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I I n t r o d u c t i o n  

Low-Frequency Vibrations in Small Ring Molecules 

It is well known that the mean-square amplitude of a molecular vibration in a given 
quantum state is inversely proportional to the product of the reduced mass and the 
frequency of the vibration. If it has both a small reduced mass and a frequency that 
is low because of small force constants, the resultant amplitude of vibration will be 
large. Among the modes of vibration that have small force constants are the inversion 
of pyramidal molecules, torsion about single bonds, bending of quasi-linear mole- 
cules, and the vibrations of ring molecules parallel to the axis of the ring. All but 
the last are discussed in other chapters of this volume; here we will be concerned 
with small ring molecules composed of light atoms, whose ring puckering vibrations 
have large amplitudes and hence cannot be treated by the addition of small terms 
of higher order to a quadratic potential system. 

Transitions between the vibrational states of low-frequency vibrations are di- 
rectly observable in the far infrared absorption spectrum or as low-frequency Raman 
shifts. The Boltzmann factors of these states are relatively large at room tempera- 
tures, even for fairly high values of the vibrational quantum number v. In addition 
the transition moments are substantially larger than those of  a harmonic oscillator 
for the same v's, and thus it is often possible to observe a long progression of tran- 
sitions either in infrared absorption or the Raman effect or both. When such ob- 
servations extend to levels above a barrier to inversion, the potential-energy curve 
or surface can be mapped with accuracy to points higher than the barrier and the 
barrier determined with an accuracy corresponding to that of the spectroscopic 
measurements. 

Since the potential-energy function for low-frequency vibrations involves weak 
force constants, the function is sensitive to intermolecular forces, which can reach 
comparable magnitudes to the intramolecular ones at short intermolecular distances. 
Thus in the liquid states the intramolecular levels are so seriously broadened as to 
make them difficult to observe, while in crystals the inversion barriers are drasti- 
cally altered. Thus the most meaningful spectra are necessarily observed in the gas 
phase, and this delayed the development of the subject until suitable far infrared, 
laser Raman and microwave techniques were developed, as summarized below. 

The experimental observation of ring-puckering motions was preceded by some 
insightful theoretical suggestions. Bell ~J recognized that the ring-puckering vibration 
in cyclobutane should have a large quartic term in its potential function, and Rathjens 
et al.2) proposed a double-minimum potential for this molecule which predicted a 
highly anharmonic set of levels for the ring puckering. Pitzer and co-workers a) also 
were led by studies of the heat capacity and entropy of cyclopentane to postulate 
an unusual relationship between the two components of the approximately degen- 
erate ring-puckering vibrations in that molecule. This relationship they termed 
"pseudo-rotation" because the successive displacements in the vibration give the 
appearance of a rotation of the distorted molecule. 

The first direct spectroscopic observation of the highly anharmonic nature of 
ring puckering in a small ring molecule was made by Danti 4), who found part of 
the progression for oxetane at 90-140 cm-1 in far infrared absorption. This work 
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was confirmed by the spectrum of oxetane-d6 s), and the nature of the isotopic 
shifts as well as the absolute values of the frequencies made it clear that the poten- 
tial function is nearly a pure quartic. Pseudorotation was not observed first in cyclo- 
pentane but in the analog oxolane (tetrahydrofuran) 6]. In the latter molecule there 
is a small barrier to pseudorotation, as is discussed in Section IV. B., below. Quan- 
titative measurement of the pseudorotational energy levels in cyclopentane, which 
confirmed the postulates of Pitzer et al. 3), was first made by means of combination 
bands in the mid-infrared by Durig and Wertz 7). 

Since this early work the theoretical and experimental aspects of low-frequency 
ring vibrations have grown rapidly. In the sections below we sketch briefly the ex- 
perimental methods developed to investigate ring molecules (Section II), review the 
theoretical basis for the interpretation of the spectroscopic data (Section 111), and 
give an illustrative survey of the applications of the theory to the special cases of  
individual molecules (Section IV). 

II E x p e r i m e n t a l  Me thods  

A. Far and Mid Infrared Spectroscopy 

Since the early far infrared work on ring molecules 4' s) there has been a considerable 
improvement in instrumentation, first in conventional grating spectrometers 8) and 
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Fig. 2.1. Far infrared spectrum of oxetanone-3. The Q-branch transitions are shown on the 
background of overlapped P and R transitions. P = 22 torr, pathlength = 30 cm. Absorption 
is plotted upward in this spectrum. 
|Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 3225 (1969).1 
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Fig. 2.2. Far infrared spectrum of oxetanone determined interferometrically. P = 48 torr, 
pathlength = 1 m. Absorption is plotted downward in this spectrum. 
[Reproduced from Jokisaari, J., Kauppinen, J.: J. Chem. Phys. 59, 2260 (1973)1 

later in Fourier-transform interferometers 9). Figure 2.1 shows the spectrum of  oxet- 
anone-3 recorded with a grating spectrometer l~ and Fig. 2.2 depicts the spectrum 
of  oxetane as computed from the scans o f  an interferometer 9). Both these spectra 
represent great improvements over those obtained in earlier studies s) and the quan- 
titative interpretation of  the spectra is correspondingly improved. For the details o f  
far-infrared instrumentation and techniques, the reader is referred to the monograph 
of  Moeller and Rothschild I t). 

In the mid infrared region, ring-puckering vibrations may be seen as combination 
and difference bands with another normal mode of  vibration, as was first shown by 
Ueda and Shimanouchi 12). The combination and difference bands for cyclobutane 

between the ring-puckering mode and the B2 deformation frequency near 1450 cm -~ 
are illustrated in Fig. 2.3, taken from Miller and Capwel113). All o f  the combination 
and difference transitions (except the first difference line) involve ring-puckering 
energy levels in both the excited state and the ground state of  the mid infrared nor- 
mal mode. Since the ring-puckering energy levels in the excited state of  the mid 
infrared normal mode may be different from those in the ground state, appropriate 
differences between the combination bands and difference bands must be taken to 

IOC 

%T 

CYCLOBUTANE 
A B 

i l i i i i i . . . . . . . . . . .  
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CM-1 

Fig. 2.3. Combination and difference band progressions involving the ring puckering vibration 
and a CH 2 scissoring mode in the mid-infrared spectrum of cyclobutane. 
IReproduced from Miller, F. A., Capwell, R. J.: Spectrochim. Acta 27A, 947 (1971).1 



L. A. Carreira, R. C. Lord, and T. B. Malloy 

obtain ring-puckering energy level differences between levels of  the same parity in 
the ground state of  the mid infrared mode. The symmetry of  the mid infrared mode 
should be such that the combination and difference bands yield type-c band contours. 
For most  C 2 v molecules the B2 ring-puckering mode will yield type-c sum and dif- 
ference bands when the mid infrared reference band has symmetry  Al. The reference 
band is usually seen as a polarized fundamental in the Raman spectrum. Combination 
and difference bands with fundamentals of  other symmetries are usually too weak or 
diffuse to be seen. Interpretation of  the sum and difference bands can often be com- 
plicated by many other weak bands in the same region. For this reason the combi- 
nation-difference band technique is usually used when no other technique is available 
to obtain the values of  the ring puckering energy levels. 

B. Raman Spectroscopy 

With recent advances in laser technology, Raman spectroscopy has become a powerful 
tool for the direct observation of  ring-puckering vibrational frequencies. Since the 
Raman signal in gases is extremely weak with respect to the exciting line, the use o f  
high powered lasers, monochromators  with low stray light, and efficient detection 
systems is necessary. The ring-puckering transitions with Av = 1 are usually not  totally 
symmetric and do not give rise to sharp Q branches in the Raman spectrum; on the 
contrary, the Raman lines of  these non-totally symmetric vibrations tend to have broad 
contours with no discernible fine structure. However, the Raman spectra of  small ring 
compounds show unexpected selection rules due to the very large amplitude of  the 
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Fig. 2.4, Ra~a_n spectrum o f  cyclopentene. 
[Reproduced from Chao, T. H., Laane, J.: Chem. Phys. Left. 14, 595 (1972).] 
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ring-puckering vibrations. Both mechanical anharmonicity and electrical anharmoni. 
city allow overtones of  the ring-puckering vibration (Av=2) to be observed even when 
the transitions with Av = 1 are too weak or diffuse to be observed. The overtone tran- 
sitions are always totally symmetric (or have a totally symmetric component) and are 
Raman allowed. Since the isotropic polarizability terms are nonzero and usually larger 
than the anisotropic, a sharp Q branch structure will be observed for the overtones 
and this allows the individual hot bands to be assigned. The overtone vibrations are 
farther removed from the exciting line so that interference from the Rayleigh line 
and the pure rotational envelope is minimized. 

Figure 2.4 shows the Raman spectrum of cyclopentene vapor 14) in which all the 
Q branches correspond to transitions with Av = 2. Many transitions with Av = 1 fall 
in this same spectral range but are too weak or diffuse to be identified. 

Since C-H stretching vibrations are very strong in the Raman spectra of  compounds 
containing C-H groups, the combination-difference band technique for determining the 
ring-puckering energy levels may be of use when the laser power is not sufficient for 
direct observation of the overtone transitions. Here the direct product of the symmetry 
of the C-H fundamental and the ring-puckering fundamental must belong to the totally 
symmetric representation. For the most common C2v case the symmetry of the ring- 
puckering vibration is B2 and therefore the ring-puckering sum and difference bands 
will have sharp Q branches when the reference C.H stretching mode has symmetry B2. 
The reference band will show a sharp Q branch in the infrared spectrum but will usu- 
ally be very weak or missing in the Raman spectrum. The use of  sum and difference 
combinations allows one to obtain ground state separations between the ring-puckering 
levels of  the same parity t2, 13). 

C. Microwave Spectroscopy 

The analysis of the microwave rotational spectra of  small ring compounds can provide 
valuable information about the nature of  large-amplitude ring-puckering potential 
functions. The type of information obtained may vary, depending on the potential 
function. 

4980 

B 4970 

4960 

V 

Fig. 2.5. Variation of the B rotational constant (in MHz) with ring-puckering vibrational state 
for oxetanone-3. Similar variations are found for the A and C rotational constants. 
[Reproduced from Gibson, J. S., Harris, D. O.: J. Chem. Phys. 57, 2318 (1972).] 
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Due to the large amplitude of vibration, a significant contribution to the effective 
rotational constants may be made by the ring-puckering vibration. For the simplest 
case, that of a molecule with a single-minimum potential function, the rotational 
spectra for low J transitions may be fitted with a rigid-rotor Hamiltonian. Since the 
vibrational frequency is low, rotational transitions in a number of excited states of 
the ring-puckering vibration may be observed. As opposed to the linear dependence 
on vibrational state expected for a small amplitude vibration, the dependence for a 
large-amplitude mode may exhibit curvature. This is shown in Fig. 2.5 for oxet- 
anone-3 is). The curvature yields information on the aharmonicity of a single-mini- 
mum potential function. 

The variation of rotational constants with ring-puckering vibrational state is very 
sensitive to the presence of a barrier at the planar conformation. This is shown for 
cyclobutanone 16) and methylenecyclobutane ~7) in Fig. 2.6. The presence of a very 
small barrier, ca. 7.6 cm-t  in the case of cyclobutanone, causes deviation from a 
smooth variation for the lower levels. In the case of methylenecyclobutane, a very 
pronounced zig-zag of the rotational constants is observed due to the presence of 
a 140 cm- t barrier. The dependence of the rotational constants on vibrational state 
may be used quantitatively to determine the shape of the potential function as 
discussed in subsequent sections. 

In addition, for molecules with double-minimum potential functions where vi- 
brational levels coalesce to form inversion doublets, the microwave data may yield 
very accurate values for these small vibrational spacings. The microwave rotational 
spectrum in these states may deviate significantly from that expected for a rigid- 
rotor model. Since the vibrational energy spacing for this pair of levels is no longer 
much greater than rotational energy spacings, it is not always possible to separate 
the vibrational and rotational Hamiltonians. An energy level diagram for the inver- 
sion doublet in trimethylene sulfide is) is shown in Fig. 2.7. The vibrational spacing, 

._r 
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S 

V 
+ 1 0 0  ~ . . . .  5 , 

O. 

- 1 0 0  

Fig. 2.6. Variation of the A rotational constants (in MHz) with ring-puckering vibrational state 
for cyclobutanone and methylene-cyclobutane. 
[Reproduced from (A) Scharpen, L. H., Laurie, V. W.: J. Chem. Phys. 49, 221 (1968); 
(B) J. Chem. Phys. 49, 3041 (1968).1 
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Fig. 2.7. Interactions between rotat ional  levels in the v = 0 and v = 1 states of  t r imethylene 
sulfide. 
IReproduced from Harris, D. O., Harrington, H. W., Luntz ,  A. C., Gwinn,  W. D.: J. Chem. 
Phys. 44, 3467 (1966).1 

8232.5 MHz (ca. 0.27 cm - t )  is quite small, in the microwave region. The interactions 
between rotational levels which are allowed by symmetry are shown by dashed lines. 

A recent review of ring-puckering vibrations with emphasis on the theory and 
applications of microwave spectroscopy has appeared. The reader is referred to this 
work for further details 19). 

I I I  T h e o r e t i c a l  Basis fo r  I n t e r p r e t a t i o n  o f  the  Spec t ra  

A. Introduction 

In this section, we outline a procedure for obtaining a Hamiltonian for the treatment 
of low-frequency vibrations in molecules. We do this, in particular, to point out the 
justification for some of the Hamiltonians used in the past and to make clear the na- 
ture of the approximations involved in arriving at a specific Hamiltonian. Since there 
is danger of overinterpreting the results obtained from approximate Hamiltonians, 
we indicate some of the pitfalls in doing so. 

The emphasis in this section is on the form of the kinetic energy operator. The 
choice of potential energy functions is considered in Section IV dealing with specif- 
ic molecules. Emphasis is also placed on treatment of  the vibrational data since a 
review emphasizing treatment of microwave data for ring puckering has appeared 
recently ]9). 

We start by writing the classical kinetic energy expression for a non-linear 
molecule in a center-of-mass coordinate system. No distinction is made between 
small and large vibrational coordinates at this stage. We then rewrite the expres- 
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sion in a form suitable for obtaining the quantum mechanical kinetic energy oper- 
ator. At that point, approximations are made to simplify the Hamiltonian and then 
we proceed to the treatment of the large-amplitude ring vibrations in molecules. 

B. The General Hamiltonian 

The kinetic energy for a molecule in a center-of-mass coordinate system may be written 
a s  

I X tO 

2T -- (tot, /l t) X t Y il 

where t denotes transpose. In this equation, for a nonlinear molecule of N atoms, 
to is a 3-dimensional column vector of the angular-velocity components of the molecule- 
fixed coordinate system relative to a system whose orientation is fixed in the laboratory. 
The time derivatives of the vibrational coordinates form the 3N-6 dimensional column 
vector/1. I is the 3 x 3 dimensional instantaneous inertial tensor, 

�9 lxx - Ixy  - Ixz ,  

\ --Izx --Izy 

N 
2 (3.3a) Ikk= ~ ma(r  a . r  a - r a k ) ;  k = x , y o r z  

~ = 1  

N 
Ikk '= ~ marakrak,;  k ~ k '  (3.3b) 

c t = l  

where 

ma = mass of the a ' th  atom 
r~ is the coordinate vector of  the a ' th  atom in the center-of-mass system 
rak denotes the k ' th component of the a ' th  vector. 

Y in Eq. (3.1) is (3N-6) x (3N-6) with elements defined by 

Yij = ~ ma 
Or = 1 ~'~)qi / ~,aqj / 

(3.4) 

X is 3 x (3 N-6) with elements defined by 

Xki= ~ m a r a x ~ t q  i / j k  
~ = 1  

(3.5) 

10 
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where k denotes the k'th component of the cross product. Expanding Eq. (3.1) we 
obtain 

2T = Z lkkCO 2 --  ~ lkk'r162 
k k,k' 

(3.6) 

+ ~ ~ Yij/h/lj + 2 ~ ~ Xik~ok q i 
i j k i 

where k,k' = x, y, or z; and i, j run over the vibrational coordinates. 
The first two terms are pure rotational terms, the third a pure vibrational term, 

and the last a Coriolis term. The partitioning of the energy between the pure rota- 
tional terms and the Coriolis term depends on the choice of the rotating axis system 
used to describe the problem 18-22). 

In order to obtain a quantum mechanical kinetic energy operator, a momentum 
representation of the kinetic energy is required. If coordinates are chosen having con- 
jugate momenta 

and 

where P is a 3-dimensional vector of angular momentum components and p is a 3N-6- 
dimensional vector of the momenta conjugate to q, the momentum representation 
of the kinetic energy is obtained simply by inverting the 3 N-3 x 3 N-3 matrix 
appearing in Eq. (3.1): 

-1 , x) (P) 
2T = (pt, pt) ( X  t Y P (3.9) 

The 3 N-3 x 3 N-3 matrix in Eq. (3.9) is hereafter referred to as the rotation-vibra- 
tion G matrix. Transformation to the correct quantum mechanical from according to 
Kemble 23) yields 

2T = g l / 4  ~ ~ p k g - l / 2 g k k , P k , g l / 4  
k k '  

+ gl/4 ~, ~, pig-U2gijpigl/4 
i j 

+ gl/4 ~ (Pkg-U2gkiPi+pig-U2gikPk) g U4 
k i 

(3.10) 

11 
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where k,k' = x, y or z and i, j run over the vibrational coordinates. In this equation, 
gmn denotes the appropriate element of the rotation-vibration G matrix [Eq. (3.9)] 
and g is the value of its determinant. The Pk are the components of the quantum me- 

chanical angular momenta and the Pi the vibrational momentum operators h 
i 3qi 

In general, g and the gmn may be functions of the coordinates and thus may not 
commute with the momenta. The three terms are identified, as before [Eq. (3.6)], 
as the kinetic energy of pure rotation, pure vibration and vibration-rotation inter- 
action, respectively. 

In principle, it is possible to choose a rotating axis system and evaluate numeri- 
cally the coordinates and coordinate derivatives required to compute the elements 
o f l ,  X and Y [Eq. (3.1)] for a given dynamical model. By doing this for a grid of 
values of the 3N-6 vibrational coordinates and obtaining the vibration-rotation G 
matrix by inversion of the G- l matrix at each grid point, we may obtain a rather 
complete description of the vibration-rotation kinetic energy [Eq. (3.9)]. By express- 
ing the gmn, gl/4 and g-U2 in multidimensional Taylor series or mixed Taylor- 
Fourier series, an accurate quantum mechanical kinetic energy operator could be 
written for the dynamical model used and for the particular choice of rotating axes. 
As pointed out by Gwinh and Gaylord 19), the solutions of the eigenvalue problems 
associated with a vibration-rotation problem do not and m u s t  n o t  depend on the 
choice of the rotating axis system as long as an adequate Hamiltonian is used. What 
do depend on the axis system used are the numerical values of elements of the inertial 
tensor or vibration-rotation interaction constants determined from analysing the data. 

For all but the smallest molecules, the procedure outlined in the previous para- 
graph is impractical. If we can locate or approximate the vibrational band origins from 
the experimental data, simplifications result. We then treat the J = 0 states in which 
case all terms in Eq. (3.1) involving rotational angular momenta vanish. Rewriting the 
pure vibrational term we obtain the vibrational kinetic energy Tv: 

2Tv = E Y~ PigiiPi + 2V'(q) (3.11) 
i i 

The term V'(q) has been referred to as a "pseudopotential" term because it lends 
itself to expansion in a Taylor (or Fourier) series in the vibrational coordinates and 
may be absorbed into the effective potential. V'(q) is given by 

V'(q) h: E X( /Olng' ] 

+ h2 (gij /01ng]  ( b l n g ] ]  

(3.12) 

The total vibrational Hamiltonian is then given by 

H ~ -  I12 a a 
2 Ei- y~j~-qi gij --Oqj + V'(q) + V(q) (3.13) 
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where V (q) is an appropriate potential energy function in the 3 N-6 vibrational coor- 
dinates. 

At this point we introduce approximations to obtain a Hamiltonian appropriate 
for treating the large amplitude modes. We first consider the high-frequency small- 
amplitude vibrations. Several simplifications occur as a direct result of the small vibra- 
tional amplitude. First, the potential energy expansion may be truncated after the 
harmonic terms Without serious error. Secondly, the G matrix elements corresponding 
to the small-amplitude modes may be taken to be constant and thus commute with the 
momenta. Thirdly, the pseudopotential terms corresponding to these coordinates may 
be neglected or simply considered as making a very small contribution to the effective 
force constants. 

There are several pos~sible approaches to simplifying the vibrational Hamiltonian 
given by Eq. (3.13). Some of these will be outlined here. The first approach consists 
of removing the harmonic potential energy cross terms and the kinetic energy terms 
by the equivalent of a normal coordinate transformation. We define a new set of coor- 
dinates Q 

q = L Q (3.14) 

such that the resulting vibrational Hamiltonian is given by 

Hv- h2 3~-6 02 
2 i=1 0Qi 2 +Veff(Q) (3.15) 

Veff (Q) is the effective potential function including contributions from the pseudo- 
potential [V'(q) in Eq. (3.13)] as well as contributions from the kinetic energy due to 
the fact that the transformation (3.14) is nonlinear. The effective potential has no 
cross terms of degree less than cubic by the definition of the transformation L. In 
general, the elements of L are functions of the 3N-6 vibrational coordinates because 
the gij [Eq. (3.13)] are functions of the coordinates. However, in some cases, the gii 
are rigorously constant, while for other small amplitude coordinates they are effective- 
ly constant over the range of values accessible to the coordinate. Consequently, the 
elements of L are generally functions of the large-amplitude coordinates only. 

Once Eq. (3.15) has been reached, it is generally possible to separate the small- 
amplitude (harmonic) modes from the large-amplitude modes and treat any remaining 
anharmonic coupling terms by perturbation methods. The resulting small-amplitude 
vibrational Hamiltonian is given by: 

1 aN-M-6 02 
= Z - h  2 2 Hs.A. ~ , J = l  0Q~ +XjQj (3.16) 

where ~,j = 47r2v~ and M is the number of  large-amplitude modes. The ;kj's contain con- 
tributions from anharmonic interactions with the large-amplitude modes and diagonal 
terms higher than harmonic have been neglected. 
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The large-amplitude Hamiltonian is then given by: 

HL.A. h 2 ~ ~2 
- 2 m = 1 ~--~rn + Veff (Qm) (3.17) 

The effective potential contains contributions from anharmonic coupling terms with 
the small-amplitude coordinates which may be absorbed into the effective potential 
constants for the large.amplitude vibrational coordiantes. Equation (3.17) or some 
variation thereof has commonly been used to treat the data for large-amplitude modes. 
It has the distinct advantage that precise a priori knowledge of the dynamical path of 
the large-amplitude modes is not required to treat the spectral data. It has the disad- 
vantage that the physical meaning of the coordinates is somewhat obscured by the 
procedure which has been used to derive them. 

A number of Hamiltonians related to Eq. (3.17) by linear transformations have 
been used. For example, coordinates which are not mass weighted so that an effective 
mass appears explicitly have been used, as have a number of reduced or dimension- 
less coordinates. The relationships among various coordinates have been discussed 
by Laane 24) and by Gibson and Harris Is). 

Another approach to separation of the large- and small-amplitude modes is appli- 
cable when the kinetic and potential energy coupling terms between these modes are 
small. In such cases, a Van Vleck transformation may be used 23). The effective kinetic 
energy operator for the large-amplitude modes then becomes 

h ~ M M ~ 3N-M-6 <ni l~- -~  ] hi>2 

2 m ~ /~ ~ gml+2~ml  ~ g2mi a T~ff-  
i= I nf En i - En i' ~qt 

(3.18) 

where some small pseudopotential terms have been neglected. In this equation, m and 
l run over the large-amplitude coordinates and i over the small-amplitude coordinates. 

ml is the Kronecker delta and n i is a quantum number for the i'th small-amplitude 
mode. It should be noted that the gmt and gmi may be functions of the large-ampli- 
tude coordinates. 

Similarly, the potential energy cross terms may be removed. If we write the total 
vibrational potential energy 

V(q) = Vs(qs ) + VL(qL) + ~ fs(qs) fL(qL) (3.19) 
C f O ~  
t e r m s  

where qs denotes the manifold of small-amplitude coordinates and qL the large-ampli- 
tude coordinates, then a second order Van Vleck transformation yields an effective 
large-amplitude potential given by 

VL (qL) + s / <n~l f~(qs)L n~> fL (qL) + ~' <nsl f~(qs)lnr f~ (qL) Vaf(qL) 
tcer~mSSs/ ns' Ens -- Ens' (3.20) ) 
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Normally, the fs(qs)need not be carried past harmonic terms due to the small ampli- 
tudes of vibration. It is seen that the small-amplitude coordinates contribute to the 
effective potential constants in the large-amplitude coordinates. 

The effective kinetic and potential energy functions, Eq. (3.18) and (3.20), may 
still have cross terms between two or more large-amplitude modes. The kinetic energy 
and harmonic potential energy cross terms may be removed by the equivalent of the 
nonlinear transformation given in Eq. (3.14) over only the large-amplitude modes 
leading to the same large-amplitude Hamiltonian as in Eq. (3.17). Alternatively, if 
the cross terms are small enough, the Van Vleck perturbation formulas may be used 
to remove cross terms between large-amplitude coordinates. Appropriate choices of 
large-amplitude coordinates, e. g., polar coordinates for pseudorotation, may facili- 
tate this separation of variables. 

These procedures are rather cumbersome, but yield a mechanism by which the 
dependence of potential functions of large-amplitude modes on the vibrational quan- 
tum numbers of small-amplitude modes may be rationalized. They also furnish a 
procedure by which the potential functions may be extrapolated to a "vibrationless" 
state if sufficient data on the vibrational dependence of the potential functions are 
obtained. 

The last procedure to be considered is the simplest. This is analogous to the sepa- 
ration of high and low frequencies given by Wilson, Decius and Cross 2s) for small- 
amplitude vibrations. In this procedure, cross terms in the potential energy between 
modes of large and small amplitudes are simply neglected. In order to obtain a kinetic 
energy operator for the large-amplitude modes, only these modes are included in cal- 
culating the vibration-rotation inverse G matrix, Eq. (3.1). If we wish to use the Hamil- 
tonian given by Eq. (3.13) in that form, it is then necessary to determine the gii and 
pseudopotential as functions of  the large-amplitude coordinates. What is required is 
to calculate the coordinate vectors and their derivatives for each atom in a center-of- 
mass system for a grid of values of the large-amplitude coordinates. At each grid point, 
Eqs. (3.2) to (3.5) are used to calculate the G-1 matrix, and the G matrix Eq. (3.9) 
is obtained by inverting the G- ~ matrix. The determinant of G as well as the appro- 
priate G matrix elements may be expressed as Taylor or mixed Fourier/Taylor series 
and used to form the Hamiltonian Eq. (3.13). 

The above calculations require assumption of a dynamical model for the large- 
amplitude modes. A much simpler model is to use a constant-reduced-mass Hamil- 
tonian similar to that given by Eq. (3.17). This is by far the most common procedure. 
It may be justified by considering a molecule with a single large-amplitude mode such 
as a ring puckering. If x is the ring-puckering coordinate, we may define Qx by a non- 
linear transformation 

Qx = f [gxx (x) ]- 1/2 dx (3.21 ) 

where gxx(X) is the ring-puckering G matrix element expressed as a function of the 
coordinate l 8) This leads directly to the Hamiltonian of Eq. (3.17) for a single large- 
amplitude mode. While this procedure is the most straight-forward, there is no direct 
mechanism by which the coupling of  large- and small-amplitude vibrational modes 
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may be taken into account. The existence of  such coupling is observable in com- 
bination bands in the mid infrared or Raman spectrum that  involve both high-fre- 
quency and large-amplitude modes; excitation of  one or more quanta of  the former 
leads to slightly different effective potential functions for the latter. This will be 
discussed later in more detail. 

C. One-Dimensional Hamiltonians 

1 Symmetrical Potential Functions 

Four-membered ring molecules have one out-of-plane ring vibration, usually referred to 
as the ring-puckering vibration. In saturated four-membered rings this mode usually has 
the lowest frequency. It may have a large amplitude and be quite anharmonic. A one- 
dimensional Hamiltonian may be used if the coupling with the small-amplitude modes 
may be neglected or absorbed into the effective Hamiltonian. The most common one- 
dimensional Hamiltonian used to interpret the spectral data for one-dimensional ring 
puckering with symmetrical potential functions has been 

H= h2 d2 
+ ~- ~4 + ~--$2 (3.22) 

2/a d~  2 

where ~ is a ring-puckering coordinate, the bar indicating that the reduced mass is 
assumed to be constant, and/3 is the associated reduced mass evaluated for a infini- 
tesimal displacement from the planar conformation.  Figure 3.1 indicates one possible 
definition of  the ring-puckering coordinate ~ ,  for cyclobutane, as half  the perpendic- 
ular distance between ring diagonals. Implicit in the use of  Eq. (3.22) is the nonlinear 
transformation that removes the coordinate dependence of  the reduced mass and ab- 
sorbs the pseudopotential terms into the effective potential constants, as well as any 
zero-point vibrational averaging over the other modes of the molecule. 

The potential function in Eq. (3.22) is remarkably simple. Nevertheless, it is appli- 
cable to the description of a variety of  molecular systems. For a = O, b > 0 it represents 
a harmonic oscillator; for a ~> 0, b = 0 a quartic oscillator; for a > 0, b > 0 a single mini- 

Fig. 3.1. One possible definition of a ring-puckering coordinate for four-membered ring mole- 
cules as half the perpendicular distance between the ring diagonals. 
IReproduced lu Malloy, T. B., Jr., Lafferty, W. J.: J. Mol. Spectroscopy 54, 20 (1975).1 
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mum quartic-quadratic oscillator; for a > 0, b < 0 a double minimum oscillator with a 
barrier height given by b2/4a. 

Except for the obvious case of the one-dimensional harmonic oscillator (a = 0), the 
solutions to the Schr6dinger equation corresponding to the Hamiltonian of Eq. (3.22) 
cannot be given in closed form. Several numerical techniques have been used, including 
application of the linear variation method with a truncated harmonic oscillator basis 
set and various numerical integration techniques 26). There are advantages and disad- 
vantages for each of the techniques used. While the numerical solution of the Schr6din- 
ger equation for ring-puckering problems was not a routine matter fifteen to twenty 
years ago, with today's digital computers it has become so. The relative speeds of  the 
various techniques now result in differences of a few seconds or fractions of seconds 
of computer time in the treatment of one-dimensional Hamiltonians. 

Historically, the most common technique used has been the linear variation method. 
In this procedure, the wave functions are expressed as linear combinations of harmonic- 
oscillator basis functions 

n 

qJm = ]~ tim~bi (3.23) 
i = o  

where ~m is the wave function corresponding to Em, the m' th level. The qh are appro- 
priate Hermite functions and n represents the highest quantum number attained before 
truncation. Since this is an orthonormal basis, application of the linear variation method 
corresponds to finding the eigenvalues of the Hamiltonian matrix, with elements defined 
by 

Hik = fq~jHqSkd2 (3.24) 

where H is the operator given in Eq. (3.22). Formally, the variation approximation to 
the energy eigenvalues is given by 

A E = TtH T (3.25) 

where the elements of T appear in Eq. (3.23). Considerable reduction in the computer 
time may be achieved by factoring the matrix into even and odd blocks which reduces 
the computer time by approximately a factor of  four. The basis set may then be repre- 
sented by 

11 even 

t~g en= ~] tim~b even (3.26a) 
i=o 

n odd 
~ d  = ]~ ti,m,~b~dd (3.26b) 

i ' =  1 

In addition, the number of basis functions required to obtain a satisfactory represen- 
tation depends on the choice of the harmonic frequency for the basis. Stated in an- 
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other way, the harmonic oscillator basis functions used should have appreciable ampli- 
tude over a range of values of the coordinate corresponding to that for which the de- 
sired wave functions ~m have appreciable amplitude 27). 

It is obvious that if the harmonic frequency chosen is too high, so that the classical 
turning points for the highest functions used are inside the classical turning points of 
the highest level desired accurately, it will not be possible to synthesize a satisfactory 
wave function for this level. Correspondingly, if the harmonic frequency is too low, a 
larger number of basis functions will be required to eliminate unwanted amplitude at 
values of the coordinate outside the classical turning points. Reid 28) pointed out that 
problems of this nature had caused truncation errors in the treatment 29) of the quartic 
oscillator some years earlier. The discrepancies were not serious in the eigenvalues, but, 
as might be expected, were more noticeable in the values of the matrix elements of the 
operators x 2 and x 4. As pointed out by Reid, the convergence of the expansions, 
Eqs. (3.26a, b) is a slowly varying function of the harmonic scale factor and it is prob- 
ably not worth treating this as a variation parameter. Carreira, Mills and Person 3~ have 
given a rule of thumb by which they choose the harmonic frequency so that the clas- 
sical turning points of the basis set for the highest level used correspond to the classi- 
cal turning points at approximately twice the energy of the last level for which an 
accurate eigenvalue is desired. 

Typically, the above considerations are less compelling for one-dimensional prob- 
lems since the choice of a less than optimum scale factor can be compensated by 
simply using more functions. The number of basis functions required depends on the 
number of levels for which accurate eigenvalues and eigenvectors are desired and on 
the nature of the potential function. Usually the number of eigenvalues required lies 
between about 10 and20. If the potential function is a single-minimum function and 
a judicious choice of scale factor is made, 40 basis functions (20/symmetry block) are 
more than sufficient. On the other hand, the number required for a double-minimum 
potential function depends on the barrier height, a larger number being required for 
a higher barrier. For barriers up to 2 -3  kcal/mole in ring-puckering problems, between 
50 and 70 basis functions (25-35/block) have proved to be sufficient. One exception 
to this arises when the spacing between the levels of an inversion doublet below the 
barrier is required to a high degree of  accuracy. 

Most of the variation calculations done up to about 1965 used the Jacobi diago- 
nalization method 31) for finding the eigenvalues and eigenvectors. In this method, if 
70 basis functions were used, all 70 eigenvalues and eigenvectors were found and then 
arranged in order of increasing energy. More recently, in numerous applications, the 
Givens-Householder method 31) has been used. Since it is possible to generate the eigen- 
values in increasing order, only those eigenvalues which are desired are found, their 
eigenvectors generated and the process terminated. Since 10-20 eigenvalues, rather 
than 60 -70  are typically generated, a significant reduction in computer time is realized. 
This is over and above the fact that the time required for the Givens-Householder diago- 
nalization is generally less than that of  the Jacobi technique even when all the eigen- 
values and eigenvectors are generated by both methods. The efficiency of this method 
of calculation, while perhaps less than that of the Numerov-Cooley numerical integra- 
tion, is quite good 26). Typically, fitting vibrational data up to the 15'th excited state, 
performing three cycles of a least squares iteration and calculating intensities etc., 

18 



Low-Frequency Vibrations in Small Ring Molecules 
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Fig. 3.2. Variation of the eigenvalues for the potential/'unction V(Z) -- Z 4 + BZ 2 vs. B. 
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 47, 4941 (1967).] 

with 70 basis functions required c a .  8 seconds of computer time on a Univac 1108 com- 
puter. 

One set of reduced coordinates used leads to a Schr6dinger equation 

d2~ + A(Z 4 + BZ2)~ =AX~ (3.27) -A -d-- ~ 

where x = (h 2/2/a~-) 1/6Z and E = AX. Figure 3.2 shows the variation of the eigenvalues 
;k with B for B < 0. The limit as B becomes large and positive would be a harmonic oscil- 
lator. As B becomes more negative, the levels below the reduced barrier (given by B2/4) 
coalesce into pairs of inversion doublets as shown in Fig. 3.2. Laane 24) has published 
tables of eigenvalues for a grid of values of B. These have been very useful for making 
assignments and obtaining initial estimates of the potential constants from ring- 
puckering vibrational data. 
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2 Reduced-Mass Calculations 

In the interpretation of the spectral data it is usually the constants A and B in Eq. (3.27) 
or some other set of reduced potential constants that are evaluated. The barrier height, 
AB2/4 for B < 0, is thus determined directly. However, if one wants to relate the value 
of the dimensionless parameter !Z I at the minimum of a double-minimum potential func- 
tion to the absolute geometry of the puckered ring, the reduced mass must be known in 
order to find ~ from I Z I. One is then required to introduce assumptions about the dy- 
namical model of the ring-puckering motion. 

For cyclobutane, the motion of the four carbon atoms is relatively unambiguous. 
We first assume we can neglect bond stretching as the molecule puckers. Secondly, we 
require that the non-bonded C.-.C distances change symmetrically. For a molecule like 
trimethylene oxide, the choice is not so clear. Gwinn and co-workers 32) have def'med 
a parameter co, which expresses the relative amount of  bending about the C...0 diagonal 
and the C-.-C diagonal. First a parameter p is defined 

p = A ( c . . . o )  2 / z x ( c . . . c )  2 (3.28) 

where A(C..-0) 2 and A(C..-C) 2 are the respective changes in the squares of the non- 
bonded C...0 distance and the non-bonded C.-.C distance. Then co is defined as 

co = (1 - p)/(1 + p) (3.29) 

and varies between + 1 and - 1. The value co = + 1 corresponds to the ring bending about 
the C..-0 diagonal along while the value co = - 1 corresponds to bending about the C-.'C 
diagonal. The value w = 0 corresponds to symmetrical bending about each diagonal, as 
in cyclobutane. 

Model calculations to reproduce the variation of rotational constants with vibration- 
al state are sensitive to the value of co. Thus an approximate value may be determined 
from them that yields experimental information about the dynamics of the vibration. 
If  the Hamiltonian with variable reduced mass is used, the dependence of the reduced 
mass on coordinate will be a function of co. On the other hand, if the constant effective 
mass model is used, the reduced mass can be evaluated from Eqs. (3.1) to (3.10) for 
an infinitesimal displacement from the planar conformation. The constant effective 
reduced mass derived in this fashion is independent of co, and thus, no knowledge of 
~o is needed to use the Hamiltonian Eq. (3.22); conversely, no information about the 
value of co can be determined from the vibrational data and Eq. (3.22). 

Probably the most serious source of uncertainty in calculating a reduced mass con- 
cerns the details of the motion of CH2 groups during the puckering vibration. Usually, 
there will be one or more CH2 rocking modes, only a factor of  three or so higher in 
frequency than, and of the same symmetry species as, the ring puckering. This means 
that quadratic kinetic energy and potential energy interaction terms will enter into the 
Hamiltonian. These terms, more than any others, lead to different forms for the ring- 
puckering coordinate for isotopic species. The details of  the motion of CH2 groups 
during the ring-puckering vibration can have a large effect on the reduced mass for this 
motion. A bisector model, i. e., one in which the H-C-H angle remains constant and 
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shares a common bisector with the adjacent ring angle seems to work reasonably well 
for trimethylene oxide. The quartic terms in the potential are quite reasonably pre- 
dicted for various isotopic species by this model as discussed below for trimethylene 
oxide. On the other hand, Stone and Mills 33) found that the reduced-mass ratio cal- 
culated for cyclobutane-d s and cyclobutane for a bisector model, 1.549, underesti- 
mated the isotopic shift. They empirically adjusted this ratio to 1.641 to obtain better 
agreement with the experimental results. Malloy and Lafferty have discussed this point 
in some detail 2v). 

To summarize, uncertainties in the form of the puckering coordinate can cause 
uncertainties in the calculated reduced masses which may lead to errors of  several 
degrees in determination of the puckering angle corresponding to the minimum. The 
use of  a variable-reduced-mass Hamiltonian [Eq. (3.14)] rather than the constant- 
reduced-mass Hamiltonian [Eq. (3.15)] has a minor effect. If  the same dynamical model 
is used, differences in the calculated angles are generally less than a degree. Malloy and 
Lafferty 27) also considered the effect of  errors in the structural parameters and found 
them to be quite negligible, assuming the errors were not more than 'x, 5 ~ in a bond 
angle or 0 .03-0 .04  A in a bond distance. 

3 Asymmetric One-Dimensional Hamiltonians 

In the previous sections, we have been considering ring molecules for which the odd- 
power terms in the ring-puckering potential functions must vanish by symmetry. For 
molecules like mono-substituted cyclobutane derivatives, symmetry no longer dictates 
that these terms are zero. Consequently, through fourth degree, the constant-effective- 
mass Hamiltonian analogous to Eq. (3.25) is given by 

H -  h2 d 2 + ~ 4 + l ~ x  2 + ~ 3 + d x  (3.30) 
2/] d~ 2 

where/J is the reduced mass evaluated for infinitesimal displacement from the coor- 
dinate zero, taken as the planar ring conformation. However, a Hamiltonian which 
represents the same system and has fewer adjustable parameters is obtained by trans- 
lating the origin by an amount 6to correspond to an extremum of the potential func- 
tion, that is, by the transformation ~ = ~ + 6 : 

h 2 d 2 
H - + ~g4 + i~x 2 + Eg3 (3.31) 

2/a dx 2 

The dimensionless analog of this equation [see Eq. (3.27)] is 

( d2 ) 
H = A  - - -  +Z  4 + B Z  2 + C Z  3 (3.32) 

dz 2 

In fitting vibrational energy separations, Eq. (3.32) or an equivalent reduced equation 
is used. 
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The calculation of the equilibrium value of the dihedral angle for a puckered 
unsymmetrical ring from the potential function is not straight forward, as it is in the 
symmetrical case. Because of the lack of symmetry there is no way a priori of deter- 
mining the conformation at the point of minimum energy (Z = 0), or the value of 
Z for the planar ring. Thus in the treatment of asymmetric ring molecules, the roles 
played by vibrational spectroscopy and microwave spectroscopy are truly comple- 
mentary. Since the unscaled potential function in Eq. (3.32) has two adjustable 
parameters and since odd power terms are no longer excluded from the microwave 
rotational constant expansions, there are too many parameters to be specified by 
microwave data alone. Consequently, determination of  the potential energy func- 
tion in reduced coordinates has customarily been done by fitting transitions observed 
in the far-infrared or Raman spectra or both. On the other hand, the microwave data 
must be used to characterize the conformation or conformations corresponding to 
the minimum or minima in the potential function. The structure of the lowest energy 
conformer, if determined, may then be used as the reference point in the calculation 
of the reduced mass. 

For purposes of comparison, it is possible to classify the various types of poten- 
tial functions which may be represented by the functional form used in Eq. (3.32) 
with a few simple considerations. The restrictions we shall make are always to locate 
the origin in the minimum, or if more than one, in the deepest minimum; second 
minima or inflection points are restricted to negative values of the coordinate Z; 
and the positive values of Z always represent the most rapidly rising portion of the 
function. These restrictions do not eliminate any unique shape of potential function. 
Any other functions described by Eq. (3.32) are related to those already included 
by a simple translation of the origin or by rotation about the vertical axis. These 
operations, at most, change the eigenvalues by an additive constant. The different 
types of  potential functions are summarized in Table 3.1. 

It is a simple matter to restrict the potential functions as mentioned above. 
First, the parameter A [Eq. (3.32)] is simply a scale factor and need not be considered 
further. If  both B and C, the respective coefficients of Z 2 and Z a, are restricted to 
positive values, the origin will be a minimum and second minima or inflection points, 
if present, will occur for negative values of  Z. If we make the further restriction that 
9C2< 36B, the origin will be in the deepest minimum. The case 9C 2 = 36B repre- 
sents a symmetric double minimum potential function with the origin in the right 
well. 

With the above in mind, all asymmetric double-minimum potential functions 
represented by Eq. (3.32) may be described with parameters in the range 
36B > 9C 2 > 32B. The maximum occurs at 

Z = ( - 3 C  + ~/9C 2 - 32B)/8 

and the second minimum at 

Z = ( - 3 C  - ~/9C 2 - 32B)/8. 

For 9C 2 nearer the limit of 36B, the second minimum is well below the barrier 
separating the two minima. The squared wave functions of  the states below the 
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Table 3.1. Classification of  asymmetr ic  potent ia l  funct ions.  (Z 4 + BZ 2 + CZ3);  36B _> 9C 2 _> 0 

\ / 

L; 

9C 2 = 36B 

Symmetr ic  double m i n i m u m  potential  with the origin in the  right well 

36B > 9C 2 > 32B 
Asymmet r ic  double m i n i m u m  potential  func t ion  with the  origin in 
the deeper m i n i m u m  on the right. The  m a x i m u m  occurs at 
Z = ( - 3 C  + ~ - 32B) /8  and the  shallower second m i n i m u m  at 

Z = ( - 3 C -  x / 9C  2 - 32B) /8  

9C 2 = 32B 

Asymmet r i c  single m i n i m u m  potential  func t ion  with an inflection 
point  with a horizontal  slope. This  inflection poin t  occurs at 
Z = - 3 C / 8  

3 2 B > 9 C  2 > 2 4 B  
Asymmet r ic  single m i n i m u m  potential  funct ion  with two inflection 

points. These inflection points  occur  at Z = ( - 3  C -+ x / 9 C  2 -  24B)/12.  

9C 2 -- 24B 

Asymmet r ic  single m i n i m u m  potential  funct ion  with one inflection 
poin t  at Z = - C / 4  

24B > 9C 2 > 0 

Asymmet r i c  single m i n i m u m  potential  func t ion  with no inflection 
points  

9C 2 = 0 

Symmetr ic  single m i n i m u m  quart ic-quadrat ic  potential  funct ion  
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barrier show a definite "left well" or "right well" character for the states. For any 
state above the barrier, the probability density has maxima across the full range of 
Z accessible to that state. Vibrational transitions below the barrier follow left well 
well ~ left well or right well ~ right well selection rules for both far-infrared and 
Raman transitions. Above the barrier, these identifications are more difficult to make. 
Even very slight asymmetry drastically reduces the probability of tunneling com- 
pared to the case of the symmetric double-minimum function. 

As 9C 2 ~ 32 B, the second minimum becomes less pronounced. At 9C 2 = 32 B, 
instead of a maximum and a second minimum, there is an inflection point with a 
horizontal slope at Z = -3C/8 .  For 32B > 9C 2 > 24B, there is a single minimum 
with inflection points in the potential function at 

Z = ( - 3 C  -+x/9C z -  24 B)/12. 

The vibrational spectra for potential functions of this type are characterized by 
negative anharmonicity for the first few transitions, with the frequency eventually 
reaching a minimum, and positive anharmonicity for the higher transitions. The 
quadratic term in the potential is primarily responsible for the value of the 0 -1  
frequency. For small amplitudes, i.e. for the lower transitions, the cubic term is 
dominant in determining the anharmonicity which in this case is negative. At larger 
amplitudes, i. e. higher energy, the quartic term balances the effect of  the cubic 
term, causing the transitions to reach a minimum frequency. The positive anharmoni- 
city due to the quartic term then dominates for the higher transitions. These charac- 
teristics may be observed for potential functions of  this type unless the Boltzmann 
factor intervenes to depopulate levels above the inflection points. 

The last general category of asymmetric potential functions is that for which 
24B > 9C 2 > 0. For 24B = 9C 2 , there is a single inflection point at Z --" -C/4.  
For functions in the range described, there are no inflection points. For functions 
with 9C 2 near 24 B, the characteristics mentioned in the previous paragraph are 
applicable, with the transition of minimum frequency being reached more rapidly, 
followed by positive anharmonicity due to the quartic term. Eventually, the effect 
of the cubic term becomes such that the anharmonicity is immediately positive. 
The limit as 9C 2 ~ 0 is, of course, the symmetric single-minimum quartic-quadratic 
oscillator considered earlier. 

The above classification of asymmetric potential functions is convenient for 
comparison of different molecules or as a systematic basis for making an initial fit 
to experimental data. However, when the Schr6dinger equation is being solved by 
the linear variation method with harmonic-oscillator basis functions, it may not 
provide the best choice of origin for the basis function. For example, a better choice 
in the case of an asymmetric double-minimum oscillator, where accurate solutions 
are required in both wells, would be somewhere between the two wells. Systematic 
variation of the parameters may still be made as outlined above, but the origin should 
be translated before the Hamiltonian matrix is set up. The equations given earlier 
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(3.23) to (3.26) that describe the Hamiltonian matrix in the harmonic basis are 
valid, with the exception that the matrix does not factor into odd and even blocks. 
The Z 3 matrix elements connect these two blocks. 

For potential functions with a single minimum (or a very shallow second mini- 
mum), location of the origin in the minimum is probably the best choice to obtain 
most rapid convergence of the variation functions. Again, as for the symmetric cases, 
some care should be exercised in choosing the harmonic scale factor for the basis, 
to insure that the truncated basis has sufficient flexibility to produce amplitude in 
the classically allowed regions and to cancel amplitude in the unallowed regions. 

D. Two-Dimensional Hamiltonians 

Saturated five-membered-ring molecules have two low-frequency out-of-plane ring 
vibrations and these modes may couple. Equation (3.33) is an appropriate two- 

- + 

dimensional Hamiltonian with a constant effective mass for molecules where terms 
of odd powers are excluded by symmetry 

H _  
h 2 3 2 h 2 3 2 

2~x 0x 2 2~y 3~ 2 
+ a t~ -4 + b l~  -2 + a2~ -4 + b2~ -2 + c12~--2~ --2 (3.33) 

where ~ is a ring-bending coordiate and ~- is a ring-twisting coordinate./~x and 
Vy are the associated reduced masses. It is sometimes possible to separate the vari- 
ables in Eq. (3.33) approximately and thereby to obtain an effective one-dimensional 
Hamiltonian for the ring-bending vibration. This is possible primarily when one of 
the modes is of  large amplitude while the other is of small amplitude. 

1 Pure Pseudorotation 

In 1947, Kilpatrick, Pitzer and Spitzer 3) introduced the notion of pure pseudoro- 
tation to explain the thermodynamic data on cyclopentane. In this case, the ampli- 
tudes of the ring-bending and ring-twisting coordinates are comparable and Eq. (3.33) 
as it stands is not even approximately separable. However, transformation to polar 
coordinates yields a small-amplitude (radial) and a large-amplitude (angular) coor- 
dinate. The resulting Schr6dinger equation is separable, or approximately so, when 
pseudorotational barriers are small compared to the barrier to planarity. 

Gwinn and co-workers 34) have given an excellent exposition of the theory appro- 
priate to treating hindered pseudorotation, with particular attention to the use of  
an angular Hamiltonian for small-barrier cases. For the special case of pure pseudo- 
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rotation, the potential energy is independent of  the angular coordinate. The con- 
stant-reduced-mass Hamiltonian [Eq. (3.33)] with restrictions appropriate to pseudo- 
rotation,/~ l =/12,2 ~-l = 2 a 2 = a 12, b l  = b2, gives the following SchrOdinger equation: 

( a2 B2 2) 
- BZ 2 ~Z~ ~b+(Z 2 + Z2)~b + B(Z~ +Z22)~ =X~b (3.34) 

where 

Zt --- (h 2/2u~-)-~/6x 

Z 2 = (h 2 / 2 # a ) -  l/6y 

X = E/A 

Figure 3.3 gives a potential energy contour diagram appropriate for pure pseudo- 
rotation. 

In polar coordinates p and 0 with 

Z l = p  cos0 

Z2 = p sin 0 

the Schr6dinger equation is 

_lp._~ppa O-~-+4-~aP P ~b+(p4+Bp2)~=X~ (3.35) 

F V=O 

Z2 

Fig. 3.3. Potential energy contour diagram appropriate to pseudorotation. An energy maximum 
occurs at the planar conformation, Z 1 = Z 2 = 0. The minimum energy track is denoted as V = 0. 
[Reproduced from Harris, D. O., Engerholm, G. G., Toiman, C. A., Luntz, A. C., Keller, R. A., 
Kim, H., Gwinn, W. D.: J. Chem. Phys. 50, 2438 (1969).1 
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For cyclopentane, the case considered by Pitzer et al. 3), B is large in magnitude 
and negative. This corresponds to a high barrier to planarity, given by AB2/4, and 
approximate solutions may be found. For a high barrier to planarity, the value of  
1/p 2 may be replaced by its average value and the energy eigenvalues approximated 
from 

d2|  
- ~ ~ = EO (3.36) 

where 

J~ = < 1/ /)2~> 

The solutions of  Eq. (3.49) are 

O = (1/2 lr) U2 e it~ l = 0, -+1, + 2 , . . .  (3.37) 

The transition frequencies, l -~ l + 1, are given by 

u = A/3(2 l+  1) (3.38) 

which are equally spaced transitions separated by 2A~. 

20.0 

I 1 : '3  
I ~ 0  - r : l  ~ t .=~ 2 

,,/ 

250 20.0 15,0 I0.0 5 0.0 -5,0 -I .0 -15.0 -20.0 -2 

EIGENVALUES [DIMENSIONLESS) vs 8 

Fig. 3.4. Some of the eigenvalues for the reduced potential (Z~ + Z2) 2 + B (Z 2 + Z~ 2) as a 
function of B [Eq. (3.34)]. The dashed line indicates the top of the barrier. The case of pseudo- 
rotation is the limit, on the right, for large negative values of B. Large positive values of B, on 
the left, correspond, in the limit, to a two-dimensional isotropic harmonic oscillator. 
[Reproduced from Ikeda, T., Lord, R. C., Malioy, T. B., Ueda, T.: J. Chem. Phys. 56, 1434 
(1972).] 
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Fig. 3.5. Pseudorotational transitions, 1--* l + 1 vs. 1, for the numerical solutions of Eqs. (3.34) 
and (3.35). The lower the barrier (smaller magnitude of B), the more pronounced the curvature 
ISee Eq. (3.39)1. 
IReproduced from lkeda, T., Lord, R. C., Malloy, T. B., Ueda, T.: J. Chem. Phys. 56, 1434 
(1972).1 

Ikeda et al.as) considered solutions of Eqs. (3.34) and (3.35) by the variation 
method with two-dimensional harmonic oscillator functions in Cartesian and polar 
coordinates, respectively, as basis functions. Some of the eigenvalues are plotted 
in Fig. 3.4 as a function of the parameter B. The case of pure pseudorotation cor- 
responds to large negative values of B on the right hand side of the figure. 

It was found from numerical solution of Eqs. (3.34) and (3.35) that the cal- 
culated pseudorotational frequencies exhibited curvature rather than a strict linear 
dependence on quantum number as in Eq. (3.38). This is shown in Fig. 3.5. Such 
curvature had been experimentally observed for 1,3-dioxolane and tetrahydrofuran 36) 
and was also noted by Davis and Warsop 37), who used it to estimate the barrier to 
planarity. 

Consideration of approximate solutions to Eq. (3.35) by obtaining an effective 
Hamiltonian by a 2nd order Van Vleck transformation led to an expression 3s) for 
l ~ l + 1 transitions given by 

v = A / 3 ( 2 / + l ) - A D ( 4 1 3 + 6 1 2 + 4 1 + l )  (3.39) 

with/3 exhibiting a dependence on the radial quantum number vp given by 

and 

D = 4 /B  4 (3.41) 
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The pseudocentrifugal distortion constant, D, accounts for the curvature of the 
frequencies (Fig. 3.5) and Eq. (3A0) gives the variation of pseudorotational con- 
stants with vibrational state. 

2 Hindered Pseudorotation 

If there is an angular dependence of the potential function, it is still possible to 
separate the Schr6dinger equation approximately in polar coordinates if the angular 
barriers are much lower than the barrier to planarity. As mentioned earlier, Gwinn 
et al. 34) have given an excellent treatment of this case. This has been applied to the 
interpretation of the microwave and far infrared spectra of tetrahydrofuran and 
1,3-dioxolane 36' 38). Equation (3.33) may be transformed to mass weighted polar 
coordinates 

x --/a]/2r cos r (3.42a) 

y = g21/2r sin ~ (3.42b) 

and expressed as 

H = - ~ -  ---~- r --~)r + ~-- + Ara + Br2 

+ Cr 2 cos 2~b + Dr 4 cos 2~b + Er 4 cos 4r 

(3.43) 

If the conditions mentioned above are met, the Hamiltonian may be averaged over 
the radial coordinate, yielding the following Schr6dinger equation 

d2~ +  v ~  
- B  - - ~  ( 1 - c o s  2nr =E~b (3.44) 

d~ 2 n= I , s  

where 

h2 <Vr 1 
B-- T -  ~ -  v r >  (3.45a) 

V2 = 2 ( C < v r  Ir 2 Ivr > +  D < v r l r a l v r  > )  

V 4 = 2E <Vr [r41Vr > 

(3.45b) 

(3.45c) 

The energy origin has been translated so that E > 0. Equation (3.44) is of the same 
form as the Schr6dinger equation for a two-fold internal rotor. Higher order terms 
than four-fold may arise from 
(a) higher-degree terms than quartic in the polynomial representation of the poten- 
tial surface; 
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(b) a higher degree of approximation than first order in the approximate separation 
of variables. 
The latter will also introduce pseudocentrifugal distortion terms. 

The solution of Eq. (3.44) may be accomplished by the variation method, using 
the free-rotor functions given in Eq. (3.37) as a basis set, and factoring the matrices 
into even, odd blocks according to I1 I. On the other hand, additional symmetry fac- 
toring is possible by choosing a sine-cosine basis related to the free-rotor basis by 
a variation of the Wang transformation. Lewis et al. 39) have described a computer 
program based on this approach. 

In some molecules even an approximate separation of variables is not possible. 
Cyclopentanone is a good example of such a molecule;it is discussed as a special 
case in Section IV. B. 

IV S u m m a r y  o f  Resul ts  with Example s  

A considerable number of large-amplitude vibrations in ring molecules have been 
treated by the theoretical methods discussed in Section III. Reviews of these studies 
have been given by Laane 4~ Blackwell and Lord 41), Gwinn and Gaylord 19), and 
Wurrey, Durig and Carreira 42). 

We have chosen to illustrate the applications of the theory to specific molecules 
in the same framework as that of  Section III. While our list of applications is not 
exhaustive, we believe that all of the various aspects of the theoretical treatment 
are illustrated by at least one example and no important molecules are omitted from 
the discussion. 

A. Molecules Treated by One-Dimensional Hamiltonians 

1 Symmetric Systems 

a) Four-Membered Ring Molecules 

(i] Oxetanone-3 and Thietanone-3. Figure 2.1 shows the far-infrared spectrum 
of oxetanone-3 obtained with the Jarrell Ash 78--900 vacuum grating spectrophoto- 
meter at MIT ~~ The ring puckering in this molecule is nearly harmonic, with slight 
positive anharmonicity due to the quartic term. This term is of such magnitude that 
second-order perturbation theory is quite adequate to reproduce the energy-level 
pattern. The frequencies are given by 

Vv, v+ l = 2ABI/2 + (v + 1)A/B - 3A(v 2 + 4v + 4)/4B 3/2 (4.1) 

Table 4.1 compares the observed frequencies with those calculated by a least squares 
adjustment of the potential constants using the linear variation method as incorpo- 
rated in a computer program written by Ueda and Shimanouchi 12). The potential 
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Table 4.1. Observed and calculated far infrared transition frequencies 
for oxetanone-3 

Transition Obs. freq. Calc. freq. Obs.-calc. 

0 1 140.0 140.13 -0.13 
1-2 141.5 141.51 -0.01 
2-3 143.0 142.87 0.13 
3-4 144.3 144.17 0.12 
4-5 145.5 145.46 0.03 
5-6 146.6 146.71 -0.11 
6-7  147.5 147.93 -0.43 

function indicates that the planar ring skeleton of oxetanone-3 corresponds to an 

energy minimum (Fig. 4.1). 
The microwave spectrum of oxetanone-3 has been studied by Gibson and 

Harris Is). In the case of small-amplitude harmonic vibrations, the rotational con- 
stants should vary linearly with vibrational quantum number. For a single-minimum 
anharmonic potential representing a large-amplitude coordinate, deviation from this 

linear dependence is expected on two accounts. If we express the dependence on 
the large-amplitude coordinate in a power series, it may be necessary to carry the 
series past the quadratic term. Also, the contribution of the quartic term in the 
potential energy may cause deviations from linearity. 
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Fig. 4.1. Potential function for the ring-puckering vibration of oxetanone-3. The abscissa is in 
A for a coordinate defined as in Fig. 3.1 with the carbonyl moving rigidly with the ring. 
A reduced mass/~ = 151 amu was used. 
[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 3225 (1969).1 
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The rotational constants, expressed by power series through quartic terms, are 
averaged over the ring-puckering vibrational states: 

3v =flo +fl(2) < v l Z  2 i v >  + 3(4) < v l Z 4 ] v >  (4.2) 

where 3v represents the A, B, or C rotational constant in the v'th ring-puckering state. 
In principle the 9 ~ 3 (2) and 3 (4) are multidimensional Taylor or mixed Fourier/ 
Taylor expansions in the remaining 3 N - 7 vibrational modes, averaged over the 
ground vibrational states of  these modes 19). In practice, the 3 ~ 3 (2) and 3 (4) coef- 
ficients are treated as empirical parameters. The rotational constants as a function 
of vibrational state then depend on these parameters and on the expectation values 
of  the operators Z 4 and Z 2. If  Z~j and Z~ represent these operators in the harmonic 
oscillator basis, then 3v is given by 

~v = 3 ~ + ~(2) ~ ~ tivtjvZ 2 + 3(4) 2; 2; tivtjvZ~ (4.3) 
i j i j 

The expectation values represented by the double sums in Eq. (4.3) depend on 
the potential function in Eq. (3.27). For a given harmonic frequency in the basis set, 
the matrix elements Z~j and Z -4-,J are fixed but the tiv and tjv depend on the value of 
B in the dimensionless potential of Eq. (3.27). For a single-minimum potential there 
is a high degree of correlation between the 3 (4) values and the value of B, each of 
which leads to curvature in the rotational-constant variation with vibrational state is) 
Since there are ten adjustable parameters, namely, three coefficients for each of the 
rotational constants plus one potential constant, B, in the reduced potential, it is 
necessary to determine the rotational constants in a large number of vibrational 
states if microwave data alone are used. 

In the case of oxetanone-3, the coefficients in the rotational constant expansions 
[Eq. (4.2)] were treated as empirical parameters and the potential function was taken 
from a previous vibrational study 1~ Figure 2.5 shows the smooth variation, with a 
definite curvature, of the B rotational constant with ring-puckering vibrational state. 
Table 4.2 lists the observed and calculated values of the rotational constants. The 
smooth variation indicates a single-minimum potential with a definite curvature due 
to the quartic potential term and the quartic terms in the expansion [Eq. (4.3)]. 

Table 4.2. Comparison of rotational constants in MHz observed and calculated from empirical 
fit to vibrational potential function for oxetanone-315) 

A B C 

V Calc Obs Diff Calc Obs Diff Calc Obs Diff 

0 12129.34 12129.22 0.12 4956.28 4956.29 -0.01 3686.78 3686.77 0.01 
1 12082.76 12082.93 -0.17 4960.37 4960.34 0.03 3696.47 3696.45 0.02 
2 12035.87 12035.89 -0.02 4964.83 4964.85 -0.02 3706.08 3706.14 -0.06 
3 11988.66 11988.76 -0.10 4969.64 4969.64 0.00 3715.62 3715.61 0.01 
4 11941.14 11940.79 0 . 3 5  4974.77 4974.77 0.00 3725.09 3725.05 0.04 
5 11893.31 11893.39 -0.08 4980.22 4980.22 0.00 3734.49 3734.51 --0.02 
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Fig. 4.2. Far-infrared spectrum of thietanone-3. The Q-branch transitions, showing considerable 
rotational degradation, are observed on the unresolved, overlapped P and R branch transitions. 
P ~ 1 torr; pathlength = 20 m. 
IReproduced from Blackwell, C. S., Lord, R. C.: J. Mol Spectroscopy 55, 460 (1975).1 

Figure 4.2 shows the far infrared spectrum of the related molecule thietanone-3 
reported by Blackwell and Lord 43). The Q-branches of the c-type transitions, super- 
imposed on the overlapped P and R branches, show considerable rotational degra- 
dation. The reported frequencies are not the Q-branch maxima but have been approx- 
imately corrected for vibration-rotation interaction. The single-minimum potential 
determined by fitting the far infrared frequencies (Fig. 4.3) shows that the frequen- 
cies are considerably lower and the amplitudes of vibration considerably greater than 
in oxetanone-3. Correspondingly, the quartic anharmonicity is greater. 

The microwave spectrum of thietanone-3 was studied by Avirah et al. 44). In this 
case, enough microwave data were obtained to determine the dimensionless poten- 
tial function as well as the expansion coefficients for the rotational constants. Addi- 
tional data are necessary to determine the energy scale factor, A, in Eq. (3.27). In 
principle, this may be done by measuring the relative intensities of the microwave 
lines in different vibrational states, but since the vibrational energy spacings were 
more accurately obtainable from the far infrared spectra, the latter data were used. 
The simultaneous fit to 30 rotational constants and the far-infrared transition fre- 
quencies is given in Table 4.3. The far-infrared data are reproduced with an rms 
deviation of 0.24 cm -l . The reduced potential function determined by Blackwell 
and Lord 43) by fitting the far infrared frequencies alone is 

V (cm - 1 ) = 9.90 (Z 4 + 6.17 Z 2 ) (4.4a) 

compared to that determined from both far infrared and microwave data 

V(cm - l )  = 9.81(Z 4 + 6.41Z z) (4.4b) 

33 



L. A. Carrcira, R. C. Lord, and T. B. Malloy 

1600 

40o / L / 
1200 

V ( x ) = O . 6 7 0 x l O 4 X  2 +O.l19xlO 6 x  4 / 

~ ,  . T,~. ~ ~ ~oo ~ ,  T,~.o / 

~ ,  T~,.~ / ,oo ~ 7 ~ , . ~  / 

~ ,  T ~.o / 
~~176 ~ T ~ , . ,  ~ 

- 0.500 - 0.200 - (3.100 O.O 0.1 O0 0.200 0.500 

ANGSTROMS 

Fig. 4.3. Potential function for the ring-puckering vibration of thietanone-3 determined from 
fitting the far infrared transitions. 
IReproduced from Blackwell, C. S., Lord, R. C.: J. Mol. Spectroscopy 55, 460 (1975).1 

The two major factors contributing to the ring-puckering potential are angle 
strain and torsional interactions. In four-membered rings, the valence angles within 
the ring are generally quite a bit smaller than their values in open chain molecules. 
Since the ring angles are, on the average, at their maximum possible values for a 
planar ring, ring strain favors this conformation. On the other hand, torsional inter- 
actions generally favor non-planar ring conformation. 

For both oxetanone-3 and thietanone-3, angle strain dictates the planar ring 
conformation. Since there are no adjacent methylene groups, the torsional inter- 
actions are not as important for these molecules. On the other hand, the ring- 
puckering potential for oxetanone yields a higher frequency compared to thietanone 
than can be accounted for simply on the basis of  the difference in the reduced 
masses. This can be attributed to the fact that there is a considerable difference in 
the angle strain in the two molecules. A CSC angle in an open chain molecule is 
generally smaller than the corresponding COC angle. In addition, the force constant 
for COC bending is considerably greater than for CSC bending. Consequently, the 
larger amplitude and lower frequency of the ring puckering in thietanone-3 must 
result from the smaller angle strain than in oxetanone-3. 
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Table 4.3. Comparison of rotational constants (in MHz) observed and calculated from empirical 
fit to vibrational potential function V(Z) = 9.81 (Z 4 + 6.41 Z 2) thietanone-344) 

A B C 

V Obs Obs-cal Obs Obs--cal Obs Obs-cal 

0 10205.06 -0.33 3266.63 +0.06 2559.70 0.00 
1 10117.74 -0.05 3277.54 -0.02 2574.95 +0.04 
2 10041.06 +0.58 3287.38 -0.06 2588.56 -0.02 
3 9970.36 +0.09 3296.49 -0.08 2601.17 -0.04 
4 9905.80 +0.42 3305.13 -0.02 2613.03 -0.03 
5 9844.70 +0.01 3313.33 +0.04 2624.32 +0.01 
6 9786.86 -0.59 3321.16 +0.07 2635.11 +0.03 
7 9732.27 -0.84 3328.67 +0.07 2645.48 +0.05 
8 9681.29 +0.03 3335.89 +0.03 2655.47 +0.02 
9 9632.24 +0.66 3342.80 -0.10 2665.11 -0.05 

Av= 10252.29 - 258.12 <Z 2 >v + 2.89 < Z 4 >v 
Bv-- 3260.74 + 31.75<Z 2>v + 0 . 2 4 < Z  4>v 
C v= 2551.63 + 43.98<Z 2>v +0-30<Z 4>v 

(ii) Trimethylene Oxide. That there can be a delicate balance between angle 
strain and torsional interactions is indicated by the nature of  the potential function 
for trimethylene oxide. This molecule has a double-minimum potential function but 
with a very small barrier. There are three adjacent methylene groups and torsional 
interactions play a much greater role than for the two examples given above. 

Historically, trimethylene oxide was the first ring molecule for which a ring- 
puckering potential was determined from spectroscopic data. It has been the most 
extensively studied ring molecule, having been investigated by far infrared, micro- 
wave, Raman and mid infrared techniques s'  9, 45-59). Several isotopic species have 
been synthesized and studied. 

During the late 1950's and early 1960's when the initial work on the ring puck- 
ering in trimethylene oxide was done, data were much harder to obtain. High-reso- 
lution far infrared spectroscopy was in its infancy and Raman spectra of  puckering 
vibrations had not yet  been obtained. Today there is a wealth of  data available on 
trimethylene oxide that strikingly demonstrates the success of  the simple one- 
dimensional quartic-quadratic Hamiltonian [Eqs. (3.22), (3.27)]. At the same time, 
since the data are so extensive, the limitations of  the simple one-dimensional poten- 
tial function can be examined. 

The far infrared spectrum of  trimethylene oxide is shown in Fig. 2.2. The pattern 
o f  transitions is rather regular with the exception o f  the 0 - t  transition which is 
quite low in both frequency and intensity. The lower intensity is primarily due to 
the effect of  stimulated emission, as shown by the approximate expression for the 
relative intensities of  the various transitions: 

I,el (e-~v/kT-e -Ev§ ) = Vv--,v + t < v +  1 I Z l v >  2 (4.5) 
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Fig. 4.4. Raman spectrum of trimethylene oxide. 
IReproduced from Kicfer, W., Bcrnstcin, H. J., Danyluk, M., Wieser, H.: Chem. Phys. Letters 12, 
605 {1972).1 

Figure 4.4 gives the Raman spectrum of  trimethylene oxide ss). Although the 
Av = 1 transitions are allowed, the prominent features are the Av = 2 transitions. 
Since these overtones are totally symmetric, the sharpness of  the Q-branches of  
such Raman transitions accounts for their prominence in the spectrum. 

The irregularity of  the position of  the 0 - 1  transition in the far-infrared spectrum 
or the 0 - 2  transition in the Raman spectrum compared to the other transitions in 
the series is indicative of  a small barrier in the potential function at the coordinate 
zero. A small barrier, less than the zero point energy, affects the positions of  the 
levels and the wave functions for the even levels much more than the odd levels 19). 
The effect is largest for the zero level and correspondingly less for higher levels. 
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Fig. 4.5. Variation of the rotational constants (in MHz) with ring-puckering vibrational state 
for trimethylene oxide. The effect of the small barrier is quite dramatic when compared to the 
smooth variation in Fig. 2.5 for oxetanone-3. 
[Reproduced from Chart, S. J., Zinn, J., Fernandez, J., Gwinn, W. D.: J. Chem. Phys. 33, 1643 
(1960).1 

Since even functions are more affected than odd functions,  the variation o f  rota- 
tional constants with ring-puckering quantum states is expected to deviate from 
the regular dependence shown by planar molecules (e. g. Fig. 2.5 for oxetanone-3).  
F rom Eq. (4.2) we see that al teration o f  the wave functions of  the even levels will 
affect the expectat ion values o f  Z 2 and Z 4 in this equation,  primarily Z 2 , and lead 
to an irregular pat tern for the lowest few levels. 

This was found to be the case for the microwave data for t r imethylene oxide 4s). 
Figure 4.5 indicates the variation of  the rotat ional  constants for t r imethylene oxide 

600f ~ 1138.7 

-2 -1 0 1 2 
Z 

Fig. 4.6. Ring-puckering potential function for trimethylene oxide. The height of the barrier 
(~15 cm- 1) is less than the zero-point energy. 
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in the ground state and four excited states of the ring-puckering vibration, while in 
Fig. 4.6 the ring-puckering potential function with a barrier less than the zero point 
energy is shown. Comparison of the data on oxetanone-3, thietanone-3 and trimeth- 
ylene oxide indicates that both the pattern of ring-puckering transitions in far in- 
frared or Raman spectra as well as the rotational-constant variation with ring-puck- 
ering vibrational state are very sensitive tests of the presence or absence of even 
very small barriers to planarity. 

Extensive studies of the effects of centrifugal distortion in trimethylene oxide 
and deuterated analogs have been carried out sT, 58). The distortion constants show 
a zig-zag dependence on the ring-puckering quantum number similar to that observed 
for the rotational constants. The results were interpreted according to a simple 
modification of the standard theory of centrifugal distortion 6~ in terms of the 
potential function for the large-amplitude ring-puckering coordinate sT). 

A high-resolution far-infrared study (~0.25 cm -1 ) pointed out another effect 
on the determination of the ring-puckering potential function 9). Calculations of 
the vibration-rotation band contour for a symmetric rotor from the microwave rota- 
tional constants allowed determination of the positions of  the band origins. These 
differed from the positions of the Q-branch maxima by 0.1 to 0.25 cm -1 to higher 
frequency. Since the vibrational energy separations were determined more accu- 
rately, they were fitted to more significant figures by including a sixth-power poten- 
tial term in the Hamiltonian 

H h2 d2 
- + ax 4 + bx  -2 + cx -6 (4 .6)  

2/a d~ 2 

The barrier 9) was reported as 15.52 -+ 0.05 cm - l  compared to 15.3 + 0.547) and 
15.1 +- 0.5 cm - l  52) reported previously. 

The stated barrier uncertainty of +0.05 cm- t  is somewhat misleading in that 
effects which can account for several cm -1 in the barrier have been neglected. Use 
of the coordinate ~- with the assumption of a constant effective mass can change 
the barrier by 2 - 5  cm -l  and certainly has at least as large an effect as the inclusion 
of a sixth power term in the potential. Another thing that should be kept in mind 
is that the ring-puckering potential is an effective potential containing contributions 
from averaging anharmonic interaction terms over the zero-point vibrations of  the 
other 3 N - 7  vibrational modes [see Eqs. (3.18) to (3.20)]. In the case of  ring mole- 
cules, these contributions may be of the order of  a few cm -1 . This latter effect is 
analogous to the zero-point vibrational contribution to the determination of effec- 
tive rotational constants. With the above in mind, it is seen that there is dubious 
physical significance to the value of the coefficient of the sixth power term in the 
potential function [Eq. (4.6)] determined from fitting the data. 

The effect of the zero-point averaging over the other modes manifests itself in 
two ways. A number of progressions of  combination and difference bands have been 
observed in the mid-infrared and Raman spectra of trimethylene oxide. These have 
been studied extensively by Wieser and co-workers s~ who found small changes 
in the ring-puckering intervals on excitation of quanta of higher frequency vibrational 
modes. They also studied the spectra of a number of deuterated analogues of  trimeth- 
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ylene oxide and found an isotopic dependence of the ring-puckering potential func- 
tions. 

This dependence may be interpreted as due to several different effects. If  the 
ratio of the reduced masses of  the isotopic species remains constant or nearly so 
as the vibrational amplitude changes, neglect of  the dependence of the reduced mass 
on coordinate will not introduce differences between the ring-puckering potential 
functions determined for isotopic species [Eq. (3.21)]. However, cross terms in the 
kinetic energy and harmonic cross terms in the potential energy between the ring- 
puckering vibration and higher frequency modes of the same symmetry can lead to 
different potential functions for isotopic species. If  we consider removing the har- 
monic cross terms in the kinetic and potential energy by a "normal coordinate 
transformation", the form of the lowest-frequency coordinate may differ for iso- 
topic species [Eqs. (3.14) to (3.17)]. Consequently, we would not expect the same 
potential function for the different species. 

Probably of more importance are the contributions of anharmonic interaction 
terms [Eq. (3.19)]. Since the zero-point contribution of these terms will be different 
for the various isotopic species, a difference in the effective potential is expected. 
If  we consider only the effect of the anharmonic interaction terms up to fourth 
degree through first order, the following result is obtained 

3N-7 ~) 
geff(X- ) ~-ax4+ b+  ~ aix <vilq21vi ~-2 (4.7) i=l 

where a and b are (approximately) invariant to isotopic substitution and the expec- 
tation values of  the squares of  the 3 N - 7  high frequency coordinates are not. That 
these types of interaction terms are probably the most important may be seen from 
examining Table 4.4 from the work of Wieser and co-workers s~ It is seen that 
the quartic terms in the dimensioned potential are essentially constant for the iso- 
topic species while the variation in the quadratic coefficient b is more pronounced. 
This is the result expected from the considerations leading to Eq. (4.7). 

In principle, it should be possible to obtain enough data to correct the effective 
potential function for trimethylene oxide to a "vibrationless" state. This potential 
function should then be isotopically invariant. This may require determination of 
the ring-puckering intervals in the excited states of the other 3 N - 7  modes and 

Table 4.4. Comparison of the potential functions for isotopic species of  trimethylene oxide S 2) 

TMO-d 0 a-d 2 ~-d 2 ez,cg -at 4 d 6 

A ( e m -  1 )a 28 .12  25 .46  26 .10  22.85 21 .54  

B - 1 .465 - 1.445 - 1.465 - 1 .445 - 1.445 
a(105 cm -1A-4) b 7.16 7.07 7.19 7.07 7.07 
b(103cm-I A -2 ) -6.58 -6.13 -6.34 -5.81 -5.64 
/~ (amu) 95.7 110.4 107.3 129.8 141.8 

a Equation (3.27). b Equation (3.22). 
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t reatment of  perturbations of  particular levels (e. g. Fermi resonance) to remove 
these effects from the determination of  the effective potentials. Despite the volu- 
minous data on trimethylene oxide, this point has not yet  been reached. 

The failure to remove all of  the vibrational averaging effects is not too upsetting. 
The ability to determine a potential function with a barrier accurate to within a 
few cm-~ is rather remarkable. The fact that the data can reveal even a very small 
barrier - in the case of  trimethylene oxide, smaller than the zero point energy - 
shows that they are a very sensitive probe of  the molecular dynamics. 

( iii) Trirnethylene Sul]Me and Methylenecyclobutane. Shortly after the original 
work on trimethylene oxide, the results of  a microwave study on trimethylene sul- 
fide were published 18). In this case, the potential function has a much higher barrier, 
274 cm -~ , and the effects on the spectra are quite dramatic. The potential function, 
with some of  the calculated vibrational spacings 18), is shown in Fig. 4.7. In contrast 
to the regular pattern of  transitions converging to higher frequency observed for 
planar molecules, the frequency pattern is more complicated, until levels well above 
the barrier are reached. Transitions with Av = 1 and Av = 3 are observed in the far- 
infrared spectrum 63' 64), while the prominent  transitions in the Raman spectrum 
are the Q-branches for the totally symmetric Av = 2 transitions 6s). 

The effect of  the ring-puckering vibration, particularly in the v = 0 and v = 1 
states, on the rotational spectrum o f  trimethylene sulfide is striking ~8). In Eq. 
(3.10) the terms involving the ring-puckering momentum operator and com- 
ponents of  the rotational angular momen tum operators are no longer small 
when vibrational energy spacings become of  the same order as the rotational energy 
spacings of  interest. Thus non-rigid rotor spectra result and a more complete Hamil- 

I 107,9 cm -1 

100,9 

92A 

85,0 

63,2 

-,'- - 2 0 + 2  + 4  

Q [ reduced ] 

Fig. 4.7. Ring-puckering potential function for trimethylene sulfide. The barrier at the planar 
conformation is 274 cm -1. 
IReproduced from Harris, D. O., Harrington, H. W., Luntz, A. C., Gwinn, W. D.: J. Chem. 
Phys. 44, 3467 (1966).1 
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tonian including vibration-rotation cross terms is required. There are two physically 
equivalent types of vibration-rotation interaction terms which arise. Their relative 
magnitudes depend on the choice of the rotating axis system used to set up the 
Hamil t onian is, 2 0). 

If we restrict the Hamiltonian given by Eq. (3.10) to one vibrational coordinate, 
a ring-puckering coordinate with a constant effective mass, the following vibration- 
rotation Hamiltonian results 

1 I gaa(X-)ea2 -I- gbb(~')V~ + gce(~)pc ~ + gac(X) (PaVe + H---~ PePa) 
/ 

(4.8) 

The two types of vibration-rotation interaction terms are the PaPc + PePa term and 
the Pb term (the b axis is perpendicular to the symmetry plane which is maintained 
throughout the ring-puckering.). Their coefficients are functions of the vibrational 
coordinate or the vibrational momentum or both. It is possible to choose the coor- 
dinate system so that the VaPe + PeVa term is zero and all of the coupling between 
rotational angular momentum and vibrational momentum is manifested by the Pb 
term. The matrix elements for the Hamiltonian in the basis of the solutions to the 
pure vibrational (J = 0) problem, are 

Hw = Ev + AvPa 2 + BvP~ + CvPc 2 (4.9a) 

and 

Hw' = Fw'Pb (4.9b) 

Ev is the appropriate vibrational eigenvalue. Av, Bv and Cv are given by 

1 
/3 v = ~-<vl gt3~ (~)I v> 

/3-A, B, or C 

(4.10a) 

Fw' = <vl gbx (2)Px Iv' > (4.10b) 

where the contribution of fi ( 0gbx ]- \-~--x ! has been neglected. 

The off-diagonal coupling terms, Eqs. (4.9b) and (4.10b), may be treated as 
perturbations making a small contribution to the effective rotational constants in 
the various vibrational states for all cases except those where the vibrational energy 
spacing is comparable to typical rotational energy spacings. In the case of trimeth- 
ylene sulfide, the 0-1  vibrational spacing is comparable to low-J rotational spacings 
and only for this pair of levels is the Hamiltonian described by Eqs. (4.9a, b) treated 
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explicitly. The parameters determined from the microwave data include the three 
effective rotational constants for each of the two vibrational states, the 0 -1  vibra- 
tional interval and the vibration-rotation interaction constant, Fo118). The rotational 
spectra in the higher ring-puckering states were rigid rotor spectra and were so 
treated. Figure 2.7 indicates vibration-rotation levels for the v = 0 and v = I states 
which are affected by the cross term, Eq. (4.9b). 

As was pointed out by Butcher and Costain in their work on cyclopentene 66), 
the effective rotational constants for the 0 and 1 states contain contributions from 
the cross term Eq. (4.9b) different from those to the effective rotational constants 
in the higher states. Using second order perturbation theory, Scharpen derived these 
corrections to the rotational constants2~ Pickett 2 l) considered a different choice 
of rotation axes, for which all of the vibration-rotation interaction was expressed 
in the coordinate dependence of the off-diagonal term gac [Eq. (4.8)]. The resulting 
diagonal Hamiltonian matrix element is the same as in Eq. (4.9a), while the off- 
diagonal term is given by 

Hw' = F'w' (PaPc + PcPa) (4.1 la) 

where 

t 1 - -  F 
F w '  = ~- <v lgac (x ) lv  > (4.11b) 

With this Hamiltonian, Pickett 21) derived the same 0--1 vibrational splitting as that 
found earlier by Harris et al. 18) and the same effective rotational constants as those 
obtained by Scharpen using perturbation theory 2~ 

The simple constant-effective-mass, quartic-quadratic Hamiltonian, Eqs. (3.22), 
(3.27), was found quite adequate to reproduce the observed far infrared transitions, 
account for the rotational constant variation [via Eq. (4.2)] and faithfully reproduce 
the 0-1  inversion splitting derived from the vibration-rotation interaction analysis. 
As with trimethylene oxide, Wieser et al. have studied a number of deuterated deriv- 
atives of trimethylene sulfide 67-69). The barriers derived vary over a range of  

8 cm- 1. This variation is probably due to the factors mentioned above for trimeth- 
ylene oxide and gives an indication of the precision to which barriers may be deter- 
mined using a simple effective one-dimensional Hamiltonian. 

Another molecule with a similar double-minimum potential function is meth- 
ylenecyclobutane. Again, the 0 -1  inversion splitting is of the order of typical rota- 
tional energy spacings and non-rigid rotor spectra result 17). The Hamiltonian given 
by Eqs. (4.9a, b) was used to fit the data for the v = 0 and v = 1 states. After suitable 
correction of the rotational constants for these states, they were used along with 
the rigid-rotor constants for v= 2 - 6  to determine the potential function. The 0-1  
splitting was used to scale the function and a barrier of 160 -+ 40 cm -l was reported. 
Figure 2.6 shows the variation of the A rotational constant for methylenecyclobutane 
and for comparison, cyclobutanone 16). The zig-zag pattern is quite evident for methy- 
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Table 4.5.Assigned rotational transition frequencies a) for the v = 0 and v = 1 ring-puckering 
states of methylenecyclobutane 17) 

v=0  v = l  

Transition v(Obs) Pert. b v(Obs) Pert. b 

000 --' 101 8066.56(-0.01) -11.37 8072.57(-0.15) +17.26 
101 ~ 2O2 15979.45(-0.04) -18.61 15992.70(-0.16) +32.17 
111 ~ 212 14989.22(-0.05) --8.48 15017.02(-0.19) +35.78 
110~211 17270.27(+0.04) -43.70 17295.12(-0.35) +55.19 
202 ~ 303 23602.37(-0.17) -18.79 23625.70(-0.05) +43.19 
220--.321 24772.49(+0.24) -73.81 25053.92(-0.76) +304.68 
221 ~ 322 24 160.30(+0.32) -73.14 24541.66(-0.76) +375.43 
212 ~ 312 22393.03(+0.02) -10.73 22444.99(-0.19) +61.44 
211 ~ 3 j 2  25799.33(-0.04) -65.42 25839.36(-0.26) +80.54 
303 --* 404 30870.65(-0.27) -12.78 30910.21(+0.37) +53.28 
321 ~422 33506.17(-0.03) -109.77 33714.43(+0.63) +249.10 
322 ~423 32064.71(+0.37) -123.29 33599.42(+0.73) +496.66 
313 ~414 29705.05(+0.07) -11.27 29803.94(-0.05) +107.61 
331 ~ 432 32092.58(-0.50) -498.54 32407.05(+0.07) -79.33 
312 --, 412 34179.86(-0.21) -88.88 34243.14(+0.33) +104.71 
330 ~ 431 32445.01(+0.48) -226.69 32482.60(+0.38) -78.04 
4O4 '* 505 37846,63(-0.14) -5.58 37920.11(+0.93) +77.44 
422 ~ 523 42420.05(-0.77) -150.00 42564.68(+2.40) +198.74 
440---541 40858.29(+1.12) +111.96 40577.72(+0.37) -37.32 
413~514 42324.34(-0.44) -122.63 42433.65(+1.48) +129.23 
431 ~532 40909.99(-1.77) -170.74 40827.63(-0.26) -99.73 
423 ~ 524 39792.83(+0.39) -246.23 40654.28(+2.71) +713.90 
441 --*542 40844.02(+0.92) +105.18 40571.01(-0.09) -37.56 
414-~515 36919.56(+0.15) -10.41 37141.00(+0.26) +227.21 
432 ~ 533 40086.12(-2.08) -720.43 40572.65(-0.23) -100.28 

a Frequencies are in megahertz with an estimated uncertainty of +- 0.05 MHz 17). The quantity 
in parentheses after each frequency is the calculated frequency minus the observed frequency. 

b Calculated frequency minus the calculated rigid-rotor frequency. 

lenecyclobutane. Cyclobutanone has a small barrier, ~ 1/2 the barrier in trimeth- 
ylene oxide, and shows a distinct irregularity in the dependence of the rotational 
constants on vibrational state. This figure illustrates the extreme sensitivity of the 
microwave data to a very small barrier to planarity. Similarly, the irregularity of 
the frequency pattern in the far-infrared and Raman spectra provides a test of the 
planarity or non-planarity of the ring. Table 4.5 lists the observed and calculated 
microwave frequencies for the v = 0 and v -- 1 states of methylenecyclobutane. The 
vibration-rotation contribution to the frequencies is seen to be substantial. 

Figure 4.8 shows the ring-puckering transitions with v = 2 observed in the Raman 
spectrum of methylenecyclobutane 6s). The fit to the Raman data yields a poten- 

tial function with a barrier of 140 + 5 em - l  . The Raman lines and their assignments 
were used to account for combination bands involving the ring-puckering vibration 
observed in the mid infrared spectrum 7~ 
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Fig. 4.8. Raman spectrum of methylenecyclo- 
butane. The observed maxima are Q branch 
transitions of the totally symmetric ~av = 2 
ring puckering transition IReprodueed from 
Durig, J. R., Shing, A. C., Carreira, L. A., 
Li, Y. S.: J. Chem. Phys. 57, 4398 (1972).1 

(iv) Silacyclobutane. Silacyclobutane exhibits an extensive ring-puckering spec- 
t rum in the far-infrared (Fig. 4.9). This spectrum, reported by Laane and Lord 71), 
has transitions assigned as Av = 1, Av = 2, Av = 3 and one tentative assignment o f  
a Av = 4 transition. These data were f i t ted with the two-parameter  quartic-quadratic 
Hamiltonian given by Eq. (3.27). The observed and calculated transition frequencies 
along with their intensities are given in Table 4.6. That such extensive data are fi t ted 
so well with the two-parameter  Hamiltonian is a remarkable success for the simple 
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Fig. 4.9. Far infrared spectrum of silacyclobutane. P = 60 torr, pathlength, 8 m 
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 48, 1508 (1968).1 
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Table 4.6. Observed and calculated far-infrared transitions for silacyclobutane 71) 

Frequency (cm-  1 ) 

Transition Calculated Observed 

Relative Absorbance a 

A Calculated Observed 

0 -  1 (0.003) b - 10 -9 - 

1 -  2 159.48 2.50 
0 -  3 159.74 2.50 2.3 

157.78 1.70 
0 -  2 159.48 0.32 
1 -  3 159.75 0.32 
2 -  3 0.264 (0.26) b 0.00 10 .-4 - 
3 -  4 133.38 1.31 0.5 

133.45 -0 .07  
2 -  4 133.64 .17 
2 -  5 142.26 1.96 0.8 

141.80 0.46 
3 -  5 142.00 0.19 
4 -  5 8.63 - - 0.05 
5 -  6 84.90 85.37 -0 .47  1.15 0.8 
6 -  7 50.46 49.85 0.61 0.57 0.3 
7 -  8 74.67 74.70 -0 .03  (1.0) (1.0) 
8 -  9 78.99 79.22 -0 .23  0.88 0.6 
9 - 1 0  86.29 86.20 0.09 0.76 ~0.3 

10-11 91.97 92.10 -0 .13 0.59 0.6 
1 1 - 1 2  97.22 98.50 -1 .28  0.44 0.3 
12-13  102.02 101.02 1.00 0.32 0.2 
13-14  106.47 106.36 0.11 0.22 0.2 
14-15 110.78 110.46 0.32 0.14 0.1 
15-16  114.69 113.23 1.46 0.10 0.01 
16-17  118.50 117.08 1.42 0.06 0.02 
4 -  6 93.53 94.41 -0 .88  0.06 0.2 
5 -  7 135.36 135.79 -0 .43  0.14 0.2 
6 -  8 125.14 124.17 0.97 0.08 0.1 
7 -  9 153.66 153.81 -0 .15  0.10 0.3 
8 - 1 0  165.28 164.68 0.60 0.09 0.3 
9 -11  178.26 177.11 1.15 0.08 0.15 

10 -12  189.19 190.21 -1 .02  0,06 0.09 
11-13  199.24 199.21 0.03 0.05 0.07 
12-14  208.49 207.24 1.25 0.03 0.05 

1 -  4 293.12 291.7 1.4 0.12 vw 
3 -  6 226.90 ~227 - 0.36 ~.05 
4 -  7 144.00 144.56 -0 .56  0.96 0.4 
5 -  8 210.04 210.68 -0 .64  0.48 0.20 
6 -  9 204.12 . . . .  
7 - 1 0  239.94 239.64 - 0.06 

241.64 0.04 
8 -11  257.24 256.7 0.5 - 0.01 
4 -  8? 220.66 218.83 1.83 - 0.11 

a Relative absorbances calculated with O~a/OQ = 0.1, ~)2/ac/aQ2 = 0.2. 
b Approximate value from microwave work 74). 
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Fig. 4.10. Ring-puckering potential function for silacyclobutane. 
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 48, 1508 (1968).1 

one-dimensional model. The potential function derived from the data is shown in 
Fig. 4.10, yielding a barrier to planarity of  440 cm -1 . 

The Raman spectrum of  gaseous silacyclobutane 72) confirms the far infrared 
results. The prominent transitions are those for which A v = 2. Combination and dif- 
ference band progressions involving the ring-puckering vibration and a Sill 2 stretching 
mode were observed in the mid infrared spectrum 73). A small change was found in 
the effective ring-puckering potential in the first excited state of  this mode. 

The microwave spectrum of  silacyclobutane was studied by Pringle 74). In this 
case, the 0 - 1  vibrational spacing is smaller (ca. 75 MHz) than typical rotational 
energy spacings and rigid-rotor spectra with identical rotational constants result for 
these two states. However, due to the near degeneracy of  the vibrational states, the 
Stark effect of  certain lines, particularly those involving JoJ or JIJ rotational sub- 
levels, is affected drastically. Analysis of  the Stark-effect data yielded the 0 - 1  in- 
version splitting and the transition moment  matrix element I < 01/1 c I 1 > L  Ro- 
vibrational transitions with Av = I were then observed within I MHz of  the predicted 
position. This led to an accurate determination of  the 0 - 1  splitting, 75.75 -+ 0.03 MHz. 

The 2 - 3  splitting is of  the order of  a typical low-J rotational spacing and non- 
rigid-rotor spectra result. The rovibrational levels were therefore computed from 
the Hamiltonian of  Eqs. (4.9a, b) with the help of  a second-order perturbation cor- 
rection used by Butcher and Costain 66) for cyclopentene rather than by direct matrix 
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diagonalization. This allowed determinat ion o f  the 2 - 3  vibrational spacing as 
7793 --- 7 MHz. In principle, the determinat ion of  the 0 - 1  and 2 - 3  vibrational inter- 
vals is sufficient to evaluate the two parameters in the potential  function given in 
Eq. (3~27) and thus also the barrier to  planarity. In fact, i f  this is done, the potential  
function computed  has a barrier of  229 c m -  l ,  in error by  almost 50%! 

On the other hand, the far infrared data determine a potential  function which 
predicts the O -  1 and 2 - 3  splittings to within 4% and 3% respectively. Table 4.7 lists 
a series of  calculations due to Pringle. He reparts  the frequencies calculated by fitting 
far infrared data alone and the microwave data alone. He also has fitted both micro- 
wave and far infrared data together, using a four-parameter potential  function suc- 
cessfully employed earlier to fit simultaneously the far-infrared and microwave data 
for cyclobutanone 74), 

H = _ h  2 d 2 
2# d ~  - - ~  + a~4 + b~2 + ce-dX2 (4.12) 

In contrast  to the case of  cydobu tanone ,  the addi t ion of  two more adjustable 
parameters does not  seem warranted in the case of  s i lacydobutane  in that  only a 
small improvement  in the fit results. The barrier determined is 442 cm - l  , within 
2 cm-  l of  the barrier determined from the simpler quartic-quadratic potential  func- 

tion. As pointed out  by  Pringle, the tendency is to weight the microwave data heavily 
because of  the precision of  the rotational data compared to  that  o f  the measurement 
of  the vibrational intervals in the far-infrared or  Raman spectrum. However, in doing 
so, one fails to recognize the l imitations of  the Hamiltonian. I f  the potential  func- 

Table 4.7. Ring-puckering frequencies for silacyclobutane 74) 

Calc frequency 
A(Z 4 + BZ 2) A(Z 4 + BZ 2 + Ce -DZ2) 

Vibrational Obs FIR Microwave Combined 
transition frequency data a data b data c 

1 ,-- 0 75.75 MHz 72.0 MHz 73.75 MHz 75.68 MHz 
3 ~  2 7793.0 MHz 8033.0MHz 7800.0 MHz 7955.0 MHz 
2,-- I 157.8 cm - l  157.9 86.7 157.3 
5 "-- 2 141.8 142.0 77.6 141.5 
4 ~ 3 133.5 133.6 70.0 132.8 
6 ~ 5 85.4 85.0 44.0 85.4 
7'-- 6 49.9 50.7 31.7 49.4 
8 *- 7 74.7 74.9 *** 74.3 
9 *- 8 79.3 79.3 *** 78.2 

I0"-  9 86.0 86.6 *** 85.6 
14 *- 13 106.3 106.9 *** 107.9 

a Least squares fit to ir data. Barrier height is 440 cm -1 
b Least squares fit to microwave data alone. Barrier height is 229 cm-I 
c Gaussian term added to potential, and both sets of data used in least squares fit. Barrier 

height is 442 cm - l .  
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tion obtained by fitting very precise rotational data over a limited energy range to 
an approximate Hamiltonian is inconsistent with a large amount of  less precise vibra- 
tional data extending over a wide energy range, one may conclude that the Hamil. 
tonian has been pushed beyond its limitations in such a fitting. 

It had been suggested that determination of an inversion splitting for a double- 
minimum potential function, along with the variation of rotational constants, was 
sufficient to determine the barrier accurately. This looked particularly promising 
in light of the success of this procedure in the case of trimethylene sulfide 18).How- 
ever, subsequent studies showed mixed results. In the microwave study of trimeth- 
ylene selenide 7s), the 2 - 3  inversion splitting was evaluated by analyzing the vibration- 
rotation interaction for these two states. The rotational constant variation was used 
to compute a dimensionless potential function. The far-infrared transition frequencies 
published earlier by Harvey et al. 76) were then employed to evaluate the scale factor 
for this reduced potential function. Scaled in such a fashion, the barrier for the poten- 
tial function calculated from the rotational constant variation was 383 -+ 4 cm- 1, 
compared to a barrier of 378 -+ 4 cm -1 determined previously by Harvey et al. 76) 

by fitting the far-infrared data alone./ / ' the derived 2 - 3  inversion splitting had been 
used to scale the microwave potential function, a barrier of 297 cm- 1, in error by 
more than 20%, would have been derived. Perhaps this would be improved by using 
the four-parameter potential function with the Gaussian barrier [Eq. (4.12)]. How- 
ever, a similar procedure was not of much help in the case of silacyclobutane. 

At any rate, this failure of the simple two-parameter quartic-quadratic Hamil- 
tonian with a constant reduced mass to reproduce simultaneously and precisely the 
inversion splittings and far-infrared or Raman data should not be considered a serious 
drawback. Attempts to use this as an indication of a real difference in the shape of 
the potential function fail to take into account other effects which have been ne- 
glected, among them the dependence of the reduced mass on the coordinate. 

(v) Cyclobutane. Cyclobutane is the parent hydrocarbon for saturated four- 
membered ring molecules. Due to the fact that it has no permanent dipole moment, 
no microwave study is possible. Direct observation of the ring-puckering transitions 
in the far infrared is also precluded by the fact that this mode is infrared inactive. 
The first estimate of the barrier to planarity from spectroscopic data was made from 
the observation of a progression of ring-puckering difference bands from a CH 2-stretch- 
ing fundamental by Ueda and Shimanouchi 77). Stone and Mills33)'and, indepen- 
dently, Miller and Capwel113) observed both combination and difference band pro- 
gressions of a B 2 CH 2 scissoring mode in the mid infrared spectrum. From these 
data, by means of combination differences, it was possible to derive the ring-puck- 
ering vibrational spacings in both the v = 0 and v = 1 states of the CH 2-scissoring 
mode. Similar data were obtained for cyclobutane-d8. In addition, Av = 2 transitions 
were directly observed in the Raman spectra of  both light and heavy cyclobutane ~ 3) 

The low-frequency Raman spectra of gaseous cyclobutane and cyclobutane-d s 
are shown in Fig. 4.11, and the mid infrared spectrum in the region of the CH 2 
scissoring mode, with the ring-puckering fine structure, is given in Fig. 2.3. Due to 
minor discrepancies between the assignments of Stone and Mills and those of Miller 
and Capwell, as well as slightly different methods of deriving and fitting the data, 
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Fig. 4.11. Raman spectra of gaseous cyclobutane and cyclobutane-d 8. The observed Q-branch 
transitions are the Av = 2 ring-puckering transitions. 
IReproduced from Miller, F. A., Capwell, R. J.: Spectrochim. Acta 27A, 947 (1971).1 

slightly different barriers were determined. Stone and Mills derived the same poten- 
tial function for cyclobutane and cyclobutane-d 8 by adjusting the reduced-mass 
ratio, but allowed the effective potential functions to depend on the quantum state 
of the CH2 (CD2) scissoring mode. They found that the reduced-mass ratio calculated 
for a coordinate for which the CH 2 (CD2) groups move rigidly with the ring con- 
siderably underestimated the isotopic shift for the ring puckering. They fixed the 
reduced mass for cyclobutane at the value for this semirigid model, and empirically 
adjusted the value for cyclobutane-ds. On the other hand, Miller and Capwell allowed 
for an isotopic dependence of the effective potential but not for the dependence of 
the ring-puckering eigenvalues on the quantum state of  the scissoring mode. 

Later, Malloy and Lafferty 27) made minor reassignments of  one of Stone and 
Mills's and two of Miller and Capwell's bands to reconcile the two sets of data. They 
fitted the infrared and Raman data for cyclobutane, allowing different effective poten- 
tial functions in the ground and excited states and using only lines which were free 
from overlap with other lines. The resulting calculated mid infrared puckering struc- 
ture is compared to the observed in Table 4.8. The data for cyclobutane-d 8 were 
fitted in the same way with the results given in Table 4.9. Table 4.10 summarizes 
the potential constants derived [Eq. (3.27)], the barrier heights and the band origins 
for the CH2 (CDz) modes. It is seen that the effective barriers for the ground states 
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Table 4.8. Puckering structure on v14 band of C4H827) 

Transit ion Vobsa(cm-I ) Ucalc(cm-l) Vobs_Vcalr m-l )  

12-13 1318.9 1319.59 -0.69 
11-12 1324.7 1325.23 -0.53 
10-11 1331.8 1331.34 +0.46 
9-10 1338.2 1337.98 +0.22 
8-  9 1346.1 1345.77 +0.33 
7-  8 1352.5 b 1352.61 b -0.11 b 
5-  6 1352.2 b 1351.63 b +1.57 b 
6 -  7 1373.2 1372.48 +0.72 
4 -  5 1430.0 1429.55 +0.45 
2-  3 1451.3 1451.76 -0.46 
1- 2 [ 11455.70 - 
0 -  1 1453.3 b 1454.60 - 
1- 01 11454.62 - 
5 -  4 1470.5 1470.22 +0.28 
7-  6 1527.7 1527.93 -0.23 
6 -  5 1547.8 1548.51 +0.29 
8-  7 1550.3 1550.50 -0.20 
9-  8 1558.5 1558.53 +0.03 

10- 9 1567.8 1567.56 +0.24 
11-10 1574.9 1575.21 -0.31 
12-11 1582.4 1582.24 +0.16 
1 3 - 1 2  1589.2 1588.72 +0.48 
5 -  2 1605.8 1606.71 -0.91 
3-  4 1299.9 c 1294.70 c - 
7 -  4 , t { 1646.527 - 
2-  1 1649.9 b 1651.432 - 
3 -  0 I 1652.351 - 

a Data taken from Ref. 33). b Blended or overlapped lines not used in fit. 
c Suspect assignment; not included in fit. 

of cyclobutane and cyclobutane-d 8 differ by ~15  cm -1 . As shown by Malloy and 

Lafferty zT), this difference cannot be ascribed to the neglect of the variation of re- 
duced mass with coordinate but  reflects 
1) a difference in the form of the normal coordinate for the two species and 
2) a difference of zero-point averaging of the anharmonic interactions with the 

higher-frequency modes for the two species. 
Again, this latter effect is of some importance. Referring to Table 4.10 and 

Eq. (4.7), we see tha t  the vibrational dependence of the quartic term in the effective 
potential function is quite small, indeed within the quoted uncertainty. For cyclo- 

butane, the reduced quartic potential constant is 26.15 +- 0.07 cm-1 for the ground 
state and 26.12 -+ 0.07 cm -~ for the first excited state of the Via mode. On the other 
hand, the effect on the quadratic term is more noticeable, as expected from Eq. (4.7). 

For the ground state of v14, it is - 8.87 -+ 0.03 cm -1 compared to - 8.76 + 0.04 cm -1 
for the excited state. From these data, we may conclude that the sign of the coef- 
ficient of the interaction term Q2azZ is positive. 
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Table 4.9. Puckering structure on v14 band of C4D827) 

a - 1  
Transition rob s (cm ) Vcalc (cm -1) Vobs-Vcalc (cm -1) 

1 -  0 1083.6 b 1084.73 -0.13 b 
2 -  l 1239.3 b 1240.12 -0.84 b 
3 -  2 1083.6 b 1082.99 +0.61 
4 -  3 1221,1 1220,82 +0.28 
5 -  4 1082,2 b 1082.68 -0.48 b 
6 -  5 - 1180.33 - 
7 -  6 1103.1 1104.04 -0.94 
8 -  7 1148.5 1148.51 -0.01 
9 -  8 1143.5 1143.86 -0,36 

10-  9 1155.3 1155.52 -0.22 
11-10 1161.6 1161.30 +0.30 
12-11 1167.5 1167.12 +0.38 
13-12 1172.8 1172.23 +0.57 
14-13 1177.0 1176.94 +0.06 
0 -  1 1082.2 b 1181.30 +0.90 b 
1 -  2 - 927.50 - 
2 -  3 1082.2 b 1082.91 -0,71 
3 -  4 943.8 942.61 1.19 
4 -  5 1079.2 1078.76 -0.84 
5 -  6 976.9 977.17 -0.27 
6 -  7 - 1052.25 - 
7 -  8 1010.4 1010.03 +0.37 
8 -  9 1016.0 1015.38 +0.62 
9-10  1005.6 1005,92 -0.32 

10-11 1001.3 1001.31 -0,01 
1 1 - 1 2  996.6 996.60 0.00 
12-13 992.3 992.43 -0.13 
13-14 988.3 988.57 -0.27 
14-15 984.6 984.96 -0.36 

2 - 4  t I 942.6 - 
2 -  5 940.8 - 
3 -  4 J 943.8 b / 944.4 - 
3 -  5 942.7 
7 -  4 1208.9 1209.55 -0.65 
5 -  2 1222.7 1223.06 -0.36 

3 -  0 I 1239"3 b 1240.16 -0.86 2-11 

a Data taken from Ref. 33) b Blended or overlapped lines; not included in fit. 

One o ther  factor ,  which has a very minor  ef fec t  on the barrier height ,  is the use 

o f  a Hami l ton ian  wi th  a cons tant  effect ive  mass [Eqs. (3.22),  (3 .27)]  as opposed  to 

a Hami l ton ian  expl ic i t ly  including the reduced-mass dependence  on coord ina te  

[e. g., Eq.  (3.13)].  F o r  the fou r -membered  ring molecules  t reated wi th  b o t h  types  

o f  Hamil tonians ,  the  differences in barrier  heights  have been found  to  be 0 - 3  c m -  t ,  

wi th  the major i ty  closer to  0 than to 3 c m - t .  
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Table 4.10. Potential constants, band centers and barriers obtained for C4H 8 and C4D8 a 

A(cm -1) -B Barrier (cm -1) u 0 o(cm -1) 

C4H8 
Ground state 26.153 -+ 0.074 8.893 -+ 0.034 514.8 + 4.4 - 0.67 
v14=l 26.117-+0.066 8.763-+0.039 501.4• 1454.6+2.3 0.53 

VP-V" = 13.4 • 7.1 b 

C4D8 
Ground state 18.59 -+ 0.043 10.3768 • 0.0027 500.6 • 2.7 - 0.42 
=)14=1 18.561-+0.050 10.223 -+0.059 485.0*6.8 1084.7-+2.5 0.43 

V'-V "= 15.6 • 7.3 b 

a Errors cited are 3 standard deviations. Errors cited for the upper state constants are relative 
to those determined for the ground state. 

b Error calculated from OAv = (0 ,2 + cr"2) 1/2. 

b. Pseudo-Four-Membered R ing Molecules 

(i) 2,5-Dihydrojitran. The far infrared spectrum of 2,5-dihydrofuran was reported 
by Ueda and Shimanouchi lZ)in 1967. They fitted the observed frequencies to a 
one-dimensional Hamiltonian similar to Eqs. (3.22), (3.27), with a posi~ive quadratic 
coefficient indicating a planar molecule. In this case, although there are two out-of- 
plane degrees of freedom for the ring, one of the modes, the twisting about the 
C = C double bond, is relatively high in frequency. The other, essentially the motion 

of the oxygen normal to the plane of the other four ring atoms, is the low-frequency 
ring puckering. Figure 4.12 shows the far-infrared spectrum of 2,5-dihydrofuran 
obtained under higher resolution by Carriera and Lord 1~ Clearly visible is a series 
of satellite transitions originating from the first excited state of the twisting mode. 
Effective one-dimensional potential functions were derived for each series by these 

workers. 
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Fig. 4.12. Far infrared spectrum of 2,5-dihydrofuran. P = 60 torr; pathlength = 30 cm. The 
satellite series, originating from the first excited state of the ring twisting mode, is clearly 
visible shifted to higher frequency. 
IReproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 3225 (1969).] 
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Malloy TM considered the effect of  including the coordinate dependence of  the 
reduced mass in the Hamiltonian [Eq. (3.13)] for 2,5-dihydrofuran and other pseudo- 
four-membered rings, The Schr6dinger equation used was 

H -  h 2 d gxx(X) d + a x  4 + b x  2 (4.13) 
2 ax dx 

where gxx (x) is the ring-puckering G-matrix element expressed as a function o f  x. 
Table 4.11 compares the fit to the data for a constant-reduced-mass Hamiltonian 
[Eq. (3.22)] with that for the above Hamiltonian in which gxx (x) is a least-squares 
polynomial for a semirigid model of  the ring-puckering vibration. The fit is clearly 
much improved by the use of  the latter. The importance of  these terms for pseudo- 
four-membered rings compared to four-membered ring molecules has been discussed 
by Malloy and Lafferty 27). They found that the nature of  the potential function 
does not change and the barrier heights derived from Eq. (4.13) are virtually iden- 
tical with those from Eq. (3.22). Only the finer details are affected. 

Carreira, Mills and Person 3~ fitted both ring-puckering series (Fig. 4.12) and 
ring-twisting data with a two-dimensional Hamiltonian explicitly including the inter- 
action between these two modes [Eq. (3.33)]. Recently Malloy and Carreira 79) have 
demonstrated the relationship between the effective one-dimensional potential func- 
tions which reproduce the ring-puckering series and the full two-dimensional poten- 
tial function given in Eq. (3.33). 

Table 4.11. Observed and calculated far infrared transition frequencies for 2,5-dihydrofuran 78) 

Transition Obs a Calc(l) b A Calc(ll) c A 
(era-l) (em-l) (cm-l) (cm-1) (cm-l) 

0 -  1 99.9 102.7 -2.8 100.4 -0.5 
1- 2 116.2 115.4 +0.8 115.5 +0.7 
2-  3 126.8 125.3 +1.3 126.3 +0.5 
3 -  4 135.2 133.5 +1.8 134.9 +0.3 
4 5 142.1 140.7 +1.4 142.2 -0.1 
5-- 6 148.1 147.2 +0.9 148.5 -0.4 
6-- 7 153.6 153.0 +0.6 154.0 -0.4 
7-  8 158.5 158.4 +0.1 159.0 -0.5 
8-  9 163.2 163.5 -0.3 163.5 -0.3 
9-10 167.5 168.2 -0.7 167.5 0.0 

10-11 171.3 172.6 -1.3 171.3 0.0 
11 - 1 2  1 7 5 . 3  1 7 6 . 8  - 1 .5  1 7 4 . 6  + 0 . 7  

d 2 = 2 0 . 8  

g x x ( X )  = 0 . 1 1 6 0  x 10 -I - 0 . 3 8 6 8  x 1 0 - I x  2 - 0 . 4 4 8 3 x  4 + 2 . 0 8 7 x  6 

d e 2  = 2 . 1 6  

a ReL 10). 
b Least-squares fit with Eq. (3.22), the constant reduced mass Hamiltonian; all frequencies 

have unit weights. 
c Least-squares fit with Eq, (4.13) for a semi-rigid model. 
d 02 = sum of the squares of the deviations. 
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(ii) Cyclopentene. Cyclopentene is an example of  a pseudo-four-membered ring 
molecule with a double-minimum potential function. The vibration-rotation inter- 
action involving the v = 0 and 1 inversion doublet has been analyzed by Butcher and 
Costain 66). A Hamiltonian described by Eqs. (4.9a, b) was used, with the a and b 
subscripts interchanged (i. e., the symmetry plane preserved as the molecule puckers 
is defined as the b -c  plane). Using second-order perturbation theory, they derived 
the rotational constants for the two states, the vibration-rotation interaction con- 
stant and the O-1 vibrational interval. An estimate of  250-400 cm-]  for the barrier 
was given. Laane and Lord 79a) reported the far-infrared spectrum shown in Fig. 4.13. 
Next to each strong transition is a satellite line originating from the first excited 
state of the ring-twisting. Laane and Lord fitted the infrared data and obtained effec- 
tive one-dimensional double-minimum potential functions for the ground state series 
and the satellite series. The potential function, with a barrier of 232 cm -1 , for the 
ground state series is shown in Fig. 4.14. As for dihydrofuran, it was found that the 
fit to the data was improved by including the coordinate dependence of the reduced 
mass in the Hamiltonian [Eq. (3.33)]. In addition, the calculated 0 - 1  inversion split- 
ting calculated from Eq. (3.33) was 0.89 cm -1 compared to 0.81 cm -l  from Eq. 
(3.22). The value determined from the analysis of the vibration-rotation interaction 66) 
was 0.91 cm-  1. 

The Raman spectrum of gaseous cyclopentene 14) is shown in Fig. 2.4. The 
prominent features are the Q branch transitions (Av = 2). This spectrum was one 
of the first Raman spectra of  ring-puckering hot bands in the literature, and was 
reported independently by two groups 14, ao). Combination and difference band 
progressions involving the ring-puckering vibration have been observed in the Raman 
and mid infrared spectra of cyclopentene 14' 49, 80) 

Laane and co-workers have studied several deuterated analogs of  cyclopentene, 
observing ring-puckering and ring-twisting transitions in the far-infrared and Raman 
spectraai, 82). Effective one-dimensional potential functions have been derived, and, 
as noted for four-membered rings, there is a minor isotopic dependence of the barriers 
derived from the effective one-dimensional potential functions. The barriers derived 
vary from 232 cm - l  for cyclopentene to 216 cm - l  for cyclopentene-d8. The reduced- 
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Fig. 4.13. Far infrared spectrum of cyclopentene. P = 115 torr; pathlength = 8 m. 
IReproduced from Laane, J., Lord. R. C.: J. Chem. Phys. 47, 4941 (1967).1 
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Fig. 4.14. Ring-puckering potential function for cyclopentene. 
[Reproduced from Laane, J., Lord, R. C.: J. Chem. Phys. 47, 4941 (1967).1 

mass dependence was included for several models. For a given isotopic species, this 
affected the determined barrier height by ~ 2 cm- I. Calculations of two-dimensional 
potential surfaces for cyclopentene and various deuterated analogs using the Hamil- 
tonian given in Eq. (3.33) are in progress 83). 

(iii) 1.4-Dioxadiene. A six-membered ring molecule with two double bonds such 
as 1,4-dioxadiene may also behave as a pseudo-four-membered ring molecule. The 
B2u ring-puckering vibration, which takes the molecule from the planar ring con- 
formation to a boat form, is the mode of lowest frequency whose coordinate is de- 
fined in Fig. 4.13. The far infrared spectrum reported by Lord and Rounds s4) is 
shown in Fig. 4.15. The observed series of  transitions increasing in frequency with 
a converging separation of  adjacent transitions is the expected behavior for a planar 
molecule with a substantial quartic term in the potential function. Also evident in 
Fig. 4.15 is a series of  ring-puckering transitions originating from the first excited 

Fig. 4.15. Ring-puckering coordinate for 
1,4-dioxadiene. [Reproduced from Lord, 
R. C., Rounds, T.C.: J. Chem. Phys. 58, 
4344 (1973).] 
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Table 4.12. Observed and calculated far infrared frequencies for 1,4-dioxadiene. Main series 84) 

Transition Observed Calculated a A(Obs-calc) Calculated b A 

0 ~ 1 66.82 68.26 -1.44 66.02 0.80 
1 ~ 2 83.50 82.92 0.58 84.29 -0.79 
2 ~ 3 93.75 92.80 0.95 94.49 -0.74 
3 -  4 101.82 100.79 1.03 102.35 -0.53 
4 -  5 108.55 107.60 0.95 108.78 0.21 
5 ~  6 114.22 113.58 0.64 114.27 -0.04 
6--. 7 119.15 118.97 0.18 118.95 0.20 
7 ~  8 123.72 123.89 -0.17 123.38 0.34 
8 -  9 127.63 128.42 -0.79 126.91 0.72 
9 ~ 10 130.81 132.59 -1.78 130.92 -0.11 

# = 9 9 . 6 4  

V(x) = 0.2949 x 104x 2 + 0.2930 x 106x 4 
2 a =9.5. 

g44(x ) = 1 (x) = 1.0036 x 10 -2 - 0.1389x 2 + 1.731x 4 - 8.79x 6 
# 

V(x) = 0.8251 x 103x 2 + 0.4702 • 106x 4 
o 2 = 2.8. 

state o f  the A u ring-twisting mode .  The shift  in the r ing-puckering f requencies  on 

exc i ta t ion  o f  this mode  is substantial ,  indicat ing a large x2y  2 in te rac t ion  t e rm in the 

potent ia l  funct ion .  Despite the size o f  this te rm,  it is possible to  derive effect ive  

one-dimensional  potent ia l  func t ions  for each series. Table 4 .12 shows the fit  to  the 

ground-state  series wi th  a constant-effect ive-mass Hami l ton ian  [Eq. (3.22)] ,  and wi th  

a Hami l ton ian  tha t  includes the coord ina te  dependence  o f  the reduced mass [Eq. 

(4.13)].  Malloy and Carreira 79) have recent ly  derived a two-dimens ional  potent ia l  

func t ion  like that  in Eq.  (3 .33)  and showed the relat ion be tween  that  func t ion  and 

effect ive one-dimensional  func t ions  derived by f i t t ing the r ing-puckering series sepa- 
rately.  
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Fig. 4.16. Far infrared spectrum of 1,4-dioxadiene. The satellite series is observed shifted to 
higher frequency by a substantial amount. P = 25 torr; pathlength = 30 cm. 
1Reproduced from Lord, R. C., Rounds, T. C.: J. Chem. Phys. 58, 4344 (1973).1 
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Fig. 4.17. Ring-puckering transitions in the Raman spectrum of gaseous 1,3-cyclohexadiene. 
IReproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: J. Chem. Phys. 59, 813 (1973).1 

(iv) 1,3-Cyclohexadiene. Another six-membered ring molecule with two endo- 
cyclic double bonds is 1,3-cydohexadiene. In this case, the low-frequency mode is 
a ring twisting vibration that has a double-minimum potential. From his studies of  
the microwave spectrum of  1,3-cyclohexadiene, Butcher as) concluded that the equi- 
librium conformation has C2 symmetry and that the angle between the C 2 - C  a and 
C s - C 6  bonds is ~17.5 ~ The spectra observed were rigid-rotor spectra. The energy 
of  the lowest excited state was estimated as 185 -+ 30 cm -1 from relative intensity 
measurements of  vibrational satellite lines in the microwave spectrum. 

Carreira et al. 86) studied the Raman spectrum of 1,3-cyclohexadiene vapor and 
observed a series of  sharp Q branches probably due to Av = 2 transitions of  the ring- 
twisting vibration (Fig. 4.17). The double-minimum potential function derived by 
fitting the data with the two-parameter quartic-quadratic Hamiltonian is shown in 
Fig. 4.18. The barrier height is 1099 --- 50 c m - I ,  about twice as high as the highest 

1 0 0 0  

6 0 ( ]  

2 0 G  

1 8 0  

o2o 
X - - - ~  

Fig. 4.18. Potential function deter- 
mined for the ring-twisting vibration 
in 1,3-cyclohexadiene. [Reproduced 
from Carreira, L. A., Carter, R. O., 
Durig, J. R.: J. Chem. Phys. 59, 
813 (1973).1 
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barrier found for a saturated four-membered-ring molecule 13, 33). The 0,1 levels are 
essentially degenerate as are the 2,3 levels, in agreement with the rigid-rotor micro- 
wave spectra observed for these pairs of levels. In the far infrared spectrum the type-b 
contours, along with the 4 - 5  cm- l  anharmonicity of the Av = 1 transitions, wipe 
out the Q-branch maxima and permit no detailed assignment 87). 

(v) 1,4-Cyclohexadiene. In striking contrast to the far-infrared spectrum of 
1,4.dioxadiene (Fig. 4.16), the absorption of 1,4-cyclohexadiene due to its B2u ring. 
puckering mode is confined to a narrow frequency range. Laane and Lord 88) observed 
a series of seven Q branches progressing to lower frequency from 108.4 cm -l  and 
spaced about 0.7 cm -1 apart. These were interpreted as the result of  a one-dimen- 
sional Hamiltonian with a large quadratic term and a very small quartic term of suf- 
ficient magnitude to generate the slight separation observed. Probably the simplicity 
of the potential function is the result of  co-operation rather than competition be- 
tween ring strain and torsional interactionsaS), both of which favor a planar mole- 
cule. 

2 Asymmetric Systems 

(i) Trimethylene lmine and 2,5-Dihydropyrrole. One of the first molecules for 
which an asymmetric potential function was determined was trimethylene imine. 
Due to the presence of the imino hydrogen the potential function is no longer sym- 
metric. Figure 4.19 depicts the two non-equivalent puckered conformations. 

The far-infrared spectra of trimethylene imine and trimethylene imine-N-d were 
reported by Carreira and Lord 89~. The Q branches are weak, superimposed on a 
background of rather strong overlapping P and R branches. The potential function 
determined for trimethylene imine, along with the energy levels and squared wave- 
functions, is shown in Fig. 4.20. The left-well, right-well identifications of  the states 
below the barrier are quite clear. For the fourth excited state, which is above the 
barrier, non-zero probability density occurs above both wells, but with greater ampli- 
tude above the left well. From v = 5 on up, it is difficult to make left-well, right-well 
identifications. 

The gas-phase Raman spectra of  trimethylene imine and trimethylene imine-N-d 
were studied later by Carreira et al. 9~ The transitions in the low-frequency region 
for trimethylene imine.N-d are shown in Fig. 4.21, and Table 4.13 summarizes the 
assignments of  the transitions observed in the far infrared and Raman spectra. The 

a. b. 

Fig. 4.19. Two non-equivalent conformations for trimethylene imine leading to an asymmetric 
ring-puckering potential function. The interconversion of these conformers may also be accom- 
plished via the N-H rocking vibration. 
[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 2735 (1969).1 
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Fig. 4.20. Ring-puckering potential function for trimethylene imine. The squared wave functions 
illustrate the definite left well ~ right well identifications of  the first four levels. 
1Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 2735 (1969).1 
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Fig. 4 .21.  Ring-puckering transitions in the Raman spectrum of trimethylene imine-N-d. 
[Reproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: .1. Chem. Phys. 57, 3384 (1972).1 
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Table 4.13. Single and double jump ring-puckering transitions observed in the Raman effect for 
trimethylene imine 90) 

Transition Observed Observed or ,x 
Raman inferred from 

far infrared 

0 ~ 2 207.1 207.2 0.1 
1 ~ 3 184.2 a 184.6 0.4 
2 ~ 4 148.6 149.3 0.7 
3 ~ 5  166.1 b _ 
4 ~ 6 184.2 a 183.8 -0.4 
5 ~ 7 216.9 216.4 -0.5 
6 ~ 8 236.6 c 237.0 0.4 
7 ~ 9 255.8 255.4 -0.4 
6 ~ 7 113.87 113.7 -0.1 
7 ~ 8 121.8? 123.3 1.5 
8 - -  9 133.97 132.1 -1.8 

a Both the 1 ~ 3 and the 4 --, 6 transitions are expected at this frequency. 
b The 3 ~ 4 transition was not observed in the infrared, since this transition originates from 

a level below the well to one above the well. In this case both the 3 ~ 4 and 3 --. 5 transitions 
are calculated to be extremely weak in the infrared. The spacing of the 3 and 4 levels can be 
calculated from the observed 3 ~ 5 Raman transition and the observed 4 --* 5 transition in 
the far infrared. This spacing is calculated to be 85.0 cm. 

c This transition was difficult to measure due to a weak impurity band at 233.6 cm -I 

observat ion o f  bo th  infrared and Raman transitions,  wi th  d i f ferent  select ion rules, 

serves to conf i rm the assignment and the doub le -min imum nature  of  the potent ia l  

funct ion .  The barrier to in terconvers ion  o f  the two  forms is 441 cm - t  above the 

deeper  min imum.  The energy difference be tween  the two  min ima  is 95 cm - I .  When 

the potent ia l  func t ion  is t ransformed to  that  o f  Eq.  (3.32),  the coeff ic ients  are found  

to  have the values A = 29.84 cm -1 , B = 15.15, C = 7.73. Thus 9C 2 = 35.5B,  very 

close to  the l imit  9C 2 = 36B that  corresponds  to a symmet r i c  doub le -min imum poten-  
tial func t ion  (Table 3.1). 

The fit to  the data for t r ime thy lene  imine (rms deviat ion ~ 2 . 5  cm - I  ) is no t  as 

good as has generally been obta ined  for molecules  wi th  symmet r i c  potent ia l  func- 

tions. In this molecule  there is a second pa thway  by  which its two  forms (Fig. 4 .19)  

may  be in te rconver ted ,  namely ,  via the N-H inversion vibrat ion.  This vibrat ion has 

the same s y m m e t r y  proper t ies  as the ring-puckering.  Consequen t ly ,  ha rmonic ,  cubic  

and quart ic  cross terms are a l lowed in the potent ia l .  Neglect  o f  these terms is doubt-  

less one reason for the deviat ions observed when  the data are f i t ted  one-dimension-  
ally. 

A slight i so topic  dependence  o f  the effect ive one-dimensional  potent ia l  func- 

t ion is found  for t r ime thy lene  imine-N-d. However ,  this ef fec t  is o f  the same order  

as that  observed for molecules  wi th  symmet r i c  potent ia l  funct ions ,  and in this case 

is wi thin  the uncer ta in ty  o f  the potent ia l  funct ions.  The barrier  measured f rom the 

lowest  well was 443 c m - l  and the energy difference be tween  wells 90 c m - t ,  com-  

pared to 441 cm - t  and 95 cm -1 for  the parent  compound .  
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Fig. 4.22. Far infrared spectrum of  2,5-dihydropyrrole. P = 8 tor t ;  pathlength = 4 m, 8 m as noted. 
[Reproduced from Carreira, L. A., Lord, R. C.: J. Chem. Phys. 51, 2735 (1969).] 

In spite of  the factors mentioned in the previous paragraphs, the double-mini- 

mum nature of  the potential functions for trimethylene imine and the N-d compound 

is well established. Comparison of  the far infrared and Raman data for both com- 

pounds leaves no question as to the correct assignment. 

2,5-Dihydropyrrole is a pseudo-four-membered ring molecule. Its structural 

relationship to trimethylene imine is the same as that of  2,5-dihydrofuran to trimeth- 

ylene oxide. Again, both the parent and N-d compounds were studied. Figure 4.22 

shows the far infrared spectrum of the light compound reported by Carreira and 

Lord 89). The low-frequency Raman spectrum was reported later by Carreira et al. 9~ 

Transitions with both Av = 1 and Av = 2 were observed. Table 4.14 summarizes the 

Table 4.14. Single and double jump ring-puckering transitions observed in the Raman effect for 
2,5-dihydropyrrole 90) 

Transition Observed Observed or 
Raman interred from 

the far infrared 

0--  2 117.8 a 118.1 0.3 
1 -, 3 155.7 156.3 0.6 
2 ~ 4  184.1 183.8 -0.3 
3 ~ 5 208.1 207.8 -0.3 
4 ~ 6 227.3 226.2 -1.1 
5 ~ 7 241.9 242.1 0.2 
3 ~ 4 98.3 98.9 0.6 
4 ~ 5 107.9 108.9 1.0 
5 ~ 6 117.8 a 117.3 -0.5 
6 ~ 7 123.4 124.8 1.4 
7 ~ 8 129.0 131.0 2.0 
8 ~ 9 137.5 136.7 -0.8 

a Both the 0 ~ 2 and 5 ~ 6 transitions are expected at this frequency. 
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Fig. 4.23. Ring-puckering potential  function for 2,5-dihydropyrrole. Only the lowest level has 
a definite left well character. 
[Reproduced from Carreira, L. A., Carter, R. O., Durig, J. R.: J. Chem. Phys. 57, 3384 (1972).1 

assignments of  the far-infrared and Raman transitions. Again, the different selection 
rules serve to confirm tile assignments. Figure 4.23 gives the potential curve deter- 
mined for the parent compound with the squared wave functions superimposed on 
the energy levels. There is a very small barrier between the two shallow minima and 
only one level, localized to the left well, occurs below the barrier. The v = 1 level has 
non-zero probability density above both the left and right wells, but with more over 
the right-well. From v = 2 on up, the probability density function is virtually sym- 
metric. As in the case of trimethylene imine there is an isotopic dependence of the 
potential function, but the qualitative nature of  the potential functions for 2,5-di- 
hydropyrrole and 2,5-dihydropyrrole-N-d is the same. 

( ii ) Analogs o f  Bicyclo[ 3.1. O ]hexane. Another type of pseudo-four-membered 
ring molecule with an asymmetric potential function is represented by bicyclo 
[3.1.0]-hexane and its analogs. The parent hydrocarbon ( I )  and three oxygen-con- 
taining analogs, 3-oxa-, 6-oxa- and 3,6-dioxabicyclo[3.1.0]hexane (2, 3,4) ,  have 
been studied. Far-infrared, Raman and microwave studies have been carried out 89' 91-96) 

1 2 3 4 
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Three low-frequency out-of-plane ring vibrations may be characterized. The 
mode of highest frequency, a rocking of the atom (or CH2 group) in position 6 in 
the ring, gives rise to a sharp intense Q branch in both the infrared and Raman spectra 
whose frequency ranges from 404 cm-1 for 6-oxabicyclo[3.1.0]hexane (cyclopentene 
oxide) to 365 cm -1 for 3.6-dioxabicyclo[3.1.0]hexane. The second mode is a twist- 
ing of the five-membered ring about the C i - C s  bond, observed as a type b band in 
the infrared and as a broad depolarized line in the Raman spectrum. Its frequency 
varies from 320 cm-1 for 6-oxabicyclo[3.1.0]hexane to 260 cm-1 for 3,6-dioxa- 
bicyclo[3.1.0]hexane. The ring-puckering mode yields the most information. This 
involves primarily the out-of-plane motion of the atom (or CH2 group) in the 3 
position and is highly anharmonic. The 0 -1  transition frequencies range from 
241 cm- 1 for bicyclo[3.1.0]hexane to 195 cm- l for 3,6-dioxabicyclo[3.1.0]hexane. 

The combination of far infrared and Raman spectra proved especially effective 
in the study of  these molecules, since those with intense spectra in the far infrared 
generally were found to have weak Raman spectra and vice-versa. Figure 4.24 pre- 
sents the low-frequency Raman spectrum of the parent hydrocarbon (1)96) Tran- 
sitions due to the three out-of-plane modes are evident in the figure, but only the 
ring puckering exhibits discernible hot-band structure. A series of  six transitions 
with negative anharmonicity is observed. The first four of  these transitions had been 
observed in the far-infrared spectrum under rather extreme conditions (80 torr 
pressure, 32 m path length) 92). Table 4.15 lists the observed Raman and far infrared 
frequencies, and the fit to the Raman data by the three.parameter potential function 
of  Eq. (3.32) 96). Figure 4.25 shows this potential function, for which 9 C 2 = 30.1 B, 
so that it is a single-minimum function with two inflection points. The shape of the 
potential function is well determined up to the v = 6 level (~1250 cm -1 above v = 0), 
but above that it is extrapolated. The frequencies are predicted to reach a minimum 
with the 8 - 9  transition and then begin increasing in frequency due to the dominance 
of the quartic term [Eq. (3.32)] at large amplitudes. However, the Boltzmann popu- 
lation of these higher states is such that it was not possible to confirm this behavior. 

l 
I 

4OO 
I I I i I 

500 200 I00 
WAVENUMBER (CM "l) 

0 

Fig. 4.24. Low-frequency region of the 
Raman spectrum of bicyelol3. !.0 ] hexane. 
The Q branch at 390 cm -1 is assigned to 
rocking of the eyclopropane ring, the 
broad band at 290 cm -1 to the ring- 
twisting mode of the five-membered ring 
and the series of Q branches starting at 
240 cm -1 to the ring-puckering vibration. 
IReprodueed from Lewis, J. D., Laane, J., 
MaUoy, T. B., Jr.: J. Chem. Phys. 61, 2342 
(1974).1 
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Fig. 4,25. Single-minimum asymmetric po- 
tential function for the ring-puckering 
vibration in bicyclol3.1.0lhexane. 
lReproduced from Lewis, J. D., Laane, J., 
Malloy, T. B., Jr.: J. Chem. Phys. 61, 
2342 (1974). I 

3,6-dioxabicyclo[3.1.0]hexane proved to be a more favorable case 92). The ring- 
puckering frequencies are somewhat lower so that the Boltzmann factors permitted 
the observation of more transitions. In addition, the large dipole moment changes 
resulting from the presence of the two oxygen atoms produced a very intense spec- 
trum in the far infrared (Fig. 4.26). The assignments of the nine transitions and the 
fit to the data are given in Table 4.16. Figure 4.27 shows the potential function, 
for which 9C 2 = 28.1 B. Again, a single-minimum potential function with two in- 
flection points has resulted from fitting the data, but in this case, data have been 
obtained for levels which are well above the second inflection point and the shape 
of the potential has been well characterized. Figure 4.27 shows that the cubic term 
in the potential contributes substantial negative anharmonicity for the first few tran- 
sitions. The quartic term then causes the frequencies to reach a minimum with the 
5 - 6  transition and then increase in frequency for the 6 -7 ,  7 - 8  and 8 - 9  transitions. 
Because transitions up into the quartic-dominated region have been observed, there 
is no question that the ring-puckering potential function for 3,6-dioxabicyclo[3.1.0] 
hexane has only a single minimum. 

The seven observed Q-branch transitions for 3-oxabicyclo[3.1.0]hexane were 
fitted 92) to a similar function with 9C 2 = 26.8B. The 6 - 7  transition was the last 
observed Q-branch. The 7 - 8  and 8 - 9  transitions were predicted to be the lowest 
frequencies, being almost identical, and succeeding transitions were indicated to 
increase in frequency. On the other hand, the potential function reported by Carreira 
and Lord 89) for 6-oxabicyclo[3.1.O]hexane (cyclopentene oxide) had a second, very 
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Fig. 4.26.  Far  infrared spec t rum of  3,6-dioxabicyclol3.1.01hexane.  P ~1 tor t ;  pa th length  = 20 m.  
• denotes  a water  peak. 
[Reproduced f rom Lord, R. C., Malloy, T. B., Jr.: J. Mol. Spectroscopy 46, 358 (1973).1 

Table 4.16. Observed and calculated ring-puckering transi t ions for 3,6-dioxabicyclo[3.1.01hexane a 

Transi t ion Observed Calculated b A Calculated 
( c m - l )  ( c m - i )  ( c m - l )  intensi ty 

0---, 1 195.1 196.0 - 0 . 9  1.00 
1 ~ 2 180.7 180.7 0.0 0.70 
2 - ,  3 164.2 163.5 +0.7 0.38 
3 "-* 4 146.1 145.7 +0.4 0.20 
4 ~ 5 131.9 131.7 +0.2 0.11 
5 --, 6 126.1 126.9 - 0 . 8  0.07 
6 ~ 7 128.0 129.4 - 1.4 0.04 
7 ~ 8 136.1 134.4 +1.7 0.03 
8 --, 9 140.4 139.9 +0.5 0.02 

a Ref .92) .  
b V(cm-1 )  = 25.25 (Z 4 + 17.23Z 2 + 7.33Z3).  
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Fig. 4.27. Single-minimum asymmetric potential function for the ring-puckering vibration of 
3,6-dioxabicyclo[3.1.01hexane. The last observed transition occurs well above the inflection 
point in the potential function. 
IReproduced from Lord, R. C., Malloy, T. B., Jr.: J. Mol. Spectroscopy 46, 358 (1973).1 

shallow minimum roughly 1000 cm-l  above the ground state. However, only five 
transitions were observed and the "barrier" was ~200 cm -l  above the n = 5 level. 
For this potential function, 9C 2 = 32.4B, very close to the dividing line, 9C 2 = 32B, 
between double-minimum and single minimum potential functions. Carreira and 
Lord weighted more heavily the lower, more intense transitions in their fit of the 
five transitions for cyclopentene oxide, obtaining a very shallow second minimum. 
When their data were refitted, with equal weights assigned to each transition, a single- 
minimum potential function resulted. The important point is that with only five 
transitions the potential ]#nctions were well within one standard deviation o f  each 
other. Thus one must regard as questionable any feature in a potential function that 
lies much above the last observed energy level. 

The determination of the potential function in reduced coordinates from fitting 
far-infrared or Raman data does not yield information on the identity of the stable 
conformer. The microwave spectrum of 3,6-dioxabicyclo[3.1.0]hexane was reported 
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B. Molecules Treated by Two-Dimensional Hamiltonians 

1 Pure Pseudorotation 

2 Hindered Pseudorotation 

(i) Cyclopentane. Durig and Wertz 7) reported the pseudorotational combination 
and difference transitions superimposed on a CH 2 deformation mode in the mid in- 
frared spectrum of cyclopentane. They interpreted these with the help of Eq. (3.38). 
Carreira et al. employed the perturbation formulas Eqs. (3.39) to (3.41) and three 
radial transitions observed in the vapor-phase Raman spectrum 97) to make a provi- 
sional estimate of the parameters in a two-dimensional potential function. With these 
as a starting point they carried out a least-squares fitting of all the data by numerical 
solution of the two-dimensional problem in polar coordinates. This allowed them to 
estimate the barrier to planarity in cyclopentane as 1824 + 50 cm-l ,  quite close to 
the value obtained by Pitzer and Donath98) from thermodynamic data. 

100,0 - 

{i) Tetrahydrofuran and 1,3-Dioxolane. Originally the angular transitions in the 
far infrared spectrum of tetrahydrofuran and 1,3-dioxolane were interpreted on the 
basis of pure pseudorotaion using Eq. (3.38) and higher quantum-number transitions, 
from levels above the small barriers 6, 99) The microwave spectrum of tetrahydrofuran 
revealed a complicated energy pattern for low quantum numbers 38). Rotational 
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by Creswell and Lafferty 93), who showed from the ground-state rotational constants 
and the dipole-moment components that the boat conformer is the stable form. Similar 
studies have been reported for 6-oxabicyclo[3.1.0]hexane 91). 

I 

2~ 

Fig. 4.28. Angular potential function hinder- 
ing pseudorotation in tetrahydrofuran. 
IReproduced from Engerholm, G. G., Luntz, 
A. C., Gwinn, W. D., Harris, D. O.: J. Chem. 
Phys. 50, 2446 (1969).1 
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constants in different vibrational states were determined, as well as small energy 
splittings between the 0 - 1  levels and the 2 - 3  levels, for which the Schr6dinger Eq. 
(3.44) was used. The rotational constants were not expressed in power series, but 
in a trigonometric series appropriate to a periodic coordinate 

/~vr = ~ #(k) <V~ I COS k•l ve > (4 .14 )  
k 

where # represents the A, B, or C rotational constant. The splittings and variations 
in rotational constants were used to determine the following potential function 

V(r  in cm -1 = - 15(1 - cos 2~b) - 20(1 - cos 4q~) (4.15) 

The value o f  the pseudorotational constant, 3.25 cm -1 , was taken from the earlier 
far-infrared study 6). Figure 4.28 depicts the potential function hindering pseudo- 
rotation. It is seen that the largest barrier encountered in one cycle is "-55 cm-1 ,  
indicating that the approximation that the pseudorotation barrier be much less than 
the barrier to planarity has been met in this case. 

Tet rahydro fu ran  
100 c -I r 62,53 87 109r  v=0,an=*_l 16,16 

o i i i ~ t  i i  i i i i i i  i i  i i i i i ~ 11  i i i i 
~ ' j z ' , '  'Z~k~n '6~..~.~77 __88 99 1010111112121313 14141515 n [ 

501 J, Y, 'W c J " 

~- 'v=l,&n=_*l n ~ ~ 7 8 8 9 1'1 1'2 1'3 n ) 
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Frequency (cm -1 ) 

100 q 
Co 

C ' I ' ' 
I f 

�9 - = s o  I ] L , , . I  " r  , 
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Frequency (crn -1 ) 
Tetrahydrofuran 

190 230 270 310 350 

Frequency (crn -1 } 

Fig. 4.29. Far infrared spectrum of tetrahydrofuran. Path length = 1 m. (A) P = 20 torr, 
(B) P = 20 Torr, (C) P = 93 torr. P = 43 torr in the region above 190. [Reproduced from Green- 
house, J. A., Strauss, H. L :  J. Chem. Phys. 50, 124 (1969).1 
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Under conditions of higher resolution, the far infrared spectrum of tetrahydro- 
furan was found to be quite complex (Fig. 4.29) with a number of bands split by 
Coriolis interaction. Assignments and analysis of the band origins led to a potential 
function 

V(q~) in cm -l  = - 13.5(1 - cos 2q~) - 20(1 - cos 4~b) (4.16) 

with a pseudorotational constant of 3.19 cm -l  . The features in the radial-band 
region (ca. 270 cm- 1 ) remained unassigned. Subsequent treatment of the far infrared 
and microwave splitting data with a two-dimensional Hamiltonian in polar coordinates 
[Eq. (3.43)] and also including coordinate-dependent mass terms in the kinetic energy, 
led to tentative assignments of some of these features 1~176 The calculated spectrum 
is quite complex and shows that many of the features are due to several overlapped 
transitions. Recently, Sont and Wieser l~ have made assignments of several features 
in the Raman spectrum of tetrahydrofuran near 270 cm-I .  

3 Coupled Bending and Twisting Vibrations in Cyclopentanone 

In some cases, separation of variables in polar coordinates is not appropriate. Cy- 
clopentanone is a good example of such a molecule. Although it is possible to fit 
the main features of the far infrared spectrum with a periodic potential function, 
the "barrier" derived has no meaning. A rather thorough study of the far infrared 
spectrum of cyclopentanone by Ikeda and Lord 1~ led to the determination of 
the potential surface shown in Fig. 4.30 by fitting the spectrum two-dimensionally. 
These workers reported the far infrared spectra of the parent compound and its 
a-d4,/3-d4 and ds derivatives shown in Fig. 4.31. The data for the parent compound 
were fitted by least squares to a two-dimensional Hamiltonian similar to Eq. (4.13), 
but including variable reduced-mass terms through quadratic expansion coefficients 
in the kinetic energy operator. The stable conformation is the twisted (C2) ring 
conformation, as had been shown by a microwave study ~~ Not only is the barrier 
to planarity comparable to the barrier to pseudorotation, but al~o the minimum- 
energy path for interconversion of  the equivalent C2 conformers passes through the 
planar conformation with a relatively low barrier of 750 cm -l. 

Examination of Fig. 4.30 indicates that the probability density for the levels 
involved in the observed transitions should be localized about the stable twisted 
conformation. In order to obtain a basis set for the variation calculation which sat- 
isfies this requirement a slightly different approach was taken l~ First, the two- 
dimensional potential was presumed to be given by 

V(x, y) = alx 4 + bl x2 + a2y 4 + b2y 2 + al2x2y 2 (4.17) 

where x is the bending coordinate and y the twisting coordinate. For cyclopentanone, 
it turned out that b2 is negative while each of the other potenziai constants is positive. 
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Fig. 4.30. Potential energy contour diagram for cyclopentanone. The contour ~n the third and 
fourth quadrants is the mirror image of that in the first two quadrants. The interconversion of 
the two equivalent C2 conformers occurs via the planar conformation. 
[Reproduced from Ikeda, T., Lord, R. C.: J. Chem. Phys. 56, 4450 (1972).1 

0 . 8  tq 

( bending1 

An approximate separation of  variables was performed, yielding the following effec- 
tive potential functions 

V(y)  = a l2y  4 + b2y 2 (4.18) 

and 

V(x) = al x4 + (bl - b2a12/2a2)x 2 (4.19) 

The origin in Eq. (4.19) has been translated to correspond to the minimum along 
the twisting coordinate and appropriate modifications made to the kinetic energy 
operator. The potential function then has a double minimum in the twisting coor- 
dinate and a single minimum in the bending coordinate. The resulting Sch6dinger 
equations were solved, as described earlier, with harmonic-oscillator basis functions. 
The solutions to these equations were then used to form a direct-product basis in 
which to expand the full two-dimensional Hamiltonian. This Hamiltonian matrix 
factored into four blocks denoted as ee, eo, oe, and oo depending on the even or 
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odd character of the functions used to form the product basis. This procedure was 
then included in an iterative least-squares adjustment of the potential constants. 

Figure 4.32 indicates the calculated spectra for the various deuterated analogs 
of cyclopentanone. As found earlier with cyclobutane and other ring molecules, it 
was necessary to mix motion of the methylene hydrogens (deuteriums) with the 
ring vibrations in order to reproduce the observed isotopic shifts. It may be seen 
from the figure that deuteration at the 0~-position has a much greater effect than 
deuteration at the/~-position. 
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Fig. 4.31. Far-infrared spectra in the bending region for cyclopentanone, a, t~, a', a'-cyclopen- 
tanone-d4, #, fl, if,/3'-cyclopentanone-d 4 and cyclopentanone-a' 8. 
[lkeda, T., Lord, R. C.: J. Chem. Phys. 56, 4450 (1972).1 
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4 Pseudo-Five-Membered Ring Molecules 

Just as a five-membered ring molecule with an endocyclic double bond may be con- 
sidered as a pseudo-four-membered ring, a six-membered ring molecule with an 
endocyclic double bond may be considered as a pseudo-five-membered ring mole- 
cule. Although a six-membered ring has three out-of-plane skeletal vibrations, in the 
case of  analogs of cyclohexene one of these is mainly a twisting about the double 
bond, which is somewhat higher in frequency than the other two and essentially 
harmonic. The other modes, illustrated for 1,4-dioxene in Fig. 4.33, are a bending, 
/~ and twisting, r. These two low-frequency modes are expected to be highly coupled. 

(i} 1,4-Dioxene. The far infrared spectrum of dioxene 1~ is shown in Fig. 4.34. 
The high-frequency region near 300 cm-1 involves transitions among "twisting" 
states, giving rise to overlapped type-b band contours. On the other hand, the 
"bending" transitions have type-c band contours and extensive hot-band structure 
is observed just below 200 cm- i. At long path lengths, a series of bands arising from 
difference transitions between twisting and bending states is observed near I00 cm -~ 

Figure 4.35 reproduces the Raman spectrum of dioxene in the region corres- 
ponding to the twisting vibration 1o5). The Q-branch transitions are prominent because 
the twisting mode is a totally symmetric vibration. Combining all of these data, one 
can build up a detailed energy-level pattem with many internal checks on the self 
consistency of the assignment 1~ 1o5). Figure 4.36 shows this pattern and the assign- 
ments of the transitions. The data have been fitted by least squares by the procedure 
described for cyclopentanone. The observed and calculated frequencies are given in 
Table 4.17. 

In Fig. 4.37 is shown a potential energy contour map determined for 1,4-dioxene 
that has absolute minima at the two equivalent twisted (C2) conformations; relative 
minima occur at the bent (Cs) conformations. The planar conformation corresponds 
to a maximum. Two cross sections of  this surface, one along the twisting coordinate 
through the origin and the second along the minimumenergy path between the two 
equivalent C2 conformations, are plotted in Fig. 4.38. The barriers involved are con- 
siderably higher for this molecule than for the four- or five-membered rings con- 
sidered earlier. It should also be emphasized that the barriers are higher than the 
energy of the highest observed levels, that is, they have been determined by extra- 
polation and the uncertainties are correspondingly greater than for molecules with 
lower barriers. The position of the relative minimum corresponding to the Cs con- 

Fig. 4.33. Definitions of ring bending (~) and ring twisting (~') coordinates for dioxene. 
IReproduced from Lord, R. C., Rounds, T. C., Ueda, T.: J. Chem. Phys. 57, 2572 (1972).1 
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Fig. 4.34. Far infrared spectrum of dioxene. (A) Ring bending transitions P = 35 tort;  path 
length = 30 cm. (B) High-resolution scan of the bending region showing resolved rotational 
structure. P = 35 torr: path length = 30 cm. (C) Difference band region, P = 10 torr; path 
length = 8 m. (D) Type-b bands in the ring-twisting region. P -- 10 torr; path length = 4 m. 
[Reproduced from Lord, R. C., Rounds T. C., Ueda, T.: J. Chem. Phys. 57, 2572 (1972).1 

f 

W A V E N U M B E I i  C M  l 

Fig. 4.35. Ring-twisting hot bands in the Raman spectrum of dioxene. 
[Reproduced from Durig, J. R., Carter, R. O., Carreira, L. A.: J. Chem. Phys. 60, 3098 (1974).1 
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10,11 

8,9 

6.7 

t.,5 

2,3 

Fig. 4.36. Pattern of observed 
transitions between the energy 
levels for the twisting and bend- 
ing vibrations in dioxene. Many 
of the checks on the self-con- 
sistency of the assignments are 
provided by the difference band 
in the far-infrared spectrum 
(Fig. 4.34c). 
[Reproduced from Durig, J. R., 
Carter, R. O., Carreira, L. A.: 
J. Chem. Phys. 60, 3098 (1974).1 

Fig. 4.37. Potential energy surface for dioxene determined from least squares fit of the far infrared 
and Raman data (equipotcntial lines in cm- l ) .  The dashed line indicates the minimum energy 
path for interconversion of the equivalent twisted forms (C 2) via the bent (Cs) forms. The barrier 
to intcrconversion is 3200 cm -I 
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Table 4.17. Observed and calculated frequencies ( c m - l )  tbr 1,4-dioxene 

Obs Assignment  Calc zx 

(vt, Vb) -~ (v't, V'b) 

Twisting band region a 

297.4 (0,0) --, (2,0) 297.3 +0.1 
294.9 (2,0) --, (4,0) 294.7 +0.2 
291.4 (4,0) -~ (6,0) 291.9 -0 .5  
289.0 b (6,0) --, (8,0) 288.8 +0.2 
291.4 (0,1) ~ (2,1) 291.7 - 0 . 3  
288.1 (2,1) ~ (4,1) 288.6 -0 .5  
285.1 (4,1) ---, (6,1) 285.1 0.0 
285.1 (0,2) ~ (2,2) 286.4 - 1.3 
281.7 (2,2) --, (4,2) 283.0 -1 .3  
281.7 (0,3) ~ (2,3) 281.3 +0.4 
277.6 (0,4) ~ (2,4) 276.3 +1.3 

Bending band region b 

191.3 (0,0) - -  (0,1) 190.4 +0.9 
190.7 (0,1) --  (0,2) 190.3 +0.4 
189.9 (0,2) ~ (0,3) 190.1 - 0 . 2  
189.3 (0,3) --  (0,4) 189.8 -0 .5  
188.8 (0,4) ~ (0,5) 189.4 -0 .6  
188.1 (0,5) ---, (0,6) 189.0 - 0 . 9  
187.4 (0,6) ~ (0,7) 188.5 -1 .1  

(2,0) ~ (2,1) 184.8 +0.6 
(2,1) ~ (2,2) 185.0 +0.4 

185.4 (2,2) ~ (2,3) 185.0 +0.4 
(2,3) --  (2,4) 184.8 +0.6 
(2,4) ~ (2,5) 184.5 +0.9 

178.6 (4,0) --, (4,1) 178.7 -0 .1  
179.9 (4,1) ~ (4,2) 179.4 +0.5 
179.9 (4,2) ~ (4,3) 179.6 +0.3 
171.1 (6,0) --" (6,1) 171.9 - 0 . 8  
174.1 (6,1) ~ (6,2) 173.5 "+0.6 
163.0 (8,0) ~ (8,1) 164.3 -1 .3  

Difference band region b 

106.2 (0,1) ~ (2,0) 106.9 -0 .7  
109.8 (2,1) --, (4,0) 109.8 0.0 
113.9 (4, ! ) ~ (6,0) 113.2 +0.7 
118.1 (6,1) ~ (8,0) 116.7 +1.4 
100.9 (0,2) ---, (2,1) 101.4 - 0 . 5  
103.1 (2,2) ~ (4,1) 103.6 - 0 . 5  
105.0 (4,2) ---, (6,1) 105.7 - 0 . 7  
108.0 (6,2) -- (8,1) 107.6 +0.4 
96.6 (0,3) ~ (2,2) 96.3 +0.3 
97.8 (2,3) ~ (4,2) 98.0 - 0 . 2  
98.8 (4,3) --, (6,2) 99.6 - 0 . 8  
92.5 (0,4) ~ (2,3) 91.5 +I.0 
88.8 (0,5) --, (2,4) 86.9 +1.9 

a F rom the Raman  spect rum (Ref.lO5)).  b F rom the far-infrared spec t rum (Ref.104)) .  
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Fig. 4.38. Cross sections of the potential surface in Fig. 4.37. The figure on the left is the poten- 
tial function along the twisting axis. The potential function on the right follows the dashed line 
in Fig. 4.37 and represents the minimum-energy path. The portion of the curve corresponding 
to the C s conformer is dashed, indicating the large uncertainty in the position of the second 
minimum 

formation is shown in Fig. 4.38 as a dotted line to imply that the shape o f  the curve 
in this region and the energy of  the Cs minimum are not at all well determined. The 
dispersion of  the barrier to planarity determined from the least squares fit to the 
data is -+ 750 cm-  I. The dispersion of  the barrier to interconversion of  the two equiv- 
alent C2 forms is -+250 cm - l  . On the other hand, the dispersion o f  the depth of  
the second minimum is of  the order o f  this depth. 

The barriers to interconversion determined for 1,4-dioxene and similar unsatu- 
rated six-membered rings are approaching the upper limit of  those which can be 
determined reliably from vibrational data alone at temperatures near 300 K. On the 
other hand, they overlap the lower limit o f  those which may be determined from 
the study of  the temperature dependence of  the nmr spectra. A subsequent study 
of  the nmr spectrum of dioxene in solution as a function of  temperature led to an 
independent determination of  the barrier to interconversion ~ o6). The agreement 
with that determined from fitting the vibrational data was within 1 kcal/mole. This 
was quite satisfactory in as much as the two experiments were performed in different 
phases. In addition, the angle between the C - C  and C=C bonds was estimated ]~ 
from the vicinal coupling constants as 26.8 ~ in reasonable agreement with the value 
o f  29.9 ~ calculated from a microwave study l~ 

A list of  small ring molecules investigated up to the middle o f  1978 is summarized 
in Table 4.18 under the headings o f  Section IV. (See pp. 80-90) .  
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V Prospects  for  F u r t h e r  Studies  

Further research in the field of low-frequency vibrations in ring molecules may be 
expected to proceed along three lines: 

1) Extension of studies like those treated in this article to additional small-ring 
systems, including isotopic derivatives. Such studies will provide new information 
about the molecules studied as well as further tests of the theoretical treatments 
discussed in Section III. 

2) Extension of the investigations to larger rings. The low-frequency vibrational 
modes of saturated six-membered and larger ring molecules have already been studied 
by Strauss and coworkers (see, for example, Refs.109-112). Their approach has been 
to develop a molecular force field based on vibrational data and known molecular 
geometries for a series of molecules rather than to determine the potential surfaces 
for individual molecules experimentally from the spectra of one or two low-frequency 
vibrations. Clearly both the theoretical and experimental problems associated with 
the larger rings are difficult. However, new experimental techniques (see below), 
especially those with the capability of much higher spectral resolution, seem likely 
to provide the data needed to treat these more complicated systems. A review of 
the present status of the vibrational spectroscopy of medium-sized rings is now 
available 113) 

3) New developments in experimental methods. New techniques for high-reso- 
lution spectroscopy in far infrared absorption and the Raman effect are likely to 
improve both the accuracy and the scope of studies of ring systems. It was noted in 
Section II that the increasing application of Fourier-transform infrared spectroscopy 
to the investigation of ring molecules has already resulted in markedly improved 
accuracy of the molecular parameters derived therefrom. Much further improvement 
can be expected from the methods of laser spectroscopy. The use of tunable diode 
lasers, for example, gives promise of spectral resolutions of the order of 10 -4 cm -1 
in the mid and far infrared ll4). Clearly the quality of the data affordable by such 
resolving power will necessitate corresponding improvement in the theoretical treat- 
ment. 

Since the high-resolution Raman spectra of ring compounds are of necessity 
obtained from samples in the vapor phase, improvement in the resolution is depen- 
dent on an increase in the intensity of the scattered radiation. A promising technique 
for this purpose is that of coherent anti-Stokes Raman scattering (CARS), which 
is many orders of magnitude more intense than the normal Raman effect. Recent 
developments in the technique 11s) suggest that CARS could produce spectra of 
sufficient intensity and line sharpness to enable the resolution of lines separated by 
0.001-0.01 cm- 1. While this range is not so impressive as the potential resolution 
of the tunable lasers, it is still three orders of magnitude better than present work. 
In any case the combination of much greater spectral detail with extended theory 
should permit the successful study of larger molecules and improved accuracy of 
the potential surfaces of smaller rings. 
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1 I n t r o d u c t i o n  

A New Approach to the Hamiltonian of Nonrigid Molecules 

The dynamics of nonrigid molecules has been studied with increasing interest in 
recent years. This is a natural consequence of the increasing amount of very precise 
data for these molecules made available by the developments within high resolution 
spectroscopy. Such data require detailed analysis. Interest has also been stimulated 
by the fact that developments within computer technology have allowed an attempt 
at solving the involved numerical problems. 

Theoretical formulations have now reached a level which allows the possibility 
of standardizing the treatment of nonrigid molecules in a way which is very similar 
to the treatment applied to rigid molecules. This is where the present paper may 
hopefully contribute. 

In rigid molecules the vibrational amplitudes are so small that the vibration- 
rotation spectra can be analyzed in great detail within the formalism of Wilson and 
Howard t-3) using the fully elaborated perturbation scheme of Amat and Nielsen 4). 
A review of the method has recently been given by Mills 5). The latest development 
concerns the anharmonic force constants which, according to Hoy, Mills and Strey 6), 
should be defined as the partial derivatives of the potential function with respect to 
structural parameters, i.e. curvilinear coordinates as opposed to the rectilinear coor- 
dinates used in the Hamiltonian. This is made possible employing the nonlinear trans- 
formation between the two classes of coordinates which can be evaluated by the 
methods presented by Hoy et al. 6). This development is equally important when 
small amplitude motions in nonrigid molecules are considered. An alternative treat- 
ment has been suggested by Quade 7) based on a rigorous use of curvilinear coordi- 
nates in formulating the Hamiltonian. Comments on this method will be presented 
in a later section. 

In nonrigid molecules one or more internal motions take place with distortions 
so large that the ordinary treatment is inadequate or even breaks down. Thus, in 
the case of large amplitude vibrations, bending, inversion or ring puckering modes 
in particular, a Hamiltonian based on rectilinear coordinates is still exact, but the 
perturbation treatment converges only very slowly because of the change in order 
of magnitude of certain terms. When internal rotation is considered, it is no longer 
appropriate to describe the internal motions as displacements of atoms relative to a 
single unique equilibrium configuration. Therefore both types of nonrigidity require 
special treatments. 

Such treatments have generally been based on semirigid models, where the small 
amplitude vibrations are neglected so that only the overall rotation and the relative 
motion of a few (usually two) rigid groups in the molecule are considered. The 
methods applied to internal rotation have been described in detail by Dreizler 8' 9), 
whereas a complete review of the many different approaches to the large amplitude 
vibration problem is very difficult to present. The development of the theory may, 
however, be followed in a few illustrative papers. In the pioneering papers by Thorson 
and Nakagawa l~ Dixon 11) and Johns 12) and also in later works TM 14) an isolated 
bending was studied using an approximated kinetic energy expression with constant 
reduced mass, equivalent of using rectilinear coordinates. Various types of anharmon- 
ic potential functions, including double minimum types, were studied. Within this 
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approach to large amplitude bendings it has been possible to quite accurately account 
for vibration-rotation coupling effects as demonstrated in the recent papers by 
Duckett, Robiette and Mills Is). 

Aiming at a more detailed study of large amplitude potential, it is necessary to 
use curvilinear coordinates and hence to use a coordinate-dependent reduced mass. 
Large amplitude bending in quasilinear molecules was discussed by Shinkle and 
C00n16); including overall rotation by Hougen, Bunker and Johns 17). Using the 
principles outlined in the latter paper, several types of large amplitude internal mo- 
tions have been treated: Bendings in HCN and H20 (Bunker and Stone 18), Bunker 
and Landsberg19)), in HCNO (Stone 2~ Bunker et al. 21)) and in C302 (Weber and 
Ford22)), inversions in H2CO (Moule and Ra023)), in NH 3 and deuterated NH a 
(Papou~ek et al. 24), Daniels et al. 2s)) and in CHaNH2(Kreglewski26)). More special 
internal motions have been discussed by Henderson and Ewing 27) in relation to Van 
der Waal molecules and by Istomin 2s) concerning a migration of the lithium atom 
around the cyanide group in LiCN. Also a more elaborated model for ring puckering 
has appeared (Malloy et al. 29' 30)) which was applied to cyclopentene, by Villarreal 
et al. 31). 

For the treatment of the internal rotation of a non-axially symmetric top an 
angle-dependent reduced moment of inertia must be introduced. In this way nitro- 
ethylene was studied by Bauder et al.32) and butadiene by Carreira 33). An angle- 
dependent reduced moment of inertia has also been introduced in the study of 
methyl group internal rotation to account for structural relaxation 34' 3s). 

When considering the results of such treatments it should be borne in mind that 
there is a principal equivalence between applying the semirigid rotor model to non- 
rigid molecules and applying the rigid rotor model to rigid molecules. In both cases 
we must realize that the parameters of the model Hamiltonian are effective con- 
stants for the particular state of the neglected small amplitude vibrations. For the 
rigid molecules a rigorous method of calculating all the effective constants is provided 
by the general formalism mentioned above, but this is not so for the nonrigid mole- 
cules. The question has been discussed, however, in relation to specific problems. 
Thus perturbation effects are incorporated in the internal rotation treatment by 
Kirtman 36), in the treatment of H20 by Hoy and Bunker aT) and in the analysis of 
centrifugal distortion and Coriolis coupling in NH 3 by Spirko et al. as). In the present 
paper general expressions of the effective constants will be given which are applicable 
to molecules with large amplitude internal motions of any type. 

Hamiltonians will only be discussed within the framework of  the Born-Oppen- 
heimer approximation. The fundamental problem is then to make a convenient 
choice of generalized coordinates and momenta which ensures rapid convergence in 
the expansion of the Hamiltonian. What remains after this is the specific work of 
deriving which involves algebraic problems only. However, this work is so difficult 
and tedious that any formalism which helps to simplify this part may be important 
for future progress. For this reason Sect. 2 is devoted to the discussion of such a 
formalism. 

The basic principle of this is to derive the Hamiltonian form of the kinetic energy 
directly from the transformation of the momenta. Hence, with linear Cartesian mo- 
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menta, Pi; i = 1, 2 . . . .  3 N, and generalized (including quasi-generalized) momenta, 
rri ; J = 1, 2 , . . .  3 N, we shall set up the square matrix (sii) of the transformation, 

P; = ~ ~'/s/~. (1.1) 
i 

From this we obtain the transformed kinetic energy expression by substituting, 

2 T = ~-,mi-lP 2= ~.., G//, 7r/7tj/, (1.2) 
i tl 

introducing the general G-matrix by 

G]]' = ~, m~-l $]i $]'i (1.3) 
i 

This applies to the quantum mechanical operators as well. 

In Sect. 3 the Wilson-Howard operator is discussed as an example of application. 
From this it appears that the Eckart conditions 39) can be inferred from arguments 
which are easily extended to Sayvetz conditions 4~ of any type. The general deriva- 
tion of  Hamiltonians of nonrigid molecules can then be presented in Sect. 4, and an 
effective semirigid rotor Hamiltonian is formed by a Van Vleck transformation. 
Finally Sect. 5 gives a complete example of a calculation on a specific molecule, C3. 

2 Derivation o f  Hamil tonians  

The methods used in setting up the complete vibration-large amplitude motion-rota- 
tion Hamiltonian are illustrated by several examples in the literature. Thus the case 
of methyl group internal rotation was discussed by Kirtman 36), and his method was 
applied by Iijima and Tsuchiya 41) to acetaldehyde and by Fleming and Banwel142) 
to molecules with free or slightly hindered internal rotation. The treatment was 
extended by Quade 43) to cover an asymmetric internal rotor as well. The effects of 
a large amplitude bending or inversion have been extensively discussed 44-46), and 
particularly the work of Hougen, Bunker and Johns  17) on triatomic molecules has 
formed the basis for several attempts to treat more complicated systems 23-26' 47, 48). 

In all these cases the Hamiltonian form of the kinetic energy was derived by pro- 
cedures that are fundamentally similar to the original method for ordinary rigid mole- 
cules used by Wilson and Howard z' 2). A presentation of their treatment is now found 
as an essential part of most textbooks on vibration-rotation spectroscopy 49-s2) and 
their notation is therefore assumed to be a widely accepted standard. For convenience 
we adopt a similar notation here, and in particular we shall use vectors of our ordinary 
three-dimensional space when discussing atomic positions, velocities and momenta. 

The general features of the usual treatment will be summarized below, but first 
we will discuss properties of the generalized coordinates which are fundamental for 
any approach to the vibration-rotation Hamiltonian. 
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2.1 Generalized Coordinates 

By the Born-Oppenheimer adiabatic approximation we obtain a molecular model in 
which the potential energy depends on structural variables of the nuclear framework 
only, whereas it is independent of the position of the molecule in space. Correspond. 
ingly it is convenient to use generalized coordinates which are divided into two 
classes, the internal coordinates determining the relative positions of  the N atoms, 

q k ; k = l , 2  . . . .  3 N - 6  (2.1 a) 

and six coordinates describing the rigid motions. It is necessary to distinguish between 
translational and rotational coordinates and here we shall take 

R x ,  R y ,  Rz,~O, O, X (2.1b) 

three position vector components for the center of  mass and three Eulerian angles. 
They specify the position of a translating and rotating molecular reference coordi- 
nate system relative to a laboratory fixed system. 

For a more explicit definition we introduce the following vectors of  three- 
dimensional space, 

eF; F = X, Y, Z, orthogonal unit vectors forming the basis of the Laboratory 
System, LS. 

eg; g = x ,  y ,  z ,  orthogonal unit vectors forming the basis of  the Molecular 
System, MS. (2.2) 

Ra; a = 1, 2 , . . .  N, position vectors of  the atoms from the origin of  LS. 
ra, position vector of  atom from the origin of  MS. 
R, position vector of  the center of mass from the origin of LS. 

Vector components are indicated by adding subscripts F = X, Y, Z o rg  = x, y, z, 
the labels of  the LS- or MS-axes respectively, e.g. 

R x  = e x  " R ,  r~z = ez " r~ 

The origin of the molecular system is chosen as the instantaneous center of  mass. 
From the vector definitions above it therefore follows that 

Ra = R + ra (2.3) 

and 

Y-, m~r,~ = O, or ~, marc~g = 0, g = x, y ,  z (2.4) 

The orientation of  molecular axes are given by the directional cosines,OvF s, 

eg = ~ eF OFg 
F 

f2.5) 
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which are trigonometric functions of  the Eulerian angles, % 0 and X (see App. 1 of  
Ref. 2). The positions of the atoms relative to the MS-system, as given by the com- 
ponents, rug , are functions of the internal coordinates only. 

These definitions allow us to express the relations between the generalized co- 
ordinates and the 3 N Cartesian coordinates of an arbitrary configuration in the 
following formal way 

R~F 

O~ 

= R F  + ~, d~Fg(~O, O, X)" rag(ql, q2 . . . .  q3N-6) 
g 

= 1 , 2  . . . .  N, F = X ,  Y ,Z ,  g = x , y , z  
(2.6) 

The dependence of  rag on the internal coordinates is not restricted by requirements 
other than the center of  mass conditions (2.4) and that Eq. (2.6) is invertible. In ex- 
pressing the rag functions we may therefore also consider how the final Hamiltonian 
is influenced, so that we obtain an operator of optimum suitability characterized by 
e.g. rapid convergence of the perturbing terms. In this respect there are two partic- 
ular concerns, the vibration-rotation interaction and the potential energy expansion. 

The vibration-rotation interaction is the effect arising from coupling terms 
between angular and vibrational momenta as well as from the dependence of the 
rotational G-matrix elements (the/a-tensor) on the internal coordinates. The impor- 
tance of this effect may to some extent be reduced provided an appropriate axis 
convention is used. The axis convention is the set of  rules defining the orientation 
of the molecular axes, eg, g = x, y, z, relative to an arbitrary configuration as given 
by the position vectors, Ra, a = 1, 2 . . . .  N. These rules can be expressed in three 
relations between the rag components, similar to the center of mass conditions (2.4). 
We shall refer to these relations as "the axial constraints". Usually Eckart-condi- 
tions ag) are imposed, but other possibilities may be considered. 

Rapid convergence of the potential energy expansion depends on the type of 
internal coordinates involved. Of particular importance here is whether we use curvi- 
linear coordinates that are close to the true geometrical variables (e.g. the valence 
coordinates comprising bond lengths and angles, etc.) or whether we use rectilinear 
coordinates. We shall here define rectilinear coordinates as a subset, q z, q2 . . . .  qn; 
n ~< 3 N -  6, of  internal coordinates which enter only linearly in the expression for 
the rag components 

=a g, as ~=1 3qk 
(2.7) 

It is assumed that aag, as well as the partial derivatives, are functions of the remain- 
ing curvilinear coordinates, qn + 1, qn + 2, �9 �9 �9 q3 N -  6" But, they may be constants (e.g., if 
n = 3 N - 6) as happens in the Wilson-Howard treatment of ordinary rigid mole- 
cules. 

A priori we expect, and experience has confirmed 6, s3), that the most rapid 
convergence is obtained if the potential energy is expanded using curvilinear coordi- 
nates. However, this advantage is opposed by complications in deriving the kinetic 
energy. In this respect the rectilinear coordinates are superior. Hoy, Mills and Strey 6) 
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have discussed these problems in great detail in relation to the treatment of rigid 
molecules. They show how the nonlinear transformation between rectilinear and 
curvilinear coordinates can be worked out and employed in expressing the anhar- 
monic force constants corresponding to rectilinear coordinates in terms of purely 
geometrically defined force constants. It should be emphasized that only force con- 
stants of the latter type are isotopically invariant. It is therefore an important ad- 
vance that such constants can now be used in expressing the spectroscopic constants 
of the standard treatment. 

2.2 Kinetic Energy 

The classical Equation for kinetic energy reads 

1 2~m s l~  e. e-~  - Pe'Pc~ T=-~ a ~ m e  I (2.8) 

in terms of the mass, ms, and linear velocity, 1~ e, or linear momentum, Pe = melee, 
of each atom. Usually the rewriting starts by considering the time derivative of 
Eq. (2.3) which gives the velocity vector for substitution in Eq. (2.8). The three 
main steps of this standard method are discussed below for comparison with the 
principles of  the alternative procedure based on the momentum transformation. 

2.2.1 Usual Treatment 

The time derivative of Eq. (2.3) may be written 

1~ e = 1~ + Y, (6g rag + eg/'~g) (2.9) 
g 

By comparison with Eq. (2.6) it is seen that keg depends on the internal velocities 
exclusively, whereas ~g depends on the rotational velocities. The time derivatives of 
the Eulerian angles are replaced, however, by the components of the total angular 
velocity vector, to, of the molecular system, defined by 

~g = tax eg (2.10) 

Substituting this relation into Eq. (2.9) we obtain 

~ra 
Re = I~ + to x r e + c~ k 

k Oqk 
(2.11) 

We shall emphasize that this result establishes a linear transformation of the 
velocities, which can be expressed in matrix form. For this purpose we consider the 
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components of l~c, and introduce a common symbol, vi, i = 1,2 . . . .  3 N, for the 
generalized velocities 

{V1, V2 . . . .  V3N} = (kx ,  l~r, kz ,  wx, ~oy, w~, 4,, 42 . . . .  q3N-6} (2.12) 

Further we rewrite 

to x r~ = ~ (eg~g) x r~ = ~ (eg x r,0 cog 
g g 

(2.13) 

showing that we generally have 

l~c~F = ~'ti,aF Vi (2.14) 
i 

The transformation coefficients, ti, aF, which obviously are functions of  the gener- 
alized coordinates, may be arranged in a square matrix, T, with columns labelled by 
i and rows labelled by a F  = 1 X, 1 Y, 1 Z, 2 X, 2 Y, . . .  NZ.  

In the standard method we proceed by substituting Eq. (2.11) into Eq. (2.8). 
Here we shall use the equivalent form Eq. (2.14) and obtain 

1 ~ ,muf~2F = 1 .~.Ki /v iv /  
T= -~ a F -~ q (2.15) 

where 

K# = ~ rn~ t~ aF ti, aF (2.16 a) 
aF 

If  the elements, Ki/, are arranged in a square matrix, K, and the masses in a diagonal 
matrix, m, where every atomic mass appears three times, we may also obtain the ma- 
trix relation 

K = T  m T  (2.16b) 

The next step is to introduce generalized and quasi-generalized momenta, 

~T 
~i ~vt l =  = ~. Ki/v/ (2.17) 

Notice, that we can substitute the individual sums over/" in Eq. (2.15) and get 

1 Z qriv i (2.18) T=-~ i 

which is an invariant form, valid for any set of generalized velocities, vi, with con- 
jugated momenta, rr i. 
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Since the coordinate transformation Eq. (2.6) must be invertible this also holds 
for the matrix of first derivatives, T, and it is possible to invert K as well. We can 
therefore define the general G-matrix by 

G = K -1 (2.19) 

and express the velocities in terms of the momenta by reversing the transformation 
[Eq. (2.17)1 

vi = ~, Gq r (2.20) 
I 

This is finally substituted into Eq. (2.18) yielding the Hamiltonian form 

T= 1_ ~.. Gqni rrj (2.21) 
2 q 

We may conclude that the main steps are the formulation of the elements of T 
as functions of the generalized coordinates, the multiplications of Eq. (2.16) and 
finally the inversion of K. From a detailed study of these three steps 1' 36, 43) it is 
seen that the final inversion is particularly cumbersome, and that the resulting 
expressions for the Gi/-elements may be extremely complicated. 

Making a comparison with the alternative procedure sketched in Eqs. (1.1)-(1.3), 
we see that the first of the main steps has been replaced by an evaluation of sji-ele- 
merits, the second step is equivalent and the third step, the inversion, has been 
avoided. It therefore seems that the alternative is much more straightforward, but 
this might of course be only an illusion, if the difficulties in evaluating sji-elements 
were comparable to those of inverting K. However, this is not so, as we shall see 
below. 

2.2.2 Momentum Transformation 

In our study of the transformation between Cartesian and generalized momenta we 
shall start out from the kinetic energy in its invariant form. Using generalized veloc- 
ities and momenta Eq. (2.18) applies, while the corresponding expression in Cartesian 
velocities, [~F, and momenta, P~F = m j ~ F ,  reads 

T= 1 ~ p~Fk~F (2.22) 
2 ~,F 

With a slightly changed notation we can write Eq. (1.1) in the form 

Pel f  "= ~ Si, e~Flfi 
t 

and substituting this as well as Eq. (2.14) into Eq. (2.22) we get 
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1 Z ~ s t ,~Ftl, ,~F rrivj 
T= -2 i, j o~ F 

which because of Eq. (2.18) requires that 

Z si, a y  ti, a F  = 6 q  (2.24) 
a,F 

Hence, the quantities, si, c, F,  are elements of  a square matrix, S, inverse of T, 

S T = T S = E (2.25) 

Recollecting the discussion of the preceding paragraph one might at this point think 
that the inversion of K has been replaced by another inversion, that of  T, which 
appears even more complicated, since T is unsymmetrical as opposed to K. 
However, an essential advantage of  the present method arises from the particular 
fact that most elements of  S can be obtained from fundamental properties without 
considering T. 

This is realized by reversing the velocity transformation [Eq. (2.14)], 

v i = ~, Si, o~FRaF (2.26) 
ctF 

If  v i is the time derivative of a generalized coordinate, v i =//k or RF, then the corre- 
sponding elements of  S are defined as the partial derivatives of  the coordinate with 
respect to the Cartesian coordinates. In case of a translational velocity we therefore 
immediately have 

_ O R F  _ ma 
SF.,.F' aR,~F, M ~FF', M -- ~'c~ m s  (2.27) 

and also for an internal geometrically defined coordinate we can evaluate the partial 
derivatives, 

3qk  
Sk, c~F - ~R~ t r  (2.28) 

as well-defined functions of the configuration. 
We recognize in Eqs. (2.26) and (2.28) a close relation between the S-matrix 

introduced here and the well-known B-matrix defined by Wilson, Decius and Cross 1'3! 
It must be emphasized, however, that the partial derivatives in Eq. (2.28) should be 
evaluated with respect to the LS-coordinates and for the instantaneous configuration. 
They are therefore functions of the generalized coordinates in contrast to the con- 
stant B-elements. 

The rotational velocities, on the other hand, are defined on the basis of a con- 
vention for the directions of the molecular axes within the ensemble of  atoms. Ob- 
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viously we are faced here with the quite different problem of determing a relation 
between the rotational elements of S and this axis convention. Before this is dis- 
cussed in detail we shall introduce a more convenient vector notation. 

2.2.3 s- and t-Vectors 

With the basis vectors eF, F = X, Y, Z, and eg, g = x, y, z, of LS and MS we generally 
write 

c = Z eFc F = Z%cg (2.29) 
F g 

as the relation between a vector e of three-dimensional space and its components. 
This may be used in defining vectors corresponding to the F-labelling of S- and 
T-elements, 

Si, a = ~ eFS i ,~F ,  t / ,a  = ~ e F t L a F  (2.30) 
F F 

These definitions are similar to Wilson's 3), but more general. The usual s-vectors, 
0 here written si,a, have special properties because they are formed from derivatives 

evaluated in the equilibrium configuration. The constant B-elements in the treatment 
of small amplitude vibrations are their components in a molecular system fixed to 
this equilibrium configuration, 

Bk, ag= sO, ag = 3qk [ (2.31) 

s-vectors as defined here in a more general sense were used by Meyer and Gi~nthard s4), 
also with the purpose of  studying unrestricted internal motions. Parts of the present 
development may be considered as an extension and further generalization of their 
w o r k .  

t-Vectors were introduced by Polo ss), with the different notation p O  _ t o ,  
however. Once more the zero indicates that the definition was restricted to t-vectors 
of the equilibrium configuration. 

With the present definitions we can write the velocity transformations of 
Eqs. (2.14) and (2.26) in vector form, 

R~=~ti,avi; ~ = l , 2 , . . . N  
i 

vi = N s i , ~ ' l ~ ;  i = 1 , 2  . . . .  3 N  
(2.32) 

or, specifying the three types of generalized velocities, 

F g k 
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/~F=ZSF, a'l~a; F=X, Y,Z 
Ot 

cog = ~sg, ~. 1~; g = x, y, z (2.34) 
Ot 

qk = ~sk, a-  l~a; k = l , 2  . . . .  3 N - 6  
o~ 

Since coF or Rg will never appear in our treatment, confusion should not arise from 
using the subscripts capital F, small g and k as the only way of  characterizing how 
the s- and t-vectors correspond to the translational, rotational or the vibrational co- 
ordinates respectively. 

The relation between the S- and T-matrices [Eq. (2.24)] takes the form 

X; si,~- ti,~ = s o (2.35) 

and finally the general G-elements, [Eq. (1.3)] are written 

Gq = Zrn~ x si,,~" sl,,x (2.36) 
ot 

The appearance o f  dot products in these expressions means that any Gij is in- 
dependent o f  our choice o f  coordinate system when evaluating s-vector components. 
As the most directly obtained components we shall prefer those of  the molecular 
system. 

2.2.3.1 General Formulae 

For the following derivations it may be convenient to recollect a few equations from 
the algebra of  vectors in three-dimensional space: 

a . b = h . a  

a x b = - b x a  

a x  b -  c = b  x e" a = e x a" b (2.37) 

ax (bx e )=b(a .c ) -  e(a" b) 
(axb) ' (exd)=(a .e ) (b .d) - (a .d) (b-e )  

By comparing Eqs. (2.11), (2.13) and (2.33) it is seen that the three different 
types of  t-vectors are given by 

tF, a = eF (translations) 

tg, a = eg x rcx (rotations) 

ra 
tk, ~ - (vibrations) 

3qk 

(2.38) 
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From Eqs. (2.27) and (2.28) we have 

m~ 
SF, ~ = ~-- ey (translations) 

sk ,a  = V ~ q k  (vibrations) 
(2.39) 

All components of these vectors can in principle be explicitly written in terms of the 
generalized coordinates, provided that all atomic coordinate functions, 
r a g ( q 1 ,  q2 ,  �9 �9 �9 q 3 N -  6), appearing in Eq. (2.6) have been formulated. If the vibra- 
tional coordinates are purely geometrically defined, however, the vibrational s-vectors 
and their LS-components, Sk, ~ F ,  are independent of the axis convention used in for- 
mulating rag-functions, contrary, of course, to their MS-components, sk, ag" Apply- 
ing Eq. (2.36) we realize that the vibrational part of the G-matrix is also independent 
of the axis convention under these special conditions. 

Some fundamental relations involving the vibrational s-vectors are independent 
of the type of internal coordinates. They follow from Eq. (2.35) which particularly 
implies 

sk, a �9 tF, ~ = 0, ~ sk, a �9 tg, ~ = 0 (2.40) 

i.e. three translational and three rotational conditions on each set of vibrational 
s-vectors (given by k). The Eq. (2.40) is rewritten, applying Eqs. (2.37) and (2.38), 

0 = e F  �9 ~Sk, a 

o :  Zsk,, -(eg x ra )=  eg" X ra x sk, a 

which shows that the Eq. (2.40) is equivalent to 

~Sk, a = 0, Xraa X Sk,~ = 0 (2.41) 

These equations are similar to the conditions formulated by Malhiot and Ferigle s6) 
for s~ of the equilibrium configuration. The general conditions were derived 
earlier s4) by explicitly considering the invariance of vibrational coordinates under 
translations and rotations. 

2 . 2 . 3 . 2  A x i s  C o n v e n t i o n s  a n d  R o t a t i o n a l  s- V e c t o r s  

The translational and rotational conditions [Eq. (2.41)] on vibrational s-vectors 
arose as special cases of Eq. (2.35). This equation also implies similar conditions on 
vibrational t-vectors, 

~SF, ~ �9 tk, a = 0 (2.42) 
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aZ sg,~ �9 tk, a = 0 (2.43) 

involving the translational and rotational s-vectors. 
We shall see that these conditions are closely related to the translational and 

rotational constraints defining the molecular coordinate system (Sect. 2.1). Further- 
more, it rums out that a method for evaluating rotational s-vectors can be based on 
this relationship. To clarify the principles, wc will first discuss the simpler case of  
translational conditions. 

Consider the center of mass conditions [Eq. (2.4)]. The first derivative of  the 
vanishing sums with respect to any generalized coordinate must vanish as well. With 
an internal coordinate we therefore have 

~ m a  Ora = 0 (2.44) 

However, an exactly equivalent relation arises from Eq. (2.42) when s- and t-vectors 
are substituted using Eqs. (2.38) and (2.39). 

With this observation in mind it immediately seems reasonable that the condi- 
tions imposed by the rotational s-vectors [Eq. (2,43)] are equivalent to conditions 
implied by the convention for orienting the molecular axes. 

Exploring the possibilities of  this idea we consider the three rotational constraint 
relations on the atomic coordinates that follow from the axis convention. It is assumed 
that these relations can be cast in the form 

C(g)(rtx, q y . . . .  rNz ) = 0 (2.45) 

using three functions, labelled by g = x, y,  z, which vanish for the allowed orienta- 
tions of  the molecular coordinate system. Examples of such functions are given 
below for the conditions of  a principal axis system and for the Eckart conditions 39). 

As in the case of the center of mass conditions we can differentiate with respect 
to a vibrational coordinate. Assuming that any C (g) is a differentiable function of the 
atomic coordinates we thus obtain 

OC (g) OC (g) ~ r a g , _  
O -  - ~ ~ c g ,  a �9 tk, a 

(}qk ag' Orag' Oqk 
(2.46) 

Aiming at a relation resembling Eq. (2.43) we have here introduced a new set of 
vectors given by 

OCfS) 
cg, a = Z eg ' 

g, 0 rag, 

g = x , y , z ,  tx= 1, 2 . . . .  N 

(2.47) 

Because of their origin they may be called constraint vectors. 
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We expect that Eqs. (2.43) and (2.46) are equivalent in the sense that they 
impose equivalent conditions on the vibrational t-vectors. This indicates that we can 
form the rotational s-vectors of an atom c~ as linear combinations of the constraint 
vectors belonging to this atom, 

sg, c, = ~ ~lgg' cg',c~ (2.48) 
g 

Moreover, the coefficients ~e.g' must be common to all atoms so that only nine co- 
efficients need to be evaluated. 

To prove this and to determine the r/-coefficients, it is sufficient to make sure 
that all conditions of Eq. (2.35) hold with rotational s-vectors given by Eq. (2.48). 
Since S is a unique inverse of T [Eq. (2.25)] only a single unique set of vectors will 
pass this test. 

First Eq. (2.43) holds because of Eq. (2.46). 
Secondly we consider the relations involving rotational t-vectors, 

= ~  �9 = ~ , , c , ,  . t ,  

= ~,, l"lgg"Jg"g' 
g 

(2.49) 

where we have introduced the quantities 

sgg,= cg, . tg,,  (2.50) 

These, as well as the B-coefficients, can be arranged in 3 x3-matrices which obvious- 
ly must be inverse of each other. Hence, Eq. (2.49) is only fulfilled with a set of 
r/-coefficients uniquely determined as elements forming the inverse of the matrix 
of J-elements [Eq. (2.50)]. We have hereby established the method of  determining 
the r/'s which remained up to this stage. 

Finally we must control the relations involving the translational t-vectors. This 
leads to the requirement [compare Eq. (2.41)] 

Z eg,~ = 0 (2.51) 

which is usually fulfilled by inherent properties of the constraint relations [Eq. (2.45)]. 
However, should problems arise here we only need to add a simple term in order to 
correct the constraint vectors 

, m s  
cg,~ = cg, ~ - M ~' eg, a' (2.52) 

The correcting term affects neither Eq. (2.43) nor Eq. (2.50). 
Equation (2.48) is perhaps the most important accomplishment of the present 

paper. Its application in deriving the elements of G directly [Eq. (2.36)] offers an 
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important advantage compared to the usual method, since it is sufficient to consider 
the inversion of only a single small (3 x 3) matrix, {Jgg, }. 

In this connection it is particulary interesting to study the general form of the 
pure rotational part of  the G-matrix, usually referred to as the it-tensor. We find 

I.~, . . . .  Z., rigs' I , 'g"n,", '" (2.53) 
g g  

with 

Igg' = ~ m ~  1 cg, c~ "eg;~ (2.54) 
ot 

The symbol I is used for the latter product sum because this quantity may be an 
inertial tensor element. This turns out to be the case in both examples discussed 
below. 

In terms of  3 x 3-matrices, J, 17, I and/t ,  formed from the elements above, the 
relations are 

/.t = q I q, q = j - i  (2.55) 

This factorization of the/~-tensor has also been observed in the standard theory of 
small amplitude motion 57' 58), where I = I o, the inertial tensor of  the equilibrium 
configuration. Below it is shown how this particular result is following from the 
Eckart conditions. 

2.2.3.2.1 PrincipalAxis System (PAS). As a first example we shall derive rota- 
tional s-vectors for the special case of  a PAS, following the procedure outlined above 
step by step. 

First we must formulate the axis convention in accordance with Eq. (2.45). 
We adopt (f, g, h) as symbols of cyclic permutations of  (x, y, z), 

(f, g, h) = (x, y, z) or (f, g, h) = Cv, z, x) or (f, g, h)  = (z, x, y )  (2.56) 

and write generally 

C (D = ~ mar~gran = 0 (2.57) 
ot 

With f running over x, y and z all inertial products are constrained to zero, and con- 
sequently the molecular axes are principal axes of the instantaneous tensor of inertia. 

The constraint vectors are found from Eq. (2.47), 

cfa = ma(egren + e h rag) (2.58) 

and used in Eqs. (2.50) and (2.54) to express J- and/-elements, 

113 



G. O. Sorensen 

= ~,rn~(r~g - r~h ) = I  h - Ig 
O z  

Jf~ = ~ cf,~ x eg" ra = ~-, mc~(-rc~grcq. ) = 0 
O t  

(2.59) 

/ f  f =  2 2 ~a mu(r~g + rah ) = 1i" 

Ifg = Z m ~ r ~ r ~ s  = 0 
o l  - -  - -  

(2.60) 

We have here employed Eq. (2.37) and the vector product rules following from 
Eq. (2.56), 

e l x e g = e n ,  eh x % = - e  s (2.61) 

l f ,  Ig and I h denote the principal moments of inertia and from Eq. (2.60) we notice 
that I of Eq. (2.55) is identical to the instantaneous principal tensor of inertia. 

The J-matrix found in Eq. (2.59) is diagonal and is easily inverted, provided the 
diagonal elements are nonvanishing. We thus obtain a diagonal r/-matrix as well, and 
find s-vectors in agreement with Meyer and Giinthard s4), 

ms (egr~h + ehr~g) (2.62) 
sr'~ -11, - Ig 

and elements of the diagonal #-tensor, 

I f  = 0 (2.63) 
/.t/-s = (I h _ ig)2 ' lafg 

These results seem quite simple, moreover, the method avoids the use of a refer- 
ence configuration alleged to present a problem for molecules with large amplitude 
internal motions 44' s4). For these reasons the PAS has been used in deriving several 
Hamiltonians of three atomic molecules 16' 4s, 46) However, it should be emphasized 
that the PAS may imply very large vibration-rotation coupling terms in case of near 
symmetric top molecules. This is due to almost vanishing denominators in Eqs. (2.62) 
as well as (2.63). 

As an example consider a planar, near oblate symmetric top molecule. If small 
amplitude vibrations are assumed, we may expect that the/~-tensor elements are of 
the order of  the reciprocal principal moments of inertia. However, for a planar con- 
figuration, with l c  = la + It,, it is easily seen that the generally smallest element, #cc,  
may reach extreme values when evaluated in a PAS using Eq. (2.63). A numerical 
example illustrates this: 
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( la , I  b, Ic) = (40, 60, 100) uA 2 

corresponds to 

(Idaa'/lbb' lIcc) = ' 60' 

Hence, a very large energy contribution from tSec P2 must be counterbalanced by 
coupling terms of the type GkcPkPc between vibrational and angular momenta, Pk 
and Pc. 

The assertion that the PAS is convenient for separating rotations and vibrations 
can be rejected, therefore. We shall see below (Sect. 4) that the small amplitude vibra- 
tions are always treated most simply using Eckart conditions, whereas large amplitude 
motions must be specially taken care of. Principal inertial axes may only be relevant 
in relation to the reference structure of the Eckart conditions. 

2.2.3.2.2 Eckart System (ES). It is well-known how the axis convention 
proposed by Eckart 39) enters the standard vibration-rotation theory 2' 49--52) In the 
alternative method of deriving the kinetic energy the Eckart conditions are used in 
formulating rotational s-vectors. For tiffs purpose we may proceed exactly as in the 
PAS example above. 

The molecular coordinate system of a rigid molecule is defined as the principal 
axis system of the equilibrium configuration which is taken as as reference. Thus we 
write 

ra = aa + d~ (2.64) 

where the set of  vectors, a~; a = 1, 2 . . . .  N, follows from the orientation of  the 
equilibrium configuration in space, and da is a small displacement vector. The com- 
ponents, aag, are constants, whereas the displacement vector components, d~g, 
depend on the internal coordinates. The position of the reference and the instan- 
taneous configurations relative to each other is defined uniquely by the Eckart con- 
ditions, 

Y~ mar~ = Z m~ d~ = 0 (2.65) 
ce ot 

~,maa a x r a = ~a maaa x d a = 0 (2.66) 
O~ 

Rewritten in terms of vector components Eq. (2.65) gives the three center of  mass 
conditions, while Eq. (2.66) gives the three rotational constraints in a form similar 
to Eq. (2.45), 

C ( g ) = e g ' ~ m a a t x x r a  =0;  g = x , y , z  (2.67) 

Using this in Eq. (2.47) we then find the constraint vectors, 

eg,~ = m~eg x a~ (2.68) 
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The MS-components of these constraint vectors are constants, 

cg, s f = m a a s ~ ,  cg, sg = 0, cg, a n = - m a a a f  (2.69) 

and consequently the elements of I [Eq. (2.54)] are constants as well. A closer exam- 
ination reveals that I is simply the inertial tensor of the equilibrium configuration, 
which we shall assume to be diagonal, 

Igg, = life" = Z m,,,(eg x as)" (eg' x as) (2.70) 
s 

o r  

igg = ~ 2 2 _ 0 m s ( a s f  + ask  ) - lg 
S 

1s = - - ~  m s a s f a s g  = 0 
(2.71) 

Also the elements of J, [Eq. (2.50)], are related to the inertial tensor. Using 
Eq. (2.38) we thus obtain 

Jgg, = ~ ms(eg x as)" (eg, x rs) (2.72) 

which may be rewritten introducing Eq. (2.64) 

Jgg, = I~ + ~ m s (eg x as)" (eg, x do) (2.73) 
S 

This important equation deserves several comments. Some will be postponed to sub- 
sequent sections, but here we shall first of all notice that J = I ~ in the equilibrium 
configuration and that the elements of J vary linearly with the atomic displacements. 
This offers a great advantage when expanding the v-tensor elements (Sect. 3.2). Fur- 
thermore, we can easily show that J is a symmetric tensor, although this is not easily 
recognized from equation (2.73). We use the relations (2.37) in rewriting differences 
between the off-diagonal elements: 

J g Y -  J ig  = ~ m s ( - a s . r d a g  + a s g d s f )  = - ~ , m s  eh " (as x ds) = 0 
Ot S 

(2.74) 

which vanishes because of equation (2.66). 
It is also worth mentioning that J is intermediate between I ~ and the instanta- 

neous tensor of inertia I*. Approximately it holds that 

j ~  10o  + I*) (2.75) 
Z 

in accordance with the fact that 

OJgg, _ 10 I*gg '  

adsg,,  2 3dsg"  
(2.76) 
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2.3 Quantum Mechanical Aspects 

Until this stage all discussions have been based on classical mechanics. However, in 
the present formulation the translation to quantum mechanics is quite straightfor- 
ward, since quantum momenta can be defined from the momentum transformation 
with only slight modifications. Furthermore, the resulting expressions are general in 
the sense that they can be derived without considering any particular representation 
of the momenta as differential operators. They apply equally well in a wave mechan- 
ical context. 

2.3.1 Quantum Momenta 

In quantum mechanics the momentum transformation [Eq. (2.23)] and its inverse 
should read 

1 

1 ~ (ti ~FP,~F + e~e t~,.e) 
7r = "2 aF ' 

(2.77) 

This holds generally, even in cases where some of the generalized momenta, 7r i, are 
"quasi-momenta ''sg), i.e. momenta not conjugated to generalized coordinates, e.g. 
the angular momenta. 

Generalized momentum operators as defined by Eq. (2.77) can be used in wave 
mechanical as well as in matrix mechanical formulations. It ensures that the operators 
are Hermitian, and that momenta, 7rf, conjugated to generalized coordinates, qi, fulfil 
commutation relations similar to the canonical relations of Cartesian coordinates and 
momenta, 

[rri, qi] = - i  h6 i / ,  [rti, ~r/] = O, [qi, qi] = 0 (2.78) 

2.3.2 Quantum Kinetic Energy 

The classical kinetic energy expression in terms of Cartesian momenta, 

T =  1 Z m-~ x P2 F (2.79) 
2 o,F 

can be directly transferred to quantum mechanics. The quantum kinetic energy 
expressed by generalized momenta and coordinates may therefore be similarly 
derive d applying the momentum transformation [Eq. (2.77)]. The equation may be 
rewritten in two alternative forms, 
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(2.80) 

Substitution into Eq. (2.79) thus yields 

1 i~,i zri Gi/ni + U T=~ (2.81) 

which is almost identical to the classical expression [Eq. (2.21)]. It must be empha- 
sized, however, that the sequence of operators in the sum is crucial and that a mass 
dependent term, U, contributes to the potential energy, 

1 [Tri ' Si, c~F][Tri, SI, czF]) U= _~ ij, y. rn_~l(si e~F[lri, [lr], SLc~F]]+ (2.82) 

For rigid molecules this expression of U reduces in agreement with the result ob- 
tained by Watson s 8, s9)from another starting point, namely Podolsky's equation 6~ 
In some cases, however, Eq. (2.82) may offer the advantage that it also applies when 
quasi-momenta are used. 

The expression of U may be rewritten using [lr i, eF] = 0 and taking the general 
properties of translational and angular momenta into account. We can separate the 
set of momenta, rri, into three types just as the velocities v i were separated [Eq. (2.12)]. 

(Trl,Tr2 . . . .  71'3N]'=( ~ x ,  3 y ,  J z ,  Px, Py, Pz, Pl,P2 . . . .  PAN-6} (2.83) 

where ~F is a translational, Pg is a rotational and Pk is a vibrational momentum. 
We also generally have the commutation relations, 

[ J,~ sp, c~]=0, [Pg, si, a ] = - i h e g x s / , a  (2.84) 

where the last equation follows from the commutation relations of angular momenta 
with directional cosines 61). Therefore all terms involving translations will vanish and 
the remaining may conveniently be divided into pure rotational, pure vibrational and 
mixed contributions. 

Thus, in the rotational term i, / of Eq. (2.82) run over x, y and z. Using Eq. (2.84) 
it is reduced to 

ra 2 
ul =-~g, m~l(eg x sg ,~)  �9 (eg,  x sg , ,a)  (2.85) 

The vibration-rotation term similarly becomes 

ih ~2 md1(eg x sk,~)" [Pk, Sg,~] U2 = T ~gk 
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whereas the pure vibrational term cannot be reduced without special assumptions as 
to the nature of the vibrational coordinates, 

1 
1 y. m-dl(sk,~ " [Pk, [Pk', Sk',~]] + ~ [Pk, Sk, c~] "[Pk', Sk',a]) (2.87) U3 = ~ ~kk' 

Alternatively, 

1 
Z ([Pk, [Pk', Gkk' ]] -- ~ [ Pk, Sk',~] " [Pk', Sk, ~1 m~ 1) (2.88) u3 =gkk '  

3 H a m i l t o n i a n  o f  Rigid Molecu les  

In this section we shall see how the principles outlined above are applied to evaluate 
the Wilson-Howard Hamiltonian 1, 2). However, most of  the derivation may be worked 
out without explicitly assuming that rectilinear internal coordinates are used. We 
shall take advantage of this in that we will also examine the general consequences 
of the Eckart conditions as opposed to the special properties connected with the 
introduction of  linearized coordinates. As an intermediate result we will therefore 
obtain a Hamiltonian which is exactly equivalent to the one which Quade derived 
for the case of  geometrically defined curvflinear coordinates 7). 

For the present linear molecules are excluded from the treatment. Their special 
problems are discussed at the end of this section. 

3.1 Coordinate Transformations 

The first step is to formulate the relationship between Cartesian displacement co- 
ordinates, dag, and internal displacement coordinates, qg; k = 1, 2 . . . .  3 N - 6 .  For 
rigid molecules undergoing small amplitude vibrations we can assume that an ex- 
pansion from the equilibrium configuration, 

qk = ~, aqk [ dag + l ~, a2qg I dagdc,,g, +. , . (3.1) 
ag ~ o -2 aa'gg' ar~gar~,g, o 

will converge rapidly. The inverse transformation reads 

dag = ~_, arag I qk + l ~, a2 rag I 
- qk qk' + �9 �9 �9 (3.2) 

k 8qk o 2 kg' aqk3qg' 0 

By the definitions of  Eqs. (2.38)-(2.39) the partial derivatives of  these two equations 
are the same as those appearing in expansions of  s- and t-vector components, 
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Oqk I + ~ a2qk I da,g,+... (3.3) 
Sk'~g - ~g~g 0 a'g' ~r~g~l'r~,g, 0 

qk' + . . .  (3.4) tg,~g-~qk 0 + ~ aqk3qk' 0 

Alternatively, the coordinate transformations may therefore be written 

o 1 ~ Sk, ~g 
qk = ~gsk,~gd~g + ~ ~, 

~ ,gg ,  ~r~,g, 

1 ~tk, ~g [ 

o dag d~,g, +... (3.5) 

qk qk' + �9 �9 �9 (3.6) 

In a general treatment allowing for curvilinear valence coordinates we must eval- 
uate derivatives of bond lengths and angles for use in Eq. (3.1). Aiming at a Hamil- 
tonian correct to the second order up to third order derivatives are required 6). Next 
the derivatives of  Eq. (3.2) must be found by interverting Eq. (3.1) with the dis- 
placements subjects to Eckart's conditions (here second order suffices). The com- 
plexity of solving this problem is an almost insuperable barrier to the practical use 
of curvilinear coordinates 62). Rectilinear coordinates are therefore usually intro- 
duced as discussed previously (Sect. 2.1). 

3.1.1 Re&ilinear Coordinates 

These may be related to and named as valence coordinates if the same first order 
derivatives, s o k,~g and t ~ ag, apply to both classes of  coordinates. A linearized coordi- 
nate is defined from its counterpart among the valence coordinates by truncating the 
expansions [Eqs. (3.4) and (3.6)] after the first term. This means that 

d,, = E t0, a qk (3.7) 
k 

But, it should immediately be emphasized that it is not allowed to treat the expan- 
sions [Eqs. (3.3) and (3.5)] in a similar way. This is due to the fact that the vibra- 
tional s-vectors are subject to the generalized Malhiot-Ferigle conditions [Eq. (2.41)]. 

The origin of these relations was Eq. (2.40) and their implications are most easily 
studied from this starting point. Hence, we find, using Eqs. (2.38), (2.64), (3.7) and 

tO~ = eg x a s (3.8) 

that 

~ s ~  "tg, a = ~ s ~  (t~ + eg x da) 
(3.9) 

: ~ (eg • t ~ ~)" s~  qk' 
o~k' 

This sum is generally nonvanishing. 
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The present stage is suitable for the introduction of the Coriolis coupling con- 
stants, ~k' 63, 64). This may seem curious, but it is in accordance with the fact that 
these constants are appropriate only when rectilinear coordinates are involved. This 
will be further discussed below in relation to the vibration-rotation part of the 
G-matrix. Here it is convenient to give a general definition, 

~'~'k = ~ eg " (t~-,, ~ x s O, a) (3.10) 

which applies to any set of rectilinear coordinates (not normal coordinates only). 
Equation (3.10) is used in rewritting Eq. (3.9), 

~,s~ " tg,~ = ~,qk' ~'k (3.11) 
t~ k'  

and finally we realize that vibrational s-vectors, which fulfil equation (2.40) and all 
other conditions included in equation (2.35), may be constructed by adding small 
contributions from rotational s-vectors, 

_ o _ ~ qk '  ~'~,k sg ,~  ( 3 . 1 2 )  Sk, ~ - Sk, ~ gk' 

3.2 #-Tensor 

Once again returning to a general set of vibrational coordinates we shall now study 
the pure rotational part of the kinetic energy, given by 

1 pgpg, (3.13) Trot = 5 E l.lgg, gg' 

where the #-elements can be expaned on the basis of Eqs. (2.55), (2.70)-(2.73) and 
(3.6). Defining 

J' = J - I o 
! Jgg, = ~,m~(eg x ao_)" (eg x d~) (3.14) 

we may express t/by 

t/= ~. #o (_j,  /jo)n, ,go =(lO)-I (3.15) 
n=O 

yielding, 

/ t= ~ (n+ 1)~~176  n (3.16) 
r l = O  

121 



G. O. SOrensen 

Truncated after the second order term we have 

/t =/tl ~ - 2/l~ ~ + 3p  ~ j,/~o j,  po (3.17) 

which compares with the expansion given by Watson sS). 

Partial derivatives of # with respect to internal coordinates of any type are 
then obtained by first writing Eq. (3.6) in vector form 

dc~ = ztO'~qkk + 21 ~ , tOk , ,~qkqk  . . . .  (3.18) 

with 

o _ r~ ( 3 . 1 9 )  
tkg' O qkSqk'  0 

Further we obtain the derivatives ofJgg,, 

J(z~ ) : ~ mc~(eg • ao) "(eg, x t o )  

gCkk') x 

(3.20) 

which finally are substituted into Eq. (3.17) giving 

i.(gk) = --2 ,,o j ( k ) .  o g' egg gg, I~g ' 

pgg(kk')_ _ 2 . 0  l(kk') , _ ~'gg"gg' po,g, 

3 2~ I~,, " (k) , (k') + tjIk') . ( k )  + - ~#~g" "z"g'  "-gg" "g"g')  
4g,,  

(3.21) 

Terms in Jg(gk3 ') vanish if linearized coordinates are assumed. 

Notice, that 4~,  k') is not related in any simple way to second derivatives of the 
instantaneous tensor of inertia, l * ,  

~qk3qk' 
= 9a (gg ' ) -  2J(kk')  + ~ k k '  - -gg' 

o (3.22) 
o t ~  + t~,,,~) " (eg, x , m a {(eg x tk, a)" (eg, x (eg x to a)) 

contrary to the simple relationship for the first derivatives, 

aide , = 2 
3qk (3.23) 
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This impedes a detailed comparison with the expansion given by Quade 7). The ex- 
pressions above seem simpler, however, indicating that the present method is more 
convenient. Moreover, some simplifying relations for planar molecules are easily 
derived in this connection. 

3.2.1 Planar Molecules 

Labelling the MS-axes by a, b, c according to increasing moments of  inertia we can 
assume that all c-coordinates of the reference configuration are zero, as, c = O; 

= 1, 2 . . .  N. From Eq. (3.14) it then follows that 

Jac = Jca  = Jb~ = J~b = 0 (3.24) 

and we see that J is partitioned into a 2 x 2 diagonal block and a single diagonal 
element, Jcc. This block form is preserved by inversion and by multiplications in 
Eq. (2.55), so we conclude that/a has this block form as well, 

I'lac = Pea = t'tbc = llcb = 0 (3.25) 

Notice, that this was derived without any assumptions as to type of internal coordi- 
nates, curvi- or rectilinear. 

From Eq. (3.14) we may also deduce the general relation 

Jaa + Jbt, = Jcc (3.26) 

similar to the relation for moments of inertia of a planar configuration. However, 
Eq. (3.26) applies to an arbitrary configuration as long as the reference is planar, in 
accordance with the fact that all J-elements are independent of  atomic displace- 
ments in the direction of the c-axis, 

~Jsg '  _ 0 (3.27)  
ad,~c 

The importance of these results in relation to centrifugal distortion is well under- 
stood 6s). 

3.3 Coriolis Coupling 

The part of  the kinetic energy involving both vibrational and angular momenta is 

Tvib.rot = ~ GgkPgPk;  g = x , y ,  z ; k =  1, 2 . . .  3 N - 6  (3.28) 
gk 

where we obtain the G-elements using Eqs. (2.36), (2.48) and (2.68), 
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Gsk = 2~ r~gg,(e s, • aD" sk,~ 
Ctg" 

(3.29) 

These elements vanish in the equilibrium configuration. In order to prove this, we 
may substitute the cross products, [Eq. (3.8)], giving 

Ggk = ~' "flgg' t~  a s k ,  a 
otg' 

(3.30) 

In the equilibrium configuration all Sk,~ = sO, a and Eq. (2.40) applies. Alternatively 
we may substitute a~ by ra - dc~ [Eq. (2.64)], and using Eqs. (2.38) and (2.40) we 
obtain 

Gg k = - ~ rlgg, (eg, x da) .  sk, c~ 
r~g' 

(3.31) 

which vanish when all displacements are zero, da = 0. 
The Eckart conditions play an important role in this connection. We shall dis- 

cuss this in more detail below, since the arguments presented apply equally well to 
the treatment of nonrigid molecules. Hence, to study the basis of  introducing Eckart 
conditions, let us for a moment go back to an earlier stage where axis conventions 
were not yet formulated. We recapitulate that we are looking for the conditions 
required in order that the atomic position coordinates, rag, can be given as unique 
functions of 3 N - 6  internal coordinates, or equivalently stated, in order that the 
expansion [Eq. (3.6)] can be determined as a unique inverse of Eq. (3.5). 

Aiming at a separate treatment of vibration and rotation it is obvious that we 
must look for such axis orientations where the Coriolis coupling term [Eq. (3.28)] 
either vanishes or at least can be treated as a small perturbation. With Eq. (2.48) we 
can generally write 

Gg k = ~ 7]gg, m ~ l c g , , a  �9 sk, c~ 
otg' 

(3.32) 

Recollecting Eq. (2.40) it is natural to check if axial constraints could be so formulated 
that differentiation results in equations of the form used in Eq. (2.46) with constraint 
vectors given by 

eg, a = matg ,a  (3.33) 

Were this possible, we would always have Ggk = 0. We therefore consider the reverse 
process, the integration of Eq. (2.46), and ask whether it is possible to solve the three 
integral equations, 

i) ra 
f ~k Z cg,~" ~ dqk = f ~ cg, a ' dr~ = 0, g = x, y ,  z (3.34) 

With constraint vectors given by Eq. (3.33) the answer is no s4). We cannot totally 
eliminate Coriolis coupling, but, on the other hand, this is not too serious, since 
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vibration-rotation coupling is unavoidable anyway because of the dependence of 
p-elements on vibrational coordinates. 

However, with constraint vectors that are independent of the internal coordi- 
nates an integration can be performed. Furthermore, using 

cg,~ = rna t~ (3.35) 

we usually achieve orders of magnitude for the two sources of vibration-rotation 
coupling which are equal and minimal. Integration [Eq. (3.34)] yields the constraint 
relations, 

a~ m~t~,~, r~ = 0, g = x , y , z  (3.36) 

which are the Eckart conditions. 
When linearized coordinates are considered, an additional reason arises for 

requiring structurally independent constraint vectors. This was also noticed by 
Eckart 39), but, in the present context, it is most easily understood by considering 
that Eq. (2.46) requires constant constraint vector components, cg, ag,, since the 

t o t-vector components, tk, ag = k, ag, are constants. Hence, linearized internal coordina- 
tes are incompatible with constraint vectors like those of the PAS (Sect. 2.2.3.2.1). 

Introducing the particular s-vectors of linearized coordinates [Eq. (3.12)] we 
obtain a special form of Ggk, [Eq. (3.30)], 

Ggk = --g~'k' Ilgg' qk' ~g"k (3.37) 

where Eqs. (3.35), (2.48) and (2.36) were employed in rewriting. The appearance 
of/~-elements in this equation makes it appropriate to introduce the vibrational 
angular momenta, 

pg = Z qk g'~k' Pk' 
k k '  

so that the coupling term [Eq. (3.28)] becomes the familiar 

Tvib-rot  = --  ~ 12gg' Pg •g' gg' 

(3.38) 

(3.39) 

But it is emphasized that this is another particular consequence of using rectilinear 
coordinates. 

In the general expressions of Eqs. (3.30) or (3.3 I), there are no reasons for intro- 
ducing p- or ~'-functions. When expanding, however, the leading term in first power 
of the coordinates can be written with coefficients, 

G(k')gk -- --/l~g S'gk'k (3.40) 

applicable when curvi, as well as rectilinear coordinates are used. Therefore, the class of 
coordinates is unimportant for the Coriolis coupling effects as long as first order 
perturbation terms are concerned. 
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3.4 Vibrational G-Matrix 

The vibrational elements are given by 

Gkk" = ~, m-d I sk, o, " sk,,~ 
Ot 

(3.41) 

which can be expanded using Eq. (3.3). In the special case of linearized coordinates 
Eq. (3.12) applies. 

If for a given molecule we consider sets of curvilinear and rectilinear coordinates 
that are interrelated in the sense discussed in Sect. 3.1.1, we will obtain identical 
leading terms in corresponding expansions, irrespective of the class of  coordinates. 
Since the harmonic part of the potential function is also independent of whether we 
use curvi- or rectilinear coordinates 6), we can use the same linear transformation to 
normal coordinates as well. In both cases the transformation matrix, L, is determined 
by the set of equations, 

L L ? = G  ~ L t F L = A  (3.42) 

appearing in the well-known GF-method 2). 
From the L-matrix and its inverse it is possible to calculate s- and t-vectors cor- 

responding to normal coordinates, Q1, Q2 . . . .  Q 3 N - 6 .  All previously derived for- 
mulae apply equally well to these transformed vectors. But, when normal coordi- 
nates are considered, the zeroth order vibrational G-matrix becomes a unit matrix 
and the vectors present some special properties, 

G~ = ~ m~-' s~ �9 s~,,~ =Skk' 

~m~ t~ �9 t~ = ~kk' 
Ot 

(3.43) 

Considering Eq. (2.35) we find the relation 

s~ : rn,~t O, 

which further suggests the introduction of l-vectors 63), 

o =rnf f  2 lk,~, o 1/2 sk,~ tk, a = m~ lk, a 

lk, ,~ �9 lt,,,a = ~ kk' 

(3.44) 

(3.45) 

(3.46) 

3.5 Wilson-Howard Hamiltonian 

Assuming linearized normal coordinates we can substitute Eq. (3.45) into previously 
derived equations. Thus Eq. (3.10) yields 
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(3.47) 

in agreement with the original definitions 63' 64) 
The Hamiltonian form of the kinetic energy is most easily obtained by con- 

sidering the momentum transformation directly, 

Pa = Z SF,,,, :~F + ~" sg, a Pg + ~ sk, a Pk 
F g 

(3.48) 

which is rewritten employing Eqs. (3.12) and (3.38), 

P,~ = 2: sF,~ ~ + 2; sg,~ (eg - pg)  + 2; s~ Pk 
F g k 

(3.49) 

P~F is then substituted in the basic kinetic energy [Eq. (2.79)], recollecting Eqs. 
(2.36), (2.39) and (3.45) and immediately we obtain 

M R  gg' k 
(3.50) 

in agreement with Wilson and Howard 1). 
The only functions for which expansions must be considered are pgg, and the 

potential energy. We recall that tt is given by Eqs. (3.16) or (3.17), and that J'-ele- 
ments are linear in the rectilinear normal coordinates, with 

jgg(k)_ 1 tgg') , - -~ a k = Z m~/2  (eg x aa)" (eg, x lk, a) (3.51) 

The transformation to a quantum mechanical Hamilton operator (Sect. 2.3) has 
been discussed by Watson ss). The operator resulting from the kinetic energy in Eq. 
(3.50), omitting the translational energy, is given by 

1 I 
k 

with 

l h 2  U = - g  ~ ~gg 

(3.52) 

(3.53) 

3.6 Linear Molecules 

The method of treating nonlinear molecules is applicable to linear molecules as well 
with only a few special properties to consider. 
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The particular problems of linear molecules are related to the choice of gener- 
alized coordinates. It is usual to define 3 N - 5  internal coordinates, whereas there 
seems to be some obscurity in the literature as to the precise definition of the molec- 
ular coordinate system and the rotational coordinates. A recent discussion by Watson sg) 
still leaves a choice open which seems unnecessary in the present context. A unique defi- 
nition of the molecular system involving only two polar angles is suggested below. 

A quite different problem connected with the use of  3 N - 5  internal coordinates 
and only two rotational coordinates should also be emphasized here. This choice of  
generalized coordinates requires that rectilinear coordinates must be used in all cases 
except for three-atom molecules. In general curvilinear coordinates can only be intro- 
duced by the special method presented in Sect. 4, using 3 N - 6  vibrational and the 
three usual Euler angles, whereas the treatment suggested by Quade 7) is applicable 
to three-atom molecules only. The reason for this special restriction is that the planes 
formed by bending a linear molecule will not in general contain the molecular z-axis 
as determined from the Eckart conditions. Therefore we cannot define true valence 
coordinates in pairs 

fl il = sin Oi cos Xi, A i2 = sin Pi sin Xi (3.54) 

where Pi is the angle between two adjacent bonds and Xi should (but cannot) define 
the orientation of the normal to the plane of the bonds 6' 7). 

In the following we therefore consider only a treatment based on rectilinear 
internal coordinates, of which N - 1  are related to the stretchings and 2 N - 4  are 
related in pairs to angle bendings. These coordinates determine the positions of 
atoms relative to a molecular coordinate system which can be rotated in space only 
by varying two of the Euler angles, ~o and 0, whereas the third is kept constant, 
X = 0 (see Ref. 2, App. I). Thus the y-axis of MS always stays within the XY-plane 
of LS, i.e. ~zy  = O. 

The z-axis is chosen as the axis of the linear reference configuration 
(i.e. ao, x = aay = 0, all a) and Eq. (2.66) gives rise to only two non-trivial con- 
straints on the displacements, 

Z, ma(ex x a ~ ) ' d a = O  or Zmo~aazday=O 

~ m a  (ey x ac~)" d~ = 0 or Y~mo~o~ aaz dax = 0 
(3.55) 

Vectors ez x as vanish for all a. However, Eq. (3.55) is sufficient to determine the 
orientation of the z-axis and therefore the corresponding polar angles, ~0 and 0, can 
be determined as well. 

The coordinate transformation can now be written in a form similar to Eq. (2.6), 

Roof = RF + Y~dPFg(~o,O) (aag + dag(ql ,  q2 . . . .  q 3 N -  S)) 
g 

(3.56) 

But the velocity transformation cannot be evaluated by the procedure used in 
Sect. 2.2.1. An equation similar to Eq. (2.33) can be obtained, however, if we use 
the rotational velocities ~b and 0, 
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Rc~F = ]~ tF',aFRF' + t~,aF(O + to,aF 0 + Z tk,~ ilk (3.57) 
F' k 

The t-vectors o f r  and 0 are given in analogy with the t-vectors of Eq. (2.38) by 

t~-,a = ez x ra, t0,~ = ey x ra = ty, a (3.58) 

The usual angular velocities, co x, coy and co z, are inconvenient since the redundancy 
among them demands special precautions s9). However, we can circumvent this prob- 
lem completely by considering the momentum transformation. 

From Eq. (3.57) it immediately follows that 

F = X , Y , Z  

Po = ~ to,e" Pa (3.59) 

k = 1 , 2  . . . .  3 N - 5  

But from the basic definition of angular momentum we also have 

Psl = ~eg  .(r~ x P a ) =  ~tg, a "P,,; g = x , y , z  (3.60) 

employing rotational t-vectors from Eq. (2.38) in rewriting. The basic condition on 
a set of generalized quasi momenta is that the momentum transformation must be in- 
vertible. In Eq. (3.59) we can therefore replace p~, and Po by two of the angular mo- 
menta of Eq. (3.60) provided that the s-vectors of an inverse transformation can be 
determined. This is the case if we use Px and Py, giving 

P~ = ~-'F sF, ~ :Jp + Sx, a Px + sy, sPy + ~ sx, ~ Pk (3.61) 

The two sets of rotational s-vectors are easily expressed using the corresponding con- 
straint vectors of the Eckart conditions as described in Sect. 2.2.3.2.2, 

sg,c~ = -q m~ eg x aa; g = x , y  (3,62) 

where the same rt applies to both axes, 

71-1 = i o +  ~ rno~ao~zdo~z 
ce 

(3.63) 

Introducing normal coordinates and/-vectors [Eq. (3.45)], we also have 

k '  
(3.64) 

corresponding to Eq. (3.12) invoking Eq. (3.47). 
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Thus the remaining derivation can proceed exactly as for nonlinear molecules 
(Sect. 3.5), and the vibration-rotation part of the kinetic energy finally becomes 

2 Zvib.ro t = / d { ( e x - p x )  2 +(Py - -  ~y)2} + ~ p 2  
k 

(3.65) 

with 

# = l~ (3.66) 

and with vibrational angular momenta given by Eq. (3.38). 

The angular momenta of Eq. (3.60) behave quite differently from those referring 
to a molecular coordinate system with three rotational degrees of freedom. In partic- 
ular this relates to the commutation relations of the corresponding quantum mechan- 
ical operators. This is briefly discussed below in connection with the evaluation of 
the quantum kinetic energy. 

By substituting Pa [Eq. (3.61)] into the expressions ofp~,  Po and Pz [Eqs. 
(3.59)-3.60)] one obtains the relations 

Px = -csc  0 p~ + cot 0~6 z 

Py =Po 

ez=~z  

(3.67) 

which apply to  quantum momenta as well. Using Eq. (2.78) and [Pet, f(q)]  = 
- i  h Bf(q)/aq; q = ~o, 0 or Qk, the commutation relations between the angular 
momenta are evaluated as 

[ e x , e z ]  = [ey, ez] = o 

[ex, Py] = - i  h(cot 0 ex + e,.) 
(3.68) 

and commutators involving directional cosines become 

[Ix, ~Fx] = i h cot 0 aVFy, 

[Px, % ]  = - i  h(cot 0 'I'ex + 'I~Fz), 

[ex, 'I'Fz] = i h,I,p r, 

[Py, r = ih~Fz  

[Py, dPFy ] = O, [Pz, dPFg] = 0 

[Py, 'I'F~] = - i  h4',~ 

(3.69) 

Because of these anomalous commutation relations the transformation to space- 
fixed angular momentum components takes a special form. An equation similar to 
Eq. (2.80) yields 

PF = E '~vgPg + i h  ih  (3.70) g 2 cot/9 dPF y  = ~ g P g ~ F g  - -  - ~  cot 0 'I'Fy 

and the square of the total angular momentum is found accordingly, 
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ih  cot0) cot 

2 2 1 ra 2 (1 + csc 2 0) 
(3.71) 

Equation (3.69) is also important in connection with the U-function [Eq. (2.82)]. 
For linear molecules U is quite easily obtained, since all commutators involving 
vibrational momenta cancel. Thus from special properties of/-vectors and Coriolis 
coupling constants sT) it follows that 

,,k,a = 0 (3.72) 
k 

from which it follows that 

[ /~g,  U] -- 0, ~: [p~,, s ~ ]  = 0 
k 

s~,, �9 [pk, s~,~] = 0 
k 

(3.73) 

From Eq. (3.69) we then find that the only commutator of the type [rr t, Si,aF ] con- 
tributing to U is 

[Px, Sx, aF] = ihco t  OSy,~F (3.74) 

and U is finally obtained as 

U = -  1 h E #(1 + csc2 0) (3.75) 
8 

Adding this to the operator given by Eq. (3.65) and comparing it with Eq. (3.71), 
it can be seen that the kinetic energy operator can be written 

1 
Tvib-rot : 2  t't{P2-PZz + /~2x + ~2 -Px Px -PxPx -Py  )by-;hyPy) 

1 ~ p2 (3.76) 

or in a form corresponding to Watson's s9) 

Tvib-rot=2# (Px- Px)  2+ - p y - y c o t  -/~Y 2 cot0 I 

1 Ep~  (3.77) 
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This rather extended discussion of the theory of a very special type of rigid 
molecule has been presented here, since it well illustrates the advantages obtained 
by a reformulation of the basic principles in terms of the momentum transformation. 
It applies to classical as well as quantum mechanical considerations. Furthermore, 
these examples, applying the method to wellknown molecular models, should make 
it easier to follow the derivations of the following section. 

4 H a m i l t o n i a n  o f  Nonr ig id  Molecules  

For ordinary molecules the rigid rotor model works quite succussfully in explaining 
pure rotation spectra as well as the rotational fine structure obtained in other fields 
of spectroscopy. The vibrational perturbations appear mostly in the change of effec- 
tive rotational constants with the vibrational state and in the centrifugal distortion 
effects. Much useful information can be found from these perturbation effects, how- 
ever s). 

Nonrigid molecules have been studied similarly using semirigid rotor models, 
where internal motions with small amplitudes are ignored as in the rigid rotor 8'9). 
Most efforts have been devoted to problems involving only one large amplitude 
motion. Thus methods of treating a single internal rotor, a single bending, inversion 
or a ring puckering are now discussed in several textbooks 66' 67). The results of such 
treatments are similar to the rigid rotor approach in that one obtains effective con- 
stants, including effective potential constants and reduced mass for the internal 
motion. But in general we still meet great difficulties when attempts are made to inter- 
pret these effective constants in relation to the fundamental structural and potential 
constants of  the molecule. 

As a step towards a more generally applicable theory this section will be con- 
cerned with generalizing the treatment of Sect. 3 to molecules where a single coor- 
dinate requires a special treatment. The result obtained can in principle be extended 
to cases with several special coordinates without difficulty. 

First the Hamiltonian is derived and then an effective rotation - large amplitude 
motion operator is evaluated by a perturbation treatment similar to the treatment 
used for the rigid molecules. 

4.1 Internal Coordinates 

Recollecting the discussion of Eq. (2.7) we shall consider 3 N - 7  rectilinear displace- 
ment coordinates, qk; k = 1, 2 . . . .  3 N - 7 ,  whereas the remaining internal coordinate, 
p, is specially treated by defining the reference configuration, given by the coordi- 
nates aag, as well as the t-vector components, t~ ag, as appropriate functions of p. 
We write explicitly 

rag = aag(p) + Z t~ qk (4.1) 
k 
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The coordinates, aag(p), are the functions we would use in forming the Hamil- 
tonian for the semirigid rotor model. Actually this well-known treatment is an im- 
portant intermediate, and the general features must therefore be recapitulated. 

4.2 Semirigid Rotor Approach 

Neglecting all the small amplitude motions Eq. (2.11) yields 

= 1~ + tO • ac~ + t0,a/~ ( 4 . 2 )  

where we have defined the vector function, 

to a - 3aa (4.3) 
' Op 

Neglecting translations the kinetic energy of the semirigid rotor may therefore be 
written 

2 TS.R. = ]~ I~176176 (4.4) gg' 

where we have introduced a generalized "inertial" tensor of dimension 4 x 4, all 
elements of  which may be functions of O. I f  the meaning of the label g is extended 
to include P as welT, defining w o = h, we can obtain the more general form, 

2Ts.R. = gg'~' Iffg'~gWg" I 
g X, Y, 2, P (4.5) 

I ~  o "t  o [ 
O: g'~ g"~ '  

with rotational t-vectors given by Eq. (3.8). We shall notice as we proceed below 
that the so-defined/~ takes over the important role which was previously 
played by the inertial tensor of  the equilibrium configuration. 

4 .3  Cons tra in t s  

Taking into consideration the small amplitude motions as well, we must consider the 
final decisive problem of how to define the relation between an arbitrary configura- 
tion and a reference. Besides the condition of a common center of  mass we now need 
four constraint relations rather than three, since the reference configuration has a 
total of  seven degrees of  freedom. Hence, we must also establish a convention for 
the value of p to use in evaluating aa-components. In general this p-value will deviate 
from the value, ~, applying to the actual configuration 17) (the set of ra-vectors). 

Our previous experiences with the rotational s-vectors suggest a relation between 
the set of  s-vectors applying to p and the constraint vectors of a p-convention. More- 
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over, this implies a possibility for minimizing the couplings between the momentum 
Pp and the small amplitude momenta, Pk, arising from the elements of  G, 

Gpk = :~ m~ 1 Sp,c~ " Sk, c~ , k = 1, 2 . . .  3 N - 7  
ot 

(4.6) 

In Eq. (2.35) we therefore consider particularly the relationship 

tp,,~ �9 sk, a = 0 (4.7) 

which using arguments similar to those justifying the Eckart conditions (Sect. 3.3) 
guide us to choose the constraint vectors 

cp,a = m a  t o (4 .8)  p,t~ 

corresponding to Eq. (3.35). Since t~ is independent of any qk, we can evaluate 
an integral of the same form as Eq. (3.34), and hereby we obtain the constraint 
relation 

m s t~ -d~  = 0 (4 .9)  
Ot 

which actually is the Sayvetz condition 4~ 
As rotational constraints we retain the three Eckart conditions and the corre- 

sponding constraint vectors [Eq. (2.68) or (3.35)], here depending on p. These con- 
straints have been discussed by Hougen 17) as well. 

4.4 s-Vectors 

Having established the basic constraints, the remaining derivations are of a purely 
algebraic nature. 

As outlined in the previous sections, we can combine the treatment of  the large 
amplitude motion and the rotations. Accordingly we start by extending the defini- 
tions of  the J- and r/-matrices. With the dimension 4 x 4 we now have 

Jgg' = ~ m~ t~ �9 tg,,~ ", g = x , y ,  z, p (4.10) 

Retaining ~/as the designation for the inverse of  J we thus obtain the s-vectors, 

sg,~ = ~ r/gg, rn~ t ~ ~ (4.11) 
g t  

for rotation and large amplitude motion, whereas the s-vectors of the small ampli- 
tude vibrations are found from zeroth order s-vectors and generalized Malhiot- 
Fedgle conditions exactly as in the case of  rigid molecules (Sect. 3.1.1). The methods 
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of Sect. 3.4 can also be transferred, and thus we introduce normal coordinates, 
QI,  Q2 . . . .  Q a N -  7, with s- and t-vectors given by 

Sk,~ =m~/Zlk ,  a - T. Qk'  ~k'k sg,= 
g k '  

tk ,  a = m ~  112 lk, a 
(4.12) 

Here the rotational ~'-functions are given by Eq. (3.47), whereas the corresponding 
g'-functions of p-coupling must be separately treated by considering the condition 
imposed on sk, a from Eq. (2.35), 

Zsk,~ " tp,a = 0 (4.13) 

The general t-vectors of p are found by differentiating Eq. (4.1) giving 

~lk ar= = t~,a + m ~  t12 ~ Qk ' 
tp,a = =~p k a p (4.14) 

and substituting this and Eq. (4.12) in the condition Eq. (4.13), we easily find 

alk,,a 
: "lk,  : (4.15) 

The last equality follows from Eq. (3.46). Also notice that Eq. (4.9) was used in 
deriving 

~, rn l l z  lk, a " t o a = Z r %  t~ "tk. = 0 (4.16) 
Ot ' Ot 

4.5 Kinetic Energy 

We generalize the procedure from Sect. 3.5 and use the momentum transformation 
as expressed by Eq. (3.49). However, when the range o fg  is extended to include p 
as well, another generalized quantity appears, namely 

,~p = ~, Qk ~:k '  Pg' (4.17) 
k k '  

This is a large amplitude momentum arising from the small amplitude motion in a 
way similar to that of the vibrational angular momenta [Eq. (3.38)]. The momentum 
vanishes in the reference configuration (all Qk = 0) in accordance with our aim of 
removing zeroth order coupling effects. 

Without further difficulties the kinetic energy can be given by an expression 
which is identical to Eq. (3.50) with a generalized/.t-tensor of dimension 4 x 4, 

p = q I~ q (4.18) 
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The I ~ appearing here is the generalized inertial tensor of the semirigid model 
[Eq. (4.5)]. The fact that Eq. (3.50) could be used in general was pointed out by 
Newton and Thomas 689 as early as 1948. 

The problems to solve in dealing with specific molecular examples are therefore 
particularly connected with the p-dependence of the various quantities which for- 
merly appeared as constants. We shall discuss some general properties of  these func- 
tions. 

4.6 Functions of p 

Large amplitude motion requires special consideration when defining the coordi- 
nate functions t lag(p) ;g  = x,  y ,  z, o~ = 1, 2 . . . .  N. Of course the relative positions 
of the atoms are given by the geometrical meaning of p, but the orientation of the 
molecular axes within a reference configuration can be defined in many ways. Our 
choice in this respect affects the elements  of I ~ and therefore the couplings between 
angular momenta and Pp. Actually this is a question of a convenient definition of 
the basic semirigid rotor model, and therefore we shall presently assume that our 
experience with this type of model can guide us in establishing the functional form 
of all aag(p) .  

Next we can consider the small amplitude motions which present a standard 
GF-eigenvalue problem, but with p as a free parameter. G~ corresponding 
to a basic set of internal valence coordinates, R t where t = l, 2 , . . .  3 N - 7 ,  are de- 
rived from s~ using Eq. (3.41), and thus they vary with p according to the 
variation of the first derivatives of Eq. (3.3). Also the force constants, Fn,,  may be 
functions of p and contribute to the general functional properties of L- and l-ele- 
ments as well as of the eigenvalues, ~,g (Sect. 4.7). 

These functions of p are special to the molecule in question. They may be 
expressed either analytically, as in the example in Sect. 5, or as a set of specific 
values derived numerically for appropriate values of p. Since numerical methods are 
most likely for larger molecules, we shall aim particularly at expressions where most 
partial derivates other than those of aa and s o have been eliminated. Numerically t,a 
derived partial derivatives may introduce uncontrollable errors. 

4.6.1 J- and/~-Functions 

We shall first consider the J-matrix and in particular the elements introduced by in- 
cluding p-labelling. Comparing Eqs. (4.10) and (4.14) with the formulae for rigid 
molecules, Eqs. (3.14) and (3.51) in particular, we see that once more one may in- 
troduce a J '-matrix with elements linear in the normal coordinates of the small am- 
plitude vibrations, 

Jgg, = I~ + J~g, 

g = x ,  y ,  x,  p (4.19) 
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The rotational elements (g = x, y or z) are given by Eq. (3.51) whereas we find 

j ( k )  ~,mla/21k, a ~2ar 
P P =--eL " -'~-J 

~aa . 
j(k)gp = 2a mla/2 (eg x lk, a) �9 --~-p, g = x, y, z 

(4.20) 

(4.21) 

In deriving these equations 

0 = ~ p  3p 

/aa~ alk,~ +b,~'a2a~] 
Za m ~ / 2 \ ~ p  " 3 p , --~p 2 ] 

3 (~m~/:Z(egxaa)'lk, c~)= o=~ 
Z m~/, ((eg x a~). alk,~ aa~)  ~ ) p  - -  (eg X lk, a)  " 

(4.22) 

which follows from the Eckart- and Sayvetz-conditions. 

The generalized J-matrix, and consequently/1 as well, retain the property of 
being symmetric./a is given by a generalized matrix equation similar to Eq. (3.17), 
or by 

=po +p, + 3 p ,  lOp,+ /l 
a m D 

(4.23) 
,u'= -2/10 j,/~o 

Only for molecules of high symmetry is it possible to select the reference con- 
figurations such that diagonal I ~ and/a-matrices are obtained for any value of p. The 
matrix products of Eq. (4.23) may therefore be more involved than in the case of 
rigid molecules. 

4.6.2 ~'-Functions 

Functions of p corresponding to Coriolis-coupling constants are still determined by 
Eq. (3.47) which cannot be further simplified. 

In the ~'-functions for p-coupling as given in Eq. (4.15) it would be convenient, 
however, if the/-vector derivatives were substituted by derivatives of more funda- 
mental quantities. As such we shall consider the s~ the G ~ or the 
basic force "constants" corresponding to the fundamental set of internal valence 
coordinates, Rt; t = 1, 2 , . . .  3 N-7.  These coordinates are related to the normal co- 
ordinates by the transformation 
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Rt = ~" Ltk Qk ( 4 . 2 4 )  
k 

where the elements, Ltg, form the L-matrix of the GF-treatment. The s~ for 
the internal coordinates, R t, are related to the/-vectors by 

-1 0 (4.25) lk,~ = m~ 112 y, Lkt sea 
t 

This equation is differentiated with respect to p and the result is substituted into 
Eq. (4.15), giving 

~P'k = at~ m=l/2L-k'lt lk'~ . as~aop + ~ ~ - (4.26) 

The last term is evaluated considering the basic relations between G, F and L-matrices. 
After rather involved manipulations one obtains 

OL# 1 _ 1 [ OG~ L~I L~,tt ' O F t r  1 L ' '  xk, , (4.27) 

The f-expression resulting from Eqs (4.26) and (4.27) can be rewritten to a probably 
more useful form where the G~ have been substituted by means ofs~ 

~'~k'k - 1 
Xk' -- ~'k 

[?, ,,,.,.,j m-dll2(Xk' L'kltlk'a + Xk L-gltlk"~)" Op " tt' Op J 

(4.28) 

4.7 Potential Energy 

For rigid molecules it is convenient to express the potential energy by an expansion 
in powers of the internal displacement coordinates. A similar expansion can also be 
applied in the case of nonrigid molecules. However, the potential function is ex- 
panded only in the small amplitude coordinates, Rt; t = 1, 2 , . . .  3 N - 7  ~7, 36) 

V = V ~  I Rt+ 1 B2V I RtRt . . . .  (4.29) 
tORt o "2 ~'ORtORt' o 

where the derivatives are evaluated for all R t = 0, i.e. for the p-dependent reference 
configurations. Hence, V ~ and all the derivatives are functions of p. V ~ in particular, 
represents the potential function of the semirigid model, e.g. the V n-potential of a 
hindered internal rotor. 

The second derivatives of the third term are the force "constants", Ftt,, which 
enter into the GF-treatment as discussed above. Consequently we can transform to 
a more convenient expression in the dimensionless normal coordinates, 
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qk = QkX/2 7rcook/h, 2 7rc~k = (~,k) 1/2 

+! 1 
V= V ~ + ~-, V (k) qg ~ hccokq~c + - ~-, 

k 2 k 6 kk'k" 
h e  C b k k , k , , q k q k , q k ' ,  " .  �9 (4.30) 

It has been conjectured that the second term, linear in the small amplitude coor- 
dinates, causes the most serious perturbations of the semirigid model. In a simple 
classical picture this term determines the actual p-dependence of  the equilibrium 
bond lengths and angles which were assumed to be constant in the first approxima- 
tion. This will be discussed in more detail below (Sect. 4.8.2.3). The effect has been 
considered by introducing the concept of relaxation in the semirigid model 21'a4' 35, 69-71) 
i.e. by evaluating the/~ [Eq. (4.5)] from more elaborated coordinate func- 
tions, aag(p), such that not only a single valence coordinate varies with p. 

Relaxation can be introduced in the present treatment as well. In principle it is 
always possible to eliminate the linear terms in V by defining the reference configura- 
tions as minimum energy configurations. This means that for all p it should hold 
that 

0V [ =0;  t = l , 2  . . . .  3 N - 7  (4.31) 
~Rt  I o 

However, from the point of view of  simplifying the calculation of the kinetic energy, 
it is probably most advantageous to retain the linear terms and correct for their 
effects under the perturbation treatment. An example is given below (Sect. 5) in the 
discussion of the Ca-molecule. 

4.8 Effective Semirigid Rotor Hamiltonian 

Usually the vibration-rotation spectra of ordinary rigid molecules are analyzed in 
terms of effective rigid rotor Hamiltonians and vibrational energy expressions that 
result from a perturbation treatment. The Van Vleck transformation has been used 
for this purpose in various formulations. Thus the technique of successive contact 
transformations has been extensively utilized by Amat, Nielsen and Tarrago 4), where- 
as Jergensen and Pedersen 72-74) recently suggested a formalism in terms of pro- 
jection operators which offers advantages of  generality combined with clarity. This 
technique has been applied in the present work. 

In most cases the spectral analyses are based on Hamiltonians obtained by a 
quite simple perturbation treatment. Usually it is sufficient to carry the perturba- 
tions to an order where the rotational constants depend linearly on the vibrational 
quantum numbers, whereas the vibrational energies include quadratic terms. The 
relevant formulae have been discussed in the review by Mills s). Inadequacies of this 
approach are often encountered, but, in most cases, the deficiencies can be given 
two main reasons. The first is the presence of near degeneracies causing resonances 
of various types. The latter is that the molecule is nonrigid, i.e. that the special 
methods discussed in the present paper should be applied. 
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Extending the perturbation treatment to higher orders is possible, but extremely 
complicated. However, problems of the first kind may alternatively be solved by 
special methods comprising diagonalization of smaller matrix blocks. 

Here nonrigldity will be considered under the perturbation treatment as well by 
excluding terms in the large amplitude coordinates and momenta from the zeroth 
order Hamiltonian. The resulting effective semirigid rotor Hamiltonians are there- 
fore operators confined to the separate eigenspaces of a zeroth order Hamiltonian 
with terms of the small amplitude motion only [Eq. (4.36)]. 

At this introductory stage we can carry the comparison with the treatment of 
ordinary molecules further. In the first approximation these are described by the 
rigid rotor - harmonic oscillator model. In the next approximation an improvement 
is achieved by using effective operators with properties as described above. Similarly 
we may expect that the semirigid rotor - harmonic oscillator model for nonrigid 
molecules may be improved by introducing effective operators of the form, 

+ hc Z & 8 ; oo A, + l hc j j g ,  . .  ~gg,g,,g,,, .Jg,,..'g,,, + V(v)  
gg' 4 gg' g " g'" 

(4.32) 

Here w k and xkg,; k = 1, 2 . . . .  m, are constants. B(~! and 7"(vg! g,, g,,, correspond to 
the rotational and the centrifugal distortion constants, since Jg = Pg/h  has been 
introduced for the angular and large amplitude momenta in units of h (g = x, y, z, 
I, 2 . . . .  n, m + n = 3 N-6) .  It must be emphasized, however, that they are not con- 
stants, since they depend on the large amplitude coordinates, Pi; i = 1 . 2  . . . .  n. Fur- 
thermore the matrix of Bg(~)-elements is in general non-diagonal. Despite this we 
shall call these quantities by there usual names, but use citation marks around the 
word "constant" to prevent confusion. In the present approach it is assumed that 
Bg(~) and the effective potential V (v) depend linearly on the vibrational quantum 
numbers, v k. 

The expression of H (v) appears to be quite general. It may apply to cases with 
several large amplitude coordinates as well as to the case of none, i.e. to rigid mole- 
cules (only isolated levels of the small amplitude vibrations will be considered here, 
however). This suggests that the Hamiltonian may be derived in a way which is close- 
ly similar to the well-estabilished methods for rigid molecules. In the following veri- 
fication of this it is assumed again that only a single large amplitude coordinate needs 
to be considered (n = 1, m = 3 N-7) .  

4.8.1 Orders of Magnitude 

Usually we start out by separating the various terms in the Hamiltonian according 
to their orders of magnitude s) . In the present case it is impossible, however, to sug- 
gest a general ordering scheme, since the contributions from the large amplitude 
motion may change considerably from one molecule to the other. 
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The problems may be illustrated by considering the potential energy [Eq. (4.30)] 
separately. It is convenient to divide into two terms V a and V b, where only V b 
depend on p, 

hc ~, eotcq~ + hc ~-, r qkqk,qk,, + V (4) (4.33) 
Va = 2 k 6 kk'k" "'" 

Vb = VO(p) + y. V(k ) (p) q k + ~, h (Xk(P) -  ~O)q~ 
k k 8 7r 2 co.~ k 

+ h__c_c Z ( @ k k ' k " ( P )  -- CbOkk'k")qkqk 'qk "' + V ' b ( 4 ) ( p )  " " "  
6 k k ' k "  

(4.34) 

Here ~g  = (2 zrc)-lV/~'k, ~,~, @~k'k" and similar quantities of Va (4) and higher order 
terms are constants chosen as a sort of  mean value of the p-dependent quantities 
X k, ~bkk,t:,, and so on, in order to minimize the perturbations from the correspond- 
ing terms in V b. Notice, that now we use the constant ~ in the transformation to 
dimensionless normal coordinates, 

qk = Qk h-l/2 (~k~ 1/4= Qkx/2 7rceok/h (4.35) 

The properties of Va may be expected to be very similar to what we observe for 
rigid molecules, and consequently we can use the general ordering scheme according 
to the powers of qk for Va. The first term contributes to H o, the next to H l and so 
Off. 

When considering Vb it also seems reasonable to assume that if V ~ contributes 
in some order of magnitude, n, then another term, V(b m), involving products of  q k ' s  
to a total power of  m, contributes in the order m + n. Hence the problem is to 
choose an appropriate n for V ~ On the other hand, V ~ should contribute to the 
same order of magnitude as the leading term in the expansion of the large amplitude 

1 o 2 kinetic energy, ~ t~ppPp. For convenience and to emphasize the similarity with the 

treatment of  ordinary molecules we shall therefore choose the same order as for the 
leading terms of the rotational energy, i.e. the order two. However, another ordering 
scheme specially adapted to the case of  water was suggested by Hoy and Bunker 37). 

The Hamiltonian is now split up as follows, 

H o  ~- 

HI = Va (3) 

H2 = (4) 

H 3 = Va (5) 

H, = (6) 

hc  

k 

2 gg, 

1 

+ -41 gg'kk'~ (Pg--~g)ls(kgk' ')qkqk'(Pg'--/~g')+ Vb(2) 

(4.36) 
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4.8.2 Van Vleck Transformation 

The zeroth order Hamiltonian is a sum of one-dimensional harmonic oscillator oper- 
ators. Eigenvalues and eigenfunctions of H o are designated according to the equation, 

H~ [V) ~'hCe~ (Vk +2) = Ev 
(4.37) 

IV> = II) l ,  1' 2 . . . .  V k , . . .  I~3N_ 7) 

where v k = 0, 1, 2 . . . .  is a harmonic oscillator quantum number. 

Following the technique of Jergensen and Pedersen 72) we introduce projection 
operators on the complete Hilbert space of the Hamiltonian, the space spanned by 
product functions, {I V) "IL)}, where IL } = I J, K, M, No) is a basis function for 
the pure rotation - large amplitude motion problem. Aiming at an effective oper- 
ator on a given eigenspace, [2 v, of rio with the eigenvalue Ev, we define the pro- 
jectors Pv and Qv by 

HoPv = EvPv, Qv = 1 - Pv (4.38) 

In terms of the eigenvectors of H o we can write, 

Pv = Z I V ,L)  (V, LI= ~ IL) (Ll IIlvk)(vkl 
L L k 

(4.39) 

It is convenient to define an operator, a v, by 

av = Ev - Ho (4.40) 

and furthermore we introduce 

Q-Y = Qv a~ 1 Qv (4.41) 
tg 

With these symbols the most important terms of the effective operator can be ex- 
pressed by 

H~ v) = Ev Pv 

{ Qv H, + H2 } Pv H~ v)= Pv HI~- 

H~ v)= Pv { H4 + H2 Qv H2 + HI Qv ~- --~-n3 av } + H3 ~ HI Pv 

(4.42) 

Compared to the general expression in Ref. 72) Eq. (4.42) has been considerably 
reduced. First it has been taken into account that/-/(n v) vanishes for odd n, since H 1 
and H 3 are  odd operators, whereas H2 and H 4 are  even with respect to the inversion 
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of a vibrational coordinate, qk. Secondly we shall neglect corrections to the small 
amplitude vibrational energies of higher order than two. This is the reason for omit- 
ting several terms in the original/_/~v). Some of the terms arising from this reduced 
equation still contribute outside the frame of Eq. (4.32). This is the case for some 
of the terms involving the vibrational momenta, ~g, and for the higher order an- 
harmonicities Va (s) and Va (6). These corrections will be neglected as well. 

Finally the present treatment is restricted to cases where essential vibrational 
degeneracies between the level under consideration, E~, and other levels are absent. 

4.8.2.1 Second Order Corrections 

From the second order term,/_/~v), we obtain the Xkk,-quantities and the major con- 
tributions to Bg(~) and V (v) which are independent of the vibrational state. Readers 
not interested in details of the evaluation may proceed to Eqs. (4.50-51) and the 
summary after Eq. (4.57). 

1 
From PvH2Pv we get, using Uk = Vk + 2 ' 

ev V~ 4) p~ = G Z hc o 
kk'k"k'" 2--4 r qkqk'qk"qk"' Pv = 

r k + + y, 0 p~ 
k -i-g k<t CkkU ~u~ut (4.43) 

(4.44) 

and 

Pv ! : ,G'  
2 gg, 

1 . 2 ~  o (col k) 
ev ~ n  ~g "takg' kl~gkl~gk'l ~q~P] - -qkP lq tP  Pv = 

gg ' k <t L\  cok col/ 

(4.45) 

The remaining second order perturbations involving H 1 are evaluated by splitting 
Va (3) into three terms, 

V(a3) _ he [ 1  ~ o 3 1 ] ~btckk qk + ~_, o 2 Cbkllqkq! + ~ tbOtrn qkqlqm 
k 5 k~l k<l<m 

(4.46) 
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We then obtain 

e v  Va (3) Qv Va(a) Pv = 
- U  

o o hc o o hc 
- -  t l lUm 

- -  k * l  r  4 COk UkUl - -  k*l*m~" t~k l l  t ~ k m m  8 (,O k 

_ ~, ( ~ o t t ) 2 [ h c  [ 1 1 ) 
2 cot + COk 2 COl- COk 

+ - -  -~ g k  Ul + 
8 2co l  +cog  2 c o l - - c o g  ~ COl +COt 2COl--COg 

1 
1 UkUl  -- U l g m  + g m U k  4 hc  --Ukgl  -- UlUm -- Umgk  -- "4 + 

(tt~Olm)2 T (-Ok + COl +COm (-Ok -- COl tom k < l < m  

1]} 
UlUm --  g m g k  + UkUl  - -  "4- U m g k  -- UkUl  + g l u m  - -  -4 

+ + Pv (4.47) 
COl - COrn - COg ?~?~ ---~; - 

This can be reduced by appropriately changing the indices and releasing the summa- 
tion restrictions, 

~-- V ( a ) p  v = - hc klY' u2  (~Okl)2 w// + 
1 1 )  

2 COk+ COt 2 COg -- COl 

1 + (qbOtm)2 1 ) + s UkUl ~ 'I '~ %Ore 
k < t  m 4 COrn -8 R k l m  

1 S (4.48) 
+ : g ( r  1 :~ ( r 1 7 6  F 9 ~  kl,,,  

k 4 8  COg k lm 

k t 1 - ~  "~ 2 COg + COt 2 COg - COt 

where 

1 1 1 1 + R k l  m - + + 
("Ok + COl + COrn (.,Ok --  COl + COrn COl --  (.Ok + COrn 

= 4 corn (corm -- co~ -- CO~) / A k l =  

1 1 1 1 = + + + 
Sk lm  COk+ COl + COrn (Ok -- (-01 -- tom COl -- tom -- COk COrn -- COg -- COl 

= - - 4  cokco l com / A k l m  

~ k i m  = (COg +COi + COm)(COk -- COt -- COm)(COl -- CO,,, -- COk)(COm -- COg-- COt) 

(- '-)m - -  C-Ok - -  (-Ol 

(4.49) 

144 



A New Approach to the Hamiltonian of Nonrigid Molecules 

Before the terms are collected it should be noticed that the contribution in 
Eq. (4.45) is a function of the large amplitude coordinate, since BOg, as well as ~ k '  
depends on p. This dependence can be neglected, however, to the same degree of 
approximation as we are neglecting the differences, q~ - q5 ~ of Vt~, [Eq. (4.34)]. It 
is therefore assumed that an appropriate mean value is used in xet below, and that 
the part which is independent of the vibrational state can be considered as an in- 
essential constant contribution to the energy in the same way as similar terms of 
Eqs. (4.43) and (4.48). 

Hence the anharmonic corrections to the vibrational energies are obtained from 
the second term of Eq. (4.32) using xkk,-constants which for k'  = k are given by, 

l o  1 ( 4  , ) 
X k k  = ~ t ~ k k k k  -- ~-~ ~-a (qr~Okl)2 + (4.50) 

l 2 6% + w l  2 Wk - col 

whereas for k' = l > k we have, 

1 o [., .o o I 
k k m  r Xk l  = * k k l l  -- X V m COrn 

( 
gg' ~ k  + 

- -  + (r176 Rk1,,,/8) 

(4.51) 

The only difference from the usual expressions s) appears in the last term of 
Eq. (4.51) where we must consider a possibly nondiagonal matrix of  B~ 
with the dimension 4 x 4 (g = x, y, z, [). 

4.8.2.2 Fourth Order Corrections 

From H(4 v) we obtain vibrational corrections to the "rotational constants" and the 
potential. First PvH4Pv gives 

evn4ev = [~ -  Y~ ] R(kk) UkJg,+ ~ h(xk-x~)  ] ~g~gg' uk Pv, (4.52) 
kgg' k 8 7t 2 CCO k 

where Eq. (4.23) must be applied in evaluating R (kk) ~gg'  , 

Bgg(kk') = 3 h (lto j ( k ) ~ O j ( k , ) l l O ) g g  ' (4.53) 
4 7r2c 

If/u ~ is diagonal this reduces to 

R ( k k ) _  3 o o 'g'') 

~gg' cok g" I ~ ' OQk 
(4.54) 
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The term in O(kk) of Eq. (4.52) corresponds to the usual "harmonic" contribution ugg, 
to the effective rotational constants. 

From PvH2 -~ H2 Pv we similarly get the "Coriolis coupling" contribution, 

using the term, ~2, of H 2, 

~ = - 2  gs' 

2 gg'k<t kl+la~ (qkPl v ~ k  -- qtPk v / ~  ) 
(4.55) 

We thus obtain, 

Pv ~2 ~-~ ~2Pv - h :C 3~o~+a,{ (e~ o o g . . . . .  

11Pg,/ag~ ~';11pg,,#~ ukPv 
4 

(4.56) 

The commutators of this equation vanish in cases where Pg refers to an angular 
momentum. But, ifPg is a momentum of an internal large amplitude motion, the 
commutation terms may contribute to the potential V (v) as well as to the vibrational 
energies. The order of magnitude of these corrections is expected to be very small, 
however, and they will be neglected in the following. 

The "anharmonic" contributions to the effective "rotational constants" and 
potential arise from the last two terms of H~ v) in Eq. (4.42) giving, 

11 Qv H3 + Ha Qv HO Pv = Pv l -  d- a 

Pv (--2 Y'gg'kl , ,,(l) a, "~kkt'~wtUk Pg'-- N ~uk ) (4.57) 

Summarizing these results we conclude that the "rotational constants" and the 
potential applying to Eq. (4.32) can be written in the form, 

(4.58) 

where 
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I 
_~gg')= B(kk) + ,3, 2 g'g'" 

(4.59) 

A corresponding a-quantity has been introduced for the large amplitude potential, 

h ()tk _~0) _ ~, V(I) qbOkt 1 (4.60) 
-c~v3 - 8 7r 2 c~o k t 2 wt 

It was noticed in the preceding paragraph that the xkk,-formulae [Eq. (4.50) 
and (4.51)] apply to rigid molecules as well. Similarly Eq. (4.59) reduces to the usual 
a-expression if a diagonal B~ can be assumed, implying Eq. (4.54). 

4.8.2.3 Higher Order Corrections 

Two terms from H 3 may in some cases appear to be underestimated as to their order 
of magnitude. These are 

1 
H'3 = -2 g~k pgp(geg)qgpg,+ Z l"(k)k qk (4.61) 

IfH~ is raised one step in the ordering scheme, we must consider an additional fourth 
order correction, 

, Q v  , 
Pv Ha -a- Ha Pv = 

1 
_ ~  kgg,g,,g,, pg#(geg) pgpg,, u(k) pg,,, 1 

'-g " g'" hct.Ok 
(4.62) 

1 ~ p . (k )  1 1 ~(v(k))2 1 ] 
2 kgg'  g~gg '  v ( k ) p g '  hcr k 2 k h-~wg Pv 

Otherwise this correction appears in the sixth order. In the first term we recognize 
the centrifugal distortion correction which is important in any case. The second 
term gives a correction to Bg(~! and the third term contributes to the effective po- 
tential V (v). All of these are independent of the vibrational state. 

The centrifugal distortion term, HCD, can be rewritten as follows, 

1 ~ pg~gg,pg, (4.63) HCD = 4L gg'g"e'"~ PgPg, r~g,g,,g,,, eg,, eg .. . .  ~ gs' 

where 

= _ S ' , ( k ) u ( k )  (2hcr 
~gg'g"~'" 7 "gg' 'Y'g'" 

~gg'=. Z .(k) [pg,,, [pg,,,, (k) 1 ~,g,g ,, ~] (4 hcwk) -1 r g g  " 
k g"  g'" 

(4.64) 

(4.65) 

147 



G. O. SCrensen 

The question as to the importance of the commutators in Eq. (4.65) is similar to the 
problem discussed in relation to Eq. (4.56). For nonlinear molecules it should be 
safe to ignore the p-dependence of p(g~! and thus to consider rgg, g,, g,,, as constant 
and to neglect ~gg'-terms. For linear molecules more care should be taken, since the 
pzg-elements depend inversely on a bending angle, giving singularities for the linear 
configuration. These singularities require special attention. 

The remaining two terms of Eq. (4.62) are interesting as well, since they form 
the connection between molecular models incorporating relaxation, as discussed in 
Sect. 4.7, and the simpler models. 

The physical meaning of the two terms may be visualized by arguments of clas- 
sical physics in a way which is very similar to the explanation given for centrifugal 
distortion in rigid molecules 67). Thus, if we allow the molecule to follow a minimum 
energy path in course of the large amplitude motion and rotation, i.e. if we allow the 
small amplitude coordinates to relax, then the changes in these coordinates are de- 
termined by the condition of minimum energy. 

With an approximate Hamiltonian in which the small amplitude kinetic energy 
is ignored, 

H'= V ~ + y_, V(k)qk + 1 k ~ hc ~'k 6~ 

+ 1 ~, (pOg, + ~.(k)qg)pgpg.,._gg, (4.66) 
2 gg' 

we have the condition. 

all '  _ V(k) + hc~kqk  + ! ~, (k Oqk 2 gg' #~r PgPg, = 0 (4.67) 

This equation can be set up and solved for any qk, and if the solutions are substituted 
into Eq. (.4.66) we obtain, 

H'= V ~  Z (V(k)) 2 1 
k 2 hc co k - -  + 2 " k ~ g g  h C  W k  

1 . ~. la(kg?. ( k )  1 pgpg,pg,,pg,,, 
8 Kgg g"g'" btg"g'" (4.68) 

Hence the approximate rotation - large amplitude motion Hamiltonian takes the 
form of the second order operator, [Eq. (4.44)] with corrections exactly as those 
obtained from H i in Eq. (4.62). If we suppose that these perturbations are essential, 
we must replace BOg, and V ~ in Eq. (4.58) by 

B~g, = B~rg, - Z k " gg't~( k ) v(k) 1 
hcwk (4.69) 

Ve = vo _ Z (iAk))2 I 
k 2 hc Wk 
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where superscript e, for equilibrium, indicates that these quantities refer to con- 
figurations where the small amplitude coordinates have relaxed to their #-depending 
equilibrium values. 

The Hamiltonian of Eq. (4.68) corresponds directly to the Hamiltonian for a 
semirigid model with relaxation 21' 34, 3s, 69-71). Such models have been introduced 
in often successful attempts to obtain better agreement between experiment and 
theory. But, in addition, it was hoped that a more reliable picture of the large ampli. 
rude potential function would result. This seems doubtful, however, considering that 
corrections of the fourth order are neglected. Even though all V(k)-functions vanish, 
if reference structures with the correct relaxations are used, the terms in X k -;k ~ 
still survives in a~ v), [Eq. (4.60)], and all ot~ gg') are unchanged, [Eq. (4.59)]. 

The relaxation in semirigid models is usually formulated in terms of parameters 
which are subsequently examined by experiment. The considerations above also 
imply that we should not overestimate the physical significance of such parameters. 
They only serve to simulate the p-dependence of the total contributions from the 
relaxation as well as the perturbations accounted for in the a-terms of Eq. (4.58). 

4.9 Summary and Discussion 

This completes the theoretical part of the present paper. It may be useful to recapit- 
ulate the principal aims and the main results. 

It has been attempted to extend the standard theory for rigid molecules to mol- 
ecules with large amplitude internal motions in a formulation which makes it possible 
to focus on general as well as special properties. 

The s- and t-vectors of the momentum and velocity transformations [Eqs. (2.33), 
(2.44), (3.48), (3.49) and 3.61)], were found to be very effective for this purpose as 
demonstrated by their applicability in deriving the kinetic energy of ordinary rigid 
molecules (Sect. 3), as well as in discussing the more complex problems of the non- 
rigid molecules (Sect. 4). It is a special accomplishment of the present work that the 
principles of forming s-vectors corresponding to rotations and large amplitude 
internal motions have been established, (Sects. 2.2.3.2 and 4.3) in a way which clear- 
ly shows their connection with the basic constraints on the small amplitude vibra- 
tions relative to the reference structures. Also notice that the factorized expression 
for the p-tensor [Eq. (2.55)], which has been observed in several special cases 47' 57, 58), 
appears as a general consequence of the method of constructing these s-vectors. 

The Eckart- and Sayvetz-conditions constitute a set of conventions for the 
reference structures which are particularly useful, since they allow us to use recti- 
linear coordinates for the small amplitude motions (Sect. 3.3). However, the intro- 
duction of reference structures, depending on the large amplitude coordinates only, 
leaves us with the question of how the molecular axes should be oriented within an 
arbitrary set of atomic reference positions. This question was only briefly comment- 
ed on in Sect. 4.6, since it is special to the molecule under consideration. Some 
examples may illustrate types of solutions. 

For molecules with internal rotation 8'7s) it is often convenient to use a frame- 
fixed set of axes which, in case of a symmetrical internal rotor can be chosen as a 
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principal axis system for the reference structures (P.A.M.). In this case all off-diag- 
onal elements vanish in the rotational part of//~ i.e.i.t~ = #~ g = x ,  y ,  z, 

whereas there may be nonvanishing coupling elements, p~,p, between internal and 
overall rotation. For molecules with a heavy symmetrical internal rotor on a light 
asymmetric frame, e.g. methanol, the Internal Axis Method has been proposed. Here 
the axes are chosen in the opposite way so that the coupling terms, p~,p, vanish, 
whereas the rotational part of/ /~ is nondiagonal. 

Similar alternatives may be suggested for linear molecules with a large amplitude 
bending vibration. Thus Hougen et al. n) and Sarka 47) have developed the semirigid 
reference models for three and four atomic linear molecules with an axis convention 
aiming at the elimination of p~p-elements, i.e. corresponding to I.A.M. of internal 
rotation. Here the only nonvanishing element o f p  ~ is py~ z , if the x-axis is defined as 
perpendicular to the plane of the bent reference structures. A solution correspond- 
ing to P.A.M. will cause P~z to vanish but introduce a coupling term pop 16, 44, 46) 
None of these methods have particular advantages when considering a complete treat- 
ment including the evaluation of the effective operator [Eq. (4.32)], since contribu- 
tions to By(~ ) as well as Btx~ ) may arise from the perturbations in both cases. 

In between there exists a third possibility for axis orientation in such molecules. 
This is to fix the z-axis to the axis of a linear configuration (p = 0), which is defined 
in relation to the instantaneous reference by Eckart-conditions. This method offers 
the special advantage that the coordinate functions, a , ~ ( p ) ,  can be expressed in quite 
simple closed forms so that derivatives of the coordinates as well as the vibrational 
s~ can be easily derived 76). This more than counterbalances the fact that 
both p~ and pop may be nonvanishing, since the appearance of the coupling terms 
n(v) ~,,'n R(v) in the effective bending-rotation operator should not cause serious 
troubles. They may either be treated as perturbations or, if one of the couplings is 
dominating, we may eliminate that term by a final rotation of axes following the 
prescriptions of Pickett 77). Picket also suggests the Eckart system as an intermediate 
for the final "Rational Axis System". 

In relation to the Van Vleck transformation (Sect. 4.8) we recapitulate that most 
of the formulae applying to rigid molecules could be generalized with only small ad- 
justments [Eqs. (4.32), (4.50), (4.51), 4.58)-(4.60), (4.63)-(4.65) and (4.69)]. This 
indicates that the treatment without particular complications may be extended to 
cover a case where the small amplitude vibrational level is degenerate. This, however, 
is an object for future developments. 

For nonrigid molecules there are at present only few reported data on excited 
states of the small amplitude modes from which we can get an impression of the 
size of the perturbation effects. 

Methanol may serve as an example. Lees 78) has reported a change in the barrier 
height for the internal rotation from 376 to 557 cm -1 when going from the ground 
vibrational state to the first excited state of the CH 3 in-plane rocking mode. This 
result is based on the assumption that the a~g')-terms can be neglected, and although 
this may be an over-simplification, the example clearly shows that the total effect of 
the a-terms can be extremely large. 

150 



A New Approach to the Hamiltonian of Nonrigid Molecules 

Another striking example is carbon suboxide, C302, which is a typical quasi- 
linear molecule 79) with a large amplitude CCC-bending vibration, vT. The spectro- 
scopic data has been analyzed by Weber and Ford22)using a simple approximation 
of the effective bending-rotation operator. In this the four elements of the diagonal 
B(~),-matrix are all related to the single parameter B ~ depending on the vibrational 
state, and the effective bending potential is expressed by two terms, a harmonic and 
a quartic. It turns out that the bending potential changes drastically with excitation 
of the antisymmetric C=C stretch mode at 1,587 cm -1, u4. Thus the potential hump 
at the linear configuration is 30.56 cm -1 in the g.s., whereas 56.58 cm -1 is found 
in the u4 excited state. On the other hand, B ~ which is the rotational constant of 
the linear configuration, only changes from 0.0735138 to 0.0733140 cm-l. Much 
smaller effects on the potential are observed by exciting to the v2 + v3 state. 

Hitherto all predictions on a valence theoretical basis have indicated that C302 
should have a linear equilibrium configuration. It has therefore been a puzzling 
question why potential humps are actually observed. Considering Eq. (4.58) an 
obvious suggestion is that the discrepancy is due to the a~V)-contributions, since we 
observe I Av) whereas the predicted potential is V ~ From the observations on C302 
it is possible to estimate ~v)and a~ V) + a~ v), thus allowing a partial correction of 
the potential function. This gives a reduction in the hump from 30.56 to 22.04 cm -1. 
It is an exciting question whether a's for the remaining vibrational modes may 
account for the remainder so that a linear equilibrium configuration will eventually 
result from experiment as well. By similar arguments it has been possible to show 
that this is the case in fulminic acid (HCNO) 21). 

5 A Case S tudy ,  C3 

Many molecular studies of large amplitude internal motions might serve as a basis 
for an example of how the methods presented above can be applied in practice. C3 
was chosen primarily because it is the simplest one available. This should make it 
easier to follow the evaluation of the limited number of rather simple terms entering 
the Hamiltonian. 

Although C3 is a radical, not met under ordinary laboratory conditions, it has 
been studied with considerable interest. Recently graphite has been considered as 
an ablasive material for protecting heat exposed surfaces of space vehicles, and since 
Ca is one of the main species formed by evaporating graphite, it is essential to know 
the thermodynamic properties of C38~ In an attempt to estimate the partition func- 
tion Hansen, Henderson and Pearson 8~ 81) have discussed various models for the 
bending vibration, v2, which in the investigation by Gausset, Herzberg, Lagerqvist 
and Rosen 82) was found to be extremely floppy and anharmonic. Thus they estimat- 
ed the wave number 63 cm -1 for the lowest bending mode, and it was found that the 
vibrational levels diverge corresponding to a rather broad, but steep potential well. 
However, no rigorous attempt to treat the combined rotation - large amplitude 
internal motion has appeared. 
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The C3 spectra to be discussed here were obtained by Gausset et al. a2) and 
Merer a3) in absorption and fluorescense by flash photolysis of diazomethane and 
diazopropyne mixed with a large extent of inert gas. The transitions form a group 
around 4,050 A which has also been observed in cometary spectra. It was established 
that the transitions are rovibrational components of a IYl u - 1Z~ electronic transition, 
and by forming appropriate combination differences, information about bending 
states up to v 2 = 6 in the two electronic states can be obtained. In the IH u electronic 
state a much higher bending frequency, 308 cm -1, was found and therefore a dis- 
cussion of the much more impeded internal motions of this latter state is irrelevant 
in the present context. 

Only limited information is available about the stretching modes. Weltner and 
McLeod 84) have investigated the spectra of C3 trapped in an inert gas matrix. They 
assigned absorptions at 1,235 cm -1 and 2,040 cm - l  to the symmetric and anti- 
symmetric stretching modes, v 1 and v3, respectively. The former assignment was 
confirmed by Merer 83). He assigned band of the 4,050 A group to transitions involv. 
ing the I 1, 0, 0 ) and 12, 0, 0) vibrational states of the electronic ground state from 
which v 1 = 1224.5 cm -1 and 2 Vl = 2436 cm -1 were determined. However, on this 
basis it is impossible to gain any deeper insight into the perturbation effects from 
the small amplitude motions. 

5.1 Reference Structure, I ~ and/.t ~ Matrices 

As outlined in Sect. 4.9 we must begin an explicit development of the Hamiltonian 
by considering the semirigid rotor (Sect. 4.2) which serves as the reference. 

The reference configurations are given by the constant C,C bond lengths, R, and 
a bending angle, p, defined so that p = 0 in the linear case (Fig. 1). The molecular 
axes are chosen so that the y-axis is perpendicular to the molecular plane and with 
the x-axis bisecting the C,C,C angle of the reference. This choice is obvious consider- 
ing the symmetry of the reference, C2v. 

In Table 1 are given the components of the position vectors, as; t~ = 1,2,3, and 
the four sets of t~ g = x, y, z, p, [Eq. (3.8) and (4.3)], which are required for de- 
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Fig. 1. Reference configuration and 
molecular axes of C 3 
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riving the I ~ and p ~ matrix elements. Here the auxiliary functions, f n ; n  = 0,1,2,3, 
have been introduced, 

fo = l - c o s p ,  f l  =2-cosp (5.1) 
f 2 = l  +cosp, f3=2+cosp 

Notice, that.In = n for p = 0. 
From Eq. (4.5) we find that I ~ is always diagonal and therefore the elements of 

tt ~ are easily obtained, 

pO x = 2/1]-2, #Oy : 3 / i f3 ,  I I : 2 m R  2 (5.2) 

P~z = 6/1I"o, #~ = 12 / I f l ,  I 

where I is the moment of inertia of the reference in a linear configuration, p = 0. 

5.2 Normal Coordinates and/-Vectors 

Defining AR l = 6 (C 1, C2) and AR2 = 6 (C2, C3) as the small amplitude bond stretch- 
ing coordinates it immediately follows from the symmetry that the normal coordi- 
nates can be defined by 

Q1 = (ARI + ARz) 
(5.3) 

The corresponding/-vectors of Table 1 were evaluated employing Eqs. (2.31) and 
(3.45). The normalization factors of Eq. (5.3) may be verified by inspecting the 
conditions of Eq. (3.46). 

5.3 /z-Derivatives and Coriolis Coupling Constants 

From the vectors of Table 1 we can now evaluate the quantities appearing in the 
kinetic part of H up to H 4, [Eq. (4.36)]. The derivatives of/~ are found using Eqs. 
(3.51), (4.20), (4.21) and (4.23), while ~'-functions follows from Eqs. (3.47) and 
(4.15). The resulting/~-derivatives are given in Table 2, whereas the only nonvanish- 
ing ~" is 

~12 = --~'Y21 = --  OrOf2 i l l  f 3 )  1/2 (5.4) 

It must be emphasized that the derivatives of Table 2 are taken with respect to 
the normal coordinates, QI and Q2, whereas derivatives with respect to dimension- 
less coordinates, qa and q2, are required in Eq. (4.36) and subsequent equations. 
These derivatives are obtained by multiplying with 

aQk 
- (h/2 rrcwk) 1/2 (5.5) 

Oqk 
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Table 2. Derivatives o f  J and  ,It e l ements  (a~k g') = 2 J(~)) with  respect  
to normal  coordinates ,  QI  and Q2 

J(12 = �89 f2 ([/fl) 1/2 

jz(l) 1 fo f l/fl  ) 1/2 g = 

2:(2) = 1 :x - ~ (I/o[3) 1/2 

I.L(1) = _4(13 f l)-l/2j:'~ 1 

h,z 1) - 3 6  ( 1 3 f l ) - l / 2 f ~ - I  
Z = 

#z(2x) = 12( l%f2 f3 )  -=1/2 

/.t(xlxl) = 12(I2flf2) -1 

# ( ~ ) =  162(12fl/~3) - 1  

~.z(11) = 3 2 4  (12fOrt) -1 z 

~(1pl) = 648 ( / 2 f : ) - I  

4~ = (I/fl)t/2 

,I(I)0 = �88 (I/f l) I/2 

j(2)yp = 1 (I/[3)1]2 

b(1) _ _ 18(lafl)- l /2f~2 YY 
b(l)  = _ 72(ifl)-3/2[~-1 ,o.o 

U~ (2) = - 36 (lf3)-3/2f1-1 

.,.( 2 2 ) _  36(i2f2f3)--I 
x x  - 

t,(22) = 162(12fir3) -1 YY 

~ (22) = 648(12[~[~)-1 o0 

once or twice for first and second derivatives respectively. Derivatives of Bgg, require 
the additional factor 5/4 nc, e.g. 

B(~_3Bxx_ h [ h ~I/2 B#xx_ 4B ( 2 B  ~,/2 
Oq, 8 rr 2 c ~4 rr2cw,] 3Q, f2 ~coif,1 

B = h/8 rr2cI (5.6) 

The derivatives thus obtained are given in Table 3. 

Table 3. Derivatives o f  Bgg' e lements  wi th  respect  to d imensionless  normal  coor-  

dinates,  qk  = (2 lrc tok/h ) l/2Qk 

BOx ) = - 4  B (2 B/oo 1/1)112/2 "-1 

az(~z ) = - 3 6  8 (2 B/~l . f i )U2fff  * 

az 2) - 12 B/(2 B/~2fof2f3) 1/2 X -- 

Bx(lx 1) = 24 B2,/COlflf2 

B z ( l  1) __ 648 B2/cOlfOfl g 

B y ( l )  - 1 8 B ( 2  B/wl f l ) l /2 f~  2 y r. 

B(I) _72B(2B/cOlfl)U2f~-2 
0 0  = 

B ( ~  = - 36 B (2 B/co2f3)llZf~l[~ 1 

B~)  = 72 B2 /,.2:2:3 

= 3 2 4  

B,(~ ~) = 216 B2/~,z:o/3 

B(22) = 1296 B2/co2:?f23 00 
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5.4 Anharmonie Force Constants and a-Functions 

The available experimental data are insufficient for a determination of the param- 
eters, ~111 and ~x22, entering the expression for the a-functions [Eq. (4.59)]. How- 
ever, Hoy et al. 6) have discussed how the relations can be formed between these 
parameters and the force constants of an expansion of the potential energy in the 
true valence coordinates, ~,  fl~ and A 2, 

V = VCp) 4- ~ 3 V(p) Ai+ ] Z)~] (-p) ~i R] 

+ !  ~ fi]k('P) RiR/Ak +" " " 
6 qk 

(5.7) 

Introducing reasonable approximations in this expression it may then be possible to 
obtain fair estimates of the 4;s. 

First we shall neglect the difference between the true bending angle, if, and the 
angle, p, of the reference configuration in all terms except the leading term of V(~-), 

I V(p) = V2p 2 + W4P 4 + V6P 6 + V2(P -2 - p2) 
hc 

(5.8) 

In this way we may still get an impression of the importance of this difference. 

Secondly, we approximate the second term of Eq. (5.7) by 

1 p2 ~_OV(p) Ai=_~frp p (A  1 + f l2)=hcV~p2(lq 1 + 1:12) 
i ~ i  

(5.9) 

where froo = 2 hc V~ is constant. Finally the small amplitude contributions to V are 
approximated by 

1 1 
(5.10) 

The harmonic force constants, fr ,  and f ,r ' ,  are identical to those found when recti- 
linear coordinates are used. They may therefore be estimated from the observed 
stretching frequencies using ?~k = (2 ~rCCOk) 2 and Eq. (5.3), 

frr = ?~lrn/2 f l  + Xurn/2 f3  ~ 10.3 mdyn/A (5.11) 

frr' = Xlm/2  f l - ~2m/2 f3 "~ 0.5 - 

As pointed out by Kuchitsu and Morino s3), it is a fair approximation to neglect 
all force constants of V (a) except the stretching constant, frrr. The order of magni- 
tude of this can be estimated assuming a Morse potential for the individual C-C 
stretchings, 
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V ( A  i) = De(1 - e x p ( - a  ~i))2, i = 1, 2 (5.12) 

giving 

frr = De a2, frrr = - 3  afrr, frrrr = 7 a2Lr  (5.13) 

The parameter, a, has been determined for a large number of  diatomic and a few 
three-atom molecules. Remarkably it appears that the values are closely scattered 
around a = 2 A -1, and we may therefore estimate frrr and frrrr using this a-value. 

Among the spectroscopic constants only Xkk depends on the quartic constants. 
Since the experimental data are very limited for the states with an excited stretching 
mode, it is impossible to obtain any closer check on these constants which are there- 
fore left out in the following discussion. 

Using Eqs. (22), (23), (25) and (26) from Ref. 6) we can evaluate the elements 
of  the nonlinear transformation, 

FI = L*(O)  Q,  (5 .14 )  

here to second order only, since we are neglecting the quartic constants. The expan- 
sion coefficients are given in Table 4. 

Substituting Eq. (5.14) into Eq. (5.7) and introducing dimensionless normal co- 
ordinates, the potential function becomes, 

V/hc = V2P 2 + V4,0 4 + V6P 6 + V2(1)p2ql 
(5.15) 

1 2 1 1 
+ 12 w l q ~  + ~ w 2 q 2  + 6 qblllql3 + -2 qb122qlq22 

where, 

V~ 1) = ( R  V~ + V 2 f 1 1 / 2 ) ( S B / w l )  1/2 

_ 3 fo f2  [ 2 B w I ~  1 / 2  [ + 602f1,~ 
d/)ll 1 f l  \ - ~ - 1  ] [1 - - - ~ ]  

(g COlfl) 1/2 

(5.16) 
_for2 { 602-2) { 2B ~i/2. (i +~2f3"~ (Kfl 1 1'2 

kcol/ 
9ha 2 

- - -  = (a/2) 2 12.643 cm -1 
32 7r 2 cm 

Table 4. First and second derivatives of true valence coordinates, fl l, ~12 and 0 - p with respect 
to normal coordinates, Q1 and Q2 

L I =L 1 = ( f l /2m)  1/2 L12 = - L  2 =(f3/2rn) I/2 

LI 1 = L~ 1 =for2~2 m R f  I L 22 = L 22=fOr2~2 m R f  3 

L [ 2 = _L 12 = - fo f2 /2  mR( f i r3 )  1/2 

L I = (2fof2/mfl)I/2/R L 2 = 0 

L 11 = - L  22 = - 2 (fof2)l/2/mR 2 LIo 2 = 0 
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The order o f  magnitude o f  I/" 2 is 200 cm - l ,  assuming a harmonic bending mot ion 
with co = 63 cm - l  and B = 0.42 cm - l .  I f  we neglect the relaxation term V~, we find 
an approximate value, V~ 1) = 10 cm -1, originating from the difference ~ - p. Simi- 
larly the O's are estimated,  

p = O: ~::I = - 2 3 9  c m  - l ,  O12 2 = - 4 3 3  c m  - 1  

b = 60~  O I l l  = - 3 6 4  c m  -1,  (1~12 2 = - 4 2 9  c m  -1  
(5.17) 

indicating that the contributions to the "rotational constants" from V~ l) can be 
neglected compared to the considerably larger O's. However, as pointed out (Sect. 
4.8.2.3) we must consider the possibility that V~ may be underestimated. 

Table 5, Functions, c ~  ~162 

@g), .o  
k, gg - a  k /Ogg 

6 !  
1, x x  Cdlf I (1 + f O f 2 / f l )  - ~[1 

6 B  3 ~ 1  + t o  2 1 8 B f o f 2  
1 , y y  W l f l f ~  9 + f 0 f 2  + - -  r 2 r _  

~1 - ~176 t~ lJ  J 

18B 
1, zz  w l f l  (f3 + 3 f o / f l )  - 3 3'1 

18 Bf3 3 71 
1, pp 

OOld ]'1 

18B 
2, x x  - -  + 3 -  "Y2 

w 2 f 3  

~ 2 +  2~, 
6 B  .~ co 2 Wl~ 

2, y y  c~ 2_ 9 +/of2 ~ _ c~ ] + 3 (3 - "Y2)//3 

18B 
2, zz - -  + 3 (3 - "/2) 

to2f3 

5 4 B  
2, : o  - -  + 3 ( ~ - 3 '2)/ f l  

~o2h:] 

33'1 

f3 

2 B f o f  2 2 2 
- (1 - 2 c02/r l)  

(2 B K) 1/2 2 2 
"Yl - (1 + ~ 2 f l / ~ l f a )  

to 1 

(2 B ~}1/2 2 2 
"/2 - - -  (r176176 + f 3 / f l  ) = '3'1 ~  

co 2 
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Since @m varies noticeably with p, the functional form given in Eq. (5.16) is 
retained when evaluating the ogs, rather than using constant values, cI'Okk,, as assumed 
in the perturbation treatment of Sect. 4.8. 

The expression of a(k gs [Eq. (4.59)], can be rewritten as 

_ot~gg' ) 1 o ( k k  ) B(O, t ~ k k  l 

=-2~gg' - ~t gg 2 ~l  

0 0 . . . . .  
(5.18) 

where it has been considered that only ~ t  is nonvanishing. Using Eqs. (5.4), (5.16) 
and Table 3, we then obtain the a-functions given in Table 5. 

5.5 Effective Bending-Rotation Operator 

In Eq- (4.32) we shall provisionally neglect the centrifugal distortion terms. 
Dj = 4B3[w21 is of the order 1.9 x 10 -7 cm -1 giving a correction of only 0.18 cm -1 
for a AJ = 2 transition when J = 50. The effective operator may then be expressed by 

1 H(V) = B(p) j2  + b(p) (J2x - j2) + jp C(p) Jp 
hc 

+c(o)(J~ -1) p-~ +Atp)J~ + v(p) 
(5.19) 

where superscripts (v) have been omitted from the functions B(p), b(p), etc. For the 
g.s. of  the stretchings these functions are given by 

b ( , , )  -- ( B o  x _ B o y  ) _ �88 + _ _ 

1 (t~pp) + t~(2pp)) c(p) = B~ - 

A (p) = B~ - �89 (,~I =) + (~:')) - C (0)Ip 2 _ B(p) 

(5.20) 

It should be noted that the only singularity appears at 0 = 0 in the fourth term 
o f H  (v) [Eq. (5.19)] due to the factor p-2. This causes no trouble, however, since 
the term enters the two-dimensional harmonic oscillator operator, H~, used below 
[Eq. (5.22)] in defining a basis for the matrix representation o f H  (v). Also note that 
the term contains a contribution -C(0) /4  p2 which has its origin in the U-function 
[Eqs. (2.85)-(2.87)]. From these equations it can be shown that U1 + U2 is given 
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by the same simple expression as the U-function for a rigid nonlinear molecule 
[Eq. (3.84)], whereas U3 appears to be small. The singularity in U can be appro- 
priately taken care of by moving the term -C(0) /4  pZ from U to H ~ The remaining 
part of U can be considered as a small perturbation of the effective potential V(p). 
It is emphasized that A (p) remains finite at p = 0, 

A(O)IB = - 3 0  B / ~ I  + 6 BIw2(3 - 4 ,~1r  

+ (2 BK) 1/2 (33/r - - 1 / ~  - 13 ~o~13 ~3)  (5.21) 

5.6 Calculation of Energies 

The commutation relations for the momenta and the coordinate, p, appearing in 
H (v) are 

[Jy, Jg] = - i  Jn; (f,, g, h) = (x, y,  Z)cyclic 
[JI, G]=O, [Sl, p]=0, [ G , p ] = - i  

(5.22) 

Notice, that the relations for the angular momenta are the same as those applying 
to nonlinear molecules. This is a consequence of our definition of a molecular co- 
ordinate system with three degrees of freedom. 

From Eq. (5.22) it follows that H (v) commutes with j2  and Jz  and consequent- 
ly H (v) is diagonal in the J and M quantum numbers. Hence the eigenvalues are inde- 
pendent of M and can be found for individual J-values, either by diagonalizing the 
Hamilton matrix, formed in an appropriate basis, or by numerical integration. The 
former method has been applied below. 

5.6.1 Basis Vectors and Matrix Elements 

Basis vectors are defined as the simultaneous eigenvectors of J 2, Jz ,  Jz and H ~ 
where 

is the operator of a two-dimensional harmonic oscillator 6~ The constant D may be 
adjusted so that the spacing between the eigenvalues of H ~ is optimized in relation 
to the eigenvalues o f H  (v). 

A basis vector is designated by In, l, J, M) in accordance with 

J21n, I , J , M )  = 

Jzln,  l , J , M )  = 

Jzln,  l , J , M )  = 

H~ l , J , M )  = 
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In, l , J , M ) J ( J +  1) 

In, l , J . M ) M  

In, l , J , M ) l  

In, l , J , M ) E ~  + 1) 

(5.24) 
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The two first equations follow from the commutat ion  relations of  the angular mo- 
mentum components,  J y ;  F = X, Y, Z, along space fixed axes. The latter two are 
not as obvious as they may appear at first glance. Since .Ix and Jy do not commute  
with Hg we cannot factorize the vector space to treat Hg and Jz in a separated basis 
of  vectors, ( In,  1)}, such as it is usually assumed when discussing the two-dimensional 
harmonic oscillator. Jy + iJx cannot be used as ladder operators OfJz,  and similarly 
it may be shown that the usual ladder operators 85) for H ~ are inapplicable as well, 
since they do not commute  with j2 .  

However, from the commutat ion relations [Eq. (5.22)], it follows that the two 
operators, L+ and L _ ,  

i j 1 1 ) + 
L +_ = ~ p - -~ o +- -~-~ Jz - -~-d-~ p _ ( J y - iJx) 

1 
=(Jy  +-iJx) o ~ p - ~  Jo +-d~ Jz + 

~4 = D/C, 

(5.25) 

and their adjoint operators are the relevant ladder operators, commuting with JF 
and j2 ,  and with 

[H ~ L+_ ] = E~ [Jz, L+_] = +-L• (5.26) 

where 

E ~ = 2 D / a  2 = 2 C a  2 = 2 ~  (5.27) 

From Eq. (5.26) it is seen that the eigenvalues o f H  ~ and Jz are equally spaced, with 
spacings E ~ and 1 respectively, in accordance with Eq. (5.24). Furthermore 

L+Lt+ = 2 ( J  2 -J2z  + J z ) ( H ~  ~ + J z -  1) 

L_Lt+ = 2 ( j2  _ j 2  z - J z )  ( H ~ / E ~  - 1) 

Lt+L+ = 2 ( j2 _ j 2 z _ j z ) ( H O / E O  +Jz + 1) 

Lt_L_ = 2 ( j2  _ j2z + i z  ) (HOLE o - J z  + 1) 

(5.28) 

from which it may be deduced that the quantum numbers, n and l, must be integers 
with the usual restrictions, 

n E {0, 1, 2 . . . .  } (5.29) 
l E {n, n - 2  . . . .  - n }  a n d l < J  

Finally one finds that the matrix elements of  L+ and L _ ,  omitting the quantum 
number M, can be given by 

(n, l, JIL+I n -  1, l -  1, J )  = p+ [2 (n + l) (J (J  + 1) - l (l - 1))] 1/2 (5.30) 

(n, l, J I L _  In - 1, l + 1, J )  = p_  [2 (n - l) (J(J + 1) - l (l + 1))] 1/2 
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where p+ and p_ are phase factors of modulus one subject to the restriction 
p+p*_ = -+ 1 [Eq. (5.40)]. 

From Eqs. (5.24) and (5.30) all relevant matrix elements can be evaluated. Thus 
as an example we may consider 

L .  + L t__ = 2 ap (Jy + iJx)  (5.31) 

from which we obtain 

I ( L +  +tt_)(L~+ + L _ )  = a2p2(j2 _jz2 +Jz) 

1 + L _ )  I ( L +  +Li ' )  2 +-~- 

(5.32) 

(5.33) 

Applying Eq. (5.30) to the left side of Eq. (5.32) it follows that the matrix elements 
of p2 can be found isolated, since the same J,/-factors turn up on both sides of the 
equation, 

(n , l ,  J lot2p21n,  l,J> = n + l  
1 (n, l , J  l a 2 p 2 1 n -  2, l , J ) = - ~ p + p _ [ ( n  + l ) (n  - l)] 1/2 

(5.34) 

This is the same result as found for an isolated two-dimensional oscillator 64). But 
the matrix elements found in a similar way from Eq. (5.33) are not as simply related 
to those obtained in the usual case, 

(n, l , J  I u2p2(Jx2 - j 2 ) l n ,  l -  2 , J ) =  - p + p *  [(n + l ) ( n  - 1 + 2 ) f U ,  l - 1)] ~/2 

(n, l , J  I a2p2(Jx 2 - J ~ ) l n -  2,1 +- 2 , J ) =  - 2 P2[(n-Z- l ) (n  Z,- l -  2) f (J ,  l +_ 1)] x/2 

f ( J ,  k) = 1 [ j ( j  + 1) - k (k + 1)] [J(J  + 1) - k (k - 1)] (5.35) 

A formal relation between these and corresponding formulae for an isolated oscillator 
may be expressed by including the matrix elements of a rigid rotor, 

(n, : , J  - In', l ' , J > =  

(n, 1 12 p2 cos (2 x) ln', l ' ) (3 ,  llj2x - J2 lJ, 1') (5.36) 

where • is the polar angle of  the oscillator 64), and l replaces the usual K-quantum 
number in the sec,~nd factor. 
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5.6.2 Hamilton Matrix 

To form the matrix elements o f H  (v) [Eq. (5.19)], it is necessary to expand the 
various functions o f  p in power series. This has been done numerically by fitting 
even polynomials to the values o f  the functions calculated for p = 0 ~ 10 ~ 
20 ~ . . .  80 ~ Bending angles as large as 80 ~ should be considered since the classical 
vibration amplitudes of  the investigated states are estimated up to about 70 ~ . This 
made it necessary to include up to p6-terms in the expansions (Table 6). 

The only operator nondiagonal in I is b(p) (J2x -J~,) .  It contributes essentially 
only in case o f  l-type doubling and/- type resonance. The energies are therefore most 
easily calculated by considering first a Hamiltonian, H ' ,  from which this term has 
been removed. The corresponding matrix is then diagonal in I as well as J, and the 
individual J,/-blocks can be separately diagonalized. The eigenvectors and eigen- 
values o f  H '  are denoted according to 

H' l v ,  L J ) =  Iv, L J> E'v,t,s 

v= 111,111+2 . . . .  ; J ~ > l l l  
(5.37) 

S 
The energy levels are doubly degenerate for II I > 0, Ev,t , j  =Ev,  - t ,  s but these 
degeneracies are lifted by the couplings produced by the term b(p)(J2x - j2y ) .  The 
couplings between levels with different quantum number v can be neglected, how- 
ever, so that the final energies can be found merely by a second diagonalization o f  
a small matrix o f  dimension v + 1 with diagonal elements E~,t,.t; l = v, v - 2 . . . .  - v, 
and off.diagonal elements 

(v, 1, J I b (p) (Jx 2 - J 2 ) l v ,  l ' ,J> 

From symmetry considerations it follows that this matrix, by a similarity trans- 
formation, can be separated into two diagonal blocks o f  dimension v/2 and v/2 + 1 
for even v and (v + 1)/2, both, for odd v. 

Table 6. Expansion coefficients, ai, for the p-dependent functions of H (~ with mean deviation, 
o, of fit. B = 0.4191 era- 1 and a = 2 A-  1 were assumed in calculating aktk-g'g) contributions. A 
relaxation parameter, k (see Text), was assumed equal to 0 or -0.002 in evaluating set 1 and 2 
respectively 

a 0 a 2 a 4 a 6 o 

B(p)/B (1) 0.994509 0.208556 0.024076 0.005200 
(2l 0.994508 0.206564 0.023956 0.005082 

bfp)/B (1) 0 0.042842 0.011200 0.004941 
(2) 0 0.042840 0.011287 0.004936 

C(p)/12B (1) 0.987344 -0.464042 0.187602 -0.034293 
(2) 0.987301 -0.468941 0.190939 -0.035063 

A(o)/B (1) -0.005582 -0.199494 -0.002592 -0.009319 
( 2 )  -0.077562 -0.186106 -0.007500 -0.008388 

6" 10 - s  

8" 10 -s  

2" 10 -3  

1 �9 1 0  - 4  
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A detailed discussion of the symmetry properties of the state vectors is outside 
the frame of the present example. From the form o f H  (v) it is evident that the sym- 
metry group is the same as that applying to a rigid rotor 49-s2'66 o r  67), i.e. the Four 

Group, 

V(x, y, z) : (E, C~, C~, C~) (5.38) 

As for a rigid rotor, symmetry adapted eigenvectors of H' are formed by the Wang 
transformation, 

Iv, l,J, 3,)={Iv, l,J)+(-1)3"iv,-l,J))/x/~ 
l > 0, 3, = 0 or 1 (5.39) 

Iv, 0, J, 0)  = Iv, 0, J )  

and these vectors may be assigned to the irreducible representations according to the 
parities of  l, J and 7. This means that the matrix elements of b Co) (J~ - Jfi) are diag- 
onal blocks as described above. 

Another feature of the transformed coupling matrix is that diagonal elements 
appear when l = 1, since Eq. (5.35) gives 

(v, 1,J, 3"lb(o)(J2-j2)lv, l,J, 3")=-l  ( - l fr / ( /+ l)(v, llb(p)lv, 1) (5.40) 

provided p+p* = 1 is chosen for the phase factors of  Eq. (5.30). It is these diagonal 
elements that give rise to/- type doubling corresponding to the two possible parities 
of 7, whereas the simplest case of/-type resonance occurs between the two levels 
withy, 7 = 2 , 0 ,  l = 0 a n d  2. 

5.6.3 Scaling and Truncation of the Basis 

In defining the harmonic oscillator basis by Eqs. (5.23)-(5.25) the problem of 
scaling was postponed. Equation (5.27) shows that the three yet undefined param- 
eters, D, E ~ and ~, are interrelated so that they are all determined when anyone has 
been given a value. A reasonable estimate is most easily obtained for the spacing E ~ 
which should be close to the mean spacing of the levels considered, in order to 
minimize the dimensions of  the Hamilton matrix. Thus, in the present example it 
was found that with E ~ = 80 cm - l  the basis could safely be truncated at n = 39 
corresponding to matrix dimensions 20 x 20 for the diagonal blocks of H' .  

5.7 Numerical Results 

In Ref. 82) and 83) the experimental results were analyzed in terms of pure bending 
frequencies and effective rotational constants. Similarly we may calculate the eigen- 
values o f H  (v) for J = 0, i.e. by omitting the two leading terms in Eq. (5.20), and 
calculate expectation values of  B(p), giving the effective rotational constants Beff, 
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Table 7. Potential and rotational constants used in test calculations 

I 11 111 

V2, cm -1 144.0536 145.7329 138.3849 
V4, cm -1 80.9077 75.5374 95.8967 
V6, cm - !  66.1082 71.9498 57.9710 
B, cm -1 0.41901 0.41903 0.41924 
a, A -1 2 2 2 
Dd, cm -1 0 1.93"10 -7 1.93.10 -7  
k 0 0 -0.002 

Table 8. Rotational and vibrational constants (cm -1 ) in the electronic and stretching mode 
g.s. ofC 3 

Bending G(v) Beff. qv 
level 
v obs. calc. obs. calc. obs. calc. 

+ 
0 Zg - 0 0.4305 0.4305 
1 H u - 63.05 0.4421 0.4426 
2 ~ 132.72 132.68 I 10"4520 

~g 131.44 131.29 p 0.4519 I 0.4535 
3 H u 207.27 206.97 0.4600 0.4611 
4 ~+g 286.52 286.70 0.4675 0.4688 
6 z~ 458.2 458.32 0.4807 0.4833 

0.0055 0.0057 

0.0112 0.0104 

and of  b (O) giving/-type doubling constants,  qv, for 1 = 1. The values calculated 
from the parameters given as set I in Table 7 are compared with the experimental ly 
derived quantities in Table 8. The agreement is excellent, considering the approxim- 
ations involved when analyzing in terms of  an effective rotat ion operator.  

However, the theory may be subject to a more serious examination if  we cal- 
culate the J-dependence o f  the energy levels directly from the Hamilton matr ix as 
outl ined in Sect. 5.6.2, i.e. we may diagonalize the individual J , / -blocks o f  H '  and 
subsequently treat t he / - type  resonances by diagonalizing smaller matrices diagonal 
in v. 

Only few data are available for the bending states with v greater than three. 
These have not  been considered here, since we hereby gain the advantage that a 
second diagonalization only involves a 2 x 2 matrix,  with only a single coupling 
element, e.g. for v = 2, 3' = 0 

(2,J, O, OIb(o)(JZx -Jy2) l  2, J, 2, O) 

to be evaluated. 
The results of  three such t reatments  are compared with experimental  values in 

Table 9 ,  p. 166. The observed energy differences given here were determined by form- 
ing appropriate combinat ion differences between the directly observed electronic 
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transitions. Therefore they appear as transitions with Raman selection rules, with 
series corresponding to pure rotational Raman lines, 

Qs/,v,O ( f ) :  Iv, J + 2,1, 7)<-- Iv, J , l ,  7 )  

and vibration-rotation series, 

QQ/,v, 2(J): Iv + 2, J, l, "Y) <-- Iv, J, l, ")') 

SQt, v,2(J) : lv + 2, J, l + 2 , ' f ) ~  lv, J, l, 7 )  

"r has been omitted from the series designation, since spin statistics establishes a 
unique relation between the parities of J and 7- The three sets of deviations between 
observed and calculated frequencies correspond to calculations based on the three 
parameter sets of Table 7. 

Thus calculation I was based on the same parameters as used in obtaining 
Table 8. It is noted that the pure rotational energy differences, the Q SI, v, o'series, 
are reproduced excellently for low J-values, whereas increasingly negative deviations 
appear with increasing J (the large deviations of the first members of the Q Sl, 2,0" 
series seem to be caused by extreme experimental errors). The discrepancies at high 
J-values are even more pronounced when the vibrational differences, the Qv,t, 2" 
series, are considered. However, it may also be noticed that the QQo,o,2" and the 
SQo, o,2-deviations are nearly identical at given J. This means that the splittings of 
the v -- 2 states, enhanced by/-type resonance, are excellently reproduced. Similar- 
ly we may compare the deviations in the two Q Q l, 1, :-series exhibiting the effects 
of/-type doubling (the two SQl,l.2-series, further split by/-type resonance, are not 
experimentally available). Thus we observe that these effects are reproduced as well. 

The deviations in the rotational series are of  exactly the order of magnitude 
expected for centrifugal distortion displacements (Sect. 5.5). Since the precision of 
measurement is sufficient to make these perturbations clearly visible, it was decided 
to investigate the centrifugal distortion operator discussed in Sect. 4.8.2.3 more 
closely. 

As suggested earlier we apoly p-independent centrifugal distortion constants 
(l) at p = 0. Bz(lz ) should be given which are derived from the partial derivatives, B~,'g, 

special consideration, however. From Table 3 we find that the derivatives can be 
conveniently expressed using D.r = 4 B 3/6o 2, 

B (l) = B (t) = - ( 2  col Dj) ll2 xx  yy  
Bo(9 = p2 BOz) = - 3 6  (2 031DJ) 1/2 (5.41) 

Notice, that Bz(~ ) has not been approximated by a constant. We proceed most easily 
by applying the classical method. Thus the equation corresponding to equation 
(4.67) reads 

1 OH Oq~ - r --(2 COlDj)I/2[Jx2lJ~+36(j2l ( J z 2 - � 8 8  
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from which we find the perturbation 

HC.D.=-Ds  [ J 2 - J z 2 + 3 6  (,/o2+ ( l z 2 - 1 ) / # 2 ) ]  2 (5.42) 

This result indicates that the large deviations of the Qo,o,2-series can be ex- 
plained by our previous neglect of the product term 

which reduces the effective rotational constants by 

A B e f f = - 7 2 D s ( v ,  l l J t ~ + ( J z 2 + l ) / p 2 1 v , ' )  (5.43) 

For u = 0, 2, 4 and 6 this amounts to about - 9  �9 10 - s ,  -3 .3  �9 10 -4,  - 6 . 4  �9 10 - 4  

and - 1.02 �9 10 -3 cm- 1, and for a Qo,o 2(40)-difference we may expect a centrifugal 
distortion displacement of -0 .40  cm- I i Thus centrifugal distortion accounts for only 
a little less then half the deviations, -0 .96 and -0 .100  cm -1 at J = 40. 

In calculation II the centrifugal distortion effects from the operator of 
Eq. (5.42) were rigorously evaluated. It is seen that the rotational series, QSt. v, o, are 
very well reproduced. This is also the case for t he  QQI,1,2-series (at the rather low 
J-values included) whereas the Qo,o,:-series still show significant systematic devia- 
tions. 

In the ordering scheme discussed in Sect. 4.8 centrifugal distortion and relaxation 
effects are comparable in magnitude. Having found significant centrifugal distortion 
displacements, it seems probable that the remaining deviations correspond to relax- 
ation effects. 

To investigate this possibility, we introduce a dimensionless relaxation param- 
eter, k, such that V~ 1) of Eq. (5.16) is given by 

V~ a) = k (w3/8 B) 1/2 (5.44) 

el The corresponding corrections, A B e ,  calculated from Eq. (4.69) and Table 3 are, 

ABrxex L = Bkp 2 2f~ -1 f l l /2 ,  

ABrezL = Bkp 2 18 f6 -1 fl -'112, 

AnreL = Bkp 2 9 f ~  2 f l  1/2 ~yy 

A'Orek = Bkp 2 36 f~5/2 upp 
(5.45) 

which were used in determining the expansion coefficients of the #-dependent terms, 
Table 6. 

A rough estimate of the effect o f k  in relation to the deviations of the Qo,o,2" 
series is found by considering the change in effective rotational constants. The dif- 
ference, 8 Be(f, between the v -- 0 and the v = 2 constants, is changed by 

At3 Be( f = Bk 8 (#2) = Bk 0.24, (5.46) 
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so aiming at a shift in calculated frequency of  about - 0 . 4 0  cm -1 at J = 40 we find 
that k = -0 .0024  might be a feasible value. 

In calculation 1II a satisfactory fit to all the energy differences could be obtained 
using the value k = -0 .002 .  This corresponds to a relaxation of  the bond length o f  

AR = 0.0012 p2 R (5.47) 

or a lengthening of  about 0.1% at 50 ~ This relaxation is so small that, from a chem- 
ical point of  view, we would say that the C,C bond length o f  C3 is independent o f  
the bending angle. The significance of  the relaxation may also be questioned since 
a change in the anharmonicity parameter, a, [Eq. (5.12)] from 2 A -1 to 3.5 A - l  
gives an equally satisfying fit as obtained by introducing k. Thus a and k are highly 
correlated and consequently it is impossible to make conclusive statements as to the 
importance of  relaxation. Although a --- 3.5 A -1 is somewhat outside the usual range 
of  values, we must recall that the bonding in C3 is unusual as well. 

5.8 Conclusion 

The main object o f  presenting this example was to illustrate how the theory is 
applied in practice and to show that the theoretical predictions are in agreement 
with experiment values. Hopefully the rather detailed evaluation has served the first 

Vtcm-l) 

60C 

500 

400 

300 

200 

100 
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v~O r=l  

20 ~ 40 ~ 

1 = 6  

t = 5  

v=4 

=3 

--2 

60  ~ 

Fig. 2. Potential function of the bending in 
C 3 with energy levels up to v = 6. The thick- 
ness of level lines indicate the magnitude of 
/-splittings 
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purpose. The latter goal has been reached if we may agree that the deviations of cal- 
culation III in Table 9 are accidental. This should be possible since the weak indica- 
tions of systematic errors in some of the series may just as well be ascribed to errors 
of measurement. 

From the calculations we have in addition gained some new information about 
C 3. We may conclude that the equilibrium bond length of C3 is 

r e = 1.2945 +- 0.0005 + (0.0016 + 0.0010) 02 A, (5.48) 

where the uncertainties were estimated from the scattering of B-values in Table 7 
with the preceding discussion of relaxation in mind. 

Also the effective potential function is very well determined. The three sets of 
Vn constants in Table 7 varies considerably, but this only demonstrates the corre- 
lation between the parameters. When the corresponding potential curves are examin- 
ed, they are found to be so close that Fig. 2 can depict them all within the thickness 
of drawing. 

Calculations have not been made for the bending states with v = 4 and 6, 
although there are experimental data available. The treatment could easily be 
extended to these levels as well, but the additional information that might result is 
scarcely essential. It would be much more interesting if more experimental data were 
available for excited states of the stretching modes. At present only one number can 
be extracted from the available data 83) for comparison with the theory. That is 
at B) = 0.0048 cm -1 obtained from the effective rotational constants of the Vl and 
2 u I states. This agrees very well with the value 0.00496 cm -I  estimated from ex- 
pectation values of the g.s. 
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