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Analytical chemists deal with a wide range of decision making problems such as: the selection 
and design of an analytical method, and processing and interpretation of the measured data. For 
this purpose, formal strategies and algorithms based on statistical and mathematical techniques are 
needed. The development of such strategies is the area of research of Chemometrics, a discipline of 
analytical chemistry. In this paper the role of chemometrics in the analytical process is discussed and 
a historical survey is given of the development of Chemometrics during the past two decades. A selec- 
tion of standard Chemometric tools available to the analytical chemist is discussed in some more 
detail: multivariate optimization, data processing and calibration. The paper is closed with a few 
remarks on future directions of Chemometrics. 
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1 The Role of Chemometrics in the Analytical Process 

1.1 Economical Aspects of Analytical Information 

In its narrow sense, chemical analysis is an activity of  obtaining information on the 
identity or on the quantitative composition of a sample. By chemical analysis an 
analytical result is produced, which may be one or more numbers, or one or more 
compound names. Why do analysts, or in general analytical laboratories, produce 
these numbers and names? This question has been addressed by several analytical 
chemists 1,2.3) 

The proposed answers vary from "because everyone does" to "because we think 
that the analytical results contain relevant information for the customer who asked 
for the analysis". Another often mentioned reason is simply "because the customer 
asked for it". As Massart 1) pointed out, it is to be hoped that your own answer is not 
this last one, but is instead "because we think the value of the information present in 
the analytical result is more worth than the cost of  obtaining it". This means that 
analytical information has an economical value. This fact confronts us with three 
problems, namely: how can we quantify the amount of information, or the quality 
of information present in the analytical data? What are the cost of  chemical analysis? 
How to quantify the economical value of analytical information ? 

Intuitively we can feel that the economical value of the analytical result is related 
to its quality. The quality of an analytical result dcpends upon two factors: first of 
all we should know how confident we are about the produced result. In fact, an ana- 
lytical result without an explicit or imp|icit (by the number of significant figures) indica- 
tion of its precision has no quality at all. Second, the quality of  the analytical result 
depends on how well the sample represents the system of its origin. The sample may 
be contaminated or may be modified because of inappropriate storage and aging. 
In other instances, when the sample is taken from a chemical reactor in which a chemi- 
cal reaction is occurring, the constitution of the reactor content is usually time varying. 
Because of  inevitable time delays in the analytical laboratory, the constitution of 
the sample will not anymore represent the actual constitution in the reactor at the 
moment when the analytical result is available. Therefore, both the precision of the 
analytical method and thc analysis time are important indicators for the quality of  
an analytical result 4). 

This requirement of being able to attach a quality label to our analytical results, 
made that statistics and the statistical treatment of our data have become of a tremen- 
dous importance to us. This is reflected by the fact that in 1972 ANALYTICAL 
CHEMISTRY started with the publication of a section on "Statistical and Mathe- 
matical Methods in Analytical Chemistry" 5,6) in its bi-annual reviews. Although we 
feel us quite confident on how to express our uncertainty (or certainty) in the produced 
numbers, we are less sure on how to quantify our uncertainty in produced compound 
names or qualitative results. 

The economical value of the analytical result depends upon the amount of informa- 
tion the customer actually receives, and upon whether the customer indeed uses that 
information. The amount of received information can be defined as the difference 
between the initial uncertainty (H o) of the customer before receiving the analytical 
result(s) and the remainder uncertainty (H 1) after having received the result(s). The 
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net yield of information is thus: AH = H o --  H 1. If we apply this definition to the case 
of process control, then H 0 is related to the variance of the uncontrolled process and 
H1 is related to the variance of the controlled process. When considering the cost- 
effectiveness of analytical effort, we should therefore, weight the cost (C) of producing 
analytical information (H~), against the return or profit (P), earned by applying the 
net amount of received information (AH) by the customer. Decision making in the 
analytical laboratory is, therefore, focussed on maximizing the net profit (P--C). 
This obliges the manager of the analytical laboratory 'to keep evaluating the analytical 
methods and equipment in use in the laboratory, in relation to the changing demands 
for information by his customers and to the new technologies introduced on the market 
place. Todays equipment is of an increasing sophistication, with capabilities to deter- 
mine more analytes in a shorter time and with better precision and contains software 
to treat the complex data structures it generates. 

Two examples are given below, which demonstrate the economical principles 
mentioned above. 

The first example is from Leemans 4~ and applies to process control. When monitor- 
ing a process, the uncertainty about the actual state of an uncontrolled process is 
the variance of the parameter of interest: s 2. From information theory 7~ it follows 
that the initial information (Io) available on the process is inversely proportional to 
the uncertainty, namely: I0 = log2 l/s~ (log2 is the logarithm on a base 2). 

Equally, the uncertainty about the process value after analysis is the variance of 
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Fig. 1. The net yield of information (1), in bits, obtained by analysis with an analytical method with 
an analysis time, Td, and analysis frequency, lfra,  for the control of a process with a time constant, Tx. 
From G. Kateman and F. W. Pijpers, "Quality control in analytical chemistry" p. 87 (1981). Copyright 
© 1981, John Wiley & Sons Inc. New York. Adapted and reproduced by permission of Wiley & Sons, 
Inc., New York 
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the controlled process: s 2. The information after analysis is therefore, 11 = log 2 1/s 2. 
The net yield of  information AI = 11 _ i0 = log 2 So/S1.2 2 

Leemans 4) and Miiskens 8~ derived a relationship between the net yield of  informa- 
tion and the quality o f  the analytical procedure, expressed in terms of  analysis time 
(To), precision (era) and the sampling frequency (1/Ta). Their results are graphically 
displayed in Fig. 1. The conclusion on one hand is predictable but is on the other hand 
very striking. Equal investments in the laboratory may have different effects on the 
net yield of  information, depending on the particular situation, e.g. an increase of  
the workload by a factor of  2 may have a very minor effect (point C --* C'  in Fig. 1), 
or  may have a very pronounced effect (point D ~ D '  in Fig. 1). The diagram also 
shows that a replacement of  a method by a twice as fast one (e.g. as a result o f  optimiza- 
tion) may have no effect at all (point A --, A '  in Fig. 1) or may have a significant effect 
(point B ~ B'  in Fig. 1). This proves that equal marginal cost may yield different 
marginal returns. 

The second example is from Massart 1), who derived a relationship between the 
quality of  an analytical result and its utility for medical diagnosis. As an indicator 
for the utility of  a clinical test, one can use its specificity. This is the percentage of  
"normal"  patients which are recognized as such. The less analytical errors are made, 
the better the specificity will be, which is shown in table 1. This table demonstrates 

Table 1, Percentage (u) of "normal" 
patients recognized as such and 
amount of produced analytical in- 
formation (I). Data from Acland and 
Lipton 9) and adapted by Massart 1~ 
Reprinted by permission of Elsevier 
Science Publishers, Amsterdam 

SA/Sr~ u 1 = log 2 (SN/S A) 

0.1 99 3.32 
0.2 99 2.32 
0.3 98 1.73 
0.4 97 1.32 
0.5 95 1.00 
0.6 94 0.73 
0.8 90 0.32 
1.0 86 0 

that the law of  marginal utility applies in analytical chemistry. For  the same amount  
of  extra information, the obtained marginal utility decreases. Both examples de- 
monstrate that although decision making in the analytical laboratory is very complex, 
it could be made easier when formal knowledge is available on basic relationships 
between the amount  of  generated information and the characteristics of  the analytical 
method. In most of  the cases, these relationships are expressed in mathematical or 
statistical formulas or models. It is, therefore, necessary to try to formalize the different 

parts o f  the analytical process. 
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1.2 Stages in the Analytical Process 

Despite the large amount of  different analytical procedures, a regularily returning 
pattern of  activities can be discovered in chemical analysis. This pattern of activities 
can be considered to define the analytical process. In the previous section it was ex- 
plained that the analytical system, which consists of a sample input and result output 
(Fig. 2) represents only a part of the total analytical process. The sample is the result 
of  several actions after the receipt of  the customers' chemical problem. The obtained 
analytical result, however, still needs to be converted into information. Therefore, 
the analytical process is better described as a cycle, which begins with the formula- 
tion of the problem that needs a solution by chemical analysis and is finished after 

Sample I IA°°'y"c°' I , Analytical signal Analytical data 
apparatus " processing J 

t 1 

Result 

Fig. 2. The analytical method. From K. Eckschlager, V. Stepanek, Anal. Chem. 54, 1 t 15A (1982). 
Reproduced by permission of the American Chemical Society, Washington DC. 

i~l,~kL¥ T ICA L 

process ~ 

\ 
/ ......... 1 coo.e..,'' oo p,o,,,~, 
I ..... ° r ' ~  ~ s..p,,o,~---------]-- 
~ \ ; - \  L / I s , , . , . . , . . /  

\ dataprocessing , ~ f  / / 

V /  optimization calibration "~V 

Fig. 3. The analytical process. From B. G. M. Vandeginste, Anal. Chim. Acta 150, 201 (1983). 
Reproduced by permission of Elsevier Science Publishers, Amsterdam. 
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the analytical information has been actually supplied to solve that problem (Fig. 3). 
By a number of consecutive actions (Fig. 3) the initially formulated problem is translat- 
ed into an analytical problem, (a)sample(s), rough data, refined data, analytical 
results, information and finally knowledge. The activities necessary for these conver- 
sions are: method selection, sampling, sample preparation and measurement, data 
processing and finally results processing. These steps define the principal stages of 
the analytical process. Associated with these steps are the decisions we have to make 
in order to obtain a maximal net profit. Without aiming to be exhaustive, a number of 
these decisions are listed below: 

method selection: 
make a list of candidate methods, evaluate cost, precision, analysis time, expected 
workload in view of required sampling scheme. 
sampling: 
derive the best sampling strategy. 

--  measurement : 
tune the initial measurement conditions for optimal performance (e.g. resolution 
in chromatography). 
select a proper calibration method: univariate or multivariate. 
design a system for quality control 

- -  data processing: 
enhance the data if necessary; select the proper filter or smoothing technique 
restore the data if necessary; select the proper method for deconvolution. 
reduce the data to concentrations; select the proper univariate or multivariate 
method result processing: 
combine, classify and interpret the results --  select the proper multivariate method. 

Because the analytical process is a cycle or chain, each link or operation defines the 
ultimate quality of the analytical information. The effect of a poor sampling strategy 
will be very difficult to be compensated by a very good calibration method and vice 
versa. It is, therefore, the uneasy task of the analytical chemist to make the right or 
best decision at every stage of the analytical process. A large part of the decision process 
was believed being impossible to be formalized. Many have put up with the apparent 
fact that a successful analyst has an inexplicable sense of the right decision. This would 
reduce analytical chemistry to an art, which is not. It is likely that the above mentioned 
decisions cannot be made without the support of applied mathematics and statistics. 
Our possibilities to apply these techniques depend strongly on the availability of 
modern computer technology and on the imagination of the analytical chemist to 
follow closely on heels the advances in computer science, mathematics and statistics. 
The necessity to apply these techniques becomes the more and more urgent when 
analytical equipment produces the more complex data. A typical example is a new class 
of analytical methods, which consists of two linked methods such as gas chromato- 
graphy-mass spectrometry. 

In the present time with almost unlimited computer facilities in the analytical 
laboratory, analytical chemists should be able to obtain substantial benefits from the 
application of time series, information theory, multivariate statistics, a.o. factor 
analysis and pattern recognition, operations research, numerical analysis, linear 
algebra, computer science, artificial intelligence, etc. This is in fact what chemo- 
metricians have been doing for the past decades. 
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1.3 Chemometrics in the Analytical Process 

Chemometrics is not a mathematical discipline and should not be confounded with 
one or more of the disciplines from mathematics. It is, however, a chemical discipline, 
as is schematically shown in Fig. 4. The inner circle represents the chemical analysis. 
The decisions mentioned in previous sections are supported by chemometric tools. 
Chemical analysis together with the chemometric tools belong to the area of analytical 
chemistry, which is schematically represented by the outer circle. The mathematical 
techniques surrounding this outer circle are auxilary techniques to the analytical 
chemist. In this picture, Chemometrics is the interface between chemistry and mathe- 
matics. As Kowalski 10~ clearly stated "Chemometric tools are vehicles that can aid 
chemists to move more efficiently on the path from measurements to information to 
knowledge". This brings us to the formal definition of chemometrics 1~) "Chemo- 
metrics is the chemical discipline that uses mathematical and statistical methods (a) 
to design or select optimal mesurement procedures and experiments and (b) to provide 
maximum chemical information by analyzing chemical data. In the field of Analytical 
Chemistry, Chemometrics is the chemical discipline that uses mathematical and 
statistical methods for the obtention in the optimal way of relevant information on 
material systems". 

Key words in the definition are "optimal" and "material systems". These express 
the fact that chemical analysis is related to a problem and not to "a sample" and that 
economical aspects of  chemical analysis prevail. The result of  chemometric research 
is chemometric software, which enables a large scale implementation and application 
of chemometric tools in practical chemical analysis. 

Fig. 4. Chemometrics, the interface between the analysis and mathematics. From B. G. M. Vande- 
ginste, Anal. Chim. Acta 150, 203 (1983). Reproduced by permission of Elsevier Science Publishers, 
Amsterdam. 
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2 Chemometrics  in a Historical  Context  

It  happens that this paper is published a year after the 10-th anniversary o f  the Chemo- 
metric Society, which was founded by Wold en Kowalski, who also coined at the time 
the word Chemometrics as a title for a new subdivision o f  analytical chemistry using 
the methods described in previous sections. 

The current interest of  analytical chemists may be read from the Chemometric 
Society Newsletter distribution list ~2) (table 2). 

Table 2. Chemometrics Society newsletter distribution list 1985 

Country Number Country Number 

Australia 5 Indonesia 1 
Austria 13 Iraq 1 
Belgium 15 Italy 49 
Brazil 3 Japan 8 
Canada 12 Kenya l 
China 1 Netherlands 59 
Czechoslovakia 7 Norway 29 
Denmark 8 Portugal 5 
Finland 5 Poland 6 
France 17 Romania 4 
Germany (East) 2 South Africa 1 
Germany (West) 28 Spain 15 
Great Britain 50 Sweden 9 
Greece 2 Switzerland 4 
Hungary 7 Turkey 4 
India 2 U.S.S.R. 1 
Yugoslavia 5 United States 262 
Iceland 1 

Apparent  centers with major interest in Chemometrics are the USA and the Nether- 
lands in Europe, with respectively 262 and 59 members. Therefgre, it is interesting to 
report on a survey made by Tuinstra et al. 13) of  300 Dutch analytical laboratories on 
their knowledge of, and familiarity with modern Chemometric optimization strategies. 
These optimization strategies require a relatively low level of  abstraction and mathe- 
matics and can be expected to be fairly well known: 36 % have heard or read about 
these strategies. Only 5 % know and use optimization techniques and another 6% 
of  the respondents have seriously considered using optimization techniques but 
finally decided against it. There was no difference observed between the private sector, 
clinical laboratories and governmental laboratories~ In every case but one there was 
at least one university graduate present. The investigators of  this survey found these 
figures disappointingly low. One should, however, take into account the facts that 
there is no real textbook available on Chemometrics and there is a considerable time 
lag between research and education. Another point which hindered a large scale 
aoptication is the availability of  certified and thoroughly tested Chemometric soft- 

ware at the time of  this survey. 
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Two major developments in the past decade increased the impact of Chemometrics: 
the development of computers and micro-electronics and the advancement of analyti- 
cal instrumentation. 

In a lecture given to the Analytical Division of the Royal Chemical Society, Bet- 
teridge 14) summarized the impact of these developments on analytical chemistry as 
providing solutions to barriers to analytical information, giving rise to new problems 
(table 3). I will follow his lines to discuss the evolution of Chemometrics in its historical 
context. 

Table 3. The generation of analytical information. From J. Betteridge, lecture presented at the Sym- 
posium "The integrated approach to laboratory automation", RCS, Analytical Division, Dorset, 
October 1985 

Barrier to analytical Solution New problem 
information 

pre 1960 Data generation (burette) Electronic control Miles of chart paper 
1960's Data acquisition Digitisers Masses of data and results 
1970's Data/result reduction Mini/microcomputers Masses of information 
1980's Information management Workstations, L I M S  Complexity of decisions 
1990's Intelligence AI, expert sys tems  Fundamentals of analytical 

chemistry 

The pre-sixties was a period just before the second phase of  the electronics revolu- 
tion that took place in 1960. During and before the fifties, most of our analytical 
equipment had to be controlled manually, making the data collection, slow and 
laborous. The measurement of a spectrum with a single beam spectrometer, for 
instance, had to be carried out point by point, with in between a manual adjustment 
of the monochromator and baseline. The principal barrier to the production of analy- 
tical information was, therefore, the data generation. It increased the desire for having 
recording instruments. The first spectrometers with automatic wavelength scanning 
and baseline correction became widespread available in the fifties. As a consequence 
data generation became relatively easy and fast, causing, however, the production of 
miles of chart paper. The lack of the possibility to transform recorder traces into 
useful analytical information became the next barrier to the production of analytical 
information. 

In the sixties semiconductor devices were introduced, changing the design of ana- 
lytical instruments and dropping the price of computers by a factor 10 by the late 
sixties. The dedicated computer (by now. called minicomputer) appeared in the bigger 
analytical research laboratories. Although access to such a computer was not very 
convenient and interfacing was not standardized and painful, the analytical laboratory 
could generate masses of data and results, such as digitized mass spectra, infrared 
spectra etc. The introduction of these dedicated (interfaced) computers was going to 
change the face of  chemical analysis, if adapted to our needs. Before a computer can 
do anything with signals, they need to be converted from an analogue into a digital 
form. Digital data processing required the development of discrete, numerical al- 

9 
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gorithms and their translation into a computer readable code, called software. It 
is, therefore, not surprising that at that time much attention was given on the treat- 
ment of signals. In 1968 the Fast Fourier Transform algorithm was published 15) 
for the calculation of a discrete Fourier Transform. Its counterpart in the time domain, 
digital smoothing, was developed by Savitzky and Golay 16) and published in 1964. 
The application of advanced algorithms on analytical signals became easier with the 
publication of complete program listings. For the processing of UV-Vis and IR- 
spectrometry data, for example R. N. Jones 17. ~8,19), published quite a complete and 
useful package, which contained programs for curve fitting, the calculation of deriva- 
tive spectra, spectrum subtraction etc. The underlying algorithms were selected after 
a careful investigation of performance. 

The seventies are marked by tumultuous developments. Computers evolved from 
an expensive tool for the few to a cheap, everywhere present tool for everybody. In 
1978 the first complete microcomputersystem was introduced, first with relatively 
modest capabilities but later (80-ies) getting more calculating power than the obsolete 
mainframe from the sixties. Of course, the advances in digital electronics would also 
influence analytical instruments. Analogue meters were first replaced by digital 
BCD-displays. Later switches and buttons were replaced by a keyboard. At the 1975 
Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, the first 
analytical instruments appeared which where operated under complete control of a 
microprocessor. These included an electrochemical system, a number of X-ray 
fluorescence systems, a mass spectrometer, and a programmable graphite furnace 
atomic absorption instrument. Besides the process of further sophistication of existing 
measuring principles, new types of devices for chemical analysis were introduced. 
For example, a chromatograph coupled to a mass spectrometer. This new type of 
equipment, by now called hyphenated method, generates no longer one spectrum or 
one chromatogram, but is capable to mcasure several spectra at short time intervals. 
The data form a data matrix. When operating such an instrument during 15 minutes, 
with one spectrum per second, digitized over 200 mass units, this data matrix contains 
180.000 datapoints! If one data point occupies 4 byte, 720 Kb information has been 
collected. The impact of these hyphenated systems in analytical chemistry can be 
read from Table 4, which shows the state of the art by the beginning of the 80-ties 
52 different hyphenated methods are available and 16 new methods are expected to 
appear in the eighties 20) 

An eversince lasting development in analytical chemistry, of course, is the introduc- 
tion of new techniques. Inductively coupled plasma atomic emission in the seventies, 
is an example. Obviously a new barrier to the production of analytical informatiorr was 
the problem of how to transform these masses of data into accurate and reliable infor- 
mation. Equally, a growing need was felt to evaluate and optimize analytical methods 
and procedures for obtaining a cost-effective laboratory operation. This was the 
ground, fertilized by spectacular developments in micro-electronics, on which a new 
discipline in analytical chemistry, Chemometrics, was born. Early Chemometric 
research (sometimes without using that name) was concentrated in the U.S.A., Sweden, 
Belgium and the Netherlands. The first paper mentioning the name "Chemometrics" 
was from Wold and was published in 1972 in the Journal of the Swedish Chemical 
Society. At the same time, the "Arbeitskreis Automation in der Analyse" initiated a 
discussion on a systems approach of analytical chemistry, in West-Germany. Chemo- 
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Table 4. The state of the art of the Hy-phen-ated methods. From T. Hirschfeld, Anal. Chem. 52, 
299A (1980). Reprinted by permission of the American Chemical Society, Washington DC 
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metrics research in the U.S.A. and Sweden was from the early beginning focussed on 
the application of  pattern recognition and related techniques as factor analysis and 
on the optimization o f  analytical procedures. 

In 1969 Jurs, Kowalski and Isenhour published a first series of  papers in ANA-  
L Y T I C A L  CHEMISTRY,  reporting the results o f  applying the linear learning 
machine to low resolution mass spectral data 2 1 , 2 2 , 2 3 )  The goal o f  these studies was 
to extract molecular structural information directly from spectral data. The first 
application of  the S IMPLEX method for a sequential optimization, which was develop- 
ed in the early 1960's 24) dates from 1969 25) and was picked up soon by several others. 
Deming 26) investigated in detail the applicability of  the S IMPLEX method for the 
optimization of  a wide variety of  analytical procedures. The Dutch-German-Belgian 
research was more focussed on a systems approach of  the information production in 
the analytical laboratory. 
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Got tschalk  27~ and Malissa 28) a t tempted repeatedly to systemize chemical analysis. 
They introduced a symbolic iconic language, the SSSAC-system (Symbolic Synoptic 
System for Analyt ica l  Chemistry),  but  failed to get their system introduced.  A large 
par t  of  their problem was that  the SSSAC-system could not  be translated into a com- 
puter  readable  code. 

Table 5. A computer readable code of the symbolic representation of 
the comlblexometric titration of ferric iron in Renn Slag, given in Fig. 5. 
FromH. Malissa and G. Jellinek, Z. Anal. Chem. 247, 4 (1969). Reprinted 
by permission of Springer Verlag, Berlin 

Step Command Comment 

1 samp S 1 
2 add L 1 
3 solv (1200) 1200 = 20 hrs 
4 flit 
5 wash L 2 
6 add L 3 
7 heat.(100; 60) 100 °C during I hr 
8 dilut L 4 (150) dilute to 150 ml 
9 add S 2 

10 add L 5 
11 if (PH.LT.2.0) GO TO 10 
i2 titr L 6 (70) titrate on 70 °C 
13 END 

L 1, L 2, L 3, L 4, L 5, and L 6 are solutions; S 1 and S 2 are solids 

Nevertheless, their concepts at that  time were very close to the way robots  are 
p rogrammed  (table 5) and automat ic  analyzers are control led by now. As a compari-  
son, a F O R T H  program is shown (table 6) for the automat ic  control  o f  a UV-Vis 
spectrometer  zg~. A revival o f  their approach is not  unthinkable,  having now symbolic 
computer  languages, such as P R O L O G  and LISP, available for the manipulat ions of  
knowledge and F O R T H  for instrument control.  Figure 5 shows the symbolic represen- 
tat ion o f a  complexometr ic  t i trat ion o f  ferric iron in Renn Slag 28) with potent iometr ic  
indication. The corresponding computerprogram,  proposed  by Malissa 28) is given 
in table 5, with an apparen t  resemblance with a p rogram writ ten in F O R T H  (table 6). 

Table 6. A program written in 
FORTH, to drive a UV-VIS spectro- 
meter 

Step Command 

1 ~oT zero 
2 SET.MONO 
3 START.STOP 
4 SCAN.RATE. 10 
5 360 760 STEP.WAVE 
6 END 
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FeC[ 3 H20 HCI,HF H20 H3BO 3 NaOH EDTA 

FeC[3 H20 

Fig. 5. A symbolic representation according to the Symbolic Synoptic System for Analytical Chemi- 
stry (SSSAC) of the complexometric titration of ferric ion in Renn Slag. From H. Matissa and G. Jel- 
linek, Z. Anal. Chem. 247, 3 (1969). Reproduced by permission of Springer Verlag, Berlin. 

One of  the aims of  the systems approach of the information production process 
in the analytical laboratory was to quantify the information content of an analytical 
result. As a result, there was a renewed interest in applying information theory to 
analytical chemistry, with centers of research in the laboratories of Eckschlager 3m in 
Czechoslovakia and Dijkstra 31~ in the Netherlands. Although information theory 
has not really led to new concepts in quantitative analysis, it has considerably aided 
to predict the effect of  combining analytical procedures 32L Because storage capacity 
and speed of computers were limited at that time, compared to todays standards, it 
was important 'to design optimal coding rules for spectral data (mass and infrared 
spectra) and to design optimized retrieval procedures. This could be realized by the 
application of information theory 33). Having the opinion that the optimization of 
the information production should include the whole laboratory and not be limited 
to the separate analytical methods, Massart 34~ and Vandeginste 35) investigated the 
applicability of Operations Research to formalize the decision making process in 
the analytical laboratory. Ackoff and Sasieni 36) defined Operations Research as 
"the application of a scientific method by interdisciplinary teams to problems involv- 
ing the control of  organized (man-machine) systems so as to provide solutions which 
best serve the purposes of the organization as a whole". Massart et al. applied 
methods such as graph theory 37), branch and bound methods 38) and dynamic pro- 
gramming 39) to optimize analytical procedures. Vandeginste ~ applied discrete 
event simulation to predict the effects of the various options for the organization of 
sample streams, equipment and personel on delays in the laboratory. 

In the mid-seventies multivariate methods, such as pattern recognition and factor 
analysis were gaining an increasing importance in analytical chemistry. The necessity 
was felt for a rapid exchange of experiences, results and computer programs among 
Chemometricians. This gave the sign for the necessity of a Chemometrics Society, 
which was started by Wold and Kowalski in 1974. 

By the end of  the seventies, Shoenfeld and DeVoe 6) provided the editor of ANA- 
LYTICAL CHEMISTRY with the new title "Chemometrics" for the bi-annual 
review "Statistical and Mathematical Methods in Analytical Chemistry". This was 
a formal recognition that a new subdiscipline in Analytical Chemistry was born, 
which was emphasized by the special attention on Chemometrics at a symposium on 
the occasion of the celebration of ANALYTICAL Chemistry's 50-th anniversary 41). 
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In t977 the American Chemical Society organized its first symposium on Chemo- 
metrics: Theory and Application 42). One year later a textbook on Chemometrics 
was published 34) entitled "Evaluation and optimization of laboratory methods and 
analytical procedures". At that time, Chemometricians became fully aware of the 
fact that a condition for moving the Chemometric techniques from the specialized 
research groups to the general research and finally to the routine lab, is an easy access 
to software. Therefore, we cannot overestimate the impact of the software package for 
pattern recognition "ARTHUR"  developed by Kowalski's group ~3) at the University 
of Washington in Seattle. For many freshmen Chemometricians "ARTHUR"  **) was 
the first exposure to Chemometric methods such as: principal components analysis, 
linear learning machine, hierarchical clustering, K-nearest neighbour classification 
and many others. 

Just before the turning point of the sevienties, easy-accessible, low cost microcom- 
puters appeared on the market, announcing the invasion of the micro's in the analytical 
laboratory. The fact that Chemometrics could now be applied routinely triggered 
a big interest in the subject and a big demand of Chemometric education 4s,46) At 
the beginning of the eighties the microcomputers were still modest: 8 bit word length, 
64 KBytes RAM-memory. Nowadays personal supermicrocomputers are equipped 

Fig. 6. A computer integrated laboratory. Reproduced by permission of Philips Netherlands 
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with 32 bit processors, several megabytes of RAM-memory, tens to hundreds of 
megabytes of disk storage capacity and several terminal ports. On-line data acquisi- 
tion and real time data processing became more rule than exception. As a consequence 
the analytical laboratory could produce an enormous amount of information. Each 
analytical instrument stores the rough data, intermediate and final analytical results 
on discette or hard disc, with the danger of easily losing the capability to manage the 
data-, result- and information-streams. Although we were capable to produce good 
analytical information, we got the problem of becoming incapable to provide that 
information to the customer, because it is spread all over the place in bits and pieces. 
It confronted us with a new barrier to_analytical information: the management of 
information. This reflects todays situation. An aid for controlling information flows 
and sample flows is the so-called laboratory-information management system (LIMS), 
or local area computer network (LAN) as discussed by Dessy 47,48). A preferred 
organization is based on a hierarchical structure centered on a large computer connect- 
ed to progressively smaller processors with the specifics tailored to the demands of 
the correspondent instruments and users. The central computer is dedicated to larger 
data processing and the real-time needs of a laboratory instrument is shouldered by 
microcomputers. 

A typical set-up is shown in Fig. 6. The analytical instruments are coupled to a 
mainframe computer over a decreasing hierarchy of microcomputers and instrument 
processors. Figure 7 shows schematically the information flows and storage of a 

Fig. 7. The Philips Automated Laboratory Management (PALM). Reproduced by permission of 
Philips Netherlands 
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laboratory information management system, which contains modules for day-to- 
day sample management (the active database) and modules for the retrieval of  manage- 
ment information on all aspects of laboratory and plant performance (the passive 
database). 

So far, the automated analytical instrument remained a dumb piece of equipment. 
It repeats a sequence of  actions without feedback of its readings to its functioning. 
The instrument cannot decide that it is out of specification and, therefore, should be 
retuned or recalibrated. On the other hand, if the instrument has provisions for 
self-diagnosis, it has usually not the necessary intelligence for a corrective action. 
The tuning of the instrumental conditions by an optimization procedure is still lenghty 
and requires the operators' continuous attention. E.g. when optimizing the separation 
of a mixture by HPLC, the operator has to interpret the separation obtained for a 
given constitution of the eluent, feed these results into a computer loaded with a 
program for optimization and set the new, hopefully better conditions suggested by 
the program into the intrument and wait for the next result. If this sequence is fully 
automated and under computer control, the instrument is self-optimizing. Self- 
optimization can be considered to be an essential element of the intelligent analytical 
instrument. Its principle is shown in Fig. 8. Other desirable capabilities of an intelligent 
instrument are selfcalibration and an automatic error diagnosis and correction. 
Research on self-optimizing instruments was mainly concentrated in Ettrope. The 
first instrument was a Flow Injection Analyzer (FIA), developed at Betteridges' 49) 
laboratory in Swansea. It adjusted automatically the flows of the carrier solution and 
reagents for maximal sensitivity (Fig. 9). A prototype of a self-optimizing furnace 
atomic absorption spectrometer was developed in Kateman's lab in Nijmegen 5o), 
and a self-optimizing HPLC, based on the work of  Berridge 51,52) is now commercially 
available. Self-calibrating systems are still in their infancy. Kateman and his co- 
workers 53, 5,) have demonstrated that self-calibration is in principle feasible by the 
application of a recursive filter, such as the Kalman filter. Thijssen 53, 54) designed a 
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Fig. 9. A self optimizing Flow Injection Analyzer (FIA). From J. Betteridge, Lecture presented at 
Analysis 84, London. Reproduced by permission of the author 

prototype self-calibrating FIA system for the determination of C1- in water• The 
system autonomously monitors its uncertainty about the calibration factors during 
the time it measures the unknown samples. On an evaluation of that precision, the 
instrument autonomously decides to break the measurements of the unknowns and 
to start the measurements of standards. The measurements of the standards are con- 
tinued until the certainty about the calibration factors drops below the requested 
level• This cycle is schematically shown in Fig. 10. Other applications of parameter 
estimation by a recursive filter have been reported by Brown 55, 56). 

An extension of the concept of intelligent instruments is the intelligent workstation 
in a computer integrated laboratory. Using the word "artificial intelligence" in this 
context is obvious• The application of artificial computer intelligence in chemistry has 
not historically been considered chemometrics. However, the topic is developing 
rapidly in parallel with chemometrics. Traditionally, AI approaches have been restrict- 
ed to problems of structure elucidation of molecules from spectral information. A well- 
known application of AI, also among knowledge engineers, is DENDRAL 57) for the 
structure elucidation of organic compounds. Another large field of  applications of AI 
in chemistry is organic synthesis planning. Well-known systems are SECS 5s) and 
LHASA 59). Having these successful examples in mind and experiencing a growing need 
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Fig. 10a and b. A self calibrating Flow Injection Analyzer (FIA); a. Sequence of measurement of 
standards and samples, b. Schematic representation of the sequence given under (a). Solid lines are 
the readings of the standards and dashed lines are samples, x I .... x 3 are the estimated model parameters 
of the calibration function. From P. C. Thijssen, G. Kateman, H. C. Smit, Trends in Anal. Chem. 4, 
72 (1985). Reproduced by permission of Elsevier Science Publishers, Amsterdam 

for convert ing informat ion into knowledge to make  the best decisions, a group of  
Chemometr ic ians  decided to explore the applicabil i ty of  artificial intelligence in 
analyt ical  chemistry. Not  in the t radi t ional  field o f  structure elucidation, but for the 
computera ided  design o f  analytical  receipees 6o), for advice in liquid chromato-  
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graphy 6~), for the determination of the composition of rocks from X-ray analysis 62) 
for sampling and trouble shooting 63) and finally for sample routing and scheduling 
in the analytical laboratory 64~. 

Although the intelligent analytical laboratory is far from reality, the new problems 
it will cause are already visible. Expert systems are based on knowledge and rules, 
which describe the analytical system (HPLC, AAS . . . .  ). The formulation of these 
rules requires a profound knowledge of the system and in fact requires to return to 
the fundamentals of  analytical chemistry. Why are analytical procedures designed as 
they are? Which physical and chemical laws and rules govern the analytical opera- 
tion? To give an idea of the structure of a rule-base, one of the rules of a system for 
advice in atomic absorption spectrometry, developed by Vandeginste et al. is given 
in table 7. 

Table 7. A production rule of an expert system for Atomic Absorption Spectrometry 

(rule 048 curtechprep; self-ref 
(and (equalsp (best-ofp (cntxt tech-ident)) 

(quote flame)) 
(biggerp (cntxt needed-dilution) (quote 500))) 

(do all (compute (cntxt needed-dilution) 
(div $ (cntxt needed-dilution) 

(quote 8))) 
(compute (cntxt burner-angle) 

(quote 90 degrees)))) 

translation: if the best technique found so far is "flame" and the needed dilution factor found so far 
is greater than 500, then decrease the needed dilution-factor by a factor of 8 and turn the burner head 
by 90 degrees 

Until now Chemometrics has been considered to be the interface between applied 
mathematics and analytical chemistry. I believe that by now Chemometrics is also 
becoming the interface between the analytical chemist and analytical chemistry. 
This symbiosis of artificial and natural intelligence in analytical chemistry probably 
can provide an optimal solution 65). In this respect, I like to quote what Meglen 66), 
secretary of  the Chemometric Society, wrote on the occasion of the tenth anniversary 
of the Society: "Chemometrics is clearly beyond infancy. Indeed at ten years old it 
i r " s emarkably mature . A sign of its maturity the fact that two publishers decided to 
publish a journal devoted to chemometrics. 

3 Examples of Chemometric Research 

In this section some illustrative Chemometric results in the fields of optimization, 
data processing and calibration are discussed in some more detail. It should be realized, 
however, that these topics represent only a very small fraction of Chemometric re- 
search. 
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3.1 Optimization 

Before formal methods for optimization were known, analytical chemists and pre- 
sumably scientists in other fields, optimized systems by varying one parameter at a 
time. Figure 11 shows the lines with equal response for a system of which the optimiza- 
tion criterion depends upon two parameters x I and x 2. It demonstrates that this 
approach may fail to find the optimum. The reason for this failure is that the optimum 
for one parameter may depend upon the level of one or more other parameters. It 
is, therfore, necessary to vary all parameters - -  usually called factors - -  simultaneously. 
This is a multivariate approach of optimization. There are two groups of multivariate 
optimization methods: simultaneous and sequential methods. When using a simul- 
taneous Optimization method one carries out all experiments in parallel. The design 
of the experiments is factorial-type 67) When using a sequential method, the experi- 
ments are carried out in sequence, with a feedback between the results of the experi- 
ments and the factor combinations to be selected. The sequential method which has 
been applied the most in analytical chemistry, is the Simplex method ~,2s,68) which 
should not be confused with the "Simplex tableau" used in linear programming or 
with "Simplex mixture designs" which are a type of constrained factorial design. In a 
Simplex optimization, the experiments are arranged in a geometrical figure (Fig. 12). 
called Simplex. The coordinates of the comers of a Simplex represent the factor 
combinations which are selected. By dropping the comer with the worst response 
and by moving into the opposite direction, a new Simplex is obtained. The coordinates 
of the new comer represent the factor combination to be chosen next. A typical pro- 
gress of a Simplex optimization of a system with two factors, is shown in Fig. 12. 

The movements of a Simplex in the direction of the optimum are defined by a number 
of logical rules, which are applicable to systems with any number of  factors. The n~es 
and calculations for moving the Simplex can be found elsewhere 7o~. 

x A, ~ 

/ 

/ 

Level of x~ 

Fig. 11. The response surface of a two-factor 
system. The lines represent equi-response lines. 
Optimization by varying one factor at a time. 
From P. J. Golden and S. N. Deming, Labora- 
tory Microcomputer 3, 44 (1984). Reproduced 
by permission of Science & Technology Letters, 
England 
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Fig. 12. The progress of the modified 
Simplex method for optimization. 
From P. J. Golden and S. N. 
Deming, Laboratory Microcom- 
puter, 3, 44 (1984). Reproduced by 
permission of Science & Technology 
Letters, England 

Already in 1955, Box 71) mentioned that an evolutionary operation (EVOP) type 
method could be made automatic. Although the Simplex method has been critisized 
at many occasions, because it cannot handle situations with multiple optima or with 
excessive noise, its unique suitability for unattended and automatic optimization of 
analytical systems, explains the great effort by Chemometricians to make the method 
work. 

The need for formal logics in optimization and the need for unattended optimiza- 
tion is probably the largest in chromatography, especially in liquid chromatography. 
Figure 13 shows a schematic representation of a chromatographic system with the 
controllable and uncontrollable, or fixed factors v2~. The output signal is a sequence 
of clock-shaped peaks, which represent the separated compounds. A first problem 
encountered in optimization is to decide which parameter or criterion will be optimized. 
In spectrometry, the criterion is more or less obvious: e.g. sensitivity. In chromato- 
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Flow Temperature 
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Fig. 13. A Chromatographic System. 
From J. Berridge "Techniques for 
the automated optimization of 
HPLC separations", 1984, J. Wiley 
& Sons, England, page 20. Re- 
produced by permission of Wiley 
& Sons, England 
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graphy,  the  cr i te r ion  is also obvious ,  namely  resolu t ion .  I t  is, however ,  m u c h  less 

obv ious  h o w  to express " r e s o l u t i o n "  in one  number .  Since 1960 there have  been 
n u m e r o u s  a t t empts  to design qual i ty  cri ter ia  for  c h r o m a t o g r a p h i c  separat ion.  It  

is general ly  agreed  that  the qual i ty  cr i te r ion  should  include the  separa t ion  o f  different  

pairs o f  peaks,  to p roduce  a ch rom a tog raph i c  Response  F u n c t i o n  (CRF) ,  first in- 
t roduced  by M o r g a n  and  D e m i n g  v3~. Tab le  8 gives a compi l a t i on  o f  the var ious  

c h r o m a t o g r a p h i c  qual i ty  funct ions,  used for  a S implex  search 72) 

Table 8. Chromatographic separation quality functions used for a Simplex search. From J. Berridge, 
"Techniques for the automated optimization of HPLC separations", p. 2627 (1984), Wiley & Sons, 
England. Copyright © 1984, John Wiley & Sons, Inc. Reprinted by permission of J. Wiley & Sons 
Ltd. England 

Chromatographic response and Experimental variables Optimization Ref. 
optimization functions method 

CRF = ~. Pi GLC Simplex 7 3 )  

i = l  

1 - 
CRF = T .=~=j Pi  

n 

COF = ~ a i In P~ 
i = l  

COF = ~. al In (R-JRa) + b(tm - tn) Composition of quarternary Simplex 76) 
i=l mobile fase 

n 

CRF = Z Ri + h a -  bl tm - t.I - e(to - tO Composition of ternary Simplex 74) 
i= t mobile phase, temperature, 

flow rate, pH 

CRF = Z In (Pi/Po) + a(t m - t,) Gradient + parameter 7 7 )  

i = ~ and flow rate 
1 78) 

CRF = - -  ]7 fi/(g5 + 2nl) Concentration of organic 
t -5-- modifier and buffer, pH 
n 

CRF = ~ l n  (fi/gs) - 100(M - n) Concentration of organic 79) 
i= modifier, pH 

Fob j = ~, [10(1 . 5 - R i ) ]  2 Composition of ternary s0) 
i = 1 mobile phase 

Fob j = ~ 100 • e ~ t.5-R0 + (tm _ tn)3 Composition of ternary st) 
5= t mobile phase 

P i :  
a 

b: 
tm:  
t ,:  
R i :  
ad: 
Po: 
n: 
t I : 
to: 
CRF: 
COF: 
f/g in 

peak separation for the i-th pair of peaks 

arbitrary weighing factors 

maximum acceptable analysis time 
elution time of the last peak 
resolution of the i-th pair of peaks 
desired resolution for the i-th pair 
the desired peak separation 
the number of peaks detected 
the elution time of the first detected peak 
a specified minimum desired retention time for the first detected peak 
chromatographic response function 
chromatographic optimization function 
related to the peak separation 
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Table 9. Optimization experiments in HPLC using the Simplex procedure. Adapted from J. Berridge 
"Techniques for the automated optimization of HPLC separations", p. 150 (1984), Wiley & Sons, 
England. Copyright © 1984, John Wiley & Sons, Inc. Reprinted by permission of J. Wiley & Sons 
Ltd. England 

Application a Variables Ref. 

Ion-exchange separation of inorganic Binary mobile phase composition s2) 
cations 

R-P separation of PTH-amino acids 77) 
R-P separation of alkaloids sl~ 

Normal-phase separation of carotenoids so) 

Fully automated examples 

Isocratic R-P separation of pyridines 74~ 

Gradient R-P separation of antioxidants 74~ 
Isocratic R-P separation of substituted 74~ 

aromatics 
Isocratic normal-phase separation of 74) 

aromatics 
Rapid R-P isocratic separation of 75) 

sulphonamides 

4 gradient parameters and flow rate 
Quaternary mobile phase composition 

and flow rate 
Ternary mobile phase composition 

Binary mobile phase composition and 
flow rate 

3 gradient parameters 
Ternary mobile phase composition 

Ternary mobile phase composition 

Ternary mobile phase composition 

a R-P = reversed-phase 

The first results of  optimization in chromatography were published in 1975 73,82) 
Since then a growing number of optimization experiments in HPLC using the Simplex 
procedure has been reported 721 (table 9). The examples are mainly reversed-phase 
separations, in which the composition of the ternary or binary mobile phase composi- 
tion is optimized. The factors optimized are usually a selection from: flow rate, 
column temperature and length, the eluents constitution (e.g. organic modifier content, 
buffer concentration and pH), the gradient shape. Seven years after the first applica- 
tions of Simplex optimization had appeared, the first fully automated optimization 
of HPLC separations was published by Berridge 74~ in 1982. This development coincid- 
ed with the introduction of fully automated optimization of Flow Injection Analysis 
(FIA) by Betteridge 491 and in furnace atomic absorption spectrometry by Van der 
Wiel s°k Another two years later (1984) the first self-optimizing microcomputer 
controlled chromatograph was commercially available 51, 52) 

Because the logics of  the Simplex method does not contain specific chromatographic 
knowledge, the optimization of completely unknown mixtures may fail because a 
local optimum is found or because the Simplex was started too far off the optimum. 
Berridge 72~ has shown that by the inclusion of knowledge on reversed-phase chromato- 
graphy in the logics, one can restrict the search area to a region of the factor space, 
in which the global optimum must lie. This improves considerably' the speed of reach- 
ing the optimum. This principle was imbedded in a program FASTOPT 75), which 
calculates first the solvent strengths that will provide a reasonable reversed-phase 
isocratic separation. These solvent strengths are estimated from the elution times of  
the first and last detected peaks of a reversed-phase gradient separation using methanol 
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and water. This algorithm was applied with success on a mixture of five sulphonamides 
which was believed being very difficult to optimize by sequential methods. With the 
example of sequential optimization by Simplex in chromatography, only a very modest 
part of Chemometric research on optimization has been discussed. Other strategies 
based on formal experimental designs and on semi-empirical relationships have been 
extensively investigated for the optimization of a wide variety of analytical systems. 

3.2 Multivariate Data Processing 

In section 2 it has been argued that the measured data structures are becoming in- 
creasingly complex which require a continuous effort to develop proper data process- 
ing methods. The complexity of the data structures is not the only factor which defines 
the data processing method that should be selected. Two other important factors are 
the available knowledge on the object, subjected to an analysis, and the expected 
problems during the analysis. They define how much "mathematics" should be applied 
to find the solution of the analytical problem at hand. This is schematically shown in 
Fig. 14 for the analysis of mixtures. A selection of expected problems is e.g. the occur- 
rence of matrix effects, interferences or combination of these two. The available 
knowledge about the sample may vary from the number and identity of the com- 
pounds to no knowledge at all. Two other factors which dictate the complexity of the 
required analytical method and data processing method are the homogeneity of the 
object in time or position and the availability of standards or standard mixtures. 
When the object is homogenous, all samples will have the same constitution. If 
not, a certain variation in the constitution of the samples will be observed. Each 
combination of available k~7~wledge, expected problems, homogeneity of the object 
and availability of standards, requires a proper data processing method, as is indicated 
in Fig. 14. For example, for homogenous objects only one specific spectrum or 
chromatogram is usually available. The requested analytical information has, there- 
fore, to be derived from a single signal record. This is called a univariate analysis. 
Consequently, the applicable data processing methods are also univariate. Examples 
are curve fitting and multicomponent analysis. If the signals of the compounds 
in the sample are overlapping or interfering, a fairly large amount of preinforma- 
tion is required (Fig. 14) in order to find the solution. When such interferences are 
also occurring together with matrix effects, one has to calibrate with a Generalized 
Standard Addition Method (GSAM), developed by Kowalski 83~. GSAM is a combina- 
tion of the standard addition method to correct for matrix effects, and a multicompo- 
nent analysis method to correct for interferences. 

In some cases, many different spectra (or chromatograms) of the same object 
are available. For inhomogenous objects, for example, several samples of different 
constitution can be taken. This allows to apply multivariate data processing techni- 
ques. When the signals of the compounds in the sample are specific and linearly 
additive, the number of compounds which contribute to the signal, can be determined 
by a Principal Components Analysis (PCA)a4~ (see Sect. 3.2.1). Without knowing 
the identity of a// compounds, which are present and without knowing their spectra, 
a calibration by partical least squares (PLC) 85~ allows to quantify the compounds 
of interest. 
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Fig. 14. Type of analytical method and Chemometrics required to analyse mixtures 

The only condition for the application of PLS is that several samples are available 
with known amounts of the compounds of  interest, for calibration. Interferences and 
matrix effects of the unknown compounds have not to be taken into account and do 
not effect the accurary of the analytical result (see further Section 3.3). The presence 
of candidate compounds, can be confirmed one at a time by a Target Transformation 
Factor analysis (TTFA) 86). 

Above mentioned examples clearly show that if multivariate data processing me- 
thods are. applicable, analytical information can be derived with a minimal amount 
of pre-information and a foreseeing of a maximum of problems. When the sampled 
object is homogenous, multivariate methods are only applicable when the analytical 
method itself produces multivariate signals. This is the case when several signals 
(e.g. spectra) are obtained for the sample as a function of another variable (e.g. time, 
excitation wavelength). For example in GC-MS, a mass spectrum is measured of the 
eluents every. 1 ~t 1 second. In excitation-emission spectroscopy, spectra are measured 
at several excitation-wavelengths. The potentials of the application of multivariate 
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statistics to such cases are very well demonstrated by the results obtainable by curve 
resolution factor analysis in HPLC with a UV-VIS photodiode array detector. Also 
when no pre-knowledge is available on the number and the identity of the compounds, 
pure spectra and elution profiles can be calculated for partially separated mixtures 87, 
881 

In the paragraphs below, some of the above mentioned multivariate methods 
will be discussed in somewhat more detail, with respect to the data processing of 
signals obtained for hyphenated methods of the type: chromatography-spectrometry 
and spectrometry-spectrometry. 

3.2.1 Chromatography-Spectrometry 

Many applications of GC-MS and HPLC-UV-VIS prove the powerful capabilities 
of these methods to analyze complex mixtures. The principal limiting factor is the 
obtainable separation, which can be optimized as described in section 3.1. When the 
physico-chemical separation is incomplete, a mathematical improvement of the 
resolution can be considered by the application of multivariate statistics. 

In chromatography-spectrometry the measured data are arranged in a data matrix: 
D. The rows of D represent spectra and the columns are chromatograms. When S is 
the datamatrix of the pure spectra of the compounds, then D can be decomposed 
into : D = C • S, where C is the matrix of the concentrations of all compounds in the 
various spectra. 
Thus: D is a matrix of NS spectra by NW wavelengths 

C is a matrix of NS times by NC concentrations 
S is a matrix of NC pure spectra by NW wavelengths 

In the worst case, C, S and the number of compounds are not known. Malinowski 8,, 
89t has extensively studied the applicability of principal components analysis (PCA) 
to determine the number of components in a data matrix. A basic explanation of 
PCA can be found in 3,~ and is briefly repeated below: 

Any datamatrix D, can be decomposed in two other matrices, A and Vq, where 
D = A • Vq + E, Vq is a NC x NW matrix, and A is a NS x NC matrix with Vq having 
the following properties : the internal product of any pair of rows of V n is zero (ortho- 
gonality) and NC is the smallest number of rows in Vq, necessary to represent D 
within the noise (E). The rows of Vq are the first eigenvectors of the variance-co- 
variance matrix of D. Because the dimensions of matrices S and Vq are equal, one can 
consider V n as being a set of "abstract" spectra. 

An alternative decomposition of the data matrix D is : D T = B • V r + E, in which 
V r has the same properties as Vq, but represents by now "abstract" elution profiles. 
The rows of V r are the first NC eigenvectors of the variance covariance matrix of D T. 

Several methods have been proposed to determine the minimal number of rows, 
NC, in Vq or V r. When D is a data matrix of linearly additive signals, then NC re- 
presents the number of chemical species that contribute to the total signal. An example 
of the decomposition of a HPLC-UV-VIS data matrix in "abstract" elution profiles 
is shown in Fig. 15. These "abstract" elutio~: profiles and "abstract" spectra can not 
directly be interpreted into qualitative and quantitative information. For that purpose 
it is necessary to transform A • Vq into C • S, or to transform B.  Vr into S T • C v. In 
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Fig. 15. "Abstract" elution profiles, represented by the eigenvectors of the variance-covariance metrix 
of a HPLC-UV-VIS data matrix of spectra. From B. G. M. Vandeginste, W. Derks, G. Kateman, 
Anal. Chim. Acta 173, 259 (1985). Reproduced by permission of Elsevier Science Publishers, Amster- 
dam 

other words the NC rows in Vq have to be t ransformed into NC pure spectra or the 
NC rows in V r have to be t ransformed into NC elution profiles. This operat ion is 
Fac tor  analysis. In principle there are an infinite number  of  t ransformations applicable 
on Vq and Vr. Such a t ransform can be represented as a rota t ion matrix,  which rotates 
Vq into S or  V, into C x, namely:  
the pure spectra are S = Rq • Vq 
the pure elution profiles are:  C x = Rr • V r 

The key problem in factor analysis is to find a good t ransformat ion matrix Rq 
o r  

Rr. Two approaches have been successfully appl ied:  Rq and R r are calculated by 
imposing constraints on the solutions S and C T. This method is called curve resolution 
factor analysis 88). The second approach  is based on the fact that candidate  pure spectra 
or  pure  elution profiles are available. Such a candidate  is called a Target.  I f a  target (T) 
is indeed one of  the pure spectra or one of  the elution profiles, it should be one of  the 
rows o f  the matr ix S or  C x. Knowing Vq respectively Vr, one can calculate the corre- 
sponding vector, which transforms the abstract  spectra or  abstract  elution profiles 
into the Target,  which is being tested. A check whether the tested Target  was indeed 
one o f  the rows in S or  C T is obtained by testing whether the calculated vector RT, 

9 
t ransforms Vq or  V r back into the Target,  T or  by testing R T. V = t - T. I f  not, 
the target is marked  invalid. Otherwise, the target was one o f  the true factors. This 
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method is called Target Transformation Factor Analysis 86) Lawton and Sylvestre 90) 
suggested in 1971 that spectra could be very well estimated by applying a minimum 
of simplifying assumptions; namely, all spectra and elution profiles should be non- 
negative. Unfortunately, only solutions could be obtained for systems with 2 compo- 
nents. Kowalski picked up the method and demonstrated its usefulness in LC-UV 91) 
and GC~MS 87,92) Chen 93) and Vandeginste ss) extended the method to the three 
component case by adding more specific chemical knowledge. Chen 93) assumed that 
in GC-MS the pure spectra should be as simple as possible (smallest number of peaks). 
Vandeginste ss) added specific chromatographic knowledge by selecting the elution 
profiles with the smallest possible band width. Figure 16 shows the results obtained 
by Chen 93) for the GC-MS analysis ot~ a mixture of 1-pentanol, toluene and butyl- 
acetate. The compounds are only partially resolved (Fig. 16a). It is seen that the 
mass spectra for the scan numbers 126 to 143 are mixture spectra (Fig. 16b). By the 
application of curveresolution factor analysis, three mass spectra could be calculated, 
which resemble very well the true pure mass spectra of  the three compounds (Fig. 16c). 
Because no mathematical model is assumed for the elution profiles, these above 
mentioned methods are called self-modeling. The assumptions formulated by Chen 93) 
and Vandeginste ss), however, are insufficient to solve systems with more than three 
components, by self-modeling curve resolution factor analysis. More specific know- 
ledge of the system has to be included in the algorithm with the danger of becoming 
less universally valid. 

Knorr  94) and Frans 95) proposed to include a mathematical model for the shape 
of the elution profiles and could resolve systems with 6 and more overlapping peaks. 
They also demonstrated that the method is fairly robust for the inaccuracy of the 
models, describing the shape of the elution profiles. Independently from each other, 
Gemperline 96) and Vandeginste 97) argued that the attractive feature of  self-modeling 
can be kept for the resolution of systems with more than three components by the 
application of an itera(ive version of Target Transformation Factor Analysis (ITTFA). 
ITTFA was first developed by Roscoe 98) and Hopke 99) for the factor analysis of  the 
element concentrations in dust, and was successfully applied to the factor analysis 
of the element concentrations found at the intersection of two crossing lavabeds 99) 
In ITTFA, an invalid Target is modified to a possibly better Target, which is there- 
after resubmitted to the Target transformation factor analysis. In the particular appli- 
cation of LC-UV, the Target is a guess of one of the elution profiles. When the test 
t = T fails, the calculated target i" is modified: e.g. all negative values are set zero 
and all shoulders are removed. Gemperline 96) and Vandeginste 9v) reported that the 
iterative process indeed converges to a stable and valid solution. Good results were 
obtained for 4, 6 and 8 component systems without assuming any peak shape. Figure 17 
shows the resolution of a 6 component system and the convergence. By now LC-UV 

Fig. 16a-e. Resolution of GC-MS spectra obtained for mixtures of 1-pentanol, toluene and butyl- 
acetate, a. the elution profile, b. the mass spectra measured for scans 126 to 143. e. the calculated pure 
mass spectra from scans 126 to 143 compared to the pure mass spectra. From J. H. Chen and L. P. 
Hwang, Anal. Claim. Acta 133, 277 (1981). Reproduced by permission of Elsevier Science Publishers, 
Amsterdam 
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instruments are becoming available in which capabilities for curve resolution factor 

analysis are present. 
Similar results have been reported for LC-IR systems loo, 101~ 

I 

• I I  ~ 

(a) (b) (o) 

6 

Fig. 17. The resolution of a HPLC-UV-VIS datamatrix obtained for a 6-component system by Iterative 
Target Transformation Analysis (ITTFA). a calculated elution profile, b true elution profile. From 
B. G. M. Vandeginste, W. Derks and G. Kateman, Anal. Chim. Acta 173, 261 (1985). Reproduced 
by permission of Elsevier Science Publishers, Amsterdam 
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3.2.2 Spectrometry-Spectrometry 

An important hyphenated method, which combines two spectrometric measuring 
principles is excitation-emission spectrometry (EES), the application of EES has been 
very much simplified by the introduction of the video-fluorimeter lo2), which is capable 
of recording fluorescence spectra in a short time (0.01-0.001 sec) at a large number of  
excitation wavelengths. The measured datapoints are arranged in a so-called excita- 
tion-emission matrix (EEM). 

The processing of EEM-data, obtained for mixtures, consists of the determination 
of the number of components, their concentrations and pure spectra. A very powerful 
method in that respect is rank annihilation factor analysis (RAFA). Based on RAFA, 
Ho et al. lo3, lo4), derived a quantitative method for the determination of one or more 
compounds in a mixture, of which not all components are known. The rank of an 
EEM matrix theoretically is equal to the number of components in the mixture. Thus 
the rank of an EEM-matrix of a pure standard (or compound) should be equal to one. 

Under ideal noise-free conditions one can diminish the rank (n) of a measured 
EEM-datamatrix of n-compounds, M, by one, by subtracting the exact amount of 
EEM, MK, measured for the standard, K. 
Thus Thus 

N = M - -  a k • M k 

where N is the matrix from which compound, k, has been removed, and a k is the ratio 
between the concentration of compound k in the sample (Ck), and the standard 
(C~): a k : Ck/C~k. 
The rank of a matrix is the number of significant eigenvectors, necessary to represent 
the datamatrix (see 3.2.1.). The value ak is calculated by evaluating the eigenvalue of 
the least significant eigenvector as a function of a k. For an increasing value of ak, 
starting from zero, the least significant eigenvalue diminishes first because the com- 
ponent is being removed. After having passed through a minimum, this eigenvalue 
increases, because the compound has been overcompensated and introduces a negative 
concentration. The exact concentration aK is found at the minimum. This is shown in 
Fig. 18, in which the eigenvalue of the least significant eigenvector is given as a func- 
tion ofaK, by the removal of the spectrum ofethylbenzene io5j from the EEM spectrum 
of  a mixture of ethylbenzene, o-xylene and p-xylene. 

The method was applied on a 6-component mixture of polycyclic aromates. Each 
compound was quantified, independently from the presence of other compounds, 
and within the error of preparing standards los, It means that the method is fully 
capable to handle unknown and uncorrected interferences. 

Because the structure of EEM is very similar to a datamatrix, measured by LC-UV, 
one could presume that the curve resolution factor analysis, described in 3.2.1. 
could also be useful. There is, however, one important difference: the only applicable 
constraint here is that the excitation-emission spectra are non-negative. Other con- 
straints, which are valid in HPLC, e.g. that the elution profile with the smallest band- 
width should be selected, are missing here. For this reason curve resolution factor 
analysis, applied on EEM to find the pure excitation and emission spectra, can only 
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Fig. 18. The eigenvalues of an excitation-emission datamatrix (EEM) of a 3-component mixture of 
polycyclic aromates, as a function of the factor a K, with which the EEM of ethyl benzene is removed. 
From M. McCue and E. R. Malinowski, J. Chromatogr. Sci. 21, 233 (1983). Reproduced by permission 
of Preston Publications Inc., Niles, Illinois 

solve binary mixtures 1 0 6 )  A scheme which gives the accuracy of the estimated spectra, 
given as a function of spectral overlap can be found in lo6~ 

Because emission spectra are strongly correlated with the excitation spectra the 
EEM datamatrix does not contain much qualitative information in addition to the 
regular absorbance spectrum. If, however, a videofluorimeter (VF) is coupled to a 
HPLC, a powerful device is obtained, which combines three measuring principles: 
separation-excitation-emission. Such a type of instrument, described by Hershber- 
ger 107), produces a three-dimensional datamatrix. The data analysis of  an unknown 
mixture consists then of the following points: the determination of the number of  
compounds, the excitation-emission spectra of  the compounds and the elution profiles. 
A three-dimensional data treatment has been developed by Appelloffand Davidson 10s, 
lo9). They found that by the application of  abstract factor analysis, an exact solution 
for above mentioned problems can be obtained for binary, ternary and quarternary 
mixtures. As a next step, after having calculated the pure spectra, they applied Rank 
annihilation factor analysis (RAFA) to quantify the amounts of the compounds in 
the mixture to9) Conclusion is that HPLC-VF is capable to provide all quantitative 
and qualitative information without having any knowledge on the number and identity 
of  the compounds present and with a minimum of  chromatographic separation. 
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3.3 Multivariate Calibration 

Because so many factors determine the response obtained for a chemical substance 
in a sample, it is usually not possible to derive directly the concentration from the 
measured response. The relationship between signal, or response and concentration 
has to be determined experimentally, a step which is called calibration. The complexity 
of the calibration depends upon the type of expected problems. These are roughly 
divided into three categories: interferences, matrix effects or interactions and a com- 
bination of both, a so-called interacting interference. 

An interferent is a compound, other than the anatyte, which contributes to the 
measured signal. When a compound other than the analyte does not contribute to 
signal, but instead influences the relationship between the analyte concentration 
and signal, there is a matrix interaction. An interacting interferent does both: it con- 
tributes to the signal and changes the sensitivity for the analyte. 

Since a long time analytical chemists correct for interferences by a multicomponent 
analysis (MCA) and correct for interactions by a standard addition (SA) method. 
These methods are discussed in every elementary textbook on analytical chemistry. 
In MCA, the system is calibrated with pure standards. A problem encountered here 
is that all interferents have to be known, to be determined and to be corrected for. 
In SA the calibration is carried out in the sample and is repeated for each sample. 
A condition for a proper calibration by SA is that interferents should be absolutely 
absent. In practice, however, conditions for the application of MCA or SAare frequently 
not fulfilled, because of the presence of interacting interferents. The solution to that 
problem is usually sought along chemical paths: extraction, separation, masking 
agents. As a consequence analysis times tend to become too long and to require much 
manipulations to allow an easy automation. In addition precision is sometimes lower. 
A mathematical solution is, therefore, more desirable. From the fact that one should 
calibrate at a number of sensors (e.g. wavelengths) which is at least equal to the number 
of analytes plus interferents, it is obvious that the mathematical solution will be a 
multivariate one. The kind of mathematics involved depends upon the type of available 
standards to establish the relationship between concentration and response. One can 
directly observe that relationship, by using pure standard solutions, which is called 
direct calibration, or direct multicomponent analysis t lo. 111). When that relationship is 
implicitely observed on mixtures of known constitution, the calibration is indirect. 
For both types of calibration, chemometricians have developed and studied algorithms 
with which the chemical separation of interferents can be avoided. The two most 
important are the Generalized Standard Addition Method (GSAM) for direct calibra- 
tion, developed by Saxberg and Kowalski 112), and Partial Least Squares (PLS), for in- 
direct calibration developed by Wold and Martens 113.1~4~. Because these chemometric 
tools are relatively new, they are discussed in somewhat more detail, below. 

GSAM is a combination of the standard addition method and multicomponent 
analysis. The general calibration model in GSAM is R o = K.  Co, where R 0 is a vector of 
responses, obtained for the sample at NW sensors, K is the matrix of NW calibration 
factors of NA analytes, Co is the vector of the concentrations of NA analytes, in the 
sample. The calibration of the system and the determination of the concentrations of 
the analytes are carried out in two steps. 
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First the responses R 0 are measured for the sample. Thereafter K is determined by 
fitting the changes in the concentrations of the anatytes in the sample, brought about 
by the standard additions, to the changes in the responses. Once all elements in the 
calibration matrix, K, have been determined, the concentration vector C O of the 
analytes in the sample is calculated. The method has been successfully applied to 
absorption spectrophotometry 83), anodic stripping voltametry 115) and ICP-atomic 
emission spectrophotometry 116). Attractive features of the method are that automa- 
tion is very easy 117) and automatic drift compensation is possible 118). A drawback 
is that all interferents should be known and be corrected for. 

For the application of indirect calibration methods, one should have several samples 
available with known constitution. These samples should be of exactly the same type 
as the unknown sample. For example for the determination of the fat, water and protein 
content in wheat by near infrared reflectance spectrometry, one should have available 
a number of wheat flour samples of which the amount of fat, water and protein is 
known, or determined by a conventional method. 

The simplest form of multivariate calibration is multiple linear regression (MLR), 
which is well suitable in X-ray analysis n9). The concentration of a given element is 
a linear combination of the intensities found at certain wavelengths in X-ray analysis. 

A general model that includes most types of interactions can be written as 119) 

conc = ~ b j l j+  ~ ~ b j l l j I  ~+bo  
j = l  j = l  l=1 

where conc denotes the concentration of the component under study, I is the measured 
fluorescence intensity at the lines of the various compounds and b are the calibration 
constants. 

In matrix notation: 

C = I . B .  

The calibration consists of  determining all elements of  the B-matrix, which requires 
as much samples as there are terms in the general model e.g. for a 3-component 
system Fe, Ni, Cr One can stipulate the following model for each of the elements 

conc = bllve + b2INi + b3Icr + b,I~c + bsIvelNi + b6IFeICr 
+ b712i + bslNilcr + b912Cr + bxo 

In this example, 30 calibration factors have to be quantified by the calibration proce- 
dure, which requires 30 independent equations and, therefore, 10 calibration samples 
(gives 3 equations per sample). Martens lzo) warned against pitfalls by using MLR. 
There is, for example, no check whether the general model is adequate to describe the 
unknown samples. The calculated concentrations may be in error because the sample 
contains other impurities than present in the calibration samples, or because some 
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external factors, such as the temperature, have disturbed the signal. Another problem 
is that it may be difficult to calculate the generalized inverse of  matrix, I. By the 
application of principal components regression (PCR) I21) or partial least squares 
(PLS) instead of MCR, the pitfalls mentioned before can be avoided. The distinction 
between both methods is explained below. 

Let us suppose that the concentrations of  NA analytes are known in NS calibration 
standards. For each of the standards a spectrum is measured at NW wavelenghts. 
These spectra can be arranged in a datamatrix D = C • S, where C and S have the 
same meaning and dimensions as given in section 3.2.1. During the calibration step D 
is measured, and C is known. S can be determined by multiple linear regression. 
This requires to measure at least NA standards and to calculate the generalized inverse 
of the concentration matrix C, which in many instances is singular. 

An alternative approach consists of first decomposing the measured datamatrix, D, 
into its principal components, D = A- Vq + E by applying the principles explained in 
section 3.2.1, Vq is the eigenvector matrix of D. The factor score matrix A can be 
calculated from D and Vq 88). Thereafter the factor score matrix is related to the con- 
centration of the NA analytes in the NS calibration samples by multiple linear regres- 
sion, which gives: C = A • B, from which B can be calculated (A and C are known). 
From the dimensions of  matrix A and B which are respectively (NS × NA) and 
(NA × NA), it follows that indirect calibration by PCR requires that the number of 
calibration samples is at least equal to the number of analytes (NS > NA). The 
number of wavelenghts should also at least be equal to the number of  analytes, but 
choosing a higher number has no effect on the number of  required standards, allowing 
to use all relevant spectral information. 

Other strong advantages of PCR over other methods of calibration are that the 
spectra of  the analytes have not to be known, the number of  compounds contributing 
to the signal have not to be known on the beforehand, and the kind and concentra- 
tion of the interferents should not be known. If  interferents are present, e.g. NI, 
then the principal components analysis of the matrix, D, will reveal that there are 
NC = NA + NI significant eigenvectors. As a consequence the dimension of the 
factor score matrix A becomes (NS x NC). Although there are NC components present 
in the samples, one can suffice to relate the concentrations of  the NA analytes to the 
factor score matrix by C = A • B and therefore, it is not necessary to know the con- 
centrations of the interferents. 

The concentrations of  the analytes in an unknown sample are calculated from the 
measured spectrum, d,, as follows: first the factor scores, au, of the spectrum of the 
unknown are calculated in the eigenvector space, Vq, of the calibration standards: 
au = du" V T. The concentrations of the NA analytes are calculated from the relationship 
found between the factor score and concentration: 

Cu = a~ • B .  

Combined in one step: 

C u = d u - V ~  " B .  

In Partial Least Squares (PLS), which was introduced by Wold 113) in 1975, the 
matrices D and C are decomfosed: 
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namely, the measurement matrix, D, representing the spectra of the calibration 
standards and the concentration matrix, C, representing the concentrations of the 
analytes in the calibration standards, are decomposed by an iterative procedure, in 
such a way that the matrices A and B are equal: 
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Fig. 19a and b. Spectra for the spectrofluorimetric analysis of  a mixture of  humic acid and lignin- 
sulfonate, artificially contaminated with a whitenar, a. spectra of  humic acid ( - - -  -) ,  lignin sulfonate 
( - - . - - )  and a whitenar ( .............. ); b. - - - -  expected spectrum for a mixture with absence of 
interactions . . . . . . . . . . . .  measured spectrum. F rom W. Lindberg, J. A. Persson and S. Wold, Anal. 
Chem.  55, 645 (1983). Reproduced by permission o f  the American Chemical  Society, Washington  DC 
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thus:  D = A " V d + E d D:  (NS x NW)  matr ix  o f  the measurements  
C = B • V c + E c C:  (NS x NA)  matr ix  of  the concentrat ions 

V d: (NC x N W )  matr ix  o f  PLS loadings of  the matr ix  D 
V c: (NC x NA)  matr ix o f  PLS loadings of  the matr ix C 
A = B :  (NS x NC) matr ix o f  factor scores 
N A :  number  o f  analytes 
NC:  number  of  compounds  

A detailed descript ion o f  the PLS matr ix decomposi t ion can be found in 85~ 
The concentrat ions o f  the analytes in an unknown sample are found from its spec- 

t rum d u, by C u = du • (V~ "Vc). 
The potentials  o f  the PLS algori thm are very well demonst ra ted  on the spectro- 

fluorimetric analysis o f  mixtures of  humic acid and ligninsulfonate investigated by 
Lindberg et al. ss). The problems associated with this analysis are the strong similarities 
between the spectra, without  selective wavelengths and the interaction between the 
compounds ,  because of  the difference between the emission spectra obtained o f  
numerically added signals from pure substances and for  a measured mixture of  the 
same const i tut ion (Fig. 19). 

To demonstra te  that  PLS works in the case when the cal ibrat ion is made with respect 
to a few "unknown"  substances in a complex mixture, a cal ibrat ion set was made with 
s tandards contaminated  with an optical whitenar contained in a commercial  detergent, 
having a strong emission spectrum in the measured 350-500 nm range. The concentra-  
t ion matr ix (C) contains only the concentrat ions o f  l igninsulfonate and humic acid 
(table 10) in the cal ibrat ion set. Thus the presence of  the detergent was considered' a s  

Table I0. Partial Least Squares (PLS) calibration and prediction of a complex mixture of humic 
acid and ligninsulfonate contaminated with an optical witenar. From W. Lindberg, J. A. Persson 
and S. Wold, Anal. Chem. 55, 645 (1983). Reprinted by permission of the American Chemical Society, 
Washington DC 

Compositions of the Calibration Solutions (~tg mL - t) 

calibration set I calibration set II 

humic acid ligninsulfonate humic acid ligninsulfonate detergent 

1.24 0.111 3.01 0 0 
4.12 0.099 0 0.401 0 
1.52 0.492 0 0 90.6 
3.05 0 1.48 0.158 40.0 
0 0.390 1.12 0.410 30.4 
2.25 0.148 3.40 0.303 50.8 
2.33 0.219 2.43 0.298 70.6 
1.34 0.134 4.02 0.115 89.4 
0.931 0.263 2.28 0.504 8t.8 
3.68 0.312 0.959 0.145 101 
1.40 0.415 3.t9 0.253 120 
2.94 0.305 4.13 0.569 118 
3.50 0.341 2.16 0.436 27.6 
3.02 0.671 3.09 0.247 61.7 

1.60 0.286 109 
3.16 0.701 60.0 
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an unknown disturbance. Table 11 shows that the concentrations are recovered for 
a broad concentration range o f  the "unknowns".  One of  the main advantages with 
the PLS model is that a criterion is obtained reflecting the similarity between samples 
and standards. In table 11 this is called a dissimilarity factor. A high dissimilarity 
factor means that other substances contaminate the sample, than present in the calibra- 
tion set. Sample 18 in table 11 is such a case. 

The PLS approach to multivariate linear regression modeling is relatively new and 
not yet fully investigated from a theoretical point of  view. The results with calibrating 
complex samples in food analysis 122,123) by near infrared reflectance spectroscopy, 
suggest that PLS could solve the general calibration problem in analytical chemistry. 

Table 11. Results (lag mL -~) for Mixtures with Three Substances Calibrated with Set II but Only 
Two Dependent Variables (Humic Acid and Ligninsulfonate) 

sample no. humic acid ligninsulfonate dissimilarity 
factor b 

actual concn prediction error" actual concn prediction 
error" 

10 2.44 0.04 0.289 0.016 1.31 
ll 4.08 0.12 0.361 --0.100 3.51 
12 1.06 0.04 0.234 0.044 0.75 
13 3.32 0.07 0.123 --0.024 1.12 
14 0.998 0.11 0.416 0.037 0.95 
15 2.98 -°0.10 0.403 0.010 1.55 
16 5.13 --0.22 0.229 --0.109 2.20 
17 5.06 --0 0 --0.017 1.80 
18 0 --0.35 0.735 0.532 18.5 

(Z(Y .... - Yc~'cd)2) 1/2 n 0.15 0.185 

4 New Directions in Chemometrics 

During the last decade, analytical instrumentats became more fowerful but also 
more complex. A logical evolution from binary hyphenated methods to ternary 
(GC-FTIR-MS) and quarternary systems is obvious. It means that more advanced 
Chemometrics will be needed in the future to make sense o f  tomorrow's  complex 
instrumentation (Kowalski 124)) and data. New technologies, such as robotics are 
being integrated into modern laboratory instrumentation. Also new software tech- 
nologies, such as knowledge bases, empty shells for artificial intelligence, are becom- 
ing available. This could give the in pression that, Chemometrics is a trand "follower" 
by trying to adapt and exploit the advances in instrumentation and electronics. In my 
view Chemometrics should also play the role of  an important trend setter. A result of  
Chemometric research e.g. is the development of  algorithms which can handle "less 
prepared" or "dir ty" samples (Martens 110, ~ 11)). As a consequence the development of  
multisensory devices consisting of  a large number of  nonseIective and nonspecific 
sensors becomes attractive because an adequate calibration is possible by now. Human  
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interpretation of data structures measured with binary hyphenated methods is already 
quite difficult and could certainly refrain the development of  ternary and quarternary 
systems, which would produce much non-consumable information. However, the 
fact that chemometric tools are available to derive all relevant qualitative and quan- 
titative information from binary hyphenated methods, will certainly inspire instrument 
manufacturers to go ahead with these developments. A similar impact may be expected 
from the availability of sequential methods for optimization and calibration on the 
development of  intelligent instruments. There are indications that methods from 
knowledge engineering could become of a growing importance to us, for method 
selection, method design, result interpretation, algorithm selection and laboratory 
management. Computers will be integrated in the analytical laboratory in the so-called 
computer integrated laboratory, consisting of a network of intelligent analytical work- 
stations. An important aspect of an intelligent workstation is certainly the user- 
interface 125), which may make computers easier to use for analytical chemists. The 
graphic-user interface is a comparatively recent development, which should enable 
analytical chemists to display analytical information and to interact with a computer 
in a user-friendly way. Display techniques based on image processing and pattern 
recognition will therefore, become a tool of  an increasing importance. Pattern recogni- 
tion, which is a very important topic of  Chemometrics research, has been extensively 
studied in the past decades but remained difficult to be applied because of the large 
computer facilities required. A new trend is the release of microcomputer versions of 
packages for pattern recognition 126) having an equal performance as the original 
mainframe version. The release of  tested and refereed software by scientific 
publishers 127-133~ is a logical consequence of the demand for such software. 

In qualitative analysis, structure elucidation by computer has been made possible. 
Three major approaches to chemical structure elucidation are: library searching, 
pattern recognition and artificial intelligence. At present the most pragmatically 
useful approach is based on library searching (LS) 134). LS features have been included 
in many mass and infrared spectrometers. A successful program for the interpretation 
of mass spectra, based on the methods from artificial intelligence, is DENDRAL 57). 
Future developments will certainly be directed towards an integrated approach of 
structure elucidation, in which pattern recognition, artificial intelligence and library 
search will be cooperatively applied to find "substructures" present in the compound 
using a combination of Mass, N M R  and IR-spectral data. Furthermore, logics will 
become available which combines the substructures into a compound structure. 
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1 Introduction 

Analytical chemistry is interested in information that can be ob ta inedf rom material 
objects or systems. In more down to the earth terms this means that analytical chemists 
try to tell something new about objects, goods, bulk material or material systems. 
The way they obtain this information changes with the problem. In most cases they 
try to get the information from the qualitative or quantitative composition~ A vast 
array o f  instruments and methods is to their disposition but most of  them have one 
thing in common:  their size is limited and the way they obtain information is destruc- 
tive. That  means that as a rule the analytical chemist cannot or will not  use the whole 
object in his analysis machine, but that he uses only a small part o f  the object. In 
practice this fraction can be very small: the amount  of  material introduced in the ana- 
lytical method rarely exceeds 1 g, but as a rule is not  more than 0.01 to 0.1 g. This can 
be part of  a shipload of  ore, say 1011 g, or a river, transporting 1013-1015 g water/day. 
In  many instances this fraction is larger, but a fraction o f  the object to be analyzed of  
10-4-10 -5 is common practice. 

t ° 

14 10 6 2 -2 -6 
pP 

Fig. 1. Nomogram for the interdependence of 
sample size, composition, and total amount 
component 1). Reprinted by permission of 
Springer Verlag from Arbeitskreis "Automa- 
tion in der Analyse", Fres. Z. Anal. Chem. 
261 (1972), p. 7 

The implications of  such a small fraction of  the object to be investigated are enor- 
mous. The sample as we will call this fraction must fulfill a series of  expectations before 
it may be called a sample and used as such. A sample must:  
- -  represent the properties under investigation: composition, colour, crystal type, 

etc. faithfully; 
- -  be of  a size that can be handled by the sampler; 
- -  be of  a size than can be handled by the analyst, say from a 0.001-1.0 g; 
- -  keep the properties the object had at the time of  sampling, or change its properties 

in the same way as the object; 
- -  be suitable to give the information the principal wants e.g. mean composition, 

composition as a function of  time or place; 
- -  keep its identity throughout the whole procedure of  sampling, transport and 

analysis. 
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To satisfy these demands, the analyst can use the results of much theoretical and 
practical work from other disciplines. 

Statistics and probability theory provided the analyst with the theoretical framework 
that predicts the uncertainties in estimating properties of populations when only a 
part of the population is available for investigation. Unfortunately this theory is not 
well suited for analytical sampling. Mathematical samples have no mass, do not 
segregate or detoriate, are cheap and are derived from populations with nicely modelled 
composition, e.g. a Gaussian distribution of independent items. In practice the analyst 
does not know the type of distribution of the composition, he has usually to do with 
correlations within the object and the sample of the number of samples must be small, 
as a sample or sampling is expensive. 

Electronics uses mathematical sampling theories and extended it substantially. 
But electrons are light, cheap and abundant. Sampling rates can be very high in con- 
trast to material sampling rates. 

This isolated position of analytical sampling is probably the reason that sampling 
theory for analytical purposes developed late and slow. The art of constructing instru- 
ments for sampling and sample handling developed before theory, so many sampling 
instruments do not give good samples. Static statistical theories have been used for 
a long time to describe sampling as sampling from known, stationary, homogeneous 
populations. The abundance of papers describing these techniques is vast. In this 
review most of these papers are disregarded. Instead much emphasis has been laid 
on the attempts to describe theoretically the more complicated sampling problems, 
regarding more parameters than populatiorl parameters. For a more complete review 
of sampling, including sampling techniques, the reader should consult e.g. 2) 

2 Classification 

To get an idea of the available knowledge about sampling, its theory and practice, 
a rough division will be made first of the different points of view of sampling. 

As follows from the foregoing there can be distinguished three points of view: 
- -  the principal and his objectives; 
- -  the object and its properties; 
- -  the analyst and his restrictions. 

2 . 1  T h e  O b j e c t i v e  

The information that is wanted by the principal should comply with his objectives. 
Most information will be used for: 
--  describing the object globally or in detail; 
--  monitoring an object or system; 
-- controlling a system or process. 

2.1.1 Description 

Description of an object can be the determination of the gross composition for example, 
lots of a manufactured product, lots of raw material, single objects, the mean state 
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of a process. Regarding sampling effort it is desirable to collect a sample that has the 
minimum size set by the condition of representativenes or demanded by handling. 

Another goal can be the description of the object in detail, e.g. the composition of 
a metal part as a function of distance from the surface, or the composition of various 
particles in a mixed particulate product e.g. pigments. Here i-t is necessary to know the 
size and the number of samples, the distance between samples or the sampling fre- 
quency. 

2.1.2 Monitoring 

The next objective can be monitoring of an object or system as a function of time. 
Here it is often sufficient to know that a certain value of the property under investiga- 
tion has been reached, or will be reached with a certain probability. If action is required 
it can be approximate. 

Monitoring the effluent of a smoke stack, or the concentration of a drug in a patient 
requires that the sampling rate is as low as possible and that can be predicted with a 
known probability that between the sampling times no fatal concentration change 
will occur. If  it is expected that the monitored value will exceed a preset value a simple 
action can prevent that: administer some drug, open or close a value, etc. 

Another characteristic of threshold control is that in most cases only one level is 
monitored, the level pertaining to the high level threshold or to the lower level. 

2.1.3 Control 

The objective of control is quite different. The purpose of control is to keep a process 
property, e.g. the composition, as close to a preset value as is technically possible and 
economically desirable. The deviation from the set point is caused by intentional or 
random fluctuations of the process condition. In order to control the fluctuating 
process, samples must be taken with such frequency and analyzed with such repro- 
ducibility and speed that the process condition can be reconstructed. From this re- 
construction predictions can be made for the near future and control action can be 
optimal. Another goal can be the detection of nonrandom deviations, like drift or 
cyclic variations. This also sets the conditions for sampling frequency and sample 
size. 

2.2 The Object 

In general only two types of objects can be distinguished: homogeneous and hetero- 
geneous. It is clear that real homogeneous object do not pose much problems with 
regard to sampling. However, true homogeneous objects are rare and homogeneity 
may be assumed only after verification. Heterogeneous objects can be divided into 
two subsets, those with discrete changes of the properties and those with continuous 
changes. Examples of the first type are ore pellets, tablets, bulk blended fertilizer and 
coarse cristallized chemicals. 

Examples of the other type are larger quantities of fluids and gases, including air, 
mixtures of reacting compounds and finely divided granular material. 

Another description of heterogeneous objects can be: "Objects with random 
distribution of the property parameter". This type is rare and exists only when made 
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intentionally. More common is the type that has a correlated distribution of random 
properties, e.g. the output of a chemical process or the composition of a flowing river. 
The behaviour of the properties can be understood by considering the process as a 
series of mixing tanks that connect input and output. The degree of correlation can 
be described by Fourier techniques or better by autocorrelation or semivariance. 

A special type of  heterogeneous objects exhibits cyclic changes of its properties. 
Frequencies of cyclic variations can be a sign of daily influences as temperature of the 
environment or shift-to-shift variations. Seasonal frequencies are common in environ- 
mental objects like air or surfacewater. 

2.3 The Analyst  

One important restriction set by the analyst and his instruments is already mentioned, 
the limited size of samples. Other restrictions influencing the act of sampling are the 
accuracy of the method of analysis, the limit of detection and the sensitivity. These 
analytical parameters set an upper limit on the information that can be obtained. 

Another important analytical parameter is speed. The time between sampling and 
availability of the result affects the useable information for monitoring and control. 
The time required for analysis sets the time available for sampling. But there is another 
interrelation between sampler and analyst. The frequency of sampling causes a work- 
load for the analyst and affects the analysis time by queueing of the samples on the 
laboratory bench, thus diminishing the information output. Obviously an optimal 
sampling frequency exists given the laboratory size and organization. 

Object 

or Increment 
grab 

(Gross) sample 

i Subsampie 1 

J 
II 

1 [, I  ,ect 

,o,=o,e I f",oo,',,,, i (analysis sample) [,, sample 

-Part of the object 

~p epresentative 
art of the 

t object 
I 

/ ~pReprefo sentntive 

_ L E n t o , , , , ,  

Fig, 2. 5) . . . .  Sample nomenclature . Repnnted by permission of John Wdey & Sons, Inc. from G. Kateman 
and F, W. Pijpers, "Quality Control in Analytical Chemistry", p. 20, 1981. Copyright © 1981 John 
Wiley & Sons Inc 
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Table 1. Glossary of Terms Used in Sampling ~) 

Bulksarnpling. Sampling of a material that does not consist of discrete, identifiable, constant units, 
but rather of arbitrary, irregular units. 
Gross sample. (Also called bulk sample, lot sample.) One or more increments of material taken from 
a larger quantity (lot) of material for assay or record purposes. 
Homogeneity. The degree to which a property or substance is randomly distributed throughout a 
material. Homogeneity depends on the size of the units under consideration. Thus a mixture of two 
minerals may be inhomogeneous at the molecular or atomic level but homogeneous at the particulate 
level. 
Increment. An individual portion of material collected by a single operation of a sampling device, 
from parts of a lot separated in time or space. Increments may be either tested individually or combined 
(composited) and tested as a unit. 
Individuals. Conceivable constituent parts of the population. 
Laboratory sample. A sample, intended for testing or analysis, prepared from a gross sample or other- 
wise obtained. The laboratory sample must retain the composition of the gross sample. Often reduc- 
tion in particle size is necessary in the course of reducing the quantity. 
Lot. A quantity of bulk material of similar composition whose properties are under study. 
Population. A generic term denoting any finite or infinite collection of individual things, objects, or 
events in the broadest concept; an aggregate determined by some property that distinguishes things 
that do and do not belong. 
Reduction. The process of preparing one or more subsamples from a sample. 
Sample. A portion of a population or lot. It may consist of an individual or groups of individuals. 
Segment. A specifically demarked portion of a lot, either actual or hypothetical. 
Strata. Segments of a lot that may vary with respect to the property under study. 
Subsampte. A portion taken from a sample. A laboratory sample may be a subsample of a gross 
sample; similarly, a test portion may be a subsample of a laboratory sample. 
Test portion. (Also called specimen, test specimen, test unit, aliquot.) That quantity of material of 
proper size for measurement of the property of interest. Test portions may be taken from the gross 
sample directly, but often preliminary operations such as mixing or further reduction in particle size 
are necessary. 

Reprinted with permission from B. Kratochvil, D. Wallace, J. K. Taylor, Anat. Chem. 56 (5), 1984, 
p. 114R. Copyright 1984 American Chemical Society. 

Ku  3) stated that a prerequisite to the development of an efficient analytical strategy 
is definition of the purpose for which the results are going to be used. This point  has 

been laid down in the recommendation 4). 
The foregoing introduction of sampling and influences on sampling has been treated 

in 5,6,7) 

More general introductions in sampling and sampling statistics are given in s,9, 
10, 11) 

Reviews on sampling are given in 12,13"2k A review covering older references is 
e.g. 14) 

Sampling error lecture demonstrations have been published by Bauer and Kratoch- 
vi115,16). A software program allowing simulation of many sampling situations and 
providing calculation algorithms for sampling schemes has been published 17) 

Given the quite simple and clear model of sampling strategies and the economically 
very important  impact of sampling there has been published comparatively little 
about sampling strategies. The emphasis has been more on analytical techniques. 
Detection limit, precision and capacity have been the main  topics in analytical chemis- 
try for more then 30 years. Chemometrics, providing means to extract more informa- 
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tion from available data and tools to make experimental planning more efficient, 
added not much to sampling theory. 

3 Sampling for Gross Description 

3.1 Random Particulate Objects 

The foundations for sampling theory, seen from the point of  view of the object, have 
been laid by Benedetti-Pichler, Visman and Gy ti's, 19,~)21,2~,~ T h e i r  starting point 
was the object that consists of  two or more particulate parts. The particulate composi- 
tion is responsible for a discontinuous change in composition. A sample must be 
of  sufficient size to represent the mean composition of the object. The cause of dif- 
ference between an increment of  insufficient size and the  object is the inevitable sta- 
tistical error. The composition of the sample, the collection of increments, is given 
by the mean composition of the object and the standard deviation of this mean. As 
the standard deviation depends on the number of particles, the size and the composition 
of these particles, an equation can be derived that gives the minimum number of  
particles. 
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Fig. 3. Relation between the minimum number of units in a sample required for sampling errors 
(relative standard deviations in percentage) of 0.1 and 1% (y-axis) and the overall composition of a 
sample (x-axis), for mixtures having two types of particles with" a relative difference in composition 
ranging from 100 to 10~ 23). Reprinted with permission from W. E. Harris, B. Kratochvil, Analytical 
Chemistry, 46 (1974), p. 314. Copyright 1974 American Chemical Society 
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Visman 19, 20, 21) described the sampling variance as the sum of random and segrega- 
tion compounds according to S 2 = (A/wn) + (B/n). Here A and B are constants 
determined by preliminary measurements on the system. The A term is the random 
component; its magnitude depends on the weight w and number n of sample increments 
collected as well as the size and variability of  the composition of the units in the popula- 
tion. The B term is the segregation component; its magnitude depends only on the 
number of increments collected and on the heterogeneity of  the population. Different 
ways of estimating the values of A and B are possible. Another approach to estimate 
the amount of samples that should be taken in a given increment so as not to exceed 
a predetermined level of  sampling uncertainty is that through the use of Ingamelts' 
sampling constant 24, 25, 26). Based on the knowledge that the between-sample standard 
deviation decreases as the sample size is increased, Ingamells has shown that the rela- 
tion WR 2 = Ks is valid in many situations. W represents here the weight of  the sample, 
R is the relative standard deviation (in percent) of  the sample composition and Ks 
is .the sampling constant, the weight of sample required to limit the sampling uncer- 
tainty to 1 70 with 68 70 confidence. The magnitude of Ks may be determined by estimat- 
ing the standard deviation from a series of  measurements of samples of  weight W. 
An example of an Ingamells sampling constant diagram is shown in Fig. 4 27) 

2.9 
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o ~ e  

1.~ I J r ~Kt_s 
0.01 0.1 I 10 100 

Sampte weight  (g )  

Fig. 4. Sampling diagram of sodium-24 in human liver homogenate 27} Reprinted with permission 
from S. H. Harrison, R. Zeisler, NBS Internal Report 80-2164, p. 66, 1980. Copyright 1980 National 
Bureau of Standards 

Gy 22) collected the prevailing techniques in his book on sampling particulate 
materials and developed an alternative way of calculating the sample size. 

He defined a shape factor f as the ratio of the average volume of all particles having 
a maximum linear dimension equal to the mesh size of a screen to that of a cube which 
will just pass the same screen, f = 1.00 for cubes and 0.524 for spheres. For most 
materials f ~ 0.5. The particle size distribution factor g is the ratio of  the upper size 
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limit (95 % pass screen) to the lower size limit (5 % pass screen). For  homogeneous 
particle sizes g = 1.00. The composit ion factor c is: 

c = (1 - -  x) [(1 - -  x) d~ + xdg]/x 

where x is the overall concentration of  the component  of  interest, dx the density of  this 
component  and dg the density of  the matrix (remaining components),  c is in the range 
5 • 10 -5 kg/m 3 for high concentrations of  c to 10 a for trace concentrations. 

The liberation factor 1 is 

1 = (dl/d) I/2 

where d~ is the mean diameter of  the component  of  interest and d the diameter of  the 
largest particles. The standard deviation of  the sample s is estimated by 

s z = fgcld3/w 

Ingamells 25) related Gy ' s  sampling constant to Ingamells '  constant by 

Ks = fgcl(d 3 x lif t) 

Brands proposed a calculation method in the case of  segregation 23, 28) A special 
type of  inhomogeneous,  particulate objects is the surface analysis by microscopic 
techniques e.g. analytical electron spectroscopy, laser induced mass spectroscopy or 
proton-induced X-ray emission. Here the minimum sample size can be translated 
into the minimum number  of  specific sample points in the specimen under investiga- 
tion. 

Morrison 30, 31) defined a sampling constant 

K = (l/IT) ( A  x 
\1/2 

ii 2) (1 - At/Ax) -I/2 

where K = sampling constant in ~tm 
i t = intensity of  inclusion i 
n = total number  of  inclusions 
Aar = total area image in lain 2 
A~ = total area inclusions 

For  a confidence interval A the number  of  replicate analyses can be calculated 

N = (100tK/A1/2) 2 

where a = area sampled 
t = Students'  t 

Incztdy 32) proposed a measure for homogeneity of  samples, assuming a sinusoidal 
change of  concentrations of  the component  of  interest. 
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Fig. 5. Concentration distribution of an element in a solid. The resolution of the instrument is high 
compared to the concentration change. The error is also very low (Az >> fiz; Ax >> s). The vertical 
lines indicate the uncertainty of the measurement; the standard deviation s can be taken as a fifth 
of the range of the signals for a given level 3z) Reprinted with permission from Talanta, 29. J. Incz6dy, 
"Homogeneity of solids: a proposal for quantitative definition". Copyright 1982 Pergamon Press 

The  concen t ra t ion  difference Ac can  be calculated by  

Ac < 4.12s(n 8z/Az)/(sin (n 8z/Az)) 

where s = measu remen t  error  
8z/Az = relative " w i n d o w "  (see Fig. 5) 

Danze r  et al. 33} proposed ano the r  homogene i ty  c r i te rum based o n  the F test for 

samples of  different  size. 

3.2 Internally Correlated Objects 

Objects can  be in terna l ly  correlated in t ime or space. F o r  mixed objects such as t anks  
(and  the products  that  have been subjected to storage for longer  or shorter times), 
rivers, lakes, gases and  env i ronmen ta l  air this corre la t ion  can  be rendered by  auto-  
corre lagrams and  model led  by a simple negat ive exponent ia l  func t ion  o f  the correla-  

t ion  distance. 
The  au tocor re la t ion  func t ion  can  be calculated by :  

0r = (x~ - g) (x,+~ - ~t) n .  er 2 
t 

where xt = measured  value a t  t ime t 
x, + ~ = measured  value at t ime t + x 

= t ime increment  
n = n u m b e r  o f  measurement s  
cr z = var iance  of  the measurements  
Q, = 1 for x = 0 and  approaches  0 for larger values of  z. 
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Assuming the exponential decay of  O, the autocorrelation function can be represent- 
ed by Tx, the time constant or  correlation constant o f  the measured system as 0~ 
= exp ( - - /Tx) ,  Tx = ~ for Q~ = 0. See for instance a¢). 

Unmixed, stratified objects such as soil and rock, usually cannot be represented by 
a simple correlation constant derived from the exponential autocorrelation function. 
Here another measure is introduced, the semivariance. The semivariance 7~ can be 
computed from 3s - 39) 

n - - ~  

y, = ~ (x, - xt+O2/2n 
t = l  

4, 

/ ~'lxl 

Range - l 

Fig. 6. Relationship between semivariance "t and autocovariance Q for a stationary regionalized 
variable. O~o is the variance of the observations, or the autocovariance at lag 0, For values of x beyond 
the range, - f (x )  = o~o 

The distance where ),~ approaches o -2 is called the range, a. 
Fitting a model equation to an experimental semivariogram is a trial-and-error 

process, usually done by eye. Clark 4o) describes and gives examples of  the manual 
process, while Olea 41) provides a program which computes a model. 

Some models used in practice are the linear model:  

y x = a x  for z < a  

V z = o  -2 for z > a  

The exponential model is given by 

Y, = 02(1 - -  exp (--x/a)) 

and the "ideal" model is the spherical model 

y, =o-2(3r /2a- -xS/2a  3) 
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For objects that can be modelled by the time or correlation constant (see e.g. 4z, 
43), Tx, the sample size, sample number and standard deviation are related and depend 
on the size of the object, if this object has a finite size in correlation units. 

According to Miiskens *~), the variance o-2. can be thought of as composed of the 
variance in the composition of the sample cry, the variance in the composition of the 
whole object c~ and the covariance between m and ~t: 

2 2 - -  20.rn~ 0"2 = O'm + (Yla 

These variances can be calculated with 

= 20.  { 
0.m n--g- g - 1 + exp ( -g)  + [exp ( -g)  + exp (g) - 2] 

{ exp ( -a )  exp(-a)  [ 1 -  exp ( - -p ) ]~  
X ; )  

2 0  .2 
c y , -  pZ [ P -  1 + exp( -p ) ]  

2{ 
% [1 - exp ( -p ) ]  \ 1 - exp ( - a )  + 1 - exp(a ) / J  

C~m. = 2ng + (e_xp(-g) - -  1 exp(g) -_/~'~ 
npg 

where ~ = variance of process 
p = P/Tx 
g = G/Tx 
a = Afr~ 
Tx = correlation factor of the process 
n = number of  samples 

As can be seen in these equations, 0-2. depends on a number of  factors. The properties 
of the population from which the object stems are described by cr x and Tx. The relevant 
property of the object is its size p, expressed in units Tx. The relevant properties of  
the sample are increment size g, the number of  increments n and the distance between 
the increments, a. If  the sample size is expressed as a fraction of the object, F, the 
relations between F, or. and n are depicted in Fig. 7 and 8 4s) 

The estimates of  the sample size obtained in this way are valid for one-dimensional 
objects, e.g. output of factories, rivers, sampling lines in lakes, stationary sampling 
points for air monitoring, etc. A sample of  papers that are devoted to the application 
of autocorrelation in sampling schemes is e.g. a6,47.4s). 

In soil science one usually has to do with two or threedimensional objects that cannot 
be represented by correlation constants. Here the size and the number of samples 
must be obtained in other ways. In this case often an intermediate step is Kriging, 
mapping of lines or planes of equal composition 41). For the simplest case, punctual 
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Fig. 7. The relative sample size F ( ) and the relative gross sample size nF ( . . . . . . . . . . . .  ) as a 
function of  the relative lot size p for various number of  samples (c , /o , )  = 0.1 45). Reprinted with 
permission from G. Kateman, P. J. W. M. Miiskens, Anal. Chim: Acta I03 (1978), p. 14. Copyright 
1978 Elsevier Science Publishers B.V. 
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pyright 1978 Elsevier Science Publishers B.V. 
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Kriging, tlae composition of points p is estimated by solving W from the matrix 
equation 

[hl .[W] = [B] 

/ Y(xl2) y(x22) 

A =  [y(~13) 7('c23) 

1 1 

with 7(d j) the semivariance over a distance ~ corresponding to the control points i andj. 

W = 2 B = Y ( P )  

with y(zlp) the semivariance over a distance z equal to that between known point i 
and the location p where the estimate is to be made. 

N o w  Xp = W l x  1 -[- W2x 2 --[- W3x 3 wi th  a var iance  
= Wly(xlp) + W2y(x2p) + Wff(x3p) + k 

The map that can be obtained in this way shows not only the estimated value at some 
interpolated point p but also its error. With this map it can be decided where new 
samples should be taken. 

By estimating "compartments" of compositions that do not vary more than a given 
amount, sampling can be restricted to one sample per compartment. Most compart- 
ment estimates are arbitrary, however 49, 50, 51, 52) 

4 Sampling for Detailed Description and Control 

When the objective of sampling is estimation of the composition of the object in detail, 
the sampling strategy will be different from the strategy aimed at the estimation of 
the mean composition of the lot. Shannons sampling theorem states that a signal 
(in analytical chemistry an object) should be sampled with a frequency of 2 times the 
highest frequency present in the signal. Only in that case a reliable estimate of the real 
situation can be obtained. The highest frequency can be deducted from a Fourier 
transform of the signal. 

For analytical chemical purposes this approach is not very practical. To obtain 
sufficient data for a reliable Fourier analysis can be a hard task. 

Estimating the autocorrelogram is easier in most cases and use of a model of the 
distribution of the component allows reconstruction of the value of the composition. 
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Application of these reconstruction methods 53. s4) can be described as the inter- 
polation of object composition between sample points by means of an exponential 
function, characterised by the correlation constant. 

As Van der Grin.ten developed his estimation algorithm for real time process control 
he also introduced a "'dead time", the time between sampling and availability of the 
analytical result. As a measure of reconstruction efficiency he defined the measurability 
factor 

m = ( (~  - -  ~ ) / ~ ) 1 ~  

where ~ = variance of composition of object 
o~ = residual variance after reconstruction 

When the object isa process, an object whose composition changes in time, this factor m 
can be estimated by: 

m = [exp --  (d + 1/2a + 1/3y)] (1 - -  sa- t~/z) 

whered = D ~ x  a = A ~ x  g = G ~  t ¢ = T d T  x and 
D = analysis time 
A = (sampling frequency)-1 
G = sample size 
T~ = time constant (correlation factor) of process 
T e = time constant of measuring device 

= variance of method of analysis 
= variance of process 

s = a , ~  

,•,•20ocess 
and samples 

t Reconstruction (autocorretation) 

x 

t Reconstruction error 

0 20 40 60 80 100 120 11,0 160 180 200 
Fig. 9. Reconstruction and reconstruction error 
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The equation can be rewritten as: 

m = m D • m A . m G • m N 

where mn = exp (--d) 
mA = exp (--a/2) 
me = exp (--g/3) 
m N = 1 --s~t~/2 

From these equations it follows that the maximum obtainable measurability factor 
will never exceed the smallest of the composing factors. This implies that all factors 
should be considered in order to eliminate the restricting one. It also means that a 
trade-off is possible between high and low values of the various factors. 

Leemans ss) described a sampling scheme based on these algorithms that considers 
sampling frequency, sampling time, dead time and accuracy of the method of analysis 
to obtain optimal information yield or maximal profit when controlling ~t factory. 

The sampling rate and therefore the information yield is not only set by the sampling 
scheme, but also by the laboratory. If, for instance, the frequency of sampling is too 
high queueing of  samples occur, that means loss of information if the results are used 
for process control. 

Janse 56) showed that the theory of queueing can be applied to study the effects on 
information yield of such limited facilities. The effect depends on the way the sampling 
and analysis are organized. 

The effect can be calculated for simple systems with one service point (one analyst 
or one instrument). For more complicated systems simulation should be applied. For 
a M/M/1 system (random sampling/random analysis time/1 server), in fact the most 
unorganized system, the measurability factor is: 

m 2 = [Tx/(T x + 2•)] {(1 --  Q) T J[(1 --  0) Tx + D]} 

where T~ = time constant (correlation constant) 
/~ = mean interarrival time of samples 
13 = mean interanalysis time 
Q utilization factor of the lab 

For a DfD/1 system (fixed sampling rate/fixed analysis time) there are no waiting 
times. 
The situation D/M/1 (fixed sampling rate) and M/D/1 (fixed analysis time) are inter- 
mediate. 

D/M/1 system m 2 = exp (--2/~/T~) {(1 --  Q) T j[(1 --  O Tx + 2D]} 

MID/1 system m 2 = [Tj(Tx + 2/~)1 

{2(1 --  O) A/[(2A - TO exp (2D/T~) + T=]} 

One obvious conclusion can be that smoothing the input (from M/M/1 to D/M/I)  
is most advantageous. 
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Fig. 10. Theoretical curves for information yield as a function of utilization factor: ( ) M/M/1 
system; ( .............. ) D/D/1 system; (×)  simulation results with 95% probabihty intervals s6). Re- 
printed with permission from T. A. H. M. Janse, G. Kateman, Anal. Chim. Acta 150, p. 225. Copyright 
1983 Elsevier Science Publishers B.V. 
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Fig. 11. Theoretical curves for information yield as a function of utilization factor: A, M/D/I system; 
B, D/M/1 system. ( ............. -) DfO/l system; ( × ) simulation results with 95 % probability intervals 5~) 
Reprinted with permission from T. A. H. M. Janse, G. Kateman, Anal. Chim. Acta 150, p. 226. 
Copyright 1983 Elsevier Science Publishers B.V. 
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5 Sampling for Monitoring 

I f  the objective of sampling is to provide information for warnings (threshold monitor- 
ing) autocorrelated processes can be modelled by the earlier described methods. Not 
only interpolation is possible but extrapolation can be applied as well. However, 
the uncertainty in the extrapolated estimate depends on the prediction time. As long 
as the  predicted value, including the prediction error does not exceed the preset 
warning threshold, no new sample is required. Miiskens 57) derived that the next 
sample should be taken at a time ~ after an analytical result xt according to: 

{T 2 2 2} "~ = T,, • In ' "  Xt + Z[Xt  - q(Tr - -  Z2)]l/ 

where Tr = threshold value (normalized to zero mean and unit standard deviation) 
Xt = process value (normalized to zero mean and unit standard deviation) 
Z = reliability factor 
q = (o-~ + o-~.)/cr~ 
O~x = variance process 
~ = variance method of analysis 
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Fig. 12. Graphical representation of the operation of the monitoring system. The measurements are 
indicated by dots. ( ) is the predicted process value or prediction. ( ............ ) indicates the 
reliability interval of the prediction. Here the 95 % interval is used. Reprinted with permission from 
P. J. W. M. Miiskens, Anal, Chim. Acta 103 (1978), p. 447. Copyright 1978 Elsevier Science Publishers 
B.V. 

He also derived mean sampling rates when a known, probability of exceeding the 
threshold without sampling is accepted. 
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6 Other Objectives 

When  the objective is not  solely maximizing the informat ion from samples but  when 
economic or  organizat ional  aspects are at  stake as well, there are more  ways to in- 
fluence sampling schemes. Next  to the influences of  sampling rate as already described 
there are possibilities in collecting samples in batches and assigning priorit ies to sam- 
pies. The influence on labora tory  performance and information content has been 
treated by Vandeginste and Janse ss, 59, 60) 

7 Conclusions 

The remarkable  growth of  chemometrics  in the past  15 years had its influence on 
sampling strategies. The older  techniques relied on the static statistical propert ies  o f  
the object under  observation. The newer techniques all take into account the correla- 
t ions within the object, allowing opt imal  sampling o f  processes. N o  doubt  these 
techniques have been made possible by the availabil i ty of  computers.  Developments  
now seem to concentrate on refinements of  existing techniques, allowing the opt imal  
design o f  sampling networks,  e.g. for environmental  moni tor ing of  air and water or 
soil survey for agriculture and geology. 

8 References 

1. Arbeitskreis "Automation in der Analyse": Z. Anal. Chem. 261, 1 (1972) 
2. Kratochvil, B., Wallace, D., Taylor, J. K. : Anal. Chem. 56, 113R (1984) 
3. Ku, H. H.: NBS Spee. Pub. 519, 1 (1979) 
4. ACS Committee on Environmental Improvement: Anal. Chem. 55, 2210 (1983) 
5. Kateman, G., Pijpers, F. W. : Quality Control in Chemical Analysis, Wiley, New York 1981 
6. Kateman, G.: Sampling, in: Chemometrics, mathematics and statistics in chemistry (Kowalski, 

B. R., ed.)p. 177, Reidel Dordrecht 1984 
7. Cochran, W. B. : Sampling Techniques, Wiley, New York 1977 
8. Kratochvil, B., Taylor, J. K. : Anal. Chem. 53 (8), 924A (198t) 
9. Smith, R., James, G. V. : The sampling of bulk materials, Royal Soc. of Chem., London 1981 

10. Bicking, C. A., in: Treatise on analytical chemistry (Kolthoff, I. M., Elving, P. J., ed.) p. 299, 
Wiley, New York 19792 

11. Horwitz, W. J. : J. Assoc. Off. Anal. Chem. 59, 238 (1976) 
12. Pijper, J. W. : Anal. Claim. Acta 170, 159 (1985) 
13. Illingworth, F. K. : Trends in Anal. Chem. 4 (5), IX (1985) 
14. Kratochvil, B. G., Taylor, J. K.: NBS Teeh. Note 1153, Nat. Bureau of Standards, Washington DC 

1982 
15. Bauer, C. F. : J. Chem. Educ. 62, 253 (1985) 
16. Kratochvil, B., Reid, R. S. : ibid. 62, 252 (1985) 
17. Kateman, G., Van der Wiel, P. F. A., Janse, T. A. H. M., Vandeginste, B. G. M. : CLEOPATRA, 

Elsevier Scientific Software, Amsterdam 1985 
18. Baule, B., Benedetti-Pichler, A. A. : Z. Anat. Chem. 74, 442 (1928) 
19. Visman, J. : Mat. Res. Stds. 9 (11), 8(1969) 
20. Visman, J., Duncan, A. J., Lerner, M.: ibid. 11 (8), 32 (1971) 
21. Visman, J.: J. Mat. 7, 345 (1972) 

61 



Gerrit Kateman 

22. Gy, M. : Sampling of particulate materials: theory and practice, Elsevier, Amsterdam 1979 
23. Harris, W. E., Kratochvil, B.: Anal. Chem. 46, 313 (1974) 
24. Ingamells, C. O., Switzer, P.: Talanta 20, 547 (1973) 
25. Ingamells, C. O.: ibid. 21, 141 (1974) 
26. Ingamells, C. O. : ibid. 23, 263 (1976) 
27. Harrison, S. H., Zeisler, R.: "NBS Internal report 80-2164", p. 66, US National Bureau of Stand- 

ards, Washington 1980 
28. Brands, G.: Fres. Z. Anal. Chem. 314, 6 (1983) 
29. Brands, G. : ibid. 314, 646 (1983) 
30. Fasset, J. D., Roth, J. R., Morrison, G. H.: Anal. Chem. 49, 2322 (1977) 
31. Scilla, G. J., Morrison, G. H.: ibid. 49, 1529 (1977) 
32. Incz6dy, J. : Talanta 29, 643 (1982) 
33. Danzer, K., Doerffel, K., Ehrhardt, H., Grissler, M., Ehrlich, G., Gadow, P.: Anal. Claim. Acta 

105, 1 (1979) 
34. Box, G. E. P., Jenkins, G. M. : "Time Series Analysis", Holden-Day, San Francisco 1970 
35. Armstrong, M ,  Jabin, R. Math. Ged, _/3~ 455 (1981) 
36. David, M. : "Geological Ore Reserve Estimation", Elsevier, Amsterdam 1977 
37. Journel, A. G., Huijbregts, C. J. : "Mining Geostatistics", Academic Press London 1978 
38. Davis, J. C ,  McCullagh, M.: "Display and Analysis of Spatial Data", Wiley, New York 1975 
39. Davis, J. C., in: (Kowalski, B. R., ed.) "Chemometrics, mathematics and statistics in chemistry", 

p. 419, Reidel Dordrecht 1984 
40. Clark, I. : "Practical Geostatistics", Applied Science Publishers, Ltd., London 1979 
4t. Olea, R. A. : "Measuring spatial dependence with semivariograms", "Kansas Geological Survey 

Series on Spatial Analysis", no. 3, University Kansas, Lawrence 
42. Vandeginste, B. G. M., Salemink, P. J. M., Duinker, C. J. : Neth. J. Sea Res. 10, 59 (1976) 
43. M~iskens, P. J. W. M., Hensgens, W. G. J. : Water Res. 11, 509 (1977) 
44. Miiskens, P. J. W. M., Kateman, G. : Anal. Chim. Acta 103, 1 (1978) 
45. Kateman, G., Miiskens, P. J. W. M.: ibid. 103, l l  (1978) 
46. Bobec, B., Bluis, D.: J. Hydrol. 44, 17 (1979) 
47. Bobec, B., Lachance, M., Cazaillet, O.: Eau Que t6, 39 (1973) 
48. Nelson, J. D., Ward, R. C. : Groundwater 19, 617 (1981) 
49. Bouma, J., in: "Soil Spatial Variability" (Nelson, D. R., Bouma, J., ed.) p. 130, Wageningen t985 
50. Gruijter, J. J. de, Marsman, B. A., in: "Soil Spatial Variability" (Nelson, D. R,, Bouma, J., ed.) 

p. 150, Wageningen 1985 
51. Bouma, J. : Agric. Water Managm. 6, 177 (1983) 
52. Webster, R., Burgess, T. M.: ibid. 6, 111 (1983) 
53. Grinten, P. M. E. M. van der: J. Instr. Soc. Am. 12 (1), 48 (1965) 
54. Grinten, P. M. E. M. van der: ibid. 13 (2), 58 (1966) 
55. Leemans, F. A. : Anal. Chem. 43 (11), 36A (1971) 
56. Janse, T. A .H .M. ,  Kateman, G.: Anal. Chim. Acta 150, 219 (1983) 
57. Miiskens, P. J. W. M. : ibid. 103, 445 (1978) 
58. Vandeginste, B. G. M. : ibid. 122, 435 (1980) 
59. Vollenbroek, J. G., Vandeginste, B. G. M. : ibid. 133, 85 (1981) 
60. Janse, T. A. H. M., Kateman, G. : ibid. 159, 181 (1984) 

62 



Signal and Data Analysis in Chromatography 

Henri Casemirus Smit and Erik Jan van den Heuvel 

Laboratory for Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 
1018 WV Amsterdam, The Netherlands 

Table of Contents 

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

2 Chromatographic Signal Analysis . . . . . . . . . . . . . . . . . . .  64 

3 Chromatographic Noise Analysis . . . . . . . . . . . . . . . . . . .  71 

4 Simple Data Processing . . . . . . . . . . . . . . . . . . . . . . .  73 

5 Uncertainty in Area Determination . . . . . . . . . . . . . . . . . .  75 

6 Univariate Data Processing . . . . . . . . . . . . . . . . . . . . .  76 

7 Multiehannel Data Processing . . . . . . . . . . . . . . . . . . . .  80 

8 Basic Multivariate Analysis . . . . . . . . . . . . . . . . . . . . .  81 

9 Applications of Multivariate Techniques . . . . . . . . . . . . . . . .  82 

10 Information from Chromatographic Data Sets . . . . . . . . . . . . .  83 

11 Special Techniques . . . . . . . . . . . . . . . . . . . . . . . . .  84 

12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

An overview is given of chromatographic signal and data processing techniques, including noise 
analysis and uncertainty calculations. In the single channel signal processing, attention is paid to 
the use of signal approximation and regression with different signal models. In the multivariate 
approach recently developed deconvolution methods are described, applying a.o. least squares 
optimization and factor analysis. Finally, chemometric optimization and classification procedures 
are treated, using chromatographic data sets and special techniques like correlation chromato- 
graphy. 

Topics in Current Chemistry, Vol. 141 
~_) Springer-Veriag, Berlin Heidelberg 1987 



Henri C. Smit and Erik J. van den Heuvel 

1 Introduction 

The chromatographic process involves the physical separation of substances, a 
measuring procedure (detection), followed by signal --  as well as data processing. 
Column chromatography ideally yields a number of well-separated peaks with an 
approximately Gaussian shape and a flat noiseless baseline. The ideal situation is 
pursued by adjusting and optimizing a set of in general mutual-dependent parameters 
like flow, temperature, concentration. 

The relevant quantitative or qualitative information is extracted from the obtained 
signal by, for example, determining peak height or peak area and retention time. The 
simple manual data processing procedures of former days are now automized and 
computerized and data acquisition involving digitizing the originally analog detector 
signal is incorporated. 

In practice, the real signal is never ideal. Systematic and random errors often occur 
due to, e.g. unresolved or badly resolved peaks, non-linearity (resulting in concentra- 
tion-dependent peak shapes), noise and drift. 

The mentioned simple data processing, suitable for perfect or almost perfect 
chromatograms, is not optimal in case of"difficult" chromatograms. More advanced 
data and signal processing procedures are developed, resulting in lower systematic 
and random errors. 

The quality of the chromatographic procedure or parts of it can be optimized, 
for instance by using a multi-wavelength detector or a mass spectrometer. 

Advanced dataprocessing and multiple signal detectors require a chemometricat 
approach. However, the use of chemometrics is not restricted to these applications. 
The chromatographic parameters can be optimized by using statistical and mathe- 
matical techniques like factor analysis and formal optimization techniques. And 
even the normal chromatographic process can be modified chemometrically by, for 
instance, replacing the single injection by a random injection pattern and applying 
correlation techniques (correlation chromatography). The result is a drastically 
decreased detection limit. 

Further, analytical dataprocessing has to be completed with an estimation of the 
systematic error and the uncertainty in the results. Signal and noise analysis, required 
for this purpose, is based on mathematical and statistical techniques and can therefore 
be classified as a part of chemometrics. Moreover, determining signal and noise 
characteristics by developing mathematical (statistical) models is indispensable in 
dataprocessing procedures; advanced dataprocessing is in general based on preknow- 
ledge of signal and noise. 

2 Chromatographic Signal Analysis 

A chromatogram without noise and drift is composed of a number of approximately 
bell-shaped peaks, resolved and unresolved. It is obvious that the most realistic model 
of a single peak shape or even the complete chromatogram could be obtained by the 
solution of mass transport models, based on conservation laws. However, the often 
used plug flow with constant flow velocity and axial diffusion, resulting in real Gaussian 
peak shape, is hardl~ 1 realistic. Even a slightly more complicated transport equation 
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with, for instance, a non-linear partition isotherm, cannot be solved mathematically. 
The only possibility is a computer simulation. 

Both a simplified continuous and discrete model, describing the behaviour of single 
component mass transport in chromatographic columns with non-linear distribution 
isotherm, were developed and simulated by Smit et al. 1, 2, 3). Studies of more complex 
but still relatively simple (multicomponent) transport models have been published 
(see e.g. 4, 5)). 

The alternative is the use of a descriptive mathematical model without any relation 
with the solution of the transport equation. On the analogy of the characterization 
of statistical probability density functions a peak shape f(t) can be characterized by 
moments, defined by: 

m k = E[t k] = ff tkf(t) dt k = 0, 1, 2...  (1) 

E[ ] denotes the expected value of the expression between the brackets 6). The constants: 

Ih, = E[(t -- m~) k] (2) 

are called the central moments and can be expressed in {mj}~ by expanding Eq. (2) 
by the binomial theorem: 

Pk = E[(t - ml)k] = E [r~o (k )  (--1)r m~t~-r ] (3) 

Particularly important are rn o the peak area, m 1 the centre of gravity, and ~t 2 = 0 -2, 
where c is the standard deviation of the peak. 

Different peak shapes can also be compared by the determination of dimensionless 
moments about the mean, defined as: 

112 
a, = - -  (4) 

Particularly important are the moment coefficient of skewness: 

/a3 
a 3 = _ _  

and the moment of kurtosis, the degree of peakedness: 

g4 
a4 = la 2 

(5) 

(6) 

A related approach is the approximation of peak-shaped functions by means of 
orthogonal polynomials, described by Scheeren et al. 7) A function f(t), in this case 
the chromatographic signal, can be expanded in a series: 

fit) = aoPo(t ) + alpl(t ) + ... + a, PN(t) (7) 
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Multiplying both sides with p.(t) and integrating gives: 

f(t) p.(t) dt = a o 7 Po(t) p.(t) dt + . . .  + a= ? PN(t) p.(t) dt (8) 

Suppose f(t) is known from experimental data, then for each function p.(t) the left- 
hand sidecan be calculated, This procedure can berepeated N + 1 times, givingN + 1 
results, usable to calculate the coefficients a 0, a 1 .... a s. Important criteria for the 
choice of  the function p.(t) are the fast convergence and the accuracy of the method. 

If the functions 1, t, t 2 . . . .  t N are chosen, then the already mentioned moments of 
f(t) are found. However, convergence is not guaranteed in this case. Moreover, the 
calculation of  the coefficients a. requires the solution of N equations with N unknowns 
and the values a. are dependent ofN. The introduction of a specialized set oforthogonal 
polynomials can be advantageous and circumvents some problems. Suppose that the 
following integral exists: 

b 

S )plit)] 2 w(t) dt < oo i = n, m (9) 
a 

The scalar product of  the functions p.(t) and p=(t) with respect to the weighting func- 
tion w(t) is: 

b 

(p.(t), pro(t)> = f p~(t) pro(t) w(t) dt (10) 
a 

If  the set LPi] satisfies the condition that <p,(t), pro(t)> = 0 for n # m then the series 
is called orthogonal, and orthonormal when in addition <p,(t), p=(t)> = 1, for n = m. 

Approximating a function with an orthogonal polynomial series means that it is 
not necessary to solve N equations simultaneously. 

The addition of  more terms does not influence the values of the already calculated 
terms. In this aspect, orthogonal polynomials are superior to other polynomials; 
calculation of the coefficients is simple and fast. Moreover, according to the Gram- 
Schmidt theory every function can be expressed as a series oforthogonal polynomials, 
using the weighting function w(t). 

The choice of the specific orthogonal polynomial is determined by the convergence. 
If the signal to be approximated is a bell-shaped function, it is evident to use a poly- 
nomial derived from the Gauss funct.ion, i.e. one of the so-called classical polynomials, 
the Hermite polynomial. Widely used is the Chebyschev polynomial; one of the special 
features of this polynomial is that the error will be spread evenly over the whole 
interval. 

Figure 1 shows an example of a chromatogram of alkytbenzenes approximated with 
Chebyschev series. The information present in the chromatogram is reflected in the 
values of the polynomial coefficients. However, the terms do not usually have a direct 
relationship with conventional analytical parameters. 

A typical application is given by Debets et at. s). A quality criterion for the characteri- 
zation of  separation in a chromatogram is modified by using Hermite polynomial 
coefficients in order to enhance the performance. The quality criterion can be used in 
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Fig. 1. Chromatogram of alkylbenzenes (reversed-phase HPLC) 100 term Chebyshev polynomial 
approximation. 

an automatic optimization procedure in HPLC. Figure 2 (a and b) shows the effect 
of the addition of a coefficient on the change in the quality of separation with strongly 
overlapping peaks. 

Related to the approximation of signals with orthogonal series is the widely used 
description in the frequency domain. Given a function of the time t, one can form the 
integral: 

F(o~) = ~o f(t) e -j°t dt (11) 

If the integral exists, Eq. (11) defines a generally complex function F(co), known as 
the Fourier transform of f(t): 

F(co) = R(0~) + jX(co) = A(c0)e j'~') (12) 

A(co) is called the Fourier spectrum, A2(co) is the energy spectrum and t0(co) the phase 
angle of  f(t). 

Another approach is the characterization of peaks with a well-defined model 
with limited parameters. Many models are proposed, some representative examples 
wilt be described. Well known is the Exponentially Modified Gaussian (EMG) peak, 
i.e. a Gaussian convoluted with an exponential decay function. Already a few decades 
ago it was recognized that an instrumental contribution such as an amplifier acting 
as a first-order low pass system with a time constant, will exponentially modify the 
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Fig. 2. Response surfaces of a separation quality criterion from chromatograms of sulfanilamide, 
sulfacetamide, sulfadiazine, sulfisomidine and sulfathiazole, with eluents consisting of water, methanol 
and acetonitrile. (a) with, and (b) without Hermite polynomial coefficients. 

chromatographic peak. Several authors described the EMG, most significantly this 
was done by Grushka 9) and Littlewood to). The EMG is defined by the following 
convolution: 

A f [ ( t - t , - t ' ) 2 ] e x p I _ . ~ I d t ,  f(t) = - -  exp ~ i  
1/ 0 

(13) 
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where 
o = standard deviation o f  the Gaussian 
A = peak amplitude 

= time constant o f  the exponential modifier 
t R = centre o f  gravity (top) o f  the Gaussian 
t '  = dummy integration variable 
Grushka derived the moments o f  the EMG. The first moment is : 

m 1 = t R + Z  

The second, third and fourth central moments are: 

ta 2 = o 2  + ~ 2  

la 3 = 2 ~  3 

~t 4 = 3o ~ + 6crzx 2 + 9x 4 

The value of  ~ determines the asymmetry of  the peak. 
Yau I1) derived characteristical properties of  the E M G  skewed peak model and 

proposed a new method to extract band broadening parameters from a skewed and 
noisy peak. 

Another model is suggested by Fraser and Suzuki 12). 

f(t)=Hexp[- {In(I+ A(t--tR)"~21 
o ~ - ~  2 ~ i J J  _I (14) 

where 
H = peak height 
A = asymmetry factor 
o = standard deviation 
t R = time at the peak maximum 

The model gives a good approximation of  practical signals. Figure 3 shows some 
examples. Also a model related to the F-distribution has been proposed 13): 

t - t  O 

f(t) = K e " (15) 

where K determines the peak amplitude, x the peak width, n the asymmetry and t o the 
peak start. Tho four parameters o f  this function can be determined by a simple fitting 
procedure, even without a computer, and, moreover, an estimation of  the moments 
of  a chromatographic peak can be calculated from the parameters. The k t~ moment  of  
the (normalised) gamma density function is: 

rnk = z k ( k +  n - -  1)! 
( n -  1)! (16) 
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Fig. 3. Frazer-Suzuki models with different asymmetry factors. 

The model is directly related to the widely used theoretical plate concept, which, in 
principle, is only valid for Gaussian peaks. 

However, the F-distribution permits an extension of the plate theory, which is also 
usable in case of asymmetric peaks. The chromatogram (1 component) is considered to 
be the result of a pure time delay and a F-distribution response. The procedure implies 
the fitting of a function f(t) given in Eq. (15) to the chromatographic peak. The asym- 
metry of the peak determines the "'new plate number" n', decreasing with increasing 
asymmetry. 

A transfer function, defined as the Laplace transfer of the impulse response of a 
linear system, can be obtained from the model. This can be very useful, because with 
a transfer, function the influence of  extra-column effects (detector, amplifier, filter) 
on the peak shape can be easily calculated. The transfer function is: 

H(s) = K - e -~t° F(n') 1 (17) 

where n' is the new plate number, x and K are constants, and t o is the time delay. 
Addition ol ~ an amplifier (first-order system) with time constant x, and amplifica- 

tion K 2 gives 

H(s) = K1 e -sva F(n') I 1/~v 

s +  / s + ~ -  

(18) 
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The Laplace inverse transform h(t) of  Eq. (18) gives the shape of  the impulse response, 
in this case an exponentially modified asymmetric chromatographic peak. The p~ 
moment of h(t) can be determined by: 

p dPF(°) 
m p =  (--1) ~ , assumingm 0 = 0 (19) 

From the moments mp the central moments ~tp can be calculated. Some results, 
important in chromatography, are 

ml = Xv + n'~ 

lh = m~ - -m~ = x 2 + n"c 2 

Vaidya and 
Exponential 

(2o) 

g~ = rr h - -  3m2m 1 + 2m~ = 2(n'x 3 + x~) 

Hester t4~ have proposed a model, based on the modified Generalized 
(GEX) function: 

a c  b/a 
F(t) = - -  e-eta a ( b _  1~ (21 ) 

r(b/a) 

where a, b, and c are constants. 
The function is very general in nature. Each peak can be represented by five para- 

meters, one more than for instance the F-distribution. 

3 Chromatographic Noise Analysis 

In chromatography the quantitative or qualitative information has to be extracted 
from the peak-shaped signal, generally superimposed on a background contaminated 
with noise. Many, mostly semi-empirical, methods have been developed for relevant 
information extraction and for reduction of the influence of  noise. Both for this 
purpose and for a quantification of the random error it is necessary to characterize 
the noise, applying theory, random time functions and stochastic processes. Four 
main types of  statistical functions are used to describe the basic properties of  random 
data: 

- -  the mean and the mean square value, given by 

T 
/ t  

= lim / x ( t ) d t  and ~tx 
T ~ O  3 

0 

x(t) = random function 
--  probability density functions (PDF) 
--  autocorrelation functions (ACF) 
- -  power spectral densities (PSD) 

T 

*2 = lim I f  x~o~ T x2(t) dt 
0 

(22) 
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Fig. 4. Power spectrum of the noise of a FID. 

Many authors are assuming white noise, which is hardly realistic in analytical 
practice and certainly not in chromatography. Noise can be classified in two classes: 
stationary and non-stationary. The statistical parameters Of stationary noise do not 
vary with the time, this in contrast with non-stationary noise where one or more 
parameters, for instance the mean or the variance, are time-dependent. 

In chromatography the noise is generally composed of stationary noise superimpos- 
ed on a slowly varying baseline (drift). The slow baseline variation may be stochastic 
or deterministic. In general, proportional noise, i.e. noise with a standard deviation 
approximately proportional to the signal amplitude, can be neglected. It is noteworthy 
that sometimes the chromatographic noise, even including "drift", may be considered 
as approximately stationary, if observed during a long time. However, contamination 
of the detector, stripping of  the column, etc. are often the origin of an irreversible drift 
component. At short term, during a chromatogram or a part of a chromatogram, the 
low frequency components of stationary noise are often considered as non-stationary 
drift. 

Scheeren et al. ls~ described the drift component of a chromatogram with a higher 
order polynomial. Some chromatographic noise analysis is done by Smit et al. 16~, and 
later by Duursma et al. 17~ and Laeven et al. ls~. One may conclude that chromato- 
graphic noise in general has a significant 1/f character (flicker noise), i.e. the noise 
power is approximately reversed proportional with the frequency (Fig. 4). Of course, 
real 1/f noise is impossible, because the spectrum shows a singularity at f = 0. A 
realistic noise model, suitable for describing many analytical noise sources is given 
by Walg and Smit 19~ : 

G ( c o )  = c "  a r c t a n  cot .  - -  a r c t a n  cot m ( 2 3 )  

co 
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Fig. 5. Power Spectral Density of eq. 
(23) with t~ = 10 a and tm= 1. 

where 
co = angular frequency 
G(co) = power spectral density 
t,, t m = time constants 
c = constant 
Figure 5 shows the PSD with a constant "white" region, a 1/co (=  l/f) region and a 
1/o~ 2 (=  first-order noise) region. Laeven et al. is) derived the matching autoco- 
variance function: 

R~,(x) = ~[El(x/t .)  - -  El(x/t=) ] 

where E is an exponential integral, defined by: 

(24) 

G0 

EI(~) = j" (e-'/s) ds 

4 Simple Data Processing 

Neglecting peak height determination, the problems in simple chromatographic 
data processing, i.e. peak area and peak top determination, are how to find the peak 
start, the peak top and the peak end, how to correct for a drifting baseline, and how 
to determine the uncertainty in the results, particularly the peak area. Peak start, 
peak top and peak end are generally determined by calculating the first and second 
derivative of the peaks. Threshold levels, as close to zero as is permitted by the noise, 
are used to determine start, stop, top and valleys of single peaks or combinations of 
peaks. Several methods are used to correct for unresolved peaks and a drifting baseline. 
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Mostly, unresolved peaks are corrected by using a perpendicular dropline, a valley 
to valley correction or a combination. Simple correction methods, both for unresolved 
peaks and a drifting baseline, generally give systematic errors in the results. Another 
cause of errors is the limited number of data points of a digitized signal. Theoretically, 
about 7 or 8 equally spaced data points are sufficient to describe an approximately 
Gaussian peak. An appropriate interpolation procedure has to be used to determine 
the value between the points. However, a simple differentiation routine may cause 
big errors, particularly in case of unresolved peaks. Taking the n m derivative of a 
signal implies multiplying with (j¢o) n in the frequency domain: 

d"f 
dr-- ~ ~ (j¢o)" F(m) (25) 

This may cause severe problems with differentiating noisy signals, the high frequency 
components of the noise are amplified. In practice, differentiation has to be combined 
with a smoothing (low pass filtering) procedure. 

An example is the relatively simple moving average filter. In case of a digitized 
signal, the values of a fixed (odd) number of data points (a window) are added and 
divided by the number of points. The result is a new value of the center point. Then 
the window shifts one point and the procedure, which can be considered as a con- 
volution of the signal with a rectangular pulse function, repeats. Of course, other 
functions like a triangle, an exponential and a Gaussian, can be used. 

Very popular is the Savitzky-Golay filter 20). As the method is used in almost any 
chromatographic data processing software package, the basic principles will be 
outlined hereafter. A least squares fit with a polynomial of the required order is 
performed over a window length. This is achieved by using a fixed convolution func- 
tion. The shape of this function depends on the order of the chosen polynomial and 
the window length. The coefficients b i of the convolution function are calculated 
from: 

+m 

i~m((f  i = _ _  - yl) 2) = 0 Yi = observed values (26) 
~ b  k 

where the window length is 2m + 1. 
The values: 

fi = ~ bk ik 
k=O 

are the calculated (smoothed) values. 
Typical advantages of the Savitzky-Golay method are: 

- -  the method can be used on-line 
--  it is possible to calculate a convolution function for determining the (smoothed) 

derivatives of  the data set. 

Data points at the beginning and the end of the data set are lost. Proctor and Sher- 
wood 20) suggest an extrapolation with a polynomial of the same order, permitting 

74 



Signal and Data Analysis in Chromatography 

repeated smoothing of one data set. Coefficients of the convolution function are 
given in 20) and, improved, in 21). 

5 Uncertainty in Area Determination 

The uncertainty in the determination of the area of a peak caused by (stationary) 
noise can be calculated both in the time domain and in the frequency domain. In 16) 
a derivation ofcr~, i.e. the variance of the integrated noise, is given: 

T 
o I = 2 J" (T - Ix l) R(x) dx (27) 

0 

where 
T = integration time 
R(x) = autocovariance function of the baseline noise. 
The variance in the frequency domain reads: 

f sin 2 (c0T/2) 
k ~  = 2T G(o) (coT/2)2 

0 

d(oT/2) (28) 

where G(o) is the PSD of the baseline noise. 
The bar and index are usual in annotating an ensemble average. As an example, 
is calculated with Eq. (27) for first-order noise, i.e. white noise bandlimited by a 

first-order low pass filter: 

°~ = cr~ [2TTI + 2T~ {exp ( -  ~-~) - 1)] (29) 

o = standard deviation of the baseline noise. 
In chromatography a part of this eqn can be neglected because T 1 >> T and reduces 
to: 

o~ = ~2TT1 (30) 

The standard deviation is: 

O'! = O'n ~ 1  (31) 

Equation (31) implies that the uncertainty of the determination of a peak area is 
proportional to the square root of the integration time (peak width). It should be 
noticed that in Eq. (31)cr and T 1 are not independent; c is the standard deviation 
of the (first order) baseline noise for a given time constant TI, determining the cut-off 
frequency of the noise. It can be proven 19) that the variance cr 2 is proportional to T 2 
in case of 1/f noise. 
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The question arises which time constant is optimal with respect to the uncertainty. 
Of course, increasing the value of the time constant T 1 reduces the variance o~; on 
the other hand, the peaks will be distorted. The peak width is increasing and the 
peak height is decreasing with increasing T1, as is known from the EMG model. 
Increasing peak width means increasing integration time, resulting in an increasing 
variance o-~. It has been proven that the latter effect dominates. In practice the time 
constant has to be chosen as small as possible; low pass filtering is not advisable. It 
is important to notice that this is not true in case of peak start/peak stop determination 
procedures. 

Laeven and Smit 22) presented a method for determining optimal peak integration 
intervals and optimal peak area determination on the basis of a n  extension of the 
mentioned theory. Rules of thumb were given, based on the rather complicated theory. 
Moreover, a simple peak-find procedure was developed, based on the derived rules. 

6 Univariate Data Processing 

The use of pro-information is in general typical for more advanced data processing. 
Of course, some pre-information is used in simple data processing, particularly for 
the determination o f  the peak integration start and stop. However, knowledge of the 
signal (peak shape) and noise ,characteristics is not used and thus the information 
extraction from the signal is not optimal. Even data processing with a computer is 
often far from optimal and the present data handling procedures are mostly based 
on relatively simple algorithms. Processing a "difficult" chromatogram involves 
solving the following problems: baseline drift correction, peak-find procedures 
(resolved and unresolved), peak parameter estimation in the presence of noise, and 
peak parameter estimation for unresolved peaks. 

Hippe et al. 23~ discussed numerical operations for computer processing of (gas) 
chromatographic data. Apart from a baseline correction method, a method of recogni- 
tion of peaks is described. The relationship between the convexity of an isolated peak 
and the monotonic nature of its first derivative is used to find the most probable 
deflection points. The number of maxima and shoulders are used for a decision if 
the segment of the chromatogram contains an isolated peak or an unresolved peak 
complex. The number of shouders and maxima determine the total number of com- 
ponent peaks. 

Scheeren et al. 7) describe peak shaped functions as an orthogonal polynomial 
series (Hermite), which means simultaneously low filtering, if the number of terms is 
limited. For example, calculating the first coefficient of the (modified) Hermite series 
implies determining the cross-correlation of the analytical signal with a Gauss func- 
tion. This is equivalent to putting the analytical signal through a Gaussian filter, which 
can be considered as a matched filter for Gaussian peaks if this filter is adapted to the 
peak width of the peak. The scaling may be a problem; if it is not correct, than the 
results may be poor. A typical example of a Chebyshev polynomial approximation 
of a part o f a  chromatogram is shown in Fig. 6. 

Curve fitting and peak deconvolution procedures with non-linear regression 
methods have been applied several times with varying success. The non-linear regres- 
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Fig, 6. Chebyshev approximation used as a f'dter on part ofa chromatogram (0.1 Ixg 1-1 anthracene, 
0.5 I~g 1-1 benzanthracene, reversed-phase HPLC) 40 terms Chebyshev polynomial approximation. 

sion is based on a least-squares fit of a mathematical model, non-linear in the para- 
meters. The goodness of fit is defined by: 

I('2) 12 Z 2 = ~, [-Yi --  y(xi)] 
i=l  ~ i  2 

(32) 

Yl = measured data points 
y(xi) = data points calculated from the mathematical model 

= variance of the data points Yi 
If the function y(xi) with' the parameters a i (j = 1, n) is considered, it is.possible to 
minimize X 2 for all a s simultaneously. The n-dimensional parameter space has to be 
searched for the minimum X2 value. In the gradient-search of least squares, all the 
parameters aj are incremented simultaneously. The relative magnitudes are adjusted 
in such a way that the resulting direction of travel in parameter space is along the 
direction of  maximum variation of ~2. The popular Marquardt algorithm combines 
the best features of gradient search with a method of linearizing the fitting function. 
One of the problems with non-linear regression techniques is to find the absolute 
minimum in the hyper-surface and to recognize and avoid so-called local minima. 
A good estimation of  the initial values, particularly the number of  peaks to be expected, 
is essential. The hyper-surface must be limited by estimating confidence intervals 
and absolute limits of the initial parameters; using prior knowledge increases the 
chance to find the absolute minimum. 
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Fig. 7. Chromatogram of alkylbenzenes (solid lines, see Fig. 6). Dotted lines: a) data points calculated 
from the initial values of the parameters using a regression model with 8 Fraser-Suzuki functions 
without baseline; b) data points calculated after three regression cycles; e) data points calculated after 
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A general usable non-linear regression software package for evaluation of peak 
parameters is described in 15) A complete chromatogram, including a drifting baseline, 
can be fitted with suitable models for the peaks and the baseline (Fig. 7). This estima- 
tion method, using the whole chromatogram, is probably the optimum way of correct- 
ing the influence of a drifting baseline. 
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Fig. 8. Deconvolution of a chromatogram of Dextran T-2000 with water as the mobile phase in a 
glyceryl-coated controlled porous glass column. 

Vardya and Hester 14) used their OEX model in a constrained linear optimization 
procedure, based on the Box-Complex method which is essentially a constrained 
simplex minimization technique. The method does not require derivatives of the object 
function and is not subject to scaling problems. As an example, Fig. 8 shows a de- 
convolution ofa  chromatogram of Dextran T-2000 with water as the mobile phase in 
a controlled porous glass column. The badly fused peaks are successfully deconvoluted. 

7 Multichannel Data Processing 

In general, chromatographic methods offer high resolution and selectivity. Never- 
theless, partially separated compounds in a mixture regularly occur, resulting in 
incomplete resolution of chromatographic peaks. Single channel detectors, for 
example a flame ionisation detector (FID) in GLC or a single wavelength UV detector 
in HPLC, do not contribute much to extracting relevant information from a cluster 
of unresolved peaks; chemometric methods like the previously described non-linear 
regression method, have to be applied to estimate the relevant analytical signal 
parameters. 

However, combining chromatographic separation with multichannel detection 
offers a much more powerful technique for the quantitative and qualitative analysis 
of mixtures; an extra dimension is added to the measurement. Examples of chromato- 
graphic techniques which employ multichannel detection are GC/MS (gaschromato- 
graphy/mass'spectrometry), HPLC (high performance liquid chromatography)/ 
multi wavelength detection (diode array), and GC/IR (infrared spectrometry). 
The extra dimension contributed by the multichannel detector can be utilized in 
different ways and with different objects in view. 
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From the point of view of data processing, however, the utilized methods of data 
processing are related and often based on the same mathematical principles. For 
example, about the same procedures can be used for both GC/MS and HPLC/multi- 
wavelength detector combinations. In the simplest case the constituents can be 
completely "resolved" by the detector by, for instance, selecting a specific wave- 
length for each component. In general, methods like pattern recognition and related 
techniques, e.g. feature selection, spectrum matching, and library search, are applied 
if the extra dimension is very informative (MS, FTIR) and they can serve for identifica- 
tion of the eluting constituents. But often the additional information has to be supplied 
by some kind of chemometric process like multivariate curve resolution, because the 
components of the mixture are overlapping both chromatographically and spectrally. 

Deconvolution methods may be arranged in different ways; for instance by final 
object, the nature of the pre-information, or the applied basic mathematical theory. 
Objects are: A r Peak purity test. 

A 2. Determination of the number of components. 
A 3. Resolution in the time domain. 
A 4. Determination of spectra of the components. 

Pre-information: B r Number of components. 
B 2. Spectral pre-knowledge. 
B 3. Elution pre-knowledge. 
B 4. Remaining pre-knowledge. 

The mathematical techniques are part of multivariate statistics. They are closely 
related and often exchangeable. Two main approaches can be distinguished: Least 
Squares Optimization (LSO), and Factor Analysis (FA). 

8 Basic Multivariate Analysis 

A data matrix [D] can be considered as the product of two matrices [A] and [C] : 

[DI = [A] [C] 

[A] could represent the spectral information and [(3] the chromatographic (time 
dependent) information. Assumed is that the mutual influence of the components is 
neglectable, i.e. that the system including the detector is linear. In principle only [A] 
has to be determined if a model exists for the columns of [C] : 

[A] = ~ ]  [C] -1 (33) 

However, one has to keep in mind that [C] is not really known, only a model exists. 
Now [A] can be estimated with the generalized inverse of the model matrix: 

[C]gen.  inv" T - 1  T = {[c]mo~ [C]mo~} [CLod (34) 

[AL, :[D][C]~..i... (35) 
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[A]e ~ is the least squares estimation of [A], given the model of [C], and an estimation 
of [D] can be calculated: 

[D]e~, = [A],~, If]rood (36) 

The model [C]~, a can be evaluated by comparing [D],s t with [D] using a Z2-criterion. 
The parameters of the model can be optimized by some optimization procedure 
(Simplex). 

In the Factor Analysis method [D] is subdivided into two matrices, applying 
Principal Component Analysis (PCA). This is a pure mathematical solution. There 
is no relation between the obtained matrices and the physical parameters. However, 
it is possible to relate the abstract solution resulting from the PCA to a physical relevant 
solution, using some pre-knowledge. 

Target Testing, for instance, is a procedure with the goal to rotate the abstract 
solution to a model factor. If this is not possible, the model is not correct. 

9 Applications of Multivariate Techniques 

One of the first applications of LSO in multichannel processing (GC/MS) is published 
by Knorr et al. 24). An EMG model is assumed for the elution profiles, where all 
model parameters except the retention time t R are determined in advance (B3). They 
achieve the objects A 2, A 3 and A 4 in case of clusters of two and three components. 

King and King 25) extend the method of 24) by using a more complicated elution 
model. All parameters are determined with LSO, which implies that no standards 
have to be determined. Assumed is a pre-knowledge of the number of components (B1), 
an exponential down scaia correction (B4), a background subtraction (B3), and a 
saturation correction (B2). 

It should be noted that the generalized inverse of [C]mod is determined with PCA. 
The inversion step, which is risky in case of  badly resolved peaks because of the 
probability of an ill-conditioned matrix [C], is circumvented. 

Another extension is given by Frans et al. 26). This method is adapted to LC-UV. 
The number of components (5 to 8) is determined with PCA. Lindberg et al. 27) 
apply a LSO still more close to FA than the method applied by King and King, and 
they claim a better accuracy for their Partial Least Squares (PLS) method compared 
to real LSO or FA. 

Sharaf and Kowalski 2a) are using the pre-knowledge of non-negativity of the 
spectra (132) and positive additivity of  each linear combination yielding measurement 
points for the rotation of the abstract PCA solution to a physically relevant solution. 
The result is a solution-band for their GC/MS problem. The bandwidth depends on 
the resolution, the concentration ratio of the components and the correlation in the 
component spectra. The method is adapted to LC-UV by Osten and Kowalski 29) 
Only binary systems are investigated, resulting in both A 3 and A 4. Vandeginste et al. 30) 
propose a method analogous to the Sharaf/Kowalski procedure. Their method, applied 
to LC-UV, permits two approaches: using spectral pre-knowledge (non-negativity, 
positive linear combinations, single spectra with the smallest area to norm ratio as the 
best estimation of the pure spectra) or using chromatographic pre-knowledge (non- 
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negativity, single-maximum, minimal area). The result is not a solution band but a 
unique solution. Two and three component systems are successfully deconvoluted. 
Both elution profiles and spectra can be determined. The number of components is 
not determined. 

Most pre-knowtedge is used by McCue and Malinowski sly. Target testing is applied 
to look for certain components in the cluster, where the spectrum of the pure compo- 
nent is the target to be tested. If  the targets of the cluster together are explaining the 
data, then the number of components is known. The method can be considered as a 
kind of library search action. 

Iterative Target Testing is another approach. The preliminary approximations of 
the real factors are chosen, based on the first (VARIMAX) rotation of the abstract 
PCA solution. With iterative target testing the factors are transformed to the best 
approximations. It can be considered as LSO, where PCA and VARIMAX are supply- 
ing the model. Clusters with an arbitrary number of peaks can be deconvoluted. Six 
component systems are tested (Vandeginste et al. 32~). 

10 Information from Chromatographic Data Sets 

In a chromatographic separation procedure the parameters of the chromatographic 
system (stationary phase, flow, temperature, etc.) have to be selected respectively 
optimized with respect to some criterion (resolution, time, etc.). In gas chromatography 
retention data series are published 3a,~ and used for the study of solvent/solute 
interaction, prediction of the retention behaviour, activity coefficients, and other 
relevant information usable for optimization and classification. Several chemometric 
techniques of data analysis have been employed, e.g. PCA, numerical taxonomic 
methods, information theory, and pattern recognition. 

Pattern recognition can be applied for the determination of structural features of 
unknown (monofunctional) compounds (Huber and Reich as~). The information 
about the chemical structure is contained in a multidimensional gas-liquid retention 
data/stationary liquid phases set. The linear learning machine method is applied in a 
two step classification procedure. After the determination of a correction term, the 
skeleton number, a classification step for the determination of the functional group 
is executed. It is remarkable that 10 stationary phases are sufficient for the classifica- 
tion. 

Pattern recognition methods can also be employed for the classification of stationary 
phases and quantification of  their retention characteristics (Huber and Reich a6~). 
The large number of stationary phases can be drastically reduced to a standard set 
of solvents which have significantly dissimilar retention characteristics. Several 
selection criteria are applied: 

1) The polarity number, suggested by McReynolds 37j. 
2) The euclidian distance (ED) of the selected phases relative to the most non-polar 

stationary phase, i.e. squalane. 
The ED defined for two solvents, p and r, is: 

dp~ = (Xip - xi,) 2 
i 
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3) The mean of the retention indices (MI) of all key solutes. 
4) The length obtained by the traversal of the minimum spanning tree (MST). 

The results of the feature reduction process and classification are extensively tabulated 
in 36) 

Predicting chromatographic retention data can be successfully done by numerical 
taxonomic aggregation and FA 38, 39,40). Both techniques were employed before in 
chromatographic data analysis, for example the prediction of activity coefficients and 
for the identification of principal components with strong influence on the retention 
behaviour, respectively. 

Cluster analysis (numerical toxonomic aggregation)3s,,0) is applied to arrange 
phases according to their chromatographic behaviour. A set of retention data for 
16 monofunctional benzenes, 110 difunctional benzenes and 15 trifunctional benzenes 
was subjected to analysis. Three groups of stationary phases can be distinguished: 
polar, non-polar, and polyfluorinated. A linear relationship between the retention 
data of two stationary phases of the same class can be worked out. This linear relation- 
ship fits the model 

log t'(~oZ, "1, Tt) = ~ log t'(cpZ, • 2, T2) + 

where log t' is the net retention time, ~pZ is the solute, "1 and (1)2 are the stationary 
phases, and T 1, T 2 are the temperatures. 

Factor analysis (PCA) is applied to a retention time data set of 17 benzenic mono- 
substituted compounds on 21 stationary phases 39.4o). The result is the relationship: 

xe,,i = a,  • xp,,~ + b, • X P , , 2  --{- c~  • Xp.~p 3 + d,  

where xp,,~n (n = 1, 2, 3) are the experimental data of a substance P, measured on three 

phases q01 (non-polar), cp 2 (polyfluorinated), and ~03 (polar). 
a ,  b~, c~,, and dq, are the coefficients of a non-restricted multiparametric relationship. 

11 Special Techniques 

The previously described analysis and process techniques are applied to chromato- 
graphic data and signals obtained from conventional chromatographic systems. 
However, the introduction of chemometric techniques, particularly correlation 
procedures, permits a different approach to chromatographic data analysis and data 
processing. Correlation chromatography (CC) is an example of a modified chromato- 
graphic technique, based on a system-theoretical approach and a rather complicated 
computerized data processing. 

In conventional chromatography the chromatogram is the response of the chromato- 
graphic system on an impulse-shaped single injection or sample. Correlation chromato- 
graphy, however, utilizes semi-continuous multiple random injections of sample 
over a period of time. The resulting random response of the system is cross-correlated 
with the used input function. The correlogram is identical to the chromatogram 
obtained from a single injection. If the chromatographic system is contaminated with 
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Fig. 9. Flow sheet for a correlation chromatography system. 

noise, this noise is not correlated with the input, and its contribution to the overall 
cross-correlation function converges to zero with increasing correlation time. A 
considerable improvement of  the signal to noise ratio can be achieved in a relatively 
short time: Figure 9 shows a set up of  a correlation chromatograph 41). 

Comparing correlation chromatography and conventional chromatography shows 
that there are no differences concerning the columns and detectors. The injection 
system has to be modified and a (micro)computer based "correlator" for data process- 
ing and generation of  a suitable random pattern has to be added. Mostly in CC the 
sample is semi-continuously introduced according to a (pseudo) random pattern, a 
so-called pseudo random binary sequence (PRBS). In a random binary pattern only 
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Fig. 10. Calibration graph for phenol with fluorimetric detection for 5 concentrations (I0-* to 
10 -8 g 1-1); s indicates single injection and c indicates correlation chromatography. The numbers 
below the data points indicate the correlation time (minutes) (ppt =ng 1- t). The bars represent _+ 3 x 
standard deviation of the integrated noise (confidence interval). 
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two signal values, e.g. 0 and 1, are possible; which of the two will be present at any 
particular time is not predictable. However, a PRBS is a logical function combining 
the properties of a true (binary) random signal with those of a reproducible deter- 
ministic signal. After a certain time, a sequence, the pattern is repeated. The value 0 
of the PRBS corresponds with the flow of pure mobile phase into the column; if the 
value is 1, sample is injected. 

Researchers are active in the field of  correlation gaschromatography and correla- 
tion HPLC aa-47), the first application in trace analysis was introduced in 1970 48) 
A typical example of the noise reduction property is the determination of a calibration 
graph of phenol for the higher concentrations with conventional chromatography, 
and extended to very low concentrations by CC (Fig. 10). The detection limit achieved 
is about 3 ppt (Laeven et al. 46)). A correlogram of 10 ng/1 phenol sample is shown in 
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Fig. 13. Set-up of a simultaneous HPLC system. 
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Fig. 14. Simultaneous chromatogram of three samples, each containing naphthalene, anthracene 
and 1,2 benzanthracene with different concentrations. 
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Fig. 11. The mechanical valves can be replaced by thermal or chemical modulating 
devices. In principle, this modification circumvents the need of reliable mechanical 
valves and offers a more flexible system 49, 5o). An example is the thermal oxidative 
modulation of methane in air. Figure 12 shows a concentration profile during 8 days, 
determined with an experimental modulation CC set up so) 

An extension of CC is Simultaneous Correlation Chromatography (SCC) (Smit 
et al. sl)); Fig. 13 shows an experimental set up. Three samples with naphthalene, 
anthracene and 1,2-benzanthracene are simultaneously injected, however, each con- 
trolled by a sequence uncorrelated with the others. The result is shown in Fig. 14. 
The pe~/ks of naphthalene are used to construct a calibration line. The advantages are 
twofold: The random fluctuations are reduced by multiple injection and averaging 
property, and both an unknown sample and calibration samples are measured 
simultaneously under exactly the same conditions, drift and uncertainty are reduced 
to a high extent. 

Finally, CC can be used for monitoring of processes and reactions. The semi- 
continuous nature of CC permits an almost continuous monitoring of a process in 
contrast with conventional chromatography. The technique is applied in pyrolysis 
GC (Py-GC), a valuable method for characterizing materials. The determination of 
the kinetics is difficult because of the bad reproducibility of the degradation tempera- 
ture and sample volume. The application of a linear temperature increase with con- 
tinuously analyzing samples is preferable, but hardly practicable. CC is a good alter- 
native, as is proved by Kaljurand and Kiillik s2) Figure 15 shows Correlograms 
obtained from the degradation products of polycaproamide. 
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Fig. 15. Chromatograms of degradation products of polycaproamide by pyrolysis correlation chro- 
matography. 
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Chemometrics in Food Chemistry 

I Introduction 

During the last twenty years, food chemists have been using an increasing number 
of analytical instruments to analyse several samples quickly and obtain, in a short 
time, a great deal of chemical information from each sample. At the same time, they 
have increased their knowledge of the chemical composition of natural foods and of 
the changes due to storage and treatments, and also of  market and customer 
requirements. 

Long before, experience had already shown that such close relationships exist 
between some chemical (or physical) variables describing food composition that, for 
some characterizations, a combination of chemical or physical quantifies is more 
meaningful than each quantity alone. Consequently, sums, ratios or ratios of sums 
of chemical quantities have been (and are being) studied to characterize food quality, 
origin or treatments. This search for useful features has been limited to combinations of 
a small number of variables, generally two, because of the limitations of the available 
computational facilities, until a few years ago. 

Nevertheless, these studies show a development towards a multivariate point of 
view, as the high number of chemical parameters produced by modern analytical 
instrument requires. The spread of computing systems of all sizes and the circulation 
of their respective software have allowed the great amount of computing deriving 
from the large number of measured variables and their relationships to be dealt 
with effectively. 

The arrival of computers in every chemical laboratory has made possible the use of 
multivariate statistical analysis and mathematics in the analysis of measured chemical 
data. Sometimes, the methods were inadequate or only partially suitable for a particular 
chemical problem, so handling methods were modified or new ones developed to fit 
the chemical problem. On the basis of these elements, common to every field of 
chemistry, in 1974 a new chemical science was identified: chemometrics, the science 
of chemical information. In the same year, Bruce Kowalski and Svante Wold founded 
the Chemometrics Society, which since then has been spreading information on 
multivariates in chemistry all over the world. 

Chemometrics is the chemical science that uses mathematics, statistics and infor- 
matics: 

a) to select or design optimal procedures and experiments; 
b) to obtain the maximum useful information from the experimental chemical 

data. In food chemistry, chemometrical technique results are most necessary and 
promising, firstly because the chemical systems investigated in food chemistry are 
very complex and formed by many chemical species that are often very important even 
at trace level. The perception and experience of a researcher are not sufficient to 
single out the really significant information if these qualities are not suitably 
developed and supported. 

Secondly, the study of the chemical composition of foods and of its changes on 
processing are not the only aim (except in control analyses): the space of chemical 
quantities is intermediate between the cause space, which includes every parameter 
affecting food composition, and the effect space, where we find variables related to 
food properties, its quality, sensorial evaluations, nutritional value, and storage 
possibilities. Generally, the chemical space is described accurately and concisely. 
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The best use of its information is essential to try to understand the relationships 
between cause and effect spaces. 

This close connection and reciprocal necessity between food chemistry and chemo- 
metrics are shown by the several chemometrical methods being planned or further 
developed for these purposes or being tested in food chemistry problems. 

Among these methods, multicalibration (multivariate calibration) 1, 2) is important. 
Multicalibration is the final development of indirect analytical methods. The analytic- 
al method has been previously defined as the whole of operational steps (reactions, 
separations . . . .  ) that lead to a highly selective endpoint where one measured physical 
variable is univocally related to one chemical variable (qu~intity, concentration . . . .  ); 
this correlation is shown by the calibration curve (a straight line, generally). Multi- 
calibration brings a complete change of this definition: the analytical method is the 
whole of chemical and mathematical operations that enable us to reach a multivariate 
selective system where several measured physical quantities are univocally related to 
several chemical quantities; the correlation is shown by the calibration hypersurface. 
Multicalibration is surely destined to be used with great effect in many areas in the 
future. 

But, beside these elements of general interest, in food chemistry there is a lack of 
elementary knowledge of  statistics, which points out how much ground is still to 
be covered in the diffusion of chemometrical methods and their correct application. 
Often, indeed, there is no diagram or description of the experiment, and sometimes 
samples are scarcely representative, as in some studies the easiest rather than a control- 
led or random sampling is used 3). In many cases, the collection of samples suitably 
representing the system may be very hard or expensive, but this cannot justify the 
acrobatics. The limiting factors of the experimental design have to be shown in 
order to give information and suggestions for further research. By a suitable 
experimental design and chemometrical evaluation, the variance of analytical data 
due to the studied phenomena (not due to variations of method or laboratory) 
furnish very useful results. 

2 Problems 

Most of the problems solved by chemometrical methods concern 

a) Description 
b) Classification and modelling 
c) Correlation 
d) Clustering 
e) Feature selection 
f) Optimization 

Experimental results are generally grouped in tables: two-dimensional matrices 
XNv formed by N rows (objects = samples) and V columns (variables = chemical 
quantities, sensorial scores, physical quantities . . . .  ). It is very difficult to read and 
understand the inforination contained in a large data matrix, therefore it is really 
useless. 
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Graphic methods of representation are strongly recommended for displaying 
experimental results and for supervising the elaboration of data (Sec. 3.1). The 
usefulness of histograms and variable-by-variable plots is improved by using colour 
three-dimensional plots 4), by two-dimensional histograms, eigenvector projection 
(Sect. 3.2) and NLM plots. 

2.1 Classification 

In classification problems the data table is divided horizontally into two or more 
categories into which objects are grouped. The problem is to make the best use of 
the variables: to classify the objects into categories and, chiefly, to predict the 
category of objects of unknown category and to evaluate the correctness of this 
assignment. 

The meaning of category is various in food chemistry: it may be a vegetable 
(or animal) species (e.g., corn, rice, oats), a cultivar of grape (e.g., Pinot wine, 
Tocai wine), the geographical origin or the process method. Only in a few examples 
the subdivision into categories is sharp, generally it is an oversimplification. Cate- 
gories formed by different geographical origins of foods also include differences due 
to variety, soil, composition, climate and harvesting, storage and processing methods. 
For instance, the composition of the acid fraction of edible vegetable oils depends on 
climate. When two groups of samples are collected in two small areas of different 
climate, but homogeneous within each area, the groups define two categories. 

The subdivision into categories of a data matrix corresponds to the introduction 
of another variable, discrete and integer: the category index. If the variable is 
really discrete, e.g., corn = 1, oats = 2, rice ~ 3, the subdivision into categories 
is true. If the variable is continuous, the subdivision into categories is true 
if it has the intracategory variance much smaller than the intercategory one. If 
the two variances are comparable, the subdivision into categories is not meaningful. 
Therefore, it is possible that a sample is considered "typical of a region" and a 
sample of a nearby area is by force considered "typical of another region" while it 
has the same characteristics as the first one. 

Indeed, these categorizations are produced by the demands of the market, and by 
legislative and national needs. The chemometrician must check whether the measured 
data justify and make possible the categorization, because there are usually variables 
that are not always identified or measurable that cause changes of sample composition. 
The distribution of the samples ha the space of these variables is not homogeneous 
but is in narrow ranges that define the related categories. 

When the evident or ignored variables defining the categorization are continuous, 
the problem is instead a correlation problem. The classification methods are qualita- 
tive, while the correlation ones are quantitative. 

2.2 Modelling 

Modelling may be considered a particular case of classification, but really it has 
evolved from classification methods. In classification, the boundaries between every 
pair of categories are emphasized. In modelling, each category is considered alone 
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and its model, its chemical-statistical description, is evaluated. The model boundaries 
may be considered as the line separating the category being studied from the wide 
category formed by all the samples of all the other categories. Modelling is the multi- 
variate evolution of  the tolerance intervals. 

In Fig. 1 the ellipses show the category models at a determined confidence level. 
The ellipse projections on the axes, univariate confidence intervals, correspond to 
acceptance intervals. A sample with lowest or highest values of both variables follows 
univariate acceptances, but it can fall outside the model of the category, because the 
model is characterized by a correlation between the two variables, so that, for example, 
high values of both variables are (in the case of negative correlation) connected with 
a probability too low to allow a significant acceptance. So, the acceptance of a food 
product on the basis of the univariate acceptance intervals (being used to define its 
origin or toxicity, for example) may cause serious errors. 

t i 
Fig. 1. Univariate vs. multivariate (bivariate) 
approach 

After modelling, we return to classification with some more elements. Samples 
are univocally classified into a category if they are within the model of only one 
category; they are considered as belonging to two or more categories when the 
category models overlap and the samples are in the overlapping space (in this case it 
is possible, to determine the probability of belonging to each category); the samples are 
outliers when they are within no category model. They are anomalous samples, they 
cannot be classified because they really belong to a category that is not present in the 
problem (the pure classification methods would instead place them in the least- 
different category). 

2.3 Quantitative Chemometrics: Correlation 

Correlation problems concern the study of the data tables of  uncategorized 
objects, divided vertically; the vertical divisions correspond to two (or more) 
blocks of variables (block X, block Y . . . .  ). One or more variables may be in a 
block. 
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The greatest problems of these techniques concern the blocks of variables where 
block X is a prevalently chemical block and block Y consists of variables of 
different origin, sometimes mixed (e.g., geochemical and climatic). 

X Y 
Chemical or mixed Chemical or mixed 
(chemical and physical) Physical (instrumental) 

Geochemical 
Variety 
Climatic 
Alimentary (diet of animal) 
Cooking, storage 
Production, technology 
Sensorial 
Commercial 
Nourishment level 

Obviously, some problems may have a block X that is nonchemical, e.g., in correla- 
tions between sensorial and commercial variables, but such studies are not included 
in this review. Generally, the correlations between variables of  two blocks need dif- 
ferent knowledge of different areas of study, only some of which may be considered 
chemical. 

According to the type of block Y, the correlation can be used for different 
problems. The correlation between different chemical variables is used to investigate 
whether some quantities can be evaluated from others, so that the measurement of 
the first quantities can be avoided (major and minor chemical components, traces), 
or whether the relationships between the groups of chemical variables can be reduced 
(e.g., acid and sterolic fraction). 

Multivariate calibration is based on the correlation between chemical and physical 
variables, it is the transformation of a tack of univariate selectivity into a multivariate 
one. The relationships between chemical variables and those producing food compo- 
sition (geochemical, variety, alimentary . . . .  ) explain the changes caused by factors 
that cannot be changed one at a time or that have strongly interacting effects. 

Knowing the relationships between chemical and sensorial variables, objective 
methods can be obtained to evaluate the food quality. Juries of experts cannot be 
formed and used so easily as the measurement of chemical quantities can. Besides, 
the knowledge of these relationships will be able to retain, so to speak, sensorial 
evaluations and follow the evolution of taste over a long period, so that it may be 
foreseen as well. 

In an undifferentiated table, groups of similar objects or variables can be singled 
out by clustering techniques. These techniques can also be used to ascertain whether 
the subdivision into categories is exact, when they are applied to samples. When 
they are applied to variables, it is possible to choose the most-important variables 
(feature selection), eliminating the measurement of variables with the same informa- 
tion as the other ones. This is an aim of every technique of feature selection, 
which may also include the sel.ection of transformed original variables for a better 
description or classification. Among these kinds of techniques we also find the search 
for functions that change nonnormal distributions into other ones, so that it is 
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possible to apply the methods using models based 
distribution. 

on a normal multivariate 

3 Methods and Applications 

3.1 Displays 

The description of large data tables by the usual univariate statistics (mean, 
standard deviation, range . . . .  ) and by histograms is still used in recent literature. 
Comparison between categories is made by the use of category means and ranges. 
Sometimes, the correlation coefficients are considered. The discussion of the extracted 
information can be wide-ranging and difficult to understand immediately. 

However, multivariate methods of graphic description are increasingly being used 
to give a picture of large data tables. The main advantages are their characteristics of 
brevity, essentiality and ease of immediate understanding of the relevant information 
given by the data in the table. Eigenvector projection (EP) in two or three dimensions, 
nonlinear mapping (NLM) and widely used plots on the discriminant variables of the 
linear statistical discriminant analysis (LDA) are the methods used. 

3.2 Eigenvector Projection 

Eigenvector projection represents the multivariate evolution of the variable-by- 
variable plots. This method must be considered as the fundamental method of dis- 
playing multivariate chemical information at the beginning of or during data 
analysis. 

Usually, the matrix of original data is column centred (by subtracting the means of 
the variables, column means) or column standardized (by dividing by the standard 
deviation of the variables) or both column centred and standardized (autoscaled). 
The generalized covariance matrix Cvv = (l/N) X~NXNv is obtained from the centred 
matrix XNv; it is the same as the matrix of correlation coefficients in the case of 
autoscaled data. The eigenvectors of the covariance matrix are new uncorrelated 
variables, linear combinations of the original ones, obtained by an orthogonal rota- 
tion by a transformation matrix, the matrix of loadings, Lvv. 

Each column of the loading matrix stores the direction cosines of the variables of 
an eigenvector. After the orthogonal rotation, the matrix of the coordinates of the 
objects is obtained in the new system of variables, the scores, 

SNv = XNvLvv • 

The eigenvectors are characterized by a diagonal covariance matrix of the scores 

Avv = (l/N) S~NSNv , 

where all the covariances are equal to zero, so that the information given by an eigen- 
vector is not partly copied by that given by another eigenvector, as usually happens in 
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the case of correlated original variables. The diagonal of the matrix Avv is the vector of 
the eigenvalues, and the eigenvectors are ordered with decreasing eigenvalue, so that 

When we have V original variables, and no a priori reason to suppose that some 
variables bring more information than others (as can happen when the analytical 
error is very different for each variable), then each original variable, plotted on a 
histogram, gives (100/V) % of  the total information, and a variable-by-variable plot 
gives (200/V) % of the total information. The plot on the first two eigenvectors gives 
(when the original variables have been autosealed) [(~.1 + L~) • 100fV] % of the total 
information, always greater than (200/V) ~ and often in the range 50%-80%. 

Moreover, the last eigenvectors frequently contain useless information, noise, so 
that the percentage of the useful information in the plot may be greater than that 
calculated from the above equation. So, the plot of the scores of the first eigenvectors, 
to which symbols and colours add some more information (such as the category of the 
plotted objects), gives the greatest part of the information of the original data matrix 
in the simplest way for the immediate understanding of relationships, similarities, 
differences and dispersions of the objects. In the same way, the plot of the loadings 
gives the greatest part of the information on the relationships among the variables. 

Eigenvectors are frequently called factors, when data have not been centred, and 
in this case the information is the distance from the origin. When data have 
been autoscaled and they refer to only one category, eigenvectors are called compo- 
nents, and the information is the distance from the centroid of the category. In the for- 
mer case, the eigenvectors are the basis of the factor analysis, where the eigenvector 
transformation is followed by an orthogonal or nonorthogonal rotation in the space 
of the first factors. In the latter case, the name principal component analysis is used 
and the first aim is the determination of the number of significant components and 
the study of the loadings and scores of these components. 

Because of the different names used in eigenvector analysis to indicate similar and 
often identical procedures, it is necessary to indicate clearly the transformation made 
on the original measured data before the eigenvector rotation (e.g., column centring, 
standardization, and also row transforms, such as the percentage of  the variable in 
the sample, often used in chromatographic data, which removes the information given 
by the size of the chemical sample, and also the information given by the concentration 
in equal-size samples.) 

Eigenvectors reduce the dimensionality of the data matrix: when the rank of the 
covariance matrix is E < V, so that V --  E eigenvalues vanish, or when some eigen- 
vectors are not significant, the use of some classification methods with the scores 
on the first eigenvectors, instead of the original variables, can avoid singular matrices 
or/and noticeably speed up data analysis. 

Both graphics and reduction of dimensionality, and also the use of eigenvectors in 
some classification methods (e.g., SIMCA) require knowledge of the number of 
significant components. 

The inverse rotation from the eigenvector space into the space of the original 
variables gives exactly the original data matrix when all the eigenvectors are 
used: 

XNv = SNvL~v • 
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If, instead, we use E < V components, the product SNEL~v differs by an "error" 
matrix from the original data: 

XNv = SNEL[v + E~v. 

The significant components must hold the variations common to all the objects in the 
data matrix; the error is the individual shift from the collective behaviour. Many 
methods have been proposed 5.6) to solve the problem of the significant components. 

Some methods are based on the knowledge of the experimental error in the measure- 
ment of the original variables. Thus, the number of significant components is 
that by which the original data matrix is reproduced within the measurement error. 
This does not usually happen with food data, where analytical error is frequently 
smaller than the other individual sources of variation. The number of sources of 
variability in food composition is very high, and it is almost impossible that the 
experiment has been designed to cover all these sources of variability uniformly. 
So, some sources of variability appear in only one or a few objects, a minority, which 
behaves differently from the majority. 

So, techniques used to compute the number of the significant components have 
to be based on the concepts of majority and prediction, as in the case of cross 
validation and double cross validation 6). In recent years, this technique has been 
used more and more. However, it has been noticed" 7) that, when two eigenvalues are 
very close, the uncritical use of this method can give an erroneous number of 
significant components, because the eigenvectors computed with a subset of the data 
matrix can invert their order. 

When the significant eigenvectors are two or three, a few eigenvector plots of scores 
and loadings give all the information of the data matrix, but when the number of 
significant components increases, it becomes more and more difficult to obtain a 
definitive decision from the plots. However, most uses of the eigenvector plots in food 
chemistry seem to involve only two eigenvectors, and the problem of the number of 
significant components is ignored. 

Although eigenvector plots can be used to detect anomalous objects (outliers; this 
is the first step of the modelling technique known by the acronym SIMCA), or to 
recognize the presence of some categories in an initially undifferentiated set of objects 
(clustering), most of the applications are in the field of identity, classification problems, 
as in the examples of Figs. 2-4. All three data sets will be shown again in the 
description of other chemometrical techniques. 

The example of  Fig. 3 shows the use of blind chemical analysis, where the peaks of 
a chromatogram do not require chemical interpretation: they are simply the fingerprint 
of the objects. These patterns allow the prediction of the category of an unknown object 
by its position in the plot, without using any classification method. 

In Fig. 4, instead, we have on the same plot the scores and the loadings of the 
first eigenvectors, so that the mutual relationships between objects and variables can 
be obtained. A high value of variables 1, 2, 3, 8 causes high scores on both the 
components, so that the representation point falls into the top right-hand corner: 
the region of the category "Barolo". The discrimination between the other two 
categories is mainly due to variables 4, 5, 6 7. An high value of variable 4 and 
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Fig. 2. Eigenvector projection of French wines, with 2 categories (Bordeaux and Bourgogne) and 20 
variables (elements, organic acids, etc.). (Adapted from Ref. 8)) 
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Fig. 3. Eigenvector projection of whiskies, with 3 categories (non-Chivas, standard Chivas, com- 
mercial Chivas) and 17 variables (chromatographic peaks). (Adapted from Ref. 9)) 
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Fig. 4. Eigenvector projection of Italian red wines. 78 ~ of the total variance retained. 3 categories 
(Baroto, Grignolino, Barbera); 8 variables (1: total alcohol, 2: total polyphenols, 3: flavanoids, 4: 
color intensity, 5: tonality, 6: O.D. 280/315 nm diluted wine, 7: O.D. 280/315nm flavanoids, 8: 
proline). (Adapted from Ref. lo)) 

low values of  variables 5, 6, 7 characterize the position of  the "Barbera"  samples. 
Variables 5, 6 and 7 give about  the same information,  and it is strongly negatively 
correlated with that  given by variable 4. In the direction f rom variable 4 to variable 7, 
a set of  physical variables have a great importance,  whereas in the perpendicular 
direction the chemical variables (alcohol, proline) have the leading role. 

So, the chemical direction discriminates Barolo from the other wines, the physical 
direction discriminates between Barbera and Grignolino. The classification ability o f  
the selected variables is very good and probably  some variables can be cancelled 
without noticeable loss of  separation of  the categories. Therefore, a small figure 
shows the relevant information given by a data matrix of  178 rows and 8 columns. 
Anyway, classit~cation methods and feature selection methods will not modify the 
quality of  these conclusions. 

3.3 Correspondence Plots  and Spectral  M a p s  

The unified plotting o f  loadings and scores is a standard characteristic o f  two techni- 
ques: plots on the factors of  correspondence analysis 1 x) and spectral maps 12). These 
techniques are at the beginning of  their use in food chemistry. 

The factors of  correspondence analysis are the eigenvectors of  a correspondence 
matrix Cvv obtained as the covariance matrix of  the original data  divided by the square 
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root of the row and column sums: 

N Xi v Xiv~ 
Cvvs ---~ E 

i = l  
X x , ,  x,v xiv 

~ v = l  i = 1  v = l  -- 

Here the information is not the distance from the generalized mean, as in the 
usual EP of autoscaled data, but the distance from a mean profile, so that pro- 
portional objects (xiv = kx~v) have the same position in the plot. 

Note that correspondence analysis cannot be. used with centred data, and that 
some kind of column standardization has to be used when the range of variables is 
very different. 

By comparing the plots of Fig. 4 and 5, we can see that in Fig. 5 the separation 
between categories is good (some discriminating ability is shown by factors 3 and 4 
too): so the differences between the three wines are due not simply to concentration, 
but also to the profile of the measured quantity. Moreover, Barolo appears as a 
very compact category, that is, all the samples show very similar prof'fles, so that the 
wider spreading of the EP must be partially due to proportional variations. 

A kind of logarithmic transform, such as In (1 + x), is used in spectral maps within 
row and column centring and global standardization (division by the standard devia- 
tion around the mean of all the values of the data matrix). 

Recently 13), these two techniques have been applied in food chemistry and compar- 
ed with the usual EP. When some objects have characteristics very different from the 
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Fig. 5. Correspondence factors of Italian red wines 
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majority, spectral maps give a better starting representation of the experimental 
results, because the logarithmic transgeneration reduces the importance of these very 
distant objects, and the structure of the majority can be shown in the plot. Using 
EP, or the factors of correspondence analysis, the anomalous objects produce some 
directions of greater variation, which are picked out so that one among the first 
eigenvectors will represent the best direction to single out the anomalous objects. 
Then these objects may be discarded and in a further step of data analysis the 
remaining objects may be studied. 

So, according to the aim of data analysis, one method may be selected, or another 
data transform may be used before the eigenvector rotation. 

3.4 Nonlinear Mapping 

When the significant eigenvectors are more than 2 or 3, the information cannot be 
easily visualized by few eigenvector plots. In these cases the use of nonlinear mapping 
(NLM) can give a planar representation of the objects with greater fidelity to 
the structure of the information in the hyperspace of the variables 14) 

In NLM the objects are represented so that the euclidean distance between two 
objects i,i' in the representation plane dii, is as close as possible to the corresponding 
distance Dii, in the space of the original variables: 

N - I  N 

~ (d i i ,  - D i i , )  2 = minimum. 
i = 1  ir = i + 1  

This error function to be minimized includes N(N --  1)/2 terms; 2N --  3 coordina- 
tes in the NLM representation plane (NLM coordinates) must be optimized (three 
coordinates can be fixed to avoid rotation and translation of the plot). 

The search for the optimum usually starts from the coordinates in the plane of the 
first two eigenvectors. However, to avoid the iteration (usually done with the 
method of steepest descent) stopping at a relative minimum, it is advisable to repeat 
the search from a different starting position, such as that given by the coordinates 
of two original variables. 

Nonlinear mapping has not been widely applied in food chemistry because: 
a) the computer time becomes very great with an increasing number of objects; 
b) the plot coordinates are not directly linked to the original variables, so that it is 

impossible to evaluate the relative importance of the original variables as regards the 
separation of the clusters of objects or the presence of outliers; 

c) when one or more objects are added to the data matrix, the NLM must be 
completely repeated to display the new objects. 

An example of the use of NLM is shown in Fig. 6. Nonlinear mapping was also 
used in the representation of the amino acid spectrum of French red wines ~ :  110 
objects (Bordeaux, Beaujolais and non-Beaujolais Bourgogne wines) characterized 
by 20 amino acids were represented. 

To reduce computing time, a two-step method has been suggested t7), the 
simplified nonlinear mapping (SNLM), and it was first used to present samples of 
olive oil of several Italian regions 18). In the first step, the NLM coordinates of a 
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Fig. 6. Nonlinear mapping of Bordeaux and Rhone wines. (Adapted from Ref. ]5)) 

reduced number of points are computed in the hyperspace of the variables. These 
points (base points) can coincide with some selected objects or they can be the centroids 
of the categories or else arbitrary points. The NLM of the base points requires a short 
computing time. 

In the second step, all the objects of the data matrix are plotted in the plane of the 
SNLM coordinates, one at a time, so that in the plot the distances between objects 
and base points are as close as possible to those in the original variable hyperspace. 
So, instead of one optimiz~ttion problem with 2N - -  3 coordinates to be optimized, 
we have N #ptimizatjons of 2 variables. 

The starting point of each object is computed by a geometrical consideration: 
in the representation plane there are two specular points equally distant from the two 
closest base points, as in the variable hyperspace. One of these two points is closer to 
the third-nearest base point, and this one is chosen as the starting point for the optimi- 
zation procedure. 

Figure 7 is the SNLM of the data set whose eigenvector projection is shown in 
Fig. 4. The separation between the three categories is worse than that given by EP, 
but this is not necessarily a negative characteristic, because in the SNLM plot 
all the information is represented, while EP discards the information of the minor 
eigenvectors. But there is a negative side: in the plot, a nonsignificant split of each 
category into two apparent subcategories appears. This splitting is frequently 
observed with few base points 3 or 5, and it can be avoided lO) by using a correction 
factor for the distances in the space of original variables, if the number of base 
points is less than the number of variables. This factor is the square root of the 
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Fig. 7. Simplified nonlinear mapping of Italian red wines (category centroids as basepoints). 8 variables 
(see Fig, 4) 
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Fig. 8. Simplified nonlinear mapping of Italian red wines; with correction factor. 8 variables (as in 
Fig. 4) 
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Xm BAROLO 
*= 6RIBNOLINO 
#'- BARBERA 

E ~ g e n v e c t o r  1 

Fig. 9. Eigenvector projection of Italian red wines. 5 variables (1: flavanoids; 2: total alcohol; 
3 : tonality; 4: Mg; 5 : proline) 

ratio between the number of base points and that of the variables. Figure 8 shows 
how the use of the correction factor produces a plot without subcategories. 

The previous figures show that the use of NLM does not give a real advantage when 
the useful discriminating information is contained in the plane of the first two 
eigenvectors. 

In Figs. 9, 10, the same data set of 178 wines was studied using five variables 
only (it has been shown 19) that these five selected variables give the maximum predictive 
ability, about 100%, in the classification of the three wines). Here the eigenvector 
projection (Fig. 9) shows heavy overlapping between two categories, whereas the 
SNLM indicates very little overlapping, so the SNLM plot produces a better 
representation of the discriminating information given by the five variables. 

3.5 Plot  on the Discriminant Functions 

Because of the difficulty of selecting the right transforms before EP, the long 
computing time of  NLM, and because the programs for NLM or SNLM are not 
generally available, the most-used representation method for classification problems 
is the discriminant function plot of the linear statistical discriminant analysis (LDA). 
Well-known packages contain this method, which does not require preliminary treat- 
ments of the variables or a long computing time. Figures 11-19 show examples of the 
use of this kind of representation. 

In Sect. 4.t we will discuss the method of linear statistical discriminant analysis. 
Here, however, some comments are given in advance. 
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Fig. 10. Simplifiednonlinearmap~ngofItalianred ~nes.  5variables(asin Fig. 9) 
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Fig. 11. Plot on the discriminant functions of LDA. 4 categories of honey (Australia, Argentina, United 
Kingdom, Canada), 17 variables (amino acids). (Adapted from Ref. 2o)) 
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Fig. 12. Plot on the discriminant functions of LDA. 3 categories of wine (Pinotage wines from 
Stellenbosch, Worcester, Durbanville). 16 variables (esters, alcohols, acids), (Adapted from Ref. 21)) 
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Fig. 13. Plot on the discriminant functions of LDA, 3 categories of beer (hell lager, pilsener lager, hell 
export). 8 variables, (Adapted from Ref. 2z)) 
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Fig. 15. Plot on the discriminant functions of LDA. 3 categories (white rice, red rice, rainy rice). 
12 variables (total lipids, rough proteins, fatty acids). (Adapted from Ref. 23)) 
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Fig. 16. Plot on the discriminant functions of LDA. 3 categories (milk of cows, sheep, goats). 
15 variables (fatty acids). (Adapted from Ref. 24)) 
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Fig. 17. Plot on the discriminant functions of LDA. 8 categories (brands of soy sauce). 25 variables 
(gas chromatographic peaks). (Adapted from Ref. 2s)) 
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Fig. lB. Plot on the discriminant functions of LDA. 3 categories (saltwater fish, freshwater fish, 
cephalopoda). 10 variables (fatty acids). (Adapted from Ref. 25), after correction) 
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Fig. 20. Ratio of the interclass to intraclass variance as a function of zenith and azimuthal angles in 
a simulated case with 3 variables and 3 categories 

Whereas EP and NLM may be used with categorized or noncategorized data, LDA 
searches for directions (in the space of original variables) with maximum separation 
between categories. These directions are the eigenvectors of a nonsymmetric matrix 
obtained by the intercategory covariance matrix (or the intercentroid covariance 
matrix or the generalized covariance matrix) premultiplied by the inverse of the intra- 
category pooled covariance matrix 27-29) Because of  the lack of symmetry in this 
matrix, the transformation from the original variables to the discriminant functions 
is a nonorthogonal transformation, with a consequent distortion of the data space. 
Whereas the first eigenvector of a covariance matrix is the direction of maximum 
variance (independent of categories), the first discriminant direction is that of maxi- 
mum ratio between intercategory and intracategory variances (Fig. 20). 

This ratio can be significantly changed by adding or removing a few objects, 
especially if the number of objects is not many times that of the variables, or if 
one category is formed by only a few objects. So, some care is needed in using 
this kind of plot. It is worth redoing the plot after the removal of some objects and 
observing the changes of the loadings of variables on the discriminating functions. 

3.6 Other Methods 

Colour and three-dimensional graphics 4) improve the display of information in food 
chemistry; they may be applied to original variables, to eigenvectors, to NLM 
coordinates and to discriminant functions. Actually, however, this kind of plot cannot 
be easily used in chemical journals and books, due to both high costs and technical 
difficulties. 
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Other methods seem to require some attention: Van der Voet and Doornbos have 
used two-dimensional pictures of human faces 3o~ to represent samples of Bourgogne 
and Bordeaux wines, where the original variables determine the anthropometrical 
variables of the faces. 

The method of audio representation of multivariate analytical data 3J~ has not 
been used, to our knowledge, in the representation of food data. However, the 
large number of properties of sound (pitch, loudness, damping, direction, duration, 
rest) seems suitable for the recognition of complex information, at least as an alter- 
native. 

So, we can imagine a future of the representation techniques in which three- 
dimensional coloured figures with a pleasant (or otherwise) accompaniment are 
used to represent food analytical data with clear relationships to the food quality 
and origin. We leave to the reader's imagination the evaluation of the possibilities 
offered by the other human senses in the field of data representation. 

4 Classification and Modelling Methods 

In recent years, new methods have been introduced into chemistry for classification 
problems, and they have often been applied to food analytical data. The statistical 
linear discriminant analysis is still the most widely used method, as was noted in 
the previous section. 

4.1 Linear Statistical Discriminant Analysis 

The assumption of multivariate normal distribution underlying this method gives 
for the conditional (a posteriori) probability density of the category g 32) 

1 E1 l p ( x / g )  = (2x )v l  2 i Cg 1112 exp  - ~- ( x  - F.~) C ~ l ( x  - 'xg) , 

where ~g and Cg are the mean and the covariance matrix of each class. The term 
(x --  ig)' C~'l(x --  ig) is known as the Mahalanobis  distance. 

With the additional assumptions of equal a priori probability p(g) for each class, 
and that the covariance matrices are the same for each class, P, the logarithm of the 

product p(g) p(x/g) becomes In [p(g) p(x/g)] = const. - ~- (x - fig)' P -  l(x - ~g) . 

The higher it is, the higher is the so-called discriminant score (also known as the 
discriminating funct ion)  

1 fd~P - i x g ,  S~(x) = x 'P - l i~  --  

where the terms independent of the category have been eliminated. 
The lines of equal probability (and of equal discriminant score) appear as hyperellip- 

soids in the space of the variables, equal for each class (see Fig. 21); the locus, where 
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Fig. 21. Equiprobability ellipses and 
discriminant lines for statistical linear 
discriminant analysis (bivariate case) 

the discriminant scores for two classes, 1 and 2, are the same, is the line 

1 , x 1 , 1 
St(x) - -  S2(x) = 0 = x 'P-a(~I  - -  x2) - -  ~:~1 P -  xl + ~x2 P- ]K2 , 

and this line is the linear statistical delimiter between the two classes. 
In the space of the canonical discriminant functions, the pooled covariance matrix 

is a constantmultiplied by the identity matrix, the equiprobability hyperellipsoids 
become hyperspheres, and the linear statistical delimiter is a line midway between 
the centroids of  two categories. This kind of plot has been used many times by 
Scarponi and co-workers 3a-35) in the classification of white wines. 

Some computer programs draw the equiprobability circles at a selected confidence 
level. So it is possible to evaluate how close an unknown object is to a category: 
in this way LDA approaches the modelling methods. Gilbert et al. 20) used 95% 
confidence circles to show the separation between honeys from the United Kingdom, 
Australia, Argentina and Canada. 

The observation of the linear delimiters and of confidence circles (or ellipsoids) 
can often indicate that the assumptions for LDA are not completely satisfied. For 
example, we can see in Fig. 22 that (a) honeys from Canada show a greater 
variance in the direction of the second discriminant function (really, the number 
of  objects in this category is too small to give probatory information), (b) one sample 
from the United Kingdom falls very far from the centroid of  this category, and the other 
samples are about on a line in a direction close to that of  the first variate. Only the 
structure of  the category "Argentinian honey" appears to be well described by the 
assumptions of  linear statistical discriminant analysis. 

Wenker et al. 36) used dispersion polygons to show the differences in the dispersion 
of some classes of French brandies. The number of classification errors on the basis 
of  these dispersion polygons appears to be very small in comparison with that based 
on the discriminating scores (i.e., when the canonical discriminating functions are 
used, and the classification made on the basis of  the distance from category centroids). 
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Fig. 22, Confidence circles in the space of the canonical functions of LDA. 3 categories (honeys from 
Canada, United Kingdom, Argentina). 17 variables (amino acids). (Adapted from Ref. 20)) 

These efforts to improve the classification ability by correction of the original 
LDA model with the use of graphical means that search for a better discriminant 
line are the prelude to the use of classification methods with separate class 
models: the bayesian analysis. 

The terms classification ability and classification error used above refer to a pro- 
cedure in which we have N objects of G categories, and all objects are used to 
compute class means and a pooled intraclass covariance matrix. The objects are then 
classified according to their highest discriminant score. This procedure is that 
commonly used. However, the classification ability (percentage of correctly classified 
objects) is an overestimate of  the real utility of information, which must be considered 
as the ability to classify correctly unknown samples: predictive ability. 

Two methods are used to evaluate the predictive ability for LDA and for all 
other classification techniques. One method 37) consists of dividing the objects of the 
whole data set into two subsets, the training and the prediction or evaluation set. 
The objects of the training set are used to obtain the covariance matrix and the 
discriminant scores. Then, the objects of  the training set are classified, so obtaining 
the apparent error rate and the classification ability, and the objects of the evaluation 
set are classified to obtain the actual error rate and the predictive ability. The 
subdivision into the training and prediction sets can be randomly repeated many 
times, and with different percentages of  the objects in the two sets, to obtain a better 
estimate of  the predictive ability. 

The second method, the leave-one-at-a-time or jackknife procedure, repeats the 
whole LDA procedure as many times as there are objects, and each time one object 
alone is the evaluation set. 
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The two methods have been compared by Moret et al. 35) in the classification of 
three white wines: they give about the same predictive ability, lower, of course, than 
the classification ability. The difference between classification and predictive ability 
becomes greatest when the number of objects is not much greater than the number 
of variables, or when there are very few objects in a category. A very low predicitive 
ability and a high classification ability reveal a bad experimental design. 

Baldi et al. 3s) used LDA in the classification of wines of  the same cultivar (Barbera) 
and different geographical origin. There were 13 samples (6 in the first two categories, 
1 in the third) and 7 variables were selected out of 20 measured quantities. The 
obtained 92 % classification ability is meaningless, especially with regard to the third 
category. 

This second fault of LDA, that is, the impossibility of  obtaining significant infor- 
mation when the ratio between the numbers of objects and variables is low, leads to 
the use of SIMCA, the modelling method to be chosen in this case. 

4.2 Bayesian Analysis 

This classification method has not been widely used in food chemistry, probably 
because the related computer programs are not as widespread as that of LDA. 
However, in recent years, some classification problems have been analysed by this 
method, and the results show a predictive ability generally better than that obtained 
by LDA, so a wider use of bayesian analysis (BA) appears desirable. 

The main characteristics of BA are 32). 
a) Each category has a separate model, given by the centroid of the category and the 

covariance matrix of the category. (In the BA performed by program BACLASS 
of the package ARTHUR, the class model is given by the marginal histograms, 
smoothed by a suitable function.) 

b) The conditional probability density is computed from the multivariate normal 
distribution. (In ARTHUR-BACLASS, the conditional probability density is 
computed as the product of the marginal (univariate) probability densities, obtained 
from the histograms, or from the mean and standard deviation of each variable, 
under the assumption of independent variables.) 

c) To obtain the decision function, the a priori probability of each class is taken 
into account, within a loss function given by a matrix L. Each element 10 of this 
matrix L specifies the loss associated with the classification of an object of 
category i into category j. Usually, lij = 0 when i = j, and lij = 1 when i # j 
(loss 0 for correct classification, loss l for every misclassification: normalized 

loss) .  
The decision function 

G 

fg(X) = ~. ligp(x/j ) p(j) 
j = l  

(object x is assigned to the class g with the minimum value of the decision 
function) becomes, in the case of normalized loss 

dg(x) = p(x/g)p(g) 
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(the object x is assigned to the class g with the maximum value of the decision 
function). 

The posterior probability, i.e., the probability that the object belongs to class g, 
is given, in this case, by 

p(g/x) = dg( x (x). 

To our knowledge, BA has always been used with the normalized loss function, 
and with p(g) --- 1/G independent of the category. However, these two elements 
of the bayesian decision can be of greatest importance in the practical use of the 
classification technique with unknown objects. The loss from misclassification is 
meaningful depending on the values (commercial, nutritional, cost of further 
analysis, . . . )  of  each category. So, if we have a hypothetical classification problem 
with two high-quality and two low-quality categories, the loss associated with the 
misclassification of a high-quality objec~ into the other high-quality category is 
lower than its misclassification into one of the two tow-quality categories. Because 
of this, we believe that the development of a decision function to be used in the 
usual practice of food laboratories should be preceded by an exhaustive study of the 
consequences of misclassification. 

d) The squared Mahalanobis distance in p(x/g) when the multivariate normal 
distribution is applied is useful in obtaining the hyperellipsoids of equal probability 
that fix the boundaries of the multivariate confidence interval of each category. 
The confidence hyperellipsoid is the model of  the category to be used when BA is 
applied as a modelling technique. 

In a modelling technique, attention is paid to the category space (in the case of 
BA, the confidence hyperellipsoid of the category), not to the discriminant defimiter 
lines as in the classic classification methods. Each category is studied separately 
and objects (both of the studied category or of other categories, both in the 
training or in the evaluation set) are classified as objects fitting the category 
model (if they fall within the category space), or as objects outside the category 
model. 

Then the classification is made for each object, taking into account that an object 
can fit the model of just one category or more than one category (when two or more 
category spaces overlap, at least partially) or it can be outside every category 
space, an outlier. 

The squared Mahalanobis distance has also been used as a decision function in 
BA 39): 

dg(x) = (x --  ~ ) '  Cgl(X --  ~g) 

(the object x is assigned to the class g with the minimum value of the Mahalanobis 
distance). The use of this decision function is not advisable when the determinants 
of the covariance matrices of two categories are very different and the category 
spaces overlap. In the univariate example of Fig. 23, it can be seen that the 
x-interval within which an object is classified into category b by the Mahalanobis 
distance (MD) rule is smaller than that obtained by the probability density (PD) 
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function. The interval vanishes when the two distributions have the same centroid, 
so that the information cannot be used for classification purposes. However, this is 
without importance when BA is used as a modelling technique and no classification 
decision is taken when an object fits the model of  two categories. 

Moreover, because the Mahalanobis distance is a chi-square function, as is the 
SIMCA distance used to define the class space in the SIMCA 'method (Sect. 4.3), 
it is possible to use Coomans diagrams (Sect. 4.3) both to visualize the results of  
modelling and classification (distance from two category centroids) and to compare 
two different methods (Mahalanobis distance from the centroids versus SIMCA 
distance). 
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Fig. 23. Comparison of classification by probability 
density functions and by Mahalanobis distance. Uni- 
variate case. Values in the range between the dotted 
lines are classified into class b 

Both PD- and MD-based BA should be applied only after testing the normal 
distribution of objects4°); however, good results have been obtained, as regards 
prediction ability, with skewed distributions too, proving the high robustness of  this 
method. 

The Bayesian analysis of BACLASS (a program of ARTHUR),  where the decision 
function is obtained from the product of  the marginal PDs computed by the smoothed 
(symmetrical or skewed) histograms, may apparently be used with skewed distri- 
butions, without preliminary transformations of the original variables. 

Because of the assumption of independent variables, the space class is computed 
as a hyperellipsoid, whose axes are parallel to the variables and whose volume is much 
greater than that of the corresponding hyperellipsoid of the classical BA. The de- 
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correlation of variables by subtraction (program SELECT of ARTHUR) or the use 
of the scores of eigenvectors instead of original variables cannot give any improvement. 
In practice, the decorrelation is made on the whole data set, and the correlation 
is cancelled in the generalized covariance matrix, not in the category covariance 
matrices. 

The category correlations can be cancelled only when all the objects of the 
training set are in the same category, and the method is used as a class modelling 
technique. However, the bayesian analysis in ARTHUR-BACLASS has been com- 
pared with the usual BA in classification problems about wines and olive oils lo~ 
and about the same classification and prediction abilities were observed for both 
methods. 

A wider comparative use of these bayesian methods (PD-BA, MD-BA, BACLASS) 
seems useful, because the relative performances would probably change according 
to the skewness and correlation of variables, and the overlap of categories. 

Like linear discriminant analysis, bayesian analysis can be used only when the 
number of objects is higher than that of variables. In addition, BA requires this 
condition in each category, and an objects/variables ratio greater than two in each 
category of the training set is highly desirable. Moreover, also with a high 
objects/variables ratio, the rank of a category covariance matrix may be less than 
the number of variables (due to linear relationships between variables, such as that 
given by percentage row transformations often used, e.g., with chromatographic 
data). 

In this case, the multicollinearity problem can be avoided by feature selection 
(e.g., by a decorrelation procedure, subtraction or eigenvector projection) followed 
by BA in the space of selected features. 

In summary, BA has been used in the space of principal eigenvectors in problems 
about oils and wines, and the plot of the first two eigenvectors has been used to 
display the confidence ellipsoids (class space) and their changes after outlier 
deletion: this is the procedure to obtain an improved class model. 

4.3 SIMCA 

Both LDA and BA have as the centroid of a category the point with the highest 
probability density, and the greater the distance of an object from it, the lower the 
probability that the object will be in that category. The model of  BA is a point, and 
each object is described by it and by an error vector 

xlg = ig + g i .  

The class space is the space around the centroid in which errors have some 
permitted values (according to the underlying selected distribution). 

SIMCA (Soft Independent Modelling of Class Analogy) 41-43 ~, is the first modelling 
and classification technique in which the model may be linear, piece-wise linear, 
planar or a multidimensional figure. Most of the theory of other recent modelling 
techniques derives from SIMCA. Originally, it was developed and used with many 
variables and few objects, where LDA and BA cannot be used except after selecting 
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a small number of features. However, an increasing number of people use SIMCA 
when BA and LDA could also be applied. We believe that this is not purely a wish 
to apply a new method, but is a consequence of some special characteristics of the 
method itself. 

a) In SIMCA the (known or unknown) factors that form the vector x (i.e., in many 
cases, the composition of a sample) are divided into inner and outer factors. The 
number of inner factors fixes the model space (IMS, inner model space ~)) where 
the variations dependent on structure, the correlations, the possibility of inter- 
pretation and often of identification of the underlying factors are collected. 
The outer space, instead, collects random errors, uncorrelated variations and the 
effect of factors that concern only a minority of the objects. 

These concepts are surely of great importance in the identity problems of food 
chemistry, Here we collect, under the name of a class, objects whose chemical 
composition depends on several factors (treatments, ageing, etc.). 

In the following example, the measured chemical quantities are fixed by four 
continuous factors: age, treatment A, treatment B and analytical error. Treatment 
B has been applied to only one sample of the class. Age and treatment A produce 
variations in composition that cannot be interpreted as deviations from the model: 
they are the inner factors. On the other hand, treatment B cannot be identified as 
an inner factor because of the lack of  information, and its effects fall, with 
the analytical error, in the outer space. Besides, if the effects of treatment B are 
noticeably greater than those of the analytical error, the B-treated object can be 
identified as an outlier, as it really is. 

b) Although it is not necessary, SIMCA obtains the principal component of each 
category by Nipals algorithm, then it is possible to handle data matrices with 
some data missing and to apply the double cross validation to obtain the number 
of significant components: two very nice characteristics. 

c) The inner model space can collect the greatest part of the skewness of the 
distributions, so that the variations in the outer space are often normally distri- 
buted. When this does not happen, the abnormal variations identify a few outliers, 
which are deleted to obtain the improved model. 

These and other favourable characteristics explain the increased application of 
SIMCA in food classification problems, and the development of slightly modified 
methods or new techniques that try to improve SIMCA, retaining its main 
characteristics. 

The class model of SIMCA is a line, a plane, etc., according to the number of 
significant components. By splitting a category into two or more categories, a piece- 
wise linear model may be obtained. The boundaries of the model are obtained by the 
range of the scores (of objects in the training set) of the components. This 
"normal" range is an underestimate of the true range when the number of objects 
is low (see Fig. 24). So, the final range of each component is obtained by increasing 
and decreasing the upper and lower limits, respectively, by one standard deviation 
of  the distribution on the component. Because of the uncertainty in the range, 
the deviations in the direction of a component outside the final range (as may happen 
for objects that have not been previously used to obtain the class model) are 
weighted by the inverse of the standard deviation of the scores on the component. 
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Fig. 24. Random sample of a few (6) objects from a rectangular distribution (one component, two 
variables) plus random error (circles), The experimental range of the component is an underestimate of 
the true range 

The usual enlarged model  has been used in some appl icat ions o f  S I M C A  to food 
identity problems 8,4s-49). Sometimes, the results compared  with those deriving from 
other  techniques were not  as good as expected. However,  it was noticed lo) that 
the enlarged model  can hardly be applied when the number  of  objects is large. 
In this case the normal  range may be an overestimate o f  the true range, because 
of  the contr ibut ion of  random errors in the direction o f  the component  (see 
Fig. 25). Consequently,  a " reduced"  S l M C A  model  has been proposed,  which is 
obta ined by a both-sides contract ion of  the normal  range. As a result, classification 
and predictive abilities obtained in the classification o f  Portuguese olive oils lo) and 
some I ta l ian wines so~ were about  the same of  those o f  bayesian analysis. 

Fig. 25. Random sample of many (25) objects from a rectangular distribution (one component, two 
variables) plus random error (circles). The experimental range of the component is an overestimate of 
the true range 
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Objects do not fall exactly into the inner model space, and a residual error on each 
variable can be computed. These residuals are uncorrelated variables, because each 
significant correlation is retained in the linear model• So, the variance of residuals is 
a chi-square variable, the SIMCA distance, and, multiplied by a suitable coefficient 
obtained from the F distribution, it fixes the boundary of the class space around 
the model, called the SIMCA box, that corresponds to the confidence hyperellipsoid 
of the bayesian method. Objects, both those used and those not used to obtain the 
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Fig. 27. Coomans diagram for SIMCA usual (enlarged) and reduced models. The fitting of Orignolino 
samples to the two models of the Barolo class lo) is shown 
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class model, are able to be classified ~nto the class or outside the class according to 
the standard deviation of their residuals. 

The SIMCA distances from two class models (or from the two models of the same 
category obtained b y  different methods) are reported in Coomans diagrams sl) 
(Fig. 26) to show the results of modelling-classification analysis. 

Figure 27 shows an application of a Coomans diagram to a comparison between 
the usual (enlarged) and reduced SIMCA models, showing that the reduced model is 
less easy to penetrate than the usual model. 

4.4 K N N  and Potential Function Methods 

Among the nonparametric techniques of pattern recognition , the linear learning 
machines 52) have been only seldom used in food data analysis 8.4s~, and it seems that 
this method is becoming obsolete. 

The rule of the K nearest objects, KNN, has been used in classification problems, 
in connection and comparison with other methods. Usually K N N  requires a prelimin- 
ary standardization and, when the number of  objects is large, the computing time 
becomes very long. So, it appears to be useful in confirmatory/exploratory analysis 
(to give information ~/bout the environment of  objects) or when other classification 
methods fail. This can happen when the distribution of objects is very far from 
linear, so that the space of one category can penetrate into that of another, as 
in the two-dimensional example shown in Fig. 28, where the category spaces, computed 
by bayesian analysis or SIMCA, widely overlap. 
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Fig. 28. Bivariate example of bayesian confidence ellipses and SIMCA one-component models in a 
case of complex distributions. The direction of SIMCA components is not the same as the main axes 
of the ellipses because of the separate scaling used in SIMCA 
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Although in this kind of contorted distribution it is possible to specify some 
subcategories by eigenvector projection and then to use BA or SIMCA with sub- 
category spaces, it seems desirable to have methods suitable for handling unsplit 
categories. 

The evolution of KNN has produced methods based on potential functions, where 
each object is considered as an electric charge and the potential at a point is the 
sum of each individual contribution. 

In the method of the software package ALLOC of Hermans and Habbema s3), 
the individual potential function has the form of a multidimensional normal probabili- 
ty function, and the overall function gives the conditional probability density of 
each category, so that the basic concepts of BA can be applied. 

Coomans et al. 54, 5s) have applied ALLOC to the differentiation of pure milk from 
different species and mixtures. A nonsymmetrical loss matrix was used in two-category 
classifications: 

where a is the loss associated with the misclassification of an object of class 2 into 
class 1, and b is the loss for the inverse misclassification. The ratio b/(a + b) was 
used to build a family of discriminant boundaries between the categories. The 
above ratio has the significance of a threshold value of posterior probability for 
class 1, whereas a/(a + b) is the threshold value for class 2. By a suitable choice of a 
and b a boundary zone is obtained and the objects which are in this zone are not 
classified into any class. So, ALLOC behaves almost as a class-modelling technique. 

4.5 C L A S S Y  

The method CLASSY attempts to bring together the appealing ideas of SIMCA 
and the Kernel density estimation of ALLOC (CLassification by ALLOC and SIMCA 
SYnergy) 44) It has been applied to the classification of French wines 56) (Bourgogne 
and Bordeaux) by classical chemical~ and physical variables and by peak height of 
head-space chromatography. 

In SIMCA the distribution of the object in the inner model space is not considered, 
so the probability density in the inner space is constant and the overall PD appears as 
shown in Figs. 29, 30 for the enlarged and reduced SIMCA models. In CLASSY, 
Kernel estimation is used to compute the PD in the inner model space, whereas the 
errors in the outer space are considered, as in SIMCA, uncorrelated and with normal 
multivariate distribution, so that the overall distribution, in the inner and outer space 
of a one-dimensional model, looks like that reported in Fig. 31. Figures 32, 33 show 
the PD of the bivariate normal distribution and Kernel distribution (ALLOC) for the 
same data matrix as used for Fig. 31. Although in the data set of French wines no really 
important differences have been detected between SIMCA (enlarged model), ALLOC 
and CLASSY, it seems that CLASSY should be chosen when the number of objects 
is large and the distribution on the components of the inner model space is very 
different from a rectangular distribution. 
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Fig. 29. Probability density function for SIMCA (usual enlarged model) 

Fig. 30. Probability density function for SIMCA (reduced model) 

On the other hand, when the number of objects is low (remember that SIMCA 
has been developed for this special case) the use of a Kernel estimation of probability 
density can have no significance, as shown by the example of Fig. 34, where the 
true distribution is a rectangular one. 

4.6 Model Centred Bayesian Analysis 

As SIMCA and ALLOC can be called the parents of CLASSY, BA and SIMCA 
are the parents of model centred bayesian analysis. 

In SIMCA and CLASSY, the inner model space is formed from all the significant 
components. In practice, because of the difficulty of obtaining the number of signifi- 
cant components, often the dimensionality of  the model is systematically examined 
to obtain the best number of components on the basis o f  method performances 
(prediction). 
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Model centred bayesian analysis (MCBA)7~ builds the inner model space only 
from the components  that  can be interpreted as due mainly to nonrandom under- 
lying factors, determined by experimental design, or that  show an almost  rectangular 
distribution. In a study on Portuguese olive oils collected in the years 1975-1980 57), 
it was seen that the distribution on two eigenvectors (studied by the two-dimensional 

Fig. 31. Probability density function for CLASSY 
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Fig. 32, Probability density function (contours) for ALLOC 
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Fig. 33. Probability density function for Gaussian bivariate distribution 

Fig. 34. Probability density function of CLASSY in the direction of the significant component for 
4 random samplings of a few (8) objects from the same rectangular distribution 
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histograms of the scores) was very similar for each year. The position of objects 
in the plane of the two components appeared to be due to two climatic factors, the first 
connected with latitude, the second with the distance from the sea. 

The sampling design (independent of the year) had been made on the basis of the 
"oil-producing districts", so that the distribution on the two components was deter- 
mined by the geographical distribution of the districts and then by the experimental 
design. A random sampling, with constant sampling density, should produce, of 
course, a very different distribution. 

The other components were independent of sampling design, and they collect the 
random errors with a multivariate normal distribution, where some significant corre- 
lations among variables are still present. 

So, MCBA builds a covariance matrix of the residuals around the inner model and 
from this matrix it obtains a probability density function as bayesian analysis does, 
taking into account that the dimensionality of the inner space correspondingly 
reduces the rank of the covariance matrix from which a minor must be extracted. 

Figure 35 shows the differences between the class spaces of BA (normal distribution), 
SIMCA and MCBA. 

a b c 

Fig. 35 a-c. Class spaces for bayesian analysis (a), 
SIMCA (b) and model centred bayesian analysis 
(c) 

4 . 7  P R I M A  

Pattern Recognition by Independent Multicategory Analysis (PRIMA) 5s~ is another 
method retaining some characteristics of  SIMCA. It has been applied to the classifica- 
tion of brandies sgj. 

In PRIMA there is a separate scaling for each class: this kind of scaling, where 
each class has its scaling parameters, i.e., the mean and the standard deviation of 
each variable within the class, is commonly used in SIMCA, but in PRIMA it 
becomes a fundamental characteristic of the method. Then, under the assumption 
that the variables are uncorrelated, the PRIMA distance is the squared distance of an 
object from the class centroid. It has all the other characteristics of SIMCA. 

So, PRIMA appears to be an oversimplified variant of  SIMCA, with zero- 
dimensional inner space. The method can be applied when,the class covariance matrices 
show very little correlation (no significant components can be detected). 

In Table 1 the main differences between the parametric classification-modelling 
techniques are summarized. The large number of techniques suggested in the last 
few years and their use in the classification of food samples display the interest in 
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Table 1. Comparison of the parametric classification-modelling techniques 

Method Inner space Outer space Affected by 
scaling ~ 

Provision for 
modelling and 
outlier 
detection 

LDA no 

BA no 

SIMCA yes, constant 
probability 
density 

ALLOC no 
CLASSY yes, Kernel 

probability 
density 

MCBA yes, constant 
probability 
density 

PRIMA no 

Multivariate normal no 
correlated errors 
(pooled covariance 
matrix) 
Multivariate normal no 
correlated errors 
(separate class 
covariance matrices) 
Uncorrelated yes 
residuals 

no 

yes 

yes 

Kernel distribution no possible 
Uncorrelated yes yes 
residuals 

Multivariate normal yes 
correlated residuals 

Uncorrelated multi- n o  b 

variate normal errors 

yes 

yes 

All methods based on the PC model are scaling dependent. 
b Separate class scaling is a fundamental characteristic of this method. 

identity food problems and that  the ideal method cannot  exist. Each problem requires 
a different method,  according to its experimental  design, its aims and the availabili ty 
o f  comput ing facilities. 

5 Clustering 

Cluster analysis is the collective name for methods designed to understand the 
structure o f  a large data  matrix,  to recognize similarities among objects or  among 
variables and to single out  some categories as a set o f  similar objects (or 
variables). 

Display me thods  (EP, N L M )  can be considered as clustering techniques, when no 
apriori  informat ion is given about  the subdivision of  the dataset  into categories. 
However,  with the name o f  cluster analysis, we will denote the techniques working 
with the whole mult ivariate  information in the following way. 

Initially cluster analysis defines a measure of  similarity; given by a distance or  a 
correlat ion or  the informat ion content  60) Distance can be measured as euclidean 
distance or  Mahalanobis  distance or Minkowski  distance. Objects separated by 
a short  distance are recognized as very similar, while objects separated by a great 
distance are dissimilar. The overall result of  cluster analysis is reported as a 
dendrogram of  the similarities obtained by many procedures.  
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Sometimes, in the field of food chemistry, display methods have been used to 
detect dusters, while clustering techniques have been used to confirm the subdivision 
into categories, and then as classification methods. 

By EP, Forina and Tiscornia 61) were able to detect two categories within the 
Ligurian olive oils (East and West Liguria oils) and also two categories within the 
Sardinian olive oils (coast and inner Sardinia oils). In both cases, the detected 
categories were interpreted as connected to well-recognized climatic differences. 

Lisle et al. 62) used the plots of original variables or ratios to detect clusters 
of rums, but the significance of these subcategories has not been explained. Likewise, 
Derde et al. 63) showed that West Liguri:l olive oils can be separated into two 
subcategories. However, it was not possible to give any explanation of these two 
subeategories because the original data matrix did not contain information about 
climate, soil or olive variety. 

In practice, almost all studies on food have some prerecognized categories, and 
the detection of new categories in an eigenvector plot shows that some factors are 
unknown or that their importance has been underestimated, so that the classification 
problem has to be formulated again. 

So, clustering techniques have been used for classification. Piepponen et al. 47) 
applied a hierarchical cluster analysis (CLUSTAN) to the classification of food oils 
(groundnut, soya, sunflower and maize) by their fatty acid composition. The den- 
drogram of the distances shows four well-separated clusters. Some suspect commercial 
samples of sunflower oil fall near the cluster of soya oils, so far from the claimed 
class that they cannot be considered genuine. 

Aishima ~) used hierarchical cluster analysis on gas chromatographic profiles 
[10 peaks out of 93 measured peaks, 48 samples selected out of 200 samples of 
eight brands (categories) of soy sauce]. The obtained dendrograms were mainly 
discussed in connection with the results of linear discriminant analysis and the ten 
peaks selected for clustering. 

Because of the long computing time of distances and the difficulty of evaluating 
the output dendrogram, cluster analysis is ususally performed with a small number 
of objects, as in the work of Aishima. However, Ooghe et al. 65) used cluster analysis 
with 269 objects in the study of  French red wines by their amino acid spectrum. 

The number of research applications of cluster analysis has shown a spectacular 
increase in recent years: the increased number of books and computer programs on 
this scientific tool will make it attractive to food chemists, so that they will be able to 
use cluster methods in true clustering problems. 

6 Feature Selection 

Feature selection, the choice of variables or features (combinations and transforma- 
tions of original variables) relevant to the problem, is one of the most important 
aims of chemometrics. Reasons for feature selection are: 
a) To simplify. When the number of variables or features is very great, many 

methods of pattern recognition cannot be applied because of memory storage 
requirements or very long computing times. 
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b) To improve classification ability, because variables that do not give useful 
discriminant information add noise, which is also shown by display methods, so 
darkening the useful information. 

c) To save money and time, with the development of  analytical control procedures 
which require the measurement of  a subset of the originally selected variables. 

6.1 Univariate Feature Selection 

When feature selection is used to simplify, because of the large number of variables, 
methods must be simple. The univariate criterion of interclass variance/intraclass 
variance ratio (in the different variants called Fisher weights 37), variance weights aT) 
or Coomans weights 66) is simple, but can lead to the elimination of variables with 
some discriminant power, either separately or, more important, in connection with 
other variables (Fig. 36). 

The evaluation by these criteria of  ratios and sums of "variables can single out 
some relevant pairs of variables with an increased computing time. Van der 
Greef et al. 15) selected 50 variables out of 420 original ones (mass spectra of  urine 
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Fig. 36a-d. Some examples of single Variables (a, b) or variable pairs (c, d) whose discriminant power 
cannot be detected by univariate Fisher weights. The transforms y + x (a) and y/x (b) have high 
univariate weight 
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and wine samples) by Fisher and Coomans weights: obviously the 263970 sums 
and ratios have not been considered. 

Thus, the use of  univariate criteria is advisable only when the number of variables 
is very large, or in a preliminary data analysis, because sometimes it is possible to 
find one or two variables that give enough information to solve the classification 
problem. In this way, Van der Greef et al. showed that Rhone and Bordeaux wines 
are almost completely separated in the plane of the masses 300 and 240. 

Saxberg et al. 9) used Fisher weights in a classification problem where the whisky 
categories were standard Chivas (9 samples taken from a single used bottle opened 
many times in the air), commercial Chivas (new bottles from different batches) and 
non-Chivas. Six variables (chromatographic peak areas) were selected with a high 
Fisher weight for separating both standard Chivas from non-Chivas, and commercial 
Chivas from non-Chivas, but with a low weight for separating the two Chivas 
categories. 

Eigenvector projection based on the six best variables is shown in Fig. 37, and it 
can be compared with the projection of Fig. 3 (obtained with 17 variables). 

The separation between all Chivas and non-Chivas samples is not worsened. 
More, with the six retained variables the separation occurs along a single axis, because 
of the high correlation between the selected variables: really, also in this case only two 
variables are needed to obtain a perfect classification, and a line in the plane of these 
two variables (isoamyl alcohol and acetaldehyde) is an excellent discriminating 
function. 

So, the important result of feature selection is a noticeable simplification of the 
analytical procedure required to detect counterfeit whisky. 

N  HIvAs  
STANDARD CHI VA.$ 

I ~ c ~  I I I ~ : ~  I I COPIHEI~IAL CHIVA~- 
EIGENVECTOR ONE 

Fig. 37. Eigenvector plot of Chivas data after feature selection (6 selected variables). (Adapted from 
Ref. 9~) 
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6.2 Feature Selection by Decorrelation ( S E L E C T )  

Because of the correlation between variables, univariate methods can select some 
variables that give the same information. The decorrelation method, used in the 
program SELECT of the software package ARTHUR,  selects the first variable 
according to Fisher ratio, then this variable (let it be x j) is subtracted from the 
remaining variables: 

Xiv --~ Xiv - -  QXij 

(where Q is the correlation between the generic variable v and the first selected 
variable j). Fisher ratios and correlation coefficients are recalculated for the non- 
selected variables, and a new best variable is obtained, which in turn is subtracted from 
the remaining variables, and so on, until the best Fisher ratio of the nonselected 
variables is less than a predetermined value. 

Van der Voet and Doornbos s~ used this method in connection with the classification 
of French wines, and the result (prediction ability with the leave-one-out method) 
was as good as that with more sophisticated selection methods, but with a higher 
number of retained variables. 

This method cannot solve distributions such as those of Fig. 36; however, 
because of its simplicity, we think that it can be recommended in preliminary data 
analysis, at least as an improvement in comparison with the univariate method. 

6.3 Stepwise Selection by Linear Discriminant Analysis 

In the same way as linear discriminant analysis is the most-used classification method, 
stepwise selection by LDA (SLDA)28, 29) is the selection method that shows the 
greatest number of applications in food chemistry. 

Instead of the univariate Fisher ratio, SLDA considers the ratio between the 
generalized within-category dispersion (the determinant of the pooled within-category 
covariance matrix) and total dispersion (the determinant of  the generalized covariance 
matrix). This ratio is called Wilks' lambda, and the smaller it is, the better the 
separation between categories. The selected variable is that that produces the maxi- 
mum decrease of  Wilks' lambda, tested by a suitable F statistic for the input of a new 
variable or for the deletion of a previously selected one. 

The improvement of the separation obtained by this method has an average 
significance, i.e., it can happen that a better separation is due to two far categories 
that are further separated by a new selected variable; whereas two close categories are 
brought closer together, so that the overall classification rate can get worse. 

For this reason, some criteria have been developed to try to select variables 
improving the separation of close categories (MAHAL, MAXMINF and MINRESID 
methods in the package SPSS). Scarponi and co-workers used all these selection 
methods in their work on the classification of Venetian white wines 33-a5~ 
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6.4 Feature Selection by SIMCA 

In SIMCA, feature selection is carried out by the deletion of variables with both low 
modelling power and low discriminating power for each category. Modelling power 
measures the contribution of a variable to the model of a category, and discriminat- 
ing power measures the contribution of a variable to the separation of categories. 

This approach to feature selection has not been widely used in the classification 
problems of food chemistry, where sometimes SIMCA has been used after feature 
selection by decorrelation, SLDA or other methods 8~. 

6.5 Feature Selection by Prediction Ability 

The ALLOC method with Kernel probability functions has a feature selection 
procedure based on prediction rates. This selection method has been used for 
milk s4,ss~ and wine 8~ data, and it has been compared with feature selection by 
SELECT and SLDA. Coomans et al. 55~ suggested the use of the loss matrix for a 
better evaluation of the relative importance of prediction errors. 

A similar method, stepwise bayesian analysis, selects the variables giving the 
minimum number of classification plus prediction errors. When the error rate does not 
show further decrease, the procedure stops. The whole process is repeated with 
random subdivisions between the training and prediction sets. Only the variables 
that are selected independently of  the subdivision are retained. This method has 
been used 19) with the data set of Fig. 4; only 5 variables were selected and a very 
high prediction ability was obtained. 

7 Correlation and Optimization 

The methods of quantitative chemometrics have been widely applied to the field of 
multivariate calibration, where some excellent reviews and books have been published 
recently 1,2, 67). We have found some applications to the study of  the relationships 
between chemical and sensory variables (Fig. 38)68~. All the other possibilities 
(itemized in Sect. 1) have not yet been explored. 

The diffusion of correlation methods and related software packages, such as 
partial-least-squares regression (PLS), canonical correlation on principal components, 
target factor analysis and non-linear PLS, will open up new horizons to food 
research. 

All these methods search for significant correlations between two blocks, X and Y, 
of variables, so that the obtained relationship has predicti~,e value and gives a 
possibility of  interpretation. 

At first, optimization methods are not interested in the relationships between the 
two blocks of variables, but only in the X value that produces the best value of  Y 
(often this Y block contains only one variable), according to some kind of requirement. 
This is generally a search for a maximum (or a minimum) of  the hypersurface y = f(X). 
Obviously, when the equation of this surface is known, this maximum search is much 
easier, so that the spread of correlation techniques will be profitable to otpimization 
problems too. 
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Fig. 38. Partial least-squares correlation between chemical and sensory variables (40 chemical and 
4 sensory variables). The selected chemical variables explain 45 % of the variance of the sensory 
block. (Adapted from Ref. 6s)) 

Moll et al. 69) searched for the optimum blending of  malts when they are mashed. 
Because of  the possibility of  nonlinear interactions, a chemical quantity in the mixture 
cannot be simply considered a linear combination o f  each constituent. In the case of  
three malts, a full factorial design is used to obtain, by seven determinations, the 
seven coefficients a o f  the equation 

y = alx A + azx B + %Xc + ... + aTXAXBX C , 

where x A, x B and x c are the percentages of  the three malts. In this case the above 
equation was checked and used to find the combination giving the required value of  the 
chemical quantity Y. 

When the number  of  factors is too high, or  when the equation is too complex to be 
obtained by few determinations, fractional factorial design 7o) and simplex movement 
on the response surface toward the opt imum set o f  conditions ~1) are the methods o f  
choice, to avoid too large a number of  experimental determinations and the effect o f  
insignificant variations. 

8 Conclusion 

This review of  chemometrics in food chemistry does nat  consider all the papers on this 
subject published during recent years, mainly because many papers appeared in 
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Table 2. Applications of multivariate methods in the classification of wines 

Categories N. of Variables N. of Methods Classifi- Ref. 
samples selected cation 

features ability [ ~] 

Asti Freisa 56 Tartaric LDA 
Asti Barbera 56 acid, 

N total, 
Methanol 

Total 112 3 

Moselle 1970 10 Total acids, 3 EP 
Moselle 1971 16 5 alcohols, 3 SIMCA 
Rhine 1970 14 7 elements, KNN 
Rhine 1971 9 etc. 
Total 49 16 

Riesling Muscat 27 aroma SLDA 
Morio Muscat compounds 
Total 27 

Riesling 14 7 elements EP 
White Pinot 13 
Red Oltrep6, 
Pavese 15 
Bonarda 21 
Total 63 7 

Pinot noir from: 
France 14 17 elements 3 EP 
California 9 SIMCA 
Pacific Northwest 17 KNN 
Total 40 17 

Pinot noir from: 
France 14 
California 9 
Pacific Northwest 17 
Total 40 

Pinot noir from: 
France 14 
California 9 

Pacific Northwest 17 

Total 40 

White Riesling 11 
Chardonnay 9 
French' Colombard 4 
Total 24 

137 organic 2 SIMCA 
compounds KNN 

137 

17 elements, 
137 organic 
substances, 
14 sensory 
s c o r e s  

168 

27 volatile 
components 

27 

Pinotage 10 i0 esters, 
Cabernet 4 higher 
Sauvignon 10 alcohols, 

2 acids 
Total 20 16 

19 

PCA 

PCA 
SLDA 

SLDA 

79-80 
60-75 

81-98 
77-90 

72) 

73) 

74) 

75) 

76) 

77) 

78) 

79) 

2 t )  
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Table 2. (continued) 

Categories N. of Variables N. of 
samples selected 

features 

Methods Classifi- 
cation 
ability [ ~] 

Ref. 

Bourgogne 101 26 amino 
Bordeaux 72 acids 
Rh6ne 12 
Languedoc 21 
Other wines 63 
Total 269 26 

Soave 14 4 elements, 6 
Prosecco 14 etc. 
Verduzzo 14 
Total 42 10 

Prosecco 79 19 4 elements, 5 
Prosecco 77 14 etc. 
Total 33 10 

Bordeaux 11 Mass spectrum 50 
Rh6ne 11 of volatile 

compounds 
Total 22 420 

Soave 18 5 elements, 9 
Prosecco 33 etc. 6 
Verduzzo 20 
Total 71 19 

Muller-Thurgau 20 Volatile 40 
Riesling 25 compounds, 

amino acids 

Total 45 115 

Bordeaux 21 3 elements, 
Bourgogne 19 4 organic 

acids, pH, 
etc. 

Total 40 20 

Soave 18 5 elements, 
Prosecco 33 pH, etc. 
Verduzzo 20 
Tocai 21 
Total 92 19 

Verduzzo 18 7 ethyl- 
Soave I0 esters, 
Tocai 11 5 alcohols, 

etc. 
Total 39 22 

Soave 32 4 elements, 
Prosecco 47 etc. 
Verduzzo 35 
Total 114 10 

6 
11 

4 
8 

11 

11 

Clustering 

SLDA 

SLDA 

EP 
NLM 
KNN 

SLDA 
KNN 

PCA 
NLM 
KNN 
SIMCA 

SLDA 
LLM 
KNN 
ALLOC 
SIMCA 

SLDA 
KNN 

SLDA 
KNN 

SLDA 
KNN 

83-100 

82-93 

89-97 
88-96 

88-95 
78-98 
83-95 
80-98 
80-93 

95-100 
82-85 

90-100 
70-73 

71-97 
74-94 

65) 

80) 

33) 

82) 

83) 

34) 

35) 
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Categories N. of Variables 
samples 

N. of Methods Classifi- Ret2 
selected cation 
features ability [ %] 

Barbera from: 10 elements, 
Oltrep6 Pavese 6 pH, etc. 
Piemonte 6 
Veneto 1 
Total 13 20 

Bordeaux 21 1 ! peaks 
Bourgogne 19 from head- 

-space chrom., 
etc. 

Total 40 31 

Pinot noir from: 17 elements, 
Pacific Northwest 17 137 organic 
California 9 substances, 
France 14 14 sensory 

scores 
Total 40 154 

White wines 47 4 sensory 
scores, 
40 chemical 
substances 

Total 47 44 

White wines 47 4 sensory 
sco re s ,  

40 chemical 
substances 

Total 47 44 

Verduzzo 35 10 head- 
Soave 21 -space 
Tocai 21 components 
Total 77 10 

Roses 15 13 phenolic 
Reds 18 compounds 
Clarets 15 
Total 48 13 

Barolo 59 Alcohol, 
Barbera 7t pH, K, Ca, 
Grignolino 48 flavanoids, 

proline, etc. 
Total 178 28 

EP 
LDA 

SIMCA 
CLASSY 
ALLOC 

38) 

56) 

PLS s4~ 

PLS 68) 

FA 8s~ 

SIMCA 
KNN 71-91 

86) 

LDA 93-100 87) 

8 EP sm 
LDA 97-98 
SIMCA 96-100 
BA 96-100 

j o u r n a l s  t h a t  the  a u t h o r s  were n o t  ab le  to  f ind.  M o r e o v e r ,  the  a t t e n t i o n  given to the  
v a r i o u s  c h e m o m e t r i c a l  top ics  has  been  m a d e  r o u g h l y  p r o p o r t i o n a l  to  the  n u m b e r  o f  

a p p l i c a t i o n s  a n d  to  t he  i n n o v a t i o n s  m a d e  in c o n n e c t i o n  wi th  f o o d  chemica l  p r o b l e m s .  

So, the  poss ib le  a p p l i c a t i o n s  are  number l e s s ,  m u c h  m o r e  t h a n  t h e  examples  we h a v e  

j u s t  desc r ibed .  Rea l ly ,  all t he  m a i n  h u m a n  act iv i t ies  a re  m u l t i v a r i a t e  c lass i f ica t ions  
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and correlation, because each human sense receives a great deal of simultaneous in- 
formation from each object observed, touched, smelled or tasted. Since each "food 
object" studied by chemistry is destined for a final "multivariate" user, the univariate 
approach can be justified only by the limits imposed by the available instrumenta- 
tion and funds. Multivariate strategies, however, suffer from limits of the same kind : 
nobody has determined all the chemical contituents in a food sample. 

In Table 2 many of the applications of multivariate methods in the classification 
of wines are reported: a great many different classes of  variables have been used. 
The kind of variable ranges from the results of classical chemical determinations 
to trace elements, esters, aminoacids, head-space chromatographic peaks and mass 
spectra peaks. The number of variables ranges from 3 to 400 and the number of 
objects from about 10 to some hundreds. Some sets of  variables have been 
recognized as very useful in classification and very interesting results heve been 
obtained on the correlation with sensory scores. However, these findings are only a 
partial answer to the general problem, because each research team has considered 
only a small number of the chemical species in the wine samples. 

For long-term application of the obtained results, much more additional work is 
required. An exhaustive experimental design, a correct sampling, the selection and the 
method of measurement of  the variables, the study of the correlations with sensory 
scores and consumer references, and the choice of chemometrical methods require 
interdisciplinary efforts of oenologists, chemists and chemometricians. A project 
proposal for the authentication of wines has been prepared, with ten classes of  
variables (from classical analytical data to trace elements and isotopic abundance) 
to be measured in 20 laboratories (with interlaboratory investigation) on some 
hundred samples, so connecting all the necessary experience and instruments. These 
laboratories are in many wine-producing and wine-importing countries of the 
European Economic Community. The authentication of foods is valid only when 
controlled by the international community of food scientists. 

This project is very ambitious, because, besides the practical results, it aims at 
defining a methodology. It is expensive because of the great amount of analytical and 
data-processing work, but it will define the few relevant chemical species to be deter- 
mined in real applications. It is futurist, because at present only exceptional food 
control laboratories can routinely measure all the classes of  chemical variables. But, 
we have seen the astounding development of analytical instruments and methods 
during the last twenty years. In the near future, these instruments will show increased 
availability, and new techniques and methods will appear. Food chemistry is working 
to prepare this future, where physical instruments will give more and more data and 
chemometricai methods will extract the relevant chemical information. 
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1 Introduction 

The extent and type of interaction of an element with other constituents in a 
system determine its chemical behaviour and provide the basis for our understanding 
of the various biochemical processes in which it participates. It is therefore apparent 
that a better appreciation of  the biochemical role of the dement can be gained when the 
various forms in which it occurs are identified. The identification of the various 
physicochemical forms of an element or chemical speciation, as it is now called, 
presents many challenges. Firstly, the levels of some species are so low that more 
stringent control of the extraneous sources of contamination and more sensitive 
methods of detection are required than is the case for the total determination. 
Secondly, in order to obtain results that accurately reflect the speciation of an 
dement, realistic assumptions have to be made about the system and the appropriate 
experimental conditions must be chosen. This requirement can only be satisfied when 
enough is known about other chemical constituents that make up the system; 
unfortunately, this information is not always available. Thirdly, for the total 
characterisation of  a species, a wide range of techniques are required, and these 
may not be availiable in a single laboratory. Moreover, an interdisciplinary 
approach may, in some cases, be needed in order to plan and execute the 
experiments. Finally, relevant information about the changes that occur in a sample 
either after collection and/or during storage should be available. However, this 
aspect is often ignored by most workers, and as a result the success or failure of 
some experiments depends on the intuition and experience of  the investigator. 

In this article some of the methods and techniques that have been used for the 
speciation of trace inorganic elements in biological materials, and the approaches 
used to solve some of the above problems will be discussed. 

2 Sample Collection, Pretreatment and Storage 

The major consideration in the choice of techniques and methods used for speciation 
studies is that the integrity of the species should be maintained. In other words, the 
interactions between the element under study and other constituents directly associated 
with it should not be disrupted. Since the strength of  these interactions can range 
from weak van der Waals type force to strong covalent bonds, it is to be expected that 
the conditions under which the stability of  each type of interaction is affected would 
vary. However, the species are more likely to remain intact when the experimental 
conditions closely resemble those found in vivo. Generally, changes in pH, 
temperature, ionic strength, ionic composition and partial pressure during sampling, 
storage or fractionation could adversely affect the distribution of the species. 
The effect of  changes in the above parameters on the stability of  the various types of  
interactions is discussed later. 

The possibility of contaminating the sample with the elements under investigation 
during the various steps is a major risk in trace analysis. The precautions required in 
order to minimize this problem are similar to those already identified when dealing 
with biological materials used for total element determinations. Heydorn i), Ver- 
sieck et al. 2), Stoeppler 3), Behne 4~, and Aitio et al. 5) have discussed the extent 
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of the problem and the necessary precautions. However, some problems that are of 
direct relevance to speciation will be discussed below. 

A complication in the study of biological materials is that the species of an 
element which are either formed and/or take part in physiological reactions in different 
compartments may vary. It is therefore necessary, especially during the sampling and 
pretreatment steps, that the constituents from different compartments are very 
carefully separated. For example, in the study of the speciation of an element in 
blood serum contaminants originating from the erythrocytes could lead to errors 
in the results. 

Another important consideration is the effect of the reactions that continue, 
albeit at different rates, and in some cases along new pathways, after sampling. 
These reactions could introduce new products, modify existing species and cause the 
loss of volatile components. Consequently, the speciation profile of some elements 
may be changed. In order to minimize this effect, it is essential to process the 
samples as soon as possible after collection. 

The addition of anticoagulents and/or preservatives, a practice that may be tolerated 
for total element determination, should be avoided for two reasons. First, the 
compounds used are usually complexing agents. They therefore could bind various 
trace elements. Second, they could destroy some species. For example, the 
addition of potassium dichromate to urine in the presence of nitric acid could 
destroy methylmercury 6). If the use of such compounds is unavoidable, then there 
should be experimental evidence to show that the speciation of the element under 
study has not been adversely affected. 

Besides the above factors that should be taken into consideration when dealing with 
biological materials used for speciation, the procedures used for sampling are similar 
to those applied when only the total element content of the samples is of 
interest. This statement is also true for the pretreatment steps. However, in order to 
preserve the interaction between the element under study and other constituents 
associated with it, the constraints placed on the choice of procedures are more 
severe. Furthermore, the techniques and methods used are chosen in the light of 
relevant information about the known chemical behaviour of the element in its 
various binding forms or associations. A working knowledge of the methods required 
for the isolation of the various biochemical compartments, that may be of interest to the 
investigator, is also necessary. 

An understanding of the chemical behaviour of the element can aid in the choice 
of appropriate techniques and methods, the application of which would not disrup t 
the interaction of the element with associated constituents. For example, in the 
study of aluminium some relevant information may include its amphoteric nature, 
its ability to form predominantly ionic complexes, its tendency to form hydroxides, 
and the stability of aluminium complexes formed with biological ligands. It is clear 
that in order to maintain the ionic interactions the pH, ionic strength and, of lesser 
importance, the ionic composition of the medium used for sample preparation 
should be similar to that found in vivo. In addition, highly charged surfaces should 
not come into contact with the sample. 

On the other hand, information on copper would show its ability to participate in 
predominantly covalent bonding, its tendency to take part in redox reactions and the 
ability to form coloured complexes, in which the copper to ligand ratio is a constant. 
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Here, small changes in ionic strength and pH could be tolerated. However, the 
addition of reducing or oxidising agents to the solution, and/or the buildup of 
redox couples should be avoided. This type of background information about an 
element is required not only to enable the choice of appropriate experimental 
conditions but also for the interpretation of the results. 

The complexity of the pretreatment procedure chosen is largely determined by the 
nature of the sample and the information required. Most present-day analytical 
instruments are designed to process gas and/or liquid samples. These could, 
therefore, be used with the minimum of pretreatment. Solid samples, on the other 
hand, have to be brought first into solution. This can be accomplished by homo- 
genisation of the sample. However, as already emphasised it is important to separate 
the various compartments. 

For example, if the purpose of the experiment is to study the speciation of an 
element in a specific cell type in a given tissue it is essential that all the extracellular 
fluid is removed from the tissue before the homogenisation step. This step could be 
followed by ultracentrifugation of the homogenate in order to separate the cell under 
study from others that may be present in the medium. An estimate of the degree of 
purity of the end product should be given. The harvested cells may then be further 
processed. 

It is not possible to prescribe specific pretreatment procedures here because these 
can only be decided ui~on when the system and the purpose of the experiments has been 
properly defined. However, a wealth of information exist in various biochemical 
reference books 7,s) on how to isolate various biological compounds. The re- 
commended techniques and methods could be used as part of the trace dement 
speciation protocol often after slight modification, taking into consideration the 
following points: First, the trace element blank levels have to be low, less than 
10~o of the total concentration in the sample. Second, the reagents used should not 
interfere with subsequent analytical determinations. Third, the experimental con- 
ditions should not deviate markedly from those found in vivo, especially the pH 
and ionic strength of the medium. 

The problems arising from the storage of biological materials, as pointed out 
earlier, have been largely ignored by most investigators. The information available 
in the literature deals with the effect of storage on the total element content (5). 
These studies have indicated that for some elements temperatures below about 
--20 °C are required in order to avoid losses. Other sources of loss are through 
precipitation, adsorption on the container surfaces and the evaporation of the 
sample constituents. Unfortunately, the addition of acid or other perservatives, which 
may reduce some effects, cannot be used for reasons already given above. It is 
possible that a factor that may determine the behaviour of an element during 
storage is its speciation in the sample. 

During storage there are changes in the sample that may have some consequence 
for the speciation of an element. First, the complex three-dimensional structure of most 
biological molecules may be destroyed. This may lead to the loss of enzymatic 
activity, and in some cases the associated element may be lost. Second, the natural 
proteolysis and/or autolysis reactions could result in the breakdown of the molecules, 
and as a consequence the results of the speciation experiments may indicate that the 
element is associated with only a fragment of the original molecule. Indeed, 

149 



Philip H. Ekow Gardiner 

it Could also be possible that enzymes or microorganisms present in the sample may 
also produce new species. The extent of the damage to the molecules depends on the 
storage conditions. There are molecules that could be stored for reasonable lengths 
of time without discernable changes; however, some molecules are so labile that the 
samples have to be used immediately after collection. 

The changes in the three-dimensional structures of the biological molecules with 
storage, and the length of time that a sample can be stored without adverse 
effects are points that have to be addressed in any future study on the effect of 
storage on the chemical speciation of elements. 

3 The Stabifity of Metal-containing Species 

Before discussing the factors that affect the stability of various metal-containing 
species it is essential to draw some comparision between non-living and living 
systems. This can best be done by a hypothetical example. 

Let us consider an aqueous system at a given pH, temperature and ionic 
strength which contains various ligands but for the sake of simplicity only one metal 
ion. It is possible given the concentrations of the ligands and metal, and a knowledge 
of the stability constants of possible species to" calculate the distribution of the 
various metal-containing species with a reasonable degree of accuracy. The level of 
accuracy will depend on the available relevant information about the system, the 
purity of the reagents and the effect of side-reactions. The amount of each species will 
depend on the concentration of each ligand and its relative chemical affinity for the 
metal. A measure of this affinity is given by the change in free energy of the 
reaction between a given ligand and the metal. It is therefore possible by using 
purely thermodynamic considerations to predict which species are most likely to 
occur when the system is at equilibrium. 

Now if a living organism that can metabolise some of the metal species formed is 
added to the system this equilibrium will be disturbed. The metal-containing 
species absorbed by the organism will be converted into new species. If  these new 
species are formed in process which involve an input of chemical energy, it 
is difficult to predict with any degree of certainty the distribution of the metal- 
containing species in the organism or indeed in any part of the system. It is 
possible, however, that at a certain point in time a steady state or pseudo- 
equilibrium may be attained. Nevertheless, it will be difficult to apply the usual 
thermodynamic approach, without making assumptions that may not necessarily 
be accurate, for the prediction of the distribution of chemical species in living 
systems. In such systems the experimental determination of the species is the more 
reliable method. \ 

One of the risks of using the experimental approach is that the species under 
investigation may be modified or may not remain stable during the various 
manipulation and analytical steps. The destruction of a fraction of a species could be 
tolerated if the investigator is only interested in what I shall call qualitative 
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speciation. With this approach, the aim is to determine what major species are 
present in the system and in some cases to establish the presence or absence of a 
particular species. In contrast, quantitative speciation is an approach whereby the 
relative distribution of the species present is determined. Here, more stringent 
control of extraneous contamination is required and the loss of the species is not 
acceptable. When using this approach the recovery of the element after each 
manipulation step should be given. 

It is appropriate at this point to discuss the various approaches used to describe 
the stability of complexes. In order to be able to detect a species, it must be stable 
in the time scale of the measurements. In other words, during the experiments other 
competing metals or ligands present in the medium as contaminants or reagents 
should not substitute the metal or ligand. Furthermore, the experimental conditions 
should be such that the species does not spontanously dissociate. Both conditions 
could be satisfied when the complex has the appropriate thermodynamic and kinetic 
properties. These properties are determined in part by the experimental condi- 
tions. 

It is therefore apparent that as an aid in choosing the appropriate techniques 
and methods used for speciation some knowledge of the stabilities and reactivities of 
the complexes under investigation should be available. Unfortunately, this infor- 
mation is not always available for various reasons. First, the ligands associated 
with the metals are not always known. Second, the binding sites of the metals are 
sometimes not fully characterised. Third, the complexity of some biological 
molecules introduce difficulties in the measurements of the above parameters. 
Although this lack of information is certainly a drawback, it is however, possible 
to make some intelligent guesses on the basis of the knowledge gained from the 
behaviour of simple metal complexes in solution. 

According to Taube 9~, complexes can be divided into two classes i.e. inert and 
labile depending on the rate at which the substitution reaction occurs. The author 
defines labile complexes: as those which take part in substitution reaction without 
any delay (~  1 min) on coming into contact with other reagents under ordinary 
conditions. These conditions are room temperature and concentration of the reagents 
of about 0.1 M. In contrast, inert complexes are slower to react. In this article, the 
author discusses the reasons for the differences in the kinetic behaviour of various 
inorganic complexes and also attempts to classify them in terms of their lability. 
Another detailed account on the same topic can be found in the book by Basolo and 
Pearson 10) 

On the basis of the information presented in both sources, it is possible to make 
some generalisations that are relevant for speciation. First, the rate of substitution is 
determined by the constituents and nature of the medium. This implies that 
competing ligands and metal ions have to be absent, and the reagents used 
should be examined for their reactivity towards the metal under investigation. 
Second, biological molecules with the ability to form chelates will be relatively 
inert complexes compared with their monodentate analogs. Third, metal complexes 
formed by the transition elements are more stable than similar non-transition 
compounds. 

Another important consideration is the thermodynamic stability of the complex. 
Consider the simplified representation of the interaction between a metal or metal- 

151 



Philip H. Ekow Gardiner 

containing complex M, and a biological molecule or an inorganic ligand L, to form the 
complex ML given by the following Eq.: 

M + L.-~ ML (1) 

A measure of the thermodynamic stability of ML is given by the equilibrium 
stability constant 

K = {ML} (2) 
{M} {L} 

where the brackets { } denote the activity of the individual species. Note that the 
arrows indicate that the system is at equilibrium, and the charges on the species 
have been omitted. The interaction between M and L could involve either covalent, 
ionic or other binding forces. 

A more common form of Eq. (2) is given by the equilibrium quotient 

K ' =  --[ML] (3) 
[MI [L] 

Eq. (3) can be converted into Eq. (2) by the following transformation 

K -  [MLITM _ {ML} _ K'  7ML (4) 
[M] ~'M[L] % {M} {L} 7M 7L 

where 3~ML, 7M and % are the activity coefficients of ML, M, and L, respectively. The 
stability constant K is related to the free energy changes in a reaction by the follow- 
ing Eq.: 

--AG o = RT In K (5) 

where AG o is the change in standard free energy, R is the gas constant and T the 
absolute temperature. The more negative the value of AG o , the more likely is the reac- 
tion to proceed to the right. The formation of ML is favoured when the value of K 
is high or in other words, the dissociation of ML into its component constituents, M 
and L, is not favoured. 

The factors that determine the value of the stability constant depend on the 
nature of the metal and ligand. Attempts at introducing a systematic approach in 
predicting the sfability of complexes have shown that certain ligand atoms prefer to 
bind particular metal ions. The various concepts for the rationalisation" of this 
preference have been developed by Sidgwick 11), Ahrland et al. 12), and more 
recently Pearson 13, x,). Although these concepts contain some unresolved contra- 
dictions, they are nonetheless useful in giving an idea of the type of complex 
expected and the possible sequence of the stability. 

In general, the transition metal ions form complexes of higher thermodynamic 
stability compared to the alkali and alkaline earth metals. This is borne out by 
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comparing the roles of the elements Ca, Mg, K and Na with those of Cu and Fe in 
biological systems. The former group of elements are mobile or semimobile and one of  
their main functions is as charge carriers. In contrast, the latter group of elements 
are tightly bound. Although, the interaction between the alkali metals and most 
ligands are predominantly ionic in nature, it will be an oversimplification to 
suppose that this is the overriding factor that influence their stability. The archi- 
tecture of the complex is also important. The implication of the above discussion for 
speciation is that due to their thermodynamic and kinetic stability, transition metal 
complexes could be fractionated by a wide variety of techniques. This classification 
is not restrictive and other stable non-transition metal complexes may also be 
similarly separated. 

A useful concept for the classification of metal-containing proteins has been 
suggested by Vallee is). The proteins are divided into two groups: metalloproteins 
and metal-protein complexes, on the basis of their stability during the isolation 
procedures. Metalloproteins retain their metal constituent during fractionation and 
there is a stoichiometric relationship between the metal and protein. On the other hand, 
the metal is loosely bound and easily lost during dialysis in metal-proteins. Examples 
of both types of proteins can be found in an article by Vallee and Coleman 16) 

In biological systems metals and metalloids not only interact with high molecular 
mass constituents, for example proteins and DNA, but also with a host of low 
molecular mass ligands, amino acids, peptides, inorganic ligands and others. The 
above discussion also apply to these species. A fraction of some elements are 
unbound and these could be treated as hydrated free ions. 

Although, some species may tolerate a wide range of  experimental conditions, 
however, extreme conditions could cause their destruction. Conditions that affect the 
speciation of  a metal are discussed below. 

3.1 Experimental Conditions that Affect the Metal-ligand Interactions 

All constituents present in a system interact with each other to a certain extent. 
The nature and extent of the interaction is determined in part by the nature of the 
species involved and the properties of the medium in which the experiments occur. 
Some of these properties include the pH, ionic strength, ionic composition, tempera- 
ture and dielectric constant. In addition, some species are very unstable in the 
presence of ultraviolet light and oxygen. 

3.1.1 The Effect of Changes in Dielectric Constant 

For species that are involved in electrostatic interaction a change in the dielectric 
constant of the medium will alter the extent of the interaction. The force of  
interaction between the charged species is inversely proportional to the dielectric con- 
stant, assuming that other factors are kept constant. Therefore on substituting a 
medium of high dielectric constant, for example water, for one of  a lower value, most 
organic solvents, the forces of attraction between the species will increase. As a result 
there is a greater tendency for association and formation of ion-pairs. 

Changes in the dielectric constant could result in the aggregation of large molecules 
and these could be precipitated out of the solution. 
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3.1.2 The Effect of Ionic Strength 

The activity coefficient of a species is related to the ionic strength by the Debye- 
Htickel Eq. 

log 7 - --A~Z2IX/Z (6) 
1 + ByaI 1/a 

where I is the ionic strength of the solution, Z is the charge on the species, a is the 
distance of closest approach and A~ and B r are constants which involve numerical 
factors, temperature and dielectric constant. As can be seen from Eq. 6, variation in 
activity coefficient occurs with changes in ionic strength. As a consequence, the 
stability constant of the metal complexes would change (see Eq. 4). 

The effect of increasing the ionic strength is that the interionic distances are 
reduced and the interactions between charged species in the medium are increased. 
This could result in the precipitation of some species. 

3.1.3 The Effect of pH and Temperature 

Extreme changes in pH and temperature result in the denaturation of proteins and as a 
consequence some enzymes may be inactivated. A review by Dawes 17~ covers this 
topic. 

An example of the effect of these two factors on protein denaturation is given 
in the paper by Levy and Benaglia 18) 

As the concentration, or more accurately the activity, of the hydrogen ions 
increases, they can compete effectively with metals for the ligand binding sites. 
On the other hand, ligands may be displaced from the metal when the activity of the 
hydroxyl ions increases. 

3.1.4 The Effect of UV Light and Oxygen 

Some reactions are catalysed or induced by ultraviolet light and oxygen. The effect 
of this is twofold: (i) some species will spontaneously dissociate and (ii) new 
species may be formed. It is therefore clear that wrong results could be obtained. 

In order to reduce this effect, the samples should be protected from sunlight by 
wrapping the sample bottles in appropriate material. When dealing with oxygen 
sensitive compounds, the reactions should be performed under nitrogen or other 
inert gas atmosphere. 

4 Fractionation Techniques 

Ideally, in any speciation experiments the goal should be to detect the species which 
contain the element under study and to fully characterise them. However, most 
investigators stop short of fulfilling this latter requirement for various reasons. 
First, a wide range of techniques are required in order to fully characterise most 
species and the task becomes more difficult when dealing with complex molecules. 
Second, the amount of isolated material is in most cases limited, in the microgram 
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range or less. Third, it is difficult to achieve the degree of purity which is required 
in order to unambiguously identify a species. Fourth, the application of some of the 
techniques is tedious and time-consuming. Finally, the metal-ligand interaction is 
more likely to be disrupted as the number of analytical steps increases. 

In spite of these limitations it is possible to obtain valuable data provided specific 
questions are posed. For example, it has been suggested that the level of methyl- 
mercury in a sample is a good indicator of the level of mercury toxicity 19) 
Therefore it will be most useful to detect and quantify this species rather than to use the 
available resources to detect a wide range of mercury species, whose biological 
behaviour are yet to be established. It is essential to clearly define the purpose and 
use to which the information will be put before any speciation experiments are 
performed. This helps not only in the choice of the appropriate techniques and 
methods, but also helps to focus attention on the parameters that are useful for the 
interpretation of the results. 

In order to minimise the number of analytical steps, and as a result reduce the 
probability of disrupting the metal-ligand interaction and/or the introduction of 
contamination into the sample, it would be advantageous to be able to detect and 
determine the various species in situ. However, techniques like anodic stripping 
voltammetry (ASV), fluorescence, electron paramagnetic resonance spectrometry 
(EPR), ion-selective electrode potentiometry and hydrogen-ion potentiometry that 
could be used to obtain the necessary information suffer from various drawbacks 
when applied to biological problems. First, the techniques do not, in some cases, 
have the required sensitivity. Second, in cases where sensitivity is adequate the above 
techniques still cannot be successfully applied because of interferences caused by 
matrix components. Because of these limitations one or more fractionation steps 
are required in order to separate the various species before the detection stage. 

Among the fractionation techniques that have been used to study the speciafion of 
trace element containing species include liquid chromatography, gas chromato- 
graphy, ultrafiltration, dialysis, protein precipitation, electrophoresis and others. In 
the following sections the application of the above techniques will be discussed. 

4.1 Liquid Chromatography 

Over the last few years, developments in instrumentation and column technology 
have made liquid chromatography a versatile technique that can be used for the 
fractionation of a wide range of biological molecules. These developments have led to 
reduction in separation times, improvement in column efficiency and reduction in 
sample requirements. However, the chances of introducing trace metal contamination 
into the sample have increased because of the use of more metal components in the 
equipments. Furthermore, it has been suggested that labile metaMigand species could 
dissociate on coming into contact with the metal components 2o~. Some of the problems 
associated with the use of liquid chromatography for speciation have been discussed 
by Gardiner and DelveS 21~. 

Separation can now be achieved by using any one and/or a combination of the 
various modes available. These modes include size exclusion, normal phase, reversed- 
phase, paired-ion reversed-phase and ion-exchange. The principles, theories and the 
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instrumentation of the above techniques can be found in various books 22-25) and 
articles 26-28). Although liquid chromatography in all its modes of separation has 
been applied to the fractionation of a range of biological molecules, few examples 
exist of its use in the area of chemical speciation. Therefore in the discussions 
below some attention will be given to examples that can be applied after slight 
modification to the study of  various metal-containing species in biological materials. 
Readers seeking articles on the application of  chromatography for the fractionation 
of metal complexes are refered to the articles by Schwedt 29), Nickless 3o), Krull 31), 
Veering and Willeford 32), and Cassidy 15~) 

4.1.1 Size Exclusion Chromatography 

Separation by size exclusion chromatography is achieved by exploiting the differences 
in the molecular size. This mode of separation offers a number of advantages when 
applied to the speciation of metal-containing species in biological materials. First, 
the pH and ionic strength of the eluant can be chosen to correspond with that found in 
the sample. This is especially useful when fractionating species with weakly bound 
metal constituents. Second, interference effects caused by the non-ideal behaviour of 
column packing material are minimum. These effects can adversely affect the 
resolution of the method and could lead to the disruption of the metal-ligand 
association. Third, most samples can be directly applied to the columns with the 
minimum of sample pretreatment. Finally, the operating conditions are compatible 
with those of various element-selective detectors. Therefore, it is possible to carry 
out the fractionation and detection steps simultaneously. The above reasons make size 
exclusion chromatography an attractive technique to apply in the first instance when 
studying an unknown sample. 

Barth 33) has examined the various aspects of size exclusion chromatography (SEC) 
relevant for biological samples and these include 
(i) a list of commercially available column packing materials, 
(ii) column calibration techniques, and 
(iii) the various non-size exclusion effects 
that could interfere with the resolution of the technique. 

Size exclusion chromatography also known as gel filtration has been extensively 
used as a part of the isolation protocol of various biological molecules. This mode of  
application will not be considered, instead this article will concentrate on examples 
that use SEC as the only fractionation technique in combination with detection me- 
thods that help to give an indication of the type of molecules associated with the 

metal. 
One of  the first attempts at using SEC to study the distribution of  trace metals 

was by Fritze and Robertson 34). They used gel filtration, ultraviolet detection and 
instrumental neutron activation to study the distribution of Cu, Fe, Zn, A1 and Mn 
in serum. A subsequent paper 35) from the same laboratory dealing this time with 
only copper highlighted the contamination problem that could occur on the column, 
and how this could lead to errors in the identification of  the metal complexes. Two 
important observations made by the authors are noteworthy, 
(i) the shape of the metal distribution after the fractionation on the column is 
almost Gaussian shaped, 
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(ii) tracer experiments could be used to help distinguish between biosynthesised 
metal-containing proteins from those formed by in-vitro contamination of the 
sample. 

Subsequent work by Gardiner et al. 36) showed that in a relatively complex mixture 
like human serum, the association between a metal and protein or ligand could 
be said to have been established when their Gaussian distribution coincide. 
This is more likely to be true if the elution volumes of the constituents are in the 
fractionation range rather than in the excluded volume. Examples of the usefulness 
of immunological techniques as an aid in identification of proteins are given. Necessary 
clean-up procedures are also suggested. 

An interesting application of speciation is in the study of changes in the distribution 
of certain metals after administration of drugs. Falchuk 37) used gel filtration 
combined with flame atomic absorption spectrometry to study effects of the 
administration of ACTH on the zinc distribution in serum. Kamel et al. 38) 
developed methods to follow the distribution of gold. 

Human serum is relatively more characterised than other biological samples 
and as a result some information on various metal binding proteins exists in 
various reference books. However, in samples for which such information is not 
available most investigators have resorted to calibrating the column with proteins 
or molecules of known molecular masses. Sample types to which this approach has 
been applied include serum, milk, amniotic fluid, urine and tissue homogenates. 
Some of  the applications of SEC are summarised in Table 1. 

Because of the complex nature of  most biological samples, a single fractionation 
technique may not be adequate for the separation of the wide range of molecules 
present. Better resolution of some molecules is obtained when properties other 
than differences in size are exploited. These include differences in ionic characteristics, 
affinity for other molecules and hydrophobicity. In separations that involve any one 
or more of these properties, the sample constituents interact with the column 
material and are then eluted with a suitable eluant. As a consequence of this 
interaction, and the use ofeluants, whose properties may not closely resemble those of 
the medium found in vivo, the metal may dissociate from the ligand. In addition, 
as the complexity of the sample increases it is difficult to predict the behaviour of the 
various constituents. Undesirable effects leading to irreversible interaction between 
some molecules in the sample and the column packing material, degradation and 
decomposition of some constituents may result. Furthermore, it may be difficult to 
rid the column of certain trace metal contamination. 

Some of the above mentioned problems can be reduced by applying pretreated 
samples to the column. The samples may be partially digested or passed through a 
precolumn sl). It is therefore essential to provide information showing that the 
metal-ligand interaction is not disrupted during the pre-separation steps and no 
change in the state of the metal has occured. 

4.1.2 Ion-exchange Chromatography (IEC) 

Species with different ionic characteristics interact to varying degrees with a 
suitable column packing material under given experimental conditions. This difference 
in behaviour forms the basis of separation by IEC. 
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The experimental parameters that could be manipulated in order to achieve a 
separation include the pH, temperature and ionic strength of the mobile phase. 
As already discussed these factors can affect the metaMigand interaction. Another 
complicating factor is the use of a charged surface for the separation. It is therefore 
to be expected that labile metal-containing species may not remain intact on 
applying this technique. In fact, one of the methods of measuring the proportion of 
labile to inert species in a sample uses IEC. The sample is passed through 
a column that will bind the free ions and labile species, and the compounds that do 
not interact with column packing material are regarded as kinetically stable. 

Various column packing materials and the experimental conditions under which 
they can be properly used have been summarised by Rabet 52) 

Although IEC has been used to separate large molecules most application have 
been in the fractionation of low molecular mass species. Some of the applications to 
the study of the speciation of trace elements in biological materials and the 
necessary pretreatment steps are summarised in Table 2. 

4.1.3 Reversed Phase Chromatography (RP) 

Separation by RP is achieved by exploiting the differences in the hydrophobic 
characteristics of the molecules. Recent developments in column packing materials 
have resulted in the increased application of RP for the fractionation of biological 
molecules. A book by Krstulovi6 and Brown 23), and a number of articles 65 -68) have 
dealt with various aspects of this technique. 

Applications that could be of relevance to species identification in biological 
materials can be found in various reviews 31,69,701 

4.2 Gas Chromatography (GC) 

Although most biological materials that are not already in the liquid form can be 
readily homogenised and converted into a form which is suitable for use in liquid 
chromatography, however, better resolution of some constituents are obtained when 
they are first extracted and then injected into a gas chromatograph. In fact in cases, 
where the species are volatile at low temperatures sample pretreatment may not be 
necessary. The vapour phase that is in equilibrium with the sample in a closed 
system could be directly injected into a gas chromatograph using the techniques 
of headspace analysis 71). Another possibility of using GC for speciation in solid 
samples has been suggested by B~ichmann 72). Furthermore, GC is well suited for the 
study of speciation in breath and expired air, an area of research that may be of interest 
in the future. 

Species that are fractionated by GC have to fulfil some requirements. First, they 
have to be volatile or readily converted into volatile forms. Second, the species 
have to be thermally stable at the operating temperatures of GC columns. Third, 
degradation of the compounds during the separation step should be negligible. 

The above requirements limit the number of species that can be fractionated by 
this technique. However, hydride forming elements and those that can be converted 
into volatile alkyl derivatives can be used. Lead 73), tin74), arsenic 75), mer- 
cury 76,77), selenium 78), antimony SS), germanium 88), and thallium species can be 
determined using the above approach. 
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An advantage of using GC is that it can be easily coupled with mass spectro- 
metry, a technique that can be used to elucidate the structure of the species. 

The application of GC for the separation of metal complexes has been reviewed 
by various authors 30,1o5~. Some of the methods that have been applied to 
biological materials are summarised in Table 3. 

4.3 Eleetrophoresis and Related Techniques 

Electrophoresis is one of many electromigrational separation techniques 91) which 
include isotachophoresis, immunoelectrophoresis and isoelectric focussing that have 
been used to separate various species on the basis of their different mobility in an 
electric field. These techniques can be used not only to achieve separations but also 
it is possible to identify the ligand bound to the metal. This can be done by 
comparing the isoelectric points, immunological behaviours, extent of  mobilities or 
step heights of the sample constituents with those of x~ ell-characterised standards. A 
difficulty, however, is in the determination of the metal constituent itself. Except 
in the case of radioisotopes, the activities of which can be easily measured, non- 
radioactive elements can be detected only after further separation steps. 

Because of the use of ,Jarious electrolyte systems, pH gradients, and not least an 
electric field, some complexes would not survive the separation. It is therefore 
necessary that the species to be separated are both thermodynamically and kineti- 
cally stable. Recently, Bo~ek and Foret 92) have reviewed the application of iso- 
tachophoresis to the separation of inorganic species. This technique appears to 
be well-suited for the study of the distribution of metabolites of metal-containing 
drugs in body fluids. A survey of the application of electrophoretic techniques to 
biological materials can be found in the book edited by Dey193). 

4.4 Ultrafiltration and Dialysis 

Ultrafiltration and dialysis are separation techniques that have been extensively used 
for the removal of low molecular mass constituents from biological fluids. Separation 
is achieved by forcing the molecules through filters or membranes with the appro- 
priate pore sizes. The necessary force is generated either by a pressure gradient, 
ultrafiltration, or concentration gradient, dialysis. Kwong 94) in a recent review of the 
measurement of free drug levels in body fluids, has discussed both techniques in 
detail. Most of the comments regarding the application of both techniques are of 
relevance for the speciation of metal-containing species. 

Although the resolution of the constituents achieved by ultrafiltration and dialysis 
are lower than those of either liquid chromatography or electrophoresis, they could 
be used to obtain rapid separations in cases where it is known that there are two 
major fractions with widely different molecular mass. 

Since the quality of the separation is determined by the properties of the filter used, 
it is essential that the investigator should understand the causes of their non-ideal 
behaviour and how these can be minimised. The non-ideal behaviour is due to 
nonspecific adsorption of the constituents to be separated on the filter, Donnan 
equilibria, leakage of high molecular mass constituents and hindered passage of low 
molecular mass species through the filter. Some of these effects and how they influence 
the speciation results have been described by Gardiner and Delves 21). 
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5 Detection of Species 

As already stated, complete speciation involves the identification, determination and 
characterisation of both metals and tigand constituents of the species. Although 
metals and ligands are determined by applying two different types of detector systems, 
it is essential that the results should clearly show the relationship between the 
metal(s) and ligand(s) that directly interact. The presence of a metal and a ligand 
in a fraction is not sufficient evidence for the existence of direct interaction. 
Ideally, the detector should respond specifically to the presence of the whole species. 
However, very few species can be detected in this manner. 

The detection of metals and metalloids no longer present major analytical 
problems. The instrumental techniques are both sensitive and specific for most 
elements. In contrast, the usual techniques for the detection of biological molecules 
respond to functional groups and consequently, they are relatively non-specific. 
However, it is possible to apply more specific methods when some information is 
available about the likely identity of the molecule. 

Both types of detector systems can be used in two modes of applications, i.e., 
on-line and off-line. In the on-line mode the fractionation and detection systems 
are directly coupled. It is possible to use more than one detector either in series or in 
parallel. Examples of this mode of detection will be given in the section dealing 
with combined techniques. The off-line mode involves the collection of the fractions 
with subsequent determination of the constituents. The advantage of this approach is 
that further sample pretreatment procedures could be applied where necessary 
before the constituents are detected. In addition, quantitative estimates of the 
recoveries can be made. 

The techniques that can be used for the determination, identification and 
characterisation of species in biological materials are discussed below. 

5.1 Determination of Metals and Metalloids 

The concentration levels of most trace metals and metalloids lie below 1000 ~tg 1 -t .  
Therefore, the classical methods of analysis do not have the required sensitivity. 
Among the instrumental techniques that have been extensively used for the analysis of 
biological materials include, atomic absorption spectrometry, plasma emission 
spectrometry, anodic stripping voltammetry and neutron activation analysis. 

5.1.1 Atomic Absorption Spectrometry 

Both flame and graphite furnace atomic absorption spectrometry are two of the 
commonest techniques used for the determination of metals and metalloids. 
Various authors 95-98) have discussed the application of both to the analysis of 
trace elements in biological materials. 

Flame atomic absorption spectrometry (FAAS) can be used to detect most 
elements present at levels greater than about 100 ~tg 1-1. For more sensitive 
determinations graphite furnace atomic absorption spectrometry (GFAAS) is the 
technique of choice. In addition, if the volume of the fraction is limited GFAAS 
is ideally suited for the determination because only a few microlltres (5-20 I~1) of sample 
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is usually required for an analysis. This is in contrast to FAAS for which a 
minimum of about 100 lal is desirable. 

Determinations by both techniques can be subject to chemical and/or physical 
interference effects caused by the sample matrix. However, after fractionation of the 
sample the species are usually in a less complex matrix, a buffer or electrolyte 
solution. Consequently, matrix interferences effects are minimised. On the other hand, 
the species may be diluted in the process and this could be detrimental for the 
determination of species present at very low concentrations. At the present state of the 
art GFAAS can be used for the determination of analytes at the 1 lag 1-1 level. 
However, at this level contamination in the reagents and equipment limit the number 
of species that can be detected with confidence. 

In some cases, it is essential to use a sensitive technique like GFAAS in 
order to measure the level of contamination in the reagents used. This is important 
because the presence of extraneous contamination may lead to the formation of 
artifacts or the amount of element associated with particular species (those that can 
incorporate the analyte in-vitro) may be overestimated. 

The application of atomic spectroscopic instruments as element-specific detectors 
in chromatography has been reviewed by van Loon 99) More recently, Krull 31) has 
extensively reviewed their use in high pressure liquid chromatography (HPLC). 
Atomic spectrometry has found wide acceptance in the field of liquid chromato- 
graphy because, in most cases, the fractions can be directly analysed after elution 
from the column. However, it is possible to use the technique for the analysis of 
solid samples without first dissolving the matrix. This is particularly useful after 
electrophoresis, where the fractions are fixed either in a gel or on paper. Kamel 
et al. 38) have shown that it is possible to cut the appropriate sections and insert 
them into the carbon furnace for analysis. The disadvantage of this approach is that 
the precision is usually poorer (about 10~) and it is difficult to calibrate the 
instrument. Nevertheless, this approach is very useful if it is used for qualitative 
speciation. 

Hydride forming elements, Se, As, Hg, have been determined by transfering 
the hydride evolved after chemical pretreatment of the sample into a flame or 
onto a carbon furnace. Several authors have reviewed the application of both technique 
to the analysis and speciation 75,aa~ of Se, As, Hg, and Pb. Attempts at using 
hydride formation as a way of achieving speciation without prior fractionation of the 
species have not been very successful, because of the difference in behaviour 
between the organic and inorganic forms of these elements. Consequently, for the 
present, attempts to differentiate the various oxidation states and species of  these 
elements require a chromatographic step or other form of pretreatment before 
detection. 

Recently, Sakai et al. lo0) have combined flame Zeeman atomic absorption spectro- 
metry (FZAAS) with selective vapourisation of the species from a sample, placed in a 
crucible which is slowly heated, to investigate the speciation of arsenic compounds in 
oyster tissue. This method could prove useful if the top temperature reached by the 
system is high enough to allow the vapourisation of a wider variety of species that 
may exist in biological samples. Presently, the highest temperature attainable is 
400 °C. 

t64 



Species Identification for Trace Inorganic Elements in Biological Materials 

5.1.2 Plasma Emission Spectrometry 

Among the plasma sources that have been used for analytical measurements 
include the inductively coupled argon plasma (ICP), direct current argon plasma 
(DCP) and microwave induced helium plasma (MIP). The instrumentation and 
performance of the more popular ICP source have been discussed by Barnes 101) 
More recently, Thompson and Walsh 131) have published a book dealing with the 
practical aspects of ICP. 

The advantages of using plasma emission sources include the ability to perform 
multi-element analysis, a calibration linear dynamic range of more than three orders 
of magnitude and for some elements the limits of detection are comparable 
to those found by GFAAS. The ability to perform multi-element analysis is 
essential when the purpose of the experiments is to study element interaction effects. 

Some authors lo2.103) have found that the sensitivity of the determination is 
influenced by the oxidation state of the element and the molecular form. This should 
be borne in mind when quantitative speciation is contemplated. 

Besides liquid samples, gases and solids lO4) can be analysed after making the 
appropriate modifications to the sample introduction system. The application of 
plasma sources as detectors for gas chromatography of metal complexes have been 
reviewed by Uden lo5). Literature dealing with the analysis of gas and liquid 
chromatographic effluents have been surveyed by Carnahan et al. 1o6) 

5.1.3 Stripping Voltammetry 

Stripping voltammetry is an electrochemical technique which can be used to detect 
electroactive species. This process occurs in two steps. The species are either 
reduced or oxidised, depending on the nature of the complex, onto a suitable 
electrode at a given fixed potential. This is followed by stripping out the constituents 
on the electrode by applying a scanning voltage. The characteristic current 
generated on the electrolysis of each species appear as peaks in the voltammogram. 
If  the oxidation or reduction potentials of the species are sufficiently separated, 
each peak can be related to a specific complex. 

In a simple solution containing a background electrolyte, a metal ion and a 
ligand, stripping voltammetry (SV) can provide information on the stability 
constants and kinetic labilities of the complexes formed. Furthermore the concen- 
tration of the free metal ion and ligand could be determined; it can also be used to 
distinguish between different oxidation states of the metal ion. However, in the 
presence of a complex matrix some of this information is difficult to obtain. The 
adsorption of protein or other molecules on the surface of the electrodes could 
hinder the electrochemical process and thus interfere with the determinations. 
Therefore SV can only be applied to complex biological matrices after sample 
digestion or some other appropriate treatment. Nevertheless, if the species can 
be separated from the matrix intact, the successful application of SV could provide 
the type of information that could lead not only to the identification and characte- 
risation of the species but also provide the basis for predicting its biochemical 
behaviour. 

165 



Philip H. Ekow Gardiner 

The principles, instrumentation and applications of stripping analysis can be 
found in a number of publications 107-110). Cammann ~la) has recently reviewed the 
application of electrochemical techniques for the speeiation of anions. 

5.1.4 Neutron Activation Analysis (NAA) 

Unstable radionuclei result on subjecting the nuclei of some elements to neutron 
bombardment. During the decay process, in which the radionuclei return to more 
stable forms, characteristic radiation is emitted. The energy of  the radiation is 
characteristic of the element, and its intensity forms the basis for quantitative 
elemental analysis. The advantages of NAA for trace analysis include low detection 
limits, good sensitivity, multi-element capability and relative freedom from matrix 
effects. However, for successful application of this technique skilled personel are 
required and because of the low sample throughput the amount of work involved in 
the analysis of column fractions, for example, is prohibitively high. In addition, it may 
take up to several weeks before the results are available. Further, only few 
laboratories have easy access to a neutron source. 

Recently, Heydorn ~ has dealt extensively with the various aspects of the 
application of NAA to the analysis of biological materials. The usefulness of 
neutron activation analysis for the determination of protein-bound elements in 
human serum has been demonstrated by Woittiez 41). 

5.2 Identification of Macromolecular Ligands and Anions 

Although metal(s) and metalloid(s) may form a part of the active centre in a 
species, the biochemical behaviour of the species is determined in part by the 
mutual effect of the ligand on the metal and vice-versa. As has already been demon- 
strated in the foregoing discussion, the determination of the metal constituent does 
not present major difficulties. In contrast, the identification of  the ligands is not 
that straightforward. It is perhaps reasonable to treat the ligand as a single 
entity rather than as multi-atom constituent. This approach is advantageous 
because elemental analysis of a complex molecule, for example a protein, will 
wovide the percentage of carbon, nitrogen, sulphur, oxygen and/or any other 
elements present, however, it may still be difficult to identify the molecule. In 
addition, it is difficult to obtain the species in a high degree of purity therefore 
the values for the above mentioned elements may be in error. 

Most conventional techniques for the determination of biological molecules or 
other species with similar properties use their ability to absorb ultraviolet or 
visible light, their fluorescence after excitation with light of the appropriate 
wavelength, or their electrochemical behaviour. It possible to enhance the detecta- 
bility of  some species by making them react with UV-visible absorbing or 
fluorescent compounds. Applied to complex matrices, these detection methods are at 
best only selective, because a wide variety of chromophores will give a response. 

The application of the above techniques to the detection of biological molecules 
can be found in various reviews l~z-ltT~. In order to identify the molecule, additional 
information is required. This type of information may be the isoelectric point, an 
estimate of the molecular mass, or the chemical behaviour. It could then be possible 
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to narrow the number of candidates. At this point, if the molecule is of biological 
origin, an immunological technique 118-120) could be applied. 

Small ligands of both inorganic or organic origin can be determined by ion 
chromatography coupled with a suitable detection system 121). Species like AsO]- ,  
AsO]- ,  CrO]-  can be detected by this technique. The principles and application of  
this technique can be found in books by Fritz et al. 122) and Smith and Chang 123), 
and a review article by Small lS8) 

5.3 Characterisation of the Species 

It may be difficult to completely identify a species, but nevertheless some information 
that is of importance to the rationalisation of its biochemical behaviour could be 
gained. For example, the oxidation state of the metal, environment of  the metal, 
stability and reactivity of the species. The techniques that can be used to obtain this 
type of information are summarised in Table 4. 

Table 4. Techniques that could be used for the characterisation of species 

Technique Information that could be acquired by the technique Ref. 

M6ssbauer spectroscopy Oxidation and spin states of the metal in the prosthetic 124.12~ 
group. Electronic structure and spatial arrangement of 
the active centre 
Structural and kinetic information on the species 126) 
Information on the structure of the species 127) 
Binding of substrates, association reactions between 12a~ 
species, denaturation of proteins and other macromolecules 
Secondary structure of proteins, interaction between 129~ 
ligands and proteins, binding of metals at active sites in 
enzymes 
The structure, equilibria and kinetics of the species 130) 
Conformational changes and structural analysis of the 129, la2) 
species 
The structure around the metal ion 133) 

Electron spin resonance 
X-ray spectrometric analysis 
Fluorescence spectroscopy 

Circular dichroism 

NMR 
Raman and IR 

Electronic spectroscopy 

6 Combined Techniques 

Over the last decade developments in instrument automation and data processing 
have led to the design of more efficient analytical instruments. In a bid to further 
maximise the amount of information obtained from analytical processing of a sample, 
various combinations of  two or more compatible analytical instruments are being 
examined. The advantages of using such systems are: the more efficient use of the 
sample material, time-saving and minimum sample manipulation. Although some of  
these systems could provide valuable information, they may be too expensive for 
the small research laboratory. 

A summary of  various combined techniques and the type of  information that they 
could provide in relation to speciation are summarised in Table 5. 
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Table 5. Coupled techniques and the information that they provide in relation to speciation 

Examples of Type of Information Ref. 
Coupled Techniques 

GC -- AAS Metal and metalloid content in separated fractions, 74) 
-- ICP Identification of the species is possible if well- los, 1~) 

characterised compounds with similar retention 
LC -- AFS times as the constituents in the sample are available. 99) 

- -  ASV tss) 
-- DCP ls6) 
-- FAAS 31,11., ~m) 
-- GFAAS 137) 
- -  ICP 11,, 1is) 

GC -- FTIR Identification and structural elucidation of the 138) 
-- FTIR-MS species. 139) 
-- IR-MS t4o) 
- -  MS 141,1,,2) 

LC -- IR t,~) 
-- FTIR 1.3) 
- -  M S  t~) 
-- MS-MS 145. l~) 

ICP - -  MS Determination of metal content and isotope dilution 1.7) 
analysis 

LC -- CD Structural information and identification, l,s) 
-- NMR 24) 
- -  ESR lls) 

IC -- AAS Determination and identification of anions, t49) 

7 Species Identification with the Aid of Computer Programs 

Although the emphasis in this article has been on the discussion of techniques and 
methods that can be used in the laboratory for the identification of species, 
increasing importance is being attached to computer simulation of trace element 
speciation. The reason for this increased interest could be attributed in part to 
the availability of  relevant experimental data which could be used in developing the 
required models. However, computer simulation comes into its own when the 
species are so unstable that separation techniques cannot  be applied and/or  the 
detection systems do not  have the required sensitivity. 

The approach used in developing mathematical models for chemical speciation 
involves using appropriate computer programs to identify the predominate species 
assuming that the system is at equilibrium. The data required include the concen- 
tration of  the metal ions and ligands, the stability constants of the probable 
complexes, and the pH, temperature and ionic strength of the medium. In its most 
primitive form the computer program will provide information only on 1 : 1 complexes 
between the metals and ligands. At a more sophisticated level polynuclear and 
mixed ligand complexes are considered. Further  the effect of  the presence of a 
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solid or gas phase in contact with the sample and how this affects the complex 
equilibria is also taken into account. 

There are currently at least five major programs availiable each incorporating an 
aspect of complex equilibria which is judged to be of importance by the authors. 
The reasoning behind the development of some of these programs and their application 
to biological systems can be found in articles by Perrin et al. 15°-152~ and 
Williams et al. 15a, ls4) 

Computer simulation has been used to predict the speciation of various trace 
elements during chelate therapy 15~) and in total parenteral nutrition 156) 

8 Future Trends 

A multidisciplinary approach is required in order to achieve total speciation. This 
approach is not only desirable but essential for the proper design of the experiments 
and interpretation of the results. Over the next few years, it is to be expected 
that more information relevant to speciation studies would become available. This 
would lead to a more informed choice of methods and techniques. In addition, on 
the basis of this knowledge, accurate computer simulation of the distribution of 
species in a wider variety of biological systems could be accomplished. 

9 List of Abbreviations 

AFS 
ASV 
CD 
DCP 
EPR 
ESR 
FAAS 
FTIR 
FZAAS 
GC 
GFAAS 
HPLC 
ICP 
IEC 
IR 
MIP 
MS 
NAA 
NMR 
RP 
SEC 

Atomic Fluorescence Spectrometry 
Anodic Stripping Voltammetry 
Circular Dichroism 
Direct Current Argon Plasma 
Electron Paramagnetic Resonance 
Electron Spin Resonance 
Flame Atomic Absorption Spectrometry 
Fourier Transform Infrared 
Flame Zeeman Atomic Absorption Spectrometry 
Gas Chromatography 
Graphite Furnace Atomic Absorption Spectrometry 
High Pressure Liquid Chromatography 
Inductively Coupled Argon Plasma 
Ion-Exchange Chromatography 
Infrared Spectrometry 
Microwave Induced Helium Plasma 
Mass Spectrometry 
Neutron Activation Analysis 
Nuclear Magnetic Resonance 
Reversed-Phase Chromatography 
Size Exclusion Chromatography. 
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