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Foreword 

Density functional theory (DFT) is an entrancing subject. It is entrancing to chem- 
ists and physicists alike, and it is entrancing for those who like to work on math- 
ematical physical aspects of problems, for those who relish computing observable 
properties from theory and for those who most enjoy developing correct qualitative 
descriptions of phenomena in the service of the broader scientific community. 

DFT brings all these people together, and DFT needs all of these people, because 
it is an immature subject, with much research yet to be done. And yet, it has already 
proved itself to be highly useful both for the calculation of molecular electronic 
ground states and for the qualitative description of molecular behavior. It is already 
competitive with the best conventional methods, and it is particularly promising in 
the applications of quantum chemistry to problems in molecular biology which are 
just now beginning. This is in spite of the lack of complete development of DFT 
itself. In the basic researches in DFT that must go on, there are a multitude of prob- 
lems to be solved, and several different points of view to find full expression. 

Thousands of papers on DFT have been published, but most of them will be- 
come out of date in the future. Even collections of works such as those in the present 
volumes, presentations by masters, will soon be of mainly historic interest. Such 
collections are all the more important, however, when a subject is changing so fast 
as DFT is. Ative workers need the discipline imposed on them by being exposed to 
the works of each other. New workers can lean heavily on these sources to learn the 
different viewpoints and the new discoveries. They help allay the difficulties associ- 
ated with the fact that the literature is in both physics journals and chemistry jour- 
nals. [For the first two-thirds of my own scientific career, for example, I felt confi- 
dent that I would miss nothing important if I very closely followed the Journal of 
Chemical Physics. Most physicists, I would guess, never felt the need to consult 
JCP. What inorganic or organic chemist in the old days took the time to browse in 
the physics journals?] The literature of DFT is half-divided, and DFT applications 
are ramping into chemical and physical journals, pure and applied. Watch JCP, Physi- 
cal Review A and Physical Review B, and watch even Physical Review Letters, if 
you are a chemist interested in applying DFT. Or ponder the edited volumes, includ- 
ing the present two. Then you will not be surprised by the next round of improve- 
ments in DFT methods. Improvements are coming. 



VIII Foreword 

The applications of  quantum mechanics to molecular electronic structure may 
be regarded as beginning with Pauling's Nature of  the Chemical Bond, simple mo- 
lecular orbital ideas, and the Huckel and Extended Huckel Methods. The molecular 
orbital method then was systematically quantified in the Hartree-Fock SCF Method; 
at about the same time, its appropriateness for chemical description reached its most 
elegant manifestation in the analysis by Charles Coulson of the Huckel method. 
Chemists interested in structure learned and taught the nature of the Hartree-Fock 
orbital description and the importance of electron correlation in it. The Hartree- 
Fock single determinant is only an approximation. Configurations must be mixed to 
achieve high accuracy. Finally, sophisticated computational programs were devel- 
oped by the professional theoreticians that enabled one to compute anything. Some 
good methods involve empirical elements, some do not, but the road ahead to higher 
and higher accuracy seemed clear: Hartree-Fock plus correction for electron corre- 
lation. Simple concepts in the everyday language of non theoretical chemists can be 
analyzed (and of course have been much analyzed) in this context. 

Then, however, something new came along, density functional theory. This is, 
of  course, what the present volumes are about. DFT involves a profound change in 
the theory. We do not have merely a new computational gimmick that improves 
accuracy of calculation. We have rather a big shift of emphasis. The basic variable is 
the electron density, not the many-body wavefunction. The single determinant of 
interest is the single determinant that is the exact wavefuntion for a noninteracting 
(electron-electron repulsion-less) system corresponding to our particular system of 
interest, and has the same electron density as our system of interest. This single 
determinant, called the Kohn-Sham single determinant, replaces the Hartree-Fock 
determinant as the wavefunction of paramount interest, with electron correlation 
now playing a lesser role than before. It affects the potential which occurs in the 
equation which determines the Kohn-Sahm orbitals, bus once that potential is deter- 
mined, there is no configurational mixing or the like required to determine the accu- 
rate electron density and the accurate total electronic energy. Hartree-Fock orbitals 
and Kohn-Sham orbitals are quantitatively very similar, it has turned out. Of the two 
determinants, the one of Kohn-Sham orbitals is mathematically more simple than 
the one of Hartree-Fock orbitals. Thus, each KS orbital has its own characteristic 
asymptotic decay; HF orbitals all share in the same asymptotic decay. The highest 
KS eigenvalue is the exact first ionization potential; the highest HF eigenvalue is an 
approximation to the first ionization potential. The KS effective potential is a local 
multiplicative potential; the HF potential is nonlocal and nonmultiplicative. And so 
on. When at the Krakow meeting I mentioned to a physicist that I thought that chem- 
ists and physicists all should be urged to adopt the KS determinant as the basic 
descriptor for electronic structure, he quickly replied that the physicists had already 
done so. So, 1 now offer that suggestion to the chemistry community. 

On the conceptual side, the powers of DFT have been shown to be considerable. 
Without going into detail, I mention only that the Coulson work referred to above 
anticipated in large part the formal manner in which DFT describes molecular changes, 
and that the ideas of electronegativity and hardness fall into place, as do Ralph 
Pearson's HSAB and Maximum Hardness Principles. 



Foreword IX 

It was Mel Levy, 1 think who first called density functional theory a charming 
subject. Charming it certainly is to me. Charming it should be revealed to you as you 
read the diverse papers in these volumes. 

Chapel Hill, 1996 Robert G. Parr 



Foreword 

Thirty years after Hohenberg and myself realized the simple but important fact that 
the theory of electronic structure of matter can be rigorously based on the electronic 
density distribution n(r) a most lively conference was convened by Professor R. 
Nalewajski and his colleagues at the Jagiellonian University in Poland's historic 
capital city, Krakow. The present series of volumes is an outgrowth of this confer- 
ence. 

Significantly, attendees were about equally divided between theoretical physi- 
cists and chemists. Ten years earlier such a meeting would not have had much re- 
sponse from the chemical community, most of whom, I believe, deep down still felt 
that density functional theory (DFT) was a kind of mirage. Firmly rooted in a tradi- 
tion based on Hartree Fock wavefunctions and their refinements, many regarded the 
notion that the many electron function,q~(r~ ... r~,) could, so to speak, be traded in for 
the density n(r), as some kind of not very serious slight-of-hand. However, by the 
time of this meeting, an attitudinal transformation had taken place and both chemists 
and physicists, while clearly reflecting their different upbringings, had picked up 
DFT as both a fruitful viewpoint and a practical method of calculation, and had done 
all kinds of wonderful things with it. 

When I was a young man, Eugene Wigner once said to me that understanding in 
science requires understanding from several different points of view. DFT brings 
such a new point of view to the table, to wit that, in the ground state of a chemical or 
physical system, the electrons may be regarded as afluid which is fully character- 
ized by its density distribution, n(r). I would like to think that this viewpoint has 
enriched the theory of electronic structure, including (via potential energy surfaces) 
molecular structure; the chemical bond; nuclear vibrations; and chemical reactions. 

The original emphasis on electronic ground states of non-magnetic systems has 
evolved in many different directions, such as thermal ensembles, magnetic systems, 
time-dependent phenomena, excited states, and superconductivity. While the ab- 
stract underpinning is exact, implementation is necessarily approximate. As this 
conference clearly demonstrated, the field is vigorously evolving in many direc- 
tions: rigorous sum rules and scaling laws; better understanding and description of 
correlation effects; better understanding of chemical principles and phenomena in 
terms of n(r); application to systems consisting of thousands of atoms; long range 
polarization energies; excited states. 



XII Foreword 

Here is my personal wish list for the next decade: (l)  An improvement of the 
accurary of  the exchange-correlation energy E [n(r)] by a factor of 3-5. (2) A practical, 
systematic scheme which, starting from the popular local density approach, can - 
with sufficient effort - yield electronic energies with any specified accuracy. (3) A 
sound DFT of excited states with an accuracy and practicality comparable to present 
DFT for ground states. (4) A practical scheme for calculating electronic properties 
of systems of 103 - 10 ~ atoms with "chemical accuracy". The great progress of the 
last several years made by many individuals, as mirrored in these volumes, makes 
me an optimist. 

Santa Barbara, 1996 Walter Kohn 



Preface 

Density functional methods emerged in the early days of quantum mechanics; how- 
ever, the foundations of the modem density functional theory (DFT) were estab- 
lished in the mid 1960 with the classical papers by Hohenberg and Kohn (1964) and 
Kohn and Sham (1965). Since then impressive progress in extending both the theory 
formalism and basic principles, as well as in developing the DFT computer software 
has been reported. At the same time, a substantial insight into the theory structure 
and a deeper understanding of reasons for its successes and limitations has been 
reached. The recent advances, including new approaches to the classical Kohn-Sham 
problem and constructions of more reliable functionals, have made the ground-state 
DFT investigations feasible also for very large molecular and solid-state systems (of 
the order of 103 atoms), for which conventional CI calculations of comparable accu- 
racy are still prohibitively expensive. The DFT is not free from difficulties and con- 
troversies but these are typical in a case of a healthy, robust discipline, still in a stage 
of fast development. The growing number of monographs devoted to this novel 
treatment of the quantum mechanical many body problem is an additional measure 
of its vigor, good health and the growing interest it has attracted. 

In addition to a traditional, solid-state domain ofappplications, the density func- 
tional approach also has great appeal to chemists due to both computational and 
conceptual reasons. The theory has already become an important tool within quan- 
tum chemistry, with the modem density functionals allowing one to tackle problems 
involving large molecular systems of great interest to experimental chemists. This 
great computational potential of DFT is matched by its already demonstrated capac- 
ity to both rationalize and quantify basic classical ideas and rules of chemistry, e.g., 
the electronegativity and hardness/softness characteristics of the molecular electron 
distribution, bringing about a deeper understanding of the nature of the chemical 
bond and various reactivity preferences. The DFT description also effects progress 
in the theory of chemical reactivity and catalysis, by offering a "thermodynamic- 
like" perspective on the electron cloud reorganization due to the reactant/catalyst 
presence at various intermediate stages of a reaction, e.g. allowing one to examine 
the relative importance of the polarization and charge transfer components in the 
resultant reaction mechanism, to study the influence of the infinite surface reminder 
of cluster models of heterogeneous catalytic systems, etc. 



XIV Preface 

The 30th anniversary of the modern DFT was celebrated in June 1994 in Cra- 
cow, where about two hundred scientists gathered at the ancient Jagiellonian Uni- 
versity Robert G. Parr were the honorary chairmen of the conference. Most of the 
reviewers of these four volumes include the plenary lecturers of this symposium; 
other leading contributors to the field, physicists and chemists, were also invited to 
take part in this DFT survey. The fifteen chapters of this DFT series cover both the 
basic theory (Parts I, II, and the first article of Part 111), applications to atoms, mol- 
ecules and clusters (Part IlI), as well as the chemical reactions and the DFT rooted 
theory of chemical reactivity (Part IV). This arrangement has emerged as a compro- 
mise between the volume size limitations and the requirements of the maximum 
thematic unity of each part. 

In these four DFT volumes of the Topics in Current Chemistry series, a real 
effort has been made to combine the authoritative reviews by both chemists and 
physicists, to keep in touch with a wider spectrum of current developments. The 
Editor deeply appreciates a fruitful collaboration with Dr. R. Stumpe, Dr. M. Hertel 
and Ms B. Kollmar-Thoni of the Springer-Verlag Heidelberg Office, and the very 
considerable labour of the Authors in preparing these interesting and informative 
monographic chapters. 

Cracow, 1996 Roman F. Nalewajski 
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An overview of relativistic density functional theory covering its foundations, the construction of 
explicit functionals and applications to spherical atoms is given. After a brief summary of the 
relevant field theoretical background we discuss the Hohenberg-Kohn theorem for quantum 
electrodynamical systems as well as the corresponding Kohn-Sham equations, emphasising in 
particular the renormalisation of ground state energies and currents required. We then outline the 
transition from the full quantum electrodynamical Kohn-Sham equations to the more practical 
variants which are actually used in applications. As an extension of the Kohn-Sham equations we 
also summarise the relativistic optimised-potential-method (OPM) which, in addition to the kinetic 
energy, also treats the exchange energy on the basis of Kohn-Sham orbitals. As far as the 
construction of explicit functionals is concerned, we review the local density approximation (LDA) 
and the weighted density approximation (WDA) for the exchange-correlation energy as well as the 
gradient expansion of the kinetic energy, again addressing in detail questions of renormalisation. 
The relativistic corrections to the ground state, single particle and exchange energies as well as 
exchange potentials of atoms are then examined within the exchange-only limit of the no-sea 
approximation to the full relativistic Kohn-Sham equations, comparing the LDA and the WDA 
with the results obtained by the relativistic OPM. In addition, we investigate transverse exchange 
and correlation contributions within the LDA by comparison with quantum chemical data. 

I Introduction 

Densi ty  funct ional  theory  (DFT)  of nonrela t iv is t ic  many-par t i c le  systems has 
progressed  s teadi ly over  the last  thi r ty  years,  so that  it is now able  to compete  
successfully with more  t rad i t iona l  many  body  techniques,  as e.g. conf igura t ion  
in terac t ion  (CI) methods ,  for the ab  init io de te rmina t ion  of ground state proper -  
ties [1, 2, 3, 4]. The  CI  a p p r o a c h  involves a ra ther  s t ra igh t forward  concept ,  
whose app l i ca t ion  is, however ,  l imited by  technical  aspects  ( compute r  speed and 
memory)  to systems with modes t  part icle  numbers .  In  the D F  a p p r o a c h  the first 
task is to find a sufficiently accura te  representa t ion  of the g round  state energy 
and  o ther  g round  state observables  as funct ionals  of the g round  state density.  I f  
such a representa t ion  is avai lable  (at least for a wider  class of  systems as e.g. 
finite C o u l o m b  systems) further app l ica t ion  is much simpler  and  can be carr ied 

th rough  for larger  systems. 
F o r  the app l i ca t ion  of  D F T  two avenues are possible.  The first is the 

exp lo i ta t ion  of  a direct  var ia t iona l  pr inciple  [5]  with the densi ty  (or some 
sui table  extension as spin-up and  sp in-down densities) as the basic var ia t iona l  
variable.  Wi th  this approach ,  usual ly  referred to as ex tended  T h o m a s - F e r m i  



Relativistic Density Functional Theory 

(ETF) models, no results of high accuracy have been obtained. The second, the 
Kohn-Sham (KS) scheme [6], relies on a representation of the density in terms 
of single-particle orbitals. In this sense it is akin to the Hartree-Fock (HF) 
approach. The difference is, however, that the KS orbitals experience a local (i.e. 
multiplicative) single-particle potential, which also includes correlation effects 
(at least to some degree, depending on the state of art). In the last years rather 
refined approximations for this potential have been developed (as e.g. generalis- 
ed gradient approximations - GGAs), which yielded among others results that 
compared favourably with conventional many-body methods in recent com- 
parative studies for a variety of small molecules [2, 3]. 

These quantum chemical studies were restricted to rather light elements 
[2, 3], so that relativistic effects did not play any role. However, as soon as 
heavier atoms are involved (with Au being the prime candidate) they become 
essential for understanding the physical and chemical properties of atoms and 
molecules. Beyond the well known kinematic effects as the contraction or 
expansion of relativistic orbitals and the corresponding bond length modifica- 
tions in molecules, also the nonadditivity of relativistic and exchange-correla- 
tion (xc) effects has recently been emphasised I-7] (for a detailed account of the 
importance of relativity for chemical bonding we refer the reader to Refs. [8, 9]). 
Clearly, a DFT description of such high-Z systems also has to reflect their 
relativistic character, in particular, as even for atoms with moderate Z relativis- 
tic contributions to the xc-energy are larger than the differences between the 
most refined nonrelativistic xc-energy functionals 1-10, 11]. 

The development of a DF approach to relativistic many-particle systems 
has, however, been much slower than that of its nonrelativistic counterpart, 
although a precursor of modern relativistic DFT in the form of the relativistic 
Thomas-Fermi (TF) model [12, 13] was established with only a minor time 
delay with respect to the nonrelativistic TF approach [14, 15]. This and quite 
a number of subsequent attempts to incorporate relativity in explicit density 
functionals [16] were based on the first quantised Dirac equation, which is not 
an appropriate basis for the discussion of the full scale of relativistic effects in 
many-particle systems. If one wishes to address photon retardation effects and 
antiparticle contributions besides the relativistic kinematics of the electrons the 
correct basis for the discussion of many-electron systems is quantum elec- 
trodynamics (QED). A comparison of the general structure (and in particular of 
the diagrammatic formulation) of QED and of nonrelativistic many-body the- 
ory reveals definite similarities, but the elimination of infinite zero point ener- 
gies, the renormalisation of ultraviolet (UV) divergencies as well as the spinor 
and tensor structure of the quantities involved introduces substantial complica- 
tions in the former case. These additional features are reflected in relativistic 
DFT (RDFT), both on the more formal level and in the derivation of explicit 
functionals. An extension of the Hohenberg-Kohn (HK) theorem [5] to the 
relativistic domain has first been formulated by Rajagopal and Callaway [17], 
showing that in a fully relativistic DF formalism the four current plays the role 
of the density as the basic DF variable. The corresponding KS-equations have 
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been given by Rajagopal [18] and independently by MacDonald and Vosko 
[19]. These authors mainly focussed on the Dirac structure of the relativistic KS 
(RKS) equations (including the four-component form of the xc-potential) and 
the retardation corrections to the Coulomb interaction, but essentially neglected 
the fundamental questions related to radiative corrections. UV-divergencies first 
showed up in the RDFT context in the derivation of gradient corrections to the 
kinetic energy [16, 20, 21], but only very recently an attempt has been made 
[22] to explicitly deal with the issue of UV-renormalisation in the context of the 
relativistic HK-theorem and the RKS-equations. As a consequence of the 
complicated structure of the RKS-equations applications beyond their most 
simple version, the Dirac-Fock-Slater (DFS) approach [23] or its extensions 
[24], in which all relativistic effects in the xc-energy (as well as all radiative 
corrections) are neglected, are rare (compare Section 5). 

In this review we attempt to give a summary of the still restricted knowledge 
of RDFT for Coulomb systems (for an earlier review see [25]). Activity in the 
field of hadronic physics is not covered (we refer the interested reader to the 
relevant section in [22]). We begin with an outline of the background material in 
Section 2, but have chosen to relegate nearly all details into the Appendices. The 
foundations of RDFT, i.e. the HK-theorem, the KS-scheme, its extension in the 
form of the optimised potential method (OPM) and some remarks on the 
nonrelativistic limit, are addressed in Section 3. We emphasise, in particular, 
practical aspects concerning the application of the relativistic KS-scheme. Ex- 
plicit energy functionals for relativistic Coulomb systems are discussed in 
Section 4, where we outline the local density approximation (LDA) for exchange 
and, as far as they are known, for correlation contributions. In addition, we 
indicate first attempts to apply the weighted density approximation (WDA) in 
the relativistic regime. Results for the solution of the relativistic KS-equations 
for atoms are analysed in Section 5. To our knowledge no corresponding results 
for molecules are yet available. Some concluding remarks indicating open 
problems and possible extensions (e.g. for thermal relativistic systems) are the 
contents of the final Section 6. 

As indicated, we provide a more detailed summary of the background 
material for the discussion of RDFT in the Appendices. In particular, we address 
the question of perturbative renormalisation in vacuum quantum etec- 
trodynamics (Appendix A), discuss the properties of the relativistic homogene- 
ous electron gas (RHEG) (Appendix B) in order to provide the input for the 
relativistic LDA (RLDA) and add some remarks on QED in the presence of 
external fields (Appendix C). In addition, Appendix D gives some information 
concerning the systematic derivation of inhomogeneity corrections to the 
RLDA, illustrating in particular the gradient expansion (GE) on the basis of 
linear response. Although we do not present relativistic ETF-results in this 
review, we briefly summarise (Appendix E) the derivation of relativistic kinetic 
energy functionals via a semiclassical expansion of the electron propagator as it 
demonstrates the occurrence and subsequent renormalisation of UV-divergen- 
cies in a transparent fashion. 
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We use h = c = 1 throughout the manuscript (except for Section 3.4) and our 
metric is chosen as in Ref. [26], i.e. the space-time coordinates x are given by 
x u = (x ° -- t, x) with x (or r) being the usual position in space. Greek indices run 
from 0 to 3, Latin indices from 1 to 3. The summation convention is used 
throughout. The abbreviations used for the various functionals in this work are 
based on the following scheme: All relativistic functionals are labelled beginning 
with R (like RLDA for relativistic LDA), while their nonrelativistic counterparts 
start with NR. The same notation is used for the resulting computational 
schemes, e.g. NRLDA abbreviates results obtained by utilizing the nonrelativis- 
tic LDA functional in the non-relativistic KS-equations. The only exception to 
this rule is the Dirac-Fock-Slater approach (with ~ = 2/3) characterised by DFS, 
which corresponds to the use of the nonrelativistic LDA for the exchange energy 
in the relativistic KS-equations. Finally, all differences between relativistic and 
nonrelativistic results are referenced by the generic name of the approximation, 
e.g. LDA. 

2 Field Theoretical Background 

An appropriate basis for a complete discussion of relativistic effects in many- 
electron systems (atoms, molecules, clusters, solids) is quantum electrodynamics. 
In view of the large difference between the electron and the nuclear masses it is 
legitimate to treat the nuclei as fixed external sources 1. This standard approxi- 
mation relies on the assumption of a common rest frame for all nuclei and thus 
partially breaks the covariance of the resulting many body theory. A system of 
Dirac particles, which interact by the exchange of photons and move in a given 
static external electromagnetic field V~'(x) (representing the fixed nuclei-and 
additional fields if present) is characterised by a Lagrangian density of the form 
[27] 

~,~ (X) =* ~-(~ e (X) "-]- ~(~y(X) -'{- , ~  im (X). (2.1) 

The three terms represent the free Dirac Lagrangian z of the fermions (electrons 
and positrons), 

~ , (x)  1 : = ~ { [ ~ , ( x ) , ( i ~ - m ) ~ ( x ) ] + [ ~ ( x ) (  i ~ - m ) , ~ ( x ) ] ) ,  (2.2) 
the flee photon Lagrangian, 

~ ( x )  - I P , ,v(x)F"(x)  - ~(g~,~(x))  ~, (2.3) 
16zt 

t in  a truly covariant QED-approach to atoms and molecules both the nuclei and the electrons 
would have to be treated as dynamical degrees of freedom (at least on a classical level in the case of 
the nuclei). 
2 The vector bars on top of the partial derivatives indicate the direction ila which the derivative has to 
be taken, i.e. in the second term of La~ the partial derivatives act on qT(x). 
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and the interaction term 

Z,,,(x) = - ef~(x)(4~(x)+ V~(x)). (2.4) 

The operators ~(x) and A,(x) are the fermion and photon field operators, 

= o,,A~(x)- 8~4,(x) ,  (2.5) 

and 

f"(x) = ~ [ ~ (x), 7 v ~ (x)] (2.6) 

is the fermion four current operator. For the photon fields we have chosen to 
work in the covariant gauge so that we had to introduce the gauge fixing term 
[27, 26] 

8 ( & A ~ ( x ) )  2 

and to use the Gupta-Bleuler indefinite metric quantisation. For brevity we shall 
often restrict explicit formulae to some particular gauge, as e.g. the Feynman 
gauge 2 = 1 or Landau gauge 2 = co. For the external potential we use the 
gauge ~iVi(x) = V" V(x) = O. 

One of the most important properties of the Lagrangian (2.1) is its gauge 
invariance: A gauge transformation of the photon field, 

t i , , ( x ) - - ,  " = = , A~(x) 4~(x) + ~vA(x); 8ud"A(x) 0 (2.7) 

can be absorbed by an accompanying phase transformation of the fermion field 
operator 

~(x) --+ ~ ' (x )=  exp[ -ieA(x)-] ~(x), (2.8) 

leaving the Lagrangian (2.1) invariant, 

Z ( ~ ' ,  4 ')  = Z ( ~ ,  4).  (2.9) 

On the other hand, due to the choice of a particular Lorentz frame the gauge 
invariance of Z with respect to gauge transformations of the external potential 
has been partially broken: Only static gauge transformations, 

V'v(x) = V~.(x) + c~,A(t,x) (2.10) 

q~'(x) = exp[ - ieA(t,x)] ~(x) (2.11) 

A(t ,x)  = Ct + 2(x); A2(x) = 0,  (2.12) 

are admitted within the common rest frame of the nuclei. In addition to the 
Lagrangian the four current jU(x), Eq. (2.6), is also invariant under the trans- 
formations (2.7, 2.8) and (2,10-2.12). 

Moreover, both the Lagrangian and the electronic four current have been 
written in a charge conjugation invariant form [27], i.e. under the charge 
conjugation ga (transforming electrons into positrons and vice versa) the four 
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current (as a charge current rather than a probability current) changes its sign, 

~ f ~ ( x ) ~  + = - f " ( x ) ,  (2.13) 

while in ~o the fermion charge manifests itself in the coupling to external 
sources, 

~SeEV*]Cg + = ~aE - V*], (2.14) 

i.e. an external potential which attracts electrons repels positrons. 
It is useful for the following discussion to consider the symmetries of the 

Lagrangian (2.1) in order to analyse the conservation laws of a system character- 
ised by (2.1) on the most general level, i.e. without further specifying V u, and 
their consequences for the structure of a density functional approach to (2.1). We 
first consider continuous symmetries which in the field theoretical context are 
usually discussed on the basis of Noether 's theorem (see e,g. [26, 28]). The most 
obvious symmetry of the Lagrangian (2.1), its gauge invariance (2.9), directly 
reflects current conservation, 

~fv(~) = 0, 
and thus conservation of the total charge, 

O = fd x?(x)= 1 : -+ g jd  x[~, (x),~(x)]. 

(2.15) 

(2.16) 

As a consequence any ground state resulting from (2.1) can be classified with 
respect to its charge (but not particle number). 

Energy and momentum conservation can be directly deduced from the 
'continuity' equation for the energy momentum tensor 3 [27, 28]. For the 
~u,. resulting from (2.1) one finds 

(2.17) 

-- ~ gUV(63pAP(x)) 2 

- ,~(e~o¢J¢(x))(g'~i~(x) - g~iV(x)  - gv~i~(x))} 

- 2(JU(x)A~(x) + f~(x)A~'(x)) 

e ^ 

+ ~(jU(x)  V~(x) - f~(x) VU(x)). 

3 We base our considerations on the 'symmetric' energy momentum tensor P'" rather than the 
canonical O~". Both versions of the energy momentum tensor, of course, satisfy identical 'continuity' 
equations, i.e. all physical results are independent of this choice. ~ '  represents a covariant 
combination of the energy, momentum and stress densities of the system. 
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From the last line of Eq. (2.17) it is obvious that, as we are dealing with an open 
system, the source field breaks the symmetry of T"*'. As an immediate conse- 
quence ~,v does not satisfy a homogeneous 'continuity' equation but rather the 
external potential acts as a source of momentum, 

c9~ TUV (x) = e fu(x) O v VU (x). (2.18) 

Only the zeroth component of the total four momentum, i.e. the energy, is 
conserved for general time-independent external potentials, 

t"°(x) = 0 ~ f d3x T°°(x) is conserved. (2.19) 0, 

This implies that the system can be regarded as stationary in the common rest 
frame of the sources which allows an identification of the Hamiltonian, 

I2I~ = ~.fd3x[t~(x),( - iy'V + m)~(x)] (2.21) 

1 ~.d3 x { O0 A~(x)~o,4~(x) + V,4~(x)- VJ~(x)} (222) 
/4~ - 8~t 

14im = e f d3x? (x) Au (x) (2.23) 

= efa xj (x) v.(x), fL~, (2.24) 

where we have chosen Feynman gauge, 2 = 1, for simplicity. If, in addition, the 
potential is independent of one spatial coordinate the corresponding mo- 
mentum is also conserved. 

The discussion of angular momentum conservation is based on the general- 
ised angular momentum tensor 4 (compare [27, 28]), 

j~,,p~ = ~.o~ + )~,p~ (2.25) 

~,p~= -- l[~, ( iT"(xO~-- '~xP--x~P+'~Px~)*tTu,-~)~ l 

'*Here we have chosen to define the generalised angular momentum tensor via the canonical 
energy-momentum tensor 0 u'~, 

where the S,°~ characterise the transformation properties of the fields 4~, under Lorentz transforma- 
tions [28], rather than via T u~ in the form M u" ~ = T~Px ' - T~x°. Both tensors, of course, lead to 
identical continuity equations and conserved angular momenta. 
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.i~.,~ = ~ (p~v  + ,~,q~v(a.j))(x,a~ i ~ _ x ~  ~iv + ge~i~ _ a:~i,) 
4rr 

+ (g'~x p _ g~'Px~)~,  

which represents the angular momentum densities of both the fermions (Je ~'p~) 
and the photons (J~'P') in a covariant form. Eq. (2.25) explicitly demonstrates 
the coupling of spin and orbital angular momentum for both fermions and 
photons on the most general level. In analogy to Eq. (2.18) the external potential 
acts as a source of angular momentum in the 'continuity' equation for J~'P*, 

~j" 'a*(x)  = ef~(x)(x*g p V~(x) - xp~ ~ V~(x) + g,U VP(x) _ gp~ W(x)).  

(2.26) 

As for the linear momentum, in general no component of the angular mo- 
mentum is conserved: As a fixed nuclear rest frame has been chosen no 'boost' 
momen tum ~d3xJ°'°J(x) can be conserved and the conservation of a conven- 
tional angular momentum componen t  ~d3xj°'i.i(x) requires specific spatial 
symmetries. For instance, if all spatial components V J vanish and V ° only 
depends on (xt) 2 + (x2) 2, i.e. for axially symmetric electrostatic potentials, one 
finds as expected that the angular momentum with respect to the x3-axis, 

d3x.~o, 12 (X), is a conserved quantity. 
As far as discrete symmetries are concerned three types are usually con- 

sidered within QED [26, 29]: 

- For parity to be a good quantum number some reflection symmetry of the 
potential is required (the same holds, of course, for more complex discrete 
spatial symmetries). 

- As for the Lagrangian, charge conjugation is no symmetry of the Hamil- 
tonian, 

~ ? / ~ [ w ] ~  + = f i e  - w ] ,  

as long as the external potential does not vanish. 
- Finally, time reversal symmetry leads to a twofold degeneracy for purely 

electrostatic potentials V u = ( V °, 0). In this special situation not only the total 
charge is conserved, but time reversal introduces an additional conserved 
quantum number. 

As a consequence one finds that in the general case, in which V~'(x) does not 
exhibit some specific spatial symmetry and/or some of its components vanish, 
only the charge and the total energy of the system are conserved. Thus the 
ground state corresponding to (2.20) is nondegenerate in general. In view of this 
fact there seems to be no need to introduce a coupling of the electrons (fermions) 
to an additional external magnetic field B [19], 

14"°° = ~m f dsx~(x)a'~(x)F'~'(x)  = 2me f dSx~(x)Zk~(x)Bk(x) , 
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in order to lift possible degeneracies as long as the initial vector potential V is 
nonzero. Moreover, the interaction of the magnetisation density 

e 

with B does not constitute a fully consistent contribution to the QED-Hamil- 
tonian, as it does not take into account the intrinsic coupling of spin and orbital 
angular momentum. Thus, while M,,,g may be quite useful under certain physical 
circumstances (e.g. for weakly relativistic problems), it does not seem to be 
appropriate as a basis for a RDFT even in the case V u = (V °, 0) [19, 30], in 
which one might want to split up the degeneracy originating from time reversal 
symmetry. 

As a prerequisite for the discussion of the many-body problem implied by 
the Lagrangian (2,1) a second point needs to be addressed: The theory based on 
(2.1) is not well defined but rather requires renormalisation of the resulting 
Greens functions as well as the expressions for physical observables as ground 
state energies and currents (see Appendix A for further details). In the present 
context the renormalisation procedure consists of two steps. The first is the 
removal of the divergent vacuum (zero point) energy of noninteracting fermions 
and photons. This is most easily achieved by explicit subtraction of the vacuum 
expectation value of the Hamiitonian. For instance, if one considers nonin- 
teracting electrons not subject to any external potential, i.e. the noninteracting 
homogeneous electron gas characterised by He, Eq. (2.21), the renormalised 
Hamiltonian 

HR = He - (0[ ~'le[ 0) (2.27) 

leads to a finite ground state energy. The same procedure can be applied to 
noninteracting photons. 

The second part of the renormalisation program, addressing the removal of 
the ultraviolet (UV) divergencies of QED, which result from the perturbative 
treatment of the interaction of the fermions with photons and the external field, 
is more involved. It is instructive to first consider noninteracting fermions in 
a given external potential, 

HR = Me + Mex,- (01/4el0>, (2.28) 

where t0) represents the homogeneous vacuum as in (2.27), so that the energy 
calculated from/-)R with respect to the perturbed vacuum (often called Casimir 
energy [31]) is nonzero. While the Greens functions of this theory like the 
fermion propagator (for a precise definition of the Greens functions see Appen- 
dices A, B), 

i G ( x ,  y )  = O ( x  ° - yO) ~ rp,(x)~b,(y)exp[ - i g , ( x  ° - y0)] (2.29) 
gn > gg 

-- 8 ( y  ° - x °) ~ q~,(x)q3,(y)exp[-- i g . ( x  ° - yO)], 
eF~e. 

10 
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where the tp,(x) represent the single-particle solutions of the corresponding 
Dirac equation, 

7°{ - i r ' V  + m + e !Z (x ) }~ , ( x )  = ~,~o,(x), (2.30) 

are finite without additional modification, the ground state energy and the 
ground state four current resulting from (2.28) are not [32, 33]. This is most 
easily seen by rewriting these quantities in terms of G(x, y) . Taking the 
expectation value with respect to the N-electron ground state of the noninteract- 
ing system, t4~o > ,  one finds 

E, ot = <~olt4e + nex, l'~o) - <ol/~1o> (2.31) 

= - i ~ d 3 x  lim, tr [( - iy. V + m + e !e(x)) G(x,  y)] (2.32) 
d y ~ x  

+ i f d 3 x l i m ~ t r [ (  - i y . V  + m ) G ° ( x ,  y)] 
.J y ~ X  

Jr(x)  = <~o I fV(x)14'o > (2.33) 

= -- i lims tr [G(x ,  y)7~], (2.34) 
y-~X 

where the symmetric limit, 

lc )1 lim, - ~ lim + lim , (2.35) 
y ~ x  \ y ~ x , y  ° > x ° y ~ x , y  ° < x ° ( x - - y ) 2  >_0  

is a consequence of the charge conjugation invariant forms (2.21, 2.6) and 
G°(x ,  y)  represents the noninteracting vacuum fermion propagator (A.8). If one 
now utilises a perturbative expansion of G ( x , y )  in powers of the external 
potential, 

G = + + + --- , (2.36) 

(for a definition of the diagrammatic representation see Appendices A-C) one 
realises that the evaluation of (2.32, 2.34) involves one further loop-integration 
induced by the symmetric limit, e.g. 

(2.37) 

Thus the outermost loop integration, by which the quantities Etot and jr (x)  
(which are of obvious interest in DFT) differ from the UV-finite Greens function 
G, introduces an UV-divergence completely analogous to the divergencies which 

11 
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arise in standard QED without external fields from the interaction of fermions 
and photons: Within a perturbative treatment it does not matter whether the 
external potential P(x)  or the quantised photon field creates virtual elec- 
tron-positron pairs. As a consequence the renormalisation procedure for 
Etot and jr(x) is completely determined by the renormalisation of the Greens 
functions of interacting vacuum QED without external potential. In particular, 
as discussed in detail in Appendices A-C only the second of the diagrams in 
(2.37) is UV-divergent. The corresponding counterterm A~ °~' V(x) (the superscript 
(0) indicates that Aj ~°~" ~ represents the lowest order of the complete counterterm 
Aj ~ with respect to the electron-electron coupling constant e z) is explicitly given 
in Eq. (C.5). The same procedure has to be applied to the ground state energy 
leading to the counterterm oAr:~°)'~"h°z~tot , Eq. (C.10). One thus has to define the 
renormalised Etot and j*(x) by 

E,o, = <~olH~ +/4e:,,] +o> - (01/~et0) + AE]°o~ ''"h°" (2.38) 

j"(x) = (~bolf~(x)l '/~o) + AJ(°)'"(x), (2.39) 

rather than via the initial relations (2.3l, 2.33). 
Finally both the external potential and the quantised photon field have to be 

considered together, i.e. we have to deal with the full Hamiltonian (2.20). In this 
case various approaches to the renormalisation procedure are possible. One 
could e.g. first utilise the standard renormalisation scheme for Greens functions 
(as summarised in Appendices A-C) to generate finite Greens and n-point 
functions. Expressing the interacting four current f ( x )  then in terms of renor- 
malised n-point functions as discussed in Appendix C one ends up with a finite 
jr(x). However, there still remains the basic problem of obtaining finite total 
energies as illustrated above: It is not possible to represent E,o, in terms of 
renormalised Greens functions in such a way that no further (outermost) loop 
integration is required. This outermost loop integration leads to additional 
UV-divergencies. Thus in the case of Eto, one is forced to renormalise each 
diagrammatic contribution to the perturbation expansion separately, following 
the standard rules for the renormalisation of vacuum (sub) graphs (often over- 
lapping divergencies are involved). This procedure is explicitly demonstrated for 
the case of the exchange-correlation energy of the RHEG in Appendix B. Quite 
generally E,o~ and j~(x) are then given by 

Eto, = (~ol/~[q~o) --  (01/~e + / ~ ?  "~ I~ in t lO)  q- Z1Etot (2.40) 

j~(x) = (~0lf~(x)l@o > + A jr(x), (2.41) 

where the subtraction of the vacuum energy accounts for the fact that in the 
interacting case all energies can only be measured with respect to the energy of 
the interacting, homogeneous vacuum l0 > .  It is sometimes advantageous to 
decompose the total counterterm AEto, into an electron gas part ~to,A rnHEG, which 
is independent of the external potential, and an inhomogeneity correction. 

A g'RHEG A I~ inh°m (2.42) 
AEto t  = ~ t o t  + ~ t o r  , 

12 
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where ~A14'inh°ra~fot also involves the full perturbation series with respect to the 
electron-electron interaction. Eqs. (2.40, 2.41) form a suitable starting point for 
RDFT, as one is now dealing with finite quantities only. 

The preceding discussion has been completely based on the Heisenberg 
representation. The foundations of DFT, on the other hand, are usually for- 
mulated within the framework of the Schr6dinger picture, so that one might ask 
in how far this field theoretical procedure can be useful. It is, however, possible 
to go over to an appropriately chosen Schr6dinger representation as long as one 
does not try to eliminate the quantised photon fields (compare Sections 7d, 10g 
of Ref. [34]). The Hamiltonian then reads 

I4s = ~ dax [~(x), ( - i?'V + m + e/~(x) + eg(x))~(x)] (2.43) 

wi (x). 

where the field operators ~k(x) and A~(x) are now in Schr6dinger representation 
and 

ll"(x) = exp ( - iflx°)Oo Ah(x) exp(iHx°). 

Moreover, all corresponding counterterms (being expectation values) are inde- 
pendent of the representation, so that the renormalisation scheme remains 
unchanged and it is just a matter of convenience which representation is used. 
While the Heisenberg representation (2.20) is more suitable for the derivation of 
explicit functionals, the Hamiltonian (2.43) (together with Eq. (2.40)) can be 
utilised for the proof of a relativistic Hohenberg-Kohn theorem. 

3 Foundations 

In this section we discuss the formal basis of relativistic DFT, that is the 
relativistic H K-theorem [17, 22], the resulting RKS-equations [18, 19] as well 
as the relativistic OPM (ROPM) [35, 36]. The discussion of the HK-theorem (in 
Section 3.1) is restricted to bare essentials, as details have been given in Ref. [22]. 
In the discussion of the RKS-equations (in Sections 3.2) we attempt to outline 
the transition from the complete equations, including all radiative effects, to 
practical variants involving various stages of approximations, In Section 3.3 we 
introduce the ROPM as an extension of the RKS-approach, which, in addition 
to the kinetic energy also treats the exchange energy within an orbital scheme 5. 
The section is concluded (Section 3.4) by consideration of the weakly relativistic 

5 Extension of the OPM to parts of the correlation energy are possible, but far from being standard. 

13 
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limit, which allows a connection with and comments on the problem of (non- 
relativistic) current density functional theory [37, 38], a topic that involves 
a number of conceptual questions if one approaches it from the point of view of 
nonrelativistic theory including magnetic fields. 

3.1 Relat iv is t ic  Hohenberg -Kohn  T h e o r e m  

The extension of the HK-theorem to relativistic systems was first formulated by 
Ragagopal and Callaway [17] (see also MacDonald and Vosko [19]). The 
arguments of these authors are based on QED, but the question of possible UV 
divergencies was not addressed. As, however, the proof of the theorem on the 
basis of the celebrated reductio ad absurdum involves the comparison of energy 
values, one has to make sure that proper finite quantities for both the ground 
state energy as well as the ground state four current are used, i.e. the relativistic 
HK-theorem must be based on the renormalised quantities (2.40, 2.41). In 
particular, one has to make sure that the structure of the counterterms involved 
does not invalidate the proof. Here we shall not go through the reductio ad 
absurdum in full detail (for which the interested reader is referred to [22]), but 
rather summarise the essentials: 

- In the first step one shows that there exists a unique map between the set of 
four potentials VU(x) (up to a global constant in V °) and the set of ground 
states 14~o) generated from these potentials. This part of the proof is based on 
the Hamiltonian (2.43). As only the tack of collinearity of ground states 
resulting from different external potentials is used at this point (but no energy 
values are compared) full renormalisation is not required, but rather a suit- 
able regularisation is sufficient (one could e.g. modify the space-time dimen- 
sion). 

- In the second step one analyses the relation between the potential V"(x) and 
the resulting renormalised ground state four current j~ (x), Eq. (2.4t). As jr(x) 
is gauge invariant no one-to-one correspondence between the four current 
and V~'(x) can exist: A unique map can only be established between classes of 
four potentials V"(x) differing by no more than a static gauge transformation 
(2.10-2.12) and f(x). Moreover, the heart of this part of the proof is an 
inequality between ground state energies, so that the renormalised energies 
(2.40) must be used. The crucial observation in this context is the fact that the 
counterterms in (2.40) and (2.41) are completely determined by the external 
potential: Within a perturbation expansion with respect to V~(x) this is 
explicitly obvious from Eqs. (2.42, C.9), as the homogeneous counterterm 
A~ R~G is identical for all V~(x) and the inhomogeneity correction ~AFi"h°'~tot 

~ t O t  

can be written as a (gauge invariant) functional of V'(x). 
For the inequality between ground state energies, required for the second step, 
a minimum principle for the ground state energy (2.40) is used. However, 
while the Ritz variational principle is well established in the non-relativistic 

14 
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context, we are not aware of any rigorous minimum principle for the renor- 
malised ground state energies resulting from (2.1). There are nevertheless 
a number of arguments which can be given in favour of such a minimum 
principle. First of all, with increasing speed of light, i.e. in the nonrelativistic 
limit (v/c ~ 0), the energies (2.40) continuously approach values which do 
satisfy the Ritz principle. There seems to be no reason to assume the minimum 
principle to be restricted to the isolated value c = oo. Secondly, one can 
explicitly verify the minimum principle for a noninteracting inhomogeneous 
system characterised by the Hamiltonian (2.28), i.e. for the renormalised 
energies (2.38) within the Furry picture (compare [32, 34]). Finally, real atoms 
and molecules are stable (indicating that there exists a lower bound for 
energies) and QED has proven to be the most accurate theory available to 
date to describe these systems [39] (note further that, as a matter of principle, 
one need not rely on perturbation theory to deal with QED-systems so that 
the asymptotic character of this expansion does not contradict this argument). 

In summary, one finds that there exists a one-to-one correspondence between 
the class of external potentials just differing by gauge transformations, the 
associated class of ground states and the ground state four current, 

{ V,,I Vv + avA } "=" {14~ o ) l with l Cbo ) from Vv + ~)~h } c> j~ (x), (3,1) 

i.e. the class of physically equivalent ground states is uniquely determined by the 
ground state four current. Choosing some arbitrary representative of this class, 
i.e. fixing the gauge once and for all, one can understand this representative 
Iq~o > as a functional of f ' ,  f4)o[j ~] > ,  and finally ends up with the statement 
that all ground state observables are unique functionals of the four current, 

O[j" ]  = (~o [ j~ ] [ ( ) [~o [ j~ ] )  + AO. (3.2) 

Of course, the functional O [j"]  has to reflect an eventual gauge dependence of 
the operator O and may require renormalisation, indicated by the addition of 
a counterterm AO. Note that, by virtue of the unique correspondence between 
jv and V v also all counterterms become functionals of jL For instance, the 
ground state energy itself, including all counterterms, would be 

Etot[J~] = (~o[ .JV]lB[~o[J~])  - (0[/ te + Hy +/~,, ,10) (3.3) 
"F A p R H E G  A b ' i n h ° m  

~ t o t  -F ~ t o t  " 

This energy functional contains not only all relativistic kinetic effects for both 
electrons and photons but also all radiative (that is field-theoretical) effects. 

With the Ritz principle and avoiding the question of interacting v-represen- 
tability, one may then formulate the basic variational principle of RDFT as 

6j~(r) {E,ot[j ~] - p d3xj°(x)} = 0. (3.4) 

The subsidiary condition implies charge conservation and all quantities in- 
volved are supposed to be fully renormalised. 
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For the case of a purely electrostatic external potential, V" = (V °, 0), the 
complete proof of the relativistic HK-theorem can be repeated using just the 
zeroth component j  ° (x) of the four current (in the following often denoted by the 
more familiar n(x)), i.e. the structure of the external potential determines the 
minimum set of basic variables for a DFT approach. As a consequence the 
ground state and all observables, in this case, can be understood as unique 
functionals of the density n only. This does, however, not imply that the spatial 
components of the current vanish, but rather that j ( x ) =  (q~o[n]lf(x)t 4)o[n]) 
has to be interpreted as a functional of n(x). Thus for standard electronic 
structure problems one can choose between a four current DFT description and 
a formulation solely in terms of n(x), although one might expect the former 
approach to be more useful in applications to systems with j(x) ¢ 0 as soon as 
approximations are involved. This situation is similar to the nonrelativistic case 
where for a spin-polarised system not subject to an external magnetic field 
B both the B-~ 0 limit of spin-density functional theory as well as the original 
pure density functional theory can be used. While the former leads in practice to 
more accurate results for actual spin-polarised systems (as one additional 
symmetry of the system is take into account explicitly), both approaches co- 
incide for unpolarized systems. 

In view of the two degrees of freedom resulting from time reversal symmetry, 
one might also set up a two-component formulation of the corresponding 
RDFT in the special case V" = (V°,0), which would possibly allow a direct 
extension of the nonrelativistic spin-density functional formalism. Such an 
approach has not been investigated on the fully relativistic level. One may, 
however, interpret the suggestion to use the magnetisation density together with 
the charge density [19, 30] (and thus the spin-polarised relativistic homogene- 
ous electron gas [30, 40, 41, 42] ) as a basis for RDFT as an approximate 
realisation of such an approach (see also [43, 44]). In the following we shall not 
address this issue further. 

We also mention that recently a density functional approach to excited 
states of relativistic systems has been formulated [45], using ensembles of 
unequally weighted states. This formalism is restricted to the electrostatic limit 
and the no-sea approximation (see Section 3.2). Moreover, it remains unclear 
how the spontaneous emission of photons, which is possible in QED in contrast 
to the standard nonrelativistic many-body theory, is handled for the excited 

states involved. 

3.2 Relativistic Kohn-Sham Equations 

The basic variational principle (3.4) is applied directly in relativistic (extended) 
Thomas-Fermi models [12, 21, 46] in which an approximate density functional 
representation for the complete Etot [j~] is utilised. The mainstay of applications 
is, however, the KS-scheme. In order to set up this scheme one first introduces 
auxiliary single-particle four spinors ~pk(x), in terms of which the exact interac- 
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ting ground state four current (2.41) is represented as 6 

jr(x) = j~.(x) + j~o(X) (3.5) 

1{ <~ ~k(X)~'NPk(X)-- ~ qgk(X)?NPk(X)} 
j~,(X) = ~ ek m -m<~k 

+ AjV'(°)(x) (3.6) 

j~o(x) = ~., (OR(X)yV(Ok(X), (3.7) 

where the counterterm 7 AjV'(°)(x) is given by Eq. (C.5) (with the total RKS- 
potential on the right hand side) and eF represents the Fermi level below which 
all orbitals (o k are occupied. From a field theoretical point of view the single 
particle RKS-approach corresponds to a problem of the type (2.28). The form 
(3.5-3.7) thus follows from the charge conjugation invariant current operator 
(2.6) via (2.39) : The matrix element o f j  v with respect to a noninteracting ground 
state yields in the first step 

JV(x)=~ ~ ~k(X)7~(ok(X) - ~, (Ok(X)?~(ok(X) +Aj~'(°)(x). 

Rearrangement then gives Eqs. (3.5-3.7) in which the vacuum partj~(x) has been 
separated from the four current j~o(x) which involves only the discrete occupied 
orbitals with eigenvalues between - m and ev. 

In the next step one decomposes the ground state energy functional (3.3) in 
the standard fashion, 

Eto,[J v] = T,[J ~] + Eext[J ~] + En[J ~'] + Exc[T], (3.8) 

where the counterterms for Etot given in Eq. (2.40) are understood to be included 
in the individual energy components. The latter are defined as follows: The 
noninteracting kinetic energy functional T~, i.e. the kinetic energy of the 'KS- 
particles', is 

Ts[J ~] = Ts, v[J v] + T~,o[J ~] (3.9) 

T~.v[j ~] = ~ d3x ~ qSk(x)[ - ij,.V + rn]~ok(x) (3.10) 

- - m < ~  k ) 

- < 0 1 / t , 1 0 >  + AT~ "h°'' 

6 The question of noninteracting v-representability which is required for this representation has not 
been examined in the relativistic case. One would, however, expect analogous statements as in the 
nonrelativistic situation [47]. 
7This term has erroneously been omitted in Ref. [22]. 
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P 
T~,o[j ~] = ld3x ~ ~k(x)[ - iy.V + m]~pk(X), (3.11) 

,) 

where (2.38, C.10, C.13) have to be used to obtain the counterterm A ~,hom. The 
external potential term is 

E~t = e f d3xj, (x) V~'(x), (3. 1 2) 

(the counterterm (C. 12) has already been absorbed into the renomalised current 
Ju) and the covariant Hartree energy reads 

E,[ j~]= ~ f d3x f d4yjU(x)D°~(x- y)j~(y) (3.13) 

with D°, being the free photon propagator (A.9). The xc-energy functional is 
then the remainder 

E,~[j v] = Erot[j v] - -  T,[j ~] - Eext[j v ] - -  ER[j~]. (3.14) 

Note that the ground state energy pertains to the many-electron sector. Free 
photons and positrons are not present in the ground state considered. 

One may then use the basic variational principle, varying with respect to the 
orbitals (a more careful argument can be given following the lines of Ref. [47]), 
to obtain the complete relativistic KS-equations 

~,o{ _ iy" V + m + e [ /(x)  + ~n (x) + Cx¢(X)} ~k(X) = ~k q~k (X), (3.15) 

where 

f P'(Y) (3.16) v•(x) = e 2 dSY lx 

v~c(x) = ,~ Exc[j"] (3.17) 
~L(x) 

Eqs. (3.5, 3.15-3.17) have to be solved selfconsistently in order to obtain the 
exact j~(x) of the interacting system. The corresponding ground state energy is 
given by 

= ~ ,  - Y~ ek - ( 0 1 / - / e l 0 }  + aTt =h°" 

+ ~ ek -- En[J  ~] + Exc[J ~] - td3xv~xc(x)J*( x)" 
, d  

The first three terms represent the Casimir energy [31], that is the energy shift 
induced in the vacuum by the presence of the RKS-potential. In addition, the 
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terms of the second line contain vacuum corrections via both the form (3.5) of 
j~ and the functional dependence of EH, E~ and vU~c on j~. 

A brief glance at the various terms involved in the RKS-scheme reveals 
a selfconsistency problem of considerable complexity: The evaluation of both 
j~ and T~, v requires summation over all negative and positive energy solutions 
and appropriate renormalisation in each step of the iterative procedure. More- 
over, all potentials exhibit a four component structure. As the solution of this 
selfconsistency problem is at best tedious (if at all possible), one is bound to 
consider a suitable hierarchy of (hopefully) useful approximations. 

The most important, and at the same time most legitimate, simplification if 
one aims at electronic structure calculations in quantum chemistry and conden- 
sed matter physics is the no-sea (or alternatively no-pair) approximation. In 
this approximation all radiative contributions to the four current and T~ are 
neglected, 

j~(x) = 0; rs, v = 0. (3.18) 

In addition the vacuum contributions in the functional dependence of Exc on 
j~ are dropped s, so that one is led to the RDFT analogue of the no-pair 
approximation applied in conventional relativistic many-body approaches (see 
e.g. [7]). An a posteriori perturbative evaluation of these corrections is possible 
and should be adequate, except in special circumstances as for instance the 
calculation of the structure of super-heavy atoms (with Z ~ 137 [33]). The 
resulting RKS-equations are then still given by Eqs. (3.15-3.17), but jU(x) and 
T~ are determined by the simpler expressions (3.7) and (3.11). 

In addition to the no-sea approximation, two further simplifications may be 
considered. If the external potential is purely electrostatic 

V =  0; eV°(r) = vex,(r), (3.19) 

which is the situation encountered for standard electronic structure calculations, 
the density n(r)=j°(r) is the only quantity which is really required for the 
RDFT scheme (as discussed in the previous section). In this electrostatic limit the 
spatial current j  and also the energy components (3.9-3.14) can be understood as 
functionals of n only and RDFT reduces to a pure density functional approach. 
The structure of the density functional representations for En and Exc is 
determined by the original functionals Eu[j  ~] and E~c[j ~] by simply inserting 
the exact density functional for j, 

EnEn] = EnEn, j[n]] ,  /~xcEn] = Ex~[n,j[n]]. (3.20) 

The corresponding RKS-equations are then given by (3.15) with the Hartree and 

s The definition of the no-sea approximation for E~,. is not completely unambiguous. As discussed in 
Appendix B we define it through neglect of all vacuum fermion loops in the derivation of an 
approximate Ex~[jv]~ Alternatively, one could project out all negative energy states, thus generating 
a direct equivalent of the standard no-pair approximation. As one would expect the differences 
between these two schemes to be small, we do not differentiate between these approximations here. 
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xc-potentiats consisting only of a time-like component ~n,~c(r), 

6Ett,xc[n] bEtt, xc[j ~] f bEn.x~[j ~] bjk([n], r') 
~tt,~c(r)-- 6n(r) -- 6n(r) + jd3r' 6jk(r ') 6n(r) 

SO that their structure is considerably simplified. 
An additional approximation can be obtained if one uses the decomposition 

of the electron-electron interaction mediated by the free photon propagator 
D°v into a longitudinal and a transverse part (according to Eq.(A.10)) to 
introduce the corresponding decomposition for En and E~, 

Eu[n] -- E~En] + E~[n]; E~[n] = E2[n] + EL[n] (3.21) 

(in the following we shall only distinguish between the functionals in the 
electrostatic limit,/~n. ~,. In] = En, x,. In], and the more general En, ~ [ f ]  by their 
respective arguments). While this decomposition is obvious for Eu In], 

~f f ,,(r)n(r') E ~ [ n ] = ~ -  d3r d3r ' J r -F[  

ET, eJe.l l  = - y j j 

(3.22) 

(3.23) 

which is linear in D°,., Ex~ is defined by neglecting the transverse interaction to 
Exc). all orders in D°~ (and the remainder is then called r 

The longitudinal approximation then consists in neglecting the transverse 
contributions E r and Exr~ in the selfconsistency loop, i.e. 

v~(r) = 0; vr(r) = 0. (3.24) 

The transverse contributions to the ground state energy can then be calculated 
a posteriori in a perturbative fashion. As most available energy functionals in 
RDFT include both longitudinal and transverse contributions and the selfcon- 
sistency problem is not simplified by the longitudinal approximation, this 
approximation is not required for an efficient application of the RKS-equations. 
Rather it leads to the RDFT-equivatent of the so-called Dirac-Coulomb Hamil- 
tonian usually applied in conventional ab initio calculations, so that it is mainly 
useful for purposes of comparison 9. Note that the longitudinal approximation 
does not automatically imply the neglect of all current contributions to the 
xc-potential (and vice versa) as one might expect on the basis of En[f] ,  for 
which these two approximations coincide. This point is most readily demon- 
strated by the current-dependence of explicit current-density functional repres- 
entations of T~ (as discussed in Appendix D). 

9 A selfconsistent treatment of the transverse interaction in conventional ab initio methods is often 
based on the Gaunt approximation [48]. There are, however, no density functionals available within 
this approximation. 
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If one restricts oneself to the electrostatic limit of RDFT and relies on both 
the no-sea as well as the longitudinal approximation one arrives at the RKS- 
equations 

{ - ia. V + tim + VtLo,(r)} ~Ok(r) = ek~Ok(r), (3.25) 

where a, fl are the usual Dirac matrices and 

t,~ot(r) = Vex,(r) + v~([n];r) + v~c([n];r) (3.26) 

f d 3 r ' ;  (~''), vLn (In]; r) = e 2 (3.27) 
J 

v%(E. ] ; r )  - ,~E2 [n] 
6n(r) (3.28) 

n(v) = ~ (pk + (r)q)k(r). (3.29) 
- -  r a  <~ gk ~ e. ¥ 

Referring to the various approximations suggested, the corresponding ground 
state energy is obtained as 

E~ot = L . o  + Eex, + E~ + Ex~, (3.30) 

which may be corrected by addition of the transverse energy terms, 

" T  Etot = EtLot + Ern + E,,~, (3.31) 

as well as radiative corrections. The scheme (3.25-3.30) corresponds to the 
no-pair Dirac-Coulomb Hamiltonian of standard relativistic many-body the- 
ory. Selfconsistent treatment of the transverse contributions, on the other hand, 
would lead to the RDFT-version of the no-pair Dirac-Coulomb-Breit Hamil- 
tonian, ignoring the small difference between the full transverse and the Breit 
interaction. 

A time-dependent generalisation of the RKS-equation (3.25) has been sug- 
gested by Parpia and Johnson [49]. While a rigorous foundation of this 
approach is not available to date, this method has been successfully applied to 
the photoionisation of Hg [50] and Xe [49] as well as the evaluation of the 
polarisabilities of heavy closed-shell atoms [51] (using a direct time-dependent 
extension of the local density approximation for E~c [n]). 

3.30ptimised-Potential Method 

The important observation leading to the transition from the original varia- 
tional approach (3.4) to the KS-equations is the fact that all currently available 
density functional representations of the kinetic energy are not able to repro- 
duce one of the most basic features of quantum systems, i.e. the electronic shell 
structure. Thus, as soon as one is interested in properties of quantum systems 
which are related to the shell structure (i.e. merely all), one is forced to go to the 
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equivalent KS single-particle problem and treat its kinetic energy exactly 1°. The 
next important physical feature for which an accurate density functional repres- 
entation is currently not at hand is the cancellation of the self-interaction effects 
to be provided by the exchange energy functional. A natural route to circumvent 
this problem is to resort to an orbital representation for the exchange part of the 
xc-energy and to treat the resulting extended single-particle problem exactly. In 
the nonrelativistic context this extension of the selfconsistency problem to 
include exchange on an exact level was originally introduced by Talman and 
Shadwick [52] (see also [53]) and has later been adopted as a DFT-method by 
Sahni, Gruenebaum and Perdew [54] as well as Langreth and Mehl [55] and 
Sham [56] under the name of the optimised-potential-method (OPM). It should 
be viewed as a systematic extension of the KS-scheme and thus its relativistic 
extension is also discussed in this section devoted to the foundations of RDFT. 
The OPM selfconsistency procedure is much more involved than the KS- 
scheme and thus applications beyond spherical systems [57, 58, 59, 60] or the 
atomic sphere approximation in band structure calculations [61, 62] are lacking 
to date. This approach has, however, attracted considerable attention (see e.g. 
[63, 64]) since an accurate, approximate solution of the crucial OPM equation 
for the exchange potential has been given by Krieger, Li and Iafrate 
[58, 65, 66, 67]. 

A relativistic extension of the OPM on the longitudinal no-pair level has 
been put forward by Talman and collaborators [35] (and recently been applied 
to atoms [36]). Further extension to a covariant exchange energy functional is 
straightforward on the basis of the RKS propagator GKs, 

' ; f  E~=~ d3x d4yD°~(x-y)tr[GKs(x,y)7~Gxs(y,x)TU], (3.32) 

(the required counterterms are not explicitly shown). The propagator GKs de- 
scribes the motion of the 'KS-particles' in the total RKS-potential. It can be 
expressed in terms of the RKS-orbitals via the standard expansion (2.29). The 
exchange energy functional defined in this fashion should not be confused with 
the relativistic HF (RHF) exchange energy (at least from a rigorous point of 
view), as the RKS-orbitals satisfy the local RKS-equations (3.15) rather than the 
nonlocal RHF-equations. 

The energy (3.32) is, via the (rather involved) dependence of the RKS-orbitals 
on the four current density, a functional of this quantity, 

E~ = Ex [j~']. (3.33) 

The RDFT correlation energy is then defined by 

Ec[j ~] = Exc[j ~3 - Ex[j"]. (3.34) 

l o Note that quite generally the rearrangement of the ground state energy functional by addition and 
subtraction of terms, that leads to the KS-scheme, is quite arbitrary. Instead of adding and 
subtracting e.g. the kinetic energy T, any other suitable approximation of the full kinetic energy 
could be used, resulting in a modified selfconsistency problem. 
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and the individual potentials are 

(~Ex[j v] 
v~([jV];r) = - -  (3.35) 

(~ju(r) 

,~EcEj v] 
v~([j~];r) = - -  (3.36) 

8j~(r) 

If E~ [j~] is neglected the resulting sche~.le is called the exchange-only (x-only) 
limit of RDFT. 

For the case of the longitudinal no-pair approximation and a purely elec- 
trostatic external potential V ~ = (V °, 0), to which we restrict further discussion 
of the ROPM, Eq. (3.32) reduces to (summation over the spinor indices 
a, b = 1 . . . . .  4 is implicitly understood) 

f E~[n] = d 3r d 3r' ~ (3.37) 

+ + p q~a,k(r)q~b,l(r )q~a,l(r)q~b,k(r') 
x - -  

I r - r ' l  

where the ~o k now have to be interpreted as functionals of the density only. The 
crucial feature of E~ [n] is its linear dependence on the electron-electron coup- 
ling constant e2: The functional dependence of the ~k on n is independent of e 2 a s  

the (/Ok experience a local (in the sense of multiplicative) one-body potential 
[54, 55, 56], where it does not matter whether the local potential is obtained 
selfconsistently or is just a given external potential. The correlation energy 
functional E~ [n] thus contains all contributions to Ex~ [n] which are of higher 
order in e 2. 

As the exact density dependence of tpk([n]; r) is not known, however, the 
corresponding x-only potential v~(r) cannot be directly evaluated via (3.35). 
Nevertheless, utilising the fact that the one-body potential which minimises 

L Etot[n] is unique [54, 55, 56], v~" can be obtained by minimisation of the total 
ground state energy with respect to the total one-body potential (3.26) which the 
q~k experience, 

6EPot[n] ( 6E~,[n] ~q~k (r') 
~vkt(r ) -- jd3r' Z = (3.38) 

_ , ~  < ~, ~< ~, &ok(r') 8V,Lo,(r) + c.c. 0. 

Decomposing v~o, according to (3.26) and 

~c(r)  = v~(,') + v~(r), 

one obtains an integral equation for VxL(r), 

f d3r K(r, r') v~(r') = Q(r). 

(3.39) 

(3.40) 
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The kernel of the integral equation is given by 

K(r,  r') = ~ q~ (r) Gk(r, r')tpg(r'), (3.41) 

which the inhomogeneous term reads 

Q(r) = - e2 ~ f d3r' f d3r '' (3.42) 

~0dr')~0; !r") 

The quantity Gk(r, r') represents the Greens function 

qh (r) ~0~ + (r') (3.43) Gk(r,r ' )  = ~ 
_m<e,l<m, lvak C.l--~,k 

which satisfies 

[ - i a ' V  + tim + VLo,(r) -- ek]Gk(r ,r ' )  

= 6(3)(r -- r') -- q~k(r) cp + (r'). (3.44) 

The longitudinal no-pair ROPM thus requires the simultaneous setfconsistent 
solution of (3.40) ~ 1 and the RKS-equation (3.25), either including some correla- 

~L 0. tion potential or in the x-only limit with v~ = 
The advantage of the ROPM lies in the fact that due to the Fock form of 

E~l'n] the self-interaction of the 'KS-particles' is cancelled exactly. This also 
manifests itself in the asymptotic form of v~ for finite systems, 

vL(r ~ a~ )--* _ --,1 (3.45) 
r 

so that the total potential is free of self-interaction effects, e.g. for neutral systems 
one obtains 

v~o,(r -o oo ) ~ _ -.1 (3.46) 
r 

In order to provide a quantitative comparison of this DF-concept for 
exchange and the standard HF approach we list in Table 3.1 the corresponding 
x-only ground state energies and eigenvalues of the highest occupied orbitals for 
spherical (closed subshell) atoms [36]. As is obvious from Table 3.1 the differ- 
ences between ROPM and RHF ground state energies are rather small from 
a numerical point of view: They are below 60 mhartree even for the largest 
atoms, with the ROPM-energies always being somewhat less attractive (consis- 
tent with the reduced variational freedom of the ROPM-orbitals) apart from 

1 The integral equation (3.40) determines v~ up to a trivial constant which is determined by the 
boundary condition v~(r ~ oo ) = O. 
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Table 3.1. Longitudinal ground state energies ( - E,Io,) and highest occupied eigenvalues ( - elk) for 
closed subshell atoms from nonrelativistic OPM (NROPM [59]), relativistic OPM (ROPM [36]) 
and relativistic HF (RHF [68] ) calculations [69] (all energies are in hartree). 

Atom - E~o ,  - e ~ k  

NROPM ROPM RHF NROPM ROPM RHF 

He (1S1/2) 2.862 2.862 2.862 0.918 0.918 0.918 
Be (2S1/2) 14.572 14.575 14.576 0.309 0.309 0.309 
Ne (2P3/2) 128.545 128.690 128.692 0.851 0.848 0.848 
Mg (3S 1/2) 199.611 199.932 199.935 0.253 0.253 0.253 
Ar (3P3/2) 526.812 528.678 528.684 0.591 0.587 0.588 
Ca (4S1/2) 676.751 679.704 679.710 0.196 0.I96 0.196 
Zn (4S1/2) 1777.828 1 7 9 4 . 5 9 8  1794.613 0.293 0.299 0.299 
Kr (4P3/2) 2 7 5 2 . 0 2 8  2 7 8 8 . 8 4 8  2788.861 0.523 0.515 0.514 
Sr (5S1/2) 3131.514 3 1 7 8 . 0 6 7  3178.080 0.179 0.181 0.181 
Pd (4D5/2) 4 9 3 7 . 8 5 8  5 0 4 4 . 3 8 4  5044.400 0.335 0.319 0.320 
Cd (5S1/2)  5 4 6 5 . 0 5 6  5 5 9 3 . 2 9 9  5593.319 0.266 0.282 0.281 
Xe (5P3/2) 7 2 3 2 . 0 1 8  7 4 4 6 . 8 7 6  7446.895 0.456 0.439 0,440 
Ba (6S1/2) 7883.404 8 1 3 5 . 6 2 5  8135.644 0.158 0.163 0.163 
Yb (6S1/2) 13391 .070  14067 .62I  14067.669 0.182 0.196 0.197 
Hg (6S1/2) 18408.313  19648.826 19648.865 0.262 0.329 0.328 
Rn (6P3/2) 21865 .826  23601.969 23602.005 0.427 0,382 0,384 
Ra (7S1/2) 23093 .258  25028.027 25028.061 0.149 0.167 0.166 
No (7S1/2) 32787.471 36740.625 36740,682 0.171 0.209 0.209 

He where both approaches coincide. Also the corresponding highest occupied 
eigenvalues are essentially identical. The same holds for the longitudinal x-only 
energies (see Table 5.1). Here the maximum difference of 106 mhartree is found 
for No. The x-only ROPM thus demonstrates explicitly that one can obtain 
RHF-level results for all interesting atomic properties with a local exchange 
potential. 

3.4 Nonrelativistic Limit 

The weakly relativistic limit of the Hamiltonian (2.20) for fermions in external 
electric and magnetic fields can be derived with standard techniques, either by 
direct expansion or by a low order Foldy-Wouthuysen transformation. One 
obtains 

f + {~m I e2 ] I~ = dax(o (x) ( - / / i V )  2 + 2ih e V(x). V + V(x) 2 (3.47) 
c 

} 2mc o"(V x V(x)) + eVo(x) ~(x) + l~ee. 

In Eq. (3.47) ~b(x) is a nonrelativistic field operator of two-component structure, 
a are the Pauli matrices and the electron-electron interaction reduces to the 
Coulomb interaction, denoted by/~e- As usual, the gauge term proportional to 
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(e2/c 2) V(x) 2 has been kept, although it is of order 1/C 2 and terms of this order 
are not included consistently. The Hamiltonian (3.47) is invariant under the 
gauge transformation 

(o ' (x)  = e - i e~x) /h  th(x) ,  V ' ( x )  = V ( x )  - cV2(x), (3.48) 

i.e. 

H(0',  V')= H(~b, V). 

The density operator is defined in terms of the field operators as 

~(x) = ~b + (x) 0(x), (3.49) 

and by a weakly relativistic expansion of the current operator (2.6) (together 
with the appropriate redefinition of the vacuum) the following expression for the 
nonrelativistic current operator can be extracted, 

] ( x ) = . ~ ( x )  C v _ e - x l h ( x )  - -  V ( x ) f i ( x ) .  (3.50) 
e m¢ 

Here the paramagnetic current, 

ih 
fp(x) - - 2-m [0  + (x)(V~b(x)) - (VO + (x)) ~b(x)], (3.51) 

and the magnetisation-density, 

eh 
~ ( x )  - 2 m c  0 ~ ( x ) ~ r ~ ( x ) ,  (3.52) 

are defined as usual. It is important to note that j ~ x )  is not invariant under the 
gauge transformation (3.48), only the combination 

]p(x)  - e V ( x ) ~ ( x )  
mc 

has this property. 
If one re-expresses the Hamiltonian (3.47) in terms of the density and current 

operators in order to exhibit the coupling to the external fields more explicitly, 
one finds 

; I0+,x, t if[ = d3x 2 ~  (p(x) + eVo(x)?l(x) + l~ee (3.53) 

- - id3xecv(x) ' { jp(g)- -~Vxl~l (x) - -~mcV(X)~t(x)  t " 

This expression indicates that it is the sum of the paramagnetic current operator 
and the curl of the magnetisation density, 

j ,(x) - C-V × ,h(x), 
e 
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which couples to the external vector potential, but the situation is somewhat 
ambiguous concerning the gauge term, as one may rearrange the Hamiltonian 
(3.53) either in the form 

f { I e2 1 } I~= 7" + I4~ + d3 x _e_cV(X).f(x)+ eVo(x)-2-~c z r(x) z ~(x) , 

or  

(3.54) 

i~ = ~ + l~ee --  d3x  V(x)"  (x)  - e 

+ fd3x[  eV°(x)+ ~e2  V(x)2]?l(x). 

(3.55) 

It is directly possible to prove a HK-theorem for the form (3.55) using the 
density n and the gauge-dependent current jp - (c/e)V × m as basic DFT vari- 
ables, but not for the form (3.54) which would suggest to use n and the full 
current j. One is thus led to the statement that the first set of variables can 
legitimately be used to set up nonrelativistic current density functional theory, 
indicating at first glance a conflict with the fully relativistic DFT approach. 

It is important to notice, however, that consistent neglect of all terms of the 
order l/c z (which has not been treated consistently in the weakly relativistic 
expansion) in the Hamiltonian allows a proof of a HK-theorem on the basis of 
the variables n andj. In other words: Only a fully relativistic approach combines 
consistency in 1/c with gauge invariance. It remains to be investigated explicitly, 
whether inclusion of all relevant terms to order 1/c z allows to reinstate the 
physical currentj(x) as basic variable also in this order as one would expect from 
the fully relativistic theory. 

4 Explicit Relativistic Exchange-Correlation Functionals 

The derivation of explicit energy functionals in nonrelativistic DFT follows 
a variety of avenues. The present day "standard" is the LDA, 

In] = fd3re~n~(n(r)) (4.1) ENRLDA 
x C  

in which the density dependence of thc xc-energy density exc-NanE~ of the non- 
relativistic HEG is used with the density n(r) of the actual inhomogeneous 
system. In particular, accurate representations of the correlation part e NRnE6 [70, 
71, 72, 73] are obtained by a parametrisation of Monte Carlo results for the 
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NRHEG [74, 73]. Gradient corrections in low order, 

E~fCe[n] = f dare~ ~e (n(r), (Vn(r)) 2, V2n(r)), (4.2) 

were first obtained by painstaking analysis of the relevant diagrammatic contri- 
butions (see e.g. [75, 76, 77, 78, 79, 80, 81, 60]), but turned out not to be ad- 
equate [75, 76, 82]. The situation was improved by the introduction of general- 
ised gradient approximations (GGAs) [10, ! 1, 83, 84, 85, 86], in which (Vn) z- 
terms beyond the lowest order contribution to the gradient expansion (GE) are 
included. These types of functionals yield the most accurate values for atomic 
ground state and ionisation energies, molecular geometries and dissociation 
energies as well as cohesive properties of solids that have been obtained to date 
with nonrelativistic density functionals (see e.g. [2, 3, 82, 87, 88, 89, 90, 91]). 

An alternative approach under the heading of weighted density approxima- 
tion (WDA) attempts to model the density dependence of the pair correlation 
function of inhomogeneous systems, 

e2f f n(r)n(r') l~NRw°'t[n] = ~- dar d3r ' -xc l r  -- r'l [0(In]; r, r') -- 1], (4.3) 

where 0 indicates that a coupling constant integration over the pair correlation 
function is involved. The WDA is characterised by the feature that self-interac- 
tion effects are corrected to a large degree, though not as completely as in the 
OPM. 

Compared with the nonrelativistic case, the derivation of explicit relativistic 
functionals is not as fully developed. Concerning the RLDA both the x-only 
limit and the correlation contribution in the so-called random phase approxi- 
mation (RPA) are available. We discuss the RLDA in Section 4.1. Relativistic 
gradient corrections for Exc, on the other hand, have not been evaluated at all, 
although the basic technique for their derivation can be extended to the 
relativistic regime. In view of the absence of explicit results we only illustrate this 
method for the case of Ts in Appendix D. An extension of the WDA scheme to 
relativistic systems (RWDA) [92, 36] is summarised in Section 4.2. However, no 
information on the RWDA beyond the longitudinal x-only limit is available. 
Moreover, it should be emphasised at the very outset that on the present level of 
sophistication neither the RLDA nor the RWDA contain radiative corrections. 
The issue of vacuum corrections in Exc[n] is discussed in detail in Appendix 
B and will not be addressed in this section. 

4.1 Relativistic Local Density Approximation 

In complete analogy to (4.1) the RLDA for Exc[j ~] is based on the xc-energy 
density e~leG(n) of the relativistic homogeneous electron gas (RHEG), which 
automatically reduces the full jr-dependence of the exact xc-energy functional to 
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a pure density dependence, 

ExgcLoa[n] f 3 gne6 = d r e =  (no = n(r)).  (4.4) 

The derivation of its lowest order contribution, i.e. the exchange energy, is 
discussed in some detail in Appendix B, illustrating in particular the UV- 
renormalisation required 12. The final result, that has been obtained by a number 
of authors [93, 94, 95, 96, 18, 19], can be expressed as the nonrelativistic ex- 
change energy density ex-Ngnga multiplied by a relativistic correction factor. 
Separation into its longitudinal and transverse part according to (3.21) yields, 

e~nE~.L/r  (n ) = e ~ g n ~  (n) ~r/r(/~), (4.5) 

where/3 represents the basic relativistic density variable, 

(3rc2n)~ 
fl - , (4.6) 

m c  

and e~rRneG(n) and the ~ / r  are explicitly given in (B.51, B.54, B.55). The 
variation of the ~ / r  with fl is shown in Fig. 4.1. One notices that the longitudi- 
nal contribution dominates in the low density limit and that it depends only 
weakly on ft. The transverse part shows a stronger dependence on fl and 
dominates in the high density regime, in which _Rn~G ex even changes its sign. 

The transverse part can be analysed further if one separates it into a mag- 
netic (or current-current) and a retardation component or if one restricts oneself 
to its weakly relativistic limit, the so-called Breit contribution [48, 97], 

ret T,  Breit eRUeG, r = em~O + ex = ex + . . . .  

where the individual terms follow from the structure of the transverse photon 
propagator Du~°' v, 

- 4roe 2 4rte: 4rce2(k°) z 
D ° ° r ( k ) =  k 2 + i~ k z - k 4 ~- "'" 

retardation of charge-charge interaction 

4roe 2 -- 47ze 2 
D ° ' T ( k )  = 6iJk2 + i ~ -  6ij k2  + . . .  

magnetic interaction ( = Gaunt interaction + ...), 

inserted into (3.32). The density dependence of these terms is illustrated in 
Fig. 4.2, which shows that the behaviour of e~ is largely dominated by the 
magnetic contribution. The relative minor role of higher order retardation 
effects is emphasised by the similarity between e~ and r,B,~t e x 

~2 Note that in the case of e RnL6 vacuum corrections do not contribute after renormalisation, so that 
the complete result is identical with its no-sea/pair approximation. 
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Fig. 4.1. Relativistic correction factor 
for the LDA exchange energy density: 
longitudinal contribution (B.54), trans- 
verse contribution (B.55) and total cor- 
rection q~; + ~ 
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Fig. 4.2. Relativistic correction factor 
for the LDA exchange energy density: 
magnetic, retardation and Breit contri- 
bution (e~ r'B'e" from Ref~ [97] has been 
corrected for a typographical error) 

In Fig. 4.3 we plot the density dependence of the resulting exchange poten- 
tials. The relevant range of density values for electronic structure calculations is 
indicated by the/t-values at the origin and the expectation value of the radial 
coordinate of the 1S1/2-orbital for the Kr  and Hg atoms. One finds that 
relativistic effects are somewhat more pronounced for vx than for ex and are 
definitely relevant for inner shell features of high Z-atoms. 

Relativistic correlation contributions in the LDA have so far only been 
considered on the basis of a partial resummation of those terms in the perturba- 
tion expansion in e 2 which are the most relevant in the high density limit. This 
contribution is either called the ring approximation (in accordance with its 
diagrammatic form) or, most often, the random phase approximation 
( R P A -  which we shall use here) to ec-Rn~. The detailed discussion of eY HEG'RPA is 
again relegated to Appendix B. In contrast to the case of exchange no closed 
analytical expression can be given for ec-RnEG' RVA. Numerical results (within the 
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no-sea approximation) have been obtained by Ramana and Rajagopal [98] and 
by Mfiller and Serot [99]. The resulting relativistic correction factor, 

eRneG, Rea (n) = e~c RHEa" Rt'A (n) ~Rea  (fl), (4.7) 

(again decomposed into its longitudinal and transverse contributions) is shown 
in Fig. 4.4. As for the exchange energy the relativistic correction for the RPA to 
eRHE~ is substantial (a similar correction factor is found for the corresponding c 

correlation potential [22, 98] ). 
One may ask whether the correction factor @~ea, Eq. (4.7), can be of any use 

in actual applications. In this respect it is important to note that for the 
nonrelativistic HEG the RPA, which only contains one of the diagrammatic 
contributions to e~ RHEG of order e 4, is not an accurate approximation to the full 
eNan~6 . . . .  for the highest relevant densities inside the nuclei of high-Z atoms C g ~ V ~ l l  

(fl ~ 10-:~ r~ ~ 0.001). On the other hand, the combination of e~ nE~'RPA with 
the remaining contributions of order e 4 (here abbreviated by RPA + ) agrees 
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within an accuracy of 3% with e~ RnEc already for densities with r~ ~: 0.1 
( / / ~  0.1), i.e. for densities below which relativistic corrections are irrelevant 
(note that all relativistic corrections are proportional to fl z for small fl)- Conse- 
quently in this intermediate and low density regime the well known nonrelativis- 
tic e~ RuEG can also be used for the RLDA. An accurate form for the RLDA 
correlation energy is thus obtained from 

e~U~O(n) = e~t'1t!6'gl'A+ (n) -- e~RnEG'RVA~ (n) + ecNRHEO'~n)," (4.8) 

where the relativistic corrections are only included via the RPA + (which also 
dominates in the relativistic high-density limit - compare Appendix B). For low 
and intermediate densities e~ ~EG" Rea + (n) and e~ RnE"" RPA + (n) cancel each other, 
while for relativistic densities higher than fl m 0.1 the two right-most expres- 
sions cancel. Unfortunately, the complete density dependence of the relativistic 
RPA + is not known. In the high density limit, however, one finds [96] 

egllE6. RPA + (n) ~, 1.4 e~ ttL'c'' RPA (n), (4.9) 

so that eb~VA(n) represents a lower bound for the total q~(n). The error for the 
relevant density range 0.1 < fl < 1 is difficult to estimate, but should be less than 
the 30% indicated by (4.9) as on the nonrelativistic level e NRHEG'RPA+ and 
eNc RI-t~6"Rt'A differ by roughly 20% for / / =  0.1. In view of the fact that the 
RPA + has not been fully evaluated, however, only the relativistic correction 
due to the RPA can presently be used instead of the more accurate form (4.8), 

RHEG.RPAz x eNcRHEC"RPA(n) + e~RHEG(n). (4.10) eyHEO(n) ~-- e~ ~ n ) -  

4.2 Relativistic Weighted Density Approximation 

In the nonrelativistic LDA one finds partial, but by no means satisfactory 
cancellation of self-interaction effects between En and E LDa. The WDA 
[100, 101] constitutes a relatively direct approach, in which one attempts to 
improve on this situation by a density functional representation of the pair 
correlation function. 

In order to apply the WDA in the relativistic regime, a fully covariant 
extension of the concept of the pair correlation function would be desirable. To 
our knowledge this is, however, not available. Nevertheless, if one restricts the 
discussion to the (instantaneous) longitudinal limit, one can express ELc[n], 
Eq. (3.21), via a relativistic pair correlation function defined in analogy to the 

nonrelativistic case as 

9(r, r') = (O° I ri(r)r/(r')[ q~0 ) _ 3 ( 3 ) (  r - r ') (4.1 l) 
n(r) n(r') n(r) 

By definition, 9 is symmetric, 

g(r, r') =- g(r', r), (4.12) 

32 



Relativistic Density Functional Theory 

and satisfies the sum rule 

f dSr' n(r')[g(r,r ) - l] = - I. (4.13) 

In fact, (4.13) is also satisfied by the x-only limit Yx of 9, i.e. its lowest order 
contribution in e 2. In the relativistic case only this limit of the pair correlation 

~RnE6tk lr r '1 kr), specified in Eq. (B.68), is known function of the RHEG, vx ~ r l - ~, 
(within the no-pair approximation [19, 102]), so that we restrict the subsequent 
discussion to the x-only limit. 

For the transition from the x-only RLDA to the x-only RWDA one replaces 
the constant kF inside #RxnE~(kFtr- r'l, kF) by a local screening momentum 
k'e(r), which is determined by the requirement, that the basic sum rule (4.13) be 
satisfied in the form 

~F(r)lr- r ' ] , -  1] = -- (4.14) 1 

for any given r. One should note that this prescription leads to a truly non-local 
functional, 

e 2 
E~'RWDA[n] -~ f d3r fd3r'n(r)tl(~ ') = ~ C - ~  (4.15) 

x [g~'~G(~(r)lr - r ' l ,  k'~(r))  - 1 ] ,  

but violates the general symmetry (4.12) so that one obtains different x-only 
potentials depending on whether the WDA scheme is applied before or after 
variation with respect to the density. Moreover, using 9~ H~G as a kernel the 
x-only RWDA reduces to a pure density functional, without any j-dependence. 

The main advantage of this approximation is that it is exact for two-electron 
systems (if the correct k'F(r ) = 0 is utilised in (4.15) before performing the 
functional differentiation (3.17) required for its application) and also correctly 
accounts for the self-interaction energies of individual closed shells if a shell- 
partitioning scheme is used [71]. Furthermore, the RWDA reproduces the 
asymptotic r 1 proportionality of the exact x-only potential (although with the 
incorrect prefactor of 1/2 [103]). 

5 Relativistic D F T  Results for Atoms 

So far only few applications of the RKS-equations (3.25-3.29) utilising a relativ- 
istic form for Exc In] have been reported (and none for the 'field theoretical' 
KS-equations (3.5, 3.15--3.17)). MacDonald and Vosko [19] as well as Das et al. 
[104] analysed the x-only RLDA for high-Z atoms and ions, emphasising the 
importance of relativistic corrections to Ex [n]. This work has been extended by 
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inclusion of the RPA limit of Ec In] in the RLDA by Ramana et al. [97]. These 
authors also point out the need for nonlocal corrections, in particular in the case 
of the x-only energy. The influence of relativistic corrections to Exc[n] on the 
band structures of Pd and Pt has been examined by MacDonald et al. [105], 
who find a significant effect on the Fermi surface of Pt. In particular, they 
conclude that relativistic corrections to VxEn] can be as important as the 
nonrelativistic vc In] even for the valence levels of high-Z systems. 

On the other hand, a large number of relativistic Stater calculations [23] 
(Dirac-Fock-Slater DFS), in which the RKS-equations are used with the 
nonrelativistic x-only LDA, can be found in the literature (see e.g. [8,9]). 
However, no attempt is made to review this extensive body of literature here. 

In this section we summarise the properties of the approximations to Ex~[n] 
discussed in Section 4 in applications to atoms. All results presented in the 
following [36] are based on the direct numerical solution of Eqs. (3.25-3.29) 
using a nuclear potential which corresponds to a homogeneously charged 
sphere [69] 13. Only spherical, i.e. closed subshell, atoms and ions are con- 
sidered. Whenever suitable we use Hg as a prototype of all high-Z atoms. 

In the following we investigate both the importance of relativistic corrections 
to Ex~[n] and the adequacy of the RLDA and RWDA to reproduce them, using 
ROPM and conventional relativistic ab initio results as reference standards. 
Consequently it is not so much the accuracy of the total relativistic xc-energies 
which is of interest, but rather their intrinisically relativistic ingredients, i.e. the 
differences between the selfconsistent relativistic and the self consistent non- 
relativistic longitudinal xc-energies, 

AE~,c L R "NR . N R ' I  (5.1) = Ex.c[n ] -  Ex,¢[n a 

and the transverse xc-energies r n ~ Ex.~. Here represents the selfconsistent density 
obtained by solving the RKS-equations with a given (approximate) form for 
E~,c[n]. Its nonrelativistic counterpart n NR is obtained by solution of the 

Ex, c[n] of E~,~[n]. In nonrelativistic KS-equations with the nonrelativistic limit NR 
the x-only limit one can examine relativistic corrections on a local level via 

v~([ng]; r) - V N x R ( [ n N R ] ; r )  (5.2) 
~ v ~ ( r )  = . N R o ~ M  , ~ .  N R O P M 1 . . ~  

Ux ~,L n d , I  f 

Av L represents the percentage deviation of the setfconsistent relativistic potential 
v~([nR]; r) from the corresponding setfconsistent nonrelativistic potential 
v~R([nSR]; r). The selfconsistent VxL([ng]; r) is calculated by insertion of the 
self-consistent nR(r) into the functional derivative (3.28) for that E~En] which has 
been used to determine r t R ( r ) .  In particular, the ROPM x-only potential can, in 
principle, be obtained by insertion of the exact x-only density nROJ'M(r) into the 

v~ ([n],r) and thus can be used as a comparative standard: exact v~([n];r) = ROPM . 

laAll our calculations have been performed without a Latter-type correction for vx(r) in the large-r 
regime (compare [104]). 
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AvL'ROeM(r) const i tutes  a direct  local  measure  of  relativist ic correc t ions  in the 
x-only  l imit  with which Ave(r) from var ious  a p p r o x i m a t i o n s  can be c o m p a r e d  
(for the co r re spond ing  devia t ions  of  a p p r o x i m a t e  v~R(r) from v~R°e~(r) see 
[59, 60, 106]). 

5.1 Longitudinal x-only Functionals 

Before consider ing app rox ima t ions  to the exact  EL[n], Eq. (3.37), some general  
r emarks  on  the impor t ance  of  relativist ic cor rec t ions  on the R O P M - l e v e l  seem 
appropr ia te .  Fi rs t  of  all one gleans from Table  5.1 that  the relativist ic con t r ibu-  
t ions in E L are qui te  substant ia l :  F o r  ins tance for H g  one ob ta ins  a 20 har t ree  
shift when going from the nonrelat ivis t ic  O P M -  to the R O P M - v a l u e  which 
represents  5.8% of  E L , very s imilar  to the 6.8% relativist ic cor rec t ion  which is 

found for ELot. Clearly,  relativist ic effects are most  impor t an t  for the innermost  
orbi tals .  This  is obvious  from Table  5.2 showing the s ingle-par t ic le  spec t rum of  
Hg. No te  that  the 2P1/2-eigenvalue is modif ied  by 17% and  tha t  even the 
ou te rmos t  6St /2-e igenvalue  experiences a 26% shift (reflecting the 'gold  max-  
imum').  Table  5.2 also demons t ra tes  that  apa r t  f rom the physical ly  re levant  
highest  occupied eigenvalue and  in spite of the very s imilar  g round  state energies 
R O P M  and R H F  single par t ic le  energies differ subs tant ia l ly  (compare  [59-]), in 
consis tency with their  auxi l iary  character .  

Table 5,1. Longitudinal (Coulomb) x-only energies ( -E~)  for closed subshell atoms from 
NROPM-, ROPM-, RHF-, DFS-, RLDA-, and RWDA-calculations [36, 69] (all energies are in 
hartree). 

Atom NROPM ROPM RHF DFS RLDA RWDA 

He 1.026 1.026 1.026 0.853 0.853 1.026 
Be 2~666 2.667 2.668 2.278 2.278 2.706 
Ne 12.105 12.120 12.123 10.952 10.944 12.843 
Mg 15.988 16.017 16.023 14.564 14.550 17.093 
Ar 30.175 30.293 30.303 27.897 27.844 32.419 
Ca 35.199 35.371 35.383 32.702 32.627 37.967 
Zn 69.619 70.245 70.269 66.107 65.834 75.604 
Kr 93.833 95.048 95.072 89.784 89.293 102.095 
Sr 101.926 103.404 103.429 97.836 97.251 111.133 
Pd 139.113 14L898 141.930 134.971 133.887 152.275 
Cd 148.879 152.143 152.181 144.931 143.687 163.321 
Xe 179.062 184.083 184.120 175.926 174.102 197.564 
Ba 189.065 194.804 194.841 186.417 184.363 209.171 
Yb 276.143 288.186 288.265 278.642 274.386 310.268 
Hg 345.240 365.203 365.277 354.299 347.612 392.339 
Rn 387.445 414.082 414.151 402.713 394.102 444.584 
Ra 401.356 430.597 430.664 419.218 409.871 462.365 
No 511.906 564.309 564.415 554.242 538.040 606.216 
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Table 5.2, Single particle energies ( - e,t~) for Hg from NROPM-, ROPM- and RHF-calculations in 
comparison with DFS-, RLDA- and RWDA-results (all energies are in hartree). 

Leve l  NROPM ROPM RHF DFS RLDA RWDA 

1s1/2 2756.925 3047.430 3074.228 3047.517 3044.410 3051,995 
2s1/2 461.647 540 .056  550.251 539 ,713  539 .250  540.530 
2P1/2 444.015 518 .061  526 .855  518 .164  517 .746  519.244 
2P3/2 444.015 446.682 455.! 57 446 .671  4 4 6 . 3 9 9  447.469 
3s1/2 108,762 128 .272  133.113 128.001 127.905 128.292 
3P1/2 100.430 118 .350  122 .639  118 .228  118.148 118.592 
3P3/2 100.430 102 .537  106 .545  102 .397  102.346 102.691 
3D3/2 84.914 86.201 89.437 86.085 86.060 86.364 
3D5/2 84.914 82.807 86.020 82.690 82.668 82.959 
4S 1/2 23.522 28.427 30.648 28.067 28.046 28,200 
4P i/2 19.895 24.161 26.124 23.871 23.854 24.023 
4P3/2 l 9.895 20.363 22.189 20.039 20.030 20.167 
4D3/2 13.222 13.411 14.797 13.148 13.146 13.271 
4D5/2 13.222 12.700 14.053 12.434 12.432 12,553 
4F5/2 4.250 3.756 4.473 3.556 3.559 3,665 
4F7/2 4.250 3.602 4.312 3.402 3.404 3,509 
5S 1/2 3.501 4.403 5.103 4.290 4.286 4,349 
5P 1/2 2.344 3.012 3.538 2.898 2.896 2.955 
5P3/2 2.344 2.363 2.842 2.219 2.218 2,265 
5D3/2 0.538 0.505 0.650 0.363 0.363 0.397 
5D5/2 0,538 0.439 0.575 0.296 0.296 0.328 
6S1/2 0.262 0.329 0.328 0.222 0.222 0.254 

The percentage relativistic cont r ibu t ion  in the exact v~ is plotted in Fig. 5.1. 
One  clearly observes an 'oscillatory'  behavior  between 0.01a.u. and 3a.u, reflect- 
ing the shell structure of the atom: Most  relativistic single particle orbitals are 

shifted towards the nucleus with respect to the nonrelat ivist ic ones 14, resulting 
in an oscillating structure of nR(r) - nNR(r) and thus also of Av~, This leads to an 
addi t ional  a t t ract ion of about  20% in the region close to the nucleus, Even in 

the valence regime the relativistic corrections amoun t s  to roughly 10%. 
In view of these results there is little doub t  that the density dependence of 

explicit density functionals for the x-only energy has to be modified in the 

relativistic regime, 
On  the basis of exact O P M  results one can now examine approximate  forms 

for E~ In]. Here we consider the two relativistic functionals available, i.e. the 
RLDA and  the R W D A  t5 discussed in Section 4, as well as the nonretat ivist ic 
LDA (NRLDA),  i.e. the DFS-approach  with ~ = 2/3. For  compar ison with the 

ROPM-resu l t s  in Table  3.1 the corresponding longi tudinal  x-only ground state 
energies and highest occupied eigenvalues are listed in Table  5.3. Two features 
are apparent  from this comparison:  On  the one hand,  the total ground state 

14A11 S1/2 and P1/2 orbitals are considerably contracted, the P3/2, 3D3/2 and 4D3/2 orbitals only 
slightly. While the 5D3/2 as well as the 3D5/2 and 4D5/2 r-expectation values remain essentially 
unchanged, the 5D5/2, 4F5/2 and 4F7/2 orbitals are expanded. 
15A11 numerical results from the RWDA have been obtained with the fit (B.73) to the exact pair 
correlation function. 
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T a b l e  5.3. Longitudinal x-only ground state energies ( - E~ot) and highest occupied eigenvalues 
( - elk) for closed subshell atoms from DFS, RLDA and RWDA calculations [36] (all energies are in 
hartree). Note that for Yb the DFS-, RLDA- and RWDA-calculations incorrectly predict the 
4F7/2-orbital to be most weakly bound. The values given (*), however, correspond to the 6S1/2- 
orbital. 

Atom - E~o,  J" - -  ~Smk 

DFS RLDA RWDA DFS RLDA RWDA 

He (1S1/2) 2.724 2.724 2.862 0.517 0.517 0.599 
Be (2S1/2) 14.226 14.226 14.609 0.170 0.170 0.204 
Ne (2P3/2) 127.635 127.628 129A17 0.441 0.441 0.511 
Mg (3S1/2) 198.569 198.556 200.963 0.142 0.142 0,181 
Ar (3 P3/2) 526.387 526.337 530.747 0.331 0.331 0.369 
Ca (4S 1/2) 677.118 677.047 682.204 0.112 0.112 0.140 
Zn (4S1/2) 1790.721 1 7 9 0 . 4 5 8  1799.949 0.191 0.191 0.232 
Kr (4P3/2) 2 7 8 3 . 7 5 8  2 7 8 3 . 2 8 2  2795.778 0.291 0.291 0.321 
Sr (5S1/2) 3172.638 3 1 7 2 . 0 7 1  3185.631 0.104 0.104 0.129 
Pd (4D5/2) 5 0 3 7 . 7 3 3  5 0 3 6 . 6 7 7  5054.707 0.111 0.111 0.151 
Cd (5S1/2) 5 5 8 6 . 2 9 9  5 5 8 5 . 0 8 6  5604.337 0.181 0.181 0.218 
Xe (5P3/2) 7 4 3 8 . 8 5 8  7 4 3 7 . 0 7 6  7460.124 0.250 0.250 0.275 
Ba (6S1/2) 8 1 2 7 . 3 4 4  8 1 2 5 . 3 3 6  8149.714 0.095 0.095 0.116 
Yb (6S1/2) 14058 .528  14054.349 14089.603 0.119" 0.119' 0.146" 
Hg (6S1/2)  19638 .195  19631.622 19675.706 0.222 0.222 0254 
Rn (6P3/2) 23590 .763  23582.293 23632.105 0.214 0.214 0.237 
Ra (7S1/2) 25016 .763  25007.568 25059.377 0.097 0.097 0.117 
No (7S1/2) 36730 .804  36714.839 36782.219 0.128 0.128 0.156 
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Fig. 5.1. Percentage relativistic 
correction to the longitudinal x- 
only potential Av~(r), Eq. (5.2), for 
neutral Hg from OPM-, DFSo, 
LDA- and WDA-calculations [69]. 
Also shown are the nuclear radius 
R,,d and the r-expectation values of 
the individual s-orbitals 

energ ies  o f  all three  a p p r o x i m a t i o n s  differ cons ide r ab ly  f r o m  the  c o r r e s p o n d i n g  

R O P M  va lues  (in T a b l e  3.1). Whi l e  the  R W D A  ove re s t ima t e s  the b ind ing  

ene rgy  subs tan t ia l ly ,  b o t h  the  R L D A  and  the  D F S  energies  a re  t o o  small .  Th is  

d e v i a t i o n  can  be d i rec t ly  t raced  to the c o r r e s p o n d i n g  E~ (given in Tab l e  5.1): 

F o r  i n s t ance  for H g  the  e r r o r  o f  17.204 ha r t r ee  for EPot m a t c h e s  r a t h e r  well  wi th  

the  c o r r e s p o n d i n g  e r ro r  of  17.591 ha r t r ee  for E~. T h e  s a m e  ho lds  for the  D F S -  
a n d  R W D A - r e s u l t s  (and t h r o u g h o u t  the  pe r iod ic  table). 
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On the other hand, the highest occupied eigenvalues which reflect the 
asymptotic form of the density, and thus even in the x-only limit should be close 
to the ionisation potential, are too small by roughly 50% for the DFS and 
RLDA and by 30-40% for the RWDA t6 . Thus while the latter improves on the 
asymptotic form of v~ in principle, the effect of this formal improvement on the 
physically relevant part of the asymptotic regime is rather limited. Note further, 
that for Yb all three schemes incorrectly predict the 4F7/2-orbital to be most 
weakly bound instead of the 6S1/2-orbital. The same deficiency has been 
observed for Cr and Cu in the nonrelativistic case [59]. These difficulties to 
reproduce the size and the ordering of the outermost eigenvalues are well known 
from the nonrelativistic case and are not related to the relativistic corrections in 
~[n]. 

The percentage deviation of the relativistic correction AE~, Eq. (5.1), ob- 
tained for the three approximations with respect to the OPM standard is plotted 
in Fig. 5.2. While both the DFS and the WDA overestimate the exact AE~ by 
about 10%, the LDA underestimates them by roughly 20% in the relevant 
Z-regime. One notes, however, that the deviation of the LDA seems to be 
decreasing with increasing Z in contrast to the errors of the DFS and the WDA. 
In any case, all three approximations are not satisfactory from a quantitative 
point of view. 

The fact that the longitudinal x-only energies obtained from some approxim- 
ate functional are rather insensitive to the density inserted into the functional 
[19] is demonstrated explicitly in Table 5.4. Here the E~ obtained by insertion of 
the selfconsistent ROPM-, DES-, RLDA-, and RWDA-densities for Hg into the 
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Fig. 5.2. Percentage deviation of AE~ for 
neutral atoms with respect to the exact 
OPM results obtained from DFS, LDA 
and WDA 

16For He the selfconsistent RWDA-potential has also been evaluated by insertion of/~v into the 
complete functional derivative of (4.15). 
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Table 5.4. Longitudinal (Coulomb) exchange energies ( - EL) 
for Hg obtained by insertion of selfconsistent ROPM-, DFS-, 
RLDA- and RWDA-densities into the corresponding E~[n] (all 
energies are in hartree). 

Hg Densities from 
E~[n] ROPM DFS RLDA RWDA 

ROPM 365.203 364.865 364.745 365366 
DFS 354.508 354.299 354.181 354.805 
RLDA 347.928 347.722 347.612 348.216 
RWDA 391.988 391.785 391.656 392.339 

corresponding functionals are listed ~ 7: While the energy differences between 
the four functionals (for any given density) are substantial, the differences gener- 
ated by the four densities for a given functional are of the order of a few 
100 mhartree. These latter differences originate from the selfconsistency proced- 

L In other words: The selfconsistent n R is ure, i.e. from the corresponding vx. 
dominated by relativistic kinematics and the nuclear attraction, the x-potential 
only plays a minor role. Nevertheless the impact of the relativistic corrections in 
v~ on atomic exchange energies is larger than the differences between more 
refined nonlocal functionals on the nonrelativistic level. Consequently relativis- 
tic corrections to the longitudinal x-only energy should not just be taken into 
account perturbatively, but rather be included in the selfconsistency loop. 

L The relativistic corrections in vx are also apparent for the innermost RKS- 
eigenvalues. Notwithstanding their auxiliary nature, these single particle levels 
are a direct measure of the quality of any approximation to the relativistic v~[n]. 
Focusing on the 1S 1/2-eigenvalue of Hg Table 5.2 shows that the values for both 
the RLDA and the RWDA deviate by several hartree from the R O P M  eigen- 

. L ,  R W D A  value, indicating that " L, RLOa is not sufficiently attractive, while vx vx overes- 
timates the actual ROPM-potential .  The innermost DFS-eigenvalues, on the 
other hand, seem to agree rather well with the ROPM-results,  which however, 
must be regarded as fortuitious. 

This last point is emphasised if one looks at the relativistic correction to the 
x-only potential, Av~, shown for Hg in Fig. 5.1. While the shell oscillations of the 
exact v~ are at least partially reproduced by all three approximations (the 
OPM-ampli tudes being larger by more than a factor of 2), both the DFS- and 
the RLDA-potentials are far from the exact Av~(r) in the region close to the 
nucleus, For these approximations v~ is proportional to n 1/3 for high densities 
[19], with the prefactor being larger for DFS. In spite of the fact that we use 
extended nuclei this proportionality starts to show up at about the r-expectation 
value of the 1Sl/2-orbital. On the other hand, the RWDA follows the exact 

17 Note that insertion of a given density into the exact x-only functional corresponds to insertion of 
the RKS-orbitals which yield this density into (3.37). 
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Ave(r) rather closely in the small-r regime. This can be understood from the fact 
that this part of v~(r) is dominated by the sell-interaction correction of the 
1S1/2-orbital, for which the RWDA-concept is particularly suitable. This result 
suggests to search for a relativistic extension of the model pair correlation 
functions which are more accurate than g~)HEG in the nonrelativistic regime 
[36, 1003. 

In order to anlayse the origin of the failure of the RLDA it is useful to 
separate the two effects leading to the relativistic correction in the x-only 
energies [36], 

AE~ = AE~(dens) + AE~( fctl) 

AE~(dens) = E~R[n g] -- E~ g In ug] 

A E~(fctt) = E~[n R] - E~R[nR], 

(5.3) 

(5.4) 

(5.5) 

i.e. the correction ENx R In R] -- E~xR[n NR] resulting from the difference between 
the selfconsistent relativistic density n R and the selfconsistent non-relativistic 
density n Nn and the contribution E~[n R] - E~t~[n n] arising from the relativistic 
modification of the functional form of the x-only functional. Using the LDA one 
finds for Hg AEx(dens) = - 22.303 hartree and AEx(fctl) = 6.569 hartree. Thus 
the dominating density contribution increases the x-only energy, while the 
functional correction leads to a reduction (as is immediately obvious from ~ ,  
Fig. 4.1) and both are of the same order of magnitude. Moreover, AEx(dens) is 
rather insensitive to the precise form of E~[n] due to the insensitivity of n R to 
z noted earlier. For instance the values of AEx(dens) from the LDA are almost Ux 

identical with the complete AE~ from the DFS approach ( - 22.421 hartree for 
Hg). AEx(fctl) , on the other hand, is exclusively determined by the form of 
E~[n]. The need to balance the contributions AEx(dens) and AE~(fctI) becomes 
even more obvious if a more accurate nonrelativistic E~R[n] like a GGA is used: 
For Hg Becke's GGA [10] (applied without any functional correction) yields 
AEL; = AE~(dens) = 24.978 hartree which overshoots the exact value by 5.015 
hartree to be compensated by AE~(fctl). 

For an evaluation of the exact A E~(dens) and AE~(fctl) one needs the set of 
nonrelativistic KS-orbitals which generates the ROPM density (required for 
E)'R[nR]). While the calculation of these orbitals is a rather complicated task and 
thus will not be addressed here, there is one type of system for which the exact 
AEx(dens) is identical with the complete AE~ as the functional contribution 
AE~(fctl) vanishes: For all two-electron systems the exact E~[n], 

e 2 ~ ~d3r ' n(_r) n(r') (5.6) 
j I r - r ' ]  

is identical with the exact E~R[n]. The OPM values for Hg v8+ can thus be 
compared with the corresponding LDA results, 

AE°eM(dens) = - 7.963hartree, AE°eM(fctl) = 0 

AEr~Da(dens) = - 7.198hartree, AE~O't(fctl) = 3.157hartree. 
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The error of 765 mhartree for AEx(dens) reflects the fact that the LDA is missing 
important nonlocal contributions responsible for the cancellation of the self 
interaction energy already on the nonrelativistic level. The much larger LDA 
error for AEx(fctl), on the other hand, directly shows that nonlocal corrections 
are even more relevant for the relativistic correction E~[n R] - ENxR[na]. Fur- 
thermore, the total deviation of 3.922 hartree in the LDA found for Hg v8+ 
agrees rather well with the deviation of 4.229 hartree for neutral Hg, suggesting 
that the major contribution to AE~ comes from the 1S1/2-electrons, while 
contributions of the order of 300 mhartree are due to the relativistic rearrange- 
ment of other orbitals. 

The last point becomes more transparent if one decomposes Av~(r) into its 
density and functional components (in analogy to Eqs. (5.3-5.5)), 

Av~(r) = Avx(r, dens) + dv~(r,fctl) (5.7) 

v U ( [ n R J ; r )  - V~([nNR];~ )  
Avx(r, dens)= VNxROI, M([nIVROPM];r) (5.8) 

v~([n R ];r)  - Vx ~" (In R ] ;r) 
Avx(r, fctl) = VUx,OPM([nUROPM];r ) (5.9) 

One finds that the oscillatory structure of Av~(r) observed in Fig. 5.1 is com- 
pletely due to the density correction Ave(r, dens), as can be gleaned from 
Fig. 5.3 is. As expected, the functional correction Avx(r, fctl) is only relevant for 
the high density small-r regime, i.e. the innermost orbitals. In this regime, 
however, the Av~(r) from the LDA is rather different from the exact OPM result. 
In order to demonstrate that both components of Av~(r) contribute to the error 
of the LDA it is again advantageous to consider Hg78 +: Similar to the situation 
for AE~ the exact Avx(r, fctl) vanishes. As is clear from Fig. 5.4 the LDA does not 
reproduce the exact AvLx(r). In particular, IAv~°a(r, fctl)] does not vanish but is of 
the same order of magnitude as the exact Av:,(r, dens). 

Consequently the origin of the failure of the RLDA for neutral atoms is 
twofold: The error is dominated by the self interaction of the 1S1/2-electrons 
which manifests itself mainly in the functional correction E~ In] - E~ R [n]. The 
smaller (but chemically equally relevant) error in the density components 
dEx(dens) and Av~(r, dens), on the other hand, is a result of the difficulties of the 
LDA to reproduce the shell structure of the exact density already in the 
nonrelativistic regime [59, 106]: The amplitude (not the location) of the relativ- 
istic shift of the individual shells becomes larger if the shells are more pro- 
nounced. While the first source of errors calls for improved, i.e., nonlocal, 
relativistic corrections to the x-only energy functional, the second problem can 
only be resolved by using a more accurate nonrelativistic starting point for 
E~[n] than the NRLDA. 

1 s The LDA-result for dvx(r, dens) is almost identical with the complete selfconsistent dvLx(r) from the 
DFS-scheme. 
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5.2 R e l a t i v i s t i c  L D A  for Er[n] 

We now turn to a brief discussion of the R L D A  for E~[n], which is the only 
density functional approximat ion for this quanti ty available to date. The trans- 
verse x-only energies calculated from the selfconsistent R L D A  densities are 
compared  with R H F  results [68, 48] in Table 5.5. The R H F  orbitals used for 
these energies [68] could be replaced by the R O P M  or R L D A  orbitals without  
significantly changing the resulting E~'s: For  Hg, for example, one obtains 
22.145 hartree by inserting the selfconsistent RLDA-orbi ta ls  into the transverse 
Fock  term. As pointed out  by MacDona ld  and Vosko [19] the R L D A  overesti- 
mates the exact E~" by about  a factor of  1.5. Moreover ,  in contrast  to the R L D A ' s  
error for AE~ the error for E~ does not decrease with increasing Z. Thus the 
R L D A  can only serve a qualitative measure of transverse x-only energies. 
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Table 5.5. Transverse exchange energies (E~) and its Breit approximation (E~ 'B'~u) from RHF- [68] 
and RLDA-calculations [36]. Also the total correction AE~ + Er~ is given (all energies are in 
hartree). 

Atom RHF RLDA 

e~ E~ .~'e' ~ + E~ E~ E~ ,'~'' ~E~ + ~ 

He 0.000 0.000 0.000 0.000 0.000 0.000 
Be 0.001 0.001 0.000 0.002 0.002 0.001 
Ne 0~017 0,017 0.002 0.035 0.035 0.028 
Mg 0.032 0.032 0.003 0.065 0.064 0.050 
Ar 0.132 0.132 0.014 0.249 0.248 0.180 
Ca 0.191 0.191 0.019 0.353 0.352 0.249 
Zn 0.759 0.761 0.131 1.322 1.312 0.920 
Kr 1.419 1.427 0203 2.401 2.373 1.586 
Sr 1.710 1.720 0.231 2.867 2.831 1.862 
Pd 3.290 3.318 0.503 5.358 5.263 3.399 
Cd 3.808 3.842 0.541 6.162 6.045 3.840 
Xe 5,711 5.775 0.687 9.089 8.877 5~43 t 
Ba 6,473 6.552 0,733 10,255 10.001 6.038 
Yb 13.897 14.148 1,846 21.557 20.778 12.355 
Hg 22,166 22.665 2,192 34.201 32.654 18.444 
Rn 28.676 29.397 2.028 44.3t3 42.046 22.964 
Ra 31,148 31.957 1.899 48.202 45.636 24,638 
No 53.576 55.248 1.154 84,987 79.083 41.085 

Furthermore, the rather subtle cancellation observed for the exact AELx and E~ is 
not found in the RLDA. The RLDA thus completely misrepresents the total 
relativistic correction to atomic exchange energies [36] (see Table 5.5). 

As is well known the Breit approximation to E~ is rather close to the full 
Ex r throughout the periodic table for both RHF [48] and the RLDA [97]. 
Taking into account the subtle cancellation between E r and AE~, however, the 
difference between E r and Er~ 'a'e" amounts to an appreciable percentage of the 
total AE~ + E~, at least for high-Z atoms. Furthermore, the RLDA for the Breit 
approximation leads to energies smaller than the E~ 'RLDA in contrast to the 
correct relationship. Thus while the error of the RLDA for AE~, i.e. in the 
nonrelativisitic (Coulomb) limit of the full photon exchange, is roughly 20%, it 
increases to about 50% for E~ 'nreu, i.e. the first order weakly relativistic correc- 
tion to the Coulomb interaction, and finally the RLDA even misses the correct 
sign for E~ - E~ "B'eu, i.e. all higher order relativistic corrections to the Coulomb 
interaction. 

The failure of the RLDA for E~'[n] is, however, not surprising in view of its 
RHEG origin. The finite speed of light plays a much more important role for an 
infinite system like the RHEG than for atoms: In the RHEG extremely distant 
points in space are interacting with each other so that the travelling time of 
photons between these points modifies the form of the long range electromag- 
netic forces (similar to the difference between Casimir-Potder and van der Waals 
forces [26]). The electronic density of atoms, on the other hand, is rather 
localised so that the actual propagation of photons as compared with the 
instantaneous Coulomb interaction can not have the same impact. 
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5.3 Relativistic LDA for E,. [n] 

Our review of the properties of explicit relativistic functionals is concluded by an 
examination of the RLDA for Ec[n] (using the RPA for the relativistic correc- 
tions, Eq. (4.10), and the parametrisation of Vosko et al. [70] for e~RUEO(n)). The 
RLDA correlation energies obtained by solution of (3.25) (using the RLDA for 
the complete vxL,) for a number of atoms are listed in Table 5.6 and compared 
with the usual quantum chemical correlation energy E~ c*, 

E~ cl = Etot - ~otl::RHt' -- AE  QE°. (5.10) 

Here the RHF ground state energy ,~totr'RnF is understood to include the transverse 
exchange energy contribution as well as the finite nuclear size correction and 
A E  QE° represents all quantum electrodynamical corrections (when extracting 
E~ot from experimental data also the finite nuclear mass has to be taken into 
account [107]). Consequently Eft ct contains all relativistic correlation contribu- 
tions. Unfortunately, except for two-electron systems, ER~ t is not identical with 
the corresponding ROPM ground state energy so that the exact density func- 
tional Ec does not exactly agree with E~ cx but is somewhat larger in magnitude. 
This small difference is, however, irrelevant for the present purpose, so that one 
may use E Rct as a reference standard 19. The same holds for the nonrelativistic 
quantum chemical correlation energy, 

= _ ~NRUV (5.11) E U c ,  E, o, " , 

with respect to the nonretativistic E~. Moreover, full CI results are only available 
for rather small atoms so that we resort to data of second order many-body 
perturbation theory (MBPT2) for E~ gct and for E~ ct [108] in the case of the 
more interesting large atoms. On the level of accuracy required for the present 
purpose the differences between MBPT2 and full CI energies are not relevant. 

Table 5.6 demonstrates once more the well known fact that the nonrelativis- 
tic LDA overestimates the exact atomic correlation energies by about a factor of 
2. Here, however, not the accuracy of the complete functional (4.10) is of interest, 
but rather the relativistic corrections A E  L and E/,  as the correction scheme 
(4.10) could be combined with more accurate nonrelativistic E~[n] like GGAs. 
Table 5.6 shows that both A E  L and E r are much smaller than their x-only 
counterparts. On the other hand, A E  L and E~" add up constructively so that the 
total correction A E  L + E [ is somewhat closer to AE~ + E r than the individual 
components: For Hg one obtains A E  L + E { = - 0.49 hartree within MBPT2 
compared with the exact AE~ + E r of about 2.19 hartree. Nevertheless, in 
absolute values the relativistic corrections to E~[n] are clearly less important 
than those to E~,[n]. 

1o Note that the presently remaining numerical uncertainty in the available CI-correlation energies 
is much smaller than the error of the RLDA discussed here. 
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Table 5.6, Comparison of LDA [36], CI (estimated from nonrelativistic Cl-calculations for the three 
innermost electrons and the experimental ionisation potentials of all other electrons [109] ) and 
MBPT2 [108] correlation energies for neutral atoms: EffR-nonrelativistic correlation energy, 
AE~-relativistic contribution in the longitudinal correlation energy, E r transverse correlation 
energy (in the case of the MBPT2 only the dominating Breit contribution to E r is given-all energies 
are in mhartrees). 

Atom - E~ g - AE~ - E f 

MBPT2 CI LDA MBPT2 LDA MBPT2 LDA 

He 37.14 42.04 111.47 0.00 0,00 0.04 0.00 
Be 94.34 224.44 0.02 0.02 
Ne 383.19 390.47 743.38 0.20 0.38 1.87 0.32 
Mg 438.38 891.42 0.75 0.57 
Ar 697.28 722.16 1429.64 0.84 2.60 7.92 1,89 
Zn 1650.61 2665.20 10.51 10.97 26.43 7.92 
Kr 1835.43 3282.95 11.39 19,61 41.07 13,10 
Cd 2618.11 4570.56 35.86 44.79 82.32 28.58 
Xe 2921.13 5200.19 37.57 64.73 108.75 39.27 
Hg 5086.24 8355.68 203.23 200.87 282 .74  113.08 
Rn 5392.07 9026.90 t95.36 257.00 352 .60  138.43 
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Fig. 5,5, Percentage deviation of the 
LDA for Ec[n] from MBPT2 results 
[108] for the Ne isoelectronic series. For 
E f  the absolute value of the error has 
been plotted (note the take out scale) 

Concerning the accuracy of A E ~  'LDA and E T'RLOA two features are immedi- 
ately clear from Table 5.6: On the one hand, the MBPT2 energies do not 
increase with Z as smoothly as the corresponding RLDA results. On the other 
hand, while the LDA results for AE~ agree with the MBPT2 values at least for 
some atoms, the magnitude of E r from the MBPT2 is not reproduced by the 
RLDA. It seems unlikely that the drastic deviation of the RLDA for E r can be 
explained by the fact that in contrast to the RLDA in the case of the MBPT2 
only the Breit limit of the full transverse interaction has been used, in particular 
in view of the similarity of Ex ~'~'e" and E~ shown in Table 5.5. Thus the overall 
relative error for AE~ and E{ in the RLDA is even larger than that for AE~ and 
E~. Note, however, that the underestimation of E~ r in the RLDA might be 
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reduced by inclusion of the relativistic corrections of order e* which are neglect- 
ed in the RPA. 

The inappropriate scaling of the RLDA with Z, and thus also with/~, becomes 
particularly obvious for fixed electron number, In Fig. 5.5 the percentage devi- 
ations of the RLDA for AE~ and E r are shown for &e Ne isoelectronic series. 
The error for the correlation energy in the RLDA shows little tendency to 
approach zero with increasing Z, indicating that the relativistic correction factor 
q~cgeA plotted in Fig. 4.4 is inadequate for electronic structure calculations. 

In summary, the RLDA addresses relativistic corrections to Ec[n] on the 
same limited level of sophistication as the NRLDA does for the nonrelativistic 
correlation energy functional. Even more than in the case of exchange, nonlocal 
corrections seem to be required for a really satisfactory description of (relativis- 
tic) correlation effects in atoms. 

6 Concluding Remarks 

On the basis of the rather limited applications of RDFT the following comments 
can be offered. 

The ROPM can be readily formulated and applied for the case of the 
longitudinal exchange in the no-pair approximation. It yields results for ground 
state and exchange energies as well as highest occupied eigenvalues which are 
very close to the corresponding RHF results. This demonstrates the possibility 
of approaching the exchange contributions (including the necessary self-interac- 
tion corrections) in terms of a local (i.e. multipticative) rather than a nontocal 
potential. The next goal is the inclusion of transverse exchange contributions in 
the ROPM scheme. 

Concerning the RLDA it is found that the errors already present in the 
nonrelativistic case are enhanced in the relativistic regime: The error of the total 
longitudinal exchange energy, which is dominated by its nonrelativistic ingredi- 
ents, is of the order of 10% in the small-Z regime and reduces to about 5% for 
heavier atoms. The relativistic corrections in the longitudinal exchange energy 
are, however, underestimated in magnitude by about 20 % and the transverse 
contribution to the exchange energy is overestimated by more than 50%. As 
both errors add up rather than cancel, the total relativistic correction to atomic 
exchange energies is rather poorly reproduced by the RLDA. This picture is 
confirmed by the local errors found for the longitudinal exchange potential. In 
order to improve the situation, it seems necessary to work towards a relativistic 
extension of the generalised gradient approximation, which proved to be quite 
successful in the nonrelativistic regime. 

The relative success of the nonrelativistic LDA is to some extent due to 
a fortunate partial cancellation of errors between the exchange and the correla- 
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tion contributions. As the importance of correlation effects decreases with 
increasing nuclear charge, this situation does not occur in the relativistic regime. 
For the present, the discussion of correlation effects was based on the RLDA 
form suggested by Eq. (4.10) which essentially contains a nonrelativistic func- 
tional in the LDA augmented by relativistic corrections within the RPA. The 
results obtained with this functional cannot be considered to be satisfactory. It 
remains to be investigated whether the two corrective options offered, (i) use of 
a more accurate nonrelativistic correlation functional, and (ii) inclusion of all 
relativistic correlation contributions of the order e 4 besides the RPA, will 
improve this situation. The next possible step, the evaluation of relativistic 
gradient corrections for the case of the correlation energy, would certainly 
constitute an extensive task, even on the lowest possible level. 

The investigation of the RWDA, be it in the simplest form on the basis of the 
x-only pair correlation function of the RHEG, demonstrated that the problems 
of the RLDA with the cancellation of the self-interaction and with the (related) 
asymptotic form of the x-only potential are only corrected in part in this 
approximation. On the other hand, the performance of this RWDA is definitely 
superior with respect to the relativistic corrections (near the nucleus). Thus 
further improvement might be possible if a refined relativistic pair correlation 
function is used. 

Quite generally, it must be stated that some additional effort is required to 
develop the RDFT towards the same level of sophistication that has been 
achieved in the nonrelativistic regime. In particular, all exchange-correlation 
functionals, which are available so far, are functionals of the density alone. An 
appropriate extension of the nonrelativistic spin density functional formalism on 
the basis of either the time reversal invariance or the assembly of current density 
contributions (which are e.g. accessible within the gradient expansion) is one of 
the tasks still to be undertaken. 

In addition, there is interest in further extending the discussion to a variety of 
situations, that have recently gained much attention in the nonrelativistic case, 
as time-dependent systems [49], excited states [45] or finite temperature en- 
sembles [110]. As an example of work along these lines we mention the gradient 
expansion of the noninteracting, relativistic free energy [110], leading to a tem- 
perature-dependent relativistic extended Thomas-Fermi model. 

Acknowledgements. We wish to thank A. Facco Bonetti, R.N. Schmid and 
Dr. H. Mfiller for very valuable discussions. Financial support by the Deutsche 
Forschungsgemeinschaft (projects En 265/1-1 and Dr 113/20--1)and the BMFT 
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Note added: After this manuscript was completed, a contribution presenting an 
orbital-dependent self-interaction correction for the relativistic LDA xc-energy 
functional was published [111]. 

47 



E. Engel and R.M. Dreizler 

7 Appendices 

A Relevant Aspects of Vacuum QED 

In the first appendix we outline some basic features of vacuum QED (without 
external potential) in order to establish our notation (adjusted to allow a direct 
comparison with nonrelativistic DF results) and to provide details of the 
renormalisation procedure for Greens functions and ground state energies 
utilised in Sections 2, 3 and the Appendices B, C. 

We consider the Lagrangian specified by Eqs. (2.1-2.6) without external 
sources, 

Vu(x ) = 0. (A.1) 

Due to the fact that the Lagrangian incorporates the creation and destruction of 
field quanta, not even the time-development of a single particle is a simple 
matter. The time development can be expressed in terms of the electron (fer- 
mion) and photon propagators,  which are defined as the vacuum expectation 
values of the time-ordered product of field operators. For the fermions one has 

Gv(x, y) = - i(0] T~(x )~0 : )10 ) ,  (A.2) 

and for the photons 

D~Y (x, y) = - ie 2 (0ITAU(x)A~(y)I0) .  (A.3) 

As a consequence of translational invariance both quantities are functions of the 
difference of the Minkowski coordinates only, so that their four-dimensional 
Fourier transform can be written as 

d4p e- ip~x-y~Gv(p)  (A.4) 

d4q e - i q ~ - r ~  D~"(q) (A.5) 
D~"(x - y ) =  j ( 2 ~  

The standard approach to the calculation of the propagators  (A.4, A.5) is 
perturbation theory with respect to the electron-electron coupling constant 

= eZ/(hc) on the basis of the interaction picture. Technically this results in an 
expansion of expectation values of interacting field operators in powers of 
expectation values of the free (or noninteracting) field operators ~o and i]~. 
The structure of this expansion can be summarised in a set of formal rules, the 
Feynman rules. For instance for the electron propagator  one obtains 2° 

2o The occurence of the denominator expression leads, speaking in diagrammar, to the elimination of 
all unconnected diagrams, i.e. it reflects the proper normalisation of Gv(x - y). 10o > represents the 
free vacuum, to be distinguished from the vacuum 10 > of the interacting theory. 
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Gv(X - y) 

• (0o t T~o (x) ~o (Y) exp [ - ie ~ d 4 z ~o (z)~o (z) ~o (z))]) 0o ) 
= - -  l 

(0otTexp[  - ie~d4z~o(Z)Ao(Z)~o(Z))]lOo) ' 

which allows an immediate expansion in powers ~f e. Each power introduces an 
additional integration ~ d4z (called loop integration), while (using Wick's the- 
orem) the corresponding integrands consist of three basic elements, i.e. the 
expectation values of the free field operators, 

G o (x - y) = - i (0o [T ~o (x) Jo (y)]0o) (A.6) 

D°'"V(x -- y ) =  -- ie2 (Oo[TA~(x)A~o(y)[Oo) (A.7) 

and their link, the vertex, 

? , t z t ~ ( a ) ( g  1 - -  Z 3 ) • ( 4 ) ( Z 2  - -  Z 3 )  , 

where the zi represent the coordinates of the three field operators linked at the 
vertex. For homogeneous systems this expansion is most easily performed in 
momentum space, leading to loop integrations over four momenta rather than 
space-time coordinates. In momentum space the free (or noninteracting) elec- 
tron propagator G °, which represents the e 2 + 0 limit of Gv, reads 

G°(P) p2 _ p +rn 2m+ ig (A.8) 

The form of the free photon propagator D°, depends on the choice of gauge, that 
is the parameter 2 in the Lagrangian (2.1). In Landau gauge, corresponding to 
the choice 2 = m,  one has 

q,q~ ~ D O - 4he 2 D°,,(q) = g.~ -q~ ) (q); D ° ( q ) -  (A.9) q2 + 

The standard decomposition of D ° v ( X - y )  into the nonretarded Coulomb 
(longitudinal) and the transverse contribution [29], 

DO,(x y) o L 0 T -- =D.;, ( x - y ) + D . ;  ( x - y )  (A. IO) 

o t. b(X o _ y0) 
D~,; (x - y) = e 2 go~,gov I x - y ]  ' (A.11) 

implies that the longitudinal part of o D,v(q) is identical with the Coulomb 
interaction, 

O , L  D,v (q) = go,,go~D°(q); D°L(q) = 4ne----~ 2 q2 • (A.12) 

The third basic element of the perturbation expansion, the vertex, which de- 
scribes the emission or absorption of a photon by a fermion (in lowest order), is 
given by ?, in our notation (as usual, four momentum conservation is automati- 
cally implied at the vertices). In diagrammar the free propagators and the simple 
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vertex will be represented by 

P 
G ° c o ( p )  = o . 3 (A.13) 

q 
iD~,(q),~ - - = p ~  u (A.14) 

u ~I-- P2 

where ~,/~ are the spinor indices. 
In the subsequent discussion we shall need the irreducible 2- and 3-point 

functions z ~, i.e. the electron self energy ~Vv (p), the vacuum polarisation Ilv, ,v(q) 
and the full vertex function Fv,u(pl, Pz), as knowledge of Sv(p) and 17v,,~(q) 
determines the corresponding propagators Gv(p) and Dv,u~(q) completely and 
Fv,~,(pl, Pz) represents the perturbative corrections to the free vertex y,. The 
connection between these quantities is established by the Dyson equations (see 
e.g. [26]) 

Gv(p) = G°(p) + G°v(p)Sv(p)Gv(p) (A.16) 

Dv, u~(q) = D°~q) + D°v(q) ll~~(q)Dv, a,.(q). (A,17) 

The relations (A. 16-A. 17) separate the nontrivial higher order contributions in 
the perturbation expansions for Gv(p) and Dv.u~(q) from trivial multiples of 
lower order terms, thus isolating the essential information contained in higher 
orders. These relations become particularly simple if (A. 16) is rewritten in terms 
of inverse propagators, 

Gv(p) -~ = G°v(p) - 1 -  Sv(p)  = ¢ -  m -  Sv(p) ,  (A.18) 

and if the tensor structure of H¢,~(q), 

l l  ~ (q) = (qZ g~  _ q~ q~)~ov(qZ), (A.19) 

which results from gauge invariance, is used in (A.17), 

quq~) - 4he2 (A.20) 
Dv,u~(q) = g,~ q2 //q2[1 + 4neZcov(q2)]" 

Moreover, S,v(p) and l 'v,,(p~, Pz) satisfy the Ward-Takahashi  identity (see e.g. 
[26]) 

, ~u ( A . 2 1 )  (p, - p~,)I v(P,P') = Sv(p')  - Sv(p),  

which also is a manifestation of gauge invariance. 

21 n-point functions are called irreducible if their diagrammatic expansions only consist of graphs 
which do not split into two pieces if one internal electron or photon line is cut. 
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One encounters ultraviolet (UV) divergent contributions to the electron and 
photon propagators as well as the vertex function already in the first order of the 
perturbation expansion. These UV-divergent first order contributions (l-loop 
contributions) correspond to the following diagrams for the irreducible 2- and 
3-point functions: 
The electron self-energy, 

S(Vl)(p) = p-q ~ q (A.22) 

the vacuum polarisation, 

V 

(q) = p (  ) p 4- q , (A.23) ~O~ 
- I l t v ,  p v  

and the vertex function, 

P2- 
r,( 1)i 
l v ,  u{Pl .P~)  = I~ k .  (A.24) 

Transcription of the diagrammar into explicit equations using standard Feyn- 
man rules (within the notation chosen here) yields 

= i ~j(--~4D°~.(q)?~'G°v(p) - q)7" (A.25) Z~l)(p) 

l l~ . )u~(q)= - i d p tr o o [7,,Gv(p)~'~ G v ( p  - q)],  (A.26) 

where the extra minus sign in (A.26) arises from the Feynnmn rule concerning 
closed fermion loops and the trace is to be taken in spinor space, as well as 

f d4k o o 
F # ? , ( p l ,  p z ) =  i j ( -~=)4O, , (k )~ ,OGv(p ,  - k)TuG°v(p2 - k )7  ~. (A.27) 

If one evaluates the integrals over the loop momenta one finds that neither of the 
quantities is well-defined. One method to endow these quantities with a meaning 
is the counterterm technique, based e.g. on dimensional regularisation (see e.g. 
[112, 26]). In this method one first evaluates the integrals (A.25-A.27) not in 
(l,3)-dimensional Minkowski space but in a (1, d-l)-dimensional space. The 
results evaluated for integer dimension can then be analytically continued to 
noninteger d, allowing to consider the physically interesting limit d --* 4. Using 
the abbreviation zl = (4 - d)/2 one finds for the integrals 2z (A.25-A.27) 

22 For brevity we suppress all problems related to infrared divergencies in the following. 
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e 2 
2; v, s~... (P) (A. 28) £P)(P) = I~in2F(A)( - I~ + 4m) + -m 

v,u~(q) = (q29.,~ - quq~)_ F(A) + v,s,.i,~t~ l j  (A.29) 

e 2 

- v , . , : i . i , :e l ,  PaL (A.30) 

where F(A) is Euler's F-function in which the UV-divergences of the loop- 
integrals are isolated, 

1 
r(A) 5 + . . . .  

while inside the finite remainders the limit d ~ 4 can be taken directly. These 
finite parts, which are not of immediate interest in the present context, corres- 
pond to rather lengthy expressions (for the static limit of oa~°~v,:,,,:,~2~J see 
Eq. (B.38)). The general feature that emerges from dimensional regularisation is 
the isolation of the divergent contributions to the integrals in question: In all 
cases one finds a simple pole structure in the deviation of the space-time 
dimensionality from d = 4. 2s For the discussion of the next step, the actual 
renormalisation, one starts with the unrenormalised Lagrangian density, that is 
the Lagrangian of the form (2.1-2.4) with the (finite) physical mass m and charge 
e and physical (interacting) field operators 

. . . . .  = m ,  e ) .  (A.31) 

As the 2- and 3-point functions N~) ), ir1~°)v,.~ and F~). calculated on the basis of 
this Lagrangian are divergent, it is necessary to add a so-called counterterm 
Lagrangian 

5YeT = £.q~((9, zi u, A, B, ...) (A.32) 

in order to eliminate the divergencies. The crucial observation for both the 
physical interpretation as well as the technical success of this at first glance 
somewhat artificial step is the fact that the divergent contributions to the three 
relevant functions, Eqs. (A.28-A.30), essentially repeat the forms of the corres- 
ponding free propagators and the free vertex: the divergent part of S~ ) is just 
proportional to ~ and m, but not e.g. t o  p2, the divergent part of H~,~u~ repeats 
the tensor structure of D ° .  Eq. (A.9), and the divergent part of F~), is propor- 
tional to the free vertex 7, (but not dependent on pu). Thus the contributions 
(counterterms) to be generated by (A.32) have the form of free propagators and 
the free vertex with modified physical constants m and e as well as modified 
normalisation. As a consequence the operator structure of the counterterm 

2s It is perhaps interesting to note that the divergent contributions to X~ ) and F~). satisfy the 
identity (A.21). 
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Lagrangian is identical to that of the initial Lagrangian (A.31), so that the sum 
&o .... .  + £Pcr can be combined in the form 

( ~ .=  ~ ...... + ~ e c T =  ~ . . . e .  , / ~ , ~ 3 L ,  m--~m, z2./~ / 

(A.33) 

Thus the renormalisation procedure simply amounts to a redefinition of the 
physical constants and operators in the initial Lagrangian, leaving the physical 
implications of this Lagrangian unmodified. 

This procedure is readily demonstrated (on the l-loop level) for the case of 
the "mass renormalisation'. Here one has with (A.18) and (A.28) 

G~)(P) -1 =I¢ 1 + I ~ 2 F ( A )  - m  1 +-4-~2F(A) 

- z~,)finite(p). (A.34) 

In order to compensate the divergent terms (in the limit d ~ 4), one adds to the 
electron part of the unrenormalised Lagrangian the counterterm Lagrangian 

2'e, cr = ~ ( x ) ( i A ¢ -  B ) ~ ( x ) ,  (A.35) 

so that the renormalised electron Lagrangian reads 

£,('e.. = ¢(x)(i(t + A)~?-  (m + B))~(x) .  (A.36) 

Evaluating the electron propagator on the one loop level as before (using the 
same X.P~.t) one finds to first order 

( e Z ) (  B e 2  ) 
G~.~R(p) - I  = p 1 + A + l~5~2F(A ) - m 1 + -- + r ( 3 )  

m 

- Z~lsi..<(p), 

so that the choice 

(A.37) 

e 2 e2m 
A - 16~2F(A) B - 4~r2 F(A)  (A.38) 

leads to the finite result 

(1) G~.~(p) 1 = p _ m - Zv . f i . .e (p) .  (A.39) 

In diagrammar the corresponding statement derived from the Dyson equation is 

- @  . + x ] 
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The additional diagram represents the counterterm contribution 

(I + A)l~ + m + B t~ + m 
(1 + A ) 2 p  2 - (m + B) 2 + ig, p2 _ m 2 + i~ 

_ ~ + r n  ¢ + m  
p2 - m i +  ie[ - A p +  B ] p  2 - - m 2  4- it; q- . . . .  

In fact, the choice (A.38) is not only motivated by technical necessity but rather 
results from an underlying physical requirement on the electron propagator: In 
order to describe real fermions, which satisfy the standard dispersion relation 
p2 = (pO)2 _ p 2  ----_ m 2 (with the finite experimental mass m) in the presence of the 
virtual photon cloud, the full electron propagator Gv.R (p) obtained from some 
Lagrangian of the form (A.33) with a priori arbitrary coefficients should reduce 
to the form of the free propagator G°(p) with physical mass m for on-shell 
momentum p2 = m z. Consequently the physical, i.e. renormalised, self-energy 
Z,V.R(p) has to satisfy the normalisation conditions 

d 
2v, R(P)lp=m = 0; -~2v,R(P)I¢=,,  = 0, (A.40) 

which (to first order) is achieved by the counterterm Lagrangian (A.32) with the 
coefficients (A.38). 

The form invariance of the Lagrangian under this renormalisation proced- 
ure, indicated in Eq. (A.33), can now be implemented by defining the wavefunc- 
tion (more correctly the field operator) renormalisation constant 

Zz = 1 + A, (A,41) 

and the corresponding bare field operator 

t~b(X) = ~ Z 2 ~ ( x ) ,  (A.42) 

as well as the bare mass 

1 
mb = ~ ( m  + B) = m - (Sin. (A.43) 

The renormalised electron Lagrangian (A.33) can then be expressed as 

~ , R  = C b ( x ) ( i ¢ -  mb)g)b(X), (A.44) 

i.e. the counterterms required for keeping ~r~v~.)R finite have been completely 
absorbed in a redefinition (or renormalisation) of the ingredients of the free 
electron part of ~9~'. In terms of Z2 and 6rn the resulting renormalised self-energy 
then reads quite generally 

2v.g(p)  = Z z [ Z v ( p )  - ,Sm] + (1 - Zz)(l~ - m), (A.45) 
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SO that the first order counterterm is given by 

A s h ' ( p )  = - ,~rn"~ + (1 - z~l~)(~ - m) 

e 2 _ f 4 -  d'~ e 2 / ' 4 -  d \  
- l ~ 2 1 ~ T ) t ~ - - 4 - ~ z F ~ J m .  (A.46) 

An equivalent procedure can be carried through for ,,r~t°~v,~ addressing Lay as 
well as F~.~ addressing ~int. The argument can be extended to any order, after 
discussion of overlapping divergencies, which occur for instance in the diagram. 

+ 
For the subsequent discussion we also note the normalisation condition for the 
vacuum polarisation kernel cov, R(q 2) : In order to obtain the physical charge 
e for real electrons, i.e. to reproduce the Coulomb interaction for well separated 
electrons, ~Ov, R(q 2) must vanish for vanishing momentum, 

e~v.R(q 2 = 0) = 0, (A.47) 

which is immediately obvious from the Dyson equation (A.20) for the full 
photon propagator. Consistent with (A.29) the counterterm for Fl~°~(q)  reads 

1 F / 4  - d \  
A l l ~ , ~ ( q )  = - (qZy~,~ - ql, q~) l - ~  2 ~ - - - ~  ) . (A.48) 

The final form of the fully renormalised Lagrangian of QED is 

Z~aR = ~ { [¢b(X), (i(~ -- mb -- eb ~ ( x )  -- eb4tb(X))~b(X)] (A.49) 

+ [ ¢ b ( x ) ( -  i ' ~ -  m b -  eb ~ ( X ) -  eb41b(x)), ~b(X)] } 

1 ^ ^ 2 
.7  Fb u~(x)Fg*(x) -- ~(~3,/i~,(x)) 2 
IO1"C ' 

= ~-~2 {[~(x), ( i ~ -  m + b m  -- e V ( x ) -  e ,~ ( x ) )~ (x ) ]  

+ [ ~ ( x ) (  - -  i~ - -  m + am - e V(x)  - eA (x ) ) ,  ~ ( x ) ]  } 

Z3 
(x) ~"~(x) - ~ (a~ ti ~'(x)) 2 , 

167r 

where we have included the static external potential in order to indicate that it 
has to be renormalised in the same spirit as the quantised photon field. The 
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physical fields and constants are related to the bare quantities by 

~b(x) : \ /Z2~(x)  (a.50) 

,4~,(x) = \ f ~  A~(x) (A.51) 

V;(x) = w( , , )  (A.52) 

Z1 
- -  e (A.53) 

eb -- Z 2 ~  

mb = m -- am (A.54) 

The renormalisation constants Z1, Z2, Z3 and am have to be understood as 
functions of the finite physical charge e and mass m of the electrons which can be 
constructed order by order in the perturbation series. It is important to notice 
that these constants are uniquely determined by vacuum QED without any 
external potential. They do not depend on the specific external potential present. 
If one bases the perturbation expansion on the Lagrangian (A.49) all Greens and 
n-point functions of the theory (defined in terms of the physical fields q~ and ,4~') 
are finite. 

B Relativistic Homogeneous Electron Gas 

In this appendix we summarise some properties of the relativistic homogeneous 
electron gas (RHEG) in order to illustrate the renormalisation of ground state 
energies (indicated in Section 2) and to provide the details for the RLDA and the 
relativistic gradient expansion (RGE), which are discussed in Section 4 and 
Appendix D, respectively. For simplicity we restrict the discussion to the 
unpolarised RHEG. 

We start by noting the basic difference between the perturbative approaches 
to the RHEG and the QED vacuum (discussed in Appendix A). As a conse- 
quence of the difference between the ground state I tbo > of the RHEG and the 
homogeneous vacuum 10 > the fermion propagator 

G(x, y) = - i(4~olT~(x)~(y)lCbo), (B.1) 

already differs from Gv on the noninteracting level, In our notation the non- 
interacting fermion propagator of the RHEG is given by 

G°(p) = G°(p)+ G°(p)= G_(p) + G+(p) (B.2) 

~+ m O~k G°(p) = 2rcif(p ° - E p ) ~ - p  t r - IPl) (B.3) 

G (p) =/~- + m - 1 (B.4) 
2Ep p O + E p _ i e  

G+ ( p ) -  ~+ + m ~ O ( I P l -  kr) O(kF --IPl) -] (8.5) 
2Ep r i t e 7  + 7 7 j '  
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where Ep -= x/-p 2 + m z,  pU_+_ = ( + Ev ' pi) and the Fermi momentum kF is related 
to the electron density no of the RHEG as usual, no = k~-/(37t z) • Here two 
alternative forms have been listed, the first one emphasising the relation between 
G°(p)  and the vacuum propagator G ° ( p ) ,  Eq. (A.8), the second one visualising its 
decomposition into the electron (G+) and positron (G_) contributions. Note 
that due to charge conservation the density of the RHEG is not changed by 
switching on the electron-electron interaction, so that no also represents the 
density of the interacting RHEG and no = kFa/(3r~ 2) then relates the interacting 
density to the noninteracting kF. Diagrammatically the full G°(p) ,  Eq. (B.2), will 
be represented by 

G ° ( p )  = i (B.6) 

in the following. 
While the other two basic elements of perturbation theory, the free photon 

propagator (A.9) and the simple vertex, remain unchanged, it seems worth 
pointing out that the full photon propagator 

D~v(x, y)  = - ie 2 ( ¢b0 [TA u (x)Av(y)[ • o ) ,  (B.7) 

and the full vertex function do not: In the case of the RHEG not only virtual 
electron-positron pairs screen the bare interaction but also virtual electron-hole 
pairs. 

B.1 Response Functions 

Most information concerning the RHEG required in the present context is 
contained in the response functions of the RHEG. In our notation the time- 
ordered current response functions (n-point functions) are defined as 

- 1  '~ ~" ,A,) t~ x , )  = ( -- i)" ( ¢ b o l T j , , , ( x l ) . . . j , , , ( x , ) [ ~ o )  , (B.8) Z,#l ... ,u. ~"~1, • " 

where the current deviation operator j~ is given by 

j,~ (t, r) = L (t, r) - ( 4 0 I L (t, r)[~ o > = L (t, r) -- Ju (r). (B.9) 

For the time-independent systems of interest here a partial Fourier transforma- 
tion of )~,~...u. is advantageous, 

' ,  . . . .  ' ° " .  

"'"'""~ *"* j 2rt "'" j 2n 

x 2ha(col + ... + (") - (Dn) •,q ..,u. (O31, r l  . . . .  (Dn,¥n). 

(B.10) 

The static response functions utilised in Appendix C are then obtained by taking 
the zero-frequency limit, 

Z(,) i ,  r , )  = ,,("~ i , O, r l ; . . c o ,  O, r , ) .  (B.11) 
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For the case of the RHEG further Fourier transformations is useful, 

d 3 ,,1,) , ,o r,  ; o f d 3 q ,  f a - q .  pir,'q, + + ir.'q. .. q ,  , r . )  = .. *'" 
, . , , . . . , . , , , ,  . 3(2 ) 3 -  

X (2rC)3~(3~(q 1 + ... + (n) q.)z~,. .4, .(ql . . . .  q . ) .  

(B.12) 

Gauge invariance then implies the transversality of the X~)  u. with respect to all 
arguments [113], 

qU, ~,(,) l~ (B.13) i .(.m..,.,...t~.~'/l . . . . .  qi . . . .  q.)  = O. 

In the following the connected contributions of the Z ~, for which all external 
vertices are in some way linked to each other, will be denoted by g~ "), while the 
linear response function of the RHEG will be abbreviated by Zu~(q) for brevity. 

As a consequence of (B. 13) and the Dyson equation for ZUV(q), 

Zu"(q) = lI~'*(q) + HUP(q)D°z(q)zZ~(q) • (B.14) 

the irreducible 2-point function HU"(q) also satisfies the transversality relation, 

quHU~(q) = O, 

which essentially determines its tensor structure. 
polarisation tensors 

- - 1 (  }qZ)2 q2qOqj 
P~'(q) = qZ qZ ~ q qO ql (qO)2 qi qJ/l 

(B,15) 

,(; o ) 
p}v(q)  = ~ q2 gij + qiqj , 

(giJ= --3011"~(q)can be written as 

n ." (q)  = P [ ~ ( q ) n L ( q ) -  e~?(q)nr(q). 

For convenience, we note some useful properties of P[YT(q), 

p~ p~ ;~ 
L,*(q) L,U(q)= PL, u(q) 
). v A Pr .~ . (q)Pr ,  u(q) = Pr ,u (q )  

;~ p~ Pr,~(q) L,u(q) = 0 

po q2 
PL, o(q) L.u(q) = -- ~ P ~ , u ( q )  

q~q" 
P ~ ( q )  + P ~ ( q )  = gU~ -q2 

P~ , . (q )  = 1 

P~,u(q)  = 2. 

Introducing the (4x4) 

(B.t6) 

(B.17) 

(B,18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 
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Decomposing II"~(q) into an electron gas (D) and the vacuum (V) component, 

IP'~(q) = I I~(q)  + I l~ (q)  (B.26) 

HL(q) = l lL ,  o(q)+ l lv(q)  (B.27) 

HT(q) = IlT, o(q) -- l lv(q) ,  (B.28) 

the vacuum contribution can be recast in the form (A.19), with the polarisation 
function Hv(q) given by 

Ilv(q) = q2 Ogv(q) • (B.29) 

Using the polarisation tensors (B. 16, B. 17), the free photon propagator (A.9) and 
the longitudinal and transverse polarisation functions IlL/T(q) the Dyson equa- 
tion for X"~(q) reads 

IlL(q) Hr(q) 
D O" "/7 " ,PT(q). (B.30) Z"~(q) = 1 - D ° ( q ) i l L ( q ) P ~ ( q ) -  1 + [q) T[q} 

The full photon propagator D"*(q) can be directly obtained from the Dyson 
equation (A.17) (which also holds for the RHEG) by insertion of (B.18). For 
a discussion of the renormalisation of DUV(q) it is instructive to rewrite the form 
corresponding to (B.30) by introducing the full vacuum photon propagator, 

D°(q) 
Dr(q) = 1 - O°(q)Hv(q)" (B.31) 

which allows to 'decouple' the screening effects entirely due to the vacuum from 
those originating from the actual electron gas, 

Dr(q) Dr(q) 
. . . . . .  n~v(q) + n~-"(q). (B.32) 

D*'~(q) = 1 - l~VlqlllL, o~ql 1 + Dv(q)HT.o(q) 

At first glance this form seems to suggest that D~'~(q) is UV-finite as soon as 
Dr(q) has been renormalised, which amounts to replacing Dr(q) by Dv,R(q). 
However, IlL/r,o(q) also contains UV-divergent subgraphs. The following 2- 
loop contribution may illustrate this point, 

Replacing G o by G ° + G ° one recognises that besides the obvious pure vacuum 
loop absorbed in Dv also mixtures between the first order vacuum vertex 
correction loop (A.24) and GO-type propagators occur. The counterterms re- 
quired to keep such subgraphs finite are, however, completely determined by 
vacuum QED: Similar to the renormalisation of overlapping divergencies each 
vacuum subgraph in a (larger) non-vacuum diagram has to be supplemented 
individually by the corresponding counterterm (this also holds for multi-loop 
vacuum subgraphs). The same procedure applies to ff~(q). 
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We also indicate the purely longitudinal limit of Z"~(q), 

FILL(q) 
" "" o , P~)'(q) - l l rL(q)P~(q) '  
ZL (q) = 1 -- D (q)HLL(q) 

(B.33) 

where HLL/TL(q) is obtained from HL/r(q) by replacing all internal photon 
propagators by D°;L(q) (note that in the denominator D o (q) appears rather than 
D°(q) due to the properties of P[~(q), i.e. Eq. (B.22)), 

For the discussion of inhomogeneity corrections to the RLDA one also 
needs the inverse response function L~, ~ (q), at least in the static limit, 

)~- ,,U.(qO = O,q) = -- gU~D°(q) + I1- "~'~(q ° = O,q) 

H 1,,~(qO = O,q) = 

I1L(O,q) 

0 

0 

0 

0 0 0 

( qiqj'] - 1  
gij q_ q2 ] Ftr(O,q) 

(B.34) 

(B.35) 

As far as explicit approximations for the polarisation functions IlL/r(q) are 
concerned only very little is known, even in the static limit. The complete 
frequency dependence is available for the noninteracting limit r~(oL • • L/~ (q), i.e. the 
relativistic generalisation of the Lindhard function [95, 114]. In addition to its 
vacuum part (A.26) one has 

(o) f ~ tr [},uGt~(p)7~GD(p - q)] HD.,~(q) = -- i d4P o o 

f" d4p 
-- i J i  ~ tr [7.G°v(p)?~,G°(p - q)] 

( d4P o o 
- i j(-g~s~)~ tr [y,,GD(p)7~Gv(p - q)] 

d4P o , o 
# -- i J i ~  tr [7. G + (p) ?~ G + (p - q)],  

where it has been emphasised that the no-sea approximation is not just obtained 
by completely neglecting the 'positron propagator'  G_(p) in the perturbation 
expansion (which would constitute the no-pair approximation for Hk~r ). Rather 
the no-sea approximation for any given diagram contributing to H.~ is defined 
by neglecting all those contributions to each fermion loop inside the diagram 
which do not vanish in the limit kF ~ 0. The static limit of//~)uv and its small-q 2 
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expansion are given by (Q = Iql/(2kv)), 
HL°~o(0,q) (B.36) 

mkF{4 ~flQZarsinh(fl ) 1 tt , z  2 2 I I + Q  
- -  2 r c 2  ~ r / -  + ~ f l~ tr /  - 3fl Q )In 

z 2),/2 (~+fl2Q2),/Z+qQ } 
1 (1 - 2flZQ2)(1 + fl Q In flZQ2)l/2 - 

- 3 fl2Q + -rio 

- m k v r / { 1 - ~ [  l ~ z  + 2 ~ a r s i n h ' f l ) ] Q 2 - 1 ~ [ 1 - 4 f 1 2 ] Q ' +  ""} 

II~.,'o(0,,)= -/-/~°.~(0, q)--~2q{l + 1 - 0 2 "  1 + O  (B.37) 
mkerl 

- - , / ~ 2  { -- ~arsinh(fl)Q 2 +  

e 
ll~')"(O'q) = ~ (5  - f l ~  ] [_ '  

× lnlt t + B2Q2) ~/2 

1 q4 
"JV -*-~ 

60n 2 m 2 

where 

[~2 Q4 + ...} 

(1 + f12Q2)l/2 
2flQ 

(B.38) 

1 

fl - (3n2n°)3--; r/= (1 + f12)~. (B.39) 
m 

Note that quite generally one has 

lim Hv, R (0, q) _ 0 (B.40) 
q2~o q2 

due to the on-shell normalisation condition for COv, R, Eq.(A.47). Beyond the 
noninteracting limit only the vacuum part of the first order (2-loop) contribution 
to the polarisation function [115, 116] has been evaluated. Moreover, the 
screening length IIL,o(O, 0) is related to the energy density via the compressibil- 
ity sum rule [117], 

d 2 1 
dnZo [ts(n0) + exc(n0)] = HL, o(0,0)' 

so that the long wavelength limit of higher orders of//L,D can be obtained from 
the associated contributions to exc(no). Finally, in the context of the quark-gluon 
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gas the high temperature limits of certain classes of higher order diagrams have 
also been examined (see e.g. [118]). These results are, however, only of limited 
value in the present context aiming at T = 0 and m ~ 0. 

B.2 Ground State Energy 

The ground state energy of the RHEG constitutes the basis for the RLDA and 
also provides an instructive example for the renormalisation procedure de- 
scribed in Section 2 and Appendix A. We start by emphasising that the ground 
state energy is defined with respect to the vacuum energy as [96, 113] 

ERItEG A ~,RnEO (B.41) ,o, = ( 4 ' o l / ~ " " ~ G r ~ o ) -  ( O l t t g " ~ l O )  + - - , o ~  , 

where A E~, hE° represents the additional counterterms beyond the energy of the 
homogeneous vacuum, (0[Ha"E°[0) ,  which are required to keep --to,vRnE° UV- 
finite. Moreover, in the case of the RHEG one deals with the energy density 
corresponding to (B.41), rather than the energy itselfi 

The kinetic energy density of the noninteracting RHEG can be evaluated 
without addressing the UV-renormalisation procedure [12], 

t~(no) = (~ol [¢(x) ,  ( - iT'V + (1 - 7°)m)~(x)]ldPo) 

- (0l[¢(x) ,  ( - i?'V + (1 - 7°)m)~(x)] j0)  

= ilim~tr[( - iy'V + (1 - "/°)m)G°(x - y)] 
y ~ X  

= tm~uE61n ~ ~m (B.42) s I, O) s,O~,,P! 

tNRltEGt, ~ 1 k~ (B.43) 
s v ' o p -  10~z2m 

10 [- 1 3 1 3 ] (B.44) q~.o(fl) = ~ [ ~ ( f l q  + f l3r/-  arsinh(fl)) - ~/? _ '  

where the electron rest mass has been subtracted. Taking into account the 
homogeneous positive charge background the (direct) Hartree energy of the 
RHEG vanishes. The exchange-correlation energy can be written in terms of 
a coupling constant integral over the current-current response function [93, 98], 

-2i fo " _~ d4q DO(q)[Z~(q) - Z~a(q)] + AI~ gnE° (B.45) 

where X~(q) is given by (B.30) with the electron-electron coupling strength 
# v  Xc e 2 replaced by ,~e 2, )~v.~(q) represents its vacuum limit and AE Rut° is identical 

A I~'RHEG with the total counterterm ~ o ,  • 
The first order term (in e 2) in (B.45), i.e. the exchange energy of the RHEG 

(according to Eq.(3.32)), is the most simple energy contribution for which the 
UV-renormalisation is nontriviat. The basic problem associated with the renor- 
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malisation of energies (rather than Greens functions) is that energy contribu- 
tions can not be rewritten entirely in terms of renormalised n-point functions: At 
least one overall loop integration remains to be treated separately (as e.g. the 
q-integration in (B.45)), even if one takes into account the subtraction of the pure 
vacuum energy. As an additional complication, this outermost loop integration 
often leads to overlapping divergencies. In fact, visuatising the exchange energy 
graphically 

-2iex(no)=~--@ (B.46) 

one realises that three divergent l-loop subgraphs contribute to the (left) 
electron gas loop, 

While the UV-divergence of the H~-subgraph is eliminated by the subtraction 
of the vacuum exchange energy, the two (identical) self energy subgraphs require 
additional counterterms. As one is facing overlapping divergencies in (B.46) each 
divergent subgraph has to be renormalised individually. Of course, only the 
vacuum contribution .to Z "m requires renormalisation, the corresponding 
counterterms being well known from vacuum QED, 

i ~ d4q 
ex(no) = ~ j ( ~ ) 4  D°,(q)[ H(°)'U~(q) - H~)'U~(q)] (B.48) 

• C d4p 
-- ' J ~ tr[ G° (p)AZ~)'(P)] • 

As discussed in detail in Appendix A the self-energy counterterm AZ~))(p) is 
defined so that the renormalised vacuum self-energy S,v, R(P) (A.45) satisfies the 
standard on-shell normalisation condition (A.40), i.e. on the l-loop level one 
obtains (A.46). Using (B.2) ex(no) can thus be rewritten as 

1 ( d 4 q  ('d4p o o 
ex(no) = ~ J ~  J(5~np D.~(q)trE Go(p + q)y ,  GO (p)7 ~] 

( d4p 
- j(-~n)4 tr[G°o(P)Sg.~(P)] . 

The second term vanishes according to Eqs. (B.3, A.40), 

[(/~ + m)Zv,R(P)]p2 = ~2 = m 2 = 0, (B.49) 

so that the standard renormalisation scheme eliminates all vacuum corrections 
to ex(no) without the need to apply either the no-sea or the no-pair approxima- 
tion. The first term, which is also obtained within both the no-sea and the 
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no-pair approximation for e~(no), can be evaluated straight-forwardly 
[93, 94, 95], 

e~(no) = e~Rnea(no)eP~,(fl) (B.50) 

e 2 
e~g"eG(no) = 4-~3 kr4 (B.51) 

J q~x(fl) = 1 - 2 [ fl flz arsinh (fl) . (B.52) 

Using the decomposition (A.10) e,,(no) can be split into a longitudinal and 
a transverse contribution [19, 95], 

e~/r (no) = ~SRHEa~. ~.nL/r ( m 

4~(fl) = 6 + ~ + arsinh(fi) 

2q 4, , , ~ , n t , , - ~ ( ~  arsinh(fl'~2fi2 ] 

1 1 2~ arsinh (fl) 
~ f ( f l ) -  6 3fi 2 

2r/4 (r/ arsinh(fl)'] 2 
+ ~ ln(~/) - 7i ~-g // . 

(B.53) 

(B.54) 

(B.55) 

The UV-renormalisation procedure is particularly involved for the correla- 
tion energy e .  Most of the relevant counterterms provided by AE~ff EG, however, 
are already included if the basic expression (B.45) is understood as being written 

p.V in terms of the renormalised response function ZR, a(q), 

e=(no) = ~ d2 D ° ~ ( q ) [ z ~ ( q )  - ZV,R,a(q)] + . . . . .  (B.56) 
j(2r0 

where the exchange energy has not been subtracted for brevity. The only 
remaining divergence (to be eliminated by A/7~ff ea) originates from the outer- 
most loop integration in {B.56). It is most easily discussed within the so-called 
random phase (or ring) approximation (RPA) in which HL/r is approximated by 
its l-loop contribution [93, 119, 96], 

e*R~ea(n°) = 5 dzj  1 - - ~ 6 ~ ( q )  - 2 1 + .; tD°(q)H~)(q) 

D°(q)n~,)g(q)  ] AffRnEa. R*'a 
--  3 1 - - ~ ( q ) J  + ~ ' 
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exc (no) i.e. in addition to the exchange graph (B.46) included for brevity, Rea 
consists of the following diagrams, 

+ + . . .  

where the coupling constant integration is understood implicitly. The latter, 
however, can be easily performed to yield 

i d'*q 
e~ (no) = [ln[1 - Dv, R(q)Ilk°~(q)] (B.57) 

+ 2In [1 + D v . . ( q ) H ~ ( q ) ] ]  + AF.~fl EG'Re'4. 

At this point one usually defines the vacuum-screened exchange energy, 

i ~ d4q o 
e~,~(no) = -~ J ~ E D v , . ( q ) l I ~ , b ( q )  - 2Dv,.(q)II~.,)o(q)] (B,58) 

+ A ffRnEG, Rea 

graphically given by 

O 
which requires renormalisation similar to its unscreened counterpart and, from 
a rigorous DFT point of view, is no longer a pure exchange contribution. 
Subtracting ex.~(no) from e~eA(no) one ends up with a UV-convergent correlation 
energy [119], 

~eA i ~ d4 q 
= - - Dv,~(q)HL.D(q)] (B.59) ec.s (no) 2 ](2~z) 4 [ ln[ l  (o) 

(o) + 21nil + DV,R(q)IIT, D(q)] 
(0) + DV,.(q)IIL,  D(q) -- 2 D v , e ( q ) H ~ ( q ) ] ,  
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as the lowest order diagram in (B.59) already contains ~v¢o~ --L/r,o two times. 24 
Diagrammatically (B.59) is given by 

where the D inside the electron-loops indicates that only the electron gas part 
F / ~  has to be inserted here. Finally, one can define the no-sea approximation 
of (B.59) by neglecting the screening effects due to the vacuum 25, 

i ~ d4q ~1 ~1 e~'ReA(no) = -- -~ J ~  ~ n l -- D°(q) ll~°)o(q)[ + D°(q)Fl~°)o(q)} 

(B.60) 

f d4q e['ReA(no) = - i (~n)4 {ln ll + D°(q)II~,)o(q)l - D°(q)H~)o(q)},  

(B.61) 

where e~ea(no) has also been decomposed into the longitudinal and the trans- 
verse parts using (B.33). e~/r'ReA(no) has been evaluated by Ramana and Ra- 
jagopal [98] as well as Mfiller and Serot [99]. The high-density (ultra-relativis- 
tic) limit e~ eA is [93, 96, 99] 

e 4 
e~ eA (no) ~ ~ k4( - 7.796). (B.62) 

/~>>1 

In order to arrive at the complete the RPA + ,  which we understand as the 
combination of the RPA with the remaining second order (e 4) correlation 
contributions, the two second order exchange diagrams, 

(B.63) 

Z4After Wick-rotation of qo in (B.59) one e.g. finds H}°)o(q, iqo ) ~ (qZ+q2o)-I and 
H~v0)R(q, iqO) ~ (q2 + qo 2)lnlq2 + q021 for large qO and I ql so that two factors of H~°)o(q, iq °) together 
with the required photon propagators are sufficient to insure UV-convergence of the outermost loop 
integral. 
2SNore that the definition of the no-sea approximation for (B.45) is somewhat arbitrary. As the 
guiding principle we have chosen to neglect all closed pure vacuum electron loops wherever they 
occur inside a diagram. 
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have to be added to ~RPA In contrast to the nonrelativistic situation the two 
right hand diagrams do not vanish. Both types of diagrams require renormalisa- 
tion beyond the subtraction of their vacuum limit shown in Eq.(B.63). The 
complete density dependence of these diagrams is not known. In the ultrarelativ- 
istic limit one finds for the sum of both graphs (the individual contributions are 
not gauge invariant) [96] 

-'~ e4 
et~X2)(no) >>l 1-~4 k4( - 3.18 _+ 0.12), (B.64) 

so that their contribution constitutes about 40% of the RPA in this limit. 
One can also analyse the 2-loop contribution to the screened exchange 

energy (B.58), 

which in our definition is beyond the no-sea approximation. Its ultrarelativistic 
limit has been calculated by Freedman and McLerran [96], 

e(2)~. ~ e 4 v4( ~ )  
x,,,,,o, ~ ~>>1 1--f~,k I n ( e # ) - - -  • (B.65) 

In the extreme high density limit ,,~2) thus dominates over all other known 
xc-energy contributions. Note, however, that the densities required for (z) ex, s to 
be of the same order of magnitude as e~ eA +, i.e./~ ~ 103, are not relevant for 
electronic structure calculations. 

No calculations ofe~ beyond the RPA + are found in the literature. There is, 
however, a rather direct argument [99], which shows that the diagrammatic 
contributions discussed here are at least dominant in the high-density limit: As 
the relevant parameter for this limit is/~, Eq. (B.39), it is completely equivalent to 
the zero mass limit. Taking the zero mass limit already from the very outset, i.e. 
basing the perturbation expansion for E~c on an electron propagator G °, Eq. 
(B.2), with m = 0, one can scale all loop-momenta in any given diagrammatic 
contribution to (B.45) by ke and thereby extract an overall factor of k~. The 
remaining Feynman amplitudes are dimensionless and consequently all dia- 
grams give contributions which are proportional to k~. The relative importance 
of the individual diagrams is thus essentially determined by their propor- 
tionality to ~, apart from factors of ln l kv/m[ introduced by the renormalisation 
procedure (using m as natural renormalisation point) for vacuum parts of the 
diagrams. Therefore one would expect the RPA + contributions together with 
e(~, Eq. (B.65), to be a rather accurate representation of Exc for high densities 
1 <</~<< 10 3. 
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B.3 Pair Correlation Function 

The relativistic pair correlation function 9 is defined in complete analogy to its 
nonrelativistic counterpart, 

lim i z ° ° (x ,  y) - no3(3)(x - y)  = no[ ,q (x , y )  - l]no,  (B.66) 
3; ° -7 X ° 

which is an alternative form of Eq. (4.11) for the case of the RHEG. For 
relativistic homogeneous systems 9 in general depends on two variables, i.e. 
kF and lx - Y], and two parameters, i.e. the coupling constant e 2 and the energy 
scale m. In the case of the RHEG, however, only its x-only limit (zeroth order in 
e 2) has been evaluated so far (compare the recent Monte Carlo study of 9 for the 
N R H E G  [73]). Thus while the nonrelativistic 9~xRneG ( x ,  y )  is a function of 
z = kFtX - - y ]  only, 

9 ~J ' (z ) ]  2 (B.67) 9~RHE~(Z) = 
1 - 2 l _  z J '  

the corresponding x-only pair correlation function of the RHEG [102, 19], 

9 1 1 (  ~, j i+ , ( z ) ( f l ) z i (2 /+  1)"'] 2 (B.68) 
9RUE~(z ,k~, )= 1 - - ~  i~O Z,+I \ q J  2 i + 1  J 

[{2( ~ ji+2(Z)(fl~2i(2i + 1 ) ! ! ~ 2  

in addition depends on ft. The result (B.68) has been obtained within the no-pair 
approximation, i.e. 

i 2 ~ a xl e i  q . (x - y) d¢P o 
9~ uE~ = 1 - n-~ J(2~z)" ~ tr [Yo GD(p)Yo G ° ( p  - q)]. 

The series representation (B.68) of 9~ uE° is not very suitable for actual 
applications of the RWDA. A simple and reasonably accurate fit to yx-Rnto [92] is 
based on its form for z = 0, 

3 gllneG "O k ~ = - 
:, t ,  v; 4 

with the limits 

1 ~RnEG'o k~.) lira y~ ~ , = 
/ ~ 0  

3 
lim gRHE~ (0, k~) = 

9 1 1 /  arsinh(fl) 12 ' 
16 flz f13 (B.69) 

(B.70) 

(B.71) 
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(B.71) may be interpreted as a consequence of the relativistic mixing of spin 
states [102]. The decreasing depth of the exchange hole g~HeG _ 1 with increas- 
ing/3 apparent from (B.70, B.71) is compensated by a broadening of the 'width' 
of the exchange hole (compare [102, 19]) in order to satisfy (4.13) in the 
homogeneous limit, 

zZdz[g~nE~(z,  k v ) -  1] = - 1. 

The scaling behavior required for (B.72) suggests the ansatz 

o~"(z,k,,,)= 1-  c,(/3) L c ~ -  j 

1 9 [ r/ arsinh(fl) ~z 
c,(/~) = 7 + ~ ~ /3' 1 

l 
C 2 ( / 3  ) = C1( /3 )3  , 

(B.72) 

(B.73) 

(B.74) 

(B.75) 

which not only approaches g~gnEG(Z) , Eq. (B.67), for vanishing fl, but also 
-Zi"z kv) from satisfies Eqs. (B.69, B.72). The percentage deviation of yx t ,  

g~nEG(Z, kr) is plotted in Fig. B.I. In fact, even in the limit/3--, oo in which 

9 r{2 j l (z )  jo(z) 2 2 )2 (j ,(z) '~2] 
g~"~G(z, oo ) = 1 - 4L \ Z2 7 {" -~ z2) -t- 75 °F ~ Z2 j j 

(B.76) 

the maximal error does not exceed 1%, while for the more relevant moderately 
high densities (fl < 0.5 - at the r-expectation value of Hg 78+ one finds/3 = 0.6) 
the error reduces to less than 0.2%. 

1.0 I I I I I 
0 .8  -- 

-0 .4  0 .6  0 

0 .4  / 

0 . 2  / 

-0 .2  

~ ' - - -  f i  = 2.00 
-0 .6  = ....... f l  = 0.40 

-0 .8  - - -  f l =  0.08 

- I . 0  I I I I 1 
0 1 2 3 4 5 6 

z = kFI= - ! , I  

Fig. 13.1. Percentage deviation of 
g{'(z, fl), Eq. (B.73), from the exact 
gRxttEa(Z, fl), Eq. (B.68), as a function of 
z for various values of fl 
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C. Weakly Inhomogeneous Electron Gas 

Here we provide some details on inhomogeneous systems from the viewpoint of 
a weakly perturbed electron gas, i.e. we consider the external potential in the 
Hamiltonian (2.20) as a small perturbation. In this case one can expand the four 
current 6jU(r) induced by a static perturbation in a power series with respect to 
V"(r), 

e" F -~3 ..(,+ , t r #.(r) = r, I "  n~. dd3r' "" )" ,-.Zc,,,,...,., . . . . . .  rn) (c.1) 
n = l  

x VUl(rl)... VU"(r,) + Aju(r ), 

where ~(0) represents the connected static response functions z6 defined by 
(B.11) [120]. Of course, 6j ~ satisfies current conservation, 

V" 3 j ( r )=  0 ~ .id3rfj°(r) = 0, (C.2) O.6j"(r) 

which is directly related to the transversality of X~o)u,...,n displayed in Eq. (B. 13). 
The induced current obtained from (C.1) is automatically UV-finite if the 

expansion is based on renormalised response functions, i.e. Aju(r)just sums up 
the terms required for the transition from the ,,(") to their renormalised It, C, bl 1 "" "]dn 

counterparts. It is instructive to analyse the corresponding counterterms for the 
noninteracting limit of (C.1) given graphically by 

(c.3) 

(note the multiplicities contained in ,~c. "(")u~...u.,~ where the external potential has 
been represented by 

e Vp(q) = ..~a.~.~. (C.4) 

While the noninteracting 3-point function, i.e. the second graph, is UV-finite due 
to Furry's theorem, the noninteracting 4-point function (third diagram) is 
UV-finite due to gauge invariance and all higher order response functions are 
overall convergent. The only divergent term to be examined results from the 
relativistic Lindhard function. The corresponding counterterm has been dis- 
cussed in Appendix A. Using again dimensional regularisation one finds 

Aj~O,(r) e F(4  ~_d~v2 !,~(r), (C.5) 
12~z z 

if the gauge V" V(r) = 0 is used. 

26Note, that (CA) could be used as alternative definition for the static response functions. 
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The corresponding energy shift can be evaluated by a coupling constant 
integration with respect to the external potential. Scaling the external potential 
Hamiltonian by 2, 

= 2e jd3rf~'(r)  Vu(r), (C.6) I ~ e x t ( 2 )  

one obtains for the corresponding ground state energy 

E,o,(2) = <~bo(2)l/~ "uEG +/4ex,(2)lq~o(2)> (C.7) 

A F R H E G  ,~ rvinhom/ ~x 

by a coupling constant integration approach (using a normatised ground state 
I Cbo(2) > for given 2), 

E,o,(2 = 1) = ~ " " ~  A~i.ho,,t~ 1) .~to, + e d2 d3rjU(2,r) Vu(r ) + ~ t o t  ,,~ = 

t7" RHEG f A pinhom = ~tot + e d3rjU(2 = O, r) Vu(r ) + ~ ~tot (C.8) 

+ ~ = 2 ~ . f d 3 r l . . . f d 3 r . z ~ %  .... , ,(rl .... r . ,  

x VU'(r l ) . . .  VU"(r,), 

where (C. 1) has been utilised for any given 2 and ju(2 = 0, r) = 9~'°no represents 
the current of the unperturbed system, i.e. the RHEG. 

As for the induced four current the renormalisation of the inhomogeneity 
corrections to rRnEG reduces to the renormalisation of the X~."~ , The counter- ~tOt , 1.., n" 
terms are thus closely related to those for 6j~, 

-,ot = e d2 d3rAjU(2,r) V,(r). (C.9) 

The only counterterm on the noninteracting level, corresponding to (C.5), is e.g. 
given by 

e 2 / 4  - d ~ ( 3 
AE?d '""°"- 2T-~r~-5-)JdrV.O')V~V"(r). (C.10) 

The counterterm (C.9) can be decomposed into contributions to the individual 
energy components. Again this is most easily demonstrated for the noninteract- 
ing case. Here the total energy is just a sum of  the external potential energy, 

A I~(O), inhom Ee~t = d3r VU(r)[yU°no + 6J~(r)] + ~ . ~ t  , (C.11) 

which requires the counterterm 

~extA]~(O)'inh°m - -  t2rr 2 F d 3r Vu(r)V 2 Vl'(r), (C.12) 

71 



E. Engel and R.M. Dreizler 

and the noninteracting kinetic contribution T~ which absorbs the remainder of 
(C.lO), 

e2 ( ~ ) f  
A T  i"h°m -- F d3r V,,(r)V 2 VU(r). (C.13) 

--s 24rC2 

D Linear Response Corrections to the Relativistic LDA 

While the RLDA for Exc[j ~] is based on the xc-energy density of the RH EG, 
Eq. (BA5), the response expansions (C.1, C.8) allow the derivation of systematic 
corrections to the RLDA. We restrict ourselves here to the case of linear 
response for which the starting point is given by (C.I) to lowest order, 

fij~'(q) = ez~'V(q ° = 0, q) V,.(q), (D.1) 

()~"~ is always understood to be renormalised in this appendix, so that counter- 
terms are not displayed explicitly). Insertion of (D.1) into the lowest order 
contribution to (C.8) then leads to 

J .- f(2~)3fij (q) t d3q t • LR d q ..,,. f (~)3f i f ' (q)z~; '  (O,q)fij ( - - q ) .  fiE,o, = e - -  V~,(q) - 

Inserting the result (B.34) for the inverse response function, 

~ d 3 q {  ~ }  
fiz,Lo~ : j ~  efjU(q) Vu(q) + fij"(q)D°(q)fiju( - q) (D.2) 

1 f d3q "u - 1 
- ~ J ~ , S j  (q)[I,,,. (O,q)fj~(-- q), 

one can identify the first term as the coupling to the external potential, the 
second as the induced Hartree energy. The third term involves the change in the 

fiE:,~, where the former is given by the kinetic energy 6~r~ g and the xc-energy LR 
noninteracting limit of H~-~ ~ (q, O) so that the two contributions can be separated. 
Utilising the tensor structure of II~,) (q, 0), Eq. (B.35), one finally arrives at 

1 ~ d3q ~fijO(q)fijo( _ q) [g l×6j (q)] . [g lx f j  ( _ q)]'~ 
) 

(D.3) 

0 f 1 1 1  = 2 J(2-~3 (.<°! (q) Hk°)(O,q) HL(O,q) fijo( _ q) (D.4) 

I 1 1 ,][O×i~j(q)].[O×fij( - q)]}, 
+ n'~}(0,q) HT(O,q)_I 

where # = q/Iql. At this point, 67~ s and f iE~ are given as functionals of 
no (inside HL/T) and fir' but not yet as functionals of the complete current 
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j~ = g"°no + ~j~. Two paths can be followed towards the construction of actual 
current density functionals: On the one hand, one can rewrite the complete 
linear response energies (D.3, D.4) as highly nonlocal current density functionals 
utilising either that jr(x) - jV(y) = 6j~(x) - 6j~(y) [5, 6] or that Vj~(x) = V6j~(x) 
[121]. On the other hand, one can restrict oneself to a long-wavelength expan- 
sion of (D.3, D.4) assuming 6j~(q) to be strongly localised, i.e. 6j~(x) to be rather 
delocalised. This approach leads to (semilocal) gradient corrections and has 
been persued extensively in the case of the nonrelativistic Ex¢ [j~]. However, due 
to the limited information available for the relativistic polarisation functions 
lilt r (and even on their small-q expansions) no applications of (D.4) have been 
reported so far. 

In order to illustrate the derivation of gradient corrections we thus consider 
T~[j~]. Extracting the long-wavelength limit of (D.3), 

1 ~ d3q 6j°(q)bj°( - q) 
= 3 ' ( D . 5 )  

which is absorbed in the RLDA in accordance with the compressibility sum rule, 
one finds by insertion of (B.36-B.38) into (D.3) and subsequent Fourier trans- 
formation, 

d3x~o ~ + 2  arsinh(/~) [V6j°(x)] 2 

3~ f f l 6j(x)'6j(y)lx_ yl -}- d3x d3y arsinh(/~) 

l f d 3 x ~ [ V z O j ° ( x ) ] Z  6 T~ 4~ = 4320----~ 

/~ 2 + 12/~ ] × I 5 ( l + 2 ~ a r s i n h ( / ~ ) )  + 3 ( 1 - 4 / 3  z) 
'/ j 

3~ 2 l' 3 1 

where current conservation has been used and [k] denotes the order of the small 
q expansion. For the density components of 6T~ z/41 (i.e. the first and third line) 
one now can simply replace V6j°(x)= Vj°(x) and, correct to second order, 
kv = [3z2j°(x)]~. While one can also utilise 6j(x) =j(x),  the density dependent 
prefactor 1/arsinh(ke/m) of the first current component cannot be expressed 
umambigously in terms of j°(x) as now two spatial variables are available. 
Similar to the situation for the complete linear response corrections (D.3, D.4) 
one is left with a choice for this substitution 27. Abbreviating this (symmetric) 

27 In contrast to the linear response approach the direct gradient expansion of T~[.j u] determines the 
current contribution to the second order gradient correction completely [122], 
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function of x and y by/~(x, y) one thus obtains 

6T~2][j ~'] = mZ_ fdax(Vfl)2fl-~l + 2~arsinh(fl) 1 (D.6) 
24n ~ J r/L 

+ f d3x ( , 3 l j (x) ' j (y)  
j a  Yarsi~( f l (x ,  y)) ]-x ~ 

1 [',3 (V2fl) 2 
6r~4]Ej ~] -144-0n2 j a  x - ~  (D.7) 

x [ 5 ( l + 2 ~ a r s i n h ( f l ) )  + 3 ( 1 - 4 f i e ) +  

3n 2 f d3x 1 

where fl is understood as fl = [3n2j°(x)]lt3/m (tl = , ~  + fl~). One should note 
that the vacuum parts of H(~r are responsible for the rightmost terms in both the 
density and the current component of 6T~ *J. We also remark that the response 
approach can be extended to quadratic and cubic response which allows the 
derivation of the complete gradient expansion to fourth order [60]. 

E Direct Gradient Expansion of Ts [j~] 

A density (or current density) functional representation of the relativistic nonin- 
teracting kinetic energy T~ can either be obtained by the (linear) response 
technique discussed in Appendix D or by a direct gradient expansion (GE) on 
the basis of (2.38), whose kinetic contribution is given by 

T~ = - i Id3xlim~tr[( - i7"V + m)G(x, y)] (E.1) 
[ 

- (01flel0) + A Ti"h°" 

The Greens function involved in (E.1) is the propagator for a given external 
potential V " (here to be understood as the KS-potential), which has already been 
discussed in Section 2. It satisfies the differential equation 

(i¢x - m - ~'(x))G(x, y) = 6 { 4 ) ( x  - -  y), (E.2) 

(a factor of e has been absorbed into V u for brevity) and can be expanded in 
powers of V " in the form (2.36) without requiring renormalisation. 

In order to set up the GE for T, Ej v] one proceeds in four steps [123]. In the 
first step the differential equation (E.2) is solved by an expansion in powers of 
gradients of P .  The starting point of this expansion is the known solution of 
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(E.2) for a constant external potential, 
(' d 4 P e -i(x-r)'v I e -ip" G~Ol(x, y) = J ~  (x-r) GtOl(p,, V,) (E.3) 

Gt°l(p,, Vv) = G°(p) - 2ni(O + m) 6(p° - E) o(ev - V ° - pO). (g.4) 
2E 

The complete expansion is then written in the form 

G(x, y) = e_,~x ,).vtx~ ( d'p e ip.tx-,) ~ Gtkl(p,, Vv(x)), (E.5) 

where [k] denotes the order of the gradients and an overall phase factor has 
been extracted in analogy to (E.3). For x ° = yO (E.5) coincides with an expansion 
in powers of h and is therefore called a semiclassical expansion. Upon insertion 
into (E.2) the form (E.5) leads to the recursion relation 

( , _  m)G~kl(pu, V~(x)) = [(i~V~(x)) o ~ _  i~]G,k l,(p,, V~(x)), (E.6) 

whose solution with appropriate boundary conditions is given by 

G~k~(pj,, V~(x))= {G~°'(p~,, V~.)[(i,V~(x)) ~--~--i,l}kGl°l(p~,, V~). (E.7) 

(E.7) is then evaluated explicitly to the (finite) order of gradients one is interested 
in. 

In a second step the semiclassical expansion (E.7) is used to evaluate the 
semiclassical expansions of the four current j ~, Eq. (2.39), and of T~, Eq. (E.1). 
The symmetric limits in (2.39) and (E.1) introduce UV-divergencies which are 
eliminated by the corresponding counterterms Aj ~'~°) and A T~ "h°" (as discussed 
in Section 2). 

In order to illustrate this point explicitly, we consider the expansion of 
jo (x) = n(x) and T~ In] for the case of a purely electrostatic potential V u = (V, 0) 
to second order in the gradients of V. Using dimensional regularisation for the 
evaluation of the integrals in question one finds for the semiclassical expansions 
without counterterms, 

fi[V-J,,o = 3n-- 5 + F 2 - (V z V) (E.8) 

1 
1 2 n 2 { [ E + 2 a r s i n h ( P ) ] ( V 2 V ) + [ p ~ - 3 ] ~ p  )2} 

m 4 1 3 + 
~ [ V - J , ~ o = I - ~ 2 F ( 2 - ~ ) + ~ { p E  p3E -- arsinh ( P ) }  (E.9) 

p p](v v) 

12n2 P + arsinh (VV) 2, 
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where 

E = e.. F -- V(x), p = ,~/E2 _ m20(E 2 _ m2). (E.I0) 

One recognises divergent contributions (in the limit d ~ 4), namely the diver- 
gent contribution of the kinetic energy of the Dirac sea 

<013~]0) = - ilim t r [ ( -  iy 'V + m)G°(x, y)] 

- ~ F ( 2  - ~ ) ,  (E.11) 

and the UV-divergencies arising from taking the symmetric limit, which are 
proportional to V2V. While the former is eliminated by the subtraction of the 
vacuum energy of noninteracting fermions according to (E.1), the UV-divergen- 
cies are cancelled by the counterterms Aft '(°) and A Ti~ h°", given in Eqs. (C.5, 
C. 13). One thus explicitly verifies that from (E.8, E.9) finite semiclassical expan- 
sions ~[V] and t~[V] are obtained, 

f i[V] = fi[V]re~ + Aj °'(°) (E.12) 

Ts[ V] = .f d3x~[V ]rea - ( OII~elO > -I- Z] Ti. fl h°m. (E.13) 

In the third step the semiclassicat expansion of j  * is inverted order by order 
to the order required. This yields V * as a function ofj  * and its gradients, so that 
by insertion into the semiclassical expansion for Ts (the fourth step) one obtains 
the desired relativistic gradient expansion (RGE). For the example considered 
here (V = 0) this leads to [21] 

= .I'd xt~ TROEO[n] 3 ~RUEG(n)~.O(fl) (E.14) 

1 (' ,3 (Vn)2 
T~OE2[n]=7~mJ a x  n ~,2(fl) (E.15) 

(~s, 2(fl) = ~ -~- 2-fi arsinh ( f l ) t /  (E.16) 

where the electron rest mass has been subtracted and tNs R H E 6  and ~ ,  0 are given 
by (B.43, B.44). The relativistic correction factors q~. o/z are plotted in Fig. E. 1. In 
contrast to ~ ,~  both qS~,o and ~ .2  decrease in the ultrarelativistic limit. 

The fourth order correction corresponding to a purely electrostatic potential 
has also been evaluated [124], 

T~ ~E4 En] t ' s , V  [n] + ,~,n 

RGE4 36 n 2 
t~,v = 3 (V2fl) 2 + 6 (V2fl)(Vfl) 2 -~- ~ (Vfl) 4 
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Fig. E.1. Relativistic corrections to kinetic en- 
ergy densities. Eq.(B.44)--solid line (GE0), 
Eq. (E.16)- dashed line (GE2) 

fl 2 , 

t~,o - 5760rc ~ 

+ "~(V2fl)(Vfl)2 [ 41fl z + 20(1 + 2-flarsinh(fl)) 
z ~ / - n 

x ~ - ~ - -  + arsinh (fl) 

(v/~)4V 
+ fl--~-[3 - 19fl 2 - 8fl 4 + 8fl 6 + 16fl s 

+ fl 2 
+ 2 0 ( - f l ~ + 2 ~ a r s i n h ( f l ) )  1 }. 

The lowest order term T~GE°[n], the relativistic kinetic energy in the 
Thomas-Fermi limit, has first been calculated by Vallarta and Rosen [12]. In 
the second order contribution (which is given in a form simplified by partial 
integration) explicit vacuum corrections do not occur after renormalisation. 
Finite radiative corrections, originating from the vacuum part of the propagator 
(E.5), first show up in fourth order, where the term in ,~,'rRGE4v proportional to 
(Vfl) 4 can be identified with the electrostatic part of the Euler-Heisenberg 
energy of QED [26]. One also recognises that both TffGEE[n] and the linear 
response component of TRGE4[n] agree with the results (D.6,D.7). In the 
nonrelativistic limit the individual contributions reduce to the appropriate 
results of the nonrelativistic gradient expansion [t25, 126, 127]. 

The direct gradient expansion has also been applied to evaluate the current 
dependence of T~ to second order [122], 

3f  , 
TfeG2 [J]  = d3x arsinh (fi(x)) (E.17) 

f f 3 c~,jl(y)O~,j,(z)_ c~j,(y)t~jk(z) 
x d3y d3z ~ I x - y l t x - z l  d J k,l=l 
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The direct GE provides an unambigous result for T RGE2 [ j ]  in contrast to the 
linear response approach as here no expansion in powers of V ~' itself is involved, 
Neglecting the x-dependence of/~ one can reduce (E.17) to the current compon-  
ent of (D.6). 
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A density-functional formalism comparable to the theory of Hohenberg, Kohn and Sham is 
developed for electronic systems subject to time-dependent external fields. The formalism leads to 
a set of time-dependent Kohn-Sham equations which, in addition to the external potential, contain 
a time-dependent Hartree term and a local time-dependent exchange-correlation potential. Rigor- 
ous properties and explicit approximations of the latter are discussed in detail. Generalizations of 
the basic fbrmalism to incorporate the nuclear motion and to deal with magnetic effects are 
described. Within the regime of linear-response theory, the time-dependent Kohn-Sham equations 
lead to a formally exact representation of the frequency-dependent linear density response. Applica- 
tions within the linear-response regime include the computation of photoabsorbtion cross sections, 
the determination of van der Waals forces and the calculation of excitation energies. The latter is 
based on the fact that the frequency-dependent linear density response has poles at the true 
excitation energies of the interacting many-body system. The time-dependent Kohn-Sham formal- 
ism then leads to a simple additive correction of the Kohn-Sham single-particle excitation energies. 
Beyond the linear-response regime, the time-dependent Kohn-Sham scheme is applied to atoms in 
strong femto-second laser pulses to describe multi-photon ionization and harmonic generation in 
a non-perturbative way. 

1 Introduction 

The  basic  idea  of densi ty  funct ional  theory  ( D F T )  is to  descr ibe  an in te rac t ing  
many-pa r t i c l e  system exclusively and comple te ly  in terms of  its density. The  

formal ism rests on two basic  theorems:  

I. Every observab le  quan t i ty  can be calculated,  a t  least  in pr inciple ,  f rom the 
densi ty  alone,  i.e. each q u a n t u m  mechanica l  observable  can be wri t ten  as 

a funct ional  of  the density. 
II. The densi ty  of  the in teract ing system of  interest  can be ob ta ined  as the 

densi ty  of  an auxi l iary  system of  non- in te rac t ing  par t ic les  mov ing  in an 
effective local single-part ic le  potent ia l ,  the so-called K o h n  Sham potent ia l .  

In the or iginal  work  of H o h e n b e r g  and  K o h n  (HK) [1] and  K o h n  and Sham 
(KS) [2] these theorems were p roven  for the g round-s ta te  densi ty  of  static 
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many-body systems. On the basis of these theorems, DFT has provided an 
extremely successful description of ground-state properties of atoms, molecules 
and solids [3-5]. The quality of approximations for the Kohn-Sham potential 
has steadily improved over the years and the currently best functionals yield 
ground-state properties in very close agreement with configuration interaction 
results [6]. Excited-state properties, however, are notoriously difficult to calcu- 
late within the traditional density functional framework and time-dependent 
phenomena are not accessible at all. 

Time-dependent density functional theory (TDDFT) as a complete formal- 
ism [7] is a more recent development, although the historical roots date back to 
the time-dependent Thomas-Fermi model proposed by Bloch [8] as early as 
1933. The first and rather successful steps towards a time-dependent Kohn- 
Sham (TDKS) scheme were taken by Peuckert [9] and by Zangwill and Soven 
[10]. These authors treated the linear density response of rare-gas atoms to 
a time-dependent external potential as the response of non-interacting electrons 
to an effective time-dependent potential. In analogy to stationary KS theory, 
this effective potential was assumed to contain an exchange-correlation (xc) 
part, vx¢(r, t), in addition to the time-dependent external and Hartree terms: 

vs(r, t) = v(r, t) + ~ d 3 r' n(r', t) 
Ir - r'-----5 + vxc(r, 0-  (1) 

Peuckert suggested an iterative scheme for the calculation of vxc, while Zangwill 
and Soven adopted the functional form of the static exchange-correlation 
potential in local density approximation. Significant steps towards a rigorous 
foundation of time-dependent density functional theory were taken by Deb and 
Ghosh [11-14] and by Bartolotti 1-15-18] who formulated and explored HK 
and KS type theorems for the time-dependent density. Each of these derivations, 
however, was restricted to a rather narrow set of allowable time-dependent 
potentials (to potentials periodic in time in the theorems of Deb and Ghosh, and 
to adiabatic processes in the work of Bartolotti). A general proof of statements 
I and II above for the time-dependent density was given by Runge and Gross 
[7]. A novel feature of this formalism, not present in ground-state density 
functional theory, is the dependence of the respective density functionals on 
the initial (many-particle) state. A detailed description of the time-dependent 
density functional formalism will be presented in Sect. 2. The central result is 
a set of TDKS equations which are structurally similar to the time-dependent 
Hartree equations but include (in principle exactly) all many-body effects 
through a local time-dependent exchange-correlation potential. In Sect. 2, we 
focus on the motion of electrons only. In many experimental situations, how- 
ever, the nuclear motion and its coupling to the electronic motion is important 
as well. If, for example, a molecule is placed in the focus of a strong laser, the 
electric field of the laser can either couple directly to the nuclei (in the infrared 
frequency regime) or the coupling to the electrons can lead to photoionization 
with subsequent Coulomb explosion (dissociation) of the molecule. To deal with 
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situations of this type a DF formalism for the coupled system of electrons and 
nuclei is developed in Sect. 3. The central result is a set of coupled TDKS 
equations for the electrons and for each nuclear species. While Sects. 2 and 3 
exclusively deal with time-dependent electric fields, magnetic effects will be 
considered in Sect. 4. Both the ordinary Zeeman coupling and the coupling of 
magnetic fields to the orbital currents will be included. 

To date, most applications of TDDFT fall in the regime of linear response. 
The linear response limit of time-dependent density functional theory will be 
discussed in Sect. 5.1. After that, in Sect. 5.2, we shall describe the density- 
functional calculation of higher orders of the density response. For practical 
applications, approximations of the time-dependent xc potential are needed. In 
Sect. 6 we shall describe in detail the construction of such approximate func- 
tionals. Some exact constraints, which serve as guidelines in the construction, 
will also be derived in this section. Finally, in Sects. 7 and 8, we will discuss 
applications of TDDFT within and beyond the perturbative regime. Apart from 
linear response calculations of the photoabsorbtion spectrum (Sect. 7.1) which, 
by now, is a mature and widely applied subject, we also describe some very 
recent developments such as the density functional calculation of excitation 
energies (Sect. 7.2), van der Waals forces (Sect. 7.3) and atoms in superintense 
laser pulses (Sect. 8). 

2 Basic Formalism for Electrons 
in Time-Dependent Electric Fields 

2.1 One-to-One Mapping Between Time-Dependent Potentials 
and Time-Dependent Densities 

Density functional theory is based on the existence of an exact mapping between 
densities and external potentials. In the ground-state formalism [1], the exist- 
ence proof relies on the Rayleigh-Ritz minimum principle for the energy. 
Straightforward extension to the time-dependent domain is not possible since 
a minimum principle is not available in this case. The proof given by Runge and 
Gross [7] for time-dependent systems is based directly on the Schr6dinger 
equation (atomic units are used throughout): 

i~tW(t  ) = I~(t)V(t). (2) 

We shall investigate the densities n(r, t) of electronic systems evolving from 
a fixed initial (many-particle) state 

q~(to) = Wo (3) 
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under the influence of different external potentials of the form 

b/ 

I~(t) = ~ v(r,, t ) .  (4) 
i = 1  

In the following discussion, the initial time to is assumed to be finite and the 
potentials are required to be expandable in a Taylor series about to. No further 
assumptions concerning the size of the radius of convergence are made. It is 
sufficient that the radius of convergence is greater than zero. The initial state 
q% is not required to be the ground state or some other eigenstate of the initial 
potential v(r, to) = vo(r). This means that the case of sudden switching is in- 
cluded in the formalism. On the other hand, potentials that are switched-on 
adiabatically from to = - ~ are excluded by the Taylor-expandability condi- 
tion because adiabatic switching involves an essential singularity at to = - ~ .  

Besides an external potential of the form (4), the Hamiltonian in Eq. (2) 
contains the kinetic energy of the electrons and their mutual Coulomb repul- 
sion: 

(5) 

with 

7" = - ~ V z (6) 
i = 1  

and 

0 1 
2 

N 1 

1 [ r i -  rj]" (7) 

With these preliminaries, we can formulate the following Hohenberg-Kohn-type 
theorem: The densities n(r, t) and n'(r, t) evolving from a common initial state 
~Fo = ~g(to) under the influence of two potentials v(r, t) and v'(r, t) (both Taylor 
expandable about the initial time to) are always different provided that the 
potentials differ by more than a purely time-dependent (r-independent) func- 
tion: x 

v(r, t) # v'(r, t) + c(t). (8) 

To prove this theorem, we use the condition that the potentials v and v' can be 

1 If v and v' differ by a purely time-dependent function, the resulting wave functions W(t) and W'(t) 
differ by a purely time-dependent phase factor and, consequently, the resulting densities p and p' are 
identical. This trivial case is excluded by the condition (8), in analogy to the ground-state formalism 
where the potentials are required to differ by more than a constant. 
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expanded in Taylor  series: 

i 1 v(r, t) = ~. Vk(r) (t  - -  to) k , (9) 
k=0 

v'(r, t) = ~ v~,(r) (t - to) k . (10) 
k=O 

Equation (8) is equivalent to the statement that for the expansion coefficients 
Vk(r) and v~,(r) there exists a smallest integer k _> 0 such that 

c~ t ) )  Vk(r) -- v;(r) = ~-~ (v(r, t) -- v'(r, ~ const. (11) 

From this inequality we prove in a first step that the current densities 

j (r, t) = (q~(t) lip(r) I q~(t)) (12) 

and 

j'(r, t) = (~g'(t)lip(r) ]~P'(t)) (13) 

are different for different potentials v and v'. Here, 

1 N 
]p(r) = ~ j-~- 1 (Vrj (~(r --  rj) + 6(r - rj)V 0 (14) 

is the usual paramagnetic  current density operator.  In a second step we shall 
show that the densities n and n' are different. 

Using the quantum mechanical  equation of motion for the expectation value 
of an operator  (~ (t), 

) 8 ~ ( t ) l Q ( t ) J W ( t ) )  -- (~( t ) l  -~- - i [O (t), / /(t)]  t ~ ( t ) ) ,  (15) 
8t 

we obtain for the current densities: 

8 . r ,  8 5 1  ( t ) = - ~ ( W ( t ) l l p ( r ) l W ( t ) ) = - i ( W ( t ) l [ l p ( r ) , I ~ ( t ) ] l W ( t ) ) ,  (16) 

O 
~t j'(r, t) = (~P'(t) lip(r) I ~ '( t)  ) 

= - i ( ~ ' ( t )  l lip (r), H'(t)] t W'(t)). (17) 

Since • and W' evolve from the same initial state 

W(to) = ~'( to) = g o  (18) 
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we can write 

t=tO ~t (j (r, t) - j '(r, t)) = - i ( ~ o  I [ lp(r) , / t( to) - f/ '(to)] 1~o> 

with the initial density 

no (r) = n(r, to). 

= - no(r) V(v(r, to) - v'(r, to)) (19) 

(20) 

If the condi t ion (11) is satisfied for k = 0 the r ight-hand side of  (19) cannot  
vanish identically and j and j' will become different infinitesimally later than to. 
If (11) holds for some finite k > 0 we use Eq. (15) (k + 1) times and obtain after 
some algebra: 

(~)k+l t=to (j (r, t) - j ' ( r ,  t)) = - no (r) V w  k (r) ~ 0 

( ~ )k t~to wk (r) = ~ (v(r, t) - v'(r, t)) 

with 

(21) 

(22) 

Once again, we conclude that  

j(r,  t) -¢ j'(r, t) (23) 

provided that (11) holds for v and v'. To  prove the corresponding statement for 
the densities we use the continuity equation 

8 
- -  j ( ,  t)) Ot (n(r, t) - n'(r, t)) = - V- (j(r, t) - "' r (24) 

and calculate the (k + 1)th time derivative of Eq. (24) at t = to: 

c3 ] k + 2  n'(rt)) V (no(r)  Vw~(r) ) .  j ( n ( r , t ) -  ,=,o = " (25) 

In order  to prove that the densities n(r, t) and n'(r, t) will become different 
infinitesimally later than to, we have to demonstra te  that the r ight-hand side of 
Eq. (25) cannot  vanish identically. This is done by reductio ad absurdum: 
Assume 

(26) V" (no(r) Vwk(r) )  = 0 
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and evaluate the integral 

S da r no(r) [Vwk(r)] 2 

= -- S d 3 r Wk(r) V" (no(r) Vw~ (r)) + ~ dS- (no(r)wk(r) VWk (r)), (27) 

where we have used Green's theorem. The first integral on the right-hand side of 
(27) vanishes by assumption. For physically realistic potentials (i.e. potentials 
arising from normalizable external charge densities), the surface integral vanish- 
es as well, because for such potentials the quantities wk(r) fall off at least as 1/r. 
Since the integrand on the left-hand side is non-negative one concludes that 

no (r) [Vwk(r)]  2 =- 0 (28) 

in contradiction to Wk (r) # const. This completes the proof of the theorem. We 
mention that more general potentials may also be considered. The precise 
conditions have been formulated in [19]. 

We note in passing that the right-hand side of Eq. (25) is linear in Wk. 
Consequently, the difference between n(r, t) and n'(r, t) is non-vanishing already 
in first order of v(r, t) - v'(r, t). This result will be of importance in Sect. 5 
because it ensures the invertibility of linear response operators. 

By virtue of the 1-1 correspondence established above (for a given q%), the 
time-dependent density determines the external potential uniquely up to within 
an additive purely time-dependent function. The potential, on the other hand, 
determines the time-dependent wave function, which can therefore be con- 
sidered as a functional of the time-dependent density, unique up to within 
a purely time-dependent phase ~(t): 

V(t) = e -''('~ ~ [n ]  (t). (29) 

As a consequence, the expectation value of any quantum mechanical operator 
() (t) is a unique functional of the density: 

g [n] (t) = <q' [n] (t) l Q(t) l ~ [ n ]  (t)>. (30) 

The ambiguity in the phase cancels out. As a particular example, the right-hand 
side of Eq. (16) can be considered as a density functional which depends 
parametrically on r and t: 

P [n ]  (r, t) - - i ( q  j In] (t)I []p(r),/t(t)] I W[n] (t)).  (31) 

This implies that the time-dependent particle and current densities can always 
be calculated (in principle exactly) from the following set of "hydrodynamical'" 
equations: 

0 n(r, t) V j(r, t) (32) 
Ot 
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~ j (r, t) = P [n] (r, t). (33) 

In practice, of course, the functional P[n]  is only known approximately. 

2.2 Stationary-Action Principle 

The solution of the time-dependent Schr6dinger equation (2) with initial condi- 
tion (3) corresponds to a stationary point of the quantum mechanical action 
integral 

tl t~ 
d = ~ dt (',F(t) Ji ~ - H(t) l q'(t)).  (34) 

to 

Since there is a 1-1 mapping between time-dependent wave functions, q~(t), and 
time-dependent densities, n(r, t), the corresponding density functional 

d = ~ dt ( W  [n](t)[ ~ - H(t) IW [n](t))  (35) 
to 

must have a stationary point at the correct time-dependent density (correspond- 
ing to the Hamiltonian H(t) and the initial state q%). Thus the correct density 
can be obtained by solving the Euler equation 

c~d[n] 
fin(r, t~ - 0 (36) 

with appropriate boundary conditions. The functional ~¢[n] can be written as 

t l  

d [ n ]  = ~ [ n ]  - j" dt ~ d3rn(r,  t)v(r, t) (37) 
to 

with a universal (Wo-dependent) functional ~[n] ,  formally defined as 

~ [ n ]  = S dt (W[n](t) l ~ - 7 ~ -  U IW[n]( t ) ) .  (38) 
to 

On the exact level, the hydrodynamical equations (32, 33) and the variational 
equation (36) are of course equivalent. The functionals P[n],  ,dEn], ~ [ n ]  are 
well-defined only for v-representable densities, i.e. for densities that come from 
some time-dependent potential satisfying Eq. (9). In view of this, a Levy-Lieb- 
type [20-22] extension of the respective functionals to arbitrary (non-negative, 
normalizable) functions n(r, t) appears desirable. Two different proposals of this 
type have been put forward so far [23, 24]. 
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2.3 Time-Dependent Kohn-Sham Scheme 

The 1-1 correspondence between time-dependent densities and time-dependent 
potentials can be established for any given interaction U, in particular also for 
~T = 0, i.e. for non-interacting particles. Therefore the external potential 
vs[n](r, t) of a non-interacting system reproducing a given density n(r, t) is 
uniquely determined. However, the 1-1 correspondence only ensures the 
uniqueness of vs In] for all v-representable densities but not its existence for an 
arbitrary n(r, t). In order to derive a time-dependent KS scheme we have to 
assume, similar to the static case, non-interacting v-representability, i.e., we have 
to assume that a potential vs exists that reproduces the time-dependent density 
of the interacting system of interest. Under this assumption, the density of the 
interacting system can be obtained from 

N 

n(r, t) = ~ I q~(r, t)[ 2 (39) 
j = l  

with orbitals q~j(r, t) satisfying the time-dependent KS equation 

i ~ ¢p~ (r, t) = - ~ -  + vs In] (r, t) ~0j (r, t). (40) 

Usually, the single-particle potential v~ is written as 

n(r', t) 
vs[n] (r, t) = v(r, t) + S d3r' [r - r'[ + Vxc[n] (r, t), (41) 

where v(r, t) is the external time-dependent field. Equation (41) defines the 
time-dependent xc potential. In practice, this quantitiy has to be approximated. 
As in the static case, the great advantage of the time-dependent KS scheme lies 
in its computational simplicity compared to other methods such as time-depen- 
dent Hartree-Fock or time-dependent configuration interaction [25-32]. One 
has to emphasize that, in contrast to time-dependent Hartree-Fock, the effective 
single-particle potential vs is a local potential, i.e., a multiplicative operator in 
configuration space. 

A few remarks are in order at this point: 

(i) An important difference between the ordinary ground state density func- 
tional theory and the time-dependent formalism developed above is that in the 
time-dependent case the 1-1 correspondence between potentials and densities 
can be established only for a fixed initial many-body state "Po. Consequently, the 
functionals P [n], ~¢[n] and ~ [ n ]  implicitly depend on Wo. In the same way, 
vs[n] and vxc[n] implicitly depend on the initial KS Slater determinant. The 
formalism provides no guideline of how to choose the initial KS orbitals q~j(r, to) 
as long as they reproduce the initial interacting density no corresponding to Wo. 
In general, there exist infinitely many Slater determinants reproducing a given 
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density [33, 34]. From a formal point of view there is no problem with that; any 
choice of initial orbitals q~j(r, to) reproducing the initial interacting density 
no will do the job  because the dependence of vs[n] on the initial state is such that 
the interacting density will be reproduced in each case. In practice, however, the 
dependence on the initial state is a nuisance. Of  course one would prefer to have 
functionals of the density alone rather than functionals of n(r, t) and Wo. One has 
to emphasize, however, that for a large class of systems, namely those where 
both ~g0 and the initial KS Slater determinant are non-degenerate ground states, 
Pin]  and v~[n] are indeed functionals of the density alone. This is because any 
non-degenerate ground state qJo is a unique functional of its density no(r) by 
virtue of the traditional H K  theorem. In particular, the initial KS orbitals are 
uniquely determined as well in this case. 

(ii) We emphasize that the KS scheme does not follow from the variational 
principle. Incidentally, the same statement holds true in the static case as well. 
The KS scheme follows from the basic 1-1 mapping (applied to non-interacting 
particles) and the assumption of non-interacting v-representability. The varia- 
tional principle yields an additional piece of information, namely the equation 

,~d,o [n] 
v,c[n] (r, t) = 6n(r, t ~ '  (42) 

where dxc is the xc part of the action functional, formally defined by 

l 'idtSd3r~ n(r,t)n(r',t) 
= - - d 3 r' lr - r'l dxo[n] ~s[n] ~[n] 2,o (43) 

Here ~s[n]  is the non-interacting analogue of the functional ~ [n ] ,  i.e., 

~s[n]  = S dt (~[n](t) li ~ - ~r I ~ [n ] ( t ) )  (44) 
to 

where ~[n]  (t) is the unique time-dependent Slater determinant corresponding 
to the density n. 

(iii) The current density 

1 N 

j(r, t) = ~ k ~=1 (~p* (r, t) V~pk(r, t) -- ~pk(r, t) V~p* (r, t)) (45) 

following from the TDKS orbitals is identical with the true current density of the 
interacting system at hand. In order to prove this statement we recall that the 
first part of the Runge-Gross proof described above establishes a 1-1 mapping, 
v(r, t) ~ j (r, t), between external potentials and current densities of interacting 
particles and likewise, for ~r = 0, a 1-1 mapping, vs(r, t) ~ is(r, t), between 
external potentials and current densities of noninteracting particles. Making 
once again the assumption of non-interacting v-representability of the interac- 
ting current density j (r, t), one can establish an alternative "current-density 
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version" of the KS scheme, 

0 
i ~ ~ ( r ,  t) = ( - ½ V 2 + 6s [ j ]  (r, t)) Cj(r, t) (46) 

1 N 
j(r, t) = ~ k ~---'1 (~* (r, t) VOk(r, t) -- ~k(r, t) V ~ '  (r, t)) (47) 

whose solution reproduces the current density, j, of the interactin# system of 
interest. To prove Eq. (45), we show that the solutions q3j (r, t) of (46, 47) are in 
fact identical with the solutions q~j of the ordinary TDKS scheme (39-41). To 
this end we prove that the density 

N 

~(r, t) = ~ [~k(r, 012 (48) 
k = l  

is identical with the density resulting from (39-41): 

fi(r, t) = n(r, t). (49) 

Then the uniqueness of the potential vs[n] reproducing n(r, t) implies that 
Os(r, t) = vs(r, t) so that the solutions of (46) and (40) are identical. In order to 
prove Eq. (49) we observe that the full many-body Schr6dinger Eq. (2) implies 
the continuity equation 

On(r, t) 
- -  V "  j(r,  t) (50)  

6t 

while the Schr6dinger equation (46) implies the continuity equation 

0~ (r, t) 
t3t 

- V -  j(r,  t) .  (51)  

Comparing (50) and (51) we find that n(r, t) and ~(r, t) can differ at most by 
a time-independent function r/(r) so that, at the initial time to, 

n(r, to) = ~(r, to) + r/(r). 

Hence, if the initial orbitals are chosen to be identical, 

(52) 

¢Ok(r, to) = ~k(r, to) k = 1 . . . . .  N ,  (53) 

it follows that q(r) = 0 and Eq. (49) will be satisfied for all times. It remains to be 
shown that the choice (53) is always possible. This is not obvious a priori 
because, by construction, the orbitals q~k(r, to) must reproduce the initial density 
n(r, to) while the orbitals ~k(r, to) must yield the initial current density j(r, to). In 
order to prove that the choice (53) is possible we show that a given density no(r) 
and a given current density jo(r) can always be simultaneously reproduced by 

92 



Density Functional Theory of Time-Dependent Phenomena 

a single Slater determinant 

1 
q)(r, . . . . .  rN) = ~ det{~bi(ri)} • (54) 

,/N~ 

This can be shown with a current-density generalization [24] of the so-called 
Harriman construction [34]. Here we reproduce the construction for one spatial 
dimension. The three dimensional case can be treated in analogy to Ref. [35]. 
Given the densities no(x) and jo(x) we define the following functions 

q(x) := ~ ! dx' no(x') (55) 
x. jo(x') s(x) := j dx' (56) 
a n0(X')  

so that 

dq(x) 2rt 
dx = -ff no(x) (57) 

and 

ds(x) = jo(x) (58) 
dx no(x) 

In terms of these quantities and the particle number N we define the single- 
particle orbitals 

(~k(X) := ~ ei(kq(x)+s(x)-(M/N)q(x)) (59) 

where k is an arbitrary integer while M is a fixed integer to be determined below. 
The functions {q~k: k integer} form a complete and orthonormal set (see e.g. 1-4]). 
Constructing the Slater determinant (54) from these orbitals it is readily verified 
that 

N 

I ~kj(X)12 = no(x) (60) 
j=l 

and 

1i~(4,~,(~) d d ,/,~*, (x)) 

ds no(x)dq[(~=lkj)_M]. 
= no (x) dx + N dx i (60 
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Hence, by virtue of Eq. (58), Eq. (61) reproduces the given current density jo(x) if 
M is chosen equal to ( ~ Q  1 k~). This completes the proof. 

3 M o t i o n  o f  the N u c l e i  

3.1 Quantum Mechanical Treatment of Nuclear Motion 

The formalism developed so far is adequate whenever the motion of the atomic 
nuclei can be neglected. Then the electron-nucleus interaction only enters as 
a stat ic  contribution to the potential v(r, t) in Eq. (41). This is a good approxima- 
tion for atoms in strong laser fields above the infrared frequency regime. When 
the nuclei are allowed to move, the nuclear motion couples dynamically to the 
electronic motion and the situation becomes more complicated. 

In this section we shall describe a T D D F T  for systems consisting of N elec- 
trons and Na nuclei of charge ZA and mass Ma (in a.u.), A = 1 . . . . .  K. K is the 
number of different nuclear species. Let Ra, be the configuration space vector of 
the ~th nucleus of species A. Then the complete system of electrons and nuclei is 
described by the Schr6dinger equation 

i ~ W(rl ... rN, {Ra~}, t) = [/~/e(rl ... rN, t) + /4,({Ra~}, t) 

+/~/e, (rl ... ru, {RA,})] V(r l  ... ru, {RA,}, t) 

(62) 

with the electronic Hamiltonian 

B e =  - V +vo~,(r~,t) + , 
l rk j = l  1 

j~,k 

(63) 

the nuclear Hamiltonian 

a = l  r t = l \  2MA 

A = I  ez= B = I  /~=1 
k ,) 

(Aa) ~ (B/~) (64) 

and the electron-nucleus interaction 

N K N A Z A  

fflen = - - 2  Z • lrj--Ra~l 
j = l  A = I  ~ = 1  

(65) 
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Based on an extension [35] of the Runge-Gross theorems descried in Sect. 2 to 
arbitrary multi-component systems one can develop [36] a T D D F T  for the 
coupled system of electrons and nuclei described above. In analogy to Sects. 
2.1-2.3, one can establish three basic statements: First of all, there exists 
a rigorous 1-1 mapping between the vector of external potentials and the vector 
of electronic and nuclear densities, 

(Vox,(r, t); 1 V~t(R, t) . . . . .  VLt(R, t)), ~ - i  (n(r, t); nl(R, t), . . . ,  n r ( R ,  t)).  

(66) 

Once again, this 1-1 correspondence is valid for a fixed initial many-body state 
qJ(r~ . . . .  rN, {RA~}; to). Besides this HK-type statement, one can derive a station- 
ary-action principle and a set of coupled TDKS equations for electrons and 
nuclei. The latter read as follows: 

0 
-- 2 V~ + v~ i ~ (pj(r, t) = ( 1 2 [n, {na}](r, t)) (pj(r, t), j = l . . . . .  N 

i ~ q/a, (R, t) = - f ~ a  V~ + V~ In, {nn}] (R, t) g'a,(R, t), 

A = I  . . . . .  K; c z = l  . . . . .  NA 

with the nuclear densities 

(67) 

(68) 

NA 

nA(R, t) = ~' na~(R, t), na~(R, t) = I~bA~(R, 012, (69) 
¢t=1 

the electronic density 

N 

n(r, t) = ~ I% (r, t) l 2, (70) 
j = l  

and the KS potentials 

n(r', t) 
vs[n, {nB}](r, t) = vo~,(r, t) + fd3r ' Ir - r'l 

K Zn nn (R, t) 
~, ~d3R + vxc [n, {he}] (r, t), (71) 

n= 1 Ir - RI 

V~[n, {nn}](R, t) = V~xt(R, t) - Za  Sd3r  ' n(r', t) 
[ R - :  r'[ 

+ Za 
K 

S da R' Za na (R', t) 
=1 m -  Vt  + In, (a, t). 

(72) 
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The xc potentials in (71) and (72) are formally given by functional derivatives of 
the xc part of the quantum mechanical action functionals: 

vxc (r, t) = fi ,~¢x¢ [n, {n~}] (73) 
fin(r, t) 

-n (74) (R, t) = , dxo In, {nB}] 
finA (R, t) 

In molecules and clusters, genuine exchange (as well as correlation) among 
identical nuclei is very small because, at typical internuclear separations, the 
overlap of nuclear wave functions is rather small. 2 However, the exact xc 
functional also contains self-exchange contributions which are not small and 
which cancel the self-interaction terms contained in the Hartree potentials in 
Eqs. (71) and (72). Hence it will be a very good approximation to represent 
V~ac by the self-exchange terms alone. This leads to 

V~xt(R,t) - Z a  ~d 3 r ' -  I-n, { n . } ]  f i t ,  t) = " 
n(r', t) 

[R - r'l 

K Zn nn (R', t) 
+ Z A E  S daR' 

B=I I R - R ' I  
B ~ A  

N~ ZAnAa(R', t) (75) 
+ ZA Z ~ d3 R' [ R - R ' ]  

0=1 //~:¢t 

Note that, within this approximation, the nuclear KS potential depends on the 
state ~OA, it acts on. This is analogous to the SIC scheme of Perdew and Zunger 
[37]. 

Clearly, a complete numerical solution of the coupled KS equations (67, 68) 
for electrons and nuclei will be rather involved. Usually only the valence 
electrons need to be treated dynamically. The core electrons can be taken into 
account approximately by replacing the electron-nucleus interaction (65) by 
suitable pseudopotentials and by replacing the nuclear Coulomb potential in 
Eq. (64) by the appropriate ionic Coulomb potential 1-38]. This procedure 
reduces the number of electronic KS equations and hence the numerical effort 
considerably. 

3.2 Classical  Treatment  o f  Nuclear  M o t i o n  

Further simplification is achieved by treating the nuclear motion classically. 
Numerical schemes of this type have been derived in various ways [38-43]. In 

2 In atomic scattering processes, this is not necessarily the case. 
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this section we shall use the multicomponent formalism developed in Sect. 3.1 as 
a starting point to derive classical equations of motion for the nuclei. 

Applying Ehrenfest's theorem to the nuclear KS equation (68), the classical 
trajectory 

Rclass A~ (t) = <OA~(t) lf~l~'A~(t)> = f d3RRna~(R, t) 

of the ctth nucleus of species A satisfies the equation of motion 

d2 D class [¢.~ 

(76) 

(77) 

where the force is given by 

VA,(t) = - <~,A,(t) t VR V¢ I q,A,(t)>. (78) 

Since the TDKS equations (67-72) reproduce the exact nuclear densities, Eq. 
(76) yields the exact classical trajectory whenever species A contains only one 
nucleus. When species A contains more than one nucleus we have a system of 
indistinguishable particles and then, strictly speaking, the trajectories of single 
nuclei cannot be told apart: Only the total density nA (R, t) and hence the 
center-of-mass trajectory of species A can be measured. In this case, trajectories 
of single nuclei can be defined by Eq. (76) within some effective single-particle 
theory. TDKS theory is particularly suitable for this purpose since the TDKS 
partial densities ha, lead to the exact total density na. 

Employing the approximation (75) for the nuclear KS potential the force (78) 
on the nucleus (A~) simplifies to 

FA,(t) = -- ~dSRnA~(R, t) [VR VA,(R, t) - Za ~ dSrVR - -  

g Z13nv (R', t) +z B=lZ I d3R'v.  -wl 
B~A 

n (r, t) 
IR - r t  

N~ Z.4 nA# (R', t) 1 + ZA ~ Sd3R'VR [ ~ ]  • (79) 
#=1 

In many cases, the nuclear densities na~ (R, t) will be rather narrow functions, 
with a strong peak at the classical trajectory ~olass,~,,A~ UJ. In such a situation, 
integrals of the form J" d3R nA~ (R, t) G(R) are well represented by Taylor-expand- 
ing G(R) around the classical trajectory. This leads to 

j" d 3 R na~(R, t) G(R) class = G(RA~ (t)) + O(R Dclass't2 
-- AIA~ } • (80) 

The first-order term vanishes due to the definition (76) of the classical trajectory. 
Neglecting terms of second and higher order is equivalent to replacing the 
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nuclear densities by 6-functions: 

nA~(R, t) = 6(R - ~¢lass~,~ 

In this way the Newton equations (77, 79) reduce to 

d2 F V A bl~ class  
MA (t) = - 1_" t) 

- -  ~ d  3 r Zan (r, t) x N, + L E 
IRA~ - r l  n : l  a=l 

Za Zn 
oe las s ' s  - - D c lass  t l lJt"A~ -- Jt,tBp I I  

(82) 

and the electronic KS equations simplify to 

a ( 1 V2 n(r',t) 
i ~ o 2 ( r , t )  = - ~  +v~t(r,O+~d3r'(r~ 

K NB Z B  
-- ~ ~ R~Ss(t) t +vxcEn,{R~la"ss(t)}](r,t)j ~oj(r,t). (83) 

B = I  ~ = 1  I r -  

Equations (82) and (83) are coupled and have to be solved simultaneously. This 
scheme has been applied rather successfully to describe the melting of bulk 
sodium [38]. Compared to the Car-Parrinello method [44-46] the scheme has 
the advantage of not requiring the imposition of orthonormality constraints in 
the electronic equations of motion. 

One has to emphasize that Eqs. (82) and (83) do not involve the Born- 
Oppenheimer approximation although the nuclear motion is treated classically. 
This is an important advantage over the quantum molecular dynamics ap- 
proach [47-54] where the nuclear Newton equations (82) are solved simulta- 
neously with a set of ground-state KS equations at the instantaneous nuclear 
positions. In spite of the obvious numerical advantages one has to keep in mind 
that the classical treatment of nuclear motion is justified only if the probability 
densities na~ (R, t) remain narrow distributions during the whole process con- 
sidered. The splitting of the nuclear wave packet found, e.g., in pump-probe 
experiments [55-58] cannot be properly accounted for by treating the nuclear 
motion classically. In this case, one has to face the complete system (67-72) of 
coupled TDKS equations for electrons and nuclei. 

4 Electrons in Time-Dependent Electromagnetic Fields 

Up to this point we have exclusively dealt with time-dependent electric fields. 
The objective of the present chapter is to incorporate magnetic effects. For 
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simplicity, only the electronic degrees of freedom are being discussed, i.e., the 
nuclear motion is not considered. Magnetic fields couple both to the spin and to 
the electronic orbital currents. Hence, the most general T D D F T  should en- 
compass both of these couplings at the same time. However, to keep matters as 
simple as possible, we shall treat the two couplings separately in the following 
sections. 

4.1 Coupling to Spin 

In order to account for the coupling of a magnetic field B(r, t) to the electronic 
spin, the external potential 

N 
/7(0 = ~ v(r i, t) -- ~d 3 r~t(r)v(r, t) (84) 

j = l  

represented in terms of the density operator 

N 

~(r) = ~ 6(r - r~) (85) 
j = l  

has to be complemented by a Zeeman term, i.e., IT(t) has to be replaced by 

9 B (t) = ~ d 3 r ri(r) v(r, t) - ~ d 3 r lh(r). B(r, t) (86) 

where fi~ (r) represents the operator of the spin magnetization. For simplicity we 
assume that the vector B has only one non-vanishing component, the z-compon- 
ent, so that 

k 'n ( t )  = ~ d 3 r ~ ( r ) v ( r ,  t)  - j'd3 r vhz(r) B~(r, t). (87) 

If the system contains N T spin-up electrons and N~ = N -  N t spin-down 
electrons we can define spin-up and spin-down density operators by 

N~ 

~t(r) :=  ~ 6 ( r -  r~) (88) 
j = l  

N 

f t , (r) := ~ 6 ( r - r ~ ) .  (89) 
j = N ) + I  

In terms of these operators the total density ~(r) and the magnetization rhz(r) can 
be expressed as 

#i(r) = tit (r) + ~ l(r) (90) 

@:(r) = - #0 [~T(r) - ~l~(r)] (91) 

where #o is the Bohr magneton. 
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Defining furthermore the spin-up and spin-down potentials 

v,(r, t) = v(r, t) + #o B:(r, t) (92) 

and 

v,(r, t) = v(r, t) - #oBz(r, t), (93) 

Eq. (87) simplifies to 

l)n(t) = ~ d3r/~,(r) v~ (r, t) + ~ d3r ~(r)v~ (r, t). (94) 

Starting from the time-dependent many-body Schr6dinger equation 

i~qJ( t )  = (7~+ ~r + /~n(t))~p(t), (95) 

a time-dependent HKS formalism can be established [59] in analogy to Sect 2: 
The time-dependent spin densities 

n~(r, t) = (~P(t) r r iT(r)[ ~P(t)) (96) 

n~(r, t) = (~P(t) l ~s(r) I W(t)> (97) 

evolving from a fixed initial many-body state LP(to) are in 1-1 correspondence 
with the potentials (vr(r, t), v~(r, t)) provided that the latter can be expanded in 
Taylor series around the initial time to. The spin densities thus determine the 
potentials v~ = v~[nT, n~], v~ = v~ [n r , n~] uniquely up to within purely time- 
dependent (r-independent) additive functions. Consequently the many-body 
wave function can be considered as a functional ~P(t) = q~ [nT, n~] (t) of the spin 
densities which is unique up to within a purely time-dependent phase factor. 
Furthermore, following the arguments in Sect. 2.2, the spin densities of a given 
interacting system can be determined variationally by solving the Euler-Lag- 
range equations 

6 dB [nT, n~] = 0 (98) 
6 nt (r, t) 

,~ d B  [nT, n~ ] 
,~n~ (r, t) 

= 0, (99) 

where the action functional is formally defined as 

• d ~r_ D -  f/BIV[nr,n~](t)>. ~BEnr, n~]: = 7 dt ( ~  [nr, n~] (t) ll ~ - 
to 

(loo) 

Finally, assuming non-interacting v-representability, the spin densities of the 
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interacting system of interest can be obtained from time-dependent spin orbitals 

n,(r, t) = ~ k0j,(r, 0t 2 (101) 
j = l  

coming from the time-dependent KS equations 

i ~-~ tpj, (r, t) = ( -- ½ V 2 + v~, In r , n~ ] (r, t)) tpj, (r, t) (102) 

j = I . . . N , ,  a=Tl 

where the spin-dependent effective single-particle potential for electrons with 
spin tr = T, $ is given by 

vs~[nr, nt] (r, t) = v~(r, t) + S d3 r' n(r', t) Ir---- ~-1 + vx¢~ [nr, nt] (r, t). (103) 

Eqs. (101)-(103) constitute the KS scheme of time-dependent spin-density func- 
tional theory. With the xc action functional dxc [n r, n 4] defined in analogy to 
Eq. (43), the spin-dependent xc potentials can be represented as functional 
derivatives: 

,L#xo I-nT, n~-I 
v~¢, [nt, n~] (r, t) = (104) 

•n, (r,t) 

In the limit of vanishing magnetic field the external potentials in Eq. (103) 
become identical 

v T (r, t) = v~(r, t) = v(r, t) for B(r, t) = 0. (105) 

Nevertheless, Eqs. (102) and (103) do not necessarily reduce to the ordinary 
TDKS equations (40) and (41) in this limit. This is because the spin-dependent xc 
potentials vxc r and vxc~are not identical except for the case of spin-saturated 
systems (nT = n,). 

4.2 Coupling to Orbital Currents 

In order to describe the coupling of time-dependent magnetic fields to the 
electronic orbital currents, the kinetic energy 7 ~ has to be replaced by 

N 1 (  1 )2 
L , ( t )  = y ,  - iVr  + - A(r , t) 

j = l  C 
(106) 

where A(r, t) is the time-dependent vector potential related to the magnetic field 
by 

B(r, t) = V x A(r, t). (107) 
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Since the vector potential is not a gauge-invariant quantity, particular attention 
has to be paid to gauge transformations: If q'(rl, . . . ,  rN, t) is a solution of the 
time-dependent Schr6dinger equation 

i ~(t) = (7~A(t) + U + V(t)) ~P(t), (108) 

then the transformed wave function 

{ i ~ A(rj, t)} W(r, . . . . .  rN, t) ~'(rl . . . . .  rN, t) = exp -- c~=1 

is a solution of (108) with the gauge-transformed potentials 3 

(109) 

f(r, t) = v(r, t) + ! ~ A(r, t) (1 lO) 

.~ (r, t) = A (r, t) + VA (r, t). 

The physical (i.e. gauge-invariant) current density is given by 

1 
j(r,  t) = ( V ( t ) I ] ~ ( r )  I W(t)> + - n(r, t) A(r, t) 

c 

(111) 

(112) 

where l~(r) is the paramagnetic current density operator defined in Eq. (14). 
With these preliminaries, the central Hohenberg-Kohn-like theorem [24, 60] to 
be proven subsequently can be formulated as follows: 

The current densities j(r, t) and j'(r, t) evolving from a common initial state 
q'o = ~ (ri . . . . .  rN, to) under the influence of two four-potentials (v(r, t), A(r, t)) 
and (v'(r, t), A'(r, t)) which differ by more than a gauge transformation with 
A(r, to) = 0 are always different provided that the potentials can be expanded in 
Taylor series around the initial time to. 

Since the current density is gauge invariant the proof of the theorem can be 
carried out with an arbitrary representative of the gauge class of (v, A) and an 
arbitrary representative of the gauge class of (v', A'). As representatives we 
choose those four-potentials having a vanishing electric potential, i.e., for v(r, t) 
we make a gauge transformation (110) satisfying 

~ A ( r ,  t) = - c v(r, t), A(r, to) = 0 (113) 

s In the context of electrodynamics, the gauge transformation (111) is usually complemented by the 
transformation (~(r, t) = (p(r, 0 - 1/cdA(r, t)/dt where ~o(r, t) is the electric potential. In quan tum 
mechanics, on the other hand, one works with the potential energy v(r, t) = qtp(r, t). For  electrons 
(q = - e) the gauge transformation of q~ then leads to (110) in atomic units. 
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and for v'(r, t) we make a gauge transformation satisfying 

0 
~A ' ( r ,  t) = - cv'(r, t), A'(r, to) = 0. (114) 

The corresponding gauge-transformed vector potentials are denoted by .~(r, t) 
and ~'(r, t). Thus we have to show that 

(0, ~,(r, t)) :~ (0, ~'(r, t)) (515) 

implies 

j(r, t) ~ j'(r, t). (116) 

If .Z,(r, to) ~ .~' (r, to), then the statement of the theorem is trivially true because 
the initial paramagnetic currents and the initial densities are identical so that 

j(r, to) - j'(r, to) = 1 n(r, to) (,~(r, to) - ~'(r, to)) ~ 0. 
c 

(117) 

If ~(r, to) = .~'(r, to) the potentials must differ in some higher Taylor coefficient, 
i.e., 

0~k('~(r' t = t o { ; 0 ;  k < l  (118) t) -- .~'(r, t)) 0 ; k = I 

must be satisfied with an integer l > 0. Calculating the l-th time derivative of the 
densities j (r, t) and j' (r, t) by applying the Heisenberg equation of motion I times 
and taking the difference at the initial time to we obtain 

o ' o 
~t (j(r,t)-j '(r,t)) = c n ( r ,  to) ~ (,~ (r, t) - ~'  (r, t)) 

0, (119) 

where n(r, to) is the particle density at to. By virtue of (119) the current densities 
j(r, t) and j' (r, t) will become different at times infinitesimally later than to. 
This completes the proof. As a consequence of this theorem the physical 
current density j (r, t) determines the potentials v [j],  A[j ]  uniquely up to within 
a gauge transformation (110), (111). Hence, by virtue of the SchrSdinger equa- 
tion (108), the many-body wave function is a current-density functional 

[j]  (rl . . . .  , rN, t), unique up to within a gauge transformation (109). In afixed 
gauge, of course, v, A and • are determined uniquely by the current density. 
Applying the theorem to noninteracting particles then, once again, the poten- 
tials vs [j],  As ~ ]  and the Slater determinant ~ [j] leading to the current density 
j (r, t) are uniquely determined in a fixed gauge. 

In order to derive a TDKS scheme we consider a particular interacting 
system with current density jo(r, t), produced by the external potentials vo(r, t), 

103 



E.K.U. Gross  et al. 

Ao(r, t) (in a given gauge). Assuming noninteracting v-representability, i.e., as- 
suming the existence of potentials vs, o, As, o leading to Jo, we can calculate Jo from 
the equations 

; ) i ~ ~oj (r, t) = - N + c As .o  l'jo] (r, t) + Vs, o [Jo]  (r, t) %(r ,  t) 

(120) 

1 N 
jo(r, t) = ~ ~ (~p* (r, t)V~ok(r, t) -- ~pk(r, t)Vtp*(r, t)) 

k = l  

+ -  ~ Iq~k(r,t)l 2 As.off, t). (121) 
C k = l  

Once the existence of Vs, o and A,,o is assumed, uniqueness follows from the 
above theorem. Up to this point the time-dependent HKS formalism is quite 
similar to the case without magnetic fields developed in Sect. 2. The variational 
representation of vs. o and As.o, however, turns out to be much more complic- 
ated. Following Wacker, Kfimmel and Gross 1-60] the quantum mechanical 
action functional 

q 
Zgvo Aol'J] j dt<qJ[j](t)li . = ~ - irAo(t)- D - Vo(t)lWEj](t)> (122) 

to 

has a stationary point at the true current density Jo, i.e., the latter can be 
determined from the variational equation 

6d~'°'~j(r,A°[J]t) io = 0. (123) 

Correspondingly, the action functional 

tl ~ - TAo ( t ) -  f"so(t)l~[j](t)> (124) ~¢'s,o A,¢ [ j ]  = Sdt<~[j](t)]i-~ , 
to 

of noninteracting particles moving in the external potentials Vso, Aso has a sta- 
tionary point at Jo as well, i.e., 

6~¢LA,ol'J] I = 0. (125) 
6j (r, t) lio 

In order to deduce an integral equation determining the potentials Vso, Aso, we 
decompose doo. Ao I'j] into a universal part, ~ [j], and a functional -~vo. Ao l'J] that 
depends on the external potentials vo(r, t), Ao(r, t): 

d.o.Aol'j] = ,~l'J] -- avo Ao[J]- (126) 
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The universal part  is given by 

" 8 
~ l - j ]  = ~" dt (Vl - j ]  (t) li ~ - f -  LrlV [ j ] ( t ) ) ,  (127) 

t o  

where T is the kinetic energy (6). In terms of the functionals 

t 

nEj] (r, t) = - ~ dt' divj(r, t') (128) 
t o  

and 

1 n [ j ]  (r, t ) A [ j ]  (r, t) jp[ j ]  (r, t) = j(r, t) - c (129) 

the non-universal contr ibution to ~¢ [ j ]  can be expressed as 

- ~ v o A o [ J ] = I d t l  dar vo( r , t )+  Ao(r, t)  2 nEj] ( r , t )  
to  

1 ) 
+ - Ao (r, t) "jp [j]  (r, t) . (130) 

c 

Similarly, the action functional of noninteracting particles can be written as 

s * 
d~.o.A.o [J] = ~SEj]  _ -'~.o.A,o [J ] .  

where 

(131) 

~s  [j] = S dt (*  [j](t) l i ~  - TI (I)[j](t)) (132) 
t o  

.... A,o[J] = dtS d3r Vso (r, t) + - -  (r,t) z nEj] ( r , t )  
to t.,, 2C 2 so 

1 ) 
+ -Aso(r ,  t) • jp~[j] (r, t) . (133) 

c 

Note  that the functional 

Jps [J] = j(r, t) -- 1 n [ j ]  (r, t) As [ j ]  (r, t) (134) 
c 

is different, in general, from the functional Jvl-J] given by Eq. (129). Defining the 
universal xc functional as 

(135) 

105 



E.K.U, Gross et al. 

the total action functional of the interacting system can be expressed as 

~vo,  Ao [ J ]  = .~s [ j ]  _ ~,o Ao [J] -- Zgx¢[j]. (136) 

Equating the functional derivatives in (123) and (125) and inserting the expres- 
sions (131) and (136) we obtain 

Jo jo' g ~ Jo " 

~v~o A,o [J] g~'vo Ao[J] 8"~x¢ [J] 
6j(r, t) - 6j(r,t) + 6j(r,t) 

(137) 

This equation defines the TDKS potentials V~o, A~o implicitly in terms of the 
functionals A[ j ]  and As[j]. Clearly, Eq. (137) is rather complicated. The 
external-potential terms .~ and .~s are simple functionals of the density and the 
paramagnetic current density. The complexity of Eq. (137) arises from the fact 
that the density, Eq. (128), and the paramagnetic currents, Eqs. (129), (134), are 
complicated functionals of j. Hence a formulation directly in terms of the 
density and the paramagnetic current density would be desirable. For electrons 
in static electromagnetic fields, Vignale and Rasolt [61-63] have formulated 
a current-density functional theory in terms of the density and the paramagnetic 
current density which has been successfully applied to a variety of systems [63]. 
A time-dependent HKS formalism in terms of the density and the paramagnetic 
current density, however, has not been achieved so far. 

Several extensions of the formalism presented here have been proposed to 
deal with more general situations. Those include superconductors in time- 
dependent electromagnetic fields [60, 64] and time-dependent ensembles either 
for the electrons alone [65, 66] or for the coupled system of electrons and ions 
[42, 67]. As long as the number of photons is large, i.e., >> 1 in a volume given by 
the wave length cubed, the electromagnetic fields can be treated as classical 
fields. For smaller photon densities the quantum nature of electromagnetic 
radiation becomes important. In this case, a time-dependent functional theory 
can be formulated [68] on the basis of quantum electrodynamics. In this 
formulation the electromagnetic field is treated as a quantum field to be 
determined self-consistently with the four-current vector of the Dirac matter 
field. 

5 Perturbative Regime, Basic Equations 

5.1 Time-Dependent Linear Density Response 

In this section we shall derive [69] a formally exact representation of the linear 
density response nl (r, oJ) of an interacting many-electron system in terms of the 
response function of the corresponding (non-interacting) Kohn-Sham system 
and a frequency-dependent xc kernel. 
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We consider electronic systems subject to external potentials of the form 

vo(r) ; t < to (138) 
Vox,(r,t)= [vo( r )+v~(r ,  t); t > to  

where vo(r) denotes the static external potential of the unperturbed system 
(typically the nuclear Coulomb attraction) and vdr, t) is a time-dependent 
perturbation. We assume, that at times t < to the system is in the ground state 
corresponding to vo(r). In this case, the initial density no(r) can be obtained from 
the self-consistent solution of the ordinary ground-state Kohn-Sham equations: 

1 V2 ~ d3r, no(r') ) 
- ~ + vo(r) + Ir - r'------] + vx¢[no](r) ~bj(r) = ejc~j(r), (139) 

N 
no(r) = Z t~b~(r)l 2. (140) 

j=l 

By virtue of the static HK-theorem, the initial many-body ground state is 
uniquely determined by the initial ground-state density no. Hence, in this case, 
the time-dependent density n(r, t) is a functional of the external potential alone, 

n(r, t) = n[v~xt](r, t), (141) 

i.e., there is no additional dependence on the initial many-body state. By virtue 
of the fundamental 1-1 correspondence between time-dependent densities and 
time-dependent potentials, proven by Runge and Gross [7], the functional 
n[v~xt] can be inverted, i.e., 

Vext(r , t) -~- vext[n ] (r, t) .  (142) 

Within the realm of perturbation theory, i.e., for sufficiently small vl(r, t) the 
functional n[vcxt] can be expanded into a functional Taylor series with respect to 
the perturbation vdr, t), 

n(r, t) -- no(r ) = nl(r , t) -k n2(r, t) -t- n3(r , t) 4- . . . .  (143) 

where the lower indices denote the orders in vl. Thefirst order density response 
n l is given by 

nl(r, t) = Sdt'Sd3r'z(r, t, r', t') vl(r', t') (144) 

with the density-density response function 

Jn [-Vext~(r ~ t) 
z(r, t,r', t') = ~ i  vo" (145) 

Owing to the static HK theorem, the initial potential Vo = vex t [no]  is a functional 
of the unperturbed ground-state density no, so that the response function X, by 
Eq. (145), is a functional of no as well. 
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For  non-interacting particles moving in external potentials vs(r, t), the 
Runge-Gross theorem holds as well. Therefore the functional 

n(r, t) = n [v,] (r, t) (146) 

can be inverted, 

vdr, t) = v~En] (r, t), (147) 

and the Kohn-Sham response function, i.e., the density-density response func- 
tion of non-interacting particles with unperturbed density no is given by 

, 6 n [ v J  . t) 
z~(r, t, r ,  t') = _ _ _ ( r ,  . (148) 

6v,(r', t )  1~,[.o3 

By inserting the functional (141) into the right-hand side of Eq. (147) one has 
formally constructed a unique functional v~[vex,] such that the time-dependent 
density of noninteracting particles moving in vs(r, t) is identical with the density 
of Coulomb-interacting particles moving in vo.,(r, t). The potential v~(r, t) corres- 
ponding to a given ve.t(r, t), is the time-dependent Kohn-Sham potential (41): 

v~(r, t) = Ve.,(r, t) + S dsr' n(r', t) I r Z  ~-I + v~,(r, t). (149) 

By virtue of the functional chain rule, the functional derivative of v~ with respect 
to re,, provides a link of the interacting response function (145) to its nonin- 
teracting counterpart: 

6n(r, t) 6v , (x ,z)  °o (150) 
z (r, t, r', t') = ~ d 3 x ~ d~ 6v~(x, 0 6v~, (r', t ') " 

Making use of the functional chain rule once more to calculate the functional 
derivative of v, with respect to rex, one gets 

gvdr, t) .o = 6(r - r') 6(t - t') 
6vo~,(r', t') 

(5( t_ :~)  6vx~(r, t)'~ ~n(x, t) (151, 
+ ~ d 3 x Sdz F b ~ ,  ~) ] bvcxt (r', t')" 

By inserting (151) into (150) and using the defintions (145) and (148) we end up 
with a Dyson-type equation relating the interacting and the noninteracting 
response functions to each other: 

Z(r,  t, r ' ,  t ') = Zs(r, t, r', t') + ~d3x ~d'c ~d3x ' ~d'c' Zs(r, t, x ,  1;) 

(6(z --z') +fi~[no](X,Z,x' ,z ' )~ Z(x' ,z ' ,r ' , t ' ) ,  (152) 
× \ tx ~ x,-i / 
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where the so-called time-dependent xc kernel 

6v,o[n] (r, t) t (153) 
f,¢ [no] (r, t, r', t') := 6 n(r', t') .o 

is a functional of the initial ground-state density no. Equations (152)-(153) are 
the central result of our analysis. In previous work, see e.g. Ref. [70], it has been 
common practice to definefx~ by Eq. (152). The present derivation of Eq. (152) 
from TDDFT shows that f~¢, apart from its relation to the response functions 

and Z~, can also be represented as the functional derivative of the TD xc 
potential. Multiplying Eq. (152) by the perturbing potential vx(r', t') and integ- 
rating over r' and t' leads to the time-dependent Kohn-Sham equations for the 
linear density response: 

nl(r, t) = ~dt' ~d3r'xs(r, t, r', t') v,. l(r', t') (154) 

where the effective potential 

nl(r', t) 
vs, l¢r, t) = vl(r, t) +  a3, ' 

+ ~d3r ' ~dt'fxc I-n0] (r, t, r', t')nl(r', t') (155) 

consists of the external perturbation vl and the Hartree- and exchange-correla- 
tion contributions to first order in the perturbing potential vl. We emphasize 
that Eqs. (154) and (155), postulated in previous work [10, 71, 72], constitute an 
exact representation of the linear density response. In other words, the exact 
linear density response n~(r, t) of an interacting system can be written as the 
linear density response of a noninteracting system to the effective perturbation 
v~, ~(r, t). Combining Eqs. (154) and (155) and taking the Fourier transform with 
respect to time, the exact frequency-dependent linear density response is seen to 
be 

nl(r, 09) = ~d3y z~(r, y; co)vl(y, co) 

+ ~ d3y ~d3y'z~(r,Y; co) (l-~---y, I + fxc[no](y,y'; co)) nl(y',to). 

(156) 

The Kohn-Sham response function X~ is readily expressed in terms of the static 
unperturbed Kohn-Sham orbitals ~bk: 

~bj(r) ~b~' (r) ~b* (r') ~bk(r') 
)~s(r, r'; co)= ~ (fk --])) (157) 

j,~ co - (sj - sk) + it/ 

Here, (J~,f~) are the occupation numbers (0 or 1) of the KS orbitals. The 
summation in (157) ranges over both occupied and unoccupied orbitals, includ- 
ing the continuum states. 
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In this section we only dealt with the linear response to time-dependent 
electric fields of systems at zero temperature. The corresponding formalism for 
systems at finite temperature in thermal equilibrium was developed in [73, 74]. 
The current-density-functional response theory for arbitrary time-dependent 
electromagnetic fields has been worked out by Ng [75]. The exchange-correla- 
tion kernelfx,, given by Eq. (153), comprises all dynamic exchange and correla- 
tion effects to linear order in the perturbing potential. Depending on physical 
context, fxc has different names: In the theory of the homogeneous electron gas 
[70, 76-78] the Fourier transform, fxJq, co), of fxjr ,  t, r', t') with respect to 
(r - r') and (t - t') is proportional to the so-called local field correction 

q2 
C~(q, ~o) = - 4-~ L¢(q, 09). (158) 

In the theory of classical liquids [79],f,~ plus the particle-particle interaction is 
known as Ornstein-Zernikefunction. In practice, of course, this quantity is only 
approximately known. Suitable approximations of f , ,  will be discussed in 
section 6. In order to construct such approximate functionals, it is useful to 
express J~,c in terms of the full response function X. An exact representation of 
fx~ is readily obtained by solving Eq. (144) for v~ and inserting the result in 
Eq. (155). Equation (154) then yields 

fxc I n 0 ]  (r, t, r ' ,  t ' )  = ~(s- 1 [no-l(r ,  t, r t, t ' )  - -  ~( - 1 [ n o ]  (r, t, r ' ,  t ' )  
6 ( t  - t ')  

I r  - r ' t  ' 

(159) 

where Z~- 1 and Z- 1 stand for the kernels of the corresponding inverse integral 
operators whose existence on the set of densities specified by Eqs. (138) and (144) 
follows from Eq. (253), as mentioned in section 2.1. The frequency-dependent 
response operators x(r, r';co) and x~(r, r';o~), on the other hand, can be non- 
invertible at isolated frequencies [80, 81]. Ng and Singwi [73, 82] have argued, 
however, that these examples are typical of finite systems while for large systems 
in the thermodynamic limit invertibility of the frequency-dependent response 
operators is guaranteed by the second law of thermodynamics. 

As a consequence of causality, the response functions z(r, t, r', t') and 
zs(r, t, r', t') vanish for t' > t. The same statement holds true for the kernels 
Z- 1( r, t, r', t') and X~- 1( r, t, r', t') of the inverse response operators and hence, by 
Eq. (159), the xc kernel must satisfy 

fx¢(r, t, r', t') = 0 for t' > t. (160) 

In particular, fxjr, t, r', t') is not symmetric under exchange of (r, t) and (r', t'). 
Hence, by virtue of Schwarz' lemma for functionals [83],fxjr, t, r', t') cannot be 
a second functional derivative 62dxj6n(r, t) 6n(r', t'). Since, on the other hand, 
fxc is the functional derivative of Vx¢ one concludes that the exact v~,[n](r, t) 
cannot be a functional derivative. This is in contradiction to the stationary 
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action principle described in Sect. 2.2. which leads to the representation (42) of 
v~ as a functional derivative. This contradiction is currently an unresolved 
problem. It appears that causality somehow has to be taken into account 
explicitly in the variational principle (36). We emphasize once more that these 
considerations do not affect the validity of the TDKS equations (39)-(41) nor do 
they affect the validity of the response equations (152}-(156). Only the varia- 
tional representation (42) of vx~ appears doubtful. 

We finally mention that the chain of arguments leading to Eq. (152) can be 
repeated within static HKS theory as well. This yields 

zstat (r, r') = Z~t"'(r, r') + Sd3x ~ M3X'Z star (r, x) 

x (  1 + r  ~'t )Xs"t(x  ', ~ - ~  . ~  [no] (x, x') r'), (161) 

where ~stat and ~s stat a r e  the full and the KS response functions to static perturba- 
tions and 

fxc[no](X,X,):=6v~¢[n](x) [ = 62E~¢[n] 1 
6n (x') .o 6n (x)fn(x') .o" 

(162) 

On the other hand, taking the Fourier transform of Eq. (152) with respect to 
(t - t') one obtains 

z(r, r';co) = zs(r, r ,  co) + j" d3x ~ 3 , '" d x zs(r, x; ~o) 

x ( i x _ ~  + fxc [n0](x, x'; co))Z(x', r'; co). (163) 

Subtracting the zero-frequency limit of this equation from Eq. (161) and using 
the fact that 

t.  s stat (r, r') = Zs (r, r ,  co = 0) 

Zstat(r, r') = z (r ,  r'; co = 0)  

(164) 

(165) 

one concludes that 

t .  Sd3xSd3x ' Zs(r, x; co = 0) (fxc [no] (x, x ,  ~o = 0) 

s l a t  t .  - - fx,  [no] (x, x'))Z(x', r ,  o) = 0) = 0. (166) 

Acting on this equation with ~ -  1 from the left and with ~ - 1 from the right, one 
obtains the rigorous identity [84] 

~2Exc It/] ] 
lim fxc [no] (x, x'; o) - 6n(x)~n(x') .o" (167) 
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5.2 Time-Dependent Higher-Order Response 

Recently there has been a great deal of interest in nonlinear phenomena, both 
from a fundamental point of view, and for the development of new nonlinear 
optical and optoelectronic devices. Even in the optical case, the nonlinearity is 
usually engendered by a solid or molecular medium whose properties are 
typically determined by nonlinear response of an interacting many-electron 
system. To be able to predict these response properties we need an efficient 
description of exchange and correlation phenomena in many-electron systems 
which are not necessarily near to equilibrium. The objective of this chapter is to 
develop the basic formalism of time-dependent nonlinear response within den- 
sity functional theory, i.e., the calculation of the higher-order terms of the 
functional Taylor expansion Eq. (143), In the following this will be done 
explicitly for the second- and third-order terms 

1 
nz(x) = ~. ~ dy ~ dy' Z~2)(x, y, y') v,(y) vl (y') (168) 

! 

n3 (x) = ~ ~ dy S dy' ~ dy" zt3)(x, y, y', y") v,(y) v,(y') vl(y" ) . (169) 
3. 

The extension to terms of arbitrary order is straightforward. For convenience, 
we use the four-vector notation 

x = ( r , t )  and Sdx  = - ~ d 3 r ~ d t .  (170) 

The second- and third-order response functions of the interacting system are 
formally given by the functional derivatives 

62n(x) no (171) 
X ~2~ (x, y, y') = 6vext(y) ~vex,(y') 

Z t3) (x, y, y', y") = b3n(x) [ (172) 
bVextb') 6Vext(Y') bVext(Y") no 

of the time-dependent density with respect to the time-dependent external 
potential V,xt evaluated at the initial ground-state density no. From ordinary 
time-dependent perturbation theory, these quantities are given by [85] 

Z'Z)(x, y, y') = ( - i) z ~ O(t - z) O(t -- z') 

x (Wo I [[ha(X), ha(y)], ~n(y')]lWo) (173) 

Z t3) (X, y, y', y") = ( -- i)3 ~'O(t -- Z) O(t -- r') O(t' -- z") 

x ('~'o t [[ItCH(X), ae(Y)], t~,(y')], t~n(y")] I ~I'o) (174) 
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where the sum has to be taken over all permutations ~ of y, y', y" and the index 
H denotes the Heisenberg picture corresponding to the unperturbed Hamil- 
tonian. From the time-translational invariance of the unperturbed system it 
follows that the response functions (145), (171) and (172) only depend on the 
differences of the time-arguments. Obviously, the full response functions (171) 
and (172) are very hard to calculate. 

The response functions of systems of noninteracting particles, on the other 
hand, are functional derivatives of the density with respect to the time-depen- 
dent single-particle potential v~: 

62n(x) ,o (175) z~ 2~(x, y, y') - 6v~(y) 6v~(y') 

63n(x) no" (176) Z~ 3) (x, y, y', y") = 6v~(y) 6v~(y') 6v~(y") 

These functions can be expressed in terms of single-particle orbitals, similar to 
the linear response function (157). 

To obtain the higher-order expressions of the density response, we use the 
functional chain rule in Eq. (171): 

62n(x) 6 6n(x) 6v~(z) 
6Vext(Y) 61)ext(Y') -- 6/)¢xt(Y ) S dz 6vs(z) 6Vext(Y' ) 

= Saz ~dz' 62n(x) 6v,(z') 6v~(z) 
6v~(z') 6v~(z) 6ve,,,(y) 6vexi(y') 

+ ~dz 6n(x) 62v~(z) (177) 
6v~(z) 6v¢,a(y) vc,,t(y') 

As has been outlined in Sect. 2, the full time-dependent Kohn-Sham potential 

v~(x) = v~t(x) + vn(x) + v,,c(x) (178) 

is a unique functional of the external potential ve~t. Hence, we get 

6 2 v,(z) 6 6 (v~ (z) + v,o(z)) ~n (z') 
6Vox, (y) 6vo~,(y ) - 6vo~, (y) Ida' ' 6n (z') 6 v,~, (y') 

= ~dz'Sdz" 6Z(vn(z) + v,¢(z)) 6n(z") 6n(z') 
6n(z") 6n(z') 6v¢,,t (y) 6v¢~t(y') 

+ ~dz' 6(vu(z) + v,,¢(z)) 62 n(z') (179) 
6n(z') 6Vext(Y ) 6Vext(Y' ) " 

Combining Eqs. (177) and (179) and evaluating all functionals at the ground- 
state density no, we obtain a Dyson-type relation for the second-order response 
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function (171): 

~vs(z) .o fivs(z') I z~2)(x, y, y') = Idz Sdz' z~ ~ (x, z, z') ~ fi':ex,(y') .o 

+ ~dzz~ (x, z) Idz'Sdz"gx¢(Z, z', z") X(z', y) )C(z", y') 

+ ~ dz )~s(x, z) ~ dz' (w(z, z') + f~(z, z'))X~2)(z ', y, y'), (180) 

where the time-dependent second-order xc kernel 9x, is defined as: 

62vxc(z) ,o (181) 
gxc(z, z', z") = 6n(z')6n(z") " 

To arrive at Eq. (180) we have used the definitions (145), (148), (171) and (175) of 
the density response functions. Furthermore, we have abbreviated the kernel of 
the (instantaneous) Coulomb interaction by w(x, x') - 6(t - t')/fr - r'l. Finally, 
by inserting Eq. (180) into (168) one arrives at the time-dependent Kohn-Sham 
equations for the second-order density response: 

n2(x) = ½ ~ dz I dz' z~ ~ ix, z, z') v,,, (z) v~, ,(z') 

+ ½1 az ~a~' ;az" z~(x, z) o,o(z, z', z') n~(z') ,~(z') 

+ ~dz~dz' )~(x, z) (w(z, z') +fx~(Z, z'))n2(z'). (182) 

Solving Eqs. (154) and (155) first, allows for the subsequent solution of the 
selfconsistent Eq. (182) which is quadratic in the (effective) perturbing potential 
(155). 

In similar fashion, one can set up the equation for the third-order density 
response (169): 

/:/3(x ) = 61 idy idy, fdy.  ;f~3~ (x, y, y', y") V~,l (y) Vs, l(y') vs, x(y") 

+ ½~dy~dy'Idzidz'z~Z~(x, y, y') v~.l(y) 9~(Y', z, z') nl(z) nl(z') 

+ ~dy Idy' fdy" z~ 2) (x, y, y') vs, ,(y) (w(y', y") + f~¢(y', y")) nz(y") 

+ 16 ~dySdz~dz'~dz" X,(x, y) h~¢(y, z, z', z") n,(z) nl(z') nl(z") 

+ ~dy~dy' jdy" Z~(x, y) 9x¢(Y, Y', Y") nl(y') nz(y") 

+ ~dy ~dy' Z~(x, y) (w(y, y') + Lo(Y, Y')) n3(y'). (183) 

The quantity hx¢ occurring in this equation is the third-order functional deriva- 
tive of the time-dependent xc potential with respect to the time-dependent 
densities: 

~3t'xc(Y) ,,,, (184) 
hx¢(y, z, z', z") - fin(z)fin(z')fin(z") " 
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Interestingly, the Eqs. (154), (155), (182) and (183) for the i-th order density 
responses all exhibit the same structure: 

ni(x ) = d[.[i(X) + ~dy Sdy, xs(y ' yt) (w(y, y') + f~¢(x, y)) ni(y' ) i = 1, 2, 3, 

t185) 

where the functionals JCi(x) are known after the solution of the (i - 1)th order. 
This establishes a hierarchy of Kohn-Sham equations for the time-dependent 
density response. 

The frequency-dependent nonlinear density responses are given by the 
Fourier transforms of Eqs. (185). For monochromatic perturbations, the expres- 
sions for the higher-order frequency dependent density shifts decouple in the 
frequency variable. The corresponding formulae and explicit expressions for the 
Kohn-Sham response functions up to third order are given in work of Senatore 
and Subbaswamy [86]. The corresponding static higher-order response has 
been worked out and applied to solids by Gonze and Vigneron [87]. 

6 The Time-Dependent Exchange-Correlation Potential: 
Rigorous Properties and Approximate Functionals 

6.1 Approximations Based on the Homogeneous Electron Gas 

The simplest possible approximation of the time-dependent xc potential is the 
so-called time-dependent or "adiabatic" local density approximation (ALDA). It 
employs the functional form of the static LDA with a time-dependent density: 

hom t VA¢ LDA [n] (r, t) = vx¢ (n(r, t)) = (pt~ h°m (p)) (186) 
p = n(r,t) 

Here ~om is the xc energy per particle of the homogeneous electron gas. By its 
very definition, the ALDA can be expected to be a good approximation only for 
nearly homogeneous densities, i.e., for functions n(r, t) that are slowly varying 
both spatially and temporally. It will turn out, however, that the ALDA gives 
rather accurate results even for rapidly varying densities (see Sects. 7 and 8). For 
the time-dependent xc kernel (153), Eq. (186) leads to 

t t horn fff&DA [no3 (r, t, r ,  t') = 6(t -- t') 6(r -- r') ~p2 ~pex¢ (p)) (187) 
p = no (r) 

The Fourier-transformed quantity 

P- horn f~DA [no] (r, r ,  w) = 6(r -- r') ~p2 (pe ~¢ (p)) . (188) 
p = no (r) 

has no frequency-dependence at all. 
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In order to incorporate the frequency-dependence off~¢ in some approximate 
fashion, Gross and Kohn [71] suggested to use the frequency-dependent xc 
kernel f~m of the homogeneous electron gas in the sense of an LDA: 

J x c  t. ca) :~_.~. £hom f L D A  [no] (r, r ,  :~¢ (no(r), [r - r'l; ca). (189) 

The LDA of non-local quantities, such as response functions, always involves 
some ambiguity [I, 2-1 as to whether the inhomogeneous no is to be evaluated at 
r, at r', or at some suitably chosen mean value of r and r'. Of course, in the limit 
of slowly varying no(r) (i. e. in the limit where the LDA should be a good 
approximation) the choice does not matter. In addition to the LDA replacement 
fx ~ ~ C h o m  Gross and Kohn [71] made the assumption that n~ (r, ca) is slowly c J x c  , 

varying on the length scale given by the range of.fxhc °m (no  (r) ,  Ir - r' I; to). Under 
this assumption, the change in the xc potential can be calculated as 

x c  3 t h o r n  , ,m (r, co) = nl(r, co) .fd r f,¢ (no(r), Ir - r'[; ca). (190) 

In terms of the Fourier transform of fxhe °m with respect to (r - r'), Eq. (190) 
amounts to the approximation 

GK = f~¢ (no (r), q = 0; to). f~o [no] if, if;to) 6(r-- r') horn (191) 

This approximation requires the xc kernel of the homogeneous electron gas as 
input. In order to investigate this quantity we consider Eq. (159) in the homo- 
geneous case. Fourier transformation with respect to (r - r') and (t - t') leads to 

1 1 4n  
fx h°m (no, q; ca) - X ~om (no, q; ca) xh°m(no, q; CO) q2" (192) 

The response function X h°m of a non-interacting homogeneous system is the 
well-known Lindhard function. The full response function ifom, on the other 
hand, is not known analytically. However, some exact features of X h°" are 
known. From these, the following exact properties of fx h°m can be deduced: 

1. As a consequence of the compressibility sum rule one finds [76] 

d 2 
= (n~x¢ (n) )  - -  )Co ( n ) .  lim Chore O) .ore 

q_,o :x~ (q, ca = ~ n  2 
(193) 

This shows that fALDA jxc , as given by Eq. (188), is identical with the zero- 
frequency limit o f f  GK J X C  " 

2. The third-frequency-moment sum rule leads to [88] 

lim :horn l .  ~ )  
J X g  \ " I  ~' ( / )  

q ~ O  

4.2,3 _d d .o° 
= - 5  a n k  n2/3 ) + 6 n ' / 3 d n \  n at3 ] - f ~ ( n ) "  (194) 
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3. According to the best estimates [89, 90] horn ofex¢ , the following relation holds 
for all densities: 

fo(n) < foo(n) < 0.  

4. The large-q behavior at zero frequency is given by [91] 

(195) 

f ~  (q, to 0) 2n 1/3 (n-1/3 ~om = = -  ex¢ ( n ) ) -  B(n) .  (196) 
q ~ c o  

The function B(n) has been fitted [92] to Monte-Carlo results. The resulting 
parametrization 

1 + 2"15x + 0"435x3 (~_~3n)t/6 
B ( n ) = 3 +  1.57x+0.409x a ' x = ~ =  (197) 

reproduces the Monte-Carlo results with a precision of about 1% in the 
density range 0 < r~ < 10. 

5. The short-wavelength behavior in the high-frequency limit is given by 
[93, 94] 

l im fnom (q, to oo) 2 4re d 
~ , o  . . . . . .  - ~ , o  (n)) q_.® ~ q2 (1 9(0)) + 6n 1/3 (n 1/3 horn 

(198) 

where g(r) denotes the pair correlation function. 
6. f~orn (q, co) is a complex-valued function satisfying the symmetry relations 

~Rfx h°m (q, to) = 9~f~¢ °rn (q, - to) (199) 

horn ~fxc (q, co) _ ~ fhom = vjxc  (q, - to). (200) 

7. f~grn (q, co) is an analytic function of to in the upper half of the complex 
~o-plane and approaches a real functionf®(q) for to ~ 0o [70]. Therefore, the 
function (f~m (q, to) _ foo (q)) satisfies standard Kramers-Kronig relations: 

9~ fhom (q, (2)) --f~o (q) = P I &o' ~3f?fl ~ (q, to') (201) 
J x c  7g t o '  - -  (2) 

• f h o m  a~¢ (q 'co)= - P f  
do)' horn 9tf,,¢ (q, ~o') -- f ~  (q) 

to~ - -  to  
(202) 

8. The imaginary part of fxrc °m exhibits the high-frequency behavior 

lim horn 3f ,~  (q, to) _ c 
~,~ o0 093/2 (203) 

for any q < 0o [95]. A second-order perturbation expansion [95, 96] of the 
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irreducible polarization propagator leads to the high-density limit 

23n 
c = (204) 

15 

Other authors [97, 98] find c = 46n/15; see also Ref. [94]. 
9. In the same limit, the real part offh~ °m behaves like [71] 

c 
lim ..q~.,xcfh°m (q, co) = foo(q) + co-5/Z- (205) 

Since c > 0, the infinite-frequency value f® is approached from above. This 
9tfxc (q = 0, co) cannot grow implies, in view of the relation (195), that horn 

monotonically from fo to foo. 

The above features of fxhe °m a r e  valid for a three-dimensional electron gas. 
Analogous results have been obtained for the two-dimensional case [95, 99, 
1003. 

Taking into account the exact high- and low-frequency limits, Gross and 
Kohn [71] proposed the following parametrization for the imaginary part of 

f h o m .  

x ¢  • 

horn a(n) co (206) 
~fx~ (q = 0, co) = (1 + b(n)co2)s/4, 

where 

a(n) = - c ( ~ / £ )  5/3 ( f  ~(?l) - f o ( n ) )  5/3 (207) 

b(n) = (]2/c) 4/3 ( f  ~(n) - -  f o ( n ) )  4/3 (208) 

(F(1/4))z (209) 
7'= 4 x / ~  " 

fo, f~, and c are given by Eqs. (193), (194), and (204), respectively. Using the 
Kramers-Kronig relation (201), the real part can be expressed as 

°3[ (is1) - - , xc  q~ fhom (q = O, CO) = f ~  + --~S 2 2E -- - - ~  H ~ , x~ ~ 

- - - 1 -  Sll C + s 2  - - 2  ' ~ ) 1 '  s2 = l + b c o  2 • 

(210) 

E and FI are complete elliptic integrals of the second and third kind in the 
standard notation of Byrd and Friedman [101], This completes the explicit form 
of the Gross-Kohn approximation (191). 
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Figs. 1 and 2 show the real and imaginary part of fxhc °m as calculated from 
(206) and (210). The functions are plotted for the two density values correspond- 
ing to r~ = 2 and r, = 4. For the lower density value (rs = 4), a considerable 
frequency dependence is found. The dependence on to becomes less pronounced 
for higher densities. In the extreme high-density limit, the difference between 
fo and f~  tends to zero. One finds the exact result 

foo - f o ' r  2 for r~-} 0 (211) 
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At the same time, the depth of the minimum of ~ f x  h°m decreases, within the 
parametrization (206) proportional to r~. 

We finally mention that an extension of the parametrization (206) to non- 
vanishing q was given by Dabrowski [102]. The spin-dependent case was 
treated by Liu 1-1033. A similar interpolation for the exchange-correlation kernel 
of the 2-dimensional electron gas has been derived by Holas and Singwi 1-95]. 

In the construction and improvement of static ground-state density func- 
tionals, various exact constraints such as xc hole normalization [104] and 
scaling relations [1053 have been extremely useful. While the development of 
explicit time-dependent functionals is at a comparatively early stage, there are 
some constraint conditions which can be useful in the time-dependent context. 
First of all, some of the exact properties of the homogeneous-electron-gas kernel 
f~om are readily generalized to the inhomogeneous case: Causality leads to 
Kramers-Kronig relations for fx~(r, r'; 09) analogous to Eqs. (201) and (202), and 
the fact that fxc (r, t, r', t') is a real-valued quantity implies that 

fx¢ (r, r'; ¢o) = fx¢ (r, r'; - co) * .  (212)  

Besides that, the response functions Xs and X satisfy the symmetry relations 1-1063 

•(r, r'; ~o) = x(r', r; co) (213) 

z,(r, r'; o~)= zs(r', r; o9) (214) 

provided that the unperturbed system has time-reversal symmetry. Equation 
(t63) then implies that 

fx¢ (r, r'; co) = f~, (r', r; co). (215) 

Further exact constraints can be deduced from the quantum mechanical 
equation of motion (15). For the operator 

= S d3rrfi(r) (216) 

Eq. (15) leads to 

d d 3 
dt (~( t )  lr ItF(t)) = ~ ~d rr n(r, t) = i(~F(t) i [H (t), ~] I tF(t)) (217) 

where 

~( t )  = 7~+ t~ + ~o,,(t). (218) 

Taking the time derivative of Eq. (217) and employing the equation of motion 
(15) once more one obtains 

d--~-z Sd 3 r r n(r, t) = - (W(t) I [/~ (t), [[/(t), ~]] I iF(t)) (219) 
dt 2 
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because ~ [ff/(t), t~] = 0. Using the translational invariance of the Coulomb 
interaction U the double commutator in (219) is readily calculated, leading to 
the traditional Ehrenfest theorem: 

d2 Sd3rrn(r,  t) = - Sd3rn(r, t) Vvext(r, t). (220) 
dt 2 

Likewise, for noninteracting systems described by Hamiltonians of the form 

/~s(t) = :F+ Vs(t) (22t) 

one obtains 

~tz~d3rrn  s (r, t) = - ~d3rns(r, t) Vvs(r, t). (222) 

For the unique KS potential 

vs[n] (r, t) = voxt(r, t) + vu[n](r, t) + vxo [n] (r, t) (223) 

which reproduces the density n(r, t) of the interacting system, Eq. (222) leads to 

d-~-2 I dar r n(r, t )=  - I d 3 rn (r, t)V (ve~t(r, t) 
dt 2 

+ vu In] (r, t) + vx~ [n] (r, t)). (224) 

Subtracting Eq. (220) from Eq. (224) one obtains the rigorous result 

d 3 rn (r, t) Vv~¢ [n] (r, t) = 0. (225) 

To arrive at Eq. (225) we have used the fact that the Hartree potential 

n(f,  t) 
VH In] (r, t) = Id3r ' Ir - r'] (226) 

satisfies the equation 

d 3 rn (r, t) Vvn In] (r, t) = 0. (227) 

Equation (225) was first obtained by Vignale [107] from invariance properties of 
the xc action functional d~¢ defined in Eq. (43). The derivation given here [108, 
109] has the advantage of being independent of the stationary action principle. 

Applying the equation of motion (15) to the angle operator q5 and using the 
rotational invariance of the Coulomb interaction U, one obtains 

d 2 
dt-- 7 (W(t) [ 0 f W(t)) = - ~ d a r n(r, t) r x Vve~t (r, t). (228) 
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Subtraction of the corresponding equation for the KS potential (223) then leads 
to the exact constraint 

Sd 3 rn(r, t)r x Vvx¢ In] (r, t) = 0. (229) 

Corresponding properties of the exact xc kernel are obtained by evaluating the 
left-hand sides of Eqs. (225) and (229) at the density 

n(r, t) = no(r) + fin(r, t), (230) 

where fin(r, t) is an arbitrary deviation from the ground-state density no (r). To 
first order in fin one obtains from Eq. (225) 

0 = ~ dfrno(r)Vvx¢ [no] (r) + S d3r ' S dt'fin(r', t') Ifi(t t') Vr vxe [no] (r') 

+ S d 3 r no (r)V, L¢ [no] (r, t, r', t ' ) ] .  (23 1 ) 

The first integral on the right-hand side of this equation must vanish. (This is the 
static limit [110] of Eq. (225).) Since 6n is arbitrary, the second integral leads to 
the identity 

~d3rno(r)V,  fx~[no](r, t, r', t') = - cS(t - t ')Vcv~¢[no](r').  (232) 

Taking the Fourier-Transform of this equation with respect to ( t -  t') one 
obtains the constraint 

S d3 r no(r) V, f~  [no] (r' r'; co) = - %, Vx~ [no] (r'). (233) 

Applying the same procedure to Eq. (229) one arrives at [108, 109] 

d 3 r no(r) r × V, fx, [no] (r, r'; o~) = - r' × V,, v~¢ [no] (r'). (234) 

Finally, multiplying Eqs. (233) and (234) by no (r') and integrating over r' leads to 

d 3 r ~ d 3 r'no (r) no (r') V, A~ [no] (r, r'; 09) = 0 (235) 

and 

d 3 r ~ d 3 r '  n o ( r )  n o (r') r × V, f~  [no] (r, r'; ~) = 0. (236) 

Equation (233) was first obtained by Vignale [111] from a new sum rule for the 
response function. The ALDA satisfies the constraints (223) and (234) while the 
Gross-Kohn approximation (191) is easily seen to violate them. This fact is 
closely related to the violation of the Harmonic Potential Theorem which will be 
discussed in detail below. 

Another type of constraint on theories of time-dependent phenomena in 
interacting inhomogeneous systems is obtained by taking expectation values of 
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repeated commutators of current operators with the Hamiltonian. In this way 
one obtains exact relations for frequency moments of response functions. Very 
recently Sturm [94] has given a detailed study of the odd frequency moments of 
the dielectric function in inhomo#eneous systems, and has explored odd moments 
up to the seventh. The ALDA satisfies the first, third and fifth frequency moment 
sum rules but violates the seventh as was demonstrated by Sturm for metals in 
the nearly free electron approximation. 

Finally, another rigorous constraint [112] is known as the Harmonic Poten- 
tial Theorem (HPT), as it relates to the motion of interacting many-electron 
systems in an externally-imposed harmonic oscillator potential v(r) = ½r-K-r 
plus the potential - F ( t ) ' r  describing a spatially uniform, time-dependent 
external force F(t). Here K is a spring-constant matrix which can be assumed 
symmetric without loss of generality. (Suitable choices of K yield various 
physical situations: for example, the choice K = diag(k, k, k) corresponds to 
a spherical quantum dot or "Hooke's atom", while the choice K = diag(0, 0, k) 
yields a parabolic quantum well such as may be grown in the Gal-xAlxAs 
system by molecular beam epitaxy.) The harmonic external potential is special, 
being the only confining potential which retains its form when one transforms to 
a homogeneously accelerated reference frame. To see that it does so, consider 
[113] a moving frame whose origin has the space coordinate X(t) relative to the 
rest frame. The observer in this frame sees a total external potential 

~(~, t) = ½ r" K '  r + reX. ~ - F(t). r (237) 

where ~ = r - X(t) is the position coordinate in the new frame, and the second 
term in (237) is the centrifugal or fictitious potential due to motion of the frame. 
If X(t) satisfies the classical equation of motion 

mX(t) = - K'X(t) + F(t) (238) 

then one obtains the potential in the moving frame as 

fff, t) = ½ f . K . f + c(t). (239) 

This transformed external potential (239) has the same form as the potential for 
the undriven (F = 0) harmonic well problem in the rest frame, except for the term 
c which depends on time but not on F. Furthermore, because the (Coulomb or 
other) particle-particle interaction is a function only of differences 
r t - r  i = ~ i -  ~, the interaction potential is also invariant under the trans- 
formation to the accelerated frame. Thus, both classically and quantum mechan- 
ically, any state or motion in the rest frame has a counterpart motion with 
superimposed translation X(t), provided that (238) is satisfied. In particular 

for harmonically-confined interacting systems there exist quantum states in 
which the ground-state many-body wavefunction is translated rigidly (up to a phase 
factor) as in classical motion, and hence the ground-state number density no(r) is 
replaced by the rigidly moving density n(r, t) = no(r - X(t)). (240) 
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This conclusion is the Harmonic Potential Theorem (HPT). It is an extension of 
the generalized Kohn Theorem [114]: the latter only refers to the frequency 
dependence of linear response and does not address the spatial profile of the 
moving density. The HPT can be also proved more formally [112] by explicit 
construction of the moving many-body wavefunction as seen in the rest frame. It 
is important to note that systems confined by a scalar harmonic potential (e.g. 
quantum dots) are spatially finite in at least one dimension, and have strong 
spatial inhomogeneity at their edges. Thus the HPT constitutes an exact result 
beyond the level of linear response for the time-dependent behavior of an in- 
homogeneous, interacting many-body system. As such, it poses an interesting 
constraint on approximate general theories of time-dependent many-body phys- 
ics, such as local-density versions of TDDFT. Of course, since the HPT is valid 
generally it is also valid for linear response. Vignale [107] has shown that the 
HPT result holds even with the inclusion of a homogeneous magnetic field. 

Another closely related constraint is that of Galileian invariance. Suppose 
that a many-body wavefunction tt' (rl, rz . . . . .  rN) satisfies the time-independent 
interacting N-particle Schr6dinger equation with an external one-particle po- 
tential v(r). Then, provided that the inter-particle interaction depends on coordi- 
nate differences only, it is readily verified that a boosted wavefunction of the 
form ( N) 

exp - i S ( t ) + i U "  ~ rj ~ ( r l - U t ,  r 2 - U t  . . . .  , rN--Ut) ,  (241) 
j = l  

where S(t) is the corresponding classical action [112], satisfies the time-depen- 
dent interacting N-body Schrddinger equation with boosted external potential 
v ( r -  Ut). Because the phase factor disappears in forming [~[2, this result 
implies that all many-body probability densities are rigidly boosted when the 
external one-body potential is boosted. In particular, the one-particle density is 
rigidly boosted, and this particular aspect of Galileian invariance should apply 
to TDDFT which deals directly with densities. In applying this criterion, it will 
clearly be necessary to relax the condition used in Sect. 5 that the initial 
many-body wavefunction be the ground-state wavefunction. In fact, to represent 
a system boosted to constant velocity U, the initial wavefunction must contain 
the additional phase factor shown in Eq. (241). 

The following question now arises: which approximations in TDDFT satisfy 
the HPT and Galiteian invariance? By noting that the ALDA xc potential 
rigidly follows the density when the latter is rigidly moved, and by examining the 
TDKS equations for harmonic confinement with and without a driving field 
Dobson [112] showed that the ALDA satisfies the HPT for motion of arbitrary 
amplitude. The same proof in fact shows that any approximation to TDDFT 
satisfies the HPT provided that the xc potential rigidly follows a rigidly trans- 
lated density. This rigid-following condition will be termed Generalized Transla- 
tional Invariance and can be expressed as: 

vxc[n'](r, t) = vxo In] (r - X(t)) (242) 
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Here n(r) is an arbitrary time-independent density and n'(r, t) = n(r - X(t)) is the 
same density rigidly boosted. (The otherwise-arbitrary displacement function 
X(t) will need to be zero at the initial time to, and the initial many body state will 
need to be the ground-state, in order for vxc in (242) to be defined in the same 
manner used earlier in this chapter.) Equation (242) simply says that a rigid 
(possibly accelerated) motion of the density implies a similar rigid motion of the 
xc potential. Equation (242) was first demonstrated by Vignale [107] from the 
covariance of the time-dependent Schr6dinger equation under transformation 
to an accelerated reference frame. Vignale also generalized the treatment to 
include a magnetic field. The same condition (242) with X(t)= Ut will also 
ensure that an approximation to vxc satisfies conventional Galileian invariance. 

Perhaps surprisingly, the Gross-Kohn approximation (191) unlike the 
ALDA, does not satisfy the HPT constraint. This was proved in Ref. [112] by 
exhibiting a specific counterexample. 

The question now arises how one might correct this situation. One attempt 
1,112] is based on the heuristic picture that, in the rigid HPT motion, all the 
relative particle motions 1-115], and therefore the exchange and correlation 
phenomena, are exactly as in the ground-state. In particular, the static ex- 
change-correlation kernel fxc(n, co = 0) is appropriate for this very special 
motion, even though the frequency of the HPT motion has the high value co = 
coe. This is why the ALDA succeeds with the HPT motion: it uses f~(n, co = 0) 
in all circumstances and therefore is fortuitously exact for HPT motion. The 
original GK formalism requires the use of f~¢(n, co = coe), and this is the core of 
the difficulty. (A similar difficulty was also demonstrated 1,112] for hy- 
drodynamic theory of plasmons where, once again, the frequency dependence of 
a coefficient, fl2(co ~ 0(3)~  fla((D ~ 0), is to blame, fl being the pressure or 
diffusion coefficient.) 

While most motions are not simple rigid displacements, there will be an 
element of this type of motion, as well as an element of compression, in more 
general motions provided that the original density is spatially inhomogeneous. 
In the linear response regime, a well-defined separation between these two 
components of the motion can be made 1,112] by first introducing the fluid 
velocity u(r, t) = J(r, t)/n(r, t) where the exact current density J can be obtained 
from the TDKS orbitals as demonstrated in Sect. 2.3. A fluid element displace- 
ment X(r, t) is then defined for a general motion by 

t d X  

X(r, t) = r + S u(r, t') dt' u = - -  (243) 
to ' c~t 

and by integrating the linearized continuity equation with respect to t at fixed 
r we obtain an expression for the perturbation to the equilibrium density no(r) in 
a small motion: 

nl(r, t) = - V- [no(r) X(r, t)] = - no(r) V. X(r, t) - X(r, t). Vno(r). (244) 
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For an arbitrary motion, we denote the first term in (244) as 

nla(r, t) = - no(r)V" X(r, t) (245) 

and interpret n~  as the compressive part of the density perturbation, to be 
associated with fx¢(09) where 09 is the actual frequency of the linear motion. The 
other density component from (244) is 

nlb (r, t) = - X(r, t)" Vno (r) (246) 

and this is the part one would have obtained if the equilibrium density had been 
rigidly translated, suggesting that it should be associated with a zero-frequency 
kernel f~(09 = 0). These two components make up the total density perturba- 
tion, 

nl = n l a  q- n l b ,  (247) 

and the above arguments suggest that the xc potential for small-amplitude 
motion at frequency 09 should be 

vlxc (r, 09) = fx,(n0(r), co) nla (r, 09) + f~  (no (r), 09 = 0) nlb (r, to). (248) 

It is immediately apparent that (248) will give the correct zero-frequency xc 
potential value for Harmonic Potential Theorem motion. For this motion, the 
gas moves rigidly implying X is independent of r so that the compressive part, 
n~a, of the density perturbation from (245) is zero. Equally, for perturbations to 
a uniform electron gas, Vno and hence n~b is zero, so that (248) gives the 
uniform-gas xc kernel fx~(to) at the actual frequency 09, as required. 

A modification similar to (248) was also proposed in [112] for the pressure 
or diffusion term in hydrodynamics, and the resulting formalism has had some 
success with a unified description of boundary conditions and plasmon modes 
on parabolic wells [116]. 

Since the fluid displacement during linear response at a definite frequency 
09 is given by X = J/(i09n), the postulated Eq. (248) suggests that vx¢ is not a local 
function of the density but rather of the current density J. These are, however, 
preliminary indications that, for nonlinear phenomena such that a definite 
frequency cannot be assigned to the motion the fluid displacement X may yield 
a more direct formulation of xc phenomena than does the current density (see 
later in this chapter). 

Numerical applications of the new formalism implied by (248) are under 
development [117]. Preliminary indications are that the ALDA, the Gross- 
Kohn approximation (191) and (248) will all give substantially different results 
for at least one of the plasmon modes of a low-density parabolic quantum well, 
say for rs = 6. (The modes in question are the HPT CKohn" or "sloshing") 
mode, the standing plasmon modes [118], and also the 2D plasmon mode at 
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substantial surface-directed wavenumber qll for which case the frequency is not 
constrained by model-independent theorems [119].) 

Vignale [107] has given an alternative method to ensure that any xc 
formalism with finite memory (i.e. with frequency-dependent xc kernel) will 
satisfy the HPT. Starting from a simple Ansatz for the action integral, he derived 
an xc potential 

t 

vlx~(r, t) = S f~  (no (r), t - t') 6nrcl(r, t') dr' (249) 
to 

where 

6nr¢l(r, t) = n(r + R¢m(t)) - n0(r) (250) 

is the density perturbation seen by an observer moving with the global center of 
mass 

1 ~rn(r,t)  d 3 R~m(t) = ~ r .  (251) 

This approach does ensure satisfaction of the HPT. It differs from the method 
described above in that it is very much less local, requiring a determination of 
the global center of mass from (251) at each instant t. One can imagine situations 
where the two formalisms will give very different results. For example, consider 
two well-separated layers of electron gas confined in parallel parabolic wells. At 
the Hartree and Hartree-Fock levels there is no interaction between these wells 
in the absence of significant wavefunction overlap (and in the absence of any 
perturbation which might break the symmetry in the plane of the electron gas 
layers). For sufficient separations any residual van der Waals interaction can be 
made as small as desired, so the qrJ = 0 modes of oscillation of the two wells will 
be uncoupled. First consider a motion in which the two electron gases execute 
HPT motion (sloshing sideways) in phase. Then the global electronic center of 
mass also executes HPT motion and the Vignale method will give the correct 
HPT motion of the combined system. Secondly, however, consider the mode in 
which the two sloshing motions are 180 degrees out of phase. Then the global 
center of mass is stationary and the Vignale correction makes no difference, 
leaving the GK formalism unmodified. But this method is known not give the 
HPT motion correctly, as discussed above. The method described by Eq. (248), 
on the other hand, is more local in its effect and it corrects the motion of each 
well separately, giving the correct HPT motion of each gas even for the 180 
degrees phase mode. 

In general, for systems far from equilibrium it is not at all clear how one 
should approximate the full xc potential v~[n] (t, t). The most general possible 
nonlinear dependence of vx,[n] (r, t) on n must involve at least terms with 
n evaluated at one space-time point ~' = (r', t'), terms with n evaluated at two 
spacetime points ~' and ~", terms with n evaluated at three points ~', ~", ~'", and 
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so on. (Even this might not cover all possibilities, but the only counterexamples 
so far noted have involved essentially singular functions [120].) Thus in general 
we expect to require nonlinear functions W ") such that 

/)xc [ , ]  (~) ~- I d~' W (1) (F/(~'), ~, ~t) 

+ ~ de' de" W (~) (n(~'), n(U), ~, ~', ~") + ... (252) 

The functional derivative of (252) is 

6Vxo(~) ~ W m 
an (~'~ = ~------~- (n(~'), ~, ~') + ~ d~" [W(p(n(~'),  n(U), ~, ¢', ~") 

+ W~ z) (n(¢"), n(¢'), ~, ~", ¢')] + ... (253) 

where W(12~ = OW(n', n", ~, ~', ¢")/ & '  and W(z 2~ ==- OW ~2) (n', n", ~, ~', ~")/On". 
Considerable simplification is achieved by postulating the following local-den- 
sity Ansatz (254) [121] for the functional derivative 

OVxe(r  , t)  ,,~ ~¢hom ( n ( r ' ,  t ' ) ,  I r  r '  6n(r,,t,)~ax¢ - -  l, t - -  t') (254) 

where f ~ =  (n, Ir - r'I, t - t') is the nonlocal, delayed xc kernel of the uniform 
electron gas of density n. Clearly, in the limit of weakly inhomogeneous systems, 
i.e., for systems with densities n(r', t ' ) ~  const this Ansatz becomes exact. We 
now seek a functional Vxc In] (r, t) whose functional derivative 3v~¢(r, t)/6n(r', t') is 
given by (254). The task of finding such a Vx, is possible because (254) is 
a function of density at one point only. Hence the integral terms in (252) and 
(253) involving W t2~ and higher must be discarded and it follows that  

- ' ' - f x c  (n(r, t'), Ir - r'], t - t'). (n(r, t ), r, t, r', t') - horn , (255) 
On 

of fx¢ (n, r, z). Assuming that  vx¢ is zero in Thus W ~1) is a density integral horn 
a zero-density system, and defining 

Wx~(n, r, z) = i :xcfh°m ,,',¢ a r, Z) dp (256) 
o 

we then obtain 

v~ [n] (r, t) = ~ dt' d3r ' W~(n(r', t'), Ir - r'], t - t'). (257) 

The Ansatz (257) makes vx~(r, t) depend principally on the density near the point 
r, at a range of times t' which are near to, but earlier than, t. In the following we 
propose to improve this by noting that, if there is streaming in the many-body 
fluid, the memory of past densities is likely to be greatest when one remains with 
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the same fluid element rather than remaining with the same spatial point r. Thus 
we propose [122] instead of (257) 

Vxo In] (r, t) = ~ dt 'd3r 'Wxc(n(r  ', t'), IR(t'lr, t) - r'l, t - t'). (258) 

where Wxc is still given by (256). 
In (258) the density from a past time t' which most strongly influences vxc (r, t) 

is the density at position r' = R(t' lr, t), where the trajectory function R(t'l r, t) of 
a fluid element is its position at time t', given that its position at time t is r. R can 
be defined unambiguously by demanding that its time derivative is the fluid 
velocity u = J/n  formed from the current density J(r, t): 

~ 7  R(t'r r, t) = u (R,  t') - J ( R ,  t')/n(R, t') (259) 

where all occurrences of R have the same arguments as on the left-hand side of 
Eq. (259). The boundary condition on (259) is 

R (tlr, t) = r. (260) 

In (258) one acknowledges that the physics of delayed correlation will have its 
maximum degree of spatial locality if the observer is riding on a fluid element 
rather than observing from a fixed location r. Eqs. (258)-(260) represent our 
general expression for the dynamic xc potential. The use of(258) in place of(257) 
will turn out to provide a nonlinear theory which, regardless of its validity in 
other respects, at least satisfies both the nonlinear Harmonic Potential Theorem 
[112] and the requirements of Galileian invariance [107]. To demonstrate that 
(258) satisfies the HPT, we show that it satisfies the generalized Galileian 
invariance condition (242). The only difficulty is that (258) has an implicit and 
highly nonlocal dependence on n(r', t) via the current density dependence of R. 
From [112], however, it follows that for HPT motion the TDKS equations 
involve not only a rigidly boosted density n'(r, t ) =  n o ( r -  X(t)), but also 
a boosted current J'(r, t) = n'(r, t) ~ (t) because of the phase factor introduced by 
the motion into the KS wavefunctions. Thus the fluid velocity is just 
u(r, t) = X(t). From (259) and (260) it then follows that 

R [n']  (t'tr, t) = r + X (t') - X (t). (261) 

Putting this into (258) we find 

vxo [n'] (r, t) 

= ~ dt' d 3 r' Wxc (n (r' - X(t'), t'), t r + X (t') - X(t) - r ' t ,  t - t') 

= S d t 'd3r 'Wx¢(n(  r' - X(t'), t'), [(r - X(t)) - (r' - X(t')) l, t - t') 

= Vxc [n] (r -- X(t), t). (262) 
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Thus (258) satisfies (242). Hence the HPT and Galileian invariance requirements 
are satisfied. 

Apart from its presumed nonlinear capabilities, (258) is also more general 
than the linear response work in preceding sections because it invokes the 
spatial nonlocality of the uniform gas xc kernel fxc, making it more comparable 
to the work of Dabrowski [102]. To compare it with the discussions above, we 
now make the local approximation 

'horn . 6(r r') horn fx¢ (n,q O, t (). (263) J x¢ (r, t, r', t') ,,~ - : - 

If this local approximation is employed in Eqs. (256) and (257), the resulting 
vx¢ I-n] (r, t) does not satisfy the HPT and the requirements of Galileian invari- 
ance because, when linearized, it reduces to the Gross-Kohn form (191) and this 
is known [112] not to satisfy the HPT. However, combined with Eq. (258), the 
local approximation (263) leads to 

vx~ In] (r, t) = ~ dt' Wxc(n(R(t' l r, t), t'), t - t ') (264) 

where 

Wx¢ (n, z) = i Jxc"h°m ,qp, q = O,z) dp. (265) 
o 

We now show that the functional (264), when linearized, gives precisely the 
modified linear-response xc kernelfx¢ of Eq. (248). To this end we consider small 
motions around a static equilibrium, in the sense that the displacement 

x (r, t) = R (t I r, to )  - r (266) 

of each fluid element from its initial (t = to) position r is small. Under these 
circumstances both the fluid displacement X and the current J in (259) are small 
(first-order) quantities. Thus we may write 

R(t'l r, t) = r + O(x) = R(t' Jr, to) + O(x) (267) 

and using this in (259) we find 

?-~7 R(t' I r, t) = J (R(t'] r, to))/no(r) + O(x 2) 

R(t't r, to) + O(x2). (268) 
c?t' 

Integrating both sides of (268) with respect to t', starting from t' = t, we find 

R ( t ' [  r, t) - -  R(t[ r, t) = R(t' t r, to) - R (tlr, to) + O(x2), (269) 
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SO that, by (269) and (266) 

R( t ' t r ,  t) = r + x(t ')  - x(t) + O(x2). (270) 

In the linear limit we can also integrate the linearized continuity equat ion 

0nl 
- -  + V-  [no(r) u(r, t)] = 0 (271) & 

to give the density perturbat ion nt in terms of the fluid displacement x: 

nl (r, t) = - V" [no (r) x(r, t)] + O(x2). (272) 

We can now use (270) and (272) to expand the density argument  of  wxc in the 
nonlinear functional (264): 

n (R(t 'Lr,  t), t') = n ( r  + x ( r ,  t') - x ( r ,  t), t') + O ( x  2) 

= no (r) + Vno(r) • (x(r, t') - x(r, t)) + nl(r, t') + O(x 2) 

= no (r )  - Vno(r) • x(r, t) - no(r) V-  x(r, t') + O(x2). (273) 

In deriving (273), we used (270) in the first step, s tandard linearization in the 
second step and (272) in the third step. Putt ing (273) into the proposed nonlinear 
xc potential (264) we find 

vxc (r, t) = ~ Wxc (no (r), t - t') dt' 
- c o  

- Vno(r) • x(r, t) 
0wio 
-~n (no (r), t - t') dt' 

- o o  

- n o ( r )  S Owxc - ~  -~n-n (no(r), t - t ' )V-x(r,  t')dt' + O(x2). (274) 

Integrating (256) with respect to time and using fhom horn j~¢ (n) = dvx~ (n)/dn, we find 
h o m  that the first term in (274) is just  the xc potential v~, (no(r)) of the static, 

unperturbed problem. The linear correction to this equilibrium value of  the xc 
potential is then, by (274) and (256), 

vlx~(r , t )=(~oo f x ~ ( n o ( r ) , t - t ' ) d t ' ) n l s ( r , t )  

+ S f~(no(r), t - t') nla(r, t') dt' (275) 
~ o o  

where 

nlA(r, t) = - no(r)V" x(r, t), nIB(r, t) = - x(r, t). V no (r) (276) 
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Fourier-transforming (275) and writing the terms in reverse order we find 

vlxc(r, o9) = f ~  (no (r), o9) nlA(r, 09) + fx~(no(r), o9 = 0) nlB (r, o9). (277) 

This is identical to the form (248). To summarize, we have proposed a rather 
bold Ansatz, Eq. (258), for the time-dependent xc potential v~(r, t) of an arbit- 
rary system which could be far from equilibrium. This Ansatz carries a nonlocal 
space and time dependence based on uniform-gas data, but accesses the actual 
system density n(r, t) in a simple local fashion. The assumption of local space 
dependence in the uniform gas yields a simpler form again, Eq. (264). It remains 
to be seen whether our relatively simple forms can cope with the gamut of 
nonlinear phenomena in systems far from equilibrium. As a first step it would be 
interesting to investigate second-and higher-order nonlinear susceptibilities 
described in Sect. 5.2. Computer codes for investigating the fully nonlinear case 
may be adaptable from the work of Galdrikian et al. [123], who have investi- 
gated strongly driven quantum wells. Regardless of the applicability of our 
method to general nonlinear phenomena, the use of the trajectory function 
R(t'lr, t) in (258) and (264) guarantees two things: firstly, satisfaction of the 
generalized Galileian invariance condition (242) and hence of the Harmonic 
Potential Theorem (240), for motion of arbitrarily large amplitude; and second- 
ly, for systems close to equilibrium the more local version (264) reduces to the 
linear time-delayed or frequency-dependent formalism previously proposed by 
Dobson [112], 

6.2 Time-Dependent Optimized Effective Potential 

The approximate xc potentials described so far were derived from the homo- 
geneous electron gas in one or another way. All of them have one deficiency in 
common: They contain spurious self-interaction contributions. It is known from 
static DFT that the removal of self-interaction is an important ingredient in the 
construction of good xc potentials. Various approaches to the construction of 
self-interaction-free functionals are known in the static case [37, 124-135]. One 
of these is the so-called optimized potential method (OPM) [133-135-1. This 
method takes as starting point a given expression for the total energy 
E [~bl ... ~bN] of an N-electron system as a functional of a set of single-particle 
orbitals {q~j (r)} (e. g. the Hartree-Fock total energy functional in the exchange- 
only case). Then, the variationally best local effective potential is determined 
such that, when inserted in a stationary single-particle Schrrdinger equation, it 
yields the set of N eigenfunctions (corresponding to the N lowest eigenvalues) 
that minimize E [~bl ... ~bN]. In practice, the full O P M  scheme is computation- 
ally quite involved since it requires the numerical solution of an integral 
equation for vxc(r). As a consequence, complete O P M  calculations have been 
performed mainly for problems where the potential is a function of a single 
variable, e.g. for spherically symmetric atoms [134-- 140]. There exists, however, 

132 



Density Functional Theory of Time-Dependent Phenomena 

an approximate OPM scheme, recently proposed by Krieger, Li, and Iafrate 
(KLI) [141-149], which is numerically as easy to handle as the ordinary KS 
scheme. This simplified OPM has been applied very successfully to the calcu- 
lation of atomic properties [6]. In many respects this method is currently the 
most accurate density-functional scheme. 

In the present section we shall describe the construction of a self-interac- 
tion-free xc potential which can be viewed as a time-dependent version of the 
optimized potential method (TDOPM). The approach leads to vx¢ as a function 
of (r, t) rather than to Vx~ as an explicit functional of the density. In order to 
derive such a time-dependent generalization of the OPM we consider an 
N-electron system at some finite time to which, for all times up until to, has been 
in the ground state associated with an external potential vo(r) (e.g., a nuclear 
Coulomb potential). We assume that the corresponding stationary OPM prob- 
lem has been solved for that system, i.e. a local effective potential and a set of 
N single-particle orbitals {~} (with energy eigenvalues ej) minimizing a given 
energy functional E[~bl ... ~bN] are assumed to be known. Again, at t = to an 
additional time-dependent potential vl(r, t) is switched on. Our goal is to 
determine the time evolution of the system under the influence of the total 
external potential v(r, t) = vo(r) + vl(r, t) from to up until an arbitrary later time 
tx. To construct an optimized local effective potential we start with the quantum 
mechanical action [150] 

N t l  

[~ ,  . . .  ~ ]  = E f 
j -oo 

t l  

dt fd3r~o*(r,t) ~ +  q~j(r, t) 

dt ~ d 3 r n (r, t) v (r, t) 
- o o  

1 ,1 n ( r ,  t) n (r ' ,  t) 
2 S d tSdar~dar  ' -® I r - r q  

- dxc [q~l ..- ~0N] (278) 

written as a functional of N time-dependent single-particle orbitals {~oj (r, t)} 
where n(r, t) = ~N 12. ~ I~oj(r, t) In a time-dependent exchange-only theory 
dxc[~01...~ou] - the xc part of the quantum mechanical action - would be 
replaced by the time-dependent Fock expression 

~ j ( ,  t) d x ~ d x =  - ~  6 .... dt[d3rSdar, ~*(r',t)~p~(r',t)q~i(r,t) *r  
• ." - Ir - -  rq 

(279) 

(% denotes the spin orientation of the jth orbital). We note that the integrand of 
(279) is a local expression with respect to the time-coordinate, i.e., all orbitals 
depend on the same time argument t. With approximate functionals of this type, 
the causality problem described in Sect. 5.2 does not occur. The orbitals are 
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solutions of the time-dependent Schr6dinger equation 

i ~ o j ( r , t ) =  - ~ -  +v , ( r , t )  qj(r , t) ,  j = l  . . . . .  N ,  (280) 

with qj(r, t) = ~bj(r)exp[ - iej(t - to)] for - oo < t < to. The local effective 
potential is given by 

v~(r, t) = v(r, t) + vn(r, t) + v ~  °era (r, t), (281) 

where Vn (r, t) = ~ d 3 r' n(r', t)/lr - r'l denotes the time-dependent Hartree poten- 
tial. The total potential v~(r, t) has to be determined in such a way that the 
{~oj(r,t)}, resulting from Eq. (280), render the total action functional 
~¢ [~0~ ... q~N] stationary. Therefore, we have to solve the following variational 
problem: 

~ [ ~ o ,  ... qN] N +~ a ~ [ q , ~  i " f N ]  ' 8v~(r,t) = E ~ dt' ~ a3r' ( 6q j ( r , t ' )  -~o \ ~j(r~, t )  6v~(r, t) 

O,.~¢'[q~t .,..,(ON] 6q*(r ' ,  t') ) 

= 0 (282) 

We first compute the functional derivatives 6d/3q)j and 3~¢/6qff: defining 

1 6dxc [qx ... qN] (283) 
Uxcj(r, t) - q*(r, t) &0j(r, t) ' 

we obtain 

0.~[q)l ... ¢PNl [ _ i  ~ ( v'2 
6~0j(r', t') = ~7 ~ -  + v(r', t') 

+ v.(r', C) + t') O(tl t') (284) 
/ 3  

and an analogous expression for 6d/6q)* which, for all reasonable (i.e. real) 
functionals d[cpl  ... ~ou], is the complex conjugate of (284). O(x) denotes the 
usual step function (1 for x > 0, 0 for x < 0). To arrive at Eq. (284) the first term 
of Eq. (278) has to be integrated by parts with respect to the time coordinate. We 
impose the usual boundary condition on ~pj(r, t) at t = tl, i.e. &p~(r, tx) = 0, thus 
obtaining a zero boundary contribution. The other boundary contribution at 
t = - 00 vanishes, too, because the action functional (278), in order to be 
well-defined, is to be calculated by introducing the usual factor e "t in the 
integrand and taking lim,~o+ after the integration. Substituting Eq. (281) into 
(284) and making use of the fact that q~.*j solves the complex conjugate of the 
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Schr6dinger equation (280), we find 

[ ~ o l  . . .  q ~ N ]  , T D O P M ,  , = LVxc tr, t') - uxoj(r, t')] ~0*(r', t') O(tl - t'). (285) 
&0j(r', t') 

In order to evaluate &ql/fv~ from Eq. (282), we further need the functional 
derivatives 5q~/6vs and 6q~*/fvs. The stationary O P M  eigenfunctions {~bi(r ), 
j = 1 . . . . .  ~ }  form a complete orthonormal set, and so do the time-evolved 
states {~o~(r, t), j = 1 . . . . .  ~ }  for any time t ~ [ - ~ ,  tl], and we denote this set 
by ~,. Now consider ~ ,  as unperturbed states, remembering that at t = tl the 
orbitals are held f ixed with respect to variations in the total potential. We 
therefore start from t = tl, subject the system to an additional small perturbation 
6v~(r, t) and let it evolve backward in time. The corresponding perturbed wave 
functions q~}(r, t) are determined by the backward Schr6dinger equation 

t ~ 0 ) ( r , t ) =  - - ~  +v~(r , t )+6v~(r , t )  q~}(r,t), j =  1 . . . . .  N (286) 

with the initial condition q~}(r, tl) = ~0~(r, tl). This problem cannot be treated 
directly with time-dependent perturbation theory as described in standard text 
books because the unperturbed Hamiltonian is already time-dependent. Never- 
theless, Dirac's method of variation of constants can be applied in a straightfor- 
ward manner. We expand, at each given t, the perturbed wave function q~)(r, t) in 
terms of the set @t, 

~o}(r, t) = ~ Cjk(t)~ok(r, t), (287) 
k=l 

and insert this expansion in (286), utilizing Eq. (280). The resulting equation 

i ~ djk(t) ~pk(r, t) = ~ cjk(t) 6v~(r, t) q~k(r, t) (288) 
k=l k=l 

is then multiplied by ~o f'(r, t) and integrated over all space; the orthonormality of 
@t yields 

1 ~ 
O~l(t) = 7 k~=~ cjk(t) ~d3r ~ ( r ,  t) 6v~(r, t) (pk(r, t). (289) 

We now make the usual ansatz for a perturbation expansion, 

cjk(t) = c}°)(t) + c~,)(t) + ... (290) 

and collect corresponding orders on each side of Eq. (289). This yields 

~r (t) = 0 

~(1) t ~. c~O)(t ) ~d3rtp?(r, t) 6vs(r, t) q~k(r, t) (291) ~ ( t ) =  7~=~ 
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Since, in our case, the wave function evolves backward from the fixed state 
q~j(r, tl) we find c}°~(t) = 6jk and d , ) ( t O  = 0, leading to 

c}])(t ) = _1 i dt'  ~ d3r  q~(r, t')6Vs(r, t')~pj(r, t ') .  (292) 

It follows that the first-order correction to the wave function <pj(r, t) under the 
influence of 6v~(r, t) is given by 

6q~j(r, t) = ~, c~],)(t) qok(r, t) 
k = l  

= i ~ ~dt' ~d3r'tp~'(r ', t') 6v~(r', t') ~oj(r', t') ~Ok(r, t) .  (293) 
k = l  t 

Therefore, the desired functional derivative is 

6tp~ (r', t') 
6v~(r, t) = i q~(r, t)q~j(r, t)q~k(r', t ' )O( t l  - t) O(t - t ' ) .  

k = l  

(294) 

Once again, 6q~*/av ,  leads to the complex conjugate expression. We can now 
insert (285) and (294) in the variational equation (282), and the result is the 
T D O P M  integral equation for the local exchange-correlation potential v,(r ,  t): 

N t l  

i E I  [vx~ t~, t') - Uxej(r, t')] dt'  ~ d 3 r' . TDOPM . . . .  

x ~pj(r, t) ~o*(r', t') K(r, t, r', t') + c.c. = 0 (295) 

The kernel 

K(r, t,r', t') = ~ ~o*(r, t) ~ok(r', t') O(t - t') (296) 
k = l  

can be identified with the Green's function of the system, which satisfies the 
differential equation 

i ~ ;  - - ~ -  + v~(r', f) K(r, t, r', t') = - i6(r - r') 6(t - t') (297) 

with the initial condition K(r, t, r', t') = 0 for t' > t. The T D O P M  scheme is now 
complete: the integral equation (295) has to be solved for vx~(r, t) in combination 
with the Schr6dinger equation (280) and the differential equation (297) for 
K(r, t, r', f ) ,  both with the appropriate initial conditions. It is easy to show that 
in the time interval [ - 0o, tl] the exchange-correlation potential v~(r,  t) is only 
determined up to within a purely time-dependent function c(t) (as expected in 
view of the time-dependent H K  theorem discussed in Sect. 2). 
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We now demonstrate  that for t < to or for a t ime-independent external 
potential (vl(r, t) - 0) the T D O P M  reduces to the stat ionary O P M .  For  this 
purpose we rewrite Eq. (295) in the following way (using the fact that Vxc is real): 

N t l  

i ~ .  ~ d t ' ~ d 3 r  ' .TOOeM~ . . . .  [v ~o i t ,  t ' )  - u~¢j (r,  t )] ~oj (r, t) ~0" (r', t') 
j -c~ 

x ~, tp~' (r, t) q~k (r', t ' )O( t  - t ')  + c.c.  
k = l  
k ~ j  

= i ~. q~j(r, t) ~o*(r, t) dt' [ d3 r' (u~oAr', t ') 
] - 0 o  

- Uxcj(r, t))q~j(r, t )  t ')  ¢pj(r, . (298) 

In the static case, the orbitals {~pj(r, t)} are replaced by {~bj(r)exp[- iej( t  - to)]}. 
It is reasonable to assume that the exchange-correlation functional ~¢~c then 
becomes 

t i  

d x c E q h  . . .  q~N] ~ S dt '  E,¢Eq~l(t')... tpN(t')], (299) 
- o o  

where Exc[~ba ... ~bN] is the corresponding ground state exchange-correlation 
energy functional. Definition (283) then yields 

. (300) 
--scj ,-, * (r) 64~j(r) J~m = q~./(r)e - " J  . . . . . .  

We assume that the value of E~¢ [~bl ... q~N] remains unchanged if the arguments 
{~bj(r) } are multiplied by phase factors ei% If this is the case, we can use the 
identity 

q~j(r, t) = x/q~j(r, t)q~* (r, t) ~pj(r, t)q~* (ro, t) e iarg(¢~(ro, t)) 
Iq~j(r, t) ~0*(r0, t) l 

(301) 

(where ro is an arbitrary reference point) and write Exc in Eq. (299) as a func- 
tional of the combinat ions q~j(r, t) ~p*(r', t). Then it is not  difficult to show that 

static uxcj is independent of  time and that the right-hand side of (298) is zero. We 
therefore obtain 

N t l  

j -c~ 
dt' S d3r  ' [ v ° f f M ( r ' )  static , - uxcj (r ) ]  qbj(r)q~*(r') 

k = l  
k ~ j  

~b/'(r) ~bk(r') e - ,~ , -~w- t ' )  O(t - -  t ' )  + c.c .  = 0 (302) 
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Performing the integration over t' we find the stat ionary O P M  integral equat ion 
1-134] 

N 

lim ~ ~ d 3 r' [v°~ M (r') - st.ti¢ Uxo) (r')] 4~(r) q~*(r') 
r i c O *  • 3- 

4~*(r)~bk(r')+ c.c. O. (303) X . . . . .  

k = 1 e j  - -  ~ k  - -  i q  
k ~ j  

The derivation of  Eq. (303) shows that in order  to recover the static limit from 
the t ime-dependent  formalism one had to extend the time integral in Eq. (278) to 
- oo;  a f i n i t e  lower time boundary  does not correctly account  for memory  

effects in v~c and therefore results in an unphysical time dependence even in the 
static case. 

The numerical implementat ion of the full T D O P M  is an extremely demand-  
ing task. It is therefore most  desirable to obtain a simplified scheme. To  this end 
we shall perform a transformation of Eq. (295) similar to the one proposed by 
KLI  in the stat ionary case [146, 149]. This will lead to an alternative but  still 
exact form of the T D O P M  scheme which allows one to construct  approxima- 
tions of v=(r ,  t) which are e x p l i c i t  functionals of  the orbitals {tpj}, thereby 
avoiding the need to solve the integral equation. Following Refs. [146, 149], we 
define 

- -  i t l  

~ tv,c (r', t') - Uxej (r ,  t )] q~* (r', t') pj(r, t) = q~*(r, t) _ d t '  i d 3 r  ' " r o o P M  , , 

x ~ q~*(r, t) t0k(r', t ' )O( t  - -  t ') (304) 
k = l  
k ~ j  

and 

where 

and it 

~xcj( t)  = f d 3 r nj(r, t) u~cj(r, t) 

n~(r, t) = I ~0j(r, 012.  Eq. (298) can then be written as 

(305) 

N N i - ~ - *  J 
nj(r, t ) p j ( r ,  t) + c.c.  = - i ~ n~(r, t) ~ dr'  (u~cj(t) - u x~j ( t)) ,  (306) 

j ) - ~  

is easy to show that 

(307) d 3 r n i (r, t) p~. (r, t) - 0 .  

q~j(r, t ) [  - i 8 /Ot  + V2/2 - vs(r, t)] ~o* (r, t)pj(r,  t) one finds that 

(308) 

Evaluating 
p~(r, t) satisfies the following differential equation: 

1 O ~ V "  (nj (r, t) Vpj(r, t)) - i n j ( r ,  t) ~ pj(r, t) - i Jr  (r, t ) .  Vpj(r, t) 

nj(r, t) r TDOP~ (r, t) -- uxcj(r, t) -- (~xcj(t) -- fixcj(t))] = - -  [Vxc 
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with the current density Jj  (r, t) = (2i)- 1 (~o* (r, t) V qoj (r, t) - ~oj (r, t) V ~o* (r, t)) 
and ~¢j ( t )=  ~d3rnj ( r ,  t) Uxc-TDOPM,¢-[I_, t). Finally, operating with V 2 on Eq. (306) 
and using Eq. (308) we find 

where 

UXC" TDOPM (r, t) = --n(r,l t) j nj(r, t) ~ (u'~j (r, t) + u x¢i (r, t)) 

1 N 
+ n(-~,  0 ~ nj(r, t) [~xcj ( t )  - -  ½(~¢j(t)  + fi*¢j(t))] 

J 

i N  i 
+ 4n (r, t) V 2 nj (r, t) dr' (uxoj (t) - u x¢j (t)) (309) 

u'xcj(r, t) = Uxcj(r, t) + ~ V- (pj(r, t) Vnj(r, t)) 

+ inj(r, t) ~ pj (r, t) + iJj(r, t)" Vpj(r, t) . (310) 

Equations (309) and (310) together with the differential equation (308) for pj(r, t) 
and the condition (307) (which can be used to fix the constant left undetermined 
by Eq. (308)) represent an exact alternative formulation of the TDOPM scheme. 
The advantage of Eq. (309) lies in the fact that it is a very convenient starting 
point for constructing approximations of vxc(r, t) as explicit functionals of the 
{cpj(r, t)}: it is only necessary to approximate pj(r, t) in Eq. (310) by a suitably 
chosen functional of the orbitals. We can then readily solve Eq. (309) analytically 
for vxc" TDOPM ~[,'- t), as we shall show below. 

We expect an approximate  potential ~x~(r, t) defined in this way to be close to 
the exact vx~(r, t). This conjecture is based on the observation that the difference 
between ~xc and vxc is entirely accounted for by the differences u'~¢j - ux~i which 
are zero if averaged over thejth orbital, as will be demonstrated in the following. 
From Eq. (310) we obtain 

~'x~j(t) - f ~ j ( t )  = ½ ~ d3 r V "  (pj(r, t) V nj(r, t)) 

+ i ~d3r nj(r, t) ~p j ( r ,  t) + Jj(r, t ) . V p j ( r ,  t) . 

(311) 

Using the divergence theorem, the first term on the right-hand side can be 
transformed into a surface integral which vanishes if the time-dependent orbitals 
decrease exponentially for r - ) ~ .  The contribution to the second integral 
containing J j- Vpj is then integrated by parts. The surface term vanishes due to 
the same argument as before, and the remaining term is transformed using the 
continuity equation for the jth orbital to replace - V .  Jj(r, t) by ~nj(r, t)/~t.  
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Hence we find 

U'xc j ( t )  - -  U x c j ( t )  = i 8 ~t ~ d3 r nj(r, t) pj(r, t) = 0,  (312) 

where the last equality follows from Eq. (307). 
The simplest approximation is obtained by replacing pj by its average value, 

i.e. by setting pj (r, 0 - 0. The resulting approximate potential will be termed the 
time-dependent KLI (TDKLI) potential. It is given by the equation 

t)XC" TDKLI (r, t) -- n(r,1 t) ~ nj(r, t) ~ (u,~j(r, t) + u*~j(r, t)) 

1 
LVx~j ~, (~xoj(t) + o%it))]  

i N t 
+ ~  V2n~(r,t) ~ d t ' ( u ~ j ( t ) - u ~ j ( t ) ) .  (313) 

• - o 0  

This equation is still an integral equation for v~ DKu. It can, however, be solved 
semi-analytically [145]: Multiplying Eq. (313) by nk(r, t) and integrating over all 
space yields 

N 
~ T D K L I  [÷~ (314) Uxc j ~tJ , 

J 

where we have defined 

Wxo (r, t) = 
1 1 ~ nj (r, t) ~ (uxc~.(r, t) + u*~jir, t)) 

,,jr, ;i i 

1 
1 ~ n~ (r, 0 ~ (~c~(t) + ~*o~(t)) 

n(r, t) j 

i N t 
VZn~(r, t) ~ d f  (UxCjit')- ~t*xcj(t')) (315) 

and 

nk(r, t)n~(r, t) (316) 
Mkj (t) = ~ d 3 r n(r, t) 

Solving Eq. i314) for Vxc~=TDKLI"~L~ requires inversion of the N x N matrix 

Akjit) ---- •k j  - -  Mkj(t) (317) 

and leads to 
N 

~ T D K L I  l . x  (318) xo~ ~,  = Y~ iA-  l it)bk ~vxckit). 
k 
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When Eq, (318) is substituted into Eq. (313), one obtains U" TDKLI,:_xc I[, t) as an 
explicit functional of the orbitals {(oj(r, t)}. As the exact v~(r, t) which follows 
from Eq. (295),'v~¢TDKLI (r, t) is determined by Eq. (313) only up to within a purely 
time-dependent function c(t). 

The last term of Eqs. (313) and (315) vanishes identically for a large class of 
exchange-correlation functionals ~¢~¢. This class includes all functionals de- 
pending on {~o~} only through the combinations %(r, t) q~* (r', t) (such as the 
time-dependent Fock functional, Eq. (279). 

One readily verifies that both the full TDOPM potential and the TDKLI 
approximation of it satisfy the the generalized translational invariance condi- 
tion (242) (and hence the harmonic potential theorem) provided that 

d~¢ [q~'~ ... q~] = dx~ [~o~ ... ~oN] (319) 

is satisfied with ~o: being the orbitals in the accelerated frame: 1 

~of (r, t) = exp ( - iS(t) + iX- r) ~bj(r - X (t)). (320) 

The TDHF functional (279) is easily seen to satisfy the constraint (319). Equa- 
tion (319) will be a strong guideline in the proper construction of approximate 
correlation functionals ~¢~[~o~ ... ~0N]. Equation (313) combined with the 
Schr6dinger equation (280) represents a time-dependent scheme which is numer- 
ically much less involved than, e.g., the time-dependent Hartree-Fock method. 
Numerical results obtained with this scheme for atoms in strong laser pulses will 
be described in Sect. 8. 

To conclude this section we construct in the following an approximation of 
the xc kernelf~ on the basis of the TDOPM. A calculation analogous to Eqs. 
(138)-(152) shows [151,152] that within TDOPM the central Eq. (152) holds for 
the quantity f xDoPu defined by the integral equation 

dt' ~ d 3 r' y~. [~j  (r) ~ t  (r') ¢kk (r') ~b* (r) e - i( , ,- , .)  ~t - o  
t jk 

x (f~ r "D°PM g ~i) ' = , ,¢  (y, r, r', t') - (y, z, r ,  t')) - c.c.] 0 (321) 

where 
1 TDOPM 

6VxZ ..... (y, r)~ (322) 
g°2(Y ' r ' r " t ' )=  2q~*(r',t') 6q,~(r,t) J~j(0=¢,e--, 

Equation (321) has the same algebraic structure as the TDOPM integral 
equation (295) with the time-dependent orbitals ~0j{r, 0 replaced by e -  i,,t q~ 

f T D O P M  ( .  t and with v~OPM(r',t') and ux~i(r,t') replaced by :x~ ~ , z , r , t ' )  and 
g~J~ (y, z, r', t'), respectively. A simple analytical approximation to uTy OPM (r, t) is 
given by 

a p p r ° x [ r  t )  = ? k0J (r' t)12 
Vx~ ,., . 2n(r, t)- (Ux¢~(r, t) + u*¢j(r, t)). (323) 
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Applying this approximation to (321), i.e., setting 

f 
appr°x{v ~ I ~bi(r)12 
xc ~ ,  z, r ', t') = . 2n (r) (g~2(Y, z, r', t') + c.c.) (324) 

and using the explicit analytical form (323) to evaluate (322) one arrives in the 
time-dependent x-only limit (279) at the compact expression 

f~pprox [no] (r, r'; co) = - 
2 I ~ k  f k  Ckk (r) ~b* (r')12 

lr - r'l n0(r) no (r') 
(325) 

In general, the Fourier transform of the xc kernel defined by Eq. (321) is 
frequency dependent (even in the TD x-only case), a feature which is not 
accounted for by the present approximation (325). However, for the special case 
of a two-electron system treated within TD x-only theory, Eqs. (323) and (325) 
are the exac t  solutions of the respective integral equations. 

7 Applications Within the Perturbative Regime 

7.1 Photoresponse of Finite and Infinite Systems 

To date, most applications of T D D F T  have been in the linear response regime. 
Calculations of the photoresponse from Eqs. (154) and (155) are, by now, 
a mature subject. The literature on such calculations is enormous and a whole 
volume [153] has been devoted to the subject. In this section we shall restrict 
ourselves to the basic ideas rather than describing the applicational details. 

The TDKS formalism has been employed to calculate the photoresponse of 
atoms [10, 12-14, 154, 155], molecules [156, 157] and clusters [158-168] 
metallic surfaces [ 169-175] and semiconductor heterostructures [72, 176-179] 
bulk semiconductors [180] and bulk metals [181-184]. 

For simplicity, we consider sufficiently low radiation frequencies, such that 
the electric field can be assumed to be constant across the atom or molecule. For 
atoms this is the case for photon energies below 3 keV. The external potential 
associated with a monochromatic electric field is then given by 

vl (r, t) = Ezcos cot. (326) 

The induced density change n(r, t) - no(r) (143) can be characterized by a series 
of multipole moments. 

p(t) = - S d3 r z (  n(r, t) - no(r)), (327) 
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can be expanded as [185] 

p(t) = ~(to) • E cos cot + ½ fl(0) : EE + ½ fl(209) :EE cos 2tot (328) 

+ ¼ ),(to) " EEEcos~ot + ¼ 7(309) " EEEcos 3~ot, (329) 

where the notation is meant to indicate the tensorial character of the quantities 
ct, fl and 7. The first coefficient, ~, is termed the dipole polarizability; fl and 
7 denote the second-and third-order dipole hyperpolarizabilities. For spherically 
symmetric ground states fl is zero. 

The dipole polarizability is related to the frequency-dependent linear density 
response nl(r, co) via 

2 d3rznl(r, 09) 
= - I (330) 

and the photoabsorption cross section is given by 

4~09 
a(09) = ~e(09). (331) 

c 

Zangwill and Soven [10] have calculated the photoabsorption spectrum of 
rare-gas atoms from the frequency-dependent KS equations (156)-057) within 
the ALDA. As an example for the quality of the results we show, in Fig. 3, the 
photoabsorption cross section of Xenon just above the 4d threshold. The 
agreement with experiment is remarkably good. Results of similar quality have 
been achieved for the photoresponse of small molecules [156, 157]. 

It should be mentioned that the thresholds characterizing the onset of 
continuous absorption from the various occupied atomic shells are not well 
reproduced in the calculations of Zangwill and Soven. The calculated absorp- 
tion edges are typically several eV below the observed thresholds. While, in 
principle, TDDFT should yield the correct thresholds, it appears that simple 
approximations such as the ALDA are not sufficient in this respect. 

As a point of practical interest we mention that the KS response function is 
usually not calculated directly from the KS orbitals as in Eq. (157). Instead, one 
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Fig. 3. Total photoabsorption cross section of 
the Xe atom versus photon energy in the vicinity 
of the 4d threshold, ,Solid line: self-consistent 
time-dependent KS calculation from [ 10]; crosses: 
experimental data from [186]. 
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rewrites the response function in terms of the KS Green's function. The latter is 
then calculated numerically from the corresponding equation of motion, usually 
by multipole expansion [10, 187]. 

The linear photoresponse of metal clusters was successfully calculated for 
spherical [158-160, 163] as well as for spheroidal clusters [164] within the 
jellium model [188] using the LDA. The results are improved considerably by 
the use of self-interaction corrected functionals. In the context of response 
calculations, self-interaction effects occur at three different levels: First of all, the 
static KS orbitals, which enter the response function, have a self-interaction 
error if calculated within LDA. This is because the LDA xc potential of finite 
systems shows an exponential rather than the correct - 1/r behaviour in the 
asymptotic region. As a consequence, the valence electrons of finite systems are 
too weakly bound and the effective (ground-state) potential does not support 
high-lying unoccupied states. Apart from the response function gs, the xc kernel 
fxc[no] no matter which approximation is used for it, also has a self-interaction 
error. This is because fxc[no] is evaluated at the unperturbed ground-state 
density no(r), and this density exhibits self-interaction errors if the KS orbitals 
were calculated in LDA. Finally the ALDA form of fxc itself carries another 
self-interaction error. 

To improve upon these defects, one has to go beyond the LDA: The 
(modified) weighted density approximation [189] retains the correct asymptotic 
behaviour of vxc and improves the response properties of metal clusters [162, 
165]. A different route to improvement provides the self-interaction correction 
(SIC) of Perdew Zunger [37], where the spurious self-interaction of the LDA is 
compensated by additional terms in the ground-state potential [166] and in the 
effective perturbing potential as well [167] (Full-SIC). 

In most theoretical work on the response of metallic surfaces the ionic 
potential is replaced by the potential due to a uniform positive charge back- 
ground in a half space, say z > 0. This is the so-called jellium model for metallic 
surfaces. In this model are two intrinsic microscopic length scales, the inverse 
Fermi wave-number, k i  1, and the Thomas-Fermi screening length (~  surface 
thickness), kr~. Both lengths are typically of the order a ~  10 -8 cm. In most 
applications the perturbing electric potential vl and the perturbing vector 
potential A1 vary on a length scale Y which satisfies Y >> a. Examples are the 
scalar potential vl(r) due to an external charge at a distance z >> a, or the vector 
potential Al(r, t), associated with a light wave of wavelength 2 >> a. The corres- 
ponding linear responses nl and jl vary on the scale of Y in the x - y plane but, 
because of the abrupt drop of the unperturbed density at the surface (on the 
scale of a), they vary on the short scale a in the z-direction. Formal arguments 
due to Feibelman [190] have shown that, to leading order in a/Y, the effect of the 
surface on the electromagnetic fields far from the surface (Izl >> a) is entirely 
characterized by two complex frequency-dependent lengths, dll ((o) and dl(~o). 

Actually, for the jellium model dll (o)) -= 0. This result has been obtained in the 
random phase approximation (RPA) in Ref. [190]. It is easily established as 
a rigorous many-body result for the jellium model [191]. To define dl((o) we 
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Fourier analyze all physical quantities parallel to the surface, in the x-y plane. 
For example, a Fourier component of the induced charge density becomes 

nl (r, ¢o) - nl(z, ~o) eiq,; ' , (332) 

where qlk = (qx, qy, 0) (and IqlLTa '~ 1). Then di(o9) is given by 

dl(o3) ~ d z z n l ( z ,  o3) 
- ~ dz nl (z, o~) ' 

(333) 

i.e., it is the (complex) center of mass of the induced surface charge, dl (~o) is the 
generalization of the static image plane introduced by Lang and Kohn [192]. 

This d± (~o) is then the subject of quantitative calculations. They require the 
density response n l(z, o9), to a uniform external electric field perpendicular to the 
surface. The calculation was first carried out in the RPA equivalent to time- 
dependent Hartree theory, in which the xc kernel fxc is neglected. These calcu- 
lations led to very interesting results not present in classical Maxwell theory, 
such as the surface photo effect and surface plasmons. Plasmons are high- 
frequency charge-density oscillations of the electron gas. In a bulk material the 
long-wavelength plasma frequency is ~ov = (4zme2/m) z/2 in gaussian cgs units. 
Plasmons occur in the ultraviolet frequency region for metals, but the artificial 
electron gas in semiconductor quantum wells often has a plasma frequency in 
the infrared. The confinement of the electron gas at metal edges introduces 
a range of new plasmon modes at frequencies other than we, and these could 
potentially yield information about inhomogeneous xc effects. Information 
about plasmons on films, surfaces and semiconductor wells is most easily 
available experimentally for small values of the surface-directed wavenumber qll, 
and unfortunately in this region there are theorems prescribing the plasmon 
frequencies, regardless of the effects of exchange and correlation. A summary of 
these "no-go" theorems is given in [113] and further review is given in [119] for 
the case of semiconductor quantum wells. 

Early theoretical studies of plasmas used hydrodynamics [193]. These treat- 
ments were able to predict the main new feature of the plasmon spectrum at 
a metal surface due to the strong surface inhomogeneity of the electron gas, 

namely the surface plasmon. Its frequency approaches OOp/x/~ as the surface 
directed wavenumber qJl approaches zero, and this is correctly predicted in 
hydrodynamic and microscopic theories. This result is independent both of the 
precise electron density edge profile and of the type of xc kernel used, if any [194, 
195]. Thus, although the surface plasmon is often the strongest feature in 
electron energy loss measurements on thin metal films, [196] it is hard to obtain 
any information from it about dynamic exchange and correlation. To see such 
effects one needs to measure with great accuracy the dispersion of surface 
plasmons. Only in the last few years has it been possible even to confirm 
experimentally a result first predicted by Feibelman [190] on the basis of 
selfconsistent RPA calculations, namely that the dispersion of the surface 
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plasmon on a charge-neutral metal surface is initially negative. This result 
follows basically from the very "soft" or weakly bound nature of the electron gas 
at a neutral jellium surface, allowing electrons to spill out substantially into the 
vacuum. For a review of some experimental and theoretical aspects see [197]. 
While the value of this negative dispersion coefficient does depend to a degree on 
the xc kernel fx, introduced earlier, it remains to be seen whether experiments 
on metal films and surfaces can measure this quantity to a useful accuracy. On 
the theory side, an important observation by Liebsch [198] is that the KS 
orbitals used to construct the dynamic response must come from a static 
calculation using a model of exchange and correlation that is consistent with the 
dynamic xc kernel used in the plasmon calculation. For example, LDA calcu- 
lation followed by RPA screening (withfxc = 0) is not consistent and causes false 
shifts in predicted surface plasmon frequencies. 

The weak binding and wide inhomogeneous density layer at the edge of 
a neutral metal surface leads to a "multipole" surface plasmon mode in addition 
to the usual "monopole" surface plasmon [172, 173, 197]. This mode is in 
principle sensitive to f,c even at qll = 0. Gies and Gerhardts [173] and Dobson 
and Harris [199] investigated this mode both in the ALDA and the frequency 
dependent parametrization (206)-(210). It was found that, for an aluminium 
surface, the inclusion of the frequency dependence of f,c. has only a 3% effect on 
the multipole plasmon frequency, but a 20% effect on the damping of the mode. 
Itseems likely that the frequency dependence off,¢ will have a much larger effect 
on this mode for a low-electron density metal such as Rb, and this may be worth 
pursuing. 

In general, low-dimensional, low-density systems offer the best prospects for 
strong effects of xc phenomena on plasmon frequencies. A case in point is a pair 
of parallel quasi-two-dimensional electron layers in a semiconductor double- 
quantum well experiment. Interesting effects are predicted for this case [200]. 

Another way of probing dynamic xc effects experimentally is by inelastic 
X-ray scattering from bulk metals [201-203]. In this way, the so-called dynam- 
ical structure factor S(q, o~) can be measured which is proportional to the 
imaginary part of the full response function in reciprocal space. With this 
information at hand and with a first-principles calculation of the non-interac- 
ting response function, the connection (159) between f , ,  and the response 
functions can be used to deduce information about fxc [204]. 

All applications quoted so far were for the linear response. Very few invest- 
igations have dealt with the higher-order response described in Sect. 5.2. The 
frequency-dependent third-order hyperpolarizabilities of rare-gas atoms were 
calculated by Senatore and Subbaswamy [86] within the ALDA; the calculated 
values turned out to bee too large by a factor of two, further indicating the need 
for self-interaction corrected functionals in the calculation of response proper- 
ties. The effect of adsorbates on second-harmonic generation at simple metal 
surfaces was invested by Kuchler and Rebentrost [205, 206]. Most recently, the 
second-order harmonic generation in bulk insulators was calculated within the 
ALDA [207]. 
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7.2 Calculation of Excitation Energies 

The traditional density-functional formalism of Hohenberg, Kohn and Sham 
[1, 2] is a powerful tool in predicting ground-state properties of many-electron 
systems [3-5]. The description of excited-state properties within density-func- 
tional theory, however, is notoriously difficult. One might be tempted to inter- 
pret the Kohn-Sham single-particle energy differences O~k : = e i -- ek as excita- 
tion energies. This interpretation, however, has no rigorous basis and in practice 
the Kohn-Sham orbital energy differences took deviate by 10-50% from the true 
excitation energies f~,,: = E,, - Eo. Several extensions of ground-state DFT 
have been devised to tackle excited states. They are based either on the 
Rayleigh-Ritz principle for the lowest eigenstate of each symmetry class 
[208-210] or on a variational principle for ensembles [211-222]. A fundamental 
difficulty is that the xc energy functionals appearing in these approaches depend 
on the symmetry labels of the state considered or on the particular ensemble, 
respectively. Until today very little is known on how these excited-state xc 
functionals differ from the ordinary ground-state xc energy. 

In this section we are going to develop a different approach to the calcu- 
lation of excitation energies which is based on TDDFT [69, 84, 152]. Similar 
ideas were recently proposed by Casida 1-223] on the basis of the one-particle 
density matrix. To extract excitation energies from TDDFT we exploit the fact 
that the frequency-dependent linear density response of a finite system has 
discrete poles at the excitation energies of the unperturbed system. The idea is to 
use the formally exact representation (I 56) of the linear density response n 1 (r, to), 
to calculate the shift of the Kohn-Sham orbital energy differences toik (which are 
the poles of the Kohn-Sham response function) towards the true excitation 
energies f~,, in a systematic fashion. 

The spin-dependent generalization [59] of TDDFT described in Sect. 4.1 
leads to the following analogue of Eq. (156) for the linear density response of 
electrons with spin a: 

n l ~ (r, to) = ~ ~ d 3 y Xsav (r, y; to) v lv (y, 09) 
V 

+ ~, Idayld3y'zs.~(r,y; o9) 

(i: ) x - -  + f . . . .  " (Y, y'; to) nl,. (y', to). (334) 
Y--Y'i 

Here the spin-dependent exchange-correlation kernel is given by the Fourier 
transform of 

f~c,, .(r,t ,r ' , t ')  : =  6vxc~[nt,nl](r,t)[ 
n,. (r', t') ,o,. ,o+ 

(335) 
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with respect to ( t -  t'). Note that the spin-dependent response-function of 
noninteracting particles 

,. r * 

~,k co - (e j~  - eke)  + iq  
(336) 

is diagonal in the spin variable and exhibits poles at frequencies o)~o = e~, - ek~ 
corresponding to single-particle excitations within the same spin space. In order 
to calculate the shifts towards the true excitation energies f2 of the interacting 
system, we rewrite Eq. (334) as 

jd3y ' (6~,6(r  - y') - Z~ ~ d3yxs-~( r, Y; e)) 

(, 1 )) 
x - -  + f . . . .  ,(y, y'; o9) nl~, (y', co) 

Y-Y ' I  

= ~ ~d3yzs~,.(r, y; ~) vl,(y, co). (337) 
v 

Since, in general, the true excitation energies f~ are not identical with the 
Kohn-Sham excitation energies tojk,, the right-hand side of Eq. (337) remains 
finite for co ~ f~. In contrast, the exact spin-density response nl~, has poles at the 
true excitation energies ~o = f~. Hence the integral operator acting on nlo on the 
left-hand side of Eq. (337) cannot be invertible for 09 --. f~. If it were invertible one 
could act with the inverse operator on both sides of Eq. (337) leading to afinite 
result for o) ~ f~ on the right-hand side in contradiction to the fact that n~,, on 
the left-hand side, has a pole at co = ft. 

The true excitation energies ~ can therefore be characterized as those 
frequencies where the eigenvalues of the integral operator acting on the spin- 
density vector in Eq. (337) vanish or, if the integration over the delta-function is 
performed, where the eigenvalues 2(o~) of 

1 
E I day' 2 I d3yZ s~v (r'y; c°) [Y -Y'l 
v"  v 

= 2(~o) ~(r ,  ~o) 

\ 
- -  + f . . . .  , (y,  y'; o~ ) )  (y', O3) 

(338) 

satisfy 

2(f~) = 1.  (339) 

This condition rigorously determines the true excitation spectrum of the interac- 
ting system considered. 
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To simplify the notation, we now introduce double indices q = (j, k) so that 
coq. = ej. - ~k. denotes the excitation energy of the single-particle transition 
(ja -.. ka). Moreover, we define 

• q. (r) : = ~bk~ (r)* q~i~(r), (340) 

~q, := fk.  --fj,~ (341) 

and set 

~q,(co) := E Id3y' Z ~d3y6o~¢Pq~(Y) * 
v" V 

1 + f~c (y, y'; co)) (~, (y', co) (342) - -  , 

× lY Y'[ ~"' 

With these definitions, Eq. (338) takes the form 

~q. %. (r) 
'-' co - -  coq~ + iq q 

~,(co) = 2(co) (~ (r, co). (343) 

Solving this equation for (.(r, co) and reinserting the result on the right-hand side 
of Eq. (342) leads to 

M~.  ¢#,(co) 
~ o9 + iq Cq"' (co) = 2(co) ~q,(co) 

' q '  - -  c o q ' t r '  

(344) 

with the matrix elements 

Mq,~q,,~,(co) = ~q,,~, ~ d3r ~ dar'  ~*~(r) 

o,)o.  ,r, x + f~ . . . ,  ( r , r ,  ' (345) 

Note that the summation in Eq. (344) extends over all single-particle transitions 
q'tr' between occupied and unoccupied Kohn-Sham orbitals, including the 
continuum states. Up to this point, no approximations have been made. In order 
to actually calculate 2(co), the eigenvalue problem (344) has to be truncated in 
one way or another. One possibility is to expand all quantities in Eq. (344) about 
one particular KS-orbital energy difference cop,: 

d~.~(co) (co _ co.,) + 
~"'(co) = ~q°(%~) + do~ ~,,, "'" (346) 

)~(~o) - A(copO 
+ B (cop,) + ... (347) 

c o  - -  ( ,Opt 
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The  matr ix elements with (~%, ¢ coq,,,) can be written as 

Mq,~ q,,,,(co) Mq,, q,,,, (¢opO 

e) -- coq,~,, + it 1 cop. -- COq,~, + iq 

d [ Mq,,q,~,,(oo) 

+ d-~ ~o _ m q, ,,, + itl 

whereas if (cop~ = COq,~,), 

Mq,, q,,,,(~n) _ Mq,, ¢,,,(cop~) 

o9 -- ooq,~,, + it l o) -- cop~ + it  l 

(oo -- coy0 + ... (348) 

dMq,  q,~,,(CO) 
+ i,1 + + . . .  (349) 

Inserting Eqs. (346)-(349) in Eq. (344) the coefficients A and B are readily 
identified. If the pole ~op~ is non-degenerate,  one finds: 

A (cop0 = My, p~ (CO~,,) (350) 

and 

dMmpz 1 Mwq'a' (COpO Mq,a' p,(oopO 

The corresponding eigenvector (in lowest order) is given by 

(351) 

1 Mq~ p~(e)p~) ~p, (352) 
~q~-  A(COvO 

with (pr) fixed. The number  ~p~ is free and can be chosen to properly normalize 

the vector ~. 
If the pole c%~ is go-fold degenerate, 

~op,~, = e)p~ = . . . .  c%~,~ -= ~Oo, (353) 

the lowest-order coefficient A in Eq. (347) is determined by the following matr ix 

equat ion 

fo 

Mr  ~ ~,~ ( c o o ) . ,  ¢(')p,,~ = A,(coo) ,p,2("),,, i = 1 ... go. (354) 
k = l  

In general, one obtains go different eigenvalues A 1 ' " " Ao, Then the remaining 
components  of the corresponding eigenvectors ~(") can be calculated from 

1 ~ Mq~p~,~(COo) ?:(") (355) 

once the eigenvalue problem (354) has been solved. Assuming that the true 
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excitation energy f~ is not too far away from too it will be sufficient to consider 
only the lowest-order terms of the above Laurent expansions. In particular, we 
set 

A.(tOo) 
2.(tO) ~ - -  (356) 

tO -- tOO 

The condition (339) and its complex conjugate, 2* (f~) = 1, then lead to 

~,  = tOo + 01A,(tOo) (357) 

This is the central result of our analysis. Eq. (357) shows that a single KS pole 
can lead to several many-body excitation energies. The corresponding oscillator 
strengths can be obtained [152] from the eigenvectors ~t~) and the KS oscillator 
strengths. 

In the following, we exclusively consider closed-shell systems. For these 
systems, the Kohn-Sham orbital eigenvalues are degenerate with respect to the 
spin variable, which implies a lack of spin-multiplet structure. In what follows, 
we demonstrate how this is restored by the lowest-order corrections (357). 
Assuming that there are no further degeneracies besides the spin degeneracy, Eq. 
(354) reduces to the following (2 x 2) eigenvalue problem: 

Mp,p,, (too) ~p,'(too) = A ¢p,(O9o). (358) 

For spin-saturated systems, Mprpr = Mp~p~ and M~p~ = Mp~pr , so that the 
eigenvalues of Eq. (358) are given by 

A1,2 = Mprpt + MpTp~. (359) 

By Eq. (357), the resulting excitation energies are: 

f~l = tOo + 0t {MpTpr + Mv~p~ } (360) 

f~2 = tOo + 01{MpTpt-  Mp~p~}. (361) 

Inserting the explicit form of the matrix elements (345) one finds 

~"~1 tOO'~- 201 SdZ/'Sd3r"(I)p*(r) ( ~  ) = + A~ (r, r'; tOo) ~,(r') (362) 

f~2 = 090 + 201 S d3r S d3r ' O*(r) #2 G~c(r, r'; COo) ~p(r') (363) 

where, for simplicity, we have dropped the spin-index of  (I)p~,. 4 Obviously, the xc 

4 This is possible only if the unperturbed KS ground-state determinant is spin-saturated since, in this 
case, ~j~ (r) = ~bi, ~ (r) for all j. 
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kernel appearing in Eq. (362), 

1 
'" 09) (364) " to) ~ fx~,,, (r, r, fx~(r, r,  = 4 ~.~,=±1 

is identical with the one already defined in Sect. 5.1. On the other hand, Eq. (363) 
exhibits the kernel 

1 
Gxc(r, r'; to) = 4~t~ ~ l(tr. a') f~c,,, (r, r'; to). (365) 

a ,  er" = :t: 

This quantity gives rise to exchange and correlation effects in the Kohn-Sham 
equation for the linear response of the frequency-dependent magnetization 
density re(r, to) [59]. The fact that the magnetization density response naturally 
involves spin-flip processes, suggests that Oz represents the spin triplet excita- 
tion energies of many-electron systems with spin-saturated ground states. The 
corresponding spin singlet excitation energies, on the other hand, are given by 
f~l. This assignment will be given further evidence by the numerical results 
presented at the end of this section. 

Apart from the truncation of the Laurent series, two further approximations 
are necessary: 

(i) The frequency-dependent xc kernels f,~ and Gx, have to be approximated. 
(ii) The static Kohn-Sham orbitals entering Eqs. (363) and (363) (cf. Eq. (340) 

have to be calculated with an approximate (static) potential ~tat / ) x e  • 

As an application of the method, we consider the lowest excitation energies of 
the alkaline earth elements and the zinc series. Here, in addition to the degener- 
acy with respect to the spin index, the s ~ p transitions under consideration are 
threefold degenerate in the magnetic quantum number m of the "final" state. 
Hence, we have six degenerate poles and Eq. (354) is a (6 x 6) eigenvalue 
problem. In our case, however, the matrix Mp,~,p~ in Eq. (354) consists of (three) 
identical (2 × 2) blocks, leading only to two distinct corrections, independent of 
m, as it should be. 

Tables 1-3 show the results of calculations based on Eqs, (362) and (363). 
The calculation of Table 1 employs the ordinary local density approximation 

star and the adiabatic LDA (188) for ~c (both using the parametriz- (LDA) for vx¢ 
ation of Vosko, Wilk and Nusair [90]). In this limit, the kernel Gx~ is approxim- 
ated by [103] 

1 
G ALDA [ / I ]  (r,  r ' ;  to) = ~ ( r  - -  r ' )  #02n(r--- ~ ~c (n (r)) (366) 

The xc contribution to the so calted "spin-stiffness coefficient" ~ is also 
approximated within the LDA of [90]. 

The calculation of Table 2 uses the x-only optimized effective potential 
(OPM) for v~ at in the approximation of Krieger, Li and Iafrate (KLI) [224] and 
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Table 1, The lowest S --* P excitation energies of various atoms. The experi- 
mental values (first column) [226] are compared with results calculated from 
Eq. (362) for the singlet and from Eq. (363) for the triplet (second column) and 
with ordinary Ascv values (third column). The LDA was employed for vx~ and 
the ALDA for the xc kernels. The corresponding Kohn-Sham orbital-energy 
differences co o are shown in the last column (All values in rydbergs) 

Atom State [ ~ p  ~r~ LDA ~(AscF) (D LDA 

Be 1P1 0.388 0.399 0.33t 0.257 
3P O 0.200 
3p t 0.200 0.192 0.181 0.257 
3P 2 0.200 

Mg 1P 1 0.319 0.351 0.299 0.249 
3P 0 0.199 
3P 1 0.199 0.209 0.206 0.249 
3P z 0.200 

Ca ip~ 0.216 0.263 0.211 0.176 
3P 0 0.138 
3P 1 0.139 0.145 0.144 0.176 
3P 2 0.140 

Zn 1P 1 0.426 0.477 0.403 0.352 
3P 0 0.294 
3P 1 0.296 0.314 0.316 0.352 
3P2 0.300 

Sr 1P 1 0.198 0.241 0.193 0.163 
3p0 0.130 
3P 1 0.132 0.136 0.135 0.163 
3P2 0.136 

Cd 1P 1 0.398 0.427 0.346 0.303 
3Po 0.274 
3P 1 0.279 0.269 0.272 0.303 
3P 2 0.290 

for f~c the TDOPM kernel (325) derived in Sect. 6.2. Concerning the singlet 
spectrum, the OPM values are clearly superior to the LDA results and are also 
better than the usual AscF values. The unoccupied orbitals and their energy 
eigenvalues are very sensitive to the behavior of the potential far from the 
nucleus. Thus one major reason for the superiority of the optimized effective 
potential is the fact that it is self-interaction free and therefore has the correct 
- 1/r tail (while the LDA potential falls off exponentially). An important point 

to note is that the optimized effective potential decreases correc t ly  for all 
orbitals. For this reason, the x-only optimized effective potential is also superior 
to the Hartree-Fock (HF) potential which is self-interaction free only for the 
occupied orbitals but not for the unoccupied ones. As a consequence, HF 
orbital-energy differences are typically too large. However, in spite of the fact 
that the OPM provides self-interaction free orbitals, it reproduces the triplet 
spectrum less accurately. This hinges on the approximation the xc kernel is 
based on. Substituting the TD-Fock expression (279) for the xc action functional 
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Table 2. The lowest S ~ P excitation energies of various atoms. The experi- 
mental values (first column) [226] are compared with results calculated from 
Eq. (362) for the singlet and from Eq. (363) for the triplet (second column) and 
with ordinary Ascv values (third column). The optimized effective potential was 
used for v~, and the approximate O P M  kernel (325) for J~¢ and G~,. The 
corresponding Kohn-Sham orbital-energy differences ~o o are shown in the last 
column (All values in rydbergs) 

Atom State flexp flopM fl(AscF) o~ °pM 

Be lP1 0.388 0.392 0.331 0.259 
3P o 0.200 
~P~ 0.200 0.138 0.181 0.259 
3P 2 0,200 

Mg IP1 0.319 0.327 0.299 0.234 
"~Po 0.199 
3P 1 0.199 0.151 0.206 0.234 
3 P z 0.200 

Ca 1P1 0.216 0.234 0.211 0.157 
3P o 0.138 
3P x 0.139 0.090 0.144 0.157 
3P 2 0,140 

Zn 1 pl  0.426 0.422 0.403 0.314 
3P o 0.294 
3p I 0.296 0,250 0.316 0.314 
3P 2 0.300 

Sr IP1 0.198 0.210 0.193 0.141 
"~Po 0,130 
3P 1 0.132 0.081 0.135 0.141 
3P 2 0.136 

Cd IP1 0.398 0.376 0.346 0.269 
3P o 0274 
3 p t 0.279 0.211 0.272 0.269 
3P 2 0.290 

defined in (278) leads to a xc kernel diagonal in spin space, because the 
correlation between antiparallel spins is neglected. Accordingly, from Eqs. (364) 
and (365) we have, within the x-only TDOPM 

" ~o) = __1 fTDOPM In] (r, r'; o9). (367) G ~  °PM In]  (r, r ,  ~°  ~ jxo 

This should be cured by adding appropriate correlation terms to the xc part 
of the action functional, which is further backed by the observation that when 

st,t by the optimized effective combining the advantage of approximating Vx~ 
potential, together with a local density prescription of exchange and correlation 
in the xc kernelsfxc and Gx~, both singlet and the triplet spectrum are reproduced 
well by Eqs. (362) and (363), as can be seen from Table 3. 

In spite of the fact that we focused our attention to the situation of closed 
shells and spin-multiplets, the method is also capable of dealing with open-shell 
systems and spatial multiplets. More details can be found in [152]. 
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Table 3. The lowest S ~ P excitation energies of various atoms. The experimental values 
(first column) [226] are compared with results calculated from Eq. (362) for the singlet and 
from Eq. (363) for the triplet (second column) and with ordinary Ascv values (third column). 
The optimized effective potential was used for vxc and the ALDA for the xc kernels. The 
corresponding Kohn-Sham orbital-energy differences ~oo are shown in the last column (All 
values in rydbergs) 

Atom State f~,~p ~,~o PM + ALDA ~(AscF ) ~DOPM 

Be 1P 1 0.388 0.398 0,331 0.259 
3Po 0.200 
3P 1 0.200 0.196 0.181 0259 
3P 2 0200 

Mg 1P 1 0.319 0.329 0.299 0.234 
3Po 0.199 
3P 1 0.199 0.196 0.206 0.234 
3P 2 0.200 

Ca 1P 1 0.216 0.236 0.211 0.157 
3Po 0.138 
3P1 0.139 0.129 0.144 0.157 
3Pz 0.140 

Zn IP t 0.426 0.417 0.403 0.314 
SPo 0.294 
~P1 0.296 0.280 0.316 0.314 
3P 2 0.300 

Sr IP1 0.198 0.211 0.193 0.141 
3Po 0.130 
3P 1 0.132 0.117 0.135 0.141 
~P2 0.136 

Cd IPl 0.398 0.370 0.346 0.269 
3Po 0.274 
aP1 0.279 0.239 0.272 0.269 
3P2 0.290 

We emphasize that the calculation of excitation energies from Eqs. (362) and 
(363) involves only known ground-state quantities, i.e., the ordinary static Kohn- 
Sham orbitals and the corresponding Kohn-Sham eigenvalues. Thus the scheme 
described here requires only one selfconsistent Kohn-Sham calculation, whereas 
the so-called AscF procedure involves linear combinations of two or more 
selfconsistent total energies [209]. So far, the best results are obtained with the 

star in the KLI x-only approximation. Further optimized effective potential for Vxc 
improvement is expected from the inclusion of correlation terms [6, 225] in the 
OPM. 

7.3 Van der Waais Interactions 

While TDDFT has its main applications in time-dependent phenomena, and in 
the calculation of excitation or promotion energies, certain aspects of ground- 
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state energy calculations are also assisted by TDDFT. This development princi- 
pally concerns the van der Waals (vdW) or dispersion-force component of the 
groundstate energy. The usual groundstate LDA and its various gradient 
extensions [227] do not give an adequate description of vdW forces [228], 
presumably because these forces arise (in one picture at least: see below) from the 
correlations between dynamic electron density fluctuations in widely separated 
positions. This makes the usual local or near-local approximations invalid. The 
approach to be introduced here facilitates the derivation of van der Waals 
functionals via a frequency integration over dynamic susceptibilities. 

O) vd W interactions for widely-separated fragments: Perhaps the most familiar 
example of a dispersion interaction is the attractive mutual energy of a pair of 
neutral spherical atoms separated by a large distance R, an interaction which 
forms the tail of the well-known Lennard-Jones potential. To lowest order this 
interaction energy falls off [229] as R-  6. This form of dispersion interaction is 
readily derived for a general pair of non-overlapping electronic systems by 
regarding the electrons on the first system as distinguishable from those on the 
second system. One then obtains the R-  6 dispersion energy (in addition to some 
"polarization" terms relating to any static electric moments [230] ) by perform- 
ing second-order Rayleigh-Schr6dinger perturbation theory, treating the 
Coulomb interaction between the two groups of electrons as the perturbation 
Hamiltonian. (For very large separations R the retardation of the electromag- 
netic interactions between the systems cannot be ignored. In this regime the 
R-  6 law just quoted is replaced [229] by R-  7. This retarded form takes over 
whenever R ~> c/og, where o9 is a characteristic response or fluctuation frequency 
of the electronic systems. We will consider only the non-retarded case here). 

From the work of Casimir, Lifshitz, London and many others [229] we 
know that the perturbation expression for the dispersion interaction between 
separated systems can be related to the electric polarizabilities of the interacting 
species, and also to the correlation of fluctuating electric multipoles on the two 
systems. In the Present TDDFT context, a useful polarizability form for the 
second-order dispersion interaction was given by Zaremba and Kohn [231] 
who derived it directly from second-order perturbation theory: 

E(2) - -  1 ~ d 3 r'l ~ d 3 ' 2n j d3 rl ~ d 3 r2 r2 
1 1 

Iri - r z l  ]r~ - r~ l  

x S duz,(rl,  r'b iu) gb (r2, r~, iu). (368) 
o 

Here ~(a (r, r ' , (.D) and ~(b(r, r ' ,  O9) are the exact density-density response functions 
(157) of each separate system in the absence of the other. Z, is defined by the 
linear density response nl~(r) exp(ut) of the electrons in system a to an externally 
applied electron potential energy perturbation V~ xt (r)e"t: 

nl~(r) = S d3 r' •a (r, r', iu) I~1 xt (r') (369) 
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and similarly for Xb. It is important to note that Xa includes the electron-electron 
interaction amongst the electrons of system a to all orders, and similarly for Xb- 
(Note also that, unlike Ref. [231], we have referred the space arguments of 
X, and Xb in (368) to a common origin.) 

The expression (368) is more general than the familiar asymptotic R-6 form. 
It applies to neutral quantal systems of any shape (not necessarily spherical) 
provided that R is still large enough that the electron densities do not overlap 
and that the inter-system Coulomb interaction can be treated in second order. 
We can recover the R-  6 form by assuming that R >> A, B where A and B are the 
spatial dimensions of the two systems. Then one can expand the Coulomb 
interactions in (368) in muttipoles. The lowest nonvanishing term gives, with the 
"3" axis chosen along R, 

1 3 
E~Z)(R) ,~ 

2n i.j- 1 
(1 - -  3 6 3 i  ) (1 - 3 ~ 3 )  ) 

du (iu) (iu), 
R6 o J 

R >> A, B (370) 

where, for each system 

~(~o) = ~ d3r ~ d 3 r' ( r , -  X , ) ( 6 -  X~) z(r, r', co) (371) 

is the dipole polarizability tensor and X is the centre of electronic charge of the 
system. When the polarizabilities are isotropic so that cq~ = ~6~j, (370) reduces 
to the more familiar London form [229] 

- -  3 ~ duct ta) (iu) o~ (b) (iu). E(2)(R) "" ~Rg o (372) 

Van Gisbergen, Snijders and Baerends [232] have evaluated a formula 
equivalent to (370) for diatomic and polyatomic molecules, using the ALDA to 
obtain the {cqj}. They find that, for the isotropic part of the vdW interaction, 
ALDA gives errors of similar size (but mostly opposite sign) to time-dependent 
Hartree Fock theory (except for the smallest atoms). This was achieved with 
much less computational effort than in the time-dependent Hartree Fock ap- 
proach. The isotropic vdW coefficients, like the static and dynamic polarizabili- 
ties, were found to be somewhat too large. For the anisotropic part of the 
interaction, they found that ALDA compares favourably with both Hartree- 
Fock and Many-Body Perturbation Theory. Scince the ALDA contains un- 
physical orbital self-interaction, one can speculate that the use of self-interaction 
corrected (SIC) functionals might further improve the accuracy of the method 
employed in Ref. [232]. These unphysical self-interactions cause orbitals to 
"see" an incorrectly large charge from the other electrons, causing orbitals to be 
too spatially extended and hence too polarizable. This presumably has effects 
mainly at the isotropic level. Furthermore, SIC phenomena are known to be 
strongest for small systems with highly localized orbitals. Both of these consider- 
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ations can be expected to cause difficulties in the very cases where van Gisber- 
gen, Snijders and Baerends observed the least favourable ALDA results in 
comparison with other methods. This SIC explanation gains further support 
from the work of Pacheco and Ekardt [166] on alkali metal microclusters. Their 
static and dynamic SIC terms [233] were found to have significant effects on the 
polarizability and vdW interaction for small clusters and even, to a lesser degree, 
for quite large ones. 

Van Gisbergen et al. [232] commented that their numerical method could 
accommodate more sophisticated forms of TDDFT than simply the ALDA, and 
in particular, considering temporal and spatial nonlocality in the xc kernel, they 
felt that the latter might be the more important. 

Before leaving the discussion of vdW interactions in non-overlapping sys- 
tems, we mention that the exact second-order dispersion formula (368) can be 
used [234] to derive a class of approximate vdW expressions for the groundstate 
energy as an explicit but highly nonlocal functional of the groundstate density. 
The idea is to make a direct local density approximation for the interacting 
susceptibilities Z, and Xb in (368). Extreme care is needed, however, to ensure one 
does not violate the charge conservation condition 

d 3 r Z (r, r', co) = 0 (373) 

or the reciprocity condition 

z(r, r', iu) = z(r', r, - iu) for real u. (374) 

An Ansatz satisfying these conditions and based on the simplest, pressure-free 
hydrodynamic analysis of the uniform electron gas was given in [234]: 

inhom(r, CO) V," V,, V n(r) fi(r- r') q 
X , o c . ,  r ' ,  = (375) 

When this is substituted into (368) for each of X. and Zb one obtains 

E(2) .= 3 d3 1 091092 (376) 
- 327r2 ~ rl ~d3r2r62 (o91 +~o2) 

where o91 = £op1 = (4nn,(rl)/m) 1/2 is the local plasma frequency at an arbitrary 
point rl inside system a, and similarly for ~o2. Equation (376) constitutes a very 
nonlocal groundstate density functional, and it clearly provides a systematic 
basis for the much-used [229] simple notion of pairwise addition of R-  6 vdW 
contributions. It is interesting that the integrand in (376) is proportional to the 
harmonic mean, (-01(/)2/(O)1 "q- (D2), of the two local plasma frequencies. The same 
formula (376) was very recently postulated [235] by Andersson, Langreth and 
Lundqvist on different grounds. They obtained (376) by examining limiting 
cases and so modifying a somewhat similar formula previously postulated by 
Rapcewicz and Ashcroft [236] on the basis of diagrammatic arguments. The 
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Rapcewicz-Ashcroft formula differs from (376) only in the replacement of 
~ol + oj2 by 2 ~  on the denominator of (376). It was shown in [236] and 
[235] that these simple formulae give quite good answers for the isotropic 
R-6 dispersion coefficient for various atomic pairs, provided that one uses an 
appropriate cutoff in the low-density tails of the electron distributions. 

The derivation of (376) given in [234] promises to be extendable to more 
sophisticated local approximations for Za and Zb in (368), based perhaps on 
hydrodynamics with the inclusion of pressure (Thomas-Fermi hydrodynamics 
[112]) or of pressure plus density gradient (Thomas-Fermi-Weizsgcker hydro- 
dynamics [237]). With suitable care to satisfy the constraints (373) and (374), one 
may thereby hope to obtain a more accurate extension of (376) involving 
gradients of the groundstate density and, possibly, having less dependence on 
spatial cutoffs. 

(ii) vd W interactions in closely juxtaposed or overlapping systems: The work 
of van Gisbergen et al. [232] and Pacheco and Ekardt [166], discussed in the 
previous section, shows that TDDFT, at least in the form of the ALDA, can 
represent the state of the art in evaluating van der Waals interactions in 
well-separated systems that are too large for methods such as the Configuration 
Interaction approach. What of more general cases where the electron clouds 
overlap or where no large separation exists? To study this for large systems, we 
seek a density functional approach, but first we need to appreciate the origin of 
the vdW force in terms of correlation physics. 

In essence, dispersion forces arise from the correlation between dynamic 
charge density fluctuations in two different systems or in distant parts of one 
system. The difficulty [228] in describing vdW forces in the static LDA or 
gradient approaches is therefore not surprising since in a highly inhomogeneous 
system (exemplified by, but not limited to, a pair of separated subsystems) these 
correlations may be quite different from those in the uniform or near-uniform 
electron gas upon which the LDA and the various gradient approximations are 
based. 

The previous section applied only to well-separated subsystems. The neces- 
sary correlations between distant fluctuations were generated by the application 
of second-order perturbation theory, and the TDLDA aspect of the calculation 
was not called upon to produce the vdW correlations directly. For overlapping 
systems (and for some closely juxtaposed systems), low-order perturbation 
theory in the Coulomb potential is not appropriate. The present section will 
outline an approach, currently under development, which does generate such 
long-ranged correlations in a natural fashion by the solution of a highly 
nonlocal real-space screening integral equation. Nevertheless, local density 
approximations are made wherever possible for the independent-electron sus- 
ceptibility Z~ and the exchange-correlation kernel f~¢, neither of which needs to 
be long-ranged in order to generate the basic long-ranged vdW correlations. 

The starting point for the proposed new approach is an exact formula [238], 
[239], based on the adiabatic connection formula and the zero-temperature 
fluctuation-dissipation theorem, relating the groundstate xc energy to the inter- 
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acting susceptibility )~: 

Ex¢ = - 2 0  o l,~r,~ du Z(2, r, r', iu)) 

+ n(r) 6(r - r ')].  (377) 

Here Z(2, r, r', o9) is the interacting susceptibility defined as before but with 
a reduced Coulomb interaction 2/r acting between electrons. It was shown in 
Ref. [234] that the charge conservation condition (373)for Z implies xc hole 
normalization. Use of the independent-electron Kohn-Sham susceptibility 
Z~ = g()- = 0, r, r', iu) rather than X(2, r, r', iu) in (377) yields the exact exchange 
energy. Subtraction of this exchange energy expression from the above xc energy 
yields the correlation energy 

Ec = 1 i dR ~ d3r S d3 r' 1 S du (Z(A, r, r', iu) - Z~ (r, r', iu)). (378) 
2Zto ~ o 

Equation (378) is required to produce the dispersion interactions under study. 
Petersilka, Gossmann and Gross [69] have shown that )~ and )& are related 
exactly by a Dyson-type equation involving the dynamic nonlocal xc kernel 

fxc as well as the Coulomb kernel (cf. Equation (152)): 

z(r, r', 09) = Zs (r, r', co) 

1 + fx~ (x, x', o9)) Z (x', r', co). + ~ d3x~d3x' z,(r,x, og) i x _ x ,  I (379) 

Equations (377) and (379) are of course exact provided that f=  is exact, and 
so they contain inter alia the exact vdW interaction. Consider first a homogene- 
ous electron gas. Iffxc is arbitrarily set to zero, and (379) is Fourier-transformed 
with use of the convolution theorem, (379) is then seen to be the equation for the 
RPA response function Z in terms of the bare (dynamic Kohn-Sham-Lindhard) 
response Z~. Again with the assumption fxc = 0, but with the homogeneous 
assumption removed, (377) and (379) merely represent the inhomogeneous 
generalization of the well-known RPA groundstate correlation energy of the 
homogeneous electron gas. This case of zero f~c already has some rather useful 
properties with respect to the vdW interaction. It has been shown in detail [239] 
that, when the correlation energy recipe (377), (379) with fx¢ = 0 is applied to an 
arbitrary pair of widely-separated systems, the Zaremba-Kohn second-order 
vdW energy expression (368) is reproduced, with the following exception: the 
susceptibilities Xa and Zb are the approximate RPA-interacting susceptibilities of 
each system, rather than including the exact interactions within each subsystem. 
Thus the full inhomogeneous RPA correlation energy already contains the 
essence of the vdW interaction, and will produce an R-6  dependence in the 
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appropriate limit. An examination of the detailed proof in [239] further shows 
that the long-ranged vdW interaction achieved in the RPA does NOT arise 
because of any long-ranged behaviour of the independent-electron susceptibility 
X~ (indeed Z~ is not normally long-ranged). Rather, the long range of the vdW 
interaction comes from the long range of the Coulomb interaction in the 
screening Eq. (379). Thus a local density approximation for X~ will not spoil the 
vdW properties, but may slightly alter the interacting susceptibilities Xa and Xb in 
the asymptotic form (368). Furthermore the reintroduction offxc within a local 
approximation can also be seen, from the working of Ref. [239], to maintain the 
form (368) in the separated limit, but the individual susceptibilities Za and Xb will 
now involve fx~ and hence will be closer to the required interacting susceptibili- 
ties. 

To summarize the previous paragraph: If we make short-ranged local- 
density or gradient approximations for Z, and fxc in the exact groundstate 
energy scheme (377), (379), we obtain an approximate and highly nonlocal 
prescription for the groundstate correlation energy, with the groundstate den- 
sity n(r) as the only input. This scheme is expected to produce a rather good 
approximation to the long-ranged vdW dispersion interaction between widely 
separated subsystems, a result due principally to the retention, in full, of the 
nonlocal coulomb kernel in the real-space screening integral equation (379). 

What is now required is a sufficient set of constraints on the kernelfxe so that 
the short-ranged aspects of the groundstate correlation energy are also repro- 
duced by (377), (379) at a level of approximation comparable, say, to the 
groundstate LDA or GGA. If this can be achieved, we will have a "seamless" 
scheme, equally reasonable for chemically bonded systems, metals etc., and also 
for fully or partly subdivided systems at all separations. This should allow 
investigation of the intermediate region of interaction where both short-ranged 
and long-ranged correlations are significant, even for systems too large for 
traditionally accurate methods such as CI or Moller-Plesset perturbation the- 
ory. (Recall that wavefunctions are not needed for the present scheme, only 
groundstate densities, so that one may perform "real-space quantum chemistry" 
without basis-set problems). 

The details of this scheme are currently being worked out. Although it aims 
for a groundstate energy functional, it depends heavily on time-dependent 
density functional theory in the sense that the properties of the dynamic TDDFT 
xc kernel f~c(r, r', iu) for inhomogeneous systems are of the essence. Further 
details of some constraints to be obeyed byfxc are discussed in Ref. [239]. Some 
supporting evidence for the utility of a local approximation for X~ in a highly 
inhomogeneous system are given in [113]. Current indications are that, for 
jellium slab situations where the inhomogeneity is only one-dimensional, the 
complete scheme (377), (379) (even with the exact Kohn-Sham X~ but with a local 
approximation forf~) can be computed on a single-processor 1- MFlop work- 
station in 102 hours or less. With Monte Carlo methods for the integrations in 
(377), and/or faster or parallel machines, more involved geometries should be 
tractable. 
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8 Applications Beyond the Perturbative Regime: 
Atoms in Strong Femto-Second Laser Pulses 

Owing to rapid experimental progress in the field of laser physics, ultra-short 
laser pulses of very high intensity have become available in recent years. The 
electric field produced in such pulses can reach or even exceed the strength of the 
static nuclear Coulomb field. If an atomic system is placed in the focus of such 
a laser pulse one observes a wealth of new phenomena [240] which cannot be 
explained by perturbation theory. In this case a non-perturbative treatment, i.e., 
the solution of the full TDKS equations (39)-(41) is mandatory. The total 
external  potential seen by the electrons is given by 

Z 
v(r, t) - + Eo f ( t )  z sin(co0t ) (380) 

r 

where Z is the nuclear charge. The second term on the right-hand side of Eq. 
(380) is the potential due to the laser field in dipole approximation, written in the 
length form. Since the wavelength of currently used lasers is almost always very 
large compared to any characteristic length associated with an atomic system, 
the dipole approximation turns out to be very good in practice [241]. 
Eo denotes the peak electric field strength and f ( t )  characterizes the envelope 
function of the pulse which, in the calculations described below, is linearly 
ramped to its peak value over the first 10 cycles and then held constant. The field 
is assumed to be polarized along the z-direction. 

In the following, we compare the results of a TDKLI calculation using the 
approximate potential (313) with an ALDA calculation using the potential (186), 
both for the exchange-only case [242, 243]. The numerical procedure [244] to 
solve the TDKS equations is similar to the one developed by Kulander [245, 
246], who solved the time-dependent Schr6dinger equation for hydrogen and 
the time-dependent Hartree equation for helium in a laser pulse. The spin 
orbitals are expressed in cylindrical coordinates and, due to the linear polariza- 
tion of the field, the spin as well as the angular part of the orbitals are preserved. 
Consequently, a fully three-dimensional treatment only requires a two-dimen- 
sional grid for the numerical integration. In the following, the time-dependent 
orbitals will always be characterized by the indices indicating the initial state of 
the respective orbital; e.g., q~2s(r, t) describes an electron which initially was in 
a 2s spin orbital: q~2s(r, t = 0) = ~bz~(r). The integration of the single-particle 
equations is performed using a finite-difference representation of the kinetic 
energy operator. A Crank-Nicholson technique is employed for the (unitary) 
time propagation of the orbitals. 

Once a numerical solution of the TDKS equations has been obtained, the 
resulting time-dependent density is sufficient to calculate any desired observable 
of the system. Some quantities are easily calculated while others (such as ATI 
spectra) are harder to extract from the density. But, as demonstrated in Sect. 2, 
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all physical observables can be calculated from the density, in principle. In the 
following we shall describe the calculation of two different quantities, namely 
the harmonic spectrum and the ionization yields. 

To obtain the harmonic spectrum, we calculate the induced dipole moment 

d(t) = S d3 rz n(r, t) (381) 

which is then Fourier transformed over the last 5 cycles of the constant-intensity 
interval. The square of the resulting Fourier transform, [d(o9)12, has been shown 
[247] to be proportional to the experimentally observed harmonic distribution 
to within a very good approximation. Figure 4 shows the result of a simulation 
for the helium atom at a laser wavelength of 2 = 616 nm and peak intensity of 
I = 3.5 x 1014W/cm 2. The calculation was made with the TDKLI scheme 
which, for two electrons in the x-only limit, reduces to the ordinary time- 
dependent Hartree method. One observes peaks in the energy-resolved photon 
spectrum at odd multiples of the external laser frequency. From perturbation 
theory one would expect an exponential decrease of the peak intensities. 
Figure 4, however, shows a plateau of peak intensities up until roughly the 47th 
harmonic. This plateau is a typical nonlinear phenomenon. The squares in 
Fig. 4 indicate experimental results [248] obtained with the same laser fre- 
quency at an intensity of 1.4 x 10 ~4 W/cm 2. Various calculations were performed 
with different peak intensities, but the best agreement with the experiment was 
achieved in the calculation for I = 3.5 x 10~4W/cm 2 shown in Fig. 4. The 
discrepancy between this intensity and the experimental intensity of 
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Harmonic order 

Fig. 4. Harmonic spectrum for He at .~ = 616 nm, I = 3.5 x 1014 W/cm 2. The squares represent 
experimental data taken from Ref. [248] normalized to the value of the 33rd harmonic of the 
calculated spectrum. The experiment was performed with a peak intensity of 1.4 x 1014W/cm2- 
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1.4 × 1014 W/cm z might be due to the uncertainty of the experimentally deter- 
mined peak intensity which can be as high as a factor of two. 

The harmonic generation of helium in a strong two-color laser field has also 
been studied 1-243, 108]. The two lasers with frequencies COo and 2COo, respective- 
ly, are operated with the same peak intensity and a constant relative phase 
difference ~0. This results in a total external potential of the form 

Z 
v(r, t) = - -- + Eof(t) z[sin(coot)+ sin(2COo t + cp)] (382) 

r 

where both fields are linearly polarized along the z-axis. 
Calculated harmonic distributions induced by a two-colour field with differ- 

ent relative phases are shown in Fig. 5. To avoid overcrowding, only the 
calculated peak intensities are plotted and connected with straight lines. The 
fundamental wave length is again 616 nm and the intensity is 3.5 × 1014 W/cm 2 
for both frequency components. We also show the one-colour spectrum for 
2 = 616 nm calculated with the same total intensity as the two-colour field, i.e. 
I = 7 x 1014 W/cm 2. In the two-colour spectrum, harmonics at all higher mul- 
tiples (including even multiples) of the fundamental frequency COo occur due to 
nonlinear mixing processes of the two fields [249]. Most of the harmonics 
produced by the two-colour field in the plateau region are one to two orders of 
magnitude more intense than those obtained in the one-colour calculation 
although the total intensity of the external laser field is the same in all cases. 

0.01 

ld(~)t2 o.oo~ 
0.00Ol 

le-O5 

le-06- 

le-07 - 

le-08 - 

le-09- 

te-10- 

le- l l  

le-12 

ii i t  ~:, ! !  

~xo o 

lb io 3o ~o 5'0 

Harmonic order 

Fig.  5. H a r m o n i c  d i s t r i bu t i on  for  H e  in a t w o - c o l o u r  laser  field. The  t w o  w a v e l e n g t h s  a r e  616  n m  
a n d  308 nm,  a n d  the  in tens i ty  is 3.5 x 1014 W / c m  2 for  b o t h  o f  them.  Crosses are  the  resul ts  fo r  ~o = 0 
a n d  diamonds d e n o t e  the  values  o b t a i n e d  wi th  p h a s e  shift q~ = 0.7n. F o r  c o m p a r i s o n ,  the  squares 
i nd ica t e  the  h a r m o n i c  d i s t r i bu t i on  for  H e  in a o n e - c o l o u r  field wi th  )~= 616 n m  a n d  

I = 7 x l O t ' * W / c m  2' 
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Similar results have recently been found for hydrogen in a two-colour field 
[250]. One possible reason for this remarkable enhancement is that in a two- 
colour field one specific high-order harmonic can be generated by a large 
number of different mixing processes [249]. 

In order to simulate ionization, the grid contains an absorbing boundary to 
remove the flux of electrons leaving the nucleus. When some portion of the wave 
function propagates to the outer edges of the grid it is absorbed. We assume this 
flux corresponds to the ionized part of the wave function. Strictly speaking, such 
a criterion is meaningful only after long times when the respective contributions 
have propagated very far away from the nucleus. For the wave lengths con- 
sidered here, a cylindrical grid of 20 x 60 a.u. was found to be sufficient. As time 
proceeds, more and more electrons will be removed from the atom and, accord- 
ingly, the norm of the TDKS orbitals taken over the finite volume of the grid, 

Nj, (t) = ~ d 3 r ] ~ojo (r, t) 12 , (383) 
finite 

volume 

decreases with time. 
Figure 6 compares the results of a TDKLI  and an ALDA calculation [243] 

for Ne exposed to a laser field with wavelength 2 = 248 nm and intensity 
/ = 3 x 1015w/cm2. Figure 6 shows the norm (383) of those orbitals which were 
initially in the Ne 2s, 2po and 2p~ states. The ls electrons have been frozen, i.e., 
only the 2s and 2p electrons are propagated by solving the TDKS equations, 
whereas the time evolution of the ls electrons is given by 

~01s(r, t )=  q~ls(r) e -  i~,.(t- ~o) (384) 

As expected, among the Ne 2s, 2po and 2pl orbitals, the 2s orbital is the least 
ionized one because it is initially more strongly bound (by roughly a factor of 2) 
than the 2p orbitals. A little surprising at first sight, the 2p0 and 2pl orbitals 
differ by about an order of magnitude in their degree of ionization (60% for the 
2po orbital compared to only 4.75% for the 2p~ orbital within TDKLI,  and 56% 
for the 2po compared to 7.7% for the 2pl orbital within the ALDA). This 
difference was observed before by Kulander [251,252] for the case of xenon (in 
a single-active-electron calculation). It is due to the fact that the 2po orbital is 
oriented along the polarization direction of the laser field, which makes it easier 
for the electrons to escape the nuclear attraction than for the case of the 2pt 
orbital, which is oriented perpendicularly to the field polarization. 

To explain the difference between the results obtained within the TDKLI 
and ALDA schemes shown in Fig. 6, we observe that the initial 2s and 2po, 2pl 
orbital energies in LDA differ quite considerably from those obtained with the 
KLI method: It takes 5 photons to ionize the 2p orbitals in KLI compared to 
only 3 photons in LDA. Similarly, it takes 11 photons to ionize the 2s orbital in 
KLI and only 9 in LDA. The difference between the curves in Fig. 6A and C is 
thus hardly surprising. On the other hand, it seems quite unexpected that the 
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Fig. 6. Time evolu t ion  of the norm of the Ne 2s orb i ta l  (A), the Ne 2po orbi ta l  (B) and  the Ne 2pl 
orbital (C), ca lcula ted  in the x-only T D K L I  and  A L D A  schemes. Laser  parameters :  ). = 248 nm, 
t = 3 x 10 tSW/cm 2, l inear  r a m p  over  the first 10 cycles. One  opt ica l  cycle corresponds to 0.82 
femtoseconds  

A L D A  and T D K L I  curves cross in Fig. 6B so that the A L D A  curve comes to lie 
above the T D K L I  curve. This behavior can be attributed to the fact that the 
other orbitals are ionized much more strongly in A L D A  than in TDKLI ,  so that 
their electron density near the nucleus (and therefore their screening of  the 
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nuclear charge) is decreased. This makes it more difficult for the 2po electrons to 
escape within the ALDA scheme. 

Figure 6 clearly shows the superiority of the TDKLI  approach over the 
ALDA. The spurious self-interaction present in the ALDA causes the orbitals to 
be too weakly bound and hence the ALDA is not reliable in the calculation of 
ionization. 

The probabilities of finding neutral, singly, doubly, etc. ionized atoms at time 
t are readily expressed in terms of the norms (383). For instance, in the case of 
helium, one has 

n(r, t) 
N,,t(t ) = Nls + (t) = f d3r = Nls(t), (385) 

f i n i t e  2 
v o l u m e  

and the probabilities for neutral, singly and doubly charged helium are 

pO (t) = NI~ (t) 2 (386) 

P+l(t) = 2Nls(t) (1 -- N1,(t)) (387) 

P+2(t) = (1 - Nts(t)) z (388) 

For many-electron atoms similar combinatorical considerations [244] are per- 
formed to determine the probabilities for the various charged ions. Figure 7 
shows the probabilities of finding neutral, singly, doubly and triply charged Ne 
as calculated from the norms of Fig. 6. 

These probabilities as a function of time cannot be compared directly with 
experiment. This is because the laser focus, in addition to the temporal pulse 

P + n ( t )  

1 ..... .  

0~8- 

0.6- 

0.4 

0,2 ̧  
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0 

p+3 . . . .  

/ / '  . . / "  

5 l0 15 20 25 
Time (optical cycles) 

Fig. 7. Population of the differently charged states of Ne. Laser parameters as in Fig. 6 (2 = 248 nm, 
I = 3 × 1015 W/cm 2, linear ramp over the first 10 cycles) 
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shape, has a spatial intensity profile due to which not all atoms in the laser focus 
experience the same intensity. Hence a realistic calculation of ion yields requires 
many runs at various peak intensities. Work along these lines remains an 
important field for the future. In this way one might be able to understand the 
structures in the strong field ionization spectra of He [253] which have been the 
subject of heated discussions in recent years. 
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A large class of time-dependent quantum problems involves strongly interacting coupled fields 
requiring self-consistent non-perturbative and non-adiabatic approaches. We present here a general 
framework for analyzing these, based on Liouvillean Quantum Field Dynamics. Thus a multi- 
functional extension of the time-dependent density functional approach to many-body problems is 
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set up. We also generalize the time-dependent non-equilibrium Green function method of Schwinger 
and Keldysh including all the relevant fields. We thus enlarge the context of the b-derivable, effective 
action functional theory of Baym for transport phenomena involving all relevant fields consistent 
with the conservation laws. This formalism is essential in understanding very-short time quantum 
dynamics of coupled fields of electrons, ions, and electromagnetic fields, as in nanoelectronic and 
optoelectronic devices, quantum dots in intense laser beams, micro-cavity quantum electro- 
dynamics, as well as strongly coupled electron-phonon (high Tc), electron-photon (laser-atom 
systems), and molecular dynamic systems. 

1 Introductory Remarks 

Density functional theory (DFT) for stationary states or ensembles is a formula- 
tion of many-body theory in terms of particle density. This is a mature subject 
with many successful applications. This formalism is based on the works of 
Hohenberg and Kohn (HK) [1] and Kohn and Sham (KS) [2] and many 
subsequent extensions (see for example extensive reviews by Rajagopal [3], 
Callaway and March [4], and Dreizler and Gross [5]). The success is due to 
a strong interplay of formal theory, phenomenology, and computational 
methods. Thus DFT is an approach to the quantum many-body problem and 
provides a realistic basis for detailed computation of the properties of condensed 
matter. This is in contrast to the approaches which may be characterized as 
"model calculations of idealized systems" e.g., Ising and Heisenberg models; the 
Hubbard model; tight binding models, etc.; special one- and two-dimensional 
models, etc. 

DFT is an approach which in principle incorporates the many-body tech- 
niques into a practical scheme, e.g. band structure and Fermi surface of bulk 
solids; surface physics problems [6]; problems in chemistry [7], etc. Thus over 
the last three decades or so, DFT has progressed as a full grown methodology 
covering almost all aspects of condensed matter physics, e.g. ground state, 
equilibrium, finite ensembles, and recently time-dependent aspects, ranging from 
atoms to solids (both bulk and surface-dependent properties, clusters, etc.). 
These advances were possible because the methods have been generalized (we 
give here references to review articles where available to keep the list to 
a reasonable size): (a) to incorporate magnetic (spin) properties developed 
independently by von Barth and Hedin, and, Rajagopal and Callaway, con- 
tained in a review article [3]; (b) to relativistic theory developed independently 
by Rajagopal and Ramana, MacDonald and Vosko, and Engel and Dreizler and 
reviewed in [-8, 9]; (c) temperature-dependent generalization by Mermin and 
developed further independently by Gupta and Rajagopal, Dharmawardana 
and Perrot, and reviewed in [-10], and a more recent work in [-11]; (d) to finite 
ensembles due to Theophilou, Gross, Kohn, and Oliveira, and recently put into 
a unified framework by Rajagopal and Buot [-12]; (e) to a generalization to 
incorporate superconductivity properties by Gross, Kohn, and Oliveira, for 
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equilibrium and by Wacker, Kfimmel, and Gross for time-dependent properties 
of the superconducting state, and, fully generalized recently by Rajagopal and 
Buot [13]; (f) to time-dependent density functional developed principally by 
Runge, Gross, and Kohn, and reviewed by Gross and Kohn [14, 15]. In this 
paper, we will give an account of a general functional theory of coupled fields of 
electrons, ions, and electromagnetic fields for studying the time-dependent and 
non-equilibrium situations, recently developed by us [16]. 

So far the applications of the time-dependent (TD) formalism are not as 
extensive as those of the stationary theory partly because of limitations of 
computation. This is expected to change in the near future not only because of 
advances in computer hardware and software but also due to a demand for 
understanding new experimental avenues open in nanostructure systems. The 
new phenomena encountered involves shorter temporal and spatial scales than 
before, displaying nonlinear behavior, as for example in resonant tunneling 
devices under the action of TD-bias. Here self-consistency is crucial without 
which one gets contradictory results [17]. Our new generalization of the TD 
functional formalism goes beyond the original DFT framework because it 
incorporates self-consistent ionic motion and electrodynamics and includes 
both equilibrium and non-equilibrium conditions. Thus the new functional 
theory involves a coupled self-consistent set of TD-equations for electrons, 
a dynamical equation of motion for ions, and a field equation for the electro- 
dynamic variables. The physical quantities of interest involved in this theory are 
TD-potential, TD-force, TD-current generated from a universal functional of 
TD-density, TD-ion position, and TD-vector potential respectively, which now 
depends on the initial given conditions. 

In recent years schemes for the dynamical simulation of matter from 'first 
principles' have been based on the Car-Parrinello [18] method which is founded 
on a fictitious Lagrangian molecular dynamics framework coupled with den- 
sity-functional theory [19, 20]. Our formalism provides a firm physical and 
mathematical basis for performing time-dependent simulation procedures such 
as those based on the Car-Parrinello approach by replacing the fictitious 
Lagrangian by a precise action principle. Some possible examples of applica- 
tions of the new TD-functional theory are (a) changes in phonon frequencies due 
to superconducting transition in high Tc systems; (b) electrodynamics of type II 
superconductivity in high Tc systems with unusual vortex structures; and (c) 
nanoelectronic systems subjected to TD-bias. 

In this review, we begin with a treatment of the functional theory employing 
as basis the maximum entropy principle for the determination of the density 
matrix of equilibrium ensembles of any system. This naturally leads to the 
time-dependent functional theory which will be based on the TD-density matrix 
which obeys the von Neumann equation of motion. In this way, we present 
a unified formulation of the functional theory of a condensed matter system for 
both equilibrium and non-equilibrium situations, which we hope will give the 
reader a complete picture of the functional approach to many-body interacting 
systems of interest to condensed matter physics and chemistry. 
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2 Functional Theory of Many-Body Systems 

We first recapitulate the known procedures employed in the original density 
functional theory and then present our unified approach. For the ground state 
of the many-body system, Hohenberg and Kohn used the well known Rayleigh- 
Ritz variational principle. For excited states and degenerate states, a mixed state 
description was used by Theophilou (equi-ensembles), and Gross, Kohn, and 
Oliveira (general ensembles). For equilibrium statistical thermodynamic en- 
sembles Mermin used the Gibbs free energy minimum principle employing 
a density matrix of large systems. For studying the time-dependence of the state 
of a system for a given initial pure state Peuckert, Runge and Gross, and Gross 
and Kohn based the theory on the stationary action principle of Dirac and 
Frenkel. For the theory of the time-dependent behavior of a system for a given 
initial thermodynamic equilibrium state, a stationary action principle in 
Liouville space for the density matrix was recently put forward by Rajagopal 
and Buot [16]. The Liouville space quantum theory was originally developed by 
Umezawa [21]. Within this framework there is also an extension of a variational 
principle for one-particle Green function for both equilibrium and non-equilib- 
rium situations originally due to Baym. 

2.1 Basic Methodology - Mapping Theorems 

In this section, we first give a brief pr6cis of the basic principles involved in the 
DFT and then develop our unified theory. 

Theorem h (Mapping theorem) V(r)~n(r). The ground state energy of 
a many-electron system is a universal functional of the ground state density, n(r), 
only for a non-degenerate ground state (Hohenberg and Kohn, (HK)). 

Theorem II: (Minimum energy principle, HK) 

,~e[n] = 0. 
6n 

Theorem III: [Effective Schr6dinger's equation, Kohn and Sham (KS)] 
Extensions of these to spin density, relativistic systems, and equilibrium finite 
temperatures have all been worked out as mentioned in the Introduction. It may 
be of interest to point out that the above three theorems hold for a finite 
temperature theory if we make the following changes: (I) change the ground 
state wave function to the equilibrium density matrix; and (2) replace the 
minimum energy principle by the minimum free energy principle. The TD 
density functional theory comparable to HK for arbitrary TD-systems was 
developed by Runge and Gross (RG) (see review article by Gross and Kohn 
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[14]). The central result is a set of TD-equations which includes all many-body 
correlations through a local TD exchange-correlation potential. In this time- 
dependent theory, one replaces the ground state density by the time-dependent 
density. We note: 
(a) Theorem I is replaced by a weaker one, due to the dependence on the given 

initial condition. 
(b) Theorem II is replaced also by a weaker one - -  by a stationary action 

principle. 
(c) A different form of Theorem III is obtained. 
These results were obtained by using the time-dependent quantum mechanical 
evolution of a state vector. We have generalized these to non-equilibrium 
situations [16] with the given initial state in a thermodynamic equilibrium state. 
This theory employs the density matrix which obeys the von Neumann equa- 
tion. To incorporate the thermodynamic initial condition along with the von 
Neumann equation, it is advantageous to go to Liouville (L) space instead of the 
Hilbert (H) space in which DFT is formulated. This L-space quantum theory 
was developed by Umezawa over the last 25 years. We have adopted this theory 
to set up a new action principle which leads to the von Neumann equation. 
Appropriate variants of the theorems above are deduced in this framework. 

2.2 Variational Principles for Ensembles of Quantum States 

We begin by giving here a generalized Hohenberg-Kohn theorem by giving the 
variational principles for equilibrium ensembles of quantum states. We consider 
a many-electron system with Hamiltonian 

where 

and 

H = T +  U +  V, (1) 

1 
T = ~ ~ rOt(r) ' VO(r)d3r, 

e 2 O*(r)~k*(r')l~(r')O(r) 
g = ~- Sf ~-~r5 i d3rd3r', 

V = I P(r)v(r) d3r, 

(2) 

(3) 

(4) 

p(r) = ~,*(r) 0(r) .  (5) 

Here, v(r) denotes the external potential, 0(r) is the usual fermion field operator, 
and p(r) is the particle density operator. 

Theorem: We consider the density matrix written in terms the many-body states 
{Iq~,.)} which minimizes the "free energy" associated with the Hamiltonian 
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given above: 

M 

D =  ~ w,.Iq~,.)(4~l, (~ml¢' , . , )=6,, , , . , ,  
m = l  

M (6) 
t r D = l  = ~ w~. 

m = l  

which leads to the ensemble particle density 

M 

n(r)= ~. w,.(q).[p(r)l(/).), (7) 
m = l  

The choice of weights ensures that 

.( n(r)d3r = N, (8) 

provided the states chosen contain N particles. 
If now 

M 

n'(r) = ~ w'~(~P'~tp(r)lCP'm) (9) 
m = l  

is calculated with the states ] ~ )  of the Hamiitonian H' = T + U + V', where 
the corresponding density matrix operator is given by 

M M 

D ' =  ~ w ~ l ~ . ) ( ~ , l ,  (eP'~lq~'~')=~m,m',trD'= 1 =  ~ w~. (10) 
m = l  m - 1  

which minimizes the "free energy" associated with H', then we prove that 
n'(r) ¢ n(r), provided V and V' differ by more than a constant. 

Proof: The proof of this statement differs from the original argument of Mermin 
for the thermal ensembles in an important way when applied to the density 
operators D and D' defined above. Unlike the Mermin proof for thermal 
ensembles, we cannot use the same Lagrange parameter ¢ to characterize both 
ensembles; in general 4 and 4' are different parameters which we use as sub- 
scripts in the foregoing to indicate this dependence, 

The density operator D' would then give us a larger "free energy" when used 
as a trial density operator to estimate F[D]: 

FeED'c,] ) F¢ED¢] 

F¢.[D'¢,] + ~[v(r) -- v'(r)]n'(r)d3r - (4 - ~')S~,[D'~,])F¢[D~]. (ll) 

Here we manipulated the left side of the inequality by using the corresponding 
definition and the Lagrange parameter associated with the Hamiltonian oper- 
ator H'. For the sake of clarity, we have here exhibited the parameter depend- 
ence of the appropriate ensemble density operators along with those associated 
with the respective minimum "free energies" and entropies corresponding to the 
two Hamiltonians. 
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The reverse argument involving interchange of primed and unprimed quant- 
ities leads to the inequality 

V EO 3 + ICv'(r) - v(r)]n(r)d3r - (4' - ~)S~[D~] )F¢,[D'~,]. (12) 

With the choice of the weight parameters the entropies are constructed to be the 
same for the two ensembles, and we see at once that if two different external 
potentials give rise to the same ensemble particle density, the above two 
inequalities lead to a contradiction. Note that in the Mermin proof, thermal 
ensembles used are such that the temperature is fixed and hence 4' = ~ and 
therefore the entropy terms do not contribute. This proves the statement made 
above concerning the one-to-one mapping of density and potential. This the- 
orem reduces to 

(a) the original Hohenberg-Kohn's for a pure state density matrix; 
(b) Mermin's for thermal density matrix; and 
(c) Gross-Oliviera-Kohn's for a general mixed state density matrix. 

For fixed w, i.e., for fixed 4, the potential V' and hence the eigenstates { [ 4,~,) } 
are uniquely determined by n'(r), so that the ensemble expectation value of 
T + U + k~log D is a functional of the particle density, 

~ [ w ; n ' ]  - t r D { T +  U + k~logD}. (13) 

It follows from the variational principle derived above that the functional 

F~.[w;n'] = Sn'(r)v(r)d3r + ~ [ w ; n ' ]  (14) 

has the following property: 

F~[w;n ' ] )  F~[w;n], for n'(r) ~ n(r), (15) 

where n(r) is the average ensemble particle density associated with v(r). 
This is our generalization of the Hohenberg-Kohn theorem for ensembles of 
states characterized by a density matrix D. 

A further use of the variational freedom in the choice of the states { l~b,,)} in 
terms of the Slater determinants of one particle-like states may be used to derive 
the Kohn-Sham-type equations for the one particle states. We may state here 
that this can be generalized to include other variables such as magnetization 
(spin) etc. in a straightforward way. 

2.3 Non-Equilibrium Quantum Field Dynamics 

In order to develop our general TD theory, we now give a brief outline of 
Liouvillean quantum dynamics (LQD). For purposes of illustration of the 
method, we first consider a system of interacting electrons (non-relativistic) 
expressed in the usual Hilbert (H) space in terms of the creation (ff~(r)) and 
annihilation (ff,(r)) operators in position space obeying the usual anticommuta- 
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tion rule 

[ O ~ ( r ) , O ~ , ( r ' ) ] +  = 6 ~ o , 6 ( r  - r ' ) ,  

[4',*(r), 4' ;, ( / )3 + = 0 = [0o (r ) ,  0 ~ , ( / ) ]  +. 

The system Hamiltonian is 

/4, = H + H~ ×t = H (°1 + H (I~ + H,~(, 

where 

and 

h2 V2 ) H~°) = 2 I d3rO ~(v) -- 2m + V(r) 4,~(r), 
o 

H t l ) =  1/2 ~" ~Id3rdar'¢~(r)~,(r ') Vc(r --r')Oa,(r')¢a(r), 
f ro '  

(16) 

(17) 

(18) 

(19) 

H~ x' = Y' ~ d3r Ve(rt) ~ ~(r)~(r). (20) 

Here V(r) is the one-particle potential in which the electron moves and V~(r - r') 
is the bare Coulomb potential between the electrons. Ve(rt) is the external space- 
and time-dependent potential which acts as a source coupled to the electron 
density operator, a is the spin index, and is such that 

H~ ~ '=0 ,  for t < t o ,  

~x, (20')  = H t  , fort_> to. 

The electron density operator is 

p(r) = Y 4 , ~ ( r ) ~ t r ) ,  (21) 

with the total number operator given by N = ~d3rp(r). The current operator is 

h 
fir) = ~ Z {tp ~(r)(Vt~(r)) - ( V~, ~(r)) 4,~ (r) }. (22) 

o 

Later, similar considerations will be given to other dynamical fields associated 
with ion and electrodynamic variables as well as relativistic electrons. Quite 
often it is convenient to consider a relativistic electron system due to the 
elegance of presentation and due to formal ease with which to formulate 
TD-functional theory which includes spin and electrodynamics together. The 
details given here for electrons should be sufficient for understanding the needed 
procedures of LQD in these contexts. For completeness and for ease of following 
the LQD method, we first give a brief account of the traditional theory in 
H-space. 

If D(t) is the TD-density matrix of the system obeying the usual yon 
Neumann equation, given that at the initial time the system is in thermal 
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equilibrium described by the density matrix Deq , then we have 

ih - ~  = [H,, D(t)]_, D(to) - Oeq = exp( - fl(H - I~N))/Z(fl), 

(23) 
Z(fl) = Tr exp( - fl(H -/~N)), with TrD(t) = 1 for all t, 

where fl is the usual inverse temperature, (kBT)-1 and # is the chemical potential 
corresponding to the fixed number of electrons in the system, N being the total 
number operator. Tr stands for the trace over the entire system. It may be 
recalled that Deq is determined from a free energy minimum principle. The 
well-known formal solution of Eq. (23) is 

D(t) = U(tto)D(to)U(tot), where ih ~t U(tto) = Hy( t to) ,  

with U(toto)= 1. (24) 

Thus U(tto) represents the unitary time evolution according to the given system 
Hamiltonian. The time evolution of the expectation value of an arbitrary 
Hermitian TD operator A (t) which has an intrinsic time-dependence of its own 
representing a physical quantity evolves accordingly by the rule 

(A( t ) )  = Tr{D(t)A(t)} = Tr {D(to)A(t, to)}, 

where A(t, to) = U(tot) A(t) U(tto). (25) 

Thus A (tto) contains both the Hamiltonian and its own intrinsic evolution built 
in, and this may be recognized as defining the Heisenberg representation of any 
arbitrary operator. A general time correlation function associated with two 
general TD operators A (t) and B(t') representing two different physical entities 
at different times t and t', is defined then by the formula 

C,o(tt' ) = Tr {D(t0) T(A(tto)B(t'to))}. (26) 

where T is the usual time-ordering operator. If the external potential is taken to 
be time-independent, then this correlation function obeys the well-known peri- 
odicity condition in the imaginary time domain. 

2.4 Non-Equilibrium Stationary Action Principle 

At the risk of being redundant, we may state here the salient features of the 
TD-functional formalism. The first requirement is a variational principle, and 
for a time-dependent quantum description only a stationary action principle is 
available. With this a mapping theorem is established which turns the action 
functional into a functional of relevant physical quantities (which are the 
expectation values), and the condition of stationarity is now in terms of these 
variables instead of the entire density matrix. Thus the stationary property with 
respect to the density matrix now becomes one with respect to all the variables 

181 



A. K. Rajagopal and F. A. Buot 

which characterize the density matrix solution. Further developments in setting 
up effective equations determining the physical quantities follow from this. We 
thus obtain a multivariabte stationary property of  the action functional, leading to 
a coupled set of equations. The H-space formalism does not lend itself to such 
a framework because a stationary action principle for deducing the equation of 
motion for the density matrix given by Eq. (23) does not exist, and hence the 
usefulness of the functional method we wish to develop. We will now reformu- 
late the above theory in L-space which meets all our needs in the construction of 
a TD-functionat approach to the problem. This will be the non-equilibrium 
TD-functional theory which runs parallel to the pure-state formalism of Gross 
and Kohn in ordinary H-space provided we make the necessary translation of 
the H-space theory to the L-space formalism. 

We give here a brief account of the quantum dynamics in L-space explicitly 
for the system described above. The relation between H- and L-space is sum- 
marized in Table 1. The creation operator in the H-space becomes a pair of 
creation superoperators, and similarly for the annihilation operator, in L-space. 
They are denoted by 

0 ; ( r ) - .  (~;(r) ,  q75r)), 

~ ( r )  -~ (~o(r), ~;~(r)). (27) 

(H-space) ~ (L-space). 

These superoperators obey the anticommutation relations given by: 

[~o(r), ~],(r')3 + = 6~,6(r - r') = [qT~(r), ~],(r')3 +, (28a) 

(28b) 
E~o(r), " ' 0 o , ( r ) ] +  = 0 = E~o(~), ~7o,(/)3+. 

and their Hermitian conjugates. A general operator A in the H-space which is 
a function of ~ and 0 '  is represented by the superoperator twin set (A, A) and 
the algebra of the superoperators A(/~) is a linear (antilinear) representation of 
the algebra of the operators A. The operators such as the Hamiltonian, number, 
and current in the H-space become respectively twin-pairs of superoperators in 
the L-space: 

H, ~ (I21,, 14~), p ~ (~, ~) , j  ~ (j . f) .  (29) 

Defining the unit superket 

l l ) )=Z[~ ,~ ) )  , suchthat /4,11))=/4,tl)) 

= <<11~, = <<~ t ~ ,  (30) 

where !~, e)) = I[~)(c~l)) with {{e)} any complete set of kets in the ordinary 
H-space, at the same time t as appears in Eq. (30), then an operator A in the 
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Table 1. Correspondence between H- and L-spaces 

H-space theory L-space theory 

(1) Destruction and creation operators: 

~.(r) 
becomes 

(2) An arbitrary operator A becomes 

(3) More generally, a product of two arbitrary 
operators A and B here becomes 

(4) The von Neumann equation for the density 
matrix 

0 
ih - -  D(t) = [ tf~, D(t)] _ 

3t 
becomes 

(5) The average of any physical quantity 
given by the trace 

(A(r ,  t)> = TrA(r)O(t)  

becomes 

(6) No action principle for deducing the 
von Neumann equation given above, whereas 

(1) doublets of destruction and creation 
operators: 

a superketlA)) defined by 
(2) IA)) = All))  = A'I1)) 
where 1I)) is a unit superket. 

(3) a supuopera tor  acting on a superket: 
lAB>> = AIB)), 

IBA>> = ~*IB>> 

(4) a Schr6dinger-like equation for the 
superket: 

iht~tlD(t)) ) = (H, - /~ t ) [  D(t))) 

- tq, I o(t))), 

where ihc~ t = ih - ih 

(5) the matrix element 

( A(r, t)> = <<1 IA(r)lD(t)> > 

(6) the superket equation above can be 
deduced from a stationary action 
principle for a functional W: 

W(to, t l)  = 

1 tl 
S dt((cP(t) l ( ihOt- / t t )[D(t))  ) 

H-space becomes a superket in the L-space defined by 

IA)) -- A{1)) =/i '11)).  (31a) 

More generally, a product of any two operators, A and B, in the H-space 
becomes a superoperator acting on a superket in the following manner: 

tAB)) = ,4JB), ]BA)) = A*tB)). (31b) 

[For fermions, A has to be a number conserving operator for Eq. (31b) to hold.] 
The superket in this space, [D(t))>, associated with the density matrix, is here 

a vector corresponding to the density matrix in the usual H-space, and obeys the 
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equation corresponding to Eq. (23) which in the L-space assumes the form 

ih Ot / / = -  ihOt[[9(t))) = I[/-/t, D(t)]_)} -= I4,[D(t))), (32) 

where Ht =/4t - / f t  and ih~, =- ih ~ - ih ~ in the same sense as Schmutz 

[22], with the condition that the state is initially in thermal equilibrium as 
described above, namely, I D(to))) = I Deq)). The solution of Eq. (32) correspond- 
ing to Eq. (24) is 

[D(t))) = ~(tto)lD(to))), 

with ff(toto) = I. 

where ih ~ J~(tto) = I4,~(tto), 

(33) 

As stated earlier, this initial state, [D(t0))), is itself determined from a free energy 
minimum principle which will be incorporated in this sequel. This procedure is 
important in maintaining self-consistency of the formalism at all levels and on 
equal footing. 

The time derivative operator in the H-space now becomes a superoperator, 
¢)t, in view of Eq. (31b), defined in the sense shown on the left-hand side of 
Eq. (32). This was missed in earlier work [21] even though its existence was 
surmised. It is here found to be crucial in the development of the stationary 
action principle in the L-space. When the system is considered to be in a pure 
state, this gives a transparent reduction to the pure-state TD-functional theory. 
We may then state the usual normalization condition on the density matrix in 
the form of a matrix element in the superspace: 

TrD(t) = ((1 fD(t))) = 1. (34) 

We refer to Eq. (34) as the asymmetric formulation of the L-space quantum 
dynamics. Also the expectation value of any TD operator A(rt) in the ordinary 
H-space is just a matrix element of either of its twin operators ,4(rt) or A(rt) in 
the L-space: 

(A(rt))  = Tr(D(t)A(rt)) = ((llA(rt)lD(t))) = ((ltA*(rt)tD(t))). (35) 

Equivalently these may be written in convenient forms to exhibit the averaging 
in terms of the given initial equilibrium state: 

(A(rt)) = Tr(O(to)U (tot)A(rt) U(tto)) 

= ((1 [~(tot)A(rt)~(tto)[D(to))) (36) 

=_ (( l l,4(rtto)lD(to))). 

Eq. (36) is a version of the Heisenberg representation of an operator in the 
L-space, which will be useful in later manipulations. Similarly the time correla- 
tion functions between two operators given in Eq. (26) in H-space may also be 
re-expressed as a matrix element of the above form in the L-space. Thus in the 
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Liouvillean space the expectation values become simple matrix elements, no 
longer a trace, and may even be viewed as "thermal vacuum" expectation values 
with respect to the given initial thermodynamic state. We can now restate 
Eq. (32) as a stationary action principle in this superspace: 

tl 
W(to, tl) = 1/2 ~dt((cb(t)l(ih~t- lqt)LD(t))) (37) 

to 

subject to the initial condition, given in Eq. (32), by varying the left supervector 
and setting the result equal to zero. Also by varying the right supervector, we 
obtain the corresponding equation for the superbra. The factor I/2 in Eq. (37) is 
chosen, to account for the presence of the twins, so that Eq. (37) reduces to the 
correct action in the special case when the density matrix represents a pure state 
and left superbra is the unit vector introduced above. This is the reason for 
introducing ~, in place of O/&. Furthermore, the physical action functional is 
obtained when we choose the left superbra to be the unit supervector and 
the right supervector to be that associated with the density matrix, in view of 
Eq. (34). 

We will now prepare the initial density matrix superket to be the equilibrium 
state or equivalently the equilibrium density matrix, by a minimum free energy 
principle, with the free energy given by: 

Q -- TrDeq(O)(Hto + fl-llnDeq(O)) ~ ((1 [(/4to - TS)[Deq(O))), (38) 

where ]Deq(0))) is the variational thermal state. The entropy superoperator in 
the L-space is correspondingly given by 

= - ks(tfi D). (39) 

In Eq. (38), the first term is the well-known free energy expression in the usual 
H-space. The variation of f2 with respect to Deq(0 ) yields the equilibrium state 
and the value of ~2 at the minimum is the free energy of the system given initially. 
Therefore, a functional theory holds for this equilibrium state also and thus the 
two principles together lead to a new procedure which maintains self-consist- 
ency at all levels and treats in tandem the stationary action principle and its 
initial state specification on equal footing. 

With this at hand, it is now straightforward to formulate the appropriate 
generalization of the time-dependent functional theory of Gross and coworkers, 
generalized to include the initial thermal equilibrium condition. We enunciate 
here the essential theorems of this formalism without giving the details of proof, 
except in one typical case. We thus exhibit the advantages of the new method 
outlined here. We choose to work in this asymmetric formulation of the L-space 
quantum dynamics since it has the distinct advantage that the traditional 
real-time Green functions of the many-particle systems defined in this space go 
over to the closed-time path ordered matrix Green functions as was shown by 
Schmutz [21]. It thus makes it possible to derive the matrix Green function 
equations in the functional formalism which is useful for formulating the 
transport equation and in turn is amenable to numerical implementation. 

185 



A, K. Rajagopal and F. A. Buot 

Theorem I' (mapping theorem): For every one-electron external potential, 
a~Xt(rt), force Pxt(f~t) on the (-th ion of species ~, external vector potential 
aeXt(rt), and external four current j~xt(rt), which can be expanded into respective 
Taylor series in the time coordinate around the initial time to, a map 

(aCXt(rt ) ) ---) (Ju(rt)) 

(P~ ' ( f  Kt)) - ,  (R(EKt ) ) (40) 

(j~Xt(rt)) --. (Au(rt)) 

is defined by solving the time-dependent Liouville equation with the given initial 
thermodynamic state and calculating the corresponding electron density, n(rt), 
ion-position, R(#wt) the electron current density, J(rt), and electromagnetic field 
A~(rt) given by: 

J~,(rt) = TrD(t)ju(r ) = ((1 [ju(r)lD(t))), 

Au(rt ) = TrD(t)A~,(r) = ((1 IAu(r)lD(t))); (41) 

R(EKt) = TrD(t)R(~) = (( 11 [~({K')JD(t))). 

This map is invertible under certain simple conditions. 
It is often useful to consider externally specified density, next(rt), and/or 

current density, j~×~(rt), distributions for which the mapping theorem reads 

(n~t(rt ) ) ~ (Ao(rt) ) (42) 

The gauge invariance is assured since one always takes the four-divergence of 
the four vectors to be zero and so, within this class, the mapping is assured. 

Proof: We give here a proof of this theorem in a typical case. We must point out 
that the minimum free energy principle assures us of the above mapping at the 
initial time. The Taylor expansion then provides the mapping for subsequent 
times. We shall not give the first step based on the minimum property of free 
energy associated with the initial density matrix as this has already been proved 
earlier in this section. From this follows the important conclusion that the initial 
density matrix can be considered as a functional of the initial values of the 
various averages. We choose for the purpose of illustrating our method of proof 
the ion-coordinate. 

If the forces F~t(f~ct) can be expanded into a Taylor series in the time 
coordinate around the initial time to, a map 

(U~t(d~ct)) ~ (R(ftct)) (43) 

is defined by solving the time-dependent yon Neumann equation in L-space 
with a given fixed initial density matrix D(to))), and calculating the correspond- 
ing coordinates R(Em). Assume that there exist two unequal forces, F~t((Kt) and 
F~XC(Ext), both of which are given to be equal at t = to. Assume that these can be 
expanded in respective Taylor series around t = to. 
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We will now show that R(hct) and R'(lxt) are different, corresponding to 
l~x'(dxt) and Fext'(E~ct) as long as there exists a non-negative integer k such that 

(O/&)k [F, Xt(lxt ) _ Fext" (lKt)]t=,o =# 0. (44) 

In other words, the ion positions are tracked by the forces. 
We first obtain 

(R(l~ct) - R'(l~ct)) = - ~  (P(lm) - P'(lm)), (45) 

which follows by a direct calculation. We have, similarly 

d 
ih ~t (P(l~ct) - P'(l~ct))t=to = ((11 [ /3(/ t0, /~(to)- /4 ' ( to)I-]D(to)))  

= ih(F(lKto) - F'(l~:to)). (46) 

Thus if Fext(dm) and FeXt'(dm) differ at to then for k = 0, P # P' for t infini- 
tesimally later than to. If k > 0, then applying the differentiation k times and we 
get 

+1 0 k 
( i h ~ )  k ( P ( I x t ) - t V ( l m ) , t = t o = i h { ( i h ~ t )  (F(l~ct, 

F'(Im))~ # O, (47) 
J / = t O  

implying that P ~ P' for t infinitesimally later than to. These in turn lead to the 
statement on R's: 

~ ]  (R(l~cl) - R'(IKt))t=to = M-~ & (F(lKt) - F(lm)),=to. (48) 

Thus the ionic coordinates become different for t infinitesimally later than to. 
Since we consider, by construction, only density matrices that evolve from 

the same initial state, the average positions as well as the momenta of the ions 
are identical at the initial time and evolve subsequently to be different as 
demonstrated above. Thus we have established the 1-1 correspondence between 
the time-dependent positions of the ions and the external forces; the external 
forces on the other hand, uniquely determine the time-dependent density matrix, 
which can therefore be considered as a functional of the time-dependent posi- 
tions. As a consequence, the average value of any quantum mechanical operator 
is a unique functional of the ionic positions. 

Before we proceed to state the theorems we give here a brief description of 
the Hamiltonian for a system consisting of electrons, ions, and electromagnetic 
fields in the Hilbert space. From this, the procedure to go to the Liouvillean 
space follows along the lines given earlier. We will choose to express the 
electrons in terms of the Dirac field to keep the discussion general as well as 
elegant from which the non-relativistic results can be extracted by known 
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procedures, and treat the ions in the non-relativistic framework as this suffices 
for most problems of interest in condensed matter. We choose to be in the 
Coulomb gauge in describing the electromagnetic fields as it is convenient for 
quantization. Since the whole theory is gauge invariant, the questions concern- 
ing the choice of gauge etc. need not concern us here. Also we ignore the 
coupling of the ions to the electromagnetic fields in this development. The 
Hamiltonian is thus written in the form 

H = He q'- Hi + H f  + Hint(e- f  ) 

+ Hia,(e-O + Hext(i)(t) + Hext(e,f)(t) + Ev,¢. (49) 

Eva¢ in Eq. (49), is the vacuum expectation value of the total Hamiltonian which 
we ignore in further considerations. The appearance of the normal ordering of 
operators is a consequence of this term. Here the electron Hamiltonian He is 
composed of its kinetic, rest, and mutual Coulomb interaction terms: 

He = Te + levee, Te = 5d3r:tfi(r)( - i7" V + moc2(1  - ) ,o ) )O(r ) : ,  

(50a) 
e2 

Wee = f l  d3rd3r' Ir _ r'----[ " I~(r)~)°O(r)::~l(r')3)°l~(r')2 

Here ~ = 0t?o in the standard notation (see for example, Kaku [23]). 
The ion-Hamiltonian Hi consists of its kinetic and mutual interaction terms with 
P(f~c) representing the ion momentum operator conjugate to the ion position 
operator R(l~:), which in the Heisenberg representation is given by 
Mkt~(lxt)  = P(tL~t). The overdot here and elsewhere stands for the time deriva- 
tive of the operator in the usual way. Here I and K stand for the ion index and 
species respectively. 

(50b) 

P2(t~:) 
Hi = Ti + Wii' Ti = ~ 2M~ ' 

l ~ i~, w u ( R ( t K ) -  R(I%c')). 

The electromagnetic field energy in the Coulomb gauge is 

1 3 2 
Hf = ~ ~ d r:(nt,(r) + B2(r)):, (50c) 

with rt,,(r) = - E~,(r)= l A ( r )  and B(r) = V×A(r) ,  
c 

where Trt, is the conjugate field operator to the vector field A(r) and its familiar 
form in terms of the time derivative is to be understood in the sense of the 
Heisenberg representation of the operators. The Hamiltonian representing 
electron-field interaction is 

e ~ d3 r :j(r) " A (r):, Hint(e-. f)  = -- C 
(50d) 

188 



Generalized Functional Theory of Interacting Coupled Liouvillean Quantum Fields 

and that representing the electron and ion is 

Hint(e - i )  : - E S d3rwei (  r - -  R(fK)): t~(r)~to~(r): .  
#K 

(50e) 

The time-dependent external source fields coupled to the respective operators of 
the system are represented by the Hamiltonian: 

e ~ d 3 r ( : j u ( r ) :  aUext(rt) + j~uXt(rt):AU(r):). I L . , , . z ~ ( t )  = - -  c '  (5Of) 

We choose to employ external forces acting on the ion-position operators 
instead of the conventional ion potential acting on the ion density operator so as 
to capture the explicit dynamics of the ionic motion: 

H~x.o(t) = ~ P~t(/~ct)" R(gK). (50g) 

The four-current operator is defined in the standard way [23] by: 

Ju (r) =: ~(r) 7u ~ (r):. (51) 

All the operators appearing here are in the Schr6dinger representation. The 
physical quantities of our theory involve the expectation values [Eq. (25)] of the 
various operators defined above, which also serves to define the Heisenberg 
representations of the operators defined here [see Eq. (41)]. The various field 
operators obey the standard equal time commutation rules among themselves 
while they commute between them. We give here the one for the vector fields in 
the Heisenberg representation, representing the electromagnetic fields in the 
Coulomb gauge, to keep the discussion clear [23]: 

[,41(rt), Aj(r't)] = - i(6 U - g -  zv i  17j)6t3)(r - r'). (52a) 

As is well known, in this gauge, the scalar potential is not an independent 
variable, as it is determined by the instantaneous charge distribution, n(rt), by 
the relation A o ( r t ) =  eSd3r'n(r ' t ) /4nIr  ' -  rl. Thus while ~b(rt) commutes with 
the components of the vector field, Ai(rt), it obeys the commutation rule 

e 
[Ao(rt), I/s(r't)] - 4nit -- r'[ ~(r't). (52b) 

with the scalar potential, Ao(rt). 
Similar procedures using the above establish the other mappings stated in 

the theorem. We thus have the following important consequences: 

D(t) = D [ J  u, A u, R](t), and 

( A ( t ) )  = TrD( t )A( t )  = A [ ju, A u, R] (t). (53) 

This also holds at the initial time, t = to. 
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Theorem II' (stationary action principle): The physical action 

1 
i' dt<(11(ih~, -/4,)lD(t)>> (54) W(to, t~) = ~ ,o 

is stationary with respect to the following variations given the initial specified 
conditions at t = to: 

6W 6W 
- - -  = 0; - 0; 
6n(rt) 6J(rt) (55) 

6W 6W 
- - = 0 ;  - 0 .  
6R(EKt) 6Au(rt) 

The top two equations lead to the effective Dirac (Schr6dinger) equation, the 
third leads to the effective Newton equation, and the last leads to the effective 
Maxwell equation, as exhibited in Theorem III'. 

Proof: We first note that this theorem is simply a restatement of the stationarity 
of the action with respect to the density matrix expressed now in terms of the 
variables of our interest upon using the relation Eq. (53). By separating the 
operator /{  into parts that contain external field terms and those that do not, by 
referring to Eq. (49) and using the definitions given in Eq. (41), we reexpress the 
action as a functional of the variables introduced above. 

W(to, tl) - W[ J", A u, R] 

e ti 
= B[J  u, A", R] + -  ~ dt ~d3r(J"(rt)a~uXt(rt) +j~X~(rt)A"(rt)) 

c to 

tt 

- ~ dt ~ Pxt(l~ct)'R(t~ct). (56) 
t o EK 

In the above, the functional B[ J", A u, R] is given by the following expression: 

B [ J", A", R] 

= 1  i i dt((l l( ihOt- H~ -/-]i  - / t s  - -  / - l i n t ( e - - f ) -  I41nt~e-i))ID(t)>>, (57) 
2 to 

where the various parts of the Hamiltonian in the L-space are obtained from 
Eqs. (50a-e). A similar decomposition holds for the initial time where W is 
replaced by the free energy functional. The stationary action principle can now 
be used to obtain the basic coupled equations of motion for the various 
quantities and the corresponding initial conditions are determined from the free 
energy functional, as stated in the next theorem. 

Theorem III' (coupled self-consistent equations for the fields): The effective 
Dirac, Maxwell, and Newton equations, given the associated initial quantities in 
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thermodynamic equilibrium, are 

) 
+ mo(1 - fl) + A¢.o(rt)~¢j(rt) 

. /  

(58) 

Ju(rt) = ~flsp(dp*(rt)%c~i(rt)), 
i 

6B1 [ J~, A u, R] 
Aeffu(rt ) = aeuXt(rt) + Au(rt) + 

6JU(rt) 

Here sp stands for trace over the spinor indices 

B~[J  u, A u, R] = B~M[J t'] + B~[A"] + B~[R] + 

(59) 

(60) 

(61) 

tl  

dtJU(rt)Au(rt) - B2 [ J~', A u, R]. 
to 

B ~ [  J"], B)[A"] ,  and B~[R] are the corresponding "non-interacting" actions of 
matter, electromagnetic field, and ions: 

and 

1 t l  

B ~ [  J u] = ~ ~ dt((llihO, - Te)lDs(t))), 
to 

1 i' dt((ll(ihO,-/-]i)lDs(t))),  B~EA.] = ~ ,o 

I1 

1 ~ d t ( ( l l ( i h a , -  ~)lD,(t))), BfEr]  = ~ ,o 

(62) 

tl  

BE[ J u, A u, n]  = B[ J", A", n]  - S dt S d3rjU(rt)Au(rt) • (63) 
to 

0uFUV(rt) = J~ff(rt), (64) 

6B1 
J~ff(rt) = j~xt(rt) + JV(rt) + 6A~(rt~)" (65) 

And, m~R(lKt) = - Feff((Kt), (66) 

6B1 
Fcff(Ixt) = F¢xt(txt) 6R(Im)" (67) 

The equilibrium initial conditions are determined by another variational prin- 
ciple on the free energy functional, and lead to corresponding appropriate 
equations which are not presented here. They serve as the given initial condi- 
tions for the time-dependent equations given above. The various equations 
have the same form as above except that all the B's are replaced by their free 
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energy counterparts ~2, and the time-variable runs along a complex time line 
(to, to -- i/3). 

2.5 Effective Action and ~b-Derivable Functional Theory 

We now turn our attention to another aspect of the functional theory by first 
giving a brief account of Baym's ~-derivable scheme [24]. This is because of our 
desire to develop transport theory on the same type of self-consistent framework 
as the TD-functional theory developed thus far. We follow Baym's observation 
that the quantum theory of transport can be cast in terms of the two particle 
correlation function 

L(12;1'2') = G2(12;1'2') - G(I I')G(22') (68) 

Baym showed that the macroscopic conservation laws for particle number, 
momentum, and energy will be satisfied if L in (68) is of the form 

L(12;1'2') = +__ 6G(1 l')/6U(22')jt,=o. (69) 

The U-dependence on G is given by the usual equation of motion, namely 

d l [Go l ( l l )  - U(l l ) ]  G(llt; U) = fi(11 t) -]- 
(70) 

i ~ d3 V(13)Gz(13;l'3 + ;U). 

where 

V(12) = v(rl - r2)f(t l  - t2). (71) 

Write _+ i ~ d3 V(13)Gz(13;l'3 + ;U) =- J" d2S(12)G(21';U) (72) 

Thus the "self-energy", containing the exchange-correlation effects of the inter- 
action, 

2; is a functional of G(U) and V. (73) 

Then 

.(dT [Go '(1T)- U(I~)- S(1T)] 6(~1')= 6(11') (74) 

Invoking gauge transformation (number conservation), translation transforma- 
tion (linear momentum conservation), and time transformation o(t) (energy 
conservation), Eq. (69) is established along with the requirement 

6G(11')/6U (2'2) = 6G(22')/fU ( l 'l  ) (75) 

This in turn implies the existence of an effective action functional W such that 

G(11') = 6W/ fU(I ' I ) .  (76) 

L = +_ 6G/fU = T- G(f iG-1/fU)G 

= -T- GG -T- G(fZ/f iU)G, (77) 

and (6S/3U) = ~fS/ fG" fiG~fib', 
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the above condition (75) may be rewritten as 

6 Z (11')/6G(2'2) = ,~ Z (ZZ')/fG( l ' l ). (78) 

This in turn implies that another functional exists such that 

Z(11') = 645/6G(1'1). (79) 

Eqs. (76) and (79) together imply that a functional Wu [G] can be constructed 
such that Eq. (74) for G is a stationary solution: 

6 W v [ G ] / f G  = 0 for a fixed value of U. (80) 

i.e., Wv[G] = ~[G] - t r (Go'  - U)G - trln( - G), (81) 

provided 6@/6G = Z. 

This is the central result of Baym. When G is fixed and U varied, we obtain 
6 W v [ G ] / 6 U  = G as required by Eq. (76). Baym also showed that in equilibrium, 
W is the logarithm of the partition function - which is a variant of Luttinger's 
variational principle! We may remark here that a similar theory was developed 
by Klein [25] for the ground state of the many particle system corresponding to 
the zero-temperature limit of the above theory and has been used by Casida [26] 
in the DFT context, which we will discuss later. In Appendix A, we show that 
this stationary principle is the same as the one given in Sect. 2.4 and the two 
action functionals are different representations of the same quantum action. 
Consequences of this important result are also given. We will now express the 
Green function in LQD and reformulate the Baym theory in L-space. For the 
purposes of mathematical manipulation in what follows, it is convenient to 
recall Eqs. (32) and (33). We define the Green function in L-space as follows: 

ff,o(rt, r't') = 1 (( l l T(~(r t to)  ~* (r't'to))lD(to))), (82) 

where 

7~(rtto) = (4~(rtto) 
\lift (rtto) ] ' 

~*(r't 'to) = (t~t(r't 'to)~(r't 'to)). (83) 

The operators 7 j and ~t  obey the usual equal time anticommutation relations. 
The time-dependence of the field operators appearing here is due to the Heisen- 
berg representation in the L-space. In view of the foregoing development which 
parallels the traditional Schr6dinger quantum theory we may recast the above 
Green function in terms of the interaction representation in L-space. This leads 
to the appearance of the S-matrix defined only for real times. We will now 
indicate the connection of the above to the closed-time path formulation of 
Schwinger [27] and Keldysh [28] in H-space. Equation (82) can be explicitly 
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written out in the form of a matrix 

~q,o(rt, r,t ,)= l ((T~(rtto)~t(r't/ l ,o)) (T~f(rtto)~(r't't,o)) ~ (84) 
ih \ (T~t(v t to)~t(r  t to)) (T~t(r t to)~(gt  to))]" 

Here ( . . - )  has the same meaning as in Eq. (36). This can be expressed in terms of 
the corresponding well-known correlation functions, G > and G < defined in the 
H-space: 

ff, o(rt, r't') = \G>(rtto;r,t to) G"C(rtto; r't'to)J 

GC(rtto;r't'to ") = O(t - t')G>(rtto;r't'to) + O(t' - t)G<(rtto;r't'to), (85) 

G~C(rtto;r't'to) = O(t - t')G<(rtto; r't'to) + O ( t ' -  t)>(rtto;r't'to). 

This is precisely the same as the non-equilibrium Green functions defined by 
Schwinger and Keldysh. It is worth pointing out at this stage that the main 
advantages of using the LQD approach advocated here are: (1) it allows us to 
formulate the non-equilibrium time-dependent functional theory and (2) the use 
of real times in place of closed-time paths is more convenient for calculating 
self-energy etc. 

In order to reformulate the q)-derivable formalism of Baym in the L-space, 
we need to introduce an external potential which is nonlocal in both space and 
time in the Hamiltonian 

H e~t = ~ 7J*(r't')Og(r't';rt) 7J(rt)drdtdr'dt ' (86) 

in the notation of Eq. (83). Here, corresponding to the components of 7 j and ~*, 
~# is a 2 by 2 matrix. The equation governing the time evolution of the Green 
function defined in Eq. (84) in the presence of the above TD-potential is 
obtained by the usual procedure. This can be recast in the form 

-1 = ~ o l  _ ~ _  27, (87) 

where 2" is the non-equilibrium self-energy matrix. This equation can be deduced 
by the stationarity with respect to ~ of a functional defined by 

Wv[(¢] = 4~[~] - t r (~o ~ - ~ ) ~  + trln( - N), (88) 

where tr is as defined as before, provided the self-energy 2" is given by the 
functional derivative of q~. For  completeness, we may point out that by treating 
o~ as the functional variable of W in Eq. (88) we obtain the ~ as the functional 
derivative of W with respect to q/. In order to establish this, we consider the 
definition of the Green function given in Eq. (84). This enables us to write 
another equivalent expression for Wv[~] in view of Eq. (86) in the form of 
a generating functional of aj from which the result stated above follows. Thus 

Wv[qq] = lnZ(fl) + In 1 T exp - ~ to / ,  ' (89) 
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where Z(/~) is the partition function in the absence of the external field. More- 
over we have introduced the notation 

H,Xt(t)=(exp-~t14,o)I4~Xt(exp~tI4~o). (90) 

We observe that in the case of an equilibrium situation, the external field is taken 
to be time-independent and the time integrals go over the usual complex time 
domain, (0, - ifl), and Eq. (89) then reduces to the logarithm of the partition 
function of the system including the external potential, as before. 

We are now in a position to reformulate the Baym scheme in LQD theory 
and develop a new TD-functional approach. In the traditional pure-state TD- 
functional theory, one often expresses the stationarity condition equivalently as 
a one-particle TD-Schr6dinger-like equation for some newly defined wave 
functions. This could of course be recast into an effective one-particle Green 
function equation with the effective potential appearing here as a self-energy 
functional. In many-body theory, Baym developed the powerful formalism 
called q~-derivable theory described above which maintains all the conservation 
laws. As shown here, this is based on a rigorous stationary principle involving 
the one-particle Green function of the system. Here we shall show that a general 
functional method can now be constructed in a manner analogous to the 
TD-functional approach. This has the merit that the self-energy deduced in this 
way is in general complex unlike in the earlier versions of the TD-functional 
theory. In the LQD, the one-particle Green function, f#, is a matrix as was 
explained earlier. With that understanding and the attendant changes in the 
notation, we now proceed to develop the Baym formalism in an LQD frame- 
work. 

The Baym functional I.V~ [f4] in LQD is now defined as 

~ E f ¢ ]  = q~E~¢] - t r{ffolff  - l n ( -  if) - @if} (91) 

and is stationary with respect to variations of the one-particle Green function fq, 
provided the exact self-energy S is given by 

6~ 
6~ = S. (92) 

Here tr stands for the operation: 

tr~¢ = ~dt~dar ~4,(rt;r t  +) (93) 
i 

where the time integration is along the real-time line, and the indices i denote the 
matrix structure of d ,  when necessary. Here o//, a matrix, is a nonlocal external 
potential. For the initial thermodynamic equilibrium situation, the time integra- 
tion runs along the line (to, to - ifl), and f# obeys the Martin-Schwinger time 
periodicity condition. W~ [if] then corresponds to the free energy f2 of the 
system. It is interesting to point out that in this theory the stationarity of the 
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Baym functional is common to both the non-equilibrium and the equilibrium 
situations; the difference between the two now arises in the Martin-Schwinger 
periodicity property of ~ for determining the equilibrium Green function. This 
should be contrasted with the LQD approach given above where the stationar- 
ity property for the functional Wchanges to the minimum free energy functional 
f2 to obtain the initial equilibrium density matrix. We should recall that the 
self-energy arises from interactions among the electrons, so that q, is merely 
another representation of the interaction contributions. This framework has 
become a basis for developing approximations in the theory of quantum 
transport in many diverse systems ranging from semiconductors to supercon- 
ductors and their nanometric counterparts. 

The purpose of the present work is to incorporate this framework into 
another, very successful formalism in computing the system properties of 
equally wide ranging magnitude, namely the non-equilibrium time-dependent 
functional method. Let us define a universal functional FIN] in LQD to be 

F [ ~ ]  = 4~[f#] - trNo 1~6 + trln( - ~). (94) 

Then 

W~ [~] = F [N] + tr~#~. (95) 

The stationarity property leads to the equation for the one-particle Green 
function: 

6q~ (96) __6F[N]_+og=O, or N - 1 = N 0 - 1 + ~ # + 6 ~ - .  6~ 

Following Kohn, introduce a "non-interacting" system such that 

6Ts[N] = No 1 _ N s l ,  (97) 
6(¢ 

and a one-particle potential ~s so that 

NO 1 - -  (~S 1 -I- ~ S  = 0. (98) 

We observe that this corresponds to the "non-interacting" system but in the 
presence of a one-particle local potential so that from Ns one can obtain certain 
one-particle properties the same as for the interacting system, for example, the 
density of the system. Then write 

W~[N] = Ts[N] +/~[ f f ]  + tr(~N), (99) 

where 

if[N] = F[f#] - Ts[N], Ts[N] = tr(f#o INS + In( - f#s)). (100) 

Then we have for the one-particle equation a Kohn-Sham-type equation when 
the particles are mutually interacting: 

fiTs[N] 6if[N] (101) , ~  + ~  + ~ , = o .  
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This gives the equation for f# in the form; 

f#O 1 --  f # - i  _]_ ~]/'eff[f#] = O, where 
(102) 

6/7[.~] 
v o . [ f # ]  = + 6 ~  

~Peff here is the self-consistent one-electron potential arising from the electron 
interactions. Models are constructed based on the suitable choice of the func- 
tional t7, for example, Hartree or Hartree-Fock, or other forms depending on the 
scheme one wishes to adopt. Formally, ~ f t  is the same as the self-energy 
functional of the many-body theory but, as discussed in Baym's paper, approxi- 
mation schemes are often employed obeying some basic requirements of the 
formal theory. The method given here based on LQD folds in the full many- 
body formalism, including the finite temperature theory, into a Kohn-type 
scheme. Also it incorporates the Schwinger [27] and Keldysh [28] method when 
the path-ordered contour on the time path is employed. 

In the above development, for the sake of simplicity of presentation, we 
discussed the electron problem alone. Inclusion of ionic motion and electromag- 
netic fields brings in new features of the interacting fields. In our earlier works 
we developed the appropriate generalizations of the TD-functional theory to 
incorporate such interacting fields. We will now present the corresponding 
results in the Green-function language thus completing the original program 
stated in the Introduction. 

where 

where 

where 

f#O 1 --  f # - I  _{_ 3(,/-eff[f#, 9 ,  ~(em)]  = O, 

"~V~eff[f# , 9 ,  ~(em)]  = 0~¢ _~_ _ _  
~/7[f#,  9 ,  ~(em)]  

3f# 

9 0 1  --  ~ - 1  + O~ef f[f#,  9 ,  9 (em)] = 0, 

(103) 

°"~¢'~eff [ f#, ~ ,  9(em)]  = ~f f [ f# ,  ~ ,  ~(em)]  
6~  (104) 

(~(em)-1) i  j = (9(0em)1)i  j ..~ (Z~,eff)ij ' 

(~'eff)ij = 69!ym) 

/7 is given by 

if[f#, ~,  9 (era)] = ~[f#, ~,  9 (era)] - tr(f#o if# _ In( - f#)) 

- t r (9o t 9  - In( - 9))  

- tr(9~ era)- 19(era) -- In( -- ~(,m))) 

- -  Ts[f#] - -  T~[~] --  T f [ ~ ( e m ) ] .  

(105) 
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~eff here is the effective "force constant" whereas the '~/eff is the effective 
one-electron potential containing contributions from all the interactions. Here 
we have introduced the dyadic Green function associated with the electromag- 
netic field components, which we here denote by the symbol ~(em) with the 
corresponding self-energy dyadic 2; so that the corresponding equation deter- 
mining ~(~m) in the presence of other fields is given by Eq. (105). Equations 
(103)-(105) above are all coupled and should be solved self-consistently. 

This method may also be used to derive a set of self-consistent mutually 
coupled equations for the appropriate Green functions associated with the 
superconducting electrons (counterpart of Eliashberg equations), the ions, and 
the electromagnetic fields. These equations are not written down here as they 
follow by an analysis of the same form given above for the electron-ion- 
electromagnetic field system. The essential change needed is in the electron 
Green function which now is a larger matrix to incorporate the Cooper pairing 
and so must incorporate spin space thus accommodating the Gorkov anomal- 
ous terms. With that understanding, formally the equations for the electrons, 
ions, and electromagnetic fields appear to be in the form similar to those given as 
above. For details of this derivation one may refer to [16]. 

Table 2. Implications of q~-derivable theory to the proposed TD-functional method 

TD-functional scheme q~-derivable scheme 

(1) Dirac-Frenkel stationary action principle 
involving the functional W determines the exact 
system density matrix. 

(2) Mapping theorem: (Legendre transformation) 
a~ ~ ~ Ju makes W a functional of J~. 

(3) The initial equilibrium condition for the non- 
equilibrium problem in (1) is determined from 
the minimum of the free energy functional (J 
which is also a functional of Ju. This serves as 
the initial condition for determining the non- 
equilibrium TD-averages. 

(4) Stationary condition in view of (2) leads to 
an effective equation for the Green function ~¢~ 
of the system with a local self-energy determined 

6B~ 
via a functional B1 [Ju]: r ~ = 7~, ~ -  

(5) The functional B1 [Jr] is set up by physically 
motivated approximations. 

(1) A stationary principle involving an 
effective action functional W~¢~ determines the 
exact one-body Green function of the system 

(2) Mapping theorem: (Legendre 
translbrmation) nonlocal 4lg ~ ~ makes W~u 
a functional of ft. 

(3) The initial equilibrium condition for the 
non-equilibrium problem in (1) is determined 
from the minimum of the free energy 
functional of the exact one-body equilibrium 
(¢. This serves as the initial condition for 
determining the non-equilibrium ff required 
in (1), 
(4) Stationary condition in view of(2) leads to an 
equation for the Green function (~ of the 
system with the exact self-energy, F., related to 

6q~ 
a functional q~: Z = - - .  This is called the 

J-derivability condition, 

(5) The functional ¢' is set up by using dia- 
grammatic analysis of a physically motivated 
choice of processes. 
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In Table 2 we exhibit the correspondence between the LQD-based TD- 
functional scheme and the oh-derivable, effective action functional scheme. 

3 Calculation Schemes 

In order to see the implications of this theory, we first re-express Theorem III of 
the TD-functional scheme in the Green-function language and identify the 
corresponding self-energy terms. Once this is done, we then proceed to outline 
the required generalization of the TD-functional scheme to incorporate dia- 
grammatic methods into a self-consistent scheme. This is facilitated by the 
following definitions of the Green functions: 

(~S(rt;r't') -- Green function associated with Eq. (58), 

i 3 R ( { x ~ t )  
~(~c~t;f'~c'~'t') - h 6Fe~t(('x'~'t') ' (106) 

~!ym)s(rt;r,t,) = __c 6Ai(rt)  
4~ 6j~Xt(r't') " 

We have denoted the Green functions here with a superscript s to distinguish 
them from those defined in the Baym formulation. After some algebra, we find 
the following identifications: 

~B1 (~ff 
~ f f  = ~, ~ 5(r  - r ' ) 6 ( t  - t') --, ~ '  + ~ ,  

32B1 6 F  
~'~ff - 6 R 6 R  ~ 6 9 '  (107) 

32B1 OF 
(Z~eff)i j = /-/(e m) 

3A~fA j  ~iC,~{em) " ~ i j  

Here the electronic polarization tensor is the electromagnetic self-energy due to 
electron-electromagnetic interaction and is defined by 

H(em)_ 6Ji 
~J (~Aj" (108) 

This tensor, in a lowest order calculation, is the familiar relativistic Lindhard- 
type function. The other self-energies appearing in the above equations ex- 
pressed in terms of the functional B~ are in the functional scheme, whereas those 
expressed in terms of/7 have their origins in the q~-derivable scheme. In both 
formulations, the contributions due to electronic, ionic, and electromagnetic 
interactions are incorporated into the respective functionals mentioned above. 
A direct comparison of the two procedures should be illuminating to see how 
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one could employ the Baym scheme in a TD-functional form in order to develop 
a self-consistent approach to interacting, non-equilibrium problems. First, we 
enumerate the similarities and then we exhibit a possible connection and 
indicate application of the method. We choose for the purposes of illustration, to 
compare the case of an electron system alone. Similar statements hold in general. 

4 Numerical Simulation Techniques 

We believe that the formal methods given here wilt be useful in developing 
foundations for future numerical simulations such as molecular dynamics and 
Monte Carlo techniques in addressing the problems of non-equilibrium interac- 
ting systems, which may also be nanometric. Recently the case of bulk sodium 
through its melting point has been studied by such methods, employing heuristic 
physically motivated schemes. Schemes for the "dynamical" simulation of 
matter in a pure state from 'first principles' are at present based on the 
Car-Parrinello (CP) optimization method which is founded on a fictitious 
Lagrangian molecular dynamics framework coupled with density-functional 
theory. At first, the zero temperature Kohn-Sham procedure was used by 
introducing a fictitious Lagrangian to generate the dynamics, and, more re- 
cently, the finite temperature density functional within a similar fictitious 
Lagrangian was employed. 

Our formalism makes contact with and provides a firm physical and math- 
ematical basis for time-dependent dynamical simulation procedures envisaged 
by the Car-Parrinello approaches by replacing the fictitious Lagrangian by 
a precise action principle, as we will show presently. The starting point for 
making this important connection is our Theorem III. For purposes of illustra- 
tion here, we focus on the electron-ion system. We thus consider the equations 
for describing the motion of the electrons as in a Kohn-Sham-type description 
which can be recast in the usual non-relativistic form and another describing the 
ionic motion, and the input self-consistent entities entering the formalism. 
A central feature of these coupled electron-ion equations is that the source of the 
effective potential for the electrons and the effective force on the ions arise from 
a single functional. These should be contrasted with the equations studied by 
Theilhaber [18] who in an attempt to replace the fictitious Lagrangian in the CP 
method, obtained equations for electrons and ions similar to ours but limited to 
equilibrium. Apparently he did not realize the presence of a single self-consistent 
source functional of electron density and ion positions as obtained above, but 
used a mean-field form for the ion part of the functional. His aim also was to 
produce a fully self-consistent description of electron-ion motion within a time- 
dependent density-functional theory which goes beyond adiabatic approxima- 
tion. Our framework thus leads to the most general form of the equations 
appearing in such a formulation which meets these requirements. To connect to 
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the CP method, we observe that the CP fictitious kinetic energy functional 
corresponds to a "penalty" functional to account for its deviation from the true 
ground state. The corresponding fictitious Lagrangian is a sum of those describ- 
ing the electrons and the ions which could be taken to be an approximation for 
the "non-interacting" actions of electrons and ions, which in the CP framework 
is to be identified with the Kohn-Sham energy functional for fixed ion positions. 
Moreover, the electron "deviation" field in the resulting time-dependent set-up 
is treated in a classical sense, i.e. it contains a second-order differential in time 
for describing the electron field with an arbitrary coefficient which is identified 
to be a mass parameter for this electron field. The aim of the CP annealing 
algorithm is to provide an adiabatic evolution of the electronic ground state in 
the molecular dynamic simulation of the zero temperature theory and the 
equilibrium ensemble of the finite temperature theory. We observe that our 
formalism can be adopted to obtain CP as a first approximation for describing 
the adiabatic evolution of the electronic ground or thermodynamic equilibrium 
state in a general way as well as pointing a way to more general treatment of real 
dynamical situations by exhibiting the places where approximations are made 
to reduce to the CP algorithm. 

To illustrate our self-consistent theory involving the electrons and electro- 
magnetic fields, we may mention the new experimental findings in the field of 
ultra-short laser pulses of very high intensity impinging on atoms. The electric 
field produced in this case may be of the same order as that caused by the atomic 
nucleus, and thus traditional perturbation theory is inapplicable to understand 
this type of phenomena. Ulrich and Gross have recently used the time-depen- 
dent density functional theory of Runge-Gross to construct a time-dependent 
optimized potential for describing the electrons in this case but do not examine 
the back action on the electric field of the laser. Our framework is admirably 
suited to deal with this situation as it goes beyond the Runge-Gross method as is 
clear from our development given here. Thus it should be clear that the 
construction of the Bl-functional is of paramount importance in the scheme 
proposed here and the Baym-scheme should be used in this context. With the 
description of the above two important cases as a subset of several other 
problems of importance requiring a framework such as ours, we believe that we 
have established a formal basis for attacking such problems. Much work needs 
to be done to make this into a computationally viable theory which would take 
us beyond the present CP-type procedures, with the CP-approaches may be 
considered as a first step in this direction. 

Our aim now is to develop phenomenology to suit the physical situations at 
hand so as to facilitate the setting up of the required functional of the new 
TD-theory. (In the stationary state functional theory, the uniform electron gas 
phenomenology was of importance as a vehicle for theoretical investigation.) In 
order to gain some insight into the central functional mentioned above, we have 
developed another theory in parallel to the functional theory described above 
addressing the same problem within the LQD framework. This is the corres- 
ponding generalization of the Baym q~-derivable method in the many-body 
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theory. It involves a functional of the one-particle electron Green function, the 
Green function associated with the ion motion, and the dyadic Green function 
associated with the electromagnetic fields, now expressed in LQD. This theory is 
also based on a stationary principle and when our TD-functional theory is 
recast in the Green function language, we observe the similarities between the 
two methods. This suggests using the diagrammatic methods in Green function 
theory in setting up suitable functionals needed in the theory. 

5 Liouvillean Quantum Transport Theory and Applications 

We will now develop the transport equations in L-space from the above Green 
functions. Following the Keldysh approach in H-space, the transport equations 
for non-equilibrium plasmas and radiation have been given by DuBois [29]. 
A similar transport equation for a system of ions may be found in Kwok [30], 
which is based on the Green function associated with ion positions. In a separate 
paper [31], we will derive the appropriate transport equations for the coupled 
system of electrons, ions, and electromagnetic fields. 

In terms of the familiar correlation functions, G >, and G <, the matrix 
equation for the "super"-Green function, c~, is exactly the same as the following 
expression 

G ~ 
~ =  G > a " ~ '  (109) 

where G ~ and G "C, which can be expressed in terms of G > and G <, are the 
chronological and anti-chronological Green functions respectively. Equation 
(109) is exactly the same as the non-equilibrium matrix Green function expres- 
sion obtained by other authors [32], using the time contour formulation of 
Schwinger and Keldysh. Integro-differential transport equations for the matrix 
elements off#, can be readily obtained from ~ lc~ = 6 and its adjoint. We make 
use of the relations: F <'>t = - F <'>, U t = - F "c, to obtain the transport equa- 
tions for all the matrix elements of .~: 

ih(~/~3t + 8/~?t')G >'< = [ - hZV2/2m + ~0~ff + ReS', G >'<] 

+ [22 >'<, ReG r] + i {A,S>'<}/2  

- i { F ,  G>'< }/2, (11o) 

ih(O/~3t + ~3/Ot')G c = [ - h z V Z / 2 m  + q~eff + --Fc, GC] + G<~'> - S<G>, 

(111) 

i h (8 /&  + a / & ' ) G  "~ = [ -  h2V2/2m + (,Oeff - -  sac' G"~] + S>G< -- G>X<, 

(112) 
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where G r and Z r represent the retarded Green function and its associated 
self-energy, and tpeff is the effective potential. It is clear from the last two 
equations that the term G<S > - S,<G > and its counterpart describe effects be- 
yond the finite-lifetime quasi-particle concept, and represent bonafide non- 
equilibrium scattering effects. These are similar to those occurring in the last two 
terms of Eq. (110) for G >'<. The equation for G >'< is exactly identical to the 
Keldysh results [32], while the equations for G c and G ac also contain collision 
terms. 

The "super" self-energy has formally the same functional form as that of the 
"zero-temperature" self-energy. In the L-space approach, each of the self-energy 
matrix elements is calculated using the equation of motion of the "hat" and 
"tilde" super operators, which is a straightforward application of quantum-field 
theoretical techniques. Similar transport equations are deduced [31] for the ion 
and electromagnetic fields from their respective Green functions and self-ener- 
gies. The self-energies depend on all the field variables exhibiting the mutual 
interactions among the fields. Thus all the Green functions become mutually 
coupled, requiring thereby a self-consistent analysis. 

For high speed applications, the methods developed here are suited for 
analyzing very-short-time quantum dynamics of quantized fields, in particular, 
for interacting quantized fields of electrons, ions (phonons), and electromagnetic 
fields (photons) in nanoelectronic systems, such as resonant tunneling devices, 
under varied conditions [33], exciton-polariton effects in multiple-quantum- 
well systems which may lead to novel coherent light sources and serve as an 
example of the coupled-field problem (phonon, electron, and photons) of interest 
in optoelectronics [34], electronic structure, quantum dot saturation spectro- 
scopy as well as transport through quantum dots which are artificially struc- 
tured semiconducting materials when subjected to intense terahertz laser beams 
(electron and electromagnetic field system) [35], etc. In all of these systems, 
self-consistency of the calculation is of great importance for understanding 
short-time dynamics and nonlinear behavior, and our formalism fits this re- 
quirement. In each case, we begin with an approximate but self-consistent 
self-energy expression which captures the basic physics of the problem at hand 
and proceeds by iterating the solution until convergence is achieved. 

The very-short-time behavior of micro-cavity quantum electrodynamics for 
characterizing micro-laser arrays for high speed applications, where highly 
nonlinear coupling of the vacuum fluctuations and the atomic polarizations 
exist, requires the full time-dependent quantum treatment discussed here. 

6 Summary and Conclusions 

In this work we have developed a time-dependent functional theory of coupled 
interacting fields for non-equilibrium situations, employing Liouvillean quan- 
tum field theory. The fields considered here are those associated with electrons, 
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ions, and electromagnetic fields, relevant to condensed matter physics. The 
relevant field operators of physical interest are the electron density, the ion 
coordinate, and the vector field of the electromagnetic field, whose average 
values are the functional variables. This then leads us to a multi-variable 
coupled nonlinear self-consistent equation for these quantities following from an 
action principle. A single functional of the variables plays a central role, 
providing the source for effective interaction and correlation among the fields. 
Setting up this functional for actual applications is crucial in future development 
of this theory into a calculable scheme. The spirit of this theory is thus similar to 
the traditional pure-state TD-density functional theory, except that the initial 
condition of the system being in thermodynamic equilibrium is taken into 
account in the present theory. To gain some insight into the central functional 
mentioned above, we have developed another theory in parallel to the functional 
theory described above, addressing the same problem within the LQD frame- 
work. This is a generalization of the Baym 4~-derivable, effective action func- 
tional method in many-body theory. It involves a functional of the one-particle 
electron Green function, the Green function associated with the ion motion, and 
the dyadic Green function associated with the electromagnetic fields. This 
theory also is based on a stationary principle and when our TD-functional 
theory is recast in the Green function language, we observe the similarities 
between the two methods. This suggests using the diagrammatic methods in 
Green function theory in setting up suitable functionals needed in the theory. 
Some numerical calculations comparing the two methods for the electronic 
structure problem have recently appeared in the literature in this connection 
[36, 37]. We are presently developing this procedure to address the problem of 
transport in nanometric systems where the interactions and correlations and the 
nature of the system require careful accounting of the various contributions. 
Such a system also provides a testing ground for studying non-equilibrium 
problems since they can now be fabricated and experimentally characterized. 

It may be worthwhile to remark that the use of the ion-coordinate as 
a variable in the problem instead of ion density will be of great utility in 
examining the phonon spectrum, electron-phonon interaction, strong coupling 
superconductivity, etc. when the electron-phonon coupling is strong and must 
be treated on the same footing in a self-consistent manner. Up to the present 
time, the traditional density functional method used in determining the phonon 
properties is to perform several electronic structure and total energy calcu- 
lations for various different ionic positions and deduce from them the phonon 
frequencies, etc. 

A recent preprint [38] dealing with the chain buckling distortion in the high 
temperature superconductor, YBCO, is an example of such an analysis and 
which urgently calls for a new approach to the problem. Our method should be 
a viable alternate in the near future in addressing such problems. For this we 
need to provide the functional of two variables, the electron density and the ion 
coordinate. 

204 



Generalized Functional Theory of Interacting Coupled Liouvillean Quantum Fields 

We have also pointed out here the formal connection between our formalism 
and the existing numerical algorithms in special cases (CP-algorithm and 
time-dependent optimized potential) as well as avenues to go beyond these to 
include non-adiabatic processes. It should be stressed that unlike the existing 
theories, our framework is based on a stationary action principle, which facilit- 
ates incorporation of the initial constraint of thermodynamic equilibrium. This 
development is made feasible by working in a superspace formalism. This work 
thus provides a practical theoretical framework for studying the non-equilib- 
rium statistical mechanics of systems initially in thermodynamic equilibrium. 

Theoretical aspects of the time evolution of highly nonlinear interacting 
quantized field systems are outlined in this paper. Besides the aspect of self- 
consistency of solutions, specific techniques for solving the time-dependent 
equations such as the Floquet method for periodic time-dependent problems 
and transformation to an accelerated reference frame method must be incorpor- 
ated. The Floquet method has recently been used [39] to study localization, 
low-frequency, and harmonic generation on a quantum double well driven by 
a strong laser. The study of wave functions in the presence of a time-dependent 
field [40], and transient phenomena, as well as the characterization of high 
speed response in resonant tunneling devices [41] have been reported using the 
accelerated reference frame method. Only recently, general important conse- 
quences of the use of the accelerated reference frame in formulating the time- 
dependent functional method [42] were discussed. 

An important result in Appendix A establishes the equivalence of the two 
methods given in Sects. (2.4) and (2.5) by showing that the quantum action 
functional is expressed in two equivalent ways in terms of different representa- 
tions. This demonstration has important consequences for future computer 
algorithms to be developed for the TD description of the many-body systems of 
current interest. 

There is a large class of problems involving dynamically coupled fields of 
electrons (e), ions (i), and electromagnetic fields (f) with the thermodynamic 
equilibrium of the system as an initial condition, which may be subjected to TD 
external perturbations. Our formalism is essential to deal with these problems. It 
may be of interest to give a small set of examples of such problems: (A) change in 
phonons due to superconducting transition in high TC systems [43] (e-i); (B) 
self-consistent motion of H, D, or T in PdH, PdD, or PdT systems respectively 
[44] (e-i); (C) laser interactions with matter [45, 46] (e-f); (D) resonant tunnel- 
ing device subject to TD bias [47] (e-f); and (E) dynamics of charge transport in 
both high- and low-TC superconductors [48] (e-i-f). The approaches proposed 
here also offers practical methods for attacking challenging problems in 
nanoelectronics and optoelectronics. It may be pointed out that there is a rap- 
idly growing literature in the TD quantum chemistry where a non-adiabatic 
approach to electron ion dynamics is essential [45, 50, 51]. For problems 
involving purely ionic motions as in ferroelectric systems [30, 52], an LQD 
approach is relevant and is given in [53]. 
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7 Appendix A: Equivalence of the Action Functional [Eq. (54)] 
and the Baym Functional [Eq. (89)] and its Consequences 

In this appendix, we establish the important result that the TD stationary action 
principle used in the derivation of the TD-functional theory [Eq. (54)] is the 
same as the stationary principle for the effective action functional of Baym 
[F~. (89)]. Thus the action functionals appearing in the two formulations are 
different representations of the same quantum action leading to two different 
optimization strategies. We give a version of the work of Jackiw and Kerman 
[-54] (hereafter referred to JK) on this subject, adapted here to LQD. 
Consequences of this important result in the development of the functional 
theory presented here are given. 

For simplicity of presentation of this important result, we consider, as in JK, 
the quantum theory of a field q~ in the Hilbert space generated by an external 
source function, J(rt), governed by a Hamiltonian operator, H. Similar proced- 
ures are required to establish this for the fields of interest in this paper. As in 
Sect. 2.4, the total Hamiltonian is Ht = H + H~ x', H~ xt = Sd3rJ(rt)qb(r). Con- 
sider the stationary solutions of the "action" functional in LQD for this simpli- 
fied case: 

t l  

W(to, tl) = 1/2 ~ dt((~(t)l(ihc?, - lt,)lO~,(t))) (A.1) 
t~ 

with the normalization condition 

((~(t)lD~(t)}? = 1. (A.2) 

Introducing a Lagrange multiplier w(t) to incorporate this constraint, we obtain 
the equations 

(ihg4 -/~,)lD~(t))) = w(t) lO~(t))), (A.3a, b) 

(ihet -/~t)l  ~u(t))) = w*(t)t 7t(t))). 

Here it should be noted that w(t) is the Lagrange multiplier which incorporates 
the special property of time in LQD. The physical action of our interest is 
obtained by taking 

((~(t), = ((l ,, and ,D~(t)))=exp(~,dt 'w(t '))]D(t))),  (A.4) 

206 



Generalized Functional Theory of Interacting Coupled Liouvillean Quantum Fields 

The solution to Eq. (3a) is contained in Eq. (A.4). Then Eqs. (A.2) and (A.3) 
become for ID(t))): 

((l[D(t))) = exp - ( ~  ~dt'w(t')),  and 

(A.5) 
(ih~t - / t t ) lD( t ) ) )  = 0. 

Moreover, Eq. (A.1), for the physical action becomes 

W = ~dt'w(t'). (A.6) 

Using the thermodynamic equilibrium as the initial condition, the second 
equation in Eq. (A.5) may be solved in the interaction representation and the 
first equation of Eq. (A.5) may then be expressed in the form 

<<l,OIt)>>=((llZexp--( ydCI ,xt(C) ) Ooq)lZ( ). (A.7) 

Thus we have established the equivalence of Eq. (54) with Eq. (89). 
There are several important implications of this result: the TD functional 

theory and the Baym functional theory are versions of the many-body theory in 
that they invoke different trial functionals in obtaining the stationary solution of 
the same variational functional, namely, the action functional. The two theories 
explore the optimization of the action functional in terms of different functional 
variables: the TD functional employs density, current, ion-coordinates, etc. 
while the q~-derivable theory employs the two-point functions such as the Green 
functions associated with electrons, ions, etc. The above demonstration shows 
that different optimization strategies may be employed to explore the stationar- 
ity of the action functional. 

The Berry phase is not explicitly found at first sight in a time-dependent 
density functional theory. From Eq. (A.5) we find it quite generally resides in the 
action functional of the theory. It lies buried as the sum over the occupied states 
of the individual phases associated with the time-dependent Kohn-Sham or- 
bitals. From Eqs. (A.1) and (A.5), the Berry phase may be identified by writing 
the physical action functional as a sum of two quantities: 

W =- Wn + Wo, where 

1 
WB = ~ ~ dt (( l lih(?t[D(t))); (m.8) 

1 
Wo -- - ~ ~ dt ((1 I/~,tO(t))). 

In Eq. (A.8), W n is the Berry phase and HID is the dynamical phase. Details of this 
aspect of the action functional are given elsewhere [55]. 

We may thus conclude that the quantum action functional contains in it 
many important features of the physics of the system. This opens up the 
possibilities of computing various dynamical quantities of physical interest. 
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