.6 984.96 -0.36
2— 4 942.6 -

2- 5 I l 940.8 -
3- 4 943.8b l 944.4 -
3- 5 942.7 -
7- 4 1208.9 1209.55 -0.65
5- 2 1222.7 1223.06 -0.36
Y } 1239.3 1240.16 ~0.86

33) b

Data taken from Ref. Blended or overlapped lines; not included in fit.

One other factor, which has a very minor effect on the barrier height, is the use
of a Hamiltonian with a constant effective mass [Eqs. (3.22), (3.27)] as opposed to
a Hamiltonian explicitly including the reduced-mass dependence on coordinate
[e. 8., Eq. (3.13)]. For the four-membered ring molecules treated with both types
of Hamiltonians, the differences in barrier heights have been found to be 0—3 cm™!,
with the majority closer to 0 than to 3 cm™!.
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Table 4.10. Potential constants, band centers and barriers obtained for C4Hg and C4Dga

A(cm'l) -B Barrier (cm_l) vo o(cm'l)

C4Hg

Ground state 26.153 £ 0.074 8.893 £ 0.034 514.8+4.4 — 0.67

vig=1 26.117 £ 0.066 8.763 + 0.039 501455 1454.6 £ 2.3 0.53
Vvv'=134 710
CyqDg

Ground state 18.59 +0.043 10.3768 # 0.0027 500.6 + 2.7 — 0.42

rig=1 18.561 £ 0.050 10.223 +0.059 485.0 + 6.8 1084.7 + 2.5 0.43

viv"=156173b

Errors cited are 3 standard deviations. Errors cited for the upper state constants are relative
to those determined for the ground state.
Error calculated from oy = (6’2 + " 2)1/2,

b. Pseudo-Four-Membered Ring Molecules

(i) 2,5-Dihydrofuran. The far infrared spectrum of 2,5-dihydrofuran was reported
by Ueda and Shimanouchi'® in 1967. They fitted the observed frequencies to a
one-dimensional Hamiltonian similar to Egs. (3.22), (3.27), with a positive quadratic
coefficient indicating a planar molecule. In this case, although there are two out-of-
plane degrees of freedom for the ring, one of the modes, the twisting about the
C =C double bond, is relatively high in frequency. The other, essentially the motion
of the oxygen normal to the plane of the other four ring atoms, is the low-frequency
ring puckering. Figure 4.12 shows the far-infrared spectrum of 2,5-dihydrofuran
obtained under higher resolution by Carriera and Lord'®, Clearly visible is a series
of satellite transitions originating from the first excited state of the twisting mode.
Effective one-dimensional potential functions were derived for each series by these
workers.

ABSORPTION

{ | 1 1 ! 1
160 150 140 130 120 1o
CM- 1

Fig. 4.12. Far infrared spectrum of 2,5-dihydrofuran. P = 60 torr; pathlength = 30 cm. The
satellite series, originating from the first excited state of the ring twisting mode, is clearly
visible shifted to higher frequency.

[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 3225 (1969).]
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Malloy”® considered the effect of including the coordinate dependence of the
reduced mass in the Hamiltonian [Eq. (3.13)] for 2,5-dihydrofuran and other pseudo-
four-membered rings. The Schrédinger equation used was

W d
T ax Bxx

(x)£+ ax® +bx? (4.13)

where g, (x) is the ring-puckering G-matrix element expressed as a function of x.
Table 4.11 compares the fit to the data for a constant-reduced-mass Hamiltonian
[Eq. (3.22)] with that for the above Hamiltonian in which g, (x) is a least-squares
polynomial for a semirigid model of the ring-puckering vibration. The fit is clearly
much improved by the use of the latter. The importance of these terms for pseudo-
four-membered rings compared to four-membered ring molecules has been discussed
by Malloy and Lafferty2?). They found that the nature of the potential function
does not change and the barrier heights derived from Eq. (4.13) are virtually iden-
tical with those from Eq. (3.22). Only the finer details are affected.

Carreira, Mills and Person>® fitted both ring-puckering series (Fig. 4.12) and
ring-twisting data with a two-dimensional Hamiltonian explicitly including the inter-
action between these two modes (Eq. (3.33)]. Recently Malloy and Carreira’® have
demonstrated the relationship between the effective one-dimensional potential func-
tions which reproduce the ring-puckering series and the full two-dimensional poten-
tial function given in Eq. (3.33).

Table 4.11. Observed and calculated far infrared transition frequencies for 2,5-dihydrofuran 78)

Transition Obs® Calc(l)b A Cale(ID)® A
(ecm™1) (cm™1) (cm™!) (cm™1) (cm™1)
0-1 99.9 102.7 -2.8 100.4 -0.5
1- 2 116.2 115.4 +0.8 115.5 +0.7
2- 3 126.8 125.3 +1.3 126.3 +0.5
3- 4 135.2 133.5 +1.8 1349 +0.3
4- 5 142.1 140.7 - +14 142.2 -0.1
5- 6 148.1 147.2 +0.9 148.5 -0.4
6~ 7 153.6 153.0 +0.6 154.0 -04
7- 8 158.5 158.4 +(.1 159.0 -0.5
8- 9 163.2 163.5 -0.3 163.5 -0.3
9-10 167.5 168.2 -0.7 167.5 0.0
10-11 171.3 172.6 -1.3 171.3 0.0
11-12 175.3 176.8 -1.5 174.6 +0.7
452 =208 422216

24x(x) = 0.1160 x 107" — 0.3868 x 107"x? — 0.4483x* + 2.087x°

2 Ret. 10).

b Least-squares fit with Eq. (3.22), the constant reduced mass Hamiltonian; all frequencies
have unit weights.

Least-squares fit with Eq. (4.13) for a semi-rigid model.

o? = sum of the squares of the deviations.

a6
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(ii) Cyclopentene. Cyclopentene is an example of a pseudo-four-membered ring
molecule with a double-minimum potential function. The vibration-rotation inter-
action involving the v =0 and 1 inversion doublet has been analyzed by Butcher and
Costain®®. A Hamiltonian described by Eqgs. (4.9a, b) was used, with the a and b
subscripts interchanged (i. e., the symmetry plane preserved as the molecule puckers
is defined as the b—c plane). Using second-order perturbation theory, they derived
the rotational constants for the two states, the vibration-rotation interaction con-
stant and the 0—1 vibrational interval. An estimate of 250—400 cm™! for the barrier
was given. Laane and Lord”®? reported the far-infrared spectrum shown in Fig. 4.13.
Next to each strong transition is a satellite line originating from the first excited
state of the ring-twisting. Laane and Lord fitted the infrared data and obtained effec-
tive one-dimensional double-minimum potential functions for the ground state series
and the satellite series. The potential function, with a barrier of 232 cm™!, for the
ground state series is shown in Fig. 4.14. As for dihydrofuran, it was found that the
fit to the data was improved by including the coordinate dependence of the reduced
mass in the Hamiltonian [Eq. (3.33)]. In addition, the calculated 0—1 inversion split-
ting calculated from Eq. (3.33) was 0.89 cm™! compared to 0.81 cm™! from Eq.
(3.22). The value determined from the analysis of the vibration-rotation interaction®
was 0.91 cm™!.

The Raman spectrum of gaseous cyclopentene”) is shown in Fig. 2.4. The
prominent features are the Q branch transitions (Av = 2). This spectrum was one
of the first Raman spectra of ring-puckering hot bands in the literature, and was
reported independently by two groups'4 89). Combination and difference band
progressions involving the ring-puckering vibration have been observed in the Raman
and mid infrared spectra of cyclopentene!? 49 80),

Laane and co-workers have studied several deuterated analogs of cyclopentene,
observing ring-puckering and ring-twisting transitions in the far-infrared and Raman
spectradl, 82)_ Effective one-dimensional potential functions have been derived, and,
as noted for four-membered rings, there is a minor isotopic dependence of the barriers
derived from the effective one-dimensional potential functions. The barriers derived
vary from 232 cm™! for cyclopentene to 216 cm™! for cyclopentene-dg. The reduced-

6)

100 7 T T T T T T T T T T T

80—

=32

60—

40—

20

0 100 200 260
WAVENUMBER IN CMm"!

Fig. 4.13. Far infrared spectrum of cyclopentene. P = 115 torr; pathlength = 8 m.
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 47, 4941 (1967).]
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Fig. 4.14. Ring-puckering potential function for cyclopentene.
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 47, 4941 (1967).]

mass dependence was included for several models. For a given isotopic species, this
affected the determined barrier height by ~ 2 cm™!. Calculations of two-dimensional
potential surfaces for cyclopentene and various deuterated analogs using the Hamil-
tonian given in Eq. (3.33) are in progres)sg?‘).

(iii) 1,4-Dioxadiene. A six-membered ring molecule with two double bonds such
as 1,4-dioxadiene may also behave as a pseundo-four-membered ring molecule. The
B, ring-puckering vibration, which takes the molecule from the planar ring con-
formation to a boat form, is the mode of lowest frequency whose coordinate is de-
fined in Fig. 4.13. The far infrared spectrum reported by Lord and Rounds®? is
shown in Fig. 4.15. The observed series of transitions increasing in frequency with
a converging separation of adjacent transitions is the expected behavior for a planar
molecule with a substantial quartic term in the potential function. Also evident in
Fig. 4.15 is a series of ring-puckering transitions originating from the first excited

Fig. 4.15. Ring-puckering coordinate for
1,4-dioxadiene. [Reproduced from Lord,
R. C,, Rounds, T.C.: J. Chem. Phys. 58,
4344 (1973).]
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Table 4.12. Observed and calculated far infrared frequencies for 1,4-dioxadiene. Main series34)
Transition Observed Calculated® A(Obs—calc) Calculatcdb A
0— 1 66.82 68.26 ~1.44 66.02 0.80
1- 2 83.50 82.92 0.58 84.29 -0.79
2—~ 3 93.75 92.80 0.95 94.49 -0.74
3—> 4 101.82 100.79 1.03 102.35 —-0.53
) 108.55 107.60 0.95 108.78 -0.21
5—- 6 114.22 113.58 0.64 114.27 -0.04
6 7 119.15 118.97 0.18 118.95 0.20
7— 8 123.72 123.89 -0.17 123.38 0.34
8~ 9 127.63 128.42 -0.79 126.91 0.72
9—-10 130.81 132.59 -1.78 130.92 -0.11
2 4=99.64

V(x) =0.2949 x 10%* + 0.2930 x 10%*

o =9.35.

b oaax) = L (x) = 1.0036 x 1072 - 0.1389x% + 1.731x* — 8.79x°
u

V(x) = 0.8251 x 10°x> + 0.4702 x 10%x*
a2 =23.

state of the A ring-twisting mode. The shift in the ring-puckering frequencies on
excitation of this mode is substantial, indicating a large x?y? interaction term in the
potential function. Despite the size of this term, it is possible to derive effective
one-dimensional potential functions for each series. Table 4.12 shows the fit to the
ground-state series with a constant-effective-mass Hamiltonian [Eq. (3.22)], and with
a Hamiltonian that includes the coordinate dependence of the reduced mass [Eq.
(4.13)]. Malloy and Carreira’ have recently derived a two-dimensional potential
function like that in Eq. (3.33) and showed the relation between that function and
effective one-dimensional functions derived by fitting the ring-puckering series sepa-
rately.

ABSOQRPTION

I L 1 P PO | | ISR SR S NV NPT S
30 40 50 60 70 80 90 100 1o 120 130 140 150
WAVENUMBER

Fig. 4.16. Far infrared spectrum of 1,4-dioxadiene. The satellite series is observed shifted to
higher frequency by a substantial amount. P = 2§ torr; pathlength = 30 cm.
{Reproduced from Lord, R. C., Rounds, T. C.: J. Chem. Phys. 58, 4344 (1973).]
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Fig. 4.17. Ring-puckering transitions in the Raman spectrum of gaseous 1,3-cyclohexadiene.
{Reproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: J. Chem. Phys. 59, 813 (1973).]

(iv) 1,3-Cyclohexadiene. Another six-membered ring molecule with two endo-
cyclic double bonds is 1,3-cyclohexadiene. In this case, the low-frequency mode is
a ring twisting vibration that has a double-minimum potential. From his studies of
the microwave spectrum of 1,3-cyclohexadiene, Butcher®® concluded that the equi-
librium conformation has C, symmetry and that the angle between the C,—C3 and
C5—Cg bonds is ~17.5°. The spectra observed were rigid-rotor spectra. The energy
of the lowest excited state was estimated as 185 + 30 cm™! from relative intensity
measurements of vibrational satellite lines in the microwave spectrum.

Carreira et al.2® studied the Raman spectrum of 1,3-cyclohexadiene vapor and
observed a series of sharp Q branches probably due to Av = 2 transitions of the ring-
twisting vibration (Fig. 4.17). The double-minimum potential function derived by
fitting the data with the two-parameter quartic-quadratic Hamiltonian is shown in
Fig. 4.18. The barrier height is 1099 + 50 cm™!, about twice as high as the highest

1000 4/—\

Fig. 4.18. Potential function deter-
200 198 mined for the ring-twisting vibration
in 1,3-cyclohexadiene. [Reproduced
from Carreira, L. A., Carter, R. O.,
00 Durig, J. R.: J. Chem. Phys. 59,
X— 813 (1973).)
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barrier found for a saturated four-membered-ring molecule!3 33), The 0,1 levels are
essentially degenerate as are the 2,3 levels, in agreement with the rigid-rotor micro-
wave spectra observed for these pairs of levels. In the far infrared spectrum the type-b
contours, along with the 4—5 cm~! anharmonicity of the Av = 1 transitions, wipe
out the Q-branch maxima and permit no detailed assignment®7’.

(v) 1,4-Cyclohexadiene. In striking contrast to the far-infrared spectrum of
1,4-dioxadiene (Fig. 4.16), the absorption of 1,4-cyclohexadiene due to its B,,, ring-
puckering mode is confined to a narrow frequency range. Laane and Lord88) observed
a series of seven Q branches progressing to lower frequency from 108.4 cm~! and
spaced about 0.7 cm ™" apart. These were interpreted as the result of a one-dimen-
sional Hamiltonian with a large quadratic term and a very small quartic term of suf-
ficient magnitude to generate the slight separation observed. Probably the simplicity
of the potential function is the result of co-operation rather than competition be-
tween ring strain and torsional interactions88), both of which favor a planar mole-
cule.

2 Asymmetric Systems

(i) Trimethylene Imine and 2,5-Dihydropyrrole. One of the first molecules for
which an asymmetric potential function was determined was trimethylene imine.
Due to the presence of the imino hydrogen the potential function is no longer sym-
metric. Figure 4.19 depicts the two non-equivalent puckered conformations.

The far-infrared spectra of trimethylene imine and trimethylene imine-N-d were
reported by Carreira and Lord®?). The Q branches are weak, superimposed on a
background of rather strong overlapping P and R branches. The potential function
determined for trimethylene imine, along with the energy levels and squared wave-
functions, is shown in Fig. 4.20. The left-well, right-well identifications of the states
below the barrier are quite clear. For the fourth excited state, which is above the
barrier, non-zero probability density occurs above both wells, but with greater ampli-
tude above the left well. From v = 5 on up, it is difficult to make left-well, right-well
identifications.

The gas-phase Raman spectra of trimethylene imine and trimethylene imine-N-d
were studied later by Carreira et al.’®. The transitions in the low-frequency region
for trimethylene imine-N-d are shown in Fig. 4.21, and Table 4.13 summarizes the
assignments of the transitions observed in the far infrared and Raman spectra. The

Q. b.

Fig. 4.19. Two non-equivalent conformations for trimethylene imine leading to an asymmetric
ring-puckering potential function. The interconversion of these conformers may also be accom-
plished via the N-H rocking vibration.

[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 2735 (1969).]
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Fig. 4.20. Ring-puckering potential function for trimethylene imine. The squared wave functions
illustrate the definite left well «— right well identifications of the first four levels.
[Reproduced from Carreira, L. A., Loxd, R. C.: J. Chem. Phys. 51, 2735 (1969).]
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Fig. 4.21. Ring-puckering transitions in the Raman spectrum of trimethylene imine-N-d.
[Reproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: J. Chem. Phys. 57, 3384 (1972).]
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Table 4.13. Single and double jump ring-puckering transitions observed in the Raman effect for
trimethylene imine 90)

Transition Observed Observed or A
Raman inferred from
far infrared

02 207.1 207.2 0.1
1-3 184.22 184.6 0.4
24 148.6 149.3 0.7
35 166.1 b -~

46 184.22 183.8 0.4
57 216.9 216.4 -0.5
6—8 236.6° 237.0 0.4
7-9 255.8 255.4 ~0.4
6—7 113.8? 113.7 ~0.1
78 121.8? 123.3 1.5
89 133.97 132.1 -1.8

Both the 1 — 3 and the 4 — 6 transitions are expected at this frequency.
The 3 — 4 transition was not observed in the infrared, since this transition originates from

a level below the well to one above the well. In this case both the 3 — 4 and 3 — § transitions
are calculated to be extremely weak in the infrared. The spacing of the 3 and 4 levels can be
calculated from the observed 3 — 5§ Raman transition and the observed 4 — § transition in
the far infrared. This spacing is calculated to be 85.0 cm.

This transition was difficult to measure due to a weak impurity band at 233.6 em L

observation of both infrared and Raman transitions, with different selection rules,
serves to confirm the assignment and the double-minimum nature of the potential
function. The barrier to interconversion of the two forms is 441 cm™! above the
deeper minimum. The energy difference between the two minima is 95 cm™'. When
the potential function is transformed to that of Eq. (3.32), the coefficients are found
to have the values A =29.84 cm~!, B = 15.15,C = 7.73. Thus 9C% = 35.5B, very
close to the limit 9C? = 36B that corresponds to a symmetric double-minimum poten-
tial function (Table 3.1).

The fit to the data for trimethylene imine (rms deviation ~2.5 cm™!) is not as
good as has generally been obtained for molecules with symmetric potential func-
tions. In this molecule there is a second pathway by which its two forms (Fig. 4.19)
may be interconverted, namely, via the N-H inversion vibration. This vibration has
the same symmetry properties as the ring-puckering. Consequently, harmonic, cubic
and quartic cross terms are allowed in the potential. Neglect of these terms is doubt-
less one reason for the deviations observed when the data are fitted one-dimension-
ally.

A slight isotopic dependence of the effective one-dimensional potential func-
tion is found for trimethylene imine-N-d. However, this effect is of the same order
as that observed for molecules with symmetric potential functions, and in this case
is within the uncertainty of the potential functions. The barrier measured from the
lowest well was 443 cm™! and the energy difference between wells 90 cm™!, com-
pared to 441 cm~! and 95 cm™! for the parent compound.
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Fig. 4.22, Far infrared spectrum of 2,5-dihydropyrrole. P = 8 torr; pathlength = 4 m, 8 m as noted.
[Reproduced trom Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 2735 (1969).}

In spite of the factors mentioned in the previous paragraphs, the double-mini-
mum nature of the potential functions for trimethylene imine and the N-d compound
is well established. Comparison of the far infrared and Raman data for both com-
pounds leaves no question as to the correct assignment.

2,5-Dihydropyrrole is a pseudo-four-membered ring molecule. Its structural
relationship to trimethylene imine is the same as that of 2,5-dihydrofuran to trimeth-
ylene oxide. Again, both the parent and N-d compounds were studied. Figure 4.22
shows the far infrared spectrum of the light compound reported by Carreira and
Lord®®. The low-frequency Raman spectrum was reported later by Carreira et al.’®.
Transitions with both Av =1 and Av =2 were observed. Table 4.14 summarizes the

Table 4.14. Single and double jump ring-puckering transitions observed in the Raman effect for
2,5~dihydropyrrole9°)

Transition Observed Observed or A
Raman inferred from
the far infrared

0—2 117.82 118.1 0.3
1-3 155.7 156.3 0.6
24 184.1 183.8 -0.3
35 208.1 207.8 ~0.3
4-6 227.3 226.2 ~1.1
57 241.9 242.1 0.2
34 98.3 98.9 0.6
4-5 107.9 108.9 1.0
56 117.82 117.3 -0.5
67 123.4 124.8 14
78 129.0 131.0 2.0
8~9 137.5 136.7 ~0.8

4 Boththe0—22nd 5 — 6 transitions are expected at this frequency.
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Fig. 4.23. Ring-puckering potential function for 2,5-dihydropyrrole. Only the lowest level has

a definite left well character.
[Reproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: J. Chem. Phys. 57, 3384 (1972).]

assignments of the far-infrared and Raman transitions. Again, the different selection
rules serve to confirm the assignments. Figure 4.23 gives the potential curve deter-
mined for the parent compound with the squared wave functions superimposed on
the energy levels. There is a very small barrier between the two shallow minima and
only one level, localized to the left well, occurs below the barrier. The v =1 level has
non-zero probability density above both the left and right wells, but with more over
the right-well. From v = 2 on up, the probability density function is virtually sym-
metric. As in the case of trimethylene imine there is an isotopic dependence of the
potential function, but the qualitative nature of the potential functions for 2,5-di-
hydropyrrole and 2,5-dihydropyrrole-N-d is the same.

(ii) Analogs of Bicyclo[3.1.0Thexane. Another type of pseudo-four-membered
ring molecule with an asymmetric potential function is represented by bicyclo
[3.1.0])-hexane and its analogs. The parent hydrocarbon (1) and three oxygen-con-
taining analogs, 3-oxa-, 6-oxa- and 3,6-dioxabicyclo{3.1.0Thexane (2, 3, 4), have
been studied. Far-infrared, Raman and microwave studies have been carried out3% 21-96),

2606
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Three low-frequency out-of-plane ring vibrations may be characterized. The
mode of highest frequency, a rocking of the atom (or CH, group) in position 6 in
the ring, gives rise to a sharp intense Q branch in both the infrared and Raman spectra
whose frequency ranges from 404 cm™! for 6-oxabicyclo[3.1.0]hexane (cyclopentene
oxide) to 365 cm™! for 3.6-dioxabicyclof3.1.0]Thexane. The second mode is a twist-
ing of the five-membered ring about the C, —Cs bond, observed as a type & band in
the infrared and as a broad depolarized line in the Raman spectrum. Its frequency
varies from 320 cm™" for 6-oxabicyclo[3.1.0]hexane to 260 em™! for 3,6-dioxa-
bicyclo[3.1.0]hexane. The ring-puckering mode yields the most information. This
involves primarily the out-of-plane motion of the atom (or CH; group) in the 3
position and is highly anharmonic. The 0—1 transition frequencies range from
241 ecm™! for bicyclo[3.1.0}hexane to 195 em™! for 3,6-dioxabicyclof3.1.0]hexane.
The combination of far infrared and Raman spectra proved especially effective
in the study of these molecules, since those with intense spectra in the far infrared
generally were found to have weak Raman spectra and vice-versa. Figure 4.24 pre-
sents the low-frequency Raman spectrum of the parent hydrocarbon (1)°®). Tran-
sitions due to the three out-of-plane modes are evident in the figure, but only the
ring puckering exhibits discernible hot-band structure. A series of six transitions
with negative anharmonicity is observed. The first four of these transitions had been
observed in the far-infrared spectrum under rather extreme conditions (80 torr
pressure, 32 m path length)®?). Table 4.15 lists the observed Raman and far infrared
frequencies, and the fit to the Raman data by the three-parameter potential function
of Eq. (3.32)°%. Figure 4.25 shows this potential function, for which 9 C2= 30.1 B,
so that it is a single-minimum function with two inflection points. The shape of the
potential function is well determined up to the v = 6 level (~1250 cm~! above v = 0),
but above that it is extrapolated. The frequencies are predicted to reach a minimum
with the 8—9 transition and then begin increasing in frequency due to the dominance
of the quartic term [Eq. (3.32)] at large amplitudes. However, the Boltzmann popu-
lation of these higher states is such that it was not possible to confirm this behavior.

O

Fig. 4.24. Low-frequency region of the
Raman spectrum of bicyclo[3.1.0]hexane.
The Q branch at 390 cm ™! is assigned to
rocking of the cyclopropane ring, the
b broad band at 290 cm™! to the ring-
twisting mode of the five-membered ring
+*-C and the series of Q branches starting at
240 cm™~! to the ring-puckering vibration.
i 1 ] L [Reproduced from Lewis, J. D., Laane, J.,
300 200 100 O Malloy, T. B,, Jr.: J. Chem. Phys. 61, 2342
WAVENUMBER  {CM™) (1974).]
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Low-Frequency Vibrations in Small Ring Molecules
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Fig. 4.25. Single-minimum asymmetric po-
tential function for the ring-puckering
vibration in bicyclo[3.1.0]hexane.
[Reproduced from Lewis, J. D., Laane, J.,
Malloy, T. B., Jr.: J. Chem. Phys. 6/,
2342 (1974).]

3,6-dioxabicyclo[3.1.0]hexane proved to be a more favorable case®®. The ring-
puckering frequencies are somewhat lower so that the Boltzmann factors permitted
the observation of more transitions. In addition, the large dipole moment changes
resulting from the presence of the two oxygen atoms produced a very intense spec-
trum in the far infrared (Fig. 4.26). The assignments of the nine transitions and the
fit to the data are given in Table 4.16. Figure 4.27 shows the potential function,
for which 9C? = 28.1B. Again, a single-minimum potential function with two in-
flection points has resulted from fitting the data, but in this case, data have been
obtained for levels which are well above the second inflection point and the shape
of the potential has been well characterized. Figure 4.27 shows that the cubic term
in the potential contributes substantial negative anharmonicity for the first few tran-
sitions. The quartic term then causes the frequencies to reach a minimum with the
56 transition and then increase in frequency for the 6—7, 7—8 and 8—9 transitions.
Because transitions up into the quartic-dominated region have been observed, there
is no question that the ring-puckering potential function for 3,6-dioxabicyclo[3.1.0]
hexane has only a single minimum.

The seven observed Q-branch transitions for 3-oxabicyclo{3.1.0]hexane were
fitted®? to a similar function with 9C? = 26.8B. The 6—7 transition was the last
observed Q-branch. The 7—8 and 8—9 transitions were predicted to be the lowest
frequencies, being almost identical, and succeeding transitions were indicated to
increase in frequency. On the other hand, the potential function reported by Carreira
and Lord®? for 6-oxabicyclo[3.1.0]hexane (cyclopentene oxide) had a second, very
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Fig. 4.26. Far infrared spectrum of 3,6-dioxabicyclo[3.1.0]hexane. P ~1 torr; pathlength = 20 m.
x denotes a water peak.
{Reproduced from Lord, R. C., Malloy, T. B., Jr.; J. Mol. Spectroscopy 46, 358 (1973).]

Table 4.16. Observed and calculated ring-puckering transitions for 3,6-dioxabicyclo[3.1.0|hexamea

Transition Observed Calculated® A Calculated
(cm~1) (em™hH (cm™1) intensity

0—1 195.1 196.0 -0.9 1.00
1-2 180.7 180.7 0.0 0.70
2—-3 164.2 163.5 +0.7 0.38
3-4 146.1 145.7 +0.4 0.20
45 131.9 131.7 +0.2 0.11
5-6 126.1 126.9 -0.8 0.07
67 128.0 129.4 -1.4 0.04
7—-8 136.1 1344 +1.7 0.03
8—9 140.4 139.9 +0.5 0.02

a Ref.92),

b viem~1)=25.25(Z%+17.2322 + 7.33Z3).
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Fig. 4.27. Single-minimum asymmetric potential function for the ring-puckering vibration of
3,6-dioxabicyclo[3.1.0 hexane. The last observed transition occurs well above the inflection

point in the potential function.
[Reproduced from Lord, R. C., Malloy, T. B., Jr.: J. Mol. Spectroscopy 46, 358 (1973).]

shallow minimum roughly 1000 cm™! above the ground state. However, only five
transitions were observed and the “barrier” was ~200 cm~! above the n = 5 level.
For this potential function, 9C? =32.4B, very close to the dividing line, 9C? =328,
between double-minimum and single minimum potential functions. Carreira and
Lord weighted more heavily the lower, more intense transitions in their fit of the
five transitions for cyclopentene oxide, obtaining a very shallow second minimum.
When their data were refitted, with equal weights assigned to each transition, a single-
minimum potential function resulted. The important point is that with only five
transitions the potential functions were well within one standard deviation of each
other. Thus one must regard as questionable any feature in a potential function that
lies much above the last observed energy level.

The determination of the potential function in reduced coordinates from fitting
far-infrared or Raman data does not yield information on the identity of the stable
conformer. The microwave spectrum of 3,6-dioxabicyclo[3.1.0]hexane was reported
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by Creswell and Lafferty®®, who showed from the ground-state rotational constants
and the dipole-moment components that the boat conformer is the stable form. Similar
studies have been reported for 6-oxabicyclo[3.1 .O]hexane”),

B. Molecules Treated by Two-Dimensional Hamiltonians
1 Pure Pseudorotation

(i) Cyclopentane. Durig and Wertz” reported the pseudorotational combination
and difference transitions superimposed on a CH, deformation mode in the mid in-
frared spectrum of cyclopentane. They interpreted these with the help of Eq. (3.38).
Carreira et al. employed the perturbation formulas Eqs. (3.39) to (3.41) and three
radial transitions observed in the vapor-phase Raman spectrum®? to make a provi-
sional estimate of the parameters in a two-dimensional potential function. With these
as a starting point they carried out a least-squares fitting of all the data by numerical
solution of the two-dimensional problem in polar coordinates. This allowed them to
estimate the barrier to planarity in cyclopentane as 1824 + 50 cm™! | quite close to
the value obtained by Pitzer and Donath%8) from thermodynamic data.

2 Hindered Pseudorotation

(i) Tetrahydrofuran and 1,3-Dioxolane. Originally the angular transitions in the
far infrared spectrum of tetrahydrofuran and 1,3-dioxolane were interpreted on the
basis of pure pseudorotaion using Eq. (3.38) and higher quantum-number transitions,
from levels above the small barriersé- 2. The microwave spectrum of tetrahydrofuran
revealed a complicated energy pattern for low quantum numbers3®), Rotational

100,0-
80,0
T 60,04
€
s\ A [
& L [ ]/
L%’ 40,0
2004 =13 A

Fig. 4.28. Angular potential function hinder-
ing pseudorotation in tetrahydrofuran.

—
]

00 T T 1T 1 T f 1 [Reproduced from Engerholm, G. G., Luntz,
0 Ty T 3n;,  2n A, C., Gwinn, W. D., Harris, D. O.: J. Chem.
PHI Phys. 50, 2446 (1969).]

68



Low-Frequency Vibrations in Small Ring Molecules

constants in different vibrational states were determined, as well as small energy
splittings between the 0—1 levels and the 2—3 levels, for which the Schrodinger Eq.
(3.44) was used. The rotational constants were not expressed in power series, but
in a trigonometric series appropriate to a periodic coordinate

Buop = E BY <v,lcos kolvy > (4.14)

where f represents the A, B, or C rotational constant. The splittings and variations
in rotational constants were used to determine the following potential function

V(¢)in cm™! = — 15(1 — cos 2¢) — 20(1 — cos 4¢) (4.15)

The value of the pseudorotational constant, 3.25 cm™!, was taken from the earlier
far-infrared study®. Figure 4.28 depicts the potential function hindering pseudo-
rotation. It is seen that the largest barrier encountered in one cycle is ~55 cm™"
indicating that the approximation that the pseudorotation barrier be much less than
the barrier to planarity has been met in this case.

Tetrahydrofuran
c "I 675387 oer v=0.4n=¢1 1816
9 — T T 1 77 T nlr T T T T T 1T 17 1 LI} LI LS n
@ - 77 1010111112121313 14141515
E 507 T C
2 = W
5 3 _ S AR Ekk(
- 4 =l,an=21 nE ¢ 7 B8 11 1213 7
o 0 1 | T T T I T 1T 1T 1 I T

20 30 40 50 60 70 80 90 100

Frequency (cm™)
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cC -
o -
s i
E-; a1 v=0,an=¢2
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° T i [ 1 T [ T T T T T T T T I | T T
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Freguency (cm™)
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Fig. 4.29. Far infrared spectrum of tetrahydrofuran. Path length = 1 m. (A) P = 20 torr,
(B) P =20 Torr, (C) P =93 torr. P = 43 torr in the region above 190. {Reproduced from Green-
house, J. A., Strauss, H. L.: J. Chem. Phys. 50, 124 (1969).}
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Under conditions of higher resolution, the far infrared spectrum of tetrahydro-
furan was found to be quite complex (Fig. 4.29) with a number of bands split by
Coriolis interaction. Assignments and analysis of the band origins led to a potential
function

V($)in cm™! = - 13.5(1 — cos 2¢) — 20(1 — cos 4¢) (4.16)

with a pseudorotational constant of 3.19 cm™!. The features in the radial-band

region (ca. 270 cm™!) remained unassigned. Subsequent treatment of the far infrared
and microwave splitting data with a two-dimensional Hamiltonian in polar coordinates
[Eq. (3.43)] and also including coordinate-dependent mass terms in the kinetic energy,
led to tentative assignments of some of these features'°?. The calculated spectrum

is quite complex and shows that many of the features are due to several overlapped
transitions. Recently, Sont and Wieser'®D have made assignments of several features
in the Raman spectrum of tetrahydrofuran near 270 cm™!.

3 Coupled Bending and Twisting Vibrations in Cyclopentanone

In some cases, separation of variables in polar coordinates is not appropriate. Cy-
clopentanone is a good example of such a molecule. Although it is possible to fit
the main features of the far infrared spectrum with a periodic potential function,
the “‘barrier” derived has no meaning. A rather thorough study of the far infrared
spectrum of cyclopentanone by Ikeda and Lord'?? led to the determination of

the potential surface shown in Fig. 4.30 by fitting the spectrum two-dimensionally.
These workers reported the far infrared spectra of the parent compound and its
a-d4, f-d4 and dg derivatives shown in Fig. 4.31. The data for the parent compound
were fitted by least squares to a two-dimensional Hamiltonian similar to Eq. (4.13),
but including variable reduced-mass terms through quadratic expansion coefficients
in the kinetic energy operator. The stable conformation is the twisted (C, ) ring
conformation, as had been shown by a microwave study'®®, Not only is the barrier
to planarity comparable to the barrier to pseudorotation, but also the minimum-
energy path for interconversion of the equivalent C, conformers passes through the

planar conformation with a relatively low barrier of 750 cm™.

Examination of Fig. 4.30 indicates that the probability density for the levels
involved in the observed transitions should be localized about the stable twisted
conformation. In order to obtain a basis set for the variation calculation which sat-
isfies this requirement a slightly different approach was taken'%?)_ First, the two-
dimensional potential was presumed to be given by

V(x, y)=a,x4 +b1x2 +a2y4 +b2y2 +a12x2y2 (4.17)

where x is the bending coordinate and y the twisting coordinate. For cyclopentanone,
it turned out that b, is negative while each of the other potential constants is positive.
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)

Fig. 4.30. Potential energy contour diagram for cyclopentanone. The contour in the third and
fourth quadrants is the mirror image of that in the first two quadrants. The interconversion of
the two equivalent C, conformers occurs via the planar conformation.

{Reproduced from Ikeda, T., Lord, R. C.: J. Chem. Phys. 56, 4450 (1972).]

An approximate separation of variables was performed, yielding the following effec-
tive potential functions

V(y)=a;2y* +b,y? (4.18)
and
V(x)=a,x* + (b, —bja;2/2a,)x° (4.19)

The origin in Eq. (4.19) has been translated to correspond to the minimum along
the twisting coordinate and appropriate modifications made to the kinetic energy
operator. The potential function then has a double minimum in the twisting coor-
dinate and a single minimum in the bending coordinate. The resulting Schédinger
equations were solved, as described earlier, with harmonic-oscillator basis functions.
The solutions to these equations were then used to form a direct-product basis in
which to expand the full two-dimensional Hamiltonian. This Hamiltonian matrix
factored into four blocks denoted as ee, €0, e, and 0o depending on the even or
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odd character of the functions used to form the product basis. This procedure was
then included in an iterative least-squares adjustment of the potential constants.

Figure 4.32 indicates the calculated spectra for the various deuterated analogs
of cyclopentanone. As found earlier with cyclobutane and other ring molecules, it
was necessary to mix motion of the methylene hydrogens (deuteriums) with the
ring vibrations in order to reproduce the observed isotopic shifts. It may be seen
from the figure that deuteration at the a-position has a much greater effect than
deuteration at the S-position.
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Fig. 4.31. Far-infrared spectra in the bending region for cyclopentanone, a, o, ¢, o’-cyclopen-

tanone-dg, 8, 8, ', f-cyclopentanone-d4 and cyclopentanone-dg.
[Ikeda, T., Lord, R. C.: I. Chem. Phys. 56, 4450 (1972).]
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Fig. 4.32. Calculated spectra of cyclopentanone-dg, a-dg, 8-d4 and dg.
{Reproduced from lkeda, T., Lord, R. C.: J. Chem. Phys. 56, 4450 (1972).)
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4 Pseudo-Five-Membered Ring Molecules

Just as a five-membered ring molecule with an endocyclic double bond may be con-
sidered as a pseudo-four-membered ring, a six-membered ring molecule with an
endocyclic double bond may be considered as a pseudo-five-membered ring mole-
cule. Although a six-membered ring has three out-of-plane skeletal vibrations, in the
case of analogs of cyclohexene one of these is mainly a twisting about the double
bond, which is somewhat higher in frequency than the other two and essentially
harmonic. The other modes, illustrated for 1.4-dioxene in Fig. 4.33, are a bending,

f and twisting, 7. These two low-frequency modes are expected to be highly coupled.

(i) 1,4-Dioxene. The far infrared spectrum of dioxene!®® is shown in Fig. 4.34.
The high-frequency region near 300 cm™" involves transitions among “twisting”
states, giving rise to overlapped type-b band contours. On the other hand, the
“bending” transitions have type-c band contours and extensive hot-band structure
is observed just below 200 em™!. At long path lengths, a series of bands arising from
difference transitions between twisting and bending states is observed near 100 cm™!

Figure 4.35 reproduces the Raman spectrum of dioxene in the region corres-
ponding to the twisting vibration'®®)_ The Q-branch transitions are prominent because
the twisting mode is a totally symmetric vibration. Combining all of these data, one
can build up a detailed energy-level pattern with many internal checks on the self
consistency of the assignment104: 105)_ Figure 4.36 shows this pattern and the assign-
ments of the transitions. The data have been fitted by least squares by the procedure
described for cyclopentanone. The observed and calculated frequencies are given in
Table 4.17.

In Fig. 4.37 is shown a potential energy contour map determined for 1,4-dioxene
that has absolute minima at the two equivalent twisted (C;) conformations; relative
minima occur at the bent (C,) conformations. The planar conformation corresponds
to a maximum. Two cross sections of this surface, one along the twisting coordinate
through the origin and the second along the minimum-energy path between the two
equivalent C, conformations, are plotted in Fig. 4.38. The barriers involved are con-
siderably higher for this molecule than for the four- or five-membered rings con-
sidered earlier. It should also be emphasized that the barriers are higher than the
energy of the highest observed levels, that is, they have been determined by extra-
polation and the uncertainties are correspondingly greater than for molecules with
lower barriers. The position of the relative minimum corresponding to the C, con-

Fig. 4.33. Definitions of ring bending (8) and ring twisting (7} coordinates for dioxene.
[Reproduced from Lord, R. C., Rounds, T. C., Ueda, T.: J. Chem. Phys. 57, 2572 (1972).)
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Fig. 4.34. Far infrared spectrum of dioxene. (A} Ring bending transitions P = 35 torr; path
length = 30 cm. (B) High-resolution scan of the bending region showing resolved rotational
structure. P = 35 torr: path length = 30 cm. (C) Difference band region, P = 10 torr; path

length = 8 m. (D) Type-b bands in the ring-twisting region. P = 10 torr; path length = 4 m.
[Reproduced from Lord, R. C., Rounds T. C., Ueda, T.: J. Chem. Phys. 57, 2572 (1972).]
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Fig. 4.35. Ring-twisting hot bands in the Raman spectrum of dioxene.
[Reproduced from Durig, J. R., Carter, R. O., Carreira, L. A.: J. Chem. Phys. 60, 3098 (1974).]
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101

8,9

Fig. 4.36. Pattern of observed
transitions between the energy
levels for the twisting and bend-
ing vibrations in dioxene. Many
of the checks on the self-con-
sistency of the assignments are
provided by the difference band
in the far-infrared spectrum
(Fig. 4.34¢).

[Reproduced from Durig, J. R.,
Carter, R. O., Carreira, L. A.:

J. Chem. Phys. 60, 3098 (1974).]
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23

Fig. 4.37. Potential energy surface for dioxene determined from least squares fit of the far infrared
and Raman data (equipotential lines in cm~1). The dashed line indicates the minimum energy
path for interconversion of the equivalent twisted forms (C5,) via the bent (Cg) forms. The barrier
to interconversion is 3200 cm ™!
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Table 4.17. Observed and calculated frequencies (cm~}) for 1,4-dioxene

Obs Assignment Cale A
Vi, Vo) = (V'(, V')

Twisting band region?

297.4 (0,0) =+ (2,0 297.3 +0.1
294.9 (2,0) - (4,0) 294.7 +0.2
291.4 (4,0) — (6,0) 291.9 -0.5
289.0b (6,0) — (8,0) 288.8 +0.2
291.4 0,1) = 2,1) 291.7 -0.3
288.1 2,1)— 4,1 288.6 -0.5
285.1 4,1y = (6,1) 285.1 0.0
285.1 0,2) > (2,2) 286.4 -1.3
281.7 2,2) - (4,2) 283.0 -1.3
281.7 0,3)=(2,3) 281.3 +0.4
271.6 0,4) > (2,4) 276.3 +1.3

Bending band regionb

191.3 (0,0) —~(0,1) 1904 +0.9
190.7 0,1) —(0,2) 190.3 +0.4
189.9 (0,2) »(0,3) 190.1 -0.2
189.3 (0,3)—~(0,4) 189.8 -0.5
188.8 (0,4) = (0,5) 189.4 -0.6
188.1 (0,5) ~ (0,6) 189.0 -0.9
187.4 0,6)— (0,7 188.5 ) -1.1
(2,0) = (2,1) 184.8 +0.6

(2,1}~ (2,2) 185.0 +0.4

185.4 (2,2) ~(2,3) 185.0 +0.4
' (2,3)~ (2,4 184.8 +0.6

(2,4) —(2,5) 184.5 +0.9

178.6 (4,0)— (4,1) 178.7 —0.1
179.9 4,1) ~ (4,2) 179.4 +0.5
179.9 (4,2) ~(4,3) 179.6 +0.3
171.1 (6,0) ~ (6,1) 171.9 -0.8
174.1 6,1)—(6,2) 173.5 +0.6
163.0 (8,00~ (8,1) i 164.3 -1.3

Difference band region®

106.2 0,1)~(2,0) 106.9 -0.7
109.8 (2,1)~ (4,0) 109.8 0.0
113.9 (4,1) > (6,0 113.2 +0.7
118.1 6,1y~ (8,0) 116.7 +1.4
100.9 (0,2) - (2,1) 101.4 -0.5
103.1 (2,2) » (4,1) 103.6 -0.5
105.0 (4,2) ~(6,1) 105.7 -0.7
108.0 (6,2) ~ (8,1) 107.6 +0.4
96.6 (0,3 - (2,2 96.3 +0.3
97.8 (2,3)~4,2) 98.0 -0.2
98.8 (4,3) —(6,2) 99.6 -0.8
92.5 (0,4)~(2,3) 91.5 +1.0
88.8 0,5~ (2,4) 86.9 +1.9
2 From the Raman spectrum (Ref,105)), b From the far-infrared spectrum (Ret.109)),
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Fig. 4.38. Cross sections of the potential surface in Fig. 4.37. The figure on the left is the poten-
tial function along the twisting axis. The potential function on the right follows the dashed line
in Fig. 4.37 and represents the minimum-energy path. The portion of the curve corresponding
to the C; conformer is dashed, indicating the large uncertainty in the position of the second
minimum

formation is shown in Fig. 4.38 as a dotted line to imply that the shape of the curve
in this region and the energy of the Cy minimum are not at all well determined. The
dispersion of the barrier to planarity determined from the least squares fit to the
data is +750 cm~!. The dispersion of the barrier to interconversion of the two equiv-
alent C, forms is £250 cm™!. On the other hand, the dispersion of the depth of

the second minimum is of the order of this depth.

The barriers to interconversion determined for 1,4-dioxene and similar unsatu-
rated six-membered rings are approaching the upper limit of those which can be
determined reliably from vibrational data alone at temperatures near 300 K. On the
other hand, they overlap the lower limit of those which may be determined from
the study of the temperature dependence of the nmr spectra. A subsequent study
of the nmr spectrum of dioxene in solution as a function of temperature led to an
independent determination of the barrier to interconversion!96). The agreement
with that determined from fitting the vibrational data was within 1 kcal/mole. This
was quite satisfactory in as much as the two experiments were performed in different
phases. In addition, the angle between the C—C and C=C bonds was estimated'°”
from the vicinal coupling constants as 26.8°, in reasonable agreement with the value
of 29.9° calculated from a microwave study'°®

A list of small ring molecules investigated up to the middle of 1978 is summarized
in Table 4.18 under the headings of Section IV. (See pp. 80—90).
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V Prospects for Further Studies

Further research in the field of low-frequency vibrations in ring molecules may be
expected to proceed along three lines:

1) Extension of studies like those treated in this article to additional small-ring
systems, including isotopic derivatives. Such studies will provide new information
about the molecules studied as well as further tests of the theoretical treatments
discussed in Section III.

2) Extension of the investigations to larger rings. The low-frequency vibrational
modes of saturated six-membered and larger ring molecules have already been studied
by Strauss and coworkers (see, for example, Refs.'%°~112)_ Their approach has been
to develop a molecular force field based on vibrational data and known molecular
geometries for a series of molecules rather than to determine the potential surfaces
for individual molecules experimentally from the spectra of one or two low-frequency
vibrations. Clearly both the theoretical and experimental problems associated with
the larger rings are difficult. However, new experimental techniques (see below),
especially those with the capability of much higher spectral resolution, seem likely
to provide the data needed to treat these more complicated systems. A review of
the present status of the vibrational spectroscopy of medium-sized rings is now
available 13,

3) New developments in experimental methods. New techniques for high-reso-
lution spectroscopy in far infrared absorption and the Raman effect are likely to
improve both the accuracy and the scope of studies of ring systems. It was noted in
Section II that the increasing application of Fourier-transform infrared spectroscopy
to the investigation of ring molecules has already resulted in markedly improved
accuracy of the molecular parameters derived therefrom. Much further improvement
can be expected from the methods of laser spectroscopy. The use of tunable diode
lasers, for example, gives promise of spectral resolutions of the order of 10™* cm™!
in the mid and far infrared'¥). Clearly the quality of the data affordable by such
resolving power will necessitate corresponding improvement in the theoretical treat-
ment.

Since the high-resolution Raman spectra of ring compounds are of necessity
obtained from samples in the vapor phase, improvement in the resolution is depen-
dent on an increase in the intensity of the scattered radiation. A promising technique
for this purpose is that of coherent anti-Stokes Raman scattering (CARS), which
is many orders of magnitude more intense than the normal Raman effect. Recent
developments in the technique'®) suggest that CARS could produce spectra of
sufficient intensity and line sharpness to enable the resolution of lines separated by
0.001—0.01 cm™ . While this range is not so impressive as the potential resolution
of the tunable lasers, it is still three orders of magnitude better than present work.
In any case the combination of much greater spectral detail with extended theory
should permit the successful study of larger molecules and improved accuracy of
the potential surfaces of smaller rings.
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A New Approach to the Hamiltonian of Nonrigid Molecules

1 Introduction

The dynamics of nonrigid molecules has been studied with increasing interest in
recent years. This is a natural consequence of the increasing amount of very precise
data for these molecules made available by the developments within high resolution
spectroscopy. Such data require detailed analysis. Interest has also been stimulated
by the fact that developments within computer technology have allowed an attempt
at solving the involved numerical problems.

Theoretical formulations have now reached a level which allows the possibility
of standardizing the treatment of nonrigid molecules in a way which is very similar
to the treatment applied to rigid molecules. This is where the present paper may
hopefully contribute.

In rigid molecules the vibrational amplitudes are so small that the vibration-
rotation spectra can be analyzed in great detail within the formalism of Wilson and
Howard' =3 using the fully elaborated perturbation scheme of Amat and Nielsen?.
A review of the method has recently been given by Mills®). The latest development
concerns the anharmonic force constants which, according to Hoy, Mills and Strey®,
should be defined as the partial derivatives of the potential function with respect to
structural parameters, i.e. curvilinear coordinates as opposed to the rectilinear coor-
dinates used in the Hamiltonian. This is made possible employing the nonlinear trans-
formation between the two classes of coordinates which can be evaluated by the
methods presented by Hoy et al.®). This development is equally important when
small amplitude motions in nonrigid molecules are considered. An alternative treat-
ment has been suggested by Quade” based on a rigorous use of curvilinear coordi-
nates in formulating the Hamiltonian. Comments on this method will be presented
in a later section.

In nonrigid molecules one or more internal motions take place with distortions
so large that the ordinary treatment is inadequate or even breaks down. Thus, in
the case of large amplitude vibrations, bending, inversion or ring puckering modes
in particular, a Hamiltonian based on rectilinear coordinates is still exact, but the
perturbation treatment converges only very slowly because of the change in order
of magnitude of certain terms. When internal rotation is considered, it is no longer
appropriate to describe the internal motions as displacements of atoms relative to a
single unique equilibrium configuration. Therefore both types of nonrigidity require
special treatments.

Such treatments have generally been based on semirigid models, where the small
amplitude vibrations are neglected so that only the overall rotation and the relative
motion of a few (usually two) rigid groups in the molecule are considered. The
methods applied to internal rotation have been described in detail by Dreizler® ¥,
whereas a complete review of the many different approaches to the large amplitude
vibration problem is very difficult to present. The development of the theory may,
however, be followed in a few illustrative papers. In the pioneering papers by Thorson
and Nakagawa'®, Dixon'? and Johns'® and also in later works'® ' an isolated
bending was studied using an approximated kinetic energy expression with constant
reduced mass, equivalent of using rectilinear coordinates. Various types of anharmon-
ic potential functions, including double minimum types, were studied. Within this
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approach to large amplitude bendings it has been possible to quite accurately account
for vibration-rotation coupling effects as demonstrated in the recent papers by
Duckett, Robiette and Mills'®).

Aiming at a more detailed study of large amplitude potential, it is necessary to
use curvilinear coordinates and hence to use a coordinate-dependent reduced mass.
Large amplitude bending in quasilinear molecules was discussed by Shinkle and
Coon'®; including overall rotation by Hougen, Bunker and Johns!”. Using the
principles outlined in the latter paper, several types of large amplitude internal mo-
tions have been treated: Bendings in HCN and H,O (Bunker and Stone'®), Bunker
and Landsberglg)), in HCNO (Stone?®, Bunker et al.>") and in C 30, (Weber and
Ford®?), inversions in H,CO (Moule and Rao2%), in NH; and deuterated NH,
(Papousek et al.2®, Daniels et al.>*)) and in CH3NH2(KreglewskiZ6)). More special
internal motions have been discussed by Henderson and Ewing?” in relation to Van
der Waal molecules and by Istomin?® concerning a migration of the lithium atom
around the cyanide group in LiCN. Also a more elaborated model for ring puckering
has ag}))eared (Malloy et al.?%- 3%)) which was applied to cyclopentene, by Villarreal
etal.”'/

For the treatment of the internal rotation of a non-axially symmetric top an
angle-dependent reduced moment of inertia must be introduced. In this way nitro-
ethylene was studied by Bauder et al.>? and butadiene by Carreira®®. An angle-
dependent reduced moment of inertia has also been introduced in the study of
methy! group internal rotation to account for structural relaxation3% 3%,

When considering the results of such treatments it should be borne in mind that
there is a principal equivalence between applying the semirigid rotor model to non-
rigid molecules and applying the rigid rotor model to rigid molecules. In both cases
we must realize that the parameters of the model Hamiltonian are effective con-
stants for the particular state of the neglected small amplitude vibrations. For the
rigid molecules a rigorous method of calculating all the effective constants is provided
by the general formalism mentioned above, but this is not so for the nonrigid mole-
cules. The question has been discussed, however, in relation to specific problems.
Thus perturbation effects are incorporated in the internal rotation treatment by
Kirtman®®, in the treatment of H,0 by Hoy and Bunker®” and in the analysis of
centrifugal distortion and Coriolis coupling in NH; by Spirko et al.3®_In the present
paper general expressions of the effective constants will be given which are applicable
to molecules with large amplitude internal motions of any type.

Hamiltonians will only be discussed within the framework of the Born-Oppen-
heimer approximation. The fundamental problem is then to make a convenient
choice of generalized coordinates and momenta which ensures rapid convergence in
the expansion of the Hamiltonian. What remains after this is the specific work of
deriving which involves algebraic problems only. However, this work is so difficult
and tedious that any formalism which helps to simplify this part may be important
for future progress. For this reason Sect. 2 is devoted to the discussion of such a
formalism.

The basic principle of this is to derive the Hamiltonian form of the kinetic energy
directly from the transformation of the momenta. Hence, with linear Cartesian mo-
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menta, P;;i=1,2,...3 N, and generalized (including quasi-generalized) momenta,
w37 =1,2,... 3N, we shall set up the square matrix {s;;} of the transformation,

Pi=2ﬂjsji (1.1)
]

From this we obtain the transformed kinetic energy expression by substituting,

2T=.?m,-_1P,~2=§' Gi]"ﬂi ! (12)

introducing the general G-matrix by

Gjj' = z mitsii sy (1.3)
4

This applies to the quantum mechanical operators as well.

In Sect. 3 the Wilson-Howard operator is discussed as an example of application.
From this it appears that the Eckart conditions®® can be inferred from arguments
which are easily extended to Sayvetz conditions*® of any type. The general deriva-
tion of Hamiltonians of nonrigid molecules can then be presented in Sect. 4, and an
effective semirigid rotor Hamiltonian is formed by a Van Vleck transformation.
Finally Sect. 5 gives a complete example of a calculation on a specific molecule, Cj.

2 Derivation of Hamiltonians

The methods used in setting up the complete vibration-large amplitude motion-rota-
tion Hamiltonian are illustrated by several examples in the literature. Thus the case
of methyl group internal rotation was discussed by Kirtman®®, and his method was
applied by lijima and Tsuchiya®!) to acetaldehyde and by Fleming and Banwell*?
to molecules with free or slightly hindered internal rotation. The treatment was
extended by Quade*? to cover an asymmetric internal rotor as well. The effects of
a large amplitude bending or inversion have been extensively discussed**~ 49, and
particularly the work of Hougen, Bunker and J ohns!? on triatomic molecules has
formed the basis for several attempts to treat more complicated systems?3~26> 47 48),
In all these cases the Hamiltonian form of the kinetic energy was derived by pro-
cedures that are fundamentally similar to the original method for ordinary rigid mole-
cules used by Wilson and Howard" 2). A presentation of their treatment is now found
as an essential part of most textbooks on vibration-rotation spectroscopy49‘52) and
their notation is therefore assumed to be a widely accepted standard. For convenience
we adopt a similar notation here, and in particular we shall use vectors of our ordinary
three-dimensional space when discussing atomic positions, velocities and momenta.
The general features of the usual treatment will be summarized below, but first
we will discuss properties of the generalized coordinates which are fundamental for
any approach to the vibration-rotation Hamiltonian.
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2.1 Generalized Coordinates

By the Born-Oppenheimer adiabatic approximation we obtain a molecular model in
which the potential energy depends on structural variables of the nuclear framework
only, whereas it is independent of the position of the molecule in space. Correspond-
ingly it is convenient to use generalized coordinates which are divided into two
classes, the internal coordinates determining the relative positions of the NV atoms,

qr:k=1,2,...3N-6 (2.1a)

and six coordinates describing the rigid motions. It is necessary to distinguish between
translational and rotational coordinates and here we shall take

Ry,Ry,Rz,0,0,x (2.1b)

three position vector components for the center of mass and three Eulerian angles.
They specify the position of a translating and rotating molecular reference coordi-
nate system relative to a laboratory fixed system.

For a more explicit definition we introduce the following vectors of three-
dimensional space,

er; F=X, Y, Z, orthogonal unit vectors forming the basis of the Laboratory

System, LS.
€;;g =X,¥,z,orthogonal unit vectors forming the basis of the Molecular
System, MS. (2.2)
R, a=1,2,...N, position vectors of the atoms from the origin of LS.
To» position vector of atom from the origin of MS.
R, position vector of the center of mass from the origin of LS.

Vector components are indicated by adding subscripts F=X, Y, Zorg=x, y, z,
the labels of the LS- or MS-axes respectively, e.g.

Ry=ex R, ry, =€, 1,

The origin of the molecular system is chosen as the instantaneous center of mass.
From the vector definitions above it therefore follows that

R,=R+r, (2.3)
and

ZMare=0, of Zmyreg=0, g=x,32 2.4
43 [4 4

The orientation of molecular axes are given by the directional cosines, ®g,,
eg =3 er (I)Fg (25)
F
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which are trigonometric functions of the Eulerian angles, ¢, & and x (see App. I of
Ref. 2). The positions of the atoms relative to the MS-system, as given by the com-
ponents, 7o, are functions of the internal coordinates only.

These definitions allow us to express the relations between the generalized co-
ordinates and the 3 V Cartesian coordinates of an arbitrary configuration in the
following formal way

RO[F =RF+ z q’Fg(% 91 X) rag(‘ll» q2; .- Q3N~—6)
-4

(2.6)
a =1,2,...N, F=XY, Z, g=x,52

The dependence of g on the internal coordinates is not restricted by requirements
other than the center of mass conditions (2.4) and that Eq. (2.6) is invertible. In ex-
pressing the r, ¢ functions we may therefore also consider how the final Hamiltonian
is influenced, so that we obtain an operator of optimum suitability characterized by
e.g. rapid convergence of the perturbing terms. In this respect there are two partic-

ular concerns, the vibration-rotation interaction and the potential energy expansion.

The vibration-rotation interaction is the effect arising from coupling terms
between angular and vibrational momenta as well as from the dependence of the
rotational G-matrix elements (the p-tensor) on the internal coordinates. The impor-
tance of this effect may to some extent be reduced provided an appropriate axis
convention is used. The axis convention is the set of rules defining the orientation
of the molecular axes, eg, g = x, », z, relative to an arbitrary configuration as given
by the position vectors, R, a=1, 2, ... V. These rules can be expressed in three
relations between the r,, components, similar to the center of mass conditions (2.4).
We shall refer to these relations as “‘the axial constraints”, Usually Eckart-condi-
tions>® are imposed, but other possibilities may be considered.

Rapid convergence of the potential energy expansion depends on the type of
internal coordinates involved. Of particular importance here is whether we use curvi-
linear coordinates that are close to the true geometrical variables (e.g. the valence
coordinates comprising bond lengths and angles, etc.) or whether we use rectilinear
coordinates. We shall here define rectilinear coordinates as a subset, g1, 95, . . . qn;
n <3 N -6, of internal coordinates which enter only linearly in the expression for
the r,g components

Tag =dagt Z 2K gy 2.7)

It is assumed that a,,, as well as the partial derivatives, are functions of the remain-
ing curvilinear coordinates, ¢,;+1, gn+12, - - - §3N — ¢- But, they may be constants (e.g., if
n=3 N — 6) as happens in the Wilson-Howard treatment of ordinary rigid mole-
cules. )

A priori we expect, and experience has confirmed 6 53), that the most rapid
convergence is obtained if the potential energy is expanded using curvilinear coordi-
nates. However, this advantage is opposed by complications in deriving the kinetic
energy. In this respect the rectilinear coordinates are superior. Hoy, Mills and Strey®
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have discussed these problems in great detail in relation to the treatment of rigid
molecules. They show how the nonlinear transformation between rectilinear and
curvilinear coordinates can be worked out and employed in expressing the anhar-
monic force constants corresponding to rectilinear coordinates in terms of purely
geometrically defined force constants. It should be emphasized that only force con-
stants of the latter type are isotopically invariant. It is therefore an important ad-
vance that such constants can now be used in expressing the spectroscopic constants
of the standard treatment.

2.2 Kinetic Energy
The classical Equation for kinetic energy reads

1 1

T==ZmuR, Ry==Zm;'P,-P, (2.8)
& [+3

0
(S

in terms of the mass, m,, and linear velocity, Ry, or linear momentum, P,=myR,,
of each atom. Usually the rewriting starts by considering the time derivative of

Eq. (2.3) which gives the velocity vector for substitution in Eq. (2.8). The three
main steps of this standard method are discussed below for comparison with the
principles of the alternative procedure based on the momentum transformation.

2.2.1 Usual Treatment
The time derivative of Eq. (2.3) may be written

Ry =R+ Z(6greg t €5 Faq) (2.9)
g

By comparison with Eq. (2.6) it is seen that /o, depends on the internal velocities
exclusively, whereas €, depends on the rotational velocities. The time derivatives of
the Eulerian angles are replaced, however, by the components of the total angular
velocity vector, @, of the molecular system, defined by

b= wxe, (2.10)
Substituting this relation into Eq. (2.9) we obtain

L 3
R,=R+oxr,+Z2% 4 (2.11)
k 0qx

We shall emphasize that this result establishes a linear transformation of the
velocities, which can be expressed in matrix form. For this purpose we consider the
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components of Ra and introduce a common symbol, v;,i=1,2,...3 N, for the
generalized velocities

{Vl, Va,... v3N} = {RX’RY,RZ, Wy s Wys Wy, él! (iz, s q.3N—6} (212)
Further we rewrite

XTIy = f(egwg) X Ig = 8?(eg X Tg) W (2.13)

showing that we generally have

Ror=Ztior v (2.14)
1

The transformation coefficients, #; o, which obviously are functions of the gener-
alized coordinates, may be arranged in a square matrix, T, with columns labelled by
iand rows labelled by aF=1X,1Y,12Z,2X,2Y,...NZ

In the standard method we proceed by substituting Eq. (2.11) into Eq. (2.8).
Here we shall use the equivalent form Eq. (2.14) and obtain

1 s _ 1
T—Eaé‘maRaF_i g:K,']'V,' Vj (215)
where
K,','= Emat‘wpt,-,ap (2163)
aF

If the elements, Kj;, are arranged in a square matrix, K, and the masses in a diagonal
matrix, m, where every atomic mass appears three times, we may also obtain the ma-
trix relation

K=TmT (2.16b)
The next step is to introduce generalized and quasi-generalized momenta,

aT
”"=a_v,.=f~?K""v" (2.17)

Notice, that we can substitute the individual sums overj in Eq. (2.15) and get

2_ v (2.18)
H

which is an invariant form, valid for any set of generalized velocities, v;, with con-

jugated momenta, =;.
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Since the coordinate transformation Eq. (2.6) must be invertible this also holds
for the matrix of first derivatives, T, and it is possible to invert K as well. We can
therefore define the general G-matrix by

G=K (2.19)

and express the velocities in terms of the momenta by reversing the transformation
(Eq. (2.17)]

\7 E G,']' i (220)
/

This is finally substituted into Eq. (2.18) yielding the Hamiltonian form
=1ly¢ 2
_5 7 i]'ﬂ'i TI'I' ( 21)

We may conclude that the main steps are the formulation of the elements of T
as functions of the generalized coordinates, the multiplications of Eq. (2.16) and
finally the inversion of K. From a detailed study of these three steps 36,43) jt i
seen that the final inversion is particularly cumbersome, and that the resulting
expressions for the G;-elements may be extremely complicated.

Making a comparison with the alternative procedure sketched in Eqgs. (1.1)—(1.3),
we see that the first of the main steps has been replaced by an evaluation of sj;-¢le-
ments, the second step is equivalent and the third step, the inversion, has been
avoided. It therefore seems that the alternative is much more straightforward, but
this might of course be only an illusion, if the difficulties in evaluating s;;-elements
were comparable to those of inverting K. However, this is not so, as we shall see
below.

2.2.2 Momentum Transformation
In our study of the transformation between Cartesian and generalized momenta we
shall start out from the kinetic energy in its invariant form. Using generalized veloc-

ities and momenta Eq. (2.18) applies, while the corresponding expression in Cartesian
velocities, R .z, and momenta, P, g = myR, r, reads

1 .
T=— 2 PyrRur (2.22)
2 o, F
With a slightly changed notation we can write Eq. (1.1) in the form
Pop =28, oF W (2.23)
H

and substituting this as well as Eq. (2.14) into Eq. (2.22) we get
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1
T==xZ 5 ath, oF TiY;
ijo, F

which because of Eq. (2.18) requires that

Z i, oF Y,aF =i (2.24)
oF

Hence, the quantities, s; oz, are elements of a square matrix, S, inverse of T,
ST=TS=E (2.25)

Recollecting the discussion of the preceding paragraph one might at this point think
that the inversion of K has been replaced by another inversion, that of T, which
appears even more complicated, since T is unsymmetrical as opposed to K.
However, an essential advantage of the present method arises from the particular
fact that most elements of S can be obtained from fundamental properties without
considering T.

This is realized by reversing the velocity transformation [Eq. (2.14)],

vi= Z Si,aF'RaF (2.26)
aF

If v; is the time derivative of a generalized coordinate, v; = g, or Rp, then the corre-
sponding elements of S are defined as the partial derivatives of the coordinate with

respect to the Cartesian coordinates. In case of a translational velocity we therefore
immediately have

- aRF =My -
SFaF = Wap—ﬂ? Sprs M %ma (2.27)

and also for an internal geometrically defined coordinate we can evaluate the partial
derivatives,

2
Sk, aF = alg"F (2.28)
[+

as well-defined functions of the configuration.

We recognize in Eqs. (2.26) and (2.28) a close relation between the S-matrix
introduced here and the well-known B-matrix defined by Wilson, Decius and Cross!*®
It must be emphasized, however, that the partial derivatives in Eq. (2.28) should be
evaluated with respect to the LS-coordinates and for the instantaneous configuration.
They are therefore functions of the generalized coordinates in contrast to the con-
stant B-elements.

The rotational velocities, on the other hand, are defined on the basis of a con-
vention for the directions of the molecular axes within the ensemble of atoms. Ob-
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viously we are faced here with the quite different problem of determing a relation
between the rotational elements of S and this axis convention. Before this is dis-
cussed in detail we shall introduce a more convenient vector notation.

2.2.3 s- and t-Vectors

With the basis vectorsep, FF= X, Y, Z, and ¢4, g = x, », z, of LS and MS we generally
write

c=2epcp = Xegcy (2.29)
F 8

as the relation between a vector ¢ of three-dimensional space and its components.
This may be used in defining vectors corresponding to the F-labelling of S- and
T-elements,

= Eert aFs ta zeth aF (2.30)

These definitions are similar to Wilson’s®, but more general. The usual s-vectors,
here written s,~0, «» have special properties because they are formed from derivatives
evaluated in the equilibrium configuration. The constant B-elements in the treatment
of small amplitude vibrations are their components in a molecular system fixed to
this equilibrium configuration,

a
By ag = kozg arZ: 0 (2.31)

s-vectors as defined here in a more general sense were used by Meyer and Giinthard® 4),
also with the purpose of studying unrestricted internal motions. Parts of the present
development may be considered as an extension and further generalization of their
work.

t-Vectors were introduced by Polo”>’, with the different notation p;, = t?a,
however. Once more the zero indicates that the definition was restricted to ¢-vectors
of the equilibrium configuration.

55)

With the present definitions we can write the velocity transformations of
Eqs. (2.14) and (2.26) in vector form,

Ra=2t,~,av,~; a=1,2,...N
i

. (2.32)
\/] =ES,"&'R&; i=1,2,...3N
[e ]
or, specifying the three types of generalized velocities,
Ry=Z2tp o Rp+Ztg g+ Zty o G (2.33)
F g k
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Rr=Zspo Ry F=XY,Z
43

wWg=ZSga-Ry; g =X,2 (2.34)
&

de=Zska-Ry;, k=1,2,...3N-6
&

Since wg or R, will never appear in our treatment, confusion should not arise from
using the subscripts capital F, small g and k as the only way of characterizing how
the s- and ¢-vectors correspond to the translational, rotational or the vibrational co-
ordinates respectively.

The relation between the S- and T-matrices [Eq. (2.24)] takes the form

Zs,-.a ¢ tj,a = 5,1 (235)
&

and finally the general G-elements, {Eq. (1.3)] are written

Gy=Zmy's;a 550 (2.36)
o

The appearance of dot products in these expressions means that any G; is in-
dependent of our choice of coordinate system when evaluating s-vector components,
As the most directly obtained components we shall prefer those of the molecular
system.

2.2.3.1 General Formulae

For the following derivations it may be convenient to recollect a few equations from
the algebra of vectors in three-dimensional space:

a‘b=b-a

axb=-bxa

axb-c=bxcra=cxab (2.37)
ax(bxc)=b(a'c)—cf(a‘b)

(axb) (cxd)y=(a-c)b-d)—(a - d)b-c)

By comparing Eqs. (2.11), (2.13) and (2.33) it is seen that the three different
types of ¢-vectors are given by

tr o= ep (translations)

by o =€ XTIy (rotations) (2.38)
arg

t o= oo ibrati

K o PR (vibrations)
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From Egs. (2.27) and (2.28) we have

m .
SF o = Mﬁ er  (translations)

o (2.39)
Sk,a = Vo dx (vibrations)

All components of these vectors can in principle be explicitly written in terms of the
generalized coordinates, provided that all atomic coordinate functions,
Tag(q1, 92, - - - @3N _6), 2ppearing in Eq. (2.6) have been formulated. If the vibra-
tional coordinates are purely geometrically defined, however, the vibrational s-vectors
and their LS-components, s, are independent of the axis convention used in for-
mulating rag-functions, contrary, of course, to their MS-components, Sk, ag- APPly-
ing Eq. (2.36) we realize that the vibrational part of the G-matrix is also independent
of the axis convention under these special conditions.

Some fundamental relations involving the vibrational s-vectors are independent
of the type of internal coordinates. They follow from Eq. (2.35) which particularly
implies

2Sk,tx tra=0, Lsy- te =0 (2.40)
@ a

i.e. three translational and three rotational conditions on each set of vibrational
s-vectors (given by k). The Eq. (2.40) is rewritten, applying Eqs. (2.37) and (2.38),

O=ep - Tsg,
~ Sk,

0=2s; 4 (egx1,)=€ " 21, XS
ak,a (g a) 4 Pl Kk,

which shows that the Eq. (2.40) is equivalent to
Zsg,a=0, TraXxsko=0 (2.41)

These equations are similar to the conditions formulated by Malhiot and Ferigle®®

for s%-vectors of the equilibrium configuration. The general conditions were derived
earlier®® by explicitly considering the invariance of vibrational coordinates under
translations and rotations.

2.2.3.2 Axis Conventions and Rotational s-Vectors

The translational and rotational conditions [Eq. (2.41)] on vibrational s-vectors
arose as special cases of Eq. (2.35). This equation also implies similar conditions on
vibrational #-vectors,

ESF,Q ' tk,oz =0 (242)
s
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Zspa te,a=0 (2.43)

involving the translational and rotational s-vectors.

We shall see that these conditions are closely related to the translational and
rotational constraints defining the molecular coordinate system (Sect. 2.1). Further-
more, it turns out that a method for evaluating rotational s-vectors can be based on
this relationship. To clarify the principles, wc will first discuss the simpler case of
translational conditions.

Consider the center of mass conditions [Eq. (2.4)]. The first derivative of the
vanishing sums with respect to any generalized coordinate must vanish as well. With
an internal coordinate we therefore have

Smy e = (2.44)
@ T 0gg

However, an exactly equivalent relation arises from Eq. (2.42) when s- and ¢-vectors
are substituted using Eqgs. (2.38) and (2.39).

With this observation in mind it immediately seems reasonable that the condi-
tions imposed by the rotational s-vectors [Eq. (2.43)] are equivalent to conditions
implied by the convention for orienting the molecular axes.

Exploring the possibilities of this idea we consider the three rotational constraint
relations on the atomic coordinates that follow from the axis convention. It is assumed
that these relations can be cast in the form

CO xny .. IN:) =0 (2.45)

using three functions, labelled by g = x, y, z, which vanish for the allowed orienta-
tions of the molecular coordinate system. Examples of such functions are given
below for the conditions of a principal axis system and for the Eckart conditions®®,

As in the case of the center of mass conditions we can differentiate with respect
to a vibrational coordinate. Assuming that any C®) js a differentiable function of the
atomic coordinates we thus obtain

_ 3C(g)= 5 ac® gy’

0
0qr  ag'Oryg’ 0q

=T e tha (2.46)

Aiming at a relation resembling Eq. (2.43) we have here introduced a new set of
vectors given by

Coa=2eg
% drage (2.47)

g=xy,z a=1,2,...N

Because of their origin they may be called constraint vectors.
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We expect that Eqs. (2.43) and (2.46) are equivalent in the sense that they
impose equivalent conditions on the vibrational #-vectors. This indicates that we can
form the rotational s-vectors of an atom « as linear combinations of the constraint
vectors belonging to this atom,

Sp.0 = = Ngg’ gl ' (2.48)
4

Moreover, the coefficients nge’ must be common to all atoms so that only nine co-
efficients need to be evaluated.

To prove this and to determine the n-coefficients, it is sufficient to make sure
that all conditions of Eq. (2.35) hold with rotational s-vectors given by Eq. (2.48).
Since 8 is a unique inverse of T [Eq. (2.25)] only a single unique set of vectors will
pass this test.

First Eq. (2.43) holds because of Eq. (2.46).

Secondly we consider the relations involving rotational #-vectors,

= 5‘_’,’ Neg"Jg"s’ (2.49)

where we have introduced the quantities

Teg' = Zega tela (2:50)

These, as well as the n-coefficients, can be arranged in 3x3-matrices which obvious-
ly must be inverse of each other. Hence, Eq. (2.49) is only fulfilled with a set of
n-coefficients uniquely determined as elements forming the inverse of the matrix
of J-elements [Eq. (2.50)]. We have hereby established the method of determining
the n’s which remained up to this stage.

Finally we must control the relations involving the translational ¢-vectors. This
leads to the requirement [compare Eq. (2.41)]

T cga=0 (2.51)

which is usually fulfilled by inherent properties of the constraint relations [Eq. (2.45)].
However, should problems arise here we only need to add a simple term in order to
correct the constraint vectors

' m
Coa = Cga —ﬁ"“? Coo (2.52)

The correcting term affects neither Eq. (2.43) nor Eq. (2.50).
Equation (2.48) is perhaps the most important accomplishment of the present
paper. Its application in deriving the elements of G directly [Eq. (2.36)] offers an
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important advantage compared to the usual method, since it is sufficient to consider
the inversion of only a single small (3 x3) matrix, {Jgg'}.

In this connection it is particulary interesting to study the general form of the
pure rotational part of the G-matrix, usually referred to as the p-tensor. We find

Hgg" = Z Ngg'lg'g™Mg'g" (2.33)
g'g

with

Igg' = Z‘Im;l Coo o' (2.54)

The symbol [ is used for the latter product sum because this quantity may be an
inertial tensor element. This turns out to be the case in both examples discussed
below.

In terms of 3x 3-matrices, J, 51, I and g, formed from the elements above, the
relations are

p=qln, q=3" (2.55)

This factorization of the u-tensor has also been observed in the standard theory of
small amplitude motion®”’ 58) where I = I°, the inertial tensor of the equilibrium
configuration. Below it is shown how this particular result is following from the
Eckart conditions.

2.2.3.2.1 Principal Axis System (PAS). As a first example we shall derive rota-
tional s-vectors for the special case of a PAS, following the procedure outlined above
step by step.

First we must formulate the axis convention in accordance with Eq. (2.45).
We adopt (f, g, k) as symbols of cyclic permutations of (x, y, 2),

(eah)=(xy.2) oo (fgh=02x) or (fgh)=(zx) (2.56)

and write generally
cN= Z moragran =0 (2.57)

With f running over x, y and z all inertial products are constrained to zero, and con-
sequently the molecular axes are principal axes of the instantaneous tensor of inertia.

The constraint vectors are found from Eq. (2.47),

Cra = Myl€glan + €nlog) (2.58)

and used in Egs. (2.50) and (2.54) to express J- and I-elements,
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Jff=§cf,a'(efx o) = %:(cfxef) " Tq
=§ma(rig_rih)=1h —Ig (2.59)

Jrg = %‘,cﬁa X e Iy = {«mg(—rag"af) =0

Iff = f::ma(rgxg +r§h) =If
(2.60)
Ig = %?maragraf= 0

We have here employed Eq. (2.37) and the vector product rules following from
Eq. (2.56),

erxe;=ey, €, X = —€f (2.61)
Iy, I and I, denote the principal moments of inertia and from Eq. (2.60) we notice

that I of Eq. (2.55) is identical to the instantaneous principal tensor of inertia.

The J-matrix found in Eq. (2.59) is diagonal and is easily inverted, provided the
diagonal elements are nonvanishing, We thus obtain a diagonal 7-matrix as well, and
find s-vectors in agreement with Meyer and Giinthard5¥,

m
8o =1 _a] (egrah + ehrag) (2.62)
h—'g

and elements of the diagonal u-tensor,

I
e =  fre =0 2,63
‘ff (Ih Ig)z g ( )

These results seem quite simple, moreover, the method avoids the use of a refer-
ence configuration alleged to present a problem for molecules with large amplitude
internal motions** 5%, For these reasons the PAS has been used in deriving several
Hamiltonians of three atomic molecules!® 4> 46) However, it should be emphasized
that the PAS may imply very large vibration-rotation coupling terms in case of near
symmetric top molecules. This is due to almost vanishing denominators in Egs. (2.62)
as well as (2.63).

As an example consider a planar, near oblate symmetric top molecule. If small
amplitude vibrations are assumed, we may expect that the u-tensor elements are of
the order of the reciprocal principal moments of inertia. However, for a planar con-
figuration, with I, = I, + I, it is easily seen that the generally smallest element, u..,
may reach extreme values when evaluated in a PAS using Eq. (2.63). A numerical
example illustrates this:
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(s> Iy, Io) = (40, 60, 100) uA?
corresponds to

(Mzas Bpbs Hee) = (4%" gl(‘)’ ;1“) u A2

Hence, a very large energy contribution from u,.P2 must be counterbalanced by
coupling terms of the type Gy .piP. between vibrational and angular momenta, p;,
and P,.

The assertion that the PAS is convenient for separating rotations and vibrations
can be rejected, therefore. We shall sec below (Sect. 4) that the small amplitude vibra-
tions are always treated most simply using Eckart conditions, whereas large amplitude
motions must be specially taken care of. Principal inertial axes may only be relevant
in relation to the reference structure of the Eckart conditions.

2.2.3.2.2 Eckart System (ES). It is well-known how the axis convention
proposed by Eckart®® enters the standard vibration-rotation theory® #°~52), In the
alternative method of deriving the kinetic energy the Eckart conditions are used in
formulating rotational s-vectors. For this purpose we may proceed exactly as in the
PAS example above.

The molecular coordinate system of a rigid molecule is defined as the principal
axis system of the equilibrium configuration which is taken as as reference. Thus we
write

Iy =3, td, (2.64)
where the set of vectors, a,; « =1, 2, ... N, follows from the orientation of the
equilibrium configuration in space, and d,, is a small displacement vector. The com-
ponents, a,,, are constants, whereas the displacement vector components, d,, g,
depend on the internal coordinates. The position of the reference and the instan-
taneous configurations relative to each other is defined uniquely by the Eckart con-
ditions, ‘

Emara = Ema d,=0 (2.65)
Emaaaxrq=§maaaxda=0 (2.66)
Rewritten in terms of vector components Eq. (2.65) gives the three center of mass

conditions, while Eq. (2.66) gives the three rotational constraints in a form similar
to Eq. (2.45),

c® = eg %maaa x1,=0; g=x,»,2 2.67)
Using this in Eq. (2.47) we then find the constraint vectors,

Cg,o = Mg € X Ay (2.68)
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The MS-components of these constraint vectors are constants,

Cg,af = Malan, Cgag =0, Cgan = —Malas (2.69)

and consequently the elements of I [Eq. (2.54)] are constants as well. A closer exam-
ination reveals that I is simply the inertial tensor of the equilibrium configuration,
which we shall assume to be diagonal,

Iog' = [&?g' = EJ mg(eg x ay) - (&' x ag) (2.70)
or

= 2 2 — 70
Igg = Ema(aaf-*' agn) = Ig

(2.71)
Igp = —%3 Molorlag =0

Also the elements of J, [Eq. (2.50)], are related to the inertial tensor. Using
Eq. (2.38) we thus obtain

Jgg' = %ma(eg X ay) " (&g X 1y) (2.72)

which may be rewritten introducing Eq. (2.64)

Jogr =1g+ Ema (eg X 2g) * (&g x dg) (2.73)

This important equation deserves several comments. Some will be postponed to sub-
sequent sections, but here we shall first of all notice that J = I° in the equilibrium
configuration and that the elements of J vary linearly with the atomic displacements.
This offers a great advantage when expanding the u-tensor elements (Sect. 3.2). Fur-
thermore, we can easily show that J is a symmetric tensor, although this is not easily
recognized from equation (2.73). We use the relations (2.37) in rewriting differences
between the off-diagonal elements:

Jgr—Jrg= %ma(—aafdag +aggday) = — %ma ep - (ayxdy)=0 2.74)

which vanishes because of equation (2.66).
It is also worth mentioning that J is intermediate between I° and the instanta-
neous tensor of inertia I*. Approximately it holds that

Iz % (10 +1%) (2.75)

in accordance with the fact that

Ogg' _ 1030%,

2.76
ddygn  23dyg” (2.76)
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2.3 Quantum Mechanical Aspects

Until this stage all discussions have been based on classical mechanics. However, in
the present formulation the translation to quantum mechanics is quite straightfor-
ward, since quantum momenta can be defined from the momentum transformation
with only slight modifications. Furthermore, the resulting expressions are general in
the sense that they can be derived without considering any particular representation
of the momenta as differential operators. They apply equally well in a wave mechan-
ical context.

2.3.1 Quantum Momenta

In quantum mechanics the momentum transformation [Eq. (2.23)] and its inverse
should read

—

Pyp= 7 ? (Si,aF M + TS; oF)
1
2

(2.77)

mo= zl:v(ti,aFPaF +Pch ti, aF)
@

This holds generally, even in cases where some of the generalized momenta, m;, are
“quasi-momenta”sg), i.e. momenta not conjugated to generalized coordinates, e.g.
the angular momenta.

Generalized momentum operators as defined by Eq. (2.77) can be used in wave
mechanical as well as in matrix mechanical formulations. It ensures that the operators
are Hermitian, and that momenta, m;, conjugated to generalized coordinates, g;, fulfil
commutation relations similar to the canonical relations of Cartesian coordinates and
momenta,

[ﬂi: QJ] =—i h&,‘]', [71',', 1T]] =0, [q;', q]] = 0 (278)

2.3.2 Quantum Kinetic Energy
The classical kinetic energy expression in terms of Cartesian momenta,

1

T== X m;' P (2.79)
oF

v

can be directly transferred to quantum mechanics. The quantum kinetic energy
expressed by generalized momenta and coordinates may therefore be similarly
derived applying the momentum transformation [Eq. (2.77)]. The equation may be
rewritten in two alternative forms,

117



G. O. S¢rensen

1
Pyr = ? (ﬂisi,ap - E[Tri, si,aF])

) (2.80)
= 2 (si,aF' mt —[71'1, S, ap])
i 2
Substitution into Eq. (2.79) thus yields
T=% E mi Gll m+ U (2.81)
ij

which is almost identical to the classical expression [Eq. (2.21)]. It must be empha-
sized, however, that the sequence of operators in the sum is crucial and that a mass
dependent term, U, contributes to the potential energy,

1 _ 1
U==Z mg'(s;arlm[m, si,ozF]]"'E[ﬂiv 8i,ar |75 Sj,aF]) (2.82)

4 jj,0F
For rigid molecules this expression of U reduces in agreement with the result ob-
tained by Watson’® 5% from another starting point, namely Podolsky’s equation®®.
In some cases, however, Eq. (2.82) may offer the advantage that it also applies when
quasi-momenta are used.

The expression of U may be rewritten using [n;, ex] = 0 and taking the general
properties of translational and angular momenta into account. We can separate the
set of momenta, m;, into three types just as the velocities v; were separated [Eq.(2.12)].

{m, My, mant={ Zx, Fv, P2.Px Py, PyiD1,P2s .. Pan_6} (2.83)

where 7 is a translational, P, is a rotational and p, is a vibrational momentum.
We also generally have the commutation relations,

[ ZF:87,6]=0, [Pg,sial=—ihe;xs;, (2.84)

where the last equation follows from the commutation relations of angular momenta
with directional cosines®?. Therefore all terms involving translations will vanish and
the remaining may conveniently be divided into pure rotational, pure vibrational and
mixed contributions.

Thus, in the rotational term {, j of Eq. (2.82) run over x, y and z. Using Eq. (2.84)
it is reduced to

2
U, I Z my'(eg x8g,0) (€gx g ) (2.85)
8 agg’ ' ’

The vibration-rotation term similarly becomes

U, -ih Z mg'(eg x sg,a) " [Pi> Sg.6l (2.86)
4 ogk
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whereas the pure vibrational term cannot be reduced without special assumptions as
to the nature of the vibrational coordinates,

1 - 1

Us=5 Z mg' (ko [Pk, [Py 8,011+ 5 [Pio Sk, o] (P87 Sk,0D) (2.87)
4 akk’ 2

Alternatively,
1 -

Us =§k§, [Pk, [Px> Giae 11 = Z [ Prs Skva] * (2175 Sk, o] mg') (2.88)

3 Hamiltonian of Rigid Molecules

In this section we shall see how the principles outlined above are applied to evaluate
the Wilson-Howard Hamiltonian!* 2, However, most of the derivation may be worked
out without explicitly assuming that rectilinear internal coordinates are used. We
shall take advantage of this in that we will also examine the general consequences
of the Eckart conditions as opposed to the special properties connected with the
introduction of linearized coordinates. As an intermediate result we will therefore
obtain a Hamiltonian which is exactly equivalent to the one which Quade derived
for the case of geometrically defined curvilinear coordinates”.

For the present linear molecules are excluded from the treatment. Their special

problems are discussed at the end of this section.

3.1 Coordinate Transformations

The first step is to formulate the relationship between Cartesian displacement co-
ordinates, dqg, and internal displacement coordinates, gx; k= 1,2,...3 N—-6. For
rigid molecules undergoing small amplitude vibrations we can assume that an ex-
pansion from the equilibrium configuration,

2
d%,+1 z _Yax

g
=3 1
e 0% " 2 yirgg agdrag

dogdyrg T. .. 3.1
- ey agda'g (3.1

0

will converge rapidly. The inverse transformation reads

1 2’ Tag

G+ - X

dog =2 eg 1y 8rag
0 2 kK 0qi Oqy

I 3.2
% 32 qx Ak (3.2)

0

By the definitions of Eqs. (2.38)—(2.39) the partial derivatives of these two equations
are the same as those appearing in expansions of 5- and #-vector components,
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04k 32llk
— dyigt +... 3.3
k,og arag 0 og aragaralg' 0 a'g ( )
0rog Bzrag
. = ‘Ik’ +... (34)
"3 |0 k 0axdqr |o

Alternatively, the coordinate transformations may therefore be written

1 aska
=380 dyt= T %K doygdyig + ... 3.5
qx o kog ag ™ 5 wargg’ a’a'g' o ag Yo'y (3.5)
1 8tka
d, ,=%19 +- 3 2% L 3.6
g = Llhagdi T g 2 mE | ki (3.6)

In a general treatment allowing for curvilinear valence coordinates we must eval-
uate derivatives of bond lengths and angles for use in Eq. (3.1). Aiming at a Hamil-
tonian correct to the second order up to third order derivatives are required®. Next
the derivatives of Eq. (3.2) must be found by interverting Eq. (3.1) with the dis-
placements subjects to Eckart’s conditions (here second order suffices). The com-
plexity of solving this problem is an almost insuperable barrier to the practical use
of curvilinear coordinates®®. Rectilinear coordinates are therefore usually intro-
duced as discussed previously (Sect. 2.1).

3.1.1 Rectilinear Coordinates

These may be related to and named as valence coordinates if the same first order
derivatives, sg.ag and t,g, ag» apply to both classes of coordinates. A linearized coordi-
nate is defined from its counterpart among the valence coordinates by truncating the
expansions [Egs. (3.4) and (3.6)] after the first term. This means that

dy = %tg,an (3.7

But, it should immediately be emphasized that it is not allowed to treat the expan-
sions [Eqgs. (3.3) and (3.5)] in a similar way. This is due to the fact that the vibra-
tional s-vectors are subject to the generalized Malhiot-Ferigle conditions [Eq. (2.41)].
The origin of these relations was Eq. (2.40) and their implications are most easily
studied from this starting point. Hence, we find, using Eqs. (2.38), (2.64), (3.7) and

tg'a =eg X 4, (3.8)

that

%Slg,a’tg,a=§sgck'(tg,a+eg)<da) (39)
39

=2 (eg X tl?',oz) ’ Sg,a dx’
ak’
This sum is generally nonvanishing.
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The present stage is suitable for the introduction of the Coriolis coupling con-
stants, {§,' %3 ©¥. This may seem curious, but it is in accordance with the fact that
these constants are appropriate only when rectilinear coordinates are involved. This

will be further discussed below in relation to the vibration-rotation part of the
G-matrix. Here it is convenient to give a general definition,

$he=Zeg (tRaxska) (3.10)

which applies to any set of rectilinear coordinates (not normal coordinates only).
Equation (3.10) is used in rewritting Eq. (3.9),

%252,& ‘g = E qr fi'k (3.11)

and finally we realize that vibrational s-vectors, which fulfil equation (2.40) and all
other conditions included in equation (2.35), may be constructed by adding small
contributions from rotational s-vectors,

Sk,a = Sp.o —g%, qx ok Sea (3.12)

3.2 u-Tensor

Once again returning to a general set of vibrational coordinates we shall now study
the pure rotational part of the kinetic energy, given by

1
Tl‘Ot:_z_ E,“gg'Png' (313)
88

where the p-elements can be expaned on the basis of Eqs. (2.55), (2.70)—(2.73) and
(3.6). Defining

ro=3-1°

S ggr = %ma (eg x 85) * (eg x dy) (3.14)
we may express f§ by

n= I p0 (-1 @), p = () (3.15)
yielding,

H= T (n+ DR (TR (3.16)
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Truncated after the second order term we have

u=p® —2p07 p® +3u° 3 05 u® 3.17)
which compares with the expansion given by Watson’®.

Partial derivatives of g with respect to internal coordinates of any type are
then obtained by first writing Eq. (3.6) in vector form

1
=zt +— 20, 3.18
d, P ke Ak 2 i kk' a9k Ak ( )
with
9%r
0, =—2 (3.19)
kK dqpoqr o

Further we obtain the derivatives of /g,

Jg) = Ema(eg x ag) - (eg x tg,a)

(3.20)
I = T mo(eg x ag) - (e X isa)
which finally are substituted into Eq. (3.17) giving
Heg =—2ug ) o Mo
SERY= —2 Qe JUED 2. (3.21)

3 5,0 () (kD) 4, k) K
i 5,:, Ig" (Hggh Hgrng: + Hgg Hgrig:

Terms in Jg," Y vanish if linearized coordinates are assumed.

Notice, that Jg;.’") is not related in any simple way to second derivatives of the
instantaneous tensor of inertia, I*,

2
iw | - 275K+
aquQk’ o (3.22)

%:ma {(eg X tg,a) ' (eg’ 2 tl?:’,a) * (eg X tl(:',a) ’ (eg’ X tI(«):,oat)]’
contrary to the simple relationship for the first derivatives,

gy _ 288) = 9 Jik 2
= = J( ,) 3. 3
94, k 14 (3:23)
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This impedes a detailed comparison with the expansion given by Quade”. The ex-
pressions above seem simpler, however, indicating that the present method is more
convenient. Moreover, some simplifying relations for planar molecules are easily
derived in this connection.

3.2.1 Planar Molecules

Labelling the MS-axes by a4, b, ¢ according to increasing moments of inertia we can
assume that all c-coordinates of the reference configuration are zero, a4, . = 0;
a=1,2...N From Eq. (3.14) it then follows that

Jac=Jea =Ibc=Jep =0 (3.24)
and we see that J is partitioned into a 2 x 2 diagonal block and a single diagonal

element, /... This block form is preserved by inversion and by multiplications in
Eq. (2.55), so we conclude that g has this block form as well,

Mae = Heg = Mpe =Hep =0 (3.25)

Notice, that this was derived without any assumptions as to type of internal coordi-
nates, curvi- or rectilinear.
From Eq. (3.14) we may also deduce the general relation

Jaa * b =Jce (3.26)
similar to the relation for moments of inertia of a planar configuration. However,
Eq. (3.26) applies to an arbitrary configuration as long as the reference is planar, in
accordance with the fact that all J-elements are independent of atomic displace-

ments in the direction of the c-axis,

o, :
& -0 3.27
0dye (3.27)

The importance of these results in relation to centrifugal distortion is well under-
stood®®),

3.3 Coriolis Coupling

The part of the kinetic energy involving both vibrational and angular momenta is

Tuivrot = 2 Gox Pgps g=x,y,2;k=1,2.. .3N-6 (3.28)
gk

where we obtain the G-elements using Eqs. (2.36), (2.48) and (2.68),
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Ggk = a?} N (€ X 8g) * S o (3.29)

These elements vanish in the equilibrium configuration. In order to prove this, we
may substitute the cross products, [Eq. (3.8)], giving

Ggk = 2 Mgy tg',a Sk (3.30)
og

In the equilibrium configuration all s o = s,%a and Eq. (2.40) applies. Alternatively
we may substitute a, by ro — d,, [Eq. (2.64)], and using Eqs. (2.38) and (2.40) we
obtain

ng =— E’ Ngg' (eg' X da) Sk, o (331)
og

which vanish when all displacements are zero, d, = 0.

The Eckart conditions play an important role in this connection. We shall dis-
cuss this in more detail below, since the arguments presented apply equally well to
the treatment of nonrigid molecules. Hence, to study the basis of introducing Eckart
conditions, let us for a moment go back to an earlier stage where axis conventions
were not yet formulated. We recapitulate that we are looking for the conditions
required in order that the atomic position coordinates, rg, can be given as unique
functions of 3 V-6 internal coordinates, or equivalently stated, in order that the
expansion [Eq. (3.6)] can be determined as a unique inverse of Eq. (3.5).

Aiming at a separate treatment of vibration and rotation it is obvious that we
must look for such axis orientations where the Coriolis coupling term [Eq. (3.28)]
either vanishes or at least can be treated as a small perturbation. With Eq. (2.48) we
can generally write

Gok = erngg:mglcgv,a Sk (3.32)
ag

Recollecting Eq. (2.40) it is natural to check if axial constraints could be so formulated
that differentiation results in equations of the form used in Eq. (2.46) with constraint
vectors given by

Cg a = Mgl (3.33)

Were this possible, we would always have Gz = 0. We therefore consider the reverse
process, the integration of Eq. (2.46), and ask whether it is possible to solve the three
integral equations,

or,
le:ccg,a-—-—aqa qu=f§cg,a'dra=0,g=x,y,z (3.34)
« k

With constraint vectors given by Eq. (3.33) the answer is n0°%. We cannot totally
eliminate Coriolis coupling, but, on the other hand, this is not too serious, since
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vibration-rotation coupling is unavoidable anyway because of the dependence of
u-elements on vibrational coordinates.

However, with constraint vectors that are independent of the internal coordi-
nates an integration can be performed. Furthermore, using

Coa = Mo tga (3.35)
we usually achieve orders of magnitude for the two sources of vibration-rotation
coupling which are equal and minimal. Integration [Eq. (3.34)] yields the constraint
relations,

ZMatga 1a=0,8=x%7,2 (3.36)

which are the Eckart conditions.

When linearized coordinates are considered, an additional reason arises for
requiring structurally independent constraint vectors. This was also noticed by
Eckart3?), but, in the present context, it is most easily understood by considering
that Eq. (2.46) requires constant constraint vector components, cg o', since the
t-vector components, £z o5 = tg,ag, are constants. Hence, linearized internal coordina-
tes are incompatible with constraint vectors like those of the PAS (Sect. 2.2.3.2.1).

Introducing the particular s-vectors of linearized coordinates [Eq. (3.12)] we
obtain a special form of G, [Eq. (3.30)],

Ggr = - Ek Heg'di flf:k (3.37)
8

where Egs. (3.35), (2.48) and (2.36) were employed in rewriting. The appearance
of p-elements in this equation makes it appropriate to introduce the vibrational
angular momenta,

fig = k%, Qi S P (3.38)

so that the coupling term [Eq. (3.28)] becomes the familiar

Tiibrot = — z'“gg’ z ﬁg' (3.39)
88

But it is emphasized that this is another particular consequence of using rectilinear
coordinates.

In the general expressions of Eqs. (3.30) or (3.31), there are no reasons for intro-
ducing u- or {-functions. When expanding, however, the leading term in first power
of the coordinates can be written with coefficients,

kY -
Go )= —tigg Sy (3.40)

applicable when curvi- as well as rectilinear coordinates are used. Therefore, the class of
coordinates is unimportant for the Coriolis coupling effects as long as first order
perturbation terms are concerned.
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3.4 Vibrational G-Matrix
The vibrational elements are given by

Gy = %m&—l Sk, " Sk’ (3.41)

which can be expanded using Eq. (3.3). In the special case of linearized coordinates
Eq. (3.12) applies.

If for a given molecule we consider sets of curvilinear and rectilinear coordinates
that are interrelated in the sense discussed in Sect. 3.1.1, we will obtain identical
leading terms in corresponding expansions, irrespective of the class of coordinates.
Since the harmonic part of the potential function is also independent of whether we
use curvi- or rectilinear coordinates6), we can use the same linear transformation to
normal coordinates as well. In both cases the transformation matrix, L, is determined
by the set of equations,

LLT=G°% LTFL=A (3.42)

appearing in the well-known GF-method?®.

From the L-matrix and its inverse it is possible to calculate s- and ¢-vectors cor-
responding to normal coordinates, @y, O, . . . Q35 6. All previously derived for-
mulae apply equally well to these transformed vectors. But, when normal coordi-
nates are considered, the zeroth order vibrational G-matrix becomes a unit matrix
and the vectors present some special properties,

0 -y, 10 .0 _
Giew = Z Mg ko " S0 = Oki’

%ma tg,a : tg',oz =Sk (343)
Consideﬁng Eq. (2.35) we find the relation
Sg,oz = matg, o (3.44)
which further suggests the introduction of l-vectors®™,
Sta=md? lgas tha=mg'? I, (3.45)
‘fx’" Lo lira = Oan (3.46)

3.5 Wilson-Howard Hamiltonian

Assuming linearized normal coordinates we can substitute Eq. (3.45) into previously
derived equations. Thus Eq. (3.10) yields
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fik’ = E €’ (lk,oz xlgia) = —i’,"}k (3.47)

in agreement with the original definitions®> %),

The Hamiltonian form of the kinetic energy is most easily obtained by con-
sidering the momentum transformation directly,

Po=Zspo st ZsgaPpt Zsiabi (3.48)
F g k

which is rewritten employing Egs. (3.12) and (3.38),

Pa=ESF,a: ‘j;?'*'zsg,a(Pg_ﬁg)""%Sg,apk (3.49)
4

P, r is then substituted in the basic kinetic energy {Eq. (2.79)], recollecting Egs.
(2.36), (2.39) and (3.45) and immediately we obtain

1«
2T=2 % TR+ 5 teg Pe— fig)(Py — frg) * %p}, (3.50)

in agreement with Wilson and Howard!).

The only functions for which expansions must be considered are p,,+ and the
potential energy. We recall that y is given by Eqgs. (3.16) or (3.17), and that J"-ele-
ments are linear in the rectilinear normal coordinates, with

T =1 a0 =T mif? (e x20) " (e x 1k 3.51)

The transformation to a quantum mechanical Hamilton operator (Sect. 2.3) has
been discussed by Watson®®). The operator resulting from the kinetic energy in Eq.
(3.50), omitting the translational energy, is given by

1 1
H=§gzg;ﬂ (Pg— fog) ligg (Py —-ﬁgv)+§§p%+U+V (3.52)
with
v--lwyz
=5 B S (3.53)

3.6 Linear Molecules

The method of treating nonlinear molecules is applicable to linear molecules as well
with only a few special properties to consider.

127



G. O. S¢rensen

The particular problems of linear molecules are related to the choice of gener-
alized coordinates. It is usual to define 3 N-5 internal coordinates, whereas there
seems to be some obscurity in the literature as to the precise definition of the molec-
ular coordinate system and the rotational coordinates. A recent discussion by Watson®?)
still leaves a choice open which seems unnecessary in the present context. A unique defi-
nition of the molecular system involving only two polar angles is suggested below.

A quite different problem connected with the use of 3 N—5 internal coordinates
and only two rotational coordinates should also be emphasized here. This choice of
generalized coordinates requires that rectilinear coordinates must be used in all cases
except for three-atom molecules. In general curvilinear coordinates can only be intro-
duced by the special method presented in Sect. 4, using 3 N—6 vibrational and the
three usual Euler angles, whereas the treatment suggested by Quade” is applicable
to three-atom molecules only. The reason for this special restriction is that the planes
formed by bending a linear molecule will not in general contain the molecular z-axis
as determined from the Eckart conditions. Therefore we cannot define true valence
coordinates in pairs

A ;1 =sin p; cos x;, A j, =sin p; sin X; (3.54)

where p; is the angle between two adjacent bonds and x; should (but cannot) define
the orientation of the normal to the plane of the bonds® 7,

In the following we therefore consider only a treatment based on rectilinear
internal coordinates, of which N—1 are related to the stretchings and 2 N—4 are
related in pairs to angle bendings. These coordinates determine the positions of
atoms relative to a molecular coordinate system which can be rotated in space only
by varying two of the Euler angles, ¢ and 8, whereas the third is kept constant,

x = 0 (see Ref. 2, App. I). Thus the y-axis of MS always stays within the X'Y-plane
of LS, i.e. @z, = 0.

The z-axis is chosen as the axis of the linear reference configuration
(i.e.dqx = a4y, =0, all o) and Eq. (2.66) gives rise to only two non-trivial con-
straints on the displacements,

Zmgley xag) da=0 or Zmaay, dyy =0
[ [

(3.55)
}a:ma (ey xay) dy =0 or Zalma Aoz dox =0

Vectors e, x a, vanish for all . However, Eq. (3.55) is sufficient to determine the
orientation of the z-axis and therefore the corresponding polar angles, p and 8, can
be determined as well.

The coordinate transformation can now be written in a form similar to Eq. (2.6),

Ror=Rp+t Eq)Fg(%g) (aozg + dag(qls 42, --q3N—s)) (3.56)

But the velocity transformation cannot be evaluated by the procedure used in
Sect. 2.2.1. An equation similag to Eq. (2.33) can be obtained, however, if we use
the rotational velocities ¢ and 6,
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Rop = EtF',aFRF' +lyar@ttear 0t ZJ 10 oF Gk (3.57)

The t-vectors of ¢ and 8 are given in analogy with the #-vectors of Eq. (2.38) by
tra=ezXry, tgg=€y X1y = ty’a (3.58)

The usual angular velocities, w,, w, and w;, are inconvenient since the redundancy
among them demands special precaution559). However, we can circumvent this prob-
lem completely by considering the momentum transformation.

From Eq. (3.57) it immediately follows that

9}=§PC,F; F=XY2Z
P, =§tw,a'Pau p0=§t0,a'Pa (3.59)
Pi =§t2,a-1>a; =1,2,...3N=5

But from the basic definition of angular momentum we also have
Pg=§eg-(raxPa)=§tg,a-Pa;g=x,y,z (3.60)

employing rotational s-vectors from Eq. (2.38) in rewriting. The basic condition on
a set of generalized quasi momenta is that the momentum transformation must be in-
vertible. In Eq. (3.59) we can therefore replace p,,and py by two of the angular mo-
menta of Eq. (3.60) provided that the s-vectors of an inverse transformation can be
determined. This is the case if we use P, and 7, giving

Po=Zspo Frtsgaly t5,0Py + 5k Dk (3.61)
F k

The two sets of rotational s-vectors are easily expressed using the corresponding con-
straint vectors of the Eckart conditions as described in Sect. 2.2.3.2.2,

Sg. =N Mg € XAy, =X, ¥ (3.62)
where the same 7 applies to both axes,

7?_1 =70+ % Mooz oz (3.63)
Introducing normal coordinates and /-vectors [Eq. (3.45)], we also have
S, = S%oz - kz O Ck'k Sx,a T fjl:’k Sy,cx) (3.64)

correéponding to Eq. (3.12) invoking Eq. (3.47).
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Thus the remaining derivation can proceed exactly as for nonlinear molecules
(Sect. 3.5), and the vibration-rotation part of the kinetic energy finally becomes

2 Tvibrot = M{(Px — fix)? +(Py — fe3)?}+ %pz (3.65)
with
u=1%? (3.66)

and with vibrational angular momenta given by Eq. (3.38).

The angular momenta of Eq. (3.60) behave quite differently from those referring
to a molecular coordinate system with three rotational degrees of freedom. In partic-
ular this relates to the commutation relations of the corresponding quantum mechan-
ical operators. This is briefly discussed below in connection with the evaluation of
the quantum kinetic energy.

By substituting P, [Eq. (3.61)] into the expressions of p,, pg and P, [Egs.
(3.59)—3.60)] one obtains the relations

Py=—cscOp,tcoths,

Py =pg (3.67)
P, =/lz

which apply to quantum momenta as well. Using Eq. (2.78) and [pg, f(q)] =

~ihdf(q)/dq; q=¢, 06 or @, the commutation relations between the angular
momenta are evaluated as

[anlezv [Py’Pz]=O

) (3.68)
[Py, Py] = —ih(cot § Py + P,)
and commutators involving directional cosines become
[Py, Prx]=ihcot 0 O, [Py, Ppy]=ihdp,
[Py, <I:'Fy] = —ih(cot § ®ry + Pr;), [Pya cI)Fy] =0, [P, d)Fg] =0 (3.69)
[Px, Pr:]= ihq)Fy: [Py, Pr.]= —ihdg,

Because of these anomalous commutation relations the transformation to space-
fixed angular momentum components takes a special form. An equation similar to
Eq. (2.80) yields

Pr= E@ngg +12—h cot 8 gy, = §P3<I>Fg — fgl cot 6 &gy, (3.70)

and the square of the total angular momentum is found accordingly,
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P2=p2+ (Py—’z—hcote) (Py+%cot6) + P2
(3.71)
=P§+P§+Pf—%h2(l+csc20)

Equation (3.69) is also important in connection with the U-function [Eq. (2.82}].
For linear molecules U is quite easily obtained, since all commutators involving
vibrational momenta cancel. Thus from special properties of l-vectors and Coriolis
coupling constants®” it follows that

Z th af® =0 (3.72)

from which it follows that

[ £g,1]1=0, %[pk,sk,a]=0

(3.73)
% Sko ' [Pk Sg,a] =0

From Eq. (3.69) we then find that the only commutator of the type [m;, 5; o] cOn-
tributing to U is

[Py, Sx.aF] =ihcot esy,aF (3.74)
and U is finally obtained as

1

U=— 3 W2 (1 +csclo) (3.75)

Adding this to the operator given by Eq. (3.65) and comparing it with Eq. (3.71),
it can be seen that the kinetic energy operator can be written

1
Tvib-rot=5 u{P*—Pr+ pl+ ﬁ; ~Py fox = foxPx =Py for, — Sy Py}

+1zp (3.76)
2k
or in a form corresponding to Watson’s 59)
1 | 2 ih ih |
Tvib-rot=5“ I(Px— fx)t P, - ﬁy——j—COte Py—ﬁy'i‘—z- cot 8 [
+Lzp2 (3.77)
2k
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This rather extended discussion of the theory of a very special type of rigid
molecule has been presented here, since it well illustrates the advantages obtained
by a reformulation of the basic principles in terms of the momentum transformation.
It applies to classical as well as quantum mechanical considerations. Furthermore,
these examples, applying the method to wellknown molecular models, should make
it easier to follow the derivations of the following section.

4 Hamiltonian of Nonrigid Molecules

For ordinary molecules the rigid rotor model works quite succussfully in explaining
pure rotation spectra as well as the rotational fine structure obtained in other fields
of spectroscopy. The vibrational perturbations appear mostly in the change of effec-
tive rotational constants with the vibrational state and in the centrifugal distortion
effects. Much useful information can be found from these perturbation effects, how-
ever®,

Nonrigid molecules have been studied similarly using semirigid rotor models,
where internal motions with small amplitudes are ignored as in the rigid rotor®®,
Most efforts have been devoted to problems involving only one large amplitude
motion. Thus methods of treating a single internal rotor, a single bending, inversion
or a ring puckering are now discussed in several textbooks®® 7). The results of such
treatments are similar to the rigid rotor approach in that one obtains effective con-
stants, including effective potential constants and reduced mass for the internal
motion. But in general we still meet great difficulties when attempts are made to inter-
pret these effective constants in relation to the fundamental structural and potential
constants of the molecule.

As a step towards a more generally applicable theory this section will be con-
cerned with generalizing the treatment of Sect. 3 to molecules where a single coor-
dinate requires a special treatment. The result obtained can in principle be extended
to cases with several special coordinates without difficulty.

First the Hamiltonian is derived and then an effective rotation — large amplitude
motion operator is evaluated by a perturbation treatment similar to the treatment
used for the rigid molecules.

4.1 Internal Coordinates

Recollecting the discussion of Eq. (2.7) we shall consider 3 N—7 rectilinear displace-
ment coordinates, q;; k=1, 2, ... 3 N-7, whereas the remaining internal coordinate,
p, is specially treated by defining the reference configuration, given by the coordi-
nates a,g, as well as the 7-vector components, t,?, ag» s appropriate functions of p.

We write explicitly

Tog =aag(p) + %tlg,ag(p) qx (4.1
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The coordinates, a,4(p), are the functions we would use in forming the Hamil-
tonian for the semirigid rotor model. Actually this well-known treatment is an im-
portant intermediate, and the general features must therefore be recapitulated.

4.2 Semirigid Rotor Approach
Neglecting all the small amplitude motions Eq. (2.11) yields
R.=R+awxa, +tJ,p (4.2)

where we have defined the vector function,

d
0, = % (4.3)

Neglecting translations the kinetic energy of the semirigid rotor may therefore be
written

2Tsr.= 2 Igg wgtog +2 %: Ip g b 15, p° 4.4
88

where we have introduced a generalized “inertial” tensor of dimension 4 x 4, all
elements of which may be functions of p. If the meaning of the label g is extended
to include p as well, defining w, = p, we can obtain the more general form,

2Tsr.= Z Igg gy, l
. d . A g=x,9,2 0 (4.5)
Igp = PE My tga " tg a, J

with rotational #-vectors given by Eq. (3.8). We shall notice as we proceed below
that the so-defined 7°-tensor takes over the important role which was previously
played by the inertial tensor of the equilibrium configuration.

4.3 Constraints

Taking into consideration the small amplitude motions as well, we must consider the
final decisive problem of how to define the relation between an arbitrary configura-
tion and a reference. Besides the condition of a common center of mass we now need
four constraint relations rather than three, since the reference configuration has a
total of seven degrees of freedom. Hence, we must also establish a convention for
the value of p to use in evaluating a,-components. In general this p-value will deviate
from the value, o, applying to the actual configuration'” (the set of r,-vectors).

Our previous experiences with the rotational s-vectors suggest a relation between
the set of s-vectors applying to p and the constraint vectors of a p-convention. More-
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over, this implies a possibility for minimizing the couplings between the momentum
P, and the small amplitude momenta, p;, arising from the elements of G,

Gok =Zmg' Spa"Skas k=1,2...3N-7 (4.6)

In Eq. (2.35) we therefore consider particularly the relationship

% to,a  Ska = 0 4.7)

which using arguments similar to those justifying the Eckart conditions (Sect. 3.3)
guide us to choose the constraint vectors

Coa = Mg tg,a (4.8)

corresponding to Eq. (3.35). Since tg,a is independent of any g, we can evaluate
an integral of the same form as Eq. (3.34), and hereby we obtain the constraint
relation

z M td o dy =0 4.9)

which actually is the Sayvetz condition®.

As rotational constraints we retain the three Eckart conditions and the corre-
sponding constraint vectors [Eq. (2.68) or (3.35)], here depending on p. These con-
straints have been discussed by Hougen”) as well.

4.4 s-Vectors

Having established the basic constraints, the remaining derivations are of a purely
algebraic nature. '

As outlined in the previous sections, we can combine the treatment of the large
amplitude motion and the rotations. Accordingly we start by extending the defini-
tions of the J- and n-matrices. With the dimension 4 x 4 we now have

Jggr=§matga-tg',a; g=X 0,2, 0 (4.10)
Retaining # as the designation for the inverse of J we thus obtain the s-vectors,

Sga = 2 flgg' Ma 19 o (4.11)
g .

for rotation and large amplitude motion, whereas the s-vectors of the small ampli-
tude vibrations are found from zeroth order s-vectors and generalized Malhiot-
Ferigle conditions exactly as in the case of rigid molecules (Sect. 3.1.1). The methods
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of Sect. 3.4 can also be transferred, and thus we introduce normal coordinates,
01,0, ...Q3y_17, with s- and r-vectors given by

Sk, 0 = m(lxnlk,a - Z Qg ?I%’k Sg o
gk’ (4.12)
tlc,ar:mc—):—l/2 lk,a

Here the rotational {-functions are given by Eq. (3.47), whereas the corresponding
¢-functions of p-coupling must be separately treated by considering the condition
imposed on s, o, from Eq. (2.35),

%:Sk’a'tp,azo (413)
The general #-vectors of p are found by differentiating Eq. (4.1) giving

== tpo: _1/2 2 Ox alka (4.14)

t
e B 3p
and substituting this and Eq. (4.12) in the condition Eg. (4.13), we easily find

0
.o Ao = S (4.15)
op

S =Z

The last equality follows from Eq. (3.46). Also notice that Eq. (4.9) was used in
deriving

Em},“l,“x =T Pate b =0 (4.16)

4.5 Kinetic Energy

We generalize the procedure from Sect. 3.5 and use the momentum transformation
as expressed by Eq. (3.49). However, when the range of g is extended to include p
as well, another generalized quantity appears, namely

foo = E’:‘ Qr S Pre (4.17)

This is a large amplitude momentum arising from the small amplitude motion in a
way similar to that of the vibrational angular momenta [Eq. (3.38)]. The momentum
vanishes in the reference configuration (all @, = 0) in accordance with our aim of
removing zeroth order coupling effects.

Without further difficulties the kinetic energy can be given by an expression
which is identical to Eq. (3.50) with a generalized u-tensor of dimension 4 x 4,

a=n1%g (4.18)
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The I° appearing here is the generalized inertial tensor of the semirigid model
[Eq. (4.5)]. The fact that Eq. (3.50) could be used in general was pointed out by
Newton and Thomas®® as early as 1948.

The problems to solve in dealing with specific molecular examples are therefore
particularly connected with the p-dependence of the various quantities which for-
merly appeared as constants. We shall discuss some general properties of these func-
tions.

4.6 Functions of p

Large amplitude motion requires special consideration when defining the coordi-
nate functions aag(p); £=x, y, z, @=1,2,... N Of course the relative positions
of the atoms are given by the geometrical meaning of p, but the orientation of the
molecular axes within a reference configuration can be defined in many ways. Our
choice in this respect affects the elements of I° and therefore the couplings between
angular momenta and P,. Actually this is a question of a convenient definition of
the basic semirigid rotor model, and therefore we shall presently assume that our
experience with this type of model can guide us in establishing the functional form
of all a,¢ ().

Next we can consider the small amplitude motions which present a standard
GF-eigenvalue problem, but with p as a free parameter. G %elements corresponding
to a basic set of internal valence coordinates, R, wheret =1, 2,...3 N-7, are de-
rived from s%-vectors using Eq. (3.41), and thus they vary with p according to the
variation of the first derivatives of Eq. (3.3). Also the force constants, Fy, may be
functions of p and contribute to the general functional properties of L- and l-ele-
ments as well as of the eigenvalues, A, (Sect. 4.7).

These functions of p are special to the molecule in question. They may be
expressed either analytically, as in the example in Sect. 5, or as a set of specific
values derived numerically for appropriate values of p. Since numerical methods are
most likely for larger molecules, we shall aim particularly at expressions where most
partial derivates other than those of a, and sga have been eliminated. Numerically
derived partial derivatives may introduce uncontrollable errors.

4.6.1 J- and u-Functions

We shall first consider the J-matrix and in particular the elements introduced by in-
cluding p-labelling. Comparing Eqgs. (4.10) and (4.14) with the formulae for rigid
molecules, Eqs. (3.14) and (3.51) in particular, we see that once more one may in-
troduce aJ '-matrix with elements linear in the normal coordinates of the small am-
plitude vibrations,
Jog' = Igg + Jgg l

E=X, 0%, P (4.19)
Jeg' = EJA%) Ok l
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The rotational elements (g = x, y or z) are given by Eq. (3.51) whereas we find

2
JE) = 3 12y . 907% (4.20)
PP o o Tka api .
T =S mY2 (e x 1) - 2% g=x, y 2 (4.21)
gn < Mo (€g X Uk, a ap g£=Xx), .

In deriving these equations

=0 y2 980 )
0= 5; (% mey ap k,cl) =
da, ol 3%a
> 1/2 (____a_ ko + . «
< my/ ap ap Kk, o apz
3 Y2 _ (4.22)
0"5; %ma (egxaa)'lk,a)"

ol 0a
% mgl? ((eg X aq) ;;x —(eg X Iga) - *aﬁ)

which follows from the Eckart- and Sayvetz-conditions.

The generalized J-matrix, and consequently u as well, retain the property of
being symmetric. p is given by a generalized matrix equation similar to Eq. (3.17),
or by

PR REEIVE L E
4 (4.23)
”'__:__2”0 J;yo

Only for molecules of high symmetry is it possible to select the reference con-
figurations such that diagonal 7% and u-matrices are obtained for any value of p. The
matrix products of Eq. (4.23) may therefore be more involved than in the case of
rigid molecules.

4.6.2 ¢-Functions

Functions of p corresponding to Coriolis-coupling constants are still determined by
Eq. (3.47) which cannot be further simplified.

In the {-functions for p-coupling as given in Eq. (4.15) it would be convenient,
however, if the /-vector derivatives were substituted by derivatives of more funda-
mental quantities. As such we shall consider the s®vectors, the G °-elements or the
basic force “constants” corresponding to the fundamental set of internal valence
coordinates, Ry £ =1, 2, ... 3N-7. These coordinates are related to the normal co-
ordinates by the transformation
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R,= % L Ok (4.24)

where the elements, L, form the L-matrix of the GF-treatment. The s°-vectors for
the internal coordinates, R;, are related to the /-vectors by
o =mg'? :2 Liisla (4.25)

This equation is differentiated with respect to p and the result is substituted into
Eq. (4.15), giving

12, — as? oL
Sk = Zima Vi hle 22+ XL 1, (4.26)
[a 3

p + I

The last term is evaluated considering the basic relations between G, F and L-matrices.
After rather involved manipulations one obtains

oLz 1
L L=

t Op

0
= |n 20 i 2

S Lo Ly ] 4.27
- 5 ap Lkl (4.27)

The {-expression resulting from Eqs (4.26) and (4.27) can be rewritten to a probably
more useful form where the G%-elements have been substituted by means of s%vectors,

aF"'L tkL t‘k']
op

(4.28)

1 - - _ aSO
Bp=——— | T mz V20 Lk'ltlk,a"')\kLk}lk‘,a)'——t‘g‘ +3
at op '

4.7 Potential Energy

For rigid molecules it is convenient to express the potential energy by an expansion
in powers of the internal displacement coordinates. A similar expansion can also be
applied in the case of nonrigid molecules. However, the potential function is ex-
panded only in the small amplitude coordinates, R;;¢ = 1,2, ... 3 N—=71736),

1 Aty

v
V=bV’+Z | R+=2 ———
72 4 dRARy |

R,Ry ... (4.29)
{OR; |o o

where the derivatives are evaluated for all R, = 0, i.e. for the p-dependent reference
configurations. Hence, 170 and all the derivatives are functions of p. V2, in particular,
represents the potential function of the semirigid model, e.g. the V;,-potential of a
hindered internal rotor.

The second derivatives of the third term are the force “constants”, F,,, which
enter into the GF-treatment as discussed above. Consequently we can transform to
a more convenient expression in the dimensionless normal coordinates,
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qx = OxV 2 mewy [h, 2wy = (7\k)1/2

1 1
V= VO + 2 V(k) qdx + — 2 hcwkq,zc + = Z he q)kk'k”quk'qk” . (430)
k 2k 6 Kk

It has been conjectured that the second term, linear in the small amplitude coor-
dinates, causes the most serious perturbations of the semirigid model. In a simple
classical picture this term determines the actual p-dependence of the equilibrium
bond lengths and angles which were assumed to be constant in the first approxima-
tion. This will be discussed in more detail below (Sect. 4.8.2.3). The effect has been
considered by introducing the concept of relaxation in the semirigid model?h34: 35, 69-70
i.e. by evaluating the 7%matrix [Eq. (4.5)] from more elaborated coordinate func-
tions, a4¢(p), such that not only a single valence coordinate varies with p.

Relaxation can be introduced in the present treatment as well. In principle it is
always possible to eliminate the linear terms in ¥ by defining the reference configura-
tions as minimum energy configurations. This means that for all p it should hold
that

oV
— | =0;¢t=1,2, ... 3N-7 4.31
OR; |o (4.31)
However, from the point of view of simplifying the calculation of the kinetic energy,
it is probably most advantageous to retain the linear terms and correct for their
effects under the perturbation treatment. An example is given below (Sect. 5) in the
discussion of the C3-molecule.

4.8 Effective Semirigid Rotor Hamiltonian

Usually the vibration-rotation spectra of ordinary rigid molecules are analyzed in
terms of effective rigid rotor Hamiltonians and vibrational energy expressions that
result from a perturbation treatment. The Van Vleck transformation has been used
for this purpose in various formulations. Thus the technique of successive contact
transformations has been extensively utilized by Amat, Nielsen and Tarrago“’, where-
as Jorgensen and Pedersen’>~7* recently suggested a formalism in terms of pro-
jection operators which offers advantages of generality combined with clarity. This
technique has been applied in the present work.

In most cases the spectral analyses are based on Hamiltonians obtained by a
quite simple perturbation treatment. Usually it is sufficient to carry the perturba-
tions to an order where the rotational constants depend linearly on the vibrational
quantum numbers, whereas the vibrational energies include quadratic terms. The
relevant formulae have been discussed in the review by Mills®). Inadequacies of this
approach are often encountered, but, in most cases, the deficiencies can be given
two main reasons. The first is the presence of near degeneracies causing resonances
of various types. The latter is that the molecule is nonrigid, i.e. that the special
methods discussed in the present paper should be applied.
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Extending the perturbation treatment to higher orders is possible, but extremely
complicated. However, problems of the first kind may alternatively be solved by
special methods comprising diagonalization of smaller matrix blocks.

Here nonrigidity will be considered under the perturbation treatment as well by
excluding terms in the large amplitude coordinates and momenta from the zeroth
order Hamiltonian. The resulting effective semirigid rotor Hamiltonians are there-
fore operators confined to the separate eigenspaces of a zeroth order Hamiltonian
with terms of the small amplitude motion only [Eq. (4.36)].

At this introductory stage we can carry the comparison with the treatment of
ordinary molecules further. In the first approximation these are described by the
rigid rotor — harmonic oscillator model. In the next approximation an improvement
is achieved by using effective operators with properties as described above. Similarly
we may expect that the semirigid rotor — harmonic oscillator model for nonrigid
molecules may be improved by introducing effective operators of the form,

H(v)= thwk (Vk +—;—) +he Z ‘ka' (Vk+—;') (Vk'+%)
k o<k (4.32)

the B Jg B Jg + %hc T Sy Qg Ty ¥ VO
88 82's"g
Here wy and xg 3 k=1, 2, ... m, are constants. Bi.;,)' and Tg,:,),g..g”. correspond to
the rotational and the centrifugal distortion constants, since Jg = Pg/ h has been
introduced for the angular and large amplitude momenta in units of h(g = x, », 2,
1,2,...n, m+n=3N-6). It must be emphasized, however, that they are not con-
stants, since they depend on the large amplitude coordinates, p;;i=1. 2. ... n Fur-
thermore the matrix of B};)-elements is in general non-diagonal. Despite this we
shall call these quantities by there usual names, but use citation marks around the
word “constant™ to prevent confusion. In the present approach it is assumed that
B}}) and the effective potential y» depend linearly on the vibrational quantum
numbers, v.

The expression of H ™) appears to be quite general. [t may apply to cases with
several large amplitude coordinates as well as to the case of none, i.e. to rigid mole-
cules (only isolated levels of the small amplitude vibrations will be considered here,
however). This suggests that the Hamiltonian may be derived in a way which is close-
ly similar to the well-estabilished methods for rigid molecules. In the following veri-
fication of this it is assumed again that only a single large amplitude coordinate needs
to be considered (n =1, m =3 N-7).

4.8.1 Orders of Magnitude

Usually we start out by separating the various terms in the Hamiltonian according
to their orders of magnitude®. In the present case it is impossible, however, to sug-
gest a general ordering scheme, since the contributions from the large amplitude
motion may change considerably from one molecule to the other.
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The problems may be illustrated by considering the potential energy [Eq. (4.30)]
separately. It is convenient to divide into two terms V, and V,, where only V,,
depend on p,

he 2 he 0
V,==3% += T D g + VS L 4.33
a= g < Wy qx 6 kg KEE qxdrdr" t Vq (4.33)

h
Vo=V0)+Z VO (0)qp + = ——— (\e(p) — N
k k 81 cwy

he (4.34)
Yo kkE‘k" (@ (0) — PRick) Qe + VED (o) - - -

Here wy = (2 nc)“\/;\g, A2, dRx '~ and similar quantities of V$% and higher order
terms are constants chosen as a sort of mean value of the p-dependent quantities
Mes> Py i and so on, in order to minimize the perturbations from the correspond-
ing terms in ¥, Notice, that now we use the constant AJ in the transformation to
dimensionless normal coordinates,

Qi = O W2V = Qe V2 mewn /h (4.35)

The properties of ¥, may be expected to be very similar to what we observe for
rigid molecules, and consequently we can use the general ordering scheme according
to the powers of g, for V,. The first term contributes to Hy, the next to H; and so
on.

When considering ¥}, it also seems reasonable to assume that if ¥° contributes
in some order of magnitude, n, then another term, V™), involving products of gy 's
to a total power of m, contributes in the order m + n. Hence the problem is to
choose an appropriate # for ¥'%. On the other hand, ¥’ should contribute to the
same order of magnitude as the leading term in the expansion of the large amplitude

kinetic energy, % #2 pr,. For convenience and to emphasize the similarity with the

treatment of ordinary molecules we shall therefore choose the same order as for the
leading terms of the rotational energy, i.e. the order two. However, another ordering
scheme specially adapted to the case of water was suggested by Hoy and Bunker3”),

The Hamiltonian is now split up as follows,
he

Ho =% % oy (o2 4 ab)

k
H =V

1
Hy= Vi + 3 Eg, (Pg—fog) gy (Pgr = i) + V° (4.36)
8.

1
Hy= V) + 5 T (Py—fa)ilgg auPy — fig)+ V3"
88

A 1 .
Hy=VO+2 T (Py— i) ) ququ (P — frg) + VED
4 a 3 gk ( z ﬁg)l«lgg axqx ( g ﬁg) b
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4.8.2 Van Vleck Transformation

The zeroth order Hamiltonian is a sum of one-dimensional harmonic oscillator oper-
ators. Eigenvalues and eigenfunctions of H are designated according to the equation,

HOIV)—|V)2hcwk(vk ;) vy E,
(4.37)
vy =lvy,va, oo ov, . v3n_7)

where vy, =0, 1, 2, . .. is a harmonic oscillator quantum number.

Following the technique of Jgrgensen and Pedersen’? we introduce projection

operators on the complete Hilbert space of the Hamiltonian, the space spanned by
product functions, {I V') -{L)}, where | L) = |J, K, M, N, is a basis function for
the pure rotation — large amplitude motion problem. Aiming at an effective oper-
ator on a given eigenspace, £2,,, of Hy with the eigenvalue E,,, we define the pro-
jectors P, and @, by

HoP,=E\P,, Qy=1-P, (4.38)
In terms of the eigenvectors of H, we can write,

P,=Z |V, L)V, L1=Z L) (LT v v | (4.39)
L L k

It is convenient to define an operator, a,,, by
a,=E, —Hy (4.40)

and furthermore we introduce

% - 0510, (4.41)

With these symbols the most important terms of the effective operator can be ex-
pressed by

H§=E,P,
H{M=P, { 02 H, v, I (4.42)
H§)=P {H,,, +H, &Hz +H, %HE, +1132”H1 } P,

Compared to the general expression in Ref. 72 Eq. (4.42) has been considerably
reduced. First it has been taken into account that Hf.,") vanishes for odd n, since H,
and H, are odd operators, whereas H, and H, are even with respect to the inversion
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of a vibrational coordinate, q. Secondly we shall neglect corrections to the small
amplitude vibrational energies of higher order than two. This is the reason for omit-
ting several terms in the original HY. Some of the terms arising from this reduced
equation still contribute outside the frame of Eq. (4.32). This is the case for some
of the terms involving the vibrational momenta, /,, and for the higher order an-
harmonicities V{5 and ¥{®). These corrections will be neglected as well.

Finally the present treatment is restricted to cases where essential vibrational
degeneracies between the level under consideration, £, and other levels are absent.

4.8.2.1 Second Order Corrections

From the second order term, H$", we obtain the x-quantities and the major con-
tributions to Bé;) and V) which are independent of the vibrational state. Readers
not interested in details of the evaluation may proceed to Egs. (4.50--51) and the
summary after Eq. (4.57).

From P, H, P, we get, using uy = vy + %,

he
PV®P,=P, 52 PRk Qrd Qe Qi Py =

kk'kUE™ 24
hc [E q)gkkk —-l-— u;‘; + 1-) + Z q)l(:kll luku, Pv (443)
k 16 4 k<1 4
1 0
P, [55, Pyt Py + V"] P, = he L,E, JoB Ty + V"] P, (4.44)

and
1
P, 3 Z, /Zg“gg' fg v =
28
1 W
P, ihz Z uhe Ttk (‘“L‘IIchlz"QIcpI‘hpk) P, =
88’ ki Wi

('4.45)

hC'EBO'E l[(-(ﬂ'fﬂc)uu__l.][’
Pt £44 K<l d:f’i} wr Wy k! 5 v

The remaining second order perturbations involving H; are evaluated by splitting
V,S3) into three terms,

1 1
Ve = he [— Zdukart= Z Wnaxat + T OYmardidm (4.46)
6 & 2 k41 _ k<l<m
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We then obtain

5h 1
PV Ly p, - { - Z(0f)? 15 (u%ﬁ)

ka

ulum

he
- 2 ), Y ity — z &9,
vy kkk kll4 Wy kYl m kll “kmm g

k¥

hc 1 1
- Z &9, [ ( + - 2
( ") 32 Wy 2 wp t wy 2 Wy — Wy “

Jhef 1 LA U
8 \Zwjtwg 2w—wy Ut 128 \2 wy + wy 2w1—wk)]

1 1
hc Ul — Uiy, — Uy Uy — -Z Ul — Uy, + Uy Uy — 2‘
(8 )2 +
+ ( kim ¥ +
k<i<m W T W T Wy Wy — Wy —
Uity — Uty + Uplly — - + 1
m — Umlly TURU — 5 Uplly — Wl T Ul — 7
+ + P, (4.47)
Wy — Wy — Wi Wy — Wy — Wy

This can be reduced by appropriately changing the indices and releasing the summa-
tion restrictions,

2.0 21 (4 1 1
PV L yOp, = —he {kzluk(@kk,) 5 (—+ - )

Wy 2wk+w, 2wk—w1

1

m

+ E Uty Z ((ngm(b?lm
k<l 4

1
+ (B )2 Rklm)

1 (4.48)
+ 2 (DRer) —— — 2 (PRgm
k( kkk) 3B oop i Z( klm) Sklm
4 1 1
+z DR )’ — + - P
( kkl) 128 (CAJ[ 2wk+w1 2wk—w1)} Y
where
1 1 1 1
= + + +
Ricim Wrtwrtwy Wr—Wtwy, W—wWgtW, Wy — W — W
=4 Wy (Wi — Wi — @]) | Agim
1 1 1 1
= + + + .
Sklm wg t wit w,y, Wi —Wp— Wy W— Wy — Wy Wy — W — Wy (449)

= —4 WpW Wy | Agim
Dgim = (W + Wi+ Wy Hwg — W — Wy N (W) — Wiy — W Wy — Wi — wp)
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Before the terms are collected it should be noticed that the contribution in
Eq. (4.45) is a function of the large amplitude coordinate, since ng, as well as {5 -
depends on p. This dependence can be neglected, however, to the same degree of
approximation as we are neglecting the differences, ® — ®°, of V3, [Eq. (4.34)]. It
is therefore assumed that an appropriate mean value is used in x; below, and that
the part which is independent of the vibrational state can be considered as an in-
essential constant contribution to the energy in the same way as similar terms of
Egs. (4.43) and (4.48).

Hence the anharmonic corrections to the vibrational energies are obtained from
the second term of Eq. (4.32) using x5 -constants which for &’ = k are given by,

1 .o oo o [4 1 1
= s~ — (D 2y - 4.50
kK 16 kkkk 32 1 ( kkl) (w, 2 Wy + Wy 2 Wg — Wy ( )

whereas for k' = [ >> k we have,

1 ' L
XK1= g DR — Z ((I)I(:km Bim o' (¢21m)2Rklm/8)
m

(4.51)

0 & & (G | Wi
+23gg'§k1§‘!i’c1 — +—=
88’ W Wy

The only difference from the usual expressions>) appears in the last term of
Eq. (4.51) where we must consider a possibly nondiagonal matrix of Bs?g'-elements
with the dimension 4 x 4 (g = x, », z, p).

4.8.2.2 Fourth Order Corrections

From H{” we obtain vibrational corrections to the “rotational constants” and the
potential. First P H 4P, gives

0
P,H4P, = [E z Jng’gF>ung,+E’1(l‘£J£) u,,] P, (4.52)

2 ke k 8 mlcwy

where Eq. (4.23) must be applied in evaluating Bi,’;rk ),
(k)= _3H 40 50k 40 y(kD o 4.53
Byg" = o W TOR IO g (4.53)

1f u° is diagonal this reduces to

o o gpron
3 Bng' s ”fcgg )afcgg ) 488 = dlgy

) (4.54)
Wy g’ I g" k 00

kk) =
Ba(zg' )=
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The term in Bg,’;,vk) of Eq. (4.52) corresponds to the usual “harmonic” contribution
to the effective rotational constants.

From P, H, % H, P, we similarly get the “Coriolis coupling” contribution,

using the term, 2, of H,,

9=—5 (Pgiige fog+ frg igg' Pp)
) (4.55)
=—5 E (Pg“gg fkl + ugg SEiP (Qkpz \/:—‘IIP \/w—l)
We thus obtain,
P Q_Q_V QP =_h 3""’1%—""""2 (p 10 il o £5, 88, P
"a Vognic 28'8"¢" ki wk(w,zc—wlz) 8Teg"g'g " kKl "8
1 p
+ 5 [P » #gg" ﬁcl [Pg’, I-lgo'g'“ dl ]]
1 "
= 3 e iy SN P g $501) P (4:56)

The commutators of this equation vanish in cases where Py refers to an angular
momentum. But, if Py is a momentum of an internal large amplitude motion, the
commutation terms may contribute to the potential V) ag well as to the vibrational
energies. The order of magnitude of these corrections is expected to be very small,
however, and they will be neglected in the following.

The *“anharmonic” contributions to the effective “rotational constants” and
potential arise from the last two terms of H$” in Eq. (4.42) giving,

P, (Hl 4, +H3%H1)Pv -

1 Dgo Uk
P, (—-2- Z Pllgg ¢kk1§—P'—ZV()‘P 2w,> (4.57)

Summarizing these results we conclude that the ‘“‘rotational constants” and the
potential applying to Eq. (4.32) can be written in the form,

B =B — % of8) ( vy + %)
k (4.58)

0= o5 (s +1)
k

where
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y_ 1 Y2 i @0
—015‘33)=—B("")+2 Z ngu BY. 3 [n (_) 288" Pkl
2 g8 1 h ] w?/z
v 3 (4.59)
S
wi (W — @f)

A corresponding a-quantity has been introduced for the large amplitude potential,

—ok = e (M) - TV D oy,

4.60
8 7 coope 2wy ( )

It was noticed in the preceding paragraph that the x; x'-formulae [Eq. (4.50)
and (4.51)] apply to rigid molecules as well. Similarly Eq. (4.59) reduces to the usual
a~expression if a diagonal Bgog--matrix can be assumed, implying Eq. (4.54).

4.8.2.3 Higher Order Corrections

Two terms from H3 may in some cases appear to be underestimated as to their order
of magnitude. These are

H3=

M[h—*

Z Pt qiby +2V<k) (4.61)
8g'k

If Hy is raised one step in the ordering scheme, we must consider an additional fourth
order correction,

r Oy o _ _l k) ( ) 1
ot g by I s Py Py iy P hewy, (4.62)
1 ' 1 1
-3 P (k)V(k)P'-———-————— plnz
2 kgg' ”gg s hcwk 2 )) v

Otherwise this correction appears in the sixth order. In the first term we recognize
the centrifugal distortion correction which is important in any case. The second
term gives a correction to Bé(,;,'). and the third term contributes to the effective po-
tential V"), All of these are independent of the vibrational state.

The centrifugal distortion term, H¢p, can be rewritten as follows,

1
HCD = — ggi;”g' P P ngg 7 Pgu Pgnl _ 2 nggg (4.63)
where
Teg'g"g" = —Zu;,’;)uék; (2 hewy)™! (4.64)
b= I G (Pors Py kg1 (4 hewo)™ (4.65)
44
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The question as to the importance of the commutators in Eq. (4.65) is similar to the
problem discussed in relation to Eq. (4.56). For nonlinear molecules it should be
safe to ignore the p-dependence of “X”) and thus to consider 74 as constant
and to neglect £gg'-terms. For linear molecules more care should be taken, since the
M g-elements depend inversely on a bending angle, giving singularities for the linear
configuration. These singularities require special attention.

The remaining two terms of Eq. (4.62) are interesting as well, since they form
the connection between molecular models incorporating relaxation, as discussed in
Sect. 4.7, and the simpler models.

The physical meaning of the two terms may be visualized by arguments of clas-
sical physics in a way which is very similar to the explanation given for centrifugal
distortion in rigid molecules®”. Thus, if we allow the molecule to follow a minimum
energy path in course of the large amplitude motion and rotation, i.e. if we allow the
small amplitude coordinates to relax, then the changes in these coordinates are de-
termined by the condition of minimum energy.

With an approximate Hamiltonian in which the small amplitude kinetic energy
is ignored,

H=vV2+Zv®yg, + lhc T weqt
K 2k
t3 2 (U +Z ugg ) qi) PgPy (4.66)

we have the condition,

aH’ _ (k) 1 (k _
o V) + he o * 5 Eg Wie) PyPgr =0 (4.67)

This equation can be set up and solved for any gy, and if the solutions are substituted
into Eq. (4.66) we obtain,

1
H =0T (v 5 Z; (ugg Eu(’q y) —— ) J
k

2 hewy, he wy,
1 1
-— EY KD e PPy PyrPy 4.68
8 kgg'g “gg l'lg hcw ( )

Hence the approximate rotation — large amplitude motion Hamiltonian takes the
form of the second order operator, [Eq. (4.44)] with corrections exactly as those
obtained from 4 in Eq. (4.62). If we suppose that these perturbations are essential,
we must replace ng' and V° in Eq. (4.58) by

1
_ po k) 1k
B;g' = Bgg' — Z B( Py hcwk (4.69)
7 Z k)2
( ) 2 ey hcw
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where superscript e, for equilibrium, indicates that these quantities refer to con-
figurations where the small amplitude coordinates have relaxed to their p-depending
equilibrium values.

The Hamiltonian of Eq. (4.68) corresponds directly to the Hamiltonian for a
semirigid model with relaxation?!” 3% 35: 69=71)_gyuch models have been introduced
in often successful attempts to obtain better agreement between experiment and
theory. But, in addition, it was hoped that a more reliable picture of the large ampli-
tude potential function would result. This seems doubtful, however, considering that
corrections of the fourth order are neglected. Even though all ¥ ®)_functions vanish,
if reference structures with the correct relaxations are used, the terms in A; — A}
still survives in a4”?, [Eq. (4.60)], and all o{¥% " are unchanged, [Eq. (4.59)].

The relaxation in semirigid modeis is usually formulated in terms of parameters
which are subsequently examined by experiment. The considerations above also
imply that we should not overestimate the physical significance of such parameters.
They only serve to simulate the p-dependence of the total contributions from the
relaxation as well as the perturbations accounted for in the a-terms of Eq. (4.58).

4.9 Summary and Discussion

This completes the theoretical part of the present paper. It may be useful to recapit-
ulate the principal aims and the main results.

It has been attempted to extend the standard theory for rigid molecules to mol-
ecules with large amplitude internal motions in a formulation which makes it possible
to focus on general as well as special properties.

The s- and t-vectors of the momentum and velocity transformations [Egs. (2.33),
(2.44), (3.48), (3.49) and 3.61)), were found to be very effective for this purpose as
demonstrated by their applicability in deriving the kinetic energy of ordinary rigid
molecules (Sect. 3), as well as in discussing the more complex problems of the non-
rigid molecules (Sect. 4). It is a special accomplishment of the present work that the
principles of forming s-vectors corresponding to rotations and large amplitude
internal motions have been established, (Sects. 2.2.3.2 and 4.3) in a way which clear-
ly shows their connection with the basic constraints on the small amplitude vibra-
tions relative to the reference structures. Also notice that the factorized expression
for the y-tensor [Eq. (2.55)], which has been observed in several special cases*” 57 58),
appears as a general consequence of the method of constructing these s-vectors.

The Eckart- and Sayvetz-conditions constitute a set of conventions for the
reference structures which are particularly useful, since they allow us to use recti-
linear coordinates for the small amplitude motions (Sect. 3.3). However, the intro-
duction of reference structures, depending on the large amplitude coordinates only,
leaves us with the question of how the molecular axes should be oriented within an
arbitrary set of atomic reference positions. This question was only briefly comment-
ed on in Sect. 4.6, since it is special to the molecule under consideration. Some
examples may illustrate types of solutions.

For molecules with internal rotation® 7% it is often convenient to use a frame-
fixed set of axes which, in case of a symmetrical internal rotor can be chosen as a
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principal axis system for the reference structures (P.A.M.). In this case all off-diag-
onal elements vanish in the rotational part of yo, i.e. ugg' = ugﬁ gz =%V 2,
whereas there may be nonvanishing coupling elements, ugp, between internal and
overall rotation. For molecules with a heavy symmetrical internal rotor on a light
asymmetric frame, e.g. methanol, the Internal Axis Method has been proposed. Here
the axes are chosen in the opposite way so that the coupling terms, ugop, vanish,
whereas the rotational part of #° is nondiagonal.

Similar alternatives may be suggested for linear molecules with a large amplitude
bending vibration. Thus Hougen et al.'” and Sarka®”) have developed the semirigid
reference models for three and four atomic linear molecules with an axis convention
aiming at the elimination of ugp-elements, i.e. corresponding to I.A.M. of internal
rotation. Here the only nonvanishing element of u° is ), , if the x-axis is defined as
perpendicular to the plane of the bent reference structures. A solution correspond-
ing to P.A.M. will cause 1, to vanish but introduce a coupling term u2, 'o 4% ),
None of these methods have particular advantages when considering a complete treat-
ment including the evaluation of the effective operator [Eq. (4.32)], since contribu-
tions to B;,'? as well as Bg‘;,’ may arise from the perturbations in both cases.

In between there exists a third possibility for axis orientation in such molecules.
This is to fix the z-axis to the axis of a linear configuration (p = 0), which is defined
in relation to the instantaneous reference by Eckart-conditions. This method offers
the special advantage that the coordinate functions, @, (p), can be expressed in quite
simple closed forms so that derivatives of the coordinates as well as the vibrational
s°-vectors can be easily derived”®, This more than counterbalances the fact that
both ug 2 and pgp may be nonvanishing, since the appearance of the coupling terms
Bﬁ,';) and Bg‘,’,) in the effective bending-rotation operator should not cause serious
troubles. They may either be treated as perturbations or, if one of the couplings is
dominating, we may eliminate that term by a final rotation of axes following the
prescriptions of Pickett””) Picket also suggests the Eckart system as an intermediate
for the final “Rational Axis System”.

In relation to the Van Vleck transformation (Sect. 4.8) we recapitulate that most
of the formulae applying to rigid molecules could be generalized with only small ad-
justments [Eqgs. (4.32), (4.50), (4.51), 4.58)—(4.60), (4.63)—(4.65) and (4.69)]. This
indicates that the treatment without particular complications may be extended to
cover a case where the small amplitude vibrational level is degenerate. This, however,
is an object for future developments.

For nonrigid molecules there are at present only few reported data on excited
states of the small amplitude modes from which we can get an impression of the
size of the perturbation effects.

Methanol may serve as an example. Lees”® has reported a change in the barrier
height for the internal rotation from 376 to 557 cm™! when going from the ground
vibrational state to the first excited state of the CHj in-plane rocking mode. This
result is based on the assumption that the a,(fg 7.terms can be neglected, and although
this may be an over-simplification, the example clearly shows that the total effect of
the a-terms can be extremely large.
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Another striking example is carbon suboxide, C30,, which is a typical quasi-
linear molecule’® with a large amplitude CCC-bending vibration, v. The spectro-
scopic data has been analyzed by Weber and Ford?*? using a simple approximation
of the effective bending-rotation operator. In this the four elements of the diagonal
Bé;)'-matrix are all related to the single parameter 8%, depending on the vibrational
state, and the effective bending potential is expressed by two terms, a harmonic and
a quartic. It turns out that the bending potential changes drastically with excitation
of the antisymmetric C=C stretch mode at 1,587 cm ™", v,. Thus the potential hump
at the linear configuration is 30.56 cm™ in the g.s., whereas 56.58 cm™! is found
in the v, excited state. On the other hand, B®, which is the rotational constant of
the linear configuration, only changes from 0.0735138 to 0.0733140 cm™". Much
smaller effects on the potential are observed by exciting to the vz + v state.

Hitherto all predictions on a valence theoretical basis have indicated that C;0,
should have a linear equilibrium configuration. It has therefore been a puzzling
question why potential humps are actually observed. Considering Eq. (4.58) an
obvious suggestion is that the discrepancy is due to the af” »contributions, since we
observe V¥) whereas the predicted potential is % From the observations on C30,
it is possible to estimate o’ and a$"’ + o$"?, thus allowing a partial correction of
the potential function. This gives a reduction in the hump from 30.56 to 22.04 cm™.
It is an exciting question whether &’s for the remaining vibrational modes may
account for the remainder so that a linear equilibrium configuration will eventually
result from experiment as well. By similar arguments it has been possible to show
that this is the case in fulminic acid (HCNO)?Y,

5 A Case Study, C,

Many molecular studies of large amplitude internal motions might serve as a basis
for an example of how the methods presented above can be applied in practice. C3
was chosen primarily because it is the simplest one available. This should make it
easier to follow the evaluation of the limited number of rather simple terms entering
the Hamiltonian.

Although C; is a radical, not met under ordinary laboratory conditions, it has
been studied with considerable interest. Recently graphite has been considered as
an ablasive material for protecting heat exposed surfaces of space vehicles, and since
C; is one of the main species formed by evaporating graphite, it is essential to know
the thermodynamic properties of C32%). In an attempt to estimate the partition func-
tion Hansen, Henderson and Pearson®® 81 have discussed various models for the
bending vibration, v,, which in the investigation by Gausset, Herzberg, Lagerqvist
and Rosen®? was found to be extremely floppy and anharmonic. Thus they estimat-
ed the wave number 63 cm™! for the lowest bending mode, and it was found that the
vibrational levels diverge corresponding to a rather broad, but steep potential well.
However, no rigorous attempt to treat the combined rotation — large amplitude
internal motion has appeared.
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The C, spectra to be discussed here were obtained by Gausset et al.®2) and
Merer®® in absorption and fluorescense by flash photolysis of diazomethane and
diazopropyne mixed with a large extent of inert gas. The transitions form a group
around 4,050 A which has also been observed in cometary spectra. [t was established
that the transitions are rovibrational components of a ', — 12; electronic transition,
and by forming appropriate combination differences, information about bending
states up to v, = 6 in the two electronic states can be obtained. In the II, electronic
state a much higher bending frequency, 308 cm™), was found and therefore a dis-
cussion of the much more impeded internal motions of this latter state is irrelevant
in the present context.

Only limited information is available about the stretching modes. Weltner and
McLeod®¥ have investigated the spectra of C5 trapped in an inert gas matrix. They
assigned absorptions at 1,235 cm™ and 2,040 cm™! to the symmetric and anti-
symmetric stretching modes, v, and »3, respectively. The former assignment was
confirmed by Merer®®). He assigned band of the 4,050 A group to transitions involv-
ing the 11,0,0) and 12, 0, 0) vibrational states of the electronic ground state from
which v, = 1224.5 cm™!and 2 »; = 2436 cm™! were determined. However, on this
basis it is impossible to gain any deeper insight into the perturbation effects from
the small amplitude motions.

5.1 Reference Structure, /° and p° Matrices

As outlined in Sect. 4.9 we must begin an explicit development of the Hamiltonian
by considering the semirigid rotor (Sect. 4.2) which serves as the reference.

The reference configurations are given by the constant C,C bond lengths, R, and
a bending angle, p, defined so that p = 0 in the linear case (Fig. 1). The molecular
axes are chosen so that the y-axis is perpendicular to the molecular plane and with
the x-axis bisecting the C,C,C angle of the reference. This choice is obvious consider-
ing the symmetry of the reference, C,+.

In Table 1 are given the components of the position vectors, a,; «=1,2,3, and

the four sets of t_ga; g=x,, 2 p,[Eq. (3.8) and (4.3)], which are required for de-

Fig. 1. Reference configuration and
molecular axes of C3
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R/f2/2

§v2f0

G

Viol2

Cy

-Rf2]2

Table 1. Components of vectors, a,, tg’a, lg o relevant to the Hamiltonian of C3

2ag

A New Approach to the Hamiltonian of Nonrigid Molecules

() o~
s &
Klen o
| I = =] =] o =) =)
o - -
\N "\“ o rQ\“ N ey
o B e B le |x
5 < 3 e
o —t
<o < 54 | | —ley } [aa3h54
(s o vt
I i
= — |~ - e
o~
ks BBz
- 3 s
%o —ey en)
= (=T 4] | e | -t
E
ol
gin o (=4 o o (=] =] (=]
) -y
§ e[S
o~ o
‘E ~
o o o %le o N o
™
2 3
)
N ~
|24l ‘.: — N
o =] ) (=] =] [=] !
o
f e~
&
o len
! ¥ o =] o o o o
N - ] ey Rela]
< =B EIS IS
S = £ g &
¥ X o N e o
o (=] | } i | |
— (a]
o
N N T "25 (g
=y (=] S~ - S S
W < v
-] e
o © &m X~ 1 ol =
¥ ¥ ¥ vy y < <
v @ X %8s S & =3 ~l3

153



G. O. S¢rensen

riving the 1° and ;1° matrix elements. Here the auxiliary functions, f,,; n = 0,1,2,3,
have been introduced,

o=1—cosp, fL=2-—cosp 5.1)
fa=1+cosp, f3=2+cosp .

Notice, that f,, =n for p = 0.
From Eq. (4.5) we find that I° is always diagonal and therefore the elements of
uo are easily obtained,

/ng = 2/1f2a ng = 3/1f3, l

I=2mR? (5.2)
W, =6/lfo, wd,=12/1fy, |

where I is the moment of inertia of the reference in a linear configuration, p = 0.

5.2 Normal Coordinates and /-Vectors

Defining AR, =6(C;, C;) and AR, = §(C,, C3) as the small amplitude bond stretch-
ing coordinates it immediately follows from the symmetry that the normal coordi-
nates can be defined by

Ql = (ARI + ARz) \/m/2f1

(5.3)
Q2 =(ARy — ARp)Vm/[2 f3
The corresponding l-vectors of Table 1 were evaluated employing Eqs. (2.31) and
(3.45). The normalization factors of Eq. (5.3) may be verified by inspecting the
conditions of Eq. (3.46).

5.3 u-Derivatives and Coriolis Coupling Constants

From the vectors of Table 1 we can now evaluate the quantities appearing in the
kinetic part of A up to H,, [Eq. (4.36)]. The derivatives of u are found using Eqs.
(3.51), (4.20), (4.21) and (4.23), while {-functions follows from Egs. (3.47) and
(4.15). The resulting u-derivatives are given in Table 2, whereas the only nonvanish-
ing ¢ is

B = =t =—(fof2 I f5)'? (5.4)

It must be emphasized that the derivatives of Table 2 are taken with respect to
the normal coordinates, @; and @5, whereas derivatives with respect to dimension-
less coordinates, g; and g5, are required in Eq. (4.36) and subsequent equations.
These derivatives are obtained by multiplying with

90k _ (1/2 mewy)? (5.5)

gk
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(zg')

Table 2. Derivatives of J and g elements (ag
to normal coordinates, @, and Q5

=2 Jép ) with respect

7 = %fz arp? A =
JP =3 sorp™? 1P = Ly
IR =~ L usory'? KB =T

W) = — 183252
ul) = 12005~

W =Pyt
WD = 36 3V g5

wR =123 fr fy V2 Wy = -36f3 2!
wEP = 127,17 3P =367 )7
W= 162027, 7! w$P = 1620711
D = 32413 £ G = 1081 f3)7!
W9 = sas ! uGy = 64813y

once or twice for first and second derivatives respectively. Derivatives of By, require
the additional factor h/4 mc, e.g.

B(1)=anX = h h 2 auxx =_§_‘B_ - )1/2
g 8ntc \47tcwy) 00, £ \wify
2 (5.6)
B=h/8n*cI

The derivatives thus obtained are given in Table 3.

Table 3. Derivatives of Bgo' elements with respect to dimensionless normal coor-

dinates, gy = (2 mcwy/h) Y20y

BY) = —4 8By 115!
BY = 36 B2 Bl )5t
B®) =12 B/2 Bluwosfofaf 0*?
B = 24 8210y £y £
B}(’lyl) =324 lewlflfg
BY = 648 B w ) fof)

BUD = 1296 B2 jw, £1

BN = 18 B2 Bjw S 13 ?
BSY = -72 B2 Bl P2
B® = -36B2B/wyf)" 5!
88D =72 Bl fofs

B3 =324 BYwyfy f3

BE? =216 B jwafofs

BE? = 1296 B 1w, fif}
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5.4 Anharmonic Force Constants and o-Functions

The available experimental data are insufficient for a determination of the param-
eters, ®,;; and P;,,, entering the expression for the a-functions [Eq. (4.59)]. How-
ever, Hoy et al. %) have discussed how the relations can be formed between these
parameters and the force constants of an expansion of the potential energy in the
true valence coordinates, p, A;and A;,

oV(p 1 -
V= V(;—))‘FIZ-—B—%—) ﬁi"'i szz/(p) f; A;
i i
1
ifk

Introducing reasonable approximations in this expression it may then be possible to
obtain fair estimates of the @’s.

First we shall neglect the difference between the true bending angle, g, and the
angle, p, of the reference configuration in all terms except the leading term of V(g),

o * .
o V@)= Vap? + Vap* + Vep® + Va(5 % — p?) (5.8)

In this way we may still get an impression of the importance of this difference.

Secondly, we approximate the second term of Eq. (5.7) by

0V(p)
BT

1
A= 3 frop P (AL + Ay) = he Vi 0 (Fy + o) 9)

where f,,, = 2 hc V5 is constant, Finally the small amplitude contributions to V are
approximated by

1 1
p@ 4 V<3>=§f"(ﬂ§ +Ad)+f,. A ﬂz+gf,,,(ﬂ§ +A3) (5.10)

The harmonic force constants, f,, and f},, are identical to those found when recti-
linear coordinates are used. They may therefore be estimated from the observed
stretching frequencies using Ax = (2 mc¢ wy)? and Eq. (5.3),

fir =Am[2f1 +A,m/2 f3 =~ 10.3 mdyn/A

for =Nm2f1 —=Xom[2f3= 0.5 — G-

As pointed out by Kuchitsu and Morino®¥, it is a fair approximation to neglect

all force constants of ¥ except the stretching constant, f,,,. The order of magni-
tude of this can be estimated assuming a Morse potential for the individual C—C
stretchings,
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V(A,)=D.(1 —exp(-afy)’, i=1,2 - (5.12)
giving
for= frrr =3afrr, frrer =17 azfrr (5.13)

The parameter, a, has been determined for a large number of diatomic and a few
three-atom molecules. Remarkably it appears that the values are closely scattered
around @ = 2 A~ and we may therefore estimate f,,, and f,,,, using this -value.

Among the spectroscopic constants only x;; depends on the quartic constants.
Since the experimental data are very limited for the states with an excited stretching
mode, it is impossible to obtain any closer check on these constants which are there-
fore left out in the following discussion.

Using Eqgs. (22), (23), (25) and (26) from Ref. ©) we can evaluate the elements
of the nonlinear transformation,

A=L*(0) Q. (5.14)

here to second order only, since we are neglecting the quartic constants. The expan-
sion coefficients are given in Table 4.

Substituting Eq. (5.14) into Eq. (5.7) and introducing dimensionless normal co-
ordinates, the potential function becomes,

Vihe =V, p? + Vap® + Ve p® + Vi p?q,

5.15
1 2.1 2,1 3, 1 2 G-13)
+ 7 @141 + 7 @242 + g‘l’mql + 5‘1’122(11‘12
where, '
VED = (RV + Vofi/%)(8 Bl )V
3 2Bw,\ 2
q)lll =—“ff‘10_.f2(_f—‘lil‘) (1+z2§1) (wa1)1/2
1
5.16)
12 12 (
o 48 (9 (20" 582
w3 w1 fi w2 f w)
—9—— = (2/2)? 12.643 cm™!
327 em

Table 4. First and second derivatives of true valence coordinates, A;, A, and p — p with respect
to normal coordinates, @1 and Q2

L} =1} =fq2m'? L =-13 =(i2m'?
Li' =L} = fof,/2 m Ry L¥ =122 =022 mRfs
Li? = -L3 = ~fof2l2 mR(f1 f)M?

Ly =@ fofalmfp 2R L2 =0

Lyt = —L2%= 2 (fof) P imR? =0
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The order of magnitude of ¥, is 200 cm™!, assuming a harmonic bending motion
with w =63 cm™ and B = 0.42 cm™!. If we neglect the relaxation term V5, we find
an approximate value, V§! = 10 cm™, originating from the difference 5 — p. Simi-
larly the ®’s are estimated,

p=0: &,y =-239cm™!, &y, =—433cm™! 5.17)
p=60° @y = —364cm™, Bpp; = —429cm™! :
indicating that the contributions to the “rotational constants” from V§" can be
neglected compared to the considerably larger ®’s. However, as pointed out (Sect.
4.8.2.3) we must consider the possibility that V] may be underestimated.

Table 5, Functions, oq(égg)
k, 22 —o®8Y,
1, xx SB +fof2lf1) - m
w1f1
2, 2
+ 3
Lyy 637 (9+f0f23w12 w22)+1882fof2_l
wififi wi - w3 wif1f3 f3
188
1, 2z ——(f3+3fe/f1)-3m
wif
18Bf3 3m
1, pp 5
wy fi h
188
2, xx tB8-72
waf:
2, 2
6B Jwitw
Z,Y.V 2 (9 +f0f2 _22 21) +3(3'72)/f3
w2 f1£3 w3 - wj
188
2,22 +3(6-72)
wyf3
54 B
2, pp 3 + 308 -v2)fi
waf1f3
2B
g = —f"’_rl (1 -2 wiwh
waf1f3
1/2
(2 B x)
= ——— + wifilwif3)
wy
1/2
(2 B x)
vg = ——# (w3fwd + f3if) = vy wi falwafy
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Since &y, varies noticeably with p, the functional form given in Eq. (5.16) is
retained when evaluating the «’s, rather than using constant values, &4k, as assumed
in the perturbation treatment of Sect. 4.8.

The expression of ak [Eq (4.59)], can be rewritten as

(28" _ 1 pkk 1 Prxs
—og = 535('3' - z B 2o
2 (5.18)
+ 2B, By T4’ Bwktor
wk(wk - 12)
where it has been considered that only ¢%; is nonvanishing. Using Egs. (5.4), (5.16)
and Table 3, we then obtain the a-functions given in Table 5.

5.5 Effective Bending-Rotation Operator

In Eq. (4.32) we shall provisionally neglect the centrifugal distortion terms.
Dy =4 B3/ w? is of the order 1.9 x 10”7 cm™! giving a correction of only 0.18 cm™
for a AJ = 2 transition when J = 50. The effective operator may then be expressed by

1

= H=B(p)J +5(p) U2 —J2) +7,Clo) I,

(5.19)
+C(0) (Jz - i) P4 A ) T2+ V(o)

where superscripts (v) have been omitted from the functions B(p), b(p), etc. For the
g.s. of the stretchings these functions are given by

B(p)= 1 (BY, +BS,) — 1 (05 + a5 + PP + o)
2 ¥
1 1 ,
b(p) = 3 (B, —-BY,) — 3 (of*¥ + a§™) — o) — o)

1 (5.20)
C(p) = Bpp 5 (agpp) + agpp))

A(p) = BS — 2(of? + o) ~ C(O)* ~ B (o)

It should be noted that the only singularity appears at p = 0 in the fourth term
of H [Eq. (5.19)] due to the factor p~2. This causes no trouble, however, since
the term enters the two-dimensional harmonic oscillator operator, H{,’ , used below
[Eq. (5.22)] in defining a basis for the matrix representation of H () Also note that
the term contains a contribution —C(0)/4 p? which has its origin in the U-function
[Egs. (2.85)—(2.87)]. From these equations it can be shown that U, + U, is given
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by the same simple expression as the U-function for a rigid nonlinear molecule

[Eq. (3.84)], whereas U, appears to be small. The singularity in U can be appro-
priately taken care of by moving the term —C(0)/4 p?* from U to HY. The remaining
part of U can be considered as a small perturbation of the effective potential V(p).
It is emphasized that 4 (p) remains finite at p = 0,

A(0)/B=-30B/w; +6 Blw, (3 — 4 wi/w?)

+ (2 Bk)YV? (33/wy — wylw? — 1wy — 13 w33 w?) (5.21)

5.6 Calculation of Energies

The commutation relations for the momenta and the coordinate, p, appearing in
H™ are

[Jf: Jg] =—iJp; (f, 8 1) =(x, ¥, Z)cyclic

. (5.22)
[Jf"]p] =0, [Jf’ p] =0, [Jp’ p] =t

Notice, that the relations for the angular momenta are the same as those applying
to nonlinear molecules. This is a consequence of our definition of a molecular co-
ordinate system with three degrees of freedom.

From Eq. (5.22) it follows that H(*) commutes with J? and J; and consequent-
ly H™) is diagonal in the J and M quantum numbers. Hence the eigenvalues are inde-
pendent of M and can be found for individual J-values, either by diagonalizing the
Hamilton matrix, formed in an appropriate basis, or by numerical integration. The
former method has been applied below.

5.6.1 Basis Vectors and Matrix Elements

Basis vectors are defined as the simultaneous eigenvectors of J2,J, J, and HJ,
where

HY = C(0) (Jf, s (J} _ i) /p2) +Dp? (5.23)

is the operator of a two-dimensional harmonic oscillator®®. The constant D may be
adjusted so that the spacing between the eigenvalues of HY is optimized in relation
to the eigenvalues of H®*),

A basis vector is designated by |n, [, J, M) in accordance with

JHn, LI, MY = In L J,M)J(J+1)
JZln, LMY = In LJMYM

L n L, M)y = Inl,J, M)
H)n LI MY= In 1 J,MYE(n+1)
160
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The two first equations follow from the commutation relations of the angular mo-
mentum components, Jg; F = X, Y, Z, along space fixed axes. The latter two are
not as obvious as they may appear at first glance. Since J/, and /,, do not commute
with H we cannot factorize the vector space to treat /5 and J; in a separated basis
of vectors, {|#n, 1}, such as it is usually assumed when discussing the two-dimensional
harmonic oscillator. J;, + i/, cannot be used as ladder operators of J,, and similarly
it may be shown that the usual ladder operators®® for HJ are inapplicable as well,
since they do not commute with J2.

However, from the commutation relations [Eq. (5.22)], it follows that the two
operators, L, and L_,

L.= (ap—i;.l ia—lsz —%) (J, £iJ,)

=, il )(ap——J aLJ,+§_;—p) (5.25)

a*=DJC,

and their adjoint operators are the relevant ladder operators, commuting with Jp
and J?, and with

[HP, L 1=E°L, |J;,L.]=%L. (5.26)
where
E%=2D/a*=2Ca? =2+/CD (5.27)

From Eq. (5.26) it is seen that the eigenvalues of HY and J, are equally spaced, with
spacings £° and 1 respectively, in accordance with Eq. (5.24). Furthermore

LLl =22 _J2 + ) (HYIE® +J,— 1)
L LI =22 2=~ T)(HYIE®—J, — 1)
LiL, =207 _J}—J,)(H,,/EO +J,+1)
Lie =20 —s2+0) (HYE® —J, + 1)

(5.28)

from which it may be deduced that the quantum numbers, n and /, must be integers
with the usual restrictions,
ne{0,1,2,...}

(5.29)
l€{nn-2,...—n}tand!<J

Finally one finds that the matrix elements of L, and L_, omitting the quantum
number M, can be given by

(n, LI An=1,1-1,0) =p,Rn+DJU+1)-1(0- 1)

5.30
(m, LJIL_In-1,1+1,)=p_[2(n=D T+ 1) =10+ 1)]"? (:30)
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where p, and p_ are phase factors of modulus one subject to the restriction
p+p* =*1 [Eq. (5.40)].

From Egs. (5.24) and (5.30) all relevant matrix elements can be evaluated. Thus
as an example we may consider

Lo+l =20p(, +iJy) (5.31)

from which we obtain
1
2 L +1y@l v )=a?p2(2 =22 +1) (5.32)

1 1
5L +25)2 + §(LI +L_)? = —a?p*(J2 - J3) (5.33)

Applying Eq. (5.30) to the left side of Eq. (5.32) it follows that the matrix elements
of p2 can be found isolated, since the same J, /-factors turn up on both sides of the
equation,

(n, I J1a?p%in, 1)y =n+1

5.34
(.'i,l,Jlazpzln—2,1,J)=%p+p_[(n+l)(n—l)]”z (539

This is the same result as found for an isolated two-dimensional oscillator®®. But
the matrix elements found in a similar way from Eq. (5.33) are not as simply related
to those obtained in the usual case,

(n, LJ1?p2(J2 —J2)In 1-2,0)=~p,p* [(n + D(n =1+ 2)f(J, 1 - 1)]"/?
(n, LI (J2 — T2 n-2,1%2,J)= —%p%[(nil)(n FI-2)f(, 1+ 1))?

f(J, k)= % T+ —kk+ D][JT+1) —k(k—1)] (5.35)

A formal relation between these and corresponding formulae for an isolated oscillator
may be expressed by including the matrix elements of a rigid rotor,

(n L, J1p*(J2 =T2)In 1, J)=
(n, 112 p*cos (2 x) 17, I')(J, 1NTE = 21T, 1 (5.36)

64)

where x is the polar angle of the oscillator”™, and / replaces the usual K-quantum

number in the second factor.
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5.6.2 Hamilton Matrix

To form the matrix elements of #(*) [Eq. (5.19)], it is necessary to expand the
various functions of p in power series. This has been done numerically by fitting
even polynomials to the values of the functions calculated for p = 0°, 10°,

20°, ... 80°. Bending angles as large as 80° should be considered since the classical
vibration amplitudes of the investigated states are estimated up to about 70°. This
made it necessary to include up to pS-terms in the expansions (Table 6).

The only operator nondiagonal in ! is b(p) (J2 — JJZ,). It contributes essentially
only in case of l-type doubling and /-type resonance. The energies are therefore most
easily calculated by considering first a Hamiltonian, /', from which this term has
been removed. The corresponding matrix is then diagonal in / as well as /, and the
individual J, -blocks can be separately diagonalized. The eigenvectors and eigen-
values of H' are denoted according to

Hlv1LJY=ly, I.J)E,V'I,J

(5.37)
v=HLUI+2,...; J=>11]

The energy levels are doubly degenerate for [/1>0, Ey;;=E, _; ;but these
degeneracies are lifted by the couplings produced by the term b(p) (J2 — Jf,). The
couplings between levels with different quantum number v can be neglected, how-
ever, so that the final energies can be found merely by a second diagonalization of

a small matrix of dimension v + | with diagonal elements E",,,, = v=2,... -,
and off-diagonal elements

(v, LI b(p)(JE = T2) v, 1,0

From symmetry considerations it follows that this matrix, by a similarity trans-
formation, can be separated into two diagonal blocks of dimension v/, and v/, + 1
for even v and (v + 1)/2, both, for odd v.

Table 6. Expansion coefficients, a;, for the p-dependent functions of H (0), with mean deviation,
o, of fit. B=0.4191 cm~land 2= 2 A~ were assumed.in calculating a,(fg ) contributions. A
relaxation parameter, k (see Text), was assumed equal to 0 or —0.002 in evaluating set 1 and 2
respectively

49 a3 ag a2g a

B(p)/B (1) 0.994509 0.208556 0.024076 0.005200 6-107°
(2) 0.994508 0.206564 0.023956 0.005082

b(p)/iB (1) 0 0.042842 0.011200 0.004941 8-1073
(2) 0 0.042840 0.011287 0.004936

Cp)/12B (1) 0.987344 ~0.464042 0.187602 -0.034293 2-1073
(2) 0.987301 ~0.468941 0.190939 —0.035063

A(p)/B 1) —0.005582 -0.199494  -0.002592 —-0.009319 1-10—4
(2) ~0.077562 -0.186106 —0.007500 —-0.008388
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A detailed discussion of the symmetry properties of the state vectors is outside
the frame of the present example. From the form of # ™) it is evident that the sym-
metry group is the same as that applying to a rigid rotor®®~52:66 97 67) j o the Four

Group,
V(x, y,z)={E, C3,C%,C5} (5.38)

As for a rigid rotor, symmetry adapted eigenvectors of H' are formed by the Wang
transformation,

v, LJ, y={ly, LY+ (=D lv, =1 J)}\2
1>0,vy=0orl (5.39)
lv,0,J,0)=1y,0,J)

and these vectors may be assigned to the irreducible representations according to the
parities of /, J and 7. This means that the matrix elements of b(p)(J; — J;) are diag-
onal blocks as described above.

Another feature of the transformed coupling matrix is that diagonal elements
appear when [ = 1, since Eq. (5.35) gives

, 1,3, 71b(p) 02 = 2w, 1,4, vy = — %(—1)7J(J+ D, 1b(p)r, 1) (5.40)

provided p,p* =1 is chosen for the phase factors of Eq. (5.30). It is these diagonal
elements that give rise to /-type doubling corresponding to the two possible parities
of v, whereas the simplest case of /-type resonance occurs between the two levels
withp,y=2,0, I=0and 2.

5.6.3 Scaling and Truncation of the Basis

In defining the harmonic oscillator basis by Egs. (5.23)—(5.25) the problem of
scaling was postponed. Equation (5.27) shows that the three yet undefined param-
eters, D, E° and o, are interrelated so that they are all determined when anyone has
been given a value. A reasonable estimate is most easily obtained for the spacing E°,
which should be close to the mean spacing of the levels considered, in order to
minimize the dimensions of the Hamilton matrix. Thus, in the present example it
was found that with £° =80 cm™ the basis could safely be truncated at n = 39
corresponding to matrix dimensions 20 x 20 for the diagonal blocks of H'.

5.7 Numerical Results

In Ref.¥%) and 3% the experimental results were analyzed in terms of pure bending
frequencies and effective rotational constants. Similarly we may calculate the eigen-
values of H for J = 0, i.e. by omitting the two leading terms in Eq. (5.20), and
calculate expectation values of B(p), giving the effective rotational constants Begr,
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Table 7. Potential and rotational constants used in test calculations

| 11 11

Vo, em™! 144.0536 145.7329 138.3849

V4, cm—} 80.9077 75.5374 95.8967

Ve, cm™! . 66.1082 71.9498 57.9710

B, cm™! 0.41901 0.41903 0.41924

a, A1 2 2 2

Dy, em™! 0 1.93-10~7 1.93-1077
k 0 0 -0.002

Table 8. Rotational and vibrational constants (cm~1) in the electronic and stretching mode
g5 of C3

Bending Gv) Besrt. qy
level
r obs. calc. obs. calc, obs. cale.
0z - 0 0.4305  0.4305
1 1, - 63.05 0.4421  0.4426 0.0055  0.0057
2 =f 132.7, 132.68 [0.4520

7 2

Ag 13144  131.29 04519 ) 0.4535
3 1, 207.2;  206.97 0.4600 0.4611 0.0112  0.0104
4 % 286.5; 286.70 0.4675  0.4688
6 zg 4582 458.32 0.4807  0.4833

and of b (p) giving I-type doubling constants, g,,, for f = 1. The values calculated
from the parameters given as set [ in Table 7 are compared with the experimentally
derived quantities in Table 8. The agreement is excellent, considering the approxim-
ations involved when analyzing in terms of an effective rotation operator.

However, the theory may be subject to a more serious examination if we cal-
culate the J-dependence of the energy levels directly from the Hamilton matrix as
outlined in Sect. 5.6.2, i.e. we may diagonalize the individual J, -blocks of H” and
subsequently treat the /-type resonances by diagonalizing smaller matrices diagonal
inv.

Only few data are available for the bending states with v greater than three.
These have not been considered here, since we hereby gain the advantage that a
second diagonalization only involves a 2 x 2 matrix, with only a single coupling
element, e.g. forv=2,y=0

(2,4,0,005(p)(J2 ~J2)12,7,2,0)

to be evaluated.

The results of three such treatments are compared with experimental values in
Table 9, p. 166. The observed energy differences given here were determined by form-
ing appropriate combination differences between the directly observed electronic
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transitions. Therefore they appear as transitions with Raman selection rules, with
series corresponding to pure rotational Raman lines,

QSI,U,O(J) : |V,J+ 2, l, 'y)(— |V, J’ l’ ﬁy)
and vibration-rotation series,

QQuy o) : v+ 2,0, L, My« v, J, I 1
SQuo oD i lv+2, 71+ 2, < v, J Ly

v has been omitted from the series designation, since spin statistics establishes a
unique relation between the parities of J and 7. The three sets of deviations between
observed and calculated frequencies correspond to calculations based on the three
parameter sets of Table 7.

Thus calculation I was based on the same parameters as used in obtaining
Table 8. It is noted that the pure rotational energy differences, the QS,,‘,,O-series,
are reproduced excellently for low J-values, whereas increasingly negative deviations
appear with increasing J (the large deviations of the first members of the QSM 0"
series seem to be caused by extreme experimental errors). The discrepancies at high
J-values are even more pronounced when the vibrational differences, the Q,, ; ,-
series, are considered. However, it may also be noticed that the QQO,O,Z- and the
SQO,O,Z-deviations are nearly identical at given J. This means that the splittings of
the v = 2 states, enhanced by /-type resonance, are excellently reproduced. Similar-
ly we may compare the deviations in the two QQl,l,z-series exhibiting the effects
of I-type doubling (the two SQL 1,2-series, further split by /-type resonance, are not
experimentally available). Thus we observe that these effects are reproduced as well.

The deviations in the rotational series are of exactly the order of magnitude
expected for centrifugal distortion displacements (Sect. 5.5). Since the precision of
measurement is sufficient to make these perturbations clearly visible, it was decided
to investigate the centrifugal distortion operator discussed in Sect. 4.8.2.3 more
closely.

As suggested earlier we apply p-independent centrifugal distortion constants
which are derived from the partial derivatives, Bs('lg)’ atp=0. B§‘,) should be given
special consideration, however. From Table 3 we find that the derivatives can be
conveniently expressed using Dy = 4 B3/w?,

B =B{}) =~(2w,; D)'*

(5.41)
B{) =p? BSY = —36 (2 w, D)2

Notice, that B{Y has not been approximated by a constant. We proceed most easily
by applying the classical method. Thus the equation corresponding to equation
(4.67) reads

1 0H _ y2l,2, 2 1
Ea—ql—wlql—QwID_,)/ [Jx+.ly+36 J2+ JZ—Z /,,2
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from which we find the perturbation
2
Hep =Dy |22+ 36 (13+ (12 1) 1) (5.4)

This result indicates that the large deviations of the Qg ¢,,-series can be ex-
plained by our previous neglect of the product term

_72D, (Jg ¥ (Jf - %) /pz) T2 J3)
which reduces the effective rotational constants by

ABese =—72D; 0, 11T 3 + (JZ-!-%)/pz lv, 1) (5.43)

Forv =0, 2,4 and 6 this amounts to about —9 - 10~5, -3.3 - 104, —6.4 - 10~ %
and —1.02-10"3cm™!, and for a Qo,0,2(40)-difference we may expect a centrifugal
distortion displacement of —0.40 cm™!. Thus centrifugal distortion accounts for only
a little less then half the deviations, —0.96 and —0.100 cm™! at J = 40.

In calculation II the centrifugal distortion effects from the operator of
Eq. (5.42) were rigorously evaluated. It is seen that the rotational series, QS,, v, 0> are
very well reproduced. This is also the case for the °Q 1,1,2-series (at the rather low
J-values included) whereas the Qp ¢, ,-series still show significant systematic devia-

tions.
In the ordering scheme discussed in Sect. 4.8 centrifugal distortion and relaxation

effects are comparable in magnitude. Having found significant centrifugal distortion
displacements, it seems probable that the remaining deviations correspond to relax-
ation effects. :

To investigate this possibility, we introduce a dimensionless relaxation param-
eter, k, such that V§1) of Eq. (5.16) is given by
ViV =k (w}/8 B)'? ©(5.44)
The corresponding corrections, AB}? , calculated from Eq. (4.69) and Table 3 are,
MBS =Bkp? 2f' fTV2, MBS =Bkp? 9 f5% f7V7
ABY = Bkp® 18f5" V2, ABGy =Bkp® 36 %2

(5.45)

which were used in determining the expansion coefficients of the p-dependent terms,
Table 6.

A rough estimate of the effect of & in relation to the deviations of the Qg g,»-
series is found by considering the change in effective rotational constants, The dif-
ference, & Bess, between the v = 0 and the v = 2 constants, is changed by

A8 Begr = Bk 8(p?) = Bk 0.24, (5.46)
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s0 aiming at a shift in calculated frequency of about —0.40 cm™! atJ = 40 we find
that ¥ = —0.0024 might be a feasible value.

In calculation 111 a satisfactory fit to all the energy differences could be obtained
using the value k = —0.002. This corresponds to a relaxation of the bond length of

AR=0.0012p?R . (5.47)
or a lengthening of about 0.1% at 50°. This relaxation is so small that, from a chem-
ical point of view, we would say that the C,C bond length of Cj is independent of
the bending angle. The significance of the relaxation may also be questioned since

a change in the anharmonicity parameter, a, [Eq. (5.12)] from 2 8! t0 3.5 A1
gives an equally satisfying fit as obtained by introducing k. Thus a and & are highly
correlated and consequently it is impossible to make conclusive statements as to the
importance of relaxation. Although a = 3.5 A™! is somewhat outside the usual range
of values, we must recall that the bonding in C3 is unusual as well.

5.8 Conclusion

The main object of presenting this example was to illustrate how the theory is

applied in practice and to show that the theoretical predictions are in agreement
with experiment values. Hopefully the rather detailed evaluation has served the first

*V(cm")

600

500 /V=6
v
400} j

v=4
300 /
v=3

200= =2

100
Fig. 2. Potential function of the bending in
C3 with energy levels up to v = 6. The thick-

! p  ness of level lines indicate the magnitude of
20° 40° 60° I-splittings
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purpose. The latter goal has been reached if we may agree that the deviations of cal-
culation III in Table 9 are accidental. This should be possible since the weak indica-
tions of systematic errors in some of the series may just as well be ascribed to errors
of measurement,.

From the calculations we have in addition gained some new information about
C3. We may conclude that the equilibrium bond length of Cj; is

re = 1.2945 + 0.0005 + (0.0016 * 0.0010) p° A, (5.48)

where the uncertainties were estimated from the scattering of B-values in Table 7
with the preceding discussion of relaxation in mind.

Also the effective potential function is very well determined. The three sets of
V, constants in Table 7 varies considerably, but this only demonstrates the corre-
lation between the parameters. When the corresponding potential curves are examin-
ed, they are found to be so close that Fig. 2 can depict them all within the thickness
of drawing.

Calculations have not been made for the bending states with v = 4 and 6,
although there are experimental data available. The treatment could easily be
extended to these levels as well, but the additional information that might result is
scarcely essential. It would be much more interesting if more experimental data were
available for excited states of the stretching modes. At present only one number can
be extracted from the available data®® for comparison with the theory. That is
ofP) = 0.0048 cm™! obtained from the effective rotational constants of the »; and
2 v, states. This agrees very well with the value 0.00496 cm™! estimated from ex-
pectation values of the g.s.
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