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Preface 

In 1988 the editor of this volume of Topics in Current Chemistry 
together with Sven J. Cyvin of Trondheim wrote a book devoted 
to the theory of benzenoid molecules [Gutman I, Cyvin SJ (1989) 
Introduction to the theory of benzenoid hydrocarbons, Springer, 
Berlin Heidelberg New York]. Due to the introductory nature of 
that book, a number of topics in which active research is currently 
taking place had either to be omitted or presented in a succinct 
and somewhat oversimplified manner. In order to compensate for 
this, the same authors edited an issue of Topics in Current 
Chemistry (Vol. 153) entitled "Advances in the theory of benzenoid 
hydrocarbons" in which a large number of active researchers 
reported on the most recent achievements in the field. The aim of 
present volume is also to complement the above-mentioned book. 
Here, however, emphasis is given to those directions of research 
in which Cyvin and Gutman (separately) gave their most numerous 
contributions. Their own works are, of course, outlined together 
and in connection with the related results obtained by many other 
contemporary scientists. 

Chapter 1 summarizes the first twenty years of Gutman's investi- 
gations of "topological" properties of benzenoid hydrocarbons. 
Chapter 2 is devoted to the classical, fifty-year-old problem of the 
structure-dependency of total n-electron energy. Chapters 3 and 4 
provide a complete survey of the efforts of Cyvin's group (as well 
as of several other research teams) on the enumeration and 
classification of benzenoid systems and benzenoid molecules. 

Kragujevac, January 1991 Ivan Gutman 
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Ivan Gutman 

The article reports investigations of the "topological" properties of benzenoid molecules 
which the author has performed in the last 20 years. Emphasis is given on recent developments 
and other scientists' contributions to these researches. Topics covered in recent books and 
reviews are avoided, The article outlines spectral properties, some aspects of the study of 
Kekul6 and Clar structures, the Wiener index as well as a number of graphs derived from 
benzenoid systems (inner dual, excised internal structure, Clar graph, Gutman tree, coral 
and its dual). 



1 Introduction 

Topological Properties of Benzenoid Systems 

1.1 Reminiscences 

As a young assistant at the "Ruder BogkoviS" Institute in Zagreb, Yugoslavia 
the present author discovered in the library a fascinating paper by Dewar and 
Longuet-Higgins [1], reporting the remarkable formula 

det A = ( -  1) n/2 K 2 . (1) 

This happened somewhere around the end of 1970 or in early 1971. Already then, 
and ever since, the author was deeply impressed by the beauty and power of the 
Dewar - Longuet-Higgins formula and a great part of his long-lasting interests 
and activities in the theory of benzenoid systems can be related to Eq. (1). 

Formula (1) has, at least, three noteworthy features. First, its left-hand side is 
the determinant of the adjacency matrix A, hence a genuine algebraic object. Its 
right-hand side has a purely combinatorial interpretation: K is the number of 
Kekul6 valence formulas (in the language of chemistry) or the number of perfect 
matchings (in the language of mathematics). Thus Eq. (1) connects two seemingly 
unrelated fields of mathematics - linear algebra and combinatorics. (Recall that 
in Eq. (1) n stands for the order of the matrix A i.e. the number of carbon atoms 
of the respective benzenoid molecule i.e. the number of vertices of the respective 
molecular graph.) Second, A is related with the Hamiltonian operator in the 
Hiickel tight-binding molecular orbital approach whereas K is a typical quantity 
appearing in valence-bond and resonance-theoretical considerations. Thus Eq. (1) 
connects two seemingly unrelated fields of quantum chemistry - molecular-orbital 
theory and resonance theory. The original intention of Dewar and Longuet-Higgins 
[1] seems just to be the revealing of this kind of interrelation between chemical 
theories. Third, Eq. (1) is not obeyed by all polycyclic conjugated hydrocarbons. 
Conjugated systems possessing rings whose sizes are different than six often fail 
to satisfy the Dewar - Longuet-Higgins formula. In other words, by means of 
Eq. (1) a special class of polycyclic conjugated hydrocarbons is shown to play a 
distinguished role in theoretical chemistry. These are the conjugated systems 
possessing exclusively condensed six-membered rings, traditionally referred to as 
benzenoid systems/benzenoid hydrocarbons. 

Meditating about the "message" contained in Eq. (1) one necessarily arrives at 
the following two questions. 
1. What is so peculiar in the structure (="topology") of benzenoid systems 

that they form an outstanding and well-separated class of polycyclic conjugated 
molecules? 

2. Are there, in addition to the Dewar - Longuet-Higgins formula, other 
far-reaching mathematical regularities obeyed by (and only by) benzenoids? 
Attempts to find answers to the above questions resulted in numerous (not 

always successful) studies of benzenoid systems. In 1974 the present author 
published an article [2] entitled "'Some Topological Studies of Benzenoid Systems" 
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in which he communicated some of his early findings and observations. This was 
later considered as Part 1 of the series "Topological Properties of Benzenoid 
Systems" which nowadays embraces some 80 papers (c.f. Sect. 6). The aim of this 
article is to give a survey of the main directions of these investigations and to 
comment on them from the point of view of the most recent achievements in the 
field. Fortuitously, this article is being written on the twentieth anniversary of 
the author's encounter with the Dewar - Longuet-Higgins formula, that is twenty 
years after he started his journey through the magic kingdom of benzenoid 
molecules. 

1.2 Some Terminological Remarks 

The terminology and notation employed in the present article follows as much 
as it is possible that of the book "'Introduction to the Theory of Benzenoid 
Hydrocarbons" [3]. There, a precise definition of a benzenoid hydrocarbon/benzen- 

10 

11 12 13 

Fig. 1. Some benzenoid systems with six hexagons 
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oid system/benzenoid graph can be found. In Fig. 1 are depicted 13 benzenoid 
systems with six hexagons (out of a total of  81 hexacyclic benzenoids). From the 
inspection of these examples it should be perfectly clear what benzenoid systems 
are and how they are constructed from congruent regular hexagons. 

The exclusion of nonplanar helicenic and hollow coronoid species from the 
class of  benzenoids was maybe not fully justified from a chemist's point of view, 
but there were good and convincing mathematical reasons for this; anyway we 
use the term "benzenoid" in the same sense as in the book [3]. On the other 
hand, we find that it serves no purpose to strictly distinguish between benzenoid 
hydrocarbons (chemical objects) and benzenoid systems (mathematical objects), 
since this distinction is always obvious from the context. We note in passing that 
what we call "benzenoid system" is the same as "hexagonal system" or "hexagonal 
animal" in the mathematical literature. 

Throughout many years the words "topology" and "topological property" were 
used by numerous theoretical chemists (also including the present author) with 
a meaning completely different to those in mathematics. This caused a considerable 
amount of  confusion. In most cases the chemists' "topology" is synonymous to 
"structure" when under "structure" we understand the connectedness of the atoms 
in the molecule, represented by classical structural formulas. A clear and satisfact- 
ory analysis of chemical and mathematical "topologies" as well as their mutual 
relations can be found in a recent treatise by Merrifield and Simmons [4]. 

1.3 Scope 

The present article is meant to review the author's investigations of the "topologi- 
cal" properties of  benzenoid systems. Not all such investigations could be outlined. 
First of all, the work on total n-electron energy and related matter is covered by 
another article in the same issue. Further, basic facts and notions from the theory 
of benzenoid molecules were presented in the book [3] and will be repeated here 
only to a very limited extent. The reader's attention is also called to the first 
volume [5] of"Advances in the Theory of Benzenoid Hydrocarbons" where additional 
studies of the "topological properties" of benzenoid molecules can be found; they 
are often complementary to the present article. 

The investigations outlined in this article are grouped into four sections: (a) 
questions concerned with the structure of benzenoid systems, (b) spectral 
properties and graph polynomials, (c) works related to Kekul6 and Clar structures 
and (d) topological indices. It will become clear, however, that all these researches 
are intimately interrelated and that there exist quite a few unexpected connections 
between them. 

2 Structural Features 

In spite of numerous efforts, we are still far from being able to offer any satisfactory 
answer to question 1 posed in Sect. 1.1. One obvious starting point in this direction 
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is to try to characterize those (classes of) graphs for which Eq. (1) holds. For 
instance, Eq. (1) applies to all acyclic graphs as welt as to graphs obtained by 
attaching acyclic branches to benzenoid graphs. Further, the sizes of the rings 
need not be 6, they can be any even integer not divisible by four (i.e. 10, 14, 18, 
•. .) .  Thus, the notion o fa  benzenoid system could be generalized, without violating 
the Dewar - Longuet-Higgins formula. Results of  this kind were first offered in 
[6] and somewhat more recently (without being aware of [6]) in the works of He 
and He [7, 8] and Sheng [9]. It  seems, however, that such generalizations are just 
a mathematical set-up and have little chemical relevance. Generalized benzenoid 
systems have hardly any chemical counterparts whereas normal benzenoid systems 
usually represent well-characterized molecular species [3]. 

A more profound structural property of  benzenoid systems is the follow- 
ing 

Theorem 1. Let C be a cycle of  a benzenoid system. The size of C is necessarily an 
even integer. If  the size of C is divisible by four, then in the interior of  C there is an 
odd number of vertices. Otherwise, in the interior of C there are either no vertices 
or their number is even. 

This result has long been known (e.g. see [6]), but its complete proof was offered 
quite recently [10]. One of its proper consequences is that all conjugated circuits 
in all benzenoid systems have sizes not divisible by four (see pp. 85-87 in [3]). 
Another consequence of Theorem 1 is 

Corollary 1.I. Catacondensed benzenoid systems do not possess cycles whose sizes 
are divisible by four. 

In other words, a cycle in a catacondensed benzenoid is of the size 6 or 10 or 
t4 or 1 8 . . .  This is because catacondensed systems (by definition [3]) possess no 
internal vertices. On the other hand, according to Theorem 1 the existence of a 
cycle whose size is divisible by four implies the existence of at least one internal 
vertex. 

Recall that in Fig. 1 catacondensed are the systems 1, 2, 3, 4, 5 and 6. 
Since a catacondensed system possesses no internal vertex its perimeter embraces 

all the vertices. Consequently, the perimeter of a catacondensed system is a 
Hamiltonian cycle. In other words, all catacondensed benzenoid systems are 
Hamiltonian. 

In pericondensed benzenoid systems a Hamiltonian cycle may, but need not 
exist. The problem of the existence of a Hamiltonian cycle is solved by the following 

result [11]. 
Let e be a set of  edges of a benzenoid system B, such that B* = B -- e is 

also a bezenoid system, Then the transformation B ~ B* is called an e- 

transformation. 

Theorem 2. A (pericondensed) benzenoid system B possesses a Hamiltonian cycle 
if and only if there exists an e-transformation, B ~ B*, such that B* is cataconden- 

sed. 
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The benzenoid system 14 is Hamiltonian because of the e-transformations: 

~ ~..__ ~ 6  1 

={1,3,s} 14 

Consequently, 14 has two distinct Hamiltonian cycles: 

It has been claimed [1 l] that the Hamiltonian cycle in a Hamiltonian benzenoid 
system in unique. The above example shows that this is not always the case. 

The pericondensed systems 7, 8, 9, 10, 11 and 13 from Fig. 1 are not Hamiltonian 
whereas 12 is. 

Finding the necessary and sufficient conditions for the existence of a Hamilto- 
nian path (= path which embraces all the vertices) of a benzenoid system seems 
to be a much more difficult task. Kirby [12, 13] calls benzenoid systems possessing 
a Hamiltonian path "traceable". Of course, Hamiltonian benzenoids are necessari- 
ly traceable, but the reverse is not true. There exist many traceable non- 
Hamittonian benzenoids, e.g. the systems 7, 8, 9, and 13 in Fig. 1. Two Hamiltonian 
paths of the system 9 are indicated in the diagrams below: 

In spite of recent efforts [12, 13], a complete characterization of traceable 
benzenoids has not yet been achieved. 
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2.1 Inner Dual, Excised Internal Structure, Branching Graph 

A large number of graphs has been associated with benzenoid systems. Here we 
mention three of them, neither of which characterizing the benzenoid system up 
to isomorphism. 

The vertices of the inner dual (ID) represent the hexagons of a benzenoid system. 
Vertices corresponding to adjacent hexagons are adjacent. For example, ID(1) is 
the inner dual of the systems 1, 2 or 3 (see Fig. 1) whereas ID(9) is the inner dual 
of the system ) 9: 

ID(1)=ID(2)= ID(3) IO(9) 

A remarkable property of the inner dual is summarized below. 

Theorem 3 [14, 15]. If ID is the inner dual of a benzenoid system B, then 

q0(ID, 6) = number of spanning trees of B.  

Here q~(G, x) stands for the characteristic polynomial of the graph G; the definition 
of q~(G, x) can be found in the subsequent section. 

For example, if G = ID(1) then q~(G, x) = x 6 - 5x 4 + 6x 2 - 1 and therefore 
both l, 2 and 3 (from Fig. 1) have 6 6 - -  5 " 6 * + 6 • 62 - 1 = 40391 spanning 
trees. Four spanning trees of the system 1 are depicted below; the fourth example 
is a Hamiltonian path. 

CCO333 

Cz3;z;z33 

The method for counting spanning trees, described in Theorem 3, was recently 
further elaborated by John and Sachs [16, 17]. 

The subgraph spanned by the internal vertices of a benzenoid system was named 
by Dias [1820]  the excised internal structure (EIS). The subgraph spanned by 
the three-valent vertices of a benzenoid system was named by Kirby [12, 13] the 
branching graph (BG). Below are depicted the excised internal structure and the 
branching graph of the system 11 from Fig. 1 : 

EIS(11) BG(ll) 
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The EIS-concept was much used for the enumeration and classification of 
benzenoid systems [18-21]. It has been demonstrated recently [22] that EIS 
contains information about the existence/nonexistence of Kekul6 structures in the 
respective benzenoid molecule. An application of EIS is found in Theorem 13. 

Several applications of the BG-concept were put forward by Kirby [12, 13]. It 
has been shown recently [23] that the number of  2-factors of  a benzenoid system 
equals the number of 1-factors (=perfect  matchings) of the branching graph. 
This latter result is of  considerable relevance in Clar's aromatic sextet theory. 

3 Spectral Properties 

If  a benzenoid hydrocarbon is represented by a molecular graph G in the usual 
manner [3, 21, 24] and if the vertices of G are labeled by 1, 2 . . . . .  n (in an arbitrary 
order), then the adjacency matrix A of the graph G is defined via its matrix 
elements as 

f 1 if the vertices r ands are adjacent 
Ars 

0 otherwise 

The eigenvalues of A will be denoted by x 1, xz . . . .  , x,. They form the spectrum of 
the graph G. 

The characteristic polynomial of G is just the characteristic polynomial of the 
adjacency matrix. It will be denoted by q)(G). Then 

¢(G) = o(G,x)  = det(xl  - A) (2) 

where I stands for the unit matrix of order n. According to a well-known result 
of linear algebra, 

~o(G, x) = I~I (x - x l ) .  (3) 
i = l  

The spectral theory of graphs is well elaborated, both in the case of general 
graphs [25] and graphs of interest in chemistry [24]. In this section we are concerned 
with the graph spectra which are specific for benzenoid systems. 

One such regularity has already been mentioned, namely the Dewar - 
Longuet-Higgins formula, Eq. (1). Bearing in mind Eqs. (2) and (3) as well as the 
pairing theorem 

x~ + x,,_l+ 1 = 0; i = 1 ,2 , . . . , n  

the Dewar - Longuet-Higgins formula can be rewritten as 

n/2 

I-[ xl = K .  (4t 
i = 1  
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The identity (4) assumes that n is even. If n is odd then (in a trivial manner) both 
the product of graph eigenvalues and K are equal to zero. 

As already discussed in detail, formulas (1) or (4) represent a very important 
(spectral) property of benzenoid systems. Although this result has been known 
since 1952, not much progress in the spectral theory of benzenoid systems has 
been made in the meantime. 

We first mention an interesting result by Heilbronner [26] relating the inverse 
of the adjacency matrix with the Pauling bond order: 

(A-1)~ = K{B - r -- s}/K{B}. (5) 

Here B is the respective benzenoid system and r and s are its two vertices. Formula 
(5) holds only if r and s are adjacent, a detail overlooked in [26] but eventually 
corrected [6]. Twenty years after the publication of the paper [26] formula (5) was 
rediscovered by Kiang and Chen [27], who also committed the same mistake as 
in [26]. 

A recent result on the spectra of benzenoid systems is outlined in the 
"Addendum". 

3.1 Eigenvalues 

The fact that certain numbers frequently occur among the eigenvalues of benzenoid 
systems was observed a long time ago. Hall [28] proposed an explaination of 
such regularities based on symmetry-relations. It should be noted, however, that 
such common eigenvalues are tound in both symmetric and non-symmetric 
benzenoids. 

It is well known [24, 25] that the eigenvalues of benzenoid systems belong to 
the interval ( - 3 ,  + 3) and are symmetric with respect to x = 0. Thus the only 
integer eigenvalues which may occur are - 2 ,  - 1 ,  0, + 1 and + 2. 

From the Dewar - Longuet-Higgins formula, it follows that a zero eigenvalue 
is contained in the spectrum of a benzenoid system if and only if K = 0. We 
examine this question in more detail in Sect. 4.1 where the conditions for the 
existence of Kekul6 structures are discussed. 

Eigenvalues + 1 and - 1  occur in very many benzenoid systems, often with 
considerably high multiplicities [29, 30]. This fact has attracted the attention of 
several authors. Dias [31] seems to be the first to have systematically examined 
this question. He conjectured that the divisibility of n by four implies the existence 
of + 1 eigenvalues. This conjecture was shown to be false [32], but it nevertheless 
stimulated a large amount of work on the elucidation of the structural requirements 
for the existence of + t eigenvatues [21, 32-34]. In spite of all progress achieved 
we still do not possess a complete structural characterization (in terms of necessary 
and sufficient conditions) for the existence of + 1 in the spectrum of a benzenoid 
system. 

Curiously enough, + 2  occurs in the spectrum of only a limited number of 
benzenoids. Ahnost nothing is known about structural factors stipulating this 
eigenvalue. 

10 
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3.2 Characteristic Polynomial 

Since benzenoid graphs are bipartite, their characteristic polynomials can be 
written in the form 

[n/2l 

cp(B,x)= ~, ( -1 )kb(B,k)x  n-2k 
k = O  

where b(B, k) > 0 for all values of k. 
Special methods for the calculation of the characteristic polynomials of 

benzenoid graphs have recently been designed by Sachs and John [16, 17]. Their 
method is especially efficient in the case of catacondensed systems. 

Denote by m(B, k) the number of k-matchings (= number of ways in which k 
mutually independent edges are selected in B); by definition, m(B, 0) = 1 and 
re(B, 1) = m = number of edges of B. 

The following relations are established between the numbers b(B, k) and re(B, k). 

Theorem 4 [35]. For any benzenoid system B and for any value of k, 0 < k _< [n/2], 

m(B, k) < b(B, k) _< m(B, k) 2 . 

Corollary 4.1. The coefficient b(B, k) is equal to zero if and only if re(B, k) is equal 
to zero. 

Theorem 5. I fk  = 0,1 or 2 then b(B, k) = m(B, k). Ifk = 3 then b(B, k) = m(B, k) 
+ 2 h where h is the number of hexagons of B. If n is even and k = n/2 then 
b(B, k) = m(B, k) 2 and m(B, k) = K = number of perfect matchings of B. 

The quantities Z and Z* defined via 

Z =  ~ m(G,k);  Z * =  ~ b(G,k) 
k = 0  k = 0  

are called the Hosoya index and the modified Hosoya index [36, 37], respectively, 
of the molecular graph G. From Theorems 4 and 5 we immediately see that in 
the case of benzenoid systems Z* is strictly greater than Z. In [38] the relation 
between the Z and Z* indices of benzenoid molecules was examined and a good 
linear correlation between log Z and log Z* established. 

Explicit combinatorial expressions are known for the first few coefficients of 
cp(B, x) [2, 21, 33, 39, 40]. We will skip these results because in the subsequent 
paragraph the spectral moments are discussed at due length. Using the Newton 
identities [24] it is easy to compute the coefficients of the characteristic polynomial 
from spectral moments and vice versa. 
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3.3 Spectral Moments 

The k-th spectral moment of a graph is defined as 

Mk = ~ (Xi) k • 
i=l 

Spectral moments of molecular graphs find various applications both in theoretical 
chemistry of conjugated molecules and in physical chemistry of solid state. In all 
such applications it is necessary to know their dependence on molecular structure. 
Several recent works are devoted to the solution of this problem, especially in the 
case of benzenoid systems [39, 41-45]. 

In addition to the long-known results for Mo, M2 and M 4  (i.e. b(B, 0), b(B, 1) 
and b(B, 2)) [2], Dias [39] and Hall [42] discovered the actual form of the dependence 
of M 6 o n  the structure of a benzenoid system. Dias [39] also reported a formula 
for b(B, 4), valid for catacondensed systems only. Formulas for Ms and Mto of 
arbitrary benzenoids and for M12 of catacondensed systems were obtained quite 
recently [45]. The first few of these expressions read: 

M o = n  

M z = 2m 

M 4 =  18m--  12n 

M 6 = 158m - 144n + 48 + 6b 

M 8 = 1 3 3 0 m -  1364n + 704 + 80B + 168C + 256F + 16h o + 8hl 

where n and m denote the numbers of vertices and edges, respectively, 
b = B + 2C + 3F is the number of bay regions, B, C and F count the (simple) 
bays, coves and fjords, respectively, whereas ho and hi count the hexagons with 
no and with one vertex of degree two, respectively. 

fjord 

ho= =~ ~ )  

The formulas for M10 and M 1 2  a r e  similar, but much more complicated [45]. 
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The spectral moments of benzenoid systems can always be represented in the 
form [45] 

Mk = 0~kn + ~k m + 7k + rk 

where ~k, [3k and ~/k are constants (depending solely on k) whereas rk is the k-th 
residual which is much smaller than ~kn + [3km + ~'k- In all the cases examined 
rk was found [45] to be divisible by k. It would be interesting to see whether this 
curious regularity is a generally valid result. 

4 Kekul~ and Clar Structures 

In the book [3] the role of both Kekul6 and Clar structures in various 
(contemporary) chemical theories as well as their relevance for practical chemistry 
were outlined in detail. A recent book [46] by Cyvin and the present author is 
devoted to the enumeration of Kekul6 structures of benzenoid molecules. In 
addition to this, the first volume of "Advances in the Theory of Benzenoid 
Hydrocarbons" contains several review articles [47-51] dealing with topics of 
relevance for our considerations. In order to avoid repetition and overlapping we 
will just briefly mention the work on the elaboration and application of the John 
- Sachs theorem for the enumeration of Kekul6 structures [52-55], the search 
for concealed non-Kekul6an benzenoid systems [2, 56-59], examination of fully 
benzenoid (=all-benzenoid) systems [60-62, 135] as well as the enumeration of 
Kekul6 structures in long and random benzenoid chains [63-65]. 

4.1 Kekul~an and Non-Kekul~an Benzenoid Molecules 

The early history of the search for non-Kekul6an benzenoid systems ( =  systems 
for which no Kekul6 structural formula can be written = systems for which K = 0) 
is described elsewhere (see pp. 62-66 in [3]). Some time was needed for theoretical 
chemists to recognize that for large benzenoids it is not quite simple to decide 
whether K > 0 (Kekul~ans) or K = 0 (non-Kekul~ans). 

From the Dewar - Longuet-Higgins formula, Eqs. (1) and (4), it is immediately 
seen that the above problem is equivalent to the question whether there exist zero 
eigenvalues in the spectrum of a benzenoid graph. Indeed, in computer-aided 
searches, constructions and classifications of benzenoid systems, the easiest and 
most efficient way to recognize non-Kekul6an species is just to compute det A. 
At this point it should be mentioned that Hall [66] recently proposed a new easy 
method for rapid calculation of det A of a benzenoid system. 

After a large number of  erroneous attempts (see [67, 68] and the references 
quoted therein), the first complete structural characterization of Kekul6an/non- 
Kekul6an benzenoids was achieved in 1985 independently by Zhang, Chen and 
G u t  [69] and Kostochka [70]. Their results differ only in minor details. 
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The vertices of a benzenoid system can be colored by two colors, say black 
and white, so that first neighbors have different colors [3]. Since every double 
bond in a Kekul6 structure ties between a black and a white vertex, every Kekul+an 
benzenoid system must have equal numbers of black and white vertices. (Recall 
that the K = 0 benzenoids having equal numbers of  black and white vertices are 
called concealed non-Kekul~an systems [3].) 

Consider a benzenoid system B whose vertices are colored in the above described 
manner. An edge-cut of  B is a collection ei, e2 . . . . .  et of edges of B, such that 
(a) by deleting the edges el, e2 . . . . .  et from B, it decomposes into two parts F1 

and F2; 
(b) for each edge el, i = 1, 2, ..., t, its black end-vertex belongs to F1 (and therefore 

its white end-vertex belongs to F2); 
(c) each pair of edges ei, ei + 1, i = 1, 2 . . . . .  t - 1, belongs to the same hexagon of 

B while e 1 and et belong to the perimeter. 

Theorem 6 [69, 70]. A benzenoid system B is Kekul6an if, and only if, it has equal 
numbers of black and white vertices, and if for all edge-cuts of B, the fragment 
F1 does not have more white vertices than black vertices. 

Below is depicted a benzenoid system 15 (with colored vertices) and two of its 
edge-cuts. In these edge-cuts only the vertices belonging to the fragment F 1 a r e  

colored. In the first edge-cut F~ has more black than white vertices. In the second 
edge-cut F1 has more white than black vertices. This latter cut reveals that 15 is 
(concealed) non-Kekul6an. 

It has been pointed out by G. G. Hall and Dias [68] that dissection approaches 
(like the one described in Theorem 6) are just special cases of previously known 
general graph-theoretical results by P. Hall (1935) and Tutte (1947). 

Zhang and coworkers [71-73] and Sheng [74] have further sharpened the method 
described in Theorem 6. Their efforts are reviewed in [47, 49]. Sheng [49] also put 
forward an algorithmic approach for rapid (paper-and-pencil) recognition of 
Kekul6an benzenoids. Other such tests are also quite numerous in the recent 
chemical literature [22, 68, 75-80, 136]. In particular, in [22] and [68] the 

14 



Topological Properties of Benzenoid Systems 

Kekul6an/non-Kekul6an nature of a benzenoid system is deduced from the 
properties of its excised internal structure. 

We wish to conclude this paragraph with a quotation from the author 's first 
paper [2] on benzenoid systems: "There is no simple recipe to decide by inspection 
of  the molecular graph whether K = 0 or not. In other words, the necessary and 
sufficient conditions for the existence of  Kekuld structures seem to be rather 
complicated". Fifteen years later one may optimistically state that this hard 
problem of  the topological theory of  benzenoid hydrocarbons is completely settled. 

4.2 Bounds for the Kekul~ Structure Count 

Finding upper and lower bounds for the K-value of  benzenoid systems is intimately 
related to the identification o f  benzenoids with extremal (minimum and maximum) 
number of  Kekul6 structures. Clearly, such benzenoids are expected to possess 
unusual chemical properties (e.g. to be highly reactive or exceptionally stable). 

For  catacondensed systems with h hexagons the following bounds have been 
obtained [81] 

h +  1 _< K < 2  h- I  + 1. 

Later Cyvin and Chen [82, 83] improved the above upper bound as: 

~3  w2 if h iseven 

K <_ ( 2 " 3  (h-1)/z if h i s o d d .  

Recently John [84] offered an even better upper bound, viz. 

K < a(h) 

where a(1) = 2, a(2) = 3, a(3) = 5 and 

a(h) = a(h - 2) + 3a(h - 3) 

It can be shown that [84] 

with 

for h > 4 .  

a(h) = Clcx h + [C2 cos (xh) - C3 sin (xh)] 13 h 

(6) 

C1 = 1.37301 ... 

C2 = 0.37301 ... 

C3 = 0.67296 ... 

= 1.671699 ... 

13 = 1.33962... 

x = 0.8970... (radians). 
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The only available exact result of this kind, applicable to all benzenoid systems 
is a complicated,  but  by no means a sharp upper  bound  [85]: 

K < [2m/n + R(nt2 - 1 ) 1 t 2 1 1 t 2  [2m/n - R(n/2 - 1 ) - 1 / 2 ]  ( " - 2 ) 1 4  

where 

1 
R = --  (18mn - 12n z - 4m2) i/2 

n 

and where n and m stand for the numbers  of vertices and edges, respectively. 
Empirical  experience suggests [86] that  among benzenoids with a fixed number  

of hexagons the maximum K-value is achieved for catacondensed systems. If so, 
then we arrive at bounds  which until now have eluded a r igorous proof:  

Conjecture. For  a Kekul~an benzenoid system with h hexagons, 

h +  1 _ < K _ < a ( h )  

where a(h) is given by Eq. (6). 

4.3 A Simple Invariant of the Kekul~ Structures 

If  a benzenoid system is drawn so that  some of  its edges are vertical, then the 
double  bonds  in such a system (in a Kekul6 structure) can have one of  the following 

three orientat ions:  

A B g 

Denote  by x, y and z the numbers of double  bonds  of type A, B and C, respectively. 

F o r  example, in the Kekul6 structure below x = 7, y = 3 and z = 3. 

kl 

Evidently, x + y + z = n/2. 
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The following property of the Kekul6 structures seems to have been overlooked 
for many decades. It was put forward as late as in 1986: 

Theorem 7 [87]. All Kekul+ structures of a benzenoid molecule have the same 
triplet (x, y, z). 

In Fig. 2 are depicted the seven Kekul6 structures of benzoanthracene. The 
reader can easily verify that each of them has x = 2, y = 3, z = 4. 

~ 2  ~ 3  

Fig. 2. Kekul~ structures and generalized Clar structures of benzo[a]anthracene 

Not all triplets of positive integers correspond to benzenoid systems. The difficult 
problem of the characterization of such triplets was solved by Zhang and Guo 
[88, 137]. 

Theorem 8 [88]. A triplet (x, y, z), x < y < z, corresponds to a benzenoid system 
if, and only if, one of the conditions (a), (b), (c) or (d) is satisfied. 

(a) x = 1 , y = z 
(b) x = 2 and 

[ y = 2 , 2 < z < 4 ]  or [ y = 3 , 3 < z < 6 ]  or [ y = 4 ,  z4=9,11] or 
[ y =  5, z +  12] or [ y > 6 ]  
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(c) x = 3 and 
[y = 3, z =1 = 11] 

(d) x > 4 
or [y _> 4] 

Theorem 9 [88]. A triplet (x, y, z), x _< y _< z, corresponds to a catacondensed 
benzenoid system if and only if x + y + z is odd and x + y _> z + 1. 

Bearing in mind that  the Kekul6 structures have found a variety of  applications 
in chemistry [3] it was hoped that  also the invariant (x, y, z) will be of  some use. 
The few at tempts made until now [87] have been far from successful. 

4 .4  S e x t e t  Polynomia l  

Various algebraic and combinatorial  aspects of  Clar 's  aromatic  sextet theory are 
outlined in the recent book  [3] and the recent reviews [50, 51, 89]. Therefore, in 
this paragraph we will just point out a few details related to the author 's  own 
research and mention the most  recent developments in the filed. 

The crucial impetus for these investigations was given by the short paper  of  
Hosoya  and Yamaguchi  [90] in which they introduced the numbers  s(B, k) and 
the sextet polynomial  

c r (B ,x )=  ~ s(B,k) x k. 
k = O  

The numbers s(B,k) count the generalized Clar structures of the benzenoid 
system B, containing exactly k aromatic  sextets. For  instance, for B = benzoan- 
thracene we have (see Fig. 2): 

s(B, 0) = 1 

s(B, 1) = 4 

s(B, 2) = 2 

s(B, k) = 0 for k > _ 3  

and consequently, 

c r (B ,x )=  1 + 4 x  + 2x z .  

This example is also an illustration of the peculiar fact that  the number  of 
generalized Clar structures coincides with the number  of Kekul6 structures, i.e. 

o(B, I) = ~ s(B,k) = K{B}. (7) 
k=O 

The identity (7) is just a consequence of a one-to-one correspondence between 
generalized Clar and Kekul~ structures. In particular, the i-th Clar structure in 
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Fig. 2 is constructed so that in the i-th Kekul6 structure each triplet of double 
bonds arranged as A was replaced by a circle and all other double bonds were 
abandoned. 

A 

Zhe first exact result obtained along these lines was 
Theorem 10 [91]. Eq. (7) holds for all catacondensed benzenoid systems. 

Eq. (7) does not hold for all pericondensed benzenoids and its range of validity 
was established in a series of investigations [90, 92-96]. The work of Ohkami [96] 
can be considered as a complete solution of this problem. 

Theorem 11 [94]. Eq. (7) holds for a pericondensed benzenoid system B if and 
only if one of the conditions (a), (b) or (c) is satisfied. 
(a) B is not coronene. 
(b) B does not contain a coronene subunit. 
(c) If B contains a coronene subunit Cor, then for each such subunit, B-Cor does 

not possess Kekul6 structures. 
The numbers s(B, k) can be interpreted in the following straightforward manner 

[97]. 
Define the Clar graph C(B) of the benzenoid system B as a graph whose vertices 

correspond to the hexagons of  B. Two vertices of C(B) are adjacent if, and only 
if, it is not possible to simultaneously arrange aromatic sextets (=  circles in the 
generalized Clar formulas) in the respective hexagons of  B. 

Below is depicted the Clar graph of benzoanthracene: 

4 

1 2 3 3 

B C{B) fiT(B) 

Denote by n(G, k) the number of ways in which k independent (=mutually 
nonadjacent) vertices can be selected in a graph G. By definition, n(G, 0) = 1 
and n(G, 1) = n = number of vertices of G. 

Theorem 12 [97]. The identity s(B, k ) =  n(C(B), k) holds for all benzenoid 
systems B and for all values of k, except k = 1. 

Since the independence numbers, i.e. the numbers n(G, k), are easily determined 
by means of pertinent graph-theoretical algorithms (see pp. 111-112 in [3]), 
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Theorem 12 provides a straightforward and general method for the calculation 
of the sextet polynomial [97, 98]. 

An obvious question arising from Theorem t2 is when the identity 
s(B, k) = n(C(B), k) holds also for k = 1. Since n(C(B), 1) is just the number of 
hexagons of B, we are interested in those benzenoid systems in which all hexagons 
are resonant. This problem was first examined in [11, 99] and eventually solved 
by Zhang and Chen [100, 101] and independently by John [102]: 

Theorem 13. The identity s(B, 1) = n(C(B), 1) holds if, and only if, the excised 
internal structure of the benzenoid system possesses a perfect matching. 

Corollary 13.1. The identity s(B, 1) = n(C(B), 1) holds for all catacondensed 
benzenoids. 

Another result of this kind is reported in the recent work by He and He [103]. 
A benzenoid systems is said to be "normal" [3] if none of its edges corresponds 
to a fixed double o r  a fixed single bond. 

Theorem 14. The identity s(B, 1) = n(C(B), 1) holds if, and only if, B is a normal 
benzenoid system. 

Corollary 14.1. A benzenoid system B is normal if, and only if, (a) B is catacon- 
densed or (b) the excised internal structure of B possesses a perfect matching. 

Corollary 14.2. Any normal benzenoid with h hexagons (h > 1) can be generated 
by adding a hexagon to a normal benzenoid with h - 1 hexagons. 

The statement formulated here as Corollary 14.2 was first conjectured by Cyvin 
and the present author [104]. It played a significant role in the construction and 
enumeration of normal benzenoids [3, 104]. Its formal proof is given in [105]. 

The line graph L(G) of a graph G is defined as foUows. The vertices of L(G) 
correspond to the edges of G and two vertices of L(G) are adjacent if the 
corresponding edges of G have a common vertex. 

It turns out that in some cases the Clar graph is a line graph. This fact was 
conceived even before the discovery of the Clar-graph concept (of course in a 
somewhat different form). We may thus reformulate the result originally obtained 
in 1977 as follows: 

Theorem t5 [106]. If B is an unbranched catacondensed benzenoid system then 
there exist a graph GT(B), such that C ( B ) =  L(GT(B)). The graph GT is 
connected and acyclic (i.e. it is a tree). 

Corollary 15.1. If B is an unbranched catacondensed benzenoid system then 
s(B, k) = m(GT(B), k) holds for all values ofk. Here m(G, k) denotes the number 
of k-matchings of a graph G (cf Sect. 3.2). 

Corollary 15.2. The characteristic polynomial of GT(B) is of the form 

q~(GT(B), x) = ~ ( - -1)  k s(B, k) x h-'l-2k 
k = O  

wbere h is the number of hexagons of B. 
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Corollary 15.3. I f  B is an unbranched catacondensed benzenoid system then all 
the zeros of  its sextet polynomial  are real and negative numbers.  

The graph G T  was eventually named, the "Gutman tree" [51, 89, 107-109] and 
its properties were extensively studied [51, 89, 106-112]. 

A further method for calculating the sextet polynomial  of  an unbranched 
catacondensed benzenoid molecule, not based on the Gutman- t ree  concept, was 
reported in [113]. 

4.5 Corals 

The study of  generalized Clar structures and their relations to the Kekul6 structures 
led to the introduction of  a new concept [92] which was eventually named "coral" 
[114]. 

Three double bonds in a six-membered ring can have two distinct arrangements,  
A and B: 

A B 

Let kl,  k 2 . . . . .  k k be the Kekul6 structures of a benzenoid molecule. Define a 
mapping f which transforms a Kekul6 structure kl into another  Kekul6 structure 
kj so that all A-type arrangements of  double bonds in k i are changed into 
arrangements of  type B whereas all other double bonds are left unchanged. This 
will be denoted as f(ki) = kj. 

For  example, f(k 0 = k2 and f(k2) = k 3. Furthermore,  f(k3) = k 3 because k3 
does not  have any A-type arrangements of double bonds. 

kl k 2 k 3 

The Kekul6 structures of benzoanthracene (see Fig. 2) are mapped in the 
followingmanner:f(1) = 4,f(2) = 4,f(3) = 4,f(4) = 6,f(5) = 6,f(6) = 7,f(7) = 7. 
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It is clear that f maps the set {kl, k2 . . . . .  kk} onto itself. Such a mapping can 
be visualized by means of a diagram. For  instance, COR is the diagramatical 
representation of the mapping of the Kekul6 structures of benzoanthracene. 

1 2 3 

t~ :)5 5 6 

2 4 

U1 

COR COR* 

Note that COR is not a graph because here the vertex lying above is mapped 
onto the vertex lying below. Objects of this type are called Hasse diagrams, but 
because in our case they possess certain special properties (see below) we proposed 
for them the name "corals". 

The Kekul~ structure k0 having the property f(k0) = ko is called a root. 

Theorem 16 [92]. Every Kekul6an benzenoid system has a root Kekul6 structure 
and this structure is unique. 

Theorem 17 [115]. The Hasse diagram corresponding to the mapping f is connected 
and possesses no cycles. 

By fP(k) we denote the Kekul6 structure which is obtained from the Kekul6 
structure k by repeating the mapping f p times. Then Chen's Theorem 17 means 
that for any k and some sufficiently large p, fP(k) = k o. Furthermore, for any 
p > 0, the equation fP(k) = k has only one solution, namely k = ko. 

For  the construction of a coral it was substantial that A-type arrangements of 
double bonds were transformed into B-type arrangements. On  the other hand, 
there is no a priori reason for preferring the transformation A ~ B over the 
transformation B ~ A. The mapping t'* defined in the same way as f, but using 
the transformation B ~ A is said to be the dual of f. The coral induced by f* is 
called the dual coral. 

For instance, the dual mapping of  the Kekul~ structures of  benzoanthracene 
(Fig. 2) reads: 9"(1) = 1, f*(2) = 1, f*(3) = 1, 1"*(4) = 1, f*(5) = 3, f*(6) = 3, 
f*(7) = 6. The respective dual coral, COR*, is depicted above. Even from this 
example we see that the coral and its dual may have quite dissimilar structures. 
Nevertheless, the coral and its dual agree in a number of  structural details. First 
of  all, Theorems 16 and 17 remain valid if f is interchanged by f*. 

A Kekul6 structure which cannot be obtained from another Kekul6 structure 
by means of  the mapping f is called a bud. The number o f  buds is the width of  
the respective coral. The maximum distance between a bud and the root  is the 
height of  the respective coral. 
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Theorem 18 [114]. The coral and its dual have equal widths. The coral and its 
dual have equal heights. 

Theorem 19 [114]. The root of a coral is a bud in the dual coral and vice versa. 
Hence both the width and the height of the coral are independent of  the 

(otherwise arbitrary) choice A ~ B or B ~ A. Attempts have been made [114, 
116] to correlate these parameters with various physico-chemical properties of 
benzenoid hydrocarbons. Only a limited success was achieved, especially in the 
case of  resonance energy [116]. 

Many problems in the theory of corals are still open. For instance, we do not 
know how (if) the coral can be reconstructed from its dual. Particular emphasis 
should be given on those properties which are the same for both the coral and 
its dual. Theorem 18 may represent just the first step in this direction. 

5 Topological Indices 

The name "topological index" is used in theoretical chemistry for what ma- 
thematicians prefer to call "graph invariant". Thus any quantity I = I(G) which 
somehow can be determined from the structure of the graph G and which has 
the property I (G) = I (H) whenever the graphs G and H are isomorphic, can be 
considered as a "topological index". In theoretical chemistry, of  course, the choice 
of  topological indices is restricted by the requirement that there should be some 
reasonable connection (preferably a correlation) between I and some physico- 
chemical properties of  the respective molecule [117]. Nevertheless, the number of 
topological indices, currently used in chemical graph theory is legion [118]. 

We have already examined a few graph invariants which, according to the 
above definition, could be included among the topological indices of  benzenoid 
molecules. These are the number of Kekul6 structures, the eigenvalues, spectral 
moments, (coefficients of) the characteristic and sextet polynomials, to mention 
just some. The total n-electron energy is surveyed elsewhere in this volume. 

In addition to these, only a limited number of other topological indices of 
benzenoid molecules have been studied. With a few not too important exceptions, 
generally valid mathematical results were obtained only for one of them - namely 
for the Wiener index. Therefore the remaining part of this section is devoted to 
the Wiener index of benzenoid systems. (Further graph invariants worth mentio- 
ning in connection with benzenoids, especially unbranched catacondensed systems, 
are the Hosoya index [119-121], the Merrifield - Simmons index [122, 123], the 
modified Hosoya index [38] and the polynomials associated with them.) 

5.1 Wiener Index 

Let G be a connected graph and let its vertices be labeled by 1, 2 . . . . .  n. 
The distance d(r, s) between the vertices r and s is the length of the shortest path 
which connects r and s. The Wiener index W is then the sum of all distances in 
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the graph G: 

W = W ( G ) =  ~ d ( r , s ) = ½  ~ ~ d(r,s) .  
r < s  r = l  s = l  

The Wiener index has been extensively studied in the chemical literature (for 
reviews see [118, 124]) and therefore it is not surprising that it was also examined 
in the case of benzenoids. 

Recurrence relations have been established for the Wiener index of cataconden- 
sed benzenoid systems, both unbranched [125] and branched [126]. Based on these 
relations it could be shown that for unbranched catacondensed systems Uh with 
h hexagons [127], 

W(H0 < W(U.) < W(L0 

where Hh and Lh are the helicene and the linear polyacene, respectively, with h 
hexagons and 

W(Hh) = ½ (8h 3 + 72h 2 - 26h + 27) 

W(Lh) = -~ (16h 3 + 36h 2 + 26 h + 3). 

Thus W(Uh) is bounded from both below and above by cubic polynomials in the 
variable h. One could therefore anticipate that also the expected value Wh of the 
Wiener number of a random benzenoid chain containing h hexagons is a cubic 
polynomial in h. This, however, is not the case [128]. The expected value is given 
by W~ = 27, W2 = 109, W3 = 271 + 8q and 

Wh = 4h 3 + 16h 2 + 6h + 1 + -~ q(h 3 - 3h 2 + 2h) 

_ 4 (p, _ p2)2 F(h, q) 

for h > 4, where 

h - 3  

F(h,q) = ~ k(k + 1 ) ( k + 2 ) q h - 3 - k  
k = l  

and where p~, P2 and q are, respectively, the probabilities for annelation of the 

types e, [3 and'y,  p~ + P2 + q = 1. 
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For catacondensed benzenoids a curious and fully unexpected regularity was 
first empirically observed [129] and then rigorously proved [127, 130]. 

Theorem 20. I fB 1 and B2 are catacondensed benzenoid systems with equal numbers 
of hexagons, then W(B1) - W(B2) (mod 8). 

Corollary 20.1. If B is a catacondensed benzenoid system with h hexagons and if 
h is of the form 4k + j, j = 0, 1, 2 or 3, then W(B) = 2j + 1 (mod 8). 

It is really surprising that the Wiener indices have such number-theoretical 
properties. This kind of modular behavior was observed never before for any of 
the numerous topological indices studied in chemical graph theory. Results 
analogous to those given in Theorem 20 were later found for other classes of 
(non-benzenoid) graphs [130, 131], but their extension to pericondensed benzen- 
oids was never accomplished. 

It is difficult to imagine any benefit which an experimental chemist could have 
from theoretical results like Theorem 20. Although its discovery was a serious 
achievement, this theorem may serve as a drastic example that not all products 
of the "topological" investigations in chemistry have chemical relevance. Obscuri- 
ties of this kind have occurred and certainly will occur in future researches. 
Nevertheless, we are positive that the totality of our efforts in the last twenty 
years has increased the chemists' understanding of  the physical and chemical 
nature of benzenoid hydrocarbons. 

6 Bibliographic Note 

This article is Part 78 of the series "Topological Properties of Benzenoid Systems". 
Parts 75, 76 and 77 are the references [128], [123] and [132]. For review of earlier 
work see Parts 17 [133], 21 [134] and 59 [67]. Other parts of the series, quoted in 
this article are 1 [2], 2 [106], 3 [91], 9 [97], 14 [35], 16 [81], 19 [99], 24 [98], 25 [11], 
29 [38], 32 [111], 37 [110], 40 [75], 40a [77], 44 [76], 46 [87], 47 [125], 49 [127], 50 
[52], 51 [120], 52 [129], 53 [53], 57 [62], 58 [I0], 60 [113], 65 [114], 70 [122] and 71 [116]. 

7 Addendum 

After the completion of the text of this article a remarkable discovery has been 
made in the spectral theory of benzenoid molecules. In the 1980s serveral authors 
tried to find isospectral benzenoid systems (i.e. benzenoids having equal spectra, 
cf Sect. 3). These efforts were, however, not successful. Finally, Cioslowski 

25 



Ivan Gutman 

conjectured [138] that  such systems do not  exist at all. After that  Babi6 succeeded 
to design a method by which arbitrari ly many isospectral benzenoids can be 
constructed [139]. One of BabiS's isospectral pairs are the following benzenoid 
systems, each possessing 9 hexagons and 33 vertices. 

I t  has been recently shown [140] that the above example is the smallest possible 
and that  it is unique. All isospectral benzenoids constructed by Babi6's method 
have odd numbers of vertices and, consequently, have no Kekul6 structures. In  
the present moment  (December 1991) isospectral Kekul6an benzenoids are not  
known. 
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The theory of the H M O  total n-electron energy (E) of benzenoid hydrocarbons is surveyed 
with particular emphasis on the research of its dependence on molecular structure. Identities, 
bounds and approximate formulas for E are considered, The dependence of E on the size 
of the molecule and on the number of Kekul6 structures is discussed in detail. The effect of 
cycles on E, and six-membered rings in particular, is considered within the framework of 
the theory of cyclic conjugation, 

30 



1 Introduction 

Total n-Electron Energy of Benzenoid Hydrocarbons 

In this article we will outline the investigations concerned with the total n-electron 
energy of benzenoid hydrocarbons and its dependence on molecular structure. 
This topic was one of the main themes examined within the project ,, Topological 
Properties of Benzenoid Systems" (c.f. Sect. 9). We have excluded it from the survey 
[1] and decided to present it separately only because of a relative large number 
of results known in this area and because of the lack of any previous review. 

The elucidation of the dependence of various chemical and physical properties 
of substances on molecular structure can be considered as one of the main goals 
of theoretical chemistry. Although an immense knowledge has accumulated in this 
field, a fairly limited number of direct, causal and quantitative (or at least 
semiquantitative) structure-property relations have been discovered so far. The 
main reason for this is the enormous complexity of the quantum-chemical 
calculations, by means of which the contemporary theoretical chemists try to 
describe and predict the behaviour of molecules. During such calculations the 
insight into the actual connection between the input (e.g. molecular structure) and 
output (e.g. certain molecular properties) is usually completely lost. 

The total n-electron energy (as calculated within the H M O  model, see below) 
seems to be a favourable exception. Its mathematical form is relatively simple and 
therefore we still have a chance to look for direct relations with molecular structure. 
Its mathematical form, however, is not too simple and therefore the relations with 
molecular structure are far from being trivial and can be revealed only by means 
of a proficient analysis. As a consequence of this the structure-dependency of total 
n-electron energy has continuously attracted the attention of theoretical chemists 
for more than 50 years. (For some works of historical importance see [2-11]; 
more recent research will be mentioned in the subsequent parts of this article.) 

1.1 Basic Definitions 

The definition of a benzenoid hydrocarbon/benzenoid system/benzenoid graph as 
well as a sufficient number of examples can be found in the preceding article [1] 
and elsewhere [t2]. We shall not reintroduce the notation and terminology 
described in [1], except that for the readers convenience we list the most frequently 
employed symbols. Let BH be a benzenoid hydrocarbon and let B stand for the 
corresponding benzenoid system/benzenoid graph. Then: 

n = number of carbon atoms of BH = number of vertices of B 
m = number of carbon-carbon bonds ofBH = number of edges of B 
h = number of six-membered rings of BH = number of hexagons 

of B 
h = m - n + l  
K = number of Kekul6 structures of BH = number of perfect 

matchings of B 
A = [Afs] = adjacency matrix of B 
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Ars = 1 if the vertices r and s are adjacent  and Ars = 0 otherwise 
xl, x2 . . . .  , x,  = eigenvalues of A i.e. eigenvalues of B 

X 1 ~> X 2 ~> . . .  ~ X n 

cp(B, x) = det (xI - A) = characterist ic polynomial  of B 
b(B, k) = k-th coefficient of the characteristic polynomial  

[n/2] 

q0(B, x) = ~, ( -  1) k b(B, k) X n - 2 k  

k = 0  

M k = ~ (xl) k = k-th spectral moment  of B .  
i = l  

F o r  further details on graph-theoret ical  notions impor tan t  in the " topological"  
studies of conjugated molecules and benzenoid hydrocarbons  in part icular  
see [13]. 

1.2 Total n-Electron Energy 

Within the framework of the simple t ight-binding Hiickel molecular  orbital  (HMO) 
approximat ion  (see the next paragraph)  the total  ~-electron energy of a conjugated 
molecule is given by 

E= = ~ giEi (1) 
i = l  

where Ei is the energy of the i-th M O  and gi is the respective occupat ion number.  
Fo r  a conjugated hydrocarbon  in its ground electronic state, gl  = g2 . . . .  

= gn/z = 2 and gn/2+ 1 = "'" = gn = 0. Fur thermore ,  

El = a + [3x i (2) 

where xi is the i-th eigenvalue of the molecular  graph and where ~z and [3 are 
certain semiempirical  parameters,  assumed to have the same values for all 
conjugated hydrocarbons.  F r o m  Eqs. (1) and (2) follows 

with 

E.  = n~  + E[3 (3) 

n/2 

E = 2 2 xl.  (4) 
i = I  

The only non-tr ivial  term in Eq. (3) is the quant i ty  E which is usually identified 
with the H M O  total  ~-electron energy. This can be achieved by formally setting 

= 0 and [3 = 1 and then we speak about  total  n-electron energy expressed in 

the units of the resonance integral [3. 
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Anyway, what we are studying in the present article is the quantity E defined 
via Eq. (4). It will be referred to as the total n-electron energy. For alternant 
hydrocarbons and thus for all benzenoid molecules Eq. (4) is readily transformed 
into a more symmetric form [6, 7], namely 

E = ~ lxil. (5) 
i = l  

Formula (5) is the starting point for almost all considerations on the structure- 
dependency of E. 

The general theory of the H M O  total n-electron energy as well as its chemical 
applications are outlined in full detail in the book [13]. There exists one more 
review on E [14], but in the Serbo-Croatian language. Whenever E is applied in 
chemistry one should bear in mind that the resonance integral [3 is a negative-valued 
parameter. 

The right-hand side of Eq. (5) is defined in the case of an arbitrary graph. 
Accordingly, by means of Eq. (5) we can define a novel graph-spectral quantity, 
named the energy of  a graph. Some basic properties of this graph energy are 
surveyed in [15]. 

1.3 A Note on the Hiickel Molecular Orbital Theory 

As it is well known (see, for example, [16, 17]), the Hfickel molecular orbital theory 
is based on a Hamiltonian operator 0¢,o defined by means of the matrix elements 

(Prl ~ IP~) = ~r 

r + s  

where fPr), r = 1, 2 . . . . .  n is an orthogonal basis usually interpreted so that [Pr) 
is a p-orbital centered at the nucleus of the r-th atom. For conjugated hydrocarbons 
(and thus for benzenoid systems) these matrix elements are approximated so that 
~r = ~ for all atoms r, that [3rs = 13 whenever there exists a chemical bond between 
the atoms r and s, and that 13~s = 0 if the atoms r and s are chemically 
not bonded. These assumptions lead straightforwardly to Eqs. (I) and (2) [18]. 

It would be completely outdated to search for some physical justification of 
the above approximations. In the early thirties, when the H M O  model was 
invented, such drastic simplifications were inevitable because of the lack of 
computing machines. Since then quantum chemistry has made extraordinary 
advances in both theory and technology. Nowadays the H M O  model can be 
considered only as a historical episode in the development of quantum chemistry. 

As a consequence of this, the H M O  model should no longer be used for 
calculations of n-electron properties of particular conjugated compounds. For this 
purpose there exist much more accurate and reliable quantum-theoretical tech- 
niques. (We, of course, do not deny the potentials of the H M O  theory in chemical 
education.) 
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There is, however, one aspect where the HMO model can still beat the more 
advanced quantum-chemical approaches. Because of its extreme simplicity, the 
HMO Hamiltonian is related to the structure of the respective conjugated molecule 
in an obvious manner and is fully determined by the connectedness of its 
carbon-atom skeleton. Therefore it is possible (although not easy) to find direct 
connections between the results of HMO calculations and molecular structure. 
For more sophisticated quantum-chemical methods the finding of such connections 
seems to be far from feasible. 

In the case of the HMO model the success of the search for structure-property 
relations is much enhanced by the possibility of applying the powerful mathematical 
apparatus of graph-spectral theory [18, 19]. There is hardly any application of 
graph (spectral) theory in more sophisticated molecular orbital models. 

It is a remarkable and not yet satisfactorily explained phenomenon that in 
spite of the apparent shortcomings and suspicious quantum-physical basis 
of the HMO theory, in some cases its results are in good quantitative agreement 
with experimental data. In particular, this applies to the total ~-electron energy, 
especially in the case of benzenoid hydrocarbons. This fortunate feature of the 
HMO theory is discussed in more detail in the subsequent section. 

2 Total n-Electron Energy and the Thermodynamic Stability 
of Benzenoid Hydrocarbons 

It is an often repeated claim that the HMO re-electron energies are in good 
agreement with experimental enthalpies of the respective conjugated compounds. 
This statement could easily be tested provided experimental enthalpies were 
available. Unfortunately, they are known only for a limited number of conjugated 
hydrocarbons. In particular, heats of formation are tabulated for only 24 benzenoid 
hydrocarbons [20]. 

In Fig. i we show the correlation between E and experimental heats of formation 
for the (complete) set of C2zH14 benzenoid isomers. For comparison we also 
present some recent data for the same set of compounds, obtained by a 
semiempirical MNDO method [21] and by the MMX/PI version of molecular 
mechanics calculations [22]. The only conclusion we wish to draw from Fig. 1 is 
that HMO theory is capable of reproducing the experimental enthalpies of 
benzenoid hydrocarbons with an accuracy which is not much worse than that of 
the much more sophisticated (and highly parametrized) molecular orbital and 
molecular mechanics approaches. 

Much theoretical effort was made to explain this somewhat surprising success 
of the HMO total ~-electron energy. Here we briefly mention the arguments 
supporting the opinion that E accounts for (at least a part of) the electron 
interaction [23-26] and even the electron correlation effects [27]. In particular, 
Ichikawa and Ebisawa [26] reported an almost perfect linear correlation between 
E and the kinetic energy of the r~-electrons, as calculated by means of STO-3G 
ab initio methods. 
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Fig. 1. a HMO total n-electron energies vs. experimental standard gas-phase heats of 
formation [20] for the twelve benzenoid isomers C2zHa4; correlation coefficient -0.966; 
/~ = --97.0 kJ mol-1; b Calculated vs experimental standard gas-phase heats of formation 
for the same molecules; squares: MNDO results [21], correlation coefficient 0.797; dots 
MMX/PI results [22], correlation coefficient 0.780 

Especially interesting seems to us the work of Schaad and Hess [28] where it 
was shown that  E is a good measure not only of the energy of the re-electrons, 
but also of the energy of the ~-electron carbon-carbon framework. According to 
[28], heats of atomization computed by the H M O  method are accurate to 0.1%, 
implying that E is accurate up to +0.0051] units. By the way, Schaad and Hess 
[28] recommend the value [3 = -137 .00  kJ mol -1  for thermochemical purposes. 

3 Elements of the Theory of Cyclic Conjugation 

Among organic chemists it is nowadays commonly  accepted that  the unusually 
high stability (so called "aromatici ty")  of some conjugated systems as well as the 
exceptionally low stability (so called "antiaromatici ty")  of  some others is somehow 
related to the presence of cycles in their carbon-a tom skeleton. The traditional 
view is that  these effects come from ~-electrons. However,  Hiberty and coworkers 
gave recently very convincing arguments in favour of  the ~-electron origin of  
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aromaticity/antiaromaticity (see [29] and the references quoted therein). In what 
follows we remain at the n-electron-viewpoint, mainly because it is the basis of 
literally everything what has been done in this field my means of "topological" 
methods. 

The idea that the effect of cyclic conjugation can be measured by the difference 
between the total n-electron energy of the conjugated molecule and the total 
n-electron energy of a pertinently chosen acyclic reference structure seems to have 
been first put forward in 1963 by Breslow and Moh/tchi [30] and soon thereafter 
by Dewar [3133]. Crucial in these approaches was the finding of a convenient 
"total n-electron energy of the acyclic reference structure". In this respect 
graph-theoretical considerations proved to be of major importance. 

Since the theory of cyclic conjugation is mainly concerned with non-benzenoid 
polycyclic conjugated systems (containing rings of sizes other than six), we shall 
skip its complete presentation and focus our attention to only those details which 
are needed in the study of benzenoid hydrocarbons. The readers interested in 
furhter aspects of this theory should consult the papers [34-40] and the references 
quoted therein. 

Let G be a molecular graph and Zt, Za . . . . .  Zt its cycles. For example, in Fig. 2 
are depicted the t = 10 cycles of benzoanthracene. 

Denote by G - Z~ the subgraph obtained by deleting from G the vertices of 
Zi. Two cycles of G are said to be independent if they possess no common vertices. 
If Zi and Zj are independent cycles of G then the subgraph G - Z i - Zj is 

Z7 C ~ ~  Z9 

ZlO 
Fig. 2. The molecular graph G of benzo[a]anthracene and the ten cycles contained in it 
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defined as (G - Zi) - Zy The subgraphs G - Zi - Zj - Zk etc. are defined 
analogously. 

In Fig. 2 only five pairs of  cycles are independent, namely Z~, Z3; Z~, Z#; Z1, Z7; 
Z2, Z4 and Z4, Z5. No  three cycles of benzoanthracene are mutually independent. 

The polynomial  

~(G) = e(G,  x) = ~ ( -  1) k m(G,  k) x"-  2k 
k = 0  

is called the matching polynomial  of the graph G. Here m(G,  k) stands for 
the number  of k-matchings of G i.e. the number  of selections of k independent 
edges in G [1]. For  details of the theory of the matching polynomial  see 
[41-43]. 

Now, the characteristic polynomial q~(G) = (p(G, x) of a graph G conforms to 
the identity 

c0(G) = o~(G) - 2 ~ z ( G  - Zi) + 4 ~ ~(G - Z i - Zj) 
i i , j  

- 8 ~ ~ ( G - Z  i - Z j - z k ) +  . . . .  
i , j , k  

(6) 

The second, third etc. summations on the right-hand side of Eq. (6) run over all 
pairs, triplets etc. of independent cycles of G. For  instance, i f G  = benzoanthracene 
then we have (see Fig. 2): 

10 

q~(G) = cx(G) - ~ o~(G - Zi) + 4 [~(G - Zx - Z3) 
i = l  

+ ~x(G - Z 1 - Z4) + ~(G - Z t  - Z7) + ~(G - Z 2 - Z 4 )  

+ 0~(G - Z¢ -- Z5)]. 

Equation (6) can be viewed as the explicit expression for the dependence of the 
characteristic polynomial  of the graph G on the cycles Z1, Z2 . . . . .  Zt contained in 
this graph. Since, on the other hand, the graph eigenvalues xl, x 2 . . . . .  x,  are related 
with the characteristic polynomial  via 

(p(G, x ) =  f i  ( x -  x0 (7) 
i = l  

and since the total n-electron energy is computed from the eigenvalues via Eq. 
(5), we arrive at a method for expressing the effect of the cycles on the E-value of 
a conjugated molecule. 

Combining Eqs. (5)- (7) we see that  the value of E is influenced by all the cycles 
Z1, Z2 . . . .  , Zt. Suppose now that we ignore all the terms on the right-hand side 
of Eq. (6), depending on Z1, Zz . . . .  , Zr  Then only the matching polynomial  will 
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remain. Presenting ~(G, x) in the form 

~(G, x)= I~I ( x -  y~) 
i = l  

it follows that the total-n-electron-energy-like quantity E R defined as 

E R =  ~ lYll (8) 
i = l  

accounts for the effects of all structural details on E, except of the cycles. 
Consequently, E R can be viewed as the total n-electron energy of the acyclic 
reference structure. Furthermore, the difference 

TRE = E - E R (9) 

can be interpreted as the effect of all cycles on the total n-electron energy of the 
conjugated molecule whose molecular graph is G. 

The abbreviation TRE comes from "topological resonance energy", as this 
measure of the overall cyclic conjugation in a polycyclic conjugated molecule was 
originally named [35, 44]. The TRE-concept was introduced in 1976 independently 
by Aihara [34] and by Milun, Trinajsti6 and the present author [35, 44, 45]. 
Aromatic conjugated molecules have positive whereas antiaromatic molecules 
have negative TRE-values. 

The TRE-concept  fails to correctly describe the cyclic conjugation in many 
important  classes of conjugated molecules [46-51]. Among them are also non- 
Kekul6an benzenoid hydrocarbons [50, 51]. On the other hand, in the case of 
Kekul6an benzenoids the predictions made on the basis of TRE are usually in 
reasonable agreement with experimental findings [50, 52, 53]. 

We mention in passing that the zeros of the matching polynomial, namely the 
numbers Yl, Y2 . . . . .  y,, are always real-valued [42, 54]. 

Using a fully analogous reasoning as in the case of TRE, we see that the effect 
of an individual cycle Z -- Zk on E can be measured by means of a quantity 
ef = ef(Z) = el(G, Z), defined as 

ef(Z) = E - E~(Z) (10) 

where 

ER(Z) = ~ lYi(Z)l 
i = l  

and where yi(Z), i = 1, 2 . . . . .  n are the zeros of the polynomial ~(G, Z, x). This 
latter polynomial is obtained by ignoring all the terms containing the cycle Zk on 
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the right-hand side of Eq. (6). It can be shown that [55] 

q~(G, Z, x) = ~p(G, x) + 2(p(G - Z, x) (ii) 

which makes the calculation of ef quite easy [36, 55]. 
By means of ef we can estimate the energy-effect of the interactions of n-electrons 

along a particular cycle in a polycyclic conjugated molecule. Thus ef measures 
the effect of cyclic conjugation caused by an individual cycle on the thermodynamic 
stability of the respective molecule. We could also say that ef measures the local 
aromaticity. For the purpose of the present considerations it is important that 
ef(G, Z) is the effect of an individual cycle Z on the total n-electron energy of the 
conjugated molecule whose molecular graph is G [56]. 

It has been shown that [57] 

TRE ~ ~ ef(Zk). 
k = l  

The above approximation is found to be especially well-satisfied in the case of 
benzenoid molecules. 

Aihara [58] proposed another similar recipe for expressing the effect of an 
individual cycle on the conjugation in a polycyclic molecule. Instead of ignoring 
the cycle Z = Zk, he ignored on the right-hand side of Eq. (6) all cycles except 
Zk. The resulting polynomial is denoted by ~(G, Z, x) and it is easy to see that 

Qt(G, Z, x) = ct(G, x) - 2cx(G - Z, x). (12) 

Then Aihara's measure of cyclic conjugation is 

era(Z) = EA(Z) - E R (13) 

where E R is given by Eq. (8), 

EA(Z) = ~ txff(Z)l 
i = l  

and where xA(z), x2A(z) . . . .  , xA(z) are the zeros of the polynomial ~(G, Z, x). 
In connection with the definition of el(G, Z) Herndon [59] expressed the objection 

that the zeros yl(Z), y2(Z), ..., yn(Z) of the polynomial q)(G, Z, x) are not always 
real-valued numbers. The difficulties caused by this were later resolved [60]. The 
zeros yA(z), y2A(z) . . . . .  yA(z) of the polynomial ct(G, Z, x), needed for the calculation 
of efa(G, Z), were conjectured to be real-valued for all G and for all Z [58, 61]. 
Only very limited progress in proving the reality of these zeros has been achieved 
so far [61-63]. 

The basic conceptual difference between ef(G, Z) and efa(G, Z) is that ef can 
whereas efa cannot be conceived as the effect of the cycle Z on the E-value of 
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the molecular graph G. Furthermore, whereas the polynomial q~(G, Z, x) is easily 
computed by means of the identity (11), the computation of ~(G, Z, x) from Eq. 
(12) is difficult, especially in the case of large polycyclic molecular graphs. As a 
consequence of this, ef-values are known for very many conjugated systems 
(including benzenoids [39, 40, 64]). The number of available era-values is very 
small [58]. Anyway, a systematic comparative study of ef and efa has never been 
undertaken. 

In Sect. 8 the el-values of benzenoid hydrocarbons are discussed at due length. 

4 Identities for E, TRE, ef and efa 

In this section we report the Coulson-type integral formulas for total n-electron 
energy and their modifications applicable for TRE, ef and efa. We consider here 
only the special cases when the respective conjugated systems are benzenoid 
hydrocarbons. 

The integral formulas for total n-electron energy were invented by Coulson [2, 
3, 6]. Later, they were extensively elaborated (see [13], pp. 139-147). Their real 
usefulness in structure-property analysis became evident only after they were 
combined with the results of graph spectral theory [13, 18, 65, 66]. 

Let B be the molecular graph of a benzenoid hydrocarbon. Then [66, 67] 

[n/2] 
E(B) = (2/n) S x -21n ~ b(B,k) x zkdx 

0 k=O 

where b (B, k), k = 0, 1, ..., [n/2] are the coefficients of the characteristic polynomial 
of B (see Sect. 1.1). Recall that b(B, 0) = 1, b(B, 1) = m, b(B, n/2) = K 2 and 
b(B, k) >_ 0 for all values of k [1]. 

Let B 1 and B2 be molecular graphs of two isomeric benzenoid hydrocarbons. 
Then [6] 

E(B1) -- E(B2) = (2/n) f In ~(B~, ix) dx 
q0(B2, ix) 0 

i [n/2] b(Ba, k) x n-2k 

k=o dx (14) 
= (2/re) In t,/~] b(B2, k) x"- 2k 

k=O O 

w h e r e i =  ~ - t .  
Formulas of the above type were studied in [68] were it was established that 

the main contribution to the right-hand side integrals comes from near-zero values 
of x. On the other hand, when x approaches to zero, then the integrand 
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In [(P(B1, ix)/(P(B2, ix)] tends to 2 In [K{Bt}/K{B2}]. Nevertheless, the assertion [68] 
that the energy difference of benzenoid isomers is proportional to the difference 
between the logarithms of their Kekul6 structure counts was not confirmed by 
later investigations (see Sect. 7.2). 

Slight modifications of Eq. (14) lead us to Coulson-type integral representations 
of TRE, ef and efa, as defined by Eqs. (9), (10) and (13), respectively. These integral 
formulas read: 

f (p(B, ix) 
TRE = (2/n) In ct(B, ix) dx 

0 

ff [n/2] 
b(B, k) x"-2k 

k=o dx (15) 
= (2/n) In tnl~] m(B, k) x"-2k 

k=O 0 

ef(B, Z) = - (2/re) f In I 1 + 2 w(B - Z' ix) dx 
ct(B, ix) 0 

= - (2/=) f in 

0 

1 + ( -1)z /z  2 
[(n-z)/2] I b(B - Z, k) x"- *- 2k 

k=O 
[,,/~i . . . .  
2 b(B, k) x "-2k 

k=0 

dx. 

(16) 

f [ ~ ( B -  Z, iX)]dx 
efa(B, Z) = (2/n) In 1 - 2 ~(B, i ~  3 

0 
o0 

k~o m(B - Z,k) x n-z-2k 

= (2/n) In 1 - ( -  1) z/z 2 dx. (17) 
mtn, k) x "-2k 

k=O 0 

In Eqs. (16) and (17) z denotes the size (= number of vertices) of the cycle Z. 
The following generally valid regularities were deduced from Eqs. (15)-(17). 

Theorem 1 [69]. For any catacondensed benzenoid system, TRE > 0. 

Theorem 2 [51]. For any benzenoid systems, TRE > 0. 
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Theorem 3 [56]. If B is a benzenoid systems and Z its cycle, such that the size of 
Z is divisible by four, then ef(B, Z) < 0. (Note that in this case B must be 
pericondensed [1].) 

Theorem 4 [70]. If B is a benzenoid systems and Z its cycle, such that the size of 
Z is divisible by four, then efa(B, Z) < 0. If the size of Z is not divisible by four, 
then efa(B, Z) > 0. 

Corollary 4.1. If B is a catacondensed benzenoid system, then efa(B, Z) > 0 for 
all cycles Z of B. 

Comparing Theorems 3 and 4 we immediately observe that the former does 
not contain a statement about the sign of ef(Z) when Z is a (4k + 2)-membered 
cycle. There exist non-benzenoid alternat hydrocarbons in which (4k + 2)- 
membered cycles have negative el-values [36]. Therefore it is somewhat risky to 
formulate the following 

Conjecture. If B is a benzenoid system and Z its cycle, such that the size of Z is 
not divisible by four, then ef(B, Z) > 0. In particular, if B is a catacondensed 
benzenoid system, then ef(B, Z) > 0 for all cycles Z of B. 

Numerous numerical examples support this conjecture [39, 40, 64], but one 
should note that practically all benzenoid systems examined possessed Kekut6 
structures. 

The above conjecture is true if B is a cataeondensed benzenoid system and Z 
is its perimeter. Clearly, the size of Z is then equal to n = 4h + 2 whereas 
qo(B -- Z, x) = 1. Then Eq. (16) reduces to 

e f ( B , Z ) = - ( 2 / T t )  i l n I 1 -  ~ 

k = O  
0 

2 1 dx. 
b(B,k) X n 2k 

Since b(B, n/2) = (h + 1) z, it follows that for all x > 0, 

(18) 

2 2 
n /2  
~] b(B, k) X"-Zk (h + 1) z 

k = O  

< 1 .  

Consequently, the integrand in Eq. (18) is negative for all values of x and therefore 
ef(B, Z) is positive. 

5 Bounds for Total n-Electron Energy 

In 1971 Bernard J. McClelland communicated the first upper and lower bounds 
for total rt-electron energy [71]. The work [71] seems to caused a turning point in 
the development of the theory of total n-electron energy: it shifted the interest of 
the researchers from identities and approximate expressions to inequalities. Since 

42 



Total n-Electron Energy of Benzenoid Hydrocarbons 

1971, numerous estimates of E have been discovered, many of them being applicable 
exclusively to benzenoid systems. In this section, we are concerned only with those 
bounds for E which are of relevance for benzenoids. Bounds for total n-electron 
energy of general conjugated molecules or of general alternant hydrocarbons are 
mentioned only when necessary; for more details on them see [13-15]. 

5.1 The MeCielland Inequality 

McClelland [71] showed that for arbitrary conjugated hydrocarbons whose total 
n-electron energy satisfies Eq. (5), E is less than or equal to EMo where 

EMc = ]f2mnn. (19) 

Recently the present author [72] complemented McClelland's result and so we 
now have the following 

Theorem 5. For a benzenoid system with n vertices and m edges, and for EMc 
being given by Eq. (19), 

(16/27) 1/2 Euc -< E < EMc. (20) 

Because of the importance of the bounds (20) we provide a complete proof of 
Theorem 5. 

Proof (a) It is evident that 

o f  ([xi[ - tx j [ )  2 > 0 (21) 
i = l  j = l  

and that equality occurs only if all eigenvalues xl, x2, . . . ,  X n have equal absolute 
values. For all graphs, 

xi 2 = 2m. (22) 
i = l  

Then, bearing in mind Eqs. (5) and (22), the left-hand side of (21) is immediately 
transformed as 

x -2 wx,  + 
i = l  j = l  i = 1  j = l  i = 1  j = l  i = l  j = l  

= 2 m n - 2 E  2 + 2 m n  

and consequently, 4mn - 2E 2 > 0 i.e. E <_ Euc. In the case of benzenoid systems 
not all eigenvalues have equal absolute values and therefore E < Euc. 
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(b) Let a~, a2 . . . . .  a,  be non-negative real numbers and let 

g~ = ~ (ai) k • 
i = l  

It can be shown [72] that for arbitrary numbers p, q, r, such that p > q and r > 1, 

~-Lpr/l)~qr ~ (]A,p/,Ltq) r . 

In particular, if p = 2, q = 1 and r = 2 the above general result reduces to 

g~/g~ ~ (~2/~)2. 

Choosing a i = [xl] and bearing in mind Eqs. (5), (22) and (23), 

~ x ~  = 1 8 m -  12n 
i = l  

(23) 

we immediately arrive at 

(18m - 12n)/(2m) _> (2m/E) z 

from which it follows 

E _> ec (24) 

where 

ec = [4ma/(9m - 6n)] 1/2. (25) 

Recall that Eq. (23) is just an expression for the fourth spectral moment  and that 
its validity is restricted to benzenoid systems; for more details on the spectral 
moments of benzenoids see [1]. 

Inequality (24) was first deduced by Cioslowski [73], but using a different way 
of reasoning. Eq. (25) is easily transformed into 

ec = [dZ/(9d -- 12)] 1/2 EMc 

where d = 2m/n is the average vertex degree. Obviously, for benzenoid systems, 
2 _< d < 3. Now, it is elementary to prove that in the interval [2, 3) the minimum 
of the function [dZ/(9d - 12)] 112 is at d = 8/3 and is equal to (16/27) 1/2. Therefore 
ec >- (16/27) 1/z EMc and consequently, E >_ (16/27) 1/2 EMc. 

This completes the proof  of Theorem 5. 
Having in mind the bounds (20) it is not at all surprising that a very good 

linear proportionality between E and EMc has been observed [71]. This important  
issue is discussed in due detail in Sect. 6. 
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Total n-Electron Energy of Benzenoid Hydrocarbons 

As already mentioned, quite a few upper and lower bounds for the total n-electron 
energy of benzenoid hydrocarbons were deduced after the pioneering work [71] 
of McClelland. The most important  of  them are briefly outlined in the present 
section. As before, n, m and K denote the numbers of vertices, edges and Kekul6 
structures, respectively. 

Theorem 6 [ 7 4 ] .  Denote the term 2m - nK 4/n by 6 and observe that 6 is positive 
for all benzenoid systems. Then 

] / / 2 m n -  ( n - 2 )  6 < E  < ~ - 2 6  . 

Recall that EMC = ~ and compare Theorem 6 with Theorem 5. 

Theorem 7 [75]. Consider the system of equations 

x 2 + ( n / 2 -  1)y 2 = m  

x y n / 2 - 1  = K ,  K > 0 .  

Let xl, Yl be the solution of this system, such that x 1 > Yl > 0. Let x2, Y2 be the 
solution satisfying Y2 > x2 > 0. These solutions exist for all chemically relevant 
values of n, m and K, and are unique. Then 

where 

Emi  n ~< E < Ema  x 

Emi n = 2x 1 + (n -- 2)Yl 

Emax = 2x2 + (n -- 2)Y2" 

The equality E = Emi n holds only for benzene. 
In [75] the bounds Emi n and Emax were approximated as follows: 

Emi n = 2T + 2q(K/T) TM 

Ema x = 2(mq) 1/2 + 2K(q/m) q/2 

where q = n/2 - 1 and 

T = Vm - qK[m - q(K2/m)~lq] - ~i2- 

(26) 

(27) 
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Theorem 8 [73]. The smallest  positive eigenvalue in the spect rum of a benzenoid  
system is denoted  by Xn/2. Let b be the n u m b e r  of bay regions [1]. Then  

Xn/z(9mn - 6n z -- 2mZ)/(9m -- 6n) 

+ 2 1 / ~  m2/(9m - 6n) _< E _< (n ~ + 2m) (Q + 2 I,,"P) 1/2 

where 

P = (72mn - 72n z - 4m z + 48m + 6nb) / (9mn - 6n 2 - 2m 2) 

(29) 

Q = (91mn - 72n 2 - 18m 2 + 24n + 3nb) / (9mn - 6n 2 - 2m2).  

(30) 

Theorem 9 [76]. Let B a benzenoid  system and  let E r be defined as 

ET = 2 ] / m  + [½ n (n  -- 2) b(B, 2)] 1/2 . 

Then  E _< ET. 

(31) 

Recall that  b(B, 2) is the second coefficient of the characterist ic po lynomia l  of 

B and  that  it satisfies 

b(B, 2) = (m 2 - 9m + 6n) /2 .  

The result  of Theo rem 9 was later  slightly improved  [77]. Let EaTD be defined as 

EGT D ---- 2 [3 mET + [3 n (n  -- 2) (n -- 4) b(B, 3)] ~/2 - ( S m 3 / n ) l / 2 ]  1 / 3  

(32) 

where b(B, 3) is the third coefficient of the characteris t ic  po lynomia l  of B, 

conforming  to the relat ion:  

b(B, 3) = ~ (m 3 - 27m 2 + 158m + 48) + 3n(m - 8) + b .  (33) 

Then  E _< EOTD. In  addi t ion  to this, EGTO --< ET --< EMC. 

Theorem 10 [78, 79]. Define the funct ion Ec(x) as 

Ec(x) = 2x ~/2m/n + RS + (n - 2 x ) ~  - R/S (34) 

where 

1 
R = - - [ / 1 8 m n  - 12n 2 - 4m 2 

n 

S = S(x) = ~/(n - 2x)/(2x) . 

Then  E _< Ec(1). Fu r the rmore ,  Ec(1) < EMc. 
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6 Approximate Formulas for Total n-Electron Energy 

A plethora of approximate topological formulas for the total n-electron energy 
have been proposed in the chemical literature. The early works in this area (e.g. 
[4, 80-82]) were mainly aimed towards obtaining reliable numerical values for E. 
More recent investigations put the emphasis on the mathematical properties of E 
and, in particular, on its dependence on molecular structure. 

In the case of benzenoid hydrocarbons it is nowadays firmly established that 
the two most important structural parameters influencing the value of E are n 
and m, the numbers of carbon atoms and carbon-carbon bonds, respectively. The 
third-important invariant seems to be K, the number of Kekul6 structures. (More 
about this issue can be found in Sect. 7.) 

Approximate expressions for E, depending only on n and m are referred to as 
formulas of (n,m)-type. Analogously, formulas of (n,m,K)-type are those in which 
the "topological" parameters are n, m and K. 

Other structural invariants have also been considered as parameters influencing 
the E-value of benzenoid molecules (e.g. the length of linear polyacene fragments 
[82], the modified Hosoya index [65, 83-85], the number of bay regions [86, 87] 
etc.). In what follows we focus our attention only to approximate formulas of 
(n,m)- and of (n,m,K)-type. 

6.1 The McClelland Formula 

In his seminal paper [71] McCMland proposed approximating E by means of the 
simple (n,m)-type formula. 

E ~ aEMc (35) 

where E~c is given by Eq. (19) and where a is an empirical constant, determined 
by least-squares fitting. (Recall that EMc is an upper bound for E.) 

McClelland's formula (35) was criticised by Milun, Trinajsti6 and the present 
author [88], who argued that according to (35) all isomers are predicted to have 
equal E-values. Whereas this objection is certainly true, the criticism turned out 
to be largely unjustified. In addition to Eq. (35) over 20 isomer-undistinguishing 
approximate formulas for E have been put forward in the chemical literature and 
none has been found to be (significantly) better than McCMland's (see the 
subsequent Section). 

In the case of benzenoid hydrocarbons, Eq. (35) reproduces E with an average 
relative error of only 0.4%. This, in turn, means that more than 99,5% of E is 
determined by the simple structural parameters n and m and that variations in 
E-values of isomers are fairly (but not negligibly) small. 

As outlined in Sect. 5.2, after the discovery of McClelland's upper bound many 
other upper bounds for E have been found, all lying closer to E than EMc. 
Nevertheless, none of them shows a better correlation with E than EMc. In addition 
to this, among the numerous lower bounds for E none was found to correlate 
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with E better  than EMC- This all implies that  the gross par t  of  E not  only depends 
on n and m, but  that  this dependence has the functional form anticipated in Eq. (35). 

These somewhat  surprising empirical findings were recently rat ionalized by 
discovering a McClel land-type lower bound  for E of benzenoid hydrocarbons  [72]. 
Bearing in mind Theorem 5, a first guess for the mult ipl ier  a in Eq. (35) could be 
the ari thmetic mean of I and (16/27) 1/2, which equals 0.885. This is quite close to 
the empirical value a = 0.908. 

6.2 Other Formulas of (n,m)-Type 

The numerous (n,m)-type approximate  formulas for E were examined in three com- 
parat ive studies [89-91]. Their results, complemented by a few newly obta ined 
approximat ions  are collected in Tables 1 and 2. 

Let E* be a mathematical  expression of  (n,m)-type, either an approx imat ion  or  
an upper  bound  or a lower bound  for the total  n-electron energy. Then we consider 
the (n,m)-type approximate  formulas:  

E ,-~ a lE*  (36) 

Table 1. Coefficients in the approximate (n,m)-type formulas (36) and (37) 

Equation Literature a~ az bz 
for E* source of E* 

38 71,93 0.908 0.898 0.45 
39 73 1.174 1.167 0,21 
40 73 0.087 0.083 1.96 
41 76 0.919 0.899 0.90 
42 77 0.928 0.902 1.13 
43 78 0.948 0.926 0.92 
44 79 0.959 0.931 1,13 
45 79 0,978 0.970 0.30 
46 79 1.077 1,067 0.40 
47 - 1.413 1,431 -0.48 
48 -- 1.167 1.125 1.42 
49 94 1.048 1,038 ~39 
50 91 1,015 1.008 0.27 
51 91 1.031 1.019 0.44 
52 91 1,023 1.014 0.35 
53 91 1,010 1,005 0.21 
54 91 1.030 1,018 0.44 
55 91 1.020 1.0tl 0,32 
56 91 1.069 1.044 0,95 
57 95 1.326 1.322 0.13 
58 96 0,799 0.788 0.57 
59 96 0.739 0,729 0.54 
60 96 0.702 0.693 0,51 
6t 96 0.677 0.669 0.49 

48 



Total n-Electron Energy of Benzenoid Hydrocarbons 

Table 2. Results of numerical testing of approximate (n,m)-type formulas (36) and (37) 

Equation Eq. (36) Eq. (37) correlation 
for E* coefficient 

mean error max. error mean error max. error 
(%) observ. (%) (%) observ. (%) 

38 0.37 1.2 0.30 1.0 0.9998 
39 0.33 1.3 0.31 1.2 0.9998 
40 2.31 9.5 2.04 8.3 0.990 
41 0.54 2.3 0.30 1.0 0.9998 
42 0.63 2.7 0.31 1.1 0.9998 
43 0.54 2.1 0.30 1.1 0.9998 
44 0.63 2.7 0.30 1.1 0.9998 
45 0.35 1.1 0.32 1.2 0.9998 
46 2.73 8.8 2.77 8.8 0.98 
47 0.66 2.7 0.58 2.6 0.9992 
48 0.93 4.0 0.58 2.5 0.9992 
49 0.36 1.2 0.30 1.0 0.9998 
50 0.33 1.2 0.31 1.1 0.9998 
51 0.46 1.6 0.42 1.4 0.9996 
52 0.38 1.4 0.34 1.2 0.9997 
53 0.33 1.3 0.31 1.2 0.9998 
54 0.49 1.6 0.45 1.4 0.9996 
55 0.40 1.4 0.37 1.3 0.9997 
56 0.92 3.2 0.87 2.8 0.9995 
57 0.34 1.3 0.34 1.2 0.9997 
58 0.42 1.6 0.31 1.0 0.9998 
59 0.44 1.6 0.35 1.0 0.9998 
60 0.47 1.7 0.40 1.2 0.9997 
61 0.52 1.7 0.45 1.4 0.9996 

and 

E ~ a2E* + bE (37) 

and determine al,  a2 and b 2 by least-squares fitting. The data base for these 
calculations is the set of 104 Kekul6an benzenoid hydrocarbons from the book 
[92], possessing three or more condensed six-membered rings. 

The following expressions for E* have been taken into consideration: 

E* = EMc, see Eq. (19) (38) 

E* = ec,  see Eq. (25) (39) 

E* = (n l ~ o  + 2m) (Qo + 2 l/Poo) 1/2 (40) 

where Po and Qo are obtained from Eqs. (29) and (30), respectively, by setting b = 0; 

E* = ET, see Eq. (31) (41) 

E* = E°~o (42) 

49 



Ivan Gutman 

where E ° x o  is ob ta ined  f rom Eqs. (32) and  (33) by set t ing b = 0; 

E* = Ec(1) ,  see Eq.  (34) 

E* = Ec(2 ) ,  see Eq.  (34) 

E* = Ec (T /2 ) ,  see Eq.  (34) 

E* = Ec(T  ) , see Eq.  (34) 

where T is the integer  par t  of  mZ/(9m - 6n); 

E* = n 

E * = m  

E* = [3 n2/(n 2 _ 1 ) ] 1 / 2  EMc 

50 

(43) 

(44) 

(45) 

(46) 

n 
E* = 4-  [[(15m - 10n)/m] 1/2 

(47) 

(48) 

(49) 

+ [(24m z - 45mn + 30n2)/(mn)] l/z] (50) 

E* = 4 [[(553m - 504n + 168)/(45m - 30n)] 1/z 

E • 

-t- [(1080m 2 -- 2379mn + 1512n 2 -- 504n)/(45m -- 30n)] l~z] 

(51) 

n [(553m - 504n + 168)/(3m)] TM 
4 

+ [~ m n  - (3n2/16)[(553m - 504n + 168)/(3m)]1/2] llz (52) 

3re[m/(15m - 10n)]1/2 (53) 

3m[(45m - 30n)/(553m - 504n + 168)] 1/2 (54) 

3m[3m/(553m - 504n + 168)11/'* (55) 

n 
E* = ~-[ [ (553m - 504n + 168)/(45m - 3On)] 1/z 

1 
+ - - [ ( 4 5 m  - 30n)/(553m -- 504n + 168)] 1/2 (182250m 3 

n 

- -670309m~n + 800424mn 2 - 308016n 3 + t69344n  2 

- 185808mn - 28224n)/(24885m z - 39270mn + 15120n z 

+ 7560m -- 5040n)] (56) 
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E* = ml/3n 2/3 (57) 

E* = [18 (m - 2n/3) n3] TM (58) 

E* = [158 (m - 72n/79 + 24/79)nS] 1/6 (59) 

E* = [1330 (m - 682n/665 + 352/665)n7] 1/8 (6o) 

E* = [10762 (m - 5855n/5381 + 3690/5381)n9] 1/1° . (61) 

Table 1 contains the coefficients in Eqs. (36) and (37) as well as the literature 
source of E*. Table 2 contains data revealing the quality of the approximations 
(36) and (37). 

The basic conclusions which follow from Tables 1 and 2 have already been 
summarized in Sect. 6.1. Thus, in spite of its great algebraic simplicity, the 
McCMland formula is not inferior to any of the much more sophisticated (n,m)-type 
expressions propposed to approximate the total n-electron energy of benzenoid 
hydrocarbons. Few of them, namely when E* is given by Eqs. (39), (45), (49), (50), 
(53) and (57), provide slightly better results than the McCleUand formula, but the 
gain in accuracy and/or reliability is meager and insignificant. 

Formulas worse than E = aln or E = a2n + b2 must be considered as 
absolutely useless. These are the expressions based on Eqs. (40), (46), (48) and (56). 

6.3  F o r m u l a s  o f  ( n , m , K ) - T y p e  

The problem of the dependence of E on the number of Kekul6 structures is 
examined in some detail in the subsequent section. Nowadays it is fairly well 
established that this dependence is linear. In former times, when this simple fact 
was not conceived, an astonishing variety of mathematical expressions was 
proposed for the description of the K-dependence of E. A comparative study of 
these early (in most cases unsuccessful) attempts is reported in [89]. The data 
collected in Tables 3 and 4 are analogous to those given in Tables 1 and 2. They 
are obtained using the same sample of 104 benzenoids from the book [92]. The 
following (n,m,K)-type expressions for E* have been examined: 

E* = Emin, see Eq. (26) (62) 

E* = E . . . .  see Eq. (27) (63) 

E* = _n (4m/n + 2K4/") 1/2 
2 

(64) 

E* = n + [2 (m - n/2) In K ]  1/2 (65) 

E* = EMc -- (~3~)~/4 (66) 
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where 

c~ = (n - 2)m2/(2n)  - (m 2 - 9m + 6n)/2 

n 
fi = -2- In (2m/n) - 2 In K .  

In  add i t ion  to Eqs. (62)-(66), in Tables  3 and  4 are inc luded the results of  
numer ica l  test ing of  some fur ther  a p p r o x i m a t e  (n ,m,K)-formulas  which  do  no t  

c o m p l y  with  the form of  Eqs. (36) and  (37): 

E = an + b l n K  + c 

E = an + bm + cnl/6(ln K) 5/6 + d 

E = an + bm + c K d  m-"  

E = (an + bm + 2 1 n K ) / ( 3 c m / n  + d) 

+ c n - Z ( a n  + b m  + 21n K)3/(3cm/n + d) 4 

E =  ( a + b x )  EMc 

E =  (a + b x  + c x  2) EMc 

E =  (a + b x + c x  2 + d x  3) EMc 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

Table 3, Coefficients in the approximate (n,m,K)-type formulas (36), (37) and (67)-(76) 

Equation Literature al a2 b2 
for E* source of E* 

62 75 1.054 1.091 - 1.38 
63 75 0.940 0.912 1.19 
64 89,97,98 1.009 1.015 -0 .32  
65 99 1.021 1.037 -0 .63 
66 99 1.165 1.193 -0 .96  

Equation Literature a b c d 
for E source of E 

67 4 1.379 0.585 0.747 
68 100,101 0.760 0.494 0,342 
69 102, 103 0.442 0.788 0.34 
70 104 0.965 2.326 0.422 
71 105 0.758 0.190 
72 106 1.29l -- 1.168 0.864 
73 106 1.306 --1.175 0.811 
74 106 0.725 0.330 --0.082 
75 106 1.574 -- 1.087 --0.592 
76 106 0.893 0.186 11 

0.115 
0.632 
1.810 

0.049 
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E =  (a + b x + c x - 1 )  EM c (74) 

E =  (a + b x  + c l n x )  EMc (75) 

E = (a + bx c) EMc (76) 

where x = (2m/n)-1/2 K2/n. 
The only remark  about  the da ta  in Tables 3 and 4 which we will make here 

is that  the expected error  of certain mul t iparameter  approximate  formulas of 
(n,m,K)-type is well below 0.1%. The theory lying behind these accurate formulas 
is outl ined in Sect. 7.2. 

Table 4. Results of numerical testing of approximate (n,m,K)-type formulas (36), (37) and 
(67)-(76) 

Equation Eq. (36) Eq. (37) correlation 
for E* coefficient 

mean error max, error mean error max. error 
(%) observ. (%) (%) observ. (%) 

62 1.32 4.3 1.04 3,9 0,998 
63 0.78 2.9 0.37 2.4 0.9998 
64 0.43 1.7 0.41 1.5 0.9996 
65 1.07 4.6 0.99 4.4 0.998 
66 0.85 4.3 0.55 2.0 0.9995 

Equation mean error max. error correlation 
for E (%) observ. (%) coefficient 

67 0.47 1.8 0.9995 
68 0.10 0.6 0.99998 
69 0.14 0.6 0.99997 
70 0.59 2.1 0.9997 
71 0.092 0.45 0.999983 
72 0.075 0.42 0.999986 

" 73 0.074 0.42 0.999986 
74 0.078 0.43 0.999986 
75 0.075 0.42 0.999986 
76 0.072 0.42 0.999986 

7 Dependence of Total n-Electron Energy 
on Molecular Structure 

7.1 The (n,m)-Dependence 

The problem of the dependence of the total  ~-electron energy of benzenoid 
hydrocarbons  on the size of the molecule i.e. on the parameters  n and m seems 
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to be essentially settled by means of Theorem 5 and by recognizing the high 
precision of the McClelland approximation. The conclusions drawn in Sect. 6.1 
need no further comments. 

7.2 The K-Dependence 

As early as in 1949, Carter [4] expressed the view that the number of Kekul6 
structures (K) influences the E-value of a benzenoid hydrocarbon. There is little 
doubt that the exploration of the E - K dependence was much stimulated by the 
existence of two closely analogous relations [1]: 

glx,I; K2=filx,i 
i = l  i = l  

In the course of these researches three main standpoints have been advocated: 
(a) E is a logarithmic function of K. 
(b) E is a function of a structural invariant x, x = (2m/n)- 1/2 K2/,. 
(c) E is a linear function of K. 

Point (a) is a necessary consequence of the requirement that the total n-electron 
energy of a system M~ ~ M z composed of two disjoint molecules MI and M2 is 
equal to the sum of the total n-electron energies of M~ and M2: 

E(M1 u M2) = E(M0 + E ( M z ) .  (77) 

Because K{M 1 w M2} = K{M1} K{M2}, no relation between K and E other than 
logarithmic will satisfy Eq. (77). 

In spite of this nice argument, empirical testings reveal that the total n-electron 
energy of benzenoid hydroc~trbons shows no sign of having the desired logarithmic 
dependence on K (see, for instance, Fig. 3). Therefore, this direction of research 
[4, 68, 104, 107, 108] seems nowadays to be completely abandoned. 

Some time ago Cioslowski [t05] put forward a remarkable idea, namely that 
the eigenvalues of all benzenoid systems obey the same distribution law. This was 
named the "universal distribution approach" (UDA) and its elaboration resulted 
in the following (approximate) formula for the total n-electron energy [105]: 

E ~ F(x)EMc (78) 

where EMc is the McClelland expression, Eq. (19), x = (2m/n)-1/2 K2/n whereas 
F(x) is a universal function (i.e. same for all benzenoids) whose actual form within 
UDA remains unspecified. 

The UDA was eventually extended to various other n-electron properties of 
benzenoid hydrocarbons [109, 110]. 

We call Eq. (78) the Cioslowski formula. (Cioslowski himself [105] named it 
"the generalized McCleltand formula".) Evidently, the choice F(x) = const, reduces 
Eq. (78) to McClelland's approximation, Eq. (35). 
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Fig. 3. Total n-electron energy vs number of Kekul~ structures for a family of 328 benzenoid 
isomers C32Hla; reproduced from Ref. [114] 

For  any application of the Cioslowski formula we must know at least something 
about  the function F(x). In [110] it was established that F ( 1 ) =  1. In [106] 
trial-and-error at tempts were made to guess the (approximate) form of F(x), but 
the results obtained were not conclusive. Quite recently Cioslowski proposed [111] 
what  he calls "a final solution of the problem" by adjusting F(x) to the eigenvalue 
distribution of annulenes (F1) and linear polyenes (F2). He deduced [111] 

where 

and 

F~(x)  = 
u(x) 

sin [nu(x)/4] 

u(x) = log 2 (2x 2) 

2 X  2 -  1 

F 2 ( x  ) - -  
X 

[1/sin [nv(x)/2] - 1] 
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where 

v(x) = (2x 2 - 1)/(4x 2 - 1). 

In spite of different algebraic forms of F 1 and F2, their numerical values for 
chemically relevant ranges of x are quite close. By means of F1 and F z it is possible 
to reproduce E with an average error of 0.13%. 

Cioslowski's theory was recently reviewed in [112]. 
Irrespective of the form of the function F(x), the Cioslowski formula (78) 

anticipates a curvilinear dependence between E and K. On the other hand, already 
in 1973 George Hall [113] claimed that the relation between E and K is linear. 
Hall's arguments were both elementary and convincing. For a group of benzenoid 
isomers he plotted the E-values versus K and found that the points lie almost 
perfectly on a straight line. It is curious that this simple fact was not noticed 
decades earlier. The linear dependency of E on K was eventually studied in more 
detail, resulting in the approximate formula (69) [87, 102, 103]. 

When studying the dependence of E on K it is essential to consider families of 
isomeric benzenoid systems. Then, namely, the values of n and m are the same for 
all members of the family and, consequently, the large effects caused by n and m 
remain constant. In Fig. 3 the E-values are plotted versus K for a family of isomers. 
Although the points are somewhat spread, no curvilinearity can be observed. 

Because the points in Fig. 3 do not perfectly lie on a straight line there still 
seems to be a chance that they could comply with some curvilinear correlation 
of Cioslowski-type, Eq. (78). This possibility was carefully examined [114-116] 
and found not to be the case. 

Therefore, irrespective of the beautiful algebraic form of Cioslowski's UDA one 
must conclude that its predictions are not in complete agreement with empirical 
findings [115, 116]. Furthermore, it was shown [117] that a hidden assumption 
behind Eq. (78) is that the coefficients b(B, k) of the characteristic polynomial are 
not mutually correlated. Empirical testing [118] revealed that, on the contrary, a 
high degree of correlation exists between these coefficients. 

It was also demonstrated [119] that the Cioslowski formula (78) is not the only 
expression for E whicl/ follows from UDA considerstions. By maintaining the 
basic assumptions of UDA, but using different initial conditions, instead of Eq. 
(78) a formula of (n,m)-type was deduced, namely [119]: 

E ~ f(y)EMc. 

Here f is another unspecified function and y = (9mn - 6n2)/(2m2). For all 
benzenoid systems possessing three or more hexagons y was found [120] to lie 
in the narrow interval [105/64, 108/64]. Consequently, f(y) is practically a constant, 
reducing the above formula to the McCMland approximation, Eq. (35). 

It seems to be a firmly established empirical fact that the relation between E 
and K is linear. If so, then it would be beneficial to have some theoretical argument 
supporting this conclusion. The theoretical demonstration of the linearity of the 
E - K relation turns out to be a hard problem and is nowadays far from being 
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completely resolved. Nevertheless, some progress in this direction has been achieved 
recently [121]. It has been established that linear E - K dependence is obtained 
as a good approximation, provided the two smallest positive eigenvalues x./2 and 
Xn/2-1 are sufficiently well separated. Recall that in the Hfickel theory Xn/2 and 
xn/2-1 correspond to the highest occupied and the second highest occupied MO 
energy levels. 

7.3 Beyond the (n,m,K)-Dependence 

An inspection of Fig. 3 clearly shows that the total n-electron energies of isomeric 
benzenoid hydrocarbons possessing equal numbers of Kekul6 structures still vary 
to some limited extent. The structural invariants causing this variations are not 
satisfactorily understood, but ,,suspect no. 1" is the number of bay regions. (For 
the definition of bay regions see [1] or [12].) 

This expectation is based on the fact that the sixth spectral moment M 6 (see 
Ref. [1]) as well as the third coefficient b(B, 3) of the characteristic polynomial (cf 
Eq. (33)) are functions of the parameters n, m and b. (Recall that M2 and M4 as 
well as b(B, 1) and b(B, 2) are determined solely by n and m.) A rough theoretical 
rationalization of the b-dependency of E is obtained when E is expanded in terms 
of spectral moments [122-124]. 

In Fig. 4 the total n-electron energies of a family of benzenoid isomers with 
K = 9 are plotted versus the respective b values. Observe that the line obtained 
in this way has a slight curvature. 

11/,,.0 

113.5 

1133 

112.! 

b 
I t  

Fig. 4. Total n-electron energy 
vs number of bay regions for 
a family of benzenoid isomers 
possessing 9 Kekul6 structures; 
these h = 20 systems are ob- 
tained by attaching phenalene 
fragments to both ends of benze- 
noid chains containing 14 hexa- 
gons 
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The data from Fig. 4 indicate that E might be an increasing (almost tin- 
ear) function of b. Such a conclusion was supported by further empirical studies 
[87, 125]. 

Various types of bays (simple bays, coves, fjords [1]) have somewhat different 
effects on E. Work on the elucidation of these details is in progress. 

8 Cyclic Conjugation in Benzenoid Hydrocarbons 

In Sect. 3 the theory of cyclic conjugation was briefly outlined. The quantity el(Z), 
defined via Eq. (10), measures the effect of the conjugation along the cycle Z. At 
the same time, ef(Z) is the effect of the cycle Z on the total n-electron energy of 
the respective conjugated molecule. 

Extensive calculations of the ef-values of benzenoid hydrocarbons were recently 
reported [39, 40, 64]. In what follows we consider only the case when Z is a 
hexagon. As customary, we then call Z a ring. 

In most cases the ef-values closely follow the conjugation pattern anticipated 
by the Clar aromatic sextet theory [12, 126], Three typical examples of this kind 
are perylene (1), dibenzo[g,p]chrisene (2) and coronene (3): 

1 2 3 

ef (a)= 0.1093 ef(a):O.1725 e f(a)= 0.0703 

ef(b)--O.0218 ef(b):O.0360 ef(b)=O.0298 

Recall that in all Clar formulas of 1, 2 and 3 the rings labeled a may possess an 
aromatic sextet whereas the rings labeled b are empty. 

Especially good agreements between the Clar picture and ef are observed in 
the case of fully benzenoid systems [39]. (A benzenoid hydrocarbon is said to be 
fully benzenoid if it has a Clar formula without double bonds.) Two typical 
examples are provided by triphenylene (4) and dibenzo[fg, op]naphthacene (5). 

4 

ef{a)= 0.1910 

ef (b) = 0.0242 

5 

ef(a)= 0.1t+72 

ef{b)=0.1928 

ef (c) = 0.021,7 
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For fully benzenoid systems the following two rules were formulated [39]. 

Rule 1. The effect of empty rings on the total n-electron energy of fully benzenoid 
hydrocarbons is nearly the same. The corresponding ef-values vary in the narrow 
interval (0.02, 0.03). 

Rule 2. (a) The main factor influencing the effect of a full ring on total n-electron 
energy is the number of adjacent empty rings. The smaller the number of adjacent 
empty rings, the larger is the ef-value. (b) A pair of nonadjacent empty rings 
decreases the ef-value of a full ring more than a pair of adjacent empty rings. 

Depending on the number and arrangement of the neighboring empty rings, 
the ef-values of full rings vary quite a lot, between 0.06 and 0.20. 

Rules 1 and 2 are special cases of some more general regularities which seem 
to hold for all benzenoid hydrocarbons. 

Rule 3. If the ef-value of a ring is large then the ef-values of the neighboring rings 
are small, and vice versa. If a certain structural factor increases the ef-value of a 
ring, then it decreases the ef-values of the neighboring rings, and vice versa. 

Rule 4. Each biphenyl fragment additionally increases the ef-values of its two 
hexagons. 

For example, the above "biphenyl rule" (together with Rule 3) explains the 
anomalously small ef-value of the ring c in peropyrene (6). The biphenyl fragments, 
increasing ef of the b-rings and consequently decreasing ef in the ring c, are 
indicated on the diagrams 7 and 8. According to the (unique) Clar formula of 
peropyrene (9), the b-rings are empty whereas the ring c possesses a fixed aromatic 
sextet and is therefore expected to have a major contribution to cyclic conjugation. 

I 
ef (a)= 0.1032 

ef (b) = 0.0595 

ef(c )= 0.0/+23 

9 

The effect of the "biphenyl rule" is small and is usually screened by much 
stronger conjugation modes (e.g. those taken into account by resonance, conjug- 
ated-circuit and/or Clar-aromatic-sextet theories [64]), In some exceptional cases, 
however, the "biphenyl rule" can completely invert the conjugation pattern 
anticipated by the classical theories. This particularly occurs in benzenoid 
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hydrocarbons with many fixed single and double bonds [64] for which the classical 
view predicts no conjugation at all. 

Two convincing examples of these "anomalies" are provided by the benzenoid 
systems 10 and 11. 

10 11 

ef(a) = 0.1161 ef (a)= 0.1008 

ef (b) = 0.0,',37 ef (b)= O.OB06 

ef Ic )= 0.0522 ef {c )=0.0927 

In both 10 and 11 the rings labeled by a and b may possess an aromatic 
sextet whereas the rings labeled by c are empty. Nevertheless, ef(c) is greater 
than ef(b). One should observe that in both cases the ring e belongs to four biphenyl 
fragments. 

The analysis of the el-values of benzenoid systems gives useful information 
about the conjugation modes in these molecules and reveals the range of the 
applicability of the resonance/conjugated-circuit/Clar-aromatic-sextet theoretical 
approaches. Deliberations along these lines [40, 64] go, however, beyond the ambits 
of the present work. 

9 Bibliographic Note 
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1 Introduction 

Enumeration of Benzenoid Systems and Other Polyhexes 

The problem of"ceU-growth" [1-5] is a classical problem of enumeration of graphs 
in mathematics. The biological analogy has been stretched so far as to refer to 
the benzenoid systems as "hexagonal animals" [2, 5, 6]. The enumeration of 
hexagonal animals/benzenoid systems may be traced back to Klarner [7], who 
followed up a suggestion by Golomb [8]. In these works, among others [2, 9, 10], 
the enumeration problems were viewed in a purely mathematical way. From this 
point of view, the general problem remains unsolved. Here it is relevant to quole 
Gutman [11]: 

"How many benzenoid systems (with a given number of hexagons) exist? 
Harary offers US $ 100 for the solution of this difficult enumeration problem 

[121." 
As we shall see in the subsequent sections, some partial solutions to this 

mathematical problem exist. 
The first enumeration of benzenoids in a chemical context is probably contained 

in the paper from 1968 of Balaban and Harary [13], a chemist and a mathematician. 
After a period of some years with seemingly little activity in this area, the problems 
were taken up again in pace with the access to modern computers [14, 15]. This 
is also to be understood in the way that the emphasis gradually shifted from 
algebraic to numerical solutions. The beginning of this new era can be dated to 
a paper from 1980 by Balasubramanian et al. [14], from which we cite the passage: 
"Unfortunately, the enumeration of all benzenoid hydrocarbons containing n [read 
h] rings is the well-known unsolved 'cell-growth problem' with hexagonal animals 
[4]". A part of this passage was cited elsewhere by Knop and Trinajsti6 with 
collaborators, the Diisseldorf-Zagreb group [15]. In 1983 they declared about tire 
paper [14] from which the passage is taken: "This work stimulated our interest 
in the problem,. .  ". 

A major event was the appearance of a book in 1985 on generation and 
enumeration of certain classes of molecules, including benzenoids [16]. It  was 
launched by the Dfisseldorf-Zagreb group. We wish also to mention a mini-review 
with supplements which came from the same school prior to the book [17]. 

Soon this field of computer-generation and enumeration of benzenoids flared 
up. A major review with supplements by fourteen authors [18], also referred to as 
a consolidated report, appeared in 1987 and refers to twenty-one relevant 
publications from 1984 or later. A great number of works in this area have been 
published since, as is going to be documented in the subsequent sections. Here we 
only mention a communication on supplements to the consolidated report [19]. 

Balaban published an early review [20] and recently a survey of enumeration 
results for benzenoids and coronoids [21]; these two publications together clearly 
illustrate the development in the area. The most recent review so far with the most 
complete quotations of enumeration data for benzenoids and coronoids is found 
in a monograph by Gutman and Cyvin [22]. 

Now since the class of coronoids has been mentioned beside the benzenoids we 
wish to stress the importance of defining the terms so that it should never be 
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doubt about what actually is enumerated. This brings us naturally to the next 
section. In conclusion of the present section, we only give some general references 
of relevance to the topic [22-26]. 

2 Definitions and Disposition 

2.1 Definition of the Main Systems 

The opening lines of the chapter on enumeration from the monograph of Gutman 
and Cyvin [22] read: "By enumeration of benzenoid systems, the counting of all 
possible non-isomorphic members within a class of benzenoids is understood. 
Usually, but not always, the number of hexagons (h) is the leading parameter. 
Thus the enumeration for h = 1, 2, 3, 4, etc. is to be executed." 

Perhaps the most precise definitions (for hexagonal systems in mathematical 
chemistry) are attached to the benzenoid systems (or simply benzenoids) and 
coronoid systems (or coronoids), although no universally accepted terminology 
has been established on this point. On the contrary, a "plethora of names" [26] 
or "surprisingly large number of names" [22] have been used more or less 
synonymous with what we call a benzenoid (cf. also Gutman [27]) or a coronoid 
[22]. Here we follow the terminology of some of the cited references [22, 26], both 
for the two names mentioned above and many other concepts. 

A benzenoid is defined in a lucid way by means of a cycle (the perimeter) on 
a hexagonal lattice [22, 24, 26, 27]. It is a geometrical object consisting of a set of 
congruent regular hexagons in a plane, which are simply connected. Any two 
hexagons either share one and only one edge or they are disjoint. In the definition 
of a coronoid the restriction about connectivity is released. A single coronoid is 
defined in terms of two cycles, one (the outer perimeter) completely embracing 
the other (the inner perimeter) [21]. Thus a coronoid exhibits a hole, the corona 
hole. By definition, a corona hole should have a size of at least two hexagons. A 
multiple coronoid is a hexagonal system with more than one hole and defined as 
a straightforward generalization of single coronoids. One speaks about double 
coronoids, triple coronoids, and so on; in general g-tuple coronoids (with g holes 
each). 

The term polyhex has been used about benzenoids and coronoids together [18]. 
Benzenoids are polyhexes without holes, while a single or multiple coronoid is a 
polyhex with one or more holes, respectively. There is also a tendency to use the 
term polyhex in a more general sense [16]. Here we shall use it as a universal term 
for all hexagonal systems which are to be considered. 

2.2 Addition Modes 

A specification of the five addition modes is useful for some of the subsequent 
discussions and definitions. The modes can be vizualized as shown in Fig. 1; (i)- (v). 
An example of corona-condensation is included (vi); here the addition of a hexagon 
creates a corona hole. 
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(i) 

one-contact addition 

(ii) 

(iii) 

(iv) 

two-contact addition 

three-contact addition 

four-contact addition 

(vi) 

five-contact addition 

corona-condensation 

Fig. 1. Illustration of the five addition modes, (i)- (v), and an example of corona-condensation 
(vi). The added hexagons are grey. The pendent lines symbolize hexagons which may, but 
need not be present 

All polyhexes with h + 1 hexagons can be generated by adding one hexagon 
to a perimeter (outer or inner) each time to all polyhexes with h hexagons according 
to the five addition modes or a corona-condensation. For  simply connected 
polyhexes the five addition modes applied to the (only) perimeter are sufficient. 

2.3 Circulenes 

Here the term circulene is used so that the coronoids form a subclass under 
circulenes. The smallest circulene which is not a coronoid, is [6]circulene, a system 
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of six hexagons around a cavity of one hexagon. The corresponding hydrocarbon 
is chemically indistinguishable from coronene. It is actually only a new way of 
looking at the same molecule. Usually coronene is identified with a benzenoid 
system of seven hexagons. It  has a unique representation in terms of hexagons 
as shown below (left-hand drawing). The right-hand drawing shows coronene as 
a dualist. In a dualist each point (vertex) represents a hexagon. 

The dualist representation, in contrast  to the hexagon representation, does 
distinguish between coronene and [6]circulene; the latter system is depicted below. 

O 
In general, a circulene is a potyhex with a hole, where the hole, as in [6]circulene, 
may have the size of one hexagon. We recall that  a coronoid has a hole with a 
size of at least two hexagons. Therefore [6]circulene and its derivatives are not 
coronoids, but they are referred to as quasi-coronoids. When emphasizing that a 
circulene has one and only one hole it should be called monocirculene. A 
polycircutene is a polyhex with more than one hole; one speaks about  dicirculene, 
tricirculene, and so on. 

Any (poly)circulene, which may be a (multiple) coronoid, is a multiply connected 
polyhex. 

2.4 Helicenic Systems 

A helicenic system is a potyhex with overlapping edges if drawn in a plane. The 
five addition modes, occasionally supplemented with corona-condensation,  should 
be followed strictly, but irrespective of possible collisions with hexagons already 
present. Any number  of overlapping edges is possible; some examples are shown 
below. Also for helicenic systems (as for circulenes) it is illuminating to use dualists. 
Here we show the dualists for the same systems. The left-hand system of the 
bo t tom row is interpreted as a substituted [6]circulene. 

It  should be noticed that  any three connected points of the dualist of a polyhex 
form either (a) a straight line, (b) an angle of 120 ° or (c) an equilateral triangle. 

The collisions of edges are avoided when the helicenic systems are thought of 
as nonplanar.  Then it is imagined that the system during its generation can pass 
from one layer to another  on a multilayer lattice. Therefore it is usual to refer to 
non-helicenic polyhexes as (geometrically) planar and helicenic as nonplanar.  
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( ×3 CC) 
Below we give some examples of geometrical objects which are not (helicenic) 

polyhexes and therefore not to be considered in the following. 

v 

In the first example (top row) the polyhex-like object has a vertex of degree four, 
which is forbidden. Also the corresponding dualist-like formation is forbidden. In 
the bottom row the degrees of the vertices are not violated, but yet the systems 
are obviously not polyhexes. It is not allowed, for instance, to flip naphthalene 
around the middle edge. In none of the examples above the rules of addition 
(Fig. 1) have been followed strictly. 
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Comment 

It may seem unnecessary to bring in such artifacts as the above examples of 
non-polyhexes. Yet we find the discussion to be warranted. Ege and Vogler [28, 29], 
for instance, treated pyrene in a group together with coronene ([6]cireulene) and 
six coronoids. Implicitly, the authors considered pyrene as [4]circulene and ascribed 
an inner perimeter of two edges to it. That leads to vertices of degree four as in 
one of the "forbidden" examples above. Therefore we claim that the interpretation 
of pyrene as [4]circulene is not justified. 

A helicenic system which is a simply connected polyhex (without holes) may 
be called a helicenic quasi-benzenoid. For the sake of brevity it is sometimes called 
just simply a helicene. In this section we have also seen examples of helicenic 
quasi-coronoids. They are referred to as helicirculenes. 

Any helicenic polyhex may be referred to as (geometrically) non-planar. 

2.5 Survey of the Classes 

The classification of potyhexes treated above is surveyed schematically in Fig. 2. 
In the following we shall avoid the terms quasi-benzenoid and quasi-coronoid. 

helicenic quasi-benzenoid, 
benzenoid X ~  helicene ~Polyhe ~..~vnon-hel icenic qc. 
coronoid quasi-coronoid ( qc . )~he ] i cen i  c 

~ r - . ~  ~ helicirculeneqC'' 
circulene 

Fig. 2. Survey of the classification of polyhexes 

2.6 Catacondensed and Pericondensed Systems 

The distinction between catacondensed and pericondensed systems is applicable to 
all the classes of  polyhexes treated above (Fig. 2). A catacondensed polyhex is 
defined by the absence of internal vertices. An internal vertex is a vertex shared 
by three hexagons. A pericondensed polyhex possesses at least one internal vertex. 
In terms of dualists a pericondensed polyhex reveals itself by the presence of at 
least one three-membered cycle (triangle). A dualist of  a circulene has a cycle 
larger than a triangle. 

When the title concepts are applied to the simply connected polyhexes we shall 
sometimes use the brief designations catafusenes and perifusenes [13, 30]. A dualist 
of a catafusene is acyclic (a tree). 
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2.7 Disposition 

Enumeration of Benzenoid Systems and Other Polyhexes 

In Sect. 3 some classical results of enumeration of polyhexes are reported. They 
include "Klarner numbers", "Harary-Read numbers" and "Lunnon numbers", 
which were so beautifully (but not infallibly) sorted out for the first time by the 
Diisseldorf-Zagreb group [17]. Reference to the "D~sseldorf-Zagreb numbers" is 
also contained in Sect. 3. Furthermore, original supplements to the different tables 
are found therein. 

These numbers, when taken together, account for all the classes of polyhexes 
defined above, viz. benzenoids, helicenes, and circulenes including helicirculenes 
(Fig. 2). In Sect. 3 the distinction between catacondensed and pericondensed 
systems is the only one considered for the different classes in question (Fig. 2). 
Section 4 contains some additional definitions. 

In Section 5 the known analytical solutions for different classes of polyhexes 
are reported. 

Section 6 deals with the enumeration of catacondensed simply connected 
polyhexes, i.e. catacondensed benzenoids and helicenes. 

In all the following sections only benzenoids (planar, simply connected poly- 
hexes) are treated. Several subdivisions according to different principles are 
considered, as explained in the appropriate sections. 

In general, this chapter does primarily not deal with methods and principles of 
enumerations, such as coding and nomenclature. Information on these issues are 
found in the different individual papers, which are cited, and especially in a recent 
review [31]. In the present treatise, emphasis is laid on the presentation of results 
in surveyable tables. The review of relevant literature results, which tends to be 
as complete as possible, is supplemented by a substantial amount of own results 
not published before. 

The numerical results are to a large extent followed up by illustrations of the 
forms of the polyhexes of different classes. In Sect. 3, 4 and 6 the dualists are 
employed. In all the subsequent sections the benzenoids are presented as black 
silhouettes on the background of a hexagonal lattice. This presentation, which 
already is encountered in Sect. 5 and 6, emphasizes the fact that a benzenoid can 
be superimposed on a hexagonal lattice. When appropriate, the silhouettes are 
supplied with numbers indicating the Kekul6 structure counts (K numbers). In 
these cases the systems are actually ordered according to increasing K numbers. 
Isoarithmic systems are indicated by a horizontal bracket-like line. 

In the following we give a survey of the different centres which at present are 
engaged in the enumeration of polyhexes by computers. 

Errata 

Corrections to numerical errors in literature data are found throughout this 
chapter. As a principle, a wrong number from polyhex enumerations is never 
quoted. 
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2.8 Contemporary Computer-Enumeration Activity 

There are five researchers or groups which have been involved in computer-aided 
enumerations of polyhexes after 1985 [18]; 
(i) Cioslowski, Jerzy; he has operated from different places in USA - George- 

town University, Washington DC; LANL, Los Alamos, New Mexico; 
FSU/SCRI, Tallahassee, Florida. 

(ii) Diisseldorf-Zagreb group; Jan V. Knop and Klaus Szymanski with others 
from The University of D/isseldorf (FR Germany), Nenad Trinajsti6 with 
others from The Rugjer Bogkovi6 Institute, Zagreb (Yugoslavia). 

(iii) He & He; He Wenchen and He Wenjie, Shijiazhuang (PR China). 
(iv) Novi Sad; Ratko Togi6 with others from the University of Novi Sad 

(Yugoslavia). 
(v) Trondheim; Jon Brunvolt, Bjorg N. Cyvin and Sven J. Cyvin with others, 

The University of Trondheim (Norway). 

Apart from the preparation of the consolidated report [18] active collaboration 
employing computers has been going on between Trondheim on one side and (a) 
Diisseldorf-Zagreb, (b) He & He and (c) Novi Sad on the other. Exchanging of 
computer programs between different research groups often meets with difficulties 
in general. To our knowledge the only successful attempt in this direction, as far 
as the enumeration of polyhexes is concerned, was the transfer of some programs 
from Novi Sad to Trondheim. 

3 Survey of Enumeration Results for All Polyhexes 

3.1 Benzenoids and Coronoids 

The Dtisseldorf-Zagreb group, from the beginning of their enumeration of 
polyhexes, concentrated on the planar (non-helicenic) systems. This choice seems 
to have had an immense impact on the direction of these studies inasmuch as all 
the contemporary researchers in the field-(cf. Sect. 2.8) follow their practice. The 
planar simply connected polyhexes, viz. benzenoids, are the systems which have 
been and currently are investigated most extensively with respect to their 
enumeration and classification. This is also the subject of the main bulk of the 
present chapter. Coronoids (which also are planar, but not simply connected) are 
sometimes enumerated together with the benzenoids. Furthermore, a large amount 
of work has been done in specific studies of coronoids, including their enumeration 
and classification. Apart from a gross survey in this paragraph, the coronoid 
systems are not treated in the present chapter. 

The grand totals of He and He [32, 33] on one hand and Cioslowski [34] on 
the other pertain in both cases to benzenoids plus coronoids; cf. Table 1. The 
totals in this table for h > 10 are collected from additional sources [18, 35-37]. 
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In this documenta t ion  we have disregarded the possibil i ty of finding the numbers  
for h = 13 and h = 14 by combining published numbers of benzenoids and 
coronoids from different papers. The separate numbers  of coronoids  are treated 
in the following and those of benzenoids in subsequent sections. 

In Table 2 the numbers of coronoids are listed. Those for h _< 13, which pertain 
to single coronoids,  are documented by different sources [17, 18, 38-40]. The totals 
for h > 12 to be entered in this table are available for h = 13 [36, 41], h = 14 
[36, 41], h = 15 [37, 42] and h = 16 [37], or more comprehensively from collected 
da ta  for h = 8 to 16 [37, 43, 44]. The numbers for h = 13 and 14 were split into 
those for the catacondensed and pericondensed systems by means of the knowledge 
about  single coronoids [18, 19, 45] and double coronoids  [41]. Table 3 shows the 
pert inent numbers  for double coronoids;  they are known up to h = 18. 

So far we have only been speaking about  the numbers of single and double 
coronoids.  Triple coronoids do  not  occur before h = 18, in which case there are 
2 catacondensed and 2 pericondensed forms of these systems [43, 44]. 

Numbers  for benzenoids separately can be determined as the differences between 
appropr ia te  numbers in Tables 1 and 2, but  this is not the way they were deduced 
originally. The Dfisseldorf-Zagreb numbers (or D Z G  numbers) is the designation 
which has been used [16, 17] about  the da ta  for catacondensed and pericondensed 
benzenoids, and benzenoids in total  with h < 10. These da ta  have later been 
supplemented by other  investigators [19, 46, 47], as well as the D/isseldorf-Zagreb 

Table 1. Numbers of benzenoids with coronoids* 

h Catacondensed Pericondensed Total 

1 1 a 1" 

2 1 a 1 ~ 
3 2 a 1 a 3 a 
4 5" 2 a 7 a 
5 12 a 10 a 22 a 
6 36 a 45 a 81 a 
7 118 a 213 • 331 a 
8 412 a 1024" 1436 a 
9 1490 b 5020 b 6510 b 

10 5587 24542 30129 ¢ 
11 21177 120335 141512 d,~ 
12 81433 590105 671538 d 
13 315511 2895109 3210620f.g 
14 1231318 14212553 15443871f.g 
15 t t 74662005 ~ 
16 t t 362506902 ~ 

* Single coronoids occur at h >_ 8; double coronoids at h > 13. 
" He and He (1985) [32]; b He and He (1986) [33]; c Cioslowski (1987) [34]; a He and He 
(1987) [35]; ~ Balaban, Brunvoll, Cioslowski, Cyvin, Cyvin, Gutman, He, He, Knop, 
Kova~evi6, Miiller, Szymanski, To~ic and Trinajsti6 (1987) [18]; f Mfiller, Szymanski, Knop, 
Nikoli6 and Trinajsti6 (1990) [36]; g Knop, Miiller, Szymanski and Trinajsti6 (1990) [37]; 
t Unknown 
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Table 2. Numbers of coronoids* 

h Catacondensed Pericondensed Total 

8 1 a 1 b 
9 3" 2 c 5 b 

10 15 ~ 28 ~ 43 d 
11 62 ~ 221 ¢ 283 ¢ 
12 312 ° 1642" 1954 ¢ 
13 t436 10928 e 12364 g 
14 6790 69504 76294 g 
15 ~ ? 454095 h'i 
16 ~ t 2643124h 

* Double coronoids occur at h > 13. 
" Dias (1982) [38]; b Knop, Szymanski, Jeri~evi6 and Trinajsti6 (1984) [17]; ~ Brunvoll, 
Cyvin and Cyvin (1987) [40]; d Knop, Mfiller, Szymanski and Trinajsti6 (1986) [39]; 
° Balaban, Brunvoll, Cioslowski, Cyvin, Cyvin, Gutman, He, He, Knop, Kova6evi6, Miitter, 
Szymanski, Toni6 and Trinajsti6 (1987) [18]; f He, He, Wang, Brunvoll and Cyvin (1988) 
[19]; g Knop, Mtiller, Szymanski and Trinajsti6 (1990) [41]; h Knop, Miiller, Szymanski and 
Trinajsti6 (1990) [37]; i Brunvoll, Cyvin, Cyvin, Knop, Miiller, Szymanski and Trinajsti6 
(t990) [42]; t Unknown 

Table 3. Numbers of double coronoids 

h Catacondensed Pericondensed Total 

13 l ~ l ~ 
14 5 ~ 6 ~ 11 ~ 
15 33 b 116 b 149 b 
16 211 1407 1618 ~'d 
17 1271 13852 15123 e 
18 7243 118517 125760 ¢ 

a Knop, Mfiller, Szymanski and Trinajsti6 (1990) [41]; b Brunvoll, Cyvin, Cyvin, Knop, 
Mfiller, Szymanski and Trinajsti6 (1990) [42]; ¢ Knop, Miiller, Szymanski and Trinajsti6 
(1990) [37]; a Cyvin, Brunvoll and Cyvin (1990) [43];" Brunvoll, Cyvin and Cyvin (1990) [44] 

group  itself [36, 37, 48-50] .  A listing of these da ta  with detai led d o c u m e n t a t i o n  
is pos tponed  unt i l  Sect. 7, where it marks  the start  of the t rea tment  of benzenoids  

exclusively. 

Errata 

The tota l  n u m b e r  of coronoids  with h = 10 was given er roneous ly  by  K n o p  et 
aL [16, 17] due to a misprint .  The correct number ,  viz. 43 (see Table  2), ob ta ined  
f rom independen t  c o m p u t a t i o n s  was repor ted  [34, 40] while K n o p  et al. [39], in 
the mean t ime ,  had  publ ished a correct ion with explanat ions .  

Dias  [38] gave correctly the n u mb e r s  of C32H16 and  C36H18 coronoid  isomers,  
which co r re spond  to the ca tacondensed  coronoids  for h = 8 and  h = 9, respectively 
(cf. Tab le  2). However ,  his n u m b e r s  for C4oH2o, C44H22 and  C4sH24, corre- 
spond ing  to h = 10, 11 and  12, respectively, are in error  [43, 51]. 
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Knop et al. [17] quoted a wrong number of Dias [38] concerning the closed-sheU 
(Kekul6an) C28H16 isomers. Later Dias [52] published the correct number of 62 
Kekul6an isomers of C28H16. Misled by the first wrong number Knop et al. [17] 
concluded with a wrong number of biradicalic (non-Kekul6an) C28H16 isomers 
in the very last sentence of the text of their paper [17]. Later, when they correctly 
had identified the 6 non-Kekul6an C28H16 isomers [16], they described the 
"disturbing" situation and located the error of Dias. 

3.2 Planar Polyhexes (Benzenoids and Planar Circulenes) 

In one of the classical papers on the enumeration of polyhexes, Lunnon [10] found 
the numbers of all geometrically planar polyhexes with h (number of hexagons) 
up to 12; see Table 4. In these numbers the helicenic systems are excluded, but 
all non-helicenic circulenes are included. Hence the numbers pertain to benzenoids 
plus planar circulenes. The contribution of Balaban and Harary [13] to the Lunnon 
numbers (cf. footnotes to Table 4) is commented in the next section. The Lunnon 
numbers have been extended to h = 13 and h = 14 by means of the data from 
Mfiller et al. [36]. 

The planar (non-helicenic) circulenes have also been considered separately, first 
by the Dfisseldorf-Zagreb group [16, 17, 35]; see Table 5. He and He [33] depicted 
the forms of these systems for h < 9; from these figures we have extracted separate 
numbers for the catacondensed and pericondensed systems up to this h value. For  
the catacondensed planar monocirculenes with h < 11 the numbers may be 
deduced from a work of Brunvoll et al. [54], who enumerated the benzenoid 
systems composed of coronene with catacondensed appendages up to h = 12. On  

Table 4. Numbers of planar polyhexes* 

h Catacondensed Pericondensed Total 

1 1 la ,  b 
2 1 1 a.b 
3 2 1 3 ~'b 
4 5 2 7 a'b 
5 12 10 22 a'b 
6 37 45 82 a'b 
7 119 214 333 ~'b 
8 417 1031 1448 ~'b 
9 1509 5063 6572 b 

10 5665 24825 30490 b 
11 21507 122045 143552 b 
12 82929 600172 683101 b 
13 t ~ 3274826 c 
14 t t 15796897 c 

* Monocirculenes occur at h > 6; dicirculenes at h >_ 10. 
Balaban and Harary (1968) [13]; b Lunnon (1972) [10]; c Mfitler, Szymanski, Knop, Nikoli6 

and Trinajsti6 (1990) [36]; ~" Unknown 
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Table 5. Numbers of planar circulenes* 

h Catacondensed Pericondensed Total 

6 1 n 1 b'c 
7 1 a 1 a 2 b.~ 
8 6 a 7 a 13 b'c 
9 20 a 47 a 67 b'¢ 

10 93 311 404 ~'c 
11 392 1931 2323 d 
12 1808 11709 13517 a 
13 t t 76570d 
14 t t 429320d 

* Dicirculenes occur at h _> 10. 
a He and He (1986) [33]; b Knop, Szymanski, Klasinc and Trinajsti6 (1984) [53]; ~ Knop, 
Szymanski, Jeri~evi6 and Trinajsti6 (1984) [17]; a Miiller, Szymanski, Knop, Nikoli6 and 
Trinajsti6 (1990) [36]; ? Unknown 

removing the central hexagon of coronene one obtains exactly the substi tuted 
[6]circulenes up to h = 11, which are sought for. Then it is only necessary to add 
the known numbers of catacondensed coronoids (cf. Table 2) in order  to get the 
numbers  to be entered in Table 5. Mtiller et at. [36] (the Diisseldorf-Zagreb group) 
have supplied the numbers  for the totals  in this table up to h = 14. In this paper  
they listed the coronoids  and non-coronoids  (derivatives of  [6]circulene) separately. 
Their numbers for h = 11 and h = 12 were reproduced by a new computer  run, 
in which we generated specifically the derivatives of [6]circulene, both cataeonden-  
sed and pericondensed. These da ta  were again combined with the numbers of 
coronoids  (Table 2) and with the p lanar  polycirculenes. The numbers of p lanar  
dicirculenes are entered separately in Table 6. 

The smallest tricirculene is a unique system with h = 13. 
Once the numbers in Table 5 are known all the Lunnon numbers for h < 12 

can be split into those for catacondensed and pericondensed systems. One only 
has to add the known numbers of benzenoids (see Sect. 3.1). 

Figure 3 shows the forms of all circulenes with h _< 9 as dualists. All of them 
are p lanar  (non-helicenic) monocirculenes. They include the unique coronoid  at 
h = 8 and the five coronoids  at h = 9 (cf Table 2). The dicirculenes with h _< 12 are 
depicted in Fig. 4. Also these systems are planar,  but  contain no double  coronoid.  

Table 6. Numbers of planar dicirculenes 

h Catacondensed Pericondensed Total 

t0 1 1 
11 2 4 6 
12 18 37 55 
13 101 326 427 
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h=6 h=7 

Fig. 3. (see next page) 

Finally the smallest tricirculenes (for h = 13 and 14) were depicted in the form 
of dualists; see Fig. 5. 

Comments and Errata 

Knop et el. [16, 17] stated that the differences between the Lunnon numbers [10] 
(which they quoted up to h = 10) and Diisseldorf-Zagreb numbers are attributed 
to the numbers of planar monocirculenes. Thereby they missed the (unique) 
dicirculene at h = 10. The authors [16, 17] also stated erroneously that dicirculenes 
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(h=9)  

t • • 

0 

ca , 

Fig. 3. All circulenes with h < 9 

do not appear "with less than 15 hexagons", while they actually appear at h > 10. 
Nevertheless, in their number 404 (cf. last column of Table 5; h = 10), as we have 
checked, the dicirculene is included. Consequently, the word "mono-circulenes" 
should be replaced by circulenes in the headings of the appropriate tables 
(corresponding to the last column for h < 10 of our Table 5) of the mentioned 
references [16, 17]. This is also the case for a table in a later publication [39]. 
Furthermore He and He [33], probably misled by Knop et at. [16], have stated 
that the Lunnon numbers "included planar mono-circulenes". We take this as a 
misinterpretation (although the statement is formally true), but it had no 
consequences for their numbers because they only treated the polyhexes up to 
h = 9 .  
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h=lO 

h=ll 

h=12 

Fig. 4. (see next page) 

In their illustrations of circulenes as dualists for h < 9, corresponding to 
our Fig. 3, He and He [33] represented [6]circulene as coronene with seven 
vertices. This may  just be a way of presentation, but we are inclined to consider 
it as an error. 

We have here given a precise interpretation of the Lunnon numbers,  perhaps 
for the first time since they were published in 1972 [10]; but see also Miiller et al. 
[36]. These numbers pertain to all planar (non-helicenic) polyhexes (benzenoids 
+ circulenes, including dicirculenes). Using this interpretation we have actually 
reproduced these numbers, also for h = 11 and 12. In other words, we have 
provided an independent check of the Lunnon numbers for the first time. 
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(h=l 2) 

Fig. 4, All dicirculenes with h < 12 

h=13 

h=14 

3> 
Fig. 5. All tricirculenes with h _< 14 
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3.3 Simply Connected Polyhexes (Benzenoids and Helicenes) 

The classical Hara ry-Read  numbers [9] are given in the first column of Table 7. 
Some of them (cf. footnotes to Table 7) are contained in the work of Balaban and 
Hara ry  [13] (for h < 6) or given by Balaban [30] (for h < 8) shortly before the 
pioneering paper  of Harary  and Read [9] appeared.  These numbers pertain to the 
catacondensed simply connected polyhexes, viz. catacondensed benzenoids and 
catacondensed helicenes, while the circulenes are excluded. Fo r  short, this class is 
referred to as catafusenes (Sect. 2.6). The "Dias  numbers"  [16, 17] were published 
considerably later [38] and are identical with the Hara ry-Read  numbers,  taken up 
to h = 8. Harary  and Read [9] in fact derived the numbers of catafusenes up to 
h = 40 by means of a generating function, but  gave only a list of the consecutive 
numbers up to h = 12. The last number  (for h = 40), viz. 256364771375268 
976315575, the authors  used to check their asymptot ic  results. Using the same 
method,  we have reproduced numerically all the published Hara ry-Read  numbers,  
including the twenty-four-digit  number  above. Here we report,  in cont inuat ion of 
Table 7, the numbers  of catafusenes for 13 < h < 20: 467262, 1981353, 8487400, 
36695369, 159918120, 701957539, 3101072051 and 13779935438. 

The helicenic simply connected polyhexes (helicenes) have also been considered 
separately. Their small numbers for h = 6 and 7 (cf. Table 8)are  obtainable  from 
a study of the il lustrations in Balaban and Hara ry  [13] and Balaban [30]. But all 
the entries of Table 8 for h < 10 have been given by the Diisseldorf-Zagreb group 
[16, 171. 

Now it is an easy matter,  with the knowledge of the numbers of benzenoids (cf. 
Sect. 3.1) to fill out the two last columns in Table 7 up to h = 10. We have-also 
determined the five supplementary numbers in Table 8, which have not  been given 
explicitly before. 

Table 7. Numbers of simply connected polyhexes* 

h Catacondensed ÷ Pericondensed Total 

1 I a'b 1 

2 1 a'b 1 
3 2 "'b 1 a 3 
4 5 "'b 2" 7 
5 12 a'b 10" 22 
6 37 ~,b 45" 82 
7 123 b'c 216 339 
8 446 b. c (1060) (1506) 
9 1689 b (5358) (7047) 

10 6693 b (27250) (33943) 
11 27034 b t t 
12 111630 b t I" 

* Catafusenes and perifusenes. Helicenes occur at h > 6. 
+ See the text for 13 < h < 20 and for h = 40. 
a Balaban and Harary (1968) [13]; b Harary and Read (1970) [9]; c Balaban (1969) [30]. 
* Unknown (Parenthesized numbers are probably wrong) 
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Table 8. Numbers of helicenes 

h Catacondensed Pericondensed Total 

6 1 a'b 1 b 
7 5 (a'`)'b 3 b 8 b 
8 35 b (36 b) (71 b) 
9 200 b (342 b) (542 b) 

10 1121 b (2736 b) (3857 b) 
11 5919 t 
12 30509 ~" t 
13 153187 't ~f 
14 756825 t t 
15 3688195 ~" ~" 

a Balaban and Harary (1968) [13]; b Knop, Szymanski, Jerirevi6 and Trinajsti6 (1984) [17]; 
c Balaban (1969) [30]. 

Unknown (Parenthesized numbers are probably wrong) 

Figure 6 shows the forms of helicenes for h < 8 as dualists. Those for the 
cataeondensed systems have been given previously [13, 30, 33], for h = 8 by He 
and He [33] probably for the first time. 

Figure 6 includes 35 pericondensed helicenes with h = 8, obtained by a 
systematic search. This number disagrees with Table 8, which prescribes 36 such 
systems. The controversy represents an open problem; an error in the computer- 
enumeration [17] can not be ruled out. 

Comments and Errata 

Balaban and Harary [13] anticipated the Lunnon numbers for h _< 8 as shown in 
Table 4. As original sources they referred to personal communications from 
L. S. Kassel for h = 6 and 7, and Martin Gardner  for h = 7 and 8. Balaban [30] 
repeated these numbers with reference to Kassel and to Klarner [7], where the 
latter reference as far as we can see is not appropriate. What  is worse, however, 
is that Balaban [30] subtracted Harary-Read numbers (for catacondensed benzen- 
oids + catacondensed helicenes) from Lunnon numbers (for total benzenoids + 
total planar circulenes), thus producing two "meaningless" numbers (in the 
characterization of Cyvin et al. [55]) for h = 7 and 8 (under the heading 
"Perifusenes'). Unfortunately Balaban [20] reproduced the two meaningless 
numbers in his early review on enumeration of polyhexes. They were also quoted 
by Rouvray [56]. 

In the consolidated report [18] it is stated erroneously that Lunnon [10] included 
helicenes in his numbers. 

In works of Dias [38, 52] it is often not made clear whether helicenes are included 
or not in the numbers. Even in his book [25], where a specification is supposed 
to be given, the classes (with and without helicenes) are mixed up and there are 
obvious mistakes, also in numerical values. 

It seems, strangely enough, that a list of all simply connected polyhexes 
(catacondensed and pericondensed together), as in the last column of Table 7, has 
not been given before explicitly. 
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h~7 

Fig. 6. (see next page) 

The controversy between Fig. 6 and Table 8 (see above) opens the possibility 
that the numbers 36 and 71 (for h = 8) in Table 8 should be changed to 35 and 
70, respectively. This also casts doubt on the correctness of the corresponding 
numbers for h > 8. If these enumeration errors could be proved, also certain 
numbers in Tables 7 and 9 would have to be corrected. 

3.4 All Polyhexes (Benzenoids, Helicenes and Circulenes) 

"On the Total Number of Polyhexes" is the title of the mini-review [17] which 
came from the Dfisseldorf-Zagreb school and has been to so much inspiration for 
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(h=8) 

Fig, 6. All helicenes with h _< 8 

us. The polyhexes, as defined above in Sect. 2.1, encompass benzenoids, helicenes 
and circulenes, including helicirculenes. Their  numbers  (up to h = 10) are available 
from the da ta  of the preceding sections if only the numbers of helicirculenes 
are added;  cf. Table  9. The grand totals therein coincide with those of Knop  et al. 
[16, 17] up to h -- 9. The Diisseldorf-Zagreb group claimed to have extended 
the list of the classical Klarner  numbers [1, 7]. Our  grand total  for h = 10 differs 
in one unit from the corresponding value of Knop  et al. [16, 17]. The reason for 
this is explained in the following. 

With regard to the helicirculenes the authors  of the mini-review [17] identified 
three systems at h = 10, which they described as [6]circulene with appendages.  

Table 9. Numbers of polyhexes in total* 

h Catacondensed Pericondensed Grand total 

1 t I" 
2 1 1" 
3 2 1 3" 
4 5 2 7 a 
5 12 10 22 a 
6 38 45 83 a 
7 124 2t7 341 b 
8 452 (1067) (1519 b) 
9 1709 (5405) (7114 b) 

10 6790 (27561) (34351) 

* Circulenes occur at h > 6, helicenes also at h > 6, and helicirculenes at h > 10. 
" Klarner (1965) [7], see also Comments; b Knop, Szymanski, Jeri~evi6 and Trinajsti6 (1984) 
[17] (Parenthesized numbers are probably wrong) 
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The forms are depicted in the book of Knop et al. [16]. They are also reprodueed 
in Fig. 7 (as dualists) together with another system without appendage (the system 
at the extreme left). Knop et al. [16, 17] either missed or did not consider this 
system. In our opinion it should be reckoned among helicirculenes because it is 
undoubtedly a non-planar circulene, not violating the definition of helicenic 
systems. It should absolutely be accounted for in the grand total for polyhexes. 

All the 4 helicirculenes in Fig. 7 are catacondensed. The number of helicircutenes 
increases rapidly with increasing h. For h = 11 we have generated 58 systems by 
hand, 32 catacondensed and 26 pericondensed, but we are not sure that we have 
not missed any. 

Comments 

It is instructive that Lunnon [10] claimed the Klarner number for h = 6, viz. 83, 
to be in error. He says: "[own result] corrects Klarner [1] and Read [A], who both 
(!) found . . . .  83." (The sign of exclamation is from the original.) Lunnon's 
reference [A] is a scientific report from 1968, not in our possession. After a fresh 
scrutiny of the relevant papers of Ktarner [1, 7] we are inclined to believe that 
Lunnon is right. Not in the way that his numbers should coincide with the Lunnon 
numbers (Table 4), but rather with those of Table 7 (for simply connected 
polyhexes). The numbers in these two tables are, by the way, coincident up to 
h = 6 .  

Knop et al. [16, 17], on the other hand, take the Klarner numbers in support 
of their grand totals (cf. Table 9 with accompanying text). In their own words: 
"There are, indeed, indications in the literature that these numbers are correct. 
For example, Klarner [7, 1] reported the total number of polyhexes up to h = 6." 
In our opinion, this statement is somewhat bold since these indications are based 
on the single number 83. Furthermore, this value seems to be obscure, depending 
on its interpretation. 

Here we have chosen to adher to the interpretation of the Klarner numbers as 
grand totals (cf. Table 9) in the spirit of the DiJsseldorf-Zagreb group [16, 17], and 
also in accord with a previous note [55]. 

In a note with corrections Knop et al. [39] invoked an incorrect summation as 
the reason for the grand total of h = 10 [17] to be in error. However, in the new 
"grand total" [39] the authors did not include helicirculenes. This "grand t~tal" 
has also been published later [57]. 

h:lO 

Fig. 7. The helicirculenes with h = 10 
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3.5 Concluding Remarks 

In this section it is supposed that the confusion concerning the interpretation of 
different classical enumeration results for polyhexes is fully documented. It is also 
hoped that the matter now is somewhat clarified. 

When looking at Tables 1, 4, 7 and 9, for instance, we find that the numbers 
for h _< 5 are coincident, although their documentations by footnotes vary, since 
they are viewed in different contexts. They are also identical with the D/isseldorf- 
Zagreb numbers. This is of course so because no systems other than benzenoids 
occur at these low h values. For h = 6 the pericondensed polyhexes are still only 
benzenoids, while the numbers of catacondensed polyhexes with h = 6 varies 
from 36 to 38. This is explained by the inclusion of hexahelicene or [6]circulene, 
occasionally both of them or none. Notice that from the number 37 alone, which 
is accompanied by the total of 82 (h = 6), one can not deduce which interpretation 
is the actual one. 

4 Additional Definitions for Benzenoids 

In Sect. 2.6 the concepts of catacondensed and pericondensed potyhexes are defined. 
It is implied that these notions are applicable to benzenoids (cf. Sect. 2.1) in 
particular. In the following we shall only speak about benzenoids, although all 
the concepts are applicable to other polyhexes as well. 

In preparation to the definitions in the following we need to define the color 
excess or A value. It is the absolute magnitude of the difference between the 
numbers of black and white (or starred and unstarred) vertices. Here it is referred 
to the coloring (or starring) of vertices. It is known that the A value also is the 
absolute magnitude of the difference between the numbers of valleys and peaks. 

Another important quantity for a benzenoid is the Kekul6 structure count or 
K number. A Kekut6 structure, being a typical concept from (mathematical) 
chemistry, corresponds to a 1-factor or perfect matching in mathematics. 

Another subdivision of benzenoids (apart from catacondensed/pericondensed) 
distinguishes between Kekulban and non-Kekulban systems. A Kekul6an benzenoid 
system possesses Kekul6 structures (K > 0). A non-Kekul6an benzenoid has no 
Kekul~ structure (K = 0). The shorter designations "Kekul6ans" and "non- 
Kekul6ans" are often used. All catacondensed benzenoids are Kekul~an; therefore 
all non-Kekul6ans are pericondensed. Any Kekul6an benzenoid has a vanishing 
color excess; A = 0. 

A Kekul6an benzenoid may be normal or essentially disconnected. In an 
essentially disconnected benzenoid there are fixed double and/or single bonds. A 
fixed single (resp. double) bond refers to an edge which is associated with a single 
(resp. double) bond in the same position of all the Kekul6 structures. A normal 
(Kekul6an) benzenoid has no fixed bond. All catacondensed benzenoids are 
normal; therefore all essentially disconnected benzenoids are pericondensed. But 
a pericondensed Kekul6an may be either normal or essentially disconnected. 
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catacondensed pericondensed 

~Benzenoid ~ 
Kekul6an non-Kekul~an (o) 

normal (n) essentially obvious concealed 
disconnected (e) non-Kekul~an non-Kekul6an 

catacondensed pericondensed 

Fig. 8. Survey of classes of benzenoids 

A non-Kekul~an benzenoid, which necessarily is pericondensed, may be obvious 

non-Kekul6an or concealed non-Kekul6an. I f  A > 0 for a benzenoid, then it is 
obvious non-Kekul6an. If A = 0 and K = 0, the benzenoid is concealed non- 
Kekulban. 

The neo classification takes into account all benzenoids; they can be either 
normal (n), essentially disconnected (e) or non-Kekul6an (o). 

A schematic survey of the subclasses of benzenoids encountered in this paragraph 
is displayed in Fig. 8. Additional classifications, especially with reference to the 
symmetry groups, are treated in appropriate places of the subsequent sections. 

5 Algebraic Solutions 

5.1 Catacondensed Simply Connected Polyhexes (Catafusenes) 

In the algebraic enumerations of classes of polyhexes the achievements of Harary 
and Read [9] exhibit a peak of professional expertise. The work has been quoted 
several times [14, 30, 58]. Herein the two mathematicians [9] developed a generating 
function with the explicit form 

H ( x )  = (1/24x 2) [12 + 24x - 48x 2 - 24x 3 + (1 - -  X )  3/2 (1  - -  5X) 3]2 

- 3(3 + 5x)(1 - x 2 )  1/2 (1 - 5 x 2 )  1/2 

- 4(1 - x 3 )  1 / 2  (1 - 5 x 3 ) 1 / 2 ]  . (1) 

On expanding this function the Harary-Read numbers (see first column of Table 7) 
emerge as coefficients for the powers of x; 

H(x)  = x + x 2 + 2x 3 + 5x 4 + 12x 5 + 37x 6 + 123x 7 

+ 446x s + 1689x 9 + 6693x a° + . . . .  (2) 
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These numbers,  which are defined in Sect. 3.3, pertain to the catacondensed simply 
connected polyhexes, for short called catafusenes (Sect. 2.6). They include the 
catacondensed helicenes. 

5.2 Unbranched Catacondensed Simply Connected Polyhexes 
(Unbranched Catafusenes) 

Explicit formulas for the numbers of the title systems were developed, in a simple 
combinatorial  way, by Balaban and Harary  [13]; cf. also Balaban [58]. The 
derivation [13] involves a t reatment of the subclasses of unbranched catafusenes 
with specific symmetries. It is outlined in the following, basically in the version 
of Brunvoll et al. [59] (cf. also Balaban et al. [601), and is supported by illustrations. 

Let the numbers of unbranched catafusenes belonging to the different symmetry 
groups be identified by the below symbols. It  is stressed that helicenes are included. 

a acenes (linear); D2h for h > 1, D6h for h = 1 (benzene) 
c centrosymmetrical;  C2h 
m mirror-symmetrical;  Cz~ 
u unsymmetrical;  C, 

The total number  is 

U = a  + c + m + u (3) 

where the quantities are functions of h. 
The following recurrence properties are valid. 

ah + 1 = ah (4) 

ch+2 = 3ch + 1 (5) 

mh+2 = 3mh+  1. (6) 

Here the number  of hexagons (h = 1, 2, 3, ...) is indicated by subscripts. The 
relations (5) and (6) are illustrated in Fig. 9 and Fig. 10, respectively. F rom each 
system with h hexagons three systems with h + 2 hexagons are generated by 
adding two hexagons to the ends in three ways. One system, generated from the 
linear acene, must be added to the set. 

F rom the initial condition al = 1 Eq. (4) gives 

a = 1; h = 1 ,2 ,3 ,4  . . . .  (7) 

i.e. independent of h. This reflects the simple fact that there is one and only one 
linear acene for a given number  of hexagons (h). F rom Eq. (5) we obtain the 
following explicit formulas for c by means of the initial conditions c4 = c5 = 1 
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Fig. 9. Illustrations of  the recurrence relation for c. The drawings with white circles represent 
three systems each. Top section even h values; bottom section odd h values 

( o r  c 2 = c 3 ~ 0) .  

c - (1/2) [3 ~h-3)/2 - 1] ; 

while cl  = O, and 

c = (1/2) [3 (h-2)/2 - 11 ; 

In  compressed  form:  

h = 3, 5, 7 . . . .  (8a) 

h = 2, 4, 6 . . . . .  (8 b) 

c = (1/2) 3 Hh-2)/2j - -  (1/2) ; h = 2, 3, 4, 5 . . . .  (8) 

where  the special brackets  in the exponen t  deno te  the f loor  funct ion;  txJ is the 
largest  integer  smal ler  than  or  equal  to x. Similarly,  by means  of  m3 = m4 = 1 
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Fig. 10. Illustration of the recurrence relation for m. The drawings with white circles represent 
three systems each. Top section odd h values; bottom section even h values 

(or ml = m 2  = 0 )  Eq. (6) gives 

m = (1/2) 3 t(h- 1)/2J _ (1/2) ; h = 1, 2, 3, 4 . . . . .  (9) 

Notice  that  Ch = mh for h = 2 , 4 , 6  . . . .  ; cf. Figs. 9 and 10, which illustrate this 
relat ion for h = 4, 6 and 8. Fur thermore ,  ca = m h - 1  for h = 2, 3, 4, 5 . . . .  ; this 
feature is i l lustrated for h = 4 to 9 by the figures. 

Next we deduce what  we shall call the "crude total".  It is obta ined by starting 
with two hexagons and generating three systems recursively from each predecessor 
in the same way as described above (cf. especially Figs. 9 and 10), but  now the 
hexagons are only added  to one end, always to the last added  hexagon. In this 
way 3 h-2 systems are generated for h > 2. This crude total  accounts for all 
catafusenes, but  most of  them are generated more than once. Specifically, every 
centrosymmetr ical  or  mirror-symmetr ical  catafusene is generated twice and every 
unsymmetrical  four times. Only  the acenes are generated once each. In  consequence, 
we obta in  the equat ion 

3 h - 2  ----- a + 2(c + m) + 4u;  (h > 1). (lo) 
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Table 10. Numbers of unbranched catafusenes* 

h a c m u Total (U) 

1 1 1 
2 1 1 
3 1 1 2 
4 1 1 1 1 4 
5 1 1 4 4 10 
6 1 4 4 16 25 
7 1 4 13 52 70 
8 1 13 13 169 196 
9 1 13 40 520 574 

10 1 40 40 1600 1681 
11 t 40 121 4840 5002 
12 1 121 121 14641 14884 
13 1 121 364 44044 44530 
14 1 364 364 132496 133225 
15 1 364 1093 397852 399310 
16 1 1093 1093 1194649 1196836 
17 1 1093 3280 3585040 3589414 
18 t 3280 3280 10758400 10764961 
19 1 3280 9841 32278480 32291602 
20 1 9841 9841 96845281 96864964 

* From algebraic equations (Section 5.2); cf. also (for h < 8): Balaban and Harary (1968) 
[13]; Balaban (1969) [30]. Abbreviations: a (linear) acenes; c centrosymmetrical; m mirror- 
symmetrical; u unsymmetrical 

O n  combin ing  Eqs. (3), (8), (9) and (10), we arr ive  at the fo l lowing explici t  
formulas  for u and  U. 

u = (1/4) [3 h-2 + 1] - 3 ( h - 3 ) / 2  ; h = 3 , 5 , 7  . . . .  ( l l a )  

while ul = 0, and  

u = (1 /4)[3  (h-2)/2 - 1]z; h = 2 , 4 , 6  . . . . .  ( l l b )  

Fu r the rmore ,  

U = (1/4)[3 h-2 q- 1] + 3(h-3)/2 ; h = 3, 5, 7 . . . .  (12a) 

while U1 = 1, and  

U = (1/4) [3 ~h-z)/2 + I] z ; h = 2, 4, 6 . . . . .  (12b) 

G u t m a n  [61] po in ted  ou t  that  the number s  U fol low a th i rd -order  recur rence  
relat ion.  The  same form is also obeyed  by u [59]. O n e  has:  

uh+6 = 13Uh+4 -- 39Uh+2 + 27Uh; h = 1, 2, 3 ,4  ... (13) 
Uh+6 = 13Uh+4 -- 39Uh+ 2 + 27Un ; h = 2, 3, 4, 5 . . . .  (14) 
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It was also deduced that  

where 

Sh+ 2 = 3s h ; h = 2, 3, 4, 5 ... (15) 

s = a + c  + m (16) 

The explicit formulas for s, the number  of symmetrical  catafusenes, read: 

s = 2 x 3 ( h - 3 ) / 2  ; h = 3, 5, 7 . . . .  (17a) 

while Sl = 1 ,  and 

S = 3 ( h - 2 ) / 2  ; h = 2, 4, 6 . . . .  (17b) 

Numerical  values of a, c, m, u and U for h _< 20 are collected in Table 10. 

5.3 Fibonacenes and Related Systems 

A fibonacene is a special catafusene, which consists of  2-segments only (and 
therefore is "al l-kinked").  The name is explained by the feature that  it is a nonlinear 
acene of  which the Kekul6 structure count is a Fibonacci  number.  As an alternative 
definition, a f ibonacene is a single chain of  hexagons where all of  them, apar t  
from the two terminal  ones, are angularly annelated. The smallest f ibonacene has 
h = 3. Fo r  a given number  of  hexagons we find one zigzag chain among the 
fibonacenes; where the annelat ions go left-right-left-right- . . . .  As the other extreme 
one finds the helix-shaped fibonacene with annelat ions left-left-left- ... ( isomorphic 
with right-right-right-  ...). The above definition implies that  all pert inent helicenes 
are included among fibonacenes. 

Balaban [62] derived explicit formulas for the numbers of  fibonacenes as 
functions of  h, both  for the totals and for the subclasses belonging to the symmetry 
groups Czn, C2~ and Cs. Other  symmetries are not  possible for fibonacenes. Balaban 
[62] employed two methods,  one of them being close to the derivat ion for 
unbranched catafusenes, which is described in detail  in the preceding paragraph.  
Below we give a version which follows the preceding derivat ion in a perfectly 

analogous way. 
Let the numbers of centrosymmetrical  (Czh), mirror-symmetr ical  (Czv) and 

unsymmetrical  (Cs) fibonacenes be denoted by c f , rn f and u f, respectively. The total  is 

U f = c f -~- m f + U f (18) 

The numbers of symmetrical  fibonacenes are governed by very simple recurrence 
relations, viz. c~ + 2 = 2c~ and m~ + 2 = 2m~, while the initial condit ions are c~ = 0, 
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Table 11. Numbers of fibonacenes* 

h c f m f u f Total (U f) 

3 1 1 
4 t 1 2 
5 0 2 1 3 
6 2 2 2 6 
7 0 4 6 10 
8 4 4 12 20 
9 0 8 28 36 

I0 8 8 56 72 
11 0 16 120 136 
12 16 16 240 272 
13 0 32 496 528 
14 32 32 992 1056 
15 0 64 2016 2080 
16 64 64 4032 4160 
17 0 128 8128 8256 
18 128 128 16256 16512 
19 0 256 32640 32896 
20 256 256 65280 65792 
2t 0 512 130816 131328 

* From algebraic equations (Section 5.3); cf. also (for h 
Balaban (1989) [62]. Abbreviations: see Table I0 

_< 10): 

c]  = 1 and m~ = m f = I. This  leads to the explicit  equa t ions  

c f = 0 ;  h = 3 , 5 , 7  . . . .  

c f = 2 (h-4)/2 • h = 4, 6, 8, 
. . *  

and 

m f = 2 t(h-3)/2j ; h = 3, 4, 5, 6 . . . . .  

(19a) 

(19b) 

(20) 

Not ice  that  c~ = m~ = m~_ 1; h = 4, 6, 8 . . . . .  F o r  the c rude  to ta l  in this case one  has  

2h-2 = 2( cf + m f) + 4u f (21) 

which n o w  makes  it feasible to deduce  the fo l lowing explici t  formulas  for u e and  U e. 

u f = 2h-~ _ 2 t ( h - 4 ) / 2 J  . 

while ug = O, and 

U f = 2h-4 + 2 t ( h - 4 ) / 2 j  • 

h = 4, 5, 6, 7 . . . .  (22) 

h = 4, 5, 6, 7 . . . .  (23) 

while U~ = 1. The  fo l lowing regulari t ies have  been po in ted  out  [62]. 

u~+l = 2u~, U~+, =2U~;  h =  3, 5,7 . . . . .  (24) 
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Fig. 11. All fibonacenes for h < 8 

Numerical values of c f, m f, u f and U f for h_< 21 are collected in 
Table 11. 

Figure 11 shows the dualist representations of all fibonacenes up to h = 8. They 
were also depicted by Balaban [62]. 

All the formulas in the present paragraph also apply to generalizedfibonacenes, 
viz. unbranched catafusenes consisting of  equidistant segments, which are not 
necessarily 2-segments. 

Very recently, Balaban and Artemi [63] generalized the treatment of  fibona- 
cenes. They considered the numbers N(h, s), which pertain to the unbranched 
catafusenes with h hexagons and having a longest segment of  the length s. It 
is emphasized that the helicenes are included. Fibonacenes are the special cases 
fors  = 2. The authors [63] arrived at recurrence formulas for N(h, s). Furthermore, 
they deduced an explicit formula for N(h, s) in the case of  h _< 2s - 1. In that 
case N(h, s) no longer depends on h and s independently, but on the difference 
h - s .  
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5.4 Gutman Trees (LA-Sequences) 

To any unbranched catafusene an LA-sequence (equivalent with the L-transform 
of a three-digit code) is associated. If the system has h hexagons, then the 
LA-sequence is a string of h letters L or A, where L indicates a linearly annelated 
(also terminal) hexagon and A an angularly annelated. A given LA-sequence is 
often compatible with several non-isomorphic polyhexes, but in that case they 
have the same K number and are called isoarithmic. The subject of the present 
paragraph is the enumeration of different LA-sequences with given h values. If  an 
LA-sequence is read forwards and backwards with different results, the two strings 
do not, by definition, represent "different" LA-sequences and are in other words 
counted as one. Notice that we are here concerned with an enumeration of polyhex 
classes rather than individual (non-isomorphic) polyhexes. The fibonacenes is such 
a class, which corresponds to the LA-sequence usually written as L A  h- ZL. In the 
preceding paragraph the non-isomorphic systems within this class were counted; 
in the present paragraph this class counts as one. 

The enumeration of LA-sequences is equivalent to the enumeration of  Gutman 
trees, which in the mathematical literature are called caterpillar trees (or cater- 
pillars). These objects correspond to special trees in the graph-theoretical sense. 

Harary and Schwenk [64] derived an explicit formula for the number of 
caterpillars/Gutman trees as a function of h by two methods. One of these methods, 
the simpler one, is basically analogous with the treatments above (Sects. 5.2 and 
5.3). Below we give a derivation which closely follows these treatments. 

Let a Gutman tree be called symmetrical if its LA-sequence is the same read 
forewards and backwards. Otherwise it is said to be unsymmetrical. The numbers 
of symmetrical and unsymmetrical Gutman trees are identified by the symbols s ~ 
and u c, respectively. The total is 

U c = s ¢ + u ~ (25) 

For  the numbers of symmetrical Gutman trees one has s~ ÷ 2 = 2s~ and s] = s~ = 1. 
Consequently, 

sC = 2t(h - 1)/2J;  

The crude total is 

h = 1, 2, 3, 4 . . . .  (26) 

2 h - 2  = S c q_ 2U c (27) 

by means of which we arrive at the following explicit equations for u ~ and U c. 

u e = 2 h-3 - 2 ~(h-3) /2j  , h = 3, 4, 5, 6 . . . .  (28) 

c while ul = u~ = 0, and 

U e = 2 h - 3  + 2 L ( h - 3 ) / Z J ;  h = 3 ,4 ,5 ,6  . . . .  (29) 
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Table 12. Numbers of Gutman trees* 

h s c u ~ Total (U ~) 

1 1 1 
2 1 1 
3 2 2 
4 2 1 3 
5 4 2 6 
6 4 6 10 
7 8 12 20 
8 8 28 36 
9 16 56 72 

10 16 120 136 
11 32 240 272 
12 32 496 528 
13 64 992 1056 
14 64 2016 2080 
15 128 4032 4160 
16 128 8128 8256 
17 256 16256 16512 
18 256 32640 32896 
19 512 65280 65792 
20 512 130816 131328 

* From algebraic equations (Section 5.4).Abbreviations: 
s symmetrical; u unsymmetrical 

while U] = U~ = 1. Some regularities are observed, viz. 

u~+ 1 = 2u~,, U~+ 1 = 2U~; h = 2 ,4 ,6  . . . .  (30) 

Numerical values of s ~, u ~ and U ~ for h _< 20 are collected in Table 12. 
Let a G u t m a n  tree or LA-sequence be represented by an unbranched cataconden- 

sed benzenoid drawn in a standard way: start from left to right with a horizontal 
row and alternating kinks left-right-left-right- .... Furthermore, the first row should 
be as long as possible, and in general a lexicographic order should be followed, 
where L has preferance before A. Under these conventions the fibonacenes are 
represented by a zigzag chain. Figure 12 shows the standard dualists representing 
all G u t m a n  trees up to h = 8. 

5.5 Generalized Hexagon-Shaped Benzenoids 

A free edge of a benzenoid is an edge (on the perimeter) between two vertices of 
degree two. It is known that any benzenoid has at least six free edges. If it has 
exactly six we shall call it a generalized hexagon-shaped benzenoid. A hexagon- 
shaped benzenoid (or "hexagon", not to be confused with a hexagonal unit  here 
called a hexagon) in its original sense has also exactly six free edges, while its two 
and two opposite rows of hexagons are parallel. This last condition is released in 
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the definition of  a generalized hexagon-shaped benzenoid. It is clear that the 
hexagon-shaped benzenoids constitute a subclass of  generalized hexagon-shaped 
benzenoids. 

An algebraic solution has been found for the numbers of  "hollow hexagons", 
a class of  primitive coronoids [40, 45, 65]. The solution was adapted to a class 
of  special [2p]annulenes [66]. It may also be adapted, even more directly, to the 

h=I h=2 h =3  

h=6 _/" 

h~7 

--_ / "  o o .  . i  

. j = : -  j - -  ) - J  

h - 8  

g- ~- ~- -- -- -~ -~ ~ ,7. ~. .~ -- ~, _ _- ~ ,~ ~ - - /  

/ /-  

. . ; _ . . / - -  -- 

Fig. 12. (see next page) 
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,J,_.Y..z 5, 

Fig. 12. Unbranched catacondensed benzenoids representing all Gutman trees (or LA- 
sequences) for h _< 8 

generalized hexagon-shaped benzenoids, if it is noticed that these benzenoids in 
fact may be identified with the corona holes of  the coronoids. Then the number 
of hexagons of the coronoid is to be identified with the number of vertices of 
degree two (n2) of the benzenoid. In other words, h (the number of hexagons of 
the generalized hexagon-shaped benzenoid) is not the leading parameter with 
respect to the present enumeration. The leading parameter is 

n2 = (n J2) + 3 (31) 

where ne is the perimeter length or number of external vertices. 
Table 13 shows the numbers of generalized hexagon-shaped benzenoids up to 

n2 = 30 [45], including their distribution into symmetry groups. These peculiar 
sequences of numbers are reproduced by the following explicit functions of n z, 
say N(nz). 

Symmetry  D6h 

One hexagon-shaped benzenoid occurs for every sixth n2 value: 

N(6j) = 1 (32) 

Here and in the following, j = 1, 2, 3 . . . .  

Symmetry D3h 
The only nonvanishing numbers of generalized hexagon-shaped benzenoids occur 
at every third value of n2 as given by the following expressions. 

N(6j) = j - 1,  N(6j + 3) = j (33) 
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n2=6 n2=8 n2:9 n2=lO n2:l i 

2 3 A=I 4 6 A=l 

n2=12 n2=13 

5 I0 20 A:2 A : I  

n2=14 

6 15 20 50 A=2 
n2=15 

n2=16 
A=I A=3 

7 21 35 105 175 A=2 
n2=17 

n2=18 
A=l A=3 

8 28 56 70 196 490 980 
n2=19 

A=2 A=4 

9 36 84 126 336 1176 1764 4ll6 

&=2 A=4 
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Table 13. Numbers  of generalized hexagon-shaped benzenoids* 

n2 D6h D3h D2h Czh Cz~, C, Total (N b) 

6 1 1 
7 0 0 
8 0 1 1 a 
9 0 1 0 1 ~ 

10 0 0 2 2 a 
11 0 0 0 1 I a 
12 1 1 1 1 0 4 a 
13 0 0 0 0 2 28 
14 0 0 3 1 1 5 a 
15 0 2 0 0 1 1 4 a 
16 0 0 3 2 2 0 7 a 
17 0 0 0 0 4 1 5" 
18 1 2 3 3 1 1 11" 
19 0 0 0 0 5 2 7 a 
20 0 0 4 4 4 1 13 * 
21 0 3 0 0 4 4 11 
22 0 0 5 5 5 2 17 
23 0 0 0 0 8 5 13 
24 1 3 4 7 4 4 23 
25 0 0 0 0 10 7 17 
26 0 0 6 8 8 5 27 
27 0 4 0 0 8 i1 23 
28 0 0 6 10 10 7 33 
29 0 0 0 0 14 13 27 
30 1 4 6 12 8 11 42 

* Cf. Paragraph 5.4. 
"~ Bru~voll, Cyvin and Cyvin (1987) [40] 

Symmetry D2h 
N(6j)  = ( 1 / 2 ) [ 3 ( j  - 1) -- e] (34a) 

N(6j + 2) = (1 /2) (3 j  - 1 + E) (34b)  

N(6 j  + 4) = (1 /2) (3 j  + 1 - e) (34c) 

w h e r e  
= (1/2) [1 + ( -  1) j] (35) 

viz. a n u m b e r  a l t e r n a t i n g  b e t w e e n  0 (for o d d  j)  a n d  1 (for even  j). 

Symmetry C2h 
N(6j)  = ( 1 / 4 ) [ 3 ( j  --  1) 2 + e] (36a) 

U(6j + 2) = ( 1 / 4 ) [ ( j  --  1)(3j  - 1) - e] (36b)  

U(6j + 4) = ( 1 / 4 ) [ ( j  - -  1)(3j  + 1) + e] (36c) 

w h e r e  e is g iven  by  (35). 

"4 
Fig. 13. All generalized hexagon-shaped benzenoids for t/2 ~ 20. K numbers are given for 
the Kekul6an systems (which have A = 0); A values are given for the non-Kekul6ans 
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Symmetry C2v 

N(6j) = (1/4)[(j  - 1)(3j - 7) + 5] (37a) 

N(6j + 1) = N(6j + 4) = (1/4)[( j  --  1)(3j + 1) + e] (37b) 

N(6j + 2) = N(6j + 3) = (1/4)[(j  - 1)(3j - 1) - 5] (37c) 

N(6j + 5) = (1/4)[(j  + 1)(3j - 1) + e] (37d) 

where e again is given by (35). 

Symmetry Cs 

N(6j) = (1/8)[(j  - 1)(2j 2 - 7j + 7) - e] (38a) 

N(6j + 1) = N(6j + 4) = (1/8) [(j - 1) (2j z - 3j - 1) - e] (38b) 

2) = (1/8)[(j  - 1)(2j z -- 5j + 1) + 5] (38c) 

3) = (1/8)[(j  - 1)(2j 2 - j + 1) + e] (38d) 

5) = (1/8) [(j - 1) (j  + 1) (2j - 1) - 5] (38e) 

Total 

(35) as before. 

When  the expressions from (32)-(34) and (36)-(38) are added appropr ia te ly  the 
total number  of  (non-isomorphic)  generalized hexagon-shaped benzenoids,  say 
Nh(nz), is obtained.  The result was rendered into the form: 

Nh(6j) = (1/8) {( j  + 1) (2j 2 + j + 1) -- (1/2) [1 + (--  1)J]} (39a) 

Nh(6j + 2) = (1/8) {(j + 1) (2j 2 + 3j -- 1) + (1/2) [1 + (--  1~} (39b) 

Nh(6j + 4) = (1/8) {(j + 1)(2j 2 + 5j + 1) -- (1/2) [1 + (--  1)/]} (39C) 

(j = 1, 2, 3 . . . .  ). The expressions (39) account  for the even nz values and  are 
supplemented by 

N h ( n 2  + 3) = Nh(n2) ; 0 2 = 6, 8, 10 . . .  (40) 

The last equat ion  (40) expresses the fact that  N h attains the same value on  adding  
three units to n 2. 

In Fig. 13 all the non- i somorphic  generalized hexagon-shaped benzenoids with 
n2 up to 20 are depicted. 

5.6 Approximate Formulas 

For  the numbers  of  catafusenes as a function of h, say Ch, an exact asymptot ic  
behavior  for large values of h is known  [9] and has the form 

Ch ~ (1/2) 51/2 (2h - 1)! [(h - 1)! (h + 2)!1-1 (5/4) h (41) 
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Using the Stirling approximation,  Eq. (41) was transformed to [67] 

C h ~ (5/16n) 1/z h-5/25h (42) 

It  is recalled that Ch, which pertains to catafusenes, include the catacondensed 
helicenes; Ch are, in other words, the Harary-Read numbers (cf. Sect. 3.3). Based 
on the form (42), G u t m a n  [67] assumed 

C'h ,~ ahPb h (43) 

and at tempted to fit the empirical constants therein, viz. a, b and p, to the number  
of catacondensed benzenoids (without helicenes), C~. By means of the exact values 
up to C'~ 1, which were known at the time Gu tman  made this analysis, he estimated 
the constants to a = 0.049, b = 4.27, p = - 5 / 4 .  In the same work Gu tman  [67] 
produced the approximate  formula 

B~, ~ 0.045h-a/2 (5.4)h (44) 

for the total number  of benzenoids (B~), again without helicenes. Here the empirical 
constants were based on the known exact values of B;, up to B] 1- In the same 
way, Cyvin et al. [68] derived 

N~, ~ 0.0242h-°'9(4.5) a (45) 

for the numbers of normal  benzenoids, based on exact N;, values up to N'I 1- 
After the appearance of a computat ional  result for B'I z Aboav and Gu tman  [69] 

realized that  Eq. (44) does not have the desired precision. They improved the 
approximation by producing a recursive formula of the form 

B'h+x/B'h ~ b(1 - qh -2) (46) 

and estimated the empirical constants to b = 4.98, q = 5.77 by means of the exact 
B~ values up to B'~ 2- The authors [69] also proposed an approximate  formula for 
C'h+ 1/C'h of the same form as (46), but here we do not quote the reported numerical 
parameters  because they were fitted to a wrong C'~ 3 value [47]. 

For  the number  of unbranched catacondensed benzenoids, U~, Gu tman  [61] 
launched the very simple approximate  formula 

U~, = 0.0400(2.869) h (47) 

where the numerical parameters  were fitted to known exact U~, values up to U~o. 
A more sophisticated analysis by Aboav and Gu tman  [70] led to the following 
recursive formula. 

' = (Uh) /Uh-x  + (-- 1) h fl(U'h) ~/2 Uh+l ( 1 - c 0  , z  , (48) 
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The same material of exact U~, values as previously (h < 20) was used to estimate 
the parameters in (48) to ~ = 0.000714, fl = 0.75. 

6 Catafusenes 

6.1 Introductory Remarks 

In the present section the catafusenes (catacondensed simply connected polyhexes; 
cf. Sect. 5.1) are treated. However, in contrast to the Harary-Read numbers (first 
column of Table 7) we shall be interested in the numbers of unbranched and 
branched systems separately. The numbers of unbranched catafusenes (Table 10) 
are known from algebraic formulas (cf. Sect. 5.2), but now we are interested in 
the unbranched catacondensed benzenoids and helicenes separately. Likewise we 
shall treat the numbers of branched catacondensed benzenoids and helicenes 
separately. 

After the definition and enumeration of different "special catacondensed 
systems" (SCS's) the catacondensed benzenoids belonging to the symmetries D3h , 
Cab , D2h and Czh are treated in particular. Those of the D3h and Dzh symmetries 
were enumerated by an algorithm invoking SCS's. 

Finally some results for unbranched catacondensed benzenoids with equidistant 
segments are reported. These systems are the benzenoids (without helicenes) 
belonging to fibonacenes and generalized fibonacenes. 

6.2 Unbranched Catafusenes 

Let the numbers of unbranched catacondensed benzenoids and unbranched 
catacondensed helicenes be denoted by U' and U*, respectively. Then 

U =  U ' +  U* (49) 

where U has the same meaning as in Sect. 5.2. We write also for the symmetry 
groups Czh, C2v and Cs separately: 

c = c ' + c * ,  m = m ' + m * ,  u = u ' + u *  (50) 

respectively. One has, of course 

U ' =  a + c' + m ' +  u' ,  U* = a + c* + m* + u* (51) 

Table 14 shows the numbers for all of the above classes when h < 20. The 
documentations (see footnotes of the table) pertaining to the smallest h values are 
difficult and ambiguous if they are supposed to share the credit among authors 
properly. Here we have credited Balaban and Harary [13] for the smallest numbers 
which could be taken from their paper before the helicenes start to interfere. A 
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report by Brunvoll et al. [71] is incorporated among the footnotes. The largest 
numbers, which first appeared in the consolidated report [18], were produced by 
Toni6 and Kova6evi6 [72], and published almost simultaneously by these authors 
as a full report with description of their methods, These numbers have also been 

Table 14. Numbers of unbranched catacondensed benzenoids; unbranched catacondensed 
helicenes in parentheses + 

h a c'(c*) m'(m*) u'(u*) Total: U'(U*) 

1 1 1 a 
2 1 1 a 
3 1 1" 2 ~ 
4 1 1 a 1 a 1 a 4" 
5 1 I" 4" 4" l0 b 
6 1 4" 3b(1) 16" 24c(1) 
7 1 4 ~ t2b(1) 50b(2) 67c(3) 
8 1 13" 10b(3) 1588(11) 182c(14) 
9 1 13 a 34b(6) 472b(48) 520a(54) 

10 1 398(1) 28b(12)  1406~(194) 1474~(207) 
11 I 39b(1) 97b(24) 4111 ~(729) 4248~(754) 
12 1 1168(5) 81 b (40 )  1 1 9 9 8 ~ ( 2 6 4 3 )  1219&(2688) 
13 1 115~(6) 271f(93) 34781"(9263) 35168~(9362) 
14 1 339f(25) 226f(138) 100660~(31836) 10122&(31999) 
15 1 336f(28) 7 6 4 " ( 3 2 9 )  290464~(107 3 8 8 )  291565"(107745) 
16 1 988~(105)  638"(455) 837137"(357512) 838764~(358072 ) 
17 1 977~(116)  2141"(1139) 2408914~(1176126) 2412033~(1177381) 
18 1 2866"(414) 1787¢(1493) 6925100~(3833 300) 6929754~(3835207 ) 
19 1 2832"(448) 6025°(3816) 19888057~(12390423) 19896915°(12394687) 
20 1 8298~(1543) 5030°(4811) 57071610"(39773671) 57084939~(39780025) 

+ Abbreviations: see footnote to Table 10. 
a Balaban and Harary (1968) [13]; b Brunvoll, Cyvin and Cyvin (1987) [54]; c He and He 
(1985) [32]; d He and He (t986) [33]; ~ Bataban, Brunvoll, Ciostowski, Cyvin, Cyvin, Gutman, 
He, He, Knop, Kova6evi6, Mfiller, Szymanski, Toni6 and Trinajsti6 (1987) [18]; ~ Brunvoll, 
Cyvin and Cyvin (t987) [71] 

Table 15. Numbers of symmetrical unbranched cataconden- 
sed benzenoids; corresponding helicenes in parentheses + 

h m'(m*) d(c*) 

21 16924(12600) 8185(1656) 
22 14116(t5408) 23969(5555) 
23 47 623 (40950) 23623 (5901) 
24 39727(48 846) 69109(19464) 
25 t33934(131786) 68057(20516) 
26 111655(154065) 198995 (66725) 
27 377003(420158) 195806(69914) 
28 314297 (482864) 572 216 (224 945) 
29 1061064(1330420) 562 675(234486) 
30 884199(1507285) 1642975(748509) 

+ In continuation of Table 14. From: Brunvoll, Toni6, 
Kova~evi6, Bataban, Gutman and Cyvin (1990) [59] 
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submitted for publication elsewhere [59]; herein the parenthesized numbers of 
Table 14 (for c*, m*, u* and U*) are given explicitly. These numbers, which pertain 
to the unbranched catacondensed helicenes, are of course obtainable by subtraction 
from the known numbers for unbranched catafusenes (cf. Sect. 5.2 and especially 
Table 10). 

For the symmetrical (C2h and C2v) catafusenes the enumerations were supple- 
mented up to h = 30 by Brunvoll et al [59]; cf. Table 15. 

The unbranched catacondensed benzenoids (without helicenes) up to h = 7 are 
represented as dualists in Fig. 14. These forms were first given by Balaban and 

h=5 

/ \  / . _ Z - "  

• "_ M/" - 

h=6 

_ _ . / ' -" _ 

- w ~ v . . . .  ~ w v 

k _ _ f - " , . ' \ / : . i -  
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Fig. 14. (see next page) 
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(h=7) 

\ 

k _ J  : \ ( f  
Fig. 14. All unbranched catacondensed benzenoids (as dualists) for h ~ 7 

Harary  [13] and Balaban [30, 73], who included helicenes. For  an enumeration up 
to h = 6 with figures in different representations, see D2onova-Jerman-Bla~i~ and 
Trinajsti~ [74]. In his studies of resonance energies Gu tman  [75] compiled data 
for benzenoids which include all the catacondensed systems with h < 5. For  the 
catacondensed benzenoids with h = 7 also computer-designed figures in the form 
of mini-hexagons have been published [76]. El-Basil [77] depicted the catacondensed 
h < 5 systems in his studies of labelling sequences. 

For  the unbranched catacondensed helicenes in particular, the forms for h = 6, 7 
and 8 are found as parts of Fig. 6. For  h = 9 the 6 symmetrical [26, 54] and 48 
unsymmetrical  [54] such systems have been depicted in the form of dualists, but 
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Fig. 15. All unbranched catacondensed helicenes with h = 9 

the latter set with a mistake (see below). The total of 54 unbranched catacondensed 
helicenes with h = 9 are shown in Fig. 15. 

Errata 

Balaban and Harary [9] have a misprint in their number of unsymmetrical (u) 
unbranched catafusenes with h = 6, while their figure shows correctly all the 
16 systems. Another minor misprint: in the depiction of unbranched catafusenes 
with h = 7 by Balaban and Harary [13] one point (representing a hexagon) is 
omitted. 

In the dualist representation of the unsymmetrical unbranched catacondensed 
helicenes Brunvoll et al. [54] missed one system, while two of their systems are 
isomorphic. 
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6.3 Branched Catafusenes 

T h e  n u m b e r s  of  b r a n c h e d  ca ta fusenes  (cf. T a b l e  16) are  cons i s t en t  w i th  the  

differences b e t w e e n  a p p r o p r i a t e  n u m b e r s  f rom T a b l e  7 wi th  s u p p l e m e n t s  in  text  

Table 16. Numbers of branched catafusenes: benzenoids and helicenes 
(in parentheses) 

h Branched catacondensed Branched 
catafusenes 

benzenoids* (heficenes) 

4 1" 1 b 
5 2 ~ 2 b 
6 t2 ~ 12 b 
7 51" (2) 53 ~ 
8 229 ~ (21) 250 ¢ 
9 969 a (146) 1115" 

10 4098 f (914) 5012 ~ 
11 16867 f (5165) 22032 ~ 
12 68925 ~'g (27821) 96746 ~ 
13 278907 h (143 825) 422 732 
14 t 123 302 h (724826) 1848128 
15 4 507640 (3580 450) 8 088 090 

* See also Table 17. 
He and He (1985) [32]; b Balaban and Harary (1968) [13]; ° Balaban 

(1969) [30]; d He and He (1986) [33]; " Balaban, Brunvoll, Cyvin and 
Cyvin (1988) [60]; f Balaban, Brunvotl, Cioslowski, Cyvin, Cyvin, 
Gutman,  He, He, Knop, Kova~evi6, Mfiller, Szymanski, Toni6 and 
Trinajsti6 (1987) [18]; g He, He, Wang, Brunvoll and Cyvin (1988) [19]; 
h Cyvin and Brunvoll (1990) [47] 

Table 17. Numbers  of branched catacondensed benzenoids, classified according to symmetry 

h D3~ C3h D2~ Cab Czv Cs Total* 

4 1 ~ lb 
5 0 i" I" 2 b 
6 0 1 a 4 a 7a 12b 
7 1" 1" 1 a 4" 44 a 51b 
8 0 0 la 4 a 18" 206" 229 b 
9 0 0 1" 4 ~ 27 ~ 937a 969~ 

10 2 a 4 a 3 a 25" 67 ~ 3997" 4098" 
t l  0 0 4 ~ 26 a 118" 16719~ 16867~ 
12 0 0 4 a 132 ~ 269 ~ 68520d 68925d'" 
13 2 ~ 15 ~ 4 ~ 140" 507f 278239f 278907f 
14 0 0 9" 620 1041 1121632 1123302 f 
15 0 0 11 " 658 2096 4504875 4507640 

* See also first column of Table 16. 
a Brunvoll, Cyvin and Cyvin (1987) [71]; b He and He (1985) [32]; c He and He (1986) 
[33]; d Bataban, Brunvoll, Cyvin and Cyvin (1988) [60]; ~ He, He, Wang, Brunvoll and 
Cyvin (1988) [19]; f Cyvin and Brunvoll (1990) [47] 
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Fig. 16. All branched catacondensed benzenoids for h _< 7 
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and Table 10. This class separates into the branched catacondensed benzenoids 
and branched catacondensed helicenes. The separate numbers are included in 
Table 16; for the benzenoids, see also Table 17. The numbers for the helicenes, 
given in parentheses in Table 16, are of course differences between the numbers 
of the two other columns therein. These numbers are consistent with the 
appropriate differences from Tables 8 and 14. 

In Table 17, a detailed account on the numbers of branched catacondensed 
benzenoids is displayed, including the distribution into symmetry groups. Here 
the numbers for D3h and C3h at h < 13 are also obtainable from a scrutiny of 
figures published by Cyvin et al. [78]. Supplements to Table 17 are found in or 
from some of the subsequent tables. 

In Fig. 16 all the branched catacondensed benzenoids (without helicenes) up to 
h = 7 are given in the dualist representation. They have been given for h < 6, 
with helicenes included, by Balaban and Harary [13] and by Balaban [73]. The 
forms for h = 7 are found in an other paper by Balaban [30]. The above mentioned 
works of D~onova-Jerman-Bla~i6 and Trinajsti6 [74], by Gutman [75], Trinajsti6 
et al. [76] and by El-Basil [77] display the figures of both branched and unbranched 
benzenoids, with h _< 6, h _< 5, h = 7 and h < 5, respectively. 

The forms of the branched catacondensed helicenes for h = 7 and 8 are again, 
like the unbranched systems, found as parts of Fig. 6. The numbers of these systems 
are 2 and 21, respectively. 

6.4 Special Catacondensed Systems (SCS's) 

Togi6 et al. [79] defined the title systems in the course of a particularly efficient 
algorithm for enumerations of branched catacondensed benzenoids with regular 
trigonal (D3h) symmetry. The SCS's are (unbranched and branched) catacondensed 
benzenoids defined in such a way that isomorphic systems of this kind may be 
reckoned as "different", depending on their orientation with respect to an axis. 
The counting of different SCS's is therefore not a single counting of non-isomorphic 

Table 18. Numbers of diffe- 
rent special catacondensed 
(benzenoid) systems (SCS's)* 

h SCS's 

1 1 
2 3 
3 9 
4 29 
5 99 
6 348 
7 1260 
8 4625 

* From Toni6, Budimac, 
Brunvoll and Cyvin (1990) 
[791 
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systems. For example, naphthalene (h = 2) gives rise to three different SCS's. The 
somewhat complicated definition is explained in the following. The symbols L 
and A denote a linearly and an angularly annelated hexagon, respectively. 

(i) Start with the phenanthrene system, LAL', which by convention is drawn 
from left to right. 

(ii) Define a "horizon" by extending the two first hexagons (LA) infinitely to 
both sides into a linear chain of hexagons. 

h=l 

h=2 

v -v -"  
h=6 

- ' V -  - - - ' V -  : 

Fig. 17. All the different special catacondensed systems (SCS's) for h < 4 
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(iii) Add h - 1 hexagons to the last hexagon (L') of the phenanthrene system so 
that a catacondensed benzenoid C(LAL' ...) of h + 2 hexagon emerges, which 
should not have any hexagon on the horizon to the right of A and should 
not come in contact with the horizon to the left of A. Otherwise this system 
is arbitrary (h = 1, 2, 3 . . . .  ). It may occasionally be branched. The definition 
includes h = 1 as the degenerate case, where C is the original LAL' system. 

(iv) Delete the first two hexagons (LA) to obtain an SCS. 

Let N be the number  of all the non-isomorphic catacondensed benzenoids (C) 
with h + 2 hexagons each, which can be constructed according to (iii). Then N 
is taken by definition to be the number of "different" SCS's with h hexagons each, 
as obtained by the last step (iv). 

Table 18 shows the results of enumeration of different SCS's [79]. Their forms 
for h up to 4 are depicted in Fig. 17. The dualist representation is employed. The 
horizon to the right of A is drawn as a straight line, indicating a forbidden region 
(on and below this line) for the SCS's. Similarly the forbidden region to the left 
of A is indicated by a straight line shifted one step up. 

6.5 Catacondensed Benzenoids with Trigonal Symmetry 

A catacondensed benzenoid with trigonal symmetry, viz. D3h o r  C3h, is necessarily 
branched. Table 19 shows, in combination with Table 17, the known numbers for 
these classes of benzenoids. 

In Fig. 18 the forms of the D3h catacondensed benzenoids up to h = 25 are 
displayed. They have been given previously [79]. Being catacondensed, all these 
systems are normal and therefore Kekulran. The Kekul6 structure counts (K) are 
given in the figure. 

Table 19. Numbers of catacondensed (branched) benzenoids of 
trigonal symmetry* 

h D3h C3h h D3h 

16 4 55 49 893 
19 5 203 52 1876 
22 9 755 55 2899 
25 12 2855 58 6140 
28 24 t 61 9630 
31 32 t 64 20563 
34 65 ? 67 32565 
37 94 t 70 69741 
40 191 t 73 111626 
43 283 t 76 239831 
46 588 t 

* In continuation of Table 17. All data for D3h from: To~ir, 
Budimac, Brunvoll and Cyvin (1990) [79]; 

Unknown 
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h=4 h=7 h=lO h=13 

9 28 65 189 126 793 

h:16 

217 %729 2261 2926 

h=19 

344 4977 7588 I%377 

h=22 

513 9009 9325 

30520 

19721 22881 

40014 54929 

Fig. 18. (see next page) 

6.6 Catacondensed Benzenoids with Dihedral Symmetry 
and Centrosymmetry 

A catacondensed benzenoid with dihedral symmetry, viz. D2h , is either a branched 
system or an (unbranched) linear acene. A centrosymmetrical (Czh) catacondensed 
benzenoid is either branched or unbranched. The Dzh systems under consideration 
have been enumerated by the efficient algorithm invoking SCS's (cf. Sect. 6.4) [80]. 
Table20, in combination with Table 17, shows the known numbers for the 
branched catacondensed D2h and C2h benzenoids. The numbers of unbranched 
catacondensed benzenoids with C2h symmetry are found under the designation c' 
in Tables 14 and 15 for h _< 20 and 21 < h < 30, respectively. 

Figure t9 displays the forms of the D2h catacondensed benzenoids up to h = 17. 
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h=25 

730 }5689 40033 51382 

64729 73017 173089 

173o89 2210o4 303121 

Fig. 18. All (branched) catacondensed benzenoids with regular trigonal (Dab) symmetry and 
h < 28. K numbers are given 

Table 20, Numbers of branched catacondensed benzenoids with dihedral symmetry and 
centrosymmetry* 

h D2h C2h h Dzh h Dzh 

16 12 2762 29 406 42 33127 
17 13 2935 30 820 43 44702 
18 26 11890 31 1074 44 50339 
19 33 12640 32 1205 45 59247 
20 36 t 33 1376 46 117023 
21 39 t 34 2763 47 159249 
22 80 ~ 35 3653 48 178938 
23 102 t 36 4118 49 212451 
24 112 t 37 4745 50 417164 
25 124 ~ 38 9487 51 t 
26 251 t 39 12686 52 640877 
27 325 t 40 14298 
28 364 t 41 16672 

* In continuation of Table 17. All data 
(1990) [80]; 
t Unknown 

for D2h from: Toni6, Budimac, Cyvin and Brunvoll 
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6.7 Unbranched Catacondensed Benzenoids 
with Equidistant Segments 

The title classes are the non-helicenic fibonacenes and non-helicenic generalized 
fibonacenes (cf. Sect. 5.3). 

h=2 h=3 h=4 h:5 h=6 

3 4 5 6 7 24 

h:7 

8 4O 

h=8 h=9 

9 56 10 72 

h=10 

11 88 99 153 

h:ll 

12 104 180 234 

h=12 

1 3 | 20 261 315 

h=13 

14 ] 36 34 2 396 

Fig. 19. (see next page) 
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Let a benzenoid of the considered class consist of S segments, each of length I. 
The length is, by definition, the number  of hexagons in the linear chain between 
two angularly annelated (A) hexagons or one terminal and one A hexagon, the 
two end hexagons included. The total number of hexagons is 

h = 1 + ( l -  1) S ( S >  i) (52) 

For  fibonacenes, l = 2. Their numbers split into the benzenoid and helicenic 
systems; we write 

¢f , m f , = cr + c* ,  = mf + m?,  (53) 
u f  y ~ U f i = u f + u ~  = U f +  U~' 

h=14 

15 152 288 423 477 544 825 ~075 

~=15 
]6 16B 504 54~ 558 

800 ]450 1700 2050 

~=16 
17 184 585 639 800 

1056 2075 2325 2675 

~=17 
18 200 666 720 1056 

]312 2700 2950 3300 

Fig. 19. All catacondensed benzenoids with dihedral Dzh symmetry and h _< 17. K numbers 
are given 
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Table 21. Numbers of fibonacenes: benzenoids and heticenes (in parentheses) 

h c'f(c?) m'dm*) u'f(u*) Total: U'f(U*) 

3 1 a 1" 
4 1 a 1" 2" 
5 0 2 ~ 1 a 3 a 
6 2 a 1 a(1) 2 a 5a(1) 
7 0 3"(1) 5~(1) 8~(2) 
8 4" 2a(2) 9a(3) 15a(5) 
9 0 6a(2) 19a(9) 25a(I 1) 

10 7"(I) 4"(4) 35"(21) 46~(26) 
11 0 11 (5) 69 (51) 80 (56) 
12 13 (3) 7 (9) 125 (115) 145 (127) 
13 0 18 (14) 238 (258) 256 (272) 
14 24 (8) 12 (20) 430 (562) 466 (590) 
15 0 33 (31) 800 (1216) 833 (1247) 
16 44 (20) 22 (42) 1447 (2585) 1513 (2647) 
t7 0 58 (70) 2662 (5466) 2720 (5536) 
18 81 (47) 36 (92) 4808 (11448) 4925 (11587) 
19 0 102 (154) 8779 (23861) 8881 (24015) 
20 147 (109) 68 (188) 15848 (49432) 16063 (49729) 
21 0 183 (329) 28813 (102003) 28996 (102332) 

a Balaban (t989) [62] 

Table 22. Numbers of generalized fibonacenes with 1 > 2: benzenoids and helicenes (in 
parentheses) 

S + ~ , Cw(Cw)  t * t :~ t * mw(m.) Uw(Uw) Total: Uw(Uw) 

2 t 1 
3 1 1 2 
4 0 2 1 3 
5 2 2 2 6 
6 0 3(1) 6 9(1) 
7 4 3(1) 11(1) 18(2) 
8 0 6(2) 25(3) 31(5) 
9 8 6(2) 47(9) 61(11) 

10 0 11 (5) 96(24) 107(29) 
11 15(1) 11 (5) 181 (59) 207(65) 
12 0 20(12) 358(138) 378 (150) 
13 29(3) 21(11) 674(318) 724(332) 
14 0 36 (28) 1297 (719) 1333 (747) 
15 56(8) 36(28) 2445(1587) 2 537(1623) 
16 0 68(60) 4655(3473) 4723(3533) 
17 106(22) 70(58) 8 762(7494) 8938(7574) 
t8 0 123(133) 16551(16089) 16674(16222) 
19 201(55) 125(131) 31129(34151) 31455(34337) 

÷ For  the h value, see Eq. (52) 
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Then, of course, 

U~ = c~ + m} + u'f, U* = c* + m* + u~'. (54) 

Table 21 shows the numbers for all of these classes when h < 21. 
For the generalized fibonacenes with I > 2 we write, in analogy with the above 

notation, 

t mf  / , 
cf  = Cw Jr C*w' = m w  -}- r o w '  (55)  

= ' , U f U "  + Uw* u f Uw + Uw* = 

and then: 

u ; ,  = c;, + m ;  + u ; ,  U~* = Cw* + m~* + u * .  (56) 

h=2 h=3 h=4 h=5 

3 5 8 I 3  

h=6 

21 

h=7 

34 

h=8 
55 

55 

Fig. 20. All unbranched catacondensed benzenoids with 2-segments on|y (non-helicenic 
fibonacenes) for h _< 8. K numbers are given; they are the Fibonacci numbers 
Fh+t(Fo = F1 = 1) 
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4 I0 24 58 

h:ll 

140 
h=13 

338 

h=15 816 

816 

Fig. 21. All unbranched catacondensed benzenoids with 3-segments only (non-helicenic 
generalized fibonacenes with I = 3) for h < 17. K numbers are given 

Numerical values for S < 19 are shown in Table 22. Notice that these numbers 
are independent of l, if only l > 2. 

All the numbers in Tables 21 and 22 are consistent with Table 11, which can 
be reproduced from either of these two tables by additions of appropriate numbers 
therein. 

Figures 20 and 21 display the forms of the unbranched catacondensed benzenoids 
with only 2-sements or 3-segments, respectively, up to the systems with 7 segments. 

7 Coarse Classifications of Benzenoids 

7.1 Specification 

In view of the discussions in Sect. 3 (cf. especially the concluding remarks of 
Sect. 3.5) the reader will certainly excuse us for repeating the specification of the 
class of polyhexes to be treated in the remainder of this chapter. 

Only benzenoid systems are considered. According to the adopted definition 
they are the planar, simply connected polyhexes. Consequently all circulenes 
(including coronoids, multiple coronoids and polycirculenes) are excluded, and 
all helicenic systems (helicenes, helicirculenes) are also excluded. 
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The main subclasses of benzenoids are described in Sect. 4 and summarized in 
Fig. 8. 

7.2 Catacondensed and Pericondensed Benzenoids 

Numbe~ 

The Diisseldorf-Zagreb numbers,  in the original sense, are the numbers of 
catacondensed and pericondensed benzenoids for h _< 10 and their sums, which 
give the numbers of benzenoids in total. The actual  numerical  values (for the 
catacondensed systems and totals) are found in different places [15, 17, 53, 76], and 
in par t icular  they are reproduced in the book  of Knop  et al. (Dtisseldorf-Zagreb 
group) [16]. The numbers  are displayed in Table 23. 

Fo r  the numbers of benzenoids with very small h values the documenta t ion  is 
again very difficult and ambiguous;  cf. Sect. 3.5. In Table 23 we have followed the 
consol idated report  [18] and supplemented it with a quota t ion  for the periconden- 
sed benzenoids (cf. footnotes to the table). In addition, we have chosen to give 
credit to Hara ry  [2] for the separate numbers  of catacondensed and pericondensed 
benzenoids with h _< 4 because he, at an early date, depicted all the forms of these 

systems. 

Table23. Numbers of benzenoids, including their subdivision into catacondensed and 
pericondensed systems 

h Catacondensed Pericondensed Total 

1 1 ~'u l~ 
2 1 ~'b lC 
3 2 ~'~ la'b 3c 
4 5 a'b 2a'b 7~ 
5 12 b 10b 22~ 
6 36 ~ 45 b 81d 
7 118 a 213 d 331d 
8 411 d 1024 d 1435d 
9 1489 a 5016 d 6505a 

10 5572 ~ 245140 30086a 
11 21115 ~ 120 114 * 141229 ¢ 
12 81121 f~g 588463 ~ 669584~ 
13 314075 h 2884181 3198256 i-~" 
14 1224 528 a 14143049 15367577J - m 
15 4 799 205 69 408705 74 207910k" i.,~ 
16 t ~" 359863778r" 

" Harary (1967) [2]; b Balaban and Harary (1968) [13]; ~ Klarner (1965) [7]; d Knop, 
Szymanski, Jeri6evi6 and Trinajsti6 (1983) [15]; e Stojmenovi6, To~i6 and Doroslova6ki 
(1986) [46]; f Balaban, Brunvoll, Cyvin and Cyvin (1988) [60]; ~ He, He, Wang, Brunvoll 
and Cyvin (1988) [19]; h Cyvin and Brunvoll (1990) [47]; i Mfiller, Szymanski, Knop, Nikoli6 
and Trinajsti6 (1989) [48]; J Mi.iller, Szymanski, Knop, Nikoli6 and Trinajsti6 (1990) [36]; 

Nikoli6, Trinajsti6, Knop, Miiller und Szymanski (1990) [49]; I Knop, M/iller, Szymanski and 
Trinajsti6 (1990) [50]; TM Knop, Miiller, Szymanski and Trinajsti6 (1990) [37]; t Unknown 
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The consolidated report [18] summarizes the pertinent data (of Table 23) up to 
h = 11. The information for h = 12 is found in the supplements [19] to this report. 

With regard to the totals for h > 12 they were all produced by the Diisseldorf- 
Zagreb group; specifically with references: h = 13 [36,37,48-50], h = 14 
[36, 37, 49, 50]; h = 15 [37, 49, 50], and finally h = 16 [50]. 

Forms 

The depictions of Harary [2] are mentioned above. The forms of benzenoid systems 
with given numbers of hexagons have later been depicted many times in different 
contexts. The altogether 5 systems for h < 3 are, for instance, found in HaTary 
and Palmer [4]. At the start of a long series of interesting papers on topological 
properties of benzenoid systems Gutman [81] depicted the 3 benzenoid systems 
with h = 3. Three other parts of this series are cited above [11, 27, 75]. In another 
part [82] the pericondensed benzenoids are treated, but the listings are complete 
only for the 3 systems with h _< 4. The altogether 12 benzenoids with h < 4 have 
otherwise been depicted in reviews [27, 83], which followed Harary [2], and 
elsewhere [56]. Some authors [84, 85] omitted pictures of the smallest of these 
systems. The last reference [85] pertains to a recent work on the ordering of chemical 
graphs by Kirby, who employed efficiently the depictions by Knop et al. [16] (see 
below). 

The forms of the benzenoids for h = 5 or up to h = 5 are found in different 
places [13, 86-88]. Also the forms for h = 6 or up to h = 6 have been depicted 
several times [14, 15, 26, 89-91]. 

Apart from the Diisseldorf-Zagreb group [15, 76] some computer-generated 
figures in the form of mini-hexagons have been published by Brunvoll et al. [71]. 
But we must not omit to mention the same kind of depictions which occupy a 
substantial part of the book by Knop et al. [16]. This material deserves 
supplementary treatment, which is given in the following. 

The mentioned monograph [16] from the Dfisseldorf-Zagreb group contains 
8386 miniatures, which display the forms of all benzenoids with h < 9. The pictures 
are ordered according to the number of internal vertices (n~). Hence the cataconden- 
sed systems (n~ - 0) are sorted out automatically. Furthermore, each picture is 
supplied with the Kekul6 structure count, K, occasionally K = 0 for the non- 
Kekul6ans. The corresponding mammoth listing of the 30086 benzenoids with 
h = 10 has also been produced, as reported by Knop et al. [17]. 

We have no illusions that the above survey of benzenoid forms depicted in the 
literature is complete. To take an example, the really classical work of P61ya [92] 
from 1936 on algebraic computations of isomers of organic compounds is not 
mentioned above. Nevertheless it contains pictures of a few benzenoid hy- 
drocarbons. 

Comments and Errata 

By virtue of the impact of the Dfisseldorf-Zagreb school the enumeration of 
polyhexes is often associated just with the numbers of Table 23 (benzenoids, 
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subdivided into catacondensed and pericondensed systems). It is not to be denied 
that there has been a tendency to competition, trying to overbid the Dfisseldorf- 
Zagreb numbers in a kind of a race. 

The record of h = 10 achieved by the Dfisseldorf-Zagreb group in 1983 stood 
for three years when it was beaten by Novi Sad; in 1986 Stojmenovi6 et al. [46] 
published their results for h = 11. 

For benzenoids with h = 12 the first data were published in 1988 as a result 
of a collaboration between He & He and Trondheim (cf. Sect. 2.8 for a listing of 
the research centres). The number C'12 (for catacondensed benzenoids with h = 12) 
became available after the enumeration of the branched catacondensed h = 12 
systems in Trondheim, while He & He succeeded in a complete enumeration of 
benzenoids with this number of hexagons. Consistent h = 12 numbers were 
reported [69] as private communications from He & He and from Cioslowski. 

On the other hand, the C~3 number of Cioslowski as quoted by Aboav and 
Gutman [69] in 1988 did not agree with the results of He & He communicated 
privately to us the same year. The controversy was resolved by an independent 
computation in Trondheim [47], where also the complete h = 12 results were 
reconfirmed. It was concluded that the He & He result for C'~3 was correct, while 
the Cioslowski number looks like a misprint. 

The cited work of Cyvin and Brunvoll [47] includes C~4. The chemical formula 
tbr a catacondensed h = 14 benzenoid is given erroneously therein; it should be 
C58H32. The number C'~ 5 is a present result. 

Eventually the Diisseldorf-Zagreb group took up the challenge, as is docu- 
mented by the footnotes of Table 23. Trinajsti6 was able to present the numbers 
of total benzenoids, not only for h = 12, but also for h = 13, 14 and 15 at a 
conference (Galveston, Texas) in 1989 [49], where he was congratulated by Cyvin. 
A citation from the proceedings of the conference [93]: "The data for h = 13 and 
h = 14 ... were reported for the first time (together with the results for h = 15) 
by Trinajsti6 as an achievement of the Dfisseldorf-Zagreb group. Congratula- 
tions!" To be precise, the Diissetdorf-Zagreb group communicated the numbers 
up to h = 13 [48] shortly before the mentioned conference. 

The Diisseldorf-Zagreb group pursued their success by a computation for 
h = 16 [37], which took 91 days, 7 hours, 24 minutes and 33.69 seconds of computer 

(CPU) time. 
The computations for h > 12 became feasible by an exploitation of a code 

named DAST (dualist angle-restricted directional information) [31, 48]. It is no 
doubt that the Diisseldorf-Zagreb group has regained the hegemony in benzenoid 

enumerations. 
In the following we point out specifically some errors, apparently all of them 

misprints. They may seem to be a trifle, but should nevertheless be treated seriously. 
In the paper of Aboav and Gutman [69] the number of C'13 (from Ciostowski) is 
claimed to be wrong [47]. The same (wrong) number was quoted in a table of the 
monograph by Gutman and Cyvin [22], but in parentheses as uncertain. The 
parenthesized number for pericondensed benzenoids with h = 13 is also wrong. 
Furthermore, in the same table, there is a misprint in C~ and in the total for 
h = 15, the last number therein. 
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7.3 Kekul~an and non-Kekui~an Benzenoids: 
the "neo" Classification 

The neo classification divides all benzenoids into normal (n), essentially dis- 
connected (e) and non-Kekul6ans (o), where the n and e systems cover all the 
Kekul6ans. Cyvin and G u t m a n  [26] have advocated for this classification by saying: 
"From the point of view of the enumerat ion of Kekul~ structures the classifica- 
t i o n . . .  [neo] . . .  seems to be a rather appropriate one [94, 87]". However, the 
distinction between Kekul6an (closed-shell, non-radicalic) and non-Kekul6an 
(radicalic) benzenoid hydrocarbons was made long before the explicit definition 
of the neo classification. This practice started with the first (substantial) enumer- 
ation of benzenoids in the chemical context by Balaban and Harary [13]. 

Table 24 shows the known numbers of benzenoids belonging to the different 
classes of neo and at the same time the numbers of total Kekul6an (n + e) and 
non-Kekul6an (o) systems. In the documentations of this table (cf. the footnotes) 
we have taken into account that the Kekul6an and non-Kekul6an benzenoids can 
be counted separately for h < 9 from the figures in the book of Knop  et al. [16]. 
That  has actually been done, as it was reported [54]. As to the documentat ions 
for higher h values the literature needs to be supplemented by two references 
[95, 96]. 

T a b l e  24. Numbers of benzenoids according to the neo classification* 

Kekul+an 

h n e Total Kek. 

non-Kekul6an 

0 

8 
9 

10 
11 
12 
13 
14 

1 1 ~ 1" 
2 1 a 1 a 
3 2 ~ 2" 1 a 
4 6 ~ 6" 1 a 
5 14 b-d 1 °'a 15" 7 a 
6 48 b-d 3 c'd 51 e.f 30 a 
7 167 b'c 23 ~ 190 ~'f t41 e.f 

64M 121 ¢ 764 ~,f 671~.f 
2531 ~ 692 ~ 3223 f 3282 f 

t0375 g 3732 h,i i4107~.i 15979 i 
42919 g 19960 h.i 62879h.i 78350 i 

180205 104713 ~ 284918 j 384666 j 
761599 543262 1304 861 1893395 

3241584 2790058 6031642 9335935 

* Abbreviations: e essentially disconnected; n normal; o non-Kekul6an. 
a Balaban and Harary (1968) [13]; u Cyvin (1986) [94]; c Cyvin, Brunvoll, Cyvin and Gutman 
(1986) [95]; d Cyvin and Gutman (1986) [88]; ° He and He (1985) [32]; ~ Knop, Miiller, 
Szymanski and Yrinajsti6 (1985) [16]; g Cyvin, Brunvoll and Cyvin (1986) [68]; a Brunvoll, 
Cyvin and Cyvin (1987) [71]; i Balaban, Brunvoll, Cioslowski, Cyvin, Cyvin, Gutman, He, 
He, Knop, Kova6evi6, Mfiller, Szymanski, Toni6 and Trinajsti6 (1987) [18]; J He, He, Wang, 
Brunvoll and Cyvin (1988) [19]; k Brunvoll, Cyvin, Cyvin and Gutman (1989) [96] 
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A substantial amount  of additional enumeration data for normal benzenoids 
and some data for essentially disconnected benzenoids are available, but shall not 
be reproduced here. They were produced in the course of the extensive studies of 
the distribution of K, the Kekul6 structure count. 

These studies of normal benzenoids started with an account by Cyvin [94] on 
the distribution of K for normal benzenoids up to h = 7 in the form of curves. 
In  the same work the enumeration of all normal benzenoids with K _< 9 is reported 
and illustrated by figures of the 16 systems in question. Here the upper limit for 
K is equal to the maximum (Kmax) for h = 4. The distribution of K for h = 8 and 
h = 9 followed [95]. Next the enumerations were extended to K < 24 (Kmax for 
h = 6) with illustrations for K _< 14 (K .... for h = 5) [88]. The distribution of K 
for h = 10 was given graphically [68] and by numerical values [26]; here also the 
depictions are extended to K _< 24. The studies culminated by a master review 
of the enumerations of normal benzenoids with supplements up to K < 110 (Kma x 

for h = 9) [55]. Figures of all these systems for K < 30 are found therein. A 
summary of the distributions of K is under way, with supplements up to h = 11 
[97]. In this work, and elsewhere [59], computer-generated curves for such 
distributions are presented for the first time. 

Parallel with the studies of normal benzenoids described above the distributions 
of K for essentially disconnected benzenoids were treated: for h < 9 [95], h < 10 
[26], h _< 11 [98] and h = 12 [96]. 

Hosoya and Yamaguchi [99] published the sextet polynomials systematically 
for all Kekul6an benzenoids with h _< 5. This material was supplemented up to 
h = 6 by Ohkami and Hosoya [100]. 

Comments and Errata 

As far back as 1968, Balaban and Harary [13] were aware of the unique position 
of zethrene, which was placed in a class of its own under the pericondensed 
benzenoids with h = 6. It is an essentially disconnected benzenoid. However, these 
authors did not sort out the other two essentially disconnected benzenoids 
(annelated perylenes) with the same numbers of hexagons. Neither did they sort 
out perylene itself, which is the unique essentially disconnected benzenoid with 
h = 5. In the table we are referring to [13], the entry for the classified pericondensed 
system with h = 3 is misplaced. 

Knop et al. [91] published a list of the numbers of Kekul~an benzenoids for 
h _< 9 with a misprint in the number for h = 9. Brunvoll et al. [101] reported a 
wrong number (with reference to private communication from He and He) for 
the Kekul6an benzenoids with h = 12. The curve of the distribution of K for 
essentially disconnected benzenoids with h = 9 [26, 95] in imperfect. 

7 .4  C o l o r  E x c e s s  

A classification of the benzenoids according to the color excess (A) sorts out the 
obvious non-Kekul6ans (A > 0) and the systems with vanishing color excess 
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Table 25. Numbers of benzenoids classified according to their A values* 

h Color excess (A) 

0 1 2 3 4 5 

1 1 a 
2 1 ~ 
3 2 ~ 1 b 
4 63 1 b 

5 15 ~ 7 b 
6 51 c'd 28 b 2 b 
7 190 c'd 134 b 7 b 
8 764 ¢'d 619 b 52 b 
9 3223 d 2957" 322 ~ 

lO 14107 ~'f 14024 ¢ 1916 e 
1t 62887 ~ 6704& 10922 ~ 
12 285016 g'h 320859 g-i 60705 g-i 
13 1305958 1540174 330238 
14 6041446 7408410 1769625 
15 t t t 

3 e 

39 ~ 
3748 

2990  g - i  

21675 g-i 
145508 
t 

14 e 
211g-i 

2588 g - i  

t 48 g - i  

* Concealed non-Kekul6ans (A = 0, K = 0) occur at h >_ 11. 
" Balaban and Harary (1968) [13], b Brunvoll, Cyvin and Cyvin (1987) [54]; ~ He and He 
(1985) [32], d Knop, Miiller, Szymanski and Trinajsti6 (1985) [16]; e Balaban, Brunvoll, 
Cioslowski, Cyvin, Cyvin, Gutman, He, He, Knop, Kova6evi6, Mfiller, Szymanski, Toni6 
and Trinajsti6 (1987) [18]; f Brunvoll, Cyvin and Cyvin (1987) [71]; g He, He, Wang, Brunvoll 
and Cyvin (1988) [19]; h Brunvoll, Cyvin, Cyvin and Gutman (1988) [101]; J Gutman and 
Cyvin (1988) [102]; t Unknown 

(A = 0). The latter class consists of the Kekul6ans (K > 0) and concealed 
non-Kekul6ans (A = 0, K = 0). 

A summary of the known data is displayed in Table 25. The key reference to 
their generation is Brunvoll et al. [101]. Additional computations by Brunvoll, of 
relevance to these systems, are quoted in Gu tman  and Cyvin [102]. 

The benzenoid systems with A = 0 coincide with the Kekul6ans for h _< 10. 
For  h >__ 11 the concealed non-Kekul6ans must be added. 

7.5 Symmetry 

Balaban and Harary [13] distinguished between the centrosymmetrical and 
mirror-symmetrical unbranched catafusenes. Also in their classical enumerations 
of polyhexes Harary and Read [9], as well as Lunnon  [10], exploited symmetry. 
The familiar symmetry group designations for benzenoids were employed, perhaps 
for the first time by Rouvray [56, 86]. Cyvin and Gu tman  [83] specified explicitly 
the eight possible symmetries for benzenoids, viz. O6h , C6h , D3h , C3h , Ozh , Czh , C2v 

and C,. Brunvoll et al. [71] were the first who generated specifically benzenoids 
belonging to different symmetry groups. 

Table 26 shows the known numbers of benzenoids with their distributions into 
symmetry groups for h < 20. Extensions of this table for some of the symmetries 
are found in a forthcoming section. 
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Errata 

A m i n o r  mispr in t  occurs  as one  o f  the symmet ry  g roup  specif icat ions by R o u v r a y  

[86]; the n o n - K e k u l 6 a n  h = 4 system should  be C~h [C,]. 
We  cite f rom Cyv in  et al. [103]: " In  the paper  [83] ... it is also stated that  the 

smallest  benzeno id  with  C6h symmet ry  occurs  for  h = 19, and tha t  only  one  such 

system exists. The  last pa r t  of  this s t a tement  is wrong.  There  are  exact ly two  

benzenoids  wi th  h = 19 and C6h symmet ry  [71]" (cf. Tab le  26). 

T a b l e  26.  Numbers of benzenoids belonging to the different symmetry groups 

h D6h C6h Dab C3h D2h C2h C2t, Cs 

1 1 a 
2 0 1" 
3 0 1 a 14 1" 
4 0 1 a 2" 1" 1" 2" 
5 0 0 2 b 1 b 9 b l0 b 
6 0 1 c'a 1 ~'d 3 °'d 7 ~'a 12 c'd 57 ~'d 
7 1 c'd I c'd 1 c'a 3 c'a 7 *'a 39 ~'a 279 ~'a 
8 0 0 0 6 e'd 35 ~'d 61 c'a 1333 ~'a 
9 0 1 ~'° 5 c'd 7 ~'a 36 ~'a 178 ~'a 6278 ~'a 

10 0 4 ~'a 5 ~'a 11 ~'a 169 ' 'a 274 ~'a 29623 ~'d 
11 0 0 0 14 a 177 a 796 d 140242 d 
12 0 3 e 21 a 21 a 807 a 1251 667481 
13 2 c'a 40 26 d 23 a 859 a 3578 3193764 
14 0 0 0 41 a 3864 5692 15357980 
15 0 3 a 95 a 50 e 4145 16290 74187327 
16 0 120 118 e 80 d 18616 26069 359818883 
17 0 0 0 94 a 20098 ? ~ 
18 0 6 d 423 d 156 a "~ ~" 
19 2 ~,d 2 ~,d 19 d 543 d 189 a 5" "~ 
20 0 0 0 0 310 d ~" '~ t 

Rouvray (1973) [56]; b Rouvray (1974) [86]; ~ Brunvoll, Cyvin and Cyvin (1987) 
[71]; a Balaban, Brunvoll, Cioslowski, Cyvin, Cyvin, Gutman, He, He, Knop, Kova~evi6, 
M/iller, Szymanski, Toni6 and Trinajsti6 (1987) [18]; ~ Unknown 

8 Normal Benzenoids 

T h e  class of  n o r m a l  benzenoids  consists  of  the ca t acondensed  and the no rma l  

pe r i condensed  systems. They  are  all Keku l6an  (K > 0) and  have  A = 0. 
In  Tab le  27 k n o w n  number s  of no rma l  benzenoids ,  the  ca tacondensed  (cat) and  

n o r m a l  pe r i condensed  (np) systems separate ly  are  summar ized  wi th  their  dis t r ibu-  
t ion into  symmet ry  groups.  The  entries under  cat are of  course  ob ta inab le  f rom 

addi t ions  of  the app rop r i a t e  numbers  f rom Tables  14 and 17. Wi th  the aid of  
tables 19 and  20 (conta in ing  s u p p l e m e n t s t o  Tab le  17), Table  27 can be ex tended  
fur ther  as far as the ca tacondensed  systems are concerned.  Still m o r e  supp lementa ry  
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n u m b e r s  (for h > 17) c o u l d  be  p r o d u c e d  w i t h  the  a id  of  f o r t h c o m i n g  t ab l e s  for  

specific symmet r ies .  In  the  d o c u m e n t a t i o n  (cf. f o o t n o t e s  to  T a b l e  27) we h a v e  

i nc luded  a special  s t udy  of  b e n z e n o i d s  wi th  t r i g o n a l  s y m m e t r y  [104]; the  p e r t i n e n t  

(small)  va lues  are  o b t a i n a b l e  f rom a sc ru t iny  of  the  f igures there in .  

F igu re  22 shows  all the  n o r m a l  b e n z e n o i d s  to  h = 7 as b l a c k  s i lhouet tes .  Such  

figures h a v e  been  g iven  p rev ious ly  for  h < 6 [26] a n d  h _< 7 [97]. 

Table 27. Numbers of normal benzenoids classified according to symmetry + 

h Type* O6h Dab Cab D2h C2h C2v U s 

1 cat 1" 

2 cat 0 1 a 

3 cat 0 1 a I b 

4 cat 0 1 ~ 1 a I b i b 1 b 

np 0 0 1 a 0 0 0 

5 cat 0 0 1 a 1 b 5" 5 a 
np 0 0 0 0 1" 1 a 

6 cat 0 0 2" 4 b 7" 23 a 
np 0 0 1" 2 a 3 ~ 6 a 

7 cat 0 1 a 1" 2" 4 b 16" 94" 
np 1" 0 0 1" 0 6" 41" 

8 cat 0 0 0 2" 17 a 28" 364" 
np 0 0 0 2" 11" 19 a 200 a 

9 cat 0 0 0 2" 17" 61" 1409" 
np 0 0 0 3" 3 ~ 39" 997" 

10 cat 0 2" 4" 4" 64" 95" 5403 ~ 
np 0 1" 0 6" 52" 90 ~ 4654" 

11 cat 0 0 0 5" 65 ~ 215" 20830" 
np 0 0 0 6 23 193 21582 

12 cat 0 0 0 5" 248 ~ 350" 80518 ~ 
np 0 0 0 11 248 432 98393 

13 cat 0 2" 15 ~ 5" 255" 778 313020 
np 2 ~ 2 d 3 d 11 129 896 446481 

14 cat 0 0 0 10" 959 1267 1222292 
np 0 0 0 23 1145 1934 2013954 

15 cat 0 0 0 12 a 994 2860 4795339 
np 0 0 0 26 657 4048 t 

16 cat 0 4 55 13 3750 4670 
np 0 6 18 45 5240 8549 

17 cat 0 0 0 14 3912 t t 
np 0 0 0 51 3216 ~ t 

+ Normal  pericondensed systems with symmetry C6n occur for h >_ 19. 
* Abbreviations: cat catacondensed; np normal pericondensed. 
"Brunvoll,  Cyvin and Cyvin (1987) [71]; b Balaban and Harary (1968) [13]; c Balaban, 
Brunvoll, Cyvin and Cyvin (1988) [60]; a Cyvin, Brunvoll and Cyvin (1988) [104]; t Unknown 

129 



Bj6rg N. Cyvin, Jon Brunvoll, and Sven J. Cyvin 

h=l h=2 h=3 

2 3 4 5 

h=4 

5 6 7 8 9 

h=5 6 9 9 10 11 1t 

12 13 13 14 

h=6 

14 14 14 IS 

15 ~6 16 16 

17 17 17 17 18 

(see page 69) 

9 Essentially Disconnected Benzenoids 

Essentially disconnected benzenoids are, by definition, the Kekul6an benzenoids 
(with K > 0, A = 0) which are not normal. All of them are pericondensed. 

In Table 28 the numbers of essentially disconnected benzenoids are displayed 
with the distributions into symmetry groups. The documentations contain a work 
[105] in which the essentially disconnected benzenoids were recognized auto- 
matically by means of a computer program, based on Pauling bond orders. The 
same principles were also employed in the present supplementary computations. 
Extensions for the highest symmetries (hexagonal and trigonal) are accessible 
through some of the subsequent tables. 
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(h=6) 

18 19 

19 19 20 ZO 

21 

22 23 

22 

z4 

h=7 
8 13 ]4 15 16 16 17 17 

]7 ]8 19 19 19 

20 21 21 2] 21 2] 

22 22 23 

20 20 

22 

23 

(see page 69) 
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(h=7) 

23 23 23 23 23 24 24 24 

24 24 24 25 25 

25 25 25 25 25 26 

26 26 26 27 27 

27 27 27 27 27 28 28 28 

29 29 

29 2g 29 30 30 

30 30 31 

31 31 31 31 32 

32 33 33 34 

(see page 69) 
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(h=7) 

34 34 34 

34 35 35 36 

36 37 38 40 41 

Fig. 22. All normal benzenoids with h ~ 7. K numbers are given 

Table 28. Numbers of essentially disconnected benzenoids classified according to symmetry + 

h D3h C3h D2h C2h C2v C s 

5 1 a 
6 0 1 ~ 2 a 
7 0 3 a 64 14 a 
8 2 a 7 a 2" 110 ~ 
9 2 ~ 16 ~ 29 ~ 645 a 

10 1 a 53 a 31 a 3647 a 
11 2 b 87 b 166 b 19705 b 
12 5 b 306 202 104200 
t3 7 b 452 875 541928 
14 7 b 1702 1199 2787150 
15 9 b 2317 4577 
t6 1 ~ 2 c t9 b 9124 6651 
17 0 0 27 b 11762 ~ 
18 0 0 34 b ~ ~ 
19 0 23 ~ 39 b ~ ~ 
20 0 0 84 b t t 

+ The smallest essentially disconnected benzenoids with D6h and with C6h symmetries (one 
each') occur at h = 25 [71]. 
a Brunvoll, Cyvin and Cyvin (1987) [71]; b Brunvoll, Cyvin, Cyvin and Gutman  (1988) [105]; 

Cyvin, Brunvoll and Cyvin (1988) [104]; t Unknown 

In  Fig. 23 the  fo rms  of  all  essent ia l ly  d i s c o n n e c t e d  b e n z e n o i d s  up  to  h = 8 a re  

d i sp l ayed  as b l ack  s i lhouet tes .  Such  f igures h a v e  b e e n  g iven  p rev ious ly  for  h < 7 

[26] a n d  h _< 8 [105], for  h = 7 a lso as  dua l i s t s  [55]. I n  o n e  of  these  w o r k s  [105] 

a n u m b e r  of  (bizarre)  fo rms  of  l a rger  essent ia l ly  d i s c o n n e c t e d  b e n z e n o i d s  are  in-  
c luded.  

133 



Bj6rg N. Cyvin, Jon Brunvoll, and Sven J. Cyvin 

h:5 h=6 

9 9 12 15 

h=7 

9 9 9 12 12 15 15 

(h=7) 

15 15 t6 16 18 20 20 21 21 21 21 24 24 24 25 25 

h=8 

9 9 9 9 9 9 9 12 12 12 12 12 12 15 15 15 15 15 15 

15 15 15 16 16 16 16 18 18 18 18 18 20 20 20 20 

(h=8) 

20 20 20 21 21 21 21 21 21 21 21 24 24 24 24 24 24 24 

25 25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 

28 28 28 28 28 28 28 30 30 30 30 30 32 32 32 32 32 

33 33 33 33 33 33 33 33 33 35 35 35 35 35 35 35 35 

36 36 36 36 39 39 39 39 39 39 39 40 40 40 40 40 42 

Fig. 23. All essentially disconnected benzenoids with h _< 8. K numbers are given 

134 



Enumera t ion  of Benzenoid Systems and Other  Polyhexes 

I 0  O b v i o u s  N o n - K e k u l 6 a n  Benzeno ids  

10.1 Numbers and Forms 

T h e  b e n z e n o i d s  w i t h  A > 0 a r e  b y  d e f i n i t i o n  t h e  o b v i o u s  n o n - K e k u l 6 a n s .  T h e y  

h a v e  K = 0 a n d  a r e  p e r i c o n d e n s e d .  O n l y  f o u r  s y m m e t r y  g r o u p s  a r e  p o s s i b l e  fo r  

t h e s e  s y s t e m s ,  viz. D3h , C3h , C2v a n d  C, .  

Table 29. Numbers  of obvious non-Kekul6an benzenoids with different colour excess (A 
values), classified according to symmetry  

h A Dab C3h C2~ C~ 

3 1 I a 
4 t 0 1" 
5 1 0 3 ~ 4" 
6 1 0 I" 1 a 26 ~ 

2 1 ~ 0 1" 0 
7 1 0 0 10" 124" 

2 0 0 1 ~ 6 a 
8 1 0 0 5 a 614" 

2 0 0 7" 45 a 
9 1 0 4" 39 ~ 2914" 

2 1 a 1 ~ 9" 311 a 
3 0 0 1" 2 a 

10 1 0 0 20 a 14004" 
2 0 0 38" 1878 a 
3 1 ~ 1 ~ 0 37 " 

i1 1 0 0 t56 b 66890 b 
2 0 0 52 b 10870 b 
3 0 0 13 b 361 b 

12 1 3 b'~ 13 b'~ 80 320763 
2 0 7 b'~ 176 b 60522 b 
3 0 0 5 b 2985 b 
4 0 l ~'~ 6 b 7 u 

13 1 0 0 652 1539522 
2 0 0 266 329972 
3 0 8 b'¢ 84 b 21583 b 
4 0 0 4 b 207 b 

14 1 0 0 347 7408063 
2 0 0 853 1768772 
3 0 0 35 145473 
4 0 0 46 b 2542 b 

15 1 0 58 b'~ 2789 ? 
2 2 b'~ 29 b'~ 1289 ? 
3 0 0 486 ? 
4 1 b'~ 7 b'~ 52 t 
5 0 1 b'c 4 8 43 b 

16 1 0 0 1474 f 
2 0 0 4033 ? 
3 1 43 214 t 
4 0 0 331 t 
5 o o 2 t 

" Brunvoll, Cyvin and Cyvin (1987) [71]; b Gu tman  and Cyvin (1988) [102]; c Cyvin, Brunvoll 
and Cyvin (1988) [104]; t U n k n o w n  
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Bj6rg N. Cyvin, Jon Brunvoll, and Sven J. Cyvin 

ni=l hi=3 

(A=l) 

(A=l) ~ ni=5 

~ ni~4 

n i = l  

ni"3 

Fig. 24. All obvious non-Kekul6an benzenoids with h _< 7. A values and numbers of internal 
vertices (hi) are indicated 
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Table 29 gives a general survey of the numbers of obvious non-Kekul6ans with 
given A values, including the distributions into symmetry groups. Extensions for 
the trigonal symmetries are accessible through subsequent tables. 

In Fig. 24 the forms of the obvious non-Kekul6ans up to h = 7 are shown as 
black silhouettes. They have been given previously as dualists [55]. 

Erratum 

In Gutman and Cyvin [22], in the table which corresponds to Table 29 here, the 
entry for h = 6, A = 2 (Total) is omitted by a minor misprint. 

h = 3  A = I  
n i = l  

h=4 A=I n .=I 

h ; ~  ~=t 

rt .=1_ 
7. 

n . = 3  
7. 

"'/,:6 A=2 
rt . = 2  

7. 

ni=4 

h=7 A=2 

n .=2 
L 

n .=4 -L 

h = 8  A=2 

?2 . = 2  
L 

n .=4 q~ 

n , = 6  "t, 
(see next page) 
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h=9 ~=3 n . = 3  

ni=5 

h=lO A=3 

n .=3  
7. 

?/ .=5  
7. 

~2 .=9  "C 

Fig. 25. All benzenoids with 
A = A r e a  x for 3 < h N 10, clas- 
sified according to their num- 
bers of internal vertices (nl) 

10.2 Non-Kekul~ans with Extremal Properties 

The title class refers to benzenoids which have the maximum A value, A = A . . . .  

for a given number  of hexagons (h). Fo r  A > 0 they are obvious non-Kekul6ans.  
These systems are t reated in detail by Brunvoll  et al. [101]. 

It has been shown [18, 101] that  

Amax = th/3J (57) 

where the floor function is employed.  In other  words, the value of Area x jumps  one 
unit for every third h value. 

Figure 25 shows all the non-Kekul6ans with extremal propert ies  (A = Amax) to 
h = 10. Only the first 18 systems overlap with those of Fig. 24. Fo r  h = 11 the 
non-Kekul6ans with extremal propert ies which have A = 3, are too many (374 
systems; cf. Table 25) to be reproduced here. But for h = 12 this type ofbenzenoids  
have A = 4 and there are only 14 of them, which are shown in Fig. 26. 

Especially interesting are the non-Kekul6ans with A = A r e a  × for h = 3, 6, 9, 
12 .. . .  i.e. 

h = 3A, A = Area ̀ = h/3 (A > 0) (58) 
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h = 1 2  A=4 

n .=/4 
q~ 

n . = 6  
7- 

Fig. 26. The benzenoids (tee- 
n.=8 pees) with A = A .... = 4 for 

h = 12, classified according to n~ 

It has been shown [101] that these systems are characterized by some very restricted 
forms. They are called teepees (originally TP benzenoids, where T and P signify 
Triangulene and Phenalene, respectively). A teepee is defined as phenalene (h = 3) 
or  triangulene (h = 6) or  any number  of  these two units fused together so that  
the triangle apex of  each unit  points the same way (conventionally upwards).  By 

h=15 

A=5 

hi=5 

n . = 7  
7. 

7~ - = 9  
7. 

Fig. 27. The benzenoids (teepees) with A = Area x = 5 for h = 15, classified according to ni 
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definition, two benzenoids are said to be fused (in a restricted sense as used above) 
when they share one and only one edge. Figure 25 contains the teepees for:  h = 3, 
A = 1 ; h = 6 ,  A = 2 ; h = 9 ,  A =  3. All the systems in Fig. 26 ( f o r h =  12, A = 4 )  
are teepees. Brunvoll  et al. [101] have also generated the 48 teepees with h = 15 
and A = 5; they are reproduced in Fig. 27. 

11 Concealed Non-Kekul6an Benzenoids 

The class of concealed non-Kekul6ans is defined by A = 0, K = 0. All members  
of this class are pericondensed. They occur at h _> 11. 

A systematic search for concealed non-Kekul6ans seems to have started in 1974 
with G u t m a n  [81], who inferred that  no such systems with less than 11 hexagons 
can be constructed, and depicted two of those with h = i 1. Not  until thirteen 
years later was it proved by Brunvoll et al. [106] using computer  generation that  
the number  of concealed non-Kekul6ans with h = 11 is 8. The corresponding 
analysis for h = 12 by He et al. [107] followed. Guo  and Zhang  [108], and 
independently Jiang and Chen [109], deduced analytical ly the numbers  of concealed 
non-Kekul~ans with h = 12 and h = 13. F o r  h = 14, see Comments and Errata 
below. Two recent reviews on the enumerat ion of  concealed non-Kekul6an 
benzenoids have appeared  [93, 110], wherein the historical  development  is t reated 

in part icular ;  see also below. 
Table 30 shows numbers of  concealed non-Kekul6an benzenoids,  including the 

distr ibutions into symmetry groups. Some supplements are accessible from 

appropr ia te  for thcoming tables. 
In Fig. 28 the concealed non-Kekul~ans with h _< 12 are depicted. Both sets 

have been given previously: those with h = 11 [22, 26, 93, 103, 106, 108, 110-112] 

and with h = 12 [107, 108]. 

Table 30. Numbers of concealed non-Kekul6an benzenoids classified according to sym- 
metry + 

h D2~ C2h C2~ C~ Total 

11 l a 2 b lb 4b 8~ 
12 0 5 b 0 93 b 98 a 
13 0 23 23 1051 1097 e'f 
14 1" 58 11 9734 9804 
15 3 a 177 185 "~ t 
16 3 ~ 502 145 ~ ]" 
17 2 a 1208 ~ t 

+ Concealed non-Kekul6ans with D6h and C6h symmetries occur first at h = 43, those with 
D3h at h = 40 and C3h at 34. 

Gutman and Cyvin (t988) [102]; b Gutman and Cyvin (1989) [22]; ~ Brunvoll, Cyvin, Cyvin, 
Gutman, He and He (1987) [106]; a He, He, Cyvin, Cyvin and Brunvoll (1988) [107]; e Guo 
and Zhang (1989) [108]; f Jiang and Chen (1989) [109]; ~ Unknown 
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h=ll 

hi= ~ ni~6 n~=8 

(h=12) hi=4 

ni:6 

hi=8 

Fig. 28. All concealed non-Keku|6an benzenoids with h _< 12, classified 
to n~ 

according 
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Comments and Errata 

A benzenoid hydrocarbon corresponding to a concealed non-Kekul6an was 
probably described for the first time in 1972 by Clar [113]. The particular system 
which he constructed, viz. the system No. 8 of  Fig. 28 (the last one with h = 11) 
was referred to as the "Clar goblet" in the review entitled "The hunt for concealed 
non-Kekul6an polyhexes" [93]. The two systems constructed by Gutman [81] are 
No. 1 and No. 8 (Fig. 28). Both of these systems have been quoted several times 
as Gutman's  original findings, although Bataban [114] tried to share the credit 
for No. 8 between Gutman and Mallion with reference to a private communication 
from Mallion. This discussion, however, is uninteresting because we are speaking 
of the Clar goblet. The system No. 1, on the other hand, should most probably 
be attributed to Gutman [81]. 

It was not claimed by Gutman [81] that the systems Nos. 1 and 8 of Fig. 28 
are the only concealed non-KekulSans with h = 11, but a statement in Cyvin and 
Gutman [83] is misleading on this point, as was pointed out later [103]. In 1981 
Balaban [114] discovered the system No. 2 "by accident". Originally he assigned 
this system to a wrong category, but explained in a note added in proof, with 
different words, that it is a concealed non-Kekul6an. One year later, after a more 
conscious search for concealed non-Kekul6ans, the same author [115] discovered 
Nos. 3, 4, 5 and 7 (Fig. 28). The remaining system, viz. No. 6, was reported by 
Hosoya [111], who in 1986 published for the first time the whole set of  the 8 
smallest (h = 11) concealed non-Kekul6ans. The system No. 6 was found indepen- 
dently by Cyvin and Gutman [112], who published the same 8 concealed 
non-Kekul~ans one year after Hosoya. These authors [ 112] stated by mistake that 
Dias [116] had given the system No. 6 before; the similar system of Dias has 
twelve hexagons. Neither Hosoya [111] or Cyvin and Gutman [1 t2] claimed that 
the 8 constructed concealed non-Kekul6ans with h = 11 are the only such systems. 
The very title of Hosoya's paper [111], with the sign of interrogation, speaks for 
itself: "How to design non-Kekul+ potyhex graphs?" In Cyvin and Gutman [112] 
it is expressed still clearer in the legend of a figure: "The (all?) eight smallest 
possible concealed non-Kekul6ans". As was mentioned above, Brunvolt et al. [106] 
resolved this problem in t987. Their paper is entitled "There are exactly eight 
concealed non-Kekulean benzenoids with eleven hexagons". Furthermore, they 
stated clearly: "Any further search for concealed non-Kekul6an benzenoids with 
eleven hexagons is futile." In 1988 Zhang and Guo [117] proved mathematically 
(by graph theory) a theorem stating the same about the smallest non-Kekul6ans. 

Guo and Zhang [t08] pursued the graph-theoretical analysis and proved that 
the number of concealed non-Kekuldans with h = 12, which can be constructed, 
is 98. But already the year before they had published these findings, He et al. 
[107] had published a paper with part of the title: "There are exactly ninety eight 
concealed non-Kekul6an benzenoids with twelve hexagons." This conclusion had 
been reached by computer analysis. Jiang and Chen [109] referred to a wrong 
number instead of 98 communicated privately to them by He and He. This (wrong) 
number was published as a preliminary communication in He and He [35], but 
the error was detected and corrected before the final publication [107]. Herein, 
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by the way, in the depiction of the h = 12 concealed non-Kekul6ans one black 
hexagon is missing. 

The mathematical deductions did not always come after the computer-aided 
analysis. In the mentioned work of Guo and Zhang [108] also the number of 
concealed non-Kekul6ans with h = 13 (see Table 30) was reported. An analytical 
deduction of the same number was achieved by Jiang and Chen [109], who extended 
their mathematical analysis to attain at the corresponding number for h = 14. 
Cyvin et al. [93] offered the following comment. "We wish to emphasize that these 
numbers (viz. 1097 and 9781) were obtained by mathematical analyses without 
computer aid. Brilliant achievements!" The former number (viz. 1097 for h = 13) 
was confirmed by a computer analysis of the present work. For h = 14, however, 
a very recent computer result of the present work deviates from the Jiang and 
Chen number. The new number (viz. 9804) is supposed to be correct and is therefore 
entered in Table 30. 

12 Benzenoids with Specific Symmetries 

12.1 Hexagonal Symmetry: Snowflakes 

Topological Properties 

A benzenoid of hexagonal symmetry belongs to one of the symmetry groups D6h 
and C6h. For obvious reasons these systems are called snowflakes. Sometimes it 
is distinguished between the D6h and C6h groups by means of the terms proper 
and improper snowflakes, respectively. The proper snowflakes are also said to 
have regular hexagonal symmetry. Snowflakes, both of O6h and C6h, occur for 

h = 6 q +  t ;  r / = 0 , 1 , 2  . . . .  (59) 

but q > 2 for C6h. 
Every snowflake has a hexagon at its centre; it is the central hexagon. 

Furthermore, for ~/ > 0 every snowflake has a coronene configuration at its centre; 
it is sometimes referred to as the core. It may also be natural to consider larger 
units as cores, such as circumcoronene. 

From the above considerations it is clear that all snowflakes are pericondensed 
except for benzene, which corresponds to q = 0. 

All snowflakes have vanishing color excess; A = 0. Therefore they can be either 
normal, essentially disconnected or concealed non-Kekul6an (but not obvious 
non-Kekul6an). 

Numbers and Forms 

Table 31 shows the numbers of snowflakes, which supplement the few, small 
numbers found in Table 26. Tables 32 and 33 show the numbers of proper and 
improper snowflakes, respectively, classified into the neo categories. The data were 
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Table 31. Numbers of benzenoids with hexagonal symmetry* 

h D6h C6h Total (D6h "4- C6h ) 

1 1 ~ 1" 
7 1 b'~ I b'~ 

13 2 b'c 2 b'c 
19 2 b'c 2 b'¢ 4 b'~ 
25 3 b 8 b I1 b 
31 5 b 32 b 378 
37 8 b 128 b 136 b 
43 13 b 527 b 540 b 
49 20 b 2209 b 2229 b 
55 35 b 9470 b 9505 b 
61 60 d ~ 
67 104 d ~ 
73 183 d f 

* Contains supplements to Table 26. 
"Rouvray (1973) [56]; b Brunvotl, Cyvin and Cyvin (1987) [71]; ~ Bataban, Brunvoll, 
Cioslowski, Cyvin, Cyvin, Gutman, He, He, Knop, Kova~evi6, Miiller, Szymanski, Togi6 
and Trinajstic (1987) [18]; d He, He, Wang, Brunvoll and Cyvin (1988) [19]; I" Unknown 

Table 32. Numbers of classified benzenoids with regular hexagonal symmetry, D6h (proper 
snowflakes) 

Kekul6an* Concealed 
non-Kekut6an 

h n e Total Kek. 

1 l a  1" 
7 1" 1 a 

13 2" 2a 
19 2 a 2a 
25 2 ~ 1" 3" 
31 5 ~ 0 5" 
37 7 ~ 1 ~ 8a 
43 11" 1" 12" 
49 17 b'¢ 3 b'° 20 b'¢ 
55 30 b'c 4 b'* 34b'c 
61 51 8 59 b'¢ 
67 87 13 100 b'e 
73 150 26 176 b'c 

1 a 

0 
1 a 

4b,* 
7b, c 

* Abbreviations: e essentially disconnected; n normal. 
Brunvoll, Cyvin and Cyvin (1987) [71]; b Cyvin, Brunvoll and Cyvin (1989) [103]; c Gutman 

and Cyvin (1989) [22]; d Cyvin, Brunvoll and Cyvin (1988) [118] 

p roduced  by specific genera t ions  of the systems with hexagona l  symmet ry  [71, 

103, 118]. 
The  first specific genera t ion  of  snowflakes [71] conta ins  compu te r -gene ra t ed  

figures in the form of min i -hexagons  for all the  191 such systems with  7 _< h __ 37 

and selected systems for h = 43. The  five smallest  (h = 43) concealed  non-  

144 



Enumeration of Benzenoid Systems and Other  Polyhexes 

Table 33, Numbers  of classified benzenoids with C6h symmetry (improper snowflakes) 

Kekul6an* Concealed 
non-Kekul6an 

h n e Total Kek. 

19 2 a 2 a 
25 7 ~ I a 8 a 
31 24 a 8 a 32 
37 84 a 44 a 128 
43 310 ~ 2138 523 
49 t t 2167 
55 t t 9158 

4 a 

42b, c 
312 b 

* Abbreviations: See footnote to Table 32. 
a Brunvoll, Cyvin and Cyvin (1987) [71]; b Cyvin, Brunvoll and Cyvin (1988) [118]; ~ He, 
He, Cyvin, Cyvin and Brunvoll (1988) [107]; i" Unknown 

h=l 

2 

h:7 h=13 

20 250 432 

h=19 

980 2662 3024 7425" 

h=25 

9472 12800 13718 34560 50•67 

59582 79625 136000 

(see next page) 
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h~3I 
40500 48778 64800 112700 125948 164052 182250 

212625 312128 314928 410758 416745 453962 

453962 482350 651/00 954569 986078 

1239040 1333584 2060602 2422784 3080025 

Fig. 29. Snowflakes: all normal benzenoids with hexagonal symmetry (D6h or C6h) and 
h < 37: 1, 1, 2, 4, 9 and 29 systems for h = 1, 7, 13, 19, 25 and 31, respectively. K numbers 
are given 

h=25 

1458 14580 

h~31 
729 1458 1458 8192 

14580 31250 31250 312500 

Fig. 30. Snowflakes: all essentially 
disconnected benzenoids with hexago- 
nal symmetry, [)6h (one system) or C6h, 
and h < 37:2 systems with h = 25 and 
8 with h = 31. K numbers are given 
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Kekul6an snowflakes have been depicted or reproduced several times [71, 103, 
107, 110]. The O6h system out of these was actually identified and depicted for 
the first time by Hosoya [119], while three out of the four C6h systems were depicted 
by Cyvin et al. [120]. The 42 concealed non-Kekul6an (improper) snowflakes with 
h = 49 have also been depicted before [107]. The 313 concealed non-Kekul6an 
snowflakes with h = 55 have been described, and selected representatives of them 
have been depicted [118]. In this set there is 1 proper snowflake, which also has 
been depicted together with all such systems for h < 73 [103]; the 7 largest of 
these systems (for h = 73) are reproduced elsewhere [93]. One of these papers 
[103] shows the computer-generated pictures of all proper snowflakes with h < 55. 

Here we give a re-edited selection of the forms of snowflakes. Figures 29, 30 
and 31 display the forms of normal, essentially disconnected and concealed 
non-Kekul6an snowflakes, respectively, both proper (D6h) and improper (C6h). 
Similarly, the forms of proper snowflakes in particular are displayed in Figs. 32, 
33 and 34, pertaining to the normal, essentially disconnected and concealed 
non-Kekul6an systems, respectively. 

h=43 

h=49 

(see next page) 
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(h=49) 

Fig. 31. Snowflakes: all concealed non-Kekul6an benzenoids with hexagonal symmetry, D6~ 
(one system) or C6h, and h < 55:5 systems with h = 43 and 42 with h = 49 

12.2 Trigonal Symmetry 

Topological Properties 

The benzenoids of tr igonal  symmetry, which belong to D3h and C3h are of two 
kinds: (i) the first kind, where the systems have a central hexagon; (ii) the second 
kind, where they have a vertex in the centre, a central vertex. 

The numbers  of hexagons are restricted to: 

h = 3~ + 1; ~ = 1 ,2 ,3  . . . .  (60) 

for the first kind (i), but  ~ > 1 for C3h; 

h = 3~; ~ = 1 ,2 ,3  . . . .  (61) 

for the second kind (ii), but again ~ > 1 for C3h. 
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h=l h=7 h=13 h=19 

2 20 250 432 980 3024 

h=25 

12800 34560 

h=31 

40500 I12700 182250 312120 3080025 

h=37 105840 194672 232848 1548800 

10562816 12251250 18413057 

Fig. 32. Proper snowflakes: all normal benzenoids with D6h symmetry and h < 43. K 
numbers are given 

The benzenoids of regular trigonal symmetry, viz. D3h , and of the first kind, viz. 
D3h(i), are subdivided into: (a) those where the two-fold symmetry axes cut edges 
perpendicularly; (b) those where the two-fold symmetry axes go through edges 
(and vertices). Under the adopted convention to draw a benzenoid with some of 
its edges vertical, the systems D3h(ia ) and D3h(ib) will possess a horizontal or a 
vertical two-fold symmetry axis, respectively. In the systems of the second kind, 
D3h(ii), the two-fold symmetry axes invariably go through edges, and therefore a 
vertical two-fold symmetry axis is found in such a system under the adopted 
convention. 

There are restrictions on the color excess. For  the D3h(i) and C3h(i) systems one 
has A = 3q, where r / =  0, 1, 2 . . . .  ; those of D3h(ia) can only assume the value 
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h=25 h:37 h:43 

] 4580 5242880 10828820 

h=49 

980x46 112700×36 20x156 
=4014080 =82158300 =227812500 

h=55 

232848x36 20×36×56 207 20×36x86 
=159746192 =227812500 =1280000000 =3822059520 

h:61 
3024×312 112700×56 980x126 20×246 

~l.6O7xlO 9 ~I.76]x109 ~2.926xI0 £ ~,3,822xI09 

I0624768x36 20x318 112700x86 20x456 
~7.745xI09 ~7.748xI09 ~2.954x10 I0 ~I.661×1011 

Fig. 33. Proper snowflakes: all essentially disconnected benzenoids with D6h symmetry and 
h < 66. K numbers are given 
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h=55 h=61 
h=43 

h=73 

/7=67 

X 
Z 
X 
X 

Fig. 34. Proper snowflakes: all concealed non-Kekul6an benzenoids with D6h symmetry and 
h <  79 

A = 0. In the case of D3h(ii ) and C3h(ii ) the allowed values for the color excess 
are exactly those which are forbidden in the former case (i); the allowed values 
are A = 3q + 1, 3q + 2; r/ = 0, 1, 2 . . . . .  In consequence, all benzenoids oftrigonal 
symmetry belonging to the second kind (ii) are obvious non-Kekul6ans. 

Numbers and Forms 

The numbers of catacondensed benzenoids of trigonal symmetry are listed in 
Table 17 with a continuation in Table 19. A listing for all benzenoids of trigonal 
symmetry (catacondensed + pericondensed) is given in Table 34, which supple- 
ments Table 26. Tables 35 and 36 take into account various divisions into 
subclasses for the D3h and C3h systems, respectively. The total numbers of Dah(ia ) 
and of D3h(ib ) systems have been given elsewhere [110] and are consistent with 
those of Table 35. 
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Table 34. Numbers  of  benzenoids with tr igonal symmetry*  

h D3h C3~ , Total  h Dak 
(D3h -t- C3h ) 

3 1 ~ 1 25 72 d 
4 1" 1 27 28 d 
6 I b'~ 1 b'c 2 28 149 a 
7 I b'~ 1 b'~ 2 30 50 a 
9 1 b'e 5 b'c 6 31 272 a 

10 4 b'~ 5 b'~ 9 33 87 a 
12 3 ° 21 ~ 24 34 557 a 
13 4 ° 26 e 30 36 164 a 
15 3 ¢ 95" 98 37 1050 d 
16 12 ~ 118 ~ 130 39 286 a 
18 6 ~ 423 ~ 429 40 2154 d 
19 19 ~ 543 c 562 42 557 a 
21 10 ~ t + 43 4142 a 
22 41 a ~ ~ 45 998 a 
24 16 a ? ? 46 8537 a 

* Conta ins  supplements  to Table 26. 
" Rouvray (1973) [56]; b Brunvoll, Cyvin and Cyvin (1987) [71]; c Balaban, Brunvoll, 
Ciostowski,  Cyvin, Cyvin, Gutman ,  He, He, Knop ,  Kova6evi6, Miiller, Szymanski,  Toni6 
and Yrinajsti6 (1987) [18]; d Cyvin, Brunvoll and Cyvin (1989) [110]; ? U n k n o w n  

Table 35. Numbers  of classified benzenoids with regular tr igonal symmetry,  D3h* 

(Kind/  Kekul6an non-Kekul6an 
type) 

h A n e Total  Kek. o Total  non-Kek,  

3 (ii) 1 1 "' b 

4 (ia) 0 l" 1 0 
6 (ii) 2 0 0 1 .,b 

7 (ia) 0 1" 1 0 

9 (ii) 2 0 0 1 ~'b 

10 (ia) 0 3" ~ 0 
(ib) 3 0 ~ 3 1 ~' b 

12 (ii) 1 0 0 3 a'b 

13 (ia) 0 4" 4 0 
2a, b 

15 (ii) 2 0 0 1 ~" b 
4 0 

16 (ia) 0 10" ] 0 
(ib) 0 0 1 a ~ 11 0 

3 0 0 1 a'b 

18 (ii) 1 0 0 ] 
2 0 0 ~ 0 
5 0 0 

19 (ia) 0 17 ~ 0 ] 17 
(ib) 3 0 0 J 

} 

3a'b 1 2a, b 
la, b 
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Table 36. Numbers of classified benzenoids with C3h symmetry* 

Kekul6an non-Kekul6an 

h (Kind) A n e Total Kek. o Total non-Kek. 

6 (ii) 1 1 a'b 1 
7 (i) 0 1 ~ 1 0 

) 4 'b t 9 (ii) 1 0 0 la, b 5 
2 0 

10 (i) 0 4 ~ } 0 } 
3 0 4 la.b 1 

12 (ii) 1 0 ) 13 a'b } 
2 0 0 7 a'b 21 
4 0 I a'b 

13 (i) 0 18 a } 18 0 
3 0 8.,b 8 

2 0 29 ~'b 
4 0 0 7a.~ 95 
5 0 1 a'b 

16 (i) 0 73 ~ 2 a ~ 0 
3 0 0 ~ 75 43a.b ~ 43 

18 (ii) 1 0 0 ~ 234 a'b ) 
2 0 0 t 136a'b 
4 0 0 0 45a, b 423 
5 0 0 8 a'b 

19 (i) 0 298 ~ 23 a ] 0 ] 
3 0 0 I 321 217"'b I 222 
6 0 0 5 a'b 

* Abbreviations: See footnote to Table 35. 
a Cyvin, Brunvoll and Cyvin (1988) [78]; b Gutman and Cyvin (1988) [102] 

In Figs. 35, 36 and 37 the smallest benzenoids with trigonal symmetry are 
illustrated; the figures pertain to the normal, essentially disconnected and 
non-Kekul~an systems, repectively. The same collection of forms has been displayed 
elsewhere [78]. 

Erratum 

In the work of Cyvin et al. [78] the two first (silhouette) drawings of essentially 
disconnected benzenoids should be switched in order to match the given K 
numbers. 

The ten smallest concealed non-Kekut6an benzenoids with regular trigonal 
symmetry (D3h) are depicted in Fig. 38 and taken from Cyvin et al. [110]. The 
reader is referred to the below comments about  the search for concealed 
non-Kekul6ans with C3h symmetry. 
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h=13 

126 

h=4 h=7 

9 28 35 

h=lO 

65 91 104 133 152 189 

189 190 243 308 341 351 370 

I 
I 
I 
I 
I 
I 
I 
I 
I 

403 407 468 539 

559 637 728 793 854 

Fig. 35. All normal benzenoids with trigonal symmetry (D3h o r  Cab ) and h < 16: 1, 2, 7 and 
22 systems for h = 4, 7, 10 and t3, respectively; all of them are of the first kind. K numbers 
are given 

Comments 

There are no concealed non-Kekul6an benzenoids with Cab symmetry among the 
enumerated systems (h _< 19; cf. Table 36), and it has been pointed out by Cyvin 
et al. [78] that it is not easy to construct small concealed non-Kekul6ans with 
trigonal symmetry. Nevertheless, in the mentioned work [78] two such systems 
with h = 34 are presented and are supposed to be among the smallest. Later 
Cyvin et at. [110] depicted twelve concealed non-Kekul6ans with 34 hexagons each 
and presented convincing arguments to the effect that  they really are among the 
smallest such systems. However, the authors emphasized that they are " . . .  well 
aware of the fact that the list is not complete." 
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I~=19 

h=16 

NNN 
540 756 945 

540 756 756 945 945 

1792 2240 2240 2457 2457 

1280 1755 

2500 3500 

1755 

3500 

4375 4375 3591 3591 4104 41P,4 4104 

Fig. 36. All essentially disconnected benzenoids with trigonal symmetry, D3h (one system) 
and C3h, and h < 22:3 and 23 systems with h = 16 and 19, respectively; the additions to 
triphenylene are of the first kind, the additions to triangulene (four systems) of the second 
kind. K numbers are given 

12.3 Dihedral Symmetry and Centrosymmetry 

Topological Properties 

Benzenoids o f  both dihedral symmetry (D2h) and centrosymmetry (C2h) are divided 
into two kinds: (i) the first kind, where the systems have a central hexagon; (ii) 
the second kind, where they have an edge in the centre, a central edge. 

The numbers of hexagons are restricted to: 

h = 2 4  + 1; ~ =  1,2,3 . . . .  (62) 

for the first kind (i), but ~ > 1 for Czh; 

h = 2 ¢ ;  ~ =  1,2,3 . . . .  (63) 

for the second kind, but ~ > 1 for C2h. 
All benzenoids belonging to the Dzh and C2h symmetries have A = 0. 
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h=3 h=6 

~=I A=I A=2 

h=9 NNNN  
~=I A=2 

h=lO 

A=3 

h= i2  

A=4 
4=2 

Fig. 3"/. All (obvious) non-Kekul6an benzenoids with trigonal symmetry (D3h or C3h) and 
h < 13: 1, 2, 6, 2 and 24 systems with h = 3, 6, 9, 10 and 12, respectively; the two systems 
with h = 10 are of the first kind, all the other of the second kind. A values are indicated 

Numbers and Forms 

The numbers of  catacondensed benzenoids belonging to the symmetries Dzh and 
Czh are listed in Tables 14, 15, 17 and 20. When taking the catacondensed and 
pericondensed benzenoids of these symmetries together, most  of  the relevant 
information on the numbers of dihedral  (Ozh) and centrosymmetrical  (Czh) 
benzenoids, which is available so far, is a lready contained above; el'. Tables 26, 
27, 28 and 30. Collections of the specific da ta  for the Dzh and C2h systems are 
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h=40 

Fig. 38. All concealed non-Kekul6an benzenoids with D3h symmetry  and h < 4 6 : 3  and 
7 systems with h = 40 and 43, respectively. The first system at h = 43 belongs to the class 
D3h 0b), all the others  to D3h (ia) 

Table 37, Numbers  of classified benzenoids  with dihedral  symmetry  (D2h) 

Kekul6an* 

h (Kind) n e Total  Kek. 

Concealed 
non-Kekul6an 

2 (ii) 1 ~ 1 
3 (i) 1" 1 
4 (ii) 2 ~ 2 
5 (i) 1" t ~ 2 
6 (ii) 3 ~ 0 3 
7 (i) 3 a 0 3 
8 (ii) 4 ~ 2 ~ 6 
9 (i) 5 a 2" 7 

10 (ii) 10 a 1 a 11 
11 (i) 11 2 b 13 
12 (ii) 16 5 b 21 
13 (i) 16 7 b 23 
14 (ii) 33 7 b 40 
15 (i) 38 9 b 47 
16 (ii) 58 19 b 77 
17 (i) 65 27 b 92 
18 (ii) 117 34 b 151 
19 (i) 136 39 b 175 
20 (ii) 211 84 b 295 

1 e 

0 
0 

3 c 
3 ~ 
2 c 
5 ~ 

14" 
15 ~ 

* Abbreviat ions:  See footnote  to Table 32. 
" Brunvoll, Cyvin and  Cyvin (1987) [71]; b Brunvoll, Cyvin, 

G u t m a n  and Cyvin (1988) [102] 
Cyvin and G u t m a n  (1988) [105]; 
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Table 38. Numbers of classified benzenoids with centrosymmetry (Czh) 

Kekul6an* 

h (Kind) n e Total Kek. 

Concealed 
non-Kekulgan 

4 (ii) l" 1 
5 (i) 1" 1 
6 (ii) 6 b i b 7 
7 (i) 4 b 3 b 7 
8 (ii) 28 b 7 b 35 
9 (i) 20 b 16 b 36 

10 (ii) 116 b 53 b 169 
11 (i) 88 b 87 c 175 
12 (ii) 496 306 802 
13 (i) 384 452 836 
14 (ii) 2104 1702 3806 
15 (i) 1651 2317 3968 
16 (ii) 8990 9124 18114 
17 (i) 7128 11762 18890 

2 d 

5 d 

23 
58 

177 
502 

1208 

* Abbreviations: See footnote to Table 32. 
Balaban and Harary (1968) [131; b Brunvoll, Cyvin and Cyvin (1987) [71];" Brunvoll, Cyvin, 

Cyvin and Gutman (1988) [105]; d Gutman and Cyvin (1989) [22] 

presented in Tables  37 an d  38, respectively. Here only  Table  37 includes some 
supp lementa ry  nu mb e r s  for Dza concealed n o n - K e k u l 6 a n s  in con t inua t i on  of 

Table  30. 
The 15 smallest  concealed n o n - K e k u l 6 a n s  with D2h symmet ry  have been depicted 

[93] and  are also reproduced in Fig. 39. Otherwise  the forms of dihedral  and  

h=ll h=14 h=15 

h=I6 h=17 

h=18 

Fig. 39. All concealed non-Kekul~an benzenoids with D2h symmetry and h < 18 
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centrosymmetrical benzenoids have not been treated in particular, except for the 
catacondensed D2h systems (cf. Fig. 19). 

Erratum 

One of the D2h concealed non-Kekul6ans with h = 14 is depicted by Gutman and 
Cyvin [102] under a wrong indication of its number of hexagons. 

12.4 Mirror Symmetry 

Topological Properties 

Mirror-symmetrical (symmetry C2v) benzenoids occur for all h _> 3. 
Two types of C2v benzenoids are distinguished: (a) those where the (two-fold) 

symmetry axis cuts edges perpendicularly; (b) those where the symmetry axis goes 
through vertices (of one or more edges). Adherring to the convention that some 
of the edges should be vertical, a system of C/v(a), resp. C2v(b), can be drawn so 
that the symmetry axis is horizontal, resp. vertical. 

The C2,~(a) systems are restricted to A = 0, while all A values are allowed for 
C/v(b). 

Numbers 

The systematic investigations of benzenoids with specific symmetries started 
naturally with the highest symmetries (hexagonal, trigonal . . . .  ). With regard to 
the mirror symmetry (C2v) there has still not been very much done. We have 
supplemented the existing data by means of a specific generation of the C2v 
benzenoids achieved for the first time; cf. Table 39. But still there is more which 
can be done in this area. 

Table 39. Numbers of classified benzenoids with mirror symmetry, C2v* 

Kekulban non-Kekul6an 

h (Type) A n e Total Kek. o Total non-Kek. 

3 (a) 0 1 1 
4 (b) 0 1 1 

(b) 0 1 6 3 
1 0 3 

6 (a) 0 7 } 0 } 
(b) 0 3 0 

1 0 10 1 2 

2 0 1 
7 (a) 0 18 4 ) 0 

(b) 0 4 2 t 0 
1 0 0 28 10 11 
2 0 0 1 
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Table 39. (Continued) 

h (Type) A 

Kekul+an 

n e 

non-Kekul6an 

Total Kek. o Total non-Kek. 

8 (a) 0 32 2 
(b) 0 15 0 

1 0 0 
2 0 0 

9 (a) 0 82 23 
(b) 0 18 6 

1 0 0 
2 0 0 
3 0 0 

10 (a) 0 131 24 
(b) 0 54 7 

1 0 0 
2 0 0 

11 (a) 0 334 139 
(b) 0 74 27 

1 0 0 
2 0 0 
3 0 0 

12 (a) 0 560 164 
(b) 0 222 38 

1 0 0 
2 0 0 
3 0 0 
4 0 0 

13 (a) 0 1377 755 
(b) 0 297 120 

1 0 0 
2 0 0 
3 0 0 
4 0 0 

14 (a) 0 2322 990 
(b) 0 879 209 

1 0 0 
2 0 0 
3 0 0 
4 0 0 

15 (a) 0 5703 4018 
(b) 0 1205 559 

1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 0 0 

16 (a) 0 9657 5547 
(b) 0 3562 1104 

1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 0 0 

} }12 
t } 
t t 

222 

0 
0 49 
5 
7 
0 
0 

129 39 
9 
1 
0 
0 

216 
20 
38 

1 
0 

574 156 
52 
13 
0 
0 

8O 
984 176 

5 
6 

21 
2 

652 
2549 266 

84 
4 

11 
0 

347 
4440 853 

35 
46 

176 
9 

2789 
11485 1289 

486 
52 

4 
141 

4 
1474 

19870 4033 
214 
331 

2 

267 

1029 

1292 

1 
4805 

6199 

* Abbreviations: See footnote to Table 35 
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13 All-Benzenoids 

13.1 Some Topological Properties 

The class of benzenoids called all-benzenoids (or fully benzenoids) is a subclass 
of the normal  benzenoids. Hence each all-benzenoid is Kekul6an and has A = 0. 

The class of all-benzenoids is also a subclass of 2-factorable benzenoids. A 
2-factorable benzenoid is also 1-factorable, where a 1-factorable benzenoid is 
synonymous with a Kekul6an. 

An all-benzenoid may be catacondensed, but only for every third h value; 
specifically h = 1, 4, 7, 10 . . . . .  Pericondensed all-benzenoids occur for h = 6 and 
h>_8.  

13.2 Catacondensed and Pericondensed All-Benzenoids 

The enumerat ion of all-benzenoids was foreshadowed by Dias [121-123], who 
discussed 2-factorable benzenoids in the frame of the enumerat ion of benzenoid 
isomers (according to the chemical formulas C,H~). In these works Dias depicted 
some all-benzenoids as examples. It was Knop  et al. [91] who presented the first 
list of the numbers of all-benzenoids according to the number  of hexagons (h); 
see Table 40. In later works, Dias [25, 124, 125] enumerated some all-benzenoid 

Table 40. Numbers of all-benzenoids, including their subdivision into 
catacondensed and pericondensed systems 

h Catacondensed Pericondensed Total 

1 1" 1" 
4 1" 1" 
6 0 1" 1" 
7 2" 0 2 ~ 
8 0 1" 1" 
9 0 3 ~ 3" 

10 6" 3 ~ 9" 
11 0 10 b 10 b 
12 0 29 b 29 b 
13 32 b 25 b 57 b 
14 0 102 b 102 b 
15 0 259 b 259 b 
16 172 b 354 b 526 b 
17 0 1136 b 1136 b 
18 0 2713 b 2713 b 
19 1139 b t t 
20 0 ? f 
21 0 t t 
22 7661 b t t 

a Knop, Miiller, Szymanski and Trinajsti6 (1986) [91]; b Cyvin, Brunvoll, 
Cyvin and Gutman (1988) [127]; # Unknown 
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isomers with emphasis on the strain-free systems. These enumerations are 
summarized in a recent review [126]. The list of Knop et al. [91] was extended 
substantially by Cyvin et al. [127]; cf. Table 40. 

Figure 40 shows the forms of the all-benzenoids up to h = 13 reproduced from 
Cyvin et al. [127]. 

Tables 41 and 42 give an account of the classification according to symmetry 
for the catacondensed and pericondensed benzenoids, respectively. Most of the 
data are from Cyvin etal. [127]: cf. also Gutman and Cyvin [22]. For the 
catacondensed alt-benzenoids with Dzh symmetry, we have also generated by hand, 
in continuation of Table 41, 3 systems with h = 31, and 13 systems with h = 43, 
claiming that this covers all such systems for h <  43. 

h=l h=4 h=6 h=7 h=8 h=9 

2 9 20 40 41 45 89 90 9t 

h=lO 

I00 I01 104 178 182 187 189 

h=ll 

198 ~0 200 200 202 202 ~3 205 205 

225 225 227 230 396 396 400 400 

h=12 

401 404 404 405 405 406 
409 410 4]0 414 

415 419 

(see next page) 
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250 445 445 449 449 450 450 

h~13 

455 455 459 

792 793 808 809 

450 450 450 451 454 455 455 

460 461 475 476 

810 828 

829 830 838 853 854 86~ 

Fig. 40. The all-benzenoids for h < 13. K numbers are given 

Dias  [25, 124] defined the strain-free a l l -benzenoids  by the absence of Oords; a 
cove never  occurs in an  at l -benzenoid.  A fjord gives a zero-carbon  gap between 
vertices of degree two (corresponding to secondary  ca rbon  atoms), thus caus ing  
steric h ind rance  for the hydrogen  atoms. This proximity  of ca rbon  a toms could 
also be achieved, if the hydroca rbons  were planar ,  wi thout  fjords. The smallest  
examples of this k ind  are represented by the below systems with h = 16 (left) and  
h = 18 (right). Pr imar i ly  this k ind  of systems are inc luded here a m o n g  the 

Table 41. Numbers of catacondensed all-benzenoids, classified according to symmetry* 

h D3h C3h D2h C2h C2v C~ 

4 1 ~ 
7 0 1" 1 a 

10 1 a 0 2 a 3" 

13 1 ~ t ~ 0 3 a 7 a 20" 
16 0 0 0 0 14" 158" 
19 0 2" 1" 19 a 41" 1076" 
22 0 8" 0 0 79" 7574 ~ 
25 o o o t t t 
28 0 i1 0 t t t 

* Benzene (h = 1, not included in this table) is the only (trivial) catacondensed all-benzenoid 
of D6h symmetry. There are no catacondensed all-benzenoids of C6h symmetry. For D2,, see 
also the text. 

Cyvin, Brunvotl, Cyvin and Gutman (1988) [127]; ? Unknown 
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Table 42. Numbers of pericondensed all-benzenoids, classified according to symmetry* 

h O6h D3h C3h D2h C2h C2v C s 

6 1 ~ 
8 0 1" 
9 0 1 a 2" 

I0 1" 0 1 a 1 a 0 
t l  0 2" 0 2" 6" 
12 0 1" 2" 5 a 21" 
13 1 a 0 0 0 3 a 21 a 
14 0 0 1" 2" 12" 87 ~ 
15 0 0 0 2 a 14" 243" 
16 0 1 ~ 1 ~ 2" 9 ~ 18 ~ 323" 
17 0 0 0 2" 11 ~ 38 ~ 1085" 
18 0 0 0 1 ~ 22 ~ 58 ~ 2632 a 
19 0 4 3 2 t t 
20 o o o 3 ~ t 
21 0 0 0 3 t t t 
22 0 I 4 3 t t t 
23 0 0 0 5 t t t 

* All-benzenoids with C6h symmetry occur at h ~ 31. 
"Cyvin, Brunvoll, Cyvin and Gutman (1988) [t27]; t Unknown 

strain-free al l -benzenoids,  adher r ing  to the absence of  fjords as the decisive 

cri terion.  A list of  the number s  of  strain-free a l l -benzenoids  (for h > 1) is p resen ted  
in Table  43. However ,  it is also of  interest  to dis t inguish the systems wi th  

C66H36 C72H38 

ze ro -ca rbon  gaps in spite of the  absence of  f jords (like the examples  of C66H36 
and C72H38 above). Therefore,  in Table  43, the numbers  o f " a b s o l u t e l y  s t rain-free" 
a l l -benzenoids ,  where  such systems are  excluded,  are given in parentheses.  

F igure  41 displays the forms of  the strain-free a l l -benzenoids  up to h = 16. 

Comments and Errata 

In  K n o p  et al. [91], by  an  obv ious  misprint ,  there  is a miss ing (full) hexagon  in 

one of  the depic t ions  for h = 10. 
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Table 43. Numbers of strain-free all-benzenoids, including their sub- 
division into catacondensed and pericondensed systems* 

h Catacondensed Pericondensed Total 

4 1 "'b t a'b 
6 0 1 "-c 1 "-c 
7 1 a'b 0 1 "'b 
8 0 I b I b 

9 0 l"'b 1.,b 
10 1 d'e 3 d'e 4 d'e 

11 0 2 a'e 2 a'" 
12 0 5 f 5 e 
13 3 d'e 5 d'e 8 d'e 

t4 0 13 f 13 f 
15 0 16 r t6 f 
16 4 (3) 25 f 29 (28) 
17 0 42 42 
18 0 73 (72) 73 
19 11 (8) 110 (108) 121 
20 0 187 (184) 187 
21 0 321 (305) 321 
22 23 (12) 501 (485) 524 
23 0 886 (834) 886 
24 0 1477 (1370) 1477 
25 62 (25) 2447 (2276) 2509 

(72) 
(116) 
(184) 
(305) 
(497) 
(834) 
(1370) 
(2301) 

* Numbers of"absolutely strain-free" systems (without any zero-carbon 
gap) are given in parentheses. 
a Dias (1985)[121]; b Dias (1985)[123]; c Dias (1985)[122]; d Dias (1987) 
[t24]; ~ Dias (1987) [25]; ~ Dias (1989) [125] 

Four  all-benzenoid systems were omitted in a report by Dias [124], but enclosed 
as erratum with the reprints. The material without correction was reproduced in 
the book of Dias [25], but an erratum appeared later [128]. The four systems in 
question are also reproduced elsewhere [125]; herein the numbers of strain-free 
all-benzenoids with h = 17, n i (number of internal vertices) = 10 (C6oH28), and 
with h = 18, nl = 14 (C6oH26) are in error. In both cases we have located two 
isomorphic systems among the depictions. 

13.3 Hexagonal Symmetry: All-Flakes 

All-benzenoids with hexagonal (D6h o r  C6h ) symmetry have been referred to as 
all-flakes [129]. In other words, an all-flake is an all-benzenoid snowflake. We 
may also speak about  proper (D6h) and improper (C6h) all-flakes as subclasses of 
the proper and improper snowflakes, respectively. 

The known numbers  of all-flakes are given in Table 44 as a cont inuat ion of a 
part of Table 42. 
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h:4 h=6 k=7 I~=8 h=9 h=lO h=l l  

9 20 40 45 88 lOO 101 104 178 198 200 

h:12 h=13 

225 227 230 396 396 250 445 445 449 451 792 793 

h=14 

500 505 506 510 510 510 519 520 881 881 889 890 

h=15 
875 990 899 1000 |000 ]001 1009 1020 ]02] I024 1026  'I'N . . . .  

1762 1762 1754 

h=16 
I125 

1960 1978 t 980 

2044 

I]25 1134 1135 1136 1146 1149 

]980 

1150 I150 1150 1158 I164 

1980 1980 1996 1998 

2052 3524 3528 

Fig, 41. The strain-free all-benzenoids for 4 < h < t6. K numbers are given 
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Table 44. Numbers of all-benzenoids with hexagonal symmetry* 

h D6h C6h Total (D6a q- C6h ) h D6h 

25 1 1 61 1 
31 0 t 1 67 1 
37 0 1 1 73 3 
43 2 2 4 79 1 
49 0 4 4 85 3 
55 1 8 9 91 3 

* Supplements Table 42, For h = 24 there are no benzenoids with hexagonal symmetry. 
Data from: Cyvin, Cyvin and Brunvoll (1989) [129] 

In Fig. 42 the forms of the snowflakes for h _< 55 are shown. Those for h = 43 
and h = 49 are also found in Cyvin et al, [129]. The proper all-flakes up to h = 85 
are depicted in Fig. 43; cf, also Cyvin et al. [129]. 

Erratum 

Among the proper all-flakes of Cyvin et al. [129] the depiction for h = 67 is a 
wrong system. 

h=l h:13 h=25 h:31 

2 250 34560 2060602 

h=37 

4421582 

h=43 

9637058 248502998 268208930 308731500 

h--49 

574123788 ]5904191872 

(see next page) 

18390014750 
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h=55 

1361070932 1418579800 32196906250 34169777408 

N 

l 

34560000000 36580205070 36912320000 39407207050 

Fig, 42. All-flakes: the all-benzenoids with hexagonal symmetry (D6h or C6h) and h < 61. 
K numbers are given 

13.4 Trigonal Symmetry 

All-benzenoids with tr igonat  symmetry (D3h or  C3h ) may be either catacondensed 
or pericondensed. All of them are of the first kind, i.e. they possess a central hexagon. 

Table 45 gives a gross survey of the numbers of alt-benzenoids with tr igonal 
symmetry. As a finer classification, Tables 46 and 47 show the known numbers 
of the catacondensed and pericondensed all-benzenoids with tr igonal  symmetry 
in cont inuat ion of Tables 41 and 42, respectively. It is apparent ly  still much work  
which could be done in this area. With  regard to the catacondensed all-benzenoids 
with D3h symmetry we believe that after the unique system with h = 31 there 
come 2 systems with h = 49, and  thereafter 7 systems with h = 67. 

Table 45. Numbers of all-benzenoids with trigonat symmetry 

h D3h Cab Total (D~h + Cab) 

4 1" 1 ~ 
10 2" 2" 
13 1" l" 2 ~ 
16 t" 1" 2" 
19 4 5 9 
22 1 12 13 
25 4 18 22 
28 6 58 64 
31 7 110 117 
34 11 229 240 
37 15 590 605 

a Cyvin, Brunvoll, Cyvin and Gutman (1988) [127] 
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Table46. Numbers of catacondensed all-benzenoids with trigonat 
symmetry* 

h D3h C3h Total (D3h + C3h) 

31 1 47 48 
34 0 0 0 
37 0 68 68 

* Supplements Table 41; see also the text. For  h = 29 and h = 30 there 
are no benzenoids with trigonal symmetry of the first kind 

h:l 13 43 

2 250 9637056 266208930 

h=55 h =67 

]418579800 

h=73 

£ 

£ 

X 

~3.698851×10 It 

(see next page) 

25 

34560 

h=61 

845O6230640 

,-,6.562429x]012 

h=79 

• -~5.236572xI014 

N].945037xlO 1~ 

~2.50656]xI014 
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h=85 

"-'4. 748625x10 L3 '--'5.679555×I0 L3 ~3.039227×1016 

~7,866281 ×] 016 ~2. 735230x1018 

h=91 

~I. 227393×I O 14 

Fig. 43. Proper all-flakes: the all-benzenoids with D6h symmetry and h < 97. K numbers 
are given; those for h >_ 67 approximate 

Table 47. Numbers of pericondensed all-benzenoids with trigonal 
symmetry* 

h D3h C3h Total  (O3h + C3h ) 

25 4 18 22 
28 6 47 53 
31 6 63 69 
34 11 229 240 
37 15 522 537 

* Supplements Table 42. For h = 24 there are no benzenoids of trigonal 
symmetry of the first kind 

Figure 44 shows the forms of the all-benzenoids with tr igonal  symmetry (D3h 
and C3h) and h _< 25. Those with regular tr igonal (D3h) symmetry and h < 37 are 
displayed in Fig. 45. 

14 Conclusion 

It  is not  intended to close research into enumerat ion of polyhexes with the present 
review. This should be clear, not  only from the last sentence of Sect. 12 and similar 
statements,  but  also from the spiri t  shown throughout  the whole chapter,  and not 
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least in several of the comments. On the contrary, it is rather intended to inspire 
researchers in the field to further achievements in this realm and provide them with 
a comprehensive survey on the work which has already been done. 

Balaban and Artemi wrote very recently (1990) [63]. "The enumeration of 
polycyclic benzenoid hydrocarbons (polyhexes, or benzenoids) continues to be a 
challenging problem." The field has been flourishing, not least during the very 
last few years, as documented by the present list of references. It contains 16 
relevant publications from 1989, which can be supplemented by a few more 

h=4 h:lO h=13 h=[6 

9 104 

h:19 

3100 

9916 10044 

h=22 

12956 13000 ]4233 

74648 

81088 

(see next page) 

189 793 854 1134 2060 

8729 9000 9065 9331 

16480 17999 

228] 5 23625 

74753 

69832 
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189~1 33385 

103280 103292 

99125 99918 

103648 104000 
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106750 

106846 108322 

181649 186570 189000 

109520 181649 

193921 196651 

Fig. 44. The all-benzenoids with trigonal symmetry (Dab and C3h) and h < 28. K numbers 
are given 

[130-133]. The number of cited publications from 1990/91 is 20 with a substantial 
number (viz. 19) of relevant supplements [134-152]. 

It also happens that new researchers are being attracted to the field of polyhex 
enumerations. E. C. Kirby (Resource Use Institute, Pitlochry, Scotland, UK) may 
be reckoned as one of them, although his latest contributions [141, 143] were 
preceded by some other enumeration-oriented works [85, 153]. His latest work 
[141] makes a significant contribution to our understanding of all-benzenoids. 
Another name, which has recently entered the arena, is William C. Herndon 
(University of Texas at E1 Paso, Texas, USA). His enumerations [138], based on 
a computerized coding system for polyhexes [154], is particularly chemistry- 
oriented inasmuch as it takes stereoisomerism into account. 

A monograph which contains many new enumeration results for coronoids has 
been announced as an early 1991 publication [155]. 

Acknowledgement: Financial support to BNC from The Norwegian Research 
Council for Science and the Humanities is gratefully acknowledged. 
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h:4 h=10 h ~ 3  h ~ 6  

9 104 189 793 2060 

h=19 h-22 

3100 8729 9065 10044 14233 

h=25 

18941 99918 109520 181649 

h=28 

250000 269390 296504 768969 866797 980564 

h=31 

240426 389236 1215989 1239500 1376506 1999998 6171193 

(see next page) 
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h=34 

540000 1719508 1796912 2970380 3034780 8467361 

8800961 9461041 9563750 9657212 18918269 

h=37 

2394000 2867489 5074012 13858146 15014275 

15572738 15715232 24240125 28517636 29304625 

70722648 73462619 76768552 80311328 80591364 

Fig. 45. The all-benzenoids with D3h symmetry and h < 40. K numbers are given 

15 References 

1. Klarner DA (1967) Can J Math 19:851 
2. Harary F (1967) In: Harary F (ed) Graph theory and theoretical physics, Academic, 

London, p 1 
3. Palmer EM (1972) In: Alavi Y, Lick DR, White AT (eds) Graph theory and applications, 

Proceedings of the conference at Western Michigan University, May 10-13, 1972 
(Lecture Notes in Mathematics 303); Springer, Berlin Heidelberg New York, p 215 

4. Harary F, Palmer EM (1973) Graphical enumeration, Academic, New York 
5. Harary F, Palmer EM, Read RC (1975) Discrete Math 11 : 371 
6. Harary F, Harborth H (1976) J Combinat Inf System Sci 1:1 

176 



Enumeration of Benzenoid Systems and Other Polyhexes 

7. Klarner DA (1965) Fibonacci Quarterly 3:9 
8. Golomb SW (1954) Am Math Monthly 61:675 
9. Harary F, Read RC (1970) Proc. Edinburgh Math Soc 17 (Ser II): 1 

t0. Lunnon WF (1972) In: Read RC (ed) Graph theory and computing, Academic, London, 
p 87 

11. Gutman I (1983) Croat Chem Acta 56:365 
12. Harary F (1968) In: Sachs H, Voss HJ, Walther H (eds) Beitrfige zur Graphentheorie, 

Teubner, Leipzig, p 49 
13. Balaban AT, Harary F (1968) Tetrahedron 24:2505 
14. Balasubramanian K, Kaufman J J, Koski WS, Bataban AT (1980) J Comput Chem 1: 149 
15. Knop JV, Szymanski K, Jeri~evi6 Z, Trinajsti6 N (1983) J Comput Chem 4:23 
16. Knop JV, Miiller WR, Szymanski K, Trinajsti6 N (1985) Computer generation ofcertain 

classes of molecules, SKTH/Kemija u industriji (Association of Chemists and Tech- 
nologists of Croatia), Zagreb 

17. Knop JV, Szymanski K, Jeritevi6 Z, Trinajsti6 N (1984) Match 16:119 
18. Balaban AT, Brunvoll J, Cioslowski J, Cyvin BN, Cyvin SJ, Gutman I, He WC, He WJ, 

Knop JV, Kovatevi6 M, Miiller WR, Szymanski K, To§it R, TrinajstitN (1987) Z. 
Naturforsch 42a: 863 

19. He WJ, He WC, Wang QX, Brunvoll J and Cyvin SJ (1988) Z. Naturforsch. 43a: 693 
20. Balaban AT (1976) In: BalabanAT (ed) Chemical applications of graph theory, 

Academic, London, p 63 
21. Balaban AT (1989) Carbon and its nets, Computers Math Applic 17: 397; reprinted 

in: Hargittai I (ed) (1989) Symmetry 2 Unifying human understanding, Pergamon, 
Oxford 

22. Gutman I, Cyvin SJ (1989) Introduction to the theory of benzenoid hydrocarbons, 
Springer, Berlin Heidelberg New York 

23. Trinajsti6 N (1983) Chemical graph theory, Vols I, II, CRC Press, Boca Raton, FL 
24. Gutman I, Potansky OE (1986) Mathematical concepts in organic chemistry, Springer, 

Berlin Heidelberg New York 
25. Dias JR (1987) Handbook of polycyctic hydrocarbons - Part A - Benzenoid 

hydrocarbons, Elsevier, Amsterdam 
26. Cyvin SJ, Gutman I (1988) Kekul6 structures in benzenoid hydrocarbons (Lecture 

Notes in Chemistry 46), Springer, Berlin Heidelberg New York 
27. Gutman I (1982) Bull Soc Chim Beograd 47:453 
28. Ege G, Vogler H (1972) Theor Chim Acta 26:55 
29. Ege G, Vogler H (1972) Z Naturforsch 27b: 918 
30. Balaban AT (1969) Tetrahedron 25:2949 
31. Knop JV, M~ller WR, Szymanski K, Nikoli6 S, Trinajsti6 N (1990) In: Rouvray DH 

(ed) Computational graph theory, Nova, New York, p 9 
32. He WC, He WJ (1985) Theor Chim Acta 68:301 
33. He WC, He WJ (1986) Tetrahedron 19:5291 
34. Cioslowski J (1987) J Comput Chem 8:906 
35. He WJ, He WC (1987) In: King RB, Rouvray DH (eds) Graph theory and topology 

in chemistry, A collection of papers presented at an international conference held at 
the University of Georgia, Athens, Georgia, USA, 16-20 March 1987 (Studies in 
Physical and Theoretical Chemistry 51), Elsevier, Amsterdam, p 476 

36. Miiller WR, Szymanski K, Knop JV, Nikoli6 S, Trinajsti6 N (1990) J Comput Chem 
11:223 

37. Knop JV, Miiller WR, Szymanski K, Trinajsti6 N (1990) J Chem InfComput Sci 30:159 
38. Dias JR (1982) J Chem Inf Comput Sci 22:15 
39. Knop JV, Mfiller WR, Szymanski K, Trinajsti6 N (1986) Match 20:197 
40. Brunvoll J, Cyvin BN, Cyvin SJ (1987) J Chem Inf Comput Sci 27:14 
41. Knop JV, Miiller WR, Szymanski K, Trinajsti6 N (1990) J Mol Stuct (Theochem) 205: 

361 
42. Brunvoll J, Cyvin BN, Cyvin S J, Knop JV, Mfiller WR, Szymanski K, Trinajsti6 N 

(1990) J Mol Struct (Theochem) 207:131 

177 



Bj6rg N. Cyvin, Jon Brunvoll, and Sven J. Cyvin 

43. Cyvin SJ, Brunvoll J, Cyvin BN (1990) J Chem Inf Comput Sci 30:210 
44. Brunvoll J, Cyvin BN, Cyvin SJ (1990) Croat Chem Acta 63:585 
45. Cyvin SJ, Brunvoll J, Cyvin BN, Bergan JL, Brendsdal E (1991) Struct Chem.: 2:555 
46. Stojmenovi6 I, Toni6 R, Doroslova6ki R (1986) In: Toni6 R, Acketa D, Petrovi6 V (eds) 

Graph theory, Proceedings of fhe sixth Yugoslav seminar on graph theory, Dubrovnik 
April 18 19, 1985, University of Novi Sad, Novi Sad, p 189 

47. Cyvin SL Brunvoll J (1990) Chem Phys Letters 170:364 
48. Mfiller WR, Szymanski K, Knop JV, Nikoli6 S, Trinajsti6 N (1989) Croat Chem Acta 

62:481 
49. Nikoli6 S, Trinajsti6 N, Knop JV, Mfiller WR, Szymanski K (1990) J Math Chem 4: 

357 
50. Knop JV, Mfiller WR, Szymanski K, Trinajsti6 N (1990) Reports on Molecular Theory 

1:95 
51. Cyvin SJ, Brunvoll J (1989) Chem Phys Letters 164:635 
52. Dias JR (1984) Can J Chem 62:2914 
53. Knop JV, Szymanski K, Klasinc L, Trinajsti6 N (1984) Computers & Chemistry 8: 107 
54. Brunvoll J, Cyvin SJ, Cyvin BN (1987) J Comput Chem 8: t89 
55. Cyvin SJ, Brunvoll J, Cyvin BN (1989) J Chem Inf Comput Sci 29:79 
56. Rouvray DH (1973) J South African Chem Inst 26:141 
57. Trinajsti6 N (1990) Reports on Molecular Theory 1:185 
58. Balaban AT (1976) Match 2:51 
59. Brunvoll J, Toni6 R, Kova6evi6 M, Balaban AT, Gutman I, Cyvin SJ (1990) Rev. 

Roumaine Chim 35:85 
60. Balaban AT, Brunvoll L Cyvin BN, Cyvin SJ (1988) Tetrahedron 44:221 
61. Gutman I (1987)J Serb Chem Soc 52:611 
62. Balaban AT (1989) Match 24: 29; erratum (1990) ibid 25:275 
63. Balaban AT, Artemi C (1990) Polycyclic Aromatic Compounds I: 171 
64. Harary F, Schwenk AJ (1973) Discrete Mathematics 6:359 
65. Cyvin SJ, Brunvoll J, Cyvin BN (1989) In: Graovac A (ed) MATH/CHEM/COMP 

1988, Proceedings of an international conference on the interfaces between mathematics, 
chemistry and computer science, Dubrovnik, Yugoslavia, 20-25 June 1988 (Studies in 
Physical and Theoretical Chemistry 63), Elsevier, Amsterdam, p 127 

66. Cyvin SJ, Brunvoll J, Gutman I (1990) Rev Roumaine Chim 35:985 
67. Gutman I (1986) Z Naturforsch 41 a: 1089 
68. Cyvin SJ, Brunvoll J, Cyvin BN (1986) Z Naturforsch 41a: 1429 
69. Aboav D, Gutman I (1988) Chem Phys Letters 148:90 
70. Aboav D, Gutman I (1989) J Serb Chem Soc 54:249 
71. Brunvoll J, Cyvin BN, Cyvin SJ (1987) J Chem Inf Comput Sci 27:171 
72. Toni6 R, Kova6evi6 M (1988) J Chem Inf Comput Sci 28:29 
73. Balaban AT (1970) Rev Roumaine Chim 15:1243 
74. D2onova-Jerman-Bla~i6 B, Trinajsti6 N (1982) Croat Chem Acta 55:347 
75. Gutman I (1982) Coll Sci Papers Fac Sci Kragujevac 3:43 
76. Trinajsti6 N, Jeri6evi6 2;, Knop JV, Mfiller WR, Szymanski K (1983) Pure & Appl Chem 

55:379 
77. El-Basil S (1984) Croat Chem Acta 57:21 
78. Cyvin SJ, Brunvoll J, Cyvin BN (1988) J. Mol. Struct. (Theochem) 180:329 
79. Toni6 R, Budimac Z, Brunvoll J, Cyvin SJ (1990)J Mot Struct (Theochem} 209:289 
80. To~i+ R, Budimac Z, Cyvin SJ, Brunvoll J (t991) J Mol Struct 247:129 
81. Gutman I (1974) Croat Chem Acta 46:209 
82. Gutman I (1983) Coll Sci Papers Fac Sci Kragujevac 4:189 
83. Cyvin SJ, Gutman I (1986) Computers Math Applic 12B: 859; reprinted in: Hargittai 

I (ed) (1986) Symmetry unifying human understanding, Pergamon, New York 
84. Elk SB (1985) Match 17:255 
85. Kirby EC (1989) J Mol Struct (Theochem) 185:39 
86. Rouvray DH (1974) J South African Chem Inst 27:20 
87. Elk SB (1980) Match 8:121 

178 



Enumeration of Benzenoid Systems and Other Polyhexes 

88. Cyvin SJ, Gutman I (1986) Z. Naturforsch 4ta:  1079 
89. Yamaguchi T, Suzuki M, Hosoya H (1975) Natural Science Report, Ochanomizu 

University 26:39 
90. Bonchev D, Balaban AT (1981) J Chem Inf Comput Sci 21:223 
91. Knop JV, Miiller WR, Szymanski K, Trinajsti6 N (1986) J Comput Chem 7:547 
92. P61ya G (1936) Zeitschr f Kristallographie 93:415 
93. Cyvin SJ, Brunvoll J, Cyvin BN (1990) J Math Chem 4:47 
94. Cyvin SJ (1986) Match 20:165 
95. Cyvin BN, Brunvoll J, Cyvin SJ, Gutman I (1986) Match 21:301 
96. Brunvoll J, Cyvin SJ, Cyvin BN, Gutman I (1989) Match 24:51 
97. Brunvoll J, Cyvin BN, Cyvin SJ (1991) Match 26:3 
98. Brunvoll J, Cyvin SJ, Cyvin BN (1988) Match 23:239 
99. Hosoya H, Yamaguchi T (1975) Tetrahedron 52:4659 

100. Ohkami N, Hosoya H (1984) Natural Science Report, Ochanomizu University 35:71 
101. Brunvoll J, Cyvin BN, Cyvin SJ, Gutman I (1988) Z Naturforsch 43a: 889 
102. Gutman I, Cyvin SJ (1988) J Serb Chem Soc 53:391 
103. Cyvin SJ, Brunvoll J, Cyvin BN (1989) Computers Math Applic 17: 355; reprinted in: 

Hargittai I (ed) (1989) Symmetry 2 unifying human understanding, Pergamon, Oxford 
104. Cyvin SJ, Brunvoll J, Cyvin BN (1988) J Mol Struct (Theochem) 180:329 
105. Brunvoll J, Cyvin BN, Cyvin SJ, Gutman I (1988) Match 23:209 
106. Brunvoll J, Cyvin SJ, Cyvin BN, Gutman I, He WJ, He WC (1987) Match 22:105 
107. He WC, He WJ, Cyvin BN, Cyvin SJ, Brunvoll J (1988) Match 23:201 
t08. Guo XF, Zhang FJ (1989) Match 24:85 
109. Jiang Y, Chert GY (1989) In: Graovac A (ed) MATH/CHEM/COMP 1988, Proceedings 

of an international conference on the interfaces between mathematics, chemistry and 
computer science, Dubrovnik, Yugoslavia, 20 25 June 1988 (Studies in Physical and 
Theoretical Chemistry 63), Elsevier, Amsterdam, p 107 

110. Cyvin SJ, Brunvoll J, Cyvin BN (1989) J Chem Inf Comput Sci 29:236 
111. Hosoya H (1986) Croat Chem Acta 59:583 
112. Cyvin SJ, Gutman I (1987) J Mol Struct (Theochem) 150:157 
113. Ctar E (1972) The aromatic sextet, Wiley, London 
114. Balaban AT (1981) Rev Roumaine Chim 26:407 
115. Balaban AT (1982) Pure & Appl Chem 54:1075 
116. Dias JR (1986) J Mol Struct (Theochem) 137:9 
117. Zhang FJ, Guo XF (1988) Match 23:229 
118. Cyvin SJ, Brunvoll J, Cyvin BN (1988) Match 23:189 
119. Hosoya H (1986) Computers Math Applic 12B: 271, reprinted in: Hargittai I (ed) (1986) 

Symmetry unifying human understanding, Pergamon, New York 
120. Cyvin SJ, Bergan JL, Cyvin BN (1987) Acta Claim Hung 124:691 
121. Dias JR (1985) Accounts Chem Res 18:241 
122. Dias JR (1985) J Macromol Sci-Chem A22:335 
123. Dias JR (1985) Nouv J Chim 9:125 
124. Dias JR (1987) Thermochim Acta 122:313 
125. Dias JR (1989) J Mol Struct (Theochem) 185: 57; erratum (1990) ibid 207:141 
126. DiasJR (1990) In: Gutman I, Cyvin SJ (eds) Advances in the theory of benzenoid 

hydrocarbons (Topics in Current Chemistry 153), Springer, Berlin Heidelberg New 
York, p 123 

127. Cyvin BN, Brunvoll J, Cyvin SJ, Gutman I (1988) Match 23:163 
128. Dias JR (1988) Handbook of polycyclic hydrocarbons - Part B - Polycyclic isomers 

and heteroatom analogs of benzenoids, Elsevier, Amsterdam 
129. Cyvin SJ, Cyvin BN, BrunvoU J (1989) J Mol Struct 198:31 
130. Brunvoll J, Cyvin BN, Gutman I, To~i6 R, Kova~evi6 M (1989) J Mol Struct (Theo- 

chem) 184:165 
13 I. Cyvin SJ, Brunvoll J, Cyvin BN, Toni6 R, Kova~evi6 M (1989)J Mol Struct (Theochem) 

200:261 
132. Cyvin SJ (1989) Monatsh Chem 120:243 

179 



Bj6rg N. Cyvin, Jon Brunvoll, and Sven J. Cyvin 

133. Dias JR (1989) Z Naturforsch 44a: 765 
134. Cyvin SJ (1991) Acta Chim Hung 127:849 
135. Cyvin SJ, Brunvoll J (1990) Chem Phys Letters 170:364 
136. Dias JR (1991) Chem Phys Letters 176:559 
137. Cyvin SJ (1991) Coll Sci Papers Fac Sci Kragujevac 12:95 
138. Herndon WC (1990) J Am Chem Soc 112:4546 
139. Dias JR (1990) J Chem Inf Comput Sci 30:61 
140. Dias JR (1990) J Chem Inf Comput Sci 30:159 
14t. Kirby EC (1990) J Chem Soc Faraday Trans 86:447 
142. Dias JR (1990) J Math Chem 4:17 
143. Kirby EC (1990) J Math Chem 4:31 
144. To§i6 R, Stojmenovi6 1 (1990) J Mot Struct (Theochem) 207:285 
145. Cyvin SJ (1990) J Mol Struct (Theochem) 208:173 
146. Nikoli6 S, Trinajsti6 N, KnopJV, Mfiller WR, Szymanski K (1991) J Mol Struct 

(Theochem) 231:219 
147. Balaban AT, Brunvotl J, Cyvin SJ (1991) Rev Roumaine Chim: in press 
148. Cyvin SJ, Brunvoll J, Cyvin BN (1990) Struct Chem 1:429 
149. Cyvin SJ, Balaban AT (1991) Struct Chem 2:485 
150. Jiang YS, Chen GY (1990) Theor Claim Acta 76:437 
151. Dias JR (1990) Theor Chim Acta 77:143 
152. Brunvoll J, Cyvin SJ (1990) Z Naturforsch 45a: 69 
153. Kirby EC (1987) In: King RB, Rouvray DH (eds) Graph theory and topology in 

chemistry, A collection of papers presented at an international conference held at the 
University of Georgia, Athens, Georgia, USA, 16-20 March 1987 (Studies in Physical 
and Theoretical Chemistry 51), Elsevier, Amsterdam, p 529 

154. Herndon WC, Bruce AJ (1987) In: King RB, Rouvray DH (eds) Graph theory and 
topology in chemistry, A collection of papers presented at an international conference 
held at the University of Georgia, Athens, Georgia, USA, 16-20 March 1987 (Studies 
in Physical and Theoretical Chemistry 51), Elsevier, Amsterdam, p 491 

155. Cyvin SJ, Brunvoll J, Cyvin BN (1991) Theory of coronoid hydrocarbons (Lecture 
Notes in Chemistry 54), Springer, Berlin Heidelberg New York 

180 



Benzenoid Chemical Isomers and Their Enumeration 

Jon Brunvoll, Bjfrg N. Cyvin, and Sven J. Cyvin 

Division of Physical Chemistry, The University of Trondheim, 
N-7034 Trondheim-NTH, Norway 

Table of Contents 

1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

3 Desc r ip t ion  and Precise Definition of the Problem . . . . . . . . . .  184 

4 Invariants and Classes of Benzenoids . . . . . . . . . . . . . . .  185 

4.1 H e x a g o n s  a n d  Ver t ices  . . . . . . . . . . . . . . . . . . .  185 

4.2 T h e  D ia s  P a r a m e t e r  . . . . . . . . . . . . . . . . . . . .  185 

4.3 T h e  " n e o "  C lass i f i ca t ion  . . . . . . . . . . . . . . . . . .  186 

4.4 C o l o r  Excess  . . . . . . . . . . . . . . . . . . . . . . .  186 

5 First Enumerations of Benzenoid Isomers . . . . . . . . . . . . .  187 

5.1 C a t a c o n d e n s e d  B e n z e n o i d s  . . . . . . . . . . . . . . . . .  187 

5.2 C lass i f i ca t ion  A c c o r d i n g  to the  N u m b e r  o f  I n t e r n a l  Ver t ices  . . . 193 

5.3 C lass i f i ca t ion  A c c o r d i n g  to  the  P e r i m e t e r  L e n g t h  . . . . . . . .  193 

6 Complete Data for Some Benzenoid Isomers . . . . . . . . . . . .  193 

6.1 A r r a n g e m e n t  o f  T a b l e s  . . . . . . . . . . . . . . . . . . .  193 

6.2 P r e l i m i n a r y  A c c o u n t  o n  E x t r e m a l  B e n z e n o i d s  . . . . . . . . .  194 

7 Periodic Table for Benzenoid Hydrocarbons . . . . . . . . . . . .  195 

7.1 D e s c r i p t i o n  o f  the  T a b l e  . . . . . . . . . . . . . . . . . .  195 

7.2 H o w  to  F i n d  the  P lace  o f  a F o r m u l a  in the  Pe r iod i c  T a b l e ?  197 
7.3 T h e  P o s i t i o n  of  Benzene  . . . . . . . . . . . . . . . . . .  197 

7.4 S h a p e  of  the  S ta i r case -L ike  B o u n d a r y  . . . . . . . . . . . . .  198 

8 Detailed Analysis of the Formulas . . . . . . . . . . . . . . .  198 

8.1 N o t a t i o n  a n d  C i r c u m s c r i b i n g  . . . . . . . . . . . . . . . .  198 

8.2 M o r e  Classes  of  B e n z e n o i d s  . . . . . . . . . . . . . . . . .  199 

9 Strictly Pericondensed Benzenoid and Excised Internal Structure . . . 200 

Topics in Current Chemistry, Vol. 162 
© Springer-Verlag Berlin Heidelberg 1992 



Jon Brunvoll, Bj6rg N. Cyvin, and Sven J. Cyvin 

10 Incomplete Data for Some Benzenoid Isomers . . . . . . . . . . .  202 

11 Benzenoid Isomers and Number of Edges . . . . . . . . . . . . .  210 

12 F o r m s  o f  Some Benzenoid Isomers . . . . . . . . . . . . . . . .  214 

13 Conclus ion . . . . . . . . . . . . . . . . . . . . . . . . . .  218 

14 References  . . . . . . . . . . . . . . . . . . . . . . . . . .  220 

Benzenoid (chemical) isomers are, in a strict sense, the benzenoid systems compatible with 
a formula C,H~. Several invariants, including the Dias parameter, are treated and relations 
between them are given. Many of the relations involve upper and lower bounds. The periodic 
table for benzenoid hydrocarbons is revisited and new aspects of it are pointed out. In this 
connection some new classes of benzenoids are defined: extreme-left, protrusive and circular. 
Extensive tables of enumeration data for benzenoid isomers are presented, Some of their 
forms are displayed in figures. 

182 



Benzenoid Chemical Isomers and Their Enumeration 

1 Foreword 

The topic of the present chapter falls under "Enumeration of Benzenoid Systems", 
which is part of the title of the preceding chapter. The numbers in the two chapters 
are strongly inter-related in the same way as many of the numbers within the 
preceding chapter. In particular, the sums of the numbers in each column for a 
given number of hexagons (h) in the first four tables of the present chapter can 
be checked against appropriate numbers in the preceding chapter. 

However, for the individual numbers of the two chapters there is practically no 
overlap. It was avoided by omitting a classification of the benzenoids with a given 
h according to their numbers of internal vertices (ni) in the preceding chapter. 

Nevertheless, the two chapters meet at the enumeration of catacondensed 
benzenoids (nl = 0). 

2 Introduction 

The enumeration of chemical isomers has engaged mathematicians and chemists 
for more than one hundred years. Perhaps the most familiar example is the 
enumeration of alkanes, CNHzN+ Z" Some of the key references to this story should 
include Cayley from 1875 [1], Herrmann from 1880 [2], Henze and Blair from 
1931 [3], and finally the more recent computer works of Davis et al. [4] and Knop 
et al. [5]. The latter authors [5] have given a vivid description of details of this 
story, as also to be found in a monograph of Trinajsti6 [6]. 

In the light of these long traditions, extensive enumerations of the isomers of 
benzenoid hydrocarbons is a very new area. A systematic investigation can be 
dated to 1982 with the first paper of Dias [7] (but see also below). He published 
an article series in ten parts [7-16] entitled "A Periodic Table for Polycyclic 
Aromatic Hydrocarbons" and more recent works [17, 18]. With the invention of 
the periodic table, Dias created orderness in the chaotic myriads of chemical 
formulas for benzenoid hydrocarbons, which may be written. He has also written 
a monograph [19] with relevance to this topic and some other reviews [20-22]. 
Two years before Dias, Elk [23] published a paper on benzenoids, which 
contains explicitly the enumeration of isomers up to h = 5. It seems that 
the work of Elk has largely been overlooked in the context of benzenoid isomer 
enumeration. 

Knop et al. [5] summarized the pertinent work of Dias, his periodic table for 
benzenoid hydrocarbons (see also below) and enumeration of isomers. Hereby 
these authors [5] pointed out some erroneous omissions in the material of Dias. 
Many other numerical errors were later detected by Cyvin [24], Brunvoll et al. 
[25] and Cyvin et al. [26]. These works [24-26] provide a considerable amount of 
supplements to the enumeration data of Dias. Further supplements are found in 
the present work. 

For a general background and basic definitions the reader is referred to the 
mentioned monographs [5, 6, 19] in addition to some others [27-29]. 
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3 Description and Precise Definition of the Problem 

The present work deals with benzenoid systems (benzenoids) or polyhexes without 
holes. We are using the definition [28, 29] which allows for Kekul6an or 
non-Kekut6an benzenoids, depending on whether they possess or do not possess 
Kekul6 structures. Kekul6an benzenoids correspond to conjugated closed-shell 
(polycyclic aromatic) hydrocarbons with six-membered (benzenoid) rings only, 
either known or unknown as existing molecules in organic chemistry. Non- 
Kekul6an benzenoids correspond to hypothetic (so far never synthesized) radicals. 
Benzenoids have also been characterized as simply connected and planar, 
thus excluding coronoids or polyhexes with holes and also excluding helicenic 
systems. 

A benzenoid isomer is defined by a pair of invariants (n, s) and usually written 
as the chemical formula C, H~. Here n is the total number of vertices, correspond- 
ing to the number of carbon (C) atoms, while s is the number of vertices 
of degree two (on the perimeter), corresponding to the number of secondary 
carbon atoms (hence the symbol s). This number (s) is also the number of 
hydrogens (H). 

The problem of enumerating benzenoid isomers (C, Hs) consists of finding the 
number of non-isomorphic benzenoids for a given pair of the invariants n and s. 
It is also of interest to classify the set of isomers into Kekul6an and non-Kekul~an 
systems and occasionally further into more subclasses. 

In most of the enumerations of benzenoid systems the number of hexagons, h, 
has been used as a leading parameter. This is to say that the numbers of 
non-isomorphic benzenoids with a given h have been determined, and this set has 
occasionally been subdivided into different classes; see e.g. a consolidated report 
[30] with supplements [31]. Also when special classes of benzenoids have been 
generated specifically the numbers of benzenoids were produced as a function ofh. 

It has been pointed out [25] that the two problems, enumeration of benzenoids 
with h hexagons and the enumeration of C,H~ isomers, are not so much contrasted 
to each other as it may seem. One may get this (false) impression, for instance, 
from the statement of Dias [7]: "In this paper, the scope and framework for 
achieving this goal [systematically enumerate all possible polycyclic aromatic 
hydrocarbons] is defined. The basis for this framework is the molecular formula 
in contrast to the number of hexagonal rings [32]." As a matter of fact, all benzenoid 
isomers with a given molecular formula (C,H~) have the same number of hexagonal 
rings (h). Therefore the classes of benzenoid isomers form subclasses under the 
sets of benzenoids with the same h values. For instance, benzenoids with h = 5 
comprise exactly the isomers of C19Hll, C20H12, C21H13 and Cz2H14. The 
members of these four sets are distinguished b~ having 3, 2, 1 and 0 internal 
vertices, respectively, simultaneously with 16, 18, 20 and 22 external vertices, 
respectively. In general, an isomer C,,Hs is fully characterized by the pair of 
invariants (h, n~) or alternatively (h, he), where ni and ne denote the numbers of 
internal and external vertices, respectively; ne is also the perimeter length in terms 
of the number of its edges. The explicit connections between different invariants 
are treated in the next section. 
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4 Invariants and Classes of Benzenoids 

4.1 Hexagons and Vertices 

The number of hexagons, h, and the number of internal vertices, ni, are often taken 
as a pair of independent invariants (h, ni) of a benzenoid. Then the invariants n 
and s of the formula C,H~ are given by 

n = 4 h  - n i +  2 ,  s =  2 h  - n i + 4 .  (1) 

Similarly, in terms of the pair (h, n~) the same invariants read 

n = 2h + (ne/2) + 1, s = (n~/2) + 3. (2) 

It is interesting that s is a function of n~ independent of h. The reverse relation 
reads 

n e = 2 s - - 6 .  (3) 

Now let n e be written as 

n e = s + t (4) 

where t denotes the number of external vertices of degree three. They correspond 
to the tertiary carbon atoms (hence the symbol t) on the perimeter. The relation 

t = s - 6 (5) 

emerges immediately on combining (3) and (4). 

4.2 The Dias Parameter 

The Dias parameter, ds [7], is an invariant for benzenoid systems and defined in 
terms of other invariants by 

d s = h - n l - 2  = ( n e / 2 ) - h - 3 .  (6) 

Dias [7] interpreted the invariant d~ as the number of tree disconnections of 
internal edges. Figure 1 shows some examples. In the top row the three h = 5 
benzenoids have zero, one and two disconnections, respectively; hence d~ = 0, 1 
and 2, respectively. In general, when the internal edges form a tree, d~ = 0. The 
two catacondensed benzenoids with h = 5 in the middle row (Fig. 1) have both 
d~ = 3. In general, it is clear that d, = h - 2 for catacondensed benzenoids, a 
result which is consistent with Eq. (6) on inserting nl = 0. Negative values of d~ 
indicate tree connections. This phenomenon occurs for the first time (at h = 7) 
for coronene, where six of the internal edges form a cycle; see the bot tom row of 
Fig. t. The parameter d~ actually indicates the net number between disconnections 
and connections [20]; cf. the case of benzo[a]coronene depicted as the bottom-right 
system of Fig. 1. With regard to the interpretation of d~ it should finally be noted 
that it does not hold for benzene, which is the only benzenoid without any internal 
edge. According to Eq. (6) it has d~ = - 1. 
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as=0 a,_-i 

a~=a 

a~=2 

ds=-I ds=0 

Fig. 1. Examples of benzenoids 
with various Dias parameters 
(d0; heavy lines indicate internal 
edges 

The pair of invariants (d~, n~) plays an important role in connection with the 
periodic table for benzenoid hydrocarbons (see below). Therefore we give some 
relations in terms of these invariants. Firstly, the coefficients of C,H~ read: 

n = 4 d s +  3n i+  10, s = 2 d ~ +  n i +  8. (7) 

Secondly, it is useful to keep track of the number of hexagons, which is 

h = d ~ +  n i +  2. (8) 

Finally we give the number of external vertices or the perimeter length; 

n~ = 4d~ + 2n~ + 10. (9) 

4.3 The "neo" Classification 

The classification referred to as n e o  takes into account all benzenoids. They are 
either normal (n), essentially disconnected (e) or non-Kekul6an (o); cf., e.g., the 
multi-author report of Balaban et al. [30] and references cited therein. Among the 
Kekul6an systems (n + e) the Kekul6 structures possess fixed bonds in the case of 
essentially disconnected benzenoid, while those of the normal benzenoids do not. 

4.4 Color Excess 

Another important classification of benzenoids follows the A values [30]. Here A 
is the color excess, defined as the absolute magnitude of the difference between 
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the numbers of black and white (or starred and unstarred) vertices. It is referred 
to the coloring (or starring) of vertices in benzenoids, which are known to 
correspond to alternant hydrocarbons. It is also known that the A value is the 
absolute magnitude of the difference between the numbers of valleys and peaks. 
The A value is another invariant for the benzenoid systems. 

It is clear that A = 0 holds for all Kekul~an (n + e) benzenoids. Hence, if A > 0, 
the system is non-Kekul6an (o); then it is called an obvious non-Kekul6an 
benzenoid. But also non-Kekul6an systems with A = 0 can be constructed; they 
are called concealed non-Kekul~an benzenoids. 

Depending on the number of hexagons (h) the A values occur in the range [30, 33] 

0 <_ A <_ I_h/3J (10) 

where both the upper and lower bound are realized. Here the special brackets are 
used in the sense that l_xJ means the largest integer smaller than or equal to x. 
In consequence, the benzenoids with A = Amax occur for: h = 1 and 2 when 
Area x - -  0 ;  h = 3 A . . . .  3 Area x + 1 and 3 Area x + 2 when Amax > 0. 

There are (obvious) connections between the A values and numbers of internal 
vertices (ni) of benzenoid systems. If nl = 0, then A = 0. If ni is an even number, 
then A may only assume an even number or zero. If n~ is odd, then A must be 
odd. The lower and upper bounds for A are given by 

(1/2)[1 - ( -1)" ' ]  _< A _< n,. (11) 

All A values within the specified restrictions are realized. Examples: for ni  = 6,  

A = 6, 4, 2 or 0; for nl = 7, A = 7, 5, 3 or 1. 

5 First Enumerations of Benzenoid Isomers 

5.1 Catacondensed Benzenoids 

The catacondensed benzenoids (defined by n i = 0) with a given h actually form a 
class of isomers, viz. C4h÷2H2h÷4; cf. Eq. (1). Their number has sometimes been 
identified by the symbol Ch. 

In the first enumerations of catacondensed polyhexes [32, 34, 35] the helicenic 
systems are included. The smallest helicenic system, viz. hexahelicene, occurs for 
h = 6. However, from the forms of generated catacondensed benzenoids depicted 
in some of the early works cited above [32, 34] and others [23, 36-41] the numbers 
of catacondensed benzenoids (without helicenes) for h up to 7 (C7) are easily 
extracted. Specific documentations are found in Tables 1 and 2. 

A list of numbers of catacondensed benzenoids was produced for the first time 
in 1983 by Knop and Trinajstid with collaborators (the D/isseldorf-Zagreb group) 
[5, 42-44]. These investigators generated and enumerated all benzenoids up to 
h = 10. Somewhat later also C11 [45] and Clz [31, 46] were computed;  cf. Table 
3 and 4, respectively. Table 4 also includes the very recent values of C13 and Ct4 [47]. 
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Table 1. Numbers  of benzenoid chemical isomers for h < 5 (A~x = 0, 1) 

h ni d~ For-  A = 0 o (non-Kekul6an) Total  
mula isomers 

n e Total A = 0  1 2 3 4 Total 
Kek. non-Kek.  

1 0 - 1  C6H 6 1 ~ 1 b l b 

2 0 0 CloH8 1 ~ 1 b 1 b 

3 0 1 Claalo 2 ~ 2 b 2 b 
1 0 C13H 9 0 0 1 ~ 1 b 1 b 

4 0 2 C18Ht2 5 a 5 b 5 ̀0 
1 1 C 1 7 H l l  0 0 1 ¢ I b I b 

2 0 C16Hlo 1 a 1 b 0 0 1 b 

5 0 3 Cz2H14 12 ' 12 b 12b 
1 2 C21H13 0 0 6 ~ 6 b 6 b 
2 1 C2oH12 2 d 1 d 3 b 0 0 3 b 
3 0 C19Hlt  0 0 0 1 c 1 b 1 b 

Harary  (1967) [36]; b Elk (1980) [23]; ¢ Brunvoll, Cyvin, Cyvin and G u t m a n  (1988) [33]; d Brunvoll 
and Cyvin (1990) [25]; ~ Balaban and Hara ry  (1968) [32]. 

Table 2. Numbers  of benzenoid chemical isomers for h = 6, 7, 8 (Am,~ = 2) 

h n~ d~ For-  A = 0 o (non-Kekul6an) Total 
mula  isomers 

n e Total A = 0  1 2 3 4 Total 
Kek. non-Kek.  

0 4 C26H16 36 a'b 36 a'b 36~ 
1 3 CzsH15 0 0 24 c 24 d 24 ~ 

2 2 C~4H14 10 c 3 c 136 0 1 f 1 a 14 ~ 

3 1 C23H13 0 0 0 4 c 0 4 d 4 a 
4 0 C22Ht2 2 c 0 2 ~ 0 1 t 1 ~ 3 ~ 

0 5 C.3oHl8 118 a'~b'h) 118 ~ I18~ 
1 4 C29H17 0 0 106 c 106 d 106a 
2 3 C28H16 40 c 22 c 628 0 6 e 6 d 68 a 
3 2 C27H15 0 0 0 25 ¢ 0 25 d 25 a 
4 l C26H14 8 ~ 1 ~ 9 ~ 0 1 ~ 1 d 10 ~ 
5 0 C25H1~ 0 0 0 3 ¢ 0 3 d 3 ~ 
6 --1 Cz4H12 1 ~ 0 1 ~ 0 0 0 1" 

0 6 C34H2o 411 a 411 ~ 411~ 
1 5 C33H19 0 0 453 ~ 453d 453~ 
2 4 C32HIs t80 c 107 ~ 287 d 0 42 f 42 d 329 ~ 
3 3 C31H17 0 0 0 144 ~ 0 144 d 144" 
4 2 C3oH16 45 c 13 ~ 58 g 0 9 f 9 d 67" 
5 1 C29H15 0 0 0 21 ¢ 0 21 d 21 a 
6 0 C28H14 7 ~ 1 ~ 8 ~ 0 1 f 1 g 9 ~ 
7 - 1  C27Hla 0 0 0 1 ~ 0 1 d 1 ~ 

Knop,  Szymanski, Jefi~evi6 and Trinajsfi6 (1983) [42]; b Balaban and Harary  (1968) [32]; ¢ Brunvoll 
and Cyvin (1990) [25]; d Knop,  M/iller, Szymanski and Trinajsti6 (1985) [5]; ~ Dias (1982) [7], incorrect 
data therein are omitted; f Brunvoll, Cyvin, Cyvin and G u t m a n  (1988) [33]; g Dias (1984) [12], incorrect 

data therein are omitted; h Balaban (1969) [34]. 
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Benzenoid Chemical Isomers and Their Enumeration 

5.2 Classification According to the Number of Internal Vertices 

An enumeration and classification of the benzenoids according to h and nl up to 
h = 10, executed by the Diisseldorf-Zagreb group [5, 42], gives precise information 
about numbers of C,H~ isomers. Knop et al. [5, 44] were aware of this fact when 
they compared some Dias numbers to their own. For the pertinent relations 
between the pairs of invariants (h, hi) and (n, s), see Eq. (1). 

5.3 Classification According to the Perimeter Length 

Doroslova~ki and Togi6 [48] in their characterization of benzenoid systems used 
the perimeter length (ne) as the leading parameter, i.e. they enumerated benzenoids 
with given (increasing) ne values. These data are also reproduced by Togi6 et al. 
[49]. In a later work Stojmenovi6 et al. [45] supplemented the data in question 
substantially and classified the set of systems with a given n~ according to the 
number of hexagons, h. This material again gives precise information about the 
numbers of C,H,  isomers. The relations between the pairs of invariants (h, n~) and 
(n, s) are given in Eq. (2). The extensive material of Stojmenovi6 et al. [45] ranges 
up to ne = 46. All the numbers for h < 10 therein coincide with the corresponding 
numbers of Knop et al. [5, 42]. 

6 Complete Data for Some Benzenoid Isomers 

6.1 Arrangement of Tables 

Here we refer to the enumeration data of benzenoid isomers as complete if, for a 
given h, all the numbers of C,H~ isomers are given at least for the Kekul6an and 
non-Kekul6an systems separately. Such data are known for h values up to 14; cf. 
Tables 1-4. In addition, we have specified the numbers of normal (n) and essentially 
disconnected (e) benzenoids among the Kekul6an systems in the tables. The smallest 
essentially disconnected benzenoid, viz. perylene, occurs at h = 5. Furthermore, 
the non-Kekul6an systems are classified according to the A values (Tables 1-4). 

Table 1 accounts for the systems with Area X = 0 or 1 (h < 5). The following 
tables should, according to our arrangement of them, comprise three and three h 
values as Area X is increased stepwise. Thus Table 2 pertains to Ama x = 2 (h = 6, 7, 
8),Table3 tOAm,x = 3(h = 9, 10, l l), and Table 4 to Ama x = 4(h = 12, 13, t4). 

With respect to the documentation of the data it was especially difficult to 
choose proper references to the smallest values. Benzenoids with h up to 4 or more 
have certainly been generated independently by many investigators. We have 
chosen to give Harary [36] credit for the catacondensed (ni = 0) systems with 
h < 4 because his paper is the first place where we have located that these 
benzenoids are depicted. Furthermore, we have given much credit to Elk [23] as 
to the isomers with h _< 5. To our best knowledge, this researcher speaks for the 
first time explicitly about the numbers of C,H, isomers in the mathematical- 
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chemical context, and he has also characterized these systems in a way that 
immediately identifies them with Kekul6ans and non-Kekul6ans. 

Much information can be extracted from Knop et al. [5], where all benzenoids 
with h N 9 are depicted. These computer-generated pictures are ordered according 
to the numbers of internal vertices (n~) within each h value. The Kekul6 structure 
counts are indicated (K > 0 for Kekul6an and K = 0 for non-Kekul6an systems). 
In Tables 2 and 3 this reference is quoted in appropriate places for some total 
Kekul6an and total non-Kekul6an systems. We have not taken into account the 
corresponding mammoth  listing for h = 10, on which it was informed by Knop 
et al. [44]. It was stated that a very limited number of copies were available for 
distribution in 1984. We are not in the possession of any of these copies. 

For  a documentation pertaining to the normal pericondensed and essentially 
disconnected benzenoids, as well as the classification according to A values, 
references are made to Brunvoll et al. [25, 33]. For  h _< 9 the information on A 
values could, of course, be extracted from Knop et al. [5] by studying all the forms 
of the benzenoids depicted therein. 

Concealed non-Kekul6an benzenoids occur for the first time at h = 11. In Table 3 
we are giving Hosoya [50] credit for the enumeration of such systems; he depicted 
for the first time all eight of them as a group. Those for h = 12 (Table 4) were 
depicted by He et al. [51]. 

6.2 Preliminary Account on Extremal Benzenoids 

It is of interest to know the maximum value of n~ for a given h when setting up 
tables like those under consideration here. In this connection we shall refer to 
some benzenoids as extremal, i.e. those who have n~ = (nl) . . . .  the maximum number 
of internal vertices for a given number of hexagons. In other words, these benzenoids 
are "extremely pericondensed' .  The upper bound of nl as a function of h is readily 
obtained from the known results of Harary and Harborth [52]. One has [40] 

0 _< n~ _< 2h + 1 - [-(12h - 3) 1/2 ] (12) 

when Fx] is used to denote the smallest integer larger than or equal to x. Similarly 
one finds for the upper and lower bound of the Dias parameter: 

~-(12h- 3) l ~ z - ] - h - 3 _ < d ~ _ < h -  2 (13) 

where the minimum values (lower bound) pertain to the extremal benzenoids. 
For  the coefficients of C,H~ the following inequalities are valid. Firstly, for the 

number of carbon atoms (n) [52] 

2h + 1 + [-(12h - 3) U2-] _< n <: 4h + 2.  (14) 

Secondly, for the number of hydrogens (s) [29] 

3 + [-(12h - -  3 )  1/2-]  _< s _< 2h + 4 .  (15) 

In conclusion, for a given h: ( n i ) m i  n = 0 ,  (ds) . . . .  nma x and Smax pertain to the 
catacondensed benzenoids, while (n~) . . . .  (d~)mi,, nml. and s~ ,  pertain to the extremal 
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benzenoids. One has also (ne)ma x in the case of catacondensed and (ne)mi n in the 
case of extremal benzenoids. The latter bounds are strongly related to those of s; 
cf. Eq. (3). 

A catacondensed benzenoid has the formula C4h+zH2h+4; cf. the right-hand 
sides of Eqs. (14) and (15). 

7 Periodic Table for Benzenoid Hydrocarbons 

7.1 Description of the Table 

In the periodic table for benzenoid hydrocarbons [7] the formulas C,H,  are arranged 
in an array with coordinates (ds, nl). The Dias parameters (ds) are found on a 
horizontal axis (increasing from left to right), while the numbers of internal vertices 
(ni) are on a vertical axis (increasing downwards)• The table extends infinitely to 
the right and downwards• To the left the formulas form a line in the shape of an 
uneven staircase, which shall be referred to as the staircase-like boundary• 

The periodic table for benzenoid hydrocarbons has been reproduced (to different 
extents) many times [5, 7-15, 19-22, 25]. Usually it is given only for even-numbered 

Table 5. Periodic table for benzenoid hydrocarbons 

de 

- 5  - 4  - 3  - 2  - 1  0 1 2 ni 

C47H17 

h =  13 

C42H16 
C45H17 

• C4sH18 
C51H19 

h = 7  -. 

h = 10 •'" C32H14 "" 
C35H15 
C3sH16 

C37H15 C~IHI7 ." 
-.. C4oH16 ." C44H18 

C43H17 C47H19 
C46H18 C5oH2o 
C49H19 ,' C53H2I 

.'" C52H20 C56H22 
C55H21 C59H23 

CloH8 
C13H9 

h = 4 ... C16H10 
C19Hll 
C22H12 
C25H13 

C24H12 ." C28H14 
C27H13 C31H15 
C30H14 C34Ht6 
C33H15 ." C37H17 
C36H16 C4oH18 
C39H17 C43H19 
C4.2H18 ." C46H20 
Ca.sHI9 C49H21 
C48H20 C52H22 
C51H21 -" C55H23 
C54H22 C58H24 
C57H23 C61H25 
C6oH24 -" C64H26 
C63H25 C67H27 

Cl,*Hlo 
C17H11 

• C2oH12 
C23H13 
C26H14 

-" C29H15 
C32H16 
C35H17 

.' C38H18 
C~IHj9 
C44H2o 

-" C47H21 
C5oH22 
C53H23 

• " C56H24 
C59Hz5 
C62H26 

• ' C65H27 
C68H28 
C71H29 

C18H12 
• " C21H13 

C24H14 
C27H15 

.' C30H16 
C33HI7 
C36H18 

." C39H19 
C42H2o 
C45H21 

• ' C4sH22 
Cs1Hz3 
C54H24 

• " C57H25 
C60H26 
C63H27 

• " C66H28 
C69H29 
C72H3o 

," C75H31 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1t 
12 
13 
14 
15 
16 
17 
18 
19 

h = 1 6  h =  19 h 22 
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carbon atoms (n even). In Table 5 we show the periodic table for both even- and 
odd-numbered carbon atoms. This table is a fusion of the two periodic tables 
given separately in one of the Dias publications [15]. Only a small portion of this 
version of the table has been displayed previously [25]. 

When setting up the periodic table for benzenoid hydrocarbons one observes 
easily the regularities as to the steps of the coefficients of C,Hs. They are obtained 
recursively by the scheme: 

C,H,(d~, nO ~ Cn+gHs+ z(ds+ l, ni) 
+ 

C,+aH,+1(d~,ni + 1). 

As the initial condition one has CaoHs(0, 0), the formula for naphthalene, at the 
upper-left corner. 

An acute problem arises, however, concerning the limitation at the staircase- 
like boundary• In other words, where to stop writing up the formulas to the left? 
This question is answered implicitly in Sect. 6.2; cf, Eqs, (12)-(15). In the 
subsequent sections a more detailed description of the staircase-like boundary is 
provided. 

Table 5. (continued) 

de 

- 1 2  - t l  - 1 0  - 9  - 8  - 7  - 6  - 5  n~ 

h = 25 

C71H21 
C7,*H22 

C73H21 C77H23 
C76H22 . ' '  C8oH2, 
C79H23 C83H25 
C82H24 C86H26 

h = 19 "'" C54H18 
C57H19 
C6oH2o 

C59H19 C63H21 
h = 22 "-- C62H2o "" C66H22 

C65H21 C69H23 
C64H20 C68H22  C72H24 
C67H21 C71H23 ." C75H25 

C66H20 C70H22 .'" C74H24 C78H26 
"-" C69H21 .'" C73H23 C77H25 ,C81H27 

C72H22 C 7 6 H 2 4  C80H26 ." Cs4H28 
C75H23 C79H25 -'" C83H27 C87H29 
C78H24 .'" C82H26 C86H28 .C90H30 

.-" C81H25 C 8 5 H 2 7  C89H29 -" C93H31 
C84H26 C88H28 ." C92H30 C96H32 

• C87H27 .'" C91H29 C95H31 . C99H33 
-" C90H28 C 9 4 H 3 0  C98H32 .' C102H34 

C52H18 
C55H19 

"" CssH2o 
C61H21 
C64H22 

• " C67H23 
C7oH24 
C73H25 - 

." C76H26 
C79H27 
CszH28 - 

• " C85H29 
CssH3o 
C91H31 

-" C94H3a 
C97H33 
ClooH3 4 .' 

"" CtosHs5 
Clo6H36 

C5oH18 
C53H19 
C56H2o 

• " C59H21 
C62H22 
C65H23 

• C68H24 
CvlH2s 
C7¢H26 
C77H27 
C8oHzs 
C83H29 
C86H3o 
C89H31 
C92H32 
C95H33 
C98H34 
CxolHs5 
Clo4H36 
ClovHs7 
C11oH3s 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 

h 31 h = 34 
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7.2 How to Find the Place of a Formula in the Periodic Table? 

Assume a formula C,Hs which corresponds to a benzenoid hydrocarbon. Then 
the coordinates of the periodic table for benzenoid hydrocarbons are readily 
obtained from Eqs. (1) and (6) as 

ds = (1/2)(3s - n) - 7 ,  ni = n - 2s + 6.  (16) 

It may be advantageous to keep track of the number of hexagons (h) also during 
the studies of benzenoid isomers. On eliminating nl from (1) the following relation 
emerges, which is of interest in this connection. 

h = (1/2)(n - s) + 1. (17) 

The formulas C,H s associated with the same h value are found along diagonals 
in the periodic table. Some of these diagonals are indicated in Table 5. 

It was assumed that C ,H s is compatible with a benzenoid hydrocarbon in order 
to have a place in the periodic table at all. This can be decided most directly in 
the following way. Firstly, n and s have the same parity; it means that either both 
n and s are even or both of them are odd. Then, if n is given, the possible values 
of s, which all are realized, are found within the range [29, 52] 

2[-(1/2) (n + 61/2nl/2)] - n _< s < n + 2 - 21-(1/4)(n - 2)] .  (18) 

The possible values of n are 6, 10, 13, 14 and all integers n > 16. Example: for 
n = 60, 20 _< s _< 32; hence the following formulas exist for the C6o benzenoid 
hydrocarbons - -  C 6 0 H 2 0  , C 6 0 H 2 2  , C 6 0 H 2 4  , C 6 0 H 2 6  , C 6 0 H 2 8  , C 6 0 H 3 0 ,  C 6 0 H 3 2  
[18, 24]. 

Conversely, if s is given, the always realized possible values of n (under the 
restriction of same parity) are 

s - 6 + 21-s/2] _<_< n < + 21_(1/12)(S 2 - -  6s)J. (19) 

The possible values of s are 6 and all integers s _> 8. Example: for s = 20, 
34 _< n < 64; hence the following formulas exist for the H2o benzenoid hy- 
drocarbons - -  C 3 4 H 2 0  , C 3 6 H 2 0  , C 3 8 H 2 0  . . . . .  C 6 0 H 2 0  , C 6 2 H 2 0  ' C 6 4 H 2 0  ' 

7.3 The Position of Benzene 

On extrapolating the above scheme the formula for benzene, C6H6, should be 
placed in the periodic table for benzenoids in the first row (among catacondensed 
benzenoids) just to the left of CloH s (naphthalene) [25]. There are serious arguments 
against this position, which implies d~ = - 1, n i = 0. Firstly, C 6 H  6 in this position 
would be the only formula not having any formula in the same column just below 
it. Secondly, the staircase-like boundary would be obscured at the top of the table. 
It is recalled that ds = - 1  for benzene, although it fits into Eq. (6), can not be 
interpreted in terms of  the tree disconnections and tree connections. It seems 
safest to keep C 6 H  6 outside the periodic table for benzenoids, although benzene 
is a benzenoid (with h = 1) by definition. By the way, some authors do not reckon 
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benzene among benzenoid hydrocarbons, but start this class with naphthalene 
(h = 2). 

Dias [16] has stretched the analogy between the periodic table for benzenoid 
hydrocarbons and the Mendeleev periodic table (for elements) rather far. It can 
be stretched still farther by comparing the position of benzene to the unique 
position of hydrogen in the Mendeleev table. 

7.4 Shape of the Staircase-Like Boundary 

The left-hand side boundary of the periodic table starts with one extremely high 
step (six formulas), followed by a four-formula step. When measured in the same 
way the following steps, as can be proved rigorously, always hold either three or 
two formulas. The first ("low") two-formula step starts with Cs/Hls  (h = 18); cf. 
Table 5. The last column in Table 5 (starting with C73H21 at the top) contains a 
three-formula ("high") step, which is followed by a low step: 

C73H21 
C76H22 
C79H23 

(h = 27) 

C78H22 
C8/H23 

C8oH22 

8 Detailed Analysis of the Formulas 

8.1 Notation and Circumscribing 

Let a formula C,Hs be denoted alternatively as 

C,H~ ---=- (n; s). 

The generation of a (larger) benzenoid by circumscribing another (smaller) 
benzenoid is an important process in the studies of benzenoid isomers [7, 15, 19]. 
Let B be a benzenoid which can be circumscribed and has the formula C,Hs. 
Further, let B' ~ circum-B have the formula C,,Hs,. Then [25] 

(n'; s') =- (n + 2s + 6;s + 6), (20) 

Repeated application of (20) is covered by the following explicit formula. 

k-circum-B: (nk; sk) = (6k 2 + 2sk + n; 6k + s). (21) 
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8.2 More Classes of Benzenoids 

It is easily found that the extremal benzenoids, as defined in Sect. 6.2, say A, have 
the formulas given by 

A: (2h + 1 + F(12h - -  3 )1 /2 - ] ;  3 + F(12h - 3 ) 1 / 2 ] )  

for h = 1, 2, 3, 4 . . . . .  Notice that benzene ( C 6 H 6 )  is reckoned among the extremal 
benzenoids. Any formula for extremal benzenoids, except benzene, is obviously 
situated on the staircase-like boundary so that it has no formula in the same row 
to the left of it. 

The p r o t r u s i v e  benzenoids form a subclass of the extremal benzenoids. By 
definition a protrusive benzenoid has a formula with no other formula in the same 
column above it, and no formula in the same row to the left of it in the periodic 
table. All pericondensed protrusive benzenoids are generated by circumscribing 
the extremal benzenoids. Consequently they have the formulas as given below [53]. 

circum-A: (2h + t3 + 3F(12h - 3 ) i / 2 ~ ;  9 + I-(12h - 3)l/z-I). 

In addition comes naphthalene (Ca0Hs), which also by definition is a protrusive 
benzenoid, the only catacondensed system of this class. 

The e x t r e m e - l e f t  benzenoids are defined by formulas on the staircase-like 
boundary so that, in each case, there is no formula in the same row to the left. 
Hence the extremal benzenoids without benzene form a subclass of the extreme-left 
benzenoids.But there exist extreme-left benzenoids, say x, which are not extremal. 
Their formulas are found one step up and one step to the right from every formula 
for the pericondensed protrusive benzenoids. Hence one obtains readily the 
following expression. 

x: (2h + 14 + 3F(12h - 3)i/2]; 10 + F(12h - 3 ) i / 2 q ) .  

The smallest extreme-left benzenoids which are not extremal, have the formula 
C25H13 (h = 7); cf. Table 5. 

The c i rcu lar  benzenoids are defined by having h = hma x for a given s. These 
systems have, loosely speaking, the largest area in relation to the circumference; 
hence the term "circular". More precisely, they have the largest number of hexagons 
for a given perimeter length. In this connection we give the always realized upper 
and lower bounds for h when s is given: 

I-s~2-] - 2 <_ h <_ L(1/12)(s 2 - 6s + 12)J. (22) 

Here the upper bound ( h = j  is a deduction from a formula for primitive coronoids 
[54]. For  the number of internal vertices one obtains 

2[-s/2"] - s <_ nl <- 2k(1/12)(s 2 - 6s + 12)j - s + 4 (23) 

where the upper and lower bounds are realized simultaneously with those 
of Eq. (22). When s is even, the lower bound represents the catacondensed 
benzenoids (hi = 0); when s is odd it corresponds to nl = 1. But here we 
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are most interested in the upper bound. It gives the general formula for a circular 
benzenoid, say O. 

O: (s + 2[_(1/12) (s 2 - 6s)A); s) 

where s = 6, 8, 9, 10, 11 . . . .  as specified above. All circular benzenoids are extremal 
and therefore also extreme-left if benzene is excluded. The first (smallest) circular 
benzenoids have the formulas C6H6, CloHs, C13H9, C16Hlo, C19Hll, C24H12 
and C27H13, of which C24H12 pertains to a protrusive benzenoid (coronene). All 
the higher circular benzenoids are protrusive. 

9 Strictly Pericondensed Benzenoid and Excised Internal 
Structure 

The pericondensed extreme-left benzenoids constitute a subclass of the strictly 
pericondensed benzenoids in the sense of Dias [12, 15, 19, 21, 55 57]; they are 
defined by having all their internal vertices connected and no catacondensed 
appendages. Phenalene, C13H9, which has only one internal vertex, is reckoned 
among the strictly pericondensed benzenoids. An equivalent definition in a most 
succint form reads: 

A strictly pericondensed benzenoid is a benzenoid with h > 2 and all its internal 
edges connected. 

The formulas at the extreme left in the periodic table for benzenoid hydrocarbons, 
except CloH8 (naphthalene), represent exclusively strictly pericondensed benzen- 
oids [12, 16, 21], viz. the pericondensed extreme-left benzenoids. Formulas for 
d~ _< 0 and not at the extreme left represent both strictly pericondensed and 
non-strictly pericondensed benzenoids. For d~ > 0 there are no strictly pericon- 
densed benzenoids [56]. 

It should be clear that strictly pericondensed benzenoids occur for formulas at 
unlimited distances from the staircase-like boundary. Consider, for instance, the 
homolog series of hydrocarbons as shown in Fig. 2. The systems have in general 
(for h _> 2, s _> 8) the formulas: 

(3h + 4 ; h +  6 ) = ( 3 s -  14;s). (24) 

The Dias parameter is constantly zero (d~ = 0), which means that the formulas 
are found in the same column, where CloHs (naphthalene) is at the top. There is 
no limitation as to how far down one can get in this way, moving steadily away 
from the staircase-like boundary. 

The extremal benzenoids have no coves and no fjords, but this property is not 
valid for strictly pericondensed benzenoids in general. Figure 3 shows some 
counterexamples. 

The excised internal structure [10, 12, 19, 21, 22, 55] is defined in connection with 
strictly pericondensed benzenoids. It is the set of internal vertices and the edges 
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C10H8 013H9 016H10 019Hll 

022H12 025H13 028H14 

Fig. 2. A homolog series of hydrocarbons generated successively by two-contact additions 
(attachments of C3H). The excised internal structures are indicated by heavy lines (and the 
dot in CI3H9) 

C34H16 

C4oH18 

Fig. 3. The smallest strictly pericondensed benzenoid with a cove, C3~H1~, which is 
non-Kekulran (A = 1). The two smallest Kekulban strictly pericondensed benzenoids 
with a cove, C34H16, which are normal. The smallest strictly pericondensed benzenoid with 
a t]ord, C4oHls, which is normal (Kekulran) 

connecting them. Thus the excised internal structure emerges by deleting the 
external vertices and their incident edges ("excising" the benzenoid). 

If  A is a benzenoid which can be circumscribed, then it is the excised internal 
structure of circum-A. But an excised internal structure is not necessarily a 
benzenoid. In Fig. 2, for instance, one finds one vertex (corresponding to CH3) as 
the excised internal structure ofphenalene (Ct 3H9). Further, two connected vertices 
(corresponding to ethene, C~H4) is the excised internal structure ofpyrene (Ct6 H lo). 

The circumscribing is obviously an important process in connection with excised 
internal structures. It is clear that a benzenoid with a cove or a fjord (or 
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non-benzenoids with the corresponding tbrmations) can not be circumscribed. But 
also benzenoids without coves and fjords can be constructed so that they can not 
be circumscribed [25]. Figure 4 shows some examples. Dias [12, 15] has formulated 
the two-carbon atom gap criterion to this effect. A cove is associated with a 
two-edge gap (or one-carbon atom gap), on the perimeter, while a fjord is associated 
with a one-edge gap (or zero-carbon atom gap). Also the third example of Fig. 4 
(C46H26), having a two-edge gap, follows the Dias criterion. This criterion, however, 
fails to give the necessary condition for the impossibility to circumscribe a 
benzenoid (or non-benzenoid). The bot tom row in Fig. 4 shows counterexamples: 
a benzenoid (C42H24) with a three-edge gap and one (C38Hz2) with a four-edge 
gap; yet none of them can be circumscribed. 

C18 H12 C22H14 046H26 

042H24 038H22 
Fig. 4. The smallest benzenoid with a cove (C18H12), the smallest benzenoid with a fjord 
(CzzH14), and other benzenoids which can not be circumscribed 

10 Incomplete Data for Some Benzenoid Isomers 

Table 6 is a compilation of data for numbers of benzenoid isomers with h > 15. 
They are incomplete in the sense that, for each h, the list of nl values is not 
complete. Furthermore, in many cases the subdivisions into normal  and essentially 
disconnected benzenoids are unknown. 

The table starts with the number of h = 15 catacondensed benzenoids, which 
has not been published previously (but see the preceding chapter). In general most 
of the numbers, especially for the higher h values, pertain to extreme-left benzenoids. 
This is the case for all entries at h > 39. 
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11 Benzenoid Isomers and Number of Edges 

The number  of edges ( C - C  bonds), m, is an invariant,  being the same for aU 
isomers with a given formula C,H~ [16, 21]. Explicitly one has: 

m = ( 1 / 2 ) ( 3 n - s ) .  (25) 

This does not mean, however, that  two benzenoids with the same number  of edges 
(m) must be isomers in general. The coefficients of the formula (n, s) are in general 
determined by two independent  invariants,  e.g. (m, n~). In this case the t ransforma- 
tion reads 

n = (1/5)(4m - n i + 6), s = (1/5)(2m - 3nl + 18). (26) 

The m values are limited between upper and lower bounds as functions of other 
invariants. Gu tman  [40] deduced from the work of  Hara ry  and Harbor th  [52]: 

3h + F(12h - 3)1/27 _< m _< 5h + 1. (27) 

In the original work [52] the following relation is given. 

n - 1 + [-(1/4)(n - 2)7 _< m _< 2n - f-(1/2)(n + 61/2nl/Z)-]. (28) 

As a supplement we give: 

s + 3[-s/2-] - 9 < m < s + L(1/12)(s 2 -  6s)J - 2 .  (29) 

It  was stated that  a value of m does not  determine the pair  of coefficients (n, s) 
of a formula for benzenoid isomers in general. Nevertheless, for the smallest values 
of m the C ,H,  formula for benzenoids with that number  of edges is determined 
uniquely. This feature can be analysed in terms of upper  and lower bounds  as 
functions of m. Harary  and Harbor th  [52] have given the relat ion 

[(1/5) (m -- 1)7 < h _< m - [(1/3)[2m - 2 + (4m + 1)1/2]-]. (30) 

We can supplement it by 

5[-(1/5)(m - 1)] - m + 1 < n i < 4m + 1 - 5[(1/3)[2m - 2 + (4m + 1)1/2]-]. 
(31) 

The possible values of m are 6, 11, i5, 16, 19, 20, 21 and all integers m _> 23. 
I t  is found that  for all m _< 29 and m = 32, 33, 37 the upper  and lower bounds  

are coincident so that  the relations (30) and (31) give a precise determinat ion of 
the invariants in question (h, ni). Example:  for m = 20, 4 < h _< 4 and 1 _< ni _< 1. 
In Table 7 all the invariant  pairs (h, hi) and the corresponding formulas C,  Hs are 
listed which, for benzenoid isomers, are determined by the m values. 

The analysis becomes more  oriented towards  the C,H~ isomers by using the 
pert inent  coefficients (n, s) in the inequalities of the considered type. Again according 

to Hara ry  and Harbor th  [52]: 

1 + 5 ( 1 / 3 ) [ 2 m  - -  2 + (4m + 1)I/2] -] _< n _< m + 1 - F ( 1 / 5 ) ( m  - 1)-].  (32)  
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Table 7. All formulas for benzenoid isomers which 
are determined by the number of edges (m) 

rn h ni Formula 

6 1 0 C6H 6 
11 2 0 CtoHs 
15 3 1 C13H 9 
16 3 0 C14Hlo 
19 4 2 C16Hlo 
20 4 1 C17Hll 
21 4 0 C18Hlz 
23 5 3 C19Hl1 
24 5 2 CzoHi2 
25 5 1 C/1H13 
26 5 0 C2zHi4 
27 6 4 C22H12 
28 6 3 C23H13 
29 6 2 C24H14 
32 7 4 C26H14 
33 7 3 C27H15 
37 8 4 C3oH16 

m= ~ 3 0  

025Ht5 624H12 

m =  31 

626H16 025 H13 

034H2o 633H17 

032H14 

Fig. 5. Different benzenoid 
isomers with the same num- 
ber of edges (m) 

211 



Jon Brunvoll, Bj6rg N. Cyvin, and Sven J. Cyvin 

We  give as a supp lement :  

3 --  2m + 3[-(1/3)[2m -- 2 + (4m + 1)1/2] -] 

_< s < m + 3 -- 31-(1/5)(m -- 1)q. (33) 

n @ 
C24H12 

o~ 
C19H11 

022H12 [ ~  

 ii. ' ..... 

1 ' 
C24H14 

.... 1 On + 3e + o z [. t,~ C20H12 see Fig.7. 
' 

[ ~  027H15 2501 
C 2 H see Fig.7, 

_ I I o 

! , 
[ ~  ~ 029H15 2101 

see Fig.7. 

n 028H14 ~ 1  I ~  ~ [ ~  

e ~  o ~  

Fig. 6. Benzenoid isomers in the upper-left part of the periodic table (cf. Table 5) 
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The smallest  different benzenoid  isomers with the same n u m b e r  of edges occur 

for m = 3 0 : C 2 5 H 1 5  (h = 6, n i = 1; 24 isomers) and  Cz4H12 (h = 7, ni = 6; 
coronene) ;  see Fig. 5. The  next  example  per ta ins  to m = 31: C26H16 (h = 6, nl = 0; 
36 isomers) and  C25H13 (h = 7, n i = 5, 3 isomers). Similarly, for m = 34, 35, 36, 
38, 39 and  40 there are in each case two formulas,  one  even-ca rbon  and  one  
odd-carbon .  F o r  m = 41 the s i tua t ion  occurs for the first t ime that  three different 
formulas  are compat ib le  with the same m value:  C34H2o (h = 8, n i = 0; 411 
isomers),  C33H17 (h = 9, nl = 5; 154 isomers) and  C32H14 (h = 10, nl -- 10; 
ovalene);  cf. Fig. 5. 

01 

Fig. 7. The C24H14 (h = 6), C27H15 (h = 7) and C29H15 (h = 8) benzenoid isomers 
Fig. 6 for the positions in the periodic table 

see 

213 



Jon Brunvoll, Bj6rg N. Cyvin, and Sven J. Cyvin 

12 Forms of Some Benzenoid Isomers 

In Fig. 6-13, a number of forms of different benzenoid isomers are displayed. The 
contours of excised internal structures for the strictly pericondensed systems are 
indicated in bold lines. The depictions of this type have proved to be very useful 
for the studies of benzenoid isomers in general, and especially for the extremal 

+ ! 

(~34H16 1 31 n + 3e + 802 
s e e  Fig.9. 

031H15 

o33H15 

032H14 

036H16 [ 
18n + 2e + 602 
s e e  Fig.9. 

! 
639H17 ] 
60o~+ 03 
see Fig.lO. 

Fig. 8 Next portion of benzenoid isomers with formulas below those of Fig. 6 
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Fig. 9. The C34H16 (h = 10) and C36H16 (h = 11) benzenoid isomers; see Fig. 8 for the 
positions in the periodic table 
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Fig. 10. The C39H17 (h = 12) benzenoid isomers; see Fig. 8 for the position in the periodic 
table 
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04o H t 6 

[ ~  ~ ~ ~ 041H1703~ 
Fig. 11. The  C37H15 (h = 12), C38H16 (h = 12), C4oH16 (h = 13) and  C41H17 (h = 13) 
benzenoid  isomers 
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C45H17 

Fig. 12. The C42Ht6 (h = 14), C43HtT(h = 14) and C45H17 (h = 15) benzenoid isomers 

systems, which include the constant-isomer series (cf. the below section entitled 
Conclusion). 

In the extensive listings of Knop et al. [5] one finds the forms of all the h _< 9 
bet~zenoids depicted as computer designs. They are ordered according to the 
numbers of internal vertices, so that the subclasses of C,H~ isomers are easily 
identified. A work of Elk [23] contains the forms of all benzenoid isomers for 
h <_ 5 with special reference to the C,H~ formulas. However, the first extensive 
depictions of benzenoid forms explicitly identified as C,H~ isomers may be located 
to works of Dias [10, 12, 15, 16, 18, 19]. The readers should be warned against 
some confusing errors in the listing of Dias; many of them are documented 
elsewhere [24, 26]. The last reference [26] contains so far the most extensive 
depictions, presumably without errors, of the benzenoid (C,Hs) isomers for h > 9. 
Figures 8, 9 and 11 13 reproduce some of the material therefrom, while the 
C39Ht7 isomers of Fig. 10 are presented here for the first time. 

13 Conclusion 

In the present chapter the studies of benzenoid isomers, or benzenoid systems 
compatible with a formula C,H~, are reviewed. On one hand the emphasis is laid 
on precise definitions and relations. Some of the relations, especially for certain 
upper and lower bounds, have not been published before. On the other hand a 
comprehensive collection of enumeration data with documentations is presented. 
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Many  of the numbers are new. However, many of the unclassified da ta  from 
Stojmenovi6 et al. [45] are not quoted here. All of them are found in a review by 
Brunvoll and Cyvin [25], who linked them explicitly to the appropr ia te  C ,H,  
formulas. 

Another  topic of considerable interest concerns the constant-isomer series of  
benzenoids. Different problems in this connection have recently been taken up 
by Dias [56-58], who simultaneously managed to extend the da ta  of  Stojmenovi8 
et al. [45]. Also in our l abora tory  some work  with these problems is in progress,  
but  the topic does not  seem to be mature  enough for a review at present. 

Acknowledgement: Financial  support  to BNC from The Norwegian Research 
Council  for Science and the Humanit ies  is gratefully acknowledged.  
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