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1 Introduction

When chemists carry out a reaction in the laboratory, they hope that a suitable fraction
of the molecular collisions will possess sufficient energy and the proper geometry
for a successful transformation. If the reaction rate is slow, little can be done about
increasing the percentage of successful hits. The best one can do is to increase the
temperature and thereby increase the total number of collisions per unit time. This is
a fairly crude procedure and not practical for biological systems which must operate
within a well-defined and narrow temperature range. Thus, enzymes do not depend
on highly inefficient random collisions, but function instead by collecting the necessary
species in a “‘cavity’” or “pocket” located on the protein surface. The correct orienta-
tion and distance, forced upon the reactive functionalities within this restricted volume,
greatly accelerates reaction rates. Clearly, organic chemists must synthesize cavity-
bearing molecules in order to satisfactorily model enzymes. This paper deals with one
particular type of “space-encompassing” compound: the multi-armed system.

Our own interest in multi-armed compounds stems from work with micelles.
Micelles are spherical aggregates of roughly 50-100 surfactant molecules each com-
prised of a polar head group and a long hydrocarbon chain. A huge number of papers
have been devoted to micellar reactions owing, in part, to their superficial resemblance
to enzyme-catalyzed processes. Micelles bind compounds, for example, with associa-
tion constants rivaling those for many enzymes and their substrates. Binding to
micelles often leads to catalyzed reactions obeying Michaelis-Menten kinetics 2.
Stereoselectivity is possible with micelles composed of chiral surfactants ¥. Yet there
is a rather serious disadvantage of micellar systems: to observe micellar effects, the
surfactant concentration must exceed a critical micelle concentration. Otherwise,
the surfactant exists entirely in the monomeric state. Thus, it is natural to think of
tying the chains together by covalent linkages in order to prevent the chains from
dissociating from each other. Such a multi-chain or “multi-armed” compound could
behave like a micelle at a// concentrations.

The above paragraph reflects our original motivation for studying multi-armed
species. Other investigators in the area undoubtedly had different reasons for con-
structing molecules with many appendages. Probably the likelihood of interesting
and perhaps unique properties stimulated much of the research. And in all cases,
I feel certain, the investigators were intrigued by the admittedly anthropormorphic
resemblance of their systems to the human hand and its capability to grasp.

Although this review is not exhaustive, the examples herein should serve to illustrate
the important properties of multi-armed compounds as far as they are now known.
A concise, almost compressed, format should provide the reader an overview with a
minimum amount of reading time.

2 Multi-armed Polyethers

In 1974 Vogtle and Weber published a paper entitled “Octapus Molecules” *). The
paper describes a hexasubstituted benzene derivative (1) which shows “remarkable
phenomenological parallelisms to the mode of food capture by an octopus using its

suction pads.” Compound (/a), a water-insoluble oil, was found to be a powerful
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ligand for cations. Thus, a dichloromethane solution of (/a) is able to extract metal
picrates (Li*, Na*, K*, Ca?*, Mg?", etc.) from an aqueous phase (and do so more
rapidly and completely than do the corresponding solutions of crown ethers). Neither
{1a) nor crown ethers are able to extract heavy-metal salts (CuCl,, NiClL,, Ce(SO,),,
etc.) from water.
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The complexing ability of the multi-armed polyethers diminishes when (a) the arms
are shortened so as to possess only two oxygens per arm and (b) the number of arms
are successively reduced. This is illustrated with formula (1)) (@) and (b).

Apparently, the most stable complex forms when six chains residing on the same
side of the benzene ring surround the metal ion. Three chains on the same side of the
aromatic ring can best enclose a “cavity” favourable to metal ion complexation if
the chains are in a 1,3,5 relationship [cf. (2)] as opposed to 1,2,3 [cf. (3)] or 1,2,4.
Ligand properties for the 2-chain molecules are found only with the 1,2-isomer 4.

R R R
R R R R R R R
> > and
R R
1 R 2 R 3 4
a: R= CHS 0 0 0-n-C.Hg
b: R=CH,S 0 OCH;
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Steric overcrowding in (/) is apparent from a broad «-methylene proton signal.
Broadening, indicative of hindered internal rotation, varies with the nature of the
arms: shorter arms impede rotation less than long ones

R
R R R Signal broadening (ec-CHj)
Nn-CyHygS— Marked
. n-CiHeS— Moderate
CH3S— None
R

Fig. 1. 14 nmr characterization of (1)

(Fig. I). Reducing the number of arms also decreases the crowing and hence the
signal line-widths.

Vogtle and co-workers > synthesized a host of neutral “tripod” and “‘tetrapod”
ligands (6). Cation selectivity depends on the particular end-group R. When the end-
group is a quinolyloxy unit, the ligand binds Ba®* with an association constant close
to 10®> M ™! (at least an order of magnitude higher than that for the corresponding
“dipod” ligand). When phthalimido is the end-group, one can form and isolate a
solid complex with FeCl;. Various other end-groups give solid complexes with ZnCl,,
Rbl, and Th(NO,),.

R R R R "
5R 6
0
a:R= N— b:R= O
: N
0 0

Hyatt ® attached six polyether chains onto a rigid and bowl-shaped cyclotriveratry-
lene framework (7). These chains are capable of surrounding a space which incor-
porates metal ions. The length of the polyether arms, —(C,H,0—),R, does not appear
to be particularly critical to binding as long as n > 1. For example, the derivatives
with n = 2, 3, and 4 all bind Na* rapidly and strongly, and they all bind Mg>*
slowly and weakly. On the other hand, the stereochemistry and conformational
rigidity of the supporting framework does play a crucial role in binding. No complex
is observed, for example, with an §-armed analog shown with formula (8). Examina-
tion of molecular models show that conformationally mobile aromatic rings do not
readily adopt a bowl-shaped configuration necessary for the chains to enclose a
cavity. As a consequence, crown ether-like behavior is not observed.

4
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RO OR
R=—CyH,0C,H,0C,H, OCH,
8

Montanari and co-workers 7 used “polypode” ligands (9) as phase-transfer cata-
lysts. Thus, a saturated aqueous solution of KI was stirred with n-octyl bromide in
the presence of a multi-armed ligand; the resulting production of n-octyl iodide was
followed by gas chromatography. Catalyst activity was found to vary with the hydro-
phobicity of the arms. When the chains are terminated by butyl groups, 72 hours

(0-CyH7=0C2HL0CoHLOCoHLOCHL 1N N, NN ~N{CaH.OCHLOCH,0C;H,0n~Catti7),
i
SN
l\'l(CzHLOCQHLOQHLOCZHLOn-C8H17)2
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are required for an 82 % yield. When the chains are terminated by octyl groups, only
3 hours are needed for an 859 yield. The latter efficiency approximates that of
hexdecyltrimethylphosphonium bromide and certain cryptates. The authors speculate
that an associative apolar interaction among the terminal alkyl groups leads to a
relatively stable cavity within the polyoxymethylene chains which favors chelation
of metal ions.

Although the majority of compounds discussed in this paper have linear arms,
cases are known in which a central unit bears multiple ring substituents. A good
example (/0) was investigated by Weber ®. This material is highly soluble in water

4 ﬂ;
r'\o OK/O ] (OO O—;>
r N ¢rOJ

) Qﬁ

170

but relatively insoluble in nonpolar solvents such as chloroform. Interestingly, the
properties of the compound resemble those of a surfactant:

(a) Aqueous solutions of (10) foam;

(b) Concentrating (/0) in water elevates the viscosity until there is formed a reversible,
opaque, and almost immobile gel;

(c) Warming aqueous solutions of (10) causes clouding at 52-54 °C;

(d) Light scattering experiments indicate the formation of micelles with a critical
micelle concentration of 1.3 x 107* M and an aggregation number of 50. Weber
states that the surfactant-like behavior was unexpected, and the present author is
likewise astonished. Undoubtedly, many other pleasant surprises lie in store for the
octapus chemist.

6
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3 Multi-armed Compounds with Ion-Terminated Chains

“Tentacle” molecules having ion-terminated hydrocarbon chains that radiate from
a central unit are relatively rare in the literature. Suckling ® examined benzene-1,3,5-
tricarboxylic acid esterified with three [CH,};;NR; groups. The resulting tentacle
molecule (1) forms complexes with small aromatics in acetonitrile but not in methanol.

i e< >
C—O0[CHy I N O
] &,
O N(CHz)ﬁO—-’ﬁ ﬁ—O(CH2)11N O
o} (¢}

i

For example, high-field NMR data demonstrate that at equimolar quantities of (/1)
and phenol (3.3x107* M in acetonitrile), 85-90% of the phenol is bound. When
phenol is in great excess over (I 1), several phenol molecules interact with each tentacle
molecule. Binding of p-nitrophenolate to (/1) in acetonitrile occurs with a huge asso-
ciation constant: 1.7 x 10° M ~*'! Suckling also found that when phenol is enmeshed
in the arms of (/1), the phenol becomes resistant to the normally rapid chlorination
by t-butyl hypochlorite. Protection of labile compounds, such as drugs, through
encapsulation constitutes only one of several potential uses of multi-armed systems.

“Hexapus” (12), developed in our laboratory '”, also falls into the category of
multi-armed compounds with ion-terminated chains. Six [CH,};,CO, chains project
from a cyclotriveratrylene framework. Surprisingly, hexapus exhibits much less sur-
face activity than single-chained fatty acid anions. Aqueous solutions of hexapus do
not feam, and they possess surface tensions only slightly smaller than that of pure
water. Apparently, the tendency of hexapus to absorb at the air-water interface is
impaired by the difficulty of placing above the water phase both the hydrocarbon
portion of the tails and the aromatic “cap”.

| |
(CHz )10 (CHz)m

cos  cof
2
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Hexapus in water solubilizes cholesterol, phenol blue (K, = 1.0 x 10* M™1),
naphthalene, and hydrophobic esters. Thus, hexapus seems non-selective in its binding
characteristics (just like micelles). “Universal” binding has the advantage that
almost any water-insoluble compound can be “collected”” by the host molecule without
regard to subtle structural variations. On the other hand, potential catalysts based
on hexapus and other multi-armed systems would not be expected to manifest high
specificity. Flexible chains do not lend themselves to a precise fit.

We were curious as to whether hexapus, where six chains are tied together covalent-
ly, would form aggregates in water as do single-chained fatty acid anions above a
critical micelle concentration. Light scattering data show that hexapus does indeed
assemble into small aggregates of about 9 for a total of 54 chains. Neither light scat-
tering nor UV spectrophotometry reveals a critical micelle concentration for hexapus;
if there is one, it must be extremely low (less than 1 x 107> M). At present we do
not know whether guest molecules bind among the chains of a single hexapus molecule
or among the chains of several hexapus molecules within an aggregate. Whichever
the case, it is clear that hexapus has a distinct advantage over micelles: binding occurs
at a/l concentrations, not just above a certain critical concentration.

We also investigated 1) three “trigapus” molecules (13)-(15). By themselves, the
trigapus molecules are fairly mundane. Unlike w-phenylalkanoic acids, they have no

0(CHz)1C0% O(CH, )1 COS O(CH, )0 C0%
O(CHz)10CO7 O(CH,)1,C0S
0(CH110CO3 ©0,C(CH;)100 O(CH,) 15COS
0(CH3)1pCOS
13 14 15

critical micelle concentration, form only very small aggregates barely detectable
by light scattering, and do not bind small organics in water. Covalent attachment
of the chains obviously has a dramatic effect on the colloidal behavior of amphiphilic
molecules. The most interesting properties of the trigapus molecules relate to their
interaction with cationic surfactants such as decyltrimethylammonium bromide
(DTAB). Small amounts of trigapus lower DTAB’s critical micelle concentration
10-fold. It is as if trigapus “‘seeds” micellization of the cationic surfactant. Low levels
of trigapus also induce a huge growth in the size of DTAB micelles; thus, 1.3 mM
trigapus clevates the aggregation number of DTAB micelles by at least an order of
magnitude. Since these effects are not observed with trigapus and anionic surfactants,
we presume that electrostatic attractions are critical to the phenomena.

Murakami and co-workers '? have carried out one of the most thorough investiga-
tions of multi-armed compounds with ion-terminated chains. In 1979 they reported
the substrate-binding behavior of an azaparacyclophane (/6) in which the hydro-
phobic cavity was deepened by substitution of long ion-terminated chains on the
macrocyclic skeleton. Salient properties of the cyclophane (16) include: (1) The
compound has a critical micelle concentration of 3.2 x 10™* M. (2) (/6) binds cat-
ionic and neutral dyes but not anionic ones. Thus, Rhodamine 6G and Quinaldine
Red form 1:1 complexes with (16) having association constants of about 5x 10° M~

8
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These bulky guests presumably reside in a cavity surrounded by the four aromatic
rings of the cyclophane and the four alkyl branches. Since guests are incorporated
into (16) below its critical micelle concentration, monomeric (/6) provides an effective
binding site apart from micellization processes. (3) Binding of p-nitrophenyl 3,5-
dimethylcyclohexylacetate to (16) inhibits the basic hydrolysis of the former by a
factor of 147 relative to the rate without (16). The rate data obey “reverse” Michaelis-
Menten kinetics. (4) Hydrophobic spin probes, but not hydrophilic ones, bind to
(16) and, as a consequence, have their rotational correlation times increased by as
much as 3-fold. Hyperfine splitting constants do not, however, change on binding,
suggesting that (I6) associates only with the hydrophobic portion of the spin label
while the nitroxide moiety remains outside in the water.

One can readily imagine multi-armed compounds bearing catalytically active
groups; such materials could conceivably emulate enzymes by binding substrates
prior to an intramolecular-type catalytic process. An example of this sort, provided
by Murakami and co-workers **, is shown under (/7). The compound has two long
alkyl chains terminated by cationic nitrogens; two other chains have, in addition, an
imidazole ring with well-known catalytic properties toward ester hydrolysis. No

CH2IM
Meﬁ?e
{HCy

/CH@CH N(li‘@—gl\

@ B
IMCH,Me,N{CH,)oN N{CH,) 1o NMe ,CH,IM
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catalysis is observed with p-nitrophenyl esters of acids having eight carbons or less.
On the other hand, fatty acid esters with chains of 10-16 carbons do indeed experience
a catalyzed hydrolysis in the presence of (/7). Since the C,, substrate reacts the fastest
among the esters, the authors state, “There must be a certain threshold for the length
of the alkyl chain of the substrate in order to attain the most favorable arrangement
of both the ester bond of an incorporated substrate and the catalystic group (or groups)
of an octopus cyclophane; this is achieved with the substrate, p-nitrophenyl tetra-
decanoate.” Although the selectivity is really quite small (the C,,-C;¢ esters differ
by less than a factor of 3), the concept as embodied in the quote is an important one.
Selectivity among similar compounds, and regioselectivity among similar functional
groups in a single compound, remain a primary goal of all chemists engaged in the
design of cavities. :

4 Neutral Multi-armed Materials

Tsukube ') reported in 1984 a “multi-armed cyclam” (18) which has the ability to
transport NH," cation through a chloroform layer (a so-called “liquid membrane”).
Metal ions such as K" are not transported under similar conditions, a selectivity
generally unobserved with the common crown ethers and cryptates. Since the transport
rate decreases substantially when the furan rings terminating the pendant arms are

Xy &
0

replaced by benzene rings, the furan oxygens must play an important role in the com-
plexation of NH, cation. Tsukube feels that the ability of the multi-armed cyclam
to differentiate NH,™ from K™ is probably not related to ion-size (which is similar
for the two ions). Instead, he suggests that charge distribution (being tetrahedral for
NH, and spherical for K™) is critical. CPK models indicate that the NH, cation
can be wrapped tetrahedrally by its donating two hydrogen bonds to opposite ring
nitrogens and two hydrogen bonds to furan oxygens. The furan-bearing crown (19),
binds hoth NH," and K *; substitution of benzene for furan has, in this case, only a
minor effect on the transport properties of the system.

MacNicol and Wilson ' synthesized a series of compounds (20) called “hexa-
hosts™. Such hexa-substituted benzenes can, on crystallization from suitable solvents,
from a wide range of inclusion compounds. When Y = SPh, for example, a crystalline
complex with CCl, was isolated having a host-guest stoichiometry of 1:2. The CCl, is

10
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(3
()O\

79

slowly lost upon standing. Whereas the Y = CH,OPh and Y = CH,SPh compounds
both retain toluene, no such behavior was observed with Y = CH,SePh. By far the
largest number of inclusions compounds was obtained with the hexa-host having
Y = CH,SC¢H,-t-Bu-p. Cyclooctane, phenyl iodide, bromoform, etc. all yield
relatively stable crystalline complexes with this material.

Y
Y Y Y=-—SPh
~—CH,0Ph
~—CH25Ph
Y Y
Y
20

In more recent work, MacNicol and co-workers !¢ described the first nitrogen-
based hexa-host molecules (21). Although the derivative with R = COCHj; (2/q)
shows no evidence of guest inclusion, the derivative with R = COCF; (21b) gives
1:2host: guest adducts with nitromethane, tetramethylurea, N,N-dimethylformamide,
etc. One of the most interesting observations pertains to the complex between the
fluorine-containing host and the amide (22). Only the thermodynamically Jess stable
Z-form of the amide incorporates into the crystals. Thus, the host displays complete
configurational selectivity!

(!:HzPh
fiJR
CH,

PhCH;—NR—CH, CH;—NR— CHPh

PhCH;—NR—CH; CH;—NR— CH, Ph
o
NR
CH,Ph
@ R = COCH,
21 b R = COCF,
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Newkome and co-workers ! have recently developed an entirely new approach
to multi-armed systems in their synthesis of ““cascade’ molecules. Rather than attach-
ing chains to a central unit, they utilized a series of reactions which converted a single
functional group into three functional groups. Each of the new functional groups
can, in turn, be converted into three groups for a total of nine. Such a strategy could
be continued to construct increasingly complex “‘tree-like” materials. A specific
example, the synthesis of “[27]-arborol” (22), is given in Scheme 1. No doubt, intrigu-
ing new molecules are on the horizon.

CH,OH 0CH,CO,CH;3
CH4(CH,), CH,CHO ———» R—C—CH;0H ————» R OCH, CO,CH gy ~——
CH,0H
OCH,CO,CH3
(R=n-CgHyy)
CO,C,H;g

OR’ CO,CoHs
{ C0,C,H;
0 (\OR' 0 CO,CoHs
w (*COZ C2H5
R 0 —_—> k 0 e

C02C2 H5
0 0
( CO,C,Hs
orR’ €0, CoHs

CONHC(CH,0H )5
CONHC(CH,0H),
CONHC {CH,0H)3
0 CONHC(CH,0H)3

CONHC(CH,0H )5
0 CONHC(CH,0H)s

CONHC(CH,0H)4
CONHC(CH,O0H),
CONHC (CH,0H);

12
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5 Polymer Systems

Thus far the discussion here has focused on compounds having multiple arms radiat-
ing from a small central unit such as a benzene, cyclotriveratrylene, or cyclophane
ring. The number of such systems in the literature is, as yet, rather small. In contrast,
there exists a vast body of data on polymeric chains bearing “‘arms” of various lengths.
I have included a section on these polymers but obviously not with the intention
of even superficially covering the subject. I merely wish to present four examples so
that the interested organic and bio-organic chemist may, for comparison purposes,
see how “arms” behave when they are covalently linked to a macromolecular back-
bone.

Almost three decades ago, Strauss and co-workers 18 carried out classic work on
“polysoaps™ (23) comprised of poly-4-vinylpyridine which had been quaternized
on up to 38 % of the nitrogens with n-dodecyl bromide; those nitrogens that escaped
reaction with n-dodecyl bromide were then derivatized with ethyl bromide. Now
addition of KBr to an aqueous solution of a polyelectrolyte normally decreases the
viscosity. This is not true for the 38 %, polysoap (23) where the viscosity increases with

— CHy—CH =— CHy~~CH — CH;—CH—

{
(‘I:Hz)n ((!3H2)11 ?Hz
CHs CH, CHs
23

KBr until the solutions eventually gel. Viscosity data indicate that the polysoaps
are far more compact than the random coils associated with ordinary polyelectrolytes
in solution. In addition, the 389 polysoap (23) forms intermolecular aggregates in
solution owing to the “sticky” hydrophobic spots on its surface. Disaggregation
induced by dilution is a slow process (taking several hours). If one decreases the
percentage of dodecyl groups on the polymer (relative to ethyl groups), then it is
possible to revert back from polysoap behavior to that of a typical polyelectrolyte.
This change occurs over a rather narrow composition range, suggesting the existence
of a “criticai dodecyl group content” analogous to the critical micelle concentration
for simple soaps.

Cordes and co-workers '¥ found that the alkaline hydrolysis of p-nitrophenyl
hexanoate is subject to catalysis by polyvinylpyridine-based polysoaps. For example,
Kops is increased from 0.1 min™! to 1.4 min ! in the presence of 5 x 10°7 M 389
polysoap (23) (the same material used in the Strauss work). With5 x 10™7 M polymer
having a 159 dodecyl content, the rate is increased only 3 times above background.
The simplest rationale for the kinetics invokes both hydrophobic and electrostatic
forces. Thus, dodecyl chains on the polymer hydrophobically bind p-nitrophenyl
hexanoate to the polymer surface. Since the polymer possesses a high density of
cationic nitrogens, hydroxide ions also accumulate at the polymer surface where they
catalyze the hydrolysis of bound ester. Addition of nitrate ion to the aqueous reaction

13
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mixture converts the polysoap-catalyzed process into a polysoap-inhibited one presum-
ably because the nitrate displaces hydroxide counterions from the active sites.

Klotz and co-workers 29 attached pendant butanoyl, hexanoyl, and dodecanoyl
groups onto polyethylenimine (24), a highly branched water-soluble polymer con-
taining approximately 259 primary and tertiary nitrogens and 509% secondary
nitrogens. Roughly 8-109% of the residues of the polymer were acylated. The acyl-

HyN{CH,CH,NH ), (CH,CHpN), (CHoCHoNH ) —
CHz .

CH»

N_

polyethylenimines are vastly more effective in binding a dye, methyl orange, than is
serum albumin under comparable conditions. Thus, at a free methyl orange concen-
tration of 107> M, the dodecanoyl, hexanoyl, and butanoyl derivatives bind 100, 10,
and 1 dye molecules, respectively, compared to a value less than unity for bovine
serum albumin. The improvement over albumin is impressive since the protein con-
tains nearly 409, of nonpolar residues (although obviously not as long as a dodecyl
chain). Urea (9.0 M) markedly reduces the binding affinity of the dodecanoyl-poly-
ethylenimine. The dependence of binding on the dye concentration shows a strong
cooperative interaction. In other words, each methyl orange anion creates, as it is
bound, a new strong apolar site for additional binding.

Finally, mention should be made of the polysoap-catalyzed decarboxylation of
6-nitrobenzisoxazole-3-carboxylate anion (Eg. ) studied by Kunitake and co-wor-
kers 1. This reaction is known to proceed faster in apolar solvents than polar ones.

cos

A CN
-C0,
0N o) 05N 0°

The polymers employed were (among others) partially dodecylated poly(2-ethyl-1-
vinylimidazole) (25). It was found that polymer containing 29 % dodecyl groups and
679, ethyl groups catalyzes the decarboxylation 350-fold, whereas.a polymer with
99, dodecyl groups and 83 % ethyl groups does not display significant catalysis. This
kinetic behavior parallels the spectral shifts of bound methyl orange. When the dye

—CHZ—CH—CHZ—-(I:H — CHZ-—(IZH—

l

N N N
[/>_C2H5[/>_C2Hs[/>_—C2H5

R

®
n-CpHas n-CyHs n-CpHos

25
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is bound to the 299, polymer, the A, shifts from 465 nm to 417 nm, attributable to
a microenvironment less polar than water. In contrast, the catalytically inactive 9%,
polymer hardly perturbs the spectrum of methyl orange. Since the catalytic efficacy
of the 299 polymer exceeds that of a conventional cationic micelle, tying chains
together covalently can contribute positively to a rate process.

6 Concluding Remarks

Attaching multiple arms to a central unit has been shown to impart interesting chemical
and physical properties not always predictable from the properties of the individual
arms. Since the field of multi-armed compounds is relatively undeveloped, there is
obviously much room for the imaginations of synthetically and physically inclined
chemists to wander freely.
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1 Introduction

There is a strongly growing interest in designing and synthesizing host compounds
for selected guests V. Although results of simple model calculations 2~ have been
applied for the development of ligand molecules for many years *>, merely a minor
part of these works is based on theoretical considerations. In most cases the design is
mainly intuitive and the sole tools used are molecular models. More elaborate
theoretical calculations have only been applied since a few years as a design aid ©.

In the last decade much experience was collected independently on the host-guest
chemistry in the field of the theoretical description of one particular kind of host-
guest interaction : ions as guests and small ligand molecules as hosts 7 ~'%. Possibilities
and limitations of such calculations are quite well known now. In the first part of this
article the corresponding results will be reviewed. On the basis of these fundamental
calculations different models were suggested for the description of host-guest interac-
tion energies of larger systems. These models will be presented in Chapter 3. Since,
in most cases, hosts (and often also guests) may adopt different conformations in
different complexes as well as in the uncomplexed state, the calculation of the interac-
tion energies is of only limited use if the conformational energy is not considered.
Therefore several approaches of conformational energy calculations will be discuss-
ed briefly.

The main purpose of the present paper is to help judging the current possibilities
and limitations of theoretical calculations on host-guest systems. In the last Chapter
we will try to summarize the topic from this point of view.

An enormous work done in the field of polypeptides and proteins by Scheraga and
coworkers includes calculations of both conformational energies and enzyme-sub-
strate interactions for this special class of compounds *! ~'*. This kind of calculations
on host-guest systems is well documented elsewhere and is not considered within the
scope of this article.

2 Ab initio Calculations of Ion-Ligand Interaction Energies

2.1 introduction

Various methods for the calculation of ion-ligand interaction energies were discussed
in several excellent reviews 7 ~2), Therefore only a brief summary is given here. In some
cases classical electrostatic models may suffice to predict correctly relative interaction
energies and equilibrium geometries . This success seems to be a consequence of
error compensation 7, Using such an electrostatic model, the interaction energies
of a water molecule with alkali metal cations were calculated '* within a few percent
deviation relative to the experimental values measured in the gas phase 15 But for
realistic ionophores only a qualitative use of this model can be made because appro-
priate parameters are lacking ». Molecular electrostatic potentials are accessible
from quantum chemical calculations and have been used to calculate interaction
energies of ions with small ligand molecules 16) (see also Sect. 3.3).

In a series of papers various semiempirical quantum chemical procedures were
examined for their usefulness to describe ion-ligand interactions (for a review see ™.
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The results were not very successful in several respects: wrong geometries, non-
realistic interaction energies and extremly overemphasized charge transfer were
obtained 7. These techniques are thus unsuitable for a reliable investigation of ion-

ligand interactions.

2.2 The Supermolecule Approach

Interaction energies (E,,,) on the basis of ab initio calculations are in general evaluated
according to the so-called supermolecule approach:

Elnt = EComplex - EHost - E(Eueﬁl (1)

E denotes on the right hand of the expression the total energy of the system specified.
The interaction energy is by several orders of magnitude smaller than the individual
total energies. Some consequences of this fact are discussed in the following sections.

A large number of complexes of alkali metal, alkaline earth metal and ammonium
cations has been studied using this approach (see Table 1). Much less effort has been
made in the field of anions as guests. Some of these results are collected in Table 2.

In case of complexes consisting of more than two constituents it has been shown
that three-body terms are of significant magnitudes '2%12V je.:

E.(ABC) # E| (AB) + E_ (BC) + E, (AC) 2

Int

2.3 Basis Sets

The reliability of the ab initio calculations depends heavily on the choice of the basis
sets. In order to reduce computational demands very often small basis sets have to be
applied. According to experience, some rules can be given for the compatibility of the
basis set with a given problem '*%). It is suggested that for molecular geometry optimi-
zations and for the description of ion-ligand interactions minimal basis sets might be
sufficient. In contrast, large basis sets are necessary for the computation of weak
intermolecular interactions 3.

Many results shown in Table 1 clearly indicate that too small basis sets like STO-3G
or a minimal GLO basis are inadequate to calculate reliable interaction energies (see
also>"). Their application is however justified if only relative stabilities and approxima-
te geometries are to be evaluated. False geometries have been obtained for hydrogen
bonded systems using the STO-3G basis set 123:124),

It is also known that geometry optimizations with too small basis sets may lead
to non-realistic geometries especially if torsion angles or pyramidal structures are
concerned '??. In any case well-balanced basis sets are absolutely necessary, i.e. the
quality of the basis set should be similar for all atoms. A carefully selected small GTO
basis set may give reliable results for the ion-ligand interaction energies 31-125:126)
However, error compensations are at least partly responsible for this success. There-
fore an improvement of the basis set may lead to less accurate results ®). Non-
balanced small basis sets lead to large basis set superposition errors 126=128)_ Thig
error is caused by the fact that in the calculations of the complex the wave functions
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of the host and guest improve each other mutually. Thus Ecoppie, [Eq. (1)] is calculated
with a virtually larger basis than Ey,,, and Eg,.. Larger basis sets lead to more
negative total energies. Ecoup., 1S therefore too negative and the interaction energy
will be overestimated if calculated according to Eq. (1). This effect was carefully
analyzed 2% 12125 Well-balanced small basis sets which are insensitive to the
basis set superposition error are now available 129: 139,

The basis set superposition error can be estimated using the counterpoise tech-
nique ). In this method the energies E,,  and E _, are calculated using the geo-
metry and basis set applied for the complex but with zero charges on the nuclei of the
guest and of the host, respectively. It is to be noted that the counterpoise calculation
does not exactly eliminate the basis set superposition error. It overestimates the
correction term and should not be applied in calculations using extended basis sets 14°,

The importance of polarization functions (like d-orbitals for C, O and N or p-
orbitals for H) for the calculation of ion-ligand interaction energies was pointed out
by several authors 7-17*9, Nevertheles many results using well-balanced small basis
sets without polarization functions are acceptable if interactions of ligands with
alkali or alkaline earth metal ions are considered (see Tables 1 and 3). The importance
of the polarization functions in the case of the ammonium-water interaction was
demonstrated recently 21,

2.4 Geometries

For an accurate description of the interaction energy the geometries of the host, the
guest and of the complex should be optimized using large basis sets. In practice the
time for the computation is prohibitively large except for small systems. A way to
circumvent this problem is the use of experimental geometries of the host and guest
and to search only for their optimal position and orientation in the complex. In the
case of ion-ligand interactions as compiled in Tables 1 and 2 this procedure leads
to satisfactory results.

Geometry optimizations using small basis sets are problematic. The calculated
geometries may strongly deviate from the experimentel ones. In a recent study of the
H,0—NH, complex, it was shown that the use of experimental geometries may be
very satisfactory. The influence of geometry optimization on the calculated interaction
energy is in this case insignificant if large basis sets are used, °" but of significance
in case of smaller basis sets ®*®' (see also Tables 1 and 3).

In case of alkali and alkaline earth metal cations as guests, the calculated ion-
ligand distances at the energy minimum depend on the basis set. An improvement of
the basis set leads to an increase of the ion-ligand distance. For Li* —H,0 and K* —
H,O the optimal distances are 176 and 257 pm, if minimal Gaussian basis sets are
used. The corresponding values are 189 and 269 pm with extended basis sets (see
Table 1). Even these latter values are significantly lower than the sum of the ionic
radii ** and the van der Waals radius of the oxygen atom (218 pm for Li* and 273 pm
for K*). These remaining differences can be explained as a consequence of ligand-
ligand repulsions in case of higher coordination number. Ionic radii and van der
Waals radii allow, in general, a good approximation of the experimental results
if the ions are fully coordinated. They overestimate, however, the optimal distance
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Table 3. Comparison of the experimental enthalpies of interaction with the calculated interaction
energies as given in Tables | and 2.

Ton Ligand —AH((Int) (exp.} —E(Int) (SCF)* Ref. {exp.) Ref. (SCF)
[kJ/mole] [kJ/mole]
Li* NH, 164 169 134) i
162 135y
Li* 2 NH, 301 395 139 2N
Li* 4 NH, 458 515 135 i
Li* 5 NH, 504 723 139) )
Li* 6 NH, 543 741 135} 29)
Li* H,0 142 147 5 3
Li* 2H,0 250 283 15 &
Lit 4 H,0 405 494 2 )
Lit $H,0 464 671 ) il
Li* 6 H,0 514 680 1) ®
Lit HCN 152 155 134 n
Li* H,CO 151 161 134 0
Li* CH,—NH, 172 167 134 0
Li* CH,—OH 159 172 134) 19
Li* CH,—F 128 146 136) %)
Lit CH,—CN 180 188 136 19
Li* CH,~—CHO 174 190 16 b
Li* CH,—NH—-CH, 177 182 134 19
Li* CH,—O—CH, 165 172 134) b
Li* CH,—C1 105 87 138) 9
Li* CH,—CO—CH, 186 222 136) 3
Li* N(CH,); 176 201 L 18
Li* CH,—S—CH, 134 119 136) 9
Li* HCO—N(CHy), 209 223 136) 2
Li* CH,—COO—CH, 184 172 139 =
Lit pyridine 185 179 139 @
Na*  NH, 122 116 13 2
Na*  4NH, 351 509 139 =
Na* 5 NH, 395 585 135) 29
Na* 6 NH3 436 628 135) 29)
Na*  H,0 100 105 5 4
Na*  4H,0 307 477 ' 2
Na*  5H,0 359 552 ' =
Na®  6H,0 403 594 1 =
K+ NH; 75 77 137) 20)
h 24 138)
K* 4 NH, 257 333 o )
K* H,0 75 70 ’ 2
7 73 139) 76)
K 4H,0 247 320 ' >
K* 5H,0 292 387 o -
K" 6 H,0 333 i 137: 21)
K* CH,—NH, 80 76 1o o)
K* CH,—CN 102 107 . o)
K* CH,—NH—-CH, 82 79 o o)
K* CH,— O—CH, 87 97 a0
93
141) 85}
NH}  NH, ;?g 118 .
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Table 3. (continued)

Ton Ligand —AH(Int) (exp.) —E(Int) (SCFy Ref. (exp.) Ref. (SCF)
kJ/mole] fkJ/mole]
NH} 2NH 177 310 141) 84
4 3 184 142)
NH; 3NH 235 407 141 84)
* ’ 253 142)
141) 83}
NHE NI 4 o ..
141 84}
NH;  5NH, gfé 524 -
NH; H,0 72 78 1:” :;’
NH; 2H,0 134 166 ‘41’ 88:
NH 3H,0 190 217 141) -
NH; 4H,0 241 276 ‘4 ) 8;
NH; 5H,0 282 493 141) 33’
F~ H,0 97 99 143) )
E- 2H,0 167 302 143 44)
E- 4H,0 281 481 143 38)
F- CH,—CN 67 76 1) 12:’
F- 2 CH,—~CN 121 141 144) 10:
F- 3 CH,—CN 170 198 144y 104)
F- 4 CH,—CN 213 237 144) 104)
- H,O 55 50 143) 33)
62 145)
Cl- CH,—OH 59 50 146) 1074
- CH,—CN 56 48 144y 1043
Cl- 2 CH,—CN 107 91 144y 104)
cl- 3 CH,—CN 151 128 144) 104y
Cl- 4 CH,—CN 177 158 144) 104)
Cl- HCOOH 155 92 146) 107
- CH,—COOH 90 72 146) 107)
ol (CH,),C—OH 59 49 ;‘:? 107y
Cl- C,H,—NH, 72 47 1461 iz;*
- C,H,—OH 81 77 ) )
- CHCI, 64 69 146) 107)
Br~ H,0 53 54 143) 109)
Br- 2 H,0 104 101 143) 109y
Br~ 3H,0 152 172 143) 109)
Br~ 4H,0 198 215 143) 109)
- 2 147) 111)
HCO; H,0 66 79
- 147y 111)
HCO; 2H,0 128 161 )
HCO; 3H,0 185 220 147) 11

* Calculated values obtained with the largest basis sets applied were selected. For details and for
other calculations see Tables 1 and 2.

in case of a 1:1 complex with a monodentate ligand. The differences are especially
large for small cations such as Li* and Mg?* ?®. In line with these considerations,
a decrease of the metal-oxygen distances with decreasing coordination number was
documented recently by comparing a large number of X-ray structures of alkali and
alkaline earth metal complexes 133,
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2.5 Correlation Energy

A part of the electronic energy is not considered in case of ab initio SCF calculations
since the electrons of different spins are treated as independent (uncorrelated) within
the framework of this approach. If the corresponding energy (correlation energy) is
of different magnitude in the complex and in its constituents, the correlation energy
contribution to the interaction energy has to be evaluated.

The intermolecular electron correlation (the dispersion interaction) was calculated
or estimated for some cation-ligand interactions using configuration interaction
{CI) calculations, perturbation theory or on the basis of a statistical model (see
Table 4). Its contribution to the total interaction energy is less than 10 ¢, throughout.

2.6 Comparison with the Experiment

Intermolecular interactions in the gas phase have been measured in a series of cases
using mass spectrometry **7!*7), From the temperature dependence of the equili-
brium constants, besides the free energies, the enthalpies and the entropies of the in-
volved reactions were evaluated. The corresponding data are useful for comparison
with the results of theoretical calculations (see Table 3). In order to compare the
calculated interaction energies with the measured reaction enthalpies, a series of
contributions has to be taken into account. Concerning these correction terms some
inconsistencies arise in the literature. Therefore the list of them is given here in detail
according to Ref, 4%

AHZS = AEZ® 4 APV 4

Calc
AEES = AEY + A(AE,)*® + AE? + A(AE,)® + AE?® + AE?®  (5)

AE? is the calculated electronic interaction energy at 0 K.

A(AE )**® is the change in the calculated electronic interaction energy between 298 K
and 0 K. This term is negligible unless electronically excited states are important.
AE? is the difference between the zero-point vibrational energies of reactants and
product.

A(AE )**® is the change in the vibrational energy difference between 298 K and 0 K.
AE?® is the difference in rotational energies of reactants and product.

AE}*® is the translational energy change due to the change in the number of degrees
of translational freedom.

The calculation of the vibrational terms is straightforward but rather time consuming
(see e.g. 149,

AE?® and AE?® can be approximated according to classical considerations as
—1/2 - RT for each degree of rotational and translational freedom lost due to complex
formation. Assuming an ideal behavior, APV is equal to —RT for a 1:1 host-guest
association since 1 mol gas is lost by the complexation reaction. In Table 4 the calculat-
ed contributions for two simple 1:1 complexes are given.
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3 Treatment of Large Systems
3.1 Introduction

The computer time required for ab initio calculations is roughly proportional to the
fourth power of the number of atomic basis functions used for the description of the
molecular system. Ab initio calculations are thus not feasible today for host-guest
systems with more than about 150—200 electrons. Supercomputers and vector pro-
cessors will significantly lower the necessary CPU times > but they alone probably
cannot bring a breakthrough for systems larger than two or three times the ones which
can be treated today.

An increase in speed can be achieved by using pseudopotential calculations
In these type of calculations the inner shell electrons are approximated with a potential
and the problem is reduced to a valence electron problem. This technique is very
powerful for heavy atoms but the time saving is not more than roughly 50 9, for mole-
cules containing first-row atoms only *?’. Ion-ligand interactions have been studied
with pseudopotential calculations in several cases 1°* 7157,

In some cases, strange approximations were applied in order to circumvent the
problems connected with large systems. The interaction energy of the antibiotic
tetranactin with an ammonium ion was calculated by replacing the tetranactin by
four formaldehyde and four water molecules '*®. In an “improved” study the tetra-
nactin was approximated by using formic acid, ethane, propane and methanol mole-
cules 1*%). In an other study [18] crown-6 was simulated by three dimethyl ether mole-
cules 169,

The most promising methods for the prediciton of interaction energies in realistic
host-guest systems which are known at present apply some kind of extrapolation tech-
niques. Results of ab initio calculations on small systems are used in these models
for the description of large systems. The two approaches which seem to be the most
important at present are described in the succeeding chapters.

122,151%

3.2 Pair Potential Procedure

This technique has widely been applied in a series of papers by Clementi and coworkers
for the description of the solvation of amino acids, peptides as well as of RNA, DNA
and their constituents (for reviews see 16!+ 162)). The interactions of some cations with
these types of molecules were also described '3 19, Pair potentials between small
model molecules and the cations Li* 62, Na* 167 K * 168 NH} 18 Mg** ®® and
Ca?* ?® were developed in order to describe ion-ionophore interactions '*).

Within the frame of this approach the interaction energy of two molecules is describ-
ed as the sum of pairwise interactions. It is assumed that each atom of the host interacts
with each atom of the guest independently:

Elnt = Z ; eij (5)

(i and j are the running numbers of the host and the guest, respectively). This is of
course a crude approximation but the reliability of the results confirms the usefulness
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of this approach. It is very versatile for various reasons. First the calculations are
very fast because the only geometrical parameter is the distance r;; between the two
atoms, i.e. the pair potentials have spherical symmetry. Angle dependencies are intro-
duced implicitly because the superposition of several pair potentials gives rise toa
reduction of the symmetry. A further advantage is that it would be easy to include
these simple pair potentials in any molecular mechanics program.

Different forms of the pair potentials e;; can be used. In most cases a three parameter
function of the following type was applied:

€ = “Aij/r?j + Bij/r§j2+ qiqjcij/l'ij (6)
A;;, B;; and C;; are constants for a given pair of atoms and g, and q; are atomic net
charges of the atoms i and j. The first two terms correspond to the Lennard-Jones
potential and the third term to the electrostatic point charge — point charge inter-
action.

In order to evaluate the values of the constants A;;, B;;, and C,, a large number of
ab initio calculations are to be made for model systems. In each model system the
distances and relative orientations of the constituents are to be varied. The para-
meters can then be fitted using the Eqgs. (5) and (6). Atomic net charges of the un-
complexed host and guest are usually used for this procedure. In general they are
calculated with the same basis sets as the interaction energies. Since calculated atomic
net charges heavily depend on the basis sets (small basis sets tend to overestimate the
polarization), a parameter set can only be applied by using net charges obtained with
the same basis set as for the fitting procedure.

Fig. 1. Left: Isoenergy countour diagram (energies in kJ/mol) for the interaction of Li* with
(18] crown-6 and 2 H,O 7. The conformation of the crown ether and the position of the water molecules
were fixed as found experimentally ", Right: Same view of the structure of the LiClO, - [18] crown-
6 - 2H,0 complex as determined by X-ray crystallography 9. The distance between the position
of the energy minimum (left) and the found position of Li* (right) amounts to 7 pm
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Fig. 2. Left: Isoenergy contour diagram (energies in kJ/mol) for the interaction of Na* with
[18] crown-6 and one H,O molecule 7. The conformation of the crown ether and the position of the
water molecule were fixed as found experimentally '". Right: same view of the structure of the
NaSCN - [18] crown-6 - H,O complex as determined by X-ray crystallography '’". The distance
between the position of the energy minimum (left) and the found position of Na* (right) amounts to
11 pm

Fig. 3. Left: Isoenergy contour diagram (energies in kJ/mol) for the interaction of K* with
[18] crwon-6 7. The conformation of the crown ether was fixed as found experimentally '72. Right:
Same view of the structure of the KSCN - [18] crown-6 complex as determined by X-ray crystallogra-
phy 172, The distance between the position of the energy minimum (left) and the found position of
K* amounts to 0 pm

Atoms of the same kind in similar chemical environments can be grouped in the
same classes, i.e. they are forced to have the same constants. By this procedure a
compromise between flexibility and accuracy can be made. Depending on the pur-
pose of the calculations different class assignments and thus different sets of constants
can be fitted on the basis of the same set of ab initio interaction energies.

70



Calculation of Interaction Energies in Host-Guest Systems

Fig. 4. Left: Isoenergy contour diagram (energies in kJ/mol) for the interaction of NH, with
[18] crown-6 3. The conformation of the crown ether was fixed as found experimentally !”®. Right:
Same view of the structure of the NH,Br - H,O - [18] crown-6 complex as determined by X-ray crystallo-
graphy !7®. The distance between the position of the energy minimum (left) and the found position

of NH,/ (right) amounts to 50 pm

In order to describe the interaction energies of large host-guest systems for each
atom pair i—j, a corresponding similar atom pair has to be selected from the model
systems. Furthermore, the atomic net charges have to be calculated or estimated on the
basis of a model compound.

The reliability of the model in predicting the geometry of the complexes is document-
ed in the Figs. 1-5. In these examples the interaction energies of crown ethers with
different ions were calculated for 10’000 points of a selected plane. The isoenergy
contour diagrams are depicted together with the structures as determined by X-ray
crystallography. For the interaction energy calculations the geometry of the ligands
was fixed in the conformation as found experimentally. The deviation between ex-
perimental and calculated positions of the ions is 0-50 pm.

Similar pair potentials were succesfully used in many applications involving inter-
action energy calculations on channels 1%3:189 DNA 13 and also including Monte
Carlo techniques 163,165,166,175, 176).

3.3 Additive Model of Gresh, Claverie and Pullman

In contrast to the pair potential model where the interaction energy hypersurface is
approximated by an additive procedure using a simple mathematical function, the
basis of the model of Gresh et.al. is an energy partitioning scheme.

The total interaction energy may be described as asum of contributions (see
177y.
e.g. 177

EINT = ECOU + EEX + EPOL + EDlSP + ECT )
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Fig. 5. Left: Isoenergy contour diagram (energies in kJ/mol) for the interaction of Li* with 18,18'-
spirobi-([19] crown-6) and 4 H,0 7, The conformation of the crown ether and the position of the
water molecules were fixed as found experimentally ‘™. Right: Same view of the structure of the
(Lil), - 18,18'"-spirobi~({19] crown-6) - 4 H,O complex as determined by X-ray crystallography 174®.
The distance between the position of the energy minimum (left) and the found position of Li* (right)
amounts to 50 pm. This deviation might be mainly due to the Li*-Li"* interaction which was not con-
sidered in the calculations

E gy is the electrostatic interaction energy as calculated on the basis of the charge
distribution of the isolated host and guest.

Egy. the exchange energy, is a repulsive contribution due to the overlap of the electron
densities of host and guest.

E,o is the polarization energy which is a stabilizing term due to the relaxation of the
electron density of host and guest in the field of the partner.

Epsp is the dispersion energy which is due to the correlation of electron movements
of host and guest.

Ep is the charge transfer energy.

The first four terms result automatically if the interaction energy is calculated by a
perturbation treatment (see e.g. '’%). The interaction energy calculated by the ab
initio SCF technique may be divided into the above contributions (except E, ¢, which
corresponds to the correlation energy) according to model considerations 79150,

The model proposed by Gresh et.al. '8!) approximates the individual terms in the
formalism (7) as follows:

Enr = Eymp + EREP + Epop + Epo ®

E, e is the electrostatic interaction energy calculated as a sum of multipole-multi-
pole interactions using the overlap multipole expansion of the SCF electron density
distributions of the host and guest 8%,

Egpp is the sum of bond-bond (or bond-ion) repulsive interactions. Eyp + Eggp cor-
responds to Eg, + Egy in Eq. (7).

Epop is the polarization energy.

E,; approximates E, + E; in Eq. (7).
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Approximate formulas are used for the calculation of Egy,, Epp,, and Ep, . Para-
meters used in these approximations are estimated on the basis of ab initio calculations
on a few small model systems '8!}, Eyrp brings about the major contribution of the
total interaction energy so that uncertainties in the other terms are of only minor
importance. For larger molecules E, ., is computed on the basis of ab initio calculations
on subunits 8%,

This additive procedure was applied for the study of a number of cases including
the interaction of cations with the carrier antibiotics valinomycin '® and nonac-
tin '®%, the interaction of CH,;NH; and (CH,),N* with amino acids mimicking the
active site of a phosphorylcholine antibody '8¢, the interaction of guanine and cytosi-
ne with amino acids 187, the interaction of Ca?* and Mg?* with two serine phos-
phates 88 and the interaction of the channel-forming antibiotic gramicidin A with
different cations 1897191,

3.4 Comparison of the Two Models

It is not easy to directly compare the two models which were discussed in the previous
sections. The only interactions which were studied with both techniques are those of a
gramicidin A channel with Na* and K*. In Fig. 6 the results of these studies 1,
166,189.191) are compared. The largest differences can be observed at the two ends of the
channel. This is due to the fact that the ethanolamine tails were fixed in different con-
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Fig. 6. Minimum interaction energies of K* and Na* with gramicidin A as a function of their position
along the channel axis. The top two curves '*!? are calculated according to a model proposed by Gresh
et.al. with blocked ethanolamine end chain. The more attractive curves 1159 are determined using
the pair potential method. The gramicidin A dimer ranges from about —14 A to +14A
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formations in the two sets of calculations. Similar trends of the two sets of curves are
obvious inside the channel. Differences may be due to the fact that the geometries
are possibly not exactly the same (Ref. °» and Ref. 1°*) and that in one case '*% the
peptide chain was approximated by a polyglycine chain. There is, however, no ob-
vious reason for the drastic differences in the absolute values of the interaction ener-
gies (roughly a factor of 2 in case of Na™*). The difference between the interaction
energies of the two ions is very pronounced in one case 63 1°®) and practically vanishes
in the other case 1%9-190),

The evaluation of pair potentials is much more time-consuming than the evaluation
of the parameters in the model of Gresh et al. On the other hand, pair potentials are
easy to transfer and corresponding interaction energy calculations are very fast. In
contrast, the application of the model of Gresh et. al. includes always time-demanding
ab initio calculations.

4 Conformational Energy

Although the topic of the present paper is the calculation of interaction energies, we
have to treat briefly the contribution of the conformational energy. Isolated hosts and
guests exhibit, in general, conformations different from those observed in complexes.
A part of the interaction energy is thus needed to bring the host and guest molecules
into the appropriate conformation. For the prediction of the overall interaction
energy as well as of the structure of the complexes, reliable calculations of the con-
formational energies are therefore absolutely necessary.

Ab initio calculations using not too small basis sets would be adequate if the com-
putational demands were not prohibitively large. For an accurate geometry optimi-
zation the relaxation of all parameters is necessary. Today such calculations are only
practicable for relatively small systems.

Very recently the additive procedure of Gresh et al. which was discussed in Sect. 3.3
was extended for the calculation of conformational energy variations in large mole-
cules 199, The molecules are built up out of constitutive fragments and the intra-
molecular energy is calculated as a sum of interaction energies between the fragments.
The results published so far are very promising. Although the necessary computa-
tional demands are substantially lower than for ab initio calculations (proportional
to n? instead of roughly n*, n being the total number of atoms in the system) they
are still significant.

Semiempirical quantum chemical calculations are still too much time-consuming
for larger systems. Out of the numerous methods PCILO (Perturbation Configuration
Interaction using Localized Orbitals '°*') was proposed by different authors to be the
most reliable procedure for conformational analysis (see e.g. 196)) 1t was applied for
many conformational energy studies (for references see e.g. 197, Comparisons
made with ab initio and experimental results have however shown in several cases
that also PCILO gives only crude estimates of the conformational energy 197-202)

A vast amount of empirical molecular potential energy functions and a series of
corresponding programs (molecular mechanics and consistent force field programs)
are available (for recent reviews see 2°272%%). Unfortunately these energy functions
are always the result of optimization on a rather limited group of compounds. No
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parameter set is available for general use today. An excellent review describing briefly
the most important contributions appeared recently 2°%,

It lies in the nature of the method that most practical applications are extrapolations
using parameters optimized on a known set of observables. It is therefore simply not
possible to quantitatively predict the reliability of the results. In order to moderate
too optimistic expectations we collected some results on [18] crown-6 and its complexes
which were obtained with three different molecular mechanics programs (see Ta-
bie 5). The conformational energies were calculated relative to a minimum energy
conformation obtained by relaxation of the experimentally observed structure of the
uncomplexed ligand ?°®. The reference structures obtained with these methods vary
significantly (differences of the corresponding torsion angles of up to 20° were ob-
tained). As shown in Table 5, even the stability sequence of the conformations is
inconsistent.

Table 5. Conformation energy calculations on [18] crown-6 with different molecular
mechanics methods

Conformation Conformational energy [kJ/molJ?

WBFF 209 AMBER 27 MM2 7%
C; (Na*-complex)® 18.4 39.3 28.0
D,, (K*-complex)® 32.8 4.6 ~10.5

* Conformational energies are given relative to the energy minimum obtained by
relaxation of the experimentally observed structure of the free ligand.

® Conformation obtained by the relaxation of the experimentally observed con-
formation of the ligand in its Na*-complex.

¢ Conformation obtained by the relaxation of the experimentally observed confor-
mation of the ligand in its K *-complex.

Such discouraging results should by no means suggest that this type of calculations
is of no help for designing hosts. Although they can fail in the quantitative predic-
tion of conformation energies, such calculations can be used to predict in a qualitative
way whether a designed molecule has a chance to be a host for a selected guest or not.
The usefulness of empirical energy functions for designing macrocyclic ionophores
was demonstrated recently by Lifson et al. ®. Although only estimated parameters
of the cations Li*, Na* and K * were used, the model was successful in the prediction
of ionophoric capability and incapability of different members of the compound
class studied ©.

5 Future Prospects
All the calculations of interaction energies of host-guest systems, as discussed above,
refer to isolated species in the gas phase. For practical purposes, values in solutions

are of interest. Besides interaction energies and conformation energies, the solvation
effects of all participants shouid be included. For ionophores as hosts, the interaction
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with the counterion of the ionic guest should also be considered. It is clear that already
a precise calculation of the two most important terms is problematic. The estimation
of the remaining terms, which were not discussed in this paper, is even more difficult.
These facts might lead to a pessimistic judgement of the practical value of model
calculations.

Far from this pessimism we are convinced that calculations using today’s possibili-
ties with all of the limitations are useful as a design aid for hosts. For a ligand design
the question should not be “what is the magnitude of the interaciton energy” but
rather ““has my planned compound a chance to be a host for the selected guest or
not”. In many cases one tried to answer this question by building molecular models.
Today’s possibilities of software and hardware for molecular modelling allow a
big step forward. The molecules can be built up at the computer terminal and primitive
models of conformational constraints and optimization are available. Already such
primitive models allow an estimation of the complexing capability of the designed
compounds according to the concept put forward by Lifson et.al. ©. For the design
of ionophores as hosts pair potentials developed on the basis of ab initio calculations
(see Chapter 3.2) could easily be combined with an existing parameter set for confor-
mation energy calculations.

No precise prediction of experimental interaction energies between realistic hosts
and guests in solutions is to be expected in the near future. Calculations using existing
models can however be used as a design aid and might prevent the synthesis of a
large number of planned hosts which are hopeless candidates. It is to be expected that
through the availability and the increasing popularity of molecular modelling systems
this type of computer aided design will be routinely used within a few years.

6 Acknowledgements

This work was partly supported by the ,.Schweizerischer Nationalfonds zur Forde-
rung wissenschaftlicher Forschung*. We thank PD Dr. T.-K. Ha for critical reading
of the manuscript and for valuable comments.

7 References

1. Vaégtle, F., Weber, E. (eds.): Host Guest Complex Chemistry 1—III, Top. Curr. Chem. 98,
101, 121, Springer-Verlag, Berlin, Heidelberg, New York, 1981, 1982, 1984

. a) Morf, W. E., Simon, W.: Helv. Chim. Acta 54, 794 (1971)
b) Morf, W. E., Simon, W.: ibid 54, 2683 (1971)

. Simon, W., Morf, W. E., Meier, P. Ch.: Struct. Bonding (Berlin) 16, 114 (1973)

. Pretsch, E., Ammann, D., Simon, W.: Res. Development 25, 20 (1974

. Morf, W. E., Ammann, D., Bissig, R., Pretsch, E., Simon, W., in: Progress in Macrocyclic
Chemistry (eds. Izatt, R. M., Christensen, J. J.), Wiley-Interscience, New York 1979

. Lifson, S., Felder, C. E., Shanzer, A.: J. Am. Chem. Soc. 105, 3866 (1983}

. Schuster, P., Jakubetz, W., Marius, W.: Top. Curr. Chem. 60, 1 (1975)

Pullman, B., Goldblum, N. (Eds.): Metal-Ligand Interactions in Organic Chemistry and Bio-

chemistry, D. Reidel Publishing Company, Dordrecht 1977

9. Hobza, P., Zahradnik, R.: Weak Intermolecular Interactions in Chemistry and Biology, Elsevier,
Amsterdam 1980

[F N Y o

00 = O

76



11
12,
3.
14.

i5.
. Scrocco, E., Tomasi, J.: Top. Curr. Chem. 42, 95 (1973)
7.
18.
19.
20.
21.
22.

23.
24,
25.
26.
27.
28.

29.
30.
31.
32.
33.
4.
35
36.
. Bauge, K., Stegérd, A.: Acta Chem. Scand, 27,2683 (1973)
38.
39.
. Schuster, P., Marius, W., Puliman, A., Berthod, H.: Theor. Chim. Acta 40, 323 (1975)
41.
42.
43.
. Kollman, P.: J. Am. Chem. Soc. 99, 4875 (1977)
45,

46.
47.
48.

49.

Calculation of Interaction Energies in Host-Guest Systems

. Ratajczak, M., Orville-Thomas, W. J. (Eds.): Molecular Interactions, John Wiley, Chichester

1980

Scheraga, H. A.: Adv. Phys. Org. Chem. 6, 103 (1968)

Shipman, L. L., Burgess, A. W, Scheraga, H. A.: Proc. Nat. Acad. Sci. 72, 543 (1975)
Nemethy, G., Pottle, M. S., Scheraga, H. A.: J. Phys. Chem. 87, 1883 (1983)

Simon, W., Morf, W. E., Ammann, D., in: Calcium Binding Proteins and Calcium Function,
p. 50 (eds. Wasserman, R. M. et al.), Elsevier, Amsterdam 1977

Dzidi¢, 1., Kebarle, P.: J. Phys. Chem. 74, 1466 (1970)

Woodin, R. L., Houle, F. A, Goddard I11, W. A.: Chem. Phys. 14, 461 (1976)
Pullman, A., Brochen, P.: Chem. Phys. Lett. 34, 7 (1975)

Smith, S. F., Chandrasekhar, J., Jorgensen, W. L.: J: Phys. Chem. 86, 3308 (1982)
Berthod, H., Pullman, A.: Chem. Phys. Lett. 70, 434 (1980)

Berthod, H., Pullman, A.: Isr. J. Chem. 19, 299 (1980)

Hinton, J. F., Beeler, A, Harpool, D., Briggs, R. W_, Pullman, A.: Chem. Phys. Lett. 47, 411
(1977)

Kollman, P., Rothenberg, S.: J. Am. Chem. Soc. 99, 1333 (1977)

Hinchliffe, A., Dobson, J. C.: Theor. Chim. Acta 39, 17 (1975)

Umeyama, H., Morokuma, K.: J. Am. Chem. Soc. 99, 1316 (1977)

Stagérd, A.: Acta Chem. Scand. 27, 2669 (1973)

Nicely, V. A, Dye, J. L.: J. Chem. Phys. 52, 4795 (1970)

Ribas Prado, F., Giessner-Prettre, C., Daudey, J.-P., Pullman, A., Hinton, J. F., Young, G..
Harpool, D.: J. Magn. Res. 37, 431 (1980)

Nagata, C., Aida, M.: J. Theor. Biol. 110, 569 (1984)

Breitschwerdt, K. G., Kistenmacher, H.: Chem. Phys. Lett. /4, 288 (1972)
Puliman, A., Berthod, H., Gresh. N.: Int. J. Quant. Chem. Symp. 10, 59 (1976)
Clementi, E., Popkie, H.: J. Chem. Phys. 57, 1077 (1972)

Kistenmacher, H., Popkie, H., Clementi, E.: ibid 59, 5842 (1973)

Diercksen, G. H. F., Kraemer, W. P.: Theor. Chim. Acta 23, 387 (1972)
Diercksen, G. H. F., Kraemer, W. P., Roos, B. O.: ibid 36, 249 (1975)

Kollman, P. A., Kuntz, 1. D.: J. Am. Chem. Soc. 94, 9236 (1972)

Kollman, P., Kuntz, I.: J. Am. Chem. Soc. 98, 6820 (1976)
Schuster, P.. Preuss, H.-W.: Chem. Phys. Lett. 11, 35 (1971)

Rode, B. M., Sagarik, K. P.: Chem. Phys. Lett. 88, 337 (1982)
Raghavachari, K.:J. Chem. Phys. 76, 5421 1982)
Kraemer, W. P., Diercksen, G. H. F.: Theor. Chim. Acta 23,393 (1972)

Del Bene, J. E., Frisch, M. J., Raghavachari, K., Pople, J. A., v. R. Schleyer, P.: J, Phys. Chem.
87,73 (1983)

Russegger, P., Schuster, P.: Chem. Phys. Lett. 79, 254 (1973)

Neumann, D. B., Moskowitz, J. W.: J. Chem, Phys. 50, 2216 (1969)

Raber, D. 1., Raber, N. K., Chandrasekhar, J., von Ragué Schleyer, P.: Inorg. Chem. 23, 4076
(1984)

Ha, T.-K., Wild, U. P., Kithne, R. O., Loesch, Ch., Schaffhauser, T., Stachel, J., Wokaun, A.:
Helv. Chim. Acta 67, 1193 (1978)

. Schuster, P., Pullman, A.: Chem. Phys. Lett. 24, 472 (1974)

. Armbruster. A. M., Pullman, A.: FEBS Letters 49, 18 (1974)

. Del Bene, J. E.: Chem. Phys. 40, 329 (1979)

. Del Bene, J. E.: Chem. Phys. Lett. 64, 227 (1979)

. Nowek, A., Leszczynski, J., Wojciechowski, W.: Materials Science 9, 71 ( 1983)
- Douglas, J., Kollman, P.: J. Phys. Chem. 85, 2718 (1981)

. Sapse, A. M., Bunce, J. D., Jain, D. C.: J. Am. Chem. Soc. 106, 6579 (1984)

. Rode, B. M., Preuss, H.: Theor. Chim. Acta 35, 369 (1974)

. Rode, B. M., Breuss, M., Schuster, P.: Chem. Phys. Lett. 32, 34 (1975)

. Sagarik, K. P., Rode, B. M.: Z. Naturforsch. 364 1357 (1981)

77



Martin Badertscher et al,

71
72.
73.
74.
75.

76.
77.
78.
79.
80.
81,
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

93.
94.

95.
96.
97.

98.
99.
100.
101.

102.
103,
104.
105.
106.
107.
108.
109.

78

. Rode, B. M.: Chem. Phys. Lett. 26, 350 (1974)

. Pullman, A., Giessner-Prettre, C., Kruglyak, Yu. V.:ibid 35, 156 (1975)

. Corongiu, G., Clementi, E., Pretsch, E., Simon, W.: J. Chem. Phys. 72, 3096 (1980)

. Hertz, H. G., Weingirtner, H., Rode, B. M.: Ber. Bunsenges. Phys. Chem. 79, 1190 (1975)

. Rode, B. M., Kraft, H. G.: Chem. Phys. Lett. 67, 410 (1979)

. Kraft, H. G., Rode, B. M.: Monatsh. Chem. 171, 797 {1980)

. Blomberg, M. R. A, Fischer-Hjalmars, 1., Henriksson-Enflo, A.: Ist. J. Chem. /9, 143 (1980)
. Fuchs, D. N., Rode, B. M.: Chem. Phys. Lett. 82, 517 (1981)

. Sagarik, K. P., Rode, B. M.: Z. Naturforsch. 394, 686 (1984)

. Rode, B. M., Fussenegger, R.: J. Chem. Soc., Faraday Trans. 2 77, 1958 (1975}

. Pretsch, E., Neszmelyi, A., Simon, W., Corongiu, G., Clementi, E.: IBM Research Report

POK-07; available from IBM, Department B28, Building 701, PO Box 390, Poughkeepsie,
New York 12602

Rode, B. M., Gstrein, K. H.: J. Chem. Soc., Faraday Trans. 2 74, 889 (1978)

Sagarik, K. P., Rode, B. M.: Inorg. Chim. Acta 78, 81 (1983}

Sagarik, K. P., Rode, B. M.: ibid 76, 1.209 (1983)

Rode, B. M., Hannongbua, S. V.: ibid 96, 91 (1985)

Welti, M., Portmann, P., Badertscher, M. Neszmelyi, A., Clementi, E., Pretsch, E., Simon, W.:
in preparation

Kistenmacher, H., Popkie, H., Clementi, E.: J. Chem. Phys. 58, 1689 (1973)

Perricaudet, M., Pullman, A.: FEBS Letters 34, 222 (1973)

Dacre, P. D.: Mol. Phys. 57, 633 (1984)

Fussenegger, R., Rode, B. M.: Chem. Phys. Lett. 44, 95 (1976)

Perahia, D., Pullman, A, Pullman, B.: Theor. Chim. Acta 43, 207 (1977)

Berthod, H., Puliman, A.: ibid 47, 59 (1978)

Kollman, P.: Chem. Phys. Lett. 55, 555 (1978)

Pullman, A., Armbruster, A. M.: Int. J. Quant. Chem. Symp. 8, 169 (1974)

Pullman, A., Armbruster, A, M,: Chem. Phys. Lett. 36, 558 (1975}

Delpuech, J.-J., Serratrice, G., Strich, A., Veillard, A.: Mol. Phys. 29, 849 (1975)

Merlet, P., Peyerimhoff, S. D., Buenker, R. J.: J. Am. Chem. Soc. 94, 8301 (1972)

Baird, N. C.: Int. J. Quant. Chem.: Quant. Biol. Symp. /, 49 (1974}

Tkuta, S.: Chem. Phys. Lett 95, 604 (1983)

Bohm, H.-J., McDonald, 1. R.: J. Chem. Soc., Faraday Trans. 2 80, 887 (1984)

Pullman, A., Claverie, P., Cluzan, M.-C.: Chem. Phys. Lett. 117, 419 (1985)

Welti, M., Ha, T.-K., Pretsch, E.: J. Chem. Phys. 83, 2959 (1985)

Timko, . M., Moore, S. S., Walba, D. M., Hiberty, P. C., Cram. D. 1.: J. Am. Chem. Soc. 99,
4207 (1977)

Umeyama, H., Nomote, T.: Chem. Pharm. Bull. 27, 1112 (1979)

Sano, M., Yamatera, H., in: Tons and Molecules in Solution (eds. Tanaka, N., Ohtaki, H.,
Tamamushi, R.), Studies in Physical and Theoretical Chemistry 27, 109 (1982)

Corongiu, G., Clementi, E.: J. Chem. Phys. 69, 4885 (1978)

Kochanski, E., Prissette, J.: Chem. Phys. Lett. 80, 564 (1981)

Demoulin, D., Fischer-Hjalmars, L., Henriksson-Enflo, A.: Int. J. Quant. Chem. 72 Suppl. 1,
351 (1977)

Welti, M., Pretsch, E.. Clementi, E., Simon, W.: Helv. Chim. Acta 65, 1996 (1982)

Perahia, D., Pullman, A, Pullman, B.: Theor. Chim. Acta 42, 23 (1976)

Lavery, R., Pullman, B.: Int. J. Quant. Chem.: Quant. Biol. Symp. 6, 467 (1979}

Gottschalk, K. E., Hiskey, R. G., Pedersen, L. G., Koehler, K. A.:J. Mol. Struct. THEOCHEM
90, 265 (1982)

Kistenmacher, H., Popkie, H., Clementi, E.: J. Chem. Phys. 58, 5627 (1973)

Kraemer, W. P.. Diercksen, G. H. F.: Theor. Chim. Acta 27, 265 (1972}

Yamabe, S., Hirao, K.: Chem. Phys. Lett 84, 598 (1981)

Emsley, J., Jones, D. J., Osborn, R. S, Overill, R. E.: J. Chem. Soc., Dalton Trans. 809 (1982)
Emsley, 1., Jones, D. J., Overill, R. E.: J. Chem. Soc., Chem. Commun. 476 (1982)

Yamabe, S.. lhira, N., Hirao, K.: Chem. Phys. Lett. 92, 172 (1982)

Piela, L.: ibid 19, 134 (1973)

Ikuta, S.: ibid 68, 179 (1979)



110.
111
112
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.

128.
129.
130.
i31.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143
. Yamdagni, R., Kebarle, P.: J. Am. Chem. Soc. 94, 2940 (1972)
1435,
146.
147.
148.

149.

150.
151.
152.
153,
154,

155.
156.
157.
158.
159.
160.
161.
162.
163.

Calculation of Interaction Energies in Host-Guest Systems

Berthod, H., Pullman, A.: J. Comput. Chem. 2, 87 (1981)

Jean, Y., Volatron, F.: Chem. Phys. 53, 95 (1980}

Hehre, J. W, Stewart, R. F., Pople, J. A.: J. Chem. Phys. 51, 2657 (1969)

Hehre, J. W, Ditchfield, R., Stewart, R. F., Pople, J. A.: ibid 52, 2769 (1970)

Binkley, J. 8., Pople, J. A, Hehre, W.J.: J. Am. Chem. Soc. 102, 939 (1980)

Ditchfield, R., Hehre, W. J., Pople, J. A.: J. Chem. Phys. 54, 724 (1971)

Hehre, W, J,, Lathan, W. A_: ibid 56, 5255 (1972)

Dill, J. D., Pople, J. A.: ibid 62, 2921 (1975)

Hariharan, P. C., Pople, J. A.: Theor. Chim. Acta 28, 213 (1973)

Boys, S. F., Bernardi, F.: Mol, Phys. 19, 553 (1970)

Daudey, J. P., Novaro, O., Kolos, W., Berrondo, M.: J. Chem. Phys. 71, 4297 (1979}
Clementi, E., Kistenmacher, H., Kolos, W., Romano, S.: Theor. Chim. Acta 55, 257 (1980)
Carsky, P., Urban, M.: Lecture Notes in Chemistry, Vol. 16, Springer-Verlag, Berlin 1980
Pullman, B., Pullman, A., Berthod, H., Gresh, N.: Theor. Chim. Acta 40, 93 (1975)
Alagona, G., Ghio, C., Kollman, P.: J. Am. Chem. Soc. /105, 5226 (1983)

Kotos, W.: Theor. Chim. Acta 51, 219 (1979)

Kotos, W.: ibid 54, 187 (1980) :

Poirier, R., Kari, R., Csizmadia, 1. G.: Handbook of Gaussian Basis Sets, Flsevier, Amsterdam,
1985

Clementi, E.: J. Chem. Phys. 46, 3851 (1967)

Gianolio, L., Pavani, R., Clementi, E.: Gazz. Chim. Ital. 708, 181 (1978)

Gianotio, L., Clementi, E.: ibid 770, 179 (1980)

Carravetta, V., Clementi, E.: J. Chem. Phys. 81, 2646 ( 1984)

Goldschmidt, V. M.: Skrifter Norske Videnskaps-Akad. Oslo, I., Mat.-Naturuis. KI. (1926)
Chakrabarti, P., Venkatesan, K., Rao, C. N. R.: Proc. Royal Soc. (London) 4375, 127 (1981)
Woodin, R. L., Beauchamp, J. L.: J. Am. Chem. Soc. 100, 501 (1978)

Castleman Jr., A. W., Holland, P. M., Lindsay. D. M., Peterson, K. I.: ibid /00, 6039 (1978)
Staley, R, H., Beauchamp, J. L.: ibid 97, 5920 (1975)

Davidson, W. R., Kebarle, P.: ibid 98, 6133 (1976)

Castleman Jr., A. W.: Chem. Phys. Lett. 53, 560 (1978)

Davidson, W. R., Kebarle, P.: J. Am. Chem. Soc. 98, 6125 (1976)

Davidson, W. R., Kebarle, P.: Can. J. Chem. 54, 2594 ( 1976)

Payzant, J. D., Cunningham, A. 1., Kebarle, P.: ibid 57, 3242 ( 1973)

Searles, S. K., Kebarle, P.: I. Phys. Chem. 72, 742 (1968}

Arshadi, M., Yamdagni, R., Kebarle, P.: ibid 74, 1475 (1970

Castleman Jr., A. W., Holland, P. M., Keesee, R. G.: Radiat. Phys. Chem. 20, 57 (1982)
Yamdagni, R., Kebarle, P.: J. Am. Chem. Soc. 93, 7139 (1971)

Keesee, R. G., Lee, N., Castleman Jr., A. W.: ibid 107, 2599 (1979)

Del Bene, I. E., Mettee, H. D., Frisch, M. I, Luke, B. T., Pople, J. A.: J. Phys. Chem. 87, 3279
(1983)

Popie, J. A, Schiegl, H. B., Krishnan, R., DeFrees, D. J., Binkley, J. 8., Frisch, M. J., Whiteside,
R. A., Hout, R. J., Hehre, W. J.: Int. J. Quant. Chem. Symp. 13, 325 (1979)

Clementi, E., Corongiu, G., Detrich, J., Chin, S., Domingo, L.: ibid 78, 601 (1984)

Melius, C. F., Goddard 1II, W. A.: Phys. Rev. 4170, 1528 (1974)

Topiol, S., Ratoer, M. A., Moskowitz, J. W.: Chem. Phys. 20, 1 (1977)

Marius, W., Schuster, P.: Theor. Chim. Acta 42, 5(1976)

Pullman, A., Gresh, N, Daudey, J. P., Moskowitz, J. W.: Int. J. Quant. Chem. Symp. /7,
501 (1977)

Ortega-Blake, 1., Le$, A.: Int. J. Quant. Chem. 19, 463 (1981)

Ortega-Blake, 1., Novaro, O., Le§, A., Rybak, §.: J. Chem. Phys. 76, 5405 (1982)
Ortega-Blake, 1., Le§, A., Rybak, S.: J. Theor. Biol. 104, 571 (1983)

Umeyama, H., Nakagawa, S., Nomoto, T., Moriguchi, I.: Chem. Pharm. Bull. 28, 745 (1980)
Umeyama, H., Nomoyo, T.: ibid 27, 2504 (1979}

Bartsch, R. A, Carsky, P.: J. Org. Chem. 45,4782 (1980)

Clementi, E.: Lecture Notes in Chemistry, Vol. 2, Springer-Verlag, Berlin 1976

Clementi, E.: ibid, Vol. 19, 1980

Clementi, E., Corongiu, G.: J. Biol. Phys. 11, 33 (1983)

79



Martin Badertscher et al.

164

Clementi, E., in: Structure and Dynamics: Nucleic Acids and Proteins (eds. Clementi, E., Sarma,
R. H.), Adenine Press, 1983, p.321

165. Kim, K. 8., Vercauteren, D. P., Welti, M., Chin, S, Clementi, E.: Biophys. J. 47, 327 (1985)

166.

167.
168.
169.

170.
171.
172,
173.
174.

175.
176.

177.
178.
179.
180.
181.
182,
183.
184.

185.
186.
187.
188.
189.

Kim, K. S., Vercauteren, D. P., Welti, M., Fornili, S. L., Clementi, E.: IBM Technical Report
Pok.-42, April 20, 1984

Corongiu, G., Clementi, E., Pretsch, E., Simon, W.: J. Chem. Phys. 70, 1266 (1979
Portmann, P., Pretsch, E., Simon, W.: in preparation

Pretsch, E., Bendl, J., Portmann, P., Welti, M., in: Proceedings of the Symposium on Steric
Effects in Biomolecules (ed. Naray-Szabo, G.), Elsevier-Akademiai Kiado, 1982, p.85
Groth, P., Acta Chem. Scand. 436, 109 (1982)

Dobler, M., Dunitz, J. D., Seiler, P.: Acta Crystallogr. B30, 2741 (1974)

Seiler, P., Dobler, M., Dunitz, J. D.: ibid B30, 2744 (1974}

Nagano, O., Kobayashi, A., Sasaki, Y.: Bull. Chem. Soc. Japan 57, 790 (1978)

a) Czugler, M., Weber, E.: J. Chem. Soc., Chem. Commun. 472 (1981)

’b) Weber, E.: J. Org. Chem. 47, 3478 (1982)

Kim, K. S., Clementi, E.: J. Am. Chem. Soc. 107, 227 (1985)

Corongiu, G., Fornili, 8. L., Clementi, E.: Int. J. Quant. Chem. Quant. Biol. Symp. 10, 277
(1983}

Schuster, P.: Angew. Chem. 93, 532 (1981); Angew. Chem., Int. Ed. Engl.

Jeziorski, B., Kotos, W.: Int. J. Quant. Chem. 97, 12 (1977)

Dreyfus, M., Pullman, A.: Theor. Chim. Acta /9, 20 (1970)

Kitaura, K., Marokuma, K.: Int. J. Quant. Chem. 10, 325 (1976)

Gresh, N, Claverie, P.. Pullman, A.: Int. J, Quant. Chem. Symp. 13, 243 (1979)

Dreyfus, M., Pullman, A.: C. R. Acad. Sci. Ser. C 271, 457 (1970}

Pullman, A., Zakrzewska, K., Perahia, D.: Int. J. Quant. Chem. /6, 395 (1979)

Gresh, N., Etchebest, C., de Ia Luz Rojas, O., Pullman. A.: Int. J. Quant. Chem. Quant. Biol.
Symp. 8. 109 (1981)

Gresh, N., Pullman, A.: Int. J. Quant. Chem. 22, 709 (1982)

Gresh, N, Pullman, B.: Biochim. Biophys. Acta 625, 356 {1980)

Gresh, N., Pullman, B.: ibid 608, 47 (1980)

Gresh, N.: ibid 597, 345 (1980)

Pullman, A., Etchebest, C.: FEBS Letters 163, 199 (1983)

190. Etchebest, C.. Pullman, A.: ibid 170, 191 (1984)

191.
192.

193.

Etchebest. C.. Ranganathan, S., Pullman. A.: ibid /73, 301 (1984)

Urry, D. W, Venkatachalam, C. M., Prasad, K. V., Bradley, R. J., Parenti-Castelli, G., Lenaz,
G.: Int. J. Quant. Chem. Quant. Biol. Symp. 8. 385 (1981)

Venkatachalam, C. M.. Urry. D. W.: J. Comp. Chem. 4, 461 (1983)

194. Gresh, N., Claverie, P., Pullman, A.: Theor. Chim. Acta 66, 1 (1984)
195. Diner, S.. Malrien, J. P., Claverie, P.: ibid /3, 1 (1969)

196.

197.
198.

199.

200.
201.
202,
203.

204.
205.

206
207
208

80

Pullman, B., Courriere, P., in: Proc. Jerusalem Symposium Quant. Chem. Biochem. (eds. Berg-
mann, E. D., Pullman, B.) Vol. 5, p.547, 1972

Bendl, J., Pretsch, E.: J. Comp. Chem. 3, 580 (1982)

Metberg, S., Rasmussen, K. : Carbohydr. Res. 69,27 (1979)

Melberg, S., Rasmussen, K.: ibid 71, 25 (1979)

Palla, P., Petrongolo, C., Tomasi, J.: J. Phys. Chem. 84, 435 (1980)

Laurence, P. R., Thomson., C.: Theor. Chim. Acta 58, 121 (1981)

Rasmussen, K., Tosi, C.: Acta Chem. Scand. 437, 79 (1983)

Burkert, U., Allinger, N. L.: Molecular Mechanics, ACS8 Monograph 177, American Chemical
Society, Washington 1982

Ermer, O.: Aspekte von Kraftfeldrechnungen, Wolfgang Bauer Verlag, Miinchen 1981
Rasmussen, K., Lecture Notes in Chemistry, Vol. 37, Springer-Verlag, Berlin 1985

. Bovill. M. J., Chadwick, D. I, Sutherland, 1. O.: J. Chem. Soc., Perkin 11, 1529 (1980)

. Wipff, G., Weiner, P., Kollman, P.: J. Am. Chem. Soc. 104, 3249 (1982)

. Dunitz, J. D., Seiler, P.: Acta Crystallogr. B30, 2739 (1974)



Design of Biospecific Compounds which Simulate
Enzyme-Substrate Interaction

Kazutaka Tanizawa and Yuichi Kanaoka

Department of Synthetic Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido
University, Sapporo 060, Japan

Table of Contents

1 Imtroduction . . . . . . . . . . . . ... 82
2 Classification of Enzyme-Specific Compounds . . . . . . . . . . . . . . 8
3 Design of Binding Site-Interacting Substances . . . . . . . . . . . ... 83
3.1 ApplicationsinResearch . . . . . . . . . . .. . ... ... .. 8
3.2 Applications in Medicinal Flelds O - )
4 Design of Specific Substances Involving both Bmdmg and Catalytic
Site Interactions . . . A 1
4.1 Synthetic and “Quasn” Substrates . . . . . . . . .. C. ... 86
4.2 Transition State Analogs . . . . R -
4.3 Trreversible Affinity-Labeling Reagents. L
4.4 Mechanism-Based Irreversible Inhibitors . . . . . . . . . . . ... 92
4.5 Stable Intermediates . . . . . . . . . .. .. .. ... ..... %
4.6 Applicationsin Research . . . . . . . .. ... ... ... ... 9
4.7 Applications in Medicinal Filds . . . . . C Co. ... 96
5 Design of Trypsin Substrates of a New Type — Inverse Substrates . . . . . 98
5.1 Application to the Studies on Structure and Function of Trypsin . . . . 100
5.2 Inverse Substrates for Trypsin-Like Enzymes — Medicinal Apphcablhtxes 101
5.3 Considerations of the Concept of Inverse Substrates . . . . . . . . . 102
6 Conclusion . . . . . . . . . . . . . . ... . ... ... 105
7 References . . . . . . . . . .. .. .. ... ... ..., . 07

This present article surveys the recent development of biospecific compounds which interact with
active sites of enzymes. These compounds are classified according to their mode of interaction. The
characteristic features of interaction are discussed and the molecular basis for the design of the specific
compounds of each type is considered. Significance of the enzyme-specific compounds in basic research
and in the application of chemotherapeutics is exemplified. The development of “‘inverse substrates”,
specific compounds for trypsin and trypsin-like enzymes of a new type, is also described. The basic
idea for the design of inverse substrates and their applicabilities are discussed.
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1 Introduction

The most characteristic properties of enzymes which distinguish them from other
chemical catalysts are those associated with their specificity. It is well recognized
that binding of a substrate to an enzyme takes place at an active site containing the
catalytic function and that formation of an enzyme-substrate complex always pre-
cedes the catalytic process. Therefore, enzyme-substrate interaction is generally rea-
lized to be one of the most crucial processes in the sense that accurate molecular
recognition is involved.

There are, however, many substances other than physiological substrates which
exhibit specific interactions with the active site of enzymes. They include small,
synthetic competitive inhibitor molecules, synthetic quasi-substrates, affinity labeling
reagents, mechanism-based inhibitors, and so on. This may suggest that these substan-
ces can act, because enzymes exhibit some structural allowance in substrate recogni-
tion. These specific compounds are expected to be of great value for application in
basic research and also in the medicinal field. Some of these specific compounds have
reached clinical uses.

This review will deal with the design of specific compounds and their applications,
mainly concerning hydrolytic enzymes, with which a variety of studies have been
carried out. The development of a new type of specific substrates for trypsin and
trypsin-like enzymes is also described.

2 Classification of Enzyme-Specific Compounds

Compounds which exhibit specific interactions with a particular site of an enzyme
other than an active site are called cofactors and allosteric effectors. These com-
pounds are not considered in this review. Specific compounds which interact with
the active site itself will be classified into two types. One of them include simple
competitive inhibitors and photoaffinity labeling reagents. Compounds of this type
exhibit a specific interaction only with the binding site (specificity site) of the enzyme.

Table 1. Classification of enzyme-specific compounds

enzyme interacting site specific synthetic compound
binding { competitive inhibitor,
active site photo-affinity labeling reagent

transition state analog,
binding quasi-substrate,
and catalytic site mechanism-based inhibitor,
affinity labeling reagent
cofactor binding chemical modification reagent

site

-

other than
active site

allosteric site { chemical modification reagent,
synthetic allosteric effector
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Compounds of the other type are those which interact with both the binding and the
catalytic site. Substrate analogs of various types and specific irreversible inhibitors
show this behaviour. Compounds of the latter category are the main subject of this
review, while compounds of the former type are discussed only briefly.

3 Design of Binding Site-Interacting Substances

Large numbers of competitive inhibitors for a variety of enzymes have been reported.
The design of inhibitors does not pose difficulties, as the site-specific group for the
enzyme binding site is the only parameter for the molecular design. This group will
determine the intermolecular forces and the spatial adaptation exhibited between
enzyme active site and inhibitor. The forces involved in the binding are noncovalent:
they may be relatively strong forces such as electrostatic interactions and hydrogen
bonds, and also weaker contributions from hydrophobic bonding and van der Waals
or London dispersion forces. For a good inhibitor, the cumulative effects of such
forces produce tight binding at the active site. The practical method of design, how-
ever, has been largely empirical. Screening of a large number of analogs derived from
the lead compound of known activity is one of the effective ways to develop potent
compounds. These data also serve to predict new highly effective compounds in a
statistical methodology — Quantitative Structure Activity Relationship (QSAR).
Recently, computer-assisted drug design has been paid much attention . This method
will become increasingly important in future.

3.1 Applications in Research

Affinity chromatography, based on biological recognition, has become a major
means for the purification of biologically active molecules ¥. The technique provides
a simple and effective way of purification. Specific adsorption of the enzyme to its
competitive inhibitor attached to a polymer matrix is the basis for an efficient enzyme
purification. Affinity electrophoresis is also based on biological recognition®.

Photoaffinity labeling reagents can be regarded as substances involved only in
binding site interactions. The reagents include both site-specific groups and poten-
tially reactive groups (photo-reactive groups), and the reagents themselves are simple
competitive inhibitors. The photo-reactive group is not necessarily designed to aim
at the catalytic functional group of the enzyme molecule. Rather, the reagents have a
unique significance in mapping active site structure, because, e.g., carbens and nitrens
once generated by photolysis are highly reactive and indiscriminately so towards a
variety of amino acid residues near the binding site 4.

3.2 Applications in Medicinal Fields

Competitive inhibition involves simple processes as shown in Eq. (1). Many com-
petitive inhibitors are practically used as therapeutic agents, though they have to
be qualified in many aspects. It is an undeniable fact that even a potent inhibitor in
vitro does not always prove satisfactory in vivo. There are many factors affecting
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the efficiency of enzyme inhibitors in the living system. The existence of the natural
substrate is one of the most important points in vive. The degree of inhibition is
directly related to the ratio of the inhibitor concentration (J) divided by its inhibition

K
E+ ] =—EI

constant (K;) to the substrate concentration (S) divided by the Michaelis-Menten
constant (X,,). Therefore, for a very potent inhibitor the molecular design is important.
A strong binding affinity of an inhibitor also serves to decrease the dose amount,
and this simultaneously prevents undesired non-specific effects on untargeted
enzymes.

Captopril is one of the well-known examples of a competitive inhibitor used as a
drug. It has been expected that an inhibitor of the angiotensin-converting enzyme is
effective to reduce blood pressure >. The design of specific inhibitors of the enzyme
followed the structure of its substrate, angiotensin 1, and its inhibitor, snake venom.
Thus, captopril (D-3-mercapto-2-methylpropanoyl-L-proline) (/) is now clinically
used as an orally active antihypertensive drug ©. The estimated interaction between the
inhibitor and the active site is shown in Fig. 1. The binding affinity could be produced
by electrostatic interaction, hydrogen bonding, and hydrophobic subsite interaction,
and no catalytic residues participate in the binding process. The K; and ICs, values
are reported to be as small as 1.7 X 1072 M and 2.2 x 1078 M, respectively and did
not inhibit most other peptidases until added at a concentration of 1073 M 7. Several
new inhibitors modeled after captopril have been reported. Zofenopril (2) 8 SA-446
(3) and its benzoyl analog (4) '’ are recognized to be more potent and exhibiting
longer activity than captopril. The lactam (5) (half as active as captopril) was deve-
loped using a computer-assisted molecular modeling approach 1

SPh
cH, OH
I !
Ph—C—§—CH,— CH—CO—N S
COOH HS—-CHZ——CHZ——-ﬁ——N\F
2 3 O CooH
F
i
ﬁ“iH“CHﬁ“Q HS —CH; NG
5 4 o O0H d <‘:H—~COOH
]
COCH3 CHs
4 5
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1
Z neea H &
tH3 g 0® . : o .
f " ] Fig. 1. A hypothetical model for the binding of captopril
HS-CH 2” CH -C-N =0 to the active site of an angiotensin-converting enzyme

1

trans-4-(Aminomethyl)cyclohexanecarboxylic acid is another example of a com-
petitive inhibitor used as a drug. It was developed on the basis of the structure of
plasmin inhibitors, e-aminocaproic acid and lysine. It is clinically applied as an anti-
hemorrhagic agent '?.

The most important requirement for the chemotherapeutic agents is their selective
toxicity. The most ideal agents are those which are directed toward enzymes of foreign
pathogens or aberrant cells (cancer) without affecting host enzymes. The selectivity
to be exhibited in vivo would be difficult to predict solely from in vitro data. In this
case, however, chemotherapeutic agents are ideal since the target enzyme of the
pathogen has no counterpart in the host and the inhibitor is target-specific. This
situation is approximated with $-lactam antibiotics (cf. Sect. 4.5). On the other hand,
the presence of a homologous enzyme in the host does by no means preclude selectivity,
as demonstrated by the very useful antibacterial agent, trimethoprim. Trimethoprim
(64a), an analog of dihydrofolic acid (7), acts as a dihydrofolate reductase inhibitor
and exerts its effect simply by binding. Selective toxicity in this case is fortunately
exhibited by a large difference in inhibitor specificity, i.e., the K, value for the bacterial
enzyme is several thousand times lower than that of the host enzyme '». The exem-
plified case of trimethoprim suggests that the development of a drug is often attained
empirically. There are a variety of in vivo factors such as pathogen-host relationships
which determine whether the enzyme inhibitors are practically useful for clinical
purposes. Our knowledge to predict the effects of in vivo factors on the performance
of enzyme inhibitors is still limited. Rational approaches in the chemotherapeutic
field should evolve parallel with our knowledge of comparative biochemistry and
metabolism. Recently, the design of drugs to fit macromolecular receptors, including
enzymes, has attracted much attention '¥). Molecular modeling considerations
of dihydrofolate reductase and trimethoprim derivatives led to the replacement of
one meta-methoxy group of 64 by a carboxyalkyloxy group, and, furthermore,
a chain length was selected to optimize the interaction between the carboxylate and
the guanidinium group of Arg-57 of the enzyme. Compound 65 was found a much
more potent inhibitor than the original trimethoprim 1516,

NH2 0 ?OOH
H
R N CH;NH—@—CONHCH
N HN I
/"\ # /j\ | I CI:H2
H,N N . OCHs H,N N }rj , ?HZ
OCH; COOH

a R= QOCH3
b R=0(CH;)s COOH
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4 Design of Specific Substances Involving both Binding Site and
Catalytic Site Interactions

Compounds of this type must have a structure with two separate moieties, the binding
site partner and the catalytic site partner, being spatially arranged according to the
active site structure of the enzyme. Enzymatic processes involved in the interaction
with such compounds are shown in the following equations:

synthetic and quasi-substrates:

Ki k1
E+S<=ES— E+ P 2)

transition state analogy:
K; ki ,
E+l= Els=[E..I] 3
irreversible affinity labeling inhibitor:

K; Ky .
E+] = El — E-1 (4)

mechanism-based inhibitor:

K ’ ko "
E+l—=E=[E.I]E-1 (5)
E+4+ P

inhibition by a stable intermediate:

Ks k1 ka
E+S=—FES—E—-A—~E+P (6)

4.1 Synthetics and “Quasi”’-Substrates

A variety of synthetic substrates for a variety of enzymes have been reported. Especially
for hydrolytic enzymes, many substrates have been prepared owing to the ease of
their design. Chromogenic and fluorogenic substrates are of special value for simple
and sensitive spectrometric determinations of enzyme activities. Thus these compounds
lately have become widely used for investigations of various proteases both in research
laboratoris and in clinical diagnostics. Chromogenic '~ and fluorogenic '*'* peptidyl
substrates interact with subsites and exhibit pronounced specificity. They are useful
for the specific detection of a certain protease from a sample containing several
proteases of similar specificity.

For determining the absolute concentration of active hydrolytic enzymes, active
site titrants, a sort of quasi-substrates, have been developed. The catalytic pathway
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of hydrolytic enzymes involves an acyl enzyme intermediate as shown in Eq. (7),
which is equivalent to Eq. (6).

Ky ky . k;
E+S:.::‘ES—§E—A——»P2 (7
Pl

Therefore the compounds designed to give a stable acyl enzyme intermediate
(E — A) in a specific manner with a concomitant release of spectrometrically detec-
table product (P,) are useful as active site titrants of an enzyme?*® 2%, Compounds
82 and 9*¥ are proposed as titrants for trypsin. Both have a site-specific residue for
trypsin, the guanidinophenyl or amidinophenyl moiety, as well as a chromogenic
leaving portion, though they lack an a-acylamido group and an asymmetric carbon
atom which are basic constituents of natural and synthetic substrates. These structural
characteristics realize a favorable acylation subsequently to the specific binding. The
deacylation, however, was shown to be much slower than the acylation step. The
kinetic properties are advantageous for the titrant. The release of a stoichiometric
amount of p-nitrophenolate (P) is monitored by optical density at 405 nm. Kinetic
parameters for § and 9 are listed in Table 2. The use of a fluorophore instead of a

[e] (6]
FaNy I HaN i
C C—0 NO» C—NH C—0 NO»,
aof ef
H N HoN
8 9

chromophore in the design of substrates and titrants provides an increase in sensiti-
vity. Fluorogenic active site titrants for trypsin and trypsin-like enzymes /0 2 and
11> were designed following compound 9. It was reported that the detectability of
the enzyme concentration was increased 5—6 orders of magnitude, from 10~¢ M for
91t0 1071 — 10712 M for 11.

® 10 coc® "
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Table 2. Kinetic parameters for trypsin-catalyzed hydrolysis of 8 and 9

Compound K, M (x 10°) ky, 57t ks, 87 (x 10 pH
8 0.503 30.4 653 8.2
9 0.061 1.95 0.34 8.3

4.2 Transition State Analogs

1t has been speculated that the catalytic specificity of an enzyme requires the active
site of the enzyme and the transition state of the reaction at the substrate molecule to
be structurally complementary 2°'. Molecules which resembled the transition state
structure could thus be expected to bind the active site tightly. This concept was taken
up and developed by Lienhard 27 and Wolfenden *® as transition state analogs.

The design of a transition state analog is based on knowledge of the mechanism
of the target enzyme. Enzyme mechanisms which involve a change in bond order, i.e.,
trigonal-tetrahedral or tetrahedral-trigonal transformations, are most suited. These
mechanisms are found in a number of reactions such as hydrolysis and transfer
reactions. The design of stable compounds which mimic the transition state is general-
ly carried out by a modification of the reacting functional group of its common sub-
strate. The proper choice of an alternative for the reacting functional group is impor-
tant to produce the resembled transition state. It should be noted that the inhibition
mode of the transition state analog is competitive, though its K; value is generally much
smaller than that of a simple competitive inhibitor. Typical examples of this approach
are boronic acid inhibitors for hydrolases. Some of the hydrolases catalyze acyl trans-
fer reactions via the intermediacy of an ester with a seryl residue within the active site.
The transition states for the acylation and deacylation steps of these enzymes are
thought to involve a metastable tetrahedral intermediate (12).

CH CH CH;
/ 2\ R / 2\ R / \ R
Enz o . é o Enz 0\ ! . EQ 0\1
f=3 —_——— & _—
T T e c—0 B c=0
X >I< HX
12

Boronic acid derivatives form stable tetrahedral adducts with hydroxide ion and
they behave as strong inhibitors of hydrolases. This leads to the assumption that the
boronic acid derivatives bind to the serine residue at the active site of the enzymes in
a structure resembling the tetrahedral intermediate (13) 29 The binding affinity of
N-benzoylaminomethaneboronic acid for chymotrypsin, for example, is reported to
be two orders of magnitude stronger than that of a hippuric acid derivative 30,

Another example are naturally occurring peptide aldehyde inhibitors, discovered
in microorganisms, such as antipain (/4), chymostatin (15), leupeptin (16) and elasti-
nal (17) 3 3%, The discovery of the inhibitors stimulated the synthetic work of peptide
aldehyde analogs, and a large number of peptide aldehydes have been prepared 3*.
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& -3
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The formation of a tetrahedral hemiacetal adduct was analyzed for the interaction
between the inhibitor aldehyde and the catalytic serine residue (I8) **. The overall
dissociation constants for an enzyme and an interacting transition state analog may
be given by:

i(overai?) = Ki x k* l/(kl + k“l) (8)

The apparent strong affinity is reasonably assumed to arise from a second equili-
brium step where k_; is much smaller than k,. A kinetic analysis of the leupeptin-
trypsin interaction revealed that the dissociation constant for the entire process
(K; overan) is 1.34x 107® M, though that of the first step (K) is only 1.24x 1073 M.
The contribution of the second equilibrium to the entire process was determined to
be a magnitude of 10° 3,

Trimethylammonium trifluoroacetophenone (19) was found to be a highly effective
inhibitor of acetylcholinesterase 3. The ketone activated by an electron-withdrawing
trifluoroacetyl group will enhance the tendency to add a nucleophile (the hydroxyl
group of the catalytic serine residue of acetylcholinesterase) to form a tetrahedral
adduct as an aldehyde inhibitor.
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p-Amidinophenylpyruvic acid (p-APPA, 20) was first discovered by Geratz to be
a good trypsin inhibitor ¥®. Spectrometric analysis of the interaction of thrombin and
trypsin with p-APPA led to the conclusion that the excellent inhibitory properties of
p-APPA are explained by a transition state mechanism: formation of a hemiketal
complex. In contrast, m-amidinophenylpyruvic acid (m-APPA) which is apparently
incapable of forming a hemiketal, did not afford any evidence for the formation of a
hemiketal complex and displayed a K; in the range expected for simple benzamidine 3%,

i
Co
HoN
\
CHs C COCOOH
o/ ef
N<—CH3 H-N
CHs
19 20

The X-ray diffraction experiment on the lysozyme-inhibitor complex*® is a well-
known example which gave evidence for the transition state complementarity.

Lysozyme catalyzes the hydrolysis of cell wall and synthetic polymers of B(1-4)-
linked units of N-acetylglucosamine (NAG). During the catalysis, it is expected that
a carbonium ion is formed in which the conformation of the glucopyranose ring
changes from full-chair to a half-chair conformation. This speculated conformation
is in accordance with the X-ray data. Thus, the designed transition state analog (21),
in which the lactone ring mimics the carbonium ion-like transition state (22), binds
tightly to lysozyme. The K; value, 8.3 x 107® M, is compared with that for (NAG),,
1075 M 4D,

CH,0H CH,0H
NAG 0 NAG O
\O \o e\
0 0—NAG

21 22

4.3 Irreversible Affinity Labeling Inhibitors

Considering an affinity label in its broadest sense, we must include all compounds
which can form a covalent bond (transient or permanent) to a protein molecule after
specific binding to the protein binding site, no matter whether they have a potentially
reactive functional group or actual reactive group. Photoaffinity labeling reagents
(see Sect. 3.1) and transition state analogs (Sect. 4.2) as well as further compounds to
be mentioned in the following sections (4.4-4.5) should be included here. At this
point, however, we will deal only with the affinity labeling inhibitors in the narrowest
sense which lead to ““permanent” inactivation associated with a chemical modification
by the ‘“‘actually” reactive functional group at the active site.

Covalent bond formation is principally considered the most effective way to inacti-
vate an enzyme. The inactivation process is time-dependent and the rate depends on
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the k, value. The specificity of the inactivation reaction is dependent on the Kj value;
a large K; value significantly retards the inactivation rate especially for the reaction
in vivo where the specific compounds, such as the physiological substrate, are present.
A variety of classes of chemical reactions can be used to modify the enzyme. These are:
nucleophilic substitution, nucleophilic addition, electrophilic substitution, etc. The
selection of the reactive group depends on the target functional group of the active
site to be modified. The design of a reactive group with a very enhanced reactivity is
considered to be unsuitable, because random reactions with the enzyme surface as
well as reactions with solvent water will take place. It may be noted that affinity
labeling itself exhibits enhanced reactivity through the proper orientation of the
reactive group of the inhibitor to the functional group of the enzyme. Therefore the
selection of a group with a rather diminished reactivity may be preferable. In addition,
a reactive group with a wide reactivity-spectrum is advantageous for the purpose of
topographical mapping of the enzyme active site in which only amino acid residues
close to the inhibitor are modified. A nucleophilic substitution reaction is best suited
for this purpose, because many amino acids have a nucleophilic group in their side
chain.

a-Haloketones are one of the most popular chemical classes of affinity labels. Since
haloketones are reactive with most nucleophiles, they have a good chance to modify
the closest located residue. Typical examples of this class are chloromethylketones
derived from N-tosyl-L-phenylalanine (TPCK) (23) and N-tosyl-L-lysine (TLCK)
(24) *». They react with the histidine side chain in the catalytic site of chymotrypsin
and trypsin, respectively. o-Haloketone (25)*? in combination with a guanidino-
phenyl moiety, an efficient ligand for trypsin, results in alkylation of a serine residue
at the catalytic site. The different behavior of 24 and 25 on the reacting residue of the
enzyme active site reflects the geometry of the active site complementary to the
reagents; only the nucleophile which comes close to the reactive group of the inhibitor
during EI complex formation is involved in the modification. The applicability of
affinity labels with chloromethylketone was further extended by the development of
peptide chloromethylketones which incorporate a part of the sequence of the physiolo-
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gical substrates of enzymes. These reagents distinguish among proteases of similar
specificity by taking advantage of binding selectivity in both primary and secondary
sites 4. a-Haloacetamide is another typical example with a wide range of reactivity.
Modifications of carboxypeptidase B by bromoacetyl reagents with different struc-
ture are highly diverse. Alkylated residues of, ¢.g., tyrosine, glutamic acid, or methio-
nine were changed by such reagents residues * ~*®, Sulfony! halide and diazonium are
also useful for the reactive group of affinity labels.

Efficient modification steps through the proper orientation of the inhibitor reactive
group to the enzyme nucleophile is realized by covalent bond formation. A classic
example of this type is the modification of a methionine residue of chymotrypsin by
p-nitrophenyl bromoacetyl a-aminoisobutyrate (26) *”. In this instance, the reactive
group (bromoacetyl) is fixed at the locus near the active site through a covalent bond
by means of acyl enzyme intermediates.

4.4 Mechanism-Based Irreversible Inhibitors

Different names have been used by several reviewers for this type of compounds:
suicide enzyme inhibitors, suicide substrates, k., inhibitors, Trojan horse inhibitors,
etc. Compounds of this type are chemically unreactive, but their products from
enzymatic conversion are highly reactive molecules. These products, formed within
the active site, may immediately attack an essential protein residue or prosthetic group,
resulting in the irreversible inhibition of the enzyme. Thus, the specificity of the
inhibitor is determined not only by the binding affinity but also by its effectiveness to
serve as a substrate for the target enzyme. Inhibitiors of this type are more specific
than simple affinity labeling reagents, because they are chemically unreactive to
foreign biomolecules. Requirements for the design of mechanism-based irreversible
inhibitors are very stringent;
1) the molecule must be chemically unreactive;
2) it must behave as a specific substrate for the target enzyme; and
3) the resulting product must be spatially well-arranged and active enough to react
with an active site residue of the enzyme without being quenched by the solvent.
The third requirement is not absolute, as a stoichiometric inactivation will occur if
the condition [E] < [I] applies. Even if modifications occur less-frequently than in
quenching, the modification can be ultimately completed after several catalytic turn-
overs. Since an excellent review has recently appeared on mechanism-based enzyme
inactivators 3, we will mention a few selected examples here.
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Enzymes requiring pyridoxal phosphate (PLP) have been prime targets for the
design of mechanism-based inhibitors **. The coenzyme pyridoxal phosphate con-
denses with amino acids to form a Schiff base. The pyridine ring in the Schiff base
acts as an electron sink which effectively stabilizes a negative charge. Each one of the
groups around the a-carbon may be cleaved, forming an anion which is stabilized
by the Schiff base and the pyridine ring. For example, the breaking of the a-hydrogen
gives a stabilized a-carbanion (27) which may react in several different ways. The
many examples of mechanism-based inactivation of pyridoxal phosphate-dependent
enzymes can be explained in terms of alterations in the fate of the analogous inter-
mediate 27 brought about by the design of appropriate groups on the substrate.
Ethanolamine-O-sulfate, for example, is so designed as to generate highly active
Michael acceptors (28) **. The sulfonate group mimics the carboxyl of y-aminobutyric
acid and serves as a leaving group to generate an unsaturated imine, which can alkylate
a basic group of the enzyme. Covalent bond formation can occur between 28 and a
nucleophile residue to give 29.

Enz B8—Enz
0SO3H !
H B s~y ]
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NH, N==CH N==CH N==CH
| N |
Py Py Py
28 29

Azaserine, 5-diazo-4-oxo-L-norvaline (DONV) and 6-diazo-5-ketonorleucine
(DON) are other examples of mechanism-based irreversible inhibitors *¥. They are
stable to nucleophilic attack, but on enzymatic protonation, they are converted to the
reactive diazonium ions (30). N-Nitroso compounds have been proposed as irrever-
sible inhibitors of proteolytic enzymes. N-Nitrosolactam (37) can inhibit chymotrypsin
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irreversibly, possibly by a carbonium ion (32) 5. It is proved from the results that
compound (3/) is eventually well-designed to meet the requirement of the chymo-
trypsin active center with respect to the specific binding and the proximity to the
catalytic tesidues. Benzylchloropyrone, 33, inactivates chymotrypsin after 14-40
turnovers. The key step is the enzymatic activation of a latent chloropyrone to an
acyl chloride, 34, during acyl enzyme formation 5¥. The reagents enter into a covalent
anchoring to the protein particle at the one end of the molecule, just before they are
involved in the enzymatic activation, to generate a reactive function at the other end.
Another example of an inhibitor for chymotrypsin is 6-iodomethylene-naphthyl-
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tetrahydropyrane-2-one (35). The compound has a partition ratio of 1.7 turnovers per
chymotrypsin inactivation *¥. Labeling reactions by 37, 33, and 35 are considered to
proceed through an intramolecular process similar to the reaction with 26.
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4.5 Stable Intermediates

Compounds effecting a stable intermediate in the course of enzymatic catalysis are a
sort of mechanism-based inhibitor. However, in this case, the enzymatic activity lost
by the formation of the intermediate can regenerate after a certain period. Compounds
of this class are often observed for hydrolytic enzymes. The formation of an acyl
enzyme intermediate (EA) is a characteristic feature of the reaction catalyzed by
these enzymes, as shown in Eq. (6). Esters of p-guanidinobenzoate (9), which were
discussed in Sect. 4.1, behave as transient inhibitors of trypsin due to the formation
of a relatively stable acyl enzyme. A similar type of inhibition occurs in the temporary
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inactivation of acetylcholinesterase by the carbamate 36 *>). An electronically stabili-
zed acyl chymotrypsin was designed by the use of isatoic anhydride (37). Isatoic
anhydride is sufficiently reactive to give the initial acyl enzyme 38 which transforms
into the electron-releasing anthranilyl chymotrypsin 39 upon ready hydrolysis of the
carbamate *®. The electronic nature of the acyl groups govern to a considerable

N®(CHyl; X°

OCON({CHz)
36

extent the stability of the acyl enzyme. An acyl enzymes substituted by an electron-
releasing group is generally resistant to hydrolysis though its formation (acylation)
step is not favored. Compound 37 is, therefore, designed to satisfy both, the require-
ment for the efficient production of the acyl enzyme and for the stabilization of the
resulting acyl enzyme intermediate. It seems convincing that the electron-releasing
character of an acyl group generally enhances the stability of acyl chymotrypsin and
acyl acetylcholinesterase toward hydrolysis. In the study of the deacylation rates of
p-substituted benzoyl enzymes, it was concluded that the rates generally correlate
well with the substituent constant (sigma) though there are some exceptional cases.
The p-guanidino group is one of the exceptional cases to give a very stable acyl trypsin
(cf. compound 9) and an unstable chymotrypsin. The different response of the p-
guanidinobenzoyl group on the deacylation rates catalyzed by plasmin and thrombin
if of interest with regard to their application to the medicinal field 57,
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The action of B-lactam antibiotics is considered to be due to the formation of an
acyl enzyme with carboxypeptidases and transpeptidases which are involved in the
biosynthesis of bacterial cell walls 5®. A three-step mechanism involving a stable
acyl-enzyme intermediate (EI*), a participating active site serine residue, and a very
slow decay process (k,) was proposed [Eq. (9)]°.

E+le=pg g % g, p ©)

nucleophile
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Synthetic compounds which afford a stable intermediate must be designed with a
structure closely related to the natural substrate of the enzyme. They are obliged to
behave as a quasi-substrate in exhibiting specific binding to the binding site and a
suitable juxtaposition for the bonding to the catalytic residue. Furthermore, the
design must afford an intermediate which is structurally differentiated to remain
unchanged for a certain period.

4.6 Applications in Research

Synthetic substrates and titrants have played an important role for understanding
the kinetic characteristics and catalytic mechanism of enzymes. For the purpose of
enzyme purification, transition state analogs are useful for an affinity ligand in the
same manner as a competitive inhibitor, though in some cases difficulties may arise
caused by the high affinity to the ligand in the elution process. °”. The most significant
contribution of affinity labels and mechanism-based inhibitors is the elucidation of
active site structures and the catalytic mechanism of enzymes. The amino acid analysis
of the labeled peptide fragments provides information about the structure of the active
site. By use of differently designed affinity labeling reagents, it is possible to deter-
mine the spatial outline of the active site as in the case of trypsin-specific chloro-
methylketone derivatives.

4.7 Applications in Medicinal Fields

In recent years, the importance of enzyme levels in body fluids for clinical diagnosis
has been recognized. It has been established that activities of secreted enzymes and
cellular enzymes in serum are a sensitive indication of the pathophysiological condi-
tion of the body. Specific and sensitive substrates play a prominent role for this pur-
pose. Fluorogenic substrates, e.g., enable sensitive micro-analyses.

In drug design, affinity labeling reagents and transition state analogs are considered
potentially promising. Unlike simple competitive inhibitors, transition state analogs
and affinity labels appear to offer unique properties by means of additional interaction
with the catalytic residues. Mechanism-based inhibitors and stable intermediates are
also advantageous because they are essentially inert as chemical reagents until they
are specifically activated by the enzyme which is to be modified.

It is known that B-lactamase catalyzes the rapid hydrolysis of the B-lactam ring of
penicillins and cepharosporines. The hydrolytic activity of these enzymes eliminates
the bacteriocidal action of many B-lactam antibiotics and makes the organism resi-
stant to these molecules. For this reason, the B-lactamase inhibitors have long been
regarded as promising targets from a medicinal viewpoint. A comparison between
the kinetic characteristics of B-lactamase and penicillin-sensitive enzymes (carboxy-
peptidase and transpeptidase) is of interest in this respect. p-Lactamases very effi-
ciently hydrolyze B-lactam in contrast to penicillin-sensitive enzymes [high k, in
Eq. 9)].

It would be valuable to-develop compounds affording a stable acyl-B-lactamase.
Clavulanic acid (40) is a natural product discovered in a Streptomyces strain and acts
as a specific inhibitor of p-lactamase. Fisher and Knowles indicated the possibility
of the formation of a long-living acyl-enzyme in the catalytic pathway of B-lactamase
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having a serine residue in the active site. The inhibition of B-lactamase by clavulanic
acid is suggested to be a consequence of the subsequent formation of 4%

The synthetic penicillin sulfone [sulbactam, (42)] has been shown to act as a B-lacta-
mase inhibitor. The inhibition is based on a similar mechanism as proposed above 2,
A prodrug, sultamicillin (4¢3), which combines sulbactam and amoxacillin by labile
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linkage is designed to deliver both a lactam and a B-lactamase inhibitor °». A possible
mechanism-based inhibitor for B-lactamase 44 (Fig. 2) was proposed *¥. It is suggested
that the inhibition is initiated by the formation of the acyl enzyme 45 in which the
concomitant loss of a fluoride ion is taking place as shown in Fig. 2.

H H
R-C-N S R-C-N S
6 lr( lactam opening 0 T
- N -
07\[{,/._, 9 F™ loss 0=C N (9
L 5  S-Ar-X ! ( S-Ar-X
OH COZ' F o * 0 co, +
| ] 2
Ser Ser
/ 1
Enz Enz 45
44 ) )
2,3-sigmatropic
rearrengement
H H
R-C-N S R-C-N S
il 1
6 YT ; o T 4
0-C Nxo OH O:IC N 0-S-Ar-X
| -
o C0; 0 C02
i i
?er %er
Enz-Nu-S-Ar-X Enz-Nu

Fig. 2. Proposed mechanism for the inhibition of B-lactamase by 44
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5 Design of Trypsin Substrates of a New Type — Inverse Substrates

Enzymes which catalyze the hydrolysis of the unit linkage of sequential residues of
oligomers or polymers determine their substrate specificity by recognizing the parti-
cular unit residue in the sequential chain as well as the direction of the chain. For
example, ribonuclease cleaves the 3’-phosphate of a pyrimidine nucleotide residue
but not the 5’-phosphate, and trypsin hydrolyzes peptide bonds which involve the
arginine or lysine residue at the carbonyl end but not at the amino end. This is also the
case for the hydrolysis of a variety of synthetic substrates and quasi-substrates (Sect.
4.1). Synthetic trypsin substrates are ester or amide derivatives in which the site-
specific group (positive charge) is contained in their carbonyl portion.

Compounds which violate this empirical rule have not been observed, though some
attempts have been made to design such compounds. Therefore, it has been generally
considered that any modification in the fundamental architecture of the substrate
molecule would cause a loss of susceptibility.

In our early work, esters of p-amidinobenzoic acid (8) were shown to behave as
specific substrates of trypsin, as mentioned in Sect. 4.1. Esters 8 have the same mole-
cular arrangement as normal-type substrates although they have a simplified structure
lacking an asymmetric carbon and an o-acylamide group. In an extension of this
investigation, we designed esters of an inverted structure, namely acyl derivatives of
p-amidinophenol (46).

HaN HoN 0 HR
N | N\ [ N
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It was found that 46 behaves as an exceptional substrate of trypsin, showing a
the reaction mode which had not been observed before. Fig. 3 shows the time course
of the tryptic catalysis of 46 monitored by the amidinophenol liberation under the
condition that the substrate is in much higher concentration than the enzyme. After
rapid mixing of enzyme and substrate, a rapid acylation step is observed and a slow
deacylation then follows. The kinetics follow a Michaelis-Menten equation: strong
binding affinity, efficient acylation, and rate-determining slow deacylation steps,
which are exactly the same as those of normal-type substrates. As a result, the accumu-
lation of the acyl enzyme intermediate (EA) is realized in the course of the steady-
state hydrolysis [cf. Eq. (6)].

For the esters 46, the site-specific group for the enzyme, charged amidinium, is not
included in the acyl moiety but in the leaving portion, and so these esters were termed
“inverse” substrates with respect to their kinetic parameters ®>. Kinetic parameters
for some inverse substrates are listed in Table 3 together with those for a normal
type (8) and the meta-isomer 47. p-Amidinophenyl acetate, for example, exhibits a
binding constant of 107> M, an efficient acylation stage with a rate constant of 17 s %,
and a slow deacylation. In contrast, the meta-isomers were found to be very poor
substrates, probably because of unfavorable positioning of the carbonyl, which is
shown by the small acylation rate constant. The normal-type substrate has a binding
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Fig. 3. Time course of the trypsin-catalyzed hydrolysis of p-amidinophenyl acetate (46; R = CHj)at
pH 8.0, 25 °C. Concentrations of enzyme and ester are 10 uM and 0.7 mM, respectively

Table 3. Kinetic parameters for tryptic hydrolysis of “inverse” and normal type substrates®

Compound K, k, ks (kep)® Kspont
(M x 10%) s (s71x10%) (s~ ' x 10°)
46: R = CH, 3.87 17.0 92.6 26.0
47;R = CH, 3.03 0.03 (49.8) 15.8
8 0.503 304 653 217
AcONP* 2100 1.5 130 nd®

* Reaction was carried out in 0.05 M tris buffer containing 0.02 M CaCl, at pH 8.0, 25 °C;
® Qverall k,, (k5 is not much smaller than k,);

¢ p-Nitrophenyl acetate;

4 Not determined

constant and acylation rate constant comparable to those of inverse substrates. Non-
specific p-nitropheny! acetate exhibits very poor binding and insufficient acylation.

The reaction process of trypsin-catalyzed hydrolysis of the inverse substrates is
illustrated in Fig. 4. Here the process is compared to that of normal-type substrates.
After specific binding and efficient acylation, the site-specific amidinophenyl moiety
is cleaved (leaving group) to give the acyl enzyme in a very specific manner. As a
result, inverse substrates are expected to be applicable as a general method for “speci-
fic” introduction of any acyl group of “non-specific structure” into the trypsin active
site.

For the first time, inverse substrates provide a general method for the specific intro-
duction of an acyl group into the trypsin active site without recourse to cation-con-
taining acyl compounds. The preparation of various new acyl enzymes is expected to
lead to the discovery of novel features of the enzymatic reaction mechanism. In
addition, any desired reporter groups might be specifically introduced into the trypsin
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Fig. 4. Reaction sequences of trypsin with normal type and “inverse” substrates. The hydroxyl
function and negative charge represent the catalytic residue (Ser-195) and the binding residue (Asp-189)
at the active site, respectively. The acyl trypsin-ligand complex (low right) formed in the presence of
a cationic compound

active site and these acyl enzymes will provide information on the structure of the
active site vicinity.

It is of special value to extend the “inverse” concept further to trypsin-like enzymes.
Inverse substrates of these biologically important enzymes could be candidates for
clinically useful substances. In the following sections, various aspects of the applicabi-
lities are briefly described.

5.1 Applications to the Studies on Structure and Function of Trypsin

_ Enzymatic kinetics for the esters derived from acetylamino acids and acetylpeptides
were studied. Even in the case of D-amino acid derivatives, catalysis was found to give
acyl enzyme intermediates in a very specific manner, as shown in Table 4. Inverse
substrates are artificial substances affording acyl enzymes, and accordingly their K|
and k, values have no significant meaning in a physiological sense. Hydrolytic pro-
cesses of these aminoacyl or peptidyl enzyme intermediates (k;), however, are the
stages of enzymatic action itself, because trypsin is a proteolytic enzyme leading to
an aminoacyl and peptidyl enzyme as an intermediate. These parameters for D-amino
acid derivatives which never have been analyzed by conventional substrates because
of their unsusceptibility at the acylation step, have now been determined and the
resulting values have been evaluated ®°,°7).

An additional characteristic of inverse substrates is also shown in Fig. 4. The acyl
enzyme formed from the inverse substrate lacks a site-specific cationic residue with
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Table 4. Kinetic parameters for the trypsin-catalyzed hydrolysis of inverse substrates at pH 8.0, 25 °C

Compound K, k, ks
M x 10%) ™ 6™

46
R = Ac-Gly 29 19 0.61
R = Ac{Gly), 2.7 21 1.3
R = Ac-(Gly); 4,7 15 1.5
R = Ac-L-Ala 4.6 4.8 2.1
R = Ac-D-Ala 3.0 7.0 0.012
R = Ac-L-Ala-Gly 36 9.6 1.8
R = Ac-D-Ala-Gly 1.9 6.6 0.28

which the binding site interacts. Therefore, the acyl enzyme is capable of accepting
an external, charged molecule at this vacant binding site to form an acyl enzyme-
charged molecule complex if sufficient concentration of cationic ligand is added and
if this vacant cavity is large enough to allow coexistance of both the acyl residue and
the charged molecule. The dissociation constant of this complex was denoted as K
as shown in the figure. The deacylation rate constant for this complex, k3, is expected
to be different from that of the simple acyl enzyme without the ligand. The presence
of the cationic compound caused a rate acceleration in the overall catalytic rate of
‘inverse substrates. This acceleration occurred at the rate-determining deacylation
stage. Cationic compounds which are known as competitive inhibitors for trypsin
generally exhibit a rate acceleration effect and the effect depends on the ligand con-
centration °*°%. Analysis of the rate enhancements observed with a variety of inverse
substrates and cationic ligands refined the mechanistic understanding of the catalytic
efficiency of trypsin 7%,

p-Amidinophenyl esters carrying a fluorophore "V, an optically active chromo-
phore 7, or a stable, free radical ’® have been synthesized. All of these esters exhibited
a strong binding affinity and an efficient acylation step. Isolation of acyl trypsin was
successfully carried out by the general procedure as follows: About 20 equivalents of
a substrate were mixed with the enzyme at room temperature at pH 8.0. After standing
for several minutes, the pH was dropped by addition of diluted hydrochloric acid to
around 2. The reaction mixture was gel-filtered and subsequently lyophilized.

The microenvironment of the trypsin active site was estimated by spectrometric
analysis of these acyl trypsin preparations.

5.2 Inverse Substrates for Trypsin-Like Enzymes — Medicinal
Applicabilities

1t is well known that the specificity of an enzyme such as thrombin and plasmin is
very close to that of trypsin. In this respect, inverse substrates for trypsin also are
expected to be susceptible to the catalysis by these enzymes. In the kinetic analysis of
trypsin-like enzymes toward p-amidinophenyl esters, it was found that the “inverse”
concept is also applicable to thrombin, plasmin, urokinase, kallikrein, and trypsins
from various origins ™ ~"%. These enzymes are not distinctively different from bovine-
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trypsin in their binding constants and acylation rate constants. Deacylation rate
constants, however, are more variant. Trypsin-like enzymes are known to have a key
role in such important physiological phenomena like coagulation and fibrinolysis
and therefore the compounds which are capable of discriminating between these
enzymes could be of therapeutic value.

The active site structure of trypsin-like enzymes is considered to be very similar to
that of bovine trypsin, yet little is known about them. Refinement of these structures
is important also for the purpose of designing physiologically active substances. With
a view to comparing the spatial requirements of active sites of these enzymes, dissocia-
tion constants of the acyl enzyme-ligand complex, K, which were defined before, were
successfully analyzed **’. By taking advantage of inverse substrates which have an
unlimited choice of the acyl component, development of stable acyl enzymes could
be possible. These transient inhibitors for trypsin-like enzymes could be candidates
for drugs. In this respect, the determination of the deacylation rate constants for the
plasmin- and thrombin-catalyzed hydrolyses of various esters were undertaken 7.

A new approach to thrombosis therapy using acyl plasmins has been reported by
Smith et al. "®, Acyl plasmin is catalytically inert and unable to react with plasma in-
hibitors but still can bind to a fibrin clot. Thus, after the administration, acyl plasmin
can circulate without being trapped by the inhibitors and can come into contact with
fibrin. Deacylation may then occur to give a fibrin-plasmin complex and this active
enzyme is expected to lead to fibrinolysis. The preparation of acyl plasmin of appro-
priate stability was realized by using the general procedure for the specific synthesis
of an acyl enzyme — the “inverse substrate” method.

5.3 Considerations on the Concept of Inverse Substrates

Among a number of experimental results in which the kinetic behavior of protelytic
enzymes toward a variety of synthetic substrates and inhibitors have been tested,
some seemingly irrational enzymatic responses were observed. Example of these
responses will be discussed from the viewpoint of the imperfectness of the enzymatic
recognition. The existence of inverse substrates might be due to such an imperfectness
or allowance in the recognition rigidity of the enzyme.

So-called “non-productive” or “wrong way” binding must be the binding mode of
physiological meaning in which an enzyme prevents wrong substrates from being
involved in catalysis. A typical example of the binding is shown in the interaction of
such a protease, as e.g., chymotrypsin with D-amino acid derivatives. However,
“‘non-productive binding” formed between chymotrypsin and its substrate, acetyltyro-
sine-anilide, is somewhat different 7. Asis known, chymotrypsin exhibits its substrate
specificity toward aromatic amino acids, and in this instance chymotrypsin cannot
discriminate between either the aromatic residue of a tyrosine side chain or an anilide
moiety even if the substrate is L-configurated (Fig. Se).

The binding constant of the substrate acetyl-L-leucyl-L-tyrosine methylamide to
pepsin (K,,) is reported as 2.7 mM and the binding of the inhibitor acetyl-D-tyrosyl-b-
leucine methylamide (K;) as 5.8 mM. The binding shown in Fig. 6 was proposed for
the reason that both binding constants are almost identical. This assumption is based
upon the idea that the space-filling structure of leucyltyrosine in the r-configuration
is similar to that of the reversed sequence, tyrosylleucine, in the D-configuration. A
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Fig. 5. Productive [a), ¢J] and non-productive [b), d}-f)] binding of tyrosine derivatives to chymo-
trypsin. Catalytic residues in the active site are illustrated asa sharp edge

term “retro-enantiomer” was proposed for this concept ®”). This might be another
example in which the enzyme has been misled. The peptide bond in this case (Fig. 6a)
is resistant to hydrolysis because its orientation to the catalytic residue of the enzyme
is not properly attained.

Attempts for designing inverse-type compounds have been reported by other rese-
arch groups. In case of chymotrypsin, Jones et al. 8" prepared certain esters with alco-
hol components which imitate tryptophan and phenylalanine residues. Attempts have
also been made by Hartman et al. ®* and Muramatsu et al. ®*. They prepared amino-
butanol acetate for trypsin. But all these compounds were found not to be hydrolyzed
appreciably under the chosen conditions. Although the enzyme function is not always

a Ac-IE-Leu-ls—Tyr-NHCH3 b Ac-Q-Tyr-Q—Leu-NHCH3

Fig. 6. Binding of specific substrate a) and its “retro-enantiomer” bj to pepsin. Arrow represents
the proximity of the catalytic residues
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perfect, enzymes are still able to discriminate such derivatives. It can be assumed,
therefore, that in designing extraordinary compounds, such as inverse substrates,
some adjustments in the chemical reactivity are needed. Our leaving group, p-ami-
dinophenol, is chemically different from that of the above authors (phenol vs. aliphatic
hydroxyl group). Phenol esters are generally much more susceptible to nucleophilic
substitution than esters of aliphatic alcohols. Furthermore, the p-amidino substituent
has an electron withdrawing character nearly equal to the p-nitro group *¥. In our
case, p-amidinophenyl esters might satisfy both conditions: the spatial requirements
of the active site of the enzyme and the chemical reactivity itself.

The involvement of several residues to serve as general acid and base is well recogniz-
ed in the catalytic processes of trypsin and chymotrypsin. In the acylation stage,
inverse substrates will be distinguished from normal-type substrates by the assistance
of these residues. A comparison is made in Fig. 7. In the case of normal-type substra-
tes, participation of the general acid on the leaving group (OR) will assist the forma-
tion of the acyl enzyme. In contrast, for inverse substrates the leaving group does not
come into contact with the general acid residue, because OR is oriented in the opposite
direction. It is concluded therefore that our leaving group chemically compensates
for the inherent disadvantage of the enzymatic process with the inverse-type substra-
tes. The reason why compounds reported by Jones et al., Hartman et al., and Mura-
matsu et al. behaved simply as competitive inhibitor will thus be explained.

It is perhaps worth reconsidering the status of conventional substrates of chymo-
trypsin derived from p-nitrophenol in terms of the “inverse™ concept. p-Nitrophenyl
acetate, a well-known substrate for chymotrypsin, is an active ester with an aromatic
moiety (specific residue for the enzyme) in its leaving portion. This could be considered
as a sort of inverse substrates, though its binding affinity is not excellent. In this
respect, 2-hydroxy-S-nitro-o-toluenesulfonic acid sulfone could be considered as a
hybrid of normal and inverse ones . The reaction process of inverse substrates is
essentially the same as that of conventional ester substrates following the whole
enzymatic process to regenerate the original enzyme. This is a characteristic feature of
inverse substrates which is not satisfied by mechanism-based and affinity labeling
inhibitors. The most striking characteristic is to afford an acyl enzyme without re-

oy w50 1 oS
X HR:O . Ser-195 XHRT% Ser-195
k OH {‘}H
CHy CHy

. = b

Fig. 7. Comparison of association modes of trypsin with normal a) and “inverse” b) substrates
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course to the structure of the acyl moiety. As a result, any desired acyl groups might
be introduced specifically into the enzyme active site.

Further search for inverse substrates other than p-amidinophenyl esters has been
carried out and it has been found that esters derived from p-aminomethylphenol and
p-guanidinophenol were also eligible as a substrate of trypsin and trypsin-like enzy-
mes 7>-¥) We have also found that trimethylaminobutanoic acid p-nitrophenyl ester
is an inverse substrate for butyrylcholinesterase 87-8%). Application of the inverse con-
cept to thiol enzymes was also successful: p-amidinophenyl esters were found to be
substrates for clostripain 7, a thiol enzyme with trypsin-like specificity. Although
the design of inverse-type substrates seems not always possible for a variety of hydroly-
tic enzymes, this new concept could provide potential means for certain enzymes to
both: fundamental study and application.

6 Conclusion

The design of enzyme-specific compounds is one of the most promising subjects of
our time. It is not only significant in the elucidation of structure-function relationship
of enzymes but also useful as a methodology of drug design. Although the number of
drugs developed so far through the methodology is not large, the subject will become
increasing significant for the purpose. It has been generally assumed that enzymes
exhibit substrate recognition in a very strict manner, but we may fortunately conclude
that enzymatic recognition is not completely perfect in some cases. Consequently,
the design of compounds which trick enzymes is possible, and mimics like “inverse
substrates” have been found. Distinct from simple competitive inhibitors, these
mimics which interact with enzymes in a sophisticated manner will provide new con-
cepts for the design of clinically useful substances. The rational approach for drug
design will grow parallel with our knowledge of various in vivo factors as well as with
the development of new concepts for drug design.
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1 Introduction — Methods of Peptide Synthesis

Peptide synthesis has once again stepped into the limelight in the last 10 years with
the discovery of neuropeptides, peptides of the renin-angiotensin system, and immuno-
active peptides. Above all, the solid-phase peptide synthesis of R. B. Merrifield,
besides conventional peptide syntheses, has made an inestimable contribution to the
production of biological and medically important polypeptides.

Although peptides still have little market potential within the sector of pharmaceu-
tical chemistry, one can expect their use for therapeutic purposes to increase in the
future in view of their importance as bioregulators.

Synthetic peptides such as oxytocin, vasopressin, ACTH, calcitonin, secretin,
somatostatin, cyclosporine, and insulin are already in clinical use.

One major disadvantage of peptide active substances is their denaturation and
enzymatic degradation in the gastrointestinal tract, which mean that at present only
parenteral, sublingual, or intranasal administration is possible.

The present article gives an overview of the chemistry, biochemistry, and physiology
of interesting natural and synthetic peptides.

L-amino acids, and in many cases also non-proteinogenic amino acids such as
D-amino acids, ¥-aminoisobutyric acid, isovaline, $-alanine, and N-methylamino
acids, serve as the raw materials for the production of peptides. The formation of
the peptide linkage between the amino acids takes place in the following ways:

1. Conventional method: stepwise synthesis or fragment condensation using an
optimized choice of protecting group combination and the most favorable coupling
methods ! ™%,

R} RZ
| !
X—NH—-CH~-C-Y + H2N~CH—'(“3——O~Z
i
[¢] ) (s}
i, Coupling reaction
R, O R
| i !
X—NH—~CH—-C—NH~CH~C—0~Z
!
(o]

2

Protected dipeptide

Fig, 1. Principle of peptide synthesis

X : amino-protecting group (e.g. t-butyloxycarbonyl);
Y: activating group (e.g. —N,, —C,H,-p-NO,,

0 CHy

i -
~C—0—CH,—CH
™ o,

Z: carboxyl-protective group (e.g. —CH;, —CH, @ )-

112



Recent Developments in the Field of Biologically Active Peptides

2. Solid-phase method of Merrifield ° ! and the liquid-phase method of Mutter *%,
3. Protease-catalyzed peptide syntheses !3~19),

4. DNA recombination, i.e. bacterial production of peptide hormones, e.g. insulin,
somatostatin, or GRF (growth-hormone-releasing factor) 17-18),

In recent times peptide analogs have also been produced by a modification of the
CO—NH bond (peptide backbone modification) -

Classical Peptides:
—NH —~CH 7 CO —NH +CH — CO -
R, R,
Reduced peptide bond analogues:

— NH — CH + CHy— NH + CH — CO —
| |
Ry Ry

Ketomethylene and Hydroxy-
methylene analogues:

—NH—-CH+C— CHy; + CH —CO —
R Lo R,

Trans carbon - carbon double bond analogues:

—NH —~CH+CH=CH-+CH, —CO —

Ry

Endothiopeptides:

S

—NH-CH-}—(“> —NH + CH —CO —
Ry o
Thiomethylene analogues:

—NH ~CH +CH, — 8 -4—(;;H—CO-

|
Ry Ry

Retro — inverso analogues 2%

R1 H o} R3H
N\ ] N\
—NH—-C~C—-—NH—-C~C~NH—-C—CO ~
| 4
0 H Rp

According to the mode of action of the peptide and the pathway from the hormone-

active cells to the target organ, the following peptide groups can be distinguished %21,

2 Neuropeptides

The piochemistry, physiology, pharmacology, and synthesis of the neuropeptides
(peptides of the central nervous system) have been in the mainstream of research on
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vegetative and hormonal regulation in man and in animals in the last 10 years 22,

40 years elapsed between the discovery of subtance P by Euler and Gaddum in
1931 and its synthesis. Many neuropeptides have been found in nervous system in the
last 12 years.

2.1 Substance P (SP)

SP [ was discovered in the brain and the intestinal tract of man, mammals, and birds,
and was synthesized in 1971 by Tregear *® by the solid-phase method.

It has the effects typical of the kinins: e.g. stimulation of the smooth muscle and
lowering of the blood pressure due to vasodilation.

SP, which can function as a neurotransmitter in various brain regions, suppresses
the action of morphine and endorphins and is thought to play a protective role against
stress-determined disturbances.

The structure-activity relationships in the SP molecule show that the C-terminal
pentapeptide represents the active center. The efficacy is increased by stepwise chain
prolongation of the C-terminal pentapeptide (Table 1).

Table 1. Substance-P derivatives: relative activities on guinea-pig ileums (GPI)

I 2 3 4 5 6 7 8 9 10 11 Activity
Arg-Pro-Lys-Pro-Gin-Gln-Phe-Phe-Gly-Leu-Met-NH, 100 (1)
Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH, 60 2)
Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH, 160 3)
Pro-GlIn-Gln-Phe-Phe-Gly-Leu-Met-NH, 200 €Y
Gln-Gln-Phe-Phe-Gly-Leu-Met-NH, 125 (5)
Gln-Phe-Phe-Gly-Leu-Met-NH, 100 (6)
Phe-Phe-Gly-Leu-Met-NH, 2 0))

The myotropic effect (stimulation of the smooth muscle) of SP fragments 3, 4,
and 5 is greater than that of substance P. Fragments 6 already exerts the complete
biological activity. The peak activity is reached with fragment 4.

The SP derivative pyroGlu-Phe-Phe-Gly-Leu-Met-NH, is one of the most active
compounds in the vasodepressor-response test 2%,

Some substance P derivatives that contain D-amino acids, e.g. [Arg®, D-Trp!°]-SP
(6—11) and [D-Pro*, D-Trp”°]-SP (4-11) act as strongly competitive antagonists ).

The retro-inverso SP derivative 8 [pyroGlu®, gPh®, mGly®]-SP (6-11) (g = gem.

HaC CHg
P ey

O CHoy O O CHoyy O

~HH
oJ:NXn/NE/U\ XNMN%\/N%J\NW ®

O H TCH;

-

CHj
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diamino residue, m = malonic acid residue) is a total agonist of substance P 2® and
is stable to proteolytic cleavage 7.

2.2 Neurokinins

Neurokinins 9 and 10, which were isolated from porcine spinal cord extracts and
synthesized in 1984 by Munekata et al. ?®, show a strong hypotensive effect like
substance P.

H-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH, &)

H-Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH, (10)

2.3 Neurotensin (NT)
pyroGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu (11)

Neurotensin /1, which was isolated from bovine small intestine by Carraway and
Leeman ) in 1973, causes, in addition to the typical plasma kinin effects (lowering
of the blood pressure, contracting action on the intestine and uterus), an increase in
the LH and FSH secretion without influencing the release of somatotropin or thyro-
tropin.

-St.-Pierre et al. ** synthesized many NT fragments that are biologically active in
the cardiovascular system. NT 8-13 shows the complete range of action of the native
NT.

2.4 Endorphins, Enkephalins, Dynorphin, and Dermorphin
(Opioid Peptides)

The first endogenous peptides 76 and 17 with morphine-like activity were isolated
from human and animal nerve tissue by Hughes and Kosterlitz "’ in 1975.

Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr (12)
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gin-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys- (13)
Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu

Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu 14y
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Vai-Thr-Leu-Phe-Lys- (15)

Asn-Ala-Ile-lle-Lys-Asn-Ala-Tyr

Tyr-Gly-Gly-Phe-Met (16)
(Met-enkephalin)

Tyr-Gly-Gly-Phe-Leu an
(Leu-enkephalin)

Fig. 2. Primary structures of endorphins and enkephalins
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Shortly afterward partial fragments of p-lipotropin (LPH), e.g. a-, -, y-, and
d-endorphin (12, 13, 14, and 15) were isolated from pituitary material.

The [Phe?’-Gly®!]-f,-endorphin (human) analog of 13, which was synthesized by
C. H. Liet al. 3¥ on the solid support in 1978, exerts a greater analgesic effect than the
natural peptide.

All endorphins have a common initial sequence, which corresponds to the structure
of Met-enkephalin.

The morphinomimetic peptides react with the same receptors as the opiate alkaloids
and presumably represent the endogenous agonists of these receptors. f-Endorphin,
which represents the functionally active molecule, plays a role in the response of the
organism to stress stimuli. The analgesic effect in the body can be traced back to the
secretion of f-endorphin. Accordingly, acupuncture, for example, activates the central
nervous endorphin system and causes an increase in the endorphin concentration,
leading to the elimination of sensitivity to pain. Presumably there are endorphinergic
systems in the central nervous system (CNS) in which the endorphins assume a neuro-
modulatory function.

Enkephalins are found in varying amounts in nearly all regions of the nervous
system, in the posterior lobe of the pituitary, and in the adrenal cortex. They play a
role in pain transmission in that they act as transmitters for the pain-inhibiting neurons
in the spinal cord.

Because of their peptide nature, the enkephalins and the endorphins are difficult
to put to therapeutic use. The hope that these “brain morphines” would allow anal-
gesia to be separated from the development of addiction and dependence has not
yet been realized.

Over 1000 enkephalin derivatives have now been synthesized, and in some of them
it has been possible to increase the analgesic effect with respect to enkephalin 3337,
The enkephalin derivative 18 > (Sandoz, FK 33-824), in which enzymatic degrada-
tion is blocked, has proved to be strongly analgesically active in animals.

CH
{2)} ] 3

HyN~CH—CONH —CH~CONH~CHz = CON—CH—CONH-~ CH—~CH,0H
! ! | !
CHp CHg3 CHa CH;

| (18)
[ j [ i CH;
|
S(0)
OH !
CHs

The analogous enkephalin Tyr-D-Ala-Gly-Paa-Leu 3% only exerts a slight opiate-
like effect in comparison with Leu-enkephalin /7. The exchange of Phe* for Paa
(B-pyrazinylalanine) leads to a severe loss of activity.

OH CHa
o) 0 CcH
NHCUL i NH NH/(n‘tNHS (19)
P :
0 CHa 0 o

116



Recent Developments in the Field of Biologically Active Peptides

Further information about the structure-activity relationships was obtained by
Schiller et al. ** with retroinverso modifications of linear enkephalins, e.g. Tyr-D-
Ala-gGly-mPhe-Leu-NH, 19 (14% Leu-enkephalin activity).

The enkephalin derivatives 20 and 27 from E. Lilly & Co. **+*? possess analgesic
properties..

Tyr-D-Ala-Gly-p-FPhe-D-Phg-NH, (20)
{p-FPhe = p-fluorophefiylalanine, Phg = a-phenylglycine)

Tyr-D-Ala-Gly-(N*-allyl)Phe-NH, Q1)

The cyclohexyl-substituted enkephalins 22 of G. D. Searle & Co. ** show strong
analgesic effects.

CH,
(D) D) | (DL
HoN—CH—CO —NH—CH~-CO—NH—CHp,—CO—N—~CH—~CO -~ NH
i ! i
CH, CH, CH;, COOCH;
i
H3C CHj CHy @
l
s (22)
OH I
CH,

The dimeric enkephalin 23 synthesized by Imperial Chemical Industries (ICn
Lid. acts as a selective opiate-receptor antagonist *¥,

[Diallyl-Tyr-Gly-Gly-Phe-Leu-NH-CH,], (23)

The N-dihydroxyphosphinylphenylpropionylleucine derivative 24 from the Well-
come Foundation Ltd. **® acts as a morphine agonist and an inhibitor of enke-
phalinase (dipeptidylcarboxypeptidase), which causes hydrolytic cleavage of the
Gly>-Phe* linkage of the enkephalin, and hence inactivation.

o]
Ho !
_ P—CH—CO~NH—CH—COOH
HO ! !
CH, CH;
! 24
oH (24)
7N
CHz CHjg
OCHs

Schwartz et al. **® have recently discussed numerous pharmacological aspects of
enkephalin inhibitors such as the analgesic effect, drug design, model predictions

about the active center, and the protection of endogenous neuropeptides by peptidase
inhibitors.
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The racemic inhibitor thiorphan *® 25 inhibits enkephalinase and selectively sup-
ports the analgesic effect of enkephalins.

HS—CH—-CO—NH—CH,—COOH

|
CH, (25)

.

Similarly, Spatola et al. *” have synthesized thiomethylene-enkephalin pseudo-
peptides (Fig. 3), which are stable to proteolytic degradation and exert a biological
effect comparable to that of leucine-enkephalin.

e} e} 0
I I [ T 1
HyN—CH-—C—NH—CH,—C—NH—CH,—C—NH—CH —lLCHz -S —{— CH—CO,H
- |

1 A 4

CH, CH, CH,
!
@ O e
OH

Fig. 3. Phe'[CH, S]*Leu-enkephalin; the symbol W[CH,S] stands in place of the amide linkage
(—CO—NH—)

[D-Ala*]-Met-enkephalinamide 8 Tyr-D-Ala-Gly-Phe-Met-NH, and the mor-
phiceptin * Tyr-Pro-Phe-Pro-NH, have a high morphinomimetic activity (agonist
for morphine-y-receptors).

In 1975 Goldstein et al. >3V isolated dynorphin 26, which is 700 times as effective
as Leu-enkephalin, from porcine pituitaries.

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Tle-Arg-Pro-Lys-Leu-Lys (26)

Dermorphin 27, isolated from the skin of the frog Phyllomedusa sauvagei, exerts
a strong analgesic effect and is 700 times as effective as morphine 3% 5%,

Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH 27
2

Synthetic dermorphin tetrapeptides (small dermorphins), e.g. Tyr-D-Ala-Phe-Gly,
and PMRI isomers (partially modified retro-inverso isomers) synthesized by Tomatis
et al. > are more effective than morphine or dermorphin in the GPI test (guinea-pig
ileum test).

2.5 Kyotorphin and Neo-Kyotorphin

The analgesically active dipeptide kyotorphin Tyr-Arg >, which supposedly causes
secretion of Met-enkephalin, was isolated from bovine hypothalamus in 1979 by
Takagi et al., as was the pentapeptide neo-kyotorphin (NK) Thr-Ser-Lys-Tyr-Arg
in 1982.
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The [D-Ser?}- and [Pro*}-neo-kyotorphin analogs synthesized by Kitagawa et al. >”
are 10 times as active as native neo-kyotorphin.

The prospects of making pharmacologically more active compounds as well as
substances that do not cause dependence by modifying enkephalins, spur the peptide
chemist on to greater efforts. As always, the fact that analgesically active peptides are
rapidly degraded by enzymes after intracerebroventricular administration in animals
represents the main barrier to their therapeutic application.

2.6 Delta-Sleep-Inducing Peptides (DSIP)
DSIP 28, isolated in 1975 by Monnier et al. >® from the blood of sleeping rabbits,

and the DSIP analogs 29 synthesized by Ivanov et al. *®), produce sleep-like states
(0-slow-wave sleep) after intraventricular infusion (rabbit brain).

Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu (28)
Gly-Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu (29)
| J

2.7 Releasing and Release-Inhibiting Hormones of the Hypothalamus

The releasing hormones (liberins °”) and the release-inhibiting hormones (statins)
which stimulate the anterior pituitary into hormone production or inhibit release,
are low-molecular peptides in comparison with the anterior pituitary hormones and
are present in certain areas of the hypothalamus. The hypothalamus exerts an influence
on many vital physiological processes in the organism.

2.7.1 Thyrotropin-Releasing Hormone (TRH)

The first releasing hormone to be isolated was TRH pyroGlu-His-Pro-NH,, in 1969
by Schally et al. ®") and by Guillemin et al. ®® from sheep and porcine hypothalami.
The biological activity of the pyroGlu-3-Me-His-Pro-NH, synthesized by Burgus
et al. ®® exceeds that of natural and synthetic TRH ¥ by a factor of 10. TRH regulates
the synthesis and the secretion of thyrotropin and prolactin and is used in the diagnosis
and therapy of thyroid disorders. The butyrolactone derivative 30a % and pyroGlu-
His-3,3-dimethylprolinamide 305 ®® exhibit CNS activity.

CONH, CONH,
I}\ Q CHg
070”7 > CO—NH-CH—CO—N o g CO—NH—CH~CO—N CHa
I !
CH, CHy
%\N—-H %N—H
=/ NES)
(30a) (30b)
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2.7.2 Luteinizing Hormone-Releasing Hormone (LH-RH) or
Gonadoliberin (Gonadotropin-Releasing Hormone)

LH-RH 3/, isolated in 1971 by Schally et al. ®”’ and in 1974 by Guillemin from porcine
and sheep hypothalamus tissue, possesses LH-releasing and FSH-releasing activity
and is available commercially as Lutal® %),

pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH, 31

Stimulation of the secretion of LH (luteinizing hormone) in the female organism
triggers ovulation and the formation of the corpus lutewm responsible for the main-
tenance of pregnancy. The secretion of FSH (follicle-stimulating hormone, glyco-
protein) stimulates the growth and the initial ripening of the follicle in the ovary and
therefore sets in motion estrogen biosynthesis.

A broad application of LH-RH analogs is emerging in the fields of contraception
and fertility therapy.

Through the synthesis of more than 1000 LH-RH analogs structures have been
found that have a biological activity up to 30 times that of the native substance. The
compounds of interest at the moment are buserelin 32 %7 leuprorelin 33 7" and
nafarelin 34 " which, in comparison with native LH-RH, exert a 200-times stronger
agonistic effect. :

pyroGlu-His-Trp-Ser-Tyr-D-Sier-Leu-Arg-Pro-NH-Et (32)
Bu'

pyroglu-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-Pro-NH-Et 33

pyroGlu-His-Trp-Ser-Tyr-D-Nal(2)-Leu-Arg-Pro-Gly-NH, (34)

Nal(2) = 3-(2-naphthyl)-D-alanine

The growth of testosterone-dependent tumors can be blocked by long-term admini-
stration of the three LH-RH analogs. The first therapeutic application of 32, 33,
and 34 was in the treatment of prostate carcinomas. Buserelin came on the market
as a nasal spray (Suprefact®, 32) and leuprorelin (Carcinil®, 33) as an injectable
product in 1984.

These products effect a blockade of the pituitary gonadotropin secretion and a
decrease in the LH-receptors in the Leydig cells of the testes, causing a reduction in
the testosterone level (drug castration). '

2.7.3 Somatostatin (Growth Hormone-Release—Inhibitfng Hormone)

Somatostatin (SST) 33, a cyclic tetradecapeptide disulfide, was isolated in 1973 by
Guillemin from hypothalami. SST has a broad profile of endocrine and gastrointestinal

Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys (35)
| !

effects, i.e. it inhibits not only the secretion of the growth hormone but also the secre-
tion of insulin and glucagon, and therefore plays an important part in the glucose

120



Recent Developments in the Field of Biologically Active Peptides

metabolism. In the stomach SST inhibits the secretion of gastrin, hydrochlioric acid,
and pepsin. In spite of its lack of selectivity and its short half-life, which after parenteral
administration is of the order of a few minutes, somatostatin has attracted interest
as regards therapeutic uses (treatment of diabetes mellitus, gastric ulcers, and pan-
creatitis). Synthesis of its analogs has led to compounds that selectively inhibit the
secretion of glucagon and insulin, exerting only a slight effect on the release of insulin
and an intensified effect on the release of glucagon.

The synthetic modification of SST aimed at achieving a dissociation of effects and
the preparation of orally active derivatives, is of practical significance 7*~77, Thus,
[D-Trp®,D-Cys'#]-SST 36 preferentially inhibits the liberation of ghicagon and the
growth hormone (GH); des[Ala’,Gly?,Asn®]-SST and des-Asn’-SST, on the other
hand, inhibit the secretion of insulin, while the secretion of glucagon and GH remain
unaffected 7®.

I !
Ala-Gly-Cys-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-Ser-D-Cys
(36)

Bicyclic SST analogs 37 from Merck & Co./USA 7% given i.v. or p.o. cause inhibi-
tion of the secretion of insulin, glucagon, and GH.

CH,

CHy~CHo—~CHy CH; O
(37)

Il | ol
Cl)—NH—CH—CO—Phe—D-Trp—Lys~Thr-—NH—CH -C —NH—(I;H2
CHy————————CH,~CH,—CH, CH,

Retro-enantiomeric 7°® cyclic hexapeptide analogs of SST 38 with a high metabolic
stability inhibit the liberation of insulin, glucagon, and the growth hormone 799,

MeAla — Phe —— D-Trp

t l (38)

Phe =—Thr Lys

(MeAla = N-methylalanine)

The cyclic octapeptide SMS 201-995 from Sandoz Ltd./Switzerland 39 8% has a
longer duration of action than native SST and inhibits the secretion of GH more
selectively. Moreover, it enhances the hypoglycemic effect of insulin while simul-
taneously decreasing glucagon.

D-Phe'-Cys®-Phe*-D-Trp® (39)
Thrs(ol)-C)‘/s"—Thr6~Lyss |

Clinical studies with SMS 201-995 #® have shown that the growth-hormone con-
centration in the plasma can be reduced and, in this way, acromegaly (excessive
growth of acral regions such as nose, ears, chin, hands, and feet) can be treated by
subcutaneous administration.
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2.7.4 Corticotropin-Releasing Hormone (CRH or CRF); Melanotropin-Releasing
Hormone (MRH); Prolactin-Releasing Hormone (PRH)

The releasing hormone CRH 40, isolated. as a linear peptide-amide with 41 amino
acids from ovine hypothalami by Vale et al. #) in 1981, has certain structural similari-
ties with angiotensinogen. It stimulates the secretion of corticotropin and B-endorphin.
In 1985 Morell et al. ¥ synthesized ovine CRH by the solid-phase method.

1 5 10 15
Ser-Gln-Glu-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-Phe-His-Leu-Leu-
20 25 30
Arg-Glu-Val-Leu-Glu-Met-Thr-Lys-Ala-Asp-Gln-Leu-Ala-Gln-Gln-
35 40
Ala-His-Ser-Asn-Arg-Lys-Leu-Leu-Asp-Ile-Ala-NH, (40)

The N-terminal cyclic hexapeptide of oxytocin and the C-terminal tripeptide of
oxytocin were isolated from hypothalami respectively as MRH 4/ and melanotropin
release-inhibiting hormone 42 (MIH) .

C?/s-Tyr-Ile—Gln—Asn-CJys (41

Pro-Leu-Gly-NH, (42)

The second-order prohormone oxytocin can be regarded as a precursor of MIH.

Prolactin-releasing hormone (PRH) and prolactin-release-inhibiting hormone
(PIH) regulate the formation and the secretion of prolactin in the anterior pituitary 5.
Prolactin itself stimulates the milk secretion from the mammary glands and the growth
of these glands. The chemical structures of the two hormones PRH and PIH have not
yet been clarified.

2.7.5 Growth-Hormone-Releasing Hormone (GH-RH or GRF) or Somatocrinin

In 1982 Guillemin et al. 3 and Rivier et al. 3% isolated 3 peptides 43a with GRF
activity (stimulation of the secretion of growth hormone) from human pancreatic
tumor cells, and synthesized them by the solid-phase method:

GRF(1-44)-NH,, GRF(1-40)-OH and GRF(1-37)-OH (43a)

H-Tyr-Ala-Asp-Ala-Tle-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-
Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Ser-Arg-Gln-
Gln-Gly-Glu-Ser-Asn-Gln-Glu-Arg-Gly-Ala-Arg-Ala-Arg-Leu-NH,

37 i 40 44
(43b)

Other syntheses by H. Yajima et al. 8 have become known. 435 has been used
therapeutically, for example in wound healing.
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2.8 Proteohormones of the Pituitary (Hypophysis)

As a rule, a hypothalamic hormone should always control a hormone in the anterior
pituitary. The pituitary hormones (e.g. follicle-stimulating hormone, prolactin, or
- thyrotropin) are then transported through the bloodstream to the secondary target
organs, where, for example, they stimulate the production of corticosteroids in the
adrenals or the formation of thyroxine in the thyroid.

2.8.1 Somatotropin (Growth Hormone)

The growth hormone (STH) or the human growth hormone 7 (HGH), a linear peptide
hormone made up of 191 amino acids with 2 intrachain disulfide bridges, is formed
under the control of somatostatin and influences the maturation process during the
growth period (e.g. the increase in protein substance and in height).

A substance isolated from human pituitary (e.g. Asellacrin®) is available for the
treatment of pituitary dwarfism in which there is a confirmed STH deficiency.

On the other hand, excessive secretion of HGH in the growing years leads to gigan-
tism. HGH is also used in cases of muscular dystrophy, bone decalcification (osteo-
porosis), and hemorrhagic gastric ulcers.

The synthesis of the human growth hormone by DNA recombination is of major
significance in view of the difficulties of total synthesis.

2.8.2 Corticotropin (ACTH)

Adrenocorticotropic hormone (Fig. 4) stimulates the cells of the adrenal cortex into
the secretion and production of steroid hormones. Conversely, the pituitary secretion
of ACTH is inhibited by the adrenal hormones via a feedback mechanism.

Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-

i 5 10
human  Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-
15 20 25
Ala-Giu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe
30 35
porcine -Leu-Ala-Glu-
bovine -Ser-Ala-Gln-

Fig. 4. Amino acid sequences in human, porcine, and bovine ACTH

Since 1956 more than 150 partial sequences and analogs *%-%% have been synthesized,
mainly with chain lengths of 1-16 or 1-28. The first total synthesis of porcine ACTH
was described in 1963 by Schwyzer et al.®®.

Within the framework of ACTH synthesis a broad knowledge of the structure-
activity relationships has been acquired concerning the influence of the chain length
on biological activity.

The ACTH sequence can be formally subdivided into various sections of differing
biological significance. The N-terminal section 1-10 represents the active ceater,
while sequence 11-18 is responsible for receptor binding. The C-terminal section
25-39 contains the hormonal information for species specificity and for antigenicity.
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The N-terminal tetracosapeptide of ACTH (Synacthen) finds therapeutic applica-
tion in the treatment of arthrorheumatism, bronchial asthma, and nephroses.

2.8.3 Oxytocin and Vasopressin

The actual site of formation of oxytocin and vasopressin is in the hypothalamus,
from which the two peptides are carried to the posterior pituitary bound to neuro-
physins (transport proteins) and stored. The structure and synthesis of oxytocin 44
and vasopressin 45 were worked out by du Vigneaud et al. °»).

C?/s-Tyr-Ile-Gln-Asn-CJys-Pro-Leu-Gly-NH2 (44)

C%rs»Tyr—Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2 (45)
|

These peptide hormones are among the best-researched active peptide substances.
More than 350 oxytocin and vasopressin analogs have been reported in the literature.

Oxytocin causes contraction of the uterine smooth muscles and stimulates milk
ejection in the lactating glands.

The vasopressins cause reabsorption of water by increasing renal permeability,
thus concentrating the primary urine. If the vasopressin level is too low, the reabsorp-
tion of water is no longer ensured, so that large quantities of urine of low specific
gravity are excreted (water diuresis = diabetes insipidus). With high doses of vaso-
pressin the blood pressure and the intestinal peristalsis are increased.

Oxytocin is used in obstetrics to induce labor, e.g. to maintain the uterine contrac-
tions during birth, and to promote the evacuation of milk. The most important thera-
peutic use of vasopressin is based on its antidiuretic effect in diabetes insipidus (e.g.
1-desamino-D-Arg®-vasopressin as a nasal spray °%).

2.9 Carnosine

The dipeptide carnosine B-Ala-His is found in skeletal muscle in relatively large
amounts, and functions presumably as a neurotransmitter. Clinical studies have shown
that carnosine accelerates wound healing *°).

2.10 Invertebrate Neuropeptide Hormones

The invertebrate peptides PCH (pigment-concentrating hormone 46) and AKH 1
(adipokinetic hormone 47) were the first neuropeptides from invertebrates to have

their structure and synthesis described by L. Josefsson in 1983 *%.
pyroGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp-NH, (46)
pyroGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH, 47

Both peptides play a role in the mechanism of color adaptation in insects.
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2.11 DBI Peptides (Diazepam-Binding Inhibitors)

Guidotti and Ferrero ®* isolated from human and rat brain extracts neuroactive
peptides that interact with the receptors at which benzodiazepines (e.g. Valium and
Librium) induce biological effects. The DBI peptide 48 (“anxiety peptide™), an
endogenous ligand of the benzodiazepine receptor, causes anxiety, in contrast to the
benzodiazepines.

Gln-Ala-Thr-Val-Gly-Asn-Val-Asn-Thr-Asp-Arg-Pro-Gly-Leu-
Leu-Asp-Leu-Lys (48)

Neuropeptide research will in all probability allow the development of new active
substances that are more effective, more specific, and safer than the psychopharma-
ceuticals in current use.

3 Gastrointestinal Peptides
(Peptides of the Stomach, Intestine, and Pancreas)

Peptide hormones (aglandular hormones), whose action makes possible the secretory
processes necessary for the normal course of the digestive process, are formed in the
gastric and intestinal mucosae and in the excretory pancreatic tissue (islets of Langer-
hans).

3.1 Secretin, Glucagon, VIP, PHI, and GIP (Fig. 5)

Secretin, isolated from the duodenal mucosa by Jorpes and Mutt °® in 1961, and
4 years later found to be a linear heptacosapeptide, stimulates the pancreas to produce
a bicarbonate-containing secretion. Bodanszky et al. °”), Ondetti et al. °®, and Wiinsch
et al. ® have synthesized secretin derivatives. Another synthesis, by Uchiyama
et al. 1% using fragment condensation on a large scale, led within a short time to
highly-purified secretin.

Glucagon, which was isolated from porcine pancreas in 1953 by Staub et al. 1°0
and structurally clarified by Bromer et al. '°» in 1956, exerts hyperglycemic (insulin-
antagonistic) and positive inotropic effects. Glucagon is used therapeutically in hypo-
glycemic states resulting from insulin overdosage, heart failure, or in cases of B-
blocker overdoses. Wiinschet al. '°> and R. B. Merrifield !°® have published extensive
works on glucagon.

As linear polypeptides, VIP (vasoactive intestinal polypeptide) 1°, PHI (peptide
HI: H = N-terminal His, I = C-terminal Ile) '°1°"), and GIP (gastric inhibitory
polypeptide consisting of 43 amino acids) !° are structurally similar to secretin
and glucagon. VIP and PHI act as vasodilators, exert hyperglycemic effects, and
affect the smooth muscle of the gallbladder. GIP completely blocks gastric secretion.
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1 2 3 4 S5 6 7 8 9 10 1t 12 14 14 15
vip His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-
Secretin  His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-Asp-
Glucagon His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Thr-Lys-Tyr-Leu-Asp-

GIP Tyr-Ala-Glu-Gly-Thr-Phe-1le-Ser-Asp-Tyr-Ser-lie-Ala-Met-Asp-

PHI His-Ala-Asp-Gly-Val-Phe-Thr-Ser-Asp-Phe-Ser-Arg-Leu-Leu-Gly-
i6 17 18 19 20 21 22 23 24 25 2627 28 29

VIP Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-NH,

Secretin  Ser-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-NH,
Glucagon Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asp-Thr

GIP Lys-lle-Arg-Gln-Gln-Asp-Phe-Val-Asn-Trp-Leu-Ala-Gln-Gln ... Gln
PHI Gin-Leu-Ser-Ala-Lys-Lys-Tyr-Leu-Glu-Ser-Leu-Ile-NH,

Fig. 5. Comparison of the amino acid sequences of secretin, glucagon, VIP, PHI, and GIP

3.2 Gastrin, Cholecystokinin-Pancreozymin (CCK-PZ) and Galanin

Gastrins I and II (Tyr'?-O-sulfated gastrin I) 49, whose structure was elucidated in
1964 by Gregory et al. 1°%, are formed in the mucosal lining of the gastric antrum and
cause strong stimulation of the secretion of hydrochloric acid in the stomach and of
enzyme secretion in the pancreas. The C-terminal tetrapeptide of Trp-Met-Asp- -Phe-
NH, already has the physiological properties of the natural hormone *!%, The solid-
phase method has proved suitable for the synthesis of gastrin peptides according to
Sheppard '), Recently Merrifield et al. ''?) synthesized human gastrin I on benz-
hydrylamine resin using the “low-high HF** technique.

pyroGlu-Gly-Pro-Trp-Leu-Glu—Glu—Glu-Glu-GIu-Ala-Tyr-Gly—
Tyr-Gly-Trp-Met-Asp-Phe-NH, 49)
(human)

CCK-PZ 501137116 whose C-terminal pentapeptide sequence is identical with
that of gastrin, is discharged into the blood from certain intestinal cells and reaches
the gallbladder, where it causes the bile to discharge into the intestine, thus promot-
ing digestion. Cholecystokinin also functions as a cerebral neurotransmitter.

Lys-Ala-Pro-Ser-Gly-Arg-Val-Ser-Met-Ile-Lys-Asn-Leu-Gln-Ser- Leu-
Asp—Pro-Ser-His-Arg-Ile-Ser-Asp-Arg—Asp-'li“yr-Met-Gly-Trp-Met-Asp-
SO,H
Phe-NH, (50)
Castro et al. 1'7 have recently been able to show with the aid of structure-activity
studies that tripeptide and tetrapeptlde derivatives such as Boc-B-Ala-Trp-Met-

Asp-NH, 57 a from the C-terminal region of gastrin without phenylalanine as a gastrin
antagonist inhibit in vivo the gastrin-stimulated acid secretion.

(CHa)aC—0—CO—NH~CH;—CH;—CO—NH —(’}H —CO—NH —?H ~CO—NH —(‘}H ~—~CO—NH;

CH; ?Hg (’3H2
] CHp COOH
N |
! 1
H
CH, (5la)
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On the other hand, pseudopeptide analogs of the C-terminal tetrapeptide of
gastrin 117", such as (ters.butyloxycarbonyl)-L-tryptophyl-¥(CH,—NH)-L-leucyl-
L-aspartyl-L-phenylalaninamide 5/b, in which the amide linkage is replaced by
the isosteric modification CH,—NH, are potent agonists of acid secretion.

{CH3)3C~0—CO—NH~CH—CHy—NH—CH-~CO—NH —(l')H ~CO—NH —(IDH —CONH;
l I

CH, CHy CHy CH,
| ] (51b)
| CH COOH
N VS
) CHy CHy

Galanirr 52, which was isolated from porcine intestine by Tatemoto et al. !'® in
1983, causes contraction of the smooth muscle and mild hyperglycemia in dogs.

Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-His-
Ala-Ile-Asp-Asn-His-Arg-Ser-Phe-His-Asp-Lys-Tyr-Gly-Leu-Ala-NH,
(52)

3.3 Gastrin-Releasing Peptide (GRP), Bombesin, and Motilin

GRP ''9 53 was isolated from porcine mucosae and causes gastrin secretion. The
C-terminal decapeptide of GRP is, with the exception of His?°, identical with that of
bombesin 54, and also coincides with the sequence of the decapeptide neuro-
medin C ''*"9 [Gly'®-Met*"]-GRP. Neuromedin C, a porcine spinal-cord peptide
that can also be regarded as a bombesin-like peptide, exerts stimulating effects on
rat uterine smooth muscle and functions as a neuromediator in the neural communica-
tion systems of mammals.

Alla-Pro-Val-Ser-VaI-Gly-Gly~Gly-Thr-igl-Leu~A1a-Lys--Met-
Tyr—Pro-Arg-glyaAsn-His-Trp-AIa-Val-Gly-His-Leu~2I\7/Iet-NH2 (53)
1 5
pyroGlu-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-
I]\Z{et-NI-I2 (54)

Bombesin 54 12 121)_ isolated from frog skin, is thought to have antidiuretic and
antihypertensive properties. It stimulates the secretion of gastrin, pancreatic and
gastric secretion, and causes contraction of the gallbladder.

Recently Moody et al. '?») discovered that the C-terminal partial sequence of
bombesin and bombesin-like peptides (BLPs) can function as autocrine growth factors
in human small-cell lung cancer (SCLC) cell lines.

Motilin 55 (gastric motor activity-stimulating polypeptide), isolated from porcine
intestine by Mutt and Brown '*), stimulates gastric motility and pepsin secretion.
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Phe-Val-Pro-lle-Phe-Thr-Tyr-Gly-Glu-Leu-Gln-
Arg-Met-Gin-Glu-Lys-Glu-Arg-Asn-Lys-Gly-Gln (55)

Wiinsch et al. 12 synthesized the fragments 9-22 from [Nle'*, Glu'*}-motilin and
[Leu"3,Glu**}-motilin.

3.4 Insulin % 21-89-12%

Insulin (Fig. 6), which belongs to the older-generation polypeptides was discovered
by Banting and Best in 1921 and its primary structure was elucidated by Sanger in
1955. In view of the very diverse syntheses and the numerous biological publications
on this substance, only a general summary is possible here.

The first total synthesis of A- and B-chains and their combination into insulin was
performed by Zahn et al. 2% in 1963.

¢
Gly—lle—Val—Glu—GIn—Cys—Cys—Ala —Ser—Val—Cys ~Ser—Leu~—Tyr—Gin—Leu—Glu—Asn ~Tyr—Cys—Asn
5 ] 10 15 21
S S

: o

Phe—Val—Asn—GIn—His—Leu—Cys—Gly—Ser—His —Leu—Val—-Giu—Ala—Leu—Tyr—Leu—Val—Cys—Gly—Glu
5 10 15 21

Ala—Lys—Pro—Thr—Tyr—Phe—Phe—Gly—Arg
30 25

Fig. 6. Structure of bovine insulin

Insulin does not display any pronounced organ specificity, in fact numerous meta-
bolic processes in the liver, muscle, and fat cells are insulin-dependent.

Under the influence of insulin the permeability of the cell membranes of many organs
and tissues is increased, and the material transport from the extracellular space into
the liver, fat, and muscle cells in promoted. The accelerated influx of glucose into
these cells due to insulin leads to an increased glucose degradation. The glucose level
is therefore reduced by insulin. Because of the great influence of insulin on the glucose
transport through the plasma membranes of fat and muscle cells, it is presumed that
the insulin receptors 127 on the surface of these cells are the hormone’s main site of
action.

Insulin affects the protein metabolism by an increased uptake of amino acids as
a result of the increased permeability of the cell membranes.

Diabetes mellitus is the result of too little insulin being released from the pancreatic
B-cells or of a decrease in the number of active insulin receptors in the target tissue.

Many preparations are available for the treatment of diabetics with insulin. Rittel
et al. 12® described total synthesis of human insulin in 1974. Since that time new
ways of obtaining insulin have been developed, namely the E. Lilly & Co. biotechno-
logical synthesis by genetically modified microorganisms '*?) (DNA recombination)
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and the trypsin-catalyzed conversion of porcine into human insulin by exchanging
the C-terminal Ala® of the B-chain for threonine (Novo Research Institute/Den-
mark 3%,

4 Peptides of Immunological Importance

Peptide chemists are becoming increasingly interested in the synthesis of immuno-
suppressive and immunostimulating peptides, which are discussed below.

4.1 Peptides of the Thymus

The thymus, a gland situated under the sternum (primary lymph organ), occupies a
central position in the immune system. Among its functions are the stimulation of
the immune responses and cell differentiation. If foreign substances invade the
organism, the body reacts defensively via its immune system.

The carriers of the immune system are the leucocytes, the immune cells 2V, These
are either phagocytotic cells (e.g. granulocytes and macrophages) or lymphocytes,
namely T-lymphocytes, which differentiate further in the thymus, and B-lymphocytes,
which stem from the parent cells of the spinal cord.

In the course of an immune response the finally differentiated plasma cells, whose
function is antibody synthesis, are formed from the B-lymphocytes under the influence
of the T-lymphocytes and the thymus peptides.

4.1.1 Thymopoietin Derivatives (TP)

Thymopoietin, a calf thymus polypeptide with 49 amino acids, causes selective T-cell
differentiation and is therefore responsible for the cell-bound immune reaction.
Consideration of smaller peptides having the same properties with respect to the
immune system led to the synthetic thymopentin Arg-Lys-Asp-Val-Tyr '3!:132)
and derivatives such as Lys-Lys-Tyr-Phe-Arg 133,

4.1.2 Thymosin o,

Thymosin o, 56, isolated by A. L. Goldstein et al. '** from bovine thymus glands,
is important for the development of thymus-dependent T-lymphocytes.

CH,;CO-Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-
Ile-Thr-Thr-Lys-Asp-Leu-Lys-Glu-Lys-Lys-Glu- (56)
Val-Val-Glu-Glu-Ala-Glu-Asn

Thymosin o, has been synthesized by several research groups by the solid-phase
d 135.136) : : ; 137,138)
metho as well as by conventional synthetic techniques %7 13®),

4.1.3 Serum Thymic Factor (FTS or Thymulin)

Bach et al. '*% isolated thymulin 57, which is responsible for T-cell differentiation,
from porcine serum.

Pyroglu-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn (57)
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Numerous FTS analogs that exhibit biological effects in the differentiation of
T-lymphocytes have now been synthesized **®. Information is already available
about the possibility of using the peptide derivatives thymosin o, and FTS thera-
peutically in the treatment of disorders of the immune system (e.g. in patients with
congenital T-cell deficiency or chronic bacterial infections).

4.2 Tuftsin

Tuftsin 58, isolated from the protein leukokinin in 1970 by Najjar et al. **!) by en-
zymatic cleavage of a y-globulin fraction, stimulates phagocytosis.

Thr-Lys-Pro-Arg (58)

Because of the action of tuftsin on macrophages and granulocytes, its therapeutic
use is being tested in various infectious diseases 142,

4.3 Cyclosporines 4%

Cyclosporines (Fig. 7) are cyclic undecapeptides composed of 11 amino acids — some
of them N-methylated — in which the amino acid (4R)-4-[(E)-2-butenyl}-4,N-di-
methyl-L-threonine (MeBmt) 59 is a characteristic component and plays a consider-
able role in the biological activity.

O M
Il
CHg CHy H- C~ch,
N7 Rl _.H
CH CHy CH3 HO.., © CHy

I N/ OHECE Yo
CHQH CH; CH CH,

CH
V.- |y H TR T.H
CH3—N—C—CO—N—C—C—N—C—CO—N—C>C—
| S S (S) [ ® |
co 0 H o]
CHa H..|
_CH—CH,™C (S)
CH3 [
CH;—N H o] H }
| R s) | (S) I ® 1 ®) .H
0C—C—N—CO—C—N—C—~C—N—C—C—N—CO~—C"
H I i e A™H i
CH; H CHy O CH, CHy CH CH,
| VN
CH CHz CHg CH
AN
CH; CHjz CHs3 CHs

Fig. 7. Structure of cyclosporin A

Cyclosporin A, which has been used as an immunosuppressant with fungicidal and
anti-inflammatory properties in bone marrow and organ transplants and in auto-
immune diseases since 1983, was isolated from a fungal culture (ZTolypocladium) ***.
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The structure of cyclosporine was established in 1976 by Petcher et al. '* and its
total synthesis was accomplished in 1984 by Wenger 146-147,

4.4 Muramyl Peptides (Glycopeptides)

The muramyl peptides (MP) of the bacterial cell walls are polymeric chain molecules
composed of N-acetylglucosamine and N-acetylmuramic acid, each carrying a
peptide side chain and crosslinked with one another (Fig. 8). The N-terminal D-Ala
residues of the side chains are bound covalently to the peptide side chains of neighbor-
ing polysaccharide chains via pentaglycine units.

e
(130
CH,OH NH
(o}
. (o}
OH o} -
"~ ~
0 o7 ©
l‘lle HOH,C
(|30 H(i)—-CH3
CHj (l)O
L—?Ia
D-Gln
!
D—/i\la—(G|y)5—— L-Lys
|
e -LyS D-Ala—(Gly)s— -
|
D-Gin
L—,ll\la
?O CHy
H(|3—CH3 clo
|
OCHQOH NH
0
o
~o OH o~
o}
TH CH,OH
Cco . . . .
| Fig. 8. Basic structural unit of a peptidoglycan of
CHa the bacterial cell wall of Staphylococcus aureus

(;iba-Geigy AG '*® have synthesized the N-acetylmuramyl-L-alanyl-D-isoglut-
amine-2-(hexadecyloxyhydroxyphosphoryloxy)-ethylamide 60, which has immuno-
potentiating properties.

Muramyl peptides can be used as adjuvants in combination with vaccines (increas-

ing the humoral and cellular immunity) or with antibiotics (increasing the antibacterial
effect).
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CH,0H
o OH
(o] OH |
HO CO~NH—CH,—CHy—O—P—0—{(CHa)15—CHs
NH—CO—CHs I

CH3z —CH~-CO—NH -—-(|3H —CO~NH—CH—CHy—CH,—~CO—NH; (60)

CHy

The mitogenic pentapeptide 67 S-[2,3-bis(palmitoyloxy)-(2 R,S)-propyl]-N-palmito-
y1-Cys-Ser-Ser-Asn-Ala (TPP) of Jung et al. '**, which is a component of the lipo-
protein from the outer membrane of Escherichia coli, also acts as a potent adjuvant
and B-lymphocyte activator.

CH;—(CHy) 14 —CO —~NH—CH~CO—8er—Ser—Asn—Ala
CHp—S—CHy —CH—CHp ~0—CO—(CHy) ;4 — CH3 (61)
I
0O~CO(CHy)14 CHz

The biological effect of the muramyl derivatives is based on the fact that the tissue
macrophages are activated and form the first line of defense of the immune system
against invaders (phagocytosis of the antigen). In addition, the lymphatic system is
activated, i.e. the B- and T-lymphocytes are stimulated (specific immune response) **°.
Protected asparagine glycopeptides 62 were made by Kunz et al. *!) by increasing
the length of the N-terminal peptide chain.

Peoc-Thr-Lys-Met-Ser-Asn-OBz

AcO
0}
OAc (62)
Ac:  Acetyl AcO NH-Ac

Bz: Benzyl
Peoc: 2-{Triphenyiphosphonio) ethoxycarbonyl

The N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramylalanylglutamyldiamino-
pimelylalanine (NAG-1,6-anhydro-NAM-Ala-Glu-dap-Ala, Fig. 9), which was

CHy—OH CHy-O
0 o ﬁ
oH o A& C—OH
HO
NH—C~—CHg NH—%-—CHg (‘Z!’ CH-NH,
I I's) CHs (|3~OH {CHy)3 CHj3
|
CHz~CH—C—NH~CH—C~NH —CH—(CHg)g—ﬁ—NH—CH -«(I.‘l,—NH - CH—ﬁ—OH
il
o o] o o 0

Fig. 9. NAG-1,6-anhydro-NAM-Ala-Glu-dap-Ala

132



Recent Developruents in the Field of Biologically Active Peptides

isolated from human urine as sleep-promoting factor S by J. M. Krueger et al. 132,
exerts a somnogenic effect, i.e. the slow-wave sleep phase (SWS) is prolonged.

Numerous analogs of the muramyl peptide factor >3 !> have been synthesized
with a view to finding endogenous hypnotics that do not lead to dependence.

4.5 Peptide Vaccines

Many research groups are currently engaged in producing antibodies directed against
a synthetic segment of a protein 1%51%9),

Peptides as immunogens that trigger the formation of antibodies of effector cells
(killer cells) in higher organisms could inaugurate a new generation of vaccines.

Antibodies of this type are formed if the synthetic peptide used as the immunogen
is the same as a segment of a protein (antibody) that lies on the surface in its native
form, and whose native conformation can in part be adopted by the peptide (antigen).

Active immunization occurs if the antibodies formed protect the organism from
viruses or toxins. It is hoped that synthetic peptides triggering the formation of anti-
bodies will find use as potential vaccines.

The future importance of peptide vaccines lies in the fact that one could replace
inactivated or attenuated microbial pathogens or toxins, which are high-molecular
and therefore difficult to characterize and standardize, by highly specific synthetic
peptides. Emini et al. *” have synthesized oligopeptides that prime the rabbit immune
system and are effective against poliovirus. The amino acid sequence of the peptide
vaccines 63 and 64 originate in the poliovirus VP, protein.

Tyr-Gly-Gly-Ser-Thr-Thr-Asn-Lys-Asp-Lys-Gly (63)
Tyr-Gly-Gly-Asp-Asn-Pro-Ala-Ser-Thr-Thr-Asn-Lys-Asp-Lys (64)

Synthetic peptide vaccines against the influenza virus, for example, could become
of major therapeutic interest.

4.6 FK-156 and FK-565

D-Lactoyl-L-alanyl-y-D-glutamyl-(L)-meso—diaminopimelyl-(L)-glycine (FK-156) 65,
isolated from Streptomyces olivaceogriseus *® and subsequently synthesized 5%,
is an adjuvant-active and immunostimulating peptide 6.

OH CHs
| | (D)
CH3 CHCO — HNCHCO — HNCHCOOH
© w (L) 6
(CH2)2C0 ~HNCHCO — HNCH, COOH (65)
(CHz)s
HyNCHCOOH

D)

Heptanoyl—y—D-glutamyl-(L)-meso-diaminopimelyL(D)-alanine (FK-565) 66,
a fatty acid derivative of the bacterial cell wall peptidoglycans, and also FK-156
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analogs %112 suppress the growth of tumors when administered subcutaneously
and orally and at the same time are effective against bacterial infections.

(D)
CH3 (CH,) s CO —HN(I:H COOH ( CHa

L)
{CH,)2,COHNCHCO~HNCHCOOH
! (D) (66)
(?Hz)g

HoNCHCOOH
(D)

4.7 Chlamydocins and Peptidylacivicins

Chlamydocin 67, isolated as a cyclic tetrapeptide from culture broths of Diketerospora
chlamydosporia by Closse et al. *® in 1974, has 100 times the cytostatic activity of
actinomycin D with respect to inhibition of cell growth in the mouse. Numerous

chlamydocin derivatives have been synthesized by D. H. Rich et al. '*%.

£

CO/| \
o 9 /Nfa Ho QO
CHg—CH—C—(CHz)s—CEH ?H—CHg@ 67
QO CHz NH
N /
NH_ Lo
|
CH,

The characteristic basic unit of the cyclopeptide is S-2-amino-S-9,10-epoxy-8-
oxodecanoic acid. U. Schmidt et al. have reported the synthesis of chlamydocin and
epichlamydocin '¢%. One of the main problems in the treatment of cancer is always
the high toxicity of cytostatics and their low selectivity against malignant cells.
Attempts to develop prodrugs that are only activated in the vicinity of a tumor by a
tumor-enzyme inhibition have been made with peptidylacivicins. Tumor cells contain
high levels of plasmin-activator and therefore high protease-plasmin levels. According
to Katzenellenbogen et al. 1), with the aid of AT-125 peptide 68 it should be possible
to achieve the full effect of plasmin-activated prodrugs only in the cancer cells.

D-Val-Leu-Lys-NH-CH-COOH
0 (68)

—

N Ci

4.8 Bestatin

Bestatin 69[(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine, whichcaneither
be obtained from culture broths of Streptomyces olivoreticuli as per H. Umezawa
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et al. %7 or by synthesis 1%, can be used in the treatment of malignant skin tumors.

@—CHZ—?H—?H—CO‘NH—?H"COOH
NH, OH C’Hg (69)

CH

/N
CH3 CH3s

5 Peptides of the Renin-Angiotensin System

5.1 Proteolytic Cascade of the Renin-Angiotensin System 169179

Since the reuin-angiotensin system is involved in regulation of the blood pressure,
antihypertensive substances are encountered among the peptides that exert an effect
on this system. The mechanism of the renin-angiotensin system is illustrated in Fig. 10.

Asp—Arg—Val—Tyr—lle—His —Pro—Phe Arg—Pro—Pro—Gly—Phe + Ser—Pro + Phe—Arg

Angiotensin Il
3

Angiotensin-Converting
Enzyme

Asp—Arg—Val—Tyr —lle —His —Pro—Phe—His—Leu Arg—Pro—Pro—Gly ~Phe—Ser—Pro—Phe—Arg
Angiotensin | Bradykinin

&
R
«{Kallikrein |———

Angiotensinogen Kininogen

Fig. 10. Processing of angiotensinogen and kininogen

When the blood pressure is reduced, or during sympathetic stimulation, renin is
secreted from the juxtaglomerular kidney cells. This enzyme liberates a biologically
inactive decapeptide, angiotensin I, from the renin substrate (angiotensinogen)
produced in the liver, with cleavage of a Leu-Leu or a Leu-Val bond (human). Under
the influence of a peptidyldipeptide hydrolase likewise present in plasma (angiotensin-
converting enzyme = ACE), the biologically active angiotensin II is formed from
angiotensin I by splitting-off of the C-terminal dipeptide His-Leu (Fig. 10). Angio-
tensin I1 has a contracting effect on the vascular smooth muscle and is the most power-
ful vasoconstrictor known.
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5.2 Angiotensin II Antagonists and ACE Inhibitors

Inhibition of the action of angiotensin II 70 has been achieved with many angiotensin [
and Il analogs (Fig. 11), in which, on the basis of structure-activity relationships, an
essential function is attributed to the Phe® residue in stimulation of the receptor,
while Tyr* and His® residues are thought to be important in the binding to the receptor.
These angiotensin II-blockers (70-75) prevent the action of the effector peptide of
the renin-angiotensin system on the target organ.

Saralasin 7/ is currently in use as an angiotensin-receptor antagonist in the treat-
ment of hypertension, despite its partial agonistic effect. The disadvantages of 7/
lie in the fact that it is administered i.v. and in its short bioclogical half-life.

Asp-Arg-Val-Tyr*-Ile-His®-Pro-Phe® (70)
Sar-Arg-Val-Tyr-Val-His-Pro-Ala 1)
Sar-Arg-Val-Tyr-Ile-His-Pro-Ile !7*-*"% (72)
Sar-Arg-Val-Tyr-Ile-His-Pro-Thr ! (73)
Sar-Arg-Val-Tyr-Tle-His-Pro-Ala 174 (74)
Asp-Arg-Val-Tyr-lle-His-Ala-Phe 17%) (75)

Fig. 11. Angiotensin II antagonists

The teprotide BPP,, (bradykinin-potentiating peptide) 76 and analogous BPP
peptides 7%, which have been isolated from snake venom, are taken up by ACE in
competition with the substrate angiotensin I with far greater affinity.

pyroGlu-Trp-Pro-Arg-Pro-Gln-lIle-Pro-Pro (76)

Converting enzyme (ACE) inhibitors ™ likewise prevent the formation of angio-
tensin I and are used in the treatment of renal and essential hypertension. Examples
of orally active ACE-inhibitors are: (2)-1-[(28S)-3-[N~(S)-mercapto-2-methylpro-
panoylJproline '’ (captopril 77), 1-[N~(S)-1-carboxy-3-phenylpropyl]-L-alanyl-L-
proline-1'-ethyl ester *”” (enalapril 78), and 2-[N-[(S)-1-ethoxycarbonyl-3-phenyl-
propyl}-L-alanyl]-(1S,38,58)-2-azabicyclo[3.3.0]octane-3-carboxylic ~ acid 178 (Hoe
498; 79).

<
Hs\)\n/ N::) . CHs

..... M
o CIOOH H5€2OOC/\¥\Ii N H
@ 1)) H © COCH
{ (78)
. CH3 H-.,..
AN N Yoy
H5C,00C N
«C2 ‘ pers
H COOH
(79
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Today, captopril (Capoten®) ranks among the most frequently used drugs in the
treatment of hypertension. Enalapril (Xanef®) has been commercially available
since 1985 as a second ACE inhibitor. The discovery of captopril started an avalanche
of research into the synthesis of angiotensin-converting enzyme inhibitors. Some new
developments should be mentioned at this point:

1. Tripeptide analogs of enalapril 80 79, e.g.

Q COOH CHs
Oresmw D, *

H COOH

2. 1-Glutarylindoline-2-carboxylic acid derivatives 81 %%, e.g.

@ & 8D
Hooc” > j
..._H

(e}
COCH

3. N-substituted y-D-glutamyl-cis-perhydroindoline-2-(S)-carboxylic acid 82 '#"), e.g.

(82)

4. Cilazapril = (18,98)-9-[(S)-1-ethoxycarbonyl-3-phenylpropylamino)-octahydro-
10-ox0-6-H-pyridazo-{1,2-a][1,2] diazepine-carboxylic acid 83 182

: ] o GOOH
—N-. s (83)
eood P )

5.3 Renin Inhibitors
Another way of reducing the blood pressure via the renin-angiotensin system is to
block the conversion of angiotensinogen into angiotensin I by inhibition of renin.

Two different types of renin inhibitors are distinguished.
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5.3.1 Substrate-Analogous Renin Inhibitors

As a highly specific acid peptidase, renin cleaves the decapeptide angiotensin I from
the N-terminal end of the substrate angiotensinogen (Fig. 12).

ACE Renin
i !

/"\Sp-A rg-Val-Tyr-lle-His-Pro-Phe-His-Leu-Val-lle-His-X-Glu-Protein
J

Angiotensin 11
L - j
Angiotensin [
L |
Angiotensinogen

Fig. 12. Stepwise enzymatic cleavage of human angiotensinogen; X = peptide fragment of angio-
tensinogen

Derivatizations in the N-terminal sequence of human angiotensinogen led to weakly
active renin inhibitors ¥, According to Szelke et al. '®%), highly active substrate
analogs with modified peptide linkage (—CH,—NH—) were formed by reduction
of the CO—NH bond in Leu-Leu or Phe-Phe (Table 2).

Table 2. Renin inhibitors with a modified peptide linkage; R = reduced peptide linkage

Substrate sequence
1 2 3 45 6 7 8 910 11 12 13 14 Plasma, human

Asp Arg Val Tyr lle His Pro Phe His Leu Leu Val Tyr Ser ... 1C,[M]K,

His Pro Phe His Le\ELeu Val Tyr 1x107¢

H-77 D-His Pro Phe His LelIiLeu Val Tyr 1x1078
His Pro Phe His Pthhe val Tyr 8.2% 1077

His Pro Phe His Let]::Val Ile His 1.9%1077

His Pro Phe His LeliVal He Tyr 1x1077

Pro His Pro Phe His Leu-Val lle His 1.6x 1078

H-142 Pro His Pro Phe His Lef—Val lle HisLys 1.0x107%8
Pepstatin Iva Val Val Sta-Ala-Sta 22x107°

The results of in vitro and human volunteer studies show that the best renin inhibitor
to date is H-142.
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5.3.2 Statine-Containing Renin Inhibitors

Pepstatin 84, which was isolated from actinomycetes and which contains the unusual
amino acid statine (Sta), inhibits renin and other acidic proteases.

H:C CH HsC CH H,C CH

3 \ y; 3 3 \ / 3 3 \ / 3
CH CHyCHs CHsCHs  CH CH
| N/ \/ | i 84
CH, CH CH CHy o CHs CHy oy (84)

| /
CO—NHCHCO —~NHCHCO ~NHCHCHCH,CO—NHCHCO—NHCHCHCH,COoH

lva — Val Val Sta Ala Sta

By exchanging Leu'® for Sta in the N-terminal end of angiotensinogen, active renin
inhibitors have been produced (Table 3) 18°~188) It is assumed that statine corresponds

to the tetrahedral intermediate during the enzymatic hydrolysis of the Leu'®-Val'!

peptide linkage in angiotensinogen.

Table 3. Inhibition of porcine renin by statine-containing substrate analogs, (*K,,-value

6 7 8 9 10 11 12 13
His —Pro—Phe —His —Leu—Leu~—Val—Tyr
His —Pro~Phe —His —Sta— Leu —— Phe—NH,
lva—His —Pro—Phe —His —Sta— Leu —— Phe—NH,
Boc—His —Pro—Phe—His—Sta— Leu —— Phe—NH,
Sta— Leu ——Phe—NH;
His—8ta— Leu ——Phe~NH,
Phe—His—Sta— Leu——Phe—NH,
Pro—Phe—His—Sta— Leu ——Phe~—NH,
Ibu—His—Pro~—Phe —His—Sta—NH,
Ibu—His—Pro—Phe—His—Sta— Leu—NH,
ibu—His —Pro~Phe—His —Sta—Leu —— Phe ~NH,
Ibu—His —Pro—Phe—His—Sta— Ala — Phe—NH,
Ibu—His —Pro—Phe—His—Sta— Val <— Phe—~NH,
iva—His—Pro—Phe —His—Sta— lle —— Phe—~NH,
Boc—His —Pro—Phe —His —Sta—- Leu —— Tyr—NH,
Boc—His—Pro—Phe —His —Sta— Leu—— Phe ~QOCHj,
lva—His—Pro—Phe —His —Sta—Leu—Val—Phe—~NH,

ICs0 (M)
(5.5x1075)*
2.0x10°8
3.1x1078
2.7x1078
20x10°3
3.7x10°*
13x10°8
20x1077
29x1075
6.7x1077
43x1078
5.7x1078
1.2x1077
1.3x1077
26x1078
1.1x10°8
4.6x107°

va = isovaleroyl Boc = tert-Butoxycarbonyl

Iva—bHis—Pro~Phe-His-Sta-He-Phe—I\IH2 is so far the best statine-containing renin

inhibitor.

According to Rich, new protease inhibitors were produced by replacing statine in
pepstatin  derivatives with (3S,4S)-4,8-diamino-3-hydroxyoctanecarboxylic acid
(DAHOA) 85a #* or 4-amino-3-hydroxy-5-phenylpentanecarboxylic acid (AHPPA)

85b 189b,¢c)
NH,

tva—Val—Val—NH —CH\/\n/ OC,Hs
N\

HO H{ O
(85a)

iva—Val—NH—CH

HO™
{85b)

HO

Ala—NH—CH,
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L 3.64210 86 and analogous highly active renin inhibitors, which have a longer
duration of action and greater stability in vivo owing to their improved polarity and
solubility, have been produced by Merck & Co./USA 199,

HsC,—0—CO—Phe—His—NH COwLeu—NHQ (86)
OH

CHoNHo

1t is not only of scientific but also of great commercial interest to develop new drugs
active on renin-induced hypertension.

6 Plasma Kinins

Plasma kinins are tissue hormones liberated from a-globulins of the blood plasma by
kallikrein.

6.1 Bradykinin and Kallidin

Bradykinin 87 and kallidin (Lys-bradykinin-decapeptide), which are split off from
the kininogen in the plasma by trypsin and kallikrein respectively (Fig. 10), hardly
differ in their pharmacological activity. The most important effect of the kinins is
a dilation of the peripheral vessels, which leads to an improved blood flow, in the
kidneys for example, and therefore increases diuresis. By acting on the formation of
angiotensin II, kinins can contribute to the regulation of blood pressure. Moreover,
kinins cause a contraction of the bronchial muscle.

Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg ¢1))]

Bradykinin was first synthesized by Boissonnas et al. '*"), since when many research
groups have reported on bradykinin analogs 89,

6.2 Tachykinins (Fig. 13)

The following active substances, known as tachykinins '**), which in contrast to the
slow-acting kinins exert a rapid stimulating effect on the smooth muscle, are similar
in their biological activities and their structure but differ in their origin. Eledoisin,
which was discovered in the salivary glands of cephalopods from the Mediterranean
by Erspamer in 1949, exerts an antihypertensive effect and acts as a spasmogen. Alarge
number of eledoisin analogs have been prepared by Boissonnas et al. 193) Liibke et
al. 199 Erspamer et al. '°%, and Voelter et al. %%

Physalaemin '°7-1%®), isolated by Erspamer in 1964 from the skin of American
amphibians, has a strong vasodilating and antihypertensive action.
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Uperolein, phyllomedusin, and kassinin, which Anastasi'*® isolated from frog
skin, exhibit broad similarities with other tachykinins.

Pyr-Pro-Ser-Lys-Asp-Ala-Phe-lle-Gly-Leu-Met-NH, Eledoisin

Pyr-Ala-Asp-Pro-Asn-Lys-Phe-Tyr-Gly-Leu-Met-NH,  Physalaemin

Pyr-Ala-Asp-Pro-Lys-Thr-Phe-Tyr-Gly-Leu-Met-NH,  [Lys’, Thr®|Physalaemin

Pyr-Pro-Asp-Pro-Asn-Ala-Phe-Tyr-Gly-Leu-Met-NH,  Uperolein

Pyr — Asn-Pro-Asn-Arg-Phe-Ile-Gly-Leu-Met-NH, Phyllomedusin
Asp-Val-Pro-Lys-Ser-Asp-Gin-Phe-Val-Gly-Leu-Met-NH, Kassinin

Asp-Glu-Pro-Lys-Pro-Asp-Gin-Phe-Val-Gly-Leu-Met-NH,  [Glu?,Pro®|Kassinin

Arg-Pro-Lys-Pro-Gin-Gln-Phe-Phe-Gly-Leu-Met-NH,  Substance P
Arg-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH, Substance K

Fig. 13. Primary structures in the family of tachykinins; Pyr = pyroglutamic acid

Substances P and K can be considered as mammalian tachykinins in view of their
unmistakable chemical relationship.

Caerulein 88, which was isolated from skin extracts from the Australian tree frog
Hyla caerula, has a longer-lasting antihypertensive activity than bradykinin or
physalaemin. It causes a contraction of the gallbladder and bile ducts, and stimulates

intestinal peristalsis. Caerulein analogs have been synthesized by Bernardi et al. 2°%
201)

pyroGlu-Gln-Asp-Tyr-Thr-Gly-Trp-Met-Asp-Phe-NH 2 (88)
SO;H

7 Atrial Natriuretic Peptides (ANP or ANF)

In 1983 de Bold et al. *? first isolated an atrial peptide ANP-(6-33) from homogenates
of rat atrial muscle and elucidated its structure (Fig. 14). In January 1984, K. Kangawa
et al. prepared pure samples of the o-human atrial natriuretic peptide a-h-ANP-
(6-33 Met'7} *°» and of the hitherto longest-known natriuretic peptide containing
126 amino acids, y-h-ANP 2%, from human atrial tissue.

1 3 [} 10 12 17 19
Leu—Ala —Gly—Phe-—Arg--Ser-Leu—Arg—Arg—Ser—Ser—Cys—P’ne-G!y-Gly-—Arg-lle —Asp—Arg
|
S
] lie
S

I
Tyr—Arg—Phe—Ser—Asn—Cys—GIy—-Leu—GIy—Ser—Gln—Ala—GIy
33 32 28 22

Fig. 14. Amino acid sequence of rat atrial natriuretic peptide
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Seidah et al, 2°% isolated ANF-(1-33) from rat atria and synthesized a shorter ANF-
(8-33), which is identical with natural ANF-(3-33) in its biological activity.

Needleman et al. 2°% isolated atriopeptin I [ANF-(10-30) or AP I] and atriopeptin II
[ANF-(10-32) or AP 11}, also from rat atrium extracts.

$. P. Adams (Monsanto Compay) and P. Needleman (Washington University, St.
Louis) synthesized the following atrial peptides by the solid-phase method **”
(Table 4).

Table 4. Biological activity of ANF analogs

ANF analogs Relative activity in
rabbit aorta assays

API1 1.4
AP 200
AP0 0.35
Arg-Arg-AP 11 300
Ser-Leu-Arg-Arg-AP 11 150
DesPhe??-AP 11 7.0
DesSer!-AP 11 200
DesSert-DesSer®-AP 11 56
DesSer?!-AP I 1.0

Table 4 shows that arginine residues at the N-terminal end increase the bioactivity.
Tyr*® is not absolutely necessary, but all the other amino acids at the C-terminal are
(see AP I).

The ANF hormones, which derive from higher-molecular-weigth precursors
(atriopeptigens), have diuretic properties, i.e. an administration of ANF in the rat
increases diuresis and natriuresis (the release of Arg-vasopressin is inhibited) and at
the same time the vessels are dilated, apparently by inhibition of catecholamines and
angiotensin IL. In addition, it has been shown that under volume loading the ANF
peptides are released from the atria and develop their effects as hormones in renal,
vascular, and other tissues. They can be considered as functional antagonists of the
renin-angiotensin system.

The antihypertensive properties of ANF could really represent a new therapeutic
starting point in combatting hypertensive disease in man.

8 Thyroid Hormones (Calcitonins)

Calcitonins (Fig. 15) with an N-terminal intrachain 23-membered disulfide ring were
isolated independently by 4 different research groups, structurally clarified in 1968,
and synthesized.

Calcitonin causes the deposition of calicum phosphate in the skeleton by stimulation
of the bone-forming cells, and hence reduces the levels of calcium and phosphate in
the blood (hypocalcemia). Completely synthetic calcitonin products such as Salmcalci-
tonin (Sandoz Ltd., Switzerland) 2°®), Elcitonin (Toyo Jozo Co., Japan) 209 and
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1
Bovine H-Cyz-Ser-Asn-Leu-Ser—Thr-Cys-Val-Leu-Ser-Ala-Tyr-Trp—Lys-Asp-Leu-

l
Salmon H-C)g-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu—

T 1
Human H-Cys-Gly-Asn-Leu-Ser-Thr-Cys-Met-Leu-Gly-Thr-Tyr-Thr-Gln-Asp-Phe-
Bovine Asn-Asn-Tyr-His-Arg-Phe-Ser-Gly-Met-Gly-Phe-Gly-Pro-Glu-Thr-Pro-NH,
Salmon His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro-NH,

Human Asn-Lys-Phe-His-Thr-Phe-Pro-Gln-Thr-Ala-lle-Gly-Val-Gly-Ala-Pro-NH,

Fig. 15. Primary structures of calcitonin in various species

[16-alanine]-Salmcalcitonin (Armour Pharmaceutical Co.)?!?, are available for
therapeutic use (bone atrophy).
9 Peptide Antibiotics

Since the discovery of bacitracin 89 35 years ago and of gramicidin 90 *'" in 1946,
hundreds of peptide antibiotics have been synthesized.

H
I - s
CH30H2—(13———~C!:H——<\ l

N C -~ Leu— D-Glu—= lle
CHs NH;
3 | (89)
S

E lie =— D-Orn=— L)T/
D-Phe —+ Hig — Asp— D-Asn

LVal——Orn-—Leu— D-—Phe—Pro—Val-—Orn——Leu——D—Phe_Pro—] (90)

These are active against gram-positive but not against gram-negative bacteria.

In comparison with the penicillin and cephalosporin derivatives, the peptide anti-
biotics are not numbered among the “major antibiotics”. Their action mechanisms
vary, e.g. inhibition of cell-wall synthesis, increased permeability of the cell wall,
or influence on nucleic acid synthesis.

The presence of D-amino acids and other unusual non-proteinogenic amino acids
1s characteristic.

9.1 Monamycins
The monamycins 91, a family of 15 hexapeptide members, which, as ionophores,
induce the passage of ions through biological membranes, have hexahydropyridazine-

1-carboxylic acid as their characteristic basic unit and exhibit antibacterial properties.
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Hassall et al. 22 have synthesized cyclic hexadepsipeptides (R = R? = R* = H,
= CH,), which form strong complexes with K*, Rb*, and Cs™*.

1
CHR' L CHR®  HuC—CHOH
HsC—~CH 7N /N
¢ Y G HN O,
0—CH—-CO——N—CH~ CO—N—CH—C=0
(L (D) (w
(D) (w (D) oD
O=C—CH~NH—0C— CH—N——0C—CH~-N~Chg
H, G  CH
R%H,C  CHg / CH
R AN
HaC CHs

9.2 Phosphonopeptides *'3~2!%

Peptide antibiotics, for example (S)-alanyl-(R)-1-aminoethylphosphonic acid (ala-
fosfalin) 92, having an aminophosphonic acid at the C-terminal end of a peptide
chain, have been synthesized by Hoffmann-La Roche AG/Switzerland *'® and
Roche Products Ltd./U.K. 2'®_ Alafosfalin, which inhibits the biosynthesis of the
bacterial cell wall, is effective against gram-positive and gram-negative microorganisms.

CH3 CHy O

| |
HN—CH—CO—NH—CH—P{ OH 92)
OH

9.3 Actinomycins

Actinomycin D 93, isolated from Streptomyces antibioticus in 1940, belongs to the
class of chromopeptides and is characterized by its cytostatic growth inhibition in
tumors and antibacterial action.

Sar «-L-Pro L-Pro-=Sar
/ N\
{~-Meval D-val D—Via\! L-MeVval
\ / /
O—LeThr,_ _LThr—0 93)
3 NHz
% O
CHj

More than 30 natural actinomycins are now known and a variety of synthetic ones 89
21 Jinked with 2 pentapeptide lactone rings via an aminophenoxazinone chromo-

phore.
The use of the actinomycins is limited by their high toxicity.
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9.4 Albomycins

Albomycins (desferriforms, Fig. 16), isolated from the strain Streptomyces spec.
WS 116, are nucleoside peptides that exert antibiotic effects 2'® and have iron-complex-
ing properties.

0

o} 0
HO\N/U\CH3 HO\N/U\CHg HO\N/U\CH3

CO————N~ >0 ——N”" > CO—-N"">Co~N (\f

s
HO N\[]/N\cna
o

HoN

X = N-CO~NHj, Albomycin &, HO OH
X= O Albomycin &,
X = NH Albomycin £

Fig. 16. Desferriforms of albomycins

9.5 Nisin

Nisin (Fig. 17), isolated from Streptococcus lactis culture broths in 1952, was
structurally clarified only in 1970 by Gross et al. >'*). A partial sequence (ring A)
of nisin was synthesized in 1983 by Shiba et al. 229,

5
fle~Dha~—Leu S
/ \ NG 15
fle—Dhb—Ala Ala—Abu Ala—Lys—Abu—Gly—Ala
1 ™ Pro~Gly” 4 N
s 10y s Leu
Ala—Gly—Met
/
Asn 20
/
| Ring A > /Met
Lys
Wi
Abu—Ala
s/
S
™ Ala—Abu
~
s
His—Ala”
\

Ser—lle—His —Val—Dha—Lys
30 34

Fig. 17. Amino acid sequence of nisin; Abu = 2-aminobutyric acid

Nisin served to confirm that o, B-unsaturated amino acids occur naturally (Dha
= dehydroalanine, Dhb = a-aminodehydrobutyric acid).
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9.6 Nikkomycins

Nikkomycins Z 94 and X 93, isolated as nucleoside antibiotics from Streptomyces
tendae **Y, inhibit chitin biosynthesis and have fungicidal and insecticidal properties.

OH NHp

HO CHs COOH 2 o
id i i z
Sy CH—CH—CH-CO—NH~CH R R= M7 L
N o O/J\,T A

I

OHOH (94) 95)

Several reports on the structure elucidation and syntheses of nucleoside peptides
have been published by W. A. Kénig et al. 222,

In addition, nikkomycin B 96 22, which has a p-hydroxyphenyl residue in the N-
terminal amino acid instead of the 3-hydroxypyridine system of 95, was isolated from
the culture filtrate of Streptomyces tendae.

o
v %
A0
0N
HO Chs HOOC
|
\©—CH~CH-?H—CO—NH—CHO (96)
|
OH NH,

OH OH

9.7 Cecropin A

Cecropins 22 are produced in insects on account of the lack of lymphocytes and
immunoglobulins by a humoral immune reaction, and have a broad spectrum of
antibacterial activity.

Cecropin A analogs (Fig. 18) have been synthesized by Andreu et al. 225} by the
solid-phase method.

—Lys' Trp Lys Leu Phe Lys Lys lle Glu Lys valtt —
Glu

Pro

Glu

Leu

Pro

Gly'? Gln Asn Lle Arg Asp Gly Ll lle Lys Ala™
Gly®® Pro Ala Val Ala Val Val GlyGin Ala Thr®
Gln*Ile Ala Lys NH,

Fig. 18. Amino acid sequences of cecropin A analogs
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9.8 Alamethicins

In 1970 Payne et al. **% elucidated the lipophilic a-helical structure of the eicosapeptide
alamethicin 97 (eight a-aminobutyric acid residues = Aib, L-phenylalaninol = Phl),
isolated from the culture liquid of the fungus Trichoderma viride. The sequence of
the amphiphilic peptide antibiotic was confirmed in 1985 by Jung et al. ?*”’ by total
syntheses.

1203 405 607 8 9 101l 02 13 141516 17 18 19 0
Ac-Aib-Pro-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu-Gln-Phl  (97)

Alamethicin exerts bacteriostatic, fungicidal, cytostatic, and hemolytic effects.
The most important property of the alamethicins is the formation of potential-depend-
ent ion-conducting pores in lipid membranes as a mode! for the conduction of nerve
impulses 279,

10 Peptide Leukotrienes 2*®)

Leukotriene LTC, 99 is formed enzymatically from leukotriene LTA, 98, which is
formed from arachidonic acid by means of lipoxygenase, by nuclephilic attack of the
thiol group in glutathione (y-glutamylcysteinylglycine).

o) H., ,OH
ONNZ COOH PNPZe COOH
— — H “S_C‘Hz
(l)H =CO—NH—CH,~COOH
NH-—CO—CH,—CH, ——(|3H ~-COOH

98
(98) (99) NH,
LTC, (slow-reacting substance = SRS), synthesized by Corey etal. 22, is converted
into the biologically more active S-cysteine-glycylleukotriene LTD , 100 or S-cysteinyl-
leukotriene LTE, 101 under the influence of y-glutamyltranspeptidase (GGTP).

e COOH "2 coon

=N L. sZcH 24 T—l Ny
Cl)H—CO-NH—CHg—COOH ?H-COOH

NH, NH,

(100) (101)

The peptide leukotrienes 99, 100, and 101 cause contraction of the bronchial smooth
muscle and probably play an important role as mediators in allergic reactions (e.g.
asthma) and inflammations. Antagonistic blockade of the leukotriene action of
99, 100, and 101, by analogy with histamine H,-receptor antagonists, would therefore
be an important principle in the treatment of allergic symptoms. A number of selective
peptide leukotriene antagonists have in fact been synthesized by Smith Kline &
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French Lab. #*°® and Schering-Plough Co./USA 23 e g, 4-R-hydroxy-5-S-cysteinyl-
glycyl-6Z-nonadecenoic acid 102.

S—Cys—Gly

HzsCr2 \:/\{\/ COOH (102)
OH

11 Peptide Insecticides and Herbicides

The cyclic depsipeptides destruxin C and D 103 and bassianolid 704 **!), which contain
a-hydroxyisovaleric acid, N-methylvaline, or N-methylleucine, act as insecticides.

O R1 " ]
| HzC CHg
HN—CH2~CH2—C—O~CH-C,>=O NS
HsC  CH CH
0=C 3 3
| (103) “ch c|3H
HaC—CH HC | 2
O—CH—C—~N—CH—C—
HaC—N <i3===0 o LWl
O=C——CIH——1¥I—-—!C[:—CI:H~—NH - Chs
CH R, O CH,
AN |
HyC  CHg /CH (104)
N
HyC  CHa
Destruxin Ry Ro
c HO—CH,—CH(CHg}—CHz~  HaC—
D HaC ~CH(COOH) ~CHp — HyC—

Phosphinotricylalanylalanine 105 (bialaphos), isolated by Zéahner et al. *'%-3?
from the culture filtrates from Streptomyces species, has a strong herbicidal action.

(lJl CHa CH3
(Ll I l
H3C P ~CHy —CHy —~CH—~CO—NH—CH~CO—NH—CH—COOH (105)
! | {L W]
OH NH;

12 Peptide Toxins

The phallotoxins /06, e.g. phalloidin, and the amatoxins 107, e.g. a-amanitin, produced
by Amanita phalloides or death cup, are among the best-known peptide poisons B3,

The amatoxins are cyclic octapeptides composed only of L-amino acids and contain-
ing a sulfoxide group instead of the thioether bridge in phallotoxin. Over 909, of the
fatal cases of mushroom poisoning can be traced back to the amatoxins. Wieland
et al. 2 have shown that, in addition to the toxins, the death cup contains a low
concentration of an antitoxic cyclic decapeptide antamanide 108.
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CH,OH
HaGC
>CH—CO—NH—CI:H—CO—NH—H(l'}—CHz—(|3—CH3
HT CHp <|:o OH
°f J'\_@ ! (106)
_g” N
HC—8” N ’
N—OC—HC H<|:—CH3
" HN — OC—CH—NH—0C
OH
HO—CH
CHa
HaC—OH
H—C—OH
H3C—('3—H
Hlil—CH—CO ——NH —(l:H —CO—NH—CH,—CO
ocC CHy NH
I | CHs (107)
H><:(I3H o=s— CH—CH
HO” N N OH ‘ ™ CH—CHj,
CHp clzo
OC—CH—NH—CO—CH—NH—CO—CH, NH
HoC—CONH,
cyclo-(-Pro-Phe-Phe-Val-Pro-Pro-Ala-Phe-Phe-Pro-) (108)

The cyclopentapeptide malformin 109, a metabolite of Aspergillus niger, was
structurally elucidated by Bodanszky 2*3® and synthesized in 1973. This has anti-
biotic and antimycotic properties and causes malformation in mice and in higher
plants.

1
D-Cys-D-Cys-L-Val-D-Leu-L-Ile (109)
r 1 2 3 4 5 _]

The sequence isomer of the natural product [Ile?, Val’]-malformin /70 was synthesiz-
ed as allomalformin by Bodanszky et al. 23" in 1982.

1
I—»D-Cys-D-Cys-L-Ile-D-Leu-L-Val-—1 (110)

The structure of the toxic octapeptide lophyrotomin 1/1 (LD,,, = 2 mg/kg),
isolated from Australian sawfly larvae (Lophyrotoma interrupta), was established by
D. H. Williams et al. 23 in 1983.

CsH;CO-(D)-Ala-(D)-Phe-(L)-Val-(L)-Ile-(D)-Asp-(L)-Asp-(D)-Glu-(1)-Gln (111)
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Lophyrotomin leads to fatal intoxications in cattle and sheep, with muscle twitching,
refusal of food, and acute liver failure.

13 Sweet and Bitter Peptides
During the synthesis of a gastrin tetrapeptide Schlatter et al. 2>”' made the incidental

but extremely interesting discovery that the dipeptide aspartylphenylalanine methyl
ester 712 (aspartame) is 100-200 times as sweet as sucrose.

CH,—COOH
L)
HoN—CH—CO—NH~CH--COOH;
L) 1 (112)
CHy

Aspartame is marketed very successfully as a sweetener in the USA.

The 1,1-diaminoalkane derivatives such as 713, developed as a new class of sweet
peptides by Goodman et al. 2*® on the basis of the retro-inverso peptide modifica-
tion 29, are 800-1000 times as sweet 4s sucrose.

CH;—~COOH  CHj HyC. CHg
| |
H,N—CH—CO—NH—CH--NH—CO (113)
HgC CHs

The bitter peptide BPI a /14, isolated by Okai et al. >**’ from casein hydrolysates,
and delicious tasting peptides from fish proteins, will undoubtedly achieve practical
importance in the food industry.

Arg-Gly-Pro-Pro-Ile-Val (114

14 Final Remarks

The purpose of this review was to show the variety of peptides synthesized or isolated
from natural products in the last 15 years and to classify the biologically active peptides
into the various categories, according to how and where they are formed, their trans-
port, and their general cellular activity. The number of biologically active peptides
has risen sharply in the last few years owing to the improvement in the preparative
methods in conventional peptide synthesis — at present about 130 different coupling
methods are known — and in the solid-phase peptide synthesis.

New interesting peptide hormones have also been found in human, animal, and
vegetable organs owing to the improvements in methods of analysis and separation.
For example, the development of radioimmunoassay first paved the way for the
investigation of neuropeptides. Thus, R. Guillemin and A. V. Schally were able to
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establish the structure and to synthesize the first hypothalamic hormones. The
discovery of a stereospecific opiate receptor in the nervous system initiated an intensive
search for endogenous substrates for this receptor {endorphins, dynorphins). We are
probably only at the beginning of the development of neuropeptides (e.g. CNS-
active peptides), whose end is still not in sight.

For some years DNA-recombination has also been available for peptide synthesis.
Genetic engineering will enable peptides of higher molecular weight, and those hardly
accessible up to now, to be obtained in larger amounts.

The predominantly clinical use of peptide pharmaceuticals and their applications
in diagnostics have so far kept their market potential within narrow limits. Since
the discovery of angiotensin Il antagonists (e.g. saralasin) and ACE inhibitors (e.g.
captopril), however, peptide chemistry has gained in importance within the context
of drug research. Broader introduction of active peptide substances in pharmaco-
therapy will have to await the development of peptide drugs suitable for administra-
tion by the oral route.
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